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Preface to “Differential Geometrical Theory of 
Statistics” 

 
 
This Special Issue “Differential Geometrical Theory of Statistics” collates selected invited and 

contributed talks presented during the conference GSI'15 on “Geometric Science of Information” 
which was held at the Ecole Polytechnique, Paris-Saclay Campus, France, in October 2015 
(Conference web site: http://www.see.asso.fr/gsi2015). 

Let us first start with a short historical review on the birth of the interplay of probability with 
geometry and computing, which is rooted in the 17th century. 

1. Preamble: Aleae Geometria, the Geometry of Chance by Blaise Pascal 

The “calculation of probabilities” began four years after the death of René Descartes, in 1654, 
in a correspondence between Blaise Pascal and Pierre Fermat. They exchanged letters on elementary 
problems of gambling, in this case a problem of dice and a problem of “parties”. Pascal and Fermat 
were particularly interested by this problem and succeeded in “Party rule” by two different 
methods.  One understands the legitimate pride of Pascal in his address of the same year at the 
Académie Parisienne created by Mersenne, to which he presented “the ripe fruit of our Geometry” 
(“les fruits mûrs de notre Géométrie” in French), an entirely new treaty about an absolutely unexplored 
matter, the distribution of chance in games. In the same way, Pascal, in his introduction to “Les 
Pensées”, wrote that under the influence of what Méré has given to the game, he throws the bases 
of the calculation of probabilities and composes the Treatise of the Arithmetical Triangle. If Pascal 
appears at first sight as the initiator of the calculation of probabilities, looking a little closer, its role 
in the emergence of this theory is more complex. However, there is no trace of word probabilities in 
Pascal's work. To designate what might resemble what we now call calculation of probabilities, one 
does not even find the word in such a context. The only occurrences of probability are found in “Les 

http://www.see.asso.fr/gsi2015
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Provinciales” where he referred to the doctrine of the Jesuits, or in “Les Pensées”. In Pascal’s 
writings, we do not find the words of “Doctrine des chances” or “Calcul des chances”, but only 
“Géométrie du hasard” (geometry of chance). In 1654, Blaise Pascal submitted a short paper to 
“Celeberrimae matheseos Academiae Parisiensi” (ancestor of the French Royal Academy of Sciences 
founded in 1666), with the title “Aleae Geometria” (Geometry of Chance) or “De compositione aleae in 
ludis ipsi subjectis”, which was the seminal paper founding Probability as a new discipline in 
Science. In this paper, Pascal said “… et sic matheseos demonstrationes cum aleae incertitudine 
jugendo, et quae contraria videntur conciliando, ab utraque nominationem suam accipiens, 
stupendum hunc titulum jure sibi arrogat: Aleae Geometria” that we can translate as “By the union 
thus realized between the demonstrations of mathematics and the uncertainty of chance, and by the 
conciliation of apparent contradictions, it can derive its name from both sides and arrogate to itself this 
astonishing title: Geometry of Chance” (« … par l’union ainsi réalisée entre les démonstrations des 
mathématiques et l’incertitude du hasard, et par la conciliation entre les contraires apparents, elle peut tirer 
son nom de part et d’autre et s’arroger à bon droit ce titre étonnant: Géométrie du Hasard ». We can observe 
that Blaise Pascal attached a geometrical sense to probabilities in this seminal paper.  Like Jacques 
Bernoulli, we can also provide references to another Blaise Pascal document entitled “Art de penser” 
(the “Logique” of Port-Royal), published the year of his death (1662), the last chapters of which 
contain elements on the calculus of probabilities applied to history, medicine, miracles, literary 
criticism, and life events, etc. 

 

 

Figure 1. Blaise Pascal and His Seminal Text on « Aleae Geometria » 

In “De l'esprit géométrique », the use of reason for knowledge is thought on a geometric 
model. In geometry, the first principles are given by the natural lights common to all men, and there 
is no need to define them. Other principles are clearly defined by definitions of names such that it is 
always possible to mentally substitute the definition for the defined. These definitions of names are 
completely free, the only condition to be respected is univocity and invariability.  Judging his 
solution as one of his most important contributions to science, Pascal envisioned the drafting of a 
small treatise entitled “Géométrie du Hasard” (Geometry of Chance). He would never write it. 
Inspired by this, Christian Huygens wrote the first treatise on the calculation of chances, the “De 
ratiociniis in ludo aleae” (“On calculation in games of chance”, 1657). We can conclude this preamble 
by observing that Blaise Pascal’s seminal work on Probability was inspired by Geometry. The 
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objective of this edited book is to come back to this initial idea that we can geometrize statistics in a 
rigorous way.  

We can also make reference to Blaise Pascal for this book on computing geometrical statistics, 
because he was the inventor of the computer with his “Pascaline” machine. The introduction of 
Pascaline marks the beginning of the development of mechanical calculus in Europe. This 
development, which will traverse from the calculating machines to the electrical and electronic 
calculators of the following centuries, will culminate with the invention of the microprocessor. 
However, it was also Charles Babbage who conceived his analytical machine from 1834 to 1837, a 
programmable calculating machine which was the ancestor of the computers of the 1940s, 
combining the inventions of Blaise Pascal and Jacquard’s machine, with instructions written on 
perforated cards. One of the descendants of the Pascaline, this was the first machine which 
performed with the intelligence of man. 

 

Figure 2. La « pascaline », Computing Machine, Blaise Pascal 1645 

 Before introducing the chapters of this book, let us recall that the modern birth of information 
geometry in the 20th century started with the differential-geometric modeling of parametric family 
of distributions in the pioneer work of Professor Harold Hotelling in 1929 and in Prodessor Maurice 
Fréchet Lecture at IHP (Institut Henri Poincaré, Paris) during Winter 1939. 

   Professor Hotelling spent half a year collaborating with Sir Ronald A. Fisher on setting the 
firm foundation of mathematical statistics in Rothamsted Research (UK) [20–22]. He submitted a 
groundbreaking note entitled “Spaces of Statistical Parameters” to the American Mathematical 
Society (AMS) meeting in 1929. Since he did not join the meeting, the note was nevertheless read by 
Prof. O. Ore. In this work, he introduced the Fisher information metric and the induced Riemannian 
geometry for modeling parametric family of distributions. C. R. Rao later independently introduced 
this geometric structure in his celebrated paper entitled “Information and the accuracy attainable in 
the estimation of statistical parameters” (1945). This paper is truly exceptional since it introduces 
three key results: (1) Cramér-Rao lower bound, (2) Riemannian geometry of statistical spaces,  
and (3) Rao-Blackwellization of estimators. 
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   In 1943, Maurice Fréchet wrote a seminal paper (developing elements of his Winter 1939 
Lecture at Institut Henri Poincaré in Paris) [23,24] introducing what was then called the Cramer-Rao 
bound. This paper contains in fact much more than this important discovery. In particular, Maurice 
Fréchet introduces more general notions relative to "distinguished functions", densities with 
estimator reaching the bound, defined with a function, solution of Clairaut’s equation. The 
solutions “envelope of the Clairaut’s equation” are related to standard Legendre transform and 
basic structures of Information Geometry. This Fréchet’s analysis can also be revisited on the basis 
of Jean-Louis Koszul works as seminal foundation of “Information Geometry” based on Legendre-
Clairaut equation. 

   We can also make references to De Moivre and Leibnitz contributions in seminal 
development of Probability [25–27] and give reference to papers written on History of  
probability [28–32]. 

We thank all the contributors of this edited book for further pushing the envelope of the 
geometrization of statistics in novel directions. 

This edited book is organized in six chapters as follows: 

Chapter I: Geometric Thermodynamics of Jean-Marie Souriau 

This first chapter introduces and develops Jean-Marie Souriau’s (1922-2012) model of Lie 
group thermodynamics and relativistic thermodynamics of continua. The contributions are listed 
below: 

• From Tools in Symplectic and Poisson Geometry to J.-M. Souriau’s Theories of Statistical 
Mechanics and Thermodynamics by Charles-Michel Marle 

• Geometric Theory of Heat from Souriau Lie Groups Thermodynamics and Koszul Hessian 
Geometry: Applications in Information Geometry for Exponential Families by Frédéric 
Barbaresco 

• Link between Lie Group Statistical Mechanics and Thermodynamics of Continua by Géry de 
Saxcé 

Chapter II: Koszul-Vinberg Model of Hessian Information Geometry 

The second chapter deals with Jean-Louis Koszul’s model of Hessian Information Geometry 
based on Koszul-Vinberg’s characteristic function and the homology theory of Koszul-Vinberg 
algebroids and their modules (KV homology). The two contributions are: 

• Foliations-Webs-Hessian Geometry-Information Geometry-Entropy and Cohomology (IN 
MEMORIAM OF ALEXANDER GROTHENDIECK) by Michel Nguiffo Boyom 

• Explicit Formula of Koszul–Vinberg Characteristic Functions for a Wide Class of Regular Convex 
Cones by Hideyuki Ishi 

Chapter III: Divergence Geometry and Information Geometry 

The third chapter develops new algorithms related to the area of divergence geometry 
(minimum divergence estimator, Rényi divergence) and Information Geometry: Mixture of 
densities, Expectations on q-Exponential Family, Sparse Goodness-of-Fit Testing. 

The five contributions are: 

• A Proximal Point Algorithm for Minimum Divergence Estimators with Application to Mixture 
Models by Diaa Al Mohamad and Michel Broniatowski 

• Geometry Induced by a Generalization of Rényi Divergence by David C. de Souza, Rui F. Vigelis 
and Charles C. Cavalcante 
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• Guaranteed Bounds on Information-Theoretic Measures of Univariate Mixtures Using Piecewise 
Log-Sum-Exp Inequalities by Frank Nielsen and Ke Sun 

• A Sequence of Escort Distributions and Generalizations of Expectations on q-Exponential Family 
by Hiroshi Matsuzoe 

• The Information Geometry of Sparse Goodness-of-Fit Testing by Paul Marriott, Radka Sabolová, 
Germain Van Bever and Frank Critchley 

Chapter IV : Density of Probability on manifold and metric space 

The fourth Chapter proposes new approaches to estimate parametric and non-parametric 
probabilities densities for structured covariance matrices (Toeplitz and Block-Toeplitz Hermitian 
Positive Definite Matrix, Symmetric Positive Definite Matrix). 

• Kernel Density Estimation on the Siegel Space with an Application to Radar Processing by 
Emmanuel Chevallier, Thibault Forget, Frédéric Barbaresco and Jesus Angulo 

• Riemannian Laplace Distribution on the Space of Symmetric Positive Definite Matrices by 
Hatem Hajri, Ioana Ilea, Salem Said, Lionel Bombrun and Yannick Berthoumieu 

Chapter V: Statistics on Paths and on Riemannian Manifolds 

The fifth chapter describes new methods to introduce statistical tools for paths and for data on 
Riemannian manifolds, with the following three contributions: 

• Entropy Minimizing Curves with Application to Flight Path Design and Clustering by Stéphane 
Puechmorel and Florence Nicol 

• Anisotropically Weighted and Nonholonomically Constrained Evolutions on Manifolds by 
Stefan Sommer 

• Non-Asymptotic Confidence Sets for Circular Means by Thomas Hotz, Florian Kelma and 
Johannes Wieditz 

Chapter VI: Entropy and Complexity in Linguistic 

The sixth chapter concludes this edited book with new perspectives for defining topological 
structures, entropy and complexity in linguistics with the following contribution: 

• Syntactic Parameters and a Coding Theory Perspective on Entropy and Complexity of Language 
Families by Matilde Marcolli 

 
Frédéric Barbaresco and Frank Nielsen 

Guest Editors 
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Abstract: I present in this paper some tools in symplectic and Poisson geometry in view of their
applications in geometric mechanics and mathematical physics. After a short discussion of the
Lagrangian an Hamiltonian formalisms, including the use of symmetry groups, and a presentation
of the Tulczyjew’s isomorphisms (which explain some aspects of the relations between these
formalisms), I explain the concept of manifold of motions of a mechanical system and its use,
due to J.-M. Souriau, in statistical mechanics and thermodynamics. The generalization of the notion
of thermodynamic equilibrium in which the one-dimensional group of time translations is replaced
by a multi-dimensional, maybe non-commutative Lie group, is fully discussed and examples of
applications in physics are given.

Keywords: Lagrangian formalism; Hamiltonian formalism; symplectic manifolds; Poisson structures;
symmetry groups; momentum maps; thermodynamic equilibria; generalized Gibbs states

1. Introduction

1.1. Contents of the Paper, Sources and Further Reading

This paper presents tools in symplectic and Poisson geometry in view of their application in
geometric mechanics and mathematical physics. The Lagrangian formalism and symmetries of
Lagrangian systems are discussed in Sections 2 and 3, the Hamiltonian formalism and symmetries
of Hamiltonian systems in Sections 4 and 5. Section 6 introduces the concepts of Gibbs state
and of thermodynamic equilibrium of a mechanical system, and presents several examples.
For a monoatomic classical ideal gas, eventually in a gravity field, or a monoatomic relativistic
gas the Maxwell–Boltzmann and Maxwell–Jüttner probability distributions are derived. The Dulong
and Petit law which governs the specific heat of solids is obtained. Finally Section 7 presents the
generalization of the concept of Gibbs state, due to Jean-Marie Souriau, in which the group of time
translations is replaced by a (multi-dimensional and eventually non-Abelian) Lie group.

Several books [1–11] discuss, much more fully than in the present paper, the contents of
Sections 2–5. The interested reader is referred to these books for detailed proofs of results whose
proofs are only briefly sketched here. The recent paper [12] contains detailed proofs of most results
presented here in Sections 4 and 5.

The main sources used for Sections 6 and 7 are the book and papers by Jean-Marie Souriau [13–17]
and the beautiful small book by Mackey [18].

The Euler–Poincaré equation, which is presented with Lagrangian symmetries at the end of
Section 3, is not really related to symmetries of a Lagrangian system, since the Lie algebra which acts

Entropy 2016, 18, 370 3 www.mdpi.com/journal/entropy
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on the configuration space of the system is not a Lie algebra of symmetries of the Lagrangian. Moreover
in its intrinsic form that equation uses the concept of Hamiltonian momentum map presented later,
in Section 5. Since the Euler–Poincaré equation is not used in the following sections, the reader can
skip the corresponding subsection at his or her first reading.

1.2. Notations

The notations used are more or less those generally used now in differential geometry. The tangent
and cotangent bundles to a smooth manifold M are denoted by TM and T∗M, respectively, and their
canonical projections by τM : TM → M and πM : T∗M → M. The vector spaces of k-multivectors and
k-forms on M are denoted by Ak(M) and Ωk(M), respectively, with k ∈ Z and, of course, Ak(M) = {0}
and Ωk(M) = {0} if k < 0 and if k > dim M, k-multivectors and k-forms being skew-symmetric.
The exterior algebras of multivectors and forms of all degrees are denoted by A(M) = ⊕k Ak(M)

and Ω(M) = ⊕kΩk(M), respectively. The exterior differentiation operator of differential forms on a
smooth manifold M is denoted by d : Ω(M) → Ω(M). The interior product of a differential form
η ∈ Ω(M) by a vector field X ∈ A1(M) is denoted by i(X)η.

Let f : M → N be a smooth map defined on a smooth manifold M, with values in another
smooth manifold N. The pull-back of a form η ∈ Ω(N) by a smooth map f : M → N is denoted by
f ∗η ∈ Ω(M).

A smooth, time-dependent vector field on the smooth manifold M is a smooth map X : R× M → TM
such that, for each t ∈ R and x ∈ M, X(t, x) ∈ Tx M, the vector space tangent to M at x. When, for any
x ∈ M, X(t, x) does not depend on t ∈ R, X is a smooth vector field in the usual sense, i.e., an element
in A1(M). Of course a time-dependent vector field can be defined on an open subset of R× M instead
than on the whole R× M. It defines a differential equation

dϕ(t)
dt

= X
(
t, ϕ(t)

)
, (1)

said to be associated to X. The (full) flow of X is the map ΨX , defined on an open subset of R×R× M,
taking its values in M, such that for each t0 ∈ R and x0 ∈ M the parametrized curve t �→ ΨX(t, t0, x0)

is the maximal integral curve of Equation (1) satisfying Ψ(t0, t0, x0) = x0. When t0 and t ∈ R are
fixed, the map x0 �→ ΨX(t, t0, x0) is a diffeomorphism, defined on an open subset of M (which may
be empty) and taking its values in another open subset of M, denoted by ΨX

(t, t0)
. When X is in fact a

vector field in the usual sense (not dependent on time), ΨX
(t, t0)

only depends on t − t0. Instead of the

full flow of X we can use its reduced flow ΦX , defined on an open subset of R× M and taking its values
in M, related to the full flow ΨX by

ΦX(t, x0) = ΨX(t, 0, x0) , ΨX(t, t0, x0) = ΦX(t − t0, x0) .

For each t ∈ R, the map x0 �→ ΦX(t, x0) = ΨX(t, 0, x0) is a diffeomorphism, denoted by ΦX
t ,

defined on an open subset of M (which may be empty) onto another open subset of M.
When f : M → N is a smooth map defined on a smooth manifold M, with values in another

smooth manifold N, there exists a smooth map T f : TM → TN called the prolongation of f to vectors,
which for each fixed x ∈ M linearly maps Tx M into Tf (x)N. When f is a diffeomorphism of M onto N,
T f is an isomorphism of TM onto TN. That property allows us to define the canonical lifts of a vector
field X in A1(M) to the tangent bundle TM and to the cotangent bundle T∗M. Indeed, for each t ∈ R,
ΦX

t is a diffeomorphism of an open subset of M onto another open subset of M. Therefore TΦX
t is a

diffeomorphism of an open subset of TM onto another open subset of TM. It turns out that when t
takes all possible values in R the set of all diffeomorphisms TΦX

t is the reduced flow of a vector field
X on TM, which is the canonical lift of X to the tangent bundle TM.

Similarly, the transpose (TΦX−t)
T of TΦX−t is a diffeomorphism of an open subset of the cotangent

bundle T∗M onto another open subset of T∗M, and when t takes all possible values in R the set of all

4
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diffeomorphisms (TΦX−t)
T is the reduced flow of a vector field X̂ on T∗M, which is the canonical lift of

X to the cotangent bundle T∗M.
The canonical lifts of a vector field to the tangent and cotangent bundles are used in

Sections 3 and 5. They can be defined too for time-dependent vector fields.

2. The Lagrangian Formalism

2.1. The Configuration Space and the Space of Kinematic States

The principles of mechanics were stated by the great English mathematician Isaac Newton
(1642–1727) in his book Philosophia Naturalis Principia Mathematica published in 1687 [19]. On this basis,
a little more than a century later, Joseph Louis Lagrange (1736–1813) in his book Mécanique analytique [20]
derived the equations (today known as the Euler–Lagrange equations) which govern the motion of a
mechanical system made of any number of material points or rigid material bodies interacting between
them by very general forces, and eventually submitted to external forces.

In modern mathematical language, these equations are written on the configuration space and
on the space of kinematic states of the considered mechanical system. The configuration space is
a smooth n-dimensional manifold N whose elements are all the possible configurations of the
system (a configuration being the position in space of all parts of the system). The space of
kinematic states is the tangent bundle TN to the configuration space, which is 2n-dimensional.
Each element of the space of kinematic states is a vector tangent to the configuration space at one of its
elements, i.e., at a configuration of the mechanical system, which describes the velocity at which this
configuration changes with time. In local coordinates a configuration of the system is determined by the
n coordinates x1, . . . , xn of a point in N, and a kinematic state by the 2n coordinates x1, . . . , xn, v1, . . . vn

of a vector tangent to N at some element in N.

2.2. The Euler–Lagrange Equations

When the mechanical system is conservative, the Euler–Lagrange equations involve a single real
valued function L called the Lagrangian of the system, defined on the product of the real line R (spanned
by the variable t representing the time) with the manifold TN of kinematic states of the system. In local
coordinates, the Lagrangian L is expressed as a function of the 2n + 1 variables, t, x1, . . . , xn, v1, . . . , vn

and the Euler–Lagrange equations have the remarkably simple form

d
dt

(
∂L
∂vi

(
t, x(t), v(t)

))− ∂L
∂xi

(
t, x(t), v(t)

)
= 0 , 1 ≤ i ≤ n ,

where x(t) stands for x1(t), . . . , xn(t) and v(t) for v1(t), . . . , vn(t) with, of course,

vi(t) =
dxi(t)

dt
, 1 ≤ i ≤ n .

2.3. Hamilton’s Principle of Stationary Action

The great Irish mathematician William Rowan Hamilton (1805–1865) observed [21,22] that the
Euler–Lagrange equations can be obtained by applying the standard techniques of Calculus of Variations,
due to Leonhard Euler (1707–1783) and Joseph Louis Lagrange, to the action integral (Lagrange observed
that fact before Hamilton, but in the last edition of his book he chose to derive the Euler–Lagrange
equations by application of the principle of virtual works, using a very clever evaluation of the virtual
work of inertial forces for a smooth infinitesimal variation of the motion).

IL(γ) =
∫ t1

t0

L
(
t, x(t), v(t)

)
dt , with v(t) =

dx(t)
dt

,

5
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where γ : [t0, t1] → N is a smooth curve in N parametrized by the time t. These equations express
the fact that the action integral IL(γ) is stationary with respect to any smooth infinitesimal variation
of γ with fixed end-points

(
t0, γ(t0)

)
and

(
t1, γ(t1)

)
. This fact is today called Hamilton’s principle of

stationary action. The reader interested in Calculus of Variations and its applications in mechanics and
physics is referred to the books [23–25].

2.4. The Euler-Cartan Theorem

The Lagrangian formalism is the use of Hamilton’s principle of stationary action for the derivation
of the equations of motion of a system. It is widely used in mathematical physics, often with
more general Lagrangians involving more than one independent variable and higher order partial
derivatives of dependent variables. For simplicity I will consider here only the Lagrangians of (maybe
time-dependent) conservative mechanical systems.

An intrinsic geometric expression of the Euler–Lagrange equations, wich does not use local
coordinates, was obtained by the great French mathematician Élie Cartan (1869–1951). Let us introduce
the concepts used by the statement of this theorem.

Definition 1. Let N be the configuration space of a mechanical system and let its tangent bundle TN be the
space of kinematic states of that system. We assume that the evolution with time of the state of the system is
governed by the Euler–Lagrange equations for a smooth, maybe time-dependent Lagrangian L : R× TN → R.

1. The cotangent bundle T∗N is called the phase space of the system.
2. The map LL : R× TN → T∗N

LL(t, v) = dvertL(t, v) , t ∈ R , v ∈ TN ,

where dvertL(t, v) is the vertical differential of L at (t, v), i.e., the differential at v of the the map
w �→ L(t, w), with w ∈ τ−1

N
(
τN(v)

)
, is called the Legendre map associated to L.

3. The map EL : R× TN → R given by

EL(t, v) = 〈LL(t, v), v
〉− L(t, v) , t ∈ R , v ∈ TN ,

is called the the energy function associated to L.
4. The 1-form on R× TN

�̂L = L∗
LθN − EL(t, v)dt ,

where θN is the Liouville 1-form on T∗N, is called the Euler–Poincaré 1-form.

Theorem 1 (Euler-Cartan Theorem). A smooth curve γ : [t0, t1] → N parametrized by the time t ∈ [t0, t1]

is a solution of the Euler–Lagrange equations if and only if, for each t ∈ [t0, t1] the derivative with respect to t of

the map t �→
(

t,
dγ(t)

dt

)
belongs to the kernel of the 2-form d�̂L, in other words if and only if

i
(

d
dt

(
t,

dγ(t)
dt

))
d�̂L

(
t,

dγ(t)
dt

)
= 0 .

The interested reader will find the proof of that theorem in [26], (Theorem 2.2, Chapter IV, p. 262)
or, for hyper-regular Lagrangians (an additional assumption which in fact, is not necessary) in [27],
Chapter IV, Theorem 2.1, p. 167.

Remark 1. In his book [14], Jean-Marie Souriau uses a slightly different terminology: for him the
odd-dimensional space R× TN is the evolution space of the system, and the exact 2-form d�̂L on that space is
the Lagrange form. He defines that 2-form in a setting more general than that of the Lagrangian formalism.
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3. Lagrangian Symmetries

3.1. Assumptions and Notations

In this section N is the configuration space of a conservative Lagrangian mechanical system with
a smooth, maybe time dependent Lagrangian L : R× TN → R. Let �̂L be the Poincaré-Cartan 1-form
on the evolution space R× TN.

Several kinds of symmetries can be defined for such a system. Very often, they are special cases
of infinitesimal symmetries of the Poincaré-Cartan form, which play an important part in the famous
Noether theorem.

Definition 2. An infinitesimal symmetry of the Poincaré-Cartan form �̂L is a vector field Z on R× TN
such that

L(Z)�̂L = 0 ,

L(Z) denoting the Lie derivative of differential forms with respect to Z.

Example 1.

1. Let us assume that the Lagrangian L does not depend on the time t ∈ R, i.e., is a smooth function on TN.

The vector field on R× TN denoted by
∂

∂t
, whose projection on R is equal to 1 and whose projection on

TN is 0, is an infinitesimal symmetry of �̂L.
2. Let X be a smooth vector field on N and X be its canonical lift to the tangent bundle TN. We still assume

that L does not depend on the time t. Moreover we assume that X is an infinitesimal symmetry of the
Lagrangian L, i.e., that L(X)L = 0. Considered as a vector field on R× TN whose projection on the factor
R is 0, X is an infinitesimal symmetry of �̂L.

3.2. The Noether Theorem in Lagrangian Formalism

Theorem 2 (E. Noether’s Theorem in Lagrangian Formalism). Let Z be an infinitesimal symmetry of the
Poincaré-Cartan form �̂L. For each possible motion γ : [t0, t1] → N of the Lagrangian system, the function

i(Z)�̂L, defined on R× TN, keeps a constant value along the parametrized curve t �→
(

t,
dγ(t)

dt

)
.

Proof. Let γ : [t0, t1] → N be a motion of the Lagrangian system, i.e., a solution of the Euler–Lagrange
equations. The Euler-Cartan Theorem 1 proves that, for any t ∈ [t0, t1],

i
(

d
dt

(
t,

dγ(t)
dt

))
d�̂L

(
t,

dγ(t)
dt

)
= 0 .

Since Z is an infinitesimal symmetry of �̂L,

L(Z)�̂L = 0 .

Using the well known formula relating the Lie derivative, the interior product and the
exterior derivative

L(Z) = i(Z) ◦ d + d ◦ i(Z)

7
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we can write

d
dt

(
i(Z)�̃L

(
t,

dγ(t)
dt

))
=

〈
di(Z)�̂L,

d
dt

(
t,

dγ(t)
dt

)〉
= −

〈
i(Z)d�̂L,

d
dt

(
t,

dγ(t)
dt

)〉
= 0.

Example 2. When the Lagrangian L does not depend on time, application of Emmy Noether’s theorem to

the vector field
∂

∂t
shows that the energy EL remains constant during any possible motion of the system,

since i
(

∂

∂t

)
�̂L = −EL.

Remark 2.

1. Theorem 2 is due to the German mathematician Emmy Noether (1882–1935), who proved it under much
more general assumptions than those used here. For a very nice presentation of Emmy Noether’s theorems
in a much more general setting and their applications in mathematical physics, interested readers are
referred to the very nice book by Yvette Kosmann-Schwarzbach [28].

2. Several generalizations of the Noether theorem exist. For example, if instead of being an infinitesimal
symmetry of �̂L, i.e., instead of satisfying L(Z)�̂L = 0 the vector field Z satisfies

L(Z)�̂L = d f ,

where f : R× TM → R is a smooth function, which implies of course L(Z)(d�̂L) = 0, the function

i(Z)�̂L − f

keeps a constant value along t �→
(

t,
dγ(t)

dt

)
.

3.3. The Lagrangian Momentum Map

The Lie bracket of two infinitesimal symmetries of �̂L is too an infinitesimal symmetry of �̂L.
Let us therefore assume that there exists a finite-dimensional Lie algebra of vector fields on R× TN
whose elements are infinitesimal symmetries of �̂L.

Definition 3. Let ψ : G → A1(R× TN) be a Lie algebras homomorphism of a finite-dimensional real Lie
algebra G into the Lie algebra of smooth vector fields on R× TN such that, for each X ∈ G, ψ(X) is an
infinitesimal symmetry of �̂L. The Lie algebras homomorphism ψ is said to be a Lie algebra action on R× TN
by infinitesimal symmetries of �̂L. The map KL : R× TN → G∗, which takes its values in the dual G∗ of the
Lie algebra G, defined by〈

KL(t, v), X
〉
= i

(
ψ(X)

)
�̂L(t, v) , X ∈ G , (t, v) ∈ R× TN ,

is called the Lagrangian momentum of the Lie algebra action ψ.

Corollary 1 (of E. Noether’s Theorem). Let ψ : G → A1(R× TM) be an action of a finite-dimensional real
Lie algebra G on the evolution space R× TN of a conservative Lagrangian system, by infinitesimal symmetries
of the Poincaré-Cartan form �̂L. For each possible motion γ : [t0, t1] → N of that system, the Lagrangian

momentum map KL keeps a constant value along the parametrized curve t �→
(

t,
dγ(t)

dt

)
.

8
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Proof. Since for each X ∈ G the function (t, v) �→ 〈
KL(t, v), X

〉
keeps a constant value along

the parametrized curve t �→
(

t,
dγ(t)

dt

)
, the map KL itself keeps a constant value along that

parametrized curve.

Example 3. Let us assume that the Lagrangian L does not depend explicitly on the time t and is invariant by
the canonical lift to the tangent bundle of the action on N of the six-dimensional group of Euclidean diplacements
(rotations and translations) of the physical space. The corresponding infinitesimal action of the Lie algebra of
infinitesimal Euclidean displacements (considered as an action on R× TN, the action on the factor R being
trivial) is an action by infinitesimal symmetries of �̂L. The six components of the Lagrangian momentum map
are the three components of the total linear momentum and the three components of the total angular momentum.

Remark 3. These results are valid without any assumption of hyper-regularity of the Lagrangian.

3.4. The Euler–Poincaré Equation

In a short Note [29] published in 1901, the great french mathematician Henri Poincaré (1854–1912)
proposed a new formulation of the equations of mechanics.

Let N be the configuration manifold of a conservative Lagrangian system, with a smooth
Lagrangian L : TN → R which does not depend explicitly on time. Poincaré assumes that there
exists an homomorphism ψ of a finite-dimensional real Lie algebra G into the Lie algebra A1(N) of
smooth vector fields on N, such that for each x ∈ N, the values at x of the vector fields ψ(X), when X
varies in G, completely fill the tangent space Tx N. The action ψ is then said to be locally transitive.

Of course these assumptions imply dimG ≥ dim N.
Under these assumptions, Henri Poincaré proved that the equations of motion of the Lagrangian

system could be written on N × G or on N × G∗, where G∗ is the dual of the Lie algebra G, instead of
on the tangent bundle TN. When dimG = dim N (which can occur only when the tangent bundle
TN is trivial) the obtained equation, called the Euler–Poincaré equation, is perfectly equivalent to the
Euler–Lagrange equations and may, in certain cases, be easier to use. But when dimG > dim N,
the system made by the Euler–Poincaré equation is underdetermined.

Let γ : [t0, t1] → N be a smooth parametrized curve in N. Poincaré proves that there exists a
smooth curve V : [t0, t1] → G in the Lie algebra G such that, for each t ∈ [t0, t1],

ψ
(
V(t)

)(
γ(t)

)
=

dγ(t)
dt

. (2)

When dimG > dim N the smooth curve V in G is not uniquely determined by the smooth curve
γ in N. However, instead of writing the second-order Euler–Lagrange differential equations on TN
satisfied by γ when this curve is a possible motion of the Lagrangian system, Poincaré derives a first
order differential equation for the curve V and proves that it is satisfied, together with Equation (2), if and
only if γ is a possible motion of the Lagrangian system.

Let ϕ : N × G → TN and L : N × G → R be the maps

ϕ(x, X) = ψ(X)(x) , L(x, X) = L ◦ ϕ(x, X) .

We denote by d1L : N × G → T∗N and by d2L : N × G → G∗ the partial differentials of
L : N × G → R with respect to its first variable x ∈ N and with respect to its second variable X ∈ G.

The map ϕ : N ×G → TN is a surjective vector bundles morphism of the trivial vector bundle N ×G
into the tangent bundle TN. Its transpose ϕT : T∗N → N × G∗ is therefore an injective vector bundles
morphism, which can be written

ϕT(ξ) =
(
πN(ξ), J(ξ)

)
,

9
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where πN : T∗N → N is the canonical projection of the cotangent bundle and J : T∗N → G∗ is a
smooth map whose restriction to each fibre T∗

x N of the cotangent bundle is linear, and is the transpose
of the map X �→ ϕ(x, X) = ψ(X)(x).

Remark 4. The homomorphism ψ of the Lie algebra G into the Lie algebra A1(N) of smooth vector fields on N
is an action of that Lie algebra, in the sense defined below Definition 11. That action can be canonically lifted into
a Hamiltonian action of G on T∗N, endowed with its canonical symplectic form dθN Definition 13. The map J
is in fact a Hamiltonian momentum map for that Hamiltonian action Proposition 5.

Let LL = dvertL : TN → T∗N be the Legendre map defined in Definition 1.

Theorem 3 (Euler–Poincaré Equation). With the above defined notations, let γ : [t0, t1] → N be a smooth
parametrized curve in N and V : [t0, t1] → G be a smooth parametrized curve such that, for each t ∈ [t0, t1],

ψ
(
V(t)

)(
γ(t)

)
=

dγ(t)
dt

. (3)

The curve γ is a possible motion of the Lagrangian system if and only if V satisfies the equation(
d
dt

− ad∗
V(t)

)(
J ◦ LL ◦ ϕ

(
γ(t), V(t)

))− J ◦ d1L
(
γ(t), V(t)

)
= 0 . (4)

The interested reader will find a proof of that theorem in local coordinates in the original Note by
Poincaré [29]. More intrinsic proofs can be found in [12,30]. Another proof is possible, in which that
theorem is deduced from the Euler-Cartan Theorem 1.

Remark 5. Equation (3) is called the compatibility condition and Equation (4) is the Euler–Poincaré equation.
It can be written under the equivalent form(

d
dt

− ad∗
V(t)

)(
d2L

(
γ(t), V(t)

))− J ◦ d1L
(
γ(t), V(t)

)
= 0 . (5)

Examples of applications of the Euler–Poincaré equation can be found in [5,6,12,30] and, for an
application in thermodynamics, [31].

4. The Hamiltonian Formalism

The Lagrangian formalism can be applied to any smooth Lagrangian. Its application yields
second order differential equations on R× N (in local coordinates, the Euler–Lagrange equations) which in
general are not solved with respect to the second order derivatives of the unknown functions with respect to
time. The classical existence and unicity theorems for the solutions of differential equations (such as
the Cauchy-Lipschitz theorem) therefore cannot be applied to these equations.

Under the additional assumption that the Lagrangian is hyper-regular, a very clever change of
variables discovered by William Rowan Hamilton (Lagrange obtained however Hamilton’s equations
before Hamilton, but only in a special case, for the slow “variations of constants” such as the orbital
parameters of planets in the solar system [32,33]). Hamilton [21,22] allows a new formulation of these
equations in the framework of symplectic geometry. The Hamiltonian formalism discussed below is the
use of these new equations. It was later generalized independently of the Lagrangian formalism.

10
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4.1. Hyper-Regular Lagrangians

Assumptions Made in this Section

We consider in this section a smooth, maybe time-dependent Lagrangian L : R× TN → R, which
is such that the Legendre map Definition 1 LL : R× TN → T∗N satisfies the following property:
for each fixed value of the time t ∈ R, the map v �→ LL(t, v) is a smooth diffeomorphism of the
tangent bundle TN onto the cotangent bundle T∗N. An equivalent assumption is the following:
the map (idR,LL) : (t, v) �→ (

t,LL(t, v)
)

is a smooth diffeomorphism of R × TN onto R × T∗N.
The Lagrangian L is then said to be hyper-regular. The equations of motion can be written on R× T∗N
instead of R× TN.

Definition 4. Under the assumption Section 4.1, the function HL : R× T∗N → R given by

HL(t, p) = EL ◦ (idR,LL)
−1(t, p) , t ∈ R , p ∈ T∗N ,

(EL : R× TN → R being the energy function defined in Definition 1) is called the Hamiltonian associated to
the hyper-regular Lagrangian L.

The 1-form defined on R× T∗N

�̂HL = θN − HLdt ,

where θN is the Liouville 1-form on T∗N, is called the Poincaré-Cartan 1-form in the Hamiltonian formalism.

Remark 6. The Poincaré-Cartan 1-form �̂L on R × TN, defined in Definition 1, is the pull-back, by the
diffeomorphism (idR,LL) : R× TN → R× T∗N, of the Poincaré-Cartan 1-form �̂HL in the Hamiltonian
formalism on R× T∗N defined above.

4.2. Presymplectic Manifolds

Definition 5. A presymplectic form on a smooth manifold M is a 2-form ω on M which is closed, i.e., such that
dω = 0. A manifold M equipped with a presymplectic form ω is called a presymplectic manifold and denoted
by (M, ω). The kernel ker ω of a presymplectic form ω defined on a smooth manifold M is the set of vectors
v ∈ TM such that i(v)ω = 0.

Remark 7. A symplectic form ω on a manifold M is a presymplectic form which, moreover, is non-degenerate,
i.e., such that for each x ∈ M and each non-zero vector v ∈ Tx M, there exists another vector w ∈ Tx M such
that ω(x)(v, w) �= 0. Or in other words, a presymplectic form ω whose kernel is the set of null vectors.

The kernel of a presymplectic form ω on a smooth manifold M is a vector sub-bundle of TM if and only if
for each x ∈ M, the vector subspace Tx M of vectors v ∈ Tx M which satisfy i(v)ω = 0 is of a fixed dimension,
the same for all points x ∈ M. A presymplectic form which satisfies that condition is said to be of constant rank.

Proposition 1. Let ω be a presymplectic form of constant rank Remark 7 on a smooth manifold M. The kernel
ker ω of ω is a completely integrable vector sub-bundle of TM, which defines a foliation Fω of M into connected
immersed submanifolds which, at each point of M, have the fibre of ker ω at that point as tangent vector space.

We now assume in addition that this foliation is simple, i.e., such that the set of leaves of Fω, denoted by
M/ ker ω, has a smooth manifold structure for which the canonical projection p : M → M/ ker ω

(which associates to each point x ∈ M the leaf which contains x) is a smooth submersion. There exists
on M/ ker ω a unique symplectic form ωr such that

ω = p∗ωr .

11
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Proof. Since dω = 0, the fact that ker ω is completely integrable is an immediate consequence of the
Frobenius’ theorem ([27], Chapter III, Theorem 5.1, p. 132). The existence and unicity of a symplectic
form ωr on M/ ker ω such that ω = p∗ωr results from the fact that M/ ker ω is built by quotienting M
by the kernel of ω.

Presymplectic Manifolds in Mechanics

Let us go back to the assumptions and notations of Section 4.1. We have seen in Remark 6 that the
Poincaré-Cartan 1-form in Hamiltonian formalism �̂HL on R× T∗N and the Poincaré-Cartan 1-form
in Lagrangian formalism �̂L on R× TN are related by

�̂L = (idR,LL)
∗�̂HL .

Their exterior differentials d�̂L and d�̂HL both are presymplectic 2-forms on the odd-dimensional
manifolds R × TN and R × T∗N, respectively. At any point of these manifolds, the kernels of
these closed 2-forms are one-dimensional. They therefore Proposition 1 determine foliations into
smooth curves of these manifolds. The Euler-Cartan Theorem 1 shows that each of these curves is a
possible motion of the system, described either in the Lagrangian formalism, or in the Hamiltonian
formalism, respectively.

The set of all possible motions of the system, called by Jean-Marie Souriau the manifold of motions
of the system, is described by the quotient (R× TN)/ ker d�̂L in the Lagrangian formalism, and by
the quotient (R× T∗N)/ ker d�̂HL in the Hamiltonian formalism. Both are (maybe non-Hausdorff)
symplectic manifolds, the projections on these quotient manifolds of the presymplectic forms d�̂L and
d�̂HL both being symplectic forms. Of course the diffeomorphism (idR,LL) : R× TN → R× T∗N
projects onto a symplectomorphism between the Lagrangian and Hamiltonian descriptions of the
manifold of motions of the system.

4.3. The Hamilton Equation

Proposition 2. Let N be the configuration manifold of a Lagrangian system whose Lagrangian
L : R× TN → R, maybe time-dependent, is smooth and hyper-regular, and HL : R × T∗N → R be the
associated Hamiltonian Definition 4. Let ϕ : [t0, t1] → N be a smooth curve parametrized by the time
t ∈ [t0, t1], and let ψ : [t0, t1] → T∗N be the parametrized curve in T∗N

ψ(t) = LL

(
t,

dγ(t)
dt

)
, t ∈ [t0, t1] ,

where LL : R× TN → T∗N is the Legendre map Definition 1.
The parametrized curve t �→ γ(t) is a motion of the system if and only if the parametrized curve t �→ ψ(t)

satisfies the equatin, called the Hamilton equation,

i
(

dψ(t)
dt

)
dθN = −dHL t ,

where dHL t = dHL − ∂HL
∂t

dt is the differential of the function HL t : T∗N → R in which the time t is
considered as a parameter with respect to which there is no differentiation.

When the parametrized curve ψ satisfies the Hamilton equation stated above, it satisfies too the equation,
called the energy equation

d
dt

(
HL

(
t, ψ(t)

))
=

∂HL
∂t

(
t, ψ(t)

)
.

Proof. These results directly follow from the Euler-Cartan Theorem 1.

12
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Remark 8. The 2-form dθN is a symplectic form on the cotangent bundle T∗N, called its canonical symplectic
form. We have shown that when the Lagrangian L is hyper-regular, the equations of motion can be written in
three equivalent manners:

1. as the Euler–Lagrange equations on R× TM,
2. as the equations given by the kernels of the presymplectic forms d�̂L or d�̂HL which determine the

foliations into curves of the evolution spaces R× TM in the Lagrangian formalism, or R× T∗M in the
Hamiltonian formalism,

3. as the Hamilton equation associated to the Hamiltonian HL on the symplectic manifold (T∗N, dθN),
often called the phase space of the system.

4.3.1. The Tulczyjew Isomorphisms

Around 1974, Tulczyjew [34,35] discovered (βN was probably known long before 1974, but I
believe that αN , much more hidden, was noticed by Tulczyjew for the first time) two remarkable vector
bundles isomorphisms αN : TT∗N → T∗TN and βN : TT∗N → T∗T∗N.

The first one αN is an isomorphism of the bundle (TT∗N, TπN , TN) onto the bundle
(T∗TN, πTN , TN), while the second βN is an isomorphism of the bundle (TT∗N, τT∗N , T∗N) onto
the bundle (T∗T∗N, πT∗N , T∗N). The diagram below is commutative.

T∗T∗N

πT∗N
��

TT∗N
βN��

τT∗N�� TπN ��

αN �� T∗TN

πTN
��

T∗N

πN
��

TN

τN
��

N

Since they are the total spaces of cotangent bundles, the manifolds T∗TN and T∗T∗N are endowed
with the Liouville 1-forms θTN and θT∗N , and with the canonical symplectic forms dθTN and dθT∗N ,
respectively. Using the isomorphisms αN and βN , we can therefore define on TT∗N two 1-forms α∗NθTN
and β∗

NθT∗N , and two symplectic 2-forms α∗N(dθTN) and β∗
N(dθT∗N). The very remarkable property of

the isomorphisms αN and βN is that the two symplectic forms so obtained on TT∗N are equal:

α∗N(dθTN) = β∗
N(dθT∗N) .

The 1-forms α∗NθTN and β∗
NθT∗N are not equal, their difference is the differential of a

smooth function.

4.3.2. Lagrangian Submanifolds

In view of applications to implicit Hamiltonian systems, let us recall here that a Lagrangian
submanifold of a symplectic manifold (M, ω) is a submanifold N whose dimension is half the
dimension of M, on which the form induced by the symplectic form ω is 0.

Let L : TN → R and H : T∗N → R be two smooth real valued functions, defined on TN
and on T∗N, respectively. The graphs dL(TN) and dH(T∗N) of their differentials are Lagrangian
submanifolds of the symplectic manifolds (T∗TN, dθTN) and (T∗T∗N, dθT∗N). Their pull-backs
α−1

N
(
dL(TN)

)
and β−1

N
(
dH(T∗N)

)
by the symplectomorphisms αN and βN are therefore two

Lagrangian submanifolds of the manifold TT∗N endowed with the symplectic form α∗N(dθTN),
which is equal to the symplectic form β∗

N(dθT∗N).
The following theorem enlightens some aspects of the relationships between the Hamiltonian and

the Lagrangian formalisms.

13
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Theorem 4 (W. M. Tulczyjew). With the notations specified above Section 4.3.2, let XH : T∗N → TT∗N be
the Hamiltonian vector field on the symplectic manifold (T∗N, dθN) associated to the Hamiltonian H : T∗N → R,
defined by i(XH)dθN = −dH. Then

XH(T∗N) = β−1
N
(
dH(T∗N)

)
.

Moreover, the equality
α−1

N
(
dL(TN)

)
= β−1

N
(
dH(T∗N)

)
holds if and only if the Lagrangian L is hyper-regular and such that

dH = d
(
EL ◦ L−1

L
)

,

where LL : TN → T∗N is the Legendre map and EL : TN → R the energy associated to the Lagrangian L.

The interested reader will find the proof of that theorem in the works of Tulczyjew ([34,35]).
When L is not hyper-regular, α−1

N
(
dL(TN)

)
still is a Lagrangian submanifold of the symplectic

manifold
(
TT∗N, α∗N(dθTN)

)
, but it is no more the graph of a smooth vector field XH defined on T∗N.

Tulczyjew proposes to consider this Lagrangian submanifold as an implicit Hamilton equation on T∗N.
These results can be extended to Lagrangians and Hamiltonians which may depend on time.

4.4. The Hamiltonian Formalism on Symplectic and Poisson Manifolds

4.4.1. The Hamilton Formalism on Symplectic Manifolds

In pure mathematics as well as in applications of mathematics to mechanics and physics,
symplectic manifolds other than cotangent bundles are encountered. A theorem due to the french
mathematician Gaston Darboux (1842–1917) asserts that any symplectic manifold (M, ω) is of even
dimension 2n and is locally isomorphic to the cotangent bundle to a n-dimensional manifold: in a
neighbourhood of each of its point there exist local coordinates (x1, . . . , xn, p1, . . . , pn), called Darboux
coordinates with which the symplectic form ω is expressed exactly as the canonical symplectic form of
a cotangent bundle:

ω =
n

∑
i=1

dpi ∧ dxi .

Let (M, ω) be a symplectic manifold and H : R× M → R a smooth function, said to be a
time-dependent Hamiltonian. It determines a time-dependent Hamiltonian vector field XH on M, such that

i(XH)ω = −dHt ,

Ht : M → R being the function H in which the variable t is considered as a parameter with respect to
which no differentiation is made.

The Hamilton equation determined by H is the differential equation

dψ(t)
dt

= XH
(
t, ψ(t)

)
.

The Hamiltonian formalism can therefore be applied to any smooth, maybe time dependent
Hamiltonian on M, even when there is no associated Lagrangian.

The Hamiltonian formalism is not limited to symplectic manifolds: it can be applied, for example,
to Poisson manifolds [36], contact manifolds and Jacobi manifolds [37]. For simplicity I will consider only
Poisson manifolds. Readers interested in Jacobi manifolds and their generalizations are referred to the
papers by Lichnerowicz quoted above and to the very important paper by Kirillov [38].

14
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Definition 6. A Poisson manifold is a smooth manifold P whose algebra of smooth functions C∞(P,R) is
endowed with a bilinear composition law, called the Poisson bracket, which associates to any pair ( f , g) of smooth
functions on P another smooth function denoted by { f , g}, that composition satisfying the three properties

1. it is skew-symmetric,
{g, f} = −{ f , g},

2. it satisfies the Jacobi identity{
f , {g, h}}+ {

g, {h, f}}+ {
h, { f , g}} = 0,

3. it satisfies the Leibniz identity
{ f , gh} = { f , g}h + g{ f , h}.

Example 4.

1. On the vector space of smooth functions defined on a symplectic manifold (M, ω), there exists a composition
law, called the Poisson bracket, which satisfies the properties stated in Definition 6. Let us recall briefly its
definition. The symplectic form ω allows us to associate, to any smooth function f ∈ C∞(M,R), a smooth
vector field Xf ∈ A1(M,R), called the Hamiltonian vector field associated to f , defined by

i(Xf )ω = −d f .

The Poisson bracket { f , g} of two smooth functions f and g ∈ C∞(M,R) is defined by the three
equivalent equalities

{ f , g} = i(Xf )dg = −i(Xg)d f = ω(Xf , Xg) .

Any symplectic manifold is therefore a Poisson manifold.

The Poisson bracket of smooth functions defined on a symplectic manifold (when that symplectic manifold
is a cotangent bundle) was discovered by Siméon Denis Poisson (1781–1840) [39].

2. Let G be a finite-dimensional real Lie algebra, and let G∗ be its dual vector space. For each smooth function
f ∈ C∞(G∗,R) and each ζ ∈ G∗, the differential d f (ζ) is a linear form on G∗, in other words an element of
the dual vector space of G∗. Identifying with G the dual vector space of G∗, we can therefore consider d f (ζ)
as an element in G. With this identification, we can define the Poisson bracket of two smooth functions f
and g ∈ C∞(G∗,R) by

{ f , g}(ζ) = [
d f (ζ), dg(ζ)

]
, ζ ∈ G∗ ,

the bracket in the right hand side being the bracket in the Lie algebra G. The Poisson bracket of functions
in C∞(G∗,R) so defined satifies the properties stated in Definition 6. The dual vector space of any
finite-dimensional real Lie algebra is therefore endowed with a Poisson structure, called its canonical
Lie-Poisson structure or its Kirillov-Kostant-Souriau Poisson structure. Discovered by Sophus Lie,
this structure was indeed rediscovered independently by Alexander Kirillov, Bertram Kostant and
Jean-Marie Souriau.

3. A symplectic cocycle of a finite-dimensional, real Lie algebra G is a skew-symmetric bilinear map Θ :
G × G → G∗ which satisfies, for all X, Y and Z ∈ G,

Θ
(
[X, Y], Z

)
+ Θ

(
[Y, Z], X

)
+ Θ

(
[Z, X], Y

)
= 0 .

The canonical Lie-Poisson bracket of two smooth functions f and g ∈ C∞(G∗,R) can be modified by means
of the symplectic cocycle Θ, by setting

{ f , g}Θ(ζ) =
[
d f (ζ), dg(ζ)

]− Θ
(
d f (ζ), dg(ζ)

)
, ζ ∈ G∗ .
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This bracket still satifies the properties stated in Definition 6, therefore defines on G∗ a Poisson structure
called its canonical Lie-Poisson structure modified by Θ.

4.4.2. Properties of Poisson Manifolds

The interested reader will find the proofs of the properties recalled here in [8–11].

1. On a Poisson manifold P, the Poisson bracket { f , g} of two smooth functions f and g can be
expressed by means of a smooth field of bivectors Λ:

{ f , g} = Λ(d f , dg) , f and g ∈ C∞(P,R) ,

called the Poisson bivector field of P. The considered Poisson manifold is often denoted by (P, Λ).
The Poisson bivector field Λ identically satisfies

[Λ, Λ] = 0 ,

the bracket [ , ] in the left hand side being the Schouten-Nijenhuis bracket. That bivector field
determines a vector bundle morphism Λ� : T∗P → TP, defined by

Λ(η, ζ) =
〈
ζ, Λ�(η)

〉
,

where η and ζ ∈ T∗P are two covectors attached to the same point in P.

Readers interested in the Schouten-Nijenhuis bracket will find thorough presentations of its
properties in [40,41].

2. Let (P, Λ) be a Poisson manifold. A (maybe time-dependent) vector field on P can be associated
to each (maybe time-dependent) smooth function H : R× P → R. It is called the Hamiltonian
vector field associated to the Hamiltonian H, and denoted by XH. Its expression is

XH(t, x) = Λ�(x)
(
dHt(x)

)
,

where dHt(x) = dH(t, x)− ∂H(t, x)
∂t

dt is the differential of the function deduced from H by
considering t as a parameter with respect to which no differentiation is made.

The Hamilton equation determined by the (maybe time-dependent) Hamiltonian H is

dϕ(t)
dt

= XH(
(
t, ϕ(t)

)
= Λ�(dHt)

(
ϕ(t)

)
.

3. Any Poisson manifold is foliated, by a generalized foliation whose leaves may not be all of the
same dimension, into immersed connected symplectic manifolds called the symplectic leaves of
the Poisson manifold. The value, at any point of a Poisson manifold, of the Poisson bracket
of two smooth functions only depends on the restrictions of these functions to the symplectic
leaf through the considered point, and can be calculated as the Poisson bracket of functions
defined on that leaf, with the Poisson structure associated to the symplectic structure of that leaf.
This property was discovered by Alan Weinstein, in his very thorough study of the local structure
of Poisson manifolds [42].

5. Hamiltonian Symmetries

5.1. Presymplectic, Symplectic and Poisson Maps and Vector Fields

Let M be a manifold endowed with some structure, which can be either

• a presymplectic structure, determined by a presymplectic form, i.e., a 2-form ω which is closed
(dω = 0),
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• a symplectic structure, determined by a symplectic form ω, i.e., a 2-form ω which is both closed
(dω = 0) and nondegenerate (ker ω = {0}),

• a Poisson structure, determined by a smooth Poisson bivector field Λ satisfying [Λ, Λ] = 0.

Definition 7. A presymplectic (resp. symplectic, resp. Poisson) diffeomorphism of a presymplectic
(resp., symplectic, resp. Poisson) manifold (M, ω) (resp. (M, Λ)) is a smooth diffeomorphism f : M → M such
that f ∗ω = ω (resp. f ∗Λ = Λ).

Definition 8. A smooth vector field X on a presymplectic (resp. symplectic, resp. Poisson) manifold (M, ω)

(resp. (M, Λ)) is said to be a presysmplectic (resp. symplectic, resp. Poisson) vector field if L(X)ω = 0 (resp. if
L(X)Λ = 0), where L(X) denotes the Lie derivative of forms or mutivector fields with respect to X.

Definition 9. Let (M, ω) be a presymplectic or symplectic manifold. A smooth vector field X on M is said to
be Hamiltonian if there exists a smooth function H : M → R, called a Hamiltonian for X, such that

i(X)ω = −dH .

Not any smooth function on a presymplectic manifold can be a Hamiltonian.

Definition 10. Let (M, Λ) be a Poisson manifold. A smooth vector field X on M is said to be Hamiltonian
if there exists a smooth function H ∈ C∞(M,R), called a Hamiltonian for X, such that X = Λ�(dH).
An equivalent definition is that

i(X)dg = {H, g} for any g ∈ C∞(M,R) ,

where {H, g} = Λ(dH, dg) denotes the Poisson bracket of the functions H and g.

On a symplectic or a Poisson manifold, any smooth function can be a Hamiltonian.

Proposition 3. A Hamiltonian vector field on a presymplectic (resp. symplectic, resp. Poisson) manifold
automatically is a presymplectic (resp. symplectic, resp. Poisson) vector field.

The proof of this result, which is easy, can be found in any book on symplectic and Poisson
geoemetry, for example [8–10].

5.2. Lie Algebras and Lie Groups Actions

Definition 11. An action on the left (resp. an action on the right) of a Lie group G on a smooth manifold M is
a smooth map Φ : G × M → M (resp. a smooth map Ψ : M × G → M) such that

• for each fixed g ∈ G, the map Φg : M → M defined by Φg(x) = Φ(g, x) (resp. the map Ψg : M → M
defined by Ψg(x) = Ψ(x, g)) is a smooth diffeomorphism of M,

• Φe = idM (resp. Ψe = idM), e being the neutral element of G,
• for each pair (g1, g2) ∈ G × G, Φg1 ◦ Φg2 = Φg1g2 (resp. Ψg1 ◦ Ψg2 = Ψg2g1).

An action of a Lie algebra G on a smooth manifold M is a Lie algebras morphism of G into the Lie
algebra A1(M) of smooth vector fields on M, i.e., a linear map ψ : G → A1(M) which associates to each X ∈ G
a smooth vector field ψ(X) on M such that for each pair (X, Y) ∈ G ×G, ψ

(
[X, Y]

)
=
[
ψ(X), ψ(Y)

]
.

Proposition 4. An action Ψ, either on the left or on the right, of a Lie group G on a smooth manifold M,
automatically determines an action ψ of its Lie algebra G on that manifold, which associates to each X ∈ G the
vector field ψ(X) on M, often denoted by XM and called the fundamental vector field on M associated to X. It is
defined by

ψ(X)(x) = XM(x) =
d
ds
(
Ψexp(sX)(x)

) ∣∣
s=0 , x ∈ M ,
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with the following convention: ψ is a Lie algebras homomorphism when we take for Lie algebra G of the Lie
group G the Lie algebra or right invariant vector fields on G if Ψ is an action on the left, and the Lie algebra of
left invariant vector fields on G if Ψ is an action on the right.

Proof. If Ψ is an action of G on M on the left (respectively, on the right), the vector field on G which is
right invariant (respectively, left invariant) and whose value at e is X, and the associated fundamental
vector field XM on M, are compatible by the map g �→ Ψg(x). Therefore the map ψ : G → A1(M) is a
Lie algebras homomorphism, if we take for definition of the bracket on G the bracket of right invariant
(respectively, left invariant) vector fields on G.

Definition 12. When M is a presymplectic (or a symplectic, or a Poisson) manifold, an action Ψ of a Lie group
G (respectively, an action ψ of a Lie algebra G) on the manifold M is called a presymplectic (or a symplectic,
or a Poisson) action if for each g ∈ G, Ψg is a presymplectic, or a symplectic, or a Poisson diffeomorphism of M
(respectively, if for each X ∈ G, ψ(X) is a presymplectic, or a symplectic, or a Poisson vector field on M.

Definition 13. An action ψ of a Lie algeba G on a presymplectic or symplectic manifold (M, ω), or on a Poisson
manifold (M, Λ), is said to be Hamiltonian if for each X ∈ G, the vector field ψ(X) on M is Hamiltonian.

An action Ψ (either on the left or on the right) of a Lie group G on a presymplectic or symplectic manifold
(M, ω), or on a Poisson manifold (M, Λ), is said to be Hamiltonian if that action is presymplectic, or symplectic,
or Poisson (according to the structure of M), and if in addition the associated action of the Lie algebra G of G
is Hamiltonian.

Remark 9. A Hamiltonian action of a Lie group, or of a Lie algebra, on a presymplectic, symplectic or Poisson
manifold, is automatically a presymplectic, symplectic or Poisson action. This result immediately follows
from Proposition 3.

5.3. Momentum Maps of Hamiltonian Actions

Proposition 5. Let ψ be a Hamiltonian action of a finite-dimensional Lie algebra G on a presymplectic,
symplectic or Poisson manifold (M, ω) or (M, Λ). There exists a smooth map J : M → G∗, taking its values in
the dual space G∗ of the Lie algebra G, such that for each X ∈ G the Hamiltonian vector field ψ(X) on M admits
as Hamiltonian the function JX : M → R, defined by

JX(x) =
〈

J(x), X
〉

, x ∈ M .

The map J is called a momentum map for the Lie algebra action ψ. When ψ is the action of the Lie algebra
G of a Lie group G associated to a Hamiltonian action Ψ of a Lie group G, J is called a momentum map for the
Hamiltonian Lie group action Ψ.

The proof of that result, which is easy, can be found for example in [8–10].

Remark 10. The momentum map J is not unique:

• when (M, ω) is a connected symplectic manifold, J is determined up to addition of an arbitrary constant
element in G∗;

• when (M, Λ) is a connected Poisson manifold, the momentum map J is determined up to addition of an
arbitrary G∗-valued smooth map which, coupled with any X ∈ G, yields a Casimir of the Poisson algebra
of (M, Λ), i.e., a smooth function on M whose Poisson bracket with any other smooth function on that
manifold is the function identically equal to 0.

5.4. Noether’s Theorem in Hamiltonian Formalism

Theorem 5 (Noether’s Theorem in Hamiltonian Formalism). Let Xf and Xg be two Hamiltonian vector
fields on a presymplectic or symplectic manifold (M, ω), or on a Poisson manifold (M, Λ), which admit as
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Hamiltonians, respectively, the smooth functions f and g on the manifold M. The function f remains constant
on each integral curve of Xg if and only if g remains constant on each integral curve of Xf .

Proof. The function f is constant on each integral curve of Xg if and only if i(Xg)d f = 0, since each
integral curve of Xg is connected. We can use the Poisson bracket, even when M is a presymplectic
manifold, since the Poisson bracket of two Hamiltonians on a presymplectic manifold still can be
defined. So we can write

i(Xg)d f = {g, f} = −{ f , g} = −i(Xf )dg .

Corollary 2 (of Noether’s Theorem in Hamiltonian Formalism). Let ψ : G → A1(M) be a Hamiltonian
action of a finite-dimensional Lie algebra G on a presymplectic or symplectic manifold (M, ω), or on a Poisson
manifold (M, Λ), and let J : M → G∗ be a momentum map of this action. Let XH be a Hamiltonian vector
field on M admitting as Hamiltonian a smooth function H. If for each X ∈ G we have i

(
ψ(X)

)
(dH) = 0,

the momentum map J remains constant on each integral curve of XH.

Proof. This result is obtained by applying Theorem 5 to the pairs of Hamiltonian vector fields made
by XH and each vector field associated to an element of a basis of G.

5.5. Symplectic Cocycles

Theorem 6 (J. M. Souriau [14]). Let Φ be a Hamiltonian action (either on the left or on the right) of a Lie
group G on a connected symplectic manifold (M, ω) and let J : M → G∗ be a momentum map of this action.
There exists an affine action A (either on the left or on the right) of the Lie group G on the dual G∗ of its Lie
algebra G such that the momentum map J is equivariant with respect to the actions Φ of G on M and A of G on
G∗, i.e., such that

J ◦ Φg(x) = Ag ◦ J(x) for all g ∈ G , x ∈ M .

The action A can be written, with g ∈ G and ξ ∈ G∗,⎧⎨⎩A(g, ξ) = Ad∗
g−1(ξ) + θ(g) if Φ is an action on the left,

A(ξ, g) = Ad∗
g(ξ)− θ(g−1) if Φ is an action on the right.

Proof. Let us assume that Φ is an action on the left. The fundamental vector field XM associated to
each X ∈ G is Hamiltonian, with the function JX : M → R, given by

JX(x) =
〈

J(x), X
〉

, x ∈ M ,

as Hamiltonian. For each g ∈ G the direct image (Φg−1)∗(XM) of XM by the symplectic diffeomorphism
Φg−1 is Hamiltonian, with JX ◦ Φg as Hamiltonian. An easy calculation shows that this vector field is
the fundamental vector field associated to Adg−1(X) ∈ G. The function

x �→ 〈
J(x), Adg−1(X)

〉
=
〈
Ad∗

g−1 ◦J(x), X
〉

is therefore a Hamiltonian for that vector field. These two functions defined on the connected manifold
M, which both are admissible Hamiltonians for the same Hamiltonian vector field, differ only by a
constant (which may depend on g ∈ G). We can set, for any g ∈ G,

θ(g) = J ◦ Φg(x)− Ad∗
g−1 ◦J(x)

and check that the map A : G × G∗ → G∗ defined in the statement is indeed an action for which J
is equivariant.

A similar proof, with some changes of signs, holds when Φ is an action on the right.
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Proposition 6. Under the assumptions and with the notations of Theorem 6, the map θ : G → G∗ is a cocycle of
the Lie group G with values in G∗, for the coadjoint representation. It means that it satisfies, for all g and h ∈ G,

θ(gh) = θ(g) + Ad∗
g−1

(
θ(h)

)
.

More precisely θ is a symplectic cocycle. It means that its differential Teθ : TeG ≡ G → G∗ at the neutral
element e ∈ G can be considered as a skew-symmetric bilinear form on G:

Θ(X, Y) =
〈

Teθ(X), Y
〉
= −〈Teθ(Y), X

〉
.

The skew-symmetric bilinear form Θ is a symplectic cocycle of the Lie algebra G. It means that it is
skew-symmetric and satisfies, for all X, Y and Z ∈ G,

Θ
(
[X, Y], Z

)
+ Θ

(
[Y, Z], X

)
+ Θ

(
[Z, X], Y

)
= 0 .

Proof. These properties easily follow from the fact that when Φ is an action on the left, for g and h ∈ G,
Φg ◦ Φh = Φgh (and a similar equality when Φ is an action on the right). The interested reader will
find more details in [9,12,14].

Proposition 7. Still under the assumptions and with the notations of Theorem 6, the composition law which
associates to each pair ( f , g) of smooth real-valued functions on G∗ the function { f , g}Θ given by

{ f , g}Θ(x) =
〈

x, [d f (x), dg(x)]
〉− Θ

(
d f (x), dg(x)

)
, x ∈ G∗ ,

(G being identified with its bidual G∗∗), determines a Poisson structure on G∗, and the momentum map
J : M → G∗ is a Poisson map, M being endowed with the Poisson structure associated to its symplectic structure.

Proof. The fact that the bracket ( f , g) �→ { f , g}Θ on C∞(G∗,R) is a Poisson bracket was already
indicated in Example 4. It can be verified by easy calculations. The fact that J is a Poisson map can be
proven by first looking at linear functions on G∗, i.e., elements in G. The reader will find a detailed
proof in [12].

Remark 11. When the momentum map J is replaced by another momentum map J1 = J + μ, where μ ∈ G∗ is
a constant, the symplectic Lie group cocycle θ and the symplectic Lie algebra cocycle Θ are replaced by θ1 and
Θ1, respectively, given by

θ1(g) = θ(g) + μ − Ad∗
g−1(μ) , g ∈ G ,

Θ1(X, Y) = Θ(X, Y) +
〈
μ, [X, Y]

〉
, X and Y ∈ G .

These formulae show that θ1 − θ and Θ1 − Θ are symplectic coboundaries of the Lie group G and the Lie
algebra G . In other words, the cohomology classes of the cocycles θ and Θ only depend on the Hamiltonian action
Φ of G on the symplectic manifold (M, ω).

5.6. The Use of Symmetries in Hamiltonian Mechanics

5.6.1. Symmetries of the Phase Space

Hamiltonian Symmetries are often used for the search of solutions of the equations of motion of
mechanical systems. The symmetries considered are those of the phase space of the mechanical system.
This space is very often a symplectic manifold, either the cotangent bundle to the configuration space
with its canonical symplectic structure, or a more general symplectic manifold. Sometimes, after some
simplifications, the phase space is a Poisson manifold.
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The Marsden-Weinstein reduction procedure [43,44] or one of its generalizations [10] is the method
most often used to facilitate the determination of solutions of the equations of motion. In a first step,
a possible value of the momentum map is chosen and the subset of the phase space on which the
momentum map takes this value is determined. In a second step, that subset (when it is a smooth
manifold) is quotiented by its isotropic foliation. The quotient manifold is a symplectic manifold of a
dimension smaller than that of the original phase space, and one has an easier to solve Hamiltonian
system on that reduced phase space.

When Hamiltonian symmetries are used for the reduction of the dimension of the phase space
of a mechanical system, the symplectic cocycle of the Lie group of symmetries action, or of the Lie
algebra of symmetries action, is almost always the zero cocycle.

For example, if the group of symmetries is the canonical lift to the cotangent bundle of a group of
symmetries of the configuration space, not only the canonical symplectic form, but the Liouville 1-form of
the cotangent bundle itself remains invariant under the action of the symmetry group, and this fact
implies that the symplectic cohomology class of the action is zero.

5.6.2. Symmetries of the Space of Motions

A completely different way of using symmetries was initiated by Jean-Marie Souriau,
who proposed to consider the symmetries of the manifold of motions of the mechanical system.
He observed that the Lagrangian and Hamiltonian formalisms, in their usual formulations, involve the
choice of a particular reference frame, in which the motion is described. This choice destroys a part of the
natural symmetries of the system.

For example, in classical (non-relativistic) mechanics, the natural symmetry group of an isolated
mechanical system must contain the symmetry group of the Galilean space-time, called the Galilean
group. This group is of dimension 10. It contains not only the group of Euclidean displacements of space
which is of dimension 6 and the group of time translations which is of dimension 1, but the group of linear
changes of Galilean reference frames which is of dimension 3.

If we use the Lagrangian formalism or the Hamiltonian formalism, the Lagrangian or the Hamiltonian
of the system depends on the reference frame: it is not invariant with respect to linear changes of Galilean
reference frames.

It may seem strange to consider the set of all possible motions of a system, which is unknown as
long as we have not determined all these possible motions. One may ask if it is really useful when we
want to determine not all possible motions, but only one motion with prescribed initial data, since that
motion is just one point of the (unknown) manifold of motion!

Souriau’s answers to this objection are the following.

1. We know that the manifold of motions has a symplectic structure, and very often many things are
known about its symmetry properties.

2. In classical (non-relativistic) mechanics, there exists a natural mathematical object which does not
depend on the choice of a particular reference frame (even if the decriptions given to that object by
different observers depend on the reference frame used by these observers): it is the evolution
space of the system.

The knowledge of the equations which govern the system’s evolution allows the full mathematical
description of the evolution space, even when these equations are not yet solved.

Moreover, the symmetry properties of the evolution space are the same as those of the manifold
of motions.

For example, the evolution space of a classical mechanical system with configuration manifold N is

1. in the Lagrangian formalism, the space R× TN endowed with the presymplectic form d�̂L,
whose kernel is of dimension 1 when the Lagrangian L is hyper-regular,

2. in the Hamiltonian formalism, the space R× T∗N with the presymplectic form d�̂H , whose kernel
too is of dimension 1.
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The Poincaré-Cartan 1-form �̂L in the Lagrangian formalism, or �̂H in the Hamiltonian formalism,
depends on the choice of a particular reference frame, made for using the Lagrangian or the
Hamiltonian formalism. But their exterior differentials, the presymplectic forms d�̂L or d�̂H , do not
depend on that choice, modulo a simple change of variables in the evolution space.

Souriau defined this presymplectic form in a framework more general than those of Lagrangian
or Hamiltonian formalisms, and called it the Lagrange form. In this more general setting, it may not
be an exact 2-form. Souriau proposed as a new Principle, the assumption that it always projects on
the space of motions of the systems as a symplectic form, even in relativistic mechanics in which the
definition of an evolution space is not clear. He called this new principle the Maxwell Principle.

Bargmann proved that the symplectic cohomology of the Galilean group is of dimension 1, and
Souriau proved that the cohomology class of its action on the manifold of motions of an isolated
classical (non-relativistic) mechanical system can be identified with the total mass of the system [14],
Chapter III, p. 153.

Readers interested in the Galilean group and momentum maps of its actions are referred to the
recent book by de Saxcé and Vallée [45].

6. Statistical Mechanics and Thermodynamics

6.1. Basic Concepts in Statistical Mechanics

During the XVIII–th and XIX–th centuries, the idea that material bodies (fluids as well as solids)
are assemblies of a very large number of small, moving particles, began to be considered by some
scientists, notably Daniel Bernoulli (1700–1782), Rudolf Clausius (1822–1888), James Clerk Maxwell
(1831–1879) and Ludwig Eduardo Boltzmann (1844–1906), as a reasonable possibility. Attemps were
made to explain the nature of some measurable macroscopic quantities (for example the temperature
of a material body, the pressure exerted by a gas on the walls of the vessel in which it is contained),
and the laws which govern the variations of these macroscopic quantities, by application of the laws of
classical mechanics to the motions of these very small particles. Described in the framework of the
Hamiltonian formalism, the material body is considered as a Hamiltonian system whose phase space
is a very high dimensional symplectic manifold (M, ω), since an element of that space gives a perfect
information about the positions and the velocities of all the particles of the system. The experimental
determination of the exact state of the system being impossible, one only can use the probability of
presence, at each instant, of the state of the system in various parts of the phase space. Scientists
introduced the concept of a statistical state, defined below.

Definition 14. Let (M, ω) be a symplectic manifold. A statistical state is a probability measure μ on the
manifold M.

6.1.1. The Liouville Measure on a Symplectic Manifold

On each symplectic manifold (M, ω), with dim M = 2n, there exists a positive measure λω,
called the Liouville measure. Let us briefly recall its definition. Let (U, ϕ) be a Darboux chart of
(M, ω) Section 4.4.1. The open subset U of M is, by means of the diffeomorphism ϕ, identified with
an open subset ϕ(U) of R2n on which the coordinates (Darboux coordinates) will be denoted by
(p1, . . . , pn, x1, . . . , xn). With this identification, the Liouville measure (restricted to U) is simply the
Lebesgue measure on the open subset ϕ(U) of R2n. In other words, for each Borel subset A of M
contained in U, we have

λω(A) =
∫

ϕ(A)
dp1 . . . dpn dx1 . . . dxn .

One can easily check that this definition does not depend on the choice of the Darboux coordinates
(p1, . . . , pn, x1, . . . , xn) on ϕ(A). By using an atlas of Darboux charts on (M, ω), one can easily define
λω(A) for any Borel subset A of M.
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Definition 15. A statistical state μ on the symplectic manifold (M, ω) is said to be continuous (respectively,
is said to be smooth) if it has a continuous (respectively, a smooth) density with respect to the Liouville measure
λω, i.e., if there exists a continuous function (respectively, a smooth function) ρ : M → R such that, for each
Borel subset A of M

μ(A) =
∫

A
ρdλω .

Remark 12. The density ρ of a continuous statistical state on (M, ω) takes its values in R+ and of
course satisfies ∫

M
ρdλω = 1 .

For simplicity we only consider in what follows continuous, very often even smooth
statistical states.

6.1.2. Variation in Time of a Statistical State

Let H be a smooth time independent Hamiltonian on a symplectic manifold (M, ω), XH the
associated Hamiltonian vector field and ΦXH its reduced flow. We consider the mechanical system
whose time evolution is described by the flow of XH .

If the state of the system at time t0, assumed to be perfectly known, is a point z0 ∈ M, its state at
time t1 is the point z1 = ΦXH

t1−t0
(z0).

Let us now assume that the state of the system at time t0 is not perfectly known, but that a
continuous probability measure on the phase space M, whose density with respect to the Liouville
measure λω is ρ0, describes the probability distribution of presence of the state of the system at time
t0. In other words, ρ0 is the density of the statistical state of the system at time t0. For any other
time t1, the map ΦXH

t1−t0
is a symplectomorphism, therefore leaves invariant the Liouville measure λω.

The probability density ρ1 of the statistical state of the system at time t1 therefore satisfies, for any
x0 ∈ M for which x1 = ΦXH

t1−t0
(x0) is defined,

ρ1(x1) = ρ1
(
ΦXH

t1−t0
(x0)

)
= ρ0(x0) .

Since
(
ΦXH

t1−t0

)−1
= ΦXH

t0−t1
, we can write

ρ1 = ρ0 ◦ ΦXH
t0−t1

.

Definition 16. Let ρ be the density of a continuous statistical state μ on the symplectic manifold (M, ω).
The number

s(ρ) =
∫

M
ρ log

(
1
ρ

)
dλω

is called the entropy of the statistical state μ or, with a slight abuse of language, the entropy of the density ρ.

Remark 13.

1. By convention we state that 0 log0 = 0. With that convention the function x �→ x log x is continuous on
R+. If the integral on the right hand side of the equality which defines s(ρ) does not converge, we state
that s(ρ) = −∞. With these conventions, s(ρ) exists for any continuous probability density ρ.

2. The above Definition 16 of the entropy of a statistical state, founded on ideas developed by Boltzmann in
his Kinetic Theory of Gases [46], specially in the derivation of his famous (and controversed) Theorem
Êta, is too related with the ideas of Claude Shannon [47] on information theory. The use of information
theory in thermodynamics was more recently proposed by Jaynes [48,49] and Mackey [18]. For a very nice
discussion of the use of probability concepts in physics and application of information theory in quantum
mechanics, the reader is referred to the paper by Balian [50].
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The entropy s(ρ) of a probability density ρ has very remarkable variational properties discussed
in the following definitions and proposition.

Definition 17. Let ρ be the density of a smooth statistical state on a symplectic manifold (M, ω).

1. For each function f defined on M, taking its values in R or in some finite-dimensional vector space,
such that the integral on the right hand side of the equality

Eρ( f ) =
∫

M
f ρdλω

converges, the value Eρ( f ) of that integral is called the mean value of f with respect to ρ.
2. Let f be a smooth function on M, taking its values in R or in some finite-dimensional vector space,

satisfying the properties stated above. A smooth infinitesimal variation of ρ with fixed mean value of f is a
smooth map, defined on the product ]− ε, ε[×M, with values in R+, where ε > 0,

(τ, z) �→ ρ(τ, z) , τ ∈]− ε, ε[, z ∈ M ,

such that

• for τ = 0 and any z ∈ M, ρ(0, z) = ρ(z),
• for each τ ∈]− ε, ε[ , z �→ ρτ(z) = ρ(τ, z) is a smooth probability density on M such that

Eρτ ( f ) =
∫

M
ρτ f dλω = Eρ( f ) .

3. The entropy function s is said to be stationary at the probability density ρ with respect to smooth
infinitesimal variations of ρ with fixed mean value of f , if for any smooth infinitesimal variation
(τ, z) �→ ρ(τ, z) of ρ with fixed mean value of f

ds(ρτ)

dτ

∣∣∣
τ=0

= 0 .

Proposition 8. Let H : M → R be a smooth Hamiltonian on a symplectic manifold (M, ω) and ρ be the
density of a smooth statistical state on M such that the integral defining the mean value Eρ(H) of H with respect
to ρ converges. The entropy function s is stationary at ρ with respect to smooth infinitesimal variations of ρ with
fixed mean value of H, if and only if there exists a real b ∈ R such that, for all z ∈ M,

ρ(z) =
1

P(b)
exp

(−bH(z)
)

, with P(b) =
∫

M
exp(−bH)dλω .

Proof. Let τ �→ ρτ be a smooth infinitesimal variation of ρ with fixed mean value of H. Since
∫

M
ρτdλω

and
∫

M
ρτ Hdλω do not depend on τ, it satisfies, for all τ ∈]− ε, ε[ ,∫

M

∂ρ(τ, z)
∂τ

dλω(z) = 0 ,
∫

M

∂ρ(τ, z)
∂τ

H(z)dλω(z) = 0 .

Moreover an easy calculation leads to

ds(ρτ)

dτ

∣∣∣
τ=0

= −
∫

M

∂ρ(τ, z)
∂τ

∣∣∣
τ=0

(1 + log
(
ρ(z)

)
dλω(z) .

A well known result in calculus of variations shows that the entropy function s is stationary at ρ

with respect to smooth infinitesimal variations of ρ with fixed mean value of H, if and only if there
exist two real constants a and b, called Lagrange multipliers, such that, for all z ∈ M,

1 + log(ρ) + a + bH = 0 ,
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which leads to
ρ = exp(−1 − a − bH) .

By writing that
∫

M
ρdλω = 1, we see that a is determined by b:

exp(1 + a) = P(b) =
∫

M
exp(−bH)dλω .

Definition 18. Let H : M → R be a smooth Hamiltonian on a symplectic manifold (M, ω). For each b ∈ R

such that the integral on the right side of the equality

P(b) =
∫

M
exp(−bH)dλω

converges, the smooth probability measure on M with density (with respect to the Liouville measure)

ρ(b) =
1

P(b)
exp

(−bH
)

is called the Gibbs statistical state associated to b. The function P : b �→ P(b) is called the partition function.

The following proposition shows that the entropy function, not only is stationary at any Gibbs
statistical state, but in a certain sense attains at that state a strict maximum.

Proposition 9. Let H : M → R be a smooth Hamiltonian on a symplectic manifold (M, ω) and b ∈ R be
such that the integral defining the value P(b) of the partition function P at b converges. Let

ρb =
1

P(b)
exp(−bH)

be the probability density of the Gibbs statistical state associated to b. We assume that the Hamiltonian H
is bounded by below, i.e., that there exists a constant m such that m ≤ H(z) for any z ∈ M. Then the
integral defining

Eρb(H) =
∫

M
ρbHdλω

converges. For any other smooth probability density ρ1 such that

Eρ1(H) = Eρb(H) ,

we have
s(ρ1) ≤ s(ρb) ,

and the equality s(ρ1) = s(ρb) holds if and only if ρ1 = ρb.

Proof. Since m ≤ H, the function ρb exp(−bH) satisfies 0 ≤ ρb exp(−bH) ≤ exp(−mb)ρb, therefore
is integrable on M. Let ρ1 be any smooth probability density on M satisfying Eρ1(H) = Eρb(H).
The function defined on R+

x �→ h(x) =

⎧⎪⎨⎪⎩x log
(

1
x

)
if x > 0

0 if x = 0

being convex, its graph is below the tangent at any of its points
(

x0, h(x0)
)
. We therefore have, for all

x > 0 and x0 > 0,

h(x) ≤ h(x0)− (1 + log x0)(x − x0) = x0 − x(1 + log x0) .
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With x = ρ1(z) and x0 = ρb(z), z being any element in M, that inequality becomes

h
(
ρ1(z)

)
= ρ1(z) log

(
1

ρ1(z)

)
≤ ρb(z)−

(
1 + log ρb(z)

)
ρ1(z) .

By integration over M, using the fact that ρb is the probability density of the Gibbs state associated
to b, we obtain

s(ρ1) ≤ 1 − 1 −
∫

M
ρ1 log ρbdλω = s(ρb) .

We have proven the inequality s(ρ1) ≤ s(ρb). If ρ1 = ρb, we have of course the equality s(ρ1) = s(ρb).
Conversely if s(ρ1) = s(ρb), the functions defined on M

z �→ ϕ1(z) = ρ1(z) log
(

1
ρ1(z)

)
and z �→ ϕ(z) = ρb(z)−

(
1 + log ρb(z)

)
ρ1(z)

are continuous on M except, maybe, for ϕ, at points z at which ρb(z) = 0 and ρ1(z) �= 0, but the set of
such points is of measure 0 since ϕ is integrable. They satisfy the inequality ϕ1 ≤ ϕ. Both are integrable
on M and have the same integral. The function ϕ − ϕ1 is everywhere ≥ 0, is integrable on M and its
integral is 0. That function is therefore everywhere equal to 0 on M. We can write, for any z ∈ M,

ρ1(z) log
(

1
ρ1(z)

)
= ρb(z)−

(
1 + log ρb(z)

)
ρ1(z) . (6)

For each z ∈ M such that ρ1(z) �= 0, we can divide that equality by ρ1(z). We obtain

ρb(z)
ρ1(z)

− log
(

ρb(z)
ρ1(z)

)
= 1 .

Since the function x �→ x − log x reaches its minimum, equal to 1, for a unique value of x > 0,
that value being 1, we see that for each z ∈ M at which ρ1(z) > 0, we have ρ1(z) = ρb(z). At points
z ∈ M at which ρ1(z) = 0, Equation (6) shows that ρb(z) = 0. Therefore ρ1 = ρb.

Remark 14. The maximality property of the entropy function ρ �→ s(ρ) at a Gibbs state density ρb proven
in Proposition 9 of course implies the stationarity of that function at ρb with respect to smooth infinitesimal
variations of ρ with fixed mean value of H, proven in Proposition 8. That Proposition therefore could be omitted.
We chose to keep it because its proof is much easier than that of Proposition 9, and explains why it is interesting
to look at probability densities proportional to exp(−bH) for some b ∈ R.

The following proposition shows that a Gibbs statistical state remains invariant under the flow of
the Hamiltonian vector field XH . One can therefore say that a Gibbs state is a statistical equilibrium
state. Of course there exist statistical equilibrium states other than Gibbs states.

Proposition 10. Let H be a smooth Hamiltonian bounded by below on a symplectic manifold (M, ω), b ∈ R

be such that the integral defining the value P(b) of the partition function P at b converges. The Gibbs state
associated to b remains invariant under the flow of of the Hamiltonian vector field XH.

Proof. The density ρb of the Gibbs state associated to b, with respect to the Liouville measure λω, is

ρb =
1

P(b)
exp(−bH) .

Since H is constant along each integral curve of XH , ρb too is constant along each integral curve
of XH . Moreover, the Liouville measure λω remains invariant under the flow of XH . Therefore the
Gibbs probability measure associated to b too remains invariant under that flow.
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6.2. Thermodynamic Equilibria and Thermodynamic Functions

6.2.1. Assumptions Made in this Section.

Any Hamiltonian H defined on a symplectic manifold (M, ω) considered in this section
will be assumed to be smooth, bounded by below and such that for any real b > 0, each one
of the three functions, defined on M, z �→ exp

(−bH(z)
)
, z �→ ∣∣H(z)

∣∣ exp
(−bH(z)

)
and z �→(

H(z)
)2 exp

(−bH(z)
)

is everywhere smaller than some function defined on M integrable with respect
to the Liouville measure λω. The integrals which define

P(b) =
∫

M
exp(−bH)dλω and Eρb(H) =

∫
M

H exp(−bH)dλω

therefore converge.

Proposition 11. Let H be a Hamiltonian defined on a symplectic manifold (M, ω) satisfying the assumptions
indicated in Section 6.2.1. For any real b > 0 let

P(b) =
∫

M
exp(−bH)dλω and ρb =

1
P(b)

exp(−bH)

be the value at b of the partition function P and the probability density of the Gibbs statistical state associated
to b, and

E(b) = Eρb(H) =
1

P(b)

∫
M

H exp(−bH)dλω

be the mean value of H with respect to the probability density ρb. The first and second derivatives with respect to
b of the partition function P exist, are continuous functions of b given by

dP(b)
db

= −P(b)E(b) ,
d2P(b)

db2 =
∫

M
H2 exp(−bH)dλω = P(b)Eρb(H2) .

The derivative with respect to b of the function E exists and is a continuous function of b given by

dE(b)
db

= − 1
P(b)

∫
M

(
H − Eρb(H)

)2dλω = −Eρb

((
H − Eρb(H)

)2
)

.

Let S(b) be the entropy s(ρb) of the Gibbs statistical state associated to b. The function S can be expressed
in terms of P and E as

S(b) = log
(

P(b)
)
+ bE(b) .

Its derivative with respect to b exists and is a continuous function of b given by

dS(b)
db

= b
dE(b)

db
.

Proof. Using the assumptions Section 6.2.1, we see that the functions b �→ P(b) and b �→ Eρb(H) = E(b),
defined by integrals on M, have a derivative with respect to b which is continuous and which can be

calculated by derivation under the sign
∫

M
. The indicated results easily follow, if we observe that

for any function f on M such that Eρb( f ) and Eρb( f 2) exist, we have the formula, well known in
Probability theory,

Eρb( f 2)− (Eρb( f )
)2

= Eρb

((
f − Eρb( f )

)2
)

.

6.2.2. Physical Meaning of the Introduced Functions

Let us consider a physical system, for example a gas contained in a vessel bounded by rigid,
thermally insulated walls, at rest in a Galilean reference frame. We assume that its evolution can
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be mathematically described by means of a Hamiltonian system on a symplectic manifold (M, ω)

whose Hamiltonian H satisfies the assumptions Section 6.2.1. For physicists, a Gibbs statistical state,

i.e., a probability measure of density ρb =
1

P(b)
exp(−bH) on M, is a thermodynamic equilibrium of

the physical system. The set of possible thermodynamic equilibria of the system is therefore indexed
by a real parameter b > 0. The following argument will show what physical meaning can have
that parameter.

Let us consider two similar physical systems, mathematically described by two Hamiltonian
systems, of Hamiltonians H1 on the symplectic manifold (M1, ω1) and H2 on the symplectic manifold
(M2, ω2). We first assume that they are independent and both in thermodynamic equilibrium,
with different values b1 and b2 of the parameter b. We denote by E1(b1) and E2(b2) the mean values
of H1 on the manifold M1 with respect to the Gibbs state of density ρ1,b1 and of H2 on the manifold
M2 with respect to the Gibbs state of density ρ2,b2 . We assume now that the two systems are coupled
in a way allowing an exchange of energy. For example, the two vessels containing the two gases
can be separated by a wall allowing a heat transfer between them. Coupled together, they make a
new physical system, mathematically described by a Hamiltonian system on the symplectic manifold
(M1 × M2, p∗1ω1 + p∗2ω2), where p1 : M1 × M2 → M1 and p2 : M1 × M2 → M2 are the canonical
projections. The Hamiltonian of this new system can be made as close to H1 ◦ p1 + H2 ◦ p2 as one wishes,
by making very small the coupling between the two systems. The mean value of the Hamiltonian of
the new system is therefore very close to E1(b1) + E2(b2). When the total system will reach a state of
thermodynamic equilibrium, the probability densities of the Gibbs states of its two parts, ρ1,b′ on M1

and ρ2,b′ on M2 will be indexed by the same real number b′ > 0, which must be such that

E1(b′) + E2(b′) = E1(b1) + E2(b2) .

By Proposition 11, we have, for all b > 0,

dE1(b)
db

≤ 0 ,
dE2(b)

db
≤ 0 .

Therefore b′ must lie between b1 and b2. If, for example, b1 < b2, we see that E1(b′) ≤ E1(b1) and
E2(b′) ≥ E2(b2). In order to reach a state of thermodynamic equilibrium, energy must be transferred
from the part of the system where b has the smallest value, towards the part of the system where
b has the highest value, until, at thermodynamic equilibrium, b has the same value everywhere.
Everyday experience shows that thermal energy flows from parts of a system where the temperature
is higher, towards parts where it is lower. For this reason physicists consider the real variable b as
a way to appreciate the temperature of a physical system in a state of thermodynamic equilibrium.
More precisely, they state that

b =
1

kT
where T is the absolute temperature and k a constant depending on the choice of units of energy and
temperature, called Boltzmann’s constant in honour of the great Austrian scientist Ludwig Eduard
Boltzmann (1844–1906).

For a physical system mathematically described by a Hamiltonian system on a symplectic
manifold (M, ω), with H as Hamiltonian, in a state of thermodynamic equilibrium, E(b) and S(b) are
the internal energy and the entropy of the system.

6.2.3. Towards Thermodynamic Equilibrium

Everyday experience shows that a physical system, when submitted to external conditions which
remain unchanged for a sufficiently long time, very often reaches a state of thermodynamic equilibrium.
At first look, it seems that Lagrangian or Hamiltonian systems with time-independent Lagrangians or
Hamiltonians cannot exhibit a similar behaviour. Let us indeed consider a mechanical system whose
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configuration space is a smooth manifold N, described in the Lagrangian formalism by a smooth
time-independent hyper-regular Lagarangian L : TN → R or, in the Hamiltonian formalism, by the

associated Hamiltonian HL : T∗N → R. Let t �→ −−→
x(t) be a motion of that system, −→x0 =

−−→
x(t0) and

−→x1 =
−−→
x(t0) be the configurations of the system for that motion at times t0 and t1. There exists another

motion t �→ −−→
x′(t) of the system for which

−−−→
x′(t0) =

−→x1 and
−−−→
x′(t1) =

−→x0 : since the equations of motion

are invariant by time reversal, the motion t �→ −−→
x′(t) is obtained simply by taking as initial condition at

time t0
−−−→
x′(t0) =

−−→
x(t1) and

d
−−→
x′(t)
dt

∣∣∣
t=t0

= −d
−−→
x(t)
dt

∣∣∣
t=t1

. Another more serious argument against a kind

of thermodynamic behaviour of Lagarangian or Hamiltonian systems rests on the famous recurrence
theorem due to Poincaré [51]. This theorem asserts indeed that when the useful part of the phase space
of the system is of a finite total measure, almost all points in an arbitrarily small open subset of the
phase space are recurrent, i.e., the motion starting of such a point at time t0 repeatedly crosses that
open subset again and again, infinitely many times when t → +∞.

Let us now consider, instead of perfectly defined states, i.e., points in phase space, statistical states,
and ask the question: When at time t = t0 a Hamiltonian system on a symplectic manifold (M, ω) is in
a statistical state given by some probability measure of density ρ0 with respect to the Liouville measure
λω , does its statistical state converge, when t → +∞, towards the probability measure of a Gibbs state?
This question should be made more precise by specifying what physical meaning has a statistical
state and in what mathematical sense a statistical state can converge towards the probability measure
of a Gibbs state. A positive partial answer was given by Ludwig Boltzmann when, developing his
kinetic theory of gases, he proved his famous (but controversed) Êta theorem stating that the entropy
of the statistical state of a gas of small particles is a monotonously increasing function of time. This
question, linked with time irreversibility in physics, is still the subject of important researches, both
by physicists and by mathematicians. The reader is referred to the paper [50] by Balian for a more
thorough discussion of that question.

6.3. Examples of Thermodynamic Equilibria

6.3.1. Classical Monoatomic Ideal Gas

In classical mechanics, a dilute gas contained in a vessel at rest in a Galilean reference frame is
mathematically described by a Hamiltonian system made by a large number of very small massive
particles, which interact by very brief collisions between themselves or with the walls of the vessel,
whose motions between two collisions are free. Let us first assume that these particles are material
points and that no external field is acting on them, other than that describing the interactions by
collisions with the walls of the vessel.

The Hamiltonian of one particle in a part of the phase space in which its motion is free is simply

1
2m

‖−→p ‖2 =
1

2m
(p2

1 + p2
2 + p2

3) , with −→p = m−→v ,

where m is the mass of the particle, −→v its velocity vector and −→p its linear momentum vector (in the
considered Galilean reference frame), p1, p2 and p3 the components of −→p in a fixed orhtonormal basis
of the physical space.

Let N be the total number of particles, which may not have all the same mass. We use a integer
i ∈ {1, 2, . . . , N} to label the particles and denote by mi,

−→xi , −→vi , −→pi the mass and the vectors position,
velocity and linear momentum of the i-th particle.

The Hamiltonian of the gas is therefore

H =
N

∑
i=1

1
2mi

‖−→pi ‖2 + terms involving the collisions between particles and with the walls .
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Interactions of the particles with the walls of the vessel are essential for allowing the motions
of particles to remain confined. Interactions between particles are essential to allow the exchanges
between them of energy and momentum, which play an important part in the evolution with time
of the statistical state of the system. However it appears that while these terms are very important
to determine the system’s evolution with time, they can be neglected, when the gas is dilute enough,
if we only want to determine the final statistical state of the system, once a thermodynamic equilibrium
is established. The Hamiltonian used will therefore be

H =
N

∑
i=1

1
2mi

‖−→pi ‖2 .

The partition function is

P(b) =
∫

M
exp(−bH)dλω =

∫
D

exp

(
−b

N

∑
i=1

1
2mi

‖−→p i‖2

)
N

∏
i=1

(d−→xi d−→pi ) ,

where D is the domain of the 6N-dimensional space spanned by the position vectors −→xi and linear
momentum vectors −→pi of the particles in which all the −→xi lie within the vessel containing the gas.
An easy calculation leads to

P(b) = VN
(

2π

b

)3N/2 N

∏
i=1

(mi
3/2) =

N

∏
i=1

[
V
(

2πmi
b

)3/2
]

,

where V is the volume of the vessel which contains the gas. The probability density of the Gibbs state
associated to b, with respect to the Liouville measure, therefore is

ρb =
N

∏
i=1

[
1
V

(
b

2πmi

)3/2
exp

(−b‖−→pi ‖2

2mi

)]
.

We observe that ρb is the product of the probability densities ρi,b for the i-th particle

ρi,b =
1
V

(
b

2πmi

)3/2
exp

(−b‖−→pi ‖2

2mi

)
.

The 2N stochastic vectors −→xi and −→pi , i = 1, . . . , N are therefore independent. The position −→xi of
the i-th particle is uniformly distributed in the volume of the vessel, while the probability measure of
its linear momentum −→pi is the classical Maxwell–Boltzmann probability distribution of linear momentum
for an ideal gas of particles of mass mi, first obtained by Maxwell in 1860. Moreover we see that the
three components pi 1, pi 2 and pi 3 of the linear momentum −→pi in an orhonormal basis of the physical
space are independent stochastic variables.

By using the formulae given in Proposition 11 the internal energy E(b) and the entropy S(b) of
the gas can be easily deduced from the partition function P(b). Their expressions are

E(b) =
3N
2b

, S(b) =
3
2

N

∑
i=1

log mi +

(
3
2
(
1 + log(2π)

)
+ log V

)
N − 3N

2
log b .

We see that each of the N particles present in the gas has the same contribution
3
2b

to the internal

energy E(b), which does not depend on the mass of the particle. Even more: each degree of freedom
of each particle, i.e., each of the the three components of the the linear momentum of the particle

on the three axes of an orthonormal basis, has the same contribution
1
2b

to the internal energy E(b).
This result is known in physics under the name Theorem of equipartition of the energy at a thermodynamic
equilibrium. It can be easily generalized for polyatomic gases, in which a particle may carry, in addition
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to the kinetic energy due to the velocity of its centre of mass, a kinetic energy due to the particle’s
rotation around its centre of mass. The reader can consult the books by Souriau [14] and Mackey [18]
where the kinetic theory of polyatomic gases is discussed.

The pressure in the gas, denoted by Π(b) because the notation P(b) is already used for the
partition function, is due to the change of linear momentum of the particles which occurs at a collision
of the particle with the walls of the vessel containing the gas (or with a probe used to measure that
pressure). A classical argument in the kinetic theory of gases (see for example [52,53]) leads to

Π(b) =
2
3

E(b)
V

=
N
Vb

.

This formula is the well known equation of state of an ideal monoatomic gas relating the number of
particles by unit of volume, the pressure and the temperature.

With b =
1

kT
, the above expressions are exactly those used in classical thermodynamics for an

ideal monoatomic gas.

6.3.2. Classical Ideal Monoatomic Gas in a Gravity Field

Let us now assume that the gas, contained in a cylindrical vessel of section Σ and length h, with a
vertical axis, is submitted to the vertical gravity field of intensity g directed downwards. We choose
Cartesian coordinates x, y, z, the z axis being vertical directed upwards, the bottom of the vessel being
in the horizontal surface z = 0. The Hamiltonian of a free particle of mass m, position and linear
momentum vectors −→x (components x, y, z) and −→p (components px, py and pz) is

1
2m

(p2
x + p2

y + p2
z) + mgz .

As in the previous section we neglect the parts of the Hamiltonian of the gas corresponding to
collisions between the particles, or between a particle and the walls of the vessel. The Hamiltonian of
the gas is therefore

H =
N

∑
i=1

(
1

2mi
(p2

i x + p2
i y + p2

i z) + migzi

)
.

Calculations similar to those of the previous section lead to

P(b) =
N

∏
i=1

[
Σ
(

2πmi
b

)3/2 1 − exp(−migbh)
migb

]
,

ρb =
1

P(b)
exp

[
−b

N

∑
i=1

(‖−→pi ‖2

2mi
+ migzi

)]
.

The expression of ρb shows that the 2N stochastic vectors −→xi and −→pi still are independent, and that
for each i ∈ {1, . . . , N}, the probability law of each stochastic vector −→pi is the same as in the absence
of gravity, for the same value of b. Each stochastic vector −→xi is no more uniformly distributed in the
vessel containing the gas: its probability density is higher at lower altitudes z, and this nonuniformity
is more important for the heavier particles than for the lighter ones.

As in the previous section, the formulae given in Proposition 11 allow the calculation of E(b) and
S(b). We observe that E(b) now includes the potential energy of the gas in the gravity field, therefore
should no more be called the internal energy of the gas.

6.3.3. Relativistic Monoatomic Ideal Gas

In a Galilean reference frame, we consider a relativistic point particle of rest mass m, moving
at a velocity −→v . We denote by v the modulus of −→v and by c the modulus of the velocity of light.
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The motion of the particle can be mathematically described by means of the Euler–Lagrange equations,
with the Lagrangian

L = −mc2

√
1 − v2

c2 .

The components of the linear momentum −→p of the particle, in an orthonormal frame at rest in the
considered Galilean reference frame, are

pi =
∂L
∂vi =

mvi√
1 − v2

c2

, therefore −→p =
m−→v√
1 − v2

c2

.

Denoting by p the modulus of −→p , the Hamiltonian of the particle is

H = −→p · −→v − L =
mc2√
1 − v2

c2

= c
√

p2 + m2c2 .

Let us consider a relativistic gas, made of N point particles indexed by i ∈ {1, . . . , N}, mi being
the rest mass of the i-th particle. With the same assumptions as those made in Section 6.3.1, we can
take for Hamiltonian of the gas

H = c
N

∑
i=1

√
pi

2 + m2c2 .

With the same notations as those of Section 6.3.1, the partition function P of the gas takes the
value, for each b > 0,

P(b) =
∫

D
exp

(
−bc

N

∑
i=1

√
(pi)2 + m2c2

)
N

∏
i=1

(d−→xi d−→pi ) .

This integral can be expressed in terms of the Bessel function K2, whose expression is, for each
x > 0,

K2(x) = x
∫ +∞

0
exp(−x ch χ) sh2 χ ch χdχ .

We have

P(b) =
(

4πVc
b

)N N

∏
i=1

(
mi

2K2(mibc2)
)

,

ρb =
1

P(b)
exp

(
−bc

N

∑
i=1

√
pi

2 + mi
2c2

)
.

This probability density of the Gibbs state shows that the 2N stochastic vectors −→xi and −→pi
are independent, that each −→xi is uniformly distributed in the vessel containing the gas and that the
probability density of each −→pi is exactly the probability distribution of the linear momentum of particles
in a relativistic gas called the Maxwell–Jüttner distribution, obtained by Ferencz Jüttner (1878–1958) in
1911, discussed in the book by the Irish mathematician and physicist Synge [54].

Of course, the formulae given in Proposition 11 allow the calculation of the internal energy E(b),
the entropy S(b) and the pressure Π(b) of the relativistic gas.

6.3.4. Relativistic IDeal Gas of Massless Particles

We have seen in the previous Chapter that in an inertial reference frame, the Hamiltonian
of a relativistic point particle of rest mass m is c

√
p2 + m2c2, where p is the modulus of the

linear momentum vector −→p of the particle in the considered reference frame. This expression
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still has a meaning when the rest mass m of the particle is 0. In an orthonormal reference frame,
the equations of motion of a particle whose motion is mathematically described by a Hamiltonian
system with Hamiltonian

H = cp = c
√

p1
2 + p22 + p32

are ⎧⎪⎪⎨⎪⎪⎩
dxi

dt
=

∂H
∂pi

= c
pi
p

dpi
dt

= −∂H
∂xi = 0 ,

(1 ≤ i ≤ 3) ,

which shows that the particle moves on a straight line at the velocity of light c. It seems therefore
reasonable to describe a gas of N photons in a vessel of volume V at rest in an inertial reference frame
by a Hamiltonian system, with the Hamiltonian

H = c
N

∑
i=1

‖−→pi ‖ = c
N

∑
i=1

√
pi 1

2 + pi 2
2 + pi 3

2 .

With the same notations as those used in the previous section, the partition function P of the gas
takes the value, for each b > 0,

P(b) =
∫

D
exp

(
−bc

N

∑
i=1

‖−→pi ‖
)

N

∏
i=1

(d−→xi d−→pi ) =

(
8πV
c3b3

)N
.

The probability density of the corresponding Gibbs state, with respect to the Liouville measure
λω = ∏N

i=1(d
−→xi d−→pi ), is

ρb =
N

∏
i=1

(
c3b3

8πV

)
exp(−bc‖−→pi ‖) .

This formula appears in the books by Synge [54] and Souriau [14]. Physicists consider it as not
adequate for the description of a gas of photons contained in a vessel at thermal equilibrium because
the number of photons in the vessel, at any given temperature, cannot be imposed: it results from
the processes of absorption and emission of photons by the walls of the vessel, heated at the imposed
temperature, which spontaneously occur. In other words, this number is a stochastic function whose
probability law is imposed by Nature. Souriau proposes, in his book [14], a way to account for the
possible variation of the number of photons. Instead of using the phase space of the system of N
massless relativistic particles contained in a vessel, he uses the manifold of motions MN of that system
(which is symplectomorphic to its phase space). He considers that the manifold of motions M of a
system of photons in the vessel is the disjoint union

M =
⋃

N∈N
MN ,

of all the manifolds of motions MN of a system of N massless relativistic particles in the vessel,
for all possible values of N ∈ N. Fo N = 0 the manifold M0 is reduced to a singleton with,
as Liouville measure, the measure which takes the value 1 on the only non empty part of that manifold
(the whole manifold M0). Moreover, since any photon cannot be distinguished from any other photon,
two motions of the system with the same number N of massless particles which only differ by the
labelling of these particles must be considered as identical. Souriau considers too that since the

number N of photons freely adjusts itself, the value of the parameter b =
1

kT
must, at thermodynamic

equilibrium, be the same in all parts MN of the system, N ∈ N. He uses too the fact that a photon can
have two different states of (circular) polarization. With these assumptions the value at any b of the
partition function of the system is
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P(b) =
+∞

∑
N=0

1
N!

(
16πV
c3b3

)N
= exp

(
16πV
c3b3

)
.

The number N of photons in the vessel at thermodynamic equilibrium is a stochastic function
which takes the value n with the probability

Probability
(
[N = n]

)
=

1
n!

(
16πV
c3b3

)n
exp

(
−16πV

c3b3

)
.

The expression of the partition function P allows the calculation of the internal energy, the entropy
and all other thermodynamic functions of the system. However, the formula so obtained for the
distribution of photons of various energies at a given temperature does not agree with the law, in
very good agreement with experiments, obtained by Max Planck (1858–1947) in 1900. An assembly
of photons in thermodynamic equilibrium evidently cannot be described as a classical Hamiltonian
system. This fact played an important part for the development of quantum mechanics.

6.3.5. Specific Heat of Solids

The motion of a one-dimensional harmonic oscillator can be described by a Hamiltonian system
with, as Hamiltonian,

H(p, q) =
p2

2m
+

μq2

2
.

The idea that the heat energy of a solid comes from the small vibrations, at a microscopic scale, of
its constitutive atoms, lead physicists to attempt to mathematically describe a solid as an assembly of a
large number N of three-dimensional harmonic oscillators. By dealing separately with each proper
oscillation mode, the solid can even be described as an assembly of 3N one-dimensional harmonic
oscillators. Exanges of energy between these oscillators is allowed by the existence of small couplings
between them. However, for the determination of the thermodynamic equilibria of the solid we will,
as in the previous section for ideal gases, consider as negligible the energy of interactions between the
oscillators. We therefore take for Hamiltonian of the solid

H =
3N

∑
i=1

(
pi

2

2mi
+

μiqi
2

2

)
.

The value of the paritition function P, for any b > 0, is

P(b) =
∫
R6N

exp

[
−b

3N

∑
i=1

(
pi

2

2mi
+

μiqi
2

2

)] 3N

∏
i=1

(dpidqi) =
3N

∏
i=1

(
1
νi

)
b−3N ,

where

νi =
1

2π

√
μi
mi

is the frequency of the i-th harmonic oscillator.
The internal energy of the solid is

E(b) = −d log P(b)
db

=
3N
b

.

We observe that it only depends on the the temperature and on the number of atoms in the solid,

not on the frequencies νi of the harmonic oscillators. With b =
1

kT
this result is in agreement with the

empirical law for the specific heat of solids, in good agreement with experiments at high temperature,
discovered in 1819 by the French scientists Pierre Louis Dulong (1785–1838) and Alexis Thérèse Petit
(1791–1820).

34



Entropy 2016, 18, 370

7. Generalization for Hamiltonian Actions

7.1. Generalized Gibbs States

In his book [15] and in several papers [13,16,17], Souriau extends the concept of a Gibbs state for
a Hamiltonian action of a Lie group G on a symplectic manifold (M, ω). Usual Gibbs states defined
in Section 6 for a smooth Hamiltonian H on a symplectic manifold (M, ω) appear as special cases,
in which the Lie group is a one-parameter group. If the symplectic manifold (M, ω) is the phase
space of the Hamiltonian system, that one-parameter group, whose parameter is the time t, is the
group of evolution, as a function of time, of the state of the system, starting from its state at some
arbitrarily chosen initial time t0. If (M, ω) is the symplectic manifold of all the motions of the system,
that one-parameter group, whose parameter is a real τ ∈ R, is the transformation group which maps
one motion of the system with some initial state at time t0 onto the motion of the system with the same
initial state at another time (t0 + τ). We discuss below this generalization.

Notations and Conventions

In this section, Φ : G × M → M is a Hamiltonian action (for example on the left) of a Lie group G
on a symplectic manifold (M, ω). We denote by G the Lie algebra of G, by G∗ its dual space and by
J : M → G∗ a momentum map of the action Φ.

Definition 19. Let b ∈ G be such that the integrals on the right hand sides of the equalities

P(b) =
∫

M
exp

(− 〈J, b〉)dλω and

EJ(b) = Eρb(J) =
1

P(b)

∫
M

J exp
(− 〈J, b〉)dλω

converge. The smooth probability measure on M with density (with respect to the Liouville measure λω on M)

ρb =
1

P(b)
exp

(−〈J, b〉)
is called the generalized Gibbs statistical state associated to b. The functions b �→ P(b) and b �→ EJ(b) so
defined on the subset of G made by elements b for which the integrals defining P(b) and EJ(b) converge are called
the partition function associated to the momentum map J and the mean value of J at generalized Gibbs states.

The following Proposition generalizes 9.

Proposition 12. Let b ∈ G be such that the integrals defining P(b) and EJ(b) in Definition 19 converge, and
ρb be the density of the generalized Gibbs state associated to b. The entropy s(ρb), which will be denoted by S(b),
exists and is given by

S(b) = log
(

P(b)
)
+
〈

EJ(b), b
〉
= log

(
P(b)

)− 〈
D
(
log P(b)

)
, b
〉

. (7)

Moreover, for any other smooth probability density ρ1 such that

Eρ1(J) = Eρb(J) = EJ(b) ,

we have
s(ρ1) ≤ s(ρb) ,

and the equality s(ρ1) = s(ρb) holds if and only if ρ1 = ρb.
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Proof. Equation (7) follows from log
(

1
ρb

)
= log

(
P(b)

)
+ 〈J, b〉, and D

(
log P(b)

)
= −EJ(b). The

remaining of the proof is the same as that of Proposition 9.

Remark 15.

1. The second part of Equation (7), S(b) = log
(

P(b)
) − 〈

D
(
log P(b)

)
, b
〉

, expresses the fact that the

functions log
(

P(b)
)

and −S(b) are Legendre transforms of each other: they are linked by the same relation
as the relation which links a smooth Lagrangian L and the associated energy EL.

2. The Liouville measure λω remains invariant under the Hamiltonian action Φ, since the symplectic form ω

itself remains invariant under that action. However, we have not a full analogue of Proposition 10 because
the momentum map J does not remain invariant under the action Φ. We only have the partial anologue
stated below.

3. Legendre transforms were used by Massieu in thermodynamics in his very early works [55,56], more
systematically presented in [57], in which he introduced his characteristic functions (today called
thermodynamic potentials) allowing the determination of all the thermodynamic functions of a physical
system by partial derivations of a suitably chosen characteristic function. For a modern presentation of that
subject the reader is referred to [58,59], Chapter 5, pp. 131–152.

Proposition 13. Let b ∈ G be such that the integrals defining P(b) and EJ(b) in Definition 19 converge.
The generalized Gibbs state associated to b remains invariant under the restriction of the Hamiltonian action Φ
to the one-parameter subgroup of G generated by b,

{
exp(τb)

∣∣ τ ∈ R
}

.

Proof. The orbits of the action on M of the subgroup
{

exp(τb)
∣∣ τ ∈ R

}
of G are the integral curves

of the Hamiltonian vector field whose Hamiltonian is 〈J, b〉, which of course is constant on each of
these curves. Therefore the proof of Proposition 10 is valid for that subgroup.

7.2. Generalized Thermodynamic Functions

Assumptions Made in this Section

Notations and conventions being the same as in Section 7.1, let Ω be the largest open subset of the
Lie algebra G of G containing all b ∈ G satisfying the following properties:

• the functions defined on M, with values, respectively, in R and in the dual G∗ of G,

z �→ exp
(
−〈J(z), b

〉)
and z �→ J(z) exp

(
−〈J(z), b

〉)
are integrable on M with respect to the Liouville measure λω;

• moreover their integrals are differentiable with respect to b, their differentials are continuous and
can be calculated by differentiation under the sign

∫
M.

It is assumed in this section that the considered Hamiltonian action Φ of the Lie group G on the
symplectic manifold (M, ω) and its momentum map J are such that the open subset Ω of G is not
empty. This condition is not always satisfied when (M, ω) is a cotangent bundle, but of course it is
satisfied when it is a compact manifold.

Proposition 14. Let Φ : G × M → M be a Hamiltonian action of a Lie group G on a symplectic manifold
(M, ω) satisfying the assumptions indicated in Section 7.2. The partition function P associated to the momentum
map J and the mean value EJ of J for generalized Gibbs states Definition 19 are defined and continuously
differentiable on the open subset Ω of G. For each b ∈ Ω, the differentials at b of the functions P and log P
(which are linear maps defined on G, with values in R, in other words elements of G∗) are given by

DP(b) = −P(b)EJ(b) , D(log P)(b) = −EJ(b) .
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For each b ∈ Ω, the differential at b of the map EJ (which is a linear map defined on G, with values in its
dual G∗) is given by

〈
DEJ(b)(Y), Z

〉
=
〈

EJ(b), Y
〉〈

EJ(b), Z
〉− Eρb

(〈J, Y〉〈J, Z〉) , with Y and Z ∈ G ,

where we have written, as in Definition 17,

Eρb

(〈J, Y〉〈J, Z〉) = 1
P(b)

∫
M
〈J, Y〉〈J, Z〉 exp

(−〈J, b〉)dλω .

At each b ∈ Ω, the differential of the entropy function S Proposition 12, which is a linear map defined on
G, with values in R, in other words an element of G∗, is given by

〈
DS(b), Y

〉
=
〈

DEJ(b)(Y), b
〉

, Y ∈ G .

Proof. By assumptions Section 7.2, the differentials of P and EJ can be calculated by differentiation
under the sign

∫
M. Easy (but tedious) calculations lead to the indicated results.

Corollary 3. With the same assumptions and notations as those in Proposition 14, for any b ∈ Ω and Y ∈ G,

〈
DEJ(b)(Y), Y

〉
= − 1

P(b)

∫
M

〈
J − EJ(b), Y

〉2dλω ≤ 0 .

Proof. This result follows from the well known result in Probability theory already used in the proof of
Proposition 11.

The momentum map J of the Hamiltonian action Φ is not uniquely determined: for any constant
μ ∈ G∗, J1 = J + μ too is a momentum map for Φ. The following proposition indicates how the
generalized thermodynamic functions P, EJ and S change when J is replaced by J1.

Proposition 15. With the same assumptions and notations as those in Proposition 14, let μ ∈ G∗ be a constant.
When the momentum map J is replaced by J1 = J + μ, the open subset Ω of G remains unchanged, while the
generalized thermodynamic functions P, EJ and S, are replaced, respectively, by P1, EJ1 and S1, given by

P1(b) = exp
(−〈μ, b〉)P(b), EJ1(b) = EJ(b) + μ , S1(b) = S(b) .

The Gibbs satistical state and its density ρb with respect to the Liouville measure λω remain unchanged.

Proof. We have
exp

(−〈J + μ, b〉) = exp
(−〈μ, b〉)exp

(−〈J, b〉) .

The indicated results follow by easy calculations.

The following proposition indicates how the generalized thermodynamic functions P, EJ and S
vary along orbits of the adjoint action of the Lie group G on its Lie algebra G.

Proposition 16. The assumptions and notations are the same as those in Proposition 14. The open subset Ω
of G is an union of orbits of the adjoint action of G on G. In other words, for each b ∈ Ω and each g ∈ G,
Adg b ∈ Ω. Moreover, let θ : G → G∗ be the symplectic cocycle of G for the coadjoin action of G on G∗ such
that, for any g ∈ G,

J ◦ Φg = Ad∗
g−1 ◦ J + θ(g) .
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Then for each b ∈ Ω and each g ∈ G

P(Adg b) = exp
(〈

θ(g−1), b
〉)

P(b) = exp
(
−〈Ad∗

g θ(g), b
〉)

P(b) ,

EJ(Adg b) = Ad∗
g−1 EJ(b) + θ(g) ,

S(Adg b) = S(b) .

Proof. We have

P(Adg b) =
∫

M
exp

(−〈J, Adg b〉)dλω =
∫

M
exp

(−〈Ad∗
g J, b〉)dλω

=
∫

M
exp

(
−〈J ◦ Φg−1 − θ(g−1, b

〉)
dλω

= exp
(〈

θ(g−1), b
〉)

P(b) = exp
(
−〈Ad∗

g θ(g), b
〉)

P(b) ,

since θ(g−1) = −Ad∗
g θ(g). By using Propositions 14 and 12, the other results easily follow.

Remark 16. The equality
EJ(Adg b) = Ad∗

g−1 EJ(b) + θ(g)

means that the map EJ : Ω → G∗ is equivariant with respect to the adjoint action of G on the open subset Ω of
its Lie algebra G and its affine action on the left on G∗

(g, ξ) �→ Ad∗
g−1 ξ + θ(g) , g ∈ G , ξ ∈ G∗ .

Proposition 17. The assumptions and notations are the same as those in Proposition 14. For each b ∈ Ω and
each X ∈ G, we have 〈

EJ(b), [X, b]
〉
=
〈
Θ(X), b

〉
,

DEJ(b)
(
[X, b]

)
= − ad∗

X EJ(b) + Θ(X) ,

where Θ = Teθ : G → G∗ is the 1-cocycle of the Lie algebra G associated to the 1-cocycle θ of the Lie group G.

Proof. Let us set g = exp(τX) in the first equality in Proposition 16, derive that equality with respect
to τ, and evaluate the result at τ = 0. We obtain

DP(b)
(
[X, b]

)
= −P(b)

〈
Θ(X), b

〉
.

Since, by the first equality of Proposition 14, DP(b) = −P(b)EJ(b), the first stated equality follows.
Let us now set g = exp(τX) in the second equality in Proposition 16, derive that equality with

respect to τ, and evaluate the result at τ = 0. We obtain the second equality stated.

Corollary 4. With the assumptions and notations of Proposition 17, let us define, for each b ∈ Ω, a linear map
Θb : G → G∗ by setting

Θb(X) = Θ(X)− ad∗
X EJ(b) .

The map Θb is a symplectic 1-cocycle of the Lie algebra G for the coadjoint representation, which satisfies

Θb(b) = 0 .

Moreover if we replace the momentum map J by J1 = J + μ, with μ ∈ G∗ constant, the 1-cocycle Θb
remains unchanged.
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Proof. For X, Y and Z in G, we have since Θ is a 1-cocycle, ∑
circ(X,Y,Z)

meaning a sum over circular

permutations of X, Y and Z, using the Jacobi identity in G, we have

∑
circ(X,Y,Z)

〈
Θb(X), [Y, Z]

〉
= ∑

circ(X,Y,Z)

〈− ad∗
X EJ(b), [Y, Z]

〉
= ∑

circ(X,Y,Z)

〈−EJ(b),
[
X, [Y, Z]

]〉
= 0 .

The linear map Θb is therefore a 1 cocycle, even a symplectic 1-cocycle since for all X and Y ∈ G,〈
Θb(X), Y

〉
= −〈Θb(Y), X

〉
.

Using the first equality stated in Proposition 17, we have for any X ∈ G〈
Θb(b), X

〉
=
〈
Θ(b)− ad∗

b EJ(b), X
〉
= −〈Θ(X), b

〉
+
〈

EJ(b), [X, b]
〉
= 0 .

If we replace J by J1 = J + μ, the map X �→ Θ(X) is replaced by X �→ Θ1(X) = Θ(X) + ad∗
X μ

and EJ(b) by EJ1(b) = EJ(b) + μ, therefore Θb remains unchanged.

The following lemma will allow us to define, for each b ∈ Ω, a remarkable symmetric bilinear
form on the vector subspace [b,G] = {

[b, X] ; X ∈ G} of the Lie algebra G.

Lemma 1. Let Ξ be a 1-cocycle of a finite-dimensional Lie algebra G for the coadjoint representation. For each
b ∈ ker Ξ, let Fb = [G, b] be the set of elements X ∈ G which can be written X = [X1, b] for some X1 ∈ G.
Then Fb is a vector subspace of G, and the value of the right hand side of the equality

Γb(X, Y) =
〈
Ξ(X1), Y

〉
, with X1 ∈ G , X = [X1, b] ∈ Fb , Y ∈ Fb ,

depends only on X and Y, not on the choice of X1 ∈ G such that X = [X1, b]. That equality defines a bilinear
form Γb on Fb which is symmetric, i.e., satisfies

Γb(X, Y) = Γb(Y, X) for all X and Y ∈ Fb .

Proof. Let X1 and X′
1 ∈ G be such that [X1, b] = [X′

1, b] = X. Let Y1 ∈ G be such that [Y1, b] = Y.
We have 〈

Ξ(X1 − X′
1), Y

〉
=
〈
Ξ(X1 − X′

1), [Y1, b]
〉

= −〈Ξ(Y1), [b, X1 − X′
1]
〉− 〈

Ξ(b), [X1 − X′
1, Y1]

〉
= 0

since Ξ(b) = 0 and [b, X1 − X′
1] = 0. We have shown that

〈
Ξ(X1), Y

〉
=
〈
Ξ(X′

1), Y
〉
. Therefore Γb is a

bilinear form on Fb. Similarly〈
Ξ(X1), Y

〉
=
〈
Ξ(X1), [Y1, b]

〉
= −〈Ξ(Y1), [b, X1]

〉− 〈
Ξ(b), [X1, Y1]

〉
=
〈
Ξ(Y1), X

〉
,

which proves that Γb is symmetric.

Theorem 7. The assumptions and notations are the same as those in Proposition 14. For each b ∈ Ω, there exists
on the vector subspace Fb = [G, b] of elements X ∈ G which can be written X = [X1, b] for some X1 ∈ G,
a symmetric negative bilinear form Γb given by

Γb(X, Y) =
〈
Θb(X1), Y

〉
, with X1 ∈ G , X = [X1, b] ∈ Fb , Y ∈ Fb ,
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where Θb : G → G∗ is the symplectic 1-cocycle defined in Corollary 4.

Proof. We have seen in Corollary 4 that b ∈ ker Θb. The fact that the equality given in the statement
above defines indeed a symmetric bilinear form on Fb directly follows from Lemma 1. We only have
to prove that this symmetric bilinear form is negative. Let X ∈ Fb and X1 ∈ G such that X = [X1, b].
Using Proposition 17 and Corollary 3, we have

Γb(X, X) =
〈
Θb(X1), [X1, b]

〉
=
〈
Θ(X1)− ad∗

X1
EJ(b), [X1, b]

〉
=
〈

DEJ(b)[X1, b], [X1, b]
〉

≤ 0 .

The symmetric bilinear form Γb on Fb is therefore negative.

Remark 17. The symmetric negative bilinear forms encountered in Theorem 7 and Corollary 3 seem to be linked
with the Fisher metric in information geometry discussed in [31,60,61].

7.3. Examples of Generalized Gibbs States

7.3.1. Action of the Group of Rotations on a Sphere

The symplectic manifold (M, ω) considered here is the two-dimensional sphere of radius R
centered at the origin O of a three-dimensional oriented Euclidean vector space

−→
E , equipped with its

area element as symplectic form. The group G of rotations around the origin (isomorphic to SO(3))
acts on the sphere M by a Hamiltonian action. The Lie algebra G of G can be identified with

−→
E ,

the fundamental vector field on M associated to an element
−→
b in G ≡ −→

E being the vector field
on M whose value at a point m ∈ M is given by the vector product

−→
b × −→

Om. The dual G∗ of G
will be too identified with

−→
E , the coupling by duality being given by the Euclidean scalar product.

The momentum map J : M → G∗ ≡ −→
E is given by

J(m) = −R
−→
Om , m ∈ M .

Therefore, for any
−→
b ∈ G ≡ −→

E , 〈
J(m),

−→
b
〉
= −R

−→
Om · −→b .

Let
−→
b be any element in G ≡ −→

E . To calculate the partition function P(
−→
b ) we choose an

orthonormal basis (−→ex ,−→ey ,−→ez ) of
−→
E such that

−→
b = ‖−→b ‖−→ez , with ‖−→b ‖ ∈ R+, and we use angular

coordinates (ϕ, θ) on the sphere M. The coordinates of a point m ∈ M are

x = R cos θ cos ϕ , y = R cos θ sin ϕ , z = R sin θ .

We have

P(
−→
b ) =

∫ 2π

0

(∫ π/2

−π/2
R2 exp(R‖−→b ‖ sin θ dθ

)
dϕ =

4πR

‖−→b ‖
sh
(

R‖−→b ‖) .

The probability density (with respect to the natural area measure on the sphere M) of the
generalized Gibbs state associated to

−→
b is

ρb(m) =
1

P(
−→
b )

exp(
−→
Om · −→b ) , m ∈ M .
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We observe that ρb reaches its maximal value at the point m ∈ M such that
−→
Om =

R
−→
b

‖−→b ‖
and its

minimal value at the diametrally opposed point.

7.3.2. The Galilean Group, Its Lie Algebra and Its Actions

In view of the presentation, made below, of some physically meaningful generalized Gibbs states
for Hamiltonian actions of subgroups of the Galilean group, we recall in this section some notions
about the space-time of classical (non-relativistic) mechanics, the Galilean group, its Lie algebra and its
Hamiltonian actions. The interested reader will find a much more detailed treatment on these subjects
in the book by Souriau [14] or in the recent book by de Saxcé and Vallée [45]. The paper [62] presents a
nice application of Galilean invariance in thermodynamics.

The space-time of classical mechanics is a four-dimensional real affine space which, once an
inertial reference frame, units of length and time, orthonormal bases of space and time are chosen, can
be identified with R4 ≡ R3 ×R (coordinates x, y, z, t). The first three coordinates x, y and z can be
considered as the three components of a vector −→r ∈ R3, therefore an element of space-time can be
denoted by (−→r , t). However, as the action of the Galilean group will show, the splitting of space-time
into space and time is not uniquely determined, it depends on the choice of an inertial reference frame.
In classical mechanics, there exists an absolute time, but no absolute space. There exists instead a space
(which is an Euclidean affine three-dimensional space) for each value of the time. The spaces for two
distinct values of the time should be considered as disjoint.

The space-time being identified with R3 ×R as explained above, the Galilean group G can be
identified with the set of matrices of the form⎛⎜⎝A

−→
b

−→
d

0 1 e
0 0 1

⎞⎟⎠ , with A ∈ SO(3) ,
−→
b and

−→
d ∈ R

3 , e ∈ R , (8)

the vector space R3 being oriented and endowed with its usual Euclidean structure, the matrix
A ∈ SO(3) acting on it.

The action of the Galilean group G on space-time, identified as indicated above with R3 × R,
is the affine action ⎛⎜⎝

−→r
t
1

⎞⎟⎠ �→

⎛⎜⎝A
−→
b

−→
d

0 1 e
0 0 1

⎞⎟⎠
⎛⎜⎝
−→r
t
1

⎞⎟⎠ =

⎛⎜⎝A−→r + t
−→
b +

−→
d

t + e
1

⎞⎟⎠ .

The Lie algebra G of the Galilean group G can be identified with the space of matrices of the form⎛⎜⎝j(−→ω )
−→
β

−→
δ

0 0 ε

0 0 0

⎞⎟⎠ , with −→ω ,
−→
β and

−→
δ ∈ R

3 , ε ∈ R . (9)

We have denoted by j(−→ω ) the 3 × 3 skew-symmetric matrix

j(−→ω ) =

⎛⎜⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞⎟⎠ .

The matrix j(−→ω ) is an element in the Lie algebra so(3), and its action on a vector −→r ∈ R3 is given
by the vector product

j(−→ω )−→r = −→ω ×−→r .

41



Entropy 2016, 18, 370

Let us consider a mechanical system made by a point particle of mass m whose position and
velocity at time t, in the reference frame allowing the identification of space-time with R3 ×R, are the
vectors −→r and −→v ∈ R3. The action of an element of the Galilean group on −→r ,−→v and t can be
written as ⎛⎜⎝

−→r −→v
t 1
1 0

⎞⎟⎠ �→

⎛⎜⎝A
−→
b

−→
d

0 1 e
0 0 1

⎞⎟⎠
⎛⎜⎝
−→r −→v
t 1
1 0

⎞⎟⎠ =

⎛⎜⎝A−→r + t
−→
b +

−→
d A−→v +

−→
b

t + e 1
1 0

⎞⎟⎠ .

Souriau has shown in his book [14] that this action is Hamiltonian, with the map J, defined on the
evolution space of the particle, with value in the dual G∗ of the Lie algebra G of the Galilean group,
as momentum map

J(−→r , t,−→v , m) = m
(
−→r ×−→v , −→r − t−→v , −→v ,

1
2
‖−→v ‖2

)
.

Let b =

⎛⎜⎝j(−→ω )
−→
β

−→
δ

0 0 ε

0 0 0

⎞⎟⎠ be an element in G. Its coupling with J(−→r , t,−→v , m) ∈ G∗ is given by

the formula〈
J(−→r , t,−→v , m), b

〉
= m

(−→ω · (−→r ×−→v )− (−→r − t−→v ) · −→β +−→v · −→δ − 1
2
‖−→v ‖2ε

)
.

7.3.3. One-Parameter Subgroups of the Galilean Group

In his book [14], Souriau has shown that when the considered Lie group action is the action of the
full Galilean group on the space of motions of an isolated mechanical system, the open subset Ω of
the Lie algebra G of the Galilean group on which the conditions specified in Section 7.2 are satisfied
is empty. In other words, generalized Gibbs states of the full Galilean group do not exist. However,
generalized Gibbs states for one-parameter subgroups of the Galilean group do exist which have an
interesting physical meaning.

Let us consider an element b of G such that in its matrix expression (expression (9) above) we
have ε �= 0. The one-parameter subgroup G1 of the Galilean group generated by b is the set of matrices
exp(τb), with τ ∈ R. We have

exp(τb) =

⎛⎜⎝A(τ)
−→
b (τ)

−→
d (τ)

0 1 τε

0 0 1

⎞⎟⎠ ,

with

A(τ) = exp
(
τ j(−→ω )

)
,

−→
b (τ) =

(
∞

∑
n=1

τn

n!
(

j(−→ω )
)n−1

)
−→
β ,

−→
d (τ) =

(
∞

∑
n=1

τn

n!
(

j(−→ω )
)n−1

)
−→
δ + ε

(
∞

∑
n=2

τn

n!
(

j(−→ω )
)n−2

)
−→
β ,

with the usual convention that
(

j(−→ω )
)0 is the unit matrix.

The physical meaning of this one-parameter subgroup of the Galilean group can be understood as
follows. Let us call fixed the affine Euclidean reference frame of space (O,−→ex ,−→ey ,−→ez ) used to represent,

at time t = 0, a point in space by a vector −→r or by its three components x, y and z. Let us set τ =
t
ε
.
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For each time t ∈ R, the action of A(τ) = A
(

t
ε

)
maps the fixed reference frame (O,−→ex ,−→ey ,−→ez )

onto another affine Euclidean reference frame
(
O(t),−→ex (t),

−→ey (t),
−→ez (t)

)
, which we call the moving

reference frame. The velocity and the acceleration of the relative motion of the moving reference
frame with respect to the fixed reference frame is given, at time t = 0, by the fundamental vector field
associated to the element b of the Lie algebra G of the Galilean group: we see that each point in space
has a motion composed of a rotation around the axis through O parallel to −→ω , at an angular velocity
‖−→ω ‖

ε
, and simultaneously a uniformly accelerated motion of translation at an initial velocity

−→
δ

ε
and

acceleration
−→
β

ε
. At time t, the velocity and acceleration of the moving reference frame with respect to

its instantaneous position at that time can be described in a similar manner, but instead of O, −→ω ,
−→
β

and
−→
δ we must use the corresponding transformed elements by the action of A(τ) = A

(
t
ε

)
.

7.3.4. A Gas Contained in a Moving Vessel

We consider a mechanical system made by a gas of N point particles, indexed by i ∈ {1, 2, . . . , N},
contained in a vessel with rigid, undeformable walls, whose motion in space is given by the action

of the one-parameter subgroup G1 of the Galilean group made by the A
(

t
ε

)
, with t ∈ R, above

described. We denote by mi,
−→ri (t) and −→vi (t) the mass, position vector and velocity vector, respectively,

of the i-th particle at time t. Since the motion of the vessel containing the gas is precisely given by
the action of G1, the boundary conditions imposed to the system are invariant by that action, which
leaves invariant the evolution space of the mechanical system, is Hamiltonian and projects onto a
Hamiltonian action of G1 on the symplectic manifold of motions of the system. We can therefore
consider the generalized Gibbs states of the system, as discussed in Section 7.1. We must evaluate the
momentum map J of that action and its coupling with the element b ∈ G. As in Section 6.3.1 we will
neglect, for that evaluation, the contributions of the collisions of the particles between themselves and
with the walls of the vessel. The momentum map can therefore be evaluated as if all particles were
free, and its coupling 〈J, b〉 with b is the sum ∑N

i=1〈Ji, b〉 of the momentum map Ji of the i-th particle,
considered as free, with b. We have

〈
Ji(

−→ri , t,−→vi , mi), b
〉
= mi

(−→ω · (−→ri ×−→vi )− (−→ri − t−→vi ) ·
−→
β +−→vi ·

−→
δ − 1

2
‖−→vi ‖2ε

)
.

Following Souriau [14], Chapter IV, pp. 299–303, we observe that 〈Ji, b〉 is invariant by the action
of G1. We can therefore define −→ri 0, t0 and −→vi 0 by setting⎛⎜⎝

−→ri 0
−→vi 0

t0 1
1 0

⎞⎟⎠ = exp
(
− t

ε
b
)⎛⎜⎝

−→ri
−→vi

t 1
1 0

⎞⎟⎠
and write 〈

Ji(
−→ri , t,−→vi , mi), b

〉
=
〈

Ji(
−→ri 0, t0,−→vi 0, mi), b

〉
.

The vectors −→ri 0 and −→vi 0 have a clear physical meaning: they are the vectors −→ri and −→vi as seen
by an observer moving with the moving affine Euclidean reference frame

(
O(t),−→ex (t),

−→ey (t),
−→ez (t)

)
.

Moreover, as can be easily verified, t0 = 0 of course. We therefore have

〈
Ji(

−→ri , t,−→vi , mi), b
〉
= mi

(−→ω · (−→ri 0 ×−→vi 0)−−→ri 0 ·
−→
β +−→vi 0 ·

−→
δ − 1

2
‖−→vi 0‖2ε

)
= mi

(−→vi 0 · (−→ω ×−→ri 0 +
−→
δ )−−→ri 0 ·

−→
β − 1

2
‖−→vi 0‖2ε

)
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where we have used the well known property of the mixed product

−→ω · (−→ri 0 ×−→vi 0) =
−→vi 0 · (−→ω ×−→ri 0) .

Let us set −→
U ∗ = 1

ε
(−→ω ×−→ri 0 +

−→
δ ) .

Using −→vi 0 −−→
U ∗ and

−→
U ∗ instead of −→vi 0, we can write

〈
Ji(

−→ri , t,−→vi , mi), b
〉
= miε

(
−1

2
‖−→vi 0 −−→

U ∗‖2 −−→ri 0 ·
−→
β

ε
+

1
2
‖−→U ∗‖2

)
.

We observe that the vector
−→
U ∗ only depends on ε, −→ω ,

−→
δ , which are constants once the element

b ∈ G is chosen, and of −→ri 0, not on −→vi 0. It has a clear physical meaning: it is the value of the velocity of
the moving affine reference frame with respect to the fixed affine reference frame, at point −→ri 0 seen by
an observer linked to the moving reference frame. Therefore the vector −→wi 0 = −→vi 0 −−→

U ∗ is the relative
velocity of the i-th particle with respect to the moving affine reference frame, seen by an observer linked
to the moving reference frame.

The three components of −→ri 0 and the three components of −→pi 0 = mi
−→wi 0 make a system of Darboux

coordinates on the six-dimensional symplectic manilold (Mi, ωi) of motions of the i-th particle. With a
slight abuse of notations, we can consider the momentum map Ji as defined on the space of motions of
the i-th particle, instead of being defined on the evolution space of this particle, and write

〈
Ji(

−→ri 0,−→pi,0), b
〉
= −ε

(
1

2mi
‖−→pi 0‖2 + mi fi(

−→ri 0)

)
, −→pi 0 = mi

−→wi 0 = mi(
−→vi 0 −−→

U ∗) , (10)

and

fi(
−→ri 0) =

−→ri 0 ·
−→
β

ε
− 1

2ε2 ‖−→ω ×−→ri 0‖2 −
−→
δ

ε
·
(−→ω

ε
×−→ri 0

)
− 1

2ε2 ‖
−→
δ ‖2 .

Equation (10) is well suited for the determination of generalized Gibbs states of the system. Let
us set

Pi(b) =
∫

Mi

exp
(−〈Ji, b〉)dλωi , EJi (b) =

1
Pi(b)

∫
Mi

Ji exp
(−〈Ji, b〉)dλωi .

