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Evolutionary algorithms and metaheuristics are widely used to provide efficient and effective
approximate solutions to computationally difficult optimization problems. Successful early applications
of the evolutionary computational approach can be found in the field of numerical optimization,
while they have now become pervasive in applications for planning, scheduling, transportation and
logistics, vehicle routing, packing problems, etc. With the widespread use of intelligent systems in
recent years, evolutionary algorithms have been applied, beyond classical optimization problems,
as components of intelligent systems for supporting tasks and decisions in the fields of machine vision,
natural language processing, parameter optimization for neural networks, and feature selection
in machine learning systems. Moreover, they are also applied in areas like complex network
dynamics, evolution and trend detection in social networks, emergent behavior in multi-agent
systems, and adaptive evolutionary user interfaces to mention a few. In these systems, the evolutionary
components are integrated into the overall architecture and they provide services to the specific
algorithmic solutions. This paper selection aims to provide a broad view of the role of evolutionary
algorithms and metaheuristics in artificial intelligent systems.

A first relevant issue discussed in the volume is the role of multi-objective meta-optimization
of evolutionary algorithms (EA) in continuous domains. The challenging tasks of EA parameter
tuning are the many different details that affect EA performance, such as the properties of the
fitness function as well as time and computational constraints. EA meta-optimization methods in
which a metaheuristic is used to tune the parameters of another (lower-level) metaheuristic, which
optimizes a given target function, most often rely on the optimization of a single property of the
lower-level method. A multi-objective genetic algorithm can be used to tune an EA, not only to find
good parameter sets considering more objectives at the same time but also to derive generalizable
results that can provide guidelines for designing EA-based applications. In a general framework for
multi-objective meta-optimization, it is necessary to show that “going multi-objective” allows one to
generate configurations, besides optimally fitting an EA.

A significant example of this approach is the application of differential evolution-based methods
for the optimization of neural networks (NN) structure and NN parameter optimization. Such an
adaptive differential evolution system can be seen as an optimizer which applies mutation and crossover
operators to vary the structure of the neural network according to per layer strategies. Self-adaptive
variants of differential evolution algorithms tune their parameters on the go by learning from the
search history. Adaptive differential evolution with an optional external archive and self-adaptive
differential evolution are well-known self-adaptive versions of differential evolution (DE). They are
optimization algorithms based on unconstrained search.

Another relevant general area of evolutionary algorithms is represented by the Particle Swarm
Optimization (PSO), which is based on the concept of swarm of particles, i.e., individual solutions
and computational entities. A swarm extends the concept of a set of solutions of the early classical
genetic algorithms to a set of related, coordinated, and interacting search threads. On this basis, it is
interesting to explore the many variants of PSO, like, for instance, the memetic variant. The memetic
evolution of local search operators can be introduced in PSO continuous/discrete hybrid search spaces.
The evolution of local search operators overcome the rigidity of uniform local search strategies.

Mathematics 2020, 8, 1733; doi:10.3390/math8101733 www.mdpi.com/journal/mathematics1
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The memes provide each particle of a PSO scheme with the ability to adapt its exploration dynamics
to the local characteristics of the search space landscape. A further step is to apply a co-evolving
scheme to PSO. Co-evolving memetic PSO can evolve both the solutions and their associated memes,
i.e., the local search operators.

PSO can be straightforwardly adapted to multi-objective optimization, an innovative contribution,
explore methods for obtaining high convergence and uniform distributions, which remains a major
challenge in most metaheuristic multi-objective optimization problems. The selected article proposes
a novel multi-objective PSO algorithm based on the Gaussian mutation and an improved learning
strategy to improve the uniformity of external archives and current populations.

A common trend of an evolutionary algorithm scenario is the constantly increasing number of
new proposals of nature-inspired metaheuristics. These proposed approaches usually take inspiration
from groups of distributed agents existing in nature, i.e., ants, flock of birds, bees, etc., which apply
simple local rules, but globally result in a complex emerging behavior which optimizes some specific
feature, i.e., amount of found food, shortest path, the change of surviving to predators, etc. We found
it to be interesting to propose, among the selected articles, an application to Internet of Things,
in particular, the optimal task allocation problem in wireless sensor networks. The nature-inspired
evolutionary algorithm proposed for wireless sensor networks is the recently developed Social Network
Optimization, which is a significant example of using behavioral rules of social network users for
obtaining an emerging optimization behavior.

Acknowledgments: This work has been partially supported by the Italian Ministry of Research under PRIN
Project “PHRAME” Grant n.20178XXKFY.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Properly configuring Evolutionary Algorithms (EAs) is a challenging task made difficult by
many different details that affect EAs’ performance, such as the properties of the fitness function,
time and computational constraints, and many others. EAs’ meta-optimization methods, in which a
metaheuristic is used to tune the parameters of another (lower-level) metaheuristic which optimizes
a given target function, most often rely on the optimization of a single property of the lower-level
method. In this paper, we show that by using a multi-objective genetic algorithm to tune an EA, it is
possible not only to find good parameter sets considering more objectives at the same time but also
to derive generalizable results which can provide guidelines for designing EA-based applications.
In particular, we present a general framework for multi-objective meta-optimization, to show that
“going multi-objective” allows one to generate configurations that, besides optimally fitting an EA to
a given problem, also perform well on previously unseen ones.

Keywords: evolutionary algorithms; multi-objective optimization; parameter puning; parameter
analysis; particle swarm optimization; differential evolution; global continuous optimization

1. Introduction

This paper investigates Evolutionary Algorithms (EAs) tuning from a multi-objective perspective.
In particular, a set of experiments exemplify some of the relevant additional hints that a general
multi-objective EA-tuning (Meta-EA) environment can provide, regarding the impact of EAs’
parameters on EAs’ performance, with respect to the single-objective EA-tuning environment of
which it is a very simple extension.

Evolutionary Algorithms [1] have been very successful in solving hard, multi-modal,
multi-dimensional problems in many different tasks. Nevertheless, configuring EAs is not simple
and implies critical decisions that are taken based, as summarized below, on a number of factors,
such as: (i) the nature of the problem(s) under consideration, (ii) the problem’s constraints, such as
the restrictions imposed by computation time requirements, (iii) an algorithm’s ability to generalize
results over different problems, and (iv) the quality indices used to assess its performance.

Problem Features

When dealing with black-box real-world problems it is not always easy to identify the
mathematical and computational properties of the corresponding fitness functions (such as modality,
ruggedness, isotropy of the fitness landscape, see [2]). Because of this, EAs are often applied acritically,
using “standard” parameter settings which work reasonably on most problems but most often lead to
sub-optimal solutions.

Mathematics 2019, 7, 232; doi:10.3390/math7030232 www.mdpi.com/journal/mathematics3
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Generalization

An algorithm that effectively optimizes a certain function should optimize as effectively functions
characterized by the same computational properties. An interesting study on this issue is the
investigation of “algorithm footprints” [3].

Some configurations of EAs, among which “standard” settings are usually comprised, can reach
similar results on many problems, while others may exhibit performance characterized by a larger
variability. While it is obviously important to find a good parameter set for a specific EA dealing
with a specific problem, it is even more important to understand how much changing it can affect the
performance of the EA.

Constraints and Quality Indices

Comparing algorithms (or different instances of the same algorithm) requires a precise definition
of the conditions under which the comparison is made. As will be shown later in the plots Q10K and
Q100K in Figure 7 (top left), convergence to a good solution can occur with very different modalities.
Some parameter settings may lead to fast convergence to a sub-optimal solution, while others may
need many more fitness evaluations to converge, but lead to better solutions. In several real-world
applications it is often sufficient to reach a point which is “close enough” to the global optimum;
in such cases, an EA that is consistently able to reach good sub-optimal results timely is to be preferred
to slower, although more precise, algorithms. Instead, in problems with weaker time constraints, an EA
that keeps refining the solution over time, even very slowly, is usually preferable.

The previous considerations indicate that comparing different algorithms is very difficult because,
for the comparison to be fair, each algorithm should be used “at its best” for the given problem.
In fact, there are many examples in the literature where the effort spent by the authors on tuning and
optimizing the method they propose is much larger than the effort spent on tuning the ones to which
it is compared. This may easily lead to biased interpretations of the results and to wrong conclusions.

The importance of methods (usually termed Meta-EAs) that tune EAs’ parameters to optimize their
performance has been highlighted since 1978 [4]. However, mainly due to the relevant computational
effort they require, Meta-EAs and other parameter tuning techniques have become a mainstream
research topic only recently.

We are aware that using as Meta-EA an algorithm whose behavior, as well, depends on its setup,
would imply that the Meta-EA itself should undergo parameter tuning. There are obvious practical
reasons related to the method’s computational burden for not doing so. As well, it can be argued that
if the application of a Meta-EA can effectively lead to solutions that are closer to the global optimum
for the problem at hand than those found by a standard setting of the algorithm that is being tuned,
then, even supposing one uses several optimization meta-levels, the improvement margins for each
higher-level Meta-EA become smaller and smaller with the level. This intuitively implies that the
variability of the results depending on the higher-level Meta-EAs parameter settings also becomes
smaller and smaller with the level. Therefore, even if, most probably, better settings of the Meta-EA
could further improve the optimization performance, we consider that a “standard” setting of the
Meta-EA is generally enough to achieve some relevant performance improvement with respect to a
random setting.

In [5], we proposed SEPaT (Simple Evolutionary Parameter Tuning), a single-objective Meta-EA
in which GPU-based versions of Differential Evolution (DE, [6]) and Particle Swarm Optimization
(PSO, [7]) were used to tune PSO on some benchmark functions, obtaining parameter sets that yielded
results comparable with the state of the art and better than “standard” or manual settings.

Even if results were good, the approach was mainly practical, aimed at providing one set of good
parameters, but no hints about their generality or about the reasons why they had been selected. One of
the main limitations of the approach was related to its performing a single-objective optimization,
which prevented it from considering other critical goals, such as generalization, besides the obvious
one to optimize an EA’s performance on a given problem.
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In this paper, we go far beyond such results, investigating what additional hints a multi-objective
approach can provide. To do so, we use a very general framework, which we called EMOPaT
(Evolutionary Multi-Objective Parameter Tuning), that was described in [8]. EMOPaT uses the
well-known Multi-Objective Evolutionary Algorithm (MOEA) Non-dominated Sorting Genetic
Algorithm (NSGA-II, [9]) to automatically find good parameter sets for EAs.

The goal of this paper is not proposing EMOPaT as a reference environment. Instead, we use
it, as virtually the simplest possible multi-objective derivation of SEPaT, to focus on some of the
many additional hints that a multi-objective approach to EA tuning can provide with respect to a
single-objective one. We are well conscious that more sophisticated and possibly better performing
environments aimed at the same goal can be designed. SEPaT and EMOPaT have been developed with
no intent to advance the state of the art of meta-optimization algorithms but as generic frameworks,
with as few specific features as possible, aimed at studying EA meta-optimization. Consistently with
this principle, within EMOPaT, we use NSGA-II as the multi-objective algorithm tuner, since it is
possibly the most widely available, generally well-performing and easy to implement multi-objective
stochastic optimization algorithm. Indeed, NSGA-II can be considered a natural extension of a
single-objective genetic algorithm (GA) to multi-objective optimization. As well, we chose to test
EMOPaT in tuning PSO and DE for no other reasons than the easy availability and good computational
efficiency of these algorithms. EMOPaT is a general environment and can be used to tune virtually any
other EA or metaheuristic.

EMOPaT is not only aimed at finding parameter sets that achieve good results considering
the nature of the problems, the quality indices and, more in general, the conditions under
which the EA is tuned. It allows one to extract information about the parameters’ semantics
and the way they affect the algorithm by analyzing the Pareto fronts approximated by the
solutions obtained by NSGA-II. A similar strategy has been presented by [10] under the name of
innovization(innovation through optimization).

As well, we show that EMOPaT can evolve parameter sets that let an algorithm perform well not
only on the problem(s) on which it has been tuned, but also on others. Section 2 briefly introduces the
three EAs used in our experiments, Section 3 reviews the methods that inspired our work, and Section 4
describes EMOPaT. In Section 5 we first use EMOPaT to find good parameter sets for optimizing the
same function under different conditions: doing so, we show that the analysis of EMOPaT’s results can
clarify the role of EAs’ parameters and study EMOPaT’s generalization abilities; finally, EMOPaT is
used to optimize seven benchmark functions and generalize its results to previously unseen functions.
Section 6 summarizes all results and suggests possible future extensions of this work.

Additionally, in a separate appendix, we demonstrate that EMOPaT can be considered an
extension of SEPaT and has equivalent performance in solving single-objective problems, as well as
assessing its correct behavior by considering some controlled situations, on which we show it to be
able to perform tuning as expected.

2. Background

2.1. Differential Evolution

In every generation of DE, each individual in the population acts as a parent vector for which
a donor vector �Di is created. A donor vector is generated by combining three random and distinct
individuals �Xr1, �Xr2 and �Xr3 according to this simple mutation equation:

�Di = �Xr1 + F · ( �Xr2 − �Xr3) (1)

where F (scale factor) is usually in the interval [0.4, 1]. Several different mutation strategies have been
applied to DE; in our work, along with the random mutation reported above, we consider best and
target-to-best (or TTB) mutation strategies, whose definitions are, respectively:

5
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�Di = �Xbest + F · ( �Xr1 − �Xr2) (2)

�Di = �Xi + F · ( �Xbest − �Xi) + F · ( �Xr1 − �Xr2) (3)

After mutation, every parent-donor pair generates a child (�Ti), called trial vector, by means of
a crossover operation. Two kinds of crossover are usually employed in DE: binomial and exponential
(see [11] for more details). Both crossover strategies depend on the crossover rate CR. The newly
generated individual �Ti is evaluated by comparing its fitness to its parent’s. The better individual
survives and will be part of the next generation.

2.2. Particle Swarm Optimization

In PSO ([7]), a set of particles moves within the search space, according to these equations,
that describe particle i’s velocity and position:

�vi(t) = w · �vi(t− 1) + c1 · rand() · ( �BPi − �Pi(t− 1)) + c2 · rand() · ( �BGPi − �Pi(t− 1)) (4)

�Pi(t) = �Pi(t− 1) + �vi(t) (5)

where c1, c2, and w (inertia factor) are real-valued constants, rand() returns random values uniformly
distributed in [0, 1], �BPi is the best-fitness position visited so far by the particle, and �BGPi the best-fitness
position visited so far by any individual in the particle’s neighborhood, that can comprise the entire
swarm or only a subset. In this work, we consider three of the most commonly used neighborhood
topologies (see Figure 1).

Figure 1. The three PSO topologies used in this work: global, ring, and star.

2.3. NSGA-II

The NSGA-II algorithm is basically a classical GA in which selection is based on the so-called
non-dominated sorting. In case two individuals have the same rank, the one with the greater crowding
distance is selected. This distance can take into consideration the fitness values or the encoding of the
individuals, to increase the diversity of the results or of the population, respectively. In this work, NSGA-II
crossover and mutation rates have been set as suggested in [9], while we have set the population size and
the number of generations “manually”, based on the complexity of the problem at hand.

3. Related Work

The importance of parameter tuning has been frequently addressed in the last years, not only
in theoretical or review papers such as [12] but also in papers with extensive experimental evidence
which provide a critical assessment of such methods. In [13], while recognizing the importance of
finding a good set of parameters, the authors even suggest that using approaches to algorithm tuning
that are computationally demanding may be almost useless, since a relatively limited random search
in the algorithm parameter space can often offer good results.

Meta-optimization algorithms can be grouped into two main classes:

6
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• Parameter tuning: the parameters are chosen offline and their values do not change during
evolution, which is the case of interest for this paper;

• Parameter control [14]: the parameters may vary during evolution, according to a strategy that
depends on the results that are being achieved. These changes are usually driven either by fitness
improvement (or by its lack) or by properties of the evolving population, like diversity or entropy.

Along with Meta-EAs, several methods which do not strictly belong to that class but use
similar paradigms have been proposed: one of the most successful is Relevance Estimation and
Value Calibration (REVAC) by [15], a method inspired by the Estimation of Distribution Algorithm
(EDA, [16]) that was able ([17]) to find parameter sets that improved the performance of the winner of
the competition on the CEC 2005 test-suite [18]. In [19], PSO tuned itself to optimize neural network
training; Reference [20] used a simple metaheuristic, called Local Unimodal Sampling, to tune DE
and PSO, obtaining good performance while discovering unexpectedly good parameter settings.
Reference [21] proposed ParamILS, whose local search starts from a default parameter configuration
which is then iteratively improved by modifying one parameter at a time. Reference [22] used a
Meta-EA as an optimization method in a massively parallel system to generate on-the-fly optimizers
that directly solved the problem under consideration. In [23], the authors propose a self-adaptive DE
for feature selection.

Other approaches to parameter tuning include model-based methods like Sequential Parameter
Optimization (SPO) proposed by [24] and racing algorithms [25,26]: they generate a population of
possible configurations based on a particular distribution; members of this population are then tested
and possibly discarded as soon as a statistical test shows that there is at least another individual which
outclasses them; these operations are repeated until a set of good configurations is obtained. A recent
trend approaches parameter tuning as a two-level optimization problem [27,28].

The first multi-objective Meta-EA was proposed in [29] where NSGA-II was used to optimize
speed and precision of four different algorithms. However, that work took into consideration only
one parameter at a time, so the approach described therein cannot be considered a full parameter
set optimization algorithm. A similar method has been proposed by [30]. The authors describe a
variation of a MOEA called Multi-Function Evolutionary Tuning Algorithm (M-FETA), in which the
performance of a GA on two different functions represent the different goals that the MOEA must
optimize; the final goal is to discriminate algorithms that perform well on a single function from those
that do on more than one, respectively called “specialists” and “generalists”, following the terminology
introduced by [31].

In [32], the authors propose an interesting technique, aimed at identifying the best parameter
settings for different possible computational budgets (i.e., number of fitness evaluations) up to a
maximum. This is obtained using a MOEA in which the fitness of an individual is a vector whose
components are the fitness values obtained in every generation. In this way, it is possible to find a
family of parameter sets which obtain the best results with different computational budgets.

A comprehensive review of Meta-EAs can be found in [33].
More recently, MO-ParamILS has been proposed as a multi-objective extension of the

state-of-the-art single-objective algorithm configuration framework ParamILS [34]. This automatic
algorithm produces good results on several challenging bi-objective algorithm configuration scenarios.
In [35], MO-ParamILS is used to automatically configure a multi-objective optimization algorithm in a
multi-objective fashion.

4. EMOPaT, a General Framework for Multi-Objective Meta-Optimization

This section describes EMOPaT’s main structure and operation, introduced in [5] as
a straightforward multi-objective extension of the corresponding single-objective general
framework SEPaT.

SEPaT and EMOPaT share the same very general scheme, presented in Figure 2.

7
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Figure 2. Scheme of SEPaT/EMOPaT. The lower part represents a classical EA. In the meta-optimization
process, each individual of Tuner-EA represents a set of Parameters. For each set, the corresponding
instance of the lower-level EA (LL-EA) is run N times to optimize the objective function(s).
Quality indices (one for SEPaT, more than one for EMOPaT) are values that provide a global evaluation
of the results obtained by LL-EA in these runs.

The block in the lower part of the image represents a traditional optimization problem in which
an EA, referred to as Lower-Level EA (LL-EA) optimizes one or more objective functions. The Tuner
EA operates within the search space of the parameters of the LL-EA. This means that the tuner evolves
a population of possible parameter sets of LL-EA parameters. Each parameter set corresponds to
an instance of LL-EA that is tested N times on LL-EA’s objective function(s) (from now on, we will
consider “configuration” and “parameter set” as equivalent terms). The N results are synthesized into
one or more “Quality Indices” that represent the objective function(s) of the tuner.

The difference between SEPaT and EMOPaT therefore stands in the different number of
quality indices. In SEPaT, any single-objective EA can be used as Tuner EA, while EMOPaT requires a
multi-objective EA. In the case described in this paper, we used NSGA-II.

It should be noticed that as evidenced in the figure, the tuning of the (usually, but not necessarily,
single-objective) LL-EA may be aimed at finding the best “generalist” setting for optimizing any
number of functions. For instance, in [5] PSO and DE were used as tuners in SEPaT to optimize the
behavior of PSO over 8 objective functions. In that case, an EA configuration was considered better than
another if it obtained better results over the majority of the functions. The quality index, in this case,
was therefore a score computed according to a tournament-like comparison among the individuals.

In [5], the parameter set found by SEPaT was compared to the set found using irace [25,36] and to
“standard” parameters, with results similar to irace and better than the “standard” settings.

On the one hand, using this approach, besides allowing one to synthesize the results as a single
score, brings the advantage that the functions for which the LL-EAs are tuned do not need to assume
values within comparable ranges, avoiding the need for normalization. On the other hand, being based
on a comparison may sometimes limit the effectiveness of this approach. In fact, a configuration may
win even if it cannot obtain good results on some of the functions, since it is required only to perform
better than the others on the majority of them. Therefore, the resulting parameter sets, despite being
good on average, may not be as good on all functions. This is one of the limitations that EMOPaT tries
to overcome (see Section 5.2).

The multiple objectives taken into consideration by EMOPaT may differ depending on the function
under consideration, the quality index considered, or the constraints applied, such as the number
of evaluations, time constraints or others. The output of the tuning process is not a single solution
as in SEPaT, but an entire set of non-dominated EA configurations, i.e., ideally, a sampling of the
Pareto front for the objectives under consideration (see Figure 6 for two examples of Pareto fronts,
highlighted in yellow). This allows a developer to analyze the parameters’ selection strategy more
in depth. We think that this approach can be particularly relevant, in light of the conclusions drawn
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in [37]: according to the outcome of the experiments, even if the Meta-EAs they considered performed
better than SPO and REVAC, the authors pointed out that they were unable to provide insights about
EA parameters.

Parameter Representation

Since the tuner algorithms we consider are real-valued optimization methods, we need a proper
representation of the nominal parameters of the LL-EA, i.e., the parameters that encode choices among
a limited set of options. We opted for representing each nominal parameter as a real-valued vector
with as many elements (genes) as the options available: the actual choice is the one that corresponds to
the gene with the largest value. For instance, if the parameter to optimize is PSO topology, we can
choose between ring, star and global topology. Each individual in the tuner represents this setting
as a three-dimensional vector whose largest element determines the topology used in the LL-EA
configuration. These particular genes are mutated and crossed-over following NSGA-II rules just like
any other. Figure 3 shows how DE and PSO configurations are encoded.

Figure 3. Encoding of DE (left) and PSO (right) configurations in a tuner EA.

5. Experimental Evaluation

In this section, we discuss the results of some experiments in which we optimize different
performance criteria that can assess the effectiveness of an EA in solving a given optimization task.
We take into consideration “classical” criteria pairs, such as solution quality vs. convergence speed,
as well as experiments in which the different criteria are represented by different constraints on the
available resources (e.g., different fitness evaluation budgets).

To do so, we use DE and PSO as LL-EAs and NSGA-II as EMOPaT’s Tuner-EA. Table 1 shows the
ranges within which we let PSO and DE parameters change in our tests. During the execution of the
Tuner-EA, all values are actually normalized in the range [0, 1]; a linear scale transformation is then
performed whenever a LL-EA is instantiated.

Table 1. Search ranges for the DE and PSO parameters. We chose ranges that are wider than
those usually considered in the literature, to allow SEPaT and EMOPaT to “think outside the box”,
and possibly find unusual parameter sets.

Differential Evolution Particle Swarm Optimization

Population Size [4, 300] Population Size [4, 300]
Crossover Rate (CR) [0.0, 1.0] Inertia Factor (w) [−0.5, 1.5]

Scale Factor (F) [0.0, 2.0] c2 [−0.5, 4.0]
Crossover {binomial, exponential} c1 [−0.5, 4.0]
Mutation {random, best, target-to-best} Topology {ring, star, global}

The computation load of the meta-optimization process is heavily dependent on the cost of a
single optimization process. If we term t the average time needed for a single run of the LL-EA (which
corresponds, for the Tuner-EA, to one fitness evaluation), then the upper bound for the time T needed
for the whole process is:

T = t · <Tuner generations> · <Tuner population size> · N (6)

since we can consider the computation time requested by the tuner’s search operators to be negligible
with respect to a fitness evaluation. This process can be highly parallelized, since all N repetitions,
as well as all evaluations of a population can be run in parallel if enough resources are available. In our
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tests, we used an 8-core 64-bit Intel(R) CoreTM i7 CPU running at 3.40 GHz; we chose not to parallelize
the optimization process but we preferred to parallelize independent runs of the tuners.

EMOPaT has been tested on some functions from the CEC 2013 benchmark [38], with the only
difference that the function minima were set to 0.

The code used to perform the tests is available online at http://ibislab.ce.unipr.it/software/emopat.

5.1. Multi-Objective Single-Function Optimization Under Different Constraints

A multi-objective experiment can optimize different functions, the same function under different
conditions, etc. Thus, optimizing a single function under different constraints can be seen as a particular
case of multi-objective optimization. In this section, we report the results of tests on single-function
optimization under different fitness evaluations budgets. Similar experiments can be performed
evaluating the function under different conditions (e.g., different problem dimensions) or according
to different quality indices as we did in [8] where we considered two objectives (fitness and fitness
evaluations budget) for a single function. With respect to that work, the main additional contribution
of this section is showing how EMOPaT can be used to generalize the behavior of an EA in optimizing
a function when working under different conditions. We consider the following set of quality indices:

{QXi } � best results after {Xi} fitness evaluations, averaged over N runs.

We performed four different tests considering, in each of them, one of the four functions shown
in Table 2. Our objectives were the best-fitness values reached after 1000, 10, 000 and 100, 000 function
evaluations, namely Q1K, Q10K, Q100K. Each test was run 10 times. Doing so, we expected we
would favor the emergence of patterns related with the impact of a parameter when looking for
“fast-converging” or “slow-converging” configurations. Table 2 summarizes the experimental setup for
these experiments.

Firstly, we analyze the LL-EA parameter sets evolved under the different criteria. To do so,
we merge the populations of the ten independent runs and, from this pool, we select, for each
objective, the top 10% of the best solutions. For most parameters there is a clear trend as their values
monotonically grow or decrease as the fitness evaluations budget increases (see Table 3). This result
suggests that, in these cases, it may not be necessary to keep track of all possible computational budgets
as in [32], but that the optimal parameters for intermediate objectives may be inferred by interpolating
the ones found for the objectives actually taken into consideration; consequently, a developer can use
this information to tune its algorithm according to his own budget constraints. Nevertheless, while this
can be true for a function, such trends are rarely consistent through different functions, preventing one
from drawing more general conclusions.

Table 2. Single-function optimization with different fitness evaluation budgets. Experimental settings.

EMOPaT settings
Population Size = 64, 60 Generations, Mutation Rate = 0.125, Crossover Rate = 0.9

Function settings
30-dimensional Sphere, Rastrigin, Rosenbrock, Griewank (one for each experiment)
evaluation criterion = best fitnesses after 1000, 10,000, 100,000 evaluations averaged
over N = 15 repetitions.

Let us analyze in more details the results on the Rastrigin and the Sphere functions (similar
conclusions can be drawn for the other functions). Figures 4 and 5 show the boxplots of some
parameters for the top 10% DE and PSO configurations on these two functions. When parameters
are nominal, a bar chart plots the selection frequencies for each option. For the Sphere function,
the boxplots of Q10K and Q100K are very similar, pointing out that for this function, 10,000 evaluations
are usually sufficient to reach convergence.
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Table 3. Trends of DE and PSO parameter values versus fitness evaluations budget. Upward arrows
denote parameter values increasing with the number of evaluations, downward arrows the opposite.
A dash denotes no clear trend. For nominal parameters, the table reports the most frequently selected
choice. If the choice changes within the top solutions for different evaluation budgets, an arrow shows
the direction of this change as the budget increases.

Differential Evolution

Function PopSize CR F Mutation Crossover

Sphere ↘ ↘ ↗ target-to-best binomial→exponential
Rastrigin ↗ ↗ ↗ − binomial→exponential
Griewank ↗ ↘ ↘ target-to-best→random binomial
Rosenbrock ↗ ↗ ↗ target-to-best→best,random binomial→exponential

Particle Swarm Optimization

Function PopSize w c1 c2 Topology

Sphere ↗ ↘ − ↗ ring
Rastrigin ↗ ↘ ↗ ↘ global
Griewank ↗ ↘ ↗ ↗ ring
Rosenbrock ↗ ↗ ↘ ↗ global→ring

Figure 4. DE parameters of the top solutions (best 10%) for the 30-dimensional Rastrigin (first row) and
Sphere (second row) functions, with an available budget of 1000, 10,000, and 100,000 fitness evaluations.
Bar plots indicate the normalized selection frequency. Descending/ascending trends for all parameter
values are clearly visible.

To evaluate the hypothesis that intermediate budgets can be inferred from the results obtained on
the objectives that have actually been optimized, one can generate new solutions in two ways:

• infer them as the mean of two top solutions found for two different objectives between which the
new objective lies. This approach presents some limitations: (i) the parameter must have a clear
trend, (ii) some policy for nominal parameters must be defined if the two reference configurations
have different settings, (iii) there is no guarantee that all intermediate values of a parameter
correspond to valid configurations of the algorithm;

• select them from the Pareto front by plotting the set of all the individuals obtained at the end of
ten independent runs on the two objectives of interest, estimate the Pareto front based on those
solutions and randomly pick one configuration that lies on it, in an intermediate position between
the extremes (see an example related with the Rastrigin function in Figure 6).
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Figure 5. PSO parameters of the top solutions (best 10% of the population) for the 30-dimensional
Rastrigin (first row) and Sphere (second row) functions, with an available budget of 1000, 10,000,
and 100,000 fitness evaluations. Descending/ascending trends for all parameter values are clearly visible.

Figure 6. Fitness values of all the solutions found in ten independent runs of EMOPaT for the three
criteria, plotted pairwise for adjacent values of the budget. The green and red stars represent the Top
Solutions for each objective, yellow circles are candidate solutions for intermediate evaluation budgets.

Table 4 shows the parameters of the best solutions found for the Rastrigin and Sphere functions
for the three objectives and of four intermediate solutions generated by the two methods. The ones
indicated by A lie between Q1K and Q10K and the ones indicated by B between Q10K and Q100K. It can
be noticed that the values of the parameter sets generated using the Pareto Front differ from both the
ones inferred as a weighted mean of neighboring ones and the top solutions. In some cases (as with DE
on Sphere) these solutions use a mutation type that is never considered by the top solutions. For the
nominal parameters of the inferred solutions, we chose to consider both options when the two top
solutions disagreed, distinguishing the two solutions by an index (e.g., A1 and A2).

Figure 7 shows the performance of the configurations considered in Table 4, averaged over
100 independent runs, for DE and PSO. The solid lines represent the Top Solutions; as expected,
after 1000 evaluations (see the plots on the right) Q1K is the best-performing configuration, while Q100K
is slower in the beginning but is the best at the end of the evolution. In most cases, the inferred
solutions have a performance that lies between the performance of the two top solutions used as
starting points. The results obtained on the Rastrigin function (first row of Figure 7) are particularly
clear: in the first 1000 evaluations, Q1K performs best, then it is surpassed by Inferred A, followed by
Q10K, Pareto B, and finally Q100K; this example seems to confirm our general hypothesis. A relevant
exception is A2 in DE Sphere (Figure 7, last row) that performs worse than all others: since its only
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difference with A1 is the crossover type, this suggests that it is not possible to infer nominal parameters
reliably unless one is clearly prevalent.

Table 4. DE and PSO configurations for the same objective function with three different fitness
evaluations budgets.“Top Solutions” are the best-performing sets on each objective; “Inferred” refers to
the ones obtained averaging Top Solutions; “From Pareto” are extracted from the Pareto front obtained
considering the objectives pairwise (see Figure 6).

Differential Evolution

Method Configuration PopSize CR F Mutation Crossover

R
as

tr
ig

in

Top Solutions
Q1K 9 0.214 0.736 target-to-best binomial
Q10K 7 0.053 0.754 target-to-best exponential
Q100K 7 0.039 0.784 target-to-best exponential

Inferred A1, A2 8 0.134 0.745 target-to-best bin., exp.
B 7 0.046 0.769 target-to-best exponential

From Pareto A 9 0.217 0.763 target-to-best binomial
B 7 0.006 0.769 target-to-best binomial

Sp
he

re

Top Solutions
Q1K 5 0.022 0.229 random binomial
Q10K 14 0.363 0.508 random exponential
Q100K 30 0.043 0.521 random exponential

Inferred A1, A2 9 0.192 0.368 random bin., exp.
B 22 0.203 0.514 random exponential

From Pareto A 8 0.023 0.520 target-to-best exponential
B 15 0.50E− 3 0.498 target-to-best binomial

Particle Swarm Optimization

Method Configuration PopSize w c1 c2 Topology

R
as

tr
ig

in

Top Solutions
Q1K 18 0.560 1.195 0.789 global
Q10K 26 0.579 2.492 0.671 global
Q100K 76 −0.251 2.533 0.487 global

Inferred A 22 0.569 1.844 0.730 global
B 51 0.164 2.513 0.579 global

From Pareto A 27 0.678 0.949 0.587 global
B 60 0.297 3.132 0.481 global

Sp
he

re

Top Solutions
Q1K 11 0.603 1.882 1.105 ring
Q10K 14 0.510 1.998 1.483 ring
Q100K 15 0.449 1.725 1.667 ring

Inferred A 12 0.557 1.940 1.294 ring
B 15 0.480 1.861 1.575 ring

From Pareto A 14 0.649 1.764 1.082 ring
B 15 0.480 1.681 1.635 ring

Finally, to compare EMOPaT with a state-of-the-art tuner, we implemented the Flexible-Budget
method (FBM) proposed by [32]. For a fair comparison, we implemented their method using the same
NSGA-II parameters used by EMOPaT, including the budget of LL-EA evaluations. The secondary
criterion used to compare equally ranked individuals (see [32] for more details) is the Area Under
the Curve. Ten independent runs of FBM were run, after which we selected the solutions that
among all runs, had obtained the best-performing configurations after 1 K, 10 K, 100 K evaluations
(similar to our setting) and 5.5 K and 55 K evaluations (for a comparison with our inferred parameter
sets). Then, we performed 100 runs for each configuration and compared the results to the ones
reported in Table 4 (for intermediate values we used the ones called “From Pareto”) allowing the
same computational budget. Table 5 shows the parameters found by FBM and Table 6 the comparison
between the performance of the two methods. Except for PSO on the Sphere function, for which
the results provided by EMOPaT are always better (Wilcoxon signed-rank test, p < 0.01), the two
tuning methods always obtain equivalent results with budgets of 1 K, 10 K and 100 K evaluations.
With the two intermediate budgets, FBM is better three times, EMOPaT is better twice and once they
are equivalent; therefore no significant difference between the two methods can be observed.
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Figure 7. Average fitness versus number of fitness evaluations for configurations generated for PSO
(first and second rows) and DE (third and fourth) for the 30-dimensional Rastrigin (above) and Sphere
(below) functions. The plots on the right magnify the first 1000 evaluations to better compare the
performance of the “fast” versions.

The results obtained by EMOPaT are also consistent with previous experimental and theoretical
findings, such as the ones reported in [39], which proved that premature convergence can be avoided if:

F >

√
1− CR

2
PopSize

(7)

14



Mathematics 2019, 7, 232

Of the fourteen DE instances in Table 4, Sphere Q1K is the only one that does not respect this
condition; this may be an explanation for the fact that this DE version is fast, but generally unable to
reach convergence optimizing such a simple unimodal function.

Table 5. DE and PSO configurations obtained by the Flexible-Budget Method [32].

