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Abstract: The convergence of big data and geospatial computing has brought challenges and
opportunities to GIScience with regards to geospatial data management, processing, analysis,
modeling, and visualization. This special issue highlights recent advancements in integrating new
computing approaches, spatial methods, and data management strategies to tackle geospatial big
data challenges and meanwhile demonstrates the opportunities for using big data for geospatial
applications. Crucial to the advancements highlighted here is the integration of computational
thinking and spatial thinking and the transformation of abstract ideas and models to concrete data
structures and algorithms. This editorial first introduces the background and motivation of this
special issue followed by an overview of the ten included articles. Conclusion and future research
directions are provided in the last section.

Keywords: geospatial big data; geospatial computing; cyberGIS; GeoAI; spatial thinking

1. Introduction

Earth observation systems and model simulations are generating massive volumes of disparate,
dynamic, and geographically distributed geospatial data with increasingly finer spatiotemporal
resolutions [1]. Meanwhile, the ubiquity of smart devices, location-based sensors, and social
media platforms provide extensive geo-information about daily life activities. Efficiently analyzing
those geospatial big data streams enables us to investigate complex patterns and develop new
decision-support systems, thus providing unprecedented values for sciences, engineering, and business.
However, handling the five “Vs” (volume, variety, velocity, veracity, and value) of geospatial big data
is a challenging task as they often need to be processed, analyzed, and visualized in the context of
dynamic space and time [2].

Following a series of successful sessions organized at the American Association of Geographers
(AAG) Annual Meeting since 2015, this special issue on “Big Data Computing for Geospatial
Applications” by the ISPRS International Journal of Geo-Information aims to capture the latest efforts on
utilizing, adapting, and developing new computing approaches, spatial methods, and data management
strategies to tackle geospatial big data challenges for supporting applications in different domains,
such as climate change, disaster management, human dynamics, public health, and environment
and engineering.

ISPRS Int. J. Geo-Inf. 2020, 9, 487; doi:10.3390/ijgi9080487 www.mdpi.com/journal/ijgi1
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Specifically, this special issue aims to address the following important topics: (1) geo-cyberinfrastructure
integrating spatiotemporal principles and advanced computational technologies (e.g., GPU (graphics
processing unit computing), multicore computing, high-performance computing, and cloud
computing); (2) innovations in developing computing and programming frameworks and architecture
(e.g., MapReduce, Spark) or parallel computing algorithms for geospatial applications; (3) new
geospatial data management strategies and storage models coupled with high-performance computing
for efficient data query, retrieval, and processing (e.g., new spatiotemporal indexing mechanisms);
(4) new computing methods considering spatiotemporal collocation (locations and relationships) of
users, data, and computing resources; (5) geospatial big data processing, mining, and visualization
methods using high-performance computing and artificial intelligence; (6) integrating scientific
workflows in cloud computing and/or a high-performance computing environment; and (7) other
research, development, education, and visions related to geospatial big data computing. This editorial
provides a summary of the ten articles included in this issue and suggests future research directions in
this area based on our collective observations.

2. Overview of the Articles

The articles included in this issue make significant contributions to the use of big data
computing for tackling various geospatial problems (from human mobility to disaster management
to knowledge discovery) by incorporating novel methodologies, data structures, and algorithms
with advanced computing frameworks (from geo-visual analytics, deep learning to cloud computing,
and MapReduce/Spark). Using ten different big data sources (e.g., social media, remote sensing, and
Internet of Things), this issue demonstrates the value and importance of integrating computational
approaches and geospatial methods in advancing scientific discovery and domain applications (Table 1).

Table 1. Summary of the geospatial big data and computing approaches used in each article for various
geospatial applications.

Category Geospatial Application
Big Data
Source

Computing
Approaches

Article

Big Data
Computational

Methods

Geospatial data
preprocessing

Sensor data via
Internet of Things
(IoT)

Parallel extracting,
transforming, loading,
MapReduce/Hadoop

Jo and Lee. (2019) [3]

Overlay analysis Land use (as a case
study)

High performance
computing with Spark,
cloud computing

Zhao et al. (2019) [4]

Land-use change
prediction

Remote sensing
(Landsat)

Parallel modeling with
MapReduce/Hadoop,
cloud computing

Kang et al. (2019) [5]

Global scale terrain
analysis Global elevation Google Earth Engine,

cloud computing Safanelli et al. (2020) [6]

Big Data Mining

Human mobility (pattern
discovery) Public transit

Machine learning
(clustering algorithm),
visual analytics

Zhang et al. (2019) [7]

Disaster management
(earthquake mitigation) Social media Deep learning (CNN),

spatiotemporal analysis Yang et al. (2019) [8]

Missing road generation Navigation
(trajectory)

A set of new computing
algorithms Wu et al. (2019) [9]

Knowledge
Representation

Geospatial problem
solving

Heterogeneous
data via online
services

Workflow, online
geoprocessing, knowledge
base

Zhuang et al. (2018) [10]

Geographic knowledge
representation Ontological Knowledge graph,

ontologies Wang et al. (2019) [11]

Big Data Search
Geospatial big data
management and
searching (climate data)

Climate
Cyberinfrastructure-based
cataloging, spatiotemporal
indexing

Gaigalas et al. (2019) [12]
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2.1. Big Data Computational Methods

Geospatial data processing and analysis, such as transformation in geometry, converting
coordination reference systems, and evaluating spatial relationships, often include a large number of
floating-point arithmetic computations. Correspondingly, MapReduce and Spark-based frameworks
and systems, such as SpatialHadoop [13] and GeoSpark [14], were developed to speed up these
computations. Additionally, cloud-based computing platforms, such as Google Earth Engine (GEE)
for big earth observation data, have been increasingly used in geospatial studies and applications.
To optimize the performance of a parallel algorithm for geospatial processing, analysis, or modeling
when using such general-purpose frameworks, the spatial characteristics of the data and algorithm
must be considered for the algorithmic design [15,16]. The four papers by Jo et al. [3], Zhao et al. [4],
Kang et al. [5], and Safanelli et al. [6] focus on parallel computing and highlight the adaption of existing
computing frameworks for geospatial data preprocessing, parallel algorithm design, simulation
modeling, and data analysis.

It often takes a long time to prepare geospatial datasets for these data computing systems, which
generally involves extracting, transforming, and loading (i.e., ETL) processes. To deal with big data in
the ETL process, Jo and Lee proposed a new method, D_ELT (delayed extracting–loading–transforming),
to reduce the time required for data transformation within the Hadoop platform by utilizing
MapReduce-based parallelization [3]. Using big sensor data of various sizes and geospatial analysis of
varying complexity levels, several experiments are performed to measure the overall performance of
D_ELT, traditional ETL, and extracting–loading–transforming (ELT) systems. Their results demonstrate
that D_ELT outperforms both ETL and ELT. In addition, the larger the amount of data or the higher
the complexity of the analysis, the better the performance of D_ELT over the traditional ETL and
ELT approaches.

Zhao et al. designed a parallel algorithm for overlay analysis, which uses a measurement of
polygon shape complexity as the key factor for data partitioning in combination with a distributed
spatial index and a minimum boundary rectangular filter [4]. The parallel algorithm was implemented
based on Spark, a widely used distributed computing framework for large-scale applications [17].
Experiment results show data partitioning based on shape complexity effectively improved the
load balancing among multiple computing nodes, hence the computational efficiency of the parallel
algorithm. This work demonstrates that appropriate definitions and measurements of the properties of
data and/or algorithms (no matter how simple they are) to reflect the computational intensities are of
essential significance for the performance enhancement of parallel algorithms.

The CA–Markov model is one of the most widely used extended cellular automata (CA) models and
has been used in the prediction and simulation of land-use changes [5]. As land-use change simulation
and prediction involves massive amounts of data and calculations, many parallel CA algorithms
have been designed to simulate urban growth based on various computing models, including central
processing units (CPUs) and GPUs. While the parallel CA method incorporates spatial relationships
amongst cells, it cannot maintain connections between partitions after a study area is divided into
several pieces, resulting in different prediction results. Meanwhile, the traditional Markov method can
maintain integrity for the entire study area but lacks the ability to incorporate spatial relationships
amongst the cells. Alternatively, the MapReduce framework is capable of efficient parallel processing
when coupled to the CA–Markov model; the key problem of segmentation and maintaining spatial
connections remain unresolved. As such, Kang et al. introduced a MapReduce-based solution to
improve the parallel CA–Markov model for land-use-change prediction [5]. Results suggest that the
parallel CA–Markov model not only solves the paradox that the traditional CA–Markov model cannot
simultaneously achieve the integrity and segmentation for land-use change simulation and prediction
but also achieves both efficiency and accuracy.

Safanelli et al. took a different approach to handle geospatial big data challenges [6].
They developed a terrain analysis algorithm based on GEE (termed TAGEE) to calculate a variety of
terrain attributes, e.g., slope, aspect, and curvatures, for different resolutions and geographical extents.
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By using spheroidal geometries measured by the great-circle distance, TAGEE does not require the input
DEM data to be projected on a flat plane. Experiments show that TAGEE can generate similar results
when compared to conventional GIS software packages. By taking advantage of the high-performance
computing capacity of GEE, TAGEE is able to efficiently produce a suite of terrain attribute products
at any spatial resolution at a global scale. This work represents an emerging paradigm of geospatial
computing in the era of big data. As cloud computing platforms such as GEE mature, geospatial
computing is no longer limited by locally available computing resources and datasets. Applications of
complex geospatial algorithms/models at high spatial resolutions and the global scale have been seen
in the last couple of years and will soon become the norm.

2.2. Big Data Mining

Social sensing, in which humans represent a large sensor network, has emerged as a new data
collection approach in the big data era [18]. The following three papers by Zhang et al. [7], Yang et al. [8],
and Wu et al. [9] demonstrate the power of integrating social sensing data (public transit, social media,
and mobile phone) and big data computing techniques for supporting geospatial applications including
human mobility, disaster management, and transportation.

Zhang et al. developed a novel approach for mining and visualizing human mobility patterns
from multisource big public transit data, aiming to support transportation planning and management
by providing an enhanced understanding of human movement patterns over space and time [7].
To efficiently extract travel patterns from massive heterogeneous data sources, this work developed a
clustering algorithm to extract transit corridors indicating the connections between different regions
and a graph-embedding algorithm to reveal hierarchical mobility community structures. Beyond
the novel machine-learning algorithms, this work also provides a scalable web-based geo-visual
analytical system including visualization techniques to allow users to interactively explore the
extracted patterns. The system was evaluated by 23 users with different backgrounds and the results
confirm the usability and efficiency of the integrated geo-visual analytical approach for human
movement pattern discovery from public transit big data. This work demonstrates the power of
integrating geospatial big data, machine-learning algorithms, and geo-visual analytical approaches for
supporting transportation applications.

Yang et al. introduced a deep learning method to efficiently conduct sentiment analysis of big
social media data for assisting disaster mitigation [8]. This work devises a five-phase framework
for automatic extraction of public emotions from geotagged Sina micro-blog data including data
collection and processing, emotion classification, and spatiotemporal analysis. To classify emotion
(fearful, anxious, sad, angry, neutral, and positive), a convolutional neural network (CNN) model is
designed and trained by converting the raw text to a word vector. To demonstrate the efficiency of the
approach, an earthquake in Ya’an, China, in 2013 was used as a case study. Based on the trained model,
public emotions within the study area are classified at different time periods right after the earthquake.
Spatiotemporal analyses were then performed to examine the dynamics of people’s sentiments toward
the earthquake over space and time. Results suggest that the proposed approach accurately classified
emotions from big social media data (>81%), providing valuable public emotional information for
disaster mitigation.

Wu et al. proposed a three-step approach to detect missing road segments from mobile phone-based
navigation data within urban environments [9]. Their first step is to apply filtering to navigation
data to remove those related to pedestrian movement and existing road segments. Then, as a second
step, centerlines of missing roads are constructed using a clustering algorithm. Building the topology
of missing roads and connecting these detected roads with existing road networks is the third step.
Wu et al. [9] applied this approach in a study area (about 6 square kilometers) in Shanghai, China.
Based on ~10 million GPS points collected from mobile navigation in 2017, this work evaluated the
capability of their three-step approach in the detection of missing roads. Results demonstrate the
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performance of this three-step approach based on mobile phone data, recognizing the computational
challenge of their approach when dealing with larger datasets.

2.3. Knowledge Representation

Zhuang et al. [10] addressed an understudied problem, namely the representation and sharing of
knowledge related to geospatial problem solving. Through a process of abstraction and decomposition,
this work deconstructs geospatial problems into tasks that operate at three different granularities.
Beyond a high-level description, this work formalizes the geospatial problem-solving process into a
knowledge base by creating a suite of ontologies for tasks, processes, and GIS operations. Using a
meteorological early-warning analysis as a case study, this work successfully demonstrates how
to capture abstract geospatial problem-solving knowledge in a formal and sharable task-oriented
knowledge base. Demonstrated by a prototype system, their results offer a promising glimpse of how
users could begin building geospatial problem-solving models and workflows similar to spatial models
and workflows. Such models and workflows could be re-used and adapted for similar problems or
used as a building block to tackle more complex geospatial problems in the future, such as the global
effects caused by climate change.

Wang et al. [11] built a knowledge graph similar to Zhuang et al. [16] but instead focused on
capturing geographic objects and their spatiotemporal contexts. This work creates a geographic
knowledge graph (GeoKG) comprised of six elements to answer foundational questions in geography
including: Where is it? Why is it there? When and how did it happen? Through a process of model
construction and formalization, this work captures geographic objects, their relations, and ongoing
dynamics in a GeoKG. To demonstrate the effectiveness of the GeoKG, this work detailed the evolution
of administrative divisions of Nanjing, China, along the Yangzi River and then compared it to a
well-known straightforward and extensible ontology known as YAGO (Yet Another Great Ontology).
Results show that GeoKG improved accuracy and completeness through analyses and user evaluation,
demonstrating scientific advancement in capturing geographic knowledge in a computational system.

2.4. Big Data Search

Lastly, Gaigalas et al. [12] presented a cyberinfrastructure-enabled cataloging approach that
combines web services and crawler technologies to support efficient search of big climate data.
The cataloging approach consists of four main steps, including selection and analysis of a metadata
repository, crawling of metadata using crawlers, building spatiotemporal indexing of metadata,
and search based on collection search (via catalog services) and granule search (via REST API).
This cataloging approach was implemented to support EarthCube CyberConnector. To demonstrate
the feasibility and efficiency of the proposed approach, this cyberinfrastructure was tested with
petabyte-level ESOM (Earth System Observation and Modeling) data provided by UCAR THREDDS
Data Server (TDS). Results suggest that the proposed cataloging approach not only boosts the crawling
speed by 10 times but also dramatically reduces the redundant metadata from 1.85 gigabytes to
2.2 megabytes. Instead of focusing on big data analysis, this work demonstrates the significance and
advanced techniques of making big climate data searchable to support interdisciplinary collaboration
in climate analysis.

3. Conclusion and Future Research Directions

This special issue highlights a diversity of geospatial models and analyses, geospatial data,
geospatial thinking, and computational thinking used to address myriad geospatial problems ranging
from human mobility [7] to disaster management [8]. The manuscripts span geospatial problem
solving and knowledge (e.g., [10,11]), handling massive geospatial data (e.g., [3,12]), and analyzing
and visualizing geospatial data (e.g., [7,9]).

Crucial to the advancements highlighted in this special issue is the integration of computational
thinking and spatial thinking and the translation of abstract ideas and models to concrete data structures
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and algorithms. A promising future research direction will be to build on this integration of knowledge
and skills across the disciplines of GIScience and computational science, which has been termed cyber
literacy for GIScience [19]. In this way, integrated knowledge of real-world geospatial patterns and
computational processes can be captured and shared, and big data and geospatial visual analytic
frameworks can be integrated to provide more robust computational geospatial platforms to address
myriad geospatial problems. A key challenge in this research direction will be the integrative fabric
that can seamlessly combine scholarly thinking with computational infrastructures, geospatial data
elements with big data capabilities, and geospatial methods infused with parallelism.

Parallelism can be achieved by innovatively utilizing advanced computing frameworks, such as
MapReduce and Spark, for applications that include massive data sorting, computing, machine
learning, and graph processing [20]. While this special issue highlighted advancements in geospatial
big data preprocessing [3], land-use change prediction [5], and overlay analysis [4], more efforts should
be devoted to identifying geospatial applications of great impact and benefiting from the integration
of geospatial methods and parallelization in the big data era. Additionally, many existing geospatial
big data applications simply inject spatial data types or functions inside existing big data systems
(e.g., Hadoop) without much optimization [3]. Therefore, further research directions should focus on
improving and optimizing the performance of big data frameworks from different aspects, such as
data ETL, job scheduling, resource allocation, query analytics, memory issues, and I/O bottlenecks,
by considering the spatial principles and constraints [21].
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Abstract: The conventional extracting–transforming–loading (ETL) system is typically operated on
a single machine not capable of handling huge volumes of geospatial big data. To deal with the
considerable amount of big data in the ETL process, we propose D_ELT (delayed extracting–loading
–transforming) by utilizing MapReduce-based parallelization. Among various kinds of big data,
we concentrate on geospatial big data generated via sensors using Internet of Things (IoT) technology.
In the IoT environment, update latency for sensor big data is typically short and old data are not worth
further analysis, so the speed of data preparation is even more significant. We conducted several
experiments measuring the overall performance of D_ELT and compared it with both traditional ETL
and extracting–loading– transforming (ELT) systems, using different sizes of data and complexity
levels for analysis. The experimental results show that D_ELT outperforms the other two approaches,
ETL and ELT. In addition, the larger the amount of data or the higher the complexity of the analysis,
the greater the parallelization effect of transform in D_ELT, leading to better performance over the
traditional ETL and ELT approaches.

Keywords: ETL; ELT; big data; sensor data; IoT; geospatial big data; MapReduce

1. Introduction

In recent years, numerous types of sensors have been connected to the Internet of Things (IoT) and
have produced huge volumes of data with high velocity. A large percentage of these sensor big data is
geospatial data, describing information about physical things in relation to geographic space that can
be represented in a coordinate system [1–4]. With the advance of IoT technologies, more diverse data
have now become available, thereby greatly increasing the amount of geospatial big data.

Given the general properties of big data, the unique characteristics of geospatial data create
an innovative challenge in data preparation [5]. Geospatial data typically include position data.
These coordinate data differ from normal string or integer data, requiring the data pre-processing
process to include a lot of floating-point arithmetic computations. Examples include transformation in
geometry, converting coordination reference systems, and evaluating spatial relationships. Among
these, the most well-known aspect of geospatial data is spatial relationship, describing the relationship
of some objects in a specific location to other objects in neighboring locations. The calculation of spatial
relationship is mostly included in spatial analysis and has been generally regarded as a sophisticated
problem [6]. Moreover, processing temporal elements also complicates the handling of geospatial data.

To deal with the challenges in processing and analyzing geospatial big data, several systems
have emerged. Systems designed for big data have existed for years (e.g., Hadoop [7] and Spark [8]);
however, they are uninformed about spatial properties. This has led to a number of geospatial systems
(e.g., SpatialHadoop [9] and GeoSpark [10]) being developed, mostly by injecting spatial data types
or functions inside existing big data systems. Hadoop, especially, has proven to be a mature big
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data platform and so several geospatial big data systems have been constructed by inserting spatial
data awareness into Hadoop. However, it is still not easy for big data software developers to create
geospatial applications. Typically, to generate a MapReduce job for a required operation in Hadoop,
developers need to program a map and reduce functions. Spatial analysis usually requires handling
more than one MapReduce step, where the output of the data from a previous MapReduce step
becomes the input to the next MapReduce step. As the complexity level of spatial analysis is increased,
the number of MapReduce steps is also increased, resulting in augmented difficulties for the developers
to write iterative code to define the increasingly more complicated MapReduce steps.

To resolve this issue, in our previous work [11], we found a way to represent spatial analysis
as a sequence of one or more units of spatial or non-spatial operators. This allows developers of
geospatial big data applications to create spatial applications by simply combining built-in spatial or
non-spatial operators, without having any detailed knowledge of MapReduce. Once the sequence
of operators has been incorporated, it is automatically transformed to the map and reduces jobs in
our Hadoop-based geospatial big data system. During this conversion process, our system controls
the number of MapReduce steps in such a way as to achieve better performance by decreasing the
overhead of mapping and reducing. The challenges for geospatial big data, however, lie in confronting
not only how to store and analyze the data, but also how to transform the data while achieving
good performance.

Currently, a large amount of geospatial data is continuously provided from many spatial sensors.
It is important to analyze this geospatial big data as soon as possible to extract useful insights. However,
the time required to transform massive amounts of geospatial data into the Hadoop platform has
gradually increased. That is, it takes a lot of time to prepare the data required for geospatial analysis,
thereby delaying obtaining the results of spatial analysis results. For example, we found that it took
about 13 hours and 30 minutes to load 821 GB of digital tachograph (DTG) data using the traditional
ETL method. In the ETL process, data are extracted from data sources, then transformed, involving
normalization and cleansing, and loaded into the target data base. The conventional ETL system is
typically operated on a single machine that cannot effectively handle huge volumes of big data [12].
To deal with the considerable quantity of big data in the ETL process, there have been several attempts
in recent years to utilize a parallelized data processing concept [13–15].

One study [14] proposed ETLMR using a MapReduce framework to parallelize ETL processes.
ETLMR is designed by integrating with Python-based MapReduce. This study conducted an
experimental evaluation assessing system scalability based on different scales of jobs and data
to compare with other MapReduce-based tools. Another study [15] compared Hadoop-based ETL
solutions with commercial ETL solutions in terms of cost and performance. They concluded that
Hadoop-based ETL solutions are better in comparison to existing commercial ETL solutions. The study
in [16] implemented P-ETL (parallel-ETL), which is developed on Hadoop. Instead of the traditional
three steps of extracting, transforming, and loading, P-ETL involves five steps of extracting, partitioning,
transforming, reducing, and loading. This study has shown that P-ETL outperforms the classical ETL
scheme. Many studies, however, have focused on big data analysis, but there have been insufficient
studies attempting to increase the speed of preparing the data required for big data analysis.

In this paper, we continue our previous study on storing and managing geospatial big data
and explain our approach to enhance the performance of ETL processes. Specifically, we propose a
method to start geospatial big data analysis in a short time by reducing the time required for data
transformation under the Hadoop platform. A transformation is defined as data processing achieved
by converting source data into a consistent storage format aiming to query and analyze. Due to
the complex nature of transformations, performance of the ETL processes depend mostly on how
efficiently the transformations are conducted, which is the rate-limiting step in the ETL process. Our
approach allows MapReduce-based parallelization of the transformation in the ETL process. Among
the various sources of geospatial big data, we concentrate on sensor big data. With the increasing
number of IoT sensing devices, the amount of sensor data is expected to grow significantly over
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time for a wide range of fields and applications. IoT-based sensor data are, however, essentially
loosely structured and typically incomplete, much of it being directly unusable. In addition, in the IoT
environment, the update period—the time between the arrival of raw data and when meaningful data
are made available—occurs more frequently than for typical batch data. These difficulties require that
considerable resources are used for transformation in the ETL process.

This paper extends our research work presented in [11] and suggests a way to increase performance
of the transformation functionality in the ETL process by taking advantage of the MapReduce framework.
First, in Section 2 we briefly explain our previous work on constructing a geospatial big data processing
system by extending the original Hadoop to support spatial properties. We focus particularly on
explaining automatically converting a user-specified sequence of operators for spatial analysis to
MapReduce steps. Section 3 describes up-to-date ETL research followed by our approach on improving
performance of transformation in the ETL processes based on MapReduce. Our conducted experimental
settings and results are described in Sections 4 and 5, respectively. Section 6 concludes our work and
presents our plans for future research.

2. Geospatial Big Data Platform

In our previous study [11], we developed a high performance geospatial big data processing
system based on Hadoop/MapReduce, named Marmot [17]. In Marmot, spatial analysis is defined as a
sequence of RecordSetOperators, where a RecordSet is a collection of records and a RecordSetOperator
is a processing element using a RecordSet, similar to a relational operator in Relational Database
Management System (RDBMS). A sequence of RecordSetOperators is defined as a Plan, as shown in
Figure 1.

Figure 1. Representation of spatial analysis in Marmot: A sequence of one or more units of spatial or
non-spatial operators.

In Marmot, a RecordSetOperator is classified as three possible types: RecordSetLoader,
RecordSetFunction, or RecordSetConsumer. RecordSetLoader is a non-spatial operator loading
source data and transforming it to a RecordSet; RecordSetFunction is a spatial or non-spatial operator
taking a RecordSet as source data and producing a new RecordSet as output data; RecordSetConsumer
is a non-spatial operator storing a finally created RecordSet as a result of a given spatial analysis outside
of Marmot.

To process a given spatial analysis, a developer creates a corresponding Plan by combining
spatial operators and non-spatial operators and injects the Plan into Marmot. Marmot processes each
RecordSetOperator one by one and automatically transforms the given Plan to map and reduce jobs,
as shown in Figure 2.
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(a) 

 
(b) 

Figure 2. Automatic transformation of a Plan into MapReduce jobs. (a) A Plan having
a RecordSetFunction divided into mapping and reducing operators; (b) An automatically
transformed Plan.

While parsing a given Plan, when Marmot meets a RecordSetFunction that can be separated
into mapping and reducing operators (e.g., ReduceByGroupKey), as shown in Figure 2a, Marmot
decomposes the RecordSetFunction into the mapping operator and reducing operator, and eventually
transforms the Plan into MapReduce jobs consisting of map and reduce phases, as shown in Figure 2b.
During this transformation, Marmot controls the number of MapReduce phases in a way to achieve
better performance by decreasing the overhead of mapping and reducing. To describe how Marmot
handles such processes in detail, an example of spatial analysis to retrieve subway stations in a city is
shown in Figures 3 and 4.

Figure 3. An example code for searching subway stations per city.

Figure 3 is a Marmot code for an example of spatial analysis. The analysis is represented as a Plan
consisting of five RecordSetOperators: Load, Update, SpatialJoin, ReduceByGroupKey, and StoreAsCsv.
As shown in Figure 4, using the Load operator, Marmot reads the boundaries of each subway station and
computes their center coordinates. The calculated center points are then utilized as the representative
locations of each subway station via the Update operator. For each subway station, using the SpatialJoin
operator, Marmot identifies the city that is the center point of the subway station. Finally, the number
of subway stations per city is calculated via the ReduceByGroupKey operator and the results are stored
in a CSV file named “result” via the StoreAsCsv operator.
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Figure 4. An example Plan for searching subway stations per city.

During the process of transforming the Plan to a sequence of MapReduce jobs, ReduceByGroupKey
is decomposed into GroupBy and Reduce as a mapping operator and a reducing operator, respectively.
Accordingly, Load, Update, SpatialJoin, and GroupBy are executed during the Map phase; Reduce and
StoreAsCsv, during the Reduce phase.

3. Our MapReduce-Based D_ELT Framework

As mentioned in the previous section, we constructed the Marmot, high-performance data
management system that enables developers with no specific knowledge of big data technologies to
implement improved performance spatial analysis applications to geospatial big data. The issues
concerning geospatial big data, however, lie not only in how to efficiently manage the data for fast
analysis, but also in how to efficiently transform the data for fast data preparation.

DTG data, for example, have been used to analyze the status of transportation operations to
identify improvement points and to identify disadvantaged areas in terms of public transportation.
Transportation authorities, e.g., the Korea Transportation Safety Authority, collect DTG data from
commercial vehicles and apply analytics to such big data to extract insights and facilitate decision
making. Often, the results of data analysis must be derived periodically within a specific time, e.g.,
every single day, to be prepared for emergent cases. In this situation, to complete the given analysis
in time, not only the data analysis speed, but also the data preparation speed is a critical factor
affecting the overall performance. In the IoT environment, update latency for sensor big data, the focus
of this paper among various sources of geospatial big data, is typically short and old data are not
worth further analysis, making data preparation speed even more important. Moreover, sensor big
data is machine-generated; therefore, the source data contains more noise or errors compared to
human-generated data, complicating data preparation even more.

Traditional ETL [18–20] can no longer accommodate such situations. The ETL is designed for
light-weight computations on small data sets, but is not capable of efficiently handling massive amounts
of data. Figure 5a describes the data preparation and analysis in the ETL process. In this approach,
data are extracted from various sources and then transformed on an ETL server, which is typically
one machine, and loaded into a Hadoop distributed file system (HDFS). The loaded data are finally
analyzed in a big data platform for decision-making. In this approach, an analysis operation is processed
in a parallel/distributed way using MapReduce [21,22], which guarantees reasonable performance,
but bottlenecks can occur during a transform operation. In fact, transform is the most time consuming
phase in ETL because this operation includes filtering or aggregation of source data to fit the structure
of the target database. Data cleaning should also be completed for any duplicated data, missing data,
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or different data formats. Moreover, in big data environments, due to heterogeneous sources of big
data, the traditional transform operation will create even more computational burdens. The overall
performance of the ETL processes, therefore, depends mainly on how efficiently the transform operation
is conducted.

(a) ETL process 

(b) ELT process 

 

(c) D_ELT process 

Figure 5. Illustration of geospatial big data preparation and analysis processes comparing three cases:
(a) ETL; (b) ELT; (c) D_ELT. In the figure, “E” stands for extract, “T” stands for transform, “L” stands
for load, and “A” stands for analysis.

To overcome the drawbacks of traditional ETL and to speed up the data preparation process,
the processes of ELT was devised [23–25]. The nature of traditional ETL is to perform transform
immediately after the extract operation and then start the load operation. In contrast, the basic idea of
ELT is to conduct the load operation immediately after the extract operation, and perform the transform
after storing the data in the HDFS, as shown in Figure 5b. This approach has several advantages over
ETL. The transform operation can be done at the run time when needed and it is possible to use transform
even multiple times to handle changing requirements for data. In addition, this approach eliminates a
separate transformation engine, the ETL server, between the source and target and makes the overall
system less costly. Above all, ELT allows raw source data to be loaded directly into the target and
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also leverages the target system to perform the transform operation. In that sense, ELT can speed up
transform using parallelization/distribution supported in the Hadoop-based big data platform.

Despite these advantages, ELT still has limitations in handling big data. The ELT framework
can speed up transform using MapReduce, but analysis is initiated only after the transform has been
completed. In this approach, it is difficult to optimize transform in conjunction with analysis because
the transform is performed in a batch regardless of the context of analysis. For example, in the case
of geospatial data, one of the high computational overheads in conducting transform occurs during
type transformation, such as converting the x–axis and y–axis of plain-text into (x,y) coordinates of
the point and coordinate system transformation for conducting spatial analysis. If analysis does not
require such tasks, it is possible to identify them at the transform phase and load only the required data.
By doing so, the system can eliminate unnecessary transformations and speed up performance.

To achieve better scalability and performance in conducing transform on geospatial big data,
this paper offers a new approach for data preparation called D_ETL—in the sense that the decision of
how to perform transform is delayed until the context of analysis is understood. As shown in Figure 5c,
in our approach, transform is executed in parallel/distributed with analysis within our geospatial big data
platform, Marmot. In Marmot, the operators for transform are considered a type of RecordSetOperator
and are also composed of a Plan, along with the existing RecordSetOperator designed for analysis.
This approach has the advantage that data preparation and analysis processes are described using the
same data model. Application developers, therefore, can be free from the inconvenience of having to
get used to implementing both processes.

Regarding the operators required to conduct transform, the application developer specifies them
in the D_ELT script. In this way, the developer can implement both data preparation and analysis
simultaneously, without having to modify the existing code for conducting analysis. The D_ELT script
consists of the names of operators and a list of the key-values of the parameters, as shown in Figure 6.
For convenience, if a developer needs a new operator for conducting transform, the operator can be
separately implemented as a form of plug-in and can be used in Marmot, in the same way as for
existing operators.

Figure 6. An example of D_ELT (delayed extracting–loading –transforming) script describing operators
required for data transformation.
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To perform a spatial analysis, Marmot first loads the D_ELT script to determine what operators
need to be executed for transform. Then, Marmot (1) examines the operators needed to be executed for
analysis, (2) loads only the required data based on the need of analysis, and (3) executes both transform
and analysis in a parallel distributed way. At this time, part of the transformed data can be used for
analysis and not have to wait for all the data to finish being transformed. Figure 7 shows the sequence
of operators executed for transform and analysis and their composition as a form of a plan. In this
example Plan, “ParseCSV” is the operator for transform and “Filter” is the operator for analysis. They
are allocated in the Map phase and executed in a parallel distributed way. The outputs from the Map
phase are combined during the Reduce phase and the results are written in the output file.

Figure 7. Illustration of the Map and Reduce phases during the D_ELT process.

The reason why we implemented D_ELT using MapReduce instead of Spark, another well-known
engine for big data processing, is that our previously developed geospatial big platform is based
on Hadoop and we had the goal of improving the data transformation time in that environment.
In addition, the data we are currently handling is a large amount of DTG data, generating 20–30 TB every
month. Using Spark, when running spatial analysis based on this large size of data, we anticipated
that unexpected problems may occur (e.g., disk swapping), but to our knowledge, concrete solutions
have not yet been proposed.

It is also important to note that ELT and D_ELT are identical in terms of performing data
transformation during the MapReduce phase in Hadoop. The difference between ELT and D_ELT is as
follows. In ELT, once raw data are uploaded to Hadoop, the data are transformed using MapReduce.
After completely finishing the transformation, analysis is then started using another MapReduce.
In D_ELT, however, data transformation is not conducted, although all of the raw data are uploaded
to Hadoop but delayed until the time of conducting the analysis. That is, the transformation task is
piggybacked onto the analysis task and both tasks are performed together using the same MapReduce.
In this way, part of the transformed data can be used for analysis immediately without having to wait
for all the data to be transformed.

4. Experimental Evaluation

This section explains our evaluation of the improvement in performance achieved by our
proposed approach, D_ELT. In addition, the scalability of three different approaches (traditional ETL,
ELT, and D_ELT) were measured and compared by varying data size and levels of analysis complexity.
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4.1. Experimental Setup

Our experiments were conducted on the four nodes of a Hadoop cluster. Each node was a desktop
computer with a 4.0 GHZ Intel 4 core i7 CPU, a 32 GB main memory, and a 4 TB disk. The operating
system was CentOS 6.9 and the Hadoop version was Hortonworks HDP 2.6.1.0 with Ambari 2.5.0.3.
PostgreSQL 9.5 was used for the database management system along with Oracle JDK 1.8. The 2.7.3
version of MapReduce2 was used.

The test data used in the experiment were DTG data installed in vehicles, which record the driving
record in real time. The structure of the data consisted of timestamp, vehicle number, daily mileage,
accumulated mileage, speed, acceleration, RPM, brake, x_position, y_position, and angle. The data
were classified into three different sizes: small, 9.9GB; medium, 19.8 GB; and large, 29.8 GB, as shown
in Table 1. For the geospatial big data platform, we used our developed system Marmot, as explained
in Section 2.

Table 1. Data size: small, medium, and large.

Data Size

Small 9.9 GB
Medium 19.8 GB

Large 29.8 GB

4.2. Experiment 1: Measurement of Data Preparation Time

In this experiment, we compared the data preparation time of ETL and ELT to our proposed
D_ELT, and the scalability of each approach based on the different data size. The overall results from
this experiment are presented in Table 2.

As shown in Figure 5 in Section 3, the total time for data preparation in the ETL process includes
time for extracting, transforming, and loading. In the case of ELT, the total time spent on data
preparation is the summation of times for extracting, loading, and transforming. While in the ETL
process, transform was conducted on a single machine, which is based on non-MapReduce and transform
in the ELT was performed in a parallel distributed way based on MapReduce.

Table 2. Data preparation time (in seconds): ETL, ELT, and D_ELT.

ETL 1 ELT 2 D_ELT 3

Small 579 413 116
Medium 1158 808 231

Large 1727 1175 345
1 Data preparation time in ETL: E+T+L, where E for extract, T for transform, L for load; 2 Data preparation time in
ELT: E+L+T, where T is executed in a parallel distributed way; 3 Data preparation time in D_ELT: E+L.

In the case of D_ELT, the total time spent on data preparation is the summation of times only for
extracting and loading, but does not include the time for transforming. Transform was simultaneously
executed along with analysis in the data analysis phase, and so that the data preparation in D_ELT does
not include transform but only extract and load.

4.3. Experiment 2: Measurement of Data Analysis Time

In this experiment, we compared the data analysis time of ETL, ELT, and our proposed D_ELT,
and the scalability of each approach based on the different data size. Additionally, this experiment
also included optimized D_ELT, D_ELT_Opt, conducting data analysis by filtering and using only
the required data. In order to see the variation in performance according to the different complexity
levels of analysis, we utilized three analyses—Count, GroupBy, and SpatialJoin—for low, middle,
and high-level complex analysis, respectively. The overall results from this experiment are presented
in Table 3.
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Table 3. Data analysis time (in seconds): ETL(or ELT), D_ELT, and optimized D_ELT.

ETL(or ELT) 1 D_ELT 2 D_ELT_Opt 3

Count
Small 68 96 57

Medium 126 179 104
Large 181 257 143

GroupBy
Small 76 98 87

Medium 139 179 162
Large 203 256 233

SpatialJoin
Small 391 406 406

Medium 772 806 806
Large 1087 1190 1148

1 Data analysis time in ETL or ELT: A, where A is executed in parallel; 2 Data analysis time in D_ELT: T+A, T, where
T, A are executed in parallel; 3 Data analysis time in optimized D_ELT: T+A, where T, A are executed in parallel
using only the required data.

As shown in Figure 5 in Section 3, the total time for data analysis in ETL includes only the analysis,
which is conducted in a parallel distributed way using MapReduce. In the case of ELT, once the data
preparation is completed, the analysis will be conducted in the same way as for ETL. In the cases of
D_ELT and optimized D_ELT, the total time spent on data analysis is the time required to execute
transform and analysis in a parallel distributed way using MapReduce.

5. Results and Discussion

5.1. Results

The first experiment for measuring the data preparation time for each approach reveals the
following points. As shown in Figure 8, D_ELT is about 5 times faster than ETL (116 sec vs. 579 sec for
small data; 231 sec vs.1158 sec for medium data; 345 sec vs. 1727 sec for large data) and about 3 times
faster than ELT (116 sec vs. 413 sec for small data; 231 sec vs. 808 sec for medium data; 345 sec vs.
1175 sec for large data), regardless of the data size. The ELT approach is about 1.4 times faster than
ETL. This is because of the parallel distributed processing effect using Marmot’s MapReduce when
performing transform in ELT.

Figure 8. Data preparation time (in seconds): ETL, ELT, and D_ELT.

The data analysis time is measured by the second experiment and reveals the following points.
Table 4 compares the performance between D_ELT and ETL(or ELT) and optimized D_ELT and ETL(or
ELT). In both cases, the ratio of performance to analysis is almost identical regardless of the data size.
An interesting point is that the data analysis time in the D_ELT process contains time for transform,
while the ETL(or ELT) process does not include this time. Although D_ELT is slower than ETL(or ELT),
there is little difference in performance—D_ELT is up to 1.4 times slower. In the case of optimized
D_ELT, the process is only up to 1.2 times slower than the ETL(or ELT) approach. In D_ELT, in the case
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of simple analysis, the time involved in data transforming is relatively large compared to the analysis
time and consumes a large part of the total execution time. However, in the case of complex spatial
analysis, the time involved in data transforming is relatively small compared to data analysis, and so
the transformation overhead incurred is relatively small.

Table 4. Performance comparison: D_ELT/ETL(or ELT) and optimized D_ELT/ETL(or ELT).

D_ELT/ETL(or ELT) D_ELT_Opt/ETL(or ELT)

Count
Small 1.41 0.84

Medium 1.42 0.83
Large 1.42 0.79

GroupBy
Small 1.29 1.14

Medium 1.29 1.17
Large 1.26 1.15

SpatialJoin
Small 1.04 1.04

Medium 1.04 1.04
Large 1.09 1.06

It is important to note that these have no effect on overall performance degradation, considering
that D_ELT is about 3–5 times faster than ETL(or ELT) during data preparation, as shown in Table 2
in Section 4 and Figure 8. Therefore, the performance of both D_ELT and optimized D_ELT is much
greater than that of ETL or ELT.

Figure 9 compares the performance between D_ELT and ETL(or ELT) during data analysis
according to the different data size and analysis type. As aforementioned, the analysis time in the
D_ELT includes transform as opposed to ETL(or ELT), and so D_ELT is slower than ETL(or ELT),
as shown in Table 3 in Section 4. However, the higher the complexity of the analysis (Count < GroupBy
< SpatialJoin), the smaller the difference between the D_ELT and the ETL(or ELT) performance.
The reason is that the higher the complexity of analysis, the higher the effect of parallelizing the
transform of D_ELT, thereby enhancing the performance of D_ELT.

Figure 9. Performance comparison of D_ELT/ETL(or ELT) based on the small, medium, and large data
size for each of three analyses: Count, Group-By, and SpatialJoin.

Similarly, Figure 10 compares the performance between optimized D_ELT and ETL(or ELT) during
data analysis, according to different data size and analysis type. Compared to Figure 9, in the case of
two simple analysis cases, Count and GroupBy, optimized D_ELT is faster than D_ELT. This is because
for simple analysis, large amounts of data are often unrelated to the analysis, and so more data can be
included in the optimization target, resulting in an incremental increase in performance of optimized
D_ELT.
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Figure 10. Performance comparison of optimized D_ELT/ETL(or ELT) based on the small, medium,
and large data size for each of three analyses: Count, Group-By, and SpatialJoin.

In both cases, the performance ratio of the analysis is very similar regardless of data size. Thus,
we chose only the small data size to compare the performance ratio, as shown in Figure 11. This shows
that the higher the complexity of the analysis, the smaller the performance difference between D_ELT
and optimized D_ELT. This is because the more complex the analysis, the more data is involved in the
analysis, which reduces the scope of optimization. In the case of SpatialJoin, which has the highest
complexity among the three analyses, the two values in Figure 11 converge to almost 1.0, showing that
there is almost no performance difference between D_ELT and optimized D_ELT.

Figure 11. Performance comparison of D_ELT/ETL(or ELT) vs. optimized D_ELT/ETL(or ELT) based
on the small data size for each of three analyses: Count, Group-By, and SpatialJoin.

The overall performance of ETL, ELT, D_ELT, and optimized D_ELT is derived by summing the
data preparation and analysis times. Table 5 shows that the overall performance of D_ELT is much
faster than that of the ETL or ELT approaches. D_ELT is up to 3 times faster than ETL and 2 times faster
than ELT. Optimzed D_ELT is up to 4 times faster than ETL and 3 times faster than ELT. The results are
derived from the two simple analysis cases, Count and GroupBy, but not SpatialJoin. In the case of
SpatialJoin, both D_ELT and optimized D_ELT still perform better than ETL or ELT, but there is almost
no difference between the overall performance of D_ELT and optimized D_ELT. Figure 12 shows that as
the complexity of the analysis is increased, the gap between D_ELT and optimized D_ELT is decreased.
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Table 5. Overall performance of ETL, ELT, D_ELT, optimized D_ELT (in seconds), and performance
comparison among ELT vs. ETL, D_ELT vs. ETL, and optimized D_ELT vs. ETL.

ETL
(sec)

ELT
(sec)

D_ELT
(sec)

D_ELT_Opt
(sec)

ELT/
ETL

D_ELT/
ETL

D_ELT_Opt/
ETL

Count
Small 647 481 212 173 0.74 0.33 0.27

Medium 1284 934 410 335 0.73 0.32 0.26
Large 1908 1356 602 488 0.71 0.32 0.26

GroupBy
Small 655 489 214 203 0.75 0.33 0.31

Medium 1297 947 410 393 0.73 0.32 0.30
Large 1930 1378 601 578 0.71 0.31 0.30

SpatialJoin
Small 970 804 522 522 0.83 0.54 0.54

Medium 1930 1580 1037 1037 0.82 0.54 0.54
Large 2814 2262 1535 1493 0.80 0.55 0.53

Figure 12. Overall performance comparison of ELT/ETL vs. D_ELT/ETL vs. optimized D_ELT/ETL based
on a small, medium, and large data size for each of three analyses: Count, Group-By, and SpatialJoin.

5.2. Discussion

There are two conventional methods—ETL and ELT. The traditional ETL method does not use
the distributed/parallel method during data pre-processing, causing problems especially when the
volume of data to be pre-processed is large. The ELT method improves traditional ETL methods to
speed up data pre-processing using the distributed/parallel method. Our proposed D_ELT method
reduces overhead in data pre-processing. In D_ELT, the transformation task is piggybacked onto the
analysis task and both tasks are performed together using the same MapReduce. This way allows one
to conduct the analysis immediately without storing transform results and also excludes unnecessary
transformations that are not utilized in the analysis.

Compared to existing methods, however, the D_ELT method significantly reduces the data
preparation time, but has the disadvantage in the following cases. First, the case that the same kind of
analysis must be conducted repetitively. For example, the D_ELT method results in a 1382-second
reduction (large data, Table 2) in data preparation time compared to that of the conventional ETL
method, but 103 seconds is added (large data, SpatialJoin, Table 3) every time an analysis is conducted.
Therefore, the greater the number of conducting analyses, the more inefficient D_ELT is compared to
traditional methods. In the example above, the D_ELT method is more inefficient than the existing
method when the same analysis is conducted more than 14 times in succession. Second, in the case
that a large amount of input data is invalid, a large amount of data can be removed as a result of the
transform. In D_ELT, the transformation task is piggybacked every time an analysis task is executed,
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a large amount of invalid data is repeatedly read, resulting in unnecessary I/O and computation
burden. Finally, the method proposed in this paper does not consider real-time applications. However,
it provides the advantage that required analysis results can be obtained relatively more quickly than
other conventional methods.

6. Conclusions

This paper presents our proposed D_ELT approach to efficiently transform and analyze data,
thereby making it usable for a large amount of sensor big data, especially geospatial big data. Based on
the experimental results, we made several observations as follows. First, D_ELT outperforms ETL and
ELT during data preparation. Second, D_ELT shows performance degradation during data analysis.
However, the higher the complexity of the analysis, the smaller the performance degradation, resulting
in overall improved performance compared to ETL or ELT. Finally, in the case of simple analysis
increasing the scope of optimization, optimized D_ELT outperforms ELT. In the future, we plan to
further increase the overall performance of our developed system including D_ELT and Marmot by
investigating the spatial index, to better support spatial queries in dealing with geospatial big data.
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Abstract: Overlay analysis is a common task in geographic computing that is widely used in
geographic information systems, computer graphics, and computer science. With the breakthroughs in
Earth observation technologies, particularly the emergence of high-resolution satellite remote-sensing
technology, geographic data have demonstrated explosive growth. The overlay analysis of massive
and complex geographic data has become a computationally intensive task. Distributed parallel
processing in a cloud environment provides an efficient solution to this problem. The cloud computing
paradigm represented by Spark has become the standard for massive data processing in the industry
and academia due to its large-scale and low-latency characteristics. The cloud computing paradigm
has attracted further attention for the purpose of solving the overlay analysis of massive data. These
studies mainly focus on how to implement parallel overlay analysis in a cloud computing paradigm
but pay less attention to the impact of spatial data graphics complexity on parallel computing efficiency,
especially the data skew caused by the difference in the graphic complexity. Geographic polygons
often have complex graphical structures, such as many vertices, composite structures including holes
and islands. When the Spark paradigm is used to solve the overlay analysis of massive geographic
polygons, its calculation efficiency is closely related to factors such as data organization and algorithm
design. Considering the influence of the shape complexity of polygons on the performance of overlay
analysis, we design and implement a parallel processing algorithm based on the Spark paradigm in
this paper. Based on the analysis of the shape complexity of polygons, the overlay analysis speed is
improved via reasonable data partition, distributed spatial index, a minimum boundary rectangular
filter and other optimization processes, and the high speed and parallel efficiency are maintained.

Keywords: overlay analysis; shape complexity; massive data; cloud; parallel computing

1. Introduction

Overlay analysis is a common geographic computing operation and an important spatial analysis
function of geographic information systems (GIS). It is widely used in applications related to spatial
computing [1,2]. This operation involves the spatial overlay analysis of different data layers and their
attributes in the target area. It connects multiple spatial objects from multiple data sets, creates a new
clip data set, and quantitatively analyzes the spatial range and characteristics of the interactions among
different types of spatial objects [3]. The development of geospatial science has entered a new stage with
the rapid popularization of the global Internet, sensor technologies, and Earth observation technologies.
The transformation of a space information service from digital Earth to intelligent Earth has posed
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challenges, such as being data-intensive, computationally intensive, and time–space-intensive and
high concurrent access [4,5]. Overlay analysis deals with massive data, for which traditional data
processing algorithms and models are no longer suitable. For example, the number of land use
classification patches in Yunnan Province investigated in this study is hundreds of thousands at the
county level, millions at the city level, and tens of millions at the provincial level. With the development
of the social economy and the progress of data acquisition technologies, the number of land use
classification patches will continue to increase. Effectively calculating land use change using traditional
single-computer calculation models is difficult.

The rise of parallel computing technologies, such as network clustering, grid computing, and
distributed processing in recent years has gradually shifted research on high-performance GIS spatial
computing from the optimization of algorithms to the parallel transformation and parallel strategy
design of GIS spatial computing in a cloud computing environment [6]. Recently, MapReduce and
Spark technology have been applied to overlay analysis of massive spatial data, and some results have
been achieved. Nevertheless, the massive spatial data is different from the general massive Internet data.
The spatial characteristics of spatial data and the complexity of a spatial analysis algorithm determine
that simply copying a cloud computing programming paradigm cannot achieve high-performance
geographic computing. Therefore, this study chooses the classical Hormann clipping algorithm [7] to
analyze and measure the impact of the shape complexity of geographic polygons on parallel overlay
analysis, and proposes a Hilbert partition method based on the shape complexity measure to solve
the data skew caused by the difference of the shape complexity of polygons. In addition, through
the combination of MBR (Minimum Bounding Rectangle) filtering, R-tree spatial index and other
optimizations, an efficient parallel overlay analysis algorithm is designed. The experimental analysis
shows that the proposed method reduces the number of polygon intersection operations, achieves
better load balancing of computing tasks, and greatly improves the parallel efficiency of overlay
analysis. When the computational core increases, the algorithm achieves an upward acceleration ratio,
and the computational performance presents a nonlinear change.

The rest of this paper is organized as follows. Section 2 reviews the research background and
related studies, including those on shape complexity and overlay analysis algorithms. In Section 3, the
Hormann algorithm is improved for a parallel polygon clipping process, and the process of a parallel
polygon clipping algorithm is optimized according to the shape complexity of polygons. Section 4
describes the experimental process in detail and analyzes the experimental results. Section 5 provides
the conclusion drawn from this research, followed by potential future work.

2. Relevant Work

This paper discusses the related research work from two aspects: shape complexity and overlay
analysis algorithm.

2.1. Shape Complexity

Many studies use abstract language to describe the shapes and complex details of geometric
objects, such as “the structure of polygons with multiple holes, the number of vertices is very
large, and polygons with multiple concaves.” To evaluate the computational cost, the complexity
and computational efficiency of geometric computing problems should be accurately measured [8].
The concept of complexity is also introduced [9–12]. Many applications related to spatial computing
heavily depend on algorithms to solve geometric problems. When dealing with large-scale geographic
computing problems, the evaluation of computational cost must consider the quantity of input data,
the complexity of graphical objects, and the time complexity of computing models [10]. When the
amount of input data and the algorithm are determined, the complexity of different graphical objects
frequently leads to considerable differences in the computing efficiency.

Mandelbrot described the complexity of geometric objects from the perspective of a fractal
dimension [13]. The most commonly used method is the box-counting technique [14,15]. Brinkhoff
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quantitatively reported the complexity of polygons from three aspects, namely, the frequency of local
vibration, the amplitude of local vibration, and the deviation from the convex hull, to describe the
complexity of a global shape [16]. On the basis of Brinkhoff’s research, Bryson proposed a conceptual
framework to discuss the query processing-oriented shape complexity measures for spatial objects [17].
Rossignac [8] analyzed shape complexity from the aspects of algebraic, topological, morphological,
combinatorial, and expression complexities. Rossignac also reduced the shape complexity by using a
triangular boundary representation at different scales [8]. Ying optimized graphic data transmission
on the basis of shape complexity [18].

