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Abstract: This Special Issue contains twelve publications that, through different remote sensing
techniques, investigate how the atmospheric aerosol layers and their radiative effects influence cloud
formation, precipitation and air-quality. The investigations are carried out analyzing observations
obtained from high-resolution optical devices deployed on different platforms as satellite and
ground-based observational sites. In this editorial, the published contributions are taken in review to
highlight their innovative contribution and research main findings.

Keywords: lidar; aerosols; remote sensing; precipitation; wind lidar; air-pollution; radiative effects

New observations of atmospheric aerosols and clouds and, eventually, their mute interaction on
sub-km, sub-diurnal scales, enabled by active optical remote sensing methodologies, are fundamental
to assessing their role on climate and on Earth–Atmosphere radiative budget. The received submissions
reflect the state-of-the-art of the active optical remote sensing instruments for determining the vertical
and horizontal distribution of clouds and aerosols throughout the atmospheric column.

In [1], a new technology is developed to retrieve the vertically-resolved atmospheric precipitation
intensity through a synergy between measurements from the National Aeronautics and Space
Administration (NASA) micro-pulse Lidar network (MPLNET), an analytical model solution and
ground-based disdrometer measurements. In [2], the aerosol optical depth (AOD) from Terra-Moderate
Resolution Imaging Spectroradiometer (MODIS) High-quality flag Collections 6 and 6.1 (C6 and
C6.1) retrievals were retrieved from dark-target (DT), deep-blue (DB) and merged DT and DB (DTB)
level–2 AOD products for verification against Aerosol Robotic Network (AERONET) Version 3 Level
2.0 AOD data obtained from 2004–2014 for three sites located in the Beijing–Tianjin–Hebei (BTH) region.
In [3], the authors, based on lidar and aircraft soundings, investigated the features of the convective
boundary layer height and determined the thresholds of the environmental relative humidity (RH)
corresponding to the observed convective boundary layer heights over Southeast China from October
2017 to September 2018. In [4], the spatial–temporal distribution of dust aerosols over East Asia was
investigated using Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
retrievals (01/2007–12/2011) from the perspective of the frequency of dust occurrence (FDO), dust top
layer height (TH) and profiles of aerosol subtypes. The results put in evidence that a typical dust
belt was generated from the dust source regions (the Taklimakan and Gobi Deserts), in the latitude

Remote Sens. 2020, 12, 2166; doi:10.3390/rs12132166 www.mdpi.com/journal/remotesensing1



Remote Sens. 2020, 12, 2166

range of 25–45◦ N and reaching eastern China, Japan and Korea and, eventually, the Pacific Ocean.
In [5], an improved above low-level cloud–aerosol (ACA) identification and retrieval methodology
was developed to provide a new global view of the ACA distribution by combining three-channel
Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The new method can
reliably identify and retrieve both thin and dense ACA layers, providing consistent results between the
day- and night-time retrieval of ACAs. Then, new four-year (2007 to 2010) global ACA datasets were
built, and new seasonal mean views of global ACA occurrence, optical depth, and geometrical thickness
were presented and analyzed. In [6], the authors carried out the retrieval of the aerosol properties
through sunphotometer observation data from March 2012 to February 2014 in Kunming, China,
speculating possible causes about seasonal variations. In [7], the authors presented a proof-of-concept
algorithm to automatically detect precipitation from lidar measurements obtained from the National
Aeronautics and Space Administration micro-pulse Lidar network (MPLNET). In [8], the authors,
utilizing the satellite observations and reanalysis data, investigated the effects of Black Carbon on the
climate over the Tibetan Plateau, finding that the emissions intensify the East Asian Summer monsoon.
In [9], the authors employed the wind profiling observations from the fine-time-resolution radar wind
profiler (RWP), together with hourly ground-level PM2.5 measurements, to explore the wind features
in the planetary boundary layer (PBL) and their association with aerosols in Beijing for the period from
December 1, 2018, to February 28, 2019. In [10], the authors developed a prototype of a homemade
portable no-blind zone lidar system designed to map the three-dimensional distribution of aerosols
based on a dual-field-of-view receiver system. This innovative lidar prototype has a spatial resolution
of 7.5 m and a time resolution of 30 s. In [11], the author developed a Three-Dimensional Real-time
Atmospheric Monitoring System to measure and analyze the vertical profiles of horizontal wind speed
and direction, vertical wind velocity as well as aerosol backscatter obtained from lidar measurements.
The system was applied to Hong Kong, a highly dense city with complex topography, during each
season and including hot-and-polluted episodes (HPEs) in 2019. In [12], the authors conducted
Doppler lidar measurements in 2019 to reveal the characteristics of typical daytime turbulent mixing
processes in the convective boundary layer over Hong Kong. The authors assessed the contribution
of cloud-radiative cooling on turbulent mixing and determined the altitudinal dependence of the
contribution of surface heating and vertical wind shear to turbulent mixing.
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Abstract: East Asia is the most complex region in the world for aerosol studies, as it encounters a lot
of varieties of aerosols, and aerosol classification can be a challenge in this region. In the present study,
we focused on the relationship between aerosol types and aerosol optical properties. We analyzed
the long-term (2005–2012) data of vertical profiles of aerosol extinction coefficients, lidar ratio (Sp),
and other aerosol optical properties obtained from a NASA Micro-Pulse Lidar Network and Aerosol
Robotic Network site in northern Taiwan, which frequently receives Asian continental outflows.
Based on aerosol extinction vertical profiles, the profiles were classified into two types: type 1
(single-layer structure) and type 2 (two-layer structure). Fall season (October–November) was the
prevailing season for the Type 1, whereas type 2 mainly happened in spring (March–April). In type 1,
air masses normally originated from three regional sectors, i.e., Asia continental (AC), Pacific Ocean
(PO), and Southeast Asia (SA). The mean Sp values were 39 ± 17 sr, 30 ± 12 sr, and 38 ± 18 sr for
the AC, PO, and SA sectors, respectively. The Sp results suggested that aerosols from the AC sector
contained dust and anthropogenic particles, and aerosols from the PO sector were most likely sea
salts. We further combined the EPA dust event database and backward trajectory analysis for type 2.
Results showed that Sp was 41 ± 14 sr and 53 ± 21 sr for dust storm and biomass-burning events,
respectively. The Sp for biomass-burning events in type 2 showed two peaks patterns. The first
peak occurred within range of 30–50 sr corresponding to urban pollutant, and the second peak
occurred within range of 60–80 sr in relation to biomass burning. Finally, our study summarized the
Sp values for four major aerosol types over northern Taiwan, viz., urban (42 ± 18 sr), dust (34 ± 6 sr),
biomass-burning (69 ± 12 sr), and oceanic (30 ± 12 sr). Our findings provide useful references for
aerosol classification and air pollution identification over the western North Pacific.

Keywords: ground based remote sensing; aerosols optical properties; lidar ratio; aerosol type

1. Introduction

Atmospheric aerosols play a crucial role in governing the regional-to-global climate change.
They influence the Earth-atmosphere energy budget directly by absorbing and scattering incoming
(shortwave) and outgoing terrestrial (longwave) radiation ([1]) and indirectly by modifying cloud
microphysical properties ([2]). However, uncertainties in their compositions, characteristics, size

Remote Sens. 2020, 12, 2769; doi:10.3390/rs12172769 www.mdpi.com/journal/remotesensing5
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distributions, concentrations, and vertical distributions throughout the atmospheric column make
the exact quantification of their overall impact challenging. Several types of aerosols originate from
different sources, and their physical, chemical, and optical characteristics also vary significantly ([3]).
Such variations lead to large uncertainties in aerosol radiative forcing estimations. Information about
vertical distributions of aerosols and their optical properties is of prime importance and crucial for
quantifying the accurate radiative forcing ([4–6]). However, vertical aerosol distributions are unevenly
distributed over the globe ([7–11]). Due to wide spatial and temporal variability, the understanding of
the vertical structure of aerosols is still very limited [8].

The knowledge on vertical distributions—mostly gained worldwide—was from in-situ probing
using rocket and balloon-borne instrumentations (e.g., [12,13]), ground-based lidar (light detection and
ranging) measurements (e.g., [14–23]), and satellite remote-sensing ([24,25]). In-situ measurements on
airplanes are sparse and passive remote-sensing only provides a coarse estimation of vertical aerosol
distribution. However, lidar (an active remote-sensing instrument) is the most prominent tool for
aerosol profiling in terms of the optical properties of aerosols ([26]). Lidar was used to characterize the
vertical profiles during several field experiments, such as FIRE (First ISCCP Regional Experiment; [27]),
INDOEX (Indian Ocean Experiment; [28,29]), SAFARI-2000 (Southern African Regional Science
Initiative; [30]), ACE-2 (Aerosol Characterization Experiment; [31]); BASE-ASIA (Biomass-Burning
Aerosols in South-East Asia: Smoke Impact Assessment; cf. http://smartlabs.gsfc.nasa.gov/; [32]),
and 7-SEAS (Seven South East Asian Studies; [33]). Moreover, the variations of vertical profiles on
the regional scale, such as in major cities, e.g., Los Angeles, Paris, Tokyo, and Hong Kong, have been
extensively investigated by using lidar datasets ([22] and references therein).

In addition to sunphotometer (e.g., [34,35]) and passive satellite products (e.g., [36]), lidar
measurements can also be used to classify different aerosol types (e.g., [37]). Measurements from
depolarization lidars (ground and space-borne) can be used to separate between different aerosol
types (e.g., [38,39]), and nowadays even for the calculation of aerosol number concentrations in
the atmosphere ([26,40]). Among lidar measurements, lidar ratio (or extinction-to-backscatter ratio;
Sp) particularly contains the information about aerosol types and provides insight into the size
and absorption of aerosol particles. Sp generally depends on various factors, such as size, shape,
and refractive index of aerosols (e.g., [19]) and relative humidity (RH). This can be computed as a
function of wavelength of the laser light if the composition, shape, and size of aerosols are known
([40]). Spectral analyses of Sp combined with information from AERONET (Aerosol Robotic Network)
inversion products serve to estimate aerosol type (e.g., [41]). Measurements of Sp combined with
aerosol depolarization also serve for aerosol typing (e.g., [42–45]). Such information is also used in
CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite data to classify
the aerosol type through the use of inversion and processing Sp. This aspect has been greatly useful for
observation and modelling for the global distribution of aerosols.

In recent years, Asian pollution (e.g., haze) has attracted worldwide attention. Aerosols mainly
from anthropogenic activities in East Asia are recognized as an important source of regional and global
pollution ([29,46]). Moreover, depending on meteorological conditions, this pollution also affects the
air quality over downwind areas through long-range transport. Some studies reported that the aerosol
types in East Asia (i.e., Taiwan) were large and highly variable in seasonal trends, influenced by different
aerosol delivery mechanisms, and also impacted the radiation and air quality ([47]). Long-range
transport of anthropogenic emissions from mainland China, dust events from the desert regions of
northern China and Mongolia, and biomass-burning from peninsular Southeast Asia significantly
impact the air quality over northern Taiwan ([23,47,48]). Over the past several years, most of the air
quality studies over northern Taiwan relied on sampling, ground telemetry equipment to monitor
observations, and model simulations (e.g., [49–53]). However, those studies are not sufficient to enable
one to understand the impacts of air pollutants with accuracy due to the lack of understanding of
vertical pollutant distributions. In addition to monitoring the transmitted light reaching the height of
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the spatial structure of atmospheric pollutants, the novelty of surface telemetry tool technology is to
overcome the lack of information on the vertical profile.

Therefore, this study quantitatively analyzed vertical aerosol distributions in the lower troposphere
by examining the aerosol extinction profiles derived from MPL (micro-pulse lidar) measurements
over a rural location in northern Taiwan. Long-term (2005–2012) data of vertical aerosol profiles and
column-integrated aerosol optical properties from MPL and AERONET (Aerosol Robotic Network)
observations, respectively, were derived and used in this study. The classifications of aerosol types
were made on the basis of Sp value, vertical aerosol profiles, and columnar optical properties of aerosols.
The Sp values for several major air pollutants that affect northern Taiwan were determined and further
compared with previous studies, to identify the pollutant phase between Sp corresponding numerical
relationships. The major issues studied in depth in the present study were (a) seasonal variation of
optical properties and vertical distribution of aerosols; (b) single and two-layered structures of aerosols;
(c) the typical Sp values associated with different aerosol types, particularly over northern Taiwan.

2. Methodology

2.1. Site Description

Aerosol observation data used in this current study were acquired at the National Central
University (NCU), Taoyuan city (24.97◦N, 121.18◦E; 133 m above sea level, a.s.l.) in northern Taiwan.
This site is located at the western edge of Taoyuan city, situated 50 km south of Taipei, the national
capital of Taiwan, and serves as a rural site with no significant near-source emissions. The northern
part of Taiwan belongs to subtropical climate zone. The site stays normally under the influence of
south-westerly Asian monsoon in summer (June–August) and north-easterly monsoon in late autumn
to winter (October–February). The weather over northern Taiwan is normally cloudy and humid
during the summer, but relatively cloud-free and dry during the winter ([23]). Several studies have
reported that northern Taiwan is positioned on the pathway of continental Asian outflow to the west
Pacific during the pollution outbreaks ([54–58]).

2.2. Ground-Based Remote Sensing Observations

MPL is an effective instrument to provide both high vertical and temporal-resolution aerosol
distribution, mainly based on the principle of elastic back-scattering of the emitted low-power
high repeatability, eye-safe laser [59]. It consists of a solid crystal (ND: YLF, neodymium-doped
yttrium lithium fluoride crystals) laser which emits radiation at 1064 nm wavelength and its second
harmonic generation is at 527 nm wavelength (green light) with a pulse repetition rate of 2500 Hz.
The receiver section consists of a telescope (Cassegrain-type) with a coaxial optical lens diameter of
20 cm, and the back scattered light detected by the telescope is made to fall on an avalanche photodiode
(a semiconductor photomultiplier tube) to count the back scattered photons, and finally records the
number of photons per second into the computer. Data are recorded in the format of a time resolution
of 1 min, spatial resolution of 75 m. The NCU MPL system is a member of the NASA Micro-Pulse
Lidar Network (MPLNET; http://mplnet.gsfc.nasa.gov; [60]) project. The instrument maintenance,
calibration and data processing were following well to the MPLNET portal.

Direct-sun measurements of aerosol optical depth (AOD; τ) at different spectral wavelengths (440,
500, 675, 870, and 1020 nm), recorded by a Cimel sun–sky radiometer at EPA-NCU site, were obtained
from AERONET (http://aeronet.gsfc.nasa.gov). A more in-depth description of AERONET data can
be found elsewhere ([61]). In the present study, we used AERONET Level 2 and MPLNET beta level
2a data ([23]) for analysis and discussion. Measurements from co-located AERONET and MPLNET
can provide accurate aerosol products such as the aerosol backscattering coefficient profile and lidar
ratio (Sp) at 527 nm (hereafter all Sp calculated in this study refer to this wavelength). The Sp was
obtained through the best agreement of AERONET Level 2 AOD and MPL vertically integrated AOD
retrieved by Fernald’s method ([62]). This parameter contains the information of aerosol type in
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optical properties sense, which varied with the laser’s wavelength, aerosol particle size distribution,
and composition (i.e., physicochemical properties of refractive index) significantly ([63,64]). It is noted
that the data used in this study only represent clear-sky conditions.

2.3. Source Identification Through Back Trajectory Analysis

In order to identify the source origin of aerosol transport, 5-day back trajectory calculations were
carried out using the Hybrid Single-Particle Lagrangian Integrated Trajectory Version 4 (HYSPLIT;
Draxler and Rolph, 2003) model. HYSPLIT is an air parcel trajectory and dispersion model maintained
by the National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory and
this model uses wind fields to trace air parcel transport through the atmosphere ([65,66]). In its
backward mode, HYSPLIT integrates back in time the path of travel of an air parcel arriving at a
receptor location defined by horizontal and vertical coordinates at a given time. Meteorological input
data for the back-trajectory calculation were from the NCEP Global Data Assimilation System (GDAS)
at 1◦ × 1◦ resolution.

3. Results

3.1. Long-Term Data Analysis of Aerosol Optical Properties

The long-term optical properties of aerosols at NCU station (EPA-NCU as the official name shown
in AERONET and MPLNET) are shown in Figure 1. Figure 1a shows the monthly variations in AOD at
500 nm (τ500). The observed annual average τ500 was 0.41 ± 0.25 (range of 0.2–1). High values (greater
than annual average) of τ500 were observed from February to May, and low values (less than or equal
to annual average) during the remaining months. The standard deviation of τ500 was about 0.2 to 0.3,
indicating a clue on the high variability of columnar aerosol loading. High τ500 values were found to
be similar to the nearby AERONET station (i.e., Taipei_CWB; 25◦N, 121◦E; 26 m a.s.l.; ≈25 km northeast
of EPA-NCU site) in Taipei city, and low values of τ500 were similar to a high-altitude background
AERONET site at mountain Lulin (23.51◦N, 120.92◦E; 2862 m a.s.l.; ≈100 km southeast of EPA-NCU)
in central Taiwan. This indicates relatively higher aerosol loading over the study region and made
it a complex aerosol environment. The monthly mean τ500 was the highest in March (0.72 ± 0.28),
followed by April (0.58 ± 0.22). This was mainly due to the long-range transport of biomass-burning
from Indochina region and dust aerosols from arid region in China [23]. It was further confirmed that
the EPA-NCU stations have frequent long-range transport events, and to strengthen the transport
mechanism, the vertical profiles of aerosol extinction coefficient and trajectories for origin of aerosols
were analyzed.

The long-term analysis of the angstrom exponent between 440 nm and 870 nm (α440/870),
which stands for aerosol particle sizes (higher value for smaller particle and vice versa), has been plotted
in Figure 1b. Annual average of α440/870 was 1.26 ± 0.11 (ranged from 1.34 to 1.05). The maximum
value ≈1.4 was found in February followed by the low in April (1.12 ± 0.32), and the minimum was
found in September (1.05 ± 0.42). The smallest size of particle observed in February and March is due
to the long-rang transported biomass-burning aerosols in the free atmosphere ([67]). Higher values of
τ500 in April with lower values of α440/870 indicated the presence of dust aerosols due to Asian dust
transport from the Gobi Desert.

Figure 1c shows the monthly Sp averaged from MPLNET data set during 2005–2012. The annual
average Sp was 47 ± 21 sr. Sp was the highest in March (54 ± 23 sr), followed by 51 ± 23 sr in April,
and the lowest value was observed during May (37 ± 17 sr). As aforementioned, the Sp is mainly
dependent on aerosol physicochemical properties and can be further interpreted to aerosol types.
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Figure 1. Monthly averaged (a) τ500, (b) α440/870, and (c) Sp at EPA-NCU site during 2005–2012.
Vertical red bars indicate ±1 standard deviation from the mean.

3.2. Monthly Aerosol Extinction Profiles

Figure 2 shows the vertical profile of aerosol extinction coefficient for each month averaged for
the period of 2005–2012. As is clearly seen in Figure 3, the extinction coefficient extended from the
surface to ≈6 km during March, April, and May, whereas the extinction coefficient was almost zero
at ≈4 km during other months. A small aerosol layer at 2–4 km was observed over the region during
March. This type of aerosol layer is mainly attributed to the dry convicting lift of air pollutants from
far-off regions and subsequent horizontal transport of aerosols ([23,68]). On average, the vertical
aerosol distribution follows the scale height, higher aerosol extinction near the surface and decreases as
height increases.

3.3. Aerosol Vertical Distribution, Source Region, and Optical Properties

According to the discussion in Section 3.2, the air masses in the PBL and free atmosphere could be
from different source origins and imply different aerosol types. In order to clearly define the impacts of
vertical distribution on the optical properties (i.e., τ500, α440/870, and Sp), we divided the classification of
vertical distribution into two categories based on [23], i.e., single-layer (type 1) and two-layer (type 2)
aerosol structures of the aerosol extinction coefficient.
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Figure 2. Vertical profiles of monthly averaged aerosol extinction along with ±1 standard deviation
during 2005–2012. The number of profiles for monthly average is denoted in the figure.

Figure 3. Averaged aerosol extinction profiles for (a) single-layer structure (type 1) and (b) two-layer
structure (type 2). (c,d) indicate the number of days in the month corresponding to type 1 and type
2, respectively.

3.3.1. Characteristics of Single-Layer Aerosol Structure

The averaged aerosol extinction along with one standard deviation for single aerosol layer
structure (type 1) is shown in Figure 3a. The aerosols are concentrated in the lower troposphere within
2 km altitude and the averaged extinction coefficient value is less than 0.2 km−1 at the near surface.
This confinement of aerosols was attributed to boundary layer dynamics and inversion layer below
free atmosphere. The total number of days corresponding to type 1 was 55 days (total number of
data points = 649) and there were a maximum of 15 days in October, followed by a total of 11 days in
September (Figure 4c). The single-layered structure of aerosols mainly occurred in the autumn and
winter, especially in September and October, as shown in Figure 3c.
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Figure 4. (a) Five-day back trajectories for all cases of single-layer aerosol structure (type 1). (b) Aerosol
source origins at EPA-NCU from (c) Asia continental (AC), (d) Pacific Ocean (PO), and (e) Southeast
Asia (SA).

In order to explore the possible sources and types of aerosols, the backward trajectory simulations
were employed. Five-day back trajectories (Figure 4a) made at a height of 500 m represent the occurrence
height of maximum aerosol extinction. The back trajectories for type 1 showed disorder and originated
from all the directions. We further divided the total area into three regions (Figure 4b), viz., the Asia
continental region (AC; Mongolia, Tibet, Xinjiang, North China and Central China region, Japan,
and South Korea), the Pacific Ocean region (PO; Northwestern Pacific), and the Southeast Asia region
(SA; Southeast Asia and southern China). Back trajectory analysis showed that a total of 28 day (number
of data points = 458), 12 day (number of data points = 59), and 21 day (number of data points = 154) air
masses were coming from AC, PO, and SA regions to EPA-NCU site, respectively (Figure 4c,e). It is
important to note that few trajectories passed through more than one region, which resulted in double
counting of data numbers in Table 1.

Table 1. Aerosol optical properties for single-layer aerosol structure (type 1) with respect to different
source regions. Data were averaged for 2005–2012 collected at the MPLNET EPA-NCU site. AERONET
derived ω440, g440, nr, ni stand for single-scattering albedo at 440 nm wavelength, asymmetry factor at
440 nm wavelength, and real part and imaginary part of refractive index, respectively.

Aerosol Optical Property Type 1
Source Region of Type 1

PO AC SA

Data Number 649 59 458 154
τ500 0.21 ± 0.1 0.19 ± 0.1 0.24 ± 0.11 0.19 ± 0.08
α440/870 1.29 ± 0.30 1.24 ± 0.31 1.34 ± 0.19 1.32 ± 0.32
Sp [sr] 39 ± 17 30 ± 12 39 ± 16 38 ± 17
ω440 0.93 ± 0.02 0.96 ± 0.03 0.91 ± 0.06 0.91 ± 0.07
g440 0.77 ± 0.03 0.77 ± 0.02 0.72 ± 0.04 0.72 ± 0.03
nr 1.46 ± 0.06 1.46 ± 0.05 1.45 ± 0.06 1.46 ± 0.06
ni 0.0055 ± 0.002 0.0033 ± 0.0037 0.0031 ± 0.0037 0.0054 ± 0.0036

± denotes the one standard deviation.
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Combining information of α440/870 and Sp can help us to distinguish the aerosol types. Figure 5a
shows the scatter plot ofα440/870 and Sp with code denoting τ500 together with the histograms representing
spread of samples and color magnitude of for type 1. The τvalues were in the range of 0.1 to 0.6, with an
average value of 0.21; α440/870 was between 0.6 and 1.8, with an average value of 1.26 ± 0.31. The Sp is
concentrated between 30 and 60 sr with an average of 39 sr. Previous studies reported that the Sp values
of (37 ± 9) sr and (33 ± 6) sr were for dust and marine aerosols, respectively [69].

Figure 5. Scatter plot and data spread distribution histograms of aerosol optical properties for
(a) single-layer (type 1) and (b) two-layer (type 2) versions.

Table 1 presents the aerosol optical properties of type 1, and for the values in different source sectors.
The τ500, α440/870, and Sp for AC region were 0.24± 0.11, 1.34± 0.19, and (39± 16) sr, respectively. The real
part (nr = 1.45) of the refractive index was small and relatively close to the urban aerosol refractive index
(nr = 1.46). The τ500, α440/870, and Sp for PO source region were 0.19 ± 0.1, 1.24 ± 0.31, and (30 ± 12) sr,
respectively. The moderate high value of α440/870 suggests that the mixture of coarse mode sea salt
aerosol and fine mode urban aerosol. The similar value of Sp about 33 ± 6 sr was also reported by [28]
in the Indian Ocean. For the SA region, the average τ500 and α440/870 were 0.19 ± 0.08 and 1.32 ± 0.32,
respectively, indicating the abundant fine mode particle aerosol compared to other source regions.
The average of Sp was 38 ± 17 sr in the SA region; however, the data histogram (not shown) exhibited
two distinguished peaks: the first peak ranged between 20 and 40 sr, whereas the second peak ranged
between 45 and 60 sr. The median value of the first peak was about 30 sr corresponding to marine
type aerosols, while the second peak was similar to the results from local pollutants. The complex of
emission sources (i.e., marine, ship, local Taiwan island) in the SA region might need further study in
the future when more data becomes available. Regarding to the AERONET derived single-scattering
albedo at 440 nm wavelength (ω440) and asymmetry factor at 440 nm wavelength (g440), aerosols from
AC and SA regions show similar values and suggest a moderate absorption compared to that from PO
regions. The result implies the segment of source sector with backward trajectory may not be sufficient
to aerosol classification for majority of data.

3.3.2. Characteristics of Two-Layer Aerosol Structure

Two-layer structured vertical profiles have been classified as type 2 ([23]). In this type, we found
another peak with an aerosol extinction coefficient at 2–4 km in addition to the extinction coefficient
peak that appears at the near surface. Lower than 2 km, the aerosol vertical profile has a similar impact
as type 1, but at the 2–4 km range, the average extinction coefficient is 0.25 km−1 in type 2, whereas it
is only less than 0.1 km−1 in type 1. The two-layered structure mainly occurs in spring and winter
seasons, and a few days in other months, as shown in Figure 3d.
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The τ500, α440/870, and Sp for all observations (total number of data points = 503) under the spread
and histograms for two-layer aerosol structure (type 2) are shown in Figure 5b. From the Figure 5b it
can be observed that τ500 is between 0.1 and 1.5, with an average of 0.51 ± 0.26; α440/870 is between
0.34 and 1.85, with an average of 1.23 ± 0.26; and Sp ranges between 30 and 80 sr with an average of
52 ± 23 sr.

These two-layered aerosol structures high-up and low-down are caused by the different delivery
mechanisms; therefore, they can be tracked by the use of air mass back trajectories analysis in the
HYSPLIT model (e.g., [23]). In addition, according to a database (https://airtw.epa.gov.tw/CHT/Forecast/
Sand.aspx) provided by the Taiwan Environmental Protection Agency (EPA) which determines the
date for a sandstorm event, we can classify dust transport as taking place down low. The dust and
biomass-burning cases for two-layer aerosol structure are defined as follows:

1. Two-layer aerosol structure (dust case): Sandstorm pollution recorded by the EPA on the same
day and the main source of air mass from the AC region (mainly from the elevated regions
over northern China and Mongolia and covered the longest distance along China’s coast).
Those mineral dust particles usually transport near the surface behind of a frontal system,
and occasionally intrude to higher levels via frontal dynamics.

2. Two-layer aerosol structure (biomass-burning case): Transport of springtime biomass-burning
emissions from the source regions over SA (comprising Cambodia, Laos, Myanmar, and Thailand).
Those aerosols mainly transport in free atmosphere and arrive in Taiwan at higher elevation.

3.4. Dust Case

From the vertical profile of the aerosol extinction coefficient, it can be seen that dust mainly
transports in the height region of 500–2000 m (Figure 6a). We carefully checked the airflow source with
backward trajectories; it was found that low in the atmosphere (500 m), the aerosol sources were from
the northern desert regions of China. In addition, we also found that three dust events (on 18 March,
28 March, and 25 November in 2005) had influences on biomass-burning transport from Indochina
through the backward trajectory analysis at 2500 m. A recent publication by [70] also demonstrated
a long-range transport event with concurrent dust and biomass-burning aerosol layers based on
EPA-NCU lidar observation. More study related to the coexisting of dust and biomass-burning over
the west Pacific can be explored in the future.

Figure 6. Averaged aerosol extinction profiles for (a) type 2 dust source and (b) type 2 biomass-burning
source. In the subplots, the respective air mass backward trajectories for dust (ended at the height of
500 m) and for biomass-burning (ended at the height of 3 km) cases are illustrated.
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The τ500 for the dust events over the years was at about 0.45 ± 0.16 with the averaged α440/870 of
about 1.10 ± 0.24. Coarse particle size was higher when compared to other regions, and Sp was found
in the range of 20 to 60 sr with an average of 40 ± 16 sr (Figure 7a), and followed the normal Gaussian
distribution with the median value of 40 sr. The estimation Sp of dust aerosols in African region was
37 ± 9 sr, and it also found that it changed in the course of dust transportation when mixed with urban
pollutants ([71]).

Figure 7. Scatter plot and data spread distribution histograms of aerosol optical properties for (a) type
2 dust cases and (b) type 2 biomass-burning cases.

3.5. Biomass-Burning Case

The vertical distribution of aerosol extinction coefficient shows a significant secondary peak
0.1 km−1 in the height range of 3–4 km approximately (Figure 6b). Based on the back trajectory at
the height of 3000 m above sea level, we found that the air mass sources were from the SA region
(taken over 22 days; total number of data points = 313). The analyzed averaged optical characteristics
for biomass-burning were τ500 of 0.58 ± 0.20, α440/870 of 1.22 ± 0.33, and Sp of 53 ± 21 sr (Table 2).
The distribution of Sp shows double peaks, the first peak in the range of 20 to 50 sr and the second peak
in the range of 60 to 70 sr (Figure 7b). Compared to the mean Sp value of 47 ± 21 sr in northern Taiwan,
it was found that the first peak could be linked to mixture of anthropogenic and biomass-burning
aerosols. When the air by the burning of biomass and other outside influences affects the area, it gives
rise in Sp to a more apparent second peak (60 to 70 sr) due to high absorption of light by the high
altitude aerosols. The similar value of Sp as 63 ± 10 sr for African savannah biomass-burning was also
reported by [17].

Table 2. Same as Table 1 but for aerosol optical properties of a two-layered aerosol structure (type 2) with
respect to different emission sources. Due to the layer being decoupled, the dust and biomass-burning
layer can co-occur, which causes the double count issue of data number.

Aerosol Optical Property Type 2
Emission Source of Type 2

Dust Biomass Burning

Data Number 503 256 313
τ500 0.51 ± 0.22 0.45 ± 0.16 0.58 ± 0.20
α440/870 1.23 ± 0.26 1.10 ± 0.24 1.22 ± 0.32
Sp [sr] 52 ± 23 40 ± 16 53 ± 21
ω0 0.93 ± 0.02 0.96 ± 0.03 0.93 ± 0.02
g 0.77 ± 0.03 0.77 ± 0.02 0.76 ± 0.02
nr 1.46 ± 0.06 1.46 ± 0.05 1.48 ± 0.03
ni 0.0055 ± 0.0020 0.0033 ± 0.0037 0.0054 ± 0.0036
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4. Discussion

In this section, we further discuss the Sp of urban, dust, and biomass-burning aerosols representing
the subtropical region of East Asia based on aforementioned analysis with additional estimations.
In the previous section, based on statistics of long-term (2005–2012) EPA-NCU MPL dataset, we found
that the average value of Sp is 47 ± 21 sr. The results report a mixture of dust and biomass-burning
aerosols. In order to quantify the Sp value of urban aerosols, we selected cases with two constraints:
(1) type 1 vertical profile and only from AC source region, (2) no dust events. We estimated the mean
Sp of urban aerosols to be 42 ± 18 sr, which is in agreement with the value of 45 ± 10 suggested by [19]
(see Table 3). For oceanic aerosols, we suggested that the Sp value can be estimated from PO source
region in type 1, which is 30 ± 12 sr. This value is very similar to the values (32–33) provided by [72].
It should be noted that a higher value observed in our study may have been due to the mixing of local
urban aerosols during the transport to northern Taiwan.

Table 3. Comparison of Sp values (unit in sr) in the literature.

Aerosol type This Study Literature References

Urban 42 ± 18 45 ± 10 [19]
Oceanic 30 ± 12 33 ± 6, 32 ± 6 [72]

Dust 34 ± 6 37 ± 9, 35 ± 5 [71,73]
Biomass-burning 69 ± 12 63 ± 10 [17]

Regarding dust aerosol, we selected cases that met the criteria of type 1 classification and EPA
dust event dates. Only one dust event was recorded on 29 January 2007, and comprises 37 profiles.
As shown in Figure 8a, the dust plume was transported near the surface and constrained within 1.4 km
height. The maximum aerosol extinction coefficient was 0.2 ± 0.04 km−1 observed at 1 km. Figure 8b
shows the scattering plot of Sp and α440/870 for all type 1 data points, in which red dots highlight
the dust signature. The α440/870 was about 1.05, suggesting a slightly coarser particle for transported
dust when compared to the mean α440/870 value of 1.29 for type 1 at EPA-NCU station. The number
distribution of Sp for dust data is shown in Figure 8c. The Sp ranged between 25 and 50 sr with an
average of 34 ± 6 sr. The value shows good agreement with previous studies ([71,73]) that measured
dust particles (Table 3). It is worth mentioning that a large portion of dust events may have a mixture
of anthropogenic aerosols during the transport. Those mixed events can have a higher lidar ratio of up
to 40 sr, as described in dust cases of type 2 profile.

The transport of biomass-burning aerosols to Taiwan is often characterized by upper-level
transport, which makes it difficult to separate the biomass-burning Sp value from the total columnar
mean Sp value (as obtained from the EPA-NCU MPLNET). The histogram of Sp number distribution for
biomass-burning cases in type 2 shows a bimodal distribution (Figure 7b), where the first peak ranged
from 30 to 50 sr and the second peak ranged from 60 to 80 sr. In type 2, the aerosol type contributing
to the surface layer can be urban, oceanic, or dust, whereas biomass-burning aerosols are attributed
to the upper level. Large portions of aerosols are suspended within the surface layer. As listed in
Table 3, the mean Sp values for urban, oceanic, and dust are between 30–42 sr, and correspond to
the first peak of Figure 7b. That suggests the domination of surface layer transport. In other words,
the second peak of Figure 7b may represent the domination of upper-level transport, which is mainly
attributed to biomass-burning aerosols. The mode Sp of the second peak was 69 ± 12 sr, representing
biomass-burning aerosols originating from Indochina. Our result shows a little higher value compared
to the literature value of 63 ± 10 sr for African biomass-burning ([17]).
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Figure 8. Single-layer dust transfer cases: (a) aerosol extinction profiles, (b) scatter plots of Sp andα440/870

for type 1 (blue triangles) and dust (red diamonds) events, and (c) histogram of Sp number distribution.

5. Conclusions

Lidar ratio (Sp) is a distinctive aerosol optical property and can be used for aerosol type classification,
which is important for pollution source identification and radiative forcing assessment. This study
analysed the long-term (2005–2012) observations of MPLNET and AERONET from a rural site
(EPA-NCU) in northern Taiwan located in the western North Pacific. Those observations, consisting of
aerosol optical characteristics, extinction coefficient profiles, and lidar ratios, in conjunction with air
mass trajectories, were further used to investigate the relationship between aerosol types and aerosol
optical properties over the region. The important findings are as follows:

• The long-term average values of τ500, α440/870, and Sp were found to be 0.41 ± 0.28, 1.25 ± 0.33,
and (47 ± 21) sr, respectively.

• The highest τ500 (0.72 ± 0.28) and Sp (54 ± 23 sr) values in the month of March were primarily
attributed to the long-range transport of biomass-burning aerosols from Indochina.

• Two types of aerosol structure were classified based on the vertical cross-sections of aerosols. Type 1
aerosol structure (near-surface aerosol transport mainly prevails during October–November)
showed low values τ500 and Sp and mainly originated from the AC region (τ500: 0.24 ± 0.11; Sp:
39 ± 8 sr), PO region (0.19 ± 0.10; 30 ± 12 sr), and SA region (0.19 ± 0.11; 38 ± 17 sr).

• Type 2 aerosol transport (mainly during March–April at an altitude of 3 to 6 km) was associated
with high τ500 (0.51 ± 0.22), α440/870 (1.23 ± 0.26), and Sp (52 ± 23 sr).

• For type 2 dust case, the estimated τ500, α440/870, and Sp were found to be 0.45 ± 0.16, 1.10 ± 0.24,
and (40 ± 16) sr, respectively. For type 2 biomass-burning case, the estimated τ500, α440/870, and Sp

were found to be 0.58 ± 0.20, 1.22 ± 0.33, and (53 ± 21) sr, respectively.
• Sp values, for four major aerosol types over northern Taiwan, were estimated to be 42 ± 18 sr

(urban), 34 ± 6 sr (dust), 69 ± 12 sr (biomass-burning), and 30 ± 12 sr (oceanic).

The findings of this study offer a reference for future attempts to monitor the sources of aerosol
over Taiwan and western North Pacific. Results of Sp value provide useful references for aerosol
classification and air pollution identification in this region. This kind of study is also important for
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resolving aerosol-perturbed atmospheric circulation (e.g., [74–76]) and temporal changes in regional air
quality (e.g., [77,78]). Nevertheless, due to the principle of Mie elastic lidar, the Sp value only represents
a columnar integrated number by using a retrieval method. The newly available lidar ratio datasets
with data fusion technology, such as AERONET version 3 product (e.g., [34,79]), MPLNET version 3
depolarization ratio product, Raman lidar ([72]), and high spectral resolution lidar (e.g., [42–45]) do
also give an aspect of aerosol classification. More observation and data analyses are needed to further
explore the relationship between aerosol types and aerosol optical properties over the region.
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Abstract: Turbulent mixing is critical in affecting urban climate and air pollution. Nevertheless,
our understanding of it, especially in a cloud-topped boundary layer (CTBL), remains limited.
High-temporal resolution observations provide sufficient information of vertical velocity profiles,
which is essential for turbulence studies in the atmospheric boundary layer (ABL). We conducted
Doppler Light Detection and Ranging (LiDAR) measurements in 2019 using the 3-Dimensional
Real-time Atmospheric Monitoring System (3DREAMS) to reveal the characteristics of typical
daytime turbulent mixing processes in CTBL over Hong Kong. We assessed the contribution of
cloud radiative cooling on turbulent mixing and determined the altitudinal dependence of the
contribution of surface heating and vertical wind shear to turbulent mixing. Our results show that
more downdrafts and updrafts in spring and autumn were observed and positively associated with
seasonal cloud fraction. These results reveal that cloud radiative cooling was the main source of
downdraft, which was also confirmed by our detailed case study of vertical velocity. Compared to
winter and autumn, cloud base heights were lower in spring and summer. Cloud radiative cooling
contributed ~32% to turbulent mixing even near the surface, although the contribution was relatively
weaker compared to surface heating and vertical wind shear. Surface heating and vertical wind shear
together contributed to ~45% of turbulent mixing near the surface, but wind shear can affect up to
~1100 m while surface heating can only reach ~450 m. Despite the fact that more research is still
needed to further understand the processes, our findings provide useful references for local weather
forecast and air quality studies.

Keywords: turbulent mixing; cloud; LiDAR; Hong Kong

1. Introduction

Turbulent mixing is a crucial part of the atmospheric boundary layer (ABL), which modulates
the variation in temperature, flow velocity, moisture, and atmospheric composition and thus acts
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as a bridge between the top of the ABL and the surface [1,2]. Vertical velocity, which is the key
parameter reflecting the characteristics of turbulent mixing, is generally driven by sources such as heat
transfer from a warm ground surface (surface heating), vertical wind shear, or a combination of both
processes in a cloud-free boundary layer [3]. When reaching the capping inversion area at the top of
the ABL, updrafts due to surface heating (thermal) can penetrate into the stable layer above, inducing
dry air intrusion which can even reach the heights close to the surface in form of downdrafts [4].
Studies concentrating on convectively driven turbulent mixing have been well documented both in
observation [5,6] and numerical modeling of boundary layer meteorology [7,8].

However, the frequent occurrence of boundary-layer clouds reduces buoyancy by suppressing
direct radiative forcing during the day and also reduces thermal loss during the night [9,10].
Cloud-topped-cooling in stratocumulus layers was highlighted as it results in top-down mixing
from the cloud layer toward the surface during day and night while less of a cooling effect was found
in cloudless or cumulus-topped boundary layers [11]. This kind of cooling effect has been investigated
both in observation [12,13] and numerical modeling [14]. Meanwhile, in terms of airflow, it has been
well established that low-level vertical wind shear induced by surface friction helps to organize and
maintain convective systems through exchanging moist thermals [15] and regulating aerosol effects on
deep convective clouds [16]. Nevertheless, the detailed contribution of low-level vertical wind shear
to the turbulent mixing generated in a cloud-topped boundary layer (CTBL) is still vague, especially
in the daytime. Although cloud-topped radiative cooling effect and vertical wind shear process are
critical to control the structure of turbulence and aerosol distribution, which is essential for human
health, long-term observations of the high-time-resolution vertical profile of updrafts and downdrafts
still remain relatively limited [3].

Except for the in situ observations by radiosondes and aircrafts [17–19], many studies have been
carried out based on the ground-based remote sensing observations such as ceilometer, radar wind
profiler, or different types of Light Detection and Ranging (LiDAR) systems [20–24]. For example,
observation projects such as Cloudnet, European Aerosol Research Lidar Network (EARLINET),
EUMETNET Profiling Programme (E-PROFILE), and Aerosol, Clouds and Trace Gases Research
Infrastructure (ACTRIS) in European countries combined radar, ceilometer, and LiDAR together to
obtain aerosol, clouds, trace gases, and wind profiles [25–28]. Among all the LiDAR techniques such as
micro-pulse LiDAR (MPL), elastic/Raman LiDAR, and depolarization LiDAR [29,30], Doppler LiDARs
can simultaneously provide wind profile data as well as aerosol attenuated backscatter at a high vertical
and temporal resolution [31–33]. Doppler LiDAR performance has been proved in several previous
studies on the mixing layer [34]. For example, Pearson et al. (2010) directly observed the mixing
process using the Doppler LiDAR and argued that this was the most appropriate methodology to
analyze the dispersion in the lower atmosphere [31]. In addition, the turbulence measured by Doppler
LiDARs was used to derive a mixing layer [35], whereas other studies combined several techniques
such as multi-wavelength LiDAR and microwave radiometers [36,37]. Overall, Doppler LiDAR
measurements can provide data at high time and vertical resolutions, allowing for detailed analyses of
turbulent mixing.

Hong Kong is a typical coastal city with a significant ABL variation which is frequently affected by
boundary layer clouds. Most previous observational studies based on ceilometer and aerosol LiDARs
mainly focused on the retrieval method and diurnal variation of the height of ABL (ABLH) using
backscatter coefficients [20,38]. Few studies applied high time- and vertical-resolution observations for
vertical wind profile in Hong Kong. Recently, the 3-Dimensional Real-time Atmospheric Monitoring
System (3DREAMS) was established to measure and analyze the vertical profiles of horizontal wind
speed and direction, vertical wind velocity as well as aerosol attenuated backscatter in Hong Kong [33].
Three 1.5-μm Doppler LiDAR units (Halo Photonics Stream Line XR Scanning Doppler LiDAR system)
were installed at Hong Kong Observatory weather station: King’s Park (LiDAR KP), the Physical
Geography Experimental Station of the Chinese University of Hong Kong (LiDAR CUHK), and Hung
Shui Kiu Church at Yuen Long (LiDAR HSK) to better observe the atmospheric boundary layer
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conditions at the south, east, and northwest of Hong Kong, respectively. LiDARs located at King’s
Park and the Chinese University of Hong Kong were operated regularly since late 2017, while the one
at Yuen Long was established recently. For sufficient data availability, this study used the data of the
LiDAR KP from 3DREAMS to determine the turbulent mixing characteristics in the typical daytime
CTBL over Hong Kong in 2019.

Using vertical profiles of vertical velocity and horizontal wind at high time- and vertical-resolutions
from a ground-based Doppler LiDAR combined with surface and upper-air meteorological data,
we characterized the typical diurnal variation of ground-level meteorological parameters and vertical
wind profile with a focus on clouds over Hong Kong in 2019. Then four cloud-topped cases in different
seasons in 2019 were selected to determine the relative contribution of cloud radiative cooling, surface
heating, and vertical wind shear to turbulent mixing during daytime in CTBL. In Section 2, the operating
specification of Doppler LiDAR employed in this study, together with all the other meteorological
data, is described. Major results are shown and discussed in Sections 3 and 4, respectively. Finally,
a conclusion is given in Section 5.

2. Materials and Methods

2.1. Ground-Based Doppler LiDAR Measurement Using 3DREAMS

The Doppler LiDAR (LiDAR KP) used in this paper was located at the King’s Park Meteorological
Station (KPMS, 22.311 N◦, 114.173 E◦, Figure 1) of the Hong Kong Observatory (HKO). KPMS is the
only upper-air sounding station in Hong Kong. This Doppler LiDAR is a part of 3DREAMS [33].
The instrument was fixed on a concrete foundation in a flat grass field, with an altitude of 65 m above
the mean sea level. The observation site was located on a small hill in the urban area with lots of
buildings in the surroundings. The east, west, and south sides are close to the sea, with the north close
to the mountains.

 
Figure 1. Location (red dot) of the LiDAR at King’s Park (LiDAR KP). The figure was built on a map
obtained from Google map, https://www.google.com/maps.

The Doppler LiDAR is a Halo Photonics 1.5-μm pulsed Doppler instrument from Halo Photonics
Company. The instrument had been used in studies exploring the characteristics of the planetary
boundary layer (PBL) in the tropical and mid-latitude environments [33,39]. The Doppler LiDAR
employed in this study operated round the clock and has been set up for an optimized vertical
resolution of 30 m in the boundary layer up to around 3 km altitude. It was operated in velocity
azimuth display (VAD) scanning mode for obtaining one horizontal wind profiles every 10 min using
6 beams around a circle at an elevation angle of 75◦. The Doppler LiDAR was also operated in
vertical stare mode to collect attenuated backscatter coefficient measurements for the rest of the time,
with vertical spatial and temporal resolutions of 30 m and one second, respectively. Erroneous data,
which might be caused by measurement or instrument errors, were removed based on signal intensity
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(SI). A threshold value of 1.01 was defined for SI, which refers to a signal-noise-ratio (SNR) of −20 dB.
All data below this threshold were removed. The quality of Doppler wind data was checked before
using it in our analysis. Results show that the percentage difference between the averaged horizontal
wind speeds provided by LiDAR and upper air sounding data for heights less than 1.00 km was less
than 10%, which indicates a sufficient agreement between both data sources [33].

2.2. Meteorological Data from Hong Kong Observatory

The ground surface meteorological data and upper-air sounding data were provided by the Hong
Kong Observatory (HKO). The regular wind profile observations at KPMS at Hong Kong Time (HKT)
08:00 (UTC 00:00) and HKT 20:00 (UTC 12:00) were used to validate the wind profiles from our Doppler
LiDAR at KPMS. Daily total rainfall recorded at the KPMS station in 2019 can be found at HKO websites
(https://www.weather.gov.hk/en/cis/dailyExtract.htm?y=2019). Hourly surface meteorological data
recorded at KPMS, including relative humidity, solar radiation, and cloud fraction, were also used.

2.3. Information on the Sampling Days

Clear and cloudy days were defined according to the averaged cloud fraction between 07:00 and
17:00 HKT. Firstly, we removed the days when rainfall was recorded according to the meteorological
data from HKO. 172 no-rainfall days were selected totally, accounting for 47% of all days in 2019.
Of which, the average cloud fraction less than 20% were defined as clear days, whereas the remaining
days were defined as cloudy days. Table 1 shows the information of the samples used in our research.

Table 1. Numbers of no rain days and cloudy days in each season, and the percentage of no rain days
with a cloudy sky.

Season
Number of No

Rain Days
Number of

Cloudy Days
Percentage of No Rain Days

with A Cloudy Sky

DJF 51 40 78%
MAM 38 32 84%

JJA 25 20 80%
SON 58 35 61%

2.4. Validation of LiDAR and Definitions for Turbulent Mixing

Wind profile of our LiDAR has been well validated in 3DREAMS. Moreover, ABLH is also an
important parameter for the LiDAR’s validation. Currently, there are many mature algorithms such as
potential temperature gradient or Richardson number methods for radiosondes, attenuated backscatter
coefficient methods for ceilometers, and particle extinction and backscatter coefficient methods for
Raman and elastic LiDARS, respectively to retrieve the ABLH [40,41]. Some newly developed
algorithms also obtained finer results for this purpose [42–44]. In order to verify the accuracy of the
retrieval ABL from our LiDAR, here we applied the gradient method in the profile of water vapor
mixing ratio and virtual potential temperature from regular sounding data to compare with the gradient
of our attenuated backscatter coefficient (i.e., maximum -∇β, as ∇β should always be negative) on a
clear case: 08:00 HKT (UTC 00) 16 October (surface wind speed: 4 m/s; wind direction: Northeast;
temperature: 24.2 ◦C; Cloud fraction: 0). An attenuated backscatter coefficient profile should be
moving averaged using a time window of 3 min and vertical window of 3 layers [22,32]. The ABLHs
retrieved based on LiDAR’s attenuated backscatter coefficients and upper air sounding profiles of water
vapor mixing ratio and virtual potential temperature show good consistency (Figure 2), confirming the
accuracy of our LiDAR’s capacity in clear-sky ABLH retrieval.

The turbulent mixing was typically defined as the vertical velocity variance σ2
w(z) within 1 minute

higher than a threshold of 0.1 m2s−2 at a certain layer [31]. Therefore, here the definitions of variance
and skewness are given:

σ2
w(z) = w′(z)2, (1)
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sw(z) =
(

w′(z)
σw(z)

)3
, (2)

where z is the height (m), w is the vertical wind velocity (m/s). w′ is the deviation between instant
vertical velocity and the mean. As sw(z) is a noisy profile, a 10-min moving average was applied
for the visualization in Figure 7. Correspondingly, the 1-min skewness sw(z) of vertical velocity
was also calculated to represent the sources of turbulent mixing [4,32]. If sw(z) > 0, the mixing is
induced by surface heating and vertical wind shear processes. If sw(z) < 0, the mixing is induced by
cloud-driven ones.

 
Figure 2. Vertical profiles of water vapor mixing ratio r (blue cross), virtual potential temperature θv

(red line), and attenuated backscatter coefficient (black dot) at 08:00 Hong Kong Time (HKT) (UTC 00)
on 16 October. The range of atmospheric boundary layer height (ABLH) has been marked with orange
dash lines.

Wind shear was found to play an important role in a radiative-convective equilibrium system as
well as in the regulating of the aerosol distribution [16,45]. It has significant effects on the momentum
transport under different weather conditions, especially in a CTBL in which thermals are relatively
lower than that in a clear one. Bulk vertical wind shear (VWS) was used to represent the intensity of
vertical wind shear between two layers and was defined as:

VWS =

(
Δu2 + Δv2

)1/2

Δz
, (3)

where u and v are the two components of horizontal wind, whereas Δz is the layer thickness which
was 30 m in this study. We also detected the cloud base height according to a threshold of log(β) > −4
and combined the method documented in Manninen’s study [32].

3. Results

3.1. Vertical Wind Profiles and Ground-Level Meteorological Parameters on Cloudy Days in 2019

This section provides a description of meteorological conditions on cloudy days. Notably,
among all the 172 no rain days in 2019, 74% of them were cloudy days. Figure 3a shows that the
largest cloud fraction occurred in spring followed by summer, winter, and autumn. A similar seasonal
variation was also observed in relative humidity (RH). The maximum of RH (90%) was observed at
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07:00 in spring, while the minimum (60%) occurred at 13:00 in autumn. Nevertheless, the difference
between maximum and minimum in each season was within 15%. In terms of solar radiation, a
negative association with cloud fraction was presented. Although the temperature in summer was the
highest, the higher cloud fraction in summer blocked part of solar radiation and made the surface solar
radiation lower than that in autumn. Overall, cloud fraction was larger than 40% during the daytime
of cloudy days in 2019, indicating that the effects associated with clouds on CTBL are ineluctable.

Figure 3. Diurnal variation of meteorological parameters of (a) cloud fraction, (b) temperature,
(c) solar radiation, and (d) relative humidity (RH) from ground-level observation data at King’s Park
Meteorological Station (KPMS) on cloudy days in 2019. Sunrise and sunset marked in the figure
were extracted from the Hong Kong Observatory website (https://www.hko.gov.hk/tc/gts/astron2019/
almanac2019_index.htm). A t-test for the differences between seasons was conducted. The t-test results
show that all the seasonal differences can pass a 95% test except the solar radiation difference between
winter and spring (p < 0.2) and RH difference between spring and summer (p < 0.3).

Figure 4 shows the diurnal variation of a cloudy-day wind profile within 1500 m in different
seasons. For horizontal wind speed, the maximum occurred at 1035 m in summer with a value of
12.22 m/s at 13:00 HKT. Similarly, an obvious increase in wind speed appeared above 700 m in each
season. On cloudy days, the prevailing wind direction was southeast in summer, while that was
northwest in autumn and winter. Figure 4f shows that the prevailing wind direction varied significantly
in spring. For vertical velocity, downdrafts were more common in spring while more updrafts were
observed in autumn.

As revealed by Figure 3a, the highest cloud fraction was observed in spring while the lowest was
obtained in autumn. The lower cloud fraction allowed more solar radiation reaching the ground that
enhanced surface heating and thus updrafts, which were more common in the afternoon in autumn
as shown in Figure 4l. Figure 5 shows the probability density function curve of cloud base height
on cloudy days in different seasons. Cloud base height with the highest probability was 1395 m and
1425 m in winter and autumn, respectively, whereas that was 1095 m in spring and 1185 m in summer.
The lower cloud base height in spring and summer reflected the more synoptic systems in the two
seasons such as trough and typhoon, which were associated with low and thick clouds. It should also
be noted that the distribution of cloud base height in winter was flatter than that in other seasons,
showing the largest variations in cloud base height in winter.
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Figure 4. Diurnal variation of wind profiles of horizontal wind speed (left), horizontal wind direction
(middle), and vertical velocity (right) on cloudy days in 2019. The rows from top to bottom represent
winter, spring, summer and autumn, respectively.