The integrals in the right hand sides of these equalities converge if and only if ε < 0. It means that
the matrix b belongs to the subset Ω of the one-dimensional Lie algebra of the considered one-parameter
subgroup G1 of the Galilean group on which generalized Gibbs states can be defined if and only if ε < 0.
Assuming that condition satisfied, we can use Definitions 19. The generalized Gibbs state determined
by b has the smooth density, with respect to the Liouville measure ∏N

i=1 λωi on the symplectic manifold
of motions ΠN

i=1(Mi, ωi),

ρ(b) =
N

∏
i=1

ρi(b) , with ρi(b) =
1

Pi(b)
exp

(−〈Ji, b〉) .

The partition function, whose expression is

P(b) =
N

∏
i=1

Pi(b) ,

can be used, with the help of the formulae given in Section 7.2, to determine all the generalized
thermodynamic functions of the gas in a generalized thermodynamic equilibrium state.
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Remark 18.

1. The physical meaning of the parameter ε which appears in the expression of the matrix b is clearly apparent
in expression (10) of 〈Ji, b〉:

ε = − 1
kT

,

T being the absolute temperature and k the Boltzmann’s constant.
2. The same expression (10) shows that the relative motion of the gas with respect to the moving vessel in

which it is contained, seen by an observer linked to that moving vessel, is described by a Hamiltonian

system in which the kinetic and potential energies of the i-th particle are, respectively,
1

2mi
‖−→pi 0‖2 and

mi fi(
−→ri 0). This result can be obtained in another way: by deriving the Hamiltonian which governs the

relative motion of a mechanical system with respect to a moving frame, as used by Jacobi [63] to determine
the famous Jacobi integral of the restricted circular three-body problem (in which two big planets move on
concentric circular orbits around their common center of mass, and a third planet of negligible mass moves
in the gravitational field created by the two big planets).

3. The generalized Gibbs state of the system imposes to the various parts of the system, i.e., to the various

particles, to be at the same temperature T = − 1
kε

and to be statistically at rest in the same moving
reference frame.

7.3.5. Three Examples

1. Let us set −→ω = 0 and
−→
β = 0. The motion of the moving vessel containing the gas (with respect

to the so called fixed reference frame) is a translation at a constant velocity
−→
δ

ε
. The function fi(

−→ri 0)

is then a constant. In the moving reference frame, which is an inertial frame, we recover the
thermodynamic equilibrium state of a monoatomic gas discussed in Section 6.3.1.

2. Let us set now −→ω = 0 and
−→
δ = 0. The motion of the moving vessel containing the gas

(with respect to the so called fixed reference frame) is now an uniformly accelerated translation,

with acceleration
−→
β

ε
. The function fi(

−→ri 0) now is

fi(
−→ri 0) =

−→ri 0 ·
−→
β

ε
.

In the moving reference frame, which is no more inertial, we recover the thermodynamic

equilibrium state of a monoatomic gas in a gravity field −→g = −
−→
β

ε
discussed in Section 6.3.2.

3. Let us now set −→ω = ω−→ez ,
−→
β = 0 and

−→
δ = 0. The motion of the moving vessel containing the

gas (with respect to the so called fixed reference frame) is now a rotation around the coordinate z
axis at a constant angular velocity

ω

ε
. The function fi(

−→ri 0) is now

fi(
−→ri 0) = − ω2

2ε2 ‖−→ez ×−→ri 0‖2 .

The length Δ = ‖−→ez ×−→ri,0‖ is the distance between the i-th particle and the axis of rotation of

the moving frame (the coordinate z axis). Moreover, we have seen that ε =
−1
kT

. Therefore in

the generalized Gibbs state, the probability density ρi(b) of presence of the i-th particle in its
symplectic manifold of motion Mi, ωi, with respect to the Liouville measure λωi , is

ρi(b) =
1

Pi(b)
exp

(−〈Ji, b〉) = Constant · exp
(
− 1

2mikT
‖−→pi 0‖2 +

mi
2kT

(ω

ε

)2
Δ2
)

.
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This formula describes the behaviour of a gas made of point particles of various masses in a

centrifuge rotating at a constant angular velocity
ω

ε
: the heavier particles concentrate farther from

the rotation axis than the lighter ones.

7.3.6. Other Applications of Generalized Gibbs States

Applications of generalized Gibbs states in thermodynamics of continua, with the use of affine
tensors, are presented in the papers by de Saxcé [64,65].

Several applications of generalized Gibbs states of subgroups of the Poincaré group were
considered by Souriau. For example, he presents in his book [14], Chapter IV, p. 308, a generalized
Gibbs which describes the behaviour of a gas in a relativistic centrifuge, and in his papers [15,16], very
nice applications of such generalized Gibbs states in Cosmology.
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Abstract: We introduce the symplectic structure of information geometry based on Souriau’s Lie
group thermodynamics model, with a covariant definition of Gibbs equilibrium via invariances
through co-adjoint action of a group on its moment space, defining physical observables like energy,
heat, and moment as pure geometrical objects. Using geometric Planck temperature of Souriau
model and symplectic cocycle notion, the Fisher metric is identified as a Souriau geometric heat
capacity. The Souriau model is based on affine representation of Lie group and Lie algebra that we
compare with Koszul works on G/K homogeneous space and bijective correspondence between the
set of G-invariant flat connections on G/K and the set of affine representations of the Lie algebra of
G. In the framework of Lie group thermodynamics, an Euler-Poincaré equation is elaborated with
respect to thermodynamic variables, and a new variational principal for thermodynamics is built
through an invariant Poincaré-Cartan-Souriau integral. The Souriau-Fisher metric is linked to KKS
(Kostant–Kirillov–Souriau) 2-form that associates a canonical homogeneous symplectic manifold
to the co-adjoint orbits. We apply this model in the framework of information geometry for the
action of an affine group for exponential families, and provide some illustrations of use cases for
multivariate gaussian densities. Information geometry is presented in the context of the seminal work
of Fréchet and his Clairaut-Legendre equation. The Souriau model of statistical physics is validated
as compatible with the Balian gauge model of thermodynamics. We recall the precursor work of
Casalis on affine group invariance for natural exponential families.

Keywords: Lie group thermodynamics; moment map; Gibbs density; Gibbs equilibrium; maximum
entropy; information geometry; symplectic geometry; Cartan-Poincaré integral invariant; geometric
mechanics; Euler-Poincaré equation; Fisher metric; gauge theory; affine group

Lorsque le fait qu’on rencontre est en opposition avec une théorie régnante, il faut accepter
le fait et abandonner la théorie, alors même que celle-ci, soutenue par de grands noms,
est généralement adoptée

—Claude Bernard in “Introduction à l’Étude de la Médecine Expérimentale” [1]

Au départ, la théorie de la stabilité structurelle m’avait paru d’une telle ampleur
et d’une telle généralité, qu’avec elle je pouvais espérer en quelque sorte remplacer
la thermodynamique par la géométrie, géométriser en un certain sens la thermodynamique,
éliminer des considérations thermodynamiques tous les aspects à caractère mesurable
et stochastiques pour ne conserver que la caractérisation géométrique correspondante
des attracteurs.

—René Thom in “Logos et théorie des Catastrophes” [2]
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Entropy 2016, 18, 386

1. Introduction

This MDPI Entropy Special Issue on “Differential Geometrical Theory of Statistics” collects a
limited number of selected invited and contributed talks presented during the GSI’15 conference on
“Geometric Science of Information” in October 2015. This paper is an extended version of the paper [3]
“Symplectic Structure of Information Geometry: Fisher Metric and Euler-Poincaré Equation of Souriau Lie
Group Thermodynamics” published in GSI’15 Proceedings. At GSI’15 conference, a special session was
organized on “lie groups and geometric mechanics/thermodynamics”, dedicated to Jean-Marie Souriau’s
works in statistical physics, organized by Gery de Saxcé and Frédéric Barbaresco, and an invited talk
on “Actions of Lie groups and Lie algebras on symplectic and Poisson manifolds. Application to Lagrangian
and Hamiltonian systems” by Charles-Michel Marle, addressing “Souriau’s thermodynamics of Lie groups”.
In honor of Jean-Marie Souriau, who died in 2012 and Claude Vallée [4–6], who passed away in 2015,
this Special Issue will publish three papers on Souriau’s thermodynamics: Marle’s paper on “From Tools
in Symplectic and Poisson Geometry to Souriau’s Theories of Statistical Mechanics and Thermodynamics” [7],
de Saxcé’s paper on “Link between Lie Group Statistical Mechanics and Thermodynamics of Continua” [8] and
this publication by Barbaresco. This paper also proposes new developments, compared to paper [9]
where relations between Souriau and Koszul models have been initiated.

This paper, similar to the goal of the papers of Marle and de Saxcé in this Special Issue, is intended
to honor the memory of the French Physicist Jean-Marie Souriau and to popularize his works, currently
little known, on statistical physics and thermodynamics. Souriau is well known for his seminal and
major contributions in geometric mechanics, the discipline he created in the 1960s, from previous
Lagrange’s works that he conceptualized in the framework of symplectic geometry, but very few people
know or have exploited Souriau’s works contained in Chapter IV of his book “Structure des systèmes
dynamiques” published in 1970 [10] and only translated into English in 1995 in the book “Structure of
Dynamical Systems: A Symplectic View of Physics” [11], in which he applied the formalism of geometric
mechanics to statistical physics. The personal author’s contribution is to place the work of Souriau
in the broader context of the emerging “Geometric Science of Information” [12] (addressed in GSI’15
conference), for which the author will show that the Souriau model of statistical physics is particularly
well adapted to generalize “information geometry”, that the author illustrates for exponential densities
family and multivariate gaussian densities. The author will observe that the Riemannian metric
introduced by Souriau is a generalization of Fisher metric, used in “information geometry”, as being
identified to the hessian of the logarithm of the generalized partition function (Massieu characteristic
function), for the case of densities on homogeneous manifolds where a non-abelian group acts
transively. For a group of time translation, we recover the classical thermodynamics and for the
Euclidean space, we recover the classical Fisher metric used in Statistics. The author elaborates a
new Euler-Poincaré equation for Souriau’s thermodynamics, action on “geometric heat” variable
Q (element of dual Lie algebra), and parameterized by “geometric temperature” (element of Lie
algebra). The author will integrate Souriau thermodynamics in a variational model by defining an
extended Cartan-Poincaré integral invariant defined by Souriau “geometric characteristic function”
(the logarithm of the generalized Souriau partition function parameterized by geometric temperature).
These results are illustrated for multivariate Gaussian densities, where the associated group is
identified to compute a Souriau moment map and reduce the Euler-Poincaré equation of geodesics.
In addition, the symplectic cocycle and Souriau-Fisher metric are deduced from a Lie group
thermodynamics model.

The main contributions of the author in this paper are the following:

• The Souriau model of Lie group thermodynamics is presented with standard notations of Lie
group theory, in place of Souriau equations using less classical conventions (that have limited
understanding of his work by his contemporaries).

• We prove that Souriau Riemannian metric introduced with symplectic cocycle is a generalization
of Fisher metric (called Souriau-Fisher metric in the following) that preserves the property

50



Entropy 2016, 18, 386

to be defined as a hessian of partition function logarithm gβ = − ∂2Φ
∂β2 =

∂2logψΩ
∂β2 as in classical

information geometry. We then establish the equality of two terms, the first one given by Souriau’s
definition from Lie group cocycle Θ and parameterized by “geometric heat” Q (element of dual
Lie algebra) and “geometric temperature” β (element of Lie algebra) and the second one, the
hessian of the characteristic function Φ(β) = −logψΩ(β) with respect to the variable β:

gβ ([β, Z1] , [β, Z2]) = 〈Θ (Z1) , [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 = ∂2logψΩ

∂β2 (1)

A dual Souriau-Fisher metric, the inverse of this last one, could be also elaborated with the hessian
of “geometric entropy” s(Q) with respect to the variable Q: ∂2s(Q)

∂Q2 For the maximum entropy

density (Gibbs density), the following three terms coincide: ∂2logψΩ
∂β2 that describes the convexity of

the log-likelihood function, I(β) = −E
[

∂2logpβ(ξ)

∂β2

]
the Fisher metric that describes the covariance

of the log-likelihood gradient, whereas I(β) = E
[
(ξ − Q) (ξ − Q)T

]
= Var(ξ) that describes the

covariance of the observables.
• This Souriau-Fisher metric is also identified to be proportional to the first derivative of the heat

gβ = − ∂Q
∂β , and then comparable by analogy to geometric “specific heat” or “calorific capacity”.

• We observe that the Souriau metric is invariant with respect to the action of the group
I
(

Adg(β)
)
= I(β), due to the fact that the characteristic function Φ(β) after the action of the

group is linearly dependent to β. As the Fisher metric is proportional to the hessian of the
characteristic function, we have the following invariance:

I
(

Adg(β)
)
= −∂2 (

Φ − 〈
θ
(

g−1) , β
〉)

∂β2 = −∂2Φ
∂β2 = I(β) (2)

• We have proposed, based on Souriau’s Lie group model and on analogy with mechanical variables,
a variational principle of thermodynamics deduced from Poincaré-Cartan integral invariant.
The variational principle holds on g the Lie algebra, for variations δβ =

.
η + [β, η], where η(t) is

an arbitrary path that vanishes at the endpoints, η(a) = η(b) = 0:

δ

t1�
t0

Φ (β(t)) · dt = 0 (3)

where the Poincaré-Cartan integral invariant
�

Ca

Φ(β) · dt =
�

Cb

Φ(β) · dt is defined with Φ(β),

the Massieu characteristic function, with the 1-form ω = Φ(β) ·dt = (〈Q,β〉− s) ·dt = 〈Q,(β ·dt)〉− s ·dt
• We have deduced Euler-Poincaré equations for the Souriau model:

dQ
dt = ad∗βQ and

⎧⎨⎩ s(Q) = 〈β,Q〉−Φ(β)

β = ∂s(Q)
∂Q ∈ g , Q = ∂Φ(β)

∂β ∈ g∗
and d

dt

(
Ad∗gQ

)
= 0

with

{
g∗ : dual Lie algebra

ad∗XY : Coadjoint operator

(4)

where Q is the Souriau geometric heat (element of dual Lie algebra) and β is the Souriau geometric
temperature (element of the Lie algebra). The second equation is linked to the result of Souriau
based on the moment map that a symplectic manifold is always a coadjoint orbit, affine of its
group of Hamiltonian transformations (a symplectic manifold homogeneous under the action of a
Lie group, is isomorphic, up to a covering, to a coadjoint orbit; symplectic leaves are the orbits of
the affine action that makes the moment map equivariant).
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• We have established that the affine representation of Lie group and Lie algebra by Jean-Marie
Souriau is equivalent to Jean-Louis Koszul’s affine representation developed in the framework of
hessian geometry of convex sharp cones. Both Souriau and Koszul have elaborated equations
requested for Lie group and Lie algebra to ensure the existence of an affine representation. We have
compared both approaches of Souriau and Koszul in a table.

• We have applied the Souriau model for exponential families and especially for multivariate
Gaussian densities.

• We have applied the Souriau-Koszul model Gibbs density to compute the maximum entropy
density for symmetric positive definite matrices, using the inner product 〈η,ξ〉= Tr

(
ηTξ

)
, ∀η,ξ ∈

Sym(n) given by Cartan-Killing form. The Gibbs density (generalization of Gaussian law for theses
matrices and defined as maximum entropy density):

pξ̂(ξ) = e−〈Θ−1(ξ̂),ξ〉+Φ(Θ−1(ξ̂)) = ψΩ (Id) ·
[
det

(
αξ̂−1

)]
· e−Tr(αξ̂−1ξ)

with α =
n + 1

2
(5)

• For the case of multivariate Gaussian densities, we have considered GA(n) a sub-group of affine
group, that we defined by a (n + 1) × (n + 1) embedding in matrix Lie group Ga f f , and that acts
for multivariate Gaussian laws by:

[
Y
1

]
=

[
R1/2 m

0 1

] [
X
1

]
=

[
R1/2X + m

1

]
,

⎧⎪⎪⎨⎪⎪⎩
(m, R) ∈ Rn × Sym+(n)

M =

[
R1/2 m

0 1

]
∈ Ga f f

X ≈ ℵ(0, I) → Y ≈ ℵ(m, R)

(6)

• For multivariate Gaussian densities, as we have identified the acting sub-group of affine group
M, we have also developed the computation of the associated Lie algebras ηL and ηR, adjoint and
coadjoint operators, and especially the Souriau “moment map” ΠR:

〈
nL, M−1nR M

〉
= 〈ΠR, nR〉

with M =

[
R1/2 m

0 1

]
, nL =

⎡⎣ R−1/2
.
R

1/2
R−1/2 .

m

0 0

⎤⎦ and ηR =

⎡⎣ R−1/2
.
R

1/2 .
m − R−1/2

.
R

1/2 .
m

0 0

⎤⎦
⇒ ΠR =

⎡⎣ R−1/2
.
R

1/2
+ R−1 .

mmT R−1 .
m

0 0

⎤⎦
(7)

Using Souriau Theorem (geometrization of Noether theorem), we use the property that this
moment map ΠR is constant (its components are equal to Noether invariants):

dΠR
dt

= 0 ⇒
⎧⎨⎩ R−1

.
R + R−1 .

mmT = B = cste

R−1 .
m = b = cste

(8)

to reduce the Euler-Lagrange equation of geodesics between two multivariate Gaussian densities:⎧⎨⎩
..
R +

.
m

.
mT − .

RR−1
.
R = 0

..
m − .

RR−1 .
m = 0

(9)

to this reduced equation of geodesics:
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⎧⎨⎩
.

m = Rb
.
R = R

(
B − bmT) (10)

that we solve by “geodesic shooting” technic based on Eriksen equation of exponential map.
• For the families of multivariate Gaussian densities, that we have identified as homogeneous

manifold with the associated sub-group of the affine group

[
R1/2 m

0 1

]
, we have considered

the elements of exponential families, that play the role of geometric heat Q in Souriau Lie group
thermodynamics, and β the geometric (Planck) temperature:

Q = ξ̂ =

[
E [z]

E
[
zzT]

]
=

[
m

R + mmT

]
, β =

⎡⎢⎣ −R−1m

1
2

R−1

⎤⎥⎦ (11)

We have considered that these elements are homeomorph to the (n + 1) × (n + 1) matrix elements:

Q = ξ̂ =

[
R + mmT m

0 0

]
∈ g∗ , β =

⎡⎢⎣ 1
2

R−1 −R−1m

0 0

⎤⎥⎦ ∈ g (12)

to compute the Souriau symplectic cocycle of the Lie group:

θ(M) = ξ̂ (AdM(β))− Ad∗M ξ̂ (13)

where the adjoint operator is equal to:

AdMβ =

⎡⎣ 1
2

Ω−1 −Ω−1n

0 0

⎤⎦ with Ω = R′1/2RR′−1/2 and n =

(
1
2

m′ + R′1/2m

)
(14)

with

ξ̂ (AdM(β)) =

[
Ω + nnT n

0 0

]
(15)

and the co-adjoint operator:

Ad∗M ξ̂ =

[
R + mmT − mm′T R′1/2m

0 0

]
(16)

• Finally, we have computed the Souriau-Fisher metric gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) for
multivariate Gaussian densities, given by:

gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) = Θ̃ (Z1, [β, Z2]) +
〈
ξ̂, [Z1, [β, Z2]]

〉
= 〈Θ (Z1) , [β, Z2]〉+

〈
ξ̂, [Z1, [β, Z2]]

〉 (17)

with element of Lie algebra given by Z =

⎡⎣ 1
2

Ω−1 −Ω−1n

0 0

⎤⎦.

The plan of the paper is as follows. After this introduction in Section 1, we develop in Section 2
the position of Souriau symplectic model of statistical physics in the historical developments of
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thermodynamic concepts. In Section 3, we develop and revisit the Lie group thermodynamics
model of Jean-Marie Souriau in modern notations. In Section 4, we make the link between
Souriau Riemannian metric and Fisher metric defined as a geometric heat capacity of Lie group
thermodynamics. In Section 5, we elaborate Euler-Lagrange equations of Lie group thermodynamics
and a variational model based on Poincaré-Cartan integral invariant. In Section 6, we explore Souriau
affine representation of Lie group and Lie algebra (including the notions of: affine representations
and cocycles, Souriau moment map and cocycles, equivariance of Souriau moment map, action of Lie
group on a symplectic manifold and dual spaces of finite-dimensional Lie algebras) and we analyze the
link and parallelisms with Koszul affine representation, developed in another context (comparison is
synthetized in a table). In Section 7, we illustrate Koszul and Souriau Lie group models of information
geometry for multivariate Gaussian densities. In Section 8, after identifying the affine group acting
for these densities, we compute the Souriau moment map to obtain the Euler-Poincaré equation,
solved by geodesic shooting method. In Section 9, Souriau Riemannian metric defined by cocycle
for multivariate Gaussian densities is computed. We give a conclusion in Section 10 with research
prospects in the framework of affine Poisson geometry [13], Bismut stochastic mechanics [14] and
second order extension of the Gibbs state [15,16]. We have three appendices: Appendix A develops the
Clairaut(-Legendre) equation of Maurice Fréchet associated to “distinguished functions” as a seminal
equation of information geometry; Appendix B is about a Balian Gauge model of thermodynamics and
its compliance with the Souriau model; Appendix C is devoted to the link of Casalis-Letac’s works on
affine group invariance for natural exponential families with Souriau’s works.

2. Position of Souriau Symplectic Model of Statistical Physics in Historical Developments of
Thermodynamic Concepts

In this Section, we will explain the emergence of thermodynamic concepts that give rise to the
generalization of the Souriau model of statistical physics. To understand Souriau’s theoretical model
of heat, we have to consider first his work in geometric mechanics where he introduced the concept of
“moment map” and “symplectic cohomology”. We will then introduce the concept of “characteristic
function” developed by François Massieu, and generalized by Souriau on homogeneous symplectic
manifolds. In his statistical physics model, Souriau has also generalized the notion of “heat capacity”
that was initially extended by Pierre Duhem as a key structure to jointly consider mechanics and
thermodynamics under the umbrella of the same theory. Pierre Duhem has also integrated, in the
corpus, the Massieu’s characteristic function as a thermodynamic potential. Souriau’s idea to develop
a covariant model of Gibbs density on homogeneous manifold was also influenced by the seminal
work of Constantin Carathéodory that axiomatized thermodynamics in 1909 based on Carnot’s works.
Souriau has adapted his geometric mechanical model for the theory of heat, where Henri Poincaré did
not succeed in his paper on attempts of mechanical explanation for the principles of thermodynamics.

Lagrange’s works on “mécanique analytique (analytic mechanics)” has been interpreted by
Jean-Marie Souriau in the framework of differential geometry and has initiated a new discipline called
after Souriau, “mécanique géométrique (geometric mechanics)” [17–19]. Souriau has observed that the
collection of motions of a dynamical system is a manifold with an antisymmetric flat tensor that is a
symplectic form where the structure contains all the pertinent information of the state of the system
(positions, velocities, forces, etc.). Souriau said: “Ce que Lagrange a vu, que n’a pas vu Laplace, c’était
la structure symplectique (What Lagrange saw, that Laplace didn’t see, was the symplectic structure” [20].
Using the symmetries of a symplectic manifold, Souriau introduced a mapping which he called
the “moment map” [21–23], which takes its values in a space attached to the group of symmetries
(in the dual space of its Lie algebra). He [10] called dynamical groups every dimensional group of
symplectomorphisms (an isomorphism between symplectic manifolds, a transformation of phase
space that is volume-preserving), and introduced Galileo group for classical mechanics and Poincaré
group for relativistic mechanics (both are sub-groups of affine group [24,25]). For instance, a Galileo
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group could be represented in a matrix form by (with A rotation, b the boost, c space translation and
e time translation):⎡⎢⎣ x′

t
1

⎤⎥⎦ =

⎡⎢⎣ A b c
0 1 e
0 0 1

⎤⎥⎦
GALILEO GROUP

⎡⎢⎣ x
t
1

⎤⎥⎦ with

⎧⎪⎨⎪⎩
A ∈ SO(3)
b, c ∈ R3

e ∈ R
, Lie Algebra

⎡⎢⎣ ω η γ

0 0 ε

0 0 0

⎤⎥⎦ with

⎧⎪⎨⎪⎩
ω ∈ so(3)
η, γ ∈ R3

ε ∈ R+

(18)

Souriau associated to this moment map, the notion of symplectic cohomology, linked to the
fact that such a moment is defined up to an additive constant that brings into play an algebraic
mechanism (called cohomology). Souriau proved that the moment map is a constant of the motion,
and provided geometric generalization of Emmy Noether invariant theorem (invariants of E. Noether
theorem are the components of the moment map). For instance, Souriau gave an ontological definition
of mass in classical mechanics as the measure of the symplectic cohomology of the action of the
Galileo group (the mass is no longer an arbitrary variable but a characteristic of the space). This is
no longer true for Poincaré group in relativistic mechanics, where the symplectic cohomology is null,
explaining the lack of conservation of mass in relativity. All the details of classical mechanics thus
appear as geometric necessities, as ontological elements. Souriau has also observed that the symplectic
structure has the property to be able to be reconstructed from its symmetries alone, through a 2-form
(called Kirillov–Kostant–Souriau form) defined on coadjoint orbits. Souriau said that the different
versions of mechanical science can be classified by the geometry that each implies for space and time;
geometry is determined by the covariance of group theory. Thus, Newtonian mechanics is covariant
by the group of Galileo, the relativity by the group of Poincaré; General relativity by the “smooth”
group (the group of diffeomorphisms of space-time). However, Souriau added “However, there are some
statements of mechanics whose covariance belongs to a fourth group rarely considered: the affine group, a group
shown in the following diagram for inclusion. How is it possible that a unitary point of view (which would be
necessarily a true thermodynamics), has not yet come to crown the picture? Mystery...” [26]. See Figure 1.

Figure 1. Souriau Scheme about mysterious “affine group” of a true thermodynamics between
Galileo group of classical mechanics, Poincaré group of relativistic mechanics and Smooth group
of general relativity.

As early as 1966, Souriau applied his theory to statistical mechanics, developed it in the
Chapter IV of his book “Structure of Dynamical Systems” [11], and elaborated what he called
a “Lie group thermodynamics” [10,11,27–37]. Using Lagrange’s viewpoint, in Souriau statistical
mechanics, a statistical state is a probability measure on the manifold of motions (and no longer
in phase space [38]). Souriau observed that Gibbs equilibrium [39] is not covariant with respect to
dynamic groups of Physics. To solve this braking of symmetry, Souriau introduced a new “geometric
theory of heat” where the equilibrium states are indexed by a parameter β with values in the Lie algebra
of the group, generalizing the Gibbs equilibrium states, where β plays the role of a geometric (Planck)
temperature. The invariance with respect to the group, and the fact that the entropy s is a convex
function of this geometric temperature β, imposes very strict, universal conditions (e.g., there exists
necessarily a critical temperature beyond which no equilibrium can exist). Souriau observed that
the group of time translations of the classical thermodynamics [40,41] is not a normal subgroup of
the Galilei group, proving that if a dynamical system is conservative in an inertial reference frame,
it need not be conservative in another. Based on this fact, Souriau generalized the formulation of the
Gibbs principle to become compatible with Galileo relativity in classical mechanics and with Poincaré
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relativity in relativistic mechanics. The maximum entropy principle [42–51] is preserved, and the
Gibbs density is given by the density of maximum entropy (among the equilibrium states for which
the average value of the energy takes a prescribed value, the Gibbs measures are those which have the
largest entropy), but with a new principle “If a dynamical system is invariant under a Lie subgroup G’ of
the Galileo group, then the natural equilibria of the system forms the Gibbs ensemble of the dynamical group
G’” [10]. The classical notion of Gibbs canonical ensemble is extended for a homogneous symplectic
manifold on which a Lie group (dynamic group) has a symplectic action. When the group is not
abelian (non-commutative group), the symmetry is broken, and new “cohomological” relations should
be verified in Lie algebra of the group [52–55]. A natural equilibrium state will thus be characterized by
an element of the Lie algebra of the Lie group, determining the equilibrium temperature β. The entropy
s(Q), parametrized by Q the geometric heat (mean of energy U, element of the dual Lie algebra) is
defined by the Legendre transform [56–59] of the Massieu potential Φ(β) parametrized by β (Φ(β) is
the minus logarithm of the partition function ψΩ(β)):

s (Q) = 〈β, Q〉 − Φ(β) with

⎧⎪⎪⎨⎪⎪⎩
Q =

∂Φ
∂β

∈ g∗

β =
∂s
∂Q

∈ g
(19)

pGibbs(ξ) = eΦ(β)−〈β,U(ξ)〉 = e−〈β,U(ξ)〉�
M

e−〈β,U(ξ)〉dω
,

Q =
∂Φ(β)

∂β
=

�
M

U(ξ)e−〈β,U(ξ)〉dω

�
M

e−〈β,U(ξ)〉dω
=

�
M

U(ξ)p(ξ)dω with Φ(β) = −log
�
M

e−〈β,U(ξ)〉dω

(20)

Souriau completed his “geometric heat theory” by introducing a 2-form in the Lie algebra, that is
a Riemannian metric tensor in the values of adjoint orbit of β, [β, Z] with Z an element of the Lie
algebra. This metric is given for (β, Q):

gβ ([β, Z1] , [β, Z2]) = 〈Θ (Z1) , [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 (21)

where Θ is a cocycle of the Lie algebra, defined by Θ = Teθ with θ a cocycle of the Lie group defined
by θ(M) = Q (AdM(β))− Ad∗MQ. We have observed that this metric gβ is also given by the hessian

of the Massieu potential gβ = −∂2Φ
∂β2 =

∂logψΩ

∂β2 as Fisher metric in classical information geometry

theory [60], and so this is a generalization of the Fisher metric for homogeneous manifold. We call this

new metric the Souriau-Fisher metric. As gβ = −∂Q
∂β

, Souriau compared it by analogy with classical

thermodynamics to a “geometric specific heat” (geometric calorific capacity).
The potential theory of thermodynamics and the introduction of “characteristic function”

(previous function Φ(β) = −logψΩ(β) in Souriau theory) was initiated by François Jacques Dominique
Massieu [61–64]. Massieu was the son of Pierre François Marie Massieu and Thérèse Claire Castel.
He married in 1862 with Mlle Morand and had 2 children. He graduated from Ecole Polytechnique
in 1851 and Ecole des Mines de Paris in 1956, he has integrated “Corps des Mines”. He defended
his Ph.D. in 1861 on “Sur les intégrales algébriques des problèmes de mécanique” and on “Sur le mode de
propagation des ondes planes et la surface de l’onde élémentaire dans les cristaux biréfringents à deux axes” [65]
with the jury composed of Lamé, Delaunay et Puiseux. In 1870, François Massieu presented his
paper to the French Academy of Sciences on “characteristic functions of the various fluids and the theory
of vapors” [61]. The design of the characteristic function is the finest scientific title of Mr. Massieu.
A prominent judge, Joseph Bertrand, do not hesitate to declare, in a statement read to the French
Academy of Sciences 25 July 1870, that “the introduction of this function in formulas that summarize all the
possible consequences of the two fundamental theorems seems, for the theory, a similar service almost equivalent
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to that Clausius has made by linking the Carnot’s theorem to entropy” [66]. The final manuscript was
published by Massieu in 1873, “Exposé des principes fondamentaux de la théorie mécanique de la chaleur
(Note destinée à servir d’introduction au Mémoire de l’auteur sur les fonctions caractéristiques des divers fluides
et la théorie des vapeurs)” [63].

Massieu introduced the following potential Φ(β), called “characteristic function”, as illustrated
in Figure 2, that is the potential used by Souriau to generalize the theory: s (Q) = 〈β, Q〉 − Φ(β) ⇒

β= 1
T

Φ = Q
T − S. However, in his third paper, Massieu was influenced by M. Bertrand, as illustrated in

Figure 3, to replace the variable β = 1
T (that he used in his two first papers) by T. We have then to

wait 50 years more for the paper of Planck, who introduced again the good variable β = 1
T , and then

generalized by Souriau, giving to Planck temperature β an ontological and geometric status as element
of the Lie algebra of the dynamic group.

 

Figure 2. Extract from the second paper of François Massieu to the French Academy of Sciences [61,62].

Figure 3. Remark of Massieu in 1876 paper [64], where he explained why he took into account the
“good advice” of Bertrand to replace variable 1/T, used in his initial paper of 1869, by the variable T.

This Lie group thermodynamics of Souriau is able to explain astronomical phenomenon (rotation
of celestial bodies: the Earth and the stars rotating about themselves). The geometric temperature β

can be also interpreted as a space-time vector (generalization of the temperature vector of Planck),
where the temperature vector and entropy flux are in duality unifying heat conduction and viscosity
(equations of Fourier and Navier). In case of centrifuge system (e.g., used for enrichment of uranium),
the Gibbs Equilibrium state [60,67] are given by Souriau equations as the variation in concentration of
the components of an inhomogeneous gas. Classical statistical mechanics corresponds to the dynamical
group of time translations, for which we recover from Souriau equations the concepts and principles
of classical thermodynamics (temperature, energy, heat, work, entropy, thermodynamic potentials)
and of the kinetic theory of gases (pressure, specific heats, Maxwell’s velocity distribution, etc.).

Souriau also studied continuous medium thermodynamics, where the “temperature vector” is no
longer constrained to be in Lie algebra, but only contrained by phenomenologic equations (e.g., Navier
equations, etc.). For thermodynamic equilibrium, the “temperature vector” is then a Killing vector
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of Space-Time. For each point X, there is a “temperature vector” β(X), such it is an infinitesimal
conformal transform of the metric of the universe gij. Conservation equations can then be deduced
for components of impulsion-energy tensor Tij and entropy flux Sj with ∂̂iTij = 0 and ∂iSj = 0.
Temperature and metric are related by the following equations:⎧⎨⎩ ∂̂iβ j + ∂̂jβi = λgij

∂iβ j + ∂jβi − 2Γk
ijβk = λgij

with

{
∂̂i. : covariant derivative

β j : component of Temperature vector

λ = 0 ⇒ Killing Equation

(22)

Leon Brillouin made the link between Boltzmann entropy and Negentropie of information
theory [68–71], but before Jean-Marie Souriau, only Constantin Carathéodory and Pierre
Duhem [72–75] initiated first theoretical works to generalize thermodynamics.

After three years as lecturer at Lille university, Duhem published a paper in the official revue
of the Ecole Normale Supérieure, in 1891, “On general equations of thermodynamics” [72] (Sur les
équations générales de la Thermodynamique) in Annales Scientifiques de l’Ecole Normale Supérieure.
Duhem generalized the concept of “virtual work” under the action of “external actions” by taking into
account both mechanical and thermal actions. In 1894, the design of a generalized mechanics based
on thermodynamics was further developed: ordinary mechanics had already become “a particular
case of a more general science”. Duhem writes “We made dynamics a special case of thermodynamics, a
science that embraces common principles in all changes of state bodies, changes of places as well as changes in
physical qualities” (Nous avons fait de la dynamique un cas particulier de la thermodynamique, une Science qui
embrasse dans des principes communs tous les changements d’état des corps, aussi bien les changements de lieu
que les changements de qualités physiques). In the equations of his generalized mechanics-thermodynamics,
some new terms had to be introduced, in order to account for the intrinsic viscosity and friction of the
system. As observed by Stefano Bordoni, Duhem aimed at widening the scope of physics: the new physics
could not confine itself to “local motion” but had to describe what Duhem qualified “motions of modification”.
If Boltzmann had tried to proceed from “local motion” to attain the explanation of more complex
transformations, Duhem was trying to proceed from general laws concerning general transformation
in order to reach “local motion” as a simplified specific case. Four scientists were credited by Duhem
with having carried out “the most important researches on that subject”: Massieu had managed
to derive thermodynamics from a “characteristic function and its partial derivatives”; Gibbs had
shown that Massieu’s functions “could play the role of potentials in the determination of the states of
equilibrium” in a given system; von Helmholtz had put forward “similar ideas”; von Oettingen had
given “an exposition of thermodynamics of remarkable generality” based on general duality concept
in “Die thermodynamischen Beziehungen antithetisch entwickelt” published at St. Petersburg in 1885.
Duhem took into account a system whose elements had the same temperature and where the state of
the system could be completely specified by giving its temperature and n other independent quantities.
He then introduced some “external forces”, and held the system in equilibrium. A virtual work
corresponded to such forces, and a set of n + 1 equations corresponded to the condition of equilibrium
of the physical system. From the thermodynamic point of view, every infinitesimal transformation
involving the generalized displacements had to obey to the first law, which could be expressed in
terms of the (n + 1) generalized Lagrangian parameters. The amount of heat could be written as a sum
of (n + 1) terms. The new alliance between mechanics and thermodynamics led to a sort of symmetry
between thermal and mechanical quantities. The n + 1 functions played the role of generalized thermal
capacities, and the last term was nothing other than the ordinary thermal capacity. The knowledge of the
“equilibrium equations of a system” allowed Duhem to compute the partial derivatives of the thermal
capacity with regard to all the parameters which described the state of the system, apart from its
derivative with regard to temperature. The thermal capacities were therefore known “except for an
unspecified function of temperature”.

The axiomatic approach of thermodynamics was published in 1909 in Mathematische Annalen [76]
under the title “Examination of the Foundations of Thermodynamics” (Untersuchungen überdie Grundlagen
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der Thermodynamik) by Constantin Carathéodory based on Carnot’s works [77]. Carathéodory
introduced entropy through a mathematical approach based on the geometric behavior of a certain
class of partial differential equations called Pfaffians. Carathéodory’s investigations start by revisiting
the first law and reformulating the second law of thermodynamics in the form of two axioms.
The first axiom applies to a multiphase system change under adiabatic conditions (axiom of classical
thermodynamics due to Clausius [78,79]). The second axiom assumes that in the neighborhood
of any equilibrium state of a system (of any number of thermodynamic coordinates), there exist
states that are inaccessible by reversible adiabatic processes. In the book of Misha Gromov
“Metric Structures for Riemannian and Non-Riemannian Spaces”, written and edited by Pierre Pansu
and Jacques Lafontaine, a new metric is introduced called “Carnot-Carathéodory metric”. In one of
his papers, Misha Gromov [80,81] gives historical remarks “This result (which seems obvious by the
modern standards) appears (in a more general form) in the 1909-paper by Carathéorody on formalization
of the classical thermodynamics where horizontal curves roughly correspond to adiabatic processes. In fact,
the above proof may be performed in the language of Carnot (cycles) and for this reason the metris distH were
christened ‘Carnot-Carathéodory’ in Gromov-Lafontaine-Pansu book” [82]. When I ask this question to Pierre
Pansu, he gave me the answer that “The section 4 of [76], entitled Hilfsatz aus der Theorie des Pfaffschen
Gleichungen (Lemma from the theory of Pfaffian equations) opens with a statement relating to the differential
1-forms. Carathéodory says, If a Pfaffian equation dx0 + X1 dx1 + X2 dx2 + . . . + Xn dxn = 0 is given, in which
the Xi are finite, continuous, differentiable functions of the xi, and one knows that in any neighborhood of an
arbitrary point P of the space of xi there is a point that one cannot reach along a curve that satisfies this equation
then the expression must necessarily possess a multiplier that makes it into a complete differential”. This is
confirmed in the introduction of his paper [76], where Carathéodory said “Finally, in order to be able to
treat systems with arbitrarily many degrees of freedom from the outset, instead of the Carnot cycle that is almost
always used, but is intuitive and easy to control only for systems with two degrees of freedom, one must employ a
theorem from the theory of Pfaffian differential equations, for which a simple proof is given in the fourth section”.

We have also to make reference to Henri Poincaré [83] that published the paper “On attempts of
mechanical explanation for the principles of thermodynamics (Sur les tentatives d’explication mécanique des
principes de la thermodynamique)” at the Comptes rendus de l’Académie des sciences in 1889 [84],
in which he tried to consolidate links between mechanics and thermomechanics principles.
These elements were also developed in Poincaré’s lecture of 1892 [85] on “thermodynamique” in Chapter
XVII “Reduction of thermodynamics principles to the general principles of mechanics (Réduction des principes
de la Thermodynamique aux principes généraux de la mécanique)”. Poincaré writes in his book [85] “It is
otherwise with the second law of thermodynamics. Clausius was the first to attempt to bring it to the principles
of mechanics, but not succeed satisfactorily. Helmholtz in his memoir on the principle of least actions developed a
theory much more perfect than that of Clausius. However, it cannot account for irreversible phenomena. (Il en est
autrement du second principe de la thermodynamique. Clausius, a le premier, tenté de le ramener aux principes
de la Mécanique, mais sans y réussir d’une manière satisfaisante. Helmoltz dans son mémoire sur le principe de
la moindre action, a développé une théorie beaucoup plus parfaite que celle de Clausius; cependant elle ne peut
rendre compte des phénomènes irréversibles.)”. About Helmoltz work, Poincaré observes [85] “It follows
from these examples that the Helmholtz hypothesis is true in the case of body turning around an axis; So it
seems applicable to vortex motions of molecules (Il résulte de ces exemples que l’hypothèse d’Helmoltz est exacte
dans le cas de corps tournant autour d’un axe; elle parait donc applicable aux mouvements tourbillonnaires des
molecules.)”, but he adds in the following that the Helmoltz model is also true in the case of vibrating
motions as molecular motions. However, he finally observes that the Helmoltz model cannot explain
the increasing of entropy and concludes [85] “All attempts of this nature must be abandoned; the only ones
that have any chance of success are those based on the intervention of statistical laws, for example, the kinetic
theory of gases. This view, which I cannot develop here, can be summed up in a somewhat vulgar way as follows:
Suppose we want to place a grain of oats in the middle of a heap of wheat; it will be easy; then suppose we wanted
to find it and remove it; we cannot achieve it. All irreversible phenomena, according to some physicists, would
be built on this model (Toutes les tentatives de cette nature doivent donc être abandonnées; les seules qui aient
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quelque chance de succès sont celles qui sont fondées sur l’intervention des lois statistiques comme, par exemple,
la théorie cinétique des gaz. Ce point de vue, que je ne puis développer ici, peut se résumer d’une façon un
peu vulgaire comme il suit: Supposons que nous voulions placer un grain d’avoine au milieu d’un tas de blé;
cela sera facile; supposons que nous voulions ensuite l’y retrouver et l’en retirer; nous ne pourrons y parvenir.
Tous les phénomènes irréversibles, d’après certains physiciens, seraient construits sur ce modèle)”. In Poincaré’s
lecture, Massieu has greatly influenced Poincaré to introduce Massieu characteristic function in probability [86].
As we have observed, Poincaré has introduced characteristic function in probability lecture after his lecture on
thermodynamics where he discovered in its second edition [85], the Massieu’s characteristic function. We can read
that “Since from the functions of Mr. Massieu one can deduce other functions of variables, all equations
of thermodynamics can be written so as to only contain these functions and their derivatives; it will
thus result in some cases, a great simplification (Puisque des fonctions de M. Massieu on peut déduire
les autres fonctions des variables, toutes les équations de la Thermodynamique pourront s’écrire de
manière à ne plus renfermer que ces fonctions et leurs dérivées; il en résultera donc, dans certains cas,
une grande simplification).” [85]. He [85] added “MM. Gibbs von Helmholtz, Duhem have used this
function H = U − TS assuming that T and V are constant. Mr. von Helmotz has called it ‘free energy’
and also proposes to give him the name of “kinetic potential”; Duhem called it ‘the thermodynamic
potential at constant volume’; this is the most justified naming (MM. Gibbs, von Helmoltz, Duhem ont
fait usage de cette function H = TS − U en y supposant T et V constants. M. von Helmotz l’a appellée
énergie libre et a propose également de lui donner le nom de potential kinetique; M. Duhem la nomme
potentiel thermodynamique à volume constant; c’est la dénomination la plus justifiée)”. In 1906,
Henri Poincaré also published a note [87] “Reflection on The kinetic theory of gases” (Réflexions sur la
théorie cinétique des gaz), where he said that: “The kinetic theory of gases leaves awkward points for
those who are accustomed to mathematical rigor . . . One of the points which embarrassed me most
was the following one: it is a question of demonstrating that the entropy keeps decreasing, but the
reasoning of Gibbs seems to suppose that having made vary the outside conditions we wait that the
regime is established before making them vary again. Is this supposition essential, or in other words,
we could arrive at opposite results to the principle of Carnot by making vary the outside conditions
too fast so that the permanent regime has time to become established?”.

Jean-Marie Souriau has elaborated a disruptive and innovative “théorie géométrique de la
chaleur (geometric theory of heat)” [88] after the works of his predecessors as illustrated in Figure 4:
“théorie analytique de la chaleur (analytic theory of heat)” by Jean Baptiste Joseph Fourier [88],
“théorie mécanique de la chaleur (mechanic theory of heat)” by François Clausius [89] and François Massieu
and “théorie mathématique de la chaleur (mathematic theory of heat)” by Siméon-Denis Poisson [90,91],
as illustrated in this figure:

 

Figure 4. “Théorie analytique de la chaleur (analytic theory of heat)” by Jean Baptiste Joseph
Fourier [88], “théorie mécanique de la chaleur (mechanic theory of heat)” by François Clausius [89]
and “théorie mathématique de la chaleur (mathematic theory of heat)” by Siméon-Denis Poisson [90].
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3. Revisited Souriau Symplectic Model of Statistical Physics

In this Section, we will revisit the Souriau model of thermodynamics but with modern notations,
replacing personal Souriau conventions used in his book of 1970 by more classical ones.

In 1970, Souriau introduced the concept of co-adjoint action of a group on its momentum space
(or “moment map”: mapping induced by symplectic manifold symmetries), based on the orbit method
works, that allows to define physical observables like energy, heat and momentum or moment as
pure geometrical objects (the moment map takes its values in a space determined by the group of
symmetries: the dual space of its Lie algebra). The moment(um) map is a constant of the motion and is
associated to symplectic cohomology (assignment of algebraic invariants to a topological space that
arises from the algebraic dualization of the homology construction). Souriau introduced the moment
map in 1965 in a lecture notes at Marseille University and published it in 1966. Souriau gave the formal
definition and its name based on its physical interpretation in 1967. Souriau then studied its properties
of equivariance, and formulated the coadjoint orbit theorem in his book in 1970. However, in his book,
Souriau also observed in Chapter IV that Gibbs equilibrium states are not covariant by dynamical
groups (Galileo or Poincaré groups) and then he developed a covariant model that he called “Lie group
thermodynamics”, where equilibriums are indexed by a “geometric (Planck) temperature”, given by a
vector β that lies in the Lie algebra of the dynamical group. For Souriau, all the details of classical
mechanics appear as geometric necessities (e.g., mass is the measure of the symplectic cohomology of
the action of a Galileo group). Based on this new covariant model of thermodynamic Gibbs equilibrium,
Souriau has formulated statistical mechanics and thermodynamics in the framework of symplectic
geometry by use of symplectic moments and distribution-tensor concepts, giving a geometric status
for temperature, heat and entropy.

There is a controversy about the name “momentum map” or “moment map”. Smale [92]
referred to this map as the “angular momentum”, while Souriau used the French word “moment”.
Cushman and Duistermaat [93] have suggested that the proper English translation of Souriau’s French
word was “momentum” which fit better with standard usage in mechanics. On the other hand,
Guillemin and Sternberg [94] have validated the name given by Souriau and have used “moment” in
English. In this paper, we will see that name “moment” given by Souriau was the most appropriate
word. In his Chapter IV of his book [10], studying statistical mechanics, Souriau [10] has ingeniously
observed that moments of inertia in mechanics are equivalent to moments in probability in his new
geometric model of statistical physics. We will see that in Souriau Lie group thermodynamic model,
these statistical moments will be given by the energy and the heat defined geometrically by Souriau,
and will be associated with “moment map” in dual Lie algebra.

This work has been extended by Claude Vallée [5,6] and Gery de Saxcé [4,8,95,96]. More recently,
Kapranov has also given a thermodynamical interpretation of the moment map for toric varieties [97]
and Pavlov, thermodynamics from the differential geometry standpoint [98].

The conservation of the moment of a Hamiltonian action was called by Souriau the “symplectic
or geometric Noether theorem”. Considering phases space as symplectic manifold, cotangent fiber of
configuration space with canonical symplectic form, if Hamiltonian has Lie algebra, then the moment
map is constant along the system integral curves. Noether theorem is obtained by considering
independently each component of the moment map.

In a first step to establish new foundations of thermodynamics, Souriau [10] has defined a
Gibbs canonical ensemble on a symplectic manifold M for a Lie group action on M. In classical
statistical mechanics, a state is given by the solution of Liouville equation on the phase space,
the partition function. As symplectic manifolds have a completely continuous measure, invariant by
diffeomorphisms, the Liouville measure λ, all statistical states will be the product of the Liouville
measure by the scalar function given by the generalized partition function eΦ(β)−〈β,U(ξ)〉 defined by
the energy U (defined in the dual of the Lie algebra of this dynamical group) and the geometric
temperature β, where Φ is a normalizing constant such the mass of probability is equal to 1,
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Φ(β) = −log
�
M

e−〈β,U(ξ)〉dλ [99]. Jean-Marie Souriau then generalizes the Gibbs equilibrium state

to all symplectic manifolds that have a dynamical group. To ensure that all integrals that will be
defined could converge, the canonical Gibbs ensemble is the largest open proper subset (in Lie algebra) where
these integrals are convergent. This canonical Gibbs ensemble is convex. The derivative of Φ, Q = ∂Φ

∂β

(thermodynamic heat) is equal to the mean value of the energy U. The minus derivative of this
generalized heat Q, K = − ∂Q

∂β is symmetric and positive (this is a geometric heat capacity). Entropy s
is then defined by Legendre transform of Φ, s = 〈β, Q〉 − Φ. If this approach is applied for the group
of time translation, this is the classical thermodynamics theory. However, Souriau [10] has observed that
if we apply this theory for non-commutative group (Galileo or Poincaré groups), the symmetry has been broken.
Classical Gibbs equilibrium states are no longer invariant by this group. This symmetry breaking provides
new equations, discovered by Souriau [10].

We can read in his paper this prophetical sentence “This Lie group thermodynamics could be
also of first interest for mathematics (Peut-être cette Thermodynamique des groups de Lie a-t-elle un intérêt
mathématique)” [30]. He explains that for the dynamic Galileo group with only one axe of rotation,
this thermodynamic theory is the theory of centrifuge where the temperature vector dimension is
equal to 2 (sub-group of invariance of size 2), used to make “uranium 235” and “ribonucleic acid” [30].
The physical meaning of these two dimensions for vector-valued temperature is “thermic conduction”
and “viscosity”. Souriau said that the model unifies “heat conduction” and “viscosity” (Fourier and
Navier equations) in the same theory of irreversible process. Souriau has applied this theory in detail
for relativistic ideal gas with the Poincaré group for the dynamical group.

Before introducing the Souriau Model of Lie group thermodynamics, we will first remind readers
of the classical notation of Lie group theory in their application to Lie group thermodynamics:

• The coadjoint representation of G is the contragredient of the adjoint representation. It associates
to each g ∈ G the linear isomorphism Ad∗g ∈ GL(g∗), which satisfies, for each ξ ∈ g∗ and X ∈ g:〈

Ad∗g−1(ξ), X
〉
=

〈
ξ, Adg−1(X)

〉
(23)

• The adjoint representation of the Lie algebra g is the linear representation of g into itself which
associates, to each X ∈ g, the linear map adX ∈ gl(g). ad Tangent application of Ad at neutral
element e of G:

ad = Te Ad : TeG → End(TeG)

X, Y ∈ TeG �→ adX(Y) = [X, Y]
(24)

• The coadjoint representation of the Lie algebra g is the contragredient of the adjoint representation.
It associates, to each X ∈ g, the linear map ad∗X ∈ gl(g∗) which satisfies, for each ξ ∈ g∗ and X ∈ g:〈

ad∗−X(ξ), Y
〉
= 〈ξ, Ad−X(Y)〉 (25)

We can illustrate for group of matrices for G = GLn(K) with K = R or C.

TeG = Mn(K), X ∈ Mn(K), g ∈ G Adg(X) = gXg−1 (26)

X, Y ∈ Mn(K) adX(Y) = (Te Ad)X(Y) = XY − YX = [X, Y] (27)

Then, the curve from e = Id = c(0) tangent to X = c(1) is given by c(t) = exp(tX) and transform
by Ad: γ(t) = Adexp(tX)

adX(Y) = (Te Ad)X(Y) =
d
dt

γ(t)Y
∣∣∣∣
t=0

=
d
dt

exp(tX)Yexp(tX)−1
∣∣∣∣
t=0

= XY − YX (28)
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For each temperature β, element of the Lie algebra g, Souriau has introduced a tensor Θ̃β, equal to
the sum of the cocycle Θ̃ and the heat coboundary (with [.,.] Lie bracket):

Θ̃β (Z1, Z2) = Θ̃ (Z1, Z2) +
〈

Q, adZ1(Z2)
〉

with adZ1(Z2) = [Z1, Z2] (29)

This tensor Θ̃β has the following properties:

• Θ̃(X, Y) = 〈Θ(X), Y〉 where the map Θ is the one-cocycle of the Lie algebra gwith values in g∗,
with Θ(X) = Teθ (X(e)) where θ the one-cocycle of the Lie group G. Θ̃ (X, Y) is constant on M
and the map Θ̃ (X, Y) : g× g→  is a skew-symmetric bilinear form, and is called the symplectic
cocycle of Lie algebra g associated to the moment map J, with the following properties:

Θ̃(X, Y) = J[X,Y] − {JX , JY} with {., .} Poisson Bracket and J the Moment Map (30)

Θ̃([X, Y] , Z) + Θ̃([Y, Z] , X) + Θ̃([Z, X] , Y) = 0 (31)

where JX linear application from g to differential function on M:
g→ C∞(M, R)
X → JX

and the

associated differentiable application J, called moment(um) map:

J : M → g∗ such that JX(x) = 〈J(x), X〉 , X ∈ g
x �→ J(x)

(32)

If instead of J we take the following moment map: J′(x) = J(x) + Q , x ∈ M

where Q ∈ g∗ is constant, the symplectic cocycle θ is replaced by θ′(g) = θ(g) + Q − Ad∗gQ

where θ′ − θ = Q − Ad∗gQ is one-coboundary of G with values in g∗. We also have properties
θ(g1g2) = Ad∗g1

θ(g2) + θ(g1) and θ(e) = 0.

• The geometric temperature, element of the algebra g, is in the thekernel of the tensor Θ̃β:

β ∈ Ker Θ̃β, such that Θ̃β (β, β) = 0 , ∀β ∈ g (33)

• The following symmetric tensor gβ, defined on all values of adβ(.) = [β, .] is positive definite:

gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) (34)

gβ ([β, Z1] , Z2) = Θ̃β (Z1, Z2) , ∀Z1 ∈ g, ∀Z2 ∈ Im
(
adβ (.)

)
(35)

gβ (Z1, Z2) ≥ 0 , ∀Z1, Z2 ∈ Im
(
adβ (.)

)
(36)

where the linear map adX ∈ gl(g) is the adjoint representation of the Lie algebra g defined
by X, Y ∈ g(= TeG) �→ adX(Y) = [X, Y] , and the co-adjoint representation of the Lie algebra
g the linear map ad∗X ∈ gl(g∗) which satisfies, for each ξ ∈ g∗ and X, Y ∈ g:〈ad∗X(ξ), Y〉 =

〈ξ,−adX(Y)〉These equations are universal, because they are not dependent on the symplectic
manifold but only on the dynamical group G, the symplectic cocycle Θ, the temperature β and
the heat Q. Souriau called this model “Lie groups thermodynamics”.

We will give the main theorem of Souriau for this “Lie group thermodynamics”:

Theorem 1 (Souriau Theorem of Lie Group Thermodynamics). Let Ω be the largest open proper subset
of g, Lie algebra of G, such that

�
M

e−〈β,U(ξ)〉dλ and
�
M

ξ · e−〈β,U(ξ)〉dλ are convergent integrals, this set Ω is

convex and is invariant under every transformation Adg(.), where g �→ Adg(.) is the adjoint representation of
G, such that Adg = Teig with ig : h �→ ghg−1 . Let a : G × g∗ → g∗ a unique affine action a such that linear
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part is a coadjoint representation of G, that is the contragradient of the adjoint representation. It associates to
each g ∈ G the linear isomorphism Ad∗g ∈ GL(g∗), satisfying, for each:

ξ ∈ g∗ and X ∈ g :
〈

Ad∗g(ξ), X
〉
=

〈
ξ, Adg−1(X)

〉
.

Then, the fundamental equations of Lie group thermodynamics are given by the action of the group:

• Action of Lie group on Lie algebra:

β → Adg(β) (37)

• Transformation of characteristic function after action of Lie group:

Φ → Φ −
〈

θ
(

g−1
)

, β
〉

(38)

• Invariance of entropy with respect to action of Lie group:

s → s (39)

• Action of Lie group on geometric heat, element of dual Lie algebra:

Q → a(g, Q) = Ad∗g(Q) + θ (g) (40)

Souriau equations of Lie group thermodynamics are summarized in the following Figures 5 and 6:

Figure 5. Global Souriau scheme of Lie group thermodynamics.
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Figure 6. Broken symmetry on geometric heat Q due to adjoint action of the group on temperature β as
an element of the Lie algebra.

For Hamiltonian, actions of a Lie group on a connected symplectic manifold, the equivariance of
the moment map with respect to an affine action of the group on the dual of its Lie algebra has been
studied by Marle and Libermann [100] and Lichnerowics [101,102]:

Theorem 2 (Marle Theorem on Cocycles). Let G be a connected and simply connected Lie group,
R : G → GL(E) be a linear representation of G in a finite-dimensional vector space E, and r : g→ gl(E) be
the associated linear representation of its Lie algebra g. For any one-cocycle Θ : g→ E of the Lie algebra g
for the linear representation r, there exists a unique one-cocycle θ : G → E of the Lie group G for the linear
representation R such that Θ(X) = Teθ (X(e)), which has Θ as associated Lie algebra one-cocycle. The Lie
group one-cocycle θ is a Lie group one-coboundary if and only if the Lie algebra one-cocycle Θ is a Lie algebra
one-coboundary.

Let G be a Lie group whose Lie algebra is g. The skew-symmetric bilinear form Θ̃ on g = TeG can
be extended into a closed differential two-form on G, since the identity on Θ̃ means that its exterior
differential dΘ̃ vanishes. In other words, Θ̃ is a 2-cocycle for the restriction of the de Rham cohomology
of G to left invariant differential forms. In the framework of Lie group action on a symplectic manifold,
equivariance of moment could be studied to prove that there is a unique action a(.,.) of the Lie group G
on the dual g∗ of its Lie algebra for which the moment map J is equivariant, that means for each x ∈ M:

J
(
Φg(x)

)
= a(g, J(x)) = Ad∗g (J(x)) + θ(g) (41)

where Φ : G × M → M is an action of Lie group G on differentiable manifold M, the fundamental
field associated to an element X of Lie algebra g of group G is the vectors field XM on M:

XM(x) =
d
dt

Φexp(−tX) (x)
∣∣∣∣
t=0

(42)

with Φg1

(
Φg2(x)

)
= Φg1g2(x) and Φe(x) = x. Φ is Hamiltonian on a symplectic manifold M, if Φ is

symplectic and if for all X ∈ g, the fundamental field XM is globally Hamiltonian. The cohomology
class of the symplectic cocycle θ only depends on the Hamiltonian action Φ, and not on J.

In Appendix B, we observe that Souriau Lie group thermodynamics is compatible with Balian
gauge theory of thermodynamics [103], that is obtained by symplectization in dimension 2n + 2 of
contact manifold in dimension 2n + 1. All elements of the Souriau geometric temperature vector are
multiplied by the same gauge parameter.

We conclude this section by this Bourbakiste citation of Jean-Marie Souriau [34]:

65



Entropy 2016, 18, 386

It is obvious that one can only define average values on objects belonging to a vector (or affine)
space; Therefore—so this assertion may seem Bourbakist—that we will observe and measure average
values only as quantity belonging to a set having physically an affine structure. It is clear that
this structure is necessarily unique—if not the average values would not be well defined. (Il est
évident que l’on ne peut définir de valeurs moyennes que sur des objets appartenant à un espace
vectoriel (ou affine); donc—si bourbakiste que puisse sembler cette affirmation—que l’on n’observera
et ne mesurera de valeurs moyennes que sur des grandeurs appartenant à un ensemble possédant
physiquement une structure affine. Il est clair que cette structure est nécessairement unique—sinon
les valeurs moyennes ne seraient pas bien définies.).

4. The Souriau-Fisher Metric as Geometric Heat Capacity of Lie Group Thermodynamics

We observe that Souriau Riemannian metric, introduced with symplectic cocycle, is a
generalization of the Fisher metric, that we call the Souriau-Fisher metric, that preserves the property

to be defined as a hessian of the partition function logarithm gβ = −∂2Φ
∂β2 =

∂2logψΩ

∂β2 as in classical

information geometry. We will establish the equality of two terms, between Souriau definition
based on Lie group cocycle Θ and parameterized by “geometric heat” Q (element of dual Lie
algebra) and “geometric temperature” β (element of Lie algebra) and hessian of characteristic function
Φ(β) = −logψΩ(β) with respect to the variable β:

gβ ([β, Z1] , [β, Z2]) = 〈Θ (Z1) , [β, Z2]〉+ 〈Q, [Z1, [β, Z2]]〉 = ∂2logψΩ

∂β2 (43)

If we differentiate this relation of Souriau theorem Q
(

Adg(β)
)

= Ad∗g(Q) + θ (g), this
relation occurs:

∂Q
∂β

(− [Z1, β] , .) = Θ̃ (Z1, [β, .]) +
〈

Q, Ad.Z1([β, .])
〉
= Θ̃β (Z1, [β, .]) (44)

− ∂Q
∂β

([Z1, β] , Z2.) = Θ̃ (Z1, [β, Z2]) +
〈

Q, Ad.Z1([β, Z2])
〉
= Θ̃β (Z1, [β, Z2]) (45)

⇒ −∂Q
∂β

= gβ ([β, Z1] , [β, Z2]) (46)

As the entropy is defined by the Legendre transform of the characteristic function,
this Souriau-Fisher metric is also equal to the inverse of the hessian of “geometric entropy” s(Q)

with respect to the variable Q:
∂2s(Q)

∂Q2

For the maximum entropy density (Gibbs density), the following three terms coincide:
∂2logψΩ

∂β2

that describes the convexity of the log-likelihood function, I(β) = −E
[

∂2logpβ(ξ)

∂β2

]
the Fisher metric that

describes the covariance of the log-likelihood gradient, whereas I(β) = E
[
(ξ − Q) (ξ − Q)T

]
= Var(ξ)

that describes the covariance of the observables.
We can also observe that the Fisher metric I(β) = −∂Q

∂β
is exactly the Souriau metric defined

through symplectic cocycle:

I(β) = Θ̃β (Z1, [β, Z2]) = gβ ([β, Z1] , [β, Z2]) (47)

The Fisher metric I(β) = −∂2Φ(β)

∂β2 = −∂Q
∂β

has been considered by Souriau as a generalization of

“heat capacity”. Souriau called it K the “geometric capacity”.
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Figure 7. Fourier heat equation in seminal manuscript of Joseph Fourier [88].

For β =
1

kT
, K = −∂Q

∂β
= −∂Q

∂T

(
∂(1/kT)

∂T

)−1

= kT2 ∂Q
∂T

linking the geometric capacity to

calorific capacity, then Fisher metric can be introduced in Fourier heat equation (see Figure 7):

∂T
∂t

=
κ

C · D
ΔT with

∂Q
∂T

= C · D ⇒ ∂β−1

∂t
= κ

[(
β2/k

)
· IFisher(β)

]−1
Δβ−1 (48)

We can also observe that Q is related to the mean, and K to the variance of U:

K = I(β) = −∂Q
∂β

= var(U) =
�
M

U(ξ)2 · pβ(ξ)dω −
(�

M

U(ξ) · pβ(ξ)dω

)2

(49)

We observe that the entropy s is unchanged, and Φ is changed but with linear dependence to β,
with the consequence that Fisher Souriau metric is invariant:

s
[
Q

(
Adg(β)

)]
= s(Q(β)) and I

(
Adg(β)

)
= −∂2 (

Φ − 〈
θ
(

g−1) , β
〉)

∂β2 = −∂2Φ
∂β2 = I(β) (50)

We have observed that the concept of “heat capacity” is important in the Souriau model because
it gives a geometric meaning to its definition. The notion of “heat capacity” has been generalized by
Pierre Duhem in his general equations of thermodynamics.

Souriau [34] proposed to define a thermometer (θε�μóσ) device principle that could measure this
geometric temperature using “relative ideal gas thermometer” based on a theory of dynamical group
thermometry and has also recovered the (geometric) Laplace barometric law

5. Euler-Poincaré Equations and Variational Principle of Souriau Lie Group Thermodynamics

When a Lie algebra acts locally transitively on the configuration space of a Lagrangian mechanical
system, Henri Poincaré proved that the Euler-Lagrange equations are equivalent to a new system of
differential equations defined on the product of the configuration space with the Lie algebra. Marle has
written about the Euler-Poincaré equations [104], under an intrinsic form, without any reference to a
particular system of local coordinates, proving that they can be conveniently expressed in terms of
the Legendre and moment maps of the lift to the cotangent bundle of the Lie algebra action on the
configuration space. The Lagrangian is a smooth real valued function L defined on the tangent bundle
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TM. To each parameterized continuous, piecewise smooth curve γ : [t0, t1] → M , defined on a closed
interval [t0, t1], with values in M, one associates the value at γ of the action integral:

I(γ) =
t1�

t0

L
(

dγ(t)
dt

)
dt (51)

The partial differential of the function L : M × g→  with respect to its second variable d2L,
which plays an important part in the Euler-Poincaré equation, can be expressed in terms of the
moment and Legendre maps: d2L = pg∗ ◦ ϕt ◦L ◦ ϕ with J = pg∗ ◦ ϕt(⇒ d2L = J ◦ L ◦ ϕ) the moment
map, pg∗ : M × g∗ → g∗ the canonical projection on the second factor, L : TM → T∗M the Legendre
transform, with:

ϕ : M × g→ TM/ϕ(x, X) = XM(x) and ϕt : T∗M → M × g∗/ϕt(ξ) = (πM(ξ), J(ξ)) (52)

The Euler-Poincaré equation can therefore be written under the form:(
d
dt

− ad∗V(t)

)
(J ◦ L ◦ ϕ (γ(t), V(t))) = J ◦ d1L (γ(t), V(t)) with

dγ(t)
dt

= ϕ (γ(t), V(t)) (53)

with

H(ξ) =
〈

ξ, L−1(ξ)
〉
− L

(
L−1(ξ)

)
, ξ ∈ T∗M , L : TM → T∗M , H : T∗M → R . (54)

Following the remark made by Poincaré at the end of his note [105], the most interesting case
is when the map L : M × g→ R only depends on its second variable X ∈ g. The Euler-Poincaré
equation becomes: (

d
dt

− ad∗V(t)

) (
dL (V(t))

)
= 0 (55)

We can use analogy of structure when the convex Gibbs ensemble is homogeneous [106]. We can
then apply Euler-Poincaré equation for Lie group thermodynamics. Considering Clairaut’s equation:

s (Q) = 〈β, Q〉 − Φ(β) =
〈

Θ−1(Q), Q
〉
− Φ

(
Θ−1(Q)

)
(56)

with Q = Θ(β) =
∂Φ
∂β

∈ g∗, β = Θ−1(Q) ∈ g, a Souriau-Euler-Poincaré equation can be elaborated for

Souriau Lie group thermodynamics:

dQ
dt

= ad∗βQ (57)

or

d
dt

(
Ad∗gQ

)
= 0. (58)

The first equation, the Euler-Poincaré equation is a reduction of Euler-Lagrange equations using
symmetries and especially the fact that a group is acting homogeneously on the symplectic manifold:

dQ
dt

= ad∗βQ and

⎧⎨⎩ s(Q) = 〈β, Q〉 − Φ(β)

β = ∂s(Q)
∂Q ∈ g , Q = ∂Φ(β)

∂β ∈ g∗
(59)
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Back to Koszul model of information geometry, we can then deduce an equivalent of the
Euler-Poincaré equation for statistical models

dx∗

dt
= ad∗xx∗ and

⎧⎨⎩ Φ∗(x∗) = 〈x, x∗〉 − Φ(x)

x = ∂Φ∗(x∗)
∂x ∈ Ω , x∗ = ∂Φ(x)

∂x ∈ Ω∗
(60)

We can use this Euler-Poincaré equation to deduce an associated equation on entropy:
ds
dt

=

〈
dβ

dt
, Q

〉
+

〈
β, ad∗βQ

〉
− dΦ

dt
that reduces to

ds
dt

=

〈
dβ

dt
, Q

〉
− dΦ

dt
(61)

due to 〈ξ, adV X〉 = − 〈
ad∗Vξ, X

〉 ⇒
〈

β, ad∗βQ
〉
=

〈
Q, adββ

〉
= 0 .

With these new equation of thermodynamics
dQ
dt

= ad∗βQ and
d
dt
(Ad∗gQ) = 0, we can observe that

the new important notion is related to co-adjoint orbits, that are associated to a symplectic manifold by
Souriau with KKS 2-form.

We will then define the Poincaré-Cartan integral invariant for Lie group thermodynamics.
Classically in mechanics, the Pfaffian form ω = p · dq − H · dt is related to Poincaré-Cartan integral
invariant [107]. Dedecker has observed, based on the relation [108]:

ω = ∂ .
qL · dq −

(
∂ .

qL · .
q − L

)
· dt = L · dt + ∂ .

qL� with � = dq − .
q · dt (62)

that the property that among all forms χ ≡ L · dtmod� the form ω = p · dq − H · dt is the only one
satisfying dχ ≡ 0mod�, is a particular case of more general Lepage congruence.

Analogies between geometric mechanics and geometric Lie group thermodynamics, provides the
following similarities of structures:

{ .
q ↔ β

p ↔ Q
,

⎧⎪⎪⎨⎪⎪⎩
L(

.
q) ↔ Φ(β)

H(p) ↔ s(Q)

H = p · .
q − L ↔ s = 〈Q, β〉 − Φ

and

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
q =

dq
dt

=
∂H
∂p

↔ β =
∂s
∂Q

p =
∂L
∂

.
q
↔ Q =

∂Φ
∂β

(63)

We can then consider a similar Poincaré-Cartan-Souriau Pfaffian form:

ω = p · dq − H · dt ↔ ω = 〈Q, (β · dt)〉 − s · dt = (〈Q, β〉 − s) · dt = Φ(β) · dt (64)

This analogy provides an associated Poincaré-Cartan-Souriau integral invariant. Poincaré-Cartan
integral invariant

�
Ca

p · dq − H.dt =
�

Cb

p · dq − H · dt is given for Souriau thermodynamics by:

�
Ca

Φ(β) · dt =
�
Cb

Φ(β) · dt (65)

We can then deduce an Euler-Poincaré-Souriau variational principle for thermodynamics: The
variational principle holds on g, for variations δβ =

.
η + [β, η], where η(t) is an arbitrary path that

vanishes at the endpoints, η(a) = η(b) = 0:
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δ

t1�
t0

Φ (β(t)) · dt = 0 (66)

6. Souriau Affine Representation of Lie Group and Lie Algebra and Comparison with the Koszul
Affine Representation

This affine representation of Lie group/algebra used by Souriau has been intensively studied
by Marle [7,100,109,110]. Souriau called the mechanics deduced from this model, “affine mechanics”.
We will explain affine representations and associated notions as cocycles, Souriau moment map and
cocycles, equivariance of Souriau moment map, action of Lie group on a symplectic manifold and dual
spaces of finite-dimensional Lie algebras. We have observed that these tools have been developed in
parallel by Jean-Louis Koszul. We will establish close links and synthetize the comparisons in a table
of both approaches.

6.1. Affine Representations and Cocycles

Souriau model of Lie group thermodynamics is linked with affine representation of Lie group
and Lie algebra. We will give in the following main elements of this affine representation.

Let G be a Lie group and E a finite-dimensional vector space. A map A : G → A f f (E) can always
be written as:

A(g)(x) = R(g)(x) + θ(g) with g ∈ G, x ∈ E (67)

where the maps R : G → GL(E) and θ : G → E are determined by A. The map A is an affine
representation of G in E.

The map θ : G → E is a one-cocycle of G with values in E, for the linear representation R; it means
that θ is a smooth map which satisfies, for all g, h ∈ G:

θ(gh) = R(g)(θ(h)) + θ(g) (68)

The linear representation R is called the linear part of the affine representation A, and θ is called the
one-cocycle of G associated to the affine representation A. A one-coboundary of G with values in E,
for the linear representation R, is a map θ : G → E which can be expressed as:

θ(g) = R(g)(c)− c , g ∈ G (69)

where c is a fixed element in E and then there exist an element c ∈ E such that, for all g ∈ G and x ∈ E:

A(g)(x) = R(g)(x + c)− c (70)

Let g be a Lie algebra and E a finite-dimensional vector space. A linear map a : g→ a f f (E)
always can be written as:

a(X)(x) = r(X)(x) + Θ(X) with X ∈ g, x ∈ E (71)

where the linear maps r : g→ gl(E) and Θ : g→ E are determined by a. The map a is an affine
representation of G in E. The linear map Θ : g→ E is a one-cocycle of G with values in E, for the linear
representation r; it means that Θ satisfies, for all X, Y ∈ g:

Θ ([X, Y]) = r(X) (Θ(Y))− r(Y) (Θ(X)) (72)

Θ is called the one-cocycle of g associated to the affine representation a. A one-coboundary of gwith
values in E, for the linear representation r, is a linear map Θ : g→ E which can be expressed as:
Θ(X) = r(X)(c) , X ∈ g where c is a fixed element in E., and then there exist an element c ∈ E such
that, for all X ∈ g and x ∈ E:

a(X)(x) = r(X)(x + c)
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Let A : G → A f f (E) be an affine representation of a Lie group g in a finite-dimensional vector
space E, and g be the Lie algebra of G. Let R : G → GL(E) and θ : G → E be, respectively, the
linear part and the associated cocycle of the affine representation A. Let a : g→ a f f (E) be the affine
representation of the Lie algebra g associated to the affine representation A : G → A f f (E) of the
Lie group G. The linear part of a is the linear representation r : g→ gl(E) associated to the linear
representation R : G → GL(E) , and the associated cocycle Θ : g→ E is related to the one-cocycle
θ : G → E by:

Θ(X) = Teθ (X(e)) , X ∈ g (73)

This is deduced from:

dA (exp(tX)) (x)
dt

∣∣∣∣
t=0

=
d (R(exp(tX))(x) + θ(exp(tX))

dt

∣∣∣∣
t=0

⇒ a(X)(x) = r(X)(x) + Teθ(X) (74)

Let G be a connected and simply connected Lie group, R : G → GL(E) be a linear representation
of G in a finite-dimensional vector space E, and r : g→ gl(E) be the associated linear representation
of its Lie algebra g. For any one-cocycle Θ : g→ E of the Lie algebra g for the linear representation r,
there exists a unique one-cocycle θ : G → E of the Lie group G for the linear representation R such that:

Θ(X) = Teθ (X(e)) (75)

in other words, which has Θ as associated Lie algebra one-cocycle. The Lie group one-cocycle θ is a Lie
group one-coboundary if and only if the Lie algebra one-cocycle Θ is a Lie algebra one-coboundary.

dθ (gexp(tX))

dt

∣∣∣∣
t=0

=
d (θ(g) + R(g) (θ(exp(tX)))

dt

∣∣∣∣
t=0

⇒ Tgθ
(
TLg(X)

)
= R(g) (Θ(x)) (76)

which proves that if it exists, the Lie group one-cocycle θ such that Teθ = Θ is unique.

6.2. Souriau Moment Map and Cocycles

Souriau first introduced the moment map in his book. We will give the link with previous cocycles
of affine representation.

There exist JX linear application from g to differential function on M:

g→ C∞(M, R)

X → JX
(77)

We can then associate a differentiable application J, called moment(um) map for the Hamiltonian
Lie group action Φ:

J : M → g∗

x �→ J(x) such that JX(x) = 〈J(x), X〉 , X ∈ g
(78)

Let J moment map, for each (X, Y) ∈ g× g, we associate a smooth function Θ̃ (X, Y) : M → 
defined by:

Θ̃(X, Y) = J[X,Y] − {JX , JY} with {., .} : Poisson Bracket (79)

It is a Casimir of the Poisson algebra C∞(M,), that satisfies:

Θ̃([X, Y] , Z) + Θ̃([Y, Z] , X) + Θ̃([Z, X] , Y) = 0 (80)

When the Poisson manifold is a connected symplectic manifold, the function Θ̃ (X, Y) is constant
on M and the map:
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Θ̃ (X, Y) : g× g→  (81)

is a skew-symmetric bilinear form, and is called the symplectic Cocycle of Lie algebra g associated to
the moment map J.

Let Θ : g→ g∗ be the map such that for all:

X, Y ∈ g : 〈Θ(X), Y〉 = Θ̃(X, Y) (82)

The map Θ is therefore the one-cocycle of the Lie algebra g with values in g∗ for the coadjoint
representation X �→ ad∗X of g associated to the affine action of g on its dual:

aΘ(X)(ξ) = ad∗−X(ξ) + Θ(X) , X ∈ g , ξ ∈ g∗ (83)

Let G be a Lie group whose Lie algebra is g. The skew-symmetric bilinear form Θ̃ on g = TeG can
be extended into a closed differential two-form on G, since the identity on Θ̃ means that its exterior
differential dΘ̃ vanishes. In other words, Θ̃ is a 2-cocycle for the restriction of the de Rham cohomology
of G to left (or right) invariant differential forms.

6.3. Equivariance of Souriau Moment Map

There exists a unique affine action a such that the linear part is a coadjoint representation:

a : G × g∗ → g∗

a(g, ξ) = Ad∗g−1 ξ + θ(g)
(84)

with
〈

Ad∗g−1 ξ, X
〉
=

〈
ξ, Adg−1X

〉
and that induce equivariance of moment J.

6.4. Action of Lie Group on a Symplectic Manifold

Let Φ : G × M → M be an action of Lie group G on differentiable manifold M, the fundamental
field associated to an element X of Lie algebra g of group G is the vectors field XM on M:

XM(x) =
d
dt

Φexp(−tX) (x)
∣∣∣∣
t=0

With Φg1

(
Φg2(x)

)
= Φg1g2(x) and Φe(x) = x (85)

Φ is Hamiltonian on a symplectic manifold M, if Φ is symplectic and if for all X ∈ g, the fundamental
field XM is globally Hamiltonian.

There is a unique action a of the Lie group G on the dual g∗ of its Lie algebra for which the moment
map J is equivariant, that means satisfies for each x ∈ M

J
(
Φg(x)

)
= a(g, J(x)) = Ad∗g−1 (J(x)) + θ(g) (86)

θ : G → g∗ is called cocycle associated to the differential Teθ of 1-cocyle θ associated to J at neutral
element e:

〈Teθ(X), Y〉 = Θ̃(X, Y) = J[X,Y] − {JX , JY} (87)

If instead of J we take the moment map J′(x) = J(x) + μ , x ∈ M, where μ ∈ g∗ is constant, the
symplectic cocycle θ is replaced by:

θ′(g) = θ(g) + μ − Ad∗gμ (88)

where θ′ − θ = μ − Ad∗gμ is one-coboundary of G with values in g∗.
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Therefore, the cohomology class of the symplectic cocycle θ only depends on the Hamiltonian
action Φ, not on the choice of its moment map J. We have also:

Θ̃′(X, Y) = Θ̃(X, Y) + 〈μ, [X, Y]〉 (89)

This property is used by Jean-Marie Souriau [10] to offer a very nice cohomological interpretation
of the total mass of a classical (nonrelativistic) isolated mechanical system. He [10] proves that the
space of all possible motions of the system is a symplectic manifold on which the Galilean group acts
by a Hamiltonian action. The dimension of the symplectic cohomology space of the Galilean group
(the quotient of the space of symplectic one-cocycles by the space of symplectic one-coboundaries) is
equal to 1. The cohomology class of the symplectic cocycle associated to a moment map of the action of
the Galilean group on the space of motions of the system is interpreted as the total mass of the system.

For Hamiltonian actions of a Lie group on a connected symplectic manifold, the equivariance
of the moment map with respect to an affine action of the group on the dual of its Lie algebra has
been proved by Marle [110]. Marle [110] has also developed the notion of symplectic cocycle and
has proved that given a Lie algebra symplectic cocycle, there exists on the associated connected and
simply connected Lie group a unique corresponding Lie group symplectic cocycle. Marle [104] has
also proved that there exists a two-parameter family of deformations of these actions (the Hamiltonian
actions of a Lie group on its cotangent bundle obtained by lifting the actions of the group on itself by
translations) into a pair of mutually symplectically orthogonal Hamiltonian actions whose moment
maps are equivariant with respect to an affine action involving any given Lie group symplectic cocycle.
Marle [104] has also explained why a reduction occurs for Euler-Poncaré equation mainly when the
Hamiltonian can be expressed as the moment map composed with a smooth function defined on
the dual of the Lie algebra; the Euler-Poincaré equation is then equivalent to the Hamilton equation
written on the dual of the Lie algebra.

6.5. Dual Spaces of Finite-Dimensional Lie Algebras

Let g be a finite-dimensional Lie algebra, and g∗ its dual space. The Lie algebra g can be considered
as the dual of g∗, that means as the space of linear functions on g∗, and the bracket of the Lie algebra g
is a composition law on this space of linear functions. This composition law can be extended to the
space C∞(g∗,) by setting:

{ f , g} (x) = 〈x, [d f (x), dg(x)]〉 , f and g ∈ C∞(g∗,), x ∈ g∗ (90)

If we apply this formula for Souriau Lie group thermodynamics, and for entropy s(Q) depending
on geometric heat Q:

{s1, s2} (Q) = 〈Q, [ds1(Q), ds2(Q)]〉 , s1 and s2 ∈ C∞(g∗,), Q ∈ g∗ (91)

This bracket on C∞(g∗,) defines a Poisson structure on g∗, called its canonical Poisson structure.
It implicitly appears in the works of Sophus Lie, and was rediscovered by Alexander Kirillov [111],
Bertram Kostant and Jean-Marie Souriau.

The above defined canonical Poisson structure on g∗ can be modified by means of a symplectic
cocycle Θ̃ by defining the new bracket:

{ f , g}Θ̃ (x) = 〈x, [d f (x), dg(x)]〉 − Θ̃ (d f (x), dg(x)) (92)

with Θ̃ a symplectic cocycle of the Lie algebra g being a skew-symmetric bilinear map Θ̃ : g× g→ 
which satisfies:

Θ̃ ([X, Y] , Z) + Θ̃ ([Y, Z] , X) + Θ̃ ([Z, X] , Y) = 0 (93)
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This Poisson structure is called the modified canonical Poisson structure by means of the symplectic
cocycle Θ̃. The symplectic leaves of g∗ equipped with this Poisson structure are the orbits of an affine
action whose linear part is the coadjoint action, with an additional term determined by Θ̃.

6.6. Koszul Affine Representation of Lie Group and Lie Algebra

Previously, we have developed Souriau’s works on the affine representation of a Lie group used to
elaborate the Lie group thermodynamics. We will study here another approach of affine representation
of Lie group and Lie algebra introduced by Jean-Louis Koszul. We consolidate the link of Jean-Louis
Koszul work with Souriau model. This model uses an affine representation of a Lie group and of a Lie
algebra in a finite-dimensional vector space, seen as special examples of actions.

Since the work of Henri Poincare and Elie Cartan, the theory of differential forms has become
an essential instrument of modern differential geometry [112–115] used by Jean-Marie Souriau
for identifying the space of motions as a symplectic manifold. However, as said by Paulette
Libermann [116], except Henri Poincaré who wrote shortly before his death a report on the work
of Elie Cartan during his application for the Sorbonne University, the French mathematicians did
not see the importance of Cartan’s breakthroughs. Souriau followed lectures of Elie Cartan in 1945.
The second student of Elie Cartan was Jean-Louis Koszul. Koszul introduced the concepts of affine
spaces, affine transformations and affine representations [117–124]. More especially, we are interested
by Koszul’s definition for affine representations of Lie groups and Lie algebras. Koszul studied
symmetric homogeneous spaces and defined relation between invariant flat affine connections to affine
representations of Lie algebras, and characterized invariant Hessian metrics by affine representations
of Lie algebras [117–124]. Koszul provided correspondence between symmetric homogeneous spaces
with invariant Hessian structures by using affine representations of Lie algebras, and proved that a
simply connected symmetric homogeneous space with invariant Hessian structure is a direct product
of a Euclidean space and a homogeneous self-dual regular convex cone [117–124]. Let G be a connected
Lie group and let G/K be a homogeneous space on which G acts effectively, Koszul gave a bijective
correspondence between the set of G-invariant flat connections on G/K and the set of a certain class
of affine representations of the Lie algebra of G [117–124]. The main theorem of Koszul is: let G/K
be a homogeneous space of a connected Lie group G and let g and k be the Lie algebras of G and K,
assuming that G/K is endowed with a G-invariant flat connection, then g admits an affine representation
(f,q) on the vector space E. Conversely, suppose that G is simply connected and that g is endowed with
an affine representation, then G/K admits a G-invariant flat connection.

Koszul has proved the following [117–124]. Let Ω be a convex domain in Rn containing no
complete straight lines, and an associated convex cone V(Ω) = {(λx, x) ∈ Rn × R/x ∈ Ω, λ ∈ R+}.
Then there exists an affine embedding:

� : x ∈ Ω �→
[

x
1

]
∈ V(Ω) (94)

If we consider η the group of homomorphism of A(n, R) into GL(n + 1, R) given by:

s ∈ A(n, R) �→
[

f(s) q(s)
0 1

]
∈ GL(n + 1, R) (95)

and associated affine representation of Lie algebra:[
f q
0 0

]
(96)

with A(n, R) the group of all affine transformations of Rn. We have η (G(Ω)) ⊂ G (V(Ω)) and the pair
(η, �) of the homomorphism η : G(Ω) → G (V(Ω)) and the map � : Ω → V(Ω) is equivariant.

74



Entropy 2016, 18, 386

A Hessian structure (D, g) on a homogeneous space G/K is said to be an invariant Hessian
structure if both D and g are G-invariant. A homogeneous space G/K with an invariant Hessian
structure (D, g) is called a homogeneous Hessian manifold and is denoted by (G/K, D, g). Another
result of Koszul is that a homogeneous self-dual regular convex cone is characterized as a simply
connected symmetric homogeneous space admitting an invariant Hessian structure that is defined
by the positive definite second Koszul form (we have identified in a previous paper that this second
Koszul form is related to the Fisher metric). In parallel, Vinberg [125,126] gave a realization of a
homogeneous regular convex domain as a real Siegel domain. Koszul has observed that regular
convex cones admit canonical Hessian structures, improving some results of Pyateckii-Shapiro that
studied realizations of homogeneous bounded domains by considering Siegel domains in connection
with automorphic forms. Koszul defined a characteristic function ψΩ of a regular convex cone Ω,
and showed that ψΩ = DdlogψΩ is a Hessian metric on Ω invariant under affine automorphisms of Ω.
If Ω is a homogeneous self dual cone, then the gradient mapping is a symmetry with respect to the
canonical Hessian metric, and is a symmetric homogeneous Riemannian manifold. More information
on Koszul Hessian geometry can be found in [127–136].

We will now focus our attention to Koszul affine representation of Lie group/algebra. Let G a
connex Lie group and E a real or complex vector space of finite dimension, Koszul has introduced an
affine representation of G in E such that [117–124]:

E → E

a �→ sa ∀s ∈ G
(97)

is an affine transformation. We set A(E) the set of all affine transformations of a vector space E, a Lie
group called affine transformation group of E. The set GL(E) of all regular linear transformations of E,
a subgroup of A(E).

We define a linear representation from G to GL(E):

f : G → GL(E)

s �→ f(s)a = sa − so ∀a ∈ E
(98)

and an application from G to E:
q : G → E

s �→ q(s) = so ∀s ∈ G
(99)

Then we have ∀s, t ∈ G:

f(s)q(t) + q(s) = q(st) (100)

deduced from f(s)q(t) + q(s) = sq(t)− so + so = sq(t) = sto = q(st).
On the contrary, if an application q from G to E and a linear representation f from G to GL(E)

verify previous equation, then we can define an affine representation of G in E, written (f, q):

A f f (s) : a �→ sa = f(s)a + q(s) ∀s ∈ G, ∀a ∈ E (101)

The condition f(s)q(t) + q(s) = q(st) is equivalent to requiring the following mapping to be
an homomorphism:

A f f : s ∈ G �→ A f f (s) ∈ A(E) (102)
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We write f the linear representation of Lie algebra g of G, defined by f and q the restriction to g of
the differential to q ( f and q the differential of f and q respectively), Koszul has proved that:

f (X)q(Y)− f (Y)q(X) = q ([X, Y]) ∀X, Y ∈ g
with f : g→ gl(E) and q : g �→ E

(103)

where gl(E) the set of all linear endomorphisms of E, the Lie algebra of GL(E).
Using the computation,

q (AdsY) =
dq(s · etY · s−1)

dt

∣∣∣∣
t=0

= f(s) f (Y)q(s−1) + f(s)q(Y) (104)

We can obtain:

q ([X, Y]) =
dq(AdetX Y)

dt

∣∣∣∣
t=0

= f (X)q(Y)q(e) + f(e) f (Y) (−q(X)) + f (X)q(Y) (105)

where e is the unit element in G. Since f(e) is the identity mapping and q(e) = 0, we have the equality:
f (X)q(Y)− f (Y)q(X) = q ([X, Y]) .

A pair ( f , q) of a linear representation f of a Lie algebra g on E and a linear mapping q from g to E
is an affine representation of g on E, if it satisfies f (X)q(Y)− f (Y)q(X) = q ([X, Y]) .

Conversely, if we assume that g admits an affine representation ( f , q) on E, using an affine
coordinate system

{
x1, ..., xn}

on E, we can express an affine mapping v �→ f (X)v + q(Y) by an
(n + 1)× (n + 1) matrix representation:

a f f (X) =

[
f (X) q(X)

0 0

]
(106)

where f (X) is a n × n matrix and q(X) is a n row vector.
X �→ a f f (X) is an injective Lie algebra homomorphism from g in the Lie algebra of all (n + 1)×

(n + 1) matrices, gl (n + 1, R): ∣∣∣∣∣ g→ gl(n + 1, R)
X �→ a f f (X)

(107)

If we denote ga f f = a f f (g), we write Ga f f the linear Lie subgroup of GL(n + 1, R) generated by
ga f f . An element of s ∈ Ga f f is expressed by:

A f f (s) =

[
f(s) q(s)

0 1

]
(108)

Let Ma f f be the orbit of Ga f f through the origin o, then Ma f f = q(Ga f f ) = Ga f f /Ka f f where

Ka f f =
{

s ∈ Ga f f /q(s) = 0
}
= Ker (q).

Example. Let Ω be a convex domain in Rn containing no complete straight lines, we define a convex
cone V(Ω) in Rn+1 = Rn × R by V(Ω) = {(λx, x) ∈ Rn × R/x ∈ Ω, λ ∈ R+}. Then there exists an
affine embedding:

� : x ∈ Ω �→
[

x
1

]
∈ V(Ω) (109)
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If we consider η the group of homomorphism of A(n, R) into GL(n + 1, R) given by:

s ∈ A(n, R) �→
[

f(s) q(s)

0 1

]
∈ GL(n + 1, R) (110)

with A(n, R) the group of all affine transformations of Rn. We have η (G(Ω)) ⊂ G (V(Ω)) and the
pair (η, �) of the homomorphism η : G(Ω) → G (V(Ω)) and the map � : Ω → V(Ω) is equivariant:

� ◦ s = η(s) ◦ � and d� ◦ s = η(s) ◦ d� (111)

6.7. Comparison of Koszul and Souriau Affine Representation of Lie Group and Lie Algebra

We will compare, in the following Table 1, affine representation of Lie group and Lie algebra from
Souriau and Koszul approaches:

Table 1. Table comparing Souriau and Koszul affine representation of Lie group and Lie algebra.

Souriau Model of Affine Representation of Lie
Groups and Algebra

Koszul Model of Affine Representation of Lie
Groups and Algebra

A(g)(x) = R(g)(x) + θ(g) with g ∈ G, x ∈ E
R : G → GL(E) and θ : G → E

A f f (s) : a �→ sa = f(s)a + q(s) ∀s ∈ G, ∀a ∈ E

f : G → GL(E)
s �→ f(s)a = sa − so ∀a ∈ E
q : G → E

s �→ q(s) = so ∀s ∈ G

θ(gh) = R(g)(θ(h)) + θ(g) with g, h ∈ G
θ : G → E is a one-cocycle of G with values in E, q(st) = f(s)q(t) + q(s)

a(X)(x) = r(X)(x) + Θ(X) with X ∈ g, x ∈ E
The linear map Θ : g→ E is a one-cocycle of G with

values in E: Θ(X) = Teθ (X(e)) , X ∈ g
v �→ f (X)v + q(Y)

f and q the differential of f and q respectively

Θ ([X, Y]) = r(X) (Θ(Y))− r(Y) (Θ(X))
q ([X, Y]) = f (X)q(Y)− f (Y)q(X) ∀X, Y ∈ g
with f : g→ gl(E) and q : g �→ E

none a f f (X) =

[
f (X) q(X)

0 0

]

none A f f (s) =

[
f(s) q(s)

0 1

]

6.8. Additional Elements on Koszul Affine Representation of Lie Group and Lie Algebra

Let
{

x1, x2, ..., xn}
be a local coordinate system on M, the Christoffel’s symbols Γk

ij of the connection
D are defined by:

D ∂
∂xi

∂

∂xj =
n

∑
k=1

Γk
ij

∂

∂xk (112)

The torsion tensor T of D is given by:

T (X, Y) = DXY − DYX − [X, Y] (113)

T
(

∂

∂xi ,
∂

∂xj

)
=

n

∑
k=1

Tk
ij

∂

∂xk with Tk
ij = Γk

ij − Γk
ji (114)

The curvature tensor R of D is given by:

R (X, Y) Z = DXDYZ − DYDXZ − D[X,Y]Z (115)
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R
(

∂

∂xk ,
∂

∂xl

)
∂

∂xj = ∑
i

Ri
jkl

∂

∂xi with Ri
jkl =

∂Γi
l j

∂xk −
∂Γi

kj

∂xl + ∑
m

(
Γm

lj Γi
km − Γm

kjΓ
i
lm

)
(116)

The Ricci tensor Ric of D is given by:

Ric (Y, Z) = Tr {X → R (X, Y) Z} (117)

Rjk = Ric
(

∂

∂xj ,
∂

∂xk

)
= ∑

i
Ri

kij (118)

In the following, we will consider a homogeneous space G/K endowed with a G-invariant
flat connection D (homogeneous flat manifold) written (G/K, D). Koszul has proved a bijective
correspondence between the set of G-invariant flat connections on G/K and the set of affine
representations of the Lie algebra of G. Let (G, K) be the pair of connected Lie group G and its
closed subgroup K. Let g the Lie algebra of G and k be the Lie subalgebra of g corresponding to K.
X∗ is defined as the vector field on M = G/K induced by the 1-parameter group of transformation
e−tX . We denote AX∗ = LX∗ − DX∗ , with LX∗ the Lie derivative.

Let V be the tangent space of G/K at o = {K} and let consider, the following values at o:

f (X) = AX∗ ,o (119)

q(X) = X∗
o (120)

where AX∗Y∗ = −DY∗X∗ (where D is a locally flat linear connection: its torsion and curvature tensors
vanish identically), then:

f ([X, Y]) = [ f (X), f (Y)] (121)

f (X)q(Y)− f (Y)q(X) = q ([X, Y]) (122)

where ker (k) = q, and ( f , q) an affine representation of the Lie algebra g:

∀X ∈ g, Xa = ∑
i

(
∑

j
f (X)

j
i x

i + q(X)i

)
∂

∂xi (123)

The 1-parameter transformation group generated by Xa is an affine transformation group of V,
with linear parts given by e−t. f (X) and translation vector parts:

∞

∑
n=1

(−t)n

n!
f (X)n−1q(X) (124)

These relations are proved by using:⎧⎨⎩ AX∗Y∗ − AY∗X∗ = [X∗, Y∗]

[AX∗ , AY∗ ] = A[X∗ ,Y]∗
with AX∗Y∗ = −DY∗X∗ (125)

based on the property that the connection D is locally flat and there is local coordinate systems on M
such that D ∂

∂xi

∂
∂xj = 0 with a vanishing torsion and curvature:

T (X, Y) = 0 ⇒ DXY − DYX = [X, Y] (126)

R (X, Y) Z = 0 ⇒ DXDYZ − DYDXZ = D[X,Y]Z (127)

deduced from the fact the a locally flat linear connection (vanishing of torsion and curvature).
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Let ω be an invariant volume element on G/K in an affine local coordinate system
{

x1, x2, ..., xn}
in a neighborhood of o:

ω = Φ · dx1 ∧ ... ∧ dxn (128)

We can write X∗ = ∑
i

χi ∂
∂xi and develop the Lie derivative of the volume element ω:

LX∗ω = (LX∗Φ) .dx1 ∧ ... ∧ dxn + ∑
j

Φ.dx1 ∧ · · · ∧ LX∗dxj ∧ · · · ∧ dxn =

(
X∗Φ +

(
∑
j

∂χj

∂xj

)
Φ

)
dx1 ∧ ... ∧ dxn (129)

Since the volume element ω is invariant by G:

LX∗ω = 0 ⇒ X∗Φ +

(
∑

j

∂χj

∂xj

)
Φ = 0 ⇒ X∗logΦ = −∑

j

∂χj

∂xj (130)

By using AX∗Y∗ = −DY∗X∗, we have:(
D ∂

∂xi
(AX∗)

) (
∂

∂xj

)
= D ∂

∂xi

(
AX∗

(
∂

∂xj

))
− AX∗

(
D ∂

∂xi

∂
∂xj

)
= −D ∂

∂xi
D ∂

∂xj

(
∑
k

χk ∂
∂xk

)
= −∑

k

∂2χk

∂xi∂xj
∂

∂xk (131)

But as D is locally flat and X∗ is an infinitesimal affine transformation with respect to D:

D ∂
∂xi

(AX∗) = 0 ⇒ ∂2χk

∂xi∂xj = 0 (132)

The Koszul form and canonical bilinear form are given by:

α = ∑
i

∂logΦ
∂xi dxi = DlogΦ (133)

Dα = ∑
i,j

∂2logΦ
∂xi∂xj dxidxj = DdlogΦ (134)

LX∗α = LX∗DlogΦ = DLX∗ logΦ = DX∗logΦ = −D

(
∑

j

∂χj

∂xj

)
= −∑

,j

∂2χj

∂xi∂xj dxi = 0 (135)

Then, LX∗α = 0 ∀X ∈ g.

By using X∗logΦ = −∑
j

∂χj

∂xj , we can obtain:

α(X∗) = (DlogΦ) (X∗) ⇒
LX∗α=0

DX∗ logΦ = −∑
j

∂χj

∂xj (136)

By using AX∗Y∗ = −DY∗X∗, we can develop:

AX∗

(
∂

∂xj

)
= −D ∂

∂xj
X∗ = −∑

i

∂χi

∂xj
∂

∂xi (137)

As f (X) = AX∗ ,o and q(X) = X∗
o :

Tr ( f (X)) = Tr (AX∗ ,o) = −∑
i

∂χi

∂xi (o) = α (X∗
0 ) = α0 (q(X)) (138)

If we use that LX∗α = 0 ∀X ∈ g, then we obtain:

(Dα) (X∗, Y∗) = (DY∗α) (X∗) = − (AY∗α) (X∗) = −AY∗ (α(X∗)) + α (AY∗X∗) = α (AY∗X∗) (139)
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Dα0 (q(X), q(Y)) = α0 ( f (Y)q(X)) (140)

To synthetize the result proved by Jean-Louis Koszul, if αo and Dαo are the values of α and Dα

at o, then:

αo (q(X)) = Tr ( f (X)) ∀X ∈ g (141)

Dαo (q(X), q(Y)) = 〈q(X), q(Y)〉o = α0 ( f (X)q(Y)) ∀X, Y ∈ g (142)

Jean-Louis Koszul has also proved that the inner product 〈., .〉 on V, given by the Riemannian
metric gij, satisfies the following conditions:

〈 f (X)q(Y), q(Z)〉+ 〈q(Y), f (X)q(Z)〉 = 〈 f (Y)q(X), q(Z)〉+ 〈q(X), f (Y)q(Z)〉 (143)

To make the link with Souriau model of thermodynamics, the first Koszul form
α = DlogΦ = Tr ( f (X)) will play the role of the geometric heat Q and the second koszul form
Dα = DdlogΦ = 〈q(X), q(Y)〉o will be the equivalent of Souriau-Fisher metric that is G-invariant.

Koszul theory is wider and integrates “information geometry” in its corpus. Koszul [117–124]
has proved general results, for example: on a complex homogeneous space, an invariant volume
defines with the complex structure, an invariant Hermitian form. If this space is a bounded domain,
then this hermitian form is positive definite and coincides with the classical Bergman metric of this
domain. During his stay at Institute for Advanced Study in Princeton, Koszul [117–124] has also
demonstrated the reciprocal for a class of complex homogeneous spaces, defined by open orbits of
complex affine transformation groups. Koszul and Vey [137,138] have also developed extended results
with the following theorem for connected hessian manifolds:

Theorem 3 (Koszul-Vey Theorem). Let M be a connected hessian manifold with hessian metric g. Suppose
that M admits a closed 1-form α such that Dα = g and there exists a group G of affine automorphisms of M
preserving α:

• If M/G is quasi-compact, then the universal covering manifold of M is affinely isomorphic to a
convex domain Ω of an affine space not containing any full straight line.

• If M/G is compact, then Ω is a sharp convex cone.

On this basis, Koszul has given a Lie group construction of a homogeneous cone that has been developed
and applied in information geometry by Shima and Boyom in the framework of Hessian geometry. The results of
Koszul are also fundamental in the framework of Souriau thermodynamics.

7. Souriau Lie Group Model and Koszul Hessian Geometry Applied in the Context of
Information Geometry for Multivariate Gaussian Densities

We will enlighten Souriau model with Koszul hessian geometry applied in information
geometry [117–124], recently studied in [3,9,139]. We have previously shown that information geometry
could be founded on the notion of Koszul-Vinberg characteristic function ψΩ(x) =

�
Ω∗

e−〈x,ξ〉dξ, ∀x ∈ Ω

where Ω is a convex cone and Ω∗ the dual cone with respect to Cartan-Killing inner product
〈x, y〉 = −B (x, θ(y)) invariant by automorphisms of Ω, with B (., .) the Killing form and θ(.) the
Cartan involution. We can develop the Koszul characteristic function:

ψΩ(x + λu) = ψΩ(x)− λ 〈x∗, u〉+ λ2

2
〈K(x)u, u〉+ ... (144)

with x∗ = dΦ(x)
dx

, Φ(x) = −logψΩ(x) and K(x) =
d2Φ(x)

dx2 (145)
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This characteristic function is at the cornerstone of modern concept of information geometry,
defining Koszul density by solution of maximum Koszul-Shannon entropy [140]:

Max
p

[
−

�
Ω∗

pξ̂(ξ)logpξ̂(ξ) · dξ

]
such that

�
Ω∗

pξ̂(ξ)dξ = 1 and
�

Ω∗
ξ · pξ̂(ξ)dξ = ξ̂ (146)

pξ̂(ξ) =
e−〈Θ−1(ξ̂),ξ〉�

Ω∗
e−〈Θ−1(ξ̂),ξ〉 .dξ

ξ̂ = Θ(β) = ∂Φ(β)
∂β where Φ(β) = −logψΩ(β)

ψΩ(β) =
�

Ω∗
e−〈β,ξ〉dξ , S(ξ̂) = − �

Ω∗
pξ̂(ξ)logpξ̂(ξ) · dξ and β = Θ−1(ξ̂)

S(ξ̂) =
〈
ξ̂, β

〉 − Φ(β)

(147)

This last relation is a Legendre transform between the logarithm of characteristic function and
the entropy:

logpξ̂(ξ) = − 〈ξ, β〉+ Φ(β)

S(
−
ξ ) = − �

Ω∗
pξ̂(ξ) · logpξ̂(ξ) · dξ = −E

[
logpξ̂(ξ)

]
S(

−
ξ ) = 〈E [ξ] , β〉 − Φ(β) =

〈
ξ̂, β

〉 − Φ(β)

(148)

The inversion Θ−1(ξ̂) is given by the Legendre transform based on the property that the
Koszul-Shannon entropy is given by the Legendre transform of minus the logarithm of the
characteristic function:

S(ξ̂) =
〈

β, ξ̂
〉 − Φ(β) with Φ(β) = −log

�
Ω∗

e−〈ξ,β〉dξ ∀β ∈ Ω and ∀ξ, ξ̂ ∈ Ω∗ (149)

We can observe the fundamental property that E [S(ξ)] = S (E [ξ]) , ξ ∈ Ω∗, and also as
observed by Maurice Fréchet that “distinguished functions” (densities with estimator reaching the
Fréchet-Darmois bound) are solutions of the Alexis Clairaut equation introduced by Clairaut in 1734 [141],
as illustrated in Figure 8:

S(ξ̂) =
〈

Θ−1(ξ̂), ξ̂
〉
− Φ

[
Θ−1(ξ̂)

]
∀ξ̂ ∈ {Θ(β)/β ∈ Ω} (150)

Figure 8. Clairaut-Legendre equation introduced by Maurice Fréchet in his 1943 paper [141].

Details of Fréchet elaboration for this Clairaut(-Legendre) equation for “distinguished function”
is given in Appendix A, and other elements are available on Fréchet’s papers [141–144].

In this structure, the Fisher metric I(x) makes appear naturally a Koszul hessian geometry [145,146],
if we observe that
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logpξ̂(ξ) = − 〈ξ, β〉+ Φ(β)

S(
−
ξ ) = − �

Ω∗
pξ̂(ξ) · logpξ̂(ξ) · dξ = −E

[
logpξ̂(ξ)

]
S(

−
ξ ) = 〈E [ξ] , β〉 − Φ(β) =

〈
ξ̂, β

〉 − Φ(β)

(151)

Then we can recover the relation with Fisher metric:

I(β) = −E

[
∂2logpβ(ξ)

∂β2

]
= −E

[
∂2 (− 〈ξ, β〉+ Φ(β))

∂β2

]
= −∂2Φ(β)

∂β2

ξ̂ =
∂Φ(β)

∂β

I(β) = E

[
∂logpβ(ξ)

∂β

∂logpβ(ξ)

∂β

T]
= E

[(
ξ − ξ̂

) (
ξ − ξ̂

)T
]
= E

[
ξ2] − E [ξ]2 = Var(ξ)

(152)

with Crouzeix relation established in 1977 [147,148],
∂2Φ
∂β2 =

[
∂2S
∂ξ̂2

]−1

giving the dual metric, in dual

space, where entropy S and (minus) logarithm of characteristic function, Φ, are dual potential functions.
The first metric of information geometry [149,150], the Fisher metric is given by the hessian of the

characteristic function logarithm:

I(β) = −E

[
∂2logpβ(ξ)

∂β2

]
= −∂2Φ(β)

∂β2 =
∂2logψΩ(β)

∂β2 (153)

ds2
g = dβT I(β)dβ = ∑

ij
gijdβidβj with gij = [I(β)]ij (154)

The second metric of information geometry is given by hessian of the Shannon entropy:

∂2S(ξ̂)
∂ξ̂2

=

[
∂2Φ(β)

∂β2

]−1

with S(ξ̂) =
〈
ξ̂, β

〉− Φ(β) (155)

ds2
h = dξ̂T

[
∂2S(ξ̂)

∂ξ̂2

]
dξ̂ = ∑

ij
hijdξ̂idξ̂ j with hij =

[
∂2S(ξ̂)

∂ξ̂2

]
ij

(156)

Both metrics will provide the same distance:

ds2
g = ds2

h (157)

From the Cartan inner product, we can generate logarithm of the Koszul characteristic function,
and its Legendre transform to define Koszul entropy, Koszul density and Koszul metric, as explained
in the following Figure 9:
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Figure 9. Generation of Koszul elements from Cartan inner product.

This information geometry has been intensively studied for structured matrices [151–166] and in
statistics [167] and is linked to the seminal work of Siegel [168] on symmetric bounded domains.

We can apply this Koszul geometry framework for cones of symmetric positive definite matrices.
Let the inner product 〈η, ξ〉 = Tr

(
ηTξ

)
,∀η, ξ ∈ Sym(n) given by Cartan-Killing form, Ω be the set of

symmetric positive definite matrices is an open convex cone and is self-dual Ω∗ = Ω.

〈η, ξ〉 = Tr
(
ηTξ

)
,∀η, ξ ∈ Sym(n)

ψΩ(β) =
�

Ω∗
e−〈β,ξ〉dξ = det(β)− n+1

2 ψΩ(Id)

ξ̂ =
∂Φ(β)

∂β
=

∂(−logψΩ(β))

∂β
=

n + 1
2

β−1

(158)

pξ̂(ξ) = e−〈Θ−1(ξ̂),ξ〉+Φ(Θ−1(ξ̂)) = ψΩ (Id) ·
[
det

(
αξ̂−1

)]
· e−Tr(αξ̂−1ξ)

with α =
n + 1

2

(159)

We will in the following illustrate information geometry for multivariate Gaussian density [169]:

pξ̂(ξ) =
1

(2π)n/2 det(R)1/2 e−
1
2 (z−m)T R−1(z−m) (160)

If we develop:

1
2
(z − m)T R−1(z − m) =

1
2

[
zT R−1z − mT R−1z − zT R−1m + mT R−1m

]
=

1
2

zT R−1z − mT R−1z + 1
2 mT R−1m

(161)

We can write the density as a Gibbs density:

pξ̂(ξ) =
1

(2π)n/2 det(R)1/2e
1
2 mT R−1m

e−[−mT R−1z+ 1
2 zT R−1z] =

1
Z

e−〈ξ,β〉

ξ =

[
z

zzT

]
and β =

⎡⎣ −R−1m
1
2

R−1

⎤⎦ =

[
a
H

]

with 〈ξ, β〉 = aTz + zT Hz = Tr
[
zaT + HTzzT]

(162)
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We can then rewrite density with canonical variables:

pξ̂(ξ) =
1�

Ω∗
e−〈ξ,β〉.dξ

e−〈ξ,β〉 = 1
Z

e−〈ξ,β〉 with log (Z) = nlog(2π) +
1
2

logdet(R) +
1
2

mT R−1m

ξ =

[
z

zzT

]
, ξ̂ =

[
E [z]

E
[
zzT]

]
=

[
m

R + mmT

]
, β =

[
a
H

]
=

⎡⎣ −R−1m
1
2

R−1

⎤⎦
with 〈ξ, β〉 = Tr

[
zaT + HTzzT]

R = E
[
(z − m) (z − m)T

]
= E

[
zzT − mzT − zmT + mmT]

= E
[
zzT] − mmT

(163)

The first potential function (free energy/logarithm of characteristic function) is given by:

ψΩ(β) =
�

Ω∗
e−〈ξ,β〉 · dξ

and Φ(β) = −logψΩ(β) =
1
2

[−Tr
[
H−1aaT]

+ log
[
(2)ndetH

] − nlog (2π)
] (164)

We verify the relation between the first potential function and moment:

∂Φ(β)

∂β
=

∂ [−logψΩ(β)]

∂β
=

�
Ω∗

ξ
e−〈ξ,β〉�

Ω∗
e−〈ξ,β〉 · dξ

· dξ =
�

Ω∗
ξ · pξ̂(ξ)·dξ = ξ̂

∂Φ(β)

∂β
=

⎡⎢⎣
∂Φ(β)

∂a
∂Φ(β)

∂H

⎤⎥⎦ =

[
m

R + mmT

]
= ξ̂

(165)

The second potential function (Shannon entropy) is given as a Legendre transform of the first one:

S(ξ̂) =
〈
ξ̂, β

〉 − Φ(β) with ∂Φ(β)
∂β = ξ̂ and ∂S(ξ̂)

∂ξ̂
= β

S
(
ξ̂
)
= − �

Ω∗
e−〈ξ,β〉�

Ω∗
e−〈ξ,β〉·dξ

log e−〈ξ,β〉�
Ω∗

e−〈ξ,β〉·dξ
· dξ = − �

Ω∗
pξ̂(ξ)logpξ̂(ξ) · dξ

(166)

S(ξ̂) = − �
Ω∗

pξ̂(ξ)logpξ̂(ξ) · dξ =
1
2

[
log(2)ndet

[
H−1] + nlog (2π · e)

]
=

1
2
[logdet [R] + nlog (2π · e)] (167)

This remark was made by Jean-Souriau in his book [10] as soon as 1969. He has observed, as

illustrated in Figure 10 that if we take vector with tensor components ξ =

(
z

z ⊗ z

)
, components of

ξ̂ will provide moments of the first and second order of the density of probability pξ̂(ξ). He used this

change of variable z′ = H1/2z + H−1/2a, to compute the logarithm of the characteristic function Φ(β):
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Figure 10. Introduction of potential function for multivariate Gaussian law in Souriau book [10].

We can finally compute the metric from the matrix gij:

ds2 = ∑
ij

gijdθidθj = dmT R−1dm +
1
2

Tr
[(

R−1dR
)2

]
(168)

and from classical expression of the Euler-Lagrange equation:

n

∑
i=1

gik
..
θi +

n

∑
i,j=1

Γijk
.
θi

.
θ j = 0 , k = 1, ..., n with Γijk =

1
2

[
∂gjk

∂θi
+

∂gjk

∂θj
+

∂gij

∂θk

]
(169)

That is explicitely given by [170]:{ ..
R +

.
m

.
mT − .

RR−1
.
R = 0

..
m − .

RR−1 .
m = 0

(170)

We cannot integrate this Euler-Lagrange equation. We will see that Lie group theory will provide
new reduced equation, Euler-Poincaré equation, using Souriau theorem.

We make reference to the book of Deza that gives a survey about distance and metric space [171].
The case of Natural Exponential families that are invariant by an affine group has been studied by

Casalis (in 1999 paper and in her Ph.D. thesis) [172–178] and by Letac [179–181]. We give the details
of Casalis’ development in Appendix C. Barndorff-Nielsen has also studied transformation models
for exponential families [182–186]. In this section, we will only consider the case of multivariate
Gaussian densities.

8. Affine Group Action for Multivariate Gaussian Densities and Souriau’s Moment Map:
Computation of Geodesics by Geodesic Shooting

To more deeply understand Koszul and Souriau Lie group models of information geometry,
we will illustrate their tools for multivariate Gaussian densities.

Consider the general linear group GL(n) consisting of the invertible n × n matrices, that is a
topological group acting linearly on Rn by:
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GL(n)× Rn → Rn

(A, x) �→ Ax
(171)

The group GL(n) is a Lie group, is a subgroup of the general affine group GA(n), composed of
all pairs (A, υ) where A ∈ GL(n) and υ ∈ Rn, the group operation given by:

(A1, υ1) (A2, υ2) = (A1 A2, A1υ2 + υ1) (172)

GL(n) is an open subset of Rn2
, and may be considered as n2-dimensional differential manifold with the

same differentiable structure than Rn2
. Multiplication and inversion are infinitely often differentiable

mappings. Consider the vector space gl(n) of real n × n matrices and the commutator product:

gl(n)× gl(n) → gl(n)
(A, B) �→ AB − BA = [A, B]

(173)

This is a Lie product making gl(n) into a Lie algebra. The exponential map is then the mapping
defined by:

exp:gl(n) → GL(n)

A �→ exp(A) =
∞
∑

n=0

An

n!

(174)

Restricting A to have positive determinant, one obtains the positive general affine group GA+(n)
that acts transitively on Rn by:

((A, υ) , x) �→ Ax + υ (175)

In case of symmetric positive definite matrices Sym+(n), we can use the Cholesky decomposition:

R = LLT (176)

where L is a lower triangular matrix with real and positive diagonal entries, and LT denotes the
transpose of L, to define the square root of R.

Given a positive semidefinite matrix R, according to the spectral theorem, the continuous
functional calculus can be applied to obtain a matrix R1/2 such that R1/2 is itself positive and
R1/2R1/2 = R. The operator R1/2 is the unique non-negative square root of R.

Nn = {ℵ(μ, Σ)/μ ∈ Rn, Σ ∈ Sym+
n} the class of regular multivariate normal distributions,

where μ is the mean vector and Σ is the (symmetric positive definite) covariance matrix, is invariant
under the transitive action of GA(n). The induced action of GA(n) on Rn × Sym+

n is then given by:

GA(n)× (Rn × Sym+n) → Rn × Sym+n

((A, υ) , (μ, Σ)) �→ (
Aμ + υ, AΣAT) (177)

and

GA(n)× Rn → Rn

((A, υ) , x) �→ Ax + υ
(178)

As the isotropy group of (0, In) is equal to O(n), we can observe that:

Nn = GA(n)/O(n) (179)

Nn is an open subset of the vector space Tn = {(η, Ω) /η ∈ Rn, Ω ∈ Symn} and is a differentiable
manifold, where the tangent space at any point may be identified with Tn.
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The Fisher information defines a metric given to Nn a Riemannian manifold structure. The inner
product of two tangent vectors (η1, Ω1) ∈ Tn, (η2, Ω2) ∈ Tn at the point (μ, Σ) ∈ Nn is given by:

g(μ,Σ)) ((η1, Ω1) , (η1, Ω1)) = ηT
1 Σ−1η2 +

1
2

Tr
(

Σ−1Ω1Σ−1Ω2

)
(180)

Niels Christian Bang Jesperson has proved that the transformation model on Rn with parameter
set Rn × Sym+

n are exactly those of the form pμ,Σ = fμ,Σλ where λ is the Lebesque measure,

where fμ,Σ(x) = h
(
(x − μ)T Σ−1 (x − μ)

)
/det (Σ)1/2 and h : [0,+∞[ → R+ is a continuous function

with
+∞�
0

h(s)s
n
2 −1ds < +∞. Distributions with densities of this form are called elliptic distributions.

To improve understanding of tools, we will consider GA(n) as a sub-group of affine group,
that could be defined by a matrix Lie group Ga f f , that acts for multivariate Gaussian laws, as illustrated
in Figure 11:

[
Y
1

]
=

[
R1/2 m

0 1

] [
X
1

]
=

[
R1/2X + m

1

]
,

⎧⎪⎪⎨⎪⎪⎩
(m, R) ∈ Rn × Sym+(n)

M =

[
R1/2 m

0 1

]
∈ Ga f f

X ≈ ℵ(0, I) → Y ≈ ℵ(m, R)

(181)

We can verify that M is a Lie group with classical properties, that product of M preserves the
structure, the associativity, the non-commutativity, and the existence of neutral element:

M1 · M2 =

[
R1/2

1 m1

0 1

] [
R1/2

2 m2

0 1

]
=

[
R1/2

1 R1/2
2 R1/2

1 m2 + m1

0 1

]

M2 · M1 =

[
R1/2

2 m2

0 1

] [
R1/2

1 m1

0 1

]
=

[
R1/2

2 R1/2
1 R1/2

2 m1 + m2

0 1

]
⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

M1 · M2 ∈ Ga f f
M2 · M1 ∈ Ga f f
M1 · M2 �= M2 · M1

M1 · (M2 · M3) = (M1 · M2) · M3

M1 · I = M1

(182)

We can also observe that the inverse preserves the structure:

M =

[
R1/2 m

0 1

]
⇒ M−1

R = M−1
L = M−1 =

[
R−1/2 −R−1/2m

0 1

]
∈ Ga f f (183)

To this Lie group we can associate a Lie algebra whose underlying vector space is the tangent
space of the Lie group at the identity element and which completely captures the local structure of
the group. This Lie group acts smoothly on the manifold, and acts on the vector fields. Any tangent
vector at the identity of a Lie group can be extended to a left (respectively right) invariant vector field
by left (respectively right) translating the tangent vector to other points of the manifold. This identifies
the tangent space at the identity g = TI(G) with the space of left invariant vector fields, and therefore
makes the tangent space at the identity into a Lie algebra, called the Lie algebra of G.

LG :

{
Ga f f → Ga f f

M �→ LM N = M · N
and RG :

{
Ga f f → Ga f f

M �→ RM N = N · M
(184)
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Figure 11. Affine Lie group action for multivariate Gaussian law.

Considering the curve γ(t) and its derivative
.
γ(t):

γ(t) =

[
R1/2(t) m(t)

0 1

]
and

.
γ(t) =

[ .
R

1/2
(t)

.
m(t)

0 0

]
(185)

We can consider the curve with the point γ(0) moved at the identity element on the left or on the
right. Then, the tangent plan at identity element provides the Lie algebra:

ΓL(t) = LM−1 (γ(t)) =

[
R−1/2R1/2(t) R−1/2 (m(t)− m)

0 1

]
(186)

.
ΓL(t)

∣∣∣
t=0

=

[
R−1/2

.
R

1/2
(0) R−1/2 .

m(0)
0 1

]
= d

dt (LM−1(γ(t)))
∣∣∣
t=0

= dLM−1
.
γ(0) = dLM−1

.
M (187)

Lie algebra on the right and on the left is the defined by:

dLM−1 : TM(G) → gL
.

M �→ ΩL = dLM−1

.
M = M−1

.
M =

[
R−1/2

.
R

1/2
R−1/2 .

m
0 0

]
(188)

dRM−1 : TM(G) → gR
.

M �→ ΩR = dRM−1

.
M =

.
MM−1 =

[
R−1/2

.
R

1/2 .
m − R−1/2

.
R

1/2 .
m

0 0

]
(189)

We can then observe the velocities in two different ways, either by placing in a fixed outside
frame, either by putting in place of the element in the process of moving by placing in the reference
frame of the element.[

X(t)
1

]
= M

[
x
1

]
⇒

[ .
X(t)

0

]
= ΩR

[
X(t)

1

]
with x fixed (190)

[
x(t)

1

]
= M−1

[
X
1

]
⇒

[ .
x(t)

0

]
= −ΩL

[
X
1

]
with X fixed (191)

In the following, we will complete the global view by the operators which will allow to link
algebra (from the left or the right) between them and also connect to their dual. We will first consider

88



Entropy 2016, 18, 386

the automorphisms, the action by conjugation of the Lie group on itself that allows this operator to
carry a member of the group.

AD : G × G → G

M, N �→ ADM N = M.N.M−1
(192)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
M1 =

[
R1/2

1 m1

0 1

]
, M2 =

[
R1/2

2 m2

0 1

]

ADM1 M2 =

[
R1/2

2 −R1/2
2 m1 + R1/2

1 m2 + m1

0 1

] (193)

If now we consider a curve N(t) curve on the manifold via the identity at t = 0. Its image by the
previous operator will be then curve γ = M · N(t) · M−1 passing through identity element at t = 0.
As

.
N(0) is an element of the Lie algebra and its image by previous conjugation operator is called the

Adjoint operator:

Ad : G × g→ g

M, n �→ AdMn = M.n.M−1 = d
dt

∣∣∣
t=0

(ADM N(t)) with

{
N(0) = I

.
N(0) = n ∈ g

(194)

We can then compute the Adjoint operator for the previous Lie group:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n2L =

⎡⎣ R−1/2
2

.
R

1/2
2 R−1/2

2
.

m2

0 0

⎤⎦ , n2R =

⎡⎣ R−1/2
2

.
R

1/2
2 −R−1/2

2

.
R

1/2
2 m2 +

.
m2

0 0

⎤⎦
AdM1 n2L = n2R and AdM2n2R =

⎡⎣ R−1/2
2

.
R

1/2
2 −R−1/2

2

.
R

1/2
2 m2 +

.
R

1/2
2 m2 + R1/2

2
.

m2

0 0

⎤⎦ , AdM−1
1

n2R = n2L

(195)

We recall that the Lie algebra has been defined as the tangent space at the identity of a Lie group.
We will then introduce a Lie bracket [., .], the expression of the operator associated with the combined
action of the Lie algebra on itself, called an adjoint operator. The adjoint operator represents the action
by conjugation of the Lie algebra on itself and is defined by:

ad : g× g→ g

n, m �→ admn = m · n − n · m = d
dt

∣∣∣
t=0

(AdMn(t)) = [m, n] with

{ .
N(0) = n ∈ g
.

M(0) = m ∈ g

(196)

We can then compute this operator for our use case:

n1L =

⎡⎣ R−1/2
1

.
R

1/2
1 R−1/2

1
.

m1

0 0

⎤⎦ , n2L =

⎡⎣ R−1/2
2

.
R

1/2
2 R−1/2

2
.

m2

0 0

⎤⎦ (197)

adn1L n2L = [n1L, n2L] =

⎡⎢⎣ 0 R−1/2
1

(
.
R

1/2
1

.
m2 −

.
R

1/2
2

.
m1

)
R−1/2

2

0 0

⎤⎥⎦ (198)

adn1R n2R = [n1R, n2R] =

⎡⎣ 0 R−1/2
1

.
R

1/2
1

(
−R−1/2

2

.
R

1/2
2 m2 +

.
m2

)
− R−1/2

2

.
R

1/2
2

(
−R−1/2

1

.
R

1/2
1 m1 +

.
m1

)
0 0

⎤⎦ (199)
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To study the geodesic trajectories of the group, we consider the Lagrangian from the total kinetic
energy (a quadratic form on speeds). It may therefore in particular be written in the left algebra “left”,
with the scalar product associated with the metric.

EL =
1
2
〈nL, nL〉 = 1

2
Tr

[
nT

L nL

]
(200)

If we consider as scalar product:

〈., .〉 : g∗ × g→ R

k, n �→ 〈k, n〉 = Tr
(
kTn

) (201)

and left algebra:

nL =

⎡⎣ R−1/2
.
R

1/2
R−1/2 .

m

0 0

⎤⎦ (202)

we obtain for the total kinetic energy

EL =
1
2

(
Tr

(
R−1

.
R

)
+

.
mT R−1 .

m
)

(203)

We will then introduce the coadjoint operator that will enable us to work on the elements
of the dual algebra of the Lie algebra defined above. Like algebra, which is physically the space
of instantaneous speeds, the dual algebra is the space of moments. For the dual of left algebra,
the moment is given by:

ΠL =
∂EL
∂nL

= nL (204)

Where EL is the kinetic energy of the system and is currently associated with ΠL is an element of
the left algebra. The moment space is the dual algebra, denoted g∗, associated with the Lie algebra g.
This value is deduced from the computation:〈

∂EL
∂nL

, δU
〉

= Lim
ε→0

EL(nL + ε · δU)− EL(nL)

ε

with EL(nL + ε · δU) =
1
2
〈nL + ε.δU, nL + ε · δU〉 = 1

2
(nL + ε · δU)T (nL + ε · δU)〈

∂EL
∂nL

, δU
〉

= 2 · 1
2

tr
(
ηT

L δU
)
= 〈nL, δU〉 ⇒ ∂EL

∂nL
= nL

(205)

Then the moment map is given by:

αM : g→ g∗
nL �→ ΠL = ηL

(206)

We can observe that the application that turns left algebra into dual algebra is the identity
application but, physically, the first are moments and the seconds are instantaneous speeds.

We can also define the moment ΠR associated to the right algebra ηR by:

〈ΠL, nL〉 =
〈

ΠL, M−1nR M
〉
= 〈ΠR, nR〉 (207)
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But as ΠL = nL, we can deduce that:〈
nL, M−1nR M

〉
= 〈ΠR, nR〉

with M =

[
R1/2 m

0 1

]
, nL =

[
R−1/2

.
R

1/2
R−1/2 .

m
0 0

]
and ηR =

[
R−1/2

.
R

1/2 .
m − R−1/2

.
R

1/2 .
m

0 0

]

⇒ ΠR =

[
R−1/2

.
R

1/2
+ R−1 .

mmT R−1 .
m

0 0

] (208)

Then, the operator that transform the right algebra to its dual algebra is given by:

βM : g→ g∗

nR =

[
ηR1 ηR2

0 0

]
�→ ΠR =

[
ηR1

(
1 + mT R−1m

)
+ ηR2mT R−1 ηR1R−1m + R−1ηR2

0 0

]
(209)

There is an operator to change the view of algebra. Therefore, there is an operator that did the
same to the dual algebra. This is called the co-adjoint operator and it is the conjugate action of the Lie
group on its dual algebra:{

Ad∗ : G × g∗ → g
M, η �→ Ad∗Mη

with 〈Ad∗Mη, n〉 = 〈η, AdMn〉 where n ∈ g (210)

We can then develop this expression for our use in the case of an affine sup-group. We find:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M =

[
A b
0 1

]
∈ G

η =

[
η1 η2

0 0

]
∈ g∗

n =

[
n1 n2

0 0

]
∈ g

⇒

⎧⎪⎪⎨⎪⎪⎩
〈

Ad∗Mη, n
〉
= 〈η, AdMn〉 = 〈

η, MnM−1〉
〈

Ad∗Mη, n
〉
=

〈[
η1 − η2bT Aη2

0 0

]
, n

〉 ⇒ Ad∗Mη =

[
η1 − η2bT Aη2

0 0

]
(211)

and we can also observe that:

Ad∗M−1 η =

[
η1 + Aη2bT Aη2

0 0

]
(212)

Similarly there exists the following relation between the left and the right algebras:

Ad∗MΠR = ΠL and Ad∗M−1 ΠL = ΠR (213)

As we have defined a commutator on the Lie algebra, it is possible to define one on its dual
algebra. This commutator on the dual algebra can also be defined using the operator expressing the
combined action of the algebra of its dual algebra. This operator is called the co-adjoint operator:{

ad∗ : g× g∗ → g∗

n, η �→ ad∗nη
with 〈ad∗nη, κ〉 = 〈η, adnκ〉 where κ ∈ g (214)

We can develop this co-adjoint operator on its dual algebra for our use-case:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

κ =

[
κ1 κ2

0 0

]
∈ G

η =

[
η1 η2

0 0

]
∈ g∗

n =

[
n1 n2

0 0

]
∈ g

⇒

⎧⎪⎪⎨⎪⎪⎩
〈ad∗nη, κ〉 = 〈η, adnκ〉 = 〈η, nκ − κn〉

〈ad∗nη, κ〉 =
〈[

−η2nT
2 n1η2

0 0

]
, κ

〉 ⇒

⎧⎪⎪⎨⎪⎪⎩
ad∗nη =

[
−η2nT

2 n1η2

0 0

]
ad∗nη = {n, η}

(215)

This co-adjoint operator will give the Euler-Poincaré equation. While the Euler-Lagrange
equations is defined on the tangent bundle (union of the tangent spaces at each point) of the manifold
and give the geodesics, the Euler-Poincaré equation gives a differential system on the dual Lie algebra
of the group associated with the manifold.

We can also complete these maps by using additional ones. First, p ∈ T∗
MG the moment associated

with
.

M ∈ TMG in tangent space of G at M and also two other moments map the element of the dual
algebra in dual tangent space, respectively on the left and on the right:⎧⎪⎨⎪⎩

〈ΠL, nL〉 =
〈

dL∗
M−1 ΠL,

.
M

〉
〈

ΠL, dLM−1

.
M

〉
=

〈
ΠL, M−1

.
M

〉 ⇒ p =
(

M−1
)T

ΠL (216)

where

dL∗
M−1 : g∗L → T∗

MG

ΠL �→ p =
(

M−1)T ΠL

and
dR∗

M−1 : g∗R → T∗
MG

ΠR �→ p = ΠR
(

M−1)T
(217)

From these relations, we can also observe that:

ΠL = nL = M−1
.

M

⇒
⎧⎨⎩ p =

(
M−1)T M−1

.
M

p = ΞM · .
M with ΞM =

(
M−1)T M−1

(218)

All these maps could be summarized in the following Figure 12:

 

Figure 12. Maps between algebras.
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Heni Poincaré proved that when a Lie algebra acts locally and transitively on the configuration
space of a Lagrangian mechanical system, the Euler-Lagrange equations are equivalent to a new system
of differential equations defined on the product of the configuration space with the Lie algebra.

If we consider that the following function is stationary for a Lagragian l(.) invariant with respect
to the action of a group on the left:

S(ηL) =
b�

a
l(ηL)dt with δS(ηL) = 0 and l : g→ R (219)

The solution is given by the Euler-Poincaré equation:

d
dt

δl
δηL

= ad∗ηL

δl
δηL

δηL =
.
Γ + adηL Γ where Γ(t) ∈ g

(220)

If we take for the function l(.), the total kinetic energy EL, using ΠL = M−1
.

M = ∂EL
∂nL

∈ gL, then the
Euler-Poincaré equation is given by:

dΠL
dt

= ad∗nL
ΠL with

δl
δηL

=
∂EL
∂nL

= ΠL ∈ gL (221)

The following quantities are conserved:

dΠR
dt

= 0 (222)

With this second theorem, it is possible to write the geodesic not from its coordinate system but
from the quantity of motion, and in addition to determine explicitly what the conserved quantities
along the geodesic are (conservations are related to the symmetries of the variety and hence the
invariance of the Lagrangian under the action of the group).

For our use-case, the Euler-Poincaré equation is given by:

{ .
ηL1 = −ηL2ηT

L2
.
ηL2 = ηL2ηL1

with

⎧⎨⎩ ηL1 = R−1/2
.
R

1/2

ηL2 = R−1/2 .
m

⇒

⎧⎪⎪⎨⎪⎪⎩
(

R−1/2
.
R

1/2
)•

= −R−1/2 .
m

.
mT R−1/2

(
R−1/2 .

m
)•

=
.
R
−1/2 .

R
1/2

R−1/2 .
m

(223)

If we remark that we have R−1/2
.
R

1/2
= R−1/2

(
R−1/2

.
R

)
= R−1

.
R, then the conserved Souriau

moment could be given by:

ΠR =

[
R−1/2

.
R

1/2
+ R−1 .

mmT R−1 .
m

0 0

]
=

[
R−1

.
R + R−1 .

mmT R−1 .
m

0 0

]
(224)

Components of the Souriau moment give the conserved quantities that are the classical elements
given by Emmy Noether Theorem (Souriau moment is a geometrization of Emmy Noether Theorem):

dΠR
dt

=

⎡⎢⎣ d
(

R−1
.
R+R−1 .

mmT
)

dt
d(R−1 .

m)
dt

0 0

⎤⎥⎦ = 0 ⇒
⎧⎨⎩ R−1

.
R + R−1 .

mmT = B = cste

R−1 .
m = b = cste

(225)

From this constant, we can obtain a reduced equation of geodesic:⎧⎨⎩
.

m = Rb
.
R = R

(
B − bmT) (226)
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This is the Euler-Poincaré equation of geodesic. We can observe that we have obtained a reduction

of the following Euler-Lagrange equation [27,156,187]:

{ ..
R +

.
m

.
mT − .

RR−1
.
R = 0

..
m − .

RR−1 .
m = 0

associated to the

information geometry metric ds2 = dmT R−1dm + 1
2 Tr

((
R−1dR

)2
)

.

The Fisher information defines a metric turning Nn = {(m, R) ∈ Rn × Sym+(n)} into a
Riemannian manifold. The inner product of two tangent vectors (m1, R1) ∈ Tn and (m2, R2) ∈ Tn at
the point (μ, Σ) ∈ Nn is given by:

g(μ,Σ) ((m1, R1) , (m2, R2)) = mT
1 Σ−1m2 +

1
2

tr
(

Σ−1R1Σ−1R2

)
(227)

and the geodesic is given by:

l (χ) =
t1�

t0

√
gχ(t)

( .
χ(t),

.
χ(t)

)
dt (228)

We can also observe that the manifold of multivariate Gaussian is homogeneous with respect to
positive affine group GA+(n):

ds2
Y = ds2

X for Y = Σ1/2X + μ with GA+(n) = {(μ, Σ) ∈ R × GL(R)/det(Σ) > 0} (229)

characterized by the action of the group (m, R) �→ ρ.(m, R) =
(

Σ1/2m + μ, Σ1/2RΣ1/2T
)

, ρ ∈ GA+(n)

with

[
Y
1

]
=

[
Σ1/2 μ

0 1

] [
X
1

]
(230)

ds2
Y = d

(
Σ1/2m + μ

)T (
Σ1/2RΣ1/2T

)−1
d

(
Σ1/2m + μ

)
+

1
2

Tr

(((
Σ1/2RΣ1/2T

)−1
d

(
Σ1/2RΣ1/2T

))2
)

ds2
Y = dmT R−1dm +

1
2

Tr
((

R−1dR
)2

)
= ds2

X

(231)

Since the special orthogonal group SO(n) = {δ ∈ GL(R)/det(δ) = 1} is the stabilizer subgroup
of (0, In), we have the following isomorphism:

GA+(n)/SO(n) → Nn = {(m, R) ∈ Rn × Sym+(n)}
ρ = (μ, Σ) �→ ρ. (0, In) =

(
μ, Σ1/2Σ1/2T

)
= (μ, Σ)

(232)

We can then restrict the computation of the geodesic from (0, In) and then we can partially
integrate the system of equations: ⎧⎨⎩

.
m = Rb
.
R = R

(
B − bmT) (233)

where
(

R−1(0)
.

m(0), R−1(0)
( .