From the above discussion, we know that the complexity of graphics has different meanings and
measurement methods in different professional fields, such as design complexity, visual complexity
and so on. Therefore, we should consider the shape complexity from the perspective of geographic
computing. Shape complexity directly affects the efficiency of spatial analysis and spatial query
computation, such as the numbers of vertices and local shapes (such as the concavity) of graphics,
considerably influencing the efficiency of spatial geometry calculation. These values are important
indicators for evaluating the calculation cost. Fully considering the influence of graphical complexity
on specific geographic computations can effectively optimize the computing efficiency of applications.

2.2. Overlay Analysis

The study on vector overlay analysis arithmetic originates from the field of computer graphics.
For example, two groups of thousands of overlay polygons are often clipped in 2D and 3D graphics
rendering. Subsequently, different overlay analysis algorithms have been produced. Among which, the
Sutherland–Hodgman [19], Vatti [20], and Greiner–Hormann [7] algorithms are the most representative
when dealing with arbitrary polygon clippings. The Sutherland–Hodgman algorithm is unsuitable
for complex polygons. The Weiler–Atherton algorithm requires candidate polygons to be arranged
clockwise and with no self-intersecting polygons. The Vatti algorithm does not restrict the types
of clipping, and thus, self-intersecting and porous polygons can also be processed. The Hormann
algorithm clips polygons by judging the entrance and exit of directional lines. This algorithm also
addresses point degradation by moving small distances [21]. In addition, the Hormann algorithm can
deal with self-intersecting and nonconvex polygons. The Weiler algorithm uses tree data structures,
whereas the Vatti and Greiner–Hormann algorithms adopt a bilinear linked list data structure. Therefore,
the Vatti and Greiner–Hormann algorithms are better than the Weiler algorithm in terms of complexity
and running speed.

Subsequent researchers have implemented many improvements to the aforementioned traditional
vector clipping algorithms [22–24], which simplify the calculation of vector polygon clippings. However,
these studies are based on the optimization of a serial algorithm. When overlay analysis is applied to
the field of geographic computing, it will deal with more complex polygons (such as polygons with
holes and islands) and a larger data volume (the number of land use classification patches in a province
is tens or even hundreds of millions, and a polygon may have tens of thousands of vertices). A vector
clipping algorithm can be applied efficiently to computer graphics but cannot be applied efficiently
to geographic computing. Moreover, many traditional geographic element clipping algorithms also
exhibit poor suitability and performance degradation. With the development of computer technology
and the increase in spatial data volume, traditional vector clipping algorithms frequently encounter
efficiency bottlenecks when dealing with large and complex geographic data sets. Therefore, improving
the overlay algorithm and using the parallel computing platform for the overlay analysis of massive
data is a new research direction.

With the rapid development of MapReduce and Spark cloud computing technologies, the use of
large-scale distributed storage and parallel computing technology for massive data processing and
analysis has become an effective technical approach [6,25]. Recent studies have applied the MapReduce
and Spark technology to the overlay analysis of massive spatial data. Wang [26] used MapReduce to
improve the efficiency of overlay analysis by about 10 times by a grid partition and index. Zheng [27]
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built a multilevel grid index structure by combining the first-level grid with quartering based on Spark
distributed computation platform. Zheng’s experiments show that a grid index algorithm achieves
good results when polygons are uniformly distributed; otherwise, the efficiency of the algorithm is low.
Xiao [28] proves that parallel task partitioning based on polygons’ spatial location achieves better load
balancing than random task partitioning. In addition, SpatialHadoop [29–32] and GeoSpark [32–35]
extend Hadoop and Spark to support massive spatial data computing better. Among them, Spatial
Hadoop designed a set of spatial object storage model, which provides HDFS with grid, R-tree, Hilbert
curve, Z curve and other indexes. In addition, it also provides a filtering function for filtering data that
need not be processed. GeoSpark also adds a set of spatial object models and extends RDD (Resilient
Distributed Dataset) to SRDD (Spatial Resilient Distributed Dataset) that supports spatial object storage.
GeoSpark also provides filtering functions to filter data that need not be processed. The design ideas
of SpatialHadoop and GeoSpark have great reference value for the research of this paper.

In summary, using a Spark cloud computing paradigm to develop high-performance geographic
computing is a cheap and high-performance method. It is also one of the research hotspots in the field
of high-performance geographic computing. Recent studies have implemented overlay analysis in
Spark, which greatly improves the efficiency of overlay analysis. Optimizing strategies for spatial
data characteristics, such as reasonable data partitioning and an excellent spatial data index, play an
important role in improving the efficiency of parallel computing, and Hilbert partitioning is more
suitable for parallel overlay analysis of non-uniform spatial distribution data than grid partitioning.
It is noticed that the current parallel overlay analysis is based on the third-party clipping interface and
ignores the impact of the shape complexity of geographic polygons on the clipping algorithm, which
will cause a serious data skew.

3. Methodology

In this section, the core idea of the paper will be introduced. First, an excellent basic overlay
analysis algorithm is selected for execution on each computing node. Then, according to the complexity
and location of graphics, the polygons are divided reasonably, and an index based on spatial location
is established to realize fast data access and load balancing of parallel computing nodes.

3.1. Basic Overlay Analysis Algorithm Running on Each Computing Node.

3.1.1. Hormann Algorithm and Improvement of Intersection Degeneration Problem.

The basic overlay analysis algorithm, which is the basic processing program for each parallel
computing node, performs overlay analysis on two sets of polygons. In designing an overlay analysis
algorithm, we use the Hormann algorithm, which can deal with complex structures (e.g., self-intersection
and polymorphism with holes), as reference. However, the point coordinate perturbation method
used by the Hormann algorithm is not the best solution for the degradation problem, which brings
cumulative errors in the area statistics of massive patches. Therefore, we solve the intersection
degeneration by judging the azimuth interval between intersecting correlation lines. We also use the
improved algorithm as the basis of parallel overlay analysis.

In order to achieve a simplified expression of the overlay analysis of two groups of polygons, we
assume that each group of polygons has only one polygon object, because the overlay analysis of two
groups of layers with multiple polygons only increases the number of iterations. The processing steps
of the improved Hormann algorithm are as follows:

1. Calculating the intersections of the clipped and target polygons
2. Judging the entry and exit of the intersection point by the vector line segment (judging the entry

or exit point of the intersection point) and adding the entry point to the vertex sequence of the
clipping result polygon
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3. Comparing the azimuth intervals of the degenerated vertices of the intersection points and
adding the overlapping vertices of the azimuth intervals to the vertex sequence of the clipping
result polygon

4. Forming a new polygon (clipping result) in accordance with the sequence of vertices

As shown in Figure 1a, the clipped polygon P1 and the target polygon P2 intersect. Intersection
points K1 and K2 can be obtained through a collinearity equation. By judging the positive and negative
values of the product of vector line segments, the intersection points can be judged to enter and

exit. As illustrated in the same figure,
⇀

A1A2 ×
⇀

B1B2 > 0, and thus, K1 is the entry point relative to P2.

Moreover,
⇀

A2A3 ×
⇀

B1B2 < 0, and thus, K2 is the exit point. The resulting polygon is composed of a
sequence of vertices that consist of K1, A2, and K2. As illustrated in Figure 1b–d, the entry and exit
points are unsuitable for describing intersection degradation.

 

Figure 1. Polygon overlay.

Figure 2 shows how to deal with the phenomenon of intersection degeneration. In Figure 2,
the dotted arrow N points toward the north, which is the starting point of the azimuth calculation.
Therefore, each line segment has its own azimuth. The clipped and target polygons have an intersection
point K, which is also the location of vertices Am and Bm. The azimuth intervals of the clipped and
target polygons at intersection K are AC(α1,α2) and AT(α1,α2). If AC(α1,α2) and AT(α1,α2) have
overlapping parts (yellow in the figure), then both polygons overlap near the intersection point, which
should be added to the vertex sequence of the resultant polygon.

AT( 1, 2)AC( 1, 2)

KAm+1KAm-1

KBm-1

KBm+1

N

KBm

Bm+1

Bm-1

Am+1

Am-1

Am

Figure 2. Diagram of azimuth interval calculation.

3.1.2. Effect of Shape Complexity on Parallel Clipping Efficiency

In parallel clipping computing, each computing node is usually assigned the same number of
polygons. Generally speaking, it is difficult to ensure that complex polygons are evenly allocated to

29



ISPRS Int. J. Geo-Inf. 2019, 8, 290

each computing node; usually, one computing node is allocated more complex polygons. Although
the total number of polygons allocated by each computing node is the same, this computing node
needs a long time to complete the allocated computing task, while other computing nodes will be in a
waiting state. Therefore, ignoring the complexity differences of polygons will result in a situation in
which each computing node cannot complete the computing task at the same time, thus the efficiency
of parallel computing is reduced.

Complexity is an intuitive linguistic concept. Generally speaking, different professional fields
pay different attention to shape complexity. In the field of geographic computation, shape complexity
is related to specific geographic algorithms. The same shape corresponds to different geographic
algorithms and may have different shape complexities.

On the other side, specifically to geographic polygons, different polygons have different
morphological characteristics, such as convex, concave, self-intersection and a large number of
vertices. To measure complexity, information must be compressed into one or more comparable
parameter and expression models. Although the starting point and location are completely different,
similar shapes may still appear. Therefore, when discussing the shape complexity of a polygon,
we can neglect the spatial position and scale, and focus on the influence of polygon features on
geographic computing.

Shape complexity can be defined from the perspective of geographic computing:

Definition 1. Shape complexity is a measure of the computational intensity index of shapes participating in the
calculation of geographic algorithms. Shape complexity can be measured by the number of repetitions of basic
operations in a geographic algorithm caused by a shape.

As for the overlay analysis of polygons, the most basic operation of the Hormann algorithm is to find the
intersection point of two sides. Therefore, for the Hormann algorithm, the complexity of a polygon is the number
of edges it possesses.

Based on these analyses, we know that shape complexity is an absolute value, which is difficult to program.
Therefore, it is necessary to get a relative value by normalization to measure the graphics complexity.

Definition 2. Given a set of polygons P = {P1, P1, · · ·Pn,}, the number of vertices of the polygon is Vi, Vmin is
the minimum number of vertices of all polygons, and Vmax is the maximum number of vertices of all polygons.
Then, the complexity Wi of the polygon Pi can be expressed as

Wi =
Vi −Vmin

Vmax −Vmin
(1)

Since a polygon is usually represented by a sequence of vertices in a polygon storage model. The number of
edges of a polygon is the same as that of vertices, so in Definition 2, we use vertices of a polygon instead of edges.

Therefore, in parallel overlay analysis, we can take shape complexity as an indicator for data partitioning.
The ideal state is that the polygon complexity of each data partition is the same, at which time all computing
nodes will complete the computing task at the same time.

3.2. Data Balancing and Partitioning Method that Considers Polygon Shape Complexity

3.2.1. Data Partitioning and Loading Strategy

Data partitioning is the key to accelerating a polygon clipping algorithm based on a
high-performance computing platform. A complete piece of data is divided into relatively small,
independent multiblock data, which provide a basis for distributed or parallel data operation. Spatial
data partitioning differs from general data partitioning. In addition to balancing the amount of
data, the spatial location relationship, such as spatial aggregation and proximity of data, should also
be considered. Commonly used spatial data partitioning methods are meshing and filling curve
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partitioning [36]. Meshing is simple and considers the spatial proximity of data, but it cannot guarantee
a balanced amount of data. The Hilbert curve is a classical spatial filling curve with good spatial
clustering characteristics and that considers the spatial relationship and data load. Therefore, the data
partitioning strategy in this study adopts the Hilbert filling curve algorithm combined with shape
complexity to achieve load balancing.

In Figure 3, Hilbert partitioning divides the spatial region into 2N× 2N grids. During the iteration
process, N is the order of the Hilbert curve, i.e., the number of iterations. In general, N is determined
by the number of spatial objects, and the amount of spatial data requires n < 22×N.

Figure 3. Hilbert partitioning and Hilbert curve generation.

Hilbert partitioning consists of the following four steps:

(1) Determine the order of the Hilbert curve, generate the Hilbert grid and the Hilbert curve, number
the Hilbert curve sequentially, and obtain the Hilbert grid coding set, GHid = {GH1, GH2 · · ·GHn}.

(2) Calculate the polygon MBR center point, find its corresponding mesh, and use the Hilbert coding
of the mesh as the Hilbert coding of the polygon to obtain the Hilbert coding set of the polygon,
PHid = {PH1, PH2 · · ·PHn}.

(3) In accordance with the number of computing nodes M, divide the Hilbert coding set of the
polygons into M partitions, and calculate the start–stop coding of the Hilbert coding of polygons
in each partition.

(4) Merge the grids of the Hilbert partitions to obtain partition polygons PS = {PS1, PS2, · · · , PSM}.
In actual partitioning, the shapes of polygons are different because the polygons are not in an ideal

uniform distribution. If only one polygon central point is strictly required for each grid, then Hilbert’s
order N may be extremely large, the edge length of the grid will be too small, and no polygonal
MBR center may exist in many grids. Thus, Hilbert partitioning and the Hilbert curve will consume
considerable computing time, and the subsequent overlay calculation will involve many cross-partition
problems. Therefore, the existence of multiple polygonal MBR centers in a grid is necessary.

The order N of Hilbert grids is related to the length of the mesh edge. Grid length and order
N are also determined. To obtain a reasonable order N of the Hilbert curve, we can calculate the
normal distribution of the central point position of a polygon MBR, determine the optimal grid edge
length, and eventually achieve balance between the order N of the Hilbert curve and the number of
polygon MBR central points in each grid. The key to dividing the PHid of the Hilbert coding set of
polygons is to ensure the load balance of each partition. Considering that polygon complexity may
vary considerably, we cannot simply divide the Hilbert coding set PHid of polygons equally.

The shape complexity of polygon Pi is defined as Wi., W as the average complexity of all polygons,
the ideal complexity of each partition as Wideal, and the actual complexity as Wactual, then

Wideal =

∑n
i=1 Wi

M
(2)

if the polygons from j to k are placed into the same partition, then,

Wactual =
k∑

i= j

Wi (3)
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|Wideal −Wactual| <W (4)

Generally, the number of polygons in each partition is slightly different after partitioning, but the
complexity of polygons in each partition is basically the same. Therefore, this strategy guarantees the
load balancing of computing tasks.

3.2.2. R-tree Index Construction

R-tree is a widely adopted spatial data index method; it is used in commercial software, such as the
Oracle and the SQL Server [37]. To improve the efficiency of spatial data access, an R-tree must be built.
In addition, data are segmented in accordance with Hilbert data partitioning points, and the grid area
of the Hilbert curve before each partitioning point is defined as a sub-index area. Moreover, the R-tree
index for spatial objects is established in the sub-index area. Similarly, the mapping relationship among
grid coding, polygon MBR central point coding, and sub-index area coding is established. Furthermore,
the corresponding index codes on computing nodes are cached. In this experiment, we directly use the
STR-tree (Sort Tile Recursive) class of the JTS (Java Topology Suite, a java software library) library to
construct an R-tree index.

3.3. Process Design of Distributed Parallel Overlay Analysis

To ensure that the process is suitable for decoupling, we divide the distributed parallel overlay
analysis process into six steps based on the characteristics of the algorithm: Data preprocessing,
preliminary filtering, Hilbert coding, data partitioning and index building, data filtering, and overlay
calculation (Figure 4).

Step 1: 
1. Computing MBR for each polygon
2.  Statistics of the number of 
vertices of each polygon
3. Other statistical indicators

Step 2:
1.Computing the overlapping 
regions of the clipped and target 
polygons
2.Filtering valid polygons using focus 
areas

Step 3:
1. Calculating the Hilbert curve
2. Calculating polygon partition 
points on the basis of shape 
complexity
3. Hilbert coding for meshes and 
polygons

Step 4:
Data partitioning and creating R-tree 
indexes for each partition

Step 5:
1. Polygon filtering using MBR
2. Creating new RDD for filtered 
polygons

Step 6:
1. Parallel computing with basic 
overlay algorithms
2.Reducing computed results

(2) Calculate the data 
partition points.(1) Hilbert coding

 

Figure 4. Parallel overlay computing flow.
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(1) Data preprocessing

In the whole process, many steps need to traverse all polygons and their vertices. To reduce
the number of traversals, we can conduct centralized processing in one traversal, such as calculating
the MBR of a polygon, its geometric center point, the area of the MBR, and the shape complexity of
the polygon, to prepare data for optimizing the processing flow. In the subsequent calculation, such
information can be read directly to avoid repeated calculation. Considering the massive amount of
data in preprocessing, the Spark paradigm can be used in parallel data processing. In accordance with
the calculation of the number of physical nodes N, data are divided by default, and the allocated data
are traversed at each computing node.

(2) Preliminary filtering

It can be determined that only the polygons in the area where the MBRs of two polygonal layers
intersect need to be clipped. Therefore, filtering polygons that do not require clipping can reduce the
computational cost.

(3) Hilbert coding and computation of data partition points base on polygon clip complexity

All polygons are divided by Hilbert grids in accordance with the spatial distribution position,
and each grid and polygon are Hilbert coded. Then, the data partition points are calculated on the
basis of shape complexity. This work is not suitable for decoupling and, therefore, cannot be executed
in parallel.

(4) Data partitioning and indexing

Based on the partitioning points, the region of the Hilbert curve is regarded as a sub-index region.
The STR-tree class of the JTS library is used to establish an R-tree index for each partition, and the
index file is stored in each computing node.

(5) Target polygon filtering

In overlay analysis, every point of the clipped and target polygons should be traversed. Even if
the two polygons are not covered, all points will be traversed, resulting in some invalid calculations.
Filtering out the invalid polygons of target polygons can obviously improve the efficiency. Before
overlay calculation, the target polygon without overlay analysis can be effectively eliminated by
calculating whether an overlay relationship exists between the MBR of the clipped polygon and the
MBR of the target polygon. The calculation method directly compares the maximum and minimum
coordinates of the clipped and target polygons without using an overlay algorithm.

(6) Overlay analysis

All computing nodes use the Hormann algorithm described in Section 3.1 for parallel overlay
computation. The results of each calculation node are reduced to obtain the final overlay analysis results.

3.4. Algorithmic Analysis

The major processes of the parallel overlay analysis conducted in this study include data
preprocessing, preliminary filtering, Hilbert partitioning, R-tree index establishment, polygon MBR
filtering, and polygon clipping.

In the data preprocessing, only the layer attribute data and vertex coordinate information of
the polygons are included in the original data. Polygon MBR and the number of polygon vertices
must be used thrice in the calculation process designed in this research. Therefore, we unified the
data preprocessing, establish a new data structure and avoided repetitive calculation. Unified data
preprocessing saves about half of the workload compared with separate data preprocessing.

In the Preliminary filtering, the time complexity of the MBR filtering algorithm is O(1), whereas
the complexity of the overlay analysis algorithm is O(logN), where N is the number of polygon
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vertices. Therefore, computational complexity will be considerably reduced by filtering polygons
without overlay analysis through MBR. In addition, the reduced computational complexity depends
on the spatial distribution of polygons, which is an uncontrollable factor.

The time complexity of constructing the Hilbert curve is O
(
N2
)
, where N is the order of the Hilbert

curve. The larger N is, the longer the time that is spent on data partitioning is. However, if N is too
small, then multiple polygons will correspond to the same Hilbert coding. If Hilbert partitioning
strictly satisfies the condition that each mesh has only one central point of a polygon MBR, then a
Hilbert grid supports a maximum of 22×N polygons. Moreover, polygons in real data are generally
not uniformly distributed, and no polygons exist in many Hilbert grids. Therefore, allowing an
appropriate number of repetitive Hilbert-coded values is feasible. In addition, compared with grid
partition, Hilbert partition can solve the problem of the uneven location of data perfectly.

R-tree is a typical spatial data index method. The time for data traversal is considerably shortened
by establishing an R-tree index. The time complexity of R-tree is O(logN).

Data preprocessing, MBR filtering, R-tree index construction, and other processes are relatively
time-consuming. By using multi-node parallel computing in data partitioning, the time consumed can
be reduced to 1/N, where N is the number of parallel processes. In the Spark paradigm, data operations
are performed in memory, and I/O operations consume minimal time. Therefore, the proposed overlay
algorithm exhibits high efficiency.

4. Experimental Study

4.1. Experimental Design

To conduct overlay analysis experiments, we used the patches of land use types and the patches
with a slope greater than 25 degrees in a county of Yunnan Province in 2018. There are 500,000 patches
of land use types and 110,000 slope patches. These data are distributed in the area of 15,000 square
kilometers. Based on this data, we constructed different data sets for the experiments. We will use
different overlay analysis modes for the execution in the case of different data magnitude data, record
the change of execution time, and analyze the characteristics and applicability of different overlay
analysis modes.

4.1.1. Computing Equipment

Experiments were carried out using one portable computer and six X86 servers. The equipment
configuration information is shown in Table 1.

Table 1. Equipment configuration.

Equipment Num
Hardware

Configuration
Operating

System
Software Remark

portable
computer 1

Thinkpad T470p, 8
vcore, 16 G RAM, SSD

(Solid State Drive)
Windows 10 ArcMap 10.4.1

Single computer
experiment for desktop

overlay analysis.

X86 Server 6
DELL R720, 24 core, 64
G RAM, HDD (Hard

Disk Drive)
Centos7 Hadoop 2.7,

Spark 2.3.1
Spark Computing

Cluster

4.1.2. Experimental Data

(1) Clipping layer

The digital elevation model (DEM) data of a 30 m grid in the county were obtained from the
Internet, and a slope map was generated by it (Figure 5). The area with a slope greater than 25 degrees
was extracted, and 108,025 patches were obtained.
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Figure 5. Extracting slope as the clipping layer from the digital elevation model (DEM).

(2) Target layer

A total of 10 groups of experimental data were obtained from 500,000 original land-type patches
of the county using sparse and intensive data sets. The number of patches was 50,000, 100,000, 250,000,
500,000, 1 million, 2 million, 4 million, 6 million, 8 million and 10 million, respectively.

Through data checking, 88,000,000 vertices were found in 500,000 original terrain pattern data.
Among all the polygons, the simplest polygon has four vertices, whereas the most complex polygon
has 99,500 vertices. A total of 890,000 vertices were recorded in 110,000 slope patches. Among all slope
patches, the simplest has 8 vertices, whereas the most complex has 5572 vertices. The statistics of the
number of polygon vertices in the query and target layers are illustrated in Figures 6 and 7, respectively.
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Figure 6. Polygons distribution with different number of vertices.
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Figure 7. Polygons distribution with different number of vertices.

In parallel computing, data are organized into GeoJson format and uploaded to HDFS. HDFS
data blocks are three copies, each of which is 64 MB.

4.1.3. Experimental Scene

Before describing the experimental scenario design, we first define several different modes for
comparison and explain the differences of each mode (Table 2).

Table 2. Explanation of the experimental mode.

Mode Abbreviation Equipment
Data

Storage
Mode

Notes

ArcMap 1 portable computer
with ArcMap

Local File
System

Use the clip tool of Toolbox to perform
overlay analysis on the portable computer

Spark_original Multiple X86 servers
with Spark HDFS

Directly partition the data randomly and do
parallel overlay analysis without any

improvement.

Spark_improved Multiple X86 servers
with Spark HDFS

Completely implement parallel overlay
analysis according to the process of

Section 3.3.
Hilbert partitioning method considering

graph complexity

Spark_NoComlexity Multiple X86 servers
with Spark HDFS

Except that the complexity of polygon
graphics is not considered, all of them are
the same as the Spark_improved mode.

Spark_MBR Multiple X86 servers
with Spark HDFS

Based on the Spark_original model, MBR
filtering is performed first, and then parallel

overlay analysis is performed.

Spark_MBR_Hilbert Multiple X86 servers
with Spark HDFS

Based on the Spark_original model, MBR
filtering and a Hilbert partitioning

operation are added.

Spark_MBR_Hilbert_R-tree Multiple X86 servers
with Spark HDFS

Based on the Spark_original model, MBR
filtering, Hilbert partitioning and R-tree

index creation operation are added.

Among them, the ArcMap mode is a typical method used in geographic data processing.
The purpose of comparing Spark_original, Spark_improved and Spark_NoComlexity modes is to
determine how much the performance has been improved. The purpose of comparing Spark_MBR,
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Spark_MBR_Hilbert and Spark_MBR_Hilbert_R-tree modes is to determine how much the three
improved methods can improve the efficiency of parallel overlay analysis.

(1) Scene 1: Compare the performance differences of four modes: ArcMap, Spark_original,
Spark_improved and Spark_NoComlexity.

Ten groups of polygons with different numbers were used for overlay analysis in four modes. We
will record the completion time of the overlay analysis process and draw time-consumption curves.
This experimental scenario can answer the following questions:

• How much better will Spark parallel computing improve the performance of overlay analysis
compared to desktop software?

• How much better is the performance of the parallel overlay analysis algorithm proposed in this
paper compared with the direct use of the spark computing paradigm?

• How much influence does the complexity difference of a geographic polygon have on parallel
overlay analysis?

(2) Scene 2: Compare the performance differences of four modes: Spark_original, Spark_MBR,
Spark_MBR_Hilbert and Spark_MBR_Hilbert_R-tree.

Ten groups of polygons with different numbers were used for overlay analysis in three modes.
We will record the completion time of the overlay analysis process and draw time-consumption curves.

In addition to considering the influence of the shape complexity difference of a geographic
polygon, three important improvements are used in our algorithm flow: (1) MBR filtering, (2) Hilbert
partitioning, (3) R-tree establishment. This experimental scenario can answer: How much do the above
three improvements affect the efficiency of parallel computing?

(3) Scene 3: Cluster acceleration performance testing of the proposed algorithm.

The experimental data are fixed to 10 million geographic polygons. One to six servers are used to
perform overlay analysis and record the time-consumption changes of the overlay analysis algorithm
in this paper. In this experimental scenario, we can see the acceleration ratio and parallel efficiency of
the proposed algorithm in the Spark cluster.

4.2. Test Process and Results

4.2.1. Compare the Performance Differences of Four Modes: ArcMap, Spark_original,
Spark_NoComlexity and Spark_improved

The parallel computing mode uses six computing nodes to calculate the flow before and after
optimization. The experimental data are collected from 50,000, 100,000, 250,000, 500,000, 1 million,
2 million, 4 million, 6 million, 8 million, and 10 million recorded data sets. The time consumption
statistics of different computing modes are illustrated in Figure 8.

As shown in Figure 9, blue, red, yellow and grey represent the time consumed by ArcMap,
Spark_original, Spark_NoComlexity and Spark_improved modes. With the increase in the data
volume, the four time-consumption curves show an upward trend. The changes in these curves answer
three questions related to the design of the experimental scenario.

(1) When the number of polygons is less than 10 million, the efficiency of Spark_original mode
is even lower than that of ArcMap mode. When the number of polygons is more than 50,000,
the time-consumption of the Spark_improved mode is less than that of the ArcMap mode. When
the number of polygons exceeds 1 million, ArcMap mode consumes twice as much time as the
Spark_improved mode. As the amount of data increases, the time-consumption of the ArcMap
mode increases dramatically, and the time-consumption curve of Spark_improved mode is still
relatively flat.
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(2) The efficiency of Spark_original mode is lower than that of Spark_improved mode, and the more
polygons there are, the more obvious it is. This shows that the efficiency of overlay analysis using
Spark directly is very low, and the algorithm optimization must be carried out according to the
characteristics of spatial data and geographical calculation.

(3) By comparing the time-consumption curves, Spark_improved takes almost half as much time as
Spark_NoComlexity, which is better than I thought. I think it may be related to my experimental
data: in Section 4.1.2, I have found that there are many polygons with high shape complexity in
the experimental data. Maybe many big polygons are partitioned into the same computational
partition, which leads to data skew.
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Figure 8. Time consumption statistical graphs of different computing modes.
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Figure 9. Time consumption comparison of different optimization strategies.
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4.2.2. Compare the Performance Differences of Four Modes: Spark_original, Spark_MBR,
Spark_MBR_Hilbert and Spark_MBR_Hilbert_R-tree

As shown in Figure 9:

(1) After only adopting the MBR filtering strategy, the efficiency of overlay computation is increased
by two to four times. Therefore, this strategy filters a large number of invalid overlay computations.
Specific efficiency improvement is related to the size, shape, and spatial distribution of polygons
in the target and clipped layers.

(2) The Hilbert partitioning algorithm based on polygon graphic complexity is used to allocate
the data of each computing node. When the amount of data reaches millions, the computing
performance can be doubled. As the data amount increases, the computational performance
advantage becomes more evident. The experimental data verify that the spatial aggregation
characteristics of Hilbert partitioning that considers polygon complexity can considerably improve
spatial analysis algorithms.

(3) Index construction can generally improve the efficiency of data access, but index construction
itself can result in a certain amount of computational overhead. After adding the R-tree index
strategy based on the first two steps, the overlay calculation time of each order of magnitude
increases slightly when the amount of data is less than 5 million. When the amount of data
exceeds 5 million, the overlay calculation time decreases compared with the case without the
R-tree index. Therefore, the data access time saved after the R-tree index is established offsets the
time consumed by the index itself.

4.2.3. Cluster Acceleration Performance Testing of the Proposed Algorithm

The experimental data are unified using 10 million polygons, and then one server is added at a time.
As the number of servers increases, the time consumed in parallel computing decreases considerably
(Figure 10). However, the trend of running time decreases as the number of nodes increases.
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Figure 10. Average running time of different numbers of nodes.

As shown in Figure 11, as the number of servers increases, the acceleration ratio decreases slightly
but is nearly linear. In addition, Figure 12 illustrates that with the increase in the number of servers,
the parallel efficiency gradually decreases, and finally stabilizes to more than 90%. This is a good result
if we consider that the increase in the number of servers will increase the system synchronization and
network overhead.
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Figure 12. Parallel efficiency of different number of nodes.

4.3. Analysis of Experimental Results

Figure 9 shows that a single computer with ArcMap Soft achieves high efficiency in the overlay
analysis of small data volume by adopting a reasonable algorithm and excellent multithreading
processing technology. In addition, SDD also plays an important role. However, the performance
of ArcMap sharply declines when the number of data records reaches millions. Spark distributed
parallel computing can effectively solve such problems, but the simple transplantation of the overlay
analysis algorithm into the Spark framework is not a reasonable solution. The actual geographic data
are often unevenly distributed, and the complexity of polygon graphics varies greatly, which will
lead to a serious data skew, and which will seriously affect the performance of parallel computing.
When the data volume reaches tens of millions, the performance of our algorithm improves by more
than 10 times via Hilbert partitioning based on the polygon graphic complexity and the R-tree index.
In addition, the performance advantage becomes more evident as the data volume increases.

When the amount of data is constant, the time-consumption of parallel overlay analysis decreases
with the increase in the number of servers. However, the decreasing trend of running time declines
as the number of nodes increases. Figure 11 shows that the acceleration ratio is nearly linear.
Figure 12 illustrates that parallel efficiency is still over 90% and remains stable when the number of
servers increases to six, which means that higher computing efficiency can be maintained when the
computing cluster expands. Therefore, it is an effective method to add physical nodes in massive data
overlay analysis.

In addition, the proposed overlay analysis algorithm also has some problems to be improved, such
as: (1) Big polygons will span multiple data partitions, which will lead to repeated participation of the
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polygon in overlay analysis on multiple servers. (2) In the current algorithm process, the R-tree index
is created temporarily, which leads to the creation of the index repeatedly for each overlay analysis.

5. Conclusions

In high-performance parallel overlay analysis, the differences in shape complexity of a polygon
can lead to serious data skew. In this paper, we measure the shape complexity of polygons from
the perspective of geographic computing and design a high-performance parallel overlay analysis
algorithm considering the shape complexity of polygons. The analysis of the algorithm shows that
the algorithm reduces invalid overlay calculation by MBR filtering, achieves load balancing by use
of a Hilbert partition based on the polygon shape complexity, and improves data access speed using
the R-tree index. Experiments show that this is a high-performance method and can maintain high
speed-up and parallel efficiency in computing cluster expansion.

In future studies, we will study the impact of the spatial distribution of graphics, spatial data
storage and indexing methods on the efficiency of overlay analysis. We will also optimize spatial index
storage through distributed memory database technology to further improve the efficiency of parallel
overlay analysis.
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Abstract: The Cellular Automata Markov model combines the cellular automata (CA) model’s
ability to simulate the spatial variation of complex systems and the long-term prediction of the
Markov model. In this research, we designed a parallel CA-Markov model based on the MapReduce
framework. The model was divided into two main parts: A parallel Markov model based on
MapReduce (Cloud-Markov), and comprehensive evaluation method of land-use changes based
on cellular automata and MapReduce (Cloud-CELUC). Choosing Hangzhou as the study area and
using Landsat remote-sensing images from 2006 and 2013 as the experiment data, we conducted
three experiments to evaluate the parallel CA-Markov model on the Hadoop environment. Efficiency
evaluations were conducted to compare Cloud-Markov and Cloud-CELUC with different numbers
of data. The results showed that the accelerated ratios of Cloud-Markov and Cloud-CELUC were
3.43 and 1.86, respectively, compared with their serial algorithms. The validity test of the prediction
algorithm was performed using the parallel CA-Markov model to simulate land-use changes in
Hangzhou in 2013 and to analyze the relationship between the simulation results and the interpretation
results of the remote-sensing images. The Kappa coefficients of construction land, natural-reserve
land, and agricultural land were 0.86, 0.68, and 0.66, respectively, which demonstrates the validity of
the parallel model. Hangzhou land-use changes in 2020 were predicted and analyzed. The results
show that the central area of construction land is rapidly increasing due to a developed transportation
system and is mainly transferred from agricultural land.

Keywords: CA Markov; land-use change prediction; Hadoop; MapReduce; cloud computing

1. Introduction

Studying land use/land cover changes in different times and places and predicting land-use
structures and spatial layouts can provide scientific support for the utilization of regional land
resources, the protection of regional ecological environments, and sustainable social and economic
development [1,2].

Many researchers have proposed their own land-use-change simulation and prediction models,
such as CLUE [3], CLUE-S [4], cellular automata (CA) [2,5,6], Markov chain [7,8], SLEUTH [9,10], and
the spatial logistic model [11]. Since the early 1980s when Wolfram first proposed the CA model [12],
many studies have been conducted to use the CA model to simulate urban land-use changes [2,5,6,13]
and researchers have integrated other methods or models, such as neural networks [14], support vector
machines (SVM) [15], ant-colony optimization [16], and the Markov chain [17], into the CA model to
simulate and monitor land-use change.
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The CA-Markov model was one of the most widely used extended CA models and was used in
the prediction and simulation of land-use changes in many countries, such as the United States [18],
Brazil [19], Portugal [20], Egypt [21], Ethiopia [22], Bangladesh [23], Malaysia [24], and China [25]. It
has also been applied to the research of the evolution of urban-settlement patterns [26], the process of
spatial dynamic vegetation changes [27], and land transfer across metropolitan areas [28].

As land-use change simulation and prediction involves tremendous numbers of data and
calculations, in recent years, some studies have designed parallel CA algorithms on Central Processing
Unit (CPU) parallel computing [29], Message Passing Interface (MPI) [30], Graphics Processing Unit
(GPU) parallel [31], and GPU/CPU hybrid parallel [32] to simulate urban growth. However, the parallel
CA method cannot deal with the connection between partitions after a research area is divided into
several pieces, resulting in different final-prediction results, whereas the traditional Markov method is
able to maintain the integrity of the entire study area but results in a lack of spatial relationship of
the land cell. On the other hand, with the development of Big Data technologies and applications,
MapReduce is a promising method to improve traditional-serial-algorithm running efficiency and
has been applied and proven effective in many cases. Rathore et al. [33] proposed a real-time
remote-sensing image processing and analysis application. Raojun et al. [34] proposed a parallel-link
prediction algorithm based on MapReduce. Wiley K. et al. [35] analyzed astronomical graphics
based on MapReduce, while Almeer [36] used Hadoop to analyze remote-sensing images, improving
batch-reading and -writing efficiency. For the CA Markov model, the MapReduce framework is not
only capable of efficient parallel processing, but can also be a coupling to the CA-Markov model:
The “Map” corresponds to the CA process to realize the parallelism of land-use-unit-change prediction;
“Reduce” refers to the Markov process to achieve overall prediction of land-use changes. However,
because the key problem of segmentation and connection remains unresolved, there is little research
on the parallel CA-Markov model for land-use-change prediction over the MapReduce framework.

Based on in-depth analysis of the parallelism of the CA Markov model, this paper first proposes
a parallel solution that uses the MapReduce framework to improve the CA Markov model for
land-use-change prediction. The parallel CA-Markov model can not only solve the contradiction that
the traditional CA-Markov model cannot simultaneously realize the integrity and segmentation for
land-use change simulation and prediction, but can also ensure both efficiency and accuracy and
realize land-use change prediction in a cloud-computing environment.

2. Materials and Background Technologies

2.1. Study Area and Data

Hangzhou is located in the southeast coast of China, which is the political, economic, cultural,
and financial center of Zhejiang Province. Hangzhou has a complex topography: The west is a hilly
area with the main mountain range, including Tianmu Mountain, and the east is a plain area with
low-lying terrain and dense river networks.

The 2006 Landsat TM and the 2013 Landsat8 remote-sensing image with 30 m resolution of the
study area were downloaded from http://www.gscloud.cn/. Other experiment datasets included DEM
with a 30 m resolution, road-network data, traffic-site data, and location-address data.

Nowadays, many researches develop their own auto image-identification method to classify the
high-resolution image, especially unmanned aerial vehicle (UAV) images [37,38]. Because Landsat
images were the medium-resolution image, we chose to use a semi-manual method to preprocessed
and interpreted to obtain land-use data using ENVI 5.3 and ArcGIS 10.2. [39]. As shown in Figure 1,
the workflow of Landsat images classification included four main steps, namely definition of the
classification inputs, preprocessing, region of interest, and classification. The processing steps mainly
included geocorrection, geometric rectification, or image registration, radiometric calibration and
atmospheric correction, and topographic correction [40]. A support-vector-machine (SVM) classifier
was selected for land-use classification [41].
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Figure 1. Landsat-image classification flow.

In general, land-use types include cultivated land, forest, grassland, waters, construction land,
gardens, transportation land, unused land, and swampland. In our experiment, four land-use types
were defined in the training shapefile after reclassifying. The land-use-type reclassification method
of construction land (B), agricultural land (A), nature reserve (N), and water area (W) are defined as
shown in Table 1.

Table 1. Land-use reclassifications.

Level 1. Level 2 Definition

Construction land (B) Land for construction (B1), land for
transportation (B2) Land for buildings and structures.

Agricultural land (A) Cultivated land (A1), garden (A2) Land for agricultural production.
Water area (W) Waters (W1), swampland (W2) River surface, lake surface, swamp.

Nature reserve (N) Forest (N1), grassland (N2), unused land (N3)
Land with little or no human activity that

did not include agricultural land,
construction land, and waters.

2.2. MapReduce

The MapReduce [42] program consists of two functions, Map and Reduce. Both of these functions
take key/value (key-value pair) as input and output. The Map function receives a user-entered
key-value pair (k1, v1) and processes it to generate a key-value pair (k2, v2) as an intermediate result.
Then, the corresponding values of all the same intermediate keys (k2) are aggregated to generate a
list of values for the k2 key list (v2), which is used as an input to the Reduce function and processed
by the Reduce function to obtain the final result list (k3, v3). The process can be expressed by the
following formula:

Map : (k1, v1) − list(k2, v2) (1)

Reduce : (k2, list(v2)) − list(k3, v3) (2)

The MapReduce framework is shown in Figure 2:
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Figure 2. Overview of MapReduce process framework.

2.3. CA Markov Model

The Markov model is based on the theory of random processes. In this model, given the initial state
and state-transition probabilities, simulation results have nothing to do with the historical condition
before the current condition, which can be used to describe land-use changes from one period to
another. We can also use this as a basis to predict future changes. Change was found by creating a
land-use-change transition-probability matrix from periods t to t + 1, which is the basis to predict
future land-use changes [43].

S(t + 1) = Pij × S(t) (3)

S(t + 1) denotes the state of the land-use system at times t + 1 and t, respectively. Pij is the
state-transition matrix.

CA has four basic components: Cell and cell space, cell state, neighborhood, and transition rules.
The CA model can be expressed as follows [44]:

S(t + 1) = f (S(t), N) (4)

In the formula, S is a state set of a finite and discrete state, t and t + 1 are different moments, N is
the neighborhood of the cell, and f is the cell-transition rule of the local space.

Usually, in order to make cellular automata better simulate a real environment, space constraint
variable β needs to be introduced to express the topographic terrain, as well as the adaptive constraints
and restrictive constraints of the spatial-influence factors on the cells. The formula becomes

S(t + 1) = f (S(t), N, β). (5)

The separate Markov model lacks spatial knowledge and does not consider the spatial distribution
of geographic factors and land-use types, while the CA-Markov model adds spatial features to the
Markov model, uses a cellular-automata filter to create weight factors with spatial character, and
changes the state of the cells according to the state of adjacent cells and the transition rules [21].

3. Methods

3.1. Parallel CA-Markov Model Overview

3.1.1. Parallel CA-Markov Structure

Figure 3 is the structure of parallel CA-Markov over MapReduce framework. The structure
contains four layers from bottom to top: The data layer, parallel CA-Markov model layer, land-use
transition-direction determination layer, and land-use prediction layer.

48



ISPRS Int. J. Geo-Inf. 2019, 8, 454

Figure 3. Structure of parallel cellular-automata Markov over MapReduce.

The experiment data include two-phase remote-sensing images, terrain data, traffic-network data,
and location-address data.

The parallel CA-Markov model can mainly be divided into two parts: A parallel Markov algorithm
based on MapReduce (Cloud-Markov), and a comprehensive evaluation method of land-use changes
based on MapReduce (Cloud-CELUC).

Cloud-Markov was used to calculate the area transition-probability matrix of land-use changes.
The algorithm of Cloud-Markov is discussed in Section 3.2.

Cloud-CELUC includes three main parts: Evaluation of the influence of neighborhoods
under a cloud-computing environment (C-ENID), multicriteria evaluation under a cloud-computing
environment (C-MCE), and comprehensive evaluation of land use. Among them, C-ENID is a parallel
CA model over MapReduce, and C-MCE is a MapReduce algorithm to calculate constrained-evaluation
and suitability-evaluation values. The cell’s neighborhood influences and C-ENID’s calculation method
is discussed in Section 3.3.1. C-MCE design factors are discussed in Section 3.3.2, and the Cloud-CELUC
algorithm is discussed in detail in Section 3.3.3.

After using Cloud-Markov to calculate the transition-probability matrix of land-use changes and
using Cloud-CELUC to calculate each cell’s comprehensive evaluation value, each cell’s land-use
transition direction was determined, which is discussed in Section 3.4. Finally, land-use-change
predictions were obtained, and the land-use prediction experiment is discussed in Section 4.
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3.1.2. Parallel CA-Markov Workflow

As shown in Figure 4, the flow of the parallel CA-Markov model has five major steps, as follows:

(1) Data-processing: Preprocessing and interpreting remote-sensing images to land-use
maps, designing multicriteria-evaluation factors, and storing images, land-use data, and
multicriteria-evaluation factors into the Hadoop HDFS.

(2) Parallel Markov: Using the overlay method, analyzing two-phase images and land-use data to
obtain each cell’s land-use-type transition probability, and calculating the total number of cells in
each land-use-type transition direction, and counting the area transition-probability matrix of
each land-use type.

(3) Parallel CA: In Cloud-CELUC, C-ENID was used to calculate the cell’s neighborhood
influence value. C-MCE was designed to calculate multicriteria-evaluation values, including
constraint-evaluation and suitability-evaluation values. These values were then used to calculate
the statistical table of comprehensive evaluation of land use.

(4) Transition-direction determination stage: Loop reading each cell’s transition probability from the
statistical table of comprehensive-evaluation values in the parallel CA stage and combining the
area transfer-probability matrix of each land-use type in the parallel Markov stage to decide a
cell’s land-use-type transition direction.

(5) Land-use-change prediction: In our experiment, we used data from 2006 to predict 2013 land-use
changes and then evaluate the precision of the parallel CA-Markov model with a Kappa coefficient.
Land-use change prediction for 2020 was then obtained.

Figure 4. Parallel Cellular Automata-Markov (CA-Markov) flow.

3.2. Markov Model Parallel Processing (Cloud-Markov)

Using an overlay method to analyze two-phase raster images and land-use data with the same
spatial position, we obtained the transition direction of each cell and calculated the number of cells in
each transition direction, then obtained the area transfer matrix of each land-use type and calculated
the area probability matrix of land use. Each year’s area transfer matrix was then obtained using the
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probability matrix divided by the intervals of these two raster images. Then, MapReduce functions of
the Markov model given in the study area are as follows:

Map : (N, (T1, T2))→ List
(
Cmk,i

)
(6)

Combiner : M
(
Cmk,list(i)

)
→ List

(
Cmk,s

)
(7)

Reduce : L
(
Cmk,list(i)

)
→ List

(
Cmk,s

)
(8)

where N is the row offset of the input row, T1 represents all cells’ land-use type of the earlier raster
image, T2 represents all cells’ land-use type of the later raster image, Cmk represents the cell conversion
from land-use type m to land-use type k, i indicates the cell transfer number of Cmk, M is the number
of land-use types in a MapReduce node, s is the total cell number of Cmk in a MapReduce node, L
is the total number of land-use types, and q is the combined value of the total number of cells and
transition probability for Cmk conversion in the entire study area. For example, “100-3.12%” means that
there were 100 cells with Cmk conversion, and transition probability was 3.12%. Figure 5 is the flow of
Cloud-Markov algorithm. After summing the number of same land-use type transition direction in
each node, the area transition matrix was calculated at the Reduce stage.

 
Figure 5. Cloud-Markov algorithm flow.

The steps are as follows:

(1) Map stage:

1� Input <Key,Value>
2� Raster cell’s land-use type conversion analysis

In this step, by comparing the cells in the same position between these two raster images, we
obtained a list of Cmk. If the value of Cmk is ‘B-A’, it means that the land-use-type of the cell with the
same position in different raster images is converted from B into A.

3� Output <Key,Value>

where key is conversion direction Cmk, and Value is an integer equal to 1.

(2) Combiner stage:
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1� Enter <Key,Value>
2� Calculate the number of each land-use-type conversion direction in each node

<Key,Value> is a key-value pair (Cmk,s), where Cmk is the conversion direction and s is the total
number of cells in a MapReduce node where the Cmk land-use-type conversion direction occurs.

3� Output <Key,Value>

Output key-value pairs (Cmk,s).

(3) Reduce stage:

1� Enter <Key,Value>
2� Calculate transition probability

The transition-probability-matrix calculation formula is defined as follows:

Pmk =
Vmk
Sm

(9)

where Vmk is the value that summed Cmk from all MapReduce nodes and Sm is the number of the initial
raster image’s cells whose land-use type is m.

3� Output <Key,Value>

<Key,Value> is a key-value pair (Vmk,Pmk), where Vmk is the land-use-type area-conversion matrix
and Pmk is the transition-probability matrix.

3.3. Cloud-CELUC

3.3.1. Cell Neighborhood Processing

Obtaining a cell’s neighborhood-influence value requires reading the state of the neighbor
cells. The general neighborhood-influence evaluation methods include Von Neumann and Moore.
Figure 6 shows how to read cellular-neighborhood, where we chose the 3× 3 Moore method to design
our algorithm.

Figure 6. Cellular-neighborhood reading.

Figure 7 shows the process of cellular-dimension reduction, where a list structure was used to
store all cells, so we could read each cell’s neighborhood cells through the cell’s row index and column
index. The two-dimensional raster image was reduced into a one-dimensional array that could reduce
the data exchange between each node during MapReduce processes. For example, the neighborhood
cells of cell Kx were from line K − 1, K, and K + 1, were recorded as K − 1x−1, K − 1x, K − 1x+1, Kx−1,
Kx+1, K + 1x−1, K + 1x, and K + 1x+1, and then stored as an array structure into the HDFS.

52



ISPRS Int. J. Geo-Inf. 2019, 8, 454

 

Figure 7. Cellular-dimension reduction.

3.3.2. Multicriteria Evaluation Factors

This research used the multicriteria evaluation (MCE) method to calculate constraint-evaluation
and suitability-evaluation values. The purpose of MCE is to select the optimal decision solution in
limited (infinite) solutions between which there are conflicts and coexistence [45].

The evaluation criteria of MCE are divided into two parts: Suitable factors and constraint factors.
Suitable factors are used to normalize the influencing factor to the continuous measurable values, and
constraint factors are utilized to categorize spatial features by their spatial characteristics. The value of
the factors is a Boolean type with a value of 0 or 1.

Suitability factors are defined and standardized in Table 2, where eight factors are defined to
distinguish the distance from a cell to different typical destination, and according to different land-use
type, the weighted value of each factor is defined in Table 3. Then, the analytic hierarchy process (AHP)
method and the expert scoring method were used to calculate the weights of the suitability factors [46],
which are shown in Table 2. The waters and gradient factors were defined as the constraint factors.

Table 2. Suitability-factor classification.

Factor Name Definition Classification

FreLev Distance from cell to highway. Cell distance from main road or town center: 0–250,
250–500, 500–750, 750–1000, and 1000–1250 m.TownLev Distance from cell to town center.

SubLev Distance from cell to subway station.
Cell distance to subway or bus station, other roads:
0–100, 100–200, 200–300, 300–400, and 400–500 m.BusLev Distance from cell to bus stop.

MainLev Distance from cell to other roads.

TraLev Distance from cell to train station. Cell distance to train or bus station: 0–200, 200–400,
400–600, 600–800, and 800–1000 m.StaLev Distance from cell to bus station.

CityLev Distance from cell to county center. Cell distance to main road or county center:
500–1000, 1000–1500, 1500–2000, and 2000–2500 m.

Table 3. Weight parameters of suitability factors.

Factor Name Agricultural Land Construction Land Nature Reserve

FreLev 0.0485 0.0461 0.0781
TownLev 0.1239 0.1332 0.1010
SubLev 0.0621 0.1320 0.0133
BusLev 0.0721 0.1110 0.0513

MainLev 0.0921 0.1102 0.0749
TraLev 0.0423 0.1333 0.0201
StaLev 0.0623 0.1321 0.0203
StaLev 0.0923 0.2021 0.0103

The value of the constraint factors is Boolean, which is determined by land-use type. This research
defined the constraint factors of hills with gradients greater than 25 degrees, and waters and ecological
reserves equal to 0, because these land-use types would rarely change.
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3.3.3. Parallel Cloud-CELUC Algorithm

Cloud-CELUC only needs the Map function to calculate factors and obtain comprehensive-
evaluation values. The Reduce function of Cloud-CELUC was only used to output the results. The Map
function was defined as follows:

Map : (N, (i, H1, H2, H3, H4, . . .Hm))→ ((i, j), (L1, L2, L3, . . . Lm)) (10)

where N is the line offset of the input line, i is the line index of the raster image, j is the column index
of the raster image, H1 is the cell-state value to be calculated, and H2 and H3 indicate the uplink
and downlink cell-state values of H1. H4, . . . Hm are various constraint factors and suitability factors
corresponding to the cell, and Lm is the value combined by the cell’s composite-evaluation value of the
transition direction and the cell’s corresponding transition direction. For example, If L1 is ‘ba-1.2234’,
the evaluation value of the cell (i, j) from the initial land-use type ‘b’ to the final land-use type ‘a’
is ‘1.2234’.

The flow of Cloud-CELUC algorithm is shown in Figure 8, where the table of comprehensive
evaluation value was obtained after each node by calculating the neighborhood impact value, suitability
evaluation value, and constrained evaluation value. The steps are as follows:

1� Enter <Key,Value>
2� Calculate neighborhood-influence evaluation value (NID)

Figure 8. Cloud-comprehensive-evaluation value (CELUC) algorithm.