Differential Evolution

Budget PopSize CR F Mutation Crossover

R
as

tr
ig

in

1 K 5 0.375 0.375 random exponential
5.5 K 9 0.182 0.182 random exponential
10 K 16 0.145 0.145 random exponential
55 K 24 0.146 0.146 random exponential
100 K 75 0.746 0.746 random exponential

Sp
he

re

1 K 16 0.299 0.554 target-to-best binomial
5.5 K 7 0.069 0.751 target-to-best exponential
10 K 7 0.056 0.749 target-to-best exponential
55 K 7 0.057 0.749 target-to-best exponential
100 K 7 0.057 0.749 target-to-best exponential

Particle Swarm Optimization

Budget PopSize w c1 c2 Topology

R
as

tr
ig

in

1 K 11 0.664 1.518 0.638 global
5.5 K 88 0.662 1.062 0.624 global
10 K 119 0.654 1.672 0.607 global
55 K 230 0.650 2.412 0.643 global
100 K 230 0.650 2.412 0.643 global

Sp
he

re

1 K 17 0.837 0.952 0.488 global
5.5 K 32 0.897 0.539 0.545 global
10 K 32 0.897 0.539 0.545 global
55 K 34 0.380 1.135 2.673 global
100 K 34 0.380 1.135 2.673 global

Table 6. Comparison between the performance of the configurations found by EMOPaT and the
Flexible-Budget method (FBM).

Differential Evolution

Budget EMOPaT FBM p-Value Best Method

R
as

tr
ig

in

1 K 7.68E + 01 7.76E + 01 1.42E− 01
5.5 K 4.29E + 00 5.06E + 00 8.53E− 03 EMOPaT
10 K 3.32E− 02 1.04E− 01 4.49E− 01
55 K 5.68E− 14 0.00E + 00 1.43E− 08 FBM
100 K 0.0 0.0 8.33E− 02

Sp
he

re

1 K 1.11E + 02 1.08E + 02 9.62E− 03 EMOPaT
5.5 K 6.51E + 01 5.32E + 01 3.62E− 11 FBM
10 K 4.24E + 01 4.15E + 01 6.52E− 01
55 K 2.45E + 01 2.53E + 01 1.28E− 01
100 K 0.0 0.0 2.49E− 01

Particle Swarm Optimization

Budget EMOPaT FBM p-Value Best Method

R
as

tr
ig

in

1 K 8.77E + 02 1.04E + 03 9.51E− 01
5.5 K 5.10E− 04 5.19E− 05 3.23E− 05 FBM
10 K 6.13E− 13 5.69E− 13 4.98E− 01
55 K 2.64E− 93 4.27E− 93 5.58E− 03 EMOPaT
100 K 1.79E + 01 2.03E + 01 7.05E− 02

Sp
he

re

1 K 7.16E + 02 1.40E + 03 1.33E− 13 EMOPaT
5.5 K 1.03E− 02 8.18E + 00 3.90E− 18 EMOPaT
10 K 1.96E− 07 1.11E− 01 3.90E− 18 EMOPaT
55 K 1.46E− 56 2.23E− 22 3.86E− 18 EMOPaT
100 K 0.0 5.15E− 44 3.88E− 18 EMOPaT

15



Mathematics 2019, 7, 232

5.2. Multi-Function Optimization

In this section, we show how EMOPaT behaves when the goal is to obtain configurations that
perform well on functions that are not included in the “training set”. Following the terminology
introduced by [31], we expect to find “generalist” and “specialist” versions of the EAs taken into
consideration. Table 7 gives more details about this experiment.

Table 7. Optimization of seven different functions. Experimental settings.

EMOPaT settings
Population Size = 200, 80 Generations, Mutation Rate = 0.125, Crossover Rate = 0.9

Function settings
10-dimensional Sphere, Rotated Cigar, Rosenbrock, Rotated Ackley,
Rastrigin, Composition Function 1 (CF1), Composition Function 3 (CF3)
evaluation criterion = best fitness in 20000 evaluations averaged over N = 15 repetitions.

We used EMOPaT to optimize all the seven functions together (repeating the test 10 times) and
then we merged all results into a single collection of configurations. From this collection, we selected
the best-performing configuration for each of the seven objective functions.

The next step was to select the “generalist” solutions. We consider a “generalist” solution to be a
parameter set that does not perform badly on any of the objectives taken into consideration, i.e., it is
never in the worst θ percent of the population, when ordered by any objective. Obviously, the higher
θ, the lower the number of generalists. We decided to set the value of θ such that seven generalists
would be selected, to match the specialists’ number.

Table 8 shows the generalists’ and specialists’ parameters obtained by merging the results of
ten independent runs of EMOPaT. An interesting outcome worth highlighting is that, similar to the
previous experiment, some of the generalists are not obtained by simply “interpolating” other results
but they contain some traits that are not featured by any specialist. For instance, DE G0 has a smaller
population than any specialist, PSO G3’s inertia value is higher than that of all specialists.

A more standard way to infer a “generalist” configuration is to take the one with the best overall
results. To do so, we consider the results of all the solutions found by EMOPaT and normalize them
so that each fitness has average = 0 and standard deviation = 1; then, we select the configuration
that minimizes the sum of the normalized fitnesses. In Table 8, these configurations are reported
as “average”.

We also performed 10 meta-optimizations using SEPaT and irace, with the same budget allowed
for EMOPaT. The parameters of SEPaT are the ones presented in Table A1, while for irace we used the
parameters suggested by the authors. For each optimization method, the ten solutions obtained were
compared using the tournament method described in Section 4 to find the best configuration, which is
also reported in Table 8.

To test the parameter sets obtained, we selected seven functions from the CEC 2013 benchmark
that were not used during training (namely Elliptic, Rotated Discus, Rotated Weierstrass, Griewank,
Rotated Katsuura, CF5 and CF7). Table 9 shows, for each function, which configuration(s) obtained
the best results. To determine the best function, we performed the Wilcoxon signed-rank test (p < 0.01)
on all configurations pairwise. A configuration is considered to be the best if no other configuration
performs significantly better on that function. The table shows that, in some cases, generalists were
actually able to obtain better results on previously unseen functions than specialists.

Since the definition of “generalist EA” implies the ability not to perform badly on any function,
we also analyzed the same data from another viewpoint. Each cell (i, j) in Table 10 shows the number
of test functions for which the optimizer which row i refers to performs statistically worse than the
one referred to by column j (Wilcoxon signed-rank test, p < 0.01). The last column reports the sum of
each line and can be considered an indicator of the generalization ability of the optimizer with respect
to the others over the test functions.
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It can be observed that some of the generalists performed very well. The best optimizers for
DE were the configurations obtained by SEPaT along with two generalists, G4 and G5. The first two
configurations are very similar to each other (same mutation and crossover, CR � 0.15 and F � 0.5),
as shown by the presence of statistically significant differences between them only on one function out
of seven. No specialist features a similar parameter set. Regarding PSO, two of the specialists (Scigar
and Srosenbrock) obtained very good results, as well as three of the generalists (G0, G1, and G3). It is
important to notice that most generalists evolved by EMOPaT outperform the solutions found by the
other single-objective tuners used as reference, as well as the one obtained by computing a normalized
average of all solutions evolved by EMOPaT (“average” in Table 8). This last configuration (which is
the same as Sackley for PSO) was the best optimizer for three functions and the worst one (not reported)
for two (Elliptic, Katsuura). This suggests that this is not the correct way of finding a configuration
able to perform well on different functions.

In conclusion, we can say that EMOPaT, in a single optimization process, is able to find, at the
same time, algorithm configurations that work well on a single function of interest and others that
are able to generalize over different unseen functions, while single-objective tuners need separate
processes with a consequent increase of the time spent to perform this operation.

Table 8. The seven DE and PSO best-performing configurations generated by EMOPaT for each
“training” function (denoted by S, for specialist, followed by the name of the function); the seven
configurations that never achieved bad results in any of them (denoted by G, for generalist);
the parameter sets found by irace and by SEPaT; and the single generalist configuration obtained
by normalizing fitness values (see text).

Differential Evolution

Configuration Name PopSize CR F Mutation Crossover

Ssphere 12 0.181 0.718 target-to-best exponential
Scigar 57 0.906 0.703 target-to-best exponential
Srosenbrock 47 0.989 0.761 random exponential
Sackley 271 0.170 0.216 target-to-best exponential
Srastrigin 24 0.024 1.158 random exponential
SCF1 24 0.057 1.789 best exponential
SCF3 98 0.868 0.087 random binomial
G0 10 0.607 0.886 target-to-best exponential
G1 70 0.612 0.480 best exponential
G2 13 0.235 0.444 target-to-best exponential
G3 23 0.413 0.860 target-to-best exponential
G4 32 0.147 0.491 target-to-best exponential
G5 24 0.776 0.716 target-to-best exponential
G6 19 0.058 0.837 best binomial
irace 53 0.796 0.508 best exponential
SEPaT 17 0.160 0.499 target-to-best exponential
average 40 0.563 0.988 target-to-best binomial

Particle Swarm Optimization

Configuration Name PopSize w c1 c2 Topology

Ssphere 34 0.768 1.756 0.474 global
Scigar 41 0.585 1.338 1.646 ring
Srosenbrock 55 −0.465 −0.060 1.930 ring
Sackley 251 0.714 1.082 0.271 global
Srastrigin 20 −0.131 −0.050 3.787 global
SCF1 161 −0.158 −0.112 2.467 ring
SCF3 269 −0.172 1.235 1.945 global
G0 43 0.648 1.241 1.633 ring
G1 44 0.639 2.114 1.478 ring
G2 68 0.402 1.109 2.184 ring
G3 37 0.883 0.548 0.649 ring
G4 26 −0.073 0.295 3.032 ring
G5 33 0.583 2.040 1.677 ring
G6 46 0.593 1.944 1.637 ring
irace 19 0.805 0.962 0.914 ring
SEPaT 22 0.732 1.358 1.153 ring
average 251 0.714 1.082 0.271 global
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Table 9. Best-performing DE and PSO configurations on the seven test functions.

Function DE PSO

Elliptic Ssphere irace, SEPaT
Discus Scigar average, Sackley
Weierstrass Scigar, irace Ssphere, Srosenbrock
Griewank Srastrigin, SEPaT, G4 G0, G1, G2, G5, G6, Scigar
Katsuura G2, SEPaT, G4 SCF1, Srosenbrock
CF5 Scigar, SEPaT Sackley, average
CF7 G2, SEPaT, G4 Sackley, Srosenbrock, average

Table 10. Number of test functions for which the optimizer associated with the row is statistically
worse than the one associated with the column. The last column reports the sum of the values in that
row, measuring the optimizer performance (the lower, the better). The three best configurations are
highlighted in bold.
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Differential Evolution

Ssphere 0 4 4 4 3 0 4 4 4 5 3 6 4 2 4 6 2 59
Scigar 2 0 0 1 1 1 1 3 1 4 2 3 2 2 2 4 1 30
Srosenbrock 3 6 0 2 4 2 2 3 4 4 3 4 5 3 4 4 2 55
Sackley 3 4 4 0 3 2 2 4 4 5 3 5 4 3 4 5 4 59
Srastrigin 1 3 2 2 0 0 2 3 3 5 3 6 3 3 3 5 1 45
SCF1 4 5 3 4 7 0 4 4 7 7 5 7 7 5 6 7 3 85
SCF3 2 5 3 3 3 2 0 4 3 4 3 4 3 3 4 4 2 52
G0 2 4 4 1 2 0 3 0 4 3 1 4 6 2 5 4 2 47
G1 2 4 2 0 1 0 2 1 0 4 2 4 4 2 3 4 2 37
G2 2 3 2 1 1 0 3 2 3 0 0 3 4 1 3 2 1 31
G3 2 4 3 2 2 0 4 3 4 3 0 6 5 1 4 6 3 52
G4 1 3 3 1 0 0 2 3 1 1 1 0 3 1 3 1 1 25
G5 1 3 1 0 1 0 1 0 0 3 1 3 0 1 2 3 0 20
G6 1 4 4 2 2 0 4 2 4 2 0 5 4 0 4 4 2 44
irace 1 3 1 1 2 1 0 1 2 3 1 3 3 1 0 3 1 27
SEPaT 1 2 2 1 0 0 2 2 1 0 0 1 3 1 3 0 1 20
average 2 5 3 3 3 1 4 3 4 4 3 6 5 2 5 5 0 58

Particle Swarm Optimization

Ssphere 0 3 4 3 2 2 1 3 3 3 3 2 3 3 2 3 3 43
Scigar 4 0 4 4 0 4 3 0 2 0 1 0 1 2 1 1 4 31

Srosenbrock 1 2 0 2 0 0 2 2 2 2 3 1 2 2 2 2 2 27
Sackley 3 3 3 0 3 2 2 3 3 3 3 3 3 3 3 3 0 43
Srastrigin 5 6 7 4 0 4 5 6 6 6 6 5 6 6 6 6 4 88
SCF1 2 2 3 5 1 0 3 2 2 2 2 2 2 2 2 2 5 39
SCF3 4 3 4 4 2 2 0 3 2 2 3 3 3 3 3 3 4 48
G0 4 1 4 4 0 3 2 0 2 0 1 0 1 2 1 1 4 30
G1 1 2 3 4 1 3 1 2 0 1 3 2 1 1 2 1 3 31
G2 4 1 4 4 0 4 3 1 1 0 2 1 2 2 1 1 4 35
G3 2 2 3 4 0 3 2 2 1 1 0 1 2 2 1 1 4 31
G4 4 4 4 4 0 5 4 4 3 3 4 0 4 3 4 4 4 58
G5 3 4 3 4 1 4 2 1 1 2 3 1 0 1 3 3 4 40
G6 2 2 3 4 1 3 1 2 0 1 2 2 1 0 2 2 4 32
irace 4 2 4 4 1 4 3 2 3 3 3 2 3 3 0 1 4 46
SEPaT 4 2 4 4 1 4 3 2 2 2 2 1 2 3 0 0 4 40
average 3 3 3 0 3 2 2 3 3 3 3 3 3 3 3 3 0 43
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6. Summary and Future Work

In this paper we presented some examples of the kind of information and insights into stochastic
optimization algorithms that can be offered by a multi-objective meta-optimization environment. To do
so, we used EMOPaT, a simple and generic multi-objective evolutionary optimization framework for
tuning the parameters of an EA. EMOPaT was tested on the optimization of DE and PSO in different
scenarios, showing that it is able to highlight how the parameters affect the performance of an EA in
different situations, allowing one to draw generalizable results when considering different constraints
applied to the optimization of the same function. Successively, we tested it on different functions and
proved it not only allows one to find good configurations for the training function(s), but also to derive
from those results new parameter sets that perform well on unseen problems.

We think that EMOPaT can be helpful in many applications and provide useful hints about the
behavior of any metaheuristic. In [40] we showed that EMOPaT can be effective in real-world situations,
by using it to tune a DE-based object recognition algorithm. In general, a basic application of EMOPaT
can be summarized in the following steps, as described also in the code we made available online:

1. Select a proper set of problem-related fitness cases.
2. Select the optimization method(s) whose parameters one wants to tune.
3. Select the objectives to optimize (convergence speed, solution quality, robustness, etc.).
4. Run EMOPaT and save the resulting parameter set.

Below we report some interesting directions towards which this approach can be further expanded:

• At present, the analysis of the results is essentially a “manual” process. Which is the best way to
automatically extract, generalize and infer parameters?

• EMOPaT belongs to the class of offline parameter tuning algorithms, in which the values of the
parameters are set before starting the optimization process and do not change during its execution.
Could it also be used to tune the parameters of a population of EA’s online, adapting parameter
values as optimization proceeds?

• In our work, we proved that EMOPaT can also be used to generalize results on a single function
(see Section 5.1). Can this idea be extended to different functions? If we obtain a Pareto Front by
optimizing two functions, can we extract parameters for a function that lies “between” these two,
according to some metric that takes into consideration some of their properties?

• Is it possible to group or cluster functions based on the best-performing parameters found
by EMOPaT?

Author Contributions: Conceptualization, R.U. and S.C.; Investigation, R.U., L.S. and S.C.; Software, R.U.;
Supervision, S.C.

Funding: This research received no external funding.

Ethical Approval: This article does not contain any studies with human participants performed by any of
the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, we first show that EMOPaT can be considered a generalization of its
single-objective version SEPaT. This implies that for single-objective optimization problems, we can
extend the same conclusions drawn for SEPaT in [5,41] to EMOPaT. Then, to assess its general
soundness, we demonstrate EMOPaT’s ability to give insights about the algorithm parameters and on
their influence on the optimization process by showing that EMOPaT can correctly deal with some
peculiar situations, such as the presence of useless or bad parameters.
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Appendix A.1. Comparison with SEPaT

The equivalence between SEPaT and EMOPaT in the single-objective case has been tested on
seven functions (see Table A1) from the CEC 2013 benchmark [38], with the only difference that the
function minima were set to 0.

Table A1. Comparison between EMOPaT and SEPaT. Experimental settings.

EMOPaT settings*
Tuner EA = NSGA-II, Population Size = 200, 80 Generations,
Mutation Rate = 0.125, Crossover Rate = 0.9

SEPaT settings
Tuner EA = DE, Population Size = 200, 80 Generations
CR = 0.91, F = 0.52, Mutation = target-to-best, Crossover = Exponential

Function settings
10-dimensional Sphere, Rotated Cigar, Rotated Rosenbrock, Rotated Ackley,
Rastrigin, Composition Function 1 (CF1), Composition Function 3 (CF3)
evaluation criterion = best fitness in 20,000 evaluations averaged over N = 15 repetitions.

First, we performed tuning as a single run of EMOPaT considering these functions as seven
different objectives (optimizing all the functions together), and then by running seven times SEPaT,
once for each function. More details about these experiments are summarized in Table A1.

We checked whether the best solutions for each objective that EMOPaT evolved in a single run
(also called “top solutions” or “top configurations” in the following), were actually indistinguishable
from those obtained by SEPaT when applied to the same objective. To do so, we ran ten independent
experiments with both SEPaT (once for each function) and EMOPaT. The best EA configuration for
each function found in each run was then tested 100 times on the optimization of the corresponding
function. We computed the median for each set of 100 tests and, based on it, selected the overall best
configuration for each function.

Table A2 compares the best PSO and DE configurations obtained by SEPaT in ten independent
runs to the best configurations obtained, for each corresponding function, in ten independent runs
of EMOPaT; the parameters obtained by the two methods are significantly similar. For instance,
the nominal parameters chosen for both DE and PSO are almost always the same except for the PSO
topology for Composition Function 3. This is the only case in which the parameters chosen by the
two methods are clearly different (one population is three times as large as the other, c1 is four times
larger and the topology is different): nevertheless, the results obtained by the two configurations are
virtually equivalent (see Table A3), so the two settings correspond to two equivalent minima of the
meta-fitness landscape.

Table A3 shows the median fitness obtained on each function by the best-performing EA
configurations found by the tuners and by a standard configuration, and the p-values of Wilcoxon’s
signed-rank test under the Null Hypothesis “There are no differences between two configurations’
performance” comparing EMOPaT’s best configuration to SEPaT’s best and to a standard configuration.
While, in general, EMOPaT’s configurations perform better than standard parameters (last column),
there is no statistical evidence that the best performance of the configurations found by the two
methods differ, except for two cases (Rotated Cigar and Rotated Ackley using DE) for which
EMOPaT performs slightly better than SEPaT. These results show that EMOPaT can be thought
as being generally equivalent to SEPaT in finding the minima of single-objective problems. However,
as shown in the paper, one can extract even more information from EMOPaT’s results, thanks to its
multi-objective nature.
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Table A2. Best-performing parameters obtained over 10 runs of EMOPaT and SEPaT, and standard
settings for PSO ([42]) and DE ([11]).

Differential Evolution

Function Method PopSize CR F Mutation Crossover

Sphere SEPaT 20 0.506 0.520 target-to-best exponential
EMOPaT 12 0.181 0.718 target-to-best exponential

R. Cigar SEPaT 60 0.955 0.660 target-to-best binomial
EMOPaT 38 0.916 0.699 target-to-best binomial

R. Rosenbrock SEPaT 39 0.993 0.745 random exponential
EMOPaT 47 0.989 0.761 random exponential

R. Ackley SEPaT 85 0.327 0.0 random exponential
EMOPaT 248 0.960 0.0 random exponential

Rastrigin SEPaT 36 0.014 0.359 random exponential
EMOPaT 25 0.049 1.065 random exponential

CF 1 SEPaT 18 0.0 1.777 best exponential
EMOPaT 33 0.045 1.070 best exponential

CF 3 SEPaT 89 0.794 0.070 random binomial
EMOPaT 98 0.868 0.088 random binomial

- Standard 30 0.9 0.5 random exponential

Particle Swarm Optimization

Function Method PopSize w c1 c2 Topology

Sphere SEPaT 88 0.529 1.574 1.057 global
EMOPaT 25 0.774 1.989 0.591 global

R. Cigar SEPaT 67 0.713 0.531 1.130 ring
EMOPaT 41 0.757 1.159 1.097 ring

R. Rosenbrock SEPaT 104 0.597 1.032 1.064 ring
EMOPaT 87 −0.451 −0.092 1.987 ring

R. Ackley SEPaT 113 0.381 0.210 1.722 ring
EMOPaT 115 0.303 −0.006 2.467 ring

Rastrigin SEPaT 13 −0.236 0.090 3.291 global
EMOPaT 7 −0.260 0.021 3.314 global

CF 1 SEPaT 92 −0.147 −0.462 2.892 ring
EMOPaT 61 −0.163 −0.376 3.104 ring

CF 3 SEPaT 61 0.852 0.347 0.989 ring
EMOPaT 217 0.728 1.217 0.565 global

- Standard 30 0.721 1.193 1.193 ring

Table A3. Median fitness over 100 independent runs of the best solutions found by EMOPaT, by SEPaT,
and by a standard configuration of the optimization algorithm.

EA Function EMOPaT SEPaT Standard vs. SEPaT vs. Standard

Fitness p-Value

DE Sphere 0.00 0.00 7.43E− 26 1.00 <1E− 20
R. Cigar 7.61E− 02 7.64E− 04 1.76E + 01 4.89E− 03 5.49E− 08
R. Rosenbrock 3.42E− 02 2.76E− 03 9.81E + 00 0.41 <1E− 20
R. Ackley 2.04E + 01 2.05E + 01 2.05E + 01 1.21E− 03 9.34E− 07
Rastrigin 0.00 0.00 2.17E− 08 1.00 <1E− 20
CF 1 2.04E + 02 2.05E + 02 4.00E + 02 0.06 <1E− 20
CF 3 6.09E + 02 6.14E + 02 1.46E + 03 0.67 <1E− 20

PSO Sphere 0.00 0.00 7.57E− 24 1.00 <1E− 20
R. Cigar 1.33E + 06 2.43E + 06 1.84E + 06 0.05 0.03
R. Rosenbrock 9.44E− 01 1.01E + 00 9.81E + 00 0.87 1.04E− 17
R. Ackley 2.04E + 01 2.04E + 01 2.04E + 01 0.16 0.67
Rastrigin 4.75E− 06 1.02E− 04 1.09E + 01 0.57 5.88E− 08
CF 1 2.01E + 02 2.03E + 02 4.00E + 02 0.99 <1E− 20
CF 3 9.62E + 02 9.85E + 02 1.16E + 03 0.27 2.7E− 04
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Appendix A.2. Empirical Validation

We have artificially created four test cases characterized by:

1. A useless numerical parameter, i.e., with no effects at all on the algorithm;
2. A harmful numerical parameter, i.e., the higher its value, the worse the fitness;
3. A harmful nominal parameter choice that constantly produces bad fitness values when made;
4. Two totally equivalent choices of a nominal parameter.

A similar approach has been proposed by [43], showing the ability of irace, ParamILS and REVAC
to recognize an operator which was detrimental for the fitness. The results of these tests increase the
confidence in the actual ability of EMOPaT to recognize the usefulness or, more in general, the role of a
parameter of an EA. We limited our tests to optimizing PSO on the Sphere and Rastrigin functions
(see Table A4). In these tests, we modified the original encoding of PSO configurations (Figure 3) as
shown in Figure A1.

Figure A1. Encoding of PSO configurations in the four cases presented in Appendix A.2. From top left
clockwise: useless parameter, harmful numerical parameter, equivalent and harmful topology.

Table A4. Empirical validation of EMOPaT. Experimental settings.

EMOPaT settings
Population Size = 64, 100 Generations, Mutation Rate = 0.125, Crossover Rate = 0.9

Function settings
30-dimensional Sphere and Rastrigin
evaluation criterion = best fitness in 20000 evaluations averaged over N = 15 repetitions

Appendix A.2.1. Useless Parameter

In this experiment, we extended the PSO configuration encoding by adding a parameter γ that
does not appear in the algorithm and therefore has no effects on it. Our goal was to analyze how
EMOPaT dealt with such a parameter with respect to the actually effective ones. Table A5 shows
mean and standard deviation of the (normalized) numerical parameters in all NSGA-II individuals
at the end of ten independent runs. As can be observed, the useless parameter γ has a mean value
close to 0.5 and its variance is 0.078, which is very close to 1

12 , expected for a uniform distribution
in [0, 1]: this does not happen with the other parameters. Figure A2 plots the values of the Sphere
function against the values of PSO parameters (after recovering their actual value). While the values
of the real parameters show a clear trend, the values of γ are scattered uniformly all over the graph.
As well, the correlation of γ with the other numerical parameters is very low (last row of Table A5).
This suggests that a useless parameter can be easily identified by a (quasi-)uniform distribution of
its values.

Table A5. Mean and variance values for PSO’s numerical parameters and correlation with a useless
one (γ). Parameter values are normalized between 0 and 1.

Parameter Population Size w C1 C2 γ

Mean 0.159 0.555 0.586 0.332 0.441
Variance 0.0313 0.0109 0.0120 0.0103 0.0780
Correlation with γ −0.0777 −0.179 −0.159 0.149 -
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Figure A2. Values of fitness (Sphere function) versus PSO parameters at the end of the tuning procedure.
The last graph refers to the useless parameter γ which, unlike the others, spans across all possible
values with no correlation with fitness.

Appendix A.2.2. Harmful Numerical Parameter

In this experiment, we added to the representation of each PSO configuration a parameter
β ∈ [0, 1] whose only effect is to worsen the actual fitness f proportionally to its value as follows:

f̂ = ( f + β) · (1 + β) (A1)

Parameter β was constantly assigned values close to 0 (mean 7 × 10−4, variance 7 × 10−6) by
EMOPaT. Figure A3 plots values of β versus number of generations, averaged over ten EMOPaT runs.
β starts from an average of 0.5 (due to random initialization) but, after a few iterations, its value quickly
reaches 0.

Figure A3. Evolution of the “bad parameter” β, averaged over all individuals in ten independent runs
of EMOPaT, versus generation number.

Appendix A.2.3. Harmful Nominal Parameter Setting

In this experiment, we added a “fake” fourth topology to PSO configurations. When it is selected,
PSO just returns a bad fitness value. We wanted to verify whether that choice would be always
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discarded and which values the corresponding gene would take. Figure A4 shows that the fake
topology is actually discarded and, after only two generations, is never selected anymore. Moreover,
the values of the corresponding gene are always lower than all others; in particular, they are lower
than the ones representing the star topology, which is also never selected despite being a valid choice.

Figure A4. Average values and selection percentages of the genes representing the four topologies
versus number of EMOPaT generations. Results averaged over 64 individuals in 10 runs.

Appendix A.2.4. Equivalent Settings

In the last experiment of this section, we added to the basic representation of the PSO configuration
a fourth topology that when selected, acts exactly as the global topology. Our goal was to see whether
EMOPaT would allow one to understand that the two topologies were in fact the same one. Figure A5
shows the results in the same format as Figure A4. There is no clear correlation between the two
“global” versions, but it can be observed that at the end of the evolution, the sum of their selection
percentages has converged to the value reached by global in the previous experiment. This means
that splitting this choice into two distinct values did not affect EMOPaT’s performance. Nevertheless,
these results were reached more slowly, showing that it takes time for EMOPaT to reach the correct
values of a nominal parameter when many choices are available.

Figure A5. Average values of the genes representing the four topologies (including the replicated one)
and selection percentages. The x axis reports the number of EMOPaT generations.
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Abstract: In this paper, a Neural Networks optimizer based on Self-adaptive Differential Evolution
is presented. This optimizer applies mutation and crossover operators in a new way, taking into
account the structure of the network according to a per layer strategy. Moreover, a new crossover
called interm is proposed, and a new self-adaptive version of DE called MAB-ShaDE is suggested to
reduce the number of parameters. The framework has been tested on some well-known classification
problems and a comparative study on the various combinations of self-adaptive methods, mutation,
and crossover operators available in literature is performed. Experimental results show that DENN
reaches good performances in terms of accuracy, better than or at least comparable with those
obtained by backpropagation.

Keywords: neuroevolution; differential evolution; neural networks

1. Introduction

The use of Neural Network (NN) models has been steadily increasing in the recent past, following
the introduction of Deep Learning methods and the ever-growing computational capabilities of modern
machines. Thus, such models are applied to various problems, including image classification [1] and
generation [2], text classification [3], speech recognition [4], emotion recognition [5], and many more.
New and more complex network structures, such as Convolutional Neural Networks [6], Neural
Turing Machines [7], and NRAM [8], were developed and applied to the aforementioned tasks; such
new problems and structures also required the development of new optimization techniques [9–11].

According to these new trends, neuroevolution has also been renewed [12–15]. The term of
neuroevolution is used to identify the research area where evolutionary algorithms are used to construct
and train artificial neural networks. Several approaches have been proposed both to train networks’
weights and topology and to exploit the characteristics of neuroevolution of being highly general,
allowing learning with nondifferentiable activation functions, without explicit targets, and with
recurrent networks [16,17].

The traditional method used by neural networks to learn their weights and biases is the
gradient descent algorithm applied to a cost function and its most famous implementation is the
backpropagation procedure. Nowadays, the backpropagation algorithm is still the workhorse of
learning in neural networks even if its origin dates back to 1970s; its importance was revealed in
1986 [18].

Backpropagation works under two main assumptions about the form of the cost function: it has
to be written as an average over cost functions Cx for individual training examples x and as a function
of the outputs from the neural network. Moreover the activation functions have to be differentiable.
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With that said, there are tricks for avoiding this kind of problems, and finding alternatives
to gradient descent is an active area of investigation. An interesting analysis on the motivations
according to backpropagation is the most used technique based on gradient to train neural networks
and evolutionary approaches are not sufficiently studied is presented in [15].

As long as meta-heuristic algorithms are generally nondeterministic and not sensitive to the
differentiability and continuity of the objective functions, these methods are used in a wide range of
complex optimization problems. In addition, the stochastic global optimizations can identify global
minimum without being trapped in local minima [19–21].

The most used evolutionary approach in neuroevolution is the genetic one, extensively employed
in the conventional neuroevolution (CNE) [17,22] and also recently proposed in the case of deep
neuroevolution [23]. In those algorithms, the best individuals (the individuals with the highest fitness)
are evolved by means of the mutation and crossover operators and replace the genotypes with the
lowest fitness in the population. The genetic approach is the most used technique because it is easy to
implement and practical in many domains. However, on the other hand, there is the problem of the
encoding since they use a discrete optimization method to solve continuous problems.

In order to avoid the encoding problem other continuous evolutionary meta-algorithms have
been proposed including, in particular, differential evolution (DE). Indeed, DE evolves a population of
real-valued vectors, so no encoding and decoding are required.

It is well known that DE performs better than other popular evolutionary algorithms [24], has
a quick convergence, and is robust [25]; it also performs better for learning applications [26]. At the
same time, DE has simple genetic operations, such as its operator of the mutation and survival strategy
based on one-on-one competition. Moreover, they can also use population global information and
individual local information to search for the optimal solution.

When the optimization problem is complex, the performance of the traditional DE algorithm
depends on the selected the control parameters and mutation strategy [19,27–29]. If the control
parameters and selected mutation strategy are unsuitable, then DE is likely to yield premature
convergence, stagnation phenomena and excessive consumption of computational resources.
In particular, the stagnation problem for DE applied to neural network optimization has been studied
in [30].

In this paper the system DENN that optimizes artificial Neural Networks using DE is presented.
The system uses a direct encoding with a one-to-one mapping between the weights of the neural
networks and values of individuals in the population. This system is an enhanced version of the
system introduced in [12], where a preliminary implementation was described.

A batching system is introduced to overcome one of the main computational problems of the
proposed approach, i.e., the fitness computation. For every generation the population is evaluated
on a limited number of training examples, given by the size of the current batch, rather than the
whole training set. This reduces the computational load, particularly on large training sets. Moreover,
a restart method is applied to avoid a premature convergence of the algorithm: the best individual is
saved and the rest of the current population is discarded, continuing the research on a new random
generated population.

Finally, a new self-adaptive mutation strategy MAB-ShaDE inspired to the multi-armed bandit
UCB1 [31] and a new particular crossover operator interm, a randomized version of the arithmetic
crossover, have been proposed.

An extensive experimental study have been implemented to (i) determine if this approach is
scalable and applicable also to large classification problems, like MNIST digit recognition; (ii) study
the performance reached by using MAB-ShaDE and interm components; and (iii) identify the best
algorithm configurations, i.e., the configurations reaching the highest accuracy.

The experimental results show that DENN is able to outperform the backpropagation algorithm
in training neural networks without hidden layers. Moreover, DENN is a viable solution also from a
computational point of view, even if the time spent for learning is higher than its competitor BPG.
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The paper is organized as follows. Background concepts about neuroevolution, DE algorithm
and its self-adaptive strategies are summarized in Section 2, related works are presented in Section 3,
the system is presented in Section 4, and experimental results are shown in Section 5. Section 6 closes
the paper with some final considerations and some ideas for future works.

2. Background

2.1. Differential Evolution

Differential evolution (DE) is a evolutionary algorithm used for optimization over continuous
spaces, which operates by improving a population of N candidate solutions evaluated by means of
a fitness function f though a iterative process. The first phase is the initialization in which the first
population is generated; there exists various approaches, among which the most common is randomly
generating each vector. Following, during the iterative phase, for each generation a new population is
computed though mutation and crossover operators; each new vector is evaluated and then the best
ones are chosen, according to a selection operator, for the next generation. The evolution may proceed
for a fixed number of generations or until a given criterion is met.

The mutation used in DE is called differential mutation. For each vector target vector xi, for i =
1, . . . , N, of the current generation, a vector ȳi, namely, donor vector, is calculated as linear combination
of some vectors in the DE population selected according to a given strategy. In the literature, there
exist many variants of the mutation operator (see for instance [32]). In this work, we implemented
and used three operators: rand/1 [33], current_to_pbest [34], and DEGL [35].

The operator rand/1 is defined as

ȳi = xa + F(xb − xc) (1)

where F ∈ [0, 2] is a real parameter called mutation Factor, a, b, c are unique random indices different
from i.

The operator curr_to_pbest is defined as

ȳi = xi + F(xpbest − xi) + F(xa − xb) (2)

where p ∈ (0, 1] and pbest is randomly selected index from the indices of the best N × p individuals of
the population. Moreover, xb is an individual randomly chosen from the set

{x1, . . . , xN} \ {xa, xi} ∪ A

where A is an external archive of bounded size (usually with at most N individuals) that contains the
individuals discarded by the selection operator.

Finally, DEGL is defined as⎧⎪⎪⎨⎪⎪⎩
ȳi = wLi + (1− w)Gi

Li = xi + α(xnnbest − xi) + β(xa − xb)

Gi = xi + α(xbest − xi) + β(xa − xb)

(3)

where best is the index of the best individual in the population, nnbest is the index of the best individual
in the neighborhood of the target xi, and w ∈ [0, 1] is the weight of the convex combination between Li
and Gi.

The crossover operator creates a new vector yi, namely trial vector, by recombining the donor with
the corresponding target vector. There are many kinds of crossover; the most known is the binomial
crossover where yi is computed as follows,

31



Mathematics 2020, 8, 69

yi,j =

{
ȳi,j if randi,j ≤ CR or j = jrand

xi,j otherwise
for j = 1, . . . , D (4)

where randi,j ∈ [0, 1] is a real random number in [0, 1], jrand is an integer random number in {1, . . . , D},
and CR ∈ [0, 1] is the crossover probability.

Finally, the selection operator compares each trial vector yi with the corresponding target vector
xi and selects the better of them in the population of the next generation.

2.1.1. Self-Adaptive Differential Evolution

The DE parameters F and CR have a strong impact during the evolution and the choose of their
values is hard. In literature there exist many proposals of self-adaptive methods that select the values
for F and CR.