R(0)+
.

m(0)m(0)T
))

= (b, B) ∈ Rn × Symn(R) are the integration constants.
From this Euler-Poincaré equation, we can compute geodesics by geodesic shooting [188–191]

using classical Eriksen equations [192–195], by the following change of parameters:

{
Δ(t) = R−1(t)

δ(t) = R−1(t)m(t)
⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
Δ = −BΔ+ bmT

.
δ = −Bδ+

(
1+ δTΔ−1δ

)
b

Δ(0) = Ip, δ(0) = 0

with

⎧⎨⎩
.
Δ(0) = −B
.
δ(0) = b

(234)
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The initial speed of the geodesic is given by
( .

δ(0),
.
Δ(0)

)
. The geodesic shooting is given by the

exponential map:

Λ(t) = exp (tA) =
∞

∑
n=0

(tA)n

n!
=

⎛⎜⎝ Δ δ Φ
δT ε γT

ΦT γ Γ

⎞⎟⎠ with A =

⎛⎜⎝ −B b 0
bT 0 −bT

0 −b B

⎞⎟⎠ (235)

This equation can be interpreted by group theory. A could be considered as an element
of Lie algebra so (n+ 1, n) of the special Lorentz group SOO(n + 1, n) and more specifically as the
element p of Cartan Decomposition l+ p where l is the Lie algebra of a maximal compact sub-group
K = S (O(n+ 1)×O(n)) of the group G = SOO(n+ 1, n). We know that its exponential map defines a
geodesic on Riemannian Symetric space G/K.

This equation can be established by the following developments:

.
Λ(t) = A.Λ(t)⇒

⎛⎜⎜⎝
.
Δ

.
δ

.
Φ

.
δ

T .
ε

.
γ

T

.
Φ

T .
γ

.
Γ

⎞⎟⎟⎠ =

⎛⎜⎝ −B b 0
bT 0 −bT

0 −b B

⎞⎟⎠ .

⎛⎜⎝ Δ δ Φ
δT ε γT

ΦT γ Γ

⎞⎟⎠ (236)

We can then deduce that: ⎧⎨⎩
.
Δ = −BΔ+ bδT

.
δ = −Bδ+ εb

(237)

If ε = 1+ δTΔ−1δ, then (Δ, δ) is solution to the geodesic equation previously defined. Since ε(0) = 1,
it suffices to demonstrate that

.
ε =

.
τ where τ = δTΔ−1δ.

From
.

Λ(t) = Λ(t).A, using that
.
δ

T
= bTΔ− bTΦT, we can deduce:{ .

ε = bTδ− bTγ

.
τ = bTδ− bT (

(τ − ε)Δ−1δ+ΦTΔ−1δ
) (238)

Then
.
ε =

.
τ, if γ = (τ − ε)Δ−1δ + ΦΔ−1δ, that could be verified using relation Λ.Λ−1 = I, by

observing that:

Λ−1 = exp(−tA) = Λ(−t) =

⎡⎢⎣ Γ γ ΦT

γT ε δT

Φ δ Δ

⎤⎥⎦ (239)

Λ.Λ−1 = I ⇒
{

Δγ+ εδ+Φδ = 0

ΔΦT + δδT +ΦΔ = 0
⇒

{
γ = −εΔ−1δ−Δ−1Φδ

ΦTΔ−1 +Δ−1δδTΔ−1 +Δ−1Φ = 0
⇒

{
γ = −εΔ−1δ−Δ−1Φδ

ΦTΔ−1δ+ τΔ−1δ+Δ−1Φδ = 0
(240)

We can then compute γ from two last equations:

γ = (τ − ε)Δ−1δ+ΦTΔ−1δ (241)

As
.
τ = bTδ− bT (

(τ − ε)Δ−1δ+ΦTΔ−1δ
)

then we can deduce that
.
τ = bTδ− bTγ and then

.
τ =

.
ε.

To interpret elements of Λ, (Γ(t), γ(t)) = (Δ(−t), δ(−t)), opposite points to (Δ(t), δ(t)), and ε =

1+ δTΔ−1δ = 1+γTΓ−1γ.
Then the geodesic that goes through the origin (0, In) with initial tangent vector (b,−B) is the

curve given by (δ(t), Δ(t)). Then the distance computation is reduced to estimate the initial tangent
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vector space related by
(

R−1(0)
.

m(0), R−1(0)
( .

R(0)+
.

m(0)m(0)T
))

= (b, B) ∈ Rn × Symn(R)The distance
will be then given by the initial tangent vector:

d =

√
.

m(0)TR−1(0)
.

m(0)+
1
2

Tr
[(

R−1(0)
.
R(0)

)2
]

(242)

This initial tangent vector will be identified by “Geodesic Shooting”. Let V = logAB:⎧⎪⎪⎪⎨⎪⎪⎪⎩
dVm

dt
=

1
2

(
dR
dt

)
R−1Vm +

1
2

VRR−1
(

dm
dt

)
dVR
dt

=
1
2

((
dR
dt

)
R−1Vm + VRR−1

(
dR
dt

))
− 1

2

((
dm
dt

)
VT

m + VT
m

(
dm
dt

)) (243)

Geodesic Shooting is corrected by using Jacobi Field J and parallel transport: J(t) = ∂χα(t)
∂α

∣∣∣
t=0

solution to d2 J(t)
dt2 + R

(
J(t),

.
χ(t)

) .
χ(t) = 0 with R the Riemann Curvarture tensor.

We consider a geodesic χ between θ0 and θ1 with an initial tangent vector V, and we suppose that
V is perturbated by W, to V + W. The variation of the final point θ1 can be determined thanks to the
Jacobi field with J(0) = 0 and

.
J(0) = W. In term of the exponential map, this could be written:

J(t) =
d

dα
expθ0

(t (V + αW))

∣∣∣∣
α=0

(244)

This could be illustrated in the Figure 13:

Figure 13. Geodesic shooting principle.

We give some illustration, in Figure 14, of geodesic shooting to compute the distance between
multivariate Gaussian density for the case n = 2:
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Figure 14. GeodesicsShooting between two multivariate Gaussian in case n = 2.

9. Souriau Riemannian Metric for Multivariate Gaussian Densities

To illustrate the Souriau-Fisher metric, we will consider the family of multivariate Gaussian
densities and will develop some elements that we have previously developed purely theoretically.

For the families of multivariate Gaussian densities, that we have identified as homogeneous

manifold with the associated sub-group of the affine group

[
R1/2 m

0 1

]
, we have seen that if we

consider them as elements of exponential families, we can write ξ̂ (element of the dual Lie algebra)
that play the role of geometric heat Q in Souriau Lie group thermodynamics, and β the geometric
(Planck) temperature.

ξ̂ =

[
E [z]

E
[
zzT]

]
=

[
m

R + mmT

]
, β =

⎡⎢⎣ −R−1m

1
2

R−1

⎤⎥⎦ (245)

These elements are homeomorphic to the matrix elements in matrix Lie algebra and dual
Lie algebra:

ξ̂ =

[
R + mmT m

0 0

]
∈ g∗ , β =

⎡⎢⎣ 1
2

R−1 −R−1m

0 0

⎤⎥⎦ ∈ g (246)

If we consider M =

[
R′1/2 m′

0 1

]
, then we can compute the co-adjoint operator:

Ad∗M ξ̂ =

[
R + mmT − mm′T R′1/2m

0 0

]
(247)

We can also compute the adjoint operator:

AdMβ = M · β · M−1 =

[
R′1/2 m′

0 1

] ⎡⎣ 1
2

R−1 −R−1m

0 0

⎤⎦ [
R′−1/2 −R′−1/2m′

0 1

]

AdMβ =

⎡⎣ 1
2

R′1/2R−1R′−1/2 −1
2

R′1/2R−1R′−1/2m′ − R′1/2R−1m

0 0

⎤⎦
(248)
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We can rewrite AdMβ with the following identification:

AdMβ =

⎡⎢⎣ 1
2

Ω−1 −Ω−1n

0 0

⎤⎥⎦
with Ω = R′1/2RR′−1/2 and n =

(
1
2

m′ + R′1/2m
) (249)

We have then to develop ξ̂ (AdM(β)), that is to say ξ̂(β) after action of the group on the Lie
algebra for β, given by AdM(β). By analogy of structure between ξ̂(β) and β, we can write:

β =

⎡⎣ 1
2

R−1 −R−1m

0 0

⎤⎦
ξ̂(β) =

[
R + mmT m

0 0

]
⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
AdMβ =

⎡⎣ 1
2

Ω−1 −Ω−1n

0 0

⎤⎦
ξ̂ (AdM(β)) =

[
Ω + nnT n

0 0

] (250)

We have then to identify the cocycle θ(M) from ξ̂ (AdM(β)) = Ad∗M(ξ̂) + θ (M)

⇒ θ(M) = ξ̂ (AdM(β))− Ad∗M ξ̂ where:

Ad∗M ξ̂ =

[
R + mmT − mm′T R′1/2m

0 0

]
(251)

ξ̂ (AdM(β)) =

⎡⎣ R′1/2RR′−1/2 +
(

1
2 m′ + R′1/2m

) (
1
2 m′ + R′1/2m

)T (
1
2 m′ + R′1/2m

)
0 0

⎤⎦ (252)

The cocycle is then given by:

θ(M) =

⎡⎣ R′1/2RR′−1/2 +
(

1
2 m′ + R′1/2m

) (
1
2 m′ + R′1/2m

)T (
1
2 m′ + R′1/2m

)
0 0

⎤⎦ −
[

R + mmT − mm′T R′1/2m

0 0

]

θ(M) =

⎡⎢⎣
(

R′1/2RR′−1/2 − R
)
+

(
R′1/2mmT R′1/2T − mmT

)
+

(
1
2 m′mT R′1/2T +

1
2

R′1/2mm′T − mm′T
)

1
2 m′

0 0

⎤⎥⎦
(253)

From θ(M) = ξ̂ (AdM(β))− Ad∗M ξ̂, we can compute cocycle in Lie algebra

Θ = Teθ (254)

used to define the tensor:
Θ̃ (X, Y) : g× g→ 

X, Y �→ 〈Θ(X), Y〉
(255)

In this second part, we will compute the Souriau-Fisher metric given by:

gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) (256)

with
Θ̃β (Z1, Z2) = Θ̃ (Z1, Z2) +

〈
ξ̂, adZ1 Z2

〉
= 〈Θ(Z1), Z2〉+

〈
ξ̂, [Z1, Z2]

〉
(257)

gβ ([β, Z1] , [β, Z2]) = Θ̃β (Z1, [β, Z2]) = Θ̃ (Z1, [β, Z2]) +
〈
ξ̂, [Z1, [β, Z2]]

〉
= 〈Θ (Z1) , [β, Z2]〉+

〈
ξ̂, [Z1, [β, Z2]]

〉 (258)
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where

β =

⎡⎣ 1
2

R−1 −R−1m

0 0

⎤⎦ and ξ̂ =

[
R + mmT m

0 0

]
(259)

If we set Z1 =

⎡⎣ 1
2

Ω−1
1 −Ω−1

1 n1

0 0

⎤⎦ and Z2 =

⎡⎣ 1
2

Ω−1
2 −Ω−1

2 n2

0 0

⎤⎦ (260)

With 〈..., ...〉 the inner product given by

〈ξ, β〉 = Tr
[
baT + HT L

]
with ξ =

[
L b
0 0

]
, β =

[
H a
0 0

]
(261)

[β, Z2] = βZ2 − Z2β =

⎡⎣ 1
2

R−1 −R−1m

0 0

⎤⎦ ⎡⎣ 1
2

Ω−1
2 −Ω−1

2 n2

0 0

⎤⎦ −
⎡⎣ 1

2
Ω−1

2 −Ω−1
2 n2

0 0

⎤⎦ ⎡⎣ 1
2

R−1 −R−1m

0 0

⎤⎦
[β, Z2] =

⎡⎣ 1
4

(
R−1Ω−1

2 − Ω−1
2 R−1

)
−1

2

(
R−1Ω−1

2 n2 − Ω−1
2 R−1m

)
0 0

⎤⎦
(262)

[
Z1,

[
β, Z2

]]
=

⎡⎣ 1
2

Ω−1
1 −Ω−1

1 n1

0 0

⎤⎦ ⎡⎣ 1
4

(
R−1Ω−1

2 − Ω−1
2 R−1

)
−1

2

(
R−1Ω−1

2 n2 − Ω−1
2 R−1m

)
0 0

⎤⎦

−

⎡⎢⎣ 1
4

(
R−1Ω−1

2 − Ω−1
2 R−1

)
−1

2

(
R−1Ω−1

2 n2 − Ω−1
2 R−1m

)
0 0

⎤⎥⎦
⎡⎢⎣ 1

2
Ω−1

1 −Ω−1
1 n1

0 0

⎤⎥⎦

=

⎡⎢⎣ 1
8

(
Ω−1

1

(
R−1Ω−1

2 − Ω−1
2 R−1

)
−

(
R−1Ω−1

2 − Ω−1
2 R−1

)
Ω−1

1

)
−1

4

(
Ω−1

1

(
R−1Ω−1

2 n2 − Ω−1
2 R−1m

)
−

(
R−1Ω−1

2 − Ω−1
2 R−1

)
Ω−1

1 n1

)
0 0

⎤⎥⎦

(263)

We can then compute:

〈
ξ̂, [Z1, [β, Z2]]

〉
= Tr

[
1
4

m
((

R−1Ω−1
2 − Ω−1

2 R−1
)

Ω−1
1 n1 − Ω−1

1

(
R−1Ω−1

2 n2 − Ω−1
2 R−1m

))T
]

+Tr
[(

1
8

(
Ω−1

1

(
R−1Ω−1

2 − Ω−1
2 R−1

)
−

(
R−1Ω−1

2 − Ω−1
2 R−1

)
Ω−1

1

)) (
R + mmT)] (264)

The Souriau-Fisher metric is defined in Lie algebra gβ ([β, Z1] , [β, Z2]) where:

[β, Z1] =

⎡⎣ 1
4

(
R−1Ω−1

1 − Ω−1
1 R−1

)
−1

2

(
R−1Ω−1

1 n1 − Ω−1
1 R−1m

)
0 0

⎤⎦ =

⎡⎣ 1
2

G−1
1 −G−1

1 g1

0 0

⎤⎦
with G1 = 2 (Ω1R − RΩ1) and g1 = (I − RΩ1R−1Ω−1

1 )n1 + (Ω1RΩ−1
1 R−1 − I)m

[β, Z2] =

⎡⎣ 1
4

(
R−1Ω−1

2 − Ω−1
2 R−1

)
−1

2

(
R−1Ω−1

2 n2 − Ω−1
2 R−1m

)
0 0

⎤⎦ =

⎡⎣ 1
2

G−1
2 −G−1

2 g2

0 0

⎤⎦
with G2 = 2 (Ω2R − RΩ2) and g2 = (I − RΩ2R−1Ω−1

2 )n2 + (Ω2RΩ−1
2 R−1 − I)m

(265)

and

β =

⎡⎣ 1
2

R−1 −R−1m

0 0

⎤⎦ (266)

Another approach to develop the Souriau-Fisher metric gβ ([β, Z1] , [β, Z2]) is to compute the
tensor Θ̃(X, Y) from the moment map J:

Θ̃(X, Y) = J[X,Y] − {JX , JY} with {., .} Poisson Bracket and J the Moment Map (267)

Θ̃ (X, Y) : g× g→  (268)
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We can then write the Souriau-Fisher metric as:

Θ̃β (Z1, Z2) = J[Z1,Z2]
− {

JZ1 , JZ2

}
+

〈
ξ̂, [Z1, Z2]

〉
(269)

Where the associated differentiable application J, called moment map is:

J : M → g∗ such that JX(x) = 〈J(x), X〉 , X ∈ g
x �→ J(x)

(270)

This moment map could be identified with the operator that transforms the right algebra to an
element of its dual algebra given by:

βM : g→ g∗

Z =

[
N η

0 0

]
�→ J =

[
N

(
1 + mT R−1m

)
+ ηmT R−1 NR−1m + R−1η

0 0

]
(271)

10. Conclusions

In this paper, we have developed a Souriau model of Lie group thermodynamics that recovers
the symmetry broken by lack of covariance of Gibbs density in classical statistical mechanics with
respect to dynamic groups action in physics (Galileo and Poincaré groups, sub-group of affine group).
The ontological model of Souriau gives geometric status to (Planck) temperature (element of Lie alebra),
heat (element of dual Lie algebra) and entropy. Souriau said in one of his papers [30] on this new
“Lie group thermodynamics” that “these formulas are universal, in that they do not involve the symplectic
manifold, but only group G, the symplectic cocycle. Perhaps this Lie group thermodynamics could be of interest
for mathematics”.

For this new covariant thermodynamics, the fundamental notion is the coadjoint orbit that is
linked to positive definite KKS (Kostant–Kirillov–Souriau) 2-form [196]:

ωw(X, Y) = 〈w, [U, V]〉 with X = adwU ∈ TwM and Y = adwV ∈ TwM (272)

that is the Kähler-form of a G-invariant kähler structure compatible with the canonical complex
structure of M, and determines a canonical symplectic structure on M. When the cocycle is equal to zero,
the KKS and Souriau-Fisher metric are equal. This 2-form introduced by Jean-Marie Souriau is linked
to the coadjoint action and the coadjoint orbits of the group on its moment space. Souriau provided
a classification of the homogeneous symplectic manifolds with this moment map. The coadjoint
representation of a Lie group G is the dual of the adjoint representation. If g denotes the Lie algebra
of G, the corresponding action of G on g∗, the dual space to g, is called the coadjoint action. Souriau
proved based on the moment map that a symplectic manifold is always a coadjoint orbit, affine of
its group of Hamiltonian transformations, deducing that coadjoint orbits are the universal models
of symplectic manifolds: a symplectic manifold homogeneous under the action of a Lie group, is
isomorphic, up to a covering, to a coadjoint orbit. So the link between Souriau-Fisher metric and KKS
2-form will provide a symplectic structure and foundation to information manifolds. For Souriau
thermodynamics, the Souriau-Fisher metric is the canonical structure linked to KKS 2-form, modified
by the cocycle (its symplectic leaves are the orbits of the affine action that makes equivariant the
moment map). This last property allows us to determine all homogeneous spaces of a Lie group
admitting an invariant symplectic structure by the action of this group: for example, there are the orbits
of the coadjoint representation of this group or of a central extension of this group (the central extension
allowing suppressing the cocycle). For affine coadjoint orbits, we make reference to Alice Tumpach
Ph.D. [197–199] who has developed previous works of Neeb [200], Biquard and Gauduchon [201–204].
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Other promising domains of research are theory of generating maps [205–208] and the link
with Poisson geometry through affine Poisson group. As observed by Pierre Dazord [209] in his
paper “Groupe de Poisson Affines”, the extension of a Poisson group to an affine Poisson group due
to Drinfel’d [210] includes the affine structures of Souriau on dual Lie algebra. For an affine Poisson
group, its universal covering could be identified to a vector space with an associated affine structure.
If this vector space is an abelian affine Poisson group, we can find the affine structure of Souriau.
For the abelian group (R3,+), affine Poisson groups are the affine structures of Souriau.

Souriau model of Lie group thermodynamics could be a promising way to achieve René Thom’s
dream to replace thermodynamics by geometry [211,212], and could be extended to the second order
extension of the Gibbs state [213,214].

We could explore the links between “stochastic mechanics” (mécanique alétoire) developed by
Jean-Michel Bismut based on Malliavin Calculus (stochastic calculus of variations) and Souriau
“Lie group thermodynamics”, especially to extend covariant Souriau Gibbs density on the stochastic
symplectic manifold (e.g., to model centrifuge with random vibrating axe and the Gibbs density).

We have seen that Souriau has replaced classical Maximum Entropy approach by replacing
Lagrange parameters by only one geometric “temperature vector” as element of Lie algebra. In parallel,
as refered in [15], Ingarden has introduced [213,214] second and higher order temperature of the
Gibbs state that could be extended to Souriau theory of thermodynamics. Ingarden higher order
temperatures could be defined in the case when no variational is considered, but when a probability
distribution depending on more than one parameter. It has been observed that Ingarden can fail if
the following assumptions are not fulfilled: the number of components of the sum goes to infinity
and the components of the sum are stochastically independent. Gibbs hypothesis can also fail if
stochastic interactions with the environment are not sufficiently weak. In all these cases, we never
observe absolute thermal equilibrium of Gibbs type but only flows or turbulence. Nonequilibrium
thermodynamics could be indirectly addressed by means of the concept of high order temperatures.
Momentum Q = ∂Φ(β)

∂β should be replaced by higher order moments given by the relation Qk =

∂Φ(β1, ..., βn)

∂βk
=

�
M

Uk(ξ) · e
− n

∑
k=1

〈βk ,Uk(ξ)〉
dω

�
M

e
− n

∑
k=1

〈βk ,Uk(ξ)〉
dω

defined by extended Massieu characteristic function

Φ(β1, ..., βn) = −log
�
M

e
− n

∑
k=1

〈βk ,Uk(ξ)〉
dω. Entropy is defined by Legendre transform of this Massieu

characteristic function S (Q1, ..., Qn) =
n
∑

k=1
〈βk, Qk〉 − Φ(β1, ..., βn) where βk =

∂S(Q1, ..., Qn)

∂Qk
. We are

able also to define high order thermal capacities given by Kk = − ∂Qk
∂βk

. The Gibbs density could

be then extended with respect to high order temperatures by pGibbs(ξ) = e

n
∑

k=1
〈βk ,Uk(ξ)〉−Φ(β1,...,βn)

=

e
− n

∑
k=1

〈βk ,Uk(ξ)〉

�
M

e
− n

∑
k=1

〈βk ,Uk(ξ)〉
dω

.

We also have to make reference to the works of Streater [16], Nencka [215] and Burdet [216].
Nencka and Streater [215], for certain unitary representations of a Lie algebra g, define the statistical
manifold M of states as the convex cone of X ∈ g for which the partition function Z = Tr [exp(−X)]

is finite. The Hessian of logZ defines a Riemannian metric g on dual Lie algebra g∗. They observe that
g∗ foliates into the union of coadjoint orbits, each of which can be given a complex Kostant structure
(that of Kostant).
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To conclude, we will make reference to Alain Berthoz [217] at College de France who has studied
brain coding of movement. The most recent studies on this topic, by Alexandre Afgoustidis Ph.D. [218]
“Invariant Harmonic Analysis and Geometry in the Workings of the Brain” supervised by Daniel Bennequin,
Afgoustidis [218] consolidate the idea that brain vestibular channels and otolithes code Lie algebra of
the homogeneous Galileo group as illustrated in the following Figure 15.

Figure 15. Coding of homogeneous Galileo algebra by vestibular system and otolithes.

Souriau gave the same ideas in this direction regarding how the brain could code invariants [219]:

Lorsque il y un tremblement de terre, nous assistons à la mort de l’Espace. . . . Nous vivons avec
nos habitudes que nous pensons universelles. . . . La neuroscience s’occupe rarement de la géométrie
. . . Pour les singes qui vivent dans les arbres, certaines propriétés du groupe d’Euclide sont mieux
câblées dans leurs cerveaux (When there is an earthquake, we are witnessing the death of Space
. . . We live with our habits that we think are universal.... Neuroscience rarely is interested in
geometry . . . For the monkeys that live in trees, some properties of the Euclid group are better coded
in their brains).

Souriau added anecdotes from a discussion with a student of Bohr that [220]:

L’élève demanda à Bohr qu’il ne comprenait pas le principe de correspondance. Bohr lui demanda
de s’assoir et il tourna autour de lui. Bohr lui dit tu dois commencer à avoir mal au cœur, c’est
que tu commences à comprendre ce qu’est le principe de correspondance (The student said to Bohr
that he did not understand the principle of correspondence. Bohr asked him to sit and he turned
around. Bohr said, you should start to be seasick, it is then that you begin to understand what the
correspondence principle is.).

Acknowledgments: I would like to thank Charles-Michel Marle and Gery de Saxcé for the fruitful discussions on
Souriau model of statistical physics that help me to understand the fundamental notion of affine representation of
Lie group and algebra, moment map and coadjoint orbits. I would also like to thank Michel Boyom that introduce
me to Jean-Louis Koszul works on affine representation of Lie group and Lie algebra.

Si on ajoute que la critique qui accoutume l’esprit, surtout en matière de faits, à recevoir de simples probabilités
pour des preuves, est, par cet endroit, moins propre à le former, que ne le doit être la géométrie qui lui fait
contracter l’habitude de n’acquiescer qu’à l’évidence; nous répliquerons qu’à la rigueur on pourrait conclure de
cette différence même, que la critique donne, au contraire, plus d’exercice à l’esprit que la géométrie: parce que
l’évidence, qui est une et absolue, le fixe au premier aspect sans lui laisser ni la liberté de douter, ni le mérite de
choisir; au lieu que les probabilités étant susceptibles du plus et du moins, il faut, pour se mettre en état de
prendre un parti, les comparer ensemble, les discuter et les peser. Un genre d’étude qui rompt, pour ainsi dire,
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l’esprit à cette opération, est certainement d’un usage plus étendu que celui où tout est soumis à l’évidence;
parce que les occasions de se déterminer sur des vraisemblances ou probabilités, sont plus fréquentes que celles
qui exigent qu’on procède par démonstrations: pourquoi ne dirions –nous pas que souvent elles tiennent aussi
à des objets beaucoup plus importants?

—Joseph de Maistre in L’Espit de Finesse [221]

Le cadavre qui s’acoutre se méconnait et imaginant l’éternité s’en approrie l’illusion . . . C’est pourquoi
j’abandonnerai ces frusques et jetant le masque de mes jours, je fuirai le temps où, de concert avec les autres,
je m’éreinte à me trahir.

—Emile Cioran in Précis de decomposition [222]
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Appendix A. Clairaut(-Legendre) Equation of Maurice Fréchet Associated to “Distinguished
Functions” as Fundamental Equation of Information Geometry

Before Rao [223,224], in 1943, Maurice Fréchet [141] wrote a seminal paper introducing what
was then called the Cramer-Rao bound. This paper contains in fact much more that this important
discovery. In particular, Maurice Fréchet introduces more general notions relative to “distinguished
functions”, densities with estimator reaching the bound, defined with a function, solution of Clairaut’s
equation. The solutions “envelope of the Clairaut’s equation” are equivalent to standard Legendre
transform without convexity constraints but only smoothness assumption. This Fréchet’s analysis
can be revisited on the basis of Jean-Louis Koszul’s works as a seminal foundation of “information
geometry”.

We will use Maurice Fréchet notations, to consider the estimator:

T = H (X1, ..., Xn) (A1)

and the random variable

A(X) =
∂logpθ(X)

∂θ
(A2)

that are associated to:

U = ∑
i

A (Xi) (A3)

The normalizing constraint
+∞�
−∞

pθ(x)dx = 1 implies that:
+∞�
−∞

...
+∞�
−∞

∏
i

pθ(xi)dxi = 1

If we consider the derivative if this last expression with respect to θ, then

+∞�
−∞

...
+∞�
−∞

[
∑

i
A(xi)

]
∏

i
pθ(xi)dxi = 0 gives : Eθ [U] = 0 (A4)

Similarly, if we assume that Eθ [T] = θ, then
+∞�
−∞

...
+∞�
−∞

H (x1, ..., xn)∏
i

pθ(xi)dxi = θ, and we obtain

by derivation with respect to θ:
E [(T − θ)U] = 1 (A5)

But as E [T] = θ and E [U] = 0, we immediately deduce that:

E [(T − E [T]) (U − E [U])] = 1 (A6)

From Schwarz inequality, we can develop the following relations:

[E (ZT)]2 ≤ E
[
Z2] E

[
T2]

1 ≤ E
[
(T − E [T])2

]
E

[
(U − E [U])2

]
= (σTσU)

2
(A7)
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U being the summation of independent variables, Bienaymé equality could be applied:

(σU)
2 = ∑

i

[
σA(Xi)

]2
= n (σA)

2 (A8)

From which, Fréchet deduced the bound, rediscovered by Cramer and Rao 2 years later:

(σT)
2 ≥ 1

n (σA)
2 (A9)

Fréchet [141] observed that it is a remarkable inequality where the second member is independent
of the choice of the function H defining the “empirical value” T, where the first member can be taken
to any empirical value T = H (X1, ..., Xn) subject to the unique condition Eθ [T] = θ regardless is θ.

The classic condition that the Schwarz inequality becomes an equality helps us to determine when
σT reaches its lower bound 1√

nσn
.

The previous inequality becomes an equality if there are two numbers α and β (not random and not
both zero ) such that α (H′ − θ) + βU = 0, with H′ being a particular function among eligible H such
that we have an equality. This equality is rewritten H′ = θ + λ′U with λ′ being a non-random number.

If we use the previous equation, then:

E [(T − E [T]) (U − E [U])] = 1 ⇒ E
[(

H′ − θ
)

U
]
= λ′Eθ

[
U2

]
= 1 (A10)

We obtain:
U = ∑

i
A (Xi) ⇒ λ′nEθ

[
A2

]
= 1 (A11)

From which we obtain λ′ and the form of the associated estimator H′:

λ′ = 1
nE [A2]

⇒ H′ = θ +
1

nE [A2]∑i

∂logpθ(Xi)

∂θ
(A12)

It is therefore deduced that the estimator that reaches the terminal is of the form:

H′ = θ +

∑
i

∂logpθ(Xi)
∂θ

n
+∞�
−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

(A13)

with E [H′] = θ + λ′E [U] = θ.
H′ would be one of the eligible functions, if H′ would be independent of θ. Indeed, if we consider

Eθ0 [H
′] = θ0, E

[
(H′ − θ0)

2
]
≤ Eθ0

[
(H − θ0)

2
]
∀H such that Eθ0 [H] = θ0.

H = θ0 satisfies the equation and inequality shows that it is almost certainly equal to θ0.
So to look for θ0, we should know beforehand θ0.
At this stage, Fréchet [141] looked for “distinguished functions” (“densités distinguées” in French),

as any probability density pθ(x) such that the function:

h(x) = θ +
∂logpθ(x)

∂θ
+∞�
−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

(A14)

is independent of θ. The objective of Fréchet is then to determine the minimizing function T =

H′ (X1, ..., Xn) that reaches the bound. We can deduce from previous relations that:

λ(θ)
∂logpθ(x)

∂θ
= h(x)− θ (A15)
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But as λ(θ) > 0, we can consider 1
λ(θ)

as the second derivative of a function Φ(θ) such that:

∂logpθ(x)
∂θ

=
∂2Φ(θ)

∂θ2 [h(x)− θ] (A16)

From which we deduce that:

�(x) = logpθ(x)− ∂Φ(θ)

∂θ
[h(x)− θ]− Φ(θ) (A17)

Is an independent quantity of θ. A distinguished function will be then given by:

pθ(x) = e
∂Φ(θ)

∂θ [h(x)−θ]+Φ(θ)+�(x) (A18)

With the normalizing constraint
+∞�
−∞

pθ(x)dx = 1.

These two conditions are sufficient. Indeed, reciprocally, let three functions Φ(θ), h(x) and �(x)
that we have, for any

θ :
+∞�
−∞

e
∂Φ(θ)

∂θ [h(x)−θ]+Φ(θ)+�(x)dx = 1 (A19)

Then the function is distinguished:

θ +
∂logpθ(x)

∂θ
+∞�
−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

= θ + λ(x)
∂2Φ(θ)

∂θ2 [h(x)− θ] (A20)

If λ(x)
∂2Φ(θ)

∂θ2 = 1, when
1

λ(x)
=

+∞�
−∞

[
∂logpθ(x)

∂θ

]2

pθ(x)dx = (σA)
2 (A21)

The function is reduced to h(x) and then is not dependent of θ.
We have then the following relation:

1
λ(x)

=
+∞�
−∞

(
∂2Φ(θ)

∂θ2

)2

[h(x)− θ]2 e
∂Φ(θ)

∂θ (h(x)−θ)+Φ(θ)+�(x)dx (A22)

The relation is valid for any θ, we can derive prefious equation with respect with θ:

+∞�
−∞

e
∂Φ(θ)

∂θ (h(x)−θ)+Φ(θ)+�(x)
(

∂2Φ(θ)

∂θ2

)
[h(x)− θ] dx = 0 (A23)

We can divide by
∂2Φ(θ)

∂θ2 because it does not depend on x.
If we derive again with respect to θ, we will have:

+∞�
−∞

e
∂Φ(θ)

∂θ (h(x)−θ)+Φ(θ)+�(x)
(

∂2Φ(θ)

∂θ2

)
[h(x)− θ]2 dx =

+∞�
−∞

e
∂Φ(θ)

∂θ (h(x)−θ)+Φ(θ)+�(x)dx = 1 (A24)
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Combining this relation with that of
1

λ(x)
, we can deduce that λ(x) ∂2Φ(θ)

∂θ2 = 1 and as λ(x) > 0

then
∂2Φ(θ)

∂θ2 > 0.
Fréchet emphasizes at this step [141], another way to approach the problem. We can select

arbitrarily h(x) and l(x) and then Φ(θ) is determined by:

+∞�
−∞

e
∂Φ(θ)

∂θ [h(x)−θ]+Φ(θ)+�(x)dx = 1 (A25)

That could be rewritten:

eθ. ∂Φ(θ)
∂θ −Φ(θ) =

+∞�
−∞

e
∂Φ(θ)

∂θ h(x)+�(x)dx (A26)

If we then fixed arbitrarily h(x) and l(x) and let s an arbitrary variable, the following function
will be an explicit positive function given by eΨ(s):

+∞�
−∞

es.h(x)+�(x)dx = eΨ(s) (A27)

Fréchet obtained finally the function Φ(θ) as solution of the equation [141]:

Φ(θ) = θ · ∂Φ(θ)

∂θ
− Ψ

(
∂Φ(θ)

∂θ

)
(A28)

Fréchet noted that this is the Alexis Clairaut equation [141].

The case
∂Φ(θ)

∂θ
= cste would reduce the density to a function that would be independent of θ,

and so Φ(θ) is given by a singular solution of this Clairaut equation, which is unique and could be
computed by eliminating the variable s between:

Φ = θ · s − Ψ (s) and θ =
∂Ψ (s)

∂s
(A29)

Or between:

eθ·s−Φ(θ) =
+∞�
−∞

es·h(x)+�(x)dx and
+∞�
−∞

es·h(x)+�(x) [h(x)− θ] dx = 0 (A30)

Φ(θ) = −log
+∞�
−∞

es·h(x)+�(x)dx + θ · s where s is given implicitly by
+∞�
−∞

es·h(x)+�(x) [h(x)− θ] dx = 0.

Then we know the distinguished function, H′ among functions H(X1, ..., Xn) verifying Eθ [H] = θ

and such that σH reaches for each value of θ, an absolute minimum, equal to
1√
nσA

.

For the previous equation:

h(x) = θ +
∂logpθ(x)

∂θ
+∞�
−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

(A31)
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We can rewrite the estimator as:

H′(X1, ..., Xn) =
1
n
[h (X1) + ... + h (Xn)] (A32)

and compute the associated empirical value:

t = H′(x1, ..., xn) =
1
n∑

i
h(xi) = θ + λ(θ)∑

i

∂logpθ(xi)

∂θ

If we take θ = t, we have as λ(θ) > 0:

∑
i

∂logpt(xi)

∂t
= 0 (A33)

When pθ(x) is a distinguished function, the empirical value t of θ corresponding to a sample
x1, ..., xn is a root of previous equation in t. This equation has a root and only one when X is a
distinguished variable. Indeed, as we have:

pθ(x) = e
∂Φ(θ)

∂θ [h(x)−θ]+Φ(θ)+�(x) (A34)

∑
i

∂logpt(xi)

∂t
=

∂2Φ(t)
∂t2

⎡⎣∑
i

h(xi)

n
− t

⎤⎦ with
∂2Φ(t)

∂t2 > 0 (A35)

We can then recover the unique root: t =
∑
i

h(xi)

n .
This function T ≡ H′ (X1, ..., Xn) = 1

n ∑
i

h (Xi) can have an arbitrary form, that is a sum of

functions of each only one of the quantities and it is even the arithmetic average of N values of a same
auxiliary random variable Y = h(X). The dispersion is given by:

(σTn)
2 =

1

n (σA)
2 =

1

n
+∞�
−∞

[
∂pθ(x)

∂θ

]2 dx
pθ(x)

=
1

n
∂2Φ(θ)

∂θ2

(A36)

and Tn follows the probability density:

pθ(t) =
√

n
1

σA
√

2π
e
− n(t−θ)2

2·σ2
A with (σA)

2 =
∂2Φ(θ)

∂θ2 (A37)

Clairaut Equation and Legendre Transform

We have just observed that Fréchet shows that distinguished functions depend on a function
Φ(θ), solution of the Clairaut equation:

Φ(θ) = θ · ∂Φ(θ)

∂θ
− Ψ

(
∂Φ(θ)

∂θ

)
(A38)

Or given by the Legendre transform:

Φ = θ · s − Ψ (s) and θ =
∂Ψ (s)

∂s
(A39)

Fréchet also observed that this function Φ(θ) could be rewritten:

Φ(θ) = −log
+∞�
−∞

es·h(x)+�(x)dx + θ · s where s is given implicitly by
+∞�
−∞

es·h(x)+�(x) [h(x)− θ] dx = 0.
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This equation is the fundamental equation of information geometry.
The “Legendre” transform was introduced by Adrien-Marie Legendre in 1787 [225] to solve a

minimal surface problem Gaspard Monge in 1784. Using a result of Jean Baptiste Meusnier, a student
of Monge, it solves the problem by a change of variable corresponding to the transform which now
entitled with his name. Legendre wrote: “I have just arrived by a change of variables that can be useful
in other occasions.” About this transformation, Darboux [226] in his book gives an interpretation
of Chasles: “This comes after a comment by Mr. Chasles, to substitute its polar reciprocal on the surface
compared to a paraboloïd.” The equation of Clairaut was introduced 40 years earlier in 1734 by Alexis
Clairaut [225]. Solutions “envelope of the Clairaut equation” are equivalent to the Legendre transform
with unconditional convexity, but only under differentiability constraint. Indeed, for a non-convex
function, Legendre transformation is not defined where the Hessian of the function is canceled, so that
the equation of Clairaut only makes the hypothesis of differentiability. The portion of the strictly
convex function g in Clairaut equation y = px − g(p) to the function f giving the envelope solutions
by the formula y = f(x) is precisely the Legendre transformation. The approach of Fréchet may be
reconsidered in a more general context on the basis of the work of Jean-Louis Koszul.

Appendix B. Balian Gauge Model of Thermodynamics and its Compliance with Souriau Model

Supported by Industial group TOTAL (previously Elf-Aquitaine), Roger Balian has introduced a
Gauge theory of thermodynamics [103] and has also developed information geometry in statistical
physics and quantum physics [103,227–235]. Balian has observed that the entropy S (we use Balian
notation, contrary with previous section where we use −S as neg-entropy) can be regarded as
an extensive variable q0 = S

(
q1, ..., qn)

, with qi(i = 1, ..., n), n independent quantities, usually
extensive and conservative, characterizing the system. The n intensive variables γi are defined
as the partial derivatives:

γi =
∂S(q1, ..., qn)

∂qi (B1)

Balian has introduced a non-vanishing gauge variable p0, without physical relevance, which
multiplies all the intensive variables, defining a new set of variables:

pi = −p0.γi , i = 1, ..., n (B2)

The 2n + 1-dimensional space is thereby extended into a 2n + 2-dimensional thermodynamic
space T spanned by the variables pi , qi with i = 0, 1, ..., n, where the physical system is associated with
a n + 1-dimensional manifold M in T, parameterized for instance by the coordinates q1, ..., qn and p0.
A gauge transformation which changes the extra variable p0 while keeping the ratios pi/p0 = −γi
invariant is not observable, so that a state of the system is represented by any point of a one-dimensional
ray lying in M, along which the physical variables q0, ..., qn, γ1, ..., γn are fixed. Then, the relation
between contact and canonical transformations is a direct outcome of this gauge invariance: the contact

structure ω̃ = dq0 − n
∑

i=1
γi · dqi in n + 1 dimension can be embedded into a symplectic structure in

2n + 2 dimension, with 1-form:

ω =
n

∑
i=0

pi · dqi (B3)

as symplectization, with geometric interpretation in the theory of fiber bundles.
The n + 1-dimensional thermodynamic manifolds M are characterized by the vanishing of this

form ω = 0. The 1-form induces then a symplectic structure on T:

dω =
n

∑
i=0

dpi ∧ dqi (B4)
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Any thermodynamic manifold M belongs to the set of the so-called Lagrangian manifolds in T,
which are the integral submanifolds of dω with maximum dimension (n + 1). Moreover, M is gauge
invariant, which is implied by ω = 0. The extensivity of the entropy function S

(
q1, ..., qn)

is expressed

by the Gibbs-Duhem relation S =
n
∑

i=1
qi ∂S

∂qi , rewritten with previous relation
n
∑

i=0
piqi = 0, defining a 2n +

1-dimensional extensivity sheet in T, where the thermodynamic manifolds M should lie. Considering
an infinitesimal canonical transformation, generated by the Hamiltonian h(q0, q1, ..., qn, p0, p1, ..., pn),
.
qi =

∂h
∂pi

and
.
pi =

∂h
∂qi , the Hamilton’s equations are given by Poisson bracket:

.
g = {g, h} =

n

∑
i=0

∂g
∂qi

∂h
∂pi

− ∂h
∂qi

∂g
∂pi

(B5)

The concavity of the entropy S
(
q1, ..., qn)

, as function of the extensive variables, expresses the
stability of equilibrium states. This property produces constraints on the physical manifolds M in the
2n + 2-dimensional space. It entails the existence of a metric structure in the n-dimensional space qi
relying on the quadratic form:

ds2 = −d2S = −
n

∑
i,j=1

∂2S
∂qi∂qj dqidqj (B6)

which defines a distance between two neighboring thermodynamic states.

As dγi =
n

∑
j=1

∂2S
∂qi∂qj dqj, then: ds2 = −

n

∑
i=1

dγidqi =
1
p0

n

∑
i=0

dpidqi (B7)

The factor 1/p0 ensures gauge invariance. In a continuous transformation generated by h, the metric
evolves according to:

d
dτ

(ds2) =
1
p0

∂h
∂q0 ds2 +

1
p0

n

∑
i,j=0

(
∂2h

∂qi∂pj
dpidpj − ∂2h

∂qi∂qj dqidqj

)
(B8)

We can observe that this gauge theory of thermodynamics is compatible with Souriau Lie

groupTthermodynamics, where we have to consider the Souriau vector β =

⎡⎢⎣ γ1
...

γn

⎤⎥⎦, transformed

in a new vector:

pi = −p0.γi, p =

⎡⎢⎣ −p0γ1
...

−p0γn

⎤⎥⎦ = −p0 · β (B9)

Appendix C. Casalis-Letac Affine Group Invariance for Natural Exponential Families

The characterization of the natural exponential families of Rd which are preserved by a group
of affine transformations has been examined by Muriel Casalis in her Ph.D. [173] and her different
papers [172,174–178]. Her method has consisted of translating the invariance property of the family
into a property concerning the measures which generate it, and to characterize such measures.

Let E a vector space of finite size, E∗ its dual. 〈θ, x〉 duality bracket with (θ, x) ∈ E∗ × E. μ positive
Radon measure on E, Laplace transform is:

Lμ : E∗ → [0, ∞] with θ �→ Lμ(θ) =
�
E

e〈θ,x〉μ(dx) (C1)
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Let transformation kμ(θ) defined on Θ(u) interior of Dμ =
{

θ ∈ E∗, Lμ < ∞
}

:

kμ(θ) = logLμ(θ) (C2)

natural exponential families are given by:

F(μ) =
{

P (θ, μ) (dx) = e〈θ,x〉−kμ(θ)μ(dx), θ ∈ Θ(μ)
}

(C3)

with injective function (domain of means):

k′μ(θ) =
�
E

xP (θ, μ) μ(dx) (C4)

the inverse function:

ψμ : MF → Θ(μ) with MF = Im
(

k′μ (Θ(μ))
)

(C5)

and the Covariance operator:

VF(m) = k′′μ
(
ψμ(m)

)
=

(
ψ′

μ(m)
)−1

, m ∈ MF (C6)

Measure generetad by a family F is then given by:

F(μ) = F(μ′) ⇔ ∃(a, b) ∈ E∗ × R, such that μ′(dx) = e〈a,x〉+bμ(dx) (C7)

Let F an exponential family of E generated by μ and ϕ : x �→ gϕx + vϕ with gϕ ∈ GL(E)
automorphisms of E and vϕ ∈ E, then the family ϕ(F) = {ϕ (P(θ, μ)) , θ ∈ Θ(μ)} is an exponential
familly of E generated by ϕ(μ)

Definition C1. An exponential family F is invariant by a group G (affine group of E), if

∀ϕ ∈ G, ϕ(F) = F : ∀μ, F (ϕ(μ)) = F(μ) (C8)

(the contrary could be false)
Then Muriel Casalis has established the following theorem:

Theorem C1 (Casalis). Let F = F(μ) an exponential family of E and G affine group of E, then F is invariant
by G if and only:

∃a : G → E∗, ∃b : G → R, such that:

∀ (ϕ, ϕ′) ∈ G2,

⎧⎨⎩
a (ϕϕ′) =t

g
−1
ϕ a (ϕ′) + a (ϕ)

b (ϕϕ′) = b (ϕ) + b (ϕ′)−
〈

a (ϕ′) , g−1
ϕ vϕ

〉
∀ϕ ∈ G, ϕ(μ)(dx) = e〈a(ϕ),x〉+b(ϕ)μ(dx)

(C9)

When G is a linear subgroup, b is a character of G and a could be obtained by the help of cohomology of
Lie groups.

If we define action of G on E∗ by:

g · x =t
g
−1x, g ∈ G, x ∈ E∗ (C10)

It can be verified that:
a (g1g2) = g1 · a(g2) + a(g1) (C11)
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the action a is an inhomogeneous 1-cocycle:
∀n > 0, let the set of all functions from Gn to E∗, � (Gn, E∗) called inhomogenesous n-cochains, then we

can define the operators dn : � (Gn, E∗) → � (
Gn+1, E∗) by:

dnF (g1, · · · , gn+1) = g1.F (g2, · · · , gn+1) +
n
∑

i=1
(−1)i F (g1, g2, · · · , gigi+1, · · · , gn)

+ (−1)n+1 F (g1, g2, · · · , gn)

(C12)

Let Zn (G, E∗) = Ker (dn) , B (G, E∗) = Im
(
dn−1), with Zn inhomogneous n-cocycles, the quotient:

Hn (G, E∗) = Zn (G, E∗) /Bn (G, E∗) (C13)

is the Cohomology group of G with value in E∗. We have:

d0 : E∗ → � (G, E∗)

x �→ (g �→ g · x − x)
(C14)

Z0 = {x ∈ E∗; g · x = x, ∀g ∈ G} (C15)

d1 : � (G, E∗) → � (
G2, E∗)

F �→ d1F , d1F (g1, g2) = g1 · F(g2)− F (g1g2) + F(g1)
(C16)

Z1 =
{

F ∈ � (G, E∗) ; F (g1g2) = g1 · F(g2) + F(g1), ∀ (g1, g2) ∈ G2
}

(C17)

B1 = {F ∈ � (G, E∗) ; ∃x ∈ E∗, F(g) = g · x − x} (C18)

When the Cohomology group H1 (G, E∗) = 0 then:

Z1 (G, E∗) = B1 (G, E∗) (C19)

Then if F = F(μ) is an exponential family invariant by G, μ verifies:

∀g ∈ G, g (μ) (dx) = e〈c,x〉−〈c,g−1x〉+b(g)μ(dx) (C20)

∀g ∈ G, g
(

e〈c,x〉μ(dx)
)
= eb(g)e〈c,x〉μ(dx) with μ0(dx) = e〈c,x〉μ(dx) (C21)

For all compact group, H1 (G, E∗) = 0 and we can express a:

A : G → GA(E)

g �→ Ag , Ag(θ) = tg−1θ + a(g)
(C22)

∀ (g, g′) ∈ G2, Agg′ = Ag Ag′

A(G) compact sub − group of GA(E)
(C23)

∃fixed point ⇒ ∀g ∈ G, Ag(c) = tg−1c + a(g) = c ⇒ a(g) =
(

Id − tg−1
)

c (C24)
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Abstract: In this work, we consider the value of the momentum map of the symplectic mechanics
as an affine tensor called momentum tensor. From this point of view, we analyze the underlying
geometric structure of the theories of Lie group statistical mechanics and relativistic thermodynamics
of continua, formulated by Souriau independently of each other. We bridge the gap between them in
the classical Galilean context. These geometric structures of the thermodynamics are rich and we
think they might be a source of inspiration for the geometric theory of information based on the
concept of entropy.
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1. Introduction

In [1], Souriau proposes to revisit mechanics, emphasizing its affine nature. It is this viewpoint
that we will adopt here, starting from a generalization of the concept of momentum under the form of
an affine object [2]. Our starting point is closely related to Souriau’s approach on the basis of two key
ideas: a new definition of momenta and the crucial part played by the affine group of Rn. This group
proposes an intentionally poor geometrical structure. Indeed, this choice is guided by the fact that it
contains both Galileo and Poincaré groups [3,4], which allows the simultaneous involvement of the
Galilean and relativistic mechanics. In the follow-up, we shall detail only the applications to classical
mechanics and thermodynamics.

A class of tensors corresponds to each group. The components of these tensors are transformed
according to the action of the considered group. The standard tensors discussed in the literature are
those of the linear group of Rn. We will call them linear tensors. A fruitful standpoint consists of
considering the class of the affine tensors, corresponding to the affine group [2,5]. This viewpoint is
closely related to symplectic mechanics [3,4,6] in the sense that the values of the momentum map are
just the components of the momentum tensors.

The present paper is structured as follows. In Section 2, we present briefly the affine tensors,
starting with the most simple ones: the points of an affine space which are 1-contravariant and the real
affine functions on this space or affine forms which are 1-covariant. As a subgroup G of the affine group
of Rn naturally acts onto the affine tensors by restriction to G of their transformation law, we define
the corresponding G-tensor. In Section 3, we use this framework, defining the momentum as a mixed
1-covariant and 1-contravariant affine tensor. If G is a Lie group, we demonstrate the important fact
that its transformation law is nothing other than the coadjoint representation of G in the dual g∗ of its Lie
algebra. In Section 4, we recall classical tools of symplectic mechanics around the concept of symplectic
action and a momentum map. An important result called the Kirillov–Kostant–Souriau theorem
reveals the orbit symplectic structure. In Section 5, we recall shortly the main concepts of the Lie group
statistical mechanics proposed by Souriau in [3,4], using geometric tools. In Section 6, we present
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briefly the cornerstone results of the Galilean version of a thermodynamics of continua compatible
with general relativity proposed by Souriau in [7,8] independently of his statistical mechanics. In
Section 7, we reveal the link between the previous relativistic thermodynamics of continua and Lie
group statistical mechanics in the classical Galilean context, working in seven steps.

2. Affine Tensors

Points of an affine space. Let AT be an affine space associated to a linear space T of finite dimension
n. By the choice of an affine frame f composed of a basis of T and an origin a0, we can associate to
each point a a set of n (affine) components Vi gathered in the n-column V ∈ Rn. For a change of affine
frames, the transformation law for the components of a point reads:

V = C + P V′ , (1)

which is an affine representation of the affine group of Rn denoted A f f (n). It is clearly different from
the usual transformation law of vectors V = P V′.

Affine forms. The affine maps Ψ from AT into R are called affine forms and their set is denoted
A∗T . In an affine frame, Ψ is represented by an affine function Ψ from Rn into R. Hence, it holds:

Ψ(a) = Ψ(V) = χ + Φ V ,

where χ = Ψ(0) = Ψ(a0) and Φ = lin(Ψ) is a n-row. We call Φ1, Φ2, · · · , Φn, χ the components of
Ψ or, equivalently, the couple of χ and the row Φ collecting the Φα. The set A∗T is a linear space
of dimension (n + 1) called the vector dual of AT . If we change the affine frame, the components
of an affine form are modified according to the induced action of A f f (n), that leads to, taking into
account (1):

χ′ = χ − Φ P−1C, Φ′ = Φ P−1 , (2)

which is a linear representation of A f f (n).
Affine tensors. We can generalize this construction and define an affine tensor as an object:

• that assigns a set of components to each affine frame f of an affine space AT of finite dimension n,
• with a transformation law, when changing of frames, which is an affine or a linear representation

of A f f (n).

With this definition, the affine tensors are a natural generalization of the classical tensors that we
shall call linear tensors, these last ones being trivial affine tensors for which the affine transformation
a = (C, P) acts through its linear part P = lin(a). An affine tensor can be constructed as a map which
is affine or linear with respect to each of its arguments. Similar to the linear tensors, the affine ones can
be classified in three families: covariants, contravariant and mixed. The most simple affine tensors are
the points which are 1-contravariant and the affine forms which are 1-covariant but we can construct
more complex ones having a strong physical meaning: the torsors (proposed in [5]), the co-torsors and
the momenta extensively detailled in [2]. For more details on the affine dual space, affine tensor product,
affine wedge product and affine tangent bundles, the reader interested in this topic is referred to the
so-called AV-differential geometry [9].

G-tensors. A subgroup G of A f f (n) naturally acts onto the affine tensors by restriction to G of
their transformation law. Let FG be a set of affine frames of which G is a transformation group. The
elements of FG are called G-frames. A G-tensor is an object:

• that assigns a set of components to each G-frame f ,
• with a transformation law, when changing of frames, which is an affine or a linear representation

of G.
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For instance, if G is the group of Euclidean transformations, we recover the classical Euclidean
tensors. Hence, each G-tensor can be identified with an orbit of G within the space of the
tensor components.

3. Momentum as Affine Tensor

Let M be a differential manifold of dimension n and G a Lie subgroup of A f f (n). In the
applications to physics, M will be for us typically the space-time and G a subgroup of A f f (n) with a
physical meaning in the framework of classical mechanics (Galileo’s group) or relativity (Poincaré’s
group). The points of the space-time M are events of which the coordinate X0 is the time t and Xi = xi

for i running from 1 to 3 gives the position.
The tangent space to M at the point X equipped with a structure of affine space is called the

affine tangent space and is denoted ATXM. Its elements are called tangent points at X. The set of
affine forms on the affine tangent space is denoted A∗TXM. We call momentum a bilinear map μ:

μ : TXM× A∗TXM → R : (
−→
V , Ψ) �→ μ(

−→
V , Ψ)

It is a mixed 1-covariant and 1-contravariant affine tensor. Taking into account the bilinearity, it is
represented in an affine frame f by:

μ(
−→
V , Ψ) = (χ Kβ + ΦαLα

β)Vβ

where Kβ and Lα
β are the components of μ in the affine frame f or, equivalently, the couple μ = (K, L)

of the row K collecting the Kβ and the n × n matrix L of elements Lα
β. Owing to (2), the transformation

law is given by the induced action of A f f (n):

K′ = K P−1, L′ = (P L + C K) P−1 (3)

If the action is restricted to the subgroup G, the momentum μ is a G-tensor.
On the other hand, have a look to the Lie algebra g of G, that is the set of infinitesimal generators

Z = da = (dC, dP) with a ∈ G. Let us identify the space of the momentum components μ = (K, L) to
the dual g∗ of the Lie algebra thanks to the dual pairing:

μ Z = μ da = (K, L) (dC, dP) = K dC + Tr(L dP) (4)

We know that the group acts on its Lie algebra by the adjoint representation:

Ad(a) : g → g : Z′ �→ Z = Ad(a) Z′ = a Z′ a−1 .

As G is a group of affine transformations, any infinitesimal generator Z is represented by:

Z̃ = dP̃ = d

(
1 0
C P

)
=

(
0 0
dC dP

)
.

Then Z̃ = P̃ Z̃′ P̃−1 leads to:

dC = P (dC′ − dP′ P−1C), dP = P dP′ P−1 . (5)

This adjoint representation induces the coadjoint representation of G in g∗ defined by:

(Ad∗(a) μ′) Z = μ′ (Ad(a−1) Z) .
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Taking into account (4), one finds that the coadjoint representation:

Ad∗(a) : g∗ → g∗ : μ′ �→ μ = Ad∗(a) μ′

is given by:
K = K′ P−1, L = (P L′ + C K′) P−1 .

It is noteworthy to observe that the transformation law (3) of momenta is nothing other than the
coadjoint representation!

However, this mathematical construction is not relevant for all considered physical applications
and we need to extend it by considering a map θ from G into g∗ and a generalized transformation law:

μ = a · μ′ = Ad∗(a) μ′ + θ(a) , (6)

where θ eventually depends on an invariant of the orbit. It is an affine representation of G in g∗

(because we wish the momentum to be an affine tensor) provided:

∀a, b ∈ G, θ(ab) = θ(a) + Ad∗(a) θ(b) (7)

Remark 1. This action induces a structure of affine space on the set of momentum tensors. Let π : F → M be
a G-principal bundle of affine frames with the free action (a, f ) �→ f ′ = a · f on each fiber. Then we can build
the associated G-principal bundle:

π̂ : g∗ × F → (g∗ × F )/G : (μ, f ) �→ μ = orb(μ, f )

for the free action:
(a, (μ, f )) �→ (μ′, f ′) = a · (μ, f ) = (a · μ, a · f )

where the action on g∗ is (6). Clearly, the orbit μ = orb(μ, f ) can be identified to the momentum G-tensor μ of
components μ in the G-frame f .

4. Symplectic Action and Momentum Map

Let (N , ω) be a symplectic manifold [3,4,6,10]. A Lie group G smoothly left acting on N and
preserving the symplectic form ω is said to be symplectic.The interior product of a vector

−→
V and a

p-form ω is denoted ι(
−→
V )ω. A map ψ : N → g∗ such that:

∀η ∈ N , ∀Z ∈ g, ι(Z · η)ω = −d(ψ(η)Z) ,

is called a momentum map of G. It is the quantity involved in Noether’s theorem that claims ψ is
constant on each leaf of N . In [3] (Theorem 11.17, p. 109, or its English translation [4]), Souriau proved
there exists a smooth map θ from G into g∗:

θ(a) = ψ(a · η)− Ad∗(a)ψ(η) , (8)

which is a symplectic cocycle, that is a map θ : G → g verifying the identity (7) and such that (Dθ)(e)
is a 2-form. An important result, called the Kirillov–Kostant–Souriau theorem, reveals the orbit
symplectic structure [3] (Theorem 11.34, Pages 116–118). Let G be a Lie group and an orbit of the
coadjoint representation orb (μ) ⊂ g∗. Then the orbit orb (μ) is a symplectic manifold, G is a symplectic
group and any μ ∈ g∗ is its own momentum.

Remark 2. Replacing η by a−1 · η in (8), this formula reads:

ψ(η) = Ad∗(a)ψ′(η) + θ(a) ,
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where ψ �→ ψ′ = a · ψ is the induced action of the one of G on N . It is worth observing it is just (6) with
μ = ψ(η) and μ′ = ψ′(η). In this sense, the values of the momentum map are just the components of the
momentum G-tensors defined in the previous Section.

Remark 3. We saw at Remark of Section 3 that the momentum G-tensor μ is identified to the orbit μ = orb(μ, f )
and, disregarding the frames for simplification, we can identify μ to the component orbit orb(μ).

5. Lie Group Statistical Mechanics

In order to discover the underlined geometric structure of the statistical mechanics, we are
interested in the affine maps Θ on the affine space of momentum tensors. In an affine frame, Θ is
represented by an affine function Θ from g∗ into R:

Θ(μ) = Θ(μ) = z + μ Z ,

where z = Θ(0) = Θ(μ0) and Z = lin(Θ) ∈ g are the affine components of Θ. If the components of
the momentum tensors are modified according to (6), the change of affine components of Θ is given by
the induced action:

z = z′ − θ(a) Ad(a) Z′, Z = Ad(a) Z′ . (9)

Then Θ is a G-tensors. In [3,4], Souriau proposed a statistical mechanics model using geometric
tools. Let dλ be a measure on μ = orb (μ) and a Gibbs probability measure p dλ with:

p = e−Θ(μ) = e−(z+μ Z) .

The normalization condition
∫

orb(μ) p dλ = 1 links the components of Θ, allowing to express z in
terms of Z:

z(Z) = ln
∫

orb(μ)
e−μ Z dλ . (10)

The corresponding entropy and mean momenta are:

s(Z) = −
∫

orb(μ)
p ln p dλ = z + M Z,

M(Z) =
∫

orb(μ)
μ p dλ = − ∂z

∂Z
, (11)

satisfying the same transformation law as the one (6) of μ. Hence M are the components of a momentum
tensor M which can be identified to the orbit orb(M), that defines a map μ �→ M, i.e., a correspondance
between two orbits. This construction is formal and, for reasons of integrability, the integrals will be
performed only on a subset of the orbit according to an heuristic way explained latter on.

People generally consider that the definition of the entropy is relevant for applications insofar as
the number of particles in the system is very huge. For instance, the number of atoms contained in one
mole is Avogadro’s number equal to 6 × 1023. It is worth noting that Vallée and Lerintiu proposed a
generalization of the ideal gas law based on convex analysis and a definition of entropy which does
not require the classical approximations (Stirling’s Formula) [11].

6. Relativistic Thermodynamics of Continua

Independently of his statistical mechanics, Souriau proposed in [7,8] a thermodynamics of
continua compatible with general relativity. Following in his footsteps, one can quote the works
by Iglesias [12] and Vallée [13]. In his Ph.D thesis, Vallée studied the invariant form of constitutive
laws in the context of special relativity where the gravitation effects are neglected. In [14], the author
and Vallée proposed a Galilean version of this theory of which we recall the cornerstone results. For
more details, the reader is referred to [2].
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Galileo’s group GAL is a subgroup of the affine group A f f (4), collecting the Galilean
transformations, that is the affine transformations dX′ �→ dX = P dX′ + C of R4 such that:

C =

(
τ0

k

)
, P =

(
1 0
u R

)
, (12)

where u ∈ R3 is a Galilean boost, R ∈ SO(3) is a rotation, k ∈ R3 is a spatial translation and τ0 ∈ R is
a clock change. Hence, Galileo’s group is a Lie group of dimension 10. The GAL-tensors will also be
called Galilean tensors.

M is the space-time equipped with a symmetric GAL-connection ∇ representing the gravitation,
the matter and its evolution is characterized by a line bundle π0 : M �→ M0. The trajectory of the
particle X0 ∈ M0 is the corresponding fiber π−1

0 (X0). In local charts, X0 is represented by s′ ∈ R3 and
its position x at time t is given by a map:

x = ϕ(t, s′) . (13)

The 4-velocity:
−→
U =

−→
dX
dt

,

is the tangent vector to the fiber parameterized by the time. In a local chart, it is represented by:

U =

(
1
v

)
, (14)

where v is the usual velocity. Conversely, ϕ can be obtained as the flow of the 4-velocity.
β being the reciprocal temperature, that is 1 / kBT where kB is Boltzmann’s constant and T the

absolute temperature, there are five basic tensor fields defined on the space-time M:

• the 4-flux of mass
−→
N = ρ

−→
U where ρ is the density,

• the 4-flux of entropy
−→
S = ρ s

−→
U = s

−→
N where s is the specific entropy,

• Planck’s temperature vector
−→
W = β

−→
U ,

• its gradient f = ∇−→
W called friction tensor,

• the momentum tensor of a continuum T , a linear map from TXM into itself.

In local charts, they are respectively represented by two 4-columns N, W and two 4 × 4 matrices f
and T. Then we proved in [14] the following result characterizing the reversible processes:

Theorem 1. If Planck’s potential ζ smoothly depends on s′, W and F = ∂x/∂s′ through right Cauchy strains:

C = FT F , (15)

then:

T = U Π +

(
0 0

−σv σ

)
(16)

with
Π = −ρ

∂ζ

∂W
, σ = −2ρ

β
F

∂ζ

∂C FT , (17)

represents the momentum tensor of the continuum and is such that:

(∇ζ) N = −Tr (T f ) ,
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Combining this result with the geometric version of the first principle of thermodynamics:

Div T = 0, Div
−→
N = 0, , (18)

In [7,8], Souriau claimed that the 4-flux of entropy is given by:

−→
S = T

−→
W + ζ

−→
N , (19)

and proved it is divergence free. Moreover the specific entropy s is an integral of the motion [2].

Let us introduce now the 5-temperature
−̂→
W represented by the 5-column:

Ŵ =

(
W
ζ

)
, (20)

and the tensor T̂ represented by the 4 × 5 matrix

T̂ =
(

T N
)

(21)

which allows gathering Equation (18) in the more compact form

Div T̂ = 0

and representing (19) in the more compact form:

S = T̂ Ŵ ,

local expression of the contracted product of T̂ and �̂W :

�S = T̂ · �̂W , (22)

It is the cornerstone equation of Souriau’s theory. In this form, it can be seen as a geometrization
of Clausius’ definition of the entropy as state function of a system:

S =
Q
θ

, (23)

where Q is a the amount of heat absorbed in an isothermal process. Scalar quantities are replaced by

analogous tensorial ones: S by its 4-flux �S, Q by T̂ and β = 1 / θ by its 5-flux �̂W . Replacing (19) by (22)
is not a purely formal manipulation but it takes a strong meaning when considering Bargmann’s group
B [15], a central extension of Galileo’s one [16], set of the affine transformations dX̂′ �→ dX̂ = P̂ dX̂′ + Ĉ
of R5 such that.

P̂ =

⎛⎜⎝ 1 0 0
u R 0
1
2 ‖ u ‖2 uT R 1

⎞⎟⎠ . (24)

The B-tensors are called Bargmannian tensors. From this viewpoint, the 5-column (20) represents

a Bargmannian vector �̂W of transformation law:

Ŵ = P̂ Ŵ ′ , (25)

and the 4 × 5 matrix (21) represents a Bargmannian 1-covariant and 1-contravariant tensor T̂ of
transformation law:

T̂ = P T̂′ P̂−1 .
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7. Planck’s Potential of a Continuum

Now, let us reveal the link between the previous relativistic thermodynamics of continua and Lie
group statistical mechanics in the classical Galilean context and, to simplify, in absence of gravitation.
In other words, how to deduce T from M and ζ from z? We work in seven steps:

• Step 1: defining the orbit. To begin with, we consider the momentum as an Galilean tensor, i.e., its
components ar modified only by the action of Galilean transformations. In order to calculate the
integral (10), the orbit is parameterized thanks to a momentum map. Calculating the infinitesimal
generators Z = (dC, dP) by differentiation of (12):

dC =

(
dτ0

dk

)
, dP =

(
0 0
du j(d�)

)
,

where j(d�) v = d� × v, the dual pairing (4) reads:

μ Z = l · d� − q · du + p · dk − e dτ0 . (26)

The most general form of the action (6) itemizes in:

p = R p′ + m u, q = R (q′ − τ0 p′) + m (k − τ0 u) , (27)

l = R l′ − u × (R q′) + k × (R p′) + m k × u , (28)

e = e′ + u · (R p′) + 1
2

m ‖ u ‖2 . (29)

where the orbit invariant m occuring in the symplectic cocycle θ is physically interpreted as the
particle mass. In [3] (Theorem 11.34, p. 151), the cocycle of Galileo’s group is derived from an
explicit form of the symplectic form. An alternative method to obtain it using only the Lie group
structure is proposed in [2] (Theorem 16.3, p. 329 and Theorem 17.4, p. 374).

Taking into account (3), the transformation law (6) of the Galilean momentum tensor μ reads:

K = K′ P−1 + Km(C, P), L = (P L′ + C K′) P−1 + Lm(C, P) , (30)

where Km and Lm are the components of θ. In particular, one has:

Km(C, P) = m
(
−1

2
‖ u ‖2, uT

)
. (31)

• Step 2: representing the orbit by equations. To obtain them, we have to determine a functional basis.
The first step is to calculate their number. We start determining the isotropy group of μ. The
analysis will be restricted to massive particles: m �= 0. The components p, q, l, e being given, we
have to solve the following system:

p = R p + m u , (32)

q = R q − τ0(R p + m u) + m k , (33)

l = R l − u × (R q) + k × (R p) + m k × u , (34)

u · (R p) +
1
2

m ‖ u ‖2= 0 , (35)

with respect to τ0, k, R, u. Owing to (32), the boost u can be expressed with respect to the rotation
R by:

u =
1
m

(p − R p) , (36)
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that allows us to satisfy automatically (35). Next, owing to (32), Equation (33) can be simplified
as follows:

q = R q − τ0 p + m k ,

that allows to determine the spatial translation k with respect to R and the clock change τ0:

k =
1
m

(q − R q + τ0 p). (37)

Finally, because of (32), Equation (34) is simplified as follows:

l = R l − u × (R q) + k × p .

Substituting (37) into the last relation gives:

l = R l − u × (R q) +
1
m

q × p − 1
m

(R q)× p .

Owing to (32) and the definition of the spin angular momentum l0

l0 = l − q × p / m ,

leads to:
l0 = R l0 . (38)

These quantity being given, we have to determine the rotations satisfying the previous relation. It
turns out that two cases must be considered.

– Generic orbits : massive particle with spin or rigid body. If l0 does not vanish, the solutions of (38)
are the rotations of an arbitrary angle ϑ about the axis l0. We know by (36) and (37) that u and
k are determined in a unique manner with respect to R and τ0. The isotropy group of μ can
be parameterised by ϑ and τ0. It is a Lie group of dimension 2. The dimension of the orbit of
μ is 10 − 2 = 8. The maximum number of independent invariant functions is 10 − 8 = 2. A
possible functional basis is composed of:

s0 =‖ l0 ‖ , (39)

e0 = e − 1
2 m

‖ p ‖2 , (40)

of which the values are constant on the orbit which represents a massive particle with spin or
a rigid body (seen from a long way off).

– Singular orbits : spinless massive particle. In the particular case l0 = 0, all the rotations of SO(3)
satisfy (38), then the isotropy group is of dimension 4. By similar reasoning to the case of
non vanishing l0, we conclude that dimension of the orbit is 6 and the number of invariant
functions is 4. A possible functional basis is composed of e0 and the three null components
of l0.

For the orbits with m = 0, the reader is referred to [6] (pp. 440, 441).

To physically interpret the components of the momentum, let consider a coordinate system X′

in which a particle is at rest and characterized by the components p′ = 0, q′ = 0, l′ = l0 and
e′ = e0 of the momentum tensor. Let us consider another coordinate system X = PX′ + C with a
Galilean boost v and a translation of the origin at k = x0 (hence τ0 = 0 and R = 1

R3 ), providing
the trajectory equation:

x = x0 + v t , (41)
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of the particle moving in uniform straight motion at velocity v. Owing (27) and (28), we can
determine the new components of the torsor in X:

p = m v, q = m x0, l = l0 + q × v, e = e0 +
m
2

‖ v ‖2 , (42)

The third relation of (42) is the classical transport law of the angular momentum. In fact, it is a
particular case of the general transformation laws (28) when considering only a Galilean boost.
The transformation law reveals the physical meaning of the momentum tensor components:

– The quantity p, proportional to the mass and to the velocity, is the linear momentum.
– The quantity q, proportional to the mass and to the initial position, provides the trajectory

equation. It is called passage because indicating the particle is passing through x0 at time
t = 0.

– The quantity l splits into two terms. The second one, q × v = x × m v = x × p, is the orbital
angular momentum. The first one, l0 = l − q × p / m, is the spin angular momentum. Their sum,
l, is the angular momentum.

• Step 3: parameterizing the orbit. If the particle has an internal structure, introducing the moment of
inertia matrix J and the spin �, we have, according to König’s theorem:

l0 = J �, e0 =
1
2

� · (J �) .

Hence each orbit defines a particle of mass m, spin s0, inertia J and can be parameterized by 8
coordinates, the 3 components of q, the 3 components of p and the 2 components of the unit vector
n defining the spin direction, thanks to the momentum map R3 × R3 × S2 → g∗ : (q, p, n) �→
μ = ψ(q, p, n) such that:

l =
1
m

q × p + s0n, e =
1

2 m
‖ p ‖2 +

s2
0
2

n · (J −1 n) .

The corresponding measure is dλ = d3q d3 p d2n. For simplicity, we consider further only a
singular orbit of dimension 6 representing a spinless particle of mass m, which corresponds to the
particular case l0 = 0 then n = 0. It can be parameterized by 6 coordinates, the 3 components of q
and the 3 components of p thanks to the map:

ψ : R3 ×R
3 → g∗ : (q, p) �→ μ = ψ(q, p) ,

such that:
l =

1
m

q × p, e =
1

2 m
‖ p ‖2 . (43)

• Step 4: modelling the deformation. Statistical mechanics is essentially based on a set of discrete
particles and, in essence, incompatible with continuum mechanics. Thus, according to usual
arguments, the passage from the statistical mechanics to continuum mechanics is obtained by
equivalence between the set of N particles (in huge number) and a box of finite volume V occupied
by them, large with respect to the particle size but so small with respect to the continuous medium
that it can be considered as infinitesimal. Let us consider N identical particles contained in
V, large with respect to the particles but representing the volume element of the continuum
thermodynamics. The motion of the matter being characterized by (13), let us consider the change
of coordinate

t = t′, x = ϕ(t′, s′) .
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The jacobean matrix reads:
∂X
∂X′ = P =

(
1 0
v F

)
. (44)

From then on, the momentum is considered as an affine tensor, i.e., its components are modified
by the action of any affine transformation.

Besides, we suppose that the box of initial volume V0 is at rest in the considered coordinate system
(v = 0) and the deformation gradient F is uniform in the box, then:

dx = F ds′ .

According to (3), the linear momentum is transformed according to:

p = F−T p′ . (45)

For a particle initially at position x, the passage is given by (42):

q = m x .

The measure becomes
dλ = m3d3x d3 p d2n = m3d3s′ d3 p′ d2n .

For reasons that will be justified at Step 5, we consider the infinitesimal generator:

Z = (−W, 0) .

As the box is at rest in the considered coordinate system, the velocity is null and, owing to (14):

W = β U =

(
β

0

)
. (46)

Hence the dual pairing (26) is reduced to:

μ Z = β e ,

and, owing to (43), (45) and (15), for a spinless massive particle:

μ Z =
β

2 m
‖ p ‖2=

β

2 m
‖ F−T p′ ‖2=

β

2 m
p′TC−1 p′ .

For reasons of integrability as explained in Section 6, it is usual to replace the orbit by the subset
V0 ×R3 × S2 � orb(μ) . It is worth remarking that, unlike the orbit, this set is not preserved by
the action but the integrals in (10) and (11) are invariant. Equation (10) gives for a particle:

z = ln(m3 I0 I1 I2) ,

where:
I0 =

∫
V0

d3s′ = V0 ,

I1 =
∫
R3

e−
β

2 m p′TC−1 p′d3 p′ ,

I2 =
∫
S2

d2n = 4 π .
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Finally:

z =
1
2

ln(det(C))− 3
2

ln β + Cte , (47)

where the value of the constant is not relevant in the sequel since it does not depend on W
and F (through C). It is worth remarking that, unlike orb(μ), the subset V0 × R3 × S2 is not
preserved by the action and depends on the arbitrary choice of V0. Nevertheless, z—then s and
M—depends on V0 only through ln(V0) which is absorbed in the constant and has no influence
on the derivatives (17).

As pointed out by Barbaresco [17], there is a puzzling analogy between the integral occuring
in (10) and Koszul–Vinberg characteristic function [18,19]:

ψΩ(Z) =
∫

Ω∗
e−μ Z dλ ,

where Ω is a sharp open convex cone and Ω∗ is the set of linear strictly positive forms on Ω̄ − {0}.
Considering Galileo’s group, it is worth remarking that the cone of future directed timelike vectors
(i.e., such that β > 0) [20] is preserved by linear Galilean transformations. The momentum orbits
are contained in Ω∗ but the integral does not converge on the orbits or on Ω∗.

• Step 5: identification. It is based on the following result.

Theorem 2. The transformation law of the temperature vector �̂W is the same as the one of affine maps Θ

on the affine space of momentum tensors through the identification:

Z = (−W, 0), z = m ζ ,

Proof. First of all, let us verify that the form Z = (−W, 0) does not depend on the choice of the
affine frame. Indeed, starting from Z′ = (−W′, 0) and applying the adjoint representation (5) with
dC′ = −W′ and dP′ = 0, we find that dC = −W and dP = 0 with:

W = P W′ .

Besides, using the notations of (30), Equation (9) gives:

z = z′ − θ(a) Ad(a) Z′ = z′ + KmP W′ .

On the other hand, let Ŵ be the 5-column (20) representing the temperature vector:

Ŵ =

(
W
ζ

)
=

⎛⎜⎝ β

w
ζ

⎞⎟⎠ .

Taking into account (12) and (31), it is easy to verify that its transformation law (25) with the linear
Bargmannian transformation (24) can be recast as:(

W
ζ

)
=

(
P 0

F1P 1

) (
W′

ζ′

)
,

which is the transformation law of the affine map Θ provided z = m ζ, that achieves the proof.
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• Step 6: boost method. For the box at rest in the coordinate system X, the temperature 4-vector is
given by (46):

W =

(
β

0

)
.

A new coordinate system X̄ in which the box has the velocity v can be deduced from X = P X̄ + C
by applying a boost u = −v (hence k = 0, τ0 = 0 and R = 1

R3 ). The transformation law of vectors
gives the new components

W̄ =

(
β

β v

)
,

and (9) leads to:

z̄ = z +
m β

2
‖ v ‖2= z +

m
2 β

‖ w ‖2 .

Taking into account (47) and leaving out the bars:

z =
1
2

ln(det(C))− 3
2

ln β +
m
2 β

‖ w ‖2 +Cte . (48)

It is clear from (11) that s is Legendre conjugate of −z, then, introducing the internal energy (which
is nothing other than the Galilean invariant (40)):

eint = e − 1
2 m

‖ p ‖2 ,

the entropy is:

s =
3
2

ln eint +
1
2

ln(det(C)) + Cte ,

and, by Z = ∂s / ∂M, we derive the corresponding momenta:

β =
∂s
∂e

=
3

2 eint
, w = −grad p s =

3
2 eint

p
m

.

As Equation (47), Equation (48) and the expressions of s, β and w are not affected by the arbitrary
choice of V0.

• Step 7: link between z and ζ. As z is an extensive quantity, its value for N identical particles is
zN = N z. Planck’s potential ζ being a specific quantity, we claim that:

ζ =
zN

N m
=

z
m

=
1

2 m
ln(det(C))− 3

2 m
ln β +

1
2 β

‖ w ‖2 +Cte .

By (16) and (17), we obtain the linear 4-momentum Π = (H,−pT) and Cauchy’s stresses:

H = ρ

(
3
2

kBT
m

+
1
2
‖ v ‖2

)
, p = ρv, σ = −q 1

R3 ,

where, by the expression of the pressure, we recover the ideal gas law:

q =
ρ

m
kBT =

N
V

kBT .

The first principle of thermodynamics (18) reads:

∂H
∂t

+ div (Hv − σv) = 0, ρ
dv
dt

= −grad q,
∂ρ

∂t
+ div (ρ v) = 0 .
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We recognize the balance of energy, linear momentum and mass.

Remark 4. The Hessian matrix I of −z, considered as function of W through Z, is positive definite [3]. It is
Fisher metric of the Information Geometry. For the expression (48), it is easy to verify it:

−δM δZ =
1
β

(
eint(δβ)2 + m ‖ δw − δβ

m
p ‖2

)
> 0 ,

for any non vanishing δZ taking into account β > 0, eint > 0 and m > 0. On this basis, we can construct a
thermodynamic length of a path t �→ X(t) [21]:

L =
∫ t1

t0

√
(δW(t))T I(t) δW(t)dt ,

where δW(t) is the perturbation of the temperature vector, tangent to the space-time at X(t). We can also define
a related quantity, Jensen–Shannon divergence of the path:

J = (t1 − t0)
∫ t1

t0

(δW(t))T I(t) δW(t)dt .

8. Conclusions

The above approach is not limited to classical mechanics but can be used as guiding ideas to
tackle the relativistic mechanics. Beyond the strict application to physics, it can be taken as source of
inspiration to broach other topics such as the science of information from the viewpoint of differential
geometry and Lie groups. We hope to have modestly contributed to this aim.
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Abstract: Let us begin by considering two book titles: A provocative title, What Is a Statistical Model?
McCullagh (2002) and an alternative title, In a Search for Structure. The Fisher Information. Gromov (2012).
It is the richness in open problems and the links with other research domains that make a research
topic exciting. Information geometry has both properties. Differential information geometry is
the differential geometry of statistical models. The topology of information is the topology of
statistical models. This highlights the importance of both questions raised by Peter McCullagh
and Misha Gromov. The title of this paper looks like a list of key words. However, the aim is to
emphasize the links between those topics. The theory of homology of Koszul-Vinberg algebroids
and their modules (KV homology in short) is a useful key for exploring those links. In Part A
we overview three constructions of the KV homology. The first construction is based on the
pioneering brute formula of the coboundary operator. The second construction is based on the
theory of semi-simplicial objects. The third construction is based on the anomaly functions of abstract
algebras and their abstract modules. We use the KV homology for investigating links between
differential information geometry and differential topology. For instance, “dualistic relation of
Amari” and “Riemannian or symplectic Foliations”; “Koszul geometry” and “linearization of webs”;
“KV homology” and “complexity of models”. Regarding the complexity of a model, the challenge
is to measure how far from being an exponential family is a given model. In Part A we deal with
the classical theory of models. Part B is devoted to answering both questions raised by McCullagh
and B Gromov. A few criticisms and examples are used to support our criticisms and to motivate
a new approach. In a given category an outstanding challenge is to find an invariant which encodes
the points of a moduli space. In Part B we face four challenges. (1) The introduction of a new theory
of statistical models. This re-establishment must answer both questions of McCullagh and Gromov;
(2) The search for an characteristic invariant which encodes the points of the moduli space of
isomorphism class of models; (3) The introduction of the theory of homological statistical models.
This is a pioneering notion. We address its links with Hessian geometry; (4) We emphasize the
links between the classical theory of models, the new theory and Vanishing Theorems in the
theory of homological statistical models. Subsequently, the differential information geometry has
a homological nature. That is another notable feature of our approach. This paper is dedicated to our
friend and colleague Alexander Grothendieck.

Keywords: KV cohomoloy; functor of Amari; Riemannian foliation; symplectic foliation; entropy
flow; moduli space of statistical models; homological statistical models; geometry of Koszul;
localization; vanishing theorem
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1. Introduction

1.1. The Notation

Throughout the paper we use tha following notation. N is the set of non negative integers, Z is
the ring of integers, R is the field of real numbers, C∞(M) is the associative commutative algebra of
real valued smooth functions in a smooth manifold M. Let ∇ be a Koszul connection in a manifold M,
R∇ is the curvature tensor of ∇. It is defined by

R∇(X, Y) = ∇X∇Y −∇Y∇X −∇[X,Y].

T∇ is the torsion tensor of ∇. It is defined by

T∇(X, Y) = ∇XY −∇YX − [X, Y].

Let X be a smooth vector field in M. LX∇ is the Lie derivative of ∇ in the direction X · ι(X)R∇ is
the inner product by X. To a pair of Koszul connections (∇,∇∗) we assign three differential operators.
They are denoted by D∇∇∗

, D∇ and D∇.

(A.1) D∇∇∗
is a first order differential operator. It is defined in the vector bundle Hom(TM, TM).

Its values belong to the vector bundle Hom(TM⊗2, TM).
(A.2) D∇ and D∇ are 2nd order differential operators. They are defined in the vector bundle TM.

Their values belong to the vector bundle Hom(TM⊗2, TM). Let X be a section of TM and let ψ

be a section of T∗M ⊗ TM. The differential operators just mentioned are defined by

D∇∇∗
(ψ) = ∇∗ ◦ ψ − ψ ◦ ∇, (1a)

D∇(X) = LX∇− ι(X)R∇, (1b)

D∇(X) = ∇2(X). (1c)

Part A of this paper is partially devoted to the global analysis of the differential equation

FE(∇∇∗) : D∇∇∗
(ψ) = O.

The solutions to FE(∇∇∗) are useful for addressing the links between the KV homology,
the differential topology and the information geometry.

The purpose of a forthcoming paper is the study of the differential equations

FE∗(∇) : D∇(X) = 0,

FE∗∗(∇) : D∇(X) = 0.

In the Appendix A to this paper we overview the role played by the solutions to FE∗∗(∇) in
some still open problems.

1.2. Some Explicit Formulas

Let x = (x1, ..., xm) be a system of local coordinate functions of M. In those coordinates the
Christoffel symbols of both ∇ and ∇∗ are denoted by Γij:k and Γ∗

ij:k respectively. We use those
coordinate functions for presenting an element ψ ∈ M(∇∇∗) as a matrix [ψij]. Thus by setting
∂i = ∂

∂xi
one has

∇∂i∂j = Γij:k∂k.
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We focus on FE(∇∇∗) and of FE∗∗(∇). They are equivalent to the following system of partial
differential equations

[Sij:k] :
∂ψkj

∂xi
− ∑

1≤�≤m
(Γij:�ψk� − Γ∗

i�:kψ� j) = 0,

[Θk
ij(X)] :

∂2Xk

∂xi∂xj
+ ∑

α

[Γk
iα

∂Xα

∂xj
+ Γk

jα
∂Xα

∂xi
− Γα

ij ∂Xk
∂xα

] + ∑
α

[
∂Γk

jα

∂xi
+ ∑

β

[Γβ
jαΓk

iβ − Γβ
ijΓ

k
βα]]Xα = 0.

In Part A we address the links between the following topics DTO, HGE, IGE and ENT. Those topics
are presented as vertices of a square whose centre is denoted by KVH.

(1) DTO stands for Differential TOpology. In DTO, FWE stands for Foliations and WEbs.
(2) HGE stands for Hessian GEometry. Its sources are the geometry of bounded domains,

the topology of bounded domains, the analysis in bounded domains. Among the notable
references are [1–3]. Hessian geometry has significant impacts on thermodynamics, see [4,5],
About the impacts on other related topics the readers are referred to [6–12].

(3) IGE stands for Information GEometry. That is the geometry of statistical models. More generally
its concern is the differential geometry of statistical manifolds. The range of the information
geometry is large [13]. Currently, the interest in information geometry is increasing. This comes
from the links with many major research domains [14–16]. We address some significant aspects
of those links. Non-specialist readers are referred to some fundamental references such as [17,18].
See also [4,19–23]. The information geometry also provides a unifying approach to many problems
in differential geometry, see [21,24,25]. The information geometry has a large scope of applications,
e.g., physics, chemistry, biology and finance.

(4) ENT stands for ENTropy. The notion of entropy appears in many mathematical topics, in Physics,
in thermodynamics and in mechanics. Recent interest in the entropy function arises from its
topological nature [14]. In Part B we introduce the entropy flow of a pair of vector fields.
The Fisher information is then defined as the Hessian of the entropy flow.

(5) KVH stands for KV Homology. The theory of KV homology was developed in [9]. The motivation
was the conjecture of M. Gerstenhaber in the category of locally flat manifolds. In this paper
we emphasize other notable roles played by the theory of KV homology. It is also useful for
discussing a problem raised by John Milnor in [26].

The conjecture of Gerstenhaber is the following claim.

Every restricted theory of deformation generates its proper cohomology theory [27].

Loosely speaking, in a restricted theory of deformation one has the notion of both infinitesimal
deformation and trivial deformation. The challenge is the search for a cochain complex admitting
infinitesimal deformations as cocycles. In the present paper, KVH is useful for emphasizing the links
between the vertices DTO, HGE, IGE and ENT. That is our reason for devoting a section to KVH.

Warning.

We propose to overview the structure of this paper. The readers are advised to read this paper as through it
were a wander around the vertices of the square “DTO-HGE-IGE-ENT”. Thus, depending on his interests and
his concerns a reader could walk several times across the same vertex. For instance the information geometry
appears in many sections, depending on the purpose and on the aims.

1.3. The content of the Paper

This paper is divided into Part A and Part B.
Part A: Sections 1–7.
Section 1 is the Introduction. Section 2 is devoted to algebroids, modules of algebroids and the

theory of KV homology of the Koszul-Vinberg algebroids. To introduce the KV cohomology we have
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adopted three approaches. Each approach is based on its specific machinery. However, the readers will
face three cochain complexes which are pairwise quasi isomorphic. The KV cohomology is present
throughout this paper. At the end of Part B the reader will see that the theory of statistical models is but
a vanishing theorem in the theory of KV hohomology. The first approach is based on the pioneering
fundamental brute formula of the coboundary operator. Historically, the brute formula is the first to
have been constructed [9].

This first approach is used in many sections of this paper. Regarding the theory of deformation
of the Koszul Geometry, the KV cohomology is the solution to the conjecture of Gerstenhaber. In the
theory of modules of KV algebroids the role played by the KV cohomology is practically SIMILAR
to the role played by the Hocshild cohomology in the category of associative alggebroids and their
modules. This last remark holds for the role played by the Chevalley-Eilenberg cohomology in the
category of Lie algebroids and their modules. Nevertheless, our comparison fails in the theory of
Extension of modules over algebroids. In both categories of extensions of modules over associative
algebroids and Lie algebroids the moduli space of equivalence class is encoded by cohomology classes
of degree one. In the category of extensions of KV modules the moduli space is encoded by a spectral
sequence. That was a unexpected feature in [9]. The pioneering coboundary operator of Nijenhuis [28]
may be derived from the total brute coboundary operator introduced in [29].

The second approach is based on the notion of simplecial objects.
The third approach is based on the theory of anomaly functions for abstract algebras and their

abstract modules. The idea has emerged from recent correspondences with one of my former teachers.
The KV anomaly function of a Koszul connection ∇ may be expressed in terms of the ∇-Hessian
operators ∇2, namely

KV∇(X, Y, Z) =< ∇2(Z), (X, Y) > − < ∇2(Z), (Y, X) > .

This approach is a powerful for addressing the relationships between the global analysis,
the differential topology and the information geometry. The approach by the anomaly functions
suggests many conjectures. Among those conjectures is the following.

Conjecture. Every anomaly function of algebras and of modules yields a theory of cohomology of algebras
and modules.

Section 3. This section is devoted to the theory of KV (co)homology of Koszul-Vinberg algebroids.
We focus on cohomological data which are used in the paper.

Section 4. This section is devoted the KV algebroids which are defined by structures of locally
flat manifold. The KV cohomology theory is used for highlighting the impacts on the differential
topology of the information geometry and its methods. We make the most of some relationships
between the KV cohomology and the global analysis of the differential equation FE∗(∇∇∗). We also
sketch the global analysis of the differential equation

FE∗∗(∇).

This leads to the function
LC � ∇ → rb(∇) ∈ Z.

We explain how to interpret rb as a distance. (See the Appendix A to this paper ). For instance,
the function rb gives rise to an numerical invariant rb(M) which measures how far from being
an exponential family is a statistical model M. This result is a significant contribution to the information
geometry, see [18,22,24].

Section 5. We are interested in how interact the information geometry, the KV cohomology and
the geometry and Koszul. In particular we relate the notion of hyperbolicity and vanishing theorems
in the KV cohomology.
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Section 6. This section is devoted to the homological version of the geometry of Koszul.
Our approach involves the dualistic relation of Amari. The KV cohomology links the dualistic
relation with the geometry of Koszul.

Section 7. In this section summarize the highlighting features of Part A.

Part B: Sections 8–14.

Section 8. This is the starting section of the second part B. This Part B is devoted to new insights
in the theory of statistical models. On 2002 Peter McCullar raised the provocative question.

What Is a Statistical Model

Across the world (Australia, Canada, Europe, US) the McCullaghs paper became the object of
many criticisms and questions by eminent theoretical and applied statisticians [30].

Part B is aimed at supplying some deficiencies in the current theory of statistical models.
We address some criticisms which support the need of re-establishing the theory of statistical model
for measurable sets. Those criticisms are used for highlight the lack of both Structure and Relations.
Those criticisms also highlight the search of M. Gromov [15]. The need for structures and relations
was the intuition of Peter McCullagh. Loosely speaking there is a lack of Intrinsic Geometry in the
sense of Erlangen. Subsequently the lack of intrinsic geometry yields other things that are lacking.
The problem of the moduli space of models is not studied, although this would be crucial for applied
information geometry, and for applied statistics. That might be a key in reading some the controversy
about [30].

Section 9. In this section we address the problem of moduli space of statistical models. The problem
of moduli space in a category is a major question in Mathematic. It is generally a difficult
problem that involves finding a characteristic invariant which encodes the point of the moduli space.
Such an invariant is a crucial step toward the geometry and the topology of a moduli space.
Among other needs, the problem of encoding the moduli space of models has motivated our need of
a new approach, that is to say the need of a theory having nice mathematical structure and relations.
In this Part B the problem of the moduli space is solved. To summarize the theorem describing the
moduli spaces of statistical models we need the following notation.

A gauge structure in a manifold M is a pair (M,∇) where ∇ is a Koszul connection in M.
The category of gauge structures in M is denoted by LC(M). We are concerned with the vector bundle
T∗⊗2M of bi-linear forms in the tangent bundle TM. The sheaf of sections of T∗⊗2M is denoted
by BL(M).

The category of m-dimensional statistical models (to be defined) of a measurable (Ξ, Ω) is denoted
by GMm(Ξ, Ω). The category of random functors

LC(M)× Ξ → BL(M)

is denoted by F (LC,BL)(M). One of the interesting breakthrough in this Part.B is the following
solution to the problem of moduli.

Theorem 1. There exists a functor

GMm(Ξ, Ω) � M → qM ∈ BL(M) (2)

which determines a model M up to isomorphism.
Let p be the probability density of a model M. The mathematical expectation of qM(∇) is defined by

E(qM(∇)) =
∫

Ξ
pqM(∇). (3)

The quantity E(qM)(∇) does not depend on the Koszul connection ∇. It is called the Fisher information of M.
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This theorem emphasizes the Search for structure [16].
Section 10. This section is devoted to introduce the category of homological statistical models.

This may be interpreted as a variant of the topology of the information. Another approach is to be
found in Baudot-Bennequin [31].

The current theory (as in [17]) is called the classical (or local) theory. This means that a statistical
model as in [17,18] is derived from the localization of a homological model. Loosely speaking such a
model expresses a local vanishing theorem in the theory of homological statistical models.

Section 11. This section is devoted to discussing the links between the geometry of Koszul and
the theory of homological statistical models. Those investigations lead to this notable feature.

The Geometry of Koszul, the homological statistical models and the classical information geometry
locally look alike.

Section 12. Through Section 9 the framework is the category of equivariant locally trivial fibration.
This assumption is weakened in Section 12. We recall the relationships between the Cech cohomology
and the theory of locally trivial fiber bundle. We extend the scope of applications of the methods of the
information geometry. Those extensions produce some interesting results. Here is an instance.

Theorem 2. Let M be an oriented compact real analytic manifold and let Cω(M2) be the space of real valued
analytic functions in M2. There exists a non trivial map of Cω(M2) in the family of (positive) stratified
Riemannian foliation in M.

Sections 13. This Section 13 is a variant of Section 7.
Section 14 is an appendix we have mentioned. It is devoted to overview a few new

significant results. Those results are derived from the global analysis of the differential operators{
D∇, D∇,∇ ∈ LC(M)

}
.

The solutions to a few open problems are announced.

2. Algebroids, Moduls of Algebroids, Anomaly Functions

The purpose of this section is to introduce basic notions in the algebraic topology of locally
flat manifolds.

2.1. The Algebroids and Modules

Given a smooth fiber bundle
B → M

the set of smooth sections of B is denoted by Γ(B).

Definition 1. An (abstract) real algebra is a real vector space A endowed with a bilinear map

A×A → A

Definition 2. An (abstract) real two-sided module of an (abstract) algebra A is a real vector space W with two
bilinear mappings

A× W → W,

W ×A → W
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Warning.

Here algebra means a multiplication a · b without any rule of calculations. So the product a · b · c is
meaningless.

Throughout this paper, the smooth manifolds we deal with are connected and paracompact. In a smooth
manifold M all geometrical objects we are interested in are smooth as well.

The vector space of smooth vector fields in a manifold M is denoted by X (M). It is a left module of the
associative commutative algebra C∞(M).

Consider a real vector bundle
E → M.

The real vector space of sections of E is denoted by Γ(E).

Definition 3. A real algebroid over a smooth manifold M is a real vector bundle whose vector space of sections
is a real algebra.

So the vector space of sections of a real algebroid E is endowed with a R-bilinear map

Γ(E)× Γ(E) � (s, s∗) → s · s∗ ∈ Γ(E)

To simplify the multiplication of two sections is denoted s · s∗.

Definition 4. A two-sided module of an algebroid E is a vector bundle

V → M

whose vector space of sections is a two-sided module of the algebra Γ(E).

Let s be section E and let v be a section of V . Both left action s on v and the right action of s on v
are denoted by s · v and v · s.

Definition 5. An anchored vector bundle over M is a pair

(E , b)

formed by a real vector bundle E and a vector bundle homomorphism

E � e → b(e) ∈ TM.

The homomorphism b is called the anchor map.

2.2. Anomaly Functions of Algebroids and of Modules

Let V be a two-sided module of an algebroid (E , b).

Definition 6. An anomaly function of an algebroid E is a 3-linear map AE of Γ(E)3 in Γ(E) whose values
AE (s1, s2, s3) belong to spanR[(si·sj)·sk, si·(sj·sk); i, j, k ∈ [1, 2, 3]]. An anomaly function of an E -module V is
a 3-linear map AEV of Γ(E)2 × Γ(V) in Γ(V) whose values AEV (s, s∗, v) belong to spanR[(s·s∗)·v, s·(s∗·v)∀s,
s∗ ∈ Γ(E), ∀v ∈ Γ(V)].

In this paper we are interested in some anomaly functions which have strong geometrical impacts.
They are defined below.
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Definition 7. Let E be an algebroid and let s, s∗, s∗∗ ∈ Γ(E).
(1) The associator anomaly function of E is defined by

Ass(s, s∗, s∗∗) = (s · s∗) · s∗∗ − s · (s∗ · s∗∗).

(2) The Koszul-Vinberg anomaly function of E is defined by

KV(s, s∗, s∗∗) = Ass(s, s∗, s∗∗)− Ass(s∗, s, s∗∗).

(3) The Jacobi anomaly functions of E are defined by

J(s, s∗, s∗∗) = (s · s∗) · s∗∗ + (s∗ · s∗∗) · s + (s∗∗ · s) · s∗.

Definition 8. Let v be a section of a two-sided E -module V .
(1) The associator anomaly function of a left module V is defined as

Ass(s, s∗, v) = (s · s∗) · v − s · (s∗ · v).

(2) The KV anomaly functions of a two sided module V are defined as

KV(s, s∗, v) = Ass(s, s∗, v)− Ass(s∗, s, v),

KV(s, v, s∗) = (s · v) · s∗ − s · (v · s∗)− (v · s) · s∗ + v · (s · s∗).

Definition 9. We keep the notation used above. Let s, s∗ be sections of E , let v be a section of V and f ∈ C∞(M).
(1) The Leibniz anomaly function of an anchored algebroid E is defined by

L(s, f , s∗) = s · ( f s∗)− d f (b(s))s∗ − f s · s∗.

(2) The Leibniz anomaly function of the E -module V is defined by

L(s, f , v) = s · ( f v)− d f (b(s))v − f s · v.

A category of algebroids and modules of algebroids is defined by its anomaly functions.
The anomaly functions are also used for introducing theories of homology of algebroids.

Some categories of anchored algebroids play important roles in the differential geometry.

Definition 10. (A1): A Lie algebroid is an anchored algebroid (E , b) satisfying the identities

s · s∗ = 0,

L(s, f , s∗) = 0.

(B1): A KV algebroid is an anchored algebroid (E , b) satisfying the identities

KV(s, s∗, s ∗ ∗) = 0,

L(s, f , s∗) = 0.

(B2): A vector bundle V is a module of Lie algebroid (E , b) if it satisfies the identities

L(s, f , v) = 0,

(s · s∗) · v − s · (s ∗ ·v) + s ∗ ·(s · v) = 0.
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A vector bundle V is a two-sided KV module of a Koszul-Vinberg algebroid (E , b) if it satisfies the identities

L(s, f , v) = 0,

KV(s, s∗, v) = 0,

KV(s, v, s∗) = 0.

Warning.

Consider a vector V space as the trivial vector bundle

V × O → 0.

Then we get
Γ(V × 0) = V.

Therefore an algebra is an anchored algebroid over a point; its anchor map of is the zero map. Therefore,
the Leibniz anomaly of an algebra is nothing but the bilinearity of the multiplication. So the notion of KV algebra
and KV module is clear.

3. The Theory of Cohomology of KV Algebroids and Their Modules

This section is devoted to the cohomology of KV algebroids and KV modules of KV algebroids.
KV stands for Koszul-Vinberg. We shall introduce three approaches to the theory of KV cohomology.
Each approach has its particular advantage. So, depending on the needs or on the concerns one or other
approach may be convenient. The three approaches are called “Version brute formula”, “Version semi
simplicial objects”, “Version anomaly functions”. The same graded vector space is common to the
three constructions. They differ in their coboundary operators. However, three constructions lead to
cohomology complexes which are pairwise quasi isomorphic.

Each construction leads to two cochain complexes. Those complexes are called the KV complex and
total KV complex. They are denoted by C∗

KV and C∗
τ. In final we obtain six cohomological complexes.

3.1. The Theory of KV Cohomology—Version the Brute Formula of the Coboundary Operator

The geometric framework is the category of real KV algebraoids and their two sided modules.
However our machineries only make use of R-multi-linear calculations in the vector spaces of sections
of vector bundles. Without any damage we replace the categories of KV algebroids and modules of KV
algebroids by the categories of KV algebras and abstract modules of KV algebras.

3.1.1. The Cochain Complex CKV .

Let W be a two-sided module of a KV algebra A.

Definition 11. The vector subspace J(W) ⊂ W is defined by

(a · b) · w − a · (b · w) = 0 ∀a, b ∈ A

We consider the Z-graded vector space

CKV(A, W) = ∑
q

Cq
KV(A, W).
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The homogeneous vector sub-spaces are defined by

Cq
KV(A, W) = 0 ∀q < 0,

C0
KV(A, W) = J(W),

Cq
KV(A, W) = HomR(A⊗q, W) ∀q > 0.

Before pursuing we fix the following notation.
Let

ξ = a1 ⊗ ...⊗ aq+1 ∈ A⊗q+1

and let a ∈ A,
∂iξ = a1 ⊗ ...âi...⊗ aq+1,

∂2
i,k+1ξ = ∂i(∂k+1ξ),

a.ξ =
q+1

∑
1

a1 ⊗ ...aj−1 ⊗ a.aj ⊗ aj+1...aq+1.

We are going to define the coboundary operator

δKV : Cq(A, W) → Cq+1(A, W).

The coboundary operator is a linear map. It is defined by

[δKV(w)](a) = −a · w + w · a ∀w ∈ J(W), (4a)

[δKV f ](ξ) =
q

∑
1
(−1)i[ai · f (∂iξ)− f (ai · ∂iξ) + ( f (∂2

i,q+1ξ ⊗ ai)) · aq+1]∀ f ∈ Cq
KV(A, W),

∀ξ ∈ A⊗q+1. (4b)

The operator δKV satisfies the identity

δ2
KV f = 0 ∀ f ∈ CKV(A, W).

Therefore the pair (C∗
KV(A, W), δKV) is a cochain complex. Its cohomology space is denoted by

HKV(A, W) = ∑
q

Hq
KV(A, W).

The conjecture of Gerstenhaber: Comments.

A KV algebra A is a two-sided module of itself. An infinitesimal deformations of A is a 1-cocycle of
CKV(A,A) [9]. By the conjecture of Gerstenhaber the cohomology complex CKV(A,A) is generated by the
theory of deformations in the category of KV algebras.

The theory of deformation of KV algebras is the algebraic version of the theory of deformation of locally flat
manifolds [2]. Therefore, the complex CKV(A,�) is the solution to the conjecture of Muray Gerstenhaber in the
category of locally flat manifolds [27].

Features.

(1) The 2nd cohomology space H2
KV(A,A) is the space of non trivial deformations of A.

The definition of KV algebra of a locally flat manifold will be given in the next section.
Following [2] every hyperbolic locally flat manifold has non trivial deformations. Thus, if A is the KV algebra of
a hyperbolic locally flat manifold then

H2
KV(A,A) = 0.
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(2) Let W be a two-sided module of a KV algebra A. We consider W as a trivial KV algebra, viz

w · w∗ = 0 ∀w, w∗ ∈ W.

Let EXTKV(A, W) be the set of equivalence classes of short exact sequences of KV algebras

0 → W → B → A → 0.

An interpretation of the 2nd cohomology space of CKV(A, W) is the identification

H2
KV(A, W) = EXTKV(A, W).

Let W, W∗ be two-sided modules of A. Let EXTA(W∗, W) be the set of equivalence classes of exact short
sequences of two-sided A-modules

0 → W → T → W∗ → 0.

In both the category of associative algebras and the category of Lie algebras we have

HH1(A, HomR(W∗, W)) = EXTA(W∗, W),

H1
CE(A, HomR(W∗, W)) = EXTA(W∗, W).

Here HH(A,−) stands for Hochschild cohomology of an associative algebra A and HCE(A,−) stands for
cohomology of Chevalley-Eilenberg of a Lie algebra A.

Unfortunately in the category of KV modules of KV algebras this interpretation of the first cohomology
space fails. Loosely speaking in the category of KV algebras the set H1(A, Hom(W∗, W)) is not canonically
isomorphic to set EXTA(W∗, W) [9].

3.1.2. The Total Cochain Complex Cτ.

The purpose is the total complex

Cτ(A, W) = ∑
q

Cq
τ(A, W).

Its homogeneous vector subspaces are defined by

Cq
τ(A, W) = 0 ∀q < 0,

C0
τ(A, W) = W,

Cq
τ(A, W) = HomR(A⊗q, W) ∀q > 0.

The total coboundary operator is a linear map

Cq
τ(A, W) → Cq+1

τ (A, W).

That operator is defined by

(1) : [δτw](a) = −a · w + wa ∀(a, w) ∈ A×W,
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(2) : [δτ f ](ξ) =
q+1

∑
1
(−1)i[ai · f (∂iξ)− f (ai · ∂iξ) + ( f (∂2

i,q+1ξ ⊗ ai)) · aq+1] ∀ f ∈ Cq
τ(A, W).

The pair
(C∗

τ(A, W), δτ)

is a cochain complex, viz
δ2

τ = 0.

The derived cohomology space is denoted by

Hτ(A, W) = ∑
q

Hq
τ(A, W).

It is called the W-valued total KV cohomology of A.

3.2. The Theory of KV Cohomology—Version: the Semi-Simplicial Objects

Let V be a two-sided module of a KV algebra A. Our aim is the construction of semi simplicial
A-modules whose derived cochain complex is quasi isomorphic to the KV cochin complex CKV(A, V).

3.2.1. Extension

We start by considering the vector space

B = A⊕R.

Its elements are denoted by (s + λ). We endow B with the multiplication which is defined by

(s + λ) · (s∗ + λ∗) = s · s∗ + λs∗ + λ∗s + λλ∗.

With the multiplication we just defined, B is a real KV algebra. In other words we have

KV(X1, X2, X3) = 0.

Here
Xj = sj + λj.

In the A-module V we have a structure of left B-module which is defined by

(s + λ)·v = s·v + λv ∀(s + λ) ∈ B, ∀v ∈ V.

3.2.2. Construction

Let B̃ be the vector space spanned by A × R. Its elements are finite linear combinations of
(s, λ), s ∈ A×R.

The tensor algebra of B̃ is denoted by T(B̃). It has a Z-grading. its homogeneous vector sub-spaces
are defined by

Tq(B̃) = B̃⊗q.

A monomial element is denoted by

ξ = x1 ⊗ x2 ⊗ ...⊗ xq.

Here
xj = (sj, λj) ∈ A×R.
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The KV algebra A is a two-sided ideal of the KV algebra B. Thereby, the vector space B̃ is
canonically a left module of A.

We define the natural two-sided action of R in B̃ by setting

λ · (s∗, λ∗) = (λs, λλ∗),

(s∗, λ∗) · λ = (λs∗, λ∗λ).

Thereby every vector subspace Tq(B̃) is a left KV module of B. Here the left action of B in Tq(B̃)
is defined

(s + λ) · ξ = s · ξ + λξ.

Before continuing we recall the (extended) action of A in tensor space Tq(B̃),

s · (x1 ⊗ x2 ⊗ ...⊗ xq) =
q

∑
j=1

x1 ⊗ x2...⊗ s · xj ⊗ ...⊗ xq.

We recall a notation which has been used in the last subsections,

∂jξ = x1 ⊗ x2 ⊗ ...x̂j...⊗ xq.

The symbol x̂j means that xj is missing. Let 1 ∈ R be the unit element, then 1̃ stands for (0, 1) ∈ B̃.
We are going to construct semi simplicial modules of B.

3.2.3. Notation-Definitions

Implicitly we use set isomorphism

B̃ � x = (s, λ) → X∗ = s + λ ∈ B.

Then ∀ξ ∈ Tq(B̃) one has
1̃∗ · ξ = ξ·

We go back to the Z-graded B-module

T∗(B̃) = ∑
q

Tq(B̃).

Definition 12. Let j, q be two positive integers with j < q, let

ξ = x1 ⊗ x2...⊗ xq.

The linear maps
dj : Tq(B̃) → Tq−1(B̃)

and
Sj : Tq(B̃) → Tq+1(B̃)

are defined by
djξ = X∗

j · ∂jξ,

Sjξ = ej(1̃)ξ

The right member of the last equality has the following meaning

ej(1̃)ξ = x1 ⊗ x2...⊗ xj−1 ⊗ 1̃⊗ xj...⊗ xq
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Structure. The maps dj and Sj satisfy the following identities

didj = dj−1di i f i ≤ j, (5a)

SiSj = Sj+1Si i f i < j, (5b)

(Sj−1di − diSj)(ξ) = ej−1(xi)∂iξ i f 1 < i < j, (5c)

(di+1Sj − Sjdi)(ξ) = ej(xi)∂iξ i f j + 1 < i ≤ q, (5d)

di(Si(ξ)) = ξ i f i = j. (5e)

Definition 13. The system
{

Tq(B), di, Si
}

is called the canonical semi simplicial module of B.

3.2.4. The KV Chain Complex

From the canonical simplicial B-module we derive the chain complex C∗(B). it has a Z-grading
which is defined by

Cq(B) = 0 i f q < 0, (6a)

C0(B) = R, (6b)

Cq(B) = Tq(B̃) i f q > 0. (6c)

Now one defines the ( linear) boundary operator

d : Cq(B) → Cq−1(B)

by setting
d(C0(B)) = 0,

d(C1(B)) = 0,

dξ =
q

∑
1
(−1)jdjξ i f q > 1.

By the virtue of (5a) we have
d2 = 0.

3.2.5. The V-Valued KV Homology

We keep the notation used in the preceding sub-subsection. So the vector spaces A, B and V are
the same as in the preceding subsubsection.

We consider the Z-graded vector space

C∗(B, V) = ⊕qCq(B, V).

Its homogeneous sub-spaces are defined by

Cq(B, V) = 0 i f q < 0,

C0(B, V) = V,

Cq(B, V) = Tq(B̃)⊗V i f q > 0.

Every homogeneous vector subspace Cq(B, V) is a left module of the KV algebra B. The left action
is defined by

s · (ξ ⊗ v) = s · ξ ⊗ v + ξ ⊗ s · v.
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Let j and q be two positive integers such that j < q.
Let ξ = x1 ⊗ x2...⊗ xq. To define the linear map

dj : Cq(B, V) → Cq−1(B, V)

we put
dj(ξ ⊗ v) = X∗

j · (∂jξ ⊗ v).

Henceforth one defines the boundary operator

d : Cq(B, V) → Cq−1(B, V)

by setting

d =
q

∑
1
(−1)jdj.

So we obtain a chain complex whose homology space of degree q is denoted by Hq(B, V).

Definition 14. The graded vector space

H∗(B, V) = ∑
q

Hq(B, V)

is called the total homology of B with coefficients in V.

3.2.6. Two Cochain Complexes

We are going to define two cochain complexes. They are denoted by CKV(B, V) and by
Cτ(B, V) respectively.

We recall that the vector subspace J(V) ⊂ V is defined by

(s · s∗) · v − s · (s ∗ ·v) = 0 ∀s s∗ ∈ B.

Let us set
C0

KV(B, V) = J(V),

C0
τ(B, V) = V,

Cq(B, V) = HomR(Tq(B̃) ∀q ≥ 1.

Let (j, q) be a pair of non negative integers such that j < q. We are going to define the linear map

dj : Cq(B, V) → Cq+1(B, V).

Given f ∈ Cq(B, V) and
ξ = x1 ⊗ ...⊗ xq+1

we put
dj f (ξ) = X∗

j · f (∂jξ)− f (djξ).

The family of linear mappings dj has property S · 1, viz

djdi = didj−1 ∀i, j with i < j.
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We use these data for constructing two cochain complexes. They are denoted by (C∗
KV, dKV) and

by (C∗
τ, dτ) respectively. The underlying graded vector spaces are defined by

CKV = J(V)⊕ ∑
q>0

Cq(B, V),

Cτ = V ⊕ ∑
q>0

Cq(B, V).

Their coboundary operators are defined by

(dKVv)(s) = −s · v,

(dτw)(s) = −sw,

dKV( f ) =
q

∑
1
(−1)jdj( f ) i f q > 0,

dτ( f ) =
q+1

∑
1
(−1)jdj( f ) i f q > 0.

The simplicial formula (5a) yields the identities

d2
KV = 0,

d2
τ = 0.

The cohomology space
HKV(B, V) = ∑

q
Hq

KV(B, V)

is called the V-valued KV cohomology of B.
The cohomology space

Hτ(B, V) = ∑
q

Hq
τ(B, V)

is called the V-valued total KV cohomology of B.
The algebra A is a two-sided ideal of the KV algebra B. Mutatis mutandis our construction gives

the cohomology spaces HKV(A, V) and Hτ(A, V). They are called the V-valued KV cohomology and
the V-valued total KV cohomology of A.

Comments.

Though the spectral sequences are not the purpose of this paper we recall that the pair (A ⊂ B) gives rise
to a spectral sequences Eij

r [32–34]. The term Eij
0 is nothing other than HKV(A, V) [29]. In other words one has

Hq
KV(A, V) = ∑

0≤j≤q
Ej,q−j

0 .

3.2.7. Residual Cohomology

Before pursuing we introduce the notion of residual cohomology. It will be used in the section be
devoted the homological statistical models.

The machinery we are going to introduce is similar to the machinery of Eilenberg [35]. In particular
we introduce the residual cohomology. Our construction leads to an exact cohomology sequence
which links the residual cohomology with the equivariant cohomology. We restrict the attention to the
category of left modules of KV algebroids. We keep our previous notation.
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We recall that for every positive integer q > 0 the vector space Cq(B, V) is a left module of B.
The left action of s ∈ B is defined by

(s · f )(ξ) = s · f (ξ)− f (s · ξ).

Definition 15. A cochain f ∈ Cq(B, V) is called a left invariant cochain if

s · f = 0 ∀s ∈ B ∀s.

A straightforward consequence of this definition is that a left invariant cochain is a cocycle of
both C∗

KV and C∗
τ. The vector subspace of left invariant q-cochains of B is denoted by Hq

e (B, V). It is
easy to see that

Zq
τ(B, V)∩ Zq

KV(B, V) = Hq
e (B, V),

Zq
τ(A, V)∩ Zq

KV(A, V) = Hq
e (A, V).

Definition 16. A KV cochain of degree q whose coboundary is left invariant invariant is called a residual
KV cocycles.

(1) The vector subspace of residual KV cocycles of degree q is denoted by Zq
KVres.

(2) The vector subspace of residual coboundaries of degree q is defined by Bq
KVres = Hq

e (B, V)+ dKV(C
q−1
KV (B, V)).

The residual KV cohomology space of degree q is the quotient vector space.

(3) Hq
KVres(B, V) =

Zq
KVres

Bq
KVres

.

(4) By replacing the KV complex by the total KV complex one defines the vector space of residual total
cocycles Zq

τres and the space of residual total coboundaries Bq
τres. Therefore we get the residual total KV

cohomology space

Hq
τres(A, V) =

Zq
τres

Bq
τ,res

The definitions above lead to the cohomological exact sequences which is similar to those
constructed by Eilenberg machinery [35]. We are going to pay a special attention to two cohomology
exact sequences.

(1) At one side the operator dKV yields a canonical linear map

Hq
KVres(B, V) → Hq+1

e (B, V).

(2) At another side every KV cocycle is a residual cocycle and every KV coboundary is a residual
coboundary as well. Then one has a canonical linear map

Hq
KV(B, V) → Hq

KVres(A, V).

Those canonical linear mappings yield the following exact sequences

→ Hq−1
KVres(B, V) → Hq

e (B, V) → Hq
KV(B, V) → Hq

KVres(B, V) →

→ Hq−1
τres (B, V) → Hq

e (B, V) → Hq
τ(B, V) → Hq

τres(B, V) →
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Some Comments.

(c.1): We replace the KV B by A. Then we obtain the exact sequences

→ Hq−1
KVres(A, V) → Hq

e (A, V) → Hq
KV(A, V) → Hq

KVres(A, V) →

→ Hq−1
τres (A, V) → Hq

e (A, V) → Hq
τ(A, V) → Hq

τres(A, V) →
(c.2): The KV cohomology difers from the total cohomology. Loosely speaking their intersecttion is the

equivariant cohomology H∗
e (B, V) their difference is the residual cohomology. The domain of their

efficiency are different as well. Here are two illustrations.

Example 1.

In the introduction we have stated a conjecture of M. Gerstenhaber, namely Every Restricted Theory
of Deformation Generates Its Proper Theory of Cohomology.

From the viewpoint of this conjecture, the KV cohomology is the completion a long
history [2,9,28]. Besides Koszul and Nijenhuis, other pioneering authors are Vinberg, Richardson,
Gerstenhaber, Matsushima, Vey.

The challenge was the search for a theory of cohomology which might be generated by the theory
of deformation of locally flat manifolds [8]. The expected theory is the now known KV theory of KV
cohomolgy [9].

Example 2.

The total cohomology is close to both the pioneering Nijenhuis work [28,36]. In [29] we have
constructed a spectral sequence which relates to [28,36].

From another viewpoint, the total KV cohomology is useful for exploring the relationships
between the information geometry and the theory of Riemannian foliations. This purpose will be
addressed in the next sections.

3.3. The Theory of KV Cohomology—Version the Anomaly Functions

This subsection is devoted to use the KV anomaly functions for introducing the theory of
cohomology of KV algebroids and their modules.

This viewpoint leads to an unifying framework for introducing the theory of cohomology of
abstract algebras and their abstract two-sided modules. Here are a few examples of cohomology theory
which are based on the anomaly functions.
Example 1. The theory of Hochschild cohomology of associative algebras is based on the associator
anomaly function.
Example 2. The theory of Chevalley-Eilenberg-Koszul cohomology of Lie algebras is based on the Jacobi
anomaly function.
Example 3. The theory of cohomology of Leibniz algebras is based on the Jacobi anomaly function
as well.

3.3.1. The General Challenge CH(D)

We consider data
D = [(A, AA), (V, AAV), Hom(T(A), V)].

Here

(1) V is an (abstract) two sided module of an (abstract) algebra A.
(2) AA and AAV are fixed anomaly functions of A and of V respectively.
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(3) Hom(T(A), V) stands for the Z-graded vector space

Hom(T(A), V) = ⊕qHomR(A⊗q, V).

Let AD be the category of (abstract) algebras and (abstract) modules whose structures are defined
by the pair (AA, AAV). So the rules of calculations in the category A are defined by the identities

AA(a, b, c) = 0,

AAV(a, b, v) = 0.

The challenge is the search of a particular family of linear maps

Hom(A⊗q, V) � f → dq( f ) ∈ Hom(A⊗q+1, V).

Such a particular family dq must satisfy a condition that we call the property Δ.

Property Δ

∀ξ = a1 ⊗ a2...⊗ aq+2 ∈ Aq+2, ∀ f ∈ Hom(A⊗q, V) the quantity [dq+1(dq( f ))](ξ) depends linearly on
the values of the anomaly functions {

AA(ai, aj, ak), AAV(ai, aj, v)
}

Let us assume that a family dq is a solution to CH(D). Then the category AD admits a theory of
cohomology with coefficients in modules.

The next is devoted to this challenge in the category of KV algebras and KV modules.
The geometry version is the category of KV algebroids and KV modules of KV algebroids.

3.3.2. Challenge CH(D) for KV Algebras

Let W be a two-sided module of an abstract algebra A. We assume that the following bilinear
mappings are non trivial applications

A×W � (X, w) → X · w ∈ W,

W ×A � (w, X) → w · X ∈ W.

Let f ∈ Hom(A⊗q, W). We consider a monomial ξ ∈ A⊗q+1, so

ξ = X1 ⊗ ...⊗ Xq+1 ∈ A⊗q+1.

Our construction is divided into many STEPS.

Step 1.

Let (i < j) be a pair of positive integers with 1 ≤ i < j ≤ q. The linear the map

S[i,j]( f ) ∈ Hom(Aq+1, V).

S[ij] is defined by

S[i,j]( f )(X1 ⊗ ...⊗ Xq+1) = (−1)j[Xj · f (X1 ⊗ ...⊗ Xi ⊗ ...X̂j ⊗ Xj+1...⊗ Xq+1)

+( f (X1 ⊗ ...⊗ Xi ⊗ ...X̂j ⊗ ... ˆXq+1 ⊗ Xj) · Xq+1

−ω( f ) f (X1 ⊗ ...⊗ Xj · Xi ⊗ ...X̂j ⊗ ...⊗ Xq+1)]
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+(−1)i[Xi · f (X1 ⊗ ...X̂i ⊗ ...⊗ Xj ⊗ .⊗ Xq+1)

+( f (X1 ⊗ ...X̂i ⊗ ...⊗ Xj ⊗ ... ˆXq+1 ⊗ Xi)) · Xq+1

−ω( f ) f (X1 ⊗ ...X̂i ⊗ ...⊗ Xi · Xj ⊗ ...⊗ Xq+1)].

In the right side member of S[i,j]( f )(ξ) the coefficient ω( f ) is the degree of f , viz ω( f ) = q for all
f ∈ Hom(Aq, W).

Step 2.

For every pair (i, q + 1) with 1 ≤ i ≤ q we define the map S[i,q+1]( f ) by

S[i,q+1]( f )(X1 ⊗ ...⊗ Xq+1) = (−1)i[Xi · f (X1 ⊗ ...X̂i ⊗ ...⊗ Xq+1)

+( f (X1 ⊗ ...X̂i ⊗ ... ˆXq+1 ⊗ Xi)) · Xq+1

−ω( f ) f (X1 ⊗ ...X̂i ⊗ ...Xi · Xq+1)].

Step 3.

Let g ∈ Hom(A⊗q+1, W) and let

ξ = X1 ⊗ ...⊗ Xq+2 ∈ A⊗q+2.

Let i, j, k be three positive integers such that i < j < q+ 2; k ≤ q+ 2. We have already introduced
the notation

∂kξ = X1 ⊗ ...X̂k ⊗ ...⊗ Xq+2,

∂2
k,q+2ξ = X1 ⊗ ...X̂k ⊗ ...⊗ ...X̂q+2.

We define Sk
[i,j](g) ∈ Hom(A⊗q+2, W) by setting

Sk
[i,j](g)(ξ) = (−1)i+k[Xk · g(∂kξ) + (g(∂2

k,q+2ξ ⊗ Xk)) · Xq+2

+ω(g)g(X1 ⊗ ...⊗ Xk · Xi ⊗ ...X̂k ⊗ ...⊗ Xq+2)]

+(−1)j+k[Xk · g(∂kξ) + (g(∂2
k,q+2ξ)⊗ Xk) · Xq+2

+ω(g)g(X1 ⊗ ...⊗ Xk · Xj ⊗ ...X̂k ⊗ ...⊗ Xq+2)].

Given a triple (i, j, k) with i < j < k < q + 2 we put

S[i,j,k](g)(ξ) = Sk
[i,j](g)(ξ) + Sj

[i,k](g)(ξ) + Si
[j,k](g)(ξ).

The proof of the following statement is based on direct calculations.

Lemma 1.

(∗ ∗ ∗∗) : ∑
[i<j]

S[i,j](g)(ξ) = ∑
[i<j<k]

S[i,j,k](g)(ξ)

Let f ∈ Hom(Aq, W). In both the left side and the right side of the equality (∗ ∗ ∗∗) we replace g
by ∑i<j S[i,j]( f ). Then we obtain a linear mapping

Hom(A�, W) � f → E∗∗∗∗( f ) ∈ Hom(Aq+2, W).
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Our aim is to evaluate ξ of E∗∗∗∗( f ) at ξ ∈ A⊗q+2. Here

ξ = X1 ⊗ ...⊗ Xq+2.

To calculate [E∗∗∗∗( f )](ξ) we take into account both STEP1 and STEP2. Then we obtain

[E∗∗∗∗( f )](ξ) = ∑
[i<j<q+2;1≤k≤q+2]

[E∗∗∗∗
[ijk] ( f )](ξ).

At the right side member

[E∗∗∗∗
[ijk] ( f )](ξ) = (−1)i+j[KV(Xi, Xj, f (X1 ⊗ ...X̂i ⊗ ..X̂j ⊗ ...Xk ⊗ ...⊗ Xq+2))

+KV(Xi, f (X1 ⊗ ...X̂i...X̂j ⊗ ...⊗ Xq+1 ⊗ Xj), Xq+2)

+KV(Xj, f (X1 ⊗ ...X̂i...X̂j ⊗ ...⊗ Xq+1 ⊗ Xi), Xq+2)

+ω( f )(ω( f ) + 1) f (X1 ⊗ ...X̂i...X̂j ⊗ ...⊗ KV(Xi, Xj, Xk)⊗ ...⊗ Xq+2)].

Step 4.

We are in position to face CH(D).

Definition 17. Let f ∈ Hom(A⊗q, W) and ξ = X1 ⊗ ... ⊗ Xq+1 ∈ A⊗q+1. We take into account Step 1,
Step 2 and Step 3. Therefore, we define the linear map

Hom(A⊗q, W) � f → ∂ f ∈ Hom(A⊗q+1, W)

by putting
[∂ f ](ξ) = ∑

1≤i<j≤q+1
S[i,j]( f )(ξ)

The following lemma is a straightforward consequence of the machinery in STEP3.

Lemma 2.

∂2 f (ξ) = ∑
[i<j<q+2];1≤k≤q+2

[E∗∗∗∗
[ijk] ( f )](ξ)

Lemma 2 tells us that ∂2 f (ξ) depends linearly on the values of the KV anomaly functions.
The challenge CH(D) is won in the category of KV algebras and their two-sided KV modules.
We replace the category of KV algebras and their two-sided modules by the category of KV

algebroids and their bi-modules. Then we win the geometry version of CH(D.
We use Lemma 2 for introducing a theory of KV homology of KV algebras and their

two-sided modules.

3.3.3. The KV Cohomology

Let W be a two sided KV module of a KV algebra A. We consider the graded vector space

CKV = ⊕qCq
KV.

The homogeneous subspaces are defined by Cq
KV = 0 if q is a negative integer, C0

KV = J(W),
Cq

KV = Hom(A⊗q, W) if q is a positive integer.
We define the linear map

Cq
KV � f → ∂KV f ∈ Cq + 1KV
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by setting

∂KV(w)(X) = −X · w + w · X i f w ∈ J(W), (7a)

∂KV f = ∑
[i<j]

S[i,j]( f ) i f q > 0. (7b)

By Lemma 2 we obtain the following statement

Theorem 3. For every two sided KV module W of a KV algebra A the pair (C∗
KV , ∂KV) is a cochain complex.

3.3.4. The Total Cohomology

Let W be a two-sided module of a KV algebra A. Our concern is the Z-graded vector space

Cτ = W +⊕q>0Cq(A, W).

For our present purpose the maps Sij are not subject the requirement as in Step 2.
We define the coboundary operator ∂τ by setting

∂τw(X) = −X · w + w · X ∀winW,

∂τ f (ξ) = ∑
1≤i<j≤q+1

S[i,j]( f )(ξ) ∀q > 0.

The quantity (∂2
τ f (ξ) depends linearly on the KV anomaly functions of the pair (A, W). Thus the

pair (C∗
τ , ∂τ) is a cochain complex. Its cohomology is called the W-valued total KV cohomology of A.

We denote it by H∗
τ (A, W).

3.3.5. The Residual Cohomology, Some Exact Sequences, Related Topics, DTO-HEG-IGE-ENT

In the next sections we will see that the links between the information geometry and the differential
topology involve the real valued total KV cohomology of KV algebroids. Many relevant relationships
are based on the exact sequences

→ Hq−1
KVres(A,R) → Hq

e (A,R) → Hq
KV(A,R) → Hq

KVres(A,R) →

→ Hq−1
τres (A,R) → Hq

e (A,R) → Hq
τ(A,R) → Hq

τres(A,R) →
Now we are provided with cohomological tools which will be used in the next sections.
We plan to perform KV cohomological methods for studying some links between the vertices of

the square “DTO, IGE, ENT HGE” as in Figure 1. We recall basic notions.

DTO IGE

ENTHGE

KVH

Figure 1. Federation.

DTO stands for Differential TOpology.
The purposes: Riemannian foliations and Riemannian webs. Symplectic foliations and symplectic webs.

Linearization of webs.
Our aims: We use cohomological methods for constructing Riemannian foliations, Riemannian webs,

linearizable webs.
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Nowadays, there does not exist any criterion for deciding whether a manifold supports those
differential topological objects. Our aim is to discuss sufficient conditions for a manifold admitting
those structures. Our approach leads to notable results. The key tools are the KV cohomology and the
dualistic relation of Amari. Both the KV cohomology and the dualistic relation product remarkable
split exact sequences. Notable results are based on those exact sequences. HGE stands for Hessian

GEometry.
The purposes: Hessian structures, geometry of Koszul, hyperbolicity, cohomological vanishing theorems.

Our aims: The geometry of Koszul is a cohomological vanishing theorem. Statistical geometry and vanishing
theorem, the solution to a hold question of Alexander K Guts (announced).

Theorem 3 as in [2] may be rephrased in the framework of the theory of KV homology. For a compact
locally flat manifold (M,∇) being hyperbolic it is necessary and sufficient that C2

KV(A, C∞(M)) contains a
positive definite EXACT cocycle. To be hyperbolic is a geometrical-topological property of the developing
map of locally flat manifolds. To be hyperbolicitic means that the image of the developing is a convex
domain not containing any straight line. This formulation is far from being a homological statement.
So the Hessian GEOmetry is a link between the theory of KV homology and the Riemannian
Riemannian geometry.

The geometry of Koszul, the geometry of homogeneous bounded domains and related topics
have been studied by Vinberg, Piatecci-Shapiro and many other mathematicians [3]. The geometry
of Siegel domains belongs to that galaxy [7,12]. Almost all of those studies are closely related to the
Hessian geometry.

Among the open problems in the Hessian geometry are two questions we are concerned with.
The first is to know whether the metric tensor g of a Riemannian manifold is a Hessian metric.
Alexander K. Guts raised this question in a mail (to me) forty years ago. The second question is
to know whether a locally flat manifold admits a Hessian tensor metric. The solutions to those
two problems are announced in the Appendix A to this paper.

IGE stands for Information GEometry.
The purposes: The differential geometry of statistical models, the complexity of statistical models,

ramifications of the information geometry.
Our aims: We revisit the classical theory of statistical models, requests of McCullagh and Gromov. A search

of a characteristic invariant. The moduli space of models. The homological nature of the information geometry.

The information geometry is the differential geometry in statistical models for measurable sets.
In both the theoretical statistics and the applied statistics the exponential families and their
generalizations are optimal statistical models. There are many references, e.g., [17,18,22,37]. Here
Murray-Rice 1.15 means Murray-Rice Chapter 1, Section 15. A major problem is to know whether a
given statistical model is isomorphic to an exponential model. That is what we call the complexity
problem of statistical models. This challenge is a still open problem. It explicitly arises from the
purposes which are discussed in [22] here, see also [30]. In the appendix to this paper we present a
recently discovered invariant which measures how far from being an exponential family is a given
model. That invariant is useful for exploring the differential topology of statistical models. That is
particularly important when models are singular, viz models whose Fisher information is not inversible.

ENT stands for ENTropy.

Pierre Baudot and Daniel Bennequin recently discovered that the entropy function has a homological
nature [31]. We recall that in 2002 Peter McCullagh raised a fundamental geometric-topological question
in the theory of information: What Is a Statistical Model? [30] A few years after Misha Gromov raised
a similar request: The Search of Structure. Fisher Information [15,16].
Those two titles are two formulations of the same need.

The paper of McCullagh became the subject of controversy. It gave rise to questions, discussions,
criticisms, see [30].
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In Part B of this paper we will be addressing this fundamental problem. A reading of the
McCullagh paper would be useful for drawing a comparison between our approach and [15,16,30].

4. The KV Topology of Locally Flat Manifolds

4.1. The Total Cohomology and Riemannian Foliations

In this section we focus on the KV algebroids which are defined by structures of locally flat manifolds.
To facilitate a continuous reading of this paper we recall fundamental notions which are needed.

Definition 18. A locally flat manifold is a pair (M, D). Here D is a torsion free Koszul connection whose
curvature tensor RD vanishes identically.

The pair (M, D) defines a Koszul-Vinberg algebroid

A = (TM, D, 1)

The anchor map is the identity map of TM. The multiplication of sections is defined by D, viz

X ·Y = DXY

forall X, Y ∈ X (M).
The KV algebra of (M, D) is the algebra

A := (X (M), D).

The cotangent bundle T∗M is a left module of the KV algebroid (TM, D, 1). For every
(X, Y, θ) ∈ X (M)×X (M)× Γ(T∗M) the differential 1-form X · θ is defined by

[X · θ](Y) = [d(θ(Y))](X)− θ(X ·Y).

In the right hand member of the equality above d(θ(Y)) is the exterior derivative of the real valued
function θ(Y).

Let S2(T∗M) be the vector bundle of symmetric bi-linear forms in M.
The vector space of sections of S2(T∗M) is denoted by S2(M), viz

S2(M) = Γ(S2(T∗M)).

The vector space S2(M) is a left module of the KV algebra A. The left action of A in S2(M) is
defined by

(X · g)(Y, Z) = [dg(Y, Z)](X)− g(X ·Y, Z)− g(Y, X · Z).

We put
Ω1(M) = Γ(T∗M).

The T∗M-valued cohomology of the KV algebroid (TM, D, 1) is but the cohomology of A with
coefficients in Ω1(M). The KV cohomology and the total cohomology are denoted by

H∗
KV(A, Ω1(M)),

H∗
τ(A, Ω1(M)).
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Warning.

We observe that elements of S2(M) may be regarded as 1-cochains of A with coefficients in its left module
Ω1(M). By [29] we have

Z2
τ(A, C∞(M)) = SA

2 (M). (8)

At another side we have the cohomolgy exact sequence

→ H1
KVres(A, V) → H2

KVe(A, V) → H2
KV(A, V) → H2

KVres(A, V) → (9)

By Equations (8) and (9) we obtain the inclusion maps

SA
2 (M) ⊂ Z1

KV(A, Ω1(M)) ⊂ Z2
KV(A,R).

Mutatis mutandis one also has

SA
2 (M) ⊂ Z1

τ(A, Ω1(M)∩ Z2
τ(A,R).

Remark 1 (Important Remarks). We give some subtle consequences of (1).

(R.1) Every exact total 2-cocycle ω ∈ C2
τ(A,R) is a skew symmetric bilinear form. Viz one has the identity

ω(X, X) = 0 ∀X ∈ A.

(R.2) Every symmetric KV 2-cocycle g ∈ Z2
KV(A,R) is locally an exact KV cocycle, viz in a neighbourhood of

every point there exists a local section θ ∈ Ω1(M) such that

g = δKVθ.

(R.3) Every symmetric total 2-cocycle is a left invariant cochain, viz

Z2
τ(A,R)∩ S2(M) = SA

2 (M).

By (R.1) and (R.3) we obtain the inclusion map

SA
2 (M) ⊂ H2

τ(A,R).

Let H2
dR(M) be the second cohomology space of the de Rham complex of M. The following theorem is useful

for relating the total KV cohomology and the differential topology.

Theorem 4. [29] There exists a canonical linear injection of H2
dR(M) in H2

τ(A,R) such that

H2
τ(A,R) = H2

dR(M)⊕SA
2 (M)

The theorem above highlights a fruitful link between the total KV cohomology and the differential
topology. We are particularly interested in D-geodesic Riemannian foliations in a locally flat
manifold (M, D).
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Warning.

Throughout this paper a Riemannian metric tensor in a manifold M is a non-degenerate symmetric bilinear
form in M.

A positive metric tensor is a positive definite metric tensor.
In the next we use the following definition of Riemannian foliation and symplectic foliation.

Definition 19. A Riemannian foliation is an element g ∈ S2(M) which has the following properties

(1.1) rank(g) = constant,
(1.2) LXg = 0 ∀X ∈ Γ(Ker(g)). A symplectic foliation is a ( de Rham) closed differential 2-form ω

which satisfies
(2.1) rank(ω) = constant,
(2.2) LXω = 0 ∀X ∈ Γ(Ker(ω)).

Warning.

When g is positive semi-definite our definition is equivalent to the classical definition of Riemannian
foliation [38–40].

The complete integrability of Ker(g) and the conditions to be satisfied by the holonomy of leaves are
equivalent to the Property (2.2).