According to H1 and H3, the neighborhood-influence degree of each cell in H2 was calculated.
The calculation formula for the evaluation value of the neighborhood-influence degree of the cell (i,j)
corresponding to a class at a certain time is as follows:

NIDa =
1

h−1
∑

Yes
(
Sij == a

)
(11)

where h is the number of neighborhood cells, and Yes
(
Sij == a

)
is used to judge whether the neighbor

cell’s land-use type of cell (i, j) is a or not. If a is 1, then Yes
(
Sij == a

)
returns 1, otherwise, it returns 0.

3� Calculate Suitability-Evaluation Value (SEV)

The calculation formula of the suitability-evaluation value is as follows:

SEVa =
∑

Vaδ ×DISijδ (12)
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where Vaδ is the weight of factor δ corresponding to land-use type ‘a’, DISijδ are the suitability factors
of cell (i,j) that are defined in Table 1.

4� Calculate constraint-evaluation value (CEV)

The constraint-evaluation formula is as follows:

CEVa =
∏

Yes
(
Kij
)

(13)

where Yes
(
Kij
)

represents the constraint-evaluation value of cell (i, j) corresponding to constraint factor

‘k’. If the cell is constrained, Yes
(
Kij
)

returns 0, otherwise, it returns 1.

5� Calculate comprehensive-evaluation value (CELUC)

Based on the three evaluation values above, NID, SEV, and CEV, the comprehensive-evaluation
formula was defined as follows:

CELUCa = NIDa × SEVa ×CEVa (14)

where a is a land-use type.

6� Output <Key,Value>

<Key,Value> is a key-value pair ((i, j), CELUC) where i is the cell’s row index, j is the cell’s column
index, and CELUC is the comprehensive-evaluation value of the cell.

3.4. Cell Land-Use-Type Conversion

The multi-objective land-use competition method was used to achieve cells’ land-use-type
conversion, which was to solve the problem when the cell had confliction in land-use-type
conversion [47]. For example, if there were N types of land-use types, cell (i, j) may have had N
kinds of conversion possibilities. According to constraint factors, suitability factors, and neighborhood
conditions, each cell’s conversion possibility should be given a comprehensive evolution value of land
use. If the evaluation value of the cell’s transition direction is determined by the biggest conversion
possibility, the value may lead to a proliferation of dominant land-use types and cause oversimulation
of dominant land-use types and inadequate simulation of weak land-use types. Hence, both land-use
comprehensive evaluation values and the area transfer matrix of land-use changes were used to decide
the cell’s conversion direction. Figure 9 shows the flow of a cell’s land-use-type conversion process.

The steps are as follows:

1� Calculating the maximum evaluation value from the table of statistical summary of comprehensive
evaluation that was obtained from Cloud-CELUC.

2� Loop reading each row of the table. Each row was a key-value pair ((i, j), CELUCs), where (i, j) is
the position of the cell, CELUCs means cell (i, j) has N kinds of land-use conversion possibilities
(CELUC), and CELUCi means the ith CELUC of the cell.

3� Determining whether the area of the converted land-use type reached the upper area limit of this
land-use-type conversion or not.

The upper area limit of the land-use-type conversion was obtained from the area
transition-probability matrix of each land-use type, defined as a key-value pair (Vmk, Pmk) where Vmk is
the land-use-type area conversion matrix and Pmk is the land-use transition-probability matrix at the
CLOUD-Markov stage.

4� If reaching the upper area limit, the CELUCi of the cell should be marked as 0, meaning that
one of the cell (i, j)’s CELUCi was deleted to make sure the CELUCi would not be used in the
subsequent steps. Then, it returns to the first step.
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Figure 9. Cell’s land-use-type conversion flow.

If the upper area limit is not reached, the land-use type of the cell would be converted into a
new land-use type and stored as a key-value pair ((i, j), CELUCi) into an array, discarding the other
CELUCs to make sure the cell is not used in the subsequent steps. Then, it returns to the first step.

5� Repeating the above steps until all cells completed conversion, and finally obtaining the prediction
of the whole land-use-change distribution, which was stored as an array. Each item of the array
was a key-value pair ((i, j), CELUC).

4. Results and Discussion

4.1. Model-Efficiency Analysis

One machine was used as the master node for the work of NameNode and JobTracker, and four
other machines were used as the slave nodes for the work of DataNode and TaskTracker. The operating
environment of the machines was the CentOS 7.1.1503 system with Java version 1.8.0_112 and
Hadoop version 2.7.3. The experiment environment configuration is shown in Table 4. The hardware
environment of the serial algorithm was the same as the hardware of the Hadoop node.
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Table 4. Hadoop experiment environment.

IP Address Node Role CPU RAM

192.168.128.1 Master/Namenode/Jobtracker Four-core 2.4 Ghz 4 G
192.168.128.2 Slaves/Datanode/Tasktracker Four-core 2.4 Ghz 4 G
192.168.128.3 Slaves/Datanode/Tasktracker Four-core 2.4 Ghz 4 G
192.168.128.4 Slaves/Datanode/Tasktracker Four-core 2.4 Ghz 4 G
192.168.128.5 Slaves/Datanode/Tasktracker Four-core 2.4 Ghz 4 G

The running efficiency and acceleration ratio results of the serial-Markov algorithm relative to
Cloud-Markov algorithm are shown in Figure 10. The running efficiency and acceleration ratio results
of the serial-CELUC algorithm relative to Cloud-CELUC algorithm are shown in Figure 11. As shown
in Figures 10a and 11a, the abscissa axis indicates the number of the cells (1 n is approximately 9,000,000)
and the ordinate axis indicates running time.

 
(a) (b) 

Figure 10. Running efficiency and acceleration ratio of Cloud-Markov relative to serial-Markov.
(a) Running efficiency comparison, (b) acceleration ratio.

 
(a) (b) 

Figure 11. Running efficiency and acceleration ratio of serial-CELUC relative to Cloud-CELUC.
(a) Running efficiency comparison, (b) acceleration ratio.

The results showed that the execution time of Cloud-Markov was less than that of the serial
Markov algorithm, and with the increase of input data, the acceleration ratio increased and tended to
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smooth. The acceleration ratio of the Cloud-Markov algorithm to the serial Markov algorithm tended
to be steady at 3.27, and the acceleration ratio of Cloud-CELUC to serial CELUC tended to be steady at
1.77. The highest acceleration ratio of Cloud-Markov could reach 3.43, and the highest acceleration
ratio of Cloud- CELUC could reach 1.86.

The efficiency of the parallel Markov model based on a cloud environment was remarkable
because the MapReduce system effectively distributed the workload of the two phases of cell matching
and quantitative statistics. The efficiency of Cloud-CELUC was also improved because the Map phase
we defined ran very fast. However, when the output of the Map phase was input into the Reduce
phase, it occupied a relatively large part of the long running time, which reduced the efficiency of
the operation.

4.2. Precision Evaluation and Result Analysis

4.2.1. Precision Evaluation

The 2006 remote-sensing images and other data were defined as the initial data, and the 2013
land-use changes were simulated by suing the parallel CA-Markov model. In our experiment, the water
area was fixed with no change. Based on the 2006 and 2013 land-use data, the area transition-probability
matrix could be calculated. Table 5 is the 2006–2013 area transition matrix, in which each cell represents
the total area of one land-use type transferring to another land-use type from 2006 to 2016. Table 6
is the 2006–2013 transition-probability matrix, in which each cell represents the probability of one
land-use type transferring to another land-use type from 2006 to 2016.

Table 5. The 2006–2013 area transition matrix (unit: km2).

2006

2013
Agricultural Land Construction Land Nature Reserve Total

Agricultural land 1282.95 409.71 95.67 1788.33
Construction land 210.94 1381.69 12.52 1605.15

Nature-reserve land 93.39 50.79 4409.60 4553.78
Total 1587.28 1842.19 4517.79 7947.26

Table 6. The 2006–2013 transition-probability matrix (unit: %).

2006

2013
Agricultural Land Construction Land Nature Reserve

Agricultural land 71.74 22.91 5.35
Construction land 13.14 86.08 0.78

Nature-reserve land 2.05 1.12 96.83

As shown in Tables 5 and 6, the biggest land-use-type transition was agricultural land
transferring to construction land; its ratio reached 22.91%. In order to evaluate the simulated
precision, the 2013 land-use data were classified using real 2013 remote-sensing images at the
data-processing stage. The simulated land-use data and the classified 2013 land-use data are shown in
Figures 12 and 13, respectively.

After simulation, the precision evaluation experiments were done to correct all kinds of weight
parameters defined in C-MCE. After a great number of repetitive experiments and weight-parameter
corrections, the weight parameters of the suitability factors were obtained, which are listed in Table 2.
At present, commonly used precision evaluation methods include visual comparison, dimensionality
tests, pixel contrasts, and the Kappa coefficient test.

With visual comparison, it was found that the simulation of the nature reserve in the western and
southern regions was the most accurate. It can be concluded that the suitability factor and the constrained
factor were in line with the change trend of the nature reserve in the study area. The construction land
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of the central urban area had better simulation accuracy. However, the construction land of east and
north, including the towns of Yuanpu and Linpu, was scattered and intertwined with agricultural land.
Therefore, simulation error was relatively large.

 
Figure 12. Map of land-use simulation in 2013.

 

Figure 13. Classification map of remote-sensing images in 2013.

The Kappa coefficient test is the most commonly used quantitative test method [48]. When the
Kappa coefficient is used to compare the consistency of data, commonly used criteria are as follows: If
the two land-use maps are identical, then Kappa = 1; when Kappa > 0.8, consistency is almost perfect;
when 0.6 < Kappa ≤ 0.8, consistency is substantial; when 0.4 < Kappa ≤ 0.6, consistency is moderate;
when 0.2 < Kappa ≤ 0.4, consistency is slight; when 0 < Kappa ≤ 0.2, consistency is poor [49,50].
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Simulated land-use data and actual classified land-use data of 2013 were compared, and the results of
the Kappa coefficient are shown in Tables 7–9, respectively.

Table 7. Kappa coefficient test table of nature reserve land in 2013 (unit: km2).

Classified Data

Simulated Data
Nature Reserve Non-Nature Reserve Total Accuracy Kappa

Nature-reserve land 4221.35 288.47 4509.82 93.60%
0.86Non-nature-reserve land 296.44 3431.50 3727.94 92.05%

Total 4517.79 3717.97

Table 8. Kappa coefficient of construction land in 2013 (unit: km2).

Classified Data

Simulated Data
Construction Land Non-Construction Land Total Accuracy Kappa

Construction land 1391.41 452.77 1844.18 75.45%
0.68Non-construction land 450.78 5942.80 6393.58 92.95%

Total 1842.19 6395.57

Table 9. Kappa coefficient of agricultural land in 2013 (unit: km2).

Classified Data

Simulated Data
Agricultural Land Non-Agricultural Land Total Accuracy Kappa

Agricultural land 1152.64 427.17 1579.81 72.96%
0. 66Non-agricultural land 434.65 6223.30 6657.95 93.47%

Total 1587.29 6650.47

Results showed that the Kappa coefficients for nature reserve, construction land, and agricultural
land were 0.85, 0.6, and 0.65, respectively. This meant that the 2013 results of the simulation were quite
accurate [38,51–53], and that using the parallel CA-Markov model to predict future land use would be
highly reliable.

4.2.2. Land-Use-Change Prediction

Based on the classified 2013 land-use data and other experiment data, 2020 land-use changes were
predicted using the parallel CA-Markov model. The results of the 2013–2020 area transition matrix are
shown in Table 10, and the 2020 land-use prediction map is shown in Figure 14.

Table 10. The 2013–2020 area transition matrix (unit: km2).

2013

2020
Agricultural Land Construction Land Nature Reserve Total

Agricultural land 1133.35 361.94 84.52 1579.81
Construction land 242.35 1587.45 14.38 1844.18

Nature-reserve land 92.49 50.30 4367.03 4509.82
Total 1468.19 1999.69 4465.93 7933.81

As can be seen from the 2020 land-use prediction map, construction land in the study area was on
the rise as a whole, and this increase mainly came from the conversion of agricultural land. Agricultural
land showed a downward trend, and natural-reserve land changed little in proportion to its vast size.

The overall growth of construction land was relatively large. In particular, due to expanding
road and public-transport systems, construction land grew faster in the urban center of each county.
The growth of construction land in the districts of Xihu, Gongshu, Xiacheng, Binjiang, and Xiaoshan was
prominent. Due to the terrain and water-body restrictions, other counties and urban areas maintained
stable acreage of construction land.
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Figure 14. The 2020 land-use prediction map.

Agricultural land and construction land intertwined in large areas in the northwest and north of
the study area. However, the evaluation value of construction land in this area was not high because
it was far from the city center and the county center and the public transportation system was less
developed. The acreage of agricultural land in the above area was basically stable. The agricultural
land in the rest of the study area was affected by urban expansion, the road, and public transportation
systems, and large acreage was converted to construction land.

Nature reserves were mostly found in the western and southern hilly areas, which were subject to
various restraints for development, such as sloping terrain and ecological-protection restrictions, and
an inconvenient transportation system, and therefore remained basically stable in acreage.

5. Conclusions

Experiments showed that the results of land-use simulation based on the CA-Markov model
under a cloud environment were reliable, reflecting that the method proposed in this study was
reliable and applicable. Meanwhile, MapReduce was effective in parallelizing the CA-Markov model
to improve the processing speed of land-use-change prediction based on the CA-Markov model. This
method parallelized the CA-Markov model in two parts: The parallel Markov model based on a
cloud environment (Cloud-Markov), and the comprehensive evaluation method of land-use changes
based on MapReduce (Cloud-CELUC). By selecting Hangzhou as the study area and setting up a
Hadoop experiment environment, the experiments were designed to verify the reliability, precision,
and operating efficiency of the method. Land-use changes in Hangzhou in 2020 were simulated and
the results were analyzed. The experimental results showed that the method which simultaneously
realized the integrity and segmentation for land use change simulation and prediction is also practical
and effective.

This research has successfully applied the MapReduce framework to improve land-use-change
prediction efficiency. However, there are still some important issues worth further investigation. First,
land-use changes were restrained not only by natural conditions, but also by political, economic,
demographic, and other complex factors. Due to limited data sources, this study built its model mainly
on traffic, terrain, and location factors. If more data are available, the prediction module of the spatial
pattern of land-use, social, economic, policy, demographic, and other factors should be taken into
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account in future research. We will also consider combining the auto image-identification method [37]
into our current work to reduce manual preprocessing work. When Cloud-CELUC acquired the
output result of the Map stage in the Reduce stage, input/output (IO) became a bottleneck in system
performance. Therefore, more research efforts should be dedicated to testing increasing IO efficiency
on the performance of cloud computing based on the CA-Markov model.
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Abstract: Terrain analysis is an important tool for modeling environmental systems. Aiming to use
the cloud-based computing capabilities of Google Earth Engine (GEE), we customized an algorithm
for calculating terrain attributes, such as slope, aspect, and curvatures, for different resolution and
geographical extents. The calculation method is based on geometry and elevation values estimated
within a 3 × 3 spheroidal window, and it does not rely on projected elevation data. Thus, partial
derivatives of terrain are calculated considering the great circle distances of reference nodes of the
topographic surface. The algorithm was developed using the JavaScript programming interface of
the online code editor of GEE and can be loaded as a custom package. The algorithm also provides
an additional feature for making the visualization of terrain maps with a dynamic legend scale,
which is useful for mapping different extents: from local to global. We compared the consistency of
the proposed method with an available but limited terrain analysis tool of GEE, which resulted in
a correlation of 0.89 and 0.96 for aspect and slope over a near-global scale, respectively. In addition to
this, we compared the slope, aspect, horizontal, and vertical curvature of a reference site (Mount Ararat)
to their equivalent attributes estimated on the System for Automated Geospatial Analysis (SAGA),
which achieved a correlation between 0.96 and 0.98. The visual correspondence of TAGEE and SAGA
confirms its potential for terrain analysis. The proposed algorithm can be useful for making terrain
analysis scalable and adapted to customized needs, benefiting from the high-performance interface
of GEE.

Keywords: topographic surface; terrain modeling; global terrain dataset

1. Introduction

Terrain analysis is essential for modeling environmental systems [1–3]. The variability of
landforms is frequently used to understand, map or model geomorphological, hydrological, and
biological processes [4–7]. Elevation has a strong relationship with terrestrial temperature, vegetation
type, and with the potential energy accumulated on a slope. The aspect and derived products, such as
Northernness and Easternness attributes, can be linked to the potential solar irradiation on terrain.
The Slope gradient, for example, controls the overland and subsurface flow velocity and runoff rate.
Similarly, curvatures are associated with acceleration and dispersion of water and sediment flows,
which impacts the erosion and soil water content [8].
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The public availability of elevation data with global coverage, such as the digital elevation model
(DEM) derived from NASA’s Shuttle Radar Topography Mission (SRTM DEM, [9]) and the digital
surface model from the Advanced Land Observing Satellite (AW3D30 DSM, [10]), has promoted the
exploration of topographic features in different contexts using processing tools available in several
geographic information systems (GIS) [4,11,12]. However, despite the popularization of many global
elevation datasets, it is important to pay attention to their quality when used for modelling purposes,
as the acquisition mean and other production aspects can significantly impact the outputs [13,14].
In addition, analyzing big geospatial datasets can pose some limitations to traditional GIS. This becomes
more critical with the availability of new digital datasets, which are providing better temporal and
spatial resolutions due to advances in sensor technologies [15].

The Global Multi-resolution Terrain Elevation Data 2010 [16] and the global suit of terrain
attributes [2] are examples of datasets that were produced using large computational tasks for
mapping the global extent and in different spatial resolutions, which demanded optimized processing
architectures. In general, high performance architectures are based on splitting the data in smaller
subsets (tiles) to take the advantage of distributed computing operations. Recently, with the advent
and popularization of cloud-based interfaces for processing big geospatial data, e.g., Google Earth
Engine [17], the Pangeo software packages [18], and Actinia REST service [19], computational tasks
applied to terrain analysis could be scaled and customized directly by the user.

Earth Engine (GEE) is a cloud-based platform developed by Google that supports the global-scale
analysis of big catalogs of Earth Observation data [17]. It has been used to map global forest change in
the 21st century [20], Earth’s surface water change [21], global urban areas [11], wildfire progression [22],
global bare surface change [23], and others. In this sense, GEE becomes compelling not because the
distributed processing tasks are executed on the server-side of Google, but also due to the increasing
availability of many global geospatial datasets that could be explored in topographic mapping. There
exist several available topographical data within GEE, such as the global SRTM DEM, AW3D30 DSM,
Global 30 Arc-Second Elevation data (GTOPO30 DEM, [24]), and others. Thus, GEE characteristics
could permit the customization of high-performance terrain analysis with minimal user input and
any computational processing on the user side. In fact, GEE provides three algorithms for calculating
slope, illumination, and aspect of terrain, but lacks in providing calculation methods of other terrain
information, such as the curvatures and landscape characterization.

In addition, a common obstacle of global terrain analysis in common GIS is the need for projecting
DEMs onto projected coordinate systems, which ensures the elevation data is equally spaced on a plane
square grid [25]. This step is complicated because it is difficult to define a projected system that
minimizes terrain distortions over a global extent [26]. Moreover, as many available global DEMs are
referenced by geographical coordinate systems and some researchers continue to apply square-grid
algorithms to them, the algorithms should consider the geometry and specificity of global spheroidal
DEMs [25]. This aspect is important because the application of square-grid methods to spheroidal equal
angular DEMs leads to substantial computational errors in models of morphometric variables [25].

In this paper, we aimed at describing and making available a user-friendly processing algorithm
for performing terrain analysis in GEE. This algorithm takes advantage of GEE’s high-performance
architecture for making the computational analysis scalable, adapted to customized needs, and
requiring minimal user input. For this, the proposed package takes advantage of a calculation
method adapted for spheroidal elevation grids, which favors the global-scale analysis of different DEM
resolutions without projecting elevation data.

2. Material and Methods

2.1. Algorithm Description

The Terrain Analysis in GEE (TAGEE) package use calculation methods adapted to spheroidal
angular grids, i.e., the DEM can be referenced in a geographical coordinate system, e.g., the World
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Geodetic System (WGS84). The following paragraphs briefly describe the calculation methods
performed by TAGEE package. The readers are referred to [8] for the mathematical concepts of
geomorphometry, a historical overview of the progress of digital terrain modelling, and the notion of
the topographic surface and its limitations.

2.1.1. Topographic Surface

The land topography can be approximated by a topographic surface defined by a continuous,
single-valued bivariate function (Equation (1)) [8]:

z = f (x, y) (1)

where z is elevation (meters), and x and y are the coordinates in geographical coordinates (degrees).
The local morphometric variables are functions of the partial derivatives of elevation. Using the

Evans–Young method, the function z = f (x, y) is expressed as the second-order bivariate Taylor
polynomial (Equation (2)):

z =
rx2

2
+

ty2

2
+ sxy + px + qy + u (2)

where r, t, s, p, and q are the partial derivatives, and u is the residual term.
Differently from a digital elevation model projected on a plane square grid, where the partial

derivatives of terrain are estimated by finite differences, the processing and analysis of a spheroidal
equal angular DEM must consider the spheroidal geometry. In such case, a grid spacing with
approximately equal linear units along meridians and parallels exists only at the equator. To estimate
the parameters of a spheroidal grid, a 3 × 3 moving window must retrieve both the geometry elements
and the elevation values of the window nodes (Figure 1).

Figure 1. A 3 × 3 spheroidal equal angular grid with linear geometries a, b, c, d, and f, and nine
elevation nodes—adapted from [8].

2.1.2. Terrain Parameters: Neighbor Elevations and Geometries

The elevation values of a 3 × 3 moving window are estimated by convolution kernels. For
geometries, the Haversine formula is used to determine the great-circle distances between two neighbor
nodes within the spheroidal window, given their latitude and longitude geographical positions
(Equations (3)–(5)):

j = sin2
(

Δφ
2

)
+ cosφ1 · cosφ2 · sin2

(Δλ
2

)
(3)
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k = 2 · atan2
(√

j,
√
(1− j)

)
(4)

l = R · k (5)

where φ1 is latitude for the first given node in radians, φ2 is the latitude for the second given node
in radians, λ1 is the longitude for the first given node in radians, λ2 is the longitude for the second
given node in radians, Δφ and Δλ are the respective differences of latitude and longitude between
the given nodes, and R is the mean radius of Earth equals to 6,371,000 meters. The linear distance l is
given in meters.

Knowing the latitude and longitude of the window nodes (Figure 1), the Haversine formula
allows the calculation of linear distances of a, b, c, d, and e, which are used with the neighbor elevation
values (from z1 to z9) to calculate the partial derivatives of terrain.

2.1.3. Terrain Derivatives

To estimate the first and second-order partial derivatives r, t, s, p and q, the polynomial model is
fitted by least squares and results in the following estimations (Equations (6)–(10)) [8]:

p =
a2cd(d + e)(z3 − z1) + b

(
a2d2 + c2e2

)
(z6 − z4) + ac2e(d + e)(z9 − z7)

2[a2c2(d + e)2 + b2(a2d2 + c2e2)]
(6)

q = 1
3de(d+e)(a4+b4+c4)

·
{[

d2
(
a4 + b4 + b2c2

)
+ c2e2

(
a2 − b2

)]
(z1 + z3)

−
[
d2
(
a4 + c4 + b2c2

)
− e2
(
a4 + c4 + a2b2

)]
(z4 + z6)

−
[
e2
(
b4 + c4 + a2b2

)
− a2d2

(
b2 − c2

)]
(z7 + z9)

+d2
[
b4(z2 − 3z5) + c4(3z2 − z5) +

(
a4 − 2b2c2

)
(z2 − z5)

]
+e2
[
a4(z5 − 3z8) + b4(3z5 − z8) +

(
c4 − 2a2b2

)
(z5 − z8)

]
−2
[
a2d2
(
b2 − c2

)
z8 + c2e2

(
a2 − b2

)
z2
]}

.

(7)

r =
c2(z1 + z3 − 2z2) + b2(z4 + z6 − 2z5) + a2(z7 + z9 − 2z8)

a4 + b4 + c4
(8)

s =
{
c
(
a[2(d + e) + b2e

]
(z3 − z1)

−b
(
a2d− c2e

)
(z4 − z6)

+a
[
c2(d + e) + b2d

]
(z7 − z9)

}
· 1
2[a2c2(d+e)2+b2(a2d2+c2e2)]

(9)
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·
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(10)

where the parameters a, b, c, d, and e are the linear distances calculated from the Haversine formula
(Equations (3)–(5)), and the z values are elevation values from the neighbors of a moving window
(Figure 1).
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2.1.4. Terrain Attributes

Local attributes, such as slope, aspect, and curvatures, are calculated from the partial derivatives
of terrain [8]. The slope gradient (G, Equation (11)) is a flow attribute that relates to the velocity of
gravity-driven flows. For measuring the direction, the slope aspect is used (A, Equations (12) and (13)).
Additionally, one can calculate the amount that a slope is faced to the North or East, resulting in the
Northernness (AN, Equation (14)) and Easternness (AE, Equation (15)) derived from the aspect. The
remaining flux attributes that can be calculated from the first and second-order partial derivatives
are the horizontal (kh, Equation (16)) and vertical curvatures (kv, Equation (17)). While the horizontal
curvature relates if a lateral flow converges (kh < 0) or diverges (kh > 0), the vertical curvature measures
the relative acceleration (kv > 0) and deceleration (kv < 0) of a gravity-driven flow:

G = arctan
√

p2 + q2 (11)

A = −90[1− sign(q)]
(
1−
∣∣∣sign(p)

∣∣∣)+ 180[1 + sign(p)]

− 180
π sign(p)arccos

(
−q√
p2+q2

)
(12)

sign(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 forx > 0
0 forx = 0
−1 forx < 0

(13)

AN = cos A (14)

AE = sin A (15)

kh = − q2r− 2pqs + p2t

(p2 + q2)
√

1 + p2 + q2
(16)

kv = − p2r + 2pqs + q2t

(p2 + q2)

√
(1 + p2 + q2)3

(17)

Differently from flow attributes, which are gravity field-specific variables, form attributes are
related to principal sections of terrain [8]. The mean curvature (H, Equation (18)) is a half-sum of any two
orthogonal normal sections and represents two accumulation mechanisms of gravity-driven flows with
equal weights: convergence and relative deceleration. Among the class of form attributes, the Gaussian
curvature (K, Equation (19)) is a product of maximal (kmax) and minimal (kmin) curvatures. The two
principal curvatures calculate the highest and lowest curvature for a given point of the topographic
surface. The maximal curvature (kmax, Equation (20)) is useful for mapping rigdes (kmax > 0) and closed
depressions (kmax < 0). Likewise, the minimal curvature (kmin, Equation (21)) is useful for identifying
hills (kmin > 0) and valleys (kmin < 0) across the topographic surface. With the results of mean and
Gaussian curvatures, a landform classification can be generated after [27] proposing the continuous
form of the Gaussian classification [8,28]. Instead of providing categorical values, the shape index
(SI, Equation (22)) ranges from –1 to 1 and map convex (SI > 0) and concave (SI < 0) landforms:

H = −
(
1 + q2

)
r− 2pqs +

(
1 + p2

)
t

2
√
(1 + p2 + q2)3

(18)

K =
rt− s2

(1 + p2 + q2)2 (19)

kmax = H +
√
(H2 −K) (20)
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kmin = H −
√
(H2 −K) (21)

SI =
2
π

arctan
H√

H2 −K
(22)

2.2. Package Description

Calculation methods presented in this paper were developed using the JavaScript programming
interface available as the online code editor of GEE. TAGEE was developed by different modules
of calculation, similarly to what was described in Methods. The first module, calculateParameters,
uses convolution kernels and the Haversine formula to retrieve elevation values and the spheroidal
geometries of a 3 × 3 moving window. In this module, a digital elevation model and a square polygon
representing the bounding box (min. Longitude, min. Latitude, max. Longitude, and max. Latitude,
in the WGS84 coordinate reference system) are required as input parameters to run. The bounding
box is used both in this module and others for generating images with constant values and restrict
the calculations to the study area. The first module returns an image with 14 bands, i.e., the neighbor
elevation values (from Z1 to Z9) and the distances (a, b, c, d, and e) (Figure 1).

Once the basic parameters (elevation and distances) were established, the partial derivatives of
terrain are calculated with the calculateDerivatives module. This second module requires the returned
parameters from calculateParameters and also the bounding box of the study region. The second module
adds the partial derivatives (r, t, s, p, and q) as new bands to the previous image. Then, terrain attributes
are calculated by the module calculateAttributes (Figure 2).

Figure 2. TAGEE modules for calculating terrain parameters, derivatives, and attributes.

70



ISPRS Int. J. Geo-Inf. 2020, 9, 400

Terrain attributes can also be calculated by a single function, without calling the intermediate
modules. The final output, for both alternatives (Figure 2), is a multi band object containing the
same data properties of the digital elevation model (resolution, data type, and coordinate reference
system) with 13 bands (Table 1). The final attributes can be used for further modeling inside GEE or
thematic mapping.

Table 1. Attributes of terrain, with their units and description, calculated by TAGEE package.

Attribute Unit Description

Elevation meter Height of terrain above sea level
Slope degree Slope gradient

Aspect degree Compass direction
Hillshade dimensionless Brightness of the illuminated terrain

Northernness dimensionless Degree of orientation to North
Easternness dimensionless Degree of orientation to East

Horizontal curvature meter Curvature tangent to the contour line
Vertical curvature meter Curvature tangent to the slope line
Mean curvature meter Half-sum of the two orthogonal curvatures

Minimal curvature meter Lowest value of curvature
Maximal curvature meter Highest value of curvature
Gaussian curvature meter Product of maximal and minimal curvatures

Shape Index dimensionless Continuous form of the Gaussian classification

The package has an additional feature that makes easier the visualization of terrain attributes.
As the range of attribute values and the pixel resolution may vary according to the visualization
level (zoom), which impacts the estimated geometries and elevation neighbor values, a module called
makeVisualization automatically calculates the dynamic legend defined by the 0.05 and 0.95 percentiles
within the bounding box. In addition, different color palettes for making the map legend are
available in TAGEE: rainbow, inferno, cubehelix, red2green, green2red, elevation, and aspect.
The package code and a minimal reproducible example are available in https://github.com/zecojls/tagee
(Supplementary Materials).

2.3. Statistical Evaluation

We performed the evaluation of TAGEE attributes by comparing the aspect and slope derived
from two available functions of GEE (ee.Terrain.aspect and ee.Terrain.slope) on a near-global scale.
For this task, we used the Pearson correlation analysis with the SRTM DEM 30m, which contains
elevation in meters limited to an area between about 60◦ north latitude and 56◦ south latitude. It is
important to mention that for the currently available terrain functions of GEE, the local gradient is
computed using the four-connected neighbors of each pixel, differently from the proposed method of
TAGEE, which uses a 3 × 3 pixel window and also considers the spheroidal geometries in its calculation.
Thus, minimal differences between the calculation methods are expected to occur. This analysis was
performed in GEE and, in addition to Pearson’s correlation, we calculated the relative mean absolute
error (MAE) between the outputs. The relative MAE is estimated by calculating the mean absolute
difference between two rasters and standardizing the result to the range (maximum minus minimum
values) of the reference raster.

Similarly, we compared the results from TAGEE with terrain attributes calculated by the System
for Automated Geoscientific Analyses (SAGA) GIS version 2.3.2 [12]. In this case, we downloaded from
GEE the 30 m SRTM DEM together with the resulting 12 attributes calculated by TAGEE, all covering
the Mount Ararat (located between 44.2◦ and 44.5◦ E, and 39.6◦ and 39.8◦ N). The Mount Ararat was
selected due its high variability of landforms and the availability of published maps from previous
works [8,29], allowing the visual comparison of spatial patterns. The Mount Ararat SRTM-DEM was
processed in SAGA GIS using the “Slope, Aspect, Curvature” from the Morphometry module of
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Terrain Analysis. The calculation method was the “Evan (1979)” based on six parameters and 2nd
order polynomials, similarly to the TAGEE calculation method. The comparison was performed by
calculating the Pearson’s correlation coefficient (r) and the relative MAE, where the aspect, slope,
horizontal curvature and vertical curvature from TAGEE were compared with aspect, slope, tangential,
and profile curvature from SAGA GIS, respectively, following the equivalence described in [8].

3. Results and Discussion

The statistical analysis revealed a significant correlation (p < 0.01) of the TAGEE outputs with
equivalent terrain attributes calculated from GEE and SAGA GIS (Table 2). The slope estimated
over a near-global extent reached a correlation of 0.98 (error of 2%) between TAGEE and functions
of GEE, while the aspect resulted in a Pearson’s r of 0.89 (13% of error). The lower correlation of
aspect can be associated to its dimension nature, i.e., a circular variable, as well as to the differences of
calculation methods between TAGEE and GEE. Despite the small differences, TAGEE revealed the
same spatial patterns and allowed the estimation of additional attributes at the global scale, such as the
Northernness, horizontal and vertical curvatures (Figure 3A–C, respectively). The main mountain
ranges of the Earth, such as the Rocky Mountains in North America, Andes in South America, Alps
in Europe, Himalayas, and Tibetan plateau in Asia, etc., present the highest curvatures calculated
by TAGEE. Conversely, the plains and flat surfaces had the lowest estimates for both curvatures.
The degree of orientation to North (Figure 3A) also depict the main landforms of the Earth.

Table 2. Comparison of TAGEE attributes with outputs from GEE and SAGA GIS algorithms.

Attribute Region Reference Pearson’s r rMAE 1

Aspect Near global
SRTM DEM 30 m GEE 0.89 * 13%

Slope Near global
SRTM DEM 30 m GEE 0.98 * 2%

Aspect Mount Ararat
SRTM DEM 30 m SAGA GIS 0.96 * 4%

Slope Mount Ararat
SRTM DEM 30 m SAGA GIS 0.98 * 3%

Horizontal curvature Mount Ararat
SRTM DEM 30 m SAGA GIS 0.98 * 4%

Vertical curvature Mount Ararat
SRTM DEM 30 m SAGA GIS 0.98 * 4%

* Significant for p < 0.01; 1 relative mean absolute error.

TAGEE was developed in GEE to take advantage of the high-performance computing of the
platform. As the cloud-based interfaces have created much enthusiasm and engagement in the remote
sensing and geospatial fields, many processing algorithms have been adapted to make substantive
progress on global challenges involving the processing of big geospatial data [30]. In this sense,
GEE is providing petabytes of publicly available remote sensing imagery and other ready-to-use
products. The high-speed parallel processing of GEE servers and the libraries of operators and
machine learning algorithms available by Application Programming Interfaces (APIs) in popular
coding languages, such as JavaScript and Python, are enabling users to discover, analyze, and visualize
geospatial big data without needing access to supercomputers [30]. Within this framework, TAGEE
supports the development of customized terrain analysis with different elevation data across large
geographical extents.

When TAGEE outputs were compared to those from SAGA GIS (Table 2), the statistical evaluation
resulted in a significant and high correlation for the slope, horizontal and vertical curvatures of terrain
(Pearson’s r of 0.98, with an error difference of 3 and 4%). Aspects from TAGEE and SAGA GIS
had an inferior correlation coefficient, but the result was higher than the aspect from the algorithm
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of GEE. The region of Mount Ararat was also used to visually compare the slope, horizontal and
vertical curvatures, calculated from both TAGEE and SAGA GIS (Figure 4). The 3D visualizations
revealed a high similarity between both maps, but some small differences can be visualized by the color
intensity. This is the case of the slope of the Mount Ararat calculated by TAGEE (Figure 4A), which
had a higher intensity compared to the slope of SAGA GIS (Figure 4B). A slightly higher intensity
for the vertical curvature calculated by SAGA GIS was also evident on an edge of the Mount Ararat
(Figure 4F). Despite being small, these visual differences confirm the relative error of both methods
(Table 2). In addition, the spatial patterns of aspect, slope, and curvatures from TAGEE presented a high
correspondence with the terrain maps of Mount Ararat available in [8,29], reinforcing the confidence
of the TAGEE calculation method.

Figure 3. Example of terrain attributes calculated from TAGEE package and 1 arc-second SRTM DEM,
displayed for the near-global extent at the visualization level 3 (~20 km pixel resolution): horizontal
curvature (A), vertical curvature (B), and Northernness (C).
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Figure 4. 3D visualizations of terrain attributes produced near Mount Ararat: slope, horizontal and
vertical curvature from TAGEE (A,C,E, respectively) and SAGA GIS (B,D,F, respectively). 3D maps are
displayed with a vertical exaggeration of 2.

In this work, the TAGEE algorithm was developed to consider spheroidal geometries in its
calculation method. This approach diverges from the techniques available in traditional GIS, where
TAGEE considers the great circle distances of the DEM defined by Latitude and Longitude positions.
Common GIS software, such as SAGA GIS, requires the projection of the DEM to ensure the elevation
data have the same pixel size. However, as identified by [25], some researchers continue to apply
square-grid algorithms to spheroidal equal angular DEMs, which can lead to substantial computational
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errors in models of morphometric variables. The small relative errors between TAGEE and GEE or
SAGA GIS could be linked to the differences in their calculation methods.

Finally, some limitations of TAGEE can also be noted. Only local morphometric variables can
be calculated by the package, which includes flux and form attributes. Non-local attributes, such
as specific catchment area, were not implemented due to the absence of a general analytical theory,
which is still little developed [29], and due to the recursion processing that is still challenging within
GEE [17]. Furthermore, a novel method became available to handle major problems of terrain analysis,
which includes the approximation of DEM, generalization and denoising, and the computation of
morphometric variables. The universal spectral analytical method based on high-order orthogonal
expansions using the Chebyshev polynomials were developed by [31] to handle the aforementioned
issues into an integrated framework, but was not implemented in this work.

4. Conclusions

The proposed package (TAGEE) can calculate terrain attributes using the high-performance
platform of GEE with an accuracy equivalent to traditional GIS. The approach of using spheroidal
geometries does not require the projection of input elevation data for terrain attributes calculation.
The comparison between algorithms demonstrated that TAGEE estimates terrain slope and aspect
similarly to the available functions of GEE. The advantage of TAGEE over the currently available
functions is that additional outputs can be produced, such as curvatures and shape index, which can
be useful for environmental mapping and modelling studies. In addition, a good agreement was
also found when TAGEE was compared to equivalent outputs from SAGA GIS, reaching a Pearson’s
correlation coefficient between 0.96 and 0.98, and differences between 3–4 %. Thus, TAGEE becomes
a feasible tool for making terrain analysis of big geospatial data, which can be customized to any
spatial resolution and scaled up to the global extent.

Supplementary Materials: The package code and a minimal reproducible example are available online at
https://github.com/zecojls/tagee.
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Abstract: Understanding human movement patterns is of fundamental importance in transportation
planning and management. We propose to examine complex public transit travel patterns over a
large-scale transit network, which is challenging since it involves thousands of transit passengers and
massive data from heterogeneous sources. Additionally, efficient representation and visualization
of discovered travel patterns is difficult given a large number of transit trips. To address these
challenges, this study leverages advanced machine learning methods to identify time-varying
mobility patterns based on smart card data and other urban data. The proposed approach delivers a
comprehensive solution to pre-process, analyze, and visualize complex public transit travel patterns.
This approach first fuses smart card data with other urban data to reconstruct original transit trips. We
use two machine learning methods, including a clustering algorithm to extract transit corridors to
represent primary mobility connections between different regions and a graph-embedding algorithm to
discover hierarchical mobility community structures. We also devise compact and effective multi-scale
visualization forms to represent the discovered travel behavior dynamics. An interactive web-based
mapping prototype is developed to integrate advanced machine learning methods with specific
visualizations to characterize transit travel behavior patterns and to enable visual exploration of transit
mobility patterns at different scales and resolutions over space and time. The proposed approach is
evaluated using multi-source big transit data (e.g., smart card data, transit network data, and bus
trajectory data) collected in Shenzhen City, China. Evaluation of our prototype demonstrates that the
proposed visual analytics approach offers a scalable and effective solution for discovering meaningful
travel patterns across large metropolitan areas.

Keywords: geovisual analytics; machine learning; smart card data; transit corridor; mobility
community; trip

1. Introduction

Monitoring human movement is of fundamental importance in transportation planning and
management. To facilitate public transit planning and operational management, it is appealing
to understand transit movement patterns across space and time [1]. Fortunately, recent advanced
geospatial data collection technologies, such as global positioning systems, digital mapping, smart
card automated fare payment systems, and wireless communication techniques, are generating a
wealth of spatially and temporally varying transit data that create opportunities to discover meaningful
and significant movement patterns over large metropolitan areas [2,3]. Various data mining methods
have been developed to uncover transit travel behavior patterns on the basis of these heterogeneous
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geospatial datasets, including clustering for passenger segmentation [4,5], hazard modeling for loyalty
analysis [6], trip chaining methods for destination estimation [7], and choice modeling for passenger
activity analysis [8].

Over the past few years, many studies have been conducted to explore urban travel patterns
using various modeling and analytical approaches based on massive human mobility data, such
as optimization-based routing equilibrium models for congestion alleviation [9], clustering-based
correlated analyses of mobility similarities and social relationships [10], low-level mobility pattern
discovery [11], and multi-scale exploration of social fragmentation [12]. With the availability of massive
human mobility data, machine learning techniques have been playing a more and more important
role in gaining a deep understanding of human mobility behavior [13,14], ranging from movement
pattern mining [15–17], mobility prediction [18–20], and movement mode classification [21], to lifestyle
discovering and prediction [22].

Recently, many attempts to visualize massive human mobility data, including cell phone
data [23,24], taxi movement data [25], and social media data [26] have been reported. Some systems
have been developed to perform visual analytics on smart card data [27,28], aiming to discover salient
travel patterns to improve public transit planning and management. These efforts mostly focus on
novel visualization designs by aggregating individual trip information into compact visual forms. With
these visualization tools, users can discover and analyze significant travel characteristics efficiently.
Nevertheless, most of these methods focus on the visualization of simple and intuitive spatio-temporal
movement patterns, such as place-based flow variations, inter-area flow maps, or accessibility maps.
While transit planners and operational managers need to reveal complex movement patterns at different
spatio-temporal scales, their intuitive tools are not adequate since they are based on simple statistical
methods. This motivates us to investigate the possibility of applying machine learning techniques
to identify high-level, complex transit movement patterns that support advanced transit planning
and management.

It can be argued that visualization should be enhanced by advanced machine learning methods,
given the overwhelming size and complexity of transit data. Over the past few years, researchers
have developed visual analytics tools to support interactive exploration of spatio-temporal movement
patterns using massive amounts of mobility data. Among these efforts, machine learning methods
have been used for pattern discovery and analysis. For example, von Landesberger et al. [29] propose
to integrate interactive spatio-temporal clustering and aggregated graph representations to discover
abstracted urban movement patterns using social media and mobile phone data. We choose to discover
public transit corridors and mobility communities using two state-of-the-art machine learning algorithms
because they produce representative high-level, complex transit mobility patterns that are useful for
transit and urban planning. Furthermore, we develop specific interactive visualization forms to facilitate
the understanding of identified corridors and community structure. We argue that the combination
of machine learning and geovisualization is beneficial for gaining a deep understanding of complex
transit mobility patterns in large metropolitan areas. We propose to examine high-level, complex public
transit travel patterns using visual analytics over large-scale transit networks, which is challenging
since thousands of transit passengers and massive amounts of data from heterogeneous sources are
involved. Moreover, efficient representation and visualization of discovered travel patterns is also a
difficult task given large quantities of transit trips. To address these challenges, this study leverages
advanced machine learning methods to identify time-varying mobility patterns based on multi-source
transit big data. We also devise compact multi-scale visualization forms to represent the discovered
travel behavior dynamics. A web-based prototype is developed to implement the proposed geovisual
analytics approach within an integrated graphic interface, enabling in-depth analysis of multi-source
massive transit data. We evaluate the prototype with realistic transit data collected in Shenzhen City,
China. Our empirical usability study demonstrates that our approach can offer a scalable and effective
solution for discovering meaningful travel patterns across large metropolitan areas.
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In this study, we aim to identify spatially and temporally varying transit movement patterns
based on massive transit data over a large public transit network. We make the following technical
contributions:

(1) We develop an integrated geovisual analytics approach that integrates two advanced machine
learning methods with interactive maps to characterize two types of high-level, complex transit
travel behavior patterns, including a clustering algorithm to identify transit corridors and a
graph-embedding algorithm to identify hierarchical mobility community structure.

(2) We design novel integrated geovisual analytics interfaces for the discovered complex transit
movement patterns, including specific views to visualize identified mobility communities and
corridors, allowing regular users to examine and understand these ever-changing patterns at
different scales and perspectives.

2. Data

Being deployed on public transit vehicles, smart card automated fare payment systems provide
an efficient way to collect large volumes of travel data at the individual level. The proposed approach
utilizes smart card data (SCD) collected in Shenzhen City, China. Shenzhen City has a large bus and
subway network consisting of 8 subway lines, 199 subway stations, 808 bus routes, and 6226 bus stops
(Figure 1).

Figure 1. The study region and public transit network.

We use a week of SCD starting from 3 to 9 April 2017. The SCD used in this study holds the names
of boarding and alighting stations for each subway passenger. Bus passengers are not required to tap
their smart cards when alighting. Therefore the information on alighting bus stops is not recorded.
In addition to the SCD, we have access to bus trajectory data, public transit network, and road network
data. These three datasets are registered into the same georeference framework, i.e., World Geodetic
System 1984 (WGS 84) coordinate system and Universal Transverse Mercator coordinate system
(UTM) Zone 50. The public transit network dataset contains the location, identification, and schedule
information of all subway lines and bus routes. Based on GPS devices installed on each bus, we can
obtain bus trajectory data such as longitude and latitude, speed, and travel direction at approximate
20–60 second intervals. In addition, bus identification information including license plate numbers,
number of transit lines, and company names are all saved. With more than 6 million records collected
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for each day, the size of the SCD set for the week amounts to 6.5 GB. Each day, the bus trajectory dataset
has approximately 63–73 million GPS records.

3. Methodology

3.1. Methodology Overview

Public transit systems contain multiple components: bus stops, subway stations, bus and subway
lines, bus and subway vehicles, and passengers. Most existing literature focuses on the analytics of
transit lines/stops [30], schedules [31], or aggregated transit trips [32,33]. Some have explored the
relationships between transit trips and points of interest [28] but have not leveraged advanced machine
learning methods to analyze complex travel patterns and global mobility structures. Given a large
amount of trip data, one may wish to identify significant spatio-temporal travel patterns, reveal global
mobility structures, and visualize them on interactive maps. For example, questions can be raised to
find interconnected road segments that contain significant transit travel demand patterns at a global
scale or to delineate areas with similar transit travel characteristics. What specific spatio-temporal
patterns can be discovered from these road segments and areas, and how do these patterns evolve over
time? Can we jointly examine transit travel patterns from different aspects of public transit services in
an integrated interactive user interface?

To answer these questions, we can define geovisual analytics tasks as follows:

(1) Global pattern discovery task 1: discover hierarchical mobility structure based on transit trip
data and analyze their inter-correlations;

(2) Global pattern discovery task 2: identify significant transit corridors for any specified
time intervals;

(3) Local pattern exploration task 1: explore the intrinsic information of identified individual
transit corridors;

(4) Local pattern exploration task 2: examine the temporal evolution of the discovered mobility
community structure;

(5) Comprehensive analysis task: design and implement linked or integrated views to visually
analyze different components of public transit services (including corridors, community
structures, and stops) and discovered travel patterns.

The proposed approach delivers a comprehensive solution to pre-process, analyze, and visualize
complex public transit travel patterns (Figure 2). This approach first fuses SCD with other urban data
to reconstruct transit trips. It then segments the study region into hierarchical areal units (i.e., public
transit mobility community) according to mobility features of trips and static local features using graph
embedding. Based on recovered public transit trip data, we develop a clustering-based algorithm
for extracting transit corridors to represent mobility interactions between different regions. Based on
detected corridors and mobility communities, we develop various visualization forms to represent
these transit movement patterns on maps and other views. An interactive web-based mapping
prototype is also developed to enable the visual exploration of mobility structures over space and time.
Specific visualization forms are designed and implemented in the web-based prototype to facilitate
the analysis of massive transit data, including map-based visualization, focus views, and auxiliary
views, which will be detailed in Section 3.5. The discovered mobility community structure and transit
corridors can be visualized on interactive maps. The focus views consist of four types of visualization:
(1) a corridor detail view that shows detailed trip information based on a simplified schematic map
for each selected corridor; (2) a community tracking view that presents evolving changes of specific
communities across time; (3) a stop glyph plotting the statistical information of all trips that originate,
end, or pass a specific bus stop or subway station; and (4) a corridor–community correlation view
illustrating the spatio-temporal correlations between transit corridors and mobility communities using
parallel coordinate plots.
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Figure 2. Overview of the proposed geovisual analytic approach. SCD—smart card data.

The trip reconstruction and corridor discovery methods have been described in a separate
paper [34]. Below, we briefly introduce the two methods. Implementation details are reported in
Section 4.

3.2. Data Pre-Processing and Trip Reconstruction

Following the procedure developed in Zhang et al. [34], we performed data pre-processing for the
original datasets and reconstructed transit trips, which were used in subsequent geovisual analytics
tasks. For a passenger, a public transit trip consists of multiple consecutively linked trip legs with
a specific travel purpose [35]. Our visual analytics approach is based on trips rather than trip legs
because trips are better at revealing realistic travel demands and behavior patterns. In this subsection,
we briefly describe the data pre-processing and trip reconstruction steps.

After removing erroneous SCD and bus trajectory records, we corrected inconsistent stops names
and locations between heterogeneous datasets based on the method developed by [36]. All of the
datasets were imported into Microsoft SQL Server databases in which spatial indices were constructed
based on transit network data to accelerate data query and trip reconstruction. The original SCD was
divided into subway-based and bus-based datasets by each date since subway-based records have
full boarding and alighting information and an alighting stop estimation procedure was expected for
bus-based SCD.

First, we needed to estimate boarding and alighting stops for bus-based trip legs. For each
bus-based SCD record, the boarding stop can be identified by matching the license plate number
from the SCD and the bus trajectory dataset to find GPS sampling points that are close to boarding
time, which were matched to the transit network to find the most probable boarding stop. Then, we
proceeded to estimate alighting stops: (1) alighting stops can be easily derived by searching for the
closest stop to the next boarding stop if a passenger makes another boarding during the same day;
(2) if the current trip leg is the final one of the day, the first boarding stop of the next day is used to
estimate the possible alighting stop of this last trip leg; (3) otherwise, we can search other dates or
other similar passengers to make estimations. Upon the availability of both boarding and alighting
stops, complete bus trip legs could be recovered. These bus trip legs were then connected with subway
legs to reconstruct a complete trip if these trip legs taken by the same individuals were within the
30 min threshold.
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3.3. Extracting Transit Corridors

The concept of “transit corridors” has been widely adopted and put into real-world planning and
management practices [37]. We define a corridor as a directional linear road segment consisting of
multiple transit stops with significant numbers of passengers. Note that corridors may contain multiple
branches and may overlap with other corridors. Based on massive transit trip data, time-varying
transit corridors can be extracted to represent the most significant travel demand patterns across space
and time. The corridor-extracting algorithm is developed on the basis of public transit trips, each of
which is characterized by one single travel purpose. Each trip may consist of multiple legs, and each
leg corresponds to one smart card transaction. We proposed a share-flow clustering algorithm [34].
The algorithm was based on the concept of “accumulated transit flow”, which calculates the number
of stops each passenger passes after boarding. If two stops have a large shared “accumulated transit
flow”, then the downstream stop is “directly transit-flow accessible” from its preceding adjacent
stop. Starting from stops with a large amount of “accumulated transit flow”, the algorithm iteratively
evaluates adjacent stops along the travel direction. If this next stop is directly transit-flow accessible
from the current stop, the road segment between the current and the next stop will be linked to the
current corridor. After the initial growth of corridors, a pruning and merging process is performed to
remove short and non-significant corridor candidates. By this clustering algorithm, linear corridors
can be discovered dynamically for any specific time interval. The algorithm can be described in the
following steps:

(1) Network modeling. The public transit network can be modeled as a directed graph and is mapped
to the road network G (V, E), where V denotes the sets of road intersections Vr and transit stops
Vt (Vt have been projected into road links), E denotes road segments between road intersections
and transit stops. We extract a small set of connected segments Ec whose end nodes have a large
shared “accumulated transit flow” and identify them as transit corridors.