One of the simplest and most popular method is jDE [36]. Each population individual xi has its
own values Fi and CRi. The trial individual zi inherits from the target the values Fi and CRi, separately
with probability 0.9; otherwise, a new value for F and/or for CR is randomly generated in [0.1, 1] or in
[0, 1], respectively. The trial is then created using its own values for F and CR. If the trial survives in
the selection phase, it will keep its values for F and CR in the next generation.

Another self-adaptive method is JADE [37], in which the value of F is randomly generated
from a Cauchy distribution C(μF, 0.1) and the value of CR from the normal distribution N(μCR, 0.1).
The means of these distributions μF and μCR are initialized to 0.5 and are updated at each generation as

μF ← (1− c)μF + cmL(SF)

and
μCR ← (1− c)μCR + cmA(SCR)

where mL(SF) is the Lehmer mean of the successful F values (i.e., those used to generate trials which
are better than their targets) and mA(SCR) is the arithmetic mean of the successful CR values.

A variant of JADE is ShaDE [34], in which the values of F and CR are generated in the same way
of JADE, but the means of the distributions are randomly selected from a success history, which stores
the means computed with respect to the succesful trials.

Finally, L-ShaDE [38] is an enhancement of ShaDE where the population size is reduced as the
generations go on.

2.1.2. Self-Adaptive Mutation

There also exist self-adaptive variants of DE which selects, for instance at each generation or even
for each trial, the mutation operator to be applied among a set of possible choices.

We have decided to implement SaMDE [39]. It is a variant of jDE, where it is applied the automatic
selection of mutation strategy from a pool of given strategies. Each population individual has its own
vector V of o real numbers, where o is the number of mutation operators. The vector V is evolved in
the same way as the individual itself. The values of V are used to randomly choose, by means of the
roulette-wheel method, the mutation operator to be used to create the trial individual.

2.2. Neuroevolution

The term of neuroevolution is used to identify the research area where evolutionary algorithms are
used to construct and train artificial neural networks. It covers a wide range of network architectures
and neural models. Most neural learning methods focus on modifying the strengths of neural
connections (i.e., their connection weights), whereas other models can optimize the structure of
the network, the type of computation performed by individual neurons, and even learning rules that
modify the network during evaluation.
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The evolutionary approach dominating the scene of neuroevolution is the genetic approach by
means of genetic algorithms. Typically, to find a network that solves the given task, a population of
genetic encodings of neural networks (genotype) is evolved. The process constitutes an intelligent
parallel search towards better genotypes in the space of solutions, and continues until a network with
a sufficiently high fitness is found. The generate-and-test loop of evolutionary algorithms usually
applied: (i) Each genotype is chosen in turn and decoded into the corresponding neural network,
called phenotype. (ii) The performance of this network is then measured by a fitness value. (iii) After
all individuals have been evaluated, genetic operators are applied and the next generation is created.

The evolution is applied to the the individuals with the highest fitness are crossed and mutated
over with each other, and replace the genotypes with the lowest fitness in the population.

The conventional neuroevolution (CNE) follows this approach for the network weights [17,22].
This is the most used techniques because it is easy to implement but practical in many domains.

3. Related Works

The first DE-based optimizers for NNs were presented in the late ’90s and the early 2000s
by [40,41], who presented and analyzed the applications of DE on the problem of feedforward NN
train. In recent times, new applications of evolutionary algorithms have been presented in the area of
neuroevolution [32].

The dominating evolutionary approach used is the genetic one [17,22]: this is used to optimize
both topology and weights of the network but in the latter case it is very limited by being a discrete
approach. In literature several encodings for the real weights are proposed, with genes represented
either as a real-valued string or characters sequence, which can be interpreted as real values with a
specific precision using for example Gray-coded numbers.

More adaptive approaches have been suggested, for example in [42] or more recently in [43]. In
the first paper, the authors presented a dynamic encoding, which depends on the exploitation and
exploration phases of the search. In the second one, the authors proposed a self-adaptive encoding,
where the string characters are interpreted as a system of particles whose center of mass determines
the encoded value. Other adaptive approaches have been developed for network immunization and
diffusion in link prediction [44,45].

Moreover, they have also used a direct encoding that exploits the particular problem structure.
These methods are not general and are not easily extendable to be applicable in more general

cases [17]. In [46], a direct encoding floating-point representation of the NN’s weights is used.
Precisely, the authors use the evolution strategy called CMA-ES, a real-value optimization algorithm,
applied to the well-known reinforcement learning problem: pole balancing.

Among DE applications to neuroevolution, the most related works we have to cite
are [13–15,30,47], even if they apply the evolutionary meta-heuristics in a different way.

In [47], the search exploration is enhanced by a DE algorithm with a modified best mutation
operation: the algorithm is used to train the network and the global best value is used as a seed by the
backpropagation procedure (BPG).

In [13], three different methods (GA, DE, and EDA) are compared and used to train a
simple network architecture with one hidden layer, the learning factor, and the seed for the
weights initialization.

In [14], the authors use the Adaptive DE (ADE) algorithm to calculate the initial weights and the
thresholds of standard neural networks trained by BPG. The authors demonstrated that the system is
effective to solve time series forecasting problems.

In [15], a Limited Evaluation Evolutionary Algorithm (LEEA) is applied to optimize the weights of
the network. This paper is related to our paper because we employ a similar batching system, in which
minibatches are used in the training phase and are changed after a certain number of generations.

The work in [30] has a strong connection with ours because the author studied how different
mutation operators work to train neural networks. The results showed that the DEGL-trig (a
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composition of DEGL with Trigonometric mutation) is the best mutation operator to use with
small NNs.

DE and the other enhancement methods permit our algorithm to train neural networks much
larger than those used in [15,30]: whereas the maximum size handled in [15] has less than 1500 weights
and the maximum size handled in [30] has only 46 weights, we are capable to train a feedforward
neural network for MNIST which has more than 7000 weights.

4. The DENN Algorithm

This section describes the Differential Evolution for Neural Networks. The idea is to apply the
Differential Evolution for optimization of NN’s weights taking in count the structure of the network.

Given a fixed topology and fixed activation functions, a population P is defined as a set of N
neural networks.

We decided to exploit the DE characteristic of working with continuous values by using a direct
codification based on a one-to-one mapping between the weights of the neural network and individuals
in DE population.

More precisely, let N be a feedforward neural network composed of L levels. For each level, l,
of the network is defined by a real valued matrix, W(l), and a real valued vector, b(l), representing,
respectively, the connection weights and the bias values. Therefore, each population individual xi is
defined as a sequence

〈(Ŵ(i,1), b(i,1)), . . . , (Ŵ(i,L), b(i,L))〉,
where Ŵ(i,l) is the real values vector obtained by linearization of the matrix W(i,l), for l = 1, . . . , L.

For a population individual xi, we indicate by x(h)i its h–th component, for h = 1, . . . , 2L. For

example, x(h)i = Ŵ(i,(h+1)/2), if h is odd, whereas x(h)i = b(i,h/2) if h is even.

Note that for each solution xi the component x(h)i is a vector whose size d(h) is dependent on the
number of neurons of in the level h.

The individuals of the population are evolved by applying mutation and crossover operators in a
component-wise way. For instance, the mutation rand/1 for the individual xi is applied as three indices,
a, b, c, that are randomly chosen in the set {1, . . . , N} \ {i} without repetition; then, for h = 1, . . . , 2L,
the h–th component ȳ(h)i of the donor individual ȳi is calculated as the linear combination

ȳ(h)i = x(h)a + F(x(h)b − x(h)c ).

The evaluation of a population element xi is performed by a fitness function f , which is the
objective function to be optimized.

As proposed in the many other efficient applications, we split the dataset D in three different
subsets: a training set TS, a validation set VS, and a test set ES. The TS is used for the training phase,
the VS is used at the end of each training phase for a uniform evaluation of the individuals, and ES is
used on the best neural network in order to evaluate the performance.

As the evaluation phase is the most time consuming operation, and it can lead to unacceptable
computation time if the fitness is computed on the whole dataset, we decided to use a batching method
similar to the one proposed in [15] by partitioning the training set TS in k batches B0, . . . , Bk−1 of size
b = |TS|/k.

Note that records in each batch should follow the same distribution to avoid the risk of the
overfitting, followed by generation of a model that is unable to generalize.

At each generation the population is evaluated against only a small number of training samples,
given by the size of the current batch, instead of evaluating the population with all the training set
samples. This permits to reduce the computational load, especially on large training sets.
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To reduce the problems that arose when the batch is changed as well as obtaining a smoother
transition from a batch to the next one, we defined a window U of size b, which is a set of samples
taken from the current batch Bi and from the next one Bi+1.

At the beginning of an epoch, the fitness of all individuals in P is re-evaluated by computing the
fitness on the new batch defined by currently window U.

The window is changed after s generations, by substituting b/r examples of U from Bi with b/r
examples taken from Bi+1 and not already present in U.

Then, given sub-epoch dimension s, the window passes from a batch to the next one in r sub-epoch,
or in other words in rs generations (we call epoch this period). In this way, the fitness function change
more smoothly and the evolution has more time to learn from the batch because the window is updated
after s generations.

Moreover, the batches are reused in a cyclic way; when the algorithm iterates for more than k
epochs and thus runs out of available batches, the batch sequence restarts from the first one.

Since the fitness function relies also on the batch and we need a fixed one to compare the
individuals across the epochs; consequently, at the end of every epoch e, the best individual x∗e is
calculated as the NN in P , which reaches the highest accuracy in the validation set VS. The global best
network x∗∗ found so far is then eventually updated.

A restart method is used to avoid a premature convergence of the algorithm; The restart strategy
adopted discard all the individuals in the current population, except the best one, and for the next
algorithm iteration a new population randomly generated is used. The restart technique is applied at
the end of each epoch e, if the fitness evaluation of x∗∗ did not change for a given number M of epochs.
The complete algorithm, namely DENN, is depicted in Algorithm 1.

In the algorithm DENN, the function generate_offspring execute the mutation and the crossover
operators in order to produce the trial individual, whereas the function best_score finds the best network
x∗ and computes the respective score f ∗ among all the individuals in the population.
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4.1. Fitness Function

In the case of classification problems, the fitness function used to evaluate the individual x is
the well-known cross-entropy. In this case, the optimization problem is to find the neural network x
minimizing the H(x) value, computed as

H(x) = −
b

∑
i=1

C

∑
j=1

z′ij log(zij) (5)

where z′ij and zij are, respectively, the value predicted by x and the actual value for the i-th record of U
with respect to the j-th class (C is the number of classes).

4.2. The Interm Crossover

We have implemented a new particular crossover operator called interm, which is a randomized
version of the arithmetic crossover. If xi is the target and ȳi is the donor, then the trial yi is obtained in
the following way; for each component x(h)i of xi and ȳ(h)i of ȳi, let a(h)i be a vector of d(h) randomly
numbers, generated with a uniform distribution [0, 1], then

y(h)ij = a(h)ij x(h)i + (1− a(h)ij )ȳ(h)ij

for j = 1, . . . , d(h).

4.3. The MAB-ShaDE Mutation Method

We have also implemented a variant of ShaDE algorithm, called MAB-ShaDE. MAB-ShaDE has a
solution archive and a history of the best CR and F parameters, like ShaDE (Section 2).

The novelty of MAB-ShaDE is in the method used, inspired to the Multi-armed bandit UCB1 [31],
to select one mutation strategy among a list of possible operators.

We consider the mutation strategies as arms of the bandit and the epochs as the rounds where the
reward of the selected arm is computed. Therefore, for each mutation operator OP, UCB1 stores the
average value of the reward μOP and the number of epoch nOP in which OP has been used. After the
end of the epoch e, the operator

O = arg max
OP

(μOP +
√

2 log e/nOP)

is chosen as mutation strategy for the next epoch.

5. Experiments

In this section, we describe the experiments performed to assess the effectiveness of DENN
algorithm as an alternative to backpropagation for neural network optimization.

Moreover, we are interested to find the best algorithm combination and, in particular, the best
mutation and crossover operators. To do that we organized two rounds of experiments. First of all, we
tested all the possible combinations in order to define the best algorithm singularly for each dataset
and the global best. These experiments are described in Section 5.3 and allow us to conclude that
there is no winner combination if we consider the results grouped by dataset, whereas we can say
that the combination of ShaDE with curr_p_best and interm globally perform better than any other
combination. Then, we decided to verify the effectiveness both in term of computational effort and
accuracy compared to the classical backpropagation. These results are shown in Section 5.2.

All the networks used in these experiments are without any hidden layer.
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DENN has been implemented as a C++ program (Source code available at https://github.com/
Gabriele91/DENN). The results presented here are obtained with a computer having a CPU AMD
Ryzen 1600 and 16GB RAM.

5.1. Datasets

We tested DENN on various classification datasets from the UCI repositories (https://archive.
ics.uci.edu/ml/datasets) (MAGIC, QSAR, and GASS) and also on the well-known MNIST (http:
//yann.lecun.com/exdb/mnist/) dataset for hand-written digit classification. They have been chosen
because of their differences on the number of features and records. Moreover, we chose the MNIST
dataset because it is a classical challenge with well-known results obtained by various NN classification
systems. Note that these datasets are also considered as interesting challenges in [15].

• MAGIC Gamma telescope:dataset with 19,020 records, 10 features, and two classes.
• QSAR biodegradation: dataset with 1055 records, 41 features, and two classes.
• GASS Sensor Array Drift: dataset with 13,910 records, 128 features, and six classes.
• MNIST: dataset with 70,000 records, 784 features, and 10 classes.

5.2. System Parameters

The DENN algorithm depends on various parameters: some directly deriving from the DE (F,
CR, the auto-adaptive variant of DE, the mutation, and crossover operators), other depending on the
batching system (s, b, and r). For each dataset we analyzed the following parameters,

• the auto-adaptive variant of DE (simply called Method),
• the Mutation operator,
• the Crossover operator,
• the number s of generations of a sub-epoch,
• the batch/window size b, and
• the ratio r between the batch size and the number of records changed in the window at each

sub-epoch.

and their values are shown in Table 1.

Table 1. Parameters values.

Parameter Values

Method JDE, JADE, ShaDE, L-ShaDE, MAB-ShaDE, SAMDE
Mutation rand/1, curr_to_pbest, DEGL
Crossover bin, interm
b low, mid, high
r 1, 1

2 , 1
4

s b
r , b

2r , b
4r

We have chosen three levels for the window size b, called low, mid, and high, which depend on the
dataset size, hence they correspond to different values for each dataset (see Table 2).

Table 2. Size of batches for each dataset.

Dataset Low Mid High

MAGIC 20 40 80
QSAR 10 20 40
GASS 20 40 80
MNIST 50 100 200
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We have also chosen three levels for the length s of the sub-epoch, which are proportional to
the number b/r of records changed at each sub-epoch. For instance, the lowest level is b

4r , which
corresponds to a number of generations equal to 1/4 of b/r. The main motivation of this choice is that
DENN should need more generations with larger batches/windows.

Another aspect of our tests is that we have used a double version for each dataset, the original one
and the normalized one. In this way, we can see if the normalization process affects the performances
of DENN.

As we implemented a complete test for each possible combination in each dataset and we run the
same configuration five times, we collected accuracy values and computation time for 30,240 runs.

All the results are stored on GitHUB (Results available at https://github.com/Gabriele91/DENN-
RESULTS-2019); in this paper, only the most significant are shown.

5.3. Algorithm Combination Analysis

The first analysis has been made on the convergence graphics, where for each dataset the data of
accuracy has been plotted during the generations. For each dataset and for each self-adaptive method,
the data of the method which obtained the highest accuracy have been displayed in Figures 1–4.

Figure 1. Plots of convergences on MAGIC and MAGIC normalized datasets.

Figure 2. Plots of convergences on QSAR and QSAR normalized datasets.
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Figure 3. Plots of convergences on GASS and GASS normalized datasets.

Figure 4. Plots of convergences on MNIST and MNIST normalized datasets.

From the plots, it is possible to see that, excluding the cases where the differences are not
significant, MAB-ShaDE works well on smaller datasets (MAGIC and QSAR), whereas ShaDE is the
best method for larger datasets.

5.4. Convergence Analysis

In this subsection, we discuss the convergence across all DE used and analyzed in this paper on
the datasets discussed before. On the MAGIC dataset, SHADE and L-SHADE converge in around
1750 generations, whereas the proposed MAB-SHADE requires only 250 generations to achieve a
solution with a comparable quality. Other methods were able to discover lower quality solutions only.
Regarding the other binary classification problem, QSAR, MAB-SHADE converges faster than all the
other methods in less than 200 generations, while simultaneously obtaining a higher quality solution.

On the GASS multi-class problem, MAB-SHADE follow the same convergence path of L-SHADE,
whereas SHADE has a slow convergence, but the quality of result reached by SHADE is slightly better,
conversely, the other methods do not reach a satisfactory solution.

On the image classification problem MNIST, SHADE and L-SHADE resulted the best algorithms
in terms of the solution quality and the time of convergence, whereas the other methods did not obtain
comparable solutions in terms of quality; noticeably, MAB-SHADE did not get stuck, but it is likely
that it requires more generations to converge to a solution.

We also performed the same tests with normalized versions of the datasets, finding susceptible
differences with the previous results.

On MAGIC all the methods converged to the same solution, whereas on QSAR the best solution
was reached by MAB-SHADE and jDE. Regarding GASS, no analyzed method reached a solution
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comparable in terms of quality to the solutions found on the corresponding original dataset. Finally,
on MNIST all the methods, except SAMDE, reached good solutions, which are, however, below the
solutions found with SHADE on the non normalized datasets.

Generally speaking, the best DE method is SHADE for the multi-class problems and MAB-SHADE
for binary classification. Anyway, the convergence curves of SHADE are close to those of MAB-SHADE
in the latter kind of problems.

Finally, it is worth to notice that MAB-SHADE performed systematically better than its direct
competitor SAMDE without requiring to choose a particular mutation strategy.

Quade Weighted Rank

As we have different results for different datasets, we applied the Quade test [48] in order to
obtain a global ranking which takes into account the differences among the datasets.

The Quade test considers that some datasets could be more difficult to deal with (i.e.,
the differences in accuracy of the various algorithms are larger). In this way, the rankings computed on
each dataset are scaled depending on the differences observed in the algorithms’ performances [48].

With reference to Table 3, for each algorithm combination, the weighted ranking values are shown
in the last column Quade rank.

These values are computed as follows.
Given the 756 parameter configurations we obtained by varying the values for each dimensions

as shown in Table 1, we memorized in vij the average accuracy value obtained by the configuration in
the row i on the dataset in the column j. The ranks rij of these values are computed for each dataset.
Ranks are also assigned to the datasets according to the sample range of accuracy values obtained on
it. The sample range within data set j is the difference between the largest and the smallest accuracy
vij within that data set. Let Qj be the rank assigned to the j-th dataset with respect to these values.
Then, the Quade weighted rank is obtained ordering the parameters configuration with respect to
Sj = ∑i rijQj.

In Table 3, the top 20 among the 756 configurations tested are shown. We can see that SHADE,
curr_p_best, interm, and b = high are the best choices.

Table 3. Top 20 Quade ranking for parameter configurations.

Rank Method Mutation Crossover b r s QUADE Rank

1 SHADE curr_p_best interm high 1 B
2R 2713

2 SHADE curr_p_best interm high 2 B
4R 3011

3 L–SHADE curr_p_best interm high 4 B
R 3199

4 SHADE curr_p_best interm mid 4 B
4R 3291

5 SHADE curr_p_best interm high 1 B
R 3330

6 SHADE curr_p_best interm low 2 B
2R 3365

7 JDE degl bin high 2 B
4R 3721

8 JADE curr_p_best interm high 2 B
R 3808

9 JDE curr_p_best interm high 1 B
R 3838

10 L–SHADE curr_p_best interm high 1 B
2R 3872

11 L–SHADE curr_p_best bin high 2 B
2R 3897

12 SHADE curr_p_best interm high 4 B
4R 3928

13 SHADE rand/1 interm high 1 B
2R 4108

14 L–SHADE curr_p_best interm high 2 B
R 4160

15 MAB–SHADE None bin high 1 B
R 4194

16 JADE curr_p_best interm mid 4 B
2R 4267

17 SHADE curr_p_best interm high 1 B
4R 4355

18 SHADE curr_p_best bin high 2 B
2R 4356

19 JADE degl bin low 2 B
4R 4423

20 JDE degl bin high 4 B
2R 4513
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5.5. Execution Times

The execution time of DENN changes with respect to the number of features and the size of batch.
Therefore, in Table 4, we show the average execution time in seconds of DENN in each datasets and
for each level of b. Note that the execution time is not sensitively affected by the normalization of
the datasets.

Table 4. Average execution times.

Dataset b = Low b = Mid b = High

MAGIC 0.571 0.593 0.612
MAGIC-N 0.583 0.591 0.625
QSAR 0.760 0.776 0.783
QSAR-N 0.748 0.752 0.779
GASS 7.740 9.676 10.819
GASS-N 7.751 9.617 10.797
MNIST 133.748 154.731 194.948
MNIST-N 132.615 155.842 191.055

In Table 4, the worst case required approximately three minutes for the computation of the
solution also thanks to a strong parallelization of the computation. Note that this point is a plus of
the evolutionary approach: in the case of an iterative method like backpropagation it would have
been impossible. Therefore, we can conclude that the time to reach the solution is reasonable and the
approach is feasible, even if it is slower when compared to gradient-based methods.

5.6. Comparison with Backpropagation

In this section, we compared our method to the Backpropagation (BPG) algorithm, using two
optimizer: the Stochastic Gradient Descendent (SGD) and the more powerful Adam. The experiments
were performed on the same datasets MAGIC, QSAR, GASS, and MNIST, using both the original and
the normalized versions.

The results are reported in Table 5, where for each dataset we compare the classification accuracy
obtained by NNs trained with BPG (using both optimizers) to the accuracy obtained by our method
(DENN). As it can be seen in the results, in such a scenario our method shows better performances or,
in some cases, comparable to the competitors. More specifically, DENN obtained higher accuracy if
compared to SGD on all classification problems, while ADAM performed better only on MNIST.

Table 5. Comparison BPG - DENN.

Dataset BPG+SGD BPG+ADAM DENN

MAGIC 73.0% 71.9% 76.6%
MAGIC-N 77.0% 78.2% 78.8%
QSAR 78.9% 72.5% 79.9%
QSAR-N 80.6% 80.6% 81.4%
GASS 73.9% 68.9% 86.2%
GASS-N 89.8% 94.6% 96.8%
MNIST 90.3% 90.7% 89.4%
MNIST-N 90.1% 90.5% 90.4%

The difference between MNIST and other datasets is about their features. In MNIST, the features
are just quantitative; whereas, in the other ones, some data has a quantitative nature and other data
are qualitative.

Generally, all the algorithms work better on normalized datasets, except that in MNIST, where
data have are already a high degree of homogeneity. On the other hand, in GASS the effect of using
normalized datasets is much greater for all the algorithms.

41



Mathematics 2020, 8, 69

Note that our method can be useful in MLP networks trained for problems on which traditional
algorithms can hardly achieve satisfying performances or need larger networks to achieve the
same results.

6. Conclusions and Future Works

In this paper the DENN framework, a learning algorithm for Neural Networks based on
Self-Adaptive Differential Evolution, is presented. Experiments show that the framework is able
to solve classification problems, reaching satisfying levels of accuracy even in case of large datasets.
The use of batch systems allows the application of DE to new untested domains. Indeed, it is worth
noticing that the size of the problems handled in this work is significantly larger than those tested in
other works available in literature.

Furthermore, the per-layer mutation and crossover strategies introduced in this work perform
better than the traditional DE used in previous works. From the experiments we found the following:

• the configuration of the Self-Adaptive ShaDE with curr_p_best and the new interm crossover
performs better than other settings,

• the slow change of batches allows to reach better results, and
• the MAB-ShaDE algorithm reduces the number of parameters at the cost of slightly

worse solutions.

The results obtained with DENN are almost always better than those obtained with
backpropagation. Moreover DENN appears to be robust than its competitor with respect to
the normalization.

Future research will investigate the possibility of using DENN as optimizer for other Neural
Network structures, including Convolutional Neural Networks, Recurrent Neural Networks,
and Neural Turing Machines. Another scenario could be the application of Evolutionary Algorithms to
those problems and domains where gradient-based optimizers do not perform as well as in supervised
learning. A first direction will be the application of DENN in the Reinforcement Learning context,
where a NN approximates the Value-Action Function (or Q Function) for agents in a nonlinear and
complex environment.
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Abstract: An interval concept lattice is an expansion form of a classical concept lattice and a rough
concept lattice. It is a conceptual hierarchy consisting of a set of objects with a certain number or
proportion of intent attributes. Interval concept lattices refine the proportion of intent containing
extent to get a certain degree of object set, and then mine association rules, so as to achieve minimal
cost and maximal return. Faced with massive data, the structure of an interval concept lattice is more
complex. Even if the lattice structures have been united first, the time complexity of mining interval
association rules is higher. In this paper, the principle of mining association rules with parameters
is studied, and the principle of a vertical union algorithm of interval association rules is proposed.
On this basis, a dynamic mining algorithm of interval association rules is designed to achieve rule
aggregation and maintain the diversity of interval association rules. Finally, the rationality and
efficiency of the algorithm are verified by a case study.

Keywords: interval concept lattice; association rules; mining algorithm; vertical union

1. Introduction

A concept lattice [1] is a conceptual hierarchy constructed according to the binary relationship
between objects and attributes in data sets. As an effective tool for knowledge representation, a concept
lattice is widely used in knowledge discovery, rule mining, information retrieval, and other fields
because of its accuracy and completeness [2–4].

Concept lattice theory mainly focuses on the following aspects: A concept lattice extent model [5–7],
concept lattice construction and rule extraction [8–10], concept lattice merging [11–15], concept lattice
reduction [16,17], concept lattice modification [18], etc.

In a classic concept lattice, the concept extents have all the attributes or only one attribute,
sometimes. Hence, the support and confidence degree of the extracted association rules would be
reduced greatly. To solve this problem, the authors have put forward a new concept lattice structure:
An interval concept lattice, and the construction methods, compression, and maintenance of lattice
structure were studied [19–22].

From the perspective of a concept lattice, the relationship between intents is association rules,
while the relationship between extents is its embodiment. A concept lattice is the unity of intent and
extent, and the relationship between its nodes also reflects the relationship between the generalization
and specialization of concepts. Therefore, a concept lattice is suitable for the application of a basic data
structure in association rules mining. Many scholars have conducted in-depth research on rule mining
based on a concept lattice [23–28].
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Previously, we studied the structure characteristics of an interval concept lattice and gave two
measurement standards of the uncertainty rule—precision and uncertainty. Then, a mining model of
interval association rule with parameters was constructed [29]. The algorithm can mine and optimize
rules according to the adjustment of parameters, which is of great significance to the mining of rules
with uncertainties. Next, the complex relationship between interval parameters and association
rules and the optimization algorithm of the rule base were given [30]. By adjusting the parameters,
the purpose of controlling and optimizing rules was achieved.

In the era of data explosion, people’s demand for data processing is getting higher and higher.
The real-time updating of data requires the efficient processing of dynamic data. For example, in the
supermarket shopping system, the massive transaction information generated every day can only
mine local association rules, but cannot provide a timely and accurate decision-making plan for
decision-makers as a whole. However, the time and space complexity of the process will increase
rapidly with the increase of the amount of data, and the mining association rules will be missing.
Therefore, it is necessary to study the dynamic mining of interval association rules in order to grasp
uncertain rules in real time.

The authors have studied the consistency of interval concept lattices, discussed the decision
theorem of the concept of consistent intent, and designed a vertical union algorithm of interval concept
lattices based on the breadth-first principle [31]. Furthermore, the sequential traversal method was
used to scan the lattice structure, and a union algorithm of interval concept lattices was proposed from
a transverse point of view [32]. Based on the research results of the union algorithm of interval concept
lattice, this paper carries out the dynamic mining of interval association rules.

2. Concepts and Methods

2.1. Interval Concept Lattice

Definition 1 ([33]). For the formal context (U, A, R), where U = {x1, x2, · · · , x3} is the object sets and each
xi(i ≤ n) denotes an object; A = {a1, a2, · · · , am} is the attribute set, and each aj( j ≤ m) denotes an attribute;
R is the binary relationship between U and A. R ⊆ U × a. If (x, a) ∈ R, then we record that x has the attribute a,
and write as xRa.

Definition 2 ([33]). For the formal context (U, A, R), operators f , g are defined as follows:

∀x ∈ U, f (x) =
{
y
∣∣∣∀y ∈ A, xRy

}
, i.e., f is the mapping between x and its attributes;

∀y ∈ a, g(y) =
{
x
∣∣∣∀x ∈ U, xRy

}
, i.e., g is the mapping between y and its objects.

Definition 3 ([33]). For the formal context (U, A, R), if f (X) = Y, g(Y) = X for X ⊆ U, Y ⊆ A, then the
sequence < X, Y > is called a formal concept, or concept for short. X is the extent and Y is the intent.

Rough concept lattice RL(U, A, R) based on rough set theory was studied in Reference [7],
where the upper approximation extent and lower approximation extent refer to the maximal concept
set and the minimal concept set respectively which have all the attributes in Y ⊆ A.

Definition 4 ([33]). For the formal context (U, A, R) and its rough concept lattice RL(U, A, R), (M, N, Y) is
the rough concept. Set an interval [α, β] (0 ≤ α ≤ β ≤ 1), then α upper bound extent Mα and β lower bound
extent Mβ are:

Mα =
{
x
∣∣∣x ∈M,

∣∣∣ f (x) ∩Y
∣∣∣/|Y| ≥ α, 0 ≤ α ≤ 1

}
(1)

Mβ =
{
x
∣∣∣x ∈M,

∣∣∣ f (x) ∩Y
∣∣∣/|Y| ≥ β, 0 ≤ α ≤ β ≤ 1

}
(2)
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Y is the concept intent and |Y| is the number of elements in Y, that is base number. Mα refers to the objects
which may be covered by α× |Y| attributes or more in Y. Mβ refers to the objects which may be covered by β× |Y|
attributes or more in Y.

Definition 5 ([33]). Let (U, A, R) be a formal context and (Mα, Mβ, Y) be an interval concept. Then, Y is the
intent; Mα is the α upper bound extent and Mβ is the β lower bound extent.

Definition 6. Suppose that (U, A, R) has two interval concepts, (Mα1 , Mβ1, Y1) and (Mα2 , Mβ2, Y2) . If the two

meet Y1 ⊆ Y2, |Y2| − |Y1| = 1, Mα1 = Mα2 and Mβ1 = Mβ2, then (Mα1 , Mβ1, Y1) is called the redundant concept.

Definition 7. Suppose that (U, A, R) has an interval concept, (Mα, Mβ, Y) . If it meets Mα = Mβ = ∅,
then (Mα, Mβ, Y) is called the empty concept.

Definition 8. Suppose (U, A, R) has an interval concept, C = (Mα, Mβ, Y) . If C is neither the redundant
concept nor the empty concept, then C is called the existence concept. Lβα(U, A, R) is a collection of all the
existence concepts.

Definition 9. Lβα(U, A, R) refers to all the [α, β] interval concepts, which include: Existence concepts, redundant
concepts, and empty concepts, that is:

(M1
α, M1

β, Y1) ≤ (M2
α, M2

β, Y2)⇔ Y1 ⊇ Y2, (3)

Then “≤”is called the partial order relationship of Lβα(U, A, R).

Definition 10. If all the concepts in Lβα(U, A, R) meet “≤”, then Lβα(U, A, R) is called interval concept lattice
on the formal context (U, A, R).

Definition 11. In the interval concept lattice Lβα(U, A, R), if C = (Mα, Mβ, Y) ∈ Lβα(U, A, R), then the layer
of the Lattice Structure is |A|+ 1 and node C is at Layer |Y| . In particular, when Y = ∅, C was recorded on the
zeroth layer.

2.2. Interval Association Rules

Formal context (U, A, R) can describe a database, where U represents an object set; A represents
an attribute set. For x ∈ U, a ∈ A, xRa represents the item-set where a belongs to x.

Definition 12. Given the minimal support threshold θ, for any interval concept node C, if the number of objects
in the upper bound extent is not less than |U| × θ, then C is called the α-upper bound frequent node, and the
corresponding Y is called the α-upper bound frequent item-set; if the number of objects in the lower bound extent
is not less than |U| × θ, then C is called the β-lower bound frequent node, the corresponding Y is called the
β-lower bound frequent item-set.

The father and son concept in the interval concept lattice does not have a specific relationship in
frequency, which is different from the classical concept lattice.

If the association rule A⇒ B corresponds to the interval concept node (C1, C2)(C1 = (Mα1 , Mβ1, Y1),

C2 = (Mα2 , Mβ2, Y2)) and C1 ≥ C2, then rule A⇒ B is generated by node binary (C1, C2).
The α-upper bound association rules and the β-lower bound association rules can be extracted by

two lower bound extents of the interval concept. The calculation methods of confidence and support
are as follows:

47



Mathematics 2019, 7, 647

The α-upper bound rule A⇒ B :

Con f (A⇒ B) =
∣∣∣Mα2
∣∣∣/∣∣∣Mα1

∣∣∣ (4)

Support(A⇒ B) =
∣∣∣Mα2
∣∣∣/|U| (5)

The β-lower bound A⇒ B :

Con f (A⇒ B) =
∣∣∣∣Mβ2
∣∣∣∣/
∣∣∣∣Mβ1
∣∣∣∣ (6)

Support(A⇒ B) =
∣∣∣∣Mβ2
∣∣∣∣/|U| (7)

Definition 13. Given the minimal support threshold θ and the minimal confidence threshold c.
Node binary (C1, C2) is called α-upper bound candidate binary which consists of two frequent concept nodes
C1 = (Mα1 , Mβ1, Y1) and C2 = (Mα2 , Mβ2, Y2), where Mα2 ⊆ Mα1 and

∣∣∣Mα2
∣∣∣/∣∣∣Mα1

∣∣∣ ≥ c. When (C1, C2) meets

Mβ2 ⊆Mβ1 and
∣∣∣∣Mβ2
∣∣∣∣/
∣∣∣∣Mβ1
∣∣∣∣ ≥ c, it is called β-lower bound candidate binary.

Definition 14. For interval association rule A⇒ B, if A∪ B is frequent item-sets, Support(A⇒ B) ≥ θ and
Con f (A⇒ B) ≥ c , i.e.,

∣∣∣P(A∪ B)
∣∣∣/∣∣∣P(A)

∣∣∣ ≥ c, then it is called the strong association rule.

Definition 15. If A⇒ B is the strong association rule, then C⇒ D must be the strong association rule,
then we say “A⇒ B can derive C⇒ D”.

Theorem 1. If C ⊂ D, then A⇒ B can derive A⇒ C .

Proof. C ⊂ B⇒ |C| < |B| ⇒ |A∪C| < |A∪ B| ⇒ Support(A⇒ C) = |C| < |U| < Support(A⇒ B)=
|B|/|U| and Con f (A⇒ C) = |A∪C|/|A| < Con f (A⇒ B) = |A∪ B|/|A| . �

Theorem 2. In the interval concept lattice, if (C1, C2) and (C1, C3) are candidate binaries and C3 > C2,
then all the rules in Rules(C1, C3) can be derived from Rules(C1, C2).

Definition 16. Suppose A⇒ B is α-upper bound association rule derived from (C1, C2). The upper
bound extent of C1 is Mα1 = {x1, x2, . . . , xm, }. The intent of C1 is Y1.The upper bound extent of C2 is
Mα2 = {o1, o2, . . . , om, }. The intent of C2 is Y2. The precision of A⇒ B is

PDA⇒B = min
{

m
min
i=1

|xi.Y∩Y1|
|Y1| ,

n
min
i=1

|oi.Y∩Y2|
|Y2|

}
(8)

The uncertainty of A⇒ B is UDA⇒B = 1− PDA⇒B.