The set of Riemannian foliations in a manifold M is denoted by RF(M). The last theorem above yields the
inclusion map

H2
τ(A,R)

H2
dR(M)

⊂ RF(M).

We often use the notion of affine coordinates functions in a locally flat manifold. For non specialists we
recall two definitions and the link between them.

Definition 20. An m-dimensional affinely flat manifold is an m-dimensional smooth manifold M admitting
a complete atlas

{
(Uj, φj)

}
whose local coordinate changes coincide with affine transformations of the affine

space Rm.

We denoted an affine atlas by
A =

{
(Uj, φj)

}
.

Definition 21. An affinely flat structure (M,A) and a locally flat structure (M,∇) are compatible if local
coordinate functions of (M,A) are solutions to the Hessian equation

∇2xj = O

Theorem 5. For every positive integer m the relation to be compatible with a locally flat manifold is an
equivalence between the category of m-dimensional affinely flat manifolds and the category of m-dimensional
locally flat manifolds.

4.2. The General Linearization Problem of Webs

In the framework RF(M) the inclusion

H2
τ(A,R)

H2
dR(M)

⊂ RF(M)
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may be rewritten as the exact sequence

O → H2
dR(M) → H2

τ(A,R) → RF(M).

Let (M,∇) be a locally flat manifold whose KV algebra is denoted by A. Every finite family in
H2

τ(A,R) is a family of ∇-geodesic Riemannian foliations.
There does not exist any criterion to know whether a manifold supports Riemannian foliations.

The exact cohomology sequences we have been performing provide us with a cohomological method
for constructing Riemannian foliations in the category of locally flat manifolds. This is an impact of the
theory of KV homology on DTO.

In the next section we will introduce other new ingredients which highlight the impacts on DTO
of the information geometry.

Further we will see that those new machineries from the information geometry have a
homological nature.

Another major problems in the differential topology is the linearization of webs. Among references
are [41–43].

Definition 22. Consider a finite family of distributions Dj ⊂ TM, j := 1, 2, ..., k. Those distributions are in
general position at a point x ∈ M if for every subset J ⊂ {1, 2, ..., k} one has

dim(∑
j∈J

Dj(x)) = min

{
dim(M), ∑

j∈J
dim(Dj(x))

}
.

Definition 23. A k-web in M is a family of completely integrable distributions which are in general position
everywhere in M.

A Comment.

The distributions belonging to a web may have different dimensions. An example of problem is the
symplectic linearization of lagrangian 2-webs.

Let (Dj, j := 1, 2) be a lagrangian 2-web in a 2n-dimensional symplectic manifold (M, ω). The challenge
is the search of special local Darboux coordinate functions

(x, y) = (x1, ..., xn, y1, ..., yn).

Those functions must have three properties
(1): ω(x, y) = Σjdxj ∧ dyj; (2) : The leaves of D1 are defined by x = constant; (3): The leaves of D2 are defined
by y = constant.

Definition 24. An affine web in an affine space is a web whose leaves are affine subspaces.

Definition 25. A web in a m-dimensional manifold is linearizable if it is locally diffeomorphic to an affine web
in a m-dimensional affine space.

Example 1. In the symplectic manifold (R2, exydx ∧ dy) one considers the lagrangian 2-web which
is defined by

L1 = {(x, y)|x = constant} ,

L2 = {(x, y)|y = constant} .

This lagrangian 2-web is not symplectic linearizable.
Example 2. We keep (L1,L2) as in example.1. It is symplectic linearizable in (R2, (ex + ey)dx ∧ dy).
The linearization problem for lagrangian 2-webs is closely related to the locally flat geometry [10,44,45].

167



Entropy 2016, 18, 433

Example 3. What about the linearization of the 3-web defined by L1 := {(x = constant, y)} ,
L2 := {(x, y = constant)} , L3 := {e−x(x + y) = constant} , (x, y) ∈ R2.

Up to today the question as to whether it is linearizable is subject to controversies, see [42] and
references therein.

4.3. The Total KV Cohomology and the Differential Topology Continued

We implement the KV cohomology to address some open problems in the differential topology.
For our purpose we recall a few classical notions which are needed.

Definition 26. A metric vector bundle over a manifold M is a vector bundle V endowed with a non-degenerate
inner product < v, v∗ > .

A Koszul connection in a vector bundle V is a bilinear map

Γ(TM)× Γ(V) � (X, v) → ∇Xv ∈ Γ(V)

which has the properties

∇ f Xv = f∇Xv∀v,∀ f ∈ C∞(M), (10a)

∇X f v = d f (X)v + f∇Xv∀v,∀ f ∈ C∞(M). (10b)

Definition 27. A metric connection in (V ,< −,>) is a Koszul connection ∇ which satisfies

d(< v, v∗ >)(X)− < ∇Xv, v∗ > − < v,∇Xv∗ >= 0.

Definition 28. Let (M,D) be a foliation in the usual sense, viz D has constant rank and is in involution.
(1): (M,D) is transversally Riemannian if there exists a g ∈ S2(M) such that

D = Ker(g).

(2): (M,D) is transversally symplectic if there exists a (de Rham) closed differential 2-form ω such that

D = Ker(ω)

A transversally Riemannian foliation and a transversally symplectic foliation are denoted by

(D, g),

(D, ω).

Definition 29. Given a Koszul connection ∇, a transversally Riemannian foliation (D, g) (respectively a
transversally symplectic foliation (D, ω)) is called ∇-geodesic if

∇g = 0,

∇ω = 0

The notions of transversally Riemannian foliation and transversally symplectic foliation are
weaker than the notion of Riemannian foliation and symplectic foliation. However if ∇ a torsion
free Koszul connection every ∇geodesic transversally Riemannian foliation is a Riemannian foliation.
Every ∇-geodesic transversally symplectic foliation is a symplectic foliation.

For the general theory of Riemannian foliations the readers are referred to [39,40,46], see also the
monograph [38] and the references therein.
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We have pointed out that criterions for deciding whether a smooth manifold admits Riemannian
foliations (respectively symplectic foliations ) are missing. Our purpose is to address this existence
problem in the category SLC whose objects are symmetric gauge structures. Such an object is
a pair (M,∇) where ∇ is a torsion free Koszul connection in M. The category of locally flat
structure LF is a subcategory of SLC. The theory of KV homology is useful for discussing geodesic
Riemannian foliations in the category LF . In a locally flat manifold (M, D) we have been dealing with
the decomposition

H2
τ(A,R) = H2

dR(M)⊕SD
2 (M).

Here A is the KV algebra of (M, D).
Let b2(M) be the second Betti number of M. We define the numerical geometric invariant r(D) by

r(D) = dim(H2
τ(A,R))− b2(M).

Formally r(D) is the codimension of H2
dR(M) ⊂ H2

τ(A,R), viz

r(D) = dim(
H2

τ(A,R)
H2

dR(M)
).

We consider the exact sequences

O → H2
dR(M) → H2

τ(A,R) → SA
2 (M) → 0

and
→ H2

τ,e(A,R) → H2
τ(A,R) → H2

τ,res(A,R) → H3
τ,e(R,R) →

From those exact sequences, one deduces the equality

H2
τ(A,R)

H2
dR(M)

=
H2

τ,e(A,R)
H2

dR(M)
.

Thus r(D) is formally the dimension of SA
2 (M).

The present approach leads to the following statement

Proposition 1. If r(D) > 0 then M admits non trivial D-geodesic Riemannian foliations.

Proof. Let B be a non zero element of SA
2 (M) and let D be the kernel of B.

(1) Suppose that
0 < rank(D) < dim(M)

Therefore, (M, B) is a D-geodesic Riemannian foliation.
(2) Suppose that

rank(D) = O.

Then (M, B) is a Riemannian manifold the Levi-Civita connection of which is D. Therefore, the
proposition holds.

Before proceeding we define three numerical invariants

r(M) = max {r(D)|D ∈ LC(M)} ,

s(M,A) = max
{

rank(B)|B ∈ SA
2 (M)

}
,

s(M) = max {s(M,A)|D ∈ LF(M)} .
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The non negative integers r(M) and s(M) are global geometric invariants. They connect the
total KV cohomology to geodesic Riemannian foliations. By this viewpoint the proposition has an
interesting corollary.

Corollary 1. In an m-dimensional manifold M suppose that the following inequalities are satisfied

0 < s(M) < m.

Then the manifold M admits a locally flat structure (M, D∗) which supports a non trivial D∗-geodesic
Riemannian foliation.

The integer s(M) is a local characteristic invariant of some class of 2-webs in Hessian manifolds.
Let (M, D) be a locally flat manifold whose KV algebra is denoted by A. we recall that a Hessian
metric tensor in (M, D) is a inversible cocycle g ∈ Z2

KV(A,R).

Theorem 6. Let (M, D, g) and (M∗, D∗, g∗) be m-dimensional Hessian manifolds. We assume that the
following inequalities hold

0 < s(M, D) = s(M∗, D∗) = s < m.

Then M and M∗ admit linearizable 2-webs which are locally isomorphic.

Proof. The proof is based on methods of the information geometry.
Let A and A∗ be the KV algebras of (M, D) and of (M∗, D∗) respectively. By the hypothesis there

exists a pair of geosic Riemannian foliations

(B, B∗) ∈ SA
2 ×SA∗

2

such that
rank(B) = rank(B∗) = s.

By the dualistic relation both M and M∗ admit locally flat structures (M, D̃) and (M∗, D̃∗)
defined by

g(Y, D̃XZ) = Xg(Y, Z)− g(DXY, Z),

g∗(Y, D̃∗
XZ) = Xg∗(y, Z)− g∗(D∗

XY, Z).

Their KV algebras are denoted by Ã and Ã∗.

Step a

There exists a 1-cocycle
ψ ∈ Z1

τ(Ã, Ã)

such that
B(X, Y) = g(ψ(X), Y),

Ker(B) = Ker(ψ).

By the definition of D̃ we have

TM = Ker(ψ)⊕ im(ψ).

Further im(ψ) is D̃-geodesic and Ker(B) is D-geodesic. Therefore, the pair

(Ker(ψ), im(ψ))
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is a 2-web in M.
In (M∗, D∗, g∗) we obtain similar 2-web

(Ker(ψ∗), im(ψ∗)).

By the choice of B and B∗ we have

rank(Ker(ψ)) = rank(Ker(ψ∗)) = m − s.

Now we perform the following arguments.
(a): The foliation B is D-geodesic. In a neighbourhood of every point p0 ∈ (M, D) we linearize B

by choosing appropriate local affine coordinate functions

(x, y) = (x1, ..., xm−s, y1, ..., ys).

The leaves of Ker(ψ) are defined by

y = constant.

Thereby those leaves are locally isomorphic to affine sub-spaces.

Step b

The distribution im(ψ) is D̃-geodesic. Therefore, near the same point p0 ∈ (M, D̃) we linearize
im(ψ by choosing appropriate local affine coordiante functions

(x∗, y∗) = (x∗1, ..., y∗1, ...).

The leaves of im(ψ) are defined by

x∗ = constant.

Thus near p0 the foliation defined by m(ψ) is isomorphic to an linear foliation.

Step c

By both step a and step b we choose a neighbourhood of p0 which is the domain of systems
of appropriate local coordinate functions (x, y) and (x∗, y∗). From those data we pick the local
coordinate functions

(x, y∗) = (x1, ..., xm−s, y∗1, ..., y∗s ).

So we linearize the 2-web (Ker(ψ), im(ψ)) with the local coordinate functions (x, y∗).

(Ker(ψ), im(ψ)).

Thus near the p0 the 2-web (Ker(ψ), im(ψ)) is isomorphic to the linear 2-web (L1, L2) which is
defined in Rm by

R
m = R

m−s ×R
s.

Step d

At a point p∗0 in M∗ we perform the construction as in step a and in steps b and c, then we linearize
(Ker(ψ∗), im(ψ∗)) by choosing appropriate local coordinate functions

(x0, y0∗) = (x0
1, ..., x0

m−s, y0∗
1 , ..., y0∗

s ).
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In final, near the p∗O ∈ M∗ the web (Ker(ψ∗), im(ψ∗)) is diffeomorphic to the affine web whose
leaves are parallel to a decomposition

R
m = Vm−s ×Vs.

Here Vm−s and Vs are vector subspaces of Rm. Their dimensions are m − s and s.

Conclusion.

There exists a unique linear transformation φ of Rm such that

φ(Rm−s × 0) = Vm−s,

φ(0×R
s) = Vs.

Thereby there is a local diffeomorphism Φ of M in M∗ subject to the requirements

Φ(p0) = p∗0,

(x0, y0∗) ◦ Φ = (x, y∗).

The differential of Φ is denoted by Φ∗. We express the properties above by

Φ(p0) = p∗0,

Φ∗[Ker(ψ), im(ψ)] = [Ker(ψ∗), im(ψ∗)].

This ends the sketch of proof of Theorem.

In the next we use the following definitions.

Definition 30. A finite family {
BJ, J ⊂ Z

} ⊂ SA
2 (M)

is in general position if the distributions
{

Ker(Bj), j ∈ J
}

are in general position.

The following statement is a straight corollary of the theorem we just demonstrated.

Proposition 2. In a locally flat manifold (M, D) with r(D) > 0 every finite family in general position define a
linearizable Riemannian web.

4.4. The KV Cohomology and Differential Topology Continued

We have seen how the total cohomology and linearizable Riemannian webs are related.
More precisely the theory of KV cohomology provides sufficient conditions for a locally flat manifold
admitting linearizable Riemannian webs. That approach is based on the split exact sequence

0 → H2
dR(M) → H2

τ(A, C∞(M)) → SA
2 (M) → 0.

4.4.1. Kernels of 2-Cocycles and Foliations

Not all locally flat manifolds admit locally flat foliations. The existence of locally flat foliations
is related to the linear holomnomy representation, viz the linear component of the affine holonomy
representation of the fundamental group. Via the developing map the affine holonomy representation
is conjugate to the natural action of the fundamental group in the universal covering. The KV
homology is useful for investigating the existence of locally flat foliations. To simplify we work in the
analytic category. So our purposes include singular foliations.
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For those purposes we focus on an elementary item which has a notable impacts on our request.
Let (M, D) be a locally flat manifold whose KV algebra is denoted by A. Let g ∈ C2(A, C∞(M)).

The left kernel and the right kernel of g are denoted by Ker(g) and K0er(g) respectively.
Ker(g) is defined by

g(X, Y) = 0 ∀Y ∈ A.

K0er(g) is defined by
g(Y, X) = 0 ∀Y ∈ A.

The scalar KV 2-cocycles have elementary relevant properties

(1) The left kernel of every KV 2-cocycle is closed under the Poisson bracket of vector fields.
(2) The right kernel of every KV 2-cocycle is a KV subalgebra of the KV algebra A.

We translate those elementary properties in term of the differential topology

Theorem 7. In an analytic locally flat manifold (M, D)

(1) The arrow
Z2

KV(A, C∞(M)) � g → Ker(g)

maps the set of analytic 2-cocycles in the category of analytic stratified foliations M,
(2) The arrow

Z2
KV(A, C∞(M)) � g → K0er(g)

maps the set of analytic 2-cocycles in the category of stratified locally flat foliations,
(3) If a 2-cocycle g is a symmetric form then Ker(g) is a stratified locally flat transversally Riemannian foliation.

The vector subspace of symmetric 2-cocycles the kernels of which are D-geodesic is denoted
by Z̃2

KV(A). The corresponding cohomology vector subspace is denoted by

H̃2
KV(A) ⊂ H2

KV(A, C∞(M)).

By the exact sequence

O → H2
dR(M) → H2

τ(A, C∞(M)) → SA
2 (M) → 0

we have the inclusion map

H2
τ(A, C∞(M))

H2
dR(M)

⊂ H̃2
KV(A) ⊂ RF(M).

5. The Information Geometry, Gauge Homomorphisms and the Differential Topology

We combine the dualistic relation with gauge homomorphisms to relate the total cohomology and
two problems.

(i) The first is the existence problem for Riemannian foliations.
(ii) The second is the linearization of webs.

Those relationships highlight other roles played by the total KV cohomology. Through this section
we use the brute coboundary operator.

5.1. The Dualistic Relation

We are interest in the foliation counterpart of the reduction in statistical models. The statistical
reduction theorem is Theorem 3.5 as in [18]. We recall the notions which are needed.
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Definition 31. A dual pair is a quadruple (M, g, D, D∗) where (M, g) is a Riemannian manifold, D and D∗

are Koszul connections in M which are related to the metric tensor g by

Xg(Y, Z) = g(DXY, Z) + g(Y, D∗
XZ) ∀X, Y, Z.

We recall that a Riemannian tensor is a non degenerate symmetric bilinear 2-form.
The dualistic relation between linear connections plays a central role in the information

geometry [17,18,47,48].

Definition 32. Let (M, g) be a Riemannian manifold.

(1) A dual pair (M, g, D, D∗) is called a flat pair if the connection D is flat, viz R∇ = 0.
(2) A flat pair (M, g, D, D∗) is called a dually flat pair if both (M, D) and (M, D∗) are locally flat manifolds.

Given a dual pair (M, D, D∗) let us set A = D−D∗. Here are the relationships between the torsion
tensors TD and TD∗

(respectively the relationship between the curvature tensors RD and RD∗
)

g(RD(X, Y) · Z, T) + g(Z, RD(X, Y) · T) = 0,

g(TD(X, Y), Z)− g(TD∗
(X, Y), Z) = g(Y, A(X, Z))− g(X, A(Y, Z)).

Proposition 3. Given a flat pair (M, g, D, D∗), the following assertions are equivalent.

(1) Both D and D∗ are torsion free.
(2) D is torsion free and A is symmetric, viz

A(X, Y) = A(Y, X).

(3) D∗ is torsion free and the metric tensor g a is KV cocycle of the KV algebra A∗ of the locally flat
manifold (M, D∗).

(4) The flat pair (M, g, D, D∗) is a dually flat pair.

Proof. Let us prove that 1 implies (2)
If both TD and TD∗

vanish identically then A is symmetric, viz A(X, Y) = A(Y, X).

Let us prove that (2) implies (3).

Since D is a flat connection, (2) implies that both the torsion tensor and the curvature tensor
of D vanish identically. Then (M, D) is a locally flat manifold whose KV complex is denoted by
(C∗(A,R), δKV). Using the dualistic relation of the pair (M, g, D, D∗) one obtains the identity

δKVg(X, Y, Z) = g(A(X, Y)− A(Y, X), Z) = g(TD∗(X, Y), Z),

therefore (2) implies (3).

Let us prove that (3) implies (4).

The assertion (3) implies that (M, D∗) is a locally flat manifold. Since g is δKV-closed D is
torsion free. Thereby (M, g, D, D∗) is a dually flat pair.

Let us prove that (4) implies (1).

This implication derives directly from the definition of dually flat pair.
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A Comment.

From the proposition just proved arises a relationship between the dually flatness and the KV cohomology.
Indeed let (M, D0) be a fixed locally flat manifold whose KV algebra is denoted by A0. Let C∗

KV(A0,R) be
the KV complex of R̃-valued cochains of the KV algebroid (TM, D0, 1). We know that every g ∈ Rie(M) yields
a flat pair (M, g, D0, Dg).

Here Dg is the flat Koszul connection defined by

g(Dg
XY, Z) = Xg(Y, Z)− g(Y, D0

XZ).

Proposition 4. The following assertions are equivalent.

(1) (M, g, D0, Dg) is a dually flat pair.
(2) δ0

KV(g) = 0

The scalar KV cohomology of a fixed locally flat manifold (M, D0) provides a way of constructing
new locally flat structures in M. Indeed let us set

Hes(M, D0) = Z2
KV(A0,R)∩Rie(M).

For every g ∈ Hes(M, D0) there is a unique Dg ∈ LF(M) such that (M, g, D0, Dg) is a
dually flat pair.

So the dualistic relation leads to the map

Hes(M, D0) � g → Dg ∈ LF(M).

We recall that a gauge map in TM is a vector bundle morphism of TM in TM which projects on
the identity map of M. The readers interested in others topological studies involving connections and
gauge transformations are referred to [49].

Given two symmetric cocycles g, g∗ ∈ Hes(M, D0) there is a unique gauge transformation

φ∗ : TM → TM

such that
g∗(X, Y) = g(φ∗(X), Y).

The following properties are equivalent

φ(D0
XY) = D0

Xφ(Y), (11a)

Dg = Dg∗ . (11b)

We fix a metric tensor g∗ ∈ Hes(M, D0). A gauge transformation φ is called g-symmetric if we have

g(φ(X), Y) = g(X, φ(Y)) ∀(X, Y).

Every g-symmetric gauge transformation φ defines the metric tensor

gφ(X, Y) = g(φ(X), Y).

This gives rise to the flat pair
(M, gφ, D0, Dgφ).

To simplify we set
Dφ = Dgφ .
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We note Sym(g) the subset of g-symmetric gauge transformations φ such that the following
assertions are equivalent

(1) φ ∈ Sym(g).
(2) (M, gφ, D0, Dφ) is a dually flat pair.

The Lie group of D0-preserving gauge transformations of TM is denoted by G0. It is easy to see
that for every φ ∈ Sym(g) the following assertions are equivalent

(1) φ ∈ G0,
(2) gφ ∈ Hes(M, D0).

Henceforth we deal with a fixed g∗ ∈ Hes(M, D0. The triple (M, g∗, D0) leads to the dually flat
pair (M, g, D0, Dg∗). We set

D∗ = Dg∗ .

The tangent bundle TM is regarded as a left KV module of the KV algebroid (TM, D∗, 1).
The KV algebras of (M, D0) and of (M, D∗) are denoted by A0 and by A∗ respectively.

Their coboundary operators are noted δ0 and δ∗ respectively.
We focus on the role played by the total KV cohomology of the algebroid (M, D∗, 1).
Let φ be a g∗-symmetric gauge transformation. Then φ gives rise to the metric tensor gφ which is

defined by
gφ(X, Y) = g∗(φ(X), Y).

Lemma 3. The following assertions are equivalent,

(1) gφ ∈ Hes(M, D0),
(2) φ ∈ Z1

τ(A∗,A∗).

Hint.

Use the following formula
δ0

KVgφ(X, Y, Z) = g∗(δ∗τφ(X, Y), Z).

Following the pioneering definition as in [2] a hyperbolic locally flat manifold is a positive exact Hessian
manifold (M, D, δKVθ). We extend the notion of hyperbolicity by deleting the condition that δKVθ is positive.
Now denote by Hyp(M, D0) the set of exact Hessian structures in (M, D0).

A hyperbolic structure is defined by a triple (M, D, θ) where (M, D) is a locally flat manifold and θ is a de
Rham closed differential 1-form such that the symmetric bilinear δKVθ is definite.

The following statement is a straightforward consequence of Lemma 3.

Corollary 2. The following statements are equivalent.

(1) gφ ∈ Hyp(M, D0),
(2) φ ∈ B1τ(A∗,A∗)

Proof of Corollary. By (1) there exists a (de Rham) closed differential 1-form θ such that

gφ(X, Y) = Xθ(Y)− θ(D0
XY).

Let ξ be the unique vector field such that

θ = ιξ g∗.
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Therefore one has
g∗(φ(X), Y) = Xg∗(ξ, Y)− g∗(ξ, D0

XY).

Since the quadruple
(M, g∗, D0, D∗)

is a dually flat pair one has the identity

g∗(φ(X), Y) = g∗(D∗
Xξ, Y).

Thus we get the expected conclusion, viz

φ(X) = D∗
Xξ.

Conversely let us assume that there exists a vector ξ satisfying the identity

φ(X) = D∗
Xξ.

That leads to the identity

g∗(D∗
Xξ, Y) = Xg∗(ξ, Y)− g(ξ, D0

XY).

In other words one has
gφ ∈ Hyp(M, D0).

This ends the proof of Corollary 2.

The set of g∗-symmetric gauge transformation is denoted by Σ(g∗).
We have the canonical isomorphism

Σ(g∗) � φ → gφ ∈ Rie(M). (12)

Now we define the sets
Z̃1

τ(A∗,A∗) = Σ(g∗)∩ Z1
τ(A∗A∗),

B̃1
τ(A∗,A∗) = Σ(g∗)∩ B1

τ(A∗,A∗).

Combining Lemma 3 and its corollary with the isomorphism Equation (12). Then we obtain
the identifications

Z̃1
τ(A∗,A∗) = Hes(M, D∗),

B̃1
τ(A∗,A∗) = Hyp(M, D∗).

Reminder.

We recall that a hyperbolic manifold (or a Koszul manifold) is δKV-exact Hessian manifold (M, g, D).
It is easily seen that the set of positive hyperbolic structures in a locally flat manifold (M, D) is a convex

subset of Hes(M, D).
So show the Koszul geometry is a vanishing theorem in the theory of KV homology of KV algebroids.

The theory of homological statistical model (to be introduced in Part B) is another impact on the information
geometry of the KV cohomology.

At the present step we have the relations

Hes(M, D∗)
Hyp(M, D∗) ⊂ H2

KV(A∗,R),
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Z̃1
τ(A∗,A∗)

B̃1
τ(A∗,A∗)

=
Hes(M, D∗)
Hyp(M, D∗) .

Another outstanding result of Koszul is the non rigidity of compact positive hyperbolic manifolds [2].
The non rigidity means that every open neighborhood of a positive Hyperbolic locally flat manifold (M, D, δKVθ)

contain another positive hyperbolic locally flat structure which is not isomorphic to (M, D). This non rigidity
property may be expressed with the Maurer–Cartan polynomial function PA

MC of (M, D) ( see the local convexity
theorem in [29]. In the next sub-subsection we revisit the notion of dual pair of foliations as in [18].

5.1.1. Statistcal Reductions

The statistical reduction theorem is the following statement.

Theorem 8 ([18]). Let (M, g, D, D∗) be a dually flat pair and let N be a submanifold of M. Assume that N is
either D-geodesic or D∗-geodesic. Then N inherits a structure of dually flat pair which is either (N, gN, D, D∗

N)

or (N, gN, DN, D∗)).

The foliation counterpart of the reduction theorem is of great interest in the differential topology of
statistical models see [18]. In the preceding sections we have addressed a cohomological aspect of this
purpose. The matter will be more extensively studied in a forthcoming paper (See the Appendix A).

In mathematical physics a principal connection 1-form is called a gauge field.
In the differential geometry a principal connection 1-form in a bundle of linear frames is called a

linear connection.
In the category of vector bundle Koszul connections are algebroid counterpart of principal

connection 1-forms.
In a tangent bundle TM, depending on concerns and needs Koszul connections may called linear

connections or linear gauges.

Definition 33. Let D, D∗ ∈ LC(M). A vector bundle homomorphism

ψ : TM → TM

is called a gauge homomorphism of (M, D) in (M, D∗) if for all pairs of vector fields (X, Y) one has

D∗
Xψ(Y) = ψ(DXY).

The vector space of gauge homomorphisms of (M, D) in (M, D∗) is denoted by M(D, D∗).
The vector space M(D, D∗) is not a C∞(M)-module.

5.1.2. A Uselful Complex

In this subsubsection we fix a dually flat pair (M, g, D, D∗) whose KV algebras are denoted by
A and by A∗. The tangent bundle TM is endowed the structure left module of the anchored KV
algebroids (TM, D, 1) and (TM, D∗, 1). This means that each of the KV algebras A or A∗ is regarded as
a left module of itself.

We consider the tensor product

C = C∗
τ(A∗,A∗)⊗ C∗

τ(A,R).

We endow C with the Z bi-grading.

Ci,0 = Ci
τ(A∗,A∗)⊗ C∞(M),

C0,j = A∗ ⊗ Cj
τ(A,R),
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Ci,j = Ci
τ(A∗,A∗)⊗ Cj

KV(A,R).

We recall that C∗(A,R) stands for C∗(A, C∞(M)).
For every non negative integer q we set

Cq = Σi+j=qCi,j.

We defines the linear map
δi,j : Ci,j → Ci+1,j ⊕ Ci,j+1

by
δi,j = δτ ⊗ 1+ (−1)i ⊗ δτ.

So we obtain a linear map
Cq → Cq+1

Therefore, we consider the bi-graded differential vector space

C := (C∗∗, δ∗∗).

That is a bi-graded cochain complex whose qthcohomology is denoted by Hq(C). The cohomology
inherits the bi-grading

Hq(C) = ∑
[i+j=q]

Hi,j(C).

Here

Hi,j(C) =
Ci,j ∩ [Zi

τ(A∗,A∗)⊗ Zj
τ(A,R)]

im(δi−1,j) + im(δi, j − 1)

In the next subsubsection we shall discuss the impacts of this cohomology.

Remark 2. The pair (C∗∗, δ∗∗) generates a spectral sequence [34]. That spectral sequence is a useful tool for
simultaneously computing both the KV cohomology and the total KV cohomology of KV algebroids. Those
matters are not the purpose of this paper.

5.1.3. The Homological Nature of Gauge Homomorphisms

Giving a dually flat pair (M, g, D, D∗) one considers the linear map

C1,0
τ (A∗,A∗) � ψ → ψ ⊗ qψ ∈ C1,2.

Here the symmetric 2-form qψ is defined by

qψ(X, Y) =
1
2
[g(ψ(X), Y) + g(X, ψ(Y))].

To relate the bi-complex (C∗∗, δ∗∗) and the space of gauge homomorphisms we use the
following statement.

Theorem 9. Given a gauge morphism
ψ : TM → TM

the following statements are equivalent

(1) ψ ∈ M(D, D∗),
(2) δ1,2(ψ ⊗ qψ) = 0
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Proof. (1) implies (2).
Suppose that ψ ∈ M(D, D∗). Then we have

D∗
Xψ(Y) = ψ(DXY) ∀(X, Y).

Since both D and D∗ are torsion free one has the identity

D∗
X.ψ(Y)− ψ(D∗

XY)− D∗
Yψ(X) + ψ(D∗

YX) = 0.

Thus ψ is a (1,0)-cocycle of the total KV complex (C∗∗, δ∗∗).
At another side the relation D∗

X ◦ ψ = ψ ◦ DX leads to the identity

DXqψ = 0.

So qψ is a (0,2)-cocycle of complex (C∗∗, δ∗∗). We conclude that

δ1,2(ψ ⊗ qψ) = 0, QED.

(2) implies (1).
We recall the formula

δ1,2(ψ ⊗ qψ) = (δτψ)⊗ qψ − ψ ⊗ δτqψ.

By this formula
δ1,2(ψ ⊗ qψ) ∈ C2,2 ⊕ C1,3

Thus the statement (2) is equivalent to the system

δτψ = 0,

δτqψ = 0.

To continue the proof we perform the following lemma.

Lemma 4 ([29]). For every symmetric cochain B ∈ C0,2, viz

B(X, Y) = B(Y, X)

the following identities are equivalent

δτB = 0, (13a)

∇B = 0, (13b)

By Lemma 4 the bilinear form qψ is D-parallel. Thereby we get the identity

Xqψ(Y, Z)− qψ(DXY, Z)− qψ(Y, DXZ) = 0.

To usefully interpret this identity we involve the dualistic relation

Xg(Y, Z) = g(DXY, Z) + g(Y, D∗
XZ).

This expression leads to the identity

g(D∗
Xψ(Y)− ψ(DXY), Z) + g(Y, D∗

Xψ(Z)− ψ(DXZ)) = 0. (14)
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A highlighting consequence is the identity

D∗
Xψ(Y)− ψ(DXY) = D∗

Yψ(X)− ψ(DYX). (15)

To every vector field X we assign the linear map

Y → SX(Y) = D∗
XY − ψ(DXY).

Then we rewrite Equations (14) and (15) as

g(SX(Y), Z) + g(Y, SX(Z)) = 0,

SX(Y) = SY(X).

We consider the last identities in the framework of the Sternberg geometry [50,51].
Since the application

(X, Y) → SX(Y)

is C∞(M)-bi-linear it belongs to the first Kuranishi-Spencer prolongation of the orthogonal Lie
algebra so(g). Thereby SX(Y) vanishes identically. In other words we have

ψ ∈ M(D, D∗).

This ends the proof of Theorem

A Comment.

The Sternberg geometry is the algebraic counterpart of the global analysis on manifolds. It has been
introduced by Shlomo Sternberg and Victor Guillemin. It is an algebraic model for transitive differential
geometry [50]. In that approach the Riemannian geometry is a geometry of type one. All of its Kuranishi-Spencer
prolongations are trivial. The unique relevant geometrical invariant of the Riemnnian geometry is the curvature
tensor of the Levi-Civita connection. Except the connection of Levi-Civita the other metric connections have
been of few interest. Really other metric connections may have outstanding impacts on the differential topology.
I shall address this purpose in a forthcoming paper.

5.1.4. The Homological Nature of the Equation FE∇∇∗

Before proceeding we plan to discuss some homological ingredients which are connected to the
differential equation

FE∇∇∗
: D∇∇∗

(ψ) = 0.

Let us consider a dually flat pair (M, g∗, D, D∗) and the KV complex

ψ ∈ C1,0 = C1
τ(A∗,A∗).

Lemma 4 yields the following corollary.

Corollary 3. We keep the notation used the preceding sub-subsection. Given a gauge morphism ψ the following
statements are equivalent.

(1) ψ ⊗ qψ is an exact (1,2)-cocyle,
(2) ψ ∈ B1

τ(A∗,A∗).

Proof. Assume that the assertion (2) holds. Then there is ξ ∈ A∗ satisfying the condition

ψ(X) = D∗
Xξ.
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Thereby one has
qD∗ξ⊗ ∈ Z2

τ(A,R).

So one gets
D∗ξ ⊗ qD∗ξ = δ0,2[ξ ⊗ qD∗ξ ].

Therefore assumption (2) implies (1).
Conversely assume that (1) holds, viz the (1,2)-cochain ψ ⊗ qψ is exact.
There exists

ξ ⊗ α ⊕ ψ∗ ⊗ β ∈ C0,2 + C1,1

such that
ψ ⊗ qψ = δ0,2(ξ ⊗ α) + δ1, 1(ψ∗ ⊗ β).

Thus for vector fields Z, X, Y we have

ψ(Z)⊗ qψ(X, Y) = δτξ ⊗ α(X, Y) + ξ ⊗ δτα(Z, X, Y) + δτψ∗(Z, X)⊗ β(Y) + ψ∗(Z)⊗ δτβ(X, Y).

Since
ψ ⊗ qψ ∈ C1,2 = C1

τ(A∗,A∗)⊗ C2
τ(A, C∞(M))

the exactness of ψ ⊗ qψ implies
δτα = 0,

α(X, Y) = α(Y, X).

Therefore
ψ(Z)⊗ qψ(X, Y) = δξ(Z)⊗ α(X, Y) + ψ∗(Z)⊗ δτβ(X, Y).

Now we observe that
δτβ(X, Y) + δτβ(Y, X) = 0.

In final we get
ψ(Z)⊗ qψ(X, Y) = δτξ(Z)⊗ α(X, Y).

So we obtain
ψ(Z) = D∗

Zξ,

qψ(X, Y) = α(X, Y).

This end the proof of the corollary.

From the mapping
C1,0 � ψ → ψ ⊗ qψ ∈ C1,2

we deduce the canonical linear map

H1
τ(A∗,A∗) � [ψ] → [ψ ⊗ qψ] ∈ H1,2(C).

We define another map
C1,0 → C1,2

by
ψ → ψ ⊗ ωψ.

Here the differential 2-form ω is defined by

ωψ(X, Y) =
1
2
[g(ψ(X), Y)− g(X, ψ(Y))].
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This yields a linear map

H1
τ(A∗,A∗) � [ψ] → [ψ ⊗ ωψ] ∈ H1,2(C).

Now let (M, g,∇,∇∗) be a dually flat pair whose KV algebras are denoted by A and A∗.
We identify the vector space Γ(Hom(TM, TM)) with the space C1

τ(A∗,A∗).
We keep the notation D∇∇∗

, Cij, δij and qψ. Therefore, we can rephrase Lemma 4 as it follows.

Proposition 5. For every section ψ of Hom(TM, TM) the following assertions are equivalent.

(1) : D∇∇∗
(ψ) = 0,

(2) : δ12(qψ) = 0

Here is an interesting feature. In a dually flat pair (M, g,∇,∇∗) we combine the double complex{
Cij, δij

}
with the correspondence

ψ → qψ.

That allow us to replace the differential equation

FE∇∇∗
: D∇∇∗

(ψ) = 0

by the homological equation
δ12(ψ) = 0.

That is a relevant impact on the global analysis of combinations of the KV cohomological methods
with methods in the information geometry.

5.1.5. Computational Relations. Riemannian Foliations. Symplectic Foliations: Continued

We continue to relate the vector space of gauge homomorphisms and the differential topology.
The tools we use are the KV cohomology and the Amari dualistic relation.

Let (M, g, D, D∗) be a dual pair. The vector subspace of g-preserving elements of M(D, D∗) is
denoted by M(g, D, D∗). Thus every ψ ∈ M(g, D, D∗) satisfies the identity

g(ψ(X), Y) + g(X, ψ(Y)) = 0.

Now we fix a Koszul connection D0 and we define the map

Rie(M) � g → Dg ∈ LC(M).

by setting
g(Dg

XY, Z) = Xg(Y, Z)− g(Y, D0
XZ).

We define the non negative integers

nx(D0) = dim[
Mx(D0, Dg)

Mx(g, D0, Dg)
],

n(DO) = min
x∈M

dim[
Mx(D0, Dg)

Mx(g, D0, Dg)
].
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Lemma 5. The integer n(D0) does not depend on the choice of g ∈ Rie(M).

An Idea.

We fix a metric tensor g. For every g∗ ∈ Rie(M) there is a unique g-symmetric vector bundle morphism
φ ∈ Σ(g) such that

g∗(X, Y) = g(φ(X), Y).

Therefore, we have
φ−1 ◦M(D0, Dg) = M(g∗, D0, Dg∗),

φ−1M(g, D0, Dg) = M(g∗, D0, Dg∗).

Now one defines the numerical invariant n(M).

Definition 34.

n(M) = max {n(D)|D ∈ SLC(M)} .

Given a Koszul connection ∇ the vector space of ∇-parallel differential 2-forms is denoted
by Ω∇

2 (M).
Every dual pair (M, g,∇,∇∗) gives rise to the linear isomorphisms

(1) :
M(∇,∇∗)
M(g,∇,∇∗) � [ψ] → qψ ∈ S∇

2 (M),

(2) : M(g,∇,∇∗) � ψ → ωψ ∈ Ω∇
2 (M).

The isomorphism (1) derives from the linear map

(1∗) : ψ → qψ(X, Y) =
1
2
[g(ψ(X), Y) + g(X, ψ(Y))].

The isomorphism (2) is defined by

(2∗) : ψ → ωψ(X, Y) =
1
2
[g(ψ(X), Y)− g(X, ψ(Y))].

Proposition 6. Let (M, g,∇,∇∗) be a dual pair. The inclusion map

M(g,∇,∇∗) → M(∇,∇∗)

induced the split short exact sequence

(∗ ∗ ∗ ∗ ∗) : 0 → Ω∇
2 (M) → M(∇,∇∗) → S∇

2 (M) → 0.

Reminder.

According our previous notation elements of Ω∇
2 (M) are ∇-geodesic symplectic foliations. Those of

S∇
2 (M) are ∇-geodesic Riemannian foliations. Thus we apply methods of the information geometry to relate the

gauge geometry and the differential topolgy.

Digressions.

Our construction may open to new developments. Here are some unexplored perspectives.

(a) A ∇-geodesic symplectic foliation ω ∈ Ω∇ might carry richer structures such as Kahlerian structures.
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(b) Suppose that the manifold M is compact and suppose that g ∈ S∇
2 (M) is a positive Riemannian foliation, viz

g(X, X) ≥ 0 ∀X.

Then the theory of Molino may be applied to study g [38]. Therefore, the structure theorem of Molino tells
that g gives rise to a Lie foliation whoses leaves are the adherences leaves of ḡ [39].

(c) In the principal bundle of first order linear frames of M the analog of a Koszul connection ∇ is a principal
connection 1-form ω whose curvature form is denoted by Ω. The curvature form is involved in constructing
characteristic classes of M, (the formalism of Chern-Weill.)

At another side ∇-geodesic Riemannian foliations and ∇-geodesic symplectic foliations are
Lie algebroids. They have their extrinsic algebraic topology. In particular the theory of integrable
systems may be performed in every leaf of ω ∈ Ω∇

2 (M). If one considers the α-connections in a
statistical model those new insights may be of interest.

Here is an interpretation of the numerical invaraint n(∇).

Theorem 10. We assume there exists ∇ ∈ SLC(M) whose linear holonomy group H(∇) is neither
an orthogonal subgroup nor a symplectic subgroup. If n(∇) > 0 then the manifold M admits a couple
(Fr,Fs) formed by a ∇-geodesic Riemannian foliation Fr and a ∇-geodesic symplectic foliation Fs.

Proof. Let g be a Riemannian metric tensor in M. Since

n(∇) ≤ dim(S∇
2 (M)(x))

for all x ∈ M there exists ψ ∈ M(∇,∇(g) such that

qψ ∈ S∇
2 (M) \ {0} ,

ωψ ∈ Ω∇
2 (M) \ {0} .

The assumption that the holonomy group H(∇) is neither orthogonal nor symlectic implies

Ker(qψ) = 0,

Ker(ωψ) = 0.

Both distributions Ker(qψ) and Ker(ωψ) are ∇-geodesic. Since ∇ is torsion free those distributions
are completely integrable.

For all X ∈ Γ(Ker(qψ)) we have
LXqψ = 0.

Mutatis mutandis for all X ∈ Γ(Ker(ωψ)) we have

LXωψ = 0.

From those properties we conclude
(M, Ker(qψ), qψ) is a ∇-geodesic Riemannian foliation, (M, Ker(ωψ), ωψ) is a ∇-geodesic

symplectic foliation.
The theorem is proved.
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A Useful Comment.

Let (M, D) be a locally flat manifold whose KV algebra is denoted by A. To every dual pair (M, g, D, Dg)

we assign the short split exact sequence

0 → ΩA
2 (M) → M(D, Dg) → SA

2 (M) → 0

which is canonically isomorphic to the short exact sequence

0 → M(g, D, Dg) → M(D, Dg) → SA
2 (M) → 0.

We have already defined the geometric invariant

r(D) = dim(H2
τ(A,R))− b2(M).

We observe that the integer n(D) is a byproduct of methods of the information geometry while r(D) is a
byproduct of homological methods. However the split short exact sequence (****) leads to the equality

n(D) = r(D).

Here is a straight consequence of the theorem we just proved.

Proposition 7. Every odd-dimensional manifold M with n(M) > 0 admits a geodesic symplectic foliation.

The dualistic relation of Amari has another significant impact on the differential topology.

Definition 35. We consider a dual pair (M, g,∇,∇∗). Let ψ ∈ M(∇,∇∗).

(1) The g-symmetric part of ψ, ψ+ is defined by

g(ψ+(X), Y) =
1
2
[g(ψ(X), Y) + g(X, ψ(Y))].

(2) The g-skew symmetric part of ψ, ψ− is defined by

g(ψ−(X), Y) =
1
2
[g(ψ(X), Y)− g(X, ψ(Y))].

Theorem 11. Let (M, g,∇,∇∗) be a dual pair where (M, g) is a positive Riemannian manifold. Let ψ ∈ M(∇,∇∗).

(1) The g-symmetric part ψ+ is an element M(∇,∇∗) whose rank is constant.
(2) We have the g-orthogonal decomposition

TM = Ker(ψ+)⊕ im(ψ+).

(3) If both ∇ and ∇∗ are torsion free then Ker(ψ+) and Im(ψ+) are completely integrable.

A Digression.

We recall that a statistical manifold is a torsion free dual pair (M, g,∇,∇∗). If the vector space M(∇,∇∗)
is non-trivial then it plays an outstanding role in the differential topology of M. We define a canonical map of
M(∇,∇∗) in the category of 2-webs by

M(∇,∇∗) � ψ → Ker(ψ+)⊕ im(ψ+).
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Thus one may regard elements of M(∇,∇∗) as orthogonal 2-webs in M.
We keep our previous notation. The we have

qψ(X, Y) = g(ψ+(X), Y),

ωψ(X, Y) = g(ψ−(X), Y).

Now suppose that (M, g,∇,∇∗) is a dually flat pair whose KV algebras are noted A and A∗. We take into
account the inclusion

M(∇,∇∗) ⊂ Z1
τ(A∗,A∗).

We have a map of M(∇,∇∗) in the space of de Rham 2-cocyles which is defined by

M(∇,∇∗) � ψ → ωψ.

Assume that the cocycle ψ ∈ M(∇,∇∗) is exact. Then there exists ξ ∈ A∗ such that

ψ(X) = ∇∗
Xξ ∀X ∈ A.

By the dualistic relation one easily sees that

ωψ = ddR(ιξg).

Therefore one gets a canonical linear map

H1
τ(A∗,A∗) � [ψ] → [ωψ] ∈ H2

dR(M,R).

The next subsubsection is devoted to a few consequences of items we just discussed.

5.1.6. Riemannian Webs—Symplectic Webs in Statistical Manifolds

We introduce Riemannian webs and symplectic webs and we discuss their impacts on the topology
of statistical manifolds. We recall that a Riemannian foliation is a symmetric bilinear form g ∈ S2(M)

with the following properties

(a) rank(g) = constant,
(b) LXg = 0∀X ∈ Γ(Ker(g)).

We put
D = Ker(g).

To avoid confusions the pair (D, g) stands for the Riemannian foliation g.

Definition 36. A Riemannian k-web is a family of k Riemannian foliations in general position (Dj, gj),
j := 1, ..., k. A symplectic k-web is a family of k symplectic foliations in general position (Dj, ωj); j := 1, ..., k).

Let (M, g, D, D∗) be a dually flat pair whose KV algebras are denoted by A and A∗. We recall
the inclusion

M(D, D∗) ⊂ Z1
τ(A∗,A∗).

Consider a statistical manifold (M, g,∇,∇∗). By the classical theorem of Frobenius every
∇-parallel differential system in M is completely integrable.
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In a statistical manifold (M, g,∇,∇∗) we consider a ∇-geodesic Riemannian k-web

[g̃j ∈ S∇
2 (M); j : 1, ..., k].

The distributions
Dj = Ker(g̃j)

are in general position. We consider the family Ψ+
j ∈ Σ(g) defined by

g(Ψ+
j (X), Y) = g̃j(X, Y).

We get the family of g-orthogonal 2-webs defined by

TM = Ker(Ψ+
j )⊕ im(Ψ+

j ).

Mutatis mutandis we can consider a ∇-geodesic symplectic web

[ωj ∈ Ω∇
2 (M); j := 1, ..., k].

There is family of g-skew symmetric gauge morphisms Ψ−
j defined by

g(Ψ−
j (X), Y) = ωj(X, Y).

Since ∇ and ∇∗ are torsion free Ker(Ψ−
j ) and im(Ψ−

j ) are completely integrable. Since g is positive
definite we get the 2-web

TM = Ker(Ψ−
j )⊕ im(Ψ−

j ).

Further every leaf of im(Ψ−
j ) is a symplectic manifold.

Definition 37. Let ω ∈ Ω∇
2 (M) be a non trivial symplectic foliation in a statistical manifold (M, g,∇,∇∗).

Consider Ψ− ∈ M(∇,∇∗) defined by

g(Ψ−(X), Y) = ω(X, Y).

The differential 2-form ω is called simple if the foliation Ker(Ψ−) is simple.

In a statistical manifold (M, g,∇,∇∗) every non trivial symplectic web

[ωj; j := 1, ...] ⊂ Ω∇
2 (M)

gives rise to a family of g-orthogonal 2-webs. So in this approach the role played by S∇
2 (M) is similar to

the role played by Ω∇
2 (M). Our construction of Riemannian webs and symplectic webs in the category

of dually flat pairs holds in the category of statistical manifolds.
At one side, in a dually flat pair (M, g, D, D∗) our approach yields linearizable webs. This property

does not hold in all statistical manifolds.
At another side, in a statistical manifold (M, g,∇,∇∗) a Riemannian web

[g̃j, j ∈ J] ⊂ S∇
2 (M)

or symplectic web
[ωj, j ∈ J] ⊂ Ω∇

2 (M)

gives rise to families of orthogonal 2-webs. This property does not hold in all dually flat pairs.
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The considerations we just discussed may have remarkable impacts on the topological-geometrical
structure of statistical manifolds.

From our brief discussion we conclude

Theorem 12. Consider a statistical manifold (M, g,∇,∇∗). Every non trivial simple symplectic foliation
ω ∈ Ω∇

2 (M) is defined by a Riemannian submersion on a symplectic manifold.

Corollary 4. Every non trivial simple symplectic web [ωj, j ∈ J] ⊂ Ω∇
2 (M) is defined by family of Riemannian

submersions on symplectic manifols.

5.2. The Hessian Information Geometry, Continued

In [52] Shima pointed out that the Fisher informations of many classical statistical models are
Hessian metric tensors.

At another side the exponential models (or exponential family) may be considered as optimal
Statistical models.

As already mentioned there does not exists any criterion for knowing whether a given statistical
model is isomorphic to an exponential model [22], [13]

In the category of regular models, viz models whose Fisher information is a Riemannian metric,
it is known that the Fisher information of an exponential model is a Hessian Riemannian metric [18,52].

In this subsection we address the general situation. We give a cohomological characterization of
exponential models. We also introduce a new numerical invariant rb which measures how far from
being an exponential family is a given statistical model. See the Appendix A to this paper.

We recall that the metric tensor g of a Hessian structure (M, D, g) is a 2-cocycle of the KV complex
[C∗

KV(A,R), δKV].
To non specialists we go to recall some constructions in the geometry of Koszul [2,52], see also [53].
Let ((M, x∗), D) be a pointed locally flat manifold whose universal covering is denoted by (M̃, D̃).

Here the topological space M̃ is the set of homotopy class of continuous paths

{([0, 1], 0) → (M, x∗)} .

Its topology is the compact-open topology. Let c be a continuous path with

c(0) = x∗.

For s ∈ [0, 1] the parallel transport of Tx∗ M in Tc(s)M is denoted by τs. One defines Q(c) ∈ Tx∗ M by

Q(c) =
∫ 1

0
τ−1

s (
dc(s)

ds
)ds.

The tangent vector Q(c) depends only on the homotopy class of the path c. Therefore, Q defines
a local homeomorphism

Q̃ : M̃ → Tx∗ M.

Let π1(x∗) be the fundamental group at x∗. Let [γ] ∈ π1(x∗). The natural left action

π1(x∗)× M̃ → M̃

is given by the composition of paths, viz

[γ].[c] = [γ ◦ c].

The parallel transport along a loop γ(t) yields a linear action of π1(x∗) in Tx∗ M which is denoted
by f ([γ]).
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Let [γ], [γ∗] ∈ π1(x∗). The composition of paths leads to the formula

Q([γ].[γ∗]) = f ([γ])Q([γ∗]) + Q([γ]).

The last relation shows that the pair ( f , Q) is an affine representation of π1(x∗) in Tx∗ M.
This representation is called the holonomy representation of the locally flat manifold (M, D). The group
( f , Q)(π1(x∗)) is called the affine holonomy group of (M, D). Its linear component f (π1(x∗)) is called
the linear holonomy group of (M, D).

Definition 38 ([2]). An m-dimensional locally flat structure (M, D) is called hyperbolic if Q̃(M̃) is a convex
domain not containing any straight line in Tx∗ M.

Definition 39. A locally flat manifold (M, D) is complete if the map Q̃ is a diffeomorphism onto Tx∗ M.

Among the major open problems in the theory of space groups is the conjecture of Markus.
Conjecure of Markus: a compact locally flat manifold (M, D) whose linear holonomy group is

unimodular is complete.

Before pursuing we recall KV cohomological version of Theorem 3 as in [2].

Theorem 13 ([2]). A necessary condition for a locally flat manifold (M, D) being hyperbolic is that (M, D)

carries a positive Hessian structure whose metric tensor is exact in the KV complex of (M, D). This condition is
sufficient if M is compact.

We have already mentioned a notable consequence of this theorem of Koszul. In the category of
compact locally flat manifolds the subcategory of hyperbolic locally flat structures is the same thing as
the category of positive exact Hessian structures. So The geometry of compact hyperbolic local flat
manifolds is an appropriate vanishing theorem.

In the preceding sections the family of Hessian metrics in a locally flat manifold (M, D) is denoted
by Hes(M, D). Therefore, H+es(M) stands for the sub-family of positive Hessian metric tensors. It is
a convex cone in Rie(M).

We have already used the KV complex for expressing the dually flatness. More precisely let (M, D)

be a fixed locally flat manifold whose KV algebra is noted A. A dual pair (M, g, D, D(g)) is dually flat if
and only if g ∈ Z2

KV(A,R). Therefore, every dually flat pair (M, g, D, D∗) yields two cohomology classes

[g]D ∈ H2
KV(A,R),

[g]D∗ ∈ H∗
KV(A∗,R).

Thereby, we can use methods of the information geometry for rephrasing Theorem 3 as in [2].

Theorem 14. A necessary condition for (M, D) being hyperbolic is the existence a positive dually flat pair
(M, g, D, D∗) such that

[g] = 0 ∈ H2
KV(A,R).

If M is compact this ( vanishing ) condition is sufficient.

About the geometry of Koszul the non specialists are referred to [2,7,8,52] and bibliography
therein [12].

About applications of the geometry of Koszul the readers are refereed to [12,13,54,55].
About relationships between the theory of deformation and the theory of cohomology, the readers

are referred to [9,27,56].
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5.3. The α-Connetions of Chentsov

Still, nowadays, the information geometry deals with models (Θ, P) whose underlying
m-dimensional manifold Θ is an open subset of the euclidean space Rm. Further the Fisher information
g is assumed to be regular, viz (Θ, g) is a Riemannian manifold. In this paper this classical information
geometry is called the local information geometry. This “local nature” will be explained in Part B of
this paper.

At the moment we plan to investigate other topological properties of the local statistical models.
Let (Θ, P) be an m-dimensional local statistical model for a measurable set (Ξ, Ω). The manifold Θ

is a domain in the Euclidean space Rm. The function P is non negative. It is defined in Θ×Ξ. We recall
the requirements P is subject to.

(1) ∀ξ ∈ Ξ the function
Θ � θ → P(θ, ξ)

is smooth.
(2) ∀θ ∈ Θ the triple

(Ξ, Ω, P(θ,−))

is a probability space.
(3) ∀θ, θ∗ ∈ Θ with θ = θ∗ there exists ξ ∈ Ξ such that

P(θ, ξ) = P(θ′, ξ).

(with the requirement (3) (Θ, P) is called identifiable.)
(4) The differentiation dθ commutes with the integration

∫
Ξ . The Fisher information of a model (Θ, P)

is the symmetric bi-linear form g which is defined by

g(X, Y)(θ) =
∫

Ξ
P(θ, ξ)[[dθlog(P)]⊗2(X, Y)](θ, ξ)dξ.

Here dθ stands for the differentiation with respect to the argument θ ∈ Θ.
(5) The Fisher information is positive definite.

Remark 3. The Fisher information g can be defined using any Koszul connection ∇ according to the
following formula

g(X, Y)(θ) = −
∫

Ξ
P(θ, ξ)[(∇2log(P))(X, Y)](θ, ξ)]dξ.

The right member of the last equality does not depend on the choice of the Koszul connection ∇.
From now on, we deal with a generic statistical model. This means that we do not assume the Fisher

information g is definite.
Let θ = (θ1, ..., θm) be a system of Euclidean coordinate functions in Rm. To every real number α is assigned

the torsion free Koszul connection ∇α whose Christoffel symbols in the coordinate (θj) are

Γα
ij,k =

∫
Ξ

P(θ, ξ)[(
∂2log(P(θ, ξ))

∂θi∂θj
+

1− α

2
∂log(P(θ, ξ))

∂θi

∂log(P(θ, ξ))

∂θj
)

∂log(p(θ, ξ))

∂θk
]dξ.

This definition agrees with any affine coordinate change. We put ∂i =
∂

∂θi
. We have

∇α
∂i

∂j = ∑
k

Γα
ij,k∂k.
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Now we assume a model (Θ, P) is regular. Then the Christoffel symbols and the Fisher information are
related by the formula

Γα
ij,k = g(∇α

∂i
∂j, ∂k).

Further every quadruple (Θ, g,∇α,∇−α) is a statistical manifold [18,48].
Thus we have a family of splitting short exact sequences

0 → Ω∇α
(Θ) → M(∇−α,∇α) → S∇α

2 (Θ) → 0.

So the machinery we have developed in the preceding sections can be performed to explore the differential
topology of regular local statistical models. For that purpose the crucial tool is the family of vector space

Sα
2 (Θ) = S∇α

2 (Θ).

We consider the abstract trivial bundle

∪α[Sα ×{α}] → R

whose fiber over α ∈ R is Sα(Θ). To every B ∈ Sα(Θ) we assign the unique ψ+ ∈ Σ(g) defined by
g(ψ+α(X), Y) = B(X, Y).

The machinery in the preceding subsection leads to the following proposition.

Proposition 8. We assume (Θ, P) is regular.

(1) Every non zero singular section
R � α → Bα ∈ Sα(Θ)

gives rise the family of (g-orthogonal) 2-web

TΘ = Ker(ψ+α)⊕ im(ψ+α).

Further according to the notation used previously (Bα) is a family of Riemannian foliations as in [39,40].
(2) By replacing Sα(Θ) by Ω∇

2 (Θ) every non zero singular section

R � α → ωα ∈ Ω∇
2 (Θ)

yields a family of symplectic foliations ωα.

Reminder.

(i) α → Bα is called a singular section if each Bα is non inversible.
(ii) α → ωα is called a simple section if each ωα is simple.

We have used some gauge morphisms to construct Riemannian submersions of statistical manifolds over
symplectic manifolds. The notions we just introduced lead to similar situations.

Theorem 15. Let (Θ, P) be a regular statistical model whose Fisher information is denoted by g. Every simple
non zero singular section

R � α → ωα ∈ Ωα(Θ)

defines an α-family of Riemannian submersions of (Θ, g) onto symplectic manifolds.
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Proposition 9. We assume a model (Θ, P) is regular. For every nonzero real number α one has

M(∇α,∇−α)∩M(∇−α,∇α) = M(g,∇−α,∇α) +M(g,∇∗,∇).

The Sketch of Proof. The proof is based on the short exact sequences

0 → M(g,∇α,∇−α) → M(∇α,∇−α) → S∇
2 (Θ) → 0,

0 → M(g,∇−α,∇α) → M(∇−α,∇α) → S−∇
2 (Θ) → 0.

Let us suppose that the conclusion of the the proposition fails. Then there is a nonzero 2-form
B ∈ S∇α

2 (Θ)∩S∇−α

2 (Θ).

(1) If Ker(B) = 0, then both ∇α and ∇−α coincide with the Levi-Civita connection of B. This implies
α = 0, this contradicts our choice of α.

(2) If Ker(B) = 0 then Ker(B) and Ker(B)⊥ are geodesic for both ∇α and ∇−α. Thus the pair
(Ker(B), Ker(B)⊥) defines a g-orthogonal 2-web.

At one side, by the virtue of the reduction theorem as in [18] every leaf F of Ker(B)⊥ inherits a
dual pair (F, gF,∇α

F,∇−α
F ).

At another side, B gives rise to the Riemannian structure (F, B). Furthermore both ∇α
F and ∇−α

F
are torsion free metric connections in (F, B). Thereby one gets

∇α
F = ∇−α

F

The last equality holds if and only if α = 0. This contradicts our assumption. The proposition
is proved.

The proposition above is a separation criterion for α-connections in the following sense. For every
nonzero real number α the vector subspace S∇α

2 (Θ) is transverse to S∇−α

2 (Θ) in the vector space S2(Θ)

of symmetric forms in Θ.

5.4. The Exponential Models and the Hyperbolicity

A challenge is the search of a criterion for deciding whether a model (Θ, P) is an exponential family.
That is the challenge in [22]. Still, nowadays, this problem is open.

The Fisher information of a regular exponential model is a Hessian Riemannian metric. We are
going to demonstrate that the converse is globally true. Our proof is based on cohomological arguments.

In the Appendix A to this paper we introduce a new numerical invariant rb(Θ, P) which measures
how far from being an exponential family is a model (Θ, P).

The invariant rb derives from the global analysis of differential operators

Dα = D∇α ,

Dα = D∇α
.

Now we are going to provide a cohomological characterization of exponential models.
Before pursuing we recall a definition.
Let θj, j := 1, ..., m be a system of Euclidean coordinate functions of Rm.

Definition 40. [18] An m-dimensional statistical model (Θ, P) is called an exponential model for (Ξ, Ω) if
there exist a map

Ξ � ξ → [C(ξ), F1(ξ), ..., Fm(ξ)] ∈ R
m+1
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and a smooth function
Θ � θ → ψ(θ) ∈ R

such that

P(θ, ξ) = exp(C(ξ) +
m

∑
1

Fj(ξ)θj −ψ(θ1, ..., θm)).

Theorem 16. Let (Ξ, Ω) be a measurable set and let (Θ, P) be an m-dimensional statistical model for (Ξ, Ω).
The Fisher information of (Θ, P) is denoted by g. The following statements are equivalent.

(1) There exists ∇ ∈ LF(Θ) such that
δKVg = 0,

(2) The model (Θ, P) is an exponential model.

Demonstration.

(2) ⇒ (1).
We assume that (2) holds. Then we fix a system of affine coordinate functions

θ = (θ1, ..., θm).

By the virtue of (2) we have

P(θ, ξ) = exp(C(ξ) +
m

∑
1

Fj(ξ)θj −ψ(θ)).

Here ψ ∈ C∞(Θ) and (C, F)(ξ) = (C(ξ), F1(ξ), ..., Fm(ξ)) ∈ Rm+1. Therefore, one has

∂2log(P(θ, ξ))

∂θi∂θj
= − ∂2ψ

∂θi∂θj
.

Thereby one can write

−
∫

Ξ
P(θ, ξ)

∂2log(P(θ, ξ))

∂θi∂θj
=

∂2ψ(θ, ξ)

∂θi∂θj
.

This shows that we have
g = δKV(dψ) ∈ B2

KV(A,R).

The implication (2) → (1) is proved.
(1) ⇒ (2).

We use a strategy similar to that used in [52]. However our arguments do not depend on rank(g).
Let ∇ ∈ LF(Θ) whose KV algebra is denoted by A. We assume

g ∈ Z2
KV(A, C∞(Θ)).

Thus we have
δKVg = 0.

In (Θ,∇) we fix a system of local affine coordinate functions

{θ1, ..., θm}
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whose domain is a convex open subset U. We write the matrix of Fisher information g in the basis{
∂

∂θj

}
,

namely
g = ∑ gijdθidθj.

Here
gij = g(

∂

∂θi
,

∂

∂θj
).

The assumption
δKVg = 0

is equivalent to the system
∂gij

∂θk
− ∂gkj

∂θi
= 0

for all i, j, k.
We use a notation which is used in [52]. We consider the differential 1-forms

hj = ∑
i

gijdθi.

Every differential 1-form hj is a de Rham cocycle. By the Lemma of Poincaré the convex open set U supports
smooth functions φj, j =: 1, ..., m which have the following property

dφj = hj.

We put
ω = ∑

j
φjdθj.

Then we have
(δKVω)(

∂

∂θi
,

∂

∂θj
) = gij.

Thus the differential 1-form ∑j φjdθj is de Rham closed.
Since U is convex it supports a local smooth function Ψ such that

dΨ = ∑ φjdθj.

So we get

g(
∂

∂θi
,

∂

∂θj
) =

∂2ψ

∂θi∂θj
.

To continue we fix θ0 ∈ U and we consider the function

θ → a(θ)

which is defined in U by

a(θ) =
∫

Ξ
P(θ0, ξ)[ψ(θ) + log(P(θ, ξ))]dξ.

Now recall that the integration
∫

Ξ commutes with the differentiation d
dθ . Therefore, ∀i, j ≤ dim(Θ) one has

∂2a
∂θi∂θj

(θ) =
∫

Ξ
P(θ0, ξ)

∂2(ψ+ log(P))
∂θi∂θj

(θ, ξ)dξ.
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The identities above show that
∂2a

∂θi∂θj
(θ0) = 0

for all θ0 ∈ U. Thereby the function
θ → ψ(θ) + log(P(θ, ξ))

depends affinely on θ1, ..., θm. So there exists a Rm+1-valued function

Ξ � ξ → (C(ξ), F1(ξ), ..., Fm(ξ)) ∈ Rm+1

such that

ψ(θ) + log(P(θ, ξ)) = C(ξ) +
m

∑
1

Fi(ξ)θi.

In final we get
P(θ, ξ) = exp(C(ξ) +∑ Fi(ξ)θi −ψ(θ))

for all (θ, ξ) ∈ U ×Ξ. So (Θ, P) is locally an exponential family.
Since the exponential function is injective this local property of (Θ, P) is a global property, in other

words the model is globally an exponential model. In final assertion (1) implies assertion(2). This ends the
demonstration of the theorem

Some Comments.

(i) It must be noticed that the demonstration above is independent of the rank of the Fisher information g.
Therefore, the theorem holds in singular statistical models.

(ii) In regular statistical models the theorem above leads to the notion of e-m-flatness as in [18].
(iii) When the Fisher information g is semi-definite the dualistic relation is meaningless. However data

(Θ, g,∇,∇∗) may be regarded as data depending on the transversal structure of the distribution Ker(g).
(iv) In the analytic category the Fisher information is a Riemannian foliation. Therefore, both the information

geometry and the topology of information are transversal concepts. This may be called the transversal
geometry and the transversal topology of Fisher-Riemannian foliations.

(v) The theorem above does not solve the question as how far from being an exponential family is a given model.
It only tells us that exponential families are objects of the Hessian geometry.

The framework for addressing the challenge just mentioned is the theory of invariants. That is the
purpose of a forth going work. Some new results are anounced in the Appendix A to this paper.

6. The Similarity Structure and the Hyperbolicity

We consider a dually flat pair (M, g,∇,∇∗). Both (M,∇, g) and (M, g,∇∗) are locally hyperbolic in
the sense of [2]. So they locally support the geometry of Koszul. That is a consequence of the classical
Lemma of Poincare.

Every point of M has an open neighborhood U supporting a local de Rham closed differential 1-forms

ω ∈ C1
KV(A,R)

and
ω∗ ∈ C1

KV(A∗,R)

subject to the following requirements
g|U = δω,

g|U = δ∗ω∗.
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By the virtue of Theorem 3 as in [2], for both (M, g,∇) and (M, g,∇∗) being globally hyperbolic it
is necessary that

[g] = 0 ∈ H2
KV(A,R)

and
[g] = 0 ∈ H2

KV(A∗,R).

Every choice of local differential 1-forms ω and ω∗ gives rise to a unique pair of local similarity
vector fields (H, H∗), viz

∇X H = X,

∇∗
X H∗ = X

for all vector fields X. The vector fields H and H∗ are Riemannian gradients of ω∗ and of ω respectively.
This means that those differential 1-forms are defined by

ω = ιHg,

ω∗ = ιH∗g.

Here ιH stands for the inner product by H, viz

ιHg(X) = g(H, X).

This short discussions lead to the following statement

Theorem 17. Let (M, g,∇,∇∗) be a compact dually flat pair whose KV algebras are denoted by A and by A∗.
The following assertions are equivalent

(1) The locally flat manifold (M,∇) is hyperbolic,
(2) the locally flat manifold (M,∇∗) admits a global similarity vector field H∗.

Definition 41. Let ∇ ∈ LC(M).

(1) The gauge structure (M,∇) is called a similarity structure if ∇ admits a global similarity vector field
H ∈ X (M).

(2) A dual pair (M, g,∇,∇∗) is a similarity dual pair if either (M,∇) or (M,∇∗) is a similarity structure.

The following proposition is a straightforward consequence of our definition.

Proposition 10. If a gauge structure (M,∇) is flat and is locally a similarity structure, then (M,∇) is a locally
flat manifold

7. Some Highlighting Conclusions

In this Part A our aim has been to address various purposes involving the theory of KV homology.
Doing that we have pointed significant relationships between some major topics in mathematics and
the local information geometry. Those relationships might be sources of new investigations.

We summarize some relevant relationships we have been concerned with.

7.1. The Total KV Cohomology and the Differential Topology

We have addressed the existence problem for a few major objects of the differential topology.
Riemannian foliations and symplectic foliations. Riemannian webs and their linearization problem.
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To those questions we have obtained substantial solutions in the category of locally flat manifolds.
The cohomological methods we have used are based on the split exact short cohomology sequence

0 → H2
dR(M,R) → H2

τ(A,R) → SA
2 (M) → 0.

7.2. The KV Cohomology and the Geometry of Koszul

The Hessian Geometry is a byproduct local vanishing Theorems in the theory of KV cohomology.
The geometry of Koszul is a byproduct of global vanishing Theorem in the same sitting.

7.3. The KV Cohomology and the Information Geometry

The category of finite dimensional statistical models for a measurable set (Ξ, Ω) contains the
subcategory of finite dimensional Hessian manifolds. From this viewpoint the Hessian information
geometry is nothing but the exponential information geometry (i.e., the geometry of exponential
families and their genelarizations). The framework for those purposes is closely related to vanishing
Theorems in the theory of KV cohomology.

At another side cotangent bundles of Hessian manifolds are Kaehlerian manifolds. This aspect
has been discussed by many authors, see [52] and the bibliography ibidem.

7.4. The Differential Topology and the Information Geometry

A lot of outstanding links between the differential topology and the information geometry are
based on the dualistic relation of Amari. This approach leads to significant results in the category
of statistical manifolds. In a statistical manifold (M, g,∇,∇∗) we have introduced the splitting short
exact sequence

0 → Ω∇
2 (M) → M(∇,∇∗) → S∇

2 (M) → 0.

Here (i) Ω∇
2 (M) is the space of ∇-geodesic symplectic foliations in M; (ii) S∇

2 (M) is the space of
∇-geodesic Riemannian foliations in M.

The numerical invariant n(∇) has outstanding impacts on the differential topology of M. See our
results on orthogonal 2-webs and on Riemannian submersions on symplectic manifolds.

7.5. The KV Cohomology and the Linearization Problem for Webs

In a locally flat pair (M, g,∇,∇∗) we consider the short exact sequence

O → Ω∇
2 (M) → M(∇,∇∗) → S∇

2 (M) → O.

The linearization of webs of is a difficult outstanding problem in the differential topology.
Gk[Ω∇

2 (M)] stands for the family formed by

[ω1, ..., ωk] ⊂ Ω∇
2 (M)

such that
dim[ΣjKer(ωj)] = min[dim(M), Σjdim(Ker(ωj))].

Gk[S∇
2 (M)] stands for the family formed by

[B1, ..., Bk] ⊂ S∇
2 (M)

such that
dim[ΣjKer(Bj)] = min[dim(M), Σjdim(Ker(Bj))].

(i) Elements of Gp[Ω∇
2 (M)] are LINEARIZABLE symplectic k-webs.

(ii) Elements of Gp[S∇
2 (M)] are LINEARIZABLE Riemannian k-webs.

198



Entropy 2016, 18, 433

We have introduced the double complex{
C : Cij = Ci

τ(A∗,A∗)⊗ Cj
τ(A, C∞(M)), δij

}
.

It gives rise to spectral sequences which may be useful for computing the KV cohomologies
H ∗τ (A∗,A∗) and H ∗KV (A, C∞(M)). That is not the purpose of this paper. However this double
complex is useful for replacing the first order differential equation

D∇∇∗
(ψ) = 0

by the homological equation
δ1,2qψ = 0.

We have proved the homological nature of the space of gauge homomorphisms M(∇,∇∗). This is
useful for relating the image of M(∇,∇∗) in H1

τ(A∗,A∗) and the pair H2
dR(M), H1,2(C).

8. B. The Theory of StatisticaL Models

In the introduction of this paper we have recalled the problem raised by Peter McCullagh.
What is a statistical model [30]?
By the way we have recalled a variant request of Misha Gromov.
In a Search for a Structure. The Fisher Information [15,16].
McCullagh and Gromov choose the same framework for addressing their purpose, The theory of

category. This Part B is devoted to the same purpose.
Further the moduli space of isomorphism class of objects of a category C is denoted by [Ca].

In general it is difficult to find an invariant inva which encodes [Ca]. Subsequently to the questions
raised by McCullagh and by Gromov the moduli space of isomorphism class of statistical models
is discussed in this Part B. Nowadays, there exists a well established theory of statistical models.
The classical references are Amari [17], Amari and Nagaoka [18]. Other remarkable references
are Barndorff-Nielsen (Indian Journal of Mathematics 29, Ramanujan Centenary Volume) [21,24],
Kass and Vos [37], Murray-Rice (Chapter 1, Section 15 in [22]). In Part A of this paper we have been
dealing with this current theory. It has been called the local theory. We suggest reading the attempt by
McCullagh to establish a conceptually consistent theory of statistical models [30]. In its time, the paper
of McCullagh had been the object of controversy and questions.

We are aimed at re-establishing the theory of statistical models. Our motivations have emerged
from some criticisms.

The current theory presents some deficiencies that we plan outlining. (i) A weakness of the
current theory is its lacking in geometry; (ii) In the literature on the information geometry many
references define an m-dimensional statistical model as an open subset of an Euclidean space Rm.
Though this definition may be useful for dealing with coordinate functions, it is topologically and
geometrically useless. Let Γ be the group of measurable isomorphisms of a measurable set (Ξ, Ω).
The information geometry of a statistical model M includes the geometry in the sense of Erlangen
program of the pair [M, Γ].

Let M and M∗ be m-dimensional statistical models for the same measurable set (Ξ, Ω).
An isomorphism of M on M∗ looks like an sufficient statistic. The geometries [M, Γ] and [M∗, Γ]
provide the same information. So the impact on the applied information geometry of the theory of
moduli space is notable. Subsequently the search for characteristic invariants presents a challenge.
An invariant is called characteristic if it determine a model up to isomorphism. So a characteristic
invariant encodes the moduli space. That increases the interest in the search of both McCullagh
and Gromov.

The Fisher information of widely used models are Hessian metrics [52]. This observation is
relevant. However the Fisher information is not a characteristic invariant.
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We intend to face the following challenges.
Challenge 1. Revisit the theory of geometric statistical models for measurable sets.
Challenge 2. The Search for a geometric characteristic invariant for statistical models. We recall that
such an invariant will encode the points the moduli space of models. Before continuing we recall
some definitions.

Definition 42. A geometric invariant of a model for (Ξ, Ω) is a datum which is invariant under the action of
the symmetry group Aut(Ξ, Ω).

The framework which is useful for re-establishing the theory of statistical models is the category
of locally trivial fiber bundles.

As we have mentioned the need for introducing a new theory of statistical model emerges from
some criticisms. We recall the definition a statistical model [18,22,24].

Definition 43. An m-dimensional statistical model for a measurable set (Ξ, Ω) is a pair (Θ, P) having the
properties which follow.

(1) The manifold Θ is an open subset of the m-dimensional Euclidean space Rm.
(2) P is a positive real valued function

Θ × Ξ � (θ, ξ) → P(θ, ξ) ∈ R

subject to the requirements which follow.
(3) The function P(θ, ξ) is differentiable with respect to θ ∈ Θ.
(4) For every fixed θ ∈ Θ one set

Pθ = P(θ,−)

then the triple
(Ξ, Ω, Pθ)

is a probability space, viz ∫
Ξ

Pθ(ξ)dξ = 1

Furthermore the operation of differentiation

dθ =
d
dθ

commutes with the operation of integration
∫

Ξ.
(5) (Θ, P) is identifiable, viz for θ, θ∗ ∈ Θ

Pθ = Pθ∗

if and only if
θ = θ∗

(6) The Fisher information

gθ(X, Y) =
∫

Ξ
P(θ, ξ)[dθlog(P(θ, ξ))]⊗2(X, Y)dξ

is positive definite.

Some Criticisms.

The First Critique
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The first critique arises from requirement (5).
From the viewpoint of fiber bundles the requirement (5) is useless. Consider the Cartesian product

E = Θ × Ξ.

That is the same thing as the trivial fiber bundle

E � (θ, ξ) → π(θ, ξ) = θ ∈ Θ.

Therefore Pθ is the restriction to the fiber Eθ of the function P.

The Second Critique

The second critique emerges from the requirement (1).
This requirement (1) is too restrictive. It excludes many interesting compact manifolds such as

flat tori, euclidean sphere, compact Lie groups.

The Third Critique

From the viewpoint of the differential topology the requirement (6) may be damage to the
topology of Θ. When the Fisher information g is singular its kernel is in involution. Thus the
topological-geometrical information that are contained in g are transverse to the distribution Ker(g).
If Ker(g) is completely integrable then topological and geometrical informations which are contained
in g are transversal to the foliation Ker(g). See Part A of this paper. This ends the criticisms.

To motivate for deleting the requirement (1) we construct a compact statistical model which
satisfies all of the requirements except the requirement (1).

Let E be the tangent bundle of the circle S1. E is the trivial line bundle

S1 ×R � (θ, t) → θ ∈ S1.

We consider the fonctions f , F and P defined by

f (θ, t) = [sin2(
t2θ

1+ t2 ) cos2(
θ

4
)e−t2

+
π

e2 t2],

F(θ) =
∫ +∞

−∞
e− f (θ,t)dt,

P(θ, t) =
e− f (θ,t)

F(θ)
.

The function P(θ, t) has the following properties

(i) (i) : P(θ, t) is smooth,
(ii) P(0, t) = P(2π, t) ∀t ∈ R,
(iii) the d

dθ commutes with
∫
R

,
(iv) P(θ, t) ≤ 1 ∀(θ, t) ∈ S1 ×R,
(v) if 0 < θ, θ∗ < 2π then Pθ = P∗

θ if and only if θ = θ∗,

(vi)
∫ +∞
−∞ P(θ, t)dt = 1.

These properties show that there is a one to one correspondence between the circle S1 and a subset
of probability densities in R. Thus S1 is a compact 1-dimensional manifold of probabilities in the
measurable set (R, β(R)). Here β(R) is the family of Borel subsets of R.

So (S1, P) is a compact parametric model for (R, β(R)).
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A Digression.

Let
{
(Θj, Pj), j := 1, 2

}
be statistical models for measurable sets

{
(Ξj, Ωj), j := 1, 2

}
. We put

Θ = Θ1 × Θ2,

(Ξ, Ω) = (Ξ1 × Ξ2, Ω1 × Ω2),

P = P1 ⊗ P2.

The function P is defined in Θ × Ξ by

P((θ1, θ2), (ξ1, ξ2)) = P1(θ1, ξ1)P2(θ2, ξ2)

The integration on Ξ is defined by∫
Ξ

f ((θ1, θ2), (ξ1, ξ2))d(ξ1, ξ2) =
∫

Ξ1×Ξ2

f ((θ1, θ2), (ξ1, ξ2))dξ1dξ2.

Thus we get ∫
Ξ

P[(θ1, θ2), (ξ1, ξ2)]dξ1dξ2 =
∫

Ξ1×Ξ2

P1(θ1, ξ1)P2(θ2, ξ2)dξ1dξ2 = 1.

So (Θ, P) is a statistical model for [Ξ1 × Ξ2, Ω1 × Ω2].
One is in position to prove that every Euclidean torus Tm is a statistical model for (Rm, β(Rm)).

Another Construction.

For every positive integer m we consider positive real numbers

α1 < α2 < ... < αm

and the real functions which are defined by

fj(θ, t) = sin2(
t2θ

1+ t2 ) cos2(
θ

4
)e−t2 + αjt2 (θ, t) ∈ E,

Fj(θ) =
∫ +∞

−∞
e− fj(θ,t)dt,

Pj(θ, t) =
e− fj(θ,t)

Fj(θ)
.

Now we consider the tangent bundle of the m-dimensional flat torus TTm,

T
m = S1 × S1 × ...× S1.

Let
(θ, t) = [(θ1, t1), (θ2, t2), ..., (θm, tm)] ∈ TTm.

We put

F(θ) =
∫
Rm

e−∑m
1 fj(θj,tj)dt1dt2...dtm,

P(θ, t) =
e−∑m

1 fj(θj,tj)

F(θ)
.

The function P(θ, t) satisfies the following requirements
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(1) If θ = θ∗ there exists t∗∗ ∈ Rm such that

P(θ, t∗∗) = P(θ∗, t∗∗),

(2) P(θ, t) ≤ 1∀(θ, t) ∈ TTm,
(3)

∫
Rm P(θ, t)dt = 1.

We deduce that the pair (Tm, P) is an m-dimensional manifold of probability densities in the measurable
set (Rm, β(Rm)).

The image of every local chart of Tm is a local statistical model in the classical sense [17,18,22]. This ends
the Digression.

We are motivated for introducing a new theory of statistical models whose localization yields the
current theory. The theory we introduce is an answer to McCullagh and to Gromov.

8.1. The Preliminaries

In this Part B we face three major challenges.
Challenge 1. Taking into account the criticisms we have raised our aim is to introduce a new theory of
statistical model whose localization leads to the classical theory of statistical models.
Challenge 2. The second challenge is the Search for an invariant which encodes the point of the moduli
space of isomorphism class of statistical models.
Challenge 3. We introduce the theory of homological statistical model and we explore the links between
this theory and the challenge 2.
Challenge 4. The fourth challenge is to explore the relationships between “challenge 1, challenge 2,
challenge 3” and “Vanishing Theorems in the theory of KV homology”.

The theory of KV cohomology and the geometry of Koszul play important roles. We introduce
the needed definitions.

Let (Ξ, Ω) be a measurable set. Let Aut(Ξ, Ω) be the group of measurable isomorphisms of Ξ.
Let (M, D) be a locally flat manifold whose KV algebra is denoted by A.

We keep the notation used in Part A of this paper. For instance S2(M) is the vector space of
differentiable symmetric bi-linear forms in M.

Definition 44. A random Hessian metric in (M, D) is a map

M × Ξ � (x, ξ) → Q(x, ξ) ∈ S2[T∗
x M],

which has the following properties

(1) for every vector field X the real number Q(x, ξ)[X, X] is non negative, furthermore ∀v ∈ TxM \ {0} ∃ξ ∈ Ξ
such that

Q(x, ξ)(v, v) > 0,

(2) for every ξ ∈ Ξ, the random KV cochain

(X, Y) → Qξ(X, Y)(x)

with
Qξ(X, Y)(x) = Q(x, ξ)(Xx, Yx)

is a random cocycle of the KV complex [C∗
KV(A, C∞(M)), δKV ].
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Let (Ξ, Ω, p) be a probability space. A random Hessian metric Q generates a Hessian structure
(M, gQ, D) whose tensor metric gQ is defined by

gQ(X, Y)(x) =
∫

Ξ
Q(x, ξ)(X, Y)p(ξ)dξ.

The group Aut(Ξ, Ω) of measurable isomorphisms of (Ξ, Ω) is denoted by Γ.

Warning.

When Ξ is a topological space elements of Γ are continuous maps. When Ξ is a differentiable manifold
elements of Γ are differentiable maps. Let P(Ξ) be the Boolean algebra of all subsets of Ξ. The abstract group
Aut(Ξ,P(Ξ)) is a subgroup of the group Isom(Ξ) of isomorphisms of the set Ξ.

Definition 45. A measurable set (Ξ, Ω) is called homogeneous if the natural action of Γ in Ξ is transitive.

Throughout this paper we will be dealing with homogeneous measurable sets. Below we
introduce the framework of the theory of statistical models.

8.2. The Category FB(Γ, Ξ)

8.2.1. The Objects of FB(Γ, Ξ)

Definition 46. An object of the category FB(Ξ, ) is a datum [E , π, M, D] which is composed as it follows.

(1) M is a connected m-dimensional smooth manifold. The map

π : E → M

is a locally trivial fiber bundle whose fibers Ex are isomorphic to the set Ξ.
(2) The pair (M, D) is an m-dimensional locally flat manifold.
(3) There is a group action

Γ × [E × M]×R
m � (γ, [e, x, θ]) → [[(γ · e), γ · x], γ̃ · θ] ∈ [E × M]×R

m.

That action is subject to the compatibility requirement

π(γ · e) = γ · π(e) ∀e ∈ E .

(4) Every point x ∈ M has an open neighborhood U which is the domain of a local fiber chart

ΦU × φU : [EU ×U] � (ex, x) → [ΦU(ex), φU(x)] ∈ [Rm × Ξ]×R
m.

The local charts are subject to the following compatibility relation

• (U, φU) is an affine local chart of the locally flat manifold (M, D),
• φU(π(e)) = p1(ΦU(e)).

(5) We set
ΦU(e) = (θU(e), ξU(e)) ∈ R

m × Ξ.

Let (U, Φ × φ) and (U∗, Φ∗ × φ∗) be two local charts with

U ∩U∗ = ∅,
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then there exists a unique γUU∗ ∈ Γ such that

[γUU∗ · Φ](e) = Φ∗(e) ∀e ∈ EU∩U∗ .

Comments. Requirements (3) and (4) mean that

[ΦU(e), φU(π(e)] = [[θU(e), ξU(e)], θU(e)]

Both requirements (4) and (5) yield the following remarks: the following action is differentiable

Γ × M � (γ, x) → γ · x ∈ M,

the following action is an affine action

Γ ×R
m � (γ, θ) → γ̃ · θ,

both the left side member and the right side member of (5) have the following meaning.

γUU∗ · [θU(e), ξU(e)] = [θU∗(e), ξU∗(e)].

Consequently (5) implies that for all x ∈ U ∩U∗ one has

γ̃UU∗ · φ(x) = φ∗(x).

Therefore we get
γUU∗ = φ∗ ◦ φ−1.

Suppose that U, U∗ and U∗∗ are domains of local chart with

U ∩U∗ ∩U∗∗ = ∅

then
γU∗U∗∗ ◦ γUU∗ = γUU∗∗ .

The requirement (3) means that the fibration π is Γ equivariant.
The Figure 2 expresses the requirement property (3).

E E

MM

γ

γ

π π

Figure 2. Fibration.

We recall that the group Γ acts in both E and M. Figure 2 expresses that the projection π of E on
M is Γ-equivariant.
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8.2.2. The Morphisms of FB(Γ, Ξ)

Let [E , π, M, D] and [E∗, π∗, M∗, D∗] be two objects of FB(Γ, Ξ).
Let Ψ × ψ be a map

[E × M] � (e, x) → (Ψ(e), ψ(x)) ∈ [E∗ × M∗].

Definition 47. A pair (Ψ × ψ) is a morphism of the category FB(Γ, Ξ) if the following conditions are satisfied
(m.1): π∗ ◦ Ψ = ψ ◦ π,
(m.2): both Ψ and ψ are Γ-equivariant isomorphism, that is to say

Ψ(γ · e) = γ · Ψ(e),

ψ(γ · x) = γ · ψ(x),

(m.3): ψ is an affine map of (M, D) in (M∗, D∗).

The Figure 3 represents the properties (m.1) and (m.2). We are going to define the category of
statistical model for (Ξ, Ω). The framework is the category FB(Γ, Ξ).

B1A1

C1

A B

C

p1π

p1

φu

Φu∗

Φu

γuu∗

γuu∗

φu∗

Figure 3. Equivariance.

At one side we recall that the group Γ also acts in Rm × Ξ. At another side the localizations are
made coherent thanks to Cech cocycles γUU∗ . Figure 3 tells two informations. Firstly localizations are
Γ-equivariant, secondly thanks to Cech cocycles localizations are coherent.

8.3. The Category GM(Ξ, Ω)

We keep the notation used in the previous subsections. Our purpose is the category of statistical
models GM(Ξ, Ω).

8.3.1. The Objects of GM(Ξ, Ω)

Definition 48. An m-dimensional statistacal model for (Ξ, Ω) is an object of FB(Γ, Ξ), namely

M = [E , π, M, D]

which has the following properties (ρ∗).

[ρ1]: For every local chart (U, ΦU × φU) the subset

[ΘU × Ξ] = ΦU(EU)
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supports a non negative real valued function PU subject to the following requirements.
[ρ1.1]: For every fixed ξ ∈ Ξ the function

ΘU � θ → PU(θ, ξ)

is differentiable.
[ρ1.2]: For every fixed θ ∈ ΘU the triple

(Ξ, Ω, PU(θ,−))

is a probability space. Further the operation of integration
∫

Ξ commutes with the operation of differentiation
dθ = d

dθ .
[ρ1.3]: Let (U, ΦU × φU , PU) and (U∗, ΦU∗ × φU∗ , PU∗) be as in [ρ1.1] and in [ρ1.2].
If U ∩ U∗ = ∅ then PU, PU∗ and γUU∗ are related by the formula

PU∗ ◦ γUU∗ = PU .

[ρ1.4]: Let U ⊂ M be an open subset and let γ ∈ Γ. Let us assume that both U and γ · U are domains of
local charts

(U, ΦU × φU , PU)

and
(γ · U, Φγ·U × φγ·U , Pγ·U).

We assume that those local charts satisfy ρ1.1, ρ1.2 and ρ1.3. Then the relations

Φγ·U ◦ γ = γ ◦ ΦU ,

φγ·U ◦ γ = γ ◦ φU ,

implies the equality
Pγ·U ◦ γ = PU ·

A Comment.

Actually, ([ρ1.3]) has the following meaning:

PU∗ [γ̃UU∗ · θU(e), γUU∗ · ξU(e)] = PU(θU(e), ξU(e))

∀e ∈ EU∩U∗ .
The Figure 4 represents (ρ1.3)

E∗E

E∗E

M M∗
M∗M

π∗

γ

π

γ

Φ

γ

Φ

φ

φ

Figure 4. Moduli.

This ends the comment.
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Definition 49. A datum [U, ΦU × φU , PU , γUU∗ ] as in the last definition is called a local statistical chart
of [E , π, M, D].

Figure 4 is represents what are crucial steps toward the serach of characteristic invariants, viz
invariants encoding the points of the moduli space of statistical models. At the present Figure 4
describes the moduli space of the category FB(Γ, Ξ)

Before dealing with morphisms of the category GM(Ξ, Ω) we introduce a relevant global
geometrical invariant.

8.3.2. The Global Probability Density of a Statistical Model

We consider a COMPLETE (or maximal statistical) atlas of an object [E , π, M, D] (of the category
GM(Ξ, Ω)), namely

AΦ = [Uj, Φj, φj, Pj, γij].

The family Uj is an open covering of M. The pair Ej ×Uj is the domain of the local chart (Φj × φj).
We have

Ej = EUj .

If Ui ∩ Uj = ∅ then one has

φj(x) = γ̃ji · φi j(x) ∀x ∈ Ui ∩ Uj.

In particular A = (Uj, φj) is an affine atlas of the locally flat manifold (M, D). We have

Φj(Ey∗) = φj(y∗)× Ξ ∀y∗ ∈ Uj.

Therefore we set
[Ey∗ , Ωy∗ ] = Φ−1

j [[φj(y∗)× Ξ], Ω].

The atlas AΦ satisfies requirements (ρ1.1), (ρ1.2) and (ρ1.3). In EUj the local function pj is defined by

pj = Pj ◦ Φj.

We suppose that
Ui ∩ Uj = ∅.

By the virtue of of [ρ1.3] one has
pi(e) = pj(e)

for all e ∈ EUi∩Uj .
Thereby there exists a unique function

E � e → p(e) ∈ R

whose restriction to Ej coincides with pj. The restriction to Ex is denoted by px. The triple

(Ex, Ωx, px)

is a probability space.

Definition 50. The function
E � e → p(e) ∈ R

is called the probability density of the model [E , π, M, D].
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Comments.

(i) We take into account the global probability density p. Then an object of the category GM(Ξ, Ω) is denoted by

[E , π, M, D, p].

(ii) The function p is Γ-equivariant. THIS IS THE GEOMETRY in the sense of Erlangen program.
(iii) We have not used any argument depending the dimension of manifolds.

The Figure 5 expresses coherence to local probability densities We are in position to define the morphisms of
the category GM(Ξ, Ω).

B1A1

C1 R

A B

C

φi

π

Φi

γij

γij

φj

Φj

Pi

Pj

p1

p1

Figure 5. Localisation.

Ei E

R

Pi
p

Figure 6. Probability Density.

In Figure 5 one sees that modulo the dynamics of the group Γ in Rm ×Ξ all localizations look alike.
Figure 6 show that local probability densities {pi} are but localizations of a global probability density p

8.3.3. The Morphisms of GM(Ξ, Ω)

Definition 51. Let M = [E , π, M, D, p] and M∗ = [E∗, π∗, M∗, D∗, p∗] be two objects of the category
GM(Ξ, Ω). A FB(Γ, Ξ)-morphism

(Ψ × ψ) : [E , π, M, D] → [E∗, π∗, M∗, D∗]
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is a morphism of [E , π, M, D, p] in [E∗, π∗, M∗, D∗, p∗] if

p∗ ◦ Ψ = p·

A Comment.

Let [E , π, M, D] be an object of the category FB(Γ, Ξ). Let G be the group of isomorphisms of [E , π, M, D].
If M is finite dimensional then G is a finite dimensional Lie group. The group G acts in the category M whose
objects are probability densities in [E , π, M, D, ].

Definition 52. The orbit space space

m =
M
G

is called the moduli space of M.

A Comment.

Every trivialization of
M = [E , π, M, D, p]

is a statistical model in the classical sense [18,22]. So we have taken up the challenge 1.

8.3.4. Two Alternative Definitions

We introduce two other presentations of the category GM(Ξ, Ω). Those presentations highlight
the connection with the searches of McCullagh and Gromov. Those presentation is useful in both the
theoretical statistics and the applied statistics [17,18,21,24,55,57,58].

We consider the category MSE whose objects are a probability spaces (Ξ, Ω, p).

Definition 53. A morphism of a probability space (Ξ, Ω, p) in another probability space (Ξ∗, Ω∗, p∗) is
a measurable map Ψ of (Ξ, Ω) in (Ξ∗, Ω∗) such that

p = p∗ ◦ Ψ·

Remark 4. A morphism as in the last definition has a statistical nature. An isomorphisms of (Ξ, Ω, p) on
(Ξ∗, Ω∗, p∗) is an sufficient statistic. The category MSE is useful for introducing two variant descriptions of
the category GM(Ξ, Ω).

Definition 54. We use the previous notation.

(1) A statistical model is a locally trivial fiber bundle over a locally flat manifold

π : E → M.

The fibers of π are probability spaces.
(2) The functor

[E , p] → [M, D]

is called a MSE -fibration.

The category of MSE -fibrations is denoted by FB(MSE). The morphisms the category
GM(Ξ, Ω) are called MSE -morphisms.
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Definition 55. A statistical model for a measurable set (Ξ, Ω) is a functor of the category FB(Γ, Ξ) in the
category FB(MSE , namely

[E , π, M, D] → [E , π, M, D, p]

At the present step it is clear that the information geometry is structured.

8.3.5. Fisher Information in GM(Ξ, Ω)

We consider a MSE -fibration

M := [E , p] → (M, D).

The Fisher information to be defined is an elementg of Γ(S2(T∗M)).
We recall that every MSE -fiber Mx, x ∈ M has a structure of probability space

Mx := [Ex, Ωx, px].

Let X, Y be local vector fields which are defined in a open neighbourhood of x ∈ M.

Definition 56. The Fisher information at x is defined by

gx(X, Y) = −
∫
Ex

p(e)[D2log(p(e))](X, Y)d(e)

We recall that the horizontal differentiation commutes with the integration along the
MSE -fibers, viz

dθ ◦
∫

F
=

∫
F
◦ ∂

∂θ
.

So the Fisher information g is well defined. It has the following properties

(1) g is positive semi-definite,
(2) g is an invariant of the Γ-geometry in [E , π, M, D, p].

8.4. Exponential Models

Let [E , π, M, D, p] be an object of GM(Ξ, Ω). We recall that data which are defined in E are called
random data in the base manifold M. The operation of integration along the MSE -fibers is denoted
by

∫
F. Thus a random datum μ is called smooth if its image

∫
F(μ) is smooth.

Conversely every datum θ∗ which is point-wise defined in M is the image of the random datum

θ = θ∗ ◦ π.

So we get

θ∗ =
∫

F
[θ∗ ◦ π].

Thus at every x ∈ M one has

θ∗(x) =
∫
Ex

θ∗(π(e))px(e)de.

A random affine function is a function

E � e → a(e) ∈ R
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subject to the requirement

D2
∫

F
a = 0.

Definition 57. An MSE -fibration
[E , p] → [M, D]

is called an exponential model if the following conditions are satisfied.

(1) The base manifold M supports a locally flat structure (M,∇) and a real valued function ψ ∈ C∞(M).
(2) The total space E supports a real valued random function a.
(3) The triple [a,∇, ψ] is subject to the following requirement
(4) ∇2

∫
F(a) = O,

(5) p(e) = exp[a(e)− ψ(π(e))].

Remark 5. At one side Localizations of exact Hessian homological statistical models yield the classical Koszul
Information Geometry [55]. That is but the classical Hessian Information Geometry. At another side the KV
homology learns that the Hessian information Geometry is the same think as the geometry of exponential famillies
see Part A Section 5, Theorem 16.

Reminder.

In the Appendix A to this paper the reader will find a new invariant rb(p) measuring how far from being
an exponential model is an MSE -fibration

[E , p] → [M, D].

By the virtue of results in Part A, to be an exponential model depends on homological conditions.

8.4.1. The Entropy Flow

We are going to introduce the notion of local entropy flow. Subsequently we will show that the
Fisher information of a model [E , π, M, D, p] is the Hessian of the local entropy flow.

To start we consider a MSE -fibration

[E , p] → [M, D].

That is another presentation of the statistical model [E , π, M, D, p].
Let [Uj, Φj × φj, γij, Pj] be an atlas of [E , π, M, D, p]. We put

[Θj, Pj] = [Φj(Ej), p ◦ Φ−1
j ].

Then every [Θj, Pj] is a local statistical model for (Ξ, Ω).
Le X, Y be two vector fields defined in Uj and let ψX(t) and ψY(s) be their local flows defined

in Uj. Then we set
Φj(e) = [θj(e), ξ j(e)] = [φj(π(e)), ξ j(e)], e ∈ Ej,

ψ̃j(t)[θj(e), ξ j(e)] = ([φjψX(t)φ−1
j ][θj(e)], ξ j(e)),

ψ̃j(s)[θj(e), ξ j(e)] = ([φjψY(s)φ−1j][θj(e)], ξ j(e)).

Definition 58. The local entropy flow of the pair (X, Y) is the function Entj
X,Y defined by

Entj
X,Y(s, t)(π(e)) =

∫
Ξ

{
Pj[ψ̃X(s)(Φ(e))]log[Pj[ψ̃Y(t)(Φj(e))]]

}
dξ(e).
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To pursue we use the compatibility of local charts of the atlas[Uj, Φj × φ,, γij, Pj] . If

Ui ∩ Uj = ∅

then forall e ∈ EUi∩Uj we have
Φj(e) = γij · Φi(e),

φj(π(e)) = γij · φi(π(e)).

We recall that ψ̃(t) and ψ̃(s) are defined by

ψ̃j(t) = φjψX(t)φ−1
j ,

ψ̃j(s) = φjψY(s)φ−1
j .

Those reminders are useful for concluding that whenever

Ui ∩ Uj = ∅

we have
Enti

X,Y(s, t)(π(e)) = Entj
X,Y(s, t)(π(e)).

So the local entropy flow does not depend on local charts.
If both X and Y are complete vector fields then their entropy flow is globally defined. A notable

consequence is the following statement.

Theorem 18. Every MSE -fibration over a compact manifold M admits a globally defined entropy map

X (M)×X (M) � (X, Y) → EntX,Y ∈ C∞(R2).

8.4.2. The Fisher Information as the Hessian of the Local Entropy Flow

we consider the function

Hj(s, t, ξ) = Pj[ψ̃X(s)(φ(e))]log[Pj[ψ̃j(t)(Φj(e))]].

Direct calculations yield

[
∂2(Hj(s, t))

∂s∂t
][(s, t) = (0, 0)] = Pj[φj(e)](X · log[Pj(Φj(e))])(Y · log[Pj(φj(e))]).

We know that ∂2

∂s∂t commutes with
∫

Ξ. Therby we conclude that

gπ(e)(X, Y) =
∂2Entj(s, t)(π(e))

∂s∂t
[(s, t) = (0, 0)].

Theorem 19. We consider an MSE -firation over a compact manifold

M := [E , p] → [M, D].

The Fisher information of M is the Hessian of the entropy map.

8.4.3. The Amari-Chentsov Connections in GM(Ξ, Ω)

Let
M = [E , π, M, D, p]
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be an m-dimensional statistical model for a measurable set (Ξ, Ω). To define the family of α-connections
we work in a local chart (ΦU , ΦU).

We set
ΘU = φU(U),

Θ × Ξ = ΦU(EU).

In the base manifold (M, D) the local chart [U, φu) yields a system of local affine coordinate functions

θ = (θ1, ..., θm).

We use the notation as in [18]. Given a real number α we define the α-connection ∇α by its
Christoffel symbols in the local coordinate functions θ. Those Christoffel are denoted by Γα

i j : k.
We proceed as it follows.
Step 1: In the open subset ΘU ⊂ Rm we put

Γ̃α,U
ij:k (θ) =

∫
Ξ

PU(θ, ξ)

{
[
∂2ln(θ, ξ)

∂θi∂θj
+

1+ α

2
∂ln(θ, ξ)

∂θi

∂ln(θ, ξ)

∂θj
]
∂ln(θ, ξ)

∂θk

}
dξ.

This local definition of Γ̃α
ij:k agrees with affine coordinate change in ΘU.

Step 2: In the open subset U Γα,U
ij:k is defined by

Γα,U
ij:k = Γ̃α,U

ij:k ◦ φU.

Since the definition of Γ̃α
ij:k agrees with an affine coordinate change we can use an atlas

A = [Uj, Φj × φj, γij]

for constructing a Koszul connection ∇α(A). Since the construction of ∇α(A) agrees with affine
coordinate change the connection ∇α(A) is independent from the choice of A. Every α-connection is
torsion free. So an MSE-fibration

[E , p] → [M, D]

gives rise to a ma
R � α → ∇α ∈ SLC(M).

If the Fisher information g is definite then (M, g,∇α,∇−α) is a dual pair [17,48].
By the virtue of the definition of the Fisher information g a local section of section of Ker(g) is

a local vector field X ∈ X (M) such that
X · p = 0.

Therefore, it is easily seen that
LXg = 0.

So if data are analytic then g is a stratified Riemannian foliation.

8.4.4. The Homological Nature of the Probability Density

We consider a MSE-fibration
M := [E , p] → [M, D].

We recall that a random differential q-form in E is a mapping

E � e → ω(e) ∈ ∧q(T∗
π(e))M

214



Entropy 2016, 18, 433

such ∫
F

ω ∈ Ωq(M).

The vector space of random differential q-forms is denoted by Ωq(E).
Let ΦU × φU be a local chart of M. We set

(ΘU, Ξ) = (φU(U), Ξ) = ΦU(EU).

We recal that in ΦU(EU) the partial differentiation ∂
∂θ is called the horizontal differentiation in EU .

Therefore we use the relation ∫
F
◦ ∂

∂θ
=

d
dθ

◦
∫

F

for setting the de Rham complex of random differential forms. Namely

Ω(E) : 0 → R → Ω0(E) → ...Ωq(E) → Ωq+1(E)... → Ωm(E) → 0.

The complex Ω(E) is a complex of Γ-modules. Here

Γ = Aut(Ξ, Ω).

Then the cohomology space H ∗ (Γ, Ω(E)) is bigraded,

Hp,q(Γ, Ω(E)) = Hp(Γ, Ωq(E)).

The probability density p is Γ-invariant. It is an element of H0,0(Γ, Ω(E)).

8.4.5. Another Homological Nature of Entropy

One of main purpose of [14] is the homological nature of the entropy. The classical entropy
function of a statistical model [E , π, M, D, p] is defined by

E(π(e)) =
∫
Eπ(e)

p(e∗)log(p(e∗)).

In the complex Ω(E) we perform the machinery of Eilenberg [59]. That yields the exact sequence
(of random cohomology spaces)

→ Hq−1
res (E ,R) → Hq

e (E ,R) → Hq
dR(E ,R) → Hq

res(E ,R) →

We take into account the identities

p(γ · e) = p(e),

γ · (π(e)) = π(γ · e).

Then we have
E(γ · π(e)) =

∫
Eγ·π(e)

p(γ · e∗)log(p(γ · e∗))

=
∫
Eπ(γ·e)

p(e∗)log(p(e∗))

= E(π(e)).

Thus the entropy E(π(e)) is Γ-equivariant. Therefore, it defines an equivariant cohomology class

[E] ∈ H0
e (M,R).
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This is another topological nature of the entropy. For another viewpoint see [16,31].
Our purpose is to show the theory of statistical models has a homological nature in the

category FB(Γ, Ξ).

Definition 59. A statistical model for a measurable set (Ξ, Ω) is couple (M, [p]) formed by an object of the
category (FB − Γ, Ξ), namely

M = [E , π, M, D]

and a smooth Γ-equivariant random cohomology class

[p] ∈ H0
e (E ,R).

Further the to every fiber p|Ex is a probability density.

A Comment.

Let (U, Φ × φ) be a local chart of [E , π, M, D] and let x∗ ∈ U. We set

ΘU = φ(U),

(Ex∗ , Ωx∗) = Φ−1[{φ(x∗)} × (Ξ, Ω)].

The last definition above says that we obtain the probability space

(Ex∗ , Ωx∗ , [p]).

This property does not depend on the choice of the local chart (U, Φ × φ). Thus we can regard [M, p] as a
special type of homological map

FB(Γ, Ξ) � M → [p] ∈ H0
e (E ,R).

9. The Moduli Space of the Statistical Models

We are going to face another major open problem. The challenge is the search for an invariant
which encodes the points of the orbit space

m =
M
G

.

That is what is called the problem of moduli space. This problem of moduli space is a major challenge
in both the differential geometry and the algebraic geometry (see the theory of Teichmuller). The problem
is rather confusedly addressed in [30]. Subsequently it provoked controversies and criticisms.

The Hessian Functor

We consider the category BF whose objects are pairs {M, B} formed by a manifold M equipped
bilinear forms B ∈ Γ(T∗⊗2M).

In Part A we have defined the Hessian differential operator of a Koszul connection ∇, namely

D∇ = ∇2.

Those operators are useful for addressing the problem of moduli spaces. For our purpose four
categories are involved,

(1) The category LC whose objects are gauge structures (M,∇),
(2) The category GM whose objects are statistical models for measurable sets,
(3) the category BF whose objects are manifolds equipped bilinear forms,
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(4) the category F(LC,BF) whose objects are functors

GM → BF .

Definition 60. The Hessian functor is the functor

GM � M = [E , π, M, D, p] → qM ∈ F(LC,BL)

Here qM is defined by
qM[∇] = ∇2log(p).

Reminder.

We recall that for vector fields X, Y the bilinear form qM[∇](X, Y) is defined by

qM[∇](X, Y) = X · (Y · log(p))−∇XY · log(p)

The functor qM is called the Hessian functor of the model

M = [E , π, M, D, p].

Our aim is to demonstrate the following claim. Up to isomorphism a statistical model M is defined
by its Hessian functor qM. The functor qM is an significant contribution to the information geometry.

We fix an object of FB(Γ, Ξ), namely [E , π, M, D]. Let P(E) be the convex set of probability
densities in [E , π, M, D]. The multiplicative group of positive real valued functions defined in Ξ is
denoted by RΞ

+. The quotient of P(E) modulo RΞ
+ is denoted by

PRO(E) = P(E)
RΞ
+

.

Lemma 6. For every p ∈ P(E) the image of

M = [E , p],

namely qM depends only on the class [p] ∈ PRO(E)

Proof. We consider
M = [E , π, M, D, p],

M
∗ = [E , π, M, D, p∗].

We assume that
qM = qM∗ .

Thus in every local trivialization ΘU × Ξ one has the identity

X(Ylog(
p∗(x, ξ)

p(x, ξ)
)−∇XYlog(

p∗(x, ξ)

p(x, ξ)
)) = 0

forall X, Y ∈ Γ(TΘ), forall ∇ ∈ LC(Θ). That identity holds if and only if the function

(x, ξ) → p∗(x, ξ)

p(x, ξ)

belongs to RΞ
+. This ends the idea.

217



Entropy 2016, 18, 433

A Comment.

The mapping
M → qM

is a global geometrical invariant in the sense of Erlangen. In other words it is an invariant of the
Γ-geometry in [E , π, M, D, p].

Our aim is to demonstrate that
M → qM

is a characteristic invariant in the category GM(Ξ, Ω). In other words the isomorphism class of the
model

M = [E , π, (M, D), p]

is encoded by the functor
∇ → qM[∇].

The first step is the following lemma.

Lemma 7. In the same object [E , π, M, D] we consider two statistical models

M1 = [E , π, M, D, p1],

M2 = [E , π, M, D, p2].

The following assertions are equivalent
(1) qM1 = qM2 ,
(2) p1 = p2.

Proof. We work in the domain of a local trivialization of [E , π, M, D]. By the virtue of Lemma 6 above
we know that

qp1 = qp2

if and only if
p1(x, ξ) = λ(ξ)p2(x, ξ)

with λ ∈ RΞ
+. Since both p1 and p2 are Γ-equivariant the function

Ξ � ξ → λ(ξ)

is Γ-invariant too. Now we take into account that the natural action of Γ in Ξ is transitive. Therefore the
Γ-equivariant function λ(ξ) is a constant function. Therefore

p1(x, ξ) = λp2(x, ξ)

The operation of integration along a fiber of π yields

λ = 1

This ends the proof.

We consider two m-dimensional statistical models for (Ξ, Ω), namely

Mj = [Ej, πj, Mj, Dj, pj], j := 1, 2.
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To simlplify we use the following notation.

qpj = qMj .

In the category FB(Γ, Ξ) we consider an isomorphism

[E1 × M1] ∈ (e, x) → [Ψ(e), ψ(x)] ∈ E2 × M2.

(1) Let ψ∗ be the differential of ψ. For ∇ ∈ LC(M1) the image ψ∗(∇) ∈ LC(M2) is defined by

[ψ∗(∇)]X∗Y∗ = ψ∗[∇ψ−1∗ (X∗)ψ
−1∗ (Y∗)]

for all vector fields X∗, Y∗ ∈ X (M2).
(2) It is clear that the datum [E1, π, M1, D1, p2 ◦ Ψ] is an object of the category GM(X, Ω). Then for

vector fields X, Y in M1 we calculate (at X, Y) the right hand member of the following equality

[qp2◦Ψ(∇)] = ∇2[log(p2 ◦ Ψ)].

Direct calculations yield

∇2[log(p2 ◦ Ψ)](X, Y) = X · [Y · log(p2 ◦ Ψ)]−∇XY · log(p2 ◦ Ψ)

= X · [Y · log(p2) ◦ Ψ]−∇XY · [log(p2) ◦ Ψ]

= ψ∗(X) · [ψ∗(Y) · log(p2)]− ψ∗(∇XY) · log(p2)

= [ψ∗(∇)2log(p2)](ψ∗(X), ψ∗(Y)).

Thus for all ∇ ∈ LC(M1) we have

q[p2◦Ψ](∇) = qp2(ψ∗(∇)).

We summarize the calculations just carried out as it follows

Lemma 8. Keeping the notation we just used namely p2 and Ψ × ψ we have the following equality

q[p2◦Ψ] = qp2 ◦ ψ∗

We are in position to face the problem of moduli space in the category GM(Ξ, Ω).

Theorem 20. We consider two m-dimensional statistical models

Mj = [Ej, πj, Mj, Dj, pj], j := 1, 2.

In the category FB(Γ, Ξ) let Ψ × ψ be an isomorphism of [E1, π1, M1, D1] onto [E2, π2, M2, D2].
The following assertions are equivalent.

(1) qp2 ◦ ψ∗ = qp1 ,

(2) p2 ◦ Ψ = p1.

Demonstration.

The demonstration is based on Lemmas 7 and 8.
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According to our construction one has the following functor

qΨ = qp2 ◦ ψ∗.

This functor qΨ is the Hessian functor of the model

MΨ = [E1, π, M1, D1, p2 ◦ Ψ].

Further Ψ × ψ is an isomorphism of MΨ onto M2.
Let us prove that assertion (2) implies assertion (1).
By of the definition of morphism of models, the pair Ψ × ψ is an isomorphism of M1 onto M2 if

and only if
p2 ◦ Ψ = p1.

Here we set the explicit formulas. Let ∇ ∈ LC(M1). For all vector fields X, Y in M2 we have

X · (Y · log(p1))−∇XY · log(p1) = X · (Y · log(p2 ◦ Ψ))−∇XY · log(p2 ◦ Ψ)

= ψ∗(X) · (ψ∗(Y) · log(p2))− ψ∗(∇XY) · log(p2).

now we observe that
ψ∗(∇XY) = [ψ∗(∇)][ψ∗(X)]ψ∗(Y).

Therefore (2) impies the equality

ψ∗[q[p2]
(ψ∗(∇))] = q[p2◦Ψ](∇) = qp1 .

This shows the implication (2) → (1).

Let us prove that assertion (1) implies assertion (2).

Now we assume that that (1) holds, viz

q[p2◦Ψ] = qp1 .

Then both M1 and MΨ have the same Hessian functor. By the virtue of Lemma 8 above we
deduce that

p2 ◦ Ψ = p1.

This ends the demonstration.

Reminder.

(i) Objects of GM(Γ, Ξ) are quintuplets

M = [E , π, M, D, p].

They are called statistical models for the measurable set (Ξ, Ω).
(ii) Objects of FB(MSE) are functors

[E , p] → [M, D].

They are called MSE-fibrations.
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Those categories are canonically equivalent. Further the actions the group G in those categories lead to the
same moduli space

m =
GM(Ξ, Ω)

G
=

FB(MSE)
G

.

We rephrase the theorem on moduli space.

Theorem 21. The functor
[E , p] → qp ∈ BF(M)

parametrizes the moduli space m.

This ends the challenge 2.

10. The Homological Statistical Models

In this section we introduce the theory of homological statistical models (HSM in short).
We address the links between this theory and the local theory as in [17].

The theory of homological statistical models is useful for strengthening the central role
played by the theory of KV homology in the information geometry and in the topology of the
information [14,16–18,22,30,37,60,61].

We introduce the theory of localization of homological models. We use it to highlight the role
played by local cohomological vanishing theorems as well as the role played by global cohomological
vanishing theorems.

The framework is the category FB(Γ, Ξ).
Let [E , π, M, D] be an m-dimensional object of the category FB(Γ, Ξ), viz m = dim(M). The KV

algebra of (M, D) is denoted by A. The smooth manifold Rm supports a sheaf of KV algebras Ã.
This sheaf is locally isomorphic to A. The vector space C∞(Rm) is a left module of Ã. The affine action
of Γ in Rm is Ã-preserving.

Let (U, ΦU × φU) be a local chart of [E , π, M, D]. We recall that dφU is the differential of φU.
We have

dφU(A) = Ã(φU(U)).

Definition 61. A homological model consists of the following data. The datum [E , π, M, D] is an object of
the category FB(Γ, Ξ). Every x ∈ M has an open neighborhood U which is the domain of a local chart of
[E , π, M, D], namely (ΦU × φU). We set

ΘU × Ξ = ΦU(EU).

Those data are subject to the following requirements.
HSM.1 : Θ × Ξ supports a non negative random symmetric 2-cocycle

ΘU × Ξ � (θ, ξ) → QU(θ, ξ) ∈ Z2
KV(Ã,R).

HSM.2 : Let [U, ΦU × φU, QU] and [U∗, ΦU∗ × φU∗ , QU∗ ] as in HSM.1.
If we assume that

U ∩U∗ = ∅

then there exists γUU∗ ∈ Γ such that

HSM.2.1 ΦU∗(e) = γUU∗ · ΦU(e) ∀e ∈ EU∩U∗ ,

HSM.2.2 QU(ΦU(e)) = γ∗
UU∗ · [QU∗(ΦU∗(e))].
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Comments.

The equality
QU(ΦU(e)) = γ∗

UU∗ · [QU∗(ΦU∗(e))]

has the following meaning. For v, w ∈ TφU(e)ΘU one has

QU[θ(e), ξ(e)](v, w) = QU∗ [γUU∗ · (θ(e), ξ(e))](d[γUU∗ ] · v, d[γUU∗ ] · w).

Morphisms of homological models are defined by replacing the probability PU by the random
cocycle QU.

Definition 62. The category of homological statistical models for a measurable set (Ξ, Ω) is denoted by
HSM(Ξ, Ω).

10.1. The Cohomology Mapping of HSM(Ξ, Ω)

We consider an m-dimensional object of HSM(Ξ, Ω) which is defined by a complete atlas

A = [Uj, Φj × φj, γij, Qj]

The underlying object of the atlas A is denoted by [E , π, M, D]. We set

Θj = φj(Uj) ⊂ R
m.

We are not making any difference between (Uj,A) and (Θj, Ã). We put set

Eij = EUi∩Uj .

If we assume that
Ui ∩Uj = ∅

then we have
Φj(e) = γij · Φi(e), ∀e ∈ Eij

and
Qi(Φi(e)) = γ∗

ij · Qj(Φj(e)) ∀e ∈ Eij.

We put
qj(e) = Qj(Φj(e)) ∀e ∈ Ej.

Here
Ej = EUj .

If
Ui ∩Uj = ∅

then we know that
[Φj ◦ Φ−1

i ](θi(e), ξi(e)) = γij(θi(e), ξi(e)) ∀e ∈ Eij.

Therefore we get
qi(e) = qj(e) ∀e ∈ Eij.

Therefore qj is the restriction to Ej of a (globally defined) map

E � e → Q(e) ∈ Z2
KV(A,R).
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It is clear that
Qj = Q ◦ Φ−1

j .

The action of Γ in E is Q-preserving. Thus a homological statistical model is a quintuplet

[E , π, M, D, Q].

Here Q is a map
E � e → Q(e) ∈ Z2

KV(A,R).

Thus we get random cohomological map

E � e → [Q](e) = [Q(e)] ∈ H2
KV(A,R).

Definition 63. The mapping [Q] is called cohomology mapping of the homological model [E , π, M, D, Q].

10.2. An Interpretation of the Equivariant Class [Q]

We intend to interpret the cohomology class [Q] as an obstruction class.

Definition 64. (1) A homological statistical model whose cohomological map vanishes is called an EXact
Homological Statistical Model, (EXHSM); (2) A homological statistical model whose cocycle is a random Hessian
metric is called a HEssian Homological Statistical Model (HEHSM); (3) An exact Hessian homological statistical
model is called a HYperbolic Homological Statistical Model (HYHSM).

Given a Hessian Homological model

M = [E , π, M, D, Q]

the cohomology map [Q] is the obstruction for M being an Hyperbolicity model.
The following proposition leads to impacts on the differential topology.

Proposition 11. The kernel of an exact homological statistical model is in involution. Further if M and all data
depending on M are analytic then Q is a stratified transversally Riemannian foliation in M.

If [E , π, M, D, Q] is exact then there exists a random differential 1-form θ such that

Q = δKVθ,

viz
Q(X, Y) = X · θ(Y)− θ(DXY) ∀X, Y ∈ X (M).

That useful for seing that Ker(Q) is in involution.

10.3. Local Vanishing Theorems in the Category HSM(Ξ, Ω)

Reminder.

The category whose objects are homological statistical models (for (Ξ, Ω)) is denoted by HSM(Ξ, Ω).
Henceforth we fix an auxiliary structure of probability space (Ξ, Ω, p∗).

Definition 65. We are interested in random functions defined in Rm × Ξ.
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(1) A random function f has the property p∗ − EXP if

exp( f (x, ξ)) ≤
∫

Ξ
exp( f (x, ξ))dp∗(ξ) ∀x ∈ R

m.

(2) A random closed differential 1-form θ has the property p∗ −EXP if every x ∈ Rm has an open neighbourhood
U satisfying the following conditions, U × Ξ support a random function f subject to two requirements:

• θ = d f ,
• f has the property p∗ − Exp.

(3) An exact homological statistical model [E , π, M, D, Q] has property p∗ − EXP if there exists a random
differential 1-form θ satisfying the following conditions

• θ has the property p∗ − EXP,
• Q = δKVθ.

Localization

Our purpose is to explore the relationships between the theory of homological statistical models
and the theory of local statistical model as in [18,22], Barndorff-Nielsen 1987

Our aim is to show that the current (local) theory is a byproduct of the localization of homological
models. The notion of localization of homological models is but the notion of local vanishing theorem.

Theorem 22. Let [E , π, M, D, Q] be a homological statistical model.

(1) [E , π, M, D, Q] is locally exact.
(2) If the [E , π, M, D, Q] has the property p∗ − EXP then [E , π, M, D, Q] is locally isomorphic to a classical

statistical model (Θ, P) as in [18].

The Sketch of Proof of (1). Let (U, Φ × φ) be a local chart of [E , π, M, Q]. We set

ΘU = φ(U).

We assume that ΘU is an open convex subset of Rm. Θ supports a system of affine
coordinate functions

θ = (θ1, ..., θm).

We have
Q(θ, ξ) = ∑ Qij(θ, ξ)dθidθj.

Since Q(θ, ξ) is a random KV cocycle of Ã we have

δKVQ = 0.

The last equality is equivalent to the following system

∂Qjk

∂θi
− ∂Qik

∂θj
= 0.

We fix ξ ∈ Ξ. For every j the random differential 1-form βj is defined by

βj(θ, ξ) = ∑
i

Qijdθi.

Every βj(θ, ξ) is a cocycle of the de Rham complex of ΘU .
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By the virtue of the Lemma of Poincaré there exists a local function hj(θ, ξ) such that

βj = dhj.

Now the differential 1-form θ̃ is defined by

θ̃ = ∑
j

hj(θ, ξ)dθj.

Direct calculations lead to the following equality

Q = δKV θ̃.

This ends the proof of (1).

The proof of (2). We assume that M = [E , π, M, D, Q] has the property p∗ − Exp. We keep the notation
we just used.

The random differential 1-form θ̃ is a (de Rham) cocycle. Therefore Θ × Ξ supports a random
function h(θ, ξ) such that

θ̃ = dh.

So we have the following conclusion

Q(θ(e), ξ(e)) = D2h(θ(e), ξ(e)) ∀e ∈ EU.

Equivalently one gets
∂2h

∂θi∂θj
= Qij.

Since M has the property p ∗ −Exp we choose a function h has the property p∗ − EXP.
The functions F(θ) and P(θ, ξ) are defined by

F(θ) =
∫

Ξ
exp(h(θ, ξ))dp∗(ξ),

PQ(θ, ξ) =
exp(h(θ, ξ))

F(θ)
.

By the virtue of the property p∗ − Exp the function P(θ, ξ) satisfies the following requirements

(i) PQθ, ξ) is differentiable with respect to θ,
(ii) PQ satisfies the following inequalities

0 ≤ PQ(θ, ξ) ≤ 1,

(iii) PQ satifies the following identity ∫
Ξ

PQ(θ, ξ)dξ = 1.

Thus the pair (ΘU, PQ) is a local statistical model for (Ξ, Ω). This ends the proof of (2). The theorem
is demonstrated.

The pair (ΘU, PQ) is called a localization of M.

Definition 66. A localization (ΘU, PQ) is called a Local Vanishing Theorem of [E , π, M, Q].
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Let [E , π, M, D, p] be an object of the category GM(Ξ, Ω). We set

Qp = D2log(p).

Thefore we get the exact homological statistical model

Mp = [E , π, M, D, Qp]

So the notion of vanishing theorem has significant impacts on the information geometry.
To simplify an exact models which having the property p∗ − Exp (for some probabily space) are
is called Exp − models.

Theorem 23. The notation is that used previously.

(1) The category GM(Ξ, Ω) is a subcategory of the category EXHSM(Ξ, Ω).
(2) Ojects of GM(Ξ, Ω) but homological Exp − models.

Reminder: New Insigts.

(1.1) The Information GEometry is the geometry of statistical models.
(1.2) The Information topology is the topology of statistical models.
(2.1) The homological nature of the Information Geometry.
(2.2) What is a statistical model? The answer to the question raised by McCullagh should be: A statistical model

is a Global Vanishing Theorem in the theory of homological models.
(2.3) A local statistical model is a Local Vanishing Theorem in the theory of homological models.

11. The Homological Statistical Models and the Geometry of Koszul

Our purpose is to to relate the category of homological statistical models and the geometry
of Koszul. This relationship is based on the localization of homological statistical models.

Proposition 12. EXPHEHSM(Ξ, Ω) stands for the subcategory whose objects are Hessian Exp-models.

(1) The holomogical map leads to the functor of EXPHEHSM(ß, Ω) in the category of Hessian structures
in (M, D)

[E , π, M, D, Q] → (M, D, Q̃).

(2) If M is compact then the subcategory of exact Hessian homological Exp-models EXPHYHSM(Ξ, Ω) is
sent in the category of hyperbolic structure in in (M, D).

12. Examples

This section is devoted to a few examples. The construction involves some basic notions of the
differential topology.

Example 1: Dynamics

We consider a triple [M × H, p1, M,∇]. Here (M,∇) is a compact locally flat manifold, (H, dμ) is
an amenable group. There is an effective affine action

H × (M,∇) → (M,∇).

Let f ∈ C∞(M) and x ∈ M. The function

fx : H → R
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is defined by
fx(h) = f (h · x).

Let L∞
H(M) be the set of f ∗ ∈ C∞(M) such that

f ∗x ∈ L∞(H),

viz
sup
[h∈H]

| fx(h)| < ∞ ∀x.

Now EXP(L∞
H(M) stands for the set of f ∗ ∈ L∞

H(M) such that

exp( f ∗x (h)) ≤ μ(exp( f ∗x )) ∀x.

The function Pf ∗(x, h) is defined by

Pf ∗(x, h) =
exp( f ∗(x · h))

μ(exp( f ∗x ))
.

The pair (M, Pf ∗) is a probability density in H. Now set

f̃ ∗(x, h) = f ∗(x · h)

Therefore the datum [M × H, p1, M,∇, Pf ∗ ] is a statistical model for (H,P(H)). Here P(M) is the
boolean algebra of subsets of H and p1 is the trivial fibration of M × H over M.

Example 2: Geometry

We focus on an example which plays a significant role in global analysis (and geometry) in some
type of bounded domains [2,3]. This example relates the geometry of Koszul and Souriau Lie groups
thermodynamics [4] and bibliography therein.

Let C ⊂ Rm be a convex cone and let C∗ be its dual. The characteristic function of C is defined by

C � v →
∫
C∗

exp(− < v, w∗ >)dw∗.

This gives rise to the following function

C × C∗ � (v, v∗) → P(v, v∗) = exp(− < v, v∗ >)∫
C∗ exp(− < v, w∗ >)dw∗

So (C, P) is a statistical model for (C∗, dw∗). Here dw∗ is the standard Borel measure.

Stratified Analytic Riemannian Foliations

Reminder.

We recall that a (regular) Riemannian foliation M is a symmetric bilinear form g ∈ S2(M) having the
following properties

(1) rank(g) = constant,
(2) LXg = 0∀X ∈ G(Ker(g)).

From (2) one easily deduces that Ker(g) is in involution. By the virtue of Theorem of Frobenius (1) and (2)
imply that Ker(g) is completely integrable.

In the category of differentiable manifolds, not all involutive singular distributions are completely integrable.
Nevertheless, that is true in the category of analytic manifolds [62].
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This subsection is mainly devoted to examples of stratified Riemannian foliations in analytic manifolds.
For more details about those object the readers are referred to [46,63].

Theorem 24. Let M be an orientable compact analytic manifold. Let Cω(M2) be the space real valued analytic
functions defined in M2. There exists a canonical map of Cω(M × M) in the family of analytic stratified
Riemannian foliations in M.

The Idea of Construction.

Let dv be an analytic volume element in M. In M we fix an analytic torsion free Koszul connection ∇.
To a function f ∈ Cω(M2) we assign the function P ∈ Cω(M2)

Pf (x, x∗) = exp[ f (x, x∗)]∫
M exp[ f (x, x∗∗)]dv(x∗∗)

.

We make the following identification

X (M) = X (M)× 0 ⊂ X (M2).

The analytic bilinear form gf ∈ S2(M) is defined by

[gf (x)](X, Y) = −
∫

M
Pf (x, x∗)[∇2(log(Pf ))(X, Y)](x, x∗)dv(x∗).

The form gf has the following properties.

(a) gf does not depend on the choice of ∇,
(b) gf is symmetric and positive semi-definite,
(c) If X is a section of Ker(gf ) then LXgf = 0.

Conclusion.

If
rank(gf ) = constant

then gf is a Riemannian foliation as in [38–40,46].
If rank(gf ) is not constant we apply [62]. Thereby gf is an analytic stratified Riemannian foliation.

Reminder.

The idea of the strafication of gf .

Step 0

The open subset U0 ⊂ M is defined by

x ∈ U0 i f f rank(gf (x)) = max
[x∗∈M]

rank(gf (x∗)).

The closed analytic submanifold F1 ⊂ M is defined by

F1 = M \U0.
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Step 1

In the pair (F1, gf ) the open subset U1 ⊂ F1 is defined by

x ∈ U1 i f f rank(gf (x)) = max
[x∗∈F1]

rank(gf (x∗)).

Step 2

We iterate this construction. Then we have get a filtration of M

... ⊂ Fn ⊂ Fn−1 ⊂ ... ⊂ F1 ⊂ FO = M.

This filtration has the following properties

(1) Fj−1 \ Fj is a analytic submanifold of M.
(2) gf defines a regular Riemannian foliation in (Fj−1 \ Fj, gf ),

Remark 6. The extrinsic geometry of submanifolds is a particular case of the geometry of singular foliation [25].

13. Highlighting Conclusions

13.1. Criticisms

In Part B we have raised some criticisms. We have constructed structures of statistical models
in flat tori. An m-dimensional flat torus is not homeomorphic to an open subset of Rm. The second
criticism is the lack of dynamics. Subsequently, the problem of moduli space is absent from the
classical theory. That deficiency is filled in by the characteristic functor

M = [E , π, M, D, p] → qM.

The current theory requires a model to be identifiable. From the viewpoint of locally trivial fiber
bundles, that requirement is useless.

13.2. Complexity

In both the theoretical information geometry and the applied information the exponential
models and their generalizations play notable roles. What we call the complexity of a model
[E , π, M, D, p] is its distance from the category of exponential models. Up to today there does
not exist any INVARIANT which measures how far from being an exponential is a given model.
This problem has a homological nature. We have produced a function rb which fills in that lack.
(See the Appendix A below).

13.3. KV Homology and Localization

We have introduced the theory of homological model. Among the notable notions that we have
studied is the localization of homological statistical models. It links the theory of homological models
and the current theory as in [22]. It may be interpreted as a functor from the theory of homological
models to the classical theory of statistical models.

13.4. The Homological Nature of the Information Geometry

GM(Ξ, Ω) and HSM(Ξ, Ω) are introduced in this Part B. The category of local statistical
models for (Ξ, Ω) is denoted by LM(Ξ, Ω). On one side, the right arrows below mean subcategory.
Then we have

LM(Ξ, Ω) → GM(Ξ, Ω) → HSM(Ξ, Ω).
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On another side, the notion of Vanishing Theorem is useful in linking HSM(Ξ, Ω) with both
GM(Ξ, Ω) and LM(Ξ, Ω).

(1) The Global Vanishing Theorem is the functor

HSM(Ξ, Ω) → GM(Ξ, Ω).

(2) The Local Vanishing Theorem is the functor

HSM(Ξ, Ω) → LM(Ξ, Ω).

13.5. Homological Models and Hessian Geometry

In the category HSM(Ξ, Ω) the Hessian functor is the functor from HEHSM(Ξ, Ω) to the
category of randon Hessian manifolds.

Furthermore, every structure of probability space (Ξ, Ω, p∗) gives rise to a canonical functor from
HEHSM(Ξ, Ω) to the category of Hessian manifolds. The canonical functor is defined by

[E , π, M, D, Q] →
∫

F
p∗Q
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Appendix A

Usually the appendix is devoted to overview the notions which are used in a paper. In this appendix
we announce a few outstanding impacts of Hessian differential operators of Koszul connections.

In the introduction a pair of Koszul connections (∇,∇∗) is used for defining three
differential operators

X → D∇(X) = ιXR∇ − LX∇ ∀X ∈ Γ(TM).

The differential operator D∇ is elliptic and involutive in the sense of the global analysis [50,51,64].
Let J∇ be the sheaf of germ of solutions to the equation

FE∗∗(∇) : D∇(X) = 0.

If ∇ torsion free then FE∗∗(∇) is a Lie equation.
The non negative integers rb(∇) and rb(M) are defined by

rb(∇) = min
[x∈M]

{
dim(J∇(x)

}
,

rb(M) = min
[∇∈SLC(M)]

{
dim(M)− rb(∇)

}
.

Here SLC(M) is the convex set of torsion free Koszul connections in M. We set the following
notation: Rie(M) is the set of Riemannian metric tensors in M. LF(M) is the set of locally flat Koszul
connection in M. At one side every g ∈ Rie(M) gives rise to the map

LF(M) � ∇ → ∇∗ ∈ LC(M)

which is defined by
g(Y,∇∗

XZ) = Xg(Y, Z)− g(∇XY, Z).
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At another side every ∇ ∈ LF(M) gives rise to the map

Ri(M) � g → ∇g ∈ LC(M)

which is defined by
g(Y,∇g

XZ) = Xg(Y, Z)− g(∇XY, Z).

In every Riemannian manifold (M, g) we define the following numerical invariants

rb(M, g) = min
[∇∈LF(M)]

{
dim(M)− rb(∇∗)

}
,

rB(M) = min
[g∈Rie(M)]

{
rb(M, g)

}
.

In every locally flat manifold (M,∇) we define the following numerical invariant

rb(M,∇) = min
[g∈Rie(M)]

{
rb(∇g)

}
The numerical invariants we just defined have notable impacts.

Appendix A.1. The Affinely Flat Geometry

Theorem A1. In a smooth manifold M the following assertions are equivalent

(1) rb(M) = 0,
(2) the manifold M admits locally flat structures.

Appendix A.2. The Hessian Geometry

Theorem A2 (Answer a hold questions of [65]). In a Riemannian manifold (M, g) the following assertions
are equivalent

(1) rb(M, g) = 0,
(2) the Riemannian manifold (M, g) admits Hessian structures (M, g,∇)

A Comment.

Assertion (2) has the following meaning.

(i) (M,∇) is a locally flat manifold.
(ii) every point has an open neighborhood U supporting a system of affine coordinate functions (x1, ..., xm) and a

local smooth function h(x1, ..., xm) such that

g(
∂

∂xi
,

∂

∂xj
) =

∂2h
∂xi∂xj

.

Appendix A.3. The Geometry of Koszul

Theorem A3. In a locally flat manifold (M,∇) whose KV algebra is denoted by A the following assertions
are equivalent

(1) rb(M,∇) = 0,
(2) the KV cohomology space H2

KV(A,R) contains a metric class [g],
(3) the locally flat manifold (M,∇) admits Hessian structures (M,∇, g).
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Appendix A.4. The Information Geometry

Let (Ξ, Ω) be a transitive measurable and let

M = [E , π, M, D, p]

be an object of GM(Ξ, Ω). Let g be the Fisher information of M. Let

{∇α, α ∈ R}

be the family of α-connections of M. We define the following numerical invariant

rb(M) = min
[α∈R]

{
dim(M)− rb(∇α)

}
.

Theorem A4. In M the following assertions are equivalent.

(1) rb(M) = 0,
(2) M is an exponential family.

Corollary A1. Assume that M is regular, viz g is positive definite, then the following assertions are equivalent

(1) rb(M) = 0,
(2) rb(M, g) = 0,

Appendix A.5. The Differential Topology of a Riemannian Manifold

A Riemannian manifold (M, g) , (whose Levi-Civita connection is denoted by ∇∗), is called special if

J∇∗ = 0

Theorem A5. A special positive Riemannian manifold(M, g) has the following properties

(1) (M, g) admits a geodesic flat Hessian foliation

[F , g|F ,∇∗].

(2) The leaves of F are the orbits of a bi-invariant affine Cartan-Lie group (G̃, ∇̃).
(3) The bi-invariant affine Cartan-Lie group (G̃, ∇̃) is generated by an effective infinitesimal action of a simply

connected bi-invariant affine Lie group (G,∇).
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Abstract: The Koszul–Vinberg characteristic function plays a fundamental role in the theory of convex
cones. We give an explicit description of the function and related integral formulas for a new class
of convex cones, including homogeneous cones and cones associated with chordal (decomposable)
graphs appearing in statistics. Furthermore, we discuss an application to maximum likelihood
estimation for a certain exponential family over a cone of this class.
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1. Introduction

Let Ω be an open convex cone in a vector space Z . The cone Ω is said to be regular if Ω contains
no straight line, which is equivalent to the condition Ω ∩ (−Ω) = {0}. In this paper, we always
assume that a convex cone is open and regular. The dual cone Ω∗ with respect to an inner product (·|·)
on Z is defined by:

Ω∗ :=
{

ξ ∈ Z ; (x|ξ) > 0 (∀x ∈ Ω \ {0}) } .