3.2. Case Study of Vertical Velocity and Turbulent Mixing Characteristics

To assess vertical velocity and turbulent mixing characteristics on cloudy days, four cases with
high cloud fraction and thick clouds in different seasons were selected for a detailed analysis. The four
cases included 1 Feb, 1 May, 22 Aug and 23 Nov. Figure 6 shows the vertical velocity profiles from
07:00 to 17:00 HKT in the four cases. 10-min cloud base height derived from attenuated backscatter
coefficient was marked as black dots. As shown in the results, evident downdrafts were observed
under the cloud base especially during 10:00 to 10:30 on 01 Feb, 10:00 to 12:00 on 01 May, 09:30 to
12:00 on 22 Aug and 16:00 to 17:00 on 23 Nov. Some evident red patches occurred in each case might
be driven by relatively strong surface heating at that time. These characteristics further confirm that
cloud-induced radiative cooling is one of the main sources of downdrafts during the daytime on
cloudy days.
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Figure 5. The probability distribution function of cloud base height within the atmospheric boundary
layer during 07:00 to 17:00 HKT on cloudy days in 2019. It is noted that the curves were built based on
data at a 10-min resolution.

Figure 6. Vertical velocity profiles from 07:00 to 17:00 HKT on (a) 01 Feb, (b) 01 May, (c) 22 Aug, (d) 23
Nov. 10-min cloud base height has been marked as black dots in each profile. Positive vertical velocity
indicates updraft.

To further understand the characteristics of turbulent mixing in the CTBL, the variance and
skewness of the 1-min interval vertical velocity were calculated. Figure 7 (left panels) shows significant
vertical velocity variances (σ2

w > 0.1), implying the significant turbulent mixing generated from the
near-surface layer to the bottom of clouds. Figure 7 (right panels) shows the skewness in the four
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cases. Three sources (i.e., cloud radiative cooling, surface heating and vertical wind shear) were
considered as the main driving forces of turbulent mixing in the CTBL. It is noted that negative
skewness implies the turbulent mixing due to cloud radiative cooling whereas the positive one implies
that the turbulent mixing was induced by surface heating, vertical wind shear, or a combination of
them [32]. As expected, turbulent mixing near the ground surface was dominantly controlled by
positive skewness. Nevertheless, the negative skewness was also evidently observed especially in
Figure 7f,g. In the variance of these two cases, a clear weaker variance was derived where there was
negative skewness compared to the place where skewness was positive. This may imply that surface
heating and vertical wind shear are relatively larger than cloud radiative cooling effect in terms of
contribution to turbulent mixing.

Figure 7. Vertical profile of vertical velocity variance σ2
w (left panel) and skewness sw (right panel).

Both σ2
w and sw are 1-min time interval. For visualization, sw has been moving averaged in a 10-min

window size.

3.3. Cloud Contribution to the Turbulent Mixing

To further reveal the contribution of cloud radiative cooling to the intensity of turbulent mixing in
different layers in the CTBL, we calculated the proportion of variance with a negative skewness to
represent cloud contribution in Figure 8a and with a positive skewness to represent surface heating and
vertical wind shear in Figure 8b, respectively. Note that the sum of the two contributions was not equal
to 1 as there were many blank zones in the skewness profile where the value was 0. This part was also
reflected by Manninen et al. who called this phenomenon as intermittent [32]. Figure 8a shows that
cloud radiative cooling contributed ~32% to the turbulent mixing near the surface. It was comparable
with the one from surface heating and vertical wind shear. The contribution of cloud-topped cooling
increased with the height, but the peak emerged at ~800 m and then the contribution started to decrease
again. One explanation is that most clouds in these four cases appeared at around 1000 m or even
lower (see Figure 6a–c), and the cloud-topped region can be affected by the entrainment of warm and
dry air from above the cloud and the turbulent instability, which has recently been studied by Mellado
et al. [46]. Figure 8b explains that the overall contribution of surface heating and vertical wind shear to
the turbulent mixing in each layer decreased with height, with the highest mean value of 45% near the
surface. Meanwhile, the standard deviation tended to be larger especially above 800 m, indicating that
the significant contribution was up to that height.
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Figure 8. Contribution of (a) cloud radiative cooling and (b) surface heating and vertical wind shear to
the turbulent mixing within the daytime cloud-topped boundary layer (CTBL) in all the cases. Y axis is
the altitude (z) normalized by cloud base height (h).

Except for cloud radiative cooling, both surface heating and vertical wind shear have significant
impacts on the turbulent mixing. Hence, we further distinguished the effects of these two factors.
Figure 9 shows the daytime mean intensity of vertical wind shear between different levels in each
case. The highest magnitude of wind shear always occurred between two nearest layers (i.e., 30 m in
our study). A significant increase was observed in each profile at ~600 m to 1000 m. The magnitude
above this layer height stayed higher than that near-surface. This result reveals that, on cloudy days,
the contribution of vertical wind shear on turbulent mixing was more significant aloft than near
the surface.

 
Figure 9. Vertical profile of the averaged daytime vertical wind shear between different heights for
(a) 01 Feb, (b) 01 May, (c), 22 Aug, (d) 23 Nov. Shading denotes the intensity of wind shear at least two
consecutive layers where x-axis is the top layer height and y-axis is the bottom layer height. Note that
the colormap is presented at a log scale.

Figure 10 depicts the correlation between turbulent mixing and surface heating due to solar
radiation and vertical wind shear. In Figure 10a, surface radiation was used to represent the level of
surface heat flux. Significant correlation coefficients were derived from 135 m to 435 m and from 855 m
to 975 m, respectively. The appearance of the high-level significant correlation may be still induced
by the entrainment discussed above, which was associated with the temperature inversion, resulting
in the adverse direction of the reducing effect from surface heating. Figure 10a also shows that, in a
typical daytime CTBL, surface heating significantly contributed to the turbulent mixing up to 435 m
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from ground level. On the other hand, in Figure 10b, vertical wind shear was calculated between every
two consecutive layers (30 m). A much higher correlation coefficient can be derived in Figure 10b
compared to Figure 10a. Moreover, significant results can reach up to 1095 m in a typical daytime
CTBL, indicating that vertical wind shear (mechanical process) played a more important role than
surface heating in a CTBL.

Figure 10. The correlation between turbulent mixing and the two factors: (a) surface heating due to
solar radiation and (b) vertical wind shear. Solid dots represent data with high statistical significance (p
< 0.05).

4. Discussion

Since Hong Kong is a typical coastal high-density city in the subtropics, the variations of the
ABL there are complex. Due to its coastal location and complex terrain conditions, the formation and
movement of clouds within the boundary layer occur often throughout a year, and its radiative cooling
effect on the ground in the form of downdrafts is considerable. The findings that most clouds appeared
at around 1000 m to 1500 m allowed us to figure out the regular depth of the typical CTBL in Hong
Kong. Within this range, the surface heating may be important, but radiative fluxes induced by clouds
produced local sources of cooling within the CTBL and can greatly influence its turbulent structure and
dynamics [1]. Although we took the altitude into account, we did not categorize cloud types in detail
and did not consider the situation when clouds are overlapped in the vertical direction, which may
have an impact on the ABL characteristics [47].

Until now, the existing research based on observations with a high-time-resolution of the vertical
wind profile gave us a general understanding of the characteristics of the turbulent mixing in a
CTBL [3,11]. We can see in our results that even in the lowest layer near the surface, the cloud
radiative cooling effects can still contribute ~32% of the turbulent mixing, indicating the importance
of cloud-induced radiative cooling. This finding provides useful reference for turbulence and
aerosol-radiation-cloud interaction research [48–50]. While the influence of meteorology on air quality
is critical [51–54], the framework of 3DREAMS provides useful wind and aerosol backscatter data to
understand air pollution, especially in the transboundary air pollution [55,56]. For example, during a
transboundary air pollution (TAP) episode [56–60], the 3DREAMS can help us to understand the
atmospheric stability, and also the contributions of cloud, buoyancy and wind shear in the local-scale
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vertical mixing procedure. In addition, as revealed by our results that the vertical wind shear can affect
up to over 1000 m while the surface heating can only reach around 400 m in the CTBL, we should also
consider the influence of wind structure on the regulating of aerosol, especially during heavy pollutant
episodes. Pioneering work has been conducted by Yang et al. in 2019 [39].

The lack of direct long-time and high vertical resolution observations has brought great difficulties
to atmospheric turbulence research, mesoscale weather forecasting, and thus air pollution studies.
More intuitive observations, such as continuous observation of vertical wind profiles, are relatively
rare. Once there is a direct observation of vertical wind profile, we can obtain the various boundary
layer characteristics under different types of weather conditions, thus the research of boundary layer
will have a significant improvement, which has been confirmed by Hogan et al. (2009) that long-term
Doppler LiDAR observations would be useful for diagnosing the source of turbulence [11].

In general, our intention was to systematically observe and diagnose the boundary layer
characteristics in Hong Kong and clarify the transfer of atmospheric energy in the boundary layer.
The recently developed 3DREAMS can monitor the aerosol distribution and 3-dimension wind profile
simultaneously. The monitoring of wind profiles can not only clarify the characteristics of atmospheric
energy transfer but also monitor aerosols to help attribute local and transboundary air pollutions.
Furthermore, our observations can also provide reliable validation data for mesoscale weather models
and turbulence models. Our future monitoring will still be conducted under the framework of
3DREAMS to explore the influence of terrain on the boundary layer structure.

5. Conclusions

We employed high temporal and spatial (vertical) observations from a Doppler LiDAR to explore
the turbulent mixing characteristics in the daytime cloud-topped boundary layer over Hong Kong
in 2019 using 3DREAMS. Ground-level meteorological parameters and typical diurnal variation of
vertical wind profile associated with clouds over Hong Kong in 2019 were derived to illustrate the
cloud characteristics. Four typical cases from each season in 2019 were selected to illustrate the
turbulent mixing characteristics based on the variance and skewness profiles of vertical velocity. Finally,
the contribution of cloud radiative cooling, surface heating, and vertical wind shear on turbulent
mixing were analyzed.

On cloudy days in 2019, the highest cloud fraction was observed in spring while the lowest was
obtained in autumn. Meanwhile, downdrafts were more common in spring while more updrafts were
observed in autumn, revealing that cloud radiative cooling is the main source of downdraft. On cloudy
days, low-level clouds occurred generally within the range of 1000 to 1500 m. Compared to winter and
autumn ones, cloud base heights were lower in spring and summer. Case studies of vertical velocity
confirmed that in a typical daytime CTBL in Hong Kong, boundary layer clouds always act as the
sink of heat near the bottom of the cloud layer. Although cloud radiative cooling effect on turbulent
mixing was relatively weaker compared to surface heating and vertical wind shear, it still contributed
~32% even near the surface. Surface heating and vertical wind shear contributed ~45% together near
the surface, but the effect of wind shear can be up to ~1100 m while that of surface heating can only
reach ~450 m, revealing that vertical wind shear (mechanical process) plays a more important role than
surface heating (thermal) in CTBL.

In general, our findings improved our knowledge of the turbulent mixing layer and provided
useful references for weather forecast and air quality studies.
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Abstract: Heatwaves and air pollution are serious environmental problems that adversely affect
human health. While related studies have typically employed ground-level data, the long-term
and episodic characteristics of meteorology and air quality at higher altitudes have yet to be fully
understood. This study developed a 3-Dimensional Real-timE Atmospheric Monitoring System
(3DREAMS) to measure and analyze the vertical profiles of horizontal wind speed and direction,
vertical wind velocity as well as aerosol backscatter. The system was applied to Hong Kong, a highly
dense city with complex topography, during each season and including hot-and-polluted episodes
(HPEs) in 2019. The results reveal that the high spatial wind variability and wind characteristics
in the lower atmosphere in Hong Kong can extend upwards by up to 0.66 km, thus highlighting
the importance of mountains for the wind environment in the city. Both upslope and downslope
winds were observed at one site, whereas downward air motions predominated at another site.
The high temperature and high concentration of fine particulate matter during HPEs were caused
by a significant reduction in both horizontal and vertical wind speeds that established conditions
favorable for heat and air pollutant accumulation, and by the prevailing westerly wind promoting
transboundary air pollution. The findings of this study are anticipated to provide valuable insight for
weather forecasting and air quality studies. The 3DREAMS will be further developed to monitor
upper atmosphere wind and air quality over the Greater Bay Area of China.

Keywords: Doppler LiDAR; spatial wind variability; air quality

1. Introduction

Heatwaves and air pollution are major environmental problems [1–4] that adversely affect human
health [5–19]. Despite the substantial burdens on human health, the present understanding of such
weather and air quality problems remains limited by insufficient data. In particular, data concerning
the wind and air quality in the upper atmosphere are required for data analyses and modeling.
This absence of data limits research into heatwaves and air pollution.

Extremely high temperatures and air pollution may occur simultaneously because of their shared
atmospheric driving conditions. For this study, an event featuring extremely high temperatures and air
pollution was defined as a hot-and-polluted episode (HPE). The synergy between high temperatures
and air pollution can result in serious public health burdens. Lee et al. [20] investigated a period
of abnormally high temperatures and air pollution in the United Kingdom. They determined that
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the regional entrainment of air from the upper atmosphere caused early morning increases in ozone
during the episode and increased biogenic emissions under high temperatures. Stedman [21] reported
that this increase in ozone and particulates caused more than 400 and 700 additional mortalities in
England and Wales, respectively. Therefore, a more comprehensive understanding of the formation
mechanism of such episodes is required.

In addition to local emissions, transboundary air pollution (TAP) is a major contributor to serious
air pollution [14,22]. For example, studies have reported the severe TAP in the Greater Bay Area
of China [23–27] and the resultant health impacts [10,28]. However, the understanding of upper
atmosphere TAP remains limited. To mitigate this limitation and provide forecasting of TAP and
HPEs, a monitoring system is required to collect extensive data of atmospheric variables from the
upper atmosphere.

Conventional measurements have focused on ground-level air quality. Since 2013, China has
been releasing hourly ground-level air pollutant data covering the entire country. Previous studies
have intensively investigated ground-level air quality by using surface monitoring networks [29–32]
or satellite-retrieval approaches [33]. One previous study attempted to retrieve vertical structures of
aerosol from various satellite observations [34]. Nevertheless, air quality at higher altitudes and the
meteorological driving conditions have yet to be fully understood. Some studies have employed upper
air sounding data to investigate the meteorology at various altitudes [35,36]. However, such data
are typically measured only two to three times per day because of the high cost of data collection.
In addition, upper air sounding data are collected using a helium balloon that carries devices for
meteorological measurement. Therefore, the measurement locations are dependent on the horizontal
and vertical wind velocities at various altitudes. Although sounding data provide a valuable data set
for upper atmosphere meteorology, methodological characteristics prevent the colocation and high
time resolution required for conducting air quality studies.

To overcome data availability problems, Light Detection and Ranging (LiDAR) can be used
for remote atmospheric sensing [37]. For example, an intercomparison study took place at Mace
Head, Ireland [38] where one LiDAR and two co-located ceilometers were validated against the
boundary-layer height derived from radiosoundings. As preparation for the European Space Agency
ADM Mission [39], an intercomparison campaign that held in southern France showed the feasibility of
the direct detection Dopple wind LiDAR technique to retrieve the horizontal wind speed atmospheric
profile. A single Doppler LiDAR unit can perform wind profiling and air quality monitoring [40–42].
For example, Hong Kong International Airport applied Doppler Lidar to monitor wind shear near
the airport [43–45]. The laser beam of their lidar points toward the departure and approach runways.
Their application in Dec 2005 captured ~76% of reported wind shear events [46]. Another study applied
Doppler LiDAR for evaluating offshore wind characteristics for wind energy [47]. A previous study
assessed internal boundary layer structure in Hong Kong under sea-breeze conditions. The authors
compared their simulated internal boundary layer with that derived from Doppler LiDAR data.
This shows the importance of LiDAR for model developments [48]. Doppler LiDAR was also used
for air quality research. A study applied Doppler LiDAR to investigate the characteristics of heavy
particular matter pollution [49]. These studies have shown the capabilities of Doppler LiDAR for
meteorological and air quality studies.

For cities with considerable spatial and temporal variations in wind, a single LiDAR unit may be
insufficient to provide a complete description of complex atmospheric conditions. Previous studies
have reported substantial spatial wind variability [50] and TAP [25,26] in Hong Kong. To improve
understanding of the wind environment and its influence on air quality in this highly dense city,
a 3-Dimensional (3D) Real-timE Atmospheric Monitoring System (3DREAMS) was developed in the
present study. This system can be used for air pollution studies with high spatial wind variability or
TAP, especially those in Hong Kong as well as in the Greater Bay Area to investigate the interactions
between cities in the region.
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The aim of this study was to develop the 3DREAMS using more than one Doppler LiDAR unit.
The method is described in Section 2. Section 3 presents the results of comparison between the LiDAR
data and upper air sounding data as well as those of the analyses for annual and episodic wind profiles.
Conclusions are provided in Section 4.

2. Materials and Methods

Two 1.5-μm Doppler LiDAR units (Halo Photonics Stream Line Scanning Doppler LiDAR system)
were employed for the development of the first stage of the 3DREAMS. The One LiDAR unit was
installed at the Physical Geography Experimental Station of the Chinese University of Hong Kong
(CUHK), and the other unit was installed at the Hong Kong Observatory weather station: King’s
Park (KP). The locations of the two LiDAR units are shown in Figure 1. The CUHK site is located
in northeastern Hong Kong and has an elevation of 5 m above sea level. This site is surrounded by
mountains, including Ma On Shan (≈700 m), Lion Rock (≈500 m), Kam Shan (≈370 m), and Tai Mo
Shan (≈957 m), as shown in Figure 1. The KP site is located in the downtown area of Hong Kong and
has an elevation of 65 m above sea level.

 

Figure 1. Locations of the two LiDAR sites (CUHK and KP), topography near the CUHK site,
and schematic of the upslope and downslope winds. The arrows refer to wind direction. The arrow
colors refer to altitude: orange: lower altitude; purple: higher altitude. This CUHK site is surrounded
by mountains, including Ma On Shan (≈700 m), Lion Rock (≈500 m), Kam Shan (≈370 m), and Tai Mo
Shan (≈957 m). The figure was built on a map obtained from Google Earth, earth.google.com/web/.

The LiDAR units were configured to retrieve aerosol backscatter and wind profiles in the boundary
layer up to approximately 3 km above ground level. The principle of the Doppler LiDARs is that
laser pulses are emitted by a transmitter and the reflected signals scattered by particles are received
by a receiver which is built with the transmitter in the same unit. Particles, which are transported by
horizontal wind, induce a Doppler shift as reflected in backscattered light signals. Through measuring
the line-of-sight Doppler wind values, the optical heterodyning in the receiver determines the horizontal
wind vector.

This study employed the both stare and velocity-azimuth display (VAD) scanning methods to
measure horizontal wind information. Figure 2 depicts the schematic diagram of the stare and VAD
scanning methods. The stare scan refers to a scanning using a continuous vertically pointing laser
beam with Φ = 0◦ and θ = 90◦. The stare scan was configured to operate at height and temporal
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resolutions of 30 m and 1 s, respectively. For the VAD scan, the LiDAR units were set to have six
azimuthal positions at a constant interval of an azimuth angle α = 60◦ with a constant evaluation angle
of θ = 75◦ (Φ = 15◦ with respect to the zenith) at a 10-min interval. For quality control, the data with a
signal-to-noise ratio less than −20 dB were removed.

 

Figure 2. The schematic diagram of both stare and velocity-azimuth display (VAD) scanning methods.
The number of bean directions for a VAD scan was 6. The Doppler LiDAR laser beam pointed upward
with a constant elevation angle θ and a constant angle Φ with respect to the vertical Z. The laser beam
rotated around the vertical Z with a constant interval of an azimuth angle α.

Before their operations, the two LiDAR units were calibrated by the LiDAR manufacturer and
validated using a colocation comparison test. The colocation comparison results confirmed consistency
between the LiDAR units with a 95% confidence interval, thus indicating an acceptable calibration.
Regular maintenance checks were conducted during operation. The LiDAR windows were cleaned
hourly through automatic wiping and weekly with an optical cleaning solution. In addition, horizontal
leveling checks were conducted weekly to correct for any settling, which can partly affect beam-pointing
accuracy. The precision of the leveling was within ±1◦. The literature has reported the limitation of
LiDAR performance in complex terrain [51–53]. The LiDARs’ were configured and checked to make
sure surrounding mountains would not significantly affect the LiDARs’ performance, which could be
further confirmed by a comparison between LiDAR data and available upper air sounding data at the
same site. The comparison results are shown in Section 3.1.

Analyses in this study were conducted using data collected during the spring, summer, fall,
and winter of 2019, which were defined as February–April, May–August, September–October,
and November–January, respectively. The annual data availability for the CUHK and KP sites
was 94% and 82%, respectively.

The annual mean vertical profiles of horizontal wind speed and direction and vertical wind
velocity were investigated, and the vertical profiles during HPEs were analyzed. HPEs were defined
by a temperature of ≥28.2 ◦C [54] and more than 50% of air quality stations reporting a concentration
of fine particulate matter with an aerodynamic diameter ≤ 2.5 μm (PM2.5) higher than or equal to the
median of the 90th percentile of daily PM2.5 of all stations for the year (33.2 μg/m3). The previous
study [54] reported a statistically significant increase in premature mortality risk for an average 1 ◦C
increase in daily average temperature above 28.2 ◦C. Overall, nine HPEs were identified during 2019.
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Information concerning these HPEs is provided in Table 1. The PM2.5 concentration data at 16 air
quality monitoring stations were obtained from the Hong Kong Environmental Protection Department
(http://www.aqhi.gov.hk/en.html). The temperature and surface wind, and the upper air sounding
data at the KP weather station (latitude: 22◦18′43′′; longitude: 114◦10′22′′) were obtained from the
Hong Kong Observatory (https://www.hko.gov.hk/en/cis/stn.htm).

Table 1. Nine identified HPEs during 2019 with the mean daily PM2.5 concentration (μg/m3) at both
general and roadside stations and daily mean temperature (◦C).

HPE # Month Day
Mean of daily PM2.5 Concentration

at General Stations (μg/m3)
Mean of Daily PM2.5 Concentration

at Roadside Stations (μg/m3)
Daily Mean Temperature (◦C)

1 7 17 31.9 38.6 30.3
2 7 18 43.5 54.8 31.0
3 8 9 32.2 38.1 31.0
4 8 24 45.4 61.9 30.7
5 9 29 44.5 51.8 28.3
6 9 30 60.5 79.3 29.9
7 10 1 48.1 52.7 29.9
8 10 2 36.5 41.8 29.0
9 10 11 31.3 38.0 28.3

3. Results

3.1. Comparison with Upper Air Sounding Data

LiDAR data were compared with the available upper air sounding data located at the same site.
Figure 3 shows that the LiDAR units captured the general vertical profiles of horizontal wind speed
and direction. Differences at heights less than 0.50 km were negligible, whereas those for heights
greater than 0.50 km were more substantial. As discussed in the methods section, the measurement
locations of the upper air sounding data varied with the wind velocities at the various measurement
altitudes, possibly resulting in different measurement locations for the two data sources. The percentage
difference between the averaged horizontal wind speeds of the two data sources for heights less
than 1.00 km was less than 10%, which indicates sufficient agreement between LiDAR and upper air
sounding data.

 

(a) 

 

(b) 

Figure 3. (a) Comparison of horizontal wind speed (m/s) according to KP LiDAR data (red cross) and
upper air sounding data (blue circles) over a 4-day period (1 June 2019, 00:00 UTC to 4 June 2019,
12:00 UTC). (b) Comparison of horizontal wind direction according to LiDAR data (red cross) and
upper air sounding data (blue circles) over a 4-day period (1 June 2019, 00:00 UTC to 4 June 2019,
12:00 UTC).
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Figure 4c depicts the seasonal vertical profiles of horizontal wind speed based on the LiDAR
measurements at the KP site, whereas Figure 4d shows the seasonal vertical profiles of horizontal wind
speed averaged from the upper air sounding data throughout the entire year. The results show a high
agreement between the profiles, despite the fact that the time resolution of the two data was different.

(a) 

 

(b) (c) 

 

(d) 

 

(e) 

 

Figure 4. (a) Annual (black) and HPE (red) vertical profiles of horizontal wind speed (m/s) at CUHK
(solid) and KP (dashed) sites. Seasonal vertical profiles at (b) CUHK and (c) KP derived from LiDAR
data. (d) Seasonal and (e) annual vertical profiles of horizontal wind speed (m/s) based on the upper
air sounding data collected at 08:00 (HKT) and 20:00 (HKT) every day. For (b–d): spring (black),
summer (red), fall (blue), and winter (magenta). For (e): 08:00 (HKT) (blue) and 20:00 (HKT) (red).

3.2. Horizontal Wind Speed

3.2.1. Annual and Seasonal Vertical Profiles

Figure 4a presents the annual vertical profiles of horizontal wind speed at the CUHK and KP sites.
The results reveal the horizontal wind speed was higher at KP than at CUHK. The KP site is located in
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an urban area, whereas the CUHK site is located in a suburban area. The lower horizontal wind speed
at the CUHK site may be attributable to the complex topography near the site [50].

Figure 4b,c present the seasonal vertical profiles of horizontal wind speed. At the CUHK site,
the mean wind speed for heights less than 1.00 km was higher in summer (6.4 m/s) than in other
seasons (5.4, 4.6, and 4.6 m/s for spring, fall, and winter, respectively). For heights less than 0.42 km,
the wind speeds in spring and fall were similar, whereas, for height between 0.42 km to 1.00 km,
the wind speed in spring was clearly higher than that in fall. For heights of 1.60 to 2.00 km, the wind
speeds in spring and winter were higher than those in summer and fall.

Similarly, at the KP site, the mean wind speed for heights less than 1.00 km was the highest in
summer (7.6 m/s), followed by spring (6.8 m/s), winter (6.2 m/s) and fall (6.1 m/s). For heights less
than 0.48 km, the wind speed was the highest in spring; for heights between 0.48 km and 1.74 km,
the wind speed in summer was clearly higher than those of other seasons. For heights of 1.74 to
2.00 km, the wind speed was the highest in winter; nevertheless the seasonal difference at that level at
KP was not significant as that at CUHK.

To understand the seasonal variation, the seasonal vertical profiles of wind speed measured by
upper air sounding as well as the wind speed at 10 m above ground (wsd10m) at three automatic
weather stations were analyzed. The similar seasonal trend was also shown in the upper air sounding
data, see Figure 4d. Despite the fact that the upper air sounding only provided two data points
(08:00 and 20:00 HKT) in a day, the sounding vertical profiles confirm the LiDAR seasonal profiles.
Table 2 lists seasonal wsd10m at various Hong Kong Observatory (HKO) stations. The wsd10m at the
Waglan Island station shows an obvious seasonal wind variation with the highest wind speed in winter,
followed by summer, spring and fall. Nevertheless, the wsd10m at Sha Tin station (near to the CUHK
site) and the KP site was the highest in summer and spring, followed by fall and winter. It is noted that
the Waglan Island station is located at southeast Hong Kong, which is not affected by any mountains
and buildings, and thus serves as a background weather station for Hong Kong. The different seasonal
wind speed clearly demonstrates the influence of topography on wind environment in Hong Kong
and supports to the findings of vertical wind profiles.

Table 2. The seasonal surface horizontal wind speed (unit: m/s) at the Hong Kong Observatory
automatic weather stations: Sha Tin, King’s Park and Waglan Island. The data was extracted from
https://www.hko.gov.hk/en/cis/climat.htm on 7 Mar. 2020.

Sha Tin King’s Park Waglan Island

>Latitude 22◦24′09′′ 22◦18′43′′ 22◦10′56′′
>Longitude 114◦12′36′′ 114◦10′22′′ 114◦18′12′′

>spring 7.37 10.40 23.27
>summer 8.40 9.88 23.60
>fall 6.30 9.65 22.35

winter 6.80 9.67 25.00

3.2.2. Diurnal Vertical Profiles

Figure 5 shows the diurnal vertical profiles of horizontal wind speed. Similar to the annual vertical
profiles, the diurnal horizontal wind was stronger at the KP site than at the CUHK site. The diurnal
vertical profiles exhibited clear peak wind speeds for heights of 0.84 to 1.98 km at CUHK and 0.81 to
1.98 km at KP. The results reveal a clear vertical gradient of horizontal wind speed at the two LiDAR
sites from 21:00 to 12:00 HKT. The maximum hourly mean wind speed was 10.6 m/s, which occurred at
20:00 HKT and 15:00 HKT at CUHK and KP, respectively. The minimum hourly mean wind speeds
were 6.6 m/s and 7.8 m/s, which occurred at 17:00 HKT and 19:00 HKT at CUHK and KP, respectively.
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Figure 5. Diurnal vertical profiles of horizontal wind speed at the CUHK (blue) and KP (red) sites.

The vertical gradient was shown clearly in the averaged upper air sounding profiles, see Figure 4e.
Similar to the LiDAR profiles at 08:00 HKT and 20:00 HKT, the averaged mean vertical profile at 08:00
HKT has a clear vertical gradient with a peak at around 0.80 km, whereas it was not shown in the
20:00 HKT upper air sounding profile. Figure 6 shows the diurnal vertical profiles of prevailing wind
direction and the corresponding mean wind speed at the two LiDAR stations. The weaker vertical
gradient of horizontal wind speed at the two LiDAR sites between 13:00 HKT and 20:00 HKT was due
to the relatively weak northerly wind between 0.8 km and 1.4 km. It is noted that the northerly wind
should be blocked by the topography at the north of the two sites.

3.3. Horizontal Wind Direction

Figure 7 shows the annual vertical profiles of horizontal wind direction frequency at CUHK
and KP. At CUHK, the prevailing horizontal wind direction was north for heights less than 0.20 km.
The prevailing horizontal wind direction clearly shifted to northeast for heights of 0.20 to 1.80 km and
to north and northeast for heights of 1.80 to 2.00 km. At KP, the prevailing horizontal wind direction
was northeast for heights less than 1.70 km. Within this range, easterly wind was observed for heights
less than 1.10 km and northerly wind was observed for heights from 1.10 to 1.70 km. For heights from
1.70 to 2.00 km, the prevailing horizontal wind directions were north and northeast. These results
demonstrated the high spatial wind variability for heights less than 0.30 km and consistent prevailing
horizontal wind direction for heights greater than 0.39 km. The high spatial wind variability was
mainly due to the complex topography of Hong Kong [50], as discussed in Section 3.2.1.

Figure 8 shows the seasonal vertical profiles of horizontal wind direction frequency at the CUHK
and KP sites. In spring, the prevailing horizontal wind directions at CUHK were north and northeast
for heights less than 0.60 km, whereas those at KP were northeast and east. For heights from 0.60
to 1.70 km, the prevailing horizontal wind directions at these sites were more consistent (northeast
and east). For heights of 1.70 to 2.00 km, the prevailing horizontal wind directions shifted west and
southwest at these two sites.
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(a) (b) 

(c) (d) 

Figure 6. The diurnal vertical profiles of prevailing wind direction (a,c) and the mean horizontal wind
speed (m/s) of the prevailing horizontal wind direction (b,d) at the two LiDAR stations, CUHK (upper
panel) and KP (lower panel).

 

Figure 7. Annual vertical profiles of horizontal wind direction frequency at CUHK (left) and KP (right).
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Figure 8. Seasonal vertical profiles of horizontal wind direction frequency in spring (a,e), summer (b,f),
fall (c,g), and winter (d,h) at CUHK and KP, respectively. The upper panel (a–d) is CUHK, whereas the
lower panel (e–h) is KP.
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In summer, the prevailing horizontal wind directions at ground level were similar to those in
spring except that southerly and southwesterly winds were more frequently noted for heights less
than 1.00 km. At heights from 1.00 to 2.00 km, the prevailing horizontal wind directions at the two
sites consistently shifted to north and northeast. In fall and winter, the prevailing horizontal wind
directions at the two LiDAR sites were relatively stable, mainly northeast, followed by north and east.

3.4. Vertical Wind Velocity

Figure 9 displays the annual and seasonal vertical profiles of vertical wind speed (cm/s) at the
two LiDAR sites. At CUHK, the average vertical wind velocity for heights less than 1.00 km was
−0.26 cm/s. At this site, upward and downward air motions were observed. The annual profile indicates
that upward air motions dominated for heights less than 0.60 km, whereas downward air motions
dominated for heights from 0.60 to 2.00 km. The upward air motions at heights less than 0.60 km may
be induced by the surrounding topography. As shown in Figure 7, the prevailing horizontal wind
directions at CUHK were north and northeast. The northerly and northeasterly air flows were lifted
up by the surrounding topography, thus inducing upward air motions. Seasonal variations were also
observed. Positive mean vertical velocities were observed in spring, fall, and winter (2.56, 1.34, and
0.59 cm/s, respectively), whereas the mean vertical velocity observed in summer (−1.34 cm/s) was
consistent with the annual mean.

 

(a) 

 

 (b) (c) 

Figure 9. (a) Annual vertical profiles of vertical wind velocity (cm/s) at CUHK (blue) and KP (red)
and seasonal vertical profiles at CUHK (b) and KP (c) during spring (black), summer (red), fall (blue),
and winter (magenta). Positive values refer to upward motions; whereas negative values refer to
download motions.

At KP, downward air motions dominated for heights less than 2.00 km. The annual mean vertical
wind velocity for heights less than 1.00 km was −14.92 cm/s, highlighting that downward motions at
KP were stronger than those at CUHK. Negative vertical wind velocities were consistent for all seasons.
The strongest downward air motion was observed during spring (−20.07 cm/s), followed by summer
(−18.42 cm/s), winter (−14.18 cm/s), and fall (10.90 cm/s).

Notably, when the prevailing northerly or northeasterly wind approaches Hong Kong, CUHK is
located upwind, whereas KP is located downwind. For heights less than 1.00 km, the upslope wind at
CUHK was clearly weaker than the downslope wind at KP. However, this difference was less apparent
in summer (Figure 9b). This may be because of the unstable atmosphere that occurs during summer as
a result of stronger solar radiation in that season. Relatively strong buoyancy force could be generated
from the warmer ground surface. The unstable atmosphere is favorable for wind going over mountains,
enhancing upslope flow [55]. On the other hand, the induced vertical rising air motion may suppress
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downslope flow. These two effects may reduce the difference between upslope and downslope winds
in summer.

3.5. Wind Profiles in HPEs

By examining the temperature and PM2.5 data for the thresholds described in the methods section,
nine HPEs were identified. Detailed information regarding each HPE is provided in Table 1 This
section details wind and backscatter analyses for the HPEs.

3.5.1. Horizontal Wind Speed and Direction

Figure 4 displays the annual and HPE vertical profiles of horizontal wind speed at the two LiDAR
sites, and Figure 10 depicts the vertical profiles of horizontal wind direction frequency during HPEs.
Compared with annual means, the horizontal wind speeds were clearly lower during HPEs. At CUHK,
the horizontal wind speed for heights less than 1.00 km during HPEs was 61.4% lower than the
annual mean; the horizontal wind speed over these heights was 51.7% lower at KP. The relatively low
horizontal wind speed was unfavorable for air pollutant dispersion.

(a) 

 

(b) 
Figure 10. Vertical profiles of horizontal wind direction frequency during HPEs at CUHK (a) and KP (b).

The prevailing horizontal wind directions for heights less than 0.60 km were south and southwest
at the CUHK site and west and southwest at the KP site. In addition to lower horizontal wind speed,
the prevailing westerly wind during HPEs introduced regional TAP from the Greater Bay Area to Hong
Kong. Figure 11 depicts the weather chart of each HPE. The weather charts show that, in each HPE,
a typhoon was located in South China sea (east of Hong Kong). The westerly wind was induced by the
typhoon-associated counterclockwise wind flow, providing a wind environment for transboundary air
pollution within the region [25] and thus, the formation of a HPE. For heights from 0.60 to 1.20 km,
northerly and northwesterly wind predominated. For heights from 1.20 to 1.90 km, the prevailing
horizontal wind directions was north and northeast. For heights greater than 1.90 km, the easterly
winds predominated.
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

(g) 

 

(h) 

Figure 11. Cont.
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(i) 

 

(j) 

 

(k) 

 

(l) 

 

(m) 

 

Figure 11. The weather charts (08:00 HKT) of each HPE (a–i) and of a cold front case occurred on 18 Nov.
2019: (j) 02:00 HKT; (k) 08:00 HKT; (l) 14:00 HKT and (m) 20:00 HKT. The weather charts were obtained
from the Hong Kong Observatory web site (https://www.hko.gov.hk/en/wxinfo/currwx/wxcht.htm) on
2 Mar. 2020.

3.5.2. Vertical Wind Velocity

Figure 12 shows the vertical profiles of vertical wind velocity at the two LiDAR sites. At CUHK,
the annual vertical wind velocity for heights less than 0.66 km exhibited upward air motion (positive),
whereas the HPE profiles exhibited downward air motion. Although upward air motions were
observed for heights from 0.66 to 1.00 km, these motions were weak. For heights less than 1.00 km
at KP, the strong downward air motions in the annual profile weakened during HPEs. The overall
vertical air motions caused the accumulation of heat energy and air pollutants close to ground level.
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Figure 12. Vertical profiles of annual (solid) and HPE (dashed) vertical wind velocity at CUHK (left) and
KP (right). Positive values refer to upward air motions, whereas negative values represent downward
air motions.

Figure 13 shows the mean aerosol backscatter profiles at the two LiDAR sites during the nine
identified HPEs. Higher aerosol backscatter was observed for heights less than 1.00 km at nighttime
and heights less than 1.20 km in the afternoon. The increased height of the top of the aerosol layer
in the afternoon may be attributable to the higher mixing height at this time due to the peak in solar
radiation. The aerosol backscatter profiles also reveal that that aerosol backscatter was typically the
highest for heights less than 0.60 km. This demonstrates an association with the vertical wind velocity
profiles in Figure 12. For heights less than 0.66 km, downward air motions were observed at the CUHK
site; the air motions for heights from 0.66 to 1.00 km were directed upward. At KP, the magnitude of
downward wind velocity decreased with heights up to approximately 0.60 km and then increased up
to 0.90 km. Compared with CUHK, KP had stronger downward air motions that resulted in higher
aerosol backscatter.

 

Figure 13. Mean aerosol backscatter log10(β) at CUHK (upper) and KP (lower) during the nine
identified HPEs.
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3.6. A demonstration Case: Cold Front

To demonstrate the real-time monitoring capability of 3DREAMS, a cold front case occurred on
18 Nov. 2019 was discussed. Figure 11j–m depicts the weather charts of the cold front case at 02:00,
08:00, 14:00 and 20:00 HKT on 18 Nov. 2019, respectively. The cold front arrived at HK in the afternoon
on 18 Nov. 2019. Figure 14 shows the high-temporal-resolution vertical profiles of horizontal wind
speed at the two sites on 18 and 19 Nov. 2019. The results show that 3DREAMS captured the first
arrival of the cold front at the CUHK LiDAR site at between 16:30 and 17:00 HKT. The earlier arrival of
the cold front at the CUHK LiDAR site was due to the fact that the site is located at the northeastern
Hong Kong. When approaching from northwest, the cold front first hit the CUHK site. In addition,
the CUHK LiDAR shows a clear increase in wind speed at the altitudes between 0.50 km and 1.00 km,
which lasted until 08:00 HKT on the next day. It is noted that the increase in wind speed near the
ground level at KP LiDAR site was not as high as that at the CUHK LiDAR site. This difference was
due to the topographical effect that blocked the northerly flow to the KP LiDAR site.

p g p y

 

Figure 14. The high-temporal-resolution (10 minutes) vertical profiles of horizontal wind speed (m/s)
at the (a) CUHK and (b) KP LiDAR sites.

4. Discussion

This study developed the 3DREAMS using two Doppler LiDAR units for instantaneously
measuring wind and aerosol backscatter profiles, thus providing valuable datasets for wind and
aerosol backscatter that can be employed in weather and air quality studies. Previous studies have
relied heavily on data measured at the ground level. However, Tong et al. [24] identified significant
influences of upper atmosphere meteorology on air quality. Although some studies have measured
the vertical profiles of wind and air quality, the typically short measurement periods have resulted
in limited understanding of the long-term characteristics of and relationships between weather and
air quality. Other studies have relied on upper air sounding data that can be measured only two to
three times per day, whereas the present study developed the 3DREAMS to collect real-time upper
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atmosphere wind and aerosol backscatter information critical for long-term meteorological and air
quality studies. It should be highlighted that, while upper air sounding measurements are useful,
LiDARs can fill the missing data gaps, providing higher time-resolution measurements.

Spatial wind variability at various altitudes is critical for weather forecasting and air quality
studies. For example, local air pollutant emissions may be mixed or transported by lower-level wind;
whereas transboundary air pollution may be transported by a higher-level wind. Significant spatial
wind variability may affect local weather and thus, air quality at different altitudes and locations.
Yim et al. [50] identified high spatial wind variability in Hong Kong due to its complex topography.
Nevertheless, their study was limited to ground-level spatial wind variability. The current study
reveals that this high spatial wind variability extends to heights of 0.30 km for the horizontal wind
direction and 0.60 km for the vertical wind velocity. These findings suggest that further studies should
investigate wind shear at various altitudes in Hong Kong. Improved understanding of wind shear is
particularly critical for aviation safety at Hong Kong International Airport, which is located in an area
with complex topography. The demonstrated cold front case provided a useful example of how the
3DREAMS can be used to study spatial and vertical variations of various horizontal wind speed in
weather events.

Previous studies have mainly focused on the effects of extremely hot weather or air pollution
episodes. The present study introduced and investigated HPEs, which can adversely affect human
health as a result of the synergistic effects of high temperature and high PM2.5 concentration. The results
reveal that a prevailing horizontal wind direction introducing TAP from the Greater Bay Area and
significant reductions in horizontal wind speed at all altitudes and vertical wind velocity for heights
less than 0.66 km enhanced the accumulation of heat and air pollutants in the lower atmosphere.

5. Conclusions

This study developed the 3DREAMS to measure the long-term vertical profiles of horizontal
wind speed and direction and vertical wind velocity and aerosol backscatter in a highly dense city
with complex topography. In addition, the vertical profiles of nine identified HPEs were analyzed
to assess the influences of horizontal wind speed and direction and vertical wind velocity on heat
and aerosol accumulation. The results reveal high spatial wind variability for heights less than
approximately 0.60 km in Hong Kong, highlighting the influence of mountainous topography on
the wind environment in the city. Both upslope and downslope winds were observed at CUHK site,
whereas downward air motions predominated at KP site. The different air vertical motions resulted in
different vertical profiles of aerosol backscatter at the two sites during HPEs. Combining the analyses
of horizontal wind speed and direction and vertical wind velocity reveal that high temperatures and
PM2.5 concentrations were due to a prevailing westerly wind that introduced TAP from the Greater Bay
Area. Moreover, a substantial reduction in horizontal wind speed and vertical wind velocity resulted
in heat and air pollutant accumulation during HPEs. The findings of this study can provide critical
insight for weather forecast and future air quality research. The 3DREAMS will be further developed
to integrate new and existing LiDARs into the system and to include more sites to monitor wind and
air quality for the Greater Bay Area.
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Abstract: A homemade portable no-blind zone laser detection and ranging (lidar) system was designed
to map the three-dimensional (3D) distribution of aerosols based on a dual-field-of-view (FOV) receiver
system. This innovative lidar prototype has a space resolution of 7.5 m and a time resolution of
30 s. A blind zone of zero meters, and a transition zone of approximately 60 m were realized with
careful optical alignments, and were rather meaningful to the lower atmosphere observation. With
a scanning platform, the lidar system was used to locate the industrial pollution sources at ground
level. The primary parameters of the transmitter, receivers, and detectors are described in this paper.
Acquiring a whole return signal of this lidar system represents the key step to the retrieval of aerosol
distribution with applying a linear joining method to the two FOV signals. The vertical profiles of
aerosols were retrieved by the traditional Fernald method and verified by real-time observations. To
effectively and reliably retrieve the horizontal distributions of aerosols, a composition of the Fernald
method and the slope method were applied. In this way, a priori assumptions of even atmospheric
conditions and the already-known reference point in the lidar equation were avoided. No-blind-zone
vertical in-situ observation of aerosol illustrated a detailed evolution from almost 0 m to higher altitudes.
No-blind-zone detection provided tiny structures of pollution distribution in lower atmosphere, which
is closely related to human health. Horizontal field scanning experiments were also conducted in
the Shandong Province. The results showed a high accuracy of aerosol mass movement by this lidar
system. An effective quantitative way to locate pollution sources distribution was paved with the
portable lidar system after validation by the mass concentration of suspended particulate matter from
a ground air quality station.

Keywords: lidar; dual-field-of-view (FOV); geometric overlap factor (GOF); blind zone; transition
zone; aerosol; mass concentration; stereo-monitoring networks

1. Introduction

The gradient of energy distribution affects the evolution of the atmospheric boundary layer (ABL),
and mainly induces the uneven distribution of aerosol and the formation and deterioration of air
quality [1–5]. The transport of dust storms and smoke has caused severe regional air pollution on
several occasions [6–8]. Laser detection and ranging (lidar), as an active remote-sensing technique,
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is often utilized to detect and identify the physical properties, shapes and particle-size distribution
of aerosols with a high spatial and temporal resolution from ground stationary lidar networks [9,10],
mobile platforms [11], aircrafts [12] or satellites [13]. However, due to a monostatic receiving field and
“geometric overlap factor (GOF)”, the hundreds of meters of blind zone and the transition zone in
traditional Mie-lidars [14–20] always lead to a difficulty in probing aerosols, especially in the lower
troposphere [21–23]. A few groups have developed side-scattering imaging technologies [24–27] or
multi-field-of-view (mFOV) techniques [28,29] to overcome such difficulties. However, the former
methods are limited as the detection range ignores important information from the distant atmosphere,
and the latter methods are laboratory instruments that are difficult to move. In this study, a compact
portable dual-field-of-view (FOV) lidar prototype aimed at narrowing the transition zone is demonstrated.
A reliable inversion method for determining the vertical and horizontal distributions of aerosols within
5 km is provided. Field experiments were also conducted to verify the applicability of the dual-FOV
lidar for studying lower-atmosphere air pollution and quantitatively assessing the distribution of
emission sources. With this scanning lidar, the pollution distribution near ground can be identified with
no-blind-zone and quantitatively. The established lidar network with this kind of lidars can be used to
study the pollution transport pathways.

2. Materials and Methods

2.1. Dual-FOV Lidar System

The system framework of the proposed dual-FOV lidar is shown in Figure 1. A homemade laser
source provided a center wavelength of 532 nm and a fluctuation of ±0.3 nm. The single-pulse energy
was 400 μJ. The repetition rate was 2–7 kHz. The linear-polarized laser beam has a divergence of
0.1 mrad collimated by a 10-times beam expander and shot into the air. The laser source with a green
wavelength of 532 nm and a higher single-pulse energy from sophisticated commercial lasers was
chosen to produce a higher signal-to-noise of observations and a less error of the extinction coefficients
of aerosol.

 

Figure 1. Systematic framework of the dual-field-of-view (FOV) laser detection and ranging (lidar).

The primary FOV’s Mie backscattering signals were collected by a Cassegrain-type telescope,
and the secondary FOV’s signals were collected by a Newtonian-type telescope at the same time.
The primary telescope was designed with a diameter of 150 mm, a focal length of 700 mm, and an
FOV of 1 mrad. The secondary telescope was designed with a diameter of 30 mm, a focal length of
118 mm, and an FOV of 8 mrad. A spacing of 25 mm was maintained between the optical axes of
the two telescopes. The distances of the primary FOV optical axis and secondary FOV optical axis to
the laser emitting axis were 121, and 58 mm, respectively. The intersection angle of the two optical
axes was 0.2–0.4◦. This intersection angle was adjustable and rather important to the performance
of the lidar’s blind zone and transition zone. A typical GOF of the traditional dual-axis Mie-lidar is
shown in Figure 2a and the calculated GOFs of the two FOVs of this lidar system are illustrated in
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Figure 2b. The GOF η of the lidar in Figure 2a depends on the parameters of the laser divergence angle,
receiving FOV, and the distance between laser (transmitter) and receiving telescope. Within a very
short distance from the lidar, the laser beam emitted by the laser does not receive in the telescope’s
field of view. At this time, η = 0, and the receiving telescope cannot receive the atmospheric backscatter
light. This area is called the blind zone of the lidar. Far away from the blind area, the emitted laser
beam gradually enters the receiving field of view. Currently, η gradually increases from 0, but less
than 1. The atmospheric backscattered light is only partially received. This area is called the transition
zone of lidar. Far away from the transition region, the emitted laser beam is completely contained in
the receiving field of view. At this time, there is always η = 1, and all the backscattered light in the
atmosphere is received. From Figure 2b, it is demonstrated that a larger blind zone of about 75 m in
primary FOV comparted with less than the 15 m of blind zone in the secondary FOV. It also illustrates
that the transition zones of primary and secondary FOVs were 115.5, and 12.4 m, respectively. Here,
we ignored the effects of the intersection angle of the secondary FOV in the GOF calculation.

 

Figure 2. (a) The typical geometric overlap factor (GOF) of the traditional dual-axis Mie-lidar and (b)
the calculated GOFs of primary and secondary FOVs. The effects of the intersection angle were ignored
in the calculation of the secondary FOV.

The polarized backscattered signals, collected by the primary FOV, traveled through an iris, a
collimator, and a polarized beam splitter (PBS). After passing through the PBS, parallel and perpendicular
signals went through two narrow-band filters with a bandwidth of 1.6 nm and an optical density of 5
to suppress the scattered light. The depolarization ratio was retrieved followed by the reference [14].
The signal in the secondary FOV passed through an iris and a narrow-band interference filter. All
these three signals were detected by three photo multiplier tubes (PMTs). An amplifier and a 16-bit
analog-to-digital converter were used to amplify and digitize the three-channel electrical signals.
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The data-acquisition rate was 20 MHz, and the transit time of PMTs was 2.7 ns. An industrial computer
was embedded to save the raw data files. An outside view of the lidar, with detailed module
identifications, is shown in Figure 3. The total weight of the lidar, including a scanning platform, which
supports the three-dimensional (3-D) scanning of aerosols, was 65 kg. This portable lidar system is
flexible for mobile applications and station observations.

 

Figure 3. Outside-view of dual-FOV lidar. Front view of dual FOV lidar (left) and field-experiment
view of dual FOV lidar (right).

2.2. Evaluation and Joining of the Signals from the Two FOVs

The backscattering range corrected signals (PRR), received by the two FOVs, are shown in
Figure 4. The primary FOV’s signal (indicated by the black-square line in Figure 4) illustrated a higher
signal-to-noise ratio (SNR) over 10 above 2 km. The strong intensity at 4.5 km referred to clouds. Many
tiny peaks in the range of 0.75 km to approximately 4.5 km suggested more than 5 layers of aerosol
distribution at the lower atmosphere. For the returned secondary FOV signal (red-dot line in Figure 4),
a much higher SNR over 8 was shown below 2 km. Compared with the primary signal, sophisticated
structures were clearly shown under 1 km.

Figure 4. Intensities of backscattering range-corrected signals (PRR) from primary FOV (black square
line) and secondary FOV (red dot line). A case of the primary (black square line) and secondary FOV
PRR signal (red dot line) at the combining region of 0.6~0.75 km is shown in the sub-chart.

To acquire a complete signal of dual FOV lidar, a careful joining evaluation of primary and
secondary FOV signals was conducted thoroughly along the laser-beam path. An optimum combination
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interval with the most relevant linearity between the signals of the two fields was determined by the
following Equation (1)

O(r) =
m+Δn∑
i=m

{
[aPs(r) + b] − PP(r)

}2 (1)

where O(r) is the square loss function of {Ps(r), Pp(r)} at the range of r. m is the joining start-point of
the combination interval, Δn is the combination length, Ps(r) is the intensity of the PRR signal of the
secondary FOV, and Pp(r) is the intensity of the PRR signal of the primary FOV. The intensity ratio of a
and the slop of b will be determined by conducting a non-linear least square method.

A case is shown in Figure 4. Here, the combination interval was determined at 0.6~0.75 km
(sub-chart in Figure 4), with a mean intensity ratio of 1212.7 and a minimum standard deviation of
29.2. The signal from the primary field over 0.75 km and the signal under 0.75 km from the secondary
field corrected by the intensity ratio were composed to a complete return backscattering signal of the
dual-FOV lidar. The original primary-field signal, the corrected secondary-field signal (multiplied by
the intensity ratio), and the combined signal are illustrated in Figure 5. It is obvious that the combined
signal retained excellent characteristics of the primary-field and secondary-field signals. In this way,
the SNR of the entire signal exceeded 8, which was advantageous to inverse the extinction coefficients
of aerosol. Although, different combination intervals will be different for every raw lidar signal, the
combination length of 150 m was fixed in inversion procedure with a resolution of 7.5 m. In this lidar
system, the signals’ joining start-points are always located below 1 km.

Figure 5. Intensities of combined PRR signal (blue triangle line), primary FOV PRR signal (black square
line), and secondary FOV PRR signal (red dot line) of dual-FOV lidar.

2.3. Evaluation of the Blind Zone and the Transition Zone of Dual-FOV Lidar

The blind zone and transition zone of this dual-FOV lidar system can be checked from the PRR of
the secondary FOV. We aligned the laser beam parallel to the ground surface to measure the PRR signal,
which is shown in Figure 6. This figure shows that the blind zone decreased to 0 m, and the transition
zone was 60 m. This measured no-blind-zone was mainly due to the alignment of the intersection
angle of the secondary FOV axis and the transmitter axis.
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Figure 6. Evaluation of the blind zone and transition zone in dual FOV lidar with the parallel returned
PRR signal of secondary FOV.

2.4. Retrieval of the Vertical Profile of Aerosols

The Fernald method [30,31], using the lidar equation given in Equation (2), was used to retrieve
the vertical profile of aerosol extinction coefficients from the returned signals, which had been created
by joining together the signals from the primary and secondary FOVs:

P(z) =
C · E · [βm(z) + βa(z)] · exp {−2

∫ r
0 [αm(z′) + αa(z′)]dz′ >}

z2 . (2)

Here, P(z) is the received power from altitude z. C is lidar system constant, E is the laser emitting
pulse energy, and βm(x) and βa(z) are the backscattering coefficients of the atmosphere and aerosol at
the range z, respectively. While, αm(z) and αa(z) are the atmospheric extinction coefficient and aerosol
extinction coefficient at the range z, respectively.

2.5. Retrieval of Horizontal Distribution of Aerosols

To implement the mapping of the near-surface aerosol level density distribution, a combination
retrieval algorithm of the Fernald method and the slope method [32] was applied in the lidar Equation (2).
The inversion procedure was as follows and the flow chart is illustrated in Figure 7.

1. At an initial point Zi, the position with an SNR that exceeds the threshold, along with each
combined return signal, was determined;

2. Then, the combined returned signal was divided into a series of parts from the origin point Z0 to
initial point Zi as follows: part 1, Z0~[Z0 + Δz]; part 2, [Z0 + δz]~[Z0 + Δz + δz]; . . . part n, [Z0 +

(n − 1) × δz]~[Z0 + Δz + (n − 1) × δz], etc., where n = 1, 2, . . . ; Δz is the step of the interval and δz
is the minimum spatial resolution of this lidar system;

3. The slope method [32] was applied to each part. Pairs of both, aerosol extinction coefficients αn

and the Pearson coefficient γn were returned from each part;
4. Finally, the pair of {αf, Zf} with the optimum γf was applied as boundary conditions in the Fernald

solutions. The forward-integral and backward-integral results provide the entire profile of aerosol
extinction coefficients in the horizontal distribution.

