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Preface to ”Multivariate Approximation for solving

ODE and PDE”

Multivariate approximation is an extension of approximation theory and approximation

algorithms. In general, approximations can be provided via interpolation, as approximation/

polynomials’ interpolation and approximation/interpolation with radial basis functions or more in

general, with kernel functions. In this book, we have covered the field through spectral problems,

exponential integrators for ODE systems, and some applications for the numerical solution of

evolutionary PDE, also discretized, by using the concepts and the related formalism of special

functions and orthogonal polynomials, which represent a powerful tool to simplify computation.

Since the theory of multivariate approximation meets different branches of mathematics and is

applied in various areas such as physics, engineering, and computational mechanics, this book

contains a large variety of contributions.

Clemente Cesarano

Editor
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Unbiased Least-Squares Modelling
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Abstract: In this paper we analyze the bias in a general linear least-squares parameter estimation
problem, when it is caused by deterministic variables that have not been included in the model.
We propose a method to substantially reduce this bias, under the hypothesis that some a-priori
information on the magnitude of the modelled and unmodelled components of the model is known.
We call this method Unbiased Least-Squares (ULS) parameter estimation and present here its essential
properties and some numerical results on an applied example.

Keywords: parameter estimation; physical modelling; oblique decomposition; least-squares

1. Introduction

The well known least-squares problem [1], very often used to estimate the parameters of
a mathematical model, assumes an equivalence between a matrix-vector product Ax on the left,
and a vector b on the right hand side: the matrix A is produced by the true model equations, evaluated
at some operating conditions, the vector x contains the unknown parameters and the vector b are
measurements, corrupted by white, Gaussian noise. This equivalence cannot be satisfied exactly, but the
least-squares solution yields a minimum variance, maximum likelihood estimate of the parameters
x, with a nice geometric interpretation: the resulting predictions Ax are at the minimum Euclidean
distance from the true measurements b and the vector of residuals is orthogonal w.r.t. the subspace of
all possible predictions.

Unfortunately, each violation of these assumptions produces in general a bias in the estimates.
Various modifications have been introduced in the literature to cope with some of them: mainly, colored
noise on b and/or A due to model error and/or colored measurement noise. The model error is often
assumed as an additive stochastic term in the model, e.g., error-in-variables [2,3], with consequent
solution methods like Total Least-Squares [4] and Extended Least-Squares [5], to cite a few. All these
techniques let the model to be modified to describe, in some sense, the model error.

Here, instead, we assume that the model error depends from deterministic variables in a way that
has not been included in the model, i.e., we suppose to use a reduced model of the real system, as it is
often the case in applications. In this paper we propose a method to cope with the bias in the parameter
estimates of the approximate model by exploiting the geometric properties of least-squares and using
small additional a-priori information about the norm of the modelled and un-modelled components of
the system response, available with some approximation in most applications. To eliminate the bias
on the parameter estimates we perturb the right-hand-side without modifying the reduced model,
since we assume it describes accurately one part of the true model.

2. Model Problem

In applied mathematics, physical models are often available, usually rather precise at describing
quantitatively the main phenomena, but not satisfactory at the level of detail required by the application
at hand. Here we refer to models described by differential equations, with ordinary and/or partial

Mathematics 2020, 8, 982; doi:10.3390/math8060982 www.mdpi.com/journal/mathematics1
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derivatives, commonly used in engineering and applied sciences. We assume, therefore, that there are
two models at hand: a true, unknown model M and an approximate, known model Ma. These models
are usually parametric and they must be tuned to describe a specific physical system, using a-priori
knowledge about the application and experimental measurements. Model tuning, and in particular
parameter estimation, is usually done with a prediction error minimization criterion that makes the
model response to be a good approximation of the dynamics shown by the measured variables used
in the estimation process. Assuming that the true model M is linear in the parameters that must be
estimated, the application of this criterion brings to a linear least-squares problem:

x̄ = argmin
x′∈Rn

‖Ax′ − f̄ ‖2, (1)

where, from here on, ‖·‖ is the Euclidean norm, A ∈ Rm×n is supposed full rank rank(A) = n, m ≥ n,
x̄ ∈ Rn×1, Ax′ are the model response values and f̄ is the vector of experimental measurements.
Usually the measured data contain noise, i.e., we measure f = f̄ + ε, with ε a certain kind of additive
noise (e.g., white Gaussian). Since we are interested here in algebraic and geometric aspects of the
problem, we suppose ε = 0 and set f = f̄ . Moreover, we assume ideally that f̄ = Ax̄ holds exactly.
Let us consider also the estimation problem for the approximate model Ma:

x‖ = argmin
x′∈Rna

‖Aax′ − f̄ ‖2, (2)

where Aa ∈ Rm×na , x‖ ∈ Rna×1, with na < n. The choice of the notation for x‖ is to remind that the
least-squares solution satisfies Aax‖ = PAa( f ) =: f ‖, where f ‖ is the orthogonal projection of f̄ on the
subspace generated by Aa, and the residual Aax‖ − f̄ is orthogonal to this subspace. Let us suppose
that Aa corresponds to the first na columns of A, which means that the approximate model Ma is
exactly one part of the true model M, i.e., A = [Aa, Au] and so the solution x̄ of (1) can be decomposed
in two parts such that

Ax̄ = [Aa, Au]

[
x̄a

x̄u

]
= Aax̄a + Aux̄u = f̄ . (3)

This means that the model error corresponds to an additive term Aux̄u in the estimation problem.
Note that the columns of Aa are linearly independent since A is supposed to be of full rank. We do

not consider the case in which Aa is rank-deficient, because it would mean that the model is not well
parametrized. Moreover, some noise in the data is sufficient to determine a full rank matrix.

For brevity, we will call A the subspace generated by the columns of A and Aa, Au the
subspaces generated by the columns of Aa, Au respectively. Note that if Aa and Au were orthogonal,
decomposition (3) would be orthogonal. However, in the following we will consider the case in which
the two subspaces are not orthogonal, as it commonly happens in practice. Oblique projections, even if
not as common as orthogonal ones, have a large literature, e.g., [6,7].

Now, it is well known and easy to demonstrate that, when we solve problem (2) and Au is not
orthogonal to Aa, we get a biased solution, i.e., x‖ �= x̄a:

Lemma 1. Given A ∈ Rm×n with n ≥ 2 and A = [Aa, Au], and given b ∈ Rm×1 �∈ Im(Aa), call x the
least-squares solution of (2) and x̄ = [x̄a, x̄u] the solution of (1) decomposed as in (3). Then

(i) if Au ⊥ Aa then x‖ = x̄a,
(ii) if Au �⊥ Aa then x‖ �= x̄a.

Proof. The least-squares problem Ax = f boils down to finding x such that Ax = PAa( f ). Let us
consider the unique decomposition of f on Aa and A⊥

a as f = f ‖ + f⊥ with f ‖ = PAa( f ) and
f⊥ = PA⊥

a
( f ). Call f = fa + fu the decomposition on Aa and Au, hence there exist two vectors

xa ∈ Rna , xu ∈ Rn−na such that fa = Aaxa and fu = Auxu. If Au ⊥ Aa then the two decompositions

2
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are the same, hence f ‖ = fa and so x‖ = x̄a. Otherwise, for the definition of orthogonal projection ([6],
third point of Def at page 429), it must hold x‖ �= x̄a.

3. Analysis of the Parameter Estimation Error

The aim of this paper is to propose a method to decrease substantially the bias of the solution of
the approximated problem (2), with the smallest additional information about the norms of the model
error and of the modelled part responses.

In this section we will introduce sufficient conditions to remove the bias and retrieve the true
solution in a unique way, as summarized in Lemma 4. Let us start with a definition.

Definition 1 (Intensity Ratio). The intensity ratio I f between modelled and un-modelled dynamics is defined as

I f =
‖Aaxa‖
‖Auxu‖ .

In the following we assume that a good approximation of this intensity ratio is available and
that its magnitude is sufficiently big, i.e., we have an approximate model that is quite accurate.
This information about the model error will be used to reduce the bias, as shown in the following
sections. Moreover we will consider also the norm Nf = ‖Aaxa‖ (or, equivalently, the norm ‖Auxu‖).

3.1. The Case of Exact Knowledge about I f and Nf

Here we assume, initially, to know the exact values of I f and Nf , i.e.,⎧⎨⎩Nf = N̄f = ‖Aax̄a‖,

I f = Ī f =
‖Aax̄a‖
‖Aux̄u‖ .

(4)

This ideal setting is important to figure out the problem also with more practical assumptions.
First of all, let us show a nice geometric property that relates xa and fa under a condition like (4).

Lemma 2. The problem of finding the set of xa ∈ Rn that give a constant, prescribed value for I f and Nf is
equivalent to that of finding the set of fa = Aaxa ∈ Aa of the decomposition f = fa + fu (see the proof of
Lemma 1) lying on the intersection of Aa and the boundaries of two n-dimensional balls in Rn. In fact, it holds:⎧⎨⎩Nf = ‖Aaxa‖

I f =
‖Aaxa‖
‖Auxu‖

⇐⇒
{

fa ∈ ∂Bn(0, Nf )

fa ∈ ∂Bn( f ‖, Tf )
with Tf :=

√√√√(
Nf

I f

)2

− ‖ f⊥‖2. (5)

Proof. For every xa ∈ Rna holds,

⎧⎨⎩Nf = ‖ fa‖ = ‖Aaxa‖
I f =

‖ fa‖
‖ fu‖ =

Nf

‖ f⊥u + f ‖u ‖
=

Nf√
‖ f⊥‖2+‖ f ‖−Aaxa‖2

=
Nf√

‖ f⊥‖2+‖ f ‖− fa‖2

⇐⇒ (6)

⇐⇒

⎧⎪⎨⎪⎩
‖ fa‖ = Nf

‖ f ‖ − fa‖ =

√( Nf
I f

)2 − ‖ f⊥‖2 =: Tf ,
(7)

where we used the fact that fu = f ‖u + f⊥u with f⊥u := PA⊥
a
( fu) = f⊥, f ‖u := PAa( fu) = Aaδxa =

f ‖ − Aaxa, and δxa = (x‖ − xa). Hence the equivalence (5) is proved.

3
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Given I f and Nf , we call the feasible set of accurate model responses all the fa that satisfy the
relations (5). Now we will see that Lemma 2 allows us to reformulate problem (2) in the problem of
finding a feasible fa that, replaced to f̄ in (2), gives as solution an unbiased estimate of x̄a. Indeed,
it is easy to note that Aax̄a belongs to this feasible set. Moreover, since fa ∈ Aa, we can reduce the
dimensionality of the problem and work on the subspace Aa which has dimension na, instead of the
global space A of dimension n. To this aim, let us consider Ua the matrix of the SVD decomposition
of Aa, Aa = UaSaVT

a , and complete its columns to an orthonormal basis of Rn to obtain a matrix U.
Since the vectors fa, f ‖ ∈ Rn belong to the subspace Aa, the vectors f̃a, f̃ ‖ ∈ Rn defined such that
fa = U f̃a and f ‖ = U f̃ ‖ must have zeros on the last n − na components. Since U has orthonormal
columns, it preserves the norms and so ‖ f ‖‖ = ‖ f̃ ‖‖ and ‖ fa‖ = ‖ f̃a‖. If we call f̂a, f̂ ‖ ∈ Rna the
first na components of the vectors f̃a, f̃ ‖ (which have again the same norms of the full vectors in Rn)
respectively, we have {

f̂a ∈ ∂Bna(0, Nf ),

f̂a ∈ ∂Bna( f ‖, Tf ).
(8)

In this way the problem depends only on the dimension of the known subspace, i.e., the value of na,
and does not depend on the dimensions m � na and n > na. From (8) we can deduce the equation
of the (na − 2)-dimensional boundary of an (na − 1)-ball to which the vector fa = Aaxa must belong.
In the following we discuss the various cases.

3.1.1. Case na = 1

In this case, we have one unique solution when both conditions on I f and Nf are imposed.
When only one of these two is imposed, two solutions are found, shown in Figure 1a,c. Figure 1b
shows the intensity ratio I f .

(a)

(c)

(b)

Figure 1. Case na = 1. (a): Case na = 1, m = n = 2. Solutions with the condition on Nf . In the figure:
the true decomposition obtained imposing both the conditions (blue), the orthogonal decomposition
(red), another possible decomposition (green) that satisfy the same norm condition Nf , but different I f ;
(b): Case na = 1. Intensity Ratio value w.r.t the norm of the vector Aaxa: given a fixed value of Intensity
Ratio there can be two solution, i.e. two possible decomposition of f as sum of two vectors with the
same Intensity Ratio; (c): Case na = 1, m = n = 2. Solutions with the condition on I f . In the figure:
the true decomposition obtained imposing both the conditions (blue), the orthogonal decomposition
(red), another possible decomposition (green) with the same intensity ratio I f , but different Nf .

4
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3.1.2. Case na = 2

Consider the vectors f̂a, f̂ ‖ ∈ Rna=2 as defined previously, in particular we are looking for
f̂a = [ξ1, ξ2] ∈ R2. Hence, conditions (8) can be written as⎧⎨⎩ξ2

1 + ξ2
2 = N2

f

(ξ1 − f̂ ‖ξ1
)2 + (ξ2 − f̂ ‖ξ2

)2 = T2
f

−→ F : ( f̂ ‖ξ1
)2 − 2 f̂ ‖ξ1

ξ1 + ( f̂ ‖ξ2
)2 − 2 f̂ ‖ξ2

ξ2 = N2
f − T2

f , (9)

where the right equation is the (na − 1) = 1-dimensional subspace (line) F obtained subtracting
the first equation to the second. This subspace has to be intersected with one of the beginning
circumferences to obtain the feasible vectors f̂a, as can be seen in Figure 2a and its projection on Aa

in Figure 2b. The intersection of the two circumferences (5) can have different solutions depending on
the value of (Nf − ‖ f ‖‖)− Tf . When this value is strictly positive there are zero solutions, this means
that the estimates of I f and Nf are not correct: we are not interested in this case because we suppose the
two values to be sufficiently well estimated. When the value is strictly negative there are two solutions,
that coincide when the value is zero.

(a) (b)

Figure 2. Case na = 2. (a): Case na = 2, m = n = 3, with Aaxa = [Aa(1)Aa(2)][xa(1)xa(2)]T .
In the figure: the true decomposition (blue), the orthogonal decomposition (red), another possible
decomposition of the infinite ones (green); (b): Case na = 2, m = n = 3. Projection of the
two circumferences on the subspace Aa, and projections of the possible decompositions of f (red,
blue and green).

When there are two solutions, we have no sufficient information to determine which one of the
two solutions is the true one, i.e., the one that gives fa = Aax̄a: we cannot choose the one that has
minimum residual, neither the vector fa that has the minimum angle with f , because both solutions
have the same values of these two quantities. However, since we are supposing the linear system to be
originated by an input/output system, where the matrix Aa is a function also of the input and f are
the measurements of the output, we can take two tests with different inputs. Since all the solution sets
contain the true parameter vector, we can determine the true solution from their intersection, unless
the solutions of the two tests are coincident. The condition for coincidence is expressed in Lemma 3.

Let us call Aa,i ∈ Rn×na the matrix of the test i = 1, 2, to which correspond a vector fi. The line
on which lie the two feasible vectors fa of the same test i is Fi and Si = A†

a,iFi is the line through the
two solution points. To have two tests with non-coincident solutions, we need that these two lines
S1,S2 do not have more than one common point, that in the case na = 2 is equivalent to S1 �= S2, i.e.,
A†

a,1F1 �= A†
a,2F2, i.e., F1 �= Aa,1 A†

a,2F2 =: F12. We represent the lines Fi by means of their orthogonal

vector from the origin f ort,i = lort,i
f ‖i

‖ f ‖i ‖
. We introduce the matrices Ca, Cf , Cf p such that Aa,2 = Ca Aa,1,

f2 = Cf f1, f ‖2 = Cf p f ‖1 and k f such that ‖ f ‖2 ‖ = k f ‖ f ‖1 ‖.

5
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Lemma 3. Consider two tests i = 1, 2 from the same system with na = 2 with the above notation. Then it
holds F1 = F12 if and only if Ca = Cf p.

Proof. From the relation f ‖i = PAa,i ( fi) = Aa,i(AT
a,i Aa,i)

−1 AT
a,i fi, we have

f ‖2 = Aa,2(AT
a,2 Aa,2)

−1 AT
a,2 f2 = Ca Aa,1(AT

a,1CT
a Ca Aa,1)

−1 AT
a,1CT

a Cf f1. (10)

It holds F1 = F12 ⇐⇒ f ort,1 = f ort,12 := Aa,1 A†
a,2 f ort,2, hence we will show this second equivalence.

We note that lort,2 = k f lort,1 and calculate

f ort,12 = Aa,1 A†
a,2 f ort,2 = Aa,1 A†

a,1C†
a

(
lort,2

f ‖2
‖ f ‖2 ‖

)
= Aa,1 A†

a,1C†
a

⎛⎝k f lort,1
Cf p f ‖1
k f ‖ f ‖1 ‖

⎞⎠ = Aa,1 A†
a,1C†

a Cf p f ort,1. (11)

Now let us call sort,1 the vector such that f ort,1 = Aa,1sort,1, then, using the fact that Ca = Cf p
we obtain

f ort,12 = Aa,1 A†
a,1C†

a Cf p Aa,1sort,1 = Aa,1(A†
a,1 Aa,1)sort,1 = (sinceA†

a,1 Aa,1 = Ina) = Aa,1sort,1 (12)

Hence we have F12 = F1 ⇐⇒ Aa,1 A†
a,1C†

a Cf p f ort,1 = f ort,1 ⇐⇒ C†
a Cf p = I.

3.1.3. Case na ≥ 3

More generally, for the case na ≥ 3, consider the vectors f̂a, f̂ ‖ ∈ Rna as defined previously,
in particular we are looking for f̂a = [ξ1, . . . , ξna ] ∈ Rna . Conditions (8) can be written as⎧⎨⎩∑na

i=1 ξ2
i = N2

f

∑na
i=1(ξi − f̂ ‖ξi

)2 = T2
f

−→ F :
na

∑
i=1

(( f̂ ‖ξi
)2 − 2 f̂ ‖ξi

ξi) = N2
f − T2

f , (13)

where the two equations on the left are two (na − 1)-spheres, i.e., the boundaries of two na-dimensional
balls. Analogously to the case na = 2, the intersection of these equations can be empty, one point
or the boundary of a (na − 1)-dimensional ball (with the same conditions on (Nf − ‖ f ‖‖) − Tf ).
The equation on the right of (13) is the (na − 1)-dimensional subspace F on which lies the boundary
of the (na − 1)-dimensional ball of the feasible vectors fa, and is obtained subtracting the first equation
to the second one. In Figure 3a the graphical representation of the decomposition f ‖ = fa + f ‖u for
the case na = 3 is shown, and in Figure 3b the solution ellipsoids of 3 tests whose intersection is one
point. Figure 4a shows the solution hyperellipsoids of 4 tests whose intersection is one point, in the
case na = 4.

We note that, to obtain one unique solution xa we must intersect the solutions of at least two tests.
Let us give a more precise idea of what happens in general. Given i = 1, . . . , na tests we call, as in
the previous case, f ort,i the vector orthogonal to the (na − 1)-dimensional subspace Fi that contains
the feasible fa, and Si = A†

a,iFi. We project this subspace on Aa,1 and obtain F1i = Aa,1 A†
a,iFi that

we describe through its orthogonal vector f ort,1i = Aa,1 A†
a,i f ort,i. If the vectors f ort,1, f ort,12, . . . f ort,1na

are linearly independent, it means that the (na − 1)-dimensional subspaces F1,F12, . . .F1na intersect
themselves in one point. In Figure 4b it is shown an example in which, in the case na = 3 the vectors
f ort,1, f ort,12, f ort,13 are not linearly independent. The three solution sets of this example will intersect
in two points, hence, for na = 3, three tests are not always sufficient to determine a unique solution.

6
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(a) (b)

Figure 3. Case na = 3. (a): Case na = 3, m = n = 4, n − na = 1: in the picture f̄ ‖, i.e., the projection of
f on Aa. The decompositions that satisfies the conditions on I f and Nf are the ones with fa that lies on
the red circumference on the left. The spheres determined by the conditions are shown in yellow for
the vector fa and in blue for the vector f ‖ − aa. Two feasible decompositions are shown in blue and
green; (b): Case na = 3. Intersection of three hyperellipsoids, set of the solutions xa of three different
tests, in the space Rna=3.

(a) (b)

Figure 4. Case na ≥ 3. (a): Case na = 4. Intersection of four hyperellipsoids, set of the solutions xa of
four different tests, in the space Rna=4; (b): Case na = 3. Example of three tests for which the solution
has an intersection bigger than one single point. The three (na − 1)-dimensional subspaces F1,F12,F13

in the space generated by Aa,1 intersect in a line and their three orthogonal vectors are not linearly
independent.

Lemma 4. For all na > 1, the condition that, given i = 1, . . . , na tests, the na hyperplanes Si = A†
a,iFi

previously defined have linearly independent normal vectors is sufficient to determine one unique intersection,
i.e., one unique solution vector x̄a, that satisfies the system of conditions (4) for each test.

Proof. The intersection of na independent hyperplanes in Rna is a point. Given a test i and Si = A†
a,iFi

the affine subspace of that test

Si = vi + Wi = {vi + w ∈ Rna : w · ni = 0} = {x ∈ Rna : nT
i (x − vi) = 0},

where ni is the normal vector of the linear subspace and vi the translation with respect to the origin.
The conditions on Si relative to na tests correspond to a linear system Ax = b, where ni is the i-th

row of A and each component of the vector b given by bi = nT
i vi. The matrix A has full rank because of

the linear independence condition of the vectors ni, hence the solution of the linear system is unique.
The unique intersection is due to the hypothesis of full column rank of the matrices Aa,i:

this condition implies that the matrices Aa,i map the surfaces Fi to hyperplanes Si = Aa,iFi.

7
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For example, with na = 2 (Lemma 3) this condition is equal to considering two tests with
non-coincident lines S1,S2, i.e., two non-coincident F1,F12.

3.2. The Case of Approximate Knowledge of I f and Nf Values

Let us consider N tests and call I f ,i, Nf ,i and Tf ,i the values as defined in Lemma 2, relative to test
i. Since the system of conditions⎧⎨⎩Nf ,i = ‖Aa,ixa‖

I f ,i =
‖Aa,i xa‖

‖zi−Aa,i xa‖
and

{
Nf ,i = ‖Aa,ixa‖
Tf ,i = ‖ f ‖i − Aa,ixa‖

(14)

is equivalent, as shown in Lemma 2, we will take into account the system on the right for its simplicity:
the equation on Tf ,i represents an hyperellipsoid, translated with respect to the origin.

In a real application, we can assume to know only an interval in which the true values of I f is
contained and, analogously, an interval for Nf values. Supposing we know the bounds on I f and Nf ,
then the bounds on Tf can be easily computed. Let us call these extreme values Nmax

f , Nmin
f , Tmax

f , Tmin
f ,

we will assume it always holds⎧⎨⎩Nmax
f ≥ maxi(Nf ,i),

Nmin
f ≤ mini(Nf ,i),

and

⎧⎨⎩Tmax
f ≥ maxi(Tf ,i),

Tmin
f ≤ mini(Tf ,i),

(15)

for each i-th test of the considered set i = 0, . . . , N.
Condition (4) is now relaxed as follows: the true solution x̄a satisfies⎧⎨⎩‖Aa,i x̄a‖ ≤ Nmax

f ,

‖Aa,i x̄a‖ ≥ Nmin
f ,

and

⎧⎨⎩‖Aa,i x̄a − f ‖i ‖ ≤ Tmax
f ,

‖Aa,i x̄a − f ‖i ‖ ≥ Tmin
f ,

(16)

for each i-th test of the considered set i = 0, . . . , N.
Assuming the extremes to be non-coincident (Nmin

f �= Nmax
f and Tmin

f �= Tmax
f ), these conditions

do not define a single point, i.e., the unique solution x̄a (as in (4) of Section 3.1), but an entire closed
region of the space that may be even not connected, and contains infinite possible solutions x different
from x̄a.

In Figure 5 two examples, with na = 2, of the conditions for a single test are shown: on the left
in the case of exact knowledge of the Nf ,i and Tf ,i values, and on the right with the knowledge of
two intervals containing the right values.

Given a single test, the conditions (16) on a point x can be easily characterized. Given the condition

‖ fa‖ = ‖Aaxa‖ = Nf ,

we write xa = ∑ χivi with vi the vectors of the orthogonal basis, given by the columns V of the SVD
decomposition Aa = USVT . Then

fa = Aaxa = USVT(∑
i

χivi) = US(∑
i

χiei) = U(∑
i

siχiei) = ∑
i

siχiui.

Since the norm condition ‖ fa‖2 = ∑i(siχi)
2 = N2

f holds, then we obtain the equation of the
hyperellipsoid for xa as:

∑
i
(siχi)

2 = ∑
i

χ2
i

( 1
si
)2

= N2
f . (17)

The bounded conditions hence gives the region inside the two hyperellipsoids centered in
the origin:

8
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Nmin
f ≤ ∑

i

χ2
i

( 1
si
)2

≤ Nmax
f . (18)

Analogously for the I f condition, the region inside the two translated hyperellipsoids:

Tmin
f ≤ ∑

i

χ2
i

( 1
si
)2

− f ‖ ≤ Tmax
f . (19)

Given a test i, each of the conditions (18) and (19), constrain x̄a to lie inside a thick hyperellipsoid,
i.e., the region between the two concentric hyperellipsoids. The intersection of these two conditions
for test i is a zero-residual region that we call Zri

Zri = {x ∈ Rna | (18) and (19) hold }. (20)

It is easy to verify that if Nf ,i is equal to the assumed Nmin
f or Nmax

f , or Tf ,i is equal to the assumed

Tmin
f or Tmax

f , the true solution will be on a border of the region Zri , and if it holds for both Nf ,i and
Tf ,i it will lie on a vertex.

(a) (b)

Figure 5. Examples of the exact and approximated conditions on a test with na = 2. In the left equation
the two black ellipsoids are the two constraints of the right system of (14), while in the right figure
the two couples of concentric ellipsoids are the borders of the thick ellipsoids defined by (16) and the
blue region Zri is the intersection of (18) and (19). The black dot in both the figures is the true solution.
(a): Exact conditions on Nf and Tf ; (b): Approximated conditions on Nf and Tf .

When more tests i = 1, . . . , N are put together, we have to consider the points that belong to the
intersection of all these regions Zri , i.e.,

Izr =
⋂

i=0,...,N
Zri . (21)

These points minimize, with zero residual, the following optimization problem:

min
x

N

∑
i=1

min(0, ‖Aa,ix‖ − Nmin
f )2 +

N

∑
i=1

max(0, ‖Aa,ix‖ − Nmax
f )2+

+
N

∑
i=1

min(0, ‖Aa,ix − f ‖i ‖ − Tmin
f )2 +

N

∑
i=1

max(0, ‖Aa,ix − f ‖i ‖ − Tmax
f )2.

(22)

It is also easy to verify that, if the true solution lies on an edge/vertex of one of the regions Zri ,
it will lie on an edge/vertex of their intersection.

9
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The intersected region Izr tends to monotonically shrink in a way that depends from the properties
of the added tests. We are interested to study the conditions that make it reduce to a point, or at least
to a small region. A sufficient condition to obtain a point is given in Theorem 1.

Let us first consider the function that, given a point in the space Rna , returns the squared norm of
its image through the matrix Aa:

N2
f (x) = ‖Aax‖2

2 = ‖UΣVTx‖2
2 = ‖ΣVTx‖2

2 = (ΣVTx)T(ΣVTx) = xT(VΣTΣVT)x =

= ‖

⎡⎢⎣ σ1vT
1 x

σ2vT
2 x

...

⎤⎥⎦‖2
2 = σ2

1 (v
T
1 x)2 + σ2

2 (v
T
2 x)2 + . . . ,

(23)

where vi are the columns of V and x = [x(1) x(2) . . . , x(na)].
The direction of maximum increase of this function is given by its gradient

∇N2
f (x) = 2(VΣ2VT)x =

⎡⎢⎣ 2σ2
1 vT

1 xv1(1) + 2σ2
2 vT

2 xv2(1) + · · ·+ 2σ2
na vT

na xvna(1)
2σ2

1 vT
1 xv1(2) + 2σ2

2 vT
2 xv2(2) + · · ·+ 2σ2

na vT
na xvna(2)

...

⎤⎥⎦ . (24)

Analogously, define the function T2
f (x) as

T2
f (x) = ‖Aax − f ‖‖2

2 = ‖UΣVTx − f ‖‖2
2 = ‖ΣVTx − f ‖‖2

2 =

= (ΣVTx − f ‖)T(ΣVTx − f ‖) = (ΣVTx)T(ΣVTx)− 2(ΣVTx)T f ‖ + ( f ‖)T( f ‖)

= x(VΣ2VT)x − 2(x)TVΣ f ‖ + ( f ‖)T( f ‖) =

=
∥∥∥
⎡⎢⎣ σ1vT

1 x
σ2vT

2 x
...

⎤⎥⎦− f ‖
∥∥∥2

2

(25)

with gradient

∇T2
f (x) = 2(VΣ2VT)x − 2VΣ f ‖ =

=

⎡⎢⎢⎢⎢⎢⎣
2σ2

1 vT
1 xv1(1) + 2σ2

2 vT
2 xv2(1) + · · ·+ 2σ2

na vT
na xvna(1)

...
2σ2

1 vT
1 xv1(j) + 2σ2

2 vT
2 xv2(j) + · · ·+ 2σ2

na vT
na xvna(j)

...

⎤⎥⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎣
−2σ2

i ∑i f ‖(i)vi(1)
...

−2σ2
i ∑i f ‖(i)vi(j)

...

⎤⎥⎥⎥⎥⎥⎦ .
(26)

Definition 2. (Upward/Downward Outgoing Gradients) Take a test i, and the functions N2
f (x) and T2

f (x) as
in (23) and (25), with the formulas of the gradient vectors of these two functions ∇Nf ,i(x),∇Tf ,i(x) as in (24)
and (26). Given the two extreme values Nmin/max

f and Tmin/max
f for each test, let us define

• the downward outgoing gradients as the set of gradients calculated on the points on the minimum hyperellipsoid

{−∇Nf ,i(x) | Nf ,i(x) = Nmin
f } and {−∇Tf ,i(x) | Tf ,i(x) = Tmin

f } (27)

they point inward to the region of the thick hyperellipsoid.
• the Upward Outgoing Gradients as the set of negative gradients of points on the maximum hyperellipsoid

{∇Nf ,i(x) | Nf ,i(x) = Nmax
f } and {∇Tf ,i(x) | Tf ,i(x) = Tmax

f } (28)

10
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they point outward the region.

Note that the upward/downward outgoing gradient of function N2
f (x) (or T2

f (x)) on point x
is the normal vector to the tangent plane on the hyperellipsoid on which the point lies. Moreover,
these vectors point outward the region defined by Equation (18) (and (19) respectively). In Figure 6,
an example of some upward/downward outgoing gradients of function N2

f (x) is shown.

Figure 6. In the figure some upward/downward outgoing gradients are shown: the blue internal ones
are downward outgoing gradients calculated on points x on the internal ellipsoid with Nf ,i(x) = Nmin

f ,
while the external red ones are upward outgoing gradients calculated on points x on the external
ellipsoid with Nf ,i(x) = Nmax

f .

Theorem 1. Given N tests with values I f ,i and Nf ,i in the closed intervals [Imin
f , Imax

f ] and [Nmin
f , Nmax

f ], take
the set of all the upward/downward outgoing gradients of functions N2

f ,i(x) and T2
f ,i(x) calculated in the true

solution x̄a, i.e.,

{∇Nf ,i(x̄a) for i = 1, . . . , N | Nf ,i(x̄a) = Nmax
f } ∪ {∇Nf ,i(x̄a) for i = 1, . . . , N | Nf ,i(x̄a) = Nmin

f }∪
∪{∇Tf ,i(x̄a) for i = 1, . . . , N | Tf ,i(x̄a) = Tmax

f } ∪ {∇Tf ,i(x̄a) for i = 1, . . . , N | Tf ,i(x̄a) = Tmin
f }.

(29)

If there is at least one outgoing gradient of this set in each orthant of Rna , then the intersection region Izr of
Equation (21) reduces to a point.

Proof. What we want to show is that given any perturbation δx of the real solution x̄a, there exists at
least one condition among (18) and (19) that is not satisfied by the new perturbed point x̄a + δx.

Any sufficiently small perturbation δx in an orthant in which lies an upward/downward outgoing
gradient (from now on “Gradient”), determines an increase/decrease in the value of the hyperellipsoid
function relative to that Gradient, that makes the relative condition to be unsatisfied.

Hence, if the Gradient in the orthant considered is upward, it satisfies Nf ,i(x̄a) = Nmax
f (or

analogously with Tf ,i) and for each perturbation δx in the same orthant we obtain

Nf ,i(x̄a + δx) > Nf ,i(x̄a) = Nmax
f

(or analogously with Tf ,i). In the same way, if the Gradient is downward we obtain

Nf ,i(x̄a + δx) < Nf ,i(x̄a) = Nmin
f

(or analogously with Tf ,i).
When in one orthant there are more than one Gradient, it means that more than one condition

will be unsatisfied by the perturbed point x̄a + δx for a sufficiently small δx in that orthant.

11
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4. Problem Solution

The theory previously presented allows us to build a solution algorithm that can deal with
different a-priori information. We will start in Section 4.1 with the ideal case, i.e., with exact knowledge
of I f and Nf . Then, we generalize to a more practical setting, where we suppose to know an interval
that contains the Tf values of all the experiments considered and an interval for the Nf values. Hence,
the estimate solution will satisfy Equations (18) and (19). In this case we describe an algorithm for
computing an estimate of the solution, that we will test in Section 5 against a toy model.

4.1. Exact Knowledge of I f and Nf

When the information about I f and Nf is exact, with the minimum amount of experiments
indicated in Section 3 we can find the unbiased parameter estimate as the intersection Izr of the
zero-residual sets Zri corresponding to each experiment. In principle this could be done also following
the proof of Lemma 4, but the computation of the vi vectors is quite cumbersome. Since this is an ideal
case, we solve it by simply imposing the satisfaction of the various Nf and Tf conditions (Equation (14))
as an optimization problem:

min
x

F(x) with F(x) =
N

∑
i=1

(‖Aa,ix‖ − Nf ,i)
2 +

N

∑
i=1

(‖Aa,ix − f ‖i ‖ − Tf ,i)
2. (30)

The solution of this problem is unique when the tests are in a sufficient number and satisfies the
conditions of Lemma 4.

This nonlinear least-squares problem can be solved using a general nonlinear optimization
algorithm, like Gauss–Newton method or Levenberg–Marquardt [8].

4.2. Approximate Knowledge of I f and Nf

In practice, as already pointed out in Section 3.2, it is more realistic to know the two intervals that
contain all the Nf ,i and I f ,i values for each test i. Then, we know that within the region Izr there is also
the exact unbiased parameter solution x̄a, that we want at least to approximate. We introduce here
an Unbiased Least-Squares (ULS) Algorithm 1 for the computation of this estimate.

Algorithm 1 An Unbiased Least-Squares (ULS) algorithm.
1: Given a number ntests of available tests, indexed with a number between 1 and ntests,

and two intervals,
[

Imin
f , Imax

f

]
and

[
Nmin

f , Nmax
f

]
, containing the I f and Nf values of all tests.

2: At each iteration we will consider the tests indexed by the interval [1, it]; set initially it = na.
3: while it ≤ ntests do

4: 1) compute a solution with zero residual of the problem (22) with a nonlinear least-squares
optimization algorithm,

5: 2) estimate the size of the zero-residual region as described below in (31),
6: 3) increment by one the number it of tests.
7: end while

8: Accept the final solution if the estimated region diameter is sufficiently small.

In general, the zero-residual region Zri of each test contains the true point of the parameters vector,
while the estimated iterates with the local optimization usually start from a point outside this region
and converge to a point on the boundary of the region.

The ULS estimate can converge to the true solution in two cases:

1. the true solution lies on the border of the region Izr and the estimate reach the border on that
point;

2. the region Izr reduces to a dimension smaller than the required accuracy, or reduces to a point.

12
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The size of the intersection set Izr, of the zero-residual regions Zri , is estimated in the
following way.

Let us define an index, that we call region shrinkage estimate, as follows:

ŝ(x) = min{n | ∑
δ∈P

ΔIzr (x + μ−nδ) > 0}, (31)

where we used μ = 1.5 in the experiments below, P = {δ ∈ Rna | δ(i) ∈ (−1, 0, 1) ∀i = 1, . . . , na} and
ΔIzr is the Dirac function of the set Izr.

5. Numerical Examples

Let us consider a classical application example, the equations of a DC motor with a mechanical
load, where the electrical variables are governed by the following ordinary differential equation{

Lİ(t) = −Kω(t)− RI(t) + V(t)− fu(t)

I(t0) = I0,
(32)

where I is the motor current, ω the motor angular speed, V the applied voltage, and fu(t) a possible
unmodelled component

fu(t) = −merrcos(npolesθ(t)), (33)

where npoles is the number of poles of the motor, i.e., the number of windings or magnets [9], merr the
magnitude of the error model and θ the angle, given by the system{

ω̇(t) = θ(t)

ω(t0) = ω0.
(34)

Note that the unknown component fu of this example can be seen as a difference in the potential
that is not described by the approximated model. We are interested in the estimation of parameters
[L, K, R]. In our test the true values were constant values [L = 0.0035, K = 0.14, R = 0.53].

We suppose to know the measurements of I and ω at equally spaced times t0, . . . , tN̄ with step h,
such that tk = t0 + kh, and tk+1 = tk + h. In Figure 7 we see the plots of the motor speed ω and of the
unknown component fu for this experiment.

(a) (b)

Figure 7. The plots of (a) ω(t) and (b) fu(t) in the experiment.

We compute the approximation of the derivative of the current signal ˆ̇I(tk) with the forward finite
difference formula of order one

ˆ̇I(tk) =
I(tk)− I(tk−1)

h
, for tk = t1, . . . , tN̄

13
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with a step h = 4× 10−4. The applied voltage is held constant to the value V(t) = 30.0.
To obtain a more accurate estimate, or to allow the possibility of using higher step size values h,

finite differences of higher order can be used, for example the fourth order difference formula

ˆ̇I(tk) =
I(tk − 2h)− 8I(tk − h) + 8I(tk + h)− I(tk + 2h)

12h
, for tk = t2, . . . , tN̄−2.

With the choice of the finite difference formula, we obtain the discretized equations

L ˆ̇I(tk) = −Kω(tk)− RI(tk) + V(tk)− fu(tk), for tk = t1, . . . , tN̄ . (35)

We will show a possible implementation of the method explained in the previous sections, and the
results we get with this toy-model example. The comparison is made against the standard least-squares.
In particular, we will show that when the information about I f and Nf is exact, we have an exact
removal of the bias. In case this information is only approximate, which is common in a real application,
we will show how the bias asymptotically disappears when the number of experiments increases.

We build each test taking the Equation (35) for n samples in the range t1, . . . , tN̄ , obtaining the
linear system ⎡⎢⎢⎢⎢⎣

ˆ̇I(tk) ω(tk) I(tk)
ˆ̇I(tk+1) ω(tk+1) I(tk+1)

...
...

...
ˆ̇I(tk+n) ω(tk+n) I(tk+n)

⎤⎥⎥⎥⎥⎦
⎡⎢⎣L

K
R

⎤⎥⎦+

⎡⎢⎢⎢⎢⎣
fu(tk)

fu(tk+1)
...

fu(tk+n)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
V(tk)

V(tk+1)
...

V(tk+n)

⎤⎥⎥⎥⎥⎦ (36)

so that the first matrix in the equation is Aa ∈ Rn×na with na = 3, the number of parameters to
be estimated.

To measure the estimation relative error êrel we will use the following formula, where x̂a is the
parameter estimate:

êrel =
1
na

na

∑
i=1

||x̂a(i)− x̄a(i)||2
||x̄a(i)||2 . (37)

Note that the tests that we built in the numerical experiments below are simply small chunks of
consecutive data, taken from one single simulation for each experiment.

The results have been obtained with a Python code developed by the authors, using NumPy for
linear algebra computations and scipy.optimize for the nonlinear least-squares optimization.

5.1. Exact Knowledge of I f and Nf

As analyzed in Section 4.1, the solution of the minimization problem (30) is computed with a local
optimization algorithm.

Here the obtained results show an error êrel with an order of magnitude of 10−7 in every test we
made. Note that it is also possible to construct geometrically the solution, with exact results.

5.2. Approximate Knowledge of I f and Nf

When I f and Nf are known only approximately, i.e., we know only an interval that contains all the
I f values and an interval that contains all the Nf values, we lose the unique intersection of Lemma 4,
that would require only na tests. Moreover, with a finite number of tests we cannot guarantee in
general to satisfy the exact hypotheses of Theorem 1. As a consequence, various issues open up. Let’s
start by showing in Figure 8 that when all the four conditions of (15) hold with equality, the true
solution lies on the boundary of the region Izr as already mentioned in Section 3.2. If this happens,
then with the conditions of Theorem 1 on the upward/downward outgoing gradients, the region Izr is
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a point. When all the four conditions of (15) hold with strict inequalities, the true solution lies inside
the region Izr (Figure 8b). From a theoretical point of view this distinction has a big importance, since
it means that the zero-residual region can or cannot be reduced to a single point. From a practical
point of view it becomes less important, for the moment, since we cannot guarantee that the available
tests will reduce Izr exactly to a single point and we will arrive most of the times to an approximate
estimate. This can be more or less accurate, but this depends on the specific application, and this is out
of the scope of the present work.

(a) (b)

Figure 8. Two examples of (zero-residual) intersection regions Izr ⊂ R3 with different location of the
true solution: inside the region or on its border. For graphical reasons the region has been discretized
and the dots are the grid nodes; the bigger ball (thick point) is the true solution. (a): The true solution
(ball) is on the border of Izr; (b): The true solution (ball) is internal to Izr.

To be more precise, when the conditions of Theorem 1 are not satisfied, there is an entire region
of the parameters space which satisfies exactly problem (30), but only one point of this region is the
true solution x̄a. As more tests are added and intersected together, the zero-residual region Izr tends to
reduce, simply because it must satisfy an increasing number of inequalities. In Figure 9 we can see
four iterations taken from an example, precisely with 3, 5, 9 and 20 tests intersected and merr = 19.
With only three tests (Figure 9a), there is a big region Izr (described by the mesh of small dots), and here
we see that the true solution (thick point) and the current estimate (star) stay on opposite sides of
the region, as accidentally happens. With five tests (Figure 9a) the region has shrunk considerably
and the estimate is reaching the boundary (in the plot it is still half-way), and even more with nine
tests (Figure 9c). The convergence arrives here before the region collapses to a single point, because
accidentally the estimate has approached the region boundary at the same point where the true solution
is located.

In general, the zero-residual region Zri (20) of each test contains the true solution, while the
estimate arrives from outside the region and stops when it bumps the border of the intersection
region Izr (21). For this reason we have convergence when the region that contains the true solution is
reduced to a single point, and the current estimate x̂a does not lie in a disconnected sub-region of Izr

different from the one in which the true solution lies. Figure 10 shows an example of an intersection
region Izr which is the union of two closed disconnected regions: this case creates a local minimum in
problem (30).
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(a) (b)( )

(c) (d)

Figure 9. The intersection region Izr ⊂ R3 at different number of tests involved. For graphical reasons
the region has been discretized and the dots are the grid nodes; the bigger ball is the true solution and
the star is the current estimate in the experiment. (a) 3 tests; (b) 5 tests; (c) 9 tests; (d) 20 tests.

(a) (b)

Figure 10. The intersection region Izr ⊂ R3 at different number of tests involved. On the left a few
tests have created a single connected region while, on the right, adding more tests have splitted it into
two subregions. For graphical reasons the region has been discretized and the dots are the grid nodes;
the bigger ball is the true solution and the star is the current estimate in the experiment. (a) A (portion
of a) connected region Izr; (b) A region Izr split into two not connected sub regions.
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In Figure 11 we see the differences Nmax
f − Nmin

f and Tmax
f − Tmin

f vs. merr. The differences are
bigger for higher values of the model error. It seems that this is the cause of a more frequent creation
of local minima.

