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1. Introduction

Recent advancements in computer technology have allowed designers to have direct control over
the production process through the help of computer-based tools, creating the possibility of completely
integrated design and manufacturing processes. Over the last few decades, artificial intelligence (AI)
techniques such as machine learning and deep learning have been topics of interest in computer-based
design and manufacturing research fields. This Special Issue aims to collect novel articles covering
artificial intelligence-based design, manufacturing, and data-driven design.

2. Content

This Special Issue comprises 10 selected papers that demonstrate the successful application of
computer-based tools in design and manufacturing research fields.

Among these works, three papers focus on engineering optimization by combining computer-aided
engineering (CAE) models with intelligent optimization algorithms. Specifically, in Reference [1],
the finite element analysis (FEA) model for simulating the filling and packing stage was combined
with a gradient-based algorithm and robust genetic algorithm to design the conformal cooling
channels. In Reference [2], the hydraulic optimization of automotive electronic pumps was finished by
combining the computational fluid dynamics (CFD) technology with a multi-island genetic algorithm.
In Reference [3], the design optimization of an underwater vehicle base was successfully performed by
integrating the FEA simulation-based design with the Kriging surrogate model and genetic algorithm.

Six of these papers focus on data-driven design and optimization. Specifically, in Reference [4],
a stretchable micro-strip patch MSP (micro-strip patch) antenna-based strain sensor was optimized by a
proposed design framework, which exploits dimensional reduction, machine learning-based surrogate
modeling, structural optimization, and reliability assessment approaches. In Reference [5], a field repair
kit for a complex product-service system was optimized in terms of the field inventory kit cost, while
satisfying the availability requirement set by contract with the customer. In Reference [6], a methodology
of a product image design integrated decision system based on Kansei engineering theory was
developed. In Reference [7], to improve the quality of the large-scale assembly, an assemblability analysis
and optimization method based on the coordination space model was developed. In Reference [8],
a region-based convolutional neural network was constructed to recognize graphical symbols in piping
and instrument diagrams. In Reference [9], the design specifications for a multifunctional console of
Jangbogo class submarines that can accommodate, as much as possible, the anthropometric dimensions
of Korean males were optimized.

Appl. Sci. 2020, 10, 5650; doi:10.3390/app10165650 www.mdpi.com/journal/applsci1
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The last paper [10] focuses on computer-based design for additive manufacturing. Specifically,
the authors developed a design method to consolidate parts for considering maintenance and product
recovery at the end-of-life stage.

3. Results

AI techniques shine in many areas, including the computer-based design and manufacturing
research fields. The 10 papers described here show some successful applications of machine learning
and intelligent optimization algorithms in different cases. It is believed that the collection of 10 papers
in this Special Issue will be beneficial to readers who have interests in applying AI techniques in the
computer-based design and manufacturing domain.
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Abstract: Improving the efficiency of fluid machinery is an eternal topic, and the development of
computational fluid dynamics (CFD) technology provides an opportunity to achieve optimal design
in limited time. A multi-objective design process based on CFD and an intelligent optimization
method is proposed in this study to improve the energy transfer efficiency, using the application of
an automotive electronic pump as an example. Firstly, the three-dimensional CFD analysis of the
prototype is carried out to understand the flow loss mechanism inside the pump and establish the
numerical prediction model of pump performance. Secondly, an automatic optimization platform
including fluid domain modeling, meshing, solving, post-processing, and design of experiment (DOE)
is built based on three-dimensional parametric design method. Then, orthogonal experimental design
and the multi-island genetic algorithm (MIGA) are utilized to drive the platform for improving the
efficiency of the pump at three operating flowrates. Finally, the optimal impeller geometries are
obtained within the limited 375 h and manufactured into a prototype for verification test. The results
show that the highest efficiency of the pump increased by 4.2%, which verify the effectiveness of the
proposed method. Overall, the flow field has been improved significantly after optimization, which
is the fundamental reason for performance improvement.

Keywords: automatic design; intelligent optimization method; CFD; fluid machinery; pumps

1. Introduction

Fluid machinery is an important energy conversion device, which is widely used in important
sectors of the national economy such as hydropower, chemical processes, automobiles, nuclear power,
and national defense [1,2]. With the deepening of energy saving and emission reduction, it is very
important to improve the conveying efficiency of fluid machinery. Take the automobile industry as an
example, the design of efficient cooling systems which are driven by blade pumps play an important
role in the development of new energy vehicles. The former mechanical cooling water pump is mainly
driven and coupled with the engine speed, which may either overcool or undercool. Electric water
pumps are powered by adjustable speed motors and regulate operating conditions according to the
cooling needs [3–5]. The pump unit coupled with the control program not only minimize the output
power, but also meets the needs of the electric and intelligent development of the automotive industry.
However, the efficiency of the pump is often below 40% due to unreasonable hydraulic design, leaving
space for considerable energy savings. Moreover, pump geometries are mostly calculated based
on ideal flow theory under a single flow rate using the traditional one-dimensional design method.
However, the pump usually deviates from the optimal working condition, resulting in unstable flow
phenomena such as secondary flow and flow separation inside the flow channel during the actual

Appl. Sci. 2020, 10, 366; doi:10.3390/app10010366 www.mdpi.com/journal/applsci3
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operation [6–8]. Thus, the study on the multi-objective optimization method of efficient pumps is
also very important to the designers. However, there is still a lack of theoretical support and effective
optimization tools for pump designing in the background of faster product updates.

Pump design theory has evolved from traditional one-dimensional design to three-dimensional
design. With the rapid development of computer technology, the application of computational fluid
dynamics (CFD) combined with optimization methods have become a popular and effective technique
in turbomachinery design [9]. Wu et al. [10] investigated the effects of trailing edge modification on the
performance of the mixed-flow pump through CFD analysis. Zhou et al. [11] compared the internal flow
characteristics of a new kind of three-dimensional surface return diffuser to traditional ones using steady
CFD simulation in order to improve the hydrodynamic performance of the deep-well centrifugal pump.
Osman et al. [12] numerically investigated two multistage axially split centrifugal pumps with different
channel designs between its stages, the flow losses were compared by entropy production. Wang et
al. [13] established an energy loss model (ELM) to determine the relationships among the different
types of energy losses in a multistage centrifugal pump, and a method was proposed to optimize the
pump efficiency based on the ELM and CFD. The optimal design method of pumps has been studied
extensively by many scholars. There are several methods to improve the pump performance, such as
the empirical design method, approximate model method, and optimization algorithm. Liu et al. [14]
implemented the orthogonal design with five factors and four levels to optimize a multiphase pump,
the influence of each of the factors on the pressure rise was estimated, and the optimized ranges of these
parameters were determined. The above method achieved some success but could not overcome the
influence of human factors on the optimization results because it still relies on the empirical coefficients.
In recent years, intelligent optimization algorithms have been developed rapidly, such as the genetic
algorithm, ant colony algorithm, no-no search algorithm, simulated annealing algorithm, particle
swarm algorithm, and so on [15–19]. With the optimization of pump performance, these intelligent
algorithms are gradually adopted by pump researchers. Pei et al. [20] constructed an accurate nonlinear
function between the optimization target and the pump design variables by utilizing an artificial neural
network, and the modified particle swarm algorithm was further applied to optimize the mathematical
model. Yuan et al. [21] adopted optimal Latin hypercube design, CFD simulation combined with the
Kriging model were used to achieve the sample points for space-filling and establish the approximate
optimization model, the best combination of impeller parameters were finally obtained by solving
the approximation model with a genetic algorithm. Zhang et al. [22] proposed a multi-objective
method to optimize a double suction centrifugal pump based on the Simulation Kriging Experiment
(SKE) approach. Wang et al. [23] used radial basis function neural network combined with the
Non-dominated Sorting Genetic Algorithm-II (NSGA-II) genetic algorithm to optimize a high-speed,
mixed-flow pump. However, the optimization periods of these two methods are relatively short and it
is difficult to obtain an overall optimal solution. In order to eliminate the deviation generated by the
build of the approximation model, the researchers used the natural heuristic algorithm to optimize
the performance globally. For example, Zhang et al. [24] utilized a genetic algorithm to optimize the
geometry of a spiral axial-flow mixing pump. In recent years, a lot of intelligence algorithms have been
proposed. Because there is no crossover and mutation process in the genetic algorithm, the convergence
speed is greatly accelerated [25,26]. In summary, the pump optimization methods have undergone an
improvement process from single target to multi-objective optimization, from experience to theory.
Currently, with the advance of computer technology, automation, and artificial intelligence, automatic
design methods without human intervention are being developed and applied in various fields.

This study focuses on the hydraulic optimization of automotive electronic pumps. Firstly,
numerical simulations for a given model were carried out to build the prediction process of pump
efficiency. Secondly, the target of this multi-objective optimization was established by weighting
analysis. Then, an automatic optimization platform was established including parametric design,
CFD and DOE. Orthogonal design, a kind of DOE method, was implemented in advance to estimate
the influence of four selected factors on pump efficiency and head. The optimized ranges of these
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parameters were also determined. After, one kind of DOE namely the multi-island genetic algorithm
(MIGA) was utilized to drive the platform for optimizing the weighted average efficiency under three
operating flowrates. Finally, the optimized hydraulic scheme was obtained in a limited 375 h by using a
normal desktop computer without running in parallel and was proven to improve the pump efficiency
by 4.2% through the experiment. The proposed method may provide some theoretical guidance for
hydraulic optimization of fluid machinery.

2. Optimization Design Process and Modeling Method

2.1. Optimization Process

In traditional design of fluid machinery, taking pumps for example, research procedures involve
manufacturing prototypes, performance tests, results analyses, and optimal design. The design is
mostly two-dimensional and relies on the experience of the designer. However, creating prototypes
may cost a lot of time and money. Moreover, a large number of prototype tests would inevitably cause
significant manufacturing and testing errors. The automatic design with the intelligent optimization
method of fluid machinery presented in this study is based on the combination of CFD technology
and optimization theory. An accurate CFD simulation method needs to be established first, which
could provide virtual experimental results for optimization. Meanwhile, an automatic optimization
platform including all CFD process such as fluid domain modeling, meshing, solving, post-processing,
and design of experiment (DOE) was built for future optimization processes. The modeling of the
pump geometry is based on the three-dimensional parametric design method, which means the fluid
domain could be modified by DOE arrangements. The main parameters that influence the hydraulic
performance of centrifugal pumps were screened out, and orthogonal design was applied to obtain
the spacing-filling sample points. Significance test of optimization variables was conducted based
on analysis of variance (ANOVA). Further, the MIGA optimization method was utilized to drive the
platform for improving the efficiency of the pump automatically under three flowrates. Finally, an
optimized scheme was obtained and the prototype was 3D printed to experimentally validate the
optimal results. The whole optimization process is shown in Figure 1.

 
Figure 1. The flowchart of optimization process. CFD, computational fluid dynamics.
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2.2. Pump Model

The electronic pumps used in a car are always single-stage, single-suction centrifugal pumps
equipped with a Direct Current (DC) brushless motor. They are characterized by simple structure,
reliable operation, and convenient speed regulation. The motor contains the stator, the rotor, and
shaft. The rotor will rotate after power-on under electromagnetic induction. Moreover, the electronic
pump is equipped with a control unit that is connected to the driving computer. The rotational
speed of the pump would be adjusted by pulse width modulation (PWM) controls according to heat
dissipation of the cooling system, which may ensure the pump operates at a constant operation area
after dimensionless processing [1].

2.2.1. Pump Geometry and Losses Analysis

The structure of automotive electronic pumps used in this study is shown in Figure 2a. The coolant
liquid is sucked into the impeller, obtains pressure head after rotating with the impeller, and enters
into the volute passage under centrifugal force. In this process, electrical energy is converted into the
pressure energy of the fluid with a lot of losses, such as mechanical loss, leakage loss, disc friction
losses, and hydraulic loss. Mechanical loss refers to the energy loss due to the mechanical friction in
the pump, including the disk friction loss, bearing loss, and shaft seal loss. Leakage loss refers to the
clearance leakage in the pump including the leakage loss at the front ring, rear ring, and balance holes.
Hydraulic loss refers to the energy loss through the flow passage, including the inlet section, outlet
section, pump cavity, impeller, and volute. The flow inside the pump passage is full 3D unsteady
turbulence flow, including flow separation, backflow, circulation, instability flow, jet-wake flow, vortex,
and even cavitation. As the most important part of energy transfer, the geometry of the impeller has a
significant effect on hydraulic losses, pumping ability, and inherent reliability. Impeller-related losses
dominate the pump efficiency. Therefore, the optimization of this study is mainly aimed at the impeller.

The pump performance characteristic curves at different rotational speeds are shown in Figure 2b.
The pump would work at point A in actual operation at design rotational speed nd because of system
resistance. Similarly, the pump would work at point A1 in actual operation at rotational speed n1

based on similarity law if Reynolds number changes within a certain range. The related losses of the
pump under different rotational speeds also follows the similar law. Thus, it is equivalent to evaluate
the pump performance only at the design rotational speed. The hydraulic parameters of the selected
model pump are as follows: design rotational speed nd is 5400 r/min, design head Hd is 7.5 m, design
flow rate Qd is 1.4 m3/h. Table 1 provides a list of the main geometric parameters of the pump. Blade
angle is relative to tangential direction. Considering the inlet pressure of the pump in the real system,
this study does not involve cavitation problems.

 

 

(a) (b) 

Figure 2. Automobile electronic pump model: (a) Structure diagram; (b) Performance characteristic curves.
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Table 1. Main geometric parameters of the pump.

Description Parameter Symbol Unit Value

Impeller

Inlet diameter D1 mm 20
Outlet diameter D2 mm 47

Outlet width b2 mm 2.2
Blade inlet angle β1

◦ 20
Blade number Z - 5

Blade outlet angle β2
◦ 41

Volute
Inlet diameter D3 mm 50

Inlet width b3 mm 6
Pipe diameter D mm 17

2.2.2. Optimization Objectives

The objective of the optimization is to build the relationships between the geometrical parameters
of the impeller and the various kinds of energy losses in the pump, with the ultimate goal of minimizing
the total energy loss. Thus, the following geometric parameters of impeller were selected as optimization
variables based on the results of previous practice, such as the impeller outlet diameter D2, blade outlet
width b2, blade number Z, blade outlet angle β2, blade inlet angle β1, leading edge tangential angle t3,
trailing edge tangential angle φ, and blade thickness δ. Moreover, the electronic water pump needs
to operate under multiple working flowrates according to the working state of the cooling system.
Therefore, a multi-point optimization is necessary. To broaden the high efficiency range of the model
pump, the weighted average efficiency of three flow conditions, namely 0.8Qd, 1.0Qd, 1.25Qd, were set
as the objective function, and the design head was set as a constraint.

In general, the time of optimization with the intelligent method will be increased with both
the number of parameters and the range of each parameter. In this study, exactly four parameters,
impeller outlet diameter D2, blade outlet width b2, blade number Z, blade outlet angle β2, were selected
for the orthogonal experiment at the first step. These four parameters are considered to play most
important roles in the comprehensive performance of centrifugal pumps [6,13]. Local optimization
can be achieved, and then the range of parameters can be reduced in this step. However, because
the optimization is also a multi-objective problem, it is necessary to establish the model with the
highest weighted average efficiency under three working flowrates. The optimization problem can be
formulated as:

Solve X = [D2, b2, Z, β2]T make:

f (X) =

3∑
i=1
ωi·ηi(X)

3∑
i=1
ωi

→ max, (1)

subject to
X ∈ R

Hd ≥ 7.5m
, (2)

where X is a vector of all design variables, R is the set of variable ranges, η1, η2, η3 represent the
efficiency of 0.8Qd, 1.0Qd, and 1.25Qd, respectively. Accordingly, ωi represents the weighting factors.

Analytic hierarchy process (AHP) was developed in the late 1970s by Saaty [27]. Due to its
simplicity, ease of use, and great flexibility, this technique has been widely used as a decision model to
deal with multi-criteria evaluation. However, AHP does not take into account the inherent uncertainty
and imprecision. Moreover, the comparison matrices used in AHP are combined with crisp scales.
To deal with the uncertainty or vagueness of data, fuzzy analytic hierarchy process (FAHP) was utilized
to derive the weight of every objective [28,29]. In FAHP, the importance of factor A to factor B is
obtained and the fuzzy judgment matrix is generated after comparing different factors. This study use
FAHP with the following steps.
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Firstly, build and construct a fuzzy complementary judgment matrix. The pairwise comparison
among factors is made to determine the importance of one factor relative to the other factors, and then
the judgment matrix is generated:

A =
(
aij

)
N×N

, (3)

where aij represents the evaluation of the relative importance of the factor i to the factor j, aj i = 1/aij.
Secondly, calculate weight vector:

ω∗i = (b1, b2, . . . , bN)
T, (4)

where i = 1, 2, 3, . . . , N; bi = N√ai1·ai2· . . . aiN
Thirdly, calculate the normalized weight value for each weight vector obtained from Equation (4):

ωi = bi/
N∑

i=1

bi. (5)

Fourthly, sum the elements in each column:

Si =

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

j=1

a1 j,
N∑

j=1

a2 j, . . .
N∑

j=1

aN j

⎞⎟⎟⎟⎟⎟⎟⎠
T

. (6)

Fifthly, calculate the maximum eigenvalue of the matrix. It would be used to calculate the
following consistency index.

λmax =
N∑

i=1

Ωi·Si, (7)

where Ωi = (ω1,ω2, . . . ,ωN)

Sixthly, consistency test. A consistency ratio (CR) is obtained in addition to the corresponding
principal eigenvector when using FAHP for criteria weighting. It represents the priority vector which
is integrated by the intended weights. The consistency ratio is used to measure if this eigenvector
estimates the weight vector well. It is obtained by division of the consistency index (CI) and the
appropriate average random consistency index (RI):

CR =
CI
RI

, (8)

CI =
λmax −N

N − 1
, (9)

where λmax is the maximum eigenvalue of the comparison matrix, and N is the order of objective
matrix. The value of the RI is related to N, which can be obtained from Table 2. If CR is greater than
0.1, the comparison matrix is inconsistent and should be revised.

Table 2. Random consistency index (RI).

N 1 2 3 4 5 6 7 8 9 10 11

RI 0 0 0.58 0.9 1.12 1.24 1.34 1.41 1.45 1.49 1.51

The second step for the optimization is to use the intelligent method. The impeller parameters
mentioned before, the impeller outlet diameter D2, blade outlet width b2, blade number Z, blade outlet
angle β2, blade inlet angle β1, leading edge tangential angle t3, trailing edge tangential angle φ, and
blade thickness δ, are used for variable parameters to find the optimal combination at this step. Batch
command is used to drive the following cycle of the numerical simulation process.
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2.3. Numerical Method

The key to intelligent optimization is to build a numerical calculation platform which runs
automatically. So, the reliability of the numerical calculation process is particularly important.

2.3.1. Establishing the Calculation Domain

The hydraulic performance of the model pump is predicted by means of a CFD process in this
study. The computational domain of the original pump is shown in Figure 3, which is comprised of
four components, namely the inlet, impeller, pump chamber, and volute. In order to consider the full
development of turbulence, the inlet and volute outlet pipes are properly extended. The inlet domain
is directly connected to the impeller domain with a rotor-stator interface. The impeller domain is also
directly connected to the chamber domain with a rotor-stator interface.

Figure 3. Model of computational domains.

2.3.2. Mesh Sensitivity Analysis

The calculation domains should be discretized by meshes before simulation. Due to the strong
adaptability to complex geometry, tetrahedral unstructured grids generated by software Ansys
ICEM14.1 are adopt in this study. The meshes of all computational flow domains are displayed in
Figure 4.

9
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Figure 4. Computational meshes.

The number of mesh elements can significantly influence the simulation results. Seven sets of
meshes are used for grid independence analysis, with elements rising from 34 × 104 to 251 × 104. Grid
convergence study is done at design flowrate using the Reynolds-averaged Navier-Stokes equations
(RANS) method and boundary conditions described below. The Reynolds number value is about
6.2 × 105 based on the formula Re = u2·D2/2v. u2 represents the tangential velocity of the flow at the
blade tip clearance under rated rotational speed 5400 r/min. v represents the kinematic viscosity of
the fluid. So, it is reasonable to perform the following simulations in the framework of RANS. Seen
from Figure 5, the overall difference of pump head is within 1% when the number of mesh elements
exceed 1.68 million, which means the grid number has little effect on the calculation results. In order to
balance the computational accuracy and the total calculation time, meshes with 168 million elements
are employed for the following investigation.

 
Figure 5. Analysis of grid independence.

2.3.3. Governing Equations and Boundary Conditions

The three-dimensional turbulent flow inside the pump is basically controlled by the law of mass
and momentum conservation. For steady and incompressible flow, the control equations can be
formulated as:

∇·→V = 0 (10)

d
→
V

dt
=
→
F − 1
ρ
∇p + ν∇2

→
V, (11)
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where
→
V represents the velocity vector, p represents pressure,

→
F represents mass force, ν represents

kinematic viscosity, ρ represents the fluid density.
Due to different turbulence models influencing the calculation results of specific flow problems,

selecting the suitable turbulence model can improve the calculation accuracy. In the present study,
the fluid medium is set as water at 25 ◦C. The simulation is conducted by ANSYS CFX14.1 solver,
which provides a number of turbulence models. Among the turbulence models, k-ε and k-ω are known
in engineering applications. The ε equation of the standard k-ε model must use a wall function to
solve the terms, and the simulation results are not accurate in the case of severe flow separation.
The standard k-ωmodel is improved for a low Reynolds number and shear flow. Moreover, the Shear
Stress Transfer (SST) k-ω turbulence model uses a hybrid function which acts as a standard k-ωmodel
on the near wall and the standard k-ε model on the far wall area to correct the turbulent viscosity
formula, while taking into account the turbulent shear stress. It has been proven to be more suitable for
rotating machinery because it provides a better solution to the boundary layer [30]. The internal flow
of the rotating pumps is three-dimensional turbulence flow, with strong flow separation, rotor-stator
interaction, backflow, and so on. In addition, the electronic water pump has a high speed, and its flow
losses mainly appear near the wall surface. Therefore, the SST k-ω turbulence model is adopted in this
study to simulate the internal flow of the model pump based on the finite volume method.

The boundary conditions consist of an imposed stable total pressure with a turbulence intensity
of 5% at the inlet and flow rates at outlet. All physical surfaces are set as no-slip walls. Considering the
rotational characteristic, the rotating coordinate system is applied in impeller domain. The interfaces
between the rotational domain and stationary ones are set as frozen rotor for steady simulation.
The root mean square (RMS) residual error is used to judge whether the calculation is converged,
setting values as 10−5.

2.3.4. Experiment Validation

According to the Bernoulli equation, the pump head H is formulated as:

H =
p2 − p1

ρg
+

v2
2 − v1

2

2g
+ (z2 − z1), (12)

where p1 and p2 imply the inlet static pressure and outlet static pressure respectively; v1 and v2 denote
the average velocities of the inlet and outlet section respectively; z1 and z2 are the heights in vertical
direction at the inlet and outlet of the model pump; ρ denotes the fluid density, 997 kg/m3; g denotes
the local acceleration of gravity, 9.8 m/s2.

The efficiency of centrifugal pump is the ratio of useful power to input power, defined as follows:

η =
ρgQH

Pe
, (13)

where Pe denotes the shaft power calculated by the input power and motor efficiency. The way to
obtain the value of Pe in an experiment is different from the simulation because the torque T acting on
the rotor is easy to obtain in CFD. Pe is equal to nd·T/9550.

In order to validate the accuracy of the CFD results, a test rig as shown in Figure 6 was set up to
measure the pump performance. The model pump is connected to the rigid pipes by two rubber hoses.
The flow rate is obtained by a LWGY-MIK-DN20 liquid turbine flowmeter with a range of 0.8–8 m3/h
and accuracy of 0.5%. The head of the pump is measured by a CYG1204F type differential pressure
transmitter with an uncertainty of 0.1% and range of 0–200 kPa. The PSW 30–36 programmable DC
power is used to drive the pump. The output voltage range of the power is 0–30 V, and the maximum
output current is 36 A. The data acquisition system consists of LabVIEW acquisition program and
NI6343 data acquisition card. The estimated uncertainty of head and efficiency measurement is below
0.32%, and the random uncertainty is no more than ±0.1%.
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Figure 6. The schematic diagram of test rig.

The obtained pump hydraulic performance curves from CFD and experiment are compared,
as shown in Figure 7. The pump efficiency obtained from the test has been converted into the
hydraulic one by removing motor efficiency, bearing efficiency, and leakage efficiency. As seen from
the results, the numerical ones are always consistent with the changing trends of the experimental
curves. Both head and hydraulic efficiency of the simulation results are higher than the experimental
values, which might be because the material roughness is not considered in the numerical simulation.
The deviations of head at 0.8Qd, 1.0Qd, 1.25Qd are 4.9%, 4.3%, 1.7%, respectively. The deviations of
efficiency at 0.8Qd, 1.0Qd, 1.25Qd are 3.6%, 4.9%, 4.8%, respectively. Therefore, it can be stated that the
employed numerical method is reliable for the optimization at three selected flowrates.

  
(a) (b) 

Figure 7. Comparison of pump performance between numerical and experimental results: (a) Head;
(b) Efficiency.

3. Automatic Intelligent Optimization

3.1. Construction of Automatic Optimization Platform

In order to reduce manual intervention and save optimization time, an automatic optimization
platform for CFD is established. The platform integrates a 3D parametric design module, mesh division
module, pre-processing module, solver, and post-processing module with computer batch processing
commands, which can automatically realize the combination of parametric design, grid generation,
pre-process for CFD, simulation, and post-process for CFD. The operation process of this optimization
platform is shown in Figure 8. The numerical optimization algorithm scheme is set in the DOE part.
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 H  

Figure 8. Operation process of the automatic optimization platform.

A computer-aided optimization platform, namely Isight, has been widely used in multidisciplinary
design and optimization. Its rich component library and algorithm library, visualization of the running
process, and powerful data analysis functions are useful for optimization design in many fields [31].
This study uses this software to realize the integration between 3D modeling software CFturbo
and numerical simulation software Ansys CFX14.1. Thus, an intelligent optimization platform for
multi-conditions of automotive electronic water pumps is built, as shown in Figure 9.

 
Figure 9. Integrated optimization platform of automotive electronic water pump.

3.2. Orthogonal Design Optimization

DOE is one of the most important methods in today’s product development and performance
optimization. Its function is similar to the mathematical arrangement, which makes a large number
of data reasonably and orderly arranged. It provides a scientific experimental scheme for designers.
The two main concepts in the experimental design are factors (input variables in the design) and levels
(the number of values in each variable). In this study, three levels are selected for each factor, as shown
in Table 3.

Table 3. Levels of factors in orthogonal experiments.

Levels

Factors

A
D2/mm

B
b2/mm

C
Z

D
β2/(

◦)
1 44 3 4 30
2 45 3.2 5 33
3 46 3.5 6 35

As is listed in Table 4, a pair-wise comparison square matrix was made from the comparison factors
based on experience, the diagonal elements of the matrix are always 1 because the same factors have
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the same weightage. The weight value (ωi) of each objective is then calculated based on Equation (8).
As seen from Table 4, CR is less than 0.1, which means the values of ωi listed in the last column can be
applied in this multi-objective problem.

Table 4. Evaluation results and weight factors. CR, consistency ratio.

Objective η1 η2 η3 ωi

η1 1 2/3 10/11 0.2786
η2 3/2 1 5/4 0.4059
η3 11/10 4/5 1 0.3155
CR 0.000725

Theoretically, there are 81 (calculated by 34) kinds of schemes, while nine kinds use orthogonal
arrays to have the same effect. Orthogonal arrays are compiled into a standardized table using the
mathematical “orthogonality” principle to arrange the experimental program scientifically. This method
was first applied to engineering design by Plackett and Burman [32]. A notational scheme to characterize
the orthogonal table, as Equation (14) represents:

Lm(np), (14)

where, n is the number of levels; p is the number of factors; m is the number of schemes.
In this study, L9 (34) orthogonal table is applied to obtain the space-filling samples. Four factors

and three levels are reasonably divided into nine groups of experimental schemes. The evaluation
indexes results f (X) are shown in Table 5, which are calculated according to Equation (1) based on the
CFD method.

Table 5. Test schemes.

Number
Levels Corresponding Parameters Results

A B C D D2 b2 Z β2 f (X)

1 A1 B1 C1 D1 44 3 4 30 46.11
2 A1 B2 C2 D2 44 3.2 5 33 50.92
3 A1 B3 C3 D3 44 3.5 6 35 50.81
4 A2 B1 C2 D3 45 3 5 35 50.89
5 A2 B2 C3 D1 45 3.2 6 30 51.21
6 A2 B3 C1 D2 45 3.5 4 33 48.35
7 A3 B1 C3 D2 46 3 6 33 51.53
8 A3 B2 C1 D3 46 3.2 4 35 49.73
9 A3 B3 C2 D1 46 3.5 5 30 51.64

3.2.1. Range and Sensitivity Analysis

The range analysis was performed to evaluate the influence of different factors on the evaluation
index. The factor with the largest range was considered as the most sensitive factor, which had the
greatest impact on the evaluation index. First of all, the comprehensive average value of t at the
same level of each factor was obtained by Equation (15) On this basis, the range of each influencing
factor was obtained by Equation (16), subtracting the minimum value from the maximum value of t at
different levels of each factors. The results are shown in Table 6.

ti =
Ti
r

, (15)

R = max(t1, t2, t3) −min(t1, t2, t3), (16)

where Ti represents the sum of all test target values at the i level; r is the number of different factor
levels; ti denotes the average of the test target values and R is the range.
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Table 6. Range analysis.

Target
f(X) %

A B C D

t1 49.28 49.51 48.06 49.65
t2 50.15 50.62 51.15 50.27
t3 50.97 50.27 51.18 50.48
R 1.69 1.11 3.12 0.83

In order to visually reflect the impact size and trend of each factor on the evaluation target, the
average value and factor level of the test target are drawn as a factors and indicators trend graph, as is
shown in Figure 10. As seen from the range value analysis, the order of importance on efficiency is C,
A, B, and D. The primary and secondary order of influence of each factor on the target is: Z > D2 > b2

> β2. The blade number Z has the greatest impact on pump efficiency, followed by the factor A. As
the blade number Z and impeller outlet diameter D2 increase, the hydraulic performance improves
significantly. Generally, the effect of impeller outlet width b2 on efficiency is relatively small.

Figure 10. Range analysis diagram.

Analysis of variance (ANOVA) is an effective method to determine the significance of controllable
factors on the research results [33]. It tests the variables by mean squaring and estimates experimental
errors at specific levels. F-test is always used in ANOVA to analyze whether a particular design has
any significant change in quality standards. In analyzing the parameters, the F-test tool based on ratio
of mean square and residual error is used to find the significance of a factor. It is evaluated by using
the equations below.

The sum of squared total deviation SST and total degrees of freedom fT are defined as:

SST =
m∑

j=1
f 2
j (x) − T2

m ( j = 1, 2, . . . , m)

fT = m− 1
(17)

where m is the number of simples, m = 9 in this study. T is the sum of the nine scheme results. The
sum of square SSk and degrees of freedom of each factor fk are defined as follows:

SSk =
1
n

n∑
k=1

T2
k − T2

m (k = 1, 2, . . . , n)

fk = n− 1
(18)
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where k = 1, 2, 3, 4 represents the factors A, B, C, D, respectively, n = 4.
The sum of the square SSE and degree of freedom of the deviations fE are defined as follows:

SSE = SST −
n∑

k=1
SSk

fE = fT −
n∑

k=1
fk

(19)

The final Fk value for significance level is defined by the Equation (20).

Fk =
SSk/ fk
SSE/ fE

. (20)

In general, the F value for significance level α (usually α = 0.05 or α = 0.1) should always be used
as quantile points to judge if the factor k plays important role in effecting the results. Values of Fα could
be obtained from the F distribution table. Comparing Fk obtained by calculating the F value to Fα from
the F-table [32]: if Fk > F0.05, the factor k is considered to have a highly significant effect on the test
result; if Fk > F0.1, the factor k is considered to have a significant influence on the test result; otherwise,
it can be assumed that factor k has little effect on the results. The calculation results of ANOVA for all
factors are shown in Table 7. From the common F-test table, F0.05(2, 2) = 19 and F0.1(2, 2) = 9 for the
given degree of freedom shown in Table 7.

Table 7. Analysis of variance.

Source of Variance
f(X) %

A B C D

Sum of squared deviation SST 4.269 1.929 19.263 1.098
Degree of freedom fT 2 2 2 2

Mean square error SSE 1.1 1.1 1.1 1.1
Statistics value Fk 3.888 1.757 17.544 1

Significance Insignificant Insignificant Significant Insignificant

Level α = 0.1, that is Fα (2, 2) = 9, was used to judge the significance of the factor in this study.
It can be concluded from Table 7 that the factor C has significant influence to pump performance,
and the factors’ order of importance is C, A, B, and D, which is consistent with the trend of the range
analysis results. By comparing the ti value, it can be determined that the superior levels of each factor
are A3, B2, C3, and D3. According to the sensitivity analysis, the final optimized combination is
A3B2C3D3 (scheme 2), and the specific parameters are impeller outlet diameter D2 = 46 mm, blade
outlet width b2 = 3.2 mm, blade number Z = 6, blade outlet angle β2 = 35◦. The impeller used this
optimization scheme compares with the original scheme, while numerical simulations were carried
out using the same CFD process.

3.2.2. Analysis of Optimization Results

The comparison results of the optimized scheme 2 with the original scheme 1 is shown in
Table 8. As seen from it, the heads of each assessment point are improved after optimization, in detail,
the efficiency at design flowrate is increased by 3.66%, and the weighted average efficiency of the
optimization scheme is increased by 3.29%.

Figure 11 shows the comparison of the external characteristic curves obtained from the CFD.
It is clear that the head of the optimized pump is higher than the model pump, and the head curve
is shifted to the direction of large flow. It can be seen from the η–Q curve that the flow rate at best
efficiency point increased slightly. The efficiency improvement under large flow conditions is very
obvious. Thus, the high efficiency region is effectively broadened.
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Table 8. Comparison of the performances under specified conditions.

Operation Points
H/m η/% Weighted Average Efficiency %

Original Optimal Original Optimal Original Optimal

0.8Qd 7.6 7.9 50.1 52.17
49.93 53.221.0Qd 6.7 7.3 51.4 55.06

1.25Qd 5.35 6.15 47.97 51.8

(a) (b) 

Figure 11. Comparison of external characteristic curves between origin and optimization scheme:
(a) Head; (b) Efficiency.

Figure 12 shows the comparison of pressure distribution at mid-span of the impeller under three
flowrates. Figure 12a–c represent the results of the original scheme and Figure 12d–f represent the
results of the optimized scheme. As seen from them, the pressure inside the impeller passage increases
from leading edge to trailing edge under all three different flowrates and appears largest near the
impeller outlet. The pressure on the blade working surface is greater than the pressure on the back
side of the corresponding position, and the low-pressure area appears on the suction side of the
blade near the impeller inlet. As the flow rate increases, the area of the low-pressure area gradually
expands. Under 1.25Qd, a reverse pressure gradient appears on the inlet part in the optimized impeller.
The pressure distribution in the optimized pump impeller is more uniform than in the original one, and
a relatively less obvious pressure gradient is present inside the impeller flow-path than the original one.

   
 (a) (b) (c) 

Figure 12. Cont.
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 (a) (b) (c) 

Figure 12. Comparison of pressure distribution in impeller for the two schemes: (a) origin, 0.8Qd;
(b) origin, 1.0Qd; (c) origin, 1.25Qd; (d) optimization, 0.8Qd; (e) optimization, 1.0Qd; (f) optimization,
1.25Qd.

Figure 13 illustrates the distribution of the turbulence kinetic energy at mid-span of the impeller
under three flowrates. Figure 13a–c represent the original scheme, Figure 13d–f represent the optimized
scheme. It can be concluded that the maximum turbulence kinetic energy is prone to appear on the
suction side of the blade. As the flow rate increases, the turbulence kinetic energy in the impeller
gradually increases for both schemes. The turbulence kinetic energy of the optimized pump is smaller
than the original one. Under 1.0Qd, the distribution of turbulence kinetic energy in the flow-path is the
most uniform both before and after optimization. Under 1.25Qd, the kinetic energy distribution of the
optimized pump is more even. Overall, the flow field has been improved after optimization.

    
 (a) (b) (c) 

   
 (d) (e) (f) 

T

T

Figure 13. Comparison of turbulence kinetic energy in impeller for the two schemes: (a) origin, 0.8Qd;
(b) origin, 1.0Qd; (c) origin, 1.25Qd; (d) optimization, 0.8Qd; (e) optimization, 1.0Qd; (f) optimization,
1.25Qd.

Figure 14 shows the comparison of the streamline in the volute at mid-span under three flowrates.
Figure 14a–c represent the original scheme, Figure 14d–f represent the optimized scheme. It can be
concluded that there is obvious flow separation in the volute outlet area accompanied by a large zone
with low speed in the original scheme. Under the condition of 1.25Qd, a large low-speed vortex region
appears in the volute outlet, and the flow state is very disordered, which generates large displacement
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to the mainstream. Under the 0.8Qd and 1.0Qd conditions, there are almost no obvious low-speed
region and flow separation region in the outlet part of the optimized pump volute, and the flow velocity
distribution is relatively uniform, indicating that the flow loss is small. Under 1.25Qd, flow separation
phenomenon also occurs in the outlet part of the optimized pump. However, the size of the low-speed
vortex region in the optimized pump is smaller than the original one, the velocity distribution in the
spiral flow-path is more uniform, and the overall flow loss is greatly reduced. The optimized impeller
improves the influence of rotor-stator interaction between the impeller and the volute tongue.

 
   

 (a) (b) (c) 

 
   

 (d) (e) (f) 

Figure 14. Comparison of velocity streamline in volute for the two schemes: (a) origin, 0.8Qd; (b) origin,
1.0Qd; (c) origin, 1.25Qd; (d) optimization, 0.8Qd; (e) optimization, 1.0Qd; (f) optimization, 1.25Qd.

3.3. Automatic Optimization with Intelligent Method

There is a complex multi-peak nonlinear relationship between the optimization objective and
geometric parameters. Orthogonal design can only obtain a local optimal solution with fewer variables
in discrete space. To further optimize the model pump in overall range quickly and efficiently, an
intelligent algorithm program based on an automatic operation platform is needed [34]. Based on
the analysis in the previous section, the selected optimization variables and the ranges are shown in
Table 9, which includes the impeller diameter D2, the width of impeller outlet b2, inlet blade angle
β1, outlet blade angle β2, leading edge tangential angle t3, trailing edge tangential angle φ, and blade
thickness δ. The variables did not include the parameter of Z at this step because this parameter plays
the most important role in influencing the pump performance. Moreover, the F value of Z is much
greater than the other three factors from Table 7, which means Z has significant influence. So, seven
optimization variables with limited ranges in Table 9 were chosen to process the next optimization by
intelligent method in order to reduce the scheme numbers.

Table 9. Ranges of optimization variables.

Parameters Ranges

D2(mm) (45, 47)
b2(mm) (2.5, 3.5)
β1(◦) (20, 30)
β2(◦) (30, 40)
t3 (◦) (0, 25)
φ (◦) (100, 120)
δ (mm) (2, 6)
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The genetic algorithm (GA), introduced by John Holland (1971), is a stochastic search technique
based on natural selection and natural genetics mechanism to imitate living beings [35]. It has
advantages in solving difficult optimization problems with high complexity and undesirable structure,
which has been successfully used in fields of production planning and process optimization. The genetic
process mainly includes selection, combination of crossover, and mutation. However, the robustness of
the GA is not good enough to avoid premature convergence, which will lead to getting a local optimal
solution instead of global one. In this study, an improved algorithm named the multi-island genetic
algorithm (MIGA) is applied to solve this problem. The main feature of MIGA that distinguishes it from
the traditional genetic algorithm is it divides each population of individuals into several subpopulations,
namely ‘islands’. All operations of the standard GA (selection, crossover, and mutation) are performed
on each island separately. The used migration scheme is random ring, which means that the destination
subpopulations are randomly chosen at every migration under the constraint that the migration is
performed in sequential order between the subpopulations [36]. The structure and process of the
MIGA optimization method is illustrated in Figure 15. MIGA selects individuals on each island to
regularly migrate into other islands, and then continues with standard GA operations. The migration
operation in the multi-island genetic algorithm keeps the diversity of knowledge, improves the chance
of including the global optimal solution, and can suppress the occurrence of precocity. In that case, the
MIGA is less likely to fall into local optimal than the GA method.

(a) 

 
(b) 

Figure 15. The structure and process of the multi-island genetic algorithm (MIGA) optimization
method: (a) Structure, (b) Process.

Normally, parameters such as subpopulation size, number of islands, generations, crossover rate,
migration rate, mutation rate have to be chosen appropriately. The main parameters of the selected
MIGA are shown in Table 10. Total population size equal to the result of the subpopulation size
multiplied by the number of islands, which is equal to 100 in this study (generally between 20 and 200).
Because there are many optimization variables, the number of generations is set to 10, and then the
necessary iteration for this optimization is 1000 steps. In order to improve the creating speed of the
new individuals, the crossover rate is set to 0.9, and the mutation rate is set to 0.01 for maintaining the
diversity of the population. The migration rate refers to the ratio of individual exchanges between
each island, and the default value 0.01 in the software Isight is adopted. The interval of migration is
also set to 5 by default.
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Table 10. Optimization parameters adopted in MIGA.

Parameters Numerical Value

Generations 10
Subpopulation Size 10
Number of Islands 10

Crossover rate 0.9
Migration rate 0.01

Interval of Migration 5
Mutation Rate 0.01

3.3.1. Optimization Results

Optimization based on the MIGA method was processed to obtain the global optimized scheme.
Figure 16 shows the variation of the optimization target with the increase of iteration steps. The
influence of the optimization variables on the efficiency of the automotive electronic water pump is
complicated. The value of the optimization target fluctuates significantly with the increase of the
iteration steps, and there are many schemes that do not satisfy the constraint conditions. As the
iteration steps increase, the fluctuation value of the target becomes small. It means the multi-island
genetic algorithm gradually locates the optimal solution region after a period of searching. The optimal
solution (scheme 3) occurred at 798 iteration steps. All the calculations of the optimization works were
done by using a normal desktop computer (Dell 7060MT) without running in parallel. The optimized
hydraulic scheme was obtained within the limited 375 h.

 
Figure 16. The iteration process of optimization.

Table 11 illustrates the comparison of geometric parameters between scheme 2 and scheme 3.
As seen from the table, the outlet width of scheme 3 increases, the blade outlet angle and wrap angle
both decrease slightly, and the impeller diameter becomes smaller. Figure 17 shows a comparison of
the three-dimensional model of the two pump impellers.
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Table 11. Comparison of geometric parameters between scheme 2 and scheme 3.

Parameters Symbols Unit Scheme 2 Scheme 3

Outlet diameter D2 mm 46 45
Outlet width b2 mm 3.2 3.4

Blade number Z - 6 6
Blade outlet angle β1

◦ 22 26
Blade outlet angle β2

◦ 35 33
Leading edge tangential angle t3

◦ 0 8
Trailing edge tangential angle φ ◦ 100 115

Blade thickness δ mm 2 2.4

  

(a) (b) 

Figure 17. Comparison of impeller model: (a) scheme 1; (b) scheme 3.

Table 12 shows the head and efficiency of the optimized scheme 3 under three flowrates. It is clear
that the head under the design flowrate has significantly improved compared with the original one.
The weighted average efficiency under the three flowrates is 55.24%. The maximum efficiency of the
pump is increased by 2%, the efficiency of the large flow condition is increased by 3.09%.

Table 12. Performance of optimized scheme (scheme 3).

0.8Qd 1.0Qd 1.25Qd

Head/m 8.57 8.15 6.86

Efficiency/% 52.98 57.06 54.89

F(X)/% 55.24

3.3.2. Comparison of External Characteristic

Figure 18 shows the pump performance curve of the automotive electronic water pump obtained
from the CFD. As seen from it, the head and efficiency of the optimized pump are obviously improved.
The head curve of the optimized scheme 3 is always higher than the original head curve, and the
efficiency don’t improve much under small flow conditions. However, at the design flowrate, the
efficiency is significantly improved, and also under the large flow rate. The efficiency is almost the
same for the two schemes under small flow rate. It can be seen that the region with higher efficient
working condition of the pump has been broadened for scheme 3, which means the area with high
efficiency value located on the Q–η curve is further broadened after optimization.
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Figure 18. Comparison of external characteristic curves.

4. Optimization Verification

4.1. Comparison of Internal Flow Field

In this section, the flow characteristics of the cylindrical unfolding surface at different spans of
the impeller are compared between the original scheme 1 and optimal scheme 3. The dimensionless
distance of the impeller blade from hub to shroud is defined as:

span =
r− rh
rt − rh

× 100%, (21)

where rt is the radius of shroud; rh is the radius of hub; r is the radius of the cylindrical surface.
Figure 19 shows the comparison of velocity streamline at different spans under the design flowrate.