Then, Ω∗ is again a regular open convex cone, and we have (Ω∗)∗ = Ω. The Koszul–Vinberg
characteristic function ϕΩ : Ω → R>0 defined by:

ϕΩ(x) :=
∫

Ω∗
e−(x|ξ) dξ (x ∈ Ω)

plays a fundamental role in the theory of regular convex cones [1–4].
In particular, ϕΩ is an important function in the theory of convex programming [5], and it has

also been studied recently in connection with thermodynamics [6,7]. There are several (not many)
classes of cones for which an explicit formula of the Koszul–Vinberg characteristic function is known.
Among them, the class of homogeneous cones [8–10] and the class of cones associated with chordal
graphs [11] are particularly fruitful research objects. In this paper, we present a wide class of cones,
including both of them, and give an explicit expression of the Koszul–Vinberg characteristic function
(Section 3). Moreover, we get integral formulas involving the characteristic functions and the so-called
generalized power functions, which are expressed as some product of powers of principal minors
of real symmetric matrices (Section 4). After investigating the multiplicative Legendre transform of
generalized power functions in Section 5, we study a maximum likelihood estimator for a Wishart-type
natural exponential family constructed from the integral formula (Section 6).

A regular open convex cone Ω ⊂ Z is said to be homogeneous if the linear automorphism
group GL(Ω) := { α ∈ GL(Z) ; αΩ = Ω } acts on Ω transitively. The cone Pn of positive definite
n × n real symmetric matrices is a typical example of homogeneous cones. It is known [12–16] that
every homogeneous cone is linearly isomorphic to a cone Pn ∩ Z with an appropriate subspace Z
of the vector space Sym(n,R) of all n × n real symmetric matrices, where Z admits a specific block

Entropy 2016, 18, 383 235 www.mdpi.com/journal/entropy
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decomposition. Based on such results, our matrix realization method [15,17,18] has been developed
for the purpose of the efficient study of homogeneous cones. In this paper, we present a generalization
of matrix realization dealing with a wide class of convex cones, which turns out to include cones
associated with chordal graphs. Actually, it was an enigma for the author that some formulas in [11,19]
for the chordal graph resemble the formulas in [8,17] for homogeneous cones so much, and the mystery
is now solved by the unified method in this paper to get the formulas. Furthermore, the techniques
and ideas in the theory of homogeneous cones, such as Riesz distributions [8,20,21] and homogeneous
Hessian metrics [4,18,22], will be applied to various cones to obtain new results in our future research.

Here, we fix some notation used in this paper. We denote by Mat(p, q,R) the vector space of
p × q real matrices. For a matrix A, we write tA for the transpose of A. The identity matrix of size p is
denoted by Ip.

2. New Cones PV and P∗
V

2.1. Setting

We fix a partition n = n1 + n2 + · · ·+ nr of a positive integer n. Let V = {Vlk}1≤k<l≤r be a system
of vector spaces Vlk ⊂ Mat(nl , nk,R) satisfying

(V1) A ∈ Vlk ⇒ A tA ∈ RInl (1 ≤ k < l ≤ r),
(V2) A ∈ Vl j, B ∈ Vkj ⇒ A tB ∈ Vlk (1 ≤ j < k < l ≤ r).

The integer r is called the rank of the system V . We denote by nlk the dimension of Vlk. Note that
some nlk can be zero. Let ZV be the space of real symmetric matrices x ∈ Sym(n,R) of the form:

x =

⎛⎜⎜⎜⎜⎝
X11

tX21 . . . tXr1

X21 X22
tXr2

...
. . .

Xr1 Xr2 . . . Xrr

⎞⎟⎟⎟⎟⎠
(

Xkk = xkk Ink , xkk ∈ R, k = 1, . . . , r

Xlk ∈ Vlk, 1 ≤ k < l ≤ r

)
, (1)

and PV the subset of ZV consisting of positive definite matrices. Then, PV is a regular open convex
cone in ZV .

Example 1. Let r = 3, and set V21 :=
{ (

a 0
)

; a ∈ R

}
, V31 :=

{ (
0 a

)
; a ∈ R

}
, and V32 := R.

Then, ZV is the space of symmetric matrices x of the form:

x =

⎛⎜⎜⎜⎝
x1 0 x4 0
0 x1 0 x5

x4 0 x2 x6

0 x5 x6 x3

⎞⎟⎟⎟⎠ . (2)

We shall see later that the cone PV = ZV ∩ P4 is not homogeneous in this case, but admits various integral
formulas, as well as explicit expression of the Koszul–Vinberg characteristic function.

2.2. Inductive Description of PV

If the system V = {Vlk}1≤k<l≤r satisfies (V1) and (V2), any subsystem VI := {Vlk}k,l∈I with
I ⊂ {1, . . . , r} also satisfies the same conditions. In particular, the cone corresponding to the subsystem
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{Vlk}2≤k<l≤r will play an important role in this paper. Let us define V′ := {V′
lk}1≤k<l≤r−1 by

V′
lk := Vl+1,k+1. Then, V′ is a system of rank r − 1. Any x ∈ ZV is written as:

x =

(
x11 In1

tU
U x′

)
(x11 ∈ R, U ∈ W , x′ ∈ ZV′), (3)

where:

W :=

⎧⎪⎨⎪⎩U =

⎛⎜⎝X21
...

Xr1

⎞⎟⎠ ; Xl1 ∈ Vl1 (1 < l ≤ r)

⎫⎪⎬⎪⎭ . (4)

If x11 �= 0, then we have:(
x11 In1

tU
U x′

)
=

(
In1

x−1
11 U In−n1

)(
x11 In1

x′ − x−1
11 UtU

)(
In1 x−1

11
tU

In−n1

)
. (5)

Note that UtU belongs to ZV′ thanks to (V1) and (V2). Thus, we deduce the following lemma
immediately from (5).

Lemma 1. (i) Let x ∈ ZV as in (3). Then, x ∈ PV if and only if x11 > 0 and x′ − x−1
11 UtU ∈ PV′ .

(ii) For x ∈ PV , there exist unique Ũ ∈ W and x̃ ∈ PV′ for which:

x =

(
In1

Ũ In−n1

)(
x11 In1

x̃′

)(
In1

tŨ
In−n1

)

=

(
x11 In1 x11

tŨ
x11Ũ x̃′ + x11ŨtŨ

)
.

(6)

(iii) The closure PV of the cone PV is described as:

PV :=

{(
x11 In1 x11

tŨ
x11Ũ x̃′ + x11ŨtŨ

)
; x11 ≥ 0, Ũ ∈ W , x̃′ ∈ PV′

}
.

2.3. The Dual Cone P∗
V

We define an inner product on the space Vlk by (A|B)Vlk := n−1
l tr AtB for A, B ∈ Vlk. Then, we see

from (V1) that:
A tB + B tA = 2(A|B)Vlk Inl .

Gathering these inner products (·|·)Vlk , we introduce the standard inner product on the space ZV
defined by:

(x|x′) :=
r

∑
k=1

xkkx′kk + 2 ∑
1≤k<l≤r

(Xlk|X′
lk)Vlk (7)

for x, x′ ∈ ZV of the form (1). When n1 = n2 = · · · = nr = 1 (and only in this case), the standard inner
product above equals the trace inner product tr (xx′).
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Let W̃k (k = 1, . . . , r) be the vector space of W ∈ Mat(n, nk,R) of the form:

W =

⎛⎜⎜⎜⎜⎜⎜⎝
0n1+···+nk−1, nk

Xkk
Xk+1,k

...
Xrk

⎞⎟⎟⎟⎟⎟⎟⎠ (Xkk = xkk Ink , xkk ∈ R, Xlk ∈ Vlk, l > k).

Clearly, the space W̃k is isomorphic to R ⊕ ∑l>k Vlk, which implies dim W̃k = 1 + qk with
qk := ∑l>k nlk. Gathering orthogonal bases of Vlk’s, we take a basis of W̃k, so that we have an
isomorphism W̃k � W �→ w = vect(W) ∈ R1+qk , where the first component w1 of w is assumed to be
xkk. Let us introduce a linear map φk : ZV → Sym(1 + qk,R) defined in such a way that:

(WtW|ξ) = twφk(ξ)w (ξ ∈ ZV , W ∈ W̃k, w = vect(W) ∈ R
1+qk ). (8)

It is easy to see that φr(ξ) = ξrr for ξ ∈ ZV .

Theorem 1. The dual cone P∗
V ⊂ ZV of PV with respect to the standard inner product is described as:

P∗
V = { ξ ∈ ZV ; φk(ξ) is positive definite for all k = 1, . . . , r }
= { ξ ∈ ZV ; det φk(ξ) > 0 for all k = 1, . . . , r } .

(9)

Proof. We shall prove the statement by induction on the rank r. When r = 1, we have φ1(ξ) = ξ11 and
ξ = ξ11 In1 . Thus, (9) holds in this case.

Let us assume that (9) holds when the rank is smaller than r. In particular, the statement holds for
P∗
V′ ⊂ ZV′ , that is,

P∗
V′ =

{
ξ ′ ∈ ZV′ ; φ′

k(ξ
′) is positive definite for all k = 1, . . . , r − 1

}
=

{
ξ ′ ∈ ZV′ ; det φ′

k(ξ
′) > 0 for all k = 1, . . . , r − 1

}
,

where φ′
k is defined similarly to (8) for ZV′ . On the other hand, if:

ξ =

(
ξ11 In1

tV
V ξ ′

)
(ξ11 ∈ R, V ∈ W , ξ ′ ∈ ZV′), (10)

we observe that:
φk(ξ) = φ′

k−1(ξ
′) (k = 2, . . . , r).

Therefore, in order to prove (9) for P∗
V of rank r, it suffices to show that:

P∗
V =

{
ξ ∈ ZV ; ξ ′ ∈ P∗

V′ and φ1(ξ) is positive definite
}

=
{

ξ ∈ ZV ; ξ ′ ∈ P∗
V′ and det φ1(ξ) > 0

}
.

(11)

If q1 = 0, then any element ξ ∈ ZV is of the form:

ξ =

(
ξ11 In1

ξ ′

)
,

which belongs to PV if and only if ξ ′ ∈ PV′ and φ1(ξ) = ξ11 > 0, so that (11) holds.
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Assume q1 > 0. Keeping in mind that W̃1 � R⊕W and W � Rq1 by (4), we have for ξ ∈ ZV
as in (10),

φ1(ξ) =

(
ξ11

tv
v ψ(ξ ′)

)
∈ Sym(1 + q1,R), (12)

where v = vect(V) ∈ Rqi and ψ : ZV′ → Sym(qi,R) is defined in such a way that:

(UtU|ξ ′) = tuψ(ξ ′)u (ξ ′ ∈ ZV′ , U ∈ W , u = vect(U) ∈ R
q1). (13)

On the other hand, for x ∈ ZV as in (6), we have:

(x|ξ) = x11ξ11 + 2x11
tũv + x11

tũψ(ξ ′)ũ + (x̃′|ξ). (14)

Owing to Lemma 1 (iii), the element ξ ∈ ZV belongs to P∗
V if and only if the right-hand side is strictly

positive for all x11 ≥ 0, Ũ ∈ W and x̃′ ∈ PV′ with (x11, x̃′) �= (0, 0). Assume ξ ∈ P∗
V . Considering the

case x11 = 0, we have (x̃′|ξ ′) > 0 for all x̃′ ∈ PV′\{0}, which means that ξ ′ ∈ P∗
V′ . Then, the quantity

in (13) is strictly positive for non-zero U because UtU belongs to PV \ {0}. Thus, ψ(ξ ′) is positive
definite, and (14) is rewritten as:

(x|ξ) = x11(ξ11 − tvψ(ξ ′)−1v) + x11
t(ũ + ψ(ξ ′)−1v)ψ(ξ ′)(ũ + ψ(ξ ′)−1v) + (x̃′|ξ ′). (15)

Therefore, we obtain:

P∗
V =

{
ξ ∈ ZV ; ξ ′ ∈ P∗

V′ and ξ11 − tvψ(ξ ′)−1v > 0
}

. (16)

On the other hand, we see from (12) that:

φ1(ξ) =

(
1 tvψ(ξ ′)−1

Iq1

)(
ξ11 − tvψ(ξ ′)−1v

ψ(ξ ′)

)(
1

ψ(ξ ′)−1v Iq1

)
. (17)

Hence, we deduce (11) from (16) and (17).

We note that, if q1 > 0, the (1, 1)-component of the inverse matrix φ1(ξ)
−1 is given by:

(φ1(ξ)
−1)11 = (ξ11 − tvψ(ξ ′)−1v)−1 (18)

thanks to (17).

3. Koszul–Vinberg Characteristic Function of P∗
V

We denote by ϕV the Koszul–Vinberg characteristic function of P∗
V . In this section, we give

an explicit formula of ϕV .
Recall that the linear map ψ : ZV′ → Sym(q1,R) plays an important role in the proof of Theorem 1.

We shall introduce similar linear maps ψk : ZV → Sym(qk,R) for k such that qk > 0. Let Wk be the
subspace of W̃k consisting of W ∈ W̃k for which w1 = xkk = 0. Then, clearly, Wk � ∑⊕

l>k Vlk and
dimWk = qk. If qk > 0, using the same orthogonal basis of Vlk as in the previous section, we have the
isomorphism Wk � W �→ w = vect(W) ∈ Rqk . Similarly to (8), we define ψk by:

(WtW|ξ) = twψk(ξ)w (ξ ∈ ZV , W ∈ Wk, w = vect(W) ∈ R
qk ). (19)

Then, we have:

φk(ξ) =

(
ξkk

tvk
vk ψk(ξ)

)
(ξ ∈ ZV ), (20)
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where vk ∈ Rqk is a vector corresponding to the Wk-component of ξ. If ξ ∈ P∗
V , we see from (19) that

ψk(ξ) is positive definite. In this case, we have:

φk(ξ) =

(
1 tvkψk(ξ)

−1

Iqk

)(
ξkk − tvkψk(ξ)

−1vk
ψk(ξ)

)(
1

ψk(ξ)
−1vk Iqk

)
, (21)

so that we get a generalization of (18), that is,

(φk(ξ)
−1)11 = (ξkk − tvkψk(ξ)

−1vk)
−1. (22)

On the other hand, if qk = 0, then φk(ξ)
−1 = ξ−1

kk .
We remark that ψ1(ξ) = ψ(ξ ′), and that some part of the argument above is parallel to the proof

of Theorem 1.

Theorem 2. The Koszul–Vinberg characteristic function ϕV of P∗
V is given by the following formula:

ϕV (ξ) = CV
r

∏
k=1

(
φk(ξ)

−1)1+qk/2
11 ∏

qk>0
(det ψk(ξ))

−1/2 (ξ ∈ P∗
V ), (23)

where CV := (2π)(N−r)/2 ∏r
k=1 Γ(1 + qk

2 ) and N := dimZV .

Proof. We shall show the statement by induction on the rank as in the proof of Theorem 1. Then,
it suffices to show that:

ϕV (ξ) = (2π)q1/2Γ(1 +
q1

2
)(φ1(ξ)

−1)
1+q1/2
11 (det ψ1(ξ))

−sgn(q1)/2 ϕV′(ξ ′) (24)

for ξ ∈ P∗
V as in (10), where (det ψ1(ξ))

−sgn(q1)/2 is interpreted as:

(det ψ1(ξ))
−sgn(q1)/2 :=

{
1 (q1 = 0),

(det ψ1(ξ))
−1/2 (q1 > 0).

When q1 = 0, we have:

ϕV (ξ) =
∫ ∞

0

∫
PV′

e−x11ξ11 e−(x′ |ξ ′)dx11 dx′

= ξ−1
11 ϕV′(ξ ′),

which means (24).
When q1 > 0, the Euclidean measure dx equals 2q1/2xq1

11 dx11dũdx̃′ by the change of variables
in (6). Indeed, the coefficient 2q1/2 comes from the normalization of the inner product on W � Rq1

regarded as a subspace of ZV . Then, we have by (15):

ϕV (ξ) =
∫ ∞

0

∫
R

q1

∫
PV′

e−x11(ξ11−tvψ(ξ ′)−1v)e−x11
t(ũ+ψ(ξ ′)−1v)ψ(ξ ′)(ũ+ψ(ξ ′)−1v)e−(x̃′ |ξ ′)

×2q1/2xq1
11 dx11dũdx̃′.

By the Gaussian integral formula, we have:∫
R

q1
e−x11

t(ũ+ψ(ξ ′)−1v)ψ(ξ ′)(ũ+ψ(ξ ′)−1v)dũ = πq1/2x−q1/2
11 (det ψ(ξ ′))−1/2.
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Therefore, we get:

ϕV (ξ) = (2π)q1/2(det ψ(ξ ′))−1/2
∫ ∞

0
e−x11(ξ11−tvψ(ξ ′)−1v)xq1/2

11 dx11

∫
PV′

e−(x̃′ |ξ ′) dx̃′

= (2π)q1/2(det ψ1(ξ))
−1/2Γ(1 +

q1

2
)(ξ11 − tvψ(ξ ′)−1v)−1−qk/2 ϕV′(ξ ′),

which together with (18) leads us to (24).

Example 2. Let V = {Vlk}1≤k<l≤3 be as in Example 1. For:

ξ =

⎛⎜⎜⎜⎝
ξ1 0 ξ4 0
0 ξ1 0 ξ5

ξ4 0 ξ2 ξ6

0 ξ5 ξ6 ξ3

⎞⎟⎟⎟⎠ ∈ ZV , (25)

we have:

φ1(ξ) =

⎛⎜⎝ξ1 ξ4 ξ5

ξ4 ξ2 0
ξ5 0 ξ3

⎞⎟⎠ , φ2(ξ) =

(
ξ2 ξ6

ξ6 ξ3

)
, φ3(ξ) = ξ3,

ψ1(ξ) =

(
ξ2 0
0 ξ3

)
, ψ2(ξ) = ξ3.

The cone P∗
V is described as:

P∗
V =

⎧⎪⎨⎪⎩ ξ ∈ ZV ;

∣∣∣∣∣∣∣
ξ1 ξ4 ξ5

ξ4 ξ2 0
ξ5 0 ξ3

∣∣∣∣∣∣∣ > 0,

∣∣∣∣∣ξ2 ξ6

ξ6 ξ3

∣∣∣∣∣ > 0, ξ3 > 0

⎫⎪⎬⎪⎭ ,

and its Koszul–Vinberg characteristic function ϕV is expressed as:

ϕV (ξ) = CV

⎧⎪⎨⎪⎩
∣∣∣∣∣∣∣
ξ1 ξ4 ξ5

ξ4 ξ2 0
ξ5 0 ξ3

∣∣∣∣∣∣∣ /(ξ2ξ3)

⎫⎪⎬⎪⎭
−2 {∣∣∣∣∣ξ2 ξ6

ξ6 ξ3

∣∣∣∣∣ /ξ3

}−3/2

ξ−1
3 · (ξ2ξ3)

−1/2(ξ3)
−1/2

= CV

∣∣∣∣∣∣∣
ξ1 ξ4 ξ5

ξ4 ξ2 0
ξ5 0 ξ3

∣∣∣∣∣∣∣
−2 ∣∣∣∣∣ξ2 ξ6

ξ6 ξ3

∣∣∣∣∣
−3/2

ξ3/2
2 ξ3/2

3 ,

where CV = (2π)3/2Γ(2)Γ(3/2)Γ(1) =
√

2π2.
Suppose that the cone PV is homogeneous. Then, P∗

V , as well as PV , is a homogeneous cone of rank 3,
so that the Koszul–Vinberg characteristic function of P∗

V has at most three irreducible factors (see [8]). However,
we have seen that there are four irreducible factors in the function ϕV . Therefore, we conclude that neither PV ,
nor P∗

V is homogeneous.
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4. Γ-Type Integral Formulas

For an n × n matrix A = (Aij) and 1 ≤ m ≤ n, we denote by A[m] the upper-left m × m submatrix
(Aij)i,j≤m of A. Put Mk := ∑k

i=1 nk (k = 1, . . . , r). For s = (s1, . . . , sr) ∈ Cr, we define functions ΔV
s on

PV and δVs on P∗
V respectively by:

ΔV
s (x) := (det x[M1])s1/n1

r

∏
k=2

( det x[Mk ]

det x[Mk−1]

)sk/nk
(26)

= (det x)sr/nr
r−1

∏
k=1

(det x[Mk ])sk/nk−sk−1/nk−1 (x ∈ PV ),

δVs (ξ) :=
r

∏
k=1

(φk(ξ)
−1)

−sk
11 (27)

= ∏
qk=0

ξ
sk
kk ∏

qk>0
(ξkk − tvkψk(ξ)

−1vk)
sk (ξ ∈ P∗

V ).

Recall (22) for the second equality of (27).
For a = (a1, . . . , ar) ∈ Rr

>0, let Da denote the diagonal matrix defined by:

Da :=

⎛⎜⎜⎜⎜⎝
a1 In1

a2 In2

. . .
ar Inr

⎞⎟⎟⎟⎟⎠ ∈ GL(n,R).

Then, the linear map ZV � x �→ DaxDa ∈ ZV preserves both PV and P∗
V , and we have:

ΔV
s (DaxDa) = (

r

∏
k=1

a2sk
k )ΔV

s (x) (x ∈ PV ), (28)

δVs (DaξDa) = (
r

∏
k=1

a2sk
k )δVs (ξ) (ξ ∈ PV ). (29)

Assume q1 > 0. For B ∈ W , we denote by τB the linear transform on ZV given by:

τBx :=

(
In1

B In−n1

)(
x11 In1

tU
U x′

)(
In1

tB
In−n1

)

=

(
x11 In1

tU + x11
tB

U + x11B x′ + UtB + BtU + x11BtB

)
,

where x ∈ ZV is as in (3). Indeed, since:

UtB + BtU = (U + B)t(U + B)− UtU − BtB ∈ ZV′ ,

the matrix τBx belongs to ZV . Clearly, τB preserves PV , and we have:

ΔV
s (τBx) = ΔV

s (x) (x ∈ PV ). (30)

The formula (5) is rewritten as:

τ−x−1
11 U(x) =

(
x11 In1

x′ − x−1
11 UtU

)
,
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which together with (30) tells us that:

ΔV
s (x) = xs1

11ΔV′
s′ (x′ − x−1

11 UtU), (31)

where s′ := (s2, . . . , sr) ∈ Cr−1.
Let us consider the adjoint map τ∗

B : ZV → ZV of τB with respect to the standard inner product.
Let b ∈ Rq1 be the vector corresponding to B ∈ W . For x ∈ ZV and ξ ∈ ZV as in (3) and (10),
respectively, we observe that:

(τBx|ξ) = x11ξ11 + 2t(u + x11b)v + (x′ + UtB + BtU + x11BtB|ξ ′)
= x11(ξ11 + 2tbv + tbψ(ξ ′)b) + 2tu(v + ψ(ξ ′)b) + (x′|ξ ′).

Thus, if we write:

ι(ξ11, v, ξ ′) :=

(
ξ11 In1

tV
V ξ ′

)
,

we have:
τ∗

B ι(ξ11, v, ξ ′) = ι(ξ11 + 2tbv + tbψ(ξ ′)b, v + ψ(ξ ′)b, ξ ′). (32)

Furthermore, we see from (12) that φ1(τ
∗
B ι(ξ11, v, ξ ′)) equals:(

ξ11 + 2tbv + tbψ(ξ ′)b tv + tbψ(ξ ′)
v + ψ(ξ ′)b ψ(ξ ′)

)
=

(
1 tb

Iq1

)(
ξ11

tv
v ψ(ξ ′)

)(
1
b Iq1

)
,

so that we get for ξ = ι(ξ11, v, ξ ′):

φ1(τ
∗
Bξ) =

(
1 tb

Iq1

)
φ1(ξ)

(
1
b Iq1

)
.

Therefore:
(φ1(τ

∗
Bξ)−1)11 = (φ1(ξ)

−1)11.

On the other hand, we have for ξ = ι(ξ11, v, ξ ′) ∈ P∗
V :

δVs (ξ) = (φ1(ξ)
−1)−s1

11 δV
′

s′ (ξ
′). (33)

Thus, we conclude that:
δVs (τ∗

Bξ) = δVs (ξ). (34)

Theorem 3. When �sk > −1 − qk/2 for k = 1, . . . , r, one has:∫
PV

e−(x|ξ)ΔV
s (x) dx = C−1

V γV (s) δV−s(ξ)ϕV (ξ), (35)

where γV (s) := (2π)(N−r)/2 ∏r
k=1 Γ(sk + 1 + qk

2 ).

Proof. Recalling Theorem 2, we rewrite the right-hand side of (35) as:

(2π)(N−r)/2
r

∏
k=1

Γ(sk + 1 +
qk
2
)

r

∏
k=1

(
φk(ξ)

−1)sk+1+qk/2
11 ∏

qk>0
(det ψk(ξ))

−1/2,
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which is similar to the right-hand side of (23). Thus, the proof is parallel to Theorem 2. Namely, by
induction on the rank, it suffices to show that:∫

PV
e−(x|ξ)ΔV

s (x) dx

= (2π)q1/2Γ(s1 + 1 +
q1

2
)(φ1(ξ)

−1)
s1+1+q1/2
11 (det ψ1(ξ))

−sgn(q1)/2

×
∫
PV′

e−(x′ |ξ)ΔV′
s′ (x′) dx′

(36)

thanks to (33).
When q1 = 0, we have (x|ξ) = x11ξ11 + (x′|ξ ′) and ΔV

s (x) = xs1
11ΔV′

s (x′). Thus:

∫
PV

e−(x|ξ)ΔV
s (x) dx =

∫ ∞

0
e−x11ξ11 xs1

11 dx11 ×
∫
PV′

e−(x′ |ξ)ΔV′
s′ (x′) dx′.

Since
∫ ∞

0 e−x11ξ11 xs1
11 dx11 = Γ(s1 + 1)ξ−s1−1

11 , we get (36).
When q1 > 1, we use the change of variable (6). Since x̃′ = x′ − x−1

11 UtU, we have
ΔV

s (x) = xs1
11ΔV′

s′ (x̃′) by (31). Therefore, by the same Gaussian integral formula as in the proof of

Theorem 2, the integral
∫
PV e−(x|ξ)ΔV

s (x) dx equals:

∫ ∞

0

∫
W

∫
PV′

e−x11(ξ11−tvψ(ξ ′)−1v)e−x11
t(ũ+ψ(ξ ′)−1v)ψ(ξ ′)(ũ+ψ(ξ ′)−1v)e−(x̃′ |ξ ′)xs1

11ΔV′
s′ (x̃′)

× 2q1/2xq1
11 dx11dũdx̃′

= (2π)q1/2(det ψ(ξ))−1/2
∫ ∞

0
e−x11(ξ11−tvψ(ξ ′)−1v)xs1+q1/2

11 dx11

×
∫
PV′

e−(x̃′ |ξ ′)ΔV′
s′ (x̃′) dx̃′

= (2π)q1/2(det ψ(ξ))−1/2Γ(sk + 1 +
q1

2
)(ξ11 − tvψ(ξ ′)−1v)−sk−1−qk/2

×
∫
PV′

e−(x̃′ |ξ ′)ΔV′
s′ (x̃′) dx̃′.

Hence, we get (36) by (18).

We shall obtain an integral formula over P∗
V as follows.

Theorem 4. When �sk > qk/2 for k = 1, . . . , r, one has:∫
P∗
V

e−(x|ξ)δVs (ξ) ϕV (ξ) dξ = CVΓV (s)ΔV−s(x) (x ∈ PV ), (37)

where ΓV (s) := (2π)(N−r)/2 ∏r
k=1 Γ(sk − qk/2).

Proof. Using (24), (31) and (33), we rewrite (37) as:∫
P∗
V

e−(x|ξ)(φ1(ξ)
−1)

−s1+1+q1/2
11 (det ψ1(ξ))

−sgn(q1)/2δV
′

s′ (ξ
′) ϕV′(ξ ′) dξ

= CV′(2π)q1/2Γ(s1 − q1/2)ΓV′(s′) x−s1
11 ΔV′

−s′(x̃′),
(38)

where:

x̃′ :=

{
x′ (q1 = 0),

x′ − x−1
11 UtU (q1 > 0).
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Therefore, by induction on the rank, it suffices to show that the left-hand side of (38) equals:

(2π)q1/2Γ(s1 − q1/2)x−s1
11

∫
P∗
V′

e−(x̃′ |ξ ′)δV
′

s′ (ξ
′) ϕV′(ξ ′) dξ ′. (39)

When q1 = 0, since dξ = dξ11dξ ′, the left-hand side of (38) equals:∫ ∞

0
e−x11ξ11 ξs1−1

11 dξ11

∫
P∗
V′

e−(x′ |ξ ′)δV
′

s′ (ξ
′) ϕV′(ξ ′) dξ ′,

which coincides with (39) in this case.
Assume q1 > 0. Keeping (16) and (18) in mind, we put ξ̃11 := ξ11 − tvψ(ξ′)−1v = (φ1(ξ)

−1)−1
11 > 0.

By the change of variables ξ = ι(ξ̃11 +
tvψ(ξ′)−1v, v, ξ′), we have dξ = 2q1/2 dξ̃11dvdξ′. On the other

hand, we observe:

(x|ξ) = x11(ξ̃11 +
tvψ(ξ′)−1v) + 2tuv + (x′|ξ′)

= x11ξ̃11 + x11
t(v + x−1

11 ψ(ξ′)u)ψ(ξ′)−1(v + x−1
11 ψ(ξ′)u) + (x − x−1

11 UtU|ξ′).

Thus, the left-hand side of (39) equals:∫ ∞

0

∫
R

q1

∫
P∗
V′

e−x11ξ̃11e−x11
t(v+x−1

11 ψ(ξ′)u)ψ(ξ′)−1(v+x−1
11 ψ(ξ′)u)e−(x−x−1

11 UtU|ξ′)

×ξ̃
s1−1−q1/2
11 (det ψ(ξ′))−1/2δV

′
s′ (ξ

′) ϕV′(ξ′) 2q1/2 dξ̃11dvdξ′.
(40)

By the Gaussian integral formula, we have:∫
R

q1
e−x11

t(v+x−1
11 ψ(ξ′)u)ψ(ξ′)−1(v+x−1

11 ψ(ξ′)u) dv = πq1/2x−q1/2
11 (det ψ(ξ′))1/2,

so that (40) equals:

(2π)q1/2x−q1/2
11

∫ ∞

0
e−x11ξ̃11 ξ̃

s1−1−q1/2
11 dξ̃11

∫
P∗
V′

e−(x−x−1
11 UtU|ξ′)δV

′
s′ (ξ

′) ϕV′(ξ′)dξ′,

which coincides with (39) because:
∫ ∞

0 e−x11ξ̃11 ξ̃
s1−1−q1/2
11 dξ̃11 = Γ(s1 − q1/2)x−s1+q1/2

11 .

Example 3. Let ZV be as in Example 1, and let x ∈ PV and ξ ∈ P∗
V be as in (2) and (25), respectively.

Then, we have for s = (s1, s2, s3) ∈ C3,

ΔV
s (x) = (x2

11)
s1/2−s2

∣∣∣∣∣∣∣
x1 0 x4

0 x1 0
x4 0 x2

∣∣∣∣∣∣∣
s2−s3

(det x)s3

= xs1−s2−s3
11

∣∣∣∣∣x1 x4

x4 x2

∣∣∣∣∣
s2−s3

(det x)s3 ,

and:

δVs (ξ) = (ξ1 −
ξ2

4
ξ2

− ξ2
5

ξ3
)s1(ξ2 − ξ2

6
ξ3
)s2ξs3

3

=

∣∣∣∣∣∣∣
ξ1 ξ4 ξ5

ξ4 ξ2 0
ξ5 0 ξ3

∣∣∣∣∣∣∣
s1 ∣∣∣∣∣ξ2 ξ6

ξ6 ξ3

∣∣∣∣∣
s2

ξ−s1
2 ξs3−s1−s2

3 .
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When �s1 > −2,�s2 > −3/2 and �s3 > −1, the integral formula (35) holds with:

γV(s) = (2π)3/2Γ(s1 + 2)Γ(s2 + 3/2)Γ(s3 + 1).

Furthermore, when �s1 > 1, �s2 > 1/2 and �s3 > 0, the integral formula (37) holds with:

ΓV(s) = (2π)3/2Γ(s1 − 1)Γ(s2 − 1/2)Γ(s3).

5. Multiplicative Legendre Transform of Generalized Power Functions

For s ∈ Rr
>0, we see that log Δ−s is a strictly convex function on the cone PV . In fact, Δ−s is defined

naturally on Pn as a product of powers of principal minors, and it is well known that such log Δ−s is
strictly convex on the whole Pn. In this section, we shall show that log ΔV−s and log δV−s are related by
the Fenchel–Legendre transform.

For x ∈ PV , we denote by IV
s (x) the minus gradient −∇ log Δ−s(x) at x with respect to the inner

product. Namely, IV
s (x) is an element of ZV for which:

(IV
s (x)|y) = −

( d
dt

)
t=0

log Δ−s(x + ty) (y ∈ ZV).

Similarly, J V
s (ξ) := −∇ log δ−s(ξ) is defined for ξ ∈ P∗

V . If q1 > 0, then for any B ∈ W , we have:

IV
s ◦ τB = τ∗B ◦ IV

s , (41)

J V
s ◦ τ∗B = τB ◦ J V

s (42)

owing to (30) and (34), respectively.

Theorem 5. For any s ∈ Rr
>0, the map IV

s : PV → ZV gives a diffeomorphism from PV onto P∗
V , and J V

s
gives the inverse map.

Proof. We shall prove the statement by induction on the rank. When r = 1, we have IV
s (x11In1) =

s1
x11

In1 = J V
s (x11In1) for x11 > 0. Thus, the statement is true in this case.

When r > 1, assume that the statement holds for the system of rank r − 1. Let Z0
V be the subspace

of ZV defined by:

Z0
V :=

{(
x11In1 0

0 x′

)
; x11 ∈ R, x′ ∈ ZV′

}
.

By direct computation with (31) and (33), we have:

IV
s

(
x11In1 0

0 x′

)
=

( s1
x11

In1 0
0 IV′

s′ (x
′)

)
, (43)

J V
s

(
ξ11In1 0

0 ξ′

)
=

( s1
ξ11

In1 0
0 J V′

s′ (ξ
′)

)
(44)

for x11, ξ11 > 0, x′ ∈ PV′ and ξ′ ∈ P∗
V′ . By the induction hypothesis, we see that IV

s : PV ∩ Z0
V →

P∗
V ∩Z0

V is bijective with the inverse map J V
s : P∗

V ∩Z0
V → PV ∩Z0

V .
If q1 = 0, the statement holds because ZV = Z0

V . Assume q1 > 0. Lemma 1 (ii) tells us that, for
x ∈ PV , there exist unique x0 ∈ Z0

V ∩ PV and B ∈ W for which x = τBx0. Similarly, we see from (32)
that, for ξ ∈ P∗

V , there exist unique ξ0 ∈ Z0
V ∩ P∗

V and C ∈ W for which ξ = τ∗Cξ0. Therefore, we
deduce from (41) and (42) that IV

s : PV �→ P∗
V is a bijection with J V

s the inverse map.
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Proposition 1. Let s ∈ Rr
>0. For ξ ∈ P∗

V , one has:

Δ−s(Js(ξ))
−1 = (

r

∏
k=1

ssk
k )δ−s(ξ). (45)

Proof. We prove the statement by induction on the rank. When r = 1, the equality (45) is verified
directly. Indeed, the left-hand side of (45) is computed as ( s1

ξ11
)s1 = ss1

1 ξ−s1
11 .

When r > 1, assume that (45) holds for a system of rank r − 1. We deduce from (31), (33), (43), (44)
and the induction hypothesis that (45) holds for ξ ∈ P∗

V ∩Z0
V . Therefore, (45) holds for all ξ ∈ P∗

V by
(30), (34) and (42).

In general, for a non-zero function f , the function 1
f◦(∇ log f )−1 is called the multiplicative Legendre

transform of f . Thanks to Theorem 5 and Proposition 1, we see that the multiplicative Legendre
transform of Δ−s(x) is equal to δ−s(−ξ) on −P∗

V up to constant multiple. As a corollary, we arrive at
the following result.

Theorem 6. The Fenchel–Legendre transform of the convex function log Δ−s on PV is equal to the function
log δ−s(−ξ) of ξ ∈ −P∗ up to constant addition.

6. Application to Statistics and Optimization

Take s ∈ Rr for which sk > qk/2 (k = 1, . . . , r). We define a measure ρVs on P∗
V by:

ρVs (dξ) := C−1
V ΓV(s)−1δVs (ξ)ϕV(ξ) dξ (ξ ∈ P∗

V). (46)

Theorem 4 states that: ∫
P∗
V

e−(x|ξ)ρVs (dξ) = ΔV−s(x) (x ∈ PV).

Then, we obtain the natural exponential family generated by ρVs , that is a family {μV
s,x}x∈PV of

probability measures on P∗
V given by:

μV
s,x(dξ) := ΔV

s (x)e
−(x|ξ)ρVs (dξ).

In particular, when s = (n1α, n2α, . . . , nrα) for sufficiently large α, we have μV
s,x(dξ) =

(det x)αe−(x|ξ)ρVs (dξ). We call μV
s,x the Wishart distributions on P∗

V in general.
From a sample ξ0 ∈ P∗

V , let us estimate the parameter x ∈ PV in such a way that the likelihood
function ΔV

s (x)e−(x|ξ) attains its maximum at the estimator x0. Then, we have the likelihood equation
ξ0 = IV

s (x0), whereas Theorem 5 gives a unique solution by x0 = J V
s (ξ0).

The same argument leads us to the following result in semidefinite programming. For a fixed
ξ0 ∈ P∗

V and α > 0, a unique solution x0 of the minimization problem of (x|ξ0)− α log det x subject to
x ∈ PV = ZV ∩Pn is given by x0 = J V

s (ξ0), where s = (n1α, . . . , nrα). Note that J V
s is a rational map

because δVs is a product of powers of rational functions.

7. Special Cases

7.1. Matrix Realization of Homogeneous Cones

Let us assume that the system V = {Vlk}1≤k<l≤r satisfies not only the conditions (V1) and (V2),
but also the following:

(V3) A ∈ Vlk, B ∈ Vkj ⇒ AB ∈ Vlj (1 ≤ j < k < l ≤ r).
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Then, the set HV of lower triangular matrices T of the form:

T =

⎛⎜⎜⎜⎜⎝
T11

T21 T22
...

. . .
Tr1 Tr2 . . . Trr

⎞⎟⎟⎟⎟⎠
becomes a linear Lie group, and HV acts on the space ZV by ρ(T)x := Tx tT (T ∈ HV , x ∈ ZV).
The group HV acts on the cone PV simply transitively by this action ρ, so that PV is a homogeneous
cone. Moreover, it is shown in [15] that every homogeneous cone is linearly isomorphic to such PV
(see also [18]).

Let V0 = {V0
lk}1≤k<l≤3 be the system given by V0

21 = {0} and V0
lk = R ((l, k) �= (2, 1)). Then:

ZV0 =

⎧⎪⎨⎪⎩
⎛⎜⎝x1 0 x4

0 x2 x5

x4 x5 x3

⎞⎟⎠ ; x1, . . . , x5 ∈ R

⎫⎪⎬⎪⎭ ,

and PV0 := ZV0 ∩P3 is homogeneous because (V1)–(V3) are satisfied in this case. On the other hand,
let V1 = {V1

lk}1≤k<l≤3 be the system given by V1
31 = {0} and V1

lk = R ((l, k) �= (3, 1)). Then:

ZV1 =

⎧⎪⎨⎪⎩
⎛⎜⎝x1 x4 0

x4 x2 x5

0 x5 x3

⎞⎟⎠ ; x1, . . . , x5 ∈ R

⎫⎪⎬⎪⎭ .

Note that V1 satisfies only (V1) and (V2), but PV1 is homogeneous because PV1 is isomorphic to the
homogeneous cone PV0 via the map:

PV1 �

⎛⎜⎝x1 x4 0
x4 x2 x5

0 x5 x3

⎞⎟⎠ �→

⎛⎜⎝1 0 0
0 0 1
0 1 0

⎞⎟⎠
⎛⎜⎝x1 x4 0

x4 x2 x5

0 x5 x3

⎞⎟⎠
⎛⎜⎝1 0 0

0 0 1
0 1 0

⎞⎟⎠ =

⎛⎜⎝x1 0 x4

0 x3 x5

x4 x5 x2

⎞⎟⎠ ∈ PV0 .

This example tells us that our matrix realization of a convex cone is not unique and that the condition
(V3) is merely a sufficient condition for the homogeneity of the cone.

Many ideas in this work are inspired by the theory of homogeneous cones. The notion
of generalized power functions, as well as the Γ-type integral formulas are due to Gindikin [8]
(see also [23]). The Wishart distributions for homogeneous cones are studied in [17,21,24,25].

7.2. Cones Associated with Chordal Graphs

If n1 = n2 = · · · = nr = 1, then Vlk equals either R or {0}. In this case, ZV is the space of symmetric
matrices with prescribed zero components. Such a space is described by using an undirected graph in
the graphical model theory.

Let us recall some notion in the graph theory. Let G be a graph and VG the set of vertices of G.
We assume that G has no multiple edge, that is, for any two vertices i, j ∈ VG, either there is one edge
connecting them or there is no edge between them. These relations of the vertices i and j are denoted
by i ∼ j and i �∼ j, respectively. Assume further that G has no loop, which means that i �∼ i for i ∈ VG.
We define the edge set EG ⊂ VG ×VG by:

EG := { (i, j) ∈ VG ×VG ; i ∼ j } .

Since VG and EG have all of the information of G, the graph G is often identified with the pair (VG, EG).
For a non-empty subset V′ of VG, put E′ := EG ∩ (V′ × V′). The graph G′ := (V′, E′) is called an
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induced subgraph of G. The graph G is said to be chordal or decomposable if G contains no cycle of
length greater than three as an induced subgraph, and said to be A4-free if G contains no A4 graph
• − • − • − • as an induced subgraph. Let � be a total order on the vertex set VG, and for i ∈ VG,
put V[i]

G := { j ∈ VG ; i ∼ j and i � j } ⊂ VG. Then, � is said to be an eliminating order on the graph

G if the induced subgraph with the vertex set V[i]
G is complete for each i ∈ VG. It is known that there

exists an eliminating order on G if and only if the graph G is chordal.
Let us identify the vertex set VG with {1, 2, . . . , r}. Let ZG be the space of symmetric matrices

x = (xij) ∈ Sym(r,R), such that, if i �= j and i �∼ j, then xij = 0. Define PG := ZG ∩ Pr. We can
show ([11] (Theorem 2.2), [26]) that the cone PG is homogeneous if and only if the graph G is chordal
and A4-free. On the other hand, it is known in the graphical model theory as well as the sparse
matrix linear algebra that even though PG is not homogeneous, various formulas still hold for PG if G
is chordal.

The cone PG is expressed as PV with n1 = n2 = · · · = nr = 1 and:

Vji =

{
R (j ∼ i),

{0} (j �∼ i).

Then, the condition (V2) means exactly that the order ≤ is an eliminating order on G. Therefore,
any cone PG with chordal G can be treated as PV in our framework. Most of the integral formulas for
PG in [11,27] can be deduced from Theorems 3 and 4, while the Wishart distribution is a central object
in the theory of graphical model. In [28], the analysis for generalized power functions associated with
all eliminating orders is discussed for a specific graph An : • − •− · · · − • by direct computations.
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Abstract: Estimators derived from a divergence criterion such as ϕ−divergences are generally
more robust than the maximum likelihood ones. We are interested in particular in the so-called
minimum dual ϕ–divergence estimator (MDϕDE), an estimator built using a dual representation
of ϕ–divergences. We present in this paper an iterative proximal point algorithm that permits the
calculation of such an estimator. The algorithm contains by construction the well-known Expectation
Maximization (EM) algorithm. Our work is based on the paper of Tseng on the likelihood function.
We provide some convergence properties by adapting the ideas of Tseng. We improve Tseng’s results
by relaxing the identifiability condition on the proximal term, a condition which is not verified for
most mixture models and is hard to be verified for “non mixture” ones. Convergence of the EM
algorithm in a two-component Gaussian mixture is discussed in the spirit of our approach. Several
experimental results on mixture models are provided to confirm the validity of the approach.

Keywords: ϕ–divergences; robust estimation; EM algorithm; proximal-point algorithms; mixture models

1. Introduction

The Expectation Maximization (EM) algorithm is a well-known method for calculating the
maximum likelihood estimator of a model where incomplete data is considered. For example, when
working with mixture models in the context of clustering, the labels or classes of observations
are unknown during the training phase. Several variants of the EM algorithm were proposed
(see [1]). Another way to look at the EM algorithm is as a proximal point problem (see [2,3]).
Indeed, one may rewrite the conditional expectation of the complete log-likelihood as a sum of
the log-likelihood function and a distance-like function over the conditional densities of the labels
provided an observation. Generally, the proximal term has a regularization effect in the sense that a
proximal point algorithm is more stable and frequently outperforms classical optimization algorithms
(see [4]). Chrétien and Hero [5] prove superlinear convergence of a proximal point algorithm derived
from the EM algorithm. Notice that EM-type algorithms usually enjoy no more than linear convergence.

Taking into consideration the need for robust estimators, and the fact that the maximum likelihood
estimator (MLE) is the least robust estimator among the class of divergence-type estimators that
we present below, we generalize the EM algorithm (and the version of Tseng [2]) by replacing the

Entropy 2016, 18, 277 253 www.mdpi.com/journal/entropy
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log-likelihood function by an estimator of a ϕ−divergence between the true distribution of the data and
the model. A ϕ–divergence in the sense of Csiszár [6] is defined in the same way as [7] by:

Dϕ(Q, P) =
∫

ϕ

(
dQ
dP

(y)
)

dP(y),

where ϕ is a nonnegative strictly convex function. Examples of such divergences are: the
Kullback–Leibler (KL) divergence , the modified KL divergence, the Hellinger distanceamong others.
All these well-known divergences belong to the class of Cressie-Read functions [8] defined by

ϕγ(x) =
xγ − γx + γ − 1

γ(γ − 1)
for γ ∈ R \ {0, 1}. (1)

for γ = 1
2 , 0, 1 respectively. For γ ∈ {0, 1}, the limit is calculated, and we denote ϕ0(x) = − log x+ x− 1

for the case of the modified KL and ϕ1(x) = x log x − x + 1 for the KL.
Since the ϕ−divergence calculus uses the unknown true distribution, we need to estimate it.

We consider the dual estimator of the divergence introduced independently by [9,10]. The use
of this estimator is motivated by many reasons. Its minimum coincides with the MLE for
ϕ(t) = − log(t) + t − 1. In addition, it has the same form for discrete and continuous models, and does
not consider any partitioning or smoothing.

Let (Pφ)φ∈Φ be a parametric model with Φ ⊂ Rd, and denote φT as the true set of parameters.
Let dy be the Lebesgue measure defined on R. Suppose that ∀φ ∈ Φ, the probability measure Pφ is
absolutely continuous with respect to dy and denote pφ the corresponding probability density. The
dual estimator of the ϕ−divergence given an n−sample y1, · · · , yn is given by:

D̂ϕ(pφ, pφT) = sup
α∈Φ

∫
ϕ′

(
pφ

pα

)
(x)pφ(x)dx − 1

n

n

∑
i=1

ϕ#
(

pφ

pα

)
(yi), (2)

with ϕ#(t) = tϕ′(t)− ϕ(t). Al Mohamad [11] argues that this formula works well under the model;
however, when we are not, this quantity largely underestimates the divergence between the true
distribution and the model, and proposes the following modification:

D̃ϕ(pφ, pφT) =
∫

ϕ′
(

pφ

Kn,w

)
(x)pφ(x)dx − 1

n

n

∑
i=1

ϕ#
(

pφ

Kn,w

)
(yi), (3)

where Kn,w is the Rosenblatt–Parzen kernel estimate with window parameter w. Whether it is D̂ϕ,
or D̃ϕ, the minimum dual ϕ−divergence estimator (MDϕDE) is defined as the argument of the infimum
of the dual approximation:

φ̂n = arg inf
φ∈Φ

D̂ϕ(pφ, pφT), (4)

φ̃n = arg inf
φ∈Φ

D̃ϕ(pφ, pφT). (5)

Asymptotic properties and consistency of these two estimators can be found in [7,11]. Robustness
properties were also studied using the influence function approach in [11,12]. The kernel-based
MDϕDE (5) seems to be a better estimator than the classical MDϕDE (4) in the sense that the former
is robust whereas the later is generally not. Under the model, the estimator given by (4) is, however,
more efficient, especially when the true density of the data is unbounded. More investigation is needed
in the context of unbounded densities, since we may use asymmetric kernels in order to improve the
efficiency of the kernel-based MDϕDE, see [11] for more details.

In this paper, we propose calculation of the MDϕDE using an iterative procedure based on the
work of Tseng [2] on the log-likelihood function. This procedure has the form of a proximal point
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algorithm, and extends the EM algorithm. Our convergence proof demands some regularity (continuity
and differentiability) of the estimated divergence with respect to the parameter vector φ) which is not
simply checked using (2). Recent results in the book of Rockafellar and Wets [13] provide sufficient
conditions to prove continuity and differentiability of supremal functions of the form of (2) with
respect to φ. Differentiability with respect to φ still remains a very hard task; therefore, our results
cover cases when the objective function is not differentiable.

The paper is organized as follows: in Section 2, we present the general context. We also present the
derivation of our algorithm from the EM algorithm and passing by Tseng’s generalization. In Section 3,
we present some convergence properties. We discuss in Section 4 a variant of the algorithm with a
theoretical global infimum, and an example of the two-Gaussian mixture model and a convergence
proof of the EM algorithm in the spirit of our approach. Finally, Section 5 contains simulations
confirming our claim about the efficiency and the robustness of our approach in comparison with
the MLE. The algorithm is also applied to the so-called minimum density power divergence (MDPD)
introduced by [14].

2. A Description of the Algorithm

2.1. General Context and Notations

Let (X, Y) be a couple of random variables with joint probability density function f (x, y|φ)
parametrized by a vector of parameters φ ∈ Φ ⊂ Rd. Let (X1, Y1), · · · , (Xn, Yn) be n copies of (X, Y)
independently and identically distributed. Finally, let (x1, y1), · · · , (xn, yn) be n realizations of the n
copies of (X, Y). The xis are the unobserved data (labels) and the yis are the observations. The vector
of parameters φ is unknown and needs to be estimated. The observed data yi are supposed to be
real numbers, and the labels xi belong to a space X not necessarily finite unless mentioned otherwise.
The marginal density of the observed data is given by pφ(y) =

∫
f (x, y|φ)dx, where dx is a measure

defined on the label space (for example, the counting measure if we work with mixture models).
For a parametrized function f with a parameter a, we write f (x|a). We use the notation φk for

sequences with the index above. The derivatives of a real valued function ψ defined on R are denoted
ψ′, ψ′′, etc. We denote ∇ f the gradient of a real function f defined on Rd. For a generic function of two
(vectorial) arguments D(φ|θ), then ∇1D(φ|θ) denotes the gradient with respect to the first (vectorial)
variable. Finally, for any set A, we use int(A) to denote the interior of A.

2.2. EM Algorithm and Tseng’s Generalization

The EM algorithm estimates the unknown parameter vector by (see [15]):

φk+1 = arg max
Φ

E

[
log( f (X, Y|φ))

∣∣∣Y = y, φk
]

,

where X = (X1, · · · , Xn), Y = (Y1, · · · , Yn) and y = (y1, · · · , yn). By independence between the couples
(Xi, Yi)’s, the previous iteration may be written as:

φk+1 = arg max
Φ

n

∑
i=1

E

[
log( f (Xi, Yi|φ))

∣∣∣Yi = yi, φk
]

= arg max
Φ

n

∑
i=1

∫
X

log( f (x, yi|φ))hi(x|φk)dx, (6)

where hi(x|φk) = f (x,yi|φk)
p

φk (yi)
is the conditional density of the labels (at step k) provided yi which we

suppose to be positive dx−almost everywhere. It is well-known that the EM iterations can be rewritten
as a difference between the log-likelihood and a Kullback–Liebler distance-like function. Indeed,
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φk+1 = arg max
Φ

n

∑
i=1

∫
X

log
(
hi(x|φ)× pφ(yi)

)
hi(x|φk)dx

= arg max
Φ

n

∑
i=1

∫
X

log
(

pφ(yi)
)

hi(x|φk)dx +
n

∑
i=1

∫
X

log (hi(x|φ)) hi(x|φk)dx

= arg max
Φ

n

∑
i=1

log
(

pφ(yi)
)
+

n

∑
i=1

∫
X

log
(

hi(x|φ)
hi(x|φk)

)
hi(x|φk)dx

+
n

∑
i=1

∫
X

log
(

hi(x|φk)
)

hi(x|φk)dx.

The final line is justified by the fact that hi(x|φ) is a density, therefore it integrates to 1. The additional
term does not depend on φ and, hence, can be omitted. We now have the following iterative procedure:

φk+1 = arg max
Φ

n

∑
i=1

log
(

pφ(yi|φ)
)
+

n

∑
i=1

∫
X

log
(

hi(x|φ)
hi(x|φk)

)
hi(x|φk)dx.

The previous iteration has the form of a proximal point maximization of the log-likelihood, i.e.,
a perturbation of the log-likelihood by a distance-like function defined on the conditional densities
of the labels. Tseng [2] generalizes this iteration by allowing any nonnegative convex function ψ to
replace the t �→ − log(t) function. Tseng’s recurrence is defined by:

φk+1 = arg sup
φ

J(φ)− Dψ(φ, φk), (7)

where J is the log-likelihood function and Dψ is given by:

Dψ(φ, φk) =
n

∑
i=1

∫
X

ψ

(
hi(x|φ)
hi(x|φk)

)
hi(x|φk)dx, (8)

for any real nonnegative convex function ψ such that ψ(1) = ψ′(1) = 0. Dψ(φ1, φ2) is nonnegative, and
Dψ(φ1, φ2) = 0 if and only if ∀i, hi(x|φ1) = hi(x|φ2) dx almost everywhere.

2.3. Generalization of Tseng’s Algorithm

We use the relationship between maximizing the log-likelihood and minimizing the
Kullback–Liebler divergence to generalize the previous algorithm. We, therefore, replace the
log-likelihood function by an estimate of a ϕ−divergence Dϕ between the true distribution and
the model. We use the dual estimators of the divergence presented earlier in the introduction (2)
or (3), which we denote in the same manner D̂ϕ, unless mentioned otherwise. Our new algorithm is
defined by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT) +
1
n

Dψ(φ, φk), (9)

where Dψ(φ, φk) is defined by (8). When ϕ(t) = − log(t) + t − 1, it is easy to see that we get
recurrence (7). Indeed, for the case of (2) we have:

D̂ϕ(pφ, pφT) = sup
α

1
n

n

∑
i=1

log(pα(yi))− 1
n

n

∑
i=1

log(pφ(yi)).
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Using the fact that the first term in D̂ϕ(pφ, pφT) does not depend on φ, so it does not count in the
arg inf defining φk+1, we easily get (7). The same applies for the case of (3). For notational simplicity,
from now on, we redefine Dψ with a normalization by n, i.e.,

Dψ(φ, φk) =
1
n

n

∑
i=1

∫
X

ψ

(
hi(x|φ)
hi(x|φk)

)
hi(x|φk)dx. (10)

Hence, our set of algorithms is redefined by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT) + Dψ(φ, φk). (11)

We will see later that this iteration forces the divergence to decrease and that, under suitable
conditions, it converges to a (local) minimum of D̂ϕ(pφ, pφT). It results that algorithm (11) being a way
to calculate both the MDϕDE (4) and the kernel-based MDϕDE (5).

3. Some Convergence Properties of φk

We show here how, according to some possible situations, one may prove convergence of the
algorithm defined by (11). Let φ0 be a given initialization, and define

Φ0 := {φ ∈ Φ : D̂ϕ(pφ, pφT) ≤ D̂ϕ(pφ0 , pφT)},

which we suppose to be a subset of int(Φ). The idea of defining this set in this context is inherited
from the paper Wu [16], which provided the first correct proof of convergence for the EM algorithm.
Before going any further, we recall the following definition of a (generalized) stationary point.

Definition 1. Let f : Rd → R be a real valued function. If f is differentiable at a point φ∗ such that
∇ f (φ∗) = 0, we then say that φ∗ is a stationary point of f. If f is not differentiable at φ∗ but the subgradient of
f at φ∗, say ∂ f (φ∗), exists such that 0 ∈ ∂ f (φ∗), then φ∗ is called a generalized stationary point of f.

Remark 1. In the whole paper, the subgradient is defined for any function not necessarily convex
(see Definition 8.3) in [13] for more details.

We will be using the following assumptions:

A0. Functions φ �→ D̂ϕ(pφ|pφT), Dψ are lower semicontinuous;
A1. Functions φ �→ D̂ϕ(pφ|pφT), Dψ and ∇1Dψ are defined and continuous on, respectively, Φ, Φ × Φ

and Φ × Φ;
AC. Function φ �→ ∇D̂ϕ(pφ|pφT) is defined and continuous on Φ;
A2. Φ0 is a compact subset of int(Φ);
A3. Dψ(φ, φ̄) > 0 for all φ̄ �= φ ∈ Φ.

Recall also that we suppose that hi(x|φ) > 0, dx − a.e. We relax the convexity assumption of
function ψ. We only suppose that ψ is nonnegative and ψ(t) = 0 iff t = 1. In addition, ψ′(t) = 0 if t = 1.

Continuity and differentiability assumptions of function φ �→ D̂ϕ(pφ|pφT) for the case of (3) can be
easily checked using Lebesgue theorems. The continuity assumption for the case of (2) can be checked
using Theorem 1.17 or Corollary 10.14 in [13]. Differentiability can also be checked using Corollary
10.14 or Theorem 10.31 in the same book. In what concerns Dψ, continuity and differentiability can be
obtained merely by fulfilling Lebesgue theorems conditions. When working with mixture models, we
only need the continuity and differentiability of ψ and functions hi. The later is easily deduced from
regularity assumptions on the model. For assumption A2, there is no universal method, see Section 4.2
for an Example. Assumption A3 can be checked using Lemma 2 in [2].
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We start the convergence properties by proving that the objective function D̂ϕ(pφ|pφT) decreases
alongside the the sequence (φk)k, and give a possible set of conditions for the existence of the
sequence (φk)k.

Proposition 1. (a) Assume that the sequence (φk)k is well defined in Φ, then D̂ϕ(pφk+1 |pφT) ≤ D̂ϕ(pφk |pφT),
and (b) ∀k, φk ∈ Φ0. (c) Assume A0 and A2 are verified, then the sequence (φk)k is defined and bounded.
Moreover, the sequence (D̂ϕ(pφk |pφT))k converges.

Proof. We prove (a). We have by definition of the arginf:

D̂ϕ(pφk+1 , pφT) + Dψ(φ
k+1, φk) ≤ D̂ϕ(pφk , pφT) + Dψ(φ

k, φk).

We use the fact that Dψ(φk, φk) = 0 for the right-hand side and that Dψ(φk+1, φk) ≥ 0 for the left-hand
side of the previous inequality. Hence, D̂ϕ(pφk+1 , pφT) ≤ D̂ϕ(pφk , pφT).

We prove (b) using the decreasing property previously proved in (a). We have by recurrence
∀k, D̂ϕ(pφk+1 , pφT) ≤ D̂ϕ(pφk , pφT) ≤ · · · ≤ D̂ϕ(pφ0 , pφT). The result follows directly by definition of Φ0.

We prove (c) by induction on k. For k = 0, clearly φ0 is well defined since we choose it. The choice
of the initial point φ0 of the sequence may influence the convergence of the sequence. See the Example
of the Gaussian mixture in Section 4.2. Suppose, for some k ≥ 0, that φk exists. We prove that the
infimum is attained in Φ0. Let φ ∈ Φ be any vector at which the value of the optimized function has a
value less than its value at φk, i.e., D̂ϕ(pφ, pφT) + Dψ(φ, φk) ≤ D̂ϕ(pφk , pφT) + Dψ(φk, φk). We have:

D̂ϕ(pφ, pφT) ≤ D̂ϕ(pφ, pφT) + Dψ(φ, φk)

≤ D̂ϕ(pφk , pφT) + Dψ(φ
k, φk)

≤ D̂ϕ(pφk , pφT)

≤ D̂ϕ(pφ0 , pφT).

The first line follows from the non negativity of Dψ. As D̂ϕ(pφ, pφT) ≤ D̂ϕ(pφ0 , pφT), then φ ∈ Φ0.
Thus, the infimum can be calculated for vectors in Φ0 instead of Φ. Since Φ0 is compact and the
optimized function is lower semicontinuous (the sum of two lower semicontinuous functions), then
the infimum exists and is attained in Φ0. We may now define φk+1 to be a vector whose corresponding
value is equal to the infimum.

Convergence of the sequence (D̂ϕ(pφk , pφT))k comes from the fact that it is non increasing and
bounded. It is non increasing by virtue of (a). Boundedness comes from the lower semicontinuity
of φ �→ D̂ϕ(pφ, pφT). Indeed, ∀k, D̂ϕ(pφk , pφT) ≥ infφ∈Φ0 D̂ϕ(pφ, pφT). The infimum of a proper lower
semicontinuous function on a compact set exists and is attained on this set. Hence, the quantity
infφ∈Φ0 D̂ϕ(pφ, pφT) exists and is finite. This ends the proof.

Compactness in part (c) can be replaced by inf-compactness of function φ �→ D̂ϕ(pφ|pφT) and
continuity of Dψ with respect to its first argument. The convergence of the sequence (D̂ϕ(φk|φT))k is
an interesting property, since, in general, there is no theoretical guarantee, or it is difficult to prove
that the whole sequence (φk)k converges. It may also continue to fluctuate around a minimum. The
decrease of the error criterion D̂ϕ(φk|φT) between two iterations helps us decide when to stop the
iterative procedure.

Proposition 2. Suppose A1 verified, Φ0 is closed and {φk+1 − φk} → 0.

(a) If AC is verified, then any limit point of (φk)k is a stationary point of φ �→ D̂ϕ(pφ|pφT);
(b) If AC is dropped, then any limit point of (φk)k is a “generalized” stationary point of φ �→ D̂ϕ(pφ|pφT),

i.e., zero belongs to the subgradient of φ �→ D̂ϕ(pφ|pφT) calculated at the limit point.
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Proof. We prove (a). Let (φnk)k be a convergent subsequence of (φk)k which converges to φ∞. First,
φ∞ ∈ Φ0, because Φ0 is closed and the subsequence (φnk) is a sequence of elements of Φ0 (proved in
Proposition 1b).

Let us now show that the subsequence (φnk+1) also converges to φ∞. We simply have:

‖φnk+1 − φ∞‖ ≤ ‖φnk − φ∞‖+ ‖φnk+1 − φnk‖.

Since φk+1 − φk → 0 and φnk → φ∞, we conclude that φnk+1 → φ∞.
By definition of φnk+1, it verifies the infimum in recurrence (11), so that the gradient of the

optimized function is zero:

∇D̂ϕ(p
φnk+1 , pφT) +∇Dψ(φ

nk+1, φnk) = 0.

Using the continuity assumptions A1 and AC of the gradients, one can pass to the limit with
no problem:

∇D̂ϕ(pφ∞ , pφT) +∇Dψ(φ
∞, φ∞) = 0.

However, the gradient ∇Dψ(φ∞, φ∞) = 0 because (recall that ψ′(1) = 0) for any φ ∈ Φ

∇Dψ(φ, φ) =
n

∑
i=1

∫
X
∇hi(x|φ)
hi(x|φ) ψ′

(
hi(x|φ)
hi(x|φ)

)
hi(x|φ)dx =

n

∑
i=1

∫
X
∇hi(x|φ)ψ′(1)dx,

which is equal to zero since ψ′(1) = 0. This implies that ∇D̂ϕ(pφ∞ , pφT) = 0.
We prove (b). We use again the definition of the arginf. As the optimized function is not necessarily

differentiable at the points of the sequence (φk)k, a necessary condition for φk+1 to be an infimum is that
0 belongs to the subgradient of the function on φk+1. Since Dψ(φ, φk) is assumed to be differentiable,
the optimality condition is translated into:

−∇Dψ(φ
k+1, φk) ∈ ∂D̂ϕ(pφk+1 , pφT) ∀k.

Since D̂ϕ(pφ, pφT) is continuous, then its subgradient is outer semicontinuous (see [13] Chapter 8,
Proposition 7). We use the same arguments presented in (a) to conclude the existence of two
subsequences (φnk)k and (φnk+1)k which converge to the same limit φ∞. By definition of outer
semicontinuity, and since φnk+1 → φ∞, we have:

lim sup
φnk+1→φ∞

∂D̂ϕ(p
φnk+1 , pφT) ⊂ ∂D̂ϕ(pφ∞ , pφT). (12)

We want to prove that 0 ∈ lim sup
φnk+1→φ∞ ∂D̂ϕ(p

φnk+1 , pφT). By definition of the (outer) limsup
(see [13] Chapter 4, Definition 1 or Chapter 5B):

lim sup
φ→φ∞

∂D̂ϕ(pφ, pφT) =
{

u|∃φk → φ∞,∃uk → u with uk ∈ ∂D̂ϕ(pφk , pφT)
}

.

In our scenario, φ = φnk+1, φk = φnk+1, u = 0 and uk = ∇1Dψ(φnk+1, φnk). The continuity of ∇1Dψ

with respect to both arguments and the fact that the two subsequences φnk+1 and φnk converge to the
same limit, imply that uk → ∇1Dψ(φ∞, φ∞) = 0. Hence, u = 0 ∈ lim sup

φnk+1→φ∞ ∂D̂ϕ(p
φnk+1 , pφT).

By inclusion (12), we get our result:
0 ∈ ∂D̂ϕ(pφ∞ , pφT).

This ends the proof.

The assumption {φk+1 − φk} → 0 used in Proposition 2 is not easy to be checked unless one has a
close formula of φk. The following proposition gives a method to prove such assumption. This method
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seems simpler, but it is not verified in many mixture models (see Section 4.2 for a counter Example).

Proposition 3. Assume that A1, A2 and A3 are verified, then {φk+1 − φk} → 0. Thus, by Proposition 2
(according to whether AC is verified or not), any limit point of the sequence φk is a (generalized) stationary point
of D̂ϕ(.|φT).

Proof. By contradiction, let us suppose that φk+1 − φk does not converge to 0. There exists a
subsequence such that ‖φN0(k)+1 −φN0(k)‖ > ε, ∀k ≥ k0. Since (φk)k belongs to the compact set Φ0, there
exists a convergent subsequence (φN1◦N0(k))k such that φN1◦N0(k) → φ̄. The sequence (φN1◦N0(k)+1)k
belongs to the compact set Φ0; therefore, we can extract a further subsequence (φN2◦N1◦N0(k)+1)k such
that φN2◦N1◦N0(k)+1 → φ̃. Besides φ̂ �= φ̃. Finally since the sequence (φN1◦N0(k))k is convergent, a further
subsequence also converges to the same limit φ̄. We have proved the existence of a subsequence of (φk)k
such that φN(k)+1 − φN(k) does not converge to 0 and such that φN(k)+1 → φ̃, φN(k) → φ̄ with φ̄ �= φ̃.

The real sequence (D̂ϕ(pφk , pφT))k converges as proved in Proposition 1c. As a result, both
sequences D̂ϕ(pφN(k)+1 , pφT) and D̂ϕ(pφN(k) , pφT) converge to the same limit being subsequences of the
same convergent sequence. In the proof of Proposition 1, we can deduce the following inequality:

D̂(pφk+1 , pφT) + Dψ(φ
k+1, φk) ≤ D̂(pφk , pφT), (13)

which is also verified for any substitution of k by N(k). By passing to the limit on k, we get Dψ(φ̃, φ̄) ≤ 0.
However, the distance-like function Dψ is nonnegative, so that it becomes zero. Using assumption A3,
Dψ(φ̃, φ̄) = 0 implies that φ̃ = φ̄. This contradicts the hypothesis that φk+1 − φk does not converge to 0.

The second part of the Proposition is a direct result of Proposition 2.

Corollary 1. Under assumptions of Proposition 3, the set of accumulation points of (φk)k is a connected
compact set. Moreover, if φ �→ D̂(pφ, pφT) is strictly convex in the neighborhood of a limit point of the sequence
(φk)k, then the whole sequence (φk)k converges to a local minimum of D̂(pφ, pφT).

Proof. Since the sequence (φ)k is bounded and verifies φk+1 − φk → 0, then Theorem 28.1 in [17]
implies that the set of accumulation points of (φk)k is a connected compact set. It is not empty since Φ0

is compact. The remaining of the proof is a direct result of Theorem 3.3.1 from [18]. The strict concavity
of the objective function around an accumulation point is replaced here by the strict convexity of the
estimated divergence.

Proposition 3 and Corollary 1 describe what we may hope to get of the sequence φk. Convergence
of the whole sequence is bound by a local convexity assumption in the neighborhood of a limit point.
Although simple, this assumption remains difficult to be checked since we do not know where might
be the limit points. In addition, assumption A3 is very restrictive, and is not verified in mixture models.

Propositions 2 and 3 were developed for the likelihood function in the paper of Tseng [2]. Similar
results for a general class of functions replacing D̂ϕ and Dψ which may not be differentiable (but still
continuous) are presented in [3]. In these results, assumption A3 is essential. Although in [18] this
problem is avoided, their approach demands that the log-likelihood has −∞ limit as ‖φ‖ → ∞. This is
simply not verified for mixture models. We present a similar method to the one in [18] based on the
idea of Tseng [2] of using the set Φ0 which is valid for mixtures. We lose, however, the guarantee of
consecutive decrease of the sequence (φk)k.

Proposition 4. Assume A1, AC and A2 verified. Any limit point of the sequence (φk)k is a stationary point
of φ → D̂(pφ, pφT). If AC is dropped, then 0 belongs to the subgradient of φ �→ D̂(pφ, pφT) calculated at the
limit point.

Proof. If (φk)k converges to, say, φ∞, then the result falls simply from Proposition 2.
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If (φk)k does not converge. Since Φ0 is compact and ∀k, φk ∈ Φ0 (proved in Proposition 1), there
exists a subsequence (φN0(k))k such that φN0(k) → φ̃. Let us take the subsequence (φN0(k)−1)k. This
subsequence does not necessarily converge; it is still contained in the compact Φ0, so that we can extract
a further subsequence (φN1◦N0(k)−1)k which converges to, say, φ̄. Now, the subsequence (φN1◦N0(k))k
converges to φ̃, because it is a subsequence of (φN0(k))k. We have proved until now the existence of two
convergent subsequences φN(k)−1 and φN(k) with a priori different limits. For simplicity and without
any loss of generality, we will consider these subsequences to be φk and φk+1, respectively.

Conserving previous notations, suppose that φk+1 → φ̃ and φk → φ̄. We use again inequality (13):

D̂(pφk+1 , pφT) + Dψ(φ
k+1, φk) ≤ D̂(pφk , pφT).

By taking the limits of the two parts of the inequality as k tends to infinity, and using the continuity
of the two functions, we have

D̂(pφ̃, pφT) + Dψ(φ̃, φ̄) ≤ D̂(pφ̄, pφT).

Recall that under A1-2, the sequence
(

D̂ϕ(pφk , pφT)
)

k
converges, so that it has the same limit

for any subsequence, i.e., D̂(pφ̃, pφT) = D̂(pφ̄, pφT). We also use the fact that the distance-like
function Dψ is non negative to deduce that Dψ(φ̃, φ̄) = 0. Looking closely at the definition of this
divergence (10), we get that if the sum is zero, then each term is also zero since all terms are nonnegative.
This means that:

∀i ∈ {1, · · · , n},
∫
X

ψ

(
hi(x|φ̃)
hi(x|φ̄)

)
hi(x|φ̄)dx = 0.

The integrands are nonnegative functions, so they vanish almost everywhere with respect to the
measure dx defined on the space of labels.

∀i ∈ {1, · · · , n}, ψ

(
hi(x|φ̃)
hi(x|φ̄)

)
hi(x|φ̄) = 0 dx − a.e.

The conditional densities hi are supposed to be positive (which can be ensured by a suitable choice
of the initial point φ0), i.e., hi(x|φ̄) > 0, dx − a.e. Hence, ψ

(
hi(x|φ̃)
hi(x|φ̄)

)
= 0, dx − a.e. On the other hand, ψ

is chosen in a way that ψ(z) = 0 iff z = 1. Therefore:

∀i ∈ {1, · · · , n}, hi(x|φ̃) = hi(x|φ̄) dx − a.e. (14)

Since φk+1 is, by definition, an infimum of φ �→ D̂(pφ, pφT) + Dψ(φ, φk), then the gradient of this
function is zero on φk+1. It results that:

∇D̂(pφk+1 , pφT) +∇Dψ(φ
k+1, φk) = 0, ∀k.

Taking the limit on k, and using the continuity of the derivatives, we get that:

∇D̂(pφ̃, pφT) +∇Dψ(φ̃, φ̄) = 0. (15)

Let us write explicitly the gradient of the second divergence:

∇Dψ(φ̃, φ̄) =
n

∑
i=1

∫
X
∇hi(x|φ̃)
hi(x|φ̄) ψ′

(
hi(x|φ̃)
hi(x|φ̄)

)
hi(x|φ̄).

We use now the identities (14), and the fact that ψ′(1) = 0, to deduce that:

∇Dψ(φ̃, φ̄) = 0.
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This entails using (15) that ∇D̂(pφ̃, pφT) = 0.
Comparing the proved result with the notation considered at the beginning of the proof, we have

proved that the limit of the subsequence (φN1◦N0(k))k is a stationary point of the objective function.
Therefore, the final step is to deduce the same result on the original convergent subsequence (φN0(k))k.
This is simply due to the fact that (φN1◦N0(k))k is a subsequence of the convergent sequence (φN0(k))k,
hence they have the same limit.

When assumption AC is dropped, similar arguments to those used in the proof of Proposition 2b.
are employed. The optimality condition in (11) implies :

−∇Dψ(φ
k+1, φk) ∈ ∂D̂ϕ(pφk+1 , pφT) ∀k.

Function φ �→ D̂ϕ(pφ, pφT) is continuous, hence its subgradient is outer semicontinuous and:

lim sup
φk+1→φ∞

∂D̂ϕ(pφk+1 , pφT) ⊂ ∂D̂ϕ(pφ̃, pφT). (16)

By definition of the limsup:

lim sup
φ→φ∞

∂D̂ϕ(pφ, pφT) =
{

u|∃φk → φ∞,∃uk → u with uk ∈ ∂D̂ϕ(pφk , pφT)
}

.

In our scenario, φ = φk+1, φk = φk+1, u = 0 and uk = ∇1Dψ(φk+1, φk). We have proved above
in this proof that ∇1Dψ(φ̃, φ̄) = 0 using only the convergence of (D̂ϕ(pφk , pφT))k, inequality (13)

and the properties of Dψ. Assumption AC was not needed. Hence, uk → 0. This proves that
u = 0 ∈ lim supφk+1→φ∞ ∂D̂ϕ(p

φnk+1 , pφT). Finally, using the inclusion (16), we get our result:

0 ∈ ∂D̂ϕ(pφ̃, pφT),

which ends the proof.

The proof of the previous proposition is very similar to the proof of Proposition 2. The key idea
is to use the sequence of conditional densities hi(x|φk) instead of the sequence φk. According to the
application, one may be interested only in Proposition 1 or in Propositions 2–4. If one is interested
in the parameters, Propositions 2 to 4 should be used, since we need a stable limit of (φk)k. If we are
only interested in minimizing an error criterion D̂ϕ(pφ, pφT) between the estimated distribution and
the true one, Proposition 1 should be sufficient.

4. Case Studies

4.1. An Algorithm With Theoretically Global Infimum Attainment

We present a variant of algorithm (11) which ensures theoretically the convergence to a global
infimum of the objective function D̂ϕ(pφ, pφT) as soon as there exists a convergent subsequence of
(φk)k. The idea is the same as Theorem 3.2.4 in [18]. Define φk+1 by:

φk+1 = arg inf
φ

D̂ϕ(pφ, pφT) + βkDψ(φ, φk).

The proof of convergence is very simple and does not depend on the differentiability of any of
the two functions D̂ϕ or Dψ. We only assume A1 and A2 to be verified. Let (φN(k))k be a convergent
subsequence. Let φ∞ be its limit. This is guaranteed by the compactness of Φ0 and the fact that
the whole sequence (φk)k resides in Φ0 (see Proposition 1b). Suppose also that the sequence (βk)k
converges to 0 as k goes to infinity.
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Now assumptions of Theorem 3.2.4. from [18] are verified. Thus, using the same lines from
the proof of this theorem (inverting all inequalities since we are minimizing instead of maximizing),
we may prove that φ∞ is a global infimum of the estimated divergence, that is

D̂ϕ(pφ∞ , pφT) ≤ D̂ϕ(pφ, pφT), ∀φ ∈ Φ.

The problem with this approach is that it depends heavily on the fact that the supremum on
each step of the algorithm is calculated exactly. This does not happen in general unless function
D̂ϕ(pφ, pφT) + βkDψ(φ, φk) is convex or that we dispose of an algorithm that can perfectly solve non
convex optimization problems (In this case, there is no meaning in applying an iterative proximal
algorithm. We would have used the optimization algorithm directly on the objective function
D̂ϕ(pφ, pφT)). Although in our approach, we use a similar assumption to prove the consecutive
decreasing of D̂ϕ(pφ, pφT), we can replace the infimum calculus in (11) by two things. We require at each
step that we find a local infimum of D̂ϕ(pφ, pφT) + Dψ(φ, φk) whose evaluation with φ �→ D̂ϕ(pφ, pφT)

is less than the previous term of the sequence φk. If we can no longer find any local minima verifying
the claim, the procedure stops with φk+1 = φk. This ensures the availability of all the proofs presented
in this paper with no change.

4.2. The Two-Component Gaussian Mixture

We suppose that the model (pφ)φ∈Φ is a mixture of two gaussian densities, and that we are only
interested in estimating the means μ = (μ1, μ2) ∈ R2 and the proportion λ ∈ [η, 1 − η]. The use of
η is to avoid cancellation of any of the two components, and to keep the hypothesis hi(x|φ) > 0 for
x = 1, 2 verified. We also suppose that the components variances are reduced (σi = 1). The model
takes the form

pλ,μ(x) =
λ√
2π

e−
1
2 (x−μ1)

2
+

1− λ√
2π

e−
1
2 (x−μ2)

2
. (17)

Here, Φ = [η, 1− η]×R2. The regularization term Dψ is defined by (8) where:

hi(1|φ) = λe− 1
2 (yi−μ1)

2

λe− 1
2 (yi−μ1)2

+ (1− λ)e− 1
2 (yi−μ2)2

, hi(2|φ) = 1− hi(1|φ).

Functions hi are clearly of class C1(int(Φ)), and so does Dψ. We prove that Φ0 is closed and
bounded, which is sufficient to conclude its compactness, since the space [η, 1− η]×R2 provided with
the euclidean distance is complete.

If we are using the dual estimator of the ϕ−divergence given by (2), then assumption A0 can
be verified using the maximum theorem of Berge [19]. There is still a great difficulty in studying
the properties (closedness or compactness) of the set Φ0. Moreover, all convergence properties of
the sequence φk require the continuity of the estimated ϕ−divergence D̂ϕ(pφ, pφT) with respect to φ.
In order to prove the continuity of the estimated divergence, we need to assume that Φ is compact,
i.e., assume that the means are included in an interval of the form [μmin, μmax]. Now, using Theorem
10.31 from [13], φ �→ D̂ϕ(pφ, pφT) is continuous and differentiable almost everywhere with respect to φ.

The compactness assumption of Φ implies directly the compactness of Φ0. Indeed,

Φ0 =
{

φ ∈ Φ, D̂ϕ(pφ, pφT) ≤ D̂ϕ(pφ0 , pφT)
}

= D̂ϕ(pφ, pφT)−1
(
(−∞, D̂ϕ(pφ0 , pφT)]

)
.

Φ0 is then the inverse image by a continuous function of a closed set, so it is closed in Φ. Hence, it
is compact.
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Conclusion 1. Using Propositions 4 and 1, if Φ = [η, 1− η]× [μmin, μmax]2, the sequence (D̂ϕ(pφk , pφT))k

defined through Formula (2) converges and there exists a subsequence (φN(k)) which converges to a stationary
point of the estimated divergence. Moreover, every limit point of the sequence (φk)k is a stationary point of the
estimated divergence.

If we are using the kernel-based dual estimator given by (3) with a Gaussian kernel density
estimator, then function φ �→ D̂ϕ(pφ, pφT) is continuously differentiable over Φ even if the means μ1

and μ2 are not bounded. For example, take ϕ = ϕγ defined by (1). There is one condition which relates
the window of the kernel, say w, with the value of γ. Indeed, using Formula (3), we can write

D̂ϕ(pφ, pφT) =
1

γ − 1

∫ pγ
φ

Kγ−1
n,w

(y)dy − 1
γn

n

∑
i=1

pγ
φ

Kγ
n,w

(yi)− 1
γ(γ − 1)

.

In order to study the continuity and the differentiability of the estimated divergence with respect
to φ, it suffices to study the integral term. We have

pγ
φ

Kγ−1
n,w

(y) =

(
λ√
2π

exp
[
− 1

2(y − μ1)
2
]
+ 1−λ√

2π
exp

[
− 1

2(y − μ2)
2
])γ

(
1

nw ∑n
i=1 exp

[
− (y−yi)2

2w2

])γ−1 .

The dominating term at infinity in the nominator is exp(−γy2/2), whereas it is
exp(−(γ − 1)y2/(2w2)) in the denominator. It suffices now in order that the integrand to be bounded
by an integrable function independently of φ = (λ, μ) that we have −γ + (γ − 1)/w2 < 0. That is
−γw2 + γ− 1 < 0, which is equivalent to γ(w2 − 1) < −1. This argument also holds if we differentiate
the integrand with respect to λ or either of the means μ1 or μ2. For γ = 2 (the Pearson’s χ2), we need
w2 > 1/2. For γ = 1/2 (the Hellinger), there is no condition on w.

Closedness of Φ0 is proved similarly to the previous case. Boundedness, however, must be treated
differently since Φ is not necessarily compact and is supposed to be Φ = [η, 1− η]×R2. For simplicity,
take ϕ = ϕγ. The idea is to choose φ0 an initialization for the proximal algorithm in a way that Φ0 does
not include unbounded values of the means. Continuity of φ �→ D̂ϕ(pφ, pφT) permits calculation of
the limits when either (or both) of the means tends to infinity. If both the means go to infinity, then
pφ(x) → 0,∀x. Thus, for γ ∈ (0, ∞) \ {1}, we have D̂ϕ(pφ, pφT) → 1

γ(γ−1) . For γ < 0, the limit is infinity.
If only one of the means tends to ∞, then the corresponding component vanishes from the mixture.
Thus, if we choose φ0 such that:

D̂ϕ(pφ0 , pφT) < min
(

1
γ(γ − 1)

, inf
λ,μ

D̂ϕ(p(λ,∞,μ), pφT)

)
if γ ∈ (0, ∞) \ {1}, (18)

D̂ϕ(pφ0 , pφT) < inf
λ,μ

D̂ϕ(p(λ,∞,μ), pφT) if γ < 0, (19)

then the algorithm starts at a point of Φ whose function value is inferior to the limits of D̂ϕ(pφ, pφT)

at infinity. By Proposition 1, the algorithm will continue to decrease the value of D̂ϕ(pφ, pφT) and
never goes back to the limits at infinity. In addition, the definition of Φ0 permits to conclude that if
φ0 is chosen according to conditions (18) and (19), then Φ0 is bounded. Thus, Φ0 becomes compact.
Unfortunately the value of infλ,μ D̂ϕ(p(λ,∞,μ), pφT) can be calculated but numerically. We will see next
that in the case of the likelihood function, a similar condition will be imposed for the compactness of
Φ0, and there will be no need for any numerical calculus.

Conclusion 2. Using Propositions 4 and 1, under conditions (18) and (19) the sequence (D̂ϕ(pφk , pφT))k

defined through Formula (3) converges and there exists a subsequence (φN(k)) that converges to a stationary
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point of the estimated divergence. Moreover, every limit point of the sequence (φk)k is a stationary point of the
estimated divergence.

In the case of the likelihood ϕ(t) = − log(t) + t − 1, the set Φ0 can be written as:

Φ0 =
{

φ ∈ Φ, JN (φ) ≥ JN (φ0)
}

= J−1
N

(
[JN (φ0),+∞)

)
,

where JN is the log-likelihood function of the Gaussian mixture model. The log-likelihood function JN
is clearly of class C1(int(Φ)). We prove that Φ0 is closed and bounded which is sufficient to conclude its
compactness, since the space [η, 1− η]×R2 provided with the euclidean distance is complete.

Closedness. The set Φ0 is the inverse image by a continuous function (the log-likelihood) of a
closed set. Therefore it is closed in [η, 1− η]×R2.

Boundedness. By contradiction, suppose that Φ0 is unbounded, then there exists a sequence (φl)l
which tends to infinity. Since λl ∈ [η, 1− η], then either of μl

1 or μl
2 tends to infinity. Suppose that both

μl
1 and μl

2 tend to infinity, we then have JN (φl) → −∞. Any finite initialization φ0 will imply that
JN (φ0) > −∞ so that ∀φ ∈ Φ0, JN (φ) ≥ JN (φ0) > −∞. Thus, it is impossible for both μl

1 and μl
2 to go

to infinity.
Suppose that μl

1 → ∞, and that μl
2 converges (or that μl

2 is bounded; in such case we extract a
convergent subsequence) to μ2. The limit of the likelihood has the form:

L(λ, ∞, φ2) =
n

∏
i=1

(1− λ)√
2π

e−
1
2 (yi−μ2)

2
,

which is bounded by its value for λ = 0 and μ2 = 1
n ∑n

i=1 yi. Indeed, since 1− λ ≤ 1, we have:

L(λ, ∞, φ2) ≤
n

∏
i=1

1√
2π

e−
1
2 (yi−μ2)

2
.

The right-hand side of this inequality is the likelihood of a Gaussian model N (μ2, 0), so that it is
maximized when μ2 = 1

n ∑n
i=1 yi. Thus, if φ0 is chosen in a way that JN (φ0) > JN

(
0, ∞, 1

n ∑n
i=1 yi

)
, the

case when μ1 tends to infinity and μ2 is bounded would never be allowed. For the other case where
μ2 → ∞ and μ1 is bounded, we choose φ0 in a way that JN (φ0) > JN

(
1, 1

n ∑n
i=1 yi, ∞

)
. In conclusion,

with a choice of φ0 such that:

JN (φ0) > max

[
JN

(
0, ∞,

1
n

n

∑
i=1

yi

)
, JN

(
1,

1
n

n

∑
i=1

yi, ∞

)]
, (20)

the set Φ0 is bounded.
This condition on φ0 is very natural and means that we need to begin at a point at least better

than the extreme cases where we only have one component in the mixture. This can be easily verified
by choosing a random vector φ0, and calculating the corresponding log-likelihood value. If JN (φ0)

does not verify the previous condition, we draw again another random vector until satisfaction.

Conclusion 3. Using Propositions 4 and 1, under condition (20) the sequence (JN (φk))k converges and there
exists a subsequence (φN(k)) which converges to a stationary point of the likelihood function. Moreover, every
limit point of the sequence (φk)k is a stationary point of the likelihood.

Assumption A3 is not fulfilled (this part applies for all aforementioned situations). As mentioned
in the paper of Tseng [2], for the two Gaussian mixture example, by changing μ1 and μ2 by the same
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amount and suitably adjusting λ, the value of hi(x|φ) would be unchanged. We explore this more
thoroughly by writing the corresponding equations. Let us suppose, absurdly, that for distinct φ and φ′,
we have Dψ(φ|φ′) = 0. By definition of Dψ, it is given by a sum of nonnegative terms, which implies
that all terms need to be equal to zero. The following lines are equivalent ∀i ∈ {1, · · · , n}:

hi(0|λ, μ1, μ2) = hi(0|λ′, μ′
1, μ′

2),

λe− 1
2 (yi−μ1)

2

λe− 1
2 (yi−μ1)2

+ (1− λ)e− 1
2 (yi−μ2)2

=
λ′e− 1

2 (yi−μ′
1)

2

λ′e−
1
2 (yi−μ′

1)
2
+ (1− λ′)e− 1

2 (yi−μ′
2)

2
,

log
(

1− λ

λ

)
− 1

2
(yi − μ2)

2 +
1
2
(yi − μ1)

2 = log
(

1− λ′

λ′

)
− 1

2
(yi − μ′

2)
2 +

1
2
(yi − μ′

1)
2.

Looking at this set of n equations as an equality of two polynomials on y of degree 1 at n points,
we deduce that as we have two distinct observations, say, y1 and y2, the two polynomials need to have
the same coefficients. Thus, the set of n equations is equivalent to the following two equations:{

μ1 − μ2 = μ′
1 − μ′

2

log
(

1−λ
λ

)
+ 1

2 μ2
1 − 1

2 μ2
2 = log

(
1−λ′

λ′
)
+ 1

2 μ′
1

2 − 1
2 μ′

2
2.

(21)

These two equations with three variables have an infinite number of solutions. Take, for example,
μ1 = 0, μ2 = 1, λ = 2

3 , μ′
1 = 1

2 , μ′
2 = 3

2 , λ′ = 1
2 .

Remark 2. The previous conclusion can be extended to any two-component mixture of exponential families
having the form:

pφ(y) = λe∑
m1
i=1 θ1,iyi−F(θ1) + (1− λ)e∑

m2
i=1 θ2,iyi−F(θ2).

One may write the corresponding n equations. The polynomial of yi has a degree of at most max(m1, m2).
Thus, if one disposes of max(m1, m2) + 1 distinct observations, the two polynomials will have the same set of
coefficients. Finally, if (θ1, θ2) ∈ Rd−1 with d > max(m1, m2), then assumption A3 does not hold.

Unfortunately, we have no an information about the difference between consecutive terms
‖φk+1 − φk‖ except for the case of ψ(t) = ϕ(t) = − log(t) + t − 1 which corresponds to the classical
EM recurrence:

λk+1 =
1
n

n

∑
i=1

hi(0|φk), μk+1
1 =

∑n
i=1 yihi(0|φk)

∑n
i=1 hi(0|φk)

μk+1
1 =

∑n
i=1 yihi(1|φk)

∑n
i=1 hi(1|φk)

.

Tseng [2] has shown that we can prove directly that φk+1 − φk converges to 0.

5. Simulation Study

We summarize the results of 100 experiments on 100 samples by giving the average of the
estimates and the error committed, and the corresponding standard deviation. The criterion error
is the total variation distance (TVD), which is calculated using the L1 distance. Indeed, the Scheffé
Lemma (see [20] (Page 129)) states that:

sup
A∈Bn(R)

∣∣∣Pφ(A)− PφT(A)
∣∣∣ = 1

2

∫
R

∣∣∣pφ(y)− pφT(y)
∣∣∣ dy.

The TVD gives a measure of the maximum error we may commit when we use the estimated
model in lieu of the true distribution. We consider the Hellinger divergence for estimators based on
ϕ−divergences, which corresponds to ϕ(t) = 1

2(
√

t − 1)2. Our preference of the Hellinger divergence
is that we hope to obtain robust estimators without loss of efficiency (see [21]). Dψ is calculated with
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ψ(t) = 1
2(
√

t− 1)2. The kernel-based MDϕDE is calculated using the Gaussian kernel, and the window
is calculated using Silverman’s rule. We included in the comparison the minimum density power
divergence (MDPD) of [14]. The estimator is defined by:

φ̂n = arg inf
φ∈Φ

∫
p1+a

φ (z)dz − a + 1
a

1
n

n

∑
i

pa
φ(yi)

= arg inf
φ∈Φ

EPφ

[
pa

φ

]
− a + 1

a
EPn

[
pa

φ

]
, (22)

where a ∈ (0, 1]. This is a Bregman divergence and is known to have good efficiency and robustness for
a good choice of the tradeoff parameter. According to the simulation results in [11], the value of a = 0.5
seems to give a good tradeoff between robustness against outliers and a good performance under
the model. Notice that the MDPD coincides with MLE when a tends to zero. Thus, our methodology
presented here in this article, is applicable on this estimator and the proximal point algorithm can be
used to calculate the MDPD. The proximal term will be kept the same, i.e., ψ(t) = 1

2(
√

t − 1)2.

Remark 3 (Note on the robustness of the used estimators). In Section 3, we have proved under mild
conditions that the proximal point algorithm (11) ensures the decrease of the estimated divergence. This
means that when we use the dual Formulas (2) and (3), then the proximal point algorithm (11) returns at
convergence the estimators defined by (4) and (5), respectively. Similarly, if we use the density power divergence
of Basu et al. [14], then the proximal-point algorithm returns at convergence the MDPD defined by (22). The
robustness properties of the dual estimators (4) and (5) are studied in [12] and [11] respectively using the
influence function (IF) approach. On the other hand, the robustness properties of the MDPD are studied using
the IF approach in [14]. The MDϕDE (4) has generally an unbounded IF (see [12] Section 3.1), whereas the
kernel-based MDϕDE’s IF may be bounded for example in a Gaussian model and for any ϕ−divergence with
ϕ = ϕγ with γ ∈ (0, 1), see [11] Example 2. On the other hand, the MDPD has generally a bounded IF if the
tradeoff parameter a is positive, and, in particular, in the Gaussian model. The MDPD becomes more robust as
the tradeoff parameter a increases (see Section 3.3 in [14]). Therefore, we should expect that the proximal point
algorithm produces robust estimators in the case of the kernel-based MDϕDE and the MDPD, and thus obtain
better results than the MLE calculated using the EM algorithm.

Simulations from two mixture models are given below—a Gaussian mixture and a Weibull
mixture. The MLE for both mixtures was calculated using the EM algorithm.

Optimizations were carried out using the Nelder–Mead algorithm [22] under the statistical tool
R [23]. Numerical integrations in the Gaussian mixture were calculated using the distrExIntegrate
function of package distrEx. It is a slight modification of the standard function integrate. It performs
a Gauss–Legendre quadrature when function integrate returns an error. In the Weibull mixture,
we used the integral function from package pracma. Function integral includes a variety of
adaptive numerical integration methods such as Kronrod–Gauss quadrature, Romberg’s method,
Gauss–Richardson quadrature, Clenshaw–Curtis (not adaptive) and (adaptive) Simpson’s method.
Although function integral is slow, it performs better than other functions even if the integrand has
a relatively bad behavior.

5.1. The Two-Component Gaussian Mixture Revisited

We consider the Gaussian mixture (17) presented earlier with true parameters λ = 0.35,
μ1 = −2, μ2 = 1.5 and known variances equal to 1. Contamination was done by adding in the
original sample to the five lowest values random observations from the uniform distribution U [−5,−2].
We also added to the five largest values random observations from the uniform distribution U [2, 5].
Results are summarized in Table 1. The EM algorithm was initialized according to condition (20).
This condition gave good results when we are under the model, whereas it did not always result in
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good estimates (the proportion converged towards 0 or 1) when outliers were added, and thus the EM
algorithm was reinitialized manually.

Table 1. The mean and the standard deviation of the estimates and the errors committed in a 100 run
experiment of a two-component Gaussian mixture. The true set of parameters is λ = 0.35, μ1 = −2,
μ2 = 1.5.

Estimation Method λ sd (λ) μ1 sd (μ1) μ2 sd (μ2) TVD sd (TVD)

Without Outliers

Classical MDϕDE 0.349 0.049 –1.989 0.207 1.511 0.151 0.061 0.029
New MDϕDE–Silverman 0.349 0.049 –1.987 0.208 1.520 0.155 0.062 0.029

MDPD a = 0.5 0.360 0.053 –1.997 0.226 1.489 0.135 0.065 0.025
EM (MLE) 0.360 0.054 –1.989 0.204 1.493 0.136 0.064 0.025

With 10% Outliers

Classical MDϕDE 0.357 0.022 –2.629 0.094 1.734 0.111 0.146 0.034
New MDϕDE–Silverman 0.352 0.057 –1.756 0.224 1.358 0.132 0.087 0.033

MDPD a = 0.5 0.364 0.056 –1.819 0.218 1.404 0.132 0.078 0.030
EM (MLE) 0.342 0.064 –2.617 0.288 1.713 0.172 0.150 0.034

Figure 1 shows the values of the estimated divergence for both Formulas (2) and (3) on a
logarithmic scale at each iteration of the algorithm.

Figure 1. Decrease of the (estimated) Hellinger divergence between the true density and the estimated
model at each iteration in the Gaussian mixture. The figure to the left is the curve of the values of
the kernel-based dual Formula (3). The figure to the right is the curve of values of the classical dual
Formula (2). Values are taken at a logarithmic scale log(1 + x).

Concerning our simulation results, the total variation of all four estimation methods is very
close when we are under the model. When we added outliers, the classical MDϕDE was as sensitive
as the maximum likelihood estimator. The error was doubled. Both the kernel-based MDϕDE and
the MDPD are clearly robust since the total variation of these estimators under contamination has
slightly increased.

5.2. The Two-Component Weibull Mixture Model

We consider a two-component Weibull mixture with unknown shapes ν1 = 1.2, ν2 = 2 and a
proportion λ = 0.35. The scales are known an equal to σ1 = 0.5, σ2 = 2. The desity function is given by:

pφ(x) = 2λα1(2x)α1−1e−(2x)α1 + (1 − λ)
α2

2

( x
2

)α2−1
e−(

x
2 )

α2
. (23)
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Contamination was done by replacing 10 observations of each sample chosen randomly by 10
i.i.d. observations drawn from a Weibull distribution with shape ν = 0.9 and scale σ = 3. Results are
summarized in Table 2. Notice that it would have been better to use asymmetric kernels in order to
build the kernel-based MDϕDE since their use in the context of positive-supported distributions is
advised in order to reduce the bias at zero, see [11] for a detailed comparison with symmetric kernels.
This is not, however, the goal of this paper. In addition, the use of symmetric kernels in this mixture
model gave satisfactory results.

Simulations results in Table 2 confirm once more the validity of our proximal point algorithm and
the clear robustness of both the kernel-based MDϕDE and the MDPD.

Table 2. The mean and the standard deviation of the estimates and the errors committed in a 100-run
experiment of a two-component Weibull mixture. The true set of parameter is λ = 0.35, ν1 = 1.2, ν2 = 2.

Estimation Method λ sd (λ) μ1 sd (μ1) μ2 sd (μ2) TVD sd (TVD)

Without Outliers

Classical MDϕDE 0.356 0.066 1.245 0.228 2.055 0.237 0.052 0.025
New MDϕDE–Silverman 0.387 0.067 1.229 0.241 2.145 0.289 0.058 0.029

MDPD a = 0.5 0.354 0.068 1.238 0.230 2.071 0.345 0.056 0.029
EM (MLE) 0.355 0.066 1.245 0.228 2.054 0.237 0.052 0.025

With 10% Outliers

Classical MDϕDE 0.250 0.085 1.089 0.300 1.470 0.335 0.092 0.037
New MDϕDE–Silverman 0.349 0.076 1.122 0.252 1.824 0.324 0.067 0.034

MDPD a = 0.5 0.322 0.077 1.158 0.236 1.858 0.344 0.060 0.029
EM (MLE) 0.259 0.095 0.941 0.368 1.565 0.325 0.095 0.035

6. Conclusions

We introduced in this paper a proximal-point algorithm that permits calculation of
divergence-based estimators. We studied the theoretical convergence of the algorithm and verified
it in a two-component Gaussian mixture. We performed several simulations which confirmed that
the algorithm works and is a way to calculate divergence-based estimators. We also applied our
proximal algorithm on a Bregman divergence estimator (the MDPD), and the algorithm succeeded to
produce the MDPD. Further investigations about the role of the proximal term and a comparison with
direct optimization methods in order to show the practical use of the algorithm may be considered in
a future work.
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Abstract: In this paper, we propose a generalization of Rényi divergence, and then we investigate
its induced geometry. This generalization is given in terms of a ϕ-function, the same function that
is used in the definition of non-parametric ϕ-families. The properties of ϕ-functions proved to be
crucial in the generalization of Rényi divergence. Assuming appropriate conditions, we verify that
the generalized Rényi divergence reduces, in a limiting case, to the ϕ-divergence. In generalized
statistical manifold, the ϕ-divergence induces a pair of dual connections D(−1) and D(1). We show
that the family of connections D(α) induced by the generalization of Rényi divergence satisfies the
relation D(α) = 1−α

2 D(−1) + 1+α
2 D(1), with α ∈ [−1, 1].

Keywords: Rényi divergence; ϕ-function; ϕ-divergence; ϕ-family; statistical manifold;
information geometry

1. Introduction

Information geometry, the study of statistical models equipped with a differentiable structure, was
pioneered by the work of Rao [1], and gained maturity with the work of Amari and many others [2–4].
It has been successfully applied in many different areas, such as statistical inference, machine learning,
signal processing or optimization [4,5]. In appropriate statistical models, the differentiable structure is
induced by a (statistical) divergence. The Kullback–Leibler divergence induces a Riemannian metric,
called the Fisher–Rao metric, and a pair of dual connections, the exponential and mixture connections.
A statistical model endowed with the Fisher–Rao metric is called a (classical) statistical manifold.
Amari also considered a family of α-divergences that induce a family of α-connections.

Much research in recent years has focused on the geometry of non-standard statistical models [6–8].
These models are defined in terms of a deformed exponential (also called φ-exponential). In particular,
κ-exponential models and q-exponential families are investigated in [9,10]. Non-parametric
(or infinite-dimensional) ϕ-families were introduced by the authors in [11,12], which generalize
exponential families in the non-parametric setting [13–16]. Based on the similarity between exponential
and ϕ-families, we defined the so-called ϕ-divergence, with respect to which the Kullback–Leibler
divergence is a particular case. Statistical models equipped with a geometric structure induced
by ϕ-divergences, which are called generalized statistical manifolds, are investigated in [17,18].
With respect to these connections, parametric ϕ-families are dually flat.

The ϕ-divergence is intrinsically related to the (ρ, τ)-model of Zhang, which was proposed
in [19,20], extended to the infinite-dimension setting in [21], and explained in more details in [22,23].

Entropy 2016, 18, 407 271 www.mdpi.com/journal/entropy
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For instance, the metric induced by ϕ-divergence and the (ρ, τ)-generalization of the Fisher–Rao metric,
for the choices ρ = ϕ−1 and f = ρ−1, differ by a conformal factor.

Among many attempts to generalize Kullback–Leibler divergence, Rényi divergence [24]
is one of the most successful, having found many applications [25]. In the present paper,
we propose a generalization of Rényi divergence, which we use to define a family of α-connections.
This generalization is based on an interpretation of Rényi divergence as a kind of normalizing
function. To generalize Rényi divergence, we considered functions satisfying some suitable conditions.
To a function for which these conditions hold, we give the name of ϕ-function. In a limiting case,
the generalized Rényi divergence reduces to the ϕ-divergence. In [17,18], the ϕ-divergence gives
rise to a pair of dual connections D(−1) and D(1). We show that the connection D(α) induced by the
generalization of Rényi divergence satisfies the convex combination D(α) = 1−α

2 D(−1) + 1+α
2 D(1).

Eguchi in [26] investigated a geometry based on a normalizing function similar to the one used in
the generalization of Rényi divergence. In [26], results were derived supposing that this normalizing
function exists; conditions for its existence were not given. In the present paper, the existence of the
normalizing function is ensured by conditions involved in the definition of ϕ-functions.

The rest of the paper is organized as follows. In Section 2, ϕ-functions are introduced and some
properties are discussed. The Rényi divergence is generalized in Section 3. We investigate in Section 4
the geometry induced by the generalization of Rényi divergence. Section 4.2 provides evidence of the
role of the generalized Rényi divergence in ϕ-families.

2. ϕ-Functions

Rényi divergence is defined in terms of the exponential function (to be more precise, the logarithm).
A way of generalizing Rényi divergence is to replace the exponential function by another function,
which satisfies some suitable conditions. To a function for which these conditions hold, we give the
name ϕ-function. In this section, we define and investigate some properties of ϕ-functions.

Let (T, Σ, μ) be a measure space. Although we do not restrict our analysis to a particular measure
space, the reader can think of T as the set of real numbers R, Σ as the Borel σ-algebra on R, and μ

as the Lebesgue measure. We can also consider T to be a discrete set, a case in which μ is the
counting measure.

We say that ϕ : R → (0, ∞) is a ϕ-function if the following conditions are satisfied:

(a1) ϕ(·) is convex;
(a2) limu→−∞ ϕ(u) = 0 and limu→∞ ϕ(u) = ∞;
(a3) there exists a measurable function u0 : T → (0, ∞) such that∫

T
ϕ(c + λu0)dμ < ∞, for all λ > 0, (1)

for each measurable function c : T → R satisfying
∫

T ϕ(c)dμ = 1.

Thanks to condition (a3), we can generalize Rényi divergence using ϕ-functions. These conditions
appeared first at [12] where the authors constructed non-parametric ϕ-families of probability
distributions. We remark that if T is finite, condition (a3) is always satisfied.

Examples of functions ϕ : R → (0, ∞) satisfying (a1)–(a3) abound. An example of great relevance
is the exponential function ϕ(u) = exp(u), which satisfies conditions (a1)–(a3) with u0 = 1T .
Another example of ϕ-function is the Kaniadakis’ κ-exponential [12,27,28].

Example 1. The Kaniadakis’ κ-exponential expκ : R → (0, ∞) for κ ∈ [−1, 1] is defined as

expκ(u) =

{
(κu +

√
1 + κ2u2)1/κ , if κ �= 0,

exp(u), if κ = 0,
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whose inverse is the so called the Kaniadakis’ κ-logarithm logk : (0, ∞) → R, which is given by

logκ(u) =

{
uκ−u−κ

2κ , if κ �= 0,

ln(u), if κ = 0.

It is clear that expκ(·) satisfies (a1) and (a2). Let u0 : T → (0, ∞) be any measurable function for which∫
T expκ(u0)dμ < ∞. We will show that u0 satisfies expression (1). For any u ∈ R and α ≥ 1, we can write

expκ(αu) = α1/|κ|(|κ|u +
√

1/α2 + |κ|2u2)1/|κ|

≤ α1/|κ|(|κ|u +
√

1 + |κ|2u2)1/|κ|

= α1/|κ| expκ(u),

where we used that expκ(·) = exp−κ(·). Then, we conclude that
∫

T expκ(αu0)dμ < ∞ for all α ≥ 0. Fix any
measurable function c : T → R such that

∫
T ϕ(c)dμ = 1. For each λ > 0, we have

∫
T

expκ(c + λu0)dμ ≤ 1
2

∫
T

expκ(2c)dμ +
1
2

∫
T

expκ(2λu0)dμ

≤ 21/|κ|−1
∫

T
expκ(c)dμ + 21/|κ|−1

∫
T

expκ(λu0)dμ

< ∞,

which shows that expκ(·) satisfies (a3). Therefore, the Kaniadakis’ κ-exponential expκ(·) is an example
of ϕ-function.

The restriction that
∫

T ϕ(c)dμ = 1 can be weakened, as asserted in the next result.

Lemma 1. Let c̃ : T → R be any measurable function such that
∫

T ϕ(c̃)dμ < ∞. Then,
∫

T ϕ(c̃+λu0)dμ < ∞
for all λ > 0.

Proof. Notice that if
∫

T ϕ(c̃)dμ ≥ 1, then
∫

T ϕ(c̃ − αu0)dμ = 1 for some α > 1. From the definition of
u0, it follows that

∫
T ϕ(c̃ + λu0)dμ =

∫
T ϕ(c + (α + λ)u0)dμ < ∞, where c = c̃ − αu0. Now assume

that
∫

T ϕ(c̃)dμ < 1. Consider any measurable set A ⊆ T with measure 0 < μ(A) < μ(T).
Let u : T → [0, ∞) be a measurable function supported on A satisfying ϕ(c̃ + u)1A = [ϕ(c̃) + α]1A,
where α = (1 − ∫

T ϕ(c̃)dμ)/μ(A). Defining c = (c̃ + u)1A + c̃1T\A, we see that
∫

T ϕ(c)dμ = 1. By the
definition of u0, we can write∫

T
ϕ(c̃ + λu0)dμ ≤

∫
T

ϕ(c + λu0)dμ < ∞, for any λ > 0,

which is the desired result.

As a consequence of Lemma 1, condition (a3) can be replaced by the following one:

(a3’) There exists a measurable function u0 : T → (0, ∞) such that∫
T

ϕ(c + λu0)dμ < ∞, for all λ > 0, (2)

for each measurable function c : T → R for which
∫

T ϕ(c)dμ < ∞.

Without the equivalence between conditions (a3) and (a3’), we could not generalize
Rényi divergence in the manner we propose. In fact, ϕ-functions could be defined directly in terms
of (a3’), without mentioning (a3). We chose to begin with (a3) because this condition appeared
initially in [12].
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Not all functions ϕ : R → (0, ∞), for which conditions (a1) and (a2) hold, satisfy condition (a3).
Such a function is given below.

Example 2. Assume that the underlying measure μ is σ-finite and non-atomic. This is the case of the Lebesgue
measure. Let us consider the function

ϕ(u) =

{
e(u+1)2/2, u ≥ 0,

e(u+1/2), u ≤ 0,
(3)

which clearly is convex, and satisfies the limits limu→−∞ ϕ(u) = 0 and limu→∞ ϕ(u) = ∞. Given any
measurable function u0 : T → (0, ∞), we will find a measurable function c : T → R with

∫
T ϕ(c)dμ < ∞,

for which expression (2) is not satisfied.
For each m ≥ 1, we define

vm(t) :=
(

m
log(2)
u0(t)

− u0(t)
2

− 1
)

1Em(t),

where Em = {t ∈ T : m log(2)
u0(t)

− u0(t)
2 − 1 > 0}. Because vm ↑ ∞, we can find a sub-sequence {vmn} such that

∫
Emn

e(vmn+u0+1)2/2dμ ≥ 2n.

According to (Lemma 8.3 in [29]) , there exists a sub-sequence wk = vmnk
and pairwise disjoint sets

Ak ⊆ Emnk
for which ∫

Ak

e(wk+u0+1)2/2dμ = 1.

Let us define c = c1T\A + ∑∞
k=1 wk1Ak , where A =

⋃∞
k=1 Ak and c is any measurable function such that

ϕ(c(t)) > 0 for t ∈ T \ A and
∫

T\A ϕ(c)dμ < ∞. Observing that

e(wk(t)+u0(t)+1)2/2 = 2mnk e(wk(t)+1)2/2, for t ∈ Ak,

we get ∫
Ak

e(wk+1)2/2dμ =
1

2mnk
, for every m ≥ 1.

Then, we can write ∫
T

ϕ(c)dμ =
∫

T\A
ϕ(c)dμ +

∞

∑
k=1

∫
Ak

e(wk+1)2/2dμ

=
∫

T\A
ϕ(c)dμ +

∞

∑
k=1

1
2mnk

< ∞.

On the other hand, ∫
T

ϕ(c + u0)dμ =
∫

T\A
ϕ(c)dμ +

∞

∑
k=1

∫
Ak

e(u0+wk+1)2/2dμ

=
∫

T\A
ϕ(c)dμ +

∞

∑
k=1

1 = ∞,

which shows that (2) is not satisfied.
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3. Generalization of Rényi Divergence

In this section, we provide a generalization of Rényi divergence, which is given in terms of
a ϕ-function. This generalization also depends on a parameter α ∈ [−1, 1]; for α = ±1, it is defined
as a limit. Supposing that the underlying ϕ-function is continuously differentiable, we show that
this limit exists and results in the ϕ-divergence [12]. In what follows, all probability distributions are
assumed to have positive density. In other words, they belong to the collection

Pμ =

{
p ∈ L0 :

∫
T

pdμ = 1 and p > 0
}

,

where L0 is the space of all real-valued, measurable functions on T, with equality μ-a.e.
(μ-almost everywhere).

The Rényi divergence of order α ∈ (−1, 1) between two probability distributions p and q in Pμ is
defined as

D(α)
R (p ‖ q) =

4
α2 − 1

log
(∫

T
p

1−α
2 q

1+α
2 dμ

)
. (4)

For α = ±1, the Rényi divergence is defined by taking a limit:

D(−1)
R (p ‖ q) = lim

α↓−1
D(α)

R (p ‖ q), (5)

D(1)
R (p ‖ q) = lim

α↑1
D(α)

R (p ‖ q). (6)

Under some conditions, the limits in (5) and (6) are finite-valued, and converge to the
Kullback–Leibler divergence. In other words,

D(−1)
R (p ‖ q) = D(1)

R (q ‖ p) = DKL(p ‖ q) < ∞,

where DKL(p ‖ q) denotes the Kullback–Leibler divergence between p and q, which is given by

DKL(p ‖ q) =
∫

T
p log

( p
q

)
dμ.

These conditions are stated in Proposition 1, given in the end of this section, for the case involving
the generalized Rényi divergence.

The Rényi divergence in its standard form is given by

D(α)(p ‖ q) =
1

1 − α
log

(∫
T

pαq1−αdμ

)
, for α ∈ (0, 1). (7)

Expression (4) is related to this form by

D(α)
R (p ‖ q) =

2
1 − α

D((1−α)/2)(p ‖ q).

Beyond the change of variables, which results in α ranging in [−1, 1], expressions (4) and (7) differ
by the factor 2/(1 − α). We opted to insert the term 2/(1 − α) so that some kind of symmetry could be
maintained when the limits α ↓ −1 and α ↑ 1 are considered. In addition, the geometry induced by the
version (4) conforms with Amari’s notation [5].

The Rényi divergence D(α)
R (· ‖ ·) can be defined for every α ∈ R. However, for α /∈ (−1, 1),

the expression (4) may not be finite-valued for every p and q in Pμ. To avoid some technicalities, we
just consider α ∈ [−1, 1].
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Given p and q in Pμ, let us define

κ(α) = − log
(∫

T
p

1−α
2 q

1+α
2 dμ

)
, for α ∈ [−1, 1],

which can be used to express the Rényi divergence as

D(α)
R (p ‖ q) =

4
1 − α2 κ(α), for α ∈ (−1, 1).

The function κ(α), which depends on p and q, can be defined as the unique non-negative real
number for which ∫

T
exp

(1 − α

2
ln(p) +

1 + α

2
ln(q) + κ(α)

)
dμ = 1. (8)

The function κ(α) makes the role of a normalizing term. The generalization of Rényi divergence,
which we propose, is based on the interpretation of κ(α) given in (8). Instead of the exponential
function, we consider a ϕ-function in (8).

Fix any ϕ-function ϕ : R → (0, ∞). Given any p and q in Pμ, we take κ(α) = κ(α; p, q) ≥ 0 so that

∫
T

ϕ
(1 − α

2
ϕ−1(p) +

1 + α

2
ϕ−1(q) + κ(α)u0

)
dμ = 1, (9)

or, in other words, the term inside the integral is a probability distribution in Pμ. The existence and
uniqueness of κ(α) as defined in (9) is guaranteed by condition (a3’).

We define a generalization of the Rényi divergence of order α ∈ (−1, 1) as

D(α)
ϕ (p ‖ q) =

4
1 − α2 κ(α). (10)

For α = ±1, this generalization is defined as a limit:

D(−1)
ϕ (p ‖ q) = lim

α↓−1
D(α)

ϕ (p ‖ q), (11)

D(1)
ϕ (p ‖ q) = lim

α↑1
D(α)

ϕ (p ‖ q). (12)

The cases α = ±1 are related to a generalization of the Kullback–Leibler divergence, the so-called
ϕ-divergence, which was introduced by the authors in [12]. The ϕ-divergence is given by (It was
pointed out to us by an anonymous referee that this form of divergence is a special case of the
(ρ, τ)-divergence for ρ = ϕ−1 and f = ρ−1 (see Section 3.5 in [19]) apart from a conformal factor, which
is the denominator of (13)):

Dϕ(p ‖ q) =

∫
T

ϕ−1(p)−ϕ−1(q)
(ϕ−1)′(p) dμ∫

T
u0

(ϕ−1)′(p)dμ
. (13)

Under some conditions, the limit in (11) or (12) is finite-valued and converges to the ϕ-divergence:

D(−1)
ϕ (p ‖ q) = D(1)

ϕ (q ‖ p) = Dϕ(p ‖ q) < ∞. (14)

To show (14), we make use of the following result.

Lemma 2. Assume that ϕ(·) is continuously differentiable. If for α0, α1 ∈ R, the expression∫
T

ϕ
(1 − α

2
ϕ−1(p) +

1 + α

2
ϕ−1(q)

)
dμ < ∞ (15)
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is satisfied for all α ∈ [α0, α1], then the derivative of κ(α) exists at any α ∈ (α0, α1), and is given by

∂κ

∂α
(α) = −1

2

∫
T [ϕ

−1(q)− ϕ−1(p)]ϕ′(cα)dμ∫
T ϕ′(cα)u0dμ

, (16)

where cα = 1−α
2 ϕ−1(p) + 1+α

2 ϕ−1(q) + κ(α)u0.

Proof. For α ∈ (α0, α1) and κ > 0, define

g(α, κ) =
∫

T
ϕ
(1 − α

2
ϕ−1(p) +

1 + α

2
ϕ−1(q) + κu0

)
dμ.

The function κ(α) is defined implicitly by g(α, κ(α)) = 1. If we show that

(i) the function g(α, κ) is continuous in a neighborhood of (α, κ(α)),
(ii) the partial derivatives ∂g

∂α and ∂g
∂κ exist and are continuous at (α, κ(α)),

(iii) and ∂g
∂κ (α, κ(α)) > 0,

then by the Implicit Function Theorem κ(α) is differentiable at α ∈ (α0, α1), and

∂κ

∂α
(α) = − (∂g/∂α)(α, κ(α))

(∂g/∂κ)(α, κ(α))
. (17)

We begin by verifying that g(α, κ) is continuous. For fixed α ∈ (α0, α1) and κ > 0, set κ0 = 2κ.
Denoting A = {t ∈ T : ϕ−1(q(t)) > ϕ−1(p(t))}, we can write

ϕ
(1 − β

2
ϕ−1(p) +

1 + β

2
ϕ−1(q) + λu0

)
≤ ϕ

(
ϕ−1(p) +

1 + β

2
[ϕ−1(q)− ϕ−1(p)] + κ0u0

)
≤ ϕ

(
ϕ−1(p) +

1 + α1
2

[ϕ−1(q)− ϕ−1(p)] + κ0u0

)
1A

+ ϕ
(

ϕ−1(p) +
1 + α0

2
[ϕ−1(q)− ϕ−1(p)] + κ0u0

)
1T\A,

(18)

for every β ∈ (α0, α1) and λ ∈ (0, κ0). Because the function on the right-hand side of (18) is integrable,
we can apply the Dominated Convergence Theorem to conclude that

lim
(β,λ)→(α,κ)

g(β, λ) = g(α, κ).

Now, we will show that the derivative of g(α, κ) with respect to α exists and is continuous.
Consider the difference

g(γ, λ)− g(β, λ)

γ − β
=

∫
T

1
γ − β

[
ϕ
(

cβ +
γ − β

2
[ϕ−1(q)− ϕ−1(p)] + λu0

)
− ϕ(cβ + λu0)

]
dμ, (19)

where cβ = 1−β
2 ϕ−1(p) + 1+β

2 ϕ−1(q). Represent by fβ,γ,λ the function inside the integral sign in (19).
For fixed α ∈ (α0, α1) and κ > 0, denote α0 = (α0 + α)/2, α1 = (α + α1)/2, and κ0 = 2κ. Because ϕ(·)
is convex and increasing, it follows that

| fβ,γ,λ| ≤ fα1,α1,κ0 1A − fα0,α0,κ0 1T\A =: f , for all β, γ ∈ (α0, α1) and λ ∈ (0, κ0),

where A = {t ∈ T : ϕ−1(q(t)) > ϕ−1(p(t))}. Observing that f is integrable, we can use the Dominated
Convergence Theorem to get

lim
γ→β

∫
T

fβ,γ,λdμ =
∫

T

(
lim
γ→β

fβ,γ,λ
)
dμ,

277



Entropy 2016, 18, 407

and then
∂g
∂α

(β, λ) =
1
2

∫
T
[ϕ−1(q)− ϕ−1(p)]ϕ′(cβ + λu0)dμ. (20)

For β ∈ (α0, α1) and λ ∈ (0, κ0), the function inside the integral sign in (20) is dominated by f .
As a result, a second use of the Dominated Convergence Theorem shows that ∂g

∂α is continuous at (α, κ):

lim
(β,λ)→(α,κ)

∂g
∂α

(β, λ) =
∂g
∂α

(α, κ).

Using similar arguments, one can show that ∂g
∂κ (α, κ) exists and is continuous at any α ∈ (α0, α1)

and κ > 0, and is given by
∂g
∂κ

(α, κ) =
∫

T
u0 ϕ′(cα + κu0)dμ. (21)

Clearly, expression (21) implies that ∂g
∂κ (α, κ) > 0 for all α ∈ (0, α0) and κ > 0.

We proved that items (i)–(iii) are satisfied. As consequence, the derivative of κ(α) exists at any
α ∈ (α0, α1). Expression (16) for the derivative of κ(α) follows from (17), (20) and (21).

As an immediate consequence of Lemma 2, we get the proposition below.

Proposition 1. Assume that ϕ(·) is continuously differentiable.

(a) If, for some α0 < −1, expression (15) is satisfied for all α ∈ [α0,−1), then

D(−1)
ϕ (p ‖ q) = lim

α↓−1
D(α)

ϕ (p ‖ q) = 2
∂κ

∂α
(−1) = Dϕ(p ‖ q) < ∞.

(b) If, for some α1 > 1, expression (15) is satisfied for all α ∈ (1, α1], then

D(1)
ϕ (p ‖ q) = lim

α↑1
D(α)

ϕ (p ‖ q) = −2
∂κ

∂α
(1) = Dϕ(q ‖ p) < ∞.

4. Generalized Statistical Manifolds

Statistical manifolds consist of a collection of probability distributions endowed with a metric
and α-connections, which are defined in terms of the derivative of l(t; θ) = log p(t; θ). In a generalized
statistical manifold, the metric and connection are defined in terms of f (t; θ) = ϕ−1(p(t; θ)). Instead
of the logarithm, we consider the inverse ϕ−1(·) of a ϕ-function. Generalized statistical manifolds
were introduced by the authors in [17,18]. Among examples of the generalized statistical manifold,
(parametric) ϕ-families of probability distributions are of greatest importance. The non-parametric
counterpart was investigated in [11,12]. The metric in ϕ-families can be defined as the Hessian of a
function; i.e., ϕ-families are Hessian manifolds [30]. In [17,18], the ϕ-divergence gives rise to a pair
of dual connections D(−1) and D(1); and then for α ∈ (−1, 1) the α-connection D(α) is defined as the
convex combination D(α) = 1−α

2 D(−1) + 1+α
2 D(1). In the present paper, we show that the connection

induced by D(α)
ϕ (· ‖ ·), the generalization of Rényi divergence, corresponds to D(α).

4.1. Definitions

Let ϕ : R → (0, ∞) be a ϕ-function. A generalized statistical manifold P = {p(t; θ) : θ ∈ Θ} is a
collection of probability distributions pθ(t) := p(t; θ), indexed by parameters θ = (θ1, . . . , θn) ∈ Θ in
a one-to-one relation, such that

(m1) Θ is a domain (open and connected set) in Rn;
(m2) p(t; θ) is differentiable with respect to θ;
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(m3) the matrix g = (gij) defined by

gij = −E′
θ

[∂2 ϕ−1(pθ)

∂θi∂θ j

]
, (22)

is positive definite at each θ ∈ Θ, where

E′
θ [·] =

∫
T(·)ϕ′(ϕ−1(pθ))dμ∫
T u0 ϕ′(ϕ−1(pθ))dμ

; (23)

(m4) the operations of integration with respect to μ and differentiation with respect to θi commute in
all calculations found below, which are related to the metric and connections.

The matrix g = (gij) equips P with a metric. By the chain rule, the tensor related to g = (gij) is
invariant under change of coordinates. The (classical) statistical manifold is a particular case in which
ϕ(u) = exp(u) and u0 = 1T .

We introduce a notation similar to Equation (23) that involves higher order derivatives of ϕ(·).
For each n ≥ 1, we define

E(n)
θ [·] =

∫
T(·)ϕ(n)(ϕ−1(pθ))dμ∫

T u0 ϕ′(ϕ−1(pθ))dμ
. (24)

We also use E′
θ [·], E′′

θ [·] and E′′′
θ [·] to denote E(n)

θ [·] for n = 1, 2, 3, respectively. The notation (24)
appears in expressions related to the metric and connections.

Using property (m4), we can find an alternate expression for gij as well as an identification
involving tangent spaces. The matrix g = (gij) can be equivalently defined by

gij = E′′
θ

[∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θ j

]
. (25)

As a consequence of this equivalence, the tangent space Tpθ
P can be identified with T̃pθ

P ,

the vector space spanned by ∂ϕ−1(pθ)
∂θi , and endowed with the inner product 〈X̃, Ỹ〉θ := E′′

θ [X̃Ỹ].
The mapping

∑
i

ai
∂

∂θi �→ ∑
i

ai
∂ϕ−1(pθ)

∂θi

defines an isometry between Tpθ
P and T̃pθ

P .
To verify (25), we differentiate

∫
T pθdμ = 1, with respect to θi, to get

0 =
∂

∂θi

∫
T

pθdμ =
∫

T

∂

∂θi ϕ(ϕ−1(pθ))dμ =
∫

T

∂ϕ−1(pθ)

∂θi ϕ′(ϕ−1(pθ))dμ. (26)

Now, differentiating with respect to θ j, we obtain

0 =
∫

T

∂2 ϕ−1(pθ)

∂θi∂θ j ϕ′(ϕ−1(pθ))dμ +
∫

T

∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θ j ϕ′′(ϕ−1(pθ))dμ,

and then (25) follows. In view of (26), we notice that every vector X̃ belonging to T̃pθ
P

satisfies E′
θ [X̃] = 0.

The metric g = (gij) gives rise to a Levi–Civita connection ∇ (i.e., a torsion-free, metric
connection), whose corresponding Christoffel symbols Γijk are given by

Γijk :=
1
2

(∂gki

∂θ j +
∂gkj

∂θi − ∂gij

∂θk

)
. (27)
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Using expression (25) to calculate the derivatives in (27), we can express

Γijk = E′′
θ

[∂2 ϕ−1(pθ)

∂θi∂θ j
∂ϕ−1(pθ)

∂θk

]
+

1
2

E′′′
θ

[∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θ j
∂ϕ−1(pθ)

∂θk

]
− 1

2
E′′

θ

[∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θk

]
E′′

θ

[
u0

∂ϕ−1(pθ)

∂θ j

]
− 1

2
E′′

θ

[∂ϕ−1(pθ)

∂θ j
∂ϕ−1(pθ)

∂θk

]
E′′

θ

[
u0

∂ϕ−1(pθ)

∂θi

]
+

1
2

E′′
θ

[∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θ j

]
E′′

θ

[
u0

∂ϕ−1(pθ)

∂θk

]
.

As we will show later, the Levi–Civita connection ∇ corresponds to the connection derived from
the divergence D(α)

ϕ (· ‖ ·) with α = 0.

4.2. ϕ-Families

Let c : T → R be a measurable function for which p = ϕ(c) is a probability density in Pμ.
Fix measurable functions u1, . . . , un : T → R. A (parametric) ϕ-family Fp = {pθ : θ ∈ Θ}, centered at
p = ϕ(c), is a set of probability distributions in Pμ, whose members can be written in the form

pθ := ϕ

(
c +

n

∑
i=1

θiui − ψ(θ)u0

)
, for each θ = (θi) ∈ Θ, (28)

where ψ : Θ → [0, ∞) is a normalizing function, which is introduced so that expression (28) defines
a probability distribution belonging to Pμ.

The functions u1, . . . , un are not arbitrary. They are chosen to satisfy the following assumptions:

(i) u0, u1, . . . , un are linearly independent,
(ii)

∫
T ui ϕ

′(c)dμ = 0, and
(iii) there exists ε > 0 such that

∫
T ϕ(c + λui)dμ < ∞, for all λ ∈ (−ε, ε).

Moreover, the domain Θ ⊆ Rn is defined as the set of all vectors θ = (θi) for which

∫
T

ϕ

(
c + λ

n

∑
i=1

θiui

)
dμ < ∞, for some λ > 1.

Condition (i) implies that the mapping defined by (28) is one-to-one. Assumption (ii) makes of ψ

a non-negative function. Indeed, by the convexity of ϕ(·), along with (ii), we can write

∫
T

ϕ(c)dμ =
∫

T

[
ϕ(c) +

( n

∑
i=1

θiui

)
ϕ′(c)

]
dμ ≤

∫
T

ϕ

(
c +

n

∑
i=1

θiui

)
dμ,

which implies ψ(θ) ≥ 0. By condition (iii), the domain Θ is an open neighborhood of the origin. If the
set T is finite, condition (iii) is always satisfied. One can show that the domain Θ is open and convex.
Moreover, the normalizing function ψ is also convex (or strictly convex if ϕ(·) is strictly convex).
Conditions (ii) and (iii) also appears in the definition of non-parametric ϕ-families. For further details,
we refer to [11,12].

In a ϕ-family Fp, the matrix (gij) given by (22) or (25) can be expressed as the Hessian of ψ. If ϕ(·)
is strictly convex, then(gij) is positive definite. From

∂ϕ−1(pθ)

∂θi = ui − ∂ψ

∂θi , −∂2 ϕ−1(pθ)

∂θi∂θ j = − ∂2ψ

∂θi∂θ j ,

it follows that gij =
∂2ψ

∂θi∂θ j .
The next two results show how the generalization of Rényi divergence and the ϕ-divergence are

related to the normalizing function in ϕ-families.
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Proposition 2. In a ϕ-family Fp, the generalization of Rényi divergence for α ∈ (−1, 1) can be expressed in
terms of the normalizing function ψ as follows:

D(α)
ϕ (pθ ‖ pϑ) =

2
1 + α

ψ(θ) +
2

1 − α
ψ(ϑ)− 4

1 − α2 ψ
(1 − α

2
θ +

1 + α

2
ϑ
)

, (29)

for all θ, ϑ ∈ Θ.

Proof. Recall the definition of κ(α) as the real number for which∫
T

ϕ
(1 − α

2
ϕ−1(pθ) +

1 + α

2
ϕ−1(pϑ) + κ(α)u0

)
dμ = 1.

Using expression (28) for probability distributions in Fp, we can write

1 − α

2
ϕ−1(pθ) +

1 + α

2
ϕ−1(pϑ) + κ(α)u0

= c +
n

∑
i=1

(1 − α

2
θi +

1 + α

2
ϑi
)

ui −
(1 − α

2
ψ(θ) +

1 + α

2
ψ(ϑ)− κ(α)

)
u0

= c +
n

∑
i=1

(1 − α

2
θi +

1 + α

2
ϑi
)

ui − ψ
(1 − α

2
θ +

1 + α

2
ϑ
)

u0.

The last equality is a consequence of the domain Θ being convex. Thus, it follows that

κ(α) =
1 − α

2
ψ(θ) +

1 + α

2
ψ(ϑ)− ψ

(1 − α

2
θ +

1 + α

2
ϑ
)

.

By the definition of D(α)
ϕ (· ‖ ·), we get (29).

Proposition 3. In a ϕ-family Fp, the ϕ-divergence is related to the normalizing function ψ by the equality

Dϕ(pθ ‖ pϑ) = ψ(ϑ)− ψ(θ)−∇ψ(θ) · (ϑ − θ), (30)

for all θ, ϑ ∈ Θ.

Proof. To show (30), we use
∂ψ

∂θi (θ) =

∫
T ui ϕ

′(ϕ−1(pθ))dμ∫
T u0 ϕ′(ϕ−1(pθ))dμ

,

which is a consequence of (Lemma 10 in [12]). In view of (ϕ−1)′(u) = 1/ϕ′(ϕ−1(u)), expression (13)
with p = pθ and q = pϑ results in

Dϕ(pθ ‖ pϑ) =

∫
T [ϕ

−1(pθ)− ϕ−1(pϑ)]ϕ
′(ϕ−1(pθ))dμ∫

T u0 ϕ′(ϕ−1(pθ))dμ
. (31)

Inserting into (31) the difference

ϕ−1(pθ)− ϕ−1(pϑ) =
(

c +
n

∑
i=1

θiui − ψ(θ)u0

)
−

(
c +

n

∑
i=1

ϑiui − ψ(ϑ)u0

)
= ψ(ϑ)u0 − ψ(θ)u0 −

n

∑
i=1

(ϑi − θi)ui,

we get expression (30).
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In Proposition 2, the expression on the right-hand side of Equation (29) defines a divergence on
its own, which was investigated by Jun Zhang in [19]. Proposition 3 asserts that the ϕ-divergence
Dϕ(pθ ‖ pϑ) coincides with the Bregman divergence [31,32] associated with the normalizing function ψ

for points ϑ and θ in Θ. Because ψ is convex and attains a minimum at θ = 0, it follows that ∂ψ

∂θi (θ) = 0
at θ = 0. As a result, equality (30) reduces to Dϕ(p ‖ pθ) = ψ(θ).

4.3. Geometry Induced by D(α)
ϕ (· ‖ ·)

In this section, we assume that ϕ(·) is continuously differentiable and strictly convex. The latter
assumption guarantees that

D(α)
ϕ (p ‖ q) = 0 if and only if p = q. (32)

The generalized Rényi divergence induces a metric g = (gij) in generalized statistical manifolds
P . This metric is given by

gij = −
[( ∂

∂θi

)
p

( ∂

∂θ j

)
q
Dα

ϕ(p ‖ q)
]

q=p
. (33)

To show that this expression defines a metric, we have to verify that gij is invariant under change
of coordinates, and (gij) is positive definite. The first claim follows from the chain rule. The positive
definiteness of (gij) is a consequence of Proposition 4, which is given below.

Proposition 4. The metric induced by D(α)
ϕ (· ‖ ·) coincides with the metric given by (22) or (25).

Proof. Fix any α ∈ (−1, 1). Applying the operator ( ∂
∂θ j )pϑ

to

∫
T

ϕ(cα)dμ = 1,

where cα = 1−α
2 ϕ−1(pθ) +

1+α
2 ϕ−1(pϑ) + κ(α)u0, we obtain

∫
T

(1 + α

2
∂ϕ−1(pϑ)

∂θ j +
( ∂

∂θ j

)
pϑ

κ(α)u0

)
ϕ′(cα)dμ = 0,

which results in ( ∂

∂θ j

)
pϑ

κ(α) = −1 + α

2

∫
T

∂ϕ−1(pϑ)

∂θ j ϕ′(cα)dμ∫
T u0 ϕ′(cα)dμ

.

By the standard differentiation rules, we can write

( ∂

∂θi

)
pθ

( ∂

∂θ j

)
pϑ

κ(α) = −1 + α

2

∫
T [

1−α
2

∂ϕ−1(pθ)
∂θi + ( ∂

∂θi )pθ
κ(α)u0]

∂ϕ−1(pϑ)

∂θ j ϕ′′(cα)dμ∫
T u0 ϕ′(cα)dμ

+
1 + α

2

∫
T

∂ϕ−1(pϑ)

∂θ j ϕ′(cα)dμ∫
T u0 ϕ′(cα)dμ

∫
T u0[

1−α
2

∂ϕ−1(pθ)
∂θi + ( ∂

∂θi )pθ
κ(α)u0]ϕ

′′(cα)dμ∫
T u0 ϕ′(cα)dμ

.

(34)

Noticing that
∫

T
∂ϕ−1(pϑ)

∂θ j ϕ′(cα)dμ = 0 for pϑ = pθ , the second term on the right-hand side of
Equation (34) vanishes, and then

[( ∂

∂θi

)
pθ

( ∂

∂θ j

)
pϑ

κ(α)
]

pϑ=pθ

= −1 − α2

4

∫
T

∂ϕ−1(pθ)
∂θi

∂ϕ−1(pθ)

∂θ j ϕ′′(ϕ−1(pθ))dμ∫
T u0 ϕ′(ϕ−1(pθ))dμ

.
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If we use the notation introduced in (24), we can write

gij = −
[( ∂

∂θi

)
pθ

( ∂

∂θ j

)
pϑ

D(α)
ϕ (pθ ‖ pϑ)

]
pϑ=pθ

= E′′
θ

[∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θ j

]
.

It remains to show the case α = ±1. Comparing (13) and (23), we can write

Dϕ(pθ ‖ pϑ) = E′
θ [ϕ

−1(pθ)− ϕ−1(pϑ)]. (35)

We use the equivalent expressions

gij =
[( ∂2

∂θi∂θ j

)
p
Dα

ϕ(p ‖ q)
]

q=p
=

[( ∂2

∂θi∂θ j

)
q
Dα

ϕ(p ‖ q)
]

q=p
,

which follows from condition (32), to infer that

gij =
[( ∂2

∂θi∂θ j

)
pϑ

Dϕ(pθ ‖ pϑ)
]

pθ=pϑ

= −E′
θ

[∂2 ϕ−1(pθ)

∂θi∂θ j

]
. (36)

Because D(−1)
ϕ (p ‖ q) = D(1)

ϕ (q ‖ p) = Dϕ(p ‖ q), we conclude that the metric defined by (22)

coincides with the metric induced by D(−1)
ϕ (· ‖ ·) and D(1)

ϕ (· ‖ ·).

In generalized statistical manifolds, the generalized Rényi divergence D(α)
ϕ (· ‖ ·) induces

a connection D(α), whose Christoffel symbols Γ(α)
ijk are given by

Γ(α)
ijk = −

[( ∂2

∂θi∂θ j

)
p

( ∂

∂θk

)
q
D(α)

ϕ (p ‖ q)
]

q=p
.