(a) (b) (c)

Figure 11. The three plots show the values assumed by the extreme values (15) as a function of merr.
(a): {Imin

f , Imax
f } vs. merr; (b): {Nmin

f , Nmax
f } vs. merr; (c) {Tmin

f , Tmax
f } vs. merr.

Figure 12 synthesizes the main results that we have experienced with this new approach. Globally
it shows a great reduction of the bias contained in the standard least-squares estimates; indeed, we had
to use the logarithmic scale to enhance the differences in the behaviour of the proposed method while
varying merr. In particular,

• with considerable levels of modelling error, let us say merr between 2 and 12, the parameter
estimation error êrel is at least one order of magnitude smaller that that of least-squares; this is
accompanied by high levels of shrinkage of the zero-residual region (Figure 12b);

• with higher levels of merr, we see a low shrinkage of the zero-residual region and consequently
an estimate whose error is highly oscillating, depending on where the optimization algorithm has
brought it to get in contact with the zero-residual region;

• at merr = 18 we see the presence of a local minimum, due to the falling to pieces of the
zero-residual region as in Figure 10: the shrinkage at the true solution is estimated to be
very high, while at the estimated solution it is quite low, since it is attached to a disconnected,
wider sub-region.

• the shrinking of the zero-residual region is related to the distribution of the outgoing gradients,
as stated by Theorem 1: in Figure 12d we see that in the experiment with merr = 18 they occupy
only three of eight orthants, while in the best results of the other experiments the gradients
distribute themselves in almost all orthants (not shown).

It is evident from these results that for lower values of modelling error merr, it is much easier to
produce tests that reduce the zero-residual region to a quite small interval of Rna , while for high values
of merr it is much more difficult and the region Izr can even fall to pieces, thus creating local minima.
It is also evident that a simple estimate of the Izr region size, like (31), can reliably assess the quality of
the estimate produced by the approach here proposed, as summarized in Figure 12c.
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(a) (b)

(c)

(b)( )( )

(d)

Figure 12. The plots summarize the results obtained by the ULS approach to parameter estimation no
the model problem explained at the beginning of this section. (a): The relative estimation error (37)
vs. merr; (b): The Izr region shrinkage estimate (31) vs. merr; (c): The relative estimation error (37) vs.
the estimate of the Izr region shrinkage, considering the experiments with merr ∈ [2, 20]; (d): A three
dimensional view of the Outgoing Gradients at the last iteration of the experiment with merr = 18.

6. Conclusions

In this paper we have analyzed the bias commonly arising in parameter estimation problems
where the model is lacking some deterministic part of the system. This result is useful in applications
where an accurate estimation of parameters is important, e.g., in physical (grey-box) modelling typically
arising in the model-based design of multi-physical systems, see e.g., the motivations that the authors
did experience in the design of digital twins of controlled systems [10–12] for virtual prototyping,
among an actually huge literature.

At this point, the method should be tested in a variety of applications, since the ULS approach
here proposed is not applicable black-box as Least-Squares are. Indeed, it requires some additional
a priori information. Moreover, since the computational complexity of the method here presented
is relevant, efficient computational methods must be considered and will be a major issue in future
investigations.

Another aspect that is even worth to deepen is also the possibility to design tests that contribute
optimally to the reduction of the zero-residual region.
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1. Introduction

In this article, we investigate the asymptotic behavior of solutions of the fourth-order
differential equation

(
b (x)

(
w′′′ (x)

)κ
)′

+
j

∑
i=1

qi (x) f (w (ϑi (x))) = 0, x ≥ x0. (1)

Throughout this paper, we assume the following conditions hold:

(Z1) κ are quotient of odd positive integers;
(Z2) b ∈ C1 ([x0, ∞),R) , b (x) > 0, b′ (x) ≥ 0 and under the condition∫ ∞

x0

1
b1/κ (x)

dx = ∞. (2)

(Z3) qi ∈ C[x0, ∞), q (x) > 0, i = 1, 2, . . . , j,
(Z4) ϑi ∈ C[x0, ∞), ϑi (x) ≤ x, limx→∞ ϑi (x) = ∞; i = 1, 2, .., j,
(Z5) f ∈ C (R,R) such that

f (x) /xκ ≥ � > 0, for x �= 0. (3)

Definition 1. The function y ∈ C3[νy, ∞), νy ≥ ν0, is called a solution of equation (1), if b (x) (w′′′ (x))κ ∈
C1[xw, ∞), and w (x) satisfies (1) on [xw, ∞).
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Definition 2. A solution of (1) is called oscillatory if it has arbitrarily large zeros on [xw, ∞), and otherwise is
called to be nonoscillatory.

Definition 3. Equation (1) is said to be oscillatory if all its solutions are oscillatory.

Differential equations arise in modeling situations to describe population growth, biology,
economics, chemical reactions, neural networks, and in aeromechanical systems, etc.; see [1].

More and more scholars pay attention to the oscillatory solution of functional differential
equations, see [2–5], especially for the second/third-order, see [6–8], or higher-order equations
see [9–17]. With the development of the oscillation for the second-order equations, researchers began
to study the oscillation for the fourth-order equations, see [18–25].

In the following, we show some previous results in the literature which related to this paper:
Moaaz et al. [21] studied the fourth-order nonlinear differential equations with a continuously
distributed delay (

b (x)
(
(w (x))′′′

)α)′
+

∫ c

a
q (x, ξ) f (w (g (x, ξ))) dξ = 0, (4)

by means of the theory of comparison with second-order delay equations, the authors established
some oscillation criteria of (4) under the condition∫ ∞

x0

1
b1/κ (x)

dx < ∞. (5)

Cesarano and Bazighifan [22] considered Equation (4), and established some new oscillation
criteria by means of Riccati transformation technique.

Agarwal et al. [9] and Baculikova et al. [10] studied the equation((
w(n−1) (x)

)κ)′
+ q (x) f (w (ϑ (x))) = 0 (6)

and established some new sufficient conditions for oscillation.

Theorem 1 (See [9]). If there exists a positive function g ∈ C1 ([x0, ∞) , (0, ∞)) , and θ > 1 is a constant
such that

lim sup
x→∞

∫ x

x0

(
g (s) q (s)− λθ

(g′ (s))κ+1

(g (s) ϑn−2 (s) ϑ′ (s))κ

)
ds = ∞, (7)

where λ := (1/ (κ + 1))κ+1 (2 (n − 1)!)κ , then every solution of (6) is oscillatory.

Theorem 2 (See [10]). Let f
(

x1/κ
)

/x ≥ 1 for 0 < x ≤ 1 such that

lim inf
x→∞

∫ x

ϑi(x)
q (s) f

(
ς

(n − 1)!
ϑn−1 (s)

b1/κ (ϑ (s))

)
ds >

1
e

(8)

for some ς ∈ (0, 1), then every solution of (6) is oscillatory.

To prove this, we apply the previous results to the equation

w(4) (x) +
c0

x4 w
(

9
10

x
)
= 0, x ≥ 1, (9)
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then we get that (9) is oscillatory if

The condition (7) (8)

The criterion c0 > 60 c0 > 28.7

From above, we see that [10] improved the results in [9].
The motivation in studying this paper is complementary and improves the results in [9,10].
The paper is organized as follows. In Section 2, we state some lemmas, which will be useful in

the proof of our results. In Section 3, by using generalized Riccati transformations, we obtain a new
oscillation criteria for (1). Finally, some examples are considered to illustrate the main results.

For convenience, we denote

δ (x) :=
∫ ∞

x

1
b1/κ (s)

ds, F+ (x) := max {0, F (x)} ,

ψ (x) := g (x)

(
�

j

∑
i=1

qi (x)

(
ϑ3

i (x)
x3

)κ

+
εβ

(1+κ)/κ
1 x2 − 2β1κ

2b
1
κ (x) δκ+1(x)

)
,

φ (x) :=
g′+ (x)
g (x)

+
(κ + 1) β1/κ

1 εx2

2b
1
κ (x) δ(x)

, φ∗ (x) :=
ξ ′+ (x)
ξ (x)

+
2β2

δ(x)
,

and

ψ∗ (x) := ξ (x)

⎛⎝∫ ∞

x

(
�

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv +
β2

2 − β2b
−1
κ (x)

δ2(x)

⎞⎠ ,

where β1, β2 are constants and g, ξ ∈ C1 ([x0, ∞) , (0, ∞)).

Remark 1. We define the generalized Riccati substitutions

π (x) := g (x)
(

b (x) (w′′′)κ (x)
wκ (x)

+
β1

δκ(x)

)
, (10)

and

� (x) := ξ (x)
(

w′ (x)
w (x)

+
β2

δ(x)

)
. (11)

2. Some Auxiliary Lemmas

Next, we begin with the following lemmas.

Lemma 1 ([8]). Let β be a ratio of two odd numbers, V > 0 and U are constants. Then,

P(β+1)/β − (P − Q)(β+1)/β ≤ 1
β

Q1/β [(1 + β) P − Q] , PQ ≥ 0, β ≥ 1

and

Uw − Vw(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
.

Lemma 2 ([15]). Suppose that h ∈ Cn ([x0, ∞) , (0, ∞)) , h(n) is of a fixed sign on [x0, ∞) , h(n) not identically
zero, and there exists a x1 ≥ x0 such that

h(n−1) (x) h(n) (x) ≤ 0,
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for all x ≥ x1. If we have limx→∞ h (x) �= 0, then there exists xβ ≥ x1 such that

h (x) ≥ β

(n − 1)!
xn−1

∣∣∣h(n−1) (x)
∣∣∣ ,

for every β ∈ (0, 1) and x ≥ xβ.

Lemma 3 ([19]). If the function u satisfies u(j) > 0 for all j = 0, 1, ..., n, and u(n+1) < 0, then

n!
xn u (x)− (n − 1)!

xn−1
d

dx
u (x) ≥ 0.

3. Oscillation Criteria

In this section, we shall establish some oscillation criteria for Equation (1).
Upon studying the asymptotic behavior of the positive solutions of (1), there are only two cases:

Case (1) : w(r) (x) > 0 for r = 0, 1, 2, 3.
Case (2) : w(r) (x) > 0 for r = 0, 1, 3 and w′′ (x) < 0.

Moreover, from Equation (1) and condition (3), we have that
(
b (x) (w′′′ (x))κ)′. In the following,

we will first study each case separately.

Lemma 4. Assume that w be an eventually positive solution of (1) and w(r) (x) > 0 for all r = 1, 2, 3. If we
have the function π ∈ C1[x, ∞) defined as (10), where g ∈ C1 ([x0, ∞) , (0, ∞)) , then

π′ (x) ≤ −ψ (x) + φ (x)π (x)− κεx2

2 (b (x) g (x))1/κ
π

κ+1
κ (x) , (12)

for all x > x1, where x1 is large enough.

Proof. Let w be an eventually positive solution of (1) and w(r) (x) > 0 for all r = 1, 2, 3. Thus,
from Lemma 2, we get

w′ (x) ≥ ε

2
x2w′′′ (x) , (13)

for every ε ∈ (0, 1) and for all large x. From (10), we see that π (x) > 0 for x ≥ x1, and

π′ (x) = g′ (x)
(

b (x) (w′′′)κ (x)
wκ (x)

+
β1

δκ(x)

)
+ g (x)

(
b (w′′′)κ)′ (x)

wκ (x)

−κg (x)
wκ−1 (x)w′ (x) b (x) (w′′′)κ (x)

w2κ (x)
+

κβ1g (x)

b
1
κ (x) δκ+1(x)

.

Using (13) and (10), we obtain

π′ (x) ≤ g′+ (x)
g (x)

π (x) + g (x)

(
b (x) (w′′′ (x))κ)′

wκ (x)

−κg (x)
ε

2
x2 b (x) (w′′′ (x))κ+1

wκ+1 (x)
+

κβ1g (x)

b
1
κ (x) δκ+1(x)

≤ g′ (x)
g (x)

π (x) + g (x)

(
b (x) (w′′′ (x))κ)′

wκ (x)

−κg (x)
ε

2
x2b (x)

(
π (x)

g (x) b (x)
− β1

b (x) δκ(x)

) κ+1
κ

+
κβ1g (x)

b
1
κ (x) δκ+1(x)

. (14)
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Using Lemma 1 with P = π (x) / (g (x) b (x)) , Q = β1/ (b (x) δκ(x)) and β = κ, we get

(
π (x)

g (x) b (x)
− β1

b (x) δκ(x)

) κ+1
κ ≥

(
π (x)

g (x) b (x)

) κ+1
κ

− β1/κ
1

κb
1
κ (x) δ(x)

(
(κ + 1)

π (x)
g (x) b (x)

− β1

b (x) δκ(x)

)
. (15)

From Lemma 3, we have that w (x) ≥ x
3 w′ (x) and hence

w (ϑi (x))
w (x)

≥ ϑ3
i (x)
x3 . (16)

From (1), (14), and (15), we obtain

π′ (x) ≤ g′+ (x)
g (x)

π (x)− �g (x)
j

∑
i=1

qi (x)

(
ϑ3

i (x)
x3

)κ

− κg (x)
ε

2
x2b (x)

(
π (x)

g (x) b (x)

) κ+1
κ

−κg (x)
ε

2
x2b (x)

(
−β1/κ

1

κb
1
κ (x) δ(x)

(
(κ + 1)

π (x)
g (x) b (x)

− β1

b (x) δκ(x)

))
+

κβ1g (x)

b
1
κ (x) δκ+1(x)

.

This implies that

π′ (x) ≤
(

g′+ (x)
g (x)

+
(κ + 1) β1/κ

1 εx2

2b
1
κ (x) δ(x)

)
π (x)− κεx2

2b1/κ (x) g1/κ (x)
π

κ+1
κ (x)

−g (x)

(
�

j

∑
i=1

qi (x)

(
ϑ3

i (x)
x3

)κ

+
εβ

(1+κ)/κ
1 x2 − 2β1κ

2b
1
κ (x) δκ+1(x)

)
.

Thus,

π′ (x) ≤ −ψ (x) + φ (x)π (x)− κεx2

2 (b (x) g (x))1/κ
π

κ+1
κ (x) .

The proof is complete.

Lemma 5. Assume that w is an eventually positive solution of (1), w(r) (x) > 0 for r = 1, 3 and w′′ (x) < 0.
If we have the function � ∈ C1[x, ∞) defined as (11), where ξ ∈ C1 ([x0, ∞) , (0, ∞)) , then

�′ (x) ≤ −ψ∗ (x) + φ∗ (x)� (x)− 1
ξ (x)

�2 (x) , (17)

for all x > x1, where x1 is large enough.

Proof. Let w be an eventually positive solution of (1), w(r) > 0 for r = 1, 3 and w′′ (x) < 0.
From Lemma 3, we get that w (x) ≥ xw′ (x). By integrating this inequality from ϑi (x) to x, we get

w (ϑi (x)) ≥ ϑi (x)
x

w (x) .

Hence, from (3), we have

f (w (ϑi (x))) ≥ �
ϑκ

i (x)
xκ

wκ (x) . (18)
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Integrating (1) from x to u and using w′ (x) > 0, we obtain

b (u)
(
w′′′ (u)

)κ − b (x)
(
w′′′ (x)

)κ
= −

∫ u

x

j

∑
i=1

qi (s) f (w (ϑi (s))) ds

≤ −�wκ (x)
∫ u

x

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds.

Letting u → ∞ , we see that

b (x)
(
w′′′ (x)

)κ ≥ �wκ (x)
∫ ∞

x

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

and so

w′′′ (x) ≥ w (x)

(
�

b (x)

∫ ∞

x

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

.

Integrating again from x to ∞, we get

w′′ (x) ≤ −w (x)
∫ ∞

x

(
�

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv. (19)

From the definition of � (x), we see that � (x) > 0 for x ≥ x1. By differentiating, we find

�′ (x) =
ξ ′ (x)
ξ (x)

� (x) + ξ (x)
w′′ (x)
w (x)

− ξ (x)
(

� (x)
ξ (x)

− β2

δ(x)

)2
+

ξ (x) β2

b1/κ (x) δ2(x)
. (20)

Using Lemma 1 with P = � (x) /ξ (x) , Q = β2/δ(x) and β = 1, we get(
� (x)
ξ (x)

− β2

δ(x)

)2
≥

(
� (x)
ξ (x)

)2
− β2

δ(x)

(
2� (x)
ξ (x)

− β2

δ(x)

)
. (21)

From (1), (20), and (21), we obtain

�′ (x) ≤ ξ ′ (x)
ξ (x)

� (x)− ξ (x)
∫ ∞

x

(
�

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv

−ξ (x)

((
� (x)
ξ (x)

)2
− β2

δ(x)

(
2� (x)
ξ (x)

− β2

δ(x)

))
+

β2ξ (x)

b
1
κ (x) δ2(x)

.

This implies that

�′ (x) ≤
(

ξ ′+ (x)
ξ (x)

+
2β2

δ(x)

)
� (x)− 1

ξ (x)
�2 (x)

−ξ (x)

⎛⎝∫ ∞

x

(
�

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv +
β2

2 − β2b
−1
κ (x)

δ2(x)

⎞⎠ .

Thus,

�′ (x) ≤ −ψ∗ (x) + φ∗ (x)� (x)− 1
ξ (x)

�2 (x) .

The proof is complete.
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Lemma 6. Assume that w is an eventually positive solution of (1). If there exists a positive function g ∈
C ([x0, ∞)) such that

∫ ∞

x0

(
ψ (s)−

(
2

εs2

)κ b (s) g (s) (φ (s))κ+1

(κ + 1)κ+1

)
ds = ∞, (22)

for some ε ∈ (0, 1), then w does not fulfill Case (1).

Proof. Assume that w is an eventually positive solution of (1). From Lemma 4, we get that (12) holds.
Using Lemma 1 with

U = φ (x) , V = κεx2/
(

2 (b (x) g (x))1/κ
)

and x = π,

we get

π′ (x) ≤ −ψ (x) +
(

2
εx2

)κ b (x) g (x) (φ (x))κ+1

(κ + 1)κ+1 . (23)

Integrating from x1 to x, we get

∫ x

x1

(
ψ (s)−

(
2

εs2

)κ b (s) g (s) (φ (s))κ+1

(κ + 1)κ+1

)
ds ≤ π (x1) ,

for every ε ∈ (0, 1) , which contradicts (22). The proof is complete.

Lemma 7. Assume that w is an eventually positive solution of (1), w(r) (x) > 0 for r = 1, 3 and w′′ (x) < 0.
If there exists a positive function ξ ∈ C ([x0, ∞)) such that

∫ ∞

x0

(
ψ∗ (s)− 1

4
ξ (s) (φ∗ (s))2

)
ds = ∞, (24)

then w does not fulfill Case (2).

Proof. Assume that w is an eventually positive solution of (1). From Lemma 5, we get that (17) holds.
Using Lemma 1 with

U = φ∗ (x) , V = 1/ξ (x) , κ = 1 and x = �,

we get

π′ (x) ≤ −ψ∗ (x) +
1
4

ξ (x) (φ∗ (x))2 . (25)

Integrating from x1 to x, we get

∫ x

x1

(
ψ∗ (s)− 1

4
ξ (s) (φ∗ (s))2

)
ds ≤ π (x1) ,

which contradicts (24). The proof is complete.

Theorem 3. Assume that there exist positive functions g, ξ ∈ C ([x0, ∞)) such that (22) and (24) hold, for some
ε ∈ (0, 1). Then, every solution of (1) is oscillatory.

When putting g (x) = x3 and ξ (x) = x into Theorem 3, we get the following oscillation criteria:
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Corollary 1. Let (2) hold. Assume that

lim sup
x→∞

∫ x

x1

(
ϕ (s)−

(
2

εs2

)κ b (s) g (s) (ϕ̃ (s))κ+1

(κ + 1)κ+1

)
ds = ∞, (26)

for some ε ∈ (0, 1) . If

lim sup
x→∞

∫ x

x1

(
ϕ1 (s)− 1

4
ξ (s) (ϕ̃1 (s))

2
)

ds = ∞, (27)

where

ϕ (x) : = x3

(
�

j

∑
i=1

qi (x)

(
ϑ3

i (x)
x3

)κ

+
εβ

(1+κ)/κ
1 x2 − 2β1κ

2b
1
κ (x) δκ+1(x)

)

ϕ̃ (x) : =
3
x
+

(κ + 1) β1/κ
1 εx2

2b
1
κ (x) δ(x)

, ϕ̃1 (x) :=
1
x
+

2β2

δ(x)

and

ϕ1 (x) := x

⎛⎝∫ ∞

x

(
�

b (v)

∫ ∞

v

j

∑
i=1

qi (s)
ϑκ

i (s)
sκ

ds

)1/κ

dv +
β2

2 − β2b
−1
κ (x)

δ2(x)

⎞⎠ ,

then every solution of (1) is oscillatory.

Example 1. Consider a differential equation

w(4) (x) +
c0

x4 w
(

1
2

x
)
= 0, x ≥ 1, (28)

where c0 > 0 is a constant. Note that κ = b (x) = 1, q (x) = c0/x4 and ϑ (x) = x/2. Hence, we have

δ (x0) = ∞, ϕ (s) =
c0

8s
.

If we set � = β1 = 1, then condition (26) becomes

lim sup
x→∞

∫ x

x1

(
ϕ (s)−

(
2

εs2

)κ b (s) g (s) (ϕ̃ (s))κ+1

(κ + 1)κ+1

)
ds = lim sup

x→∞

∫ x

x1

(
c0

8s
− 9

2s

)
ds

= ∞ if c0 > 36.

Therefore, from Corollary 1, the solutions of Equation (28) are all oscillatory if c0 > 36.

Remark 2. We compare our result with the known related criteria for oscillations of this equation as follows:

1. By applying Condition (7) in [9] on Equation (28) where θ = 2, we get

c0 > 432.

2. By applying Condition (8) in [10] on Equation (28) where ς = 1/2, we get

c0 > 51.

Therefore, our result improves results [9,10].

28



Mathematics 2020, 8, 552

Remark 3. By applying Condition (26) in Equation (9), we find

c0 > 6.17.

Therefore, our result improves results [9,10].

4. Conclusions

In this article, we study the oscillatory behavior of a class of nonlinear fourth-order differential
equations and establish sufficient conditions for oscillation of a fourth-order differential equation by
using Riccati transformation. Furthermore, in future work, we get some Hille and Nehari type and
Philos type oscillation criteria of (1).
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Abstract: In the present paper, we propose a numerical method for the simultaneous approximation
of the finite Hilbert and Hadamard transforms of a given function f , supposing to know only the
samples of f at equidistant points. As reference interval we consider [−1, 1] and as approximation
tool we use iterated Boolean sums of Bernstein polynomials, also known as generalized Bernstein
polynomials. Pointwise estimates of the errors are proved, and some numerical tests are given to
show the performance of the procedures and the theoretical results.

Keywords: Hilbert transform; Hadamard transform; hypersingular integral; Bernstein polynomials;
Boolean sum; simultaneous approximation; equidistant nodes

1. Introduction

The Hilbert transform in its original form is an integral transform given by

H( f , t) =
∫
−

∞

−∞

f (x)
x − t

dx, t ∈ R. (1)

Alongside this form there are different variants defining Hilbert transforms on a finite interval,
on the torus, or discrete groups. Objects of our studies are the finite Hilbert transform and its
derivative, namely the Hadamard transform, both defined on the finite (standard) interval [−1, 1].
They are given by

H( f , t) =
∫
−

1

−1

f (x)
x − t

dx, H1( f , t) =
∫
=

1

−1

f (x)
(x − t)2 dx, −1 < t < 1, (2)

where the single and double bar-integral notation indicate that the involved integrals have to be
understood as the Cauchy principal value and the Hadamard finite-part integrals, respectively.

The interest in integrals of this kind is due to their wide use to formulate boundary-value problems
in many areas of mathematical physics (potential theory, fracture mechanics, aerodynamics, elasticity,
etc...) in terms of singular integral equations in [−1, 1] involving such integrals (see e.g., [1–5] and the
references therein).

In fact, the Hilbert transform in its aforementioned form (1) and all its relatives appear in various
fields in mathematical analysis, signal processing, physics and other fields in science. Among them are

Mathematics 2020, 8, 542; doi:10.3390/math8040542 www.mdpi.com/journal/mathematics31
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partial differential equations, optics (X-ray crystallography, electron-atom scattering), electrodynamics
and quantum mechanics (Kramers–Kronig relation), signal processing (phase retrieval, transfer
functions of linear systems, spectral factorization). We will not go into details here but instead
refer to the comprehensive two volume treatise by F. King [6] on many aspects of the Hilbert transform
and its various variants. Due to its outstanding relevance it is of great importance to possess procedures
which allow computation of the Hilbert transform numerically with high degree of accuracy. This
problem was studied by many authors for all the different variants of the Hilbert transform and under
different assumptions. We limit the citation here to only a few interesting papers [7–9].

Our focus in the present paper lies on the numerical computation of the finite Hilbert and
Hadamard transforms (2). There is an extensive literature on numerical methods for these transforms.
We only mention here [5,10] and the references therein. Many of these methods produce a high degree
of approximation, especially when the smoothness of f increases (see e.g., [11–15]). Since they are
based on Gaussian quadrature rules and its modified versions or product rules, they require the
values of f to be given at the zeros of Jacobi polynomials which often is not the case. For example,
in many applications the measurements of f are produced by devices which sample the function
on equidistant knots. Other procedures which pay attention to this fact and which are frequently
used in applications involve composite quadrature rules on equally spaced points. However, this
type of quadrature rules suffers from a low degree of approximation or show saturation phenomena.
Hence there is a need to establish a new approach which combines the advantages of both the
aforementioned methods.

To move towards this goal, we propose some quadrature rules obtained by means of the sequence
{Bm,s f }m of the so-called generalized Bernstein polynomials, defined as iterated Boolean sums of the
classical Bernstein polynomials {Bm f }m ([16–18]). These types of formulas are based on equally spaced
knots in the interval [−1, 1] and their convergence order increases with increasing smoothness of the
function, in contrast to various popular rules based on piecewise polynomial approximation. Moreover,
there exists a numerical evidence showing that the speed of convergence of the formula increases for
higher values of the parameter s and for fixed m (see [19], Remark 4.1).

Concerning the numerical computation of the Hilbert transform H( f ), we revisit the method
introduced in [20] from both the theoretical and computational point of view. Indeed, here, according
to a more recent result obtained in [21], we estimate the quadrature error in terms of the more refined
kth ϕ-modulus of Ditzian and Totik, instead of the ordinary modulus of smoothness. As consequence,
we get error estimates in Sobolev and Hölder Zygmund spaces and we are able to state the maximum
rate of convergence for functions in such spaces. The second improvement of the method in [20]
regards the computation of the quadrature weights that is performed in a more stable way. It is based
on a recurrence relation which does not require the transformation to the canonical bases {1, x, . . . , xm},
but it preserves the fundamental Bernstein polynomials {pm,k(x)}m

k=0.
As regards the Hadamard transform H1( f , t), before introducing the numerical procedure for

its computation, we prove that H1( f , t) presents algebraic singularities at the endpoints of the
interval, when the density function f satisfies a Dini-type condition. Successively, we introduce
a quadrature rule for approximating H1( f , t) always based on the polynomials Bm,s f and useful also
for the simultaneous approximation of H( f , t) and H1( f , t), since the samples of the function f at
the equidistant nodes employed in the computation of H( f , t) have been reused to approximate
H1( f , t) too. The convergence of such a quadrature rule is proved by using the simultaneous
approximation property of the generalized Bernstein polynomials, and similarly to the Hilbert
transform case, for the quadrature error we state weighted pointwise estimates.

It comes out that the additional integer parameter s introduced by the Bm,s f can be suitable chosen
to accelerate the convergence of the quadrature rules for both the transforms H and H1. Moreover,
the coefficients of both the quadrature rules are given in a simple compact vectorial form and can be
efficiently computed by recurrence.
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The outline of the paper is as follows. Section 2 contains some notation and preliminary
results concerning the generalized Bernstein polynomials and the Hilbert and Hadamard transforms.
The quadrature rules with the corresponding pointwise error estimates can be found in Section 3 where
details about the recurrence relations for their coefficients are also given. Section 4 contains additional
numerical details for computing the quadrature weights and some numerical tests which show the
performance of our procedures and confirm the theoretical estimates. Finally, in Section 5 the proofs
are given.

2. Notation and Preliminary Results

In the sequel C will denote a generic positive constant which may differ at different occurrences.
We will write C �= C(a, b, ..) to indicate that C is independent of a, b, ... Moreover, if A, B > 0 depend on
some parameters the notation A ∼ B means that there are fixed constants C1, C2 > 0 (independent of
the parameters in A, B) such that C1 A ≤ B ≤ C2 A. For m ∈ N, we set Nm

0 = {0, 1, 2, . . . , m} and
denote by Pm the space of all algebraic polynomials of degree at most m. Cm will denote the space of
functions with m continuous derivatives on [−1, 1] and C0 is the space of the continuous functions on
[−1, 1] equipped with the uniform norm ‖ f ‖ := maxx∈[−1,1] | f (x)|. In C0, setting ϕ(x) :=

√
1− x2, it is

possible to define the following ϕ-modulus of smoothness by Ditzian and Totik ([22], Theorem 2.1.2)

ωr
ϕ( f , t) = sup

0<h≤t
‖Δr

hϕ f ‖, r ∈ N

where

Δr
hϕ(x) f (x) =

r

∑
k=0

(−1)k

(
r
k

)
f
(

x + (r − 2k)
h
2

ϕ(x)
)

.

We recall that ([22], Theorem 2.1.1)

ωr
ϕ( f , t) ∼ Kr,ϕ( f , tr) := inf{‖ f − g‖+ tr‖g(r)ϕr‖ : g(r−1) ∈ AC}, (3)

where AC denotes the space of the absolutely continuous functions on [−1, 1].
By means of this modulus of continuity, we define the subspace DT ⊂ C0 of all functions satisfying

a Dini-type condition, namely

DT =

{
f ∈ C0 :

∫ 1

0

ωϕ( f , u)
u

du < ∞
}

, (4)

where we set ωϕ( f , u) = ω1
ϕ( f , u).

Moreover, the Hölder–Zygmund space of order λ > 0 is defined by

Zλ =

{
f ∈ C0 : sup

t>0

ωr
ϕ( f , t)

tλ
< ∞, r > λ

}
, λ > 0, (5)

and equipped with the norm

‖ f ‖Zλ
= ‖ f ‖+ sup

t>0

ωr
ϕ( f , t)

tλ
, r > λ.

The space Zλ constitutes a particular case of the Besov-type spaces studied in [23] where it has
been proved that ([23], Theorem 2.1)

‖ f ‖Zλ
∼ sup

n≥0
(n + 1)λEn( f ), En( f ) := inf

P∈Pn
‖ f − P‖. (6)
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Such norms’ equivalence ensures that the previous definitions are indeed independent of the
integer r > λ we choose. Moreover, by (6) we get an interesting characterization of the continuous
functions f ∈ Zλ in terms of the rate of convergence to zero of the errors of best uniform polynomial
approximation of f , which in turn is closely related to the smoothness of f (see e.g., Corollary 8.2.2
and Theorem 6.2.2 of [22]). More precisely, for any continuous function f and any λ > 0 we have

f ∈ Zλ ⇐⇒ En( f ) = O(n−λ) ⇐⇒ ωr
ϕ( f , t) = O(tλ), ∀r > λ. (7)

Furthermore, by the previous definitions, for any r > λ > 0 we get

ωr
ϕ( f , t) ≤ Ctλ‖ f ‖Zλ

, ∀ f ∈ Zλ, C �= C( f , t). (8)

In the case that λ = k ∈ N, by virtue of (3), we have that the space Zλ is equivalent to the
Sobolev space

Wk =
{

f (k−1) ∈ AC : ‖ f (k)ϕk‖ < ∞
}

, k ∈ N,

equipped with the norm ‖ f ‖Wk = ‖ f ‖+ ‖ f (k)ϕk‖, and we recall that ([22], Theorem 4.2.1)

ωr
ϕ( f , t) = O(tr) ⇐⇒ f ∈ Wr, ∀r ∈ N, (9)

ωr
ϕ( f , t) = o(tr) =⇒ f ∈ Pr−1, ∀r ∈ N. (10)

Finally, since we are going to use a result of [24] based also on the ordinary moduli of smoothness
(cf. Theorem 2), we conclude the subsection by recalling their definition and some properties.

Set

Δh f (x) := f
(

x +
h
2

)
− f

(
x − h

2

)
, Δr

h := Δh(Δ
r−1
h ), r > 1,

the ordinary r-th modulus of smoothness of f is defined as

ωr( f , t) := sup
0<h≤t

‖Δr
h f ‖, r ∈ N.

It is related with the ϕ modulus by

ωr
ϕ( f , t) ≤ Cωr( f , t), C �= C( f , t).

Moreover, set
W̃k :=

{
f k−1 ∈ AC : ‖ f (k)‖ < ∞

}
, k ∈ N

we have the following analogues of (9) and (10) (see e.g., [22], p. 40)

ωr( f , t) = O(tr) ⇐⇒ f ∈ W̃r ⊆ Wr, ∀r ∈ N (11)

ωr( f , t) = o(tr) =⇒ f ∈ Pr−1, ∀r ∈ N (12)

2.1. Generalized Bernstein Polynomials in [−1, 1]

For any f ∈ C0 the m-th Bernstein polynomial Bm f is defined as

Bm f (x) :=
m

∑
k=0

f (tk)pm,k(x), tk :=
2k
m

− 1, x ∈ [−1, 1], (13)

where

pm,k(x) :=
1

2m

(
m
k

)
(1 + x)k(1− x)m−k, k = 0, 1, . . . , m, (14)
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are the so-called fundamental Bernstein polynomials. They satisfy the following recurrence relation

pm,k(x) =
(1− x)

2
pm−1,k(x) +

(1 + x)
2

pm−1,k−1(x), m = 1, 2, . . . , (15)

with p0,0(x) = 1 and pm,k(x) = 0 if k < 0 or k > m.
The computation of Bm f (x) can be efficiently performed by the de Casteljau algorithm

(see e.g., [25]).
Based on the polynomial Bm f , the generalized Bernstein polynomial Bm,s f were introduced

separately in [16–18]. They are defined as the following Boolean sums

Bm,s f = f − ( f − Bm f )s, s ∈ N, Bm,1 f = Bm f .

Please note that Bm,s f ∈ Pm and it can be expressed as

Bm,s f (x) =
m

∑
j=0

p(s)m,j(x) f (tj), tj :=
2j
m
− 1, x ∈ [−1, 1], (16)

where

p(s)m,j(x) =
s

∑
i=1

(
s
i

)
(−1)i−1Bi−1

m pm,j(x) Bi
m = Bm(Bi−1

m ), i = 1, . . . , s. (17)

An estimate of the error Rm,s f := f − Bm,s f in uniform norm is given by the following theorem

Theorem 1. [21] Let s ∈ N be fixed. Then for all m ∈ N and any f ∈ C0 we have

‖ f − Bm,s f ‖ ≤ C
{

ω2s
ϕ

(
f ,

1√
m

)
+
‖ f ‖
ms

}
, C �= C(m, f ).

Moreover, for any 0 < λ ≤ 2s we obtain

‖ f − Bm,s f ‖ = O(m− λ
2 ), m → ∞ ⇐⇒ ω2s

ϕ ( f , t) = O(tλ)

and the o-saturation class is characterized by

‖ f − Bm,s f ‖ = o(m−s) ⇐⇒ f is a linear function.

Remark 1. Please note that unlike the basic Bernstein operator Bm, the Boolean sums Bm,s may accelerate the
speed of convergence as the smoothness of f increases. In particular, taking into account (7)–(9), from Theorem 1
we deduce

‖ f − Bm,s f ‖ ≤ C ‖ f ‖Zλ√
mλ

, ∀ f ∈ Zλ with 0 < λ ≤ 2s, C �= C(m, f ). (18)

About the simultaneous approximation of the derivatives of f by means of the sequence {Bm,s f }m,
the following estimate holds.

Theorem 2 ([24], Corollary 1.6). Let s ∈ N be fixed. Then for all m, k ∈ N and any f ∈ Ck we have

‖( f − Bm,s f )(k)‖ ≤ C

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω2s

ϕ

(
f ′, 1√

m

)
+ ωs

(
f ′, 1

m

)
+ ω

(
f ′, 1

ms

)
, k = 1,

ω2s
ϕ

(
f (k),

1√
m

)
+ ωs

(
f (k),

1
m

)
+
‖ f (k)‖

ms , k ≥ 2,

where ω := ω1 and C �= C(m, f ).
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Remark 2. From Theorem 2 and (9), (11) we deduce the following maximum rate of convergence

‖ f (k) − (Bm,s f )(k)‖ = O
(

1
ms

)
(m → ∞) ∀ f ∈ Ck ∩ W̃2s+k, k ∈ N. (19)

Finally, we give some details on the computation of Bm,s f and its first derivative.
Observe that a more convenient representation of the fundamental polynomials {p(s)m,i}m

i=0 is given
by [26] (see also [27])

p
(s)
m (x) = pm(x)Cm,s, ∀x ∈ [−1, 1], (20)

where we set

p
(s)
m (x) := [p(s)m,0(x), p(s)m,1(x), . . . , p(s)m,m(x)],

pm(x) := [pm,0(x), . . . , pm,m(x)],

and Cm,s ∈ R(m+1)×(m+1) is the changing basis matrix given by

Cm,s = I + (I −A) + . . . + (I −A)s−1, Cm,1 = I , (21)

where I denotes the identity matrix and A is the matrix with entries

A := (Ai,j) Ai,j := pm,j(ti), i, j ∈ Nm
0 . (22)

Let c(m,s)
i,j be the entry (i, j) of Cm,s, then in view of (20) we get

p(s)m,j(x) =
m

∑
i=0

pm,i(x)c(m,s)
i,j , ∀x ∈ [−1, 1], (23)

and consequently

Bm,s f (x) =
m

∑
i=0

(
m

∑
j=0

c(m,s)
i,j f (tj)

)
pm,i(x). (24)

In matrix-vector notation this reads as

Bm,s f (x) = pm(x)Cm,sf, (25)

with
f := [ f (t0), f (t1), . . . , f (tm)]

T .

As regards the derivatives of the Bernstein polynomials Bm,s f , we obtain from (25) the following
useful representation

(Bm,s f )′ (x) = p1
m(x)Cm,sf, (26)

where
p1

m(x) := [p′m,0(x), . . . , p′m,m(x)],

Finally, concerning the entries of the vector p1
m(x), i.e., the derivatives of the fundamental

Bernstein polynomials at x ∈ [−1, 1], starting from the definition (14), easy computations yield
the expression

p′m,k(x) =
m
2
(pm−1,k−1(x)− pm−1,k(x)) , k = 0, . . . , m, (27)

with the usual convention pm,j(x) = 0 if j /∈ Nm
0 .
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2.2. Hilbert and Hadamard Transforms

First, we recall the finite Hilbert transform H( f , t) is defined by

H( f , t) =
∫
−

1

−1

f (x)
x − t

dx = lim
ε→0+

[∫ t−ε

−1

f (x)
x − t

dx +
∫ 1

t+ε

f (x)
x − t

dx
]

. (28)

The following theorem provides a sufficient condition for the existence of H( f , t) in (−1, 1)
when the density function f satisfies a Dini-type condition. It also shows the behavior of H( f , t) as t
approaches the endpoints of the interval [−1, 1].

Theorem 3 ([28], Theorem 2.1). For any f ∈ DT and |t| < 1, we have

log−1
(

e
1− t2

)
|H( f , t)| ≤ C

(
‖ f ‖+

∫ 1

0

ωϕ( f , u)
u

du
)

, C �= C( f , t).

Consider now H1( f , t), which is the finite part of the divergent integral in the Hadamard sense
(see for instance [5,10,14]), i.e., defined for |t| < 1 as (cf. [5], Equation (1.3))

H1( f , t) =
∫
=

1

−1

f (x)
(x − t)2 dx = lim

ε→0+

[∫ t−ε

−1

f (x)
(x − t)2 dx +

∫ 1

t+ε

f (x)
(x − t)2 dx − 2 f (t)

ε

]
. (29)

An alternative definition interprets H1( f , t) as the first derivative of H( f ) at t, i.e.,

H1( f , t) =
d
dt

∫
−

1

−1

f (x)
x − t

dx, |t| < 1, (30)

being (30) and (29) equivalent when f ′ is an Hölder continuous function (see [5]).
By the following theorem, we are going to state that for all functions f with f ′ ∈ DT, we have

that H1( f , t) exists finite for any |t| < 1, while it algebraically diverges at the endpoints of the interval
[−1, 1].

Theorem 4. Let the function f ∈ C1 be s.t. f ′ ∈ DT. Then, for any −1 < t < 1, we have

ϕ2(t)|H1( f , t)| ≤ C
(
‖ f ‖+

∫ 1

0

ωϕ( f ′, τ)

τ
dτ

)
, C �= C( f , t). (31)

3. The Quadrature Rules

3.1. On the Computation of H( f , t)

The numerical method for computing H( f , t) is based on the following proposition

Proposition 1. For any f ∈ DT and for any |t| < 1, we have

H( f , t) =
∫ 1

−1

f (x)− f (t)
x − t

dx + f (t) log
(

1− t
1 + t

)
, (32)

In view of (32), we mainly must approximate the function

F ( f , t) :=
∫ 1

−1

f (x)− f (t)
x − t

dx, −1 < t < 1. (33)

For any given s ∈ N, by means of the polynomial sequence {Bm,s f }m, we define the following
approximation of F ( f , t)

Fm,s( f , t) :=
∫ 1

−1

Bm,s f (x)− Bm,s f (t)
x − t

dx (34)
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and let
Φm,s( f , t) := F ( f , t)−Fm,s( f , t), −1 < t < 1. (35)

Please note that

Fm,s( f , t) =
m

∑
j=0

f (tj)
∫ 1

−1

p(s)m,j(x)− p(s)m,j(t)

x − t
dx =:

m

∑
j=0

f (tj)D(s)
m,j(t), (36)

and taking into account the relation in (20) between the bases {pm,i(x)}i∈Nm
0

and {p(s)m,i(x)}i∈Nm
0

, we have

D(s)
m,j(t) =

m

∑
i=0

c(m,s)
i,j

∫ 1

−1

pm,i(x)− pm,i(t)
x − t

dx =:
m

∑
i=0

c(m,s)
i,j qm,i(t). (37)

About the computation of {qm,i(t)}i∈Nm
0

we can prove the following

Proposition 2. For the sequence {qm,i(t)} the following recurrence relation holds

q0,0(t) = 0, q1,0(t) = −1, q1,1(t) = 1

qm,0(t) =
(1− t)

2
qm−1,0(t)− 1

m

qm,k(t) =
(1− t)

2
qm−1,k(t) +

(1 + t)
2

qm−1,k−1(t), 1 ≤ k ≤ m − 1

qm,m(t) =
(1 + t)

2
qm−1,m−1(t) +

1
m

.

Setting
qm(t) = [qm,0(t), qm,1(t), . . . , qm,m(t)], (38)

the quadrature rule (34) takes the form

Fm,s( f , t) = qm(t)Cm,s f. (39)

This formula can be directly applied to approximate H( f , t) in the form given in (32), i.e., supposed
to know f (t), we can approximate

H( f , t) = F ( f , t) + log
(1− t

1 + t

)
f (t) ≈ Fm,s( f , t) + log

(1− t
1 + t

)
f (t).

In the case only the samples f (tj) �= f (t) are given, we propose to approximate H( f , t) by

Hm,s( f , t) := Fm,s( f , t) + log
(1− t

1 + t

)
Bm,s f (t). (40)

Using matrix-vector notation as in (39) and (25) we arrive at

Hm,s( f , t) =
[

qm(t) + log
(1− t

1 + t

)
pm(t)

]
Cm,sf. (41)

The quadrature error can then be expressed as

Em,s( f , t) := H( f , t)−Hm,s( f , t)

= Φm,s( f , t) + log
(1− t

1 + t

)[
f (t)− Bm,s f (t)

]
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About the convergence of both the previous quadrature rules Fm,s and Hm,s, the following
theorem estimates the associate errors, Φm,s and Em,s respectively.