It is obvious that a large area of flow separation occurs in the flow passages for scheme 1, large-scale
separation vortices appear in the suction side, and the flow state becomes disordered, which seriously
affects the performance of the pump. After optimization, the flow in the impeller passage shows a
uniform state. The large-scale separation vortex disappears in the flow passages. Thus, the flow loss is
reduced, which improves the performance of the pump.

   
(a) (b) (c) 

Figure 19. Cont.
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(d) (e) (f) 

Figure 19. Comparison of streamline at different spans under 1.0Qd: (a) Origin scheme 1, span = 10%;
(b) Origin scheme 1, span = 50%; (c) Origin scheme 1, span = 90%; (d) Optimal scheme 3, span = 10%;
(e) Optimal scheme 3, span = 50%; (f) Optimal scheme 3, span = 90%.

Figure 20 shows the comparison of the pressure distribution at span = 50% under three flowrates.
From the graph, the pressure distribution of the blade is lower at the wheel hub, the pressure at trailing
edge location is higher. As the flow rate increases, the static pressure decreases. Under the same flow
rate, the optimized pressure distribution diagram becomes more uniform than that before optimization.
The pressure is gradually increased from the wheel hub to the rim, and the pressure at the front edge
of the blade is effectively reduced.

   
(a) (b) (c) 

  
(d) (e) (f) 

Figure 20. Pressure comparison at span = 90% under different working conditions: (a) Origin, 0.8Qd;
(b) Origin,1.0Qd; (c) Origin, 1.25Qd; (d) Optimal, 0.8Qd; (e) Optimal, 1.0Qd; (f) Optimal, 1.25Qd.

From the above analysis, the optimization scheme is superior to the original scheme in terms of
internal flow.
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4.2. Test Verification

In order to verify the reliability of the optimization results, the optimized impeller model (scheme
3) was 3D printed into a prototype for pump characteristic measurement. The test and the pump
performance result curves compared with the original scheme are shown in Figure 21.

  
(a) (b) 

Figure 21. Comparison of the origin and optimal scheme. (a) Test rig; (b) Comparison pump
performance results.

The efficiency obtained by the test of the automobile electronic water pump is the total efficiency of
the pump system. As seen from Figure 21b, it is obvious that the head curve of the optimal scheme 3
is basically higher than the original scheme 1, and the downward trend is slower. The efficiency of the
optimization is significantly improved by 4.3%. The efficiency curve of optimal scheme 3 declines slowly
under a large flow rate, and the working range with high efficiency of the pump is broadened. The test
results are basically consistent with the numerical simulation results, indicating that the optimization
method in this study can be applied to the hydraulic optimization design of automotive electronic pumps.

5. Conclusions

A multi-point design process based on CFD and intelligent optimization method is proposed
in this study to improve the energy transfer efficiency, taking the application of an automotive
electronic pump as an example. Firstly, the three-dimensional CFD analysis of the prototype is
carried out to understand the flow loss mechanism inside the pump and establish the numerical
prediction model of pump performance. Secondly, an automatic optimization platform including
fluid domain modeling, meshing, solving, post-processing, and design of experiment (DOE) is built
based on the three-dimensional parametric design method. Then, orthogonal experimental design
and the multi-island genetic algorithm (MIGA) were utilized to drive the platform for improving the
efficiency of the pump at three flowrates. Finally, the optimal impeller geometries were obtained and
manufactured into a prototype for verification. The conclusions are as follows.

(1) After orthogonal optimization, the heads of each working point are significantly improved.
The weighted average efficiency of the optimization scheme 2 is improved by 3.29%. The number
of impeller blades has the most important effects on pump performance improvement. After the
intelligent optimization, the high-efficiency region of the automotive electronic water pump is further
widened. The efficiency weighted average recorded 55.24% under three working conditions. The
optimal efficiency at design flowrate is increased by 4.3% after optimization from the experiment test.

(2) There is almost no obvious low-speed region under the optimal conditions and small flow
conditions after orthogonal optimization. The flow loss is greatly reduced in the impeller and
volute flow-path, the number of separation vortices and their area under a large flowrate are
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smaller than the original model pump. The pressure distribution in the impeller flow-path of the
optimized pump is more uniform, and the pressure gradient becomes smaller inside the impeller
flow-path. the overall turbulence energy is significantly reduced after optimization. All of the
above is the root cause of the efficiency improvement.

(3) The automatic optimization platform built in this study combined with intelligent MIGA algorithm
could obtain the global optimization scheme among the selected parameter range. The hydraulic
performance of automotive electronic water pumps under three multiple operating conditions have
significant improvement, realizing the integration of “design-simulation-optimization” in limited
time, which means this method has great potential in the application of fluid machinery design.
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Abstract: Plastic lenses are light and can be mass-produced. Large-diameter aspheric plastic lenses
play a substantial role in the optical industry. Injection molding is a popular technology for plastic
optical manufacturing because it can achieve a high production rate. Highly efficient cooling channels
are required for obtaining a uniform temperature distribution in mold cavities. With the recent
advent of laser additive manufacturing, highly efficient three-dimensional spiral channels can be
realized for conformal cooling technique. However, the design of conformal cooling channels is very
complex and requires optimization analyses. In this study, finite element analysis is combined with
a gradient-based algorithm and robust genetic algorithm to determine the optimum layout of cooling
channels. According to the simulation results, the use of conformal cooling channels can reduce the
surface temperature difference of the melt, ejection time, and warpage. Moreover, the optimal process
parameters (such as melt temperature, mold temperature, filling time, and packing time) obtained
from the design of experiments improved the fringe pattern and eliminated the local variation of
birefringence. Thus, this study indicates how the optical properties of plastic lenses can be improved.
The major contribution of present proposed methods can be applied to a mold core containing the
conformal cooling channels by metal additive manufacturing.

Keywords: gradient-based algorithm; robust genetic algorithm; warpage; design of experiments;
fringe pattern; birefringence

1. Introduction

The demand for plastic optical lenses has been increasing in the industry. The precision
requirements for high-tech optical products have become stringent, which has led to the growth of
global markets for high-precision optical articles [1,2]. Although the optical properties of glass, such as
the refractive index and dispersion, are quite stable, the glass fabrication process is very complicated
and difficult. Moreover, plastic products are lightweight, colorable, robust, and low cost. They can be
manufactured using a one-step process regardless of their geometric complexity. Thus, plastic products
have become crucial in contemporary industrial development.

Despite the aforementioned advantages, plastic optical lenses may encounter volumetric shrinkage,
which leads to the formation of thermally induced residual stress during the cooling process of injection
molding. This residual stress slightly results in local variations in the birefringence, which affects the
image quality [3]. Achieving a uniform temperature distribution for removing the residual stress is
difficult in conventional cooling channels. Uneven shrinkage occurs if conventional cooling channels
are used during the cooling process [4]. For designing conformal cooling channels, the geometric
shape of conventional cooling channels can be appropriately adjusted through injection molding
simulation. This helps to improve the defects caused by conventional cooling channels. The use of
conformal cooling channels facilitates an even distribution of the surface temperature of the mold
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cavities, thereby reducing the thermally induced residual stress formed during the cooling process [5],
effectively shortening the cooling time, and improving the cooling efficiency [6].

Researchers have devoted considerable attention to hybrid manufacturing processes,
which combine metallic powder-based laser additive processes and subtractive machining processes.
These hybrid manufacturing processes are considered the most promising technology for fabricating
conformal cooling channels [7]. With metal additive manufacturing technology, complex conformal
cooling channels can be fabricated to closely fit the shape of the mold cavity and core.
Thus, uniform cooling can be achieved for products even in narrow regions or areas that may
easily accumulate heat. Consequently, the quality of the products improves, and the cycle time
decreases. This technology can be applied to products that vary in thickness. It allows the products to
achieve uniform heat dissipation with a high cooling efficiency [8].

In recent years, optimization algorithms have been used to design cooling channels for plastic
injection molds. Qiao [9] combined the advantages of the Davidon–Fletcher–Powell (DFP) method and
the simulated annealing (SA) algorithm to optimize a cooling system layout. First, the DFP method
was used to find the local optimum layout of the cooling channel. Then, the SA algorithm was adopted
to determine the global optimum layout of the cooling channel, which allowed the surfaces of the
mold cavities to possess a uniform temperature distribution. Park and Dang [10] used design of
experiments (DOE) and response surface methodology for designing an array of baffles in cooling
channels. They established a mathematical model for obtaining the optimal configuration of cooling
channels with an array of baffles. This technique can effectively improve the heat removal performance
and is applicable to large-sized molds and molds with complex cavity shapes. Dang and Park [11]
also proposed an optimization method for the design of U-shaped milled groove cooling channels.
This method aimed to achieve temperature uniformity for the mold and utilized computer-aided
engineering (CAE) for design modification. The mold of a car fender was selected to analyze its
cooling channel design and verify the theoretical calculation. The quality levels of the products
were compared before and after the optimization. After the optimization of the cooling channels,
the warpage decreased, and the temperature uniformity increased.

Optimization strategies involving the use of various algorithms for designing the shape and layout
of cooling channels have been frequently discussed in the literature [12–14]. Moreover, many studies
have used DOE to set optimal process parameters for injection molding [15,16]. However, these two
issues have rarely been integrated in the literature. This study combined finite element
analysis with optimization algorithms to analyze the temperature field during the cooling stage.
Subsequently, the entire injection molding process was conducted using DOE to obtain the best process
parameters. The aim of this study was to uniformly cool melt within a cavity. An optimization was
conducted to design conformal cooling channels, which alleviated the thermally induced residual
stress formed during the manufacturing of optical lenses and solved the uneven shrinkage problem.
Such optimization can also effectively shorten the cooling time and enhance the cooling efficiency
during the manufacturing process, which can improve the image quality of plastic optical lenses.

2. Methods

2.1. Materials

The lens employed in this study was a plastic optical lens commonly used in projectors.
This projector lens was a large-diameter aspheric lens [17] with a diameter of 46 mm (Figure 1).
The lens was composed of cyclo-olefin polymer (COP; Zeonex 480R) from the Zeon Corporation (Tokyo,
Japan). This material had low water absorption, high optical transmittance, and low birefringence [18].
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Figure 1. Specifications of the large-diameter aspheric plastic lens provided by Glory Science
Company Limited.

2.2. Design of the Runner and Gate System

Figure 2 displays the shape and dimensions of the cold runner and gate system. The volume of
the runner and gate system was 8.984 cm3. A uniform melt flow front was injected into the mold cavity
by using the wide cross-sectional inlet of the fan gate. This enabled a molded product with large width
to be filled quickly. The warpage and size stability of wide molded products are major concerns [4].
Although the fan gate necessitated manual trimming, it reduced the formation of flow-induced residual
stress when the melt polymer passed through the gate into the mold cavity. Therefore, the fan gate was
adopted in this study. Residual stress may lead to poor optical properties, such as uneven distribution
of the fringe pattern and local variation in the birefringence.

Figure 2. Shape and dimensions of the runner–gate system.

2.3. Mold Design for Conventional and Planar Conformal Cooling Channels

The core and cavity plates used in this study were made of NAK80, which is prehardened
steel. The dimensions of the mold were 150 mm (L) × 150 mm (W) × 205 mm (H). A single-cavity
mold containing both conventional cooling channels and planar conformal cooling channels was
adopted (Figure 3) because the lens was large. The total number of elements in the cavity was 222,720.
The conventional cooling channel diameter was suggested in the design [4] to be 10 mm. The layout
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of the planar conformal cooling channel adhered to the channel design guidelines proposed in the
literature [19] for laser additive manufacturing of metals. These rules were used to determine the
appropriate distance between channels or between the channel and mold cavity surface according to
the cooling channel diameter (Figure 4). Following these rules was the way to ensure that the mold
cavity and core have enough mechanical strength. To alleviate the thermally induced warpage [20],
the parameters of the planar conformal cooling channel were set as follows: b = 4 mm, a = 8 mm,
and c = 8 mm, as displayed in Figure 5.

Figure 3. Internal arrangement of the mold used in this study. Deep blue, bright blue, green, and orange
components represent the conventional cooling channels, planar conformal cooling channels, lens,
and runner–gate, respectively.

Figure 4. Design rules for the three-dimensional conformal cooling channel [19].
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Figure 5. Schematic of the planar conformal cooling channel.

2.4. Simulation of the Filling and Packing Stages

In this study, the CAE mode of Moldex3D was used to simulate injection molding because no
empirical data were available for the machine settings. The maximum injection pressure and maximum
packing pressure were set as 250 MPa. The initial melt temperature was set as 270 ◦C, and the initial
mold temperature was set as 100 ◦C according to the process parameters [21,22] from the Moldex3D
(CoreTech System Corporation, Taiwan) databank. The filling time was set as 0.79 s, and the packing
time was set as 7 s. The filling flow rate was set in six steps (Figure 6a). The first step involved
the process of filling the runner. The subsequent five steps varied according to the variations in
the cross-sectional area of the plastic lens. The packing pressure was set in three steps (Figure 6b).
The packing pressure of the first step was set as 85% of the filling pressure at the end of filling. In the
following two steps, the packing pressure was decreased to release stress.

Figure 6. (a) Multistep setting of the filling flow rate profile and (b) multistep setting of the packing
pressure profile.

2.5. Geometric Optimization of the Conformal Cooling Channels

The average mold temperature was 89.5 ◦C and the average melt temperature was 215.6 ◦C at the
completion of the Moldex3D simulation of the filling and packing stages. These temperatures were
input into COMSOL Multiphysics (Version 5.2, COMSOL Inc., Burlington, MA, USA) and served as the
initial conditions of the cooling stage. According to the default settings in Moldex3D, the suggested
channel temperature was 100 ◦C, and the suggested cooling time was 18.6 s. However, the cooling
time in the COMSOL software was set as 20 s, and neither the runner nor the mold base was included
in the simulation. The simulation only focused on the heat transfer between the cooling channel and
lens. The cooling channel was assumed to have a turbulent flow. By using the Reynolds number
formula, the volumetric flow rate of the conventional cooling channel with a diameter of 10 mm was
derived as 28.81 cm3/sec and that of the planar conformal cooling channel with a diameter of 4 mm
was derived as 11.53 cm3/sec. Moreover, COMSOL was adopted to couple the non-isothermal pipe
flow interface with the heat transfer in solids interface [23] for simulating the temperature distribution
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of the melt in the mold cavity during the cooling process. The solidification of the polymer melt flow
near the cold cavity wall was not considered. Furthermore, two approaches in SmartDO (FEA-Opt
Technology Inc., Miaoli County; Taiwan), namely the gradient-based algorithm (GBA) [24] and robust
genetic algorithm (RGA) [25,26], were separately integrated with COMSOL to optimally design the
layout of the conformal cooling channels. The conventional cooling channels were not involved in
optimization. The integration framework is displayed in Figure 7. The script loop is available in the
online supplementary data. The pros and cons of the two optimization algorithms were compared
according to the temperature distributions on the lens surfaces.

Figure 7. Flow chart of finite element analysis integrated with the optimization algorithms,
gradient-based algorithm (GBA) and robust genetic algorithm (RGA), for the design of conformal
cooling channels.

The value of the distance between the conformal cooling channel and mold cavity surface must
satisfy the rules suggested in Figure 4 so that the design variables (DVs) have a reasonable range,
as displayed in Figure 8. Moreover, at the suggested cooling time of 18.6 s, COMSOL indicated that
the maximal and minimal surface temperatures of the mold cavity for the planar conformal cooling
channels were T0

sur,max and T0
sur,min, respectively. After each iteration of the optimization, the maximal

and minimal surface temperatures of the mold cavity for the modified conformal cooling channels
were Tsur,max and Tsur,min, respectively. To ensure that the temperature of mold cavity surface was
evenly distributed (i.e., the value of Tsur,max − Tsur,min was small), the objective function was set as
following Equation (1):

[1− (Tsur,min/Tsur,max)] × 10, 000 (1)

The scaling factor of 10,000 in Equation (1) increases the accuracy of the calculation. To ensure that the
overall temperature of the mold cavity surface after optimization was lower than that of the initial
state, the following constraints were set:

Tsur,max − T0
sur,max < 0 (2)

Tsur,min − T0
sur,min < 0 (3)
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After setting the DVs, objective function, and constraints, the planar conformal cooling channels
could be designed and modified as three-dimensional channels by using the optimization algorithm.
This modification improved the cooling efficiency and allowed the temperature of the melt in the mold
cavity to be evenly distributed.

Figure 8. Lower and upper bounds on the design variables (DVs) according to the distances suggested
in Figure 4 between the cooling channel and mold cavity surface, where the initial value represents the
geometric layout of the planar conformal cooling channels.

2.6. Molding Process Optimization for the Optimized Conformal Cooling Channels

After obtaining the optimized DVs for the conformal cooling channels by using the GBA and
RGA algorithms, the geometric layouts of these two types of cooling channels were converted into
solid mesh models by using the Rhinoceros 3D software and were then imported into Moldex3D.
The process conditions for the filling and packing stages were the same as those mentioned in
Section 2.4. The cooling time, ejection temperature, and mold-open time were set as 18.6 s, 139 ◦C,
and 5 s, respectively. After the entire injection molding process had been simulated, the three types of
conformal cooling channels (the planar, GBA- and RGA-optimized channels) were compared with
regards to warpage and temperature distribution.

Finally, the geometric layout with the highest cooling efficiency was selected for DOE to determine
the optimal combination of process parameters and key parameters impacting the manufacturing
process. Studies [21,22] have indicated that lenses made of Zeonex 480R material have high flow-induced
birefringence and low thermally induced birefringence. This study focused on the shear stress related
to flow and the flow-induced residual stress. Residual stress leads to defective optical properties [16].
Therefore, shear stresses at the end of the filling stage, shear stresses at the end of the packing
stage, and the total warpage were set as the quality factors, and each quality characteristic was
based on the smaller-the-better approach. The traditional trial and error method for predicting
and controlling injection molding conditions is inefficient and costly because of the complexity
of interactions between multiple manufacturing process parameters. Therefore, the DOE module
provided by Moldex3D is more suitable than the trial and error method for evaluating the ideal
molding conditions [15]. Moreover, the melt temperature, mold temperature, filling time, and packing
time were selected as the control factors in the DOE. It was assumed that each control factor contained
five levels of variation (Table 1). A Taguchi’s orthogonal array L25(54) [27] was adopted for the DOE.
Subsequently, statistical analysis was used to determine the optimum combination of levels for the
control factors.
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Table 1. Four control factors and five levels used for the design of experiments (DOE) in Moldex3D.

Control factors Level 1 Level 2 Level 3 Level 4 Level 5

A Melt temperature (◦C) 240 255 270 285 300
B Mold temperature (◦C) 80.00 89.75 99.50 109.25 119.00
C Filling time (sec) 0.69 0.79 0.89 0.99 1.09
D Packing time (sec) 6 7 8 9 10

3. Results and Discussion

In this research, COMSOL software simulated the cooling process of injection molding.
Moreover, SmartDO optimization software was used to design the conformal cooling
channels for improving the temperature distribution of the melt and the cooling efficiency.
Furthermore, Moldex3D software was used to simulate a complete injection molding cycle at the same
manufacturing conditions. The temperature difference between the inlet and outlet, average surface
temperature of the lens, and warpage deformation of the lens were investigated for the three types of
conformal cooling channels (the planar, GBA- and RGA-optimized channels). Finally, the optimum
layout with the highest cooling efficiency was selected to optimize the molding conditions by using
a DOE module. This optimization improved the birefringence and the fringe pattern of the lens.

3.1. Optimum Layout of Conformal Cooling Channels for the Cooling Stage

According to the Moldex3D simulation, the average mold temperature was 89.5 ◦C and the average
melt temperature was 215.6 ◦C at the end of the packing stage. These temperatures were input into
COMSOL and served as the initial conditions of the cooling stage. By simulating the cooling process
for the planar conformal cooling channels, the variations in the maximum and minimum surface
temperature of the melt in the mold cavity were determined (Figure 9a). According to the cooling time
suggested by Moldex3D, the lens was ejected at 18.6 s. Figure 9b displays the surface temperature
distribution for the lens, with a maximum temperature of 359.713 K, a minimum temperature of
358.601 K, and a temperature difference of 1.112 K.

Figure 9. (a) Surface temperature of the melt during the cooling stage and (b) surface temperature of
the melt at the default ejection time of 18.6 s when using the planar conformal cooling channels.

The GBA and RGA algorithms of the SmartDO software were employed for evenly reducing
the surface temperature of the melt in the mold cavity. The objective function of the two algorithms
converged to a minimum value in the optimization procedure (Figure 10). The objective function value
of the GBA was 19.78, whereas that of the RGA was 16.54. The optimized design parameters obtained
using these two algorithms are displayed in Figure 11. By using these design parameters (Table 2),
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two conformal cooling channels with different geometric layouts could be created and imported
into COMSOL to simulate the cooling process. The cooling efficiency and improvement in the lens
temperature distribution were compared between the GBA- and RGA-optimized channels.

Figure 10. History of the objective function evolved from: (a) the GBA and (b) RGA during optimization.

Figure 11. Optimized DVs obtained from: (a) the GBA and (b) RGA.

Table 2. The optimized DVs in Figure 11 were obtained from the GBA and RGA.

Optimized Parameters DV1 DV2 DV3 DV4 DV5 DV6 DV7 DV8

Results of GBA 16.59 15.15 16.89 16.98 −7.98 −8.00 −8.00 −6.51
Results of RGA 13.51 14.02 14.65 17.16 −1.99 −8.00 −6.31 −2.47

The conformal cooling channels designed using the GBA were used to simulate the cooling process.
The results indicated the variations in the maximum and minimum surface temperature of the melt
in the mold cavity, as displayed in Figure 12a. For the planar conformal cooling channel, the default
maximum surface temperature for the ejected lens was set as 359.713 K. For a temperature of 359.713 K,
the ejection time for the GBA-optimized conformal cooling channels was 16.9 s. However, according to
the cooling time suggested by Moldex3D, the lens was ejected at 18.6 s. The temperature distribution
for the surface of the lens at 18.6 s is displayed in Figure 12b, with a maximum temperature of 358.906 K,
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a minimum temperature of 358.173 K, and a temperature difference of 0.733 K. Moreover, the ejection
time for the RGA-optimized conformal cooling channels was 14.55 s (Figure 13a). The temperature
distribution on the lens surface at 18.6 s for the RGA-optimized channels is displayed in Figure 13b,
with a maximum temperature of 357.861 K, a minimum temperature of 357.255 K, and a temperature
difference of 0.606 K. Thus, after the planar conformal cooling channels were modified, the GBA- and
RGA-optimized three-dimensional conformal cooling channels enhanced the cooling efficiency and
improved the temperature distribution of the melt in the mold cavity.

Figure 12. (a) Surface temperature of the melt during the cooling stage and (b) surface temperature of
the melt at the default ejection time of 18.6 s when using the GBA-optimized cooling channels.

Figure 13. (a) Surface temperature of the melt during the cooling stage and (b) surface temperature of
the melt at the default ejection time of 18.6 s when using the RGA-optimized cooling channels.

3.2. Comparison of the Conformal Cooling Channels Designed by Using Different Algorithms for the Entire
Injection Molding Process

The conformal cooling channels designed using the GBA and RGA optimization algorithms
were imported into Rhinoceros 3D software, which was used to construct the solid mesh models.
The models were then used to execute the entire injection molding simulation with the Moldex3D
software. The computation time was approximately 45 min when using two 2.4-GHz Intel Xeon
E5-2620 CPUs with 64 GB of RAM. The results indicated that the optimized conformal cooling channels
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exhibited a lower average surface temperature for the melt compared with that exhibited by the planar
conformal cooling channels (Figure 14). At the end of cooling, the surface temperatures simulated using
Moldex3D were consistent with those simulated using COMSOL (Figure 9b, Figure 12b, and Figure 13b).
If the temperature on the lens surface could be evenly distributed, the thermal-displacement-induced
warpage could be improved. Therefore, to evaluate the thermally induced warpage, 18 measured nodes
were selected on the lens surface. The locations and numbering of these measured nodes are displayed
in Figure 15a. Measured nodes 1–16 were located on the top and bottom edges of the lens and used to
calculate the total thermal warpage. The results were used to evaluate the variation in the circularity
(roundness) due to the warpage. The average thermal warpage values for the planar conformal
cooling channels, GBA-optimized conformal cooling channels, and RGA-optimized conformal cooling
channels were 98.296, 98.214, and 98.121 μm, respectively (Figure 15b,c). Thus, the optimized conformal
cooling channels exhibited a lower thermal warpage than the planar conformal cooling channels.
Moreover, measured nodes 17 and 18 were located at the centers of the top and bottom surfaces of the
lens, respectively. These two measured nodes were used to observe the relative thermal warpage in the
vertical direction (z-direction). The vertical thermal warpage values for the GBA- and RGA-optimized
conformal cooling channels were 21.617 and 21.565 μm, respectively. Both these values were lower
than the vertical thermal warpage of the planar conformal cooling channels (21.638 μm).

Figure 14. Average surface temperature of the melt in cavity during the complete injection molding
cycle with different conformal cooling channels.
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Figure 15. (a) Reference numbers and locations of the 18 measured nodes on the lens; (b) total thermal
warpage values measured using the upper nodes (1–8); and (c) total thermal warpage values measured
using the bottom nodes (9–16).

When designing cooling channels, the rules for their geometric layout should be considered and
the temperature difference between the inlet and outlet should be minimized to prevent the warpage
of the lens due to uneven temperature distribution in the mold. Generally, if the product requires high
accuracy, the temperature difference between the inlet and outlet should be lower than 2.5 ◦C [28].
The simulation results of the GBA- and RGA-optimized cooling channels indicated that the temperature
difference between the inlet and outlet of the optimized cooling channels was lower than that of the
planar conformal cooling channels regardless of the upper and bottom channels (Figure 16). The GBA-
and RGA-optimized conformal cooling channels improved the temperature uniformity of the mold.

Figure 16. Temperature difference between the inlet and outlet for: (a) the upper cooling channel and
(b) bottom cooling channel.

3.3. Optimal Process Parameters for Injection Molding

After the geometric optimization, the cooling channel with the highest cooling efficiency
for the mold and the most even temperature distribution for the lens surface was adopted.
Thus, the RGA-optimized cooling channel layout was selected for the DOE to determine the most
suitable molding conditions. The optimal process parameters were selected on the basis of the
signal/noise (S/N) ratio response. The optical properties of the lenses were compared before and after
performing the DOE. Figure 17 illustrates the calculation results of the S/N ratio response from the DOE
module of Moldex3D. The total S/N ratio response was obtained by adding the S/N ratio responses
from three quality factors under four control factors and five levels (Figure 17d). A high S/N ratio
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indicates low noise (external influence). According to the Taguchi method, the level with the maximum
S/N ratio was selected as the optimal condition [16,29]. Therefore, the optimal combination of control
factors, reported in Table 1, and their corresponding levels was A4B2C4D1. The optimal control factor
level settings were A4 (melt temperature: 285 ◦C), B2 (mold temperature: 89.75 ◦C), C4 (filling time:
0.99 s), and D1 (packing time: 6 s). This combination of process parameters (A4B2C4D1) was used
in the injection molding simulation. The optics module of Moldex3D was adopted to predict the
birefringence and fringe pattern of the lens. After the DOE analysis, the birefringence of the lens
considerably decreased (Figure 18a), which indicated that the residual stress within the material also
diminished [16]. Moreover, after the processing optimization, the fringe pattern on the lens resembled
concentric circles (Figure 18b). The distributions of the fringe pattern on the optimized molded lens
were rarefied near the gate, which implied that the optical properties of the lens had been improved.

Figure 17. S/N ratios for: (a) shear stress at the end of the filling stage; (b) shear stress at the end of the
packing stage; (c) total warpage; and (d) sum of responses from (a) to (c).
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Figure 18. Comparison of the (a) birefringence properties and (b) fringe patterns before and after the
optimization of process parameters.

4. Conclusions

In this study, the GBA and RGA optimization algorithms were used to design the geometric
layout of conformal cooling channels. The planar conformal cooling channels had a lens surface
temperature difference of 1.112 K with an ejection time of 18.6 s. The GBA-optimized conformal cooling
channels reduced the ejection time to 16.9 s and improved the cooling efficiency by approximately
9.14%. The RGA-optimized conformal cooling channels had an ejection time of 14.55 s and improved
the cooling efficiency by approximately 21.77%. The GBA-optimized conformal cooling channels
exhibited a decrease in the temperature difference on the lens surface from 1.112 to 0.733 K, which was
an improvement of 34.08%. Furthermore, the RGA-optimized conformal cooling channel exhibited
a decrease in the temperature difference on lens surface from 1.112 to 0.606 K, which was an improvement
of 45.5%.

During the entire injection molding cycle, the planar conformal cooling channels exhibited the
highest average surface temperature of the melt, followed by the GBA-optimized conformal cooling
channels. The RGA-optimized conformal cooling channels exhibited the lowest average surface
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temperature of the melt. Furthermore, the distribution of the thermal-displacement-induced warpage
of the lens could be used as an index to evaluate whether the cooling channel system was suitably
designed. The GBA- and RGA-optimized conformal cooling channels exhibited improvements of
0.18% and 0.52%, respectively, in average thermal warpage of measured nodes as compared with the
planar conformal cooling channels. However, thermally induced warpage still could not be compared
with experimental results because of insufficiently available experimental data.

In summary, the RGA-optimized conformal cooling channels had the highest cooling efficiency
for the mold and a superior temperature distribution for the melt in the mold cavity, which reduced
thermally induced warpage. Therefore, using RGA-optimized conformal cooling channels shortened
the development time and considerably improved the quality of the plastic lens. DOE was used to
evaluate the effect of manufacturing process parameters on the optical properties. The optimal process
parameters reduced the birefringence and improved the shape of the fringe pattern.

Recently, three-dimensional printing and additive manufacturing have attracted tremendous
attention worldwide. Among these technologies, the additive manufacturing of metal powder has
quickly developed into a feasible technique for fabricating metal parts. Additive manufacturing
typically uses a high-energy electron beam or laser beam to sinter or melt the metal powder to form the
solid parts [30,31]. This method can be used to fabricate mold cores for plastic product manufacturing
and construct three-dimensional conformal cooling channels [32,33]. The methods presented in this
study can serve as useful references to obtain optimized cooling channel layouts and injection molding
conditions for the initial stages of mold development. Mold tooling with conformal cooling channels
can be used to improve the cooling efficiency and temperature distribution of the melt, which solves
warpage issues. Optimal injection molding conditions can improve product quality. By controlling key
molding conditions, the product yield rate can be enhanced, and the product cost can be decreased.
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Abstract: The optimization design of engineering products involving computationally expensive
simulation is usually a time-consuming or even prohibitive process. As a promising way to relieve
computational burden, adaptive Kriging-based design optimization (AKBDO) methods have been
widely adopted due to their excellent ability for global optimization under limited computational
resource. In this paper, an entropy weight-based lower confidence bounding approach (EW-LCB) is
developed to objectively make a trade-off between the global exploration and the local exploitation in
the adaptive optimization process. In EW-LCB, entropy theory is used to measure the degree of the
variation of the predicted value and variance of the Kriging model, respectively. Then, an entropy
weight function is proposed to allocate the weights of exploration and exploitation objectively and
adaptively based on the values of information entropy. Besides, an index factor is defined to avoid
the sequential process falling into the local regions, which is associated with the frequencies of the
current optimal solution. To demonstrate the effectiveness of the proposed EW- LCB method, several
numerical examples with different dimensions and complexities and the lightweight optimization
design problem of an underwater vehicle base are utilized. Results show that the proposed approach
is competitive compared with state-of-the-art AKBDO methods considering accuracy, efficiency,
and robustness.

Keywords: Kriging; lower confidence bounding; entropy theory; product design; simulation-based
design optimization

1. Introduction

Computational simulation models, i.e., finite element analysis (FEA) and computational fluid
dynamic (CFD) models, have been widely used in engineering design problems to replace physical
experiments for reducing the time cost and shortening the product developing cycle. However, it is
still computationally prohibited to solve engineering design optimization problems directly relying
on simulation models, even though the storage capacity and computing efficiency of computers are
maintaining rapid growth [1,2]. A popular strategy to address this limitation is to adopt surrogate
models, also named the meta-model or approximate model, to replace the computational simulation
model during the optimization process. There are several varieties of surrogate models, such as
Polynomial response surface (PRS) model [3], Radial basis function (RBF) model [4,5], Kriging
model [6–8], and Support vector regression (SVR) model [9,10]. Among these surrogate models, the
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Kriging model has been intensively used in engineering design optimization because it can provide
not only the predicted value of an un-sampled point but also the predicted confidence interval of the
predicted value.

The Kriging model-based design optimization methods can be divided into two types [11]:
the off-line type and the on-line type. The off-line type uses all the computational resources to construct
the final Kriging model in one time and the model does not update during the optimization process.
Therefore, the determination of the sampling plan is crucial because the optimization process may fall
into the local optimum region if the number of samples is too small [12]. On the contrary, it would
waste computational burden if the number of samples is too large. To solve this dilemma, the on-line
type has been developed, in which an initial Kriging model is built in the earlier stage and then new
samples are added to update the Kriging model sequentially through certain criteria, e.g., maximum
mean square error [13], cross validate error [14], etc., during the design optimization process. The on-
line type can significantly reduce the computational burden compared with that of the off-line type
because the information of the Kriging model is well utilized [15,16].

The on-line type Kriging model-based design optimization methods are also called adaptive
Kriging-based design optimization (AKBDO). The target of AKBDO is to obtain the optimum using
less computational cost [17,18]. At the same time, the balance between exploration and exploitation
is important because it is critical for searching the global optimum. In detail, exploration means the
ability of the algorithm to explore the whole design space for the latent optimal region. On the other
hand, exploitation aims to identify the local area around the current optimum. Typically, there are
several sorts of adaptive sampling approaches of AKBDO with different ways of making a trade-off
between exploration and exploitation [19,20], such as the maximum-uncertainty adaptive sampling
approaches [20], the efficient global optimization (EGO) methods [21], the lower confidence bounding
(LCB) based methods [22], the aggregate-criteria adaptive sampling methods [19], and the multi-criteria
adaptive approaches [23,24]. Among these approaches, the efficient global optimization method
proposed by Jones [21] has been intensively adopted to handle realistic product design due to its high
efficiency and ease of operation. In this work, the expected improvement (EI) function is introduced to
quantify the improvement of an un-known point to the current best solution. The new point can be
obtained by maximizing the EI function, and the Kriging model can be updated adaptively by adding
the new point to the original sample set. The EI based EGO method has been intensively investigated
in recent years [25–27]. For example, Xiao [28] proposed a weighted EI to make the balance between
exploration and the exploitation more flexible; Zhan [29] proposed the EI matrix method to solve the
multi-objective problem. Another famous AKDBO method is the LCB- based method [30]. The LCB
function is an effective approach to balance exploration and exploitation by combining the predicted
value and variance in a simple way [31]. Subsequently, a parameterized LCB (PLCB) method was
proposed by using cool strategy to improve the ability to balance the exploration and exploitation
of the original LCB [32]. Cheng et al. [33] considered the coefficient of variation of predicted values
and variance to determine the weight factor adaptively during the sequential process. Further, some
variants of the LCB methods focus on upper confidence bounding, such as, the Gaussian process
upper confidence bounding (GPUCB) algorithm proposed by Srinivas et al., which considers the
upper confidence bound of noisy functions [34]. The parallel type of the GPUCB was developed by
Desautel et al. [35]. It mentions that LCB methods have been widely applied to solve real engineering
problems [36,37]. However, the weight factor for balancing the exploration and the exploitation of
the LCB based method remains an interesting problem. This is because most of the existing factor
approaches are subjective or problem dependent, which is not robust in application for all cases.

In this paper, an entropy weight-based lower confidence bounding approach (EW-LCB) is proposed
to ascertain the weight of the LCB function adaptively and objectively. In the proposed EW-LCB
method, entropy theory is used to quantify the degree of variation of the predicted value and variance
of the Kriging model. Then, a new weighted formula is introduced to allocate the weights of exploration
and exploitation adaptively. To validate the performance of the proposed EW- LCB method, several
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numerical functions with different dimensions and complexities and an engineering problem are tested.
The computational efficiency, accuracy of the optimum, and the robustness are considered when
comparing EW-LCB with the existing famous AKBDO methods. Results showed that the performances
of the proposed EW-LCB approach were competitive on the test cases.

The remainder of this paper is organized as follows, in Section 2, the basis of the Kriging model
and several existing famous AKBDO methods are introduced. The details of the proposed approach
with the assistance of an illustrative example are described in Section 3. In Section 4, the effectiveness of
the proposed approach is tested on several numerical benchmark problems and an engineering design
optimization problem. Finally, some conclusions and possible future works are proüposed in Section 5.

2. Background

2.1. Kriging Model

The Kriging model was originally proposed by Krige [38] to predict the location of a mine hole in
a geostatistical community. Then, it was extended by Sacks et al. [6] for modeling an experiment of a
computer. The Kriging model is also called the Gaussian process model, which is a kind of interpolative
model. The Kriging model can be expressed as

ŷ(x) = β+ Z(x) (1)

where x represents the vector of the design variables, which is a d-dimensional vector x = {x1, x2, . . . , xd},
β is an unknown parameter which denotes the global tendency, Z() is a static Gaussian process with
zero mean and non-zero variance σ2, which represents the local deviation.

In the static Gaussian process, spatial correlation is used to organize the relationship between any
two samples. Generally, the squared exponential function is utilized, which can be expressed as

R(xi, x j;θ) = exp(−
d∑

k=1

θk(xk
i − xk

j)
pj) (2)

where θ and P are the hyper-parameters used to control the smooth and the correlation between two
sample points. Generally, the hyper-parameter vector P is set to be pi = 2; i = 1, 2, . . . , d [39].

The core point of the modeling process of the Kriging model is to determine the unknown
parameters. Because the responses obey the multivariable Gaussian distribution, the unknown
parameter can be obtained by maximum likelihood estimation (MLE) [14]. The likelihood function can
be organized as

L
(
y(x1), y(x2), . . . , (xN)

∣∣∣σ, β,θ) = 1

(2πσ2)
N
2

exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣−
N∑

i=1
(y(xi) − β)2

2σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where N is the number of samples.
Then, Equation (3) can be simplified by taking the natural logarithm,

ln(L) = −N
2

ln(2π) − N
2

ln
(
σ2

)
− 1

2
ln(|R|) − (y− 1β)TR−1(y− 1β)

2σ2 (4)

where y is an N-dimensional vector that consists of the real responses, 1 is an N-dimensional vector
that consists of 1,

The values of β and σ2 can be obtained by setting the derivatives of Equation (4) concerning β and
σ2 to be 0,

β̂ =
fTR−1y

fTR−1f
(5)
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σ̂2 =

(
y− 1β̂

)T
R−1

(
y− 1β̂

)
N

(6)

Then, substituting Equations (5) and (6) into Equation (4), and remove the constant terms,
Equation (4) yields the concentrated ln-likelihood function

ln(L) = −N
2

ln
(
σ̂2

)
− 1

2
ln(|R|) (7)

It is difficult to obtain an analytical solution of θ because of high non-linearity and
non-differentiality. Therefore, a numerical solution is obtained instead. The optimization algorithm,
such as the genetic algorithm (GA) [40] and particle swarm optimization algorithm (PSO) [41], can be
used to find the optimized values of θ.

The Kriging model is widely adopted in surrogate model-based engineering optimization because
it can provide both the predicted value and variance [42]. The predicted value of an un- sampled point
can be determined by minimizing the mean square error. Thus, the predicted value and variance can
be expressed as

ŷ(x) = β̂+ r(x)TR−1
(
y− 1β̂

)
(8)

ŝ2(x) = σ̂2

⎡⎢⎢⎢⎢⎢⎣1− r(x)TR−1r(x) +
(1− 1TR−1r(x))2

1TR−11

⎤⎥⎥⎥⎥⎥⎦ (9)

where r(x) is an N-dimensional vector representing the spatial correlation between the un-sample
point and the sample points, which can be defined by

r(x) =
{
R(x, x1), R(x, x2), . . . , R(x, xN)

}
(10)

2.2. Review of the Typical Adaptive Surrogate-Based Design Optimization Methods

The goal of the AKBDO methods is to obtain the optimum with a limited computational budget.
In this section, four popular AKBDO methods are briefly introduced.

2.2.1. The Lower Confidence Bounding Method

With a concise expression, the LCB method is a popular AKBDO method, which can be expressed as

lcb(x) = ŷ(x) − bŝ(x) (11)

where ŷ(x) and ŝ(x) are the predicted value and standard deviation, respectively. b is a factor
utilized to control the weight between the ŷ(x) and ŝ(x) for the sake of balancing the exploration and
the exploitation.

The goal of the LCB function is to identify the new sample points through the combination
of predicted value and variance by Equation (11). The point with small predicted value or large
uncertainty is chosen. Generally, a larger b means more emphasis on global exploration. On the
contrary, with a small b value, the algorithm turns more attention to local exploitation. Cox and John
reported that b = 2 and b = 2.5 can give a more efficient search [43].

2.2.2. The Parameterized Lower Confidence Bounding Method

The weight factor in the LCB method is constant, indicating that the contributions of the predicted
value and standard deviation will be fixed during the optimization process. Thus, the parameterized
lower confidence bounding (PLCB) method is proposed [32], which can be defined by

plcb(x) = ai ŷ(x) − biŝ(x) (12)
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where a new parameter ai is developed to regulate the influence of the predicted value during the
iteration process of design optimization. Meanwhile, the values of ai and bi vary during the iteration
process, where i is the iteration order of the sequential process. In detail, the values of the parameters
ai and bi can be expressed as

ai = 1, bi =
(
1 + cos

( iπ
m

))
/ sin

( iπ
m

)
(13)

where m is a parameter defined by the user, it is set to be m = 3 in Ref. [32].
According to Equation (12), the algorithm tends to focus on exploration when bi/ai has a larger

value, while it tends to focus on exploitation when bi/ai has a respective small value. Specifically, the
value of bi/ai in PLCB function has a larger value at the former iterations and has a relatively small
value as the algorithm goes on. Consequently, the PLCB algorithm shows a better ability to balance the
exploitation and the exploration when compared with the LCB method.

2.2.3. The Expected Improvement Method

The expected improvement method is a famous AKBDO method proposed by Jones [21].
The expected improvement function can be defined to measure the latent improvement of an unknown
point to the current optimum, which can be expressed as

I(x) = max(ymin −Y(x), 0) (14)

The expected improvement can be formalized as

E(I(x)) = E(max(ymin −Y(x), 0)) (15)

which can be expanded into

E[I(x)] = ( fmin − ŷ(x))Φ
(

fmin − ŷ(x)
s(x)

)
+ ŝ(x)φ

(
fmin − ŷ(x)

ŝ(x)

)
(16)

where Φ and φ are the cumulative density function and probability density function of the standard
normal distribution, respectively.

According to Equation (16), the first term mainly focuses on the exploitation and the second term
primarily concerns the exploration. The point with the maximum value of the EI function is regarded
as the new sample to update the Kriging model during the iteration process.

2.2.4. The Weighted Expected Improvement Method

Although the EI method can balance the exploration and the exploitation, its efficiency is
problem-dependent because the EI method provides a fixed compromise between the exploration
and the exploitation. To address this issue, a weighted expected improvement method (WEI) [28]
is developed, in which a tunable weight is adopted to adjust the contributions of exploration and
exploitation. The WEI can be given by

E[I(x)] = w( fmin − ŷ(x))Φ
(

fmin − ŷ(x)
s(x)

)
+ (1−w)ŝ(x)φ

(
fmin − ŷ(x)

ŝ(x)

)
(17)

where w is the weight coefficient. The larger value of w indicates that the WEI will focus more on
exploitation. Otherwise, the WEI method emphasizes exploration.

3. Proposed Approach

The goal of the proposed lower confidence bounding approach based on the entropy weight
algorithm (EW-LCB) is to obtain an optimal solution with less computational burden through a
sequential process. In EW-LCB, a new-weight factor is developed, which can allocate factors to balance
global exploration and local exploitation by quantifying the degree of variation of the predicted
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value and variance from the Kriging model, respectively. In detail, the entropy theory is adopted to
evaluate the relative discrepancy between the predicted value and uncertainty of the Kriging model.
The framework of the EW-LCB is shown in Figure 1, which is composed of six steps.

Start

Step 1: Generate the initial samples and get 
their responses

Step 2: Build (Update) the Kriging model

Step 5: Add a new point to the 
sample set through minimizing 

the EM-LCB
Step 3: Search the current optimal solution 

Step 6: Output the optimal solution

Step 4: Check the 
stopping criterion

End

Yes

No

 
Figure 1. The framework of the proposed entropy weight algorithm (EW-LCB).

To demonstrate the proposed EW-LCB approach more intuitively and detailed, a one- dimensional
toy example is utilized. The test function is adopted from [33], which can be expressed as

y = 0.5 sin(4π sin(x + 0.5)) +
1
3
(x + 0.5)2; x ∈ [0, 1] (18)

The objective is to obtain the minimum value of Equation (18). Meanwhile, this function has a
local optimal value y = −0.0445 at x = 0 and a global optimal value y = −0.1341 at x = 0.5312.