Here, the step of the interval Δz is closely related to the spatial resolution δz of the lidar system.
In this study, an interval step of 75 m, which is 10 times δz, was chosen in the inversion procedure. The
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SNR threshold was chosen to be 5. The extinction-to-backscatter lidar ratio is an important factor for
solving lidar Equation (2). A lidar ratio of 50, which is the representative value for continental aerosol
detection at 532 nm, especially in eastern Asia [33,34], was applied in the lidar Equation (2).

return: { f, f}

Combined PRR signal

Zi

Part n: [Z0+(n-1)* z, Z0+ z+(n-1)* z]
n=1, 2, 3...

Threshold 
of SNR

z, z

Slope 
method

{ n, n}

{Z0+ z+(n
-1)* z}  Z i

Yes

NO, n=n+1

Fernald 
method

a

 

Figure 7. Flow chart of inversion procedure of dual-FOV lidar. Zi is the initial position, whose SNR
exceeds the threshold. Δz is the step of the interval and δz is the minimum spatial resolution of this lidar
system. {αn, γn} are the aerosol extinction coefficients inversed by the slope method and the Pearson
coefficient at part n. {αf, γf} are the optimum aerosol extinction coefficients with the maximum Pearson
coefficient at part f. αa is the extinction coefficient of the aerosol profile inversed by the Fernald method.

3. Results and Discussion

3.1. Vertical Distribution Observation of Aerosols

The vertical observation of aerosols with this dual-FOV lidar was performed on 14 April 2019, at
Wuxi, Jiangsu, China. In the data analysis, the time coordinate used was local standard time (LST),
which equates to coordinated universal time (UTC) +8 h. The lidar was set on the roof of an office
building, which was approximately 30 m above ground level. A typical diurnal variation of the aerosol
extinction coefficients is shown in Figure 8a. Aerosols were mainly distributed below 2 km in the early
morning and night. The maximum extinction coefficient was close to 2 km−1 and was observed after
22:00. During the daytime, the atmospheric boundary layer (ABL) increased from 1 km at 8:00 to 2.3 km
at 13:00, and the ABL decreased to 800 m at 20:00. From 7:00. Transporting aerosol layers at 1.5~2.5 km
were also detected, and these layers mixed with the boundary layer at noon, which increased the
extinction coefficient to 1 km−1. The maximum extinction coefficient reached 1.5 km−1 at approximately
11:00. These tiny structures of aerosol distribution below 3 km are shown in Figure 8b. Cloud layers
appeared from dawn to 18:00, with a spread range of 3~5 km, and the extinction coefficients are larger
than 5 km−1. Then, the extinction coefficients of clouds at noon decreased to approximately 2 km−1.
High-altitude clouds were also observed at 19:00 at 12 km. The depolarization observation from
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this lidar system is shown in Figure 8c. The depolarization ratio is significant to identify the aerosol
types that include haze, dust, smoke, volcanic emissions, and particles released through pollution
(e.g., carbon-based) or by the surface of the ocean, and those created by gas-to-particle conversions [14].
The aerosol distribution below 2.5 km had a depolarization ratio less than 0.15 mainly dominated by
fine particles, and a depolarization ratio of more than 0.6 referred to the cloud distributions at 3~5 km
and 12 km.

Figure 8. Vertical profile of aerosol detected by dual-FOV lidar. (a) Aerosol extinction coefficients in
15 km. (b) Aerosol extinction coefficients in 3 km. (c) The depolarization coefficients at 532 nm on 14
April 2019.

3.2. Horizontal Distribution Mapping of Aerosols

Field horizontal scanning experiments were conducted in the Shandong Province, China. The lidar
station (LS) was set up on the roof of a primary school, which was 22 m above ground level in Hanzhuang
Town, Jining City. Weishan Lake is located to the west of the LS. Some industrial plants are scattered
on the south of the LS. Farmland is located at both, the north and the east of the LS. A national air
quality station (AQS), Hanzhuang Station, is located 272 m northwest of the LS. This station provides
in situ data of O3, NO2, SO2, CO, PM10 and PM2.5. Meteorological parameters, i.e., the wind speed
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and wind direction, were also measured. The mass concentration of particulate matters ρ(PM10) and
ρ(PM2.5) at the AQS were measured by TEOM™ (Thermo Scientific, Waltham, MA USA). The layout of
the LS and AQS is shown in Figure 9.

Figure 9. Horizontal extinction coefficient distribution of aerosols at 1:00, 31 March. Sub-chart
illustrated the aerosol distribution in the region between lidar station (LS) and air quality station (AQS)
on 31 March. (Δ, the position of LS. ×, the position of AQS).

The scanning parameters of the lidar system were set as follows. The elevation angle was fixed
at 5◦, and the azimuth angle was 0~360◦. The repetition rate of the laser pulses was selected to be
7 kHz. The scanning angle resolution was 2◦. Each returned signal was acquired with 150,000 times
of the accumulation of the laser pulses. A total of 180 profiles were obtained for each cycle-scanning
every 1.5 h. The scanned extinction coefficients of the aerosols were overlaid on the maps using a
geo-information system (GIS).

One sample of aerosol distribution scanning on the early morning of 31 March is shown in Figure 9.
It is noted that the aerosols were steadily suspended in the range of 2 km to the southwest, south and
southeast of the LS. These areas are occupied by many large steel and iron factories and chemical plants.
These pollution sources strongly contribute to the ρ(PM) at the AQS with a southeast wind direction.
In Figure 9, a pollution mass with an approximate length of 5 km was observed 2~2.5 km north of
the LS. The right-wing of this belt significantly influenced the ρ(PM) at the AQS. The corresponding
ρ(PM10) increased to 135 μg/m3 (Figure 10). The overhead extinction coefficient from the lidar system
was 0.53 km−1. This pollution mass led to air quality deterioration at AQS in the next few hours.

Lidar scanning began at 17:53, 29 March and ended at 07:11, 31 March 2018. In total, 30
cycle-scanning maps were acquired from this field experiment. Time series of ρ(PM) at the AQS
and four lidar scanning results of aerosol distribution are shown in Figure 10. ρ(PM10) and ρ(PM2.5)
decreased from 128 μg/m3, and 27 μg/m3, respectively, at the beginning of the observation (upper panel
of Figure 10). The corresponding lidar scanning illustrated few particulate matters around the AQS, and
the overhead extinction coefficient of the AQS was 0.12 km−1 (lower panel Figure 10a). The ρ(PM10)
and ρ(PM2.5) climbed up to 114 μg/m3 and 47.4 μg/m3 at 08:00, 30 March (upper panel of Figure 10).
The lidar observation at 07:23–08:50 confirmed the accumulation of aerosols over the AQS, with an
overhead extinction coefficient of 0.21 km−1 (lower panel Figure 10b). From 23:00, 30 March, the ρ(PM10)
and ρ(PM2.5) climbed steadily from 122 μg/m3 and 41 μg/m3 to 160 μg/m3, and 109 μg/m3, respectively,
at 07:00, 31 March, the end of lidar scanning (upper panel of Figure 10). At this stage, the lidar maps
show that the aerosols were enriched toward the AQS and increased the PM mass concentrations.
The corresponding overhead extinction coefficients were 0.43 km−1 at 23:00, 30 March and 0.63 km−1 at
06:00, 31 March (lower panel Figure 10c,d).
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Figure 10. Time series of ρ(PM10), ρ(PM2.5) of the air quality station (AQS), and the overhead extinction
coefficients of AQS from lidar (upper panel) and the aerosol mappings from lidar at Hanzhuang at
17:53–19:20, 29 March (lower pane (a)), 07:23–08:50, 30 March (lower pane (b)), 22:58, 30 March–00:25,
31 March (lower pane (c)), and 05:43–07:11, 31 March (lower pane (d)) (Δ, the position of lidar, LS. ×,
the position of AQS).

3.3. Quantitative Evaluation of Aerosol Distribution

Mass concentration mapping of aerosols from the lidar system is an ideal choice for supporting
environmental management, especially for air quality modeling simulations that rely on the following
three advantages: (1) A higher spatial and temporal resolution of mass concentrations; (2) a greater
observation range in both the vertical and horizontal directions; and (3) easy calibration, validation by
an array of standard point instruments at ground level, and the establishment of a data set with data
quality assurance.

Here, a nonlinear relationship can be fitted with the ρ(PM10) mass concentration at the AQS and
the overhead extinction coefficients αa from lidar scanning. This nonlinear relationship is shown
as follows,

ρ(PM10) = κ · αa
ζ + C (3)

where κ, ζ, and C are the fitted parameters.
Using 30 sets of ρ(PM10) and αa values, the fitting relationship of Equation (3) is determined and

is illustrated in Figure 11. The parameters are κ = 148.85 μg/m3, ζ = 0.4, and C = 11.62 μg/m3, and the
Pearson coefficient is 0.91.

The lidar scanning results, the extinction coefficients of the aerosol distributions, can be transformed
to aerosol mass concentration distributions with this fitted relationship. The early morning case on 31
March is shown again but with mass concentrations in Figure 12. The mass concentration of the point
sources 2.5 km southeast of the LS was close to 250 μg/m3. The mass concentration of the “aerosol-belt”
northwest of the LS exceeded 250 μg/m3. Figure 12 also ignored the low SNR regions of extinction
coefficients, especially over the radius of 3 km. The calculated overhead mass concentrations of AQS
were also illustrated in the lower panel in Figure 10. The overhead mass concentrations were 75 μg/m3

(99 μg/m3) at 19:00, 29 March, 91.4 μg/m3 (103 μg/m3) at 08:00, 30 March, 117.8 μg/m3 (129 μg/m3)
at 00:00, 31 March, and 135 μg/m3 (147 μg/m3) at 19:00, 31 March, respectively. A difference from
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the ground sampling measurement from AQS (values in brackets) may be because of water vapor or
relative humidity in Weishan Lake.

ρ 
(

μ

Figure 11. Fitting result with extinction coefficients and ρ(PM10).

 

ρ 
(

μ

Figure 12. Level mass concentration distribution of aerosols at 1:00, 31 March, of dual-FOV lidar (at
altitude of 22 m). (Δ, the position of lidar, LS. ×, the position of air quality station, AQS).

An accurate lidar ratio is important for the retrieval of extinction coefficients. In general, the lidar
ratio varies with height and depends on the shape, size distribution and refractive index of the aerosol
particles, as well as the lidar wavelength. Here, we applied a constant lidar ratio in the lidar equation
for both the vertical and horizontal profile inversion. When we applied the “Fernald-slope” method
to retrieve the horizontal distribution of aerosols, the SNR threshold was a critical definition. In the
future, the effect of the SNR threshold will be discussed. It is noted that the lidar beam probed across
the Weishan Lake surface, and a not negligible factor of water vapor was carefully considered when
we converted the extinction coefficients to mass concentrations. The influence of the water vapor or
the relative humidity on the retrieval of extinction coefficients has been studied by Zhao et al. [35], and
the extinction coefficients here need to be carefully corrected in further studies. In addition, deploying
a PM sampling array instead of a single lidar station and providing a few ρ(PM10) and extinction
coefficient datasets at different positions would be another reasonable measure to minimize the error
of retrieving the mass concentration distribution. If possible, the chemical compositions of aerosols
can be extracted to make a reasonable evaluation of the extinction coefficients.

4. Conclusions

A dual-FOV lidar was designed without a blind zone and a transition zone of 60 m to observe the
lower atmosphere. Dual FOV technology was applied to overcome the traditional obstacles of Mie-lidars
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with hundreds of meters of blind zone. The lidar system is maneuverable and has a weight of less than
70 kg, including the scanning platform. A complete combined returned signal was acquired by carefully
checking for the linear combination interval with the primary FOV signal and the secondary FOV
signal. Vertical profiles of the aerosol field were retrieved with the Fernald method, while the horizontal
distribution of aerosol extinction coefficients was retrieved by combining the slope method and the
Fernald method. Horizontal scanning observations clearly showed the spatial-temporal distribution of
aerosols. The lidar system can provide valuable and accurate pollution information with the mass
concentration mapping, when validated with local quantitative PM measurements. Furthermore,
the corrected mass concentration mapping data can be assimilated into 3-D air quality modeling, in
order to significantly improve the accuracy of regional air quality predictions. This compact portable
lidar system is also an ideal choice for the 3-D atmospheric stereo-pollution monitoring networks
construction in severe polluted regions in the future, i.e., New Delhi in India, Beijing–Tianjin–Hebei
(JJJ) in China, Bangkok in Southeast Asia.
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Abstract: Vertical wind shear (VWS) is one of the key meteorological factors in modulating
ground-level particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5). Due to the
lack of high-resolution vertical wind measurements, how the VWS affects ground-level PM2.5 remains
highly debated. Here we employed the wind profiling observations from the fine-time-resolution
radar wind profiler (RWP), together with hourly ground-level PM2.5 measurements, to explore the
wind features in the planetary boundary layer (PBL) and their association with aerosols in Beijing
for the period from December 1, 2018, to February 28, 2019. Overall, southerly wind anomalies
almost dominated throughout the whole PBL or even beyond the PBL under polluted conditions
during the course of a day, as totally opposed to the northerly wind anomalies in the PBL under
clean conditions. Besides, the ground-level PM2.5 pollution exhibited a strong dependence on the
VWS. A much weaker VWS was observed in the lower part of the PBL under polluted conditions,
compared with that under clean conditions, which could be due to the strong ground-level PM2.5

accumulation induced by weak vertical mixing in the PBL. Notably, weak northbound transboundary
PM2.5 pollution mainly appeared within the PBL, where relatively small VWS dominated. Above
the PBL, strong northerlies winds also favored the long-range transport of aerosols, which in turn
deteriorated the air quality in Beijing as well. This was well corroborated by the synoptic-scale
circulation and backward trajectory analysis. Therefore, we argued here that not only the wind
speed in the vertical but the VWS were important for the investigation of aerosol pollution formation
mechanism in Beijing. Also, our findings offer wider insights into the role of VWS from RWP in
modulating the variation of PM2.5, which deserves explicit consideration in the forecast of air quality
in the future.

Keywords: PM2.5; radar wind profiler; Beijing; wind shear
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1. Introduction

Particulate particle with an aerodynamic diameter of 2.5 μm or less (PM2.5), mainly originated
from industrial emissions and vehicle exhaust pollutants, and secondary aerosols forming through
a series of photochemical reactions [1,2] have been shown to significantly affect the atmospheric
environment [3–5], weather and climate system [6–15], and human health [16–19]. Therefore, the PM2.5

pollution and its causes have been increasingly receiving attention in recent years [20,21].
The major drivers for deteriorating or improving PM2.5 pollution are roughly twofold—aerosol

emissions and meteorology—both of which are highly versatile and uncertain. In addition to high
emissions accompanied with the rapid development of urbanization and industrialization, the roles of
meteorological conditions, including large-scale synoptic patterns [22–26], and local meteorological
conditions in the planetary boundary layer (PBL) [27–32] have been well recognized able to modulate
the PM2.5 concentration. For instance, Tai et al. [27] revealed that the local meteorological conditions
could explain up to 50% of the daily variability of PM2.5 in the USA from 1998 to 2008. In 68 major
cities of China, ground-level PM2.5 were found to be broadly associated with local meteorological
factors at seasonal, yearly, and regional scales [33]. Among various meteorological factors, the surface
wind speed was one of the variables modulating ground-level PM2.5 over the Yangtze River Delta
region of China, which showed that PM2.5 decreased approximately by -2.42 μg m−3 for a 1 m s−1

increase in wind speed [34]. In Beijing, the heavy pollution events frequently occurred under the calm
wind conditions, which was generally associated with stable atmospheric stratification and shallow
PBL [35–38]. The presence of high pressure in northwest parts of Beijing, linked to strong northwesterly
winds, was closely associated with a significant drop in PM2.5 concentrations in Beijing [4]. Besides, the
changes in circulation induced by local mountain-valley and urban heat island setting in Beijing and
its surrounding areas were found to be able to modulate the diurnal variations of PM2.5 in Beijing [32].

Among others, reanalysis data and model simulations were one of the most used approaches
to analyze the variation of wind with different height in the lower troposphere and its impacts on
air pollution, revealing a significant role of vertical wind shear (VWS, an important indicator of
dynamically vertical mixing) in modulating particulate matter pollution [37,39,40]. In recent years,
there has been a surge of interest in observational investigation of VWS in connection with atmospheric
pollution, most of which are based on Doppler wind lidar [26,39]. However, the Doppler wind lidar has
limited capability to offer vertically resolved wind observations under pretty clean or foggy conditions.
To date, the associations between vertical wind profile and surface particulate matter concentrations
have yet to be fully understood in Beijing.

Fortunately, the new-generation radar wind profiler (RWP) deployed by the China Meteorological
Administration (CMA) in Beijing [41] offers us the best opportunity to quantify the long-term effect
of local wind vector profiles and VWS on ground-level PM2.5 pollution in Beijing. Thus, this study
aims to explore the impacts of wind profiles and VWS on the wintertime PM2.5 in Beijing based on
high-resolution RWP observation along with ground-level PM2.5 monitoring. The remaining contents
of this work proceed as follows. In Section 2, the measurements of RWP, other related weather data,
and ground-level PM2.5 are described in detail. In Section 3, the impacts of wind and VWS on PM2.5

pollution in Beijing are analyzed and discussed. Finally, the main findings are summarized in Section 4.

2. Data and Methodology

2.1. Study Area

Beijing, the capital of the People’s Republic of China, is located in the north part of the North
China Plain (NCP) of China and covers an area of around 16,410 square kilometers. As shown in
Figure 1a, there exists a large amount of aerosol emission sources surrounding Beijing with the recent
rapid economic development throughout China, especially in eastern China. Beijing is surrounded
by the Yanshan Mountains to the north, and by Taihang Mountains to the west and northwestern
(Figure 1b). In terms of the climate in Beijing, it typically belongs to a semi-humid continental climate
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in the north temperate zone, characterized by hot and humid summers due to the subsidence caused
by the subtropical high, and cold, windy and dry winters which is mainly under the influence of the
vast Siberian anticyclone [41–43]. Due to the huge amount of anthropogenic emission in the NCP (see
Figure 1a), the atmospheric pollution (especially the PM2.5) in Beijing has been intensively analyzed in
recent years [38,39,41,44].

Figure 1. The spatial distribution of (a) particulate particle with an aerodynamic diameter of 2.5 μm
or less (PM2.5) emissions (mainly in the transportation, agriculture, industry, power and residual
sectors) during winter in 2016, as acquired from the multi-resolution emission inventory for China
(http://www.meicmodel.org/), and (b) monitoring stations in Beijing overlaid with topography (color
shading). The red squares, blue circles, and black plus refer to the locations of radar wind profiler
(RWP), PM2.5, and radiosonde (SOND) sites, respectively. The administrative boundary of Beijing is
denoted by the black solid lines.

2.2. Radar Wind Profiler Measurements

The RWP is a type of remote sensing instrument that detects and processes vertical-resolved
wind field information by transmitting and receiving electromagnetic beams in different directions.
This instrument can provide a variety of data products, including the profiles of horizontal wind
speed and direction, and vertical velocity. Specifically, the RWP data used here were collected
from two sites (marked by the red squares in Figure 1b), including the Tongzhou site (116.29◦ E;
39.99◦ N) and Chaoyang site (116.47◦ E; 39.81◦ N). Both RWPs deployed in Beijing are the CFL-16
profiler, which provides 25 levels of wind speed and direction below ~3 km above ground level
(AGL) with a vertical resolution of 120 m, beginning at 150 m (AGL). The measurements of wind
are taken at 6 min intervals, and the detailed specifications of the RWP are given in Table 1. Prior to
further analysis, the raw data have to undergo strict quality control for data consistency, continuity,
and deviation [41,45,46]. To match the hourly PM2.5, the original 6-min RWP measurements were
aggregated into hourly data. Our study period covers the whole boreal winter of 2018 (December
of 2018 through February of 2019). To exclude the effect of wet deposition, all the measurements
mentioned in this study refer to those taken on non-precipitation (i.e., rain, hail, or snow) hours, unless
otherwise noted. The hourly precipitation events with precipitation amounts larger than 0.1 mm are
generally defined as precipitation hours [44].

2.3. Ground-level PM2.5 Concentration Measurements

In this study, the aerosol pollution in Beijing is denoted by hourly ground-level PM2.5 concentration
measurements, collected from seven air quality sites (marked by the blue circles in Figure 1b; Table 2)
of the Ministry of Ecology and Environment of China. At each monitoring site, the hourly PM2.5 is
measured using the tapered element oscillating microbalance method and the beta absorption method.
The systematic uncertainty of ground-level PM2.5 mass concentration at these air quality monitoring
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stations was controlled within 15% [47]. To avoid the uncertainties caused by aerosol heterogenous
distribution, averages were taken on the PM2.5 measurements from all these seven sites.

Table 1. Summary of the operating and sampling characteristics of the CFL-16 Radar Wind Profiler
(RWP) deployed in Beijing.

Parameter Range of Respective Values

Direction accuracy ≤ 10
Speed accuracy 1 m s−1

Vertical resolution 120 m
Lowest level 150 m AGL

Maximum height 16 km AGL
Operating frequency 445 MHz

Aperture 100 m2

Gain 33 dB
Peak power 23 kW
Pulse width 0.8 us

Averaging time 6~60 min

Table 2. Basic information for observation stations.

Station Type Station Name Position Elevation (m) Observation Time Resolution

RWP 54399 116.29◦ E;
39.99◦ N 46.9 WS, WD 1 hour

RWP 54511 116.47◦ E;
39.81◦ N 32.5 WS, WD 1 hour

SND Beijing (BJ) 116.47◦ E;
39.81◦ N 31.3 T, P

(to calculate PT)
launched twice a day
at 0715 and 1915 BJT

MEE Haidian (HD) 116.32◦ E;
39.99◦ N - PM2.5 1 hour

MEE Aoti (AT) 116.41◦ E;
40.00◦ N - PM2.5 1 hour

MEE Guanyuan (GY) 116.36◦ E;
39.94◦ N - PM2.5 1 hour

MEE Dongsi (DS) 116.43◦ E;
39.95◦ N - PM2.5 1 hour

MEE Wanshou (WS) 116.37◦ E;
39.87◦ N - PM2.5 1 hour

MEE Nongzhanguan
(NZG)

116.47◦ E;
39.97◦ N - PM2.5 1 hour

MEE Tiantan (TT) 116.43◦ E;
39.87◦ N - PM2.5 1 hour

Note that RWP (Radar Wind Profiler), MEE (Ministry of Ecology and Environment), and SND (Radiosonde) stand
for wind-profiler site, air quality site of the Ministry of Ecology and Environment, and radiosonde site, respectively.
(WS: wind speed; WD: wind direction; Temperature: T; Pressure: P; Potential temperature: PT; Aerodynamic
diameter smaller than 2.5 μm: PM2.5).

2.4. Radiosonde and Other Meteorological Data

The radiosonde soundings routinely measured in Beijing (116.47◦ E; 39.80◦ N, marked by the
black cross in Figure 1b) were also collected to characterize the temperature inversion in association
with aerosol pollution. As stated in our previous studies [29,48], the sounding balloons in China are
launched twice per day at around 0800 and 2000 Beijing time (BJT = UTC + 8 h). It follows that the
sounding measurements at 0800 BJT were compared with the hourly RWP and PM2.5 data at 0800 BJT.
As illustrated in Figure 1b, all these meteorological stations and PM2.5 monitoring sites are evenly
distributed to represent the hourly meteorological conditions in the whole urban area of Beijing well.

2.5. Air Mass Back Trajectory Model

Air masses related to regional or synoptic meteorological conditions could be responsible for the
atmospheric transport of aerosol particles in the vertical and horizontal directions [26,49]. As such,
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we identified the main transport pathways of aerosol pollutants from surrounding regions to Beijing
using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) [50]. The HYSPLIT
developed by the National Ocean and Atmospheric Administration (NOAA)’s Air Resources Laboratory
has been extensively used for the analyses of transboundary transport and dispersion of aerosol [51].
Based on the HYSPLIT and The GDAS (Global Data Assimilation System) reanalysis data, the frequency
distribution and cluster mean of 24-h backward trajectories of each day for the period from December
1, 2018, to February 28, 2019, were calculated, respectively. The trajectory endpoint was set in the
urban area of Beijing (116.37 ◦E, 40.09 ◦N) with a height of 100 m above ground level (AGL).

2.6. Methodology

In order to avoid the effects induced by the seasonal variation of aerosol at specific sites and by
the spatial variation among different sites within the same region, hourly PM2.5 concentrations for a
given site are normalized using the monthly mean of each site and year according to the approach
by Wang et al. [52]. The PM2.5 dataset is then grouped into three subsets, each of which has the same
number of samples. The lower and upper terciles of normalized PM2.5 refer to the clean (bottom 1/3) and
polluted (top 1/3) conditions, respectively. In this way, comparison analysis can be performed between
clean and polluted atmospheric conditions, and good sampling statistics can be maintained [11,53],
even though the critical threshold of normalized PM2.5, which is used to distinguish between the clean
and polluted categories, differs by various time scales. Besides, hourly wind anomalies with 120 m
resolution in the vertical are calculated and then used in the subsequent analyses in diurnal association
with ground-level PM2.5 concentration. This allows us to do a more detailed analysis of the wind
variation for various PM2.5 pollution levels.

The VWS has been found to play important roles in the dispersion of air pollutants, and thus was
calculated here to check its effects on PM2.5 variability. Therefore, the bulk shear, which refers to the
magnitude of the bulk vector difference (top minus bottom) divided by height [54–56], is calculated
as follows:

VWS =

√
(uz1 − uz2)

2 + (vz1 − vz2)
2

(z1− z2)
× 1000 (1)

where VWS is the vertical wind shear (units: m/(s · km)), uz1 and uz2 represent the zonal wind at the
height of z1 and z2, respectively; and vz1 and vz2 represent the meridional wind at the height of z1 and
z2. z1 is the top height and z2 is the bottom height.

To enhance the visual interpretation, daily 24-h period is divided into eight sub-period at 3-hour
intervals, which is defined as follows [57,58]: late night (0000 – 0300 BJT), early morning (0300–0600
BJT), morning (0600–0900 BJT), late morning (0900–1200 BJT), early afternoon (1200–1500 BJT), late
afternoon (1500–1800 BJT), evening (1800–2100 BJT), and night (2100–2400 BJT).

Additionally, the bivariate polar plot has been used, combining wind measurements from RWP
and PM2.5 measurements in Beijing, which is expected to provide insight into the sophisticated
relationship between wind and PM2.5 [59,60].

3. Results and Discussion

3.1. Thermodynamic and Meteorological Variables Related To PM2.5

Figure 2 shows the time series of observed daily PM2.5 concentrations with vertically
thermodynamic (temperature) and dynamic (wind) variables in Beijing simultaneously observed
for the period from December 2018 to February 2019. The heavy PM2.5 pollution tended to occur
more frequently on the days with low near-surface wind speed, and warmer air at the top of PBL
(Figure 2b,c), given the wintertime climatological PBL height of 1–1.5 km in Beijing [61]. This generally
does not favor the vertical ventilation and horizontal dispersion of aerosols. For example, during
the pollution episode from December 14, to 18 of 2018, the near-surface wind speed in Beijing was
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significantly lower than those of pre- and post-periods, which was accompanied by strong thermal
inversion layer. The southerly winds prevailed in the lowest 1–2 km of PBL (Figure 2a), which tended
to transport aerosol particles from Hebei, a significant source region of aerosol emission to the south of
Beijing (Figure 1a).

The most severe haze episode occurred during the study period persisted at least three days,
starting from 12 January 2019 until 14 January 2019, during which PM2.5 exceeded 100 μg m−3. A most
extremely high concentration of greater than 200 μg m−3 was observed as well. Coincidently, there
existed weak southwesterly winds, and strong temperature inversion in the PBL, both of which
contributed to this atmospheric pollution.

Figure 2. (a) Time series of the horizontal averaged wind vectors as derived from the Radar Wind
Profiler (RWP) in Beijing for the altitude ranges from the surface to 1 km (SFC–1 km), 1–2 km, and 2–3
km above ground level (AGL), which are denoted as the red, green, and blue vectors, respectively.
The wind arrow is the direction towards which the wind is blowing, and the width of the wind vector
is proportional to the wind speed. Time-height cross-sections of (b) potential temperature (PT, color
shaded) from radiosonde measurements and (c) horizontal wind speed (color shaded) from RWP,
overlaid with observed ground-level PM2.5 concentration (red lines). All these measurements were
obtained at 0800 BJT during the period December 1, 2018, to February 28, 2019.

3.2. Synoptic-Scale Circulation and Backward Trajectory Statistical Analysis

In this section, we will examine the role of synoptic-scale meteorology underlying the polluted
and clean episodes observed during the study period in Beijing. The first step to accomplish this is to
determine the climatological wintertime winds at 925 hPa and 850 hPa pressure levels over Beijing
and its surroundings. As shown in Figure 3a,c, weak westerly or southwesterly winds dominated
both 850 hPa and 925 hPa pressure levels during the high aerosol-loading winter days in Beijing.
By comparison, the wind fields at 850 hPa and 925 hPa were characterized by strong northwesterly
winds over Beijing, which generally led to frequent intrusion of cold air mass (Figure 3b,d).
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This cold advection could bring in cold and clean air from the northern regions without much
anthropogenic emission sources (Figure 1a), thus resulting in low PM2.5 concentration in Beijing,
such as the extremely clean atmospheric episode occurring during December 27 to 30, 2018 (Figure 2).
By contrast, less lapse rate of temperature and southwesterly winds featured the synoptic conditions
favoring the accumulation of PM2.5 (Figure 3a,c), well corroborating the vertical wind measurements
in Beijing shown in Figure 2. Our findings were broadly consistent with the relationships between
PM2.5 concentration, temperature, and wind speed in winter found in other regions of the NCP [62].

Figure 3. Spatial distribution of the wind field (black arrows, vector), superimposed by temperature
(shaded) at 925 hPa (a,b) and 850 hPa (c,d) pressure level under polluted (left column) and clean (right
column) conditions, respectively. All data are from the National Center for Environmental Prediction
(NCEP) global Final (FNL) reanalysis. The areas highlighted with red lines represent the region of
interest (Beijing), which is the same as the region highlighted with black lines in Figure 1a.

To further our understanding of the long-range transport to particulate matter pollution in Beijing,
the 24-h backward trajectories were calculated and clustered. As illustrated in Figure 4, the prevailing
northwesterly winds dominated the contribution in terms of transboundary transport (72% of all
24-h back trajectories). Interestingly, a small fraction of the trajectories (28%) came from the south,
which was linked to most of the polluted episodes in Beijing during December 1, 2018, to February
28, 2019.

3.3. Diurnal Variations in Vertical Winds

Figure 5 illustrates the diurnal variations of wind speed and direction in Beijing for the heights
ranging from ground-surface up to 3 km AGL under mean, polluted and clean conditions and
their corresponding hodographs, and so do the anomalies of wind profile under polluted and clean
conditions relative to the average wintertime winds in Beijing.
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Figure 4. The spatial distribution of the trajectory frequency (a), and cluster-mean results of 24-h
backward trajectories (b) calculated by the Hybrid Single-Particle Lagrangian Integrated Trajectory
Model (HYSPLIT) ending at Beijing (116.37 ◦E; 40.09 ◦N, pentagram) at 100 m height AGL during
winter from December 2018 to February 2019. The dots on the trajectories represent time node of 12h,
and the percentage represents the ratio of the number of back trajectories in each cluster to the total
number of back trajectories.

Overall, the mean wind speed was found to increase with height (Figure 5a). Meanwhile, the mean
wind exhibited a pronounced diurnal cycle in the lower PBL (i.e., from the ground surface to 1 km
AGL), and much stronger winds occurred during nighttime near the ground-surface compared with
daytime (Figure 5a), which could be due to much reduced turbulence-related friction. This was
also likely associated with the radiative (nocturnal) cooling in the night, which tended to reduce the
eddy viscosity and momentum transfer from the upper levels, and in turn, lead to decreased wind
speed [63]. However, the wind at the top of PBL or low troposphere exhibited double peaks: one is
midnight and another in the later morning (1000 BJT). Under clean conditions, wind vector veered
with the height between the near ground surface and 1 km AGL, followed by significant backing
above 2 km (Figure 5b). Veering winds in the lowest layers of the atmosphere are most likely the result
of friction-related processes while the backing winds are indicative of cold advection [64], which is
mainly contributed by prevailing northwest winds (Figure 5a).

Under both polluted and clean conditions, the wind profiles showed significant diurnal variation
at all heights, and its amplitude and sign differed greatly in the vertical during a daily cycle (Figure 5c,e),
indicating that the lower part of PBL was characterized by prevailing southerly and northerly winds,
respectively. The hodograph for polluted conditions exhibited smaller vertical shear at most heights,
irrespective of the time of a day (Figure 5d). On the contrary, the curvature of the anticyclone rotation
at above approximately 2 km AGL was significantly larger under clean conditions, resulting in larger
wind shear (Figure 5f), which was most likely due to many more cold waves (Figures 2 and 3d).

Also, there existed significant wind anomalies under polluted and clean conditions (Figure 5g,i).
Coincidently, a clockwise turning of the wind with the height was observed near the ground surface
under polluted condition (Figure 5h), which was indicative of a warm air advection from the south.
In contrast, the backing winds were found near the ground surface under clean conditions (Figure 5j),
confirming the notion of northerlies-induced decreases in aerosol concentration. This highlights
the urgency of consideration of VWS and wind direction in the aerosol pollution and its formation
causes. In particular, under polluted conditions, negative wind anomalies prevailed at almost all
times of the day in the PBL over Beijing, especially during the nighttime, indicating aerosol-induced
changes in radiation reaching the surface could be linked to the dramatical reduction of wind speed.
By comparison, positive southerly wind anomalies emerged during 1000–2000 BJT in the troposphere
above 1.75 km, indicating that there were strong elevated PM2.5 transport paths, which were located at
the heights above the PBL at this time period. Under clean conditions (Figure 5c), positive northerly
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wind anomalies prevailed at almost all height, with the exception of negative wind anomalies above
the PBL at roughly 0600, 1200, and 1900 BJT. This suggested that less aerosol tended to be associated
with northerly winds, which further strengthened the role of cold advection from the northwestern
parts of Beijing in reducing ground-level PM2.5.

Figure 5. Height-resolved diurnal variation of horizontal wind vector under all-sky mean (a), polluted
(c) and clean (e) conditions, and their corresponding anomalies (relative to mean wind) under polluted
(g) and clean (i) conditions in Beijing from December 1, 2018, to February 28, 2019. Also shown are
their corresponding hodographs in the panels (b,d,f,h,j) on the right-hand sides. Note the vectors in
panels (g)–(i) show the resultant wind anomaly direction, and the vector length and color indicate the
magnitude of the resultant wind anomaly relative to the average wintertime winds in Beijing.

3.4. Vertical Wind Shear Under Polluted And Clean Condition

The vertical wind shear is known to be able to strongly influence the vertical mixing process and
resultant changes in aerosol pollutants in the PBL [26]. Figures 6 and 7 show the vertical distribution
of VWS under polluted and clean conditions, respectively. The leading diagonal (top right to bottom
left) denotes the local VWS at each level, whereas the shading in color indicates the magnitude of VWS
at least two consecutive vertical levels. Note that VWS distribution does not take into account the
shear direction.
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Figure 6. Three-hourly averaged vertical wind shear (VWS) computed between different heights
under polluted conditions in Beijing for (a) 0000–0300 BJT, (b) 0300–0600 BJT, (c) 0600–0900 BJT,
(d) 0900–1200 BJT, (e) 1200–1500 BJT, (f) 1500–1800 BJT, (g) 1800–2100 BJT and (h) 2100–2400 BJT, during
the period from December 2018 to February 2019. The X and Y axes represent the top and bottom
height of the VWS bulk, respectively.

Figure 7. Same as Figure 6 but under clean conditions.

Generally, the pattern of the diurnal cycle did not change much when the atmosphere evolved
from clean to polluted conditions, except for the magnitude of VWS. The magnitude of VWS was
found to be much smaller under polluted conditions than that under clean conditions, indicative of
weaker vertical mixing in the presence of high aerosol concentration in the PBL. This, in turn, led to a
stronger accumulation of ground-level PM2.5. On average, the local VWS for the polluted condition
was ~8 m s−1 km−1, as compared to as high as ~10.5 m s−1 km−1 for the clean condition. However, note
that the VWS for polluted conditions between 2.5–3 km and <1.5 km was greater than that under clean
conditions during the afternoon (1200–1800 BJT), which could be related with the positive southerly
wind vector anomalies above 2 km during 1200–1800 BJT (Figure 5b). It implied that strong wind in
the upper level and in the PBL tended to transport PM2.5 from southern Hebei province to Beijing,
further deteriorating the air quality in Beijing through these strongly vertical mixing exchanges (i.e.,
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larger VWS) in the upper level and in the PBL. This finding was in agreement with the observational
evidence from Hong Kong [26]. In addition, the magnitude of VWS (> 5 m s−1 km−1) was small during
the night to morning (1800–1200 BJT) but large during the afternoon (1200–1800 BJT) under polluted
conditions. On the contrary, under clean conditions, the VWS (> 5 m s−1 km−1) was relatively larger
during the night (2100-0600 BJT) than during the day. These differences in diurnal variations of VWS
(> 5 m s−1 km−1) under polluted/clean conditions were probably associated with different integrated
effects of the local circulation (mountain-valley and urban heat island circulations) [14,32] and synoptic
patterns [65,66].

Figure 8 presents the correlation between VWS at different layers and ground-level PM2.5 under
polluted and clean conditions, respectively. It generally exhibits marked differences (even with
opposite signs) in the lowest part of PBL in both conditions. In particular, the correlation coefficients
seemed to be positive for the altitudes from the ground surface up to 2.5 km AGL under polluted
conditions (Figure 8a), which meant the weak VWS near the ground surface or lower part of PBL
observed in Figure 6 favored the accumulation of aerosol. In contrast, the correlation coefficient shifted
from positive to negative as the VWS occurred upward, suggesting that the stronger VWS above the
PBL was linked to lower ground-level PM2.5 concentration. Interestingly, under clean conditions,
a ubiquitous negative correlation was found between VWS and ground-level PM2.5 in the almost
whole lower atmosphere except in the height of 1 km and that above 2.5 km and beyond (Figure 8b).
The increase of VWS tended to be accompanied by enhanced vertical mixing of aerosol, leading
to reduced ground-level PM2.5, which could account for this negative correlation observed for the
clean condition. The exception in height above 2.5 km could be associated with air mass intrusion of
long-range transported aerosol episodes [67], given the dominant height of long-range transboundary
transport being generally above the PBL [68–70].

Figure 8. The correlation coefficient distribution between normalized ground-level PM2.5 and
height-revolved VWS under (a) polluted and (b) clean conditions in Beijing. Gray dots indicate
the Pearson correlation coefficient that is statistically significant at the 90% confidence level. The X and
Y axes represent the top and bottom heights of the VWS bulk, respectively.

3.5. The Dependency of Ground-Level PM2.5 On Vertically Resolved Winds

The bivariate polar plots in Figure 9 showed that the normalized PM2.5 concentration (hereinafter
referred to as NPM2.5) in Beijing varied by wind direction and speed at different heights, including
ground-surface–1km, 1–2 km and 2–3 km. Specifically, at the height of ground surface–1km (Figure 9a),
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high aerosol concentration episodes (HEP, NPM2.5 > 120%) were observed when the cardinal winds
occurred along the NNE–NE, and NNW–WNW directions with speeds of greater than 6 m s−1 and
even up to 10 m s−1. Additionally, the polluted cases were observed when the prevailing cardinal
winds were in the WSW–SSE sector with wind speed 4–6 m s−1, consistent with previous findings [71].
At the heights of 1–2 km, extreme HEPs (i.e., NPM2.5 >200 %) were observed mainly when winds blew
along the SW–SE sector with a speed of <6 m s−1 (Figure 9b). By comparison, HPEs occurred when
the NE–N winds prevailed at moderate to high wind speeds (4–12 m s−1). As the atmospheric height
increased to 2–3km, HEP mainly occurred when the winds were coming from NE–N sector at high
wind speed (12–20 m s−1), and also occurred in the NW sector with a wind speed of 14 m s−1 (Figure 9c).
The surprisingly high NPM2.5 tended to occur in Beijing when the winds blew from WSW–S at weaker
wind speeds (2–6 m s−1). In contrast, the NPM2.5 in the NW sector was found to be significantly
reduced. In general, it was found that a smaller range of direction angle was accompanied by smaller
wind shear at the lower part of the PBL, whereas stronger southerly wind prevailed with larger wind
shear in the upper PBL and even above the PBL under heavy polluted conditions (Figures 5 and 7).

Figure 9. Bivariate polar plot of normalized PM2.5 concentration (in percent) for the altitude ranges
of (a) ground surface to 1 km (SFC–1km), (b) 1–2 km and (c) 2–3 km AGL during the period from
December 1, 2018, to February 28, 2019. The wind directions are denoted by 16 compass direction: N,
NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW. The radial axis represents
wind speed in m s−1, which increases radially outward. The concentration of PM2.5 is scaled by colors.

The region to the south of Beijing was previously recognized to be a key emission source region for
the PM2.5 pollution episodes in Beijing, especially southerly or southwesterly wind prevailed [72–74].
This, in part, was attributed to transboundary PM2.5 transport [28,75]. The results presented here
provided convincing evidence that regional sources largely contribute to PM2.5 below 3 km, where
existed kind of main PM2.5 transport path from south to Beijing, which basically agreed with the
findings from model simulation analysis [76].

Another striking feature we observed here was that a few aerosol pollution episodes occurred
even as the strong northerly or northwesterly winds dominated from the ground surface up to 3 km
AGL (Figure 9). This could be likely linked to the long-range transported aerosol from northwestern
or northeasten China, which was verified or corroborated in previous observational and model
investigations [77].

4. Concluding Remarks

Based on continuous fine-resolution radar wind profiler (RWP) observations, radiosonde
measurements during the winter for the period December of 2018 to February of 2019,
the height-resolved wind vectors were analyzed, along with the impact of vertical wind shear
on PM2.5 pollution in Beijing. The main findings are summarized as follows:
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Overall, the diurnal variations in wind profiles were found to differ greatly when classified by
different ground-level PM2.5 concentrations. Specifically, the southerly wind anomalies dominated
throughout the whole PBL or even beyond the PBL under polluted conditions during the course of
a day, in sharp contrast to the northerly wind anomalies in the PBL under clean condition. More
strikingly, under pollution conditions, the positive anomaly of southerly wind speed mainly occurred
at 1.75 km AGL during 1000–2000 BJT. This favored the transboundary transport originated from
significant aerosol emission source to the south of Beijing, thereby leading to high ground-level PM2.5

concentration in Beijing.
Besides, the ground-level PM2.5 pollution exhibited a strong dependence on the vertical variation

of the wind direction. The VWS tended to be much weaker in the lower PBL under polluted conditions,
compared with under clean conditions, which could be strong ground-level PM2.5 accumulation
induced by weak vertical mixing in the PBL. Notably, the PM2.5 pollution mainly appeared within
the PBL as weak southerly winds prevailed when the relatively small VWS was observed as well.
Above the PBL, strong northerlies winds also favored the long-range transport of aerosols, which in
turn deteriorated the air quality in Beijing as well. This was well corroborated by the results from
synoptic-scale circulation and backward trajectory analysis.

In summary, not only wind profiling but also the VWS at various heights could significantly
modulate the ground-level PM2.5 concentrations. Also, the present work highlighted the role that the
height-resolved wind shear plays in better understanding the wintertime aerosol pollution episodes
in Beijing. To increase the generalizability of the reported associations between aerosol and VWS;
nevertheless, more efforts have to be made to include a much longer time series of observations at
larger spatial domains in the future. More importantly, more wind and VWS measurements from RWP
are desperately needed to be assimilated into the air quality model, which is expected to have great
implications for improving the wintertime air quality forecast in China.
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Abstract: Although some studies reported the impact of black carbon (BC) on the climate over the
Tibetan Plateau (TP), the contribution and mechanisms of BC affecting the water vapor transport to
Tibet are not fully understood yet. Here, utilizing the satellite observations and reanalysis data, the
effects of BC on the climate over the TP and water vapor transport to the Tibet were investigated
by the Community Earth System Model (CESM 2.1.0). Due to the addition of BC, a positive net
heat forcing (average is 0.39 W/m2) is exerted at the surface, which induces a pronounced warming
effect over the TP and consequently intensifies the East Asian Summer monsoon (EASM). However,
significant cooling effects in northern India, Pakistan, Afghanistan and Iran are induced due to the
BC and related feedbacks, which reduces significantly the meridional land–sea thermal contrast
and finally weakens the South Asian summer monsoon (SASM). Consequently, the water vapor
transport to the south border will be decreased due to addition of BC. Moreover, through affecting the
atmospheric circulation, the BC could induce an increase in the imported water vapor from the west
and east borders of the TP, and an increase outflowing away from the north border of the TP. Overall,
due to the BC, the annual mean net importing water vapor over TP is around 271 Gt, which could
enhance the precipitation over the TP. The results show that the mean increase in the precipitation
over TP is about 0.56 mm/day.

Keywords: black carbon; Tibetan plateau; water vapor transport; South Asian summer monsoon;
East Asian summer monsoon

1. Introduction

The black carbon (BC) aerosol emitted from the combustion of some biomass and fossil fuel has a
strong “Greenhouse Effect” by absorbing solar radiation and longwave radiation [1,2] in the atmosphere
with a few days’ lifetime [3,4]. Moreover, the BC can also affect the earth–atmosphere energy balance
through indirect and semi-direct effects [5], having a profound influence on the hydrological cycle and
climate [2,6,7]. However, the uncertainties in estimating the magnitude of the hydrological cycle and
regional climate responses to the BC are still pronounced [8].

During recent years, the aerosol emissions, including the BC over Asia are obviously increasing,
and these particles can be transported to the Tibetan Plateau (TP) by atmospheric circulations [9–11].
The BC could be deposited into snow and exert a pronounced “snow darking” effect [12], and further
affect the radiation budget [13,14]. The annual mean snow albedo direct radiative forcing of BC may
reach 2.9 W/m2 [15], which will reduce the snow albedo and accelerate the melting of glaciers [16–19].
Moreover, the BC over the TP can affect the properties of cloud [20–22], precipitation [22–24] and the
monsoon circulations [25].

Remote Sens. 2020, 12, 231; doi:10.3390/rs12020231 www.mdpi.com/journal/remotesensing91



Remote Sens. 2020, 12, 231

Furthermore, the BC-in-snow effect can induce an increase in surface temperature over the
TP and cause the earlier onset of the South Asian summer monsoon (SASM) [26]. Besides, the
“Elevated Heat Pump” (EHP) effect suggests that the BC can induce an updraft motion with a warm
anticyclone circulation in the upper atmosphere over the TP in late spring or early summer [27,28],
the EHP effect could reduce the SASM in summertime by its dynamic and thermal forcing [28,29].
Additionally, the decreased meridional temperature gradient from the Indian Ocean to Northern India
caused by absorbing aerosols could also reduce the SASM significantly [6,30,31]. On the other hand,
the BC-in-snow effect could enhance the East Asian summer monsoon (EASM) by increasing the
land–sea thermal contrast [26]. The changes in EASM are closely related to the aerosols disturbing
the thermal contrast between land and ocean [32]. Li et al. [33] observed that the greenhouse gases
and aerosols could increase the thermal contrast between the East China and the adjacent sea, and
hence the EASM. The warming effect of BC over East Asia is the main factor, which could induce the
enhanced EASM [34].

Generally, the SASM and EASM are the main dynamic factors in terms of the water vapor transport.
The water vapor can be carried from the ocean to the land by the circulations of SASM and EASM [35],
in which the northward transport is mainly caused by the lower southerly wind [36]. The TP, which is
named the “Asian water tower”, is feeding several major rivers in Asia and providing fresh water for
more than one third of the populations of the world [37], and has been receiving much attention [37–42].
Generally, the water vapor may be gathered in the western and southern TP, and advected to the rest
of the TP [40]. The water vapor could be transported to the TP by upslope transport and up-and-over
patterns [37,38]. In addition, the perturbed cyclone and anticyclone over Lake Baikal are closely related
to the water situations of TP, and the warming in the northwestern Atlantic Ocean is the key factor
contributing to the wetting TP [42]. However, under the global dryland expansion and warming [43,44],
the potential role and mechanism of the BC affecting the water vapor transport and the burden over
TP is poorly studied.

Although previous researchers have revealed that the BC has a pronounced climate effect on the
SASM and EASM, which are closely related to the water vapor transport from the ocean to the TP,
there are few studies focused on the effects of BC on the water vapor transport from the surrounding
to the TP. In this study, the role and mechanisms of BC affecting the water vapor budget over the TP
are investigated by utilizing the CESM, which is fully coupled including atmosphere, ocean, sea ice,
land and land–ice components.

2. Data and Methods

2.1. The Uncertainties and Applicability of Each Data

To evaluate the model performance on the climate and water vapor transport over the TP, the
product of Multi-angle Imaging Spectro Radiometer (MISR) and several reanalysis data were used to
compare with simulations. The resolutions of observations and reanalysis data sets depend on the
assimilation system and the accuracy of the equipment. Before the analysis, we have interpolated
the results of simulations whose resolution is 0.9◦ (latitude) × 1.25◦ (longitude) to the resolutions of
observations and reanalysis data sets.

2.1.1. Multi-Angle Imaging Spectro Radiometer (MISR)

The MISR measures the aerosol optical depth (AOD) at a spatial resolution from 275 to 1100 m
globally. Because the atmospheric path contribution from the surface-leaving radiance can be removed
by taking advantage of differences in multi-angular signatures, the MISR aerosol retrieval algorithm
is less sensitive to surface type especially over the bright surfaces [45]. Therefore, compared with
the ground-based remote sensing, the AOD products from MISR have good accuracy over the TP.
However, MISR has a limited swath coverage that is much too narrow, which has a lower frequency of
observations at the given ground-based site in each orbital cycle. In this study, the MISR-3 product
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derived from multiple orbits monthly with a resolution of 0.5◦ × 0.5◦ [46] was used to evaluate the
simulated AOD by a model.

2.1.2. Cloud and Earth’s Radiant Energy System (CERES)

The CERES is used to investigate the cloud/radiation feedback, the data sets are measured by
the broadband scanning radiometers [47]. The all sky surface net radiation fluxes (longwave and
shortwave radiation, W/m2) were obtained from the CERES 4.0 product, whose spatial and temporal
resolutions are 1.25◦ × 1.25◦ and monthly, respectively. The CERES data sets have a strong correlation
with meteorological station data [48]. For the CERES products, the uncertainties in surface net radiation
are attributable to the environmental parameters, including surface water vapor pressure, surface
temperature, the Normalized Difference Vegetation Index (NDVI) and surface albedo. Studies show
that the errors of each radiation component of the CERES product are within 20 W/m2 at the monthly
scale [49].

2.1.3. ERA-Interim

The ERA-interim data sets are obtained from the European Center for Medium-Range Weather
Forecasts (ECMWF) covering the period from 1979 to the present. It has a good performance on
describing the actual atmosphere over Asia [50]. In this study, the monthly mean skin temperatures (K)
with a spatial resolution of 0.75◦ × 0.75◦ are used. Compared with the observations, the root mean
square error (RMSE) of temperature is about 3.2 ◦C, and the correlation coefficient is 0.709. Generally,
the ERA-interim is closer to the ground observations than many other reanalysis data over Asia [51].

2.1.4. Global Precipitation Climatology Project (GPCP)

The GPCP is a merged precipitation reanalysis data which incorporates information from the
low-orbit-satellite microwave, the geosynchronous-orbit-satellite infrared, and the rain observations.
The GPCP can figure out the temporal and spatial features of precipitation (mm/month) quite well,
having a good performance over Asia [52]. Here, the monthly mean accumulated precipitation data at
the surface from GPCP-2 with a spatial resolution of 2.5◦ × 2.5◦ were used. Some studies reported that
the GPCP data may overestimate the precipitation, especially when the precipitation rate increases.
This observed uncertainty may be due to the shortcomings of GPCP for the retrieval of summer
precipitation over land, such as mistaking higher clouds as precipitation clouds [53,54].

2.1.5. Modern-Era Retrospective Analysis for Research and Applications (MERRA)

The MERRA-2 is an assimilation which includes different ground-based and space-based remote
sensing information. The monthly mean surface mass concentration of BC (kg/m3) is obtained from
the version 2 of MERRA (MERRA-2), which has a spatial resolution of 2.5◦ × 2.5◦. The MERRA data
can describe the distribution of the BC mass concentration over Asia very well [55]. The aerosol AODs
from the MERRA-2 data have a high correlation but low bias relative to the ground-based observations
(e.g. sun photometer) [56]. Here, we use the surface concentration of BC from the MERRA-2 data.

2.1.6. National Centers for Environment Prediction (NCEP)

The NCEP reanalysis data covers the information of satellite, and it is produced by a forecast
model together with a data assimilation system. Because the NCEP data sets have a good performance
on describing the winds and free atmosphere of the temperate region in the Northern Hemisphere [57],
the horizontal wind (u and v component, m/s) and specific humidity (kg/kg) in NCEP data sets are
used to evaluate the simulated water vapor in the atmosphere. The spatial resolution of the monthly
NCEP reanalysis data used in this study is 2.5◦ × 2.5◦ [58]. For the NCEP data, due to the topographical
height and systematic deviations of the assimilation model, it was a false trend on the longer time scale
in the middle and lower troposphere over the TP [59].
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2.1.7. Emission Data of Aerosols and Greenhouse Gases

In this study, the emission data of aerosols and greenhouse gases for the year 2000 are used
to be the background reference. The anthropogenic aerosol emissions from industrial production,
agriculture activities and human activities are derived from the emission data of the Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) [60]. The emissions of BC together
with sulfur dioxide are updated from Smith et al. [61]. Besides, the aerosol size distribution is classified
as three lognormal modes: Aitken (ranging from 0.015 mm to 0.053 mm), accumulation (ranging from
0.058 mm to 0.27 mm), and coarse modes (ranging from 0.80 mm to 3.65 mm) [62]. The concentrations
of greenhouse gases for the year 2000 are derived from the specific concentration [63].

2.2. Methods of Calculating Asian Summer Monsoon and Water Vapor Transport Changes

2.2.1. Estimation of Summer Monsoon

To estimate the strength of the summer monsoon, the dynamical normalized seasonality index
(DNS) was used in this paper [64], and can be calculated as using the following Equation (1):

DNS =

∣∣∣∣∣
∣∣∣∣∣ →V1−

→
V(m, n)

∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣→V
∣∣∣∣∣
∣∣∣∣∣

− 2 (1)

where the
→
V1 is the climatological wind vector in January, the

→
V is the mean wind vector of January

and July, while the
→

V(m, n) is the wind vector in the year ‘n’ and month ‘m’.