Because D(α)
ϕ (p ‖ q) = D(−α)

ϕ (q ‖ p), it follows that D(α) and D(−α) are mutually dual for any

α ∈ [−1, 1]. In other words, Γ(α)
ijk and Γ(−α)

ijk satisfy the relation
∂gjk
∂θi = Γ(α)

ijk + Γ(−α)
ikj . A development

involving expression (35) results in

Γ(1)
ijk = E′′

θ

[∂2 ϕ−1(pθ)

∂θi∂θ j
∂ϕ−1(pθ)

∂θk

]
− E′

θ

[∂2 ϕ−1(pθ)

∂θi∂θ j

]
E′′

θ

[
u0

∂ϕ−1(pθ)

∂θk

]
, (37)

and

Γ(−1)
ijk = E′′

θ

[∂2 ϕ−1(pθ)

∂θi∂θ j
∂ϕ−1(pθ)

∂θk

]
+ E′′′

θ

[∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θ j
∂ϕ−1(pθ)

∂θk

]
− E′′

θ

[∂ϕ−1(pθ)

∂θ j
∂ϕ−1(pθ)

∂θk

]
E′′

θ

[
u0

∂ϕ−1(pθ)

∂θi

]
− E′′

θ

[∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θk

]
E′′

θ

[
u0

∂ϕ−1(pθ)

∂θ j

]
.

(38)

For α ∈ (−1, 1), the Christoffel symbols Γ(α)
ijk can be written as a convex combination of Γ(−1)

ijk and

Γ(−1)
ijk , as asserted in the next result.

Proposition 5. The Christoffel symbols Γ(α)
ijk induced by the divergence D(α)

ϕ (· ‖ ·) satisfy the relation

Γ(α)
ijk =

1 − α

2
Γ(−1)

ijk +
1 + α

2
Γ(1)

ijk , for α ∈ [−1, 1]. (39)
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Proof. For α = ±1, equality (39) follows trivially. Thus, we assume α ∈ (−1, 1). By (34), we can write

( ∂

∂θi

)
pθ

( ∂

∂θk

)
pϑ

κ(α) = −1 + α

2

∫
T [

1−α
2

∂ϕ−1(pθ)
∂θi + ( ∂

∂θi )pθ
κ(α)u0]

∂ϕ−1(pϑ)
∂θk ϕ′′(cα)dμ∫

T u0 ϕ′(cα)dμ

+
1 + α

2

∫
T

∂ϕ−1(pϑ)
∂θk ϕ′(cα)dμ∫

T u0 ϕ′(cα)dμ

∫
T u0[

1−α
2

∂ϕ−1(pθ)
∂θi + ( ∂

∂θi )pθ
κ(α)u0]ϕ

′′(cα)dμ∫
T u0 ϕ′(cα)dμ

.

(40)

Applying ( ∂
∂θ j )pθ

to the first term on the right-hand side of (40), and then equating pϑ = pθ ,
we obtain

− 1 − α2

4
E′′

θ

[ ∂2 ϕ−1(pθ)

∂θi∂θ j
∂ϕ−1(pθ)

∂θk

]
− 1 + α

2

( ∂2

∂θi∂θ j

)
pθ

κ(α)E′′
θ

[
u0

∂ϕ−1(pθ)

∂θk

]
− 1 − α2

4
1 − α

2
E′′′

θ

[ ∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θ j
∂ϕ−1(pθ)

∂θk

]
+

1 − α2

4
1 − α

2
E′′

θ

[ ∂ϕ−1(pθ)

∂θi
∂ϕ−1(pϑ)

∂θk

]
E′′

θ

[
u0

∂ϕ−1(pϑ)

∂θ j

]
.

(41)

Similarly, if we apply ( ∂
∂θ j )pθ

to the second term on the right-hand side of (40), and make pϑ = pθ ,
we get

1 − α2

4
1 − α

2
E′′

θ

[∂ϕ−1(pθ)

∂θ j
∂ϕ−1(pθ)

∂θk

]
E′′

θ

[
u0

∂ϕ−1(pθ)

∂θi

]
. (42)

Collecting (41) and (42), we can write

Γ(α)
ijk = − 4

1 − α2

[( ∂2

∂θi∂θ j

)
pθ

( ∂

∂θk

)
pϑ

κ(α)
]

pθ=pϑ

= E′′
θ

[∂2 ϕ−1(pθ)

∂θi∂θ j
∂ϕ−1(pθ)

∂θk

]
+

1 − α

2
E′′′

θ

[∂ϕ−1(pθ)

∂θi
∂ϕ−1(pθ)

∂θ j
∂ϕ−1(pθ)

∂θk

]
− 1 − α

2
E′′

θ

[∂ϕ−1(pθ)

∂θ j
∂ϕ−1(pθ)

∂θk

]
E′′

θ

[
u0

∂ϕ−1(pθ)

∂θi

]
− 1 − α

2
E′′

θ

[∂ϕ−1(pθ)

∂θi
∂ϕ−1(pϑ)

∂θk

]
E′′

θ

[
u0

∂ϕ−1(pϑ)

∂θ j

]
− 1 + α

2
E′

θ

[∂2 ϕ−1(pθ)

∂θi∂θ j

]
E′′

θ

[
u0

∂ϕ−1(pθ)

∂θk

]
,

(43)

where we used ( ∂2

∂θi∂θ j

)
pθ

κ(α) =
1 − α2

4

[( ∂2

∂θi∂θ j

)
pθ

D(α)
ϕ (pθ ‖ pϑ)

]
pϑ=pθ

=
1 − α2

4
gij = −1 − α2

4
E′

θ

[∂2 ϕ−1(pθ)

∂θi∂θi

]
.

Expression (39) follows from (37), (38) and (43).

5. Conclusions

In [17,18], the authors introduced a pair of dual connections D(−1) and D(1) induced by
ϕ-divergence. The main motivation of the present work was to find a (non-trivial) family of
α-divergences, whose induced α-connections are convex combinations of D(−1) and D(1). As a result
of our efforts, we proposed a generalization of Rényi divergence. The connection D(α) induced by the
generalization of Rényi divergence satisfies the relation D(α) = 1−α

2 D(−1) + 1+α
2 D(1). To generalize

Rényi divergence, we made use of properties of ϕ-functions. This makes evident the importance of
ϕ-functions in the geometry of non-standard models. In standard statistical manifolds, even though
Amari’s α-divergence and Rényi divergence (with α ∈ [−1, 1]) do not coincide, they induce the same
family of α-connections. This striking result requires further investigation. Future work should focus
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on how the generalization of Rényi divergence is related to Zhang’s (ρ, τ)-divergence, and also how
the present proposal is related to the model presented in [33].
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Abstract: Information-theoretic measures, such as the entropy, the cross-entropy and the Kullback–Leibler
divergence between two mixture models, are core primitives in many signal processing tasks.
Since the Kullback–Leibler divergence of mixtures provably does not admit a closed-form formula,
it is in practice either estimated using costly Monte Carlo stochastic integration, approximated or
bounded using various techniques. We present a fast and generic method that builds algorithmically
closed-form lower and upper bounds on the entropy, the cross-entropy, the Kullback–Leibler and
the α-divergences of mixtures. We illustrate the versatile method by reporting our experiments for
approximating the Kullback–Leibler and the α-divergences between univariate exponential mixtures,
Gaussian mixtures, Rayleigh mixtures and Gamma mixtures.

Keywords: information geometry; mixture models; α-divergences; log-sum-exp bounds

1. Introduction

Mixture models are commonly used in signal processing. A typical scenario is to use mixture
models [1–3] to smoothly model histograms. For example, Gaussian Mixture Models (GMMs)
can be used to convert grey-valued images into binary images by building a GMM fitting the
image intensity histogram and then choosing the binarization threshold as the average of the
Gaussian means [1]. Similarly, Rayleigh Mixture Models (RMMs) are often used in ultrasound
imagery [2] to model histograms, and perform segmentation by classification. When using mixtures,
a fundamental primitive is to define a proper statistical distance between them. The Kullback–Leibler
(KL) divergence [4], also called relative entropy or information discrimination, is the most commonly
used distance. Hence the main target of this paper is to faithfully measure the KL divergence.
Let m(x) = ∑k

i=1 wi pi(x) and m′(x) = ∑k′
i=1 w′

i p
′
i(x) be two finite statistical density mixtures of k

and k′ components, respectively. Notice that the Cumulative Density Function (CDF) of a mixture is
like its density also a convex combinations of the component CDFs. However, beware that a mixture is
not a sum of random variables (RVs). Indeed, sums of RVs have convolutional densities. In statistics,
the mixture components pi(x) are often parametric: pi(x) = p(x; θi), where θi is a vector of parameters.
For example, a mixture of Gaussians (MoG also used as a shortcut instead of GMM) has each component
distribution parameterized by its mean μi and its covariance matrix Σi (so that the parameter vector is
θi = (μi, Σi)). Let X = {x ∈ R : p(x; θ) > 0} be the support of the component distributions. Denote
by H×(m, m′) = − ∫X m(x) log m′(x)dx the cross-entropy [4] between two continuous mixtures of
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densities m and m′, and denote by H(m) = H×(m, m) =
∫
X m(x) log 1

m(x)dx = − ∫X m(x) log m(x)dx
the Shannon entropy [4]. Then the Kullback–Leibler divergence between m and m′ is given by:

KL(m : m′) = H×(m, m′)− H(m) =
∫
X

m(x) log
m(x)
m′(x)

dx ≥ 0. (1)

The notation “:” is used instead of the usual comma “,” notation to emphasize that the distance
is not a metric distance since neither is it symmetric (KL(m : m′) �= KL(m′ : m)), nor does it satisfy
the triangular inequality [4] of metric distances (KL(m : m′) + KL(m′ : m′′) �≥ KL(m : m′′)). When the
natural base of the logarithm is chosen, we get a differential entropy measure expressed in nat units.
Alternatively, we can also use the base-2 logarithm (log2 x =

log x
log 2 ) and get the entropy expressed in bit

units. Although the KL divergence is available in closed-form for many distributions (in particular
as equivalent Bregman divergences for exponential families [5], see Appendix C), it was proven
that the Kullback–Leibler divergence between two (univariate) GMMs is not analytic [6] (see also
the particular case of a GMM of two components with the same variance that was analyzed in [7]).
See Appendix A for an analysis. Note that the differential entropy may be negative. For example,
the differential entropy of a univariate Gaussian distribution is log(σ

√
2πe), and is therefore negative

when the standard variance σ < 1√
2πe

≈ 0.242. We consider continuous distributions with entropies
well-defined (entropy may be undefined for singular distributions like Cantor’s distribution [8]).

1.1. Prior Work

Many approximation techniques have been designed to beat the computationally intensive
Monte Carlo (MC) stochastic estimation: K̂Ls(m : m′) = 1

s ∑s
i=1 log m(xi)

m′(xi)
with x1, . . . , xs ∼ m(x)

(s independently and identically distributed (i.i.d.) samples x1, . . . , xs). The MC estimator is
asymptotically consistent, lims→∞ K̂Ls(m : m′) = KL(m : m′), so that the “true value” of the KL
of mixtures is estimated in practice by taking a very large sample (say, s = 109). However, we point
out that the MC estimator gives as output a stochastic approximation, and therefore does not guarantee
deterministic bounds (confidence intervals may be used). Deterministic lower and upper bounds of the
integral can be obtained by various numerical integration techniques using quadrature rules. We refer
to [9–12] for the current state-of-the-art approximation techniques and bounds on the KL of GMMs.
The latest work for computing the entropy of GMMs is [13]. It considers arbitrary finely tuned bounds
of the entropy of isotropic Gaussian mixtures (a case encountered when dealing with KDEs, kernel
density estimators). However, there is a catch in the technique of [13]: It relies on solving the unique
roots of some log-sum-exp equations (See Theorem 1 of [13], p. 3342) that do not admit a closed-form
solution. Thus it is a hybrid method that contrasts with our combinatorial approach. Bounds of the
KL divergence between mixture models can be generalized to bounds of the likelihood function of
mixture models [14], because log-likelihood is just the KL between the empirical distribution and the
mixture model up to a constant shift.

In information geometry [15], a mixture family of linearly independent probability distributions
p1(x), ..., pk(x) is defined by the convex combination of those non-parametric component distributions:
m(x; η) = ∑k

i=1 ηi pi(x) with ηi > 0 and ∑k
i=1 ηi = 1. A mixture family induces a dually flat space

where the Kullback–Leibler divergence is equivalent to a Bregman divergence [5,15] defined on the
η-parameters. However, in that case, the Bregman convex generator F(η) =

∫
m(x; η) log m(x; η)dx

(the Shannon information) is not available in closed-form. Except for the family of multinomial
distributions that is both a mixture family (with closed-form KL(m : m′) = ∑k

i=1 mi log mi
m′

i
, the discrete

KL [4]) and an exponential family [15].

1.2. Contributions

In this work, we present a simple and efficient method that builds algorithmically a closed-form
formula that guarantees both deterministic lower and upper bounds on the KL divergence within an
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additive factor of log k + log k′. We then further refine our technique to get improved adaptive bounds.
For univariate GMMs, we get the non-adaptive bounds in O(k log k + k′ log k′) time, and the adaptive
bounds in O(k2 + k′2) time. To illustrate our generic technique, we demonstrate it based on Exponential
Mixture Models (EMMs), Gamma mixtures, RMMs and GMMs. We extend our preliminary results
on KL divergence [16] to other information theoretical measures such as the differential entropy and
α-divergences.

1.3. Paper Outline

The paper is organized as follows. Section 2 describes the algorithmic construction of the
formula using piecewise log-sum-exp inequalities for the cross-entropy and the Kullback–Leibler
divergence. Section 3 instantiates this algorithmic principle to the entropy and discusses related
works. Section 4 extends the proposed bounds to the family of alpha divergences. Section 5 discusses
an extension of the lower bound to f -divergences. Section 6 reports our experimental results on
several mixture families. Finally, Section 7 concludes this work by discussing extensions to other
statistical distances. Appendix A proves that the Kullback–Leibler divergence of mixture models is
not analytic [6]. Appendix B reports the closed-form formula for the KL divergence between scaled
and truncated distributions of the same exponential family [17] (that include Rayleigh, Gaussian and
Gamma distributions among others). Appendix C shows that the KL divergence between two mixtures
can be approximated by a Bregman divergence.

2. A Generic Combinatorial Bounding Algorithm Based on Density Envelopes

Let us bound the cross-entropy H×(m : m′) by deterministic lower and upper bounds,
L×(m : m′) ≤ H×(m : m′) ≤ U×(m : m′), so that the bounds on the Kullback–Leibler divergence
KL(m : m′) = H×(m : m′)− H×(m : m) follows as:

L×(m : m′)− U×(m : m) ≤ KL(m : m′) ≤ U×(m : m′)− L×(m : m). (2)

Since the cross-entropy of two mixtures ∑k
i=1 wi pi(x) and ∑k′

j=1 w′
j p

′
j(x):

H×(m : m′) = −
∫
X

(
k

∑
i=1

wi pi(x)

)
log

(
k′

∑
j=1

w′
j p

′
j(x)

)
dx (3)

has a log-sum term of positive arguments, we shall use bounds on the log-sum-exp (lse) function [18,19]:

lse
(
{xi}l

i=1

)
= log

(
l

∑
i=1

exi

)
.

We have the following basic inequalities:

max{xi}l
i=1 < lse

(
{xi}l

i=1

)
≤ log l + max{xi}l

i=1. (4)

The left-hand-side (LHS) strict inequality holds because ∑l
i=1 exi > max{exi}l

i=1 = exp
(

max{xi}l
i=1

)
since ex > 0, ∀x ∈ R. The right-hand-side (RHS) inequality follows from the fact that
∑l

i=1 exi ≤ l max{exi}l
i=1 = l exp(max{xi}l

i=1), and equality holds if and only if x1 = · · · = xl . The lse
function is convex but not strictly convex, see exercise 7.9 [20]. It is known [21] that the conjugate of
the lse function is the negative entropy restricted to the probability simplex. The lse function enjoys the
following translation identity property: lse

(
{xi}l

i=1

)
= c + lse

(
{xi − c}l

i=1

)
, ∀c ∈ R. Similarly, we
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can also lower bound the lse function by log l + min{xi}l
i=1. We write equivalently that for l positive

numbers x1, . . . , xl ,

max
{

log max{xi}l
i=1, log l + log min{xi}l

i=1

}
≤ log

l

∑
i=1

xi ≤ log l + log max{xi}l
i=1. (5)

In practice, we seek matching lower and upper bounds that minimize the bound gap. The gap
of that ham-sandwich inequality in Equation (5) is min{log maxi xi

mini xi
, log l}, which is upper bounded

by log l.
A mixture model ∑k′

j=1 w′
j p

′
j(x) must satisfy

max
{

max{log w′
j p

′
j(x)}k′

j=1, log k′ + min{log w′
j p

′
j(x)}k′

j=1

}
≤ log

(
k′

∑
j=1

w′
j p

′
j(x)

)
≤ log k′ + max{log w′

j p
′
j(x)}k′

j=1 (6)

point-wisely for any x ∈ X . Therefore we shall bound the integral term
∫
X m(x) log

(
∑k′

j=1 w′
j p

′
j(x)

)
dx

in Equation (3) using piecewise lse inequalities where the min and max are kept unchanged. We get

L×(m : m′) = −
∫
X

m(x)max{log w′
j p

′
j(x)}k′

j=1dx − log k′, (7)

U×(m : m′) = −
∫
X

m(x)max
{

min{log w′
j p

′
j(x)}k′

j=1 + log k′, max{log w′
j p

′
j(x)}k′

j=1

}
dx. (8)

In order to calculate L×(m : m′) and U×(m : m′) efficiently using closed-form formula, let us
compute the upper and lower envelopes of the k′ real-valued functions {w′

j p
′
j(x)}k′

j=1 defined on

the support X , that is, EU(x) = max{w′
j p

′
j(x)}k′

j=1 and EL(x) = min{w′
j p

′
j(x)}k′

j=1. These envelopes
can be computed exactly using techniques of computational geometry [22,23] provided that we
can calculate the roots of the equation w′

r p′r(x) = w′
s p′s(x), where w′

r p′r(x) and w′
s p′s(x) are a pair

of weighted components. (Although this amounts to solve quadratic equations for Gaussian or
Rayleigh distributions, the roots may not always be available in closed form, e.g. in the case of
Weibull distributions.)

Let the envelopes be combinatorially described by � elementary interval pieces in the form
Ir = (ar, ar+1) partitioning the support X = ��

r=1 Ir (with a1 = minX and a�+1 = maxX ). Observe
that on each interval Ir, the maximum of the functions {w′

j p
′
j(x)}k′

j=1 is given by w′
δ(r)p′

δ(r)(x), where

δ(r) indicates the weighted component dominating all the others, i.e., the arg max of {w′
j p

′
j(x)}k′

j=1 for

any x ∈ Ir, and the minimum of {w′
j p

′
j(x)}k′

j=1 is given by w′
ε(r)p′

ε(r)(x).
To fix ideas, when mixture components are univariate Gaussians, the upper envelope EU(x)

amounts to find equivalently the lower envelope of k′ parabolas (see Figure 1) which has linear
complexity, and can be computed in O(k′ log k′)-time [24], or in output-sensitive time O(k′ log �) [25],
where � denotes the number of parabola segments in the envelope. When the Gaussian mixture
components have all the same weight and variance (e.g., kernel density estimators), the upper envelope
amounts to find a lower envelope of cones: minj |x − μ′

j| (a Voronoi diagram in arbitrary dimension).
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− log(w′
jp

′
j(x)) w′

jp
′
j(x)

Figure 1. Lower envelope of parabolas corresponding to the upper envelope of weighted components
of a Gaussian mixture with k′ = 3 components.

To proceed once the envelopes have been built, we need to calculate two types of definite integrals
on those elementary intervals: (i) the probability mass in an interval

∫ b
a p(x)dx = Φ(b)− Φ(a) where Φ

denotes the Cumulative Distribution Function (CDF); and (ii) the partial cross-entropy
− ∫ b

a p(x) log p′(x)dx [26]. Thus let us define these two quantities:

Ci,j(a, b) = −
∫ b

a
wi pi(x) log(w′

j p
′
j(x))dx, (9)

Mi(a, b) = −
∫ b

a
wi pi(x)dx. (10)

By Equations (7) and (8), we get the bounds of H×(m : m′) as

L×(m : m′) =
�

∑
r=1

k

∑
s=1

Cs,δ(r)(ar, ar+1)− log k′,

U×(m : m′) =
�

∑
r=1

k

∑
s=1

min
{

Cs,δ(r)(ar, ar+1), Cs,ε(r)(ar, ar+1)− Ms(ar, ar+1) log k′
}

. (11)

The size of the lower/upper bound formula depends on the envelope complexity �, the number
k of mixture components, and the closed-form expressions of the integral terms Ci,j(a, b) and Mi(a, b).
In general, when a pair of weighted component densities intersect in at most p points, the envelope
complexity is related to the Davenport–Schinzel sequences [27]. It is quasi-linear for bounded
p = O(1), see [27].

Note that in symbolic computing, the Risch semi-algorithm [28] solves the problem of computing
indefinite integration in terms of elementary functions provided that there exists an oracle (hence the
term “semi-algorithm”) for checking whether an expression is equivalent to zero or not (however it is
unknown whether there exists an algorithm implementing the oracle or not).

We presented the technique by bounding the cross-entropy (and entropy) to deliver lower/upper
bounds on the KL divergence. When only the KL divergence needs to be bounded, we rather consider
the ratio term m(x)

m′(x) . This requires to partition the support X into elementary intervals by overlaying the
critical points of both the lower and upper envelopes of m(x) and m′(x), which can be done in linear time.
In a given elementary interval, since max{k mini{wi pi(x)}, maxi{wi pi(x)}} ≤ m(x) ≤ k maxi{wi pi(x)},
we then consider the inequalities:

max{k mini{wi pi(x)}, maxi{wi pi(x)}}
k′ maxj{w′

j p
′
j(x)}

≤ m(x)
m′(x) ≤ k maxi{wi pi(x)}

max{k′ minj{w′
j p

′
j(x)}, maxj{w′

j p
′
j(x)}}

. (12)

We now need to compute definite integrals of the form
∫ b

a w1p(x; θ1) log w2 p(x;θ2)
w3 p(x;θ3)

dx (see
Appendix B for explicit formulas when considering scaled and truncated exponential families [17]).
(Thus for exponential families, the ratio of densities removes the auxiliary carrier measure term.)
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We call these bounds CELB and CEUB for Combinatorial Envelope Lower and Upper
Bounds, respectively.

2.1. Tighter Adaptive Bounds

We shall now consider shape-dependent bounds improving over the additive log k + log k′

non-adaptive bounds. This is made possible by a decomposition of the lse function explained as
follows. Let ti(x1, . . . , xk) = log

(
∑k

j=1 exj−xi
)

. By translation identity of the lse function,

lse(x1, . . . , xk) = xi + ti(x1, . . . , xk) (13)

for all i ∈ [k]. Since exj−xi = 1 if j = i, and exj−xi > 0, we have necessarily ti(x1, . . . , xk) > 0 for any
i ∈ [k]. Since Equation (13) is an identity for all i ∈ [k], we minimize the residual ti(x1, . . . , xk) by
maximizing xi. Denoting by x(1), . . . , x(k) the sequence of numbers sorted in non-decreasing order,
the decomposition

lse(x1, . . . , xk) = x(k) + t(k)(x1, . . . , xk) (14)

yields the smallest residual. Since x(j) − x(k) ≤ 0 for all j ∈ [k], we have

t(k) (x1, . . . , xk) = log

(
1+

k−1

∑
j=1

ex(j)−x(k)

)
≤ log k.

This shows the bounds introduced earlier can indeed be improved by a more accurate computation
of the residual term t(k) (x1, . . . , xk).

When considering 1D GMMs, let us now bound t(k)(x1, . . . , xk) in a combinatorial range
Ir = (ar, ar+1). Let δ = δ(r) denote the index of the dominating weighted component in this
range. Then,

∀x ∈ Ir,∀i, exp

(
− log σi − (x − μi)

2

2σ2
i

+ log wi

)
≤ exp

(
− log σδ − (x − μδ)

2

2σ2
δ

+ log wδ

)
.

Thus we have:

log m(x) = log
wδ

σδ

√
2π

− (x − μδ)
2

2σ2
δ

+ log

(
1 + ∑

i �=δ

exp

(
− (x − μi)

2

2σ2
i

+ log
wi
σi

+
(x − μδ)

2

2σ2
δ

− log
wδ

σδ

))
.

Now consider the ratio term:

ρi,δ(x) = exp

(
− (x − μi)

2

2σ2
i

+ log
wiσδ

wδσi
+

(x − μδ)
2

2σ2
δ

)
.

It is maximized in Ir = (ar, ar+1) by maximizing equivalently the following quadratic equation:

li,δ(x) = − (x − μi)
2

2σ2
i

+ log
wiσδ

wδσi
+

(x − μδ)
2

2σ2
δ

.

Setting the derivative to zero (l′i,δ(x) = 0), we get the root (when σi �= σδ)

xi,δ =

(
μδ

σ2
δ

− μi

σ2
i

)/( 1
σ2

δ

− 1
σ2

i

)
.

If xi,δ ∈ Ir, the ratio ρi,δ(x) can be bounded in the slab Ir by considering the extreme values of the
three element set {ρi,δ(ar), ρi,δ(xi,δ), ρi,δ(ar+1)}. Otherwise ρi,δ(x) is monotonic in Ir, its bounds in Ir
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are given by {ρi,δ(ar), ρi,δ(ar+1)}. In any case, let ρmin
i,δ (r) and ρmax

i,δ (r) represent the resulting lower
and upper bounds of ρi,δ(x) in Ir. Then tδ is bounded in the range Ir by:

0 < log

(
1 + ∑

i �=δ

ρmin
i,δ (r)

)
≤ tδ ≤ log

(
1 + ∑

i �=δ

ρmax
i,δ (r)

)
≤ log k.

In practice, we always get better bounds using the shape-dependent technique at the expense of
computing overall O(k2) intersection points of the pairwise densities. We call those bounds CEALB and
CEAUB for Combinatorial Envelope Adaptive Lower Bound and Combinatorial Envelope Adaptive
Upper Bound.

Let us illustrate one scenario where this adaptive technique yields very good approximations.
Consider a GMM with all variance σ2 tending to zero (a mixture of k Diracs). Then in a combinatorial
slab Ir, we have ρmax

i,δ (r) → 0 for all i �= δ, and therefore we get tight bounds.
As a related technique, we could also upper bound

∫ ar+1
ar

log m(x)dx by (ar+1 − ar) log m(ar, ar+1)

where m(x, x′) denotes the maximal value of the mixture density in the range (x, x′). This maximal
value is either found at the slab extremities, or is a mode of the GMM. It then requires to find the
modes of a GMM [29,30], for which no analytical solution is known in general.

2.2. Another Derivation Using the Arithmetic-Geometric Mean Inequality

Let us start by considering the inequality of arithmetic and geometric weighted means
(AGI, Arithmetic-Geometric Inequality) applied to the mixture component distributions:

m(x) =
k

∑
i=1

wi p(x; θi) ≥
k

∏
i=1

p(x; θi)
wi

with equality holds iff. θ1 = . . . = θk.
To get a tractable formula with a positive remainder of the log-sum term log m(x), we need to

have the log argument greater or equal to 1, and thus we shall write the positive remainder:

R(x) = log

(
m(x)

∏k
i=1 p(x; θi)wi

)
≥ 0.

Therefore, we can decompose the log-sum into a tractable part and a remainder as:

log m(x) =
k

∑
i=1

wi log p(x; θi) + log

(
m(x)

∏k
i=1 p(x; θi)wi

)
. (15)

For exponential families, the first term can be integrated accurately. For the second term,
we notice that ∏k

i=1 p(x; θi)
wi is a distribution in the same exponential family. We denote

p(x; θ0) = ∏k
i=1 p(x; θi)

wi . Then

R(x) = log

(
k

∑
i=1

wi
p(x; θi)

p(x; θ0)

)

As the ratio p(x; θi)/p(x; θ0) can be bounded above and below using techniques in Section 2.1,
R(x) can be correspondingly bounded. Notice the similarity between Equations (14) and (15). The key
difference with the adaptive bounds is that, here we choose p(x; θ0) instead of the dominating
component in m(x) as the “reference distribution” in the decomposition. This subtle difference
is not presented in detail in our experimental studies but discussed here for completeness. Essentially,
the gap of the bounds is up to the difference between the geometric average and the arithmetic average.
In the extreme case that all mixture components are identical, this gap will reach zero. Therefore we
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expect good quality bounds with a small gap when the mixture components are similar as measured
by KL divergence.

2.3. Case Studies

In the following, we instantiate the proposed method for several prominent cases on the mixture
of exponential family distributions.

2.3.1. The Case of Exponential Mixture Models

An exponential distribution has density p(x; λ) = λ exp(−λx) defined on X = [0, ∞) for λ > 0.
Its CDF is Φ(x; λ) = 1 − exp(−λx). Any two components w1 p(x; λ1) and w2 p(x; λ2) (with λ1 �= λ2)
have a unique intersection point

x� =
log(w1λ1)− log(w2λ2)

λ1 − λ2
(16)

if x� ≥ 0; otherwise they do not intersect. The basic formulas to evaluate the bounds are

Ci,j(a, b) = log
(

λ′
jw

′
j

)
Mi(a, b) + wiλ

′
j

[(
a +

1
λi

)
e−λi a −

(
b +

1
λi

)
e−λib

]
, (17)

Mi(a, b) =− wi

(
e−λi a − e−λib

)
. (18)

2.3.2. The Case of Rayleigh Mixture Models

A Rayleigh distribution has density p(x; σ) = x
σ2 exp

(
− x2

2σ2

)
, defined on X = [0, ∞) for σ > 0.

Its CDF is Φ(x; σ) = 1 − exp
(
− x2

2σ2

)
. Any two components w1 p(x; σ1) and w2 p(x; σ2) (with σ1 �= σ2)

must intersect at x0 = 0 and can have at most one other intersection point

x� =

√√√√log
w1σ2

2
w2σ2

1
/

(
1

2σ2
1
− 1

2σ2
2

)
(19)

if the square root is well defined and x� > 0. We have

Ci,j(a, b) = log
w′

j

(σ′
j )

2 Mi(a, b) +
wi

2(σ′
j )

2

[
(a2 + 2σ2

i )e
− a2

2σ2
i − (b2 + 2σ2

i )e
− b2

2σ2
i

]

− wi

∫ b

a

x
σ2

i
exp

(
− x2

2σ2
i

)
log xdx, (20)

Mi(a, b) =− wi

(
e
− a2

2σ2
i − e

− b2

2σ2
i

)
. (21)

The last term in Equation (20) does not have a simple closed form (it requires the exponential
integral, Ei). One need a numerical integrator to compute it.

2.3.3. The Case of Gaussian Mixture Models

The Gaussian density p(x; μ, σ) = 1√
2πσ

e−(x−μ)2/(2σ2) has support X = R and parameters

μ ∈ R and σ > 0. Its CDF is Φ(x; μ, σ) = 1
2

[
1 + erf( x−μ√

2σ
)
]
, where erf is the Gauss error function.

The intersection point x� of two components w1 p(x; μ1, σ1) and w2 p(x; μ2, σ2) can be obtained by
solving the quadratic equation log (w1 p(x; μ1, σ1)) = log (w2 p(x; μ2, σ2)), which gives at most two
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solutions. As shown in Figure 1, the upper envelope of Gaussian densities corresponds to the lower
envelope of parabolas. We have

Ci,j(a, b) = Mi(a, b)

(
log w′

j − log σ′
j −

1
2

log(2π)− 1
2(σ′

j )
2

(
(μ′

j − μi)
2 + σ2

i

))

+
wiσi

2
√

2π(σ′
j )

2

⎡⎣(a + μi − 2μ′
j)e

− (a−μi)
2

2σ2
i − (b + μi − 2μ′

j)e
− (b−μi)

2

2σ2
i

⎤⎦ , (22)

Mi(a, b) =− wi
2

(
erf
(

b − μi√
2σi

)
− erf

(
a − μi√

2σi

))
. (23)

2.3.4. The Case of Gamma Distributions

For simplicity, we only consider gamma distributions with the shape parameter k > 0 fixed and

the scale λ > 0 varying. The density is defined on (0, ∞) as p(x; k, λ) = xk−1e−
x
λ

λkΓ(k) , where Γ(·) is the

gamma function. Its CDF is Φ(x; k, λ) = γ(k, x/λ)/Γ(k), where γ(·, ·) is the lower incomplete gamma
function. Two weighted gamma densities w1 p(x; k, λ1) and w2 p(x; k, λ2) (with λ1 �= λ2) intersect at a
unique point

x� =

(
log

w1

λk
1
− log

w2

λk
2

)/( 1
λ1

− 1
λ2

)
(24)

if x� > 0; otherwise they do not intersect. From straightforward derivations,

Ci,j(a, b) = log
w′

j

(λ′
j)

kΓ(k)
Mi(a, b) + wi

∫ b

a

xk−1e−
x
λi

λk
i Γ(k)

(
x
λ′

j
− (k − 1) log x

)
dx, (25)

Mi(a, b) = − wi
Γ(k)

(
γ

(
k,

b
λi

)
− γ

(
k,

a
λi

))
. (26)

Similar to the case of Rayleigh mixtures, the last term in Equation (25) relies on numerical integration.

3. Upper-Bounding the Differential Entropy of a Mixture

First, consider a finite parametric mixture model m(x) = ∑k
i=1 wi p(x; θi). Using the chain rule of

the entropy, we end up with the well-known lemma:

Lemma 1. The entropy of a d-variate mixture is upper bounded by the sum of the entropy of its marginal
mixtures: H(m) ≤ ∑d

i=1 H(mi), where mi is the 1D marginal mixture with respect to variable xi.

Since the 1D marginals of a multivariate GMM are univariate GMMs, we thus get a loose upper
bound. A generic sample-based probabilistic bound is reported for the entropies of distributions
with given support [31]: The method builds probabilistic upper and lower piecewisely linear CDFs
based on an i.i.d. finite sample set of size n and a given deviation probability threshold. It then builds
algorithmically between those two bounds the maximum entropy distribution [31] with a so-called
string-tightening algorithm.

Instead, we proceed as follows: Consider finite mixtures of component distributions defined
on the full support Rd that have finite component means and variances (like exponential families).
Then we shall use the fact that the maximum entropy distribution with prescribed mean and variance
is a Gaussian distribution, and conclude the upper bound by plugging the mixture mean and variance
in the differential entropy formula of the Gaussian distribution. In general, the maximum entropy
with moment constraints yields as a solution an exponential family.
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Without loss of generality, consider GMMs in the form m(x) = ∑k
i=1 wi p(x; μi, Σi) (Σi = σ2

i
for univariate Gaussians). The mean μ̄ of the mixture is μ̄ = ∑k

i=1 wiμi and the variance is
σ̄2 = E[m2]− E[m]2. Since E[m2] = ∑k

i=1 wi
∫

x2 p(x; μi, Σi)dx = ∑k
i=1 wi

(
μ2

i + σ2
i
)
, we deduce that

σ̄2 =
k

∑
i=1

wi(μ
2
i + σ2

i )−
(

k

∑
i=1

wiμi

)2

=
k

∑
i=1

wi

[
(μi − μ̄)2 + σ2

i

]
.

The entropy of a random variable with a prescribed variance σ̄2 is maximal for the Gaussian
distribution with the same variance σ̄2, see [4]. Since the differential entropy of a Gaussian is
log(σ̄

√
2πe), we deduce that the entropy of the GMM is upper bounded by

H(m) ≤ 1
2

log(2πe) +
1
2

log
k

∑
i=1

wi

[
(μi − μ̄)2 + σ2

i

]
.

This upper bound can be easily generalized to arbitrary dimensionality. We get the following lemma:

Lemma 2. The entropy of a d-variate GMM m(x) = ∑k
i=1 wi p(x; μi, Σi) is upper bounded by

d
2 log(2πe) + 1

2 log det Σ, where Σ = ∑k
i=1 wi(μiμ


i + Σi)−

(
∑k

i=1 wiμi

) (
∑k

i=1 wiμ

i

)
.

In general, exponential families have finite moments of any order [17]: In particular, we have
E[t(X)] = ∇F(θ) and V[t(X)] = ∇2F(θ). For Gaussian distribution, we have the sufficient statistics
t(x) = (x, x2) so that E[t(X)] = ∇F(θ) yields the mean and variance from the log-normalizer. It is
easy to generalize Lemma 2 to mixtures of exponential family distributions.

Note that this bound (called the Maximum Entropy Upper Bound in [13], MEUB) is tight when
the GMM approximates a single Gaussian. It is fast to compute compared to the bound reported in [9]
that uses Taylor’ s expansion of the log-sum of the mixture density.

A similar argument cannot be applied for a lower bound since a GMM with a given variance
may have entropy tending to −∞. For example, assume the 2-component mixture’s mean is zero, and
that the variance approximates 1 by taking m(x) = 1

2 G(x;−1, ε) + 1
2 G(x; 1, ε) where G denotes the

Gaussian density. Letting ε → 0, we get the entropy tending to −∞.
We remark that our log-sum-exp inequality technique yields a log 2 additive approximation range

in the case of a Gaussian mixture with two components. It thus generalizes the bounds reported in [7]
to GMMs with arbitrary variances that are not necessarily equal.

To see the bound gap, we have

− ∑
r

∫
Ir

m(x)
(

log k + log max
i

wi pi(x)
)

dx ≤ H(m)

≤ −∑
r

∫
Ir

m(x)max
{

log max
i

wi pi(x), log k + log min
i

wi pi(x)
}

dx. (27)

Therefore the gap is at most

Δ = min

{
∑

r

∫
Ir

m(x) log
maxi wi pi(x)
mini wi pi(x)

dx, log k

}

= min

{
∑

s
∑

r

∫
Ir

ws ps(x) log
maxi wi pi(x)
mini wi pi(x)

dx, log k

}
. (28)

Thus to compute the gap error bound of the differential entropy, we need to integrate terms in
the form ∫

wa pa(x) log
wb pb(x)
wc pc(x)

dx.
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See Appendix B for a closed-form formula when dealing with exponential family components.

4. Bounding the α-Divergence

The α-divergence [15,32–34] between m(x) = ∑k
i=1 wi pi(x) and m′(x) = ∑k′

i=1 w′
i p

′
i(x) is defined as

Dα

(
m : m′) = 1

α(1 − α)

(
1 −

∫
X

m(x)αm′(x)1−αdx
)

, (29)

which clearly satisfies Dα (m : m′) = D1−α (m′ : m). The α-divergence is a family of information
divergences parametrized by α ∈ R \ {0, 1}. Let α → 1, we get the KL divergence (see [35] for a proof):

lim
α→1

Dα(m : m′) = KL(m : m′) =
∫
X

m(x) log
m(x)
m′(x)

dx, (30)

and α → 0 gives the reverse KL divergence:

lim
α→0

Dα(m : m′) = KL(m′ : m).

Other interesting values [33] include α = 1/2 (squared Hellinger distance), α = 2 (Pearson
Chi-square distance), α = −1 (Neyman Chi-square distance), etc. Notably, the Hellinger distance is a
valid distance metric which satisfies non-negativity, symmetry, and the triangle inequality. In general,
Dα(m : m′) only satisfies non-negativity so that Dα (m : m′) ≥ 0 for any m(x) and m′(x). It is
neither symmetric nor admitting the triangle inequality. Minimization of α-divergences allows one to
choose a trade-off between mode fitting and support fitting of the minimizer [36]. The minimizer of
α-divergences including MLE as a special case has interesting connections with transcendental number
theory [37].

To compute Dα (m : m′) for given m(x) and m′(x) reduces to evaluate the Hellinger integral [38,39]:

Hα(m : m′) =
∫
X

m(x)αm′(x)1−αdx, (31)

which in general does not have a closed form, as it was known that the α-divergence of mixture
models is not analytic [6]. Moreover, Hα(m : m′) may diverge making the α-divergence unbounded.
Once Hα(m : m′) can be solved, the Rényi and Tsallis divergences [35] and in general Sharma–Mittal
divergences [40] can be easily computed. Therefore the results presented here directly extend to those
divergence families.

Similar to the case of KL divergence, the Monte Carlo stochastic estimation of Hα(m : m′) can be
computed either as

Ĥn
α

(
m : m′) = 1

n

n

∑
i=1

(
m′(xi)

m(xi)

)1−α

,

where x1, . . . , xn ∼ m(x) are i.i.d. samples, or as

Ĥn
α

(
m : m′) = 1

n

n

∑
i=1

(
m(xi)

m′(xi)

)α

,

where x1, . . . , xn ∼ m′(x) are i.i.d. In either case, it is consistent so that limn→∞ Ĥn
α (m : m′) = Hα (m : m′).

However, MC estimation requires a large sample and does not guarantee deterministic bounds.
The techniques described in [41] work in practice for very close distributions, and do not apply
between mixture models. We will therefore derive combinatorial bounds for Hα(m : m′). The structure
of this Section is parallel with Section 2 with necessary reformulations for a clear presentation.
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4.1. Basic Bounds

For a pair of given m(x) and m′(x), we only need to derive bounds of Hα(m : m′) in Equation (31)
so that Lα(m : m′) ≤ Hα(m : m′) ≤ Uα(m : m′). Then the α-divergence Dα(m : m′) can be bounded
by a linear transformation of the range [Lα(m : m′), Uα(m : m′)]. In the following we always assume
without loss of generality α ≥ 1/2. Otherwise we can bound Dα(m : m′) by considering equivalently
the bounds of D1−α(m′ : m).

Recall that in each elementary slab Ir, we have

max
{

kwε(r)pε(r)(x), wδ(r)pδ(r)(x)
}
≤ m(x) ≤ kwδ(r)pδ(r)(x). (32)

Notice that kwε(r)pε(r)(x), wδ(r)pδ(r)(x), and kwδ(r)pδ(r)(x) are all single component distributions
up to a scaling coefficient. The general thinking is to bound the multi-component mixture m(x) by
single component distributions in each elementary interval, so that the integral in Equation (31) can be
computed in a piecewise manner.

For the convenience of notation, we rewrite Equation (32) as

cν(r)pν(r)(x) ≤ m(x) ≤ cδ(r)pδ(r)(x), (33)

where
cν(r)pν(r)(x) := kwε(r)pε(r)(x) or wδ(r)pδ(r)(x),

cδ(r)pδ(r)(x) := kwδ(r)pδ(r)(x).

(34)

(35)

If 1/2 ≤ α < 1, then both xα and x1−α are monotonically increasing on R+. Therefore we have

Aα
ν(r),ν′(r)(Ir) ≤

∫
Ir

m(x)αm′(x)1−αdx ≤ Aα
δ(r),δ′(r)(Ir), (36)

where

Aα
i,j(I) =

∫
I
(ci pi(x))

α
(

c′j p
′
j(x)

)1−α
dx, (37)

and I denotes an interval I = (a, b) ⊂ R. The other case α > 1 is similar by noting that xα and x1−α are
monotonically increasing and decreasing on R+, respectively. In conclusion, we obtain the following
bounds of Hα(m : m′):

If 1/2 ≤ α < 1, Lα(m : m′) =
�

∑
r=1

Aα
ν(r),ν′(r)(Ir), Uα(m : m′) =

�

∑
r=1

Aα
δ(r),δ′(r)(Ir); (38)

if α > 1, Lα(m : m′) =
�

∑
r=1

Aα
ν(r),δ′(r)(Ir), Uα(m : m′) =

�

∑
r=1

Aα
δ(r),ν′(r)(Ir). (39)

The remaining problem is to compute the definite integral Aα
i,j(I) in the above equations.

Here we assume all mixture components are in the same exponential family so that
pi(x) = p(x; θi) = h(x) exp

(
θi t(x)− F(θi)

)
, where h(x) is a base measure, t(x) is a vector of sufficient

statistics, and the function F is known as the cumulant generating function. Then it is straightforward
from Equation (37) that

Aα
i,j(I) = cα

i (c
′
j)

1−α
∫

I
h(x) exp

((
αθi + (1 − α)θ′j

)
t(x)− αF(θi)− (1 − α)F(θ′j)

)
dx. (40)
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If 1/2 ≤ α < 1, then θ̄ = αθi + (1 − α)θ′j belongs to the natural parameter space Mθ . Therefore Aα
i,j(I)

is bounded and can be computed from the CDF of p(x; θ̄) as

Aα
i,j(I) = cα

i (c
′
j)

1−α exp(F
(
θ̄
)− αF(θi)− (1 − α)F(θ′j))

∫
I

p
(

x; θ̄
)

dx. (41)

The other case α > 1 is more difficult: if θ̄ = αθi + (1 − α)θ′j still lies in Mθ , then Aα
i,j(I) can be

computed by Equation (41). Otherwise we try to solve it by a numerical integrator. This is not ideal as
the integral may diverge, or our approximation may be too loose to conclude. We point the reader
to [42] and Equations (61)–(69) in [35] for related analysis with more details. As computing Aα

i,j(I)
only requires O(1) time, the overall computational complexity (without considering the envelope
computation) is O(�).

4.2. Adaptive Bounds

This section derives the shape-dependent bounds which improve the basic bounds in Section 4.1.
We can rewrite a mixture model m(x) in a slab Ir as

m(x) = wζ(r)pζ(r)(x)

⎛⎝1 + ∑
i �=ζ(r)

wi pi(x)
wζ(r)pζ(r)(x)

⎞⎠ , (42)

where wζ(r)pζ(r)(x) is a weighted component in m(x) serving as a reference. We only discuss the case
that the reference is chosen as the dominating component, i.e., ζ(r) = δ(r). However it is worth to
note that the proposed bounds do not depend on this particular choice. Therefore the ratio

wi pi(x)
wζ(r)pζ(r)(x)

=
wi

wζ(r)
exp

((
θi − θζ(r)

)
t(x)− F(θi) + F(θζ(r))

)
(43)

can be bounded in a sub-range of [0, 1] by analyzing the extreme values of t(x) in the slab Ir. This
can be done because t(x) usually consists of polynomial functions with finite critical points which

can be solved easily. Correspondingly the function
(

1 + ∑i �=ζ(r)
wi pi(x)

wζ(r)pζ(r)(x)

)
in Ir can be bounded in a

subrange of [1, k], denoted as [ωζ(r)(Ir), Ωζ(r)(Ir)]. Hence

ωζ(r)(Ir)wζ(r)pζ(r)(x) ≤ m(x) ≤ Ωζ(r)(Ir)wζ(r)pζ(r)(x). (44)

This forms better bounds of m(x) than Equation (32) because each component in the slab Ir is
analyzed more accurately. Therefore, we refine the fundamental bounds of m(x) by replacing the
Equations (34) and (35) with

cν(r)pν(r)(x) := ωζ(r)(Ir)wζ(r)pζ(r)(x),

cδ(r)pδ(r)(x) := Ωζ(r)(Ir)wζ(r)pζ(r)(x).

(45)

(46)

Then, the improved bounds of Hα are given by Equations (38) and (39) according to the above
replaced definition of cν(r)pν(r)(x) and cδ(r)pδ(r)(x).

To evaluate ωζ(r)(Ir) and Ωζ(r)(Ir) requires iterating through all components in each slab.
Therefore the computational complexity is increased to O (�(k + k′)).

4.3. Variance-Reduced Bounds

This section further improves the proposed bounds based on variance reduction [43].
By assumption, α ≥ 1/2, then m(x)αm′(x)1−α is more similar to m(x) rather than m′(x). The ratio
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m(x)αm′(x)1−α/m(x) is likely to have a small variance when x varies inside a slab Ir, especially when
α is close to 1. We will therefore bound this ratio term in

∫
Ir

m(x)αm′(x)1−αdx =
∫

Ir
m(x)

(
m(x)αm′(x)1−α

m(x)

)
dx =

k

∑
i=1

∫
Ir

wi pi(x)
(

m′(x)
m(x)

)1−α

dx. (47)

No matter α < 1 or α > 1, the function x1−α must be monotonic on R+. In each slab Ir,
(m′(x)/m(x))1−α ranges between these two functions:(

c′
ν′(r)p′

ν′(r)(x)

cδ(r)pδ(r)(x)

)1−α

and

(
c′

δ′(r)p′
δ′(r)(x)

cν(r)pν(r)(x)

)1−α

, (48)

where cν(r)pν(r)(x), cδ(r)pδ(r)(x), c′
ν′(r)p′

ν′(r)(x) and c′
δ′(r)p′

δ′(r)(x) are defined in Equations (45) and (46).
Similar to the definition of Aα

i,j(I) in Equation (37), we define

Bα
i,j,l(I) =

∫
I

wi pi(x)

(
c′l p′l(x)
cj pj(x)

)1−α

dx. (49)

Therefore we have,

Lα(m : m′) = minS , Uα(m : m′) = maxS ,

S =

{
�

∑
r=1

k

∑
i=1

Bα
i,δ(r),ν′(r)(Ir),

�

∑
r=1

k

∑
i=1

Bα
i,ν(r),δ′(r)(Ir)

}
. (50)

The remaining problem is to evaluate Bα
i,j,l(I) in Equation (49). Similar to Section 4.1, assuming

the components are in the same exponential family with respect to the natural parameters θ, we get

Bα
i,j,l(I) =wi

c′1−α
l

c1−α
j

exp
(

F(θ̄)− F(θi)− (1 − α)F(θ′l) + (1 − α)F(θj)

) ∫
I

p(x; θ̄)dx. (51)

If θ̄ = θi + (1 − α)θ′l − (1 − α)θj is in the natural parameter space, Bα
i,j,l(I) can be computed from the

CDF of p(x; θ̄); otherwise Bα
i,j,l(I) can be numerically integrated by its definition in Equation (49).

The computational complexity is the same as the bounds in Section 4.2, i.e., O(� (k + k′)).
We have introduced three pairs of deterministic lower and upper bounds that enclose the true

value of α-divergence between univariate mixture models. Thus the gap between the upper and lower
bounds provides the additive approximation factor of the bounds. We conclude by emphasizing
that the presented methodology can be easily generalized to other divergences [35,40] relying on
Hellinger-type integrals Hα,β(p : q) =

∫
p(x)αq(x)βdx like the γ-divergence [44] as well as entropy

measures [45].

5. Lower Bounds of the f -Divergence

The f -divergence between two distributions m(x) and m′(x) (not necessarily mixtures) is defined
for a convex generator f by:

Df (m : m′) =
∫

m(x) f
(

m′(x)
m(x)

)
dx.

If f (x) = − log x, then Df (m : m′) = KL(m : m′).
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Let us partition the support X = ��
r=1 Ir arbitrarily into elementary ranges, which do not necessarily

correspond to the envelopes. Denote by MI the probability mass of a mixture m(x) in the range I:
MI =

∫
I m(x)dx. Then

Df (m : m′) =
�

∑
r=1

MIr

∫
Ir

m(x)
MIr

f
(

m′(x)
m(x)

)
dx.

Note that in range Ir,
m(x)
MIr

is a unit weight distribution. Thus by Jensen’s inequality
f (E[X]) ≤ E[ f (X)], we get

Df (m : m′) ≥
�

∑
r=1

MIr f
(∫

Ir

m(x)
MIr

m′(x)
m(x)

dx
)
=

�

∑
r=1

MIr f

(
M′

Ir

MIr

)
. (52)

Notice that the RHS of Equation (52) is the f -divergence between (MI1 , · · · , MI�) and
(M′

I1
, · · · , M′

I�
), denoted by DI

f (m : m′). In the special case that � = 1 and I1 = X , the above
Equation (52) turns out to be the usual Gibbs’ inequality: Df (m : m′) ≥ f (1), and Csiszár generator
is chosen so that f (1) = 0. In conclusion, for a fixed (coarse-grained) countable partition of X , we
recover the well-know information monotonicity [46] of the f -divergences:

Df (m : m′) ≥ DI
f (m : m′) ≥ 0.

In practice, we get closed-form lower bounds when MI =
∫ b

a m(x)dx = Φ(b)− Φ(a) is available
in closed-form, where Φ(·) denote the CDF. In particular, if m(x) is a mixture model, then its CDF can
be computed by linearly combining the CDFs of its components.

To wrap up, we have proved that coarse-graining by making a finite partition of the support
X yields a lower bound on the f -divergence by virtue of the information monotonicity. Therefore,
instead of doing Monte Carlo stochastic integration:

D̂n
f (m : m′) = 1

n

n

∑
i=1

f
(

m′(xi)

m(xi)

)
,

with x1, . . . , xn ∼i.i.d. m(x), it could be better to sort those n samples and consider the
coarse-grained partition:

I = (−∞, x(1)] ∪
(
�n−1

i=1 (x(i), x(i+1)]
)
∪ (x(n),+∞)

to get a guaranteed lower bound on the f -divergence. We will call this bound CGQLB for Coarse Graining
Quantization Lower Bound.

Given a budget of n splitting points on the range X , it would be interesting to find the best n
points that maximize the lower bound DI

f (m : m′). This is ongoing research.

6. Experiments

We perform an empirical study to verify our theoretical bounds. We simulate four pairs of mixture
models {(EMM1, EMM2), (RMM1, RMM2), (GMM1, GMM2), (GaMM1, GaMM2)} as the test subjects. The component
type is implied by the model name, where GaMM stands for Gamma mixtures. The components of each
mixture model are given as follows.

1. EMM1’s components, in the form (λi, wi), are given by (0.1, 1/3), (0.5, 1/3), (1, 1/3); EMM2’s
components are (2, 0.2), (10, 0.4), (20, 0.4).

2. RMM1’s components, in the form (σi, wi), are given by (0.5, 1/3), (2, 1/3), (10, 1/3); RMM2 consists
of (5, 0.25), (60, 0.25), (100, 0.5).
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3. GMM1’s components, in the form (μi, σi, wi), are (−5, 1, 0.05), (−2, 0.5, 0.1), (5, 0.3, 0.2), (10, 0.5, 0.2),
(15, 0.4, 0.05), (25, 0.5, 0.3), (30, 2, 0.1); GMM2 consists of (−16, 0.5, 0.1), (−12, 0.2, 0.1), (−8, 0.5, 0.1),
(−4, 0.2, 0.1), (0, 0.5, 0.2), (4, 0.2, 0.1), (8, 0.5, 0.1), (12, 0.2, 0.1), (16, 0.5, 0.1).

4. GaMM1’s components, in the form (ki, λi, wi), are (2, 0.5, 1/3), (2, 2, 1/3), (2, 4, 1/3); GaMM2 consists
of (2, 5, 1/3), (2, 8, 1/3), (2, 10, 1/3).

We compare the proposed bounds with Monte Carlo estimation with different sample sizes in the
range {102, 103, 104, 105}. For each sample size configuration, we report the 0.95 confidence interval by
Monte Carlo estimation using the corresponding number of samples. Figure 2a–d shows the input
signals as well as the estimation results, where the proposed bounds CELB, CEUB, CEALB, CEAUB,
CGQLB are presented as horizontal lines, and the Monte Carlo estimations over different sample
sizes are presented as error bars. We can loosely consider the average Monte Carlo output with the
largest sample size (105) as the underlying truth, which is clearly inside our bounds. This serves as an
empirical justification on the correctness of the bounds.

A key observation is that the bounds can be very tight, especially when the underlying KL
divergence has a large magnitude, e.g., KL(RMM2 : RMM1). This is because the gap between the lower
and upper bounds is always guaranteed to be within log k + log k′. Because KL is unbounded [4],
in the general case two mixture models may have a large KL. Then our approximation gap is relatively
very small. On the other hand, we also observed that the bounds in certain cases, e.g., KL(EMM2 : EMM1),
are not as tight as the other cases. When the underlying KL is small, the bounds are not as informative
as the general case.

Comparatively, there is a significant improvement of the shape-dependent bounds (CEALB and
CEAUB) over the combinatorial bounds (CELB and CEUB). In all investigated cases, the adaptive
bounds can roughly shrink the gap by half of its original size at the cost of additional computation.

Note that, the bounds are accurate and must contain the true value. Monte Carlo estimation
gives no guarantee on where the true value is. For example, in estimating KL(GMM1 : GMM2), Monte
Carlo estimation based on 104 samples can go beyond our bounds! It therefore suffers from a larger
estimation error.

CGQLB as a simple-to-implement technique shows surprising good performance in several cases,
e.g., KL(RMM1, RMM2). Although it requires a large number of samples, we can observe that increasing
sample size has limited effect on improving this bound. Therefore, in practice, one may intersect the
range defined by CEALB and CEAUB with the range defined by CGQLB with a small sample size
(e.g., 100) to get better bounds.

We simulates a set of Gaussian mixture models besides the above GMM1 and GMM2. Figure 3 shows
the GMM densities as well as their differential entropy. A detailed explanation of the components of
each GMM model is omitted for brevity.

The key observation is that CEUB (CEAUB) is very tight in most of the investigated cases. This is
because that the upper envelope that is used to compute CEUB (CEAUB) gives a very good estimation
of the input signal.

Notice that MEUB only gives an upper bound of the differential entropy as discussed in Section 3.
In general the proposed bounds are tighter than MEUB. However, this is not the case when the mixture
components are merged together and approximate one single Gaussian (and therefore its entropy can
be well approximated by the Gaussian entropy), as shown in the last line of Figure 3.

For α-divergence, the bounds introduced in Sections 4.1–4.3 are denoted as “Basic”, “Adaptive”
and “VR”, respectively. Figure 4 visualizes these GMMs and plots the estimations of their α-divergences
against α. The red lines mean the upper envelope. The dashed vertical lines mean the elementary
intervals. The components of GMM1 and GMM2 are more separated than GMM3 and GMM4. Therefore these
two pairs present different cases. For a clear presentation, only VR (which is expected to be better
than Basic and Adaptive) is shown. We can see that, visually in the big scale, VR tightly surrounds the
true value.
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Figure 2. Cont.
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Figure 2. Lower and upper bounds on the KL divergence between mixture models. The y-axis
means KL divergence. Solid/dashed lines represent the combinatorial/adaptive bounds, respectively.
The error-bars show the 0.95 confidence interval by Monte Carlo estimation using the corresponding
sample size (x-axis). The narrow dotted bars show the CGQLB estimation w.r.t. the sample size.
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Figure 3. Lower and upper bounds on the differential entropy of Gaussian mixture models. On the left
of each subfigure is the simulated GMM signal. On the right of each subfigure is the estimation of its
differential entropy. Note that a subset of the bounds coincide with each other in several cases.
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Figure 4. Two pairs of Gaussian Mixture Models and their α-divergences against different values of α.
The “true” value of Dα is estimated by MC using 104 random samples. VR(L) and VR(U) denote the
variation reduced lower and upper bounds, respectively. The range of α is selected for each pair for
a clear visualization.
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For a more quantitative comparison, Table 1 shows the estimated α-divergence by MC, Basic,
Adaptive, and VR. As Dα is defined on R \ {0, 1}, the KL bounds CE(A)LB and CE(A)UB are presented
for α = 0 or 1. Overall, we have the following order of gap size: Basic > Adaptive > VR, and VR is
recommended in general for bounding α-divergences. There are certain cases that the upper VR bound
is looser than Adaptive. In practice one can compute the intersection of these bounds as well as the
trivial bound Dα(m : m′) ≥ 0 to get the best estimation.

Table 1. The estimated Dα and its bounds. The 95% confidence interval is shown for MC.

α MC(102) MC(103) MC(104)
Basic Adaptive VR

L U L U L U

GMM1 & GMM2

0 15.96 ± 3.9 12.30 ± 1.0 13.63 ± 0.3 11.75 15.89 12.96 14.63
0.01 13.36 ± 2.9 10.63 ± 0.8 11.66 ± 0.3 −700.50 11.73 −77.33 11.73 11.40 12.27
0.5 3.57 ± 0.3 3.47 ± 0.1 3.47 ± 0.07 −0.60 3.42 3.01 3.42 3.17 3.51
0.99 40.04 ± 7.7 37.22 ± 2.3 38.58 ± 0.8 −333.90 39.04 5.36 38.98 38.28 38.96

1 104.01 ± 28 84.96 ± 7.2 92.57 ± 2.5 91.44 95.59 92.76 94.41

GMM3 & GMM4

0 0.71 ± 0.2 0.63 ± 0.07 0.62 ± 0.02 0.00 1.76 0.00 1.16
0.01 0.71 ± 0.2 0.63 ± 0.07 0.62 ± 0.02 −179.13 7.63 −38.74 4.96 0.29 1.00
0.5 0.82 ± 0.3 0.57 ± 0.1 0.62 ± 0.04 −5.23 0.93 −0.71 0.85 −0.18 1.19
0.99 0.79 ± 0.3 0.76 ± 0.1 0.80 ± 0.03 −165.72 12.10 −59.76 9.11 0.37 1.28

1 0.80 ± 0.3 0.77 ± 0.1 0.81 ± 0.03 0.00 1.82 0.31 1.40

Note the similarity between KL in Equation (30) and the expression in Equation (47). We give without
a formal analysis that: CEAL(U)B is equivalent to VR at the limit α → 0 or α → 1. Experimentally as
we slowly set α → 1, we can see that VR is consistent with CEAL(U)B.

7. Concluding Remarks and Perspectives

We have presented a fast versatile method to compute bounds on the Kullback–Leibler divergence
between mixtures by building algorithmic formulae. We reported on our experiments for various
mixture models in the exponential family. For univariate GMMs, we get a guaranteed bound of the KL
divergence of two mixtures m and m′ with k and k′ components within an additive approximation factor
of log k + log k′ in O ((k + k′) log(k + k′))-time. Therefore, the larger the KL divergence, the better
the bound when considering a multiplicative (1 + α)-approximation factor, since α =

log k+log k′
KL(m:m′) .

The adaptive bounds are guaranteed to yield better bounds at the expense of computing potentially
O
(
k2 + (k′)2) intersection points of pairwise weighted components.

Our technique also yields the bound for the Jeffreys divergence (the symmetrized KL divergence:
J(m, m′) = KL(m : m′) + KL(m′ : m)) and the Jensen–Shannon divergence [47] (JS):

JS(m, m′) = 1
2

(
KL
(

m :
m + m′

2

)
+ KL

(
m′ :

m + m′

2

))
,

since m+m′
2 is a mixture model with k + k′ components. One advantage of this statistical distance

is that it is symmetric, always bounded by log 2, and its square root yields a metric distance [48].
The log-sum-exp inequalities may also be used to compute some Rényi divergences [35]:

Rα(m, p) =
1

α − 1
log
(∫

m(x)α p(x)1−α

)
dx,

when α is an integer, m(x) a mixture and p(x) a single (component) distribution. Getting fast
guaranteed tight bounds on statistical distances between mixtures opens many avenues. For example,
we may consider building hierarchical mixture models by merging iteratively two mixture components
so that those pairs of components are chosen so that the KL distance between the full mixture and the
simplified mixture is minimized.

In order to be useful, our technique is unfortunately limited to univariate mixtures: indeed,
in higher dimensions, we can still compute the maximization diagram of weighted components
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(an additively weighted Bregman–Voronoi diagram [49,50] for components belonging to the same
exponential family). However, it becomes more complex to compute in the elementary Voronoi
cells V, the functions Ci,j(V) and Mi(V) (in 1D, the Voronoi cells are segments). We may obtain hybrid
algorithms by approximating or estimating these functions. In 2D, it is thus possible to obtain lower
and upper bounds on the Mutual Information [51] (MI) when the joint distribution m(x, y) is a 2D
mixture of Gaussians:

I(M; M′) =
∫

m(x, y) log
m(x, y)

m(x)m′(y)dxdy.

Indeed, the marginal distributions m(x) and m′(y) are univariate Gaussian mixtures.
A Python code implementing those computational-geometric methods for reproducible research

is available online [52].
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Appendix A. The Kullback–Leibler Divergence of Mixture Models Is Not Analytic [6]

Ideally, we aim at getting a finite length closed-form formula to compute the KL divergence of
finite mixture models. However, this is provably mathematically intractable [6] because of the log-sum
term in the integral, as we shall prove below.

Analytic expressions encompass closed-form formula and may include special functions
(e.g., Gamma function) but do not allow to use limits or integrals. An analytic function f (x)
is a C∞ function (infinitely differentiable) such that around any point x0 the k-order Taylor

series Tk(x) = ∑k
i=0

f (i)(x0)
i! (x − x0)

i converges to f (x): limk→∞ Tk(x) = f (x) for x belonging to a
neighborhood Nr(x0) = {x : |x − x0| ≤ r} of x0, where r is called the radius of convergence.
The analytic property of a function is equivalent to the condition that for each k ∈ N, there exists a

constant c such that
∣∣∣dk f

dxk (x)
∣∣∣ ≤ ck+1k!.

To prove that the KL of mixtures is not analytic (hence does not admit a closed-form formula),
we shall adapt the proof reported in [6] (in Japanese, we thank Professor Aoyagi for sending
us his paper [6]). We shall prove that KL(p : q) is not analytic for p(x) = G(x; 0, 1) and

q(x; w) = (1 − w)G(x; 0, 1) + wG(x; 1, 1), where w ∈ (0, 1), and G(x; μ, σ) = 1√
2πσ

exp(− (x−μ)2

2σ2 ) is the
density of a univariate Gaussian of mean μ and standard deviation σ. Let D(w) = KL(p(x) : q(x; w))

denote the KL divergence between these two mixtures (p has a single component and q has
two components).

We have

log
p(x)

q(x; w)
= log

exp
(
− x2

2

)
(1 − w) exp

(
− x2

2

)
+ w exp

(
− (x−1)2

2

) = − log(1 + w(ex− 1
2 − 1)). (A1)

Therefore
dkD
dwk =

(−1)k

k

∫
p(x)(ex− 1

2 − 1)dx.

Let x0 be the root of the equation ex− 1
2 − 1 = e

x
2 so that for x ≥ x0, we have ex− 1

2 − 1 ≥ e
x
2 .

It follows that: ∣∣∣∣∣dkD
dwk

∣∣∣∣∣ ≥ 1
k

∫ ∞

x0

p(x)e
kx
2 dx =

1
k

e
k2
8 Ak
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with Ak =
∫ ∞

x0
1√
2π

exp(− x− k
2

2 )dx. When k → ∞, we have Ak → 1. Consider k0 ∈ N such that
Ak0 > 0.9. Then the radius of convergence r is such that:

1
r
≥ lim

k→∞

(
1

kk!
0.9 exp

(
k2

8

)) 1
k

= ∞.

Thus the convergence radius is r = 0, and therefore the KL divergence is not an analytic function
of the parameter w. The KL of mixtures is an example of a non-analytic smooth function. (Notice that
the absolute value is not analytic at 0.)

Appendix B. Closed-Form Formula for the Kullback–Leibler Divergence between Scaled and
Truncated Exponential Families

When computing approximation bounds for the KL divergence between two mixtures m(x) and

m′(x), we end up with the task of computing
∫
D wa pa(x) log w′

b p′b(x)
w′

c p′c(x) dx where D ⊆ X is a subset of
the full support X . We report a generic formula for computing these formula when the mixture
(scaled and truncated) components belong to the same exponential family [17]. An exponential family
has canonical log-density written as l(x; θ) = log p(x; θ) = θt(x)− F(θ) + k(x), where t(x) denotes
the sufficient statistics, F(θ) the log-normalizer (also called cumulant function or partition function),
and k(x) an auxiliary carrier term.

Let KL(w1 p1 : w2 p2 : w3 p3) =
∫
X w1 p1(x) log w2 p2(x)

w3 p3(x)dx = H×(w1 p1 : w3 p3)− H×(w1 p1 : w2 p2).
Since it is a difference of two cross-entropies, we get for three distributions belonging to the same
exponential family [26] the following formula:

KL(w1 p1 : w2 p2 : w3 p3) = w1 log
w2

w3
+ w1(F(θ3)− F(θ2)− (θ3 − θ2)

∇F(θ1)).

Furthermore, when the support is restricted, say to support range D ⊆ X , let
mD(θ) =

∫
D p(x; θ)dx denote the mass and ˜p(x; θ) = p(x;θ)

mD(θ)
the normalized distribution. Then we have:∫

D
w1 p1(x) log

w2 p2(x)
w3 p3(x)

dx = mD(θ1)(KL(w1 p̃1 : w2 p̃2 : w3 p̃3))− log
w2mD(θ3)

w3mD(θ2)
.

When FD(θ) = F(θ)− log mD(θ) is strictly convex and differentiable then ˜p(x; θ) is an exponential
family and the closed-form formula follows straightforwardly. Otherwise, we still get a closed-form but
need more derivations. For univariate distributions, we write D = (a, b) and mD(θ) =

∫ b
a p(x; θ)dx =

Pθ(b)− Pθ(a) where Pθ(a) =
∫ a p(x; θ)dx denotes the cumulative distribution function.

The usual formula for truncated and scaled Kullback–Leibler divergence is:

KLD(wp(x; θ) : w′p(x; θ′)) = wmD(θ)
(

log
w
w′ + BF(θ

′ : θ)
)
+ w(θ′ − θ)

∇mD(θ), (B1)

where BF(θ
′ : θ) is a Bregman divergence [5]:

BF(θ
′ : θ) = F(θ′)− F(θ)− (θ′ − θ)∇F(θ).

This formula extends the classic formula [5] for full regular exponential families (by setting
w = w′ = 1 and mD(θ) = 1 with ∇mD(θ) = 0).

Similar formulæ are available for the cross-entropy and entropy of exponential families [26].

Appendix C. On the Approximation of KL between Smooth Mixtures by a Bregman
Divergence [5]

Clearly, since Bregman divergences are always finite while KL divergences may diverge, we need
extra conditions to assert that the KL between mixtures can be approximated by Bregman divergences.
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We require that the Jeffreys divergence between mixtures be finite in order to approximate the KL
between mixtures by a Bregman divergence. We loosely derive this observation (Careful derivations
will be reported elsewhere) using two different approaches:

• First, continuous mixture distributions have smooth densities that can be arbitrarily closely
approximated using a single distribution (potentially multi-modal) belonging to the Polynomial
Exponential Families [53,54] (PEFs). A polynomial exponential family of order D has log-likelihood
l(x; θ) ∝ ∑D

i=1 θixi: Therefore, a PEF is an exponential family with polynomial sufficient statistics
t(x) = (x, x2, . . . , xD). However, the log-normalizer FD(θ) = log

∫
exp(θt(x))dx of a D-order

PEF is not available in closed-form: It is computationally intractable. Nevertheless, the KL
between two mixtures m(x) and m′(x) can be theoretically approximated closely by a Bregman
divergence between the two corresponding PEFs: KL(m(x) : m′(x)) � KL(p(x; θ) : p(x; θ′)) =
BFD(θ

′:θ), where θ and θ′ are the natural parameters of the PEF family {p(x; θ)} approximating
m(x) and m′(x), respectively (i.e., m(x) � p(x; θ) and m′(x) � p(x; θ′)). Notice that the Bregman
divergence of PEFs has necessarily finite value but the KL of two smooth mixtures can potentially
diverge (infinite value), hence the conditions on Jeffreys divergence to be finite.

• Second, consider two finite mixtures m(x) = ∑k
i=1 wi pi(x) and m′(x) = ∑k′

j=1 w′
j p

′
j(x) of k and

k′ components (possibly with heterogeneous components pi(x)’s and p′j(x)’s), respectively.
In information geometry, a mixture family is the set of convex combination of fixed component
densities. Thus in statistics, a mixture is understood as a convex combination of parametric
components while in information geometry a mixture family is the set of convex combination
of fixed components. Let us consider the mixture families {g(x; (w, w′))} generated by the
D = k + k′ fixed components p1(x), . . . , pk(x), p′1(x), . . . , p′k′(x):{

g(x; (w, w′)) =
k

∑
i=1

wi pi(x) +
k′

∑
j=1

w′
j p

′
j(x) :

k

∑
i=1

wi +
k′

∑
j=1

w′
j = 1

}

We can approximate arbitrarily finely (with respect to total variation) mixture m(x) for any ε > 0
by g(x; α) � (1 − ε)m(x) + εm′(x) with α = ((1 − ε)w, εw′) (so that ∑k+k′

i=1 αi = 1) and m′(x) �
g(x; α′) = εm(x) + (1− ε)m′(x) with α′ = (εw, (1− ε)w′) (and ∑k+k′

i=1 α′i = 1). Therefore KL(m(x) :
m′(x)) � KL(g(x; α) : g(x; α′)) = BF∗(α : α′), where F∗(α) =

∫
g(x; α) log g(x; α)dx is the Shannon

information (negative Shannon entropy) for the composite mixture family. Again, the Bregman
divergence BF∗(α : α′) is necessarily finite but KL(m(x) : m′(x)) between mixtures may be
potentially infinite when the KL integral diverges (hence, the condition on Jeffreys divergence
finiteness). Interestingly, this Shannon information can be arbitrarily closely approximated when
considering isotropic Gaussians [13]. Notice that the convex conjugate F(θ) of the continuous
Shannon neg-entropy F∗(η) is the log-sum-exp function on the inverse soft map.

References

1. Huang, Z.K.; Chau, K.W. A new image thresholding method based on Gaussian mixture model.
Appl. Math. Comput. 2008, 205, 899–907.

2. Seabra, J.; Ciompi, F.; Pujol, O.; Mauri, J.; Radeva, P.; Sanches, J. Rayleigh mixture model for plaque
characterization in intravascular ultrasound. IEEE Trans. Biomed. Eng. 2011, 58, 1314–1324.

3. Julier, S.J.; Bailey, T.; Uhlmann, J.K. Using Exponential Mixture Models for Suboptimal Distributed Data
Fusion. In Proceedings of the 2006 IEEE Nonlinear Statistical Signal Processing Workshop, Cambridge,
UK, 13–15 September 2006; IEEE: New York, NY, USA, 2006; pp. 160–163.

4. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & Sons: Hoboken, NJ, USA, 2012.
5. Banerjee, A.; Merugu, S.; Dhillon, I.S.; Ghosh, J. Clustering with Bregman divergences. J. Mach. Learn. Res.

2005, 6, 1705–1749.

309



Entropy 2016, 18, 442

6. Watanabe, S.; Yamazaki, K.; Aoyagi, M. Kullback Information of Normal Mixture is Not an Analytic Function;
Technical Report of IEICE Neurocomputing; The Institute of Electronics, Information and Communication
Engineers, Tokyo, Japan, 2004; pp. 41–46. (In Japanese)

7. Michalowicz, J.V.; Nichols, J.M.; Bucholtz, F. Calculation of differential entropy for a mixed Gaussian
distribution. Entropy 2008, 10, 200–206.

8. Pichler, G.; Koliander, G.; Riegler, E.; Hlawatsch, F. Entropy for singular distributions. In Proceedings of
the IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014;
pp. 2484–2488.

9. Huber, M.F.; Bailey, T.; Durrant-Whyte, H.; Hanebeck, U.D. On entropy approximation for Gaussian
mixture random vectors. In Proceedings of the IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, Seoul, Korea, 20–22 August 2008; IEEE: New York, NY, USA, 2008;
pp. 181–188.

10. Yamada, M.; Sugiyama, M. Direct importance estimation with Gaussian mixture models. IEICE Trans.
Inf. Syst. 2009, 92, 2159–2162.

11. Durrieu, J.L.; Thiran, J.P.; Kelly, F. Lower and upper bounds for approximation of the Kullback-Leibler
divergence between Gaussian Mixture Models. In Proceedings of the IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30 March 2012; IEEE: New York, NY,
USA, 2012; pp. 4833–4836.

12. Schwander, O.; Marchand-Maillet, S.; Nielsen, F. Comix: Joint estimation and lightspeed comparison of
mixture models. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2016, Shanghai, China, 20–25 March 2016; pp. 2449–2453.

13. Moshksar, K.; Khandani, A.K. Arbitrarily Tight Bounds on Differential Entropy of Gaussian Mixtures.
IEEE Trans. Inf. Theory 2016, 62, 3340–3354.

14. Mezuman, E.; Weiss, Y. A Tight Convex Upper Bound on the Likelihood of a Finite Mixture. arXiv 2016,
arXiv:1608.05275.

15. Amari, S.-I. Information Geometry and Its Applications; Springer: Tokyo, Japan, 2016; Volume 194.
16. Nielsen, F.; Sun, K. Guaranteed Bounds on the Kullback–Leibler Divergence of Univariate Mixtures.

IEEE Signal Process. Lett. 2016, 23, 1543–1546.
17. Nielsen, F.; Garcia, V. Statistical exponential families: A digest with flash cards. arXiv 2009, arXiv:0911.4863.
18. Calafiore, G.C.; El Ghaoui, L. Optimization Models; Cambridge University Press: Cambridge, UK, 2014.
19. Shen, C.; Li, H. On the dual formulation of boosting algorithms. IEEE Trans. Pattern Anal. Mach. Intell.

2010, 32, 2216–2231.
20. Beck, A. Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB; Society

for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2014.
21. Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004.
22. De Berg, M.; van Kreveld, M.; Overmars, M.; Schwarzkopf, O.C. Computational Geometry; Springer:

Heidelberg, Germany, 2000.
23. Setter, O.; Sharir, M.; Halperin, D. Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of

Envelopes in Space; Springer: Heidelberg, Germany, 2010.
24. Devillers, O.; Golin, M.J. Incremental algorithms for finding the convex hulls of circles and the lower

envelopes of parabolas. Inf. Process. Lett. 1995, 56, 157–164.
25. Nielsen, F.; Yvinec, M. An output-sensitive convex hull algorithm for planar objects. Int. J. Comput.

Geom. Appl. 1998, 8, 39–65.
26. Nielsen, F.; Nock, R. Entropies and cross-entropies of exponential families. In Proceedings of the 17th IEEE

International Conference on Image Processing (ICIP), Hong Kong, China, 26–29 September 2010; IEEE:
New York, NY, USA, 2010; pp. 3621–3624.

27. Sharir, M.; Agarwal, P.K. Davenport-Schinzel Sequences and Their Geometric Applications; Cambridge
University Press: Cambridge, UK, 1995.

28. Bronstein, M. Algorithms and computation in mathematics. In Symbolic Integration. I. Transcendental
Functions; Springer: Berlin, Germany, 2005.

29. Carreira-Perpinan, M.A. Mode-finding for mixtures of Gaussian distributions. IEEE Trans. Pattern Anal.
Mach. Intell. 2000, 22, 1318–1323.

310



Entropy 2016, 18, 442

30. Aprausheva, N.N.; Sorokin, S.V. Exact equation of the boundary of unimodal and bimodal domains of
a two-component Gaussian mixture. Pattern Recognit. Image Anal. 2013, 23, 341–347.

31. Learned-Miller, E.; DeStefano, J. A probabilistic upper bound on differential entropy. IEEE Trans. Inf. Theory
2008, 54, 5223–5230.

32. Amari, S.-I. α-Divergence Is Unique, Belonging to Both f -Divergence and Bregman Divergence Classes.
IEEE Trans. Inf. Theory 2009, 55, 4925–4931.

33. Cichocki, A.; Amari, S.I. Families of Alpha- Beta- and Gamma-Divergences: Flexible and Robust Measures
of Similarities. Entropy 2010, 12, 1532–1568.

34. Póczos, B.; Schneider, J. On the Estimation of α-Divergences. In Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011; pp. 609–617.

35. Nielsen, F.; Nock, R. On Rényi and Tsallis entropies and divergences for exponential families. arXiv 2011,
arXiv:1105.3259.

36. Minka, T. Divergence Measures and Message Passing; Technical Report MSR-TR-2005-173; Microsoft Research:
Cambridge, UK, 2005.

37. Améndola, C.; Drton, M.; Sturmfels, B. Maximum Likelihood Estimates for Gaussian Mixtures Are
Transcendental. arXiv 2015, arXiv:1508.06958.

38. Hellinger, E. Neue Begründung der Theorie quadratischer Formen von unendlichvielen Veränderlichen.
J. Reine Angew. Math. 1909, 136, 210–271. (In German)

39. Van Erven, T.; Harremos, P. Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inf. Theory
2014, 60, 3797–3820.

40. Nielsen, F.; Nock, R. A closed-form expression for the Sharma-Mittal entropy of exponential families.
J. Phys. A Math. Theor. 2012, 45, 032003.

41. Nielsen, F.; Nock, R. On the Chi Square and Higher-Order Chi Distances for Approximating f -Divergences.
IEEE Signal Process. Lett. 2014, 21, 10–13.

42. Nielsen, F.; Boltz, S. The Burbea-Rao and Bhattacharyya centroids. IEEE Trans. Inf. Theory 2011, 57,
5455–5466.

43. Jarosz, W. Efficient Monte Carlo Methods for Light Transport in Scattering Media. Ph.D. Thesis, University
of California, San Diego, CA, USA, 2008.

44. Fujisawa, H.; Eguchi, S. Robust parameter estimation with a small bias against heavy contamination.
J. Multivar. Anal. 2008, 99, 2053–2081.

45. Havrda, J.; Charvát, F. Quantification method of classification processes. Concept of structural α-entropy.
Kybernetika 1967, 3, 30–35.

46. Liang, X. A Note on Divergences. Neural Comput. 2016, 28, 2045–2062.
47. Lin, J. Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 1991, 37, 145–151.
48. Endres, D.M.; Schindelin, J.E. A new metric for probability distributions. IEEE Trans. Inf. Theory 2003, 49,

1858–1860.
49. Nielsen, F.; Boissonnat, J.D.; Nock, R. On Bregman Voronoi diagrams. In Proceedings of the Eighteenth

Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, LA, USA, 7–9 January 2007;
Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007; pp. 746–755.

50. Boissonnat, J.D.; Nielsen, F.; Nock, R. Bregman Voronoi diagrams. Discret. Comput. Geom. 2010, 44, 281–307.
51. Foster, D.V.; Grassberger, P. Lower bounds on mutual information. Phys. Rev. E 2011, 83, 010101.
52. Nielsen, F.; Sun, K. PyKLGMM: Python Software for Computing Bounds on the Kullback-Leibler

Divergence between Mixture Models. 2016. Available online: https://www.lix.polytechnique.fr/~nielsen/
KLGMM/ (accessed on 6 December 2016).

53. Cobb, L.; Koppstein, P.; Chen, N.H. Estimation and moment recursion relations for multimodal
distributions of the exponential family. J. Am. Stat. Assoc. 1983, 78, 124–130.

54. Nielsen, F.; Nock, R. Patch matching with polynomial exponential families and projective divergences.
In Proceedings of the 9th International Conference Similarity Search and Applications (SISAP), Tokyo,
Japan, 24–26 October 2016.

c© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

311



entropy

Article

A Sequence of Escort Distributions and
Generalizations of Expectations on
q-Exponential Family

Hiroshi Matsuzoe

Department of Computer Science and Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan;
matsuzoel@nitech.ac.jp; Tel.: +81-52-735-5143

Academic Editors: Frédéric Barbaresco and Frank Nielsen
Received: 26 October 2016; Accepted: 19 December 2016; Published: 25 December 2016

Abstract: In the theory of complex systems, long tailed probability distributions are often discussed.
For such a probability distribution, a deformed expectation with respect to an escort distribution is
more useful than the standard expectation. In this paper, by generalizing such escort distributions,
a sequence of escort distributions is introduced. As a consequence, it is shown that deformed
expectations with respect to sequential escort distributions effectively work for anomalous statistics.
In particular, it is shown that a Fisher metric on a q-exponential family can be obtained from
the escort expectation with respect to the second escort distribution, and a cubic form (or an
Amari–Chentsov tensor field, equivalently) is obtained from the escort expectation with respect
to the third escort distribution.
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1. Introduction

Long tailed probability distributions and their related probability distributions are important
objects in anomalous statistical physics (cf. [1–3]). For such long tailed probability distributions,
the standard expectation does not exist in general. Therefore, the notion of escort distribution has
been introduced [4]. Since an escort distribution gives a suitable weight for tail probability, the escort
expectation which is the expectation with respect to an escort distribution is more useful than the
standard one.

In anomalous statistics, a deformed exponential function and a deformed logarithm function play
essential roles. In fact, a deformed exponential family is an important statistical model in anomalous
statistics. Such a statistical model is described by such a deformed exponential function. In particular,
the set of all q-normal distributions (or Student’s t-distributions, equivalently) is a q-exponential family,
which is described by a q-deformed exponential function [5] (see also [6,7]).

On the other hand, a generalized score function is defined from a deformed logarithm function.
In the previous works, the author showed that a deformed score function is unbiased with respect to
the escort expectation [8,9]. This implies that a deformed score function is regarded as an estimating
function on a deformed exponential family. In addition, in information geometry, it is known that
a deformed exponential family has a statistical manifold structure. Then a deformed score function
is regarded as a tangent vector on this statistical manifold [6,10]. Therefore, properties of escort
expectations are closely related to geometric structures on a deformed exponential family.

Entropy 2017, 19, 7 312 www.mdpi.com/journal/entropy
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In this paper, we introduce a sequence of escort distributions, then we consider a sequential
structure of escort expectations. It is known that a deformed exponential family naturally has at
least three kind of different statistical manifold structures [6,11]. Then we show that such statistical
manifold structures can be obtained from a sequential structure of escort expectations. In particular,
we show that a Fisher metric on a q-exponential family can be obtained from the deformed expectations
with respect to the second escort distribution, and a cubic form (or an Amari–Chentsov tensor field,
equivalently) is obtained from the deformed expectations with respect to the third escort distribution.

This paper is written based on the proceeding paper [7]. However, this paper focuses on
deformed expectations of a q-exponential family, whereas the previous paper focused on deformed
independences. We remark that several authors have been studying deformed expectations recently.
See [12,13], for example.

2. Deformed Exponential Families

In this paper, we assume that all objects are smooth for simplicity. Let us review preliminary facts
about deformed exponential functions and deformed exponential families. For more details, see [2,6],
for example. Historically, Tsallis [14] introduced the notion of q-exponential function and Naudts [5]
introduced the notion of q-exponential family together with a further generalization. Such a historical
note is provided in [2].

Let R++ be the set of all positive real numbers, R++ := {x ∈ R|x > 0}. Let χ be a strictly
increasing function from R++ to R++. We define a χ-logarithm function or a deformed logarithm
function by

lnχ s :=
∫ s

1

1
χ(t)

dt.

The inverse of lnχ s is called a χ-exponential function or a deformed exponential function, which is
defined by

expχ t := 1 +
∫ t

0
u(s)ds,

where the function u(s) is given by u(lnχ s) = χ(s).
From now on, we suppose that χ is a power function, that is, χ(t) = tq. Then the deformed

logarithm and the deformed exponential are defined by

lnq s :=
s1−q − 1

1 − q
, (s > 0),

expq t := (1 + (1 − q)t)
1

1−q , (1 + (1 − q)t > 0).

We say that lnq s is a q-logarithm function and expq t is a q-exponential function. In this case,
the function u(s) is given by

u(s) = (1 + (1 − q)s)
q

1−q = {expq s}q.

By taking a limit q → 1, these functions coincide with the standard logarithm ln s and the standard
exponential exp t, respectively.

A statistical model Sq is called a q-exponential family if

Sq :=

{
p(x, θ)

∣∣∣∣∣p(x; θ) = expq

[
n

∑
i=1

θiFi(x)− ψ(θ)

]
, θ ∈ Θ ⊂ Rn

}
, (1)

where F1(x), . . . , Fn(x) are functions on a sample space Ω, θ = t(θ1, . . . , θn) is a parameter, and ψ(θ)

is the normalization with respect to the parameter θ. Under suitable conditions, Sq is regarded as a
manifold with a local coordinate system {θ1, . . . , θn}. In this case, we call {θi} a natural coordinate system.
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In this paper, we focus on the q-exponential case. However, many results for the q-exponential
family can be generalized for the χ-exponential family (cf. [6,8]). We remark that a q-exponential
family and a χ-exponential family have further generalizations. See [15], for example.

Example 1 (Student’s t-distribution (cf. [2,6,7])). Fix a number q (1 < q < 1 + 2/d, d ∈ N), and set
ν = −d − 2/(1 − q). We define a d-dimensional Student’s t-distribution with degree of freedom ν or a
q-Gaussian distribution by

pq(x; μ, Σ) :=
Γ
(

1
q−1

)
(πν)

d
2 Γ

(
ν
2
)√

det(Σ)

[
1 +

1
ν

t(x − μ)Σ−1(x − μ)

] 1
1−q

,

where X = t(X1, . . . , Xd) is a random vector on Rd, μ = t(μ1, . . . , μd) is a location vector on Rd and Σ is a
scale matrix on Sym+(d). For simplicity, we assume that Σ is invertible. Otherwise, we should choose a suitable
basis {vα} on Sym+(d) such that Σ = ∑α wαvα. Then, the set of all Student’s t-distributions is a q-exponential
family. In fact, setting parameters by

zq =
(πν)

d
2 Γ

(
ν
2
)√

det(Σ)

Γ
(

1
q−1

) , R̃ =
zq−1

q

(1 − q)d + 2
Σ−1, and θ = 2R̃μ, (2)

we have

pq(x; μ, Σ) =
1
zq

[
1 +

1
ν

t(x − μ)Σ−1(x − μ)

] 1
1−q

=

[(
1
zq

)1−q
− 1 − q

(1 − q)d + 2

(
1
zq

)1−q
t(x − μ)Σ−1(x − μ)

] 1
1−q

= expq

[
−t(x − μ)R̃(x − μ) + lnq

1
zq

]
= expq

[
d

∑
i=1

θixi −
d

∑
i=1

R̃iix2
i − 2 ∑

i<j
R̃ijxixj − 1

4
tθR̃−1θ + lnq

1
zq

]
.

Since θ ∈ Rd and R̃ ∈ Sym+(d), the set of all Student’s t-distributions is a d(d + 3)/2-dimensional
q-exponential family. The normalization ψ(θ) is given by

ψ(θ) =
1
4

tθR̃−1θ − lnq
1
zq

.

A univariate Student’s t-distribution is a well-known probability distribution in elementary
statistics. We denote it by

tν(x; μ, σ) :=
1

Zq
expq

[
− (x − μ)2

(3 − q)σ2

]
, (3)

where μ ∈ R is a location parameter, σ ∈ R++ is a scale parameter, and Zq is the normalization
defined by

Zq =

√
3 − q
q − 1

Beta
(

3 − q
2(q − 1)

,
1
2

)
σ.

In this case, the degree of freedom is ν = (3 − q)/(q − 1). Conversely, the parameter q is give by

q =
ν + 3
ν + 1

. (4)
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3. Escort Distributions and Generalizations of Expectations

In anomalous statistics, a generalized expectation, called an escort expectation, is often discussed
since the standard expectation does not exist in general (cf. [2,5,6]). In this section, we recall
generalizations of expectations and introduce a sequential structure of escort distributions.

Let Sq be a q-exponential family. For a given p(x; θ) ∈ Sq we define the q-escort distribution Pq(x; θ)

of p(x; θ) and the normalized q-escort distribution Pesc
q (x; θ) by

Pq(x; θ) := Pq,(1)(x; θ) := {p(x; θ)}q,

Pesc
q (x; θ) :=

1
Zq(p)

{p(x; θ)}q, where Zq(p) =
∫

Ω
{p(x; θ)}qdx,

respectively. For a q-exponential family Sq = {pq(x; θ)}, the set of normalized escort distributions
Sq′ = {Pesc

q (x; θ)} is a q′-exponential family with q′ = (2q − 1)/q.

Example 2. Let tν(x; μ, σ) be a univariate Student’s t-distribution with degree of freedom ν. Then its
normalized escort distribution is also a univariate Student’s t-distribution with degree of freedom ν + 2.
In fact, from Equation (4), a direct calculation shows that

q′ = 2q − 1
q

=
ν + 5
ν + 3

.

This implies that the degree of freedom ν′ = ν + 2. Therefore, we obtain a sequence of escort distributions from a
given Student’s t-distribution tν:

tν → tν+2 → tν+4 → · · · .

This sequence is called a τ-sequence, and the procedure to obtain from a given t-distribution to another
t-distribution through an escort distribution is called the τ-transformation [16].

For a given pq(x; θ) ∈ Sq, we can define the escort of an escort distribution

P̃q(x; θ) := Pq,(2)(x; θ) := q{Pq(x; θ)}q′ = q{pq(x; θ)}2q−1.

We call P̃q(x; θ) the second escort distribution of pq(x; θ). The coefficient q before {pq(x; θ)}2q−1

comes from considerations of U-information geometry [17]. We will discuss in the latter part of
Section 5.

Similarly, we can define the n-th escort distribution Pq,(n)(x; θ) from the sequence of
escort distributions:

Pq,(n)(x; θ) := {q(2q − 1) · · · ((n − 1)q − (n − 2))}{pq(x; θ)}nq−(n−1). (5)

Let f (x) be a function on Ω. The q-expectation Eq,p[ f (x)] and the normalized q-expectation Eesc
q,p[ f (x)]

with respect to p(x; θ) ∈ Sq are defined by

Eq,p[ f (x)] :=
∫

Ω
f (x)Pq(x; θ)dx,

Eesc
q,p[ f (x)] :=

∫
Ω

f (x)Pesc
q (x; θ)dx,

respectively. We denote by Ẽq,p[ f (x)] the expectation with respect to the second escort distribution
P̃q(x; θ), that is,

Ẽq,p[ f (x)] :=
∫

Ω
f (x)P̃q(x; θ)dx = q

∫
Ω

f (x){pq(x; θ)}2q−1dx.
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Since a differential of a power function is also a power function, we can give a characterization
for escort distributions.

Proposition 1. Suppose that Sq is a q-exponential family defined by (1). Then the n-th escort distribution
is given by the n-th differential of q-exponential function. That is, by setting u(t) = (expq t)′, we have the
following formula:

pq(x; θ) = expq

(
n

∑
i=1

θiFi(x)− ψ(θ)

)
,

Pq(x; θ) = Pq,(1)(x; θ) = u

(
n

∑
i=1

θiFi(x)− ψ(θ)

)
,

P̃q(x; θ) = Pq,(2)(x; θ) = u′
(

n

∑
i=1

θiFi(x)− ψ(θ)

)
,

...
...

Pq,(n)(x; θ) = u(n−1)

(
n

∑
i=1

θiFi(x)− ψ(θ)

)
,

...
...

Proof. Since a q-exponential function is expq(x) = (1 + (1 − q))1/(1−q), its differential is given by

u(x) =
1 − q
1 − q

(1 + (1 − q)x)
1

1−q −1
= (1 + (1 − q)x)

q
1−q = {expq x}q.

Therefore, we obtain Pq(x; θ) = u
(
∑n

i=1 θiFi(x)− ψ(θ)
)
.

By induction, the n-th differential of u(x) coincides with the n-th escort distribution Pq,(n), which is
given by Equation (5).

4. Statistical Manifolds and Their Generalized Conformal Structures

In this section, we us review the geometry of statistical manifolds. For more details about the
geometry of statistical manifolds, see [18,19].

Let (S, g) be a Riemannian manifold and ∇ be a torsion-free affine connection on S. We say that
the triplet (S,∇, g) is a statistical manifold if ∇g is totally symmetric. In this case, we can define a totally
symmetric (0, 3)-tensor field by

C(X, Y, Z) := (∇X g)(Y, Z) = Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ),

where X, Y and Z are arbitrary vector fields on S. The tensor field C is called a cubic form or an
Amari–Chentsov tensor field.

The notion of statistical manifold was introduced by Lauritzen [20]. He called the triplet (S, g, C)
a statistical manifold. In this paper, the definition is followed to Kurose [18]. Though these two
definitions are different, the other statistical manifold structure can be obtained from a given one,
However, the motivation for the notion of conformal equivalence using (S, g, C) is different from that
one using (S,∇, g), which we will discuss in the latter part of this section.

For a given statistical manifold (S,∇, g), we can define another torsion-free affine connection ∇∗

on S by
Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗

XZ).
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The connection ∇∗ is called the dual connection of ∇ with respect to g. The triplet (S,∇∗, g) is also
a statistical manifold, which is called the dual statistical manifold of (S,∇, g). The cubic form is given by
the difference of two affine connections ∇∗ and ∇:

C(X, Y, Z) = g(∇∗
XY −∇XY, Z).

We define generalized conformal structures for statistical manifolds followed to Kurose [18].
Two statistical manifolds (S,∇, g) and (S, ∇̄, ḡ) are said to be 1-conformally equivalent if there exists
a function λ : S → R++ such that

ḡ(X, Y) = λg(X, Y), (6)

∇̄XY = ∇XY − g(X, Y)gradg(ln λ), (7)

where gradg(ln λ) is the gradient vector field of ln λ with respect to g, that is, g(X, ln λ) = X(ln λ).
We say that (S,∇, g) is 1-conformally flat if (S,∇, g) is locally 1-conformally equivalent to a flat
statistical manifold.

Two statistical manifolds (S,∇, g) and (S, ∇̄, ḡ) are said to be (−1)-conformally equivalent if there
exists a function λ : S → R++ such that

ḡ(X, Y) = λg(X, Y),

∇̄XY = ∇XY + d(ln λ)(Y)X + d(ln λ)(X)Y, (8)

where d(ln λ)(X) = X(ln λ). If two statistical manifolds (S,∇, g) and (S, ∇̄, ḡ) are
1-conformally equivalent, then their dual statistical manifolds (S,∇∗, g) and (S, ∇̄∗, ḡ) are
(−1)-conformally equivalent.

Proposition 2. If two statistical manifolds (S,∇, g) and (S, ∇̄, ḡ) are 1-conformally equivalent, then their
cubic forms have the following relation:

1
λ

C̄(X, Y, Z) = C(X, Y, Z) + g(Y, Z)d(ln λ)(X) + g(Z, X)d(ln λ)(Y) + g(X, Y)d(ln λ)(Z).

Proof. From Equations (7) and (8), we obtain

∇̄XY = ∇XY + d(ln λ)(Y)X + d(ln λ)(X)Y + g(X, Y)gradg(ln λ).

By taking an inner product with respect to g, we obtain the result.

5. Statistical Manifold Structures on q-Exponential Families

In this section, we consider statistical manifold structures on a q-exponential family. It is known
that a q-exponential family naturally has at least three kinds of statistical manifold structures (cf. [6,8]).
We reformulate these structures from the viewpoint of the sequence of escort distributions. In this
paper, we omit the details about information geometry. See [21,22] for further details.

Firstly, we review basic facts about q-exponential family. Let Sq be a q-exponential family.
The normalization ψ(θ) on Sq is convex, but may not be strictly convex. In fact, we obtain the
following proposition.
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Proposition 3. Let Sq = {p(x; θ)} be a q-exponential family. Then the normalization function ψ(θ) is convex.

Proof. Set u(x) = (expq x)′ and ∂i = ∂/∂θi. Then we have

∂i p(x; θ) = u
(
∑ θkFk(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ)),

∂i∂j p(x; θ) = u′
(
∑ θkFk(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ))(Fj(x)− ∂jψ(θ))

− u
(
∑ θkFk(x)− ψ(θ)

)
∂i∂jψ(θ). (9)

Since ∂i
∫

Ω p(x; θ)dx =
∫

Ω ∂i p(x; θ)dx = 0 and
∫

Ω ∂i∂j p(x; θ)dx = 0, we have

Zq(p) =
∫

Ω
{(p(x; θ)}qdx =

∫
Ω

u
(
∑ θkFk(x)− ψ(θ)

)
dx,

∂i∂jψ(θ) =
1

Zq(p)

∫
Ω

u′
(
∑ θkFk(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ))(Fj(x)− ∂jψ(θ))dx. (10)

For an arbitrary vector c = t(c1, c2, . . . , cn) ∈ Rn, since Zq(p) > 0 and u′′(x) > 0, we have

n

∑
i,j=1

cicj(∂i∂jψ(θ)) =
1

Zq(p)

∫
Ω

u′′
(

n

∑
k=1

θkFk(x)− ψ(θ)

){
n

∑
i=1

ci(Fi(x)− ∂iψ(θ))

}2

dx ≥ 0.

This implies that the Hessian matrix (∂i∂jψ(θ)) is semi-positive definite.

We assume that ψ is strictly convex in this paper. Under this assumption, we can induce many
geometric structures for a q-exponential family.

Since ψ is strictly convex, we can define a Riemannian metric and a cubic form by

gq
ij(θ) := ∂i∂jψ(θ),

Cq
ijk(θ) := ∂i∂j∂kψ(θ).

We call gq and Cq a q-Fisher metric and a q-cubic form, respectively [23,24]. Since gq is a Hessian of
a function ψ, gq is a Hessian metric, and ψ is the potential of gq with respect to the natural coordinate
{θi} [25].

For a fixed real number α, set

gq
(
∇q(α)

X Y, Z
)

:= gq
(
∇q(0)

X Y, Z
)
− α

2
Cq (X, Y, Z) , (11)

where ∇q(0) is the Levi-Civita connection with respect to gq. Since gq is a Hessian metric, from standard
arguments in Hessian geometry [25], ∇q(e) := ∇q(1) and ∇q(m) := ∇q(−1) are flat affine connections
and mutually dual with respect to gq. Therefore, the triplets (Sq,∇q(e), gq) and (Sq,∇q(m), gq) are flat
statistical manifolds, and the quadruplet (Sq, gq,∇q(e),∇q(m)) is a dually flat space.

Under q-expectations, we have the following proposition (cf. [10]).

Proposition 4. For Sq a q-exponential family, (1) Set ηi = Eesc
q,p[Fi(x)]. Then {ηi} is a ∇q(m)-affine coordinate

system such that

gq

(
∂

∂θi ,
∂

∂ηj

)
= δ

j
i .

(2) Set φ(η) = Eesc
q,p[logq p(x; θ)], then φ(η) is the potential of gq with respect to {ηi}.
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Next, let us consider the standard Fisher metric and the standard cubic form. Suppose that
S := {p(x; θ)} is a statistical model. Set pθ := p(x; θ), for simplicity. We define the (standard) Fisher
metric gF on Sq by

gF
ij(θ) :=

∫
Ω
(∂i ln pθ)(∂j ln pθ)pθdx,

and the (standard) cubic form or the Amari–Chentsov vector field CF by

CF
ijk(θ) :=

∫
Ω
(∂i ln pθ)(∂j ln pθ)(∂j ln pθ)pθdx.

From similar arguments of (11), we can define an α-connection ∇(α) on Sq, and we can obtain a
statistical manifold structure (Sq,∇(α), gF). In this case, (Sq,∇(α), gF) is called an invariant statistical
manifold [21,22].

A Fisher metric and a cubic form have the following representation using a sequence of
escort distributions,

Theorem 1. Let Sq be a q-exponential family. For p(x; θ) ∈ Sq, suppose that Pq,(2)(x; θ) and Pq,(3)(x; θ) are
the second and the third escort distribution of p(x; θ), respectively. Then the Fisher metric gF and the cubic form
CF are given as follows:

gF
ij(θ) =

1
q

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)Pq,(2)(x; θ)dx, (12)

CF
ijk(θ) =

1
q(2q − 1)

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)(∂k lnq pθ)Pq,(3)(x; θ)dx. (13)

Proof. Differentiating the q-logarithm, we have

∂i lnq pθ = ∂i

(
p1−q

θ − 1
1 − q

)
= p−q

θ ∂i p(θ) = p1−q
θ ∂i ln p(θ).

Therefore, we obtain

1
q

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)Pq,(2)(x; θ)dx =

∫
Ω

p1−q
θ (∂i ln pθ)p1−q

θ (∂j ln pθ)p2q−1
θ (x; θ)dx

=
∫

Ω
(∂i ln pθ)(∂j ln pθ)pθ(x; θ)dx

= gF
ij(θ).

By a similar argument, we obtain the representation for CF.

We define an α-divergence D(α) with α = 1 − 2q and a q-relative entropy (or a normalized Tsallis
relative entropy) DT

q by

D(1−2q)(p(x), r(x)) =
1
q

Eq,p[lnq p(x)− lnq r(x)] =
1 − ∫

Ω p(x)qr(x)1−qdx
q(1 − q)

, (14)

DT
q (p(x), r(x)) = Eesc

q,p[lnq p(x)− lnq r(x)] =
1 − ∫

Ω p(x)qr(x)1−qdx
(1 − q)Zq(p)

, (15)

respectively. It is known that the α-divergence D(1−2q)(r, p) induces a statistical manifold structure
(Sq, gF,∇(2q−1)), where gF is the Fisher metric on Sq and ∇(2q−1) is the α-connection with α = 2q − 1,
and the q-relative entropy DT

q (r, p) induces (Sq, g,∇q(e)).
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Theorem 2 (cf. [10,24]). For a q-exponential family Sq, two statistical manifolds (Sq, gF,∇(2q−1)) and
(Sq, g,∇q(e)) are 1-conformally equivalent. In particular, an invariant statistical manifold (Sq, gF,∇(2q−1)) is
1-conformally flat. Riemannian metrics and cubic forms have the following relations:

gq
ij(θ) =

q
Zq(p)

gF
ij(θ), (16)

Cq
ijk(θ) =

q
Zq(p)

(2q − 1)CF
ijk(θ)

− q
Zq(p)

{
gF

ij∂k ln Zq(p) + gF
jk(θ)∂i ln Zq(p) + gF

ki(θ)∂j ln Zq(p)
}

. (17)

Proof. The results were essentially obtained in [10]. However, we give a simpler proof for
Equations (16) and (17). The key idea is a sequence of escort distributions and the escort representations
of gF and CF in Theorem 1.

From Equation (10), we directly obtain the conformal equivalence relation (16) using the escort
representation of gF in (12).

By differentiating (9) and taking an integration, we obtain

0 =
∫

Ω
u′′

(
∑ θl Fl(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ))(Fj(x)− ∂jψ(θ))(Fk(x)− ∂kψ(θ))dx

−
∫

Ω
u′

(
∑ θl Fl(x)− ψ(θ)

)
(Fk(x)− ∂kψ(θ))∂i∂jψ(θ)dx

−
∫

Ω
u′

(
∑ θl Fl(x)− ψ(θ)

)
(Fi(x)− ∂iψ(θ))∂j∂kψ(θ)dx

−
∫

Ω
u′

(
∑ θl Fl(x)− ψ(θ)

)
(Fj(x)− ∂jψ(θ))∂k∂iψ(θ)dx

−
∫

Ω
u
(
∑ θl Fl(x)− ψ(θ)

)
∂i∂j∂kψ(θ)dx.

Since Zq(p) =
∫

Ω Pq(x; θ)dx, we have

∂iZq(p) = ∂i

∫
Ω

Pq(x; θ)dx =
∫

Ω
∂iPq(x; θ)dx =

∫
Ω

P̃q(x; θ)(Fi(x)− ∂iψ(θ))dx.

From the escort representation of CF in (13), and Proposition 1, we obtain Equation (17) since
gq

ij(θ) = ∂i∂jψ(θ) and Cq
ijk(θ) = ∂i∂j∂kψ(θ).

We remark that the cubic form of (Sq, gF,∇(2q−1)) is not CF but (2q − 1)CF.
The difference of a α-divergence and a q-relative entropy is only the normalization q/Zq(p).

This implies that a normalization for probability density imposes a generalized conformal change for a
statistical model.

In the next part of this section, let us consider another statistical manifold on Sq (cf. [6,17,26]).
Recall that a Fisher metric gF has the following representation:

gF
ij(θ) =

∫
Ω
(∂i ln pθ)(∂j pθ)dx.

In information geometry, ∂i ln pθ is called an e-representation (exponential representation) of pθ ,
and ∂j pθ is called a m-representation (mixture representation). Intuitively, ∂i ln pθ and ∂j pθ are regarded
as tangent vectors on a statistical model. Hence a Fisher metric is regarded as a L2-inner product of
e- and m-representations.

Let us generalize e- and m-representations for a q-exponential family. For pθ ∈ Sq, we call ∂i lnq pθ

a q-score function. Then we define a Riemannian metric gM by

gM
ij (θ) =

∫
Ω
(∂i lnq pθ)(∂j pθ)dx. (18)
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By differentiating the above equation, we can define mutually dual torsion-free affine connections
∇M(e) and ∇M(m):

ΓM(e)
ij,k (θ) :=

∫
Ω
(∂i∂j lnq pθ)(∂k pθ)dx,

ΓM(m)
ij,k (θ) :=

∫
Ω
(∂k lnq pθ)(∂i∂j pθ)dx,

where ΓM(e)
ij,k and ΓM(m)

ij,k are the Christoffel symbols of ∇M(e) and ∇M(m) of the first kind, respectively.

It is known that gM is a Hessian metric, and the quadruplet (Sq, gM,∇M(e),∇M(m)) is a dually flat
space. In addition, a natural parameter {θi} is a ∇M(e)-affine coordinate sysem. Therefore, the cubic
form for (Sq,∇M(e), gM) is

CM
ijk(θ) = ΓM(m)

ij,k (θ). (19)

We remark that the statistical manifold structure (Sq,∇M(e), gM) is induced from a
β-divergence [17,26] (or a density power divergence [27]):

D1−q(p, r) :=
∫

Ω

{
p(x)

p(x)1−q − r(x)1−q

1 − q
− p(x)2−q − r(x)2−q

2 − q

}
dx. (20)

Theorem 3. For the statistical manifold structure (Sq,∇M(e), gM), the escort representations of the Riemannian
metric gM and the cubic form CM are given as follows:

gM
ij (θ) =

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)Pq(x; θ)dx, (21)

CM
ijk(θ) =

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)(∂k lnq pθ)P̃q(x; θ)dx. (22)

Proof. For the Riemannian metric gM, since ∂i pθ = (∂i lnq pθ)Pq(x; θ), we immediately obtain
Equation (21) from the definition of gM.

Let us consider the expression for cubic form (22). The q-score function ∂i lnq pθ is unbiased under
the q-expectation. In fact,

Eq,p[∂i lnq pθ ] =
∫

Ω
(∂j lnq pθ)Pq(x; θ)dx =

∫
Ω

∂j pθdx = 0.

From Equation (19), we obtain

CM
ijk(θ) = ΓM(m)

ij,k (x; θ)

=
∫

Ω
(∂k lnq pθ)(∂i∂j pθ)dx

=
∫

Ω
(∂k lnq pθ)∂i

{(
∂j lnq pθ

)
Pq(x; θ)

}
dx

= −∂ijψ(θ)
∫

Ω
(∂k lnq pθ)Pq(x; θ)dx +

∫
Ω
(∂k lnq pθ)(∂j lnq pθ){∂iPq(x; θ)}dx

=
∫

Ω
(∂k lnq pθ)(∂j lnq pθ)(∂i lnq pθ)P̃q(x; θ)dx.

We remark that Naudts [5] gave another generalization of Fisher metric gN , which is defined by

gN
ij (θ) :=

∫
Ω

1
Pesc

q (x; θ)
(∂i pθ)(∂j pθ)dx,
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The metric gN is conformally equivalent to gM with conformal factor Zq(pθ) =
∫

Ω{p(x; θ)}qdx.
That is, gN(θ) = Zq(pθ)gM(θ). (See also [6]). Naudts gave a further generalization of Fisher metric
and he showed a Cramér–Rao type bound theorem [5].

6. Concluding Remarks

In this paper, we introduced a sequence of escort distributions. Then we gave representations of
Riemannian metrics and cubic forms from a viewpoint of the sequence of escort distributions.

In particular, we can define the following (0, 2)-tensor fields on a q-exponential family. For pθ ∈ Sq,
set ηi = ∂iψ(θ).

(1) From the standard expectation, we obtain

g(0)ij (θ) := Gij(θ) :=
∫

Ω
(∂i lnq pθ)(∂j lnq pθ)pθdx

= Ep[(Fi(x)− ηi)(Fj(x)− ηj)].

The tensor G is a covariance matrix. However, G may not be important in anomalous statistics.
(2) From the q-expectation, we obtain

g(1)ij (θ) := gM
ij (θ) =

∫
Ω
(∂i lnq pθ)(∂j lnq pθ){pθ}qdx

=
∫

Ω
(∂i lnq pθ)(∂j lnq pθ)Pq(x; θ)dx

= Eq,p[(Fi(x)− ηi)(Fj(x)− ηj)].

The Riemannian metric gM is a Hessian metric, and it is induced from the β-divergence (20).
(3) From the expectation with respect to the second escort distribution, we obtain

g(2)ij (θ) := gF
ij(θ) =

∫
Ω
(∂i lnq pθ)(∂j lnq pθ){pθ}2q−1dx

=
1
q

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)P̃q(x; θ)dx

=
1
q

Eq,(2),p[(Fi(x)− ηi)(Fj(x)− ηj)].

gq
ij(θ) =

Zq(p)
q

gF
ij.

The Riemannian metric gF is a Fisher metric. Hence gF is invariant to the choice of reference
measure on Ω, but it is not a Hessian metric. In addition, gF is induced from the α-divergence (14).
The conformal Riemannian metric gq is a q-Fisher metric. It is a Hessian metric, and it is induced from
a normalized Tsallis relative entropy (15).

We may define a Riemannian metric and a cubic form from higher order escort expectations:

g(n)ij (θ) :=
∫

Ω
(∂i lnq pθ)(∂j lnq pθ)Pq,(n)(x; θ)dx,

C(n)
ij (θ) :=

∫
Ω
(∂i lnq pθ)(∂j lnq pθ)(∂k lnq pθ)Pq,(n+1)(x; θ)dx.

Then we obtain a sequence of statistical manifold structures.

(Sq, g(1), C(1)) → (Sq, g(2), C(2)) → · · · → (Sq, g(n), C(n)) → · · ·

However, the geometric meaning of this sequence is not clear at this moment. Elucidating
geometric properties of this sequence is a future problem.
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Abstract: This paper takes an information-geometric approach to the challenging issue of goodness-of-fit
testing in the high dimensional, low sample size context where—potentially—boundary effects dominate.
The main contributions of this paper are threefold: first, we present and prove two new theorems on
the behaviour of commonly used test statistics in this context; second, we investigate—in the novel
environment of the extended multinomial model—the links between information geometry-based
divergences and standard goodness-of-fit statistics, allowing us to formalise relationships which
have been missing in the literature; finally, we use simulation studies to validate and illustrate our
theoretical results and to explore currently open research questions about the way that discretisation
effects can dominate sampling distributions near the boundary. Novelly accommodating these
discretisation effects contrasts sharply with the essentially continuous approach of skewness and
other corrections flowing from standard higher-order asymptotic analysis.

Keywords: extended multinomial models; goodness-of-fit testing; information geometry

1. Introduction

We start by emphasising the threefold achievements of this paper, spelled out in detail in terms of
the paper’s section structure below. First, we present and prove two new theorems on the behaviour
of some standard goodness-of-fit statistics in the high dimensional, low sample size context, focusing
on behaviour “near the boundary” of the extended multinomial family. We also comment on the
methods of proof which allow explicit calculations of higher order moments in this context. Second,
working again explicitly in the extended multinomial context, we fill a hole in the literature by linking
information-geometric-based divergences and standard goodness-of-fit statistics. Finally, we use
simulation studies to explore discretisation effects that can dominate sampling distributions “near
the boundary”. Indeed, we illustrate and explore how—in the high dimensional, low sample size
context—all distributions are affected by boundary effects. We also use these simulation results to
explore currently open research questions. As can be seen, the overarching theme is the importance
of working in the geometry of the extended exponential family [1], rather than the traditional
manifold-based structure of information geometry.

In more detail, the paper extends and builds on the results of [2], and we use notation and
definitions consistently across these two papers. Both papers investigate the issue of goodness-of-fit
testing in the high dimensional sparse extended multinomial context, using the tools of Computational
Information Geometry (CIG) [1].
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Section 2 gives formal proofs of two results, Theorems 1 and 2, which were announced in [2]. These
results explore the sampling performance of standard goodness-of-fit statistics—Wald, Pearson’s χ2,
score and deviance—in the sparse setting. In particular, they look at the case where the data generation
process is “close to the boundary” of the parameter space where one or more cell probabilities vanish.
This complements results in much of the literature, where the centre of the parameter space—i.e.,
the uniform distribution—is often the focus of attention.

Section 3 starts with a review of the links between Information Geometry (IG) [3] and
goodness-of-fit testing. In particular, it looks at the power family of Cressie and Read [4,5] in terms of
the geometric theory of divergences. In the case of regular exponential families, these links have been
well-explored in the literature [6], as has the corresponding sampling behaviour [7]. What is novel here
is the exploration of the geometry with respect to the closure of the exponential family; i.e., the extended
multinomial model—a key tool in CIG. We illustrate how the boundary can dominate the statistical
properties in ways that are surprising compared to standard—and even high-order—analyses, which
are asymptotic in sample size.

Through simulation experiments, Section 4 explores the consequences of working in the
sparse multinomial setting, with the design of the numerical experiments being inspired by the
information geometry.

2. Sampling Distributions in the Sparse Case

One of the first major impacts that information geometry had on statistical practice was through
the geometric analysis of higher order asymptotic theory (e.g., [8,9]). Geometric interpretations
and invariant expressions of terms in the higher order corrections to approximations of sampling
distributions are a good example, [8] (Chapter 4). Geometric terms are used to correct for skewness and
other higher order moment (cumulant) issues in the sampling distributions. However, these correction
terms grow very large near the boundary [1,10]. Since this region plays a key role in modelling in the
sparse setting—the maximum likelihood estimator (MLE) often being on the boundary—extensions to
the classical theory are needed. This paper, together with [2], start such a development. This work
is related to similar ideas in categorical, (hierarchical) log–linear, and graphical models [1,11–13].
As stated in [13], “their statistical properties under sparse settings are still very poorly understood.
As a result, analysis of such data remains exceptionally difficult”.

In this section we show why the Wald—equivalently, the Pearson χ2 and score statistics—are
unworkable when near the boundary of the extended multinomial model, but that the deviance has a
simple, accurate, and tractable sampling distribution—even for moderate sample sizes. We also show
how the higher moments of the deviance are easily computable, in principle allowing for higher order
adjustments. However, we also make some observations about the appropriateness of these classical
adjustments in Section 4.

First, we define some notation, consistent with that of [2]. With i ranging over {0, 1, ..., k}, let
n = (ni) ∼ Multinomial (N, (πi)), where here each πi > 0. In this context, the Wald, Pearson’s χ2,
and score statistics all coincide, their common value, W, being

W :=
k

∑
i=0

(πi − ni/N)2

πi
≡ 1

N2

k

∑
i=0

n2
i

πi
− 1.

Defining π(α) := ∑i πα
i , we note the inequality, for each m ≥ 1,

π(−m) − (k + 1)m+1 ≥ 0,

in which equality holds if and only if πi≡1/(k+ 1)—i.e., iff (πi) is uniform. We then have the following
theorem, which establishes that the statistic W is unworkable as πmin := min(πi) → 0 for fixed k and N.
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Theorem 1. For k > 1 and N ≥ 6, the first three moments of W are:

E(W) =
k
N

, Var(W) =

{
π(−1) − (k + 1)2

}
+ 2k(N − 1)

N3

and E[{W − E(W)}3] given by
{

π(−2) − (k + 1)3
}
− (3k + 25− 22N)

{
π(−1) − (k + 1)2

}
+ g(k, N)

N5 ,

where g(k, N) = 4(N − 1)k(k + 2N − 5) > 0.
In particular, for fixed k and N, as πmin → 0

Var(W) → ∞ and γ(W) → +∞,

where γ(W) := E[{W − E(W)}3]/{Var(W)}3/2.

A detailed proof is found in Appendix A, and we give here an outline of its important features.
The machinery developed is capable of delivering much more than a proof of Theorem 1. As indicated
there, it provides a generic way to explicitly compute arbitrary moments or mixed moments of
multinomial counts, and could in principle be implemented by computer algebra. Overall, there are
four stages. First, a key recurrence relation is established; secondly, it is exploited to deliver moments
of a single cell count. Third, mixed moments of any order are derived from those of lower order,
exploiting a certain functional dependence. Finally, results are combined to find the first three moments
of W, higher moments being similarly obtainable.

The practical implication of Theorem 1 is that standard first (and higher-order) asymptotic
approximations to the sampling distribution of the Wald, χ2, and score statistics break down when
the data generation process is “close to” the boundary, where at least one cell probability is zero.
This result is qualitatively similar to results in [10], which shows how asymptotic approximations to
the distribution of the maximum likelihood estimate fail; for example, in the case of logistic regression,
when the boundary is close in terms of distances as defined by the Fisher information.

Unlike statistics considered in Theorem 1, the deviance has a workable distribution in the
same limit: that is, for fixed N and k as we approach the boundary of the probability simplex.
In sharp contrast to that theorem, we see the very stable and workable behaviour of the k-asymptotic
approximation to the distribution of the deviance, in which the number of cells increases without limit.

Define the deviance D via

D/2 = ∑{0≤i≤k:ni>0} ni log(ni/N)−
k

∑
i=0

ni log(πi)

= ∑{0≤i≤k:ni>0} ni log(ni/μi),

where μi := E(ni) = Nπi. We will exploit the characterisation that the multinomial random vector
(ni) has the same distribution as a vector of independent Poisson random variables conditioned on
their sum. Specifically, let the elements of (n∗

i ) be independently distributed as Poisson Po(μi). Then,
N∗ := ∑k

i=0 n∗
i ∼ Po(N), while (ni) := (n∗

i |N∗ = N) ∼ Multinomial(N, (πi)). Define the vector

S∗ :=

(
N∗

D∗/2

)
=

k

∑
i=0

(
n∗

i
n∗

i log(n∗
i /μi)

)
,
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where D∗ is defined implicitly and 0 log 0 := 0. The terms ν, τ, and ρ are defined by the first two
moments of S∗ via the vectors(

N
ν

)
:= E(S∗) =

(
N

∑k
i=0 E(n∗

i log
(
n∗

i /μi
)
)

)
, (1)

(
N ρτ

√
N

· τ2

)
:= Cov(S∗) =

(
N ∑k

i=0 Ci
· ∑k

i=0 Vi

)
, (2)

where Ci := Cov(n∗
i , n∗

i log(n∗
i /μi)) and Vi := Var(n∗

i log(n∗
i /μi)).

Theorem 2. Each of the terms ν, τ, and ρ remains bounded as πmin → 0.

We start with some preliminary remarks. We use the following notation: N := {1, 2, ...} denotes
the natural numbers, while N0 := {0} ∪ N . Throughout, X ∼ Po(μ) denotes a Poisson random
variable having positive mean μ—that is, X is discrete with support N0 and probability mass function
p : N0 → (0, 1) given by:

p(x) := e−μμx/x! (μ > 0). (3)

Putting:
∀m ∈ N0, F[m](μ) := Pr(X ≤ m) = ∑m

x=0p(x) ∈ (0, 1), (4)

for given μ, {1 − F[m](μ)} is strictly decreasing with m, vanishing as m → ∞. For all (x, m) ∈ N 2
0 ,

we define x(m) by:
x(0) := 1; x(m) := x(x − 1)...(x − (m − 1)) (m ∈ N ) (5)

so that, if x ≥ m, x(m) = x!/(x − m)!.
The set A0 comprises all functions a0 : (0, ∞) → R such that, as ξ → 0+:

(i) a0(ξ) tends to an infinite limit a0(0+) ∈ {−∞,+∞}, while: (ii) ξa0(ξ) → 0.

Of particular interest here, by l’Hôspital’s rule,

∀m ∈ N , (log)m ∈ A0, (6)

where (log)m : ξ → (log ξ)m (ξ > 0). For each a0 ∈ A0, a0 denotes its continuous extension from (0, ∞)

to [0, ∞)—that is: a0(0) := a0(0+); a0(ξ) := a0(ξ) (ξ > 0)—while, appealing to continuity, we also
define 0a0(0) := 0. Overall, denoting the extended reals by R := R ∪ {−∞} ∪ {+∞}, and putting

A := {a : N0 → R such that 0a(0) = 0}

we have that A contains the disjoint union:

{all functions a : N0 → R} ∪ {a0|N0 : a0 ∈ A0}.

We refer to a0|N0 as the member of A based on a0 ∈ A0.
We make repeated use of two simple facts. First:

∀x ∈ N0, 0 ≤ log(x + 1) ≤ x, (7)

equality holding in both places if, and only if, x = 0. Second, (3) and (5) give:

∀(x, m) ∈ N 2
0 with x ≥ m, x(m)p(x) = μm p(x − m) (8)
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so that, by definition of A:

∀m ∈ N0,∀a ∈ A, E(X(m)a(X)) = μmE(a(X + m)), (9)

equality holding trivially when m = 0. In particular, taking a = 1 ∈ A—that is, a(x) = 1 (x ∈ N0)—(9)
recovers, at once, the Poisson factorial moments:

∀m ∈ N0, E(X(m)) = μm

whence, in further particular, we also recover:

E(X) = μ, E(X2) = μ2 + μ and E(X3) = μ3 + 3μ2 + μ. (10)

We are ready now to prove Theorem 2.

Proof of Theorem 2. In view of (1) and (2), it suffices to show that the first two moments of S∗ remain
bounded as πmin → 0. By the Cauchy–Schwarz inequality, this in turn is a direct consequence of the
following result.

Lemma 1. Let X ∼ Po(μ) (μ > 0), and put Xμ := X log(X/μ), with 0 log 0 := 0. Then, there exist
b(1), b(2) : (0, ∞) → (0, ∞) such that:

(a) 0 ≤ E(Xμ) ≤ b(1)(μ) and 0 ≤ E(X2
μ) ≤ b(2)(μ), while:

(b) for i = 1, 2 : b(i)(μ) → 0 as μ → 0+.

Proof. By (6), a(1)0 (ξ) := log(ξ/μ) ∈ A0. Taking m = 1 and a ∈ A based on a(1)0 in (9), and using (7),
gives at once the stated bounds on E(Xμ) with b(1)(μ) = μ(μ − log μ), which does indeed tend to 0
as μ → 0+.

Further, let a(2)0 (ξ) := ξ(log(ξ/μ))2. Taking m = 1 and a as the restriction of a(2)0 to N0 in (9) gives
E(X2

μ) = μE(a(2)(X + 1)). Noting that

{x ∈ N0 : log((x + 1)/μ) < 0} =

{
∅ (μ ≤ 1)

{0, ..., μ − 2} (μ > 1)
,

in which μ denotes the smallest integer greater than or equal to μ, and putting

B(μ) :=

{
0 (μ ≤ 1)

μ∑
μ−2
x=0a(2)(x + 1)p(x) (μ > 1)

,

(7), (10), and l’Hôpital’s rule give the stated bounds on E(X2
μ), with

b(2)(μ) = B(μ) + μ∑∞
x=0(x + 1)(x − log μ)2p(x)

= B(μ) + μE{X3 + X2(1− 2 log μ) + X((log μ)2 − 2 log μ) + (log μ)2}
= B(μ) + μ4 + 4μ3 + 2μ2 + μ(log μ)2 + (μ log μ)2 − 2μ(μ + 2)(μ log μ)

which, indeed, tends to 0 as μ → 0+.

As a result of Theorem 2, the distribution of the deviance is stable in this limit. Further, as noted
in [2], each of ν, τ, and ρ can be easily and accurately approximated by standard truncate and bound
methods in the limit as πmin → 0. These are detailed in Appendix B.
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3. Divergences and Goodness-of-Fit

The emphasis of this section is the importance of the boundary of the extended multinomial when
understanding the links between information geometric divergences and families of goodness-of-fit
statistics. For completeness, a set of well-known results linking the Power-Divergence family and
information geometry in the manifold sense are surveyed in Sections 3.1–3.3. The extension to the
extended multinomial family is discussed in Section 3.4, where we make clear how the global behaviour
of divergences is dominated by boundary effects. This complements the usual local analysis, which
links divergences with the Fisher information, [8]. Perhaps the key point is that, since counts in the
data can be zero, information geometric structures should also allow probabilities to be zero. Hence,
closures of exponential families seem to be the correct geometric object to work on.

3.1. The Power-Divergence Family

The results of Section 2 concern the boundary behaviour of two important members of a rich
class of goodness-of-fit statistics. An important unifying framework which encompasses these and
other important statistics can be found in [5] (page 16) with the so-called Power-Divergence statistics.
These are defined, for −∞ < λ < ∞, by

2NIλ
( n

N
: π
)

:=
2

λ(λ + 1)

k

∑
i=0

ni

[(
ni

Nπi

)λ

− 1

]
, (11)

with the cases λ = −1, 0 being defined by taking the appropriate limit to give

lim
λ→−1

2NIλ
( n

N
: π
)
= 2

k

∑
i=0

Nπi log (Nπi/ni) , lim
λ→0

2NIλ
( n

N
: π
)
= 2

k

∑
i=0

ni log (ni/Nπi) .

Important special cases are shown in Table 1 (whose first column is described below in Section 3.3),
and we also note the case λ = 2/3, which Read and Cressie recommend [5] (page 79) as a reasonably
robust statistic with an easily calculable critical value for small N. In a sense, it lies “between” the
Pearson χ2 and deviance statistics, which we compared in Section 2.

Table 1. Special cases of the Power-Divergence statistics.

α:= 1+ 2λ λ Formula Name

3 1 ∑k
i=0

(ni−Nπi)
2

Nπi
Pearson χ2

7/3 2/3 9
5 ∑k

i=0 ni

[(
ni

Nπi

) 2
3 − 1

]
Read–Cressie

1 0 2 ∑k
i=0 ni log (ni/Nπi) Twice log-likelihood (deviance)

0 − 1
2 4 ∑k

i=0
(√

ni −
√

Nπi
)2 Freeman–Tukey or Hellinger

−1 −1 2 ∑k
i=0 Nπi log (Nπi/ni) Twice modified log-likelihood

−3 −2 ∑k
i=0

(ni−Nπi)
2

ni
Neyman χ2

This paper is primarily concerned with the sparse case where many of the ni counts are zero, and
we are also interested in letting probabilities, πi, becoming arbitrarily small, or even zero.

3.2. Literature Review

Before we look at this, we briefly review the literature on the geometry of goodness-of-fit
statistics. A good source for the historical developments (in the discrete context) can be found in [5]
(pages 131–153) and [7]. Important examples include the analysis of contingency tables, log-linear,
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and discrete graphical models. Testing is often used to check the consistency of a parametric model
with given data, and to check dependency assumptions such as independence between categorical
variables. However, we note an important caveat: as pointed out by [14,15], the fact that a parametric
model “passes” a goodness-of-fit test only weakly constrains the resulting inference. The essential
point here is that goodness-of-fit is a necessary, but not sufficient, condition for model choice,
since—in general—many models will be empirically supported. This issue has recently been explored
geometrically in [16] using CIG.

There have been many possible test statistics proposed for goodness-of-fit testing, and one of
the attractions of the Power-Divergence family, defined in (11), is that the most important ones are
included in the family and indexed by a single scalar λ. Of course, when there is a choice of test
statistic, different inferences can result from different choices. One of the main themes of [5] is to
give the analyst insight about selecting a particular λ. Key considerations for making the selection
of λ include the tractability of the sampling distribution, its power against important alternatives,
and interpretation when hypotheses are rejected.

The first order, asymptotic in N, χ2-sampling distribution for all members of the Power-Divergence
family, which is appropriate when all observed counts are “large enough”, is the most commonly
used tool, and a very attractive feature of the family. However, this can fail badly in the “sparse” case
and when the model is close to the boundary. Elementary, moment based corrections, to improve
small sample performance, are discussed in [5] (Chapter 5). More formal asymptotic approaches to
these issues include the doubly asymptotic, in N and k, approach of [17], discussed in Section 2 and
similar normal approximation ideas in [18]. See also [19]. Extensive simulation experiments have been
undertaken to learn in practice what ‘large enough’ means, see [5,20,21].

When there are nuisance parameters to be estimated (as is common), [22] points out that it is the
sampling distribution conditional upon these estimates which needs to be approximated, and proposes
higher order methods based on the Edgeworth expansion. Simulation approaches are often used
in the conditional context due to the common intractability of the conditional distribution [23,24],
and importance sampling methods play an important role—see [25–27]. Other approaches used to
investigate the sampling distribution include jackknifing [28], the Chen–Stein method [29], and detailed
asymptotic analysis in [30–32].

In very high dimensional model spaces, considerations of the power of tests rarely generates
uniformly best procedures but, we feel, geometry can be an important tool in understanding the
choices that need to be made. Further, [5], states the situation is “complicated”, showing this through
simulation experiments. One of the reasons for Read and Cressie’s preferred choice of λ = 2/3 is its
good power against some important types of alternative–the so-called bump or dip cases–as well as
the relative tractability of its sampling distribution under the null. Other considerations about power
can be found in [33] which looks specifically at mixture model based alternatives.

3.3. Links with Information Geometry

At the time that the Power-Divergence family was being examined, there was a parallel
development in Information Geometry; oddly, however, it seemed to have taken some time before
the links between the two areas were fully recognised. A good treatment of these links can be
found in [6] (Chapter 9). Since it is important to understand the extreme values of divergence
functions, considerations of convexity can clearly play an important role. The general class of Bregman
divergences, [6,34] (page 240), and [35] (page 13) is very useful here. For each Bregman divergence,
there will exist affine parameters of the exponential family in which the divergence function is convex.
In the class of product Poisson models—which are the key building blocks of log–linear models—all
members of the Power-Divergence family have the Bregman property. These are then α-divergences,
capable of generating the complete Information Geometry of the model [35], with the link between α

and λ given in Table 1. The α-representation highlights the duality properties, which are a cornerstone
of Information Geometry, but which is rather hidden in the λ representation. The Bregman divergence
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representation for the Poisson is given in Table 2. The divergence parameter—in which we have
convexity—is shown for each λ, as is the so-called potential function, which generates the complete
information geometry for these models.

Table 2. Power-Divergence in the Poisson model with mean μ, where λ∗ = 1 − λ.

λ α Divergence Dλ(μ1, μ2) Divergence Parameter ξ Potential

−1 −1 μ1 − μ2 − μ2 (log(μ1)− log(μ2)) ξ = log(μ) exp(ξ)

0 1 μ2 − μ1 − μ1 (log(μ2)− log(μ1)) ξ = μ ξ log(ξ)− ξ

λ �= 0,−1 α �= ±1

(
λ∗μ1−λ∗μ2−μ2

((
μ1
μ2

)λ∗−1
))

λ∗(1−λ∗) ξ = 1
λ∗ μλ∗ (λ∗ξ)1/λ∗

1−λ∗

3.4. Extended Multinomial Case

In this paper, we are focusing on the class of log–linear models where the multinomial is the
underlying class of distributions; that is, we condition on the sample size, N, being fixed in the product
Poisson space. In particular, we focus on extended multinomials, which includes the closure of the
multinomials, so we have a boundary. Due to the conditioning (which induces curvature), only the
cases where λ = 0,−1 remain Bregman divergences, but all are still divergences in the sense of being
Csiszár f -divergences [36,37].

The closure of an exponential family (e.g., [11,38–40]), and its application in the theory of log–linear
models has been explored in [12,13,41,42]. The key here is understanding the limiting behaviour in
the natural—α = 1 in the sense of [8]—parameter space. This can be done by considering the
polar dual [43], or, alternatively, the directions of recession—[12] or [42]. The boundary polytope
determines key statistical properties of the model, including the behaviour of the sampling distribution
of (functions of) the MLE and the shape of level sets of divergence functions.

Figures 1 and 2 show level sets of the α = ±1 Power-Divergences in the (+1)-affine and
(−1)-affine parameters (Panels (a) and (b), respectively) for the k = 2 extended multinomial
model. The boundary polytope in this case is a simple triangle “at infinity”, and the shape of
this is strongly reflected in the behaviour of the level sets. In Figure 1, we show—in the simplex{
(π0, π1, π2)|∑2

i=0 πi = 1, πi ≥ 0
}

—the level sets of the α = −1 divergence, which, in the Csiszár
f -divergence form, is

K(π0, π) :=
2

∑
i=0

log

(
π0

i
πi

)
π0

i .

The figures show how in Panel (a), the directions of recession dominate the shape of level sets, and in
Panel (b) the duals of these directions (i.e., the vertices of the simplex) each have different maximal
behaviour. The lack of convexity of the level sets in Panel (a) corresponds to the fact that the natural
parameters are not the affine divergence parameters for this divergence, so we do not expect convex
behaviour. In Panel (b), we do get non-convex level sets, as expected.

Figure 2 shows the same story, but this time for the dual divergence,

K∗(π, π0) := K(π0, π).

Now, the affine divergence parameters are shown in Panel (a), the natural parameters. We see that
in the limit the shape of the divergence is converging to that of the polar of the boundary polytope.
In general, local behaviour is quadratic, but boundary behaviour is polygonal.
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(a) (+1)−affine parameters
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(b) (−1)−affine parameters
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Figure 1. Level sets of K(π0, π), for fixed π0 = ( 1
6 , 2

6 , 3
6 ) in: (a) the natural parameters, and (b) the

mean parameters.
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Figure 2. Level sets of K∗(π0, π), for fixed π0 = ( 1
6 , 2

6 , 3
6 ) in: (a) the natural parameters, and (b) the

mean parameters.

4. Simulation Studies

In this section, we undertake simulation studies to numerically explore what has been discussed
above. Separate sub-sections address three general topics—focusing on one particular instance of each,
as follows:

1. The transition as (N, k) varies between discrete and continuous features of the sampling
distributions of goodness-of-fit statistics—focusing on the behaviour of the deviance at the
uniform discrete distribution;

2. The comparative behaviour of a range of Power-Divergence statistics—focusing on the relative
stability of their sampling distributions near the boundary;

3. The lack of uniformity—across the parameter space—of the finite sample adequacy of standard
asymptotic sampling distributions, focusing on testing independence in 2 × 2 contingency tables.
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For each topic, the results presented invite further investigation.