(2) Computing accumulated transit flow. For each node v in Vt, the number of passengers who board
at v or before it is recorded as nv. For each passenger, the number of stops she has passed after
boarding is recorded until she exits from the vehicle. Then for each v, this number is used as the
“accumulated transit flow” at(v).

(3) Corridor initialization. We choose nodes with a significant number of accumulated transit flows
as seeds to grow corridors.

(4) Corridor expansion. The seed nodes are stacked into a priority queue, ranked by its accumulated
transit flow. The one with highest at(v) is popped out and used as the initial seed s0 to expand
a corridor. From s0, the algorithm searches for one adjacent stop, s1, that meets the criterion of
significant “shared accumulated transit flow” between s0 and s1. “Shared accumulated transit
flow” is defined as sa(0→1) = [at(1)− at(0)] /at(0), i.e., the change ratio of accumulated transit flow
for the two adjacent stops/nodes. Meanwhile, the two nodes must meet another criterion, namely,
“shared transit flow”, which is defined as st(0→1) = n0

⋂
n1. If the two nodes meet both criteria,

the algorithm expands a corridor from node 0 to 1. This procedure repeats until no downstream
nodes meet the two criteria. Then another seed in the queue is fetched to grow another corridor,
until all seeds are popped.

(5) Corridor pruning. We need to prune short corridors (with less than 4 stops) or non-significant
corridors (transit flows are less than a pre-defined threshold).

(6) Corridor merging. This final step is to merge corridors if they are already connected or overlapped.

Usually, the algorithm can extract 5–10 transit corridors for peak hours and non-peak hours during
weekdays and weekends based on the trip data we have produced.

3.4. Discovering Mobility Communities

It is desirable to represent high-level urban mobility structures with multi-scale communities when
dealing with overwhelming amounts of mobility data [38]. Each mobility community is featured with
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similar travel characteristics. The representation of a hierarchical community structure can significantly
facilitate the understanding of inter-area interconnections in a city. Traditionally, the construction of
community structure uses community detection algorithms developed in network science [39]. These
community detection algorithms first build a graph to represent connections between nodes and then
employ clustering, optimization, or statistical inference methods to divide the entire graph into groups,
ensuring nodes within each group are more densely connected than external nodes [40]. However,
public transit passengers usually travel long distances away from their origins, and these mobility
behaviors must be accounted for when extracting transit mobility structure. This study proposes a
different community definition that considers not only local trip statistics but also trip destinations
and other dynamic travel characteristics such as travel frequency and transferring patterns. All of this
information can be readily computed from trip data.

Instead of denoting each subway station or bus stop by a graph node, we use region partitions with
similar possible boarding stations nearby. We first partition the study region into regular grid cells, each
of which has a size of 100 m × 100 m. We remove grid cells located in mountainous and water areas
(inaccessible by transit services). Then a vector for each cell is built to record possible boarding stations
(stops) that are close to them. Finally, a heuristic algorithm is employed to merge neighboring cells
with the most similar vectors. After the merging of original grid cells, we obtain 18,109 grid groups,
most of which consist of 2–7 original grid cells. These grid groups are then denoted as graph nodes,
whose number is much smaller than original transit stops, thereby dramatically reducing computational
expenses in community detection.

Traditional community detection algorithms cannot handle our problem and are not scalable
to a large public transit network. In order to handle such complex trip behavior features, we use a
graph-embedding method to uncover a dynamic community from realistic SCD. Graph embedding
aims to produce a compact vector representation for each node and preserves graph structure within a
low dimensional space [41].

We define a directed weighted graph Gt(V, E) for a time interval t. V is the set of grid groups, and
E represents transit connection edges between nodes in V . Each edge e is weighted by realistic traffic
flow between its origin node and ending node during t. Based on these weights, we can construct
a traffic flow matrix F, where fi→j denotes the number of transit passengers travelling from node i
to j. We also construct an adjacency matrix A to describe local connectivity between graph nodes.
The matrix A can be used to represent first-order transit connectivity proximity. The global network
structure can be preserved via a high-order proximity based on traffic flow matrix F. The high-order
proximity is defined as the similarity between traffic connectivity structures of a pair of nodes.

Since transit travel behaviors are largely non-linear and non-stationary, we leverage deep learning
methods to learn network embedding. A classical auto-encoder framework (structure deep network
embedding, SDNE) is adopted to learn latent network representations [42]. The auto-encoder
framework consists of an encoder and a decoder. The encoder contains multiple layers, each of which
can be defined as

z(i) = σ(W(i)z(i−1) + b(i)), (1)

where z(i) denotes the hidden representation for the ith layer and z0 is the original input data X, which
is a n-dimensional vector. W(i) and b(i) are learnable parameters. σ(.) is the non-linear activation
function.

If we use K layers in the encoder, the input vector z0 would be mapped into a hidden representation
z(K). Correspondingly, the decoder transforms z(K) back to a reconstructed vector Y after performing K
layers of nonlinear transformation operations,

z′( j+1) = σ(W′( j)z′( j) + b′( j)), (2)

where z′( j) denotes the reconstructed data vector for the jth layer and W′( j) and b′( j) are learnable
parameters. Note that z′(0) = z(K), Y = z′(K).
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The model parameters can be learned by minimizing the reconstruction error between the
reconstructed vector Y and the input vector X:

L (X, Y) =
n∑

i=1

||yi − xi||22. (3)

If multiple transit features are used as the input vector to the encoder (including flow, speed,
destination, and travel frequency), we obtain L1. If the adjacency matrix A is used as the input, we
can build

L2(A, Y) =

|V|∑
i, j>0

fi→ j||y(K)j − y(K)i ||
2

2
, (4)

which preserves the high-order proximity of G.
The two reconstruction error functions can be linearly combined into a comprehensive joint loss

function:
Lall = L1 + αL2. (5)

The model is randomly initialized and optimized with a stochastic gradient descent. After
model convergence, we can obtain the final embedding representation for all nodes in G. Based on
learned compact node representations, we can use hierarchical clustering to generate hierarchical
mobility communities.

3.5. Visual Analytics Design

In the literature, public transportation visualization studies mostly focus on public transit networks
and represent travel statistics based on stops and routes. We propose to examine and evaluate public
transit services from different perspectives, namely, hierarchical mobility communities and significant
transit corridors, in addition to the public transit network. Several visual designs are proposed to
facilitate this comprehensive visual analytics strategy.

Our visualization design consists of three types of views (Figure 2): (1) Map-based visualization
that uses interactive maps to depict extracted mobility communities and inter-community transit flow.
Detected corridors are also illustrated in the map view. (2) Focus view is designed to present detailed
information on user-selected corridors, transit mobility communities, and individual transit stops.
Correlations between corridors and communities can also be visualized. (3) Other auxiliary views,
including a query view and a statistics view. The query view enables interactive data selection for
visual analytics for any time interval. The statistics view uses statistical diagrams to present summary
information on corridors.

3.5.1. Mobility Communities

Based on realistic SCD, we can extract two-level mobility community structures over Shenzhen City.
After performing graph embedding for g grid groups, we can perform hierarchical clustering based on
these grid groups to produce two levels of mobility communities (see Section 4 for implementation
details). Low-level communities are only based on the distances between embedded vectors. Based
on low-level communities, we can further produce high-level communities by accounting for spatial
contiguity and cohesiveness using regionalization methods. Figure 3a illustrates a high-level mobility
community structure for April 3 (a holiday). Transit flows between these high-level communities
are mapped to depict an overview of aggregated transit flows across the study region. High-level
community structure is favored for global travel pattern discovery and analysis. When zooming in to
the low-level, detailed community structures are visualized with different colors representing different
cluster types (Figure 3b). With interactive community maps presented in figures, users can perform
global pattern discovery task 1 to identify the hierarchical mobility community structure and visualize
inter-community interactions conveniently.
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(a) 

 
(b) 

Figure 3. Transit-based mobility community structure on a holiday. (a) High-level community flow
map; (b) low-level community clusters.

In the mobility community tracking view, one can select (from the map) one specific mobility
community and track the temporal changes in its shape and flows between itself and other nearby
communities (Figure 4). As the detected community structures evolve over time, a community may
undergo different changes, including splitting into separate communities or merging with other
communities. Each community is represented by a vertical bar, the height of which is proportional
to the number of transit trips of the community. Ribbons connecting bars between different times
represent transit flows between communities. Wide (narrow) ribbons indicate high (low) volumes
of transit trips. The vertical positions of the bottom of bars also indicate the topological relations of
communities from adjacent dates. Bars that are far away from each other correspond to communities
that are also distant on the map. As we fix the position of the original selected bar, the overlapping
relations can also be revealed by their relative vertical positions between two bars from adjacent dates.
As community structure undergoes constant changes, users can conduct local pattern exploration task
2 to track the evolving trend of any chosen communities and gain a deep understanding of the mobility
structure of the study region.
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Figure 4. Mobility community tracking view. We can observe that the selected community “C0101”
(indicating a detected community on April 1) has a significant number of transit trips connecting it
and two communities on April 2 (“C0206” and “C0203”). These two are further connected with five
communities (C0301, C0302, C0304, C0305, and C0308) on April 3. We can see that “C0101” is strongly
connected with “C0206” and “C0301”, as indicated by the width of ribbons between these communities.

3.5.2. Corridors

Figure 5 shows five discovered corridors on weekdays on the map. The width of corridors represents
the size of transit flows. The flow direction is shown by animated particles [43]. A dedicated summary
glyph in the statistics view is also designed to present a compact summary of all corridors in a radial
layout, in which each segment corresponds to a corridor (Figure 6). For each corridor, the number of
boardings and alightings within a corridor are divided into four categories: only trip origins fall within
the corridor (destinations are outside); only trip destinations are located within the corridors (origins are
not); both origins and destinations are within the corridors; and both origins/destinations are outside
the corridor. Four bars are used to represent these four types of trips. Bar heights are proportional to
the trip counts. The overall performance of the corridors is also represented by a line of dots in the
inner circle. The performance is computed as the ratio (percentage) of on-vehicle time versus overall
travel time of a transit trip. Dots close to the circle center indicate low performance. Based on this
corridor overview map, users can perform global pattern discovery task 2 and examine the distribution
of primary transit corridors.

Users can select and observe details of a corridor (Figure 7). The layout of a corridor is simplified in
a schematic form to retain only topological connections (similar to metro maps). The above-mentioned
four types of trips are visualized for the selected corridor: each ribbon that connects two adjacent stops
is divided into four components, and the width represents flow counts. Key stops within a corridor are
depicted as rings, with red/green representing boarding/alighting counts. Passengers boarding at a
stop are further categorized into two groups: those who will be alighting within the same corridor and
those who will be alighting outside the corridor. The two groups are denoted by dark and light red,
respectively. Similarly, passengers who alight at a stop are divided into two groups: “boarding from at
least 5 stops away” and “boarding close to the current stop”. Dark- and light-green colors are used to
denote the two groups. When selecting a particular corridor and observing its details in the corridor
detail view, users can conduct local pattern exploration task 1 to fetch boarding, alighting, origin, and
destination information in a compact visualization form.
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Figure 5. Public transit corridors for weekday peak hours (8:00AM–10:00AM).

 

Figure 6. Corridor summary glyph.

 

Figure 7. Corridor detail view.

3.5.3. Transit Stops

The trip information of individual transit stops is plotted in a glyph when users click on a stop on
the map. Figure 8 shows that the stop glyph can visualize in-vehicle, boarding, and alighting passenger
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numbers. In-vehicle passengers can be further divided into boarding from distant and nearby stops.
Boarding passengers consist of initial boarding and transferring passengers. Alighting passengers
comprise those who finish their trips and those who transfer at this stop. One can easily tell the role
played by this stop for the whole transit network: it could be an important origin stop, destination
stop, or a transfer stop.

 

Figure 8. Transit stop glyph.

3.5.4. Correlations between Corridors and Communities

In the previous sections, we introduced our approaches to discover primary transit corridors
with significant travel demands and mobility communities with similar travel patterns. Furthermore,
geovisual analytics can be performed to examine correlations between these two identified time-varying
mobility representations. An integrated parallel coordinate plot is designed to describe their correlations.
For any pre-specified time interval, we can draw identified corridors as polylines and represent
discovered communities as vertical parallel axes. For each corridor (i.e., polyline), the intersection
point on an axis (i.e., a community) indicates the number of transit passengers who originate from
the community towards the corridor. In this way, spatio-temporal correlations between each corridor
and each community can be illustrated in a compact manner. We can easily find which community
contributes the biggest portion of transit flow to a particular corridor or identify which corridor is
the most correlated one for a specific community. We can also get to know the composition of any
corridor or community. For example, the parallel coordinate plot can reveal whether most trips from a
community are correlated to a few corridors or are evenly distributed over a number of corridors across
the city. Note that these correlations are not equivalent to intersection relations between corridors and
communities, which are explicit on maps. As long as the origins of constituent trips for a corridor can
be traced to a community, the corridor and the community establishes a correlation. The number of
these correlations represents the intensity of interactions between a corridor–community pair. For each
vertical axis, a filtering box can be specified to find corridors that meet the transit flow number search
range criterion. Multiple filtering boxes on different axes can be interactively designated to further
identify corridors that are correlated to selected communities based on specified transit flow ranges
(Figure 9). This geovisual analytics tool enables users to undertake the comprehensive analysis task to
mine correlation knowledge between corridors and mobility communities.
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Figure 9. Parallel coordinate plot to illustrate correlations between transit corridors and mobility
communities. Corridors discovered for April 7 are shown in the figure. After setting three filtering
boxes, four corridors can be discovered and highlighted in the plot.

4. Implementation and Prototype

The trip reconstruction and corridor discovery algorithms were implemented in C++. The corridor
extraction and community detection algorithms were performed on a desktop computer with an
Intel™ Xeon E3-1240@3.70 GHz processor and 16GB of memory, running on a Microsoft Window 10
operating system.

We selected stops that have 85–90th percentile of traffic flow counts as corridor seeds. The “shared
transit flow” threshold (st) was set as the 50th percentile of the transit flow counts. The “shared
accumulated transit flow” threshold (sa) can be set between −15% and 25%.

Mobility community structures were extracted using a hierarchical clustering tool implemented
in the SciPy package based on network embedding results produced by a structural deep network
embedding (SDNE) method [27]. The graph-embedding algorithm was implemented using TensorFlow
1.14.0 by Python 3.6. The clustering was performed based on Euclidean distance. The autoencoder
network contains three layers: the input layer contains 18,109 neurons, which correspond to 18,109
grid groups in the study region; the hidden layer has 2000 neurons; and the output layer produces a
128 dimensional vector as the final embedding result for each graph node. Deeper layers would lead
to performance degradation, as demonstrated by our tests. The model parameter initialization was
based on a Gaussian distribution (with mean μ = 1 and standard deviation σ = 0.01). The weight in the
joint loss function (Equation (5) was set as 0.2 since this delivered the best performance. The learning
rate was set as 0.001. In order to produce cohesive and contiguous high-level communities, we applied
a regionalization algorithm, REDCAP [44], based on the communities produced by SciPy.

We compared the performance of our community detection algorithm with a classical community
detection algorithm developed by Newman and Leicht [45]. To evaluate the performance, we used the
modularity metric proposed by Newman and Girvan [46].

As indicated by Table 1, our graph-embedding algorithm outperformed Newman and Leicht’s
algorithm by a large margin. Note that our case study is different from the regular community detection
problem, in which higher modularity values indicate good community partitions. Since we encourage
a community to have dense inter-community transit trips and sparse intra-community trips, lower
modularity values are better.

Table 1. Performance comparison of community detection using the modularity metric (low-level communities).

Weekdays Weekends

[44] 0.0372 0.0707
Ours 0.0218 0.0229
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The visual designs were implemented in a web-based prototype, which was developed with
PyCharm Pro 2018.3.1 on a Windows 10 operating system. Major visualization modules were developed
in JavaScript following the standards of HTML5 and CSS3. The user interfaces comprises four major
components (Figure 10): (1) query view in the upper-left portion; (2) map view in the upper right;
(3) statistics view in the bottom-left corner; and (4) focus views for corridors and communities in
the bottom-right region. In the query view, users can specify the time range and select SCD falling
within this range for analysis. The map view depicts discovered corridors and mobility community
structures. Different corridors are differentiated by distinct colors. The map view embeds a Baidu Map
as the background map. Flow maps can be produced to describe primary transit flows between major
communities. Focus views illustrate three types of detailed displays: corridor detail view, community
tracking view, and corridor–community correlation view. All of these views are dynamically linked.
User interactions within any view will apply to other linked views for the same data (community,
transit stop, or corridor).

 
Figure 10. Web-based prototype user interface.

5. Analysis and Discussion

5.1. Geovisual Analytics Workflow and Examples

Typically, a user can first specify the time range of SCD for analysis. For example, she can focus on
morning peak hours of a weekday and invoke back-end algorithms to extract mobility structure and
primary transit corridors. Then, both corridors and community structures can be visualized in multiple
linked views to enable further examination. The integration of flow map and corridor map with
community map at two scales can help users understand the overall transit mobility structure of the
city. At a glance, users can identify the major origin/destination areas and how many passengers travel
between these areas. Meanwhile, the statistics view presents summary information on all corridors,
which allows users to compare the extracted corridors in terms of their trip types and performance.
Furthermore, users can select a corridor and visualize it in the detailed view to gain more information
on its constituent trips. Users can also select any transit stop to see the decomposition of its boarding
and alighting trips. The prototype also allows users to examine the evolution of any chosen mobility
community in the detail view. With all these linked views, users can perform the comprehensive
analysis task to discover global and local transit travel patterns across the city over time.
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For example, users can discover high-level mobility communities for any date. Figure 3a presents
these communities for a holiday. The identified community structure synthesizes transit travel patterns
that are much easier to understand than original massive transit footprints. The largest community
(No. 1) is located on the east side of the downtown area, which is served by multiple subway lines
and dozens of subway stations. This community attracts a large amount of leisure-oriented trips that
originate from all over the city. In the west side of downtown, three separate communities (Nos. 2, 3,
and 4) can be observed, and each attracts short trips close to it. Other communities are distributed over
the suburbs, which are mostly residential areas. Many passengers living in these suburb communities
travel to downtown areas for leisure purposes on the holiday.

Figure 11 shows that it can beneficial to examine intrinsic travel patterns by integrating transit
corridors with mobility communities. It can be observed that the most salient corridor connects
community Nos. 8 and 9 and community No. 1, which have the most job opportunities in the city. Based
on the flow direction of the corridor (shown by animated particles), we can find that a large number
of commuters travel towards community No. 1 for work in the morning. Another corridor in the
Northeast indicates that many passengers who live in remote outskirts make trips towards community
No. 6, which features many industrial parks and high-technology companies. With these interactive
maps, both corridor and community information can be combined to further investigate the travel
origins and destinations for different times and dates, thereby deepening our understanding of evolving
movement patterns across the city. These integrated maps can also contribute to the explanation of the
interactions between transit corridors and mobility communities.

 

Figure 11. Discovered corridors and mobility communities for 11:00AM–1:00PM on weekdays.

5.2. User Evaluation

Twenty-three users were interviewed to obtain comments and feedback on our geovisual analytics
approach based on their experience using the prototype. Sixteen of them are experts in public
transportation, and among them, nine have geovisual analytics development knowledge (experienced
users). The users can be classified into three groups: (1) experienced users with background knowledge
(9 users); (2) non-experienced users with background knowledge (7 users); and (3) non-experienced
users without background knowledge (7 users). Before allowing them to use the prototype, we
introduced the proposed geovisual analytics approach and the web-based prototype. We asked users
to evaluate 6 geovisual analytics tasks: (1) to discover and visualize transit corridors; (2) to extract and
visualize mobility community structure; (3) to obtain transit stop summary statistics information; (4)
to evaluate the corridor detailed view; (5) to evaluate the mobility community tracking view; (6) to
evaluate the corridor–community correlation view. Numeric scores were obtained from questionnaires,
with “0” indicating the worst user experience and “5” indicating the best. Figure 12 summarizes the
scores of interviewed users.
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Figure 12. Average evaluation scores for 6 selected geovisual analytics tasks.

According to ratings and comments, different groups of users agreed that our integrated analytics
approach and web-based prototype deliver an interesting and applicable solution for human mobility
pattern discovery given massive transit data and complex transit networks. As shown in Figure 12,
experienced users and users with background knowledge tended to give more positive ratings than
non-experienced users or users without any background knowledge for most evaluation tasks. It may
take more time for the third group users to understand the interfaces and functions of the system,
thereby reducing their time to fully explore all of the views and leading to lower scores. Evaluation
tasks (1) and (4) had relatively low ratings, probably due to the unfamiliar concept of transit corridors
for some users. Users may have had difficulties selecting and examining particular corridors between
different views, which was confirmed by subsequent feedback interviews. The corridor detail view is
also not intuitive to use, according to the users’ comments, since it requires users to switch their focus
between the map view and the detail view frequently.

We also implemented a simplified web-based version for user evaluation. Compared to the
original version, the simplified prototype only has an integrated map view to show discovered corridors
and community structure. It does not implement linked views and only has limited visualizations
(e.g., without animated particles to show the flow direction in corridors, without individual transit
stop glyphs and corridor detail views).

With such a simplified system, we conducted user evaluation interviews with the same three
groups of users. The same evaluation interview procedure was conducted to solicit their scores and
feedback. Note that only four evaluation tasks were evaluated, namely, exploring transit corridors,
exploring community structures, examining stop statistics, and exploring corridor details. The average
evaluation scores for the simplified system are also shown in Figure 12. As we can see, these evaluation
scores are significantly lower than scores obtained based on the original prototype for the evaluated
four tasks.

5.3. Discussion

This study adopted the concepts of community structure and transit corridor to construct high-level
aggregate mobility knowledge from massive SCD and other urban data. The results of community
detection and corridor discovery algorithms were integrated into an interactive visualization interface
that consists of multiple linked views to enable efficient visual analysis of spatio-temporal transit
mobility patterns at multiple scales and resolutions. The map view offers an overview interface to
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help users preserve context information when they focus on a particular corridor, community, or stop
visualizations. Specific views such as corridor detail view, mobility community tracking view, and
a parallel coordinate correlations plot, along with summary glyphs (including a transit stop glyph
and corridor summary glyph) complement the map view to provide intuitive geovisual analytics
tools for the discovery of detailed knowledge of any specific component of the public transit system.
The advantages of integrating machine learning with interactive visualization can be summarized
as follows:

(1) It offers an efficient and effective method to explore a massive amount of transit trips, which is
otherwise challenging to analyze and visualize. Based on discovered corridors and mobility
communities, we can focus on the most significant travel patterns while still having the
capability to explore the details of any stop.

(2) It delivers an intuitive user interface to combine multiple views that allows regular users to
analyze complex transit travel behaviors from different perspectives. For example, corridors
present high-level representations of concentrated trips based on road networks, whereas
mobility communities are produced to synthesize similar travel characteristics over the partition
of the study region.

(3) It is beneficial for many transit management applications, such as demand modeling, transit
planning, and daily operations, since they provide an applicable approach to highlight
aggregated movement patterns at multiple spatial and temporal resolutions. The prototype
can also be used by regular passengers to plan their transit trips and choose their residence or
work place.

For most city residents, transit travel follows a weekly rhythm: they commute to work on every
weekday and enjoy their leisure time on weekends. One-week data could then be sufficient to extract
typical transit movement patterns for the study area. In the literature, we can also find other researchers
also using one-week public transit data (i.e., smart card data) for their studies. For example, Long and
Thill [47] examined job–housing relationships in Beijing with one-week bus-based SCD. Alsger et al. [48]
validated origin-destination estimation algorithms based on one-week SCD in Southeast Queensland,
Australia. If we can access SCD and GPS trajectory data from other time periods, the same geovisual
analytics approach can be readily applied.

6. Conclusions and Further Work

In this study, we applied two machine learning methods, including a clustering algorithm to
extract transit corridors and a graph-embedding algorithm to discover mobility community structure.
These high-level representations are visualized in a web-based interactive interface to allow users
to examine massive SCD in a highly aggregated and efficient manner. Our prototype demonstrates
that the proposed visual analytics approach can offer a scalable and effective solution for discovering
meaningful travel patterns across a big metropolitan area. We plan to improve the usability of the
prototype based on users’ comments in the near future. It is favorable to allow users to designate
algorithm configurations in the graphic user interface, which contributes to a better understanding of
the underpinning machine learning algorithms, and this will be implemented in the near future.
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Abstract: Social media contains a lot of geographic information and has been one of the more
important data sources for hazard mitigation. Compared with the traditional means of disaster-related
geographic information collection methods, social media has the characteristics of real-time
information provision and low cost. Due to the development of big data mining technologies,
it is now easier to extract useful disaster-related geographic information from social media big
data. Additionally, many researchers have used related technology to study social media for
disaster mitigation. However, few researchers have considered the extraction of public emotions
(especially fine-grained emotions) as an attribute of disaster-related geographic information to aid in
disaster mitigation. Combined with the powerful spatio-temporal analysis capabilities of geographical
information systems (GISs), the public emotional information contained in social media could help
us to understand disasters in more detail than can be obtained from traditional methods. However,
the social media data is quite complex and fragmented, both in terms of format and semantics,
especially for Chinese social media. Therefore, a more efficient algorithm is needed. In this paper,
we consider the earthquake that happened in Ya’an, China in 2013 as a case study and introduce
the deep learning method to extract fine-grained public emotional information from Chinese social
media big data to assist in disaster analysis. By combining this with other geographic information
data (such population density distribution data, POI (point of interest) data, etc.), we can further
assist in the assessment of affected populations, explore emotional movement law, and optimize
disaster mitigation strategies.

Keywords: social media; big data; fine-grained emotion classification; spatio-temporal analysis;
hazard mitigation

1. Introduction

With the popularity of mobile devices and the development of the network infrastructure,
social media has quickly integrated into people’s lives. People can easily share what they see and
hear, and even what they feel and think with social media. They are like “mobile sensors” [1] to
collect information around them constantly. This provides a new way to acquire disaster-related data.
Compared with traditional disaster information collection methods, social media has the characteristics
of real-time information provision and low cost. Furthermore, these data contain a lot of geographic
information (such as location, time, and other attribute information), which is very important for
disaster mitigation. Therefore, many researchers have noticed the importance of social media in
disaster mitigation. They have studied disasters from the perspectives of event extraction [2,3], user
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trajectory rules [4] and data fusion [5], etc., and achieved good results. However, few researchers
have considered the public emotional information contained in social media (especially fine-grained
emotions) as an attribute of disaster-related geographic information to aid in disaster mitigation. When
disasters occur, public emotions often express the public’s attitude towards disaster, needs during
disaster, and feedback on disaster relief, etc. These are very helpful to understand the progress of the
disaster quickly and effectively improve the efficiency of rescue. However, there is still a lack of an
effective framework to quickly collect, process, and use this emotional information. There are three
problems involved: (1) How can the fine-grained public emotional categories be divided during the
disaster? (2) Social media has a huge user base. We take Sina micro-blog, a Chinese social media, as an
example. According to statistics, as of Q3 2018, Chinese social media platform Sina micro-blog had over
431 million active monthly users [6]. When disasters occur, this will generate a lot of disaster-related
data. As such, how can the fine-grained emotional information contained in these data be extracted
more accurately? (3) When these fine-grained emotions are extracted, how can they be regarded as an
attribute of disaster-related geographic information to assist disaster mitigation? In this paper, we used
a Sina micro-blog and took an earthquake disaster as an example to describe how the framework we
built extracted fine-grained public emotions and used them to serve disaster mitigation.

Unlike most emotion analysis studies (they usually divide emotions into three categories: positive,
neutral, and negative), we divide the public emotions during the disaster into more dimensions,
because the use of multiple dimensions of emotion in the disaster context can allow more details of the
disaster to be described. Additionally, studies have illustrated the importance of multidimensional
emotional information in disasters. Ekman, et al [7] showed the differences between anger, disgust,
fear, and sadness in terms of antecedent events and likely behavioral responses. Oliver Gruebner et
al [8] analyzed how to apply multiple dimensions of negative emotion (including anger, fear, sadness,
surprise, confusion, disgust) to survey disaster mental health. Existing psychological studies [9–11]
also mention the fine-grained division of emotions in a disaster. Therefore, based on these previous
studies and the corpus used in this paper, we subdivide the negative emotions into anger, anxiousness,
fear, and sadness.

The commonly used methods for emotion classification include rule-based algorithms and
traditional machine learning models [12]. Rule-based algorithms mainly uses given emotional lexicons
and corresponding grammatical rules to calculate the emotional intensity of the text [13,14]. This
method relies on a large number of manual operations, such as manual development of search rules
and a large-scale emotional lexicon [15], which determines the accuracy of the method. Additionally,
this method is weak in dealing with stop words and new words. It is also hard to add some slang and
Internet buzzwords to the emotional lexicon in time, such as “喜大普奔” (great satisfaction), “狂顶”
(very supportive), etc., which often appear in social media. Traditional machine learning models, such
as naive Bayes [16], maximum entropy, and support vector machine [17] do not rely on emotional
lexicons or search rules. They only need to manually annotate the training set. However, the traditional
machine learning method is based on the bag-of-words model, which ignores the semantic relations
in text. In other words, it does not consider the order of words in a sentence, which can easily cause
misclassification of emotions. For example, the sentences “Although the earthquake is terrible, we are
safe and sound” and “Although we are safe and sound, the earthquake is terrible” contain the same
words, they express different emotions. Moreover, for traditional machine learning models, the input
is the feature words extracted from the text after segmentation. The definition of feature words has
a significant impact on the model’s efficiency [15]. We selected the deep learning method to extract
public emotion from social media. Compared with the rule-based method, deep learning does not
depend on any emotional lexicons. Therefore, it is not affected by new and unknown words. Unlike
traditional machine learning, deep learning uses word vector models to replace the bag-of-words
model, which can make good use of semantic information in sentences. Much research has indicated
that the performance of deep learning [18,19] in natural language processing (NLP) tasks is better than
of traditional machine learning.
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Furthermore, we used extracted fine-grained public emotions and combined them with traditional
geographic information data (population density distribution data, point of interest (POI) data, etc.),
and the powerful spatial analysis functions of a GIS (geographic information system) to assist disaster
relief. Combining public emotional information could produce the following benefits: (1) It could
improve the accuracy and efficiency of disaster assessment. For example, with the help of the powerful
spatial analysis functions of a GIS, traditional geographic information data (such as population
distribution, traffic distribution, etc.), and emotional distribution data can be combined to assess the
affected population in real-time. People who express negative emotions are generally considered
to be more affected by disasters. (2) It could help to reduce disaster-related losses. For example,
disasters, especially sudden disasters (such as earthquakes, volcanic eruptions, etc.), can easily
cause disaster-related mental health problems, such as post-traumatic stress disorder (PTSD) and
depression [20–22]. Traditional monitoring has difficulty obtaining information about emotions of
the public in the disaster area (despite the existence of a questionnaire, its real-time performance is
poor). If information about the public’s emotions and corresponding spatio-temporal distribution is
known, the disaster reduction department can take corresponding psychological rescue measures to
reduce the occurrence of disaster-related mental health problems. In addition, extreme disasters have
the characteristics of inevitability and unpredictability [23]. People will express different emotions
at different stages [24] and have different responses to try to overcome them [9]. For example,
anxious people are more sensitive to the negative side of event-related information and can be easily
influenced by rumors [25]. Therefore, through understanding the distribution of anxious people,
we can release the correct disaster information at appropriate times to prevent rumors being intrusive
to anxious people. (3) Learning more about the causes of emotion could help us to optimize emergency
decisions. By using different emotion categories, we can explore different emotional causes, such as
why angry emotions are predominant in a certain area and more anxious emotions are predominant in
another area, and why the emotion categories change in some places over time. By understanding
the causes of emotion, the disaster reduction departments can carry out targeted countermeasures.
In the spatio-temporal analysis of public emotion information, the framework in this paper includes
assessing the affected population in real-time, exploring an emotional movement law, and monitoring
the causes of emotional change.

The structure of this paper is as follows: Section 2 describes the data acquisition, parsing,
processing, and emotion classification method used in this paper. Section 3 presents the role of
public emotion in assisting disaster reduction with a case study. Section 4 shows the evaluation of the
experimental indicators. Section 5 concludes the paper.

2. Framework to Analyze Public Emotion from Social Media Big Data

The framework to analyze the role of public emotions in disaster mitigation proposed in this
paper includes five major phases: data acquisition and processing, the construction of a word vector
list, model training, emotion classification, and spatio-temporal analysis of public emotions (as shown
in Figure 1).
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Figure 1. Framework of the automatic emotion classification and disaster analysis.

2.1. Social Media Data Acquisition and Parsing

We used an earthquake that happened in Ya’an, Sichuan, China, at 08:02 h on April 20, 2013,
as the case study. According to the report by the China Seismograph Network (http://news.ceic.
ac.cn/CC20130420080246.html), the magnitude of this earthquake was 7.0 and its focal depth was
13 kilometers. The epicenter of this earthquake was located at 30.30◦ N, 103.00◦ E, which caused about
1.52 million people to be affected in an area of 12,500 square kilometers.
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In this paper, social media data was acquired from the Sina micro-blog from the region
surrounding the epicenter with a radius of 200 km, which was severely damaged by the earthquake.
The affected cities included Ya’an, Meishan, Ganzi, Leshan, Ziyang, Deyang, Chengdu, Aba, Zigong,
Mianyang, and Neijiang, as shown in Figure 2. The time span of social media data was from April
20 until April 26, 2017. Social media platforms usually provide an interface or API (Application
Programming Interface) that allows developers to retrieve social media data. However, the retrieval
of data in this way has great limitations; for example, you cannot set the time-span and topics, etc.
Therefore, in this paper, we used Sina micro-blog’s advanced search capability to get data by using
time-span, city names, and event-related key words.

 

Figure 2. The study area of the 2013 Ya’an earthquake that was used in this paper.

The data format was initially hypertext markup language (HTML). We parsed the data into a
structured data format including fields such as “time,” “location,” “text,” etc. Among them, location
was represented by the address and the accuracy of them were different. We take Chengdu as an
example. Some addresses were described in more detail, such as “East Gate of Sichuan University,”
“Sishengci North Street,” etc. Some addresses were roughly described, such as “Funan New District.”
There were also some texts that did not have address information. The reason for this is that people have
different usage habits (some people do not want to share their location information). We used the API
provided by Baidu (http://lbsyun.baidu.com/index.php?title=webapi/guide/webservice-geocoding)
to convert these addresses to latitude and longitude. Among them, for line data, such as “Sishengci
North Street,” we took its midpoint coordinates to represent it. For surface data, such as “Wangjiang
Campus of Sichuan University” and even “Funan New District,” we extracted the central point
coordinate to represent them respectively. We did not assign coordinates to those texts that did not
have address information, including those with rough addresses. They were just labeled “Chengdu.”

2.2. Social Media Data Processing

In the subsequence processing steps, we mainly dealt with the text data. The main text processing
steps included the conversion of full-width characters to half-width characters and from traditional
Chinese to simplified Chinese, as well as recognition of the special characters and symbols. The aim
of the first two steps was mainly to improve the computational efficiency of the model. The third
step aimed to recognize special characters and symbols, such as “(>_<)”, “ ”, which are deleted
and ignored by many common natural language processing (NLP) tools. However, for an emotional
analysis, these special characters and symbols have emotional meaning, for example, “(>_<)” and
“(>_<)>” can express troubled emotions. Therefore, in this paper, we interpreted them into text that
could be processed by NLP. Some special characters and symbols could be translated into text by the
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micro-blog platform. For example,
p

 could be translated into “tear” (泪). However, others that could
not be decoded by the micro-blog platform, such as (>_<) and ,, were interpreted according to the
web’s “list of emoticons,” which includes the emotional implications of all kinds of emoticons through
a large amount of published literature. For example, (>_<) can be translated into “troubled” (焦虑)
and can be translated into “sad” (伤心).

Finally, after eliminating duplications, there were 39341 data records stored in our database.

2.3. Constructing the Word Vector List

In this paper, we first converted each word from the previously processed texts into a
multidimensional vector. This process included two phases: word segmentation and the removal of
stop words, and the construction of a word vector list.

2.3.1. Word Segmentation and the Removal of Stop Words

Unlike the English language, there is no space separation between Chinese words. Therefore,
we needed to segment Chinese text to get separate words. Additionally, the Chinese micro-blog is
more colloquial, which brings great challenges to word segmentation. We compared many different
Chinese word segmentation tools, such as “Stanford NLP”, “ANSJ”, “NLPIR (Natural Language
Processing & Information Retrieval Sharing Platform)”, and so on. We found that “NLPIR” had the
best performance in terms of the accuracy and speed of word segmentation.

There are many meaningless words in text after word segmentation; these are called stop words,
such as “在 (on),” “是 (is),” “一会 (a moment),” and so on. These words could affect the accuracy of
the model and therefore should be removed. In this paper, we used the vocabulary of stop words
developed by the Harbin Institute of Technology—Social Computing and Information Retrieval
Research Center to remove stop words. As the focus of this paper was on the emotional analysis, we
optimized the vocabulary of stop words by removing sentimental words, such as “愤然 (indignant),”
“幸亏 (luckily),” “嘻 (hey)”, etc.

2.3.2. Construction of the Word Vector List

The input used for the emotion classification model was a word vector matrix. We needed to
convert each word in the micro-blog text into a multidimensional vector, and then convert the whole
sentence into a word vector matrix. In this paper, we converted all previously processed texts into a
word vector list. The training text and new text to be categorized were transformed into a word vector
matrix by matching them with the word vector list. The method we used for this was word2vec [26],
which projected every word in every sentence to a specified dimensional vector space.

There are two commonly used models in word2vec, which are skip-gram [27,28] and CBOW
(Continuous Bag-of-Words) [27,28]. A large number of experiments have been done to compare these
two models in terms of performance and accuracy [29] and the results show that the semantic accuracy
rate of the skip-gram model is better than that of the CBOW model. Therefore, we used the Skip-gram
model in our experiment to construct the text feature vector.

The skip-gram model can determine correlations between words for corpus training. These
correlations are represented by the multidimensional feature vectors of each word. Additionally, these
multidimensional feature vectors are calculated by taking full consideration of the context of semantic
information. From the below formula, given a current word, wi, this model tries to find words which
have a contextual semantic relationship with the current word. The target of this model is to maximize
the objective function, G:

G = ∑
wi∈C

log P(Context(wi)|wi). (1)

In this formula, wi represents the current word and C represents the context window.
P(Context(wi)|wi) represents the probability of the context information in the current word.
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When the training converges, words with similar semantic meanings are closer in the specified
dimensional vector space. We exported the text feature vector of each word in the training corpus to
generate word embedding. The structure of text feature vectors is shown as Figure 3.

 

Figure 3. Structure of the text feature vector.

2.4. Model Training

The deep leaning model selected in this paper was the convolutional neural network. We read
much related literature and found that different deep learning methods can be selected for emotion
classification, such as the convolutional neural network (CNN), recurrent neural network (RNN),
hierarchy attention network (HAN), etc. These models [30–32] all have their own characteristics and
usage scenarios. According to the literature [33], CNN performs emotion classification well, especially
in shorter sentences. RNN performs document-level emotion classification well [34]. A previous
study [35] presented the performances of the CNN, RNN, and HAN in emotion classification.
The results showed that when the training corpus is large enough, HAN has the highest accuracy,
but CNN performs the best when the training corpus is not very large. The annotation of a large
training corpus requires a lot of manpower and time. Additionally, it takes longer to train the HAN
and RNN models than the CNN model. In this paper, the training corpus used was micro-blog texts,
which are mainly short texts. Additionally, the amount of manually tagged training corpus data was
more suitable for the CNN model. Therefore, we selected CNN as the method to extract the public
emotion contained in social media. The training process of the model is shown below.

2.4.1. Word Segmentation, Removal of Stop Words, and Construction of the Feature Matrix

First, we segmented the training texts to obtain separate words. Then, we used a vocabulary of
stop words to remove the meaningless words contained in those separate words. Finally, the remaining
words were converted into word vectors through matching with a previously generated word vector
list. Ultimately, every sentence was transformed into a feature matrix.

2.4.2. Training Convolutional Neural Network Model

The convolutional neural network (CNN) is a variant of the neural network. It was first
successfully used for the recognition of images and videos. Later, some researchers introduced
it into the field of natural language processing [36] and found that it had a good effect. The CNN
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model used in this paper consisted of an input layer, a convolutional layer, a pooling layer, a fully
connected layer, and classification. The structure of the CNN is shown in Figure 4.

 

 

Figure 4. Structure of the convolutional neural network (CNN) model used in the paper.

In the course of the training process of the CNN model, the neurons in it are usually set to
three dimensions: depth, width, and height. The size of each layer is depth × width × height [37].
For example, if there is a sentence with 140 words, and each word is set to be 200 dimensions, the size
of the input layer is 1 × 140 × 200.

Next, we introduce the layers of the convolution neural network.
Input layer: The input layer of CNN is a matrix that consists of text feature vectors. This matrix

is calculated using the skip-gram model, which was described in Section 2.2. The rows and columns
(dimension) in this matrix were set before we put the matrix into the neural network model. Taking
the Sina micro-blog text as an example, the number of characters in each sentence was less than 140.
Therefore, we set the rows in the matrix to 140. If the number of words in a sentence was less than
140 characters, we used the empty character "space" to supplement the missing characters. Therefore,
every sentence is expressed as follows:

S1:140 = S1 ⊕ S2 ⊕ S3 . . . ⊕ S140. (2)

In this formula, S represents a character or “pad,” and ⊕ is the concatenation operator.
Convolutional layer: The convolution layer is mainly used to extract features. It abstracts

some fragmented elements into features which can be used to distinguish different categories. By
convolution, many low-level features can be abstracted to higher level features. For example, the single
word “打” or “call” has no emotional meaning. However, the higher-level feature “打call (praise)” can
express an emotional attribute. The emotional attributes of these words can be acquired by the model
through a large number of training corpus.

Given a matrix u that is from the input layer for convolution operation, the formula is as follows:

cj = f
(
u ∗ kj + bj

)
. (3)

For the matrix u ∈ R
D×L, D represents the embedding dimensionality, and L represents the

sentence length. The parameter k ∈ R
D×s represents the j-th convolutional kernel, which is applied

to a window of s words. The parameter bj ∈ R represents a bias term. f
(
u ∗ kj + bj

)
is a non-linear

activation function.
Pooling layer: After the convolution operation, we can use the output features to directly classify

emotions. However, in doing so, we will not only face the challenge of computational complexity,
but also the problem of over-fitting, which will affect the classification accuracy. The pooling operation
can solve these problems well. In addition, the pooling operation can also serve as a feature selector
that can help to identify the most important features to improve the classification performance.
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There are two methods that can be selected, namely max pooling and average pooling.
We achieved better results with the max pooling method. This method selects global semantic features
and attempts to capture the most important feature with the highest value for each feature map [37].
The output from the convolution operation cj is used as the input of the pooling operation. The formula
is as follows:

pj = pooling
(
cj
)
+ bj. (4)

Fully Connected Layer: The neurons in this layer have full connections with all neurons in the
previous layer. Meanwhile, the value of the full connected layer can be calculated through the neurons
in the previous layer. In the calculation process, the dropout regularization method is usually used to
avoid over-fitting.

Classifying: We can obtain the emotional labels of the original text through the softmax function.
In other words, these calculated results represent the probability distribution of the emotional labels.

Based on the training corpus, we can identify the best parameters for the CNN model. Then,
this trained model can be used to calculate the emotional categories of new texts.

2.5. Emotion Classification

We used the trained CNN model to analyze new texts. The emotions contained in these texts were
divided into six categories: positive, neutral, angry, anxious, fearful, and sad. Among them, the positive
emotion mainly included the public’s satisfaction with disaster relief, the public’s wishes for the disaster
area, and the joy of surviving. The neutral emotion mainly included objective descriptions of the
disaster. In the process of classification, new texts were first processed using word segmentation and
the removal of stop words. Then, the previously trained word vector list was used to translate each
word into a word vector. Furthermore, each new text was transformed into a word vector matrix.
Finally, the word vector matrix was input into the trained CNN model. Through the calculation of
the model, each new text was labeled into the different emotional categories. We classified all 39,344
pieces of texts into the six emotion categories based on this classification process.

2.6. Spatio-Temporal Analysis of the Public Emotions

The framework in this paper aims to assist with disaster mitigation by using the public emotional
information contained in social media. In the process, emotional information was regarded as an
attribute of geographic information. The powerful spatial analysis capability of a GIS was used to
combine the emotional information with other geographic data to dig out more useful knowledge.
For example, the population density distribution data can be added to carry out a spatio-temporal
assessment of the affected population. The POI data (such as a sanctuary) can be considered to explore
the spatio-temporal trajectory law of people in sudden disasters. In addition, emotional information
can also help disaster reduction departments to screen out urgent public demands from a vast amount
of information. The public demands that contain emotional information are also effective feedback for
disaster reduction work. They can help to optimize decision-making to improve rescue efficiency.

3. Spatio-Temporal Analysis of Public Emotional Information

3.1. Spatio-Temporal Assessment of the Affected Population

It is very important to know the distribution of the affected population at the time when
an earthquake happens. This can help to ensure an effective assessment of the disaster situation
and rational deployment of rescue resources. In this section, we combined the population density
distribution data related to the study area with the spatio-temporal information contained in social
media to assist analysis. Among them, the population density distribution data was taken from
the GHSL (Global Human Settlement Layer) (http://cidportal.jrc.ec.europa.eu/ftp/jrc-opendata/
GHSL/GHS_POP_GPW4_GLOBE_R2015A/). The introduction of public emotional information can
improve the accuracy of the assessment. It is generally believed that negative emotions indicate that
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the earthquake has a greater impact on the people. Further, according to the rules of time period
division from the rescue department, we set up six time periods, which were: 0–4 hours, 4–12 hours,
12–24 hours, 24–48 hours, 48–72 hours, and 0–72 hours after the earthquake. Then, we used the overlay
analysis of GIS software to process these data in each time period. The results of the analysis of the
related data are shown in Figure 5.

Figure 5. Emotional distribution characteristics of the affected population. The figure (a), (b), (c), (d)
and (e) describe the distribution of emotions in different time periods within 72 hours after the disaster.
The figure (f) shows the distribution of emotions over 72 hours. Among them, each of red circle 1,
red circle 2, and red circle 3 in the figures represent the same area. The blue circle 1 in (b) shows that
compared with (a), new negative emotions emerged in same area.

We know that: (1) The microblog data volume was larger in places with a high population density
after the earthquake and negative emotions predominated. (2) Within four hours after the earthquake,

108



ISPRS Int. J. Geo-Inf. 2019, 8, 29

as shown in Figure 5a, there were almost no positive emotions in the areas near to the epicenter. Areas
far away from the epicenter, such as Leshan (red circle 3) and Chengdu (red circle 2), had fewer positive
emotions. (3) From 4 hours to 12 hours after the earthquake, as shown in Figure 5b, compared with
the previous distribution of emotional information, some new negative emotions emerged near the
epicenter, such as the blue circle 1. This indicates that as time went on, some new disaster damage
might have taken place in this region. We checked the corresponding text and found that these new
emotion points were mostly anxiety. The reason people expressed anxiety was because the “Fan Min
Road” was blocked by boulders, and people were worried that the rescue vehicles that did not know
this information which would be delayed due to the incident. The emotions in other areas of this
figure had also changed. For example, compared with the red circle 2 and red circle 3 in Figure 5a,
the emotions in these areas of Figure 5b increased significantly. This indicates that the public’s attention
to earthquakes continued to increase in this time period. (4) We selected an area with a high population
density near the epicenter to analyze how emotions changed over time in detail. The selected area
was located in Yucheng District in Ya’an and it was marked with red circle 1 in Figure 5a–e. Figure 6
shows the changes in data volume in emotion categories in this area for different periods of time.
We found that the positive emotions began to appear in the second period and then continued to
increase. The reason was that as the rescue operation unfolded, people’s gratitude for the rescuers
increased. The number of negative emotions increased the most in the third period and then gradually
reduced. Although this time period lasted only 12 hours, the number of negative emotions was the
highest of all periods. Because this time period was the first night after the earthquake, most people
were in urgent need of relief supplies, such as tents, clothes, etc. Therefore, anxiety was dominant.
The number of neutral emotions expressed did not change very much. They mainly described the
progress of earthquakes. (5) Figure 5f depicts the overall situation 72 hours after the earthquake. We
found that the population density in Ya’an was not high, and the distribution of population was not
uniform. However, the number of emotions expressed in this city was large and the distribution of
them was fairly uniform, especially regarding negative emotions. This shows that the impact of the
earthquake on Ya’an was the most serious. In addition, Chengdu is the capital of Sichuan Province and
has the largest population density. During this earthquake, many negative emotions were expressed
in this city. Although the distribution of these emotions was not uniform, more attention should
be placed here to avoid unexpected accidents, such as people being hurt by rumors due to anxious
emotions. The same approach can also be applied to other affected cities.

 

Figure 6. Changes in different emotion categories in data volume for different periods of time.
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In this section, we conducted an overlay analysis containing public emotional information
and population density distribution to assess the affected population. Spatio-temporal distribution
characteristics of public emotional information can improve the accuracy of assessment and provides
us with more valuable information. Although this emotional information was unevenly distributed,
and even some areas with high population density had only a small amount of negative emotions,
such as the area in the blue circle 1 in Figure 5b, we should still pay attention to them because emotions
expressed by users of social media may also reflect emotions from the neighbors or communities
around them, even if these neighbors or communities do not use social media [8].

3.2. Emotional Spatio-Temporal Trajectory Mining

Earthquakes, as a sudden disaster, cause tremendous damage in a short period of time, and is
especially hazardous for of human life. Therefore, in most cities, there are many shelters for people to
avoid these disasters. In this section, we explore how the spatio-temporal trajectories of human beings
change when sudden disasters occur and whether these changes are related to the locations of shelters.
Furthermore, in this process of change, we investigate which emotion categories are shown by human
beings and how these emotion categories change. We used Chengdu as an example and determined
the locations of the shelters in this city from “The Official Website of Chengdu Municipal People’s
Government (http://cdtf.gov.cn/chengdu/smfw/csyjbn.shtml).” Then, we translated these shelters
into coordinates through the API of Baidu (http://api.map.baidu.com/lbsapi/getpoint/index.html)
and vectorized the map of this region. Considering the sudden occurrence of earthquakes, we set up
seven small time periods, which were 08:02 h to 08:12 h, 08:12 h to 08:22 h, 8:22 h to 08:40 h, 08:40 h
to 09:30 h, 09:30 h to 10:30 h, 10:30 h to 11:30 h, and 11:30 h to 13:00 h, respectively (the earthquake
occurred at 08:02 h), to analyze the changes of the crowd in these fine-grained time periods. Figure 7
shows the changes in the number of people over time. We can see that the population grew fastest in
08:40 h to 09:30 h. This may reflect that a large number of people had reached nearby shelters during
this time period.

 

Figure 7. Changes of the crowd amount in each small time period.

We used the kernel density algorithm [38] to validate the change of crowd aggregation over time
and explore the relationships between density centers of crowds and shelter locations, as shown in
Figure 8. In Figure 8a, three clusters were formed within the first 10 minutes after the earthquake and
we marked them as cluster 1, cluster 2, and cluster 3, respectively. Although the density of cluster 1 is
small, we can see its core had been in the location of the shelter. This indicates that within 10 minutes
of the earthquake, a small number of people had gathered in nearby shelters. Cluster 2 and cluster 3,
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especially cluster 3, had higher densities than cluster 1. However, the people in these areas had not yet
gathered in the shelter. Ten minutes later, between 08:12 h to 08:22 h, the number of people increased
as they further converged to shelters. We found that some shelters had gathered many people, such
as cluster 1 and cluster 3, as shown in Figure 8b. As time went on, a large number of discrete and
small clusters were fused into a larger clusters, as shown in Figure 8c–e. This indicates that during
these periods, a large number of people had reached the shelters. Among them, the number of people
between 08:40 h to 09:30 h was the largest, as shown in Figure 8d. Then, the number of people gathered
in shelters began to decline. But the crowd hadn’t dispersed at this time, as shown in Figure 8e. We can
understand these changes through the corresponding value of crowd density. In Figure 8f,g, we can
see that the big cluster began to disintegrate and was decomposed of small clusters. Then, these small
clusters were gradually moving away from shelters. Perhaps it means that people’s emotions were no
longer so tense at this time.