2.2.2. Changes of Water Vapor

The water vapor flux in the whole atmospheric layer (Q) is calculated from the land surface to 100
hPa and the water vapor budget (N) [42] are calculated as follows:

Q = −1
g

p∫
ps

q
→
Vdp (2)

N =

∮
Qdl (3)

where q denotes the specific humidity (kg/kg),
→
V denotes the horizontal wind vector (u and v component,

m/s), g denotes the constant of gravity acceleration (9.8 m/s2). Here, the atmospheric pressure at the
top of atmosphere (TOA) is set as 100 hPa, and l denotes the border of the TP. In this study, the border
of TP is considered as the east, south, west and north borders separately.

2.3. Description of Model Setting

In this study, CESM (version 2.1.0) is used to study the effects of BC on the climate over the TP. The
atmospheric, land and ocean models are the Community Atmosphere Model (CAM) 5.0, Community
Land Model (CLM) 4.5 and three-dimensional active Parallel Ocean Program (POP) 2.0, respectively,
in CESM.

The default aerosol configuration coupled to the Modal Aerosol Model (MAM) is adopted to
investigate the climate effects of BC [65]. The CAM 5.0 of CESM includes BC, dust, precursors of sulfate
(SO2 and SO4), sea salt, particulate organic matter, and secondary organic aerosol in the MAM3 aerosol
module [65]. The dust and sea salt modes are merged into a coarse mode in MAM3 for the online
calculating of the emissions. The dry deposition process of aerosols is calculated by a parameterization
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which includes the information of land use and land cover [66], while the wet deposition process is
calculated by the wet removal routine [67]. Meanwhile, the revised cloud macrophysics processes are
considered in CESM-CAM5, in terms of the cloud fractions, and the interconversion rates between
water vapor and cloud condensation.

The parameterization of cloud microphysics is utilized to calculate the droplet and ice number
concentration [68]. Besides, the CAM 5.0 forms the main atmospheric components in CESM and
has the capacity of simulating the aerosol–cloud interaction, which includes the cloud droplet
activation by aerosols, precipitation process affected by particles and the radiative interactions of cloud
particles [69–71].

In this study, two experiments are carried out to study the climatic effects of BC. The control
experiment, named the ‘ALL’ experiment, considers the emissions of BC, particulate organic matter
(POM), dust, SO2, SO4 and second organic aerosol gases (SOAG). The contrast experiment, named as
the ‘ALL-BC’ experiment, is run with the same emissions as the ALL experiment, except for the BC
emissions. The simulations started from January 2000 to December 2005 with a spin-up time in the year
of 2000. The finite volume (FV) dynamical core with a resolution of 0.9◦ × 1.25◦ and a hybrid sigma-p
vertical coordinate of 30 layers from the land surface to 3.64 hPa are utilized in CESM. The details of
the model setup and experiment design are presented in Table 1.

Table 1. Physical and chemical schemes used in the Community Earth System Model (CESM) simulation.

Model Settings Configurations

Horizontal resolutions 0.9◦ × 1.25◦
Vertical resolutions 30 layers from the surface to 3.64 hPa
Physical schemes Used schemes

Radiation schemes
(Longwave, Shortwave) Rapid radiative transfer model RRTMG

Cloud Microphysics scheme MG scheme
Cloud Macrophysics scheme Park scheme

Chemical schemes Used schemes
Aerosol scheme A 3-mode modal aerosol scheme MAM3

Aerosol data sets IPCC AR5 emissions of 2000
Dry deposition A resistance-based parameterization
Wet deposition The wet removal routine

2.4. The Study Area

Considering the typical topography of the TP and distribution of BC, we focused on the region
with latitude and longitude coordinate ranges of 60◦ E–140◦ E and 5◦ N–45◦ N (see Figure 1). It covers
most parts of China, the whole Indo-China Peninsula, India and Pakistan. The areas marked by the
blue and the red rectangle in Figure 1 are adopted to calculate the changes in the intensity of the SASM
and the EASM, respectively. Besides, the climatic effects caused by BC over the TP are analyzed for the
summertime (June–July–August). Before analyzing water vapor changes due to BC, the assessment for
the model ability of CESM is performed first.
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Figure 1. The topography (km) of study area, red and blue rectangles correspond to the East Asian
Summer monsoon (EASM) and the South Asian summer monsoon (SASM) regions, respectively.

3. Results

3.1. Model Assessment

Figure 2 shows the comparisons of the simulated net surface radiation budget, surface temperature
(ST) and precipitation rate with observations. It shows that the “northern high and southern low”
pattern of all sky surface net radiation (integrated by shortwave and longwave radiation) is simulated
well (Figure 2a,d). The values of net surface radiation over South Asia, together with East Asia,
the Taklimakan Desert and Pakistan range from 150–300W/m2, 300–400 W/m2 and 400–450 W/m2,
respectively. While the net surface radiation is underestimated over TP. Because of the bias in surface
net radiation over TP, the simulated ST is also underestimated slightly (Figure 2b,e). Generally,
the distributions of simulated ST are consistent with the ERA-interim. Overall, the heavy precipitation
values are found over the Western India, Bay of Bengal and Indo-China Peninsula in model simulations.
The areas of simulated heavy precipitation are consistent with the results from GPCP. In Figure 2c,f,
over the south slopes of TP, the model overestimates the precipitation compared with the GPCP results.

Figure 2. Evaluations of simulated summer all sky net surface radiation (W/m2), surface temperature
(ST) (K) and precipitation rate (mm/day) by the Community Earth System Model (CESM) model for
the period from 2001–2005. Where, (a–c) are model simulations, while the (d–f) are derived from the
data of CERES, EAR-interim and the Global Precipitation Climatology Project (GPCP), respectively.
The down direction in (a) and (d) is defined as the positive value, otherwise the upward direction is
defined as the negative value. The area of the Tibetan Plateau (TP) is enclosed by a black line.

Furthermore, the comparisons of simulated water vapor transports and that from the NCEP are
presented in Figure 3. In general, both the simulated and observed water vapor burdens over the
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TP ranges from 5 to 10 kg/m2, with almost the same water vapor gradients over the borders of the
TP. Over the TP, the westerly winds control the water vapor transportation. As shown in Figure 3,
the water vapors are mainly imported from the south and west borders and exported from the east
borders. It shows that the southwest water vapor transport channel from the Arabian Sea to the TP is
important, which is consistent with the result reported by [72].

Figure 3. Evaluation of simulated atmospheric water vapor flux (kg/(m·s)) and column water vapor
burden (kg/m2) from surface to 100 hPa by CESM model in the summer for period from 2001–2005.
(a) Denotes the model simulations. (b) Derived from the NCEP. The area of TP is enclosed by a black
line. The blue rectangle indicates the region of southwest vortex.

Besides, as given in Figure 3, comparing the water vapor fluxes from the model simulation and
NCEP reanalysis over the Bay of Bengal, a weaker, southwest vortex (blue rectangle in Figure 3) is
found in the simulation (Figure 3a). In our model simulation, the weaker southwest vortex induced
more water vapor northward transport to the south border of the TP, resulting in more precipitation
over the south slopes of the TP (Figure 2c).

Before analyzing the BC’s impact on the Tibet climate further, an assessment of aerosol optical
depth (AOD) and BC concentration distributions is needed. Figure 4 shows the comparisons of AOD
from model simulations and MISR satellite observations, and BC distributions from simulations and
MERRA-2 reanalysis data. Figure 4a,c, show a similar distribution feature of AOD over the East China,
Northern India, Arabian Sea and Taklimakan Desert, both in model simulation and MISR data. Overall,
the simulated values of AOD are higher than those from MISR, especially over the Taklimakan Desert.
In contrary, the simulated AOD over other regions is lower than the reanalysis data, and that is similar
to the features of surface concentration. It is found that the simulated distributions of the surface BC
concentration are also consistent with the results from MERRA-2. Both the model and the reanalysis
data indicated three centers with a high concentration of BC over Northern India, the Sichuan Basin
and Northern China. The model simulated BC concentration over Northern India, the Sichuan Basin
and Northern China ranges from 0.5–2.0 μg/m3, 2.5–3.0 μg/m3 and 1–1.5 μg/m3 (Figure 4b,d). Due to
the lower concentration simulated by the model, the effects of BC on the water vapor transport and
climate may be underestimated over the TP. Generally, the coupled model has a good simulated
ability on the precipitation, ST, water vapor flux, BC concentration and AOD distributions over the
TP. Based on the model simulation, the effects of BC on water vapor transport and its mechanism are
further investigated.
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Figure 4. Distributions of aerosol optical depth (AOD) and black carbon (BC) mass concentration
(μg/m3) in the summer for a period from 2001 to 2005, (a,b) simulated by the CESM model. (c,d) are
derived from the data of Multi-angle Imaging Spectro Radiometer (MISR) satellite observations and
MERRA-2 reanalysis data sets. The area of the TP is enclosed by a black line.

3.2. The Radiative Forcing

In this study, both the direct and indirect effects of BC are considered in the CESM model. Figure 5
shows the clear sky direct radiative forcing (DRF), latent heat (LH) at the surface and the surface
sensible heat (SH) fluxes. The results revealed that the shortwave and longwave DRFs at TOA in clear
sky are positive with the values about 2.05 and 0.72 W/m2, respectively (Figure 5a,b). The positive
shortwave DRF at TOA indicated that the earth–atmosphere system absorbs more solar radiation, while
the positive longwave DRFs are due to less outgoing longwave radiation caused by the absorption
of BC. In this study, the results of the TOA DRFs are in agreement with the previous researches,
in which some studies show the clear sky DRFs at TOA ranges 0.3–2.4 W/m2 over east Asia [73,74] and
2–6 W/m2 over East China [75,76]. In contrast, the surface shortwave DRFs of clear sky is negative
with a mean value of −0.86 W/m2 (Figure 5g), while the longwave DRF is positive with an average
of about 0.29 W/m2 (Figure 5h). Obviously, the shortwave radiative forcing plays a dominant role.
Because of the absorption of BC, the reduction of solar radiation at the surface is obvious, resulting
in a cooling effect. However, the surface longwave radiative forcing is positive, the reason of which
is that the cooled surface emits less longwave radiation, while the warmed atmosphere emits more
longwave radiation downward to the surface. In addition, the BC-in-snow effect could reduce the
surface longwave albedo, which contributes to the surface positive longwave radiative forcing also.

It is found that both the shortwave and longwave DRFs in the atmosphere are positive with
the mean values of 2.9 W/m2 and 0.44 W/m2, respectively (Figure 5d,e). The positive DRFs in the
atmosphere presents a pronounced warming effect of BC upon the atmosphere. In addition, due to the
BC, the LH at the surface is about 0.82 W/m2 (Figure 5c), and the SH is about 0.13 W/m2 (Figure 5f).
The positive heat flux at the surface could significantly offset the surface cooling effect. The net surface
heat change is about 0.39 W/m2 (Figure 5i), dominated by the disturbed latent heat flux (0.82 W/m2),
and followed by the longwave radiative forcing (0.29 W/m2).
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Figure 5. Shortwave and longwave direct radiative forcing (DRF) (W/m2) at the top of atmosphere
(TOA) (a,b), in the atmosphere (d,e) and on the surface (g,h), latent heat flux (c), sensible heat flux (f)
and the net heat flux (i) during the summer for period from 2001–2005. The area of the TP is enclosed
by a black line. the down direction is defined as the positive value, otherwise the upward direction is
defined as the negative value.

Simultaneously, the effects of BC on the cloud radiative forcing (CRF) is another important aspect
for the radiation transfer process [7]. Here, we mainly analyze the changes in shortwave and longwave
CRFs caused by BC. It is found that the mean change in shortwave CRF is about 1.75 W/m2 (Figure 6a),
while the longwave one is about −1.62 W/m2 (see Figure 6b), thus the comprehensive change in CRF is
warming the earth–atmosphere system. Furthermore, the shortwave and longwave CRFs showed an
opposite variation. The change in shortwave CRF is positive over the eastern TP but negative over the
western TP. In contrary, the change in longwave CRF is positive over the western TP and negative
over the eastern TP. Overall, the net positive changes in CRF denotes a warming effect. The changes in
CRF are associated with the cloud microphysics. Due to the indirect effects, BC can affect the cloud
microphysics and hence the cloud albedo. In the semi-direct effects, the BC could evaporate the cloud
by absorbing more solar radiation. As a result, the increased cloud fraction over the western TP
could strengthen the cloud longwave radiative forcing and reduce the shortwave radiative forcing.
The decreased cloud is mainly distributed over the southeast TP, that may increase the shortwave
radiative forcing while reducing the longwave radiative forcing.
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Figure 6. Changes in cloud radiative forcing (W/m2) during summer for the period (2001–2005) for (a)
Shortwave and (b) Longwave. The area of the TP is enclosed by a black line.

3.3. Changes in Surface Temperature

The anomalies in the earth–atmosphere heat equilibrium caused by BC are reflected by the
perturbed ST. Based on the former studies, the changes in sea surface temperature (SST) gradients
are important in terms of the monsoon dynamics [6,30], especially over the areas of tropical seas [33].
As some previous studies reported [6,30,31], the anomaly meridional SST gradients over the region
(5◦–27◦N, 60◦–100◦E) tightly relates to the SASM. In this study, the region (5◦ N–27◦ N, 60◦ E–100◦
E), enclosed by the blue rectangle in Figure 7, is used to calculate the SASM changes. For EASM, the
latitudinal land land–sea thermal contrast is more important compared with the meridional thermal
contrast [77]. The area enclosed by the red rectangle in Figure 7 is taken as the critical area to calculate
the change of EASM.

Figure 7. Changes in surface temperature (K) in the summer for period from 2001 to 2005. The area
of the TP is enclosed by a black line. The dots denote the changes in surface temperatures that are
significant above the 90% confidence level. The blue and red rectangles denote the areas to calculate
the changes in the SASM and EASM indices, respectively.

Figure 7 shows that, because of the addition of BC, the surface temperature increases by 0.8–1.6 K
over most parts of the TP. The warmer TP is closely related to the surface positive heat flux and the
reduced surface albedo (Figure 8).
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Figure 8. Changes in (a) surface shortwave albedo and (b) longwave albedo.

The reduced surface albedo means more solar radiation will be absorbed by the land surface.
Besides, the increased SST is mainly distributed in the equatorial Arabian Sea and the Southern Bay of
Bengal because of the positive heat flux at the surface. In contrast, a pronounced decrease is found over
Northern India, Pakistan, Afghanistan and Iran because of the dimming effect of BC. Consequently,
the surface temperature shows a decreased meridional gradient. On the other hand, the surface
temperature increases over East China, but decreases over the Northwest Pacific Ocean, which could
enhance the land-sea thermal contrast.

Generally, the anomalous meridional temperature gradient and the enhanced land–sea thermal
contrast could affect the SASM and EASM circulations and further the water vapor transport significantly.
More details would be discussed in the following sections.

3.4. Changes in Atmospheric Circulation

Figure 9 describes the altitude–latitude cross-section of zonal mean (60◦ E–120◦ E) air temperature
and wind field changes. As shown in Figure 9a, over South Asia, the upper atmosphere which is
marked by the red rectangle has a warming affect. Meanwhile, an anticyclonic circulation is stimulated
due to the addition of BC over the area from 15◦ N to 25◦ N, which is consistent with the “Elevated
Heat Pump” (EHP) effect of BC reported by Lau and Kim [28]. Due to the EHP effect induced by BC,
the anomalous circulation appears opposite to the Hadley circulation, resulting in a northerly wind at
the lower atmosphere, which may further reduce the water vapor transport from the Indian Ocean to
the TP.
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Figure 9. (a) Altitude–latitude cross-section of the changes in zonal mean air temperature (colors,
K) and wind field (arrows) averaged along meridian region of 60◦ E–120◦ E in the latitude zone of
27◦ N–42◦ N in the summer for period from 2001 to 2005. (b) Same as (a) but for altitude–longitude
cross-section of meridional means along latitude region of 27◦ N–42◦ N in the longitude zone of
60◦ E–120◦ E. Red rectangle indicates the area of anticyclonic circulation induced by BC.

Figure 9b describes the altitude–longitude cross-section of changes in meridional mean
(27◦ N–42◦ N) air temperature and wind field over East Asia. Generally, East Asia is affected
by the subtropical summer monsoon, which attributes the intensity mainly to the latitudinal thermal
contrast and secondarily to the meridional thermal contrast [77]. Thus, we analyzed the latitudinal
land–sea thermal contrast from 100◦ E to 140◦ E. Besides, the pattern of “western warm eastern
cold” induces easterlies from the Northwest Pacific Ocean to the east border of the TP, leading to an
enhanced EASM.

To estimate the changes in SASM and EASM due to the BC, the DNS indices are calculated
according to Li et al. [64], as shown in Figure 10. Figure 10a shows that the SASM indices under
the ALL experiment are smaller than that under the ALL-BC experiment, indicating a weak SASM.
Conversely, the EASM index has the opposite variations, in which an enhanced EASM is caused by
including BC in the model (Figure 10b).
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Figure 10. Changes in the (a) SASM and (b) EASM index from 2001–2005. The red and blue bars denote
the simulations under the ‘ALL’ and ‘ALL-BC’ experiments, respectively.

3.5. Effects of BC on the Water Vapor Budget

It should be noted that the EHP effect can reduce the SASM in summertime. The anticyclone in
the upper atmosphere, which is caused by BC, can induce a northerly wind in the lower atmosphere
from the south slope of the Tibetan Plateau to Northern India (see Figure 9a). The northerly wind is
contrary to the southerly wind over the region of 0◦ N–15◦ N, where can represent the SASM. Thus,
the EHP effect can reduce the SASM in summertime. In addition, the strong cooling effect over North
India, Pakistan, Afghanistan and Iran, and the warming effect over South India, together with the
surrounding ocean area, could reduce the meridional temperature gradient and hence weaken the
SASM. Meanwhile, the warmer TP caused by BC can increase the land–sea thermal contrast and the
EASM. Overall, the BC could induce a weak SASM but an enhanced EASM and further affect the water
vapor transport from the ocean to the TP.

Water vapor plays a significant role in adjusting the air temperature and precipitation. As reported
by previous researchers [78], the water vapor from the west and southwest borders contributed
mostly to the precipitation over the TP region. Besides, the net importing water vapor to the TP is
mainly attributed to the east and west borders with the values of 1991.47 kg/(m·s) and 160.13 kg/(m·s),
respectively. Likewise, the exporting water vapor away from the TP is attributed mainly to the north
and south borders with the values of 267.77 kg/(m·s) and 381.97 kg/(m·s), respectively [37]. Generally,
the four borders of the TP have different characteristics on the water vapor transport. The importing
water vapor from the west border serves as the primary contribution to the water vapor over the TP,
and that from the southern border is the second contribution [37,79]. Besides, the eastern border has
the main export channels, which are closely related to the atmospheric circulations [42].
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Figure 11a shows that a pronounced anomalous cyclone over the Northwest Pacific Ocean and
a weak cyclone system over Pakistan and Afghanistan are stimulated because of the addition of BC
in the simulation. The TP, located at the north side of the cyclone over the Northwest Pacific Ocean,
was affected by the perturbed east airflows extending from the Northwest Pacific Ocean to the east
border of the TP. Over the western TP, the anomalous southeast flow exerted an impact on the TP
because of the weak cyclone system over Pakistan and Afghanistan.

Figure 11. Effects of BC on (a) water vapor flux (kg/m/s) and (b) water vapor budget (Gt/year). The red,
green, black and blue lines denote the west, east, north and south borders of the TP, respectively.
The dots in (a) denote the changes in water vapor that are significant above the 90% confidence
level. The purple short lines in the bar in (b) denote the error ranges from a negative to a positive
standard deviation.

Over the south and north borders of the TP, it was controlled by the anomalous north and southeast
flows, respectively. Consequently, more water vapor was exported from the TP. The mean flux of water
vapor imported from the west and east borders are 6.3 × 106 kg/s and 19.5 × 106 kg/s, repsectively.
The water vapors exported from the south and north border are about 6.9 × 106 kg/s and 10 × 106 kg/s,
respectively. Thus, the horizontal net water vapor budget of TP is about 8.6 × 106 kg/s. The net annual
mean water vapor budget is about 271Gt/year (see Figure 11b). This net budget is dominated by the
east border of TP than others.

4. Discussion

As mentioned in Section 3.3, the pronounced increase in ST over the TP is caused by the positive
surface net heat flux with the value of 0.39 W/m2. The warmer TP is dominated by the surface latent
heat flux, followed by the longwave radiative forcing and sensible heat flux.

In Section 3.5, we noted that the net annual mean positive importing water vapor caused by BC
over the TP is about 271 Gt/year, in which the positive feature is consistent with the previous study [72].
The anomalous water vapor could partially modify the precipitation pattern. Figure 12 shows the
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anomalous precipitation rate over the TP. As given in Figure 12, precipitation was mainly increased over
the northern and western TP, with a maximum value of 2 mm/day. Simultaneously, the precipitation
was decreased over the southern TP with a maximum decreasing about 3 mm/day. The average value
of increased precipitation due to BC over the TP is 0.56 mm/day. The increased precipitation over TP is
attributed to the anomalous water vapor transport and atmospheric circulations caused by BC [2,3].

Figure 12. Changes in precipitation rate (mm/day) over the TP. The dots denote the changes in
precipitation that are significant above the 90% confidence level.

As shown in Figure 11a, the cyclone induced by the surface cooling effect of BC over Pakistan
and Afghanistan is beneficial to increase the precipitation over the Western TP. Besides, the perturbed
easterly wind and the orographic lifting are in favor of increasing the precipitation over the Northern TP.

As illustrated above, the BC aerosol can induce a warmer and wetter plateau. The results are
consistent with current studies [42,73,80]. Our results suggest that the heating of LH, SH and longwave
radiative forcing could offset the surface cooling effect. Besides, the BC-in-snow effect could contribute
to the warmer TP also [16–19].

In this study, the net surface radiative forcing has included the BC-in-snow effect already. Based on
the previous studies, the “snow darkening” effect of BC could also contribute to the warmer TP [81,82],
and leads to a reduced snow cover by about 10%–20%, accompanied with a decreased surface albedo.
This feedback could heat the TP significantly [82]. In this study, the changes in surface albedo are
shown in Figure 8. The results indicate that the mean shortwave and longwave albedo are decreased by
0.0015 and 0.0004, respectively, because of the addition of black carbon. The magnitude of the reduced
shortwave albedo is about four times greater than that of the surface longwave albedo. Besides, the
reduced shortwave albedo could reach to −0.03 at the south slope of the TP. It is closely related to the
high concentration of BC. Generally, the reduced albedo means that the BC-in-snow could absorb more
downward solar radiation and longwave radiation to heat the TP.

Moreover, the BC-in-snow effect could further significantly affect the SASM and EASM by the
thermal and dynamical forcing. Based on the current study, the warmer TP could increase the land–sea
thermal contrast to enhance the EASM in summertime [26], which is consistent with the result of this
study. Besides, the BC-in-snow can strengthen the upward motion over the TP to advance the SASM in
pre-monsoon [26], which is similar to the EHP effect of BC [27].

The premise of the EHP is that BC can stack up against the south slope of the TP in the springtime
and then induce an anomalous warming anticyclone in the upper atmosphere [27]. Because of the
latent heat warming effect over the TP, the meridional temperature gradient and the SASM could be
enhanced in springtime. It should be noted that Lau and Kim [27] proposed the EHP by the results
from the GCM model, neglecting the indirect effects by the off-line method. On the contrary, our
results include the direct and indirect effects and the feedback of the ocean. The results show that
EHP could induce a warm anticyclone in the upper atmosphere over BC-contaminated regions from
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Northern India to TP. The northerly wind of the anticyclone in the lower atmosphere and the reduced
meridional ST gradient could reduce the SASM in summertime. The results are consistent with the
previous studies [28,29].

In the following, a mechanism analysis is performed (Figure 13). Because of the absorption of
BC, the solar radiation reaching the surface is reduced obviously, leading to a surface cooling effect.
Furthermore, the ST increased over the TP because of the addition of BC. Therefore, a warmer TP can
be induced by the BC.

Figure 13. Mechanism of BC affecting water vapor transport over the TP.

Though the thermal effects of BC on the lower atmosphere over the TP are warming, spatial
discrepancies over the other regions exist. On the one hand, over the regions surrounding Pakistan,
Afghanistan and Northern India, the addition of BC can decrease the ST. However, it can increase the
SST of Indian Ocean. Thus, a weak thermal contrast between the land and ocean is induced, leading to
a weak SASM, then to less water vapor transporting from the south border of the TP. On the other
hand, the land–sea thermal contrast is intensified over East Asia, inducing an intensified EASM. The
changes in SASM and EASM dramatically impact the water vapor to the TP. Furthermore, a cyclone
is stimulated in the upper atmosphere due to the decreased ST over Pakistan, Afghanistan and the
Northwest Pacific Ocean. Thus, the western TP is controlled by the southwest winds, leading to more
water vapor being transported to the TP. Besides, the eastern TP is controlled by the east winds which
is on the north side of the cyclone, resulting in more water vapor being transported to the TP also.
Consequently, due to the BC, though the water vapor imported from south side is weak, and the
exported water vapor from north side of TP is enhanced, more water vapor is transported from the
east and west to the TP. Therefore, because of BC addition, the TP will be wetter.

The uncertainties in the results apply mostly to the aerosol–clouds interactions (ACI, indirect
effects) because of the lack of an accurate resolution to represent ACI. Current understanding and
classification of this ACI regime is based on the response of the droplet number concentration (Nc) to the
aerosol number concentration (Na) and vertical velocity (w) [83], and that are represented by empirical
parameterizations. The ACI could affect the performance of the climate model strongly [83]. The other
uncertainties mainly derived from the short records of the horizontal and vertical BC distributions.
An accurate distribution of BC data sets may help to interpret the transport and buildup of the BC well.
Recently, using the observations which include aerosol physical and chemical properties and mixing
state to constrain the simulations is an effective approach to limit the uncertainties.

5. Conclusions

The BC could significantly affect the climate over the TP especially in the summer. Here, combining
satellite observations and reanalysis data, we studied the climate effect of BC over the TP by using
a fully coupled model. In this study, we have estimated the results of BC affecting the water vapor
transport, and we have revealed the concerning mechanism.
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The simulation indicates that the BC can induce the positive radiative effects (including direct
and indirect effects) and thus exert a pronounced warming over the TP. Based on a detailed analysis,
the mean shortwave and longwave radiative forcing at the TOA over TP are 2.05 W/m2 and 0.72
W/m2, respectively.

Besides, considering the LH and SH, the surface net heat forcing presents positive with a value
of 0.39 W/m2. Furthermore, the BC can induce an anomalous temperature and then change the
atmospheric circulations. As mentioned above, because of the addition of BC, there is a pronounced
decreased temperature over Pakistan and Afghanistan, but an increased surface temperature over
Southern India and its surrounding ocean. Such temperature patterns can induce a weak thermal
contrast between the land and sea, leading to a weak SASM. Thus, less water vapor could be transported
from the Indian Ocean to the TP. Besides, over East Asia, the “western warm and eastern cold” pattern
enhanced the land–sea thermal contrast over East Asia and the surrounding ocean, inducing an
intensified EASM significantly. Consequently, more water vapor is transported from the east of TP.
Overall, due to the BC, the net water vapor is positive over the TP, implying a net import of water
vapor from the surroundings to the TP. Furthermore, the increased water vapor is closely related to the
anomalies in precipitation over the TP.
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Abstract: Precipitation modifies atmospheric column thermodynamics through the process of
evaporation and serves as a proxy for latent heat modulation. For this reason, a correct precipitation
parameterization (especially for low-intensity precipitation) within global scale models is crucial.
In addition to improving our modeling of the hydrological cycle, this will reduce the associated
uncertainty of global climate models in correctly forecasting future scenarios, and will enable the
application of mitigation strategies. In this manuscript we present a proof of concept algorithm to
automatically detect precipitation from lidar measurements obtained from the National Aeronautics
and Space Administration Micropulse lidar network (MPLNET). The algorithm, once tested and
validated against other remote sensing instruments, will be operationally implemented into the
network to deliver a near real time (latency <1.5 h) rain masking variable that will be publicly
available on MPLNET website as part of the new Version 3 data products. The methodology, based
on an image processing technique, detects only light precipitation events (defined by intensity
and duration) such as light rain, drizzle, and virga. During heavy rain events, the lidar signal is
completely extinguished after a few meters in the precipitation or it is unusable because of water
accumulated on the receiver optics. Results from the algorithm, in addition to filling a gap in light
rain, drizzle, and virga detection by radars, are of particular interest for the scientific community as
they help to fully characterize the aerosol cycle, from emission to deposition, as precipitation is a
crucial meteorological phenomenon accelerating atmospheric aerosol removal through the scavenging
effect. Algorithm results will also help the understanding of long term aerosol–cloud interactions,
exploiting the multi-year database from several MPLNET permanent observational sites across the
globe. The algorithm is also applicable to other lidar and/or ceilometer network infrastructures in
the framework of the Global Aerosol Watch (GAW) aerosol lidar observation network (GALION).
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1. Introduction

Human life is strongly dependent on the water cycle [1]. In particular, precipitation is a key-player
in pairing the Earth–atmosphere water and energy cycle, through modulating atmospheric column
latent heat and affecting cloudiness and cloud lifetime. For this reason, long-term precipitation datasets
are needed to analyze spatial and temporal trends and variability, especially at the global scale [2].
In the last two decades, thanks to the internet, a ground-based network of instruments has started to
develop and measure important climate-related variables [3], including columnar and atmospheric
profiles of aerosol optical and micro-physical properties through passive and active optical sensors (i.e.,
sunphotometers and lidars). Nevertheless, elastic [4] multi-wavelength and Doppler lidar observations
containing raining events are usually unjustifiably disregarded in standard monitor activities, even if
light rain events are clearly detectable on lidar data [5].

Some recent studies show that a correct precipitation parameterization [6] will drastically improve
global climate models to forecast future scenarios that can help define the best mitigation and
adaptation strategies. Further, precipitation studies are crucial to assessing aerosol indirect and
semi-direct effects, since aerosols influence both cloud formation and precipitation that in turn removes
aerosols from the atmosphere by scavenging effect. Isolated case studies using lidar data (together
with ancillary instrumentation) to quantitatively assess the atmospheric profile of precipitation
micro-physical and optical characteristics are shown in [5,7–10]. Nevertheless, these efforts, due to their
intrinsic complexity, are not suitable to be operationally implemented in a network of instruments.

Several studies showing the development of aerosol [11,12] and cloud [13] masking algorithms
exist, but, to our knowledge, none demonstrate automatically detecting light rain events using lidar
observations. In this paper we present a proof-of-concept rain masking algorithm and report results of
an intercomparison with a disdrometer to prove the efficacy of the algorithm in detecting light rain,
drizzle, and virga events from lidar observations. The algorithm, once extensively tested and validated
also against other remote sensing instruments (i.e., high-frequency radars) will be implemented
in the National Administration and Space Agency (NASA) Micropulse lidar network (MPLNET
https://mplnet.gsfc.nasa.gov/; see Section 3) and will provide, when available, a new complimentary
rain mask variable that can be used either as the starting point to further investigating scientifically
interesting-precipitation cases (i.e., to assess their optical and micro-physical properties, [5,7–9]) or
simply to better characterize precipitation patterns and its variability at different spatial scales.

The developed algorithm, based on image processing techniques, applies morphological filters
on composite plots of the Volume Depolarization Ratio (VDR) variable, as defined in [14] and this
algorithm will permit MPLNET to fill the gap left by the joint NASA and Japan Aerospace Exploration
Agency (JAXA) missions, as the Tropical Rainfall Measuring Mission (TRMM) followed by the Global
Precipitation Measurement (GPM) [15], in detecting low intensity precipitation [5], especially at mid
and higher latitudes [16]. Our paper is outlined as follows: in Section 3 we describe in detail the NASA
MPLNET network and its products used as input by the rain masking algorithm. Section 4 shows the
algorithm flowchart and all the different phases from input to output are carefully described. Section 5
reports the algorithm intercomparison and validation through co-located ground-based observations
by disdrometer, while in Section 6 discussion and future perspectives are reported.

2. Materials and Methods

The lidar full dataset is publicly available at NASA MPLNET website (https://mplnet.gsfc.nasa.
gov), while the 18 events of disdrometer data are available upon request.
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3. The MicroPulse Lidar Network

The NASA MPLNET network [17], active since 1999, is a federated network of
commercially–available Micropulse lidar (MPL) systems [18], produced by LEICA Geosystems,
Lanham, MD, USA (formerly SigmaSpace). The instruments, active optical devices that have developed
since CO2 laser invention [19], are globally deployed to support the NASA Earth Observing System
(EOS) program [20]. The MPLNET lidar network continuously monitors the atmosphere every 60
s, from the surface up to 30 km with a software-adjustable vertically-resolved spatial resolution
(depending on the station, 0.030–0.075 km), under any meteorological condition and to the limit of laser
signal attenuation. Both temporary and permanent observational sites are globally deployed, and are
located at polar, mid-latitudes, tropical, and equatorial regions to retrieve the aerosol [21–23], cloud
optical [24,25], and geometrical properties together with their radiative effects. The single-wavelength
MPL lidar system, is co-located, when possible, together with the NASA Aerosol Robotic Network
(AERONET; [26]) sunphotometer to reduce error in retrievals [27]. MPLNET products are freely and
publicly available at the MPLNET website, which follows the modified EOS convention as: Level
1, Level 1.5, and Level 2, are all available in near real time (NRT). The only difference between L1
and L15 products are that data failing to meet the L15 Quality Assurance (QA) criteria are screened
and replaced with Not a Number (NaN) in the files. The primary difference between L2 and L1/15
files is that L2 may have additional post-calibrations applied as well as corrections to instrument
temperatures.

Since 2017, MPLNET has fully integrated polarized MPL systems into the network, which
provides information about particle shape. Each instrument relies on the collection of two-channel
measurements (i.e., the signal measure Pco(z) and Pcr(z)). A detailed description of the depolarization
channel can be found in [14]. Even a half degree tilting of the lidar instrument with respect to the
vertical direction, needed to avoid cirrus cloud specular reflection, is sufficient to substantially increase
the VDR of the precipitation (even for spherical raindrops), as shown in [28]. This rain enhanced
contrast in lidar VDR composite images facilitates its detection. Figure 1 shows a front descent on 27
March 2018 with multiple rainfall episodes showing higher VDR values (green bins). The start of the
precipitation event is highlighted by red arrows.

Figure 1. 27 March 2017 Micropulse lidar network (MPLNET) Version 3 Volume Depolarization
Ratio (VDR) variable (L15 MPLNET Normalized Relative Backscattering (NRB) product). Red arrows
highlight the starting point of the precipitation events.

The proposed algorithm, uses, as the input composite image, the new Version 3 (V3) VDR variable,
paired with the cloud mask [13] variable found in the L15 Normalized Relative Backscatter (NRB) and
Cloud (CLD) data products [27,29], respectively. The cloud mask is an array of integer numbers where
cloudy bins are labeled as 2, non-cloudy bins as 1, while bins with an indistinguishable signal-to-noise
ratio are labeled as 4. For image-based detection techniques, the L15 NRB VDR variable is preferred
to the L15 NRB variable (i.e., the backscattered energy by the atmosphere) as in the VDR variable
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composite images the rainfall bins show a higher volume depolarization ratio. This translates into
higher contrast, as shown in Figure 2b.

It is clearly visible that, with respect to the strong red depolarizing structures (VDR>35%) (e.g.,
clouds containing ice), the signal assumes a well-defined rectangular shape that can be identified as
rainfall. In contrast, during non-rain episodes, the signal does not assume a particular shape and the
VDR shows lower values.

(a) NRB variable composite image on 22 April 2016 observed at National Administration and Space Agency
(NASA) Goddard Space Flight Center permanent MPLNET observational site.

(b) VDR variable composite image on 22 April 2016 observed at NASA Goddard Space Flight Center permanent
MPLNET observational site. The rainfall event has a different color with respect to the background aerosol
(greener tone), while clouds are represented in red.

Figure 2. Precipitation event detected on 22 April 2016. With respect to (a) NRB, the precipitation on (b)
VDR has more defined and sharp contours. The precipitation under the cloud (in red) has a different
green tone. For this reason, the detection is easier on (b).

4. Version 3 Image-Based Rain Detection Algorithm

4.1. Processing Chain for Rain Detection

The proposed algorithm (flowchart shown in Figure 3) is based on image processing techniques.
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Figure 3. Flowchart of V3 MPLNET rain detection algorithm. Red boxes indicate data input/output,
while blue boxes represent the processing steps. A detailed description of all the steps can be found in
the text.

The algorithm processes VDR composite images from the MPLNET L15 NRB product.
Then, the VDR composite plot is paired with the cloud masking variable found in L15 CLD product,
as precipitation detection is uniquely carried out under the cloud base, given by the cloud mask [13]
(natural rain does not exist under clear sky conditions). Thus, the proposed rain detection algorithm
will analyze only the VDR bins under the clouds. Afterwards, these bins are preliminarily labeled
as “rain” if, and only if, they are above a certain threshold value (0.07, see Section 4.2.1). Non-rainy
bins are those either not topped by a cloud or with a VDR value below the threshold (0 < VDR < 0.07).
This preliminary rain mask is used to estimate the parameters of the Laplace distributions under the
hypotheses rain and non-rain and the rain a priori probability in order to use a maximum a posteriori
(MAP) detector for estimating an accurate rain mask, see Section 4.2. Finally, a post-processing phase
based on morphological operators is applied to reduce the image noise due to the signal extinction
above the clouds and to remove any non-rectangular shaped detection, thus producing the final
rain mask.

The algorithm is currently set-up to detect rain events for cloud bases at least 400 m above the
surface and for rainfall episodes that last a minimum of 7 min. As a final step, all the detected rainfall
events without any physical meaning are filtered out (i.e., precipitation not originating from the
cloud base).

4.2. Maximum a Posterior Detector

To detect rainfall events, we use the previously described volume depolarization ratio composite
image, which can be represented in a vectorial form as VDR = [VDR1, . . . , VDRi, . . . , VDRn] with
VDRi ∈ R+, where n is the total number of bins. We also denote c = [c1, . . . , ci, . . . , cn], as the vector of
the labels in the set C = {non-rain, rain}, where rain means that a generic VDRi is classified as “rain”,
otherwise it belongs to the class “non-rain”. The detection problem is formalized into the Bayesian
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framework. Hence, the minimum Bayesian risk is achieved by the maximum a posterior probability
(MAP) rule [30], i.e., we have

ĉ = arg max
c

p(c | VDR) = arg max
c

[p(VDR | c) · p(c)] , (1)

where p(VDR | c) is the likelihood and p(c) represents thea priori probability. The likelihood
p(VDR | c) in Equation (1) can be simplified by the additional assumption of conditional independence
among data. This yields its factorized form as follows

ĉ = arg max
c1,...,cn

[
n

∏
i=1

p(VDRi | ci) · p(ci)

]
. (2)

Thus, given ĉ = [ĉ1, . . . , ĉi, . . . , ĉn], the problem of its maximization can be simply solved by
maximizing each term, i.e., for each pixel i ∈ [1, . . . , n], we have:

ĉi = arg max
ci

[p(VDRi | ci) · p(ci)] . (3)

This leads to a binary hypothesis test that can be written as

Λ(VDRi) =
p(VDRi | ci = rain)

p(VDRi | ci = non − rain)

rain
≷

non−rain

p(ci = non − rain)
p(ci = rain)

, (4)

where the likelihood ratio Λ(VDRi) is compared with the threshold p(ci=non−rain)
p(ci=rain) . If Λ(VDRi) >

p(ci=non−rain)
p(ci=rain) , VDRi is classified as rain, otherwise VDRi is associated to the class non-rain.

Under the assumption of Laplace distributed data for both the hypotheses (which have been
experimentally validated, see Figure 4), the solution for each VDRi is

|VDRi − μnr|
bnr − |VDRi − μr|

br

rain
≷

non−rain
γ, (5)

where

γ = log
(

bnr · p(ci = non − rain)
br · p(ci = rain)

)
, (6)

log is the natural logarithm, μr and br are the location and scale parameters, respectively, which
characterize the Laplace distribution under the rain hypothesis and μnr and bnr are the related
parameters for the non-rain hypothesis.
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(a)

(b)
Figure 4. Cumulative distribution functions (CDFs) for (a) non-rain VDR data and (b) rain VDR data.
The empirical CDFs are the estimated CDFs from the data, i.e., considering non-rain data in (a) and
rain data in (b).

4.2.1. Parameter Estimation

In order to estimate all the parameters in Equation (5), we exploit the lidar image under analysis
and we find a first rough detection map, i.e., roughly identifying the rain bins. Thus, we apply
a thresholding of the image’s bins to solve the rain detection problem. The used threshold has
been experimentally set to 0.07. After this preliminary step, we use the data labeled either as rain
or as non-rain to estimate the parameters for both classes. Thus, given that nr independent and
identically distributed samples belonging to a class rain, obtained selecting in VDR the rain bins,
i.e., the ones detected as rain by the above-mentioned thresholding approach, we have that VDRr =

[VDRr
1, . . . , VDRr

i , . . . , VDRr
N ]. In order to estimate the values of the a priori probability for both

the classes, we count all these bins, which belong to the class rain in the rough detection map.
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Hence, if count(·) is the counter operator, p(ci = rain) = count(VDRr)
n . p(ci = non − rain) is simply

equal to 1 − p(ci = rain).
The other parameters to be estimated are the ones related to the Laplace distribution. Focusing on

the problem of the parameter estimations for the Laplace distribution under the class rain (all the
considerations are equivalent even in the case of the estimations of the same parameters under the
hypothesis of non-rain), the maximum likelihood estimators (MLEs) for μr and br are:

• The MLE, μ̂r, of μr is μ̂r = med(VDRr), where med(·) is the sample median operator.
• The MLE, b̂r, of br is the mean absolute deviation from the median, i.e.,

b̂r =
1
nr

nr

∑
i=1

|VDRr
i − μ̂r|. (7)

4.3. Post-Processing Based on Morphological Operators

In this section we highlight and describe the post-processing step to raise the MAP detector
performance presented in Section 4.2. Morphological operators basis are first described referring to
their application to a generic image, I, see Section 4.3.1. Their use for the problem at hand is instead
described in Section 4.3.2.

4.3.1. Basics of Morphological Operators

An image I : E ⊆ Z
2 → V ⊆ Z is analyzed by the morphological operators through the

so-called structuring element (SE) B [31], which can be defined through its spatial support NB(x), i.e.,
the neighborhood with respect to the position x ∈ E in which B is centered, and by its values. It is
possible to characterize flat SEs by unitary values and the only free parameters for defining B in this
case are the origin and NB.

Erosion εB [I] and Dilation δB [I] are the two basic operators defined for each point x ∈ I, as:

εB [I] (x) =
∧

y∈NB(x)

I (y) ; δB [I] (x) =
∨

y∈NB(x)

I (y) , (8)

where
∧

S and
∨

S are the infimum and supremum values within the set S, respectively.
The erosion (respectively, dilation) application has a filtering effect that suppresses bright

(respectively, dark) regions smaller than B and the enlargement of dark (respectively, bright) ones.
For bright and dark regions we mean that the local contrast in a certain region has intensity values
respectively greater or lower with respect to the surrounding ones. Erosion and dilation operators can
be recast into minimum and maximum operators on B, respectively, if I is a binary image. We also
introduce, for convenience, the opening and closing that correspond to the two possible sequential
compositions of erosion and dilation:

γB [I] =δB̆ [εB [I]] , φB [I] =ε B̆ [δB [I]] , (9)

with B̆ denoting the SE obtained by reflecting B with respect to its origin. A closing removes
dark regions smaller than B while an opening suppresses bright ones. For further details about
morphological operators, the interesting readers can refer to the related literature [31].

4.3.2. Use of Morphological Operators for Rain Detection Post-Processing

Two kinds of post-processing based on morphological operators are applied to the rain detection
map coming from the MAP detector described in Section 4.2. In particular, given the detection map
(rain/non-rain) in matrix form, i.e., Ĉ, we first apply a low-pass morphological filter to remove salt
and pepper noise into Ĉ to achieve a new low-pass version image denoted as ĈLP. The low-pass
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morphological filter can be formulated by sequentially applying a closing operator and an opening
operator with the same structuring element B1, i.e.,

ĈLP = φB1

[
γB1

[
Ĉ
]]

, (10)

where B1 is a disk structuring element with a radius experimentally set to 4.
Last, but not least, the post-processing operation is based on an opening operator with a

rectangular structuring element B2, i.e.,

ĈPP = γB2

[
ĈLP

]
, (11)

where ĈPP is the final map after the morphological post-processing. This last processing is performed
to delete detected objects that do not follow a rectangular shape with some constraints about the
minimal size. In particular, the minimal sizes of the sides of the rectangle are tunable parameters that
are selected to 7 (i.e., 7 min) that is the minimal temporal resolution to consider that is raining (i.e.,
we are not able to detect rains that last less than 7 min), and about 2.67 for the other side. This value
takes into account of the minimal vertical dimension of the rains and coming from the fact that
the data has a spatial resolution of 75 m, thus, we have a minimum vertical dimension of the rains
equal to 200 m. Therefore, only these kinds of detected objects have the right spatial features to
be considered rain. These parameters have been tuned for this specific problem and type of data.
Obviously, considering lidar data with different features will lead to a new tuning of parameters in
order to achieve high performance.

5. Results

5.1. Intercomparison with Ground-Based Disdrometer Measurements

The algorithm results are compared against rain intensity measurements obtained from a
co-located disdrometer, an in-situ measurement device designed to measure the drop size distribution
(DSD) [10], represented as the number of drops per unit of volume and per unit of raindrop diameter.
Disdrometers can be based on different measurement principles (high-speed cameras, Doppler effect,
laser-optical, impact, etc.). The second generation Parsivel (Parsivel2) laser-optical disdrometer
manufactured by OTT [32] is used in this work. Parsivel systems were originally developed by
PM Tech Inc., Germany. The instrument has a laser diode (emitting wavelength of 780 nm) generating
a horizontal flat beam with a measurement area of 54 cm2.

The disdrometer principle of operation is based on laser technology. When a hydro-meteor
passes through a volume uniformly illuminated by a laser beam , it produces a temporal attenuation
proportional to its size with a duration depending on its fall speed. A relationship between the laser
beam occlusion by the falling particle is applied to estimate the particle size. Parsivel instruments
can measure particle diameters up to about 25 mm classifying them in 32 size classes of different
widths. The instrument also estimates the hydro-meteor fall velocity by measuring the time necessary
for the particle to pass through the laser beam, and thus stores particles in 32 × 32 matrices.
The disdrometers high temporal resolution (60 s for this work) permits study in great detail of
physical precipitation variability.

5.2. Rain Detection Algorithm Working under Simpler and Complex Meteorological Conditions

In this section we show how the rain masking algorithm works in different meteorological
conditions, i.e., for light and stronger precipitation intensities. The comparison results are carried out
at the NASA Goddard Space Flight Center (GSFC) MPLNET permanent observational site (Lat: 38.9 N,
Lon: 76.3 W, Alt: 50 m a.s.l.), where measurement data from a co-located Parsivel2 disdrometer are
also available. The rain masking algorithm can also detect the so-called virga streaks (Figure 5), a kind
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of precipitation that, due to the strong evaporation, will never reach the ground [5]. As can be easily
understood, virga episodes cannot be detected by the disdrometers.

Figure 5. Rain mask variable from rain detection algorithm on 22 April 2016 from MPLNET observation
at NASA GSFC (Lat: 38.99 N, Lon: 76.38 W, Alt: 50 m a.s.l.). The different steps to obtain the rain mask
are shown in the flowchart in Figure 3: Upper: Volume depolarization ratio variable obtained from
MPLNET NRB L15 signal product. Middle 1: Cloud mask variable from MPLNET L15 CLD product.
The algorithm retrieves precipitation only on blue regions topped by clouds (cyan bins). Middle 2:
New rain mask product (rain plotted in yellow). Lower: Co-located precipitation intensity measured
by disdrometer. The green rectangular shapes help in visualizing the detected rain events.

5.2.1. A Simple Case: 22 April 2016

As described in Section 4.2, the rain detection algorithm first step consists in pairing VDR
composite images with the L15 cloud masking variable. Then, a first guess of rain probability is
produced only for the VDR signal above a certain threshold and below a cloud base, i.e., on deep blue
regions topped by cyan cloud regions of upper middle plots of Figure 5. The detection in this case
does not show any critical aspects. The cloud base is never below 400 m and the precipitation intensity
is very low, i.e., 0.25 mm h−1 on daily average. Those intensities cannot completely attenuate the lidar
signal. Two virga streaks are detected by the algorithm in the second half of the day. The retrieved
disdrometer rain rate (Figure 5; bottom), shows very low values, with a maximum of 0.76 mm h−1

at 1701 UTC. Globally, there is a partial agreement between the disdrometer and the rain masking
algorithm: After 1815 UTC rain intensity drops so much that the disdrometer is unable to detect
the precipitation, while after 2200 UTC, the rain masking algorithm fails to detect the rainfall up to
the ground. Precipitation events from lidar data are then necessary to fill a gap in detecting very
low precipitation intensity events (<0.05 mm h−1) that are crucial to study the aerosol effects and
interactions on clouds and rainfall [33].
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5.2.2. Intermittent Rain: 12 April 2016

The meteorological situation is more complex with respect to the previous case. In the upper
composite plot (the volume depolarization ratio) of Figure 6 we can notice the transit of a front over
the observational site with a progressive descent of the cloud base from 0000 UTC to about 0530 UTC.
The precipitation is intermittent and at least four events are detected by the algorithm. The rainfall
intensity is still low, as shown by in-situ disdrometer observations (Figure 6): the average intensity
during the day is 0.9 mm h−1, with a peak of 12 mm h−1 around 1300 UTC that lasts only less than
5 min. The precipitation event at 0600 UTC in the rain mask is not detected by the disdrometer as the
precipitation intensity is below its sensitivity (0.05 mm h−1) .

Figure 6. Similar to Figure 5, but for 12 April 2016. This case presents different short precipitation
originating from the transit of a front.

5.2.3. Lighter Rain Followed by Stronger Rain: Case of 10 November 2015

During this day, the precipitation is more intense with respect to the the previous two cases, with
an average intensity recorded, from 0000 UTC to 0700 UTC, of about 3.7 mm h−1. Higher peaks of
rain rates of about 8.8 mm h−1, lasting more than 30 min, completely soak the telescope and receiver
optics making it impossible to perform any further detection by the algorithm, as shown in Figure 7.
The disdrometer shows that precipitation, even with a lower intensity, lasted almost the whole day.
But after 0600 UTC the cloud base drops below 400 m making the detection by the algorithm impossible.
This rainfall event highlights the limits of the lidar technology in detecting precipitation under very
low signal to noise ratio [34]. From Figure 7 it is possible to fix a detection limit threshold depending
on rain intensity and duration, i.e., rain rate > 8 mm h−1 lasting > 30 min.
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Figure 7. Same as Figure 6, but for 10 November 2015. After 0600 UTC, the signal is completely
extinguished making any detection impossible.

5.3. Overall Intercomparison

The rain detection algorithm has been intercompared with ground-based disdrometer
observations over 7 days between November 2015 and April 2016. The intercomparison, as stated
before, was carried out at NASA Goddard Space Flight Center. Table 1 summarizes all the precipitation
events, together with their lengths used, for the intercomparison.

As shown in Table 1, the algorithm performances are tested vs. the disdrometer observations.
The detected precipitation events by the rain masking algorithm and the ground based disdrometers
have different sensitivities, i.e., the lidar instrument can detect rainfall episodes not reaching the
ground while the disdrometer can not detect intensities lower than 0.05 mm h−1. On the contrary,
higher intensity precipitation (at least 30 min with a rain rate > 8 mm h−1, see Figure 7) can not be
detected by the rain algorithm as the lidar signal is completely extinguished. It is important to stress
that the rain masking algorithm has a 100% (14/14) success rate in detecting disdrometer observed
precipitation. A detection is considered successful if the disdrometer observation and the algorithm
detection share at least one minute in common, independently of the total precipitation duration,
which can be different for the reasons previously explained.

Analysis from Table 1, shows that the algorithm is more sensitive at detecting lower intensity
precipitation by 22% (4/18). If we examine the bias with respect to precipitation start and stop (see
Table 1, fifth column), we found that the detection algorithm precedes the disdrometer observations by
about 9 min, while the opposite is true in detection of the precipitation end, where the disdrometer
lasts 5.5 min longer. This can be partially attributed to the water soaking the lidar telescope window
with a consequent fully attenuated signal.
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Table 1. Precipitation events observed by Parsivel2 at NASA GSFC used to validate the rain detection
algorithm. The three values reported in the fifth column are the differences in minutes between
disdrometer and algorithm in detecting precipitation. The first value represents the difference in
minutes with respect to the precipitation start, the second one the same but for the precipitation end,
while the third represents the difference in minutes on overall precipitation duration.

Event nr. Day Disdrometer Lidar Diff. (min)

1 09 November 2015 2034–2051 2026–2042 −8/ − 9/ − 1
2 09 November 2015 2140-0000 2214–0000 +34/0/ − 34
3 10 November 2015 0000–0600 0000–0600 0/0/0
4 30 November 2015 1300–1351 1328–1347 −28/ − 4/ − 32
5 30 November 2015 1431–1445 1431–1459 0/ + 14/ + 14
6 17 December 2015 1216–1259 1212–1432 −4/ + 93/ + 97
7 12 April 2016 0547 0534–0605 −13/18/ + 30
8 12 April 2016 0735–0843 0730–0743
8 12 April 2016 0735–0843 0803–0815 −5/ + 3/ − 19
8 12 April 2016 0735–0843 0822–0846
9 12 April 2016 1005–1223 1000–1214 −5/ − 9/ − 4
10 12 April 2016 1255–1413 1246–1415 −9/ + 2/ + 11
11 22 April 2016 1727–1753 1659–1731 −28/ − 22/ + 6
12 22 April 2016 ——— 1809–1842 ———
13 22 April 2016 ——— 1858–1915 ———
14 22 April 2016 2315–0000 2230–0000 −45/0/ + 45
15 23 April 2016 0000–0110 0000–0101 0/ − 9/ − 9
16 23 April 2016 ——— 1423–1458 ———
17 23 April 2016 1247–1320 1300–1320 −13/0/ − 13
18 23 April 2016 ——— 1728–1937 ———

Overall, the disdrometer measured 1084 min of precipitation vs. 1095 min of detected precipitation
by the algorithm. We also calculated the root mean square error (RMSE) with respect to the precipitation
global duration as defined in [4], and we found that the average absolute difference in precipitation
total duration detected by the algorithm and measured by the disdrometer is of about 10.23 min.
Considering the different characteristics of the ground-based instrument and the detection algorithm,
the agreement is within reason.