4.1. Transition Between Discrete and Continuous Features of Sampling Distributions

Earlier work [2] used the decomposition:

D∗/2 = ∑
{0≤i≤k:n∗

i >0}
n∗

i log(n∗
i /μi) = Γ∗ + Δ∗,

Γ∗ :=
k

∑
i=0

αin∗
i and Δ∗ := ∑

{0≤i≤k:n∗
i >1}

n∗
i log n∗

i ≥ 0, where αi := − log μi,

to show that a particularly bad case for the adequacy of any continuous approximation to the sampling
distribution of the deviance D := D∗|(N∗ = N) is the uniform discrete distribution: πi = 1/(k + 1).
In this case, the Γ∗ term contributes a constant to the deviance, while the Δ∗ term has no contributions
from cells with 0 or 1 observations—these being in the vast majority in the N << k situation considered
here. In other words, all of the variability in D comes from that between the ni log ni values for the
(relatively rare) cell counts above 1. This gives rise to a discreteness phenomenon termed “granularity”
in [2], whose meaning was conveyed graphically there in the case N = 30 and k = 200. Work by
Holst [19] predicts that continuous (indeed, normal) approximations will improve with larger values
of N/k, as is intuitive. Remarkably, simply doubling the sample size to N = 60 was shown in [2] to be
sufficient to give a good enough approximation for most goodness-of-fit testing purposes. In other
words, N being 30% of k = 200 was found to be good enough for practical purposes.

Here, we illustrate the role of k-asymptotics (Section 2) in this transition between discrete and
continuous features by repeating the above analyses for different values of k. Figures 3 and 4
(where k = 100 while N = 20 and 40, respectively) are qualitatively the same as those presented in [2].
The difference here is that the smaller value of k means that a higher value of N/k (40%) is needed
in Figure 4 to adequately remove the granularity evident in Figure 3. For k = 400, the figures with
N = 50 and N = 100 (omitted here for brevity) are, again, qualitatively the same as in [2]—the larger
value of k needing only a smaller value of N/k (25%) for practical purposes. Note the QQ-plots used
in these two figures are relative to normal quantiles.
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Figure 3. k = 100, N = 20.
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Figure 4. k = 100, N = 40.

The results of this section show the universality of boundary effects. The simulations of Figures 3
and 4 are undertaken under the uniform model, which might be felt to be far from the boundary.
In fact, the results show that in the high dimensional, low sample size case, all distributions are “close
to” the boundary, and that discretisation effects can dominate.

4.2. Comparative Behaviour of Power-Divergence Statistics near the Boundary

Here we study the relative stability—near the boundary of the simplex—of the sampling
distributions of a range of Power-Divergence statistics indexed by Amari’s parameter α. Figure 5
shows histograms for six different values of α, N = 50, k = 200, and exponentially decreasing values
of {πi}, as plotted in Figure 6. In it, red lines depict kernel density estimates using the bandwidth
suggested in [44].

These sampling distributions differ markedly. The instability for α = 3 expected from Theorem 1
is clearly visible: very large values contribute to high variance and skewness. Analogous instability
features (albeit at a lower level) remain with the Cressie–Read recommended value α = 7/3. In contrast
(as expected from the discussion around Theorem 2), the distribution of the deviance (α = 1) is stable
and roughly normal. Lower values of α retain these same features.

Figure 5. Sampling distributions for six members of the Power-Divergence family.
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Figure 6. Exponentially decreasing values of πi.

4.3. Variation in Finite Sample Adequacy of Asymptotic Distributions across the Parameter Space

Pearson’s χ2 statistic (α = 3) is widely used to test independence in contingency tables, a standard
rule-of-thumb for its validity being that each expected cell frequency should be at least 5. For illustrative
purposes, we consider 2 × 2 contingency tables, the relevant N-asymptotic null distribution being
χ2

1. We assess the adequacy of this asymptotic approximation by comparing nominal and actual
significance levels of this test, based on 10,000 replications. Particular interest lies in how these actual
levels vary across different data generation processes within the same null hypothesis of independence.

Figures 7 and 8 show the actual level of the Pearson χ2 test for nominal levels 0.1 and 0.05 for
sample sizes N = 20 and N = 50, with πr and πc denoting row and column probabilities, respectively.
The above general rule applies only at the central black dot in Figure 7, and inside the closed black
curved region in Figure 8. The actual level was computed for all pairs of values of πr and πc, averaged
using the symmetry of the parameter space, and smoothed using the kernel smoother for irregular 2D
data (implemented in the package fields in R). In each case, the white tone contains the nominal level,
while red tones correspond to liberal and blue tones to conservative actual levels.

The finite sample adequacy of this standard asymptotic test clearly varies across the parameter
space. In particular, its nominal and actual levels agree well at some parameter values outside the standard
rule-of-thumb region; and, conversely, disagree somewhat at other parameter values inside it. Intriguingly,
the agreement between nominal and actual levels does not improve everywhere with sample size. Overall,
the clear patterns evident in this lack of uniformity invite further theoretical investigation.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N  = 20, nominal level = 0.1

πc

π r

0.00

0.05

0.10

0.15

0.20

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N  = 20, nominal level = 0.05

πc

π r

0.00

0.02

0.04

0.06

0.08

0.10

●

Figure 7. Heatmap of the actual level of the test for N = 20 at nominal levels 0.1 and 0.05; the standard
rule-of-thumb (where expected counts are greater than 5) applies only at the black dot.

336



Entropy 2016, 18, 421

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N  = 50, nominal level = 0.1

πc

π r

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

N  = 50, nominal level = 0.05

πc

π r

0.00

0.02

0.04

0.06

0.08

0.10

Figure 8. Heatmap of the actual level of the test for N = 50 at nominal levels 0.1 and 0.05; the standard
rule-of-thumb (where expected counts are greater than 5) applies inside the closed black curved region.

5. Discussion

This paper has illustrated the key importance of working with the boundary of the closure of
exponential families when studying goodness-of-fit testing in the high dimensional, low sample size
context. Some of this work is new (Section 2), while some uses the structure of extended exponential
families to add insight to standard results in the literature (Section 3). The last section, Section 4, uses
simulation studies to start to explore open questions in this area.

One open question—related to the results of Theorems 1 and 2—is to see if a unified theory, for all
values of α, and over large classes of extended exponential families, can be developed.
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Appendix A. Proof of Theorem 1

We start by noting an important recurrence relation which will be exploited in the computations
below. By definition, for any t := (ti) ∈ Rk+1, n = (ni) has moment generating function

M(t; N) := E{exp(tTn)} = [m(t)]N

with m(t) = ∑k
i=0ai and ai = ai(ti) = πieti . Putting

fN,i(t; r) := N(r) [m(t)]N−r ar
i (0 ≤ r ≤ N),

where

N(r) := N Pr =

{
1 if r = 0
N(N − 1)...(N − (r − 1)) if r ∈ {1, ..., N} ,

we have
M(t; N) = fN,i(t; 0) (0 ≤ i ≤ k) (A1)

and the recurrence relation:

∂ fN,i(t; r)
∂ti

= fN,i(t; r + 1) + r fN,i(t; r) (0 ≤ i ≤ k; 0 ≤ r < N) . (A2)
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When there is no risk of confusion, we may abbreviate M(t; N) to M and fN,i(t; r) to fN(r), or
even to f (r)—so that (A1) becomes M = f (0). Again, we may write ∂r M(t; N)/∂tr

i as Mr,
∂r+s M(t; N)/∂tr

i ∂ts
j as Mr,s and ∂r+s+u M(t; N)/∂tr

i ∂ts
j ∂tu

l as Mr,s,u, with similar conventions for higher
order mixed derivatives.

We can now use this to explicitly calculate low order moments of the count vectors. Using
E(nr

i ) = ∂r M(t; N)/∂tr
i |t=0, the first N moments of ni now follow from (A1) and repeated use of (A2),

noting that m(0) = 1 and ai(0) = πi.
In particular, the first 6 moments of each ni can be obtained as follows, where N ≥ 6 is assumed.

Using (A1) and (A2), we have

M1 = f (1)

M2 = f (2) + f (1)

M3 = f (3) + 2 f (2) + f (2) + f (1) = f (3) + 3 f (2) + f (1)

M4 = f (4) + 6 f (3) + 7 f (2) + f (1)

M5 = f (5) + 10 f (4) + 25 f (3) + 15 f (2) + f (1)

M6 = f (6) + 15 f (5) + 65 f (4) + 90 f (3) + 31 f (2) + f (1).

Substituting in, we have

E(ni) = Nπi

E(n2
i ) = N(2)π

2
i + Nπi

E(n3
i ) = N(3)π

3
i + 3N(2)π

2
i + Nπi

E(n4
i ) = N(4)π

4
i + 6N(3)π

3
i + 7N(2)π

2
i + Nπi

E(n5
i ) = N(5)π

5
i + 10N(4)π

4
i + 25N(3)π

3
i + 15N(2)π

2
i + Nπi

E(n6
i ) = N(6)π

6
i + 15N(5)π

5
i + 65N(4)π

4
i + 90N(3)π

3
i + 31N(2)π

2
i + Nπi.

This can be formalised in the following Lemma

Lemma A1. The integer coefficients in any expansion

Mr =
r

∑
s=1

cr(s) f (s) (1 ≤ r ≤ N)

can be computed using cr(1) = cr(r) = 1 together, for r ≥ 3, with the update:

cr(s) = cr−1(s − 1) + scr−1(s) (1 < s < r).

We note that if Mr is required for r > N, we may repeatedly differentiate

MN =
N

∑
s=1

cN(s) f (s)

w.r.t. ti, noting that f (N) = N!aN
i no longer depends on m(t) so that, for all h > 0, ∂h f (N)/∂th

i = Nh f (N).
Mixed moments of any order can be derived from those of lower order, exploiting the fact that

ai depends on t only via ti. We illustrate this by deriving those required for the second and third
moments of W.

First consider the mixed moments required for the second moment of W. Of course, Var(W) = 0
if k = 0. Otherwise, k > 0, and computing Var(W) requires E(n2

i n2
j ) for i �= j. We find this as follows,

assuming N ≥ 4.
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The relation M2 = f (2) + f (1) established above gives

∂2M/∂t2
j = N(2)a

2
j fN−2(0) + Naj fN−1(0). (A3)

Repeated use of (A3) now gives

M2,2 = N(4)a
2
i a2

j fN−4(0) + N(3)aiaj(ai + aj) fN−3(0) + N(2)aiaj fN−2(0) (A4)

so that
E(n2

i n2
j ) = N(4)π

2
i π2

j + N(3)πiπj(πi + πj) + N(2)πiπj.

We further look at the mixed moments needed for the third moment of W. For the skewness
of W, we need E(n2

i n4
j ) for i �= j and, when k > 1, E(n2

i n2
j n2

l ) for i, j, l distinct. We find these similarly,
as follows, assuming k > 1 and N ≥ 6.

Equation (A4) above gives

∂2M/∂t2
j ∂t2

l = N(4)a
2
j a2

l fN−4(0) + N(3)ajal(aj + al) fN−3(0) + N(2)ajal fN−2(0)

from which, using (A3) repeatedly, we have

M2,2,2 = a2
j a2

l {N(6)a
2
i fN−6(0) + N(5)ai fN−5(0)}+ ajal(aj + al){N(5)a

2
i fN−5(0) + N(4)ai fN−4(0)}+

ajal{N(4)a
2
i fN−4(0) + N(3)ai fN−3(0)}

= N(6)a
2
i a2

j a2
l fN−6(0) + N(5)aiajal{aiaj + ajal + alai} fN−5(0) + N(4)aiajal{ai + aj + al} fN−4(0)+

N(3)aiajal fN−3(0)

so that E(n2
i n2

j n2
l ) equals

N(6)π
2
i π2

j π2
l + N(5)πiπjπl{πiπj + πjπl + πlπi}+ N(4)πiπjπl{πi + πj + πl}+ N(3)πiπjπl .

Finally, the relation M4 = f (4) + 6 f (3) + 7 f (2) + f (1) established above gives

∂4M/∂t4
j = N(4)a

4
j fN−4(0) + 6N(3)a

3
j fN−3(0) + 7N(2)a

2
j fN−2(0) + Naj fN−1(0)

so that, again using (A3) repeatedly, yields

E(n2
i n4

j ) = N(6)π
2
i π4

j + N(5)πiπ
3
j (6πi + πj) + N(4)πiπ

2
j (7πi + 6πj) + N(3)πiπj(πi + 7πj) + N(2)πiπj.

Combining above results, we obtain here the first three moments of W. Higher moments may be
found similarly.

We first look at E(W). We have W = 1
N2

k
∑

i=0

n2
i

πi
− 1 and E(n2

i ) = N(2)π
2
i + Nπi, so that

E(W) =
N(2)

N2 +
(k + 1)

N
− 1 =

k
N

.

The variance is computed by recalling that N2(W + 1) = ∑i
n2

i
πi

, while E(W) = k
N ,

Var(W) = Var(W + 1) =
A(2)

N4 −
(

k
N

+ 1
)2

,

where

A(2) := N4E{(W + 1)2} = ∑i
E(n4

i )

π2
i

+∑∑i �=j

E(n2
i n2

j )

πiπj
.
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Using expressions for E(n4
i ) and E(n2

i n2
j ) established above, and putting

π(α) := ∑i πα
i ,

we have

∑i
E(n4

i )

π2
i

= ∑i{N(4)π
2
i + 6N(3)πi + 7N(2) + Nπ−1

i }

= N(4)π
(2) + 6N(3) + 7N(2)(k + 1) + Nπ(−1)

and

∑∑i �=j

E(n2
i n2

j )

πiπj
= ∑i �=j{N(4)πiπj + N(3)(πi + πj) + N(2)}

= N(4)(1− π(2)) + 2N(3)k + N(2)k(k + 1),

so that
A(2) = N(4) + 2N(3)(k + 3) + N(2)(k + 1)(k + 7) + Nπ(−1),

whence

Var(W) =
N(4) + 2N(3)(k + 3) + N(2)(k + 1)(k + 7) + Nπ(−1)

N4 −
(

1+
k
N

)2

=

{
π(−1) − (k + 1)2

}
+ 2k(N − 1)

N3 , after some simplification.

Note that Var(W) depends on (πi) only via π(−1) while, by strict convexity of x → 1/x (x > 0),

π(−1) ≥ (k + 1)2, equality holding iff πi
i≡ 1/(k + 1).

Thus, for given k and N, Var(W) is strictly increasing as (πi) departs from uniformity, tending to ∞ as
one or more πi → 0+.

Finally, for these calculations, we look at E[{W − E(W)}3]. Recalling again that N2(W + 1) = ∑i
n2

i
πi

,

E[{W − E(W)}3] = E[{(W + 1)− E(W + 1)}3]

= N−6A(3) − 3 Var(W)(E(W) + 1)− (E(W) + 1)3,

where A(3) := N6E{(W + 1)3} is given by

A(3) = ∑i
E(n6

i )

π3
i

+ 3 ∑∑i �=j

E(n2
i n4

j )

πiπ
2
j

+∑∑∑i,j,l distinct

E(n2
i n2

j n2
l )

πiπjπl
.

Given that

E(W) = k/N and Var(W) =

{
π(−1) − (k + 1)2

}
+ 2k(N − 1)

N3 ,

it suffices to find A(3).
Using expressions for E(n6

i ), E(n2
i n2

j n2
l ), and E(n2

i n4
j ) established above, we have

∑i
E(n6

i )

π3
i

= N(6)π
(3) + 15N(5)π

(2) + 65N(4) + 90N(3)(k + 1) + 31N(2)π
(−1) + Nπ(−2)
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∑∑i �=j

E(n2
i n4

j )

πiπ
2
j

= N(6)πiπ
2
j + N(5)πj(6πi + πj) + N(4)(7πi + 6πj) + N(3)(πi/πj + 7) + N(2)π

−1
j

= N(6){π(2) − π(3)}+ N(5){6+ (k − 6)π(2)}+
13N(4)k + N(3){π(−1) + (7k − 1)(k + 1)}+ N(2)kπ(−1)

and

∑∑∑i,j,l distinct

E(n2
i n2

j n2
l )

πiπjπl
= N(6){1+ 2π(3) − 3π(2)}+ 3N(5)(k − 1){1− π(2)}+

3N(4)k(k − 1) + N(3)k(k
2 − 1)

so that, after some simplification,

A(3) = N(6) + 3N(5)(k + 5) + N(4){3k(k + 12) + 65}+
N(3){k3 + 21k2 + 107k + 87}+ 3N(3)π

(−1) + N(2)(31+ 3k)π(−1) + Nπ(−2).

Substituting in and simplifying, we find E[{W − E(W)}3] to be:

{
π(−2) − (k + 1)3

}
− (3k + 25− 22N)

{
π(−1) − (k + 1)2

}
+ g(k, N)

N5 ,

where
g(k, N) = 4(N − 1)k(k + 2N − 5) > 0.

Note that E[{W − E(W)}3] depends on (πi) only via π(−1) and the larger quantity π(−2).
In particular, for given k and N, the skewness of W tends to +∞ as one or more πi → 0+.

Appendix B. Truncate and Bound Approximations

In the notation of Lemma 1, it suffices to find truncate and bound approximations for each of
E(Xμ), E(X.Xμ), and E(X2

μ).
For all r, s in N , define hr,s(μ) := E{(log(X + r))s}. Appropriate choices of m ∈ N0 and a ∈ A

in (9), together with (10), give:

E(Xμ) = μh1,1(μ)− μ log μ,

E(X.Xμ) = {μ2h2,1(μ) + μh1,1(μ)} − (μ2 + μ) log μ, and:

E(X2
μ) = μ2h2,2(μ) + μh1,2(μ) + (μ2 + μ)(log μ)2 − 2 log μ{μ2h2,1(μ) + μh1,1(μ)},

so that it suffices to truncate and bound hr,s(μ) for r, s ∈ {1, 2}.
For all r, s in N , and for all m ∈ N0, we write:

hr,s(μ) = h[m]
r,s (μ) + ε

[m]
r,s (μ)

in which:

h[m]
r,s (μ) := ∑m

x=0{(log(x + r))s}p(x) and ε
[m]
r,s (μ) := ∑∞

x=m+1{(log(x + r))s}p(x).

Using again (7), the “error term” ε
[m]
r,s (μ) has lower and upper bounds:

0 < ε
[m]
r,s (μ) < ε

[m]
r,s (μ) := ∑∞

x=m+1(x + (r − 1))s p(x).
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Restricting attention now to r, s ∈ {1, 2}, as we may, and requiring m ≥ s so that F[m−s](μ) given by (4)
is defined, (8) gives:

ε
[m]
1,1 (μ) = ∑∞

x=m+1xp(x) = μ∑∞
x=m p(x) = μ{1− F[m−1](μ)},

ε
[m]
2,1 (μ) = ∑∞

x=m+1(x + 1)p(x) = ε
[m]
1,1 (μ) + {1− F[m](μ)},

ε
[m]
1,2 (μ) = ∑∞

x=m+1x2p(x) = ∑∞
x=m+1{x(x − 1) + x}p(x)

= μ2{1− F[m−2](μ)}+ ε
[m]
1,1 (μ)

and:

ε
[m]
2,2 (μ) = ∑∞

x=m+1(x + 1)2p(x) = ∑∞
x=m+1{x2 + (x + 1) + x}p(x)

= ε
[m]
1,2 (μ) + ε

[m]
2,1 (μ) + ε

[m]
1,1 (μ).

Accordingly, for given μ, each ε
[m]
r,s (μ) decreases strictly to zero with m providing—to any desired

accuracy—truncate and bound approximations for each of ν, τ, and ρ. In this connection, we note that
the upper tail probabilities involved here can be bounded by standard Chernoff arguments.
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Abstract: This paper studies probability density estimation on the Siegel space. The Siegel space is
a generalization of the hyperbolic space. Its Riemannian metric provides an interesting structure
to the Toeplitz block Toeplitz matrices that appear in the covariance estimation of radar signals.
The main techniques of probability density estimation on Riemannian manifolds are reviewed.
For computational reasons, we chose to focus on the kernel density estimation. The main result of
the paper is the expression of Pelletier’s kernel density estimator. The computation of the kernels
is made possible by the symmetric structure of the Siegel space. The method is applied to density
estimation of reflection coefficients from radar observations.

Keywords: kernel density estimation; Siegel space; symmetric spaces; radar signals

1. Introduction

Various techniques can be used to estimate the density of probability measure in the Euclidean
spaces, such as histograms, kernel methods, or orthogonal series. These methods can sometimes
be adapted to densities in Riemannian manifolds. The computational cost of the density estimation
depends on the isometry group of the manifold. In this paper, we study the special case of the Siegel
space. The Siegel space is a generalization of the hyperbolic space. It has a structure of symmetric
Riemannian manifold, which enables the adaptation of different density estimation methods at a
reasonable cost. Convergence rates of the density estimation using kernels and orthogonal series were
gradually generalized to Riemannian manifolds (see [1–3]).

The Siegel space appears in radar processing in the study of Toeplitz block Toeplitz matrices,
whose blocks represent covariance matrices of a radar signal (see [4–6]). The Siegel also appears in
statistical mechanics, see [7] and was recently used in image processing (see [8]). Information geometry
is now a standard framework in radar processing (see [4–6,9–13]). The information geometry on
positive definite Teoplitz block Teoplitz matrices is directly related to the metric on the Siegel space
(see [14]). Indeed, Toeplitz block Toeplitz matrices can be represented by a symmetric positive definite
matrix and a point laying in a product of Siegel disks. The metric considered on Toeplitz block Toeplitz
matrices is induced by the product metric between a metric on the symmetric positive definite matrices
and the Siegel disks metrics (see [4–6,9,14]).
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One already encounters the problem of density estimation in the hyperbolic space for electrical
impedance [15], networks [16] and radar signals [17]. In [18], a generalization of the Gaussian law on
the hyperbolic space was proposed. Apart from [19], where authors propose a generalization of the
Gaussian law, probability density estimation on the Siegel space has not yet been addressed.

The contributions of the paper are the following. We review the main non parametric density
estimation techniques on the Siegel disk. We provide some rather simple explicit expressions of the
kernels defined by Pelletier in [1]. These expressions make the kernel density estimation the most
adapted method. We present visual results of estimated densities in the simple case where the Siegel
disk reduces to the Poincaré disk.

The paper begins with an introduction to the Siegel space in Section 2. Section 3 reviews the main
non-parametric density estimation techniques on the Siegel space. Section 3.3 contains the original
results of the paper. Section 4 presents an application to radar data estimation.

2. The Siegel Space

This section presents facts about the Siegel space. The interested reader can find more details
in [20,21]. The necessary background on Lie groups and symmetric space can be found in [22].

2.1. The Siegel Upper Half Space

The Siegel upper half space is a generalization of the Poincaré upper half space (see [23]) for a
description of the hyperbolic space. Let Sym(n) be the space of real symmetric matrices of size n × n
and Sym+(n) the set of real symmetric positive definite matrices of size n × n. The Siegel upper half
space is defined by

Hn = {Z = X + iY|X ∈ Sym(n), Y ∈ Sym+(n)} .

Hn is equipped with the following metric:

ds = 2tr(Y−1dZY−1dZ).

The set of real symplectic matrices Sp(n,R) is defined by

g ∈ Sp(n,R) ⇔ gt Jg = J,

where

J =

(
0 In

−In 0

)
,

and In is the n × n identity matrix. Sp(n,R) is a subgroup of SL2n(R), the set of 2n × 2n invertible

matrices of determinant 1. Let g =

(
A B
C D

)
∈ Sp(n,R). The metric ds is invariant under the

following action of Sp(n,R),
g.Z = (AZ + B)(CZ + D)−1.

This action is transitive, i.e.,

∀Z ∈ Hn, ∃g ∈ Sp(n,R), g.iI = Z.

The stabilizer K of iI is the set of elements g of Sp(n,R) whose action leaves iI fixed. K is a
subgroup of Sp(n,R) called the isotropy group. We can verify that

K =

{(
A B
−B A

)
, A + iB ∈ SU(n)

}
.
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A symmetric space is a Riemannian manifold, where the reversal of the geodesics is well defined
and is an isometry. Formally, expp(u) �→ expp(−u) is an isometry for each p on the manifold, where u
is a vector in the tangent space at p, and expp the Riemannian exponential application at p. In other
words, the symmetry around each point is an isometry. Hn is a symmetric space (see [20]). The structure
of a symmetric space can be studied through its isometry group and the Lie algebra of its isometry
group. The present work will make use of the Cartan and Iwasawa decompositions of the Lie algebra
of Sp(n,R) (see [22]). Let sp(n,R) be the Lie algebra of Sp(n,R). Given A, B and C three real n × n

matrices, let denote

(
A B
C −At

)
= (A, B, C). We have

sp(n,R) = {(A, B, C)|B and C symmetric} .

The Cartan decomposition of sp(n,R) is given by

sp(n,R) = t⊕ p,

where
t = {(A, B,−B)|B symmetric and A skew-symmetric} ,

p = {(A, B, B)|A, B, symmetric} . (1)

The Iwasawa decomposition is given by

sp(n,R) = t⊕ a⊕ n,

where
a = {(H, 0, 0)|H diagonal} ,

n = {(A, B, 0)|A upper triangular with 0 on the diagonal , B symmetric} .

It can be shown that
p = ∪k∈K Adk(a), (2)

where Ad is the adjoint representation of Sp(n,R).

2.2. The Siegel Disk

The Siegel disk Dn is the set of complex matrices {Z|I − Z∗Z ≥ 0}, where ≥ stands for
the Loewner order (see [24] for details on the Loewner order). Recall that for A and B two
Hermitian matrices, A ≥ B with respect to the Loewner order means that A − B is positive definite.
The transformation

Z ∈ Hn �→ (Z − iI)(Z + iI)−1 ∈ Dn

is an isometry between the Siegel upper half space and the Siegel disk. Let C =

(
I −iI
I iI

)
.

The application g ∈ Sp(n,R) �→ CgC−1 identifies the set of isometries of Hn and of Dn. Thus,

it can be shown that a matrix g =

(
A B
A B

)
∈ Sp(n,C) acts isometrically on Dn by

g.Z = (AZ + B)(AZ + B)−1,
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where A stands for the conjugate of A. The point iI in Hn is identified with the null matrix noted 0 in
Dn. Let Z ∈ Dn. There exists P a diagonal matrix with decreasing positive real entries and U a unitary
matrix such that Z = UPUt. Let τ1 ≥ ... ≥ τn be such that

P =

⎛
⎜⎝

th(τ1)
. . .

th(τn)

⎞
⎟⎠ .

Let

A0 =

⎛
⎜⎝

ch(τ1)
. . .

ch(τn)

⎞
⎟⎠ , B0 =

⎛
⎜⎝

sh(τ1)
. . .

sh(τn)

⎞
⎟⎠

and

gZ =

(
U 0
0 U

)
.

(
A0 B0

A0 B0

)
.

It can be shown that
gZ ∈ Sp(n,C) and gZ.0 = Z. (3)

We provide now a correspondence between the elements of Dn and the elements of p defined in
Equation (1). Let

HZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ1
. . .

τn

−τ1
. . .

−τn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ a, (4)

and

aZ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

eτ1

. . .
eτn

e−τ1

. . .
e−τn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ A = exp(a).

It can be shown that there exists k ∈ K such that

Cexp(Adk(HZ))C−1.0 = Z,

or equivalently
CkaZkC−1.0 = Z.

Recall that Equation (2) gives Adk(H) ∈ p and kak ∈ exp(p). The distance between Z and 0 in Dn

is given by

d(0, Z) =
(

2 ∑ τ2
i

)1/2
(5)

(see p. 292 in [20] ).
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3. Non Parametric Density Estimation on the Siegel Space

Let Ω be a space, endowed with a σ-algebra and a probability measure p. Let X be a random
variable Ω → Dn. The Riemannian measure of Dn is called vol and the measure on Dn induced by X
is noted μX . We assume that μX has a density, noted f , with respect to vol, and that the support of X is
a compact set noted Supp. Let (x1, ..., xk) ∈ Dk

n be a set of draws of X.
The Dirac measure at a point a ∈ Dn is denoted δa. Let μk = 1

k ∑k
i=1 δxi denotes the empirical

measure of the set of draws. This section presents four non-parametric techniques of estimation
of the density f from the set of draws (x1, ..., xk). The estimated density at x in Dn is noted
f̂k(x) = f̂ (x, x1, ..., xk). The relevance of a density estimation technique depends on several aspects.
When the space allows it, the estimation technique should equally consider each direction and location.
This leads to an isotropy and a homogeneity condition. In the kernel method, for instance, a kernel
density function Kxi is placed at each observation xi. Firstly, in order to treat directions equally,
the function Kxi should be invariant under the isotropy group of xi; Secondly, for another observation
xj, functions Kxi and Kxj should be similar up to the isometries that send xi on xj. These considerations
strongly depend on the geometry of the space: if the space is not homogeneous and the isotropy group
is empty, these indifference principles have no meaning. Since the Siegel space is symmetric, it is
homogeneous and has a non empty isotropy group. Thus, the density estimation technique should be
chosen accordingly.

The convergence of the different estimation techniques is widely studied. Results were first
obtained in the Euclidean case, and are gradually extended to the probability densities on manifold
(see [1,2,15,25]).

The last relevant aspect is computational. Each estimation technique has its own computational
framework that presents pros and cons given the different applications. For instance, the estimation
by orthogonal series needs an initial pre-processing, but provides a fast evaluation of the estimated
density in compact manifolds.

3.1. Histograms

The histogram is the simplest density estimation method. Given a partition of the space
Dn = ∪i Ai, the estimated density is given by

f̂ (x ∈ Ai) =
1

vol(Ai)

k

∑
j=1

1Ai (xj),

where 1Ai stands for the indicator function of Ai. Following the considerations of the previous sections,
the elements of the partition should firstly be as isotropic as possible, and secondly as similar as
possible to each other. Regarding the problem of histograms, the case of the Siegel space is similar to
the case of the hyperbolic space. There exist various uniform polygonal tilings on the Siegel space that
could be used to compute histograms. However, there are ratio λ ∈ R for which there is no homothety.
Thus, it is not always possible to adapt the size of the bins to a given set of draws of the random
variable. Modifying the size of the bins can require a change of the structure of the tiling. This is why
the study of histograms has not been deepened.

3.2. Orthogonal Series

The estimation of the density f can be made out of the estimation of the scalar product between f
and a set of “orthonormal” functions

{
ej
}

. The most standard choice for
{

ej
}

is the eigenfunctions
of the Laplacian. When the variable X takes its values in Rn, this estimation technique becomes the
characteristic function method. When the underlying space is compact, the spectrum of the Laplacian
operator is countable, while when the space is non-compact, the spectrum is uncountable. In the first
case, the estimation of the density f is made through the estimation of a sum, while in the second
case is made through the estimation of an integral. In practice, the second situation presents a larger
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computational complexity. Unfortunately, eigenfunctions of the Laplacian operator are known on Dn

but not on compact sub-domains. This is why the study of this method has not been deepened.

3.3. Kernels

Let K : R+ → R+ be a map which verifies the following properties:

(i)
∫
Rd K(||x||)dx = 1;

(ii)
∫
Rd xK(||x||)dx = 0;

(iii) K(x > 1) = 0;
(iv) sup(K(x)) = K(0).

Let p ∈ Dn. Generally, given a point p on a Riemannian manifold, expp defines an injective
application only on a neighborhood of 0. On the Siegel space, expp is injective on the whole space.
When the tangent space TpDn is endowed with the local scalar product,

||u|| = d(p, expp(u)),

where ||.|| is the Euclidean distance associated with the local scalar product and d(., .) is the Riemannian
distance. The corresponding Lebesgue measure on TpDn is noted Lebp. Let exp∗p(Lebp) denote the
push-forward measure of Lepp by expp. The function θp defined by:

θp : q �→ θp(q) =
dvol

dexp∗p(Lebp)
(q) (6)

is the density of the Riemannian measure on Dn with respect to the Lebesgue measure Lebp after the
identification of Dn and TpDn induced by expp (see Figure 1).

Figure 1. M is a Riemannian manifold, and TxM is its tangent space at x. The exponential application
induces a volume change θx between TxM and M.

Given K and a positive radius r, the estimator of f proposed by [1] is defined by:

f̂k =
1
k ∑

i

1
rn

1
θxi (x)

K
(

d(x, xi)

r

)
. (7)

The corrective factor θxi (x)−1 is necessary since the kernel K originally integrates to one with
respect to the Lebesgue measure and not with respect to the Riemannian measure. It can be noticed
that this estimator is the usual kernel estimator in the case of Euclidean space. When the curvature of
the space is negative, which is the case of the Siegel space, the distribution placed over each sample
xi has xi as intrinsic mean. The following theorem provides convergence rate of the estimator. It is a
direct adaptation of Theorem 3.1 of [1].

Theorem 1. Let (M, g) be a Riemannian manifold of dimension n and μ its Riemannian volume measure.
Let X be a random variable taking its values in a compact subset C of (M, g). Let 0 < r ≤ rinj, where rinj is the
infimum of the injectivity radius on C. Assume the law of X has a twice differentiable density f with respect to
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the Riemannian volume measure. Let f̂k be the estimator defined in Equation (7). There exists a constant Cf
such that ∫

x∈M
Ex1,...,xk [( f (x)− f̂k(x))2]dμ ≤ Cf (

1
krn + r4). (8)

If r ∼ k
−1

n+4 , ∫
x∈M

Ex1,...,xk [( f (x)− f̂k(x))2]dμ = O(k−
4

n+4 ). (9)

Proof. See Appendix A.

It can be checked that on the Siegel space rinj = +∞ and that, for an isometry α, we have:

f̂k(x, x1, ..., xk) = f̂k(α(x), α(x1), ..., α(xk)).

Each location and direction are processed as similarly as possible. This density estimator can be used
for data classification on Riemannian manifolds, see [26].

In order to obtain the explicit expression of the estimator, one must have the explicit expression
of the Riemannian exponential, of its inverse, and of the function θp (see Equations (6) and (7)).
These expressions are difficult and sometimes impossible to obtain for general Riemannian manifolds.
In the case of the Siegel space, the symmetric structure makes the computation possible. Since the
space is homogeneous, the computation can be made at the origin iI ∈ Hn or 0 ∈ Dn and transported
to the whole space. In the present work, the random variable lays in Dn. However, in the literature,
the Cartan and Iwasawa decompositions are usually given for the isometry group of Hn. Thus, our
computation starts in Hn before moving to Dn.

The Killing form on the Lie algebra sp(n,R) of the isometry group of Hn induces a scalar product
on p. This scalar product can be transported on exp(p) by left multiplication. This operation gives
exp(p) a Riemannian structure. It can be shown that on this Riemannian manifold, the Riemannian
exponential at the identity coincides with the group exponential. Furthermore,

φ : exp(p) → Hn

g �→ g.iI
(10)

is a bijective isometry, up to a scaling factor. Since the volume change θp is invariant under rescaling
of the metric, this scaling factor has no impact. Thus, Hn can be identified with exp(p) and expiI∈Hn

with exp|p. The expression of the Riemannian exponential is difficult to obtain in general; however,
it boils down to the group exponential in the case of symmetric spaces. This is the main element of the
computation of θp. The Riemannian volume measure on exp(p) is noted vol′. Let

ψ : K × a → p

(k, H) �→ Adk(H).

Let a+ be the diagonal matrices with strictly decreasing positive eigenvalues. Let Λ+ be the set of
positive roots of sp(n,R) as described in p. 282 in [20] ,

Λ+ = {ei + ej, i ≤ j} ∪ {ei − ej, i < j},

where ei(H) is the i-th diagonal term of the diagonal matrix H. Let Cc(E) be the set of continuous
compactly supported functions on the space E. In [27], at page 73, it is given that for all t ∈ Cc(p),
there exists c1 > 0 such that

∫
p

t(Y)dY = c1

∫
K

∫
a+

t(ψ(k, H)) ∏
λ∈Λ+

λ(H)dkdH, (11)
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where dY is a Lebesgue measure on the coefficients of Y. Let p̃ = ψ(K × a+). λ ∈ Λ+ never vanishes
on a+ and p \ p̃ has a null measure. Thus,

∫
p̃

t(Y) ∏
λ∈Λ+

1
λ(HY)

dY = c1

∫
K

,
∫
a+

t(Adk(H))dkdH, (12)

where HY is the point in a+ such that there exists k in K such that ψ(k, HY) = Y. Calculation in p. 73
in [27] also gives that for all t ∈ Cc(p), there exists c2 > 0, such that

∫
Sp(n,R)

t(g)dg = c2

∫
K

∫
a+

∫
K

t(k2.exp(Adk1(H)))J(H)dk1dHdk2, (13)

where dg is the Haar measure on Sp(n,R) and

J(H) = ∏
λ∈Λ+

eλ(H) − e−λ(H)

= 2|Λ
+ | ∏

λ∈Λ+

sinh(λ(H)).

Thus, for all t ∈ Cc(Sp(n,R)/K),
∫

Sp(n,R)/K
t(x)dx = c2

∫
K

∫
a+

t(exp(Adk(H)))J(H)dkdH, (14)

where dx is the invariant measure on Sp(n,R)/K. After identifying Sp(n,R)/K and exp(p), the
Riemannian measure on exp(p) coincides with the invariant measure on Sp(n,R)/K. Thus, for all
t ∈ Cc(exp(p)), ∫

exp(p)
t(x)dvol′ = c2

∫
K

∫
a+

t(exp(Adk(H)))J(H)dkdH. (15)

Using the notation HY of Equation (12),

∫
p̃

t(exp(Y))J(HY) ∏
λ∈Λ+

1
λ(HY)

dY = c1

∫
K

∫
a+

t(exp(Adk(H)))J(H)dkdH. (16)

Combining Equations (15) and (16), we obtain that there exists c3 such that

∫
p̃

t(exp(Y)) ∏
λ∈Λ+

sinh(λ(HY))

λ(HY)
dY = c3

∫
exp(p)

t(x)dvol′. (17)

The term sinh(λ(H))
λ(H)

can be extended by continuity on a; thus,

∫
p

t(exp(Y)) ∏
λ∈Λ+

sinh(λ(HY))

λ(HY)
dY = c3

∫
exp(p)

t(x)dvol′. (18)

Let dY be the Lebesgue measure corresponding to the metric. Then, the exponential application
does not introduce a volume change at 0 ∈ p. Since H0 = 0 and sinh(λ(H))

λ(H)
−→
H→0

1, we have c3 = 1.

Let log denote the inverse of the exponential application. We have

dlog∗(vol′)
dY

= ∏
λ∈Λ+

sinh(λ(HY))

λ(HY)
.

354



Entropy 2016, 18, 396

Since φ from Equation (10) is an isometry up to a scaling factor, if Y ∈ p and Cφ(exp(Y))C−1 =

exp0(u ∈ T0Dn), then
dlog∗(vol)

dLeb0
(u) =

dlog∗(vol′)
dY

(Y),

where Leb0 refers to the Lebesgue measure on the tangent space T0Dn as in Equation (6). Given Z ∈ Dn,
HZ from Equation (4) verifies Cφ(exp(Adk(HZ)))C−1 = Z for some k in K. Thus,

θ0(Z) =
dlog∗(vol′)

dY
(Adk(HZ)) = ∏

λ∈Λ+

sinh(λ(HZ))

λ(HZ)
.

We have then

θ0(Z) = ∏
i<j

sinh(τi − τj)

τi − τj
∏
i≤j

sinh(τi + τj)

τi + τj
,

where the (τi) are described in Section 2.2. Given Z1, Z2 ∈ Dn,

θZ1(Z2) = θ0(g−1
Z1

.Z2),

where g−1
Z1

is defined in Equation (3). It is thus possible to use the density estimator defined in
Equation (7). Indeed,

1
θZ1(Z2)

K
(

d(Z1, Z2)

r

)
= ∏

i<j

τi − τj

sinh(τi − τj)
∏
i≤j

τi + τj

sinh(τi + τj)
K
(
(2 ∑ τ2

i )
1/2

r

)
, (19)

where the (τi) are the diagonal elements of Hg−1
Z1

.Z2
. Recall that when n = 1, the Siegel disk corresponds

to the Poincaré disk. Thus, we retrieve the expression of the kernel for the hyperbolic space,

1
θZ1(Z2)

K
(

d(Z1, Z2)

r

)
=

2τ

sinh(2τ)
K
(
(2τ2)1/2

r

)
. (20)

4. Application to Radar Processing

4.1. Radar Data

In space time adaptative radar processing (STAP), the signal is formed by a succession of matrices
X representing the realization of a temporal and spatial process. Let B+

n,m be the set of positive definite
block Teoplitz matrices composed of n × n blocks of m × m matrices (PD BT). For a stationary signal,
the autocorrelation matrix R is PD BT (see [5,6,14]). Authors of [5,6,14] proposed a generalization of
Verblunsky coefficients and defined a parametrization of PD BT matrices,

B+
n,m → Sym+ ×Dm−1

n
R �→ (P0, Ω1, ..., Ωm−1),

(21)

in which the metric induced by the Kähler potential is the product metric of an affine invariant metric
on Sym+ and m − 1 times the metric of the Siegel disk, up to a scaling factor. When the signal is
not Gaussian, reflection/Verblunsky coefficients in Poincaré or Siegel Disks should be normalized as
described in [28] by a normalized Burg algorithm. Among other references, positive definite block
Teoplitz matrices have been studied in the context of STAP-radar processing in [4–6].

4.2. Marginal Densities of Reflection Coefficients

In this section, we show density estimation results of the marginal parameters Ωk. For the sake of
visualization, only the Siegel disk D1 is considered. Recall that D1 coincides with the Poincaré disk.
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The results are partly extracted from the conference paper [17]. Data used in the experimental tests
are radar observations from THALES X-band Radar, recorded during 2014 field trials campaign at
Toulouse Blagnac Airport for European FP7 UFO study (Ultra-Fast wind sensOrs for wake-vortex
hazards mitigation) (see [29,30]). Data are representative of Turbulent atmosphere monitored by radar.
Figure 2 illustrates the density estimation of six coefficients on the Poincaré unit disk under a rainy
environment. The densities are individually re-scaled for visualization purposes. For each environment,
the dataset is composed of 120 draws. The densities of the coefficients Ωk are representative of the
background. This information on the background is expected to ease the detection of interesting targets.

Ω1 Ω2 Ω3

Ω4 Ω5 Ω6

Figure 2. Estimation of the density of six coefficients Ωk under rainy conditions. The expression of the
used kernel is K(x) = 3

π (1 − x2)21x<1. Densities are rescaled for visual purposes.
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4.3. Radar Clutter Segmentation

Clutter refers to background Doppler signal related to meteorological conditions (e.g., wind
in wooded areas, currents and breaking waves on water), which hinders detection of small and
slow targets. At each range, a set of reflection coefficients are computed from the Doppler spectrum
(see [31]). This set of coefficients is a point in the Poincaré poly-disk. From this set of points in
the poly-disk, it is possible to estimate the underlying density. Segmenting clutter, i.e., determining
zones of homogeneous Doppler characteristics (see Figure 3), enables the improvement of detection
algorithms on each zone. The mean-shift algorithm enables segmentation of the space according
to the kernel density estimation of a set of points. It was introduced by Fukunaga and Hostetler in
1975 (see [32]). It corresponds to a gradient ascent of the density estimator (see [33]) for a study of
the statistical consistency of the gradient lines estimation. Each data point moves to a local mode of
the density estimator, which yields as many clusters as modes. This algorithm has been generalized
on manifolds in [34], and applied to radar images in [35]. It can thus be used to segment the set of
points in the Poincaré poly-disk. Unfortunately, the mean-shift algorithm requires working with a
kernel depending only on the distance to its barycenter, which is not the case of the kernel defined in
Equation (19). Thus, the computations are performed without the use of the corrective term θp. It is
possible to solve this problem by replacing the corrective term by its average at a given radius, which
leads to a kernel depending only on the distance to its barycenter. Our future work will focus on the
computation of these averages. Let

f̂Kr (x) =
cd
k

k

∑
i=1

1
rn K

(
d(xi, x)2

r2

)
,

where cn is a normalization constant. Let g = −k′.

Figure 3. Mean and width variability of sea clutter Doppler spectrum.
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The mean-shift is defined by

m(x) =
k

∑
i=1

1
rn+2 g

(
d(x,xi)

2

r2

)
∑k

i=1
1

rn+2 g
(

d(x,xi)2

r2

) logx(xi) ∝
∇ fKr

f g
r

,

where m(x) is in the tangent space at x. The algorithm moves from x to expx(m(x)) until convergence
to a local maximum. The points of the space are segmented according to the local maxima to which
they converge.

In order to assess the quality of unsupervised classification, we use the notion of Silhouette,
see [36], which computes for each point a proximity criterion with respect to other points of the same
cluster and other points of different clusters (see Figure 4). Let x be in the cluster A. We respectively
define a(x) = miny∈Ad(x, y) and b(x) = miny �=Ad(x, y), the minimum distance to points of the same
(resp. other) class(es). The Silhouette of x is

a(x)− b(x)
max{a(x), b(x)} ,

which takes values between −1 and 1, respectively, when the data point is considered “badly” and
“well” clustered. The average of all the silhouettes provides an indication of the relevance of the
classification. One can represent graphically the silhouette profile by plotting for each class horizontal
segments of the length of the silhouette value (see Figure 5).

Figure 4. Intra and inter cluster distances.

Figure 5. Example of silhouette.
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In order to test the Riemannian Mean Shift performance, we generate simple synthetic radar
clutter data. Given 250 range cells, we generate 125 cells of ground clutter (wind) centered at 0 m·s−1,
of spectral width 5 m·s−1, to which we add 125 cells of rain clutter, centered at 5 m·s−1, of spectral
width 10 m·s−1. This clutter is sampled 10 times and the segmentation is performed on each simulation
(see Figures 6–8).

Figure 6. Autoregressive spectra.

Figure 7. Classification results (one color per cluster).
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Figure 8. Silhouettes.

It can be seen that, apart from a few outliers, the two clutters are well classified and that the
algorithm was able to distinguish between two zones of different Doppler characteristics.

We then test our algorithm on real sea clutter data (see Figures 9–11).

Figure 9. Autoregressive spectrum.
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Figure 10. Classification results for varying radii size in the density estimator (10 to 20 closest neighbours).

Figure 11. Silhouettes.

The results are more difficult to interpret in that case. The Doppler spectra are varying quite a lot
along the range axis. Even though it looks over-segmented, the first classification (kernel size defined
by the distance to the 10th closest neighbor point) displays the highest average silhouette value.
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5. Conclusions

Three non parametric density estimation techniques have been considered. The main advantage
of histograms in the Euclidean context is their simplicity of use. This makes histograms an interesting
tool despite the fact that they do not present optimal convergence rates. On the Siegel space, histograms
lose their simplicity advantage. They were thus not deeply studied. The orthogonal series density
estimation also presents technical disadvantages on the Siegel space. Indeed, the series become
integrals, which make the numerical computation of the estimator more difficult than in the Euclidean
case. On the other hand, the use of the kernel density estimator does not present major differences
with the Euclidean case. The convergence rate obtained in [1] can be extended to compactly supported
random variables on non compact Riemannian manifolds. Furthermore, the corrective term whose
computation is required to use Euclidean kernels on Riemannian manifolds turns out to have a
reasonably simple expression. Our future efforts will concentrate on the use of kernel density
estimation on the Siegel space in radar signal processing. As the experimental section suggests,
we strongly believe that the estimation of the densities of the Ωk will provide an interesting description
of the different backgrounds. This non-parametric method of density estimation should be compared
with parametric ones, as “Maximum Entropy Density” (Gibbs density) on homogenesous manifold
as proposed in [37] based on the works of Jean-Marie Souriau. As proposed in [38], a median-shift
approach might also be investigated.
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Appendix Demonstration of Theorem 1

Lemma A1. Let (M, g) be a Riemannian manifold, let C be a compact subset of M and let U be a relatively
compact open subset of M containing C. Then, there is a compact Riemannian manifold (M′, g′) such that U is
an open subset of M′, the inclusion i : U ↪→ M′ is a diffeomorphism onto its image and g′ = g on U.

Proof. We can assume that M is not compact. Let f : M → R be a smooth function on M which tends
to +∞ at infinity. Since U is compact, f−1(]− ∞, a[) contains U for a large enough. By Sard Theorem,
there exists a value a ∈ R such that f−1(a) contains no critical point of f and such that f−1(]− ∞, a[)
contains U. It follows that N = f−1(]− ∞, a]) is a submanifold with boundary of M. Since f tends to
+∞ at infinity, N is compact as well as its boundary ∂N = f−1({a}).

Call M′ the double of N. It is a compact manifold which contains N such that the inclusion
i : N ↪→ M′ is a diffeomorphism onto its image (see [39], Theorem 5.9 and Definition 5.10 ). Choose
any metric g0 on M′. Consider two open subsets W1 and W2 in M′ and two smooth functions
f1, f2 : M′ → [0, 1] such that

U ⊂ W1 ⊂ W1 ⊂ W2 ⊂ W2 ⊂ int N,

the interior of N,
f1(x) = 1

on W1, vanishes outside of W2, and
f2(x) = 1
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outside W1, and vanishes in U. Define g′ on M′ by

g′ = f1g + f2g0

on N and
g′ = f2g0

outside of N. Since f1 + f2 > 0, g′ is positive definite everywhere on M′. Since f1 vanishes outside
of W2, g′ is smooth on M′. Finally, since f1 = 1 and f2 = 0 on U, g′ = g on U.

We can now prove Theorem 1. Let X be a random variable as in Theorem 1. Following the
notations of the theorem and the lemma, let U =

{
x ∈ M, d(x, C) < rinj

}
. U is open, relatively

compact and contains C. Let (M′, g′) be as in the lemma. Let f̂ and f̂ ′ be the kernel density estimators
defined on M and M′, respectively. Theorem 3.1 of [1] provides the desired results for f̂ ′. For r ≤ rinj,
the support and the values on the support of f̂ ′ and f̂ coincide. Thus, the desired result also holds for f̂ .
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Abstract: The Riemannian geometry of the space Pm, of m × m symmetric positive definite
matrices, has provided effective tools to the fields of medical imaging, computer vision and radar
signal processing. Still, an open challenge remains, which consists of extending these tools to
correctly handle the presence of outliers (or abnormal data), arising from excessive noise or faulty
measurements. The present paper tackles this challenge by introducing new probability distributions,
called Riemannian Laplace distributions on the space Pm. First, it shows that these distributions
provide a statistical foundation for the concept of the Riemannian median, which offers improved
robustness in dealing with outliers (in comparison to the more popular concept of the Riemannian
center of mass). Second, it describes an original expectation-maximization algorithm, for estimating
mixtures of Riemannian Laplace distributions. This algorithm is applied to the problem of texture
classification, in computer vision, which is considered in the presence of outliers. It is shown to give
significantly better performance with respect to other recently-proposed approaches.

Keywords: symmetric positive definite matrices; Laplace distribution; expectation-maximization;
Bayesian information criterion; texture classification

1. Introduction

Data with values in the space Pm, of m × m symmetric positive definite matrices, play an essential
role in many applications, including medical imaging [1,2], computer vision [3–7] and radar signal
processing [8,9]. In these applications, the location where a dataset is centered has a special interest.
While several definitions of this location are possible, its meaning as a representative of the set should
be clear. Perhaps, the most known and well-used quantity to represent a center of a dataset is the
Fréchet mean. Given a set of points Y1, · · · , Yn in Pm, their Fréchet mean is defined to be:

Mean(Y1, · · · , Yn) = argminY∈Pm

n

∑
i=1

d2(Y, Yi) (1)

where d is Rao’s Riemannian distance on Pm [10,11].
Statistics on general Riemannian manifolds have been powered by the development of different

tools for geometric measurements and new probability distributions on manifolds [12,13]. On the
manifold (Pm, d), the major advances in this field have been achieved by the recent papers [14,15],
which introduce the Riemannian Gaussian distribution on (Pm, d). This distribution depends on two

Entropy 2016, 18, 98 365 www.mdpi.com/journal/entropy
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parameters Ȳ ∈ Pm and σ > 0, and its density with respect to the Riemannian volume form dv(Y) of
Pm (see Formula (13) in Section 2) is:

1
Zm(σ)

exp

[
−d2(Y, Y)

2σ2

]
(2)

where Zm(σ) is a normalizing factor depending only on σ (and not on Ȳ).
For the Gaussian distribution Equation (2), the maximum likelihood estimate (MLE) for the

parameter Ȳ based on observations Y1, · · · , Yn corresponds to the mean Equation (1). In [15], a detailed
study of statistical inference for this distribution was given and then applied to the classification of
data in Pm, showing that it yields better performance, in comparison to recent approaches [2].

When a dataset contains extreme values (or outliers), because of the impact of these values on d2,
the mean becomes less useful. It is usually replaced with the Riemannian median:

Median(Y1, · · · , Yn) = argminY∈Pm

n

∑
i=1

d(Y, Yi) (3)

Definition Equation (3) corresponds to that of the median in statistics based on ordering of the
values of a sequence. However, this interpretation does not continue to hold on Pm. In fact, the
Riemannian distance on Pm is not associated with any norm, and it is therefore only possible to
compare distances of a set of matrices to a reference matrix.

In the presence of outliers, the Gaussian distribution on Pm also loses its robustness properties.
The main contribution of the present paper is to remedy this problem by introducing the Riemannian
Laplace distribution while maintaining the same one-to-one relation between MLE and the Riemannian
median. This will be shown to offer considerable improvement in dealing with outliers.

This paper is organized as follows.
Section 2 reviews the Riemannian geometry of Pm, when this manifold is equipped with the

Riemannian metric known as the Rao–Fisher or affine invariant metric [10,11]. In particular, it gives
analytic expressions for geodesic curves, Riemannian distance and recalls the invariance of Rao’s
distance under affine transformations.

Section 3 introduces the Laplace distribution L(Ȳ, σ) through its probability density function with
respect to the volume form dv(Y):

p(Y|Y, σ) =
1

ζm(σ)
exp

[
−d(Y, Y)

σ

]

here, σ lies in an interval ]0, σmax[ with σmax < ∞. This is because the normalizing constant ζm(σ)

becomes infinite for σ ≥ σmax. It will be shown that ζm(σ) depend only on σ (and not on Ȳ) for all
σ < σmax. This important fact leads to simple expressions of MLEs of Y and σ. In particular, the MLE
of Ȳ based on a family of observations Y1, · · · , YN sampled from L(Ȳ, σ) is given by the median of
Y1, · · · , YN defined by Equation (3) where d is Rao’s distance.

Section 4 focuses on mixtures of Riemannian Laplace distributions on Pm. A distribution of this
kind has a density:

p(Y|(ωμ, Yμ, σμ)1≤μ≤M) =
M

∑
μ=1

�μ p(Y|Yμ, σμ) (4)

with respect to the volume form dv(Y). Here, M is the number of mixture components, �μ > 0, Yμ ∈
Pm, σμ > 0 for all 1 ≤ μ ≤ M and ∑M

μ=1 �μ = 1. A new EM (expectation-maximization) algorithm that
computes maximum likelihood estimates of the mixture parameters (�μ, Ȳμ, σμ)1≤μ≤M is provided.
The problem of the order selection of the number M in Equation (4) is also discussed and performed
using the Bayesian information criterion (BIC) [16].
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Section 5 is an application of the previous material to the classification of data with values in Pm,
which contain outliers (abnormal data points). Assume to be given a training sequence Y1, · · · , Yn ∈ Pm.
Using the EM algorithm developed in Section 4, it is possible to subdivide this sequence into disjoint
classes. To classify new data points, a classification rule is proposed. The robustness of this rule lies
in the fact that it is based on the distances between new observations and the respective medians
of classes instead of the means [15]. This rule will be illustrated by an application to the problem
of texture classification in computer vision. The obtained results show improved performance with
respect to recent approaches which use the Riemannian Gaussian distribution [15] and the Wishart
distribution [17].

2. Riemannian Geometry of Pm

The geometry of Siegel homogeneous bounded domains, such as Kähler homogeneous manifolds,
have been studied by Felix A. Berezin [18] and P. Malliavin [19]. The structure of Kähler homogeneous
manifolds has been used in [20,21] to parameterize (Toeplitz–) Block–Toeplitz matrices. This led
to a Hessian metric from information geometry theory with a Kähler potential given by entropy
and to an algorithm to compute medians of (Toeplitz–)Block–Toeplitz matrices by Karcher flow on
Mostow/Berger fibration of a Siegel disk. Optimal numerical schemes of this algorithm in a Siegel
disk have been studied, developed and validated in [22–24].

This section introduces the necessary background on the Riemannian geometry of Pm , the space
of symmetric positive definite matrices of size m × m. Precisely, Pm is equipped with the Riemannian
metric known as the affine-invariant metric. First, analytic expressions are recalled for geodesic
curves and Riemannian distance. Then, two properties are stated, which are fundamental to the
following. These are affine-invariance of the Riemannian distance and the existence and uniqueness of
Riemannian medians.

The affine-invariant metric, called the Rao–Fisher metric in information geometry, has the
following expression:

gY(A, B) = tr(Y−1 AY−1B) (5)

where Y ∈ Pm and A, B ∈ TYPm, the tangent space to Pm at Y, which is identified with the vector space
of m × m symmetric matrices. The Riemannian metric Equation (5) induces a Riemannian distance on
Pm as follows. The length of a smooth curve c : [0, 1] → Pm is given by:

L(c) =
∫ 1

0

√
gc(t)(ċ(t), ċ(t)) dt (6)

where ċ(t) = dc
dt . For Y, Z ∈ Pm, the Riemannian distance d(Y, Z), called Rao’s distance in information

geometry, is defined to be:

d(Y, Z) = inf { L(c), c : [0, 1] → Pm is a smooth curve with c(0) = Y, c(1) = Z} .

This infimum is achieved by a unique curve c = γ, called the geodesic connecting Y and Z, which
has the following equation [10,25]:

γ(t) = Y1/2 (Y−1/2ZY−1/2)t Y1/2 (7)

Here, and throughout the following, all matrix functions (for example, square root, logarithm or power)
are understood as symmetric matrix functions [26]. By definition, d(Y, Z) coincides with L(γ), which
turns out to be:

d2(Y, Z) = tr [log(Y−1/2ZY−1/2)]2 (8)

Equipped with the affine-invariant metric Equation (5), the space Pm enjoys two
useful properties, which are the following. The first property is invariance under affine
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transformations [10,25]. Recall that an affine transformation of Pm is a mapping Y �→ Y · A, where A is
an invertible real matrix of size m × m,

Y · A = A† Y A (9)

and † denotes the transpose. Denote by GL(m) the group of m × m invertible real matrices on Pm.
Then, the action of GL(m) on Pm is transitive. This means that for any Y, Z ∈ Pm, there exists
A ∈ GL(m), such that Y.A = Z. Moreover, the Riemannian distance Equation (8) is invariant by affine
transformations in the sense that for all Y, Z ∈ Pm:

d(Y, Z) = d(Y · A, Z · A) (10)

where Y · A and Z · A are defined by Equation (9). The transitivity of the action Equation (9) and the
isometry property Equation (10) make Pm a Riemannian homogeneous space.

The affine-invariant metric Equation (5) turns Pm into a Riemannian manifold of negative sectional
curvature [10,27]. As a result, Pm enjoys the property of the existence and uniqueness of Riemannian
medians. The Riemannian median of N points Y1, · · · , YN ∈ Pm is defined to be:

ŶN = argminY

N

∑
n=1

d(Y, Yn) (11)

where d(Y, Yn) is the Riemannian distance Equation (8). If Y1, · · · , YN do not belong to the same
geodesic, then ŶN exists and is unique [28]. More generally, for any probability measure π on Pm , the
median of π is defined to be:

Ŷπ = argminY

∫
Pm

d(Y, Z)dπ(Z) (12)

Note that Equation (12) reduces to Equation (11) for π = 1
N ∑N

n=1 δYn . If the support of π is not
carried by a single geodesic, then again, Ŷπ exists and is unique by the main result of [28].

To end this section, consider the Riemannian volume associated with the affine-invariant
Riemannian metric [10]:

dv(Y) = det(Y)−
m+1

2 ∏
i≤j

dYij (13)

where the indices denote matrix elements. The Riemannian volume is used to define the integral of a
function f : Pm → R as:

∫
Pm

f (Y)dv(Y) =
∫

. . .
∫

f (Y) det(Y)−
m+1

2 ∏
i≤j

dYij (14)

where the integral on the right-hand side is a multiple integral over the m(m + 1)/2 variables, Yij with
i ≤ j. The integral Equation (14) is invariant under affine transformations. Precisely:

∫
Pm

f (Y · A)dv(Y) =
∫
Pm

f (Y)dv(Y) (15)

where Y · A is the affine transformation given by Equation (9). It takes on a simplified form when
f (Y) only depends on the eigenvalues of Y. Precisely, let the spectral decomposition of Y be given by
Y = U† diag(er1 , · · · , erm)U, where U is an orthogonal matrix and er1 , · · · , erm are the eigenvalues of
Y. Assume that f (Y) = f (r1, . . . , rm), then the invariant integral Equation (14) reduces to:

∫
Pm

f (Y)dv(Y) = cm ×
∫
Rm

f (r1, · · · , rm)∏
i<j

sinh
( |ri − rj|

2

)
dr1 · · · drm (16)
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where the constant cm is given by cm = 1
m! × ωm × 8

m(m−1)
4 , ωm = πm2/2

Γm(m/2)
and Γm is the multivariate

gamma function given in [29]. See Appendix A for the derivation of Equation (16) from Equation (14).

3. Riemannian Laplace Distribution on Pm

3.1. Definition of L(Ȳ, σ)

The Riemannian Laplace distribution on Pm is defined by analogy with the well-known Laplace
distribution on R. Recall the density of the Laplace distribution on R,

p(x|x̄, σ) =
1

2σ
e−|x−x̄|/σ

where x̄ ∈ R and σ > 0. This is a density with respect to the length element dx on R. The density of
the Riemannian Laplace distribution on Pm will be given by:

p(Y| Ȳ, σ) =
1

ζm(σ)
exp

[
−d(Y, Ȳ)

σ

]
(17)

here, Ȳ ∈ Pm, σ > 0, and the density is with respect to the Riemannian volume element Equation (13)
on Pm. The normalizing factor ζm(σ) appearing in Equation (17) is given by the integral:

∫
Pm

exp
[
−d(Y, Ȳ)

σ

]
dv(Y)

Assume for now that this integral is finite for some choice of Ȳ and σ. It is possible to show
that its value does not depend on Ȳ. To do so, recall that the action of GL(m) on Pm is transitive.
As a consequence, there exists A ∈ Pm, such that Ȳ = I.A, where I.A is defined as in Equation (9).
From Equation (10), it follows that d(Y, Ȳ) = d(Y, I.A) = d(Y.A−1, I). From the invariance property
Equation (15): ∫

Pm
exp

[
−d(Y, Ȳ)

σ

]
dv(Y) =

∫
Pm

exp
[
−d(Y, I)

σ

]
dv(Y) (18)

The integral on the right does not depend on Ȳ, which proves the above claim.
The last integral representation and formula Equation (16) lead to the following explicit expression:

ζm(σ) = cm ×
∫
Rm

e−
|r|
σ ∏

i<j
sinh

( |ri − rj|
2

)
dr1 · · · drm (19)

where |r| = (r 2
1 + · · ·+ r m

2 )
1
2 and cm is the same constant as in Equation (16) (see Appendix B for more

details on the derivation of Equation (19)).
A distinctive feature of the Riemannian Laplace distribution on Pm, in comparison to the Laplace

distribution on R is that there exist certain values of σ for which it cannot be defined. This is
because the integral Equation (19) diverges for certain values of this parameter. This leads to the
following definition.

Definition 1. Set σm = sup{σ > 0 : ζm(σ) < ∞}. Then, for Ȳ ∈ Pm and σ ∈ (0, σm), the Riemannian
Laplace distribution on Pm, denoted by L(Ȳ, σ), is defined as the probability distribution on Pm, whose density
with respect to dv(Y) is given by Equation (17), where ζm(σ) is defined by Equation (19).

The constant σm in this definition satisfies 0 < σm < ∞ for all m and takes the value
√

2 for m = 2
(see Appendix C for proofs).
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3.2. Sampling from L(Ȳ, σ)

The current section presents a general method for sampling from the Laplace distribution L(Ȳ, σ).
This method relies in part on the following transformation property.

Proposition 1. Let Y be a random variable in Pm . For all A ∈ GL(m),

Y ∼ L(Ȳ, σ) =⇒ Y · A ∼ L(Ȳ · A, σ)

where Y · A is given by Equation (9).

Proof. Let ϕ : Pm → R be a test function. If Y ∼ L(Ȳ, σ) and Z = Y · A, then the expectation of ϕ(Z)
is given by:

E[ϕ(Z)] =
∫
Pm

ϕ(X · A) p(X| Ȳ, σ) dv(X) =
∫
Pm

ϕ(X) p(X · A−1| Ȳ, σ) dv(X)

where the equality is a result of Equation (15). However, p(X · A−1| Ȳ, σ) = p(X| Ȳ · A, σ) by
Equation (10), which proves the proposition.

The following algorithm describes how to sample from L(Ȳ, σ) where 0 < σ < σm. For this, it is
first required to sample from the density p on Rm defined by:

p(r) =
cm

ζm(σ)
e−

|r|
σ ∏

i<j
sinh

( |ri − rj|
2

)
, r = (r1, · · · , rm).

This can be done by a usual Metropolis algorithm [30].
It is also required to sample from the uniform distribution on O(m), the group of real orthogonal

m × m matrices. This can be done by generating A, an m × m matrix, whose entries are i.i.d. with
normal distribution N (0, 1), then the orthogonal matrix U, in the decomposition A = UT with T
upper triangular, is uniformly distributed on O(m) [29] (p. 70). Sampling from L(Ȳ, σ) can now be
described as follows.

Algorithm 1 Sampling from L(Ȳ, σ).

1: Generate i.i.d. samples (r1, · · · , rm) ∈ Rm with density p
2: Generate U from a uniform distribution on O(m)

3: X ← U†diag(er1 , · · · , erm)U

4: Y ← X.Ȳ
1
2

Note that the law of X in Step 3 is L(I, σ); the proof of this fact is given in Appendix D. Finally,
the law of Y in Step 4 is L(I.Ȳ

1
2 = Ȳ, σ) by proposition Equation (1).

3.3. Estimation of Ȳ and σ

The current section considers maximum likelihood estimation of the parameters Ȳ and σ, based
on independent observations Y1, . . . , YN from the Riemannian Laplace distribution L(Ȳ, σ). The main
results are contained in Propositions 2 and 3 below.

Proposition 2 states the existence and uniqueness of the maximum likelihood estimates ŶN and
σ̂N of Ȳ and σ. In particular, the maximum likelihood estimate ŶN of Ȳ is the Riemannian median of
Y1, . . . , YN , defined by Equation (11). Numerical computation of ŶN will be considered and carried out
using a Riemannian sub-gradient descent algorithm [8].
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Proposition 3 states the convergence of the maximum likelihood estimate ŶN to the true value of
the parameter Ȳ. It is based on Lemma 1, which states that the parameter Ȳ is the Riemannian median
of the distribution L(Ȳ, σ) in the sense of definition Equation (12).

Proposition 2 (MLE and median). The maximum likelihood estimate of the parameter Ȳ is the Riemannian
median ŶN of Y1, . . . , YN. Moreover, the maximum likelihood estimate of the parameter σ is the solution σ̂N of:

σ2 × d
dσ

log ζm(σ) =
1
N

N

∑
n=1

d(Ȳ, Yn) (20)

Both ŶN and σ̂N exist and are unique for any realization of the samples Y1, . . . , YN .

Proof of Proposition 2. The log-likelihood function, of the parameters Ȳ and σ, can be written as:

N

∑
n=1

log p(Yn| Ȳ, σ) =
N

∑
n=1

log
(

1
ζm(σ)

e−
d(Ȳ,Yn)

σ

)

= −N log ζm(σ)− 1
σ

N

∑
n=1

d(Ȳ, Yn)

As the first term in the last expression does not contain Ȳ,

argmaxȲ

N

∑
n=1

log p(Yn| Ȳ, σ) = argminȲ

N

∑
n=1

d(Ȳ, Yn)

The quantity on the right is exactly ŶN by Equation (11). This proves the first claim. Now, consider
the function:

F(η) = −N log(ζm(
−1
η

)) + η
N

∑
n=1

d(ŶN , Yn), η <
−1
σm

This function is strictly concave, since it is the logarithm of the moment generating function of a
positive measure. Note that limη→−1

σm
F(η) = −∞, and admit for a moment that limη→−∞ F(η) = −∞.

By the strict concavity of F, there exists a unique η̂N < −1
σm

(which is the maximum of F), such that
F′(η̂N) = 0. It follows that σ̂N = −1

η̂N
lies in (0, σm) and satisfies Equation (20). The uniqueness of σ̂N

is a consequence of the uniqueness of η̂N . Thus, the proof is complete. Now, it remains to check that
limη→−∞ F(η) = −∞ or just limσ→+∞

1
σ log(ζm(

1
σ )) = 0. Clearly:

∏
i<j

sinh
( |ri − rj|

2

)
≤ AmeBm |r|

where Am and Bm are two constants only depending on m. Using this, it follows that:

1
σ

log(ζm(
1
σ
)) ≤ 1

σ
log(cm Am) +

1
σ

log
(∫

Rm
exp((−σ + Bm)|r|)dr1 · · · drm

)
(21)

However, for some constant Cm only depending on m,

∫
Rm

exp((−σ + Bm)|r|)dr1 · · · drm = Cm

∫ ∞

0
exp((−σ + Bm)u)um−1du

≤ (m − 1)!Cm

∫ ∞

0
exp((−σ + Bm + 1)u)du =

(m − 1)!Cm

σ − Bm − 1

Combining this bound and Equation (21) yields limσ→+∞
1
σ log(ζm(

1
σ )) = 0.
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Remark 1. Replacing F in the previous proof with F(η) = − log(ζm(
−1
η )) + ηc where c > 0 shows that the

equation:

σ2 × d
dσ

log ζm(σ) = c

has a unique solution σ ∈ (0, σm). This shows in particular that σ �→ σ2 × d
dσ

log ζm(σ) is a bijection from
(0, σm) to (0, ∞).

Consider now the numerical computation of the maximum likelihood estimates ŶN and σ̂N given
by Proposition 2. Computation of ŶN consists in finding the Riemannian median of Y1, . . . , YN , defined
by Equation (11). This can be done using the Riemannian sub-gradient descent algorithm of [8]. The
k-th iteration of this algorithm produces an approximation Ŷk

N of ŶN in the following way.
For k = 1, 2, . . ., let Δk be the symmetric matrix:

Δk =
1
N

N

∑
n=1

Log
Ŷ

k−1
N

(Yn)

||Log
Ŷ

k−1
N

(Yn)|| (22)

Here, Log is the Riemannian logarithm mapping inverse to the the Riemannian exponential
mapping:

ExpY (Δ) = Y1/2 exp
(

Y−1/2 Δ Y−1/2
)

Y1/2 (23)

and ||Loga(b)|| =
√

ga(b, b). Then, Ŷk
N is defined to be:

Ŷ
k
N = Exp

Ŷ
k−1
N

(τk Δk) (24)

where τk > 0 is a step size, which can be determined using a backtracking procedure.
Computation of σ̂N requires solving a non-linear equation in one variable. This is readily done

using Newton’s method.
It is shown now that the empirical Riemannian median ŶN converges almost surely to the true

median Ȳ. This means that ŶN is a consistent estimator of Ȳ. The proof of this fact requires few
notations and a preparatory lemma.

For Ȳ ∈ Pm and σ ∈ (0, σm), let:

E(Y| Ȳ, σ) =
∫
Pm

d(Y, Z) p(Z| Ȳ, σ)dv(Z)

The following lemma shows how to find Ȳ and σ from the function Y �→ E(Y| Ȳ, σ).

Lemma 1. For any Ȳ ∈ Pm and σ ∈ (0, σm), the following properties hold

(i) Ȳ is given by:
Ȳ = argminY E(Y| Ȳ, σ) (25a)

That is, Ȳ is the Riemannian median of L(Ȳ, σ).

(ii) σ is given by:
σ = Φ (E(Ȳ| Ȳ, σ)) (25b)

where the function Φ is the inverse function of σ �→ σ2 × d log ζm(σ)/dσ.

Proof of Lemma 1. (i) Let E(Y) = E(Y| Ȳ, σ). According to Theorem 2.1 in [28], this function has a
unique global minimum, which is also a unique stationary point. Thus, to prove that Ȳ is the minimum
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point of E , it will suffice to check that for any geodesic γ starting from Ȳ, d
dt |t=0E(γ(t)) = 0 [31] (p. 76).

Note that:
d
dt
|t=0E(γ(t)) =

∫
Pm

d
dt
|t=0d(γ(t), Z) p(Z| Ȳ, σ)dv(Z) (26)

where for all Z �= Ȳ [32]:

d
dt
|t=0d(γ(t), Z) = −gȲ(logȲ(Z), γ′(0))d(Ȳ, Z)−1

The integral in Equation (26) is, up to a constant,

d
dt
|t=0

∫
Pm

p(Z| γ(t), σ)dv(Z) = 0

since
∫
Pm

p(Z| γ(t), σ)dv(Z) = 1.

(ii) Differentiating
∫
Pm

exp(− d(Z,Ȳ)
σ )dv(Z) = ζm(σ) with respect to σ, it comes that:

σ2 × d log ζm(σ)/dσ = σ2 ζ ′m(σ)
ζm(σ)

=
∫
Pm

d(Z, Ȳ)p(Z|Ȳ, σ)dv(Z) = E(Ȳ| Ȳ, σ)

which proves (ii).

Proposition 3 (Consistency of ŶN ). Let Y1, Y2, · · · be independent samples from a Laplace distribution
G(Ȳ, σ). The empirical median ŶN of Y1, . . . , YN converges almost surely to Ȳ, as N → ∞ .

Proof of Proposition 3. Corollary 3.5 in [33] (p. 49) states that if (Yn) is a sequence of i.i.d. random
variables on Pm with law π, then the Riemannian median ŶN of Y1, · · · , YN converges almost surely
as N → ∞ to Ŷπ , the Riemannian median of π defined by Equation (12). Applying this result to
π = L(Ȳ, σ) and using Ŷπ = Ȳ, which follows from item (i) of Lemma 1, shows that ŶN converges
almost surely to Ȳ.

4. Mixtures of Laplace Distributions

There are several motivations for considering mixtures of distributions in general. The most
natural approach is to envisage a dataset as constituted of several subpopulations. Another approach
is the fact that there is a support for the argument that mixtures of distributions provide a good
approximation to most distributions in a spirit similar to wavelets.

The present section introduces the class of probability distributions that are finite mixtures of
Riemannian Laplace distributions on Pm. These constitute the main theoretical tool, to be used for the
target application of the present paper, namely the problem of texture classification in computer vision,
which will be treated in Section 5.

A mixture of Riemannian Laplace distributions is a probability distribution on Pm, whose density
with respect to the Riemannian volume element Equation (13) has the following expression:

p(Y|(�μ, Ȳμ, σμ)1≤μ≤M) =
M

∑
μ=1

�μ × p(Y| Ȳμ, σμ) (27)

where �μ are nonzero weights, whose sum is equal to one, Ȳμ ∈ Pm and σμ ∈ (0, σm) for all 1 ≤ μ ≤ M,
and the parameter M is called the number of mixture components.

Section 4.1 describes a new EM algorithm, which computes the maximum likelihood estimates
of the mixture parameters (�μ, Ȳμ, σμ)1≤μ≤M, based on independent observations Y1, . . . , YN from the
mixture distribution Equation (27).
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Section 4.2 considers the problem of order selection for mixtures of Riemannian Laplace
distributions. Precisely, this consists of finding the number M of mixture components in Equation (27)
that realizes the best representation of a given set of data Y1, . . . , YN . This problem is solved by
computing the BIC criterion, which is here found in explicit form for the case of mixtures of Riemannian
Laplace distributions on Pm.

4.1. Estimation of the Mixture Parameters

In this section, Y1, . . . , YN are i.i.d. samples from Equation (27). Based on these observations, an
EM algorithm is proposed to estimate (�μ, Ȳμ, σμ)1≤μ≤M. The derivation of this algorithm can be
carried out similarly to [15].

To explain how this algorithm works, define for all ϑ = {(�μ, Ȳμ, σμ)},

ωμ(Yn, ϑ) =
�μ × p(Yn| Ȳμ, σμ)

∑M
s=1 �s × p(Yn| Ȳs, σs)

, Nμ(ϑ) =
N

∑
n=1

ωμ(Yn) (28)

The algorithm iteratively updates ϑ̂ = {(�̂μ, Ŷμ, σ̂μ)} , which is an approximation of the maximum
likelihood estimate of the mixture parameters ϑ = (�μ, Ȳμ, σμ) as follows.

• Update for �̂μ: Based on the current value of ϑ̂, assign to �̂μ the new value �̂μ = Nμ(ϑ̂)
/

N.
• Update for Ŷμ: Based on the current value of ϑ̂, assign to Ŷμ the value:

Ŷμ = argminY

N

∑
n=1

ωμ(Yn, ϑ̂) d(Y, Yn) (29)

• Update for σ̂μ: Based on the current value of ϑ̂, assign to σ̂μ the new value:

σ̂μ = Φ( N−1
μ (ϑ̂)×∑N

n=1 ωμ(Yn, ϑ̂) d(Ŷμ, Yn)) (30)

where the function Φ is defined in Proposition 1.

These three update rules should be performed in the above order. Realization of the update rules
for �̂μ and σ̂μ is straightforward. The update rule for Ŷμ is realized using a slight modification of the
sub-gradient descent algorithm described in Section 3.2. More precisely, the factor 1/N appearing in
Equation (22) is only replaced with ωμ(Yn, ϑ̂) at each iteration.

In practice, the initial conditions (�̂μ0 , Ŷμ0 , σ̂μ0) in this algorithm were chosen in the following
way. The weights (�μ0) are uniform and equal to 1/M; (Ŷμ0) are M different observations from
the set {Y1, .., YN} chosen randomly; and (σ̂μ0) is computed from (�μ0) and (Ŷμ0) according to
the rule Equation (30). Since the convergence of the algorithm depends on the initial conditions,
the EM algorithm is run several times, and the best result is retained, i.e., the one maximizing the
log-likelihood function.

4.2. The Bayesian Information Criterion

The BIC was introduced by Schwarz to find the appropriate dimension of a model that will fit a
given set of observations [16]. Since then, BIC has been used in many Bayesian modeling problems
where priors are hard to set precisely. In large sample settings, the fitted model favored by BIC ideally
corresponds to the candidate model that is a posteriori most probable; i.e., the model that is rendered
most plausible by the data at hand. One of the main features of the BIC is its easy computation, since it
is only based on the empirical log-likelihood function.
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Given a set of observations {Y1, · · · , YN} arising from Equation (27) where M is unknown, the
BIC consists of choosing the parameter:

M̄ = argmaxMBIC(M)

where:
BIC(M) = LL − 1

2
× DF × log(N) (31)

Here, LL is the log-likelihood given by:

LL =
N

∑
n=1

log

(
M

∑
k=1

�̂k p(Yn|Ŷk, σ̂k)

)
(32)

and DF is the number of degrees of freedom of the statistical model:

DF = M × m(m + 1)
2

+ M + M − 1 (33)

In Formula (32), (�̂k, Ŷk, σ̂k)1≤k≤M are obtained from an EM algorithm as stated in Section 4.1
assuming the exact dimension is M. Finally, note that in Formula (33), M × m(m+1)

2 (respectively M
and M − 1) corresponds to the number of degrees of freedom associated with (Ŷk)1≤k≤M (respectively
(σ̂k)1≤k≤M and (�̂k)1≤k≤M).

5. Application to Classification of Data on Pm

Recently, several approaches have used the Riemannian distance in general as the main innovation
in image or signal classification problems [2,15,34]. It turns out that the use of this distance leads to
more accurate results (in comparison, for example, with the Euclidean distance). This section proposes
an application that follows a similar approach, but in addition to the Riemannian distance, it also relies
on a statistical approach. It considers the application of the Riemannian Laplace distribution (RLD) to
the classification of data in Pm and gives an original Laplace classification rule, which can be used to
carry out the task of classification, even in the presence of outliers. It also applies this classification rule
to the problem of texture classification in computer vision, showing that it leads to improved results in
comparison with recent literature.

Section 5.1 considers, from the point of view of statistical learning, the classification of data with
values in Pm. Given data points Y1, · · · , YN ∈ Pm, this proceeds in two steps, called the learning phase
and the classification phase, respectively. The learning phase uncovers the class structure of the data,
by estimating a mixture model using the EM algorithm developed in Section 4.1. Once training is
accomplished, data points are subdivided into disjoint classes. Classification consists of associating
each new data point to the most suitable class. For this, a new classification rule will be established
and shown to be optimal.

Section 5.2 is the implementation of the Laplace classification rule together with the BIC criterion
to texture classification in computer vision. It highlights the advantage of the Laplace distribution in
the presence of outliers and shows its better performance compared to recent approaches.

5.1. Classification Using Mixtures of Laplace Distributions

Assume to be given a set of training data Y1, · · · , YN . These are now modeled as a realization of a
mixture of Laplace distributions:

p(Y) =
M

∑
μ=1

�μ × p(Y| Ȳμ, σμ) (34)
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In this section, the order M in Equation (34) is considered as known. The training phase of these
data consists of learning its structure as a family of M disjoint classes Cμ, μ = 1, · · · , M. To be more
precise, depending on the family (�μ), some of these classes may be empty. Training is done by
applying the EM algorithm described in Section 4.1. As a result, each class Cμ is represented by a
triple (�̂μ, Ŷμ, σ̂μ) corresponding to maximum likelihood estimates of (�μ, Yμ, σμ). Each observation
Yn is now associated with the class Cμ∗ where μ∗ = argmaxμω(Yn, ν̂) (recall the definition from
Equation (28)). In this way, {Y1, · · · , YN} is subdivided into M disjoint classes.

The classification phase requires a classification rule. Following [15], the optimal rule (in the sense
of a Bayesian risk criterion given in [35]) consists of associating any new data Yt to the class Cμ∗ where:

μ∗ = argmaxμ

{
N̂μ × p(Yt|Ŷμ, σ̂μ)

}
(35)

Here, N̂μ is the number of elements in Cμ. Replacing N̂μ with N × �̂μ, Equation (35) becomes
argmaxμ �̂μ × p(Yt|Ŷμ, σ̂μ). Note that when the weights �μ in Equation (34) are assumed to be equal,

this rule reduces to a maximum likelihood classification rule maxμ p(Yt|Ŷμ, σ̂μ). A quick look at the
expression Equation (17) shows that Equation (35) can also be expressed as:

μ∗ = argminμ

{
− log �̂μ + log ζ(σ̂μ) +

d(Yt , Ŷμ)

σ̂μ

}
(36)

The rule Equation (36) will be called the Laplace classification rule. It favors clusters Cμ having
a larger number of data points (the minimum contains − log �̂μ) or a smaller dispersion away from
the median (the minimum contains log ζ(σ̂μ)). When choosing between two clusters with the same
number of points and the same dispersion, this rule favors the one whose median is closer to Yt . If the
number of data points inside clusters and the respective dispersions are neglected, then Equation (36)
reduces to the nearest neighbor rule involving only the Riemannian distance introduced in [2].

The analogous rules of Equation (36) for the Riemannian Gaussian distribution (RGD) [15] and the
Wishart distribution (WD) [17] on Pm can be established by replacing p(Yt|Ŷμ, σ̂μ) in Equation (35) with
the RGD and the WD and then following the same reasoning as before. Recall that a WD depends on
an expectation Σ ∈ Pm and a number of degrees of freedom n [29]. For the WD, Equation (36) becomes:

μ∗ = argminμ

{−2 log �̂(μ)− n̂(μ) (log det (Σ̂−1(μ)Yt)− tr(Σ̂−1(μ)Yt))
}

Here, �̂(μ), Σ̂(μ) and n̂(μ) denote maximum likelihood estimates of the true parameters �(μ),
Σ(μ) and n(μ), which define the mixture model (these estimates can be computed as in [36,37]).

5.2. Application to Texture Classification

This section presents an application of the mixture of Laplace distributions to the context of
texture classification on the MIT Vision Texture (VisTex) database [38]. The purpose of this experiment
is to classify the textures, by taking into consideration the within-class diversity. In addition, the
influence of outliers on the classification performances is analyzed. The obtained results for the RLD
are compared to those given by the RGD [15] and the WD [17].

The VisTex database contains 40 images, considered as being 40 different texture classes. The
database used for the experiment is obtained after several steps. First of all, each texture is decomposed
into 169 patches of 128× 128 pixels, with an overlap of 32 pixels, giving a total number of 6760 textured
patches. Next, some patches are corrupted, in order to introduce abnormal data into the dataset.
Therefore, their intensity is modified by applying a gradient of luminosity. For each class, between
zero and 60 patches are modified in order to become outliers. An example of a VisTex texture with one
of its patches and an outlier patch are shown in Figure 1.
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(a) (b) (c)

Figure 1. Example of a texture from the VisTex database (a), one of its patches (b) and the corresponding
outlier (c).

Once the database is built, it is 15-times equally and randomly divided in order to obtain the
training and the testing sets that are further used in the supervised classification algorithm. Then,
for each patch in both databases, a feature vector has to be computed. The luminance channel is first
extracted and then normalized in intensity. The grayscale patches are filtered using the stationary
wavelet transform Daubechies db4 filter (see [39]), with two scales and three orientations. To model
the wavelet sub-bands, various stochastic models have been proposed in the literature. Among them,
the univariate generalized Gaussian distribution has been found to accurately model the empirical
histogram of wavelet sub-bands [40]. Recently, it has been proposed to model the spatial dependency
of wavelet coefficients. To this aim, the wavelet coefficients located in a p × q spatial neighborhood
of the current spatial position are clustered in a random vector. The realizations of these vectors
can be further modeled by elliptical distributions [41,42], copula-based models [43,44], etc. In this
paper, the wavelet coefficients are considered as being realizations of zero-mean multivariate Gaussian
distributions. In addition, for this experiment the spatial information is captured by using a vertical
(2× 1) and a horizontal (1× 2) neighborhood. Next, the 2× 2 sample covariance matrices are estimated
for each wavelet sub-band and each neighborhood. Finally, each patch is represented by a set of F = 12
covariance matrices (2 scales × 3 orientations × 2 neighborhoods) denoted Y = [Y1, · · · , YF].

The estimated covariance matrices are elements of Pm, with m = 2, and therefore, they can be
modeled by Riemannian Laplace distributions. More precisely, in order to take into consideration the
within-class diversity, each class in the training set is viewed as a realization of a mixture of Riemannian
Laplace distributions (Equation (27)) with M mixture components, characterized by (�μ, Ȳμ, f , σμ, f ),
having Ȳμ, f ∈ P2, with μ = 1, · · · , M and f = 1, · · · , F. Since the sub-bands are assumed to be
independent, the probability density function is given by:

p(Y|(�μ, Ȳμ, f , σμ, f )1≤μ≤M,1≤ f≤F) =
M

∑
μ=1

�μ

F

∏
f=1

p(Yf | Ȳμ, f , σμ, f ) (37)

The learning step of the classification is performed using the EM algorithm presented in Section 4,
and the number of mixture components is determined using the BIC criterion recalled in Equation (31).
Note that for the considered model given in Equation (37), the degree of freedom is expressed as:

DF = M − 1 + M × F ×
(

m(m + 1)
2

+ 1
)

(38)

since one centroid and one dispersion parameter should be estimated per feature and per component
of the mixture model. In practice, the number of mixture components M varies between two and five,
and the M yielding to the highest BIC criterion is retained. As mentioned earlier, the EM algorithm
is sensitive to the initial conditions. In order to minimize this influence, for this experiment, the EM
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algorithm is repeated 10 times, and the result maximizing the log-likelihood function is retained.
Finally, the classification is performed by assigning each element Yt ∈ P2 in the testing set to the class
of the closest cluster μ∗, given by:

μ∗ = argminμ

{
− log �̂μ +

F

∑
f=1

log ζ(σ̂μ, f ) +
F

∑
f=1

d(Yt , Ŷμ, f )

σ̂μ, f

}
(39)

This expression is obtained starting from Equations (36) and (37), knowing that F features are
extracted for each patch.

The classification results of the proposed model (solid red line), expressed in terms of overall
accuracy, shown in Figure 2, are compared to those given by a fixed number of mixture components
(that is, for M = 3, dashed red line) and with those given when the within-class diversity is not
considered (that is, for M = 1, dotted red line). In addition, the classification performances given by
the RGD model (displayed in black) proposed in [15] and the WD model (displayed in blue) proposed
in [17] are also considered. For each of these models, the number of mixture components is first
computed using the BIC, and next, it is fixed to M = 3 and M = 1. For all of the considered models,
the classification rate is given as a function of the number of outliers, which varies between zero and
60 for each class.

Figure 2. Classification results.

It is shown that, as the number of outliers increases, the RLD gives progressively better results
than the RGD and the WD. The results are improved by using the BIC criterion for choosing the
suitable number of clusters. In conclusion, the mixture of RLDs combined with the BIC criterion to
estimate the best number of mixture components can minimize the influence of abnormal samples
present in the dataset, illustrating the relevance of the proposed method.

6. Conclusions

Motivated by the problem of outliers in statistical data, this paper introduces a new distribution on
the space Pm of m×m symmetric positive definite matrices, called the Riemannian Laplace distribution.
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Denoted throughout the paper by L(Ȳ, σ), where Ȳ ∈ Pm and σ > 0 are the indexing parameters, this
distribution may be thought of as specifying the law of a family of observations on Pm concentrated
around the location Ȳ and having dispersion σ. If d denotes Rao’s distance on Pm and dv(Y) its
associated volume form, the density of L(Ȳ, σ) with respect to dv(Y) is proportional to exp(− d(Y,Ȳ

σ )).
Interestingly, the normalizing constant depends only on σ (and not on Ȳ). This allows us to deduce
exact expressions for maximum likelihood estimates of Ȳ and σ relying on the Riemannian median
on Pm. These estimates are also computed numerically by means of sub-gradient algorithms. The
estimation of parameters in mixture models of Laplace distributions are also considered and performed
using a new expectation-maximization algorithm. Finally, the main theoretical results are illustrated
by an application to texture classification. The proposed experiment consists of introducing abnormal
data (outliers) into a set of images from the VisTex database and analyzing their influences on the
classification performances. Each image is characterized by a set of 2 × 2 covariance matrices modeled
as mixtures of Riemannian Laplace distributions in the space P2. The number of mixtures is estimated
using the BIC criterion. The obtained results are compared to those given by the Riemannian Gaussian
distribution, showing the better performance of the proposed method.
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Appendix: Proofs of Some Technical Points

The subsections below provide proofs (using the same notations) of certain points in the paper.

A. Derivation of Equation (16) from Equation (14)

For U ∈ O(m) and r = (r1, · · · , rm) ∈ Rm, let Y(r, U) = U† diag(er1 , · · · , erm)U. On O(m),
consider the exterior product det(θ) =

∧
i<j θij, where θij = ∑k UjkdUik.

Proposition 4. For all test functions f : Pm → R,

∫
Pm

f (Y) dv(Y) = (m! 2m)−1 × 8
m(m−1)

4

∫
O(m)

∫
Rm

f (Y(r, U)) det(θ) ∏
i<j

sinh
( |ri − rj|

2

) m

∏
i=1

dri

This proposition allows one to deduce Equation (16) from Equation (14), since∫
O(m) det(θ) = 2mπm2/2

Γm(m/2)
(see [29], p. 70).

Sketch of the proof of Proposition 4. In a differential form, the Rao–Fisher metric on Pm is:

ds2(Y) = tr[Y−1dY]2

For U ∈ O(m) and (a1, · · · , am) ∈ (R∗
+)

m, let Y = U† diag(a1, · · · , am)U. Then:

ds2(Y) =
m

∑
j=1

da2
j

a2
j
+ 2 ∑

1≤i<j≤m

(ai − aj)
2

aiaj
θ2

ij
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(see [10], p. 24). Let ai = eri , then simple calculations show that:

ds2(Y) =
m

∑
j=1

dr2
j + 8 ∑

i<j
sinh2

( ri − rj

2

)
θ2

ij

As a consequence, the volume element dv(Y) is written as:

dv(Y) = 8
m(m−1)

4 det(θ)∏
i<j

sinh
( |ri − rj|

2

) m

∏
i=1

dri

This proves the proposition (the factor m! 2m comes from the fact that the correspondence between
Y and (r, U) is not unique: m! corresponds to all possible reorderings of r1, . . . , rm , and 2m corresponds
to the orientation of the columns of U).

B. Derivation of Equation (19)

By Equations (16) and (18), to prove Equation (19), it is sufficient to prove that for all Y ∈ Pm,
d(Y, I) = (∑m

i=1 r2
i )

1/2 if the spectral decomposition of Y is Y = U† diag(er1 , · · · , erm)U, where U is
an orthogonal matrix. Note that d(Y, I) = d(diag(er1 , · · · , erm).U, I) = d(diag(er1 , · · · , erm).U, I.U),
where . is the affine transformation given by Equation (9). By Equation (10), it comes
that d(Y, I) = d(diag(er1 , · · · , erm), I), and so, d(Y, I) = (∑m

i=1 r2
i )

1/2 holds using the explicit
expression Equation (8).

C. The Normalizing Factor ζm(σ)

The subject of this section is to prove these two claims:

(i) 0 < σm < ∞ for all m ≥ 2;
(ii) σ2 =

√
2.

To check (i), note that ∏i<j sinh
( |ri−rj |

2

)
≤ exp(C|r|) for some constant C. Thus, for σ small

enough, the integral Im(σ) =
∫
Rm e−

|r|
σ ∏i<j sinh

( |ri−rj |
2

)
dr given in Equation (19) is finite, and

consequently, σm > 0.
Fix A > 0, such that sinh( x

2 ) ≥ exp( x
4 ) for all x ≥ A. Then:

Im(σ) ≥
∫
C

exp

(
1
4 ∑

i<j
(rj − ri)− |r|

σ

)
dr

where C is the set of infinite Lebesgue measures:

C =
{

r = (r1, · · · , rm) ∈ R
m : ri ∈ [2(i − 1)A, (2i − 1)A], 1 ≤ i ≤ m − 1, rm ≥ 2(m − 1)A

}
Now:

1
4 ∑

i<j
(rj − ri) =

1
4

rm +
1
4
(−r1 + ∑

i<j,(i,j) �=(1,m)

(rj − ri))

Assume m ≥ 3 (the case m = 2 is easy to deal with separately). Then, on C, 1
4 ∑i<j(rj − ri) ≥

1
4 rm + C′ and |r|

σ ≤ (C′′+r2
m)

1
2

σ , where C′ and C′′ are two positive constants (not depending on r).
However, for σ large enough:

1
4 ∑

i<j
(rj − ri)− |r|

σ
≥ 1

4
rm + C′ − (C′′ + r2

m)
1
2

σ
≥ 0.

and so, the integral Im(σ) diverges. This shows that σm is finite.
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(ii) Note the following easy inequalities |r1 − r2| ≤ |r1|+ |r2| ≤
√

2|r|, which yield sinh( |r1−r2|
2 ) ≤

1
2 e

|r|√
2 . This last inequality shows that ζ2(σ) is finite for all σ <

√
2. In order to check ζ2(

√
2) = ∞, it is

necessary to show: ∫
R2

exp(− |r|√
2
+

|r1 − r2|
2

)dr1dr2 = ∞ (40)

The last integral is, up to a constant, greater than
∫
C exp

(
−|r|+ |r1−r2|√

2

)
dr1dr2, where:

C = {(r1, r2) ∈ R
2 : r1 ≥ −r2, r2 ≤ 0} = {(r1, r2) ∈ R

2 : r1 ≥ |r2|, r2 ≤ 0}.

On C,

−|r|+ |r1 − r2|√
2

= −|r|+ r1 − r2√
2

≥ −
√

2r1 +
r1 − r2√

2
=

−r1 − r2√
2

However,
∫
C exp

(−r1−r2√
2

)
dr1dr2 = ∞ by integrating with respect to r1 and then r2, which shows

Equation (40).

D. The Law of X in Algorithm 1

As stated in Appendix A, the uniform distribution on O(m) is given by 1
ω′

m
det(θ), where

ω′
m = 2mπm2/2

Γm(m/2)
. Let Y(s, V) = V† diag(es1 , · · · , esm)V, with s = (s1, · · · , sm). Since X = Y(r, U), for

any test function ϕ : Pm → R,

E[ϕ(X)] =
1

ω′
m

∫
O(m)×Rm

ϕ(Y(s, V))p(s)det(θ)
m

∏
i=1

dsi (41)

Here, det(θ) =
∧

i<j θij and θij = ∑k VjkdVik. On the other hand, by Proposition 4,∫
Pm

ϕ(Y) p(Y| I, σ) dv(Y) can be expressed as:

(m! 2m)−1 × 8
m(m−1)

4
1

ζm(σ)

∫
O(m)

∫
Rm

ϕ(Y(s, V))e−
|s|
σ det(θ) ∏

i<j
sinh

( |si − sj|
2

) m

∏
i=1

dsi

which coincides with Equation (41).
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Abstract: Air traffic management (ATM) aims at providing companies with a safe and ideally optimal
aircraft trajectory planning. Air traffic controllers act on flight paths in such a way that no pair of
aircraft come closer than the regulatory separation norms. With the increase of traffic, it is expected
that the system will reach its limits in the near future: a paradigm change in ATM is planned with
the introduction of trajectory-based operations. In this context, sets of well-separated flight paths
are computed in advance, tremendously reducing the number of unsafe situations that must be
dealt with by controllers. Unfortunately, automated tools used to generate such planning generally
issue trajectories not complying with operational practices or even flight dynamics. In this paper,
a means of producing realistic air routes from the output of an automated trajectory design tool is
investigated. For that purpose, the entropy of a system of curves is first defined, and a mean of
iteratively minimizing it is presented. The resulting curves form a route network that is suitable for
use in a semi-automated ATM system with human in the loop. The tool introduced in this work is
quite versatile and may be applied also to unsupervised classification of curves: an example is given
for French traffic.

Keywords: curve system entropy; curves manifold; curve clustering; probability distribution
estimation; air traffic management

1. Introduction

Based on recent studies [1], traffic in Europe is expected to grow by an average yearly rate of
2.6%, yielding a net increase of two million flights per year at the 2020 horizon. The long-term forecast
gives a two-fold increase in 2050 over the current traffic, pointing out the need for a paradigm change
in the way flights are managed. Two major framework programs, SESAR (Single European Sky Air
traffic management Research) in Europe and Nextgen in the U.S. have been launched in order to first
investigate potential solutions and to deploy them in a second phase. One of the main changes that the
air traffic management (ATM) system will undergo is a switch from airspace-based to trajectory-based
operations with a delegation of the separation task to the crews. Within this framework, trajectories
become the basic object of ATM, changing the way air traffic controllers will be working. In order to
alleviate the workload of controllers, trajectories will be planned several weeks in advance in such
a way that close encounters are minimized and ideally removed. For that purpose, several tools are
currently being developed; most of them coming from the field of robotics [2]. Unfortunately, flight
paths issued by these algorithms are not tractable for a human controller and need to be simplified.
The purpose of the present work is to introduce an automated procedure that takes as input a set of
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trajectories and outputs a simplified one that can be used in an operational context. Please note that
the separation norm constraints were not taken into account in this work. In our algorithm, we cannot
enforce the regulatory separation norms, just construct clusters with low interactions. According to
the applications, the results of our algorithm may be used as an initial solution of a post-processing
algorithm based on optimal control in order to keep in line with the regulatory constraints. Using
entropy associated with a curves system, a gradient descent is performed in order to reduce it so
as to straighten trajectories while avoiding areas with low aircraft density, thus enforcing route-like
behavior. This effect is related to the fact that entropy-minimizing distributions favor concentration.

2. Entropy-Minimizing Curves

2.1. Motivation

As previously mentioned, air traffic management of the future will make an intensive use of
4D trajectories as a basic object. Full automation is a far-reaching concept that will probably not be
implemented before 2040–2050, and even in such a situation, it will be necessary to keep humans in
the loop so as to gain a wide societal acceptance of the concept. Starting from SESAR or Nextgen
initial deployment and aiming towards this ultimate objective, a transition phase with human-system
cooperation will take place. Since ATC controllers are used to a well-structured network of routes,
it is advisable to post-process the 4D trajectories issued by automated systems in order to make them as
close as possible to line segments connecting beacons. To perform this task, in an automatic way, flight
paths will be deformed so as to minimize an entropy criterion that enforces avoidance of low density
areas and at the same time penalizes length. Compared to already available bundling algorithms [3]
that tend to move curves to high density areas, this new procedure generates geometrically-correct
curves, without excess curvature.

Let a set γ1, . . . , γN of smooth curves be given that will be aircraft flight paths for the air traffic
application. It will be assumed in the sequel that all curves are smooth mappings from [0, 1] to
a domain Ω of Rq with everywhere non-vanishing derivatives in ]0, 1[. This last condition allows one
to view them as smooth immersions with boundaries and is sound from the application point of view,
as aircraft velocities are bounded below by the efficiency consideration and ultimately by the stall and,
therefore, cannot vanish expect at the endpoints. In air traffic applications, the dimension of the state
space is generally two and sometimes three when the evolution of the aircraft in the vertical plane
is of interest.

The approach taken in this work is first to get a sound definition of spatial density associated with
a curve system, then to derive from it an entropy that will be minimized.

2.2. Spatial Density of a System of Curves

Due to the fact that aircraft positions are acquired through radar measurements, a trajectory
is known only at discrete sampling times. In the operational context, the sampling period ranges
from 4 to 10 s, which corresponds roughly to a 100–250-m traveling distance. Derived from that,
a classical performance indicator used in ATM is the aircraft density [4], obtained from the sampled
positions γi(tj), j = 1, . . . , ni on each flight path γi, i = 1, . . . , N. It is constructed from a partition
Uk, k = 1, . . . , P of Ω by counting the number of samples occurring in a given Uk, then dividing out
by the total number of samples n = ∑N

i=1 ni. More formally, the density dk in the subset Uk of Ω is
expressed as:

dk = n−1
N

∑
i=1

ni

∑
j=1

1Uk

(
γi(tj)

)
(1)
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with 1Uk the characteristic function of the set Uk. It seems natural to extend the density obtained from
samples to another one based on the trajectories themselves using an integral form:

dk = λ−1
N

∑
i=1

∫ 1

0
1Uk (γi(t)) dt (2)

where the normalizing constant λ is chosen so that dk is a discrete probability distribution:

λ =
P

∑
k=1

N

∑
i=1

∫ 1

0
1Uk (γi(t)) dt =

N

∑
i=1

∫ 1

0

P

∑
k=1

1Uk (γi(t)) dt

and since Uk, k = 1, . . . , P is a partition:

P

∑
k=1

1Uk (γi(t)) = 1 (3)

so that λ = N.
Density can be viewed as an empirical probability distribution with the Uk considered as bins

in an histogram. It is thus natural to extend the above computation so as to give rise to a continuous
distribution on Ω. For that purpose, local weighting techniques, such as kernel density estimation
methods, are well known in nonparametric statistics, because they are a useful data-driven way
to yield continuous density estimation. Many references may be found in the literature as in [5,6].
Given the observations, the resulting estimation will be the sum of weights taking into account the
distance between the observations and the location x at which the density has to be estimated; the more
an observation is close to x, the greater is the weighting. The weights are defined by selecting a
summable function centered on the observations, called a kernel, usually denoted by K : R → R+ in
the univariate case, and a smoothed version of the Parzen–Rosenblatt density estimator [7,8] is used.
Standard choices for the K function are the ones used for nonparametric kernel estimation, like the
Epanechnikov function [9]:

K : x �→
(

1 − x2
)

1[−1,1](x).

There exists a large variety of kernel functions, and any density function satisfying the
normalization condition can be considered, so that the estimation is a probability density. Moreover,
the kernel function is a symmetric positive function, with the first moment equal to zero and a finite
second order moment. In the multivariate case, a multivariate kernel function K : Rq → R+ is selected
that can be expressed by means of a real kernel K associated with a norm, denoted by ‖.‖, in Rq

as follows:
K(x) = K(‖x‖), x ∈ R

q.

The normalization condition becomes:∫
Rq

K (x) dx =
∫
Rq

K (‖x‖) dx = 1.

A kernel version of the density is then defined as a mapping d from Ω to [0, 1]:

d : x �→ ∑N
i=1
∫ 1

0 K (‖x − γi(t)‖) dt

∑N
i=1
∫

Ω

∫ 1
0 K (‖x − γi(t)‖) dtdx

. (4)

Normalizing the kernel is not mandatory, as the normalization occurs with the definition of d. It is
nevertheless easier to consider these kinds of kernels, as is done in nonparametric density estimation.
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Note that when K is compactly supported, which is the case of the Epanechnikov function and all of
its relatives, it becomes: ∫

Ω
K (‖x − γi(t)‖) dx =

∫
Rq

K (‖x‖) dx

provided that Ω contains the set:

{x ∈ R
q, inf

i=1...N,t∈[0,1]
‖x − γi(t)‖ ≤ A}

where the interval [−A, A] contains the support of K. The case of kernels with unbounded support,
like Gaussian functions, may be dealt with provided Ω = Rq. In the application considered,
only compactly-supported kernels are used, mainly to allow fast machine implementation of the
density computation.

Using the polar coordinates (ρ, θ) and the rotation invariance of the integrand, the
relation becomes:

Vol
(
S

q−1
) ∫

R+
K(ρ)ρq−1dρ = 1

which yields a normalizing constant of 2/π for the Epanechnikov function in dimension two, instead
of the usual 3/4 in the real case. When the normalization condition is fulfilled, the expression of the
density simplifies to:

d : x �→ N−1
N

∑
i=1

∫ 1

0
K (‖x − γi(t)‖) dt. (5)

The normalizing constant is the same as in (2).
As an example, one day of traffic over France is considered and pictured in Figure 1

with the corresponding density map, computed on an evenly-spaced grid with a normalized
Epanechnikov kernel.

(a) (b)

Figure 1. (a) Traffic over France; (b) Associated density.

Unfortunately, density computed this way suffers a severe flaw for the ATM application: it is not
related only to the shape of trajectories, but also to the time behavior. Formally, it is defined on the set
Imm ([0, 1],Rq) of smooth immersions from [0, 1] to Rq while the space of primary interest will be the
quotient by smooth diffeomorphisms of the interval [0, 1], Imm ([0, 1],Rq) /Diff([0, 1]). Invariance of
the density under the action of Diff([0, 1]) is obtained as in [10] by adding a term related to velocity in
the integrals. The new definition of d becomes:

d̃ : x �→ ∑N
i=1
∫ 1

0 K (‖x − γi(t)‖) ‖γ′
i(t)‖dt

∑N
i=1
∫

Ω

∫ 1
0 K (‖x − γi(t)‖) ‖γ′

i(t)‖dtdx
. (6)
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Assuming again a normalized kernel and letting li be the length of the curve γi, the expression of
the density simplifies to:

d̃ : x �→ ∑N
i=1
∫ 1

0 K (‖x − γi(t)‖) ‖γ′
i(t)‖dt

∑N
i=1 li

. (7)

The new Diff-invariant density is pictured in Figure 2 along with the standard density. While the
overall aspect of the plot is similar, one can observe that routes are more apparent in the right picture
and that the density peak located above the Paris area is of less importance and less symmetric due to
the fact that near airports, aircraft are slowing down, and this effect exaggerates the density with the
non-invariant definition.

(a) (b)

Figure 2. Density (a) and Diff invariant density (b) for 12 February 2013 traffic.

The extension of the two-dimensional defined that way to the general case of curves in an arbitrary
space Rq is straightforward.

2.3. Further Properties of the Density

In this section, the curves considered are a smooth mapping from the closed interval [0, 1] to Rq,
with a non-vanishing derivative in ]0, 1[. All multivariate kernels K will be assumed smooth, positive,
with a unit integral and of the form x �→ K (‖x‖). However, it is not required that they are compactly
supported unless explicitly stated. All results are presented for the whole space Rq, but apply almost
verbatim to an open subset.

Definition 1. Let f be a smooth summable mapping from R to R. The scaling fν of f is defined, for each ν > 0,
to be the mapping:

fν : x ∈ R �→ 1
ν

f
( x

ν

)
.

It is clear that the L1-norm of the original mapping is preserved by the scaling. Given a summable
kernel function K from R to R+, it defines a multivariate kernel K on Rq that maps x to K(‖x‖).
One may derive from it a parametrized family of kernels in R by mapping each ν in ]0, 1] to the scaled
kernel Kν. If the original K is of unit integral, so are all of the Kν.

Proposition 1. Let γ : [0, 1] → Rq be a smooth path with a non-vanishing derivative in ]0, 1[. Let Kν, ν > 0
be a parametrized family of unit integral kernels. The family of Borel measures μν defined for any Borel set A by:

μν(A) =
∫

A

∫ 1

0
Kν (‖x − γ(t)‖) ‖γ′(t)‖dtdx

is tight and converges narrowly to the Lebesgue measure on γ ([0, 1]).
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Proof. Let ε > 0 be given. By the summability of K, there exists a positive real number r, such that:∫
Rq−B(0,r)

K(‖x‖)dx < ε

with B(0, r) the open ball of radius r centered at the origin. Since B(0, r) ⊂ B(0, rν−1) for ν > 0,
the same holds for all of the family Kν. Let B(0, M) be an open ball containing γ ([0, 1]). Then:

μν

(
R

q − B(0, M + r)
)
=
∫
Rq−B(0,M+r)

∫ 1

0
Kν (‖x − γ(t)‖) ‖γ′(t)‖dtdx

=
∫ 1

0

∫
Rq−B(0,M+r)

Kν (‖x − γ(t)‖) ‖γ′(t)‖dxdt

≤ ε
∫ 1

0
‖γ′(t)‖dt = ε l(γ)

(8)

where l(γ) denotes the length of γ. This proves the tightness of the family Kν.
Let f : Rq → R be a bounded continuous mapping. It becomes:

Iν( f ) =
∫
Rq

∫ 1

0
Kν (‖x − γ(t)‖) f (x)‖γ′(t)‖dtdx =

∫ 1

0

∫
Rq

Kν (‖x − γ(t)‖) f (x)‖γ′(t)‖dxdt

=
∫ 1

0

∫
Rq

K (‖x‖) f (xν + γ(t)) ‖γ′(t)‖dxdt
(9)

and since f is bounded, the dominated convergence theorem shows that:

lim
ν→0

Iν( f ) =
∫ 1

0
f (γ(t)) ‖γ′(t)‖dt

proving the second part of the claim.

The density in (7) is for a single curve of the form d(x) = l(γ)−1
∫ 1

0 K (‖x − γ(t)‖) ‖γ′(t)‖dt with
l(γ) the length of the curve γ. It is invariant under the change of the parameter and can be written in a
more concise way as: ∫ 1

0
K (‖x − γ(η)‖) ‖dη (10)

where η is the arclength times l(γ)−1.
This form allows a simple probabilistic interpretation of the density d: if a point u is drawn on the

curve γ according to a uniform distribution and independently a vector v in Rq with a density K (the
multivariate kernel corresponding to K), then the density of x = u + v is given by Equation (10).

Proposition 2. If the multivariate kernel K has a finite second moment, that is the univariate kernel K is
such that:

M =
∫
R+

rq+1K(r) dr < +∞

then the Wasserstein distance between the densities d1, d2 associated with smooth curves γ1, γ2 is bounded by:

2Vol(Sq−1)M + D(γ1, γ2)

with :

D(γ1, γ2) =
∫ 1

0
‖γ1(η)− γ2(η)‖2dη

where each curve is parametrized by the scaled arclength as in (10).
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Proof. Let us consider the plan [11] given by the density:

d : (x, y) �→
∫ 1

0
K(‖x − γ1(η)‖)K(‖y − γ2(η)‖)dη

where each curve is parametrized by the scaled arclength. The associated transport cost is given by:

C =
∫
Rq×Rq

‖x − y‖2
∫ 1

0
K (‖x − γ1(η)‖)K (‖y − γ2(η)‖) dηdxdy

letting u = y − x and using Fubini gives:

C =
∫ 1

0

∫
Rq

K (‖x − γ1(η)‖)
∫

Rq
‖u‖2K (‖u + x − γ2(η)‖) dudxdη.

The inner term can be written as:∫
Rq

‖u‖2K (‖u + x − γ2(η)‖) du =
∫

Rq
‖u + γ2(η)− x‖2K (‖u‖) du

=
∫
Rq

‖u‖2K(‖u‖)du + 2〈γ2(η)− x,
∫
Rq

uK(‖u‖)du〉+ ‖γ2(η)− x‖2.
(11)

The integral: ∫
Rq

uK(‖u‖)du

is zero and, using spherical coordinates:∫
Rq

‖u‖2K(‖u‖)du =
∫
R+

rq+1K(r)
∫
Sq−1

dσ dr = Vol(Sq−1)M

with M =
∫
R+ rq+1K(r). Putting back this value in the expression of the cost gives:

C = Vol(Sq−1)M
∫ 1

0

∫
Rq

K (‖x − γ1(η)‖) dxdη +
∫ 1

0

∫
Rq

K (‖x − γ1(η)‖) ‖γ2(η)− x‖2dxdη

= Vol(Sq−1)M +
∫ 1

0

∫
Rq

K (‖x − γ1(η)‖) ‖γ2(η)− x‖2dxdη

= Vol(Sq−1)M +
∫ 1

0

∫
Rq

K (‖x‖) ‖γ2(η)− γ1(η) + x‖2dxdη.

(12)

Finally: ∫
Rq

K (‖x‖) ‖γ2(η)− γ1(η) + x‖2dx =
∫
Rq

K (‖x‖) ‖γ2(η)− γ1(η)‖2dxdη

+ 2〈γ2(η)− γ1(η),
∫
Rq

xK (‖x‖) dx

+ Vol(Sq−1)M.

(13)

As before, the middle term vanishes, and the first one integrates to:

∫ 1

0
‖γ2(η)− γ1(η)‖2dη

so that:

C = 2Vol(Sq−1)M +
∫ 1

0
‖γ2(η)− γ1(η)‖2dη.

This result indicates that the densities associated with curves γ1, γ2 using the smoothing process
described above cannot be too far (with respect to the Wasserstein distance) from each other if the
geometric L2 distance D(γ1, γ2) is small. In fact, the upper bound in Proposition 2 can be interpreted
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as the cost of moving the smoothed density around γ1 to the uniform distribution on the curve,
then moving γ1 to γ2, keeping points with equal scaled arclength in correspondence, and finally,
moving the uniform distribution on γ2 to the smoothed density.

Having the density at hand, the entropy of the system of curves γ1, . . . , γN is defined the usual
way as:

E(γ1, . . . , γN) = −
∫

Ω
d̃(x) log

(
d̃(x)

)
dx.

The entropy is dependent on the particular choice of the kernel K. As mentioned before, it is
a common practice in the field of non-parametric statistics to introduce a tuning parameter ν > 0 in
the kernel, called bandwidth, so that it is expressed as a scaled version K = fν of a given function
f : R+ → R+. The value of ν is the most influential parameter in the estimation of the density and must
be selected carefully. For curve clustering applications, it is defined by the desired interaction length:
if ν tends to zero, the curves will behave as independent objects, while on the other end of the scale,
very high bandwidth will tend to remove the influence of the curves themselves. For the moment, no
automated means of finding an optimal ν was used, although it will be part of a future work.

2.4. Minimizing the Entropy

In order to fulfill the initial requirement of finding bundles of curve segments as straight
as possible, one seeks after the system of curves minimizing the entropy E(γ1, . . . , γN),
or equivalently maximizing: ∫

Ω
d̃(x) log

(
d̃(x)

)
dx.

The reason why this criterion gives the expected behavior will become more apparent after
derivation of its gradient at the end of this part. Nevertheless, when considering a single trajectory, it is
intuitive that the most concentrated density distribution is obtained with a straight segment connecting
the endpoints: this point will be made rigorous later.

Letting ε be a perturbation of the curve γj, such that ε(0) = ε(1) = 0, the first order expansion
of −E(γ1, . . . , γN) will be computed in order to get a maximizing displacement field, analogous to
a gradient ascent (the choice has been made to maximize the opposite of the entropy, so that the
algorithm will be a gradient ascent one) in the finite dimensional setting. The notation:

∂F
∂γj

will be used in the sequel to denote the derivative of a function F of the curve γj in the sense that for a
perturbation ε:

F(γj + ε) = F(γj) +
∂F
∂γj

(ε) + o(‖ε‖2).

First of all, please note that since d̃ has integral one over the domain Ω:

∫
Ω

∂d̃(x)
∂γj

(ε)dx = 0

so that:

− ∂

∂γj
E(γ1, . . . , γN)(ε) =

∫
Ω

∂d̃(x)
∂γj

(ε) log
(
d̃(x)

)
dx. (14)

Starting from the expression of d̃ given in Equation (7), the first order expansion of d̃ with respect
to the perturbation ε of γj is obtained as a sum of a term coming from the numerator:

∫ 1

0
K
(‖x − γj(t)‖

) ‖γ′
j(t)‖dt. (15)
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and a second one coming from the length of γj in the denominator. This last term is obtained from the
usual first order variation formula of a curve length:∫

[0,1]

∥∥∥γ′
j(t) + ε′(t)

∥∥∥ dt =

∫
[0,1]

∥∥∥γ′
j(t)
∥∥∥ dt +

∫
[0,1]

〈
γ′

j(t)

‖γ′
j(t)‖

, ε′(t)
〉

dt + o(‖ε‖2).

Using an integration by parts, the first order term can be written as:

∫
[0,1]

〈
γ′

j(t)

‖γ′
j(t)‖

, ε′(t)
〉

dt =

−
∫
[0,1]

〈(
γ′′

j (t)

‖γ′
j(t)‖

)
N

, ε(t)

〉
dt

(16)

with: (
γ′′

j (t)

‖γ′
j(t)‖

)
N

=
γ′′

j (t)

‖γ′
j(t)‖

−
γ′

j(t)

‖γ′
j(t)‖

〈
γ′

j(t)

‖γ′
j(t)‖

,
γ′′

j (t)

‖γ′
j(t)‖

〉
the normal component of:

γ′′
j (t)

‖γ′
j(t)‖

.

Please note that when dealing with planar curves (i.e., with values in R2), it is κj(t)Nj(t) with κj
(resp. Nj) the curvature (resp. the unit normal vector) of γj.

The integral in (15) can be expanded in a similar fashion. Using as above the notation ()N for
normal components, the first order term is obtained as:

∫
[0,1]

〈(
γj(t)− x

‖γj(t)− x‖

)
N

, ε(t)

〉
K′ (‖γj(t)− x‖) ‖γ′

j(t)‖dt

−
∫
[0,1]

〈(
γ′′

j (t)

‖γ′
j(t)‖

)
N

, ε(t)

〉
K
(‖γj(t)− x‖) dt.

(17)

From the expressions in (16) and (17), the first order variation of the entropy is:

1

∑N
i=1 li

(∫
[0,1]

〈∫
Ω

(
γj(t)− x

‖γj(t)− x‖

)
N

K′ (‖γj(t)− x‖) log(d̃(x))dx, ε(t)

〉
‖γ′

j(t)‖dt

−
∫
[0,1]

(∫
Ω

K
(‖γj(t)− x‖) log(d̃(x))dx

)〈( γ′′
j (t)

‖γ′
j(t)‖

)
N

, ε(t)

〉
dt

+

(∫
Ω

d̃(x) log(d̃(x))dx
) ∫

[0,1]

〈(
γ′′

j (t)

‖γ′
j(t)‖

)
N

, ε(t)

〉
dt

)
.

(18)
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As expected, only moves normal to the trajectory will change at first order the value of the
criterion: the displacement of the curve γj will thus be performed at t in the normal bundle to γj and
is given, up to the (∑N

i=1 li)−1 term, by:

∫
Ω

(
γj(t)− x

‖γj(t)− x‖

)
N

K′ (‖γj(t)− x‖) log(d̃(x))dx‖γ′
j(t)‖

−
(∫

Ω
K
(‖γj(t)− x‖) log(d̃(x))dx

)( γ′′
j (t)

‖γ′
j(t)‖

)
N

+

(∫
Ω

d̃(x) log(d̃(x))dx
)( γ′′

j (t)

‖γ′
j(t)‖

)
N

.

(19)

The first term in the expression will favor moves towards areas of high density, while the second
and third ones are moving along normal vector and will straighten the trajectory. This last point can be
enlightened by considering the case of a single planar curve with fixed endpoints.

Proposition 3. Let a, b be fixed points in R2 and K be a kernel as in (7). The segment [a, b] is a critical point
for the entropy associated with the curve system in R2 consisting of single smooth paths with endpoints a, b.

Proof. Let the segment [a, b] be parametrized as γ : t ∈ [0, 1] �→ a + tv with v the vector (b − a).
Starting with the expression (19), it is clear that the second and third terms occurring in the formula
will vanish as the second derivative of γ is zero. Let u be the unit normal vector to γ. Any point x
in R2 can be written as x = a + θv + ξu, θ, ξ ∈ R, so that γ(t)− x = (t − θ)v − ξu and ‖γ(t)− x‖ =√
(t − θ)2‖b − a‖2 + ξ2. The change of variables x → (θ, ξ) has Jacobian ‖v‖ = ‖b − a‖. For a fixed

t ∈ [0, 1], it becomes:

∫
R2

(
γ(t)− x

‖γ(t)− x‖
)
N

K′ (‖γ(t)− x‖) log(d̃(x))dx‖γ′(t)‖ =

‖b − a‖2
∫
R

∫
R

−ξ√
(t − θ)2‖b − a‖2 + ξ2

K′
(√

(t − θ)2‖b − a‖2 + ξ2
)

log(d̃(θ, ξ))dξdθ.
(20)

The density d̃ for the γ curve is expressed in ξ, θ coordinates as:

∫
[0,1]

K
(√

(t − θ)2‖b − a‖2 + ξ2
)

dt

and is an even function in ξ. The same is true for K′ (‖γ(t)− x‖). Finally, the mapping:

ξ �→ −ξ√
(t − θ)2‖b − a‖2 + ξ2

is odd for a fixed θ, so that the whole integrand is odd as a function of ξ. By the Fubini theorem,
integrating first in ξ will therefore yield a vanishing integral, proving the assertion.

The result still holds in Rq, the only different aspect being that x is now expanded as x =

a + θv + ∑
q−1
i=1 ξiui with ui, i = 1, . . . , q − 1 an orthonormal basis of the orthogonal complement of

Rv in Rq. Rewriting γ(t)− x = (t − θ)v − ∑
q−1
i=1 ξiui and ‖γ(t)− x‖ =

√
(t − θ)2‖b − a‖2 + ∑

q−1
i=1 ξ2

i ,
the same parity argument can be applied on any of the components ξi, i = 1, . . . , q − 1, showing that
the integral is vanishing.

The effect of curve straightening is present when minimizing the entropy of a whole curve system,
but is counterbalanced by the gathering effect. Depending on the choice of the kernel bandwidth, one
or the other effect is dominant: straightening is preeminent for low values, being the only remaining
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effect in the limit, while gathering dominates at high bandwidths. For the air traffic application, a rule
of the thumb is to take 2–3-times the separation norm as an effective support for the kernel. Using an
adaptive bandwidth may be of some interest also: starting with medium to high values favors curve
gathering; then, gradually reducing it will straighten the trajectories.

Using the scaled arclength in the entropy gives an equivalent, but somewhat easier to interpret
result. Starting with the expression (7) that takes in this case the form:

d̃ : x �→ ∑N
i=1 li

∫ 1
0 K (‖x − γi(η)‖) dη

∑N
i=1 li

. (21)

Let i ∈ {1, . . . , N} be fixed. An admissible variation of the curve γi is a smooth mapping
from ]− a, a[×[0, 1] to Rq, with a > 0 satisfying the following properties:

(a) ∀η ∈ [0, 1], φ(0, η) = γi(η).
(b) ∀(t, η) ∈]− a, a[×]0, 1[, ‖∂ηφ(t, η)‖ = lφ(t) with lφ(t) the length of the curve η �→ φ(t, η).
(c) ∀t ∈]− a, a[, φ(t, 0) = γi(0), φ(t, 1) = γi(1).

Taking the derivative with respect to tat zero of Equation (b) yields:〈
∂t∂ηφ(0, η), ∂ηφ(0, η)

〉
= ∂tlφ(0)li.

Letting T(η) be the unit tangent vector to γi at η and noting that ∂ηφ(0, η) = liT(η), it becomes:〈
∂t∂ηφ(0, η), T(η)

〉
= ∂tlφ(t). (22)

This relation puts a constraint on the variation of the tangential component of the curve derivative
and shows that it has to be constant in η.

Proposition 4. Let D be the mapping from ]− a, a[×Rq to R+ defined by:

D : (t, x) �→ ∑N
j=1,j �=i lj

∫ 1
0 K

(‖x − γj(η)‖
)

dη +
∫ 1

0 K (‖x − φ(t, η)‖) dη

∑N
j=1 lj

.

where η refers collectively to the scaled arclength parameter for each curve. The partial derivative ∂tD(0, x) is
given by:

∂tD(0, x) =
li

∑N
j=1 lj

∫ 1

0

〈
γi(η)− x

‖γi(η)− x‖ , ∂tφ(0, η)

〉
K′ (‖γi(η)− x‖) dη.

The proof is straightforward and is omitted. From Proposition 4, the variation of the entropy
is derived:

∂tE = −
∫
Rq

li
∑N

j=1 lj

∫ 1

0

〈
γi(η)− x

‖γi(η)− x‖ , ∂tφ(0, η)

〉
K′ (‖γi(η)− x‖) dηdx. (23)

This relation is equivalent to (18): it can be seen by splitting the terms into a normal and
a tangential component. The first one yields:

−
∫
Rq

li
∑N

j=1 lj

∫ 1

0

〈(
γi(η)− x

‖γi(η)− x‖
)
N

, (∂tφ(0, η))N

〉
K′ (‖γi(η)− x‖) dηdx.
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For the tangential part, the starting point is the relation:

∂η (K (‖φ(0, η)− x‖) T(η)) =liK′ (‖φ(0, η)− x‖)
〈

φ(0, η)− x
‖φ(0, η)− x‖ , T(η)

〉
T(η)

+ K (‖φ(0, η)− x‖) ∂ηT(η).
(24)

where the subscript T stands for tangential component. It becomes:

li
∑N

j=1 lj

∫ 1

0

〈(
γi(η)− x

‖γi(η)− x‖
)
T

, (∂tφ(0, η))T

〉
K′ (‖γi(η)− x‖) dηdx =

li
∑N

j=1 lj

∫ 1

0

〈
∂η (K (‖φ(0, η)− x‖) T(η)) , (φ(0, η))T

〉
dηdx

− li
∑N

j=1 lj

∫ 1

0

〈
K (‖φ(0, η)− x‖) ∂ηT(η), (φ(0, η))T

〉
dηdx.

(25)

With an integration by parts, the first integral in the right-hand side becomes:

− li
∑N

j=1 lj

∫ 1

0

〈
K (‖φ(0, η)− x‖) T(η), ∂η (∂tφ(0, η))T

〉
dηdx =

− li
∑N

j=1 lj

∫ 1

0
K (‖φ(0, η)− x‖) ∂tlφ(0)dηdx.

(26)

Gathering terms, the expression (18) is recovered. As expected, only the normal components enter
the relation, but it has to be noted that the tangential component of ∂tφ(0, η) is not arbitrary and can
be deduced from (22). The gradient with respect to the i-th curve is obtained from the expression of
the entropy variation and can be written in its simplest form as:

li
∑N

j=1 lj

∫
Rq

∫ 1

0

γi(η)− x
‖γi(η)− x‖K′ (‖γi(η)− x‖) dη log d̃(x)dx. (27)

where d̃ is the estimated spatial density. One must keep in mind the constraint on ∂tφ(0, η) that is
hidden within the apparent simplicity of the expression.

3. Numerical Implementation

The two formulations (19) and (27) of the gradient may be used. The first one is more complicated,
but does not require any additional constraint to be taken into account. The second one cannot be
applied readily as the tangential component must comply with Relation (22). In both cases, it is needed
to evaluate a spatial integral, which may yield to prohibitive computational time, especially in high
dimensions. In the air traffic application, only planar 3D curves are considered, greatly simplifying the
problem. Nevertheless, the performance of the algorithms is still a concern, and the choice made was
to replace the spatial integral by a discrete sum over an evenly-spaced grid. From now, it is assumed
that all curves are planar, so that the ambient space for the spatial density d̃ is R2. Going back to the
expression of d̃ given by (7), a first step is to replace the integral over t by a discrete sum. In practice,
curves are described by a sequence of sampled points γi(tij) where the sampling times tij will be
assumed to be identical for all curves. This assumption is not satisfied in the air traffic application, so
that a pre-processing step must be taken before the actual entropy minimization stage. It will not be
described here, as any standard interpolation procedure can be applied with negligible differences
on the final result. To obtain the results presented here, a cubic spline smoother was used. Since the
sampling times are assumed to be the same for all trajectories, the double subscript will be dropped,
so that the samples on each trajectory will be denoted as γij = γi(tj). It is further assumed that the
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derivative γ′
ij = γ′

i(ti) is available, most of the time through a numerical approximation. Given a
quadrature formula on [0, 1] with points tj, j = 1, . . . , m and weights wj, j = 1, . . . , m, the density may
be approximated at x ∈ R2 by:

d̃(x) =
1

∑N
i=1 li

N

∑
i=1

m

∑
j=1

wjK
(‖x − γij‖

) ‖γ′
ij‖. (28)

where the lengths li, i = 1, . . . , N are also obtained with the same quadrature rule:

li =
m

∑
j=1

wj‖γ′
ij‖.

When γ′
ij is computed in a numerical way, it may be expressed as:

γ′
ij =

m

∑
k=1

w̃jkγi,k.

where the weights w̃jk are often obtained through the application of the Lagrange interpolation formula
to ensure exactness on polynomials up to a given degree. In a more compact form, it can be written in
matrix form as: ⎛⎜⎜⎝

γ′
i1
...

γ′
iq

⎞⎟⎟⎠ = W̃

⎛⎜⎝ γi1
...

γiq

⎞⎟⎠
where the matrix W̃ has as entries the weights w̃jk. The cost of evaluating d̃ at a single point is
in o(Nm), with the kernel evaluation being dominant. When dealing with points in R2 or R3 and
compactly-supported kernels, a simple trick greatly reduces the time needed to compute d̃. First of
all, the domain of interest is discretized on an evenly-spaced grid, so that the points of evaluation
of the density d̃ are its vertices xij, i = 1, . . . , nx, j = 1, . . . , ny. The grid step δx (resp. δy) in the
first (resp. second) coordinate is the difference between any two adjacent vertices δx = xi+1,j − xi,j
(resp. δy = xi,j+1 − xi,j (most of the time, δx = δy). Since the expression (28) is linear, the computation
can be performed by accumulating values K(‖xkl − γij‖)‖γ′

ij‖ for a fixed couple (i, j), where only
the points xkl close enough to γij are considered. In fact, the evaluation can be written as a 2D
discrete convolution:

d̃(xkl) = ∑
i=1,...,N,j=1,...,m

wjK(‖xkl − γij‖)‖γ′
ij‖. (29)

When the support of K is small compared to the overall spatial domain, much computation
is saved using this procedure. Furthermore, it can be thought of as 2D filtering, so that highly
efficient algorithms coming from the field of image processing can be applied: in particular, computing
the density on a graphics processing unit (GPU) is straightforward and allows one to decrease the
computational time by at least a factor of ten. When dealing with the scaled arclength, the derivative
term is not present, and a factor of li appears in from of the integral. The discrete version becomes:

d̃(xkl) = ∑
i=1,...,N,j=1,...,m

liwjK(‖xkl − γij‖) (30)

where γij = γi(ηj), ηj being in correspondence with tj. Please note that the quadrature weights must
be adapted to the abscissa ηj, j = 1, . . . , m and not to the tj, j = 1, . . . , m. Therefore, it is advisable
to resample the curves so that the points ηj, j = 1, . . . , m are, for example, evenly spaced or of the
Gauss–Lobatto form. The former was chosen for the experiments due to its ease of implementation,
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although the second form is probably more efficient from a numerical point of view and will be
investigated in a second stage.

Having the density at hand, the gradient of the entropy with respect to the points
γij, i = 1, . . . , N, j = 1, . . . , m can be easily computed using a straightforward application of the
formula (19). When dealing with planar curves, a simplification occurs for the second derivative term
since for a smooth curve γj: (

γ′′
j (t)

‖γ′
j(t)‖

)
N

= κ(t)N(t).

where κ is the curvature and N the unit normal vector. These quantities may be computed using
numerical differentiation, but a coarse approximation based on the rotation rate of the vectors
γi,j+1 − γi,j, γi,j+2 − γi,j+1 works well in many cases.

The case of scaled arclength parametrization needs some extra attention, due to the condition
on the tangential component. The simplest approach is to move the points γij according to an
unconstrained gradient, then to re-sample the obtained curve so as to get adjusted γij that correspond
to the abscissa ηj, j = 1, . . . , m.

In a numerical implementation, the scaling factor in front of the whole expression may be dropped
due to the fact that all gradient-based algorithms will use an automatically-tuned step length. As usual
with gradient algorithms, one must carefully select the step taking in the maximizing direction in order
to avoid divergence. A simple fixed step strategy was first applied and gives satisfactory results on
small datasets. A safer approach is to adapt the step size so as to ensure a sufficient decrease of the
entropy. Due to the potentially huge dimension of the search space, this procedure has to be simple
enough. An approximate quadratic search [12] was used in the final implementation.

The procedure applied to one day of traffic over France yields the picture of Figure 3. As expected,
a route-like network emerges. In such a case, since the traffic comes from an already organized
situation, the recovered network is indeed a subset of the route network in the french airspace.
Please note that there is a trade-off between the density concentration and the minimal curvature of
the recovered trajectories, as already mentioned. The kernel bandwidth was chosen empirically in the
example presented, with the aid of visual interaction.

(a) (b)

Figure 3. Traffic of 24 February 2013: (a) Initial traffic; (b) Bundled traffic.

In the second example of Figure 4, the problem of automatic conflict solving is addressed. In the
initial situation, aircraft are converging to a single point, which is unsafe. Air traffic controllers will
proceed in such a case by diverting aircraft from their initial flight path so as to avoid each other,
but only using very simple maneuvers. An automated tool will make full use of the available airspace,
and the resulting set of trajectories may fail to be manageable by a human: in the event of a system
failure, no backup can be provided by controllers. The entropy minimization procedure was added to
an automated conflict solver in order to end up with flight paths still tractable by humans. The final
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result is shown in the right part of Figure 4, where encounters no longer exists, but aircraft are bound
to simple trajectories, with a merging and a splitting point. Note that since the automated planner acts
on velocity, all aircraft are separated in time on the inner part.

(a) (b)

Figure 4. (a) Initial flight plans; (b)Final flight plans.

4. Conclusions and Future Work

Algorithms coming from the field of shape spaces emerge as a valuable tool for applications
in ATM. In this work, the foundations of a post-processing procedure that may be applied after an
automated flight path planner are presented. Entropy minimization makes straight segment bundles
emerge, which fulfills the operational requirements. Computational efficiency has to be improved
in order to release a usable building block for future ATM systems. One way to address this issue is
to compute kernel density estimators using GPUs, which excel in this kind of task, very similar to
texture manipulations. Furthermore, statistical properties, such as the optimal choice of the bandwidth
parameter in the kernel estimation, should be explored in more detail in the next step of this work.

Another important point that must be addressed in future works deals with the flight paths
that are very similar in shape, but are oriented in opposite directions. As the spatial density is not
sensitive to the directional information, the entropy-based procedure presented in this paper will
tend to aggregate flight paths that should be sufficiently separated in order to prevent hazardous
encounters. In [13], a notion of density based on position and velocity is developed. This work relies
on Lie group modeling as a unifying state representation that takes into account the direction and the
position of the curves. The curve system entropy has been extended to this setting.
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Abstract: We present evolution equations for a family of paths that results from anisotropically
weighting curve energies in non-linear statistics of manifold valued data. This situation arises
when performing inference on data that have non-trivial covariance and are anisotropic distributed.
The family can be interpreted as most probable paths for a driving semi-martingale that through
stochastic development is mapped to the manifold. We discuss how the paths are projections
of geodesics for a sub-Riemannian metric on the frame bundle of the manifold, and how the
curvature of the underlying connection appears in the sub-Riemannian Hamilton–Jacobi equations.
Evolution equations for both metric and cometric formulations of the sub-Riemannian metric
are derived. We furthermore show how rank-deficient metrics can be mixed with an underlying
Riemannian metric, and we relate the paths to geodesics and polynomials in Riemannian geometry.
Examples from the family of paths are visualized on embedded surfaces, and we explore
computational representations on finite dimensional landmark manifolds with geometry induced
from right-invariant metrics on diffeomorphism groups.