Theorem 5. Let be −1 < t < 1. Then for any f ∈ DT, we have

log−1
(

e
1− t2

)
| Em,s( f , t)| ≤ C log m

[
ω2s

ϕ

(
f ,

1√
m

)
+
‖ f ‖
ms

]
+ C

∫ 1
m

0

ωr
ϕ( f , u)

u
du, (42)

with r < m and C �= C(m, f , t).
The same estimate continues to hold for Φm,s( f , t), which satisfies also

|Φm,s( f , t)| ≤ C
[

ω2s
ϕ

(
f ′, 1√

m

)
+ ωs

(
f ′, 1

m

)
+ ω

(
f ′, 1

ms

)]
, ∀ f ∈ C1, (43)

with C �= C(m, f , t).

In case of smoother functions, from the previous estimates and (7), (8), (9) and (11), we easily get

Corollary 1. Let be −1 < t < 1. Then for all f ∈ Zλ, with 0 < λ ≤ 2s, we have

|Em,s( f , t)| ≤ C log
( e

1− t2

)‖ f ‖Zλ

mλ/2 log m, C �= C(m, f , t),

and the same holds for |Φm,s( f , t)|. Moreover, for all f ∈ Ck+1, with 1 ≤ k ≤ 2s, we have

|Φm,s( f , t)| ≤ C
mk/2 , C �= C(m, t).

In conclusion, we remark that in proving Theorem 5 we also stated the following relations between
the quadrature errors and the approximation errors by generalized Bernstein polynomials

|Em,s( f , t)| ≤ C log
( e

1− t2

) [
log m ‖ f − Bm,s f ‖+

∫ 1
m

0

ωr
ϕ( f , u)

u
du

]
, ∀ f ∈ DT,

|Φm,s( f , t)| ≤ C‖( f − Bm,s f )′‖, ∀ f ∈ C1.

3.2. On the Computation of H1( f , t)

We are going to use the following proposition

Proposition 3. For any f ∈ C1 s.t. f ′ ∈ DT and for all |t| < 1, we have

H1( f , t) =
∫ 1

−1

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx + f ′(t) log

(
1− t
1 + t

)
− f (t)

[
2

1− t2

]
. (44)

Let

F 1( f , t) :=
∫ 1

−1

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx, −1 < t < 1.

Supposed both f ′(t) and f (t) are known, then we can get the exact value of the non-integral part
at the right-hand side of (44). In this case, the numerical computation of H1( f , t) can be performed by
the following quadrature rule

F 1( f , t) = F 1
m,s( f , t) + Φ1

m,s( f , t), (45)
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where

F 1
m,s( f , t) :=

∫ 1

−1

Bm,s f (x)− Bm,s f (t)− (Bm,s f )′ (t)(x − t)
(x − t)2 dx =

d
dt
Fm,s( f , t). (46)

Using (36), (37) and (46), we get

F 1
m,s( f , t) =

m

∑
j=0

f (tj)
m

∑
j=0

d
dt

D(s)
m,j(t),

d
dt

D(s)
m,j(t) =

m

∑
i=0

c(m,s)
i,j dm,i(t), dm,i(t) := q′m,i(t), (47)

where the polynomials dm,i(t), i = 0, . . . , m, can be computed recursively, according to

Proposition 4. The sequence dm,i(t), i = 0, . . . , m, satisfies the following recurrence relation

d1,0(t) = 0, d1,1(t) = 0,

dm,0(t) =
(1− t)

2
dm−1,0(t)− 1

2
qm−1,0(t),

dm,k(t) =
(1− t)

2
dm−1,k(t)− 1

2
qm−1,k(t) +

(1 + t)
2

dm−1,k−1(t) +
1
2

qm−1,k−1(t),

1 ≤ k ≤ m − 1,

dm,m(t) =
(1 + t)

2
dm−1,m−1(t) +

1
2

qm−1,m−1(t).

The previous recurrence relation can be easily deduced by Proposition 2.
Let

dm(t) = [dm,0(t), dm,1(t), . . . , dm,m(t)] , (48)

then the quadrature rule (46) takes the following form

F 1
m,s( f , t) = dm(t)Cm,s f. (49)

In the case that only the vector f is known, we have to approximate also the non-integral part in
(44) and we propose the following quadrature rule

H1( f , t) = H1
m,s( f , t) + E1

m,s( f , t), (50)

where E1
m,s( f , t) denotes the error and

H1
m,s( f , t) := F 1

m,s( f , t) + log
(1− t

1 + t

)
(Bm,s f )′ (t)− 2

1− t2 Bm,s f (t). (51)

By (49), (25) and (26), the rule in vector form is given by

H1
m,s( f , t) =

[
dm(t) + log

(1− t
1 + t

)
p1

m(t)−
2

1− t2 pm(t)
]

Cm,sf. (52)

We point out that both the rules (49) and (52) are based on the same data vector f used in the rules
(39) and (41). We see that our method allows simultaneous approximation of the Hilbert transform
H( f , t) and its first derivative H1( f , t) for |t| < 1 by using the same samples of the function f .
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About the convergence of the quadrature rules F 1
m,s and H1

m,s, the following theorem estimates the
associate errors Φ1

m,s and E1
m,s by means of the error of approximation when f and f ′ are approximated

by generalized Bernstein polynomials.

Theorem 6. Let be −1 < t < 1. Then for any f ∈ C1 s.t. f ′ ∈ DT, we have

(1− t2)|E1
m,s( f , t)| ≤ C

[
‖ f − Bm,s f ‖+ log m‖( f − Bm,s f )′‖+

∫ 1
m

0

ωr
ϕ( f ′, u)

u
du

]
(53)

with r < m and C �= C(m, f , t).
The same estimate can also be applied to Φ1

m,s( f , t), which in the case of continuously differentiable
functions in C2 satisfies also

|Φ1
m,s( f , t)| ≤ C‖( f − Bm,s f )′′‖, ∀ f ∈ C2, (54)

with C �= C(m, f , t).

Thanks to this theorem, by Theorem 1 and Theorem 2 we can easily get estimates of the quadrature
errors E1

m,s and Φ1
m,s based on several moduli of smoothness of f and f ′. For brevity we omit the

details and only state the following result, which easily follows by using (9) and (11) in the estimates
of Theorems 1 and 2, which in turn are used in Theorem 6.

Corollary 2. Let −1 < t < 1 and s ∈ N. For all functions f ∈ Ck+1, with 1 ≤ k ≤ 2s, and for sufficiently
large m ∈ N, we have

(1− t2)|E1
m,s( f , t)| ≤ C

mk/2 log m, C �= C(m, t).

The same estimate holds for Φ1
m,s( f , t), which also satisfies

|Φ1
m,s( f , t)| ≤ C

mk/2 , C �= C(m, t), ∀ f ∈ Ck+2, 1 ≤ k ≤ 2s.

4. Numerical Details and Some Experiments

First, we recall some details given in [19] about the computation of the matrix Cm,s in (21). We start
from the matrix A defined in (22). It will be constructed by rows by making use of the triangular
scheme in (15) and thus for each row m2 long operations are required. On the other hand, since A is
centrosymmetric, i.e., A = JAJ , where J is the counter-identity matrix of order m + 1 (Ji,j = δi,m−j,

i, j ∈ Nm
0 , being δh,k the Kronecker delta), it will be enough to compute only the first

(
m+1

2

)
or(m+2

2
)

rows, according to m is odd or even, respectively. Therefore, the construction of A requires
about m3

2 long operations. Furthermore, since the product of two centrosymmetric matrices can be
performed in almost m3

4 long operations [29], the matrix Cm,s in (21) can be constructed in almost
(s − 2)m3/4 long operations, instead of (s − 2)m3 ones, i.e., with a saving of about the 75%. A more
significant reduction is achieved when the parameter s = 2p, p ∈ N, p ≥ 1. Indeed, by using ([30], (14))

Cm,2p = Cm,2p−1 + (I −A)2p−1
Cm,2p−1 , (55)

the matrix Cm,s can be determined by 2(log2 s− 1) products of centrosymmetric matrices and therefore
requiring almost m3

2 (log2 s − 1) long operations. For instance, for s = 256, if we use Equation (21),
255 products of centrosymmetric matrices require about 255 m3

4 ∼ 63.7m3 long operations. On the
contrary, if we use (55) then approximatively only 3.5m3 long operations are needed.
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Now we propose some numerical tests obtained by approximating H( f , t) and H1( f , t) by means
of the quadrature rules {Fm,s( f , t)}m and {F 1

m,s( f , t)}m, respectively, namely for a given t ∈ (−1, 1),
we compute

H( f , t) ∼ Fm,s( f , t) + log
(1− t

1 + t

)
f (t),

H1( f , t) ∼ F 1
m,s( f , t) + log

(1− t
1 + t

)
f ′(t)− 2

1− t2 f (t).

For any choice of m we consider different values of s. In the tables we report the approximating
values of the integrals. All the computations have been performed in double-machine precision
(eps ∼ 2.22044e − 16).

Example 1.

H( f , t) =
∫
−

1

−1

sin x
x − t

dx, H1( f , t) =
∫
=

1

−1

sin x
(x − t)2 dx, t = 0.1.

Here f ∈ C∞ and as we can see the performance of the quadrature rules improves keeping m fixed and
increasing the values of s. An empty cell means that there is no improvement in the computation. In particular
as we can see in Tables 1–2, the machine precision is attained for m = 128 and s = 16 as well as for m = 64 and
s = 32.

Table 1. Example 1a:
∫−1
−1

sin x
x−0.1 dx.

m s = 8 s = 16 s = 32 s = 64

8 1.868 1.8688 1.86885 1.86885
16 1.8688 1.868855 1.86885558 1.868855589
32 1.868855 1.868855589 1.868855589128 1.86885558912878
64 1.868855589 1.8688555891287 1.86885558912878
128 1.86885558912 1.86885558912878
256 1.8688555891287

Table 2. Example 1b:
∫
=

1
−1

sin x
(x−0.1)2 dx.

m s = 8 s = 16 s = 32 s = 64

8 −0.466 −0.4668 −0.4668 −0.46685
16 −0.4668 −0.46685 −0.466857 −0.466857
32 −0.46685 −0.466857 −0.46685700178 −0.46685700178498
64 −0.466857 −0.466857001784 −0.46685700178498

128 −0.4668570017 −0.4668570017849
256 −0.466857001784 −0.46685700178498

Example 2.

H( f , t) =
∫
−

1

−1

|x − 0.5| 15
2

x − t
dx, H1( f , t) =

∫
=

1

−1

|x − 0.5| 15
2

(x − t)2 dx, t = 0.3.

In this case, f ∈ Z 15
2

, and as the results in Tables 3–4 show, the numerical errors agree with the
theoretical estimates.
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Table 3. Example 2a:
∫−1
−1

|x−0.5| 15
2

x−0.3 dx. Exact value −3.29987610310676.

m s = 8 s = 16 s = 32 s = 64

16 −3 −3.298 −3.299 −3.2998
32 −3.299 −3.29987 −3.29987 −3.299876
64 −3.299876 −3.299876 −3.299876 −3.299876

128 −3.29987610 −3.2998761 −3.29987610 −3.29987610
256 −3.29987610 −3.299876103 −3.299876103 −3.2998761031

e 512 −3.2998761031 −3.2998761031 −3.29987610310 −3.2998761031
1024 −3.299876103106 −3.299876103106 −3.2998761031066 −3.2998761031067

Table 4. Example 2b:
∫
=

1
−1

|x−0.5| 15
2

(x−0.3)2 dx.

m s = 8 s = 16 s = 32 s = 64

32 3.0 3.03 3.038 3.0383
64 3.038 3.03838 3.03838 3.038388
128 3.03838 3.038388 3.038388 3.0383888
256 3.0383888 3.0383888 3.03838883 3.03838883
512 3.03838883 3.03838883 3.038388835 3.03838883525
1024 3.038388835 3.03838883528 3.03838883525 3.03838883525

Example 3.

H( f , t) =
∫
−

1

−1

exp(x) sin(x)
1 + x2

dx
x − t

, t = −0.7.

Here f ∈ C∞. In this test (see Table 5), we want to show the performance of the quadrature rule when m
is fixed and s increases, highlighting how we get an improvement, but it seems till to a certain threshold. This
behavior will be the subject of future investigations.
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5. Proofs

The following three lemmas will be useful in the sequel.

Lemma 1. Let f ∈ DT and Pm ∈ Pm, m ≥ 2. Then

∫ 1
m

0

ωϕ( f − Pm, t)
t

dt ≤ C
(
‖( f − Pm)‖∞ +

∫ 1
m

0

ωr
ϕ( f , t)

t
dt

)
,

where r ∈ N with r < m and 0 < C �= C(m, f ).

Proof. Taking into account that ωϕ( f , t) is a non-decreasing function of t, we have

∫ 1
m

0

ωϕ( f − Pm, t)
t

dt =
∞

∑
j=m

∫ 1
j

1
j+1

ωϕ( f − Pm, t)
t

dt ≤ C
∞

∑
j=m

ωϕ

(
f − Pm, 1

j

)
j

.

Then, by applying the following Stechkin type inequality ([22], Theorem 7.2.4)

ωϕ( f , t) ≤ Ct
� 1

t �
∑
i=0

Ei( f ), 0 < C �= C( f , t),

we get

∫ 1
m

0

ωϕ( f − Pm, t)
t

dt ≤ C
∞

∑
j=m

1
j2

j

∑
i=0

Ei( f − Pm)

= C
∞

∑
j=m

1
j2

[
m−1

∑
i=0

Ei( f − Pm) +
j

∑
i=m

Ei( f − Pm)

]

≤ C‖( f − Pm)‖∞

(
∞

∑
j=m

m
j2

)
+ C

∞

∑
j=m

1
j2

j

∑
i=m

Ei( f ),

and taking into account that ∑∞
j=n

1
j2 ≤ C

n holds for all n ∈ N, with C �= C(n), we obtain

∫ 1
m

0

ωϕ( f − Pm, t)
t

dt ≤ C‖( f − Pm)‖∞ + C
∞

∑
i=m

Ei( f )
∞

∑
j=i

1
j2

≤ C‖( f − Pm)‖∞ + C
∞

∑
i=m

Ei( f )
i

.

Finally, by applying the Jackson type inequality ([22], Theorem 7.2.1) (see also [31], Section 2.5.2),

Em( f ) ≤ Cωr
ϕ

(
f ,

1
m

)
, r < m, C �= C(m, f ),

and recalling that ([22], (4.1.3))

ωϕ(g, αt) ≤ Cαωϕ(g, t), ∀α ≥ 1, C �= C(g, t, α), (56)
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we deduce

∞

∑
i=m

Ei( f )
i

≤ C
∞

∑
i=m

ωr
ϕ

(
f , 1

i

)
i

=
∞

∑
i=m

ωr
ϕ

(
f ,

1
i

)
(i − 1)

∫ 1
i−1

1
i

du

≤ C
∞

∑
i=m

∫ 1
i−1

1
i

ωr
ϕ ( f , u)

u
du = C

∫ 1
m−1

0

ωr
ϕ( f , u)

u
du

= C
∫ 1

m

0

ωr
ϕ

(
f , m

m−1 t
)

t
dt ≤ C

∫ 1
m

0

ωr
ϕ( f , t)

t
dt,

which completes the proof.

Lemma 2. For any −1 < t ≤ − 1
2 , and for any f s.t. f ′ ∈ DT, we have

∫
=

2t+1

−1

f (x)
(x − t)2 dx ≤ C

(∫ 1

0

ωϕ( f ′, σ)

σ
dσ +

‖ f ‖
1 + t

)
,

where C �= C( f , t).

Proof. Since
∫−2t+1
−1

dx
x−t = 0, we write

∫
=

2t+1

−1

f (x)
(x − t)2 dx =

∫
=

2t+1

−1

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx + f (t)

∫
=

2t+1

−1

dx
(x − t)2

=: A1(t) + A2(t). (57)

Concerning A1, by reasoning as done in proving Proposition 3 we have that f ′ ∈ DT implies

A1(t) =
∫ 2t+1

−1

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx

and using

f (x)− f (t)− f ′(t)(x − t) =
∫ x

t
[ f ′(τ)− f ′(t)]dτ, (58)

we obtain the form

A1(t) =
∫ t

−1

[∫ t

x
[ f ′(t)− f ′(τ)]dτ

]
dx

(x − t)2 +
∫ 2t+1

t

[∫ x

t
[ f ′(τ)− f ′(t)]dτ

]
dx

(x − t)2 .

Hence, changing the variables x = t − σ
2

√
1− t2, τ = t − h

2

√
1− t2 in the first addendum and

x = t + σ
2

√
1− t2, τ = t + h

2

√
1− t2 in the second one, we get

A1(t) =
∫ 2

√
1+t
1−t

0

[∫ σ

0

[
f ′
(

t +
h
2

√
1− t2

)
− f ′

(
t − h

2

√
1− t2

)]
dh

]
dσ

σ2

=
∫ 2

√
1+t
1−t

0

(∫ σ

0
Δhϕ(t) f ′(t)dh

)
dσ

σ2 .

Consequently, for any −1 < t ≤ − 1
2 we obtain

|A1(t)| ≤
∫ 2

√
1+t
1−t

0

(∫ σ

0
‖Δhϕ f ′‖dh

)
dσ

σ2 ≤
∫ 2

√
1+t
1−t

0
sup
h≤σ

‖Δhϕ f ′‖dσ

σ

=
∫ 2

√
1+t
1−t

0

ωϕ( f ′, σ)

σ
dσ ≤

∫ 2√
3

0

ωϕ( f ′, σ)

σ
dσ,
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and using (56), we conclude that

|A1(t)| ≤
∫ 2√

3

0

ωϕ( f ′, σ)

σ
dσ =

∫ 1

0
ωϕ

(
f ′, 2√

3
u
)

du
u

≤ C
∫ 1

0

ωϕ( f ′, u)
u

du. (59)

Finally, since

∫
=

2t+1

−1

dx
(x − t)2 = lim

ε→0+

[∫ t−ε

−1

1
(x − t)2 dx +

∫ 2t+1

t+ε

1
(x − t)2 dx − 2

ε

]
= − 2

1 + t
,

we have

|A2(t)| = 2
1 + t

| f (t)| ≤ 2
‖ f ‖
1 + t

,

and the statement follows by collecting this last inequality, (59) and (57).

Similarly, we can prove the following

Lemma 3. For any 1
2 ≤ t < 1, and for any f s.t. f ′ ∈ DT, we have

∫
=

1

2t−1

f (x)
(x − t)2 dx ≤ C

(∫ 1

0

ωϕ( f ′, σ)

σ
dσ +

‖ f ‖
1− t

)
,

where C �= C( f , t).

Proof of Theorem 4. Assume first that −1 < t ≤ − 1
2 . In this case, ϕ2(t) ∼ (1 + t) and we have

ϕ2(t)
∣∣∣H1( f , t)

∣∣∣ ∼ (1 + t)
∣∣∣∣∫=2t+1

−1

f (x)
(x − t)2 dx +

∫ 1

2t+1

f (x)
(x − t)2 dx

∣∣∣∣ . (60)

Since

(1 + t)
∣∣∣∣∫ 1

2t+1

f (x)
(x − t)2 dx

∣∣∣∣ ≤ C‖ f ‖,

the statement follows from Lemma 2 for any −1 < t ≤ − 1
2 .

Assume now 1
2 ≤ t < 1, so that ϕ2(t) ∼ (1− t). By using the decomposition

ϕ2(t)
∣∣∣H1( f , t)

∣∣∣ ∼ (1− t)
∣∣∣∣∫ 2t−1

−1

f (x)
(x − t)2 dx +

∫
=

1

2t−1

f (x)
(x − t)2 dx

∣∣∣∣ , (61)

and taking into account that

(1− t)
∣∣∣∣∫ 2t−1

−1

f (x)
(x − t)2 dx

∣∣∣∣ ≤ C‖ f ‖,

the statement follows from Lemma 3 for any 1
2 ≤ t < 1.

Finally, suppose |t| < 1
2 and fix 1

4 < a < 1
2 . In this case, ϕ(t) ∼ 1 and we consider the

following decomposition

ϕ2(t)
∣∣∣H1( f , t)

∣∣∣ ∼ ∣∣∣∣∫|x−t|≥a

f (x)
(x − t)2 dx +

∫
=

t+a

t−a

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx+

+ f (t)
∫
=

t+a

t−a

dx
(x − t)2

∣∣∣∣ .

(62)

For the first term at the right-hand side of (62) we get∣∣∣∣∫|x−t|≥a

f (x)
(x − t)2 dx

∣∣∣∣ ≤ C‖ f ‖.
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Concerning the second addendum of (62), we proceed analogously to the estimate of A1(t) in
Lemma 2. More precisely, by using f ′ ∈ DT and (58) we obtain

∫
=

t+a

t−a

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx =

∫ t+a

t−a

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx

=

(∫ t

t−a
+

∫ t+a

t

)(∫ x

t

[
f ′(τ)− f ′(t)

]
dτ

)
dx

(x − t)2 ,

and by changing the variables x = t ± σ
2 ϕ(t) and τ = t ± h

2 ϕ(t), we get∣∣∣∣∫=t+a

t−a

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx

∣∣∣∣ ≤ ∫ 2a
ϕ(t)

0

∫ σ

0

∣∣∣Δhϕ(t) f ′(t)
∣∣∣ dh

dσ

σ2 ≤ C
∫ 1

0

ωϕ( f ′, u)
u

du.

Finally, as regards the third term at the right-hand side of (62), since
∫
=

t+a
t−a

dx
(x−t)2 = − 2

a , we have

∣∣∣∣ f (t)
∫
=

t+a

t−a

dx
(x − t)2

∣∣∣∣ ≤ 2
a
‖ f ‖,

and the theorem is completely proven.

Proof of Proposition 1. Start from the standard decomposition

H( f , t) =
∫
−

1

−1

f (x)− f (t)
x − t

dx + f (t)H(1, t), (63)

and taking into account

H(1, t) :=
∫
−

1

−1

dx
x − t

= log
(

1− t
1 + t

)
,

we must prove that the principal value integral in (63) is indeed an improper integral. To this aim, let
us first prove that ∫ 1

t

f (x)− f (t)
x − t

dx = lim
ε→0+

∫ 1

t+ε

f (x)− f (t)
x − t

dx < ∞. (64)

Please note that for any ε > 0,

∫ 1

t+ε

f (x)− f (t)
x − t

dx =
∫ 1−t

ε

f (u + t)− f (t)
u

du.

Moreover, for any g ∈ AC, we note that

f (u + t)− f (t) = f (u + t)− g(u + t)− f (t) + g(t) + g(u + t)− g(t)

≤ 2‖ f − g‖+
∫ u+t

t
g′(σ)dσ

≤ 2‖ f − g‖+ ‖g′ϕ‖
∫ u+t

t

dσ

ϕ(σ)

= 2‖ f − g‖+ u‖g′ϕ‖
[

arcsin(u + t)− arcsin(t)
u

]
.

On the other hand, recalling that

arcsin y = y +
y3

6
+

3
40

y5 +
5

112
y7 +

35
1152

y9 + . . . , |y| < 1,

we easily get
arcsin(u + t)− arcsin(t)

u
≤ C �= C(t, u), |t| < 1, 0 < u ≤ 2,
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and therefore, the previous estimate and (3) yield

f (u + t)− f (t) ≤ C
(

inf
g∈AC

{‖ f − g‖+ u‖g′ϕ‖
)
= CK1,ϕ( f , u) ∼ ωϕ( f , u).

Hence, for all |t| < 1 it follows

lim
ε→0+

∫ 1−t

ε

f (u + t)− f (t)
u

du ≤ C lim
ε→0+

∫ 2

ε

ωϕ( f , u)
u

du, C �= C(t),

i.e., under the assumption f ∈ DT, (64) holds.

Similarly proceeding, we can prove that

∫ t

−1

f (x)− f (t)
x − t

dx = lim
ε→0+

∫ 1+t

ε

f (t)− f (t − u)
u

du < ∞

and the statement follows.

Proof of Proposition 2. For 1 ≤ k ≤ m − 1, by using the recurrence relation (15) and taking into
account that

∫ 1
−1 pm,h(x)dx = 2

m+1 holds ∀h ∈ Nm
0 , we get

qm,k(t) =
1
2

∫ 1

−1

(1− x)pm−1,k(x)− (1− t)pm−1,k(t)
x − t

dx

+
1
2

∫ 1

−1

(1 + x)pm−1,k−1(x)− (1 + t)pm−1,k−1(t)
x − t

dx

=
1
2

(
qm−1,k(t)−

∫ 1

−1

xpm−1,k(x)− tpm−1,k(t)
x − t

dx
)

+
1
2

(
qm−1,k−1(t) +

∫ 1

−1

xpm−1,k−1(x)− tpm−1,k−1(t)
x − t

dx
)

=
1
2

(
qm−1,k(t)− 2

m
− tqm−1,k(t)

)
+

1
2

(
qm−1,k−1(t) +

2
m

+ tqm−1,k−1(t)
)

=
(1− t)

2
qm−1,k(t) +

(1 + t)
2

qm−1,k−1(t).

For k = 0, we have

qm,0(t) =
1
2

∫ 1

−1

(1− x)pm−1,0(x)− (1− t)pm−1,0(t)
x − t

dx =
1
2

(
qm−1,k(t)− 2

m
− tqm−1,k(t)

)
=

(1− t)
2

qm−1,k(t)− 1
m

.

For k = m we proceed analogously.

Proof of Theorem 5. Set Rm,s f = f − Bm,s f , we have

Em,s( f , t) = H(Rm,s f , t), and Φm,s( f , t) = F (Rm,s f , t).

Applying Theorem 3, Em,s( f , t) can be estimated as follows

|Em,s( f , t)| ≤ C log
( e

1− t2

) [
‖Rm,s f ‖+

∫ 1

0

ωϕ(Rm,s f , u)
u

du
]

, C �= C(m, f , t), (65)
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and by Theorem 1 we further obtain

‖Rm,s f ‖ ≤ C
[

ω2s
ϕ

(
f ,

1√
m

)
+
‖ f ‖
ms

]
, C �= C(m, f ). (66)

Moreover, by Lemma 1 we get

∫ 1

0

ωϕ(Rm,s f , u)
u

du =
∫ 1

m

0

ωϕ(Rm,s f , u)
u

du +
∫ 1

1
m

ωϕ(Rm,s f , u)
u

du

≤ C
(∫ 1

m

0

ωr
ϕ( f , u)

u
du + ‖Rm,s f ‖ log m

)
,

and (42) follows from this last estimate, (65) and (66).
Regarding the quadrature error Φm,s( f , t), we observe that

Φm,s( f , t) = F (Rm,s f , t) = H(Rm,s f , t)− log
(

1− t
1 + t

)
Rm,s f (t),

which leads to

log−1
(

e
1− t2

)
|Φm,s( f , t)| ≤ log−1

(
e

1− t2

)
|H(Rm,s f , t)|+ C|Rm,s f (t)|

≤ C log−1
(

e
1− t2

)
|Em,s( f , t)|+ C‖Rm,s f ‖.

Hence, in the case that f ∈ DT, the estimate (42) holds for Φm,s( f , t) as well.
Finally, if f ∈ C1 then, by applying the mean value theorem, we get

|Φm,s( f , t)| =
∣∣∣∣∫ 1

−1

Rm,s f (x)− Rm,s f (t)
x − t

dx
∣∣∣∣ ≤ C‖( f − Bm,s f )′‖

and (43) follows from Theorem 2.

Proof of Proposition 3. We start from the standard decomposition

H1( f , t) =
∫
=

1

−1

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx +

∫
=

1

−1

f (t) + f ′(t)(x − t)
(x − t)2 dx, (67)

and recalling the definitions

∫
=

1

−1

g(x)
(x − t)2 dx = lim

ε→0+

[∫ t−ε

−1

g(x)
(x − t)2 dx +

∫ 1

t+ε

g(x)
(x − t)2 dx − 2g(t)

ε

]
,∫

−
1

−1

g(x)
x − t

dx = lim
ε→0+

[∫ t−ε

−1

g(x)
x − t

dx +
∫ 1

t+ε

g(x)
x − t

dx
]

,

we note that∫
=

1

−1

dx
(x − t)2 = − 2

1− t2 ,
∫
=

1

−1

(x − t)
(x − t)2 dx =

∫
−

1

−1

dx
(x − t)

= log
(

1− t
1 + t

)
.

Moreover, taking into account that

f (x)− f (t) = f ′(ξx,t)(x − t), min{x, t} < ξx,t < max{x, t},
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we have ∫
=

1

−1

f (x)− f (t)− f ′(t)(x − t)
(x − t)2 dx =

∫
−

1

−1

f ′(ξx,t)− f ′(t)
(x − t)

dx.

Hence to complete the proof, we have to prove that this last principal value integral is indeed an
improper integral if f ′ ∈ DT.

We are going to prove that

∫ 1

t

f ′(ξx,t)− f ′(t)
(x − t)

dx = lim
ε→0+

∫ 1

t+ε

f ′(ξx,t)− f ′(t)
(x − t)

dx < ∞, (68)

being the proof of

∫ t

−1

f ′(ξx,t)− f ′(t)
(x − t)

dx = lim
ε→0+

∫ t−ε

−1

f ′(ξx,t)− f ′(t)
(x − t)

dx < ∞

analogous.
Set ξx,t = (x − t)θ + t, with 0 < θ < 1, for any ε > 0, we have

∫ 1

t+ε

f ′(ξx,t)− f ′(t)
(x − t)

dx =
∫ 1

t+ε

f ′((x − t)θ + t)− f ′(t)
(x − t)

dx =
∫ 1−t

ε

f ′(uθ + t)− f ′(t)
u

du.

On the other hand, for any g ∈ AC, |t| < 1, 0 < θ < 1 and 0 < u ≤ 2, similarly to the proof of
Proposition 1, we have

f ′(uθ + t)− f ′(t) = f ′(uθ + t)− g(uθ + t)− f ′(t) + g(t) + g(uθ + t)− g(t)

≤ 2‖ f ′ − g‖+
∫ uθ+t

t
g′(σ)dσ

≤ 2‖ f ′ − g‖+ u‖g′ϕ‖
[

arcsin(uθ + t)− arcsin(t)
u

]
≤ C (‖ f ′ − g‖+ u‖g′ϕ‖) , C �= C(g, u, θ, t).

Hence, by means of (3), we get

lim
ε→0+

∫ 1−t

ε

f ′(uθ + t)− f ′(t)
u

du ≤ C lim
ε→0+

∫ 2

ε

ωϕ( f ′, u)
u

du

and under the assumption f ′ ∈ DT, (68) follows.

Proof of Theorem 6. We start from

E1
m,s( f , t) = H1(Rm,s f , t), Rm,s f (t) = f (t)− Bm,s f (t).

By Theorem 4, we have

(1− t2)|H1(Rm,s f , t)| ≤ C
(
‖Rm,s f ‖+

∫ 1

0

ωϕ((Rm,s f )′, τ)

τ
dτ

)
.
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Since

∫ 1

0

ωϕ((Rm,s f )′, τ)

τ
dτ =

{∫ 1
m

0
+

∫ 1

1
m

}
ωϕ((Rm,s f )′, τ)

τ
dτ

≤
∫ 1

m

0

ωϕ((Rm,s f )′, τ)

τ
dτ + 2‖(Rm,s f )′‖

∫ 1

1
m

dτ

τ

=
∫ 1

m

0

ωϕ((Rm,s f )′, τ)

τ
dτ + 2‖(Rm,s f )′‖ log m,

by Lemma 1 we get

(1− t2)|H1(Rm,s f , t)| ≤ C
(
‖Rm,s f ‖+ ‖(Rm,s f )′‖ log m +

∫ 1
m

0

ωr
ϕ( f ′, τ)

τ
dτ

)
,

i.e., (53) holds.
The same estimate (53) also holds for Φ1

m,s, since by (44) we have

Φ1
m,s( f , t) = H1(Rm,s f , t)− log

(1− t
1 + t

)
(Rm,s f )′(t) + 2

1− t2 Rm,s f (t),

and we note that

(1− t2)

∣∣∣∣log
(1− t

1 + t

)
(Rm,s f )′(t)

∣∣∣∣ ≤ C‖(Rm,s f )′‖, C �= C(t, f , m),

(1− t2)

∣∣∣∣ 2
1− t2 Rm,s f (t)

∣∣∣∣ ≤ 2‖Rm,s f ‖.

Finally, (54) follows from the Peano form of the Taylor’s remainder term, namely

g(x) = g(t) + g′(t)(x − t) + g′′(ξ) (x − t)2

2
, min{x, t} ≤ ξ ≤ max{x, t},

which for g = Rm,s f , yields

|Φ1
m,s( f , t)| = |F1(Rm,s f , t)|

≤
∫ 1

−1

|Rm,s f (x)− Rm,s f (t)− (Rm,s f )′ (t)(x − t)|
(x − t)2 dx

≤ ‖ (Rm,s f )′′ ‖.

Author Contributions: All authors equally contributed to the paper. Conceptualization, F.F., D.O. and W.T.;
methodology, F.F., D.O. and W.T.; software, F.F., D.O. and W.T.; validation, F.F., D.O. and W.T.; analysis, F.F., D.O.
and W.T.; investigation, F.F., D.O. and W.T.; resources, F.F., D.O. and W.T.; data curation, F.F., D.O. and W.T.;
writing–original draft preparation, writing–review and editing, F.F., D.O. and W.T.; visualization, F.F., D.O. and
W.T.; supervision F.F., D.O. and W.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by INdAM - GNCS Project 2019 “Discretizzazione di misure,
approssimazione di operatori integrali ed applicazioni”. The research of the first author was partially supported
by the Helmholtz Association under the project Ptychography4.0.

Acknowledgments: The authors thank the anonymous referees for their suggestions and remarks, which allowed
to improve the paper. This research has been accomplished within the RITA “Research ITalian network on
Approximation”.

Conflicts of Interest: The authors declare no conflict of interest.

52



Mathematics 2020, 8, 542

References

1. Kalandiya, A.I. Mathematical Methods of Two-Dimensional Elasticity; Publ. Nauka: Moscow, Russia, 1973.
2. Mastroianni, G.; Russo, M.G.; Themistoclakis, W. Numerical Methods for Cauchy Singular Integral Equations

in Spaces of Weighted Continuous Functions. In Operator Theory Advances and Applications; Birkäuser Verlag:
Basel, Switzerland, 2005; Volume 160, pp. 311–336.

3. Mastroianni, G.; Russo, M.G.; Themistoclakis, W. The boundedness of the Cauchy singular integral operator
in weighted Besov type spaces with uniform norms. Integr. Equ. Oper. Theory 2002, 42, 57–89. [CrossRef]

4. Mastroianni, G.; Themistoclakis, W. A numerical method for the generalized airfoil equation based on the de
la Vallée Poussin interpolation. J. Comput. Appl. Math. 2005, 180, 71–105. [CrossRef]

5. Sun, W.; Wu, J. Interpolatory quadrature rules for Hadamard finite-part integrals and their superconvergence.
IMA J. Numer. Anal. 2008, 28, 580–597. [CrossRef]

6. King, F. Hilbert Transforms I & II; Cambridge University Press: Cambridge, UK, 2009.
7. Boche, H.; Pohl, V. On the calculation of the Hilbert transform from interpolated data. IEEE Trans.

Inform. Theory 2008, 54, 2358–2366. [CrossRef]
8. Boche, H.; Pohl, V. Limits of calculating the finite Hilbert transform from discrete samples. Appl. Comp.

Harm. Anal. 2019, 46, 66–93. [CrossRef]
9. Parker, P.J.; Anderson, B.D.O Hilbert transform from interpolation data. Math. Control Signals Syst. 1990,

3, 97–124. [CrossRef]
10. Monegato, G. Definitions, properties and applications of finite-part integrals. J. Comp. Appl. Math. 2009, 229,

425–439. [CrossRef]
11. Davis, P.J.; Rabinowitz, P. Methods of Numerical Integration, 2nd ed.; Academic Press: New York, NY,

USA, 1984.
12. De Bonis, M.C.; Occorsio, D. On the simultaneous approximation of a Hilbert transform and its derivatives

on the real semiaxis. Appl. Numer. Math. 2017, 114, 132–153. [CrossRef]
13. De Bonis, M.C.; Occorsio, D. Error bounds for a Gauss-type quadrature rule to evaluate hypersingular

integrals. Filomat 2018, 32, 2525–2543.
14. Monegato, G. Numerical evaluation of hypersingular integrals. J. Comp. Appl. Math. 1994, 50, 9–31.

[CrossRef]
15. Monegato, G. The numerical evaluation of one-dimensional Cauchy principal value integrals. Computing

1982, 29, 337–354. [CrossRef]
16. Felbecker, G. Linearkombinationen von iterierten Bernsteinoperatoren. Manuscripta Math. 1979, 29, 229–246.

[CrossRef]
17. Mastroianni, G.; Occorsio, M.R. Una generalizzazione dell’operatore di Bernstein. Rend. Accad. Sci. Fis.

Mat. Napoli 1977, 44, 151–169.
18. Micchelli, C. The saturation class and iterates of the Bernstein polynomials. J. Approx. Theory 1973, 8, 1–18.

[CrossRef]
19. Occorsio, D.; Russo, M.G. Bivariate Generalized Bernstein Operators and Their Application to Fredholm Integral

Equations; Nouvelle serie, (114), tome 100; Publications de l’Institut Matthématique: Belgrade, Serbia, 2016;
pp. 141–162.

20. Mastroianni, G.; Occorsio, M.R. Alcuni Algoritmi Per il Calcolo Numerico di Integrali A Valor Principale Secondo
Cauchy; Technical Report CNR IAM n. 3/84; Institute for Applications of Mathematics of National Research
Council of Italy: Naples, Italy, 1984.

21. Gonska, H.H.; Zhou, X.-L. Approximation theorems for the iterated Boolean sums of Bernstein operators.
J. Comput. Appl. Math. 1994, 53, 21–31. [CrossRef]

22. Ditzian, Z.; Totik, V. Moduli of Smoothness; SCMG Springer: New York, NY, USA, 1987.
23. Ditzian, Z.; Totik, V. Remarks on Besov spaces and best polynomial approximation. Proc. Am. Math. Soc.

1988, 104, 1059–1066. [CrossRef]
24. Draganov, B.R. Strong estimates of the weighted simultaneous approximation by the Bernstein and

Kantorovich operators and their Boolean sums. J. Approx. Theory 2015, 200, 92–135. [CrossRef]
25. Farin, G.E. Curves and Surfaces for Computer Aided Geometric Design: A Practical Guide; Academic Press:

Cambridge, MA, USA, 1993; ISBN 0122490525.

53



Mathematics 2020, 8, 542

26. Occorsio, D.; Simoncelli, A.C. How to go from Bézierto Lagrange curves by means of generalized Bézier
curves. Facta Univ. Ser. Math. Inform. (Niš) 1996, 11, 101–111.

27. Occorsio, D. Some new properties of Generalized Bernstein polynomials. Stud. Univ. Babes Bolyai Math.
2011, 56, 147–160.

28. Capobianco, M.R.; Mastroianni, G.; Russo, M.G. Pointwise and uniform approximation of the finite
Hilbert transform. Approx. Optim. 1997, 1, 45–66.

29. Abu-Jeib, I.T. Algorithms for Centrosymmetric and Skew-Centrosymmetric Matrices. Missouri J. Math. Sci.
2006, 18, 1–8.

30. Occorsio, D.; Russo, M.G. Nyström methods for Fredholm integral equations using equispaced points.
Filomat 2014, 28, 49–63. [CrossRef]

31. Mastroianni, G.; Milovanovic, G.V. Interpolation Processes. Basic Theory and Applications; Springer: Berlin,
Germany, 2008.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

54



mathematics

Article

Oscillation Criteria of Higher-order Neutral
Differential Equations with Several
Deviating Arguments

Osama Moaaz 1,†, Ioannis Dassios 2,*,† and Omar Bazighifan 3,4,†

1 Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt;
o_moaaz@mans.edu.eg

2 AMPSAS, University College Dublin, D4 Dublin, Ireland
3 Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen;

o.bazighifan@gmail.com
4 Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout 50512, Yemen
* Correspondence: ioannis.dassios@ucd.ie
† These authors contributed equally to this work.

Received: 19 February 2020; Accepted: 11 March 2020; Published: 13 March 2020

Abstract: This work is concerned with the oscillatory behavior of solutions of even-order neutral
differential equations. By using the technique of Riccati transformation and comparison principles
with the second-order differential equations, we obtain a new Philos-type criterion. Our results
extend and improve some known results in the literature. An example is given to illustrate our
main results.
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1. Introduction

In this article, we investigate the asymptotic behavior of solutions of even-order neutral differential
equation of the form (

b (t)
(

z(n−1) (t)
)γ)′

+
k

∑
i=1

qi (t) uγ (δi (t)) = 0, (1)

where t ≥ t0, n ≥ 4 is an even natural number, k ≥ 1 is an integer and z (t) := u (t) + p (t) u (σ (t)).
Throughout this paper, we assume the following conditions to hold:

(P1) γ is a quotient of odd positive integers;
(P2) b ∈ C[t0, ∞), b (t) > 0, b′ (t) ≥ 0;
(P3) σ ∈ C1[t0, ∞), δi ∈ C[t0, ∞), σ′ (t) > 0, δ (t) ≤ δi (t) , σ (t) ≤ t and limt→∞ σ (t) =

limt→∞ δi (t) = ∞, i = 1, 2, ..., k;
(P4) p, qi ∈ C[t0, ∞), qi (t) > 0, 0 ≤ p (t) < p0 < ∞ and∫ ∞

t0

b−1/γ (s)ds = ∞ (2)

Definition 1. The function u ∈ C3[tu, ∞), tu ≥ t0, is called a solution of (1), if b (t)
(

z(n−1) (t)
)γ ∈

C1[tu, ∞), and u (t) satisfies (1) on [tu, ∞). Moreover, a solution of (1) is called oscillatory if it has arbitrarily
large zeros on [tu, ∞), and otherwise is called to be nonoscillatory.

Mathematics 2020, 8, 412; doi:10.3390/math8030412 www.mdpi.com/journal/mathematics55
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Definition 2. Let

D = {(t, s) ∈ R2 : t ≥ s ≥ t0} and D0 = {(t, s) ∈ R2 : t > s ≥ t0}.

A kernel function Hi ∈ p (D,R) is said to belong to the function class �, written by H ∈ �, if, for
i = 1, 2,

(i) Hi (t, s) = 0 for t ≥ t0, Hi (t, s) > 0, (t, s) ∈ D0;
(ii) Hi (t, s) has a continuous and nonpositive partial derivative ∂Hi/∂s on D0 and there exist functions

σ, ϑ ∈ C1 ([t0, ∞) , (0, ∞)) and hi ∈ C (D0,R) such that

∂

∂s
H1 (t, s) +

θ′ (s)
θ (s)

H1 (t, s) = h1 (t, s) Hγ/(γ+1)
1 (t, s) (3)

and
∂

∂s
H2 (t, s) +

υ′ (s)
υ (s)

H2 (t, s) = h2 (t, s)
√

H2 (t, s). (4)

The oscillation theory of differential equations with deviating arguments was initiated in a
pioneering paper [1] of Fite, which appeared in the first quarter of the twentieth century.
Delay equations play an important role in applications of real life. One area of active research in
recent times is to study the sufficient criteria for oscillation of differential equations, see [1–11], and
oscillation of neutral differential equations has become an important area of research, see [12–30].
Having in mind such applications, for instance, in electrical engineering, we cite models that describe
electrical power systems, see [18]. Neutral differential equations also have wide applications in applied
mathematics [31,32], physics [33], ecology [34] and engineering [35].

In the following, we show some previous results in the literature related to this paper:
Moaaz et al. [23] proved that if there exist positive functions η, ζ ∈ C1 ([t0, ∞) ,R) such that the
differential equations

ψ′(t) +
(

μ
(
δ−1 (η (t))

)n−1

(n − 1)!r1/α (δ−1 (η (t)))

)α

q (t) Pα
n (σ (t))ψ

(
δ−1 (η (t))

)
= 0

and
φ′ (t) + δ−1 (ζ (t)) Rn−3 (t) φ

(
δ−1 (ζ (t))

)
= 0

are oscillatory, then (1) is oscillatory.
Zafer [29] proved that the even-order differential equation

z(n) (t) + q (t) x (σ (t)) = 0 (5)

is oscillatory if

lim inf
t→∞

∫ t

σ(t)
Q (s)ds >

(n − 1) 2(n−1)(n−2)

e
, (6)

or

lim sup
t→∞

∫ t

σ(t)
Q (s)ds > (n − 1) 2(n−1)(n−2), σ′ (t) ≥ 0.

where Q (t) := σn−1 (t) (1− p (σ (t))) q (t).
Zhang and Yan [30] proved that (5) is oscillatory if either

lim inf
t→∞

∫ t

σ(t)
Q (s)ds >

(n − 1)!
e

, (7)
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or

lim sup
t→∞

∫ t

σ(t)
Q (s)ds > (n − 1)!, σ (t) ≥ 0.