6. Discussion and Conclusions

Automated networks of instruments started to develop in the last two decades aiming to
continuously monitor crucial atmospheric physical, thermodynamic, geometrical, and optical variables.
Among them, the NASA MicroPulse Lidar NETwork (MPLNET), active since 1999, has globally
deployed more than 21 worldwide observational sites in the tropics, mid-latitudes, and polar regions in
both hemispheres to automatically retrieve 24/24 the geometrical and optical properties of aerosol and
cloud atmospheric profiles under any meteorological conditions. Despite that lidar has proven to be
very effective in detecting especially light precipitation and drizzle, lidar data containing precipitation
episodes are currently unjustifiably disregarded. As a proof of concept, in this study we developed
a rain masking algorithm, based on the volume depolarization ratio variable, which is proven to
be effective in detecting light rain, drizzle, and virga episodes. Once rigorously validated and
operationally implemented into the NASA MPLNET lidar network, the rain masking algorithm
will consistently help in understanding how light precipitation contributes to cloud formation and will
fill a gap left by TRMM and GPM missions in detecting low intensity rainfall episodes. This is crucial to
improving global climate model forecasts and for aerosol–clouds and in turn, precipitation interactions.
Finally, as future development, the algorithm will be also tested on simpler elastic lidar instruments
without the depolarization channel, i.e., the ceilometers, to assess the rain detection feasibility. In more
detail, precipitation is a fundamental meteorological phenomenon that is the principal responsible
for atmospheric aerosol removal. Analyzing a large database of lidar measurements will help in fully
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characterizing the aerosol cycle, from emission to deposition, and validate global model observations
that show a strong negative correlation between Aerosol Optical Depth (AOD) and precipitation
due to wet scavenging [35]. A synergy between both passive and active satellite NASA missions,
i.e., the Moderate Resolution Imager Spectrometer (MODIS; [36] and the Cloud-Aerosol Lidar and
Infrared Pathfinder Satellite Observation (CALIPSO; [37]), and the ground based lidar networks, such
as the European Aerosol LIdar NETwork (EARLINET; [38]) part of the Aerosols, Clouds and Trace
gases Research Infrastructure (ACTRIS http://www.actris.eu) and in North America as MPLNET,
and more in general in the frame of Global Aerosol Watch (GAW) aerosol lidar observation network
(GALION; [39]) will strongly contribute to quantitatively assess how the above cloud aerosol load
influences clouds and then rainfalls. The synergy will then assess the “all-sky” aerosol contribution to
clouds and precipitation.

The image-based technique methodology used in developing the proposed algorithm, will be
tested in a future work over different instruments, i.e., ceilometers, where precipitation still looks like
a higher-contrasted feature in the range corrected backscattered energy.
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Abstract: Based on the Langley method and the EuroSkyRad (ESR) pack retrieval scheme, we carried
out the retrieval of the aerosol properties for the CE–318 sunphotometer observation data from March
2012 to February 2014 in Kunming, China, and we explored the possible mechanisms of the seasonal
variations. The seasonal variation of the aerosol optical depth (AOD) was unimodal and reached a
maximum in summer. The retrieval analysis of the Angstrom exponent (α) showed the aerosol types
were continental, biomass burning (BB), and urban/industrial (UI); the content of the desert dust (DD)
was low, and it may have contained a sea–salt (SS) aerosol due to the influence of the summer monsoon.
All the aerosol particle spectra in different seasons showed a bimodal structure. The maximum and
submaximal values were located near 0.2 μm and 4 μm, respectively, and the concentration of the
aerosol volume was the highest in summer. In summer, aerosol particles have a strong scattering
power but a weak absorption power; this pattern is the opposite in winter. The synergistic effect of
the East Asian monsoon and the South Asian monsoon seasonal oscillations can have an important
impact on the variation of the aerosol properties. The oscillation variation characteristic of the total
vertical columnar water vapor (CWV) and the monsoon index was completely consistent. The aerosol
types and sources in the Yunnan–Kweichow Plateau and the optical radiation properties were closely
related to the monsoon circulation activities during different seasons and were different from other
regions in China.
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1. Introduction

The complexity of aerosol sources (primary and aged aerosol) determines the diversity of the
composition types and particle sizes, and it has important effects on the weather, climate, air quality,
and human health. The direct and indirect effects of aerosols are some of the most poorly–understood
variables affecting atmospheric and water circulation. It is necessary to combine aerosol measurements
and radiation techniques with model simulations to accurately determine the aerosol effect [1–4]. Model
simulation uses atmospheric radiation transfer models, such as the Santa Barbara DISORT(Discrete
Ordinates Radiative Transfer) Atmospheric Radiative Transfer (SBDART), Global Atmospheric Model
(GAME), Moderate Resolution Atmospheric Transmission (MODTRAN), and RSTAR. To estimate
the accuracy of the models, the modeled global, diffuse, and Sun’s direct radiation at ground level
have been compared with experimental measurements. The Sun–sky radiometric measurements at
ground level were also needed to characterize the aerosol properties. The CE–318 sunphotometer
is used internationally. Systems such as Prede POM can be used to retrieve the optical properties
of aerosols from solar and sky radiance measurements [5]. Aerosols with different particle sizes
have different effects on the environment, transport, and human health [6,7]. However, due to
the complex composition of aerosols and the uncertainty of their spatiotemporal distribution, the
physicochemical and optical properties of aerosols vary [8], which makes environmental research and
assessing the radiation effects of climate change challenging [9–13]. Therefore, quantitative remote
sensing analysis of aerosol properties in different geographical locations has important theoretical and
practical implications.

At present, a number of international and regional aerosol ground–based observation networks
have been established. For example, the Aerosol Robotic Network (AERONET), established by the
National Aeronautics and Space Administration (NASA), provides the most extensive aerosol database
in the world [14]. The European Skynet Radiometer Network (ESR) is a new type of network in
partnership with SKY–Radiometer NETwork–SKYNET (Skynet–Asia) in Japan [15,16]. There is also the
Global Atmosphere Watch Precision Filter Radiometer Network (GAWPFR NET) [17]. The Chinese Sun
Hazemeter Network (CSHNET), the China Aerosol Remote Sensing Network (CARSNET) [18], and the
Campaign for the Atmospheric Aerosol Research Network of China (CARE–China) were established in
China [19,20]. ground–based network observation can directly provide basic data for research; it can
also provide a reference for the satellite detection data and numerical simulation results and provide
an observational basis for the impact of environmental, weather and climate change [14,21–25].

The sunphotometer is one of the most widely used instruments for ground–based passive telemetry
to accurately characterize aerosol properties, and its retrieval algorithm is an important component.
Dubovik et al. evaluated the physical quantities, errors, and information from different sources.
They gave different weights to the data in the retrieval process and applied advanced numerical
optimization techniques to obtain the final statistical optimal solution. Through this algorithm, they
obtained parameters such as the aerosol particle volume size distribution, complex refractive index,
and single scattering albedo by using ground–based observation data [26]. Olmo et al. applied
the Nakajima algorithm to incorporate the randomly distributed ellipsoid approximation to retrieve
the aerosol parameters [27]. The ESR.pack retrieval scheme proposed by Estellés et al. [28] was
based on the Nakajima algorithm and Skyrad.pack to improve and compile the applications of the
CE–318, POM, and various sunphotometers. He et al. [29] compared the retrieval results of the aerosol
properties generated by Nakajima et al. [30] and Dubovik et al. [26]. Huang et al. used the sun direct
radiation data to retrieve the aerosol optical depth (AOD) and Angstrom exponent as well as the single
scattering albedo (SSA) and scattering phase functions from the sky scattering data [31]. At present,
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the internationally–used, comprehensive aerosol retrieval results come from AERONET (for business
retrieval) [26] and the ESR.pack retrieval scheme that covers ESR and Skynet–Asia [28]. Estellés et al.
performed a comparison of the aerosol properties derived by the ESR.pack with AERONET and
obtained good results [32].

The Yunnan–Kweichow Plateau (100–111◦E, 22–30◦N) is located in the southeastern part of the
Qinghai–Tibet Plateau in southwestern China and is a typical low–latitude plateau monsoon climate
zone. Its geographical location (it is adjacent to Southeast Asia and South Asia, and it is an important
source of aerosols in southwest China due to the strong influence of the monsoon circulation) [33,34]
and climate (the annual temperature difference is small and the daily range is large, the dry season
and wet season are distinct, and the sunshine and ultraviolet radiation are strong) are unique. It is
also an important path for water vapor transport of convection and advection in China. Research
shows that aerosols have important effects on global and regional water vapor variation [35,36] and
influence the regional climate and environment. However, there are few ground–based stations in
the Yunnan–Kweichow Plateau, and there is a lack of systematic research on aerosols. Therefore, this
paper explores the relationship between the seasonal and interannual variation characteristics of the
East Asian monsoon and South Asian monsoon and the variation of the aerosol optical radiation
properties, which were based on the combination of the aerosol properties retrieved from the CE–318
observation data from the Kunming Atmospheric Ozone Monitoring Station, No. 209 of the Global
Ozone Observing System (GO3OS), and the monsoon circulation index. It is important to know and
understand the aerosol variation and monsoon activities in the Yunnan–Kweichow Plateau and their
impact on the environment and climate in specific areas.

2. Instruments and Data

2.1. Instruments

The Kunming atmospheric ozone monitoring station (25.03◦N, 102.68◦E; 1917 m above sea level
(a.s.l.)) is located in the center of the city, and it is equipped with a CE–318 sunphotometer (CE318NTS8,
France). It has eight channels with central wavelengths λ at 340, 380, 440, 500, 670, 870, 1020 and
1640 nm. The instrument can track the Sun for direct radiation observation, and it scans the sky for
the scattered radiation of the Almucantar–azimuth angle, principal plane standard–scattering angle,
and principal plane polarization–zenith angle.

The CE–318 sunphotometer can be used for atmospheric environmental monitoring and the
radiometric calibration of remote sensing satellite sensors. Calibration is carried out every 6 months
using the calibration facilities at the Chinese Academy of Meteorological Sciences [18,37]. We conducted
sun direct radiation calibration by comparing the instrument with the master sunphotometers in
Beijing. The master sunphotometers were calibrated using the Langley method at either Izaña (Spain,
28.31◦N, 16.50◦W; 2391.0 m a.s.l.) or Mauna Loa (HI, USA, 19.54◦N, 55.58◦W; 3397.0 m a.s.l.) [10].
The sky scattered radiation channel is calibrated by integrating the sphere radiation source. Tao et
al. described the sphere calibration methods and protocols for CARSNET. The CARSNET sphere
calibration results were compared with the original values provided by Cimel, the manufacturer; the
linear interpolation method can be used to obtain the calibration coefficient for each period [37,38].

2.2. Data

We used the CE–318 observation data of the Kunming atmospheric ozone monitoring station
from March 2012 to February 2014 (including eight bands of Sun direct radiation data and four bands
of equal zenith angle scanning scattered radiation data; the minimum observation time point is in
minutes, and there are missing measurements when it is cloudy) and the total ozone column data
observed in real time by the Dobson ozone spectrophotometer (No. D003). The absorption coefficients
of ozone and the water vapor at different wavelengths and temperatures were derived from the ESR.
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We used ERA–Interim daily four times (00,06,12,18 UTC) over the same period of the wind field
and relative humidity reanalysis data provided by the European Center for Medium–range Weather
Forecasts (ECMWF). The data have a total vertical resolution of 37 layers, with a horizontal resolution
of 0.25◦ × 0.25◦. The daily surface meteorological data provided by the National Meteorological Base
Station in Kunming included the hourly ground pressure, temperature, and relative humidity. The
East Asian monsoon index (EAMI) and South Asian monsoon index (SAMI) were provided by the
China National Climate Center.

NASA provided the water vapor data observed by the Atmospheric Infrared Detector (AIRS)
carried by the Aqua satellite, which was compared with the vertical columnar water vapor (CWV)
retrieved by the CE–318 observation data. The MODIS Fire Points Product Data (MCD14ML) were
provided by the University of Maryland website (ftp://fuoco.geog.umd.edu), and the description and
validation of the data are shown in the literature [39].

3. Retrieval Algorithms

3.1. Sun Direct Radiation

The direct solar irradiance of the ground–based measurement of a specific wavelength (λ) is based
on the Beer–Bouguer–Lambert rule, which is expressed as the output voltage V on the CE–318 [40]:

V = V0R−2Tgexp(−mτ) (1)

where V0 is the calibration voltage constant and can be obtained by extrapolating from a series of
observations to m = 0. R = rt·rm

−1 is the Sun–Earth distance factor at the time of measurement, rt is
the distance between the Sun and the Earth at the time of measurement, and rm is the mean distance
between the Sun and the Earth. Tg is the gas absorption transmission rate (mainly considered ozone
and water vapor). In the CE–318 channel, only the water vapor absorption band at 936 nm cannot be
ignored, so Tg of the other channels is 1. m = (cosθ)−1 is the air mass factor, and θ is the solar zenith
angle. τ is the total optical depth of the vertical atmosphere. Taking the logarithm of Equation (1) on
both sides, the reciprocal of the slope of the line drawn by lnV + 2lnR and m is τ, which is the Langley
method [41,42]:

τ = − 1
m
[ln(V/V0) + 2lnR] (2)

In the formula, τ = τa + τg + τr is composed of aerosol scattering τa, gas absorption τg (such as
ozone and water vapor), and Rayleigh scattering τr. Except for the 936 nm channel, τg of the other
channels can be ignored, and τr can be calculated from the actual measured value of the ground
pressure. Then the AOD is τa = τ − τr.

Assuming that the aerosol particles follow the Junge volume size distribution [43], the calculation is:

n(r) =
dN(r)

dr
= c(z)r−(v+2) (3)

where r is the radius of the spherical particle, N(r) is the total number of aerosol particles per unit area,
v is the Junge parameter, and c(z) is a function of height z. If λ is independent of the Junge spectrum
type and the complex refractive index, Ångström generalizes the relationship between τa and λ [44]:

τa(λ) = βλ
−α (4)

Here, α is the Angstrom exponent. Usually, 0 < α < 4 reflects the scale characteristic of the aerosol
particle size and is inversely proportional to the particle size. When the coarse particles dominate,
α tends to 0, and when the particle size is on the molecular scale, α is close to 4 [45]. β is the Angstrom

132



Remote Sens. 2019, 11, 2911

turbidity coefficient, and the AOD at λ = 1 μm. When β ≥ 0.20, the atmosphere is turbid; if β ≤ 0.10,
the atmosphere is relatively clean [46]. From Equation (4), the following can be obtained:

α = − ln[τa(λ1)/τa(λ2)]

ln(λ1/λ2)
(5)

β = exp[lnτa(λ) + αlnλ] = τa(λ)λ
α (6)

In the formula, if τa(λ1) and τa(λ2) of two wavelengths λ1 and λ2 are known, α and β are obtained.
Thus, τa(λ) of arbitrary λ under the same conditions is calculated.

The formula of the water vapor transmission rate Tw on the channel is [47]

Tw = exp(−awb) (7)

Here, w is the total amount of water vapor in the slant path, and a and b are constants. The Sun
direct radiation response of CE–318 at the 936 nm water vapor absorption band is:

V = V0R−2Twexp(−mτar) (8)

where τar = τa + τr, and τa is obtained by interpolating two channels at 870 and 1020 nm. At the same
time, w = m·WC, and WC is the total amount of the vertical water vapor column (CWV). By combining
this with Equations (7) and (8), we obtain:

lnV + mτar = ln(V0R−2) − ambWb
c (9)

WC (CWV) can be obtained, which is an improvement of the Langley method because it includes
the influence of water vapor, making it more accurate and reliable [42].

3.2. Equal Zenith Angle Scattered Radiation

In the single channel of the radiation transmission model, the surface sun direct radiation is
defined as E, and the surface scattered radiation is F [30]:

E = E0exp(−m0τ)
F(θ,φ) ≡ F(Θ) = Em0ΔΩ[ωτP(Θ) + q(Θ)]

(10)

where E0 is the sun direct radiation of the channel at the upper boundary of the atmosphere (unit:
W·m−2·μm−1), and m0 is the atmospheric optical mass. Forθ≤ 75◦, m0 = (cosθ)−1. ΔΩ is the stereoscopic
observation angle of the sunphotometer, calculated at 1.2◦, ω is the SSA of the entire atmosphere [48],
Θ is the scattering angle, P(Θ) is the total phase function when the scatter angle is Θ [49,50], and q(Θ)
represents the contribution of multiple scattering (MS). The relationship between Θ and θ is observed
in the actual equal zenith angle scan observation:

cos(Θ) = cos2θ+ sin2θcos(φ−φ0) (11)

At this time, ϕ0 is the solar azimuth angle, and 0 ≤ Θ ≤ 2θ0. We introduce G(Θ) and define it as:

G(Θ) ≡ F(Θ)

Em0ΔΩ
= ωτP(Θ) + q(Θ) ≡ β(Θ) + q(Θ) (12)

where β(Θ) = ωτP(Θ) is a single scattering equal to the total differential scattering coefficient, including
Rayleigh scattering and Mie scattering. The AOD is defined as:

τa(λ) =

∫ rM

rm

πr2Qext(x, m̃)n(r)dr (13)
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Here, Qext is the extinction effective factor of spherical particles, x = (2π/λ)·r is the Mie size
parameter (x 
 1 is Rayleigh scattering, x ≥ 1 is Mie scattering), rm and rM are the minimum and
maximum values of the aerosol particle radius, respectively, and m̃ = mR + imI represents the complex
refractive index of the aerosol. If Qext is only a scattering effective factor, the corresponding calculation
result is the scattering optical depth τas, from which the formula of the SSA can be obtained:

ωa =
τas

τa
. (14)

The differential scattering coefficient βa of the entire layer of the atmospheric aerosol is defined as:

βa(Θ) =
λ2

2π

∫ rM

rm

[i1(Θ, x, m̃) + i2(Θ, x, m̃)]n(r)dr (15)

where i1 and i2 are the Mie scattering intensity functions, thereby defining the aerosol phase function as:

Pa(Θ) =
βa(Θ)

ωaτa
(16)

The asymmetry factor g is the first moment of the phase function and is used to describe the
relative intensity of the forward scattering:

g =
1
2

∫ +1

−1
P(Θ) cos ΘdcosΘ (17)

Here, g varies from −1 to 1. Usually, the Mie scattering has a peak g > 0 in the forward direction,
and Rayleigh scattering has the same property in all directions g = 0. g is also an important parameter
for discussing radiation transmission problems and aerosol properties.

The aerosol particle size spectrum n(r) is the number of particles (cm−2·cm−1) in a unit cross-section
of the gas column and a unit radius interval [51]. The volume spectrum distribution V(r) of the
particles is defined as the volume of the aerosol (cm3·cm−2) in a unit cross–section gas column and a
unit logarithmic radius interval:

V(r) =
4π
3

r4n(r) (18)

In the ESR retrieval scheme, τa and βa can be summarized as:

τa(λ) = 2π
λ

∫ rM
rm

Kext(x, m̃)v(r)d(lnr)
βa(Θ) = 2π

λ

∫ rM
rm

K(Θ, x, m̃)v(r)d(lnr)
(19)

where Kext and K are core functions:

Kext(x) =
3
4

Qext(x)
x

K(Θ, x, m̃) =
3
2

i1 + i2
x3 (20)

The values of the above two equations determine the radius of the aerosol particles, which in turn
have a greater impact on the physical and optical properties of the aerosol [52,53].

3.3. Retrieval Scheme

The Sun direct radiation data are filtered by clouds, and the instrument retrieves the AOD of
8 channels (340, 380, 440, 500, 670, 87, 1020 and 1640 nm), α, β, CWV, and other properties. Smironv
et al.’s [54] cloud filtering algorithm was applied to remove artifacts introduced by clouds. When
retrieving V(r), P(Θ), g, SSA, m̃ and the other parameters using the sky scattering data observed by
equal zenith angle scanning, it was necessary to eliminate cloud interference by examining the data
symmetry. Holben et al.’s [14] quality control and cloud–removal scheme was applied to obtain high
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precision retrieval information: (1) The scattered radiation data used for retrieval had to satisfy the
symmetry angle of more than 21 angles (the maximum quantity was 28); (2) the fitting error of the
retrieval result was less than 5%; and (3) it needed to meet the condition of θ > 50◦ to perform the
retrieval calculations.

4. The Characteristic Analysis of the Seasonal Variations

4.1. Optical Depth

Figure 1 shows the seasonal mean variation of the eight λ channel AOD year by year and the
variation characteristics of AOD440 from March 2012 to February 2014. In Figure 1a, the AOD decreases
with the increase of λ, and both have the same characteristics. The value for the AOD from June to
August (JJA) in summer is greater than that of March to May (MAM) in spring, which is greater than
that of autumn or September to November (SON), which is greater than that for winter or December
to February (DJF). The seasonal mean is less than 0.80, but there are some differences in the seasonal
mean variation year by year. This seasonal variation is related to the monsoon circulation activities
(as shown in Figure A1) and environmental pollution emissions.

Figure 1. (a) Seasonal mean variation of the AOD in the 8 bands year by year. (b) Seasonal
mean columnar distribution of AOD440 and comparison of the seasonal variations year by year.
(c) Distribution of scatter data between AOD440 and the Angstrom Exponent (α).

The seasonal mean value of AOD440 from Figure 1b is between 0.2 and 0.6 and is less than 0.50,
except for the summer of 2012. After analyzing the AOD of the eight channels, we found that they
reach their maximum value in the summer of 2012; there are two reasons for this. First, combined with
the seasonal variation of the 700 hPa level atmospheric circulation and relative humidity (RH) field in
Figure A1, the summer monsoon circulation in 2012 brought more water vapor than that in 2013, and
the summer RH around Kunming was 90% in 2012 and 80% in 2013. Second, it may be related to the
increase of aerosol particles in the atmosphere caused by the large–scale municipal construction in
the urban area of Kunming in the summer of 2012. However, we cannot rule out that the increase of
aerosol particles was caused by other factors.

In Figure 1c, the value of AOD440 is concentrated between 0.10 and 1.0, and the Angstrom
Exponent (α) is uniformly distributed in the range of 0.2–1.6. α increases with the increase of AOD440,
indicating that it is mainly affected by fine particle aerosols generated by human activities, and the
particle types and sources are different in different seasons (Table A1).

4.2. Angstrom Exponent and Turbidity Coefficient

Figure 2 shows a seasonal variation of the Angstrom Exponent (α) and frequency distributions
at different intervals. The statistical results show the α value is distributed between 0.2 and 1.7. The
highest frequency of 0.6–1.0 is 39.90%, and 1.4–1.8 only occurs 2.54% of the time. Figures 5 and 11
show radius r of the main control aerosol particles is more than 0.5 μm.
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Figure 2. Retrieval results of the Angstrom Exponent (α). (a) Seasonal variation of α values. (b)
The frequency distribution of α values at different intervals. (c) Frequency distribution of α in
different seasons.

In the summer of 2012, the α value was slightly higher than that in the spring, while the autumn
and winter values decreased in turn, reflecting that the mean aerosol particle size r in the spring and
summer (autumn and winter) was relatively small (large). In 2013, the α value gradually decreased
from spring to winter, indicating that there is a certain difference in the mean aerosol particle size r in
different seasons. The grain size r is slightly larger (small) in autumn and winter (spring and summer).
On the whole, the seasonal mean of the Angstrom Exponent (α) is between 0.6 and 0.9, which is slightly
greater in spring and summer than in autumn and winter. It is noted that the mean value of α in the
autumn and winter of 2012 decreased significantly, and the annual mean α value was slightly lower
than that in 2013, mainly because the water vapor transport in 2012 was greater than that in 2013, so
the hygroscopic growth effect was more significant.

For frequency statistics in different seasons, the distribution frequency of 0.6 ≤ α < 1.0 varies with
the season and is the most stable and highest in autumn. In spring and summer, 1.0 ≤ α < 1.4 (0.2 ≤
α < 0.6) increases (decreases), while in autumn and winter, it decreases (increases), which shows the
opposite frequency seasonal variation. The distribution frequency of 1.4 ≤ α < 1.8 is the lowest and
gradually decreases from spring to winter.

A further analysis of the data in Figure 2, Figure A2, and Figure A3 showed that the mean
value of α is 0.88 in spring, and the frequency in the range of 0.6–1.4 is more than 75%. This result
is mainly due to the frequent biomass burning around the Yunnan–Kweichow Plateau (Southeast
Asia–South Asia) (Table A2), which produces a large amount of fine particle aerosols. It is also related
to local anthropogenic emissions (industrial pollution, coal burning, motor vehicles, and other human
activities). The mean value of α in summer is 0.87, and the frequency in the range of 0.6–1.4 is more
than 80%; compared with the data from spring, the frequency of the small value range 0.6–1.0 increased,
while that of the large value range 1.0–1.4 decreased slightly. These results are mainly because the
summer monsoon circulation in East Asia and South Asia brings adequate water vapor to make
fine particle aerosols grow hygroscopically, which leads to the large AOD in summer (Figure A1).
The mean value of α in autumn is 0.76, and the frequency in the range of 0.6–1.4 is about 65%; the
frequency in the small value range increased significantly. The mean value of α in winter is 0.70.
The frequency between 0.6 and 1.4 is less than 60%, while the frequency between 0.2 and 0.6 is more
than 40%, and the frequency between 1.4 and 1.8 is almost 0. In winter, Southeast Asia–South Asia
also experienced more frequent biomass burning, resulting in the transport of aerosol particles to the
Yunnan–Kweichow Plateau.

By comparing the values of the different intervals’ α in Table A1, we found that there are main
aerosols, such as UI (urban/industrial), BB (biomass burning), continental, and DD (desert dust), with
some SS (sea–salt) aerosols being imported in the wet season. However, the most dominant content is
that of the continental aerosol, followed by the BB and UI aerosols; the DD aerosol content is relatively
low. From spring to winter, the dominant particles are coarse particles with a high frequency and fine
particles with a low frequency.

136



Remote Sens. 2019, 11, 2911

Figure 3 shows the seasonal mean variation of the β coefficients for the 440 nm and 870 nm bands.
The β values at the 2 channels differ little and vary substantially. The comparison shows that the β
value is consistent with the seasonal variation of the AOD in Figure 1. The seasonal mean is between
0.10 and 0.30, which is the largest in summer, followed by the values for spring, autumn, and winter.
The mean value of β in the summer of 2012 is the largest, indicating that the degree of atmospheric
turbidity was the highest.

 
Figure 3. Seasonal mean variations in the Angstrom turbidity coefficient β at 440 nm and 870 nm and
seasonal mean variations year by year.

Table A3 shows the division of different β values and atmospheric turbidity. Figure 3 and Table A3
illustrate that there is little atmospheric turbidity. The degree of atmospheric turbidity in spring and
summer is significantly higher than that in autumn and winter; the β value in winter is slightly higher
than 0.1, and the atmosphere is the cleanest.

4.3. Total Column Water Vapor

Figure 4 shows a comparison of the retrieval results of the CWV and observations with AIRS. The
seasonal variation of the CWV is obvious, with an annual mean of about 1.0 g·cm−2 that reaches the
maximum of more than 3.0 g·cm−2 in summer. Spring and autumn are similar, and the minimum is in
winter. This is consistent with the climatic characteristics of the outbreak and end of summer monsoon
over the Yunnan–Kweichow Plateau, and the retrieval results are consistent with the CWV from the
AIRS detection.

Figure 4. Retrieval results of column water vapor (CWV). (a) The comparison of the CWV inter-monthly
variation in CE–318 and AIRS retrieval. (b) The comparison of CWV seasonal variation in CE–318 and
AIRS retrieval.

It is not difficult to see that the seasonal variation of the AOD and CWV is similar, but slightly
different. Overall, it reaches the maximum in summer and the minimum in winter, but the difference is
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that the AOD is significantly higher in spring than that in autumn, while the CWV has no significant
size difference in spring and autumn.

4.4. Particle Spectrum Distribution and Complex Refractive Index

Figure 5 shows the mean annual aerosol particle spectrum distribution in different seasons. The
distribution of the particle spectra varies in different seasons. However, the variation situation is
basically the same, and it shows a bimodal shape. The maximum values of the fine mode and the
coarse mode are located near 0.2 μm and 4 μm, respectively. The particle spectral structure is similar to
the ratio of the continental and UI aerosol models in the Standard Chinese Radiation Atmosphere [55].
The seasonal variation analysis shows the volume concentration in summer, and the distribution of
fine particles and coarse particles reaches the maximum. The maximum value of the fine particles is
0.07, and the maximum value of the coarse particles is 0.06. The main reason is the same as that for
the seasonal variation of the AOD. In winter it is the smallest, with a maximum particle value of 0.05
and a maximum coarse particle value of 0.02. In winter, due to the influence of the dry inland winter
monsoon (Figure A1), the aerosol content is the lowest, and the particle volume concentration is also
the smallest.

 
Figure 5. The mean annual aerosol particle spectrum distribution in different seasons.

In contrast, the retrieval results of the aerosol volume spectrum (the fine mode of 0.1–0.2 μm has a
maximum value) in the Beijing area [56] are slightly smaller, reflecting the relatively light pollution in
Kunming. Fine particles with a radius r below 1 μm occupy the main body and are mainly particles
in the Aitken nuclei mold and the accumulation mode; the components of these particles are UI and
continental aerosols.

Figure 6 shows the relationship between the annual mean of the FR and FI in the complex refractive
index and λ, and only the seasonal mean variation of the 440 nm complex refractive index is extracted.
The variation of the FR and FI is the opposite when they vary with λ, and its absolute value increases
with the increase of λ. The variation of the FR is between 1.40 and 1.50, which is more obvious than the
variation of FI, which is between 0.005 and 0.015. The variations in the FR and FI are not significant in
the relatively short 440–670 nm band, while the FR and FI are significantly different in the relatively
longer bands. The difference in the FR for different aerosol particles is not large, and the FI values can
differ by several orders of magnitude.

138



Remote Sens. 2019, 11, 2911

Figure 6. (a) Relationship between mR and mI of the annual average aerosol complex refractive index
and wavelength (λ). (b) Seasonal variation of mR and mI of the aerosol complex refractive index at
440 nm.

The FR and FI characterize the scattering and absorption properties, respectively, of an aerosol;
they offer a comprehensive reflection of the aerosol absorption properties of different components.
Black carbon is the most absorbent component in aerosols, and minerals and dust are also important
absorbent components [57]. Table A4 shows the statistical mean results of the values of the aerosol FR
and FI for different components. Figure 6 illustrates that the content of water vapor and ammonium
sulfate in the aerosol is relatively high; it also contains a very low amount of dust and the black
carbon aerosol.

Studies [58] have shown that the value of the FR in urban/industrial areas is between 1.4 and
1.47, and if the area affected by the ocean is large, the value of the FR will be low. From the seasonal
variation of the FR in Figure 6, it can be determined that Kunming is an urban/industrial area. The
seasonal mean variation of the FI is below 0.01; it is the closest to 0.01 in winter, which is relatively
large, while it is relatively small in summer, and thus the absorption aerosol content is low. However,
there is also some uncertainty. Because the aerosol content in winter is low, the FI value is relatively
large, so a more in–depth discussion of the retrieval results is needed to explain the variation of the FI.
It may be worthwhile to use the refractive index to study the seasonal cycles of the aerosol types.

4.5. Single Scattering Albedo and Asymmetry Factor

Figure 7 shows the seasonal mean variation of the SSA in the 440 nm band and the g in the 4 bands.
In Figure 7a, the seasonal variation of the SSA is a unimodal type; in summer (winter), it reaches a
maximum (minimum) of about 0.96 (0.90). The water vapor content is high in summer, and the particle
size and volume increase after the hygroscopic aerosol absorbs water, which enhances the scattering.
The summer monsoon brings abundant water vapor and a little SS aerosol, and the non–absorbing
sulfate aerosol enhances the scattering ability to some extent. The amount of wind and sand near the
ground in spring is relatively large, which increases the amount of the flying dust and floating dust
particles; the single scattering albedo (SSA) is slightly higher than that in autumn. The SSA is smaller
in winter; the main reason is that the strong absorption of the aerosol scattering ability is relatively
weak, which is consistent with the analysis of the complex refractive index in Figure 6.
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Figure 7. (a) Seasonal variation of the aerosol single scattering albedo (SSA) at 440 nm (the deviation
line is the standard deviation). (b) Seasonal variation of the asymmetry factor (g) in 4 bands.

Figure 7b reflects the scattering rule of the aerosol particle g > 0, and it exhibits the variation that g
decreases with the increase of λ. The shorter λ the stronger is aerosol forward scattering. The g value
of the same λ in different seasons is not much different and is not affected by the seasonal variation.
The result is reflected in that g has no obvious seasonal variation rule, but the inverse relationship
between g and λ is particularly obvious.

5. Case Analysis

5.1. Retrieval of Direct Radiation

Figure 8 shows the daily variation of the AOD, Angstrom Exponent (α), and CWV from 9:00 to
18:00 (Beijing Time) on January 9, 2014. The AOD varies with λ and shows the typical Mie scattering
characteristics. The Mie scattering process exists when the aerosol scale parameter RmM = 2πr·λ−1 is
0.1–50 [59]. Particles with r in the range of 0.3–0.7 μm have the greatest influence on the extinction of
visible light. This result shows that the shorter λ the larger AOD, and the stronger is extinction effect
of the particles.

 
Figure 8. Daily variation of the AOD, Angstrom Exponent (α), and CWV from 9:00 to 18:00 (Beijing
Time) on January 9, 2014. (a) The 8 wavelengths (λ) correspond to the hourly mean AOD. (b) The AOD
at 440, 670, 870, and 1020 nm at 11, 13, 15, and 18 o’clock, respectively. (c) The hourly mean Angstrom
Exponent (α) (the deviation line is the standard deviation) and the CWV (unit: g·cm−2).

The daily variation of the hourly mean of the Angstrom Exponent (α) ranges from 0.6 to 1.2, which
is significantly higher in the morning than in the afternoon; it decreases significantly in the afternoon
and increases after 16:00. In the morning (afternoon), r of the aerosol’s dominant particle is smaller
(larger). By combining the AOD data and Table A5, we see that the AOD reaches the maximum at
around 11:00, when the extinction effect of the aerosol is the strongest. At this time, the Angstrom
Exponent (α) is 0.967. It is speculated that at the moment when the extinction effect is the strongest
throughout the day, the dominant particle r should be around 1 μm. The CWV hourly mean is lower
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and varies from 1.0 g·cm−2 to 1.3 g·cm−2, which is consistent with the climatic characteristics of the
winter monsoon (dry and little rain).

5.2. Retrieval of Scattered Radiation

In order to comprehensively analyze the equal zenith angle observation data, the retrieval
calculations were performed on the observation data at 10:00, 11:00, 12:00, and 13:00 (Beijing Time) on
9 January, 2014, and combined with the retrieval results of the direct radiation for analysis.

5.2.1. The Detection of Sky Radiation

Figure 9 shows the clear sky data after the equal zenith angle scan and the cloud detection; the
abscissa indicates the difference angle with the solar azimuth (the positive and negative signs indicate
the right–handed and left–handed scans, respectively, when the CE–318 is observing), and the ordinate
indicates the response value corresponding to the amount of radiation received by the instrument
when scanning through the azimuth. The data points scanned in 2 directions at different time points
have good symmetry, and the data points in the curve satisfy the condition of (Al − Ar)·(Al + Ar)−1·0.5
< 10%, where Al and Ar represent the response values of the radiation received during the left–handed
and right–handed scans of the instrument, respectively.

 
Figure 9. Data from the equal zenith angle scan observations at 4 times (Beijing Time) on 9 January, 2014.

5.2.2. SSA and Phase Function

Table 1 shows the variation of the SSA (ωa) and g with λ at the 4 points. At 12:00, ωa reaches a
maximum value, and AOD440 is greater than 0.40. Table 1 also shows that ωa is greater than 0.87 and
shows a decrease with the increase of λ. Scattering plays a dominant role in the extinction effect of the
aerosol on the radiation; λ is shorter, and the proportion of scattering is greater. By combining the
CWV and Angstrom Exponent (a) data in Figure 1c, we find that the aerosol grows hygroscopically at
12:00 and 13:00, resulting in the enhanced scattering effect; therefore, the SSA reaches the maximum at
12:00. g decreases slightly with the increase of λ, but the difference at different times is small.

Table 1. Variation of the SSA (ωa) and g with λ at 10:00, 11:00, 12:00, and 13:00 (Beijing Time) on
9 January 2014.

Wavelength
(nm)

Time (Hour)

10:00 11:00 12:00 13:00

ωa g ωa g ωa g ωa g

440 0.929926 0.741374 0.937808 0.74002 0.962463 0.737678 0.941437 0.740384
670 0.914820 0.696706 0.932619 0.688753 0.962108 0.692356 0.938427 0.688036
870 0.887368 0.675157 0.909843 0.665487 0.957335 0.662634 0.923731 0.661896
1020 0.871032 0.657125 0.900150 0.647351 0.954952 0.63962 0.914045 0.641120
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Figure 10 shows the variation of P(Θ) with Θ for different λ. P(Θ) with different λ has a good
consistency at each Θ angle and reaches the minimum near Θ = 120◦. The exponential curve of Θ and
P(Θ) accords with the Junge model of the aerosol phase function.

 
Figure 10. The variation of the scattering phase function P(Θ) with Θ at 4 times (Beijing Time) on 9
January, 2014.

5.2.3. Particle Spectrum and Turbidity

The range of particle r was determined to be 0.05–15 μm, and it contains 22 intervals in the ESR
retrieval scheme with reference to the Skyrad scheme. The initial m̃ of the particle is given during the
retrieval process, and theoretical studies have shown that the effect on the retrieval results is small,
so the empirical value of m̃ is 1.500−0.005i. Figure 11 shows the relationship between the particle
volume size distributions and the particle radius r. The measurement results at different times are
from the bimodal spectrum and basically keep the variation in sync. The first peak mode r is located at
0.1–0.5 μm, and the second peak area r is located at 3–8 μm. For the 2 peak areas, the particle volume
concentration is more concentrated on the fine particles with a smaller particle size r. The main reason
is that anthropogenic aerosol particles are mostly fine particles such as those from the combustion
processes, which produce a large number of submicron particles [60]. At 15 μm, the number of particles
at 10:00 is greater than the number of particles at 11:00, 12:00, and 13:00; the radius of those particles
can be more than 15 μm, which indicates that coarse aerosol particles may exist in the atmosphere.
In addition, if the CWV content does not reach the saturation growth of the hygroscopic aerosol,
it may also show an increase in the aerosol concentration of fine particles, resulting in a decrease in the
effective radius of the particles.

Figure 11. Aerosol particle spectrum at 4 times (Beijing Time) on 9 January, 2014.

Figure 12 shows a daily variation of the turbidity coefficient. The β440 and β870 coefficients
calculated using the AOD of 440 nm and 870 nm, respectively, are very close. Since the β coefficient
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represents the AOD at the wavelength of 1 μm (Equation (4)), it is proved that the calculated β coefficient
is highly reliable. It was found that β and the AOD maintain almost simultaneous characteristics. It is
also verified by the physical meaning of β that the AOD in Figure 1a decreases with the increase of
λ. Obviously, the β value can reflect both the degree of turbidity in the atmosphere and the degree
of extinction of the atmosphere. Table A3 shows the division of different β values and atmospheric
turbidity. In Figure 12, the daily variation range of the β value is 0.10 ≤ β ≤ 0.20, the air quality is
neither turbid nor clean, and the degree of turbidity at noon is relatively high.

 
Figure 12. The Angstrom turbidity coefficient β and the daily variation of the AOD corresponding to λ
at 440 nm and 870 nm at 9:00 to 18:00 on 9 January, 2014.

5.3. Atmospheric Circulation and Specific Humidity Field

Through the analysis of the weather map of the 600–700 hPa levels on 9 January, 2014
(figure omitted), it can be seen that the dry west wind and southwest wind from the Indian
Peninsula-Bangladesh–Myanmar prevailed throughout the day over the Yunnan–Kweichow Plateau.
Not only is it less humid, but the air is very dry. The 600 hPa in Kunming is the westerly circulation,
and the atmosphere is very dry and has a specific humidity of about 2, the speed of southwest wind
at 700 hPa gradually increases, and there is a significant increase at 14:00 compared with the value
at 8:00; the specific humidity is significantly higher than 600 hPa but only 4–6. This shows that the
dry weather with little rain in winter is also conducive to the long distance transport of aerosols from
Southeast Asia–South Asia (aerosol pollutants in the atmosphere) to the southwestern area of China.
However, the contribution and influence of the aerosol load in the Kunming area need to be further
observed and verified by numerical simulation.

6. Analysis of the Causes of the Seasonal Variation

Kunming is located in the central part of the Yunnan–Kweichow Plateau and is affected by the
East Asian monsoon and the South Asian monsoon. The annual sunshine is about 2200 h, and the
ultraviolet radiation is strong. The monthly mean temperature is between 9.1 ◦C and 20.7 ◦C, and the
monthly precipitation is between 11.3 mm and 204.0 mm. The precipitation in the rainy season from
May to October accounts for 85% of the whole year and for more than 60% in summer. The southeast’s
warm and humid airflow from the western Pacific and the southwest’s warm and humid airflow from
the Indian Ocean meet over the Yunnan–Kweichow Plateau (which contains Yunnan), and a variety of
aerosol species combine with water vapor to generate aerosol particles, which are transported over long
distances (Southeast Asia–South Asia and the Iranian plateau to North Africa) [33,61], or the aerosol
particles are hygroscopically grown. Under the conditions of a high temperature, high humidity,
and strong ultraviolet radiation, chemical and photochemical reactions are favored to generate new
aged aerosol particles. Therefore, due to the increase in the type and quantity of aerosol particles in
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summer (which makes the AOD reach its maximum), there is an increase in the volume concentration
of the aerosol particles and the concentration of the coarse and fine particles. Diversification of the
particle size (the Angstrom Exponent (α) is higher than the annual mean value) affects the degree of
the atmospheric turbidity (the β coefficient reaches the largest value). Because the physical, chemical,
and optical properties (absorption and scattering cross section) of the aerosol changed greatly, the
extinction effect was enhanced. Moreover, the increase of the water vapor (the CWV reaches the
maximum value) enhances the extinction of the solar radiation absorption and scattering, which leads
to the enhancement of the secondary or multiple scattering of the aerosol particles and promotes the
variation of the aerosol properties.

Precipitation in the dry season from November to April of the following year accounts for only
15% of the whole year. There is little rain and plenty of sunshine in winter. It is mainly influenced
by the west wind circulation and cold air from the higher latitude continent. The source and the
physicochemical properties of the aerosol are different from those in the summer, which leads to the
characteristic parameters of the AOD, CWV, and β coefficient change with the seasons and the AOD,
CWV, and β coefficient reach the minimum values in winter.

In the spring, there are few clouds and little rain, the air is dry, the evapotranspiration is strong,
the solar ultraviolet radiation is enhanced, and the diurnal range of the temperature is large. The
temperature drops rapidly in the autumn, which is about 2 ◦C lower than that in the spring, the
precipitation is reduced and less than 30% of summer (but more than that in spring and winter), and
the air is dry. The values of the aerosol properties in spring and autumn are between those of summer
and winter, but they are slightly different in the two seasons. Comparing the spring and autumn, the
aerosol properties are higher (larger) to different degrees. The main reason is that the wind speed in the
near–surface layer in spring is much larger than that in the autumn, so that the flying dust and floating
dust generated by the exposed surface can enter the atmosphere, which makes the amount of aerosol
particles increase slightly. The increase of the desert dust aerosol in spring makes the average AOD
higher than that in autumn, and the particle radius changes obviously make the turbidity stronger. Due
to the influence of the summer monsoon circulation, the CWV values in spring and autumn are quite
different (there is no obvious difference and regularity). The wet season starts at the end of spring and
ends in autumn, but the variations of the CWV in the two seasons are slightly different. A more specific
difference analysis is needed to combine the characteristics of the actual monsoon circulation evolution
with different years, characteristics of water vapor transport, and variation in meteorological factors.

Figure 13 shows the characteristics of the seasonal variation and inter–annual activities of the
EAMI and SAMI and aerosol properties normalized time series from March 2012 to February 2014.
EAMI and SAMI are consistent with the variation in the aerosol properties, and the CWV and CWV
(AIRS) are exactly the same as the seasonal variation of the monsoon index. The positive (negative)
phase of the summer (winter) oscillation variation is significant, while those of spring and autumn
are relatively weak, reflecting the difference in the aerosol type and source and the optical–radiation
properties in different seasons. Except for the influence of other factors, it is mainly affected by
the variation in the monsoon circulation activities (Figures A1 and A3). The interannual variation
difference of the monsoon circulation can also be reflected in the variation of the aerosol properties.
The positive phase of the EAMI and SAMI variations in the summer of 2012 is much longer than that
in 2013, resulting in the difference of the variation of the aerosol properties in the summer during those
two years.
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Figure 13. The characteristics of the seasonal variation and inter–annual activities of EAMI and SAMI
and aerosol properties normalized time series from March 2012 to February 2014. The aerosol properties
in sub-graphs are (a) AOD1640, (b) AOD1020, (c) AOD870, (d) AOD670, (e) AOD500, (f) AOD440,
(g) AOD380, (h) AOD340, (i) Angstrom Exponent(α), (j) SSA(440), (k) CWV, (l) AIRS CWV.

The linear fitting regression analysis of the aerosol properties and the monsoon index normalized
sequence shows that y (the response of the aerosol properties to the monsoon circulation) = kx (the
variation of the monsoon circulation). Only the influence of the monsoon circulation variation is
considered here. The physical meaning of the slope k is the sensitivity of the aerosol properties to the
monsoon circulation variation, while kx×% characterizes the relative influence rate of the monsoon
circulation on the variation of the aerosol properties.

Figures 14 and 15 show the correlation analysis of the normalized sequence between EAMI and
SAMI and aerosol properties containing CWV (AIRS CWV). The CWV and CWV (AIRS) have the best
linear relationship with the monsoon index. The relationship not only reflects the transport of the
water vapor from the atmospheric circulation but also verifies the reliability of the aerosol properties
retrieval. The linear relationship between the AOD at 8 bands, SSA at 440 nm, CWV (AIRS CWV),
EAMI, and SAMI all pass the significance test of more than 99%, but the linear relationship between
the Angstrom Exponent (α) and the monsoon index is relatively insignificant.
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Figure 14. The correlation analysis between the standardized sequence of the EAMI and aerosol
properties: (a) AOD1640, (b) AOD1020, (c) AOD870, (d) AOD670, (e) AOD500, (f) AOD440, (g)
AOD380, (h) AOD340, (i) Angstrom Exponent(α), (j) SSA(440), (k) CWV, (l) AIRS CWV. Except for the
Angstrom Exponent (α) (which passed 95% for the significance test), all passed the significance test
with more than 99%.

 
Figure 15. Correlation analysis between the normalized sequence of the SAMI and aerosol properties: (a)
AOD1640, (b) AOD1020, (c) AOD870, (d) AOD670, (e) AOD500, (f) AOD440, (g) AOD380, (h) AOD340,
(i) Angstrom Exponent(α), (j) SSA(440), (k) CWV, (l) AIRS CWV. The except for the Angstrom Exponent
(α) (which only passed 69% of the significance test), all passed the significance test with more than 99%.

Table 2 shows the sensitivity kE of the aerosol properties to the EAMI variation and the influence
rate (%) of the variation of the East Asian monsoon circulation on the relative variation of the
aerosol properties.
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Table 2. Sensitivity kE of the aerosol properties to the EAMI variation and the influence rate (%) of the
East Asian monsoon circulation variation on the relative variation of the aerosol properties.

Year Month

East Asian Monsoon Relative Impact Rate %

Sensitivity kE of Aerosol Properties to EAMI variation

0.60 0.65 0.66 0.63 0.60 0.58 0.59 0.61 0.32 0.72 0.83 0.90

AOD1640 AOD1020 AOD870 AOD670 AOD500 AOD440 AOD380 AOD340 α SSA CWV AIRS CWV

2012

Mar −62.3 −68.1 −68.2 −65.7 −62.7 −60.6 −61.6 −63.1 −33.5 −74.5 −86.1 −93.3
Apr 9.5 10.4 10.4 10.0 9.6 9.2 9.4 9.6 5.1 11.4 13.1 14.2
May 11.8 12.9 12.9 12.4 11.9 11.5 11.7 11.9 6.4 14.1 16.3 17.7
Jun 76.1 83.2 83.4 80.4 76.6 74.1 75.3 77.1 41.0 91.1 105.2 114.0
Jul 59.0 64.6 64.7 62.3 59.4 57.5 58.5 59.8 31.8 70.7 81.6 88.5

Aug 107.1 117.1 117.4 113.1 107.8 104.2 106.0 108.5 57.7 128.2 148.1 160.5
Sep 32.6 35.7 35.8 34.5 32.9 31.8 32.3 33.1 17.6 39.1 45.1 48.9
Oct 19.9 21.7 21.8 21.0 20.0 19.3 19.7 20.1 10.7 23.8 27.5 29.8
Nov −79.4 −86.9 −87.0 −83.9 −80.0 −77.3 −78.6 −80.5 −42.8 −95.1 −109.8 −119.0
Dec −91.2 −99.7 −99.9 −96.3 −91.8 −88.7 −90.3 −92.4 −49.1 −109.1 −126.1 −136.6

2013

Jan −92.2 −100.8 −101.0 −97.3 −92.8 −89.7 −91.2 −93.4 −49.7 −110.3 −127.4 −138.1
Feb −58.4 −63.8 −64.0 −61.6 −58.7 −56.8 −57.8 −59.1 −31.4 −69.8 −80.7 −87.4
Mar −42.2 −46.1 −46.2 −44.5 −42.4 −41.0 −41.7 −42.7 −22.7 −50.5 −58.3 −63.2
Apr −19.1 −20.9 −20.9 −20.2 −19.2 −18.6 −18.9 −19.4 −10.3 −22.9 −26.4 −28.6
May 20.0 21.8 21.9 21.1 20.1 19.4 19.8 20.2 10.8 23.9 27.6 29.9
Jun 41.3 45.2 45.2 43.6 41.6 40.2 40.9 41.8 22.2 49.4 57.1 61.9
Jul 61.8 67.6 67.8 65.3 62.2 60.2 61.2 62.7 33.3 74.0 85.5 92.6

Aug 48.7 53.3 53.4 51.4 49.0 47.4 48.2 49.4 26.2 58.3 67.3 73.0
Sep 74.6 81.5 81.7 78.7 75.0 72.5 73.8 75.5 40.2 89.2 103.1 111.7
Oct 79.4 86.9 87.1 83.9 80.0 77.3 78.6 80.5 42.8 95.1 109.8 119.0
Nov −44.8 −49.0 −49.1 −47.3 −45.1 −43.6 −44.3 −45.4 −24.1 −53.6 −61.9 −67.1
Dec −62.9 −68.8 −68.9 −66.4 −63.3 −61.2 −62.3 −63.7 −33.9 −75.3 −86.9 −94.2

2014
Jan −62.6 −68.5 −68.6 −66.1 −63.0 −60.9 −62.0 −63.4 −33.7 −74.9 −86.5 −93.8
Feb −26.9 −29.4 −29.5 −28.4 −27.1 −26.2 −26.6 −27.3 −14.5 −32.2 −37.2 −40.3

During the dry season, from November to March (or April) of the following year, the aerosol
characteristic parameter value decreases with the weakening of the East Asian monsoon circulation
(negative phase) and reaches the minimum value in January. During the spring/summer transition
from March (or April) to May, the positive phase of the East Asian monsoon circulation variation
gradually increases. At this time, the variation of the aerosol characteristic parameter value under
the influence of the monsoon circulation starts to change from decreasing to increasing. During the
rainy season from May to October, the values of the aerosol properties increase rapidly in the period
of the East Asian monsoon circulation enhancement (positive phase). It should be noted that the
aerosol properties reached a maximum value in August 2012. However, the maximum value not
only was delayed by two months but was relatively small. It shows that the interannual activity of
the East Asian monsoon circulation is significantly different. The negative phase of the East Asian
monsoon circulation variation gradually increases during the autumn–winter transition from October
to November. At this time, the variation of the aerosol characteristic parameter value begins to change
from increasing to decreasing due to the variation of the monsoon circulation. The transformation of
the positive and negative (negative and positive) phases of the monsoon circulation affects the seasonal
variation characteristics of the aerosol properties. However, the activity intensity of the monsoon
circulation in different years and the difference in the transition period have different effects on different
aerosol properties. Except for the CWV (AIRS CWV), the effect of the SSA on the 440 nm band is the
most significant, and the effect on the AOD at different wavelengths is more consistent.

Table 3 shows the sensitivity kS of the aerosol properties to the SAMI variation and influence rate
(%) of the South Asian monsoon circulation on the relative variation of the aerosol properties. Compared
with the East Asian monsoon circulation, the South Asian monsoon circulation weakens 1 month
earlier. From October to April of the following year, the South Asian monsoon circulation weakens,
and the aerosol characteristic parameter values decrease accordingly, also reaching a minimum value
in January. During the transition period from April to May, the monsoon circulation has little effect on
the variation of the aerosol properties due to the aerosol characteristic parameter values’ change from
decreasing to increasing.
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Table 3. Sensitivity kS of the aerosol properties to the SAMI variation and the influence rate (%) of the
South Asian monsoon circulation on the relative variation of the aerosol properties.