Figure 8. The change characteristics of public spatio-temporal trajectory. This sequence diagram
describes how the crowd moved in different small time periods after the earthquake. Among them,
the figure (a) shows the trajectories of public change in 10 minutes after the earthquake. Three clusters
were formed in this period. The figure (b) shows the location relationship between each cluster and
shelters in the second ten minutes. The figure (c), (d) and (e) shows that all small clusters formed
a large cluster over time and it had the largest population between 08:40 and 09:00 as in figure (d).
The figure (f) and (g) shows crowd was gradually dissipating and leaving the shelter. From the whole
process of analysis, we determined that: (1) When the earthquake happened, people rushed to the
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shelters in a very short time period. However, were these shelters reasonably laid out? We saw that
some shelters did not contain many people, or even had no people. Therefore, the analysis results could
be used as a reference for the rational layout of shelters. (2) The characteristics of crowd gathering and
evacuation could be used as an effective reference to aid disaster reduction departments in dealing
with future emergencies.

Further, we wanted to know which categories of emotion the public expressed during these
periods and how these emotions changed because massive population movements in a short time may
lead to some unnecessary accidents such as possible stampedes due to panic. Therefore, if the public
emotions in this process can be monitored, it will help us take quick and effective measures to improve
the efficiency of evacuation and prevent accidents. Table 1 presents the emotional characteristics in
each period of time in Figure 8. Indicators in this table include clusters formed by kernel density
clustering, the emotion categories and major emotion category contained in each cluster, etc.

Table 1. Distribution characteristics of emotions in different clusters in different time periods.

Period of Time Cluster Emotion Categories Major Emotion Category

08:02 h to 08:12 h
(Figure 8a)

Cluster 1 Anxious Anxious

Cluster 2 Fearful Fearful

Cluster 3 Anxious, fearful, angry Fearful

08:12 h to 08:22 h
(Figure 8b)

Cluster 1 Anxious, fearful, neutral Fearful

Cluster 2 Anxious, angry, fearful Fearful

Cluster 3 Angry, fearful, positive Fearful

08:22 h to 08:40 h
(Figure 8c) Cluster 1 Anxious, angry, Fearful, sad,

neutral, positive Fearful

8:40 to 9:30
(Figure 8d) Cluster 1 Anxious, angry, Fearful,

neutral, positive Fearful

09:30 h to 10:30 h
(Figure 8e) Cluster 1 Anxious, fearful, Neutral,

positive anxious
Anxious, fearful

anxious

10:30 h to 11:30 h
(Figure 8f)

Cluster 1 Fearful, positive, neutral Fearful

Cluster 2 Neutral, sad Neutral, sad

11:30 h to 12:30 h
(Figure 8g)

Cluster 1 Fearful, neutral positive,
anxious, sad Positive

Cluster 2 Neutral, angry Angry

Cluster 3 Angry, anxious, neutral Anxious

Cluster 4 Neutral, positive Neutral

From Table 1, we can see that fearful emotions dominated in the first 150 minutes (8:02 h to 10:30 h)
after the earthquake, followed by anxiousness. During this time period, people were unprepared for
the unexpected earthquake and were afraid of losing their lives in the earthquake. Among them, in the
first time period (8:02 h to 8:12 h), people expressed anxiousness in cluster 1, as shown in Figure 8a.
Through the corresponding text content, we found that they did not know the details of the earthquake
at this time (such as the location of the epicenter, the magnitude scale, etc.), so they were worried
about the safety of their relatives, friends, and even others whom they did not know. Angry, neutral,
and positive emotions began to appear in the second period of time (8:12 h to 8:22 h). However,
the number of the positive and neutral emotions was relatively small, with one piece being positive
and two pieces being neutral. Angry emotions in this time period mainly showed people’s aversion to
earthquakes. Sad emotions began to emerge in the third time period (08:22 h to 08:40 h) People who
expressed sad emotions were mainly because this earthquake reminded them of a dreadful catastrophe
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that happened in Sichuan in 2008 (the earthquake that occurred in Wenchuan, Sichuan Province,
on May 12, 2008, caused great damage). With more and more detailed information about earthquakes
becoming available, people expressed more categories of emotion, and the reasons for these emotions
had also changed. For example, in the fourth and fifth time periods, people expressed fearful and
anxious emotions because they worried about there would be some aftershocks in the near future. This
also shows that for a long time, people still gathered near the shelter, as shown in Figure 8c–e. We can
see many people began to leave shelters in Figure 8f. Combining with emotions people expressed in
this period, we found fearful emotions were no longer dominant. People expressed sad emotions in
cluster 2 in the sixth time period because of grief for the victims in the worst-hit areas. In the seventh
time period, the main emotion category in each cluster was different. People might have calmed down
at this time. Even the main emotion of cluster 2 in Figure 8g was positive. People expressed their
prayers for the disaster areas.

The fine-grained emotion analysis was not only a further explanation for human spatio-temporal
trajectory mining, but also provides more details of the disaster for disaster reduction departments.
On the one hand, it provides an understanding of the public’s emergency awareness and movement
law in the study area. On the other hand, based on characteristics of the emotional spatio-temporal
trajectory, disaster reduction departments can provide timely management and guidance for
“key nodes” in this process to avoid unexpected accidents. For example, we can provide effective
guidance for areas where negative emotions are intense, i.e., in Figure 8a,b, to avoid possible stampedes
due to panic.

3.3. Post-Disaster Emotional Change Analysis

The sudden catastrophe has a long-term impact on the public. By monitoring and analyzing the
public fine-grained emotional information, we can mine a lot of important information from massive
disaster-related data. This information can help us quickly understand the public’s needs and feedback,
even for some hard-to-find problems, such as mental health. This is very important for us to improve
the efficiency of disaster emergency response and rescue. In this section, we took Ya’an as an example
and used days as intervals to monitor public emotions for a longer period of time from the macro
perspective. Meanwhile, we analyzed the causes of public emotion change using hot word extraction.
This can help us quickly grasp the public’s concerns from the mass emotional information. The tool
we used to extract hot words was from the web (http://www.picdata.cn/).

Regarding positive emotions, as shown in Figure 9, on the second day (April 21) after the disaster,
we brought the hot words “感动 (moved)” and感激 (grateful)” into the corresponding text. We found
that the public expressed their gratitude mainly to the professional rescue workers, such as the army.
There were fewer volunteers at this time. However, more and more volunteers spontaneously joined
the rescue effort over time, especially on the third and fourth days. Because in this time, “志愿
者(volunteer)” appear more frequently. The civilian rescue gradually arrived in the disaster area
from about the fourth day (April 23) after the disaster. The hot words “爱心 (love)”and “物资 (relief
supplies)” indicated that people in the disaster-stricken areas were grateful for non-governmental
spontaneous relief materials. Based on the changes in public positive emotions, we can understand the
general process of rescue work.

Regarding anxiety, as shown in Figure 10, as time went on, the anxiety of the public gradually
decreased. On the second day after the earthquake, there was more anxiety. The reason for this
was because: (1) The roads were interrupted and some areas were isolated. We used the hot words
“中断 (interrupt)” and “救援 (rescue)” in the original micro-blog texts to get detailed information.
We found that “上里镇 (Shangli town),” “中里镇 (Zhongli town),” “下里镇 (Xiali town),” and “碧峰峡
(Bifengxia town)” were isolated from the outside world and needed urgent rescue after the earthquake.
(2) Some areas were in urgent need of relief supplies, and these areas were suffering from bad weather.
For example, through hot words, we found that there were some micro-blog texts saying that “Wangjia
village in Longmen town was short of water, food, medicine, and tents”. (3) Some people expressed
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anxiety because they could not contact their relatives and friends after the earthquake. From April
21 to April 26, we found the public’s anxiety was mainly due to a lack of supplies and bad weather.
Additionally, as time went on, the public’s demand for relief supplies mainly concerned tents, especially
on April 26th. The combination of micro-blog content and location information could have allowed a
more precise rescue plan to be carried out.

 

Figure 9. Sequence diagram of positive emotion (the words in the text box are the hot words related to
this emotion in the corresponding time period).

Figure 10. Sequence diagram of anxiety.

As shown in Figure 11, from April 21 to April 23, the public mainly expressed anger because of
their aversion to the earthquake and because of some internet fraud. By combining the corresponding
micro-blog content, we found that some of the Internet fraud was exposed by micro-blog users, such as
“It’s horrible. Some criminals cheated under the cover of the earthquake. Please pay attention to this
telephone number: xxx.”. These angry messages were used to help people guard against rumors
(especially for anxious people). After April 23rd, public anger was mainly due to aversion against
the disaster.
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Figure 11. Sequence diagram of anger.

As shown in Figure 12, from April 21 to April 25, the sadness was due to the destruction of
homes and the deaths of relatives or friends. Examples of corresponding micro-blog texts are: “Where
is home? Where is the classroom? Yesterday? I was not an orphan yesterday” and “It’s a scene of
complete devastation and when can we rebuild our homeland?” On April 26, many mourning activities
were carried out by official and non-governmental organizations, which was the reason why people
expressed sadness. During the process of the earthquake rescue, disaster relief organizations could
send psychological relief to places where sadness was intense, as determined by the locations of the
corresponding micro-blog information.

Figure 12. Sequence diagram of sadness.

In terms of fear, as shown in Figure 13, from April 22 to April 24, there were several aftershocks
in Ya’an, which had a great impact on the public’s life. Many hot words were observed, such as
“余震 (aftershock)” and “可怕 (dreadful)”. However, between April 24 and April 26, especially
on April 26, there was a sudden increase in fear, and the hot words mainly included “心理咨询师
(psychological counselors),” “回忆 (recall),” and “惊吓 (startle).” We used these hot words to get the
original micro-blog and saw some saying that: “A teacher in Zhongli Town reported that a girl was
afraid of loud voices and kept eating. She said she would be afraid if she didn’t eat. So this teacher
hoped that the disaster reduction department could send a psychological counselor to help that girl”
and “My brother said that as long as there was the thunder and lightning in Ya’an, he was very scared!
Ask for help!” Therefore, the relief department should give some help to these people.
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Figure 13. Sequence diagram of fear.

We can continue to explore other areas in the same way. This could help us to accurately
understand the public’s reactions to the progress of disaster mitigation. Further, the analysis results
could help the rescue department to optimize rescue strategies and improve the efficiency of rescues.

4. Evaluation of the Experimental Indicators

4.1. Accuracy Evaluation of the Emotion Classification

4.1.1. Experimental Corpus

In the emotion classification experiment, we first manually annotated a corpus based on the six
emotion categories. In this corpus, each emotional category contained 1000 text samples. Among these,
800 text samples were selected as the training corpus and 200 were selected as the testing corpus from
each emotion category.

4.1.2. Experimental Environment

In order to improve the accuracy of the emotional classification, we translated special characters
and symbols in the text into Chinese words. We integrated the word2vec framework (from Google [39])
and NLPIR-ICTCLAS (http://ictclas.nlpir.org) into our algorithmic framework to assist with the
processing of this text. Finally, we built convolutional neural networks based on tensor flow [40],
and optimized the model parameters to achieve the best results. In this process, we set the dimensions
of the word vector as 200, the number of convolution kernels was 3 and their sizes were 3, 4, and 5.
The size of max pooling was 4, the proportion dropout regularization was 0.3, and the stride was 1.

4.1.3. Experimental Results and Accuracy Comparison

We verified the accuracy of the algorithm based on the precision (P), recall (R), and comprehensive
evaluation indexes (F-1). The formulas are shown below:

P =
N_Correct

N_Correct + N_False
(5)

R =
N_Correct

N_Category
(6)

F − 1 =
2 × P × R

P + R
. (7)

N_Correct represents the number of texts that were correctly classified into one category, N_False
represents the number of texts that were misclassified into this category, and N_Category represents
the number of texts that belonged to this category in the testing corpus.
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Table 2 and Figure 14 show the accuracy of the CNN model in the fine-grained emotion
classification. The comprehensive evaluation index scores for each category were all above 81%,
which met the experimental requirements. In addition, in this paper, we also considered the use
of slang, internet buzzwords, and special characters and symbols to enhance the performance of
the model.

Table 2. Accuracy evaluation of positive emotion classification.

Emotional Category Precision (P) Recall (R)
Comprehensive Evaluation

Index (F-1)

Positive 82.25% 80.00% 82.54%
Neutral 84.21% 87.91% 86.02%
Angry 91.57% 86.36% 88.89%

Sad 88.54% 85.00% 86.73%
Anxious 78.47% 85.27% 81.77%
Fearful 84.69% 85.57% 85.13%

 

 

Figure 14. Classification accuracy of different emotions.

4.2. Evaluation of Spatio-Temporal Analysis Experiments

4.2.1. The Description of Data with Address Information

The number of texts in the data set of this paper was 39341. However, not all texts contained
address information. We processed this address information based on the method described in
Section 2.2. All address information can be divided into two categories in this paper, including rough
address information and accurate address information. Among them, rough address information can
only represent villages and towns, even districts and counties, such as “Lushan County, Ya’an City”
and “Wuhou District, Chengdu City,” etc. Accurate address information can represent streets and
geographical entities, such as “Sishengci North Street,” “Wangjiang Campus of Sichuan University,”
etc. Table 3 and Figure 15 depicts the proportion and number of data with different accuracy in
different cities. Among them, the formula for calculating the proportion is as shown:

Proportion =
The number of specified texts in the city

The number of all texts in the city
(8)
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Table 3. Proportion of data with different accuracy in different cities.

City
The Proportion of Data with

Accurate Address Information
The Proportion of Data with
Rough Address Information

Total

Chengdu 8.08% 2.16% 10.24%
Ya’an 12.18% 13.91% 26.09%

Mianyang 9.45% 2.60% 12.05%
Leshan 9.81% 4.85% 14.66%

Meishan 13.30 % 7.44% 20.74%
Deyang 8.71% 5.79% 14.50%

Aba 11.29% 23.51% 34.80%
Ziyang 5.10% 3.10% 8.20%

Neijiang 4.79% 2.33% 7.12%

 

 

Figure 15. Comparison of the number of pieces of address information with different accuracy in
each city.

4.2.2. Evaluation of the Experimental Process and Results

In Section 3.1, we used the population density distribution data provided by GHSL (Global
Human Settlement Layer) to assist in assessing the affected population. The scale of maps we used
was relatively small. Therefore, we considered that all the data with both accurate address information
and rough address information can be used. Among them, the data in Aba and Ya’an better reflected
the real situation expressed by social media in the region because although the social media data
volume in these two cities is small, the data with address information accounted for a larger proportion;
they reached 34.8% and 26.09%, respectively. Considering population density and epicenter location
(the epicenter of the earthquake occurred in Ya’an), in Section 3.1, we mainly focused on the disaster
situation in Ya’an and several cities close to Ya’an.

In Section 3.2, we explored how the spatio-temporal trajectories of human beings changed
when sudden disasters occur and used geographic data (shelters) with accurate location information.
Therefore, we considered that the social media data with accurate address information can be used
for analysis. In addition, earthquakes are sudden disasters and cause tremendous damage in a short
period of time. Therefore, in this paper, we set up seven small periods of time to explore the public
movement after the disaster and combined this with public emotions to mine more details regarding the
disaster. This required more data with accurate address information. We can see that Chengdu meets
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the requirements most from Figure 15 and this produced satisfactory analysis results in Section 3.2.
Of course, the same method can also be used to analyze the disaster in Ya’an; however, time granularity
would be coarse.

In Section 3.3, we mainly monitored the emotional information in each city for a long time.
Therefore, we just needed to know which city the social media data belongs to. Although a lot of
social media data had no location information, they all had their own labels. This was explained in
Section 2.1. Considering that Ya’an was the worst hit by the earthquake, we selected Ya’an as the
research object.

5. Conclusions

When a disaster occurs, social media can provide a large amount of important disaster-related
geographic information to the disaster reduction departments in near real-time. In this paper,
we regarded the fine-grained public emotional information extracted from social media as an attribute
of geographic information to assist in disaster mitigation. In the process of extracting emotional
information, we fully analyzed the characteristics of Chinese social media and selected a suitable
algorithm (convolution neural network model). Meanwhile, a large number of special characters and
symbols with emotional characteristics contained in social media were also considered to improve the
accuracy of classification. The methods in this paper achieved satisfactory results.

In order to verify the effectiveness of the method in this paper in disaster mitigation, we used
the 7.0 earthquake that occurred on April 20, 2013, in Ya’an City, Sichuan Province, China, as a case
study. We classified the social media texts related to areas affected by the earthquake into six different
emotion categories. Then, with the help of GIS software and other traditional geographic information
data (population density distribution data and shelter data), we explored the role of public emotional
information that is helpful for disaster reduction. The results showed that fine-grained public emotions
can provide more powerful data support for disaster reduction departments to optimize rescue
strategies and improve rescue efficiency.

Although social media plays an important role in assisting disaster mitigation, it also has some
limitations. (1) Social media data is unevenly distributed. The economically developed and populous
areas tend to have more users of the Sina micro-blog. In the research area of this paper, Chengdu
had the most Sina micro-blog data and these data were more concentrated in the urban area, but
it was not the worst-hit city. Therefore, in future research, more abundant data that include other
sources is also needed to supplement social media data, such as image data, vehicle-borne GPS data,
etc. (2) Not all social media users are willing to share their location information. In the dataset used in
this paper, the proportion of text with location information was very small. This limits the use of some
spatio-temporal analysis methods. However, we found that there are many geographically named
entities in texts and many of them can respect the user’s location. Therefore, an effective method is
needed to automatically extract these geographically named entities to supplement the deficiencies of
geographic location information in social media.

In addition, the use of social media for disaster mitigation is far from enough. With the
development of data mining technology, more disaster-related information contained in social media
can be extracted, such as different categories of disaster loss information, etc. With the help of the
powerful spatio-temporal analysis ability of GISs, this useful information can play a greater role.
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Abstract: With the rapid development of cities, the geographic information of urban blocks is also
changing rapidly. However, traditional methods of updating road data cannot keep up with this
development because they require a high level of professional expertise for operation and are very
time-consuming. In this paper, we develop a novel method for extracting missing roadways by
reconstructing the topology of the roads from big mobile navigation trajectory data. The three main
steps include filtering of original navigation trajectory data, extracting the road centerline from
navigation points, and establishing the topology of existing roads. First, data from pedestrians
and drivers on existing roads were deleted from the raw data. Second, the centerlines of city block
roads were extracted using the RSC (ring-stepping clustering) method proposed herein. Finally,
the topologies of missing roads and the connections between missing and existing roads were built.
A complex urban block with an area of 5.76 square kilometers was selected as the case study area.
The validity of the proposed method was verified using a dataset consisting of five days of mobile
navigation trajectory data. The experimental results showed that the average absolute error of the
length of the generated centerlines was 1.84 m. Comparative analysis with other existing road
extraction methods showed that the F-score performance of the proposed method was much better
than previous methods.

Keywords: missing road; city blocks; topology; big mobile navigation trajectory data

1. Introduction

With rapid road construction development in urban and rural areas, the consequent road changes
result in lagging road-data updates that are a poor match to the current situation and have low
integrity and accuracy. Traditional technologies used for detecting and updating missing roads, such
as professional surveys, map downsizing, remote sensing image interpretation, etc., are more costly,
require longer update cycles, are more complicated in data processing, and cannot easily adapt to the
needs of rapid urban development [1].

Detecting new and missing roads on existing road networks has become a common concern in the
fields of urban management, intelligent transportation, and driverless technology [2]. Imagery, GNSS
(global navigation satellite system) trajectories, and multisource data fusion are some of the major data
sources used for the renewal and repair of missing GIS (geographical information system) road network
data [3]. With technological developments such as wireless communications, Big Data, and cloud
computing, navigation trajectories are gradually becoming the main data source for urban road updates.
Massive on-vehicle positioning trajectories have the characteristics of large data, multiple data sources,
and heterogeneous structures. The use of VGI (volunteered geography information)-based trajectories,
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such as those collected by smart phones [4,5], and smart devices installed in vehicles [6] or held by
pedestrians [7], to update road data has recently achieved substantial results.

In this paper, a new method of extracting missing roads in city blocks from big mobile navigation
trajectory data is proposed, which mainly consists of the following steps: (1) Useless information
from pedestrian users on existing urban roads was filtered out of the data; (2) After preprocessing,
roadway centerlines were extracted using the proposed RSC (ring-stepping clustering) method; (3) The
road topology of each block was then established, and connections between existing urban roads and
missing roads in the blocks were built. Compared to traditional methods, the proposed method has the
following advantages: First, compared to specialized vehicles equipped with mapping devices [8,9],
the whole process can achieve a high level of automation and rarely requires manual operation,
and the device surveying investment is also much smaller; second, compared to remote sensing
image extraction [10], the influence on road extraction of the ubiquitous trees on city blocks will be
appreciably less, and the satellite revisit period will no longer be a problem; finally, compared to
existing road extraction methods using GNSS trajectory data [9,11–14], although the computational
complexity of the proposed method (Θ(n2)) is higher than the method in [9] (Θ(n)), the F − score of
the generated road centerline is much higher. A case study with 9,944,710 trajectory GNSS points over
an area of 5.76 square kilometers was selected to verify the feasibility of the proposed method. The
results showed that the extracted road network was well matched with the real network.

In the next section, we briefly discuss the road network data updating method found in the
literature. The rest of the paper is organized as follows: Section 3 describes the research methodology
in detail; Section 4 presents a case study with the adopted data and evaluates the quality of the
proposed method; and Section 5 derives and discusses the main conclusions and concerns related to
the proposed method.

2. Literature Review

The current methods are mainly divided into two major aspects: updating of road geometry data
and attribute data. The following subsections introduce the related works corresponding to these two
aspects in detail.

2.1. Road Geometry Data Updating

Selecting GNSS trajectory points not located on existing roads is usually a necessary stage
in road mapping in order to update road networks and refine the geometry of road segments or
intersections [5,15–19]. Then, different algorithms, strategies, and methods for detecting new roads,
extensions, and disappearances of existing roads are proposed based on the outlier trajectory points.

Considering that GNSS trajectories—or points—only appear on roads, clustering GNSS points
is the most commonly used method for updating the geometric data of a road. For example,
K-Means [13,20–23] has been used to cluster a large number of GNSS points at a certain position
on the road to identify the center of the road. This kind of method proceeds by inputting GNSS points
or trajectories and specifying an initial seed point to cluster the center of the road. Then, after iterations
over a certain distance interval, the geometric information for the road network is obtained.

The trace merging method [12,24] is usually used for road extraction from massive GNSS
trajectories. By using iterations of each GNSS trajectory, raw trajectory edges are added to the current
road map according to the map-matching results. Edges of current road maps are given a weight
to describe the repeat occurrences and the possibility of a road’s presence. Those edges with lower
weights are removed, and the remaining edges are regarded as newly found roads.

A large number of unordered GNSS points exhibit geometrical features distributed along the
road. Based on this phenomenon, researchers proposed a kernel density estimation (KDE) method and
extracted the most densely distributed areas of GNSS points, supplemented by a certain threshold,
to achieve the purpose of road boundary extraction and road skeleton extraction [14,25,26]. The
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advantage of this method is that as the number of samples increases, the output is more reliable and
robust. However, when the number of samples is insufficient, the results often have large deviations.

Recently, the total least squares [27] and turning-point detection methods [28] were proposed
to segment and group GNSS trajectory data. After the segmentation and grouping, the intersection
position and road segment were determined using the phenomena of intersecting and crossing of
different groups. [28] A dynamic time-warping (DTW) algorithm was then used to align road segments
from the connection matrix between intersections.

Moreover, [29] proposed the hidden Markov model (HMM) map matching method for topological
reconstruction and intersection refinement. Reference [5] used a genetic algorithm to establish new
road segments.

However, road-network extraction remains faced with difficulties in some places. For example,
when a road is covered by a bridge or an underpass is present under a road, GNSS points are
particularly chaotic because current mobile phone GNSS positioning is not good at heights; GNSS
points can be particularly chaotic, thus making it difficult to obtain this part of the road using the
existing method.

2.2. Road Attribute Data Updating

Another use for the movement trajectory is updating the attribute information of the road
network. Changes in road attribute information mainly fall into eight categories: directionality, speed
limit, number of lanes, access, average speed, congestion, importance, and geometric offset [30].
Winden et al. [30] proposed a decision-tree algorithm for deriving the above eight attributes for an
open street map (OSM). The results show that whether a road is a one- or two-way road it is classified
with an accuracy of 99% and the accuracy for the road speed limit is 69%.

Reference [31] modeled the speed of the tracks from the centerline of the road as a Gaussian
distribution, and then extracted the directionality and turning restriction attributes for road maps such
as OSM. Reference [32] used a probabilistic method to derive the number of traffic lanes from GNSS
tracks by fitting a Gaussian mixture model (GMM) to the intersections between the GNSS traces and a
sampling line perpendicular to the road’s centerline. Reference [33] used data-mining techniques to
extract the name and class of the road by integrating movement trajectories and geotagged data from
social media with a support vector machine (SVM) method. Reference [34] used a fully connected
deep neural network (DNN) to automatically extract deep features and classify trajectories based on
transportation mode. Further, Reference [35] proposed a framework using feature engineering and
noise removal to classify movement trajectories into typical transportation modes such as taxi, car,
train, subway, walking, airplane, boat, bike, running, motorcycle, and bus.

The detected transportation modes of each movement trajectory can be used to update the
attributes of the road map. Reference [19] adapted a robust map-matching algorithm to assure that
each point was assigned to the current road map. Then, the missing intersections, turn restrictions,
and road closures were detected and updated. Considering that OSM has become a common way for
volunteers to draw maps, Reference [36] obtained newly drawn road data by analyzing OSM data.
They then adopted a progressive buffering method to update the latest roads in the OSM data with
roads from other data sources, including both geometry and attributes.

3. Methodology

3.1. General Description of the Proposed Method

The proposed method can be divided into three main parts (Figure 1). The first part is data
filtering. In this step, two kinds of data, including navigation points located on the existing urban
roads and records generated by pedestrians, were filtered out. The remaining navigation data were
regarded as navigation points relating to driving on missing roads in city blocks. This part is introduced
in Section 3.2.
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Then, a clustering-based algorithm named RSC was proposed to extract road centerlines using the
reserved navigation points. This is the second part of the proposed method. After that, the centerlines
of the missing roads were determined (please see Section 3.3).

Finally, the topologies of missing roads and their relationship with the existing roads were
established. The procedures are given in Section 3.4.

 

Figure 1. Flow chart of the proposed method.

3.2. Data Filtering

Mobile navigation data are collected as long as the navigation software is active. In order to
reduce the duration of the calculation, data points located on the existing roads and generated by
pedestrians should be filtered.

In this subsection, two main steps were adopted to filter the original data. The first step was to
filter data from pedestrian users by the speed indicated by the record. Then, filtering was performed
to segregate GNSS points based on existing urban roads via overlay analysis.

First, GNSS point speed information is the most appropriate indicator for distinguishing between
pedestrian and vehicle users. According to previous studies, the average speeds of walking and
driving are approximately 4.2 and 30 km/h, respectively. Therefore, in this research, 5.0 km/h was
used as the threshold to separate pedestrian users from other navigation users. In other words, those
GNSS points with speeds under 5.0 km/h were regarded as pedestrian users and were then removed.

Navigation data generated by the user’s motion are partly located on existing roads and the rest
on missing roads. According to our current research, navigation data points on existing roads account
for more than 90% of all points in the used dataset. That is, the navigation data points on the roads
inside city blocks only account for 10% of the total data volume. Therefore, filtering out the data points
from the original data on existing roads will greatly improve the efficiency of the method as they
account for the vast majority of the data.
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Previous studies have been performed to filter the positioning points on existing urban roads, such
as overlay analysis between the navigation-point layer and the existing urban road layer. Vector–raster
analysis can also be used for filtering. In this paper, we adopted the method described in [37] to
convert both existing roads and the navigation points into a raster format, so that filtering computing
could be greatly accelerated.

3.3. Road Centerline Extraction

After filtering the raw data, purer navigation points of missing roads in city blocks were finally
reserved. To extract the road network from these points, a clustering-based algorithm called RSC was
proposed in this subsection.

3.3.1. Centerline Extraction via RSC

In this subsection, RSC was used to extract the centerlines of the missing roads. Figure 2 shows
the four main RSC steps. The black dots indicate the navigation points, which were reserved after data
filtering, as described in Section 3.2. Considering that the reserved GNSS points were located on the
missing road, an initial point (Pini) was randomly selected from the reserved points (see the yellow
point in Figure 2a). Then, a radius parameter (R) was used to select the points that were covered by the
ring with a radius of 2R (S2R), which included the red circle and the green points of Figure 2b. R was
the ring–radius parameter, which was approximately the average width of the roads in this region.
After that, the highest density position could be calculated using the green points and could then be
regarded as the node of the centerline (see the red point in Figure 2b).

Figure 2. The main steps of RSC (ring-stepping clustering) are as follows: (a) a random GNSS (global
navigation satellite system) point is chosen as the initial point, (b) the initial node is selected from
the point set S2R of the initial point, and (c,d) the next node is selected from the point set Sring of the
current node.

After the initial centerline node was found, a ring with an inner diameter R and an outer radius
3R was defined to find the next road centerline node. The points that fell on the ring were picked up to
form the point set Sring (see the blue points shown in Figure 2c).

The density of each point in Sring was also calculated to find the highest density point. However,
before deciding on the next node, each point in Sring was calculated to determine whether it satisfied a
U-turn. As shown in Figure 3 and Equation (1), value V was calculated from the potential segment
(Vb) and the existing segment centerline (Va).

V = Va·Vb (1)
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If V < 0, the potential node will not be selected as the next node.

Figure 3. Determining a U-turn.

The pseudocode of the proposed RSC algorithm is presented in Algorithm 1. During data
processing, the k–d tree [38] was introduced as an index of the point set for acceleration. The
computational complexity of the proposed RSC algorithm is Θ(n2).

Algorithm 1. RSC (ring-stepping clustering) Algorithm

Inputs: (1) a set of GNSS points PointSet = {P1, P2, P3, . . . , Pn }; (2) One parameter R.
Outputs: A set of centerlines CenterLineSet = {CL1, CL2, CL3, . . . , CLm }, and each centerline is composed
of a set of points NodeSet = {N1, N2, N3, . . . , Nk }
1: k–dtree ← Build k–d tree for PointSet

2: For i ← 1 to n do

3: PointSet1 ← GetPointSetInRing(PointSet[i], 0, 2*R,
PointSet)

4: for j ← 1 to length(PointSet1) do

5: PointSet1[j]’s PointSet2 =
GetPointSetInRing(PointSet1[j], 0, R, PointSet)

6: node ← the point whose PointSet2 has the most
points in PointSet1

7: numpts ← length of node’s PointSet2
8: If numpts > 0 then

9: while numpts > 0 do

10: add node to NodeSet
11: PointSet3 ← GetPointSetInRing(Node, R,

3*R, PointSet)
12: delete those points in PointSet3 that would

make the centerline turn around
13: for k ← 1 to length(PointSet3) do

14: PointSet3[k]’s PointSet4 ←
GetPointSetInRing(PointSet3[k], 0, R, PointSet3)

15: end

16: node ← the point whose PointSet4 has the
most points in PointSet3

17: numpts ← length of node’s PointSet4
18: end

19: end

20: add NodeSet to CenterLineSet
21: end

22: end

23: return CenterLineSet

24: function GetPointSetInRing(Point, InsideRadius,
OutsideRadius, PointSet)

25: PointSetResult ← points in PointSet whose
distance to Point is larger than InsideRadius and
smaller than OutsideRadius (using kdtree)

26: return PointSetResult
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3.3.2. Duplication Avoidance and Improvement

Using the above proposed algorithm, centerlines derived from GNSS points were obtained and
organized by node sequence. However, after the centerline extraction for the missing road, the GNSS
points on that road were still reserved. This led to centerline duplication.

Therefore, a rectangular buffer with width 3R for every single centerline segment was performed
to remove the covered points (see the blue rectangle in Figure 4). All points that fell in the
rectangular buffer were removed from the PointSet and were subject to further calculations. Moreover,
the centerline extraction algorithm was terminated when PointSet was empty.

Figure 4. Centerline duplication avoidance and improvement.

3.4. Establishment of Road Topology

After extracting the centerlines of missing roadways, the road topology, which is important for
the road map, remained missing. In this subsection, the road topology was rebuilt for the extracted
roads. Two main parts were included: the topology establishment for the extracted missing roads and
the relationship establishment for the existing roads.

3.4.1. Topology Establishment for Missing Roads

Establishing the topological relationship of the extracted centerlines consisted of three main steps.
First, the topology relationships between different centerlines were built according to the end node
(EN) of the centerlines. The distance between the end node (EN) and normal node (Ni) was calculated,
and the minimum distance (Dmin) was determined. If Dmin < 3R, the connection between EN and Ni
was regarded as a centerline, see Figure 5.

Figure 5. Relationship built between extracted centerlines. (a) Before building and (b) after building.
EN is end node, Dmin is minimum distance, Ni is normal mode.

Then, a cluster analysis was used to combine the adjacent topological nodes according to the
distance between them. In this paper, the mean shift clustering algorithm [39] was adopted. Those
topological nodes within a distance R were converted into a single topological node. This greatly
improved the topological relationship of the missing roads.
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Finally, a node classification procedure was performed to classify the nodes into two groups: the
topological and normal nodes. The difference between the normal and topological nodes was the
connected centerline segments. Once the connected centerline segments of a node were >2, the node
was regarded as a topological node, and the centerlines were divided into two child centerlines (see the
red nodes of Figure 6b).

Figure 6. Topological rebuild of the extracted centerlines. The centerlines are shown (a) before
rebuilding and (b) after rebuilding.

3.4.2. Connections between Missing and Existing Roads

After the topology of the missing roads was established, the connections between missing and
existing roads were also established.

First, potential connections were built between the nodes and existing roads (see yellow lines of
Figure 7). Then, potential connection verification was performed using the azimuth distribution of
GNSS points around the potential connection; once this parameter was uniform with the main angular
direction of the connection, the potential connection was regarded as valid. Otherwise, it was treated
as an invalid connection.

Figure 7. An illustrative example of the connections between missing and existing roads.

4. Case Study

4.1. Mobile Navigation Data

In this study mobile navigation data were used to extract missing roads. These data were
generated and collected by mobile phones. These data were generated when the navigation application
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in the mobile phone was open, regardless of whether the user was using it for navigation. The sampling
rate was one second per record, and each record contained seven main fields: day, time, ID, longitude,
latitude, speed, and azimuth. A description of each field is given in Table 1.

Table 1. Description of the data fields.

Index Field Name Description

1 Day The day the record was generated, including year, month, and day
2 Time The time the record was generated, including hour, minute, and second
3 ID ID of the user
4 Longitude Longitude of the position of the user
5 Latitude Latitude of the position of the user
6 Speed Speed of the user
7 Azimuth Azimuth of the user

4.2. Case Dataset

A region located in Shanghai was selected as the case area. It is 3.6 km long and 1.6 km wide,
and it covers an area of 5.76 square kilometers. The case area covers two university campuses, and most
of the roads in the case area are two-lane bidirectional roads. Around the case area, some municipal
roads are available, such as Hujin Expressway, Jianchuan Road, Dongchuan Road, and Lianhua South
Road. The location, imagery, and the existing municipal roads (marked with green color) of the case
area are shown in Figure 8.

 

Figure 8. The location, imagery, existing municipal roads of the case area, and selected roads and
cross points for quality evaluation. The imagery was collected on 13 April 2017 by DigitalGlobe’s
GeoEye-1. The spatial resolution of the imagery was 1 m. The imagery was matched to real map by the
georeferencing toolbar of ArcGIS software. Relative to the real map, the 13 control points of the image
had a positional accuracy of 1.97 m RMSE (error magnitudes range from 1.35 to 2.93 m).

To evaluate the quality of the extracted road networks, a real map of the area provided by the
Shanghai Municipal Institute of Surveying and Mapping was used. The map was measured by total
stations manually, and the precision of the map reached the centimeter level. Among all the real
roads, 11 roads, including straight and curved roads, and 22 cross points (endpoints of the 11 selected
roads) of the roads were selected to evaluate the performance of the proposed method. In order to
compare the quality of satellite-derived method, the 11 selected roads were manually mapped from
satellite imagery using the ArcGIS software—the mapping was done by three operators with good
training in remote sensing image object extraction, respectively. Selected roads and cross points are
shown in Figure 8. The manually mapped roads were compared with the real map of the area in
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order to evaluate the spatial accuracy, which is shown in Table 2. According to the evaluation results,
the positioning precision of the digitalization was about 1.00 m. Compared with the real road data,
the true difference was about 3.95 m.

Table 2. Result of spatial accuracy of the 22 manually mapped road points. Trueness is the distance
between the average position and the corresponding real position (m). Precision is the mean square
error of the points by different operators (m).

Point ID Trueness (m) Precision (m) Point ID Trueness (m) Precision (m)

1 4.19 0.64 12 6.23 1.13
2 3.26 1.04 13 5.18 1.91
3 1.15 1.43 14 0.70 1.65
4 6.84 1.52 15 3.63 0.97
5 5.88 0.84 16 2.21 1.77
6 6.00 1.12 17 2.78 1.08
7 5.78 0.19 18 5.01 0.04
8 2.76 0.35 19 3.41 0.06
9 3.51 0.05 20 2.51 1.70
10 5.35 1.04 21 3.25 0.23
11 2.95 1.86 22 4.27 1.43

Average 3.95 1.00 – – –

Data used for analysis were collected in December 2017 (11–15 December) and consisted of
9,944,710 GNSS data points in total, belonging to 198,241 unique vehicle IDs. The data were provided
by 1RenData (ShangHai) Technology Co., Ltd (Shanghai, China). Figure 9 shows the raw GNSS
data distribution.

Figure 9. Raw research data. The black dots represent GNSS (Global Navigation Satellite
System) points.

4.3. Data Filtering

Using the data filtering methods described in Section 3.2, 392,128 records belonging to 8676 unique
user IDs were finally reserved. The reserved GNSS points took ~4.0% of the raw data. Components of
the raw case data are shown in Table 3.
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Table 3. Components of the case data.

Location Pedestrian Vehicle Total

Existing Municipal Road Value 3,054,797 6,179,641 9,234,438
Percentage 30.7% 62.1% 92.8%

Missing Road Value 318,144 392,128 710,272
Percentage 3.2% 4.0% 7.2%

Total
Value 3,372,941 6,571,769 9,944,710

Percentage 33.9% 62.1% 100.0%

4.4. Road Centerlines

4.4.1. Road Centerline Extraction

The proposed RSC method was used to extract road centerlines from the data after filtering. The
method prototype was implemented in C-Sharp programming language. The experiment was carried
out on a server with Intel Xeon CPU Platinum 8163@ 2.5 GHz and 16GB memory. As the roads’ average
width in the experimental area was ~7 m, the parameter R was set to 7.0 in this paper. The obtained
centerlines are shown in Figure 10. There were 603 centerlines in total, and the average length of these
centerlines was 116.09 m. It took 557 s to extract the centerlines of the 392,128 points.

Figure 10. Results of the case study.

4.4.2. Geometric Quality Evaluation of Road Centerlines

� Geometric Evaluation of Generated Centerlines Compared with Real Map

In this subsection, two indices were selected as quality measures of the extracted roads. The first
index was the road’s length [40,41]. Assume Lr is the length of the real road and Lg is the length of
the road used for quality evaluation. Then, absolute error between the different road lengths was
calculated by Equation (2):

Eg = |Lr − Lg| (2)

where Eg is the absolute error between Lr and Lg.
The second index is the distance between each road centerline and the corresponding real

road [42,43]. First, the region area between the real and extracted roads was calculated (see the
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blue area of Figure 11). Then, the quality values of the extracted centerlines Tg were calculated using
Equation (3):

Tg =
Ag
Lr

(3)

where Ag is the area of the region between the generated and real roads.

Figure 11. Distance calculation between real and extracted roads.

Using parameters in Equations (2) and (3), we listed the evaluation results of quality of the 11
selected roads in Table 4. According to Table 4, the average of Eg was 1.84 m and the average of Tg
was 1.62 m, which demonstrates that the proposed method can achieve excellent results.

Table 4. Results of the geometric evaluation of generated centerlines (m).

Road ID Lr Lg Eg Tg

1 206.95 207.93 0.98 0.37
2 403.05 401.05 2.00 1.21
3 183.80 181.47 2.34 2.51
4 199.36 196.90 2.46 1.70
5 304.27 304.96 0.69 3.01
6 511.84 511.84 0.00 1.80
7 240.78 238.18 2.60 1.89
8 219.78 223.12 3.34 0.34
9 180.94 182.75 1.81 1.94
10 410.14 406.24 3.90 2.11
11 265.42 265.55 0.13 0.96

Average 284.21 283.64 1.84 1.62

� Geometric Comparison between Digitalization and Proposed Method

In order to compare the geometric accuracy between the proposed method and digitalization
by remote sensing image, the true difference between selected cross points of the real roads and
corresponding cross points of the roads, which were named as Dg, was used. In this paper, 22 road
cross points were selected to compute the true difference with the real map. Then, the minimum,
maximum, and the average Dg of two methods are listed in Table 5.
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Table 5. Minimum, maximum, and average Dg of digitalization and proposed method (m).

Digitalization from Remote Sensing Image Proposed Method

Minimum Maximum Average Minimum Maximum Average

0.23 6.00 3.95 0.81 6.02 3.43

According to Table 5, the average of Dg of the mapped roads was 3.95 m, which was larger than
the proposed method. It shows that the accuracy of the proposed method was slightly better than the
digitalization method.

� F-Score Evaluation

In addition to the evaluation method mentioned above for the generated centerline, the F − score
proposed in [11] was also adopted to evaluate the proposed method. The F − score was computed
as follows:

spurious =
spurious marbles

(spurious marbles + matched marbles)

missing =
empty holes

(empty holes + matched holes)

F − score = 2 × (1−spurious)(1−missing)
(1−spurious)+(1−missing) .

Starting from a random location, the roads were explored by placing point samples on each
graph during a traversal outward within a maximum radius. Sample points on the roads that
required evaluation were considered as “marbles” and on the real roads as “holes”. In this case,
spurious marbles represent the number of points on the evaluated roads that do not get a match,
matched marbles represent the number of points on the evaluated roads that get a match, empty holes
represent the number of points on the real roads that do not get a match and matched holes represent
the number of points on the evaluated roads that get a match.

The F − score of the proposed method was compared with that of the other methods [11–14]. The
comparison is shown in Figure 12. Obviously, the proposed method offered a significant improvement
over the previous methods.

Figure 12. F − score of the proposed and existing methods.

4.5. Topology Evaluation

4.5.1. Topology of Missing Roads

The topology was built after centerline extraction. There were 371 topological nodes in total.
After manual verification, 296 were real intersections on the roads. The correctness was ~79.8%. The
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wrongly extracted topological nodes, usually located at houses, were too densely localized or were
located on roads that were too complex. This was probably caused by the low positioning accuracy
and multipath effects of GNSS devices and can be improved after enhancing the dataset.

4.5.2. Connections between Missing and Existing Roads

Twenty-six potential connections between topological nodes and existing roads were found. After
azimuth verification, 23 connections were reserved; when compared to the corresponding remote
sensing images, they were correct. These correct connections represent both entrances and exits.

5. Discussion and Conclusions

This paper proposes a new method for generating missing road networks in city blocks using big
mobile navigation trajectory data. An algorithm named RSC was designed according to high frequency
GNSS data. After extracting centerlines, methods of building road topologies in city blocks and
establishing connections between missing and existing roads were proposed. A case area (5.76 km2)
was used to verify the feasibility and validity of the proposed method. The results showed that
compared to real roads, the average length difference is approximately 1.84 m and the average distance
is approximately 1.64 m, indicating that the proposed method can achieve meter-level missing road
extraction results. Data from satellite-extracted roads indicate that the proposed method achieves
greater results than image-derived method. Meanwhile, using the F − score index, the proposed
method can achieve the best results compared to previous studies.

The novelty of the proposed method is the higher geometric quality of the extracted missing roads.
The length difference and the distance between extracted roads with real roads are approximately
1.84 m and 1.64 m, respectively. This allows the possibility of generating complicated road networks.
Meanwhile, the F − score performance of the proposed method offered a large improvement over
previous methods, meaning that the road networks generated by the proposed method are far
more meticulous.

However, the complexity of the proposed method is Θ(n2). This metric indicates that when
the amount of input of GNSS data increases, resource and time consumption by the algorithm will
also increase geometrically. Though the method introduced in the paper worked well in most areas,
the result and quality will be affected by a few factors.

First, due to the chaotic trajectories in car parks, there will be a jumble of GNSS points in the
corresponding region. Therefore, roads through car parks cannot be extracted using the proposed
method. Further, a bridge present above the road, an underground car park, or an underpass under
the road will result in failure to generate the road’s centerline at ground level.

Second, when the road is between two high buildings or trees, a very thick canopy is formed,
and the shadow and multipath effects may cause the coordinates of the GNSS points to be burdened
by significant errors; thus, the quality of the centerline extracted via the proposed method will be poor.

Moreover, when two roads are close to each other and in parallel and when they are both not wide
enough, their related GNSS points will be difficult to distinguish, so they will probably be extracted as
one road.

Finally, during data filtering, some GNSS data with the speeds < 5.0 km/h is removed to filter
pedestrian and vehicle users. Such an approach would result in excluding some vehicles traveling at a
lower speed; thus, the GNSS data involved in the calculation will also be reduced.
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Abstract: In recent years, the rapid development of cloud computing and web technologies has led
to a significant advancement to chain geospatial information services (GI services) in order to solve
complex geospatial problems. However, the construction of a problem-solving workflow requires
considerable expertise for end-users. Currently, few studies design a knowledge base to capture and
share geospatial problem-solving knowledge. This paper abstracts a geospatial problem as a task that
can be further decomposed into multiple subtasks. The task distinguishes three distinct granularities:
Geooperator, Atomic Task, and Composite Task. A task model is presented to define the outline
of problem solution at a conceptual level that closely reflects the processes for problem-solving.
A task-oriented knowledge base that leverages an ontology-based approach is built to capture and
share task knowledge. This knowledge base provides the potential for reusing task knowledge when
faced with a similar problem. Conclusively, the details of implementation are described through
using a meteorological early-warning analysis as an example.

Keywords: task; workflow; geospatial problem-solving; knowledge base

1. Introduction

In recent years, with the rapid development of cloud computing and web technologies, an
increasing number of geospatial information resources (GIRs), e.g., geospatial data, geospatial analysis
functions, models, applications, etc., have been encapsulated into a wide variety of geographic
information services (GIServices) [1] which are accessible to general public users over the web [2,3].
For example, a web service toolkit, named GeoPW [4], provides a set of geoprocessing services,
which are used to fulfill data processing and spatial analysis tasks over distributed information
infrastructures [5]. In the geospatial community, The Open Geospatial Consortium (OGC) established
a series of standard interface specifications, such as Web Feature Service (WFS), Web Map Service
(WMS), Web Coverage Service (WCS), and Web Processing Service (WPS), which further improve the
interoperability and web-based sharing of GIServices [5–7].

In the geospatial application domain, geospatial problems usually relate to heterogeneous data
and several computational processes [8]. The capabilities of a single GIService are limited and cannot
be effectively conducted because of the complexity of geospatial problems [4]. In the last decade,
workflow-based approaches have evolved to a major way to address complex geospatial problems [9].
Currently, with the assistance of standard interface specifications, GIServices published by different
organizations can be chained as a geoprocessing workflow that can describe the execution order of
problem-solving steps and enhance the power of atomic GIServices to fulfill complex geoprocessing
tasks [10–13]. In general, geospatial problems require comparatively deep expertise, which therefore
need experts to contribute their problem-solving knowledge by means of a conceptual workflow.
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In previous studies, there are already some investigations in the formalization of workflow [7,14,
15] and semantic interoperability for GIServices [16–18]. Additionally, a number of studies have
employed the task concept to facilitate the expression of user requirements at a semantic level [14,19,20].
In fact, many geospatial problems can share similar conceptual workflows. Therefore, the conceptual
workflows can be formalized into a knowledge base, which can facilitate future users to solve the
similar problems.

In this paper, we focus on using ontologies in association with a task-oriented approach to
construct a knowledge base to enhance geospatial problem-solving. It is generally believed that
ontology is the foundation and a significant part of the semantic web. Ontology provides unified
terms to improve the semantic interoperability of domain knowledge [21]. A task is introduced as
a reusable component to model the sequence of inference steps involved in the process of solving
certain kinds of geospatial problems at a conceptual level. The knowledge base can store conceptual
workflows that are considered to be a priori knowledge accumulated from past experience of domain
experts [22], which can enable problem-solving knowledge reusable [23]. A geospatial problem is
abstracted as a task, and the knowledge for the task is considered as a problem solution. Under many
circumstances, tasks need to decompose into simpler tasks, each of which can be solved by one or
a set of functions [24]. As the smaller task is simpler than the overall task, the complexity of the
task is reduced significantly [22]. Hence, we further divide the task into three distinct granularities:
(1) a geooperator, which is basic processing functionality; (2) an atomic task, which is indecomposable;
and (3) a composite task, which is decomposed into multiple subtasks.

The main work of this paper includes the following: (1) Concepts: the task concept is introduced
as a reusable component for geospatial problem-solving and is used to reflect users’ requirements;
(2) Model: a task model is proposed to simulate problem-solving processes; (3) Knowledge base:
an ontological knowledge base is designed, that comprises several interoperable ontologies to
capture and share problem-solving knowledge; and (4) Implementation: taking the meteorological
early-warning (MEW) analysis, for example, we describe the details of the implementation conclusively.
We focus on geospatial problem solution as a task that is composed of conceptual geoprocessing
operations not in connection with any concrete services. The instantiation and execution of a task,
the low-level interaction with operations (such as accessing input data), and the validation of the
processing chain are not in the scope of this article.

The remainder of this paper is organized as follows. Section 2 offers related work on the task-based
approach and geospatial problem-solving. Section 3 proposes the task concept and task model to
describe problem-solving processes. Section 4 presents a task-oriented knowledge base, some core
ontologies are described in detail. Section 5 introduces the detailed information of implementation.
Finally, conclusions and future work are given in Section 6.

2. Related Work

2.1. The Task-Based Approach

The notion of the task was proposed by Albrecht in the field of geographic information system
as early as in the 1990s [25] and has been used in many studies. However, there is still no unified
definition of a task [19]. In general, the task concept reflects user requirements and describes all actions
or operations to solve a specific problem. Some studies have been performed using a task-based
approach. We summarize and classify them as follows:

1. The task-based language. A task ontology language based on the OWL (Web Ontology Language),
named OWL-T, has been proposed to define task templates to formalize user demands and
business processes at a high-level abstraction, which is used for the task of a trip plan [26].
Hu et al. [19] extended the task-oriented approach to the OGC Sensor Web domain. A Task
Model Language, called TaskML, is a language for modeling tasks. The significant features of
TaskML are Task Trigger, Task Priority, and Task QoS.
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2. The task ontology approach. Sun et al. [27] proposed a task ontology-driven approach for the
geospatial domain to realize live geoprocessing in a service-oriented environment, which includes
three steps: task model generation, process model instantiation, and workflow execution. A case
study of flood analysis is used to illustrate the effect and role of the task. Liu [28] proposed a
task ontology model for domain-independent dialogue management and created a dialogue
manager that is task-independent. Park et al. [29] presented a task ontology based on travelers’
perspectives using tasks, activities, relations, and properties. A prototype system was developed
using task-oriented menus.

3. A task-based approach for geospatial data acquisition. Wiegand and García [21] proposed a
task-based approach to advance geospatial data source retrieval. More concretely, they designed
a conceptual model that combines ontologies of tasks, data sources, metadata, and places and
uses the Jess rule engine and Protégé tool to provide automatic processing for data retrieval.
Qiu et al. [30] proposed a task-oriented approach for efficient disaster data management that
performed mapping from emergency tasks to data sources and calculated the correlation between
the data set and a generic task. A flood emergency example illustrates the use of this approach.