The details of the steps are elaborated as follows:

3.1. Step 1: Generate the Initial Sample Set

The generation of the initial sample set includes the determination of the number and location of
the initial sample points, which is a crucial component of the AKBDO. If too few points are generated,
the AKBDO can have a risk of falling into the local optimal because of the poor accuracy of the initial
Kriging model. On the other side, it may be a waste of computational burden if too many initial
samples are utilized, especially when dealing with costly engineering problems. For the tested cases,
a state-of-the-art initial sample size rule N = 10× d is used [21,44]. The sensitive analysis of the initial
sample size is discussed in the next section. Besides, how to allocate the locations of the initial samples
is another tricky issue. More uniformed distributed sample points are preferred because the initial
Kriging model can obtain more information about the landscape of the real function. Therefore, the
Latin Hypercube sampling (LHS) method [45] is used, which can guarantee that the samples distribute
along each dimension uniformly.

Due to the simple landscape of the illustration example, the initial sample points are set to be
x = [0, 0.5, 1], which is less than the recommended initial sample size. Herein, the responses of the
initial sample points are y = [−0.0445,−0.1229, 0.7343], which are obtained by calculating the numerical
function in Equation (18).
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3.2. Steps 2 and 3: Constructing the Kriging Model and Obtaining the Current Optimal Solution

In Step 2, the Kriging model is established based on the initial sample set based on the DACE
toolbox [46]. In detail, the regression function, the correlation function, and the initial value of θ are
set to be ‘Regpoly0’, ‘Corrgauss’, and (10d)−1/d, respectively. Besides, all the codes are executed based
on the computational platform with a 4.2 GHz Intel(R) Eight-Core (TM) i7-7700k Processor and 64 GB
RAM. The initial Kriging model of the illustrated example is plotted in Figure 2 in which, the black line
and blue dash line denote the real function and the initial Kriging model, respectively. Meanwhile, the
initial sample points are marked with blue triangles.

Figure 2. The initial Kriging model of the illustrated example.

In Step 3, the current optimal value was obtained through a genetic algorithm [47], where the
parameter setting is listed in Table 1.

Table 1. The parameter setting of the genetic algorithm.

Parameter Values

Population Size 100
Maximum generation 100
Crossover probability 0.95
Mutation probability 0.01

The minimum value of the current responses is −0.1229, which is larger than the actual global
optimal solution. Then, the current minimum value will be judged by the stopping criterion to decide
whether the active-learning process goes on or not in the next step.

3.3. Step 4: Check the Terminal Condition

Generally, there are two common ways to stop the sequential process. That is (1) the difference
between the current optimal solution and the actual one achieves at an acceptable level and (2) all the
computational resources are used up. In this work, these stopping criteria are adopted for different
scenarios. For the numerical functions, because the actual optimal solution is known, the stopping
criterion can be associated with this value to test the effectiveness of the proposed approach. Therefore,
the stop condition is defined as
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εr =

∣∣∣∣∣∣min(yk(xi)) − yr

yr

∣∣∣∣∣∣ < εg i = 1, 2, · · · , N (19)

where min(yk(xi)) is the minimum value of the current sample set, yr is the actual optimal solution, εg

is a user-defined tolerance. Generally, the adaptive algorithm will confront the stricter test in the case
of smaller tolerance. In this work, the value of εg is defined as 0.002 referring to [32].

However, for the engineering cases, the above stopping criterion for the numerical problem is
impractical because the engineering problem is always a black-box problem. Thus the value of the
actual optimal solution is unknown. Therefore, the sequential updating process terminates when the
maximum iteration is reached, which can be expressed as

k ≥ K (20)

where k and K denote the current iteration and the maximum iteration, respectively.
If the stopping criterion is satisfied, the sequential process will be terminated and the algorithm

goes to Step 6. Otherwise, the proposed algorithm goes to Step 5 for a new iteration. In this illustrated
example, the relative error between the current optimal solution and the actual one is 0.00084. Therefore,
the sequential process goes to Step 5.

3.4. Steps 5: Update the Sample Set through the Proposed EW-LCB

To accelerate the adaptive optimization process, the lower confidence bounding function based
on entropy theory is developed. Entropy theory was proposed by Shannon to quantify the degree of
chaos in molecular motion [48,49]. In this work, it is developed to quantify the degree of variation of
the predicted value and variance in the sequential optimization process. Herein, the proposed entropy
weight method is an objective weighting method, which adaptively assigns weight to the LCB function
according to the degree of variation of the predicted value and variances. Specifically, the entropy
weight method consists of three major steps: normalize the values of the predicted value and variances,
calculate the entropy value of the predicted value and variances, and determine the relative weight
of them.

The EW-LCB function is defined as

EWMLCB(x) = w1 ŷ(x) −w2ŝ(x) exp((−1)rr) (21)

where ŷ(x),ŝ(x) are the predicted value and estimated standard deviation of the tested point, respectively.
w1, w2 are the weights to reflect the contribution of the ŷ(x),ŝ(x), respectively. r represents the iterations
of the current optimization solution, which can be used to avoid the proposed approach falling in the
local optimal region.

To obtain the weights w1, w2, suppose that there are N samples with m indexes. The information
of the samples can be normalized by

Yij =
Xij −min

{
X1 j, X2 j, . . . , XN j

}
max

{
X1 j, X2 j, . . . , XN j

}
−min

{
X1 j, X2 j, . . . , XN j

} (22)

where Xij represents the jth index of the ith sample. Equation (22) is used to normalize the lower and
upper bound. In this work, the value of m equals 2. Besides, the number of tested points is set to be
1000 to improve the robustness of the entropy weight method.

Then, the entropy value of each index can be determined by

E(p j) = −
1

ln(N)

N∑
i=1

pi j ln(pi j) j = 1, 2, · · · , m (23)
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where

pi j = Yij/
N∑

i=1

Yij (24)

If the value of pi j = 0, it indicates that the entropy of this tested point equals zero. In that case,
a definition is given to compensate for the insufficiency of the initial assumption in Equation (23),
which is defined as

lim
pi j→0

pi j ln(pi j) = 0 (25)

According to Equation (23), the degree of variation of each indicator can be ascertained.
The indicator with a larger value of information entropy has a smaller degree of variation. Subsequently,
the corresponding entropy weight should be small. As such, the entropy weight can be obtained by

wj =
1− E(Pj)

m∑
j=1

(1− E(Pj))

(26)

According to Equation (26), the weight of each index can be determined adaptively. Besides,
wj ∈ [0, 1] and

∑
wj = 1.

Here we give a brief explanation of the proposed EW-LCB criterion. The term w1 ŷ(x) is used for
local exploitation, which concerns the optimal value. On the other side, the term w2ŝ(x) exp((−1)rr)
focuses on global exploration, which pays more attention to the uncertainty of the Kriging model for
the potential global optimal region. If w1 	 w2 exp((−1)rr), it means the algorithm focuses more on
global exploration. While w1 
 w2 exp((−1)rr) means the algorithm focuses more on local exploitation.
The factor exp((−1)rr) serves as the catalyst to help the optimization process out of a local optimization
solution. However, this factor may decrease the convergence speed of the proposed algorithm because
the weight of the exploration will dominate EWLCB(x) when the current optimization solution is
repeated too many times. Finally, the point with the minimum value of EWLCB(x) is selected as the
new update point.

In this illustrated example, the weight parameters are w1= 0.4961,w2 exp((−1)rr) = 0.5039 in the
first iteration. It is shown that the algorithm focuses more on global exploration than local exploitation.
Therefore, another sample point x = 0.4432 is added, and the corresponding Kriging model is refreshed,
which is shown in Figure 3.

Figure 3. The first iteration of the proposed approach with the illustrated function.
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3.5. Step 6: Output the Optimal Solution

Once the terminal conditions are achieved, the optimal solution will be the output. As shown in
Figure 4, the optimal solution x = 0.5312 is obtained, which equals the global minimum.

Figure 4. The final result of the proposed approach on the illustrated function.

As shown in Figure 4, the trend of the actual function is recognized by the proposed approach
and the optimal value can be obtained although the global accuracy of the Kriging model is not at a
high level.

For comparison, four AKBDO methods, Expected improvement infill criterion (EI) [21], weighted
expected improvement infill criterion (WEI) [28], Lower confidence bounding infill criterion (LCB) [22],
and Parameterized lower confidence bounding (PLCB)[32], were tested on this case. To avoid the
randomness of the LHS and GA, all the methods were repeated 100 times. The statistical results
including the mean value and standard deviations of the function calls are summarized in Table 2.

Table 2. Comparison results of different approaches of the illustrated example.

Methods EI WEI LCB PLCB EW-LCB

Mean Value 7.64 7.86 7.98 7.66 6.48
Standard deviations 1.352 1.498 1.301 1.780 0.505

As listed in Table 1, the average number of function calls of the proposed approach is less than
those of the four AKBDO methods, indicating that the proposed EW-LCB approach performs better
than the four AKBDO methods concerning efficiency. Besides, the standard deviation of the proposed
EW-LCB approach is the smallest among all the methods, which means that the proposed approach
has the best robustness among all the compared methods in this demonstration case.

4. Tested Cases

4.1. Numerical Examples

In this subsection, ten widely used benchmark problems from Ref. [33,50–52] are used to illustrate
the effectiveness of the proposed EW-LCB method. Meanwhile, four famous AKBDO approaches,
EI, WEI, LCB, and PLCB, are tested to compare with the EW-LCB method. As the optimal solutions
for all benchmark problems can be obtained, the terminal condition is defined such that the relative
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error between the optimal solution obtained from the Kriging model and the true one is within
0.002. Therefore, the number of iterations is regarded as the merit of effectiveness. Considering the
randomness of the results, many AKBDO approaches repeat their algorithms dozens of times and
provide statistical results [53,54]. Furthermore, some approaches use the deterministic sampling and
optimization algorithms such as Hammersley and deterministic PSO [55–57] to avoid the randomness.
In this work, each method ran 100 times with different initial samples and their statistical results are
recorded in Table 3.

Table 3. The comparison of statistical optimization results.

Functions Items EI WEI LCB PLCB EW-LCB

PK
FEmean 29.82/3 30.13/4 29.68/2 31.99/5 26.97/1

FEstd 2.435/2 2.884/3 2.068/1 5.107/4 5.34/5

BA
FEmean 33.23/3 32.15/2 33.88/4 34.34/5 26.33/1

FEstd 3.989/3 3.777/2 5.664/4 6.144/5 2.78/1

SA
FEmean 32.12/3 36.15/5 34.88/4 31.23/2 27.92/1

FEstd 4.674/3 4.865/4 2.813/2 5.241/5 2.722/1

SC
FEmean 39.30/4 40.66/5 39.20/3 36.41/2 33.42/1

FEstd 3.965/3 3.634/1 3.785/2 5.292/4 5.320/5

HM
FEmean 45.76/4 46.22/5 44.12/3 41.34/2 35.22/1

FEstd 3.456/3 2.973/2 1.894/1 5.157/5 3.49/4

GP
FEmean 117.66/5 115.67/4 105.27 /3 97.77/2 89.27/1

FEstd 19.11/5 11.81/2 17.55/4 14.44/3 9.99/1

GF
FEmean Failed/5 Failed/5 Failed/5 140.42/2 116.67/1

FEstd Failed/5 Failed/5 Failed/5 75.66/2 30.63/1

L3
FEmean 300.4/3 534.6/4 540.4/5 167.1/1 199.2/2
FEstd 119.1/3 147.0/4 159.4/5 55.21/1 88.89/2

H3
FEmean 37.50/3 37.62/2 38.20/4 39.34/5 36.58/1

FEstd 3.50/4 3.46/3 3.29/2 3.64/5 2.56/1

H6
FEmean 107.03/4 105.13/3 103.67/2 114.1/5 101.16/1

FEstd 44.50/2 50.39/5 48.26/3 49.30/4 43.43/1

The expressions of benchmark problems are listed as,

• Peaks function (PK)

f (x) = 3(1− x1)
2e−x1

2−(x2+1)2 − 10(
x1

5
− x1

3 − x2
5)e−x1

2−x2
2 − 1

3
e−x2

2−(x1+1)2
, x1,2 ∈ [−3, 3] (27)

• Banana function (BA)

f (x) = 100(x1
2 − x2)

2
+ (1− x1)

2, x1,2 ∈ [−2, 2] (28)

• Sasena function (SA)

f (x) = 2 + 0.01(x2 − x1
2)

2
+ (1− x1)

2 + 2(2− x2)
2 + 7sin(0.5x1)sin(0.7x1x2) , x1,2 ∈ [0, 5] (29)

• Six-hump camp-back function (SC)

f (x) = (4− 2.1x1
2 +

x1
4

3
)x1

2 + x1x2 + (−4 + 4x2
2)x2

2, x1,2 ∈ [−2, 2] (30)

57



Appl. Sci. 2020, 10, 3554

• Himmelblau function (HM)

f (x) = (x1
2 + x2 − 11)

2
+ (x2

2 + x1 − 7)
2
, x1,2 ∈ [−10, 10] (31)

• Goldstein–Price function (GP)

f (x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x1
2 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)
2(18− 32x1 + 12x1

2 + 48x2 − 36x1x2 + 27x2
2)], x1,2 ∈ [−2, 2]

(32)

• Generalized polynomial function (GF)

f (x) = u2
1 + u2

2 + u2
3

ui = ci − x1(1− xi
2), i = 1, 2, 3

c1 = 1.5, c2 = 2.25, c3 = 2.625, x1,2 ∈ [−5, 5]
(33)

• Levy 3 function (L3)

f (x) = sin2(πω1) +
2∑

i=1
(ωi − 1)2[1 + 10 sin2(πωi + 1)] + (ω3 − 1)2[1 + sin2(2πω3)]

ωi = 1 + xi−1
4 , i = 1, 2, 3, xi ∈ [−10, 10]

(34)

• Hartmann 3 function (H3)

f (x) = − 4∑
i=1
αi exp

⎡⎢⎢⎢⎢⎣− 3∑
j=1
βi j(xj − pij)

2
⎤⎥⎥⎥⎥⎦

0 ≤ x1, x2, x3 ≤ 1
(35)

where

α =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1

1.2
3

3.2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ β =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.3689 0.1170 0.2673
0.4699 0.4387 0.7470
0.1091 0.8732 0.5547
0.0381 0.5743 0.8828

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (36)

• Leon (LE)

f (x) = 100(x 2−x3
1

)2
+(x 1−1)2; x1, x2 ∈ [−10, 10] (37)

The statistical results of 100 times for five AKBDO approaches are summarized in Table 3.
In Table 3, the FEmean represents the mean of iteration times illustrating the efficiency of the method,
while FEstd denotes the variance of function evaluations, which can reflect the robustness of each
method [58]. In Table 3, the numbers after the mean or standard deviation are the rank of the compared
method for each numerical case. For example, 26.97/1 means the mean value is 26.97 while the method
ranks first. The numbers marked in bold represent the first rank among the five AKBDO approaches.
It can be inferred that the EW-LCB ranks first in most of the test problems, which indicates that the
proposed EW-LCB outperforms the other compared approaches considering effectiveness. To further
demonstrate the robustness of the proposed approach, Figure 5 plots the box plot of FEmean of all
100 runs.
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Figure 5. The box plot of the FEmean with different methods.
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Table 4 shows the average ranking of the performance of five AKBDO for all the tests. The average
ranking of EW-LCB is the best among the five approaches. It is then followed with PLCB, LCB, EI,
and WEI. When it comes to the robustness of the compared approaches, the proposed EW- LCB performs
better than the PLCB, LCB, and WEI methods, while it is slightly inferior to the EI method. To evaluate
whether the differences between the proposed EW-LCB method and the other four approaches are
significant or not, the p values over multiple test cases are obtained by using the Bergmann–Hommel
procedure [59]. The statistic test results are listed in Table 5. As shown in Table 5, all the pi-values are
less than 0.05, indicating that there are significant differences in the efficiency performance between
the proposed EW-LCB and the other four approaches.

Table 4. Average ranking results for all AKBDO approaches considering all numerical cases.

Metrics EI WEI LCB PLCB EW-LCB

Average rank FEmean 3.70 4.00 3.22 3.10 1.10
FEstd 2.50 3.40 2.90 3.70 2.30

Table 5. The p-values obtained in the numerical examples by the difference significance test.

i Hypothesis p-Values

1 EI vs. EW-LCB 0.0028
2 WEI vs. EW-LCB 0.0001
3 LCB vs. EW-LCB 0.0016
4 PLCB vs. EW-LCB 0.0056

To demonstrate the influences of initial sample sizes, the other two initial sample sizes were
studied. The initial sample points are all generated by the LHD method, and function SA and L3 were
selected as function SA needs a small sample size, while function L3 needs a large sample size. Table 6
shows the results of comparisons. The numbers after ‘/’ represent the efficiency metric ranking of
each method. It is easy to see that the initial sample sizes have a great influence on the function of
SA. For function SA, EW-LCB always ranks first, while the ranks of EI, WEI, LCB, PLCB change a lot.
For instance, PLCB ranks second when the initial sample sizes are 5d and 15d, while when it comes to
the size of 10d, the rank changes to fourth. As for function L3, the numbers of the sample size of EI, WEI,
LCB change little, while the numbers of the sample size of PLCB and EW- LCB change significantly
when the initial sample size transforms from 5d to 10d. This represents that PLCB and EW-LCB may
perform well with a small sample size in the case of a quite complex function while EI, WEI, and LCB
only represent this feature when the function is simple. This is attributed to the objective weighting
factors in PLCB and EW-LCB, which are able to allocate factors to balance global exploration and local
exploitation. In summary, the EW-LCB method shows the greater ability in balancing between global
exploration and local exploitation compared to the other four AKBDO methods.

Table 6. Results of different initial sample points for functions SA and GF.

Functions Initial Sample Size EI WEI LCB PLCB EW-LCB

SA
n = 5d 27.55/4 28.98/5 27.02/3 24.12/2 23.34/1

n = 10d 32.12/3 36.15/5 34.88/4 31.23/2 27.92/1

n = 15d 41.67/4 43.98/5 41.12/3 40.20/2 38.03/1

L3
n = 5d 393.6/3 524.5/5 513.4/4 142.5/1 173.2/2
n = 10d 300.4/3 534.6/4 540.4/5 167.1/1 199.2/2
n = 15d 403.4/3 525.4/4 536.5/5 166.6/1 206.1/2

4.2. Engineering Application

In this section, an underwater vehicle base design problem is utilized to verify the effectiveness
of the proposed method. The base is a braced structure for vibration devices in the hull of an

60



Appl. Sci. 2020, 10, 3554

underwater vehicle. The main capability of the base provides a platform for the installation of some
imported vibration equipment and avoids the vibration transmitting to the hull directly. Meanwhile,
the mechanical impedance of the base has a determination effect in reducing the level of noise.
Specifically, the mechanical impedance is expected at a high level under all computational frequencies.
The structural profile of the base adjoined to the hull of the underwater vehicle is depicted in Figure 6.
The fixed structural and material parameters of the cylindrical shell and the base are listed in Table 7.

 
Figure 6. The structural profile of the base.

Table 7. The values of the fixed structural and material parameters.

Fixed Parameters Values

Elastic modulus E 2.09× 105 MPa
Density ρ 7850 kg/m3

Poisson’s ratio μ 0.3
The length of the Hull L 12,000 mm
The radius of the Hull R 3300 mm
Rib space l 600 mm
Size of the ribs’ 14× 224/26× 80 mm
The radius of the base web opening r 75 mm
Width of the base web opening d 210 mm

In this work, the objective is to maximize the minimum difference of the impedance between the
scheme in design and the required impedance value under the same frequency. Simultaneously,
the weight of the optimized scheme should be less than that of the allowable one. Therefore,
the optimization problem can be described as,

f ind x = [x1, . . . , x6]

max f (x) = min
{
I(x,ωi) − I(x0,ωi); i = 1, 2, . . . , k

}
s.t. g(x) = W(x) −W(x0) < 0

(38)

where x represents the vector of the design variables, which is a six-dimensional vector.ωi is the ith

computational frequency. In detail, the design variables of this problem are the thickness of the panels
of the base. Figure 7 plots the schematic diagram and Table 8 lists the meanings and value space of
the design variables, respectively. I(x,ωi) and W(x) represent the impedance value under a specific
computational frequency and the weight of the base, respectively.I(x,ωi) and W(x0) are the required
impedance value at the ith computational frequency and the allowable base weight, respectively.
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Figure 7. The design variables and loads of the underwater vehicle base.

Table 8. The meaning and ranges of the design variables.

Design Variables Ranges

Former half
The thickness of the base panel t1 40–90 mm
The thickness of the base web t3 10–60 mm

The thickness of the base bracket t5 12–40 mm

Remaining half
The thickness of the base panel t2 40–90 mm
The thickness of the base web t4 10–60 mm

The thickness of the base bracket t6 12–40 mm

Generally, the responses of the impedance curve are obtained through the finite element simulation
software ANSYS 18.1. The computational platform is with a 4.01 GHz Intel(R) Eight-Core (TM) i9-9900ks
Processor and 64 GB RAM. In this simulation, the boundary condition is fixed for all the translation
degrees at both sides of the shell. The loading is a unit vertical force at point A as depicted in Figure 7.
The ribs are simulated by the Beam 188 element and the rest of the model is simulated by the Shell
181 element. The number of elements has to be more than 34,000 to get a desirable accuracy of
the impedance value, as shown in Figure 8. Then, the frequency step is set to be 2.5 Hz and the
computational frequency ranges from 0 to 350 Hz. To improve the efficiency of the optimization,
minimal convex polygon technology is adopted to pre-process the impedance curve. In that case, the
global feature of the curve and the minimum impedance value of the impedance curve are preserved.
However, these complex and multimodal features, which may disturb the convergence speed of
the optimization process, are filtered. Figure 9 illustrates the impedance curves before and after
pre-processing on the scheme x =[60, 60, 30, 30, 24, 24].

 
Figure 8. The mesh model of the base with the shell of the underwater vehicle.
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Figure 9. The impedance curves before and after pre-processing.

As shown in Figure 9, the red line denotes the real impedance curve, which fluctuates significantly
under different frequencies. The black line is the impedance curve after the pre- processing operation,
which is smooth and the minimum value of the original curve remains the same. The blue line is the
required impedance curve under different frequencies. Moreover, the allowance weight for this case is
3.027t and the maximum iteration of this case is set to be 50. To eliminate the randomness of the initial
samples and the genetic algorithm, all methods use the same 60 initial LHS samples and the same
setups of the genetic algorithm. Moreover, all the methods are repeated 20 times to avoid randomness
occurring even though the setups are the same. The statistical optimization results of this problem
with all compared methods of under 20 runs are summarized in Table 9. Furthermore, the detailed
design variables, optimal, and weights of all runs are listed in Table A1 in the Appendix A.

Table 9. The statistical optimization results of the engineering case with different methods.

Methods
f(x)(×105 Ns/m)

Max Mean Std Succeeded

EI 4.031 3.998 0.03060 20/20

WEI 4.042 3.983 0.04316 20/20

LCB 3.857 3.733 0.08629 5/20
PLCB 3.892 3.723 0.12230 11/20

EW-LCB 4.062 4.027 0.01953 20/20

As illustrated in Table 9, the best value of the proposed method is 4.062× 105Nm/s, which is the
maximum optimal value among all methods. Moreover, the proposed method has the maximum mean
value on the objective among all the listed methods. It indicates the effectiveness of the proposed
approach. Regarding robustness, the proposed method also performs best among all these methods
because the proposed method obtains the minimum standard deviation. It is worth mentioning
that the LCB and PLCB methods obtain some infeasible solutions. In detail, there are 15 and 9 runs
that have failed for the LCB and PLCB methods respectively. The results show that the proposed
method is a stable and effective method to solve this engineering optimization problem. Figure 10
shows the impedance curves of the optimal scheme of the proposed approach and the original scheme.
As illustrated in Figure 10, the impedance curve of the optimal scheme is better than that of the
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original scheme because the impedance curve has larger impedance values in the frequencies which
are critical to the performance of the base as shown in the sub-figure of Figure 9. On the other side,
in the frequencies which are not critical to the performance of the base, the optimal scheme has smaller
values than those of the original scheme. Therefore, the proposed approach is an effective method for
this engineering case.

 

Figure 10. The impedance curve of the optimization solution.

5. Conclusions

To balance exploration and exploitation during the sequential process of the AKBDO, an EW-
LCB approach was developed in this work to obtain an optimal solution with less computational
resources. In the proposed EW-LCB approach, entropy theory was adopted to quantify the degree of
variation of the predicted value and variance of the Kriging model, respectively. Then, the weights
were assigned to the LCB function automatically according to the relative values of the entropy theory.
Meanwhile, an index factor was defined, which changed with iterations of the appearance of the
current optimum, to avoid the sequential process being lost in the local optimum. The updated point
was generated by minimizing the EW-LCB function, and the Kriging model updated sequentially.
To test the performance of the proposed EW-LCB methods, four typical AKBDO methods including
EI, WEI, LCB, and PLCB were adopted for comparison on ten widely used benchmark numerical
functions and an engineering case. Results show that the proposed EW-LCB approach can obtain the
optimum with the desired accuracy using less computational burden. Moreover, the proposed method
has competitive robustness compared with state-of-the-art methods.

It is of note that the proposed method can handle constrained optimization problems by transferring
the constrained optimization to the unconstrained one using the penalty methods. In practical
engineering cases, simulation models with different fidelities always are available, as part of our future
work, the developed EW-LCB method will be extended to the multi-fidelity scenario.
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Appendix A

Table A1. Detailed optimization results of the engineering case with different methods.

Methods

Variables (Rounded)
f(x)

(×105 Ns/m)

Weight (t)

t1 mm t3 mm t5 mm t2 mm t4 mm t6 mm
Allowance

3.0327

EI

88 59 12 40 16 12 3.945 3.0058
90 60 12 40 13 13 3.991 3.0151
90 60 12 40 14 12 4.020 3.0136
90 59 12 40 15 12 4.031 3.0125
83 60 12 40 20 12 4.004 3.0158
88 59 12 40 16 12 3.945 3.0058
90 60 12 40 13 13 3.991 3.0151
90 60 12 40 14 12 4.020 3.0136
90 59 12 40 15 12 4.031 3.0125
83 60 12 40 20 12 4.004 3.0158
88 59 12 40 16 12 3.945 3.0058
90 60 12 40 13 13 3.991 3.0151
90 60 12 40 14 12 4.020 3.0136
90 59 12 40 15 12 4.031 3.0125
83 60 12 40 20 12 4.004 3.0158
88 59 12 40 16 12 3.945 3.0058
90 60 12 40 13 13 3.991 3.0151
90 60 12 40 14 12 4.020 3.0136
90 59 12 40 15 12 4.031 3.0125
83 60 12 40 20 12 4.004 3.0158

WEI

88 59 12 40 16 13 3.919 3.0172
89 60 12 40 14 12 4.042 3.0047
88 60 12 40 16 12 4.013 3.0172
83 60 13 40 20 12 3.974 3.0266
82 60 13 40 21 12 3.964 3.0281
88 59 12 40 16 13 3.919 3.0172
89 60 12 40 14 12 4.042 3.0047
88 60 12 40 16 12 4.013 3.0172
82 60 13 40 21 12 3.964 3.0281
83 60 13 40 20 12 3.974 3.0266
88 59 12 40 16 13 3.919 3.0172
89 60 12 40 14 12 4.042 3.0047
88 60 12 40 16 12 4.013 3.0172
83 60 13 40 20 12 3.974 3.0266
82 60 13 40 21 12 3.964 3.0281
88 59 12 40 16 13 3.919 3.0172
89 60 12 40 14 12 4.042 3.0047
88 60 12 40 16 12 4.013 3.0172
83 60 13 40 20 12 3.974 3.0266
82 60 13 40 21 12 3.964 3.0281

LCB

81 58 16 42 18 12 3.808 3.0203
78 58 20 40 18 14 3.857 3.0457
75 52 17 46 17 21 3.676 3.0409
69 51 25 43 20 19 3.688 3.0617
76 50 21 44 15 22 3.647 3.0499
81 58 16 42 18 12 3.808 3.0203
78 58 20 40 18 14 3.857 3.0457
75 52 17 46 17 21 3.676 3.0409
69 51 25 43 20 19 3.688 3.0617
76 50 21 44 15 22 3.647 3.0499
81 58 16 42 18 12 3.808 3.0203
78 58 20 40 18 14 3.857 3.0457
75 52 17 46 17 21 3.676 3.0409
69 51 25 43 20 19 3.688 3.0617
76 50 21 44 15 22 3.647 3.0499
81 58 16 42 18 12 3.808 3.0203
78 58 20 40 18 14 3.857 3.0457
75 52 17 46 17 21 3.676 3.0409
78 47 21 47 14 20 3.651 3.0303
70 51 25 49 12 21 3.632 3.0461
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Table A1. Cont.

Methods

Variables (Rounded)
f(x)

(×105 Ns/m)

Weight (t)

t1 mm t3 mm t5 mm t2 mm t4 mm t6 mm
Allowance

3.0327

PLCB

78 55 12 40 11 12 3.892 2.8243
84 47 17 46 12 21 3.769 3.0154
84 47 24 42 12 19 3.748 3.0331
45 51 33 46 35 17 3.533 3.1076
84 38 28 44 15 19 3.684 3.0270
78 55 12 40 11 12 3.892 2.8243
84 47 17 46 12 21 3.769 3.0154
84 47 24 42 12 19 3.748 3.0331
45 51 33 46 35 17 3.533 3.1076
84 38 28 44 15 19 3.684 3.0270
78 55 12 40 11 12 3.892 2.8243
84 47 17 46 12 21 3.769 3.0154
84 47 24 42 12 19 3.748 3.0331
45 51 33 46 35 17 3.533 3.1076
84 38 28 44 15 19 3.684 3.0270
78 55 12 40 11 12 3.892 2.8243
84 47 17 46 12 21 3.769 3.0154
84 47 24 42 12 19 3.748 3.0331
67 59 39 40 11 12 3.645 3.0369
45 51 35 47 33 16 3.524 3.1050

EW-LCB

88 60 12 40 15 12 4.015 3.0065
87 60 12 40 17 12 4.017 3.0187
87 60 12 40 17 12 4.016 3.0187
85 60 12 40 18 12 4.016 3.0118
84 60 12 40 18 12 4.015 3.0034
88 60 12 40 15 12 4.015 3.0065
87 60 12 40 17 12 4.017 3.0187
87 60 12 40 17 12 4.016 3.0187
85 60 12 40 18 12 4.016 3.0118
84 60 12 40 18 12 4.015 3.0034
88 60 12 40 15 12 4.015 3.0065
87 60 12 40 17 12 4.017 3.0187
87 60 12 40 17 12 4.016 3.0187
85 60 12 40 18 12 4.016 3.0118
84 60 12 40 18 12 4.015 3.0034
89 59 12 40 16 12 4.061 3.0143
89 58 12 40 16 12 4.056 3.0026
88 60 12 40 16 12 4.062 3.0172
89 60 12 40 14 12 4.060 3.0047
89 60 12 40 15 12 4.059 3.0155

Note: the weights which are larger than the allowable ones are marked by red.
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Abstract: Interests in strain gauge sensors employing stretchable patch antenna have escalated in
the area of structural health monitoring, because the malleable sensor is sensitive to capturing strain
variation in any shape of structure. However, owing to the narrow frequency bandwidth of the patch
antenna, the operation quality of the strain sensor is not often assured under structural deformation,
which creates unpredictable frequency shifts. Geometric properties of the stretchable antenna also
severely regulate the performance of the sensor. Especially rugged substrate created by printing
procedure and manual fabrication derives multivariate design variables. Such design variables
intensify the computational burden and uncertainties that impede reliable analysis of the strain sensor.
In this research, therefore, a framework is proposed not only to comprehensively capture the sensor’s
geometric design variables, but also to effectively reduce the multivariate dimensions. The geometric
uncertainties are characterized based on the measurements from real specimens and a Gaussian copula
is used to represent them with the correlations. A dimension reduction process with a clear decision
criterion by entropy-based correlation coefficient dwindles uncertainties that inhibit precise system
reliability assessment. After handling the uncertainties, an artificial neural network-based surrogate
model predicts the system responses, and a probabilistic neural network derives a precise estimation
of the variability of complicated system behavior. To elicit better performance of the stretchable
antenna-based strain sensor, a shape optimization process is then executed by developing an optimal
design of the strain sensor, which can resolve the issue of the frequency shift in the narrow bandwidth.
Compared with the conventional rigid antenna-based strain sensors, the proposed design brings
flexible shape adjustment that enables the resonance frequency to be maintained in reliable frequency
bandwidth and antenna performance to be maximized under deformation. Hence, the efficacy of
the proposed design framework that employs uncertainty characterization, dimension reduction,
and machine learning-based behavior prediction is epitomized by the stretchable antenna-based
strain sensor.

Keywords: stretchable antenna-based strain sensor; structural optimization; structural health
monitoring; dimension reduction; entropy-based correlation coefficient; multidisciplinary design and
analysis; uncertainty-integrated and machine learning-based surrogate modeling

1. Introduction

Structural health monitoring (SHM) is implemented to evaluate the physical conditions of
structures with consistent surveillance. In accordance with the information garnered by an SHM

Appl. Sci. 2020, 10, 643; doi:10.3390/app10020643 www.mdpi.com/journal/applsci71



Appl. Sci. 2020, 10, 643

system, engineers can identify the critical roots in structural damage or deterioration and provide
applicable approaches to avoid structural failures. Compared with traditional fixed inspections
with interval schedules that demand excessive maintenance [1], the SHM systems can operate for
condition-based maintenance and reduce preventive maintenance cost, life cycle costs, and potential
catastrophic failure [2]. Therefore, the systems can heighten both the capability and reliability of the
monitoring system. Application of the SHM systems has been broadened from heavy mechanical
equipment or civil structures to aerospace or bio-mechanical examples [3].

In the SHM systems, a strain is regarded as a vital factor, which should be rigorously examined.
By measuring strain of structures, a strain gauge is able to predict certain failure modes such as
crack propagation, deformation [4], vibration, or mechanical loading [5]. Between copious types
of strain gauges, metallic foil pattern is mainly employed because it identifies electrical resistance
connected to strain changes under structural deformation. In spite of the benefits of a foil gauge (e.g.,
simple circuit structure, lower fabrication cost, and applicability in various examples), its usability
has been restrained owing to the reliance on long cables corresponding to the power supply and data
transmission. An acceptable solution to the issue is to use sensors of passive wireless strain gauge,
which reduces dependency on batteries and has lower installation costs. In recent years, great attention
has been paid to passive wireless antennas on account of their compelling suitability to observe strain
of structures [6].

An antenna installed on the surface of a deformable structure transfers details about the strain
variations. It is approachable to evaluate the stability and physical circumstance of the structure
with the transferred data of the strain variations. In the strain gauge markets, interests in micro-strip
patch (MSP) antenna have increased because of lower fabrication cost, lighter load, lower profile
planar configuration, and capability of multiband operation [7]. Thus, the majority have still exploited
a rigid patch antenna to capture strain variation. However, the conventional rigid patch antenna
often fails to deliver reliable information owing to two critical drawbacks: mediocre consideration
for non-uniform geometric uncertainties [8] and limited bandwidth of resonance frequency (Rf) [9].
To assure the performance of the MSP antenna-based strain sensor, these two drawbacks should be
meticulously examined.

The first drawback is about the geometric uncertainties on the surface of the substrate of an
antenna shown in Figure 1a. As depicted in Figure 1b, a typical scanning electron microscope (SEM)
shows that the substrate surface has certain scratched patterns, which makes the substrate rugged,
so there exist obtrusive thickness variations on the substrate. Variation of the substrate roughness is
unavoidable because the unstable fabrication process requires manual operation by engineers [10]. The
geometric uncertainties due to this surface roughness are more critical for the stretchable antenna-based
strain sensors, which broaden the applicability of such sensors for the wearable devices or human
body. Compared with conventional rigid antennas, the uncertainties have a much stronger influence
on the performance of the antenna along with the non-uniform changes under deformation [11–13].
Therefore, the substrate fabrication has been steadily operated with polydimethylsiloxane (PDMS) or
other stretchable materials to be firmly attached to the surface of rough structures [14].
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               (a)                               (b) 

Figure 1. Stretchable antenna. (a) The antenna (dark color) and the polydimethylsiloxane (PDMS)
substrate (light color); (b) scratched surface of the substrate observed by FEI Quanta 250 scanning
electron microscope (SEM) device.

In the computer-based design and analysis of stretchable antennas for a strain gauge, usually,
an assumption of uniform thickness is made to reduce design complexity and computational burden.
However, if the randomness corresponding to the thickness is overlooked, reliable response assessment
of the MSP antenna-based strain sensor can be impeded. As already proven by various simulations
and measurements [15–20], although the analysis of the non-uniform substrate-based antenna is
always more complicated than that of constant substrate-based antenna, it involves better reliability
predictions as the approach corresponding to the uneven substrate represents the real environment.
Thus, it is absolutely imperative to examine the thickness variation to improve the reliability of the
antenna-based sensor.

Unfortunately, however, considering the roughness would bring extremely increased
computational costs as well as total number of design variables (DVs). It is indispensable to capture
and propagate all possible critical variables and the corresponding uncertainties to ensure that the
system is reliable, but such an approach would incur high dimensions of DVs, increasing computational
complexity [21]. Furthermore, once the DVs are contaminated by the immensely correlated random
behavior, the extravagant variables obstruct the reliability of the performance estimation [22,23]. To
eliminate these issues, a rigorous design of stretchable electronics based on efficient capturing and
modeling of correlated and high dimensional random variables is required [24]. Therefore, this
study proposed a dimension reduction (DR) framework to effectively manage uncertainties especially
occurring for the substrate thickness. In the framework, a Gaussian copula is utilized [25] to precisely
model the intricacy of DVs. The intricacy can be described by a joint distribution that consists
of manifold marginal distributions. After modeling the geometric uncertainties, a clear guideline
engaging the entropy-based correlation coefficient was exploited to suggest a better decision between
feature extraction and selection. Through the guideline, engineers can embrace a competent choice of
an efficient DR method based on multivariate data properties. In accordance with the entropy-based
correlation coefficient, two DR methods, particularly feature extraction and feature selection, diminish
the overabundance of the DVs. Specifically, the performance of two feature extraction methods
(principal component analysis (PCA) [26] and auto-encoder (AE) [27]) are evaluated to identify the one
that gives the best predictions, while feature selection employs independent features test (IFT) [28].
Details will be addressed in the following sections.

The second drawback is about the narrow bandwidth, which often fails to warrant the operation of
the MSP antenna for measuring strain. In general, information transferred by a radio frequency system
is only trustworthy within the desired frequency bandwidth. Owing to the unforeseen structural
deformation that produces extreme frequency shifts, the stretchable strain sensor cannot perform
stable detection when the frequency deviates from an allowable bandwidth. To handle this issue,
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manifold solutions have been proposed. Specifically, the ultra-wideband (UWB) wireless system is
used to facilitate multiple broadband and a high data rate, which enlarges the range for frequency
activity [29]. However, the solution is not convincing owing to the complicated design process, power
limitation, and standardization. Other approaches engaging optimization techniques also exist, but
most have focused on sizing adjustment of the antenna [30]. Even though the sizing optimization can
draw simple and efficient antenna update [31], the technique forces the antenna to maintain its original
shape, which interrupts a fundamental solution regarding the narrow bandwidth. Furthermore,
topology optimization with solid isotropic material with penalization or the level set method has been
exploited to address the issue [32], but the efficiency of the suggested design is only identified when
it is fabricated by special additive manufacturing process, which intensely increases the fabrication
burden. Assorted studies have also suggested unique shape modification such as conical, pentagon, or
even fractal geometry [33,34], but such modifications refuse to preserve an initial outline of the MSP
antenna that has advantages of cheaper and easier fabrication process and diverse applicability, so
their efficiency is only meaningful in a specialized example.

To address these issues of the existing design approaches for the stretchable antenna, a design
optimization process that includes a structural shape optimization is proposed in this study. In
comparison with the existing approaches, the proposed design process not only inherits the advantages
of the MSP antenna, but also derives an innovative antenna shape to enhance functionality in the
multi-physics domain. Owing to the mechanical flexibility and electrical radio frequency behavior, the
stretchable MSP antenna for strain gauge requires a meticulous multidisciplinary design optimization.
Thus, the proposed design maximizes the frequency stability and antenna performance, referring to a
return loss under unexpected structural deformation. The optimum design is garnered in accordance
with the basic shape of the MSP antenna, so that it can truncate an intense fabrication burden. The
design also operates at dual bandwidth to keep the benefit of UWB, but it induces less design intricacy.
For the system response prediction, the proposed framework employs the artificial neuron network
(ANN)-based surrogate model under geometric uncertainties stemming from the stretchability and
fluctuating antenna substrate. Finally, the reliability of the proposed design is evaluated by the
probabilistic neuron network (PNN) and Monte Carlo simulation (MCS).

This paper is structured as follows. Section 2 introduces backgrounds of the Rf fluctuation under
structural deformation and the DR methods. Section 3 introduces the proposed design framework
employing the DR methods and shape optimization to determine the optimal new design of the
stretchable antenna-based strain sensor. In Section 4, an example of the MSP antenna employed as a
stretchable strain gauge is provided to represent the efficacy and merits of the proposed framework.

2. Micro-Strip Patch Antenna and DR Process

2.1. Micro-Strip Patch Antenna

An MSP antenna is composed of a patch, a feed line, a dielectric substrate, and a ground, as
depicted in Figure 2a. Owing to the effect of the inductance and the capacitance, intrinsic resonance
frequency (Rf) is produced where inductive and capacitive reactance offset each other, which results in
a transfer of signal and power. The Rf fluctuates as the antenna geometry is changed, which directly
indicates how much the antenna is distorted. The antenna employed in a strain gauge normally
adheres to the fragile surface of a structure, and the antenna’s shape will be changed in which the
structure is deformed. Rf is then promptly changed in accordance with the structural deformation
of the antenna. Therefore, it is ineludible to monitor the Rf variation of the antenna to observe the
status of the structured deformities [4]. As shown in Figure 2b, the Rf can be appraised based on the
geometric information as follows:

Rf =
1

2(2ΔLle + Le)
√
εre

cl, (1)
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where ΔLle, Le, εre, and Cl indicate variation of the electrical length, the phase length, the effective
dielectric constant, and the velocity of the light, respectively. Here, the phase length stands for the
geometric dimension of the patch along the direction of antenna’s line extension and radiation mode.
The effective dielectric constant is rephrased by

εedc =
εr − 1

2
√
(1 + 12H/We)

+
εr + 1

2
, (2)

where We, H, and εr represent the patch’s electrical width, constant thickness, and substrate’s dielectric
constant, respectively. On the basis of Equation (2), the phase length, ΔLle, is denoted by the dimensions:

ΔLle =
(We/H + 0.264)(εre + 0.3)H

2.427(We/H + 0.813)(εedc − 0.258)
. (3)

 
(a)                               (b) 

Figure 2. Micro-strip patch (MSP) antenna. (a) Composition of the MSP antenna; (b) parts of the patch
and the substrate.

The Rf fluctuation depends on the path of the tensile strain (εL). While an observed Rf that is
higher than the initial Rf implies the strain was employed in the electrical width direction (Le), the
value of the Rf should be less under the strain that is applied along electrical length direction (We). The
frequency oscillation is caused by Poisson’s effect by

We =
(
1− vpεL

)
Wo and H = (1− vsεL)Ho, (4)

where vp, Wo, vs, and Ho denote the Poisson’s ratios of the patch, the original width, the Poisson’s
ratios of the substrate, and the thickness, respectively. By a variation of the tensile strain, (We/H) is
elucidated as independent in the case where the proportion of width to thickness is less than one. Here,
the Poisson’s ratios, vp, and vs, will be the same, leading to the same εre and εr. Hence, the Rf when a
strain, ε, is applied along the vertical direction will be denoted by

R f =
cl

2
√
εr

1
(1− ε)(Le + 2ΔLle)

≈ Ro f

1− ε ≈ Ro f (1 + ε), (5)

where Ro f indicates the Rf that is estimated by Wo and Ho. In this study, an example of the tensile
strain applied along the width direction is demonstrated. The patch and substrate are able to derive
significant effects on the antenna performance. Existing research has suggested ways to intensify the
productivity of the antenna by modifying copious antenna components [35,36], but there exists no
rigorous deliberation in terms of the variation of the substrates thickness so far [7]. Such deliberation
regarding the variations is essential because most fabrication of the substrate is manual. Also, the
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interests in printable or wearable antenna applications make the deliberation of non-uniform surfaces
valuable. Therefore, it is fairly necessary to assume that the substrate thickness varies; however, these
additional concerns demand excessive growth in the number of corresponding responses and DVs.
When the engineers decide to weight the additional intricacy, it is typical to encounter the curse of
dimensionality, which demands the DR methods in the design process.