Year Month

South Asian Monsoon Relative Impact Rate %

Sensitivity kS of Aerosol Properties to EAMI Variation

0.69 0.65 0.62 0.55 0.51 0.48 0.49 0.52 0.10 0.77 0.93 0.95

AOD1640 AOD1020 AOD870 AOD670 AOD500 AOD440 AOD380 AOD340 α SSA CWV AIRS CWV

2012

Mar −58.9 −55.4 −52.4 −47.2 −43.0 −40.7 −42.0 −44.6 −8.8 −65.9 −79.0 −81.1
Apr −13.7 −12.9 −12.2 −10.9 −10.0 −9.4 −9.7 −10.3 −2.0 −15.3 −18.3 −18.8
May 9.9 9.3 8.8 7.9 7.2 6.8 7.0 7.5 1.5 11.0 13.2 13.6
Jun 86.5 81.4 77.0 69.3 63.2 59.7 61.6 65.4 13.0 96.8 116.1 119.2
Jul 111.1 104.6 98.9 89.0 81.1 76.7 79.1 84.1 16.6 124.3 149.1 153.1

Aug 103.5 97.4 92.0 82.9 75.5 71.4 73.7 78.3 15.5 115.7 138.8 142.5
Sep 43.7 41.1 38.9 35.0 31.9 30.2 31.1 33.0 6.5 48.9 58.6 60.2
Oct −41.0 −38.6 −36.5 −32.9 −30.0 −28.3 −29.2 −31.0 −6.1 −45.9 −55.1 −56.5
Nov −53.6 −50.4 −47.6 −42.9 −39.1 −37.0 −38.1 −40.5 −8.0 −59.9 −71.8 −73.8
Dec −69.8 −65.7 −62.1 −55.9 −51.0 −48.2 −49.7 −52.8 −10.5 −78.1 −93.7 −96.2

2013

Jan −76.4 −71.9 −67.9 −61.2 −55.8 −52.7 −54.4 −57.8 −11.4 −85.4 −102.5 −105.2
Feb −67.3 −63.4 −59.9 −53.9 −49.2 −46.5 −48.0 −50.9 −10.1 −75.3 −90.3 −92.8
Mar −54.5 −51.3 −48.5 −43.6 −39.8 −37.6 −38.8 −41.2 −8.2 −60.9 −73.1 −75.0
Apr −23.2 −21.8 −20.6 −18.6 −16.9 −16.0 −16.5 −17.5 −3.5 −25.9 −31.1 −31.9
May 16.8 15.8 15.0 13.5 12.3 11.6 12.0 12.7 2.5 18.8 22.6 23.2
Jun 98.0 92.2 87.1 78.5 71.5 67.6 69.8 74.1 14.7 109.6 131.4 134.9
Jul 137.3 129.2 122.1 109.9 100.2 94.8 97.8 103.8 20.6 153.6 184.2 189.1

Aug 90.9 85.6 80.9 72.8 66.4 62.8 64.7 68.8 13.6 101.7 122.0 125.2
Sep 33.5 31.6 29.8 26.9 24.5 23.2 23.9 25.4 5.0 37.5 45.0 46.2
Oct −9.3 −8.7 −8.2 −7.4 −6.8 −6.4 −6.6 −7.0 −1.4 −10.4 −12.4 −12.8
Nov −58.7 −55.2 −52.2 −47.0 −42.8 −40.5 −41.8 −44.4 −8.8 −65.6 −78.7 −80.8
Dec −65.3 −61.4 −58.1 −52.3 −47.6 −45.1 −46.5 −49.4 −9.8 −73.0 −87.6 −89.9

2014
Jan −72.7 −68.4 −64.6 −58.2 −53.0 −50.2 −51.7 −55.0 −10.9 −81.3 −97.5 −100.1
Feb −66.9 −63.0 −59.5 −53.6 −48.9 −46.2 −47.7 −50.6 −10.0 −74.9 −89.8 −92.2

From May to September, the South Asian monsoon circulation increases, and the aerosol
characteristic parameter values continued to increase, reaching a maximum value in August. During
the transition period from September to October, the South Asian monsoon circulation begins to
weaken, which changes the aerosol characteristic parameter value from increasing to decreasing and
the impact of the variation of the monsoon circulation on the aerosol characteristic parameter values is
also small.

By combining Tables 2 and 3, it is clear that the effects of the East Asian monsoon and the
South Asian monsoon on the variation in aerosol properties are similar. Although there is a seasonal
difference, the synergy between the East Asian monsoon and the South Asian monsoon is obvious, and
the variation in the aerosol properties is consistent with their seasonal variations. The sensitivity of
the CWV and CWV (AIRS) to the EAMI and SAMI variations is 0.83–0.90 and 0.93–0.95, respectively.
The CWV (AIRS CWV) is more significantly affected by the South Asian monsoon than the East Asian
monsoon, which indicates the contribution of the water vapor from the atmospheric circulation. The
sensitivity of the SSA in the 440 nm band to the EAMI and SAMI is 0.72 and 0.77, while the sensitivity
of the AOD for different λ to the EAMI and SAMI ranges from 0.58 to 0.66 (mean value is 0.62) and
0.48 to 0.69 (mean value is 0.56), which indicates that the extinction of the aerosol particles is deeply
affected by the variation of the monsoon circulation activity. It is also noted that the sensitivity of the
AOD to the EAMI is greater than that of the SAMI, and the influence of the inter–monthly variation
of the EAMI on the aerosol properties is more drastic than that of the SAMI. This may be due to the
complexity of the East Asian monsoon and the South Asian monsoon in the process of converging over
the Yunnan–Kweichow Plateau, which needs to be studied in detail.

In summary, aerosol properties that vary with the seasons are affected and controlled by the
variation in the monsoon circulation activity. For example, the AOD is closely related to the seasonal
variation of the CWV. The increase of the water vapor content can affect the variation of the aerosol
particle size and quantity, and the physical and chemical reactions of aerosol particles, which promotes
the increase of the AOD caused by the extinction of the aerosol. In 2012 and 2013, the variation
difference of the monsoon circulation can affect and control the difference in the aerosol sources and
types, and the variation in the intensity of the seasonal and interannual activity may also change the
number of aerosol particles and the formation difference of the aged aerosol. However, since only
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two years of data were used, it is necessary to verify whether it is credible through the evaluation
of longer–term data. In addition, it should be noted that except for the influence of the monsoon
circulation, there is an impact from the increased local emissions of fugitive dust on the aerosol
properties. For example, the differences between the interannual and monthly variation in the aerosol
properties in Kunming in 2012 and 2013 are not only related to the interannual differences in monsoon
circulation but also related to the increase in the local emissions.

7. Conclusions

The relationship between the influence of the East Asian and South Asian monsoon index on the
seasonal variation of the aerosol properties is discussed below based on the retrieval of the aerosol
optical and radiation properties from the observational data of the CE–318 sunphotometer at the
Kunming atmospheric ozone monitoring station. The conclusions are as follows.

The AOD decreases with the increase of λ and is consistent with the typical Mie scattering
properties. The seasonal variation of the AOD, Angstrom turbidity coefficient β, and CWV is unimodal,
the summer (winter) is the largest (smallest), and the spring is greater than the autumn. The CWV
values in spring and autumn showed no significant difference, and the seasonal variation of the
Angstrom Exponent (α) was not obvious. The turbidity in the atmosphere was relatively low. This
indicates that the aerosol properties of the low–latitude plateaus in southwestern China are different
from those in other parts of China. Although they are affected by anthropogenic emissions from
the Southeast Asia–South Asia region and biomass burning aerosols, the correlation between the
intensity of the seasonal activities of the monsoon circulation and the local anthropogenic emissions
and meteorological factors will affect the aerosol properties, so further in–depth simulation studies
are needed.

The seasonal and annual variations of the aerosol particle size distributions are bimodal. The
complex refractive index and single scattering albedo showed that the summer aerosol particles had
a stronger scattering power and a relatively weak absorption power; in winter, they exhibited the
opposite. In summer, the water vapor content was high, and after the hygroscopic aerosol particles
absorbed water, the particle size and volume increased, resulting in enhanced scattering. In order to
explain the enhancement of the aerosol absorption capacity in winter, the retrieval result for the FI
needs to be further discussed.

The variation of the aerosol properties with the season was significantly affected by the monsoon
circulation activity, and the synergistic effect of the East Asian monsoon and South Asian monsoon
made the variation of the aerosol properties have the same seasonal oscillation characteristics as that of
the monsoon. In the transition period of the season (especially during the transition periods of the
dry and wet seasons in Kunming), the monsoon circulation had little effect on the variation of the
aerosol properties. The AOD was closely related to the seasonal variation of the CWV. The increase or
decrease of the water vapor content did affect the variation of the aerosol particle size and quantity,
thus affecting the physical and chemical reactions of the aerosol particles. Furthermore, the extinction
of the aerosol was promoted to cause an increase in the AOD. Only in 2012 and 2013 did the variation
difference of the monsoon circulation affect the source and type of aerosol. The variation in the intensity
of the seasonal and interannual activity may have also changed the number of aerosol particles and the
formation difference of the aged aerosol. It should also be noted that, in addition to the influence of the
monsoon circulation, there was an impact from the increased local emissions of fugitive dust on the
aerosol properties.

8. Discussion

This study only dealt with the retrieval and discussion of the aerosol properties in Kunming.
Follow–up work needs to compare the aerosol properties of the retrieval between the satellite data
and CE–318 observation data. We need to simulate the seasonal variation for the monsoon circulation
activity variation and aerosol type and source in greater depth, as well as the direct radiative forcing
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effects of aerosols. This study investigated a limited time span of the observational data from the
Kunming atmospheric ozone monitoring station, so the rule of seasonal change needs data from a
longer period of time, and the long–term evolution trend of the interannual and interdecadal variations
needs further research. Furthermore, a more in–depth statistical analysis of the relationship between
the aerosol properties and meteorological elements is needed.
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Appendix A

 
Figure A1. Seasonal variation of the 700 hPa wind field and relative humidity field from 2012 to 2013;
the red point is the location of Kunming, the colored area is the Relative Humidity (%), and the reference
wind vector is 5 m·s−1.
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Figure A2. The emissions of the seasonal biomass burning (forest fires, straw burning, and burning)
in South Asia–Southeast Asia from 2012 to 2013; the red part is the number of fire points for biomass
burning. Refer to the color bar on the right side of the figure for more information.

 
Figure A3. The 72-h backward trajectory of the Hybrid Single–Particle Lagrangian Integrated Trajectory
(HYSPLIT) mode of Kunming at 750 hPa from March 2012 to February 2014.
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Table A1. Characterization of the Angstrom Exponent (α) [45,62].

α −1 ≤ α ≤ 0.5 0.5 ≤ α ≤ 1.5 1.1 ≤ α ≤ 1.8 1.1 ≤ α ≤ 2.3 1.1 ≤ α ≤ 2.4

Aerosol type DD Continental SS BB UI

Table A2. The frequency of the biomass burning fire points in different seasons in Southeast Asia and
South Asia (0–43◦N, 59–140◦E) from 2012 to 2013.

Year
Season

Spring (Frequency) Summer (Frequency) Autumn (Frequency) Winter (Frequency)

2012 191,180 34,909 28,131 60,710
2013 170,232 36,465 32,871 68,031

Table A3. Characterization of Angstrom’s Atmospheric Turbidity Coefficient β [63].

β β ≥ 0.4 β ≥ 0.2 β ≤ 0.1

Degree of turbidity Unclean Relatively clean Clean

Table A4. Mean statistical results of the complex refractive index of aerosol in different
compositions* [58,64–66].

Aerosol Component
Real (FR) Imaginary (FI)

440 nm 670 nm 870 nm 1020 nm 440 670 870 1020

H2O 1.33 1.33 1.33 1.33 — — — —
Ammonium sulfate 1.53 1.53 1.53 1.53 — — — —

sand and dust 1.57 1.57 1.57 1.57 0.01 0.004 0.004 0.004
Black carbon 1.95 1.95 1.95 1.95 0.66 0.66 0.66 0.66

* Combined with the spectral properties of the complex refractive index of the aerosol, it is assumed that the
imaginary parts at 870 nm and 1020 nm are approximately equal to those at 670 nm.

Table A5. Statistical relationship between the Angstrom exponent (α) and mean radius r of the aerosol
particles [59].

α 0 1.3 1.5 2.0 2.25 3.0 3.8~4.0

r (μm) >2.0 0.6 0.5 0.22~0.25 0.15 0.062~0.10 ≤0.02
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Abstract: Above-low-level-cloud aerosols (ACAs) have gradually gained more interest in recent years;
however, the combined aerosol–cloud radiation effects are not well understood. The uncertainty about
the radiative effects of aerosols above cloud mainly stems from the lack of comprehensive and accurate
retrieval of aerosols and clouds for ACA scenes. In this study, an improved ACA identification
and retrieval methodology was developed to provide a new global view of the ACA distribution
by combining three-channel CALIOP (The Cloud–Aerosol Lidar with Orthogonal Polarization)
observations. The new method can reliably identify and retrieve both thin and dense ACA layers,
providing consistent results between the day- and night-time retrieval of ACAs. Then, new four-year
(2007 to 2010) global ACA datasets were built, and new seasonal mean views of global ACA occurrence,
optical depth, and geometrical thickness were presented and analyzed. Further discussion on the
relative position of ACAs to low clouds showed that the mean distance between the ACA layer and
the low cloud deck over the tropical Atlantic region is less than 0.2 km. This indicates that the ACAs
over this region are more likely to be mixed with low-level clouds, thereby possibly influencing the
cloud microphysics over this region, contrary to findings reported from previous studies. The results
not only help us better understand global aerosol transportation and aerosol–cloud interactions but
also provide useful information for model evaluation and improvements.

Keywords: above-cloud aerosol; low-level cloud; CALIPSO

1. Introduction

The long-range transport of aerosols plays an important role in several regions of the world,
having a potential impact on aerosol–cloud interactions, atmospheric chemistry, and air quality [1–8].
In particular, aerosols often overlay lower level clouds [9], for example, biomass burning aerosols and
wind-blown dust overlay low-level cloud deck over the Atlantic. The above-low-level cloud aerosols
(ACAs) occupy about 25% of the mean aerosol optical depth (fine mode) at a global scale [9], and this
fraction could be much higher regionally and seasonally [10]. Current models experience significant
inter-model discrepancies in aerosol forcing assessments, especially over the aerosol–cloud overlap
regions [11], that result from inter-model differences in both aerosol and cloud properties [11,12].
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A recent evaluation showed that most models cannot reproduce the observed large aerosol load
episodes [13]. Therefore, improved observations are needed to better understand ACA–cloud
interactions and to constrain the aerosol–cloud radiative processes in models.

The ACA has gained increasing attention in recent years because of its important, but not
well-understood, radiative and microphysical effects on clouds [14–19]. Different from clear-sky
aerosols, which are usually associated with a negative (cooling) direct radiative effect [15,19–23],
the absorption effect of the ACA is significantly amplified due to the strong reflection light of low
clouds, resulting in a less negative or even positive (warming) direct radiative effect. By warming the
free troposphere and cooling the surface below, the ACA can increase the low cloud cover by enhancing
atmospheric stability [24]. However, if the ACA mixes directly with the cloud layer, warming of
the ACA could reduce the relative humidity, dissipating the cloud [24]. Therefore, the radiative and
microphysical effects of ACAs on clouds depend on both their loadings and their positions relative to
the clouds [25].

Despite its importance, quantifying the effect of the ACA on the clouds from satellite observations
is still challenging. For passive remote sensing, the ACA has usually been neglected, and only clear-sky
aerosol concentrations can be derived from passive satellites [26,27]. This is because passive satellites
employ the reflection of natural sunlight to retrieve aerosol and cloud properties separately. The neglect
of the ACA in passive remote sensing can result in uncertainties in the retrieval of cloud micro- and
macro-properties, such as the liquid water path, cloud optical thickness, and effective radius of cloud
droplets [26,27]. Until recently, based on different absorption effects of the ACA in the visible and
near-infrared channels, a “color ratio” (CR) method was used to retrieve the ACA optical depth (ACAOD)
and aerosol-corrected cloud optical depth (COD) [26] and this was further improved to a multi-channel
method to simultaneously retrieve ACAOD, COD, and cloud effective radius data [27]. The CR between
a pair of wavelengths is a function of both the aerosol and cloud optical thicknesses, and the measured
reflectance can be related to pairs of aerosol and cloud optical thicknesses. The results indicate that the
mean liquid cloud optical thickness can be increased by roughly 6%, and the mean liquid effective radius
can be increased by roughly 2.6% after correcting for the effect of the ACA [22,28–32]. An inter-satellite
comparison of the ACAOD retrieved from NASA’s A-train sensors revealed a good level of agreement
between the passive sensors over homogeneous cloud fields [33]. However, passive satellites can only
provide daytime ACAOD and are unable to determine the spatial position of aerosols with respect to
the clouds.

Other than passive sensors, the active lidar Cloud–Aerosol Lidar with Orthogonal Polarization
(CALIOP) onboard the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
can provide valuable vertically resolved information about aerosols and clouds. CALIPSO Level-2
data have already been employed in studies of ACA climate effects [19,22,23,34–36]. It was shown
that the vertical structure of ACA and clouds was critical in determining the aerosol–cloud radiative
forcing. However, inter-satellite comparisons of ACAOD [33,37,38] showed that the CALIPSO-derived
ACAOD data was consistently lower than those derived from other satellite sensors in the A-Train,
by a factor of four to six, as compared with passive retrieval. The main reason for this is that the current
CALIPSO Level-2 aerosol retrieval algorithm employs the 532 nm channel, which cannot detect the true
aerosol layer base because of the strong attenuation by the ACA in this channel [33,38]. Based on the
CALIPSO Level-2 product, most of the ACA resides above the cloud deck at a distance of about 1 km
over the tropical Atlantic region where both the ACA and low cloud frequently occur, indicating that
weak cloud microphysical effects occur due to the aerosols not mixing with the cloud [24]. However,
this could be misleading because the detected ACA layer base in the CALIPSO Level-2 product has
been suggested to be higher than the real position [33,38]. Some other issues also limit the use of
CALIPSO Level-2 data in ACA studies, such as the poor consistency between day- and night-time
retrieval due to the poor signal-to-noise-ratio (SNR) performance of CALIPSO daytime observations.

This paper aims to provide a new global view of the ACA distribution based on an improved
ACA detection method by combining the CALIPSO 532 and 1064 nm channels. Furthermore, efforts to
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address the low SNR issue in CALIPSO daytime observations were made to minimize the difference
between day- and night-time retrieval. The data sources used in this study are introduced in Section 2.
The new ACA identification and retrieval method is detailed in Section 3. Section 4 presents the results
and discussions, and the conclusions are summarized in Section 5.

2. Data

CALIPSO, CloudSat and operational meteorology datasets were used to perform the study.
CloudSat has not been able to operate at night-time and has operated in daylight-only mode since
a spacecraft battery anomaly occurred in 2011. Therefore, the 2007–2010 observations were employed
in this study to build both day- and night-time ACA datasets.

The CALIPSO Level-1B Version 4 product provides 532 nm total attenuated backscatter (β′532),
a perpendicular polarization component (β′532p), and 1064 nm total attenuated backscatter (β′1064) [39],
with a 30 m vertical resolution below 8.2 km and a 1/3 km resolution in the horizontal direction along
the ground track. The photomultiplier tube exhibited a nonideal recovery at 532 nm after encountering
a strong backscattering objective, which was corrected following Li et al. [40]. The CALIPSO Level-2
Vertical Feature Mask (VFM) and Aerosol Profile Products (APro) files were used for comparison in
this study.

The cloud type, cloud top height, and cloud bottom height were provided by the 2B-CLDCLASS-Lidar
product [41]. The 2B-CLDCLASS-Lidar product used combines the CloudSat Cloud Profiling Radar
(CPR), which is a 94 GHz microwave radar, and CALIPSO lidar measurements and thus can provide
more accurate and complete cloud mask information than radar-only or lidar-only measurements [42].

The meteorological reanalysis data MERRA2 (The Modern Era Retrospective-analysis for Research
and Application, Version 2 [43]) assimilated the meteorological data using a modern satellite database,
which was released by the Global Modelling and Assimilation Systems of Goddard Space Flight Centre
of NASA. It was used to provide temperature and pressure profiles for molecular backscattering
estimation in this study.

3. Methodology

Previous studies have shown that the CALIPSO operational aerosol product tends to miss the
bottom of dense ACA layers and underestimates the 532 nm aerosol optical depth because of the
relatively strong aerosol attenuation in the 532 nm channel [33,37,44]. In contrast, both the aerosol
attenuation and molecular backscattering in the 1064 nm channel are smaller than those in the 532 nm
channel. Therefore, CALIPSO 532 and 1064 nm channel lidar observations were combined to develop
an ACA retrieval methodology in this study, as detailed below. A flow chart of the methodology is
shown in Figure 1.

Figure 1. Flow chart of the new above-low-level cloud aerosol (ACA) identification and retrieval methodology.
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Firstly, daytime CALIPSO observations experience lower SNRs than night-time observations,
resulting in a strong apparent day- and night-time difference in the ACA global distribution (refer to
Figure 3 in Alfaro-Contreras et al. [45]). To overcome the poor SNR issue in daytime CALIOP signals,
different smoothing scales were selected for day- and night-time observations to provide consistent
retrieval. For the β′532 and β′1064 night-time observations, 20 km horizontal averaging was adopted.
For the β′532 and β′1064 daytime observations, multiscale averaging in different signal-strength bins was
selected according to the night-time noise level. As shown in Figure 2, daytime noise was calculated
with horizontal averaging of 20, 40, 60, 80, and 100 km and compared to the 20 km night-time results.
According to Figure 2, β′532 daytime signals of higher than 2.3 × 10−2 km−1sr−1, between 2.3 × 10−2

and 2.8 × 10−3 km−1sr−1, and lower than 2.8 × 10−3 km−1sr−1 were exhibited at 20, 40, and 60 km,
respectively. The maximum averaging scale was selected to be 60 km, after which the SNR performance
improved a little. To avoid involving cloud signals in the moving-smoothed aerosol signals, only
non-cloud data were smoothed using the cloud mask from the CloudSat 2B-CLDCLASS-Lidar product.

 

Figure 2. Comparison of noise between the 20 km moving–smoothing in the night-time and multiscale
moving–smoothing in the daytime.

Secondly, after multiscale smoothing, ACA profiles were screened out using the CloudSat
2B-CLDCLASS-Lidar product and the estimated two-way transmittance at 1064 nm. Low cloud was
defined as a cloud top lower than 3 km above ground level (AGL). Only single-layer low cloud or
multi-layer thin cirrus cloud above the low cloud cases were considered in this study. Low-level cloud
sample quantity is presented for each 2.5◦ × 2.5◦ grid box and averaged for winter (DJF, i.e., December,
January, and February), spring (MAM, i.e., March, April, and May), summer (JJA, i.e., June, July, and
August), and autumn (SON, i.e., September, October and November) in Figure 3. For each low cloud
profile, the two-way transmittance at 1064 nm within 6 km above the cloud top was estimated by
ignoring the molecular backscattering, as

x = e−2ζ = 1− 2S
∫

β′1064dr (1)

Here, x is the two-way transmittance, and
∫
β′ dr is the integrated attenuated backscatter at 1064 nm

within 6 km above the cloud top, and S is the lidar ratio at 1064 nm. For cirrus cloud, S was chosen to
be 19 sr. For aerosol, the S at 1064 nm has a smaller range than that in the 532 nm channel [46] and was
assumed to be 40 sr in this step. By considering the noise, e−2∗0.015 = 0.97 was chosen as the threshold,
and values smaller than that were identified as possible ACA cases.
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Figure 3. Low cloud samples quantity in (a) winter (DJF, i.e., December, January, and February),
(b) spring (MAM, i.e., March, April, and May), (c) summer (JJA, i.e., June, July, and August), and (d)
autumn (SON, i.e., September, October, and November).

Thirdly, following the screening-out of possible ACA cases, the first-guess ACA extinction at
1064 nm was retrieved with the forward integration scheme [47] to build the ACA mask. In this step,
the 1064 nm S was chosen to be 40 sr. The first-guess ACA mask was set to unity when the first-estimate
ACA extinctions were larger than four times the measured noise, indicating the possible presence of
aerosols. Then, the first-guess ACA top and bottom were identified as the highest and lowest points
above the cloud top where the ACA mask equals 1.

Finally, using the first-guess ACA top and bottom from the last step, the ACA extinctions from
the 532 nm channel were retrieved, with the lidar ratio determined according to the aerosol type
classification, identical to the method used by Omar et al. [46]. The ACA mask was thus further refined
according to the 532 nm extinctions using a threshold of four times of the measured noise.

Figure 4 presents comparisons of an ACA case derived from the new method and the CALIPSO
level-2 V4 aerosol and cloud product. This is an outflowed smoke case immediately above the top of
low marine clouds, as can be seen from the smoothed β′532 and data in Figures 4b and 4c, respectively.
It should be noted that the same case was demonstrated in Jethva et al. [33]. The retrieval from the new
method (Figure 4e) was close to that from passive methods and the CALIOSP “DR” and “CR” methods
(refer to Figure 2 in Jethva et al. [33]). In contrast, the ACAOD from the CALIPSO Level-2 product
was much smaller than that from the new method, with a strong underestimation by a factor of up to
about 2. This is because the standard CALIOP Level-2 aerosol and cloud products use the 532 nm
signal to detect respective layers, which, in the presence of thick smoke layers, can be incorrectly
assigned due to strong attenuation at 532 nm. Figure 4h shows that only the upper portion of the layer
with dense aerosols was detected, while most of the lower portion of the ACA was missed. We tested
the projection of a new extinction (Figure 4f) to the CALIOP Level-2 aerosol mask in Figure 4h, and
this produced a similar ACAOD to L2. Benefitting from the aid of the 1064 nm extinction coefficient,
the new method was shown to provide a complete aerosol mask. Therefore, the new method can
provide more accurate ACA detection and retrieval results than the CALIPSO Level-2 product.
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Figure 4. ACA case on 2 August 2007, 13:12:11 UTC: (a) geo-location; (b) β′532; (c) β′1064; (d) ACA
mask from the new method in this study; (e) aerosol optical depth at 532 nm determined using the new
method (red) and CALIPSO Level-2 V4 APro files (blue); (f) extinction coefficient of ACA at 532 nm;
(g) extinction coefficient of ACA at 1064 nm; (h) ACA and cloud layer from the CALIPSO Level-2
VFM product.

4. Results

The new methodology was applied to the 2007–2010 observations to build a new global ACA
dataset. Statistical results are also presented for each 2.5◦ × 2.5◦ grid box and averaged for DJF, MAM,
JJA, and SON. Section 4.1 presents a comparison of day- and night-time cloudy-sky ACA occurrences
(ACAOC) and ACAOD, and Section 4.2 analyses the global distribution of the seasonal-mean ACAOC

and ACAOD with different aerosol types. The ACAOC is defined as the number of ACA profiles
divided by the number of low cloud profiles in each 2.5◦ grid box.

4.1. Day- and Night-Time Comparison of the New ACA Dataset

Figure 5 presents a comparison between night- and day-time global annual mean distributions of
low-level cloud fractions (left column), ACAOC (middle column), and ACAOD (right column) derived
from the new method using new four-year global ACA datasets. Table 1 summarizes the night- and
day-time statistics of the annual mean ACAOC and ACAOD in different seasons globally and over the
dust region (5–30◦ N, 60–16◦ W), smoke region (22◦S–5◦ N, 18◦ W–15◦ E), and Eastern Asia (19–40◦ N,
100–140◦ W), respectively. These places have also been documented in previous studies [28,48–51].

As shown in Figure 5 and Table 1, the ACAOC and ACAOD show very similar patterns and values
between day- and night-time retrieval. The global mean day- and night-time ACAOC are 0.125 and
0.108 respectively, and the global mean ACAOD values are 0.146 and 0.143. The correlation coefficient
between day- and night-time is 0.938 for ACAOC and 0.796 for ACAOD. This shows that the new
method developed in this study can produce reasonable day- and night- time results, better than the
prior results derived from the CALIPSO level-2 product (refer to Figure 3 in Alfaro-Contreras et al. [45]).
The night-time results from the CALIPSO level-2 product are quite similar to the results produced in
this study. However, in the day-time, the CALIPSO level-2 products missed lots of weak aerosol layers
due to their poor SNRs and thus gave quite different global distributions of ACAOC and ACAOD
from those of night-time CALIPSO level-2 product and our method. The new method described in
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this study can detect more ACA cases over both source regions and long-range transport regions.
Furthermore, the ACAOD values derived by the new method are larger than those from the CALIPSO
Level-2 product. The CALIPSO Level-2 product retrieves ACAOD values that are too low over the
tropical Atlantic region, a region where other passive methods suggest that high above-cloud aerosol
loading could exist (i.e., refer to Figure 2 in Devasthale et al. [52]).

 
Figure 5. Day- and night- time comparison of the global annual mean distribution of low-level cloud
fractions (a(1)-(2)), cloudy-sky ACA occurrences (ACAOC, b(1)-(2)), ACA optical depth (ACA optical
depth (ACAOD), c(1)-(2)), and (d) is the global annual mean distribution of OMI daytime ACAOD.

Table 1. ACAOC and ACAOD data from different regions in the night- and day-time.

Global Eastern Asia Smoke Region Dust Region

ACAOC

Day

DJF 0.098 0.326 0.496 0.237
MAM 0.148 0.581 0.412 0.395

JJA 0.147 0.299 0.575 0.646
SON 0.116 0.233 0.516 0.349

Night

DJF 0.117 0.377 0.520 0.240
MAM 0.174 0.650 0.471 0.413

JJA 0.173 0.350 0.588 0.677
SON 0.139 0.275 0.583 0.407

ACAOD

Day

DJF 0.118 0.218 0.238 0.185
MAM 0.143 0.311 0.199 0.264

JJA 0.149 0.234 0.244 0.353
SON 0.140 0.212 0.255 0.237

Night

DJF 0.117 0.211 0.242 0.178
MAM 0.140 0.308 0.212 0.260

JJA 0.151 0.234 0.219 0.357
SON 0.139 0.212 0.236 0.220

A preliminary comparison between our ACA dataset and passive satellite product was also
done. Figure 5d shows the global distribution of annual-mean daytime 500 nm ACAOD derived from
OMACA product version 3, which retrieves ACAOD from OMI’s two near-UV observations (354 and
388 nm) [17]. The data processing of Figure 5d follows the same way as Figure 8 in Jethva et al. [10],
except that only 2007–2010 data were used in this paper. Comparing to the daytime ACAOD result of
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this paper (Figure 5c(1)), it shows that both products have quite similar pattern of global distribution
to each other, while with regional differences in values. Our ACA dataset retrieves larger ACAOD
than OMACA product over some major aerosol source regions, such the main dust band region
including Sahara and Middle-Eastern dust regions and related long-range transport regions (tropic
Atlantic, Arabian Sea, and Southern Asia), central Africa wildfire region and eastern Asia region except
southernmost part of China. In contrast, OMACA product retrieves larger ACAOD than our ACA
dataset over some weak aerosol source regions, such as Siberia, Alaska and Southern Oceans. Further
detailed evaluation of the ACA dataset developed in this paper with passive satellite products and its
possible implements in improving passive ACA and cloud retrievals will be our study interest in the
near future.

4.2. Global Distribution of the Seasonal Mean ACA Properties

Figures 6 and 7 illustrate the global distribution of the seasonal mean ACAOC and ACAOD
data for all aerosol types (left column), dust aerosols (pure and pollute dust, middle column), and
smoke and polluted continental aerosols (right column). Smoke and polluted continental aerosols were
analyzed together in these figures, because these two types of aerosol have similar optical properties
and are quite difficult to discriminate each other for the ACA case [46]. Furthermore, the existing
classification algorithm is not suitable for the detection of above-cloud marine aerosols. As can be
seen in those figures, above-cloud marine aerosol occurs over the western tropical Pacific region but is
misclassified as smoke or polluted continental aerosols. The global mean ACAOC in each season was
found to be 13% (DJF), 20% (MAM), 18% (JJA), and 15% (SON), and the global mean ACAOD was
0.12 (DJF), 0.14 (MAM), 0.15 (JJA), and 0.14 (SON), respectively.

As shown in Figures 6 and 7, ACA frequently occurs near the source regions, such as over the
Sahara and Middle-Eastern dust regions (main dust band region), the Africa smoke region, and the
Eastern Asia region. Those aerosols are mobilized far from the sources and travel along transoceanic
pathways, such as dust transport over the tropical Atlantic, region and smoke transport over the
southeast Atlantic region, resulting high ACAOc values there. For convenience, the ACA and its
long-distance transport are discussed with regard to its main source as in the following text.

(1) Main dust band region: Above-cloud dust aerosols frequently occur along the main dust band,
including in the Saharan to Middle-Eastern dust source regions and transport regions such as the
Atlantic and Indian Oceans and India. Over these source regions, dust activity is strongest in
MAM and JJA, resulting in more than 80% of low cloud having dust above it (Figure 6). This dust
transports furthest, from the west to north Atlantic, in JJA, and it transports most widely in MAM.
The above-cloud dust AOD values over the northern Atlantic were found to be 0.26 (MAM) and
0.35 (JJA) (Figure 7b2,b3). The easterly long-range transport of Saharan and Middle-Eastern dust
can result in an above cloud occurrence of 65% with an AOD of 0.5 over the Indian Ocean and
India in JJA, as shown in Figures 6b3 and 7b3. In SON, the period associated with the weakest
dust activities, the above-cloud dust occurrence was found to decrease to ~60% over the source
region and ~20–50% over the long-range transport regions. Correspondingly, the above-cloud
dust AOD reduced to ~0.15–0.3 over these regions.

(2) Africa smoke region: Smoke aerosol frequently occurs as a result of biomass events in central
Africa and is transported across the cloud deck over southeastern the Atlantic Ocean. As shown
in Figure 6c(1)–c(4), the above-cloud smoke aerosol occurs most in JJA (about 52%), second-most
in SON (about 49%) and third-most in DJF (about 33%), whereas little ACA occurs in MAM.
The mean above-cloud smoke AOD values in each season were found to be 0.28 (DJF), 0.17 (MAM),
0.23 (JJA), and 0.24 (SON).

(3) Eastern Asia region: In MAM, the period when Asian dust activity is strongest, above-cloud dust
aerosol is present for most of the year (about 29%), and this period is associated with the strongest
AOD value of about 0.31. The dust from Asia will be transported long-range across the Pacific
to northern America, resulting in about 20% of ACA occurrences and an ACAOD value of 0.25
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over the Pacific Ocean. The above-cloud smoke and polluted continental aerosols over Eastern
Asia are also most active in MAM, representing ~32% of occurrences and having an AOD of 0.31
above low clouds. These aerosols can also be transported over the Pacific and contribute to the
ACA presence there. The occurrence of above-cloud smoke and polluted continental aerosols is
~25% and the ACAOD value is 0.23 over the Pacific. In other seasons, the ACA occurrence is
about 7–25%, and this is associated with very weak long-range transport.

 
Figure 6. Global distribution of the seasonal mean ACAOC for all aerosol types (left column), pure dust
and polluted dust aerosols (middle column) and smoke and polluted continental aerosols (right column).

 

Figure 7. Global distribution of the seasonal mean ACAOD for all aerosol types (left column), pure dust
and polluted dust aerosols (middle column) and smoke and polluted continental aerosols (right column).
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Other than these major aerosol source regions, our results also indicate some weak aerosol source
regions, such as South America, Central America, and Timor Sea, where ACA frequently occurs in
some seasons, but this has rarely been studied in previous studies. South America and the Timor Sea
can be considered to be anthropogenic source regions due to the biomass burning emissions [53,54].
During SON, the above-cloud smoke aerosol occurrence over South America is about 24% with an AOD
value of about 0.16. Trade winds will carry the smoke aerosol produced from Northern Australian
savannah fires and agricultural/peat burning fires in Indonesia over the Timor Sea [54], resulting in
an above-cloud smoke aerosol occurrence of 57% with an ACAOD value of 0.20. The ACA over Central
America mostly occurs in MAM as a result of both anthropogenic sources due to human activity and
biomass burning activities [55]. The occurrence of above-cloud polluted continental and above-cloud
smoke aerosol in Central America is about 35% with an AOD value of about 0.21 in MAM. Our results
also indicate that smoke from southeastern Africa transports in an easterly direction across the Indian
Ocean in SON, and may reach the west coast of Australia.

5. Discussion

The relative positions of the ACA and low clouds determine the response of low clouds to the
ACA [24]. Figure 8 shows the 4-year zonal mean ACAOC (Figure 8a), ACAOD (Figure 8b), vertical
distance between the ACA and cloud (VDAC, Figure 8c), and ACA geometrical thickness (AGT, Figure 8d).
The ACAOC and ACAOD values have quite large inter-season variations at low latitudes, which are
related to the dust and smoke activity. At low latitudes (between –40◦ and 40◦N), the ACAOC can reach
about 40%, and the ACAOD can reach 0.2–0.4 during high ACA activity seasons (i.e., MAM in the
northern tropical region and SON in the southern tropical region). Additionally, the VDAC is smaller
than about 0.5 km and the AGT can reach 1–2 km, because of the ACA being close to the main source
region (Saharan dust and African smoke). When transported away from the source to high latitudes
(<–40◦ and >40◦), the ACAOC decreases as the latitude increases. However, the VDAC increases from
0.5 to about 1–1.5 km during long-range transport, associated with the decrease in AGT, except in MAM.
In MAM, the AGT in the northern hemisphere is generally about 2 km, as a result of the long-range
transport of Asian dust at mid-latitudes [56]. The different behaviors that occur at low and high latitudes
indicate different cloud responses to the ACA. The stabilization effect of the ACA dominates the cloud
response at the mid-to-high-latitude regions, because the ACA generally resides away from the low
clouds [24]. In contrast, at low latitudes, the ACA is more likely to directly mix with low clouds and
influence the cloud microphysics.

 
Figure 8. (a) ACAOC line chart with latitude. (b) ACAOD line chart with latitude. (c) Vertical distance
between the ACA and cloud (VDAC) line chart with latitude. (d) ACA geometrical thickness (AGT)
line chart with latitude.

A more insightful view of the relative positions of the ACA and low clouds at low altitudes is
shown in Figure 9 by the 4-year mean longitude–altitude distribution of cloud (gray contour line)
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and ACA (color shade) occurrences over the dust (left column) and smoke regions (right column).
The latitude ranges of the dust (tropical Atlantic) and smoke (southeast Atlantic) regions are the same
as those stated in Section 4.1. Similar results by the CALIPSO level-2 product can be found in Figure 1
in Zuidema et al. [24], in which most of the ACA layer was shown to reside above the cloud deck at
a mean distance of about 1 km [24]. According to the CALIPSO level-2 product, a semi-direct effect
(atmospheric stabilization, reference) due to absorption in the aerosol layers above the cloud deck could
dominate the ACA–cloud interaction over these regions. However, our results show that the bottom of
the high ACA occurrence layer resides immediately above the most frequent cloud height (Figure 9).
Our findings are different to those derived from the CALIPSO level-2 product. The main reason for this
is the misdetection of the ACA layer bottom in the CALIPSO level-2 product (as stated in Section 3),
which was also reported by Rajapakshe et al. (2017) using two seasons of night-time CATS 1064 nm
observations over the southeast Atlantic region [44]. Therefore, as well as the semi-effect, smoke and
dust layers can mix into the low cloud over the transport region of the Atlantic and influence the cloud
microphysics (indirect effect) due to its proximity to the cloud layer [34].

 
Figure 9. Positional relationship between the aerosol and cloud layers in the dust and smoke area
with longitude.

6. Conclusions

This paper presented an improved ACA identification and retrieval methodology that combines
CALIOP 532 and 1064 nm observations. The ACA was mainly detected with the 1064 nm channel
by taking advantage of the weaker aerosol attenuation compared with that of the 532 nm channel.
The selection of the 1064 nm signal for ACA identification allowed the detection of the full column
of aerosols above the clouds, which the 532 nm signal misses due to its stronger attenuation. Effort
was made to address the low SNR issue in the CALIOP day-time observation to provide consistent
results between day- and night-time retrieval. Another feature of this methodology is the reliable
cloud–aerosol distinction that occurs with the combination of CALIPSO and CloudSat observations.

Then, new four-year (2007 to 2010) global ACA datasets were built, and new global seasonal-mean
views of ACA properties were presented and analyzed, including the occurrence of ACA and its optical
properties. The results indicate that the new method can not only capture the main ACA occurrence
regions, such as the tropical Atlantic region which is associated with outflows of African dust and
smoke, but also weak ACA occurrence regions, such as Eastern Asia, and long-range transport regions,
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such as the Pacific, using both day- and night-time observations. Compared with the CALIPSO L
evel-2 product, the newly derived day- and night-time global distributions of ACA properties show
good agreement, benefitted from multiple moving-smoothing processes.

The relative vertical positions of the ACA and low clouds were presented and discussed. The results
indicate that at high latitudes (<–40◦ and >~40◦), the ACA mainly resides above the low clouds at
a distance greater than 0.5 km, indicating the semi-direct influence of the ACA on the cloud by
stabilizing the atmospheric temperature profile. At low latitudes, the distance between the ACA and
low clouds is smaller than 0.5 km. Especially over the Atlantic near the Saharan dust and African
smoke source regions, the ACA mainly resides immediately above the clouds; this contrasts with
the results derived from the CALIPSO operational product in previous studies. The ACA over the
tropical Atlantic (dust region) and southeast Atlantic (smoke region) can directly mix with the cloud,
influencing the lower cloud deck through both semi-effect and indirective effects. This highlights the
complexity of the aerosol–cloud interactions over these regions, where the model still has difficulty
reproducing the vertical aerosol structure and aerosol–cloud radiative effect [11–13].

To qualify the roles of these two effects, improve the passive cloud property retrieval, and constrain
the relative model process, a height-resolved ACA database like the one developed in this study is
needed. The new method developed in this study can provide a more complete and accurate global
view of the ACA. Together with other satellite measurements such as MODIS [57] and CERES [58] and
cloud property retrieval methods such as that described by Luo et al. [59], the radiative effects of the
ACA and its influences on the macro- and micro-physics of low clouds will be further studied in future
work. These results not only help us better understand global aerosol transportation and aerosol–cloud
interactions but also provide useful information for model evaluation and improvements.
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Abstract: The spatiotemporal and especially the vertical distributions of dust aerosols play crucial
roles in the climatic effect of dust aerosol. In the present study, the spatial-temporal distribution of dust
aerosols over East Asia was investigated using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite
Observations (CALIPSO) retrievals (01/2007–12/2011) from the perspective of the frequency of dust
occurrence (FDO), dust top layer height (TH) and profile of aerosol subtypes. The results showed that
a typical dust belt was generated from the dust source regions (the Taklimakan and Gobi Deserts),
in the latitude range of 25◦N~45◦N and reaching eastern China, Japan and Korea and, eventually,
the Pacific Ocean. High dust frequencies were found over the dust source regions, with a seasonal
sequence from high to low as follows: spring, summer, autumn and winter. Vertically, FDOs peaked at
about 2 km over the dust source regions. In contrast, FDOs decreased with altitude over the downwind
regions. On the dust belt from dust source regions to downwind regions, the dust top height (TH)
was getting higher and higher. The dust TH varied in the range of 1.9–3.1 km above surface elevation
(a.s.e.), with high values over the dust source regions and low values in the downwind areas, and a
seasonally descending sequence of summer, spring, autumn and winter in accord with the seasonal
variation of the boundary layer height. The annual AOD (Aerosol Optical Depth) was generally
characterized by two high and two low AOD centers over East Asia. The percent contribution of the
Dust Aerosol Optical Depth to the total AOD showed a seasonal variation from high to low as follows:
spring, winter, autumn and summer. The vertical profile of the extinction coefficient revealed the
predominance of pure dust particles in the dust source regions and a mixture of dust particles and
pollutants in the downwind regions. The dust extinction coefficients over the Taklimakan Desert had
a seasonal pattern from high to low as follows: spring, winter, summer and autumn. The results of the
present study offered an understanding of the horizontal and vertical structures of dust aerosols over
East Asia and can be used to evaluate the performance aerosol transport models.

Keywords: CALIPSO; dust top height; frequency of dust occurrence; pure dust; polluted dust;
extinction coefficient
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1. Introduction

Dust aerosol, one of the most important aerosol species, modifies the energy balance and the
hydrologic cycle directly by absorbing and scattering solar radiation and indirectly by altering cloud
microphysical properties [1–3]. East Asia, the second largest contributor of dust aerosols in the world,
emits nearly 600 tons of dust particles into the atmosphere annually through the erosion of soil mainly
from natural conditions and partly from human activities [4,5]. Approximately 30% of the dust
particles redeposit back into emission regions, 20% are transported to eastern China, and the rest are
transported to the Pacific Ocean and beyond by westerly jets which can significantly affect the Asian
monsoon system [6,7]. The deposition of dust particles serves as a key mineral supplement for the
marine biopshere and for remote rainforests, thus altering the global carbon cycle [8].

It is well known that the vertical structure of dust aerosols plays a crucial role in the atmospheric
thermal structure and the aerosol radiative forcing [9,10]. The vertical distribution of dust aerosols
largely determines their residence and transport time [11]. Dust aerosols can also uplift to the upper
troposphere and travel around the world via westerlies [12]. However, previous work using aircraft,
upper-air sounding balloons and ground-based platforms are limited in space and time, offering little
information on the vertical structure of dust aerosols. These limitations have been partially addressed
with the launch of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
satellite [13,14]. Huang et al. provided an analysis of the distribution of aerosols of different types on a
global scale on the basis of five-year CALIPSO data [15]. Guo et al. used CALIPSO, MODIS (Moderate
Resolution Imaging Spectroradiometer) and OMI (Ozone Monitoring Instrument) measurements to
build three-dimensional (3D) patterns of the occurrence frequency of aerosol, dust and smoke in
China [16]. Proestakis et al. described the 3D distribution of dust aerosols over southeastern Asia [17].
Nan et al. investigated the vertical distribution of dust particles for the Taklimakan Desert and for the
downwind regions using CALIPSO measurement [18].

In this study, we used five years (January 2007 to December 2011) of CALIPSO Level 3 data to gain
further insights into the generation, emission, transport, distribution and speciation of aerosols over
East Asia. East Asia was divided into five regions to achieve a stronger understanding of the spatial
distribution of dust aerosols in relation to emission sources and transport processes. For each region,
the analysis was made of the frequency of dust occurrence (FDO), dust Top Height (TH), Aerosol
Optical Depth (AOD), percent contribution of dusts to the total AOD (D_AOD), light extinction
coefficient, speciation (pure dust versus pollution aerosols) and horizontal dust transport flux.

A previous study conducted over our study domain concentrated mainly on individual dust storm
events involving pure dust [19]. However, human health concerns and policy on pollution controls
require detailed knowledge of the speciation of dust (pure dust versus dust mixed with biomass
burning smoke) and the mean behaviors of total dust (sum of pure and polluted dust). Another related
study documented the seasonal variations of the aerosol extinction profile and occurrence frequency
using five-year Level 3 CALIPSO products, focusing on global patterns [15]. In the present study,
we also used the Level 3 products, but focused on regional patterns and specifically on the contrast
between pure dusts generated from dust source regions in western China and those mixed with smoke
from pollution source regions in eastern China. By analyzing spatial patterns of AOD, D_AOD and
profiles of extinction coefficients of various aerosol types, we further investigated into long-distance
dust transport, which is known to impact the public health of populated centers in eastern China,
Korea and Japan.

Section 2 outlines the study domain, data and methodology related to the present work. The results
and discussion are given in Section 3. Section 4 summarizes the main findings of the present study.

2. Data and Methods

CALIPSO was launched into a sun-synchronous orbit in April, 2006 with a repeating cycle of
16 days. The main instruments aboard CALIPSO include a Cloud-Aerosol Lidar with Orthogonal
Polarization (CALIOP), a Wide Field Camera (WFC) and an Infrared Imager Radiometer (IIR).
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These instruments can not only retrieve the vertical profiles of clouds and aerosols, but also provide
information concerning cloud-aerosol interactions and surface radiative budgets [20]. CALIPSO
continuously retrieves profiles of attenuated backscatter at 532 and 1064 nm and of polarized
backscatter at 532 nm in the latitude range of 82◦N–82◦S with high horizontal and vertical resolutions
of 333 m and 30–60 m, respectively [21].

Three-level products are included in CALIPSO data. Level 1 (L1) products offer a large volume
of raw signals of high spatial resolutions. They are classified with a cloud-aerosol discrimination
(CAD) algorithm into clouds and aerosols products, with negative and positive values representing
aerosols and clouds, respectively. Level 2 (L2) products consist of six aerosol subtypes classified using
a scene classification algorithm [22]. The six aerosol subtypes are pure dust, polluted dust, smoke,
clean continental, polluted continental and clean marine aerosols with the corresponding Lidar ratios
for the retrieval of aerosol light extinction coefficient. Level 3 (L3) products provide specific monthly
variables, such as monthly mean AOD and extinction coefficients, from the L2 products. Relative to
data products from other space-borne sensors, the CALIPSO data offer three main advantages for the
investigation of the vertical distribution and transport of dust particles. First, CALIPSO can retrieve
profiles of backscatter in different atmospheric layers to estimate the vertical profiles of aerosols and
clouds, can distinguish between dust and other types of aerosols based on the observed depolarization
ratios, and can minimize the interference associated with prevailing surface conditions, and hence, are
able to retrieve aerosol profiles where other space-borne sensors may not be able to. Second, being an
active remote sensor, it can retrieve information on aerosols and clouds in both daylight and night
hours [23]. Third, CALIPSO can retrieve the vertical distributions of different aerosol subtypes; such
information is crucial for understanding the long-range transport of aerosols at the regional and the
global scales.

L3 is a globally monthly product with a 2◦ × 5◦ latitude-longitude grid, and a vertical resolution
of 60 m from the ground to 12 km with a total of 208 layers. Uncertainties exist when CALIPSO
retrieves optical properties [24]. Data on extinction below the height of 180 m were excluded as
a precautionary measure to avoid biases resulting from the physical interpretation of near-ground
aerosols [25]. Following [15], we also only considered extinction coefficients of >0.001 km−1 to ensure
high levels of accuracy.

To better understand the distribution of dust aerosols over different surface types, five
homogenous regions over East Asia were analyzed in the present study (Figure 1). They include the
Taklimakan Desert (TD; dust source region), the Gobi Desert (GD; dust source region), northern China
(NC; a region affected by anthropogenic aerosols), southern China (SC; also under the influence of
anthropogenic aerosols) and Korea-Japan (KJ; under the influence of marine aerosols).

The FDO is defined as the ratio of the number of CALIPSO overpasses with dust observations to
the total number of CALIPSO overpasses (including conditions of clear air and aerosols) [17]:

FDO =
Pdust
Pall

(1)

where Pdust represents the number of CALIPSO dust overpasses and Pall denotes the total number of
CALIPSO overpasses.

The seasonally averaged CALIPSO L3 dust profile Top Height (TH) is by definition the height at
which dust AOD contribution (D_AOD) aggregates to 98% [17].

The dust column concentration (Mdu) and D_AOD (τdu) are calculated with Equations (2) and
(3) [26];

Mdu =

(
ρ4π

3

) ∫
r3n(r)dr (2)

τduτdu = π

∫
Q(r)r2n(r)dr (3)
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where n(r) represents particle size distribution of dust aerosol, ρ is dust aerosol density and Q is
extinction index. Following other researchers [26], we obtain:

Mdu = 2.7 × τdu g m−2 (4)

according to Kaufman et al. (2005), the horizontal dust transport flux (F) is calculated with
Equation (5) [26]:

F = Mdu × W × L g s−1 (5)

where W represents the monthly mean west wind speed (m s−1), Mdu is the monthly mean column
dust concentration (g m−2), and L is longitudinal length (m). Following other researchers [26–28], we
adopted wind fields of 500 hPa over the TD and GD and of 850 hPa over the NC and SC.

For the purpose of validation, the CALIPSO AOD and pure dust D_AOD were compared with
those from the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2),
over the same time period. MERRA-2 calculation of these parameters is driven by anthropogenic
emission inventories and natural dust emission parameterization and is bias-corrected by assimilation
of MODIS and AVHRR satellite AOD products [29].

Figure 1. Topographical map of the study domain. Homogenous regions highlighted in black boxes
include: (1) the Taklimakan Desert (TD), (2) the Gobi Desert (GD), (3) Northern China (NC), (4) Southern
China (SC) and (5) Korea-Japan (KJ).

3. Results and Discussion

3.1. Frequency of Dust Occurrence (FDO)

The TD is the largest desert in China and the second largest shifting desert in the world. It emits
large volumes of dust particles into the atmosphere annually. Most of the emitted particles are
deposited back to the ground primarily as the result of weak tropospheric winds and complex
topography: the center of the Tarim Basin is surrounded by mountains toward the south, north
and west [30]. Dust episodes are less frequent but more severe over the GD. Most dust particles
emitted by the GD are easily uplifted to the troposphere and transported downwind primarily due
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to the plateau topography (910–1520 m) of the GD. Additionally, as the main desert region of East
Asia, the GD includes stationary deserts, such as the Tengger Desert and Badain Jaran Desert, and
shifting deserts, such as the Mu Us Sandland. Over the NC and SC, abundant anthropogenic aerosols
are mixed with pure dust through long-range transport, forming polluted dusts [31]. The KJ region
suffers not only from polluted dust transported by westerlies from upwind regions (e.g., the NC and
SC), but also from locally-formed marine aerosols. To understand the generation and transport of dust
aerosols over East Asia, we divided the study period into four seasons, March–April–May (MAM),
June–July–August (JJA), September–October–November (SON) and December–January–February
(DJF), based on prevailing climatological conditions observed over the study domain.

FDO values show significant levels of spatiotemporal heterogeneity, in order from high to low
as follows: MAM, JJA, SON and DJF (Figure 2). The highest FDOs of 18.4% were observed over the
TD in MAM and decreased in JJA with the highest values of 17.1%. Distributions of FDOs observed
during SON corresponded to those observed in JJA but with a lower value of 14.6% over the TD and
higher values observed over the NC. The FDOs observed during DJF were the lowest relative to those
of other seasons with the highest value of 11% found over the NC. These results were consistent with
those reported previously for East Asia [17]. The spatial pattern of seasonally averaged FDOs was
characterized by two high FDO centers over dust source regions (the TD and GD). There existed a dust
belt from the dust source regions (the TD and GD) to eastern China, Japan, Korea and beyond, in the
latitudinal range of 25◦N to 45◦N. In MAM, FDOs over KJ reached as high as 11 %, which was close
to the value for the GD dust source region, indicating efficient long-distance transport in this season.
That two distinct FDO patterns exited over the TD and GD implied that the diffusion and long-range
transport of dust aerosols from the TD were limited, or to put it differently, most dust aerosols emitted
from the TD could not be transported to downwind regions since the TD was mainly surrounded by
rugged mountains [3]. Since the whole study domain is under the control of westerlies and obstacles
from the Himalayan Mountains, dust aerosols from South Asia and India enter continental China from
southwestern China, affecting the NC, SC and KJ in MAM and DJF [32–34]. In the NC, the highest
value of FDOs of 16.1% was observed during MAM.

Figure 2. The seasonal variations in the frequency of dust occurrence over East Asia based on
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data.

The vertical distributions of the FDO over the dust source regions (TD and GD) follow a
comparable pattern, with significant seasonality (Figure 3). The profile peaked at a height of about
2 km above the surface; beyond this height, the FDO decreased with increasing height. In other words,
large volumes of dust aerosols were uplifted into the lower troposphere from the dust source regions,
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where they could undergo mixing and long-range transport (to eastern China and even to the western
Pacific Ocean). The peak FDO values were 52.0% and 40.0% in MAM and 43.5% and 28.5% in JJA over
the TD and GD, respectively.

Figure 3. Vertical distribution of the frequency of dust occurrence over: (1) the Taklimakan Desert (red
line), (2) the Gobi Desert (magenta line), (3) Northern China (green line), (4) Southern China (light blue
line) and (5) Korea-Japan (dark blue) based on CALIPSO data.

Over the regions downwind of these sources (the NC, SC and KJ), FDO decreased with increasing
height from the ground to the upper troposphere. The closer to the dust source regions, the higher the
FDO: of these three regions, the overall FDO profile showed the highest values over the NC and lowest
values over KJ, with the profile over SC generally falling in between. At the NC, the near surface
FDO was greater than 60% in MAM, SON and DJF with the highest FDO of 67.1% recorded during
DJF. This high value could be attributed to the proximity to the dust regions and to the dominance
of aerosols generated by use of fossil fuels [35]. FDOs over the SC ranged from 27.0% to 29.9%, with
peak values of 29.9% observed during MAM. The highest FDO observed over the KJ (40.2%) occurred
during MAM, a pattern that resembled that of the SC. These profiles confirmed the presence of a dust
belt in the latitude range of 25◦N to 45◦N that transported significant volumes of dust from the dust
source regions.