Definition 17. Let Ω = {Rule1, Rule2, · · · , Rulek} denotes to α -rules set, the uncertainty of Rulei is UDα−Ri,
then the uncertainty of α -rules sets is

UDα−Rluesset =
k

max
i=1

(UDα−Ri) (9)

Let Ω = {Rule1, Rule2, · · · , Rulem} denote to β -rules set, the uncertainty of Rulej is UDβ−Ri, then the
uncertainty of β -rules sets is

UDβ−Rluesset =
m

max
j=1

(UDβ−Ri) (10)

and the uncertainty of interval association rules is UD = max(UDα−Rluesset, UDβ−Rluesset).
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Theorem 3. Suppose the minimal support threshold θ and the minimal confidence threshold c . In the same
context, when one of the interval parameters α and β is unchanged and the other is larger, the process of extracting
association rules will change as follows:

(1) The number of frequent nodes generated does not increase;
(2) The node with the largest intent in frequent nodes does not increase in intent cardinality.
(3) The number of candidate binary arrays generated does not increase;
(4) The number of generated association rules does not increase.

3. Algorithm and Results

In the mining method of interval association rules, the lattice structure is united with the vertical
union algorithm first, and then the association rules are extracted by using the parametric association
rules mining algorithm. Because the structure of the interval concept lattice is complex, the memory
space required is large, and the time complexity of mining interval association rules after vertical
merging is high, this method does not meet the requirements of the current era of large data. In this
section, the principle of a vertical union algorithm of interval association rules is proposed, and on this
basis, a dynamic mining algorithm of interval association rules is designed.

3.1. Vertical Union Principle of Interval Association Rules

If the interval concept lattices Lβα(U1, A1, R1) and Lβα(U2, A2, R2) are consistent and A1 = A2 = A.

U1 ∩U2 = φ, then Lβα(U, A, R) can be gotten through the union of the two. Suppose the minimal
support threshold θ and the minimal confidence threshold c, we can extract the association rules of

Lβα(U1, A, R1) and Lβα(U2, A, R2). Here, α−Rluesset∗ is the upper bound association rules set derived

from Lβα(U1, A, R1). α−Rluesset∗∗ is the upper bound association rules set derived from Lβα(U2, A, R2);

α−Rluesset is the upper bound association rules set derived from Lβα(U, A, R).

C∗1 = (Mα∗1 , Mβ∗1 , Y1), C∗2 = (Mα∗2 , Mβ∗2 , Y2) and C∗1, C∗2 ∈Lβα(U1, A, R1);

C∗∗1 = (Mα∗∗1 , Mβ∗∗1 , Y1), C∗∗2 = (Mα∗∗2 , Mβ∗∗2 , Y2) and C∗∗1 , C∗∗2 ∈Lβα(U2, A, R2);

C1 = (Mα1 , Mβ1, Y1), C2 = (Mα2 , Mβ2, Y2) and C1, C2 ∈Lβα(U, A, R).

Now, taking the upper bound extent as an example (the union principle of lower bound extent
and upper bound extent), the vertical union of interval association rules α−Rluesset∗ and α−Rluesset∗∗
is carried out as follows:

Theorem 4. If C∗1, C∗2 constitutes the association rule, and Rules(C∗1, C∗2)∈α−Rluesset∗; C∗∗1 , C∗∗2 the constitutes
association rule, and Rules(C∗∗1 , C∗∗2 )∈α−Rluesset∗∗, then Rules(C1, C2)∈α−Rluesset.

Proof. Rules(C∗1, C∗2)∈α−Rluesset∗ and Rules(C∗∗1 , C∗∗2 )∈α−Rluesset∗∗, so:
Relation 1: Mα∗2 ⊆Mα∗1 and Mα∗∗2 ⊆Mα∗∗1 , then Mα∗2 ∪Mα∗∗2 ⊆Mα∗1 ∪Mα∗∗1 , i.e., Mα2 ⊆Mα1 .

Relation 2:
∣∣∣Mα∗2

∣∣∣∣∣∣Mα∗1

∣∣∣ ≥ c and
∣∣∣Mα∗∗2

∣∣∣∣∣∣Mα∗∗1

∣∣∣ ≥ c, then

∣∣∣Mα∗2

∣∣∣+ ∣∣∣Mα∗∗2

∣∣∣ ≥ c
(∣∣∣Mα∗1

∣∣∣+ ∣∣∣Mα∗∗1

∣∣∣),
∣∣∣Mα∗2

∣∣∣+ ∣∣∣Mα∗∗2

∣∣∣∣∣∣Mα∗1

∣∣∣+ ∣∣∣Mα∗∗1

∣∣∣ ≥ c, i.e.,

∣∣∣Mα2
∣∣∣∣∣∣Mα1
∣∣∣ ≥ c.

Then Rules(C1, C2)∈α−Rluesset can be derived from two relations. �
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Theorem 5. If at least one of the two association rules Rules(C∗1, C∗2) and Rules(C∗∗1 , C∗∗2 ) in Lβα(U1, A, R1) and

Lβα(U2, A, R2) does not exist, then there must be no Rules(C1, C2) in α−Rluesset.

Because the vertical union of interval association rules is based on the objects set with certain
proportion attributes, it is necessary to introduce support, confidence, accuracy, and uncertainty to
measure accurately.

The upper bound frequencies of C∗1, C∗2 are θ∗1 and θ∗2, respectively.
The upper bound frequencies of C∗∗1 , C∗∗2 are θ∗∗1 and θ∗∗2 , respectively.
The upper bound frequencies of C1, C2 are θ1 and θ2, respectively.
The support degree, confidence degree, accuracy, and uncertainty of Rules(C1, C2) obtained by

vertical union of association rules Rules(C∗1, C∗2) and Rules(C∗∗1 , C∗∗2 ) can be deduced from frequency to
its solution formula, as follows.

Theorem 6. The support degree of Rules(C1, C2) is:

Support(C1 ⇒ C2) =
|U1|θ∗2 + |U2|θ∗∗2
|U1|+ |U2| (11)

Theorem 7. The confidence degree of Rules(C1, C2) is

Con f (C1 ⇒ C2) =
|U1|θ∗2 + |U2|θ∗∗2
|U1|θ∗1 + |U2|θ∗∗1

(12)

Theorem 8. Rules(C1, C2) = Min
{
Rules(C∗1, C∗2), Rules(C∗∗1 , C∗∗2 )

}
.

3.2. Dynamic Mining Algorithms for Interval Association Rules

3.2.1. Algorithm Design

According to Theorems 4 and 5, the result of the vertical union of interval association rules only
occurs in the data with the same interval association rules and adjacent data. In order to ensure that
the mined interval association rules are not lost, the algorithm retains the non-united rules on the basis
of a vertical union of the same rules, which facilitates the mining of interval association rules later,
and measures the occurrence frequency and frequency of the same rules with frequency. The basic
idea of the algorithm is that whenever an interval association rule is generated, it is transformed into
an array representation, and it is mined with the set of interval rules that have been united and retain
the non-united rules, so that the interval rules can be aggregated again and again.

In order to distinguish different rules, association rules mined from interval concept lattices are
stored in the form of arrays RS[i] =

{
Rule, FN1, FN2, U, Support, Con f , PD, UD, Flag, Num

}
.

RS[i] represents the ith association rule in the interval association rules set RS;
Rule represents the interval association rules Rule(Cx, Cy);
FN1, FN2 represents the frequency degree of frequency nodes Cx and Cy in Rule(Cx, Cy);
U represents the number of objects in the context;
Support, Con f , PD and UD represents the support, confidence, accuracy, and uncertainty degree

of Rule(Cx, Cy);
Flag marked according to whether rules have been merged or not. Flag = 0 denotes that rules are

not united vertically; Flag = 1 indicates that the rules have been vertically united; Num denotes the
number of occurrences of rule Rule(Cx, Cy) in previously united rule sets.

Based on the above algorithm principle and analysis, we design a dynamic extraction and union
algorithm of interval association rules, DMA (Dynamic Mining Algorithm). See Algorithm 1.

50



Mathematics 2019, 7, 647

Algorithm 1. DMA (Dynamic Mining Algorithm)

Input: Association rule sets RS1, RS2, . . .RSk . . .

Output: Association rule set RS
Step1 RS = RS1;
Step2 The interval association rules in the rule set RSk is stored in the form of arrays. Set RS∗ and initialize.
Comparing the Rule of rule set RS and RSk, we unit interval association rules vertically according to Theorems
4 and 5. For the rules that have been united in RS and RSk, let Flag = 1 and put the united rule number in RS∗.
According to Theorems 6–8, calculate the frequency,Support, Con f , PD, and UD of Cx and Cy in RS∗. Flag=1,
Num = Num + 1. Delete the rules of Flag = 1 in RS and RSk, and renumbering. Let rules number in RS∗ add
the renumbering number in RS. Putting the remain rules of RS into RS∗; then renumbering in RSk, and putting
the remain rules of RSk into RS∗.
Rule Vertical Union (RS, RSk)

1 {
2 g = 0;

3 RS[g]∗ =
{
Rule, FN1, FN2, U, Support, Con f , PD, UD, Flag, Num

}
4 { Rule = ∅;
5 FN1 = FN2 = 0;

6 U = RS[1].U + RSk[1].U;
7 Support = Con f = PD = UD = Flag = 0;
8 Num = 1;
9 }
10 For ( i=1;|RS|; i++)
11 {For (j=1;|RSk|; j++)
12 If(RS[i].Flag = RSk[ j].Flag = 0|| RS[i].Rule = RSk[ j].Rule)
13 { g + 1;
14 Num + 1;
15 RS[i].Flag = 1;
16 RSk[ j].Flag = 1;

17 RS[g]∗.FN1 =
RS[i].U∗RS[i].FN1+RSk [ j].U∗RSk [ j].FN1

RS[i].U+RSk [ j].U

18 RS[g]∗.FN2 =
RS[i].U∗RS[i].FN2+RSk [ j].U∗RSk [ j].FN2

RS[i].U+RSk [ j].U

19 RS[g]∗.Support = RS[g]∗.FN2

20 RS[g]∗.Con f =RS[i].U∗RS[i].FN2+RSk [ j].U∗RSk [ j].FN2

RS[i].U∗RS[i].FN1+RSk [ j].U∗RSk [ j].FN1

21 RS[g]∗.PD =min
{
RS[i].PD, RSk[ j].PD

}
;

22 RS[g]∗.UD =1−RS[g]∗.PD;
23 }
24 }
25 For each RS[i] in RS;
26 {If RS[i].Flag = 0;
27 g + 1;
28 RS∗[g] = RS[i];}
29 For each RSk[ j] in RSk;
30 {If RSk[ j].Flag = 0;
31 g + 1;
32 RS∗[g] = RSk[ j];}
33 }

Step3 RS = RS∗
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3.2.2. Algorithm Analysis

The main content of DMA is embodied in the function Rule Vertical Union (RS, RSk). Lines 1 to 9
implement the initialization of parallel rule set RS∗. Lines 10–12 nested for loop implements searching
for interval association rules in RS and RSk that correspond to the same rules and are not united. Lines
13 to 16 number the interval association rules found in RS∗. Num+1 is used to count the rule, and the
corresponding rule Flag in united RS, RSk is recorded as 1. Lines 17 to 25 implement the assignment of
interval association rule RS∗[g]. In lines 26–34, the unconsolidated rules in RS, RSk are put into RS∗ to
maintain the diversity of the united rule set.

Compared with Step 2, the algorithm achieves the step requirements, and the assignment of Step
1 and Step 3 make the DMA algorithm dynamic, so that the algorithm has integrity and correctness.
Compared with the general method, the algorithm realizes the merging of rules to rules, eliminating
the process of vertical merging of interval concept lattices, thus greatly reducing the time complexity
and space complexity of the implementation process.

If the number of association rules in two sub lattices is n and m respectively, the time complexity
of the algorithm is less than O(n×m) + O(n) + O(m). Compared with the interval association rule
mining algorithm with parameters, the algorithm is more efficient.

3.3. Example Study

Set the formal contexts as shown in Tables 1 and 2:

Table 1. Formal context FC1.

a b c d e

1 1 1 1 0 0
2 0 0 0 1 0
3 1 1 0 1 0
4 1 0 1 0 1

Table 2. Formal context FC2.

a b c d e

(1) 1 0 1 1 0
(2) 1 1 0 1 0
(3) 0 1 0 1 1

Set α = 0.6, β = 0.7, θ = 50%, c = 60%.
The DMA algorithm is used to mine interval association rules in parallel. Take the upper bound

interval association rules as an example (the mining of lower bound association rules is similar).
Among them, the upper bound frequent nodes from FC1 and FC2 are shown in Tables 3

and 4 respectively, and the corresponding upper bound association rules are shown in Tables 5
and 6 respectively.

Table 3. The frequent nodes of FC1.

Frequent Node Frequent Degree Frequent Node Frequent Degree

a 75% acd 100%
b 50% ace 50%
c 75% ade 50%
d 50% bcd 75%
ab 50% bce 50%
ac 50% cde 50%

abc 75% abcd 50%
abd 50% abce 50%
abe 75% abcde 75%
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Table 4. The frequent nodes of FC2.

Frequent Node Frequent Degree Frequent Node Frequent Degree

a 67% acd 67%
b 67% ade 100%
d 100% bcd 100%
ad 67% bde 67%
bd 67% cde 67%
abc 67% abcd 67%
abd 100% abde 67%
abe 67% abcde 100%

Table 5. The previous rules and its measurement results on FC1.

Rule Support Confidence Accuracy Uncertainty Frequent Number

a⇒ bcde 75% 100% 60% 40% 1
abc⇒ de 75% 100% 60% 40% 1
abe⇒ cd 75% 100% 60% 40% 1
acd⇒ be 75% 75% 60% 40% 1
a⇒ bce 50% 67% 75% 25% 1
c⇒ abe 50% 67% 75% 25% 1
ac⇒ be 50% 100% 75% 25% 1
abc⇒ e 50% 67% 67% 33% 1
abe⇒ c 50% 67% 67% 33% 1
ace⇒ b 50% 100% 67% 33% 1
a⇒ bcd 50% 67% 75% 25% 1
b⇒ acd 50% 100% 75% 25% 1
ab⇒ cd 50% 100% 75% 25% 1
abc⇒ d 50% 67% 67% 33% 1
abd⇒ c 50% 100% 67% 33% 1
bcd⇒ a 50% 67% 67% 33% 1
c⇒ de 50% 67% 67% 33% 1
c⇒ be 50% 67% 67% 33% 1
a⇒ de 50% 67% 67% 33% 1
a⇒ ce 50% 67% 67% 33% 1
c⇒ ae 50% 67% 67% 33% 1
ac⇒ e 50% 100% 67% 33% 1
a⇒ be 75% 100% 67% 33% 1
a⇒ bd 50% 67% 67% 33% 1
b⇒ ae 50% 100% 67% 33% 1
ab⇒ e 50% 100% 67% 33% 1
a⇒ bc 75% 100% 67% 33% 1
a⇒ c 50% 67% 100% 0% 1
c⇒ a 50% 67% 100% 0% 1
a⇒ b 50% 67% 100% 0% 1
b⇒ a 50% 100% 100% 0% 1

The DMA algorithm is used to mine the previous association rules of FC1 and FC2 in parallel.
The parallel results of the different association rules are the same part of the combined association
rules deleted in Tables 5 and 6, respectively.

The parallel results of the same association rules are shown in Table 7.
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Table 6. The previous rules and its measurement results on FC2.

Rule Support Confidence Accuracy Uncertainty Frequent Number

d⇒ abce 100% 100% 60% 40% 1
abd⇒ ce 100% 100% 60% 40% 1
ade⇒ bc 100% 100% 60% 40% 1
bcd⇒ ae 100% 100% 60% 40% 1
b⇒ ade 67% 100% 75% 25% 1
d⇒ abe 67% 67% 75% 25% 1
bd⇒ ae 67% 100% 75% 25% 1
abd⇒ e 67% 67% 67% 33% 1
abe⇒ d 67% 100% 67% 33% 1
ade⇒ b 67% 67% 67% 33% 1
bde⇒ a 67% 100% 67% 33% 1
a⇒ bcd 67% 100% 75% 25% 1
d⇒ abc 67% 67% 75% 25% 1
ad⇒ bc 67% 100% 75% 25% 1
abc⇒ d 67% 100% 67% 33% 1
abd⇒ c 67% 67% 67% 33% 1
acd⇒ b 67% 100% 67% 33% 1
bcd⇒ a 67% 67% 67% 33% 1
d⇒ ce 50% 67% 67% 33% 1
b⇒ de 67% 100% 67% 33% 1
d⇒ be 67% 67% 67% 33% 1
bd⇒ e 67% 100% 67% 33% 1
d⇒ bc 100% 100% 67% 33% 1
d⇒ ae 100% 100% 67% 33% 1
a⇒ cd 67% 100% 67% 33% 1
d⇒ ac 67% 67% 67% 33% 1
ad⇒ c 67% 100% 67% 33% 1
b⇒ ae 67% 100% 67% 33% 1
d⇒ ab 100% 100% 67% 33% 1
a⇒ bc 67% 100% 67% 33% 1

Table 7. The previous rules set and its measurement results after vertical union.

Rule Support Confidence Accuracy Uncertainty Frequent Number

a⇒ bcd 57% 80% 75% 25% 2
abc⇒ d 57% 80% 67% 33% 2
abd⇒ c 57% 80% 67% 33% 2
bcd⇒ a 57% 67% 67% 33% 2
a⇒ bc 71% 100% 67% 33% 2

4. Discussion

Considering the characteristics of interval concept lattices, the vertical union method of interval
concept lattices and the principle of mining association rules with parameters were studied in this
paper. Considering the intrinsic relationship between interval association rules, this paper presents
some metrics, such as the confidence and credibility of united rules, and proposes a dynamic mining
algorithm for interval association rules, which realizes rule aggregation and keeps the diversity of
interval association rules. The rationality and efficiency of the algorithm are proved by algorithm
analysis and case study, which provides timely, effective and abundant decision information for
decision makers in data analysis. The next step is to optimize the algorithm for incomplete information
systems in the context of large data. In the mining process, the stability and timing choice of the rule
union is another problem to be studied in depth.
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Abstract: Self-adaptive variants of evolutionary algorithms (EAs) tune their parameters on the go
by learning from the search history. Adaptive differential evolution with optional external archive
(JADE) and self-adaptive differential evolution (SaDE) are two well-known self-adaptive versions
of differential evolution (DE). They are both unconstrained search and optimization algorithms.
However, if some constraint handling techniques (CHTs) are incorporated in their frameworks,
then they can be used to solve constrained optimization problems (COPs). In an early work,
an ensemble of constraint handling techniques (ECHT) is probabilistically hybridized with the
basic version of DE. The ECHT consists of four different CHTs: superiority of feasible solutions,
self-adaptive penalty, ε-constraint handling technique and stochastic ranking. This paper employs
ECHT in the selection schemes, where offspring competes with their parents for survival to the
next generation, of JADE and SaDE. As a result, JADE-ECHT and SaDE-ECHT are developed,
which are the constrained variants of JADE and SaDE. Both algorithms are tested on 24 COPs and
the experimental results are collected and compared according to algorithms’ evaluation criteria
of CEC’06. Their comparison, in terms of feasibility rate (FR) and success rate (SR), shows that
SaDE-ECHT surpasses JADE-ECHT in terms of FR, while JADE-ECHT outperforms SaDE-ECHT in
terms of SR.

Keywords: evolutionary algorithms; formal methods in evolutionary algorithms, differential
evolution, self-adaptive differential evolutionary algorithms; metaheuristics; mutation strategies;
parameters’ adaptation; constrained optimization; ensemble of constraint handling techniques; and
hybrid algorithms

1. Introduction

Evolutionary algorithms (EAs) are nature inspired population-based stochastic search and
optimization methods. EAs work on the principle of natural evolution. In EAs, selected population
members based on a fitness/selection scheme, the so called parents, undergo perturbation by applying
genetic operators, mutation and crossover, to produce offspring. A selection scheme is then adopted
to select the fittest individuals with a certain probability among the parents and offspring for the
next generation. Many EAs, such as genetic algorithms (GAs), differential evolution (DE), particle
swarm optimization (PSO), firefly algorithm (FA), bee algorithm (BA), ant colony optimization (ACO),
evolution strategy (ES) etc. have been designed using different genetic operators and selection schemes
for the unconstrained optimization problems since 1959.
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Differential evolution (DE) [1] has proven to be a simple and efficient EA for many
optimization problems. A number of variants of DE were developed and are in practice for
unconstrained/constrained optimization [2–9]. In DE, a random initial population of size NP is
generated in the whole search space to a possible extent and the fittest/best with minimum function
value in the initial population is found. It then invokes one of the different mutation strategies such as
DE/rand/1, DE/current to best/2, DE/rand/2, DE/current-to-rand/1 to generate a mutant vector.
For example in DE/rand/1, the weighted difference scaled by a scaling factor F ∈ [0, 2] between two
population vectors is added to a target vector to generate a mutant vector. Afterwards, the parameters
of mutant vector and target vector are mixed with a certain crossover probability Cr ∈ [0, 1] to produce
the trial vector. Using the one-to-one-spawning selection mechanism, if the objective function value
of the trial vector is less than the objective function value of the target vector, in minimization sense,
then the trial vector replaces the target vector and becomes the parent for the next generation. The three
steps of producing the mutant vector, the trail vector and comparison of the target and trial vectors
are repeated until a stopping criterion is met. Also, the fittest/best individual is updated after every
generation by comparing the function values of the trial vector, if it is successful in selection process,
and fittest/best individual found so far. For more details of DE and different mutation strategies used
in it, the readers are referred to [10,11].

The performance of the original DE algorithm is highly dependent on the mutation strategies and
its parameters’ settings [11–14]. During different evolution stages, different strategies and different
parameters’ settings with different global and local search capabilities might be preferred. Huang et al.
developed a self-adaptive DE variant, SaDE [10]. SaDE automatically adapts the learning strategies
and the parameters’ settings during evolution. It probabilistically selects one of the four mutation
strategies: DE/rand/1, DE/current to best/2, DE/rand/2, DE/current-to-rand/1 for each individual
in the current population. J. Zhang and A. C. Sanderson developed another self-adaptive DE version,
self-adaptive differential evolution with optional external archive (JADE) [15]. JADE too automates
the parameters and employs the mutation strategy DE/current-to-pbest with the optional external
archive. The strategy DE/current-to-pbest uses not only the information of the best solution, but also
the information on the other good solutions. The external archive keeps record of the inferior solutions,
which are then used for diversity among population members and avoiding premature convergence.

For recent advances in DE, the readers are referred to [16,17]. EAs suit a variety of applications
in the fields of engineering and science [18–24]. Generally, EAs outperform traditional optimization
algorithms for problems which are not continuous, non-differentiable, multi-modal, noisy and not
well-defined. However, EAs are unconstrained optimization techniques. They are not capable to
directly solve COPs having constraints of any kind (e.g., equality, inequality, linear and non-linear etc.).
To overcome this problem, CHTs are used with EAs to handle all types of constraints. The last three
decades have witnessed many techniques for handling constraints by EAs [20,25]. Michalewicz and
Schoenauer [26] categorized them into five classes: preserving feasibility of solutions, adopting penalty
functions, separating feasible solutions from infeasible ones, decoding, and hybridizing different
techniques. However, according to no free lunch theorem (NFL) [27], a single CHT can not outperform
all other CHTs on each problem. Same is true for different EAs as well. Thus, one has to try and
combine different CHTs and EAs to design a suitable algorithm that can solve most of the problems.
So keeping in mind the NFL theorem and some other individual problems of COPs, an ensemble of
constraint handling techniques (ECHT) is combined with the basic version of DE in [28,29]. ECHT
consists of four different CHTs: superiority of feasible solutions, self-adaptive penalty, ε-constraint
handling technique and stochastic ranking. SaDE and JADE, being advanced self-adaptive variants,
are both unconstrained search and optimization algorithms. Like other EAs, they also need some
additional CHTs to solve constrained optimization problems (COPs).

In this work, the ECHT is implemented in the selection scheme, where offspring and parents
compete for survival to next generation, of JADE and SaDE. As a result, constrained versions of JADE
and SaDE, denoted by JADE-ECHT and SaDE-ECHT, are developed. The performance of JADE-ECHT
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and SaDE-ECHT is tested and compared based on feasibility rate (FR) and success rate (SR) on 24 COPs
according to algorithms’ evaluation criteria of CEC’06.

This rest of this paper is ordered as follows. The general COP and ECHT are detailed in Section 2.
Section 3 presents the proposed modified algorithms, JADE-ECHT and SaDE-ECHT. Section 4 presents
and discusses the experimental results obtained with JADE-ECHT and SaDE-ECHT. Finally, Section 5
describes the concluding remarks of this work.

2. Constrained Optimization Problem and ECHT

This section first describes the constrained optimization problem to be considered in this work.
It then illustrates the four CHTs of ECHT.

2.1. Constrained Optimization Problem (COP)

Time, physical, and geometric etc. type constraints exist in most of the real world optimization
problems. Such problems can be modelled as a COP. Mathematically, a COP, in case of minimization,
can be formulated as follows [30]:

Minimize f (x), x = [x1, x2, . . . , xn]
T

subject to

gi(x) ≤ 0 i = 1, . . . , l, (1)

hj(x) = 0 j = l + 1, . . . , p,

li ≤ xi ≤ ui, i = 1, 2, . . . , n..

In problem (1), f (x) is called cost function which will be minimized. In case of maximizing the
cost function, it needs to be multiplied with a negative sign. The n-dimensional vector x is called
decision variable vector. There are l inequality and p− l equality constraints. An inequality constraint
gj(x) becomes an active constraint, if gj(x

∗) = 0, where x∗ is global optimum solution, whereas
equality constraints, hj(x) = 0, are active by default. Generally, equality constraints are converted into
inequality constraints by |hj(x)| − ε ≤ 0, where ε is an acceptable tolerance for equality constraints.
According to CEC’06 [30] evaluation criteria, ε is set to 0.0001 (in this work, we will also use the same
value for ε ). li and ui are the lower and upper bounds of component xi of vector x. They form the
whole search space S. The solution x ∈ S is referred to be feasible, if it satisfies all the equality and
inequality constraints of problem (1); otherwise, it is called infeasible. We denote with F the set of
all feasible solutions and normally F ⊂ S. The total constraints’ violation for an infeasible solution is
defined as [28,29]:

v(x) =
∑

p
i=1 ci(g′i(x))

∑
p
i=1 ci

, (2)

where

g′i(x) =
{

max{gi(x), 0}, i = 1, . . . , l

max{|hj(x)| − ε, 0}, j = l + 1, . . . , p.
, (3)

where ci(= 1/g′maxi
) denotes weight parameter, g′maxi

denotes the maximum constraint violation of
constraint gi(x), i = 1, . . . , l obtained thus far. It maybe noted that ci changes during the evolution
process. This helps in balancing how each constraint contributes in the problem irrespective of their
different numerical ranges. The four constraints handling techniques which are used in this work are
detailed as follows.
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2.2. Superiority of Feasible Solutions (SF)

As the name suggests, in SF feasible solutions have priority over infeasible solutions. SF was first
suggested by Deb [31]. In this method, two solutions, a parent xi and an offspring xj compete. The
parent xi is considered better than the offspring xj, if any of the subsequent three settings is met [31]:

• Parent, xi is feasible and offspring, xj is infeasible.
• Both parent and offspring, xi and xj are feasible, but parent, xi has minimum fitness value than

the offspring, xj.
• Both xi and xj are infeasible, and overall constraints’ violation v(xi) of parent, xi is less than

overall constraints’ violation v(xj) of offspring, xj, where v(xi) and v(xj) are calculated by using
Equation (2).

2.3. Self-Adaptive Penalty (SP)

Penalty methods are the most common approaches to handle constraints in the family of CHTs.
In these techniques, in order to penalize an infeasible solution, the cost value of each infeasible
solution and a penalty term corresponding to its constraints’ violation are added, in minimization
sense (subtracted in maximization sense). In SP [28], an attempt has been made to facilitate the
algorithm to search for feasible solutions, in case there are few feasible solutions, and find the optimum,
in case there are enough feasible solutions. For this purpose, two penalties are added to the cost of
an infeasible solution. This help in identifying the best infeasible solutions in the existing population.
The amount of the added penalties considers the number of feasible solutions that exist in the current
population. Thus, if there are few feasible solutions in the combined population of parents and
offspring, the amount of penalty to infeasible individuals with higher constraints’ violation will be
greater. On the contrary, with many feasible solutions, the fittest infeasible solutions in terms of cost
are less penalized.

2.4. The ε-Constraint (EC) Handling Technique

The ε-constraint (EC) handling technique [32] adopts the parameter ε to relax the active constraints.
The parameter ε is updated until a fixed generation counter is reached. Afterwards, ε becomes 0 to get
individuals with no constraints’ violation (for detailed formulation of this technique, please see [28,32]).

2.5. Stochastic Ranking (SR)

SR [33] stochastically balances overall constraints’ violation and fitness function value. A solution
is ranked based on its cost value, if it is feasible or if a randomly generated number is smaller than
a probability factor p f ; otherwise, it is ranked on the constraints’ violation. The proposed value of
p f = 0.475. However, if this constant value is not used, then it decreases linearly from p f = 0.475 to
p f = 0.025 from initial generation to the last generation.

In [28], the ECHT is tested with evolutionary programming (EP) and basic DE. In this paper, we
hybridize ECHT with the advanced versions of DE, JADE [15] and SaDE [10]

3. JADE-ECHT and SaDE-ECHT

In this section, we first give the algorithmic details of JADE-ECHT, which is then followed by the
details of SaDE-ECHT.

3.1. JADE-ECHT

JADE [15] is an updated version of DE. It is also an unconstrained optimization algorithm. So it
needs some additional CHTs to solve COPs. In this work, we embed the four above discussed CHTs in
the selection scheme of JADE to modify it for solving COPs. The whole procedure of the proposed
technique JADE-ECHT, shown in Figure 1, is discussed as follows.
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Initialize population and param-
eters of JADE and four CHTs

Divide population into four subgroups of same
size and evaluate solutions in each subgroup

Apply JADE mutation and crossover op-
erators on each parent subgroup to gen-
erate its corresponding offspring sub-

group; Evaluate each offspring subgroup

Combine each parent subgroup
with four offspring subgroups

Parents for the next generation are selected from
the four groups according to each CHT. Add

unsuccessful parents to Archive and update sets
of successful mutation factors and crossovers

Remove solutions randomly fromArchive
to keep its size equal to population size

Is stopping criterion met?

Output Optimal Solutio

Go back

yes

no

Figure 1. Flowchart of self-adaptive differential evolution with optional external archive (JADE)-ensemble
of constraint handling techniques (ECHT).

Step 1: generate initial population P, set the generation number t = 1, initial crossover probability
μCR = 0.5, initial mutation factor μF = 0.5, the set of archive inferior solutions Ai = ∅, the
sets of successful mutation factors and crossovers, Si

F = ∅, Si
CR = ∅, respectively, where

i = 1, . . . , 4.
Step 2: divide population P into four subpopulations, Pi, i = 1, . . . , 4 each of size PS (population size

to be tackled by each CHT). Set parameters PARi, i = 1, . . . , 4 of PS individuals each with
dimension D according to the rules of JADE and corresponding CHT. Also, calculate Fi

l and
CRi

l , ∀ l ∈ {1, . . . , PS}, where CRi
l = randni

l (μCR, 0.1), Fi
l = randni

l (μCR, 0.1).
Step 3: compute the cost and the total constraints’ violation for every solution in each subpopulation

using Equations (1)–(3).
Step 4: each parent subpopulation (Pi, i = 1, . . . , 4) generates offspring subpopulation (OFFi, i =

1, . . . , 4) as a result of applying mutation and crossover operators, respectively as follows [15]:

vi
l,t = xi

l,t + Fi
l .(xi

pbest,t − xi
l,t) + Fi

l .(xi
rl

1,t − x̃i
rl

2,t),

where xpbest,t is one of the 100P% best vectors. and x̃i
rl

2,t
�= xi

rl
1,t
�= xi

l,t are chosen randomly

from the existing population, P and from the union of current population and archived
population, P ∪ A. The archive A retains the parent individuals that are unsuccessful in the
selection scheme.

ui
l,t =

{
vi

l,t, if (randj[0, 1] < μCR or (j = jrand)

xi
l,t, otherwise .

(4)

In Equation (4), vi
l,t and xi

l,t are the lth components of the ith mutant and trial vectors in
generation t.

Step 5: evaluate the cost and the total constraints’ violation for every offspring in each subpopulation
using Equations (1)–(3). Every offspring holds the cost and constraints values distinctly.
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Step 6: each parent subpopulation is grouped together with its own offspring and the offspring
produced by the remaining three subpopulations corresponding to different CHTs. This way
four different groups of populations are generated.

Step 7: Parents population P for the next generation is selected from the four groups according to the
rule of each CHT. Unsuccessful parents are added to the archive Ai. All successful crossover
probabilities from CRi

PS and mutation factors from Fi
PS are added to Si

CR and Si
F.

Step 8: Remove solutions randomly from Ai so that |Ai| ≤ PS. Update μCR and μF adopting the
formulations of [28].

Step 9: If the stopping criteria are not met, go to Step 2; otherwise, stop.

3.2. SaDE-ECHT

SaDE [10] is also an unconstrained optimization algorithm. Like JADE and other EAs, it also
needs some additional mechanisms to solve COPs. In this work, the four CHTs of ECHT are used in
the selection scheme of SaDE for solving COPs. The whole procedure of proposed SaDE-ECHT, shown
in Figure 2, is as follow:

Initialize population and param-
eters of SADE and four CHTs

Divide population into four subgroups of same
size and evaluate solutions in each subgroup

Apply SADE four mutation strategies
with adaptively adjusted probabilities and
crossover operator on each parent subgroup
to generate its corresponding offspring sub-
group; Evaluate each offspring subgroup

Combine each parent subgroup
with four offspring subgroups

Parents for the next generation are selected
from the four groups according to each CHT

Is stopping criterion met?

Output Optimal Solution

Go back

yes

no

Figure 2. Flowchart of JADE-ECHT.

Step 1: generate initial population P, initiate the generation counter t = 1, initial crossover probability
μCR = 0.5, initial mutation factor μF = 0.5.

Step 2: divide population P into four subpopulations, Pi, i = 1, . . . , 4 each of size PS. Set parameters
PARi, where i = 1, . . . , 4 of PS individuals each with dimension D and generate F in
[0,2] and CR in (0,1) by using normal distribution according to the rules of SaDE and
corresponding CHT.

Step 3: compute the cost and the total constraints’ violation for every solution in each subpopulation
using Equations (1)–(3).

Step 4: each parent in each subpopulation produces offspring by using one of the four mutation
strategies, DE/rand/1, DE/current-to-best/2, DE/rand/2, and DE/current-to-rand/1 (for
details of these strategies, please see [10]) and crossover given in Equation (4). For first
20 generations, probabilities are fixed and set to p1 = p2 = p3 = p4 = 0.25. Afterwards,
the Roulette Wheel selection is adopted to update the respective probability pi as follows [10]:

pi =
nsi

nsi + n fi
, i = 1, 2, 3, 4 (5)
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Step 5: evaluate the cost and the total constraints’ violation for every offspring in each subpopulation
using Equations (1)–(3).

Step 6: each parent subpopulation is grouped together with its own offspring and the offspring
produced by the remaining three subpopulations corresponding to different CHTs. This way
four different groups of populations are generated.

Step 7: parents population P for the next generation are selected from the four groups according to
the rule of each CHT.

Step 8: recalculate crossover probability after every five generations according to the mean of
recorded CR values.

Step 9: if the stopping criteria are not met, go to Step 2; otherwise, stop.

4. Experimental Results

The performances of JADE-ECHT and SaDE-ECHT were evaluated on the suit of CEC’06, which
contains twenty four benchmark functions. The PC configuration and parameters’ settings are given
in Tables 1 and 2.

Table 1. Configuration of the PC.

System Windows 8

CPU 3.00 GHz
Ram 2 GB

Language MATLAB 2012, 8.0.0.783

Table 2. Parameters’ settings.