Copious DVs result in the curse of dimensionality, which triggers unreliable data assessment in
classification and function approximation [37]. Furthermore, the multivariate variables are strongly
correlated and arouse the redundancy of the data. The higher redundancy imposes negative impacts
on the estimation of the system performance because the inter-correlated data is probably required
to represent properties already taken into account. To describe the redundancy, Entropy [38] is often
exploited. The uncertainties of a certain random variable are measured by Entropy (H) exploiting a
probability distribution [39]. Here, x referring to a random variable H is represented by the following:

HX =
m∑

i=1

p(xi) log2
1

p(xi)
, (6)

where p(xi) means the marginal probability of x. According to the H, the redundancy (Re) is able to be
re-written as follows:

Re = log2 N −
n∑

i=1

p(xi) log2
1

p(xi)
, (7)

where log2 N indicates the maximum H with the entire samples (N). In order to elevate the assessment
accuracy of the system performance, the DR approach is conducted in this research. The DR technique
is generally conducted by the main methods: feature extraction (FE) [40] and feature selection (FS) [41].
While FE transforms the initial features located in the higher dimension to lower-dimensional new
features, FS takes the most substantial subgroup of the raw features. Details of the DR methods will be
explained in the following sections.

2.2. Feature Extraction (FE)

FE builds distinct features in the lower dimension using a conversion of the initial features. This
DR method can be interpreted as a mapping, which reduces the Re of original data. The newly extracted
features include most related properties from the initial data. Two major methods, principal component
analysis (PCA) [26] and auto-encoder (AE) [42], are explained in this research.

2.2.1. Principal Component Analysis (PCA)

To draw independent and uncorrelated features from heavy correlation, PCA employs orthogonal
transformation, which is represented by Y = PX. The transformed matrix, Y, is explained by a
transformation matrix, P, and the original data set, X. In order to conduct a linear transformation, X and
Y will contain numerous examinations and variables, which can be described as m and n, respectively.
Specifically, PCA requires a decomposition of eigenvectors [26] to truncate the data dimension. A
covariance matrix, CY, can be acquired by

CY =
1

n− 1
PAPT =

1
n− 1

P(PTDP)PT =
1

n− 1
D. (8)

In Equation (8), A = XXT, which implies a symmetric condition. A consists of the eigenvectors in
the rows of the matrix, P, and is denoted by PTDP. Here, D stands for a diagonal matrix that should
be connected to equivalent eigenvectors of matrix A. The property of an orthonormal matrix allows
the inverse of the matrix P to be equal to its transpose. Thus, principal components corresponding to
X will act as the eigenvectors of PCx = (n − 1)−1XXT, and the diagonal variables of CY should be the
X’s variance.
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2.2.2. Auto-Encoder (AE)

While PCA sometimes faces its limitation in non-linear data analysis [26], auto-encoder (AE)
is not restricted by the drawback of data linearity. As a special case of the artificial neural network
(ANN) [42], AE handles the DR by converting the raw data. AE generally includes three different
layers, which are the input, output, and hidden layer, respectively. AE also contains a reconstruction
process of the raw data in the output layers. The data will be transformed with a bias and a weight
function in the hidden layer. To reduce the gap between the raw and newly recreated data, AE tries to
minimize the mean squared error corresponding to the reconstruction [43]. The reconstruction error
(re) is evaluated by the squared-error cost function,

re = 0.5‖
n∑

k=1

Wk
T

⎛⎜⎜⎜⎜⎜⎝
n∑

k=1

Wkxk + b
k

⎞⎟⎟⎟⎟⎟⎠+ bT −X‖
2

, (9)

where W, T, x, and b refer to the weights, transpose of the respective vector or matrix, input units,
bias, and input vector, respectively. Here, X stands for input vector. A sparsity constraint exploits
to minimize the total number of hidden units, so that AE can be conducted as the DR. Owing to the
constraint, AE has a bottleneck shape. Some of AE’s neurons will be inoperative by applying the
sparsity constraint to the hidden units. The hidden layer’s average activation can be defined by

Ψ j =
1
n

n∑
i=1

[
a(k)j (x(i))

]
, (10)

where aj
(k) denotes the activation of hidden layer k and the hidden unit j. To promote the sensitivity

accuracy, an extra penalty term (P) is considered.

P =
s∑

j=1

ρ log
ρ

Ψ j
+ (1−ρ) log

1− ρ
1−Ψ j

, (11)

where s and ρ represent hidden layers and the sparsity parameter, respectively. When the activation
value becomes zero, a relation of Ψ = ρ is acquired.

2.3. Feature Selection (FS)

Unlike FE, FS does not take into account the same dimension when the initial data are reconstructed.
It just focuses on grabbing the most significant subgroup in the lower dimension. The importance
of the elected subset may not be ensured if the subset contains meaningless properties of the initial
data. Diverse studies have been achieved using the mutual information method, genetic algorithm,
and single variable classifier method [43], but those methods still have handicaps, that is, huge
computational complexity and untrustworthy assessment of the data distributions if the behavior of
the distributions is not clearly provided [22]. On the other hand, independent features test (IFT), called
the simple hypothesis test [27], is able to quickly discard unnecessary features. For this advantage,
IFT will be employed in this proposed framework. The target data are assumed as categorical, so IFT
allows all features to be assigned to two categories. This approach is conducted by a scoring value of
informative features, SVIF.

SVIF(F) =

∣∣∣μ.(A) − μ.(B)
∣∣∣√(

v.(A)
n1

+
v.(B)

n2

) > sv (12)

From Equation (12), two data sets related to the feature (F)’s values can be described as A and B,
where n1 and n2 denote the number of the features employed in the categories. With variance, v, and
mean, μ, the significance value of data can be calculated. In accordance with a threshold, sv, indicating
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the significance value to eliminate unimportant features, IFT is able to get the best features. In general,
it is suggested that the significance value is equal to or greater than 2 [27].

3. DR-integrated Framework for Optimized Design

On the basis of the developed framework, the DR procedure will be combined with the shape
optimization. Even if the framework is expressed with an MSP antenna example, the framework is
generalized to be applicable for different design applications, which can be affected by the issue of the
curse of the dimensionality. The framework is composed of four steps, as represented in Figure 3. Step
1 shows multivariate input variables that will be randomly created. From Step 2, Re of the variables will
be minimized by the DR, improving computational productivity. In Step 3, the framework integrated
with the DR will find the optimal design. Finally, the reliability of the optimized design of an MSP
antenna will be assessed.

Figure 3. Proposed optimum design framework with the dimension reduction (DR). ECC, entropy-based
correlation coefficient.

3.1. Generation of Multivariate Data Random Thickness

The design framework in Figure 3 starts with the generation of random multivariate data including
a strong correlation in Step 1. For example, in the design space of the antenna application in this
study, the correlation will be considered for the substrate thickness. A Gaussian copula is proposed
to be used in this study to meticulously create multi-dimensional random behavior. In comparison
with the conventional methods that require a linear correlation coefficient [44], the copula takes two
clear benefits: (1) it creates multi-dimensional data, although the DVs contain each distinct marginal
distribution; and (2) it analyzes the correlation between the random variables that have non-linear
behavior. Hence, in Step 1, the most realistic properties in the multi-dimensional space will be
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demonstrated. A joint distribution, JXY, is denoted by the two distinct marginal distributions, F1

and F2,
JXY(x, y) = CP(F1(x), F2(y)). (13)

Here, CP represents the copula function (CP: [0,1]2 → [0,1]),

CPρ(x, y) = 1
2π
√
(1−ρ2)

Φ1
−1(x)∫
−∞

Φ1
−1(y)∫
−∞

exp
(
− h2−2ρhk+k2

2(1−ρ2)

)
dhdk,

Φ(x) = 1
2π

x∫
−∞

e
(
−0.5s2

)
dh,

(14)

where, ρ, x, and y stand for the linear correlation coefficient, and the marginal distributions of both
x and y. Moreover two different copula parameters are represented by h and k, and the standard
univariate Gaussian distribution is denoted by Φ.

Therefore, the copula function builds the sample dataset by exploiting the parametric multivariate
distribution. The samples can then be generated from the copula and can be utilized for stochastic
analysis to model and simulate a complex engineering system.

3.2. Entropy-Based Correlation Coefficient (ECC)

Step 2 of the proposed framework involves the DR process. In the high dimensional system
analysis, it is required to make an obvious guideline to decide which DR method (i.e., FE or FS) should
be accurately employed. In the framework, an explicit criterion is presented to properly select either
FE or FS. The criterion can be exploited in accordance with a status of random variables’ correlation.
As a conventional method, linear correlation estimation [45] measures the degree of the correlation
between the data sets. But the approach cannot be supported once features contain non-Gaussian
distributions, non-linear correlation, or correlation coefficient of 0.5. To overcome these challenges, it
is inevitable to provide a distinct criterion corresponding to an entropy-based correlation coefficient
(ECC) denoted by e [46]. A joint entropy, HXY, is calculated by

HXY =
n∑

i=1

n∑
j=1

pjoint(xi)pjoint(yj) log2
1

pjoint(xi)pjoint(yj)
(15)

where pjoint(xi) and pjoint(yj) are the joint probability distributions of xi and yj, which are the random
variables. As a basic concept of mutual information (MI), entropy can be used to measure dependence,
but it does not have a satisfactory scale as the maximum value depends on the size of samples [47].
Hence, the ECC from the normalized MI rescales the MI values to be between 0 and 1. The status of
the dependence between the random variables is then calculated by e:

e =

√
HX + HY −HXY

HX + HX
, 0 ≤ e ≤ 1. (16)

Here, 1 refers to heavy correlations, and vice versa. On the basis of two different ranges of e, 0 ≤ e
< 0.5 and 0.5 ≤ e < 1, the proposed framework can provide a guidance to use either FE or FS. The first
range indicates that the behavior of the variables is independent and uncorrelated. Thus, the FS will
minimize the size of the multi-dimensional data. The second range, on the other hand, means that
there is a correlation between multivariate data. Hence, FE will be suitable to reduce the redundancy of
the data, Re, originated from the strong correlation between multivariate data. When the value of e in
Equation (16) is close to 0.5, it suggests engineers may employ both DR methods. After the reduction
proceeds, the comparison of Re values calculated by Equation (7) is required to confirm whether or not
sparse features are sufficiently acquired. If the raw features still include higher Re compared with the
gleaned new features, an additional DR process might be required. Thus, the combination of e with Re
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can be considered as a reliable solution that can draw independent and sparse features by reducing the
computational cost.

3.3. Optimization

Once the DR process is conducted in Step 2, an optimization process is then utilized in Step 3
for the optimal design of the application structure or geometry. A function approximation of the
actual physical calculations is often required to alleviate the computational burden during the iteration
process of the optimization. Therefore, a machine learning-based surrogate modeling technique,
namely the artificial neural network (ANN) [27], will be exploited in this research. Compared with the
traditional surrogate modeling approaches conducted by linear programming [48], decision trees [49],
and discriminant analysis [50], ANN possesses two major benefits: (1) the credibility of ANN is assured
in which the decision domain holds complex shapes that are difficult to secure, and (2) ANN is able to
be conducted for both classification and function approximation. Essentially, ANN is preferred to be
used for the function approximation approach to take the complex contours in the decision domain.

3.4. Predicting Reliability of the Obtained Optimal Design

Once the DR and the optimization are exploited, the reliability of the acquired antenna’s optimum
design will be checked. This might be a noncompulsory step based on the ascribed design problem.
Generally, when a multi-dimensional system is evaluated, it is frequently computationally exorbitant to
analyze further response statistics such as reliability of the system. Hence, although ANN is employed
for the function approximation during the optimization process in Step 3, in Step 4, another neural
network method, called the probabilistic neural network (PNN), is utilized as a classification process
is needed for the reliability assessment. As a major advantage, PNN does not require expensive
computational costs because of the fast and straightforward training procedure when compared with
ANN. The performance of PNN is assured by the Parzen nonparametric estimator and the Bayes
decision rule, which lessen the predicted risk of misclassification [51,52].

The following section presents the applicability of the proposed framework by a design example
of the stretchable MSP antenna.

4. Stretchable MSP Antenna-Based Strain Sensor

In general, antennas that perform in a single frequency band become a barrier of careful surveillance
because of the harmful radiation of wireless components and the interruption of data signal transmission.
Hence, the efficacy of the single-band antenna cannot to be ensured. For this reason, a dual-band
antenna should be utilized to improve the reliability of the stretchable strain-based MSP antenna. In
this example, a dual-band antenna functioning at 2.5 GHz and 5 GHz, usually exploited for wireless
fidelity, was regarded. On the basis of composition of the MSP antenna, as shown in Figure 2, vital
DVs and the material properties are listed in Table 1. Here, μ and COV stand for mean and coefficient
of variation, respectively.

Table 1. Geometric and material properties of the stretchable micro-strip patch (MSP) antenna.

Substrate
(μ, COV)

Patch Feed Line Ground
Source

(μ, COV)

Thickness (mm) 0.97, 0.05 0.03 0.03 0.05
Width (mm) 70 47 2.5 70 0.09, 0.1
Length (mm) 70 40 32 70 2.5
Permittivity 2.2 1 1 1 1

Young’s Moduli (MPa) 1.32 0.0124 0.0124 1.32
Conductivity (S/cm) 0 1.51 × 104 1.51 × 104 1.51 × 104 0

Dielectric Loss Tangent 0.0009 0.01 0.01 0.01 0
Magnetic Loss Tangent

(kg/m3) 0 0.001 0.001 0.001 0
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To investigate the behavior of stretchable antennas, a multi-physics analysis that includes both
the strain estimation under mechanical deformation of the antenna and the Rf estimation by electrical
analysis is required. In the previous research [8], such a multidisciplinary analysis was performed
for a stretchable antenna geometry and it was shown that the fluctuating thickness of the substrate
resulted in a high return loss. This result was because the uncertainties of the substrate thickness led to
the escalation of forged feed radiation and surface waves, which limit the range of the bandwidth.
Therefore, in this proposed framework, a design optimization process was also utilized to find the
optimal contour of the antenna patch to maximize antenna efficiency by reducing the return loss. The
existing geometry in the work of [8] was used as the starting geometry in the optimization process;
therefore, first, the dimension reduction and prediction using Steps 1 and 2 of the proposed framework
were used for the starting geometry.

In the analysis of the antenna, first, a displacement that results in a tensile strain along the width
direction, which is denoted as the y direction on Cartesian coordinates, was applied on the antenna
substrate, as demonstrated in Figure 4a. In the structural analysis to evaluate the deformation of
the antenna under this tensile strain, a linear static finite element analysis (FEA) was employed in
this study using the commercial software ANSYS®. As the geometry and the applied displacements
are also symmetric, while the material properties are assumed to be isotropic, symmetry boundary
conditions were utilized, as shown in Figure 4b. In this study, it was assumed that the maximum
applied tensile displacement on the stretchable antenna is 12 mm. The deformation of the stretchable
antennas might be larger, but for demonstration purposes, 12 mm was considered in this study as the
bound of the displacement of the stretchable antenna. The application can easily be extended for larger
displacements in a future study.

 

                (a)                         (b)                      (c)              (d) 

Figure 4. Schematic of the stretchable MSP antenna. (a) Boundary conditions for the tensile test; (b)
symmetry conditions; (c) 202 divided substrate parts containing different thickness and 1 patch with a
constant thickness; (d) 57 Cartesian coordinates of the patch.

The substrate of the antenna was discretized into 202 rectangular regions that represent the
fluctuating substrate thickness, as shown in Figure 4c by white bounds. The outer geometry of the
patch shown by gray color was discretized into 57 points, as depicted by white nodes in Figure 4c.
Once the deformed shape of the antenna was obtained from the FEA of the antenna model in Figure 4,
the return loss and Rf of the deformed antenna geometry were calculated using a commercial software
called High Frequency Structure Simulator (HFSS).

4.1. Generation of Multivariate Data for the Varying Thickness

To model the substrate thickness fluctuation, a stochastic representation of a random field was
taken into account. For this purpose, a Gaussian copula was employed to generate the random
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behavior corresponding to the thickness variation. Figure 5 demonstrates how the copula builds a
joint distribution including two distinct sampling sets of thickness variation. First, the roughness of
the substrate made of PDMS material was measured by Contour GT-I 3D Optical Microscope. The
measured roughness data were added onto the mean thickness of the substrate, which is 0.9705 mm, to
describe the variation of the thickness of the whole substrate. In this process, the Gaussian copula
generated the random thickness samples engaging several marginal distributions of each sampling set
of the thickness variation. Thus, the antenna can be modeled with the substrate, containing 202 small
parts that have random different thicknesses and the patch with a thickness of 0.03 mm. Specifically,
500 FEAs were performed with different displacements generated within the range from 0 mm to 12
mm. For each of these simulations, 202 inter-correlated random thickness values were created from the
Gaussian copula.

Figure 5. The Gaussian copula employed to demonstrate a joint distribution of random sets of
thickness variation.

4.2. DR Process for Variation of the Substrate Thickness

Before conducting the DR, e of the initial thickness variation was calculated as 0.684 using
Equation (16). This value is greater than 0.5, indicating that the correlation between the thickness
data set is strong. This result indicates that FE should be used as the DR according to the proposed
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framework shown in Figure 3. The performances of two different FE methods, namely PCA and
AE, were evaluated in this study. PCA and AE took 32 and 103 dominant components, respectively.
In Table 2, the error was calculated for each method by

Error = mean

⎛⎜⎜⎜⎜⎝∑
⎛⎜⎜⎜⎜⎝
∣∣∣Dnew −Dorg

∣∣∣∣∣∣Dorg
∣∣∣ × 100 (%)

⎞⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎠, (17)

where Dnew and Dorg stand for the redundancy of diminished data and that of initial data, respectively.
Unlike PCA, AE had higher redundancy because it took extra neuron training processes. However, the
dimension taken by AE drew a lower reconstruction error (2.71%) than that taken by PCA (3.27%).

Table 2. Redundancy prediction and estimation error of the thickness coordinates. DR, dimension
reduction; PCA, principal component analysis; AE, auto-encoder; ANN, artificial neural network.

Redundancy Prediction Coordinates Prediction Error

No DR
By PCA

(Redundancy
Reduction (%))

By AE
(Redundancy

Reduction (%))

By ANN
(X coord./Y

coord.)

By PCA/ANN
(X coord./Y

coord.)

By AE/ANN
(X coord./Y

coord.)
Thickness

Coord. 11.053 5.503
(50.21%)

6.127
(44.57%) 7.03%/7.62 % 3.70%/5.41% 4.88%/7.09%

4.3. ANN-Based Surrogate Model to Predict Antenna Deformation

Once the DR was conducted, ANN was constructed to predict Cartesian coordinates of geometry
points of the antenna patch, shown in Figure 4d, referring to the shape of the antenna under structural
distortion. In the process, the number of variables of thickness variation and simulation was 202 and
500, respectively. The data obtained from these simulations were used to train the ANN model without
the DR, with PCA, and with AE. As listed in Table 2, the trained ANN without DR led to a prediction
inaccuracy of 7.03% and 7.62% for the x and y coordinates, respectively. When PCA and AE were used
as two different DR methods, on the other hand, this error was reduced, as seen in the results in Table 2.

4.4. Dimension Reduction of Coordinates of the Patch

In Section 4.2, the DR was employed to analyze the antenna’s mechanical behavior to obtain the
coordinates of the geometry points of the deformed patch as the outputs. Then, these geometry points
are used as the inputs for the electrical analysis of the deformed antenna to calculate the Rf value as the
output. On the basis of the inputs, HFSS software was used to check the Rf behavior of the distorted
antenna. As output data, 121 resonance frequencies were taken into account.

As this is a new analysis after the mechanical analysis, it was inevitable to conduct the DR for
the electrical system behavior as well. The ECC value, e, was calculated as 0.442 for the deformed
antenna inputs, which are the coordinates of the patch geometry points. This value was less than 0.5,
indicating that FS should be used as the DR method in the electrical analysis step. The FS method
used in this study was the IFT method and unnecessary coordinates were eliminated based on the
significance value of 2. As a result of the IFT method, 28 meaningful coordinates were selected, as
shown in Figure 6. Although the Re value for the initial coordinates was calculated as 8.382, it was
calculated as 5.623 for the deformed coordinates. Thus, it indicates that IFT precisely achieved the Re

reduction of 32.11% and the correlation of the original coordinates was changed to the independent
and uncorrelated ones. In Figure 6, the white points represent the 28 points identified by the IFT
method. It is seen that the number of input geometry points for the electrical analysis was reduced
from 57 to 28. Although the total number of these selected points is still high, those are the necessary
ones to accurately represent the geometry.
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Figure 6. Selected new significant coordinates.

4.5. Optimization

Once the analyses were conducted for the initial geometry and the necessary geometry points of
the antenna patch were determined, a shape optimization was utilized to improve the performance of
the antenna. As explained in the introduction, diverse studies on the strain patch antenna have already
been conducted by optimization, but most of them have concentrated on the sizing optimization to
take updated height, width, or length of the antenna systems. The optimization may fail to boost
the productivity of the antenna because the optimized design almost maintains its original shape.
Topology optimization has also been employed to develop a new design, but its efficiency is only
considerable under expensive additive manufacturing fabrication. In this study, therefore, a shape
optimization was used to find the optimal shape of the antenna patch that minimizes the variation
of the Rf and the return loss. It implies that, not only can the possibility of frequency shift induced
by structural deformation be decreased, but also the performance of the antenna corresponding to
electrical return loss will be maximized. Here, the lower return loss is guaranteed, and the better
antenna performance is expected. Unfortunately, however, the explained general equations (Equations
(1)–(5)) corresponding to the Rf variation have an assumption that the substrate should have a constant
thickness. This assumption only draws a linear relation between the shift of the Rf and the strain. With
respect to the stretchable strain MSP antenna including the thickness variation of the substrate, the
direction of the Rf shifts could be anticipated by the general equations, but a correct calculation of
the shift will not be guaranteed. For those reasons, in this study, a surrogate model to establish a
relation between mechanical and electrical behavior of the antenna system was developed, engaging
detailed FEA for structural deformation in ANSYS® and electrical analysis in HFSS. The Rf shift and
the return loss respecting the structural deformation with additional attention of thickness variation
were analyzed with the help of this surrogate model.

To establish objective functions, the substrate thickness variation and distorted patch’s shape were
considered. The function approximation modeled by ANN was combined with the shape optimization
process. To escalate the capability of the antenna, an additional objective function was employed to
truncate the return loss.

Minimize
[ ∣∣∣R f f (x, fi) −R f s(x, fi, ε)

∣∣∣
S(x, fi, ε)

]
i = 1, 2. (18)

Subject to
∣∣∣R f f (x, fi) −R f s(x, fi, ε)

∣∣∣ ≤ θ, (19)

S(x, fi, ε) + γ ≤ 0, (20)

xl ≤ x ≤ xu, (21)

0 ≤ ε ≤ 30, (22)

f1 = 2.5 GHz and f2 = 5 GHz, (23)
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where Rff and Rfs stand for Rf of frequency samples and Rf under applied strain (ε). x, θ, S, and γ refer
to a vector of the DVs, bandwidth regarding a return loss of −10 dB, the return loss, and acceptable
return loss, respectively.

The bandwidth corresponding to −10 dB was employed to assure enough antenna operation,
and the strain of 30% was established based on the boundary exploited in the FEA. This constraint
enables linear static analysis. In order to utilize the benefit of UWB, dual bandwidths, 2.5 GHz and
5 GHz, which are preferred in a wireless fidelity (Wi-Fi) were considered. Moreover, a spline curve
was used to model the geometry of the patch antenna with 28 geometry points. The spline coordinates
were considered as the DVs, x, and the minimum and maximum boundaries of the coordinates were
determined to bring optimum shape change of the initial MSP antenna. Particularly, the coordinates of
feedline in the length direction were firmly restricted to keep the initial shape of the MSP antenna. The
optimization process includes significant attention associated with the strain applied along the width
direction. On the basis of the equation of the frequency shift, even though the strain occurs along the
length direction, which can make the patch’s length varied owing to the Poisson’s ratio, the variation
will not bring a major impact on the variation of the Rf. Thus, design space around the patch had
much more design freedom to improve antenna’s operation than that around the feedline. To conduct
multidisciplinary design optimization, genetic algorithm (GA) was exploited in accordance with the
developed ANN-based surrogate model. For the algorithm, 1000 iterations, crossover probability
of 0.96, and mutation probability of 0.01 were used. After conducting the optimization process,
a butterfly-shaped antenna was garnered, as shown in Figure 7. Locations of the acquired spline
coordinates by the optimization were slightly modified to have a smooth contour. As anticipated, it
focused on reducing the variations of the width of the antenna patch, not on that of the length. It could
boost the antenna’s operation under the applied longitudinal strain. The optimization process drew a
reasonable outcome, coinciding with the equations mentioned above in Section 2.

(a)                                          (b) 

Figure 7. Design of the MSP patch antenna. (a) Initial antenna design; (b) optimal antenna design.

To assure the exactness of the optimized butterfly-shaped design, HFSS was utilized to evaluate
the frequency shift. The results of the undeformed antennas are shown in Figure 8. In accordance
with the employed bandwidth of −10 dB, an acceptable Rf range of the antenna was assigned from
2.3454 GHz (a) to 2.6539 GHz (b) and from 4.9130 GHz (c) to 5.1070 GHz (d) under 0 mm displacement,
as depicted in Figure 8.
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Figure 8. Rf comparison of initial, deformed, non-deformed optimal antenna, and deformed optimal
antenna. (a) 2.3454 GHz; (b) 2.6539 GHz; (c) 4.9130 GHz; (d) 5.1070 GHz.

First, the capability of the suggested optimum design was compared with the initial antenna
design when the deformation exists for both. Once the deformation of 12 mm is applied to the initial
antenna, Rf drastically shifts, ranging from 2.5 GHz to 2.73 GHz and from 5.05 GHz to 5.23 GHz, which
states that the antenna functionality will not be ensured because they deviate from each acceptable Rf

range regarding 2.5 and 5.0 GHz. The return loss also decreased by 27.6% and 31.8%, respectively.
As expected, the performance of the antenna was deteriorated under the deformation. Especially the
antenna design in 5 GHz should be restricted owing to miserable return loss, which is higher than −10
dB. Contrary to the initial antenna, on the other hand, the optimized antenna excluding the DR process
acquired credits for its flexible possibility under the tensile strain by enabling the Rf to be maintained
in the reliable range (θ) and the return loss to be kept under −10 dB, as elucidated in Table 3.

Table 3. Comparison of resonance frequency (GHz) and return loss (dB) under strain test.

Estimated Design

Displacement of 0 mm Displacement of 12 mm

Resonance Freq. Return Loss Resonance Freq. Return Loss

at
2.5 GHz

at
5.0 GHz

at
2.5 GHz

at
5.0 GHz

at
2.5 GHz

at
5.0 GHz

at
2.5 GHz

at
5.0 GHz

Initial MSP antenna 2.5 5.05 −14.83 −12.73 2.73 5.23 −10.74 −8.68
Initial MSP antenna
(with optimization) 2.45 5.02 −14.97 −13.64 2.59 5.09 −11.36 −11.20

Initial MSP antenna
(with DR) 2.81 5.20 −14.11 −13.83 2.69 5.22 −11.07 −8.90

Initial MSP antenna
(with DR and
optimization)

2.48 4.74 −14.34 −14.11 2.65 5.10 −13.86 −13.37

Also, a comparison of two additional designs regarding the DR process antenna was conducted.
In Table 3, the design of the initial MSP antenna design including DR led to a better operation than
that of the initial antenna itself. Although, its improvement is not enough to dominate the initial
antenna design with an optimization. As predicted, the optimized antenna design with DR had notable
improvement when compared with all other cases. Therefore, the uncertainty-reduced optimal MSP
antenna design could be a dominant approach because general wireless receivers would be employed
without any additional extension work on the bandwidth.
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4.6. PNN for Classification of the Resonance Frequency

In the final step, the reliability of the optimal MSP antenna was analyzed in accordance with the
reliable range of θ. The antenna must operate within the range even though it is under deformation.
The range was estimated by the non-deformed MSP antenna. From the previous step, the dual bands
antenna under no displacement took the following range (θ):

2.3454 GHz ≤ θ f _2.5GHz ≤ 2.6539 GHz
4.9130 GHz ≤ θ f _5.0GHz ≤ 5.1070 GHz

, (24)

For reliable classification, the limit state function was exploited. According to the concept of
the limit state function [53], the capacity or resistance of the antenna must be appointed to 2.5 GHz.
However, if the absolute value of g is greater than 0.3085 (difference between 2.3454 GHz and
2.6539 GHz) and 0.194 (difference between 4.9130 GHz and 5.1070 GHz) at 2.5 GHz and 5 GHz,
respectively, the designed strain MSP antenna will stay in class B, implying that the system must
be ignored owing to the unreliable Rf. The Monte Carlo simulation (MCS) [53,54] was employed to
estimate the probability of failure (Pf). On the basis of the Pf, the results of MCS with 10,000 random
variables and PNN with 121 random variables were compared to assure results of the reliability
estimation. As explained in Table 4, each Pf difference between PNN and MCS was 6.46% and 6.91% at
2.5 GHz and 5 GHz, respectively. In comparison with the original variables, the truncated coordinates
obtained by IFT had a Pf of 0.291 and 0.325 by drawing 4.67% and 4.06% of Pf increase, respectively.
Furthermore, the Pf acquired by IFT was close to that obtained by MCS (9.48% and 9.41%, respectively),
which is less than 10%, so it can be a reliable threshold, eliminating computation-intensive tasks, for
the classification process.

Table 4. Probability of failure conducted by probabilistic neural network (PNN) and Monte Carlo
simulation (MCS).

Pf of Original Data
(2.5 GHz/5 GHz)

Pf of New Data by IFT
(2.5 GHz/5 GHz)

Pf Difference of
Original/New Data

(2.5 GHz/5 GHz)

PNN 0.278/0.313 0.291/0.325 4.67%/4.06%
MCS 0.298/0.334 0.327/0.342 9.48%/9.41%

Pf difference of
PNN/MCS 6.46%/6.91% 8.05%/5.14%

5. Conclusions

In this research, a design framework exploiting a DR approach, machine learning-based surrogate
modeling, structural optimization, and reliability assessment was proposed to handle a multivariate
and multidisciplinary engineering system. The efficiency of the proposed design framework was
addressed by a stretchable MSP antenna-based strain sensor.

Compared with the conventional rigid antenna, the efficiency of the proposed stretchable antenna
design was highlighted because it contains careful consideration for all possible mechanical flexibility,
which weights realistic system prediction and estimation. Such consideration demands meticulous
examination on the flexible substrate that includes non-uniform thickness. In this research, therefore,
the non-uniformity was regarded as the DVs to represent geometric uncertainty captured by a Gaussian
copula function. With the copula function, a non-uniform substrate thickness was represented by 202
subparts, taking the mean of 0.9705 mm and the COV of 0.05. However, a huge number of DVs escalate
the redundancy and complexity of data, inhibiting precise system prediction and estimation. In order
to resolve the issue, the proposed framework employed a DR process, particularly FE and FS. In the DR
process, ECC (e) was exploited as a clear guideline that suggests a better DR method grounded on data
behavior. On the basis of the ECC estimation, FE was employed to reduce data redundancy regarding
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the substrate non-uniformity in which e is greater than 0.5, whereas FS eliminated unnecessary
coordinates of the patch within the specific case (0.5 ≤ e < 1). Both FE (PCA and AE) and FS (IFT)
derived good redundancy reduction of 50.21%, 44.57%, and 32.11%, respectively. With the criterion,
engineers can make a decision on the applicable DR process and management of multivariate data.

Moreover, owing to the limitation to formulate a relationship between structural deformation
and electrical antenna’s response, the ANN-based surrogate model employing the multivariate data
purified by the DR process was developed to predict a complex engineering system. As the second
drawback of the stretchable MSP strain sensor, the narrow bandwidth that restricts the functionality of
the sensor was handled by a structural shape optimization. Compared with the conventional antenna
shape, the proposed optimum shape drew the antenna’s performance improvement of 5.77% at 2.5 GHz
and 29.03% at 5 GHz within the reliable frequency range. A new optimum design implementing the
DR process also escalated the performance improvement of 29.05% at 2.5 GHz and 35.08% at 5 GHz.
Thus, it is confirmed that the developed optimal design maximized the frequency stability within
a reliable bandwidth and antenna performance under structural deformation. In the final step, the
reliability of the stretchable antenna for the strain sensor was assessed by PNN and validated by MCS.
PNN evaluated the efficiency of the proposed design by showing the classification accuracy of 96%.
The accuracy of PNN was validated by that of MCS. The results obtained for the stretchable strain
MSP antenna show that the proposed design framework with the uncertainty characterization and
dimension reduction is effective on multi-physics-based and multi-objective design processes.
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Abstract: Product service system (PSS) is becoming a popular business model, where companies
offer product based service to customers to realize steady recurring revenue. However, to provide
PSS-based service to customers in reliable way, PSS need to be supplemented with a field repair kit
onsite, in case of parts failure and PSS shutdown. The field repair kit consists of frequently used
spare parts in multiple quantities. However, mismatch in spare parts type and quantities in the
field repair kit will results in sub-par performance of PSS for both customer and company. In this
paper, a case study involving industrial PSS repair kit optimization is presented. In the case study,
the field repair kit for complex industrial printing system is cost optimized, while satisfying the
system availability requirement, specified by the maintenance contract between the company and the
customer. Key analysis steps and results are presented to offer insight into the PSS field repair kit
optimization, offering useful references to industrial practitioners.

Keywords: product service system (PSS); availability; field repair kit

1. Introduction

Research on the product service system (PSS) [1,2] is increasing as many leading global industries
are shifting their focus toward product based services. For example, in the aircraft engine industry,
the old business model aimed to sell an engine to an aircraft manufacturer and provide engine
maintenance, if necessary. Over time, this business model has evolved into a service centric model,
often called the “power by the hour” approach [3], where aircraft engine companies own the engines
installed on customer’s aircrafts, and charge their customers for actual flight hours. This paradigm
shift impacted many facets of product development and lifecycle management, including product
requirement definition, subsystem design, service development, and total product lifecycle cost analysis.

According to general literature survey by Beuren [1], academia defines PSS as “a combination of
products and services in a system that provides functionality for consumers and reduces environmental
impact” [4]. Similarly, Baines et al. [5] defined PSS as “an integrated product and service offering
that delivers value in use to the customer”. Tukker [6] further categorized PSS into eight different
types, which are clustered into product-related services, use-oriented services, and result-oriented
services. The PSS presented in our case study is the product-related service type, whose company
offers a product and related services (e.g., financing, maintenance contract, spare and consumable
parts supply) throughout the lifecycle of the product.

There are four different essential elements in the PSS: product, process, related human role,
and service. Product typically consists of actual hardware equipment used to provide specific functions
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required. Process is the sequence of actions required to provide the desired service. A related human
role consists of activities that need to be performed by personnel who are part of the PSS. Finally,
the service is the output of all these equipment and activities that is provided to customers. One such
example of PSS is an amusement park ride. The product is the park ride itself, which is necessary
for providing necessary entertainment service to ride users. The process is a sequence of activities
necessary to provide ride service, which consists of getting customers into the ride, operating the
ride equipment, getting customers out of the ride, and equipment maintenance. Related human role
include operating and maintaining ride equipment. The service aspect is the ride experience itself,
enjoyed by customers.

For PSS, one of the key performance metrics is the system availability. The PSS must be operational
to meet the availability requirement promised to customers. For the amusement park ride example
previously mentioned, the ride apparatus must be operational during park business hours to provide
customers with a satisfactory ride experience. Not meeting this availability requirement, due to
ride apparatus failure, will result in loss of customers and revenue. One way to maximize the
uptime availability of the PSS is to keep a field repair kit, consisting of spare parts for the PSS,
on the customer site, in case of such a failure. In many cases, product design teams rely on their
prior experiences to determine the types and quantities of spare parts in field repair kits. However,
this often result in a sub-optimal field repair kit, containing some spare parts that are never used,
or carrying less-than-necessary quantities of some spare parts that are always used. This mismatch
of spare parts inventory may cause unacceptable downtime and lost revenue for PSS customers and
providing companies.

In this paper, a PSS field repair kit optimization case study is presented in detail. In the case
study, a field repair kit for a complex PSS (industrial printing system) was optimized in terms of field
inventory kit cost, while satisfying the availability requirement set by contract with the customer.
A high fidelity simulation PSS simulation model was created to simulate spare parts usage during the
PSS operation. Using the model, a cost optimal field repair kit was identified. Subsequent analysis
was performed to determine the confidence level that the PSS is capable of achieving the imposed PSS
availability requirement. The paper is organized as follows. A survey of related research literature
is presented in Section 2. The case study overview, optimization process, analysis of the results,
and discussion are presented in Section 3. The paper closes with conclusions in Section 4.

2. Literature Review

Traditionally, product manufacturers have focused their primary efforts on product development
and sales. For these traditional manufacturing firms, the term “service” consisted of maintenance
and repair of their products in the field as needed. However, as companies seek ways to create
recurring revenues throughout the lifecycle of their products, the trend to integrate the product with
the services offered to the customer has increased. This approach has advantage of continuous and
stable revenue generation for the company because it establishes a long term relationship between
the company and the customer [7], as well as sustaining environment from the social and company
perspectives [8,9]. There have been successful examples of such practices, which include Gage Products
and PPG Industries [10], where companies have integrated their core products with the total service
offered to the customer. For example, major printing systems manufacturing companies, such as
Xerox and HP, offers total document management services to various customers to optimize their total
document production workflows.

Once the PSS is deployed in the field, it is of critical importance that the deployed PSS is operational,
meeting the contracted availability requirement promised to the customer. One way to meet the
availability requirement is through implementing appropriate maintenance policy, which includes
preventive maintenance and predictive maintenance. There have been several works published in
the field of preventive maintenance and predictive maintenance. Relevant works on preventive
maintenance include work by Adhikary et al. [11], who proposed multi-objective genetic algorithm
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approach to optimize availability and maintenance cost through preventive maintenance scheduling
model, work by Moghaddam [12], who proposed a nonlinear mixed-integer optimization model
for a manufacturing system, and the work by Mokhtar et al. [13], who proposed a maintenance
policy optimization framework using Bayesian networks. Additionally, related works on predictive
maintenance include work by Van Horenbeek and Pintelon [14], who proposed a dynamic predictive
maintenance policy and compared it with other various maintenance policies to show that the proposed
policy results in significant cost reduction. Another work by Wang et al. [15] proposed cloud-based
predictive maintenance paradigm to advance the state of intelligent manufacturing. Finally, there is
a research trend that aims to link big data to improve predictive maintenance [16,17].

Another way to achieve required PSS availability is through implementing component redundancy
and keeping an onsite spare parts field repair kit, consists of parts that are expected to fail [18]. This will
prevent the unintended PSS downtime due to lack of critical spare parts. However, deciding on the
quantity of each spare part of the PSS field repair kit requires information on the total PSS life cycle,
average usage per designated period, and individual spare part’s reliability. The management of spare
parts inventory is a well-developed research topic. Published works have investigated topics such
as the allocation of spare parts inventory within a multi-echelon supply chain [19–21], spare parts
inventory and reliability decision framework with service constraints [22,23], combined optimization
of preventive maintenance and spare parts inventory [24,25], and obsolescence management [26].
Recent advances in PSS-related research has expanded to other important areas, such as sustainable
product service system design [27,28], cloud based product service system design [29,30], product
service system implementation for the smart city [31], and incorporation of digital twin concept to the
product service systems [32]. Recent works on field repair kit optimization include the joint planning
and optimization of spare parts inventory and service engineer staffing [33,34].

In this paper, the featured case study focuses on the cost optimization of the onsite spare parts
repair kit, subject to the PSS availability requirement specified by the contract between the company
and the customer. Once the field repair kit is optimized for a specific level of availability requirement,
additional analysis will determine the level of confidence of the PSS in meeting the availability
requirement with the repair kit. The work presented in this study contributes to existing literature by
introducing a real industry PSS case study that can serve as a reference for other industry practitioners.

3. Product Service System Case Study

3.1. Case Study Overview

Xerox, one of the world’s leading printing system manufacturers, has a fleet of industrial printing
systems deployed in the field. Industrial printing systems are installed at customer’s print shops,
where they become part of production systems to produce printing goods, which, in turn, are sold
to their customers. Xerox (the company) and the customer typically have a recurring fee based
maintenance contracts, in which the company maintains customer’s printing system on regular basis,
supplies necessary consumable parts required for operation, and performs repairs in case of printing
system failure. Usually, as part of the maintenance contract, the company is responsible to have its
printing system available for production above a certain agreed threshold during the regular operating
hours. Failure by the company to meet the contracted system availability requirement may result
in penalty to the company, or even worse, cancellation of the maintenance contract by the customer.
In that sense, the industrial printing system can be classified as a PSS for Xerox, and will be referred to
as such in subsequent sections.

Since unexpected system failures are inevitable, the company supplies customers with a field
repair kit, consists of frequently replaced spare parts. Typically, the composition of the spare parts and
the quantity of each spare part in the field repair kit are determined by printing system design team,
based on historical performance of similar parts in other previously launched products. After the
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product launch, the composition and quantities of spare parts in the field repair kit are updated as the
true life of spare parts become known.

However, on many occasions, this result in a sub-optimal field repair kit, where some parts
are never used due to less than expected parts failure, while some parts are in constant shortage
and demand as they are used more frequently than expected. This mismatch creates an undesirable
situation for both the company and customers. Customers experience more unexpected PSS downtimes,
above the threshold established by the maintenance contract, due to a shortage of critical spare parts.
This will impact a customer’s ability to meet their business goals. As for the company, mismatch in field
repair kit spare parts type and quantity may result in their failure to meet the availability requirement
promised to the customer, jeopardizing their credibility, and sometimes terminating their contract
with that particular customer. Another issue concerns the field repair kit inventory itself. In some
cases, the company financially owns the field repair kit inventory, tying up corporate capital in the
form of spare parts inventory. If some spare parts become obsolete while in a company’s possession,
the company would incur unnecessary financial loss due to the extra cash that was tied up in the form
of unused parts, and the additional cost for management of obsolete parts. The constant shortage of
some spare parts can create an extra cost issue in terms of expedited shipment from parts suppliers and
to customer’s sites. In this case study, a simulation based optimization framework was created and
utilized to configure a cost-optimal PSS field repair kit to satisfy the specific availability requirements.
One of several industrial printing system produced by the company was used as a specific example.

To optimize the PSS field repair kit and to perform further analysis, following steps were followed.
First, a high fidelity PSS simulation model was created to simulate the system operation and availability,
subject to spare parts failure. Next, using the simulation model, a series of key parameter variation
experiments were conducted to yield PSS availability under specific parameter settings. The obtained
results were used to construct a regression based PSS availability model that would describe PSS
availability as the function of key parameters. Regression model was then used to optimize the field
repair kit in terms of the inventory cost, while satisfying the availability requirement. Finally, a Monte
Carlo simulation of PSS with the optimized field repair kit was performed to estimate the confidence
level for the PSS to meet the specific availability requirement.

3.2. Case Study Assumptions

Several assumptions were made to establish the boundary within which the case study is valid,
and to reflect reality. Simulations, subsequent optimizations, and analysis were performed within the
framework of the assumptions.

• Definition of availability: in this case study, the availability of the PSS is defined as follows.
When the PSS shuts down due to a spare part failure, the part is replaced with a fresh part from the
field repair kit. If there is no replacement part present in the field repair kit inventory, it must be
shipped from the central warehouse. This is recorded as a PSS down incident. The availability metric
is the percentage of all PSS part requests that is fulfilled by immediate replenishment from the field
repair kit. For example, if there were 100 requests for various spare parts, and 95 of them were fulfilled
from the field repair kit without placing emergency order from the central warehouse, the availability
of the PSS is 95%.

• PSS and production system configuration: for the case study, the production system consists of
two PSSs of the same type in a serial configuration. The field repair kit optimized in the case study is
configured to service both PSSs.

• Field repair kit spare parts composition and quantities: the design team provided the list of
spare parts in the field repair kit, along with their respective quantities and the estimated life. For the
case study, all parts identified by the design team were included in the optimization. A total of 55
spare parts were included in the field repair kit.

• Periodic PSS usage: the PSS usage is defined as the number of prints produced per time period
(month in this case study). For the case study, the nominal usage is set to 8.0 million, as provided by
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the design team responsible. The usage data was derived from past historical data of customers who
have used similar type of PSS. Additionally, it was assumed that all spare parts fail based on PSS usage,
not based on time.

• Onsite conditions: availability of PSS also depends on other aspects, such as experience of PSS
operation and maintenance staff and production equilibrium. It was assumed that the level of expertise
of operation and maintenance staff was competent to upkeep the PSS at the desired performance level,
as it typically is for real onsite facilities. Additionally, it was assumed that the production equilibrium
is maintained.

• Simulation assumption: for the Monte Carlo simulation, spare parts life distribution and periodic
PSS usage distribution were provided by the design team. Additionally, simulation time was set to be
equal to the typical contract term agreed between the company and the customer. For this case study,
the contract term was set to five years, with a single simulation period equal to one month.