It’s easy to note that (n − 1)! < (n − 1) 2(n−1)(n−2) for n > 3, and hence results in [30] improved
results of Zafer in [29].

Xing et al. [28] proved that (1) is oscillatory if(
δ−1 (t)

)′ ≥ δ0 > 0, σ′ (t) ≥ σ0 > 0, σ−1 (δ (t)) < t

and

lim inf
t→∞

∫ t

σ−1(δ(t))

q̂ (s)
b (s)

(
sn−1

)γ
ds >

(
1
δ0

+
pγ

0
δ0σ0

)
((n − 1)!)γ

e
, (8)

where q̂ (t) := min
{

q
(
δ−1 (t)

)
, q

(
δ−1 (σ (t))

)}
.

Hence, [28] improved the results in [29,30].
In our paper, by carefully observing and employing some inequalities of different type, we

provide a new criterion for oscillation of differential Equation (1). Here, we provide different criteria
for oscillation, which can cover a larger area of different models of fourth order differential equations.
We introduce a Riccati substitution and comparison principles with the second-order differential
equations to obtain a new Philos-type criteria. Finally, we apply the main results to one example.

2. Some Auxiliary Lemmas

We shall employ the following lemmas:

Lemma 1 ([5]). Let β be a ratio of two odd numbers, V > 0 and U are constants. Then

Uu − Vu(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
.

Lemma 2 ([6]). If the function u satisfies u(i) (t) > 0, i = 0, 1, ..., n, and u(n+1) (t) < 0, then

u (t)
tn/n!

≥ u′ (t)
tn−1/ (n − 1)!

.

Lemma 3 ([4]). The equation (
b (t)

(
u′ (t)γ))′ + q (t) uγ (t) = 0, (9)

where b ∈ C[t0, ∞), b (t) > 0 and q (t) > 0, is non-oscillatory if and only if there exist a t ≥ t0 and a function
υ ∈ C1[�, ∞) such that

υ′ (t) +
γ

b1/γ (t)
υ1+1/γ (t) + q (t) ≤ 0,

for t ≥ t0.

Lemma 4 ([2], Lemma 2.2.3). Let u ∈ Cn ([t0, ∞) , (0, ∞)) . Assume that u(n) (t) is of fixed sign and not
identically zero on [t0, ∞) and that there exists a t1 ≥ t0 such that u(n−1) (t) u(n) (t) ≤ 0 for all t ≥ t1. If
limt→∞ u (t) �= 0, then for every μ ∈ (0, 1) there exists tμ ≥ t1 such that

u (t) ≥ μ

(n − 1)!
tn−1

∣∣∣u(n−1) (t)
∣∣∣ for t ≥ tμ.
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3. Main Results

In this section, we give the main results of the article. Here, we define the next notation:

Pk (t) =
1

p (σ−1 (t))

(
1−

(
σ−1 (σ−1 (t)

))k−1

(σ−1 (t))k−1 p (σ−1 (σ−1 (t)))

)
, for k = 2, n,

R0 (t) =

(
1

b (t)

∫ ∞

t

k

∑
i=1

qi (s) Pγ
2 (δi (s))ds

)1/γ

,

Θ (t) = γ
μ1

(n − 2)!

(
b (t)

b (σ−1 (δi (t)))

)1/γ
(
σ−1 (δi (t))

)′
(δi (t))

′ (σ−1 (δi (t))
)n−2

(bθ)1/γ (t)
,

Θ̃ (t) =
hγ+1

1 (t, s) Hγ
1 (t, s)

(γ + 1)γ+1
((n − 2)!)γ b

(
σ−1 (δi (t))

)
θ (t)(

μ1 (σ−1 (δi (t)))
′
(δi (t))

′ (σ−1 (δi (t)))
n−2

)γ

and
Rm (t) =

∫ ∞

t
Rm−1 (s)ds, m = 1, 2, ..., n − 3.

Lemma 5 ([8], Lemma 1.2). Assume that u is an eventually positive solution of (1). Then, there exist two
possible cases:

(S1) z (t) > 0, z′ (t) > 0, z′′ (t) > 0, z(n−1) (t) > 0, z(n) (t) < 0,
(S2) z (t) > 0, z(j)(t) > 0, z(j+1)(t) < 0 for all odd integer

j ∈ {1, 3, ..., n − 3}, z(n−1)(t) > 0, z(n)(t) < 0,

for t ≥ t1, where t1 ≥ t0 is sufficiently large.

Lemma 6. Let u be an eventually positive solution of (1) and(
σ−1

(
σ−1 (t)

))n−1
<

(
σ−1 (t)

)n−1
p
(

σ−1
(

σ−1 (t)
))

. (10)

Then

u (t) ≥ z
(
σ−1 (t)

)
p (σ−1 (t))

− 1
p (σ−1 (t))

z
(
σ−1 (σ−1 (t)

))
p (σ−1 (σ−1 (t)))

. (11)

Proof. Let u be an eventually positive solution of (1) on [t0, ∞). From the definition of z (t), we see that

p (t) u (σ (t)) = z (t)− u (t)

and so
p
(

σ−1 (t)
)

u (t) = z
(

σ−1 (t)
)
− z

(
σ−1 (t)

)
.

Repeating the same process, we obtain

u (t) =
1

p (σ−1 (t))

(
z
(

σ−1 (t)
)
−

(
z
(
σ−1 (σ−1 (t)

))
p (σ−1 (σ−1 (t)))

− u
(
σ−1 (σ−1 (t)

))
p (σ−1 (σ−1 (t)))

))
,

which yields

u (t) ≥ z
(
σ−1 (t)

)
p (σ−1 (t))

− 1
p (σ−1 (t))

z
(
σ−1 (σ−1 (t)

))
p (σ−1 (σ−1 (t)))

.

Thus, (11) holds. This completes the proof.
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Lemma 7. Assume that u is an eventually positive solution of (1) and

(
b (t)

(
z(n−1) (t)

)γ)′ ≤ −zγ
(

σ−1 (δ (t))
) k

∑
i=1

qi (t) Pγ
n (δi (t)) , if z satisfies (S1) (12)

and
z′′ (t) + Rn−3 (t) z

(
σ−1 (δ (t))

)
≤ 0, if z satisfies (S2) . (13)

Proof. Let u be an eventually positive solution of (1) on [t0, ∞). It follows from Lemma 5 that there
exist two possible cases (S1) and (S2).

Suppose that Case (S1) holds. From Lemma 2, we obtain z (t) ≥ 1
(n−1) tz′ (t) and hence the

function t1−nz (t) is nonincreasing, which with the fact that σ (t) ≤ t gives(
σ−1 (t)

)n−1
z
(

σ−1
(

σ−1 (t)
))

≤
(

σ−1
(

σ−1 (t)
))n−1

z
(

σ−1 (t)
)

. (14)

Combining (11) and (14), we conclude that

u (t) ≥ 1
p (σ−1 (t))

(
1−

(
σ−1 (σ−1 (t)

))n−1

(σ−1 (t))n−1 p (σ−1 (σ−1 (t)))

)
z
(

σ−1 (t)
)

= Pn (t) z
(

σ−1 (t)
)

. (15)

From (1) and (15), we obtain

(
b (t)

(
z(n−1) (t)

)γ)′ ≤ −
k

∑
i=1

qi (t) Pγ
n (δi (t)) zγ

(
σ−1 (δi (t))

)
≤ −zγ

(
σ−1 (δ (t))

) k

∑
i=1

qi (t) Pγ
n (δi (t)) .

Thus, (12) holds.
Suppose that Case (S2) holds. From Lemma 2, we find

z (t) ≥ tz′ (t) (16)

and thus the function t−1z (t) is nonincreasing, eventually. Since σ−1 (t) ≤ σ−1 (σ−1 (t)
)
, we obtain

σ−1 (t) z
(

σ−1
(

σ−1 (t)
))

≤ σ−1
(

σ−1 (t)
)

z
(

σ−1 (t)
)

. (17)

Combining (11) and (17), we find

u (t) ≥ 1
p (σ−1 (t))

(
1−

(
σ−1 (σ−1 (t)

))
(σ−1 (t)) p (σ−1 (σ−1 (t)))

)
z
(

σ−1 (t)
)

= P2 (t) z
(

σ−1 (t)
)

,

which with (1) yields

(
b (t)

(
z(n−1) (t)

)γ)′
+

k

∑
i=1

qi (t) Pγ
2 (δi (t)) zγ

(
σ−1 (δi (t))

)
≤ 0. (18)
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Integrating the (18) from t to ∞, we obtain

z(n−1) (t) ≥ b0 (t) z
(

σ−1 (δ (t))
)

.

Integrating this inequality from t to ∞ a total of n − 3 times, we obtain

z′′ (t) + Rn−3 (t) z
(

σ−1 (δ (t))
)
≤ 0.

Thus, (13) holds. This completes the proof.

Theorem 1. Let (2) and (10) hold. If there exist positive functions θ, υ ∈ C1 ([t0, ∞) ,R) such that

lim sup
t→∞

1
H1 (t, t1)

∫ t

t1

(
H1 (t, s)ψ (s)− Θ̃ (s)

)
ds = ∞ (19)

and

lim sup
t→∞

1
H2 (t, t1)

∫ t

t1

(
H2 (t, s)ψ∗ (s)− υ (s) h2

2 (t, s)
4

)
ds = ∞, (20)

where

ψ (s) = θ (t)
k

∑
i=1

qi (t) Pγ
n (δi (t)) , ψ∗ (s) = υ (t) bn−3 (t)

(
σ−1 (δ (t))

t

)
and

Θ̃ (s) =
hγ+1

1 (t, s) Hγ
1 (t, s)

(γ + 1)γ+1
((n − 2)!)γ b

(
σ−1 (δ (t))

)
θ (t)(

μ1 (σ−1 (δ (t)))′ (δ (t))′ (σ−1 (δ (t)))n−2
)γ ,

then (1) is oscillatory.

Proof. Let u be a non-oscillatory solution of (1) on [t0, ∞). Without loss of generality, we can assume
that u is eventually positive. It follows from Lemma 5 that there exist two possible cases (S1) and (S2).

Let (S1) hold. From Lemma 7, we arrive at (12). Next, we define a function ξ by

ξ (t) := θ (t)
b (t)

(
z(n−1) (t)

)γ

zγ (σ−1 (δ (t)))
> 0.

Differentiating and using (12), we obtain

ξ ′ (t) ≤ θ′ (t)
θ (t)

ξ (t)− θ (t)
k

∑
i=1

qi (t) Pγ
n (δi (t))

−γθ (t)
b (t)

(
z(n−1) (t)

)γ (
σ−1 (δ (t))

)′
(δ (t))′ z′u

(
σ−1 (δ (t))

)
zγ+1

u (σ−1 (δ (t)))
. (21)

Recalling that b (t)
(

z(n−1) (t)
)γ

is decreasing, we get

b
(

σ−1 (δ (t))
) (

z(n−1)
(

σ−1 (δ (t))
))γ ≥ b (t)

(
z(n−1) (t)

)γ
.

This yields (
z(n−1)

(
σ−1 (δ (t))

))γ ≥ b (t)
b (σ−1 (δ (t)))

(
z(n−1) (t)

)γ
. (22)
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It follows from Lemma 4 that

z′
(

σ−1 (δ (t))
)
≥ μ1

(n − 2)!

(
σ−1 (δ (t))

)n−2
z(n−1)

(
σ−1 (δ (t))

)
, (23)

for all μ1 ∈ (0, 1) and every sufficiently large t. Thus, by (21), (22) and (23), we get

ξ ′ (t) ≤ θ′ (t)
θ (t)

ξ (t)− θ (t)
k

∑
i=1

qi (t) Pγ
n (δi (t))

−γθ (t)
μ1

(n − 2)!

(
b (t)

b
(
σ−1 (δ (t))

))1/γ b (t)
(

z(n−1) (t)
)γ+1 (

σ−1 (δ (t))
)′
(δ (t))′

(
σ−1 (δ (t))

)n−2

zγ+1
(
σ−1 (δ (t))

) .

Hence,

ξ ′ (t) ≤ θ′ (t)
θ (t)

ξ (t)− θ (t)
k

∑
i=1

qi (t) Pγ
n (δi (t)) (24)

−Θ (t) ξ
γ+1

γ (t) .

Multiplying (24) by H1 (t, s) and integrating the resulting inequality from t1 to t; we find that

∫ t

t1

H1 (t, s)ψ (s)ds ≤ ξ (t1) H1 (t, t1) +
∫ t

t1

(
∂

∂s
H1 (t, s) +

θ′ (s)
θ (s)

H1 (t, s)
)

ξ (s)ds

−
∫ t

t1

Θ (s) H1 (t, s) ξ
γ+1

γ (s)ds.

From (3), we get

∫ t

t1

H1 (t, s)ψ (s)ds ≤ ξ (t1) H1 (t, t1) +
∫ t

t1

h1 (t, s) Hγ/(γ+1)
1 (t, s) ξ (s)ds

−
∫ t

t1

Θ (s) H1 (t, s) ξ
γ+1

γ (s)ds. (25)

Using Lemma 1 with V = Θ (s) H1 (t, s) , U = h1 (t, s) Hγ/(γ+1)
1 (t, s) and u = ξ (s), we get

h1 (t, s) Hγ/(γ+1)
1 (t, s) ξ (s)− Θ (s) H1 (t, s) ξ

γ+1
γ (s)

≤ hγ+1
1 (t, s) Hγ

1 (t, s)

(γ + 1)γ+1
((n − 2)!)γ b

(
σ−1 (δ (t))

)
θ (t)(

μ1 (σ−1 (δ (t)))′ (δ (t))′ (σ−1 (δ (t)))n−2
)γ ,

which with (25) gives
1

H1 (t, t1)

∫ t

t1

(
H1 (t, s)ψ (s)− Θ̃ (s)

)
ds ≤ ξ (t1) ,

which contradicts (19).
On the other hand, let (S2) hold. Using Lemma 7, we get that (13) holds. Now, we define

ϕ (t) = υ (t)
z′ (t)
z (t)

. (26)
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Then ϕ (t) > 0 for t ≥ t1. By differentiating ϕ and using (13), we find

ϕ′ (t) =
υ′ (t)
υ (t)

ϕ (t) + υ (t)
z′′ (t)
z (t)

− υ (t)
(

z′ (t)
z (t)

)2

≤ υ′ (t)
υ (t)

ϕ (t)− υ (t) bn−3 (t)
z
(
σ−1 (δ (t))

)
z (t)

− 1
υ (t)

ϕ2 (t) . (27)

By using Lemma 2, we find that
z (t) ≥ tz′ (t) . (28)

From (28), we get that

z
(

σ−1 (δ (t))
)
≥ σ−1 (δ (t))

t
z (t) . (29)

Thus, from (27) and (29), we obtain

ϕ′ (t) ≤ υ′ (t)
υ (t)

ϕ (t)− υ (t) Rn−3 (t)
(

σ−1 (δ (t))
t

)
− 1

υ (t)
ϕ2 (t) . (30)

Multiplying (30) by H2 (t, s) and integrating the resulting from t1 to t, we obtain

∫ t

t1

H2 (t, s)ψ∗ (s)ds ≤ ϕ (t1) H2 (t, t1)

+
∫ t

t1

(
∂

∂s
H2 (t, s) +

υ′ (s)
υ (s)

H2 (t, s)
)

ϕ (s)ds

−
∫ t

t1

1
υ (s)

H2 (t, s) ϕ2 (s)ds.

Thus, ∫ t

t1

H2 (t, s)ψ∗ (s)ds ≤ ϕ (t1) H2 (t, t1) +
∫ t

t1

h2 (t, s)
√

H2 (t, s)ϕ (s)ds

−
∫ t

t1

1
υ (s)

H2 (t, s) ϕ2 (s)ds

≤ ϕ (t1) H2 (t, t1) +
∫ t

t1

υ (s) h2
2 (t, s)

4
ds

and so
1

H2 (t, t1)

∫ t

t1

(
H2 (t, s)ψ∗ (s)− υ (s) h2

2 (t, s)
4

)
ds ≤ ϕ (t1) ,

which contradicts (20). This completes the proof.

In the next theorem, we establish new oscillation results for (1) by using the theory of comparison
with a second order differential equation.

Theorem 2. Assume that the equation

y′′ (t) + y (t)
k

∑
i=1

qi (t) Pγ
n (δi (t)) = 0 (31)

and [
b (t)

(
y′ (t)

)γ
]′
+ Rn−3 (t)

(
σ−1 (δ (t))

t

)
yγ (t) = 0, (32)

are oscillatory, then every solution of (1) is oscillatory.
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Proof. Suppose to the contrary that (1) has a eventually positive solution u and by virtue of Lemma 3.
From Theorem 1, we set θ (t) = 1 in (24), then we get

ξ ′ (�) + Θ (t) ξ
γ+1

γ +
k

∑
i=1

qi (t) Pγ
n (δi (t)) ≤ 0.

Thus, we can see that Equation (31) is nonoscillatory, which is a contradiction. If we now set
υ (t) = 1 in (30), then we obtain

ϕ′ (t) + Rn−3 (t)
(

σ−1 (δ (t))
t

)
+ ϕ2 (t) ≤ 0.

Hence, Equation (32) is nonoscillatory, which is a contradiction.
Theorem 2 is proved.

Corollary 1. If conditions (19) and (20) in Theorem 1 are replaced by the following conditions:

lim sup
t→∞

1
H1 (t, t1)

∫ t

t1

H1 (t, s)ψ (s)ds = ∞

and

lim sup
t→∞

1
H1 (t, t1)

∫ t

t1

Θ̃ (s)ds < ∞.

Moreover,

lim sup
t→∞

1
H2 (t, t1)

∫ t

t1

H2 (t, s)ψ∗ (s)ds = ∞

and

lim sup
t→∞

1
H2 (t, t1)

∫ t

t1

υ (s) h2
2 (t, s)ds < ∞,

then (1) is oscillatory.

Corollary 2. Let (10) holds. If there exist positive functions υ, θ ∈1 ([t0, ∞) ,R) such that

∫ ∞

t0

(
θ (s)

k

∑
i=1

qi (s) Pγ
n (δi (s))− � (s)

)
ds = ∞ (33)

and ∫ ∞

t0

⎛⎝P1υ (s)
∫ ∞

t

(
1

r (�)

∫ ∞

�

k

∑
i=1

qi (s)
(

τ−1 (σ (s))
s

)α

ds

)1/α

d� − π (s)

⎞⎠ ds = ∞, (34)

where

� (t) :=
(n − 2)!α

(α + 1)α+1
r
(
τ−1 (σ (t))

)
(θ′ (t))α+1(

μ1θ (t) (τ−1 (σ (t)))′ (τ−1 (σ (t)))n−2
)α

and

π (t) :=
(υ′ (s))2

4υ (s)
,

then (1) is oscillatory.

Example 1. Consider the equation(
x (t) + 16x

(
1
2

t
))(4)

+
q0

t4 x
(

1
3

t
)
= 0, t ≥ 1, (35)
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where q0 > 0. We note that r (t) = 1, p (t) = 16, τ (t) = t/2, σ (t) = t/3 and q (t) = q0/t4.
Thus, we have

P1 (t) =
1
32

, P2 (t) =
7

128
.

Now, we obtain

∫ ∞

t0

(
θ (s)

k

∑
i=1

qi (s) Pγ
n (δi (s))− � (s)

)
ds = ∞

and

∫ ∞

t0

⎛⎝P1υ (s)
∫ ∞

t

(
1

r (�)

∫ ∞

�

k

∑
i=1

qi (s)
(

τ−1 (σ (s))
s

)α

ds

)1/α

d� − π (t)

⎞⎠ ds

=
∫ ∞

t0

(
7q0

1152
− 1

4

)
ds,

= ∞, if q0 > 41.14.

Thus, by using Corollary 2, Equation (35) is oscillatory if q0 > 41.14.

4. Conclusions

The aim of this article was to provide a study of asymptotic nature for a class of even-order neutral
delay differential equations. We used a generalized Riccati substitution and the integral averaging
technique to ensure that every solution of the studied equation is oscillatory. The results presented
here complement some of the known results reported in the literature.

A further extension of this article is to use our results to study a class of systems of higher order
neutral differential equations as well as of fractional order. For all these there is already some research
in progress.
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Abstract: Poisson equation is a widely used partial differential equation. It is very important to study
its numerical solution. Based on the strategy of domain decomposition, the alternating asymmetric
iterative algorithm for 3D Poisson equation is provided. The solution domain is divided into several
sub-domains, and eight asymmetric iterative schemes with the relaxation factor for 3D Poisson equation
are constructed. When the numbers of iteration are odd or even, the computational process of the
presented iterative algorithm are proposed respectively. In the calculation of the inner interfaces, the
group explicit method is used, which makes the algorithm to be performed fast and in parallel, and avoids
the difficulty of solving large-scale linear equations. Furthermore, the convergence of the algorithm
is analyzed theoretically. Finally, by comparing with the numerical experimental results of Jacobi and
Gauss Seidel iterative algorithms, it is shown that the alternating asymmetric iterative algorithm based
on domain decomposition has shorter computation time, fewer iteration numbers and good parallelism.

Keywords: poisson equation; domain decomposition; asymmetric iterative schemes; group explicit;
parallel computation

1. Introduction

Poisson equation is an elliptic partial differential equation, which frequently appears in many fields
such as fluid dynamics, heat transfer, electromagnetics, acoustics, electrostatics mechanical engineering
and so on. Many researches on studding the numerical techniques to approximate the solution of Poisson
equation have been made in the past few decades. The application of finite difference methods for solving
Poisson equation will normally lead to a large, block, and sparse system of equations. Direct methods and
iterative methods [1] are normally considered as common approaches for solving such system of equations.
Several high precision multigrid and compact difference methods are given in [2–6]. Romao et al. [7,8]
provides the Galerkin and least-squares finite element methods in the solution of 3D Poisson equation.
In [9,10], the Haar wavelet methods are given. Speyer et al. [11] provide a preconditioned bi-conjugate
gradient stabilized method which is efficient, albeit nonmonotonic and convergent.

With the continuous improvement of computer hardware, people are more and more focused on
solving large-scale scientific and engineering problems quickly and efficiently on parallel computers.
Therefore, people wish to find some direct methods and iterative methods, which have the characteristic
of much better solving elliptic equations and easier parallel implementation. In recent years, parallel
algorithms are also constantly emerging. Several new parallel methods of direct solution are proposed.
P. Valero-Lara and A. Pinelli et al. [12] provide the implementation of a fast solver based on a block cyclic
reduction algorithm for the linear systems of a three dimensional separable elliptic problem. And they
also study on the parallel characteristics of an algorithm for the direct solution of linear systems with a

Mathematics 2020, 8, 281; doi:10.3390/math8020281 www.mdpi.com/journal/mathematics
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block-tridiagonal coefficient matrix (BLKTRI problem) [13]. C. P. Stone et al. [14] analyze the performance
of a block tridiagonal benchmark. Many authors have given the implementation of scalar tridiagonal
solver on GPUs [15–17]. Y. Zhang [16] also illustrates several methods to solve tridiagonal systems on
GPUs. Because of the direct method to solve large-scale sparse and block diagonal equation systems,
when the coefficient matrix is close to singularity, the calculation will often stop or make mistakes. So
people also find iterative methods which can be solved by constructing some efficient iterative schemes
to approximate the problem itself, so that the iteration can reach a certain accuracy. In [18–21], a class of
efficient parallel finite difference iterative algorithms for Poisson equation were also proposed.

In addition, the domain decomposition method [22] is also a powerful tool for parallel implementation,
which studies parallelization from the model level of physical problems. This kind of method can
decompose scale problem into small-scale problem and solve serial problem into parallel problem.
The explicit-implicit domain decomposition method is proposed by Kuznetsov [23]. Because the numerical
boundary conditions on the internal boundary are often not the same as those of the original mathematical
model or the corresponding physical problems, different methods to obtain the internal boundary
information form different explicit-implicit domain decomposition (EIDD) methods. This leads to the
idea of parallel implementation for iterative method based on domain decomposition. In [24], the authors
have proposed a kind of finite difference parallel iterative algorithm for two-dimensional Poisson problem,
and verified its efficiency and accuracy.

This paper extends to the study of the domain decomposition method for three-dimensional Poisson
problem. Several finite difference asymmetric iterative schemes are constructed, and each asymmetric
iterative schemes are used to solve the sub-domains alternatively and in parallel; in the processing of
inner interfaces, group explicit (GE) method [25,26] is used. The calculation on the whole solution domain
is explicit but using the implicit iterative schemes, which greatly avoids the difficulty of solving linear
equations and improves the calculation speed and accuracy. When the number of iteration is odd or
even, the iterative process of the presented algorithm is given respectively, and a kind of efficient iterative
algorithm is established based on domain decomposition for solving three-dimensional Poisson equation.

This paper is outlined as follows. In Section 2, we present several asymmetric iterative schemes.
Section 3 gives the alternating asymmetric iterative algorithm. And the convergence and the optimal
relaxation factor are obtained in Section 4. In Section 5, we perform the numerical experiments to examine
the presented algorithm. Finally we give the conclusion of this paper in Section 6.

2. Asymmetric Iterative Schemes

Consider the three-dimensional Poisson problem,

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = f (x, y, z), (x, y, z) ∈ Ω, (1)

with the boundary condition,
u(x, y, z) = g(x, y, z), (x, y, z) ∈ ∂Ω. (2)

where Ω = [0, L]× [0, M]× [0, K], and ∂Ω is the boundary of the domain Ω. We divide the solution
domain Ω into uniform grid, the space step hx = L/l in x direction, hy = M/m in y direction and
hz = K/s in z direction. For implicity, the space steps are assumed equal that hx = hy = hz = h. Denote

xi = ih, i = 0, 1, ..., l; yj = jh, j = 0, 1, ..., m; zk = kh, k = 0, 1, ..., s; u(n)
i,j,k as numerical solution on the nth
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iteration level at the grid node (xi, yj, zk). We can give the classical difference discretization in Equation (3)
for the 3D Poisson Equation (1),

ui+1,j,k − 2ui,j,k + ui−1,j,k

h2 +
ui,j+1,k − 2ui,j,k + ui,j−1,k

h2 +
ui,j,k+1 − 2ui,j,k + ui,j,k−1

h2 = fi,j,k, (3)

namely,

ui,j,k − 1
6
(ui+1,j,k + ui−1,j,k + ui,j+1,k + ui,j−1,k + ui,j,k+1 + ui,j,k−1 − h2 fi,j,k) = 0. (4)

Then we construct eight asymmetric iterative schemes by the difference operator L with the relaxation
factor ω as follows,

L1u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i+1,j,k + u(n+1)
i,j+1,k + u(n+1)

i,j,k+1) + u(n)
i−1,j,k + u(n)

i,j−1,k + u(n)
i,j,k−1

+(1− ω)(u(n)
i+1,j,k + u(n)

i,j+1,k + u(n)
i,j,k+1)− h2 fi,j,k

]
, (5)

L2u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i−1,j,k + u(n+1)
i,j+1,k + u(n+1)

i,j,k+1) + u(n)
i+1,j,k + u(n)

i,j−1,k + u(n)
i,j,k−1

+(1− ω)(u(n)
i−1,j,k + u(n)

i,j+1,k + u(n)
i,j,k+1)− h2 fi,j,k

]
, (6)

L3u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i−1,j,k + u(n+1)
i,j−1,k + u(n+1)

i,j,k+1) + u(n)
i+1,j,k + u(n)

i,j+1,k + u(n)
i,j,k−1

+(1− ω)(u(n)
i−1,j,k + u(n)

i,j−1,k + u(n)
i,j,k+1)− h2 fi,j,k

]
, (7)

L4u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i+1,j,k + u(n+1)
i,j−1,k + u(n+1)

i,j,k+1) + u(n)
i−1,j,k + u(n)

i,j+1,k + u(n)
i,j,k−1

+(1− ω)(u(n)
i+1,j,k + u(n)

i,j−1,k + u(n)
i,j,k+1)− h2 fi,j,k

]
, (8)

L5u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i+1,j,k + u(n+1)
i,j+1,k + u(n+1)

i,j,k−1) + u(n)
i−1,j,k + u(n)

i,j−1,k + u(n)
i,j,k+1

+(1− ω)(u(n)
i+1,j,k + u(n)

i,j+1,k + u(n)
i,j,k−1)− h2 fi,j,k

]
, (9)

L6u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i−1,j,k + u(n+1)
i,j+1,k + u(n+1)

i,j,k−1) + u(n)
i+1,j,k + u(n)

i,j−1,k + u(n)
i,j,k+1

+(1− ω)(u(n)
i−1,j,k + u(n)

i,j+1,k + u(n)
i,j,k−1)− h2 fi,j,k

]
, (10)

L7u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i−1,j,k + u(n+1)
i,j−1,k + u(n+1)

i,j,k−1) + u(n)
i+1,j,k + u(n)

i,j+1,k + u(n)
i,j,k+1

+(1− ω)(u(n)
i−1,j,k + u(n)

i,j−1,k + u(n)
i,j,k−1)− h2 fi,j,k

]
, (11)
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L8u(n+1)
i,j,k = u(n+1)

i,j,k − 1
6

[
ω(u(n+1)

i+1,j,k + u(n+1)
i,j−1,k + u(n+1)

i,j,k−1) + u(n)
i−1,j,k + u(n)

i,j+1,k + u(n)
i,j,k+1

+(1− ω)(u(n)
i+1,j,k + u(n)

i,j−1,k + u(n)
i,j,k−1)− h2 fi,j,k

]
, (12)

Figure 1 represents the distribution of unknown solution at the (n + 1)th iteration level for the eight
asymmetric iterative schemes (5)–(12).

Figure 1. The asymmetric iterative schemes (5)–(12) for the 3D Poisson equation with the relaxation
factor ω.

3. Alternating Asymmetric Iterative Algorithm Based on Domain Decomposition

3.1. The Domain Decomposition

We can divide the 3D solution domain Ω into multi-subdomains. For simplicity, we use six grid
planes x = p, x = p + 1, y = q, y = q + 1, z = r, z = r + 1 to discrete the solution domain Ω into eight
sub-domains, and note Ωi, i = 1, 2, ..., 8 as subsets of grid points, while p, q, r are positive integers with
p ∈ [1, l], q ∈ [1, m], r ∈ [1, s]. Denote πi is the interfaces of the sub-domain Ωi. The sorting order of
sub-domains is as follows: the subspaces above z = r + 1 are sorted anticlockwise starting from the upper
right sub-domain of the inner layer, and the sub-domains under z = r are sorted anticlockwise starting
from the lower right subspace (as shown in Figure 2). The specific description is as follows:
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Ω1 : {(x, y, z)|x = l − 1, l − 2, ..., p + 1; y = m − 1, m − 2, ..., q + 1; z = s − 1, s − 2, ..., r + 1} ,
Ω2 : {(x, y, z)|x = 1, 2, ..., p; y = m − 1, m − 2, ..., q + 1; z = s − 1, s − 2, ..., r + 1} ,
Ω3 : {(x, y, z)|x = 1, 2, ..., p; y = 1, 2, ..., q; z = s − 1, s − 2, ..., r + 1} ,
Ω4 : {(x, y, z)|x = l − 1, l − 2, ..., p + 1; y = 1, 2, ..., q; z = s − 1, s − 2, ..., r + 1} ,
Ω5 : {(x, y, z)|x = l − 1, l − 2, ..., p + 1; y = m − 1, m − 2, ..., q + 1; z = 1, 2, ..., r} ,
Ω6 : {(x, y, z)|x = 1, 2, ..., p; y = m − 1, m − 2, ..., q + 1; z = 1, 2, ..., r} ,
Ω7 : {(x, y, z)|x = 1, 2, ..., p; y = 1, 2, ..., q; z = 1, 2, ..., r} ,
Ω8 : {(x, y, z)|x = l − 1, l − 2, ..., p + 1; y = 1, 2, ..., q; z = 1, 2, ..., r} .

Figure 2. The solution domain is divided into eight sub-domains.

3.2. Algorithm Implementation

In this subsection, we provide a new alternating asymmetric iterative (AAI) algorithm based on
domain decomposition for 3D Poisson problem (1) and (2). We give different computational processes in
each sub-domains at the odd iteration layers and even iteration layers respectively, and use the asymmetric
iterative schemes alternatively. The Group Explicit (GE) method is used to solve the inner interfaces, which
makes the algorithm to be computed fast and in parallel, and avoids the difficulty of solving large-scale
linear equations.
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3.2.1. Implementation of Odd Level Iteration

When the iteration number are odd, namely, n = 2a + 1, a = 0, 1, ..., we solve the grid nodes from the
boundaries to the inner interfaces step by step, that is, using the asymmetric iterative schemes (5)–(12) to
solve the grid points in Ωi, i = 1, 2, ..., 8 respectively:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L1u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω1,

L2u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω2,

L3u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω3,

L4u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω4,

L5u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω5,

L6u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω6,

L7u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω7,

L8u(2a+1)
i,j,k = 0, (i, j, k) ∈ Ω8.

(13)

Obviously, the numerical solution can be obtained independently in parallel when the iteration numbers
are odd, which saves a lot of computational time compared with the full-implicit iteration case. In addition,
although the asymmetric iterative schemes are implicit, the computational process can be transformed
into explicit, which can obviously improve the calculation speed and avoid solving large and complex
linear equations.

3.2.2. Implementation of Even Level Iteration

When the iteration number is even, namely, n = 2a + 2, a = 0, 1, ..., we calculate the numerical
solution from the inner interfaces to the boundaries step by step. Where the computational process of the
interfaces π =

⋃
πi, i = 1, 2, ..., 8 includes three parts:

• Interfaces I (namely, the grid nodes at the center of the domain Ω) (shown in Figure 3): (p, q, r + 1), (p+
1, q, r + 1), (p + 1, q + 1, r + 1), (p, q + 1, r + 1), (p, q, r), (p + 1, q, r), (p + 1, q + 1, r), (p, q + 1, r).

• Interfaces II: the interface lines except Interfaces I (shown in Figure 3).
• Interfaces III: the interfaces except Interfaces I and II, namely,

π \ Inter f aces I ∪ Inter f aces I I.

Therefore, it can be seen that the interfaces π = Interfaces I ∪ Interfaces II ∪ Interfaces III. When the
interfaces π are solved, the inner grid nodes in the domain Ω can be solved in order like the odd case of
iteration numbers in Section 3.2.1. We give the computational procedures in detail as follows.

(1) The solution to Interfaces I

We use the asymmetric iterative schemes (5)–(12) to solve the Interfaces I, then the following linear
equations can be obtained:
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M1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(2a+2)
p+1,q+1,r+1

u(2a+2)
p,q+1,r+1

u(2a+2)
p,q,r+1

u(2a+2)
p+1,q,r+1

u(2a+2)
p+1,q+1,r

u(2a+2)
p,q+1,r

u(2a+2)
p,q,r

u(2a+2)
p+1,q,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= N1, (14)

where matrices M1 and N1 are represented as bellow,

M1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −ω −ω −ω

−ω 6 −ω −ω

−ω 6 −ω −ω

−ω −ω 6 −ω

−ω 6 −ω −ω

−ω −ω 6 −ω

−ω −ω 6 −ω

−ω −ω −ω 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, N1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1

e2

e3

e4

e5

e6

e7

e8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

e1 = u(2a+1)
p+2,q+1,r+1 + u(2a+1)

p+1,q+2,r+1 + u(2a+1)
p+1,q+1,r+2 + (1− ω)(u(2a+1)

p,q+1,r+1 + u(2a+1)
p+1,q,r+1

+u(2a+1)
p+1,q+1,r)− h2 fp+1,q+1,r+1,

e2 = u(2a+1)
p−1,q+1,r+1 + u(2a+1)

p,q+2,r+1 + u(2a+1)
p,q+1,r+2 + (1− ω)(u(2a+1)

p+1,q+1,r+1 + u(2a+1)
p,q,r+1 + u(2a+1)

p,q+1,r)

−h2 fp,q+1,r+1,

e3 = u(2a+1)
p−1,q,r+1 + u(2a+1)

p,q−1,r+1 + u(2a+1)
p,q,r+2 + (1− ω)(u(2a+1)

p+1,q,r+1 + u(2a+1)
p,q+1,r+1 + u(2a+1)

p,q,r )

−h2 fp,q,r+1,

e4 = u(2a+1)
p+2,q,r+1 + u(2a+1)

p+1,q−1,r+1 + u(2a+1)
p+1,q,r+2 + (1− ω)(u(2a+1)

p,q,r+1 + u(2a+1)
p+1,q+1,r+1 + u(2a+1)

p+1,q,r)

−h2 fp+1,q,r+1,

e5 = u(2a+1)
p+2,q+1,r + u(2a+1)

p+1,q+2,r + u(2a+1)
p+1,q+1,r−1 + (1− ω)(u(2a+1)

p,q+1,r + u(2a+1)
p+1,q,r + u(2a+1)

p+1,q+1,r+1)

−h2 fp+1,q+1,r,

e6 = u(2a+1)
p−1,q+1,r + u(2a+1)

p,q+2,r + u(2a+1)
p,q+1,r−1 + (1− ω)(u(2a+1)

p+1,q+1,r + u(2a+1)
p,q,r + u(2a+1)

p,q+1,r+1)

−h2 fp,q+1,r,

e7 = u(2a+1)
p−1,q,r + u(2a+1)

p,q−1,r + u(2a+1)
p,q,r−1 + (1− ω)(u(2a+1)

p+1,q,r + u(2a+1)
p,q+1,r + u(2a+1)

p,q,r+1)

−h2 fp,q,r,

e8 = u(2a+1)
p+2,q,r + u(2a+1)

p+1,q−1,r + u(2a+1)
p+1,q,r−1 + (1− ω)(u(2a+1)

p,q,r + u(2a+1)
p+1,q+1,r + u(2a+1)

p+1,q,r+1)

−h2 fp+1,q,r.
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Then we just solve the above eight-order sparse linear Equation (14) to obtain the numerical solution
of the inter f ace I.

(2) The solution to Interfaces II

The computational procedure of the Interfaces I is depending on the use of GE method based on
eight points per group. Similarly, we use the GE method based on four points per group to solve the
Interfaces II between the inner boundaries of eight subspaces Ωi, i = 1, 2, ..., 8. Take one group of the
Interfaces II for example to illustrate the order of the solution process. Figure 3 gives the direction of the
iteration computation.

Figure 3. The computation of the interfaces I, I I, I I I.

Using the asymmetric iterative schemes (6), (7), (10), (11) to solve the grid nodes (i, q, r), (i, q, r +
1), (i, q+ 1, r+ 1), (i, q+ 1, r)i = p+ 2, p+ 3, ..., l − 1 (shown in Figure 3), then we can provide the following
fourth-order linear equations:

⎡⎢⎢⎢⎣
6 −ω −ω

−ω 6 −ω

−ω 6 −ω

−ω −ω 6

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣

u(2a+2)
i,q,r

u(2a+2)
i,q,r+1

u(2a+2)
i,q+1,r+1

u(2a+2)
i,q+1,r

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
d1

d2

d3

d4

⎤⎥⎥⎥⎦ , (15)
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where

d1 = ωu(2a+2)
i−1,q,r + u(2a+1)

i+1,q,r + u(2a+1)
i,q−1,r + u(2a+1)

i,q,r−1 + (1− ω)(u(2a+1)
i−1,q,r + u(2a+1)

i,q+1,r + u(2a+1)
i,q,r+1 ),

d2 = ωu(2a+2)
i−1,q,r+1 + u(2a+1)

i+1,q,r+1 + u(2a+1)
i,q−1,r+1 + u(2a+1)

i,q,r+2 + (1− ω)(u(2a+1)
i−1,q,r+1 + u(2a+1)

i,q+1,r+1

+u(2a+1)
i,q,r ),

d3 = ωu(2a+2)
i−1,q+1,r+1 + u(2a+1)

i+1,q+1,r+1 + u(2a+1)
i,q+2,r+1 + u(2a+1)

i,q+1,r+2 + (1− ω)(u(2a+1)
i−1,q+1,r+1

+u(2a+1)
i,q,r+1 + u(2a+1)

i,q+1,r ),

d4 = ωu(2a+2)
i−1,q+1,r + u(2a+1)

i+1,q+1,r + u(2a+1)
i,q+2,r + u(2a+1)

i,q+1,r−1 + (1− ω)(u(2a+1)
i−1,q+1,r + u(2a+1)

i,q,r

+u(2a+1)
i,q+1,r+1).

Then the numerical solution of such a set of inner boundary points can be calculated quickly only by
solving the fourth order sparse linear Equation (15). In the same way, the points on the other five groups
of inner boundary lines are also calculated by Group Explicit method, and we will not represent them one
by one here.

(3) The solution to Interfaces III

It can be seen from the calculation process of Interfaces I and II we solve the Interfaces III just depending
on the group explicit method based on two points a group. The specific calculation process is the same as
above (1) and (2), and we do not repeat it.

Finally, taking the above results as the interface conditions, we use the asymmetric iterative schemes
different from the schemes at the odd levels to solve the inner points on Ωi, i = 1, 2, ..., 8.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L7u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω1\π1,

L8u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω2\π2,

L5u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω3\π3,

L6u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω4\π4,

L3u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω5\π5,

L4u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω6\π6,

L1u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω7\π7,

L2u(2a+2)
i,j,k = 0, (i, j, k) ∈ Ω8\π8.

(16)

Through the above specific implementation process of the domain decomposition iteration algorithm,
we can see that the calculation of numerical solution can transform implicit iteration to explicit calculation
no matter on the odd or even iteration layer. Combining with the domain decomposition method, the
alternating asymmetric iterative (AAI) algorithm is well performed in parallel.

4. The Algorithm Convergence

In the last section, we propose a new AAI algorithm based domain decomposition for solving the
three-dimensional Poisson problem (1)–(2), which can be written in the following matrix form,

u(n+1) = Tωu(n) + b, (17)
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while Tω is the iterative matrix of AAI algorithm and b is the right-term. Then we can give the
following theorem:

Theorem 1. The sufficient and necessary conditions for the convergence of AAI algorithm are as follows:

ρ(Tω) < 1, (18)

where ρ(Tω) is the corresponding spectral radius of the iterative matrix Tω.

Consider the eigenvalue problem of Equation (17):

Tωx = λx, (19)

Due to the asymmetry of the schemes (5) and (12) in the calculation direction, we take one of the
iteration scheme (5) as an example,

λui,j,k − 1
6
[(λω + 1− ω)ui,j,k + (λω + 1− ω)ui,j−1,k + (λω + 1− ω)ui,j,k−1 + ui+1,j,k

+ ui,j+1,k + ui,j,k+1] = 0. (20)

Firstly, we give the relationship between the eigenvalues μ of Jacobi iterative matrix B and the
eigenvalues λ of the AAI iterative matrix Tω . Let Vi,j,k be the eigenvectors of the Jacobi iterative matrix, then

ui,j,k = [±(λω + 1− ω)
1
2 ]i+j+kVi,j,k. (21)

Taking Equation (21) into Equation (20), we can obtain,

μVi,j,k − 1
6
[Vi−1,j,k + Vi,j−1,k + Vi,j,k−1 + Vi+1,j,k + Vi,j+1,k + Vi,j,k+1] = 0. (22)

where
μ = ± λ

(λω + 1− ω)
1
2

. (23)

If λ is the eigenvalue of the matrix Tω, then

μ2(λω + 1− ω) = λ2. (24)

Equation (24) determines that μ is eigenvalue of the matrix B, which is Jacobi iteration matrix of
Poisson equation. On the contrary, if μ is eigenvalue of the matrix B, it can be determined only if there
is a relationship between the eigenvalues λ of Jacobi iteration matrix and the eigenvalues μ of the given
iteration matrix in the Equation (24).

In particular, it is shown that the iterative schemes (5)–(12) are Gauss-Seidel iterative schemes in fact
when ω = 1. Then the presented AAI algorithm has obvious convergence since λ = μ2 < 1.