Parameters’ Description Parameters’ Settings

Population size for each CHT PS = 25
Whole population size NP = 4 ∗ PS = 100

Maximum number of generations t = 2500
Total number of runs runs = 25

Initial value of mutation factor μF = 0.5
Initial value of crossover probability μCR = 0.5

Termination criterion based on maximum function evaluations max_FEs = 500,000.

4.1. Result Achieved

In Tables 3–6, a comparison of both algorithms after 5× 105 FEs is shown. All the obtained
results are gathered according to CEC’06 [30] algorithms’ evaluation criteria for problems g01 to g24.
The criteria include collecting statistics of the best (minimum), worst (maximum), median, mean and
standard deviation of the function error values f (x)− f (x∗), where f (x) is the best objective function
value obtained by the algorithm after 5× 105 FEs and f (x∗) is the know objective function value at the
optimal solution. The numbers in parenthesis after the objective function value show the number of
violated constraints, whereas c determines the number of violated constraints at the median solution
with violation greater than 0.1, 0.001, 0.0001. v shows mean violation at median solution, FR is the
feasibility rate which is defined as the number of feasible runs over total runs, and SR is success rate
given by the number of successful runs over total runs. A run is called a feasible run, if the algorithm
attains in max_FEs at least one feasible solution. Likewise, a run is successful, if the algorithm gets a
feasible solution for which the function error value is smaller than 0.0001 in max_FEs.

Table 3 compares the experimental results achieved by JADE-ECHT and SaDE-ECHT for problems
g01–g06. This table shows that SaDE-ECHT achieved better statistics in terms of best, median, mean
and standard deviation values than JADE-ECHT on problems g01 and g03, whereas JADE-ECHT
surpasses SaDE-ECHT on problems g02 and g05 except the best value of g02. It can also be observed
from the same table that both algorithms show comparable performance on problems g04 and g06.
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The table also shows that both algorithms have achieved 100% FR on all six problems, as can be
confirmed from the 0s in parenthesis after the objective function values, and columns for c and v.
The SR of SaDE-ECHT on problems g01–g03 is higher than JADE-ECHT. JADE-ECHT’s SR is better
than SaDE-ECHT on problem g05, while both algorithms obtained the same SR of 100% on problems
g04 and g06.

Table 3. Comparison of self-adaptive differential evolution with optional external archive
(JADE)-ensemble of constraint handling techniques (ECHT) and self-adaptive differential evolution
(SaDE)-ECHT after FES = 500,000 for g01–g06. The bold numbers indicate the better results.

Prob Algorithm Best Median Worst c v Mean Std FR SR

g01
JADE-ECHT 0(0) 0(0) 2.0000(0) 0, 0, 0 0 0.0800 0.4000 100% 96%

SaDE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

g02
JADE-ECHT 0.0001(0) 0.0004(0) 0.0276(0) 0, 0, 0 0 0.0064 0.0091 100% 16%

SaDE-ECHT 0(0) 0.0110(0) 0.1263(0) 0, 0, 0 0 0.0191 0.0254 100% 24%

g03
JADE-ECHT 0.0250(0) 0.1015(0) 0.4245(0) 0, 0, 0 0 0.1385 0.1036 100% 0%

SaDE-ECHT 0(0) 0.0122(0) 0.1524(0) 0, 0, 0 0 0.0243 0.0343 100% 12%

g04
JADE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

SaDE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

g05
JADE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

SaDE-ECHT 0(0) 91.4773(0) 515.4900(0) 0, 0, 0 0 110.1546 101.2496 100% 4%

g06
JADE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

SaDE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

Table 4 presents the experimental statistics achieved by JADE-ECHT and SaDE-ECHT for
problems g07–g12. The results of this table show that both algorithms obtained comparable statistics
for problems g08, g11 and g12. This table also shows superior performance of SaDE-ECHT in terms
median, mean and standard deviation values than JADE-ECHT on the problems g07, g09 and g10
except the best values on problems g07 and g10, where JADE-ECHT got better best values. The table
also confirms that both algorithms have achieved 100% FR on all six problems, as can be seen from the
0s in parenthesis after the objective function values, and columns for c and v. The SR of JADE-ECHT
on problems g07 and g10 is higher than SaDE-ECHT. SaDE-ECHT’s SR is better than JADE-ECHT on
problem g09, while both algorithms obtained the same SR of 100% on problems g08, g11 and g12.

Table 5 demonstrates the experimental results achieved by JADE-ECHT and SaDE-ECHT for
problems g13–g18. The results of this table show that both algorithms performed similar on problem
g16. This table also shows superior performance of SaDE-ECHT in terms best, median, mean and
standard deviation values than JADE-ECHT on problems g13 and g18 except the standard deviation of
g13, while JADE-ECHT performed better than SaDE-ECHT on problems g14, g15 and g17 except the
mean and standard deviation values of problem g14, where SaDE-ECHT got better values for the two
quantities. The table also confirms that both algorithms have achieved 100% FR on all six problems,
as can be seen from the 0s in parenthesis after the objective function values, and columns for c and v.
The SR of JADE-ECHT on problems g14, g15, and g17 is higher than SaDE-ECHT. SaDE-ECHT’s SR
is better than JADE-ECHT on problems g13 and g18, while both algorithms obtained the same SR of
100% on problem g16.
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Table 4. Comparison of JADE-ECHT and SaDE-ECHT after FES = 500,000 for g07–g12. The bold
numbers indicate the better results.

Prob Algorithm Best Median Worst c v Mean Std FR SR

g07
JADE-ECHT 0(0) 0.0879(0) 0.2651(0) 0, 0, 0 0 0.0976 0.0726 100% 4%

SaDE-ECHT 0.0001(0) 0.0114(0) 0.3230(0) 0, 0, 0 0 0.0518 0.0850 100% 0%

g08
JADE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

SaDE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

g09
JADE-ECHT 0(0) 0.0039(0) 0.0714(0) 0, 0, 0 0 0.0132 0.0192 100% 20%

SaDE-ECHT 0(0) 0(0) 0.0006(0) 0, 0, 0 0 0.0001 0.0002 100% 76%

g10
JADE-ECHT 0(0) 133.9677(0) 343.5425(0) 0, 0, 0 0 143.0809 105.4501 100% 4%

SaDE-ECHT 0.0012(0) 0.1709(0) 11.9004(0) 0, 0, 0 0 1.1748 3.0352 100% 0%

g11
JADE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

SaDE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

g12
JADE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

SaDE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

Table 5. Comparison of JADE-ECHT and SaDE-ECHT after FES = 500,000 for g13–g18. The bold
numbers indicate the better results.

Prob Algorithm Best Median Worst c v Mean Std FR SR

g13
JADE-ECHT 0.3849(0) 0.9118(0) 0.9459(0) 0, 0, 0 0 0.8275 0.1750 100% 0%

SaDE-ECHT 0(0) 0.3870(0) 0.8491(0) 0, 0, 0 0 0.3608 0.2828 100% 4%

g14
JADE-ECHT 0(0) 0.0174(0) 5.5402(0) 0, 0, 0 0 1.9415 2.2940 100% 40%

SaDE-ECHT 0.4527(0) 1.6397(0) 3.3912(0) 0, 0, 0 0 1.7600 0.6956 100% 0%

g15
JADE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

SaDE-ECHT 0(0) 0.0009(0) 2.5449(0) 0, 0, 0 0 0.3333 0.6971 100% 44%

g16
JADE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

SaDE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

g17
JADE-ECHT 0(0) 0(0) 74.0580(0) 0, 0, 0 0 8.8870 24.5623 100% 88%

SaDE-ECHT 7.9251(0) 91.2351(0) 297.1687(0) 0, 0, 0 0 92.9967 50.4589 100% 0%

g18
JADE-ECHT 0(0) 0.0001(0) 0.0206(0) 0, 0, 0 0 0.0011 0.0041 100% 52%

SaDE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

Table 6 presents the experimental results achieved by JADE-ECHT and SaDE-ECHT for problems
g19–g24. The results of this table show that both algorithms performed similar on problem g24. This
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table also shows superior performance of JADE-ECHT in terms best, median, mean and standard
deviation values than SaDE-ECHT on problems g19, g20 g21 and g23, except the best value of
problem g20 and standard deviation value of problem g23, while SaDE-ECHT performed better than
JADE-ECHT on problem g22. The table also confirms that both algorithms have achieved 100% FR on
problems g19 and g24, as can be seen from the 0s in parenthesis after the objective function values, and
columns for c and v. Both algorithms are unsuccessful in solving problems g20 and g20. The FR of
JADE-ECHT on problem g21 is lower than SaDE-ECHT, while the situation is vice versa in case of SR.
The FR and SR of JADE-ECHT on problem g23 is higher than SaDE-ECHT.

Table 6. Comparison of JADE-ECHT and SaDE-ECHT after FES = 500,000 for g19–g24. The bold
numbers indicate the better results.

Prob Algorithm Best Median Worst c v Mean Std FR SR

g19
JADE-ECHT 0(0) 1.4028(0) 3.6498(0) 0, 0, 0 0 1.5502 1.0136 100% 12%

SaDE-ECHT 0.3671(0) 1.7022(0) 6.6604(0) 0, 0, 0 0 2.3120 1.9699 100% 0%

g20
JADE-ECHT 3.2029(9) 6.2057(8) 15.4062(12) 1, 1, 2 1.1209 7.2582 3.5087 0% 0%

SaDE-ECHT 2.4461(11) 14.8045(9) 18.3511(11) 2, 4, 4 3.1946 13.1617 4.8304 0% 0%

g21
JADE-ECHT 0(0) 0.0633(0) 263.7866(1) 0, 0, 0 0 39.1073 63.9006 96% 44%

SaDE-ECHT 0(0) 77.3185(0) 110.2441(0) 0, 0, 0 0 71.8631 25.3368 100% 4%

g22
JADE-ECHT 390.4334(4) 10,565.5111(3) 19,715.2233(4) 3, 3, 3 17,5401.6096 10,557.6213 6162.3243 0% 0%

SaDE-ECHT 292.6511(3) 8834.7836(3) 19,258.8965(3) 3, 3, 3 90,196.1317 9289.3437 4998.2886 0% 0%

g23
JADE-ECHT 0(0) 8.5726(0) 601.1293(0) 0, 0, 0 0 117.5730 198.2664 36% 36%

SaDE-ECHT 182.7482(0) 357.7081(0) 518.9083(0) 0, 0, 0 0 344.3397 87.4764 0% 0%

g24
JADE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

SaDE-ECHT 0(0) 0(0) 0(0) 0, 0, 0 0 0 0 100% 100%

Figure 3 compares the convergence graphs of JADE-ECHT and SaDE-ECHT for problems g01–g06.
This figure shows that JADE-ECHT converges faster than SaDE-ECHT on problems g01, g05 and g06,
as less number of FEs have been used by it. In case of problem g04, the convergence of SaDE-ECHT is
speedy than JADE-ECHT, while in case of problems g02, g03 both algorithms converge at the same rate.

(a) JADE-ECHT (b) SaDE-ECHT

Figure 3. Convergence comparison of JADE-ECHT and SaDE-ECHT for g01–g06.
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Figure 4 compares the constraints’ violations vs FES graphs of JADE-ECHT and SaDE-ECHT for
problems g01–g06. This figure shows that both algorithms converge quickly to the feasible region and
the optimal solution (s) thus has zero constraints’ violations.

Figure 5 compares the convergence graphs of JADE-ECHT and SaDE-ECHT for problems g07–g12.
This figure shows that both JADE-ECHT and SaDE-ECHT converge at the same rate for all six problems
except g11, where JADE-ECHT converges faster than SaDE-ECHT.

(a) JADE-ECHT (b) SaDE-ECHT

Figure 4. Constraint violation comparison of JADE-ECHT and self-adaptive differential evolution
(SaDE)-ECHT for g01–g06.

(a) JADE-ECHT (b) SaDE-ECHT

Figure 5. Convergence comparison of JADE-ECHT and SaDE-ECHT for g07–g12.

Figure 6 compares the constraints’ violations vs FES graphs of JADE-ECHT and SaDE-ECHT for
problems g07–g12. This figure too shows that both algorithms converge quickly to the feasible region
and optimal solution(s) thus has zero constraints’ violations.

Figure 7 compares the convergence graphs of JADE-ECHT and SaDE-ECHT for problems g13–g18.
This figure shows that both JADE-ECHT and SaDE-ECHT converge at the same rate for all six problems
except g15, where JADE-ECHT converges faster than SaDE-ECHT.
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(a) JADE-ECHT (b) SaDE-ECHT

Figure 6. Constraint violation comparison of JADE-ECHT and SaDE-ECHT for g07–g12.

(a) JADE-ECHT (b) SaDE-ECHT

Figure 7. Convergence comparison of JADE-ECHT and SaDE-ECHT for g13–g18.

Figure 8 compares the constraints’ violations vs FES graphs of JADE-ECHT and SaDE-ECHT
for problems g13–g18. This figure shows that both algorithms explore the infeasible region for about
1000 iterations and then converge to the feasible region. As a result, optimal solution(s) thus obtained
has zero constraints’ violations.

(a) JADE-ECHT (b) SaDE-ECHT

Figure 8. Constraint violation comparison of JADE-ECHT and SaDE-ECHT for g13–g18.

68



Mathematics 2019, 7, 635

Figure 9 compares the convergence graphs of JADE-ECHT and SaDE-ECHT for problems g19–g24.
This figure shows that both JADE-ECHT and SaDE-ECHT converge almost at the same rate for all six
problems and utilize the maximum function evaluations.

(a) JADE-ECHT (b) SaDE-ECHT

Figure 9. Convergence comparison of JADE-ECHT and SaDE-ECHT for g19–g24.

Figure 10 compares the constraints’ violations vs FES graphs of JADE-ECHT and SaDE-ECHT
for problems g19–g24. This figure clearly shows that both algorithms failed to obtain any feasible
solution in case of problems g20 and g22, although maximum function evaluations have been used.

(a) JADE-ECHT (b) SaDE-ECHT

Figure 10. Constraint violation comparison of JADE-ECHT and SaDE-ECHT for g19–g24.

Figures 3,5,7 and 9 show the comparison of the convergence graphs vs FES of both algorithms
for all problems g01-g24, whereas Figures 4,6,8 and 10 demonstrate their comparison graphs of the
constraints’ violations vs FEs.

Overall, it can be concluded from the tabulated results and figures that both algorithms have
achieved feasible solution (s) and near optimal solution (s) on 22 problems out of 24 except problems
g20 and g22. The tables show that the FR of JADE-ECHT on 20 problems out of 24 is 100% and that
of SaDE-ECHT on 22 problems out of 24 is 100%. The SR of JADE-ECHT on most of the problems
is better than SaDE-ECHT. On two problems g20 and g22, the FR and SR of both algorithms are 0%.
The dimension of these two problems is higher than other 22 problems. Also, these two problems had
a large number of equality constraints. It can be noted from our experiments and some other literature
review that equality constraints were hard to handle.
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Table 7 compares the FR and SR of JADE-ECHT and SaDE-ECHT with other competing algorithms
of CEC’2006. It can be seen from the said table that both JADE-ECHT and SaDE-ECHT achieved
better FR, and can be placed at positions second and fourth, respectively. However, they failed to
achieve better SR than the competing algorithms. A reason of failure could be the use of four different
CHTs, where the resources (FEs) are distributed based on the success of each individual CHT, while
the competing algorithms used just one CHT. The same can also be observed from Tables 8 and 9,
where the median and standard deviation values obtained after 5 × 105 FEs of JADE-ECHT and
SaDE-ECHT are compared with other competing algorithms (the values of the two quantities for the
competing algorithms are taken from each source paper). Another reason of low SR could be observed
from the figures showing constraints’ violations vs FES graphs. It can be noticed from these graphs
that both algorithms converge quickly to the feasible region. As a result, they less explore the infeasible
region and consequently suffer from stagnation and premature convergence.

Table 7. Comparison of JADE-ECHT and SaDE-ECHT in terms of feasibility rate (FR) and success rate
(SR) with algorithms of CEC 2006.

Algorithms FR SR

DE 95.65% 78.09%

DMS-PSO 100% 90.61%

ε DE 100% 95.65%

GDE 92.00% 77.39%

jDE-2 95.65% 80.00%

MDE 95.65% 87.65%

MPDE 94.96% 87.65%

PCX 95.65% 94.09%

PESO+ 95.48% 67.83%

SaDE 100% 87.13%

JADE-ECHT 95.30% 57.04%

SaDE-ECHT 95.65% 46.43%
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5. Conclusions and Future Work

This paper employed ECHT in the frameworks of two self-adaptive variants of DE, JADE and
SaDE. Thus, constrained versions of the two algorithms, denoted by JADE-ECHT and SaDE-ECHT
were developed. The proposed algorithms JADE-ECHT and SaDE-ECHT were tested and compared
on CEC’06 benchmark test suit. The experimental results show that the SR of JADE-ECHT on most of
the tested problems is better than SaDE-ECHT, while SaDE-ECHT surpasses JADE-ECHT in terms of
FR. Both algorithms, like other algorithms in the literature, failed to solve problems g20 and g22 due
to the hard nature of these problems. In the future, we intend to design ECHT of some other CHTs,
embed it then in DE and swarm based algorithms to develop constrained evolutionary algorithms
and finally test these newly developed algorithms on some real-world and engineering optimization
problems. In addition to that we are going to use [34] for multipath routing protocols and for video
streaming systems [35] in order to get the advantages of these plus the benefits of the proposed work
would be very beneficent and demanded.
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Abstract: In this work, a coevolving memetic particle swarm optimization (CoMPSO) algorithm is
presented. CoMPSO introduces the memetic evolution of local search operators in particle swarm
optimization (PSO) continuous/discrete hybrid search spaces. The proposed solution allows one to
overcome the rigidity of uniform local search strategies when applied to PSO. The key contribution is
that memes provides each particle of a PSO scheme with the ability to adapt its exploration dynamics
to the local characteristics of the search space landscape. The objective is obtained by an original
hybrid continuous/discrete meme representation and a probabilistic co-evolving PSO scheme for
discrete, continuous, or hybrid spaces. The coevolving memetic PSO evolves both the solutions
and their associated memes, i.e. the local search operators. The proposed CoMPSO approach has
been experimented on a standard suite of numerical optimization benchmark problems. Preliminary
experimental results show that CoMPSO is competitive with respect to standard PSO and other
memetic PSO schemes in literature, and its a promising starting point for further research in adaptive
PSO local search operators.

Keywords: memetic particle swarm optimization; adaptive local search operator; co-evolution;
particle swarm optimization; PSO

1. Introduction

Memetic algorithms (MAs) are a class of hybrid evolutionary algorithms (EAs) and have been widely
applied to many complex optimization problems [1], such as scheduling problems [2–4], combinatorial
optimization problems [5–7], multi-objective optimization problems [8,9], and multimodal optimization
problems [10,11]. Population-based evolutionary approaches, such as genetic algorithms (GAs) or particle
swarm optimization (PSO) [12], are able to detect in a fast way the main regions of attraction, while
their local search abilities represent a major drawback [13] from the point of view of solution accuracy
and of the convergence behaviour, especially when applied to multimodal problems. MAs [1,14] have
recently received attention as effective meta-heuristics to improve generic EA schemes by combining
these latter with local search (LS) procedures [13,15]. In MAs, EA operations are employed for global
rough exploration, and LS operators are used to execute further exploitation of single EA individuals.
This allows one to enhance the EA’s capability to solve complicated problems. In the context of
PSO [12], the LS procedure can be regarded as an iterative local move of the particle. The scheme
has been successfully applied to improve different meta-heuristics such as simulated annealing [16],
GAs [17], and PSO [18]. A memetic algorithm that hybridizes PSO with LS, called MPSO, is proposed
in [11] for locating multiple global and local optima in the fitness landscape of multimodal optimization
problems (MMOPs). In this work, the local search is designed by means of two different operators,
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cognition-based local search (CBLS) and random walk with direction exploitation (RWDE), but no
adaptation technique of the local search operators is employed.

Although many GA-based MAs and other EA approaches employing meme evolution have been
proposed in the literature [13,19], the PSO memetic algorithms proposed so far fail to employ meme
evolution, probably because of the difficulty of designing the descriptors of the local search operators,
which are usually statically tailored to the problem, or the class of problems, at hand [7,8,10,11,20].
Indeed, they exhibit, at most, only some form of temporary adaptation that is not preserved or
transmitted through the generations as meta-Lamarkian memes [21].

Since meme evolution is able to provide adaptivity of the local search operators, and many
research results have shown that the advantages of the introduction of a local search in EAs, namely in
PSO, are generalized, we have set as a research objective the investigation of the possibility of
introducing memetic evolution of LS operators in a PSO context. The idea was to design a framework
where memes are not selected in a preliminary evolutionary phase, but where they evolve and adapt
during the search.

The research resulted in the coevolving memetic particle swarm optimization (CoMPSO)
algorithm presented in this work. CoMPSO is an algorithm for numerical optimization in a hybrid sea
and allows one to evolve local search operators in the form of memes associated with the PSO particles
exploring a continuous and/or discrete hybrid search space. A special feature of local search operators,
defined by the memes, is that they are applied in a probabilistic way. A meme is applied to the personal
best position of the associated particle with a given probability and every given number of iterations.
The basic idea is that memes are evolved themselves by means of the PSO-MEME evolution scheme,
a classical PSO scheme modified to manage meme vectors composed of hybrid continuous/discrete
components. Indeed, the PSO-MEME scheme distinguishes the evolution of continuous and discrete
components where a probabilistic technique is applied.

The rest of the paper is structured as follows. Some general issues concerning MAs and PSO
are recalled in Section 2.1, while the coevolving memetic PSO scheme is introduced in Section 2.2 by
describing the proposed co-evolving particle-meme scheme and a probabilistic technique for PSO
evolution of discrete integer components. Experimental results and comparisons with classical PSO
and state-of-the-art static memetic PSO are presented and discussed in Section 3. Finally, in Section 4,
a discussion of the advantages of the proposed approach and a description of future lines of research
conclude the paper.

2. Co-Evolution of Memes in PSO: Models and Methods

In this section, we introduce the architecture of CoMPSO by first recalling some concepts of
memetic algorithms and PSO, respectively in Sections 2.1.1 and 2.1.2. A detailed description of the
CoMPSO scheme is then provided in Section 2.2, focusing on the algorithmic aspects introduced to
guarantee diversity and on the representation for memes in the discrete, continuous, and hybrid space
search, and finally describing and explaining the motivations for meme co-evolution strategies.

2.1. Memetic Algorithms and Particle Swarm Optimization

2.1.1. Memetic Algorithms

MAs, first proposed by Moscato [14,22], represent a recent growing area of research in evolutionary
computation. The MA meta-heuristics essentially combine an EA with local search techniques that
can be seen as a learning procedure that makes individuals capable of performing local refinements.
MAs take inspiration from the Dawkins notion of “meme” [23] representing a unit of cultural evolution
that can exhibit refinement.

MAs are usually distinguished into three main classes. First generation MAs [22] are characterized
by a single fixed meme; i.e., a given local search operator is applied to candidate solutions of the
main EA according to different selection and application criteria (see, for example, [20]). The criteria
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used in the selection of candidates and the frequency of the local search application represent the
parameters of MAs. Second generation MAs, also called “meta-Lamarckian MAs” [21,24], reflect the
principle of memetic transmission and selection; i.e., they are characterized by a pool of given local
search operators (memes) that compete, based on their past merits, to be selected for future local
refinements. The choice of the best memes can be based on different criteria, such as the absolute
fitness of the candidate solutions associated with the meme or the fitness improvement due to past
applications. Finally, the most recent generation of MA schemes are the co-evolving MAs [10,15,25,26],
which introduce the idea of meme evolution. In this case, the pool of memes is not known a priori,
but the memes are represented and evolved by means of EA methods similar to those applied for
candidate solutions. The CoMPSO scheme proposed in this paper falls in this latter class.

2.1.2. Particle Swarm Optimization

Particle swarm optimization (PSO), originally introduced in [18], is a meta-heuristic approach
to continuous optimization problems that is inspired by the collective behavior observed in flocks of
birds. Further variants of PSO have been proposed in [12,27–33].

In PSO, a swarm of artificial entities—the so called particles—navigates the search space, aiming at
optimizing a given objective/fitness function f : Θ → R, where Θ ⊆ Rd is the feasible region of the
space. The set P = {p1, . . . , pn}, composed of n particles, is endowed with a neighborhood structure;
i.e., a set Ni ⊆ P of neighbors is defined for each particle pi. Every particle has a position in the search
space, which is iteratively evolved using its own search experience and the experience of its neighbors.
Therefore, PSO adopts both cognitive and social strategies [34] in order to focus the search on the most
promising areas.

At every iteration t ∈ N, any particle pi is composed of the following d-dimensional vectors:
the position in the search space xi,t, the velocity vi,t, the personal best position bi,t visited so far by the
particle, and the neighborhood best position gi,t visited so far among the particles in Ni.

Both positions and velocities of the PSO particles are randomly initialized. Then they are iteratively
updated until a stop criterion is met (e.g., the allowed budget of fitness evaluations has been consumed),
according to the following move equations (first studied in [18]):

vi,t+1 = ωvi,t + ϕ1r1,t(bi,t − xi,t) + ϕ2r2,t(gi,t − xi,t), (1)

xi,t+1 = xi,t + vi,t+1. (2)

In Equation (1), the weight ω is the inertial coefficient, ϕ1 and ϕ2 are the acceleration factors,
while the two random vectors r1,t, r2,t ∈ Rd are uniformly distributed in [0, 1]d. The first term of
Equation (1)—the inertia or momentum—is a memory of the trajectory followed by the particle so far.
Its aim is to prevent drastic changes in the search performed by the particle. The second term is the
cognitive component and represents the tendency of the particle to return to the best position ever visited
by itself. Finally, the third term—the social component—models the contribution of the neighbors in the
particle’s trajectory.

After every position update, the fitness of xi,t is evaluated. If it is better than those of the previous
personal and social best positions, these are updated accordingly.

Usually a fully connected topology is adopted as a neighborhood graph among the particles,
so only one global social best gt is needed instead of n local copies of it. It should be noted that
sometimes the particles can exceed the bounds of the feasible search space. A common practice to
address this issue, adopted also in our work, is to restart the out-of-bounds components of a particle in
a position randomly chosen between the old position and the exceeded bound [35,36].

2.2. Coevolving Memetic PSO

Coevolving memetic PSO (CoMPSO) is a hybrid algorithm that combines PSO with the evolution
of local search memetic operators that automatically adapt to the objective function landscape.
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CoMPSO evolution can be seen as the combination of two co-evolving populations: the particles
and the memes. The PSO particles represent the candidate solutions and evolve by means of the
usual PSO laws (see Section 2.1.2). The memes represent the local search operators applicable to
particles and are evolved by a modified PSO scheme that employs an innovative technique designed
to deal with the discrete domains present in the meme representation. Furthermore, another difference
with respect to the standard PSO scheme is the introduction of a diversity control mechanism that
prevents the premature convergence of the particle population to a local optimum. Other example of
the hybridization of PSO can be found in the area of pattern recognition of strings [37–40].

In the following, the general CoMPSO scheme (Section 2.2.1), the diversity control mechanism
of particles evolution (Section 2.2.2), the meme representation (Section 2.2.3), meme evolution
(Section 2.2.4), and the novel technique for managing discrete components in meme PSO (Section 2.2.5)
are introduced.

2.2.1. The CoMPSO Scheme

In the CoMPSO general scheme, a population of n particles, i.e., P = {p1, . . . , pn}, navigates the
search space following PSO dynamics while trying to find the optimum of the given fitness function f .
At each iteration, a local search is possibly applied to a subset of particles in order to improve their
fitness. This local search phase is realized by a meme population, i.e., M = {m1, . . . , mn}, of local
search operators. Each mi is associated with particle pi and is evolved using a PSO-like approach on
the meme space.

Particles in P are encoded using the usual d-dimensional vectors of the PSO scheme
(see Section 2.1.2), i.e., the position vector x(p)

i,t , the velocity vector v(p)
i,t , and the personal best vector

b(p)
i,t , other than the common global best g(p)

t . In this work, a complete neighborhood graph has been

adopted. Similarly, a generic meme mj ∈ M is encoded by the hybrid vectors x(m)
j,t , v(m)

j,t , b(m)
j,t , and g(m)

t ,
i.e., vectors that combine both discrete and continuous components as described in Section 2.2.5.

The general CoMPSO scheme is described by the pseudo-code reported in Algorithm 1.
The populations of particles P and memes M are randomly initialized in their respective feasible

regions. During main-loop iterations, each particle pi is evolved following the scheme described in
Section 2.1.2. LOCAL_SEARCH activates the memetic part of CoMPSO. The local search operators,
defined by the memes in M, are applied in a probabilistic way: mi is applied to the personal best
position of particle pi with a probability γ at every φ iteration, and the local search application is
denoted by mi(pi) or equivalently by x(m)

i (b(p)
i ). Furthermore, for every iteration, the local search is

also applied to the global best particle in position g(p)
t . In this case, the global best particle and its

respective meme are indicated by pg and mg. Before being applied, the memes are evolved by means of
the PSO_MEME evolution scheme described in Section 2.2.4. If the meme application leads to a fitness
improvement, the new candidate solution obtained replaces both the personal best that the particle
current position. Finally, the global best is updated accordingly.
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Algorithm 1 CoMPSO Pseudo-Code.

1: procedure COMPSO

2: t ← 0

3: P ← INITIALIZE_PARTICLES()

4: f (P)← EVALUATE_FITNESS()

5: M ← INITIALIZE_MEMES()

6: while termination criterion is not met do

7: t ← t + 1

8: if DIV_CONTROL() then

9: DIV_RESTORE()

10: end if

11: for all pi ∈ P do

12: v(p)
i,t ← UPDATE_VELOCITY(v(p)

i,t−1, x(p)
i,t−1, b(p)

i,t−1, g(p)
t−1)

13: x(p)
i,t ← UPDATE_POSITION(x(p)

i,t−1, v(p)
i,t )

14: f (x(p)
i,t )← EVALUATE_FITNESS(x(p)

i,t )

15: b(p)
i,t ← UPDATE_PERSONAL_BEST(b(p)

i,t−1, x(p)
i,t )

16: end for

17: g(p)
t ← UPDATE_GLOBAL_BEST()

18: if LOCAL_SEARCH(γ, φ) then

19: for all pi ∈ P do

20: PSO_MEME(mi)

21: mi(pi)

22: end for

23: end if

24: PSO_MEME(mg)

25: mg(pg)

26: g(p)
t ← UPDATE_GLOBAL_BEST()

27: end while

28: return getBestSolution

29: end procedure

2.2.2. Diversity Control

A diversity control mechanism has been introduced in order to avoid stagnation or premature
convergence to local optima. When premature convergence is detected, a subset of particles whose
positions will be reinitialized is selected. The method consists of two main components: a diversity
measure δ and a diversity restore mechanism invoked when the population diversity becomes too low
according to measure δ.

The diversity measure is computed on the fitness values of the particle population according to

δ(Pt)← std( f (Pt)) (3)

where std( f (Pt)) represents the standard deviation of the fitness values of particle population P
at time t. It should be noted that, although genotypic distances between particles seem to be in
principle more appropriate than fitness values, it has been experimentally observed that the use of
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these latter indicators provides a good diversity measure with the additional property of a more
efficient computation (this is due to the fact that the computation is performed on R and not on Rd).

The diversity δ(P0) of the initial random population P0 is employed to compute the threshold
value τ = 0.2 · δ(P0) used in the routine DIV_CONTROL in order to recognize population convergence
or stagnation. This threshold value is computed basing on the unbiased particle population at time 0
since it is the only one generated in a pure random way.

Therefore, at each iteration, in the case that δ(Pt) < τ, the DIV_RESTORE procedure is invoked.
This routine randomly restarts the positions of the worst fit 50% of the population. Only the current
positions of particles are restarted, while velocities and personal best values are kept unchanged.

2.2.3. Meme Representation

The local search operators adopted in CoMPSO are a generalization of the random walk (RW)
technique [41–43]. RW is an iterative and stochastic local optimization method. Let yt be the candidate
(local) minimum at the t-th iteration. Then the new value yt+1 is computed according to

yt+1 ←
{

yt + wtzt if f (xt + wtzt) < f (xt)

yt otherwise
(4)

where wt is a scalar step-length, and zt is a unit-length random vector. The step length wt is initialized
to a given value w0 and is halved at the end of every iteration in the case that the fitness has not been
improved. The process is repeated until a given number q of iterations is reached.

In our generalization, other than the previously described parameters w0 and q, two other
parameters are introduced: the ramification factor b and the number of chosen successors k (with k ≤ b).
Briefly, the idea is to expand RW in a (b-k-bounded) breadth search conversely from the pure depth-first
style of the original RW. Initially, k copies of the starting (or seed) point of RW are generated. Then b new
points are generated from the current k ones following Rule (4). Therefore, from these b intermediate
points, the k-fittest ones are chosen as next-iteration current points, and the process is iterated until the
deepness parameter q is reached.

Using this local search scheme, a generic meme is represented by means of the following four
parameters: a real value w0 and the three integers b, k, and q. Furthermore, for each parameter, a range
of admissible values has been experimentally established: w0 ∈ [0.5, 4], b ∈ [1, 8] ∩N, k ∈ [1, b] ∩N,
and q ∈ [4, 16] ∩N.

2.2.4. Meme Evolution

As introduced in the previous section, a meme is represented in the hybrid (continuous/discrete)
meme space by the 4-ple m = (w0, b, k, q). Meme PSO evolution proceeds asynchronously with respect
to particle evolution, this is due to the fact that memes are evolved only before they are applied and
according to probability γ and frequency φ described above.

Memes, like particles, at each iteration t, are characterized by a position x(m)
i,t ,

i.e., the representation of the meme in the meme space, a velocity v(m)
i,t (only for the continuous

component), a personal best position b(m)
i,t , and a global best meme g(m)

t . Two alternative functions
have been considered as meme fitness f (m): (1) the “absolute” fitness f of the particle pi associated to
meme mi, and (2) the fitness improvement Δ f realized with the application of the meme mi to particle
pi. Some preliminary experiments have shown that the two approaches do not significantly differ.

Memes are evolved by a classical PSO scheme modified to manage the meme vectors composed
by hybrid continuous/discrete components. The PSO_MEME scheme distinguishes the evolution of
continuous components (according to Update Rules (1) and (2)) and that of discrete components where
a probabilistic technique, presented in the next subsection, is applied. For the sake of completeness,
PSO_MEME pseudo-code is reported in Algorithm 2.
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Algorithm 2 Meme Evolution Pseudo-Code

1: procedure PSO_MEME(mi)

2: for each continuous dimension j do

3: v(m)
i,j ← UPDATE_CONTINUOUS_VELOCITY(v(m)

i,j , x(m)
i,j , b(m)

i,j , g(m)
j )

4: x(m)
i,j ← UPDATE_CONTINUOUS_POSITION(x(m)

i,j , v(m)
i,j )

5: end for

6: for each discrete dimension j do

7: x(m)
i,j ← UPDATE_DISCRETE_POSITION(x(m)

i,j , b(m)
i,j , g(m)

j )

8: end for

9: f (m)(mi)← EVALUATE_MEME_FITNESS(mi, pi)

10: b(m)
i ← UPDATE_MEME_PERSONAL_BEST(b(m)

i , x(m)
i )

11: g(m) ← UPDATE_MEME_GLOBAL_BEST(g(m), x(m)
i )

12: end procedure

2.2.5. Meme PSO for Discrete Domains

The meme discrete components are managed using a probabilistic technique that, by exploiting
the total order of the integer domains here considered, simulates the classical PSO dynamics for
continuous domains.

For each meme and for each discrete component domain Dj = {dj,1, . . . , dj,r}, an appropriate
probability distribution PDj over the values of Dj is built, then the new position xj for component j is
computed according to a randomized roulette wheel tournament among values in Dj and by using
probabilities PDj .

As described in the following, the probability distribution is set in a way that simulates the
properties of the classical continuous PSO [44].