3.3. Product Service System Simulation Model

The first step in the proposed process is to create a high fidelity PSS model. The Anylogic™,
software was used to create the PSS model to simulate PSS usage and usage-based spare parts failures.
Figure 1 shows the basic structure of the PSS discrete event simulation model. The PSS selected for the
case study is typically sold in pairs (quantities of two) to customers, and used in serial configuration
to process customer orders for the duration of the contract period. There are work in process (WIP)
product inventory as shown in the model. When the simulation starts, document orders start to arrive
into the facility. Each order contains a request for certain quantities of a finished product, which,
in this case, is the document produced in the desired quantity. The production line initiates product
manufacturing, and utilizes the PSS that is part of the total production system. Once requested product
quantity is manufactured, the order is complete and the finished document products are processed for
delivery to final recipients. The simulation model records PSS usage, which is equal to the total quantity
of the products manufactured. When the PSS usage reaches a threshold for a particular spare part with
a specific usage based failure rate, the part fails, and the PSS shuts down. The failed part is replaced
with the part from the field repair kit inventory. Once the spare part is replaced, the usage count for
that specific spare part is reset and the production resumes. The replaced part is replenished from
the central warehouse to fill the field repair kit. If the failed part is out of stock at the customer’s site,
then an emergency order is placed, and the part is shipped from the central warehouse immediately,
using one-day express shipment. When this happens, it is recorded as a down incident for the PSS.

 
Figure 1. Simulation model flow chart for industrial printing product service system.

Figure 2 shows the Input-Process-Output (IPO) diagram for the PSS simulation model shown in
Figure 1. Required input data are spare part life, quantity of spare part onsite and the monthly usage
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of PSS. Once the simulation ends, the model yields three specific outputs: (1) total demand for the
spare part required by PSS, (2) the total number of PSS down incidents due to spare part shortage,
and (3) the PSS availability.

Figure 2. Input-Process-Output (IPO) diagram of the simulation model.

3.4. PSS Availability Model

The second step in the overall process is to construct the PSS availability regression model by
performing key parameter variation experiments for PSS using the simulation model. A model of PSS
availability as a function of input parameters shown in Figure 2 is created. Table 1 shows the key
parameters and ranges of the parameter values used for the case study.

To create a reliable model, 240 different experiment runs were set up and performed using different
deterministic parameter values, and resulting PSS availability values were recorded. Table 2 shows
results of the 15 deterministic experiment runs out of 240 runs performed. For example, experiment
number 2 in Table 2 shows a spare part with a life of 10 million uses (0.1 failure per million use),
with only one provided in the field repair kit. When the simulation was performed with PSS monthly
usage of 10.2 million, the availability of the PSS overall was 15% due to shortage of the part. Availability
for each run was recorded. Once all experiment runs are complete, a regression based PSS availability
model was constructed using parameters shown in Table 1. The regression model provides a good
surrogate means to calculate PSS availability using spare part failure rate, onsite spare part quantity,
and PSS usage per period. One thing to note is that the regression model is valid within parameter
value ranges shown in Table 1.

Table 1. Key parameters and their value ranges for simulation and optimization.

Parameters Values Ranges

Spare part failure rate (1/spare part life) 0.001–0.5 failures per million prints
Onsite spare part quantity 0–10
PSS usage per unit period 5.7–10.2 million prints

Table 2. Partial results of deterministic PSS simulation.

Runs
Spare Part Failure
Rate (per Million

Prints)

Quantity in
the Field

Repair Kit

PSS Availability
based on Monthly PSS Usage

5.7 million 8.0 million 10.2 million

1 0.032 2 100% 100% 78%
2 0.100 1 50% 50% 15%
3 0.100 5 100% 100% 56%
4 0.500 2 100% 100% 80%
5 0.500 10 100% 100% 88%
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3.5. Cost Optimization Model

For the next step of the process, the PSS availability regression model created from the previous
step is embedded into the field repair kit cost optimization model. The IPO diagram for the optimization
model is shown in Figure 3.

Figure 3. IPO diagram of the field repair kit cost optimization model.

For the field repair kit cost optimization, several input parameters are required. The first parameter
is the required PSS availability target. This is typically dictated by the customer who utilizes the PSS
when the maintenance contract is signed. The second parameter is the unit cost for each spare part in
the field repair kit. The third parameter is the quantity of each spare part in the field repair kit, and the
last parameter is the failure rate of each spare part. Table 3 shows a partial list of the actual spare parts
included in the field repair kit, with actual parameter values. It should be noted that the unit cost of
each spare part is added, since the objective of the optimization is to minimize the total cost of the
field repair kit. For the monthly PSS usage, it was set at 8.0 million, based on field data for similar
systems. Optimization was performed using spreadsheet-based commercial software (QuantumXL™),
which uses a heuristic algorithm.

Table 3. Partial list of spare parts and quantities in the PSS field repair kit originally proposed by the
design team.

Spare Part Unit Cost (Normalized)
Original Part Quantity
in the Field Repair Kit

Failure Rate
(per Million Prints)

A 100.00 2 0.033
B 2.89 1 0.040
C 1.23 1 0.035
D 0.78 6 0.500
E 0.77 1 0.035
F 0.29 2 0.033
G 0.19 1 0.050
H 0.17 4 0.056
I 0.05 4 0.040
J 0.03 4 0.056
K 0.01 2 0.500

For the optimization, three different scenarios were formulated after discussion with the design
team. Table 4 lists proposed scenarios. The first scenario serves as the base scenario, where the PSS
operates with the original field repair kit composition shown in Table 3. In the second scenario, the PSS
availability requirement parameter is set to 95%, and the field repair kit is optimized for total cost.
For the third scenario, the PSS availability requirement parameter is relaxed to 90%.
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Table 4. Key parameters and their value ranges for simulation and optimization.

Scenario Scenario Description

1: Base PSS field repair kit composition is provided by the PSS design team.
2: 95% availability PSS field repair kit is cost optimized with PSS availability requirement set to 95%.
3: 90% availability PSS field repair kit is cost optimized with PSS availability requirement set to 90%.

3.6. Optimization Results and Discussion

Table 5 shows a partial list of the optimized field repair kit spare parts shown in Table 3. The list
for scenario 1 shows the original quantities of spare parts proposed by the design team. Second column
shows the optimized spare parts list for 95% availability requirement. The last column shows a partial
list of spare parts, optimized for 90% availability requirement. Observation of the list reveals some key
insights. In the original repair kit composition, two units of spare part A were kept on the customer
site. However, the optimum composition eliminated spare part A altogether from the field repair kit,
mainly because of the part unit cost, which was significantly higher than the cost of any other part in
the field repair kit. On the other hand, part J, which has a very low part unit cost, saw an increase in
quantity from the original quantity proposed by the design team. The observation of the optimization
results is that in balancing the field repair kit cost and the availability requirement, the optimized field
repair kit is composed in a way that the PSS will only shut down for a part that is too expensive to be
held onsite, and not for a low cost part.

Table 5. Partial list of spare parts and their quantities in the optimized field repair kit for each scenario.

Spare Part Unit Cost (Normalized)
Spare Parts Quantity

Scenario 1 Scenario 2 Scenario 3

A 100.00 2 0 0
B 2.89 1 5 4
C 1.23 1 12 4
D 0.78 6 12 10
E 0.77 1 16 7
F 0.29 2 19 11
G 0.19 1 14 6
H 0.17 4 21 6
I 0.05 4 21 11
J 0.03 4 19 19
K 0.01 2 20 14

Figure 4 shows, for each scenario, the total of the cost of the PSS field repair kit. The results show
that in order to meet the PSS availability requirement of 95%, the total cost of the field repair kit must
increase by more than 60% over that of the originally proposed field repair kit composition in Scenario
1. However, when the PSS availability requirement constraint is relaxed to 90%, the cost of the field
repair kit was significantly reduced, nearly down to 50% of the field repair kit cost shown in Scenario 2.
In other words, increasing the availability requirement by 5% resulted in a 50% increase in the total
cost of the field repair kit. Additionally, it is observed that if 90% PSS availability is acceptable to the
customer, the optimized field repair kit can be composed for lesser cost than the original field repair kit
proposed by the design team.
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Figure 4. Field repair kit cost optimization results for scenarios analyzed.

As in the last step, using the optimized field repair kit composition, Monte Carlo simulation was
performed to estimate the confidence level for which the PSS can meet the availability requirement
for each scenario. Two parameters were used. The first parameter was the failure rate of each spare
part. Distribution of spare parts failure rates were set based on the historical reliability data of the part
or similar parts. The second parameter was the PSS usage. Since PSSs are used by many customers,
but with different monthly usage, the PSS monthly usage was set with triangular distribution with
a minimum value of 5.7 million uses and a maximum value of 10.2 million uses, with a mean usage of
8.0 million per month. This was based on the estimate from the design team. The resulting distribution
of availability requirement was analyzed to determine the confidence level for the optimized field
repair kit to meet the target PSS availability. The confidence level of availability that the PSS can achieve
with the optimized field repair kit is plotted in Figure 5. For each scenario, 10,000 simulation runs
were performed with the spare parts failure rate distribution and the periodic PSS usage distribution.
The horizontal axis represents the confidence level, while the vertical axis represents the PSS availability.

 
Figure 5. Availability confidence level of the PSS with optimized field kit in place.
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In the figure, the topmost curve shows the confidence level of the PSS with the field repair kit
optimized for 95% availability. The specific data point singled out shows that this particular PSS
with the optimized field repair kit can meet the 95% availability requirement with a 75% confidence
level. The second curve shows the confidence level of the PSS with field repair kit optimized for 90%
availability. It shows a 70% confidence level for meeting the 90% availability target. Finally, the two
optimized field repair kits, in contrast with the original field repair kit in the base scenario, performed
particularly well in terms of expected confidence level to meet the PSS availability requirements.
Results obtained and shown in Figures 4 and 5 and Table 5 can be a valuable guideline for assessing
the PSS availability with a specific field repair kit. Cost savings realized by the adjustment of the
field repair kit inventory should be balanced against the expected PSS confidence level for meeting
availability requirement promised to customers. The company can also create a mitigation plan based
on the confidence level to minimize the risk of not meeting the availability requirement.

4. Conclusions

In this paper, an industrial PSS field repair kit optimization case study of was presented.
The objective of the case study was to cost optimize the composition of a field repair kit placed at
a customer’s site, while maintaining a specific level of PSS availability. A high fidelity PSS simulation
model was created and utilized to construct the PSS availability regression model. The availability
model was used with other spare parts information to cost optimize the field repair kit, subject to the
PSS availability requirements. Monte Carlo simulation was performed to assess the confidence level at
which the optimized PSS field repair kit can meet the availability requirements.

Results showed that the PSS field repair kit can be cost optimized to satisfy the availability
requirements imposed by the contract with the customer. It was also revealed that the marginal cost of
availability improvement was very high, resulting in an almost twofold increase in cost to improve the
availability by 5%. The investigation of the optimized PSS repair kit composition showed that the PSS
should never shut down for a low cost spare part, but should only shut down for a very expensive
spare part that is too expensive to be included in the field repair kit. Finally, Monte Carlo simulation
results showed that the optimized PSS field repair kit performed better than the originally proposed
field repair kit, meeting the availability requirements at a higher level of confidence. The overall case
study results were encouraging in that the modeling and optimization process shown in this paper is
applicable to other complex systems.

Future works regarding the improvement of PSS can expand into multiple directions. The latest
advances in big data, information and communications technology (ICT), and internet of things (IoT)
can greatly improve preventive and predictive maintenance practice for PSS. This can be accomplished
through better prediction of parts failure interval and failure modes through analysis of historical
data and real-time feedback from the PSS. Big data and IoT can be utilized to design the improved
spare parts supply chain as well, providing information for an appropriate inventory level, stocking
locations, and reorder points based on PSS location and usage. Another direction the research can
take is the improvement of the PSS design: how can PSS be architected for optimum preventive or
predictive maintenance policy? How does the PSS architecture impacts spare parts logistics or its
supply chain structure? In addition to the topics mentioned, another fundamental direction that the
PSS related research can take is to explore ways to reduce the limitation imposed for implementing
PSS, such as willingness to adopt the PSS by companies, willingness to accept the PSS by customers,
and dealing with environmental implications. All these are very promising future research topics
to explore.
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Abstract: In order to facilitate the development of product image design, the research proposes the
optimized product image design integrated decision system based on Kansei Engineering experiment.
The system consists of two sub-models, namely product image design qualitative decision model and
quantitative decision model. Firstly, using the product image design qualitative decision model, the
influential design elements for the product image are identified based on Quantification Theory Type I.
Secondly, the quantitative decision model is utilized to predict the product total image. Grey Relation
Analysis (GRA)–Fuzzy logic sub-models of influential design elements are built up separately. After
that, utility optimization model is applied to obtain the multi-objective product image. Finally, the
product image design integrated decision system is completed to optimize the product image design
in the process of product design. A case study of train seat design is given to demonstrate the
analysis results. The train seat image design integrated decision system is constructed to determine
the product image. This shows the proposed system is effective and for predicting and evaluating the
product image. The results provide meaningful improvement for product image design decision.

Keywords: product image design; Kansei Engineering; integrated decision system; qualitative
decision model; quantitative decision model; train seats

1. Introduction

The development trend of industrial design is toward more efficient, intelligent and systematic.
Meanwhile, product design pays more attention to the improvement of the user experience.
The development of industrial design decision system not only promotes the economic and cultural
exchange between regions, but also has a profound impact on the long-term development of various
related industries [1]. With the increasing demand for user experience design, user perception centered
design will become an important factor affecting product design [2]. Therefore, based on meeting
the product function, we should comprehensively improve the user physiological and psychological
multi-dimensional emotional needs, optimize the overall product design level, promote the user
experience, and raise the product design quality.

Kansei Engineering is a kind of theory based on the design science, psychology, cognition and
other relevant disciplines, which can lead human perceptual analysis to the field of engineering
technology [3]. Kansei Engineering not only helps designers understand users’ perceptual needs,
but also optimizes product design process and reduce product design cost. Kansei Engineering is a
method of using engineering technology to explore the relationship between the sensibility of user and
the design characteristics of product. It can transform the perceptual needs by users into the design
elements of products. In the field of product design, Kansei Engineering is a user-oriented product
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research and development technology. The modern tools and technologies are used to quantify the
user’s perceptual information into the design parameters of product, as shown in Figure 1.

 
Figure 1. The Kansei Engineering of product design process.

Image is a kind of the psychological symbol that the products give to the users, and is also the
psychological image or concept obtained by association and imagination. The users’ cognition for
the product, through the perception of five senses, causes users’ resonance. Finally, a comprehensive
psychological image is formed. Image has certain subjectivity and fuzziness. The product appearance
design should not only meet the users’ basic aesthetic needs, but also meet the users’ perception
needs. The basic design elements of product constitute the product appearance design. The design
elements of product appearance design generally contain form, color, material, texture, pattern and so
on. The formation of product image comes from the users’ cognition. The design elements of product
are taken as the language of communication with the user. Therefore, the formation process of product
image is shown in Figure 2.

Figure 2. The formation process of product image.

Wei proposed a hybrid adaptive ant colony algorithm to realize product family multi-objective
optimization design through scale-based product platform theory model [4]. Lei presented a Decision
Support System (DSS) for market-driven product positioning and design, based on market data and
design parameters. The proposed DSS determines market segments for new products using Principal
Component Analysis, K-means classification [5]. Yang presented a decision support system based on a
bi-level fuzzy computing approach that incorporates qualitative and quantitative product attributes in
determining the manufacturability of a product [6]. A product design elements evaluation model was
proposed, which was constructed by eye-tracking experiments, using eye movement indicators such as
first gaze time, gaze order, and number of times of return, to accurately and effectively analyze product
model and quantify users’ emotion. The purpose of sorting the product model contribution was
achieved through the weight calculation of the design elements [7]. Understanding the affective needs
of customers is crucial to the success of product design. Hybrid Kansei Engineering system (HKES) is
an expert system capable of generating products in accordance with the affective responses. HKES
consists of two subsystems: forward Kansei Engineering system and backward Kansei Engineering
system [8]. Wu proposed a preference-based evaluation-fuzzy-quantification method to determine the
priority of the development of attractive factors of the product [9].

The state of the art has the following deficiencies: (1) The previous research lacks the product
image design qualitative decision by the quantitative research methods; (2) It lacks the integrated
decision system of product image design for the purpose of the total image design for assistance of

104



Appl. Sci. 2020, 10, 1198

the collaborative work of user, designer and expert; (3) The existing product image design model
lacks the discussion of the assessment and verification with the computer-aided and 3-D printing of
product design.

In our paper, we extend the research objectives to the product material design and texture design.
This research proposes a new method for combining the product image design qualitative decision
model and quantitative decision model. With the two models, the optimized product image design
integrated decision system is constructed based on the Kansei Engineering experiment. In the process
of the performance evaluation, the technology of the computer-aided and 3-D printing assist the
evaluation with Kansei image of product image design integrated decision system.

Therefore, this paper explores the product image design system under the research framework of
Kansei Engineering. The qualitative and quantitative research on the correlation between product
design elements and user Kansei image is conducted, and the qualitative and quantitative decision
models of product image design are constructed. Then, the integrated decision system of product
image design is improved. The paper introduces the methodology that is divided into four steps,
shown in Figure 3, including the establishment of qualitative decision model of product image design,
quantitative decision model of product image design, product image design integrated decision system
and its performance evaluation. Meanwhile, this paper takes the high-speed train seat design as the
research object. Kansei Engineering experiment and design theory research are carried out deeply, and
the more scientific, efficient and intelligent product image design evaluation system is put forward.

 
Figure 3. The four steps of the methodology process.

2. Kansei Engineering Experiment

The Kansei Engineering experiment process of product image design integrated decision system
mainly includes design investigation stage and data statistics stage as shown in Figure 4. The design
investigation stage is divided into two steps. The first step is to select the experimental subjects,
experimental samples, product form samples, color samples, material samples and texture samples.
Then the second step is to analyze the design elements of experimental design samples separately,
such as the morphological analysis pointed to form design element.

The data statistics stage is also divided into two steps. Firstly, the Kansei word pairs are selected,
including the selection of the primary Kansei words and secondary Kansei words that describe the
product image. Secondly, the Kansei evaluation of the product image is carried out by the subjects
for the experimental samples, and the construction of the product image database is built up through
the data statistics. Based on the Kansei Engineering process, the qualitative and quantitative decision
models of product image design are established to improve the product image design integrated
decision system.
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Figure 4. The Kansei Engineering experiment process of product image design.

3. Product Image Design Integrated Decision System

This section may be divided into product image design qualitative decision model, quantitative
decision model, integrated decision system and performance evaluation. Firstly, using the Product
image design qualitative decision model, the influential design elements for the product image are
identified based on Quantification Theory Type I. Secondly, the quantitative decision model is utilized
to predict the product total image. GRA–Fuzzy logic sub-models of influential design elements are
built up separately. After that, utility optimization model is applied to obtain the multi-objective
product image. Thirdly, the product image design integrated decision system is completed to optimize
the product image design in the process of product design. Finally, the performance of the system is
evaluated by using the root mean square error.

3.1. Product Image Design Qualitative Decision Model

3.1.1. Quantification Theory Type I

The qualitative decision model of product image design is to identify the main design elements
affecting product image by quantitative analysis method. The experimental subjects in Section 2 are
divided into four groups. The third group is composed of the professional product designers with rich
experience in product design. Through the investigation and statistics of professional designers, the
four design elements (product form, color, material and texture) are selected for further research of
qualitative decision model.

Quantification Theory Type I is the method that studies the relationship between a set of qualitative
variables x (independent variables) and a set of quantitative variables y (dependent variables) [10].
The mathematical model between variables is built up by multiple regression analysis. According
to the mathematical model of Quantification Theory Type I, the procedure for establishing the
Kansei-associated model is as follows:

• The mathematical formula of the Kansei-associated model is defined. The product design element
is taken as the independent variable x (qualitative variable) and the Kansei evaluation value is
taken as the dependent variable y (quantitative variable). The purpose of Quantification Theory
Type I is to solve the regression coefficient of each design element [11]. Therefore, the multiple
regression equation of the product design element and Kansei evaluation value can be defined as:

ŷk
s =

D∑
i=1

Mi∑
j=1

βi jxi js (1)

where k represents the kth Kansei image, k = 1, 2, . . . , m, and m represents the number of Kansei
images; s represents the sth experimental sample, s = 1, 2, . . . , n, and n represents the number of
experimental samples; i represents the ith design element, i = 1, 2, . . . , D, and D represents the
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number of design elements; j represents the jth category of the ith design element, j = 1, 2, . . . , Mi,
and Mi represents the number of category for the ith design element.

ŷk
s is the evaluation value of the kth Kansei image for the sth experimental sample. xijs represents

the independent variable of the jth category of the ith design element for the sth experimental
sample, so xijs can be defined as follows:

xijs =

{
1 the jth category o f the ith design element f or the sth experimental sample
0 otherwise

(2)

And xijs meets the condition of
Mi∑
j=1

xijs = 1, f or ∀i and s.

βi j represents the partial regression coefficient of the jth category of the ith design element.
• Using the least-squares method, error equation can be defined as below:

Q =
n∑

s=1

(
yk

s − ŷk
s

)2
(3)

where Q is the sum of square error between the predicted value and the actual value. In order to
improve the prediction accuracy and minimize the error, the following equation can be defined
for the calculation of partial differential:

∂Q
∂βi j

= 0, f or ∀βi j (4)

βi j can be obtained by the simultaneous equations. Namely, the partial regression coefficient of
design element can be acquired. The influence degree of each design element on the Kansei image
can be obtained by analyzing the numerical value of βi j.

• The complex correlation coefficient R can measure the accuracy of the model. Generally, the
square of the complex correlation coefficient R, namely, the coefficient of determination R2 is
used to represent the accuracy of the model. The coefficient of determination is also known as
the contribution rate, which is used to measure the cooperation degree or interpretability of the
regression equation.

• In order to measure the contribution of each product design element to the prediction evaluation
of Kansei image, the partial correlation coefficient needs to be obtained. The partial correlation
coefficient indicates the contribution of the ith product design element to the value y of Kansei
evaluation. The larger the value of partial correlation coefficient is, the greater the influence of
product design element on Kansei image is.

Using Quantification Theory Type I, the partial correlation coefficient of the product design
element affecting the Kansei image is obtained, and then the decision coefficient of each design element
category is acquired. The partial correlation coefficient represents the contribution of product design
element to each Kansei image, and decision coefficient demonstrates the precision of model. In the
process of product design, if the designers expect to get the higher evaluation value of specific product
image, they should give priority to the product design elements with the higher partial correlation
coefficient, properly ignore the design elements with the lower partial correlation coefficient, improve
design efficiency, save design cost and optimize product image design process.

3.1.2. Product Image Design Qualitative Decision Model

As shown in Figure 5, the qualitative decision model of product image design is constructed.
Firstly, the product design elements are analyzed, including product form, product color, product
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material, product texture, product pattern and other design elements. The partial correlation coefficient
of product element is obtained through Quantification Theory Type I, and the priority ranking of
product design elements affecting Kansei image is obtained.

The design elements for the product Kansei image with the greater impact and less impact are
analyzed respectively. Designers should pay more attention to the design elements with greater impact,
ignore the design elements with less impact, and build a qualitative decision model of product image
design. Then, the design elements with greater influence for the profound study are selected, which
provides a theoretical basis for the next product image design quantitative decision model.

 
Figure 5. The qualitative decision model of product image design.

3.2. Product Image Design Quantitative Decision Model

3.2.1. GRA–Fuzzy Logic Model

Grey Relation Analysis (GRA) is a method to determine the relationship (similarity) between
two sets of random sequences in grey system. One is a reference sequence (x0 ∈ X) and the other is a
comparison sequence X = {xσ|σ = 0, 1, 2, . . . , n }, and X = {xσ|σ = 0, 1, 2, . . . , n } is a set of grey related
elements [12]. At a certain moment, the grey correlation degree of two sets of series can be expressed
by grey correlation coefficient r(x0(k), xi(k)), which is defined as below:

r(x0(k), xi(k)) = minimink
∣∣∣x0(k) − xi(k)

∣∣∣+ ξmaximaxk
∣∣∣x0(k) − xi(k)

∣∣∣/∣∣∣x0(k) − xi(k)
∣∣∣+ ξmaximaxk

∣∣∣x0(k) − xi(k)
∣∣∣ (5)

k = 1, 2, . . . , n; i = 1, 2, . . . , m
The grey correlation coefficients of different design sub-elements are different. If r(x0, xi) > r

(
x0, xj

)
,

then design sub-element xi is more relevant to product image than design sub-element xj. Based on the
Kansei image database of each design sub-element affecting the product image, the grey correlation
coefficient is used to express the relationship between the product image and design sub-elements.
By comparing the numerical value of grey correlation coefficient, the sorting of the influence degree of
different design sub-elements on product image is obtained. The most influential design sub-elements
are selected as input linguistic variables, and the corresponding product image as output linguistic
variable of GRA–Fuzzy logic model.

Based on the GRA–Fuzzy theory, combining with the Kansei Engineering experiment, the product
design sub-elements with the greater influence are selected first, and the product image of the
experimental samples is evaluated by seven-point Likert scale [13]. Then, the influential design
sub-elements are taken as the input fuzzy set, and the evaluation values of product image are taken
as the output fuzzy set. The triangular fuzzy functions of input and output linguistic variables are
obtained. Through the application of fuzzy logic model in MATLAB, the fuzzy rules are constructed,
and the center of maximum (CoM) method is used for defuzzification [14]. Finally, the GRA–Fuzzy
logic model of product image design is established to determine the specific Kansei image value of
product design.
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Combined with the product image database in Section 2, the fuzzy rules of GRA–Fuzzy logic
model are constructed. In order to reflect the relationship between the multiple design sub-elements
and product images involved in the product design process, the “if . . . then . . . ” rules with multiple
fuzzy conditions are used as follows:

I f X1 is A1 and X2 is A2 · · · and Xn is An;
Then Y1 is B1 and Y2 is B2 · · · and Yn is Bn

(6)

where A1, A2, . . . , An and B1, B2, . . . , Bn are fuzzy linguistic terms, which are, respectively, represented
by input linguistic variables X1, X2, . . . , Xn and output linguistic variables Y1, Y2, . . . , Yn. The input
linguistic variables X1, X2, . . . , Xn represent sub-elements of product design, and the output linguistic
variables Y1, Y2, . . . , Yn represent product image. Each fuzzy rule of GRA–Fuzzy logic model of
product image design is to associate the given combination of product design sub-elements with the
corresponding numerical state of product image.

Defuzzification is the process of transforming the membership of output linguistic variables into
numerical value. The most commonly used defuzzification technology, the center of maximum (CoM),
is determined as follows:

yCoM =

∑
i
[μ(yi × yi)]∑

i
μ(yi)

(7)

where i represents the linguistic item of output linguistic variable, yi is the maximum value of each
linguistic item i, and μ(yi) is the aggregate output membership function.

Finally, the GRA–Fuzzy logic model of product image design is constructed to assist designers to
evaluate the product image design. When the product designers input the combination of product
sub-elements, they can output the value of product image and obtain the numerical states of multiple
product images.

3.2.2. Utility Optimization Model

In the product design process, it is difficult to judge design scheme by using a single index. For the
solution method of multi-objective programming, the utility optimization model is generally used
through transforming the multi-objective model into the single-objective model. The model solution
basic idea is that each objective function of the programming problems can be calculated in a certain
way [15].

max Z = ψ(X) (8)

s.t. Φ(X) ≤ G (9)

ψ is the sum function of utility functions related to each objective function.
When using utility function as planning objective, it is necessary to determine a set of wi that

reflects the weight of each objective function in the overall objective of the original problem, namely:

maxψ =
k∑

i=1

wiψi (10)

Φ(x1, x2, . . . , xn) ≤ gi(i = 1, 2, . . . , m) (11)

where wi should satisfy
k∑
i

wi = 1

Parametric vector form is shown as below:

maxψ = wTψ (12)
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s.t. Φ(X) ≤ G (13)

3.2.3. Product Image Design Quantitative Decision Model

The quantitative decision model of product image design is constructed as shown in Figure 6.
Based on the Kansei Engineering experiment, the qualitative decision model of product image design
in Section 3.1.2 is used to get the influential design elements for product image, and the GRA–Fuzzy
logic sub-models of the influential design elements are constructed respectively.

 
Figure 6. The quantitative decision model of product image design.

Firstly, using the Kansei Engineering experiment process, the design elements with great influence
are analyzed, and the sub-elements of the influential design elements are obtained. Meanwhile, the
representative Kansei words of the product image expected by users are determined. The subjects
evaluate the product image of the experimental samples by Likert scale to set up the product image
database. Then, through the grey relational analysis (GRA), the grey correlation coefficients of the
design sub-elements that affecting the product image are obtained, and the numerical values of the
grey correlation coefficients are sorted and compared in order to obtain the design sub-elements that
have a great influence on the product image.

The design sub-elements with great influence obtained above are taken as input linguistic variables,
and the product image expected by users is taken as an output linguistic variable. The fuzzy functions
of input linguistic variables and output linguistic variables are constructed by the function of triangular
membership, and the GRA–Fuzzy logic model is constructed by MATLAB. The fuzzy control data
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table and the corresponding fuzzy rules between design sub-elements and product image are obtained.
Then, the fuzzy numbers are defuzzified by using the CoM method. Finally, the GRA–Fuzzy logic
sub-models of the influential design elements are established.

Users usually expect to obtain multiple product images in the practical design and production
process. The utility optimization model is used to transform the multi-objective product image into
the single-objective product image, optimize the GRA–Fuzzy logic model of product design elements.
The weights of product image are obtained according to the demand of design objectives, which reflects
the weight of each function of product image in total product image objective, and the product total
image value is obtained by linear weighting method. The quantitative decision model of product
image design is optimized, namely:

g(x) =
q∑

j=1

wjgj(x) (14)

where gj(x) is the GRA–Fuzzy logic model of product image j. wj is the weight of the jth product
image function gj(x) obtained according to the requirements of objective programming in the product
total image objective.

The GRA–Fuzzy logic sub-models of product design elements can help designers evaluate the
design elements of product image. Based on the construction of GRA–Fuzzy logic model and utility
optimization model, the product image design model is further optimized, and the quantitative
decision model of product image design is constructed.

3.3. Product Image Design Integrated Decision System

As shown in Figure 7, product image design integrated decision system is composed of qualitative
decision model and quantitative decision model. For the varied kinds of industrial product design,
firstly, the qualitative decision model of product image design is constructed to obtain the product
design elements that have a greater influence on the user’s Kansei image. After that, the quantitative
decision model of product image design is implemented to acquire the relationship between the
influential design sub-elements and the numerical value of Kansei image. The collaborative work of
the above two models constitutes the integrated decision system of product image design. Therefore,
it is more efficient and accurate that the combination of product design elements matches with the
output of user’s Kansei image.

Figure 7. The product image design integrated decision system.

3.4. Performance Evaluation

In order to evaluate the performance of the product image design integrated decision system, the
root mean square error (RMSE) is used as follows [16]:

RMSE =

√∑n
i=1 (xi − x0)

2

n
(15)

111



Appl. Sci. 2020, 10, 1198

where xi is the i th output value of product image design integrated decision system and x0 is the
expected value evaluated by the experimental subjects. We use test samples to evaluate the prediction
performance of product image design integrated decision system, and the subjects of the second
group evaluate the product total image of test samples to get the numerical value. Then, the design
sub-elements of each sample are input into the product image design integrated decision system, and
the output value of the product total image is obtained, which compared with the evaluation value of
the subjects. The RMSE of product image design integrated decision system is obtained. Then, the
performance evaluation of product image design integrated decision system is completed.

The case study shows that the optimized product image design integrated decision system has a
good performance for predicting and evaluating the product image. The proposed system has a better
prediction ability of Kansei image for the new product with given design elements.

4. Case Study of Train Seat Image Design

Based on the research of the optimization process of the product image design integrated decision
system in Section 3, this section aims at optimization of the high-speed train seat image design decision
system. The qualitative and quantitative decision models of the high-speed train seat image design are
constructed to further promote the process of the train seat image design integrated decision system.

4.1. Kansei Engineering Experiment

4.1.1. Design Investigation Stage

Firstly, the experimental subjects and samples are selected. Afterwards, the final experimental
samples are determined by the selection of train seat form, color, material and texture. Finally, the
representative Kansei image words for describing the train seat image are chosen.

• Experimental subject selection

The experimental study involves 60 subjects, divided into four groups. The first group includes
general users (10 males and 10 females). In the second group, there are expert users (10 males and
10 females). The third group is composed of 10 professional product designers (6 males and 4 females),
and the designers of this group have at least 6 years of product design experience on average. The fourth
group includes 10 experts (5 males and 5 females) in the field of high-speed train.

• Experimental sample selection

The subjects of the first group classify the selected product pictures based on their similarity degree
of appearance design of train seat, using the Kawakita Jiro (KJ) method. Therefore, the 20 subjects of
the first group classify 198 seat pictures of different manufacturers and models that entered the market
from 2009 to 2019. Based on the classification results of the subjects, 30 representative experimental
samples of train seats are selected by multi-dimensional scale analysis and cluster analysis.

• Design element analysis

The train seat form samples are extracted from 30 representative seat samples. According to the
professional knowledge and design experience, 10 designers of the third group obtain the four design
elements (including the seat form, color, material and texture) for future analysis. After that, they
are required to extract seat form samples through similarity classification, and then 10 subjects are
organized into focus groups to summarize and integrate their research results. After that, the 6 form
samples are obtained, which are divided into three groups on average, the first group is the form
experimental samples. The form experimental sample of train seat No. 2 of the first group is shown in
Figure 8.
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Figure 8. The form experimental sample of high-speed train No. 2 of the first group.

This study regards a small amount of color as a huge work of color speculation and establishes
the relationship between product form, color, material, texture and product image [17]. The 10 subjects
are organized into a focus group to conduct the inductive integration and analysis of color selection.
Finally, the 6 color samples are selected as the color experimental samples of train seat. The form
samples are filled with the 6 color experimental samples respectively. The form sample No. 2 is filled
with the 6 color experimental samples in Figure 9 as below.

 
Figure 9. The 6 color experimental samples of the train seat form sample No. 2.

The subjects of third group analyzed the material design and texture design of the train seat, and
the representative material samples and texture samples of train seats are collected and selected by the
third subjects, and the material samples and texture samples are applied to the color samples. Through
the research and investigation, the representative material samples are divided into cotton fabric, wool
fabric, chemical fiber and leather, as shown in Table 1.

Table 1. The 4 material experimental samples of the train seat.

Cotton Fabric Wool Fabric Chemical Fiber Leather

The representative texture samples are divided into coarse texture and fine texture. The above
4 material samples and 2 texture samples are applied to 12 train seat samples in the first group, a total
of 96 train seat experimental samples, as the final experimental samples of this study.
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• Kansei image word selection

Based on the preceding steps, three groups of representative Kansei words are determined to
describe the Kansei image of train seat: traditional–modern, simple–complex, unique–ordinary. We use
“traditional–modern” (T–M) as the primary Kansei word of the train seat, which is the target image
for constructing the qualitative decision model and quantitative decision model of the seat image
design. The above experimental process becomes the application case for developing the method of
Kansei Engineering.

4.1.2. Data Statistics Stage

The expert users evaluate the product image matched with the seat samples. As shown in Figure 10,
semantic difference method is used to make the seven-point Likert scale, and 20 subjects are required
to carry out the numerical value evaluation of T–M product image for the experimental samples (1 and
7 represent the extremely traditional and extremely modern image respectively). For example, seat No.
2 has “modern” image, namely that the maximum value of T–M image is 7, the minimum value is
3, and the average value is 5.33. The data statistics stage provides the experimental database for the
qualitative decision model and quantitative decision model of seat image design.

Figure 10. The seven-point Likert scale of T–M product image.

4.2. Train Seat Image Design Qualitative Decision Model

Through the analysis of Quantification Theory Type I, the importance and influence degree of train
seat design elements are obtained. The independent variables (such as seat form, color, material and
texture) of factors quantification are the nominal scales, so the numerical values of 1, 2, 3 and 4 are used
to represent the categories of design elements, for example, “cotton fabric”, “wool fabric”, “chemical
fiber” and “leather” of material samples are, respectively, represented by 1, 2, 3 and 4. The result is
shown in Table 2.

Table 2. Analysis of result from Quantification Theory Type I.

Design Element Standard Coefficient Partial Correlation Coefficient

Form element (X1) 0.290 0.441
Color element (X2) 0.769 0.791

Material element (X3) −0.205 −0.290
Texture element (X4) 0.002 0.003

Constant 2.464
Coefficient of determination R2 0.655

The partial correlation coefficients of design elements in Table 2 show that the correlation between
four independent variables (seat form, color, material and texture) and Kansei image words (T–M).
For example, for the T–M image, the partial correlation coefficients of design elements are 0.441, 0.791,
0.290 and 0.003, respectively, X2 of which is the highest, indicating that the “color” factor is the design
factor that has the greatest influence on T–M image of the independent variables. The second factor is
seat form (X1), which shows that when the design expectation of the train seat is to obtain the T–M
image, the designer should pay more attention to color design element and form design element.
On the contrary, designers can properly ignore the design elements with less relevance, such as seat
material (X3) and texture (X4), because these two design elements have a relatively small impact on
T–M image.

Based on the above experimental process of Kansei Engineering, the qualitative decision model of
train seat image design is finally obtained by using Quantification Theory Type I method. The qualitative
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decision model of train seat image design is shown in Figure 11. The partial correlation coefficients
of seat design elements are obtained through Quantification Theory Type I. The sequence of design
elements affecting the Kansei T–M image of train seat is color, form, material and texture. Therefore,
the study selects the design elements that have a great influence on the Kansei image: seat form and
seat color, which provides a theoretical basis for constructing the quantitative decision model of train
seat image design in the next step.

Figure 11. The qualitative decision model of train seat image design.

4.3. Train Seat Image Design Quantitative Decision Model

Based on the conclusion of train seat image design qualitative decision model, the design elements
that have great influence on seat image are seat form and color design elements. Using the experimental
process of Kansei Engineering, the GRA–Fuzzy logic sub-models of train seat form design and color
design are respectively constructed. Based on the GRA–Fuzzy theory, this paper analyzes the form
sub-elements and the color sub-elements. Aimed at the representative Kansei words of the seat image,
the subjects evaluate the Kansei image of seat samples through the seven-point Likert scale to build up
the train seat image database.

As the result of design element analysis, the 9 form sub-elements and their corresponding element
types are extracted from the 30 representative train seat samples through morphological analysis.
In this section, we select one representative train seat randomly from the 30 representative train seat
samples and fill the selected train seat with 72 representative colors as the experimental train seat
color samples, for a total of 72 color samples. In Table 3, Column 1 and 7 display the numbers of color
samples, and the remaining columns display the corresponding color sub-element (“Hue (h◦)” element
(xc1), “Chroma (C*)” element (xc2), “Lightness (L*)” element (xc3), “parameter a*” element (xc4) and
“parameter b*” element (xc5)) values of these color samples.

Table 3. Color element values of the representative train seat color sample C22–C33.

No. h◦ C* L* a* b* No. h◦ C* L* a* b*

C22 90 60 50 0 60 C28 135 60 30 −42 42
C23 90 40 50 0 40 C29 135 40 30 −28 28
C24 90 20 50 0 20 C30 135 20 30 −14 14
C25 90 60 70 0 60 C31 135 60 50 −42 42
C26 90 40 70 0 40 C32 135 40 50 −28 28
C27 90 20 70 0 20 C33 135 20 50 −14 14

The GRA method is used to obtain the grey correlation degree of form design sub-element as
shown in Table 4 from Section 3.2.1, and the sub-elements of form design that affect the Kansei image
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of train seat are, respectively, “Seat back waistline” (x5), “Seat back body shape” (x4), “Headrest shape”
(x2), “Length ratio between seat-back to seat” (x8), “Relationship between seat-back and headrest” (x3)
and “Seat-back slope angle” (x9). The above form design sub-elements that have greater influence on
Kansei image are taken as the input linguistic variables and the Kansei image of train seat as output
linguistic variables. The GRA–Fuzzy logic sub-model between the form design sub-elements and
Kansei image is constructed by the triangular membership function.

Table 4. The numerical values of r(x0, xi).

Grey Correlation Degree

r(x0, x1) = 0.722 r(x0, x2) = 0.812 r(x0, x3) = 0.794
r(x0, x4) = 0.833 r(x0, x5) = 0.844 r(x0, x6) = 0.515
r(x0, x7) = 0.772 r(x0, x8) = 0.798 r(x0, x9) = 0.787

Afterwards, the corresponding 54 fuzzy rules are built up, and the GRA–Fuzzy logic sub-model
of train seat form design is constructed. The fuzzy rules No. 22–No. 30 have been added as followed
in Table 5.

Table 5. The fuzzy rules No.22–No.30 of GRA–Fuzzy logic sub-model of form design sub-elements.

Rule No.
If Then

x2 x3 x4 x5 x8 x9 Y(T–M) Dos

22 I J PL AL MR SA M 0.75
23 I J IC AL SR LA M 0.58
24 I J IC AL SR LA VM 0.42
25 E I RC IL MR LA VM 0.83
26 E I RC IL MR LA M 0.17
27 E S PL IL SR SA M 0.83
28 E S PL IL SR SA N 0.17
29 S I RC PL SR SA N 0.75
30 S I RC PL SR SA M 0.25

According to Section 3.2.1, GRA method is used to obtain the grey correlation degree of color
design sub-element. It shows that the color design sub-elements that affect the Kansei image of
train seat are “Lightness (L*)” (xc3), “Chroma (C*)” (xc2), “parameter a*” (xc4) and “parameter b*”
(xc5). Taking the above color design sub-elements that have great influence on seat Kansei image
as input linguistic variables and seat Kansei image as output linguistic variables, the GRA–Fuzzy
logic sub-model of color design sub-elements matched with Kansei image is constructed by triangular
membership function. Next, the 144 corresponding fuzzy rules are established, and the GRA–Fuzzy
logic sub-model of train seat color design is constructed.

Based on the cooperative work of GRA–Fuzzy logic sub-models of the aforementioned train
seat form design and color design, in terms of the application of utility optimization model, the
utility optimization model is constructed for the Kansei image output value of train seat for
perceptual cognition of users. Three groups of representative Kansei words are selected, including
traditional–modern (T–M), simple–complex (S–C) and unique–ordinary (U–O).

In accordance with the method of multi-image objective programming, three corresponding
GRA–Fuzzy logic sub-models of T–M, S–C and U–O images are established, respectively. When using
utility function as the planning objective, three corresponding weights w1, w2 and w3 are used to reflect
the weight of each GRA–Fuzzy logic sub-model of each Kansei image in the overall objective, and the
utility optimization model of the product total image is obtained. When the primary image of seat
design expected by users is T–M image, followed by S–C and U–O image, according to the planning
of users’ perceptual needs, the weight of GRA–Fuzzy logic sub-model for T-M image is 0.4, and the
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weight of GRA–Fuzzy logic sub-model reflecting S–C image and U–O image is 0.3, respectively. Finally,
the seat design total image of multi-image planning objective of train seat is obtained.

Based on the experiment process of Kansei Engineering, combined with the utility optimization
model, the seat image design quantitative decision model of high-speed train is finally constructed,
and the specific process is shown in Figure 12.

 
Figure 12. The quantitative decision model of train seat image design.

4.4. Train Seat Image Design Integrated Decision System

As shown in Figure 13, the train seat image design integrated decision system consists of qualitative
decision model and quantitative decision model of seat image design. Aiming at the seat image design
of high-speed train, the qualitative decision model of the seat image design is constructed firstly,
and then the seat form design elements and color design elements that affect the Kansei image are
obtained. After that, the quantitative decision model of the seat image design is constructed to obtain
the predicted numerical value of the total image of the corresponding seat. The collaborative work of
the above two models constitutes the integrated decision system of train seat image design, which
makes the image design process of train seat more intelligent, accurate and efficient.

 
Figure 13. The train seat image design integrated decision system.
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4.5. Performance Evaluation

In order to verify the prediction ability of train seat image design integrated decision system,
five test samples shown in Table 6 are used, including form design sub-elements and color design
sub-elements that have greater influence on product image. The performance of train seat image
design integrated decision system is evaluated by using the root mean square error.

Table 6. Input and output values of the seat test samples.

Sample x2 x3 x4 x5 x8 x9 xc2 xc3 xc4 xc5 Y(T–M)

1 SE S RC CL MR SA 20 30 −14 14 3.90
2 I J IC CL MR LA 60 70 0 −60 6.35
3 E S IC IL MR LA 60 30 −42 42 4.31
4 I S IC IL MR LA 20 70 0 20 4.00
5 SE I PL FL SR SA 60 50 0 −60 4.73

We select T–M image as the primary image of seat design, then S–C and U–O image as the
secondary image, and apply the seat image design integrated decision system to predict the product
total image. The second row of Table 7 shows the average value of the product total image evaluated
by the 20 subjects of second group on five test samples, and meanwhile, the third row indicates the
prediction value of the integrated decision system of seat image design. The results show that the seat
image design integrated decision system has lower RMSE value. Therefore, the integrated decision
system of seat image design provides an effective mechanism for train seat design to match with the
total image of product design expected by users.

Table 7. RMSE result of the integrated decision system of train seat total image design.