2.2. Geospatial Problem-Solving

Currently, geoprocessing service technology is widely employed to solve specific geospatial
problems in distributed information infrastructures. Much research has been devoted to utilizing or
facilitating geoprocessing services to support problem solving. Mikita [31] published a geoprocessing
service for forest owners to optimize clearcut size and shape during the process of forest recovery.
Müller [18] proposed a hierarchical framework to identify the semantic and syntactic properties of
geoprocessing services with four levels of granularity, which is conducive to service retrieval, service
comparison, service invocation.

In most cases, a single geoprocessing service is not enough to solve the complex geospatial
problem. Therefore, geoprocessing workflow technology provides a solution. The integration of
geoprocessing services has become a popular research topic, and a series of tools and architectures
were developed to support geoprocessing service chaining. For example, an open source geoprocessing
workflow tool, named GeoJModelBuilder, is able to integrate interoperable geoprocessing services
and compose them into a workflow [6,7]. A RichWPS orchestration engine in combination with a DSL
(Domain Specific Language) is used to orchestrate WPS processes and publish the composition as a
WPS process for further composition [32]. In addition, there are many popular workflow management
systems to facilitate the integration of geoprocessing services, such as Taverna [33,34], Triana [35],
Kepler [36], jABC [9,37]. However, they only simplify the workflow construction process at the
syntactical level, and building a workflow composed of services for geospatial problem-solving is still
challenging for end-users.

Recently, more studies have focused on semantic and automatic workflow composition for
geospatial problem-solving. Farnaghi and Mansourian [12] proposed an automatic composition
solution using the AI (Artificial Intelligence) planning algorithm and SAWSDL (Semantic
Annotations for Web Service Description Language) to improve the disaster management process.
Al-Areqi et al. [10] applied a constraints-driven synthesis method to implement the semiautomatic
composition of a workflow for analysis of the impacts of sea-level rise. Samadzadegan et al. [38]
designed a framework for an automatic workflow for fire detection early warning based on OGC
services. Arul and Prakash presented a unified composition algorithm that adds a new phase
called Validation and Optimization to automatic web service composition and generated a scalable
composition process according to the dynamic change of user requirements [39].
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3. Task as a Reusable Problem-Solving Component

3.1. An Application Scenario

In this section, we demonstrate an example that uses a workflow composed of distributed data
and various geoprocessing services. This example is used throughout the remainder of the paper to
help understand the concept of a geospatial task. Assuming an end-user is a staff of a meteorological
disaster monitoring department, he needs to predict the probability of the occurrence of geological
disasters in a certain region in the next day. The ideal result is a thematic map of the early-warning
region that uses different colors to represent different early-warning levels.

To achieve the early-warning results, the most common approach is to formulate a geographic
processing workflow that can generate an early-warning result map. As shown in Figure 1, the elliptical
shape represents a data node, and the rectangular shape represents a data processing node. First, it
uses geological hazard point data, influence factor data and early-warning unit data as input data to
calculate the potential degree index of early-warning units respectively. Similarly, it can obtain effective
rainfall data. Then, the potential distribution map and effective rainfall data from the previous step
with forecast rainfall data go through early-warning analysis calculations to achieve the early-warning
result map.
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hazard point 

data
Influence 
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Early warning 
unit data
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distribution 
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Effective 
rainfall data
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Task node

Figure 1. Sequences of the meteorological early-warning (MEW) process.

For the aforementioned application, the entire workflow can be considered a task. GIS domain
experts with professional knowledge are able to analyze the technological procedures and abstract
them in the form of conceptualization, which are then used to describe the skeleton knowledge of the
problem-solving process. The MEW task, which was previously performed manually and had the
requirements of GIS skills and knowledge of business processes, can now be executed automatically.

3.2. Task and Task Model

In this paper, the task concept is proposed to reflect user requirements, which can be accomplished
by one or more geoprocessing services. A geospatial problem is abstracted as a task that denotes a
high-level business goal, and users execute a sequence of processes to achieve the goal. Tasks are
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different from operations or services, as tasks focus on what users want to solve, while operations or
services mainly focus on the implementation of geoprocessing computations.

A complex problem can consist of multiple problem-solving processes with different requirements,
which makes it difficult to define the solution as a single task [22]. Hence, a complex task can be
decomposed into several smaller tasks, each of which can be solved in a relatively independent way
by one or more geoprocessing services and then combined together into a complete solution [24].
The granularity of the task plays an important role during the problem-solving process. As shown
in Figure 2, there are three distinct granularities: (1) a geooperator as elementary functionality for an
atomic task, (2) an atomic task as a building block for a composite task, and (3) a composite task as
a building block for a complex geospatial task. Consequently, the task is a reusable component for
construction of the problem-solving workflow.

AtomicTaskGeooperator CompositeTask

Task

1..*

1
11

 

Figure 2. Relationships between Task, AtomicTask, CompositeTask, and Geooperator.

The process property of the geospatial task is expressed by a task process graph (TPG), which is
used to capture the execution order of problem-solving steps and closely describe how a task should be
achieved. Each TPG contains a set of edges that compose an acyclic directed graph structure. An edge
denotes a workflow of two tasks. The directions of edges decide the dependencies between the tasks.
The combination of TPG and task composes a task model that provides an approach to allow users to
specify complex geospatial problems at an abstract level.

3.3. Geooperator

Geospatial problem-solving knowledge is represented at a conceptualized level that requires
categorization and formalization of geoprocessing services. Geooperators are developed mostly for
improving the discoverability and exchangeability of geoprocessing functionality and providing an
approach to formalize well-defined geoprocessing functionality [40]. In Brauner’s work, geooperators
are categorized in terms of multiple different perspectives, such as geodata, legacy GIS, pragmatic,
formal or technical perspectives [41]. An overview of perspectives and top-level categories identified
by Brauner is shown in Figure 3a, and elements described by the geooperator are given in Figure 3b,
which can facilitate our work. The former is used to define the subclasses of Geooperator class in
the GIS operation ontology without further modification; the latter is partially transformed into data
properties and object properties of the Geooperator class.

In this paper, geooperators are introduced to provide a conceptualization for geoprocessing
services (such as a geospatial analysis or transformation service) that are encapsulated as standard web
services (e.g., WPS) for providing geoprocessing functionalities on the web. From an object-oriented
perspective, geooperators act as wrappers for existing geoprocessing services and subsequently serve
as building blocks for elementary geoprocessing tasks.
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(a) (b) 

Figure 3. (a) Different perspectives on Geooperator [41] (b) Description elements of Geooperator [17].

3.4. Formal Definition

Definition 1 (Task). A task can be defined as a quadruple:

T = (PT, OP, PA, C), (1)

where PT specifies the type of task, OP is spatial inputs and outputs (e.g., spatial datasets), PA is a set of
non-spatial parameters of a task and C consists of the precondition and result that generally constrains the
thematic and geometric attributes of input or output data for geoprocessing tasks [42].

Definition 2 (Task Process Graph). A task process graph defines the basic structure of task decomposition [43],
which is an acyclic directed graph defined as follows:

TPG = (V, E), (2)

where V is a finite set of n vertices {v1, v2, v3, . . . , vn}, and each node v ∈ V represents a task tv. E is a finite set
of directed edges {evi,vj}. Each edge evi,vj ∈ E can be characterized by a tuple (pvi,vj, cij). pvi,vj = <vi, vj> is an
ordered pair that represents execution precedence between task tvi and task tvj; in other words, tvi is ahead of tvj
in the sequence of task decomposition that can alsobe denoted by vi ≤ vj. cij represents the control flow connector
between two tasks, which includes sequence, branching, loop, and so forth.

Definition 3 (Task Model). A task model is defined by a 2-tuple as follows:

TModel = (t, tpg), (3)

where t ∈ T is a task instance, and tpg denotes a task process graph associated with t that defines the decomposition
structure. If tpg only contains a geooperator, we consider this task to be an atomic task; otherwise, it is a
composite task.

Definition 4 (Task Decomposition). Following the definition of the task model, we can further accomplish
the task decomposition. Given a task process graph tpg = (V, E), assuming v ∈ V, tv ∈ T, v associates with tv.
If tv has a corresponding model tmodelv = (tv, tpgv), then the decomposition of the task can be defined by

tpg’ = Decompose(v, tpg, tmodelv), (4)

where tpg’ is a new task process graph obtained replacing node v with tpgv in tmodelv.
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Taking the workflow mentioned in Section 3.1 as an example, Figure 4 depicts the task
decomposition procedure. The node “Early-warning analysis” is replaced by a task process graph,
which is defined in a task model, where the edges previously connected with this node are revised.
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Figure 4. An example of task decomposition.

4. A Task-Oriented Knowledge Base

This section presents the knowledge base that adapts the ontology-based approach and provides
comprehensive knowledge to support the geoprocessing task. To build the knowledge base, a set
of ontologies are needed to capture knowledge related to the problem-solving solution. The use of
ontologies makes the semantic meaning of problem-solving procedures explicit and further facilitates
users to obtain the problem solution [44]. Formalizing the knowledge base will assist both GIS
non-specialist users and specialists in automating problem solving, allowing reuse and sharing of
solutions [21]. Accordingly, we deem that the knowledge base is valuable.

4.1. Background on Ontologies

It is widely known that ontology provides a formal language to standardize and share the
semantics of various kinds of domain knowledge. The word ontology was first used as a philosophical
concept and address the nature of existence, and it was subsequently introduced into the information
domain by researchers. Currently, one of the most prevalent definitions of ontology is “Ontology is an
explicit specification of a conceptualization”, which was proposed by Gruber in 1993 [45]. Based on this
definition, ontology is essentially a taxonomy of the objective world and a knowledge representation
model. Meanwhile, ontology also supports non-taxonomic relations.

According to Perez [46], knowledge in ontologies is formalized by five kinds of modeling
primitives: concepts, relations, functions, axioms, and instances. From a mathematical point of
view, ontology can be formally expressed by an Equation as follows:

O = {C, R, F, A, I}, (5)

where C is a set whose elements are called concepts; R is a set of relations between concepts, R ⊆ C × C;
F is a special relation in which the former n − 1 elements can uniquely determine the n-th element, and
it can be defined as follows: F: C1 × C2 × . . . × Cn−1→Cn; A represents a geographic axiom, that is, a
collection of assertions in a logical form that are always true; and I stands for instances of concepts.
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In the process of building ontology, instances represent objects that can be anything in a domain,
and concepts are a set of objects that are mapped to classes. The relations between concepts are realized
by properties that are classified into two types: an object property and a data property [47]. An object
property specifies the relations between two classes, and it connects two individuals from different
classes. A data property defines the relations between individuals and data values, which is similar to
an inherent attribute of an object.

4.2. Ontologies at the Heart of the Knowledge Base

To realize the capability to represent the knowledge of the problem-solving process, the knowledge
base provides a set of ontologies as follows: Task Ontology, Process Ontology, GIS Operation
Ontology, Interface Ontology, Data Type Ontology, GIS Data Ontology, and GIService Type Ontology.
These ontologies are combined to provide support for all facets of problem-solving, each of which
plays a key role in building a rich, dynamic and flexible task-oriented knowledge base. Figure 5 shows
the delineations of the definitions of ontologies and how they relate to each other. Several important
ontologies are discussed in detail in the following section.

 

Figure 5. The relationships of ontologies in the knowledge base.

4.2.1. Task Ontology

Task Ontology is the core for supporting problem solving, that defines the Task class to represent
a geospatial problem. Its property relations are composed of object properties and data properties.
The data properties mainly describe the metadata information of task instances, such as Description,
Publisher, Create Time, and so on. The object properties include: hasSynonym, hasTaskType,
hasProcess, hasInput, hasOutput, etc.

The Task class refers to the Task Lexicon class through the hasSynonym property for semantic
annotations of tasks to provide the words and phrases describing tasks, on the basis of which end users
externalize their own expression of the target problem in natural language. This can broaden the scope
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of keyword queries and dispose synonyms to support natural language retrieval. The Task Type class
describes the categorization of tasks on the basis of functionalities that tasks can implement. The MEW
analysis in the example mentioned above is a sort of geospatial task. The Task Type class is linked
to the Task class for semantic reference to state the type of task individuals through the predefined
hasTaskType property. Each individual of the Task class has at least one conceptual solution which is
denoted in the Process ontology. The interfaces of the Task class are defined in the Interface Ontology,
which will be described in detail in the following section.

4.2.2. Process Ontology

Process Ontology is used to define problem-solving processes at a conceptual level for a
certain type of task, that is not associated with any concrete services. The AtomicProcess and
CompositeProcess classes are created as subclasses of the Process class to classify the process
individuals according to the number of processes involved. The atomic process directly refers to the
Geooperator class in the GIS Operation Ontology using the RDF:Type property; however, the composite
process is an edge set that contains some edges. Each edge denotes the sequence of two task nodes
that are semantically annotated to the Task class using the fromTask and toTask properties. A series
of edges form a directed graph that is called a task process graph that describes how the task works.
In this paper, we only consider the linear sequence between two tasks; other control flow logics will be
included in future work.

4.2.3. Data Type Ontology

Data Type Ontology is defined to describe the data types that are divided into two categories:
SimpleDataType and GeoDataType, as illustrated in Figure 6. SimpleDataType includes some primitive
data types in some programming language or description language such as xml:string and xml:float in
XML. GeoDataType is an abstract representation of geospatial data, which has some data properties
shared by any type of geospatial data, including attribute, data format, and coordinate reference system
(CRS). Based on abstract specifications of the International Standard Organization (ISO) for vector [48]
and raster data [49], GeoDataType is differentiated as VectorDataType and RasterDataType, each of
which has unique characteristics. In vector data, each geospatial feature must identify a geometric type,
such as point, polyline, and polygon following OGC Simple Feature Specification [50]. The resolution
and band number must be identified in raster data.

Data Type
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GeoDataType

VectorDataType

Point

Polyline

Polygon
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Resolution
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...
Attribute
Coordinate reference 
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Figure 6. Data type specifications.
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4.2.4. GIS Operation Ontology

In GIS Operation Ontology, the Geooperator class is employed to conceptualize geoprocessing
functionalities. The notion of Geooperator has been introduced in the previous section.
The geooperators are used as building blocks for the conceptual workflow of geospatial
problem-solving. This ontology of the knowledge base is based on work by Hofer [42] who translated
the SKOS (Simple Knowledge Organization System) thesaurus provided by Brauner [41] into an
OWL ontology and included an additional concept that is known as a functional concept. The SKOS
thesaurus contains 40 geooperators. This ontology can be extended by extra categories, if necessary.
The categories of the Pragmatic perspective originate from the general task, and are task-oriented
categories. Users can further integrate new categories based on practical application. Therefore,
in this paper, an additional category named MEW is integrated into the Pragmatic perspective
of the geooperator, and subcategories or geooperators can be created for a further description of
geoprocessing operations. Based on this classification, geoprocessing services that perform geospatial
functionalities are thought of as individuals of the Geooperator class.

4.2.5. Interface Ontology

As introduced in the previous section, tasks are used as reusable components to accomplish
the composition of problem-solving processes. The composition requires an evaluation of the
correspondence of interfaces. The knowledge base needs to include sufficient information of interfaces
to satisfy the needs of the composition. An interface requires the description of operands that contain
inputs and outputs, constraints that contain a precondition and result, and non-spatial parameters.
Consequently, as illustrated in Figure 7, the Interface class consists of the subclasses Input, Output,
Parameter, Precondition, and Result. GeoDataType in Data Type Ontology is used to specify operands
of interfaces, whereas non-spatial parameters can refer to SimpleDataType which includes conventional
data types. The Precondition class focuses on the thematic and geometric properties of the input to
ensure the correct function of the operation [42]. The Postcondition class defines the expected result of
the output.

Input

Geooperator

Parameter

Precondition

Result

Interface

Output Task

GeoDataType

SimpleDataType

Data Type

Figure 7. Interface for annotating Task and Geooperator, and Data Type for specifying Interface.

Similarly, we extend the interface properties of geooperators using the Interface Ontology which
presently does not involve the related interface specifications.

5. Implementation

In Section 3, we introduce an application scenario that is a geospatial problem-solving process in
the context of MEW. We take this example to demonstrate the benefits of the ontology-based knowledge
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base for tasks during the process of geospatial problem-solving. The implementation includes three
parts: creation of ontologies, representation of knowledge, and task instances.

5.1. Creation of Ontologies

Based on the proposed architecture of the task-oriented knowledgebase described in Section 4.2,
we build different abstract ontologies to represent the hierarchy and relationships of the concepts
using Protégé 5.2.0 which is an OWL ontology development platform that allows creation and query
of ontologies [21]. In general, an ontology is composed of the following components: concepts and
properties of each concept, relationships or constraints between concepts, and instances of concepts [28].
Figure 8a presents all concepts or classes defined in the ontological knowledge base. All object
properties that represent the relationships between classes are shown in Figure 8b; they include
hasTaskType, hasSynonym, hasProcess, etc. The abstract ontologies can be instantiated for specific
tasks. In this paper, the task instances for meteorological early-warning are implemented, which are
detailed in the next section.

 
(a) (b) 

Figure 8. An excerpt of ontologies where (a) depicts the classes of ontologies, and (b) illustrates the
object properties between classes.

5.2. Representation of Ontology Knowledge

Once the components of an ontology are developed, the ontology can be represented by ontology
description language, such as Resource Description Framework (RDF) and Web Ontology Language
(OWL). RDF is built upon XML, which uses triples of object, property, and value to describe resources.
OWL is a W3C-recommended standard semantic markup language being developed by the Semantic
Web community, which is an extension of RDF [15,21]. In this paper, we use OWL as a standard
and machine-readable language to represent the knowledge of ontologies, which is presented as an
OWL file.

Meanwhile, we use property restrictions including hasValue and quantifier restrictions to limit
associations between different classes [15]. The hasValue restriction specifies that the individuals of a
class have a given value. Nevertheless, the quantifier restriction limits the individuals of a class using
an existential restriction (∃, owl:someValuesFrom) or a universal restriction(∀, owl:allValuesFrom).
The former states that values for the restricted property have at least one instance of class, which is
defined by existential restriction; however, the latter states that all values for the restricted relationship
must be a type of instance. For example, an MEW analysis task only needs effective rainfall data,
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forecast rainfall data, and potential degree data that can be restricted with the following formal
statement: ∀ hasInput (Effective_Rainfall_Data ∪ Forecast_Rainfall_Data ∪ Potential_Degree_Data).
This statement defines a universal restriction on the “hasInput” property between the Task class and
the Input class (Figure 5). The OWL notation using the “owl:allValuesFrom” restriction is shown in
Figure 9.

<owl:Class rdf:ID = Meterological Early-warning Task >
<rdfs:subClassof>

<owl:Restriction>
<owl:onProperty rdf:resource = hasInput />
<owl:allValuesFrom rdf:resource = #Effective_Rainfall_Data />
<owl:allValuesFrom rdf:resource = #Forecast_Rainfall_Data />
<owl:allValuesFrom rdf:resource = #Potential_Degree_Data />

</owl:Restriction>
</rdfs:subClassof>

</owl:Class>
 

Figure 9. Snippets of owl notation using a universal restriction.

5.3. Task Instances

The specific task instances can be represented using classes and properties defined in the
ontologies. Using the meteorological early-warning mentioned in Section 3.1 as an example, the
tasks involved in the MEW example are listed in Table 1, in which there are two composite tasks (e.g.,
EWATask) and six atomic tasks (e.g., ERCTask, and FQTask). We use ERCTask as an example of an
atomic task instance, which is used to calculate the effective rainfall. Figure 10 shows the individuals
and properties involved in the ERCTask instance. The process of an atomic task is an individual of
AtomicProcess, while those of composite tasks are not. We list the namespace declaration of ontologies
and the syntax of class, subclass, and property definitions using OWL, as shown below Figure 10.

Table 1. Tasks involved in the MEW example

Task Type Abbreviation SubTask Description

PotentialDegreeCalTask PDCTask
FQTask
FWCTask
PDITask

Calculate potential degree index
from multiple influence factor data

EffectiveRainfallCalTask ERCTask Calculate effective rainfall

EarlyWarningAnalysisTask EWATask
OATask
HRITask
EWLTask

Generate a forecast map according
to an early warning model

FactorQuantificationTask FQTask Quantify the factor data according
to a certainty factor model

FactorWeightCalTask FWCTask Calculate factor weight

PotentialDegreeIndexCalTask PDITask Calculate potential degree index

OverlayAnalysisTask OATask Overlay the input data.

HazardRiskIndexCalTask HRITask Calculate the hazard risk index

EarlyWarningLevelTask EWLTask Divide early-warning level
according to the risk index

Differing from the atomic task, the process of the composite task is composed of multiple edge
individuals, each of which describes the data flow between two task instances. A set of edges
compose a process graph that denotes how the task works. For example, Figure 11 shows the task
instance of a composite task called EWATask. The process individual “process:EWAProcess” contains
two edge individuals: “process:EWAEdge1” and “process:EWAEdge2”. The former connects the
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two task instances: “task:QATask” and “task:HRITask”, and the latter connects “task:HRITask” and
“task:EWLTask”. These edge individuals are linked to process individuals with the itemEdge property.

 

Figure 10. The task instance of an atomic task (EffectiveRainfallCalTask).

 

Figure 11. The task instance of a composite task (EarlyWarningAnalysisTask).

5.4. Prototype

A prototype system based on the realized ontology representation and formalized task instances
was developed to facilitate users to solve complex geospatial problems. The implemented prototype,
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leverages a number of web techniques, such as Ajax, XML, JSON, EasyUI, GoJS, OpenLayers, Apache
Axis2, and so on. Ajax is used for asynchronous data exchange between the client and server sides.
XML and JSON are data exchange formats. EasyUI and GoJS are client UI frameworks, and GoJS is
employed to draw a flowchart. OpenLayers is a JavaScript class library package for WebGIS client
development, which is used to achieve map data access. Apache Axis2 is used to provide the Web
Service interface. The Java API package Apache Jena [51], a Semantic Web framework for Java, is used
to parse the ontology file, access ontology definitions, and infer knowledge [52]. The Apache Tomcat
server was employed as a web container. The prototype system can be accessed using Microsoft IE or
a Google browser in a Windows operating system

The MEW analysis in Henan, China is used as an example to utilize the knowledge base to support
geospatial problem solving. First, we define formal semantics in the ontology-based knowledge base
by creating task instances using an ontology editor. The task instance is named EWATask (Figure 11)
which can decompose into three subtasks (OATask, HRITask, and EWLTask), The ontology files are
generated using OWL format language which is mentioned in the previous section.

Second, the web services, including three data access services (Potential_Degree_Data,
Effective_Rainfall_Data, and Forecast_Rainfall_Data) and three geoprocessing services (wps_overlay,
wps _riskIndex, and wps_ewLevel), are published with the support of MapGIS IGServer [53]. The
details of data access services are shown in Table 2, the geoprocessing services follow the WPS
specification, and the workflow model for EWATask is shown in Figure 12.

Table 2. Data access services involved in EWATask.

Data Name Service Type SRS Geometry

Potential_Degree_Data WFS Xi’an 80 Polygon
Effective_Rainfall_Data WFS Xi’an 80 Polygon
Forecast_Rainfall_Data WFS Xi’an 80 Polygon

 

Resultwps_overlay wps _riskIndex wps _ewLevel

Potential_Degree_
Data

Effective_Rainfall_
Data

Forecast_Rainfall_
Data

Figure 12. The workflow model of EWATask. Data access services are represented in elliptical shapes,
and geoprocessing services are represented in rectangular shapes.

Finally, the prototype system provides an intuitive and easy-to-use graphical user interface
(GUI). The end-users can access the GUI of the prototype system using a web browser. As shown
in Figure 13, in the left panel, there is a tree structure showing the task lists that are parsed from
the knowledge base. The user selects and clicks on a tasknode; then, the process model of the
task will be displayed in the form of a flowchart in the right panel (step 1). Next, right-click on a
process node and select the menu “service binding” (step 2). A service binding window pops up
and allows end-users to bind the appropriate service and input the related parameters manually
(step 3). Repeat this step for each process node. Finally, execute the task and get the result map
(step 4). For instance, Mr. Wang took Henan province in China as a forecast area for the risk analysis
and forecasted the possibility of the occurrence of geological hazards in the next 24 h. He clicked
the EarlyWarnAnalysisTask node in the prototype system, the process graph of which was shown
in the right panel (Figure 13). Following this workflow, he bound the appropriate geoprocessing
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services (wps_overlay, wps_riskIndex, and wps_ewLevel) that were invoked with a linear sequence
(wps_overlay → wps_riskIndex → wps_ewLevel). According to the forecast results, an early-warning
result map as shown in the lower right of Figure 13, was obtained, which uses different colors to
represent different early-warning levels.

Figure 13. The graphical user interface of the prototype system.

6. Conclusions and Future Work

This paper proposes a task model and abstracts a geospatial problem as a task that can be used as
a reusable component for problem-solving. A task-oriented knowledge base is built to capture sharable
and reusable geospatial problem-solving knowledge. In the knowledge base, we combine multiple
ontologies (e.g., Task Ontology, Process Ontology, and GIS Operation Ontology) to provide assistance
for all facets of problem-solving. This knowledge base is not tightly-coupled with any specific workflow
language. The required knowledge about problem-solving is stored in the knowledge base which
employs ontology and task-oriented approach to achieve the formalization and reusability of tasks.

This knowledge base is tailored for domain experts to create and share their professional geospatial
problem-solving knowledge. For the end-users, a user-friendly interface is needed to submit a
geospatial problem and query the problem solution. An approach that has the capabilities of parsing
natural language input will be developed in future work. This approach would allow users to input
free-text to submit problem requirements.

In this paper, we only concentrate on using ontologies to describe a conceptual workflow that is
composed of a linear sequence of GIS functionalities. We do not present an algorithm to instantiate
into a concrete service chain and execute this workflow. The approach of knowledge transformation,
instantiation and execution of a workflow will be implemented in future work.
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Abstract: Formalized knowledge representation is the foundation of Big Data computing, mining
and visualization. Current knowledge representations regard information as items linked to relevant
objects or concepts by tree or graph structures. However, geographic knowledge differs from general
knowledge, which is more focused on temporal, spatial, and changing knowledge. Thus, discrete
knowledge items are difficult to represent geographic states, evolutions, and mechanisms, e.g., the
processes of a storm “{9:30-60 mm-precipitation}-{12:00-80 mm-precipitation}- . . . ”. The underlying
problem is the constructors of the logic foundation (ALC description language) of current geographic
knowledge representations, which cannot provide these descriptions. To address this issue, this
study designed a formalized geographic knowledge representation called GeoKG and supplemented
the constructors of the ALC description language. Then, an evolution case of administrative
divisions of Nanjing was represented with the GeoKG. In order to evaluate the capabilities of our
formalized model, two knowledge graphs were constructed by using the GeoKG and the YAGO
by using the administrative division case. Then, a set of geographic questions were defined and
translated into queries. The query results have shown that GeoKG results are more accurate and
complete than the YAGO’s with the enhancing state information. Additionally, the user evaluation
verified these improvements, which indicates it is a promising powerful model for geographic
knowledge representation.

Keywords: geographic knowledge representation; geographic knowledge graph;
formalization; GeoKG

1. Introduction

Geographic knowledge consists of the product of geographic thinking and reasoning about the
world’s natural and human phenomena, which plays an important role in geographic studies and
applications [1]. Nearly every geographer is trying to answer the question of “how to perceive,
understand and organize geographic knowledge scientifically.” [2] Generally, geographic knowledge
representation is a type of human expression of the real world that is of great importance to storage
and computation [3]. Especially in the era of Big Data, well-structured geographic knowledge is a
benefit to all kinds of geospatial applications, because formalization is the foundation of geospatial big
data computing, mining, and visualization.
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At present, the most popular knowledge representation is the knowledge graph. It organizes
knowledge with a set of concepts, relations, and facts, which are associated by two types {entity,
relation, entity} and {entity, attribute, attribute value} [4]. There are only three basic elements in
knowledge graphs: the entity, relation, and attribute. These three elements can explicitly represent
general information, such as “when did the Beijing storm occur on 21 July—9:30, 21 July”. However,
geographic knowledge is more complicated than general knowledge. More processes and evolutions
need to be answered, e.g., “what caused the 7·21 Beijing storm”, “how did it develop”, and “what
were the effects of the 7·21 Beijing storm”. Entities, relations, and attributes cannot easily and directly
answer these mechanics questions. For example, the geographic knowledge graph representation of
the 7·21 Beijing storm is shown in Figure 1.

Figure 1. Different geographic knowledge representations of the 7·21 Beijing Storm. (a) Knowledge
graph data structure and (b) procedural knowledge data structure.

Figure 1a organizes geographic knowledge of the 7·21 Beijing storm using the data structure of
the current knowledge graph. This knowledge representation model can explicitly represent each
fact and its relations. However, it is not able to represent evolutions or mechanisms, which are key
topics in geography. Moreover, this type of knowledge representation differs greatly from procedural
knowledge data structure shown in Figure 1b. In general, humans perceive objects, events, and
activities through the processing of declarative knowledge, procedural knowledge, and structural
knowledge [5]. And procedural knowledge gives the framework to the declarative knowledge state by
state, which is benefit for underlying mechanism understanding [6,7]. The 7·21 Beijing storm includes
three main stages: 9:30, 14:00, and 18:30. Each stage has a list of attributes. This procedural knowledge
data structure helps people acknowledge the evolution or mechanism more explicitly. For example,
people cannot directly understand that all the attributes (warning level-blue, warning level-yellow,
etc.) link to “7·21 Beijing storm”, whereas people could know that the storm has different warning
level on different stages.

The purpose of this paper is to improve the declarative discrete facts of knowledge graph to
procedural aggregated knowledge. To address this issue, this paper presents a formalized model for
geographic knowledge representation from a geography perspective, called GeoKG, and supplements
the constructors of the ALC descriptive language.

The remainder of this paper is organized as follows: Section 2 reviews the related works on
geographic ontology and geographic knowledge graph. Section 3 describes the methodology by stating
the basic ideas from the six core geographical questions and proposes a formalized model of geographic
knowledge representation called GeoKG. Section 4 gives an evolution case study of administrative
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divisions of Nanjing with the formalized GeoKG model. Section 5 constructs the administrative
division case by using the GeoKG model and the YAGO model, sets a series of questions, and analyzes
the results. Finally, Section 6 presents the conclusions.

2. Related Works

There are two main representations of geographic knowledge for geospatial big data computing
and reasoning: geographic ontology, and geographic knowledge graphs.

2.1. Geographic Ontology

Geographic ontology originates from ontology, which represents the most basic philosophical
theories that represent the nature and characteristics of the real world [8]. In the 1960s, “ontology” was
introduced in information science for categorization, representation, knowledge sharing, and reuse [9].
Geographic ontology is a domain concept, which explicitly and formally defines the geographic
concepts and their relations within geography by hierarchical relations [10–12]. These hierarchical
relations between concepts are significant to geographic knowledge representation, information
integration, knowledge interoperation, and information retrieval. Thus, geographic ontology is an
important geographic knowledge representation method that is widely implemented in various
geographical information applications [13]. However, computer simulations not only require the
standard hierarchical concept logic but also massive amounts of instance information in geographic
knowledge representation. There are two types of typical geographic ontologies that are limited by the
representations of geographic knowledge.

First, geographic ontology focuses on the structure of a conceptual system, which is built by strict
hyponymy information [9]. These relationships are well suited for categorization, disambiguation,
identification and inference but not for describing the states and phenomena of changing geographic
objects [6,14]. The descriptions of these changing states and phenomena require copious information,
which is lacking in geographic ontology [15]. Although hyponymy is strictly defined by hierarchical tree
structures in geographic ontology, this structure cannot directly represent the relationships between
multiple concepts that are important to represent evolutions and mechanisms in geography [11].
In addition, the relationships between vertices in a tree are not bi-directional, which limits the
representation of the interactions between geographical objects. The cause of these problems is related
to the tree structure limiting the representation of geographic knowledge [16].

Second, the logic foundation of geographic ontology is description logic (DL) of attributive concept
language with complements (ALC) [17]. DL is an object-based formal knowledge representation
language. It contains four components: a construction set represents concepts and roles (e.g., a river
is a concept; disjunction is a role), assertion about a concept of terminology (terminology box, Tbox,
e.g., each river has its own length), assertion about an individual item (assertion box, Abox, e.g., the
length of the Changjiang River is 6300 km) and the reasoning mechanism of Tbox and Abox. DL can
construct complicated concepts and roles with simple concepts and roles by constructors. According
to the different constructors, DL can be classified as ALC, ALCN, S, SH, SHIQ, etc. ALC is the basic DL
that contains intersections (�), unions (�), complements (¬), universal restrictions (∀), and existential
restrictions (∃). ALCN consists of basic ALC operators and number restrictions (Q; ≥ n and ≤ n);
ALC+R+, short for S, consists of basic descriptions and enhancing relationship operators (R+; role
or concept transitions); the SH language, with concept inclusions and role inclusions (�); and SHIQ
includes inverse roles (I) and role transitions (R+). At present, description logic SHIQ has been
certified to represent changes in the field of logical theory [18]. Note that “change” is an absolutely
essential element for geographic knowledge representation and means that the ALC constructors
cannot represent all logical relations of geographic knowledge, especially in quantity expressions and
state changes. For example, number restriction constructors are required to represent the geographic
knowledge of “the Yangzi River has at least three branches” (∃ has a branch; the Yangzi River ≥ 3), and
transition constructors are required to represent the geographic knowledge of “Beiping was renamed
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Beijing on 27 September 1949” (Beiping ≡ Trans(Beijing)). Meanwhile, many studies theoretically
demonstrated and proved the decidability, soundness and completeness of the operators of a series
of DL (from ALC, S, SI, SHI to SHIQ, etc.) on the Tableau algorithm [19–22], and the complexity of
SI (role or concept transitions) is PSPACE complete and the following SHI and SHIQ are EXPTIME
complete [22,23].

2.2. Geographic Knowledge Graph

A knowledge graph is a graph-formed knowledge representation model with strict logic, different
concepts, various relations, and massive instances [10]. It was first presented by Google in 2012,
containing over 5.7 billion entities and 0.18 billion facts [24]. With this wealth of information, the real
world can be explicitly described. Graph-based storage has properties of connection, direction, and
multi-vertices that are suitable for representing the interactions between concepts. Thus, knowledge
graphs are promising models to represent knowledge and have been widely built, e.g., YAGO [25],
Freebase [26], Probase [27], and DBpedia [28]. A geographic knowledge graph is a domain knowledge
graph that is in the exploratory stage.

At present, most geographic knowledge graphs are organized as universal knowledge graphs,
e.g., CSGKB [4], NCGKB [29], and CrowdGeoKG [15]. The common sense geographic knowledge
base (CSGKB) uses a data structure that links the concepts of geographic features, geographic
locations, spatial relationships and administrators for geographic information retrieval (GIR) instead of
traditional gazetteers. Moreover, the naive Chinese geographic knowledge base (NCGKB) constructs
a GIR-oriented geographic knowledge base based on Chinese Wikipedia based on given concept
relations and their instances. CrowdGeoKG uses a crowdsourced geographic knowledge graph that
extracts different types of geo-entities from OpenStreetMap and enriches them with human geography
information from Wikidata. All of the concepts of these geographic knowledge graphs are developed
based on geographic ontologies that follow the ALC descriptive language, resulting in the same
problem as geographic ontology.

More importantly, three current bases organize the geographic knowledge as a set of concepts,
relations, and facts, which are associated by two kinds of types {entity, relation, entity} and {entity,
attribute, attribute value} [4]. Actually, there are only three basic elements in knowledge graph: entity,
relation and attribute. These three elements can explicitly represent general information as “when did
7·21 Beijing storm— 9:30, 21 July”. However, geographic knowledge is more complicated than general
knowledge. More processes and evolutions need to be answered, e.g., “what causes the 7·21 Beijing
storm”, “how did it develop”, and “what are the effects of the 7·21 Beijing storm”. Entities, relations,
and attributes cannot easily and directly answer these mechanics questions.

Scholars indicated that more elements are required. PLUTO supplemented the element of
time with “before” and “after” in the knowledge graph model to describe the change trajectories
of geographic objects [30]. Geological knowledge graphs have been applied with the evolution
element for stating changes between different geological objects [31]. YAGO also explored anchoring
spatial and temporal dimensions to the knowledge base, called YAGO2 [7]. YAGO2 let time points
and time intervals with standard format to describe the temporal information and set geographical
coordinates associate to entities to complete their spatial information. In fact, these spatial and
temporal knowledge stored in YAGO system are just regarded as general attributes by adding the
predicates like “wasBornOnDate”, “occursSince”, “hasGeoCoordinates”, etc., whereas declarative
discrete information cannot directly answer the proceeding questions, evolutions and mechanisms.
Additionally, ten core concepts of geographic information sciences were proposed for transdisciplinary
research: location, neighbourhood, field, object, network, event, granularity, accuracy, meaning, and
value [23]. These concepts can cover every corner of geoscience, but they were extremely difficult
to relate to one conceptualized model. More recently, six factors (geographic semantics, location,
shape, evolutionary process, relationship between elements, and attribute) were proposed to describe
information from geographic element, object, or phenomenon [22]. Though these factors were designed
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for information representation of the geographic objects, they can also provide guidance for geographic
knowledge representation. And all the above studies indicated that geographic knowledge can be
represented more effectively by supplementing elements, whereas it also brings a foundation question:
“how to organize geographic knowledge scientifically and cognitively?” Therefore, a conceptualized
model of geographic knowledge graph from the geography perspective warrants further study.

3. Methodology

3.1. Basic Idea

3.1.1. Guiding Ideology

To address the aforementioned issues, the core question of the GeoKG model is to define the types
of geographic knowledge that need to be stored. Geography (from the Greek γεωγραϕία, geographia,
literally “earth description”) is a field of science devoted to the study of the lands, features, inhabitants,
and phenomena of Earth [32]. As a type of human understanding of the geographic environment,
geographic knowledge should answer questions about geography. The questions about geography
have been separated into six core questions by the International Geographical Union (IGU), which is a
part of the international charter on geographical education [2]. Therefore, GeoKG begins to define the
basic elements and the conceptualized model using the six core questions in geography. Each question
corresponds to one core issue:

• Where is it? →space

• What is it like? →state

• Why is it there? →evolution

• When and how did it happen? →change

• What impacts does it have? →interaction

• How should it be managed for the mutual benefit of humanity and the natural environment?
→usage

3.1.2. Main Elements

These aforementioned questions can be used to describe six core aspects of geographic knowledge
that should be represented by GeoKG. Each aspect requires some elements to describe them, and we
try to find the basic elements among all aspects:

• Space→{object, location, time, relation, . . . }
• State→{object, time, location, attribute . . . }
• Evolution→{object, state, change, time, location, attribute, . . . }
• Change→{object, time, location, attribute, relation, . . . }
• Interaction→{object, relation, change, . . . }
• Usage→{object, change, state, . . . }

There are seven types of elements among the description of these six aspects: object, location, time,
attribute, relation, state, and change. Three typical characteristics of these seven elements in describing
the six aspects are as follows:

• Object-centered representation. All descriptions of the six aspects require geographic objects.
Without objects, other elements are meaningless. Therefore, the six basic elements are formed
around the object element.

• Combined representation. A description of a single basic element is just a statement. To represent
these aspects in geography, the basic elements should be combined. Thus, all of the basic elements
can be linked.
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• Stepped representation. Note that the six aspects from the core geographical questions are
not equal. Space and state focus on the static conditions of objects. Evolution and change pay
more attentions to the dynamic conditions of objects. Moreover, interaction and usage rely on
relationships and mechanisms between geographic objects. Thus, the basic elements cannot be
treated as equals.

According to the three typical characteristics of the basic elements, we discovered that a geographic
object is a type of media used to represent geographic knowledge. There are six basic elements used to
describe geographic knowledge (see Figure 2). Location, time, attribute, state, change, and relation can
co-efficiently represent geographic objects from different aspects. Note that these basic elements are
not equivalent. Location, time, and attribute belong to the first level and represent a single static state
of a geographic object. State, change, and relation describe the dynamic evolutions and relations to
geographic objects.

• A geographic object is the core of geographic knowledge representation and is the minimum unit to
perceive the world. The six basic elements (location, time, attribute, state, change and relation) represent
geographic knowledge from different perspectives, which are linked to geographic objects.

• Static independent geographic objects can be described by elements of location, time, and
attribute. Location shows the spatial patterns of geographic objects. Time gives the temporal
dimension of geographic objects for human cognition. Attribute describes the static features of
geographic objects.

• Any geographic object has an entire life cycle, including stages of generation, change, evolution
and extinction. Different stages in the life cycle represent different states. States are represented by
sets of attributes of geographic objects under a particular spatial-temporal dimension.

• Geographic objects are not always static. Any change in other elements of a geographic object will
turn a state to another state or a relation to another relation. Thus, change is an essential part of
geographic knowledge representation.

• Geographic objects are not isolated. Any scene, phenomenon, and environment consists of many
geographic objects and complex relations between them. Thus, relation is the key descriptor of the
interactions among complex geographic objects.

 

Figure 2. The six basic elements to represent a geographic object.

3.1.3. GeoKG Model

A conceptualized model of GeoKG is shown in Figure 3, which is based on the ideas mentioned
above. The six core elements represent geographic objects and their information together. In this
model, geographic objects consist of a series of states. Any state of a geographic object is represented
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by attributes under a specific spatial-temporal condition. Any two continuous states or different
states between two geographic objects could result in a change element. The change element can
be categorized into time changes, location changes or attribute changes. If the essential attribute is
changed, the geographic object will become another geographic object. The relation element exists
between any time, location, and attribute of different states, regardless of whether they are the same
geographic objects or not.

Figure 3. A conceptualized model of GeoKG based on the six basic elements.

3.2. Model Formalization

To organize geographic knowledge in consideration of the basic ideas, GeoKG must be based
on a thorough and formalized model. This section provides the model semantics of GeoKG by
using description logic (DL), which is not limited to only the attribute language complement (ALC)
level. Using description logic, a user can create a conceptual description for the representation and
computation of geographic knowledge that is clear and formal.

3.2.1. DL and Construction Operators

DL is comprised of three basic components: concepts, individuals (instances), and roles. Concepts
describe the common features about individual sets, e.g., all land mass that projects well above its
surroundings forms the concept of “mountain”. Individuals are the instances of concepts, e.g., a
geographic entity, such as the “Rocky Mountains”. Roles can be explained as the binary relation
between individuals as properties, e.g., spatial relation (conjunction, disjunction). A description logic
system contains four parts. These parts include a construction set, which represent concepts and roles,
an assertion about concept terminology (terminology box, Tbox), an assertion about an individual
(assertion box, Abox) and the reasoning mechanism of Tbox and Abox. Tbox are sets containing the
definitions of the relationship of concepts and the axiom of relationships, which contain explanations
of the concepts and roles. Abox includes axiom sets describing specific situations, which contain
the instance information of Tbox. Abox include two forms. One is the concept assertion, which
expresses whether an object belongs to a concept. The other one is the relation assertion, which express
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whether two objects satisfy a certain relation. Description logic can represent complicated concepts and
relations on atomic concepts and atomic relations based on the given construction operator. The basic
construction operators are and (�), or (�), not (¬), existential quantifier (∃), and universal quantifier
(∀), which are included in ALC DL. More operators can represent more logic, which form different
types of DL.

Let C and D be concepts; a, b, and c, individuals; and R is a role between individuals. S is a
simple role, and n is a nonnegative integer. As usual, an interpretation I =

(
ΔI, ·I

)
consists of a

non-empty set ΔI, called the domain of I, and a valuation ·I, which associates, with each role R, a
binary relation RI ⊆ ΔI × ΔI. For comprehensive background reading, please refer to the referenced
paper [20]. The primary operators that differ from DL are shown in Table 1.

Diagrams are supplied to illustrate the graphic meanings of the operators related to geographic
objects and their relationships. A top concept indicates all concepts or objects, e.g., � River means
all the rivers. A bottom concept indicates no concepts or objects in the set, e.g., ⊥River means there
are no rivers in the set. An atomic concept indicates the minimize concept, e.g., Ac could be the river,
ocean, city, or country. An atomic role indicates the relationships between two atomic concepts, e.g.,
R ⊆ river× ocean means that there exists a relationship between the river and ocean. A conjunction
indicates two individuals that are joint or connected, e.g., Yangzi River�Nanjing indicates a joint part
of the Yangzi River and Nanjing. A disjunction indicates the logic disjunction of two individuals,
e.g., Yangzi River�Nanjing means the combination set of the Yangzi River and Nanjing. A negation
indicates the set of all individuals not in the target individual, e.g., ¬Yangzi River means all individuals
except the Yangzi River. An exist restriction indicates the existence of an individual or a role, e.g.,
∃Yangzi River means there exists a Yangzi River and ∃R ⊆ Yangzi River × Zhong Mountains means
there exists a role between the Yangzi River and Zhong Mountains. A value restriction indicates all
individuals or roles, e.g., ∀ River means all rivers and ∀ R ⊆ Yangzi River × Zhong Mountains means
all roles between the Yangzi River and Zhong Mountains. A concept inclusion indicates a concept
belonging to another concept, e.g., rain � precipitation means rain is a kind of precipitation. A role
inclusion indicates a role belonging to a role set, e.g., Rlocation_Yangzi River−Zhong Mountain � Yangzi River ×
Zhong Mountains indicates that the location relation between the Yangzi River and Zhong Mountains
is one of the roles of the entire role set of the Yangzi River and Zhong Mountains. An inverse role
indicates that a role has reversibility. A trans role indicates that a role has transmissibility. A qualifying
at least/at most restriction indicates there exists at least or at most, e.g., (∃ ≥ 3rivers) ⊆ Yangzi River
means the Yangzi River has at least three branches.
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3.2.2. Formalization Representation

In this section, the semantics of the GeoKG model are defined. First, we prescribe the set of
geographic knowledge GK sourced from the entire world’s natural and human phenomena W. GeoGK
is a set of GK that can be defined as follows:

GeoGK = {〈GK〉|GK ∈W}

GK is a tuple that consists of geographic object O and its basic elements E:

GK = {〈O, E〉|∃O � ∅, ∃E � ∅}

The basic element set E contains six different elements: location L, time T, attribute A, state St, change
Ch and relation Re. Thus, E is a six-tuple:

E = {〈L, T, A, St, Ch, Re〉|∃L ‖ T ‖ A ‖ St ‖ Ch ‖ Re � ∅}

Each element is identified as follows:
(1) Time
Time describes the temporal information of the state of a geographic object. Let Sti indicate a

specific state of geographic object Oi; the basic element time T can be defined as follows:

T = {∃T ∈ Sti|∀Oi � ∅, Sti ∈ Oi}

Time should be described by both the basic types and reference time information. The basic types
are point time, interval time and reference time. Point time Tpoi records the moment of the state of a
geographic object. Interval time Tint indicates the time interval between two point times. Reference
time Tre f indicates the time of other elements of a geographic object, e.g., “2018 World Cup” is an event
with a unique time period that could reference the specific time accurately. Time reference knowledge
tre f indicates the additional knowledge of time descriptions. Let tw indicate the time word. A time
word indicates a point time that could contain several time descriptive parts, e.g., 12-July-2018, ten
past nine and tomorrow morning. The point time Tpoi, the interval time Tint and the reference time Tre f
are defined as follows:

Tpoi =
{〈

tw, tre f
〉∣∣∣∀!tw ∈ T

}
Tint =

{〈
tw, tre f

〉∣∣∣∀tw ∈ T, #tw ≥ 2,∀R � tw
}

Tre f =
{〈

E, tre f
〉∣∣∣∀E & ∀!T � Sti

}
where R is the interval relation of two time words. Time reference knowledge tre f is a set of
reference knowledge consisting of commonality, relativity, fuzziness, continuity, and periodicity,
namely, tre f =

{〈
com, rel, f uz, con, per

〉}
. There are some examples for each reference time word.

For example, “12-July-2018” is a common time, and the Late Jurassic is a domain time description.
Relativity indicates whether time is relative, e.g., “two days ago” is a relative time that refers to the
absolute time “today”, “9 o’clock” is an accurate time, “around 9” is a fuzzy time, “12-July” is an
instance time, and “until 12, July” is a continuous time. Periodicity can be easily understood, such as
“every weekend”, “every month”, and “annually”.

(2) Location
Location describes the spatial information of the state of a geographic object. Let Sti indicate a

specific state of geographic object Oi; the basic element location L can be identified as follows:

L = {∃L ∈ Sti|∀Oi � ∅, Sti ∈ Oi}
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According to the complexity of location descriptions, a location can be set into basic types and
reference location information. The basic types include toponym, address, coordinates, and reference
location. Toponym Ltop describes a location with a common name. Address Ladd indicates a location
with orderly numbers and streets named by administrators. Coordinate Lcoo records the location with
a series of numbers organized mathematically. Reference location Lre f indicates the location of other
elements in a geographic object. Location reference knowledge lre f indicates the additional knowledge
of location descriptions. Let tp, ad, co indicate toponym, address, and coordinate, respectively.
Toponym Ltop, address Ladd, coordinates Lcoo, and reference location Lre f are identified as follows:

Ltop =
{〈

tp, lre f
〉∣∣∣∀!tp ∈ L

}

Ladd =
{〈

ad, lre f
〉∣∣∣∀ad ∈ L

}
Lcoo =

{〈
co, lre f

〉∣∣∣∀co ∈ L
}

Lre f =
{〈

E, lre f
〉∣∣∣∀E & ∀!L � Sti

}
Location reference knowledge lre f is a set of reference knowledge consisting of the space type,

spatial reference, commonality, relativity, and fuzziness, namely, lre f =
{〈

typ, re f , com, rel, f uz
〉}

. Space
type describes what types of space, such as reality, virtual or a specific domain location. For example,
Pandora is a toponym of the virtual world of the movie Avatar. Spatial reference illustrates the system
of a location description, e.g., WGS84 and Mercator projection. Commonality stores whether a location
is a domain location, e.g., Beijing is a common toponym that could be coded as “-.-..--...-.---/-..---.-.-.--..”
in a Morse code system. Relativity indicates whether a location is relative, e.g., “20 km south of Beijing”
is a relative location description that refers to the absolute location “Beijing”. Fuzziness states whether
a location description is accurate or not, e.g., “near Times Square” is a fuzzy location description.

(3) Attribute
An attribute describes the feature information of the state of a geographic object. Let Sti indicate a

specific state of geographic object Oi; the basic element attribute A can be identified as follows:

A = {∃A ∈ Sti|∀Oi � ∅, Sti ∈ Oi}

All the feature descriptions of a geographic object belong to an attribute, e.g., shape, color, speed,
etc. To organize the attributes of a geographic object, identifying what is an attribute is key. An attribute
is a single feature description of one geographic object. For example, “a typhoon is a mature tropical
cyclone that develops between 180◦ and 100◦ E in the Northern Hemisphere, with peak months
from August to October” describes three attributes: the typical attribute of “mature tropical cyclone”,
the location attribute of “develops between 180◦ and 100◦ E in the Northern Hemisphere” and the
frequency attribute of “peak months from August to October”. It is noted that attribute can be divided
into two types: essential attribute Aes and non-essential attribute Ane:

Aes = {∃Aes ∈ Sti|∀Oi � ∅, Sti ∈ Oi, #Aes ≥ 1}

Ane =
{
Ane ∈ A′

∣∣∣∀Oi � ∅, Sti ∈ Oi, A′ = Aes
−}

An essential attribute is a mark attribute that identifies a geographic object from others. When an
essential attribute changes, a geographic object could change to another object. For example, when a
mature tropical cyclone develops in the Atlantic Ocean, it cannot be a typhoon. A non-essential attribute
is another feature description of a geographic object, e.g., the frequency attribute of a typhoon is “peak
months from August to October”. These attributes cannot determine the nature of a geographic object.