3.2. Seasonal Distribution of Dust Top Height

The information on the dust TH can help elucidate mechanisms of long-range transport of the dust
aerosols. The dust TH, which is defined as the height above surface elevation (a.s.e.), shows significant
seasonal variations over East Asia (Figure 4). Over the TD and GD, the dust TH was the largest in
MAM with an average value of 3.1 km (a.s.e.) and the lowest in DJF with an average value of 1.9 km
(a.s.e.). Note that the variations here resembled those of the boundary layer height [36]. In comparison,
over the downwind regions (the NC, SC and KJ), the dust TH values were still the highest in MAM
with a range of 3.9~5.0 km, and the lowest in SON with a range of 2.7~3.2 km. The dust belts were
evident in all four seasons. During MAM, the dust TH increased along the dust belt from the dust
source regions to the downwind regions, implying progressive vertical expansion of the dust layer as
the airmass absorbed dust particles from the ground along its transport pathway. Although not shown
in Figure 4, other studies have demonstrated that, aided by the ascending movement of the East Asian
and the North American troughs, the vertical expansion of the dust layer can continue all the way to
North America [37]. Thus, these patterns of dust storm explain why the highest dust TH values were
recorded during MAM in the downwind regions.
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Figure 4. The seasonal distribution of dust Top Height (km) over East Asia based on CALIPSO data.

3.3. Seasonal Distribution of AOD and the Percentage of D_AOD to the Total AOD

To develop a stronger understanding of the contributions of dust aerosols to atmospheric aerosols,
it is necessary to further analyze dust aerosols generated from anthropogenic activities by investigating
the variations of AOD and the percent contribution of dust aerosols to the total AOD (D_AOD).
The seasonally averaged AOD is generally characterized by two high AOD centers and two low
AOD centers over East Asia (Figure 5). Economically developed and industrialized areas of eastern
China and areas under the influence of natural dust sources constituted the high AOD centers.
In contrast, less developed areas with smaller populations across the Tibetan Plateau and eastern Inner
Mongolia constituted the low AOD centers. In addition to natural dust aerosols, aerosols emitted by
anthropogenic activities, such as smoke particles from burning of agricultural biomass, sulphate and
black and organic carbon aerosols from industrial activities could be responsible for enhanced levels of
aerosol loadings during DJF over the SC with a high AOD value of 0.88 [38–40].

The data on D_AOD reveal once again a distinct dust belt, especially in MAM and DJF. In these
two seasons, high percentages (>70%) were found along the belt that extends from the dust source
regions to the coastal line of eastern China. The large percentage of greater than 95% observed over
the dust source regions indicated that natural dust aerosols served as the most important component
of atmospheric aerosols. Meanwhile, obvious seasonal variations were observed. The highest D_AOD
during MAM was closely related to frequent and intensive dust storm events in the dust source regions.
The distribution of D_AOD in SON was similar to that observed in MAM but with lower percentage
values [41]. In JJA, the dust belt was much smaller in extent, limited mostly to the dust source regions
(the TD and GD) but with abnormally high percentages (>85%). The small spatial extent of the dust
belt in JJA can be partially explained by the prevailing climate: JJA is the rainy season in Eastern China,
Japan and Korea, and most of the dust aerosols are removed by wet deposition.
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Figure 5. Seasonal distribution of Aerosol Optical Depths and percentages of D_AOD to the total AOD
over East Asia based on CALIPSO data.

3.4. Extinction Coefficient of Pure and Polluted Dust

The vertical profiles of extinction coefficients for the three main aerosol types (total aerosol, pure
dust and polluted dust) are presented in Figure 6. Here, polluted dust is defined as the mixture of
pure dust and smoke particles generated from biomass burning, and total aerosol includes clean
marine, pure dust, polluted dust, polluted continental, clean continental, polluted dust and smoke
components [42]. Except for a small proportion of polluted dust in DJF, pure dust was the only
component of the total aerosols over the dust source regions (TD and GD), showing that pure dust
dominated throughout the year. In these two regions, high dust extinction coefficients (TD: 0.17 km−1;
GD: 0.06 km−1) were observed at an altitude of 1~2 km during MAM.

As evidenced in Figure 6s,t, extinction coefficients of polluted dust (<0.04 km−1) were observed
over the dust source regions (the TD and GD) in the winter, largely as the result of fossil fuel burning in
the winter heating period. Over the NC, the region downwind of the deserts, extinction coefficients of
pure dust were much lower than those of polluted dust, indicating the dominate role of anthropogenic
activities in this region across all four seasons. Another notable feature about NC is that extinction
coefficients of pure dust were higher than those of polluted dust above the height of 1.1 km in
MAM (Figure 6c), again confirming that emission and transport of dusts from the deserts were large
contributors to air quality problems during this time of the year.

Over the SC and KJ, aerosol extinction profiles did not show considerable seasonal variations, and
major aerosol subtypes could be listed in descending order as follows: total aerosols, polluted dust and
pure dust. The extinction coefficients of pure dues were less than 0.04 km−1 year-round while polluted
dust accounted for 40~60% of total aerosols, illustrating that local pollution sources dominated over
the role of dust long-distance transport.

To further understand the dust transport pattern, we present the vertical distribution of the dust
extinction coefficient along the W-E transact at 40◦N (Figure 7). The highest dust extinction coefficients
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were observed over the TD (80–97.5◦E). If we used a threshold value of 0.1 km−1, the dust layer in this
longitudinal range extended to a height of 4 km in MAM and JJA, 3 km in SON, and roughly 2.5 km in
DJF. Fewer dust storm events occur in JJA than in MAM. However, it appears that such dust devils
were able to generate large volumes of dust aerosols through localized disturbances, and because
of strong convections, the emitted dust particles were uplifted to up to 4 km beyond the boundary
layer height (BLH), where strong wind caused some dust aerosols to be transported to the downwind
regions [36,37,43]. On the other hand, due to prevailing topographic conditions, only some particles
were successfully transported to the downwind regions on account of topographic obstacles, especially
in SON and DJF [3].

Figure 6. Profiles of the seasonal average aerosol extinction coefficient (km−1) derived from CALIPSO
observations over 1. The Taklimakan Desert (a,f,k,p), 2. The Gobi Desert (b,g,l,q), 3. Northern China
(c,h,m,r), 4. Southern China (d,i,n,s) and 5. Korea-Japan (e,j,o,t).

Figure 7. Seasonal cross sections of total dust extinction coefficients (km−1) along a latitude of 40◦N
and longitudinal range of 73◦E to 105◦ E based on CALIPSO data.
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3.5. Horizontal Dust Transport Flux

Figure 8 shows the horizontal dust transport flux for the five homogenous regions of East Asia.
Unsurprisingly, horizontal dust transport flux was the highest over the dust source regions: the TD
followed by the GD. Seasonally, the horizontal total dust transport flux over all the five regions was,
in descending order: DJF, MAM, SON and JJA. The two dust source regions emitted 95.2 Tg, 35.8 Tg,
46.9 Tg and 82 Tg of dust aerosols into the atmosphere during MAM, JJA, SON and DJF, respectively.
The NC and SC sources contributed 35.4%, 15.6%, 31.7% and 54.8% to the total in MAM, JJA, SON
and DJF, respectively, and the corresponding flux fractions for the KJ amounted to 9.9%, 6.7%, 6.1%
and 12.4%. Notably, since a large percent of the dust over the KJ region originated from the TD, the
seasonal variation of the horizontal dust transport flux over the KJ resembled that observed over the
TD, with higher levels observed in MAM and DJF and lower levels recorded in JJA and SON.

Figure 8. Seasonal distribution of horizontal dust transport flux (Tg) over East Asia (dark blue box:
Taklimakan Desert, magenta box: Gobi Desert, green box: Northern China, light blue box: Southern
China and yellow box: Korea-Japan).

3.6. Comparison with MERRA-2

Supplementary Figure S1 presents the MERRA-2 AOD and the percent contribution of pure dust
aerosol to AOD for our study region. To allow easy comparison, in Figure S2 we present the same
quantities from the CALIPSO retrieval. In Figure 5, the percentages of D_AOD include both pure
dust and polluted dust. In Figure S2, the percentage values are for pure mineral dust originated
from the ground, and so a direct comparison can be made of the MERRA-2 D_AOD percentage
values. MERRA-2 can be used as independent evaluation of the CALISPO products because MERRA-2
aerosol variables have been extensively validated against Aerosol Robotic Network (AERONET)
measurements [44] and because MERRA-2 does not use CALIPSO to do bias correction. A previous
study has shown that the vertical profile of the CALIOP attenuated backscatter coefficient agrees
well with that derived by MERRA-2 for Continental USA, South America, Northern and Southern
Africa [29]. Here we find that the CALIPSO captured the broad spatial patterns of both AOD and
D_AOD for East Asia as calculated by MERRA-2. In the case of AOD, both show two pollution
centers, with a heavily polluted region in eastern China and another less pollution region in western
China. In the case of D_AOD of pure dust, the highest values were located in the dust source regions
(Taklimakan Desert and Gobi Desert) according to both data products.
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4. Conclusions

The present study analyzed the seasonal variation of dust aerosols and transport over East Asia
using CALIPSO retrievals. To develop deeper insight into the spatiotemporal distribution of dust
aerosols, the study domain was divided into five homogenous regions including the Taklimakan
Desert (TD), the Gobi Desert (GD), northern China (NC), southern China (SC) and Korea-Japan (KJ)
with distinct emissions sources. The frequency of dust occurrence, dust Top Height and extinction
coefficients were assessed for each study region.

Our results confirmed that large amounts of dust particles were emitted from the dust regions
(TD and GD). The emitted dusts formed a dust belt within a latitudinal range of 25◦N to 45◦N and
extended to eastern China, Japan, Korea and the Pacific Ocean. The dust belt was strongest in the
spring outside the rainy season. High frequencies of dust occurrence were found over the dust source
regions sequenced in descending order as follows: spring, summer, autumn and winter. FDOs showed
to isolated centers over the Taklimakan Desert and Gobi Desert, implying limitations of the diffusion
and long-range transport of the dust aerosols over the Taklimakan Desert, meaning that most of
uplifted dust aerosols were blocked by the mountains around the Tarim basin and eventually settled
back to the ground.

The dust top height over East Asia presents significant seasonal variations with values of roughly
3.5~5.1 km (a.s.e.) over the dust source regions and recorded in descending order as follows: summer,
spring, autumn and winter. Over the dust belt, the dust Top Height increased from dust source regions
to downwind regions; furthermore, frequent dust storms occurring over East Asia during the spring
showed why the dust Top Height was the highest in the spring across the downwind regions.

The AOD was generally characterized by two high AOD centers and two low AOD centers over
East Asia. The dust belt was the shortest and had the lowest AOD in the summer with higher dust to
AOD percentages (>85%) observed only over the Taklimakan and Gobi Deserts, showing that dust
aerosols can hardly travel long distances in the rainy season due to wet deposition.

Pure dust was predominant across all four seasons. Over northern China and in areas direct
downwind of the dust source regions, polluted dust generated from anthropogenic activities also
played an important role. The dust extinction coefficients over the Taklimakan Desert were sequenced
in descending order as follows: spring, winter, summer and autumn. The west-to-east transect of
the extinction coefficient further confirmed that only some of the emitted dust particles successfully
reached the downwind regions due to topographical obstacles and this blocking effect was especially
strong in the autumn and winter.

The main advantages of the CALIPSO system lie in its ability to obtain vertical profiles of aerosols,
which are crucial for understanding the distribution and transport of dust. However, the satellite
completes a cycle over 16 days, producing data gaps that may miss detection of some dust events.
A preliminary comparison with MERRA-2 data product, which is continuous in time, showed that
when averaged over multiple years, the horizontal distributions of AOD and D_AOD from the
CALIPSO captured the broad patterns calculated by MERRA-2. Future work should use MODIS,
MERRA-2 and CALIPSO data to build a 3D structure of the dust trajectory over East Asia to gain
STRONGER insight into long-range transport of East Asian dust to other regions of the globe.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/6/701/s1,
Figure S1: Seasonal distribution of Aerosol Optical Depth (left panels) and percentage contributions of pure dust
to the total AOD (right panels) over East Asia based on MERRA-2 data, Figure S2: Seasonal distribution of Aerosol
Optical Depth (left panels) and percentage contributions of pure dust to the total AOD (right panels) over East
Asia based on CALIPSO data.
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Abstract: Clouds play a critical role in adjusting the global radiation budget and hydrological cycle;
however, obtaining accurate information on the cloud base height (CBH) is still challenging. In this
study, based on Lidar and aircraft soundings, we investigated the features of the CBH and determined
the thresholds of the environmental relative humidity (RH) corresponding to the observed CBHs
over Southeast China from October 2017 to September 2018. During the observational period, the
CBHs detected by Lidar/aircraft were commonly higher in cold months and lower in warm months;
in the latter, 75.91% of the CBHs were below 2000 m. Overall, the RHs at the cloud base were mainly
distributed between 70 and 90% for the clouds lower than 1000 m, in which the most concentrated
RH was approximately 80%. In addition, for the clouds with a cloud base higher than 1000 m, the
RH thresholds decreased dramatically with increasing CBH, where the RH thresholds at cloud bases
higher than 2000 m could be lower than 60%. On average, the RH thresholds for determining the
CBHs were the highest (72.39%) and lowest (63.56%) in the summer and winter, respectively, over
Southeast China. Therefore, to determine the CBH, a specific threshold of RH is needed. Although
the time period covered by the collected CBH data from Lidar/aircraft is short, the above analyses can
provide some verification and evidence for using the RH threshold to determine the CBH.

Keywords: cloud base height; ground-based observations; relative humidity profile; threshold

1. Introduction

Clouds can adjust the Earth’s energy budget and hydrological cycle through dynamic and
thermal processes [1–3] and further drive the climate to change globally [4]. However, considerable
uncertainties in cloud properties have been found [5], further contributing to errors in weather
forecasting and climate prediction [6]. The immense uncertainties regarding clouds include optical [7–9],
microphysical [10,11], and geometrical [12,13] features, the effects on the radiation budget [14],
interactions with aerosols [15–21], and impacts on precipitation [22,23]. In particular, the cloud profile
is poorly understood at present and remains a primary source of uncertainty in global weather and
climate research [24].

The cloud base height (CBH), which is an important parameter of the cloud vertical profile, largely
determines the energy exchanges between the clouds and surface. Accordingly, determining the CBHs
is extremely critical for weather forecasting and ensuring flight safety [25,26]. Currently, retrieving the
CBH generally relies primarily on satellite and ground-based observations. Space-borne active satellite
remote sensing (e.g., the cloud profile radar (CPR) mounted on CloudSat and the Cloud-Aerosol Lidar
with Orthogonal Polarization (CALIOP) aboard Cloud-Aerosol Lidar and Infrared Satellite Observation
(CALIPSO)) has allowed cloud profile information to be obtained globally [27–29]. Some studies have
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estimated the CBH by applying both satellite-derived cloud optical depth, cloud water path, and some
additional parameterizations that connect cloud optical depth with cloud geometrical thickness [30,31].
Other methods have also been used to estimate the CBH [32–34]. For example, Liang et al. [35]
estimated the CBH by combining measurements from CloudSat/CALIPSO and Moderate-resolution
Imaging Spectroradiometer (MODIS) based on the International Satellite Cloud Climatology Project
(ISCCP) cloud-type classification and a weighted algorithm; unfortunately, the calculation of the CBH
is dependent on an assumption of the cloud water content [36]. However, a comparison with the
ground-based active remote sensing of clouds revealed large uncertainties in the CBH from satellite
observations [37]. Therefore, obtaining information on the CBH with high accuracy is urgent.

Compared with satellite observations, ground-based cloud observations can provide CBH
measurements with higher accuracy [34]. Some retrievals of the CBH are based on Lidar instruments [33],
ceilometers [38], radiosondes [39–42], and total-sky-imager (TSI) [43]. Long-term research on the
CBH measurements by radiosondes and ceilometer has been ongoing such as an analysis of 25-year
CBHs measured by ceilometer at the Arctic site [44]. Some inter-comparisons among ground-based
instruments have been performed [45–49]. In addition, some methods for calculating the CBHs have
been reported by some earlier studies. Chernykh and Eskridge [50] proposed a method for judging
the position of clouds using the second derivative of temperature and relative humidity (RH) versus
the height in the ground-based soundings. For a long time, good agreement between the CBH and
the lifting condensation level (LCL) estimated from the surface layer air have been confirmed and
applied [51–53]. On this basis, Romps [54] gave the dependence of LCL on the temperature and RH
and the conditions for cloud formation at heights such as the lifting deposition level (LDL) and the
lifting freezing level (LFL). Wang and Rossow [2] postulated that an RH threshold value of 84% could
be used to determine the cloud base location based on rawinsonde data. Additionally, Zhang et al. [42]
performed an uncertainty analysis on the sensitivity of the CBH to different RH thresholds (83%, 84%,
and 85%). To some degree, RH information at the cloud layer is significant in determining the CBHs
from ground-based observations. Thus, an assessment of the RH threshold that can best determine the
CBH is needed.

In this study, based on Lidar, pilot balloon, and aircraft soundings, the features of the CBH and the
threshold of the environmental RH to determine the cloud base over Southeast China were investigated
in detail. First, a comparison among the CBHs derived from three kinds of ground-based observations
was performed. The observations with high accuracy were then selected as the reference. Next,
combining the RH profiles from ERA-Interim data, the RH thresholds were calculated corresponding to
the observed CBHs. Finally, the RH thresholds in different seasons for different CBHs were analyzed.

2. Datasets and Methods

2.1. Ground-Based Observations

At numerous sites throughout Southeast China (blue triangles in Figure 1), we performed
observations with cloud Lidar (laser ceilometer), pilot balloon, and aircraft soundings from October
2017 to September 2018. The information on the sites is listed in Table 1.

We derived the cloud height using a cloud Lidar, whose emission source was a InGaAs 905 nm
wavelength and 1.76 μJ pulse energy with a pulse repetition frequency of 1000 Hz. The pulse duration
was 45 ns, and the beam divergence was less than 3 mrad. The detection range of cloud Lidar spans
from 20 m to 7600 m with a vertical resolution of 3.8 m and a temporal resolution of 30 seconds. Lidar
can scan the atmosphere with an elevation angle ranging from −30◦ to 30◦ and an azimuth in the
range of 0–240◦. The details about the technical specifications of the cloud Lidar used in this study are
shown in Table 2. The retrieved CBH data [55,56] at seven sites from October 2017 to September 2018
were used.

Meanwhile, the CBH observations sounded by aircraft were also used in this study. The CBH
detected by the aircraft soundings is obtained when the aircraft is flying upward through the cloud at
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the observational sites. When the aircraft enters the cloud, the pilot gives an altitude report for that
moment, which is considered the height of the cloud base.

Additionally, a pilot balloon together with a GYR1 electronic optical wind theodolite was used
to detect the CBH. After releasing a pilot balloon with a fixed rise velocity (ω) from the surface,
a theodolite telescope is used to track the balloon. When the balloon starts to enter the clouds, the
angular coordinate (elevation angle and azimuth angle) can be recorded. Then, the duration from the
time of releasing balloon to the time of entering the cloud (t) can be calculated. Finally, the CBH can be
estimated as the product of ω and t, that is, CBH = ω× t.

Table 1. Information on the observational sites for the cloud base height (CBH).

Site Location Elevation (m; Above
Sea Level)

Number of Samples

Aircraft Lidar Pilot Balloon

A (117◦ E, 25◦ N) 397 12 3268 230

B (116◦ E, 23◦ N) 13.8 58 2854 161

C (115◦ E, 28◦ N) 16 60 300 168

D (120◦ E, 26◦ N) 366.6 45 1748 182

E (118◦ E, 34◦ N) 15.7 75 76 19

F (120◦ E, 30◦ N) 4.1 28 177 23

G (121◦ E, 31◦ N) 4.4 50 47 24

Table 2. Technical specifications of the cloud Lidar.

Parameter Name Parameter Value

Laser InGaAs (a semiconductor laser)
Wavelength 905 ± 10 nm

Single laser pulse energy ≤20 μJ
Pulse width 45 ns ± 10 ns

Scattering angle of laser beam ≤3 mrad
Pulse repetition frequency 1 kHz ± 15%

Effective aperture of the optical system 102 mm
Interferometric filter 910 ± 15 nm

2.2. Clouds and the Earth’s Radiant Energy System (CERES)

Cloud fraction and cloud base pressure data (SYN dataset) from October 2017 to September 2018
derived from Clouds and the Earth’s Radiant Energy System (CERES) mounted on the Aqua satellite
were used in this paper. The temporal and spatial resolutions of these CERES data are hourly and
1◦ × 1◦, respectively [57]. Here, the cloud base pressure (CBP) data provided by CERES were used for
an intercomparison with the above-mentioned ground-based observations. According to the locations
of the ground-based sites and observational time, the CBPs from the CERES data corresponding to the
site location were extracted for a comparison with the calculated CBPs from CBHs.

2.3. ERA-Interim Reanalysis Data

ERA-Interim data released by the European Centre for Medium-Range Weather Forecasts (ECMWF)
can provide assimilated reanalysis data four times a day (the temporal resolution is 6 h). In this study,
RH profiles with a horizontal spatial resolution of 0.25◦ × 0.25◦ were used. In the vertical direction, the
RH profiles had 37 layers from 1000 hPa to 1 hPa. The RHs employed in this study were extracted
from the ERA-Interim data at 20 levels (from 1000 to 300 hPa) with a temporal resolution of 6 hours
(0:00, 6:00, 12:00, and 18:00 UTC) [58].
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2.4. Method of Conversion from Cloud Base Height (CBH) to Cloud Base Pressure (CBP)

In the cloud base datasets, the cloud base information from the CERES data is scaled by pressure
(unit: hPa), while the CBHs detected by cloud Lidar and aircraft are measured as the geometric height
(unit: m). To compare the ground-based measurement, a conversion from the CBH to the CBP is
needed. Here, according to the pressure-height formula of polytropic atmosphere [59], CBP can be
calculated from CBH.

CBP = PSF ×
[
1− Γ×CBH

Tv_CB

] g
RΓ

(1)

Tv_SF = (1 + 0.608qSF)TSF (2)

Tv_CB = Tv_SF − Γ ×CBH (3)

where g is the acceleration of gravity, here, it takes as 9.8 m/s; R is the gas constant, R = 287.05 J/kg/K;
and Γ is the temperature lapse rate, taken as 6.5 K/km here. PSF is the atmospheric pressure at the
surface. Based on Equation (2), the virtual air temperature at 2 m (Tv_SF) can be calculated from
specific humidity (qSF) based on ERA-Interim data and observed temperature at the ground-based
sites. The virtual air temperature at the cloud base (Tv_CB) can be further calculated by Equation (3).
Finally, based on the above formulas, the CBP can be calculated.

Based on the RH profiles from the ERA reanalysis data, the RH values at the cloud base can be
extracted according to the CBPs calculated according to the above method, and the extracted RH value
is regarded as the RH threshold at the cloud base.

3. Results

Figure 1 shows the distribution of observational sites (blue triangles) and the annual mean cloud
fraction derived from CERES product in China from October 2017 to September 2018. As shown in
Figure 1, during the above period, a high cloud fraction was distributed across South China with a
value of approximately 80%. Low-value areas were located in North China, especially Inner Mongolia,
with a minimum cloud fraction of 37.35%. Among the seven sites (blue triangles in Figure 1) involved
in this study, the annual mean cloud fractions over sites C and D were approximately 70%, while those
over sites A, B, and F were approximately 65%; however, the lowest cloud fraction (below 60%) was
found over site E.

Figure 1. Distribution of the annual mean cloud fraction (unit: %) derived from Clouds and the Earth’s
Radiant Energy System (CERES) product in the period from October 2017 to September 2018 and
the distribution of observational sites for the cloud base height (CBH) in Southeast China. The blue
triangles denote the ground-based observational sites for the CBH.
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3.1. Intercomparison among the CBHs from Multi-Sourced Data

Compared with satellite measurements, ground-based cloud observations can provide CBH
measurements with higher accuracy and a continuous temporal coverage. Moreover, aircraft
soundings can provide more accurate CBH information than ground-based observations. Therefore,
aircraft-sounded CBHs were considered to be an accurate reference in this study. In the subsequent
analyses, the CBHs derived from two kinds of ground-based observations, pilot balloon and cloud
Lidar, and from aircraft soundings during the period from October 2017 to September 2018 were
analyzed at each of the seven sites (details as shown in Figure 1 and Table 1) to give the features of
the CBH over those areas. Figure 2 shows a comparison of the CBHs sounded by aircraft with those
detected by cloud Lidar and pilot balloon during the observational period. The results show that the
correlation coefficient between the aircraft-sounded and Lidar-observed CBH was 0.86, which indicates
good consistency between the CBHs detected by the cloud Lidar and those sounded by the aircraft.
In addition, most of the CBHs detected by the Lidar were somewhat higher than those sounded
by aircraft when the cloud bases were lower than 2000 m. However, when the cloud bases were
higher than 2000 m, most of the Lidar-observed CBHs were slightly lower than the aircraft-soundings.
Additionally, comparing the results detected by the pilot balloon with the CBHs sounded by aircraft,
most of the CBHs sounded by the former were significantly higher than those sounded by the latter;
the correlation coefficient was 0.65. Thus, the CBH data detected by both Lidar and aircraft were
regarded as accurate values. In the following analyses, these two sets of data were complementary and
used in conjunction to analyze the features of the CBH over Southeast China.

Figure 2. Scatter-grams of the Lidar/pilot-balloon observed and aircraft sounded CBHs at sites in
Southeast China. The red and blue squares denote the CBHs from the pilot balloon and cloud
Lidar, respectively.

3.2. Features of the CBH over Southeast China

Based on the CBH samples detected by the cloud Lidar and aircraft, the seasonal variations of the
CBH during the period from October 2017 to September 2018 at seven sites were analyzed, as shown
in Figure 3, 75.91% of the CBH values at the seven sites were primarily below 2000 m. Overall, the
CBHs in the summer were consistently lower than those in the other seasons at most of the sites except
for site A. In addition, the summer CBHs were below 1000 m at sites D, E, and G, which are located
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along the oceanic coast. In this sense, at site C, which is farther from the ocean than the other sites,
the seasonal variation of the CBH is relatively small throughout the whole year. Therefore, at sites
near the ocean, monsoon systems could affect the CBH, which may be the reason for the seasonal CBH
discrepancies among the different sites. Here, the error bars reflect the standard errors based on the
means of the CBH samples at the seven sites. The standard errors at the sites are small, except for sites
E and F, which indicates the reliability of the statistical results with large sample sizes.

Figure 3. Seasonal variation of the mean CBH detected by cloud Lidar and aircraft during the period
from October 2017 to September 2018 at seven ground-based sites. The light cyan bar represents the
number of samples at each site in four seasons. Error bars represent the confidence levels of the mean

values, assuming independent data. Errors are calculated as s/(n− 2)
1
2 , where n is the sample number

of CBH measurements within the season and s is the standard deviation.

Furthermore, the monthly and diurnal variations of the CBH were similarly analyzed, as illustrated
in Figure 4. Due to the absence of records at some sites where observations are performed only at
certain times of day, fewer sites provided diurnal variation information (Figure 4b) than sites that
provide monthly variation information (Figure 4a). Relative to the average CBHs at all sites (black
line in Figure 4a), the lower CBHs were found in June–August, while the higher CBHs occur in
February and April. Overall, most of the CBHs (75.91%) observed at seven sites were below 2000 m; in
addition, the higher CBHs appeared in cold months, while the lower ones occurred in warmer months.
Specifically, as shown in Figure 4a, the average CBHs over site A in most months (January, March, and
May–August) were higher values relatively, which was also reflected by the diurnal variation of the
CBH (Figure 4b). Meanwhile, for the whole year, the monthly mean CBHs over site G presented the
lowest values (below 1000 m) among the seven sites, which is in agreement with the seasonal mean
results in Figure 3. As shown in Figure 4b, overall, the mean values of the CBHs at sites A and B (green
line in Figure 4b) were lower in the daytime than the nocturnal ones. Moreover, it was found that the
CBHs over site B were much lower than those at site A, especially in the daytime (from 06:00 to 18:00).
This phenomenon may be related to the fact that site B is located closer to the ocean than site A (as
shown in Figure 1), as the abundance of water vapor from the ocean is beneficial to the formation of
water clouds over site B.
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Figure 4. (a) Monthly and (b) diurnal variations of the CBH during the period from October 2017 to
September 2018. Black line in (a) represents the average CBH at all sites. Green line in (b) denotes
the average CBH at sites A and B. Error bars represent the confidence levels of the mean values,

assuming independent data. Errors were calculated as s/(n− 2)
1
2 , where n is the sample number of

CBH measurements within the season and s is the standard deviation.

3.3. Features of the Relative Humidity (RH) Threshold for Determining the CBH over Southeast China

According to Wang et al. [2], the CBH can be determined by the RH, and an RH of 84% was used
as a threshold to determine the cloud base location. However, the scarcity of the sounding data limited
an in-depth verification of determining the CBH by an RH threshold. Based on the above CBH data
detected by cloud Lidar and aircraft, features of the RH thresholds used to determine the CBHs over
these observational sites were investigated in the following analysis. The RH profiles derived from
ERA reanalysis data together with observed surface air temperature and pressure at the ground-based
sites were used to convert CBH to CBP.

Based on the method described in Section 2.4, a conversion from the CBH in meters to the CBP in
hPa was performed. The calculated pressures at the cloud bases were compared with those retrieved
from CERES observations, as shown in Figure 5. The time series and a comparison of the CBPs
derived from the CERES dataset with the CBPs calculated from ground-based observations are given
in Figure 5a. The red and blue lines represent the CBPs obtained from CERES observations and those
converted from the Lidar/aircraft measurements, respectively. As shown in Figure 5a, the CBPs from
the CERES product were consistently smaller (corresponding higher cloud base) than those calculated
from the Lidar/aircraft measurements during a large time period; the averaged CBPs from the CERES
product and Lidar/aircraft measurements during the period from October 2017 to September 2018
were 806.81 hPa and 860.67 hPa, respectively. Here, the CBH measurements obtained by Lidar/aircraft
were relatively accurate. In this sense, the pressures at the cloud bases observed by CERES could
overestimate the CBHs over these sites, which relates to the limited detection ability of passive satellite
remote sensing for the cloud base location. Furthermore, according to the geometric heights of the
cloud bases measured by Lidar/aircraft, the CBPs obtained from the CERES product were compared
with those calculated from the Lidar/aircraft measurements, as shown in Figure 5b. For clouds
higher than 1100 m, the CBPs observed by CERES and measured by Lidar/aircraft showed great
agreement. However, as shown in Figure 5b, the CERES observations slightly overestimated the cloud
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base locations in reference to the detection results of Lidar/aircraft, especially for clouds lower than
1100 m. Furthermore, the correlation of CBPs between CERES observations with those calculated by
Lidar/aircraft measurements was performed (Figure 5c,d). For the samples of all CBHs (represented by
green in Figure 5c), CBPs observed by CERES were significantly smaller than those from Lidar/aircraft
measurements (especially for the clouds lower than 1100 m), with a correlation coefficient of 0.790
(significant above the 99% confidence level). However, it was found that the correlation coefficient of
the CBPs between CERES observations and the ones calculated from Lidar/aircraft measurements for
the clouds higher than 1100 m (represented by yellow in Figure 5d) was 0.832 (significant above the 99%
confidence level), which indicates the great agreement of the CERES observations with calculations
from Lidar/aircraft measurements.

Figure 5. (a) Time series and (b) comparison of the CBPs derived from CERES observations with those
calculated from the CBHs detected by Lidar/aircraft at site B during the period from October 2017 to
September 2018. Correlation between the CBPs derived from CERES observations with those calculated
from Lidar/aircraft measurements for samples of (c) all CBHs and (d) CBHs above 1100 m at site B
during the period from October 2017 to September 2018.

Furthermore, based on the CBPs calculated from the CBHs detected by Lidar/aircraft, the RH
values at the cloud base were further extracted from the ERA data. In a sense, the extracted RH values
at the cloud base can be regarded as the thresholds for determining the CBHs. Figure 6 shows the
correlation between the RHs at the cloud base and the CBHs detected by Lidar/aircraft at the seven
sites during the period from October 2017 to September 2018. Overall, most of the RH values at the
cloud base ranged from approximately 70 to 90%, where the CBHs were below 2000 m. As the CBH
increased from 2000 m, the RH threshold began to decrease to smaller than 60%. As shown in Figure 6,
when the CBH was lower than 1000 m, it corresponded to a stable RH threshold of approximately
80%. When the CBH ranged from 1000 to 2000 m, the RH threshold was below 80% and decreased
with increasing CBH. However, when the CBH was higher than 2000 m, the RH threshold decreased
dramatically with increasing CBH. Additionally, it was found that the samples showed a large scatter
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and were sparsely distributed in the region with a RH threshold below 60%. Here, the raw values
of the RH calculated from the detected CBHs and the RH profiles from the ERA data are illustrated
in Figure 6, which presents an uncertainty induced by the RH profiles provided by the ERA data,
especially for the clouds at middle and high levels. However, the phenomenon of a relatively low RH
threshold for determining the CBHs for relatively high clouds was revealed.

Figure 6. Correlation between the RHs at the cloud base and the CBHs detected by Lidar/aircraft at all
sites during the period from October 2017 to September 2018. The black dashed line denotes the fitting
result with a cubic polynomial.

The sample percentages for each RH threshold bin were statistically calculated, as shown in
Figure 7. For the clouds with base heights ranging from 0 to 1000 m, the samples were dominantly
distributed from 50 to 100%, where the maximum percentage of samples (47.43%) was in the bin
ranging from 80 to 90%. For the CBHs ranging from 1000 to 2000 m, the samples were mainly in the
RH bins from 20 to 100%, where the maximum percentage of samples (31.01%) was distributed in the
bin ranging from 80 to 90%. However, for the clouds with base heights exceeding 3000 m, the samples
were mainly distributed in the bins with RHs lower than 50%, where the highest sample percentage
(49.12%) was distributed in the RH bin below 20% for CBHs larger than 4000 m.

Figure 7. Distribution of the sample number percentage (unit: %) in each RH threshold bin for
various CBHs measured by Lidar/aircraft at sites B, C, and F during the period from October 2017 to
September 2018.

Among the seven sites, the CBH data detected by Lidar/aircraft at sites B, C, and F had better
temporal continuity than the CBH data at the other sites during the period from October 2017 to
September 2018. Here, an analysis on the RH thresholds for determining the CBHs was performed
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based on the above three sites (B, C, and F), as shown in Figure 8 (details are in Table 3). As revealed
above, the RH thresholds at the three sites ranged approximately from 70 to 90%, where the CBHs were
below 2000 m (as shown in the box in Figure 8); the means of the RH thresholds were approximately
80% except for site F (as shown in black squares in Figure 8). As the CBH increased from 2000 m, the
RH threshold began to decrease, especially at site C. Overall, the average RH threshold decreased
with the increase in CBH. The maximum RH threshold (with a mean of 79.88% for these three sites)
was found for the clouds with base heights ranging from 0 to 1000 m. Then, with an increase in the
CBH above 1000 m, the average RH threshold decreased and reached the minimum (28.92%) for the
CBHs larger than 4000 m. As shown in Figure 8, a significant difference among the RH thresholds
for determining the CBHs among the above three sites was mainly observed for the clouds with base
heights exceeding 4000 m.

Figure 8. Statistics on the RH threshold for the clouds with different height at sites B, C, and F during
the period from October 2017 to September 2018. Whiskers cover the range of RH thresholds. The upper,
middle, and lower lines of the box correspond to the first, second, and third quartiles (the 75th, 50th,
and 25th percentiles). Black squares denote the means of RH threshold.

Table 3. Characteristics of the relative humidity thresholds of the CBH (unit: %).

Altitude of the
Cloud Base

Site B Site C Site F
Number of

Samples
Mean

Threshold

≤1 km 80.54 78.90 80.21 415 79.88
1–2 km 76.04 74.91 72.44 337 74.46
2–3 km 42.56 48.50 46.51 110 45.86
3–4 km 34.36 34.32 34.84 64 34.51
>4 km 23.11 29.53 34.12 56 28.92

As illustrated above, overall, the RH threshold decreased with an increase in the CBH, especially
when the CBH was higher than 2000 m. Furthermore, the seasonal variation of the RH thresholds for
determining the CBHs during the period from October 2017 to September 2018 was analyzed. The
sample percentages for each RH threshold bin in different seasons are shown in Figure 9. For all seasons,
the highest samples were dominantly distributed in the bin from 80 to 90%, where the maximum
percentage was 40.55% in the summer. This finding is in agreement with the results in Figure 4. In
another sense, for the RH threshold bins larger than 70%, most of the samples were obtained in spring
and summer, while the fewest samples were obtained in autumn. However, for the RH threshold bins
ranging from 30 to 70%, the samples were mainly collected in the autumn. For the RH threshold bins
below 30%, most of the samples were detected in the spring (7.81%) and winter (11.93%). Furthermore,
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the RH thresholds for determining the CBHs at sites B, C, and F in different seasons were statistically
calculated, as shown in Figure 10 (details are in Table 4). This figure shows that the maximum RH
threshold (with a mean of 72.39% for sites B, C, and F) was found in the summer, which is consistent
with the results shown in Figure 9. Moreover, the average RH thresholds in the spring, autumn, and
winter were 65.25%, 66.91%, and 63.56%, respectively. Overall, the RHs at site B indicated slightly
higher thresholds than the RHs at sites C and F for all seasons. Furthermore, the RH threshold at site C
showed obvious variation in the autumn and winter seasons (as shown in the box in Figure 10), which
may be related to the water vapor condition over there.

Figure 9. Seasonal distribution of the sample number percentage (unit: %) in each RH threshold bin for
various CBHs measured by Lidar/aircraft at sites B, C, and F during the period from October 2017 to
September 2018.

Figure 10. Seasonal statistics on the RH threshold for determining the CBHs at sites B, C, and F during
the period from October 2017 to September 2018. Whiskers cover the range of RH thresholds. The upper,
middle, and lower lines of the box correspond to the first, second, and third quartiles (the 75th, 50th,
and 25th percentiles). Black squares denote the means of RH threshold.
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Table 4. Seasonal average of the relative humidity thresholds of the CBH (unit: %).

Seasons Site B Site C Site F
Number of

Samples
Mean

Threshold

Spring 66.89 62.56 66.31 269 65.25
Summer 75.09 71.58 70.51 254 72.39
Autumn 70.52 64.88 65.32 262 66.91
Winter 68.93 57.46 64.28 243 63.56

4. Conclusions

CBH data detected by Lidar, pilot balloon, and aircraft over Southeast China during the period
from October 2017 to September 2018 were analyzed in this study. A comparison among the CBHs
detected by Lidar, pilot balloon, and aircraft at seven ground-based sites showed that the CBHs
observed by Lidar and aircraft were more consistent with a correlation coefficient of 0.86, and thus, the
data from Lidar and aircraft were regarded as an accurate reference. During the observational period,
the CBHs were higher in the cold months and lower in the warm months; in the latter, most of the
CBHs were primarily below 2000 m.

Combined with the RH profiles provided by ERA-Interim data, the RH thresholds were calculated
corresponding to the observed CBHs. Overall, the RH threshold was stable at approximately 80%
when the CBH was lower than 1000 m; however, with the increase in CBH, the RH threshold began to
decrease dramatically, even below 60%, as the CBH was larger than 2000 m. Seasonally, the maximum
(72.39%) and minimum (63.56%) RH thresholds were found in the summer and winter, respectively.
In addition, the average RH thresholds in the spring and autumn were 65.25% and 66.91%, respectively.

Although some interesting results were found in this study, some uncertainties in the RH threshold
calculation based on the profiles from the ERA reanalysis data may be present in the analyses. A huge
uncertainty may be induced by the establishment of humidity profiles from ERA reanalysis data.
As pointed out by Chernykh and Aldukhov [60], the profile resolution of the reanalysis data could
produce some errors in the gradient calculation that forms part of the cloud base determination.
Second, the calculation of the CBH, according to the pressure-height formula of polytropic atmosphere,
could introduce inevitable errors. Additionally, the RH thresholds for determining the CBHs varied
dramatically with the time and CBH, and thus, using an average RH threshold to determine the CBH
may conceal some accurate cloud height information. In the future, by combining ground-based and
satellite-based observations of the CBH, an artificial neural network method can be used to obtain
more accurate CBHs, which will be significantly beneficial to weather forecasting.

Author Contributions: Y.L. designed the paper; Y.T. wrote the original draft; Y.L. and Y.T. wrote, reviewed, and
edited; S.H. and Q.Z. helped in data processing; Y.L., Y.T., and R.L. reviewed and revised the paper.

Funding: This research was funded by the Strategic Priority Research Program of the Chinese Academy of
Sciences (Grant No. XDA2006010301) and was jointly supported by the National Natural Science Foundation of
China (91744311 and 91737101).

Acknowledgments: We acknowledge the CERES (https://ceres.larc.nasa.gov/) and ECMWF (https://www.ecmwf.
int/en/forecasts/datasets/reanalysis-datasets/era-interim) science teams for providing excellent and accessible
data products that made this study possible. We are also grateful to the ground-based observations from the
numerous sites.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Ramanathan, V.; Cess, R.D.; Harrison, E.F.; Minnis, P.; Barkstrom, B.R.; Ahmad, E.; Hartmann, D.
Cloud-radiative forcing and Climate: Results from the earth radiation budget experiment. Science 1989, 243,
57–63. [CrossRef]

2. Wang, J.H.; Rossow, W.B. Determination of cloud vertical structure from upper-air observations. J. Appl.
Meteor. 1995, 34, 2243–2258. [CrossRef]

198



Remote Sens. 2019, 11, 2900

3. Sun, B.; Groisman, P.Y. Cloudiness variations over the former Soviet Union. Int. J. Climatol. 2000, 20,
1097–1111. [CrossRef]

4. Naud, C.M.; Muller, J.P.; Clothiaux, E.E. Comparison between active sensor and radiosonde cloud boundaries
over the ARM Southern Great Plains Site. J. Geophys. Res. 2003, 108, 1–12. [CrossRef]

5. Houghton, J.T.; Ding, Y.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A.
Climate Change 2001: The Scientific Basis; Cambridge University Press: New York, NY, USA, 2001; pp. 1–421.

6. Li, Z.Q.; William, W.K.; Ramanathan, V.; Wu, G.X.; Ding, Y.H.; Madakshira, G.M.; Liu, J.; Qian, Y.F.; Li, J.P.;
Zhou, T.J.; et al. Aerosol and Monsoon Climate Interactions over Asia. Rev. Geophys. 2016, 54, 866–929.
[CrossRef]

7. Shang, H.; Letu, H.; Nakajima, T.Y.; Wang, Z.; Ma, R.; Wang, T.; Lei, Y.; Ji, D.; Li, J. Diurnal cycle and
seasonal variation of cloud cover over the Tibetan Plateau as determined from Himawari-8 new-generation
geostationary satellite data. Sci. Rep. 2018, 8, 1105. [CrossRef] [PubMed]

8. Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Riedi, J.; Ishimoto, H.; Baran, A.J.; Shang, H.; Sekiguchi, M.; Kikuchi, M.
Ice cloud properties from Himawari-8/AHI next-generation geostationary satellite: Capability of the AHI to
monitor the DC cloud generation process. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 3229–3239. [CrossRef]

9. Liu, Y.; Hua, S.; Jia, R.; Huang, J. Effect of aerosols on the ice cloud properties over the Tibetan Plateau.
J. Geophys. Res. Atmos. 2019, 124, 9594–9608. [CrossRef]

10. Huang, J.; Minnis, P.; Lin, B.; Yi, Y.H.; Fan, T.F.; Sun, S.M.; Ayers, J.K. Determination of ice water path in
ice-over-water cloud systems using combined MODIS and AMSR-E measurements. Geophys. Res. Lett. 2006,
33, L21801. [CrossRef]

11. Li, J.; Jian, B.; Huang, J.P.; Hu, Y.; Zhao, C.; Kawamoto, K.; Liao, S.; Wu, M. Long-term variation of cloud
droplet number concentrations from space-based Lidar. Remote. Sens. Environ. 2018, 213, 144–161. [CrossRef]

12. Letu, H.; Nagao, T.M.; Nakajima, T.Y.; Matsumae, Y. Method for validating cloud mask obtained from satellite
measurements using ground-based sky camera. Appl. Opt. 2014, 53, 7523–7533. [CrossRef] [PubMed]

13. Li, J.; Lv, Q.; Zhang, M.; Wang, T.; Kawamoto, K.; Chen, S.; Zhang, B. Effects of atmospheric dynamics and
aerosols on the fraction of supercooled water clouds. Atmos. Chem. Phys. 2017, 17, 1847–1863. [CrossRef]

14. Hua, S.; Liu, Y.; Jia, R.; Chang, S.; Wu, C.; Zhu, Q.; Shao, T.; Wang, B. Role of Clouds in Accelerating
Cold-Season Warming During 2000-2015 over the Tibetan Plateau. Int. J. Climatol. 2018, 38, 4950–4966.
[CrossRef]

15. Huang, J.; Minnis, P.; Lin, B.; Wang, T.; Yi, Y.; Hu, Y.; Sun-Mack, S.; Ayers, K. Possible influences of Asian
dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res.
Lett. 2006, 33, L06824. [CrossRef]

16. Liu, Y.; Huang, J.; Shi, G.; Takamura, T.; Khatri, P.; Bi, J.; Shi, J.; Wang, T.; Wang, X.; Zhang, B. Aerosol optical
properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China.
Atmos. Chem. Phys. 2011, 11, 11455–11463. [CrossRef]

17. Li, Z.; Guo, J.; Ding, A.; Liao, H.; Liu, J.; Sun, Y.; Wang, T.; Xue, H.; Zhang, H.; Zhu, B. Aerosol and
boundary-layer interactions and impact on air quality. Natl. Sci. Rev. 2017, 4, 810–833. [CrossRef]

18. Li, J.; Huang, J.; Stamnes, K.; Wang, T.; Lv, Q.; Jin, H. A global survey of cloud overlap based on CALIPSO
and CloudSat measurements. Atmos. Chem. Phys. 2015, 15, 519–536. [CrossRef]

19. Chen, S.; Jiang, N.; Huang, J.; Zang, Z.; Guan, X.; Ma, X.; Luo, Y.; Li, J.; Zhang, X.; Zhang, Y. Estimations
of indirect and direct anthropogenic dust emission at the global scale. Atmos. Environ. 2018, 200, 50–60.
[CrossRef]

20. Guo, J.; Liu, H.; Li, Z.; Rosenfeld, D.; Jiang, M.; Xu, W.; Jiang, J.; He, J.; Chen, D.; Min, M.; et al. Aerosol-induced
changes in the vertical structure of precipitation: A perspective of TRMM precipitation radar. Atmos. Chem.
Phys. 2018, 18, 13329–13343. [CrossRef]

21. Zhu, Q.; Liu, Y.; Jia, R.; Hua, S.; Shao, T.; Wang, B. A numerical simulation study on the impact of smoke
aerosols from Russian forest fires on the air pollution over Asia. Atmos. Environ. 2018, 182, 263–274.
[CrossRef]

22. Guo, J.; Deng, M.; Lee, S.S.; Wang, F.; Li, Z.; Zhai, P.; Liu, H.; Lv, W.; Yao, W.; Li, X. Delaying precipitation and
lightning by air pollution over the Pearl River Delta. Part I: Observational analyses. J. Geophys. Res. Atmos.
2016, 121, 6472–6488. [CrossRef]

23. Liu, Y.; Zhu, Q.; Huang, J.; Hua, S.; Jia, R. Impact of dust-polluted convective clouds over the Tibetan Plateau
on downstream precipitation. Atmos. Environ. 2019, 209, 67–77. [CrossRef]

199



Remote Sens. 2019, 11, 2900

24. Stephens, G. Cloud feedbacks in the climate system: A critical review. J. Clim. 2005, 18, 237–273. [CrossRef]
25. Leyton, S.M.; Fritsch, J.M. The impact of high-frequency surface weather observations on short-term

probabilistic forecasts of ceiling and visibility. J. Appl. Meteorol. 2004, 43, 145–156. [CrossRef]
26. Inoue, M.; Fraser, A.D.; Phillips, H.E. An assessment of numerical weather prediction–derived low-cloud-base

height forecasts. Wea. Forecast. 2015, 30, 486–497. [CrossRef]
27. Costa-Surós, M.; Calbó, J.; González, J.A.; Martin-Vide, J. Behavior of cloud base height from ceilometer

measurements. Atmos. Res. 2013, 127, 64–76. [CrossRef]
28. L’Ecuyer, T.S.; Jiang, J. Touring the atmosphere aboard the A-Train. Phys. Today 2010, 63, 36–41. [CrossRef]
29. Leeuw, G.; Kokhanovsky, A.; Cermak, J. Remote sensing of aerosols and clouds: Techniques and applications

(editorial to special issue in Atmospheric Research). Atmos. Res. 2012, 113, 40–42. [CrossRef]
30. Hutchison, K.D. The retrieval of cloud base heights from MODIS and three-dimensional cloud fields from

NASA’s EOS Aqua mission. Int. J. Remote. Sens. 2002, 23, 5249–5265. [CrossRef]
31. Hutchison, K.D.; Wong, E.; Ou, S.C. Cloud base heights retrieved during night-time conditions with MODIS

data. Int. J. Remote. Sens. 2006, 27, 2847–2862. [CrossRef]
32. Kuji, M.; Nakajima, T.Y.; Mukai, S. Retrieval of cloud geometrical properties using optical remote sensing

data. Proc. SPIE 2000. [CrossRef]
33. Borg, L.A.; Holz, R.E.; Turner, D.D. Investigating cloud radar sensitivity to optically thin cirrus using

collocated Raman lidar observations. Geophys. Res. Lett. 2011, 38, L05807. [CrossRef]
34. Sharma, S.; Vaishnav, R.; Shukla, M.V.; Kumar, P.; Thapliyal, P.K.; Lal, S.; Acharya, Y.B. Evaluation of cloud

base height measurements from Ceilometer CL31 and MODIS satellite over Ahmedabad, India. Atmos. Meas.
Technol. 2015, 8, 11729–11752. [CrossRef]

35. Liang, Y.; Sun, X.; Miller, S.D.; Li, H.; Zhou, Y.; Zhang, R.; Li, S. Cloud Base Height Estimation from ISCCP
Cloud-Type Classification Applied to A-Train Data. Adv. Meteorol. 2017. [CrossRef]

36. Oh, S.B.; Kim, Y.H.; Cho, C.H.; Lim, E. Verification and correction of cloud base and top height retrievals
from Ka-band cloud radar in Boseong, Korea. Adv. Atmos. Sci. 2016, 33, 73–84. [CrossRef]

37. Zhang, J.Q.; Xia, X.A.; Chen, H.B. A comparison of cloud layers from ground and satellite active remote
sensing at the Southern Great Plains ARM site. Adv. Atmos. Sci. 2017, 34, 347–359. [CrossRef]

38. Martucci, G.; Milroy, C.; O’Dowd, C.D. Detection of cloud-base height using Jenoptik CHM15K and Vaisala
CL31 ceilometers. J. Atmos. Ocean. Technol. 2010, 27, 305–318. [CrossRef]

39. Poore, K.D.; Wang, J.; Rossow, W.B. Cloud layer thicknesses from a combination of surface and upper-air
observations. J. Clim. 1995, 8, 550–568. [CrossRef]

40. Yan, W.; Han, D.; Lu, W.; Lei, X. Research of cloud base height retrieval based on COSMIC occultation
sounding data. Chin. J. Geophys. 2012, 55, 1–15. [CrossRef]

41. Zhang, J.; Chen, H.; Li, Z.; Fan, X.; Peng, L.; Yu, Y.; Cribb, M. Analysis of cloud layer structure in Shouxian,
China using RS92 radiosonde aided by 95 GHz cloud radar. J. Geophys. Res. 2010, 115, D00K30. [CrossRef]

42. Zhang, Y.; Zhang, L.; Guo, J.; Feng, J.; Cao, L.; Wang, Y.; Zhou, Q.; Li, L.; Li, B.; Xu, H.; et al. Climatology of
cloud-base height from long-term radiosonde measurements in China. Adv. Atmos. Sci. 2018, 35, 158–168.
[CrossRef]

43. Kassianov, E.I.; Long, C.N.; Christy, J. Cloud-Base-Height Estimation from Paired Ground-Based
Hemispherical Observations. J. Appl. Meteorol. 2005, 44, 1221–1233. [CrossRef]

44. Maturilli, M.; Ebell, K. Twenty-five years of cloud base height measurements by ceilometer in Ny-Ålesund,
Svalbard. Earth Syst. Sci. Data 2018, 10, 1451–1456. [CrossRef]

45. Wang, Z.; Wang, Z.H.; Cao, X. Consistency analysis for cloud vertical structure derived from millimeter
cloud radar and radiosonde profiles. Acta. Meteorol. Sin. 2016, 74, 815–826.

46. Forsythe, J.; Haar, T.V.; Reinke, D. Cloud-base height estimates using a combination of meteorological satellite
imagery and surface reports. J. Appl. Meteorol. 2000, 39, 2336–2347. [CrossRef]

47. Barker, H.W. Estimating cloud field albedo using one-dimensional series of optical depth. J. Atmos. Sci. 1996,
53, 2826–2837. [CrossRef]

48. Berg, L.; Stull, R. Accuracy of point and line measures of boundary layer cloud amount. J. Appl. Meteor. 2002,
41, 640–650. [CrossRef]

49. Kassianov, E.I.; Long, C.; Ovtchinnikov, M. Cloud sky cover versus cloud fraction: Whole-sky simulations
and observations. J. Appl. Meteor. 2005, 44, 86–98. [CrossRef]

200



Remote Sens. 2019, 11, 2900

50. Chernykh, I.V.; Eskridge, R.E. Determination of cloud amount and level from radiosonde soundings. J. Appl.
Meteorol. 1996, 35, 1362–1369. [CrossRef]

51. Craven, J.P.; Jewell, R.E.; Brooks, H.E. Comparison between observed convective cloud-base heights and
lifting condensation level for two different lifted parcels. Wea. Forecast. 2002, 17, 885–890. [CrossRef]

52. Stull, R.B.; Eloranta, E. A case study of the accuracy of routine, fair-weather cloud-base reports. Natl. Wea.
Dig. 1985, 10, 19–24.

53. Zhang, Y.; Klein, S.A. Factors controlling the vertical extent of fair-weather shallow cumulus clouds over
land: Investigation of diurnal-cycle observations collected at the ARM Southern Great Plains site. J. Atmos.
Sci. 2013, 70, 1297–1315. [CrossRef]

54. Romps, D.M. Exact expression for the lifting condensation level. J. Atmos. Sci. 2017, 74, 3891–3900. [CrossRef]
55. Kleet, J.D. Stable analytical inversion solution for processing lidar returns. Appl. Opt. 1981, 20, 211–220.

[CrossRef] [PubMed]
56. Collis, R.T.H.; Russell, P.B. Lidar measurement of particles and gases by elastic backscateringand dif ferential

absorption. In Laser Monitoring of the Atmosphere; Springer: Berlin/Heidelberg, Germany, 1976; pp. 71–151.
57. Chambers, L.H.; Lin, B.; Young, D.F. Examination of new CERES data for evidence of tropical iris feedback.