Total Image Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 RMSE

Evaluation by subjects 4.19 5.69 4.22 4.07 4.67
Integrated decision system 4.40 5.48 4.26 4.34 4.54 0.1895

The good performance of the seat image design integrated decision system shows that the system
can help the designer to evaluate the combination of train seat design elements, aiming at satisfying
the expected Kansei image. Therefore, this paper provides an effective design evaluation system for
the improvement of seat design reflecting the ideal product image through the product image design
integrated decision system. For example, the product designer can input the values of multiple design
sub-elements by using the product image design integrated decision system, and then the predicted
value of multi-objective product image is obtained. If the predicted value does not meet the standard
of designer, the corresponding new product image predicted value can be obtained by modifying the
combination of design sub-elements until the designer obtains the satisfactory product image value.

4.6. Computer-Aided Seat Design and Image Evaluation

Combined with the computer-aided seat form design and color design, the seat form and color
design elements are input into the train seat image design integrated decision system, and then the
product image value is obtained. Through the further application of the computer-aided product form
modeling and color rendering, train seat image design integrated decision system is verified for the
predictable performance of product image.

Based on the computer-aided seat test sample form design and color design, four color design
samples are applied to three form design samples, and a total of 12 product design samples are obtained.
Figure 14 shows the seat rendering of the form sample 3 filled with the color sample 1.
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Figure 14. The train seat rendering of the form sample 3 filled with the color sample 1.

At first, the experimental subjects are required to evaluate the T–M image of the above 3-D seat
models. After that, the T–M image outputs of the seat models are carried out by using the train seat
image design integrated decision system. The T-M image results of models 5 to 10 are shown in the
third row of Table 8. Finally, the RMSE value of the train seat image design integrated decision system
is calculated with the result of less than 0.5, which proves that integrated decision system of train seat
image design performs better in predicting the T–M image.

Table 8. RMSE result of the integrated decision system of train seat T–M image design.

T–M Image Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 RMSE

Evaluation by subjects 3.86 5.12 4.84 5.92 3.22 5.12
Integrated decision system 4.03 5.45 5.35 5.69 3.53 4.95 0.3098

In conclusion, the integrated decision system of seat image design can effectively predict the
image value of 3-D seat model of computer-aided design and rendering. Therefore, utilizing computer
software to build 3-D model of industrial product, combined with computer-aided 3-D printing rapid
prototyping, we can assist the use of product image design integrated decision system, which makes
the image evaluation of product design more intuitive and efficient. Figure 15 illustrates the 3-D
printed drawing of the form sample 3. In this study, 3-D model printing is carried out according to
the ratio of 5:1 reduction of seat 3-D model to actual size in order to assist the evaluation process of
integrated decision system of seat image design.

 
Figure 15. The 3-D printed drawing of the seat form sample 3.
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5. Research Limitations and Discussions

This paper takes the seat image design of high-speed train as the research case, and this method is
also applicable to other industrial product design, interaction design, service design and user research
fields. Based on the experimental framework of Kansei Engineering, the Kansei image perceived
by users is transformed into product design elements, interaction design elements or service design
elements, etc. Moreover, by establishing quantitative and qualitative decision models of product image
design, the integrated decision system of product image design is obtained. The research system can
evaluate the perceptual experience of users, make the designers work more efficiently and accurately,
and promote and optimize the process of product design, interaction design, service design and user
research by predicting the Kansei image of products.

The next work is to further explore the product image design integrated decision system based on
Kansei Engineering, combined with product environment elements. The integrated decision system
will be expanded and upgraded in the future. With the change of society and the passing of time, the
perceptual cognition of users will change constantly. The evaluation database of experimental subjects
and the Kansei image database of products in the integrated decision system of product image design
need to be adjusted and updated timely to ensure that the integrated decision system of product image
design can go with the tide of development and the user environment for any new product market.

In the intelligent application environment, more high and new technologies are developing rapidly.
Therefore, the development trend of the product image design integrated decision system will be more
intelligent, accurate, digital and systematic. Meanwhile, in the establishment process of experimental
database, the design concept, 3-D model and rendering of product design will be further optimized
and promoted [18]. Therefore, the intelligent research of product image design integrated decision
system has broad prospects and far-reaching research significance.

6. Conclusions

In this paper, we have proposed a methodology of product image design integrated decision
system based on Kansei Engineering theory. Firstly, Quantification Theory Type I is used to effectively
identify the influential design elements that affect the product image, and the product image design
qualitative decision model is constructed. Secondly, according to GRA–Fuzzy theory, the GRA–Fuzzy
logic sub-models of influential design elements for the product image are constructed. Then, combining
with the utility optimization model, the product image design quantitative decision model is built
up. Finally, the product image design integrated decision system is constituted to analyze, decide and
evaluate the product image design. The result shows that the system is effective in predicting the
product images and optimizes the product image design process.

To illustrate the product image design integrated decision system, we have performed an
experimental study on train seat design. The result demonstrates that the system has a better
performance for improving the product image design. The designers can effectively plan the product
design for the specific product image to meet the user perceptual expectation. Although the train seat
design is used as a case in this paper, the methodology can be applied to other user-oriented product
designs with multiple design elements. Along with the development of modern science and technology
innovation and development, the product image design integrated decision system involved with
multiple product design elements and product images can be further improved and developed in
the future.
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Featured Application: For assembly incoordination caused by excessive assembly deviations,

the proposed method can predict the assemblability and solve the assembly features that need

accuracy compensation, to improve the assembly efficiency.

Abstract: The assembly process is sometimes blocked due to excessive dimension deviations during
large-scale assembly. It is inefficient to improve the assembly quality by trial assembly, inspection, and
accuracy compensation in the case of excessive deviations. Therefore, assemblability prediction by
analyzing the measurement data, assembly accuracy requirements, and the pose of parts is an effective
way to discover the assembly deviations in advance for measurement-assisted assembly. In this
paper, a coordination space model is constructed based on a small displacement torsor and assembly
accuracy requirements. An assemblability analysis method is proposed to check whether the assembly
can be executed directly. Aiming at the incoordination problem, an assemblability optimization
method based on the union coordination space is proposed. Finally, taking the space manipulator
assembly as an example, the result shows that the proposed method can improve assemblability with
a better assembly quality and less workload compared to the least-squares method.

Keywords: measurement-assisted assembly; coordination space; assemblability; small
displacement torsor

1. Introduction

Large-scale mechanical products like ships, automobiles, aircrafts, etc. are complex in structure,
large in size, and accurate in assembly quality. The assembly workload of the manufacturing process is
heavy [1]. These products often need accuracy compensation in the assembly process because of the
excessive assembly deviations, which lead to inefficiency. The assembly deviations might be caused by
the eventual poor machining quality of parts, or excessive tolerances set by designers. Thus, the trial
assembly is often used to detect the assembly deviations in advance, and the parts are then separated
to make an accuracy compensation on the bad dimensions. The assembly process takes a long time
by the following steps: Trial assembly, measurement of deviations, separation of parts, and re-trial
assembly. Therefore, an assemblability analysis and optimization method based on the measurement
data is necessary to predict the assembly deviation and make the accuracy compensation in advance.

With the development of measurement-assisted assembly (MAA) [2], measurement technology
has become a bridge between the real world and the digital world. Marguet et al. [3] introduced a MAA
application in an airbus assembly line. The least-squares method was used to calculate the optimal
pose. Chen et al. [4] proposed a weighted SVD algorithm to obtain the optimal pose of components,
which improved the accuracy of pose evaluation. Li et al. [5] proposed a coaxial alignment method

Appl. Sci. 2020, 10, 3331; doi:10.3390/app10093331 www.mdpi.com/journal/applsci123



Appl. Sci. 2020, 10, 3331

using distributed monocular vision. The iterative reweighted particle swarm optimization method
was constructed to improve the measurement ability of complicated wearing holes. Wang et al. [6]
calculated the assembly clearance of a wing-fuselage assembly based on the optimal pose. The above
methods mainly consider the measurement and calculation of the assembly pose, and then realize
alignment through pose adjustment tooling. The assembly will be difficult if the quality of the parts
is poor.

Assemblability prediction is the first step to judge whether the assembly is qualified in the
measurement-assisted assembly. Sukhan et al. [7] evaluated the assemblability based on tolerance
propagation. Sanderson et al. [8] assessed the assemblability by the maximum likelihood problem,
which was solved by the Kalman filter algorithm. The traditional assemblability evaluation methods
are mainly used to find the assembly problem in the design phase, but not in the assembly phase.
Cui and Du [9] proposed the concept of pose feasible space to assess the assembly coordination. Yuan
et al. [10] proposed an assembly quality assessment method based on weighted geometric constraints
to calculate the optimal pose. Wu et al. [11] proposed a constraint coordination index to assess the
assembly quality. Ma et al. [12] developed the assembly precision pre-analysis technique in the
simulation of virtual assembly. Du et al. [13] proposed a pose decoupling model of the axis tolerance
feature to decouple the analysis of any pose within the tolerance domain.

The accuracy compensation methods are used to improve assemblability. The digital compensation
method has become a research highlight to improve the assemblability. Davis et al. [14] put forward the
method of measuring the assembly clearance and realizing the digital manufacturing of the accuracy
compensation gasket. Fabian et al. [15] introduced a shimming method by 3D printing technology, and
the assembly clearance was measured by optical measurement. Wang et al. [16] provided a shimming
method based on scanned data for a wing box assembly involving non-uniform gaps. In addition,
finite element analysis was taken to improve the shimming scheme. Those methods, however, need
to be assembled first, followed by measurement of the deviations to be compensated, resulting in a
lower efficiency.

Some scholars proposed predictive shimming and predictive fettling methods to improve the
assembly efficiency and quality [17]. Cui et al. [18] proposed the oriented points group to calculate the
deviation of multiple shaft-and-holes, and the gap was shimmed. Yang et al. [19] analyzed the deviation
from the measured point cloud to the model to improve skin finishing. Yu et al. [20] employed a virtual
assembly and repair analysis method based on both the geometric design model and object scanning
model. Manohar et al. [21] proposed an alternative strategy for predictive shimming, based on machine
learning and sparse sensing to first learn gap distributions from historical data. Lei et al. [22] presented
an automated and in situ alignment approach with the assistance of computer numerical controlled
(CNC) positioners and laser trackers to reduce the finish machining workload. The above studies are
aimed at specific cases.

The accuracy compensation method is usually applied after assembly. Then, the assembly
sometimes needs be separated, which leads to low efficiency. In this paper, an assemblability
analysis and optimization method based on the coordination space model is constructed during
measurement-assisted large-scale assembly. In Section 2, the coordination space model based on
the small displacement torsor is constructed. In Section 3, the assemblability analysis based on
the coordination space model is proposed. In addition, the uncoordinated case is further analyzed.
In Section 4, the assemblability optimization method based on the union coordination space is proposed
for the uncoordinated case. In Section 5, the space manipulator assembly is taken as an example to verify
the proposed method. The result shows that the proposed method can optimize the assemblability
with less workload and better assembly quality compared to the least-squares method.

2. Coordination Space Model Based on Small Displacement Torsor

Assemblability refers to the ability of parts to satisfy the assembly accuracy requirements in
terms of dimensions, which can be expressed by coordination accuracy. Traditionally, coordination
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accuracy [23] is the difference in the manufacturing dimensions. Figure 1 shows the coordination
accuracy of a keyway assembly.

 

Figure 1. Coordination accuracy of a keyway assembly.

The coordination accuracy is
∇AB =1 +2 = LA − LB, (1)

It can be seen that the coordination accuracy is the amount of the allowance on a certain dimension.
In this way, the assembly coordination of a single dimension is well presented by coordination accuracy
such as angle, length, etc. However, it is not suitable for complicated assembly. Therefore, the concept
should be extended to pose allowance space and the space can be predicted by digital measurement
data during large-scale assembly. This space is named the assembly coordination space, which is the
ability of pose variation under the condition of assembly accuracy requirements, as Figure 2 shows.

 
Figure 2. The pose variations under the condition of assembly accuracy requirements.

The parts of the assembly are divided into the reference part and the align part. The reference
part is the fixed part during assembly and the align part will move to the target pose by the pose
adjustment tooling. Assume that the primary measurement data of the two parts are⎧⎪⎪⎨⎪⎪⎩ PR =

[
pR

1 pR
2 . . . pR

n

]
PA =

[
pA

1 pA
2 . . . pA

n

] , (2)

where PR and PA are the point sets of the reference part and align part, separately, where pR
1 , etc. and

pA
1 , etc. are the points of the sets PR and PA, respectively. The two parts are separated first. According

to the least-squares method, the optimal assembly pose can be calculated by⎧⎪⎪⎨⎪⎪⎩ PR ≈ RPA + T
e = min

{∑n
i=1 ‖RpA

1 + T−PR‖2
} , (3)
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where R is the rotation matrix, T is the movement matrix, and e is the minimum residual sum of
squares. The singular value decomposition method [24] is taken to calculate the parameter R and T.
Then, the optimal pose of the align part based on the least-squares method is

ω0 =

[
R T
0 1

]
, (4)

The assembly deviation can be predicted by the pose ω0 of the align part. The key assembly
characteristics (KAC) [25] are the important geometric structures that have key influences on assembly
quality. They are described by measurement data and some dimensions that are not necessary to
be measured.

K = {P, G}, (5)

where K is the parameters of a KAC, P is the measurement data, G is the dimensions that are not
necessary to be measured. The KACs have an irregular distribution in space during large-scale
assembly. As shown in Figure 3, the wing-fuselage assembly is completed by 4 pairs of joints. There are
four assembly accuracy requirements on each pair of joints: Two on coaxialities and two on clearances.

 
Figure 3. Wing-fuselage assembly.

The KACs are restrained by assembly accuracy requirements. The assembly accuracy is described as

Ti
j = f i

j

(
KR

i , KA
i

)
, (6)

where KR
i is the parameters of the ith KAC on the reference part (fuselage), KA

i is the parameters of the
ith KAC on the align part (wing), Ti

j is the jth assembly accuracy of the ith KAC, and f i
j is the mapping

from parameters to the assembly accuracy. The assembly accuracy should meet the requirements of
assembly accuracy, which is formulated in Equation (7)

Ti
j ∈

[
Ti−min

j , Ti−max
j

]
, (7)

where Ti−min
j and Ti−max

j are the ranges of Ti
j. Substitute Equation (6) into Equation (7):

f i
j

(
KR

i , KA
i

)
∈

[
Ti−min

j , Ti−max
j

]
, (8)

For the m assembly accuracy requirements on n KACs of the assembly, the constraint equations
can be expressed as

∀ f i
j

(
KR

i , KA
i

)
∈

[
Ti−min

j , Ti−max
j

]
, i ∈ [1, n], j ∈ [1, ji], (9)
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where ji is the assembly accuracy requirement number of the ith KAC, m =
∑n

i=1 ji. When all KACs
satisfy their assembly accuracy requirements, the pose is a valid pose to be aligned.

As shown in Figure 4, the valid pose may not be the only one that satisfies all assembly accuracy
requirements. Therefore, the adjacent poses of the primary pose shown in Figure 4a can be analyzed.
A small displacement torsor (SDT) [26] represents a tiny rigid body’s pose variation. It is described as

ωΔ = (xΔ, yΔ, zΔ,αΔ, βΔ,γΔ), (10)

Figure 4. Valid poses of wing-fuselage assembly.

The homogeneous transformation matrix of an SDT is

ωH
Δ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
CγΔCβΔ −SγΔCβΔ SβΔ xΔ

SγΔCαΔ + CγΔSβΔSαΔ CγΔCαΔ − SγΔSβΔSαΔ −CβΔSαΔ yΔ

SγΔSαΔ −CγΔSβΔCαΔ CγΔSαΔ + SγΔSβΔCαΔ CβΔCαΔ zΔ

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≈
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −γΔ βΔ xΔ

γΔ 1 −αΔ yΔ

−βΔ αΔ 1 zΔ

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (11)

where S is sin, C is cos, lim
αΔ→0

CαΔ = 1, lim
αΔ→0

SαΔ = αΔ, and lim
αΔ ,βΔ→0

SαΔSβΔ = 0. The change in point

p = (x, y, z) after a slight change in the rigid body’s pose is

p′ex = [x y z 1]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 −γΔ βΔ xΔ

γΔ 1 −αΔ yΔ

−βΔ αΔ 1 zΔ

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x + xΔ + βΔ·z− γΔ·z
y + yΔ − αΔ·z + γΔ·x
z + zΔ + αΔ·y− βΔ·x

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (12)

Then, the assembly accuracy would be

Ti−ωΔ
j = f i

j

(
KR

i , KA
i ω

H
Δ

)
= f i

j

(
PR

i , GR
i , PA

i ω
H
Δ , GA

i

)
, (13)

On this pose, if the assembly accuracy requirements are still satisfied as

∀ f i
j

(
KR

i , KA
i ω

H
Δ

)
∈

[
Ti−min

j , Ti−max
j

]
, i ∈ [1, n], j ∈ [1, ji], (14)

the pose is still a valid pose. The coordination space model can, hence, be expressed as

∅CS =
{
ωΔ

∣∣∣∣∀ f i
j

(
KR

i , KA
i ω

H
Δ

)
∈

[
Ti−min

j , Ti−max
j

]
, i ∈ [1, n], j ∈ [1, ji]

}
, (15)

where ∅CS is the coordination space, which is the whole pose variation space under the condition of
assembly accuracy requirements.
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3. Assemblability Analysis Based on Coordination Space Model

Assemblability refers to the geometric consistency of the matching geometric structures of
the two assembling parts. It can be judged whether the assembly can directly be carried out by
assemblability prediction.

The assemblability is good if the coordination space is greater than 0, which means at least one
pose conforms to Equation (15). Otherwise, the assemblability is bad. Therefore, the assemblability
analysis flow is shown in Figure 5.

 
Figure 5. Assemblability analysis process.

Firstly, the KACs are measured by a laser tracker or other digital measurement devices. Then, the
coordination space model is constructed based on the assembly accuracy requirements. The volume
of the coordination space is solved to judge whether it is assemblable. It will be assemblable when
∅CS is greater than 0. The assembly can be executed by calculating the optimal pose and aligning the
parts. It will be uncoordinated when ∅CS is 0. Then, the assembly deviation should be analyzed and
compensated to make it assemblable.

The solution process of the coordination space is based on the Monte Carlo method:

1. Calculate the optimal pose based on the least-squares method.
2. According to the dimensions and assembly accuracy requirements, a maximum pose space is

assumed, as Equation (16) shows. All poses out of the space are not valid for any assembly
accuracy requirements.

ωd : (−xd,−yd,−zd,−αd,−βd,−γd)→ (xd, yd, zd,αd, βd,γd), (16)

3. Generate a random SDT uniformly for nT times and check the SDTs by Equation (15).
4. If n j of nT SDTs are valid, the coordination space is

∅CS =
n j

nT
64xdydzdαdβdγd, (17)

In the case of incoordination, the coordination space should be further analyzed. According to
Equation (15), the coordination space is the intersection of KAC’s constraint equations. All constraints
are divided by KACs. Equation (15) will be translated to
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ωΔ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∀ f 1
j

(
KR

1 , KA
1ω

H
Δ

)
∈

[
T1−min

j , T1−max
j

]
, j ∈ [1, j1],

∀ f 2
j

(
KR

2 , KA
2ω

H
Δ

)
∈

[
T2−min

j , T2−max
j

]
, j ∈ [1, j2],

. . .

∀ f n
j

(
KR

n , KA
nω

H
Δ

)
∈

[
Tn−min

j , Tn−max
j

]
, j ∈ [1, jn]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (18)

Let
∅

KAC
i =

{
ωi−KAC

Δ

∣∣∣∣∣ ∀ f i
j

(
KR

i , KA
i ω

H
Δ

)
∈

[
Ti−min

j , Ti−max
j

]
, j ∈ [1, ji]

}
, (19)

where ∅
KAC
i is the KAC coordination space formed by the assembly accuracy requirements of a KAC,

and ωi−KAC
Δ is an SDT in the KAC coordination space. The ∅CS would be

∅CS =
⋂n

i=1
∅

KAC
i , (20)

The relationship between the KAC coordination space and the assembly coordination space is
shown in Figure 6a.

Figure 6. The relationship between the part and feature PFS.

Figure 6b shows the status of the KAC coordination space when the assembly is uncoordinated.
Each area of the same color represents a KAC coordination space. The divided zone is named the
coordination zone. The accuracy compensation method is needed to improve the assemblability.

According to Figure 6b, set the union of KAC coordination space as a union coordination space.
It is formulated as

∅UCS =
⋃n

i=1
∅

KAC
i , (21)

where ∅UCS is the union coordination space. In the union coordination space, all poses are valid for
some KACs but not valid for all. Some divided zones are valid for more KACs than others, e.g., the
two zones marked with 3 are better than those marked with 1 or 2. The marked number is named the
coordination zone index, which is the valid KACs′ number in the coordination zone. If a pose in the
zone marked with 3 is selected, only one KAC needs to be compensated. In this way, an assemblability
optimization method is put forward by selecting a coordination zone with larger volume and KAC
number. The larger volume means a better geometric consistency, and the larger KAC number means
fewer KACs need to be compensated.

4. Assemblability Optimization Based on the Union Coordination Space

The accuracy compensation process is time- and effort- consuming [22] when the assemblability
is poor. For example, it needs programming, clamping, tool setting, machining, loosen clamping,
and other steps when finishing a KAC with cutting. Therefore, reducing the number of KACs to
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be processed is an effective means to improve the assembly efficiency in many cases. The optimal
pose is usually obtained under the condition of optimal assembly accuracy. If each unqualified KAC
is compensated one by one under the optimal pose, more work may be needed and the assembly
quality might not be good, due to the unknown assembly quality after accuracy compensation. If the
assembly quality is bad after compensation, there are no alternative compensation schemes based
on the least-squares method. Therefore, the assemblability optimization method is proposed to
solve the incoordination problem. The key to optimize the assemblability is whether there is one or
more coordination zones that can satisfy assembly accuracy requirements with fewer KACs to be
compensated and a better or approximate volume of coordination space.

The coordination zone index shows the valid KACs in the certain coordination zone. The total
number of all KACs is nKAC. The incoordination zone index shows the number of uncoordinated KACs
in the coordination zone. Their relationship is

nIZI = nKAC − nCZI, (22)

where nIZI is the incoordination zone index and nCZI is the coordination zone index. If the accuracy of
uncoordinated KACs is compensated well in the coordination zone, this coordination zone will change
to the assembly coordination space, as Figure 7 shows.

 

Figure 7. The coordination zone variation process by accuracy compensation.

In this way, each coordination zone can be analyzed to check whether it is good to be compensated
or not. Two indicators of the coordination zone should be analyzed, one is the incoordination zone
index, and the other is the volume of the coordination zone. The Monte Carlo method of Section 3
is improved to judge the state of each coordination zone one by one, and the optimal assemblability
optimization schemes of the coordination zone are selected for recording.

The solution process based on the Monte Carlo method is as follows:

1. Solve the optimal pose of the align part;
2. Set a pose space as the pose boundary as shown by the square box of Figure 8;
3. Generate a random SDT in the pose space;
4. According to Equation (19), judge which KAC equations are satisfied (coordination zone index)

and which are not (incoordination zone index);
5. Cluster the analysis results of each SDT. The SDTs in the same coordination zone are

clustered together;
6. Put the clustered results into the data structure of Equation (23). The KAC number to be

compensated is the incoordination zone index. Select the scheme with a better KAC number and
space volume of the coordination zone.{

Γ|Γ i =
(
nIZI, VCZ, b f , sω

)
, i < Γnum

}
, (23)
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where Γi is the ith scheme, nIZI is the incoordination zone index, VCZ is the space amount of the
coordination zone, b f is the information of uncoordinated KACs, sω is the SDT set, and Γnum is
the max number of the schemes.

7. Calculate the center SDT of the SDTs in the selected scheme. The assembly deviation of target
features under the SDT is analyzed and the accuracy compensation is carried out.

ωc
Δ =

1
ns

ns∑
i=1

ωΔi, (24)

where ωc
Δ is the center SDT, ns is the SDT number of sω, and ωΔi is an SDT of sω. All assembly

accuracies onωc
Δ are calculated. Then, the deviations on the excessive KACs will be compensated.

 

Figure 8. Random sampling by Monte Carlo method.

According to Equations (13) and (24), the compensation amount would be

Ci
j = T

i−ωc
Δ

j − Ti−opt
j = f i

j

(
KR

i , KA
i ω

c
Δ

)
− Ti−opt

j , (25)

where Ci
j is the compensation amount of the jth assembly accuracy requirement of the ith KAC, T

i−ωc
Δ

j

is the assembly accuracy on the SDT ωc
Δ, and Ti−opt

j is the optimal value of the assembly accuracy.

5. Case Study

5.1. Space Manipulator Assembly

The space manipulator is fixed on the spacecraft, which needs a high assembly accuracy to
guarantee the stability when the spacecraft is flying. The assembly is executed by shaft and hole
connectors, which are shown in Figure 9a. The connector is shown in Figure 9b. The manipulator is
the align part and the spacecraft is the reference part.
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Figure 9. Space manipulator assembly.

The upper connector is fixed on the manipulator, and the bottom connector is fixed on the
spacecraft. The KACs are the assembly of the connectors. Due to the slight deformation of the
spacecraft and the installation error of the bottom connectors, it is difficult for the connectors to
accurately assemble at one time during the assembly of the spacecraft and the manipulator. In the
original assembly process, it is necessary to try the assembly first, measure the assembly deviation of
the clearance and coaxiality of each pair of connectors, make the accuracy compensation, and retry
the assembly to ensure the assembly quality. The assembly takes a long time and the connectors are
not convenient to be operated on the spacecraft. Therefore, the laser tracker is used to measure the
connectors between the spacecraft and the manipulator. The methods in Sections 2 and 3 are taken to
evaluate the assemblability based on the measurement data. The method in Section 4 is used to find
the key connectors to make the accuracy compensation. The assembly is carried out after the accuracy
compensation. In this way, the assembly quality is better guaranteed and the assembly efficiency is
improved. The flow of the proposed method and the comparison with the original method are shown
in Figure 10.

Figure 10. The comparison of the original and proposed assembly processes.

As shown in Figure 10, the assembly process is developed toward digital measurement and
analysis. The results obtained in the actual assembly and inspection are replaced by the analysis of the
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measurement data. Therefore, some unnecessary assembly processes are eliminated and the possibility
of repeated trial assembly is greatly reduced.

The assembly accuracy requirements of the connector are coaxiality dr and clearance dc on the
matching surface, as shown in Figure 9b. The coaxiality requirement is 0.2 mm, and the clearance
requirement is 0.1 mm. Assembly accuracy is compensated by gasket compensation, finishing, or
position movement according to the deviation.

5.2. Coordination Space Model

The measurement of the connector is based on the measurement auxiliary tool, which is shown in
Figure 11.

Figure 11. Measurement auxiliary tool.

After inserting the shaft into the corresponding hole, measure the four holes of the measurement
auxiliary tool. The measurement data are processed as the position p and orientation

⇀
po.

⎧⎪⎪⎨⎪⎪⎩
⇀
po =

(c3−c1)×(c4−c2)|(c3−c1)×(c4−c2)|
p = 1

4
∑

ci − l·⇀po
, (26)

where c1, c2, c3, and c4 are the points measured by the laser tracker.
As shown in Figure 12, the clearance dc and the coaxiality dr of a connector are⎧⎪⎪⎪⎨⎪⎪⎪⎩

dr =
∣∣∣∣ ⇀p2p1·sinθ2

∣∣∣∣
dc =

∣∣∣∣ ⇀p1p2

∣∣∣∣·cosθ2 + r·sin(θ2 − θ1)
, (27)

where θ1 and θ2 are the angles between
⇀

p1p2 and
⇀

p1o1 or
⇀

p1o2; θ1 can be calculated by θ1 =

arccos
(
⇀

p1p2·
⇀

p1o1/
∣∣∣∣ ⇀p1p2

∣∣∣∣∣∣∣∣ ⇀p1o1

∣∣∣∣) and, similarly, θ2 can be calculated by the same way; and r is the radius

of the matching surface, which is 15 mm. There are 20 connectors to be guaranteed at the same time.

 

Figure 12. Assembly geometric constraints analysis.
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Therefore, the coordination space model is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
ωΔ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣
⇀

pi−ωΔ
2 pi

1ω
H
Δ ·sinθi−ωΔ

2

∣∣∣∣∣∣ < 0.2,

0 <

∣∣∣∣∣∣
⇀

pi
1pi−ωΔ

2

∣∣∣∣∣∣·cosθi−ωΔ
2 + r·sin

(
θi−ωΔ

2 − θi−ωΔ
1

)
< 0.1,

i ∈ [1, 20]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, (28)

where ωΔ is the random SDT based on the optimal pose derived from the least-squares method, and
pi−ωΔ

2 is the parameters of Equation (27) changed by ωΔ according to Equation (12), which are listed in
Equation (29): ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pi−ωΔ
2 = pi

2ω
H
Δ

⇀

pi−ωΔ
2 oi−ωΔ

2 =
(ci

3−ci
1)×(ci

4−ci
2)∣∣∣(ci

3−ci
1)×(ci

4−ci
2)

∣∣∣
θi−ωΔ

1 = arccos
( ⇀

pl
1pl−ωΔ

2 ·
⇀

pl
1ol

1/

∣∣∣∣∣∣
⇀

pl
1pl−ωΔ

2

∣∣∣∣∣∣
∣∣∣∣∣∣
⇀

pl
1ol

1

∣∣∣∣∣∣
)

θi−ωΔ
2 = arccos

( ⇀

pl
1pl−ωΔ

2 ·
⇀

pl−ωΔ
2 ol−ωΔ

2 /

∣∣∣∣∣∣
⇀

pl
1pl−ωΔ

2

∣∣∣∣∣∣
∣∣∣∣∣∣

⇀

pl−ωΔ
2 ol−ωΔ

2

∣∣∣∣∣∣
)

, (29)

5.3. Assemblability Analysis

Part of the raw data is listed in Table 1. All the measurement data are listed in Appendix A,
Table A1.

Table 1. Part of the raw measurement data.

Spacecraft Manipulator

x/mm y/mm z/mm x/mm y/mm z/mm

26.060 26.037 −192.674 222.509 2274.256 403.730
25.941 −25.881 −192.645 222.471 2222.338 403.647
−25.972 −25.945 −192.558 170.389 2222.349 403.666
−25.973 26.032 −192.581 170.520 2274.362 403.722

The least-squares method is taken to calculate the optimal pose and the deviations on the optimal
pose. The deviations of the connectors are listed in Table 2 calculated by Equation (27).

Table 2. Assembly deviation prediction by least-squares method.

No. dr/mm dc/mm No. dr/mm dc/mm

1 0.154 0.043 11 0.171 −0.012
2 0.150 −0.027 12 0.338 0.002
3 0.205 0.072 13 0.286 −0.010
4 0.196 0.042 14 0.530 −0.274
5 0.191 0.012 15 0.247 0.033
6 0.209 0.083 16 0.165 −0.029
7 0.066 0.045 17 0.188 0.033
8 0.195 −0.025 18 0.402 −0.154
9 0.118 −0.006 19 0.086 0.183
10 0.298 −0.010 20 0.386 −0.028

It can be seen that 10 connectors need to be adjusted or repaired based on the least-squares method.
The coordination space is 0 at the optimal pose based on the method in Section 3, which means it

cannot be assembled directly. Therefore, the assemblability should be optimized.
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5.4. Assemblability Optimization

The proposed method in Section 4 is taken to find the accuracy compensation schemes. The results
are shown in Figure 13.

Figure 13. The accuracy compensation schemes.

Figure 13 shows the accuracy compensation schemes. The first point on the X axis is the KAC
quantity to be compensated. The second point is the volume of the coordination zone of the scheme.
The latter ones are the number of KACs. The Y axis is the scheme number. The Z axis is the value of
the X axis. Seven connectors need to be adjusted to complete assembly in scheme 1. Finally, scheme
18, which needs nine connectors to be compensated, is taken by considering the assembly quality.
The coordination space of the scheme is 56d. d is the volume of the maximum pose space divided
by random times. In this case, d is 2.46 × 10−14 mm3rad3. The KAC number to be compensated
is 5, 6, 8, 10, 12, 14, 18, 19, and 20. The center SDT of the coordination zone in scheme 18 is(
−0.0363 mm, 0.0210 mm, 0.0098 mm, 2.52× 10−6 rad, 1.64× 10−6 rad,−2.35× 10−6 rad

)
.

The deviation is calculated under the center SDT listed in Table 3.

Table 3. The deviations of the connectors.

No. dr/mm dc/mm No. dr/mm dc/mm

1 0.145 0.034 11 0.150 −0.036
2 0.188 −0.031 12 0.351 −0.013
3 0.169 0.064 13 0.142 −0.022
4 0.151 0.031 14 0.391 −0.286
5 0.230 0.004 15 0.133 0.016
6 0.249 0.070 16 0.031 −0.039
7 0.025 0.037 17 0.056 0.032
8 0.222 −0.034 18 0.204 −0.145
9 0.162 −0.021 19 0.204 0.179
10 0.255 −0.029 20 0.233 −0.027

After simulation accuracy compensation for the above nine connectors, which is in bold and
italics in Table 3 (the proposed method), the coordination space is 101d, which is greater than 0. The
average coaxiality is 0.068 mm and the average clearance is 0.014 mm. The assemblability is good and
the assembly can be executed directly.

After simulation accuracy compensation for the above 10 connectors, which is in bold and italics in
Table 2 (the least square method), the coordination space is 9d. The average coaxiality is 0.084 mm and
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the average clearance is 0.014 mm. The assemblability is good but the assembly quality on coaxiality
is worse.

The result shows that the proposed method will generate a better accuracy compensation scheme
with less workload and better assembly quality, which improves the assemblability.

The measurement and connector adjustment process took about 8 h during the assembly. The
pose adjustment process took about 2 h. Therefore, it took about 10 h in total based on the proposed
method. The original assembly process took more than 20 h because the first trial assembly and
accuracy compensation process cannot realize the re-trial assembly smoothly. Three or four times the
assembly are needed to guarantee the assembly quality.

6. Discussion

Compared to the previous research, the major contributions in this paper are listed as follows: (1)
The concept of assemblability and coordination accuracy in the design/drawing stage are extended into
the measurement-assisted assembly. (2) An assemblability analysis method based on the measurement
data and the coordination space model is proposed for predicting the key assembly deviations. (3) The
accuracy compensation methods based on the optimal pose might lead to more workload and worse
assemblability. Therefore, an assemblability optimization method is proposed for less workload and
better assembly quality. In addition, the space manipulator assembly is taken as an example. The
result shows that the proposed method can optimize the assemblability with less workload and better
assembly quality compared to the accuracy compensation method based on the optimal pose.

The assemblability optimization method based on accuracy compensation improves the ability
to detect assembly problems in advance, which will benefit the automation assembly. Further, the
coordination space model and the small displacement torsor are useful for analyzing the assemblability
and optimizing the tolerances in the design/drawings phase, but the assemblability optimization
method is not useful. In the implementation of the method, high-precision digital measurement
equipment are needed. Measurement uncertainty will affect the reliability of the final results.

Future research include evaluating the influence of the measurement uncertainty on the
coordination space model. Then, the uncertainty of pose adjustment should be taken into consideration
compared to the volume of the coordination space to judge the feasibility of automatic pose adjustment.
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Abstract: Piping and instrument diagrams (P&IDs) are a key component of the process industry;
they contain information about the plant, including the instruments, lines, valves, and control
logic. However, the complexity of these diagrams makes it difficult to extract the information
automatically. In this study, we implement an object-detection method to recognize graphical symbols
in P&IDs. The framework consists of three parts—region proposal, data annotation, and classification.
Sequential image processing is applied as the region proposal step for P&IDs. After getting the
proposed regions, the unsupervised learning methods, k-means, and deep adaptive clustering are
implemented to decompose the detected dummy symbols and assign negative classes for them.
By training a convolutional network, it becomes possible to classify the proposed regions and extract
the symbolic information. The results indicate that the proposed framework delivers a superior
symbol-recognition performance through dummy detection.

Keywords: convolutional neural network; object detection; piping and instrument diagram;
unsupervised learning

1. Introduction

Engineering diagrams (EDs) are schematic drawings describing process flow, circuit construction,
and engineering device information. Among the many types of EDs, piping and instrument diagrams
(P&IDs) are broadly used in the production plant industry because they contain key information of
the plant, including piping, valves, instruments, control logic, and annotations. Moreover, extracting
this information—for example, where or of what type the objects are—is the first step in estimating
the number of elements and managing the project during its operational period. Most of the plant
industries, such as oil and gas production plants, have employed large teams of engineers to manually
count these entities and digitalize the information into their internal systems because there is no
module available to automatically extract such information from the diagrams. For decades, these tasks
have been considered inefficient and time-consuming tasks. Consequently, the demand for a module
enabling an automatic engineering diagram digitalization has increased as such procedures can
improve productivity and gain a competitive edge for the company in the global market.

However, there are obstacles to be overcome before applying this technology in real-world
scenarios. Firstly, the symbols of P&IDs come in a diverse range of forms, with approximately
100 different types for each entity [1]. Furthermore, there is an inter-similarity between these symbols
themselves. This requires the person interpreting and counting the symbolic entities to know the
P&ID symbols and legend sheets. In some diagrams, it is difficult to identify—through image
processing alone—a target symbol without confusing it with another symbol because there are so

Appl. Sci. 2020, 10, 4005; doi:10.3390/app10114005 www.mdpi.com/journal/applsci141



Appl. Sci. 2020, 10, 4005

many objects. Moreover, in diagrams, text information such as notes, as well as line number or size
information, is presented near the symbols. This information is also often also written across the
symbol; therefore, it can present another obstacle in the effective recognition of diagrams. These key
challenges need to be overcome to enhance the capabilities of P&ID digitalization procedures in
real-world scenarios; however, there have been few studies applied to develop an object-detection
algorithm to overcome these limitations and present suitable applicability.

Within the field of machine vision for EDs, there have been a few studies that have sought to
extract specific information from the diagrams. In [2], the authors present new trends on machine
vision to extract various information from EDs, such as binarization, contextualization, segmentation,
and recognition. One of the most popular preprocessing methods is binarization; by adopting a
threshold value, this method converts an image into a binary representation, thereby removing
noise and improving entity identification in the diagram. There are several methods of applying
such image binarizations, including global thresholding [3], local thresholding, and adaptive
thresholding [4]. For line detection in the diagrams, canny edge detection [5], Hough transformations [6],
and morphological dilations have been discussed in the literature. Probabilistic Hough transform
(PHT) [7], which uses a random sampling of the edge points to detect lines in images, has been
applied for the robust detection of lines in engineering diagrams [8]. A shape-detection procedure,
employing a consistency attributed graph (CAG) with a sliding window, was used by [9] to construct a
symbol-detection procedure. As a comparable method, a recursive model of the morphological opening
was implemented by [10] to identify symbols by the empty fraction of their area. For text/graphics
segmentation (TGS), a connected component (CC) analysis [11] was used with size constraints in
an engineering diagram [12]. In one study [13], a procedure to realize pixel-wise classification into
text, graphics, and background was performed using filter banks and estimations of the descriptor
sparseness. To find a specific shape in the diagrams, template matching was also used with a symbol
shape incorporated as part of the prior information [14]. In [15], a threshold-based object-detection
algorithm was proposed for binary images.

For graphical symbol recognition using a machine learning approach for engineering diagrams,
there is very little previous research. In the past, the template matching method [16] has been famously
used to find a specific shape within an image by sliding the template across the entire window. In all
slides, the template calculated the similarity using convolutional estimation. However, this method has
an inherent disadvantage; when it estimates the similarity within a specific region, it uses the Euclidian
distance. This metric is intuitive, and the method is convenient to apply, but it cannot consider the
images with large numbers of dimensions. It judges similarity using only quantitative calculations.
Consequently, when it sets a high threshold value, it misses the shapes in the image owing to the
stringent criteria. In contrast, when it sets a low threshold value, it detects unsuitable shapes because
of its naïve criteria. This makes it difficult to find a suitable threshold value and improve its detection
performance. Furthermore, almost all images in the real world contain noise or resolutions inadequate
for the implementation of machine vision methods. In terms of industrial scenarios, the template
matching-based method is not suitable for object detection in engineering diagrams.

In electrical EDs, circuit symbols can be recognized with morphological operations and geometric
analyses [17]. A convolutional neural network can be used to recognize the symbols in hand-sketched
engineering diagrams and convert them to a computer-aided design (CAD) program [18]. Adapting the
Hopfield model, an iterative neural network model was implemented for symbol recognition by
employing a prototype [19]. One symbol-classification method applied to P&IDs considered class
decomposition using k-means clustering [20]. Fully convolutional networks (FCN), which are an
end-to-end network for pixel-wise prediction, were first applied as object detection for P&IDs in [21].
In [22], the author proposed a method to extract various objects, including symbol, characters, lines,
and tables in a P&ID, using a machine vision method containing deep learning architecture. To reduce
human effort while validating the CAD documents, the P&IDs attributed by the graph form were
trained by a neural network and predicted the components vector which represents the diagram flow
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in [23]. However, these previous approaches toward symbol recognition for P&IDs could not control
the detection quality effectively for the symbols in the diagrams. Their applicability to real diagrams
could not be confirmed because unpredictable objects were detected during the region proposal.
This makes it difficult to recognize the target symbol owing to the characteristics of engineering
diagrams made up of quasi-binary components.

In object detection, certain algorithms have delivered remarkable performances in recent years.
The appearance of convolution networks has heralded significant improvements in image-classification
problems. Even so, unlike basic image classification, object detection requires the solution not only of
multi-labeled classification problems but also the bounding boxes for proposed regions in a digital image.
To achieve this, networks for object detection employ a region proposal network (RPN), which plays the
role of finding the symbol-region candidates, before classifying images. In a region-based convolutional
neural network (R-CNN) [24], a selective search algorithm [25] was used for the RPN, and the boxed
images were fed to the network for classification. RPN extracts numerous boxes from an image,
considering the colors, scale, boundary, etc., of the object. The proposed regions are reshaped
before being fed into the convolutional network for image classification. However, R-CNN has
inherent limitations; it is expensive and slow. All processes in R-CNNs, from the RPN to the
convolutional network, render the model inefficient and slow to detect objects in an image in real-time.
Advanced models such as Fast R-CNN [26] and Faster R-CNN [27] improve network performance
and speed by including the RPN in the neural network. In fast R-CNN, by employing a selective
search algorithm as the RPN and implementing it into the neural network, it becomes possible to
combine the different procedures into one end-to-end network. In Faster R-CNN, to reduce time
consumption in the selective search algorithm, the algorithm was replaced by a combined neural
network, which made the detection much faster. Many other state-of-the-art algorithms are being
proposed as next-generation object identification strategies [28,29]. However, these have focused on
problems such as the improvement of model accuracies for colored images, improvement of detection
speeds, and image segmentation (i.e., the process of partitioning the image into a set of pixels with
multiple segments). However, engineering diagrams have a characteristic difference from colored
images; they are an almost-binary component matrix with a specific size and shape for each symbol.
This makes it difficult for a model to classify symbols using only limited information.

As an advanced application of object detection in EDs, we propose an R-CNN architecture
containing clustering. For the RPN, we implement a sequential image-processing method that is
modified for two types of target symbols: valves and instruments. By modifying the image-processing
method for region detection, we propose candidate symbol regions using size-based detection. After the
RPN, we get the symbols, but we also get the meaningless regions inevitably, such as truncated line,
curve, noise, and so on, we call these ‘dummy’. The detected dummy images are decomposed by
unsupervised learning methods, and negative classes are assigned to them for image classification.
For images containing positive classes, which are our target symbols, the dataset is augmented with
padding-block. Through a simple convolutional network, the multi-class classification model is trained
and applied to new diagrams for the model test.

In this research, we propose a model based on an R-CNN architecture that features dummy image
clustering. A sequential image-processing method is used for the RPN, instead of a selective search
algorithm. After the RPN, the dataset is constructed by positive classes, and dummy clustering is
applied to treat the unwelcomed detections as negative classes; thereby improving the classification
performance of the convolutional network. The remainder of this paper is organized as follows.
Section 2 provides the methodology for the extraction of target symbols from P&IDs. Based on our
proposed method, the region proposal and symbol-recognition results are discussed in Section 3.
Finally, we conclude the paper in Section 4.
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2. Materials and Methods

Here, we propose our R-CNN framework for recognizing graphical symbols in P&IDs, as shown in
Figure 1. There are two main types of graphical symbols targeted in this study: valves and instruments.
These symbols have characteristics such as size and shape, as shown in Figure 2. Using these
characteristics, we construct an RPN by modifying several image-processing techniques. There are
two types of proposed regions: symbol and dummy. For data annotation of the symbols representing
positive samples, a P&ID symbol and legend sheet are referred to, which provide the standard set of
shapes and symbols for documenting the diagram.

Figure 1. A framework summary for symbol recognition of the piping and instrument diagram (P&ID).

Figure 2. Graphical characteristics of the target symbols.