(4) State
The state illustrates the different stages of a geographic object. It can be seen that the above three

basic elements work together to express the state. Thus, the element state St can be identified as follows:
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St = {∃Sti ∈ O|∃!L � Sti,∃!T � Sti,∃A � Sti, #A ≥ 0}
where ∃! means the unique existence. The formulation means that the state is a part of a geographic
object. As the element state St is represented by sets of attributes of geographic objects under a
particular spatial-temporal dimension, it must depend on the element location L and the element
Time. Note that the element location L and the element Time T exist uniquely, because of time and
space are two dimensions to represent the stage in Euclidean space. For example, the state of a
typhoon includes all features for a specific spatial-temporal reference frame, e.g., “Typhoon Maria,
23:00/10July-2018, E123.40◦/N25.60◦, central pressure 945 hpa, max speed 30 km/h”. The state cannot
be defined without the temporal and spatial information. By contrast, the element state St does not
depend on the element Attribute A. The attributes are the descriptive records that cannot affect whether
the state exists. For example, “Typhoon Maria, 23:00/10July-2018, E123.40◦/N25.60◦” also defines a
state of Typhoon Maria. Thus, the attribute element is defined different from location element and
time element.

(5) Change
A change describes the changes in a geographic object from one state to another. Thus, change Ch

must contain at least one difference between two states, which can be a location change, time change or
attribute change. A change contains four main components:

Ch =
{〈

St, act, CE, type
〉 ∈ O

∣∣∣∃St, #St = 2, CE ∈ {T, L, A}, type ∈ (Chd, Che)
}

where St indicates the state (including two different ones), act indicate the action of the change, CE
indicate change elements and type indicates the type of the change. It is noted that there are two types
of changes: a developing change and an evolving change. A developing change shows the changes
from one geographic object, and an evolving change describes the changes between two different
geographic objects. Let Chd indicate a developing change and Che indicate an evolving change; the
formalized definitions are as follows:

Chd =
{∃Chd = Sti × Sti+1

∣∣∣∃Sti&Sti+1 ∈ Om, Sti � Sti+1
}

Che = {∃Che = Stend × Sti|∃Stend ∈ Om,∃Sti ∈ On,∃!Stend.Aes � Sti.Aes}
where O, Om, and On are geographic objects, Sti and Sti+1 indicate the continuous states of the
geographic objects, Stend indicates the last state of the geographic objects, and Aes indicate the essential
attribute of the geographic objects.

(6) Relation
A relation expresses the differences between the elements of geographic objects, which includes

three typical types: location relation, time relation, and attribute relation. These three types describe
the spatial difference, temporal difference and feature difference, respectively. A relation contains three
main components: the elements of two states E, the semantic of the relation Sem, and the type of the
relation type:

Re =
{〈

E, Sem, type
〉 ∈ O

∣∣∣∃E&#E ≥ 2, type ∈ (Rel, Ret, Rea)
}

Let Rel, Ret, and Rea indicate location relation, time relation, and attribute relation, respectively,
Li and Lj indicate the locations of different states, Ti and Tj indicate the times of different states, and
Ai and Aj indicate the attributes of different states. The different types of relations are identified
as follows:

Rel =
{
∃Rel = Li × Lj

∣∣∣∃Sti&Stj, Sti � Sti+1
}

Ret =
{
∃Ret = Ti × Tj

∣∣∣∃Sti&Stj, Sti � Sti+1
}

Rea =
{
∃Rea = Ai ×Aj

∣∣∣∃Sti&Stj, Sti � Sti+1
}
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A location relation describes the spatial relationships between different states, e.g., the location
relations between the different states of a typhoon or the location relations between two different city
centres under development. A time relation illustrates the temporal relationships between different
states, i.e., the time span between two states, e.g., the time span of river diversion. An attribute relation
describes the feature relationships between different states, i.e., the differences between two states of a
typhoon, e.g., the max wind speed, central pressure, etc.

4. Case Study

In this section, a full example is shown to illustrate the geographic knowledge representation using
the GeoKG model. To describe the geographic knowledge representation clearly, an evolution case of
administrative divisions of Nanjing was selected. The given example includes the basic geographic
objects (e.g., Yangzi River, Zhongshan Mountain), the changing area of Nanjing, and several affiliated
districts in different eras.

4.1. Research Area

Nanjing, formerly romanized as Nanking and Nankin, is the capital of Jiangsu province of the
People’s Republic of China and the second largest city in the East China region, with an administrative
area over 6000 km2. The inner area of Nanjing enclosed by the city wall is Nanjing Centre District,
with an area of 55 km2, while the Nanjing Metropolitan Region includes surrounding cities and areas.
Three representative stages were chosen to represent the revolution of Nanjing: 1368, 1949, and 2018.
The sketch maps were shown in Figure 4.

Figure 4. The sketch maps of administrative divisions evolution of Nanjing in 1368, 1949, and 2018.

The first stage is Ming dynasty, which firstly named this city in the word of “Nanjing”. The first
emperor of the Ming dynasty, Zhu Yuanzhang, who overthrew the Yuan dynasty, renamed the city of
Nanjing, rebuilt it, and made it the dynastic capital in 1368. He constructed a 48 km long city wall
around Nanjing. That is the centre district of Nanjing, which is situated in the south of the Yangzi
River and to the west of the Zhongshan Mountain.

The second stage is the founding of the People’s Republic of China. The government set Nanjing
as a province unit, which directly controlled by the government. At that stage, Nanjing administrated
the centre district and several affiliated districts. The centre district included district 1–10 and affiliated
districts involved Jiangning, Jurong, Dangtu, Hexian, Pukou, and Luhe. In 1949, Nanjing had been
expended through Yangzi River and Zhongshan Mountain.

The third stage is 2018, which refers to the current administrative boundaries of Nanjing. After a
series of administrative division adjustments, Gaochun and Lishui was supplemented into Nanjing
and Jurong, Dangtu, and Hexian was removed from the boundaries.

During over 600 years development of Nanjing, numerous elements were changed including
the boundaries, affiliated districts, the relations between Nanjing and other geographic objects (e.g.,
Yangzi River and Zhongshan Mountain). Different relations happened in different stages among
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these geographic objects. Thus, the GeoKG model was used to represent these changing geographic
knowledge. The formalization is introduced in the next section.

4.2. Formalization

In this example, administrative division evolution was organized by using the GeoKG model.
A geographic object is the key to represent geographic knowledge. First, this case identifies six
relevant geographic objects: Nanjing Onj, Yangzi River Oyr, Zhongshan Mountain Ozm, Centre
District Ocd, Jiangning Ojn, and Gaochun Ogc. Jiangning and Gaochun are representative affiliated
districts which were selected in this case. Jiangning is always been part of Nanjing in 1949 and
2018 and Gaochun has an administrative division adjustment. Each geographic object consists
of a series of states, changes and relations. For example, Nanjing Onj contains three states
Snj =

{
Snj1, Snj2, Snj3

}
, six changes Cnj =

{
Cnj11, Cnj12, Cnj13, Cnj21, Cnj22, Cnj23

}
, and 12 relations

Rnj =
{
Rnj11, Rnj12, Rnj13, Rnj21, Rnj22, Rnj23, Rnj24, Rnj31, Rnj32, Rnj33, Rnj34, Rnj35

}
. Thus, Nanjing Onj

can be defined as follow and the corresponding diagram is shown in Figure 5.

Onj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Snj � Onj, Cnj � Onj, Rnj � Onj
∣∣∣

Snj =
{
Snj1, Snj2, Snj3

∣∣∣Snj.number ≤ 3, Snj.number ≥ 3
}
,

Cnj =
{
Cnj11, Cnj12, Cnj13, Cnj21, Cnj22, Cnj23

∣∣∣Cnj.number ≤ 6, Cnj.number ≥ 6
}

Rnj =

{
Rnj11, Rnj12, Rnj13, Rnj21, Rnj22, Rnj23, Rnj24, Rnj31, Rnj32, Rnj33, Rnj34, Rnj35

∣∣∣
Rnj.number ≤ 12, Rnj.number ≥ 12

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

 

Figure 5. The diagram of different elements of Nanjing by using the GeoKG model.

Actually, different states of Nanjing
{
Snj1, Snj2, Snj3

}
indicate three different stages of 1368, 1949,

and 2018. Each state contains different time, location, and attribute elements. For example, the state
Snj1 of Nanjing contains time element Tnj of “1368”, location element Lnj of “location descriptions in
1368” and attribute element Anj of “administrative region”. The state Snj1 of Nanjing can be defined
as follows:
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Snj1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Tnj � Snj1, Lnj � Snj1, Anj � Snj1
∣∣∣

Tnj =
{
Tnj1
∣∣∣Tnj.number ≤ 1, Tnj.number ≥ 1

}
,

Lnj =
{
Lnj1
∣∣∣Lnj.number ≤ 1, Lnj.number ≥ 1

}
,

Anj =
{
Anj1
∣∣∣Anj.number ≤ 1, Anj.number ≥ 1

}

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Different states could contain changes indicating different kinds of changes from one state to

another one. For example, there are three main changes
{
Cnj11, Cnj12, Cnj13

}
from the state Snj1 of

Nanjing in 1368 to the state Snj2 of Nanjing in 1949: the change Cnj11 between time elements, the change
Cnj12 between location elements and the change Cnj13 between the attribute elements of “administrative
region”. Note that all these changes belong to developing change type which indicates the change do
not create a new geographic object. The changes can be defined as follows:

Cnj11 =

⎧⎪⎪⎨⎪⎪⎩
St, act, CE, type � Cnj11

∣∣∣
St =

{
Snj1, Snj2

}
, act =

{
”time change”

}
, CE =

{
Tnj1, Tnj2

}
, type = Chd

⎫⎪⎪⎬⎪⎪⎭ � Onj

Cnj12 =

⎧⎪⎪⎨⎪⎪⎩
St, act, CE, type � Cnj12

∣∣∣
St =

{
Snj1, Snj2

}
, act =

{
”location change”

}
, CE =

{
Lnj1, Lnj2

}
, type = Chd

⎫⎪⎪⎬⎪⎪⎭ � Onj

Cnj13 =

⎧⎪⎪⎨⎪⎪⎩
St, act, CE, type � Cnj13

∣∣∣
St =

{
Snj1, Snj2

}
, act =

{
”attribute change”

}
, CE =

{
Anj1, Anj2

}
, type = Chd

⎫⎪⎪⎬⎪⎪⎭ � Onj

Relation is an indispensable element which exists in geographic objects referring to the relationships
between different elements. In this example, there are three relations

{
Rnj11, Rnj12, Rnj13

}
relate to

Nanjing in 1368: the spatial relation Rnj11 between Nanjing Onj and Yangzi River Oyz, the spatial
relation Rnj12 between Nanjing Onj and Zhongshan Mountain Ozm, and the attribute relation Rnj13

between Nanjing Onj and Centre District Ocd, where Lyz1 is the location of Yangzi River Oyz in 1368, Lzm1

is the location of Zhongshan Mountain Ozm in 1368 and Acd1 is the “administrative region” attribute of
Centre District Ocd in 1368. The relations can be defined as follows and the diagram of these relations
was shown in Figure 6.

Rnj11 =

⎧⎪⎪⎨⎪⎪⎩
E, Sem, type � Rnj11

∣∣∣
E =

{
Lnj1, Lyz1

}
, Sem =

{
”Nanjing is south o f the Yangzi River”

}
, type = Rel

⎫⎪⎪⎬⎪⎪⎭ � Onj

Rnj12 =

⎧⎪⎪⎨⎪⎪⎩
E, Sem, type � Rnj12

∣∣∣
E =

{
Lnj1, Lzm1

}
, Sem =

{
”Nanjing is east o f the Zhongshan Mountain”

}
, type = Rel

⎫⎪⎪⎬⎪⎪⎭ � Onj

Rnj13 =

⎧⎪⎪⎨⎪⎪⎩
E, Sem, type � Rnj13

∣∣∣
E =

{
Anj1, Acd1

}
, Sem =

{
”Centre District is part o f Nanjing”

}
, type = Rea

⎫⎪⎪⎬⎪⎪⎭ � Onj

Correspondingly, Yangzi River contains the relation Ryz1 = Rnj11
−, Zhongshan Mountain contains

the relation Rzm1 = Rnj12
−, and Centre District contains the relation Rcd1 = Rnj13

−:

Ryz1 =

⎧⎪⎪⎨⎪⎪⎩
E, Sem, type � Ryz1

∣∣∣
E =

{
Lnj1, Lyz1

}
, Sem =

{
”Nanjing is south o f the Yangzi River”

}
, type = Rel

⎫⎪⎪⎬⎪⎪⎭ � Oyz

Rzm1 =

⎧⎪⎪⎨⎪⎪⎩
E, Sem, type � Rzm1

∣∣∣
E =

{
Lnj1, Lzm1

}
, Sem =

{
”Nanjing is east o f the Zhongshan Mountain”

}
, type = Rel

⎫⎪⎪⎬⎪⎪⎭ � Ozm

Rcd1 =

⎧⎪⎪⎨⎪⎪⎩
E, Sem, type � Rcd1

∣∣∣
E =

{
Anj1, Acd1

}
, Sem =

{
”Centre District is part o f Nanjing”

}
, type = Rea

⎫⎪⎪⎬⎪⎪⎭ � Ocd
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Figure 6. The diagram of relation elements of Nanjing in 1368.

The whole evolution case of administrative divisions of Nanjing can be shown in Figure 7.
Corresponding to Figure 4, each geographic object contains one to three states. For instance, Yangzi
River and Zhongshan Mountain have three stages of 1368, 1949, and 2018 and Jiangning and Gaochun
have two stages of 1949 and 2018. As inner changes are not considered, Centre District only represented
one stage. Between different stages, different kinds of changes were considered. For example, different
stages of Yangzi River and Zhongshan Mountain include time change

{
Cyz11, Cyz21, Czm11, Czm21

}
,

different stages of Nanjing include time change
{
Cnj11, Cnj21

}
, location change

{
Cnj12, Cnj22

}
, and

attribute change
{
Cnj13, Cnj23

}
, and different stages of Jiangning and Gaochun include time change{

Cjn11, Cgc11
}

and attribute change
{
Cjn12, Cgc12

}
. Additionally, relations link different elements among

both different geographic objects and same geographic object. For example, Nanjing in 1368 has
relations to Yangzi River Rnj11, Zhongshan Mountain Rnj12, and Centre District Rnj13. Then, Nanjing
in 1949 has relations to Yangzi River Rnj21, Zhongshan Mountain Rnj22, Centre District Rnj23, and
Jiangning Rnj24. In 2018, Nanjing has relations to Yangzi River Rnj31, Zhongshan Mountain Rnj32,
Centre District Rnj33, Jiangning Rnj34, and Gaochun Rnj35.
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Figure 7. An overview of evolution case of administrative divisions of Nanjing and relevant
geographic objects.

Note that there are also inner relations between elements. In this case, the administrative division
of Jiangning in 1949 has an attribute relation Rjn12 of “inheritance relationship” to the administrative
division of Jiangning in 2018. Gaocun has the same attribute relation Rgc11. All these relations have the
inverse relations in the opposite sides.

5. Discussion

In this section, the case study of administrative division evolution of Nanjing was constructed by
using the GeoKG model and the YAGO model. YAGO is a representative open source knowledge graph
with different versions. Note that we compared our model with YAGO2, a spatially and temporally
enhanced version from https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/
research/yago-naga/yago/. Then, three kinds of core geographic questions were posted and the results
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were analyzed to evaluate the knowledge representation ability of these two models. Finally, a user
evaluation was given to verify the comparisons objectively.

5.1. The GeoKG and the YAGO

5.1.1. Structures

The structures of the GeoKG and the YAGO are different. Although Section 2 briefly introduced
the characteristics of the YAGO, the comparison between two different structures needs to be analyzed
in order to understand the following comparisons of queries and the results in next section. Figure 8
shows the examples structured by different models.

Figure 8. The examples with structures of the YAGO model and the GeoKG model. (a) the entities,
properties and relationships in YAGO structure; (b) the elements in GeoKG structure.

In Figure 8a, there are only three kinds of elements: entity, property, and relationship. Each
property links to a related entity by a relationship with a predicate. For example, “Nanjing” and
“1638” have a relationship named “startedOnDate”. Note that the YAGO structure does not contain
the relationships between the properties. Thus, there are no semantic relationships between properties.
In other words, the massive descriptive properties of an entity link to the entity independently.
For example, two relationships happened on Nanjing and the Yangzi River: “Nanjing is south of
the Yangzi River” and “The Yangzi River passes through Nanjing”. It is difficult to understand this
knowledge with no links between properties, whereas the GeoKG in Figure 8b sets six core elements
and links these elements. With more integrated elements, the relationship of “Nanjing is south of
the Yangzi River” can illustrate more clearly because this relationship links two locations in two
different states of the two geographic objects. The different states providing this relationship happened
on 1638 and the linked locations provide this relationship relate to different location descriptions.
This knowledge cannot be provided without these links between the properties.

5.1.2. Construction

Both the GeoKG and YAGO were constructed manually by using the information about the case
study of the administrative division evolution of Nanjing. The case study organized by the YAGO
model was the classic SPO triple sets which has an open source ontology template. Additionally, the
case study organized by the GeoKG model also stored by SPO triple sets that contain more predicates.
The main supplement predicates include “isStateof”, “isTimeof”, “isLocationof”, “isAttributeof”,
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“isChangeof”, “isRelationof”, “isChangeto”, and “isRelateto”. All these predicates were applied to
complete the semantic structure of the GeoKG model. From this perspective, the underlying storage
mechanisms of GeoKG and YAGO are the same.

5.2. The Comparison of Knowledge Representation Ability between the GeoKG and the YAGO

5.2.1. Questions

Time, space, and attribute are three indispensable aspects on geoscience. These three kinds of
questions can be defined as standard questions to evaluate whether the stored geographic knowledge
is good. According to the differences between factual knowledge and inferential knowledge, each
question was a set of two parts. To this case study, the questions are shown in Table 2.

Table 2. Questions to the GeoKG model and The YAGO model.

Question Types Factual Question Inferential Question

Time When was Nanjing named? When does Jiangning belong to Nanjing?

Space Where is Nanjing? What is the spatial relationship between Nanjing
and Yangzi River?

Attribute Which city does Gaochun belong to? What administrative divisions belong to Nanjing?

5.2.2. Queries

Questions cannot be directly queried from the GeoKG and YAGO database. Thus, they need
to be translated into SPARQL queries, because of either GeoKG or YAGO stored as triples in RDFs.
For example, the factual question of time can be translated into SPARQL queries, as shown in Table 3.

Table 3. The SPARQL query of “When was Nanjing named?”

Steps SPARQL Query Semantic Meaning

1 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>. protocol
2 SELECT ?sTime WHERE { Query content “?sTime” (start time)
3 ?s rdfs:type :City. Type is “City”
4 ?s :cityName ‘Nanjing’. Get “Nanjing” geographic object
5 ?s :hasName ?o. Get time when named ‘Nanjing’
6 ?o :startedOnDate ?sTime. Get started time
7 ?o :usedName ?uName. Constraint condition
8 FILTER regex(?uName, “ˆNanjing”) Constraint condition setting

}

5.2.3. Comparison and Analysis

The collected items of YAGO and GeoKG on six questions are listed in Table 4. The comparisons
will be conducted in terms of accuracy, completeness, and repetition.

a. Accuracy

In general, the results of the GeoKG are slightly better than the YAGO. Both of the two models can
respond with accurate results to #Q1, #Q2, #Q3, #Q4, and #Q6. In #Q5, the result of the YAGO model
returned two items and the results of the GeoKG model returned four items. Actually, “Zhenjiang”
and “Nanjing” from the YAGO model are the misleading answers to the question of “Which city does
Gaochun belong to?” Though the results from the GeoKG model: “Zhenjiang(Gaochun, state of 1949)”,
“Zhenjiang(Zhenjiang, state of 1949)”, “Nanjing(Gaochun, state of 2018)” and “Nanjing(Nanjing,
state of 2018)” are similar to the front, these results contain the geographic object and relevant state
information which is a benefit for the users to understand the results. From this perspective, these
state information from GeoKG provided more accurate information than the YAGO model.
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Table 4. The results of YAGO and GeoKG on SPARQL queries.

Question
Types

Questions
Results

YAGO GeoKG

Time

#Q1: When was Nanjing
named?

� 1368 � 1368 (Nanjing, state of 1368)

#Q2: When does
Jiangning belong to
Nanjing?

� 1949
� 2018

� 1949 (Jiangning, state of 1949)
� 2018 (Jiangning, state of 2018)
� 1949 (Nanjing, state of 2018)
� 2018 (Nanjing, state of 2018)

Space

#Q3: Where is Nanjing?

� N32◦02′38′′, E118◦46′43′′
� N32◦02′38′′, E118◦46′43′′
� N32◦02′38′′, E118◦46′43′′

� N32◦02′38′′, E118◦46′43′′
(Nanjing, state of 1368)

� N32◦02′38′′, E118◦46′43′′
(Nanjing, state of 1949)

� N32◦02′38′′, E118◦46′43′′
(Nanjing, state of 2018)

#Q4: What is the spatial
relationship between
Nanjing and Yangzi
River?

� Nanjing is south of the
Yangzi River

� The Yangzi River passes
through Nanjing

� The Yangzi River passes
through Nanjing

� Nanjing is south of the Yangzi River
(Nanjing, state of 1368)

� Nanjing is south of the Yangzi River
(Yangzi River, state of 1368)

� The Yangzi River passes through
Nanjing(Nanjing, state of 1949)

� The Yangzi River passes through
Nanjing(Yangzi River, state of 1949)

� The Yangzi River passes through
Nanjing(Nanjing, state of 2018)

� The Yangzi River passes through
Nanjing(Yangzi River, state of 2018)

Attribute

#Q5: Which city does
Gaochun belong to?

� Zhenjiang
� Nanjing

� Zhenjiang(Gaochun, state of 1949)
� Zhenjiang(Zhenjiang, state of 1949)
� Nanjing(Gaochun, state of 2018)
� Nanjing(Nanjing, state of 2018)

#Q6: What
administrative divisions
belong to Nanjing?

� Centre District
� Jiangning
� Jurong
� Dangtu
� Luhe
� Pukou
� Hexian
� Lishui
� Gaochun
� Qixia

� Centre District(Nanjing, state of 1368)
� Centre District(Nanjing, state of 1949)
� Centre District(Nanjing, state of 2018)
� Jiangning(Nanjing, state of 1949)
� Jiangning(Nanjing, state of 2018)
� Jurong(Nanjing, state of 1949)
� Dangtu(Nanjing, state of 1949)
� Luhe(Nanjing, state of 1949)
� Luhe(Nanjing, state of 2018)
� Pukou(Nanjing, state of 1949)
� Pukou(Nanjing, state of 2018)
� Hexian(Nanjing, state of 1949)
� Lishui(Nanjing, state of 2018)
� Gaochun(Nanjing, state of 2018)
� Qixia(Nanjing, state of 2018)
� more items

b. Completeness

Although both of these two models can return the complete results, the results of the GeoKG
contains more semantic integrity. In #Q6, YAGO returned 10 items: Centre District, Jiangning, Jurong,
Dangtu, Luhe, Pukou, Hexian, Lishui, Gaochun, and Qixia. Among these divisions, Centre District
belonged to Nanjing since 1368. Jiangning, Luhe and Pukou belonged to Nanjing since 1949. Jurong,
Dangtu and Hexian belonged to Nanjing in 1949. Lishui, Gaochun, and Qixia belonged to Nanjing
in 2018. As the question does not have an explicit time constraint condition, YAGO returned all the
items, whereas GeoKG returned 30 items and each item recorded the target object and its relevant
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geographic object and state. It contains the item of “Centre District (Nanjing, state of 1368)” and the
item of “Centre District (Centre District, state of 1368)”, because of the relation existed oppositely.

c. Repetition

The results of the GeoKG has more repeat items than the results from the YAGO. The results
from the YAGO have repeat items in #Q3 and #Q4, because of the records are repeat. However, the
GeoKG model is different. In #Q2, #Q4, #Q5, and #Q6, the results of the GeoKG have many repeat
items; for example, the items of “1949 (Jiangning, state of 1949)” and “1949 (Nanjing, state of 2018)” in
#Q2. The query target object “1949” is the same. In spite of these two items sourced from different
geographic objects (Jiangning and Nanjing), these two items are still quite similar, which pushed more
redundant information to the users.

In summary, the results of the GeoKG model are more accurate and complete than the YAGO
model with the enhancing state information. It can decrease the influence from the fuzziness questions
and obtain answers with more semantic meaning (e.g., geographic object and its relevant state).
Meanwhile, the GeoKG model could generate more pairs results (e.g., “Nanjing is south of the Yangzi
River (Nanjing, state of 1368)” vs. “Nanjing is south of the Yangzi River (Yangzi River, state of 1368)”),
because the relation is stored oppositely in a different geographic object.

5.2.4. User Evaluation

An online questionnaire survey is also given in order to verify the results of comparative analyses.
The questionnaire is divided into eight parts. The first part is the basic information survey that
asks individuals four aspects of information (gender, familiarity to the research area, background,
and education level). The statistics of these basic information are shown in Figure 9. The 2nd–7th
parts correspond to the questions #Q1–#Q6 and ask the questions about the best answer, accuracy,
completeness, and repetition. The 8th part are summary questions including the overall evaluation,
scores on YAGO and scores on GeoKG on different aspects. The scores are set as 1–5 corresponding to
very bad, bad, normal, good, and very good, and each score group includes an overall score, accuracy
score, completeness score, and repetition score. There are 106 valid feedbacks we finally received.

Figure 9. The statistics of the four main types of the basic information about the survey.

Figure 10 shows the best answers on #Q1–#Q6 and the overall scores of the YAGO and the GeoKG.
In the best answer histogram, the overall results show 54.72% individuals support the GeoKG, which
is 23.59% higher than the YAGO at 31.13%. Specifically, the quantities of #Q1 and #Q2 are quite close
but the quantities of #Q3–#Q6 are not. The quantities of the GeoKG are much higher than the YAGO
among the last four questions, especially in #Q5. The line charts of overall scores on YAGO and GeoKG
also show that the evaluation of GeoKG is better than the YAGO. A 7.8% improvement on the average
score from the YAGO (3.15) to the GeoKG (3.49) is obtained.
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Figure 10. The best answer on #Q1–#Q6 and the overall scores of the YAGO and the GeoKG.

From the sub-aspects (accuracy, completeness, and repetition) of the point of view, different
quantities can immediately show the scores from the YAGO and the GeoKG. Different quantities show
the ability from the model (details in Figure 11). Nearly all three aspects of the YAGO obtained the
score 3, whereas the GeoKG was different: a score of 4 on accuracy, a score of 4–5 on completeness, and
a score of 3–4 on repetition. Comparing these scores, it can be seen that there is little promotion on the
accuracy from the 3.11 average score in YAGO to the 3.78 average score in GeoKG. An overwhelming
improvement shows on the completeness of the answers from a 2.99 average score in YAGO to a 3.87
average score in GeoKG. Additionally, the GeoKG also obtains a higher repetition from a 3.01 average
score in YAGO to a 3.42 average score in GeoKG.

Figure 11. Rose maps of scores of different aspects on the YAGO and the GeoKG.

In summary, the answers from GeoKG makes an improvement to those of YAGO’s. The user
evaluation objectively verified the analyses in Section 5.2.3 and specifically showed clear answers.
It can be seen that the main improvements of the GeoKG are on the #Q3–#Q6, which are spatial and
attribute questions. These answers to these questions require more related state information and
temporal information, which need the links between the elements (Figure 8). This is the reason why the
GeoKG is better than the YAGO. In addition, the GeoKG contains more redundancy information than
the YAGO because of the bi-directionality of the relation element. This could be a focus of continuous
further research on the index and applications in the future.

6. Conclusions

Given that much attention has been paid to the representation of geographic knowledge, this paper
is focused on the development of current geographic knowledge representations. We analyzed the
problems of current geographic knowledge representation and found that two issues must be improved:
the elements of geographic knowledge representation and the supplement of the construction operators
of DL.
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Following the basic idea of the six core geographical questions, we designed a conceptualized
model called GeoKG based on the six elements around the geographical questions, then supplemented
the construction operators of DL and finally provided the formalizations of the model with these
operators. Additionally, an evolution case of administrative divisions of Nanjing was formalized and
illustrated. Then, the knowledge graphs were constructed by both the GeoKG model and the YAGO
model by using the case study. After setting a group of standard geographic questions, the query
results were finally compared. The results showed that the results of GeoKG are more accurate and
complete than the YAGO results, which are verified by the following user evaluation. This comparison
indicates the GeoKG model displays its ability to organize geographic knowledge in computers and is
a promising and powerful model for geographic knowledge representation.
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Abstract: Understanding the past, present, and changing behavior of the climate requires close
collaboration of a large number of researchers from many scientific domains. At present, the necessary
interdisciplinary collaboration is greatly limited by the difficulties in discovering, sharing, and
integrating climatic data due to the tremendously increasing data size. This paper discusses the
methods and techniques for solving the inter-related problems encountered when transmitting,
processing, and serving metadata for heterogeneous Earth System Observation and Modeling (ESOM)
data. A cyberinfrastructure-based solution is proposed to enable effective cataloging and two-step
search on big climatic datasets by leveraging state-of-the-art web service technologies and crawling
the existing data centers. To validate its feasibility, the big dataset served by UCAR THREDDS
Data Server (TDS), which provides Petabyte-level ESOM data and updates hundreds of terabytes
of data every day, is used as the case study dataset. A complete workflow is designed to analyze
the metadata structure in TDS and create an index for data parameters. A simplified registration
model which defines constant information, delimits secondary information, and exploits spatial
and temporal coherence in metadata is constructed. The model derives a sampling strategy for a
high-performance concurrent web crawler bot which is used to mirror the essential metadata of the
big data archive without overwhelming network and computing resources. The metadata model,
crawler, and standard-compliant catalog service form an incremental search cyberinfrastructure,
allowing scientists to search the big climatic datasets in near real-time. The proposed approach has
been tested on UCAR TDS and the results prove that it achieves its design goal by at least boosting
the crawling speed by 10 times and reducing the redundant metadata from 1.85 gigabytes to 2.2
megabytes, which is a significant breakthrough for making the current most non-searchable climate
data servers searchable.

Keywords: climate science; metadata; web cataloging service; big geospatial data; geospatial
cyberinfrastructure

1. Introduction

Cyberinfrastructure plays an important role in today’s climate research activities [1–6]. Climate
scientists search, browse, visualize, and retrieve spatial data using web systems on a daily basis,
especially as data volumes from observation and model simulation grow to large amounts that
personal devices cannot hold entirely [7,8]. The big data challenges of volume, velocity, variety,
veracity, and value (5Vs), have pushed geoscientific research into a more collaborative endeavor
that involves many observational data providers, cyberinfrastructure developers, modelers, and
information stakeholders [9]. Climate science has developed for decades and produced tens of
petabytes of data products, including stationary observations, hindcast, and reanalysis, which are
stored in distributed data centers in different countries around the globe [10]. Individuals or small
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groups of scientists face big challenges when they attempt to efficiently discover the data they
require. Currently, most scientists acquire their knowledge about datasets via conferences, colleague
recommendations, textbooks, and search engines. They become very familiar with the datasets they
use, and every time they want to retrieve the data, they go directly to the dataset website to download
the data falling within the requested time and spatial windows. However, these routines are less
sustainable as the sensors/datasets become more varied, models evolve more frequently, and new data
pertaining to their research is available somewhere else [9].

In most scenarios, metadata is the first information that researchers see, before they access and use
the actual Earth observation and modeling data the metadata describes [11,12]. Based on the metadata,
they decide whether or not the actual data will be useful in their research. For big spatial data, metadata
is the key component backing up all kinds of users’ daily operations, such as searching, filtering,
browsing, downloading, displaying, etc. Currently, two of the fundamental problems in accessing
and using big spatial data are the volume of metadata and the velocity of processing metadata [13,14].
Through manual investigation of Unidata THREDDS data repository (a metadata source we take as an
example of typical geodata storage patterns) [15,16], it reveals that most of the metadata are highly
redundant. The vast majority of metadata records contain identical information and only key fields
representing spatial and temporal characteristics are regularly updated. However, there exists a regular
pattern to how the redundant information is structured and how new information is added to the
repository—but, the pattern varies according to data organization hierarchy and changes with the
type of data being delivered (for example: Radar station vs. satellite observation vs. regular forecast
model output).

To overcome these big data search challenges, we must confront practical problems in the
information model, information quality, and technical implementation of information systems. Our
study follows the connection between fundamental scientific challenges and existing implementations
of geoscience information systems. This study aims to build a cataloging model capable of fully
describing real-time heterogeneous metadata whilst simultaneously reducing data volume and enabling
search within big Earth data repositories. This model can be used to efficiently represent redundant
data in the original metadata repository and to perform lossless compression of information for
lightweight efficient storing and searching. The model can shrink the huge amount of metadata
(without sacrificing information complexity or variety available in the original repositories) and
reduce the computational burden on searching among them. The model defines two types of
objects: Collections and granules. It also defines their lifecycle and relationship to the upstream
THREDDS repository data. Collection contains content metadata (title, description, authorship,
variable/band information, etc.). Each collection contains one or more granules. Each granule contains
only the spatiotemporal extent metadata. We prototyped the model as an online catalog system
within EarthCube CyberConnector [17–20]. We have made the final system available online at:
http://cube.csiss.gmu.edu/CyberConnector/web/covali. The system provides a near real-time replica of
the source catalog (e.g., THREDDS), optimizes the metadata storage, and enables searching capability
which was not available before. The system is like a clearinghouse with its own metadata database.
Currently, the system is mainly used for searching operational time-series observations/simulations
collected/derived from field sensors. Other datasets, like remote sensing datasets and airborne datasets,
can be foreseen to be supported in the near future. The novelty of this research is that it turns the
legacy data center repositories into lightweight flexible catalog services, which are more manageable
by providing searching capabilities for petabytes of datasets. The work provides important references
to people operating the operation of big climate data centers and advises on further improvements in
those operational climate data centers to better serve the climate science community. This paper is
organized as follows. Section 2 describes the background knowledge and history. Section 3 introduces
related work. Section 4 introduces the proposed model. Section 5 shows the implementation of the
model and the required cyberinfrastructure. Section 6 demonstrates the experiment results. Section 7
discusses the results of our approach. Section 8 concludes the paper.
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The study described in this paper is an attempt to contribute to the global scientific endeavor on
understanding and predicting the impacts of climate change. Understanding climate change and its
impacts requires understanding Earth as a complex system of systems with behaviors that emerge
from the interaction and feedback loops that occur on a range of temporal and spatial scales. However,
new advances in these studies are obstructed by the challenges of interdisciplinary collaboration
and the difficulty of data and information collaboration [21–27]. The difficulties of information
collaboration can be understood in terms of long-standing big data problems of variety (complexity)
and volume/velocity.

2. Background

Metadata is a powerful tool for dealing with big data challenges. We discuss the background
work on metadata and interoperability of metadata catalogs as critical components of advanced
cyberinfrastructure that we envision.

2.1. Metadata

The topic of metadata has been approached by two distinct scholarly traditions. Understanding
them helps us clarify our approach to metadata in cyberinfrastructure. Library information scientists
have described the metadata bibliographic control approach. Bibliographic principles allow information
users to describe, locate, and retrieve information-bearing entities. The basic metadata unit is the
“information surrogate” that derives its usefulness from being locatable (by author, title, and subject),
accurately describing the information object (the data of the metadata) and identifying how to locate
the object. The second (complementary) view of metadata originates in the computer science discipline
and is called the data management approach. Complex and heterogeneous data (textual, graphical,
relational, etc.) is not separated into information units, but is instead described by data models
and architectures that represent “additional information that is necessary for data to be useful” [27].
The key difference is the bibliographic approach works with distinct information entities of limited
types, while the data management approach works with models of data/information structures and
their relationships.

This distinction between bibliographic and data management approaches is important in the
context of ongoing efforts of metadata standardization [28–31]. The second approach is not conducive
for standardization because the data management models are as complex and heterogeneous as
the structures of the data being modeled. Consequently, in accordance with existing standards, the
currently available metadata for large climate datasets follows the first approach, which provides
bibliographic information and does not describe the data structures in a way that may permit new
capacities of advanced cyberinfrastructure. Our paper describes the work to supplement and transform
the existing bibliographical metadata with a custom metadata management model resulting in new
applications for the existing data. Metadata standardization is a prerequisite for interoperability, which
is a prerequisite for building distributed information systems capable of handling complex Earth
system data [32].

2.2. Interoperability, Data Catalogs, Geoinformation Systems, and THREDDS

Data and information collaboration across disciplines is critical for advanced Earth science.
Unfortunately, there is no strongly unified practice for data recording, storage, transmission, and
processing that the entire scientific community follows [33–37]. Disparate fields and traditions have
their own preferred data formats, software tools, and procedures for data management. However,
Earth system studies generally work with data that follow a geospatial–temporal format [38–42]. All
of the data can be meaningfully stored on a 4D (3 spatial and one temporal) dimension grid. This
basic commonality has inspired standardization efforts with the goal of enabling wider interoperability
and collaboration.
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Following organic outgrowth from the community, the standardization efforts are now headed by
Open Geospatial Consortium (OGC) and the International Organization for Standardization Technical
Committee 211 (ISO TC 211) and have yielded successful standards in two areas relevant to us [43–47].
First is the definition of NetCDF as one of the standard data formats for storing geospatial data. The
second is the metadata standardization. Those efforts are extremely relevant to our research and are
further discussed in the Related Works section. For background, it is important to mention that the
standard geospatial metadata models developed by OGC are still evolving capabilities for describing
the heterogeneous, high-volume, or high-velocity big data we are studying. The commonly used
OGC/ISO 19* series metadata standards have relatively limited relational features (aggregation only)
and, in the repository we studied, each XML encoded metadata record contains mostly redundant
information (for example, two metadata objects that represent two images from a single sensor mostly
contain duplicated information that describes sensor characteristics). However, there are multiple lines
of work that ISO TC 211 is pursuing that addresses these issues and suggests a trend for expanding the
applicability of standardized metadata models and the integration of a greater variety of information.

The standard geographical metadata model was developed in conjunction with a standard
distributed catalog registration model titled Catalog Services for the Web (CSW) [48,49]. The CSW
standard is widely known and many Earth system data providers offer some information about their
data holdings via the CSW interface. However, the CSW standard is also poorly suited to support
big data collaborative studies for the Earth system. CSW follows the basic OGC metadata model in a
way that makes it challenging to capture valuable structure and semantics of existing data holdings
without storing extremely redundant information—which exhausts computing resources without
taking advantage of the true value of large and complex Earth big data. However, OGC metadata
stored in CSW is the existing standard that governs not only data distribution practices, but also how
researchers think about data collaboration.

The next item this study works with is the UCAR Unidata THREDDS Data Server (TDS). The
University Corporation for Atmospheric Research (UCAR) Unidata is a geoscience data collaboration
community of diverse research and educational institutions. It provides the real-time heterogeneous
Earth system data that this study targets. THREDDS is Unidata’s Thematic Real-Time Environmental
Distributed Data Services. TDS is a web server that provides metadata and data access for scientific
datasets to climate researchers. TDS provides its own rudimentary hierarchical catalog service that is
not searchable and does not support the CSW standard. However, it does support the OGC geospatial
metadata standard—although not consistently or comprehensively. In order to make data hosted by
TDS searchable, the TDS metadata must be copied to another server and a searchable catalog must be
created for the metadata. This task is performed by a customized web crawler developed by this study.

This study attempts to build upon the existing infrastructure with its available resources and
limitations to provide new capabilities. The limitations of the existing systems are two-fold. First
is the limits of the CSW metadata registration model (it does not naturally support registering
information about metadata lifecycle or sufficiently detailed aggregation information), and second
is the incompleteness of information within metadata provided by THREDDS. This study attempts
to erase the limits by first interpolating information to improve the quality of the existing metadata
model and then by extending the model to provide advanced capabilities. It demonstrates how to
integrate TDS metadata with CSW software and proposes several practical solutions that work around
the limitations of the CSW metadata registration model. We do this to show that improvements in
metadata and catalog capabilities can also reduce the challenges of big data in variability, volume,
and velocity.

3. Related Work

This paper brings together several existing lines of work to confront the problems of integrating
and searching vast and diverse climate science datasets. Existing research in areas of metadata
modeling, geospatial information interoperability, geospatial cataloging, web information crawling,
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and search indexing provides the building blocks for our work to demonstrate and evaluate advanced
climate data cyberinfrastructure capabilities.

3.1. Metadata Models

There are many studies exploring the fundamental relationship between metadata models and
information capabilities. There exists diverse work in other areas that deal with the same basic issues
and demonstrates that the creation of novel metadata models can be used as a method for solving
information challenges. For example, Spéry et al. [50] have developed a metadata model for describing
the lineage of changes of geographical objects over time. They used a direct acyclic graph and a set
of elementary operations to construct their model. The model supports new application of querying
historical cadastral data and minimizes the size of geographical metadata information. Spatiotemporal
metadata modeling can be generalized as a description of objects in space and time, and relationships
between objects conceived as flows of information, energy, and material to model interdependent
evolution of objects in a system [51]. Provenance (“derivation history of data product starting from its
original sources” [52]) modeling is an important part of metadata study. Existing metadata models
and information systems have been experimentally extended with provenance modeling capabilities
to enable visualization of data history and analysis of workflows that derive data products used by
scientists [53,54]. An experiment to re-conceptualize metadata as a practice “knowledge management”
yielded a metadata model that can support the needs of spatial decision-making by identifying
issues of entity relationships, integrity, and presentation [55]. The proposed metadata model allows
communicating more complex information about spatial data. This metadata model makes it possible
to build an original geographic information application, named Florida Marine Resource Identification
System, that extends the use of the existing environment and civil data to empower users with
higher-level knowledge for analysis and planning. Looking outside the geospatial domains, we still
observe that the introduction of specialized metadata approaches and models permits the development
of new capabilities.

3.2. Geospatial Metadata Standardization, Interoperability, and Cataloging

The diversity of metadata models and formats developed by research has enabled new powerful
geoinformation systems, but has also introduced a new set of problems of data reuse and interoperability.
Public and private research, administrative, and business organizations have accumulated growing
stores of geoinformation and data, but this data has not become easier to discover and access for
users outside limited organization jurisdictions. This has led to significant resource wastage and
duplication of effort for data producers and consumers. Cataloging has grown increasingly challenging
because of this heterogeneity. In response, new spatial data infrastructures have been developed.
They have attempted to integrate and standardize multiple metadata models and develop shared
semantic vocabulary models to enable discovery by employing the “digital library” models of metadata.
In this process, syntactic and semantic interoperability challenges have been identified. Syntactic
operability refers to information portability—the ability of systems to exchange information. Semantic
interoperability refers to domain knowledge that permits information services to understand how to
meaningfully use the data from other systems [56].

Various techniques for achieving metadata interoperability have been explored [57]. Two related
families of techniques can be identified. One approach attempts to create standard and universal
models, the other creates mappings between several metadata representations of the same data.
Transformation between several metadata models requires that syntactic, structural, and semantic
heterogeneities can be reconciled. The reconciliation is accomplished with techniques called metadata
crosswalks. A crosswalk is “a mapping of the elements, semantics, and syntax from one metadata
schema to another”. Once mappings are developed, they can be used to apply multiple metadata
schemas to existing data [58].
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The possibilities for interoperability have been advanced by the efforts led by the International
Organization for Standardization Technical Committee 211 (ISO TC 211) to standardize metadata
representation. It introduced the ISO 19* series of geospatial metadata standards for describing
geographic information by the means of metadata [54,59–61]. The standards define mandatory and
optional metadata elements and associations among elements. For example, spatiotemporal extent,
authorship, and general description of datasets are required and recommended by the standard. Other
kinds of information like sequencing of datasets in a collection, aggregation, and other relational data
are optional in the standard. The ISO 19* series of standards also provides an XML schema for the
representation of the metadata in XML [62].

Looking at existing metadata interoperability work, we see a recurrence of similar problems such
as diversity of metadata representations and complexity of mapping between them. Several authors
discuss the practical challenges of developing software and systems for translation [27,59,63]. There
exists a proliferation of study efforts and results that advance the goals of interoperability by identifying
key understanding of the challenges of interoperability and demonstrating systems, services, and
models that address common challenges. Our work attempts to preserve existing interoperability
advances while exploring the possibilities of expanding existing metadata models to support new
possibilities use of existing data.

Standardized metadata is often stored and made available using catalog services. Catalogs allow
users to find metadata using queries that describe the desired spatial, temporal, textual, and other
information characteristics of the searched data [64]. The OGC Catalog Service for the Web (CSW) is
one of the widely used catalog models in the geoscience domain to describe geographic information
holdings [6,65].

3.3. Web Harvesting and Crawling

One critical capacity of metadata cyberinfrastructure is the ability to integrate metadata from
remote web repositories. The process of finding and importing web linked data in a metadata repository
is called “crawling” and is accomplished using a software system called “metadata web crawler”. A
web crawler is a computer program that browses the web in a “methodical, automatic manner or in an
orderly fashion” [66]. A crawler is an internet bot, it is a program that autonomously and systematically
retrieves data from the world wide web. It automatically discovers and collects different resources in
an orderly fashion from the internet according to a set of built-in rules. Patil and Patil [66] summarize
this general architecture of web crawlers and also provide a definition of several types of web crawlers.
A focused crawler is a type that is designed to eliminate unnecessary downloading of web data by
incorporating an algorithm for selecting which links to follow. An incremental crawler first checks for
changes and updates to pages before downloading their full data. It necessarily involves an index
table of page update dates and times. We follow these two strategies in the design of our crawler. The
authors also outline common strategies for developing distributed and parallelized crawlers. Our
crawler runs on a single machine, but we use a multithreaded process model with a shared queue
mechanism—a common parallelization strategy identified by the authors [67].

A fairly recent review collected by Desai et al. [68] shows that web crawler research is an active
area of work—however, most of this work is focused on the needs of general web search engine index
construction. There exists an area of research called “vertical crawling” which contends with the
problems of crawling non-traditional web data: News items, online shopping lists, images, audio,
video. There does not appear any publications regarding efficient crawling of heterogeneous Earth
system metadata.

There exists substantial previous work to show the feasibility of crawling this metadata. One
recent paper summarizes the state of the art. Li et al. [69] present a heterogenous Earth system metadata
crawling and search system named PolarHub—a web crawling tool capable of conducting large-scale
search and crawling of distributed geospatial data. It uses existing textual web search engines (Google)
to discover OGC standards-compliant geospatial data services. It presents an interactive interface
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that allows users to find a large variety and diversity of catalogs and related data services. It has
a sophistical distributed multi-threaded software system architecture. PolarHub shows that it is
possible to present data from many sources in a single place. However, it does not present datasets,
only endpoints that users must further explore on their own. It does not download, summarize, or
harmonize the metadata stored on the remote catalogs. It shows the feasibility of cyberinfrastructure
that integrates a variety of data based on interoperable standards but does not discuss data volume and
velocity challenges that arise when deeper and fuller crawling is done. PolarHub users can find a large
number of catalogs and services that contain, for instance, “surface water temperature” data but they
cannot use metadata crawler following this catalog hub strategy to discover datasets that hold “surface
water temperature inside X spatial and temporal extent with Y spatial and temporal resolution”.

A complementary strategy is discussed by Pallickara et al. [70], who present a metadata crawling
system named GLEAN, which provides a new web catalog for atmospheric data based on the extraction
of fine-grained metadata from existing large-scale atmospheric data collections. It solves the data
volume problem by introducing a new metadata scheme based on custom synthetic datasets that
represent collections (or subsets or intersections) of multiple existing datasets. This reduces metadata
overhead greatly and permits high performance and precise discovery and access of specific datasets
inside vast atmospheric data holdings. Unlike PolarHub, GLEAN avoids the data variety challenge
by limiting its processing to one type of data format used in atmospheric science. They also do not
contend with the interrelated velocity and near real-time access problems—in GLEAN crawling, the
discovery of updated datasets is initiated by manual user request. They do not use the OGC catalog or
metadata standards to support interoperability.

BCube project (part of EarthCube initiative) attacks similar problems with another approach [71].
EarthCube is a National Science Foundation initiative to create open community-based
cyberinfrastructure for all researchers and educators across the geosciences. EarthCube
cyberinfrastructure must integrate heterogeneous data resources to allow forecasting the behavior
of the complex Earth system. EarthCube is composed of many building blocks. Our work is part of
the EarthCube Cyberway building block. BCube (The Brokering Building Block) offers a different
approach for heterogeneous geodata interoperability. BCube adopts a brokering framework to enhance
cross-disciplinary data discovery and access. A broker is a third party online data service that contains
a suite of components, called accessors. Each accessor is designed to interface with a different type
of geodata repository. A broker allows users to access multiple repositories with a single interface
without requiring data providers to implement interoperability measures. BCube supports metadata
brokering. It can search, access, and translate heterogeneous metadata from multiple sources. It
demonstrates deeper interoperability than other approaches discussed here, but does not attempt to
solve data volume or velocity problems [72]. The BCube approach is very relevant to us; however,
BCube has very few documents available and the system is inaccessible. We were unable to compare
some of the details of our different approaches.

Song and Di [73] studied the same problem with the same example repository: Unidata TDS. The
authors determined the volume and velocity characteristics of the target repository metadata. Like
our study, they propose modeling it with concepts of collection and granule. They implemented a
crawler that is able to crawl some of the TDS archive. Their work is the previous progress in the same
project as ours and is highly relevant to this study. However, their approach did not perform well
using real-world TDS data, which led us to take it in a different direction. We rebuilt their work to
demonstrate real-time search and the possibility of processing all of TDS by using a more sophisticated
metadata model, and a more advanced integrated search client and indexing service that permits true
real-time search.

Reviewing existing work reveals tremendous advances toward solving the challenges of creating
interoperable Earth system cyberinfrastructures that can practically process a large volume and variety
of observation and model data that are generated in high-velocity data production processes. Lines of
work in metadata modeling, standardization, interoperability, repository crawling, and processing

189



ISPRS Int. J. Geo-Inf. 2019, 8, 494

provide the basis for the materials for our study. Our contribution is to synthesize these approaches to
explore how interoperability and performance could be achieved simultaneously.

4. Materials and Methods

To enable searching of big climate data, we propose a new big data cataloging solution, which
includes the following steps. (1) Analyze the target geodata repository that provides a good example
of data challenges for cross-disciplinary Earth system scientific collaboration. (2) Analyze the qualities
and characteristics of the data in the selected repository. (3) Construct a model of the repository. (4) Use
the repository model to construct an efficient metadata resource model. (5) Develop a crawler system
that uses repository and metadata resource models to optimize its crawling algorithm and metadata
representation. (6) Demonstrate advanced interoperable big geodata search and access capabilities that
our approach permits. The completed cyberinfrastructure model and system architecture (derived
from our metadata model) is shown in Figure 1.

Figure 1. The proposed big climate data cataloging solution. Abbreviations: CSW, Catalog Services for
the Web; REST API, Representational State Transfer Application Programming Interface.

4.1. Metadata Repository Selection

We took Unidata THREDDS Data Server (TDS) as our example target geodata repository platform.
TDS was chosen because it is widely used by atmospheric and other related Earth science fields. It
supports a good variety of open metadata and data standards and there exist many data centers that
use TDS. It supports basic catalog features but lacks advanced search capabilities. It gives users and
administrators large latitude of how the data is organized and updated inside the TDS catalog. The
geodata stored across many TDS installations meets our broad criteria for real-world data variety,
volume, and velocity.

A single TDS instance was selected as a target for our experiment. UCAR Unidata TDS
(thredds.ucar.edu) repository was determined as a suitable target system and a good example
of diverse uses of TDS. Unidata TDS contains a requisite variety of data. It has near real-time data that
demonstrate the data velocity challenge. It contains a variety of data granularity and a good range
in the size and complexity of datasets available. The volume of data and the volume of metadata is
sufficiently challenging. The catalog structure is heterogeneous—different types of data are organized
on different principles. On initial inspection, Unidata TDS was determined to be a great example of the
challenges we wanted to explore.
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Using manual inspection and basic statistical analysis via custom Python scripts, we started
mapping out the characteristics of the Unidata TDS information system. We tried to answer the
following questions: (a) What is the hierarchical structure of data organization in this repository?;
(b) how frequently are new records are added and removed?; (c) which parts of the catalog exhibit
regular patterns in the information structure that can be generalized and which parts contain unique
information?; (d) what are the size and content of the metadata resources stored in the catalog?; (e)
how is information in metadata resources related to metadata resources location within the hierarchy
of catalog structure?; and (f) what are the data transmission qualities of the Unidata TDS network
system—what portion of the TDS information can be transferred and copied to our system?