J. Clim. 2002, 15, 3719–3726. [CrossRef]
58. Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.;

Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data
assimilation system. Quart. J. R. Meteor. Soc. 2011, 137, 553–597. [CrossRef]

59. Iribarne, J.V.; Cho, H.-R. Atmospheric Physics; Reidel: Dordrecht, The Netherlands, 1980; ISBN 90-277-1033-3.
60. Chernykh, I.; Aldukhov, O. Vertical distribution of cloud layers from atmospheric radiosounding data.

Izv. Atmos. Ocean. Phys. 2004, 40, 41–53.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

201





remote sensing 

Technical Note

Evaluation of Terra-MODIS C6 and C6.1 Aerosol
Products against Beijing, XiangHe, and Xinglong
AERONET Sites in China during 2004–2014

Muhammad Bilal 1, Majid Nazeer 2,3, Janet Nichol 4, Zhongfeng Qiu 1,*, Lunche Wang 5,

Max P. Bleiweiss 6, Xiaojing Shen 7, James R. Campbell 8 and Simone Lolli 9,10

1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044,
China; muhammad.bilal@connect.polyu.hk

2 Key Laboratory of Digital Land and Resources, East China University of Technology, Nanchang 330013,
China; majid.nazeer@comsats.edu.pk

3 Earth and Atmospheric Remote Sensing Lab (EARL), Department of Meteorology, COMSATS University
Islamabad, Islamabad 45550, Pakistan

4 Department of Geography, School of Global Studies, University of Sussex, Brighton BN19RH, UK;
janet.nichol@connect.polyu.hk

5 Department of Geography, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China;
wang@cug.edu.cn

6 Department of Entomology, Plant Pathology and Weed Science, New Mexico State University (NMSU),
Las Cruces, NM 88003, USA; maxb@nmsu.edu

7 School of Atmospheric Science at Nanjing University of Information Science and Technology,
Nanjing 210044, China; shenxj@nuist.edu.cn

8 Naval Research Laboratory, Monterey, CA 93943, USA; james.campbell@nrlmry.navy.mil
9 Institute of Methodologies for Environmental Analysis, CNR, 85050 Tito Scalo (PZ), Italy;

simone.lolli@imaa.cnr.it
10 Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore,

MD 21221, USA
* Correspondence: zhongfeng.qiu@nuist.edu.cn; Tel.: +86-025-5869-5696

Received: 24 December 2018; Accepted: 21 February 2019; Published: 27 February 2019

Abstract: In this study, Terra-MODIS (Moderate Resolution Imaging Spectroradiometer) Collections
6 and 6.1 (C6 & C6.1) aerosol optical depth (AOD) retrievals with the recommended high-quality
flag (QF = 3) were retrieved from Dark-Target (DT), Deep-Blue (DB) and merged DT and DB (DTB)
level–2 AOD products for verification against Aerosol Robotic Network (AERONET) Version 3 Level
2.0 AOD data obtained from 2004–2014 for three sites located in the Beijing-Tianjin-Hebei (BTH)
region. These are: Beijing, located over mixed bright urban surfaces, XiangHe located over suburban
surfaces, and Xinglong located over hilly and vegetated surfaces. The AOD retrievals were also
validated over different land-cover types defined by static monthly NDVI (Normalized Difference
Vegetation Index) values obtained from the Terra-MODIS level-3 product (MOD13A3). These include
non-vegetated surfaces (NVS, NDVI < 0.2), partially vegetated surfaces (PVS, 0.2 ≤ NDVI ≤ 0.3),
moderately vegetated surfaces (MVS, 0.3 < NDVI < 0.5) and densely vegetated surfaces (DVS,
NDVI ≥ 0.5). Results show that the DT, DB, and DTB-collocated retrievals achieve a high correlation
coefficient of ~ 0.90–0.97, 0.89–0.95, and 0.86–0.95, respectively, with AERONET AOD. The DT C6
and C6.1 collocated retrievals were comparable at XiangHe and Xinglong, whereas at Beijing, the
percentage of collocated retrievals within the expected error (↔EE) increased from 21.4% to 35.5%,
the root mean square error (RMSE) decreased from 0.37 to 0.24, and the relative percent mean error
(RPME) decreased from 49% to 27%. These results suggest significant relative improvement in the
DT C6.1 product. The percentage of DB-collocated AOD retrievals ↔EE was greater than 70% at
Beijing and Xinglong, whereas less than 66% was observed at XiangHe. Similar to DT AOD, DTB
AOD retrievals performed well at XiangHe and Xinglong compared with Beijing. Regionally, DB C6
and C6.1-collocated retrievals performed better than DT and DTB in terms of good quality retrievals
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and relatively small errors. For diverse vegetated surfaces, DT-collocated retrievals reported small
errors and good quality retrievals only for NVS and DVS, whereas larger errors were reported for
PVS. MVS. DB contains good quality AOD retrievals over PVS, MVS, and DVS compared with NVS.
DTB C6.1 collocated retrievals were better than C6 over NVS, PVS, and DVS. C6.1 is substantially
improved overall, compared with C6 at local and regional scales, and over diverse vegetated surfaces.

Keywords: MOD04; Dark-Target; Deep-Blue; AERONET; LiDAR; AOD; Beijing; China

1. Introduction

Aerosol optical depth (AOD) is used for understanding the impact of aerosol on the Earth’s
climate system [1], human health [2–4], atmospheric visibility [5], and air quality [6–10]. In order to
perform continuous in-situ measurements of AOD, a large number of sun photometers have been
deployed worldwide under the Aerosol Robotic Network (AERONET) [11,12], which provides AOD at
relatively high spectral and temporal resolutions, though at specific point-based locations. Therefore,
to expand upon this framework, global AOD observations are required for better understanding of
aerosol distributions and their impacts on regional and larger scales.

The spatial distribution of AOD can be examined from passive radiometric satellite sensors,
but the accuracy of AOD retrievals depends on instrument calibration, cloud screening fidelities,
estimates of background surface reflectance, and available spectral aerosol models to support requisite
radiance inversions [13]. Specifically, AOD over land can be obtained from space-borne sensors such as
the AVHRR (Advanced Very High Resolution Radiometer) [14,15], SeaWiFS (Sea-viewing Wide Field of
view Sensor) [16], MISR (Multiangle Imaging Spectroradiometer) [17,18], TOMS (Total Ozone Mapping
Spectroradiometer) [19], OMI (Ozone Monitoring Instrument) [20], the MERIS (Medium Resolution
Imaging Spectroradiometer) [21], the VIIRS (Visible Infrared Imaging Radiometer Suite) [22,23], and the
MODIS (MODerate resolution Imaging Spectroradiometer) [24,25]. The accuracy of available land
surface reflectance, however, mostly limits the application of over-land AOD retrievals compared with
over water [25,26]. Improvements to over-land retrieval algorithms as a whole, therefore, are important
to increase data availability globally.

MODIS, aboard the NASA Terra and Aqua satellites respectively, features over-land AOD retrievals
globally based on the Dark-Target (DT) [25] and the Deep-Blue (DB) algorithms [24]. For DT, pixels for
dense vegetated surfaces are selected for a top-of-atmosphere (TOA) reflectance between 0.01 and 0.25
and corrected for gaseous absorption at 500 m spatial resolution. The selected pixels are arranged in
a retrieval window of 20 × 20 pixels (400 pixels) and screened for clouds, snow/ice, and other bright
surfaces. The remaining pixels are separated from land and water surfaces, and the 50% brightest pixels
and the 20% darkest pixels are discarded to perform aerosol retrievals. The newly-released Collection
6.1 (C6.1) DT AOD product features the following improvements/changes: (a) the quality of AOD
retrievals is degraded to zero for greater than 50% (20%) of coastal pixels (water pixels) within the
20 × 20 pixel window of, and (b) surface reflectance ratios for urban areas are updated using the MOD09
surface reflectance product [26]. Improvements/changes for the DT C6.1 algorithm can be found at [27].
The expected error (EE) of the DT algorithm is ± (0.05 + 0.15 × AOD) [25], which represents about 66%
of retrievals within EE on a global scale [28].

For DB, first the pixels are screened for clouds and snow/ice surfaces and the surface reflectance
is estimated for the remaining pixels. Unlike DT, the DB algorithm retrieves AOD over dark as well as
bright surfaces at a spatial resolution of 1 km and aggregates the retrievals at a spatial resolution of
10 km. The newly-released DB C6.1 AOD product features the following improvements/changes
compared to C6: (a) artifact correction for heterogeneous terrain, (b) seasonal and regional aerosol
models have been updated, (c) improvements have been made for the estimation of surface reflectance
over elevated terrain, (d) metadata for Ångström Exponent have been updated, (e) updated EE, and (f)
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updated internal smoke detection masks. Improvements/changes for the DB C6.1 algorithm can be
found at [27]. DB EE depends on geometry. That is, DB has different error characteristics, and the EE
of DT is used in this study [24,29].

The MODIS C6 and C6.1 aerosol products include a merged DT and DB (DTB) AOD product
for better spatial coverage of AOD over land (i.e., to include pixels from DT (DB) for areas where
DB (DT) fails to retrieve) [25,30]. The DTB AOD product was developed using NDVI (Normalized
Difference Vegetation Index ) thresholds (i.e., the DT [DB] AOD is selected for surfaces with NDVI > 0.3
[NDVI < 0.2], and for surfaces with NDVI between 0.2 and 0.3, an average of DB and DT AOD or AOD
available either from DB or DT with recommended high-quality flag is selected) [25].

Beijing-Tianjin-Hebei (BTH) is the national capital and largest urbanized metropolis region in
northern China. It undergoes severe air pollution events in the form of haze composed from fine
particles and dust storms consisting of larger coarse particles. To control and monitor air pollution
over this region, accurate spatio-temporal satellite observations are required. Therefore, the main
objectives of the present study are to compare and validate the C6 and C6.1 DT, DB and DTB AOD
products from 2004–2014 (i) over the three Aerosol Robotic Network (AERONET) sites located in
Beijing-Tianjin-Hebei (BTH) region (Beijing, XiangHe, and Xinglong), to highlight the performance
difference in C6.1 compared with C6, over (ii) diverse vegetated surfaces to understand the generation
of DTB AOD product by the relative contributions of the DB and DT retrievals.

2. Data Sets

Terra-MODIS DT, DB, and DTB C6 and C6.1 aerosol products at 10 km spatial resolution for
the BTH region from 2004 to 2014 were downloaded from “the Level-1 and Atmosphere Archive &
Distribution System (LAADS) Distributed Active Archive Center (DAAC)”. The Terra-MODIS C6
level-three monthly NDVI product (MOD13A3) at 1 km resolution is used to define different land
surface types. For the validation of the MOD04 AOD product, AERONET [11,12] cloud–screened and
quality–assured (Version 3, Level 2.0) [31] data were downloaded from the AERONET website for
three sites. Specifically, the Beijing site is located over mixed bright urban surfaces, the XiangHe site is
located over suburban surfaces, and Xinglong is located over hilly and vegetated surfaces (Figure 1).
AERONET provides measurements three-to-five times more accurate than satellite data [32] in seven
channels (0.340–1.020μm) every 15 min with an uncertainty of ~0.01–0.02 [11] in the absence of thin
cirrus cloud contamination [33]. AERONET data are available from Beijing, XiangHe, and Xinglong
sites from March 2001 to June 2018, September 2004 to May 2017, and February 2006 to October 2014,
respectively. A summary of the dataset is provided in Table 1.

 
Figure 1. Land cover and yearly-averaged Normalized Difference Vegetation Index (NDVI) maps of
the study area with overlaid Aerosol Robotic Network (AERONET) sites. (a) MODIS land cover data,
(b) AERONET sites and NDVI values
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Table 1. Summary of the data sets used.

Data Scientific Data Set (SDS) AOD

AERONET Version 3 Level 2.0 AOD
MOD04 C6 and C6.1 Optical_Depth_Land_And_Ocean DT AOD over land and ocean

Deep_Blue_Aerosol_Optical_Depth_550_Land DB AOD over land
Deep_Blue_Aerosol_Optical_Depth_550_Land_QA_flag Indicate quality of pixel

AOD_550_Dark_Target_Deep_Blue_Combined DT, DB or their average AOD
AOD_550_Dark_Target_Deep_Blue_Combined_QA_Flag Indicate quality of pixel

MOD13A3 C6 1 km NDVI Monthly NDVI

3. Methodology

The performance of the Terra–MODIS DT, DB and DTB C6 and C6.1 AOD retrievals at
10 km spatial resolution is evaluated on a local scale against three AERONET stations located
at urban (Beijing), suburban (XiangHe), and hilly and vegetated surfaces (Xinglong) for a period
of 11 years (2004–2014). The step-by-step methodology is as follows: (i) DT AOD retrievals
were obtained from the scientific data set (SDS) “Optical_Depth_Land_And_Ocean” containing the
recommended high-quality flag (QF = 3) AOD retrievals over land, and the DB AOD retrievals were
obtained from the SDS “Deep_Blue_Aerosol_Optical_Depth_550_Land_Best_Estimate” containing
the recommended high-quality flag (QF ≥ 2). DTB AOD retrievals were obtained from the SDS
“AOD_550_Dark_Target_Deep_Blue_Combined” and the recommended high-quality flag (QF = 3)
AOD retrievals were filtered using the SDS “AOD_550_Dark_Target_Deep_Blue_Combined_QA_Flag”.
(ii) DT, DB and DTB AOD retrievals were validated and compared by combining all available
collocations for each AERONET site. (iii) The DT, DB, and DTB AOD retrievals were filtered according
to the categorized four land surface types: non-vegetated surfaces (NVS, NDVI < 0.2), partially
vegetated surfaces (PVS, 0.2 ≤ NDVI ≤ 0.3), moderately vegetated surfaces (MVS, 0.3 < NDVI < 0.5)
and densely vegetated surfaces (DVS, NDVI ≥ 0.5) [27], as defined by MOD13A3 NDVI static values.
The accuracy of the DTBC6 AOD retrievals can be improved by using dynamic values of NDVI
Bilal and Nichol [34], but static NDVI values were used as the DTB product was developed using
these values [25,30]. (iv) As AOD data at 550 nm were not available from AERONET measurements,
an Ångström exponent 440–675 nm (α440–675) was used to interpolate AOD at 550 nm. (v) To increase
the number of collocations and the temporal coverage of AOD retrievals, at least 2 out of 9 pixels
were considered within a spatial window of 3 × 3 pixels centered on the AERONET site and at least
two values of AERONET AOD were considered within ± 1hr of the Terra overpass. (vi) Errors in
collocated AOD retrievals were reported using the relative percent mean error (RPME, Equation (1)),
the root mean square error (RMSE, Equation (2)), and the expected error (EE, Equation (3)) of the DT
algorithm over land, defined as

RPME =

(
AOD(MODIS) − AOD(AERONET)

AOD(AERONET)

)
× 100 (1)

RMSE =

√
1
n

n

∑
i=1

(
AOD(MODIS)i − AOD(AERONET)i

)2
(2)

EE = ±
(

0.05 + 0.15 × AOD(AERONET)

)
(3)

4. Results and Discussion

4.1. Validation of MODIS AOD Retrievals at Local Scale

In general, variance in the collocated AOD retrievals is mostly influenced by either the surface
reflectance or the aerosol model used in the inversion process [9,35–37]. Variance during high aerosol loading
events is usually due to an error in the aerosol scheme. In contrast, variance in AOD retrievals during low
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aerosol loading events are usually due to the error in the estimated surface reflectance [6–10,27,35,37–46].
High (low) agreement between satellite retrievals and AERONET AOD indicate that satellite retrievals
follow (or do not follow) the aerosol variation as measured by the sun photometers [27].

For retrieval verification with AERONET, total numbers of DT C6 collocations were 721, 1060,
and 60 for Beijing, XiangHe and Xinglong, respectively. Small numbers of collocations for the Xinglong
site compared to the other two sites may be due to the limitation of the algorithm to retrieve AOD
over the high elevated site (899 m above sea level), as a total of 909 AOD measurements were available
within ± 1 h of the Terra overpass. In Figure 2, red lines represent the EE envelope and the black line
represents the 1:1 line. Verification shows that the DT C6 AOD retrievals (Figure 2a–c) were correlated
well with AOD measurements for each site, as the range of correlation coefficient (R) was between
0.90-0.96. This indicates that the DT algorithm has the ability to represent the aerosol variation measured
by AERONET [27]. DT C6 AOD retrievals performed better over Xinglong and XiangHe, as 78.3% and
67.7% of the retrievals were within (↔) the EE compared with Beijing (↔EE = 21.4%), respectively.

Figure 2. Validation of MODerate resolution Imaging Spectroradiometer (MODIS) aerosol optical depth
(AOD) retrievals from 2004–2014 at the Beijing, XiangHe and Xinglong AERONET sites, including DT
C6 (a–c), DT C6.1 (d–f), DB C6 (g–i), DB C6.1 (j–l), DTB C6 (m–o), and DTB C6.1 (p–r). The black line
is the 1:1 line, and red lines are the expected error envelope.
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Large errors were observed at Beijing, which might be due to the errors in the estimated surface
reflectance and aerosol scheme during low and high aerosol loadings, respectively that led to 76%
of the retrievals above (↑) the EE, RMSE of 0.37 and RPME of 49%. Similar results were reported by
previous studies over the region [8,40,41]. Similar to C6, DT C6.1 performed better over Xinglong and
XiangHe compared to Beijing. Modifications in DT C6.1 increased the percentage of retrievals ↔EE
and reduced the RMSE and RPME. Specifically at Beijing, where the percentage of retrievals ↔EE
increased from 21.4% to 35.5%, the percentage of retrievals ↑EE decreased from 76% to 60.4% and the
RMSE and RPME decreased from 0.37 to 0.24 and from 49% to 27%, respectively. These relatively
significant improvements at Beijing may be due to the modified surface reflectance ratios for urban
areas based on the MODIS operational surface reflectance (MOD09) [26].

DB C6 and C6.1 AOD collocations were 75–108% and 101–144% greater than the DT C6 and C6.1,
respectively. DB AOD retrievals performed well over Beijing and Xinglong sites, compared to XiangHe,
in terms of larger percentage of retrievals ↔EE, a smaller percentage of retrievals ↑EE, and smaller
RPME. In contrast, a large number of retrievals were below (↓) the EE at the Beijing and Xinglong
sites compared to XiangHe. DB includes more collocations than DT over Xinglong, although DT is
designed to retrieve AOD over such regional surface. Also, the number of collocations of DB C6.1
was greater than DB C6 over these hillier areas, which might be due to improved surface reflectance
modeling for elevated terrain in C6.1. Significant improvements in DB C6.1 compared to C6 were not
observed. Overall, the performance of C6 and C6.1 were comparable.

The numbers of collocations for DTB AOD retrievals (Figure 2m–r) were greater than DT
(Figure 2a–f) but less than DB AOD. Similar statistics were reported by previous studies [27,39,42].
Similar to DT AOD, the performance of DTB retrievals was better over the Xinglong and XiangHe
sites compared with Beijing, which was due to more contributions of DT retrievals in the DTB AOD
dataset. At Beijing, a larger percentage of retrievals ↔EE, a smaller percentage of retrievals ↑EE,
and small RMSE and RPME were found compared to DT AOD. This plausibly occurred due to relative
contributions of the DB AOD retrievals (Figure 2g–l), as they performed better than DT AOD over
this site. Modifications and improvements in DT and DB C6.1 increased the percentage of DTB AOD
retrievals ↔EE from 48.1% to 60%, decreased the percentage of retrievals ↑EE from 49.2% to 36%,
and reduced the RMSE and RPME from 0.28 to 0.23, and 31% to 18%, respectively at Beijing, though
performance at the other sites was comparable with C6.

4.2. Evaluation of MODIS AOD Retrievals at Regional Scale

The MODIS DT, DB and DTB AODs from each site were combined together for regional verification
(Figure 3). This exercise shows the high correlative agreement of 0.93 for the DT (Figure 3a,d) collocated
AOD, which indicates that DT reproduces aerosol variation regionally. DT C6 and C6.1 have collocation
totals and R, but improvements and modifications in C6.1 significantly improve AOD quality, as the
percentage of retrievals (↑) ↔EE (decreased) increased from (47.5%) 49.9% to (39.7%) 59.9%, RMSE and
RPME decreased from 0.28 to 0.21 and 29% to 19%, respectively, compared with C6. Overall, significant
improvements and modifications are still required for DT to improve over BTH.

The number of DB C6.1 (C6) collocations was 77% (80%) greater than DT C6.1 (C6) at the
regional scale. Similar to DT, the DB algorithm has the ability to follow the actual variation in aerosol
concentrations as measured by AERONET, as R between the DB AOD retrievals and AERONET AOD
measurements was > 0.90. The DB AOD has a large percentage of retrievals ↔EE and small RPME
compared with DT AOD over BTH. Overall, the performance of DB AOD was reasonable, as 68% of the
retrievals fell ↔EE. However, no significant improvements were observed in C6.1 compared with C6.

Similar to the local scale, DTB AOD retrievals (Figure 3c,f) were greater in numbers than DT
AOD (Figure 3a,c), but less than DB AOD (Figure 3b,d). DTB AOD were more influenced by the DT
AOD than DB AOD, as the correlation coefficient, the percentage of retrievals ↓, ↑, and ↔EE, RMSE,
and RPME were comparable with DT AOD at the regional scale. Overall, the performance of DTB
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AOD was poor compared with DB AOD, and this can be improved by considering more DB AOD
retrievals in DTB as suggested by our previous studies [27,39,42].

Figure 3. Validation of MODIS AOD retrievals from 2004–2014 at the regional scale: DT C6 (a), DB C6
(b), DTB C6 (c), DT C6.1 (d), DB C6.1 (e), and DTB C6.1 (f). The black line is the 1:1 line and red lines
are the expected error envelope.

Figure 4 shows differencing scatter plots between C6 – AEORNET and C6.1 – AERONET for
DT- (Figure 4a), DB- (Figure 4b) and DTB- collocated (Figure 4c) AOD observations to determine
the exact temporal differences between C6 and C6.1 AOD. For this purpose, an equal number of
C6 and C6.1-collocated AOD observations for the same time and site were obtained. Results show
that differences between C6 – AEROENT and C6.1 – AERONET for DB were well correlated with
each other, as the correlation (R ~ 0.99) was higher than DT (R ~ 0.87) and DTB (R ~ 0.90) AOD
differences. Negative values of RPME suggest that DT, DB, and DTB C6.1 AOD have 2.7%, 7.3%,
and 27.6%, respectively, less error compared with C6 AOD. Overall, these results suggest that the DB
C6 and C6.1 AOD were comparable over the region due to high values of R, a slope close to 1 (0.997)
and small RPME, compared to DT and DTB AOD. Further, significant differences were observed
between DTB C6 and C6.1 AOD in terms of RPME.

In order to evaluate the temporal performance of the AOD products against AERONET over BTH,
collocated AOD observations from AERONET and MODIS were averaged for each month from
2004—2014 (Figure 5). Results show different temporal trends of DT (Figure 5a) and DB (Figure 5b)
AOD over the region. High DT and DB AOD were observed in July and June, respectively, which might
be due to different numbers of collocated observations of DT and DB for each month. No significant
improvements in DT and DB C6.1 were observed on a monthly basis compared with C6, as monthly
averaged observations were the same for both datasets. In the case for DT, AOD was overestimated
for C6 and C6.1 from March to October compared with AERONET. Whereas, for DB, AOD from both
collections was overestimated from October to March, compared to AERONET. Figure 5c shows that the
DTB AOD have the same temporal trend as DT from April to October and the same trend as DB from
October to March due to more contributions from the respective DT and DB retrievals. Similar results
were reported in a previous study [34]. Overall, the DB AOD retrievals performed better and compared
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more favorably with AERONET measurements in terms of small RPME (C6 = 5.3, C6.1 = 4.8), compared
to DT (C6 = 17.5, C6.1 = 17.0) and DTB (C6 = 18.3, C6.1 = 17.5) AOD.

Figure 4. Differencing scatter plots between (C6 – AERONET)- and (C6.1 – AERONET)-collocated
AOD retrievals, for, (a) DT AOD, (b) DB AOD, and (c) DTB AOD. The red and dotted black lines
represent the regression and 1:1 lines, respectively.
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Figure 5. Temporal trends of monthly averaged collocated observations of DT AOD (a), DB AOD (b),
and DTB AOD (c) retrievals from 2004–2014 over BTH.

C6 and C6.1 AOD were also compared spatially over BTH as seen in Figure 6. For this purpose,
daily AOD retrievals from 2004 to 2014 were averaged for each collection and product. Distinct layers of
AOD were observed over the region (Figure 6) and AOD varied from north to south (hilly to urban areas).
The DT algorithm retrieved high AOD compared to DB, which contributed to the DTB AOD retrievals
over this region. Similar findings were observed in the previous section and other studies [27,39]. Overall,
the range of differences between C6 and C6.1 was found from −0.89 to 0.30, and large differences were
observed between DT and DTB C6 and C6.1 AOD over certain areas compared to DB AOD. These results
suggest that DB C6 and C6.1 AOD retrievals exhibit the same spatial pattern and values compared to DT
and DTB AOD.

In order to evaluate DT and DB AOD over different land surfaces and understand their
relative contributions to DTB AOD, each as validated over diverse vegetated surfaces (Figure 7)
defined by NDVI: non-vegetated surfaces (NVS, NDVI < 0.2), partially-vegetated surfaces (PVS,
0.2 ≤ NDVI ≤ 0.3), moderately-vegetated surfaces (MVS, 0.3 < NDVI < 0.5) and densely-vegetated
surfaces (DVS, NDVI ≥ 0.5) [27]. For DT C6.1 (C6), the 52 (65), 535 (503), 981 (961), and 312 (311)
collocations were available for NVS, PVS, MVS, and DVS, respectively. The RMSE (RPME) of DT C6.1
AOD was reduced from 0.12 (22%) to 0.09 (19%) for NVS, 0.28 (50%) to 0.17 (25%) for PVS, and 0.30
(28%) to 0.23 (19%) for MVS, and no significant improvements were observed for DVS. DT C6 and
C6.1 collocated retrievals did not fulfill the requirements of EE for PVS and MVS, as the percentage
of retrievals ↔EE was less than 66% [28]. Relatively good performance from the DT algorithm was
in fact expected, as it was designed and developed to retrieve accurate AOD for vegetated surfaces.
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Only DT AOD was considered in DTB for MVS, which introduced the same errors as observed in DT
as shown in Figure 7s,w. Overall, the improvements observed in C6.1 compared to C6 were mainly
due to the modified estimated surface reflectance.

The numbers of DB collocations were greater in numbers than DT for all types of surfaces
except DVS, where they were comparable. In general, it is expected that the DB algorithm performs
better for NVS than PVS, MVS, and DVS, and the DT algorithm exhibits better performance over
vegetated surfaces than DB. Based on this concept, DB AOD retrievals were ignored in DTB over
surfaces where NDVI > 0.3, and only considered over the surfaces where 0.3 < NDVI [25,27,30,34,39,42].
However, this study found that the performance and accuracy of DB- collocated retrievals were
good over PVS, MVS and DVS compared to NVS (Figure 7i–p) in terms of (small) large percentages
of retrievals (↑) ↔EE, and small RMSE and RPME. The DB AOD retrievals were also better than
DT-collocated retrievals for NDVI > 0.2 surfaces. In contrast, the DT AOD performance was better than
DB AOD for NDVI < 0.2 surfaces in terms of large (small) percentage of retrievals ↔ (↑)EE, and small
RMSE, though they are in small numbers. Similar to our previous studies [27,39,42], this study also
suggests that to improve the quality for DTB, DT AOD can be included in the DTB product for
NDVI < 0.2 and DB AOD can be included for NDVI > 0.3 surfaces, as these retrievals were ignored in
DTB [25]. Improvements/changes in the DB C6.1 algorithm did not show significant improvements,
as C6- (Figure 7i–l) and C6.1- (Figure 7m–p) collocated retrievals were comparable for all surfaces.

Figure 6. Spatial comparison between C6 and C6.1 AOD retrievals from 2004 to 2014 over the BTH
region, where (a), (b) and (c) represent DT C6, C6.1 and C6 – 6.1, (d), (e) and (f) represent DB C6, C6.1
and C6 – 6.1, and (g), (h) and (i) represent DTB C6, C6.1 and C6 – 6.1, respectively.
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Figure 7. Validation of MODIS AOD retrievals from 2004–2014 over NVS, PVS, MVS, and DVS, where
DT C6 (a–d), DB C6 (e–h), DTB C6 (i–l), DT C6.1 (m–p), DB C6.1 (q–t), and DTB C6.1 (u–x). The black
line is the 1:1 line, and red lines are the expected error envelope.

DTB AOD retrievals for NVS and MVS should be the same as DB and DT AOD retrievals,
respectively, but a mismatch was found. This might be due to using different NDVI data. This study
used the monthly NDVI L3 operational product, whereas NDVI climatological data were used for the
generation of DTB AOD retrievals [25,30]. The performance of the DTB AOD over NVS, and MVS and
DVS was almost the same as DB and DT AOD, respectively, which was expected. For these surfaces,
only DB and DT AOD were considered, respectively. However, DTB AOD performance over PVS
was much better than DT AOD due to more contributions of DB. DTB AOD performance over NVS,
and MVS and DVS can thus be improved by considering DT and DB AOD, respectively [27,39]. Overall,
the DTB C6.1 AOD retrievals were better than C6 due to modifications and improvements in the
respective retrievals.
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Figure 8 shows a trend in the percentage of AOD retrievals ↔EE, RMSE, and RPME over diverse
vegetated surfaces. Over NVS (NDVI < 0.2), the statistical performance of DT C6 and C6.1 was better
than DB and DTB in terms of a larger percentage of retrievals ↔EE, and a very small RMSE, though
RPME is comparable for all retrievals. The reasonable performance of DT suggests that the surface
reflectance scheme used in the inversion works well over NVS. Over PVS (0.2 ≤ NDVI ≤ 0.3), DT C6
retrievals performed poorly compared with other retrievals for all of the statistical parameters, and this
might be due to the underestimation in the estimated surface reflectance and error in the aerosol
scheme as can be seen in Figure 7. DT performance was improved in C6.1 compared to C6, likely
due to the modified surface reflectance scheme. However, it was still worst compared with DB.

Figure 8. A trend of the percentage of retrievals ↔EE (a), RMSE (b), and RPME (c) in AOD retrievals
over diverse vegetated surfaces of the BTH region.

Over MVS (0.3 < NDVI < 0.5) and DVS (DVS, NDVI ≥ 0.5), statistical performance of DB C6
and C6.1 was better than the DTB retrievals in terms of the larger percentage of retrievals ↔EE and
a very small RPME, though RMSE was comparable with DT. Overall, the statistical performance of
DT C6 showed its worst results over PVS and MVS, which might be due to errors in the estimated
surfaces reflectance. The new modified surface reflectance scheme introduced in the DT C6.1 has likely
improved such performance. These results suggest that DT-collocated AOD were good for surfaces
with NDVI < 0.2 and DB-collocated AOD were good for surfaces with NDVI > 0.3, and that these
retrievals can be considered in the DTB combined AOD product to improve overall performance.
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5. Conclusions

The primary objective of this study is to verify and compare Terra-MODIS Collection (C6) and
C6.1 Dark-Target (DT), Deep-Blue (DB) and merged DTB AOD retrievals versus AERONET sun
photometer AOD derived over mixed urban surfaces (Beijing), suburban surfaces (XiangHe) and
hilly and vegetated surfaces (Xinglong). For this, high-quality assurance flag MODIS AOD retrievals
were obtained from 2004–2014. These retrievals were also validated and compared over diverse land
surface types, including non-vegetated surfaces (NVS, NDVI < 0.2), partially vegetated surfaces (PVS,
0.2 ≤ NDVI ≤ 0.3), moderately vegetated surfaces (MVS, 0.3 < NDVI < 0.5) and densely vegetated
surfaces (DVS, NDVI ≥ 0.5), as categorized by static values of monthly NDVI obtained from the
Terra-MODIS L3 monthly NDVI product (MOD13A3 C6). The main outcomes of this research are:

(1) DT, DB, and DTB C6 and C6.1 collocated AOD retrievals correlated well with AERONET AOD
measurements at the three designated sites.

(2) DT C6.1 collocated AOD retrievals were better than C6 due to use of modified surface reflectance
ratios, and, overall, both had a large error at Beijing.

(3) DB has more collocations than DT over Xinglong, although DT is designed to retrieve AOD over
these surfaces.

(4) DB C6 and C6.1 AOD retrievals performed equally, as no significant changes in DB C6.1 compared
to C6 were observed.

(5) The percentage of DTB-collocated AOD retrievals ↔EE increased, and the RMSE and RPME
decreased due to improvements/changes in the DT C6.1 at Beijing.

(6) At the regional scale, DB C6 and C6.1 AOD retrievals performed better than DT and DTB C6 and
C6.1 AOD.

(7) For diverse vegetated surfaces, the percentage of DT C6 and C6.1-collocated AOD was less
than 68% for MVS surfaces, where the reasonable performance of DT was expected since it was
designed and developed to retrieve accurate AOD for vegetated surfaces.

(8) DT and DB-collocated AOD retrievals performed better than each other over surfaces with NDVI
< 0.2 and NDVI > 0.2, respectively, in terms of small RMSE and a large percentage of collocated
retrievals ↔EE.

This study also concludes that DB and DT AOD retrievals should be considered for surfaces with
NDVI > 0.3 and NDVI < 0.2, respectively, in the new integrated product, to improve the quality of DTB
AOD overall.
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Abstract: In this paper, we illustrate a new, simple and complementary ground-based methodology
to retrieve the vertically resolved atmospheric precipitation intensity through a synergy between
measurements from the National Aeronautics and Space Administration (NASA) Micropulse Lidar
network (MPLNET), an analytical model solution and ground-based disdrometer measurements.
The presented results are obtained at two mid-latitude MPLNET permanent observational sites,
located respectively at NASA Goddard Space Flight Center, USA, and at the Universitat Politècnica
de Catalunya, Barcelona, Spain. The methodology is suitable to be applied to existing and/or future
lidar/ceilometer networks with the main objective of either providing near real-time (3 h latency)
rainfall intensity measurements and/or to validate satellite missions, especially for critical light
precipitation (<3 mm h−1).
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1. Introduction

Rain and precipitation fundamentally influence life on Earth. With respect to the
Earth-Atmosphere system, they play a role in pairing water and energy cycles, serving as a proxy
for latent heat in the atmosphere. In fact, precipitation, modulating the latent heat content in the
atmosphere [1], also modifies atmospheric column thermodynamics, affecting cloud lifetime [2].
Moreover, the hydrological cycle, which characterizes the continuous exchange of water in all its
three phases, below and above the earth surface, is strongly dependent on precipitation. As a result,
characterizing rainfall intensity and its variability at a global scale, is crucial not only to improving our
knowledge of the hydrological cycle, but also to reducing uncertainties of global climate change model
predictions for future environmental scenarios. Understanding rainfall accumulation paths, together
with their spatial variability, besides helping in identifying world regions subject to drought and
flooding, is of fundamental importance in reducing global climate models uncertainty to forecasting
global temperature change [3]. In this context and thanks to the technological progress in satellite
remote sensing techniques, the National Aeronautics and Space Administration (NASA) launched
jointly with the Japan Aerospace Exploration Agency (JAXA) the Tropical Rainfall Measuring Mission
(TRMM) followed by the Global Precipitation Measurement (GPM) [1]. The main objective of TRMM
missions was to monitor and study precipitation with satellite measurements in the tropics where
two-thirds of global precipitations occurs.

GPM further extended the measurement range towards the polar regions, (i.e., up to 69◦N/S).
NASA is at the forefront for retrievals for vertically resolved microphysical rain drop properties
from ground-based multi-wavelength lidar measurements [4] and their improvement through
comparison with an analytical model solution that uses disdrometer and radiosonde data as inputs [5].
Taking advantage of the experience gained in these previous studies, we develop in this paper a new
methodology to retrieve range-resolved rainfall intensity through a synergy between elastic lidar
measurements, disdrometer data and an analytical model solution. Measurements obtained with this
simple method, if implemented globally through existing or future lidar Level 2 algorithms and output
datasets, will fill a gap to help validate satellite data for light precipitation (intensity < 3 mm h−1)
for which current global climate model predictions are in disagreement [1]. Results obtained from
two mid-latitude NASA Micro Pulse Lidar NETwork (MPLNET [6]) permanent observational sites,
one located at Goddard Space Flight Center (GSFC), USA, and the other at the Universitat Politècnica
de Catalunya (UPC), Spain, are presented.

2. Materials and Methods

2.1. MPLNET Lidar Data Measurements

The ground-based lidar systems used in this study are the elastic polarization-sensitive micro
pulse lidar (P-MPL v. 4B, Sigma Space Corp., now LEICA Geosystems, Lanham, MD, USA), which are
deployed at two permanent MPLNET lidar network observational sites. The purpose of the NASA
MPLNET network [6], active since 1999, is to retrieve automatically and continuously the geometrical
and optical aerosol and cloud properties under most meteorological conditions and to the limit of
laser signal attenuation. Measurements and retrievals obtained from worldwide deployed permanent
stations are publicly available at MPLNET website [7]. Multi-year network data were previously
analyzed to assess cloud [7–10] and aerosol [2,11,12] radiative effects.

The P-MPL samples the atmosphere with a relatively high frequency (2500 Hz) using a low-energy
( 7 μJ) Nd:YAG (neodymium-doped yttrium aluminum garnet) laser at 532 nm. The P-MPL acquisition
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settings at the two sites focused upon in this study follow the NASA MPLNET temporal and spatial
specifications (60 s integration time and 75 m vertical resolution for GSFC and 60 s and 30 m for UPC).
Polarization capabilities rely on the collection of two-channel measurements (i.e., the signal measured
in the so-called ‘co-polar‘ and ‘cross-polar’ channels of the instrument, respectively denoted as Pco (z)
and Pcr (z). For reference, these channels are not to be confused with traditional linear depolarization
measurements, where co- and cross-polar channels represent those linear states with respect to the
linearly-polarized laser source (e.g., [13]). The MPL uses a nematic liquid crystal switching between
two states [14,15]. In one of them, the crystal behaves like an isotropic medium, not having an effect on
the wave propagating through it. In the other state, the crystal behaves as a quarter wave plate with
principal axes at 45◦ with respect to the polarization direction of the transmitted electric field. The total
power, P, is reconstructed as P = Pco + 2Pcr [16,17]). The signal, P, multiplied by the squared range is
the basis for retrieving all of the different Level 2 cloud and aerosol products [18,19]. Since the P-MPL
is a single wavelength lidar, however, the retrieval of the vertically-resolved microphysical and optical
aerosol properties are subject to stronger assumptions with respect to multi-wavelength lidars [20].

Among the newly available MPLNET Version 3 (V3) release products, we specifically consider
here the Level 1 V3 Cloud algorithm (beta product) [21], which automatically retrieves the cloud
base height that is used to correctly compute the precipitating drop size distribution from the ground.
The MPLNET systems used are those of the Universitat Politècnica de Catalunya (UPC), Barcelona,
Spain, (41.38N, 2.11E, 115 m a.s.l.) and of the Goddard Space Flight Center (GSFC), USA, (38.99N,
76.84W, 50 m a.s.l.).

2.2. Disdrometer

The disdrometer is an in situ measurement device designed to measure the drop size distribution
(DSD; [22]), represented as the number of drops per unit of volume and per unit of raindrop
diameter. Disdrometers can be based on different measurement principles (high-speed cameras,
Doppler effect, laser-optical, impact, etc.). Two different versions of the Parsivel laser-optical
disdrometer manufactured by OTT [23] are installed at UPC and GSFC, namely the first generation
Parsivel (Parsivel1) and the second generation Parsivel (Parsivel2), respectively. Parsivel systems were
originally developed by PM Tech Inc., now OTT Hydromet, Kempten, Germany. The instrument has a
laser diode (emitting wavelength of 780 nm) generating a horizontal flat beam. The measurement area
is nominally 48 cm2 for the first generation Parsivel and 54 cm2 for Parsivel2.

When a hydro-meteor passes through the laser beam, it produces attenuation proportional to
its size. A relationship between the laser beam occlusion by the falling particle is applied to estimate
the particle size. Parsivel instruments can measure particle diameters up to about 25 mm classifying
them in 32 size classes of different width. The instrument also estimates the hydro-meter fall velocity
by measuring the time necessary for the particle to pass through the laser beam, and thus it stores
particles in 32 × 32 matrices. The disdrometers high temporal resolution (60 s for this work) permits
study in great detail of physical precipitation variability.

2.3. The Analytical Model Solution

In its original version of the subject model [24], the analytical model solution, based on molecular
diffusivity of water vapor in air, permits calculating the evaporation power of a generic atmospheric
layer in stationary thermodynamic conditions through the variable D∗, which is the initial diameter of
a raindrop that evaporates completely after traveling a certain distance in the incident atmospheric
layer. Conversely, for our purposes, instead of D∗, we reconstruct backwards the vertically-resolved
profile of the raindrop diameter, starting from D0, measured at the surface by the disdrometer, up to
the cloud base at the radiosonding (or the atmospheric model) vertical resolution. The analytical model
solution has been previously validated in [5].

In more detail, if the atmosphere is not saturated with respect to the water vapor, a raindrop
evaporates through diffusion, which is assumed to be proportional to the water vapor gradient
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between raindrop surface and the environment [24]. The raindrop mass changes with time t following
Equation (1):

dm
dt

= 4πrDυ fυΔρυ, (1)

where m is the mass of the raindrop having radius r; and Dυ is the water vapor diffusivity in air, fυ

is the vapor diffusion ventilation coefficient and Δρυ is the gradient of water vapor density between
raindrop surface and the atmosphere. fυ can be expressed through υ, the air kinematic viscosity,
the diffusivity Dυ, raindrop terminal fall velocity V and raindrop diameter D [24]:

fν = 0.78 + 0.308
( υ

Dυ

) 1
3
(VD

υ

) 1
2
. (2)

In turn, Dυ and υ are depending on atmosphere thermodynamics as pressure and temperature.
The water vapor density difference Δρυ can be determined from the atmospheric sounding and
raindrop temperature, which is determined from heat balance raindrop equation:

L
dm
dt

= 4πrK fhΔT, (3)

where L is the water vaporization latent heat, K is the air thermal conductivity, fh is the heat ventilation
coefficient, and ΔT the temperature difference between the environment and the raindrop. As stated
in [24], the error assuming equality between the diffusion ventilation coefficient for vapor and heat is
small and justified by the other approximations. Equation (1) can be rewritten as:

VD
dD
dh

=
4

ρw
Dυ fυΔρυ, (4)

where h is the vertical coordinate measured from a certain reference level downward, ρw is the
water density. Ventilation coefficient and diffusivity show a very low variability with height. It is then
possible to represent them by their midlevel values in the considered layer as Dυm and fυm. Using those
values and representing the terminal fall velocity as V = Vm

( ρm
ρ

)0.4 (m subscript indicates density and
velocity midlevel values) [24], Equation (4) becomes:

VmDdD
fυm

=
(ρm

ρ

)0.4 4
ρw

DυmΔρυdh. (5)

In Equation (5), the right side is only height h dependent, while the left side is a function of
raindrop diameter D only. Likewise, Δρυ is just depending on h and the atmospheric thermodynamics.
Following the approach of Li [24], the left side integral of Equation (5) can be fit using a quadratic
formula as:

F(D) =

D∫
0

VmD
fυm

dD 
 c1D + c2D2, (6)

where c1 and c2 are the best-fit values. As an example, at 800 hPA (midlevel point) corresponding to
a temperature T = 283 K, c1 = 2.008 cm2 s−1 and c2 = 30.146 cm s−1. The two coefficients should be
calculated on a case-by-case basis depending on midlevel point and temperature. Our methodology
computes the DSD from surface (measured by the disdrometer) up to cloud base at the same spatial
resolution of the sounding or a complementary atmospheric model. If a generic raindrop exhibits
a diameter D0 (measured by the disdrometer) at the surface, at the top of the first considered layer
(at height h1), its diameter will be D1 . In general, if a raindrop exhibits a diameter of D1 at range h1

(bottom of the layer) through the analytical model solution, it is possible to compute the value of the
raindrop diameter D2 at height h2 (top of the layer) as:
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(c1D1 + c2D2
1)− (c1D2 + c2D2

2) = −
h2∫

h1

(ρm

ρ

)0.4 4
ρw

DυmΔρυdh ≡ E(h1, h2). (7)

Again, the function E(h1, h2) defined as the integral of the right side of Equation (7) is fully
determined by the vertical distribution of the thermodynamic variables in the considered layer
(i.e., temperature, pressure and water vapor). Consequently, starting from raindrop diameter
measurements at the surface, it is possible to estimate the raindrop diameter profile up to the cloud
base just knowing the atmosphere thermodynamics. The cloud base height is retrieved using the
operational MPLNET lidar product [21]. If the sounding data are unavailable or too far from the
measurement site, the atmospheric thermodynamics variables can be obtained from NASA Goddard
Modeling and Assimilation Office, version 5.9.1 reanalysis; GEOS-5 [21]), available every three hours
and collocated at each MPLNET station.

For each range bin, at the radiosonde or GEOS-5 model resolution, the atmosphere is assumed to
be steady. The primary limitation of the analytical model solution is that it does not take into account
processes that affect raindrop diameter, such as coalescence and collision. For this reason, this method
is more suitable for light intensity rainfall, where those processes are not significant. Moreover,
since the methodology further depends on lidar/ceilometer measurements, the rain intensity will
affect the instrument signal-to-noise Ratio (SNR). Thus, the lidar/ceilometer signal will only be
available up to the cloud base in light intensity rainfall given the potential limits of signal attenuation
in heavier showers.

3. Results and Discussion

3.1. Seasonal Differences at UPC

The UPC permanent observational site is located on the Remote Sensing Lab (RSlab) building
in Barcelona, Spain. The disdrometer is deployed 600 m away from the lidar at the meteorological
observatory of the Applied Physics Department of the University of Barcelona. For this kind of
application, such a short distance is not relevant in lighter rainfall and both instruments can be assumed
as co-located. We analyzed the variability in seasonal rainfall intensity over 2016 where disdrometer
and co-located MPLNET observations were simultaneously available. The largest rainfall events were
found during the spring (March–April–May; MAM; 2801 min) and fall (September–October–November;
SON, 1278 min) seasons. Rainfall intensity was analyzed at three different levels: 300 m, 800 m and
1300 m above ground level (agl).

During spring (Figure 1a), the peak of the distribution is shifted towards higher rainfall intensities
(around 1.5 mm h−1), while, in fall (Figure 1b), the bulk of rainfall intensity is around 0.6 mm h−1.
This seasonal difference may be explained with different rain processes taking place (i.e., convective vs.
stratiform events). The plots at three different quotes show similar trends, but the highest occurrence
peaks of the rainfall intensity probability density function are shifted with respect to the altitude:
at 300 m the highest peak is centered at 1.58 mm h−1, at 800 m 1.99 mm h−1 and 2.51 mm h−1 at 1300 m
(Figure 1a). Figure 1b shows less pronounced shift during SON: the highest occurrence peaks of rainfall
intensity is 0.50 mm h−1 at 300 m while there is basically no difference at 800 m and 1300 m with
0.63 mm h−1. Due to the lower sample size measurements, the same analysis has not been performed
at GSFC.
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(a) Probability Density Function for rainfall events
detected on 2016, Spring (March, April, May; MAM)

(b) Probability Density Function for rainfall
events detected on 2016, Fall (September, October,
November; SON)

Figure 1. Probability Distribution Function (PDF) for rainfall intensities at three vertical levels
(300 m, 800 m, 1300 m) during Spring (a) and Fall (b) 2016 at the MPLNET Barcelona permanent
observation station.

3.2. Case Study Analysis

Two case studies of the analytical model application at UPC and GSFC are presented and discussed
in terms of vertically-resolved precipitation temporal evolution.

3.2.1. Retrieval of DSD profiles at UPC

On 4 April 2016, Figure 2a shows the composite plot of the depolarized channel signal,
where precipitation contours are visible at around 9:00 a.m. UT and from 4:00 p.m. UT to 7:00
p.m. UT. Figure 2b shows the V3 L1 cloud algorithm cloud base height retrieval used in the inversion.
Figure 2c depicts rainfall vertical intensity from 7:40 p.m. UT to 7:50 p.m. UT. Combining local
radiosonde data (not showed here) and lidar data, we can state that rain originates from melting ice
(cold rain process), with the freezing level detected at 2250 m AGL, just a few tens of meters below the
cloud base. This is also confirmed by the GEOS-5 model (Figure 2a), where 0 ◦C isotherm is in very
close agreement with radiosonding. In this rainfall event, the steepest gradient of intensity is 0.03 mm
h−1 km−1, which is much smaller than the GSFC case study (see Section 3.2.2).
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(a) Composite MPLNET V3 cross-polar channel with superimposed GEOS-5 isotherms

(b) MPLNET V3 L1 cloud base height retrieval product

(c) Rainfall Intensity on 04 April 2016

Figure 2. Vertically-resolved rainfall intensity computations at different measurement times for
UPC MPLNET station on 4 April 2016. (a) MPL cross-polar channel signal; (b) cloud base height
automatically retrieved by V3 L1 Cloud algorithm; (c) vertically-resolved rainfall intensities, computed
with the analytical model solution using disdrometer data and V3 L1 cloud base height retrieval,
from 7:40 p.m. UT to 7:50 p.m. UT.

3.2.2. Retrieval of DSD profiles at GSFC

GSFC disdrometer and co-located lidar measurements were analyzed from November 2015 to
April 2016. The vertical profiles of rainfall intensity, after applying the analytical model solution from
5:27 p.m. UT to 5:54 p.m. UT on 22 April 2016, are shown Figure 3. Depicted in Figure 3a is the

225



Remote Sens. 2018, 10, 1102

composite plot of the depolarization channel signal obtained from the lidar on 22 April 2016. The core
of the precipitation is clearly visible at around 5:45 p.m. UT. Figure 3b shows the cloud base height
retrieval from V3 L1 MPLNET cloud algorithm. In Figure 3c, we can observe that rainfall intensity is
weak, but increasing with time. The steepest gradient with respect to altitude is recorded at 5:47 p.m.
UT with 0.22 mm h−1 km−1.

(a) Composite MPLNET V3 cross-polar channel with superimposed GEOS-5 isotherms

(b) MPLNET V3 L1 cloud algorithm cloud base retrieval product

(c) Rainfall Intensity on 22 April 2016

Figure 3. Vertically-resolved rainfall intensity computations at different measurement times for
the GSFC MPLNET station on 22 April 2016. (a) MPL cross-polar channel signal; (b) cloud base
height automatically retrieved by V3 L1 Cloud algorithm; (c) vertically-resolved rainfall intensities,
computed with the analytical model solution using disdrometer data and V3 L1 cloud base height
retrieval, from 5:27 p.m. UT to 5:54 p.m. UT.
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3.3. Evaporation Characteristics at UPC

In order to generalize the rain evaporation properties, UPC data measurements were analyzed as
a function of rain parameter differences (i.e., R, the rain rate and Z, an equivalent radar reflectivity)
between the cloud base and the ground. This indicates the impact of evaporation on rain integral
parameters as R and Z. Figure 4a reports the analysis of R. The evaporation results are more marked
(greater ΔR) for higher cloud base heights and increasing R values at the ground. For relatively
high cloud bases (higher than 3000 m), the R difference with the ground reaches values as high as
6 mm h−1. For lower R values and low cloud bases, ΔR is roughly constant, never exceeding 1 mm h−1,
regardless of the cloud base height. For lower cloud base heights (below 1000 m), ΔR is rain intensity
insensitive at the ground and does not exceed 0.6–0.8 mm h−1. For cloud base height over 2000 m,
rainfall rate relative difference with respect to the ground exceeds 100%. Figure 4b shows Z properties,
calculated as the sixth moment of the DSD. In contrast with R, the plot highlights that ΔZ is dependent
only on the cloud base height, with a decrease of a factor two (ΔZ >= 3 dB) between the cloud base and
the ground (cloud base higher than 2000 m). This can be explained, from a microphysical point of view,
because of the small drop sizes collected in the analyzed data. That is, the lower the rain intensity,
the smaller the drop diameters composing the DSD.

(a) Trend of ΔR as function of R at ground and cloud
base height

(b) Trend of ΔZ as function of R at ground and cloud
base height

Figure 4. Trend of the difference between the cloud base and the ground of the rain parameters R and
Z as a function of parameter values measured at ground and at cloud base height.

4. Conclusions

We introduce a methodology for computing vertically-resolved rain parameters (i.e.,
rain intensity) through a synergy between ground-based lidar, in situ disdrometer measurements
and an analytical model solution paired with thermodynamic variables measured by atmospheric
radiosondes (if unavailable, atmosphere thermodynamic variables can be inferred from a NASA
GEOS-5 model). The methodology, applied at two permanent mid-latitude NASA Micro Pulse Lidar
Network datasets, the Goddard Space Flight Center (GSFC) and Universitat Politècnica de Catalunya
in Barcelona, Spain (UPC), is particularly suited for measurements of low intensity precipitation
(rainfall rate, R, <3 mm h−1). If implemented operationally in the network, the methodology can
generate near real-time rainfall intensity as a standard Level 2 product. Low-intensity precipitation
measurements are crucial for better understanding the hydrological cycle and for validating satellite
missions, like the Global Precipitation Mission experiment (GPM) [1].

The analysis of a complete year (2016) of precipitation at UPC (4079 min of data) permitted
assessing rainfall intensity seasonal variability for different cloud base altitude ranges. Slightly different
rain intensity distributions were observed during spring (MAM) and fall (SON), with a higher

227



Remote Sens. 2018, 10, 1102

occurrence of a relatively high rain rate during spring (1.5 vs. 0.6 mm h−1 mean R), and a lower
rainfall intensity associated with lower altitudes. This implies rainfall evaporation with consequent
atmospheric column cooling. Yearly analysis of UPC MPLNET data shows that the effect of the
evaporation on the rainfall rate has different impacts, depending on both rain intensity at ground and
cloud base height. On the other hand, the radar reflectivity shows a dependence only on the cloud
base height. The comparison between UPC and GSFC indicates that, for approximately the same
rain intensity at the ground, the rain intensity gradients observed in GSFC (0.22 mm h−1 km−1) are
larger than the ones observed at UPC (0.03 mm h−1 km−1). This result shows that, for this case study,
the GSFC atmosphere is in general drier with respect to UPC.

Both analyzed case studies demonstrate the analytical model capability for reconstructing DSD
from ground to cloud base. This also permits computing all of the significant distribution moments
(i.e., radar reflectivity, liquid water content, mean mass diameter, etc.) besides rain reflectivity.
Future research will focus on assessing light precipitation inter-annual intensity variability from
long-term (>15 years) MPLNET stations, especially in polluted regions, to quantifying for the first time
the aerosol indirect effects on drizzle reduction/suppression.
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