For the dummy images representing negative samples, two unsupervised learning algorithms:
k-means clustering and deep adaptive clustering (DAC), are used to analyze their hidden patterns and
assign classes. After the annotation is completed, data augmentation is applied to generate additional
information about the symbols. A convolutional neural network (CNN) is used to classify the symbols
in this research owing to its superiority in local feature extraction [30]. After training the network,
we apply it to another diagram in the same project and verify the results.

2.1. Data Sets

To implement the proposed framework and validate its performance, we use 10 pages of P&IDs
from a real project. The resolution of the diagrams is 300 dpi in A3 size; thus, they contain approximately
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4000 × 3000 cubic pixels. Of the 10 pages, we take seven and apply the region proposal method to
construct our dataset of the proposed regions, which contains both positive and negative samples.
After augmentation by padding (100 × 100 pixels), this is fed into a simple CNN.

We construct and compare three models based on the type of data that they use—positive samples
only (P), positive with negative samples through k-means clustering (PN_Kmeans), and positive with
negative samples through deep adaptive clustering (PN_DAC). To investigate and test our models,
they are coded using Python with a Tensorflow backend. We also maintain the same computational
conditions using NVIDIA TITAN V with 8 GB GDDR5.

2.2. Region Proposal

Region proposal is the process to extract candidate regions of symbols. Instead of apply the
selective search algorithm, we build a customized process to extract the candidate regions in EDs as
given in Figure 3.

Figure 3. Procedure followed by the proposed region proposal network (RPN).

There are several points of incongruence in the selective search algorithm. For the proposal of
candidate regions, the selective search algorithm uses the traits of an image, such as its color and
boundary. However, this is not appropriate for the detection of an object in a binary image, such as
an engineering diagram. To investigate the most-suitable algorithm for an engineering diagram,
we implement sequential image processing to create proposal regions; this detects the potential
target symbols by their characteristics. The sizes and shapes of plant symbols are specified in the
diagram; therefore, it is possible to modify the image processing technique for each type of target
symbol—valves or instruments—as they have a set size and aspect ratio in copies with identical
resolutions. Thus, using copies of the input image, the characteristics of each target symbol can
be reflected and sought for in each step. To modify the progress, we divide it into four parts: (1)
image binarization, (2) non-target removal, (3) morphological transformation, and (4) CC analysis,
as shown in Figure 3.

In image binarization, the adaptive threshold method [31] is used to reduce the noise present
in the input images and convert them into a binary representation. Comparing a pixel against the
average of those surrounding it preserves hard contrast lines and discards soft gradient changes.

In the non-target removal step, we remove the obstacles for the detection of each symbol. In the
case of valve detection, other symbols such as lines, instruments, and pipe fittings are considered
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obstacles to clear detection. This process is employed as an intermediate stage to remove the obstacles
and reduce the number of meaningless detections in the region-proposal step. For line removal,
dilation kernels are used in the horizontal and vertical directions, with the structures being (1 × p)
and (q × 1), respectively. The kernel parameters p and q are adjusted by considering the size of the
symbol. In this study, we use a length similar to the shortest side of the symbol. For non-target symbol
removal, a CC analysis algorithm [11] and Hough circle algorithm [32] are used to find the contours of
the non-targeted objects such as instruments and pipe fittings.

In the morphological transformation step, “Closing,” which is derived from the basic operations
of erosion and dilation, is commonly used to enhance object outlines and small cover-up holes
in the image [33]. Through this closing method, the floating objects retained from previous steps
protect those background regions that have a similar shape to their kernel, while deleting all other
background pixels [34].

Finally, to propose regions for the candidates of the target symbol, CC analysis is used with the
constraints of symbol size and aspect ratio. The algorithm analyzes the topological structure of binary
images. At the level of individual pixels, it considers 4-(8-) neighboring regions for the connected
cases. We assume each symbol size and aspect ratio as prior knowledge in the detection. Figure 2
presents the schematic procedure of our region-proposal method. The image processing for region
proposal plays a role in reducing the total number of proposed regions, and it adjusts the detection of
undesirable objects called dummies.

After the region proposal step, we construct a dataset for the classification network as given in
Figure 4. There are two types of proposed regions: symbol and dummy. Symbols are our positive
samples; they are the gate valves, check valves, sensors, etc. Dummy entities have unpredictable
shapes and sizes, are not within our interest, and make it difficult to classify symbols through the
machine learning algorithm. Therefore, they are considered to be negative samples. For the positive
dataset, we use the P&ID symbol and legend sheets, which provide a standard set of symbol shapes
and legends for documenting diagrams and assign the symbol images for each class, such as gates,
balls, globes, checks, etc. From the proposed regions, the positive samples are manually classified into
10 classes according to their shape and function.

Figure 4. Data annotation: positive/negative samples.

2.3. Dummy Clustering

Aside from the positive samples, numerous images remain from the proposed regions, which are
called dummies. They consist of curved lines, arrow shapes, revision clouds, or cut entities, as shown
in Figure 3. It is difficult for the region proposal method to control the detection of dummy entities
because the diagrams are quasi-binary representations and consist of many entangled lines and entities.
In this research, we assign the negative classes of the detected dummies to improve the classification
performance and consider the applicability of the procedure to real projects.

Dummies are obstacles for the classification model seeking to identify target symbols from a
pool of proposed regions. P&ID is a type of grayscale image that is composed of only one channel,
therefore, there is an arbitrary limitation to classifying the proposed regions when only using the
positive samples from the target data. Furthermore, in the region-proposal network, the patterns of
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the detected dummies are unpredictable because it is difficult to erase all non-target entities during
image processing. These patterns, such as shape, size, and detection frequency, are uncertain in every
diagram, and this makes it difficult for the model to identify the target from the pool of detection
images. Therefore, we assign negative samples to the classification models with unsupervised learning
algorithms. To decompose the pool of dummy images and assign the class as a negative sample,
we apply two unsupervised learning algorithms—k-means clustering and deep adaptive clustering
(DAC). K-means clustering is a basic unsupervised learning algorithm. It is an iterative method to
locating k-centroids in the dataset [35]; it locates them by optimizing the position of each centroid,
based on the L2 norm in the feature space, as shown in Equation (1):

argminC

K∑
i=1

∑
xj∈Ci

‖xj − ci‖2 (1)

X = C1 ∪C2 · · · ∪CK, Ci ∩Cj = φ (2)

The quantity x represents a pool of unlabeled data, and ci is a centroid of the i-th cluster, Ci.
DAC is also applied to decompose the hidden patterns of the dummies with an advanced

method [36]. It is one of the state-of-the-art algorithms for the image-clustering problem that uses
a convolutional architecture and cosine distance to measure the similarity of pairwise images with
adaptive parameters. It delivers superior performance in image clustering owing to its adaptive-learning
algorithm. The network solves the image-clustering problem as a binary pairwise-classification problem.
The flowchart is presented in Figure 5.

Figure 5. Flowchart of the deep adaptive clustering (DAC) algorithm [36].

Initially, unlabeled images are input to the convolutional network to generate a provisional latent
vector for the image. Using the latent features, cosine similarities between pairwise images xi and xj
are calculated; then, a confusion matrix is constructed for every batch. The network objective function
is defined by:

MinθE(θ) =
∑
i, j

L
(
rij, li·l j

)
, (3)

s.t. ∀i, ‖li‖2 = 1, and lih ≥ 0, h = 1, · · · , k (4)

where rij is the unknown binary variable; if the pair of input images are in the same cluster, then rij = 1,
otherwise, rij = 0. ‖·‖2 represents the L2 norm of a vector, and lih represents the h-th element of the
label feature of the k-dimensional latent vector li. As the cosine similarity of the input image pair
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can be formulated by li·l j, the objective function of DAC is expressed by the loss between rij and li·l j.
The expression for L

(
rij, li·l j

)
is formulated as follows:

L
(
rij, li·l j

)
= −rij log

(
li·l j

)
−

(
1− rij

)
log

(
1− li·l j

)
(5)

However, the unknown variable rij is prior information. Thus, an adaptive parameter λ is applied
for the stepwise threshold value; we use μ(λ) and l(λ) as the values for selecting similar (or dissimilar)
image pairs.

rij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, i f li·l j ≥ μ(λ)
0, i f li·l j ≤ l(λ), i, j = 1, · · · , n
None, otherwise,

(6)

In the clustering process, the value of λ starts at a specific value and gradually increases.
Besides this, the relationships μ(λ)∝λ, l(λ)∝λ, and l(λ) ≤ μ(λ) are set in the algorithm. After finishing a
batch process, the parameter λ is also updated by the gradient descent algorithm.

MinλE(λ) = μ(λ) − l(λ) (7)

λ := λ− η·∂E(λ)
∂λ

(8)

Here, η represents the learning rate of λ. Using this adaptive modification of the parameter λ,
the algorithm performs a stepwise selection between the pair images with increasingλ. The performance
of the DAC is detailed for various datasets in [36]; it delivers the best performance in a binary image
clustering problem, such as MNIST when compared against other clustering methods. Therefore, as an
advanced method to decompose dummy images, DAC is applied in this research, and the results are
compared with those of the k-means clustering.

The detailed architecture of DAC is summarized as follows. After the input images are padded by
100 × 100, we use six convolutional layers with a (3 × 3) kernel size, (1 × 1) stride, ReLU (Rectified
Linear Unit) activation, and padding of the same structure in this network. The number of filters in
each layer are 64, 64, 64, 128, 128, and 128, respectively. A max-pooling operation is applied with a
(2 × 2) kernel and (2 × 2) stride. In fully connected layers, hidden units contain 128 and 64 nodes with
ReLU activation. In all the layers, batch normalization is used to prevent the outputs of the hidden
nodes from fluctuating. For adaptive learning, we set the selection-control equations according to
Equations (9) and (10):

u(λ) = 0.95− λ (9)

l(λ) = 0.455 + 0.1·λ (10)

There are 451 instances of dummy images from the seven pages of P&IDs. Using these two
algorithms, the hidden patterns of the dummy pool are identified; then, we automatically assign them
into k classes as negative samples. In this research, the value of k is fixed at 13. The optimum value of
k is also an issue in clustering problems; however, we only focus on the effects of assigning a negative
class for classification networks.

Table 1 presents the results of the data structure with positive and negative classes. Based on the
clustering results, 13 negative classes are constructed, along with 10 positive classes. After annotating
the data, which contains a total of 23 classes for the proposed regions, data augmentation [37] is applied
to enhance the information in each class. To augment data, we apply two methods, central movement,
and rotation. Central movement means that the extracted images from the RPN are padded by
100 × 100, before entering the network. We implement it moves 1 × 1.3 × 3 pixels around the center of
the image to catch a located symbol a little sideways for the same class. The rotation is also applied
because some valves exist in a rotated form in the diagrams, so, in this study, only 45, 90, 135, 180, 225,
270, and 315 rotation angles were implemented to catch the rotated symbol.
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Table 1. Data annotation and augmentation.

Annotation Type Classes Instances
Instances

(after Augmentation)

Positive 10 1213 29,620
Negative 13 451 4610

Total 23 1664 34,230

2.4. Convolutional Network

Several machine-learning methods can be applied to the image-classification problem, including the
support vector machine, random forest, and neural network-based models; however, we implement a
simple convolutional neural network as our classification model to extract local information of the
image data by convolutional and max-pooling filters [37].

The detailed model structure is presented in Figure 6. We construct three convolution layers and
two fully connected layers in the network. The number of convolution filters in each layer is 64, 128,
and 256, respectively. A kernel size of (3 × 3), a stride of (1 × 1), and a max-pooling layer with (2 × 2)
filters are used for local feature extraction. Fully connected layers consist of 256 and 23 units, and the
ReLUactivation function is used throughout our model, except for the end unit, wherein a softmax
function is used. For generalization of the model, the dropout method [38] is applied, which is set at
0.7. The purpose of the dropout is to prevent overfitting problems in the neural network-based model
by applying a zero forward-direction propagation value stochastically to every layer.

Figure 6. R-CNN scheme for symbol recognition of P&ID.

2.5. Evaluation Metric

Considering the target symbols in the diagrams and the requirements of practical applications,
we suggest two metrics for validating the proposed framework-symbol recognition rate (SR) and
dummy detection rate (DR), using a constant confidence threshold of 0.7.

SR (%) =
The Number o f Correct Recognitions

The Number o f Symbols in the diagram
× 100 (11)

DR (%) =
The Number o f Dummies Con f used with Symbols

The Number o f Model Predictions
× 100 (12)
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SR is the number of correctly recognized symbols divided by the number of symbols in the
diagrams. It describes to what extent the model correctly detects the target symbols in the diagrams.
DR is calculated by dividing the number of dummy images confused with symbols by the number of
model predictions. It also describes the capacity of our model to distinguish dummies from symbols.
If the model is well-trained in object detection for P&IDs, the value of SR will be large, whereas the
value of DR will be small. In this study, the models are validated and compared with each other using
these two metrics.

3. Results

3.1. Region Proposal Results

Figure 7 summarizes the region proposal results. The target symbols-valves and instruments were
well-detected in these results. We implemented a customized procedure for each target symbol and
integrated the proposed regions into one diagram. All the targets in the diagram were detected using
image processing. For each target, the image processing was set to modify the overlapping contours in
the detected regions.

Sine the proposed regions were detected by size constraints in the contour method—that is the
CC analysis—there were unwelcomed images in the resulting diagram. These had a similar size to
the target and represented sliced lines, the edges of instruments, entangled lines, etc. To reduce the
number of dummy detections, the size constraints were used to customize the image processing for
each target by adopting the target size as prior knowledge. The main purpose of the region proposal
was to identify the candidate regions where the target symbol might exist; therefore, a noteworthy
advantage of the process is that we are not required to focus on making the number of candidate
symbols as small as possible; they must be detected conservatively and passed into the convolutional
network for target identification.

Figure 7. Sample results of the region proposal network (RPN).

From these proposed regions, we obtained a pool of images containing symbols and dummies.
In the P model, only the symbol data are constructed as the dataset for the classification model.
On the other hand, in the PN models, both symbols and dummies are incorporated into the model.
To assign classes to the dummies, a series of detected dummies was decomposed through the clustering
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algorithms. Consequently, the effects of negative classes on symbol recognition in engineering diagrams
were analyzed; these are described in the following section.

3.2. Effects of Negative Classes

First, we only investigated the positive samples to test the performance of the model. The model
recognized symbols in the test diagrams but could not distinguish dummy images from the proposed
region. This demonstrates that the model, which is only trained with positive samples, can distinguish
only symbols. We could observe that both PN models-k-means and DAC were superior to the P model
in terms of target-symbol classification from the proposed regions. In Figure 8a, the symbols were
well recognized by the P model, but dummies were also detected in the results. This means that the
model, which was trained only on positive data, had a weakness in identifying negative samples as
false. In contrast, PN models such as Figure 8b exhibited strong discriminative performance between
symbols and dummies. The dummies confused with the check valves and gate valves were filtered out
by the PN models. These results indicated that the assignment of a negative class for classification
gives the model the ability to effectively identify symbols from the pool of binary component images.

 
Figure 8. Sample results from the (a) P_model, (b) PN_Kmeans model.

We verified this statement in Table 2. In terms of SR—the extent to which the model could
recognize the symbols in the diagram—all the models delivered good performance of over 96%.
The PN_DAC model outperformed the other two, with 98.08%. This suggests that in the PN models,
there was enhanced ability to classify targets through the assignment of a negative class.

Table 2. Results of the models.

Model Type SR (%) DR (%)

P Model 96.97 42.31
PN_Kmeans Model 97.88 1.35

PN_DAC Model 98.08 0.39
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DR demonstrated the remarkable ability of both PN models. In the P model, 42.3% of the dummy
images from the test diagrams were confused with our target symbols. This meant that the P model
was incapable of identifying what images represented a genuine symbol. Due to the characteristics of
EDs, i.e., their binary representation, it was difficult for the model to recognize them. In the latent space
of the convolutional network, the latent features of both the dummies and the symbols were confused
with each other under the P model because it does not possess any information concerning negative
images. Hence, we conclude that negative classes are required for object-detection algorithms in EDs.

Compared to the P model, the models that consider negative samples achieve a significant reduction
in the dummy detection rate. Binary images contain only a limited amount of information. Although most
images in real-world applications consist of three channels-red, green, and blue-engineering diagrams
consist of one channel-grayscale. They feature only one channel, which consists of quasi-binary
components; hence, there is limited information available in the image, such as local features or pixel
intensity. In this respect, we can say that for engineering diagrams to effectively recognize plant
symbols and discard the detected dummies from the proposed regions, a dataset containing positive
and negative classes is required. Consideration of the negative results yields the additional model
information through which candidates can be assessed effectively.

3.3. Effect of Clustering Methods

In Table 3, it is shown in a confusion matrix to depict the performance of PN_DAC model.
The PN_DAC model exhibits the optimum performance in SR and DR, with 98.08% and

0.39%, respectively. Though both PN models-k-means and DAC-had a low dummy detection
rate, the PN_DAC model recorded a lower score in dummy detection than the PN_Kmeans model
by approximately 1%. This resulted from the differences between the image clustering methods.
The k-means clustering is an iterative algorithm based upon Euclidian distance, which represents a
simple quantitative distance between entities in feature space. It does not consider the direction of the
feature. Consequently, the algorithm is too weak to construct with high-dimensional data such as that
contained within image representations. In contrast, the PN_DAC model obtains the latent features
of the data by performing efficient feature extraction using a convolutional network. As shown in
Table 3, most of the confusion is created among these symbol classes, except for the three-way valves,
ball valves, and sensor symbols. We also calculate F1 scores for each symbol in PN_DAC model,
as given in Table 4. By solving the pairwise binary classification problem with adaptive parameters,
the model delivered good performance that could be interpreted as a good analysis of the hidden
patterns in the regions. DAC has configured the negative class to make it easier to distinguish between
the classes, thereby increasing its performance by entering well-defined data into the model.
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Table 4. F1 score for each class (PN_DAC).

Class F1 Score

3way_Vlv 0.89
Ball_Vlv 1.00
Gate_Vlv 0.97

Butterfly_Vlv 0.95
Check_Vlv 0.85
Relief_Vlv 0.75
Globe_Vlv 0.93

Utility 0.90
Sensor 1.00

PLC 0.91

4. Conclusions

In this study, an R-CNN for engineering diagrams was proposed, taking negative classes into
account. For an RPN, sequential image processing was modified for each target—valve and instruments.
To annotate the negative class for the dummy images, two unsupervised learning algorithms–k-means
and DAC–were applied to decompose the hidden patterns of the dummies, and assign negative
classes. A simple convolutional network was used as the classification model because of its superior
characteristics in terms of local information extraction from the images.

There were three types of datasets used for the classification problem—positive (P model),
positive with negative through k-means (PN-Kmeans model), and positive with negative through
DAC (PN-DAC model). Compared to the P model, both k-means and DAC had relatively low dummy
detection rates of 1.35% and 0.39%, respectively, because the negative class from the unsupervised
algorithm improved the model’s ability to distinguish dummies from the symbols in the diagrams.
Moreover, DAC was a superior algorithm for decomposing binary representations, as the PN-DAC
model had superior performance, in which the symbol recognition rate (SR) and the dummy detection
rate (DR) were 98.08% and 0.39 %, respectively.

From these results, we can verify that the proposed model meets the applicability and practicality
criteria for P&ID object detection algorithms. The algorithm’s negative sample detection reduces due
to dummies, which makes its application to real projects difficult. This object detection algorithm is
expected to contribute to the automatic digitalization of engineering diagrams. Regarding further
work, state-of-the-art algorithms for object detection, such as Faster R-CNN, You Only Look
Once(YOLO)_v3, and Single Shot Multi-Box Detector (SSD), could be modified to suit engineering
diagrams. For real-world applications, a tiny-object detector also would be useful as a plant symbol
recognition model.

Author Contributions: Conceptualization, D.-Y.Y.; methodology, D.-Y.Y.; software, D.-Y.Y. and S.-K.S.; validation,
D.-Y.Y. and S.-K.S.; formal analysis, D.-Y.Y. and S.-K.S.; investigation, D.-Y.Y.; resources, D.-Y.Y.; data curation,
D.-Y.Y.; writing—original draft preparation, D.-Y.Y. and S.-K.S.; writing—review and editing, D.-Y.Y. and S.-K.S.;
visualization, D.-Y.Y.; supervision, C.-J.L. and U.Z.; project administration, C.-J.L. and U.Z.; funding acquisition,
C.-J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Chung-Ang University Research Grants in 2018 and Seoul R&BD
Program (20191471).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

154



Appl. Sci. 2020, 10, 4005

References

1. Howie, C.; Kunz, J.; Binford, T.; Chen, T.; Law, K. Computer interpretation of process and instrumentation
drawings. Adv. Eng. Softw. 1998, 29, 563–570. [CrossRef]

2. Moreno-García, C.F.; Elyan, E.; Jayne, C. New trends on digitisation of complex engineering drawings.
Neural Comput. Appl. 2018, 31, 1695–1712. [CrossRef]

3. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man, Cybern. 1979,
9, 62–66. [CrossRef]

4. Sauvola, J.; Pietikäinen, M. Adaptive document image binarization. Pattern Recognit. 2000, 33, 225–236.
[CrossRef]

5. Kittler, J.; Fu, K.S.; Pau, L.F. Pattern Recognition Theory and Application; D. Reidel Publishing Company:
Dordrecht, Holland, 1981; Volume 81, pp. 292–305.

6. Ballard, D. Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 1981, 13, 111–122.
[CrossRef]

7. Kiryati, N.; Eldar, Y.; Bruckstein, A. A probabilistic Hough transform. Pattern Recognit. 1991, 24, 303–316.
[CrossRef]

8. Matas, J.; Galambos, C.; Kittler, J. Robust detection of lines using the progressive probabilistic hough
transform. Comput. Vis. Image Underst. 2000, 78, 119–137. [CrossRef]

9. Yu, B. Automatic understanding of symbol-connected diagrams. In Proceedings of the 3rd International
Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 803–806.

10. Datta, R.; Mandal, P.D.S.; Chanda, B. Detection and identification of logic gates from document images
using mathematical morphology. In Proceedings of the 2015 Fifth National Conference on Computer Vision,
Pattern Recognition, Image Processing and Graphics (NCVPRIPG), Patna, India, 16–19 December 2015;
pp. 1–4. [CrossRef]

11. Suzuki, S.; Abe, K. Topological structural analysis of digitized binary images by border following. Comput. Vis.
Graph. Image Process. 1985, 30, 32–46. [CrossRef]

12. Fletcher, L.; Kasturi, R. A robust algorithm for text string separation from mixed text/graphics images.
IEEE Trans. Pattern Anal. Mach. Intell. 1988, 10, 910–918. [CrossRef]

13. Cote, M.; Albu, A.B. Texture sparseness for pixel classification of business document images. Int. J. Doc.
Anal. Recognit. (IJDAR) 2014, 17, 257–273. [CrossRef]

14. Mokhtarian, F.; Abbasi, S. Matching shapes with self-intersections: Application to leaf classification.
IEEE Trans. Image Process. 2004, 13, 653–661. [CrossRef] [PubMed]

15. Tuncer, T.; Avci, E.; Çöteli, R. A new method for object detection from binary images. In Proceedings of
the 2015 23nd Signal Processing and Communications Applications Conference (SIU), Malatya, Turkey,
16–19 May 2015; pp. 1725–1728.

16. Belongie, S.; Malik, J.; Puzicha, J. Shape matching and object recognition using shape contexts. IEEE Trans.
Pattern Anal. Mach. Intell. 2002, 24, 509–522. [CrossRef]

17. De, P.; Mandal, S.; Bhowmick, P. Recognition of electrical symbols in document images using morphology and
geometric analysis. In Proceedings of the 2011 International Conference on Image Information Processing,
Shimla, India, 3–5 November 2011; pp. 1–6. [CrossRef]

18. Fu, L.; Kara, L.B. From engineering diagrams to engineering models: Visual recognition and applications.
Comput. Des. 2011, 43, 278–292. [CrossRef]

19. Gellaboina, M.K.; Venkoparao, V.G. Graphic symbol recognition using auto associative neural network
model. In Proceedings of the 2009 Seventh International Conference on Advances in Pattern Recognition,
Kolkata, India, 4–6 February 2009; pp. 297–301.

20. Elyan, E.; García, C.F.M.; Jane, C. Symbols classification in engineering drawings. In Proceedings of the 2018
International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018.

21. Rahul, R.; Paliwal, S.; Sharma, M.; Vig, L. Automatic information extraction from piping and instrumentation
diagrams. In Proceedings of the 8th International Conference on Pattern Recognition Applications and
Methods, Prague, Czech Republic, 19–21 February 2019; pp. 163–172.

22. Yu, E.-S.; Cha, J.-M.; Lee, T.; Kim, J.; Mun, D. Features recognition from piping and instrumentation diagrams
in image format using a deep learning network. Energies 2019, 12, 4425. [CrossRef]

155



Appl. Sci. 2020, 10, 4005

23. Rica, E.; Moreno-García, C.F.; Álvarez, S.; Serratosa, F. Reducing human effort in engineering drawing
validation. Comput. Ind. 2020, 117, 103198. [CrossRef]

24. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

25. Uijlings, J.R.R.; Van De Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective search for object recognition.
Int. J. Comput. Vis. 2013, 104, 154–171. [CrossRef]

26. Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 11–18 December 2015; pp. 1440–1448.

27. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection With Region Proposal
Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 36, 1137–1149. [CrossRef]

28. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988.

29. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. Available online: https://arxiv.org/abs/
180402767 (accessed on 8 August 2019).

30. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
Commun. ACM 2017, 60, 84–90. [CrossRef]

31. Peuwnuan, K.; Woraratpanya, K.; Pasupa, K. Modified adaptive thresholding using integral image.
In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering
(JCSSE), Khon Kaen, Thailand, 13–15 July 2016. [CrossRef]

32. Duda, R.O.; Hart, P.E. Use of the Hough transformation to detect lines and curves in pictures. Commun. ACM
1972, 15, 11–15. [CrossRef]

33. Gonzalez, R.C.; Woods, R.E.; Masters, B.R. Digital image processing, third edition. J. Biomed. Opt. 2009,
14, 029901. [CrossRef]

34. Vermon, D. Machine Vision: Automated Visual Inspection and Robot Vision; Prentice Hall: New York, NY, USA,
1994; Volume 30.

35. Vilalta, R.; Achari, M.-K.; Eick, C. Class decomposition via clustering: A new framework for low-variance
classifiers. In Proceedings of the Third IEEE International Conference on Data Mining, Melbourne, FL, USA,
22–22 November 2003; pp. 673–676.

36. Chang, J.; Wang, L.; Meng, G.; Xiang, S.; Pan, C. Deep adaptive image clustering. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017.

37. Wiradarma, T.P. Comparison of Image Classification Models on Varying Dataset Sizes; Hasso Plattner Institute:
Potsdam, Germany, 2015.

38. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving Neural Networks
by Preventing Co-Adaptation of Feature Detectors. 2012, pp. 1–18. Available online: http://arxiv.org/abs/
1207.0580 (accessed on 12 August 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

156



applied  
sciences

Article

Data-Driven Design Solution of a Mismatch Problem
between the Specifications of the Multi-Function
Console in a Jangbogo Class Submarine and the
Anthropometric Dimensions of South Koreans Users

Jihwan Lee 1, Namwoo Cho 2, Myung Hwan Yun 2 and Yushin Lee 3,*

1 Department of Technology Management Economic and Policy, Seoul National University, Seoul 08826,
Korea; rhyjihwan@empal.com

2 Industrial Engineering, Seoul National University, Seoul 08826, Korea; chonamwoo@snu.ac.kr (N.C.);
mhy@snu.ac.kr (M.H.Y.)

3 Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
* Correspondence: keynote1112@gmail.com; Tel.: +82-10-2391-9199

Received: 26 November 2019; Accepted: 4 January 2020; Published: 6 January 2020

Abstract: The naval multi-function console provides various types of information to the operator.
It is equipment that is key for submarine navigation, and fatal human errors can occur due to the
mismatch between the console specifications and the operator’s body size. This study proposes a
method for deriving console specifications suitable for the body size of Korean users. The seat height,
seat width, seat depth, upper edge of backrest, and worktable height were selected as the target design
variables. Using six anthropometric dimensions, a mismatch equation for each target design variable
was developed. Anthropometric measures of 2027 Korean males were obtained, and the optimal
specifications of the console were derived via an algorithmic approach. As a result, the match rate,
considering all the target design variables, was improved from 2.57% to 76.96%. In previous studies
and standards, the optimal console specifications were suggested based on the anthropometric data
of a specific percentile of users, and it was impossible to quantitatively confirm the suitability of the
console design for the target users. However, the method used in this study calculated the match
rate using the mismatch equation devised for comfortable use of the console and a large amount of
anthropometric data that represented the user population, and therefore the improvement effect of
the recommended specification can be directly identified when compared to the current specifications.
Moreover, the methodology and results of this study could be used for deciding the specifications of
multi-function consoles in several fields, including nuclear power plants or disaster situation rooms.

Keywords: multi-function console; data-driven design; mismatch equation; anthropometric measures;
algorithmic approach; optimal design

1. Introduction

The naval multi-function console is part of the computer system of a battleship and it is designed
for communication between the user and the computer. The console is connected to various sensors
in the ship, it displays a variety of information, and the user is able to control the different types
of information.

Although the crew members of South Korean Navy ships perform a variety of tasks depending
on their position, most of the crew who are in the combat information and engine control rooms work
in front of the console for more than 8 h on a daily basis. Console operators handle various types of
information displayed on the console in a very concentrated state for a long period of time. Considering
the working characteristics of the console operators, they could be affected by various musculoskeletal
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disorders such as turtle neck syndrome and carpal tunnel syndrome, as well as chronic diseases such
as low back pain and neck pain, if the height of the worktable or seat is inappropriate for the user’s
body size [1]. In addition, the ongoing physical burden on the console operators could probably lead
to unintended operational errors, thus, reducing the mission efficiency and dispersing the focus on
console operations [2].

Anthropometry means measurements of the human body. It is derived from the Greek words
anthropos (man) and metros (measure) [3], and is needed in the design of machines, tools, and work
environments in order to improve well-being, health, comfort, and safety [4]. The anthropometric data
widely influence furniture design, and thus workplace design since the matching of body dimensions
and furniture dimensions is vital to promote proper body posture for the user. An absence of
anthropometry consideration would, in most cases, result in uncomfortable design for the targeted
users and worse, unsafe, and unhealthy conditions. Therefore, to make the workplace comfortable
for a person it should be designed based on an individual user’s anthropometric dimensions [5,6].
Because of the importance of anthropometry, many previous studies have applied anthropometric
methodologies to the design of the workplace [7–11].

Considering the improper posture of the console operator and the resulting decrease in
concentration, which may significantly impact the ability to conduct military operations, continuous
efforts to find the right specifications for the console operator’s body size are necessary. If human
factors and ergonomics (HF&E) approaches are not considered in the multi-function console design,
musculoskeletal disease and human errors are more likely to occur [12], and thus several studies have
emphasized HF&E’s importance in suggesting design guidelines for consoles [13–15]. ABS (2013),
MIL-STD-1472G (2013), and NUREG-0700 (2003) issued in the United States, are widely used as
standards to provide guidelines for maritime system design, military equipment design, and nuclear
power plant facility design, respectively. However, these standards mainly focus on providing minimum
requirements rather than optimal design parameters when HF&E departments have associated with
designers and engineers. In addition, the suggested criteria have been set based on the anthropometric
data of only U.S. citizens [12]. Moreover, the basis and procedure for the optimal specifications
recommended by these standards are unclear, and it is difficult to clearly confirm the improvement
effect of the proposed optimal specifications as compared with the existing specifications.

The Korean Navy has solely focused on software improvements for operational performance of
the console, and little attention has been given to hardware improvements to create a comfortable
and secure console operating environment for users. Additionally, in Korea, the research on the
development of military products that reflect the characteristics of the user’s body has been focused
on combat support systems such as military winter clothes, combat suits, and boots, and there is
a relative lack of research on the ergonomic design of weapon systems such as the multi-function
console. In the case of a combat support system, it is possible to improve a part of the product or
to change the product within a short period of time when it is introduced and used in the military.
However, the application of new design methods in a weapon system requires a longer period of time
for development, and much more attention should be paid to a user-centered environment than that of
a combat support system, because such design should be used for more than 20 years.

In this study, the console operating environment of the Jangbogo class submarine is presented
as an example of the problems that may occur in terms of ergonomics when the specifications of the
console are inappropriate for the user’s body size. The seat height of the Jangbogo class submarine can
be adjusted vertically, but the lowest height is measured to be 475 mm; seat width, seat depth, upper
edge of backrest, and worktable height of the Jangbogo class submarine are measured to be 490, 482,
510, 817 mm, respectively.

2. Methods

Figure 1 shows the procedure for evaluating and improving the specifications of the submarine’s
multi-function console.
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Figure 1. Procedure for design of submarine multi-function console using the anthropometric
methodology.

First, the key design variables for multi-function console were extracted, and the detailed
specifications of the current multi-function console were measured. Secondly, considering the context
of the use of the console, anthropometric measurements related to the key design variables were
identified. Third, the match conditions that guarantee a normal operation were also reviewed. Fourth,
to judge the appropriateness of the current multi-function console specifications, the anthropometric
dimensions were collected in consideration of the target population. Finally, after setting 70% of the
match rate as the goal criteria, the suitability of the current multi-function console specifications was
evaluated using a mismatch equation. In this study, an algorithmic approach was used to derive
the optimal console specification, given that the match rate of the current multi-function console
specifications did not reach the goal criterion.

2.1. Key Design Parameters for Naval Multi-Function Consoles

The multi-function consoles of Jangbogo class submarines have four consoles placed side-by-side,
as shown in the first diagram in Figure 2. The four consoles are 2740 mm wide and 1300 mm high.
The second diagram in Figure 2 is presented without the backrest to facilitate comprehension of the
various design variables related to the seat. The third diagram in Figure 2 shows a lateral view of the
console operator, also illustrating the specifications for different design variables.

First, the seat height (SH) of the seat refers to the vertical length from the floor to the highest
portion of the seat pan. Previous studies related to the sitting posture at the work environment or to
ergonomic design of student furniture have shown that the design of the SH is the utmost important
factor. This means that determining the SH is the most important measure for solving a mismatch
problem [16,17]. If the seat is too high, both feet are off the ground and high pressure is applied to
the skin tissue behind the knee [18–20]. If the SH is too low, the seat pan does not support the thighs,
and this can result in a large burden on the hips and an abnormally bent waist when sitting [21,22].
The current seat of the Jangbogo class submarine is designed to be adjustable for height. However,
considering the fact that three or more console operators operate the console alternately in one day and
a situation where the military is running an emergency training, there are instances when the operator
has to switch quickly with the main console operator. Therefore, calculating the optimum height of the
seat to return to the basic height would be very beneficial and effective in operating the console in
terms of context of use.
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Figure 2. Submarine naval multi-function console design dimensions. Seat height (SH), vertical
distance from the floor to the highest area of the seat pan; seat width (SW), horizontal distance from
the left to the right side of the widest part of the seat pan; seat depth (SD), horizontal distance from
the front to the rear of the longest part of the seat pan; upper edge height of backrest (UEB), vertical
distance from the seat pan surface to the upper edge of the backrest (UEB); worktable height (TH),
vertical distance from the floor to the worktable surface; underneath worktable height (UTH), vertical
distance from the floor to the lowest point below the worktable; worktable thickness (TT), thickness of
the worktable hardboard; and seat to table clearance (STC), vertical distance from the seat pan surface
to underneath the worktable.

The seat width (SW) of the seat is the width from the left to the right side of the widest part of the
seat pan. If the SW is too narrow, the sitting position may deviate from either side of the seat, and thus
the width of the seat should be designed to be wider than the width of the user’s hip [23–27]. Moreover,
the upper limit of the SW needs to be considered, given that the seats are designed in a confined space
and four console operators must sit side-by-side. In such context, Gouvali and Boudolos [28] argued
that it is necessary to take into account an efficient utilization of the interior space in the submarine
and to carefully derive the SW.

The seat depth (SD) is the length from the front to the back of the longest part of the seat pan. If the
SD is too long, the backrest cannot support the back and waist properly, and the pressure between the
front of the seat and the popliteal can increase, causing severe pain [20]. On the contrary, if the SD is
too short, the pressure caused by the user’s weight may not be evenly distributed through the user’s
hip and thigh, and the pressure may concentrate on a specific part of the body.

The upper edge height of backrest (UEB) means the vertical distance from the seat pan to the upper
edge of the backrest. If the UEB is higher than the scapula, it may interfere with the free movement
of the arms and torso [27,29]. Especially for console operators who work for more than 8 h per day,
the above-mentioned situation can disable very basic activities such as stretching. However, if the UEB
is too low, the back is not supported properly and this can induce excessive extension on the upper
part of the back, which can lead to serious back injury.

The worktable height (TH) refers to vertical distance from the floor surface to the console platform
surface. If the TH is too high, a console operator who frequently manipulates the keyboard and track
ball installed on the worktable can suffer from excessive flexion and abduction of the shoulder and
upper arm. In severe cases, this can lead to asymmetric spinal disorders. If the console TH is too low,
the upper body is constantly bent forward and this can lead to kyphotic spinal posture [30].

The underneath worktable height (UTH) represents the vertical height from the floor to the lowest
point of the worktable and the worktable thickness (TT) refers to the vertical distance from top to the
bottom of the worktable.

The seat to worktable clearance (STC) represents the space between the seat and the worktable
as the vertical distance from the extension of the seat pan surface to the bottom of the worktable.
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This design variable is determined by the interrelationship between the seat and the worktable height.
A too large STC implies that the seat is too low, or the worktable is too high. In such a case, discomfort
can be induced in the shoulder and upper arm of the console operator, hindering normal shoulder
movement. In contrast, if the STC is too narrow, sitting on the seat is not possible as the thigh can not
enter between the seat and the worktable.

As the thickness of the worktable is fixed at 100 mm, there was no need for calculating the console
UTH separately from the console TH. The STC between the seat and the worktable is also determined
naturally when the SH and the TH are derived. The UTH, TT, and STC were measured to be 717, 100,
and 142 mm, respectively.

Therefore, the SH, SW, SD, UEB, and TH were selected to be the final key design variables.

2.2. Anthropometric Criteria for Designing Naval Multi-Function Console in a Submarine

The age of the South Korean submarine crew ranges from 20 to 50 years, and they are only men.
To consider the age of submariners, the seventh Korean anthropometric dataset for the age groups
of 20–29, 30–39, 40–49, and 50–59 years were extracted from the survey made by SizeKorea in 2015.
Six anthropometric measurements related to the target design variables of console operations were
selected out of 133 anthropometric dimensions, as shown in Figure 3, which included: sitting thigh
thickness (STT), popliteal height (PH), hip height (PH), hip width (HW), horizontal length between
hips and ham (BPL), sitting shoulder height (SSH), and sitting elbow height (SEH).

 
Figure 3. Anthropometric measures used in this study. Popliteal height (PH), vertical distance from
the floor to the popliteal; hip width (HW), horizontal distance between the upper outer edges of the
iliac crest bones of the pelvis; buttock to popliteal length (BPL), horizontal distance from the back of the
buttocks to the popliteal; sitting thigh thickness (STT), vertical distance from the sitting surface to the
superior thigh; sitting shoulder height (SSH), vertical distance from the sitting surface to the acromion;
and sitting elbow height (SEH), vertical distance from the sitting surface to the underside of the elbow.

Descriptive statistical data of these six anthropometric measures for 2027 Korean males are
presented in Table 1. They were used as the variables in the mismatch equation of this study.
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Table 1. Anthropometric measures of Korean males between ages 20 and 50.

Anthropometric Measures
Mean

(n = 2027)
SD Min Max

Percentiles

5 50 95

Popliteal height (mm) 428.01 20.5 353 523 395 428 463
Hip width (mm) 355.26 23.5 287 475 320 354 394

Buttock to popliteal length (mm) 490.46 22.9 420 592 454 490 530
Sitting thigh thickness (mm) 151.20 14.3 108 280 130 151 175
Sitting shoulder height (mm) 607.39 25.9 522 702 565 607 650

Sitting elbow height (mm) 268.79 25.1 195 364 227 270 309

2.3. Mismatch Equation for Naval Multi-Function Console in a Submarine

On the basis of the anthropometric measurements of the South Korean male, the mismatch
equations used for specification of the key design variables in the submarine multi-function console
define the maximum and minimum limits of those specifications.

All variables used in the mismatch equation were calculated in millimeter units.
First, the anthropometric dimensions for determining the SH was taken as the PH considering the

sitting posture of the console operator as expressed in Equation (1). The shoe sole thickness (ST) was
selected as the environmental variable.

(PH + ST) ×Cos30
◦ ≤ SH ≤ (PH + ST) ×Cos5

◦
(1)

Equation (1) is based on constraints presented in Afzan, Hadi [31] and others [2,16,28,31–33],
and this implies that the console operator should be able to extend at least 5◦ to 30◦ below their knees
to feel comfortable when sitting in the seat. If the console operator sits at a right angle or at a smaller
angle with the floor, fatigue can occur below the knee because of contraction of the tibial anterior
muscle, and the excessive pressure can cause pain underneath the thigh if the knee is extended beyond
30◦. The soles of submariners’ shoes are designed to prevent onboard noise and shock and they are
measured to be 40 mm thick. Equation (1) used this measure for the calculation.

The anthropometric variable used to determine SW was selected based on the body part in contact
with the seat and the environment inside the submarine. As four consoles are arranged side-by-side,
as indicated in Equation (2), HW and STT are adopted. The thickness of various control devices that
are attached to the side of the seat pan, called manipulator thickness (MT), and the winter clothes
thickness (WT) of console operators are used as environment variables.

HW < SW ≤ 685− [STT + MT + (WT× 2)] (2)

Equation (2) is based on the equations discussed by Castellucci and Arezes [16] and other research
works [16,31,33], but these studies did not suggest an upper limit for the SW. In previous studies that
observed settings in offices and schools, there usually was a huge clearance between seats, and the
clearances did not cause excessive inconveniences or problems. A study by van Niekerk and Louw [34]
and others even suggests that the SW should be designed from 1.1 times to 1.3 times the HW for the
user’s comfort and effective internal space utilization [28,32,34]. This study proposes an upper limit
for SW considering the limited amount of space in a submarine setting, which requires it to be utilized
in a very efficient manner. Figure 4 illustrates the deployment of four multi-functional consoles in
Jangbogo class submarines.
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Figure 4. Deployment status of four submarine naval multi-function consoles.

In submarines, the consoles are arranged side-by-side to facilitate sharing of information among
the four console operators. In the case of Jangbogo class submarines, only 2740 mm of horizontal space
can be designed for all the consoles. If the seats are placed in the center of each console and if the
distance between seats is represented by the character “a”, the width of “a” should be at least wider
than the thickness of the user’s thigh considering the height of the seat because “a” should be designed
to at least allow the console operators to enter and exit at “a”. The fact that various control devices are
installed on the side of the seat pan and the instance where the submariners are required to quickly
return to the seat from working outside of the submarine to perform their tasks without taking off their
thick winter clothes must also be taken into consideration.

Therefore, in this study, the thickness of the control device was fixed to be 20 mm and WT was
fixed to be 10 mm resulting in a total thickness of 40 mm with the expression MT + (WT × 2).

Considering the sitting posture with user’s back fully in contact with the backrest, the SD is
determined using the BPL as shown in Equation (3) below.

0.80× BPL ≤ SD ≤ 0.95× BPL (3)

Equation (3) was determined referencing to the equations used by Cotton and O’Connell [35]
and others [2,16,31,33,35–43]. In particular, the coefficients presented in Equation (3) were calculated
through various clinical trials in previous studies, and they were derived considering appropriate levels
of comfortable knee extension and flexion when sitting with the hips and waist resting on the backrest.

As a parameter used for determining UEB, SSH was selected as shown in Equation (4) considering
that the human body is in direct contact with backrest.

0.60× SSH ≤ UEB ≤ 0.80× SSH (4)

Equation (4) was derived based on the findings of Agha [2] and other similar studies [2,31,32].
Each one of the coefficients, as those in Equation (3), was determined through a number of clinical trials.
NUREG-0700 [15] recommends that the back of the seat should be able to support the lumbosacral
region, which is the back curvature of the seat. Bendak and Al-Saleh [33] and Castellucci and
Arezes [16] suggested only the upper limit of the UEB, stating that the UEB does not limit the basic
upper body movement as long as the UEB is lower than the height of the user’s subscapula. However,
as emphasized in NUREG-0700 [15], if the UEB is low enough to fail to support the lumbar regions,
it cannot properly support the back and waist, leading to their excessive extension. Therefore, the
lower limit of the UEB must be also considered.
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Equation (5) for the STC was devised based on the concept that the console operator’s thigh
should be able to fit under the worktable.

STT + 20 + (2×WT) ≤ STC (5)

The existing research recommended 20 mm for the sitting thigh thickness [28,29,36], but we added
10 mm considering the WT.

TH is determined by SH, thickness of the worktable, and STC. Therefore, this can be expressed in
Equation (6) as follows:

TH = SH + TT + STC (6)

Combining Equations (1), (5), and (6), the lower and upper limits of TH can be determined as
expressed in Equation (7). In Equation (7), STT, SEH, PH, and SSH were selected as the anthropometric
variables, whereas TT, WT, and ST were selected as environmental variables.