Second, we discuss the changes of ρ(Tω) about ω.
From Equation (24), we can see that the eigenvalue λ depends on the relaxation factor ω and the

eigenvalue μ of Jacobi iteration matrix. Suppose 0 ≤ μ ≤ 1, 0 < ω < 2, the two eigenvalues are obtained
by Equation (24):

λ1(ω, μ) =
μ2ω

2
+ μ

√
(

μω

2
)2 − (ω − 1), (25)
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λ2(ω, μ) =
μ2ω

2
− μ

√
(

μω

2
)2 − (ω − 1), (26)

Define
M(ω, μ) = max{|λ1(ω, μ)|, |λ2(ω, μ)|}, (27)

by the discriminant equaling to zero, namely,

Δ = μ4ω2 − 4μ2(ω − 1) = 0. (28)

Then the root of the Equation (24) is

ωμ =
2(1−√

1− μ2)

μ2 , 0 < ωμ < 2. (29)

When 0 < ω < ωμ, Δ > 0, we can get

λ1(ω, μ) > λ2(ω, μ) > 0. (30)

When ωμ < ω < 2, the eigenvalue λ1(ω, μ) and λ2(ω, μ) are conjugate complex, therefore

|λ1(ω, μ)| = |λ2(ω, μ)| = μ2(ω − 1). (31)

Due to Equations (30) and (31), we can give

M(ω, μ) =

{
λ1(ω, μ), 0 < ω < ωμ,
μ2(ω − 1), ωμ < ω < 2.

(32)

It is obviously seen that
M(ω, μ) < 1. (33)

In fact, if ωμ < ω < 2, Equation (33) is ture clearly; Otherwise 0 < ω < ωμ, and

M(ω, μ) = λ1(ω, μ) < μ2ω
2 + μ

√
( μω

2 )2 − μω + 1, (0 < ω < ωμ)

= μ < 1.
(34)

Therefore, ρ(Tω) < 1, Equation (18) is proved and the presented AAI algorithm is convergent.
Obviously, the spectrum radius ρ(Tω) of the presented iterative matrix depends on the relaxation

factor ω, so choosing approximate ω is important to the number of iterations and the convergence rate.
Since the optimal relaxation factor ωopt is obtained for 2D Poisson problem in [25], we can also

provide the same computation for 3D case. When

ω = ωopt =
2

1 +
√

1− ρ(B)2 + ε
, (ε > 0), (35)

ρ(Tωopt) obtains the minimum

ρ(Tωopt) = (1−
√

1− ρ(B)2)2 + ερ(B)2, (ε > 0), (36)

where ρ(B) is the spectrum radius of Jacobi iterative matrix, and ε is a positive, sufficiently small number.
The optimal relaxation factor ωopt can be theoretically evaluated by Equation (36).
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5. Numerical Experiments

In order to confirm the effectiveness of the AAI algorithm, the following experiments are carried out.
The initial iterative values u(0)

i,j,k = 0 (i = 1, 2, · · · , l − 1; j = 1, 2, · · · , m − 1; k = 1, 2, ..., s − 1) is given.
(1) Consider the 3D Laplace equation

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = 0, (x, y, z) ∈ [0, 1]3, (37)

with the boundary condition,
u(0, y, z) = sin(y + z);
u(1, y, z) = exp(

√
2)sin(y + z);

u(x, 0, z) = exp(
√

2x)sin(z);
u(x, 1, z) = exp(

√
2x)sin(1 + z);

u(x, y, 0) = exp(
√

2x)sin(y);
u(x, y, 1) = exp(

√
2x)sin(y + 1).

(38)

The exact solution of the 3D Poisson problem (37)–(38) is u(x, y, z) = exp(
√

2x)sin(y + z). Let u(xi, yj, zk)

be the exact solution and u(n)
i,j,k the nth iterative solution, the errors are calculated in L∞-norm as:

‖E(n)‖∞,h = max
i,j,k

(e(n)h (i, j, k)) = max
i,j,k

|u(xi, yj, zk)− u(n)
i,j,k|. (39)

Moreover, the rate of convergence in space is calculated by

Rate o f convergence ≈ log(‖E‖∞,h1 /‖E‖∞,h2)

log(h1/h2)
.

where h1, h2 are the space steps.
Table 1 gives the errors ‖E‖∞ of the presented alternating asymmetric iteration algorithm based

on domain decomposition for the 3D Laplace problem (37)–(38) with different values of ω when
l = m = s = 31, h = 1/30, n = 150, we can obviously see that the errors is relatively smaller when the
relaxation factor ω is about 1.9. we further see that the errors get the minimum when ω is about 1.82
shown in Figure 4a, which is match with the result of Equation (35). Figure 4b performs the errors with
z = 0.5 when ω = 1.82, which illustrate the effectiveness of the AAI algorithm.

From Tables 2 and 3, we can see the iteration numbers of the AAI algorithm is the least during the
Jacobi, Gauss-Seidel iterative methods under some error controls when h = 1/30, 1/50. In addition,
the AAI algorithm obtains shorter times than the Jacobi and the Gauss-Seidel methods when the
number of the grid nodes is in increasing. Table 4 gives the convergence rates and errors of the
AAI algorithm. In computation of the rates of convergence in space, the spatial steps are taken as
h = 1/(16 + 8d), d = 0, 1, · · · , 4. We can see the rates is of order 2 in space and the errors can up to 10−5.

Figure 5 provides the errors, relative errors and numerical solutions at z = 1/3, 2/3 when
l = m = s = 31, h = 1/30, n = 150, ω = 1.82, which shows the AAI algorithm is effect and accurate.
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Table 1. The errors ‖E‖∞ of alternating asymmetric iterative (AAI) algorithm based on domain
decomposition with the different values of ω when l = m = s = 31, h = 1/30, n = 150.

ω ‖ E ‖∞ ω ‖ E ‖∞

1.0 4.4434×10−1 1.6 3.9316×10−2

1.1 3.6971×10−1 1.7 1.0478×10−2

1.2 2.9383×10−1 1.8 4.8059×10−4

1.3 2.1896×10−1 1.9 2.0334×10−4

1.4 1.4838×10−1 2.0 errors
1.5 8.6993×10−2 – –

1.75 1.8 1.85 1.9 1.95 2
0

0.5

1

1.5

2

||E
||

10-3

(a) (b)

Figure 4. The ‖E‖∞ with the different ω and the errors at z = 0.5 when l = m = s = 31, h = 1/30, n = 150.
(a) ‖E‖∞; (b) the errors at z = 0.5 when ω = 1.82.

Table 2. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 31, h = 1/30.

‖E‖∞ 10−3 10−4 10−5

Numbers Time(s) Numbers Time(s) Numbers Time(s)

Jacobi 987 3.3906 1401 4.4219 1774 5.0000
Gauss-Seidel 491 2.4219 698 3.1406 885 3.5469

AAI (ω = 1.82) 93 6.8906 123 9.6406 145 10.1093

Table 3. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 51, h = 1/50.

‖E‖∞ 10−3 10−4 10−5

Numbers Time(s) Numbers Time(s) Numbers Time(s)

Jacobi 2745 21.5156 3905 34.5000 5018 37.9219
Gauss-Seidel 1368 17.2344 1948 20.5938 2505 35.4688

AAI (ω = 1.94) 115 9.4375 209 18.3437 283 22.1250
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(a) (b)

(c) (d)

(e) (f)

Figure 5. The errors, relative errors and numerical solutions of the AAI algorithm at z = 1/3, 2/3 when
l = m = s = 51, h = 1/50, n = 150, ω = 1.94. (a) The errors at z = 1/3; (b) The errors at z = 2/3; (c) The
relative errors at z = 1/3; (d) The relative errors at z = 2/3; (e) The numerical solution at z = 1/3; (f) The
numerical solution at z = 2/3.
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Table 4. The convergence rates and errors ‖E‖∞ of the presented iterative algorithm when
ω = 1.95, n = 3000.

Numbers 16 × 16 × 16 24 × 24 × 24 32 × 32 × 32 40 × 40 × 40 48 × 48 × 48

Rates – 1.9909 1.9906 1.9956 1.9979
Errors 1.4277×10−4 6.3687×10−5 3.5920×10−5 2.3011×10−5 1.5986×10−5

(2) Consider the 3D Poisson equation

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2 = −3sin(x)sin(y)sin(z), (x, y, z) ∈ [0, 1]3, (40)

with the boundary condition,
u(0, y, z) = 0;
u(1, y, z) = sin(1)sin(y)sin(z);
u(x, 0, z) = 0;
u(x, 1, z) = sin(x)sin(1)sin(z);
u(x, y, 0) = 0;
u(x, y, 1) = sin(x)sin(y)sin(1).

(41)

The exact solution of the 3D Poisson problem (40)–(41) is u(x, y, z) = sin(x)sin(y)sin(z).
Table 5 gives the errors ‖E‖∞ of AAI algorithm for the problem 2 with the different values of ω when

l = m = s = 31, h = 1/30, n = 150, and Figure 6 shows the errors get nearly the minimum 2.2319× 10−4

while ω = 1.76. which show the effect of ω to the AAI algorithm. Tables 6–8 give the iteration numbers
and times under some error controls, which also show obviously the presented algorithm has smaller
iteration numbers than the Jacobi and Gauss-Seidel methods. The computational times are shorter with
the grid points increasing.

Figure 7 shows the errors, relative errors and numerical solutions of the AAI iterative algorithm
based on domain decomposition for the problem 2 at z = 1/3, 2/3 when l = m = s = 51, h = 1/50,
n = 150, ω = 1.96. All of the numerical experiments examine the effectiveness and accuracy of the
presented AAI algorithm.

Table 5. The errors ‖E‖∞ of AAI algorithm based on domain decomposition with the different values of ω

when l = m = s = 31, h = 1/30, n = 150.

ω ‖ E ‖∞ ω ‖ E ‖∞

1.0 4.2402×10−2 1.6 3.6712×10−3

1.1 3.4981×10−2 1.7 9.4888×10−4

1.2 2.7756×10−2 1.8 3.9125×10−4

1.3 2.0657×10−2 1.9 5.8138×10−4

1.4 1.3986×10−2 2.0 errors
1.5 8.1573×10−3 – –
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1.7 1.75 1.8 1.85
2

4

6

8

10
||E

||
10-4

(a) (b)

Figure 6. The ‖E‖∞ with the different ω and the errors at z = 0.5 when l = m = s = 31, h = 1/30, n = 150.
(a) The errors ‖E‖∞ with the different ω; (b) The errors at z = 0.5 when ω = 1.76.

Table 6. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 31, h = 1/30.

‖E‖∞ 10−3 10−4

Numbers Time(s) Numbers Time(s)

Jacobi 557 2.6719 976 3.0781
Gauss-Seidel 288 0.8906 498 1.4688

AAI (ω = 1.96) 29 5.6719 135 13.9531

Table 7. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 51, h = 1/50.

‖E‖∞ 10−3 10−4

Numbers Time(s) Numbers Time(s)

Jacobi 1548 15.7031 2712 24.1875
Gauss-Seidel 790 8.3594 1372 15.2500

AAI (ω = 1.96) 51 14.5469 181 30.2344

Table 8. The iteration numbers and time(s) of Jacobi, Gauss-Seidel and the AAI algorithm under the
different error controls when l = m = s = 71, h = 1/70.

‖E‖∞ 10−3 10−4

Numbers Time(s) Numbers Time(s)

Jacobi 3034 98.5468 5317 176.6562
Gauss-Seidel 1538 53.5156 2681 92.9531

AAI (ω = 1.96) 91 31.7187 201 54.2968
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(a) (b)

(c) (d)

(e) (f)

Figure 7. The errors and numerical solutions of the AAI algorithm when l = m = s = 51, h = 1/50,
n = 150, ω = 1.96. (a) The errors at z = 1/3; (b) The errors at z = 2/3; (c) The relative errors at z = 1/3;
(d) The relative errors at z = 2/3; (e) The numerical solution at z = 1/3; (f) The numerical solution at
z = 2/3.

Since the presented AAI algorithm based on domain decomposition is constructed by the
asymmetrical iterative schemes and GE method, which has interior parallelism and is easy to be
implemented. During the process of the implementation of the AAI algorithm, there’s no need to solve
the large-scale sparse block tridiagonal matrices. When the iteration numbers are odd or even, we just to
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solve the 3D problems by the constructed iterative schemes, which are computed independently. Once the
interfaces are solved by GE method, the other grid points can also be solved by the constructed iterative
schemes directly and in parallel. Therefore, the key of parallel implementation lies in information transfer
and time cost of the inner boundary. In fact, the whole computation is explicit but convergent, which save
the most of the consuming time.

So In this paper, we use the Matlab software to implement the presented AAI algorithm. We extend
this idea to solve the other time-dependent high-dimensional problems, and compare the times, speedup,
caches and so on. The detailed parallel implementation and performance analysis are provided in [27].

6. Conclusions

In this paper, we provide a new alternating asymmetric iterative (AAI) algorithm for 3D Poisson
problem based on domain decomposition. We use several asymmetrical iterative schemes to solve the
sub-domains respectively. Meanwhile the asymmetrical iterative schemes are alternatively used on odd
and even iteration levels to improve the accuracy. Moreover, we give the convergence of the algorithm and
the optimal relaxation factor. Finally, several numerical experiments are taken to examine the effectiveness
and accuracy of the presented algorithm.

The study will be extended to other high-dimensional diffusion problems and wave problems and so
on, and also can be used to solve on more multi-subdomains, and the corresponding new algorithms will
be designed. we will report these soon.
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1. Introduction

We are motivated by the following famous Iyengar inequality (1938), [1].

Theorem 1. Let f be a differentiable function on [a, b] and | f ′ (x)| ≤ M. Then∣∣∣∣∫ b

a
f (x) dx − 1

2
(b − a) ( f (a) + f (b))

∣∣∣∣ ≤ M (b − a)
4

2
− ( f (b)− f (a))2

4M
. (1)

We need

Definition 1 ([2]). Let α > 0, �α� = n, �·� the ceiling of the number. Here g ∈ AC ([a, b]) (absolutely

continuous functions) and strictly increasing. We assume that
(

f ◦ g−1)(n) ◦ g ∈ L∞ ([a, b]). We define the
left generalized g-fractional derivative of f of order α as follows:(

Dα
a+;g f

)
(x) :=

1
Γ (n − α)

∫ x

a
(g (x)− g (t))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt, (2)

x ≥ a.
If α /∈ N, by [3], pp. 360–361, we have that Dα

a+;g f ∈ C ([a, b]).
We see that (

In−α
a+;g

((
f ◦ g−1

)(n) ◦ g
))

(x) =
(

Dα
a+;g f

)
(x) , x ≥ a. (3)

We set

Dn
a+;g f (x) :=

((
f ◦ g−1

)(n) ◦ g
)
(x) , (4)

D0
a+;g f (x) = f (x) , ∀ x ∈ [a, b] . (5)
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When g = id, then
Dα

a+;g f = Dα
a+;id f = Dα∗a f , (6)

the usual left Caputo fractional derivative.

We mention the following g-left fractional generalized Taylor’s formula:

Theorem 2 ([2]). Let g be a strictly increasing function and g ∈ AC ([a, b]). We assume that
(

f ◦ g−1) ∈
ACn ([g (a) , g (b)]), i.e.,

(
f ◦ g−1)(n−1) ∈ AC ([g (a) , g (b)]) , where N � n = �α�, α > 0. Also we assume

that
(

f ◦ g−1)(n) ◦ g ∈ L∞ ([a, b]). Then

f (x) = f (a) +
n−1

∑
k=1

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k +

1
Γ (α)

∫ x

a
(g (x)− g (t))α−1 g′ (t)

(
Dα

a+;g f
)
(t) dt, ∀ x ∈ [a, b] . (7)

Calling Rn (a, x) the remainder of (7), we find that

Rn (a, x) =
1

Γ (α)

∫ g(x)

g(a)
(g (x)− z)α−1

((
Dα

a+;g f
)
◦ g−1

)
(z) dz, ∀ x ∈ [a, b] . (8)

We need

Definition 2 ([2]). Here g ∈ AC ([a, b]) and is strictly increasing. We assume that
(

f ◦ g−1)(n) ◦ g ∈
L∞ ([a, b]), where N � n = �α�, α > 0. We define the right generalized g-fractional derivative of f of order α

as follows:

(
Dα

b−;g f
)
(x) :=

(−1)n

Γ (n − α)

∫ b

x
(g (t)− g (x))n−α−1 g′ (t)

(
f ◦ g−1

)(n)
(g (t)) dt, (9)

all x ∈ [a, b] .
If α /∈ N, by [3], p. 378, we find that

(
Dα

b−;g f
)
∈ C ([a, b]).

We see that

In−α
b−;g

(
(−1)n

(
f ◦ g−1

)(n) ◦ g
)
(x) =

(
Dα

b−;g f
)
(x) , a ≤ x ≤ b. (10)

We set

Dn
b−;g f (x) = (−1)n

((
f ◦ g−1

)(n) ◦ g
)
(x) , (11)

D0
b−;g f (x) = f (x) , ∀ x ∈ [a, b] .

When g = id, then
Dα

b−;g f (x) = Dα
b−;id f (x) = Dα

b− f , (12)

the usual right Caputo fractional derivative.

We mention the g-right generalized fractional Taylor’s formula:

Theorem 3 ([2]). Let g be a strictly increasing function and g ∈ AC ([a, b]). We assume that
(

f ◦ g−1) ∈
ACn ([g (a) , g (b)]), where N � n = �α�, α > 0. Also we assume that

(
f ◦ g−1)(n) ◦ g ∈ L∞ ([a, b]). Then
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f (x) = f (b) +
n−1

∑
k=1

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k +

1
Γ (α)

∫ b

x
(g (t)− g (x))α−1 g′ (t)

(
Dα

b−;g f
)
(t) dt, all a ≤ x ≤ b. (13)

Calling Rn (b, x) the remainder in (13), we find that

Rn (b, x) =
1

Γ (α)

∫ g(b)

g(x)
(z − g (x))α−1

((
Dα

b−;g f
)
◦ g−1

)
(z) dz, ∀ x ∈ [a, b] . (14)

Denote by
Dnα

b−;g := Dα
b−;gDα

b−;g...Dα
b−;g (n-times), n ∈ N. (15)

We mention the following g-right generalized modified Taylor’s formula:

Theorem 4 ([2]). Suppose that Fk := Dkα
b−;g f , for k = 0, 1, ..., n+ 1, fulfill: Fk ◦ g−1 ∈ AC ([c, d]) , where c =

g (a), d = g (b), and
(

Fk ◦ g−1)′ ◦ g ∈ L∞ ([a, b]) , where 0 < α ≤ 1. Then

f (x) =
n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b) +

1
Γ ((n + 1) α)

∫ b

x
(g (t)− g (x))(n+1)α−1 g′ (t)

(
D(n+1)α

b−;g f
)
(t) dt = (16)

n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b) +

(
D(n+1)α

b−;g f
)
(ψx)

Γ ((n + 1) α + 1)
(g (b)− g (x))(n+1)α , (17)

where ψx ∈ [x, b], any x ∈ [a, b] .

Denote by
Dnα

a+;g := Dα
a+;gDα

a+;g...Dα
a+;g (n-times), n ∈ N. (18)

We mention the following g-left generalized modified Taylor’s formula:

Theorem 5 ([2]). Suppose that Fk := Dkα
a+;g f , for k = 0, 1, ..., n + 1, fulfill: Fk ◦ g−1 ∈ AC ([c, d]),

where c = g (a), d = g (b), and
(

Fk ◦ g−1)′ ◦ g ∈ L∞ ([a, b]) , where 0 < α ≤ 1. Then

f (x) =
n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a) + (19)

1
Γ ((n + 1) α)

∫ x

a
(g (x)− g (t))(n+1)α−1 g′ (t)

(
D(n+1)α

a+;g f
)
(t) dt =

n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a) +

(
D(n+1)α

a+;g f
)
(ψx)

Γ ((n + 1) α + 1)
(g (x)− g (a))(n+1)α , (20)

where ψx ∈ [a, x], any x ∈ [a, b] .

Next we present generalized fractional Iyengar type inequalities.

2. Main Results

We present the following Caputo type generalized g-fractional Iyengar type inequality:
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Theorem 6. Let g be a strictly increasing function and g ∈ AC ([a, b]). We assume that
(

f ◦ g−1) ∈
ACn ([g (a) , g (b)]), where N � n = �α�, α > 0. We also assume that

(
f ◦ g−1)(n) ◦ g ∈ L∞ ([a, b]) (clearly

here it is f ∈ C ([a, b])). Then
(i) ∣∣∣∣∣

∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

[(
f ◦ g−1

)(k)
(g (a)) (g (t)− g (a))k+1

+ (−1)k
(

f ◦ g−1
)(k)

(g (b)) (g (b)− g (t))k+1
]∣∣∣∣ ≤

max
{∥∥∥Dα

a+;g f
∥∥∥

L∞([a,b])
,
∥∥∥Dα

b−;g f
∥∥∥

L∞([a,b])

}
Γ (α + 2)[

(g (t)− g (a))α+1 + (g (b)− g (t))α+1
]

, (21)

∀ t ∈ [a, b] ,
(ii) at g (t) = g(a)+g(b)

2 , the right hand side of (21) is minimized, and we have:∣∣∣∣∣
∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

(g (b)− g (a))k+1

2k+1

[(
f ◦ g−1

)(k)
(g (a)) + (−1)k

(
f ◦ g−1

)(k)
(g (b))

]∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L∞([a,b])

,
∥∥∥Dα

b−;g f
∥∥∥

L∞([a,b])

}
Γ (α + 2)

(g (b)− g (a))α+1

2α
, (22)

(iii) if
(

f ◦ g−1)(k) (g (a)) =
(

f ◦ g−1)(k) (g (b)) = 0, for k = 0, 1, ..., n − 1, we obtain∣∣∣∣∫ b

a
f (x) dg (x)

∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L∞([a,b])

,
∥∥∥Dα

b−;g f
∥∥∥

L∞([a,b])

}
(g (b)− g (a))α+1

Γ (α + 2) 2α
, (23)

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds∣∣∣∣∣

∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

(
g (b)− g (a)

N

)k+1

[
jk+1

(
f ◦ g−1

)(k)
(g (a)) + (−1)k (N − j)k+1

(
f ◦ g−1

)(k)
(g (b))

]∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L∞([a,b])

,
∥∥∥Dα

b−;g f
∥∥∥

L∞([a,b])

}
Γ (α + 2)(

g (b)− g (a)
N

)α+1 [
jα+1 + (N − j)α+1

]
, (24)
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(v) if
(

f ◦ g−1)(k) (g (a)) =
(

f ◦ g−1)(k) (g (b)) = 0, for k = 1, ..., n − 1, from (24) we obtain∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

N

)
[j f (a) + (N − j) f (b)]

∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L∞([a,b])

,
∥∥∥Dα

b−;g f
∥∥∥

L∞([a,b])

}
Γ (α + 2)(

g (b)− g (a)
N

)α+1 [
jα+1 + (N − j)α+1

]
, (25)

j = 0, 1, 2, ..., N,
(vi) when N = 2, j = 1, (25) turns to∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

2

)
( f (a) + f (b))

∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L∞([a,b])

,
∥∥∥Dα

b−;g f
∥∥∥

L∞([a,b])

}
Γ (α + 2)

(g (b)− g (a))α+1

2α
. (26)

(vii) when 0 < α ≤ 1, inequality (26) is again valid without any boundary conditions.

Proof. We have by (7) that

f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k =

1
Γ (α)

∫ x

a
(g (x)− g (t))α−1 g′ (t)

(
Dα

a+;g f
)
(t) dt, (27)

∀ x ∈ [a, b] .
Also by (13) we obtain

f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k =

1
Γ (α)

∫ b

x
(g (t)− g (x))α−1 g′ (t)

(
Dα

b−;g f
)
(t) dt, (28)

∀ x ∈ [a, b] .
By (27) we derive (by [4], p. 107)∣∣∣∣∣∣ f (x)−

n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k

∣∣∣∣∣∣ ≤∥∥∥Dα
a+;g f

∥∥∥
L∞([a,b])

Γ (α + 1)
(g (x)− g (a))α , (29)

and by (28) we obtain ∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k

∣∣∣∣∣∣ ≤
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∥∥∥Dα
b−;g f

∥∥∥
L∞([a,b])

Γ (α + 1)
(g (b)− g (x))α , (30)

∀ x ∈ [a, b] .
Call

ϕ1 :=

∥∥∥Dα
a+;g f

∥∥∥
L∞([a,b])

Γ (α + 1)
, (31)

and

ϕ2 :=

∥∥∥Dα
b−;g f

∥∥∥
L∞([a,b])

Γ (α + 1)
. (32)

Set
ϕ := max {ϕ1, ϕ2} . (33)

That is ∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k

∣∣∣∣∣∣ ≤ ϕ (g (x)− g (a))α ,

and ∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k

∣∣∣∣∣∣ ≤ ϕ (g (b)− g (x))α , (34)

∀ x ∈ [a, b] .
Equivalently, we have

n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k − ϕ (g (x)− g (a))α ≤ (35)

f (x) ≤
n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k + ϕ (g (x)− g (a))α ,

and
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k − ϕ (g (b)− g (x))α ≤ (36)

f (x) ≤
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k + ϕ (g (b)− g (x))α ,

∀ x ∈ [a, b] .
Let any t ∈ [a, b], then by integration against g over [a, t] and [t, b], respectively, we obtain

n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

(k + 1)!
(g (t)− g (a))k+1 − ϕ

(α + 1)
(g (t)− g (a))α+1

≤
∫ t

a
f (x) dg (x) ≤

n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

(k + 1)!
(g (t)− g (a))k+1 +

ϕ

(α + 1)
(g (t)− g (a))α+1 , (37)
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and

−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

(k + 1)!
(g (t)− g (b))k+1 − ϕ

(α + 1)
(g (b)− g (t))α+1

≤
∫ b

t
f (x) dg (x) ≤

−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

(k + 1)!
(g (t)− g (b))k+1 +

ϕ

(α + 1)
(g (b)− g (t))α+1 . (38)

Adding (37) and (38), we obtain{
n−1

∑
k=0

1
(k + 1)!

[(
f ◦ g−1

)(k)
(g (a)) (g (t)− g (a))k+1 −

(
f ◦ g−1

)(k)
(g (b)) (g (t)− g (b))k+1

]}
−

ϕ

(α + 1)

[
(g (t)− g (a))α+1 + (g (b)− g (t))α+1

]
≤

∫ b

a
f (x) dg (x) ≤{

n−1

∑
k=0

1
(k + 1)!

[(
f ◦ g−1

)(k)
(g (a)) (g (t)− g (a))k+1 −

(
f ◦ g−1

)(k)
(g (b)) (g (t)− g (b))k+1

]}
+

ϕ

(α + 1)

[
(g (t)− g (a))α+1 + (g (b)− g (t))α+1

]
, (39)

∀ t ∈ [a, b] .
Consequently we derive:∣∣∣∣∣

∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

[(
f ◦ g−1

)(k)
(g (a)) (g (t)− g (a))k+1 (40)

+ (−1)k
(

f ◦ g−1
)(k)

(g (b)) (g (b)− g (t))k+1
]∣∣∣∣ ≤

ϕ

(α + 1)

[
(g (t)− g (a))α+1 + (g (b)− g (t))α+1

]
,

∀ t ∈ [a, b] .
Let us consider

θ (z) := (z − g (a))α+1 + (g (b)− z)α+1 , ∀ z ∈ [g (a) , g (b)] .

That is
θ (g (t)) = (g (t)− g (a))α+1 + (g (b)− g (t))α+1 , ∀ t ∈ [a, b] .

We have that
θ′ (z) = (α + 1)

[
(z − g (a))α − (g (b)− z)α] = 0,
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giving (z − g (a))α = (g (b)− z)α and z − g (a) = g (b) − z, that is z = g(a)+g(b)
2 the only critical

number of θ. We have that θ (g (a)) = θ (g (b)) = (g (b)− g (a))α+1, and θ
(

g(a)+g(b)
2

)
= (g(b)−g(a))α+1

2α ,
which is the minimum of θ over [g (a) , g (b)] .

Consequently the right hand side of (40) is minimized when g (t) = g(a)+g(b)
2 , with value

ϕ
(α+1)

(g(b)−g(a))α+1

2α .

Assuming
(

f ◦ g−1)(k) (g (a)) =
(

f ◦ g−1)(k) (g (b)) = 0, for k = 0, 1, ..., n− 1, then we obtain that∣∣∣∣∫ b

a
f (x) dg (x)

∣∣∣∣ ≤ ϕ

(α + 1)
(g (b)− g (a))α+1

2α
, (41)

which is a sharp inequality.
When g (t) = g(a)+g(b)

2 , then (40) becomes∣∣∣∣∣
∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

(g (b)− g (a))k+1

2k+1

[(
f ◦ g−1

)(k)
(g (a)) + (−1)k

(
f ◦ g−1

)(k)
(g (b))

]∣∣∣∣ ≤
ϕ

(α + 1)
(g (b)− g (a))α+1

2α
. (42)

Next let N ∈ N, j = 0, 1, 2, ..., N and g
(
tj
)
= g (a) + j

(
g(b)−g(a)

N

)
, that is g (t0) = g (a), g (t1) =

g (a) + (g(b)−g(a))
N , ..., g (tN) = g (b) .

Hence it holds

g
(
tj
)− g (a) = j

(
g (b)− g (a)

N

)
, g (b)− g

(
tj
)
= (N − j)

(
g (b)− g (a)

N

)
, (43)

j = 0, 1, 2, ..., N.
We notice (

g
(
tj
)− g (a)

)α+1
+

(
g (b)− g

(
tj
))α+1

=(
g (b)− g (a)

N

)α+1 [
jα+1 + (N − j)α+1

]
, (44)

j = 0, 1, 2, ..., N,
and (for k = 0, 1, ..., n − 1)[(

f ◦ g−1
)(k)

(g (a))
(

g
(
tj
)− g (a)

)k+1
+

(−1)k
(

f ◦ g−1
)(k)

(g (b))
(

g (b)− g
(
tj
))k+1

]
=

(
g (b)− g (a)

N

)k+1 [(
f ◦ g−1

)(k)
(g (a)) jk+1+

(−1)k
(

f ◦ g−1
)(k)

(g (b)) (N − j)k+1
]

, (45)

j = 0, 1, 2, ..., N.
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By (40) we have ∣∣∣∣∣
∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

(
g (b)− g (a)

N

)k+1

[(
f ◦ g−1

)(k)
(g (a)) jk+1 + (−1)k

(
f ◦ g−1

)(k)
(g (b)) (N − j)k+1

]∣∣∣∣ ≤(
ϕ

α + 1

)(
g (b)− g (a)

N

)α+1 [
jα+1 + (N − j)α+1

]
, (46)

j = 0, 1, 2, ..., N.

If
(

f ◦ g−1)(k) (g (a)) =
(

f ◦ g−1)(k) (g (b)) = 0, k = 1, ..., n − 1, then (46) becomes∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

N

)
[j f (a) + (N − j) f (b)]

∣∣∣∣ ≤
(

ϕ

α + 1

)(
g (b)− g (a)

N

)α+1 [
jα+1 + (N − j)α+1

]
, (47)

j = 0, 1, 2, ..., N.
When N = 2 and j = 1, then (47) becomes∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

2

)
( f (a) + f (b))

∣∣∣∣ ≤
(

ϕ

α + 1

)
2
(g (b)− g (a))α+1

2α+1 =

(
ϕ

α + 1

)
(g (b)− g (a))α+1

2α
. (48)

Let 0 < α ≤ 1, then n = �α� = 1.
In that case, without any boundary conditions, we derive from (48) again that∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

2

)
( f (a) + f (b))

∣∣∣∣ ≤
(

ϕ

α + 1

)
(g (b)− g (a))α+1

2α
. (49)

We have proved theorem in all possible cases.

Next we give modified g-fractional Iyengar type inequalities:

Theorem 7. Let g be a strictly increasing function and g ∈ AC ([a, b]), and f ∈ C ([a, b]). Let 0 <

α ≤ 1, and Fk := Dkα
a+;g f , for k = 0, 1, ..., n + 1; n ∈ N. We assume that Fk ◦ g−1 ∈ AC ([g (a) , g (b)])

and
(

Fk ◦ g−1)′ ◦ g ∈ L∞ ([a, b]). Also let Fk := Dkα
b−;g f , for k = 0, 1, ..., n + 1, they fulfill Fk ◦ g−1 ∈

AC ([g (a) , g (b)]) and
(

Fk ◦ g−1)′ ◦ g ∈ L∞ ([a, b]) . Then
(i) ∣∣∣∣∣

∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

[(
Diα

a+;g f
)
(a) (g (t)− g (a))iα+1

+
(

Diα
b−;g f

)
(b) (g (b)− g (t))iα+1

]}∣∣∣ ≤
max

{∥∥∥D(n+1)α
a+;g f

∥∥∥
∞,[a,b]

,
∥∥∥D(n+1)α

b−;g f
∥∥∥

∞,[a,b]

}
Γ ((n + 1) α + 2)
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[
(g (t)− g (a))(n+1)α+1 + (g (b)− g (t))(n+1)α+1

]
, (50)

∀ t ∈ [a, b] ,
(ii) at g (t) = g(a)+g(b)

2 , the right hand side of (50) is minimized, and we have:∣∣∣∣∣
∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

(g (b)− g (a))iα+1

2iα+1

[(
Diα

a+;g f
)
(a) +

(
Diα

b−;g f
)
(b)

]}∣∣∣ ≤
max

{∥∥∥D(n+1)α
a+;g f

∥∥∥
∞,[a,b]

,
∥∥∥D(n+1)α

b−;g f
∥∥∥

∞,[a,b]

}
Γ ((n + 1) α + 2)

(g (b)− g (a))(n+1)α+1

2(n+1)α
, (51)

(iii) assuming
(

Diα
a+;g f

)
(a) =

(
Diα

b−;g f
)
(b) = 0, for i = 0, 1, ..., n, we obtain

∣∣∣∣∫ b

a
f (x) dg (x)

∣∣∣∣ ≤
max

{∥∥∥D(n+1)α
a+;g f

∥∥∥
∞,[a,b]

,
∥∥∥D(n+1)α

b−;g f
∥∥∥

∞,[a,b]

}
Γ ((n + 1) α + 2)

(g (b)− g (a))(n+1)α+1

2(n+1)α
, (52)

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds∣∣∣∣∣

∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

(
g (b)− g (a)

N

)iα+1

[(
Diα

a+;g f
)
(a) jiα+1 +

(
Diα

b−;g f
)
(b) (N − j)iα+1

]}∣∣∣ ≤
max

{∥∥∥D(n+1)α
a+;g f

∥∥∥
∞,[a,b]

,
∥∥∥D(n+1)α

b−;g f
∥∥∥

∞,[a,b]

}
Γ ((n + 1) α + 2)(

g (b)− g (a)
N

)(n+1)α+1 [
j(n+1)α+1 + (N − j)(n+1)α+1

]
, (53)

(v) if
(

Diα
a+;g f

)
(a) =

(
Diα

b−;g f
)
(b) = 0, for i = 1, ..., n, from (53) we obtain:

∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

N

)
[j f (a) + (N − j) f (b)]

∣∣∣∣ ≤
max

{∥∥∥D(n+1)α
a+;g f

∥∥∥
∞,[a,b]

,
∥∥∥D(n+1)α

b−;g f
∥∥∥

∞,[a,b]

}
Γ ((n + 1) α + 2)(

g (b)− g (a)
N

)(n+1)α+1 [
j(n+1)α+1 + (N − j)(n+1)α+1

]
, (54)

for j = 0, 1, 2, ..., N,
(vi) when N = 2, j = 1, (54) becomes∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

2

)
( f (a) + f (b))

∣∣∣∣ ≤
96
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max
{∥∥∥D(n+1)α

a+;g f
∥∥∥

∞,[a,b]
,
∥∥∥D(n+1)α

b−;g f
∥∥∥

∞,[a,b]

}
Γ ((n + 1) α + 2)

(g (b)− g (a))(n+1)α+1

2(n+1)α
. (55)

Proof. We have by (19) that

f (x) =
n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a) +

1
Γ ((n + 1) α)

∫ x

a
(g (x)− g (t))(n+1)α−1 g′ (t)

(
D(n+1)α

a+;g f
)
(t) dt, (56)

∀ x ∈ [a, b] .
Also by (16) we find

f (x) =
n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b) +

1
Γ ((n + 1) α)

∫ b

x
(g (t)− g (x))(n+1)α−1 g′ (t)

(
D(n+1)α

b−;g f
)
(t) dt, (57)

∀ x ∈ [a, b] .
Clearly here it is D(n+1)α

a+;g f , D(n+1)α
b−;g f ∈ C ([a, b]) .

By (56) we derive (by [4], p. 107)∣∣∣∣∣ f (x)−
n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a)

∣∣∣∣∣ ≤
∥∥∥D(n+1)α

a+;g f
∥∥∥

∞,[a,b]

(g (x)− g (a))(n+1)α

Γ ((n + 1) α + 1)
, (58)

and by (57) we obtain ∣∣∣∣∣ f (x)−
n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b)

∣∣∣∣∣ ≤
∥∥∥D(n+1)α

b−;g f
∥∥∥

∞,[a,b]

(g (b)− g (x))(n+1)α

Γ ((n + 1) α + 1)
, (59)

∀ x ∈ [a, b] .
Call

γ1 :=

∥∥∥D(n+1)α
a+;g f

∥∥∥
∞,[a,b]

Γ ((n + 1) α + 1)
, (60)

and

γ2 :=

∥∥∥D(n+1)α
b−;g f

∥∥∥
∞,[a,b]

Γ ((n + 1) α + 1)
. (61)

Set
γ := max {γ1, γ2} . (62)

That is ∣∣∣∣∣ f (x)−
n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a)

∣∣∣∣∣ ≤ γ (g (x)− g (a))(n+1)α , (63)
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and ∣∣∣∣∣ f (x)−
n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b)

∣∣∣∣∣ ≤ γ (g (b)− g (x))(n+1)α , (64)

∀ x ∈ [a, b] .
Equivalently, we have

n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a)− γ (g (x)− g (a))(n+1)α ≤ f (x) ≤

n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a) + γ (g (x)− g (a))(n+1)α , (65)

and
n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b)− γ (g (b)− g (x))(n+1)α ≤ f (x) ≤

n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b) + γ (g (b)− g (x))(n+1)α , (66)

∀ x ∈ [a, b] .
Let any t ∈ [a, b], then by integration against g over [a, t] and [t, b], respectively, we obtain

n

∑
i=0

(
Diα

a+;g f
)
(a)

(g (t)− g (a))iα+1

Γ (iα + 2)
− γ

((n + 1) α + 1)
(g (t)− g (a))(n+1)α+1

≤
∫ t

a
f (x) dg (x) ≤

n

∑
i=0

(
Diα

a+;g f
)
(a)

(g (t)− g (a))iα+1

Γ (iα + 2)
+

γ

((n + 1) α + 1)
(g (t)− g (a))(n+1)α+1 , (67)

and
n

∑
i=0

(g (b)− g (t))iα+1

Γ (iα + 2)

(
Diα

b−;g f
)
(b)− γ

((n + 1) α + 1)
(g (b)− g (t))(n+1)α+1

≤
∫ b

t
f (x) dg (x) ≤

n

∑
i=0

(g (b)− g (t))iα+1

Γ (iα + 2)

(
Diα

b−;g f
)
(b) +

γ

((n + 1) α + 1)
(g (b)− g (t))(n+1)α+1 . (68)

Adding (67) and (68), we obtain{
n

∑
i=0

1
Γ (iα + 2)

[(
Diα

a+;g f
)
(a) (g (t)− g (a))iα+1 +

(
Diα

b−;g f
)
(b) (g (b)− g (t))iα+1

]}

− γ

((n + 1) α + 1)

[
(g (t)− g (a))(n+1)α+1 + (g (b)− g (t))(n+1)α+1

]
≤

∫ b

a
f (x) dg (x) ≤{

n

∑
i=0

1
Γ (iα + 2)

[(
Diα

a+;g f
)
(a) (g (t)− g (a))iα+1 +

(
Diα

b−;g f
)
(b) (g (b)− g (t))iα+1

]}

+
γ

((n + 1) α + 1)

[
(g (t)− g (a))(n+1)α+1 + (g (b)− g (t))(n+1)α+1

]
, (69)
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∀ t ∈ [a, b] .
Consequently, we derive:∣∣∣∣∣

∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

[(
Diα

a+;g f
)
(a) (g (t)− g (a))iα+1

+
(

Diα
b−;g f

)
(b) (g (b)− g (t))iα+1

]}∣∣∣ ≤
γ

((n + 1) α + 1)

[
(g (t)− g (a))(n+1)α+1 + (g (b)− g (t))(n+1)α+1

]
, (70)

∀ t ∈ [a, b] .
Let us consider

φ (z) := (z − g (a))(n+1)α+1 + (g (b)− z)(n+1)α+1 ,

∀ z ∈ [g (a) , g (b)] .
That is

φ (g (t)) = (g (t)− g (a))(n+1)α+1 + (g (b)− g (t))(n+1)α+1 ,

∀ t ∈ [a, b] .
We have that

φ′ (z) = ((n + 1) α + 1)
[
(z − g (a))(n+1)α − (g (b)− z)(n+1)α

]
= 0,

giving (z − g (a))(n+1)α = (g (b)− z)(n+1)α and z − g (a) = g (b) − z, that is z = g(a)+g(b)
2 the only

critical number of φ. We have that

φ (g (a)) = φ (g (b)) = (g (b)− g (a))(n+1)α+1 ,

and

φ

(
g (a) + g (b)

2

)
=

(g (b)− g (a))(n+1)α+1

2(n+1)α
,

which is the minimum of φ over [g (a) , g (b)].
Consequently, the right hand side of (70) is minimized when g (t) = g(a)+g(b)

2 , for some t ∈ [a, b],

with value γ
((n+1)α+1)

(g(b)−g(a))(n+1)α+1

2(n+1)α .

Assuming
(

Diα
a+;g f

)
(a) =

(
Diα

b−;g f
)
(b) = 0, i = 0, 1, ..., n, then we obtain that

∣∣∣∣∫ b

a
f (x) dg (x)

∣∣∣∣ ≤ γ

((n + 1) α + 1)
(g (b)− g (a))(n+1)α+1

2(n+1)α
, (71)

which is a sharp inequality.
When g (t) = g(a)+g(b)

2 , then (70) becomes∣∣∣∣∣
∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

(g (b)− g (a))iα+1

2iα+1

[(
Diα

a+;g f
)
(a) +

(
Diα

b−;g

)
(b)

]}∣∣∣ ≤
γ

((n + 1) α + 1)
(g (b)− g (a))(n+1)α+1

2(n+1)α
. (72)
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Next let N ∈ N, j = 0, 1, 2, ..., N and g
(
tj
)
= g (a) + j

(
g(b)−g(a)

N

)
, that is g (t0) = g (a) , g (t1) =

g (a) + (g(b)−g(a))
N , ..., g (tN) = g (b) .