4.2. Repository Analysis

The following figures show some of the surface structure of the Unidata TDS catalog retrieved
using a web browser from http://thredds.ucar.edu/thredds/catalog.html. Figure 2 shows the top level
of the catalog hierarchy. Each listed item is a folder (a catalog). Most catalogs contain several levels
of nested catalogs (Figure 3) in a tree-like hierarchy similar to a file system. At the bottom (leaf) tree
level (Figure 4), the catalogs contain a list of data resources. Catalogs are presented in two formats.
First is the HTML format, suitable for manual web browsing. Second is the XML format that contains
additional metadata about the catalogs and the data resources. The XML representation follows
THREDDS Client Catalog Specification. The specification extends the basic filesystem-like structure
with temporal, spatial, and data variable description metadata annotations [74].

Figure 2. Top level Unidata THREDDS Data Server (TDS) catalog listing.

The TDS catalog provides a powerful general catalog hierarchy model. However, the practical use
of this model by scientists who produce geodata is what determines the possibility of data collaboration
and harmonization—as well as the specific shapes and possible solutions for big data problems. Email
correspondence with Unidata explained that the data placed in different sub-catalogs is produced
and organized by different teams of scientists. Although Unidata TDS acts as a unified repository
for diverse Earth data, there are no mandatory overarching organizing principles to enable data
harmonization [75].
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Figure 3. Nested catalogs. Only first 11 entries shown here. More entries omitted.

Figure 4. Data resource (dataset) listing at the bottom of the catalog hierarchy. Only first seven entries
shown here. More entries omitted.

That being the case, the next step was to understand and describe different sub-structures
organically adopted by different teams. After manual inspection and basic statistical analysis performed
with custom Python scripts, the following information was compiled to broadly describe the different
patterns of sub-catalog utilization (Table 1).

Table 1. Unidata TDS subcatalog big data characteristics.

Catalog
Sub-Catalogs/

Granules
Estimated

Catalogs Size
New Granule

Production
Granularity Regularity

NCEP Forecast 5300/5300 500 MB 6 h Coarse Regular
Observations 8/186 20 MB Irregular Coarse Irregular

Satellite 1500/71,000 150 MB 10 min Fine Regular

Radar 25,000/7 million 25 GB 5–10 min
(irregular) Very fine Irregular
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Four general types of data are simultaneously held in the Unidata TDS repository: (1) Forecast
model output, (2) observations (time series from in-situ instruments), (3) satellite imagery, and (4) radar
imagery from stationary radar network (NEXRAD, Next Generation Weather Radar) [76]. Each type
contains much additional variety in its own hierarchy of sub-catalogs, but at this level, there are some
clear and useful broad differences in data qualities that can guide our experiment.

In Table 1, the estimated catalog size is the total size of the metadata held in the catalog. Most
of this metadata is completely redundant, but without knowing the deeper structure of this data,
we would have to mirror all of this data in order to enable search and discovery capabilities that
THREDDS does not support. We calculated maximum data transfer throughput of 4 MB/s or 5 min
to load 1 GB of catalog data. It appears to be possible to mirror the entire Unidata TDS metadata
catalog in several hours, but data throughputs we observed were not consistent, often slowing down
by one order of magnitude. Furthermore, the speed of data processing (indexing and registering
with a standard-compliant OGC CSW catalog) is also very time, and compute and storage resource,
consuming. We do not have the capabilities to register and search millions of records mostly containing
redundant information. Furthermore, the Unidata TDS data were added in near real-time according
to specific patterns and structure in the sub-catalogs. If we attempted to copy and register all of that
metadata, then we would not have been able to provide near real-time capabilities.

The last two columns in Table 1 show two critical qualities that determine what approach we
needed to take to integrate that metadata into our systems.

If final datasets have “coarse” granularity, that means each dataset is a very file and the size of
metadata is small in relation to the data size—for “coarse” datasets, we can copy, harvest, and index the
metadata into our search system. “Fine” datasets stretch technical capabilities to transfer and process
metadata. “Very fine” records are too numerous (the data files too small) for us to be able to effectively
synchronize or process their metadata.

If datasets are produced in a regular way (predictable spatiotemporal attributes), then we can
harvest minimal information and model the entire catalog. However, for NEXRAD radar metadata,
there is no regular pattern to metadata production. A new record could be added every 5 min or every
15 min—and their regularity/irregularity also varies in time and depending on different radar sites
(different sub-catalogs). This fine-grained irregular data is the most challenging, because it can neither
be harvested wholesale nor modeled in an accurate way. It requires a targeted combination approach.
Additional considerations arise when tracking what datasets have expired and been removed—ideally,
this should be accomplished without performing an expensive full scan of the TDS repository.

Further examination of the sub-catalogs structure for irregular (and regular) highly granular
data revealed additional useful structural information. Some catalogs are “dynamic” (or “live” or
“streaming”)—they are updated with new data resources with regular (or irregular) frequency. Other
catalogs are archival—they can be assumed to never change (until they expire and are deleted entirely).
Three distinct types of sub-catalogs can be identified:

• Pure archival directories: These folders only contain old collections and granules and will never
be updated or deleted.

• Mixed archival directories: Some of the sub-folders contain archive material, some contain live,
streaming near real-time data granules and collections.

• Daily archival directories: Folders that contain streaming data for a given day; when the day
passes, this directory becomes an archive folder and does not need to be mirrored again. When
daily archives expire, all the data resources for that day are deleted together.

4.3. Crawling

Big data catalogs normally need to complete a lot of crawling tasks to grab metadata files, and
repeat scanning to capture metadata of the newly observed datasets on a regular basis. Crawling is
the fundamental information source of metadata, and how to intelligently crawl is one of the largest
challenges in big data searching due to the repeated computational burden and the complexity of
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the content. When designing our crawling strategy, we considered the observation update frequency,
time window, observatory network organization, and made the crawler only touch the folders of
those updated sensors at collection (sensor) level. Although a sensor has millions of metadata records,
we only crawl the metadata at the sensor level. In other words, only one metadata is crawled for
each sensor (or instrument). Using this strategy, we can save numerous hours in crawling and
metadata transferring over network, especially when the network is unstable. After applying a parallel
worker mechanism, we can have dozens of crawlers working on scanning and capturing new/updated
metadata of petabytes of climate datasets.

Our crawler is different from most existing crawlers in the literature, because it is not a
general-purpose search engine crawler. Typical crawlers download the entire web page, find links to
follow, and add those links to the work queue. We cannot do a similar thing, because the web content
we are crawling (TDS catalog) contains vastly redundant information that is not possible to download
and process in its entirety without overloading available computing and network resources. There
are various sensors in the climate monitoring networks and the sensors are dynamically changing,
with new sensors added or old sensors removed. We had to crawl the THREDDS Data Server to make
sure all the observations were fully synchronized in our catalog. Our crawler design must incorporate
knowledge of metadata and metadata structure its processing and queueing algorithms in order to
download only essential information.

4.4. Indexing

The third step is indexing, which extracts the spatiotemporal information from the crawled
metadata and creates indexes for data granules of times series by each instrument. CSW provides
the basic metadata registration and query model. However, the large granularity of metadata objects
(and lack of aggregation/relational capabilities) makes CSW inefficient for storing and querying large
numbers of datasets and that have only small variations in their metadata. A more efficient model is
needed. This is a long explored and essentially solved problem in computer science and informatics.
Theodoridis et al. [77] summarize the basic approach. For a time-evolving spatiotemporal object,
a snapshot of its evolution can be represented by a triplet {o_id, si, ti}—object id, space-stamp, and
time-stamp. This information allowed us to create a “repository production model” (Figure 5). We
identified patterns in the catalog hierarchical structure that allowed us to identify which paths in the
catalog folder hierarchy are “live” and which ones are “archival”. In our crawler implementation
(discussed in the next section), we used the structure path patterns to drive the crawler algorithm in
two stages—“full sync” stage, which copies the archival data, and “update” stage, which monitors and
refreshes the listing from “live” catalog paths.

Figure 5. Repository metadata production model.

The repository production model allows targeted crawling—however, the number of metadata
resources remains too large to harvest, process, and index in its entirety, even when done in two stages
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to avoid redundant harvesting. We needed a second model that encompasses the metadata information
structure (Figure 6). There are two issues we needed to solve: First is that most of the metadata in the
catalog is completely redundant; second is that metadata information scope is not consistent in the
catalog. The two issues have the same source: Catalogs, and sub-catalogs and data granules all can
have metadata attached.

Figure 6. Repository information model.

In these examples from Unidata TDS, we see that metadata is attached to the hierarchical catalog
structure in various ways. In the first example, a catalog contains some content metadata (for example:
Authorship), the sub-catalog contains additional content metadata (ex: Variable names) and spatial
metadata, while each granule contains temporal metadata. In the next two examples, the distribution
of metadata between catalogs and granules is different. The last example is a case where each catalog
only contains a single data record (granule). In some cases, the metadata is simply duplicated between
several catalog levels, while in others, one specific layer contains all metadata. Another important
detail is that the catalog hierarchy, the names of parent catalogs is also metadata for the data resources.

When combined, these two perspectives (information change model and information structure
model) produce a model of the Unidata TDS repository that can be used to develop efficient
(non-redundant) harvesting and representation of all contained metadata. By applying the production
model to our crawler design, we were able to harvest only the information we know had changed.
Knowing the structure of data changes also allowed us to perform targeted incremental harvesting
for near real-time discovery capability. We defined two types of objects: Collections and granules.
Collection contains content metadata (title, description, authorship, variable/band information, etc.).
Each collection contains one or more granules. Each granule contains only the spatiotemporal extent
metadata. The OGC CSW catalog standard does not support the composition of collections and
granules, so we used CSW to represent collections only, while granules had to be stored externally. We
used popular PyCSW software to hold collection metadata. We extended PyCSW with a PostgreSQL
relational database to store relations between collections and granules and granule metadata (Figure 7).

4.5. Two-Step Search Process

When the metadata is harvested into PyCSW and temporal granule index is saved in PostgreSQL,
the search clients can use these two data sources to retrieve final results for access. The search process
takes place in two steps. Initially, the client searches the PyCSW store using standard search methods
and queries. This returns a list of collection level results. To get a list of granules, the search client
sends a second query to the crawler service. The crawler service queries the granule index, refreshes
the index with the latest granules if needed, and returns a list of granules for the requested collection.
The search client can then use the collection level CSW record and combine it with selected granule
information to produce granule level CSW information. Figures 1 and 8–10 show these interactions
from systems architecture and event sequence perspectives.
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Figure 7. Metadata collection and granule resources stored in referentially linked PyCSW and
PostgreSQL databases. PyCSW gmd: fileIdentifier corresponds as a key to collections table name field
in the SQL database.

 

Figure 8. Implementation architecture for searching big data served via Unidata THREDDS Data Server
(TDS). Although in our study only UCAR TDS is used, the system is designed to support any TDS
repository as a data source.
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Figure 9. Simple granule index retrieval during search.

 
Figure 10. Granule index retrieval when granule temporal range is outside the range stored in the
index. Search triggers an additional step that immediately crawls the TDS catalog and updates the
real-time granule metadata. Abbreviations: DB, Database.

So far, we have analyzed the Unidata TDS repository structure, built a model of the repository
that can inform an effective crawling strategy, and defined the model for the product output for the
crawler. We have also described how a search client should function. To complete our experiment,
we built a crawler that follows our metadata model and demonstrates a web search capability for the
entire contents of Unidata TDS.
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5. Implementation

We implemented a module system within EarthCube CyberConnector [17,78,79] to realize the
proposed mode (Figure 8). The implementation included the searching server system and the client
system. We will introduce the searching capabilities enabled by these systems.

5.1. Crawler Service Implementation

We built a web crawler that traverses Unidata TDS and extracts and stores essential metadata
without using unnecessary resources. It is named ‘thredds-crawler’ and the source code is available
via a public GitHub repository: https://github.com/CSISS/thredds-crawler.

The crawler is written in Python. It was built using common open source libraries for HTTP API
interaction (Flask [https://www.fullstackpython.com/flask.html], Gunicorn [https://gunicorn.org/]),
general XML processing (libxml [https://lxml.de/}]), and database abstraction (SQLAlchemy [https:
//www.sqlalchemy.org/]). It uses native Python threading libraries to support concurrency. For
traversing the Unidata THREDDS catalog and retrieving metadata, it uses the Unidata provided
Python Siphon library [https://github.com/Unidata/siphon].

To support our big-data experiment requirements, the crawler is tightly integrated with a catalog
software PyCSW [https://pycsw.org/] and a PostgreSQL [https://www.postgresql.org/] database. The
crawler, PyCSW, and the database each run in a separate Docker [https://www.docker.com/] container.
For the sake of this demonstration, all three services run on the same machine and communicate over
the local network. The Docker-compose tool is used to connect and orchestrate the three containers.
This architecture allows simple scaling out to multiple machines using containers, which allows for
potential substantial improvement in system performance.

The crawler docker container runs as a web service hosted by Gunicorn—a python HTTP server
widely used for hosting web applications. It serves three HTTP API endpoints that perform the
following functions: Harvest, create index, and read index.

The harvest function loads the Unidata Catalog XML from specified catalog_url using Siphon
library. The catalog contains a list of datasets. TDS has a feature to translate its dataset metadata into
the ISO/OGC-compatible XML format. For each dataset being harvested, the harvester constructs a
query to TDS to retrieve ISO/OGC metadata for the dataset. The ISO/OGC metadata returned by TDS
is, however, often incomplete, inaccurate, or inconsistent in some way. The crawler harvesting process
then applies a chain of XML filters to the ISO/OGC metadata to rectify it with information from native
TDS dataset metadata. Once the metadata is downloaded and processed, it is saved in the PyCSW
database directly by using a PyCSW compatibility library.

Indexing is similar to harvesting, but involves a strategy for targeting datasets to be harvested
and additional processing steps. During index creation, TDS catalogs and datasets are turned into
collections and granules in our model. For each TDS dataset encountered, we determine the collection
name. Crucially, the collection name is not the name of the catalog containing the dataset. We found that
catalog names are inconsistent, but that TDS dataset ids contain consistent identification information. In
the TDS, dataset ids are kept unique by including timestamps in the dataset id. For example, in a dataset
with id “NWS/NEXRAD3/PTA/YUX/20190830/Level3_YUX_PTA_20190830_1713.nids”, the portion
“20190830_1713” is a timestamp. To turn TDS catalogs with datasets into collections with granules,
we remove the temporal information to construct the collection id. Then, we download the dataset
in the ISO/OGC XML format and transform its XML content with a filter function called “collection
builder”. This function updates the dataset metadata to turn it into a more general form that describes
the collection. It changes identifiers stored in the metadata. It also adds standard-compliant additional
fields that identify the metadata for describing “series” (“series” in ISO/OGC model, “collection” in our
model). This process needs to be done only for the first dataset encountered for each collection. When
processing additional datasets, the existing collection is reused. In TDS, the dataset spatiotemporal
extent information is part of the catalog metadata, which means that we only need to download a
single dataset metadata to build the collection metadata and we can index the remainder of granules
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from catalog metadata. This solves the redundancy issue that previously prevented TDS from being
searchable. We also correct TDS identifiers to ensure that the namespace authority portion of the
identifier is correctly set.

The following tables help illustrate the process of extract collections from a granule identifier
for multiple types of data. Table 2 shows the catalog paths of TDS datasets. Table 3 shows how the
collection identifier is generated, and Table 4 shows the final result collection name.

Table 2. Catalog paths of TDS datasets for three types of data. The catalog path hierarchy is marked in
green. The dataset filename is marked in red.

Data Type Example TDS Catalog Path

RADAR
Radar Data › NEXRAD Level III Radar › PTA › YUX › 20190830 ›
Level3_YUX_PTA_20190830_1713.nids

Model
Forecast Model Data › GEFS Members › Analysis ›
GEFS_Global_1p0deg_Ensemble_ana_20190731_0000.grib2 ›
GEFS_Global_1p0deg_Ensemble_ana_20190731_0000.grib2

Satellite
Satellite Data › GOES West Products › CloudAndMoistureImagery › Mesoscale-2 ›
Channel16 › 20190831 › OR_ABI-L2-CMIPM2-M6C16_G17_s20192430003570
_e20192430003570_c20192430003570.nc

Table 3. TDS dataset identifiers for three types of data. The portion of the identifiers that contain
temporal information is highlighted.

Data Type Example TDS Dataset Identifier

RADAR NWS/NEXRAD3/PTA/YUX/ 20190830 /Level3_YUX_PTA_ 20190830_1713 .nids

Model
grib/NCEP/GEFS/Global_1p0deg_Ensemble/members-analysis/
GEFS_Global_1p0deg_Ensemble_ana_ 20190731_0000 .grib2

Satellite

goes-west-products/CloudAndMoistureImagery/Mesoscale-2/Channel16/
20190831/OR_ABI-L2-CMIPM2-M6C16_G17
_ s20192430003570_e20192430003570_c20192430003570 .nc

Table 4. Collection identifiers for the example dataset IDs. They are calculated by removing temporal
information and prefixing an authority namespace field.

Data Type Calculated Example Dataset Collection Identifier

RADAR edu.ucar.unidata:NWS/NEXRAD3/PTA/YUX/Level3_YUX_PTA.nids

Model
edu.ucar.unidata:grib/NCEP/GEFS/Global_1p0deg_Ensemble/members-analysis/
GEFS_Global_1p0deg_Ensemble_ana.grib2

Satellite
edu.ucar.unidata:goes-west-products/CloudAndMoistureImagery/Mesoscale-2/
Channel16/OR_ABI-L2-CMIPM2-M6C16_G17.nc

When the index harvesting is complete, the collection information (OGC/ISO 19139 XML metadata
format) is stored in PyCSW. The granule information is stored in a compact SQL index store (Figure 7).
Once the index is created, it can be retrieved from the crawler web service using HTTP API (GET/index).
These requests take a collection name and temporal extent as parameters. Although our data model
includes granule spatial and temporal extent, at the time of publication, only temporal index queries
were implemented. It checks the index data store to see if the latest available granules are newer
than the requested time extent. If more recent granules are not required, the crawler returns a list of
granules in compact JSON format (Figure 9). However, if the index does not contain recent enough
granules, then the index service performs a partial “refresh” indexing of the TDS repository. It uses
the TDS catalog link stored in our PyCSW collection and re-runs the index process described here.
(Figure 10). However, as we discussed in the Experiment section, the TDS catalog is organized with
some sub-catalogs storing archival information, while others contain near real-time “live data”. The
crawler index refresh process takes advantage of that structure. It ignores the old sub-catalogs and only
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indexes those that contain more recent and unknown data. This makes near real-time index retrieval
fast and efficient.

Both harvesting and index creation use the same multi-threaded queue strategy to achieve higher
performance. Normally, most of the time is spent waiting for data to be transmitted over the network.
By using many threads, we can increase the saturation of both the network and local computer and
memory resources, which allows the metadata to become available much faster.

5.2. Search System Implementation

The search system is implemented based on the previously developed EarthCuber CyberConnector
infrastructure building block [17]. CyberConnector is a Java-based web application that supports
discovery and visualization of data from CSW catalogs [17]. We extended CyberConnector to support
accessing metadata harvested and indexed by the thredds-crawler described in the previous section.
We modified the CyberConnector Search Client to perform a two-stage search. The web application user
selects “Search” function (Figure 11). They select a time range, which is used by the thredds-crawler
index service to determine if granule refresh is needed. The web browser sends an AJAX request to the
CyberConnector web application with search parameters. CyberConnector queries thredds-crawler
PyCSW service for collections that match query parameters. It returns a list of collections. To see the
granules available in a collection, the user clicks the “List Granules” button (Figure 12). This issues
another request to CyberConnector for a granules list in the specified temporal extent. CyberConnector
web application proxies the granules list request to thredds-crawler indexing service, which returns a
list of granules (Figure 9); or thredds-crawler harvests TDS to update the index and then returns a
list of granules (Figure 10). The client receives a list of granules, which can then be downloaded or
visualized (Figure 13).

 

Figure 11. Search client web interface.
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Figure 12. Search results with “List Granules” button.

 

Figure 13. Granules list for a collection. The buttons allow users to view metadata, download the
dataset, or visualize it.

201



ISPRS Int. J. Geo-Inf. 2019, 8, 494

6. Experiment and Results

Based on the implemented catalog system, we conducted several experiments to validate the
feasibility of the proposed approach. The datasets for climate science are generally very large because
of their long-term running and high temporal resolution. We took the UCAR NEXRAD dataset [80] and
the RDA ASR dataset (53.09 terabytes) [81] as our demonstration examples. The searching capabilities
on the two datasets were established in the EarthCube CyberConnector. We made a complete set of
tests on the searcher and the results are introduced below.

6.1. Searching the NEXRAD Dataset

NEXRAD is a very important dataset for climate science research. It currently comprises
160 sites throughout the United States and selected overseas locations (as shown in Figure 14).
The basic original datasets, including three meteorological base data quantities: Reflectivity, mean
radial velocity, and spectrum width, are called Level II. The derived products are called Level
III, which include numerous meteorological analysis products. All NEXRAD Level-II data are
available via NCEI, as well as NOAA big data plan cloud providers, Amazon web service (http:
//thredds-aws.unidata.ucar.edu/thredds/catalog.html) and Google Cloud (https://cloud.google.com/
storage/docs/public-datasets/nexrad). UCAR provides the near real-time observed data via their
THREDDS data server (http://thredds.ucar.edu). Unfortunately, all these data repositories are still
non-searchable at present, because it is a huge challenge for any catalog to index and search such
big amount of metadata files for the frequently updated radar data records (every 6 min). We used
this dataset to prove that the proposed cataloging approach can work well on frequently updated
big datasets.

 

Figure 14. NOAA NCDC Radar Data Map (NEXRAD Level II and III).

The completed system consists of the harvester/indexer service and the search client that is
available to the user as a web application. As a result, users are able to search diverse heterogeneous
Earth system observation and modeling datasets simultaneously. Once the metadata is found, users
can use the CyberConnector visualization system to simultaneously visualize near real-time NEXRAD
radar, satellite observation, and forecast simulation model product data. The system performance
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characteristics of this approach are significantly improved over the existing naive method of harvesting
all of the datasets’ metadata.

6.2. Searching UCAR RDA (Research Data Archive) TDS Repository

NSF-funded NCAR CISL (Computational & Information System Lab) maintains Research Data
Archive (RDA), which stores over 11,000 terabytes of climate datasets in its high-performance data
storage system.

RDA hosts many climate datasets at present, and the Arctic System Reanalysis (ASR) is one of
them. ASR is a demonstration regional reanalysis for the greater Arctic developed by Ohio State
University. The ASR version 2 dataset (the latest version) is served via RDA with a total volume of
53.04 terabytes. The horizontal resolution is 15 km and the temporal coverage is from 2000 to 2016.
It has 34 pressure levels (71 model levels), 31 surface (including 3 soil variables), and 11 upper air
analysis variables, 71 surface (including 3 soil variables), and 17 upper air forecast variables.

RDA provides TDS for most of its archived datasets. We harvested the metadata of ASR from its
TDS and made them publicly available in CyberConnector. As shown in Figure 15, scientists can search
the ASR dataset by providing keywords, spatial extent, or temporal range. The ASR data is in NetCDF
format, which is displayable in COVALI. We demonstrated searching ASR dataset in COVALI and
visualized the temperature at 2 m above the surface within 12 h. COVALI and RDA were deployed in
two remotely distributed facilities. The interactions between COVALI and RDA big data storage were
conducted via the standard service interface and over the network. The experiment proves that the
proposed solution works well for enabling search on remote big data.

 

Figure 15. ASR (Arctic System Reanalysis) search results and visualization of the temperature at 2 m
above the surface in the CyberConnector COVALI visualization system.

6.3. Performance Evaluation

The traditional approach for cataloging climate datasets is fully harvesting all the metadata files
of every single data record. We implemented the searcher using the traditional method before, but the
performance was very slow and sustained operation not possible for the practical scenario for big data
cataloging. After we applied the new cataloging strategy, we tested it by crawling several hundreds
and thousands of records from UCAR THREDDS Data Server. We tested using different sets of parallel
workers: 40 workers, 20 workers, 10 workers, 5 workers, and a single worker, respectively, to measure
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the improvements of parallel crawling. Figure 16 displays the time cost of the test to compare the
performance of the traditional approach and the proposed approach. The results demonstrate that
the proposed approach outperforms the traditional approach at least ten times on the overall time
cost (from ~10 to ~1 s) and has significant improvements on harvesting speed, storage use, and search
speed based on the number of datasets being processed.

 
(a) 

 
(b) 

Figure 16. Performance comparison (time in seconds) of the traditional harvesting approach (a) and
our approach (b), sampled 5 times for crawling 125 records.

Search time cost has two components. The time to search for collections in the catalog and the
time to retrieve the granules list from the granule index. Figure 17 shows that search result retrieval is
extremely fast in our system.
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(a) 

 
(b) 

Figure 17. Search performance (time in seconds) with two different spatial extent parameters. (a) Time
to query the catalog (collection searching, step 1); (b) time to query the granule index (granule searching,
step 2).

The search currently supports filters, including keywords, data format, and spatiotemporal
extents. All of them are fixed filters with less uncertainties. Therefore, the returned results stay the
same as long as the metadata base does not add new records or delete existing records. The result
completeness is 100% accurate because correct records match the filter conditions. Users can narrow
down spatiotemporal extent based on their interest and provide one or more keywords which could
match the data field names. The first page relevance of the search results depend on the relationships
between the inputted keywords and the metadata field values. Based on our experiences with climate
scientists, we find that they normally do not input any keywords and only use spatiotemporal filters to
check out what can be searched in a catalog. Once they have a region of interest or a time window,
they then have an impression about what possible data is available. They come to the catalog just to
find the access URL to download or visualize the data files. Normally, results from our search client
are numerous because of the loose filters the scientists give. The results on the first page are usually
very well related to the scientists’ needs. A more intelligent search, such as a semantics-based search,
which could find more accurate first-page results with higher relevance, will be studied in the next
stage of work.
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7. Discussion

Our solution to the big data volume, variety, and velocity challenges discussed in the paper consists
of a novel metadata model, and cyberinfrastructure architecture and implementation that is derived
from the model. The metadata model combines the description of metadata content (the “information
model”) with the description of metadata repository structure and behavior. The cyberinfrastructure
consists of a crawler service that takes advantage of the metadata model to optimize THREDDS crawling
strategy to eliminate the transfer and processing of redundant metadata information. Additionally,
the metadata repository model permits the crawler service to perform incremental metadata transfer,
which enables real-time search capability. The demonstrated cyberinfrastructure also includes an
interoperable catalog service that uses the metadata model to minimize the storage of redundant
information. Finally, a search client that uses the catalog and the crawler services is implemented.

7.1. Can the Proposed Solution Address the Volume Challenge?

Metadata volume is ~25 GB for the UCAR RADAR dataset. The traditional method for harvesting
metadata (as discussed in Section 6.3) is able to process approximately one record (with an approximate
size of 100 KB) per second. To completely ingest all of THREDDS RADAR metadata at the observed
harvesting rate, it would take 250,000 s or ~70 h. By using the proposed metadata model and cataloging
system, we observe harvesting rates that are at least 10 times faster. This permits daily synchronization
of all Unidata TDS metadata.

7.2. Can the Proposed Solution Address the Velocity Challenge?

We determined that new (live) RADAR metadata is being generated at 330 records per minute.
Our maximum harvest capacity (constrained by Unidata THREDDS network capacity) is 60 records
per minute. Using the traditional method, we cannot keep up with the data velocity. Using the
indexing harvester approach, we can process up to 1400 records per minute. This exceeds the velocity
of THREDDS data production. Additionally, by using incremental index update during the client
search request exchange, we can target the indexing harvest process to the exact sub-catalog containing
the updated information and thus provide real-time search capability for this high-velocity data.

7.3. Can the Proposed Solution Reduce Metadata Crawling Redundancy?

The solution demonstrated here is able to reduce redundancy in crawling and storage resource
consumption. For example, using the traditional method with Forecast Models catalog, ~7000 records
are downloaded. The total storage used is 1.85 GB. The same metadata can be processed using our
approach by downloading only 45 sample metadata records (2.2 MB) that represent collection level
information. This represents a 99% reduction in data transmission and storage costs.

7.4. What Are the Benefits and Drawbacks of the Proposed Solution Compared to Other Big Data
Searching Strategies?

The solution demonstrates the expected benefits described at the beginning of this study. The
main drawback of this solution is the model and software system complexity. Custom software has to
be developed to intelligently process catalogs as they are being harvested. To get complete and accurate
results, the ingested metadata must be cleaned and transformed to fill in missing pieces of information
and to make it conform to our model. Although our approach is general enough to work with multiple
TDS repositories, in practice, inconsistencies and additional varieties from each repository must be
reconciled using custom code. Our work demonstrates that it is possible to build a unified and highly
efficient searchable catalog system for large and heterogeneous Earth system data repositories that
supports real-time queries; however, every solution has its limitations and costs. In this case, the costs
are complexity in software and systems architecture, which means increased software development
and maintenance costs.
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8. Conclusions

This paper proposed and demonstrated a novel cyberinfrastructure-based cataloging solution to
enable an efficient two-step search on big climatic datasets by leveraging the existing data centers and
state-of-art web service technologies. We used the huge datasets served by UCAR THREDDS Data
Server (TDS), which serves Petabyte-level ESOM data and updates hundreds of terabytes of data every
day, as our study dataset to validate its feasibility. We analyzed the metadata structure in TDS and
created an index for data parameters. A developed metadata registration model, which defines constant
information, delimits variable information, and exploits spatial and temporal coherence in metadata,
was constructed. The model derives a sampling strategy for a high-performance concurrent web
crawler bot which is used to mirror the essential metadata of the big data archive without overwhelming
network and computing resources. The metadata model, crawler, and standard-compliant catalog
service form an incremental search cyberinfrastructure, allowing scientists to near real-time search
in big climatic datasets. We experimented with the approach on both UCAR TDS and NCAR RDA
TDS, and the results prove that the proposed approach achieves its design goal, which is a significant
breakthrough for the current most non-searchable climate data servers. The solution identified
redundant information and determined the sampling frequencies to keep unpredictable parts of
the source catalog synchronized with our downstream mirror catalog. An automated hierarchical
crawler–indexer and a complimentary search system using the pre-existing EarthCube CyberConnector
were implemented. Metadata crawling and access performance validates our integrated approach
as an effective method for dealing with big data challenges posed by heterogeneous, real-time Earth
System Observation and Model data. However, although the proposed approach outperforms the
traditional searching solution for big data, it is still time-consuming in both crawling and searching
processes, and may be out of pace dealing with real-time streaming data. In the future, we will study to
further reduce the time spent in crawling redundant metadata and to find a high-performance method
for rapid and intelligent search.

Author Contributions: Conceptualization, Liping Di and Ziheng Sun; methodology, Ziheng Sun and Juozas
Gaigalas; software, Juozas Gaigalas and Ziheng Sun; validation, Juozas Gaigalas, Ziheng Sun; formal analysis,
Liping Di, Ziheng Sun, and Juozas Gaigalas; investigation, Juozas Gaigalas; resources, Liping Di; data curation,
Juozas Gaigalas, Ziheng Sun, and Liping Di; writing—original draft preparation, Juozas Gaigalas; writing–review
an Editing, Liping Di and Ziheng Sun; visualization, Juozas Gaigalas and Ziheng Sun; supervision, Liping Di and
Ziheng Sun; project administration, Liping Di and Ziheng Sun; funding acquisition, Liping Di.

Funding: This research was funded by the National Science Foundation, grant number AGS-1740693 &
CNS-1739705; PI: Liping Di.

Acknowledgments: We sincerely thank UCAR, UCAR Unidata Support Team, and the authors of the software,
libraries, tools, and datasets that we have used in this work.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Wright, D.J.; Wang, S. The emergence of spatial cyberinfrastructure. Proc. Natl. Acad. Sci. USA 2011, 108,
5488–5491. [CrossRef] [PubMed]

2. CyberinfrastruCture Vision for 21st Century DisCoVery; National Science Foundation Cyberinfrastructure
Council: Arlington, VA, USA, 2007.

3. Yang, C.; Goodchild, M.; Gahegan, M. Geospatial Cyberinfrastructure: Past, present and future. Comput.
Environ. Urban Syst. 2010, 34, 264–277. [CrossRef]

4. Yue, P.; Gong, J.; Di, L.; Yuan, J.; Sun, L.; Sun, Z.; Wang, Q. GeoPW: Laying Blocks for the Geospatial
Processing Web. Trans. GIS 2010, 14, 755–772. [CrossRef]

5. Di, L. Geospatial Sensor Web and Self-adaptive Earth Predictive Systems (SEPS). In Proceedings of the Earth
Science Technology Office (ESTO)/Advanced Information System Technology (AIST) Sensor Web Principal
Investigator (PI) Meeting, San Diego, CA, USA, 13 February 2007.

207



ISPRS Int. J. Geo-Inf. 2019, 8, 494

6. Zhao, P.; Yu, G.; Di, L. Geospatial Web Services. In Emerging Spatial Information Systems and Applications, 1st
ed.; IGI Global: Hershey, PA, USA, 2006; pp. 1–35.

7. Shukla, J.; Palmer, T.N.; Hagedorn, R.; Hoskins, B.; Kinter, J.; Marotzke, J.; Miller, M.; Slingo, J.; Shukla, J.;
Palmer, T.N.; et al. Toward a New Generation of World Climate Research and Computing Facilities. Bull.
Am. Meteorol. Soc. 2010, 91, 1407–1412. [CrossRef]

8. Sherretz, L.A.; Fulker, D.W. Unidata: Enabling Universities to Acquire and Analyze Scientific Data. Bull. Am.
Meteorol. Soc. 1988, 69, 373–376. [CrossRef]

9. Schnase, J.L.; Duffy, D.Q.; Tamkin, G.S.; Nadeau, D.; Thompson, J.H.; Grieg, C.M.; McInerney, M.A.;
Webster, W.P. MERRA Analytic Services: Meeting the Big Data challenges of climate science through
cloud-enabled Climate Analytics-as-a-Service. Comput. Environ. Urban Syst. 2017, 61, 198–211. [CrossRef]

10. Khan, M.A.; Uddin, M.F.; Gupta, N. Seven V’s of Big Data understanding Big Data to extract value. In
Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education, Bridgeport,
CT, USA, 3–5 April 2014; pp. 1–5.

11. Habermann, T. Metadata Life Cycles, Use Cases and Hierarchies. Geosciences 2018, 8, 179. [CrossRef]
12. Greenberg, J. Metadata and the World Wide Web. Encycl. Libr. Inf. Sci. 2003, 3, 1876–1888.
13. Li, S.; Dragicevic, S.; Castro, F.A.; Sester, M.; Winter, S.; Coltekin, A.; Pettit, C.; Jiang, B.; Haworth, J.; Stein, A.;

et al. Geospatial big data handling theory and methods: A review and research challenges. ISPRS J.
Photogramm. Remote Sens. 2016, 115, 119–133. [CrossRef]

14. Bernard, L.; Mäs, S.; Müller, M.; Henzen, C.; Brauner, J. Scientific geodata infrastructures: Challenges,
approaches and directions. Int. J. Digit. Earth 2014, 7, 613–633. [CrossRef]

15. Domenico, B.; Caron, J.; Davis, E.; Kambic, R.; Nativi, S. Thematic Real-Time Environmental Distributed
Data Services (THREDDS): Incorporating Interactive Analysis Tools into NSDL; Multimedia Research Group,
University of Southampton: Southampton, UK, 1997; Volume 2.

16. John Caron, U.; Davis, E. UNIDATA’s THREDDS data server. In Proceedings of the 22nd International
Conference on Interactive Information Processing Systems for Meteorology, Oceanography, and Hydrology,
Atlanta, GA, USA, 27 January–3 February 2006.

17. Sun, Z.; Di, L.; Hao, H.; Wu, X.; Tong, D.Q.; Zhang, C.; Virgei, C.; Fang, H.; Yu, E.; Tan, X.; et al.
CyberConnector: A service-oriented system for automatically tailoring multisource Earth observation data
to feed Earth science models. Earth Sci. Inform. 2018, 11, 1–17. [CrossRef]

18. Di, L.; Sun, Z.; Yu, E.; Song, J.; Tong, D.; Huang, H.; Wu, X.; Domenico, B. Coupling of Earth science
models and earth observations through OGC interoperability specifications. In Proceedings of the 2016
IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016;
pp. 3602–3605.

19. Di, L.; Sun, Z.; Zhang, C. Facilitating the Easy Use of Earth Observation Data in Earth system Models through
CyberConnector. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 11–15 December 2017.
Abstract #IN21D-0072.

20. Sun, Z.; Di, L. CyberConnector COVALI: Enabling inter-comparison and validation of Earth science models.
In Proceedings of the AGU Fall Meeting, Washington, DC, USA, 10–14 December 2018. Abstract #IN23B-0780.

21. Schellnhuber, H.J. ‘Earth system’ analysis and the second Copernican revolution. Nature 1999, 402, C19–C23.
[CrossRef]

22. Calvin, K.; Bond-Lamberty, B. Integrated human-earth system modeling—State of the science and future
directions. Environ. Res. Lett. 2018, 13, 063006. [CrossRef]

23. Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.-F.; Large, W.G.;
Lawrence, D.; Lindsay, K.; et al. The Community Earth system Model: A Framework for Collaborative
Research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [CrossRef]

24. Reid, W.V.; Bréchignac, C.; Tseh Lee, Y. Earth system research priorities. Science 2009, 325, 245. [CrossRef]
[PubMed]

25. Lovelock, J. Gaia: The living Earth. Nature 2003, 426, 769–770. [CrossRef]
26. Holm, P.; Goodsite, M.E.; Cloetingh, S.; Agnoletti, M.; Moldan, B.; Lang, D.J.; Leemans, R.; Moeller, J.O.;

Buendía, M.P.; Pohl, W.; et al. Collaboration between the natural, social and human sciences in Global
Change Research. Environ. Sci. Policy 2013, 28, 25–35. [CrossRef]

27. Burnett, K.; Ng, K.B.; Park, S. A comparison of the two traditions of metadata development. J. Am. Soc. Inf.
Sci. 1999, 50, 1209–1217. [CrossRef]

208



ISPRS Int. J. Geo-Inf. 2019, 8, 494

28. Di, L.; Moe, K.L.; Yu, G. Metadata requirements analysis for the emerging Sensor Web. Int. J. Digit. Earth
2009, 2, 3–17. [CrossRef]

29. Di, L.; Schlesinger, B.M.; Kobler, B.U.S. Federal Geographic Data Committee (FGDC) Content Standard for Digital
Geospatial Metadata; Federal Geographic Data Committee: Reston, VA, USA, 2000.

30. Yue, P.; Gong, J.; Di, L. Augmenting geospatial data provenance through metadata tracking in geospatial
service chaining. Comput. Geosci. 2010, 36, 270–281. [CrossRef]

31. Di, L.; Kobler, B. NASA Standards for Earth Remote Sensing Data. Int. Arch. Photogramm. Remote Sens. 2000,
33, 147–155.

32. Yue, P.; Sun, Z.; Gong, J.; Di, L.; Lu, X. A provenance framework for Web geoprocessing workflows. In
Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC,
Canada, 24–29 July 2011; pp. 3811–3814.

33. Sun, Z.; Yue, P.; Di, L. GeoPWTManager: A task-oriented web geoprocessing system. Comput. Geosci. 2012,
47, 34–45. [CrossRef]

34. Sun, Z.; Yue, P.; Lu, X.; Zhai, X.; Hu, L. A Task Ontology Driven Approach for Live Geoprocessing in a
Service-Oriented Environment. Trans. GIS 2012, 16, 867–884. [CrossRef]

35. Sun, Z.; Peng, C.; Deng, M.; Chen, A.; Yue, P.; Fang, H.; Di, L. Automation of Customized and Near-Real-Time
Vegetation Condition Index Generation Through Cyberinfrastructure-Based Geoprocessing Workflows. IEEE
J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4512–4522. [CrossRef]

36. Tan, X.; Di, L.; Deng, M.; Huang, F.; Ye, X.; Sha, Z.; Sun, Z.; Gong, W.; Shao, Y.; Huang, C.
Agent-as-a-service-based geospatial service aggregation in the cloud: A case study of flood response.
Environ. Model. Softw. 2016, 84, 210–225. [CrossRef]

37. Sun, Z.; Di, L.; Zhang, C.; Fang, H.; Yu, E.; Lin, L.; Tang, J.; Tan, X.; Liu, Z.; Jiang, L.; et al. Building robust
geospatial web services for agricultural information extraction and sharing. In Proceedings of the 2017 6th
International Conference on Agro-Geoinformatics, Fairfax, VA, USA, 7–10 August 2017; pp. 1–4.

38. Tan, X.; Di, L.; Deng, M.; Chen, A.; Sun, Z.; Huang, C.; Shao, Y.; Ye, X. Agent-and Cloud-Supported Geospatial
Service Aggregation for Flood Response. ISPRS Ann Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 2, 13–18.
[CrossRef]

39. Jiang, L.; Sun, Z.; Qi, Q.; Zhang, A. Spatial Correlation between Traffic and Air Pollution in Beijing. Prof.
Geogr. 2019, 71, 654–667. [CrossRef]

40. Liang, L.; Geng, D.; Huang, T.; Di, L.; Lin, L.; Sun, Z. VCI-based Analysis of Spatio-temporal Variations of
Spring Drought in China from 1981 to 2015. In Proceedings of the 2019 8th International Conference on
Agro-Geoinformatics (Agro-Geoinformatics), Stanbul, Turkey, 16–19 July 2019; pp. 1–6.

41. Zhong, S.; Di, L.; Sun, Z.; Xu, Z.; Guo, L. Investigating the Long-Term Spatial and Temporal Characteristics
of Vegetative Drought in the Contiguous United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019,
12, 836–848. [CrossRef]

42. Zhong, S.; Xu, Z.; Sun, Z.; Yu, E.; Guo, L.; Di, L. Global vegetative drought trend and variability
analysis from long-term remotely sensed data. In Proceedings of the 2019 8th International Conference on
Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–6.

43. Bai, Y.; Di, L. Providing access to satellite imagery through OGC catalog service interfaces in support of the
Global Earth Observation System of Systems. Comput. Geosci. 2011, 37, 435–443. [CrossRef]

44. Chen, Z.; Chen, N. Use of service middleware based on ECHO with CSW for discovery and registry of
MODIS data. Geo-Spat. Inf. Sci. 2010, 13, 191–200. [CrossRef]

45. Bai, Y.; Di, L.; Wei, Y. A taxonomy of geospatial services for global service discovery and interoperability.
Comput. Geosci. 2009, 35, 783–790. [CrossRef]

46. Chen, N.; Di, L.; Yu, G.; Gong, J.; Wei, Y. Use of ebRIM-based CSW with sensor observation services for
registry and discovery of remote-sensing observations. Comput. Geosci. 2009, 35, 360–372. [CrossRef]

47. Di, L.; Yu, G.; Shao, Y.; Bai, Y.; Deng, M.; McDonald, K.R. Persistent WCS and CSW services of GOES data
for GEOSS. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium,
Honolulu, HI, USA, 25–30 July 2010; pp. 1699–1702.

48. Hu, C.; Di, L.; Yang, W. The research of interoperability in spatial catalogue service between CSW and
THREDDS. In Proceedings of the 2009 17th International Conference on Geoinformatics, Fairfax, VA, USA,
12–14 August 2009; pp. 1–5.

209



ISPRS Int. J. Geo-Inf. 2019, 8, 494

49. Bai, Y.; Di, L.; Chen, A.; Liu, Y.; Wei, Y. Towards a Geospatial Catalogue Federation Service. Photogramm. Eng.
Remote Sens. 2007, 73, 699–708. [CrossRef]

50. Spéry, L.; Claramunt, C.; Libourel, T. A Spatio-Temporal Model for the Manipulation of Lineage Metadata.
Geoinformatica 2001, 5, 51–70. [CrossRef]

51. She, J.; Feng, X.; Liu, B.; Xiao, P.; Wang, P. Conceptual Data Modeling on the Evolution of the Spatiotemporal Object;
Chen, J., Pu, Y., Eds.; International Society for Optics and Photonics: The Hague, The Netherlands, 2007;
Volume 6753, p. 67530H.

52. Simmhan, Y.L.; Plale, B.; Gannon, D. A survey of data provenance in e-science. ACM SIGMOD Rec. 2005, 34,
31–36. [CrossRef]

53. Sun, Z.; Yue, P.; Hu, L.; Gong, J.; Zhang, L.; Lu, X. GeoPWProv: Interleaving Map and Faceted Metadata for
Provenance Visualization and Navigation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5131–5136.

54. Di, L.; Shao, Y.; Kang, L. Implementation of Geospatial Data Provenance in a Web Service Workflow
Environment with ISO 19115 and ISO 19115-2 Lineage Model. IEEE Trans. Geosci. Remote Sens. 2013, 51,
5082–5089.

55. West, L.A.; Hess, T.J. Metadata as a knowledge management tool: Supporting intelligent agent and end user
access to spatial data. Decis. Support Syst. 2002, 32, 247–264. [CrossRef]

56. Nogueras, J.; Zarazaga, F.J.; Muro, R.P. Interoperability between metadata standards. In Geographic Information
Metadata for Spatial Data Infrastructures; Springer: Berlin/Heidelberg, Germany, 2005; pp. 89–127.

57. Zhao, P. Geospatial Web Services: Advances in Information Interoperability: Advances in Information Interoperability;
IGI Global: Hershey, PA, USA, 2010.

58. Haslhofer, B.; Klas, W. A survey of techniques for achieving metadata interoperability. ACM Comput. Surv.
2010, 42, 7. [CrossRef]

59. Wei, Y.; Di, L.; Zhao, B.; Liao, G.; Chen, A. Transformation of HDF-EOS metadata from the ECS model to ISO
19115-based XML. Comput. Geosci. 2007, 33, 238–247. [CrossRef]

60. Di, L. The development of remote-sensing related standards at FGDC, OGC, and ISO TC 211. In Proceedings
of the 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2003), Toulouse, France,
21–25 July 2003; Volume 1, pp. 643–647.

61. Di, L. Distributed geospatial information services-architectures, standards, and research issues. Int Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35 Pt 2.

62. ISO. ISO 19115: Geographic Information—Metadata; ISO: Geneva, Switzerland, 2013.
63. Bhattacharya, A.; Culler, D.E.; Ortiz, J.; Hong, D.; Whitehouse, K.; Culler, D. Enabling Portable Building

Applications through Automated Metadata Transformation; University of California at Berkeley: Berkeley, CA,
USA, 2014.

64. Nogueras-Iso, J.; Zarazaga-Soria, F.J.J.; Be´jarbe´jar, R.; Lvarez, P.J.A.; Muro-Medrano, P.R.R.; Béjar, R.;
Álvarez, P.J.; Muro-Medrano, P.R.R. OGC Catalog Services: A key element for the development of Spatial
Data Infrastructures. Comput. Geosci. 2005, 31, 199–209. [CrossRef]

65. Sun, Z.; Di, L.; Gaigalas, J. SUIS: Simplify the use of geospatial web services in environmental modelling.
Environ. Model. Softw. 2019, 119, 228–241. [CrossRef]

66. Singh, G.; Bharathi, S.; Chervenak, A.; Deelman, E.; Kesselman, C.; Manohar, M.; Patil, S.; Pearlman, L. A
Metadata Catalog Service for Data Intensive Applications. In Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing, Phoenix, AZ, USA, 15–21 November 2003.

67. Tan, X.; Di, L.; Deng, M.; Fu, J.; Shao, G.; Gao, M.; Sun, Z.; Ye, X.; Sha, Z.; Jin, B. Building an Elastic Parallel
OGC Web Processing Service on a Cloud-Based Cluster: A Case Study of Remote Sensing Data Processing
Service. Sustainability 2015, 7, 14245–14258. [CrossRef]

68. Desai, K.; Devulapalli, V.; Agrawal Asst, S.; Kathiria Asst, P.; Patel Professor, A. Web Crawler: Review of
Different Types of Web Crawler, Its Issues, Applications and Research Opportunities. Int. J. Adv. Res. Comput.
Sci. 2017, 8, 1199–1202.

69. Li, W.; Wang, S.; Bhatia, V. PolarHub: A large-scale web crawling engine for OGC service discovery in
cyberinfrastructure. Comput Environ Urban Syst. 2016, 59, 195–207. [CrossRef]

70. Pallickara, S.L.; Pallickara, S.; Zupanski, M.; Sullivan, S. Efficient Metadata Generation to Enable Interactive
Data Discovery over Large-scale Scientific Data Collections. In Proceedings of the 2010 IEEE Second
International Conference on Cloud Computing Technology and Science, Indianapolis, IN, USA, 30
November–3 December 2010.

210



ISPRS Int. J. Geo-Inf. 2019, 8, 494

71. Lopez, L.A.; Khalsa, S.J.S.; Duerr, R.; Tayachow, A.; Mingo, E. The BCube Crawler: Web Scale Data and
Service Discovery for EarthCube. In Proceedings of the AGU Fall Meeting, San Francisco, CA, USA, 15–19
December 2014. Abstracts IN51C-06.

72. Khalsa, S.J.S. Data and Metadata Brokering–Theory and Practice from the BCube Project. Data Sci. J. 2017,
16, 1–8. [CrossRef]

73. Song, J.; Di, L. Near-Real-Time OGC Catalogue Service for Geoscience Big Data. ISPRS Int. J. Geo-Inf. 2017, 6,
337. [CrossRef]

74. Unidata THREDDs Client Catalog Spec 1.0.7. Available online: https://www.unidata.ucar.edu/software/tds/
current/catalog/InvCatalogSpec.html (accessed on 26 August 2019).

75. Unidata THREDDS Support [THREDDS #BIA-775104]: Unidata THREDDs Metadata Structure and Volume.
Juozasgaigalas@gmail.com. Gmail. Available online: https://mail.google.com/mail/u/0/#search/Unidata+
THREDDs+metadata+structure+and+volume/FMfcgxvwzcCgSZmpPZsQFqdjLlCkPNfm (accessed on 26
August 2019).

76. Ansari, S.; Del Greco, S.; Kearns, E.; Brown, O.; Wilkins, S.; Ramamurthy, M.; Weber, J.; May, R.; Sundwall, J.;
Layton, J.; et al. Unlocking the Potential of NEXRAD Data through NOAA’s Big Data Partnership. Bull. Am.
Meteorol. Soc. 2018, 99, 189–204. [CrossRef]

77. Theodoridis, Y.; Sellis, T.; Papadopoulos, A.N.; Manolopoulos, Y. Specifications for Efficient Indexing in
Spatiotemporal Databases. In Proceedings of the Tenth International Conference on Scientific and Statistical
Database Management, Capri, Italy, 3 July 1998.

78. Zhang, C.; Di, L.; Sun, Z.; Lin, L.; Yu, E.G.; Gaigalas, J. Exploring cloud-based Web Processing Service: A case
study on the implementation of CMAQ as a Service. Environ. Model. Softw. 2019, 113, 29–41. [CrossRef]

79. Aronson, E.; Ferrini, V.; Gomez, B. Geoscience 2020: Cyberinfrastructure to Reveal the Past, Comprehend the
Present, and Envision the Future; National Science Foundation: Alexandria, VA, USA, 2015.

80. Heiss, W.H.; McGrew, D.L.; Sirmans, D. Nexrad: Next generation weather radar (WSR-88D). Microw. J. 1990,
33, 79–89.

81. Bromwich, D.H.; Wilson, A.B.; Bai, L.; Liu, Z.; Barlage, M.; Shih, C.-F.; Maldonado, S.; Hines, K.M.; Wang, S.-H.;
Woollen, J.; et al. The Arctic System Reanalysis, Version 2. Bull. Am. Meteorol. Soc. 2018, 99, 805–828.
[CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

211





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

ISPRS International Journal of Geo-Information Editorial Office
E-mail: ijgi@mdpi.com

www.mdpi.com/journal/ijgi





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03943-245-5 


	Blank Page