Max[STT + 20 + (2×WT) + TT, SEH] +
[
(PH + ST) ×Cos30

◦] ≤ TH

≤ (0.8517× SEH) + (0.1483× SSH) +
[
(PH + ST) ×Cos5

◦] (7)

In Equation (7), the lower limit of the TH was chosen to be the higher value in between STC and
SEH. This means that, in the sitting state, the height from the floor to the console operator’s thigh
should be lower than the UTH, and the elbow should be able to reach the worktable comfortably. If TH
is lower than SEH, it would be very difficult to rest the elbows on the worktable without bending
down, and manipulation of the keyboard and track ball would force the operator to bend forward.
Considering the context of a console operator who heavily uses keyboards and track balls, the tension
in the shoulder and back muscles can only increase if the elbows are not comfortably sitting on the
worktable. The upper limit of the TH was derived by multiplying SEH and SSH by specific coefficients
and then adding the calculated numbers to the upper limit of SH. The coefficients multiplied by SEH
and SSH are given by the research of Parcells and Stommel [36] and Chaffin [44], who mathematically
calculated the range of motion of the shoulder’s flexion and abduction when working on a worktable
and resting the arms on the worktable. If the height of the worktable is greater than the upper limit
suggested by Equation (7), the shoulders can be excessively elevated upwards, or the arms are opened
too widely to the sides when the elbows are raised on the worktable. This can cause increased fatigue
and lead to musculoskeletal disorders of the shoulder and arm after a period of repeated tasks with the
given environment.

2.4. Data Treatment

The minimum and maximum acceptable limits were calculated using the mismatch equation with
specifications of six anthropometric measures. The equation was substituted with the anthropometric
measurements of 2027 Korean males in the age groups of 20 to 29, 30 to 39, 40 to 49, and 50 to
59 years to verify whether the current multi-function console is suitable for the Korean body sizes.
Each design specification of the current console that mismatched the Korean anthropometric dimension
was determined, and the reasons behind the mismatch were analyzed. This study used Excel 2016 and
SPSS25.0 to analyze the data. In addition, the greedy algorithm approach, which was utilized by Lee
and Kim [45] to find the optimal height system for the chairs and desks of Korean students, was applied
to derive the optimal specifications for the target design variables, and R programming was used to
implement the greedy algorithm to calculate the optimal specifications of the console. The greedy
algorithm approach is simple and primitive as it finds the maximum match rate of a specification by
substituting the anthropometric dimension of each user in the mismatch equation and incrementing it
by 1 mm sequentially for all possible specifications. Despite the simplicity of this algorithm, so far, it is
essentially the best possible polynomial time approximation algorithm for the maximum coverage
problem [46].
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3. Results

Figure 5 shows the mismatch rates of the key design variables of the current multi-function console.

 
Figure 5. Mismatch rate of design specifications of the present submarine console.

First, the match rate of the current SH of Korean male body size was found to be 31.62%.
In particular, the current SH was found to be higher than the body size of most men (68.28% of total),
who were determined to be mismatched for the current size of SH. This means that the current SH is
excessively high considering the user’s PH. In this case, the majority of men were incapable of naturally
touching the floor with their feet while resting their back on the backrest.

Secondly, the match rate of the current SW to the Korean male body size was 85.25%, and SW was
considered wider than the HW of all men. It was found that 14.75% of men were mismatched for the
current SW, which is wider than their anthropometric dimensions. The upper limit of the SW proposed
in Equation (2) was defined only to set an effective utilization of the limited space in a submarine
and, given that 14.75% of the Korean anthropometric dimensions were determined to be mismatched,
the current SW do not present any problem for sitting purposes.

Third, the match rate of the current SD turned out to be 21.51%. In particular, the current SD was
identified as inadequate for 78.49% of men as it was too long for their anthropometric dimensions.
This indicated that the current SD is relatively longer than the BPL. Therefore, these men cannot sit
with their backs in contact with the backrest or cannot bend their knees while sitting down. They are
very likely to sit very unnaturally or uncomfortably, for instance sitting on the end of the seat while
operating the console.

Fourth, the match rate of the current UEB for the Korean male size was 62.16%, and it showed
the highest match rate of all the key design variables. However, 37.84% of men were identified to be
mismatched for the current backrest height, which is higher than their scapula height. By limiting
their upper body rotation and basic movements, the current backrest height can stiffen the user when
operating the console for a long time.

4. Discussion

4.1. Analysis of Mismatch Conditions

This section examines whether the specifications of the multi-function consoles currently installed
in Jangbogo class submarines meet the specifications recommended in previous studies or the
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standards. The result of the mismatch equation is also carefully analyzed and organized for each key
design variable.

First, the current SH was found to be too high for the body size of the majority of Korean males.
ABS [13] and MIL-STD-1472G [14] recommend that the SH is between 380 to 540 mm considering
the user’s PH. Although the current SH complies with the range suggested by the above-mentioned
standard, considering the ST (40 mm), the current SH should be lowered as the average PH of Korean
males is 428.01 mm, and sitting with 475 mm of SH can cause discomfort to the users as their feet do
not touch the floor.

Secondly, the match rate of the current SW was 85.25%, which was significantly higher than the
match rate of the other target design variables. MIL-STD-1472G [14] and ISO9241-5 [47] recommended
that the seat should be at least 460 mm wide to fit the person with the widest hip. The current SW was
490 mm, and thus it was confirmed to meet the recommended specification. In addition, considering
the fact that the size of the widest HP of Korean male is 475 mm, the current SW is not expected to
cause any difficulty to the sitting task of console operators. However, the current seat is too wide
for 14.75% of men and the SW could be narrowed to more effectively utilize the limited space in the
submarine. It would not be a big problem to make the SW slightly narrower than it is now.

Third, the current SD has a match of only 21.51% for the Korean male body size and it turned out
to be the worst fit for most men. NUREG-0700 [15] and MIL-STD-1472G [14] recommended that the
depth of the seat should be from 381 to 431.8 mm considering the body size with the shortest BPL.
The current SD of the seats installed in Jangbogo class submarines is 482 mm, and thus it is much
longer than what is recommended. Among the Korean male anthropometric dimensions used in this
study, the dimension of the user with the shortest BPL is only 420 mm and the BPL of users in the
fifth percentile is only 454 mm. Therefore, it would be very difficult for them to bend their knees
comfortably while leaning back on their backrest and sitting with a correct posture on the seat. There
is a need to improve the SD by reducing the depth.

Fourth, the match rate of the current UEB was 62.16% and it is considered higher than the match
rate of other key design variables. MIL-STD-1472G [14] recommended that the UEB should be from
480 to 580 mm so that users can support their torso well while they are sitting. The current UEB of
the Jangbogo class submarine seat is 510 mm and it is considered to be in the recommended range.
However, 37.84% of users have a high UEB, and hence they are hindered from making basic upper
body movements. In addition, considering the unique usage context of the submarine console, where
there is an administrator who monitors the console information from behind the seat, it is necessary to
lower the UEB of the current seat.

Finally, the match rate of the current TH to the Korean male body size was only 16.63%. The TH is
closely related to the SH, STT, and PH [47]. MIL-STD-1472G [14] and ABS [13] recommended that the
TH should be in the range 740–790 mm and 650–810 mm, respectively. However, the current TH in the
Jangbogo class submarine is 817 mm, which is greater than the height recommended by the standard.
When the user works on a worktable that is higher than his or her body size, the manipulation of
the keyboard and track ball tasks for a long period of time can be restricted because the comfortable
operation of the shoulder joint and upper arm is not guaranteed.

Meanwhile, the STC is naturally determined by the SH and the TH. ISO9241-5 [47] suggested
that the STC should be designed in consideration of human body size with the thickest thigh, and
NUREG-0700 [15] recommended the STC to be at least 190.5 mm. The STC of the Jangbogo class
submarine is currently 242 mm, which satisfies the recommended specification of NUREG-0700 [15].
However, considering that the thickest STT measurement from SizeKorea is 280 mm, the vertical
adjustable range of the seat should be lowered further downwards.

The ISUS 83 combat command system and multi-function console of the Jangbogo class submarine
were acquired from Germany in 1992, and these were developed in the early 1980s to enhance the
performance of the German Navy’s 206 submarine. Therefore, it is very likely that these consoles were
built reflecting the dimensions of the German human body size measured in the 1980s. The German
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adult male had an average height of 180.5 cm in 1980 [48], whereas the Korean average height was
only 172.9 cm in 2015. Therefore, it is natural that the size of the console designed for the German
body size at the time mismatched the Korean male’s anthropometric dimensions. Therefore, to obtain
the optimal design specifications for the console matching the Korean anthropometric dimensions,
the specification for each key design variable is proposed in Section 4.2, based on the results of the
above analysis.

4.2. Recommendations for the Specifications of Submarine Naval Multi-Function Consoles Considering
South Korean Body Size

One of the most commonly used methods in the development of standard systems, which
was used in previous studies determining specifications of furniture for students, is the Ellipse
methodology [17,49,50]. This method recommends an appropriate design range based on the fifth to
95th percentile dimensions of the collected anthropometric dimensions. For example, this method
is implemented when determining the size of a hat; the head circumferences of the fifith and 95th
percentile hat users are measured, and then, the size of the hat is determined within the range of
the two.

In the case of the console, there are more anthropometric considerations to determine the
specifications of each key design variable. To produce a single specification that can accommodate as
many users as possible, it would be more appropriate to search for the optimal specification with the
maximum coverage problem rather than the elliptic methodology.

To maximize match rate between each specification of the key design variables and anthropometric
dimensions, the specifications listed in Table 2 were found to be the optimal.

Table 2. Recommended specifications for the South Korean submarine console.

Design Variable SH SW SD UEB TH

Recommended Specification 431 mm 442 mm 429 mm 442 mm 738 mm

Among the recommended specifications presented in Table 2, SH, SD, and TH were within the
recommend ranges in the previous standard, and UEB was approximately 38 mm lower than the
existing standard. However, considering that the previous standards are from measurements in the
United States and the fact that UEB is lower than the previous standard, while all the other design
variables meet the recommended specification at the lower limit, it is inferred that the recommended
specifications in Table 2 more practically reflect the Korean anthropometric dimensions for submarine
consoles than the previous standards.

The existing standard recommends the SW to be wider than 460 mm, while the derived specification
from the algorithmic approach was narrower by 18 mm. The widest hip width (475 mm) of Korean
male adults cannot sit in the recommended SW but it is enough to fit the 95th percentile (394 mm).
Considering the limited space inside the submarine, the seat specifications are considered to be
appropriate. In addition, according to the recommendation in Table 2, the STC is 207 mm, which meets
the minimum recommended standard proposed by NUREG-0700 [15]. Given that the seat can be
adjusted vertically, when the SH is adjusted at a lower level, the console operators with the thickest
thigh will be able to use the console.

Figure 6 shows a comparison between the match rate of the current console specification and that
of the recommended specification.
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Figure 6. Comparison of match rate between the present and recommended specifications of the
submarine console.

The match rates of the SH and TH are 81.15%, and it has been found that many more users can be
accommodated than before. The SW, SD, and UEB are expected to fit 99.70%, 92.95%, and 100% of the
Korean body sizes, respectively.

The rate of Korean males who have a suitable human body size for all five target design parameter
specifications in the current console specification is only 2.57%, thus, on the one hand, 97.43% of users
may have difficulties in using current console. On the other hand, it is expected that 76.96% of users
have a suitable human body size for recommended console specification, and therefore many more
users should be able to use the console comfortably as compared with the previous current console.
Furthermore, considering the SH is adjustable, the number of the users who can comfortably use the
console designed according to the recommended specifications is expected to be much higher.

In this study, human body size of only Korean males was used in calculating optimal design
specifications of submarine console used by Korean submariners. However, if the anthropometric data
for American or German users is applied with the methodology used in this study, it is expected that
the optimal console specifications suitable for Americans or Germans could also be easily derived.

5. Conclusions

In this study, we derived the optimal design specifications for a multi-function console of Jangbogo
class submarines that can accommodate, as much as possible, the anthropometric dimensions of
Korean males.

To calculate the appropriate ranges for the key design variables, the working posture, the
working environment, and the cooperation situation with other operational personnel were considered.
The anthropometric dimensions of 2027 Korean male adults were substituted in the mismatch equation
of each design variable to confirm the suitability of the Korean male body size for the current console.

All the key design variables, except the SW, were found to be inappropriate for the majority of
Korean male’s body sizes. To solve these problems of mismatch, we derived the optimal console
specification through an algorithmic approach. As a result of calculating the match rate, it was found
that the match rate can be improved up from 2.57% to 76.96% if the console is designed with the
specifications proposed in this study.
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The mismatch equation and algorithmic approach used in this study could further be used as a
guideline for the specification of various military consoles in Korea, and it could be used to design
work environments in various fields that operate multi-function consoles such as nuclear power plants
and disaster control centers.

However, the mismatch equation used in this study is based on the previous studies dealing with
the optimization of school furniture for the students or children. Therefore, it is necessary to verify
through further empirical experiments whether the proposed mismatch equation is also valid for the
working environment of the multi-function console and to continuously improve the equation if needed.
In addition, this study was limited to the search for the optimal specifications of design variables
related to the height of submarine consoles. Thus, in future research, the optimal specifications of
distance-related design variables, such as depth of worktable, horizontal distance between seats and
worktables, and placement radius of the various control buttons on the console, should be explored
based on the reach envelope of Korean users.
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Abstract: Parts with complex geometry have been divided into multiple parts due to manufacturing
constraints of conventional manufacturing. However, since additive manufacturing (AM) is able to
fabricate 3D objects in a layer-by-layer manner, design for AM has been researched to explore AM
design benefits and alleviate manufacturing constraints of AM. To explore more AM design benefits,
part consolidation has been researched for consolidating multiple parts into fewer number of parts
at the manufacturing stage of product lifecycle. However, these studies have been less considered
product recovery and maintenance at end-of-life stage. Consolidated parts for the manufacturing
stage would not be beneficial at end-of-life stage and lead to unnecessary waste of materials during
maintenance. Therefore, in this research, a design method is proposed to consolidate parts for
considering maintenance and product recovery at the end-of-life stage by extending a modular
identification method. Single part complexity index (SCCI) is introduced to measure part and
interface complexities simultaneously. Parts with high SCCI values are grouped into modules that
are candidates for part consolidation. Then the product disassembly complexity (PDC) can be used to
measure disassembly complexity of a product before and after part consolidation. A case study is
performed to demonstrate the usefulness of the proposed design method. The proposed method
contributes to guiding how to consolidate parts for enhancing product recovery.

Keywords: additive manufacturing; complexity; modular design; part consolidation; product
recovery

1. Introduction

Studies of product design and development have helped engineers design products systematically.
Product architecture has been determined to improve manufacturability of conventional manufacturing.
A part with complex geometry in the product architecture divides into multiple parts for enhancing
manufacturability due to limitations of conventional manufacturing. Accordingly, design for
manufacturing and assembly (DFMA) has been focused on minimizing assembly and disassembly
time and cost as well as managing complexity of products by minimizing the number of parts and
connectors [1–3]. Since design freedom is severely restricted by conventional design methodologies,
it is difficult to achieve optimal product architecture by consolidating parts [4,5].

Additive manufacturing (AM) is revolutionizing product development by fabricating parts with
complex geometry directly [6]. Design for AM (DFAM) is introduced to improve manufacturability of
AM and alleviate manufacturing constraints for AM, while product lifecycle and sustainability are
less considered. To explore design benefits by AM, part consolidation design methods have received
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attractions from designers in terms of product redesign for improving performance, but are still
developing to integrate multiple parts, that are designed by limitations of conventional manufacturing,
as a single part by applying AM capabilities. Accordingly, in this study, we propose a design method
to consolidate parts for product recovery at the end-of-life (EOL) stage by extending conventional
module identification process. Since a module consists of multiple parts, these parts in the identified
module can be consolidated into a single object by AM. In the proposed method, product disassembly
complexity (PDC) is used to measure difficulty while disassembling parts from a product. Therefore,
the PDC plays an important role in understanding the status of product design for product recovery at
the EOL stage. Since the PDC increases according to difficulty of disassembly of parts and the number
of the parts and interfaces, the proposed design method aims to group parts with high disassembly
difficulty into modules in order to minimize the disassembly complexity of the product at EOL stage.
To assess disassembly difficulty in part level, single part complexity index (SCCI) is introduced by
modifying the PDC to consider part and interface complexities simultaneously. Based on the SCCI,
modules are identified by grouping parts with high SCCI value. The identified modules are considered
as design boundary for part consolidation that can be fabricated by AM, so that they contribute to
improving product recovery processes.

In this paper, Section 2 describes previous research and background in part consolidation
and design for additive manufacturing, and then the proposed method is explained in Section 3.
The proposed method described how to consolidate parts based on product disassembly complexity.
Then a case study is performed with a coffee maker to demonstrate the usefulness of the proposed
method in Section 4. A discussion of this study is described in Section 5. Closing remarks and future
work are presented in Section 6.

2. Literature Review

Additive manufacturing (AM) process enables to produce complex parts. The AM has been
evolved from rapid prototyping, which is to create a part or system rapidly as a prototype, to develop
manufacturing process for creating final products directly. It alleviates design and manufacturing
constraints, so that design freedom is extremely expanded [7]. In this sense, design for additive
manufacturing (DFAM) has been introduced to take full advantage of the design freedom with
concerning part consolidation and redesign, and hierarchical structures [6]. Most of previous
studies in DFAM are to enhance performance of products while reducing costs [4,8,9], improve
functional performance [10], and focus on design guidelines to print parts successfully under
AM limitations [11]. Ponche, et al. [12] proposed a new DFAM methodology to consider design
requirements and manufacturing specifications. The new DFAM methodology consists of three
processes: part orientation and functional optimization for satisfying design requirements, and
manufacturing paths optimization. Rosen [13] proposed a computer aided DFAM based on a
process-structure-property-behavior framework to support part modeling, process planning, and
manufacturing simulations. Thompson, et al. [4] explored design opportunities, benefits, and freedoms
of AM at a part level and the macro scale, at the material level and the micro scale, and at a product
level. They described part consolidation as a process to consolidate parts for assembly into a single
printable object [14]. In other words, the part consolidation is considered to minimize the number
of parts.

DFAM methodologies in previous studies focused on redesign of parts by using lattice structure
and topology optimization. And, the redesign in module level and system level has been less addressed.
According to AM capability, multi-parts can be merged as a single object instead of manufacturing and
assembled parts separately and assembled. The advantages of the part consolidation are to improve
manufacturing efficiency by avoiding assembly operations and reduce production cost by minimizing
usage of connectors and tools for assembly [15]. There are few studies about the part consolidation.
Liu [15] performed a comparative study to investigate improvement of structural performance through
the part consolidation. It results in a guideline that both structural topology and build direction should
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be optimized to improve structural performance of consolidated parts simultaneously. Becker, et
al. [16] introduced design rules for AM to help designers rethink conventional assembly design towards
part consolidation. Atzeni, et al. [17] also provided design rules for AM including part consolidation.
The objective of the part consolidation was to redesign parts for conventional manufacturing and
minimize production costs. However, these previous studies provided general design guidelines but
had less focused on how to consolidate parts into a single object. Yang, et al. [18] proposed a method
of consolidating parts for AM by considering function integration to achieve better functionality and
structure optimization to improve performance at a part level. Moreover, when consolidating parts
by AM, sustainability should be considered. Yang, et al. [19] proposed a framework to investigate
environmental impact of consolidating parts on product lifecycle. It resulted in reduction of energy
consumption and environmental impact when consolidating the parts by AM. In order to focus on
the end-of-life stage of product lifecycle for sustainability, it needs to be considered product lifecycle
and product recovery, especially maintenance, repair, and recovery when complex parts and products
approach the end-of-life stage. The product recovery is a process of restoring inherent performance
of retired products. By reusing the retired product and recycling materials, companies can minimize
usage of raw materials, pollution during manufacturing, and wastes at the end-of-life stage [20,21]. In
addition, by replacing obsolete parts to new parts, lifespan of products can be prolonged. Accordingly,
when consolidating parts by using AM processes, the product recovery should be considered to
improve sustainability. To facilitate product recovery, a disassembly process is necessary to detach
materials, parts, and modules from the retired products.

The disassembly process can minimize cost and time for the product recovery, and avoid damage
to the quality of detached parts [22]. Therefore, previous studies of design for disassembly is mainly
focused on disassembly sequence planning [2,23,24]. As complete disassembly is not cost-effective
and practical, the disassembly sequence planning emphasizes on selective disassembly for product
recovery and maintenance. In some studies [25,26], attributes related to the difficulty of disassembly
were considered and the disassembly sequences were decided based on disassembly cost. Regarding
the importance of modular design for disassembly, Ishii, et al. [27] introduced module-based design
for product retirement and evaluated the compatibility of modules by calculating disassembly time
and cost. Kim and Moon [28] introduced a modular design method to generate eco-modules that
consider disassembly efficiency, and reusability and recyclability. In terms of manufacturing process,
it is needed to assess disassembly complexity for understanding current products’ conditions and
then planning design strategies based on the disassembly complexity. Several papers considered
process complexity with design for assembly or disassembly. ElMaraghy and Urbanic [29] introduced a
product and process complexity assessment tool to understand the effects of human workers’ attributes
in a manufacturing line. Samy and ElMaraghy [30] proposed a product assembly complexity tool with
considering handling attributes and insertion attributes during assembly operation. These assessment
tools for complexity would support assembly-oriented product design and guide designers to design
products with less complexity. Soh, et al. [31] measured disassembly complexity based on design for
assembly and accessibility for selective disassembly operations. Limitations of these researches are
that interface complexity is less considered, although the interface complexity is a major aspect of
disassembly operations. Therefore, this study emphasizes on an assessment of the product disassembly
complexity based on interface and component complexities simultaneously.

From the literature, three issues are identified in terms of design guidelines and sustainability.
First, the design guidelines and processes for part consolidation are less considered. Most of design
guidelines emphasized only on reduction of the number of parts. Second, sustainability including
product recovery has rarely been considered in design for additive manufacturing. Previous studies
have been researched for improving functionality through redesign. However, there are no diverse
reasons for part consolidation. Finally, to support the product recovery, it is required to understand
and assess disassembly complexity of a product to identify parts with high disassembly difficulty
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and facilitate disassembly operations. In the next section, the proposed part consolidation method to
support AM is discussed in detail.

3. A Part Consolidation Design Method for Additive Manufacturing

Conventional modular design method aims to group multiple parts into modules to enhance
manufacturing efficiency [32]. By shifting manufacturing paradigm from subtractive manufacturing
to additive manufacturing, these multiple parts in a module can be considered as candidates for
consolidation. Therefore, a part consolidation design method for AM, which is extending previous
study [33,34], is proposed to group parts with high disassembly complexity into a module to enhance
characteristics of products at the end-of-life (EOL) stage as shown in Figure 1. The first step is to
understand function flows, such as material, signal, and energy flows, of products and physical
relationships between parts. In the second step, single part complexity index (SCCI) is developed
to provide information on which parts are difficult to disassemble for product recovery based on
design attributes. The SCCI is an input of the third step and a modular driver for the product
recovery to cluster modules from viewpoint of the EOL stage. In the third step, modules are identified
based on adjacency matrix with the value of the SCCI by using Markov Cluster Algorithm. These
modules would be assessed to check whether it can be manufactured by an AM technology in terms of
material types. In this paper, since we focus on deciding clear design boundary for part consolidation
regardless of manufacturing constraints of AM, material types are considered in this research. However,
AM manufacturing constraints should be considered to determine more specific boundary for part
consolidation after deciding specific AM processes. After that, parts in a module can be consolidated
as a single object. It means that the concept of the module can be reinterpreted as the single part using
the AM technology. Finally, to assess how product architecture with modules for part consolidation is
improved to reflect product recovery, product disassembly complexity is used to compare between
products with modules that is a set of parts and products with a consolidated part by AM.

Figure 1. Overview of the proposed design method.

3.1. Product Dependency Analysis for Modular Design

Modular design has been developed to facilitate production processes, enhance product recovery
including maintenance, and reduce the number of physical parts. The main principle of modular
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design is to improve internal coupling within modules and minimize external coupling between
modules [35]. Accordingly, when the main principle of modular design is extended to the field of
additive manufacturing, it would be helpful to identify parts for consolidation. This is because module
identification considers functional relationships, combinability, interface standardization, and interface
complexity between parts [36]. Therefore, this paper mainly focuses on identifying modules that are
candidates for part consolidation with considering product recovery. To identify modules, there are
many tools for the modular design: axiomatic design, functional modeling, design structure matrix,
and modular function deployment [36]. In this step, a functional diagram is used to understand the
function flows of a product for identifying modules as shown in Figure 2. The functional diagram
consists of boxed for describing functions and three function flows: energy, material, and signal flows.
Based on this information, designers can classify modules heuristically like ‘Heater’ to ‘Water reservoir’
in Figure 2. A design structure matrix (DSM) tool is applied to determine relationships between parts in
a product. As shown in Figure 3 of an example of DSM, ‘1’ represents that two parts have a relationship,
while ‘0’ represents that there is no relationship. The DSM provides fundamental information to build
an adjacent matrix in Step 3.

Figure 2. Functional diagram of the coffee maker.

Figure 3. An example of design structure matrix.
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3.2. Assessment of Complexity of Single Part

This research considers a ‘product disassembly complexity’ term as the degree of disassembly
difficulty [34]. The notion of the disassembly complexity has two levels: part complexity and interface
complexity. For the part complexity, it emphasizes on attributes related to handling parts: weight effect
factor, size, symmetry, and grasping parts. For the interface complexity, the connector, that links parts
by physical and functional relationships, such as material, energy, and signal flows, is a key attributes
for manual disassembly operations. The attributes for interface are related to mechanical connector
types, non-mechanical connector types, and intensity of tool use. These attributes are critical to detach
parts or modules from a product.

These attributes and corresponding descriptions for parts and interfaces are described in Table 1.
These attributes are converted to the disassembly difficulty factor, which is values ranging from 0
to 1. The specific values of the disassembly factor are in reference [34]. Attributes that require high
disassembly difficulty are close to 1, otherwise, 0. For the part complexity, values of the disassembly
attributes for a part, called as disassembly difficulty factors, are determined by measuring assembly
handling time and normalizing it based on [30]. For values of the interface complexity, U-rating values
are applied to measure mechanical and non-mechanical unfastening processes. The U-rating value is
developed by estimating disassembly efforts based on a survey by [37] and [38]. Since the range of the
U-rating value is not between 0 and 1, the U-rating value is normalized in this study.

Table 1. Disassembly attributes for manual disassembly.

Category Attribute Description

Part Weight This factor represents how difficult parts are positioned and handled
according to part weight. Parts with heavy weight would need more
man powers, extra tools like lift, and set-up time for parts and tools for
disassembly.

Size A part size has an impact on both assembly and disassembly operations.
When the component size is too small to grab it, it can delay the further
disassembly process.

Symmetry The symmetry factor represents the easiness of disassembly process
regarding directions for detaching parts and the difficulty of positioning
parts for reassembly after disassembling the parts.

Grasping and
manipulation

Material property plays an important role in grasping parts, especially
vulnerability and stiffness. Vulnerability entails damages or
deformation of parts by dropping, bumping, and excessive grabbing
force. Stiffness is the rigidity to resist deformation in response to an
applied force, which is represented by elasticity modulus.

As a part with low vulnerability and high stiffness can be easily grasped
by a worker, the disassembly difficulty factor’ value will be low.
Otherwise, the disassembly difficulty factor’s value is closed to 1.

Interface Mechanical
unfastening process
(U-rating)

As the mechanical connectors are detachable fasteners with relevant
tools, it can be recursive for assembly and disassembly. In this research,
nine types of the mechanical connectors are considered as follows:
screw/bolt with standard head, screw/bolt special head, nut and bolt,
retaining ring/circlips, interference fit, rivets/staples, pin, cylindrical
snap fit, and cantilever snap fit.

Non-mechanical
unfastening
(U-rating)

The non-mechanical connectors like lead and welding material are to
firmly bond components, so that disassembly can be mostly difficult.

Tools required with
low intensity/ high
intensity

When using the mechanical and non-mechanical connectors, relevant
tools are needed for assembly and disassembly operations. The number
of tools for disassembling parts and the intensity of the tool use are
considered as a disassembly attribute to represent the difficulty of
disassembly.
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By considering these disassembly attributes and their values, SCCI was introduced to analyze
disassembly difficulty of a part by considering both part design and interface design at the same time
as shown in the Equation (1) [39]. In Equation (1) for SCCI of the kth part, the weighted average value
is applied to consider of part (Ck) and interface complexity indices (Ik).

SCCIk =
Ck

∑J
1 Cc, j + Ik

∑N
1 Ci,n∑J

1 Cc, j +
∑N

1 Ci,n
(1)

Ck =

∑J
1 Cc, j

J
(2)

Ik =

∑N
1 Ci,n

N
(3)

where, Cc,j is a disassembly difficulty factor value of the jth attributes; Ci,n is a disassembly difficulty
factor value of nth interface attributes; Ck is the average of disassembly difficulty factors for kth part;
J is the number of attributes for part complexity (here, J = 4); Ik is the average of disassembly difficulty
factors for interfaces of kth part; and N is the number of attributes for interface complexity (here,
N = 3) [39].

3.3. Module Identification based on Graph Clustering

In order to consider interwoven relationships between parts in a product, Markov Cluster
Algorithm (MCL) is applied to group parts with high complexity into a module for AM. The MCL is
used to cluster complex biological networks in the field of bioinformatics [40,41]. The MCL is a fast
and scalable unsupervised clustering algorithm based on the mathematical concept of random walks.

First, an adjacent matrix, A, is developed with the value of the complexity as weight value on
the edges. However, since the SCCI represents the disassembly complexity value of a single part, the
SCCI value should be converted as the weight value of edges between ith part and jth part with the
following equation.

A(i, j) =
{

w(i, j) i f ith and jth parts have relationships
0 else

(4)

w(i, j) = SCCIi + SCCIj (5)

After building the adjacency matrix, second, Markov matrix, M, is developed to identify random
walks from the adjacency matrix based on Equation (6). According to the equation, weight values in
the adjacency matrix is transformed to values between 0 and 1 for representing stochastic flow from ith
part to jth part.

M(i, j) =
A(i, j)∑n

k=1 A(k, j)
(6)

Third, the MCL process performs two main operations: expansion and inflation. The expansion
represents random walks with many steps and is the same as normal matrix multiplication. The
expansion is to allow the flow to connect different regions of the graph. Nodes that have higher values
with edges from a departure point to a destination point have high chance to be clustered. The inflation
prunes edges with low disassembly complexity. By using Equation (7), the inflation operation makes
regions with higher value on edges thicker, and makes regions with lower value on edges thinner
based on the inflation parameter, r. The inflation parameter is non-negative value and used to rescale
the matrix M. It results in Minf, which is stochastic matrix and represents probability values of edges.

Min f (i, j) =
M(i, j)r∑n

k=1 M(k, j)r (7)
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By iterating these two main operations, parts will be grouped into modules, which is primary
boundary of part consolidation for AM.

3.4. Assessment of Disassembly Complexity of a Product

Based on the aforementioned information in Table 1, the PDC can be used to represent a tendency
of disassembly complexity of a product logarithmically. The total number of parts (Nc), the total
number of interfaces (Ni), the number of unique parts (nc), the number of unique interface (ni), part
complexity index (CI), and interface complexity index (II) are considered as the Equation (8) [34]. The
PDC in Equation (8) is introduced by modifying the entropy theory. Accordingly, when the number of
parts and interface, and values of CI and II are lower, the value of the PDC will be closed to 0.

PDC =
( nc

Nc
+ CI

)
log2(Nc + 1) +

(
ni
Ni

+ II
)
log2(Ni + 1) (8)

As shown in Equations (9) and (10), the CI and II are calculated to sum up part complexity and
interface complexity of each part on Equations (2) and (3), respectively. The wk is a weight value of the
interface complexity index.

CI =
np∑
1

wkCk (9)

II =
np∑
1

wkIk (10)

The PDC reflects design for disassembly that recommends reduction of the number of parts.
When a product has less number of parts and interfaces, the PDC will be decreased. In this study, the
PDC focuses on assessing part complexity and interface complexity for a product. PDC is used to
assess disassembly complexity when a product consists of modules in conventional manufacturing or
consolidated parts by AM processes.

3.5. Redesign for Additive Manufacturing

Parts are designed to alleviate manufacturing constraints of conventional manufacturing and
enhance assembly efficiency to minimize manufacturing cost and time. Since design paradigm is
shifting from conventional manufacturing to additive manufacturing, redesign for AM is required to
alleviate newly introduced manufacturing constraints and add design values by AM. To utilize the
advantages of AM technologies, designers must have understanding of AM capability and limitation
to ensure manufacturability of parts because they do not have experience about AM and design for
AM typically [42].

Consequently, existing design methods for conventional manufacturing have been modified and
improved to consider AM. Two approaches are proposed to support the modification of existing
design methods [42]: (1) a partial approach and (2) a global approach. The partial approach focuses on
manufacturability improvement for AM so that the results are not very far from the conventional design.
Since the partial approach starts with existing design but designers have a lack of DFAM knowledge,
low AM design benefits can be taken. Filippi and Cristofolini [43] and Boyard, et al. [44] combined
the Design for Manufacturing (DFM) and Design for Assembly (DFA), which are conventional design
methods, to apply for DFAM. Filippi and Cristofolini [43] tried to build several knowledge matrices
that combine the knowledge of both design-side and manufacturing-side. Boyard, et al. [44] developed
a knowledge tree for AM that indicates the inter-connection between different design stages. On the
other hands, the global approach is to support exploration of AM design benefits after selecting specific
AM manufacturing process characteristics while meeting the functional requirements of the parts.
Therefore, topology optimization method can be utilized to take advantages of AM by resolving the
stress and strain distribution on a structure. The ultimate goal of topology is saving materials [9]. Yao,
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Moon, and Bi (2017) proposed an AM design feature recommendation method that can help designers
organize and utilize design knowledge to explore AM-enabled design space systematically. Both
partial and global approaches can guide designers to redesign existing part for adopting AM by taking
AM unique capabilities. Next, we demonstrate the effectiveness of the proposed design method using
a case study involving a coffee maker.

4. Case Study

To demonstrate the usefulness of the proposed design method, a case study with a coffee maker
was performed. The specification of the coffee maker is described in Table 2. In the first step, the
function flows of the coffee maker were described to understand functional relationship between parts
for identifying modules as shown in Figure 2. Then, DSM was developed to reflect the relationships
between parts in the product as shown in Table 3. In the second step, each part design and interface
design between parts in the product were analyzed by using Equations (2) and (3), respectively. Based
on the analyzed values, SCCI is calculated by using Equation (1) as shown in Table 4. Each value of
elements in the adjacency matrix was calculated by the sum of the SCCI values of two parts based
on Equations (4) and (5), so that the adjacency matrix in Table 5 is determined finally. For example,
a value of the element between bottom cover (1) and bottom casing (17) was 0.020 and it was calculated
by the sum of SCCI value of the bottom cover, 0.010, and SCCI value of the bottom casing, 0.010.

In the third step, MCL was applied to determine modules for product recovery, which is a design
boundary for part consolidation for AM as well, by using the adjacency matrix. Since MCL is an
unsupervised learning algorithm, the number of modules is determined randomly. In this case study,
the number of modules converges to 7 as shown in Table 6.

Table 2. Specification of the coffee maker.

No. Part Name Material Type Coffee Maker

1 Bottom cover PP

4~6 cups/0.6 L
Brewing time <10 min

2 Silicon ring Silicon
3 Hot plate Al
4 Casing for heater PP
5 Heater Al
6 Power cord Copper
7 Water tube set PP
8 Silicon tube Silicon
9 Water reservoir PP
10 Steam sprout PP
11 Filter basket PP
12 Filter frame PP
13 Filter net PP
14 Filter handle PP
15 Lid of coffee maker PP
16 Decanter Glass
17 Bottom casing PP
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Table 3. Design structure matrix of the coffee maker.

Table 4. Complexity information of the coffee maker.

No. Part Name No. J Ck N Ik SCCIk

1 Bottom cover 1 4 0.748 3 0.217 0.010
2 Silicon ring 1 4 0.828 3 0.327 0.013
3 Hot plate 1 4 0.748 3 0.217 0.010
4 Casing for heater 1 4 0.713 3 0.217 0.009
5 Heater 1 4 0.748 3 0.150 0.009
6 Power cord 1 4 0.748 3 0.483 0.014
7 Water tube set 1 4 0.748 3 0.150 0.009
8 Silicon tube 4 4 0.713 3 0.150 0.008
9 Water reservoir 1 4 0.788 3 0.110 0.010
10 Steam sprout 1 4 0.713 3 0.150 0.008
11 Filter basket 1 4 0.748 3 0.033 0.009
12 Filter frame 1 4 0.713 3 0.033 0.008
13 Filter net 1 4 0.788 3 0.277 0.011
14 Filter handle 1 4 0.748 3 0.110 0.009
15 Lid of coffee maker 1 4 0.788 3 0.133 0.010
16 Decanter 1 4 0.713 3 0.217 0.009
17 Bottom casing 1 4 0.748 3 0.217 0.010

In order to improve design feasibility of modules when adopting AM, manufacturing constraints
of AM should be considered. Accordingly, total size of the module should be less than build chamber
size of selected AM process and material types of parts in the module are identical except for using
multi-material AM process. Furthermore, design rules for AM should be considered to improve
manufacturability of product design. The design rules are mostly related to minimum thickness and
overhang features that require support structure [45], which are derived from a combination of material
and AM processes [46]. Therefore, designers should understand these various design rules.

In this study, we used the material type for assessing design feasibility of modules because the
material type was critical when parts in a module were consolidated as a single part by sharing the
same additive manufacturing processes. Accordingly, parts in modules 5 and 6 as shown in Figure 4
can be consolidated by using AM, which is 9’ and 11’ in Table 6. Accordingly, designers can consolidate
parts in the modules 5 and 6 as a single part by using AM.

In the fourth step, the product disassembly complexity was applied to understand difficulty of
disassembly and compare the difficulty of disassembly between a product with conventional modules
and a product with consolidated parts in the modules 5 and 6. As a result, the product with consolidated
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parts had a lower value of the PDC than the value of PDC of the product with conventional modules
as shown in Table 7, which is around 19% PDC reduction by part consolidation.

Table 5. Adjacency matrix for the single part complexity index (SCCI) of the coffee maker.

Table 6. Module identification and assessment.

Module No.
A Product with

Conventional Modules
A Product with Parts

from AM

Assessment of Modules

Material Type

1 2, 3 2, 3 X
2 4 4 -
3 5 5 -
4 7, 8 7, 8 X
5 9, 10, 15 9′ O
6 11, 12,13,14 11′ O
7 1, 6, 16, 17 1, 6, 16, 17 X

Figure 4. Parts in selected modules for part consolidation.
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Table 7. Comparison of product disassembly complexity (PDC) when considering modules and
parts consolidation.

Index A Product with Conventional Modules A Product with Parts from AM

Nc 20 15
nc 17 12
Ni 8 8
ni 3 3

PDC 8.765 7.079

5. Discussion

Design for AM has mainly focused on creating parts with complex geometry for improving
functionality, designing parts with considering constraints of AM processes, and consolidating parts
for minimizing the number of parts. To consider product recovery including maintenance, part
consolidation should be planned to achieve selective disassembly. Therefore, we proposed a design
method to guide how to consolidate parts by removing assembly joints that are difficult to disassemble
at the EOL stage. The proposed method results in modules based on the SCCI as a modular driver, and
functional and physical relationships from a functional diagram and DSM.

After identifying these modules, it is required to check whether parts can be consolidated regarding
material types of the parts. Since the parts in modules 1, 4, and 7 are made of different materials like
aluminum, silicon, plastic, and glass, they cannot be consolidated due to limitations of AM processes
that mostly support single material. On the other hands, modules 5 and 6 contain parts that have
the same material and are closed to each other physically and functionally. Furthermore, since these
parts are grouped into modules because they have high SCCI values, modules 5 and 6 are appropriate
candidates for part consolidation to reduce the part count of a product, which is a primary goal of part
consolidation. Modules 5 and 6 will be fabricated by AM, while other modules will be manufactured
by conventional manufacturing. Accordingly, the result of the proposed design method can be used
as design strategy to manage which parts will be fabricated by AM selectively to support flexible
manufacturing by facilitating both conventional and additive manufacturing.

However, when designers consider a design feasibility factor as maintenance frequency of the
parts instead of the material type between parts in the module, consolidating the filter basket and filter
consisting of filter frame, filter net, and filter handle in module 6 may be not acceptable decision because
the filter should be frequently cleaned after use. Furthermore, the proposed design method can be
applied to generate new candidates for part consolidation, which are parts in modules, by considering
other modular drivers related to repairability, reliability, or financial benefit. These modular drivers
can be represented by characteristics of parts like SCCI and characteristics between parts. For example,
remained useful lifespan (RUL) of each part can be modular drivers, and then parts with the same
RUL can be grouped into a module by the proposed design method with using RUL of parts instead of
SCCI. Since RUL of the parts is the same, maintenance frequency would be the same. Accordingly,
parts with similar lifespan can be consolidated by AM. Furthermore, feasibility analysis for selected
candidates for AM should be required to identify AM benefits in terms of redesign cost, manufacturing
cost and time, financial benefit, and performance enhancement against subtractive manufacturing.

6. Closing Remarks and Future Work

AM enables fabricating parts with complex geometries and consolidating multiple parts for
conventional manufacturing to enhance performance by using less material and energy, compared to
subtractive manufacturing. However, design for AM has mainly focused on manufacturing stage in
the product lifecycle rather than end-of-life (EOL) stage. Therefore, this study considers maintenance
and product recovery at the EOL stage in order to prolong product lifecycle. Since disassembly
operations are closely related to efficiency of reusability and recyclability in the EOL stage, we
introduced the modular design method for consolidating multiple parts to less number of parts or a
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single part. The disassembly complexity of each part is assessed by SCCI and then parts with high
disassembly complexity are grouped into modules, which are candidates for part consolidation by
using AM. Therefore, this study contributes to reduction of disassembly complexity of a product after
the part consolidation.

A limitation of this study is to consider disassembly complexity for determining primary design
boundary for part consolidation, which is the module. Accordingly, the proposed design method can
be a starting point of product redesign for AM. As future work, other factors for product lifecycle, such
as design cost, reliability of parts, maintenance requirements, and specific manufacturing constraints,
will be considered to provide specific candidates for part consolidation within modules and between
modules. After selecting these candidates, design feasibility of these candidates will be performed
with various case studies with parts that have complex geometries after the part consolidation.
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Wognum, N., J.C. Verhagen, W., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 389–420.
[CrossRef]

37. Das, S.K.; Naik, S. Process planning for product disassembly. Int. J. Prod. Res. 2002, 40, 1335–1355. [CrossRef]

186



Appl. Sci. 2020, 10, 1100

38. Das, S.K.; Yedlarajiah, P.; Narendra, R. An approach for estimating the end-of-life product disassembly effort
and cost. Int. J. Prod. Res. 2000, 38, 657–673. [CrossRef]

39. Kim, S. Sustainable Product Family Design and a Platform Strategy. Ph.D. Thesis, Nanyang Technological
University, Singapore, 2017.

40. Lei, X.; Wang, F.; Wu, F.-X.; Zhang, A.; Pedrycz, W. Protein complex identification through Markov clustering
with firefly algorithm on dynamic protein–protein interaction networks. Inf. Sci. 2016, 329, 303–316.
[CrossRef]

41. Kim, S.; Moon, S.K. Eco-modular product architecture identification and assessment for product recovery.
J. Intell. Manuf. 2016. [CrossRef]

42. Ponche, R.; Hascoet, J.Y.; Kerbrat, O.; Mognol, P. A new global approach to design for additive manufacturing.
Virtual Phys. Prototyp. 2012, 7, 93–105. [CrossRef]

43. Filippi, S.; Cristofolini, I. The Design Guidelines (DGLs), a knowledge-based system for industrial design
developed accordingly to ISO-GPS (Geometrical Product Specifications) concepts. Res. Eng. Des. 2007, 18,
1–19. [CrossRef]

44. Boyard, N.; Rivette, M.; Christmann, O.; Richir, S. A design methodology for parts using additive
manufacturing. In Proceedings of the International Conference on Advanced Research in Virtual and
Rapid Prototyping, Leiria, Portugal, 1–5 October 2013.

45. Kranz, J.; Herzog, D.; Emmelmann, C. Design guidelines for laser additive manufacturing of lightweight
structures in TiAl6V4. J. Laser App. 2015, 27, S14001. [CrossRef]

46. Kim, S.; Rosen, D.W.; Witherell, P.; Ko, H. A Design for Additive Manufacturing Ontology to Support
Manufacturability Analysis. J. Comput. Inf. Sci. Eng. 2019, 19. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

187





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Applied Sciences Editorial Office
E-mail: applsci@mdpi.com

www.mdpi.com/journal/applsci





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03943-135-9 


	Blank Page