Hence it holds

g
(
tj
)− g (a) = j

(
g (b)− g (a)

N

)
, g (b)− g

(
tj
)
= (N − j)

(
g (b)− g (a)

N

)
, (73)

j = 0, 1, 2, ..., N.
We notice (

g
(
tj
)− g (a)

)(n+1)α+1
+

(
g (b)− g

(
tj
))(n+1)α+1

=(
g (b)− g (a)

N

)(n+1)α+1 [
j(n+1)α+1 + (N − j)(n+1)α+1

]
, (74)

j = 0, 1, 2, ..., N,
and (for i = 0, 1, ..., n)[(

Diα
a+;g f

)
(a)

(
g
(
tj
)− g (a)

)iα+1
+

(
Diα

b−;g f
)
(b)

(
g (b)− g

(
tj
))iα+1

]
=

(
g (b)− g (a)

N

)iα+1 [(
Diα

a+;g f
)
(a) jiα+1 +

(
Diα

b−;g

)
f (b) (N − j)iα+1

]
, (75)

for j = 0, 1, 2, ..., N.
By (70) we have ∣∣∣∣∣

∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

(
g (b)− g (a)

N

)iα+1

[(
Diα

a+;g f
)
(a) jiα+1 +

(
Diα

b−;g f
)
(b) (N − j)iα+1

]}∣∣∣ ≤
γ

((n + 1) α + 1)

(
g (b)− g (a)

N

)(n+1)α+1 [
j(n+1)α+1 + (N − j)(n+1)α+1

]
, (76)

j = 0, 1, 2, ..., N.
If

(
Diα

a+;g f
)
(a) =

(
Diα

b−;g f
)
(b) = 0, i = 1, ..., n, then (76) becomes

∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

N

)
[j f (a) + (N − j) f (b)]

∣∣∣∣ ≤
γ

((n + 1) α + 1)

(
g (b)− g (a)

N

)(n+1)α+1 [
j(n+1)α+1 + (N − j)(n+1)α+1

]
, (77)

j = 0, 1, 2, ..., N.
When N = 2 and j = 1, then (77) becomes∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

2

)
( f (a) + f (b))

∣∣∣∣ ≤
γ

((n + 1) α + 1)
2 (g (b)− g (a))(n+1)α+1

2(n+1)α+1
=

γ

((n + 1) α + 1)
(g (b)− g (a))(n+1)α+1

2(n+1)α
. (78)

We have proved theorem in all possible cases.
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We give L1 variants of last theorems:

Theorem 8. All as in Theorem 6 with α ≥ 1. If α = n ∈ N, we assume that
(

f ◦ g−1)(n) ◦ g ∈ C ([a, b]). Then
(i) ∣∣∣∣∣

∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

[(
f ◦ g−1

)(k)
(g (a)) (g (t)− g (a))k+1

+ (−1)k
(

f ◦ g−1
)(k)

(g (b)) (g (b)− g (t))k+1
]∣∣∣∣ ≤

max
{∥∥∥Dα

a+;g f
∥∥∥

L1([a,b],g)
,
∥∥∥Dα

b−;g f
∥∥∥

L1([a,b],g)

}
Γ (α + 1)[

(g (t)− g (a))α + (g (b)− g (t))α] , (79)

∀ t ∈ [a, b] ,
(ii) at g (t) = g(a)+g(b)

2 , the right hand side of (79) is minimized, and we find:∣∣∣∣∣
∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

(g (b)− g (a))k+1

2k+1

[(
f ◦ g−1

)(k)
(g (a)) + (−1)k

(
f ◦ g−1

)(k)
(g (b))

]∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L1([a,b],g)

,
∥∥∥Dα

b−;g f
∥∥∥

L1([a,b],g)

}
Γ (α + 1)

(g (b)− g (a))α

2α−1 , (80)

(iii) if
(

f ◦ g−1)(k) (g (a)) =
(

f ◦ g−1)(k) (g (b)) = 0, for k = 0, 1, ..., n − 1, we obtain∣∣∣∣∫ b

a
f (x) dg (x)

∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L1([a,b],g)

,
∥∥∥Dα

b−;g f
∥∥∥

L1([a,b],g)

}
Γ (α + 1)

(g (b)− g (a))α

2α−1 , (81)

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds that∣∣∣∣∣

∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

(
g (b)− g (a)

N

)k+1

[
jk+1

(
f ◦ g−1

)(k)
(g (a)) + (−1)k (N − j)k+1

(
f ◦ g−1

)(k)
(g (b))

]∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L1([a,b],g)

,
∥∥∥Dα

b−;g f
∥∥∥

L1([a,b],g)

}
Γ (α + 1)(

g (b)− g (a)
N

)α [
jα + (N − j)α] , (82)
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(v) if
(

f ◦ g−1)(k) (g (a)) =
(

f ◦ g−1)(k) (g (b)) = 0, for k = 1, ..., n − 1, from (82) we obtain∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

N

)
[j f (a) + (N − j) f (b)]

∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L1([a,b],g)

,
∥∥∥Dα

b−;g f
∥∥∥

L1([a,b],g)

}
Γ (α + 1)(

g (b)− g (a)
N

)α [
jα + (N − j)α] , (83)

j = 0, 1, 2, ..., N,
(vi) when N = 2, j = 1, (83) turns to∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

2

)
( f (a) + f (b))

∣∣∣∣ ≤
max

{∥∥∥Dα
a+;g f

∥∥∥
L1([a,b],g)

,
∥∥∥Dα

b−;g f
∥∥∥

L1([a,b],g)

}
Γ (α + 1)

(g (b)− g (a))α

2α−1 . (84)

Proof. From (27) we have∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k

∣∣∣∣∣∣ ≤
1

Γ (α)

∫ x

a
(g (x)− g (t))α−1 g′ (t)

∣∣∣(Dα
a+;g f

)
(t)

∣∣∣ dt ≤

(g (x)− g (a))α−1

Γ (α)

∫ x

a
g′ (t)

∣∣∣(Dα
a+;g f

)
(t)

∣∣∣ dt ≤ (85)

(g (x)− g (a))α−1

Γ (α)

∫ b

a
g′ (t)

∣∣∣(Dα
a+;g f

)
(t)

∣∣∣ dt =

(g (x)− g (a))α−1

Γ (α)

∫ b

a

∣∣∣(Dα
a+;g f

)
(t)

∣∣∣ dg (t) =∥∥∥Dα
a+;g f

∥∥∥
L1([a,b],g)

Γ (α)
(g (x)− g (a))α−1 ,

∀ x ∈ [a, b] .
Similarly, from (28) we obtain∣∣∣∣∣∣ f (x)−

n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k

∣∣∣∣∣∣ ≤
1

Γ (α)

∫ b

x
(g (t)− g (x))α−1 g′ (t)

∣∣∣(Dα
b−;g f

)
(t)

∣∣∣ dt ≤

(g (b)− g (x))α−1

Γ (α)

∫ b

x

∣∣∣(Dα
b−;g f

)
(t)

∣∣∣ dg (t) ≤ (86)
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∥∥∥Dα
b−;g f

∥∥∥
L1([a,b],g)

Γ (α)
(g (b)− g (x))α−1 ,

∀ x ∈ [a, b] .
Call

δ := max
{∥∥∥Dα

a+;g f
∥∥∥

L1([a,b],g)
,
∥∥∥Dα

b−;g f
∥∥∥

L1([a,b],g)

}
. (87)

We have proved that∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k

∣∣∣∣∣∣ ≤
δ

Γ (α)
(g (x)− g (a))α−1 , (88)

and ∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k

∣∣∣∣∣∣ ≤
δ

Γ (α)
(g (b)− g (x))α−1 , (89)

∀ x ∈ [a, b] .
The rest of the proof is as in Theorem 6.

It follows

Theorem 9. All as in Theorem 7, with 1
n+1 ≤ α ≤ 1. Call

ρ := max
{∥∥∥D(n+1)α

a+;g f
∥∥∥

L1([a,b],g)
,
∥∥∥D(n+1)α

b−;g f
∥∥∥

L1([a,b],g)

}
. (90)

Then
(i) ∣∣∣∣∣

∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

[(
Diα

a+;g f
)
(a) (g (t)− g (a))iα+1

+
(

Diα
b−;g f

)
(b) (g (b)− g (t))iα+1

]}∣∣∣ ≤
ρ

Γ ((n + 1) α + 1)

[
(g (t)− g (a))(n+1)α + (g (b)− g (t))(n+1)α

]
, (91)

∀ t ∈ [a, b] ,
(ii) at g (t) = g(a)+g(b)

2 , the right hand side of (91) is minimized, and we find:∣∣∣∣∣
∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

(g (b)− g (a))iα+1

2iα+1

[(
Diα

a+;g f
)
(a) +

(
Diα

b−;g f
)
(b)

]}∣∣∣ ≤
ρ

Γ ((n + 1) α + 1)
(g (b)− g (a))(n+1)α

2(n+1)α−1
, (92)
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(iii) assuming
(

Diα
a+;g f

)
(a) =

(
Diα

b−;g f
)
(b) = 0, i = 0, 1, ..., n, we obtain

∣∣∣∣∫ b

a
f (x) dg (x)

∣∣∣∣ ≤
ρ

Γ ((n + 1) α + 1)
(g (b)− g (a))(n+1)α

2(n+1)α−1
, (93)

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds that∣∣∣∣∣

∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

(
g (b)− g (a)

N

)iα+1

[(
Diα

a+;g f
)
(a) jiα+1 +

(
Diα

b−;g f
)
(b) (N − j)iα+1

]}∣∣∣ ≤
ρ

Γ ((n + 1) α + 1)

(
g (b)− g (a)

N

)(n+1)α [
j(n+1)α + (N − j)(n+1)α

]
, (94)

(v) if
(

Diα
a+;g f

)
(a) =

(
Diα

b−;g f
)
(b) = 0, i = 1, ..., n, from (94) we find:

∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

N

)
[j f (a) + (N − j) f (b)]

∣∣∣∣ ≤
ρ

Γ ((n + 1) α + 1)

(
g (b)− g (a)

N

)(n+1)α [
j(n+1)α + (N − j)(n+1)α

]
, (95)

for j = 0, 1, 2, ..., N,
(vi) when N = 2 and j = 1, (95) becomes∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

2

)
( f (a) + f (b))

∣∣∣∣ ≤
ρ

Γ ((n + 1) α + 1)
(g (b)− g (a))(n+1)α

2(n+1)α−1
. (96)

Proof. By (56) we obtain ∣∣∣∣∣ f (x)−
n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a)

∣∣∣∣∣ ≤
1

Γ ((n + 1) α)

∫ x

a
(g (x)− g (t))(n+1)α−1 g′ (t)

∣∣∣(D(n+1)α
a+;g f

)
(t)

∣∣∣ dt ≤

(g (x)− g (a))(n+1)α−1

Γ ((n + 1) α)

∫ x

a
g′ (t)

∣∣∣(D(n+1)α
a+;g f

)
(t)

∣∣∣ dt ≤ (97)

(g (x)− g (a))(n+1)α−1

Γ ((n + 1) α)

∫ b

a
g′ (t)

∣∣∣(D(n+1)α
a+;g f

)
(t)

∣∣∣ dt =

(g (x)− g (a))(n+1)α−1

Γ ((n + 1) α)

∫ b

a

∣∣∣(D(n+1)α
a+;g f

)
(t)

∣∣∣ dg (t) =
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∥∥∥D(n+1)α
a+;g f

∥∥∥
L1([a,b],g)

Γ ((n + 1) α)
(g (x)− g (a))(n+1)α−1 ,

∀ x ∈ [a, b] .
Similarly, from (57) we derive∣∣∣∣∣ f (x)−

n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b)

∣∣∣∣∣ ≤
1

Γ ((n + 1) α)

∫ b

x
(g (t)− g (x))(n+1)α−1 g′ (t)

∣∣∣(D(n+1)α
b−;g f

)
(t)

∣∣∣ dt ≤

(g (b)− g (x))(n+1)α−1

Γ ((n + 1) α)

∫ b

x

∣∣∣(D(n+1)α
b−;g f

)
(t)

∣∣∣ dg (t) ≤ (98)∥∥∥D(n+1)α
b−;g f

∥∥∥
L1([a,b],g)

Γ ((n + 1) α)
(g (b)− g (x))(n+1)α−1 ,

∀ x ∈ [a, b] .
We have proved that ∣∣∣∣∣ f (x)−

n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a)

∣∣∣∣∣ ≤
ρ

Γ ((n + 1) α)
(g (x)− g (a))(n+1)α−1 , (99)

and ∣∣∣∣∣ f (x)−
n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b)

∣∣∣∣∣ ≤
ρ

Γ ((n + 1) α)
(g (b)− g (x))(n+1)α−1 , (100)

∀ x ∈ [a, b] .
The rest of the proof is as in Theorem 7.

Next follow Lp variants of Theorems 6 and 7.

Theorem 10. All as in Theorem 6 with α ≥ 1, and p, q > 1 : 1
p + 1

q = 1. If α = n ∈ N, we assume that(
f ◦ g−1)(n) ◦ g ∈ C ([a, b]). Set

μ := max
{∥∥∥Dα

a+;g f
∥∥∥

Lq([a,b],g)
,
∥∥∥Dα

b−;g f
∥∥∥

Lq([a,b],g)

}
. (101)

Then
(i) ∣∣∣∣∣

∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

[(
f ◦ g−1

)(k)
(g (a)) (g (t)− g (a))k+1

+ (−1)k
(

f ◦ g−1
)(k)

(g (b)) (g (b)− g (t))k+1
]∣∣∣∣ ≤

μ

Γ (α)
(

α + 1
p

)
(p (α − 1) + 1)

1
p
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[
(g (t)− g (a))α+ 1

p + (g (b)− g (t))α+ 1
p

]
, (102)

∀ t ∈ [a, b] ,
(ii) at g (t) = g(a)+g(b)

2 , the right hand side of (102) is minimized, and we have:∣∣∣∣∣
∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

(g (b)− g (a))k+1

2k+1

[(
f ◦ g−1

)(k)
(g (a)) + (−1)k

(
f ◦ g−1

)(k)
(g (b))

]∣∣∣∣ ≤
μ

Γ (α)
(

α + 1
p

)
(p (α − 1) + 1)

1
p

(g (b)− g (a))α+ 1
p

2α− 1
q

, (103)

(iii) if
(

f ◦ g−1)(k) (g (a)) =
(

f ◦ g−1)(k) (g (b)) = 0, for k = 0, 1, ..., n − 1, we obtain∣∣∣∣∫ b

a
f (x) dg (x)

∣∣∣∣ ≤
μ

Γ (α)
(

α + 1
p

)
(p (α − 1) + 1)

1
p

(g (b)− g (a))α+ 1
p

2α− 1
q

, (104)

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds∣∣∣∣∣

∫ b

a
f (x) dg (x)−

n−1

∑
k=0

1
(k + 1)!

(
g (b)− g (a)

N

)k+1

[
jk+1

(
f ◦ g−1

)(k)
(g (a)) + (−1)k (N − j)k+1

(
f ◦ g−1

)(k)
(g (b))

]∣∣∣∣ ≤
μ

Γ (α)
(

α + 1
p

)
(p (α − 1) + 1)

1
p

(
g (b)− g (a)

N

)α+ 1
p
[

jα+
1
p + (N − j)α+ 1

p

]
, (105)

(v) if
(

f ◦ g−1)(k) (g (a)) =
(

f ◦ g−1)(k) (g (b)) = 0, for k = 1, ..., n − 1, from (105) we obtain∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

N

)
[j f (a) + (N − j) f (b)]

∣∣∣∣ ≤
μ

Γ (α)
(

α + 1
p

)
(p (α − 1) + 1)

1
p

(
g (b)− g (a)

N

)α+ 1
p
[

jα+
1
p + (N − j)α+ 1

p

]
, (106)

j = 0, 1, 2, ..., N,
(vi) when N = 2, j = 1, (106) turns to∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

2

)
( f (a) + f (b))

∣∣∣∣ ≤
μ

Γ (α)
(

α + 1
p

)
(p (α − 1) + 1)

1
p

(g (b)− g (a))α+ 1
p

2α− 1
q

. (107)
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Proof. From (27) we find∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k

∣∣∣∣∣∣ ≤
1

Γ (α)

∫ x

a
(g (x)− g (t))α−1 g′ (t)

∣∣∣(Dα
a+;g f

)
(t)

∣∣∣ dt =

(by [5], p. 439)
1

Γ (α)

∫ x

a
(g (x)− g (t))α−1

∣∣∣(Dα
a+;g f

)
(t)

∣∣∣ dg (t) ≤ (108)

(by [6])

1
Γ (α)

(∫ x

a
(g (x)− g (t))p(α−1) dg (t)

) 1
p
(∫ x

a

∣∣∣(Dα
a+;g f

)
(t)

∣∣∣q
dg (t)

) 1
q ≤

1
Γ (α)

(g (x)− g (a))α− 1
q

(p (α − 1) + 1)
1
p

∥∥∥Dα
a+;g f

∥∥∥
Lq([a,b],g)

.

That is ∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k

∣∣∣∣∣∣ ≤∥∥∥Dα
a+;g f

∥∥∥
Lq([a,b],g)

Γ (α) (p (α − 1) + 1)
1
p
(g (x)− g (a))α− 1

q , (109)

∀ x ∈ [a, b] .
Similarly, from (28) we obtain∣∣∣∣∣∣ f (x)−

n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k

∣∣∣∣∣∣ ≤
1

Γ (α)

∫ b

x
(g (t)− g (x))α−1 g′ (t)

∣∣∣(Dα
b−;g f

)
(t)

∣∣∣ dt =

(by [5], p. 439)
1

Γ (α)

∫ b

x
(g (t)− g (x))α−1

∣∣∣(Dα
b−;g f

)
(t)

∣∣∣ dg (t) ≤

(by [6])

1
Γ (α)

(∫ b

x
(g (t)− g (x))p(α−1) dg (t)

) 1
p
(∫ b

x

∣∣∣(Dα
b−;g f

)
(t)

∣∣∣q
dg (t)

) 1
q

≤ (110)

1
Γ (α)

(g (b)− g (x))α− 1
q

(p (α − 1) + 1)
1
p

∥∥∥Dα
b−;g f

∥∥∥
Lq([a,b],g)

.

That is ∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k

∣∣∣∣∣∣ ≤∥∥∥Dα
b−;g f

∥∥∥
Lq([a,b],g)

Γ (α) (p (α − 1) + 1)
1
p
(g (b)− g (x))α− 1

q , (111)
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∀ x ∈ [a, b] .
We have proved that∣∣∣∣∣∣ f (x)−

n−1

∑
k=0

(
f ◦ g−1)(k) (g (a))

k!
(g (x)− g (a))k

∣∣∣∣∣∣ ≤
μ

Γ (α) (p (α − 1) + 1)
1
p
(g (x)− g (a))α− 1

q , (112)

and ∣∣∣∣∣∣ f (x)−
n−1

∑
k=0

(
f ◦ g−1)(k) (g (b))

k!
(g (x)− g (b))k

∣∣∣∣∣∣ ≤
μ

Γ (α) (p (α − 1) + 1)
1
p
(g (b)− g (x))α− 1

q , (113)

∀ x ∈ [a, b] .
The rest of the proof is as in Theorem 6.

We continue with

Theorem 11. All as in Theorem 7, with 1
n+1 ≤ α ≤ 1, and p, q > 1 : 1

p + 1
q = 1. Set

θ := max
{∥∥∥D(n+1)α

a+;g f
∥∥∥

Lq([a,b],g)
,
∥∥∥D(n+1)α

b−;g f
∥∥∥

Lq([a,b],g)

}
. (114)

Then
(i) ∣∣∣∣∣

∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

[(
Diα

a+;g f
)
(a) (g (t)− g (a))iα+1

+
(

Diα
b−;g f

)
(b) (g (b)− g (t))iα+1

]}∣∣∣ ≤
θ

Γ ((n + 1) α)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p[

(g (t)− g (a))(n+1)α+ 1
p + (g (b)− g (t))(n+1)α+ 1

p

]
, (115)

∀ t ∈ [a, b] ,
(ii) at g (t) = g(a)+g(b)

2 , the right hand side of (115) is minimized, and we have:∣∣∣∣∣
∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

(g (b)− g (a))iα+1

2iα+1

[(
Diα

a+;g f
)
(a) +

(
Diα

b−;g f
)
(b)

]}∣∣∣ ≤
θ

Γ ((n + 1) α)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p

(g (b)− g (a))(n+1)α+ 1
p

2(n+1)α− 1
q

, (116)
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(iii) assuming
(

Diα
a+;g f

)
(a) =

(
Diα

b−;g f
)
(b) = 0, i = 0, 1, ..., n, we obtain

∣∣∣∣∫ b

a
f (x) dg (x)

∣∣∣∣ ≤
θ

Γ ((n + 1) α)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p

(g (b)− g (a))(n+1)α+ 1
p

2(n+1)α− 1
q

, (117)

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds that∣∣∣∣∣

∫ b

a
f (x) dg (x)−

{
n

∑
i=0

1
Γ (iα + 2)

(
g (b)− g (a)

N

)iα+1

[(
Diα

a+;g f
)
(a) jiα+1 +

(
Diα

b−;g f
)
(b) (N − j)iα+1

]}∣∣∣ ≤
θ

Γ ((n + 1) α)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p

(
g (b)− g (a)

N

)(n+1)α+ 1
p
[

j(n+1)α+ 1
p + (N − j)(n+1)α+ 1

p

]
, (118)

(v) if
(

Diα
a+;g f

)
(a) =

(
Diα

b−;g f
)
(b) = 0, i = 1, ..., n, from (118) we obtain:

∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

N

)
[j f (a) + (N − j) f (b)]

∣∣∣∣ ≤
θ

Γ ((n + 1) α)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p

(
g (b)− g (a)

N

)(n+1)α+ 1
p
[

j(n+1)α+ 1
p + (N − j)(n+1)α+ 1

p

]
, (119)

j = 0, 1, 2, ..., N,
(vi) when N = 2, j = 1, (119) turns to∣∣∣∣∫ b

a
f (x) dg (x)−

(
g (b)− g (a)

2

)
( f (a) + f (b))

∣∣∣∣ ≤
θ

Γ ((n + 1) α)
(
(n + 1) α + 1

p

)
(p ((n + 1) α − 1) + 1)

1
p

(g (b)− g (a))(n+1)α+ 1
p

2(n+1)α− 1
q

. (120)

Proof. By (56) we find ∣∣∣∣∣ f (x)−
n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a)

∣∣∣∣∣ ≤ (121)

1
Γ ((n + 1) α)

∫ x

a
(g (x)− g (t))(n+1)α−1 g′ (t)

∣∣∣(D(n+1)α
a+;g f

)
(t)

∣∣∣ dt =

(by [5])
1

Γ ((n + 1) α)

∫ x

a
(g (x)− g (t))(n+1)α−1

∣∣∣(D(n+1)α
a+;g f

)
(t)

∣∣∣ dg (t) ≤

109
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(by [6])

1
Γ ((n + 1) α)

(∫ x

a
(g (x)− g (t))p((n+1)α−1) dg (t)

) 1
p

(∫ x

a

∣∣∣(D(n+1)α
a+;g f

)
(t)

∣∣∣q
dg (t)

) 1
q ≤

1
Γ ((n + 1) α)

(g (x)− g (a))
p((n+1)α−1)+1

p

(p ((n + 1) α − 1) + 1)
1
p

∥∥∥D(n+1)α
a+;g f

∥∥∥
Lq([a,b],g)

.

That is ∣∣∣∣∣ f (x)−
n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a)

∣∣∣∣∣ ≤∥∥∥D(n+1)α
a+;g f

∥∥∥
Lq([a,b],g)

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p
(g (x)− g (a))(n+1)α− 1

q , (122)

∀ x ∈ [a, b] .
Similarly, from (57) we derive∣∣∣∣∣ f (x)−

n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b)

∣∣∣∣∣ ≤
1

Γ ((n + 1) α)

∫ b

x
(g (t)− g (x))(n+1)α−1 g′ (t)

∣∣∣(D(n+1)α
b−;g f

)
(t)

∣∣∣ dt =

(by [5])
1

Γ ((n + 1) α)

∫ b

x
(g (t)− g (x))(n+1)α−1

∣∣∣(D(n+1)α
b−;g f

)
(t)

∣∣∣ dg (t) ≤

(by [6])

1
Γ ((n + 1) α)

(∫ b

x
(g (t)− g (x))p((n+1)α−1) dg (t)

) 1
p

(∫ b

x

∣∣∣(D(n+1)α
b−;g f

)
(t)

∣∣∣q
dg (t)

) 1
q

≤ (123)

1
Γ ((n + 1) α)

(g (b)− g (x))
p((n+1)α−1)+1

p

(p ((n + 1) α − 1) + 1)
1
p

∥∥∥D(n+1)α
b−;g f

∥∥∥
Lq([a,b],g)

.

That is ∣∣∣∣∣ f (x)−
n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b)

∣∣∣∣∣ ≤∥∥∥D(n+1)α
b−;g f

∥∥∥
Lq([a,b],g)

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p
(g (b)− g (x))(n+1)α− 1

q , (124)

∀ x ∈ [a, b] .
We have proved that ∣∣∣∣∣ f (x)−

n

∑
i=0

(g (x)− g (a))iα

Γ (iα + 1)

(
Diα

a+;g f
)
(a)

∣∣∣∣∣ ≤

110
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θ

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p
(g (x)− g (a))(n+1)α− 1

q , (125)

and ∣∣∣∣∣ f (x)−
n

∑
i=0

(g (b)− g (x))iα

Γ (iα + 1)

(
Diα

b−;g f
)
(b)

∣∣∣∣∣ ≤
θ

Γ ((n + 1) α) (p ((n + 1) α − 1) + 1)
1
p
(g (b)− g (x))(n+1)α− 1

q , (126)

∀ x ∈ [a, b] .
The rest of the proof is as in Theorem 7.

Applications follow:

Proposition 1. We assume that ( f ◦ ln x) ∈ ACn
([

ea, eb
])

, where N � n = �α�, α > 0. We also assume

that ( f ◦ ln x)(n) ◦ ex ∈ L∞ ([a, b]), f ∈ C ([a, b]). Set

T1 := max
{∥∥Dα

a+;ex f
∥∥

L∞([a,b]) ,
∥∥∥Dα

b−;ex f
∥∥∥

L∞([a,b])

}
. (127)

Then
(i) ∣∣∣∣∣

∫ b

a
f (x) exdx −

n−1

∑
k=0

1
(k + 1)!

[
( f ◦ ln x)(k) (ea)

(
et − ea)k+1

(−1)k ( f ◦ ln x)(k)
(

eb
) (

eb − et
)k+1

]∣∣∣∣ ≤
T1

Γ (α + 2)

[(
et − ea)α+1

+
(

eb − et
)α+1

]
, (128)

∀ t ∈ [a, b] ,
(ii) at t = ln

(
ea+eb

2

)
, the right hand side of (128) is minimized, and we find:

∣∣∣∣∣∣∣
∫ b

a
f (x) exdx −

n−1

∑
k=0

1
(k + 1)!

(
eb − ea

)k+1

2k+1

[
( f ◦ ln x)(k) (ea) + (−1)k ( f ◦ ln x)(k)

(
eb
)]∣∣∣ ≤

T1

Γ (α + 2)

(
eb − ea

)α+1

2α
, (129)

(iii) if ( f ◦ ln x)(k) (ea) = ( f ◦ ln x)(k)
(

eb
)
= 0, for k = 0, 1, ..., n − 1, we obtain

∣∣∣∣∫ b

a
f (x) exdx

∣∣∣∣ ≤ T1

(
eb − ea

)α+1

Γ (α + 2) 2α
, (130)

which is a sharp inequality,
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(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds∣∣∣∣∣∣
∫ b

a
f (x) exdx −

n−1

∑
k=0

1
(k + 1)!

(
eb − ea

N

)k+1

[
jk+1 ( f ◦ ln x)(k) (ea) + (−1)k (N − j)k+1 ( f ◦ ln x)(k)

(
eb
)]∣∣∣ ≤

T1

Γ (α + 2)

(
eb − ea

N

)α+1 [
jα+1 + (N − j)α+1

]
, (131)

(v) if ( f ◦ ln x)(k) (ea) = ( f ◦ ln x)(k)
(

eb
)
= 0, for k = 1, ..., n − 1, from (131) we obtain

∣∣∣∣∣
∫ b

a
f (x) exdx −

(
eb − ea

N

)
[j f (a) + (N − j) f (b)]

∣∣∣∣∣ ≤
T1

Γ (α + 2)

(
eb − ea

N

)α+1 [
jα+1 + (N − j)α+1

]
, (132)

j = 0, 1, 2, ..., N,
(vi) when N = 2, j = 1, (132) turns to∣∣∣∣∣

∫ b

a
f (x) exdx −

(
eb − ea

2

)
( f (a) + f (b))

∣∣∣∣∣ ≤
T1

Γ (α + 2)

(
eb − ea

)α+1

2α
, (133)

(vii) when 0 < α ≤ 1, inequality (133) is again valid without any boundary conditions.

Proof. By Theorem 6, for g (x) = ex.

We continue with

Proposition 2. Here f ∈ C ([a, b]), where [a, b] ⊂ (0,+∞). Let 0 < α ≤ 1, and Gk := Dkα
a+;ln x f ,

for k = 0, 1, ..., n + 1; n ∈ N. We assume that Gk ◦ ex ∈ AC ([ln a, ln b]) and (Gk ◦ ex)′ ◦ ln x ∈ L∞ ([a, b]).
Also let Gk := Dkα

b−;ln x f , for k = 0, 1, ..., n + 1, they fulfill Gk ◦ ex ∈ AC ([ln a, ln b]) and
(
Gk ◦ ex)′ ◦ ln x ∈

L∞ ([a, b]). Set

T2 := max
{∥∥∥D(n+1)α

a+;ln x f
∥∥∥

∞,[a,b]
,
∥∥∥D(n+1)α

b−;ln x f
∥∥∥

∞,[a,b]

}
. (134)

Then
(i) ∣∣∣∣∣

∫ b

a

f (x)
x

dx −
{

n

∑
i=0

1
Γ (iα + 2)

[(
Diα

a+;ln x f
)
(a)

(
ln

t
a

)iα+1

+
(

Diα
b−;ln x f

)
(b)

(
ln

b
t

)iα+1
]}∣∣∣∣∣ ≤

T2

Γ ((n + 1) α + 2)

[(
ln

t
a

)(n+1)α+1
+

(
ln

b
t

)(n+1)α+1
]

, (135)

∀ t ∈ [a, b] ,
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(ii) at t = e(
ln ab

2 ), the right hand side of (135) is minimized, and we have:∣∣∣∣∣∣∣
∫ b

a

f (x)
x

dx −

⎧⎪⎨⎪⎩
n

∑
i=0

1
Γ (iα + 2)

(
ln b

a

)iα+1

2iα+1

[(
Diα

a+;ln x f
)
(a) +

(
Diα

b−;ln x f
)
(b)

]}∣∣∣ ≤
T2

Γ ((n + 1) α + 2)

(
ln b

a

)(n+1)α+1

2(n+1)α
, (136)

(iii) assuming
(

Diα
a+;ln x f

)
(a) =

(
Diα

b−;ln x f
)
(b) = 0, i = 0, 1, ..., n, we obtain

∣∣∣∣∫ b

a

f (x)
x

dx
∣∣∣∣ ≤ T2

Γ ((n + 1) α + 2)

(
ln b

a

)(n+1)α+1

2(n+1)α
, (137)

which is a sharp inequality,
(iv) more generally, for j = 0, 1, 2, ..., N ∈ N, it holds∣∣∣∣∣∣

∫ b

a

f (x)
x

dx −
⎧⎨⎩ n

∑
i=0

1
Γ (iα + 2)

(
ln b

a
N

)iα+1

[(
Diα

a+;ln x f
)
(a) jiα+1 +

(
Diα

b−;ln x f
)
(b) (N − j)iα+1

]}∣∣∣ ≤
T2

Γ ((n + 1) α + 2)

(
ln b

a
N

)(n+1)α+1 [
j(n+1)α+1 + (N − j)(n+1)α+1

]
, (138)

(v) if
(

Diα
a+;ln x f

)
(a) =

(
Diα

b−;ln x f
)
(b) = 0, i = 1, ..., n, from (138) we find:

∣∣∣∣∣
∫ b

a

f (x)
x

dx −
(

ln b
a

N

)
(j f (a) + (N − j) f (b))

∣∣∣∣∣ ≤
T2

Γ ((n + 1) α + 2)

(
ln b

a
N

)(n+1)α+1 [
j(n+1)α+1 + (N − j)(n+1)α+1

]
, (139)

for j = 0, 1, 2, ..., N,
(vi) if N = 2 and j = 1, (139) becomes∣∣∣∣∣

∫ b

a

f (x)
x

dx −
(

ln b
a

2

)
( f (a) + f (b))

∣∣∣∣∣ ≤
T2

Γ ((n + 1) α + 2)

(
ln b

a

)(n+1)α+1

2(n+1)α
. (140)

Proof. By Theorem 7, for g (x) = ln x.

We could give many other interesting applications that are based in our other theorems, due to
lack of space we skip this task.
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Abstract: This article is devoted to discussing the nondifferentiable minimax fractional programming
problem with type-I functions. We focus our study on a nondifferentiable minimax fractional
programming problem and formulate a higher-order dual model. Next, we establish weak, strong,
and strict converse duality theorems under generalized higher-order strictly pseudo (V, α, ρ, d)-type-I
functions. In the final section, we turn our focus to study a nondifferentiable unified minimax
fractional programming problem and the results obtained in this paper naturally unify. Further,
we extend some previously known results on nondifferentiable minimax fractional programming in
the literature.

Keywords: duality; support function; nondifferentiable; strictly pseudo (V, α, ρ, d)-type-I;
unified dual; efficient solutions

1. Introduction

Minimax is a decision rule used in decision theory, game theory, statistics, and philosophy for
minimizing the possible loss for a worst case (maximum loss) scenario. In general, a minimax problem
can be formulated as

min
x ∈ X

max
i

fi(x), i = 1, 2, 3, ..., m,

where fi(x) is a function defined on the space X. Many minimax problems often arise in engineering
design, computer-aided-design, circuit design, and optimal control. Some of the problems arising in
engineering, economics, and mathematics are of the following form:

Minimize a function Θ(x) subject to x ∈ Ω, where Θ(x) is one of the following functions:

(a) Θ(x) = max
y∈H

f (x, y),

(b) Θ(x) = max
y∈H(x)

f (x, y),

(c) Θ(x) = max
y∈H1(x)

min
z∈H2(x)

f (x, y, z),

(d) Θ(x) = max
y1∈H11(x)

min
z1∈H21(x)

, ..., max
yk∈H1k(x)

min
zk∈H2k(x)

f (x, y1, ..., yk, z1, ..., zk),

where the sets H(x), Hi(x), Hij depend on x and H, Ω are given sets,
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(e) Θ(x) = max
i

fi(x), i ∈ {1, 2, 3, ..., m}.

Such problems often appear in the engineering design theory. In recent years, much attention was
paid to the problems described. The minimax theory deals with the following problems:

(1) Necessary and sufficient conditions and their geometric interpretation [1,2];
(2) Steepest-descent directions and their applications to constructing numerical methods.

The problems have been widely discussed and studied for the function (a);
(3) Saddle points: The problem of finding saddle points is a special case of minimax problems

(see survey [3]);
(4) Optimal control problems with a minimax criterion function.

These facts indicate that minimax theory will continue to be an important tool for solving difficult
and interesting problems. In addition, minimax methods provide a paradigm for investigating
analogous problems. An exciting future with new unified theories may be expected. Optimization
problems, in which both a minimization and a maximization process are performed, are known
as minimax problems in the area of mathematical programming. For more details, we refer to
Stancu-Minasian [4]. Tanimoto [5] applied these optimality conditions to construct a dual problem and
established duality theorems. Many researchers have done work related to the same area [6–14].

Fractional programming is an interesting subject which features in several types of optimization
problems, such as inventory problem, game theory, and in many other cases. In addition, it can be used
in engineering and economics to minimize a ratio of functions between a given period of time and as a
utilized resource in order to measure the efficiency of a system. In these sorts of problems, the objective
function is usually given as a ratio of functions in fractional programming from (see [15,16]).

Motivated by various concepts of generalized convexity, Liang et al. [17] introduced the concept
of (F, α, ρ, d)-convex functions. Hachimi and Aghezzaf [18], with prior definitions of generalized
convexity, extended the concept further to (F, α, ρ, d)-type I functions and gave the sufficient optimality
conditions and mixed-type duality results for the multiobjective programming problem.

This paper is divided into four sections. Section 2 contains definitions of higher-order strictly
pseudo (V, α, ρ, d)-type-I functions. In section 3, we concentrate our discussion on a nondifferentiable
minimax fractional programming problem and formulate the higher-order dual model. We establish
duality theorems under higher-order strictly pseudo (V, α, ρ, d)-type-I functions. In the final section,
we turn our attention to discuss a nondifferentiable mixed-type minimax fractional programming
problem and establish duality relations under the same assumptions.

2. Preliminaries and Definitions

Throughout this paper, we use S′ = {1, 2, ..., s}, M = {1, 2, ..., m} and (z, w, v, μ, p) ∈ Rn × Rn ×
Rn × Rm

+ × Rn.

Definition 1. Let Q be a compact convex set in Rn. The support function of Q is denoted by s(x|Q) and
defined by

s(x|Q) = max{xTy : y ∈ Q}.

The support function s(x|Q), being convex and everywhere finite, has a Clarke subdifferential [8], in the
sense of convex analysis. The subdifferential of s(x|Q) is given by

∂s(x|Q) =
{

z ∈ Q | zTx = s(x|Q)
}

.
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For any set S, the normal case to S at a point x ∈ S, denoted by NS(x) and denoted by

NS(x) =
{

y ∈ Rn : yT(z − x), ∀ z ∈ S
}

.

It is readily verified that for a compact convex set Q ∈ Rn, y ∈ NS(x) if and only if s(x|Q) = xTy or
equivalently, x is in the Clarke subdifferential of s at y.

Consider the following nondifferentiable minimax fractional programming problem (FP):

(FP) Minimize
ξ(x, y)
ζ(x, y)

= sup
y∈Y

f (x, y) + s(x|C)
g(x, y)− s(x|D)

,

subject to S = {x ∈ X : hj(x) + s(x|Ej) ≤ 0, j ∈ M},

where Y is a compact subject of Rm, f , g : X × Y → R and hj : X → R, i ∈ S′ are continuously
differentiable functions on Rn × Rm. f (x, y) + s(x|C) ≥ 0 and g(x, y)− s(x|D) > 0, ∀ x ∈ S. C, D,
and Ej, j ∈ M are compact convex sets in Rm, and s(x|C), s(x|D), and s(x|Ej), j ∈ M designate the
support functions of compact sets.

N(x) = {i ∈ S′ : hj(x) = 0},

Y(x) =
{

y ∈ Y :
f (x, y) + s(x|C)
g(x, y)− s(x|D)

= sup
z∈Y

f (x, z) + s(x|C)
g(x, z)− s(x|D)

}
and

K(x) =
{
(s, t, ỹ) ∈ N × Rs

+ × Rm : 1 ≤ s ≤ n + 1, t = (t1, t2, ..., ts) ∈ Rs
+

with
s

∑
i=1

ti = 1, ȳ = (ȳ1, ȳ2, ..., ȳs) and ȳi ∈ Y(x), i ∈ S
}

.

Assume that α : X × X → R+ \ {0}, η : X × X → Rn, ρ ∈ R and d : X × X → R (satisfying
d(x, y) = 0 ⇔ x = y). Let φ : X ×Y → R and ψj : X → R be twice differentiable functions.

Definition 2. ∀ j ∈ M, [φ, ψj] is said to be higher-order (V, α, ρ, d)-type -I at x̄, if ∃ α, ρ, d, and η such that
∀ x ∈ S, yi ∈ Y(x), and p ∈ Rn, we have

φ(x, yi)− φ(x̄, yi)− G(x̄, yi, p) + pT∇pG(x̄, yi, p)

≥
〈

α(x, x̄){∇φ(x̄, yi) +∇pG(x̄, yi, p)}, η(x, x̄)
〉
+ ρid2(x, x̄), i ∈ S′

and

−ψj(x̄)− Kj(x̄, p) + pT∇pKj(x̄, p) ≥
〈

α(x, x̄){∇ψj(x̄) +∇pKj(x̄, p)}, η(x, x̄)
〉
+ ρjd2(x, x̄), j ∈ M.

Remark 1. In the above definition, if the inequalities appear as strict inequalities, then we say that [φ, ψj], ∀ j ∈
M is higher-order strict (V, α, ρ, d)-type-I.

Remark 2. If G(x̄, yi, p) =
1
2

pT∇2φ(x̄, yi)p and ρi = 0, ∀ i ∈ S′, then Definition 2 becomes α-type-I at x̄
given by [19].
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Definition 3. ∀ j ∈ M, [φ, ψj] is said to be higher-order pseudoquasi (V, α, ρ, d)-type -I at x̄, if ∃ α, ρ, d, and
η such that ∀ x ∈ S, yi ∈ Y(x), and p ∈ Rn, we have

φ(x, yi)− φ(x̄, yi)− G(x̄, yi, p) + pT∇pG(x̄, yi, p) < 0

⇒
〈

α(x, x̄){∇φ(x̄, yi) +∇pG(x̄, yi, p)}, η(x, x̄)
〉
+ ρid2(x, x̄) < 0, i ∈ S′

and

−ψj(x̄)− Kj(x̄, p) + pT∇pKj(x̄, p) ≤ 0 ⇒
〈

α(x, x̄){∇ψj(x̄) +∇pKj(x̄, p)}, η(x, x̄)
〉
+ ρjd2(x, x̄) ≤ 0, j ∈ M.

Remark 3. In Definition 3, if
〈

α(x, x̄){∇φ(x̄, ȳi) + pT∇pG(x̄, ȳi, p)}, η(x, x̄)
〉
+ ρid2(x, x̄) ≥ 0

⇒ φ(x, yi)− φ(x̄, yi)− G(x̄, yi, p) + pT∇pG(x̄, yi, p) > 0, i ∈ S′,

then [φ, ψj], ∀ j ∈ M is higher-order strictly pseudoquasi (V, α, ρ, d)-type-I.

Remark 4. If G(x̄, yi, p) =
1
2

pT∇2φ(x̄, yi)p and ρi = 0, ∀ i ∈ S′, then Definition 3 reduces to α-type-I at x̄,
given by [19].

Theorem 1 (Necessary condition). Ifx∗ is an optimal solution of problem (FP) satisfying < w, x >> 0, <

v, x > > 0, and ∇(hj(x∗)+ < uj, x∗ >), j ∈ N(x∗) are linearly independent, then ∃ (s∗, t∗, ȳ∗) ∈
K(x∗), w ∈ Rn, v ∈ Rn and μ∗ ∈ Rm

+ such that

s∗

∑
i=1

t∗i ∇
(

fi(x∗, ȳi)+ < w, x∗ >
gi(x∗, ȳi)− < v, x∗ >

)
+

m

∑
j=1

μ∗j ∇(hj(x∗)+ < uj, x∗ >) = 0, (1)

m

∑
j=1

μ∗j (hj(x∗)+ < uj, x∗ >) = 0, (2)

t∗i > 0, i ∈ S
′∗,

s∗

∑
i=1

t∗i = 1, μ∗j ≥ 0, j ∈ M, (3)

< w, x∗ >= s(x∗|C), < v, x∗ >= s(x∗|D), < uj, x∗ >= s(x∗|Ej). (4)

3. Higher-Order Nondifferentiable Duality Model

The study of higher-order duality is more significant due to the computational advantage over
second- and first-order duality as it provides tighter bounds due to presence of more parameters. In the
present article, we formulate a new type of duality model for a nondifferentiable minimax fractional
programming problem and derive duality theorems under generalized convexity assumptions.
Additionally, we use the concept of support function as a nondifferentiable term. Consider the
following dual (HFD) of the problem (FP):

(HFD) max
(s,t,ȳ) ∈ K(z)

sup
(z,w,v,u,μ,p)∈H(s,t,ȳ)

s

∑
i=1

ti

[
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

]
+

m

∑
i=1

μj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
,
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where H(s, t, ȳ) represents the set of all (z, w, v, u, μ, p) such that

∇
s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+∇

m

∑
j=1

μj(hj(z)+ < uj, z >)

+
s

∑
i=1

ti∇pG(z, ȳi, p) +
m

∑
j=1

μj∇pKj(z, p) = 0, (5)

ti ≥ 0,
s

∑
i=1

ti = 1, μj ≥ 0, i ∈ S′, j ∈ M, (6)

(s, t, ỹ) ∈ K(z). (7)

Let T0 be the feasible set for (HFD).

Theorem 2 (Weak Duality). Let x ∈ S and (z, w, v, μ, s, t, ȳ, p) ∈ T0. Let

(i)
[

f (., ȳi)+ < w, . >
g(., ȳi)− < v, . >

, hj(.)+ < uj, . >
]

, i ∈ S′, j ∈ M be higher-order (V, α, ρ, d)- type -I at z,

(ii)
s

∑
i=1

tiρi +
m

∑
j=1

μjρj ≥ 0.

Then,

sup
y∈Y

(
f (x, y)+ < w, x >

g(x, y)− < v, x >

)
≥

s

∑
i=1

ti

[(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

]

+
m

∑
i=1

μj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
. (8)

Proof. We shall derive the result by assuming contrary to the above inequality. Suppose

sup
y∈Y

(
f (x, y)+ < w, x >

g(x, y)− < v, x >

)
<

s

∑
i=1

ti

[(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

]

+
m

∑
i=1

μj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
.