Keywords: sub-Riemannian geometry; geodesics; most probable paths; stochastic development;
non-linear data analysis; statistics

1. Introduction

When manifold valued data have non-trivial covariance (i.e., when anisotropy asserts higher
variance in some directions than others), non-zero curvature necessitates special care when generalizing
Euclidean space normal distributions to manifold valued distributions: in the Euclidean situation,
normal distributions can be seen as transition distributions of diffusion processes, but on the
manifold, holonomy makes transport of covariance path-dependent in the presence of curvature,
preventing a global notion of a spatially constant covariance matrix. To handle this, in the diffusion
principal component analysis (PCA) framework [1], and with the class of anisotropic normal
distributions on manifolds defined in [2,3], data on non-linear manifolds are modelled as being
distributed according to transition distributions of anisotropic diffusion processes that are mapped
from Euclidean space to the manifold by stochastic development (see [4]). The construction is
connected to a non-bracket-generating sub-Riemannian metric on the bundle of linear frames of
the manifold, the frame bundle, and the requirement that covariance stays covariantly constant gives a
nonholonomically constrained system.

Velocity vectors and geodesic distances are conventionally used for estimation and statistics in
Riemannian manifolds; for example, for estimation of the Frechét mean [5], for Principal Geodesic
Analysis [6], and for tangent space statistics [7]. In contrast to this, anisotropy as modelled with
anisotropic normal distributions makes a distance for a sub-Riemannian metric the natural vehicle for
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estimation and statistics. This metric naturally accounts for anisotropy in a similar way as the precision
matrix weights the inner product in the negative log-likelihood of a Euclidean normal distribution.
The connection between the weighted distance and statistics of manifold valued data was presented
in [2], and the underlying sub-Riemannian and fiber-bundle geometry, together with properties of
the generated densities, was further explored in [3]. The fundamental idea is to perform statistics on
manifolds by maximum likelihood (ML) instead of parametric constructions that use, for example,
approximating geodesic subspaces; by defining natural families of probability distributions (in this
case using diffusion processes), ML parameter estimates give a coherent way to statistically model
non-linear data. The anisotropically weighted distance and the resulting family of extremal paths
arises in this situation when the diffusion processes have non-isotropic covariance (i.e., when the
distribution is not generated from a standard Brownian motion).

In this paper, we focus on the family of most probable paths for the semi-martingales that drives the
stochastic development, and in turn the manifold valued anisotropic stochastic processes. Such paths,
as exemplified in Figure 1, extremize the anisotropically weighted action functional. We present
derivations of evolution equations for the paths from different viewpoints, and we discuss the role of
frames as representing either metrics or cometrics. In the derivation, we explicitly see the influence
of the connection and its curvature. We then turn to the relation between the sub-Riemannian metric
and the Sasaki–Mok metric on the frame bundle, and we develop a construction that allows the
sub-Riemannian metric to be defined as a sum of a rank-deficient generator and an underlying
Riemannian metric. Finally, we relate the paths to geodesics and polynomials in Riemannian geometry,
and we explore computational representations on different manifolds including a specific case:
the finite dimensional manifolds arising in the Large Deformation Diffeomorphic Metric Mapping
(LDDMM) [8] landmark matching problem. The paper ends with a discussion concerning statistical
implications, open questions, and concluding remarks.

(a) (b)

Figure 1. (a) A most probable path (MPP) for a driving Euclidean Brownian motion on an ellipsoid.
The gray ellipsis over the starting point (red dot) indicates the covariance of the anisotropic diffusion.
A frame ut (black/gray vectors) representing the square root covariance is parallel transported along
the curve, enabling the anisotropic weighting with the precision matrix in the action functional.
With isotropic covariance, normal MPPs are Riemannian geodesics. In general situations, such as the
displayed anisotropic case, the family of MPPs is much larger; (b) The corresponding anti-development
in R2 (red line) of the MPP. Compare with the anti-development of a Riemannian geodesic with same
initial velocity (blue dotted line). The frames ut ∈ GL(R2, Txt M) provide local frame coordinates for
each time t.

Background

Generalizing common statistical tools for performing inference on Euclidean space data to
manifold valued data has been the subject of extensive work (e.g., [9]). Perhaps most fundamental
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is the notion of Frechét or Karcher means [5,10], defined as minimizers of the square Riemannian
distance. Generalizations of the Euclidean principal component analysis procedure to manifolds are
particularly relevant for data exhibiting anisotropy. Approaches include principal geodesic analysis
(PGA, [6]), geodesic PCA (GPCA, [11]), principal nested spheres (PNS, [12]), barycentric subspace
analysis (BSA, [13]), and horizontal component analysis (HCA, [14]). Common to these constructions
are explicit representations of approximating low-dimensional subspaces. The fundamental challenge
here is that the notion of Euclidean linear subspace on which PCA relies has no direct analogue in
non-linear spaces.

A different approach taken by diffusion PCA (DPCA, [1,2]) and probabilistic PGA [15] is to base
the PCA problem on a maximum likelihood fit of normal distributions to data. In Euclidean space,
this approach was first introduced with probabilistic PCA [16]. In DPCA, the process of stochastic
development [4] is used to define a class of anisotropic distributions that generalizes the family of
Euclidean space normal distributions to the manifold context. DPCA is then a simple maximum
likelihood fit in this family of distributions mimicking the Euclidean probabilistic PCA. The approach
transfers the geometric complexities of defining subspaces common in the approaches listed above to
the problem of defining a geometrically natural notion of normal distributions.

In Euclidean space, squared distances ‖x − x0‖2 between observations x and the mean x0 are
affinely related to the negative log-likelihood of a normal distribution N (x0, Id). This makes an ML
fit of the mean such as performed in probabilistic PCA equivalent to minimizing squared distances.
On a manifold, distances dg(x, x0)

2 coming from a Riemannian metric g are equivalent to tangent
space distances ‖Logx0

x‖2 when mapping data from M to Tx0 M using the inverse exponential map
Logx0

. Assuming Logx0
x are distributed according to a normal distribution in the linear space Tx0 M,

this restores the equivalence with a maximum likelihood fit. Let {e1, . . . , ed} be the standard basis
for Rd. If u : Rd → Tx0 M is a linear invertible map with ue1, . . . , ued orthonormal with respect to g,
the normal distribution in Tx0 M can be defined as uN (0, Id) (see Figure 2).

M

x0

Expx0
v

M

x0

ϕu(wt)

(a) (b)

Figure 2. (a) Normal distributions uN (0, Id) in the tangent space Tx0 M with covariance uuT

(blue ellipsis) can be mapped to the manifold by applying the exponential map Expx0
to sampled

vectors v ∈ Tx0 M (red vectors). This effectively linearises the geometry around x0; (b) The stochastic
development map ϕu maps Rd valued paths wt to M by transporting the covariance in each step
(blue ellipses) giving a covariance ut along the entire sample path. The approach does not linearise
around a single point. Holonomy of the connection implies that the covariance “rotates” around
closed loops—an effect which can be illustrated by continuing the transport along the loop created
by the dashed path. The anisotropic metric gFM weights step lengths by the transported covariance
at each time t.

The map u can be represented as a point in the frame bundle FM of M. When the orthonormal
requirement on u is relaxed so that uN (0, Id) is a normal distribution in Tx0 M with anisotropic
covariance, the negative log-likelihood in Tx0 M is related to (u−1Logx0

x)T(u−1Logx0
x) in the same

way as the precision matrix Σ−1 is related to the negative log-likelihood (x − x0)
TΣ−1(x − x0) in
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Euclidean space. The distance is thus weighted by the anisotropy of u, and u can be interpreted as
a square root covariance matrix Σ1/2.

However, the above approach does not specify how u changes when moving away from the
base point x0. The use of Logx0

x effectively linearises the geometry around x0, but a geometrically
natural way to relate u at points nearby to x0 will be to parallel transport it, equivalently specifying
that u when transported does not change as measured from the curved geometry. This constraint is
nonholonomic, and it implies that any path from x0 to x carries with it a parallel transport of u lifting
paths from M to paths in the frame bundle FM. It therefore becomes natural to equip FM with a form
of metric that encodes the anisotropy represented by u. The result is the sub-Riemannian metric on FM
defined below that weights infinitesimal movements on M using the parallel transport of the frame u.
Optimal paths for this metric are sub-Riemannian geodesics giving the family of most probable paths for
the driving process that this paper concerns. Figure 1 shows one such path for an anisotropic normal
distribution with M an ellipsoid embedded in R3.

2. Frame Bundles, Stochastic Development, and Anisotropic Diffusions

Let M be a finite dimensional manifold of dimension d with connection C, and let x0 be a fixed
point in M. When a Riemannian metric is present, and C is its Levi–Civita connection, we denote the
metric gR. For a given interval [0, T], we let W(M) denote the Wiener space of continuous paths in M
starting at x0. Similarly, W(Rd) is the Wiener space of paths in Rd. We let H(Rd) denote the subspace
of W(Rd) of finite energy paths.

Let now u = (u1, . . . , ud) be a frame for Tx M, x ∈ M; i.e., u1, . . . , ud is an ordered set of
linearly independent vectors in Tx M with span{u1, . . . , ud} = Tx M. We can regard the frame as
an isomorphism u : Rd → Tx M with u(ei) = ui, where e1, . . . , ed denotes the standard basis in Rd.
Stochastic development (e.g., [4]) provides an invertible map ϕu from W(Rd) to W(M). Through ϕu,
Euclidean semi-martingales map to stochastic processes on M. When M is Riemannian and u
orthonormal, the result is the Eells–Elworthy–Malliavin construction of Brownian motion [17]. We here
outline the geometry behind development, stochastic development, the connection, and curvature,
focusing in particular on frame bundle geometry.

2.1. The Frame Bundle

For each point x ∈ M, let Fx M be the set of frames for Tx M (i.e., the set of ordered bases for
Tx M). The set {Fx M}x∈M can be given a natural differential structure as a fiber bundle on M called
the frame bundle FM. It can equivalently be defined as the principal bundle GL(Rd, TM). We let the
map π : FM → M denote the canonical projection. The kernel of π∗ : TFM → TM is the sub-bundle
of TFM that consists of vectors tangent to the fibers π−1(x). It is denoted the vertical subspace VFM.
We will often work in a local trivialization u = (x, u1, . . . , ud) ∈ FM, where x = π(u) ∈ M denotes the
base point, and for each i = 1, . . . , d, ui ∈ Tx M is the ith frame vector. For v ∈ Tx M and u ∈ FM with
π(u) = x, the vector u−1v ∈ Rd expresses v in components in terms of the frame u. We will denote the
vector u−1v frame coordinates of v.

For a differentiable curve xt in M with x = x0, a frame u for Tx0 M can be parallel transported
along xt by parallel transporting each vector in the frame, thus giving a path ut ∈ FM. Such
paths are called horizontal, and have zero acceleration in the sense C(u̇i,t) = 0. For each x ∈ M,
their derivatives form a d-dimensional subspace of the d + d2-dimensional tangent space TuFM.
This horizontal subspace HFM and the vertical subspace VFM together split the tangent bundle of
FM (i.e., TFM = HFM ⊕ VFM). The split induces a map π∗ : HFM → TM, see Figure 3. For fixed
u ∈ FM, the restriction π∗|Hu FM : HuFM → Tx M is an isomorphism. Its inverse is called the horizontal
lift and is denoted hu in the following. Using hu, horizontal vector fields He on FM are defined for
vectors e ∈ Rd by He(u) = hu(ue). In particular, the standard basis (e1, . . . , ed) on Rd gives d globally
defined horizontal vector fields Hi ∈ HFM, i = 1, . . . , d by Hi = Hei . Intuitively, the fields Hi(u)
model infinitesimal transformations in M of x0 in direction ui = uei with corresponding infinitesimal
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parallel transport of the vectors u1, . . . , ud of the frame along the direction ui. A horizontal lift of a
differentiable curve xt ∈ M is a curve in FM tangent to HFM that projects to xt. Horizontal lifts are
unique up to the choice of initial frame u0.

TFM

T∗FM

HFMVFM

FM × gl(n)

FM

TMT∗M M

h + v �→ hh + v �→ v

π∗ψ πFM

πTM

gFM

gR

Figure 3. Relations between the manifold, frame bundle, the horizontal distribution HFM, the vertical
bundle VFM, a Riemannian metric gR, and the sub-Riemannian metric gFM, defined below.
The connection C provides the splitting TFM = HFM ⊕ VFM. The restrictions π∗|Hu M are invertible
maps Hu M → Tπ(u)M with inverse hu, the horizontal lift. Correspondingly, the vertical bundle VFM
is isomorphic to the trivial bundle FM × gl(n). The metric gFM : T∗FM → TFM has an image in the
subspace HFM.

2.2. Development and Stochastic Development

Let xt be a differentiable curve on M and ut a horizontal lift. If st is a curve in Rd with
components si

t such that ẋt = Hi(u)si
t, xt is said to be a development of st. Correspondingly, st is the

anti-development of xt. For each t, the vector st contains frame coordinates of ẋt as defined above.
Similarly, let Wt be an Rd valued Brownian motion so that sample paths Wt(ω) ∈ W(Rd). A solution to
the stochastic differential equation dUt = ∑d

i=1 Hi(Ut) ◦ dWi
t in FM is called a stochastic development

of Wt in FM. The solution projects to a stochastic development Xt = π(Ut) in M. We call the process
Wt in Rd, that through ϕ maps to Xt, the driving process of Xt. Let ϕu : W(Rd) → W(M) be the map
that for fixed u sends a path in Rd to its development on M. Its inverse ϕ−1

u is the anti-development in
Rd of paths on M given u.

Equivalent to the fact that normal distributions N (0, Σ) in Rd can be obtained as the transition
distributions of diffusion processes Σ1/2Wt stopped at time t = 1, a general class of distributions on
the manifold M can be defined by stochastic development of processes Wt, resulting in M-valued
random variables X = X1. This family of distributions on M introduced in [2] is denoted anisotropic
normal distributions. The stochastic development by construction ensures that Ut is horizontal, and the
frames are thus parallel transported along the stochastic displacements. The effect is that the frames
stay covariantly constant, thus resembling the Euclidean situation where Σ1/2 is spatially constant and
therefore does not change as Wt evolves. Thus, as further discussed in Section 3.2, the covariance is
kept constant at each of the infinitesimal stochastic displacements. The existence of a smooth density
for the target process Xt and small time asymptotics are discussed in [3].

Stochastic development gives a map
∫

Diff : FM → Prob(M) to the space of probability
distributions on M. For each point u ∈ FM, the map sends a Brownian motion in Rd to a distribution
μu by stochastic development of the process Ut in FM, starting at u and letting μu be the distribution
of X = π(U1). The pair (x, u), x = π(u) is analogous to the parameters (μ, Σ) for a Euclidean
normal distribution: the point x ∈ M represents the starting point of the diffusion, and the frame u
represents a square root Σ1/2 of the covariance Σ. In the general situation where μu has smooth density,
the construction can be used to fit the parameters u to data by maximum likelihood. As an example,
diffusion PCA fits distributions obtained through

∫
Diff by maximum likelihood to observed samples

in M; i.e., it optimizes for the most likely parameters u = (x, u1, . . . , ud) for the anisotropic diffusion
process, giving a fit to the data of the manifold generalization of the Euclidean normal distribution.
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2.3. Adapted Coordinates

For concrete expressions of the geometric constructions related to frame bundles, and for
computational purposes, it is useful to apply coordinates that are adapted to the horizontal bundle
HFM and the vertical bundle VFM together with their duals H∗FM and V∗FM. The notation below
follows the notation used in, for example, [18]. Let z = (u, ξ) be a local trivialization of T∗FM, and let
(xi, ui

α) be coordinates on FM with ui
α satisfying uα = ui

α∂xi for each α = 1, . . . , d.
To find a basis that is adapted to the horizontal distribution, define the d linearly independent

vector fields Dj = ∂xj − Γhγ

j ∂uh
γ

where Γhγ

j = Γh
jiu

i
γ is the contraction of the Christoffel symbols Γh

ij for

the connection C with ui
α. We denote this adapted frame D. The vertical distribution is correspondingly

spanned by Djβ = ∂
uj

β

. The vectors Dh = dxh, and Dhγ = Γhγ

j dxj + duh
γ constitutes a dual coframe D∗.

The map π∗ : HFM → TM is in coordinates of the adapted frame π∗(wjDj) = wj∂xj . Correspondingly,
the horizontal lift hu is hu(wj∂xj) = wjDj. The map u : Rd → Tx M is given by the matrix [ui

α] so that
uv = ui

αvα∂xi = uαvα.
Switching between standard coordinates and the adapted frame and coframes can be expressed in

terms of the component matrices A below the frame and coframe induced by the coordinates (xi, ui
α)

and the adapted frame D and coframe D∗. We have

(∂xi ,∂
ui

α
)AD =

[
I 0

−Γ I

]
with inverse D A(∂xi ,∂

ui
α
) =

[
I 0
Γ I

]

writing Γ for the matrix [Γhγ

j ]. Similarly, the component matrices of the dual frame D∗ are

(∂xi ,∂
ui

α
)∗ AD∗ =

[
I ΓT

0 I

]
and D∗ A(∂xi ,∂

ui
α
)∗ =

[
I −ΓT

0 I

]
.

2.4. Connection and Curvature

The TM valued connection C : TM × TM → TM lifts to a principal connection TFM × TFM →
VFM on the principal bundle FM. C can then be identified with the gl(n)-valued connection form
ω on TFM. The identification occurs by the isomorphism ψ between FM × gl(n) and VFM given by
ψ(u, v) = d

dt u exp(tv)|t=0 (e.g., [19,20]).
The map ψ is equivariant with respect to the GL(n) action g �→ ug−1 on FM. In order to explicitly

see the connection between the usual covariant derivative ∇ : Γ(TM) × Γ(TM) → Γ(TM) on M
determined by C and C regarded as a connection on the principal bundle FM, following [19], we let
s : M → TM be a local vector field on M; equivalently, s ∈ Γ(TM) is a local section of TM. s determines
a map sFM : FM → Rd by sFM(u) = u−1s(π(u)); i.e., it gives the coordinates of s(x) in the frame u
at x. The pushforward (sFM)∗ : TFM → Rd has in its ith component the exterior derivative d(sFM)i.
Let now w(x) be a local section of FM. The composition w ◦ (sFM)∗ ◦ hw : TM → TM is identical
to the covariant derivative ∇·s : TM → TM. The construction is independent of the choice of w
because of the GL(n)-equivariance of sFM. The connection form ω can be expressed as the matrix
(sFM

1 ◦ hw, . . . , sFM
d ◦ hw) when letting sFM

i (u) = ei.
The identification becomes particularly simple if the covariant derivative is taken along a curve xt

on which wt is the horizontal lift. In this case, we can let st = wt,isi
t. Then, sFM(wt) = (s1

t , . . . , sd
t )

T , and

w−1
t ∇ẋt s = (sF M)∗(hwt(ẋt)) =

d
dt (s

1
t , . . . , sd

t )
T ; (1)

i.e., the covariant derivative takes the form of the standard derivative applied to the frame
coordinates si

t.
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The curvature tensor R ∈ T 3
1 (M) gives the gl(n)-valued curvature form Ω : TFM× TFM → gl(n)

on TFM by
Ω(vu, wu) = u−1R(π∗(vu), π∗(wu))u , vu, wv ∈ TFM .

Note that Ω(vu, wu) = Ω(hu(π∗(vu)), hu(π∗(wu))), which we can use to write the curvature R as
the gl(n)-valued map Ru : T2(Tπ(u)M) → gl(n), (v, w) �→ Ω(hu(π∗(vu)), hu(π∗(wu))) for fixed u.
In coordinates, the curvature is

R s
ijk = Γl

ikΓs
jl − Γl

jkΓs
il + Γs

ik;j − Γs
jk;i

where Γs
ik;j = ∂xj Γs

ik.

Let xt,s be a family of paths in M, and let ut,s ∈ π−1(xt,s) be horizontal lifts of xt,s for each fixed s.
Write ẋt,s = ∂txt,s and u̇t,s = ∂tut,s. The s-derivative of ut,s can be regarded a pushforward of the
horizontal lift and is the curve in TFM

∂sut,s = ψ
(
ut,s, ψ−1

u0,s
(C(∂su0,s)) +

∫ s

0
Ω(u̇r,s, ∂sur,s)dr

)
+ hut,s(∂sxt,s)

= ψ
(
ut,s, ψ−1

0,s (C(∂su0,s)) +
∫ s

0
Rur,s(ẋr,s, ∂sxr,s)dr

)
+ hut,s(∂sxt,s) .

(2)

This follows from the structure equation dω = −ω ∧ ω + Ω (e.g., [21]). Note that the curve
depends on the vertical variation C(∂su0,s) at only one point along the curve. The remaining terms
depend on the horizontal variation or, equivalently, ∂sxt,s. The t-derivative of ∂sut,s is the curve in
TTFM satisfying

∂shut,s(ẋt,s) = ψ
(
ut,s, Rut,s(ẋt,s, ∂sxt,s)

)
+ ∂tψ

(
ut,s, ψ−1

0,s (C(∂su0,s))
)
+ ∂t

(
hut,s(∂sxt,s)

)
= ψ

(
ut,s, Rut,s(ẋt,s, ∂sxt,s)

)
+ ∂tψ

(
ut,s, ψ−1

0,s (C(∂su0,s))
)

+ hut,s(∂t∂sxt,s) + (∂thut,s)(∂sxt,s).

(3)

Here, the first and third term in the last expression are identified with elements of T∂sut,s TFM by
the natural mapping Tut,s FM → T∂sut,s TFM. When C(∂su0,s) is zero, the relation reflects the property
that the curvature arises when computing brackets between horizontal vector fields. Note that the first
term of (3) has values in VFM, while the third term has values in HFM.

3. The Anisotropically Weighted Metric

For a Euclidean driftless diffusion process with spatially constant stochastic generator Σ,
the log-probability of a sample path can formally be written

ln p̃Σ(xt) ∝ −
∫ 1

0
‖ẋt‖2

Σdt + cΣ (4)

with the norm ‖ · ‖Σ given by the inner product 〈v, w〉Σ =
〈

Σ−1/2v, Σ−1/2w
〉
= vΣ−1w; i.e., the inner

product weighted by the precision matrix Σ−1. Though only formal, as the sample paths are almost
surely nowhere differentiable, the interpretation can be given a precise meaning by taking limits of
piecewise linear curves [21]. Turning to the manifold situation with the processes mapped to M by
stochastic development, the probability of observing a differentiable path can either be given a precise
meaning in the manifold by taking limits of small tubes around the curve, or in Rd by considering
infinitesimal tubes around the anti-development of the curves. With the former formulation, a scalar
curvature correction term must be added to (4), giving the Onsager–Machlup function [22]. The latter
formulation corresponds to defining a notion of path density for the driving Rd-valued process Wt.
When M is Riemannian and Σ unitary, taking the maximum of (4) gives geodesics as most probable
paths for the driving process.
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Let now ut be a path in FM, and choose a local trivialization ut = (xt, u1,t, . . . , ud,t) such that the
matrix [ui

α,t] represents the square root covariance matrix Σ1/2 at xt. Since ut being a frame defines an
invertible map Rd → Txt M, the norm ‖ · ‖Σ above has a direct analogue in the norm ‖ · ‖ut defined by
the inner product

〈v, w〉ut
=
〈

u−1
t v, u−1

t w
〉
Rd

(5)

for vectors v, w ∈ Txt M. The transport of the frame along paths in effect defines a transport of inner
product along sample paths: the paths carry with them the inner product weighted by the precision
matrix, which in turn is a transport of the square root covariance u0 at x0.

The inner product can equivalently be defined as a metric gu : T∗
x M → Tx M. Again using that

u can be considered a map Rd → Tx M, gu is defined by ξ �→ u(ξ ◦ u)�, where � is the standard
identification (Rd)∗ → Rd. The sequence of mappings defining gu is illustrated below:

T∗
x M → (Rd)∗ → Rd → Tx M

ξ �→ ξ ◦ u �→ (ξ ◦ u)� �→ u(ξ ◦ u)�.
(6)

This definition uses the Rd inner product in the definition of �. Its inverse gives the cometric
g−1

u : Tx M → T∗
x M; i.e., v �→ (u−1v)� ◦ u−1.

Tx M → Rd → (Rd)∗ → T∗
x M

v �→ u−1v �→ (u−1)� �→ (u−1)� ◦ u−1.
(7)

3.1. Sub-Riemannian Metric on the Horizontal Distribution

We now lift the path-dependent metric defined above to a sub-Riemannian metric on HFM.
For any w, w̃ ∈ HuFM, the lift of (5) by π∗ is the inner product

〈w, w̃〉 =
〈

u−1π∗w, u−1π∗w̃
〉
Rd

.

The inner product induces a sub-Riemannian metric gFM : TFM∗ → HFM ⊂ TFM by

〈w, gFM(ξ)〉 = (ξ|w) , ∀w ∈ HuFM (8)

with (ξ|w) denoting the evaluation ξ(w) for the covector ξ ∈ T∗FM. The metric gFM gives FM a
non-bracket-generating sub-Riemannian structure [23] on FM (see also Figure 3). It is equivalent
to the lift

ξ �→ hu(gu(ξ ◦ hu)) , ξ ∈ TuFM (9)

of the metric gu above. In frame coordinates, the metric takes the form

u−1π∗gFM(ξ) =

⎛⎜⎝ξ(H1(u))
...

ξ(Hd(u))

⎞⎟⎠ . (10)

In terms of the adapted coordinates for TFM described in Section 2.3, with w = wjDj and
w̃ = w̃jDj, we have

〈w, w̃〉 =
〈

wiDi, w̃jDj

〉
=
〈

u−1wi∂xi , u−1w̃j∂xj

〉
=
〈

wiuα
i , w̃juα

j

〉
Rd

= δαβwiuα
i w̃juβ

j = Wijwiw̃j
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where [uα
i ] is the inverse of [ui

α] and Wij = δαβuα
i uβ

j . Define now Wkl = δαβuk
αul

β, so that WirWrj = δi
j

and WirWrj = δ
j
i . We can then write the metric gFM directly as

gFM(ξhDh + ξhγ
Dhγ) = WihξhDi, (11)

because 〈w, gFM(ξ)〉 =
〈

w, WjhξhDj

〉
= WijwiWjhξh = wiξi = ξhDh(wjDj) = ξ(w). One clearly

recognizes the dependence on the horizontal H∗FM part of T∗FM only, and the fact that gFM has
image in HFM. The sub-Riemannian energy of an almost everywhere horizontal path ut is

lFM(ut) =
∫

gFM(u̇t, u̇t)dt;

i.e., the line element is ds2 = WijDiDj in adapted coordinates. The corresponding distance is given by

dFM(u1, u2) = inf{lFM(γ) | γ(0) = u1, γ(1) = u2}.

If we wish to express gFM in canonical coordinates on T∗FM, we can switch between the adapted
frame and the coordinates (xi, ui

α, ξ i, ξ i
α). From (11), gFM has D, D∗ components

DgFM,D∗ =

[
W−1 0

0 0

]
.

Therefore, gFM has the following components in the coordinates (xi, ui
α, ξh, ξhγ

)

(∂xi ,∂
ui

α
)gFM,(∂x ,∂

ui
α
)∗ = (∂xi ,∂

ui
α
)AD DgFM,D∗ D∗ A(∂xi ,∂

ui
α
)∗ =

[
W−1 −W−1ΓT

−ΓW−1 ΓW−1ΓT

]

or gij
FM = Wij, g

ijβ
FM = −WihΓ

jβ
h , giα j

FM = −Γiα
h Whj, and g

iα jβ
FM = Γiα

k WkhΓ
jβ
h .

3.2. Covariance and Nonholonomicity

The metric gFM encodes the anisotropic weighting given the frame u, thus up to an affine
transformation measuring the energy of horizontal paths equivalently to the negative log-probability of
sample paths of Euclidean anisotropic diffusions as formally given in (4). In addition, the requirement
that paths must stay horizontal almost everywhere enforces that C(u̇t) = 0 a.e., i.e., that no change
of the covariance is measured by the connection. The intuitive effect is that covariance is covariantly
constant as seen by the connection. Globally, curvature of C will imply that the covariance changes
when transported along closed loops, and torsion will imply that the base point “slips” when travelling
along covariantly closed loops on M. However, the zero acceleration requirement implies that the
covariance is as close to spatially constant as possible with the given connection. This is enabled by the
parallel transport of the frame, and it ensures that the model closely resembles the Euclidean case with
spatially constant stochastic generator.

With non-zero curvature of C, the horizontal distribution is non-integrable (i.e., the brackets
[Hi, Hj] are non-zero for some i, j). This prevents integrability of the horizontal distribution HFM in
the sense of the Frobenius theorem. In this case, the horizontal constraint is nonholonomic similarly to
nonholonomic constraints appearing in geometric mechanics (e.g., [24]). The requirement of covariantly
constant covariance thus results in a nonholonomic system.

3.3. Riemannian Metrics on FM

If the horizontality constraint is relaxed, a related Riemannian metric on FM can be defined
by pulling back a metric on gl(n) to each fiber using the isomorphism ψ(u, ·)−1 : VuFM → gl(n).
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Therefore, the metric on HFM can be extended to a Riemannian metric on FM. Such metrics
incorporate the anisotropically weighted metric on HFM, however, allowing vertical variations and
thus that covariances can change unrestricted.

When M is Riemannian, the metric gFM is in addition related to the Sasaki–Mok metric on FM [18]
that extends the Sasaki metric on TM. As for the above Riemannian metric on FM, the Sasaki–Mok
metric allows paths in FM to have derivatives in the vertical space VFM. On HFM, the Riemannian
metric gR is here lifted to the metric gSM = (vu, wu) = gR(π∗(vu), π∗(wu)) (i.e., the metric is not
anisotropically weighted). The line element is in this case ds2 = gijdxidxj + XβαgijDαi Dβ j .

Geodesics for gSM are lifts of Riemannian geodesics for gR on M, in contrast to the sub-Riemannian
normal geodesics for gFM which we will characterize below. The family of curves arising as projections
to M of normal geodesics for gFM includes Riemannian geodesics for gR (and thus projections of
geodesics for gSM), but the family is in general larger than geodesics for gR.

4. Constrained Evolutions

Extremal paths for (5) can be interpreted as most probable paths for the driving process Wt when
u0 defines an anisotropic diffusion. This is captured in the following definition [3]:

Definition 1. A most probable path for the driving process (MPP) from x = π(u0) ∈ M to y ∈ M is a smooth
path xt : [0, 1] → M with x0 = x and x1 = y such that its anti-development ϕ−1

u0
(xt) is a most probable path

for Wt; i.e.,

xt ∈ argminσ,σ0=x,σ1=y

∫ 1

0
−L

Rd(ϕ−1
u0

(σt), d
dt ϕ−1

u0
(σt)) dt

with L
Rd being the Onsager–Machlup function for the process Wt on Rd [22].

The definition uses the one-to-one relation between W(Rd) and W(M) provided by ϕu0 to
characterize the paths using the Rd Onsager–Machlup function L

Rd . When M is Riemannian
with metric gR, the Onsager–Machlup function for a g-Brownian motion on M is L(xt, ẋt) =

− 1
2‖ẋt‖2

gR
+ 1

12 SgR(xt) with SgR denoting the scalar curvature. This curvature term vanishes on
Rd, and therefore L

Rd(γt, γ̇t) = − 1
2‖γ̇t‖2 for a curve γt ∈ Rd.

By pulling xt ∈ M back to Rd using ϕ−1
u0

, the construction removes the 1
12 SgR(xt) scalar curvature

correction term present in the non-Euclidean Onsager–Machlup function. It thereby provides a relation
between geodesic energy and most probable paths for the driving process. This is contained in the
following characterization of most probable paths for the driving process as extremal paths of the
sub-Riemannian distance [3] that follows from the Euclidean space Onsager–Machlup theorem [22].

Theorem 1 ([3]). Let Q(u0) denote the principal sub-bundle of FM of points z ∈ FM reachable from u0 ∈ FM
by horizontal paths. Suppose the Hörmander condition is satisfied on Q(u0), and that Q(u0) has compact fibers.
Then, most probable paths from x0 to y ∈ M for the driving process of Xt exist, and they are projections of
sub-Riemannian geodesics in FM minimizing the sub-Riemannian distance from u0 to π−1(y).

Below, we will derive evolution equations for the set of such extremal paths that correspond to
normal sub-Riemannian geodesics.

4.1. Normal Geodesics for gFM

Connected to the metric gFM is the Hamiltonian

H(z) =
1
2
(z|gFM(z)) (12)
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on the symplectic space T∗FM. Letting π̂ denote the projection on the bundle T∗FM → FM, (8) gives

H(z) =
1
2
〈gFM(z)|gFM(z)〉 = 1

2
‖z ◦ hπ̂(z) ◦ π̂(z)‖2

(Rd)∗ =
1
2

d

∑
i=1

ξ(Hi(u))2.

Normal geodesics in sub-Riemannian manifolds satisfy the Hamilton–Jacobi equations [23] with
Hamiltonian flow

żt = XH = Ω#dH(z) (13)

where Ω here is the canonical symplectic form on T∗FM (e.g., [25]). We denote (13) the MPP equations,
and we let projections xt = πT∗FM(zt) of minimizing curves satisfying (13) be denoted normal MPPs.
The system (13) has 2(d + d2) degrees of freedom, in contrast to the usual 2d degrees of freedom for the
classical geodesic equation. Of these, d2 describes the current frame at time t, while the remaining d2

allows the curve to “twist” while still being horizontal. We will see this effect visualized in Section 6.
In a local canonical trivialization z = (u, ξ), (13) gives the Hamilton–Jacobi equations

u̇ = ∂ξ H(u, ξ) = gFM(u, ξ) = hu
(
u( ξ(H1(u)), . . . , ξ(Hd(u)) )T)

ξ̇ = −∂u H(u, ξ) = −∂u
1
2
‖ξ ◦ hu ◦ u‖2

(Rd)∗ = −∂u
1
2

d

∑
i=1

ξ(Hi(u))2.
(14)

Using (3), we have for the second equation

ξ̇ = −
d

∑
i=1

ξ(Hi(u))ξ(∂uhu(uei))

= −
d

∑
i=1

ξ(Hi(u))ξ
(
ψ(u, Ru(uei, π∗(∂u))) + ∂hu(uei)

ψ
(
u, ψ−1(C(∂u))

)
+ ∂hu(uei)

hu(π∗(∂u))
)

= −ξ
(
ψ(u, Ru(π∗(u̇), π∗(∂u))) + ∂u̇ψ

(
u, ψ−1(C(∂u))

)
+ ∂u̇hu(π∗(∂u))

)
.

(15)

Here ∂u̇ denotes u-derivative in the direction u̇, equivalently ∂u̇hu(v) = ∂t(hu)(v). While the first
equation of (14) involves only the horizontal part of ξ, the second equation couples the vertical part of
ξ through the evaluation of ξ on the term ψ(u, Ru(π∗(u̇), π∗(∂u)). If the connection is curvature-free,
which in non-flat cases implies that it carries torsion, this vertical term vanishes. Conversely, when M is
Riemannian, C the gR Levi–Civita connection, and u0 is gR orthonormal, gFM(hu(v), hu(w)) = gR(v, w)

for all v, w ∈ Tπ(ut)M. In this case, a normal MPP π(ut) will be a Riemannian gR geodesic.

4.2. Evolution in Coordinates

In coordinates u = (xi, ui
α, ξi, ξiα) for T∗FM, we can equivalently write

ẋi = gijξ j + gijβ ξ jβ = Wijξ j − WihΓ
jβ
h ξ jβ

Ẋi
α = giα jξ j + giα jβ ξ jβ = −Γiα

h Whjξ j + Γiα
k WkhΓ

jβ
h ξ jβ

ξ̇i = −1
2

(
∂yi ghk

y ξhξk + ∂yi ghkδ
y ξhξkδ

+ ∂yi g
hγk
y ξhγ

ξk + ∂yi g
hγkδ
y ξhγ

ξkδ

)
ξ̇iα = −1

2

(
∂yiα ghk

y ξhξk + ∂yiα ghkδ
y ξhξkδ

+ ∂yiα ghγk
y ξhγ

ξk + ∂yiα ghγkδ
y ξhγ

ξkδ

)
with Γhγ

k,i for ∂yi Γ
hγ

k , and where

∂yl gij = 0 , ∂yl gijβ = −WihΓ
jβ
h,l , ∂yl giα j = −Γiα

h,lW
hj , ∂yl giα jβ = Γiα

k,lW
khΓ

jβ
h + Γiα

k WkhΓ
jβ
h,l ,
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∂
ylζ gij = Wij

,lζ
, ∂

ylζ gijβ = −Wih
,lζ Γ

jβ
h − WihΓ

jβ
h,lζ

, ∂
ylζ giα j = −Γiα

h,lζ
Whj − Γiα

h Whj
,lζ

,

∂
ylζ giα jβ = Γiα

k,lζ
WkhΓ

jβ
h + Γiα

k Wkh
,lζ Γ

jβ
h + Γiα

k WkhΓ
jβ
h,lζ

,

Γiα
h,lζ

= ∂
ylζ

(
Γi

hkuk
α

)
= δζαΓi

hl , Wij
,lζ

= δiluj
ζ + δjlui

ζ .

Combining these expressions, we obtain

ẋi = Wijξ j − WihΓ
jβ
h ξ jβ , Ẋi

α = −Γiα
h Whjξ j + Γiα

k WkhΓ
jβ
h ξ jβ

ξ̇i = WhlΓkδ
l,i ξhξkδ

− 1
2

(
Γhγ

k,i W
khΓkδ

h + Γhγ

k WkhΓkδ
h,i

)
ξhγ

ξkδ

ξ̇iα = Γhδ
k,iα

WkhΓkδ
h ξhγ

ξkδ
−
(

Whl
,iα Γkδ

l + WhlΓkδ
l,iα

)
ξhξkδ

− 1
2

(
Whk

,iα ξhξk + Γhδ
k Wkh

,iα Γkδ
h ξhγ

ξkδ

)
.

4.3. Acceleration and Polynomials for C
We can identify the covariant acceleration ∇ẋt ẋt of curves satisfying the MPP equations, and

hence normal MPPs through their frame coordinates. Let (ut, ξt) satisfy (13). Then, ut is a horizontal
lift of xt = π(ut) and hence by (1), (3), (10), and (15),

u−1
t ∇ẋt ẋt =

d
dt

⎛⎜⎝ξ(hut(ute1))
...

ξ(hut(uted))

⎞⎟⎠ =

⎛⎜⎝ξ̇(hut(ute1))
...

ξ̇(hut(uted))

⎞⎟⎠+

⎛⎜⎝ξ(∂thut(ute1))
...

ξ(∂thut(uted))

⎞⎟⎠

= −

⎛⎜⎜⎝
ξ(∂hut (ute1)

hut(π∗(u̇t))
...

ξ(∂hut (uted)
hut(π∗(u̇t))

⎞⎟⎟⎠+

⎛⎜⎜⎝
ξ(∂hut (π∗(u̇t))hut(ute1))

...
ξ(∂hut (π∗(u̇t))hut(uted))

⎞⎟⎟⎠

=

⎛⎜⎝ξ(ψ(ut, Rut(ute1, π∗(u̇t))))
...

ξ(ψ(ut, Rut(uted, π∗(u̇t))))

⎞⎟⎠ .

(16)

The fact that the covariant derivative vanishes for classical geodesic leads to a definition of
higher-order polynomials through the covariant derivative by requiring (∇ẋt)

k ẋt = 0 for a kth order
polynomial (e.g., [26,27]). As discussed above, compared to classical geodesics, curves satisfying the
MPP equations have extra d2 degrees of freedom, allowing the curves to twist and deviate from being
geodesic with respect to C while still satisfying the horizontality constraint on FM. This makes it
natural to ask if normal MPPs relate to polynomials defined using C. For curves satisfying the MPP
equations, using (16) and (15), we have

u−1
t (∇ẋt)

2 ẋt =
d
dt

⎛⎜⎝ξ(ψ(ut, Rut(ute1, π∗(u̇t))))
...

ξ(ψ(ut, Rut(uted, π∗(u̇t))))

⎞⎟⎠ =

⎛⎜⎝ξ(ψ(ut, d
dt Rut(ute1, π∗(u̇t))))

...
ξ(ψ(ut, d

dt Rut(uted, π∗(u̇t))))

⎞⎟⎠ .

Thus, in general, normal MPPs are not second order polynomials in the sense (∇ẋt)
2 ẋt = 0 unless

the curvature Rut(utei, π∗(u̇t)) is constant in t.
For comparison, in the Riemannian case, a variational formulation placing a cost on covariant

acceleration [28,29] leads to cubic splines

(∇ẋt)
2 ẋt = −R(∇ẋt ẋt, xt, )ẋt .
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In (16), the curvature terms appear in the covariant acceleration for normal MPPs, while cubic
splines leads to the curvature term appearing in the third order derivative.

5. Cometric Formulation and Low-Rank Generator

We now investigate a cometric gFk M + λgR, where gR is Riemannian, gFk M is a rank k positive
semi-definite inner product arising from k linearly independent tangent vectors, and λ > 0 a weight.
We assume that gFk M is chosen so that gFk M + λgR is invertible, even though gFk M is rank-deficient.
The situation corresponds to extracting the first k eigenvectors in Euclidean space PCA. If the
eigenvectors are estimated statistically from observed data, this allows the estimation to be restricted
to only the first k eigenvectors. In addition, an important practical implication of the construction is
that a numerical implementation need not transport a full d × d matrix for the frame, but a potentially
much lower dimensional d × k matrix. This point is essential when dealing with high-dimensional
data, examples of which are landmark manifolds as discussed in Section 6.

When using the frame bundle to model covariances, the sum formulation is natural to express as
a cometric compared to a metric because, with the cometric formulation, gFk M + λgR represents a sum
of covariance matrices instead of a sum of precision matrices. Thus, gFk M + λgR can be intuitively
thought of as adding isotropic noise of variance λ to the covariance represented by gFk M.

To pursue this, let Fk M denote the bundle of rank k linear maps Rk → Tx M. We define
a cometric by 〈

ξ, ξ̃
〉
= δαβ(ξ|hu(uα))(ξ̃|hu(uβ)) + λ

〈
ξ, ξ̃
〉

gR

for ξ, ξ̃ ∈ T∗
u Fk M. The sum over α, β is for α, β = 1, . . . , k. The first term is equivalent to the lift (9) of

the cometric
〈
ξ, ξ̃
〉
=
(
ξ|gu(ξ̂)

)
given u : Rk → Tx M. Note that in the definition (6) of gu, the map u is

not inverted; thus, the definition of the metric immediately carries over to the rank-deficient case.
Let (xi, ui

α), α = 1, . . . , k be a coordinate system on Fk M. The vertical distribution is in this case
spanned by the dk vector fields Djβ = ∂

uj
β

. Except for index sums being over k instead of d terms,

the situation is thus similar to the full-rank case. Note that (ξ|π−1∗ w) = (ξ|wjDj) = wiξi. The cometric
in coordinates is 〈

ξ, ξ̃
〉
= δαβui

αξiu
j
βξ̃ j + λgij

Rξi ξ̃ j = ξi

(
δαβui

αuj
β + λgij

R

)
ξ̃ j = ξiWij ξ̃ j

with Wij = δαβui
αuj

β + λgij
R. We can then write the corresponding sub-Riemannian metric gFk M in

terms of the adapted frame D

gFk M(ξhDh + ξhγ
Dhγ) = WihξhDi (17)

because (ξ|gFk M(ξ̃)) =
〈
ξ, ξ̃
〉
= ξiWij ξ̃ j. That is, the situation is analogous to (11), except the term λgij

R
is added to Wij.

The geodesic system is again given by the Hamilton–Jacobi equations. As in the full-rank case,
the system is specified by the derivatives of gFk M:

∂yl g
ij
Fk M = Wij

,l , ∂yl g
ijβ
Fk M = −Wih

,l Γ
jβ
h − WihΓ

jβ
h,l , ∂yl g

iα j
Fk M = −Γiα

h,lW
hj − Γiα

h Whj
,l ,

∂yl g
iα jβ
Fk M = Γiα

k,lW
khΓ

jβ
h + Γiα

k Wkh
,l Γ

jβ
h + Γiα

k WkhΓ
jβ
h,l ,

∂
ylζ gij

Fk M = Wij
,lζ

, ∂
ylζ g

ijβ
Fk M = −Wih

,lζ Γ
jβ
h − WihΓ

jβ
h,lζ

, ∂
ylζ giα j

Fk M = −Γiα
h Whj

,lζ
− Γiα

h,lζ
Whj ,

∂
ylζ g

iα jβ
Fk M = Γiα

k,lζ
WkhΓ

jβ
h + Γiα

k Wkh
,lζ Γ

jβ
h + Γiα

k WkhΓ
jβ
h,lζ

,

Γiα
h,lζ

= ∂
ylζ

(
Γi

hkuk
α

)
= δζαΓi

hl , Wij
,l = λg ij

R ,l , Wij
,lζ

= δiluj
ζ + δjlui

ζ .
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Note that the introduction of the Riemannian metric gR implies that Wij are now dependent on
the manifold coordinates xi.

6. Numerical Experiments

We aim at visualizing most probable paths for the driving process and projections of curves
satisfying the MPP Equation (13) in two cases: On 2D surfaces embedded in R3 and on finite
dimensional landmark manifolds that arise from equipping a subset of the diffeomorphism group with
a right-invariant metric and letting the action descend to the landmarks by a left action. The surface
examples are implemented in Python using the Theano [30] framework for symbolic operations,
automatic differentiation, and numerical evaluation. The landmark equations are detailed below
and implemented in Numpy using Numpy’s standard ODE integrators. The code for running the
experiments is available at http://bitbucket.com/stefansommer/mpps/.

6.1. Embedded Surfaces

We visualize normal MPPs and projections of curves satisfying the MPP Equation (13) on surfaces
embedded in R3 in three cases: The sphere S2, on an ellipsoid, and on a hyperbolic surface. The surfaces
are chosen in order to have both positive and negative curvature, and to have varying degree of
symmetry. In all cases, an open subset of the surfaces are represented in a single chart by a map
F : R2 → R3. For the sphere and ellipsoid, this gives a representation of the surface, except for
the south pole. The metric and Christoffel symbols are calculated using the symbolic differentiation
features of Theano. The integration are performed by a simple Euler integrator.

Figures 4–6 show families of curves satisfying the MPP equations in three cases: (1) With fixed
starting point x0 ∈ M and initial velocity ẋ0 ∈ TM but varying anisotropy represented by changing
frame u in the fiber above x0; (2) minimizing normal MPPs with fixed starting point and endpoint
x0, x1 ∈ M but changing frame u above x0; (3) fixed starting point x0 ∈ M and frame u but varying
V∗FM vertical part of the initial momentum ξ0 ∈ T∗FM. The first and second cases thus show the
effect of varying anisotropy, while the third case illustrates the effect of the “twist” that the d2 degrees
in the vertical momentum allows. Note the displayed anti-developed curves in R2 that for classical C
geodesics would always be straight lines.

(a) (b) (c)

Figure 4. Curves satisfying the MPP equations (top row) and corresponding anti-development (bottom
row) on three surfaces embedded in R3: (a) An ellipsoid; (b) a sphere; (c) a hyperbolic surface.
The family of curves is generated by rotating by π/2 radians the anisotropic covariance represented in
the initial frame u0 and displayed in the gray ellipse.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5. Minimizing normal MPPs between two fixed points (red/cyan). From isotropic covariance
(top row, (a)) to anisotropic (top row, (c)) on S2. Compare with minimizing Riemannian geodesic
(black curve). The MPP travels longer in the directions of high variance. Families of curves (middle
row, (d–f)) and corresponding anti-development (bottom row, (g–i)) on the three surfaces in Figure 4.
The family of curves is generated by rotating the covariance matrix as in Figure 4. Notice how the
varying anisotropy affects the resulting minimizing curves, and how the anti-developed curves end at
different points in R2.

(a) (b) (c)

Figure 6. Cont.
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(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. (a–l) With the setup of Figures 4 and 5, generated families of curves by varying the vertical
V∗FM part of the initial momentum ξ0 ∈ T∗FM but keeping the base point and frame u0 fixed.
The vertical part allows varying degree of “twisting” of the curve.

6.2. LDDMM Landmark Equations

We here give a example of the MPP equations using the finite dimensional landmark manifolds
that arise from right invariant metrics on subsets of the diffeomorphism group in the Large Deformation
Diffeomorphic Metric Mapping (LDDMM) framework [8]. The LDDMM metric can be conveniently
expressed as a cometric, and, using a rank-deficient inner product gFk M as discussed in Section 5,
we can obtain a reduction of the system of equations to 2(2N + 2Nk) compared to 2(2N + (2N)2) with
N landmarks in R2.

Let {p1, . . . , pN} be landmarks in a subset Ω ⊂ Rd. The diffeomorphism group Diff(Ω)

acts on the left on landmarks with the action ϕ.{p1, . . . , pN} = {ϕ(p1), . . . , ϕ(pN)}. In LDDMM,
a Hilbert space structure is imposed on a linear subspace V of L2(Ω,Rd) using a self-adjoint operator
L : V → V∗ ⊂ L2(Ω,Rd) and defining the inner product 〈·, ·〉V by

〈v, w〉V = 〈Lv, w〉L2 .

Under sufficient conditions on L, V is reproducing and admits a kernel K inverse to L. K is
a Green’s kernel when L is a differential operator, or K can be a Gaussian kernel. The Hilbert structure
on V gives a Riemannian metric on a subset GV ⊂ Diff(Ω) by setting ‖v‖2

ϕ = ‖v ◦ ϕ−1‖2
V ; i.e., regarding

〈·, ·〉V an inner product on TIdGV and extending the metric to GV by right-invariance. This Riemannian
metric descends to a Riemannian metric on the landmark space.
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Let M be the manifold M = {(p1
1, . . . , pd

1, . . . , p1
N , . . . , pd

N)|(p1
i , . . . , pd

i ) ∈ Rd}. The LDDMM
metric on the landmark manifold M is directly related to the kernel K when written as a cometric
gp(ξ, η) = ∑N

i,j=1 ξ iK(pi, pj)η
j. Letting ik denote the index of the kth component of the ith landmark,

the cometric is in coordinates gik jl
p = K(pi, pj)

l
k. The Christoffel symbols can be written in terms of

derivatives of the cometric gij [31] (recall that δi
j = gikgkj = gjkgki)

Γk
ij =

1
2

gir

(
gkl grs

,l − gsl grk
,l − grl gks

,l

)
gsj . (18)

This relation comes from the fact that gjm,k = −gjrgrs
,kgsm gives the derivative of the metric.

The derivatives of the cometric is simply gik jl

,rq = (δi
r + δ

j
r)∂pq

r
K(pi, pj)

l
k. Using (18), derivatives of the

Christoffel symbols can be computed

Γk
ij,ξ =

1
2

gir,ξ

(
gkl grs

,l − gsl grk
,l − grl gks

,l

)
gsj +

1
2

gir

(
gkl grs

,l − gsl grk
,l − grl gks

,l

)
gsj,ξ

+
1
2

gir

(
gkl

,ξ grs
,l + gkl grs

,lξ − gsl
,ξ grk

,l − gsl grk
,lξ − grl

,ξ gks
,l − grl gks

,lξ

)
gsj .

This provides the full data for numerical integration of the evolution equations on Fk M.
In Figure 7 (top row), we plot minimizing normal MPPs on the landmark manifold with two

landmarks and varying covariance in the R2 horizontal and vertical direction. The plot shows the
landmark equivalent of the experiment in Figure 5. Note how adding covariance in the horizontal and
vertical direction, respectively, allows the minimizing normal MPP to vary more in these directions
because the anisotropically-weighted metric penalizes high-covariance directions less.

Figure 7 (bottom row) shows five curves satisfying the MPP equations with varying vertical
V∗FM initial momentum similarly to the plots in Figure 6. Again, we see how the extra degrees of
freedom allows the paths to twist, generating a higher-dimensional family than classical geodesics
with respect to C.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 7. (Top row) Matching of two landmarks (green) to two landmarks (red) by (a) computing a
minimizing Riemannian geodesic on the landmark manifold, and (b–e) minimizing MPPs with added
covariance (arrows) in R2 horizontal direction (b,c) and vertical (d,e). The action of the corresponding
diffeomorphisms on a regular grid is visualized by the deformed grid which is colored by the warp
strain. The added covariance allows the paths to have more movement in the horizontal and vertical
direction, respectively, because the anisotropically weighted metric penalizes high-covariance directions
less. (bottom row, (f–j)) Five landmark trajectories with fixed initial velocity and anisotropic covariance
but varying V∗FM vertical initial momentum ξ0. Changing the vertical momentum “twists” the paths.
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7. Discussion and Concluding Remarks

Incorporating anisotropy in models for data in non-linear spaces via the frame bundle as pursued
in this paper leads to a sub-Riemannian structure and metric. A direct implication is that most probable
paths to observed data in the sense of sequences of stochastic steps of a driving semi-martingale are
not related to geodesics in the classical sense. Instead, a best estimate of the sequence of steps wt ∈ Rd

that leads to an observation x = ϕu(wt)|t=1 is an MPP in the sense of Definition 1. As shown in the
paper, these paths are generally not geodesics or polynomials with respect to the connection on the
manifold. In particular, if M has a Riemannian structure, the MPPs are generally neither Riemannian
geodesics nor Riemannian polynomials. Below, we discuss the statistical implications of this result.

7.1. Statistical Estimators

Metric distances and Riemannian geodesics have been the traditional vehicle for representing
observed data in non-linear spaces. Most fundamentally, the sample Frechét mean

x̂ = argminx∈M

N

∑
i=1

dgR (x, xi)
2 (19)

of observed data x1, . . . , xN ∈ M relies crucially on the Riemannian distance dgR connected to the
metric gR. Many PCA constructs (e.g., Principal Geodesics Analysis [6]) use the Riemannian Exp.
and Log maps to map between linear tangent spaces and the manifold. These maps are defined from
the Riemannian metric and Riemannian geodesics. Distributions modelled as in the random orbit
model [32] or Bayesian models [15,33] again rely on geodesics with random initial conditions.

Using the frame bundle sub-Riemannian metric gFM, we can define an estimator analogous to the
Riemannian Frechét mean estimator. Assuming the covariance is a priori known, the estimator

x̂ = argminu∈s(M)

N

∑
i=1

dFM

(
u, π−1(xi)

)2
(20)

acts correspondingly to the Frechét mean estimator (19). Here s ∈ Γ(FM) is a (local) section of FM that
to x ∈ M connects the known covariance represented by s(x) ∈ FM. The distances dFM

(
u, π−1(xi)

)
,

u = s(x) are realized by MPPs from the mean candidate x to the fibers π−1(xi). The Frechét mean
problem is thus lifted to the frame bundle with the anisotropic weighting incorporated in the metric
gFM. This metric is not related to gR, except for its dependence on the connection C that can be defined
as the Levi–Civita connection of gR. The fundamental role of the distance dgR and gR geodesics in (19)
is thus removed.

Because covariance is an integral part of the model, sample covariance can also be estimated
directly along with the sample mean. In [3], the estimator

û = argminu∈FM

N

∑
i=1

dFM

(
u, π−1(xi)

)2 − N log(detgR u) (21)

is suggested. The normalizing term −N log(detgR u) is derived such that the estimator exactly
corresponds to the maximum likelihood estimator of mean and covariance for Euclidean Gaussian
distributions. The determinant is defined via gR, and the term acts to prevent the covariance from
approaching infinity. Maximum likelihood estimators of mean and covariance for normally distributed
Euclidean data have unique solutions in the sample mean and sample covariance matrix, respectively.
Uniqueness of the Frechét mean (19) is only ensured for sufficiently concentrated data. For the
estimator (21), existence and uniqueness properties are not immediate, and more work is needed in
order to find necessary and sufficient conditions.
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7.2. Priors and Low-Rank Estimation

The low-rank cometric formulation pursued in Section 5 gives a natural restriction of (21) to
u ∈ Fk M, 1 ≤ k ≤ d. As for Euclidean PCA, most variance is often captured in the span of the first
k eigenvectors with k � d. Estimates of the remaining eigenvectors are generally ignored, as the
variance of the eigenvector estimates increases as the noise captured in the span of the last eigenvectors
becomes increasingly uniform. The low-rank cometric restricts the estimation to only the first k
eigenvectors, and thus builds the construction directly into the model. In addition, it makes numerical
implementation feasible, because a numerical representation need only store and evolve d × k matrices.
As a different approach for regularizing the estimator (21), the normalizing term −N log(detgR u) can
be extended with other priors (e.g., an L1-type penalizing term). Such priors can potentially partly
remove existence and uniqueness issues, and result in additional sparsity properties that can benefit
numerical implementations. The effects of such priors have yet to be investigated.

In the k = d case, the number of degrees of freedom for the MPPs grows quadratically in the
dimension d. This naturally increases the variance of any MPP estimate given only one sample from its
trajectory. The low-rank cometric formulation reduces the growth to linear in d. The number of degrees
of freedom is however still k times larger than for Riemannian geodesics. With longitudinal data, more
samples per trajectory can be obtained, reducing the variance and allowing a better estimate of the
MPP. However, for the estimators (20) and (21) above, estimates of the actual optimal MPPs are not
needed—only their squared length. It can be hypothesized that the variance of the length estimates is
lower than the variance of the estimates of the corresponding MPPs. Further investigation regarding
this will be the subject of future work.

7.3. Conclusions

The underlying model of anisotropy used in this paper originates from the anisotropic normal
distributions formulated in [2] and the diffusion PCA framework [1]. Because many statistical models
are defined using normal distributions, this approach to incorporating anisotropy extends to models
such as linear regression. We expect that finding most probable paths in other statistical models such as
regressions models can be carried out with a program similar to the program presented in this paper.

The difference between MPPs and geodesics shows that the geometric and metric properties of
geodesics, zero acceleration, and local distance minimization are not directly related to statistical
properties such as maximizing path probability. Whereas the concrete application and model
determines if metric or statistical properties are fundamental, most statistical models are formulated
without referring to metric properties of the underlying space. It can therefore be argued that the direct
incorporation of anisotropy and the resulting MPPs are natural in the context of many models of data
variation in non-liner spaces.
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1. Introduction

In applications, data assuming values on the circle, i.e., circular data, arise frequently, examples
being measurements of wind directions, or time of the day that patients are admitted to a hospital
unit. We refer to the literature, e.g., [1–5], for an overview of statistical methods for circular data,
in particular the ones described in this section.

Here, we will concern ourselves with the arguably simplest statistic, the mean. However, given
that a circle does not carry a vector space structure, i.e., there is neither a natural addition of points on
the circle nor can one divide them by a natural number, what should the meaning of “mean” be?

In order to simplify the exposition, we specifically consider the unit circle in the complex plane,
S1 = {z ∈ C : |z| = 1}, and we assume the data can be modelled as independent random variables
Z1, . . . , Zn which are identically distributed as the random variable Z taking values in S1. In the
literature, however, the circle is often taken to lie in the real plane R2, i.e., while we denote the point
on the circle corresponding to an angle θ ∈ (−π, π] by exp(iθ) = cos(θ) + i sin(θ) ∈ C one may take
it to be (cos θ, sin θ) ∈ R2.

Of course, C is a real vector space, so the Euclidean sample mean Z̄n = 1
n ∑n

k=1 Zk ∈ C is well-defined.
However, unless all Zk take identical values, it will (by the strict convexity of the closed unit disc) lie
inside the circle, i.e., its modulus |Z̄n| will be less than 1. Though Z̄n cannot be taken as a mean on the
circle, if Z̄n �= 0, one might say that it specifies a direction; this leads to the idea of calling Z̄n/|Z̄n| the
circular sample mean of the data.

Entropy 2016, 18, 375 424 www.mdpi.com/journal/entropy
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Observing that the Euclidean sample mean is the minimiser of the sum of squared distances, this
can be put in the more general framework of Fréchet means [6]: define the set of circular sample means to be

μ̂n = argmin
ζ∈S1

n

∑
k=1

|Zk − ζ|2 , (1)

and analoguously define the set of circular population means of the random variable Z to be

μ = argmin
ζ∈S1

E |Z − ζ|2 . (2)

Then, as usual, the circular sample means are the circular population means with respect to the
empirical distribution of Z1, . . . , Zn.

The circular population mean can be related to the Euclidean population mean E Z by noting that
E |Z − ζ|2 = E |Z − E Z|2 + | E Z − ζ|2 (in statistics, this is called the bias-variance decomposition), so that

μ = argmin
ζ∈S1

| E Z − ζ|2 (3)

is the set of points on the circle closest to E Z. It follows that μ is unique if and only if E Z �= 0 in
which case it is given by μ = E Z/| E Z|, the orthogonal projection of E Z onto the circle; otherwise, i.e.,
if E Z = 0, the set of circular population means is all of S1. We consider the information of whether the
circular population mean is not unique, e.g., but not exclusively because Z is uniformly distributed
over the circle, to be relevant; it thus should be inferred from the data as well. Analogously, μ̂n is either
all of S1 or uniquely given by Z̄n/|Z̄n| according to whether Z̄n is 0 or not. Note that Z̄n �= 0 a.s. if Z
is continuously distributed on the circle, even if E Z = 0. Z̄n is what is known as the vector resultant,
while Z̄n/|Z̄n| is sometimes referred to as the mean direction.

The expected squared distances minimised in Equation (2) are given by the metric inherited from
the ambient space C; therefore, μ is also called the set of extrinsic population means. If we measured
distances intrinsically along the circle, i.e., using arc-length instead of chordal distance, we would
obtain what is called the set of intrinsic population means. We will not consider the latter in the
following, see e.g., [7] for a comparison and [8,9] for generalizations of these concepts.

Our aim is to construct confidence sets for the circular population mean μ that form a superset of
μ with a certain (so-called) coverage probability that is required to be not less than some pre-specified
significance level 1 − α for α ∈ (0, 1).

The classical approach is to construct an asymptotic confidence interval where the coverage
probability converges to 1 − α when n tends to infinity. This can be done as follows: since Z is a
bounded random variable,

√
n(Z̄n −E Z) converges to a bivariate normal distribution when identifying

C with R2. Now, assume E Z �= 0 so μ is unique. Then, the orthogonal projection is differentiable in a
neighbourhood of E Z, so the δ-method (see e.g., [1] (p. 111) or [4] (Lemma 3.1)) can be applied and
one easily obtains

√
n Arg(μ−1μ̂n)

D→ N
(

0,
E(Im(μ−1Z))2

| E Z|2
)

, (4)

where Arg : C \ {0} → (−π, π] ⊂ R denotes the argument of a complex number (it is defined
arbitrarily at 0 ∈ C), while multiplying with μ−1 rotates such that E Z = μ is mapped to 0 ∈ (−π, π],
see e.g., [4] (Proposition 3.1) or [7] (Theorem 5). Estimating the asymptotic variance and applying
Slutsky’s lemma, one arrives at the asymptotic confidence set CA = {ζ ∈ S1 : |Arg(ζ−1μ̂n)| < δA}
provided μ̂n is unique, where the angle determining the interval is given by

δA =
q1− α

2

n|Z̄n|

√
n

∑
k=1

(
Im(μ̂−1

n Zk)
)2, (5)
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with q1− α
2

denoting the (1 − α
2 )-quantile of the standard normal distribution N (0, 1).

There are two major drawbacks to the use of asymptotic confidence intervals: firstly, by definition,
they do not guarantee a coverage probability of at least 1 − α for finite n, so the coverage probability
for a fixed distribution and sample size may be much smaller. Indeed, Simulation 2 in Section 4
demonstrates that, even for n = 100, the coverage probability may be as low as 64% when constructing
the asymptotic confidence set for 1 − α = 90%. Secondly, they assume that E Z �= 0, so they are not
applicable to all distributions on the circle. Since in practice it is unknown whether this assumption
hold, one would have to test the hypothesis E Z = 0, possibly again by an asymptotic test, and
construct the confidence set conditioned on this hypothesis having been rejected, setting CA = S1

otherwise. However, this sequential procedure would require some adaptation taking the pre-test into
account (cf. e.g., [10])—we come back to this point in Section 5—and it is not commonly implemented
in practice.

We therefore aim to construct non-asymptotic confidence sets for μ, guaranteeing coverage with at
least the desired probability for any sample size n, which in addition are universal in the sense that they
do not make any distributional assumptions about the circular data besides them being independent
and identically distributed. It has been shown in [7] that this is possible; however, the confidence
sets that were constructed there were far too large to be of use in practice. Nonetheless, we start by
varying that construction in Section 2 but using Hoeffding’s inequality instead of Chebyshev’s as in [7].
Considerable improvements are possible if one takes the variance E(Im(μ−1Z))2 “perpendicular to
E Z” into account; this is achieved by a second construction in Section 3. Of course, the latter confidence
sets will still be conservative but Proposition 2(iv) shows that they are (for 1 − α = 95%) only a factor
∼ 3

2 longer than the asymptotic ones when the sample size n is large. We further illustrate and compare
those confidence sets in simulations and for an application to real data in Section 4, discussing the
results obtained in Section 5.

2. Construction Using Hoeffding’s Inequality

We will construct a confidence set as the acceptance region of a series of tests. This idea
has been used before for the construction of confidence sets for the circular population mean [7]
(Section 6); however, we will modify that construction by replacing Chebyshev’s inequality—which is
too conservative here—by three applications of Hoeffding’s inequality [11] (Theorem 1): if U1, . . . , Un

are independent random variables taking values in the bounded interval [a, b] with −∞ < a < b < ∞.
Then, Ūn = 1

n ∑n
k=1 Uk with E Ūn = ν fulfills

P
(
Ūn − ν ≥ t

) ≤ [( ν − a
ν − a + t

)ν−a+t ( b − ν

b − ν − t

)b−ν−t
] n

b−a

(6)

for any t ∈ (0, b − ν). The bound on the right-hand side—denoted β(t)—is continuous and
strictly decreasing in t (as expected; see Appendix A) with β(0) = 1 and limt→b−ν β(t) =

(
ν−a
b−a
)n

whence a unique solution t = t(γ, ν, a, b) to the equation β(t) = γ exists for any γ ∈
((

ν−a
b−a
)n, 1

)
.

Equivalently, t(γ, ν, a, b) is strictly decreasing in γ. Furthermore, ν + t(γ, ν, a, b) is strictly increasing in
ν (see Appendix A again), which is also to be expected. While there is no closed form expression for
t(γ, ν, a, b), it can without difficulty be determined numerically.

Note that the estimate

β(t) ≤ exp
(−2nt2/(b − a)2) (7)

is often used and called Hoeffding’s inequality [11]. While this would allow to solve explicitly for t,
we prefer to work with β as it is sharper, especially for ν close to b as well as for large t. Nonetheless, it
shows that the tail bound β(t) tends to zero as fast as if using the central limit theorem which is why it
is widely applied for bounded variables, see e.g., [12].
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Now, for any ζ ∈ S1, we will test the hypothesis that ζ is a circular population mean.
This hypothesis is equivalent to saying that there is some λ ∈ [0, 1] such that E Z = λζ. Multiplication
by ζ−1 then rotates E Z onto the non-negative real axis: E ζ−1Z = λ ≥ 0.

Now, fix ζ and consider Xk = Re(ζ−1Zk), Yk = Im(ζ−1Zk) for k = 1, . . . , n which may be viewed
as the projection of Z1, . . . , Zk onto the line in the direction of ζ and onto the line perpendicular to
it. Both are sequences of independent random variables taking values in [−1, 1] with E Xk = λ and
E Yk = 0 under the hypothesis. They thus fulfill the conditions for Hoeffding’s inequality with a = −1,
b = 1 and ν = λ or 0, respectively.

We will first consider the case of non-uniqueness of the circular mean, i.e., μ = S1, or equivalently
λ = 0. Then, the critical value s0 = t( α

4 , 0,−1, 1) is well-defined for any α
4 > 2−n, and we get

P(X̄n ≥ s0) ≤ α
4 , and also, by considering −X1, . . . ,−Xn, that P(−X̄n ≥ s0) ≤ α

4 . Analogously,
P(|Ȳn| ≥ s0) ≤ 2 α

4 = α
2 . We conclude that

P
(|Z̄n| ≥

√
2s0
)
= P

(|X̄n|2 + |Ȳn|2 ≥ 2s2
0
) ≤ P

(|X̄n|2 ≥ s2
0
)
+ P

(|Ȳn|2 ≥ s2
0
) ≤ α.

Rejecting the hypothesis μ = S1, i.e., E Z = 0, if |Z̄n| ≥
√

2s0 thus leads to a test whose probability
of false rejection is at most α (see Figure 1). Of course, one may work with |X̄n|2 ≥ s2

0 and |Ȳn|2 ≥ s2
0

as criterions for rejection; however, we prefer working with |Z̄n| ≥
√

2s0 since it is independent of
the chosen ζ.

0 s0

s0
P(Re Z̄n ≥ s0) ≤ α

4P(Re Z̄n ≤ −s0) ≤ α
4

P(Im Z̄n ≤ −s0) ≤ α
4

P(Im Z̄n ≥ s0) ≤ α
4

Figure 1. The construction for the test of the hypothesis μ = S1, or equivalently E Z = 0.

In the case of uniqueness of the circular mean, i.e., for the hypothesis λ > 0, we use the
monotonicity of ν + t(γ, ν, a, b) in ν and obtain

P
(
X̄n ≤ −s0

)
= P

(−X̄n ≥ t( α
4 , 0,−1, 1)

) ≤ P
(−X̄n ≥ −λ + t( α

4 ,−λ,−1, 1)
) ≤ α

4

as well. For the direction perpendicular to the direction of ζ (see Figure 2), however, we may now work
with 3

8 α, so for sp = t( 3
8 α, 0,−1, 1)—which is well-defined whenever s0 is since 3

8 α > α
4 > 2−n—we obtain

P
(
Ȳn ≥ sp

)
+P
(
Ȳn ≤ −sp

) ≤ 2 · 3
8 α.

Rejecting if X̄n ≤ −s0 or |Ȳn| ≥ sp, then, will happen with probability at most α
4 + 2 · 3

8 α = α under
the hypothesis μ = ζ. In case that we already rejected the hypothesis μ = S1, i.e., if |Z̄n| ≥

√
2s0,

ζ will not be rejected if and only if X̄n > s0 > 0 and |Ȳn| < sp < s0 which is then equivalent to
|Arg(ζ−1Z̄n)| = arcsin(|Ȳn|/|Z̄n|) < arcsin(sp/|Z̄n|) = δH (see Figure 3).

Define CH as all ζ which we could not reject, i.e.,

CH =

{
S1, if α ≤ 2−n+2 or |Z̄n| ≤

√
2s0,{

ζ ∈ S1 : |Arg(ζ−1μ̂n)| < δH
}

otherwise.
(8)
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Then, we obtain the following result:

sp

s0
0

λζ

ζ

P(Im ζ−1Z̄n ≥ sp) ≤ 3
8 α

P(Re ζ−1Z̄n ≤ −s0) ≤ α
4

P(Im ζ−1Z̄n ≤ −sp) ≤ 3
8 α

Figure 2. The construction for the test of the hypothesis E Z = λζ with λ > 0.

sp

Z̄n

δH
0

λζ ζ

Figure 3. The critical Z̄n regarding the rejection of ζ. δH bounds the angle between μ̂n and any
accepted ζ.

Proposition 1. Let Z1, . . . , Zn be random variables taking values on the unit circle S1, α ∈ (0, 1), and let CH
be defined as in Equation (8).

(i) CH is a (1 − α)-confidence set for the circular population mean set. In particular, if E Z = 0, i.e.,
the circular population mean set equals S1, then |Z̄n| >

√
2s0 with probability at most α, so indeed

CH = S1 with probability at least 1 − α.

(ii) s0 and sp are of order n− 1
2 .

(iii) If E Z �= 0, then
√

nδH → 0 in probability and the probability of obtaining the trivial confidence set, i.e.,
P(CH = S1) = P(|Z̄n| ≤

√
2s0), goes to 0 exponentially fast.

Proof. (i) holds by construction.

For (ii), recall Equation (7), from which we obtain the estimates α
4 ≤ exp(−ns2

0/2) resp.
3
8 α ≤ exp(−ns2

p/2), implying that s0 and sp are of order n− 1
2 ; the same holds stochastically for

δH since Z̄n → E Z a.s. Regarding the second statement of (iii), if μ is unique, consider ζ = −μ;
then, τ = E X̄n < 0 and −√

2s0 is eventually less than τ
2 and also α > 2−n+2 eventually.

Hence, the probability of obtaining the trivial confidence set CH = S1 is eventually bounded by
P(ζ ∈ CH) ≤ P(X̄n > −s0) ≤ P(X̄n > τ

2 ) = P(X̄n − E X̄n > − τ
2 ) ≤ exp(−nτ2/8), and thus will go to

zero exponentially fast as n tends to infinity.

3. Estimating the Variance

From the central limit theorem for μ̂n in case of unique μ, cf. Equation (4), we see that the
aymptotic variance of μ̂n gets small if | E Z| is close to 1 (then E Z is close to the boundary S1 of the unit
disc, which is possible only if the distribution is very concentrated) or if the variance E(Im(μ−1Z))2 in
the direction perpendicular to μ is small (if the distribution were concentrated on ±μ, this variance
would be zero and μ̂n would equal μ with large probability). While δH (|Z̄n| being the denominator
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of its sine) takes the former into account, the latter has not been exploited yet. To do so, we need to
estimate E(Im(μ−1Z))2.

Consider Vn = 1
n ∑n

k=1 Y2
k that is under the hypothesis that the corresponding ζ is the

unique circular population mean has expectation σ2 = Var(Yk) = E(Im(ζ−1Z))2. Now,
1 − Vn = 1

n ∑n
k=1(1 − Y2

k ) is the mean of n independent random variables taking values in [0, 1] and
having expectation 1 − σ2. By another application of Equation (6), we obtain P(σ2 ≥ Vn + t) =

P(1 − Vn ≥ 1 − σ2 + t) ≤ α
4 for t = t( α

4 , 1 − σ2, 0, 1), the latter existing if α
4 > (1 − σ2)n.

Since 1 − σ2 + t( α
4 , 1 − σ2, 0, 1) increases with 1 − σ2, there is a minimal σ2 for which 1 − Vn ≥

1 − σ2 + t( α
4 , 1 − σ2, 0, 1) holds and becomes an equality; we denote it by σ̂2 = Vn + t( α

4 , 1 − σ̂2, 0, 1).
Inserting into Equation (6), it by construction fulfills

α

4
=

[(
1 − σ̂2

1 − Vn

)1−Vn ( σ̂2

Vn

)Vn
]n

. (9)

It is easy to see that the right-hand side depends continuously on and is strictly decreasing in
σ̂2 ∈ [Vn, 1] (see Appendix A), thereby traversing the interval [0, 1] so that one can again solve the
equation numerically. We then may, with an error probability of at most α

4 , use σ̂2 as an upper bound
for σ2. Note that σ̂2 > Vn exists if α

4 > (1 − σ̂2)n. The latter is fulfilled for any Vn < 1 since Equation (9)
is equivalent to

α

4
=
(
1 − σ̂2

)n
[(

1
1 − Vn

)
︸ ︷︷ ︸

>1

(
1 − σ̂2

1 − Vn

)−Vn

︸ ︷︷ ︸
>1

(
σ̂2

Vn

)Vn

︸ ︷︷ ︸
>1

]n

.

For Vn = 1, let σ̂2 = 1 be the trivial bound.
With such an upper bound on its variance, we now can get a better estimate for P(Ȳn > t).

Indeed, one may use another inequality by Hoeffding [11] (Theorem 3): the mean W̄n = 1
n ∑n

k=1 Wk of
a sequence W1, . . . , Wn of independent random variables taking values in (−∞, 1], each having zero
expectation as well as variance ρ2 fulfills

P
(
W̄n ≥ w

) ≤ [(1 +
w
ρ2

)−ρ2−w (
1 − w

)w−1
] n

1+ρ2

, (10)

≤ exp
(−nt[(1 + ρ2

t ) ln(1 + t
ρ2 )− 1]

)
. (11)

for any w ∈ (0, 1). Again, an elementary calculation (analogous to Lemma A1) shows that the
right-hand side of Equation (10) is strictly decreasing in w, continuously ranging between 1 and( ρ2

1+ρ2

)n as w varies in (0, 1), so that there exists a unique w = w(γ, ρ2) for which the right-hand side

equals γ, provided γ ∈
(( ρ2

1+ρ2

)n, 1
)

. Moreover, the right-hand side increases with ρ2 (as expected),

so that w(γ, ρ2) is increasing in ρ2, too (cf. Appendix A).
Therefore, under the hypothesis that the corresponding ζ is the unique circular population mean,

P
(|Ȳn| ≥ w( α

4 , σ2)
) ≤ 2 α

4 = α
2 . Now, since P

(
w( α

4 , σ2) ≥ w( α
4 , σ̂2)

)
= P(σ2 ≥ σ̂2) ≤ α

4 , setting

sV = w( α
4 , σ̂2) we get P

(|Ȳn| ≥ sV
) ≤ 3

4 α. Note that ρ2

1+ρ2 increases with ρ2, so in case s0 exists, σ̂2 ≤ 1

implies α
4 > 2−n ≥

(
σ̂2

1+σ̂2

)n
, i.e., the existence of sV .

Following the construction for CH from Section 2, we can again obtain a confidence set for μ with
coverage probability at least 1 − α as shown in our previous article [13]. In practice however, this
confidence set is hard to calculate since σ̂2 = σ̂2(ζ) has to be calculated for every ζ ∈ S1. Though these
confidence sets can be approximated by using a grid as in [13], we suggest using a simultaneous upper
bound for the variance of Im ζ−1Zk.

429



Entropy 2016, 18, 375

We obtain a (conservative) connected, symmetric confidence set CV ⊆ CH by testing ζ ∈ CH with
σ̂2

max = supζ∈CH
σ̂2 as a common upper bound for the variance perpendicular to any ζ ∈ CH . Note that

σ̂2
max can be obtained as the solution of Equation (9) with

Ṽn = sup
ζ∈CH

1
n

n

∑
k=1

(
Im ζ−1Zk

)2.

Furthermore, we can shorten CV by iteratively redefining Ṽn = supζ∈CV
1
n ∑n

k=1
(
Im ζ−1Zk

)2 and
recalculating CV (see Algorithm 1). The resulting opening angle will be denoted by δV = arcsin sV

|Z̄n | .

Algorithm 1: Algorithm for computation of CV .

Data: observations Z1, . . . , Zn ∈ S1; significance level α; stop criterion ε

Result: a non-asymptotic confidence set CV for the circular population mean

1 compute the confidence set CH ;
2 if CH = S1 then

3 CV ← S1

4 else

5 CV ← CH ; σ̂2
max ← 1;

6 while supζ∈CV
σ̂2 < σ̂2

max − ε do

7 σ̂2
max ← supζ∈CV

σ̂2;

8 sV ← w( α
4 , σ̂2);

9 CV ← {
ζ ∈ S1 : |Arg(ζ−1μ̂n)| < arcsin sV

|Z̄n |
}

10 end

11 end

Proposition 2. Let Z1, . . . , Zn be random variables taking values on the unit circle S1, and let α ∈ (0, 1).

(i) The set CV resulting from Algorithm 1 is a (1 − α)-confidence set for the circular population mean
set. In particular, if E Z = 0, i.e., the circular population mean set equals S1, then |Z̄n| >

√
2s0 with

probability at most α, so indeed CV = S1 with probability of at least 1 − α.

(ii) sV is of order n− 1
2 .

(iii) If E Z �= 0, i.e., if the circular population mean is unique, then
√

nδV → 0 in probability, and the
probability of obtaining a trivial confidence set, i.e., P(CH = S1) = P(|Z̄n| ≤ √

2s0), goes to 0
exponentially fast.

(iv) If E Z �= 0, then

lim sup
n→∞

δV
δA

≤
√
−2 ln α

4
q

1− α
2

a.s.

with q1− α
2

denoting the (1 − α
2 )-quantile of the standard normal distribution N (0, 1).

Proof. Again, (i) follows by construction, while (iii) is shown as in Proposition 1.

For (ii), note that sV ≤ s0 since the bound in Equation (10) for ρ2 = 1 agrees with the bound in

Equation (6) for a = −1, b = 1 and v = 0, thus sV and δV are at least of the order n− 1
2 .

430



Entropy 2016, 18, 375

For (iv), we will use the estimate in Equation (11). Recall that ln(1+ x) = x− x2

2 + o(x2); therefore,
for large n and hence small sV a.s.

α

4
≤ exp

(
−nsV

[(
1 + σ̂2

max
sV

)(
sV

σ̂2
max

− s2
V

2(σ̂2
max)2

+ o(s2
V)
)
− 1
])

= exp
(−ns2

V
/

2σ̂2
max + o(s2

V)
)
,

thus sV ≤
√
−2σ̂2

max ln( α
4 )
/

n + o
(
n− 1

2
)
. Additionally, arcsin x = x + o(x) for x close to 0 which gives

δV = sV
/|Z̄n|+ o(sV) ≤

√
−2σ̂2

max ln α
4
/
(
√

n|Z̄n|) + o
(
n− 1

2
)

a.s.

Furthermore, σ̂2
max → σ2 a.s. for n → ∞, and we obtain

lim sup
n→∞

δV
δA

≤
√
−2 ln α

4

q1− α
2

a.s.

since

δA =
q1− α

2√
n|Z̄n|

√
1
n

n

∑
k=1

(
Im(μ̂−1

n Zk)
)2

︸ ︷︷ ︸
→

√
σ2

(see Equation (5)).

4. Simulation and Application to Real Data

We will compare the asymptotic confidence set CA, the confidence set CH constructed directly
using Hoeffding’s inequality in Section 2, and the confidence set CV resulting from Algorithm 1 by
reporting their corresponding opening angles δA, δH , and δV in degrees (◦) as well as their coverage
frequencies in simulations.

All computations have been performed using our own code based on the software package R
(version 2.15.3) [14] .

4.1. Simulation 1: Two Points of Equal Mass at ±10◦

First, we consider a rather favourable situation: n = 400 independent draws from the distribution
with P(Z = exp(10πi/180)) = P(Z = exp(−10πi/180)) = 1

2 . Then, we have | E Z| = E Z =

cos(10πi/180) ≈ 0.985, implying that the data are highly concentrated, μ = 1 is unique, and the
variance of Z in the direction of μ is 0; there is only variation perpendicular to μ, i.e., in the direction of
the imaginary axis (see Figure 4).

0

10◦

−10◦
E Z

Figure 4. Two points of equal mass at ±10◦ and their Euclidean mean.
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Table 1. Results for simulation 1 (two points of equal mass at ±10◦) based on 10,000 repetitions with
n = 400 observations each: average observed δH , δV , and δA (with corresponding standard deviation),
as well as frequency (with corresponding standard error) with which μ = 1 was covered by CH , CV ,
and CA, respectively; the nominal coverage probability was 1 − α = 95%.

Confidence Set Mean δ (±s.d.) Coverage Frequency (±s.e.)

CH 8.2◦ (±0.0005◦) 100.0% (±0.0%)
CV 2.4◦ (±0.0025◦) 100.0% (±0.0%)
CA 1.0◦ (±0.0019◦) 94.8% (±0.2%)

Table 1 shows the results based on 10,000 repetitions for a nominal coverage probability of
1 − α = 95%: the average δH is about 3.5 times larger than δV , which is about twice as large as δA.
As expected, the asymptotics are rather precise in this situation: CA did cover the true mean in about
95% of the cases, which implies that the other confidence sets are quite conservative; indeed CH and
CV covered the true mean in all repetitions. One may also note that the angles varied only a little
between repetitions.

4.2. Simulation 2: Three Points Placed Asymmetrically

Secondly, we consider a situation which has been designed to show that even a considerably large
sample size (n = 100) does not guarantee approximate coverage for the asymptotic confidence set
CA: the distribution of Z is concentrated on three points, ξ j = exp(θjπi/180), j = 1, 2, 3 with weights
ωj = P(Z = ξ j) chosen such that E Z = | E Z| = 0.9 (implying a small variance and μ = 1), ω1 = 1%
and Arg ξ1 > 0, while Arg ξ2, Arg ξ3 < 0. In numbers, θ1 ≈ 25.8, θ2 ≈ −0.3, and θ3 ≈ −179.7 (in ◦)
while ω2 ≈ 94%, and ω3 ≈ 5% (see Figure 5).

0

θ1 = 25.8◦

θ2 = −0.3◦θ3 = −179.7◦
E Z

Figure 5. Three points placed asymmetrically with different masses and their Euclidean mean.

The results based on 10,000 repetitions are shown in Table 2 where a nominal coverage probability
of 1 − α = 90% was prescribed. Clearly, CA with its coverage probability of less than 64% performs
quite poorly while the others are conservative; δV ≈ 5◦ still appears small enough to be useful in
practice, though.

Table 2. Results for simulation 2 (three points placed asymmetrically) based on 10,000 repetitions with
n = 100 observations each: average observed δH , δV , and δA (with corresponding standard deviation),
as well as frequency (with corresponding standard error) with which μ = 1 was covered by CH , CV ,
and CA, respectively; the nominal coverage probability was 1 − α = 90%.

Confidence Set Mean δ (±s.d.) Coverage Frequency (±s.e.)

CH 16.5◦ (±0.85◦) 100.0% (±0.0%)
CV 5.0◦ (±0.38◦) 100.0% (±0.0%)
CA 0.4◦ (±0.28◦) 62.8% (±0.5%)
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4.3. Real Data: Movements of Ants

Fisher [3] (Example 4.4) describes a data set of the directions 100 ants took in response to an
illuminated target placed at 180◦ for which it may be of interest to know whether the ants indeed
(on average) move towards that target (see [15] for the original publication). The data set is available
as Ants_radians within the R package CircNNTSR [16].

The circular sample mean for this data set is about −176.9◦; for a nominal coverage probability of
1 − α = 95%, one gets δH ≈ 27.3◦, δV ≈ 20.5◦, and δA ≈ 9.6◦ so that all confidence sets contain ±180◦

(see Figure 6). The data set’s concentration is not very high, however, so the circular population mean
could—according to CV—also be −156.4◦ or 162.6◦.

Target

Figure 6. Ant data ( ) placed at increasing radii to visually resolve ties; in addition, the circular mean
direction ( ) as well as confidence sets CH ( ), CV ( ), and CA ( ) are shown.

5. Discussion

We have derived two confidence sets, CH and CV , for the set of circular sample means.
Both guarantee coverage for any finite sample size without making any assumptions on the distribution
of the data (besides that they are independent and identically distributed) at the cost of potentially
being quite conservative; they are non-asymptotic and universal in this sense. Judging from the
simulations and the real data set, CV—which estimates the variance perpendicular to the mean
direction—appears to be preferable over CH (as expected) and small enough to be useful in practice.

While the asymptotic confidence set’s opening angle is less than half (asymptotically about 2/3
for α = 5%) of the one for CV in our simulations and application, it has the drawback that even
for a sample size of n = 100, it may fail to give a coverage probability close to the nominal one;
in addition, one has to assume that the circular population mean is unique. Of course, one could also
devise an asymptotically justified test for the latter but this would entail a correction for multiple
testing (for example working with α

2 each time), which would also render the asymptotic confidence
set conservative.

Further improvements would require sharper “universal” mass concentration inequalities taking
the first or the first two moments into account; however, this is beyond the scope of this article.
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Appendix A. Proofs of Monotonicity

Lemma A1. β(t) =

[(
ν−a

ν−a+t

)ν−a+t (
b−ν

b−ν−t

)b−ν−t
] n

b−a

is strictly decreasing in t.

Proof. We show the equivalent statement that β̃(t) = ln
[(

ν−a
ν−a+t

)ν−a+t (
b−ν

b−ν−t

)b−ν−t]
is strictly

decreasing in t:

d
dt

β̃(t) =
d
dt

((
ln(ν − a)− ln(ν − a + t)

)
(ν − a + t) +

(
ln(b − ν)− ln(b − ν − t)

)
(b − ν − t)

)
= ln(ν − a)− ln(ν − a + t)− 1

ν−a+t (ν − a + t)− ln(b − ν) + ln(b − ν − t) + 1
b−ν−t (b − ν − t)

= ln
(

b − ν − t
b − ν︸ ︷︷ ︸
<1

· ν − a
ν − a + t︸ ︷︷ ︸

<1

)
< 0.

Hence, β̃(t) and thus β(t) are strictly decreasing in t.

Lemma A2. Let t = t(γ, ν, a, b) be the solution to the equation β(t) = γ. Then, ν + t is strictly increasing in ν.

Proof. t is the solution of the equation

(ν − a + t) ln
(

ν − a
ν − a + t

)
+ (b − ν − t) ln

(
b − ν

b − ν − t

)
=

b − a
n

ln γ. (A1)

The derivatives of the left-hand side of Equation (A1) w.r.t. ν and t exist and are continuous.
Furthermore, the derivative w.r.t. t does not vanish for any t ∈ (0, b − ν), cf. the proof of Lemma A1,
whence the derivative t′ = dt

dν exists by the implicit function theorem. When differentiating
Equation (A1) with respect to ν, one obtains

(1+ t′) ln
(

ν − a
ν − a + t

)
+ (ν − a + t)

(
1

ν − a
− 1+ t′

ν − a + t

)
− (1+ t′) ln

(
b − ν

b − ν − t

)
+ (b − ν − t)

(
− 1

b − ν
+

1+ t′

b − ν − t

)
= 0,

or equivalently

(1+ t′)
[

ln
(

ν − a
ν − a + t

)
︸ ︷︷ ︸

<0

− ln
(

b − ν

b − ν − t

)
︸ ︷︷ ︸

>0

]
=

t(a − b)
(v − a)(b − v)

< 0,

whence 1+ t′ = d
dν (ν + t) > 0 finishes the proof.

Lemma A3. The function

ξ
(
σ̂2
)
=

[(
1− σ̂2

1−Vn

)1−Vn ( σ̂2

Vn

)Vn
]n

is strictly decreasing in σ̂2 ∈ [Vn, 1].
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Proof. We show the equivalent statement that n−1 ln ξ
(
σ̂2
)

is strictly decreasing in σ̂2 :

d

dσ̂2

[
n−1 ln ξ

(
σ̂2
)]

=
d

dσ̂2

[
(1−Vn)

(
ln(1− σ̂2)− ln(1−Vn)

)
+Vn

(
ln(σ̂2)− ln(Vn)

)]
= − 1−Vn

1− σ̂2︸ ︷︷ ︸
>1

+
Vn

σ̂2︸︷︷︸
<1

< 0.

Lemma A4. Let w = w(γ, ρ2) be the solution of the equation

[(
1+

w
ρ2

)−ρ2−w (
1− w

)w−1
] n

1+ρ2

= γ.

Then, w is increasing in ρ2.

Proof. w is the solution of the equation

ρ2 + w
1+ ρ2 ln

(
1+

w
ρ2

)
+

1− w
1+ ρ2 ln

(
1− w

)
= − ln γ

n
. (A2)

The derivatives of the left-hand side of Equation (A2) w.r.t. ρ2 and w exist and are continuous.
Furthermore, the derivative w.r.t. w does not vanish for any w ∈ (0, 1): this derivative is

1
1+ ρ2

[
ln
(

1+
w
ρ2

)
+

ρ2 + w
ρ2
(
1+ w

ρ2

) − ln(1− w)− 1
]
=

1
1+ ρ2

[
ln
(

1+
w
ρ2

)
− ln(1− w)

]
,

vanishing if and only if 1+ w
ρ2 = 1− w, i.e., if and only if w

(
1+ 1

ρ2

)
= 0, which does not happen for

w, ρ2 > 0. Now, the derivative w′ = dw
dρ2 exists by the implicit function theorem. When differentiating

Equation (A2) with respect to ρ2, one obtains

(1+ w′)(1+ ρ2)− (ρ2 + w)

(1+ ρ2)2 ln
(

1+
w
ρ2

)
+

ρ2 + w
1+ ρ2 ·

w′
ρ2 − w

ρ4

1+ w
ρ2︸ ︷︷ ︸

w′ρ2−w
ρ2(1+ρ2)

−w′(1+ ρ2) + (1− w)

(1+ ρ2)2 ln(1− w)− w′

1+ ρ2 = 0,

or equivalently

w′
[
ln
(

1+
w
ρ2

)
− ln(1− w)︸ ︷︷ ︸

>0

]
=

w
ρ2 − 1− w

1+ ρ2 ln
( ρ2 + w

ρ2(1− w)

)
.

Hence, w′ ≥ 0 if and only if w
ρ2 ≥ 1−w

1+ρ2 ln
( ρ2+w

ρ2(1−w)

)
, which holds since ln

( ρ2+w
ρ2(1−w)

)
= ln

(
1+ w(1+ρ2)

ρ2(1−w)

) ≤
w
ρ2

1+ρ2

1−w , finishing the proof.
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Abstract: We present a simple computational approach to assigning a measure of complexity and
information/entropy to families of natural languages, based on syntactic parameters and the theory
of error correcting codes. We associate to each language a binary string of syntactic parameters and
to a language family a binary code, with code words the binary string associated to each language.
We then evaluate the code parameters (rate and relative minimum distance) and the position of the
parameters with respect to the asymptotic bound of error correcting codes and the Gilbert–Varshamov
bound. These bounds are, respectively, related to the Kolmogorov complexity and the Shannon
entropy of the code and this gives us a computationally simple way to obtain estimates on the
complexity and information, not of individual languages but of language families. This notion
of complexity is related, from the linguistic point of view to the degree of variability of syntactic
parameter across languages belonging to the same (historical) family.

Keywords: syntax; principles and parameters; error-correcting codes; asymptotic bound; Kolmogorov
complexity; Gilbert–Varshamov bound; Shannon entropy

1. Introduction

We propose an approach, based on Longobardi’s parametric comparison method (PCM) and the
theory of error-correcting codes, to a quantitative evaluation of the “complexity” of a language family.
One associates to a collection of languages to be analyzed with the PCM a binary (or ternary) code
with one code word for each language in the family and each word consisting of the binary values of
the syntactic parameters of that language. The ternary case allows for an additional parameter state
that takes into account certain phenomena of entailment of parameters. We then consider a different
kind of parameters: the code parameters of the resulting code, which in coding theory account for
the efficiency of the coding and decoding procedures. These can be compared with some classical
bounds of coding theory: the asymptotic bound, the Gilbert–Varshamov (GV) bound, etc. The position
of the code parameters with respect to some of these bounds provides quantitative information on the
variability of syntactic parameters within and across historical-linguistic families. While computations
carried out for languages belonging to the same historical family yield codes below the GV curve,
comparisons across different historical families can give examples of isolated codes lying above the
asymptotic bound.

1.1. Principles and Parameters

The generative approach to linguistics relies on the notion of a Universal Grammar (UG) and
a related universal list of syntactic parameters. In the Principles and Parameters model, developed
since [1], these are thought of as binary valued parameters or “switches” that set the grammatical
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structure of a given language. Their universality makes it possible to obtain comparisons, at the
syntactic level, between arbitrary pairs of natural languages.

A PCM was introduced in [2] as a quantitative method in historical linguistics, for comparison of
languages within and across historical families at the syntactic instead of the lexical level. Evidence
was given in [3,4] that the PCM gives reliable information on the phylogenetic tree of the family of
Indo-European languages.

The PCM relies essentially on constructing a metric on a family of languages based on the relative
Hamming distance between the sets of parameters as a measure of relatedness. The phylogenetic tree
is then constructed on the basis of this datum of relative distances, see [3].

More work on syntactic phylogenetic reconstructions, involving a larger set of languages and
parameters is ongoing, [5]. Syntactic parameters of world languages have also been used recently for
investigations on the topology and geometry of syntactic structures and for statistical physics models
of language evolution, [6–8].

Publicly available data of syntactic parameters of world languages can be obtained from databases
such as Syntactic Structures of World Languages (SSWL) [9] or TerraLing [10] or World Atlas of
Language Structures (WALS) [11]. The data of syntactic parameters used in the present paper are taken
from Table A of [3].

1.2. Syntactic Parameters, Codes and Code Parameters

Our purpose in this paper is to connect the PCM approach to the mathematical theory of
error-correcting codes. We associate a code to any group of languages one wishes to analyze via
the PCM, which has one code word for each language. If one uses a number n of syntactic parameters,
then the code C sits in the space Fn

2 , where the elements of F2 = {0, 1} correspond to the two ∓ possible
values of each parameter, and the code word of a language is the string of values of its n parameters.
We also consider a version with codes on an alphabet F3 of three letters which allows for the possibility
that some of the parameters may be made irrelevant by entailment from other parameters. In this case
we use the letter 0 ∈ F3 for the irrelevant parameters and the nonzero values ±1 for the parameters
that are set in the language.

In the theory of error-correcting codes, see [12], one assigns to a code C ⊂ Fn
q two code parameters:

R = logq(#C)/n, the transmission rate of the code, and δ = d/n the relative minimum distance of the
code, where d is the miminum Hamming distance between pairs of distinct code words. It is well
known in coding theory that “good codes” are those that maximize both parameters, compatibly with
several constraints relating R and δ. Consider the function f : Cq → [0, 1]2 from the space Cq of q-ary
codes to the unit square, that assigns to a code C its code parameters, f (C) = (δ(C), R(C)). A point
(δ, R) in the range of f has finite (respectively, infinite) multiplicity if the preimage f−1(δ, R) is a finite
set (respectively, an infinite set). It was proved in [13] that there is a curve R = αq(δ) in the space of
code parameters, the asymptotic bound, that separates code points that fill a dense region and that
have infinite multiplicity from isolated code points that only have finite multiplicity. These better but
more elusive codes are typically obtained through algebro-geometric constructions, see [13–15]. The
asymptotic bound was related to Kolmogorov complexity in [16].

1.3. Position with Respect to the Asymptotic Bound

Given a collection of languages one wants to compare through their syntactic parameters, one can
ask natural questions about the position of the resulting code in the space of code parameters and with
respect to the asymptotic bound. The theory of error correcting codes tells us that codes above the
asymptotic bound are very rare. Indeed, we considered various sets of languages, and for each choice
of a set of languages we considered an associated code, with a code word for each language in the set,
given by its list of syntactic parameters. When computing the code parameters of the resulting code,
one finds that, in a range of cases we looked at, when the languages in the chosen set belong to the
same historical-linguistic family the resulting code lies below the asymptotic bound (and in fact below
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the Gilbert–Varshamov curve). This provides a precise quantitative bound to the possible spread of
syntactic parameters compared to the size of the family, in terms of the number of different languages
belonging to the same historico-linguistic group.

However, we also show that, if one considers sets of languages that do not belong to the same
historical-linguistic family, then one can obtain codes that lie above the asymptotic bound, a fact that
reflects, in code theoretic terms, the much greater variability of syntactic parameters. The result is
in itself not surprising, but the point we wish to make is that the theory of error-correcting codes
provides a natural setting where quantitative statements of this sort can be made using methods
already developed for the different purposes of coding theory. We conclude by listing some new
linguistic questions that arise by considering the parametric comparison method under this coding
theory perspective.

1.4. Complexity of Languages and Language Families

The study of natural languages from the point of view of complexity theory has been of significant
interest to linguists in recent years. The approaches typically followed focus on assigning a reasonable
measure of complexity to individual languages and comparing complexities across different languages.
For example, a notion of morphological complexity was studied in [17]. An approach to defining
Kolmogorov complexity of languages on the basis of syntactic parameters was developed in [18].
A notion of language complexity based on the production rules of a generative grammar was
considered in [19], in the setting of (finite) formal languages. For a more general computational
perspective on the complexity of natural languages, see [20]. The idea of distinguishing languages
by complexity is not without controversy in Linguistics. A very interesting general discussion of the
problem and its evolution in the field can be found in [21].

In the present paper, we argue in favor of a somewhat different perspective, where we assign
an estimate of complexity not to individual languages but to groups of languages, and in particular
(historical) language families. Our version of complexity is measuring how “spread out” the syntactic
parameters can be, across the languages that belong to the same family. As we outlined in the previous
subsections, this is measured by assigning to the language family a code, whose code words record the
syntactic parameters of the individual languages in the family, then computing its code parameters
and evaluating the position of the resulting code points with respect to curves like the asymptotic
bound or the Gilbert–Varshamov line. The reason why this position carries complexity information
lies in the subtle relation between the asymptotic bound and Kolmogorov complexity, recently derived
by Manin and the author in [16], which we will review briefly in this paper.

2. Language Families as Codes

The Principles and Parameters model of Linguistics assigns to every natural language L a set of
binary values parameters that describe properties of the syntactic structure of the language.

Let F be a language family, by which we mean a finite collection F = {L1, . . . , Lm} of languages.
This may coincide with a family in the historical sense, such as the Indo-European family, or a smaller
subset of languages related by historic origin and development (e.g., the Indo-Iranian, or Balto–Svalic
languages), or simply any collection of languages one is interested in comparing at the parametric
level, even if they are spread across different historical families.

We denote by n be the number of parameters used in the parametric comparison method. We do
not fix, a priori, a value for n, and we consider it a variable of the model. We will discuss below how
one views, in our perspective, the issue of the independence of parameters.

After fixing an enumeration of the parameters, that is, a bijection between the set of parameters
and the set {1, . . . , n}, we associate to a language family F a code C = C(F) in Fn

2 , with one code word
for each language L ∈ F, with the code word w = w(L) given by the list of parameters w = (x1, . . . , xn),
xi ∈ F2 of the language. For simplicity of notation, we just write L for the word w(L) in the following.
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In this model, we only consider binary parameters with values ±1 (here identified with letters 0
or 1 in F2) and we ignore parameters in a neutralized state following implications across parameters,
as in the datasets of [3,4]. The entailment of parameters, that is, the phenomenon by which a particular
value of one parameter (but not the complementary value) renders another parameter irrelevant, was
addressed in greater detail in [22]. We first discuss a version of our coding theory model that does not
incorporate entailment. We will then comment in Section 2.7 below on how the model can be modified
to incorporate this phenomenon.

The idea that natural languages can be described, at the level of their core grammatical structures,
in terms of a string of binary characters (code words) was already used extensively in [23].

2.1. Code Parameters

In the theory of error-correcting codes, one assigns two main parameters to a code C, the
transmission rate and the relative minimum distance. More precisely, a binary code C ⊂ Fn

2 is an
[n, k, d]2-code if the number of code words is #C = 2k, that is,

k = log2 #C, (1)

where k need not be an integer, and the minimal Hamming distance between code words is

d = min
L1 �=L2∈C

dH(L1, L2), (2)

where the Hamming distance is given by

dH(L1, L2) =
n

∑
i=1

|xi − yi|,

for L1 = (xi)
n
i=1 and L2 = (yi)

n
i=1 in C. The transmission rate of the code C is given by

R =
k
n

. (3)

One denotes by δH(L1, L2) the relative Hamming distance

δH(L1, L2) =
1
n

n

∑
i=1

|xi − yi|,

and one defines the relative minimum distance of the code C as

δ =
d
n
= min

L1 �=L2∈C
δH(L1, L2). (4)

In coding theory, one would like to construct codes that simultaneously optimize both parameters
(δ, R): a larger value of R represents a faster transmission rate (better encoding), and a larger value of
δ represents the fact that code words are sufficiently sparse in the ambient space Fn

2 (better decoding,
with better error-correcting capability). Constraints on this optimization problem are expressed in the
form of bounds in the space of (δ, R) parameters, see [12,13].

In our setting, the R parameter measures the ratio between the logarithmic size of the number of
languages encompassing the given family and the total number of parameters, or equivalently how
densely the given language family is in the ambient configuration space Fn

2 of parameter possibilities.
The parameter δ is the minimum, over all pairs of languages in the given family, of the relative
Hamming distance used in the PCM method of [3,4].
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2.2. Parameter Spoiling

In the theory of error-correcting codes, one considers spoiling operations on the code parameters.
Applied to an [n, k, d]2-code C, these produce, respectively, new codes with the following description
(see Section 1.1.1 of [24]):

• A code C1 = C �i f in F
n+1
2 , for a map f : C → F2, whose code words are of the form

(x1, . . . , xi−1, f (x1, . . . , xn), xi, . . . , xn) for w = (x1, . . . , xn) ∈ C. If f is a constant function, C1

is an [n + 1, k, d]2-code. If all pairs w, w′ ∈ C with dH(w, w′) = d have f (w) �= f (w′), then C1 is
an [n + 1, k, d + 1]2-code.

• A code C2 = C�i in F
n−1
2 , whose code words are given by the projections

(x1, . . . , xi−1, xi+1, . . . , xn)

of code words (x1, . . . , xi−1, xi, xi+1, . . . , xn) in C. This is an [n − 1, k, d − 1]2-code, except when all
pairs w, w′ ∈ C with dH(w, w′) = d have the same letter xi, in which case it is an [n − 1, k, d]2-code.

• A code C3 = C(a, i) ⊂ C ⊂ Fn
2 , given by the level set C(a, i) = {w = (xk)

n
k=1 ∈ C | xi = a}.

Taking C(a, i)�i gives an [n − 1, k′, d′]2-code with k − 1 ≤ k′ < k, and d′ ≥ d.

The same spoiling operations hold for q-ary codes C ⊂ Fn
q , for any fixed q.

In our setting, where C is the code obtained from a family of languages, according to the procedure
described above, the first spoiling operation can be seen as the effect of considering one more syntactic
parameter, which is dependent on the other parameters, hence describing a function F : Fn

2 → F2,
whose restriction to C gives the function f : C → F2. In particular, the case where f is constant
on C represents the situation in which the new parameter adds no useful comparison information
for the selected family of languages. The second spoiling operation consists in forgetting one of the
parameters, and the third corresponds to forming subfamilies of the given family of languages, by
grouping together those languages with a set value of one of the syntactic parameters. Thus, all these
spoiling operations have a clear meaning from the point of view of the linguistic PCM.

2.3. Examples

We consider the same list of 63 parameters used in [3] (see Section 5.3.1 and Table A). This
choice of parameters follows the modularized global parameterization method of [2], for the Determiner
Phrase module. They encompass parameters dealing with person, number, and gender (1–6 on
their list), parameters of definiteness (7–16 in their list), of countability (17–24), genitive structure
(25–31), adjectival and relative modification (32–14), position and movement of the head noun (42–50),
demonstratives and other determiners (51–50 and 60–63), possessive pronouns (56–59); see Section 5.3.1
and Section 5.3.2 of [3] for more details.

Our very simple examples here are just meant to clarify our notation: they consist of some
collections of languages selected from the list of 28, mostly Indo-European, languages considered in [3].
In each group we consider we eliminate the parameters that are entailed from others, and we focus on
a shorter list, among the remaining parameters, that will suffice to illustrate our viewpoint.

Example 1. Consider a code C formed out of the languages �1 = Italian, �2 = Spanish, and �3 = French,
and let us consider only the first six syntactic parameters of Table A of [3], so that C ⊂ Fn

2 with n = 6.
The code words for the three languages are

�1 1 1 1 0 1 1
�2 1 1 1 1 1 1
�3 1 1 1 0 1 0

This has code parameters (R = log2(3)/6 = 0.2642, δ = 1/6), which satisfy R < 1 − H2(δ), hence
they lie below the GV curve (see Equation (8) below). We use this code to illustrate the three spoiling
operations mentioned above.
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• Throughout the entire set of 28 languages considered in [3], the first two parameters are set to the
same value 1, hence for the purpose of comparative analysis within this family, we can regard a
code like the above as a twice spoiled code C = C′ �1 f1 = (C′′ �2 f2) �1 f1 where both f1 and f2

are constant equal to 1 and C′′ ⊂ F4
2 is the code obtained from the above by canceling the first two

letters in each code word.
• Conversely, we have C′′ = C′�2 and C′ = C�1, in terms of the second spoiling operation

described above.
• To illustrate the third spoiling operation, one can see, for instance, that C(0, 4) = {�1, �3}, while

C(1, 6) = {�2, �3}.

2.4. The Asymptotic Bound

The spoiling operations on codes were used in [13] to prove the existence of an asymptotic bound in
the space of code parameters (δ, R), see also [16,24,25] for more detailed properties of the asymptotic
bound.

Let Vq ⊂ [0, 1]2 ∩Q2 denote the space of code parameters (δ, R) of codes C ⊂ Fn
q and let Uq be the

set of all limit points of Vq. The set Uq is characterized in [13] as

Uq = {(δ, R) ∈ [0, 1]2 | R ≤ αq(δ)}

for a continuous, monotonically decreasing function αq(δ) (the asymptotic bound). Moreover, code
parameters lying in Uq are realized with infinite multiplicity, while code points in Vq \ (Vq ∩ Uq) have
finite multiplicity and correspond to the isolated codes, see [13,16].

Codes lying above the asymptotic bound are codes which have extremely good transmission rate
and relative minimum distance, hence very desirable from the coding theory perspective. The fact that
the corresponding code parameters are not limit points of other code parameters and only have finite
multiplicity reflect the fact that such codes are very difficult to reach or approximate. Isolated codes
are known to arise from algebro-geometric constructions, [14,15].

Relatively little is known about the asymptotic bound: the question of the computability of
the function αq(δ) was recently addressed in [25] and the relation to Kolmogorov complexity was
investigated in [16]. There are explicit upper and lower bounds for the function αq(δ), see [12],
including the Plotkin bound

αq(δ) = 0, for δ ≥ q − 1
q

; (5)

the singleton bound, which implies that R = αq(δ) lies below the line R + δ = 1; the Hamming bound

αq(δ) ≤ 1 − Hq(
δ

2
), (6)

where Hq(x) is the q-ary Shannon entropy

x logq(q − 1)− x logq(x)− (1 − x) logq(1 − x)

which is the usual Shannon entropy for q = 2,

H2(x) = −x log2(x)− (1 − x) log2(1 − x). (7)

One also has a lower bound given by the Gilbert–Varshamov bound

αq(δ) ≥ 1 − Hq(δ) (8)
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The Gilbert–Varshamov curve can be characterized in terms of the behavior of sufficiently random
codes, in the sense of the Shannon Random Code Ensemble, see [26,27], while the asymptotic bound
can be characterized in terms of Kolmogorov complexity, see [16].

2.5. Code Parameters of Language Families

From the coding theory viewpoint, it is natural to ask whether there are codes C, formed out of a
choice of a collection of natural languages and their syntactic parameters, whose code parameters lie
above the asymptotic bound curve R = α2(δ).

For instance, a code C whose code parameters violate the Plotkin bound (5) must be an isolated
code above the asymptotic bound. This means constructing a code C with δ ≥ 1/2, that is, such that
any pair of code words w �= w′ ∈ C differ by at least half of the parameters. A direct examination of
the list of parameters in Table A of [3] and Figure 7 of [4] shows that it is very difficult to find, within
the same historical linguistic family (e.g., the Indo-European family) pairs of languages L1, L2 with
δH(L1, L2) ≥ 1/2. For example, among the syntactic relative distances listed in Figure 7 of [4] one
finds only the pair (Farsi, Romanian) with a relative distance of 0.5. Other pairs come close to this
value, for example Farsi and French have a relative distance of 0.483, but French and Romanian only
differ by 0.162.

One has better chances of obtaining codes above the asymptotic bound if one compares languages
that are not so closely related at the historical level.

Example 2. Consider the set C = {L1, L2, L3} with languages L1 = Arabic, L2 = Wolof, and
L3 = Basque. We exclude from the list of Table A of [3] all those parameters that are entailed and made
irrelevant by some other parameter in at least one of these three chosen languages. This gives us a list
of 25 remaining parameters, which are those numbered as 1–5, 7, 10, 20–21, 25, 27–29, 31–32, 34, 37, 42,
50–53, 55–57 in [3], and the following three code words:

L1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 0
L2 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 1
L3 1 1 0 1 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0

This example, although very simple and quite artificial in the choice of languages, already
suffices to produce a code C that lies above the asymptotic bound. In fact, we have dH(L1, L2) = 16,
dH(L2, L3) = 13 and dH(L1, L3) = 13, so that δ = 0.52. Since R > 0, the code point (δ, R) violates the
Plotkin bound, hence it lies above the asymptotic bound.

It would be more interesting to find a code C consisting of languages belonging to the same
historical-linguistic family (outside of the Indo-European group), that lies above the asymptotic bound.
Such examples would correspond to linguistic families that exhibit a very strong variability of the
syntactic parameters, in a way that is quantifiable through the properties of C as a code.

If one considers the 22 Indo-European languages in [3] with their parameters, one obtains a code
C that is below the Gilbert–Varshamov line, hence below the asymptotic bound by Equation (8). A few
other examples, taken from other non Indo-European historical-linguistic families, computed using
those parameters reported in the SSWL database (for example the set of Malayo–Polynesian languages
currently recorded in SSWL) also give codes whose code parameters lie below the Gilbert–Varshamov
curve. One can conjecture that any code C constructed out of natural languages belonging to the
same historical-linguistic family will be below the asymptotic bound (or perhaps below the GV
bound), which would provide a quantitative bound on the possible spread of syntactic parameters
within a historical family, given the size of the family. Examples like the simple one constructed
above, using languages not belonging to the same historical family show that, to the contrary, across
different historical families one encounters a greater variability of syntactic parameters. To our
knowledge, no systematic study of parameter variability from this coding theory perspective has been
implemented so far.
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Ongoing work of the author is considering a systematic analysis of language families, based on
the SSWL database of syntactic parameters, using this coding theory technique. This will include an
analysis of how much the conclusions about the spreading of syntactic parameters across language
families obtained with this technique depends on data pre-processing like the removal of spoiling
features and what can be retained as an objective property of a set of languages. Moreover, a further
purpose of this ongoing study is to combine the coding theory approach and the measures of complexity
for groups of languages described in the present paper with the spin glass dynamical models of
language change considered in [8], which was aimed at studying dynamically the spreading of
syntactic parameters across groups of languages. The aim is to introduce complexity measures based
on coding theory as part of the energy landscape of the spin glass model, following the suggestion
of [28], on analogies between the roles of complexity in the theory of computation and energy in
physical theories. These results, along with a more detailed analysis of the codes and code parameters
of various language families, will appear in forthcoming work.

2.6. Comparison with Other Bounds

Another possible question one can consider in this setting is how the codes obtained from syntactic
parameters of a given set of natural languages compare with other known families of error correcting
codes and with other bounds in the space of code parameters.

For instance, it is known that an important improvement over the behavior of typical random
codes can be obtained by considering codes determined by algebro-geometric curves defined over
a finite field Fq. Let Nq(X) = #X(Fq) be the number of points over Fq of the curve X, and let
Nq(g) = max Nq(X), with the maximum taken over all genus g curves X over Fq. As shown in
Theorem 2.3.22 of [12], asymptotically the Nq(g) satisfy the Drinfeld–Vladut bound

A(q) := lim sup
q→∞

Nq(g)
g

≤ √
q − 1,

and as shown in Section 3.4.1 of [12], this determines an algebro-geometric bound

αq(δ) ≥ RAG(δ) = 1 − 1
A(q)

− δ

and the asymptotic Tsfasman–Vladut–Zink bound

αq(δ) ≥ RTVZ(δ) = 1 − (
√

q − 1)−1 − δ.

The Tsfasman–Vladut–Zink line RTVZ(δ) = 1 − (
√

q − 1)−1 − δ lies entirely below the GV line for
q < 49 (Theorem 3.4.4 of [12]).

A probabilistic argument given in Section 3.4.2 of [12] shows that highly non-random codes
coming from algebraic curves can be asymptotically better than random codes (for sufficiently large q)
as they cluster around the TVZ line. However, for q = 2 or q = 3, as in the case of codes from syntactic
parameters of groups of languages that we consider here, the TVZ line lies below the GV line, hence
any example that lies above the GV bound also behaves better than the the algebro-geometric bound.
Such examples, like the one given above, for the three languages Arabic, Wolof, Basque, are very rare
among codes obtained from syntactic parameters of languages, as they require the choice of a group
of languages that are all very far from each other syntactically, with very large relative Hamming
distances between syntactic parameters.

On the other hand, even for cases of groups of languages for which the resulting code parameters
are below the GV line, it is still possible to get some additional information by comparing the position
of the code parameters to other curves obtained from other bounds, such as the Blokh–Zyablow
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bound or the Katsman–Tsfasman–Vladut bound, see Appendix A.2.1 of [12] for a summary of all these
different bounds.

For example, the first example given above, with the three languages Italian, Spanish, French
and a string of six syntactic parameters, gives a code with code parameters that are below the GV
line, but above both the Blokh–Zyablow and the Katsman–Tsfasman–Vladut, according to the table of
asymptotic bounds given in Appendix A.2.4 of [12].

2.7. Entailment and Dependency of Parameters

In the discussion above we did not incorporate in our model the fact that certain syntactic parameters
can entail other parameters in such a way that one particular value of one of the parameters renders
another parameter irrelevant or not defined, see the discussion in Section 5.3.2 of [3].

One possible way to alter the previous construction to account for these phenomena is to consider
the codes C associated to families of languages as codes in Fn

3 , where n is the number of parameters, as
before, and the set of values is now given by {−1, 0,+1} = F3, with ±1 corresponding to the binary
values of the parameters that are set for a given language and value 0 assigned to those parameters
that are made irrelevant for the given language, by entailment from other parameters, or are not
defined. This allows us to consider the full range of parameters used in [3,4]. We revisit Example 2
considered above.

Example 3. Let C = {L1, L2, L3} be the code obtained from the languages L1 = Arabic, L2 = Wolof,
and L3 = Basque, as a code in Fn

3 with n = 63, using the entire list of parameters in [3]. The code
parameters (R = 0.0252, δ = 0.4643) of this code no longer violate the Plotkin bound. In fact, the
parameters satisfy R < 1 − H3(δ) so the code C now also lies below the GV bound.

Thus, the effect of including the entailed syntactic parameters in the comparison spoils the code
parameters enough that they fall in the area below the GV bound.

Notice that what we propose here is different from the counting used in [3], where the relative
distances δH(L1, L2) are normalized with respect to the number of non-zero parameters (which
therefore varies with the choice of the pair (L1, L2)) rather than the total number n of parameters.
While this has the desired effect of getting rid of insignificant parameters that spoil the code, it has the
undesirable property of producing codes with code words of varying lengths, while counting only
those parameters that have no zero-values over the entire family of languages, as in Example 2 avoids
this problem. Adapting the coding theory results about the asymptotic bound to codes with words of
variable length may be desirable for other reasons as well, but it will require an investigation beyond
the scope of the present paper.

More generally, there are various kinds of dependencies among syntactic parameters. Some sets
of hierarchical relations are discussed, for instance, in [29].

By the spoiling operations C �i f of codes described above, we know that if some of the syntactic
parameters considered are functions of other parameters, the resulting code parameters of C �i f are
worse than the parameters of the code C where only independent parameters were considered.

Part of the reason why code parameters of groups of languages in the family analyzed in [3]
end up in the region below the asymptotic and the GV bound may be an artifact of the presence of
dependences among the chosen 63 syntactic parameters. From the coding theory perspective, the
parametric comparison method works best on a smaller set of independent parameters than on a larger
set that includes several dependencies.

Entailment relations between syntactic parameters play an important role in the dynamical models
of language evolutions constructed in [8], based on spin glass models in statistical physics.

Notice that the type of entailment relations we consider here are only of a rather special form,
where a parameter is made undefined by effect of the value of another parameter (hence the use of
the value 0 for the undetermined parameter). There are more general forms of entailment that we do
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not consider here, but which will be discussed in more detail in upcoming work. For example, one
can have a situation with two languages in which a parameter is entailed by the values of two other
parameters, but entailed to two different values in the two languages. In this case, the proposal above
need to be modified, because this entailed parameter should contribute to the Hamming distance
between the two languages. In such a situation the entailed parameter should increase, rather than
spoil, the efficiency of the code. Keeping entailed parameters can be used for error-correcting purposes,
as contributing to error detection. The role of entailment of parameters was considered in [8], in the
use of spin glass models for language change, where the entailment relations appear as couplings at
the vertices (interaction terms) between different Ising/Potts models on the same underlying graph of
language interactions. In upcoming work, now in preparation, we will discuss how treating different
forms of entailment of parameters in the coding theory setting described here related to the treatment
of entailment relations in the spin glass model of [8].

3. Entropy and Complexity for Language Families

3.1. Why the Asymptotic Bound?

In the examples discussed above we compared the position of the code point associated to a given
set of languages to certain curves in the space of code parameters. In particular, we focused on the
asymptotic bound curve and the Gilbert–Varshamov curve. It should be pointed out that these two
curves have a very different nature.

The asymptotic bound is the only curve that separates regions in the space of parameters that
correspond to code points with entirely different behavior. As shown in [13,24], code points in the area
below the asymptotic bound are realized with infinite multiplicity and fill densely the region, while
code points that lie above the asymptotic bound are isolated and realized with finite multiplicity.

The Gilbert–Varshamov curve, by contrast, is related to the statistical behavior of sufficiently
random codes (as we recall in Section 3.2 below), but does not separate two regions with significantly
different behavior in the space of code points. Thus, in this respect, the asymptotic bound is a more
natural curve to consider than the Gilbert–Varshamov curve.

Thus, a heuristic interpretation of the position of codes obtained from groups of languages, with
respect to the asymptotic bound can be understood as follows. The position of a code point above or
below the asymptotic bound reflects a very different behavior of the corresponding code with respect
to how easily “deformable” it is. The sporadic codes that lie above the asymptotic bound are rigid
objects, in contrast to the deformable objects below the asymptotic bound. In terms of properties
of the distribution of syntactic parameters within a set of languages, this different nature of the
associated code can be seen as a measure of the degree of “deformability” of the parameter distribution:
in languages that belong to the same historical linguistic families, the parameter distribution has
evolved historically along with the development of the family’s phylogenetic tree, and one expects
that correspondingly the code parameters will indicate a higher degree of “deformability” of the
corresponding code. If a group of languages is chosen that belong to very different historical families,
on the contrary, one expects that the distribution of syntactic parameters will not necessarily lead any
longer to a code that has the same kind of deformability property: code points above the asymptotic
bound may be realizable by this type of language groups.

There is no similar interpretation for the position of the code point with respect to the
Gilbert–Varshamov line. An interpretation of that position can be sought in terms of Shannon entropy,
as we discuss below. Summarizing: the main conceptual distinction between the Gilbert–Varshamov
line and the asymptotic bound is that the GV line represents only a statistical phenomenon, as
we review below, while the asymptotic bound represents a true separation between two classes of
structurally different codes, in the sense explained above.
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3.2. Entropy and Statistics of the Gilbert–Varshamov Line

The Gilbert–Varshamov line R = 1 − Hq(δ) can be characterized statisticallly. Such a statistical
description can be obtained by considering the Shannon Random Code Ensemble (SRCE). These are
random codes obtained by choosing code words as independent random variables with respect to a
uniform Bernoulli measure, so that a code is described by a randomly chosen set of different words of
length n occurring with probability q−n, see [26,27]. There is no a priori reason why the type of codes
we consider here, with code words formed using the syntactic parameters of natural languages, would
be linear. Thus, we consider the general setting of unstructured codes, as in Section V of [27].

The Hamming volume Volq(n, d = nδ), that is, the number of words of length n at Hamming
distance at most d from a given one, can be estimated in terms of the q-ary Shannon entropy

Hq(δ) = δ logq(q − 1)− δ logq δ − (1 − δ) logq(1 − δ)

in the form

q(Hq(δ)−o(1))n ≤ Volq(n, d = nδ) =
d

∑
j=0

(
n
j

)
(q − 1)j ≤ qHq(δ)n.

The expectation value for the random variable counting the number of unordered pairs of distinct
code words with Hamming distance at most d is then estimated as

E ∼
(

qk

2

)
Volq(n, d)q−n ∼ qn(Hq(δ)−1+2R)+o(n).

This estimate is then used (see [26,27]) to show that the probability to have codes in the SRCE with
Hq(δ) ≥ max{1 − 2R, 0}+ ε is bounded by q−εn(1+o(1)). By a similar argument (see Section V of [27]
and Proposition 2.2 of [16]) it is shown that the probability that Hq(δ) ≥ 1 − R + ε is bounded
by q−nε(1+o(1)).

While, by this type of argument, one can see the Gilbert–Varshamov line as representing the
typical behavior of sufficiently random codes, the asymptotic bound does not have a similar statistical
interpretation. It does have, however, a relation to Kolmogorov complexity, which is relevant to
the point of view discussed in the present paper. The relation between asymptotic bound of error
correcting codes and Kolmogorov complexity was described in [16]. We recall it in the rest of this
section, along with its implications for the linguistic applications we are considering.

3.3. Kolmogorov Complexity

We refer the reader to [30] for an extensive treatment of Kolmogorov complexity and its properties.
We recall here some basic facts we need in the following.

Let TU be a universal Turing machine, that is, a Turing machine that can simulate any other
arbitrary Turing machine, by reading on tape both the input and the description of the Turing machine
it should simulate. A prefix Turing machine is a Turing machine with unidirectional input and output
tapes and bidirectional work tapes. The set of programs P on which a prefix Turing machine halts
forms a prefix code.

Given a string w in an alphabet A, the prefix Kolmogorov complexity is given by minimal length
of a program for which the universal prefix Turing machine TU outputs w,

KTU (w) = min
P:TU (P)=w

�(P).

There is a universality property. Namely, given any other prefix Turing machine T, one has

KT(w) ≤ KTU (w) + cT ,
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where the shift is by a bounded constant, independent of w. The constant cT is the Kolmogorov
complexity of the program needed to describe T so that TU can simulate it.

A variant of the notion of Kolmogorov complexity described above is given by conditional
Kolmogorov complexity,

KTU (w | �(w)) = min
P:TU (P,�(w))=w

�(P),

where the length �(w) is given, and made available to the machine TU . One then has

K(w | �(w)) ≤ �(w) + c,

because if �(w) is known, then a possible program is just to write out w. This means that then �(w) + c
is just number of bits needed for the transmission of w plus the print instructions.

An upper bound is given by

KTU (w) ≤ KTU (w | �(w)) + 2 log �(w) + c.

If one does not know a priori �(w), one needs to signal the end of the description of w. For this it
suffices to have a “punctuation method", and one can see that this has the effect of adds the term
2 log �(w) in the above estimate. In particular, any program that produces a description of w is an
upper bound on Kolmogorov complexity KTU (w).

One can think of Kolmogorov complexity in terms of data compression: the shortest description of
w is also its most compressed form. Upper bounds for Kolmogorov complexity are therefore provided
easily by data compression algorithms. However, while providing upper bounds for complexity is
straightforward, the situation with lower bounds is entirely different: constructing a lower bound
runs into a fundamental obstacle caused by the fact that the halting problem is unsolvable. As a
consequence, Kolmogorov complexity is not a computable function. Indeed, suppose one would list
programs Pk (with increasing lengths) and run them through the machine TU . If the machine halts on
Pk with output w, then �(Pk) is an approximation to KTU (w). However, there may be an earlier Pj in
the list such that TU has not yet halted on Pj. If TU eventually halts also on Pj and outputs w, then �(Pj)

will be a better approximation to KTU (w). So one would be able to compute KTU (w) if one could tell
exactly on which programs Pk the machine TU halts, but that is indeed the unsolvable halting problem.

Kolmogorov complexity and Shannon entropy are related: one can view Shannon entropy as an
averaged version of Kolmogorov complexity in the following sense (see Section 2.3 of [31]). Suppose
given independent random variables Xk, distributed according to Bernoulli measure P = {pa}a∈A
with pa = P(X = a). The Shannon entropy is given by

S(X) = − ∑
a∈A

P(X = a) logP(X = a).

There exists a c > 0, such that, for all n ∈ N,

S(X) ≤ 1
n ∑

w∈Wn
P(w)K(w | �(w)) ≤ S(X) +

#A log n
n

+
c
n

.

The expectation value

lim
n→∞

E(
1
n
K(X1 · · · Xn | n)) = S(X)

shows that the average expected Kolmogorov complexity for length n descriptions approaches the
Shannon entropy in the limit when n → ∞.
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3.4. Kolmogorov Complexity and the Asymptotic Bound

We recall here briefly the result of [16] linking the asymptotic bound of error correcting codes to
Kolmogorov complexity.

As we discussed above, only the asymptotic bound marks a significant change of behavior of
codes across the curve (isolated code points with finite multiplicity versus accumulation points with
infinite multiplicity). In this sense this curve is very different from all the other bounds in the space
of code parameters. However, there is no explicit expression for the curve R = αq(δ) that gives the
asymptotic bound. Indeed, even the question of the computability of the function R = αq(δ) is a priori
unclear. This question was formulated explicitly in [25].

It is proved in [16] that the asymptotic bound R = αq(δ) becomes computable given an oracle
that can list codes by increasing Kolmogorov complexity. Given such an oracle, one can provide an
explicit iterative (algorithmic) procedure for constructing the asymptotic bound. This implies that the
asymptotic bound is “at worst as non-computable as Kolmogorov complexity”.

Consider the set X = Cq of (unstructured) q-ary codes and the set Y ⊂ [0, 1]2 of code points and
the computable function f : X → Y that assigns to a code C ∈ X its code parameters (R(C), δ(C)) ∈ Y.
Let Yf in and Y∞ be, respectively, the subsets of the space of code points that correspond to code points
realized with finite and with infinite multiplicity. The algorithm iteratively produces two sets Am

and Bm that approximate, respectively, Y∞ and Yf in by Yf in = ∪m≥1Bm and Y∞ = ∪m≥1(∩n≥0 Am+n).
The inductive construction starts by choosing an increasing sequence of positive integers Nm and
setting B1 = ∅ and taking A1 to be the set of code points y with ν−1

Y (y) ≤ N1, where νY : N → Y is a
fixed enumeration of the set of rational points [0, 1]2 ∩Q2 where code points belong.

General estimates on the behavior of (exponential) Kolmogorov complexity under
composition of total recursive functions (see [30], Section VI.9 of [32]) show that, for
a composition F = f0( f1(t1, . . . , tm), · · · , fn(t1, . . . , tm), tm+1, . . . , t�) of recursive functions the
Kolmogorov complexity satisfies

K(F) ≤ c ·
n

∏
i=1

K( fi) ·
(

log
n

∏
i=1

K( fi)

)n−1

,

for a fixed f0 and varying fi, i ≥ 1.
Consider the total recursive function F(x) = ( f (x), n(x)) with

n(x) = #{x′ | ν−1
X (x′) ≤ ν−1

X (x), f (x′) = f (x)}

where νX : N → X is an enumeration of the space of codes. Consider the enumerable sets Xm :=
{x ∈ X | n(x) = m} and Ym := f (Xm) ⊂ Y, with Y∞ = ∩m f (Xm) and Yf in = f (X) � Y∞. For
ϕ : f (X) → X1, defined as f−1 on f (X1) = f (X), applying the composition rule for exponential
Kolmogorov complexity, it is shown in Proposition 3.1 of [16] that, for x ∈ X1 and y = f (x), one has
K(x) = K(ϕ(y)) ≤ cϕ · K(y) ≤ cν−1

Y (y), hence

KTU (x) ≤ c · ν−1
Y (y).

Using the same type of estimate of Kolmogorov complexity for composition of recursive functions,
it is then shown in Proposition 3.2 [16] that, for y ∈ Y∞ and m ≥ 1, and for a unique xm ∈ X, with
y = f (xm), n(xm) = m and c = c( f , u, v, νX , νY) > 0, one finds

KTU (xm) ≤ c · ν−1
Y (y)m log(ν−1

Y (y)m).
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To construct inductively Am+1 and Bm+1, given Am and Bm, one takes Am+1 to consist of the
elements in the list

Lm+1 = {y ∈ f (X) : ν−1
Y (y) ≤ Nm+1, ∃x ∈ X, with y = f (x) and n(x) = m + 1}.

Here one invokes the oracle, which ensures that, if such x exists, then it must be contained in a
finite list of points x ∈ X with bounded complexity

KTU (xm) ≤ c · ν−1
Y (y)m log(ν−1

Y (y)m).

One then takes Bm+1 to consist of the remaining elements in the list Lm+1. We refer the reader
to [16] for a more detailed formulation.

More generally, the argument of [16] recalled above shows that, for a recursive function f : Z+ →
Q, determining which values have infinite multiplicities is computable given an oracle that enumerate
integers in order of Kolmogorov complexity.

As discussed in [16,24], the asymptotic bound can also be seen as the phase transition curve for
a quantum statistical mechanical system constructed out of the space of codes, where the partition
function of the system weights codes according to their Kolmogorov complexity. This is as close to a
“statistical description” of the asymptotic bound that one can achieve.

In comparison with the behavior of random codes (codes whose complexity is comparable to
their size), which concentrate in the region bounded by the Gilbert–Varshamov line, when ordering
codes by complexity, non-random codes of lower complexity populate the region above, with code
points accumulating in the intermediate region bounded by the asymptotic bound. That intermediate
region thus, in a sense, reflects the difference between Shannon entropy and complexity.

3.5. Entropy and Complexity Estimates for Language Families

On the basis of the considerations of the previous sections and of the results of [16,24] recalled
above, we propose a way to assign a quantitative estimate of entropy and complexity to a given set of
natural languages.

As before let C = {L1, . . . , Lk} be a binary (or ternary) code where the code words Li are the
binary (ternary) strings of syntactic parameters of a set of languages Li. We define the entropy of
the language family {L1, . . . , Lk} as the q-ary Shannon entropy Hq(δ(C)), where q is either 2 or 3 for
binary or ternary codes, and δ(C) is the relative minimum distance parameter of the code C. We also
define the entropy gap of the language family {L1, . . . , Lk} as the value of Hq(δ(C))− 1 + R(C), which
measures the distance of the code point (R(C), δ(C)) from the Gilbert–Varshamov line, that is, from
the behavior of a typical random code.

As a source of estimates of complexity of a language family {L1, . . . , Lk} one can consider any
upper bound on Kolmogorov complexity of the code C. A possible approach, which contains more
linguistic input, would be to provide estimates of complexity for each individual language in the family
and then compare these. Estimates of complexity for individual languages have been considered
in the literature, some of them based on the description of languages in terms of their syntactic
parameters. For instance, following [18], for a syntactic parameter Π with possible values v ∈ {±1},
the Kolmogorov complexity of Π set to value v is given by

K(Π = v) = min
τ expressing Π

KTU (τ),

with the minimum taken over the complexities of all the parse trees that express the syntactic parameter
Π and require Π = v to be grammatical in the language. Notice that, in this approach, the syntactic
parameters are not just regarded as binary or ternary values, but one needs to consider actual parse
trees of sentences in the language that express the parameter. Thus, such an approach to complexity
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has the advantage that it is very rich in linguistic information. However, it is at the same time
computationally very difficult to realize.

What we are proposing here is a much simpler way to obtain an estimate of complexity for a
language family {L1, . . . , Lk}, which is not based on estimating complexity of the individual languages
in the family, but which is aimed at detecting how spread out and diversified the syntactic parameters
are across the family, by estimating the position of the code point (R(C), δ(C)) of the associated code
C with respect to the asymptotic bound R = αq(δ). This can be estimated in terms of the distance to
other curves in the space of code parameters (R, δ) that constrain the asymptotic bound from above
and below, such as the Plotkin bound, Hamming bound, and Gilbert–Varshamov bound, as in the
examples discussed in the previous sections.

4. Conclusions

We proposed an approach to estimating entropy and complexity of groups of natural languages
(language families), based on the linguistic parametric comparison method (PCM) of [2,22] via the
mathematical theory of error-correcting codes, by assigning a code to a family of languages to be
analyzed with the PCM, and investigating its position in the space of code parameters, with respect to
the asymptotic bound and the GV bound. We have shown that there are examples of languages not
belonging to the same historical-linguistic family that yield isolated codes above the asymptotic bound,
while languages belonging to the same historical-linguistic family appear to give rise to codes below
the bound, though a more systematic analysis would be needed to map code parameters of different
language groups. We have also shown that, from these coding theory perspective, it is preferable to
exclude from the PCM all those parameters that are entailed and made irrelevant by other parameters,
as those spoil the properties of the resulting code and produce code parameters that are artificially low
with respect to the asymptotic bound and the GV bound.

The approach proposed here, based on the PCM and the theory of error-correcting codes, suggests
a few new linguistic questions that may be suitable for treatment with coding theory methods:

1. Do languages belonging to the same historical-linguistic family always yield codes below the
asymptotic bound or the GV bound? How often does the same happen across different linguistic
families? How much can code parameters be improved by eliminating spoiling effects caused by
dependencies and entailment of syntactic parameters?

2. Codes near the GV curve are typically coming from the Shannon Random Code Ensemble, where
code words and letters of code words behave like independent random variables, see [26,27].
Are there families of languages whose associated codes are located near the GV bound? Do their
syntactic parameters mimic the uniform Poisson distribution of random codes?

3. The asymptotic bound for error-correcting codes was related in [16] to Kolmogorov complexity,
and the measure of complexity for language families that we proposed here is estimated in terms
of the position of the code point with respect to the asymptotic bound. There are other notions of
complexity, most notably the type of organized complexities discussed in [33–35]. Can these be
related to loci in the space of code parameters? What do these represent when applied to codes
obtained from syntactic parameters of a set of natural languages?

4. Is there a more direct linguistic complexity measure associated to a family of natural languages
that would relate to the position of the resulting code above or below the asymptotic bound?

5. Codes and the asymptotic bound in the space of code parameters were recently studied using
methods from quantum statistical mechanics, operator algebra and fractal geometry, [24,36].
Can some of these mathematical methods be employed in the linguistic parametric
comparison method?

The observational results reported here are still preliminary. The following topics should
be consolidated:
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• How much the conclusions obtained for a given family of languages will depend on data
pre-processing (removal of “spoiling” features, etc.)

• To what extent the proposed criterion (above or below the asymptotic bound) is really an objective
property of a set of languages.

This will be addressed more thoroughly in future work. The concern about the effect of data
pre-processing in paticular requires more analysis, that will be developed in further ongoing work, as
outlined at the end of Section 2.5.
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