Probability Distribution on Discrete Components Let dx, db, dg ∈ Dj represents the values:
the current meme position, the meme personal best position, and the global best meme position
for component j of the meme encoding, then the distribution Dj is defined as a mixture of four discrete
probability distributions:

1. a uniform distribution that assigns probability 1/|Dj| (where |Dj| is the cardinality of Dj) to every
value di ∈ Dj,

2. a triangular distribution centered in dx,
3. a triangular distribution centered in db, and
4. a triangular distribution centered in dg.

Each triangular distribution is determined by the center value dk, an amplification factor α > 1
and a width 2 · λ + 1. The probability of dk is amplified by the factor α, i.e., the previous probability
PDj(dk) is multiplied by α, while the 2 · λ values of domain Dj located around dk, i.e., dk−λ, . . . , dk−1
and dk+1, . . . , dk+λ, are amplified by a smoothing factor β = α

λ+1 · |λ + 1− s|, where s is the distance
of the value from the center dk. Moreover, it should be noted that the probabilities of each triangular
distribution are normalized in order to sum up to 1.

The amplification factor α are set by using the PSO parameters; that is 1 + ω for the center dx,
1 + ϕ1 for db, and 1 + ϕ2 for dg.

Discrete position update. The new position of a discrete component xj is computed by a random
roulette wheel tournament that uses the probability distribution above.

The technique for discrete components based on probability distribution values can be interpreted
as initially considering all the values as equally probable, except for dx, db, and dg, whereas the
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amplification factors based on classical PSO parameters ω, ϕ1, ϕ2 confer a greater probability. Moreover,
the smoothness factors, βs, also amplify the probabilities of centers neighbors, i.e., values close to
the centers.

In other words, amplification and smoothing factors implement, for the discrete components,
the probabilistic counterparts of the typical behavior of PSO velocity, i.e., the tendency to remain in the
current position (inertia) and the tendency to move toward a personal and global best (cognitive and
social dynamics). It should be noted that a similar idea is present in [45].

3. Experiments

The performances of CoMPSO have been evaluated on the set of five benchmark functions
reported in Table 1. Those functions differ from each other for the properties of modality,
symmetry around the optimum, and regularity.

In each run of CoMPSO, termination conditions have been defined for convergence and maximum
computational resources. An execution is regarded convergent if f (x)− f (xopt) < ε. On the other hand,
the execution has been considered terminated unsuccessfully if the number of function evaluations
(NFES) exceeds the allowed cap of 100,000. The dimensionalities, feasible ranges, and ε values, used for
each benchmark, are also reported in Table 1.

Table 1. Benchmark functions.

f Dim. Range ε

f1(x) = ∑d
i=1 x2

i 30 [−100, 100]30 10−2

f2(x) = ∑d
i=1 x2

i /4000−∏d
i=1 cos(xi/

√
i) + 1 30 [−600, 600]30 10−1

f3(x) = 0.5 +
{

sin2(
√

x2
1 + x2

2)− 0.5
}

/
{
(1 + 0.001(x2

1 + x2
2))

2} 2 [−100, 100]2 10−5

f4(x) = −20 exp
{
−0.2

√
1
d ∑d

i=1 x2
i

}
− exp

{
1
d ∑d

i=1 cos(2πxi)
}
+ 20 + e

30 [−32, 32]30 10−3

f5(x) = ∑d
i=1

{
0.15 · (zi − 0.05sgn(zi)

2) · hi if |xi − zi| ≤ 0.05
hi · x2

i otherwise
4 [−1000, 1000]4 10−7

Following the setup of [20], three different swarm sizes have been considered, namely 15,
30, and 60. The other parameters were set by using the PSO standard values suggested in [46],
i.e., ω = 0.7298, ϕ1 = ϕ2 = 1.49618. The domain ranges defining the meme space were b, k ∈ [1, 8]∩N,
q ∈ [1, 16] ∩N, and w ∈ [0.5, 4], while an amplification width λ = 4 was used for the evolution of
the memes’ discrete features. Furthermore, meme application probability and frequency were set to
γ = 0.2 and φ = 5.

For each swarm size configuration, a series of 50 executions was held in order to generate more
confidence in the statistical results. In each execution series, the success rate SR (i.e., the number of
convergent executions above the total number of executions), the average NFES of all convergent
executions C, and the quality measure Qm = Cavg/SR introduced in [47] are recorded.

All these previously described performance indexes are reported in Table 2 for CoMPSO,
classical PSO (CPSO), and static memetic PSO (SMPSO), i.e., PSO endowed with an RW local search
operator but without meme evolution [20], which is the only comparable memetic PSO algorithm in
the literature. The best quality measure in every line of Table 2 is provided in bold.
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Table 2. Experimental results.

f n CoMPSO CPSO SMPSO

SR C Qm SR C Qm SR C Qm

f1

15 1.00 14,324 14,324 0.00 - - 0.00 - -
30 1.00 12,226 12,226 1.00 11,235 11,235 0.50 37,409 74,818
60 1.00 14,254 14,254 1.00 12,680 12,680 1.00 19,395 19,395

f2

15 0.00 - - 0.00 - - 0.00 - -
30 0.96 12,306 12,819 0.50 8655 17,310 0.58 12,807 22,081
60 1.00 15,497 15,497 1.00 11,480 11,480 0.70 15,785 22,550

f3

15 1.00 14,697 14,697 0.28 5475 19,553 0.83 6671 8037
30 1.00 24,433 24,433 0.64 10,935 17,086 1.00 27,247 27,247
60 1.00 15,672 15,672 0.70 29,580 42,257 1.00 22,993 22,993

f4

15 1.00 45,184 45,184 0.00 - - 1.00 57,385 57,385
30 1.00 41,077 41,077 0.00 - - 1.00 43,673 43,673
60 1.00 47,610 47,610 0.06 49,350 822,500 1.00 38,137 38,137

f5

15 1.00 2348 2348 1.00 1642 1642 0.98 2660 2714
30 1.00 3279 3279 1.00 2560 2560 1.00 3938 3938
60 1.00 5206 5206 1.00 4220 4220 1.00 5285 5285

These results clearly show that the CoMPSO approach greatly improves the success rate of CPSO
and SMPSO. In particular, it must be noted that CoMPSO converges almost everywhere, and it has
a remarkable worst case convergence probability of 96%. On the other hand, CPSO, in some cases,
fails to converge at all when a small swarm size is employed. Finally, the CoMPSO convergence
speed is comparable to that of the SMPSO, although, as expected, in the more simple cases, i.e., f1 and
f5, the convergence speed of CoMPSO is worse than that of CPSO, which is likely due to the NFES
overhead introduced by local search operators.

Figures 1a,b and 2a–c plot the CoMPSO convergence graph with respect to the different swarm
sizes adopted. These graphs show that CoMPSO appears quite monotonic with respect to swarm size
and that a low number of particles seems to be generally preferable.

(a) f1 Convergence Graph (b) f2 Convergence Graph

Figure 1. (a,b) CoMPSO convergence graphs for f1 and f2.
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(a) f3 Convergence Graph (b) f4 Convergence Graph

(c) f5 Convergence Graph

Figure 2. (a–c) CoMPSO convergence graphs for f3, f4, and f5.

Finally, a measure of meme convergence is shown in Figure 3, which shows the evolution of meme
standard deviation (meme STD) on benchmark f4. Meme convergence is fast in the early stage and,
as expected, remains fairly constant, with only small adaptations, during the rest of the computation.
The meme convergence curve, together with the quality measures and the success rates, show the
effectiveness of CoMPSO and its ability to adapt its local refinement behavior to the landscape of the
problem at hand.

Figure 3. Memes Convergence Graph.

4. Discussion

In this paper, a coevolving memetic PSO (CoMPSO), characterized by two co-evolving populations
of particles and memes, has been presented. The main contribution of this work is represented by
the meme evolution technique that allows one to enhance the effectiveness of the PSO approach.
Memetic algorithms (MAs) have recently received great attention as effective meta-heuristics to
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improve general evolutionary algorithm (EA) schemes by combining EAs with local search procedures
and have demonstrated to be a very effective method for performance improvement. However, to the
best of our knowledge, this is the first work where a memetic PSO algorithm with meme co-evolution
has been proposed. Since memes have been described using one real and three integer parameters,
a probabilistic PSO evolution technique for the discrete components in the meme representation has
been designed. This technique is inspired from our previous work [45] and preserves typical PSO
behavior of cognitive, social, and momentum dynamics.

The algorithm has been tested on some standard benchmark problems, and the results presented
here show that CoMPSO outperforms the success rates of both classical PSO and static memetic
PSO [20], although its convergence speed is affected by the overhead due to the local search
applications. The effectiveness of the method relies on the ability to dynamically adapt the local
search operators, i.e., the memes, to the problem landscape at hand. While experiments have been
held on a limited set of standard benchmarks, the goal of demonstrating the feasibility of the approach
i.e., providing the adaptivity of memes during searches in PSO, and improving the previous results
can be considered achieved.

Future and ongoing works have been designed on different perspectives: from an experimental
point of view, we are currently holding systematic experiments on larger sets of benchmarks, and we
are planning experiments with hybrid continuous/discrete problems [48]; from the theoretical
model point of view, we are investigating different models and synchronization mechanisms for
the meme operators, we are also currently designing a self-regulatory mechanism for the CoMPSO
parameters and investigating its applications to different classes of problems, such as multiobjective
and multimodal problems [49].
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Abstract: Obtaining high convergence and uniform distributions remains a major challenge in most
metaheuristic multi-objective optimization problems. In this article, a novel multi-objective particle
swarm optimization (PSO) algorithm is proposed based on Gaussian mutation and an improved
learning strategy. The approach adopts a Gaussian mutation strategy to improve the uniformity
of external archives and current populations. To improve the global optimal solution, different
learning strategies are proposed for non-dominated and dominated solutions. An indicator is
presented to measure the distribution width of the non-dominated solution set, which is produced by
various algorithms. Experiments were performed using eight benchmark test functions. The results
illustrate that the multi-objective improved PSO algorithm (MOIPSO) yields better convergence
and distributions than the other two algorithms, and the distance width indicator is reasonable and
effective.

Keywords: multi-objective optimization problems; particle swarm optimization (PSO); Gaussian
mutation; improved learning strategy

1. Introduction

Multi-objective optimization problems (MOPs) are very common in engineering and other areas
of research, such as economics, finance, production scheduling, and aerospace engineering. It is very
difficult to solve these problems because they usually involve several conflicting objectives. Generally,
the optimal solution of MOPs is a set of optimal solutions (known as a Pareto optimal set), which
differs from the solution of single-objective optimization (with only one optimal solution) [1]. Some
classical optimization methods (weighted methods, goal programming methods, etc.) require the
problem functions to be differentiable and are required to run multiple times with the hope of finding
different solutions. In recent years, the multi-objective optimization evolutionary algorithm (MOEA)
has become a popular method for solving MOPs, and it has garnered scholarly interest around the
world [2]. Many representative MOEAs, such as multiple objective genetic algorithm (MOGA) [3],
non-dominated sorting genetic algorithm II (NSGA-II) [4], strength pareto evolutionary algorithm
(SPEA) [5] and pareto archived evolution strategy (PAES) [6], have been presented.

Over the past decade, the particle swarm optimization algorithm (PSO) has been used to solve
MOPs, and a number of multi-objective PSO algorithms have been suggested. Some studies have
shown that the modified PSO algorithm can effectively solve the MOPs and that the non-dominated
solution set of the algorithm is much closer to the true Pareto optimal front. Coello and Pultdo [7]
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incorporated a special mutation operator that enriches the exploratory capabilities. Sierra and Coello [8]
proposed the OMOPSO algorithm, which places the whole population into three subpopulations with
the same size and uses different mutation operators within different subpopulations. This algorithm
improves the exploration ability of the particles. Reddy and Kumar [9] proposed an elitist-mutation
multi-objective PSO (EM-MOPSO) algorithm with a strategic mechanism that effectively explores the
feasible search space and speeds up the search for the true Pareto optimal region. Leong and Yen [10]
proposed a dynamic population multiple-swarm MOPSO algorithm that uses an adaptive local archive
to improve the diversity within each swarm. Yen and Leong [11] also proposed a dynamic population
multiple-swarm MOPSO algorithm in which the number of swarms is adaptively adjusted throughout
the search process via the proposed dynamic swarm strategy. The strategy allocates an appropriate
number of swarms to support convergence and diversity criteria among the swarms as required. Chen,
Zou, and Wang [12] presented a multi-objective endocrine particle swarm optimization algorithm
(MOEPSO) in which the hormone (RH), released by the endocrine system, is encoded as a particle
swarm and is then supervised by the corresponding stimulating hormone. Lin et al. [13] introduced a
novel MOPSO algorithm using multiple search strategies (MMOPSO), and a decomposition approach
was used to transform MOPs into a set of aggregation problems. Then, each particle was accordingly
assigned to optimize each aggregation problem. A multi-objective vortex particle swarm optimization
(MOVPSO) method was proposed in [14] based on the emerging properties of a swarm to simulate
motion with diversity control via collaborative mechanisms using linear and circular movements.
The parallel cell coordinate system (PCCS) in self-adaptive MOPSO [15] is used to select global and
personal bests, maintain archives and adjust flight parameters. Knight et al. [16] presented a spreading
mechanism to promote diversity in MOPSO. Cheng et al. [17] presented a hybrid multi-objective
particle swarm optimization that combines the canonical PSO search with a teaching–learning-based
optimization (TLBO) algorithm to promote diversity and improve the search ability. Overall, for
any improved MOPSO algorithm, the search ability is determined by the neighbouring topological
structure, and the convergence rate depends on the dominance relationship.

In this paper, we introduce a new multi-objective PSO algorithm based on Gaussian mutation
and an improved learning strategy to solve MOPs. The main new contributions of this work can be
summarized as: (1) Gaussian mutation throw points strategy to improve the uniformity of external
archives and current populations; (2) For MOPs, it is difficult to select the gbest value of velocity and
update the formula. Unlike other MOPSOs, that often randomly select a solution from the external
archive as the global optimal solution gbest, we present different learning strategies to update the
individual positions of the non-dominated and dominated solutions; (3) To further measure the
distribution width, the indicator DW is proposed.

The remainder of this paper is organized as follows. In Section 2, we describe the multi-objective
optimization. Thereafter, in Section 3, we present a multi-objective improved PSO algorithm (MOIPSO).
Section 4 outlines the MOIPSO algorithm. Test problems, performance measures, and the results are
provided in Section 5, and the conclusions are presented in Section 6.

2. Description of Multi-Objective Optimization Problems

A general minimization problem of m objectives can be mathematically stated as follows:
Given x = (x1, x2, · · · , xn) ∈ D, D ⊂ Rn where n is the dimension of decision variable

space D. Additionally,
min y = f (x) = [ f1(x), f2(x), · · · , fm(x)]

s.t.
gi(x) ≤ 0, i = 1, 2, · · · , p
hj(x) = 0, j = 1, 2, · · · , q

(1)

where y = ( f1, f2, · · · , fn) ∈ Y is the objective function vector, Y is the objective variable space, gi(x)
is the i-th inequality constraint, and hj(x) is the j-th equality constraint.
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Multiple objectives are included in MOPs, therefore, it is not possible to find a single solution
that can optimize all objectives. Generally, improving one objective may cause the performance of the
other objectives to decrease. Therefore, the conventional concept of single-objective optimality does
not hold, and we must find a solution that is a compromize based on all objectives, i.e., the Pareto
optimality. Based on the aforementioned reasons, some important definitions are given as follows for
MOPs [18,19]:

Definition 1. (Pareto dominance) The vector x′ = (x′1, x′2, · · · , x′n) dominates the vector x = (x1, x2, · · · , xn)

if and only if the next statement is verified. ∀i = (1, 2, · · · , n) : fi(x′) ≤ fi(x) and ∃i ∈ (1, 2, · · · , n) :
fi(x′) < fi(x), denoted as x′ ≺ x.

Definition 2. (Pareto optimality) A solution x∗ ∈ D is a Pareto optimal solution if there is not another x ∈ D
that satisfies f (x) ≺ f (x∗).

Definition 3. (Pareto optimal set) The Pareto optimal set is defined as the set of all Pareto optimal solutions.

Definition 4. (Pareto optimal front) The Pareto front consists of the values of the objectives corresponding to
the solutions in the Pareto optimal set.

3. An Introduction to the Multi-Objective Improved PSO

3.1. Main Aspects of the Standard PSO Algorithm

PSO was first presented by Kennedy and Eberhart in 1995 [20]. It is a random optimization
algorithm based on swarm aptitude. The theory behind PSO comes from research on the behaviour of
a bird swarm catching food. Compared with genetic algorithms, it has a simple construction, can be
easily implemented, and has few adjustable parameters (Algorithm 1).

Let n be the dimension of the search space, xi = (xi1, xi2, · · · , xin) be the current position of the
i-th particle in the swarm, pibest = (pibest1, pibest2, · · · , pibestn) be the best position of the i-th particle at
that time, and gbest = (gbest1, gbest2, · · · , gbestn) be the best position that the whole swarm has visited.
The rate of the velocity of the i-th particle is denoted as vi = (vi1, vi2, · · · , vin).

Algorithm 1: Standard particle swarm optimization [20]
Step 1: Initialize a population of particles XN , such that each particle has a random position
vector xi and a velocity vector vi. Set parameters c1 and c2, the maximum number of
generations Tmax, and the generation number T = 0.

Step 2: Calculate the fitness of all the particles in XN(T).
Step 3: Renew the positions and velocities of particles based on the following equations:

vT+1
id = wvT

id + c1r1(pibestd − xT
id) + c2r2(gbestd − xT

id) (2)

xT+1
id = xT

id + vT+1
id . (3)

Step 4: Calculate the fitness of the particles and renew every optimal position and global
optimal position of the particles.

Step 5: (Termination examination) If the termination criterion is satisfied, then output the
global optimal position and the fitness value. Otherwise, let T = T + 1 and return to Step 2.
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3.2. Main Aspects of the Multi-Objective Improved PSO Algorithm (MOIPSO)

3.2.1. Elitist Archive and Crowding Entropy

Since Zitzler introduced SPEA with an elitist reservation mechanism in 1999 [5], many new
algorithms have adopted a similar elitist reservation mechanism. Namely, they provide an external
archive to store all the non-dominated solutions that have been found. The elitist reservation
mechanism is also adopted in this article. As the evolution progresses, the non-dominated solutions
in the current archive may not be the non-dominated solutions in the entire evolutionary process,
therefore, the archive must be updated. The easiest updating method compares each solution with
the current archive at each generation, which allows for the input of better solutions into the archive.
The specific archive update rules are as follows [21]: (I) If the new solution dominates one or more
solutions of the external archive, the new solution enters the archive, and the dominated solutions are
deleted from the archive; (II) If the new solution is dominated by one or more solutions in the external
archive, then the new solution is rejected; (III) If the new solution and the solutions in the external
archive are not dominated by each other, then the new solution is a non-dominated solution and enters
the archive. However, because of the storage space and computational efficiency, the external archive
is not infinite. When the archive reaches its maximum size, the largest crowding degree solution will
be deleted.

For the crowding distance measure, we cite the crowding entropy in the literature [21]. This
method combines the crowded distance and distribution entropy, and the method accurately measures
the crowding degree of the solution.

Crowding entropy is defined as follows:

CEi =
m

∑
j=1

(cijEij)/( f max
j − f min

j )

= −
m

∑
j=1

[dlijlog2(plij) + duijlog2(puij)]/( f max
j − f min

j ),
(4)

where Eij is the distribution entropy of the i-th solution to the j-th objective function. Specifically, Eij

is defined as Eij = −[plijlog2(plij) + puijlog2(puij)], where plij =
dlij
cij

, puij =
duij
cij

, and cij = dlij + duij.
Variables dlij and duij are the distances from the i-th solution to the lower and upper adjacent solutions
for the j-th objective function, f max

j and f min
j are the maximum and minimum values of the j-th

objective function, and m is the number of objective functions.
Thus, the smaller the crowding entropy, the more crowded the archive. For each objective function,

the boundary solutions are assigned infinite crowding entropy values. All other intermediate solutions
are assigned crowding entropy values according to Equation (4).

3.2.2. Gaussian Mutation Strategy

Gaussian mutation is a very popular way to improve the particle swarm optimization algorithm.
Higashi et al. [22] integrate a Gaussian mutation used for GA into PSO, and leave a certain ambiguity
in the transition to the next generation due to Gaussian mutation. This method is used to solve
the single-objective optimization problem, and carries on each individual variation in the current
population. For the multi-objective problems, Coelho et al. [23] used Gaussian mutation to update
the velocity update formula, but they only replaced the uniform random number R with a Gaussian
random number Gd in the velocity formula. Liang et al. [24] also introduced Gaussian mutation, which
will have a certain probability to initialize the particle adjacent to the target particle. Meanwhile, this
will randomly initialize the particles beyond the range to increase the utilization rate of particles. To
further improve the performance of the solutions from the MOPs, this paper presents a new Gaussian
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mutation throw point strategy, which involves the throwing of points into external archives and the
current population. The details of the strategy are as follows.

1. Throw points at sparse positions in the external archive to produce a thickened point set (TPS).

For MOPs, researchers hope that the non-dominated solution set is evenly distributed in the
true Pareto front, but the solution sets of many methods yield uneven distributions. To increase the
number of solutions at sparse positions and make the distribution of the solution set more uniform,
we define the crowding degree of the solution in the external archive based on the crowding entropy
and use throw points based on a Gaussian distribution of the largest crowding entropy solution
(except the boundary solutions). Note that it is more important to find the boundary solutions for the
MOPs, and the crowding entropy is infinite at the boundaries. Therefore, we must throw points at the
boundary solutions.

The concrete operations are as follows.
Step 1: Identify a sparse solution based on the crowding entropy, as shown in Figure 1.

Figure 1. The selection process of the sparse solution.

Step 2: In the decision space, A −→ xA, E −→ xE, and F −→ xF. We normally throw h points
based on centres xA, xE, and xF and variance σ. The random variable Z ∼ N(A, σ), and we add h
random points to the TPS. It should be noted that the value of the variance σ is 1

5 the width of each

dimension. For example; x = (x1, x2) ∈ [−10, 0]× [0, 10] =⇒ σ =

(
2 0
0 2

)
; h = 5.

2. Throw points into the current population to produce a Gaussian mutation points set (GMPS).

The algorithm chooses R solutions based on the prescribed probability in the current population,
and normal throw points are established at R solutions (method based on (i): Step 2). Finally, we
obtain a new GMPS.

3.2.3. Improved Learning Strategy

The standard PSO algorithm is used to solve the single-objective optimization problem, therefore,
it is difficult to select the gbest value of velocity and update the formula for MOPs. The reason for this
issue is that MOPs do not contain the global optimal solution. In many previous articles, researchers
have randomly selected a solution from the external archive as the global optimal solution gbest, but
this method lacks pertinence and cannot reflect the guidance of gbest. Therefore, this article presents a
modified velocity formula, redefines the value gbest of Equation (2) and more efficiently applies gbest
to solve MOPs.

(i) When xT
i is not in the external archive, all solutions in the archive that dominate xT

i can be
regarded as global optimal solutions. Therefore, we provide a linear combination of these solutions.
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Suppose that there are k archive solutions that dominate xT
i : aT

1 , aT
2 , · · · , aT

k . A set of weights wj is

randomly generated, where j = 1, 2, · · · , k and
k
∑

j=1
wj = 1. Thus, gbest can be expressed as follows:

gbest =
k

∑
j=1

wjaT
j .

Velocity is updated in the formula as follows:

vT+1
id = wvT

id + c1r1(pibestd − xT
id) + c2r2(gbestd − xT

id). (5)

(ii) When xT
i is in the external archive, the concept of a global optimal solution is meaningless

for xT
i because the global optimal solution is a non-dominated solution. Therefore, all other solutions

cannot be better than this solution, and gbest does not exist. Hence, the three parts of Equation (2) are
unnecessary, and the velocity updating formula is as follows:

vT+1
id = wvT

id + c1r1(pibestd − xT
id). (6)

The position update formula still uses the original model: xT+1
id = xT

id + vT+1
id .

3.2.4. Update External Archive

The updating process of the external archive is an important problem for MOPs. Researchers
typically use the archive update rules to compare the current population and the old external archive
and then generate a new external archive to further improve the performance of the external archive.
This paper uses three sets to update the old external archive. The specific updating methods are shown
in Figure 2.

Figure 2. The updating process of the external archive.

3.2.5. Population Elitist Incremental Strategy

To increase the convergence rate of the population when the algorithm generates the offspring
population, we consider the effect of not only the parent population but also the external archive. This
paper proposes an elitist incremental strategy that increases the number of external archive solutions
in the offspring population to form a new offspring population. The definition is as follows:

A new offspring population

=randomly selected(N − L)offspring solutions

+ randomly selected L external archive solutions,

(7)
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where N is the population size,

L =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T T ≤
[

N
2

]
&|A| ≥ T

|A| T ≤
[

N
2

]
&|A| < T[

N
2

]
T >

[
N
2

]
&|A| ≥

[
N
2

]
|A| T >

[
N
2

]
&|A| <

[
N
2

] ,

T is the number of iterations, and |A| is the external archive of size A at iteration T.
As a result, the population has strong exploration abilities and can find a wider range of

non-dominated solutions at the early stage. The population will further explore the known
non-dominated solutions and move closer to the true Pareto front in the later stage.

4. Overview of the MOIPSO Algorithm

As previously discussed, the MOIPSO algorithm can be summarized as follows.
Step l: Randomly initialize the position and velocity of each particle within the search space.
(a) Set the following parameters; c1 = c2, vmax, vmin, wmax, wmin, T = 0, the Gaussian mutation

probability pr, the maximum generation number Tmax, the population size N, and the maximum
external archive size Amax.

(b) Randomly initialize the population and the velocity.
Step 2: Calculate the fitness of the particles in the initialized population, and initialize the optimal

position pibest of the i-th particle.
Step 3: Initialize an update to the external archive A.
Step 4: For T = 1:
(a) Renew the velocities of particles based on Equations (5) and (6) and the position of particles

based on Equation (7) to form the middle population;
(b) Select the particles based on the Gaussian mutation probability pr and throw points using the

Gaussian mutation strategy (ii) to produce a GMPS;
(c) Calculate the crowding entropy of the external archive solutions and throw points based on

the Gaussian mutation strategy (i) to produce a TPS;
(d) Renew the external archive A based on Section 3.2.4. If |A| > Amax, then delete the most

crowded particles according to the crowding entropy;
(f) Renew the middle population using the elitist incremental strategy, and form the new

offspring population;
(g) Calculate the fitness of the particle in the offspring population;
(h) Renew the optimal position pibest of each particle;
(i) If the termination criterion is satisfied, then output the Pareto optimal solutions. Otherwise,

let T = T + 1 and go to Step (a).

5. Methods and Simulation Experiments

5.1. Test Problems

To test the performance of MOIPSO, eight unconstrained optimization problems were used in the
experiments. The SCH, KUR, and FON functions were suggested by Schaffer in 1985 [25], Kursawe
in 1991 [26], and Fonseca in 1998 [27], respectively. The remainders are ZDT problems suggested by
Zitzler et al. in 2000 [28]. The optimization problems are described in Table 1.
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Table 1. The tested optimization problems.

Function Objective Functions D Variable Bounds
Characteristics
of the
Pareto Front

SCH
{

f1(x) = x2

f2(x) = (x− 2)2 1 x ∈ [−103, 103] Convex

FON

⎧⎪⎪⎨⎪⎪⎩
f1(x) = 1− exp(− 3

∑
i=1

(xi − 1√
3
)

2
)

f2(x) = 1− exp(− 3
∑

i=1
(xi +

1√
3
)

2
)

3 xi ∈ [−4, 4] Nonconvex

KUR

⎧⎪⎪⎨⎪⎪⎩
f1(x) =

n−1
∑

i=1
(−10exp(−0.2

√
xi

2 + xi+1
2))

f2(x) =
n
∑

i=1
(|xi|0.8 + 5 sin(xi

3))
3 xi ∈ [−5, 5] Disconnect

ZDT1

⎧⎪⎪⎨⎪⎪⎩
f1(x) = x1
f2(x) = g(x)[1−√

x1/g(x)]

g(x) = 1 + 9(
n
∑

i=2
xi)/(n− 1)

30 xi ∈ [0, 1] Convex

ZDT2

⎧⎪⎪⎨⎪⎪⎩
f1(x) = x1
f2(x) = g(x)[1− (x1/g(x))2]

g(x) = 1 + 9(
n
∑

i=2
xi)/(n− 1)

30 xi ∈ [0, 1] Nonconvex

ZDT3

⎧⎪⎪⎨⎪⎪⎩
f1(x) = x1
f2(x) = g(x)(1−√

x1/g(x)− x1 sin(10πx1)/g(x))

g(x) = 1 + 9
n
∑

i=2
xi/(n− 1)

30 xi ∈ [0, 1] Convex disconnect

ZDT4

⎧⎪⎪⎨⎪⎪⎩
f1(x) = x1
f2(x) = g(x)(1−√

x1/g(x))

g(x) = 1 + 10(n− 1) +
n
∑

i=2
[xi

2 − 10 cos(4πxi)] 10
x1 ∈ [0, 1]

Nonconvex

xi ∈ [−5, 5]
i = 2, · · · , n

ZDT6

⎧⎪⎪⎨⎪⎪⎩
f1(x) = 1− exp(−4x1)sin6(6πx1)
f2(x) = g(x)[1− ( f1(x)/g(x))2]

g(x) = 1 + 9[
n
∑

i=2
xi/(n− 1)]0.25

10 xi ∈ [0, 1] Nonconvex

5.2. Performance Measures

The standard performance measures of multi-objective evolutionary algorithms were used to
evaluate the performance of the proposed algorithm. The performance measures are briefly described
as follows.

5.2.1. Convergence Measure Indicator

Ideally, the iterative process of MOEA approaches the Pareto front, but in most cases, it is difficult
to find the true Pareto front. The proximity of the approximate solutions to the Pareto optimal solutions
is a main indicator.

The concept of generational distance was introduced by Van Veldhuizen [29] to measure the
proximity of the approximate solutions to the Pareto optimal solutions. This indicator is defined
as follows:

GD =

√
n
∑

i=1
dist2

i

n
, (8)

where n is the number of non-dominated solutions. When the Pareto fronts of the objective function
can be expressed in analytic form, disti is measured by the Euclidean distance (in objective space)
between the i-th non-dominated solution and the nearest member of the Pareto optimal set. Otherwise,
disti is measured by the Euclidean distance between the i-th non-dominated solution and the reference
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point set. It is clear that a smaller value of GD is better, and GD = 0 indicates that the non-dominated
solution set is located in the true Pareto front.

5.2.2. Distribution Measure Indicator

Typically, we hope that non-dominated solutions are uniformly distributed in the true Pareto
front. Two main factors used to measure the distribution are uniformity and width:

(1) Distribution uniformity (Δ)

The indicator Δ [4] is used to measure the uniformity and diversity of the non-dominated solution
set. When calculating this indicator, we must sort the obtained non-dominated solutions based on the
specified objective function values. This indicator is defined as follows:

Δ =

h f + hl +
n−1
∑

i=1
|hi − h̄|

h f + hl + (n− 1)h̄
, (9)

where n is the number of non-dominated solutions, hi is the Euclidean distance between neighbouring
solutions in the non-dominated solution set, h̄ is the mean of all hi values, h f and hl are the Euclidean
distances between the extreme solutions of the Pareto optimal solution set and the boundary solutions
of the non-dominated solution set. When the non-dominated solution set is uniformly distributed in
the true Pareto front, h f = 0, hl = 0, and all hi = h̄, therefore, Δ = 0. A small value of Δ indicates
better uniformity in the true Pareto front.

(2) Distribution width (DW)

Generally, it is favourable if the boundary solutions can be included in the non-dominated solution
set. In other words, in these types of problems, researchers hope to find the boundary points of the
true Pareto fronts.

The indicator M∗
3(NP), which measures the distribution width, was proposed by Zitzler et al. [28].

The associated formula is as follows:

M∗
3(NP) =

√√√√ M

∑
i=1

max{‖ pi − qi ‖∗, p, q ∈ NP}, (10)

where NP is the non-dominated solution set and M is the dimension of the non-dominated solutions.
Notably, M∗

3 can measure the distribution width of the non-dominated solution set, but when the
distribution range of the Pareto front is too large or the dimensions of the solutions are large, the value
of M∗

3 will be large. Therefore, it is difficult to compare and compile the data.
Based on the aforementioned method, the new indicator, DW, is provided. The concrete form of

this indicator is as follows:

DW =

∣∣∣∣∣∣∣∣∣
M
∏
i=1

max{|pi − qi|, p, q ∈ NP}
M
∏
i=1

max{|p′i − q′i|, p′, q′ ∈ RP}
− 1

∣∣∣∣∣∣∣∣∣
, (11)

where RP is the Pareto optimal set or the reference point set. Notably, a small value of DW reflects a
better distribution uniformity for the non-dominated solution set.

5.3. Algorithm Comparison

To validate the MOIPSO algorithm, we compared it to NSGA-II [4] and MOPSO [7] based on
the above three performance measures. The source codes of NSGA-II and MOPSO are available at
http://delta.cs.cinvestav.mx/~ccoello/EMOO/ (matlab code).

99



Mathematics 2019, 7, 148

The initial population size is 100 for MOIPSO, NSGA-II and MOPSO. The number of iterations
directly affects the time complexity of the algorithm, and the convergence of the problem with different
iterations is discussed [30]. It can be found that when the program reaches a stable state, the subsequent
iterations can no longer improve the performance of the algorithm, but only increase the running time.
Therefore, through a large number of numerical experiments, different iteration numbers were chosen
based on the complexity of the problems in the three algorithms. The number of iterations completed
was 60 for SCH, 100 for FON and KUR, 300 for ZDT1, ZDT2, and ZDT3, and 1000 for ZDT4 and ZDT6.

The range of the parameter has been discussed in some literature [31], so we took the commonly
used parameter values for NSGAII and MOPSO. To make the test and its results more comparable, for
MOIPSO, the same parameters as MOPSO took the same values, and other parameters were set after a
large number of numerical experiments. In the MOPSO and MOIPSO algorithms, c1 = c2 = 1.7, while
r1 and r1 are assigned random values between 0 and 1. In MOPSO, the inertia weight is w = 0.7, and
the inertia weight damping ratio wdamp = 1. In MOIPSO, the inertia weight w adaptively decreased

from wmax = 0.9 to wmin = 0.4 according to the following formula: w = wmax − T(wmax−wmin)
Tmax

. In the
NSGA-II [4] algorithm, the crossover probability is 0.8, and the mutation probability is 0.3. To evaluate
the statistical performance, all the experiments are run 30 times. The best, worst, mean, and average
deviations are shown in Tables 2–4, respectively.

The GD results are shown in Table 2. MOIPSO exhibits the best GD values for SCH, KUR, ZDT1
and ZDT4. MOPSO displays the best GD values for ZDT2, ZDT3, and ZDT6. FON, MOIPSO, and
MOPSO exhibit similar results. For the worst GD, MOIPSO displays high stability and consistently
yields the lowest worst GD value in all test problems. For the mean GD, MOIPSO produces the best
mean values for all test problems except ZDT4, for which FON, MOIPSO, and MOPSO exhibit similar
results. With respect to the standard deviation of GD, MOIPSO exhibits the best solution for KUR,
ZDT1, ZDT2, and ZDT3. NSGA-II yields the best results for the other functions. Thus, MOIPSO
produces better values of GD indicators than the other two algorithms in most test problems, and the
results of MOIPSO are better than those of the other algorithms by 1∼2 orders of magnitude. This
finding indicates that the resulting Pareto fronts obtained via MOIPSO are closer to the true Pareto
fronts, and MOIPSO can effectively improve convergence.