This implies(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
<

s

∑
i=1

ti

[(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

]

+
m

∑
i=1

μj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
, for all ȳi ∈ Y(x), i ∈ S′. (9)

Further, using ti ≥ 0, i ∈ S′ and
s

∑
i=1

ti = 1, we get

s

∑
i=1

ti

(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
<

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

)

+
m

∑
i=1

μj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
. (10)
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By inequality (7), we obtain

s

∑
i=1

ti

(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
<

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >
+ G(z, ȳi, p)− pT∇pG(z, ȳi, p)

)

+
m

∑
i=1

μj

(
hj(z)+ < uj, z > +Kj(z, p)− pT∇pKj(z, p)

)
. (11)

By hypothesis (i), we get(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
−

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
− G(z, ȳi, p) + pT∇pG(z, ȳi, p)

≥
〈

α(x, z)
{
∇
(

f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+∇pG(z, ȳi, p)

}
, η(x, z)

〉
+ ρid2(x, z), i ∈ S′ (12)

and
−hj(z)+ < uj, z > −Kj(z, p) + pT∇pKj(z, p)

≥
〈

α(x, z)
{
∇(hj(z)+ < uj, z >) +∇pKj(z, p)

}
, η(x, z)

〉
+ ρjd2(x, z), j ∈ M. (13)

Multiplying the first inequality by ti ≥ 0, i ∈ S′ and the second by μj ≥ 0, j ∈ M with
s

∑
i=1

ti = 1,

we get

s

∑
i=1

ti

[(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
−

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
− G(z, ȳi, p) + pT∇pG(z, ȳi, p)

]

≥
〈

α(x, z)
{
∇

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+∇pG(z, ȳi, p)

}
, η(x, z)

〉
+

s

∑
i=1

tiρid2(x, z) (14)

and

−
m

∑
j=1

μj

(
hj(z)+ < uj, z > −Kj(z, p) + pT∇pKj(z, p)

)

≥
〈

α(x, z)
{
∇

m

∑
j=1

μj(hj(z)+ < uj, z >) +∇pKj(z, p)
}

, η(x, z)
〉
+

m

∑
j=1

μjρjd2(x, z). (15)

The above inequalities yield

s

∑
i=1

ti

[(
f (x, ȳi)+ < w, x >

g(x, ȳi)− < v, x >

)
−

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)]
−

m

∑
j=1

μj(hj(z)+ < uj, z >)

−
{ s

∑
i=1

ti

(
G(z, ȳi, p)− pT∇pG(z, ȳi, p)

)
−

m

∑
j=1

μj(Kj(z, p)− pT∇pKj(z, p))
}

≥
〈

α(x, z)
{ s

∑
i=1

ti∇
(

f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+

m

∑
j=1

μj(∇hj(z)+ < uj, z >) +
s

∑
i=1

ti∇pG(z, ȳi, p)

+
m

∑
j=1

μj∇pKj(z, p)
}

, η(x, z)
〉
+

( s

∑
i=1

tiρi +
m

∑
j=1

μjρj

)
d2(x, z).
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The above inequality together with (11), α(x, z) > 0, and hypothesis (ii) yield〈 s

∑
i=1

ti∇
(

f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+

m

∑
j=1

μj∇(hj(z)+ < uj, z >)

+
s

∑
i=1

ti∇pG(z, ȳi, p) +
m

∑
j=1

μj∇pKj(z, p), η(x, z)
〉

< 0, (16)

which contradicts (5). This completes the proof.

Theorem 3 (Strong duality). Suppose the set
{
∇(hj(x∗)+ < uj, x∗ >)

}
j∈N(x∗)

is linearly independent.

Let an optimal solution of (FP) be x∗, further, suppose

G(x∗, ȳ∗i , 0) = ∇p∗G(x∗, ȳ∗i , 0) = 0, i ∈ S
′∗, (17)

Kj(x∗, 0) = ∇p∗Kj(x∗, 0) = 0, j ∈ M. (18)

Then, there exist (s∗, t∗, ȳ∗) ∈ K(x∗) and (x∗, w∗, v∗, u∗, ν∗, s∗, t∗, ȳ∗, p∗) ∈ H(s∗, t∗, ȳ∗) such that
(x∗, w∗, v∗, μ∗, s∗, t∗, ȳ∗, p∗ = 0) ∈ T0 and the objectives have the equal values. Moreover, if all the conditions
of Weak duality theorem hold for any (z, w, v, μ, s, t, ȳ, p) ∈ T0, then (x∗, w∗, v∗, u∗, μ∗, s∗, t∗, ȳ∗, p∗ = 0) is
an optimal solution of (HFD).

Proof. By Theorem 1, ∃ (s∗, t∗, ȳ∗) ∈ K(x∗) such that

s∗

∑
i=1

t∗i ∇
(

f (x∗, ȳi)+ < w, x∗ >
g(x∗, ȳi)− < v, x∗ >

)
+

m

∑
j=1

μ∗j ∇(hj(x∗)+ < uj, x∗ >) = 0, (19)

m

∑
j=1

μ∗j (hj(x∗)+ < uj, x∗ >) = 0, (20)

t∗i ≥ 0, i ∈ S′,
s

∑
i=1

t∗i = 1, μ∗j ≥ 0, j ∈ M, (21)

< w, x∗ >= s(x∗|C), < v, x∗ >= s(x∗|D), < uj, x∗ >= s(x∗|Ej), j ∈ M, (22)

which, from (17) and (18), imply (x∗, w∗, v∗, μ∗, s∗, t∗, ȳ∗, p∗ = 0) ∈ T0 and the problems (FP) and
(HFD) have the same objective value. The point (x∗, w∗, v∗, μ∗, s∗, t∗, ȳ∗, p∗ = 0) is an optimal solution
for (HFD) follows from Theorem 2. This completes the proof.

Theorem 4 (Strict converse duality). Suppose that x∗ and (z∗, w∗, v∗, ν∗, s∗, t∗, ȳ∗, p∗) are the optimal
solutions of (FP) and (HFD), respectively. Let

(i)
[

f (., ȳ∗i )+ < w∗,>
g(., ȳ∗i )− < v∗, . >

, hj(.)+ < u∗j >

]
, i ∈ S′, j ∈ M be higher-order strictly (V, α, ρ, d)- type -I and

the set {∇hj(x∗)+ < u∗j , . >, j ∈ N(x∗)} be linearly independent,

(ii)
s∗

∑
i=1

t∗i ρ∗i +
m

∑
j=1

μ∗j ρ∗j ≥ 0.

Then, z∗ = x∗.
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Proof. Suppose contrary to the result that z∗ �= x∗. From Theorem 3, we have

sup
y∈Y

(
f (x∗, y∗)+ < w∗, x∗ >
g(x∗, y∗)− < v∗, x∗ >

)
≤

s∗

∑
i=1

t∗i
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
i=1

μ∗j (hj(z∗)+ < u∗j , z∗ >

−
s∗

∑
i=1

t∗i
(

G(z∗, ȳ∗i , p∗)− p∗T∇p∗G(z∗, ȳ∗i , p∗)
)
+

m

∑
i=1

μ∗j (Kj(z∗, p∗)− p∗T∇p∗Kj(z∗, p∗)). (23)

Thus, we obtain(
f (x∗, y∗i )+ < w∗, x∗ >
g(x∗, y∗i )− < v∗, x∗ >

)
≤

s∗

∑
i=1

t∗i
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
i=1

μ∗j (hj(z∗)+ < u∗j , z∗ >)

−
s∗

∑
i=1

t∗i
(

G(z∗, ȳ∗i , p∗)− p∗T∇p∗G(z∗, ȳ∗i , p∗)
)
+

m

∑
i=1

μ∗j (Kj(z∗, ȳ∗i , p∗)

−p∗T∇p∗Kj(z∗, ȳ∗i , p∗)), for all ȳ∗i ∈ Y(x∗), i ∈ S
′∗. (24)

Following on the lines of Theorem 2, we get

s∗

∑
i=1

t∗i
(

f (x∗, y∗i )+ < w∗, x∗ >
g(x∗, y∗i )− < v∗, x∗ >

)
≤

s∗

∑
i=1

t∗i
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
i=1

μ∗j (hj(z∗)+ < u∗j , z∗ >)

−
s∗

∑
i=1

t∗i
(

G(z∗, ȳ∗i , p∗)− p∗T∇p∗G(z∗, ȳ∗i , p∗)
)
+

m

∑
i=1

μ∗j (Kj(z∗, p∗)− p∗T∇p∗Kj(z∗, p∗)). (25)

From hypothesis (i), we have(
f (x∗, ȳ∗i )+ < w∗, x∗ >
g(x∗, ȳi)∗− < v∗, x∗ >

)
−

(
f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
− G(z∗, ȳ∗i , p∗) + p∗T∇p∗G(z∗, ȳ∗i , p∗)

>

〈
α(x∗, z∗)

{
∇
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+∇p∗G(z∗, ȳ∗i , p∗)

}
, η(x∗, z∗)

〉
+ ρ∗i d2(x∗, z∗), i ∈ S

′∗

and

−(hj(z∗)+ < u∗j , z∗ >)− Kj(z∗, p∗) + p∗T∇p∗Kj(z∗, p∗)

>

〈
α(x∗, z∗)

{
∇(hj(z∗)+ < u∗j , z∗ >) +∇p∗Kj(z∗, p∗)

}
, η(x∗, z∗)

〉
+ ρ∗j d2(x∗, z∗), j ∈ M.

Multiplying the first inequality by t∗i ≥ 0, i ∈ S′ and the second by μ∗j ≥ 0, j = 1 ∈ M with
s∗

∑
i=1

t∗i = 1, we get

s∗

∑
i=1

t∗i
[

f (x∗, ȳ∗i )+ < w∗, x∗ >
g(x∗, ȳ∗i )− < v∗, x∗ > − f (z∗, ȳ∗i )+ < w∗, z∗ >

g(z∗, ȳ∗i )− < v∗, z∗ >

]
−

s∗

∑
i=1

t∗i
(

G(z∗, ȳ∗i , p∗)

+ p∗T∇p∗G(z∗, ȳ∗i , p∗)
)
>

〈
α(x∗, z∗)

{ s∗

∑
i=1

t∗i ∇
(

f (z∗, ȳ∗i )+ < w∗, x∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)

+
s∗

∑
i=1

t∗i ∇p∗G(z∗, ȳ∗i , p∗)
}

, η(x∗, z∗)
〉
+

s∗

∑
i=1

t∗i ρid2(x∗, z∗) (26)
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and

−
m

∑
j=1

μ∗j (hj(z∗)+ < u∗j , z∗ > −Kj(x∗, p∗) + p∗T∇p∗Kj(z∗, p∗)

>

〈
α(x∗, z∗)

{ m

∑
j=1

μ∗j ∇(hj(z∗)+ < u∗j , z∗ >) +
m

∑
j=1

μ∗j ∇p∗Kj(x∗, p∗)
}

, η(x∗, z∗)
〉
+

m

∑
j=1

μ∗j ρjd2(x∗, z∗). (27)

The above inequalities yield

s∗

∑
i=1

t∗i
[(

f (x∗, ȳ∗i )+ < w∗, x∗ >
g(x∗, ȳ∗i )− < v∗, x∗ >

)
−

(
f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)]
−

m

∑
j=1

μ∗j (hj(z∗)+ < u∗j , z∗ >)

−
m

∑
j=m

μ∗j (Kj(x∗, p∗) − p∗T∇p∗Kj(x∗, p∗)) −
s∗

∑
i=1

t∗i
(

G(z∗, ȳ∗i , p∗) − p∗T∇p∗G(z∗, ȳ∗i , p∗)
)

−
m

∑
j=1

μ∗j
(

hj(z∗)+ < u∗j , z∗ > −Kj(z∗, p∗) + p∗T∇p∗Kj(z∗, p∗)
)

>

〈
α(x∗, z∗)

[ s∗

∑
i=1

t∗i ∇
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
j=1

μ∗j (∇hj(z∗)+ < u∗j , z∗ >)

+

{ s∗

∑
i=1

t∗i ∇p∗G(z∗, ȳ∗i , p∗) +
m

∑
j=1

μ∗j ∇p∗Kj(z∗, p∗)
}]

, η(x∗, z∗)
〉
+

( s

∑
i=1

t∗i ρ∗i +
m

∑
j=1

μ∗j ρ∗j
)

d2(x∗, z∗).

It follows from (11), α(x∗, z∗) > 0, and hypothesis (ii) that

s∗

∑
i=1

t∗i
(

f (x∗, ȳ∗i )+ < w∗, x∗ >
g(x∗, ȳ∗i )− < v∗, x∗ >

)
>

s∗

∑
i=1

t∗i
(

f (z∗, ȳ∗i )+ < w∗, z∗ >
g(z∗, ȳ∗i )− < v∗, z∗ >

)
+

m

∑
j=1

μ∗j (hj(z∗)+ < u∗j , z∗ >)

−
s∗

∑
i=1

t∗i
(

G(z∗, ȳ∗i , p∗) + p∗T∇p∗G(z∗, ȳ∗i , p∗)
)
−

m

∑
j=1

μ∗j
(

Kj(z∗, p∗) + p∗T∇p∗Kj(z∗, p∗)
)

,

which contradicts (25). Hence, z∗ = x∗.

4. Mixed-Type Higher-Order Duality Model

Consider the following higher-order unified dual (HMFD) to (FP):

(HMFD) max
(s,t,ȳ) ∈ K(z)

sup
(z,w,v,μ,p) ∈ H(s,t,ȳ)

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+ ∑

j∈J0

μj(hj(z)+ < uj, z >)

+
s

∑
i=1

ti

(
G(z, ȳi, p)− pT∇pG(z, ȳi, p)

)
+ ∑

j∈J0

μj

(
Kj(z, p)− pT∇pKj(z, p)

)
,

where H(s, t, ȳ) represents the set of all (z, w, υ, , μ, p) such that

∇
s

∑
i=1

ti

(
f (z, ȳi)+ < w, z >

g(z, ȳi)− < v, z >

)
+∇

m

∑
j=1

μj(hj(z)+ < uj, z >)

+
s

∑
i=1

ti∇pG(z, ȳi, p) +
m

∑
j=1

μj∇pKj(z, p) = 0, (28)

∑
j∈Jβ

μj(hj(z)+ < uj, z >) + ∑
j∈Jβ

μj(Kj(z, p)− pT∇pKj(z, p)) ≥ 0, β = 1, 2, ..., r, (29)
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ti ≥ 0,
s

∑
i=1

ti = 1, μj ≥ 0, i ∈ S′, j ∈ M, (30)

where Jβ ⊆ M, β = 0, 1, 2, ..., r with
⋃r

β=0 Jβ = M and Jβ
⋂

Jγ = φ, if β �= γ. Let W0 be the feasible set
for (HMFD).

Theorem 5 (Weak duality). Let x ∈ S and (z, w, v, μ, s, t, ȳ, p) ∈ W0. Let

(i)
[ s

∑
i=1

ti

(
f (., ȳi)+ < w, . >
g(., ȳi)− < v, . >

)
+ ∑

j∈J0

μj(hj(.)+ < uj, . >), ∑
j∈Jβ

μj(hj(.)+ < uj, . >)

]
, β = 1, 2, ..., r be

higher-order pseudoquasi (V, α, ρ, d)-type -I ,

(ii)
s

∑
i=1

tiρi +
m

∑
j=1

μjρj ≥ 0.

Then,

sup
y∈Y

(
f (x, y)+ < w, x >

g(x, y)− < v, x >

)
≥

s

∑
i=1

ti

(
f (z, ȳi)+ < w, z > w
g(z, ȳi)− < v, x >

)
+ ∑

j∈J0

μj(hj(z)+ < uj, z >)

+
s

∑
i=1

ti

(
G(z, ȳi, p)− pT∇pG(z, ȳi, p) + ∑

j∈J0

μj(Kj(z, p)− pT∇pKj(z, p)). (31)

Proof. Proof follows on the lines of Theorem 2.

Theorem 6 (Strong duality). Suppose the set
{
∇(hj(x∗)+ < uj, x∗ >)

}
j∈N(x∗)

is linearly independent.

Let an optimal solution of (FP) be x∗, further, suppose

G(x∗, ȳ∗i , 0) = ∇p∗G(x∗, ȳ∗i , 0) = 0, i ∈ S
′∗, (32)

Kj(x∗, 0) = ∇p∗Kj(x∗, 0) = 0, j ∈ M. (33)

Then, ∃ (s∗, t∗, ȳ∗) ∈ K(x∗) and (x∗, w∗, v∗, u∗, ν∗, s∗, t∗, ȳ∗, p∗) ∈ H(s∗, t∗, ȳ∗) such
that (x∗, w∗, v∗, μ∗, s∗, t∗, ȳ∗, p∗ = 0) ∈ W0 and the two objectives have the equal values.
In addition, if all the conditions of Weak duality theorem hold for any (z, w, v, μ, s, t, u∗, ȳ, p) ∈ W0,
then (x∗, w∗, v∗, μ∗, u∗, s∗, t∗, ȳ∗, p∗ = 0) is an optimal solution of (HMFD).

Proof. The proof can be obtained following the lines of Theorem 3.

Theorem 7 (Strict converse duality). Let x∗ and (z∗, w∗, v∗, ν∗, s∗, u∗, t∗, ȳ∗, p∗) be the optimal solutions of
(FP) and (HMFD), respectively. Let

(i)
[

f (., ȳ∗i )+ < w∗,>
g(., ȳ∗i )− < v∗,>

+ ∑
j∈J0

μ∗j [hj+ < u∗j ,>], ∑
j∈Jβ

μ∗j [hj+ < u∗j ,>]

]
, β = 1, 2, ..., r be higher-order

strictly pseudo (V, α, ρ, d)- type -I and ∇(hj(x∗)+ < u∗j , x∗ >), j ∈ N(x∗) be linearly independent,

(ii)
s∗

∑
i=1

t∗i ρi +
m

∑
j=1

μ∗j ρj ≥ 0.

Then, z∗ = x∗.

Proof. The proof can be derived following the steps of Theorem 4.
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5. Conclusions

In this paper, we discussed higher-order duality theorems for two types of dual models of
nondifferentiable minimax fractional programming problems under strictly pseudo (V, α, ρ, d)-type-I
functions. The question arises as to whether the second/higher-order duality theorems developed in
this paper hold for the complex minimax fractional programming problem. This will orient the future
task of the authors.
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Abstract: In this paper, we introduce the various types of generalized invexities, i.e.,
α f -invex/α f -pseudoinvex and (G, α f )-bonvex/(G, α f )-pseudobonvex functions. Furthermore, we
construct nontrivial numerical examples of (G, α f )-bonvexity/(G, α f )-pseudobonvexity, which is
neither α f -bonvex/α f -pseudobonvex nor α f -invex/α f -pseudoinvex with the same η. Further, we
formulate a pair of second-order non-differentiable symmetric dual models and prove the duality
relations under α f -invex/α f -pseudoinvex and (G, α f )-bonvex/(G, α f )-pseudobonvex assumptions.
Finally, we construct a nontrivial numerical example justifying the weak duality result presented in
the paper.

Keywords: symmetric duality; second-order; non-differentiable; (G, α f )-invexity/(G, α f )-pseudoinvexity;
(G, α f )-bonvexity/(G, α f )-pseudobonvexity

1. Introduction

Decision making is an integral and indispensable part of life. Every day, one has to make decisions
of some type or the other. The decision process is relatively easier when there is a single criterion
or objective in mind. The duality hypothesis in nonlinear writing programs is identified with the
complementary standards of the analytics of varieties. Persuaded by the idea of second-order duality
in nonlinear problems, presented by Mangasarian [1], numerous analysts have likewise worked here.
The benefit of second-order duality is considered over first-order as it gives all the more closer limits.
Hanson [2] in his examination referred to one model that shows the utilization of second-order duality
from a fairly alternate point of view.

Motivated by different ideas of generalized convexity, Ojha [3] formulated the generalized
problem and determined duality theorems. Expanding the idea of [3] by Jayswal [4], a new kind of
problem has been defined and duality results demonstrated under generalized convexity presumptions
over cone requirements. Later on, Jayswal et al. [5] defined higher order duality for multiobjective
problems and set up duality relations utilizing higher order (F, α, ρd)-V-Type I suspicions. As of
late, Suneja et al. [6] utilized the idea of (F, α, σ)-type I capacities to build up K-K-T-type sufficient
optimality conditions for the non-smooth multiobjective fractional programming problem. Many
researchers have done work related to the same area [7–9].

The definition of the G-convex function introduced by Avriel et al. [10], which is a further
generalization of a convex function where G has the properties that it is a real-valued strictly-increasing,
and continuous function. Further, under the assumption of G-invexity, Antczak [11] introduced the
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concept of the G-invex function and derived some optimality conditions for the constrained problem.
In [12], Antczak extended the above notion and proved necessary and sufficient optimality conditions
for Pareto-optimal solutions of a multiobjective programming problem. Moreover, defining G-invexity
for a locally-Lipschitz function by Kang et al. [13], the optimality conditions for a multiobjective
programming are obtained. Recently, Gao [14] introduced a new type of generalized invexity and
derived sufficiency conditions under B − (p, r)− V-Type-I assumptions.

In this article, we develop the meanings of (G, α f )-bonvexity/(G, α f )-pseudo-bonvexity
and give nontrivial numerical examples for such kinds of existing functions. We formulate a
second-order non-differentiable symmetric dual model and demonstrate duality results under
(G, α f )-bonvexity/(G, α f )-pseudobonvexity assumptions. Furthermore, we build different nontrivial
examples, which legitimize the definitions, as well as the weak duality hypothesis introduced in the
paper.

2. Preliminaries and Definitions

Let Rn denote n-dimensional Euclidean space and Rn
+ be its non-negative orthant. Let C1 and C2

be closed convex cones in Rn and Rm, respectively, with nonempty interiors. For a real-valued twice
differentiable function g(x, y) defined on an open set in Rn × Rm, denote by ∇xg(x̄, ȳ) the gradient
vector of g with respect to x at (x̄, ȳ) and ∇xxg(x̄, ȳ) the Hessian matrix with respect to x at (x̄, ȳ).
Similarly, ∇yxg(x̄, ȳ), ∇xyg(x̄, ȳ), and ∇yyg(x̄, ȳ) are also defined.

Let X ⊆ Rn be an open set. Let f : X → R be a differentiable function and G : I f (X) −→ R,
where I f (X) is the range of f such that G is strictly increasing on the range of f , α f : X × X → R+ \ {0}
and η : X × X → Rn.

Definition 1. Let E be a compact convex set in Rn. The support function of E is defined by:

s(y|E) = max{yTz : z ∈ E}.

A support function, being convex and everywhere finite, has a subdifferential, that is there exists a z ∈ Rn such
that:

s(z|E) ≥ s(y|E) + uT(z − y), ∀y ∈ E.

The subdifferential of s(y|E) is given by:

∂s(y|E) = {u ∈ E : uTy = s(y|E)}.

For a convex set F ⊂ Rn, the normal cone to F at a point y ∈ F is defined by:

NF(y) = {z ∈ Rn : zT(u − y) ≤ 0, ∀u ∈ F}.

When E is a compact convex set, z ∈ NE(y) if and only if s(z|E) = yTz or, equivalently, y ∈ ∂s(z|E).

Definition 2. The positive polar cone S∗ of a cone S ⊆ Rs is defined by:

S∗ = {z ∈ Rs : yTz ≥ 0}.

Now, we give the definitions of α f -invex/α f -pseudoinvex and (G, α f )-bonvex/(G, α f )-pseudobonvex functions
with respect to η.

Definition 3. If there exist functions α f : Y × Z → R+ \ {0} and η : Y ×Y → Rn s.t. ∀y ∈ Y,

1
α f (y, v)

[ f (y)− f (v)] ≥ ηT(y, v)∇y f (v),
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then f is called α f -invex at v ∈ Y with respect to η.

Definition 4. If there exists functions α f : Y ×Y → R+ \ {0} and η : Y ×Y → Rn such that ∀y ∈ Y,

ηT(y, v)∇y f (v) ≥ 0 ⇒ 1
α f (y, v)

[ f (y)− f (v)] ≥ 0,

then f is called α f -pseudoinvex at v ∈ Y with respect to η.

Definition 5. f : Y −→ R is (G, α f )-bonvex at v ∈ Y, if there exist G, α f : Y × Y → R+ \ {0} and
η : Y ×Y −→ Rn if ∀(y, p) ∈ Y × Rn,

1
α f (y, v)

[G( f (y))− G( f (v)) +
1
2

pT{G′′( f (v))∇v f (v)(∇v f (v))T + G′( f (v))∇vv f (v)}p]:

≥ ηT(y, v)[G′( f (v))∇v f (v) + {G′′( f (v))∇v f (v)(∇v f (v))T + G′( f (v))∇vv f (v)}p].

Definition 6. f : Y −→ R is (G, α f )-pseudobonvex at v ∈ Y, if there exist G, α f : Y ×Y → R+ \ {0} and
a function η : Y ×Y −→ Rn if ∀(y, p) ∈ Y × Rn,
ηT(y, v)[G′( f (v))∇v f (v) + {G′′( f (v))∇v f (v)(∇v f (v))T + G′( f (v))∇vv f (v)}p] ≥ 0:

=⇒ 1
α f (y, v)

[G( f (y))− G( f (v)) +
1
2

pT{G′′( f (v))∇v f (v)(∇v f (v))T + G′( f (v))∇vv f (v)}p] ≥ 0.

Remark 1. If G(t) = t, then Definitions 5 and 6 become the α f -bonvex/α f -pseudobonvex functions with the
same η.

Now, we present here functions that are (G, α f )-bonvexity/(G, α f )-pseudobonvexity, but neither
α f -bonvex/α f -pseudobonvex nor α f -invex/α f -pseudoinvex with the same η.

Example 1. Let f :
[
− π

3
,

π

3

]
−→ R be defined as

f (y) = y7, ∀ y ∈
[
− π

3
,

π

3

]
.

A function G : R −→ R is defined as:
G(t) = 2t4.

Let η :
[
− π

3
,

π

3

]
×

[
− π

3
,

π

3

]
−→ R be given as:

η(y, v) = y9 + y2v2 + 2yv + 3.

Furthermore, α f : Y ×Y → R+ \ {0} is given by:

α f (y, v) = 2, ∀ y, v ∈
[
− π

3
,

π

3

]
.

To demonstrate that f is (G, α f )-bonvex at v = 0, we need to demonstrate that

ξ =
1

α f (y, v)
[G( f (y))− G( f (v)) +

1
2

pT{G′′( f (v))∇v f (v)(∇v f (v))T + G′( f (v))∇vv f (v)}p]

− ηT(y, v)[G′( f (v))∇v f (v) + {G′′( f (v))(∇v f (v))(∇v f (v))T + G′( f (v))∇vv f (v)}p] ≥ 0.
Putting the estimations of f , α f , η, and G in the above articulation, we get:

ξ = [y28 − v28 + p2{588v26 + 84v26}]− (y9 + y2v2 + 2yv + 3){1176v26 + 168v26}p
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for which at v = 0, we get: ξ ≥ 0, ∀y ∈
[
− π

3
,

π

3

]
,
(

clearly, from Figure 1
)

.

Therefore, f is (G, α f )-bonvex at v = 0 ∈
[
− π

3
,

π

3

]
.

Figure 1. ξ = y28, ∀y ∈ [−π
3 , π

3 ], and ∀ p.

Next, let:

δ =
1

α f (y, v)

[
f (y)− f (v) +

1
2

pT [∇vv f (v)]p
]
− ηT(y, v)[∇v f (v) +∇vv f (v)p]

δ =
1
2
[
y7 − v7 +

7
2

v5(v + 6)p
]− 7u5(y9 + y2v2 + 2yv + 3)(v + 6),

for which at v = 0, the above equation may not be nonnegative ∀ y ∈
[
− π

3
,

π

3

]
(see Figure 2).

Figure 2. δ =
y7

2 , ∀y ∈ [−π
3 , π

3 ], and ∀ p.

Therefore, f is not α f -bonvex at v = 0 ∈
[
− π

3
,

π

3

]
with the same η.
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Finally,

τ =
1

α f (y, v)

[
f (y)− f (v)

]
− ηT(y, v)∇v f (v)

τ =
1
2
[y7 − v7]− 7v6(y9 + y2v2 + 2yv + 3).

Specifically, at point y = −π

3
∈

[
− π

3
,

π

3

]
and at v = 0, we find that:

τ < 0.

This shows that f is not α f -invex with the same η.

Example 2. Let f : [−1, 1] −→ R be defined as:

f (y) = arc(tany).

A function G : R −→ R is defined as:
G(t) = tant.

Let η : [−1, 1]× [−1, 1] −→ R be given as:

η(y, v) = − 1
11

y20 + y + 15y3v3.

Furthermore, α f : Y ×Y → R+ \ {0} is given by:

α f (y, v) = 1, ∀ y, v ∈ [−1, 1].

Now, we have to claim that f is (G, α f )-bonvex at v = 0. For this, we have to prove that

π =
1

α f (y, v)
[G( f (y))− G( f (v)) +

1
2

pT{G′′( f (v))∇v f (v)(∇v f (v))T + G′( f (v))∇vv f (v)}p]

− ηT(y, v)[G′( f (v))∇v f (v) + {G′′( f (v))∇v f (v)(∇v f (v))T

+ G′( f (v))∇vv f (v)}p] ≥ 0.
Substituting the values of f , α f , η, and G in the above expression, we obtain:

π = y − v − (− 1
11

y20 + y + 15y3v3)× 1

Clearly, from Figure 3, π ≥ 0, ∀y ∈ [−1, 1] and v = 0.
Therefore, f is (G, α f )-bonvex at v = 0 with respect to η.
Suppose,

χ =
1

α f (y, v)
[ f (y)− f (v) +

1
2

pT(∇vv f (v)]p)− ηT(y, v)[∇v f (v) +∇vv f (v)p],

χ = arc(tany)− arc(tanv)−
(
− 1

11
y20 + y + 15y3v3

)[
1

1 + v2 −
2vp

(1 + v2)2

]
− vp2

(1 + v2)2

which at v = 0 yields:

χ = arc(tany) +
1
11

y20 − y.

χ < 0, ∀y ∈ [−1, 1]

(from Figure 4).
This implies that f is not α f -bonvex at v = 0 with the same η.
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Figure 3. π = 1
11 y20, ∀y ∈ [−1, 1], and ∀ p.

Figure 4. � = arc(tany) + 1
11 y20 − y, ∀y ∈ [−1, 1], and ∀ p.

Finally,

� =
1

α f (y, v)
[ f (y)− f (v)]− ηT(y, v)∇v f (v)

� = arc(tany)− arc(tanv)−
(
− 1

11
y20 + y + 15y3v3

)(
1

1 + v2

)
� = arc(tany) +

1
11

y20 − y, at the point v = 0.

At the point y = 1 ∈ [− 1, 1
]
, we find that:

� =
π

4
+

1
11

− 1 < 0.

Hence, f is not α f -invex at u = 0 with the same η.
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Example 3. Let f :
[
− π

9
,

π

9

]
−→ R be defined as:

f (y) = y3.

A function G : R −→ R is defined as:

G(t) = t4 + t2 + 9.

Let η :
[
− π

9
,

π

9

]
×

[
− π

9
,

π

9

]
−→ R be given as:

η(y, v) = y4 + yv2 + 2yv2 + 3.

Furthermore, α f : Y ×Y → R+ \ {0} is given by:

α f (y, v) = 9, ∀ y, v ∈
[
− π

9
,

π

9

]
.

Presently, we need to demonstrate that f is (G, α f )-pseudobonvex at v = 0 concerning η. For this, we
have to show that:

Δ1 = ηT(y, v)[G′( f (v))∇v f (v) + {G′( f (v))∇v f (v)(∇v f (v))T + G′( f (v))∇vv f (v)}p].

Putting the estimations of f , η, and G in the above articulation, we get:

Δ1 = (y4 + yv2 + 2yv2 + 3)[3v2(4v9 + 2v3) + {9v4(12v6 + 2) + 6v(4v9 + 2v3)}p]

for which at v = 0, we obtain Δ1 ≥ 0, ∀ v ∈
[
− π

9
,

π

9

]
, ∀ p.

Next, Δ2 =
1

α f (y, v)
[G( f (y))− G( f (v)) +

1
2

pT{G′′( f (v))∇v f (v)(∇v f (v))T

+ G′( f (v))∇vv f (v)}p].
Substituting the estimations of f , α f ,, and G in the above articulation,

Δ2 =
1
9
[(y12 + y6 + 1)− (v12 + v6 + 1) +

p2

2
{9v4(12v6 + 2) + 6v(4v9 + 2v3)}]

for which at v = 0, we obtain Δ2 ≥ 0, ∀ y
[
− π

9
,

π

9

]
, ∀ p. Therefore, f is (G, α f )-pseudobonvex at v = 0.

Next, consider:
Δ3 = ηT(y, v)[∇v f (v) +∇vv f (v)p].

Substituting the values of f , η, and G in the above expression, we obtain:

Δ3 = (y4 + yv2 + 2yv2 + 3)[3v2 + 6vp],

for which at v = 0, we find that Δ3 ≥ 0, ∀ y ∈
[
− π

9
,

π

9

]
, ∀ p.

Next,

Δ4 =
1

α f (y, v)
[ f (y)− f (v) +

1
2

pT∇vv f (v)p].
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Substituting the values of f , α f , and G in the above expression, we obtain:

Δ4 =
1
9
[y3 − v3 + 3vp2],

for which at v = 0, we get Δ4 � 0, ∀ y ∈
[
− π

9
,

π

9

]
. Therefore, f is not α f (y, v)-pseudobonvex at v = 0.

Next, consider:

Δ5 = ηT(y, v)∇u f (u).

Similarly, at v = 0, we find that Δ5 ≥ 0, ∀ y ∈
[
− π

9
,

π

9

]
. Next,

Δ6 =
1

α f (y, v)
[ f (y)− f (v)].

In the same way, at v = 0, we find that,

Δ6 � 0, ∀ y ∈
[
− π

9
,

π

9

]
.

Hence, f is not α f -pseudoinvex at v = 0 ∈
[
− π

9
,

π

9

]
with the same η.

3. Non-Differentiable Second-Order Symmetric Primal-Dual Pair over Arbitrary Cones

In this section, we formulate the following pair of second-order non-differentiable symmetric
dual programs over arbitrary cones:

(NSOP) Minimize W(y, z, r, p) = G( f (y, z)) + s(y|B)− zTr − 1
2

pT [G′′( f (y, z))

∇z f (y, z)(∇z f (y, z))T + G′( f (y, z))∇zz f (y, z)]p
subject to

−[G′( f (y, z))∇z f (y, z)− r + {G′′( f (y, z))∇z f (y, z)(∇z f (y, z))T :

+ G′( f (y, z))∇zz f (y, z)}p] ∈ C∗
2 , (1)

zT [G′( f (y, z))∇z f (y, z)− r + {G′′( f (y, z))∇z f (y, z)(∇z f (y, z))T

+ G′( f (y, z))∇zz f (y, z)}p] ≥ 0, (2)

pT [G′( f (y, z))∇z f (y, z)− r + {G′′( f (y, z))∇z f (y, z)(∇z f (y, z))T

+ G′( f (y, z))∇zz f (y, z)}p] ≥ 0, (3)

y ∈ C1, r ∈ F. (4)

(NSOD) Maximize T(v, w, t, q) = G( f (v, w))− s(w|F) + wTt − 1
2

qT [G′′( f (v, w))

∇v f (v, w)(∇v f (v, w))T + G′( f (v, w))∇vv f (v, w)]q
subject to

[G′( f (v, w))∇v f (v, w) + t + {G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T

+ G′( f (v, w))∇vv f (v, w)}q] ∈ C∗
1 , (5)
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vT [G′( f (v, w))∇v f (v, w) + t + {G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T

+ G′( f (v, w))∇vv f (v, w)}q] ≤ 0, (6)

qT [G′( f (v, w))∇v f (v, w) + t + {G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T

+ G′( f (v, w))∇vv f (v, w)}q] ≤ 0, (7)

w ∈ C2, t ∈ B, (8)

where C∗
1 and C∗

2 are positive polar cones of C1 and C2, respectively. Let P0 and Q0 be feasible solutions
of (NSOP) and (NSOD), respectively.

Theorem 1 (Weak duality theorem). Let (y, z, r, p) ∈ P0 and (v, w, t, q) ∈ Q0. Let:

(i) f (., w) and (.)Tt be (G, α f )-bonvex and α f -invex at v, respectively, with the same η,

(ii) f (y, .) and (.)Tr be (G, α f )-boncave and α f -incave at z, respectively, with the same ξ,

(iii) η(y, v) + v ∈ C1,
(iv) ξ(w, z) + z ∈ C2.

Then,

W(y, z, r, p) ≥ T(v, w, t, q). (9)

Proof. From Hypothesis (iii)and the dual constraint (5), we obtain

(η(y, v) + v + q)T
[

G′( f (v, w))∇v f (v, w) + t + {G′′( f (v, w))∇v f (v, w)

(∇v f (v, w))T + G′( f (v, w))∇vv f (v, w)}q
]
≥ 0.

The above inequality follows

=⇒ ηT(y, v)
[

G′( f (v, w))∇v f (v, w) + t + {G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T +

G′( f (v, w))∇vv f (v, w)}q
]
≥ −(v + q)

[
G′( f (v, w))∇v f (v, w) + t:

+ {G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T + G′ f (v, w)∇vv f (v, w)}q
]

,

which upon using (6) and (7) yields

ηT(y, v)
[

G′( f (v, w))∇v f (v, w) + t + {G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T

+ G′( f (v, w))∇vv f (v, w)}q
]
≥ 0. (10)

Again, from Hypothesis (i), we obtain
1

α f (y, v)
[G( f (y, w))− G( f (v, w)) +

1
2

qT{G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T

+G′( f (v, w))∇vv f (v, w)}q] ≥ ηT(y, v)
[

G′( f (v, w))∇v f (v, w) + {G′′( f (v, w)):

∇v f (v, w)(∇v f (v, w))T + G′( f (v, w))∇vv f (v, w)}q
]
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and:

1
α f (y, v)

[yTt − vTt] ≥ ηT(y, v)t.

Combining the above inequalities, we get
1

α f (y, v)
[G( f (y, w)) + yTt − G( f (v, w))− vTt +

1
2

qT{G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T

+G′( f (v, w))∇vv f (v, w)}q] ≥ ηT(y, v)
[
G′( f (v, w))∇v f (v, w) + t + {G′′( f (v, w))∇v f (v, w):

(∇v f (v, w))T + G′( f (v, w))∇vv f (v, w)}q
]
.

Using Inequality (10), it follows that
1

α f (y, v)
[G( f (y, w)) + yTt − G( f (v, w))− vTt +

1
2

qT{G′′( f (v, w)):

∇v f (v, w)(∇v f (v, w))T + G′( f (v, w))∇vv f (v, w)}q] ≥ 0. (11)

Similarly, using (ii), (iv), and primal constraints, it follows that
1

α f (y, v)
[−G( f (y, w)) + wTr + G( f (y, z))− zTr − 1

2
pT{G′′( f (y, z))∇z f (y, z):

(∇z f (y, z))T + G′( f (y, z))∇zz f (y, z)}p] ≥ 0. (12)

Adding Inequalities (11) and (12), we get
1

α f (y, v)
[G′( f (y, z)) + yTt − zTr − 1

2
pT{G′′( f (y, z))∇z f (y, z)(∇z f (y, z))T

+G′( f (y, z))∇zz f (y, z)}p] ≥ 1
α f (y, v)

[G( f (v, w))− wTr + vTt − 1
2

qT{G′′( f (v, w)):

∇v f (v, w)(∇v f (v, w))T + G′( f (v, w))∇vv f (v, w)}q].

Finally, using the inequalities yTt ≤ s(y|B) and wTr ≤ s(w|F), we have
1

α f (y, v)
[G′( f (y, z)) + s(y|B)− zTr − 1

2
pT{G′′( f (y, z))∇z f (y, z)(∇z f (y, z))T

+G′( f (y, z))∇zz f (y, z)}p] ≥ 1
α f (y, v)

[G( f (v, w))− s(w|F) + vTt:

− 1
2

qT{G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T + G′( f (v, w))∇vv f (v, w)}q].

Since α f ∈ R+ \ {0}, we obtain

[G′( f (y, z)) + s(y|B)− zTr − 1
2

pT{G′′( f (y, z))∇z f (y, z)(∇z f (y, z))T

+G′( f (y, z))∇zz f (y, z)}p] ≥ [G( f (v, w))− s(w|F) + vTt − 1
2

qT{G′′( f (v, w))∇v f (v, w):

(∇v f (v, w))T + G′( f (v, w))∇vv f (v, w)}q].

Hence, the result.

A non-trivial numerical example for legitimization of the weak duality theorem.

Example 4. Let f : Y ×Y −→ R (Y ⊆ R+) be a function given by:

f (y, z) = y5.
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Suppose that G(t) = t4 + 3 and B = {0} = F.
Further, let η, ξ : Y ×Y −→ R be given by:

η(y, v) = y2v2 + y2v + v + 4 and ξ(w, z) = w2z2 + wz2 − z + 9.

Furthermore, α f : Y ×Y → R+ \ {0} and C1 = R+, C2 = R+.
Putting these values in (NSOP) and (NSOD), we get:

(ENSOP) Minimize T( y, z, r, p) = y20 + 3
subject to

[2y3 × 0 + {2× 0 + 2y3 × 0}p] ≤ 0,

z[2y3 × 0 + {2× 0 + 2y3 × 0}p] ≥ 0,

p[2y3 × 0 + {2× 0 + 2y3 × 0}p] ≥ 0,

p ∈ R.

(ENSOD)Maximize W(v, w, t, q) = v20 − 190q2 + 3
subject to

v18[v + 19q] ≥ 0,

v19[v + 19q] ≤ 0,

quv18[v + 19q] ≤ 0,

q ∈ R.

Firstly, we will try to prove that all the hypotheses of the weak duality theorem are satisfied:
(i) f (., w) is (G, α f )-bonvex at v = 0,

1
α f (y,v) [G( f (y, w))−G( f (v, w))+ 1

2 qT [G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T +G′( f (v, w))∇vv f (v, w)]q]

− ηT(y, v)[G′( f (v, w))∇v f (v, w) + {G′′( f (v, w))∇v f (v, w)(∇v f (v, w))T + G′ f (v, w)∇vv f (v, w)}q]
= 1

α f (y,v) [y
20 − v20]− (y2v2 + y2v + v + 4)[20v19 + 380v18q] + 190q2v18

=
y20

α f (y, v)
at v = 0 ∈ Y

≥ 0, ∀ q.
Obviously, (.)Tt is α f -invex at v = 0 ∈ Y.
(ii) f (y, .) is (G, α f )-boncave at z = 0, and we obtain

1
α f (y,v) [G( f (y, v))− G( f (y, z)) + 1

2 pT [G′′( f (y, z))∇z f (y, z)(∇z f (y, z))T + G′( f (y, z))∇zz f (y, z)]p]

− ξT(v, y)[G′( f (y, z))∇z f (y, z) + {G′′( f (y, z))∇z f (y, z)(∇z f (y, z))TG′( f (y, z))(∇zz f (y, z))}p],
= 1

α f (y,v) [(y
20 + 3)− (y20 + 3)]− (w2z2 + wz2 − z + 9)(0),

= 0 at z = 0, ∀p.
Naturally, (.)Tr is α f -invex at z = 0 ∈ Y.
(iii) Obviously, η(y, v) ≥ 0 and ξ(w, z) ≥ 0.
Hence, all the assumptions of Theorem 1 hold.

Verification of the weak duality theorem: Let (y = 2, z = 9, r = 0, p = 1
2 ) ∈ P0 and (v = 0, w =

7, t = 0, q = 1
9 ) ∈ Q0. To validate the result of the weak duality theorem, we have to show that

Ω =

(
G( f (y, z) + s(y|B)− zTr − 1

2 pT [G′( f (y, z))∇z f (y, z)(∇z f (y, z))T + G′( f (y, z))

∇zz f (y, z)]p
)
−

(
G( f (v, w))− s(w|F) + wTt − 1

2 qT [G′( f (v, w))∇v f (v, w)(∇v f (v, w))T

+ G′( f (v, w))∇vv f (v, w)]q
)
≥ 0.
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Substituting the values in the above expression, we obtain:

Ω = (y20 + 3)− (v20 − 190q2 + 3).

At the feasible point, the above expression reduces:

Ω ≥ 0.