Some information for Δ is shown in Table 3. For the SCH and ZDT1 functions, all the solutions of
MOIPSO are better than those of the other algorithms. MOPSO exhibits the best, and the mean best,
Δ value for KUR. MOIPSO has the minimal worst Δ and the best standard deviation. MOIPSO has the
best, the mean best, and the minimal worst Δ values for ZDT2 and ZDT3, but the standard deviation
of NSGA-II is the best. MOIPSO displays the best and the mean best Δ values for ZDT4. NSGA-II
exhibits the minimal worst Δ, and MOPSO yields the best standard deviation. MOPSO provides the
best Δ for ZDT6. MOIPSO has the minimal worst Δ and the mean best Δ, and the minimal standard
deviation of NSGA-II is the best. Table 3 shows that MOIPSO provides the best mean solution for all
seven functions. Therefore, the MOIPSO results are evenly distributed in the experiments, however,
they are not shown for all the functions.

Table 4 shows the results of a new quality indicator—DW. All the solutions of MOIPSO are better
than those of the other algorithms for SCH, KUR, and ZDT1. MOIPSO yields the three best indicators
for the FON function, and MOPSO provides the best solution for DW. NSGA-II exhibits the best DW
solution for ZDT2, and the other indicators of MOIPSO are the best. MOIPSO displays the best and the
mean best DW for ZDT3, and NSGA-II yields the minimal worst DW and the best standard deviation.
NSGA-II exhibits the best DW for ZDT4, and MOPSO displays the minimal worst DW. MOIPSO
produces the mean best DW and the minimal standard deviation. For the ZDT6 function, NSGA-II
exhibits the minimal standard deviation, and the other indicators of MOIPSO are the best. Similarly,
the DW results in Table 4 show that MOIPSO is able to produce the best distribution of solutions in
the Pareto optimal front for most of the test functions.
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Table 2. Comparison of the results of multi-objective improved particle swarm optimization algorithm
(MOIPSO) and different algorithms based on the indicator, GD.

Function Statistic MOPSO NSGA-II MOIPSO

SCH Best 8.72× 10−4 8.37× 10−4 8.34× 10−4

Worst 1.30× 10−3 1.10× 10−3 1.00× 10−3

Mean 9.66× 10−4 9.56× 10−4 9.41× 10−4

Std 7.89× 10−5 4.70× 10−5 4.76× 10−5

FON Best 1.00× 10−3 1.10× 10−3 1.00× 10−3

Worst 1.30× 10−3 1.30× 10−3 1.20× 10−3

Mean 1.10× 10−3 1.20× 10−3 1.10× 10−3

Std 6.22× 10−5 3.73× 10−5 6.08× 10−5

KUR Best 3.10× 10−3 1.60× 10−3 1.40× 10−3

Worst 3.09× 10−2 4.40× 10−3 3.80× 10−3

Mean 5.80× 10−3 3.00× 10−3 2.50× 10−3

Std 4.82× 10−3 6.43× 10−4 4.13× 10−4

ZDT1 Best 1.70× 10−3 1.96× 10−2 5.91× 10−4

Worst 6.43× 10−2 5.49× 10−2 3.20× 10−3

Mean 2.63× 10−2 3.03× 10−2 1.00× 10−3

Std 1.81× 10−2 7.80× 10−3 6.30× 10−4

ZDT2 Best 5.28× 10−5 2.96× 10−2 3.51× 10−4

Worst 1.55× 10−1 4.99× 10−2 3.10× 10−3

Mean 4.19× 10−2 3.84× 10−2 7.52× 10−4

Std 4.49× 10−2 5.40× 10−3 5.94× 10−4

ZDT3 Best 4.04× 10−4 2.19× 10−2 5.01× 10−4

Worst 1.08× 10−1 4.74× 10−2 7.10× 10−3

Mean 3.82× 10−2 3.30× 10−2 1.20× 10−3

Std 3.27× 10−2 8.10× 10−3 1.50×10−3

ZDT4 Best 1.10× 10−1 1.30× 10−3 3.23× 10−4

Worst 2.01× 10−1 2.86× 10−2 1.61× 10−2

Mean 1.40× 10−1 4.90× 10−3 9.90× 10−3

Std 1.67× 10−2 6.20× 10−3 2.37× 10−2

ZDT6 Best 2.72× 10−4 1.19× 10−1 5.36× 10−4

Worst 3.32× 10−1 1.65× 10−1 4.38× 10−2

Mean 2.29× 10−2 1.46× 10−1 1.09× 10−2

Std 5.96× 10−2 9.10× 10−3 1.13× 10−2

Table 3. Comparison of the results of MOIPSO and different algorithms based on Δ.

Function Statistic MOPSO NSGA-II MOIPSO

SCH Best 4.68× 10−1 4.68× 10−1 4.67× 10−1

Worst 4.80× 10−1 4.73× 10−1 4.70× 10−1

Mean 4.68× 10−1 4.69× 10−1 4.67× 10−1

Std 2.80× 10−3 1.70× 10−3 4.53× 10−4

FON Best 4.82× 10−1 4.81× 10−1 4.84× 10−1

Worst 4.94× 10−1 4.95× 10−1 4.85× 10−1

Mean 4.86× 10−1 4.87× 10−1 4.85× 10−1

Std 2.60× 10−3 3.90× 10−3 4.70× 10−4

KUR Best 4.59× 10−1 4.64× 10−1 4.63× 10−1

Worst 4.69× 10−1 4.69× 10−1 4.68× 10−1

Mean 4.63× 10−1 4.67× 10−1 4.66× 10−1

Std 2.10× 10−3 1.30× 10−3 1.10× 10−3

ZDT1 Best 4.08× 10−2 2.67× 10−1 1.13× 10−2

Worst 3.54× 10−1 4.05× 10−1 1.08× 10−1

Mean 2.47× 10−1 3.43× 10−1 4.28× 10−2

Std 8.62× 10−2 3.71× 10−2 9.70× 10−3
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Table 3. Cont.

Function Statistic MOPSO NSGA-II MOIPSO

ZDT2 Best 3.78× 10−1 4.09× 10−1 3.90× 10−3

Worst 9.92× 10−1 4.90× 10−1 1.47× 10−1

Mean 6.88× 10−1 4.59× 10−1 2.65× 10−2

Std 1.54× 10−1 1.99× 10−2 3.17× 10−2

ZDT3 Best 4.19× 10−1 2.64× 10−1 2.50× 10−3

Worst 7.06× 10−1 3.60× 10−1 1.94× 10−1

Mean 5.58× 10−1 3.13× 10−1 3.08× 10−2

Std 6.58× 10−2 2.94× 10−2 4.57× 10−2

ZDT4 Best 6.11× 10−1 1.33× 10−2 3.70× 10−3

Worst 6.89× 10−1 3.50× 10−1 4.74× 10−1

Mean 6.50× 10−1 8.96× 10−2 8.88× 10−2

Std 1.95× 10−2 9.90× 10−2 1.50× 10−1

ZDT6 Best 1.07× 10−2 4.86× 10−1 1.11× 10−2

Worst 4.52× 10−1 7.95× 10−1 4.08× 10−1

Mean 2.43× 10−1 6.29× 10−1 2.28× 10−1

Std 1.28× 10−1 6.92× 10−2 1.28× 10−1

Table 4. Comparison of the results of MOIPSO and different algorithms based on DW.

Function Statistic MOPSO NSGA-II MOIPSO

SCH Best 1.00 × 10−3 4.46× 10−5 4.44× 10−5

Worst 6.43 × 10−2 4.35× 10−2 1.80× 10−2

Mean 1.43 × 10−2 1.66× 10−2 2.70× 10−3

Std 1.56 × 10−2 1.26× 10−2 3.70× 10−3

FON Best 2.62× 10−4 4.21× 10−4 1.90× 10−3

Worst 3.36× 10−2 9.09× 10−2 8.00× 10−3

Mean 9.60× 10−3 3.10× 10−2 5.50× 10−3

Std 9.30× 10−3 2.19× 10−2 1.60× 10−3

KUR Best 3.07× 10−4 5.50× 10−3 2.40× 10−4

Worst 7.55× 10−2 7.36× 10−2 1.11× 10−2

Mean 1.32× 10−2 3.71× 10−2 3.30× 10−3

Std 1.82× 10−2 1.95× 10−2 2.40× 10−3

ZDT1 Best 7.80× 10−3 5.00× 10−2 3.20× 10−3

Worst 1.33 1.29 2.26× 10−2

Mean 5.23× 10−1 4.98× 10−1 1.17× 10−2

Std 4.05× 10−1 2.83× 10−1 6.20× 10−2

ZDT2 Best 1.54× 10−1 1.60× 10−3 3.30× 10−3

Worst 1.00 6.40× 10−1 2.99× 10−1

Mean 7.72× 10−1 2.07× 10−1 4.16× 10−2

Std 2.55× 10−1 1.49× 10−1 6.28× 10−2

ZDT3 Best 4.60× 10−3 3.49× 10−2 1.83× 10−4

Worst 8.93× 10−1 5.54× 10−1 9.63× 10−1

Mean 6.23× 10−1 2.59× 10−1 8.52× 10−2

Std 2.37× 10−1 1.54× 10−1 2.37× 10−1

ZDT4 Best 1.92× 10−1 9.28× 10−4 6.50× 10−3

Worst 1.00 1.64 1.68
Mean 6.33× 10−1 2.21× 10−1 2.07× 10−1

Std 1.95× 10−1 4.03× 10−1 1.55× 10−1

ZDT6 Best 1.42× 10−2 1.04× 10−2 2.20× 10−4

Worst 6.87 1.17 1.09
Mean 1.18 2.78× 10−1 1.86× 10−1

Std 1.48 2.78× 10−1 8.77× 10−1

According to the above statistical analyses, MOIPSO successfully solves the SCH, ZDT1 and
ZDT6 problems, as illustrated by Figures 3–5. Figure 3 shows that the three algorithms have
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similar convergence performances for the SCH function, however, MOIPSO exhibits better uniformity.
Figures 4 and 5 illustrate the superior convergence and distribution results of MOIPSO compared
with those of the other algorithms. Furthermore, by combining the data from Table 4 and the figures,
we can see that when the boundary solutions do not exist in non-dominated solutions or solutions
do not converge to the true Pareto front, then the DW value is very large. In the case of NSGAII and
MOPSO for ZDT6, because some points are far away from the true optimal pare fronts, their DW
values are 10−2, but the values are 10−4 for MOIPSO and we can find that all the solutions are near the
true optimal Pareto fronts in Figure 4. Thus, the DW indicator can measure the distribution width of
the non-dominated solution set.

Figure 3. For SCH, the comparisons between the true Pareto front and the best ones obtained by three
different algorithms.

Figure 4. For ZDT1, the comparisons between the true Pareto front and the best ones obtained by three
different algorithms.

From the numerical results, we can also see that the MOIPSO algorithm performs better than
other algorithms in distribution uniformity and width. This is obviously a good result of the Gaussian
mutation throw point strategy. However, this method is not omnipotent. Firstly, when the number
of throwing points is too large, the running time will rapidly increase. It is difficult to determine the
number, so in this paper, we have done a lot of experiments to determine it. Secondly, for all sparse
solutions, we will throw points, so when the Pareto optimal front of optimization problem is very
complex and contains a large number of outliers, the effectiveness of our Gaussian mutation throw
point strategy will be affected.
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Figure 5. For ZDT6, the comparisons between the true Pareto front and the best ones obtained by three
different algorithms.

6. Conclusions

A new multi-objective PSO algorithm based on Gaussian mutation and an improved learning
strategy (MOIPSO) is presented to solve MOPs. First, MOIPSO builds different learning strategies to
update the individual positions of the non-dominated and dominated solutions. Then, the Gaussian
mutation strategy is used to create throw points at sparse and boundary positions. These updating
strategies yield high convergence and a satisfactory distribution. To further measure the distribution
width, the indicator DW is proposed.

The performance of MOIPSO was tested based on different MOP benchmark functions with
convex and nonconvex objection functions. To demonstrate the effectiveness of MOIPSO, the results
were compared to those of MOPSO and NSGA-II. The experimental results showed that MOIPSO
significantly outperforms all other algorithms based on the test problems with respect to three metrics.
The resulting data and figures indicate that the proposed DW indicator is reasonable.

In this article, only two-objective functions are tested. In the near future, we also plan to evaluate
MOIPSO using other objective test functions. Furthermore, most parameters in this paper (such as
the number of throw points, cognitive coefficient, etc.) have certain values. It would be interesting to
study whether these control parameters could adaptively change as the iteration time increases.
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MOEA Multi-objective optimization evolutionary algorithm
GMPS Gaussian mutation points set
TPS Thickened point set
DW Distribution width

104



Mathematics 2019, 7, 148

References

1. Miettinen, K.M. Nonlinear Multi-Objective Optimization; Kluwer Academic Publishers: Boston, MA, USA, 1999.
2. Deb, K. Multi-Objective Optimization Using Evolutionary Algorithms; John Wiley and Sons: Hoboken, NJ,

USA, 2001.
3. Fonseca, C.M.; Fleming, P.J. Genetic Algorithm for Multi-Objective Optimization: Formulation, Discussion and

Generalization; Morgan Kaufmann Publishers: Burlington, MA, USA, 1993.
4. Deb, K.; Pratap, A.; Agrawal, S.; Meyarivan, T. A fast and elitist multi-objective genetic algorithm: NSGA-II.

IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]
5. Zitzler, E.; Thiele, L. Multi-objective evolutionary algorithms: A comparative case study and the strength

pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]
6. Knowles, J.D.; Corne, D.W. Approximating the nondominated front using the Pareto archived evolution

strategy. IEEE Trans. Evol. Comput. 2000, 8, 149–172. [CrossRef]
7. Coello, C.A.C.; Pultdo, G.T.; Lechuga, M.S. Handling multiple objectives with particle swarm optimization.

IEEE Trans. Evol. Comput. 2004, 8, 256–279. [CrossRef]
8. Sierra, M.R.; Coello, C.A.C. Improving PSO-Based Multi-Objective Optimization Using Crowding, Mutation and

ε-Dominance; Springer: Berlin/Heidelberg, Germany, 2005; pp. 505–519.
9. Reddy, M.J.; Kumar, D.N. An efficient multi-objective optimization algorithm based on swarm intelligence

for engineering design. Eng. Optim. 2007, 39, 49–68. [CrossRef]
10. Leong, W.F.; Yen, G.G. PSO-based multi-objective optimization with dynamic population size and adaptive

local archives. IEEE Trans. Syst. Man Cybern. Part B 2008, 38, 1270–1293. [CrossRef] [PubMed]
11. Yen, G.G.; Leong, W.F. Dynamic multiple swarms in multi-objective particle swarm optimization. IEEE Trans.

Syst. Man Cybern. Part B 2009, 39, 890–911. [CrossRef]
12. Chen, D.B.; Zou, F.; Wang, J.T. A multi-objective endocrine PSO algorithm and application. Appl. Soft Comput.

2011, 11, 4508–4520. [CrossRef]
13. Lin, Q.; Li, J.; Du, Z.; Chen, J.; Ming, Z. A novel multi-objective particle swarm optimization with multiple

search strategies. Eur. J. Oper. Res. 2015, 247, 732–744. [CrossRef]
14. Meza, J.; Espitia, H.; Montenegro, C.; Giménez, E.; González-Crespo, R. Movpso: Vortex multi-objective

particle swarm optimization. Appl. Soft Comput. 2017, 52, 1042–1057. [CrossRef]
15. Hu, W.; Yen, G.G. Adaptive multi-objective particle swarm optimization based on parallel cell coordinate

system. IEEE Trans. Evol. Comput. 2015, 19, 1–18.
16. Knight, J.T.; Singer, D.J.; Collette, M.D. Testing of a spreading mechanism to promote diversity in

multi-objective particle swarm optimization. IEEE Trans. Evol. Comput. 2015, 16, 279–302. [CrossRef]
17. Cheng, T.; Chen, M.; Fleming, P.J.; Yang, Z.; Gan, S. A novel hybrid teaching learning based multi-objective

particle swarm optimization. Neurocomputing 2017, 222, 11–25. [CrossRef]
18. Coello, C.A.C. Evolutionary multi-objective optimization: A historical view of the field. IEEE Comput.

Intell. Mag. 2006, 1, 28–36. [CrossRef]
19. Zitzler, E. Evolutionary Algorithm for Multiobjective Optimization: Methods and Application; Swiss Federal

Institute of Technology: Zurich, Switzerland, 1999.
20. Kennedy, J.; Eberhart, R.C. Particle Swarm Optimization. In Proceedings of the IEEE International Conference

on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.
21. Wang, Y.N.; Wu, L.H.; Yuan, X.F. Multi-objective self-adaptive differential evolution with elitist archive and

crowding entropy-based diversity measure. Soft Comput. 2010, 14, 193–209. [CrossRef]
22. Higashi, N.; Iba, H. Particle Swarm Optimization with Gaussian Mutation; IEEE: Piscataway, NJ, USA, 2013.
23. Coelho, L.D.S.; Ayala, V.H.; Alotto, P. A Multiobjective Gaussian Particle Swarm Approach Applied to

Electromagnetic Optimization. IEEE Trans. Mag. 2010, 46, 3289–3292. [CrossRef]
24. Liang, H.M.; Zhang, K.; Yu, H.H. Multi-objective Gaussian particle swarm algorithm optimization based on

niche sorting for actuator design. Adv. Mech. Eng. 2015, 7, 1–7. [CrossRef]
25. Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithm. In Proceedings of the

1st International Conference on Genetic Algorithm and Their Applications, Pittsburg, CA, USA, 24–26 July
1985; pp. 93–100.

26. Kursawe, F. A varant of evolution strategies for vector optimization. In International Conference on Parallel
Problem Solving from Nature; Springer: Berlin/Heidelberg, Germany, 1991; pp. 193–197.

105



Mathematics 2019, 7, 148

27. Fonseca, C.M.; Fleming, P.J. Multiobjective optimization and multiple constraint handling with evolutionary
algorithms, Part II: Application example. IEEE Trans. Syst. Man Cybern. A 1998, 28, 38–47. [CrossRef]

28. Zitzler, E.; Deb, K.; Thiele, L. Comparison of multi-objective evolutionary algorithms: Empirical results.
Evol. Comput. 2000, 8, 173–195. [CrossRef]

29. Van Veldhuizen, D.A.; Lamont, G.B. Evolutionary computation and convergence to a Pareto front. In Late
Breaking Papers at the Genetic Programming 1998 Conference; Standford University: Stanford, CA, USA, 1998;
pp. 221–228.

30. Saraswat, A.; Saini, A. Multi-objective optimal reactive power dispatch considering voltage stability in
power systems using HFMOEA. Eng. Appl. Artif. Intell. 2013, 26, 390–404. [CrossRef]

31. Ding, S.X.; Chen, C.; Xin, B.; Psrdalos, P. A bi-objective load balancing model in a distributed simulation
system using NSGA-II and MOPSO approaches. Appl. Soft Comput. 2018, 63, 249–267. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

106



mathematics

Article

Dynamic Horizontal Union Algorithm for Multiple
Interval Concept Lattices

Yafeng Yang 1, Ru Zhang 2 and Baoxiang Liu 1,*

1 College of Science, North China University of Science and Technology, 21 Bohai Road,
Tangshan 063210, China; hblgyyf@foxmail.com

2 Department of mathematics and information sciences, Tangshan Normal University,
No. 156 Jianshe North Road, Tangshan 063009, China; zhangru1266@126.com

* Correspondence: www1673@163.com

Received: 3 January 2019; Accepted: 29 January 2019; Published: 10 February 2019

Abstract: In the era of big data, the data is updating in real-time. How to prepare the data accurately
and efficiently is the key to mining association rules. In view of the above questions, this paper
proposes a dynamic horizontal union algorithm of multiple interval concept lattices under the same
background of the different attribute set and object set. First, in order to ensure the integrity of the
lattice structure, the interval concept lattice incremental generation algorithm was improved, and
then interval concept was divided into existing concept, redundancy concept and empty concept.
Secondly, combining the characteristics of the interval concept lattice, the concept of consistency
of interval concept lattice was defined and it is necessary and sufficient for the horizontal union
of the lattice structure. Further, the interval concepts united were discussed, and the principle of
horizontal unions was given. Finally, the sequence was scanned by the traversal method. This method
increased the efficiency of horizontal union. A case study shows the feasibility and efficiency of the
proposed algorithm.

Keywords: big data; interval concept lattice; horizontal union; sequence traversal

1. Introduction

With the era of big data, the complexity of data processing in time and space have become increasingly
demanding. Real-time updating of data requires efficient processing of dynamic data. The concept
lattice is a powerful tool for data analysis which was proposed by Professor Wille R in 1982 [1]. It has
completeness and accuracy, and has been widely applied in information retrieval, digital library,
knowledge discovery, and so on [2–4]. Domestic and overseas scholars have carried out various
research on concept lattices that mainly include a construction algorithm and improvement [5–7],
rule mining based on concept lattices [8,9], and the fusion of other theories such as fuzzy theory,
predicate logic, and rough set theory.

For different needs, some expanded concept lattices have been produced, such as, the fuzzy concept
lattice, weighted concept lattice, constraint concept lattice, quantitative concept lattice, expansion
concept lattice, rough concept lattice etc. [10–12]. In particular, the classic concept lattice, fuzzy concept
lattice and weighted concept lattices, the extent contains the objects which meet all the attributes in
the intent. To find the concepts which have partial attributes, we must scan the concept lattice and
combine the concepts. The time cost is large especially for large concept lattices. While, in the rough
concept lattice, although the concepts which have partial attributes can be searched, there may be a
lot of objects which only have an attribute of the intent, thus the support and degree of confidence of
constructing association rules will be greatly reduced. In practical applications, we often care about
the object set which has a certain number or percent of attributes in intent. Then, some pertinent
association rules will be mined through a correlation analysis.
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Based on the above questions, the interval concept lattice [13] was put forward in 2012 as a
collection of objects which had a certain number or percentage of attributes in the connotation.
Its expression of concept is (Mα, Mβ, Y). Classical concept lattices are constructed from all attributes
with full connotations of extensions, and its expression of concept is (X, Y). Rough concept lattices
are composed of the concepts of a maximum attribute set and minimum attribute set containing
connotative attributes respectively by upper approximate extension and lower approximate extension.
The conceptual form of rough concept lattices is (M, N, Y). Interval concept lattices degenerate
into classical concept lattices or rough concept lattices when the parameters are α = 0, β = 1 or
α = 1/|Y|, β = 1 , separately. As will be readily seen, interval concept lattice is a general form of
classical concept lattice and rough concept lattice.

On the other hand, with the dynamic change of data, the structure of an interval concept lattice
will also change. The association rules are also updated in real time. For example, every day a huge
amount of transaction information is generated. If we build the interval concept lattice from the daily
trading information, we can only tap the local association rules [14,15]. It cannot provide timely and
accurate decision-making for the decision-makers from the overall supermarket shopping system.
Therefore, it is very necessary to carry out research on the uniting of interval concept lattices to realize
data aggregation. Therefore, the dynamic uniting of interval concept lattices is of great significance.

At present, the main union algorithms of concept lattices are as follows: Reference [16] arranges
sub-concept lattices vertically or horizontally in ascending or descending order according to the
connotation or extension of the concept; Reference [17] proposes synonymous concepts and updates
all father-child nodes according to the relationship between father-child concepts; Reference [18] gives
an ordered outline by discussing the relationship between the same concept lattices with the same
object set. Since the interval concept lattice has only been proposed for about two years, research on it
is limited to the progressive generation algorithm of lattice structure, dynamic compression algorithm
and association rules mining algorithm. There is no relevant literature on the uniting of interval
concept lattices. The uniting of interval concept lattices is divided into vertical and horizontal uniting.
The principle and algorithm of vertical uniting of lattices [19] are studied preliminarily. In this paper,
the algorithm for dynamic horizontal uniting of interval concept lattices generated from multiple
databases was studied.

The structure is as follows: Section 2 introduces the basic concepts of interval concept lattices,
the incremental generation algorithm of interval concept lattices [20] and the related concepts of formal
context uniting [21,22]; Section 3 proposes the basic theorem of interval concept lattices’ horizontal
uniting. On the basis of improving the incremental generation algorithm of interval concept lattices,
the horizontal uniting algorithm of interval concept lattices was designed. In Section 4, an example is
given to demonstrate the feasibility and efficiency of the algorithm.

2. Theoretical and Methodological Basis

For example, in the supermarket shopping system, the promotional manager often pays more
attention to the customers who purchase k (k > 1) kinds of goods or more and the potential demand of
these customers, and then carry out product marketing to get the greatest benefit through minimum
promotion. However, in the existing concept lattice structure, this kind of query cannot be operated
directly, and some union connections or filtrations must be performed. The time and space costs are
too high. In order to address this problem, interval concept lattices are required.

2.1. Interval Concept Lattice

Definition 1. For the formal context (U, A, R) and its rough concept lattice RL(U, A, R), (M, N, Y) is the
rough concept. Set an interval [α, β] (0 ≤ α ≤ β ≤ 1), then α upper bound extension Mα and β lower bound
extent Mβ are:

Mα = {x|x ∈ M, | f (x) ∩Y|/|Y| ≥ α, 0 ≤ α ≤ 1} (1)
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Mβ = {x|x ∈ M, | f (x) ∩Y|/|Y| ≥ β, 0 ≤ α ≤ β ≤ 1} (2)

Y is the concept intension and |Y| is the number of elements in Y, that is base number, Mα refers to the
objects which may be covered by α× |Y| attributes or more in Y. Mβ refers to the objects which may be covered
by β× |Y| attributes or more in Y.

Definition 2. Suppose (U, A, R) is a formal context and (Mα, Mβ, Y) is an interval concept. Y is the intent.
Mα is the α upper bound extension and Mβ is the β lower bound extension.

Definition 3. Suppose (U, A, R) has two interval concepts, (Mα
1 , Mβ

1 , Y1) and (Mα
2 , Mβ

2 , Y2). If (Mα
1 , Mβ

1 , Y1)

and (Mα
2 , Mβ

2 , Y2) meet Y1 ⊆ Y2, |Y2| − |Y1| = 1, Mα
1 = Mα

2 and Mβ
1 = Mβ

2 , then (Mα
1 , Mβ

1 , Y1) is called the
redundant concept.

Definition 4. Suppose (U, A, R) has an interval concept, (Mα, Mβ, Y). If it meets Mα = Mβ = ∅, then
(Mα, Mβ, Y) is called the empty concept.

Definition 5. Suppose (U, A, R) has an interval concept, C = (Mα, Mβ, Y). If C is neither the redundant
concept nor the empty concept, then C is called the existence concept. Lβ

α(U, A, R) is a collection of all the
existence concepts.

Definition 6. Lβ
α(U, A, R) refers to all the [α, β] interval concepts, which includes: existence concepts,

redundant concepts and empty concepts, that is:

(M1
α, M1

β, Y1) ≤ (M2
α, M2

β, Y2)⇔ Y1 ⊇ Y2, (3)

Then “≤” is called the partial order relationship of Lβ
α(U, A, R).

Definition 7. If all the concepts in Lβ
α(U, A, R) meet “≤”, then Lβ

α(U, A, R) calls interval concept lattice on
the formal context (U, A, R).

Definition 8. In the interval concept lattice Lβ
α(U, A, R), if C = (Mα, Mβ, Y) ∈ Lβ

α(U, A, R), then the layers
of the Lattice Structure is |A|+ 1 and node C is at Layer |Y|. In particular, when Y = ∅, C was recorded on
the zeroth layer.

2.2. Incremental Construction Algorithm of Interval Concept Lattice (ICAICL)

Thought of algorithm [11] is as follows.
(1) Calculate the attribute power set P(A) from formal context and let each element Y of power

set be intent. Construct the initial node-set G according to the intension cardinal number in ascending
order. For clarity, suppose each concept is a six-point group:

(Mα, Mβ, Y, Parent, Children, No), (4)

where Mα, Mβ is null set, and Parent = Children = “NULL”.
(2) Set parameters α, β and the node of Y is G = (Mα, Mβ, Y). Traversing the intent Yi of every

object, if Yi ⊆ Y and |Yi|/|Y| ≥ α, then merge the object into Mα; if Yi ⊆ Y and |Yi|/|Y| ≥ β, merge
the object into Mβ.

(3) Firstly, construct the root and end node, then insert other nodes as new ones into the lattice
incrementally to form the lattice structure. After inserting a new one, there are three kinds of nodes in
the Lβ

α
′ : New node (the node inserted), invariant and update node.
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3. Dynamic Horizontal Union Algorithm

3.1. Basic Principles

Definition 9. In the two formal context K1 = (G1, M1, I1) and K2 = (G2, M2, I2), if gI1m ⇔ gI2m for each
g ∈ G1 ∩G2 and m ∈ M1 ∩ M2, then K1 and K2 are consistent [12,13]. Otherwise, K1 and K2 are inconsistent.

Definition 10. Suppose the formal context (U1, A1, R1) and (U2, A2, R2) is consistent and they compose
interval concept lattice Lβ1

α1 (U1, A1, R1) and Lβ2
α2 (U2, A2, R2) respectively. When they meet α1 = α2 = α and

β1 = β2 = β, then Lβ
α(U1, A1, R1) and Lβ

α(U2, A2, R2) call consistently, otherwise they are inconsistent.

Definition 11. If interval concept lattice Lβ
α(U1, A1, R1) and Lβ

α(U2, A2, R2) is consistent and meet U =

U1 = U2, we get Lβ
α(U, A, R) when we combine them. Lβ

α(U, A, R) call horizontal union of Lβ
α(U1, A1, R1)

and Lβ
α(U2, A2, R2). Suppose C1 ∈ Lβ

α(U1, A, R1), C2 ∈ Lβ
α(U2, A, R2), then C = C1 ⊗ C2 is the horizontal

union of the interval concept.

The concepts in Lβ
α(U, A, R) can be divided into two categories. The first is that the number of

conceptual connotative attributes in the original structure equals the number of layers of the concepts,
and the second is that the sum of the number of conceptual connotative attributes in the two original
structures equals the number of layers of the concepts. The specific combination of the two concepts is
as follows:

Theorem 1. Suppose Lβ
α(U1, A1, R1) and Lβ

α(U2, A2, R2) is consistent and meet A1 = A2 = A. At the

same time suppose (Mα
1 , Mβ

1 , Y1) and (Mα
2 , Mβ

2 , Y2) are interval concepts in Lβ
α(U1, A, R1) and Lβ

α(U2, A, R2)

respectively. If they meet Y = Y1 = Y2, Mα = Mα
1 ∪ Mα

2 and Mβ = Mβ
1 ∪ Mβ

2 , then (Mα, Mβ, Y) is the
interval concept after vertical union.

Theorem 1 shows that for the first kind of concepts, the extension and intension of upper and
lower bounds of the concepts themselves remain unchanged before and after uniting. But the flags of
conceptual types are different. When the conceptual labels flag equals 2 and flag equals 3 in the lattice
structure, they remain unchanged after uniting; when the conceptual label flag equals 1 in the lattice
structure, flags may equal 1 or 2 after uniting.

Proof. Since the formal context corresponding to the primitive structure is contained in the formal
context corresponding to the united lattice structure, the ternary ordered pairs of concepts in the
primitive structure are completely preserved in the united lattice structure. At the same time, there is
no change before and after the uniting of empty concepts and redundant concepts. For the existence
concepts, the new concepts generated by uniting may make themselves redundant.

For the second kind of concept, C = (Mα, Mβ, Y) ∈ Lβ
α(U, A, R), C1 = (Mα

1 , Mβ
1 , Y1) ∈

Lβ
α(U, A1, R1), C2 = (Mα

2 , Mβ
2 , Y2) ∈ Lβ

α(U, A2, R2). When Y1 ∩ Y2 = ∅, taking the upper boundary
extension as an example, the case of horizontal union can be divided into the following two types: See
Theorems 2 and 3. �

Theorem 2. When �|Y1|α�+ �|Y2|α� = �|Y1 ∪Y2|α�, Mα = Mα
1 ∩ Mα

2 , verify whether x1 = Mα
1 − Mα

and x2 = Mα
2 − Mα are empty, if not empty, then bring them into and verify whether | f (x)∩(Y1∪Y2)|

|Y| ≥ α.

If | f (x)∩(Y1∪Y2)|
|Y| ≥ α, add objects to Mα, or not. Symbol �x� denotes the smallest integer greater than or equal

to x.

Proof. Determined by the boundary extension itself | f (x)∩Y|
|Y| ≥ α, the object satisfying this formula

contains at least B attributes, and Y1 ∩ Y2 = ∅. �|Y1|α� + �|Y2|α� = �|Y1 ∪Y2|α� is equivalent to
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Mα = Mα
1 ∩ Mα

2 . However, x1 = Mα
1 − Mα or x2 = Mα

2 − Mα may still contain objects larger than or
equal to (|Y1 ∪Y2|α), so it needs further verification and cannot be eliminated directly. �

Theorem 3. When �|Y1|α� = �|Y1 ∪Y2|α�, Mα = Mα
1 , verify whether x1 = Mα

1 − Mα and x2 = Mα
2 − Mα

are empty, if not empty, then bring them into and verify whether | f (x)∩(Y1∪Y2)|
|Y| ≥ α. If | f (x)∩(Y1∪Y2)|

|Y| ≥ α, adds
objects to Mα, or not. �|Y2|α� = �|Y1 ∪Y2|α�.

Theorem 4. Supposes that Lβ
α(U, A, R) is the interval concept lattice obtained by the horizontal uniting of

Lβ
α(U, A1, R1) and Lβ

α(U, A2, R2) (A1 ∩ A2 = ∅), then the m-level node of Lβ
α(U, A, R) is Cm

|A1|+|A2| =
Cm
|A1| + Cm−1

|A1| C1
|A2| + Cm−2

|A1| C2
|A2| + . . . + C1

|A1|C
m−1
|A2| + Cm

|A2|.

Here Cm
|A1| refers to all interval concepts whose number of intension attributes is m in

Lβ
α(U, A1, R1), Cm−1

|A1| C1
|A2| refers to all interval concepts whose number of intension attributes is m − 1

in Lβ
α(U, A1, R1) and all interval concepts whose number of intension attributes is 1 in Lβ

α(U, A2, R2)

merge horizontally.

3.2. Algorithmic Design

In order to generate interval concept lattices while retaining all interval concepts, including
existing concepts, redundant concepts and empty concepts, and effectively improve the uniting
efficiency of interval concept lattices, the existing incremental interval concept lattice generation
algorithm needs to be modified first, and on this basis, a dynamic horizontal uniting algorithm of
multiple interval concept lattices is proposed.

3.2.1. Improved Progressive Generation Algorithms for Interval Concept Lattices

In order to distinguish between different interval concepts, concept nodes are defined and stored
in structured form as follows:

f lag
∣∣∣ Mα

∣∣∣ Mβ
∣∣∣ Y

∣∣∣ parent
∣∣∣ children

∣∣∣ no

It is defined in the following form.
struct concept
{ string Mα

i ; Mα
i Mβ

i ; Yi;
struct Y, parent, children;
int flag; }
The concept of category is marked by flag. When flag = 1, flag = 2 and flag = 3, stored concept is

exist concept, redundant concept and empty concept separately.
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Algorithm 1. Improved ICAICL

Input: formal context (U, A, R)

Output: interval concept lattice Lβ
α and Lβ

α

(1) Calculate power set of attribute set P(A) to determine the intent of concept, generate concept node of
initialization G.

(2) Determine upper bound extent Mα
i and lower bound extent Mβ

i , make flag of empty concept be 3 and
the other be 1.

(3) According to the partial order relationship, determine the level of the node and the parent-child
relationship, make flag of redundant concept be 2.

The method of finding out redundant concept is Romove-redun (Ch,Gi).
Remove-redun(Ch,Gi) //find out redundant concept, sign and store, and delete it
{ for each children Ch in Gi // Ch pointer point to every children of Gi
{ If (Gi.Mα

i = Ch.Mα
i , Gi.Mβ

i = Ch.Mβ
i )

{ Flag=2;
Delete Gi from Lβ

α}}}
(4) To find concept of no = 1, structure the root node. Then insert other nodes into the lattice according to

the parent-child relationship successively. Eventually form the structure of interval concept lattice.

3.2.2. Dynamic Lateral Uniting Algorithms for Multi-Interval Concept Lattices

The basic idea of the algorithm is that whenever a new data set is generated, it will be transformed
into a formal representation of the interval concept lattice and united with the united lattice structure.
In this way, the information of the interval concept lattice can be aggregated again and again, which
lays a foundation for further mining association rules.

Algorithm 2. DHM (Dynamic Horizontal union)

Input: Lβ
α1, Lβ

α1, Lβ
α2, Lβ

α2 . . . Lβ
α i, Lβ

α i . . .

Output: Lβ
α and Lβ

α

Steps:

(1) Let Lβ
α = Lβ

α1 and Lβ
α = Lβ

α1;

(2) The newly generated interval concept lattices Lβ
α i and Lβ

α i (i = 2, 3 . . . n) are united with Lβ
α and Lβ

α

respectively. The united results are assigned to Lβ
α and Lβ

α . The uniting steps of the two interval concept
lattices are as follows:

1© Let A∧
i = Ai ∩ A, delete the concept of attributes in the newly generated interval concept lattice

Lβ
α(U, Ai, Ri)(Lβ

α i) containing duplicate concept attributes set A∧
i , and mark its lattice structure as

Lβ
α(U, A∗

i , R∗i )(Lβ
α i∗) and corresponding attributes set as A∗

i = Ai − A∧
i .

2© Let A∗ = A ∪ A∗
i , compute the intension of the concept determined by attribute set P(A∗), and

generate concept node set G∗ of the initialized concept Lβ∗
α . According to node set G∗, the hierarchy and

parent-child relationship of the node are determined according to partial order relation. Let flag = 0, and the
upper and lower bounds are empty.

3© Scanning the interval concepts in Lβ
α and Lβ

α i∗ by sequence and generating the concepts of Lβ∗
α . There,

Horizontal union-M Layer is used for horizontal uniting of layer M.

Horizontal union-M Layer (Lβ
α i∗, C∗i , Lβ

α , C, Lβ∗
α , C∗)

{ For C∗i in Lβ
α i∗;

For C in Lβ
α ;

If (C∗i .|Y| = m) // the intention attributes number of the concept in Lβ
α i∗ is equal to the concept layer m

{ If (C∗.Y = C∗i .Y)
{ C∗. f lag = C∗i . f lag;

C∗.Mα = C∗i .Mα;
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C∗1 .Mβ = C∗i .Mβ; }
Else end }

If (C.|Y| = m) // the intention attributes number of the concept in Lβ
α is equal to the concept layer m

{ If (C∗.Y = C.Y)
{ C∗. f lag = C. f lag;

C∗.Mα = C.Mα;
C∗.Mβ = C.Mβ; }

Else end }

If (C∗i .|Y|+ C.|Y| = m) // The sum of the number of attributes in Lβ
α i∗ and Lβ

α is equal to the concept
layer m

{ For (C∗i .|Y| = 1; C∗i .|Y| = m− 1; C∗i .|Y|++)
C.|Y| = m− C∗i .|Y|

For C∗.Mα

If (
⌈
C∗i .|Y| ∗ α

⌉
+ �C.|Y| ∗ α� = ⌈

(C∗i .|Y|+ C.|Y|) ∗ α
⌉
)

{ γ = α

union1-C∗i C(C∗i , C, C∗) }
If (

⌈
C∗i .|Y| ∗ α

⌉
=

⌈
(C∗i .|Y|+ C.|Y|) ∗ α

⌉
or �C.|Y| ∗ α� = ⌈

(C∗i .|Y|+ C.|Y|) ∗ α
⌉
)

{ If
⌈
C∗i .|Y| ∗ α

⌉
=

⌈
(C∗i .|Y|+ C.|Y|) ∗ α

⌉
{ γ = α;

Cg = C∗i ;
Ch = C;

union2-CgCh(Cg, Ch, C∗)}
If (�C.|Y| ∗ α� = ⌈

(C∗i .|Y|+ C.|Y|) ∗ α
⌉

{ γ = α;
Cg = C;
Ch = C∗i ;

union2-CgCh(Cg, Ch, C∗)}
Else end }}

For C∗.Mβ

If (
⌈
C∗i .|Y| ∗ β

⌉
+ �C.|Y| ∗ β� = ⌈

(C∗i .|Y|+ C.|Y|) ∗ β
⌉
)

{ γ = β

union1-C∗i C(C∗i , C, C∗)}
If (

⌈
C∗i .|Y| ∗ β

⌉
=

⌈
(C∗i .|Y|+ C.|Y|) ∗ β

⌉
or �C.|Y| ∗ β� = ⌈

(C∗i .|Y|+ C.|Y|) ∗ β
⌉
)

{ If (
⌈
C∗i .|Y| ∗ β

⌉
=

⌈
(C∗i .|Y|+ C.|Y|) ∗ β

⌉
{ γ = β;

Cg = C∗i ;
Ch = C;

union2-CgCh(Cg, Ch, C∗)}
If (�C.|Y| ∗ β� = ⌈

(C∗i .|Y|+ C.|Y|) ∗ β
⌉

{ γ = β;
Cg = C;
Ch = C∗i ;

union2-CgCh(Cg, Ch, C∗)}
Else end }}

Remove-redun(Ch,Gi)
If (C∗.Mα = C∗.Mβ = ∅)
Flag = 3
Else flag = 1}}

The Horizontal union-M Layer algorithm calls three sub-functions, Remove-redun(Ch,Gi),
union1-C∗i C(C∗i , C, C∗) and union2-C∗i C(C∗i , C, C∗) respectively. The function of Remove-redun(Ch,Gi)
is to find redundant concepts of united interval concept lattices and mark them. The function of
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union1-C∗i C(C∗i , C, C∗) and union2-C∗i C(C∗i , C, C∗) are to calculate and test the deleted objects for
uniting cases, and to get the concept of interval after uniting.

Assign Lβ
α and Lβ

α to Lβ∗
α and Lβ∗

α separately. Let i = i + 1, go to step 2.
The algorithm starts from the interval concept lattice directly, makes full use of the lattice structure of

the original interval concept lattice and covers the uniting of all concepts. Therefore, it has completeness
and effectiveness. Compared with the method of uniting formal context first and then using ICAICL
algorithm to construct the interval concept lattice, this algorithm reduces time complexity and has a
value of O(n ∗ ni ∗ (n + ni)), which proves the efficiency of the algorithm.

4. Example Analysis

Two formal contexts are listed in Tables 1 and 2. U = {1, 2, 3, 4, 5} is the element set. A1 = {a, b, c}
and A2 = {c, d, e, f } are attribute sets before and after the change, respectively. Their corresponding
lattice structures and union are described as follows.

(1) Set α = 0.6, β = 0.7, applying the improved interval concept lattice progressive generation
algorithm to generate the primitive lattice structure is shown in Figure 1a,b.

(2) A = {a, b, c, d, e, f }. Flag = 0. The upper and lower boundaries are empty. Initialization of

Interval Concept Constitution Generated by Parent-Child Relation is Lβ
α .

(3) A∗ = A1 ∩ A2 �= ∅, A∗ = c. Deleting all the concept nodes in Lβ
α1 which contain the attribute c.

Here, Lattice structure is Lβ
α1
∗

and its attributes set is A∗
1
= A1 − A∗.

(4) Scanning Lβ
α1
∗

and Lβ
α2 in sequence, and the interval concept is generated in different cases. Lβ

α

can be obtained from Lβ
α . The interval concept lattice after horizontal union is shown in Figure 2.

Table 1. The formal context of Lβ
α1.

U A1 a b c

1 1 0 1
2 0 1 0
3 1 1 0
4 1 0 0
5 1 0 1

  
(a) (b) 

Figure 1. (a) The lattice structure Lβ
α(U, A1, R1) of Lβ

α1; (b) The lattice structure Lβ
α(U, A2, R2) of Lβ

α2.

Take Layer 3 as an example, several cases of horizontal uniting of interval concepts are described

below. The number of attributes in Lβ
α1
∗

and Lβ
α2 are 2 and 4. According to C3

6 = C3
4 + C1

2C2
4 + C2

2C1
4,

the uniting of the third layer of Lβ
α can be divided into three cases.
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• Case 1: There are four concepts of the third layer in Lβ
α2. According to the same principle of

intension attributes, the corresponding concepts in Lβ
α are found, and the upper and lower bounds

of the concepts and their flags are assigned to the corresponding interval concepts.

• Case 2: In Lβ
α1
∗
, the nodes which have one intension attribute are (1345, 1345, a) and (23, 23, b),

and the nodes in Lβ
α2 which have two intension attributes are (1, 1, cd), (15, 15, ce), (1, 1, c f ),

(12, 12, de), (1, 1, d f ) and (1, 1, e f ). Merge them horizontally. Firstly, the uniting case between
(1345, 1345, a) and (1, 1, cd) belongs to �|cd| ∗ 0.6� = �(|a|+ |cd|) ∗ 0.6�, so Mα∗ = {1}.
Meanwhile, {1345} − {1} = {345} �= ∅, bring the elements of {345} into | f (x) ∩ acd|/|acd| ≥
0.6, determining whether the proportion of intension attributes corresponding to deleted objects
satisfies the relationship further, and then add the object into Mα∗ if the relationship is satisfied,
otherwise it will be eliminated completely. By analogy, the upper and lower boundary extensions
are used to determine the uniting case, and the deletion concept is further verified. Finally, the
type of the deletion concept is determined according to the upper and lower boundary extensions
after the concept is generated.

• Case 3: Uniting the nodes which have two intension attributes in Lβ
α1
∗

and the nodes which have

one intension attributes in Lβ
α2. The interval concepts obtained from the above three cases together

constitute the third layer of Lβ
α .

Table 2. The formal context of Lβ
α2.

U A1 c d e f

1 1 1 1 1
2 0 1 1 0
3 0 0 1 0
4 0 1 0 0
5 1 0 1 0

Figure 2. The lattice structure Lβ
α(U, A, R) united by Lβ

α(U, A1, R1) and Lβ
α(U, A2, R2) for the Interval

parameters α = 0.6 and β = 0.7.
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Then Lβ
α can be obtained by horizontal uniting between conceptual nodes. After eliminating the

interval concepts of flag equaling 2 and 3 in Lβ
α , it can be transformed into Lβ

α . See Figure 2.

5. Conclusions

When facing real-time data updating in the era of big data, how to deal with data effectively which
are generated at any time has become one of the key issues. In this paper, the concept of consistency
is introduced as a prerequisite for the uniting of interval concept lattices. Lateral uniting of interval
concept lattices can be carried out when the parameter intervals of two interval concept lattices are
identical and the object sets are identical. In order to preserve the integrity of the lattice structure,
the concepts in lattice structures are divided into three categories: Existential concept, redundant
concept and empty concept by improving the progressive generation algorithm of interval concept
lattices. The concept of L(U, A, R) is introduced at the same time. Lateral uniting of lattice structures
is specified to the horizontal uniting of lattice nodes. It can be divided into two situations, that is, the
number of connotative attributes of concepts in the original structure equals the number of conceptual
layers and the sum of the number of connotative attributes of concepts in the two original structures
equals the number of conceptual layers, and the two cases are further refined according to the actual
situation, so as to realize the horizontal union of interval concept lattices.

However, in the face of large-scale data, the structure of the interval concept lattice will be greatly
expanded, which will lead to high operational complexity. How to develop efficient dynamic uniting
software of interval concept lattice, further reduce the complexity of time and space, realize the optimal
merging of interval concept lattices, and proposing association rules from them will be the next major
research work.
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Abstract: Wireless Sensor Networks (WSN) have been widely adopted for years, but their role
is growing significantly currently with the increase of the importance of the Internet of Things
paradigm. Moreover, since the computational capability of small-sized devices is also increasing,
WSN are now capable of performing relevant operations. An optimal scheduling of these in-network
processes can affect both the total computational time and the energy requirements. Evolutionary
optimization techniques can address this problem successfully due to their capability to manage
non-linear problems with many design variables. In this paper, an evolutionary algorithm recently
developed, named Social Network Optimization (SNO), has been applied to the problem of task
allocation in a WSN. The optimization results on two test cases have been analyzed: in the first one,
no energy constraints have been added to the optimization, while in the second one, a minimum
number of life cycles is imposed.

Keywords: wireless sensor networks; task allocation; stochastic optimization; social network
optimization

1. Introduction

Wireless Sensor Networks (WSN) are relevant system architectures that can be applied in a wide
range of applications [1], from monitoring to tracking, visual surveillance, ranging also in many fields
from industrial automation to agricultural systems, and target localization, both in military and civil
sectors [2].

Currently, WSN are becoming much more important because the senors’ computational
capabilities are growing, and thus, many in-network tasks can be performed. It has been noticed that
processing the information inside the network is faster and safer than sending raw data to the final
user [3]. Such in-network processing can drastically reduce the total computational time required after
sensing tasks with a direct impact on power consumption [4].

The network complex dynamics created by these in-network operations can be suitably managed
by means of evolutionary optimization techniques [5]. For instance, the problem of sensor lifetime
maximization has been successfully approached in [6] by means of genetic algorithms and in [7] with
genetical swarm optimization. The problem of coverage in WSN has been solved in [8] with both the
genetic algorithm and ant colony optimization. Another important problem of WSN, routing, has been
widely approached by several authors: in [9], a specific energy protocol has been designed to improve
the network lifetime, while in [10], it has been solved with genetical swarm optimization and in [11]
with particle swarm optimization.

The problem of task and resource allocation is a crucial problem in many frameworks. It is aimed
at finding the optimal distribution of the tasks inside the network itself with reference to a specific
goal. In the case of the deployment of multiple sensor devices with batteries, a fundamental goal is to
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maximize the total network lifetime, in other words to minimize the total energy consumption [12].
In many WSN applications, the computational time is also a key parameter in the optimization process.
Scheduling and planning have been already faced with evolutionary computation algorithms, like the
genetic algorithm [13], particle swarm optimization [14], and ant colony optimization [15]. In standard
planning problems, these techniques have been demonstrated to have performances comparable with
other deterministic optimization techniques [16].

With recent advancements in massive parallel computing technologies, the problem of scheduling
resources and tasks, for example in multiprocessor systems, is becoming more and more attractive.
In this scenario, soft computing techniques represent a useful tool that can be effectively applied in
task allocation optimization problems.

This work is based on a multi-hop network in which a set of tasks for parallel computing should
be performed. The tasks are distributed and collected by a central node. By properly choosing the
number of such processed tasks for each sensor, it is possible to change the total processing time and
the network lifetime.

The analyzed task allocation problem is devoted to the minimization of the elaboration cycle
time of the entire network, i.e., the total time required by the network to process all the tasks.
The optimization is performed fixing a predefined scheduling protocol for each sensor and taking into
consideration energy constraints expressed in terms of network lifetime.

To perform this optimization, a promising evolutionary optimization algorithm, named Social
Network Optimization (SNO) [17], has been used. SNO is a recently-developed population-based
algorithm: in the literature, it has been applied to antenna optimization [18], with a comparison
between SNO and PSO; it has been also applied to model parameter matching problems [19].

In order to assess SNO performance on task allocation, in this paper, the final results are compared
with the solutions obtained by the following algorithms: Biogeography-Based Optimization (BBO),
Differential Evolutionary (DE), the Genetic Algorithm (GA), Particle Swarm Optimization (PSO),
and the Stud-Genetic Algorithm (SGA).

The paper is structured as follows: Section 2 provides an overview of related works, and Section 3
contains a description of the WSN with all the hypothesis and parameters adopted. Section 4 provides
a brief description of the optimization algorithm. Section 5 reports the results of the optimization and
the comparison. Finally, in Section 6, some conclusions are drawn.

2. Related Works

Evolutionary optimization algorithms have been widely applied to optimization problems related
to wireless sensor networks. The task assignments of WSN essentially aims to save energy, reducing
the expenditure among the allocations and prolonging the network lifetime. Some authors had
already proposed energy-efficiency approaches based on a mix of entropy theory and evolutionary
computation theory [20].

Moreover, the same problem has been also addressed by means of several evolutionary algorithms:
for example, in [21], task scheduling in heterogeneous distributed systems was evaluated comparing a
multi-objective evolutionary algorithm with a hybrid genetic algorithm. Previously, genetic algorithms
had been used in [22] for a similar purpose, performing tests on a Java scheduler with a homogeneous
set of processors. Additionally, in [23], the authors proposed three different hybridizations between
BBO and DE for the problem of power allocation in sensor networks.

Particle swarm optimization has been widely applied in WSN: the work in [24] provided a wide
review of these applications. As concerns the specific problem of task allocation, in [25], the authors
applied the PSO to the this problem with a particular concern regarding the network reliability.
In [26], the authors proposed the PSO in task optimization for tracking, showing that the heuristic
algorithm can compete and win against deterministic approaches to the same problem. More recently,
in [27], a logic-based evolutionary algorithm compared to a binary PSO has been applied again to task
allocation in WSN.
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Social network optimization has been preliminary applied to task allocation in WSN [28], but in
this previous work, the scheduling algorithm was only partially considered and no energy constraints
were included. Additionally, no comparison with other assessed evolutionary algorithms was proposed
in order to validate SNO performance over the task allocation problem. In the present paper, all these
aspects have been added, as clarified in the following sections.

3. Description of Wireless Sensor Networks

The analyzed problem in this paper is the tasks’ resource allocation in wireless sensor
networks [29].

The WSN is a system composed of a set of smart sensor devices, deployed in space, which can
sense, process, send, and receive data. The communication adopts a multi-hop scheme for managing
the signal-to-noise ratio without drastically compromising the global lifetime. Moreover, this structure
can handle specific environmental constraints.

The most important node in the network is the cluster head: this node is devoted to transmission
and reception of the data. It is in charge of splitting and gathering the data between the network nodes,
and it cannot perform any further processing activity.

All the other standard nodes can be operated in four different modes:

• computing mode: this is the phase related to the elaboration of the assigned task;
• Reception (RX) mode: all the nodes can receive information from their neighbors;
• Transmission (TX) mode: when a sensor is in this mode, it is transmitting the information to its

predecessor in the network;
• idle state: this is when a sensor is not performing any activity; in this state, the energy consumption

is drastically reduced.

Thus, the sensors can be only in one of these four states and cannot perform more than one activity
at the same time. On the other hand, the cluster head is devoted only to TX and RX operations. Due to
this design option, it is equipped with a multi-input and multi-output transmission capability.

The sensor units can differ one from another in terms of processing speed, while the transmission
rate is homogeneously distributed among all the nodes. This is justified due to the fact that, while
the transmission rate is related to the signal frequency, the units can be different or can be set with
different energy levels to improve the network lifetime.

The specific selected application, namely the parallel computing field, imposes some constraints.
Firstly, all the tasks require almost the same computational effort; for the sake of simplicity, in this
paper, they have been considered equal. Moreover, a process cycle of the entire network consists of the
transmission of the tasks from the cluster head to the sensors, the following elaboration, and in the
final collection of the processed outputs. The following cycle can start only when all the outputs are
collected, as represented in Figure 1.

Figure 1. Representation of the network processing cycle: firstly, the information is sent from the
cluster head to the sensors, then it is processed, and finally, the outputs are gathered.

The scheduling process of this network is assumed to be in the first-in-first out (FIFO) logic.
This control scheme has been selected because of its simplicity; even if it is not optimal by itself, it is
part of the optimization process, so this sub-optimality can be reduced or eliminated. This logic has
the advantages of being simple and can be implemented in the sensors, and it is valid for any kind of
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job the units should perform. Moreover, this logic is robust to some variation in the elaboration time of
the other units.

Within this network, two aspect have been considered: the total cycle time and the network
lifetime. The first is the maximum of the time required by the sensors:

tcycle = max
i

ti (1)

On the other hand, the network lifetime is the number of cycles before the most stressed node
ends its energy.

The total time required by the ith sensor unit is the sum of the time spent in each of the four
possible states:

ti = tel,i + tRX,i + tTX,i + tw,i (2)

where ti is the total time required by the ith unit, tel,i is its elaboration time, tRX,i is its receiving time,
tTX,i is its transmission time, and tw,i is its idle time.

These times are all a function of the number of allocated tasks to each unit. Firstly, the processing
time can be expressed as:

tel,i =
Ni · cel

vel,i
(3)

where Ni is the number of allocated tasks to the ith unit, cel is the number of Kilo Clock Cycles (KCC)
required for elaborating one task, and vel,i is its elaboration speed in KCC/s.

The time spent in reception mode depends on the network configuration, and it has two
contributions: the time required for receiving the tasks from its predecessor and the time for receiving
the output of the elaborations from reachable units (in graph theory, the set of reachable nodes is the
set of nodes connected directly or indirectly to the analyzed node):

tRX,i =
Ui

∑
j=1

Nj · cin

vRX
+

Ui

∑
k=1

Nk · cout

vRX
=

Ui

∑
j=1

Nj · (cin + cout)

vRX
(4)

where Ui is the number of reachable units from the ith sensor, cin is the information amount sent from
the cluster head to the nodes to assign a task, cout is the output number of bits for each assigned task,
and vRX is the reception speed.

The transmission time can be calculated with a very similar logic as the reception time.
Nonetheless, it can be calculated in an easier way as a function of the reception time: in fact, it is the
time for retransmitting the received information and to transmit the output of the task processed by
the unit:

tTX,i = tRX,i · vRX
vTX

+
Ni

vTX
(5)

where vTX is the transmission speed. The transmission and the reception speed can be different
because the transmission requires also the amplification of the signal.

The waiting time evaluation depends on the specific schedule of the activities and thus cannot be
expressed as the other times, but it can be calculated at each simulation run of the network.

The scheduling is based on the following rules. The information is transmitted from the cluster
head to the nodes, giving priority to the nodes with more subsequent nodes; when a node has finished
the reception and the hopping of the information, it starts its elaboration; then, it sends back the
information to its predecessorif it is in idle mode. Finally, it turns to idle mode for the information.

An example of the scheduling is proposed in Figure 2.
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(a) (b)

Figure 2. Scheduling example on a simple network. (a) Simple network with 17 nodes. (b) Scheduling
example on one cycle.

As concerns the energy consumption, the following model has been applied. The sensors are fed
by batteries with a total capacity of 9 kJ. The energy consumed is composed of four terms:

Ei = ETRX,i + Eamp,i + Eel,i + Ew,i (6)

The first term is the energy for the communication. It is a function of the total number of bit
transmitted and received (bTRX,i):

ETRX,i = bTRX,i · ETRX (7)

where ETRX is the energy required to maintain the communication equipment.
The amplification energy is required to have an acceptable signal-to-noise ratio. The transmission

energy required by node i to transmit to node j depends on the number of transmitted bits (bij) and on
the transmission distance (dij):

Eamp,i,j = Eamp · bij · dij (8)

The elaboration energy depends on the elaboration time:

Eel,i = Eel · tel (9)

Finally, the energy consumed in idle time is considered negligible with respect to the other terms.
The network has been implemented in MATLAB; the parameters adopted in the simulation of the

network are summarized in Table 1.

Table 1. List of network parameters. KCC, Kilo Clock Cycles.

Parameter Symbol Value Parameter Symbol Value

Communication speed vTRX 25 Mbps Communication energy ETRX 5 pJ/b
Stored energy Es 9 kJ Amplification energy Eamp 0.01 pJ/b

Elaboration speed vel [30–100] KCC/s Elaboration energy Eel 30 mW
Input bytes for task cin 500 byte Output bytes for tasks cout 700 bytes

Computational effort for tasks cel 150 KCC/s Total number of tasks Ntot 10,000

4. Social Network Optimization

The optimization algorithm used in this paper is Social Network Optimization (SNO). It is a novel
population-based algorithm that takes its inspiration from the information-sharing process in online
social networks [30]. The algorithm has already been applied to other engineering problems in which
its effectiveness has been proven [17].
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The performances of this algorithm are very good in many engineering application problems,
both in terms of convergence speed and reliability of the solution, and this makes the algorithm very
suitable for facing the problem complexity in an affordable time [31].

The basic element of SNO is the social network itself (S). It is a network of users ({uu}) that
communicates by means of posts ({ps}):

S = {{uu}, {ps}} (10)

Each user is characterized by a set of opinions (ou) (the bold means that it is a vector), its personal
growth (cu), a list of friends (Lu), and a reputation value for the other users of the social network (ruv):

uu = {ou, cu,Lu, {ruv}} (11)

The interaction between users takes place among two preferential paths: the first one is a friend
network, where the connections between users are very strong and reciprocal, and a trust network,
where the connections are weaker and monodirectional. Among these paths, the information is
exchanged by means of posts: the information content is presented by a status containing the opinions
of the user on the discussion topics.

The topic represents, out of the social metaphor, the possible design variables, while the status is
the value assigned to them by each post that represents a candidate solution.

Each post contains the status, ss, the name (the ID) of the user that has posted it (us), the time at
which it was posted ts, and a visibility value (vs), that is, out of the metaphor, the cost value associated
with each candidate solution by means of the objective function. Posts with high visibility are more
likely to be seen by the other users, and thus can influence more individuals. The post visibility affects
the reputation list: in fact, if the visibility of a post of the user v is higher than the average, its reputation
ruv grows, while if it is lower than the average, the reputation diminishes.

ps = {ss, us, ts, vs} (12)

The opinions of a user are related o the corresponding status by means of the linguistic transposition
of the ideas. In SNO, it is modeled as a random variable with zero mean and a small standard deviation.

su = ou + λu (13)

Figure 3 is representative of the basic structure of social network optimization and of its relation
with a generic optimization problem.

Figure 3. Internal structures of social network optimization and their relation to the
optimization problem.

All the above presented structures evolve with time. There are two basic mechanisms in this
evolution: the personal growth of individuals and the modification of the friend and trust networks.
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The personal growth can be represented by the variation of the opinions with time:

cu(t) =
dou(t)

dt
(14)

The user change cu(t) is based on the complex contagion model of idea diffusion:

cu(t + 1) = α · cu(t) + β · (au(t)− ou(t)) (15)

where au(t) is the attracting idea created in the interaction process; α and β are two user-defined
parameters that represent the inclination of each user to change his/her idea.

The attracting idea is created by means of the friend and trust networks. In fact, each user
selects some influencers in these networks by means of a rank selection based on the visibility
value. Then, the identified posts are combined with a crossover operator to create the attracting
idea. The networks’ evolutions are intrinsically different. The friend network evolves by means of
the process of recommendation, so a user v has a probability of becoming a friend of a user u that is
proportional to the number of common friends. On the other hand, the friendship can be eliminated
when the number of common friends becomes low. Furthermore, the trust network is based on the
reputation value: all the individuals that for the user u have a reputation higher than a predefined
threshold belong to its trust network.

The time evolution of the structures of SNO is described in the flowchart of Figure 4.

Figure 4. Flowchart of social network optimization.

5. Optimization Problem: Description and Results

The described wireless sensor network represents the engineering problem to which social
network optimization has been here applied. In the following, the optimization problem is formalized,
and the results are presented.

5.1. Problem Description

The optimization problem is the following one:

min
T∈Θ

tmax (16)

subject to:
N

∑
i=1

Ti = Ntask

Emax <
Es

4000
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T is the design variable vector (the number of tasks associated with each sensor), and Θ is the
design variable space. The minimization function is the maximum cycle time, i.e., the time required by
the slowest sensor in the network.

There are two constraints that were introduced: the first one ensures that all the tasks are managed
by the network, while the second one that the network lifetime lasts more than 4000 cycles.

This problem has been codified in SNO by means of a candidate solution represented by a vector
of N elements, where N is the number of sensors, and each of them can range from 0–1. The first
constraint has been managed with a proper decodification of the candidate solution. In fact, it is
possible to process the candidate solution s in the following way:

T =

⌊
s

|s| · Ntot

⌋
(17)

In this way, the produced vector T is composed only by an integer. On the other hand, it is not
ensured that the sum is equal to Ntot. To fix this aspect, the missing task (Nmiss) are calculated and
assigned to the first Nmiss sensors.

The management of the second constraint has been done with a penalty approach. This means
that the actual visibility value for the optimizer is:

v = tmax +
[
500 + 10 · (4000− tli f e)

]
· H(4000− tli f e) (18)

where tli f e is the lifetime of the network expressed in elaboration cycles and H(·) is the Heaviside
function defined as:

H(x) =

{
0, x < 0
1, x ≥ 0

(19)

This penalty definition has been selected because it ensures that a solution that satisfies the
constraints has a cost value greater than a good solution. It has been decided to not further penalize
the solutions because they can have good features that could help the convergence process.

In the following, the optimization process has been performed firstly without taking this last
constraint into consideration, and then considering it. In both cases, firstly, the results obtained by
means of SNO are presented, and then it is compared with other algorithms.

The algorithms adopted for the comparison are the following:

• Biogeography-Based Optimization (BBO), implemented starting from [32] and modified to
improve the exploration;

• Differential Evolutionary (DE) [33];
• Genetic Algorithm (GA) [34], implemented for the real value objective function, with single-point

crossover and non-linear rank-based selection;
• Particle Swarm Optimization (PSO) [35], with variable inertia and velocity constraints;
• Stud-Genetic Algorithm (SGA) [36], an effective variation of GA in which one of the parents

is always the best individual in the population and the second one is selected with a
rank-based selection.

For all these algorithms, the population was set to 20 individuals (this value was obtained from a
parametric analysis performed on standard benchmarks [37]), and the termination criterion was set to
5000 objective function evaluations. In all the tests, 100 independent trials were performed to have
statistical reliability of the results.

5.2. Results of Unconstrained Optimization

The first optimization set of trials was done without the constraint on the minimum lifetime.
Firstly, the results of SNO are presented, and then, they are compared with the results of the
other algorithms.
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5.2.1. Social Network Optimization Results

SNO has been used to find an optimal solution of the WSN task allocation problem. Figure 5 shows
the convergence curves of the 100 independent trials. The small plot is a zoom of the convergence
curves limiting the cost value to 1600.

Figure 5. Convergence curves of SNO on 100 independent trials for the unconstrained problem.

The convergence curves have a very similar behavior, showing the robustness of the algorithm.
All the trials were able to find solutions with the cost value below 1000.

It is possible to represent the obtained solutions in a plane in which the horizontal axis is the
maximum cycle time (in milliseconds) and the vertical axis is lifetime (in elaboration cycles). Figure 6
shows the 100 optimal values obtained by SNO. The three green dots are the Pareto front. In this case,
it is possible to notice that many solutions have a lifetime below 4000 cycles. All these solutions will be
discarded in the constrained optimization.

Figure 6. Optimal solutions found by SNO in the cycle time–lifetime plane. The green represents the
Pareto front.

The optimal scheduling of one elaboration cycle is represented in Figure 7a. The red color
represents the receiving mode, the blue the elaboration status, and the yellow the transmitting mode.
White color is the idle status.
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Figure 7b shows the energy content of all the sensors during the first five elaboration cycles.
The black vertical lines show the end of each cycle. The color is representative of the energy content:
blue means full of charge.

(a) (b)

Figure 7. Best solution: scheduling and energy level. (a) Scheduling of one elaboration cycle.
Red represents the receiving mode, blue the elaboration status, and yellow the transmitting mode.
(b) Energy level for each sensor in the first five elaboration cycles.

5.2.2. Comparison between SNO and Other Algorithms

In this section, the comparison between SNO and the other optimization algorithms is presented.
Table 2 shows the results of the six algorithms: the mean value is the average optimal result

obtained in the 100 independent trials; the minimum value is the best solution; and the last column is
the results of a t-test with the significance level at 5%: if SNO is better, the value of the t-test is “+”;
if the two algorithms are equal, it is “0”, or if SNO is the worst, the value is “−”.

It is possible to see that SNO outperformed four out of the five algorithms and that only Stud-GA
had similar performances. In particular, Stud-GA is able to find a better best solution, while the average
results of the two algorithms are almost the same.

Table 2. Results of the algorithms.

Algorithm Mean Value Minimum Value t-Test

BBO 966.41 917 +
DE 938.04 887 +
GA 998.66 915 +
PSO 1120.04 982 +
SGA 911.57 844 0
SNO 911.73 860

Figure 8a shows a comparison in terms of convergence curves: the continuous line is the average
convergence, while the dashed line is the best trial. Figure 8b shows a comparison of the Pareto front:
in this figure, it is possible to notice that the results of SNO are much better than the results of the
other algorithms.

The convergence of Stud-GA is slower than the one of SNO at the beginning of the optimization
process, while it is able to reach a comparable result at the end. On the other hand, BBO has a very
good initial convergence, but then the convergence rate drastically diminishes.
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(a) (b)

Figure 8. Comparison of the algorithms in terms of convergence curves and Pareto fronts.
(a) Comparison of convergence curves. (b) Comparison of Pareto fronts.

5.3. Results of Constrained Optimization

Here, the results of the constrained optimization are presented. As has been done before, firstly,
the results of SNO and then the comparison are presented.

5.3.1. Social Network Optimization Results

Figure 9 shows the convergence curves of the 100 independent trials. Here, the zoom is important
to see the good convergence of the trials and the low standard deviation. Also in this case, it is possible
to notice that all the results had a cost value below 1000.

Figure 9. Convergence curves of SNO on 100 independent trials.

With respect to the curves of the unconstrained optimization, it is possible to see that the initial
values have a very high cost. This is due to the fact that the solutions found violate the feasibility
constraint. After a few iterations, the algorithm is able to bring all the solutions within the feasibility
limits, and then, the convergence rate becomes similar to the unconstrained optimization.

As done previously, it is possible to represent the obtained solutions as the maximum cycle
time–lifetime plane. Figure 10 shows the 100 optimal values obtained by SNO. The four green dots are
the Pareto front.
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Figure 10. Optimal solutions found by SNO in the cycle time–lifetime plane. The green represents the
Pareto front.

The optimal scheduling of one elaboration cycle is represented in Figure 11a, while Figure 11b
shows the energy levels of the sensors in the first five elaboration cycles.

(a) (b)

Figure 11. Best solution: scheduling and energy level. (a) Scheduling of one elaboration cycle.
Red represents the receiving mode, blue the elaboration status, and yellow the transmitting mode.
(b) Energy level for each sensor in the first five elaboration cycles.

Comparing these results with the ones of the unconstrained optimization, it is possible to see that,
here, the cycle time is lower. Comparing the two schedules, the solutions are very similar. On the other
hand, the energy consumption is more distributed among the sensors.

5.3.2. Comparison between SNO and Other Algorithms

In this section, the comparison between SNO and the other optimization algorithms is presented.
Table 3 shows the results of the six algorithm: the mean value is the average optimal result

obtained in the 100 independent trials; the minimum value is the best solution; and the last column is
the results of a t-test with the significance level at 5%.
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Table 3. Results of the algorithms.

Algorithm Mean Value Minimum Value t-Test

BBO 996.96 929 +
DE 946.52 905 +
GA 1038.32 971 +
PSO 1178.9 1023 +
SGA 924.78 867 0
SNO 925.57 849

Figure 12a shows a comparison in terms of convergence curves: the continuous line is the average
convergence, while the dashed line is the best trial. Figure 12b shows a comparison of the Pareto
front: in this figure, it is possible to notice that the results of SNO are much better than the ones of the
other algorithms.

(a) (b)

Figure 12. Comparison of the algorithms in terms of convergence curves and Pareto fronts.
(a) Comparison of convergence curves. (b) Comparison of Pareto fronts.

6. Conclusions

In this paper, the task allocation problem in WSN has been faced: the integrated use of
evolutionary techniques can optimize and enhance these systems, both in terms of energy efficiency
and computationally efficiency.

The optimization algorithm used in this paper is a recently-developed algorithm called social
network optimization: this algorithm has been applied in two different problems. The first one is
represented by an unconstrained optimization, while the second is a constrained problem.

The obtained results have been compared with other well-established algorithms. The results
show that SNO is able to obtain very good results if compared with the other algorithms. In particular,
the convergence of SNO is more effective, especially at dealing with the constrained problem.

Future developments of this work can be focused more on the robustness of the WSN
communication process: in fact, it is possible to take also into account failures in the information
exchange between sensors. This can have an impact on both the total cycle time and the final
energy consumption.
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Abbreviations

The following abbreviations are used in this manuscript:

WSN Wireless Sensor Network
KCC Kilo Clock Cycles
SNO Social Network Optimization
PSO Particle Swarm Optimization
GA Genetic Algorithm
BBO Biogeography Based Optimization
SGA Stud-Genetic Algorithm
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