Hence, the weak duality theorem is verified.

Remark 2. Since every bonvex function is pseudobonvex, therefore the above weak duality theorem for the
symmetric dual pair (NSOP) and (NSOD) can also be obtained under (G, α f )-pseudobonvex assumptions.

Theorem 2 (Weak duality theorem). Let (y, z, r, p) ∈ P0 and (v, w, t, q) ∈ Q0. Let:

(i) f (., w) be (G, α f )-pseudobonvex and (.)Tt be α f -pseudoinvex at v with the same η,

(ii) f (y, .) be (G, α f )-pseudoboncave and (.)Tr be α f -pseudoinvex at z with the same ξ,

(iii) η(y, v) + v ∈ C1,
(iv) ξ(w, z) + z ∈ C2.

Then,

W(y, z, r, p) ≥ T(v, w, t, q).

Proof. The proof follows on the lines of Theorem 1.

Theorem 3 (Strong duality theorem). Let (ȳ, z̄, r̄, p̄) be an optimum of problem (NSOP). Let:

(i) [G′′( f (ȳ, z̄))∇z f (ȳ, z̄)(∇z f (ȳ, z̄))T + G′( f (ȳ, z̄))∇zz f (ȳ, z̄)] is positive or negative definite,

(ii)
{

G′′( f (ȳ, z̄))∇z f (ȳ, z̄)− r̄ + {G′′( f (ȳ, z̄))∇z f (ȳ, z̄)(∇z f (ȳ, z̄))T + G′( f (ȳ, z̄))

∇zz f (ȳ, z̄)} p̄
}
�= 0,

(iii)
{

p̄T{G′′( f (ȳ, z̄))∇z f (ȳ, z̄)− r̄ + G′′( f (ȳ, z̄))∇z f (ȳ, z̄)(∇z f (ȳ, z̄))T + G′( f (ȳ, z̄))

∇zz f (ȳ, z̄)}
}

= 0.

Then, p̄ = 0, and there exists t̄ ∈ B such that (v̄, w̄, t̄, q̄) is an optimum for the problem (NSOD).

Proof. Since (ȳ, z̄, r̄, p̄) is an efficient solution of (NSOD), therefore by the conditions in [15], such that

(y − ȳ)T
{

α[G′( f (ȳ, z̄))∇y f (ȳ, z̄) + t̄ − 1
2 pT∇y{G′( f (ȳ, z̄))∇z( f (ȳ, z̄))∇z( f (ȳ, z̄))T

+G′′( f (ȳ, z̄))∇zz f (ȳ, z̄)p}] + (β − γz̄T − δ p̄T)∇y[G′( f (ȳ, z̄))∇y f (ȳ, z̄) + {G′( f (ȳ, z̄)):

∇z( f (ȳ, z̄))(∇z f (ȳ, z̄))T + G′′( f (ȳ, z̄))∇zz f (ȳ, z̄)}]
}
≥ 0, ∀ y ∈ C1, (13)

α[G′( f (ȳ, z̄))∇z f (ȳ, z̄)− r̄ − 1
2 pT∇z{G′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z f (ȳ, z̄))T

+G′′( f (ȳ, z̄))∇zz f (ȳ, z̄)}p] + (β − γz̄T − δ p̄T)[G′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z f (ȳ, z̄))T

+G′′( f (ȳ, z̄))∇zz f (ȳ, z̄) +∇z{G′′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z f (ȳ, z̄))T

+ G′′( f (ȳ, z̄))∇zz f (ȳ, z̄)}]− γ[G′( f (ȳ, z̄))∇z( f (ȳ, z̄))− r̄ + {G′′( f (ȳ, z̄)):

∇z( f (ȳ, z̄))(∇z f (ȳ, z̄))T + G′′( f (ȳ, z̄))∇zz f (ȳ, z̄)} p̄] = 0, (14)
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(β − α p̄ − γz̄T − δ p̄T)[G′′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z( f (ȳ, z̄)))T + G′( f (ȳ, z̄))
∇zz f (ȳ, z̄)]− δ[G′( f (ȳ, z̄))∇z( f (ȳ, z̄))− r̄ + {G′′( f (ȳ, z̄)):

∇z f (ȳ, z̄)(∇z f (ȳ, z̄))T + G′( f (ȳ, z̄))∇zz f (ȳ, z̄)} p̄]− η = 0, (15)

β[G′( f (ȳ, z̄))∇z( f (ȳ, z̄))− r̄ + {G′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z( f (ȳ, z̄)))T :

+G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))} p̄] = 0, (16)

γz̄T [G( f (ȳ, z̄))∇z( f (ȳ, z̄))− r̄ + {G′( f (ȳ, z̄))(∇z( f (ȳ, z̄)))(∇z( f (ȳ, z̄)))T :

+G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))} p̄] = 0, (17)

δ p̄T [G′( f (ȳ, z̄))∇z( f (ȳ, z̄))− r̄ + {G′( f (ȳ, z̄))(∇z( f (ȳ, z̄)))(∇z( f (ȳ, z̄)))T :

+G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))} p̄] = 0, (18)

(α − γ)z + β − δp ∈ ND(t), (19)

tTȳ = s(y|B), (20)

t̄ ∈ B̄, r̄ ∈ F̄, (21)

(α, β, γ, δ) �= 0, (22)

(α, β, γ, δ) ≥ 0. (23)

Premultiplying Equation (15) by (β − α p̄ − γz̄ − δ p̄) and using (16)–(18), we get
(β − α p̄ − γz̄ − δ p̄)[G′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z( f (ȳ, z̄)))T

+ G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))](β − α p̄ − γz̄ − δ p̄) = 0.
Using Hypothesis (i), we get:

β = α p̄ + γz̄ + δ p̄. (24)

From Equation (15) and Hypothesis (ii), we obtain:

δ = 0. (25)

Now, suppose α = 0. Then, Equation (14) and Hypothesis (ii) yield γ = 0, which along with
Equations (24) and (25) gives β = 0. Thus, (α, β, γ, δ) = 0, a contradiction to Equation (22). Hence,
from (23):

α > 0. (26)

Using Equations (16)–(18), we have
(β − γz̄T − δ p̄T)[G′( f (ȳ, z̄))∇z( f (ȳ, z̄))− r̄ + {G′( f (ȳ, z̄))∇z( f (ȳ, z̄)):

(∇z( f (ȳ, z̄)))T + G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))} p̄] = 0, (27)

139



Mathematics 2019, 7, 763

and now, Equation (24) gives
α p̄T [G′( f (ȳ, z̄))∇z( f (ȳ, z̄))− r̄ + {G′( f (ȳ, z̄))∇z( f (ȳ, z̄)):

(∇z( f (ȳ, z̄)))T + G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))} p̄] = 0, (28)

which along with Hypothesis (iii) yields:

p̄ = 0. (29)

Therefore, the equation:

β = γz̄. (30)

Furthermore, it follows from Equations (14), (24), and (29) and Hypotheses (ii)and (iv) that:

α − γ = 0.

As α > 0, we get:

α = γ > 0. (31)

Therefore, Equation (30) gives:

z̄ =
β

γ
≥ 0. (32)

Moreover, Equation (13) together with (24) and using p̄ = 0 yields
(y − ȳ)T [G′( f (ȳ, z̄))∇y( f (ȳ, z̄))− r̄ + {G′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z( f (ȳ, z̄)))T :

+G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))} p̄] ≥ 0, ∀ y ∈ C1. (33)

Let y ∈ C1. Then, y + ȳ ∈ C1, as C1 is a closed convex cone. Upon substituting y + ȳ in place of y
in (33), we get
yT [G′( f (ȳ, z̄))∇y( f (ȳ, z̄))− r̄ + {G′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z( f (ȳ, z̄)))T :

+G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))} p̄] ≥ 0, (34)

which in turn implies that for all y ∈ C1, we obtain
[G′( f (ȳ, z̄))∇y( f (ȳ, z̄))− r̄ + {G′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z( f (ȳ, z̄)))T :

+G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))} p̄] ∈ C1. (35)

Furthermore, by letting y = 0 and y = 2ȳ, simultaneously in (33), this yields
ȳT [G′( f (ȳ, z̄))∇y( f (ȳ, z̄))− r̄ + {G′( f (ȳ, z̄))∇z( f (ȳ, z̄))(∇z( f (ȳ, z̄)))T :

+G′′( f (ȳ, z̄))∇zz( f (ȳ, z̄))} p̄] ≥ 0. (36)

Using Inequality (31), we get:

z̄ =
β

γ
∈ C2. (37)

Thus, (ȳ, z̄, p̄ = 0) satisfies the dual constraints.
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Now, using Equations (30) and (31), we obtain:

G′( f (ȳ, z̄))∇z f (ȳ, z̄) = z̄T t̄. (38)

Furthermore, α > 0, then we obtain z̄ ∈ ND(t̄). Furthermore, D is a compact convex set.

z̄T t̄ = s(z̄|D). (39)

Thus, after using (20), (29), (38) and (39), we get that the values of the objective functions of
(NSOP) and (NSOD) at (ȳ, z̄, r̄, p̄ = 0) and (ȳ, z̄, r̄, q̄ = 0) are the same. By using duality Theorems 1
and 2, it is easily shown that (ȳ, z̄, r̄, q̄ = 0) is an optimal solution of (NSOD).

Theorem 4 (Strict converse duality theorem). Let (v̄, w̄, t̄, q̄) be an optimum of problem (NSOD). Let:

(i) [G′′( f (v̄, w̄))∇v f (v̄, w̄)(∇v f (v̄, w̄))T + G′( f (v̄, w̄))∇vv f (v̄, w̄)] is positive or negative definite,

(ii)
{

G′′( f (v̄, w̄))∇v f (v̄, w̄) + t̄ + {G′′( f (v̄, w̄))∇v f (v̄, w̄)(∇v f (v̄, w̄))T + G′( f (v̄, w̄))

∇vv f (v̄, w̄)}q̄
}
�= 0,

(iii)
{

q̄T{G′′( f (v̄, w̄))∇v f (v̄, w̄) + t̄ + G′′( f (v̄, w̄))∇v f (v̄, w̄)(∇v f (v̄, w̄))T

+G′( f (v̄, w̄))∇vv f (v̄, w̄)}
}

= 0.

Then, q̄ = 0, and there exists r̄ ∈ B such that (ȳ, z̄, r̄, p̄) is an optimum for the problem (NSOP).

Proof. The proof follows on the lines of Theorem 3.

4. Conclusions

In this paper, we considered a new type of non-differentiable second-order symmetric
programming problem over arbitrary cones and derived duality theorems under generalized
assumptions. The present work can further be extended to non-differentiable higher order fractional
programming problems over arbitrary cones. This will orient the future task of the authors.
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Abstract: In this paper, Thiele–Newton’s blending expansion of a bivariate function is firstly
suggested by means of combining Thiele’s continued fraction in one variable with Taylor’s polynomial
expansion in another variable. Then, the Viscovatov-like algorithm is given for the computations of
the coefficients of this rational expansion. Finally, a numerical experiment is presented to illustrate
the practicability of the suggested algorithm. Henceforth, the Viscovatov-like algorithm has been
considered as the imperative generalization to find out the coefficients of Thiele–Newton’s blending
expansion of a bivariate function.

Keywords: bivariate function; divided difference; inverse difference; blending difference; continued
fraction; Thiele–Newton’s expansion; Viscovatov-like algorithm

1. Introduction

The interpolation and expansion of a function are two of the oldest and most interesting
branches in both computational mathematics and approximation theory. Most often, they have
a natural link with their corresponding algorithms, such as Newton’s interpolatory formula and
its divided-difference algorithm, Thiele’s interpolating continued fraction and its inverse-difference
algorithm, Thiele’s expansion of a univariate function and its Viscovatov’s algorithm, and so on.
For the function f being a univariate function, such problems have been extensively investigated,
and abundant research results have been achieved. Some surveys and a complete literature
for the problems in single variable interpolation and expansion can be found in Cheney [1],
Hildebrand [2], Davis [3], Alfio et al. [4], Gautschi [5], Burden et al. [6], and the references therein.
However, in comparison to the broad research and application of the univariate interpolation and
expansion problems, much less attention has been paid to the problems associated with multivariate
interpolation and expansion, and the study of multivariate rational interpolation and expansion is
even less. However, fortunately, there exists some literature discussing the multivariate rational
interpolation and expansion problems. We mention the works of Baker et al. [7,8], Kuchminskaya [9],
Skorobogatko [10], Siemaszko [11], Viscovatov [12], Graves-Morris [13], Cuyt and Verdonk [14–17],
Möller [18], Zhu et al. [19], Gu et al. [20,21], Tan et al. [22–28], and the references therein for results
concerning the multivariate rational interpolation and expansion.

Skorobogatko applied the idea of the branch to the continued fraction from about the 1960s to
the 1980s, which ushered in a new era of the research on the theories and methods of the continued
fraction [10]. In 1983, the concept of the Thiele-type interpolation by the continued fraction in one
variable was generalized to the multivariate case by Siemaszko [11], and the Thiele-type branched
continued fractions were obtained and an algorithm for the computation of the limiting case of
branched continued fractions for bivariable functions suggested. Furthermore, in the 1980s, based
on the so-called symmetric branched continued fraction, Cuyt et al. [14–16] introduced a symmetric
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interpolation scheme and studied the expansion of a bivariate function by using this method and
technique. By following the prior works, in 1995, Zhu et al. [19,22] discussed the vector-valued rational
interpolants by branched continued fractions. In 1997, Gu et al. [20,21] investigated the problem
about matrix-valued rational interpolants. In the meantime, Tan et al. engaged in studying bivariate
rational interpolants and obtained tremendous scholarly achievements in this field [22–28]. In 2007,
Tan summarized the research results concerning the theory of the continued fraction and published
the famous book The Theory of Continued Fractions and Their Applications. This book has played an
important role in promoting some modern research about the continued fraction. Furthermore, there
are a few works and references about the application of the continued fraction in image processing,
such as the literature of Hu and Tan [29,30], Li et al. [31].

As we all know, Taylor’s expansion of a function is likely to be the best known and most
widely-used formula for the function approximation problem. If f is a function of a univariate
x and the derivatives of all orders are uniformly bounded in a neighborhood �(ξ), then for each x in
�(ξ), f (x) can be expanded into the following Taylor’s formula about ξ:

f (x) = C0 + C1(x − ξ) + C2(x − ξ)2 + · · ·+ Ck(x − ξ)k + · · · ,

where Ck =
1
k! f (k)(ξ), k = 0, 1, 2, . . .. On the other hand, the function f (x) can also be expanded about

ξ in terms of the continued fraction, which is in the form of the following:

f (x) = d0 +
x − ξ

d1
+

x − ξ

d2
+ · · ·+ x − ξ

dn
+ · · · ,

where dk ∈ R, k = 0, 1, 2, . . .. Here, the above formula is called Thiele’s expansion for f (x) about ξ.
There is a famous algorithm to compute the coefficients d0, d1, d2, . . . , of Thiele’s expansion, which is
called Viscovatov’s algorithm. We can see the references [16,28].

Motivated by the results concerning the univariate function, in this paper, we consider the rational
expansion by Thiele’s continued fraction of a bivariate function and give a Viscovatov-like algorithm
for the computations of the coefficients. As a preliminary to our discussions, Thiele–Newton’s
interpolation needs to be introduced first. In the works [25,28], the so-called Thiele–Newton’s
interpolation was suggested to construct bivariate interpolants by Tan et al. Its main idea is to combine
Thiele’s interpolating continued fraction in one variable with Newton’s interpolating polynomial in
another variable to hybridize a new interpolation, which is defined as below:

TNm,n(x, y) = t0(y) +
x − x0

t1(y)
+

x − x1

t2(y)
+ · · ·+ x − xm−1

tm(y)
, (1)

where:

ti(y) =ϕTN [x0, · · · , xi; y0] + (y − y0)ϕTN [x0, · · · , xi; y0, y1]

+ · · ·+ (y − y0)(y − y1) · · · (y − yn−1)ϕTN [x0, · · · , xi; y0, · · · , yn] (2)

for i = 0, 1, . . . , m, both X = {xi|i ∈ N} and Y = {yj|j ∈ N} are two sets of points belonging to
R, and ϕTN [x0, · · · , xi; y0, · · · , yj] denotes the blending difference of the function f (x, y) at points
x0, . . . , xi; y0, . . . , yj. Suppose that any blending difference ϕTN [x0, · · · , xi; y0, · · · , yj] exists. Then,
one can easily confirm that:

TNm,n(xi, yj) = f (xi, yj), i = 0, 1, . . . , m; j = 0, 1, . . . , n.

The limiting case of Thiele’s interpolating continued fraction expansion of a univariate function
has been discussed in the literature [26]. With the inspiration of the limiting case, Thiele–Newton’s
expansion of a bivariate function is yielded when all the points in sets X = {xi|i ∈ N} and Y = {yj|j ∈
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N} are coincident with certain points ξ and ζ, respectively, from Equations (1) and (2), or in other
words, a bivariate function f (x, y) has Thiele–Newton’s expansion of the following form:

f (x, y) = l0(y) +
x − ξ

l1(y)
+

x − ξ

l2(y)
+ · · ·+ x − ξ

lm(y)
, (3)

where:

li(y) = ai,0 + ai,1(y − ζ) + ai,2(y − ζ)2 + ai,3(y − ζ)3 + · · · (4)

for all i ∈ N. Therefore, there exists a question about how to calculate the unknowns ai,j, i =

0, 1, 2, . . . , j = 0, 1, 2, . . ., in Equation (4).
The aim of this paper is to find an algorithm for the computations of the coefficients of

Thiele–Newton’s expansion of a bivariate function. The paper is organized as follows. In Section 2,
we briefly recall some preliminaries for Thiele’s continued fraction and Thiele–Newton’s blending
interpolation. In Section 3, we suggest Thiele–Newton’s blending rational expansion and prove the
Viscovatov-like algorithm. In Section 4, numerical examples are given to illustrate the application
of the Viscovatov-like algorithm. Throughout the paper, we let N and R stand for the set of natural
numbers and the set of real numbers, respectively.

2. Preliminaries

In this section, we briefly review some basic definitions and results for Thiele’s continued fraction,
Thiele’s expansion of a univariate function, and blending interpolation. Some surveys and complete
literature about the continued fraction could be found in Cuyt et al. [14–16], Zhu et al. [19], Gu
et al. [20,21], and Tan et al. [25,26,28].

Definition 1. Assume that G is a subset of the complex plane and X = {xi|i ∈ N} is a set of points belonging
to G. Suppose, in addition, that f (x) is a function defined on G. Let:

f [xi] = f (xi), i ∈ N,

f [xi, xj] =
f [xi]− f [xj]

xi − xj
,

f [xi, xj, xk] =
f [xi, xk]− f [xi, xj]

xk − xj

and:

f [xi, . . . , xj, xk, xl ] =
f [xi, . . . , xj, xl ]− f [xi, . . . , xj, xk]

xl − xk
.

Then, f [xi, . . . , xj, xk] is called the divided difference of f (x) with respect to points xi, . . . , xj, xk.

Definition 2. Assume that G is a subset of the complex plane and X = {xi|i ∈ N} is a set of points in G.
Suppose, in addition, that f (x) is a function defined on G. We let:

ρ[xi] = f (xi), i ∈ N,

ρ[xi, xj] =
xi − xj

ρ[xi]− ρ[xj]
,

ρ[xi, xj, xk] =
xk − xj

ρ[xi, xk]− ρ[xi, xj]
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and:

ρ[xi, . . . , xj, xk, xl ] =
xl − xk

ρ[xi, . . . , xj, xl ]− ρ[xi, . . . , xj, xk]
.

Then, ρ[xi, . . . , xj, xk] is called the inverse difference of f (x) with respect to points xi, . . . , xj, xk.

Definition 3. Assume that G is a subset of the complex plane and X = {xi|i ∈ N} ⊆ G is a set of points.
In addition, let f (x) be a function defined on G, and let:

Rn(x) = ρ[x0] +
x − x0

ρ[x0, x1]
+ · · ·+ x − xn−1

ρ[x0, x1, . . . , xn]
, (5)

where ρ[x0, x1, . . . , xi], i = 0, 1, 2, . . . , n, is the inverse difference of f (x) with respect to points x0, x1, . . . , xi.
Then, Rn(x) is called Thiele’s interpolating continued fraction of order n. It is easy to verify that the rational
function satisfies the following conditions:

Rn(xi) = f (xi), i = 0, 1, 2, . . . , n.

When all the points in the set X = {xi|i ∈ N} are coincident with a certain point ξ ∈ G, Thiele’s
expansion of a univariate function f (x) at x = ξ is obtained as follows:

f (x) = d0 +
x − ξ

d1
+

x − ξ

d2
+ · · ·+ x − ξ

dn
+ · · · , (6)

where dk ∈ R, k = 0, 1, 2, . . .. Moreover, if f (x) is a function with derivatives of all orders in a
neighborhood �(ξ), then Taylor’s expansion of the function f (x) at x = ξ is denoted as below:

f (x) =
∞

∑
n=0

C(0)
n (x − ξ)n,

where C(0)
n = 1

n! f (n)(ξ), n = 0, 1, 2, . . . A famous method, called Viscovatov’s algorithm (see [16,28]),
is available for the computations of the coefficients d0, d1, d2, . . . , of Thiele’s expansion, which is
formulated as follows.

Algorithm 1. Viscovatov’s algorithm to calculate the coefficients d0, d1, d2, . . . :

C(0)
i = f (i)(ξ)/i!, i = 0, 1, 2, . . . ,

d0 = C(0)
0 ,

d1 = 1/C(0)
1 ,

C(1)
i = −C(0)

i+1/C(0)
1 , i � 1,

dl = C(l−2)
1 /C(l−1)

1 , l � 2,

C(l)
i = C(l−2)

i+1 − dlC
(l−1)
i+1 , i � 1, l � 2.

Remark 1. Clearly, by applying Viscovatov’s algorithm, we can carry out computations step by step for the
coefficients d0, d1, d2, . . ..

In [25,28], the method known as Thiele–Newton’s blending interpolation was suggested to
construct bivariate interpolants by Tan et al. Before the method can be introduced, we recall the
definition concerning the blending difference.
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Definition 4. Assume that Πm,n = Xm × Yn, where Xm = {xi|i = 0, 1, 2, . . . , m} ⊂ [a, b] ⊂ R and
Yn = {yj|j = 0, 1, 2, . . . , n} ⊂ [c, d] ⊂ R are two sets of points. Suppose that f (x, y) is a function of two
variables defined on D = [a, b]× [c, d]. Let:

ϕTN [xi; yj] = f (xi, yj), (xi, yj) ∈ D,

ϕTN [xi; yp, yq] =
ϕTN [xi; yq]− ϕTN [xi; yp]

yq − yp
,

ϕTN [xi; yp, . . . , yq, yr, ys] =
ϕTN [xi; yp, . . . , yq, ys]− ϕTN [xi; yp, . . . , yq, yr]

ys − yr
,

ϕTN [xi, xj; yp] =
xj − xi

ϕTN [xj; yp]− ϕTN [xi; yp]
,

ϕTN [xi, . . . , xj, xk, xl ; yp] =
xl − xk

ϕTN [xi, . . . , xj, xl ; yp]− ϕTN [xi, . . . , xj, xk; yp]

and:

ϕTN [xi, . . . , xl ; yp, . . . , yq, yr, ys] =
ϕTN [xi, . . . , xl ; yp, . . . , yq, ys]− ϕTN [xi, . . . , xl ; yp, . . . , yq, yr]

ys − yr
.

Then, ϕTN [x0, . . . , xi; y0, . . . , yj] is called Thiele–Newton’s blending difference of f (x, y) with respect to
the set of points Πi,j.

Remark 2. From Definition 4, it is easy to see that the first recurrence relations on Thiele–Newton’s blending
difference ϕTN [x0, . . . , xi; y0, . . . , yj] are just the inverse difference of f (x, y) with respect to the variable x, and
the second recurrence relations are only the divided difference of f (x, y) with respect to the variable y.

Next, recall Thiele–Newton’s interpolation TNm,n(x, y), as shown in Equations (1) and (2). In
order to calculate this rational interpolation, we need to utilize the following algorithm whose main
operation is matrix transformations (see [23,28]).

Algorithm 2. Four main steps for the algorithm to calculate Thiele–Newton’s interpolation are as follows:

• Step 1: Initialization. For i = 0, 1, . . . , m; j = 0, 1, . . . , n, let f (0,0)
i,j = f (xi, yj). Define the

following initial information matrix:

M0 =

⎡⎢⎢⎢⎢⎣
f (0,0)
0,0 f (0,0)

1,0 · · · f (0,0)
m,0

f (0,0)
0,1 f (0,0)

1,1 · · · f (0,0)
m,1

...
...

. . .
...

f (0,0)
0,n f (0,0)

1,n · · · f (0,0)
m,n

⎤⎥⎥⎥⎥⎦ .

• Step 2: Thiele’s recursion along the X-axis. For j = 0, 1, . . . , n; p = 1, 2, . . . , m; i = p, p +

1, . . . , m, compute:

f (p,0)
i,j =

xi − xp−1

f (p−1,0)
i,j − f (p−1,0)

p−1,j
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and construct the following information matrix:

M1 =

⎡⎢⎢⎢⎢⎣
f (0,0)
0,0 f (1,0)

1,0 · · · f (m,0)
m,0

f (0,0)
0,1 f (1,0)

1,1 · · · f (m,0)
m,1

...
...

. . .
...

f (0,0)
0,n f (1,0)

1,n · · · f (m,0)
m,n

⎤⎥⎥⎥⎥⎦ .

• Step 3: Newton’s recursion along the Y-axis. For i = 0, 1, . . . , m; q = 1, 2, . . . , n; j = q, q +

1, . . . , n, compute:

f (i,q)i,j =
f (i,q−1)
i,j − f (i,q−1)

i,q−1

yj − yq−1

and construct the following information matrix:

M2 =

⎡⎢⎢⎢⎢⎣
f (0,0)
0,0 f (1,0)

1,0 · · · f (m,0)
m,0

f (0,1)
0,1 f (1,1)

1,1 · · · f (m,1)
m,1

...
...

. . .
...

f (0,n)
0,n f (1,n)

1,n · · · f (m,n)
m,n

⎤⎥⎥⎥⎥⎦ .

• Step 4: Establish Thiele–Newton’s interpolation. For i = 0, 1, . . . , m, let:

ti,n(y) = f (i,0)i,0 + (y − y0) f (i,1)i,1 + · · ·+ (y − y0)(y − y1) · · · (y − yn−1) f (i,n)i,n .

Then, Thiele–Newton’s interpolation is established as follows:

TNm,n(x, y) = t0,n(y) +
x − x0

t1,n(y)
+

x − x1

t2,n(y)
+ · · ·+ x − xm−1

tm,n(y)
,

which satisfies:

TNm,n(xi, yj) = f (xi, yj)

for i = 0, 1, . . . , m; j = 0, 1, . . . , n.

Remark 3. Obviously, for any i ∈ {0, 1, . . . , m}, by using the elements f (i,j)i,j , j = 0, 1, . . . , n, in the (i + 1)th
column of the information matrix M2, Newton’s interpolating polynomial ti,n(y) with respect to the variable y
can be constructed.

3. Thiele–Newton’s Blending Expansion and the Viscovatov-Like Algorithm

In this section, our main objective is to expound on Thiele–Newton’s blending rational
expansion of a bivariate function and show the Viscovatov-like algorithm that finds the coefficients of
Thiele–Newton’s expansion.

3.1. Thiele–Newton’s Blending Expansion

Definition 5. Assume that Π = X × Y with Π ⊂ D = [a, b]× [c, d], where X = {xi|i = 0, 1, 2, . . .} ⊂
[a, b] ⊂ R and Y = {yj|j = 0, 1, 2, . . .} ⊂ [c, d] ⊂ R are two sets of points. Suppose, in addition, that the point
(ξ, ζ) ∈ D and f (x, y) is a bivariate function defined on D. Let all the points in the set X = {xi|i = 0, 1, 2, . . .}
and Y = {yj|j = 0, 1, 2, . . .} be coincident with the given points ξ and ζ, respectively. Then, Thiele–Newton’s
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interpolation TNm,n(x, y) of a bivariate function f (x, y) defined in Section 2 turns into Thiele–Newton’s
blending expansion of the bivariate function f (x, y) as shown below:

f (x, y) = d0(y) +
x − ξ

d1(y)
+

x − ξ

d2(y)
+

x − ξ

d3(y)
+ · · · , (7)

where:

di(y) = ai,0 + ai,1(y − ζ) + ai,2(y − ζ)2 + ai,3(y − ζ)3 + · · · (8)

for any i ∈ N.

Obviously, a main topic for further discussion is how to calculate the coefficients di(y), i =

0, 1, 2, . . ., in Equation (7), or in other words, how to compute the coefficients ai,j, i = 0, 1, 2, . . . ; j =
0, 1, 2, . . . , in Equation (8). In order to handle the problem that we are facing in the bivariate case, we
introduce the following algorithm.

3.2. Viscovatov-Like Algorithm

Suppose that f (x, y) is a bivariate function of two variables x and y. If y is held constant, say
y = ζ, then f (x, ζ) is a function of the single variable x. Likewise, f (ξ, y) is also a function of the single
variable y when x is regarded as a constant, i.e., x = ξ. We use the notation: Dm

x f (x, y) denotes the
m-order partial derivative of f (x, y) with respect to x. Similarly, the n-order partial derivative of f (x, y)
with respect to y is denoted by Dn

y f (x, y). Furthermore, Dm
x f (ξ, ζ) and Dn

y f (ξ, ζ) denote the values of
Dm

x f (x, y) and Dn
y f (x, y) about the point (x, y) = (ξ, ζ), respectively. Let:

C(0)
k (y) =

1
k!

Dk
x f (ξ, y), k = 0, 1, 2, . . . .

Then, the bivariate function f (x, y) can be expanded formally about the point ξ as follows:

f (x, y) = C(0)
0 (y) + C(0)

1 (y)(x − ξ) + · · ·+ C(0)
k (y)(x − ξ)k + · · · . (9)

From Equations (7)–(9), we give the Viscovatov-like algorithm, which finds out the coefficients of
Thiele–Newton’s expansion di(y), i = 0, 1, 2, . . . , and ai,j, i = 0, 1, 2, . . . ; j = 0, 1, 2, . . ., as described by
the following algorithm.

Algorithm 3. Viscovatov-like algorithm to calculate the coefficients di(y), i = 0, 1, 2, . . . , and ai,j, i =

0, 1, 2, . . . ; j = 0, 1, 2, . . .:

C(0)
i (y) = Di

x f (ξ, y)/i!, i = 0, 1, 2, . . . ,

d0(y) = C(0)
0 (y) = f (ξ, y),

d1(y) = 1/C(0)
1 (y),

C(1)
i (y) = −C(0)

i+1(y)/C(0)
1 (y), i � 1,

dl(y) = C(l−2)
1 (y)/C(l−1)

1 (y), l � 2,

C(l)
i (y) = C(l−2)

i+1 (y)− dl(y)C
(l−1)
i+1 (y), i � 1, l � 2,

ai,j = Dj
ydi(ζ)/j!, i = 0, 1, 2, . . . ; j = 0, 1, 2, . . . .

Proof of Algorithm 3. First, we compute the coefficients d0(y) and d1(y). Considering the two
expansions (7) and (9), we have:

C(0)
0 (y) + C(0)

1 (y)(x − ξ) + C(0)
2 (y)(x − ξ)2 + · · · = d0(y) +

x − ξ

d1(y)
+

x − ξ

d2(y)
+

x − ξ

d3(y)
+ · · · . (10)

149



Mathematics 2019, 7, 696

Letting x = ξ, from Equation (10), one can clearly get:

d0(y) = C(0)
0 (y). (11)

Combining Equation (11) with Equation (10), we have:

d1(y) +
x − ξ

d2(y)
+

x − ξ

d3(y)
+ · · · = 1

C(0)
1 (y) + C(0)

2 (y)(x − ξ) + C(0)
3 (y)(x − ξ)2 + · · ·

. (12)

Let x = ξ in Equation (12). Then, we can easily obtain:

d1(y) =
1

C(0)
1 (y)

. (13)

Next, by mathematical induction, we shall prove that the following equation:

dl(y) =
C(l−2)

1 (y)

C(l−1)
1 (y)

(14)

is true for all l � 2.
When l = 2, we shall verify that Equation (14) holds. Substituting Equation (13) into Equation (12),

we have:

x − ξ

d2(y)
+

x − ξ

d3(y)
+ · · · = 1

C(0)
1 (y)

[
1 + C(0)

2 (y)

C(0)
1 (y)

(x − ξ) +
C(0)

3 (y)

C(0)
1 (y)

(x − ξ)2 + · · ·
] − 1

C(0)
1 (y)

=−
C(0)

2 (y)

C(0)
1 (y)

(x − ξ) +
C(0)

3 (y)

C(0)
1 (y)

(x − ξ)2 + · · ·

C(0)
1 (y) + C(0)

2 (y)(x − ξ) + C(0)
3 (y)(x − ξ)2 + · · ·

, (15)

which implies that:

d2(y) +
x − ξ

d3(y)
+

x − ξ

d4(y)
+ · · · = C(0)

1 (y) + C(0)
2 (y)(x − ξ) + C(0)

3 (y)(x − ξ)2 + · · ·
−C(0)

2 (y)

C(0)
1 (y)

− C(0)
3 (y)

C(0)
1 (y)

(x − ξ)− C(0)
4 (y)

C(0)
1 (y)

(x − ξ)2 − · · ·
. (16)

Let:

C(1)
i (y) = −C(0)

i+1(y)

C(0)
1 (y)

, i = 1, 2, 3, . . . . (17)

Then, it follows from the identity (16) that:

d2(y) +
x − ξ

d3(y)
+

x − ξ

d4(y)
+ · · · = C(0)

1 (y) + C(0)
2 (y)(x − ξ) + C(0)

3 (y)(x − ξ)2 + · · ·
C(1)

1 (y) + C(1)
2 (y)(x − ξ) + C(1)

3 (y)(x − ξ)2 + · · ·
. (18)

Using x = ξ in Equation (18) yields:

d2(y) =
C(0)

1 (y)

C(1)
1 (y)

, (19)

which implies that Equation (14) is true for l = 2.
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When l � 3, assume that Equation (14) holds for any l = n, n = 3, 4, . . .. Then, let us prove that
Equation (14) is also true for l = n + 1.

By assumption, we have the following equation:

dn(y) =
C(n−2)

1 (y)

C(n−1)
1 (y)

(20)

holds.
Referring to Equation (18), we assume that the following equation:

dn(y) +
x − ξ

dn+1(y)
+

x − ξ

dn+2(y)
+ · · · = C(n−2)

1 (y) + C(n−2)
2 (y)(x − ξ) + C(n−2)

3 (y)(x − ξ)2 + · · ·
C(n−1)

1 (y) + C(n−1)
2 (y)(x − ξ) + C(n−1)

3 (y)(x − ξ)2 + · · ·
(21)

is true, where:

C(k)
i (y) = C(k−2)

i+1 (y)− dk(y)C
(k−1)
i+1 (y), k = n − 2, n − 1; n ≥ 2; i = 1, 2, 3, . . . . (22)

Combining Equation (20) with Equation (21), one has:

x − ξ

dn+1(y)
+

x − ξ

dn+2(y)
+ · · ·

=
C(n−2)

1 (y) + C(n−2)
2 (y)(x − ξ) + C(n−2)

3 (y)(x − ξ)2 + · · ·
C(n−1)

1 (y)
[

1 + C(n−1)
2 (y)

C(n−1)
1 (y)

(x − ξ) +
C(n−1)

3 (y)

C(n−1)
1 (y)

(x − ξ)2 + · · ·
] − C(n−2)

1 (y)

C(n−1)
1 (y)

=

(
C(n−2)

2 (y)− dn(y)C
(n−1)
2 (y)

)
(x − ξ) +

(
C(n−2)

3 (y)− dn(y)C
(n−1)
3 (y)

)
(x − ξ)2 + · · ·

C(n−1)
1 (y) + C(n−1)

2 (y)(x − ξ) + C(n−1)
3 (y)(x − ξ)2 + · · ·

. (23)

Let:

C(n)
i (y) = C(n−2)

i+1 (y)− dn(y)C
(n−1)
i+1 (y), i = 1, 2, 3, . . . . (24)

Then, Equation (23) is rewritten as follows:

dn+1(y) +
x−ξ

dn+2(y)
+ x−ξ

dn+3(y)
+ · · · = C(n−1)

1 (y)+C(n−1)
2 (y)(x−ξ)+C(n−1)

3 (y)(x−ξ)2+···
C(n)

1 (y)+C(n)
2 (y)(x−ξ)+C(n)

3 (y)(x−ξ)2+···
, (25)

Using the above Equation (25) with x = ξ produces:

dn+1(y) =
C(n−1)

1 (y)

C(n)
1 (y)

, (26)

which means that Equation (14) holds for l = n + 1.
As is shown above, Equation (14) is true by mathematical induction for all l � 2. Meanwhile, we

show that Equation (24) is also true for any l = n, n � 2.
Moreover, by differentiating Equation (8) j times with respect to the variable y, one has:

Dj
ydi(y) = ai,j j! + ai,j+1

(j + 1)!
1!

(y − ζ) + ai,j+2
(j + 2)!

2!
(y − ζ)2 + · · · . (27)
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Notice y = ζ, from Equation (27), and we immediately obtain:

ai,j =
Dj

ydi(ζ)

j!
(28)

for i ∈ N and j ∈ N.
Therefore, associating Equation (28) with Equations (11), (13), (14), (17), and (24), we have shown

the desired conclusion denoted by Algorithm 3. This completes the proof.

4. Numerical Experiments

In the section, we give the results of numerical experiments to compare the efficiency of
Thiele–Newton’s blending expansion (7) with series expansion of bivariate functions.

For |x| < 1, |y| < 1 and x �= y, given the following two test functions:

f1(x, y) =
1

y − x
[ln (1− x)− ln (1− y)] (29)

and:

f2(x, y) =
x2

(1− x)(x − y)2 +
y2

(1− y)(x − y)2 +
2xy [ln (1− x)− ln (1− y)]

(x − y)3 , (30)

where ln(z) gives the natural logarithm of z (logarithm to base e). We shall discuss Thiele–Newton’s
blending expansions of Equations (29) and (30), respectively.

First of all, let us consider Thiele–Newton’s blending expansion of the bivariate function f1(x, y)
defined by Equation (29) at the point (ξ, ζ) = (0, 0). Therefore, using the Viscovatov-like algorithm, we
can obtain the coefficient using the notation a f1

i,j of Thiele–Newton’s expansion of f1(x, y). Some values

of a f1
i,j , i = 0, 1, 2, . . . , m, . . . ; j = 0, 1, 2, . . . , n, . . . , are shown in Table 1.

Table 1. The coefficients a f1
i,j of Thiele–Newton’s expansion of f1(x, y) given by Equation (29).

a f1

i,j j = 0 j = 1 j = 2 j = 3 j = 4 · · ·

i = 0 1 1
2

1
3

1
4

1
5 · · ·

i = 1 2 − 4
3 − 1

9 − 8
135 − 31

810 · · ·
i = 2 − 3

4 − 7
16 − 293

960 − 299
1280 − 33869

179200 · · ·
i = 3 16 − 88

15 − 191
225 − 10264

23625 − 194491
708750 · · ·

...
...

...
...

...
...

. . .

Thus, Thiele–Newton’s blending expansion of f1(x, y) at (ξ, ζ) = (0, 0) is denoted in the form:

f1(x, y) = R f1(x, y) =1 +
1
2

y +
1
3

y2 +
1
4

y3 +
1
5

y4 + · · ·

+
x

2− 4
3 y − 1

9 y2 − 8
135 y3 − 31

810 y4 + · · ·

+
x

− 3
4 − 7

16 y − 293
960 y2 − 299

1280 y3 − 33869
179200 y4 + · · ·

+
x

16− 88
15 y − 191

225 y2 − 10264
23625 y3 − 194491

708750 y4 + · · ·+ · · · . (31)
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For m = 2, n = 3, taking into account the truncated Thiele–Newton’s blending expansion
R f1

m,n(x, y) of R f1(x, y) expressed by the above Equation (31), one can have:

R f1
2,3(x, y) = 1 +

y
2
+

y2

3
+

y3

4
+

x
2− 4

3 y − 1
9 y2 − 8

135 y3 − x
3
4+

7
16 y+ 293

960 y2+ 299
1280 y3

. (32)

On the other hand, the bivariate function f1(x, y) defined by Equation (29) can be expanded at
the point (ξ, ζ) = (0, 0) by means of the Appell series F1 f1(a, b, c; d; x, y) denoted for |x| < 1, |y| < 1
and x �= y by the following bivariate series (see [17]):

F1 f1(a, b, c; d; x, y) =
∞

∑
i,j=0

(a)i+j(b)i(c)j

(d)i+ji!j!
xiyj, (33)

where a = b = c = 1, d = 2, and the Pochhammer symbol (τ)k represents the rising factorial:

(τ)k = τ(τ + 1)(τ + 2) · · · (τ + k − 1) (34)

for any τ ∈ R+ (see [17,32]). In particular, (1)0 = 1, (1)k = k!, (2)k = (k + 1)!.
For Equation (33), the following polynomial:

F1 f1
m,n(a, b, c; d; x, y) =

m

∑
i=0

n

∑
j=0

(a)i+j(b)i(c)j

(d)i+ji!j!
xiyj (35)

is defined as the (m, n)-order truncated Appell series, where m ∈ N and n ∈ N.
By Equations (33)–(35), we have:

f1(x, y) = F1 f1(1, 1, 1; 2; x, y) =
∞

∑
i,j=0

1
i + j + 1

xiyj (36)

and for m = 2, n = 3, the (2, 3)-order truncated Appell series is given by:

F1 f1
2,3(1, 1, 1; 2; x, y) = 1 +

x
2
+

x2

3
+

y
2
+

xy
3

+
x2y
4

+
y2

3
+

xy2

4
+

x2y2

5
+

y3

4
+

xy3

5
+

x2y3

6
. (37)

Second, performing similar operations for the bivariate function f2(x, y) defined by Equation (30),
this gives the coefficient of Thiele–Newton’s expansion, which is denoted by the notation a f2

i,j . Some

values of a f2
i,j , i = 0, 1, 2, . . . , m, . . . ; j = 0, 1, 2, . . . , n, . . . , are listed in Table 2.

Table 2. The coefficients a f2
i,j of Thiele–Newton’s expansion of f2(x, y) given by Equation (30).

a f2

i,j j = 0 j = 1 j = 2 j = 3 j = 4 · · ·

i = 0 1 1 1 1 1 · · ·
i = 1 1 − 4

3
5

18
4

135
17

1620 · · ·
i = 2 −1 − 7

6 − 221
180 − 151

120 − 10721
8400 · · ·

...
...

...
...

...
...

. . .
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Therefore, according to the values of a f2
i,j , i = 0, 1, 2, . . . , ; j = 0, 1, 2, . . . , in Table 2,

the Thiele–Newton’s blending expansion of f2(x, y) at (ξ, ζ) = (0, 0) can be written as:

f2(x, y) = R f2(x, y) =1 + y + y2 + y3 + y4 + · · ·
+

x
1− 4

3 y + 5
18 y2 + 4

135 y3 + 17
1620 y4 + · · ·

+
x

−1− 7
6 y − 221

180 y2 − 151
120 y3 − 10721

8400 y4 + · · ·+ · · · . (38)

The corresponding truncated Thiele–Newton’s blending expansion R f2
2,3(x, y) of R f2(x, y) is:

R f2
2,3(x, y) = 1 + y + y2 + y3 +

x
1− 4

3 y + 5
18 y2 + 4

135 y3 − x
1+ 7

6 y+ 221
180 y2+ 151

120 y3

. (39)

By a similar technique, consider the Appell series for the bivariate function f2(x, y) expanded
about the point (ξ, ζ) = (0, 0),

F1 f2(1, 2, 2; 2; x, y) =
∞

∑
i,j=0

(1)i+j(2)i(2)j

(2)i+ji!j!
xiyj =

∞

∑
i,j=0

(i + 1)(j + 1)
i + j + 1

xiyj. (40)

The (2, 3)-order truncated Appell series for f2(x, y) is:

F1 f2
2,3(1, 2, 2; 2; x, y) = 1 + x + x2 + y +

4
3

xy +
3
2

x2y + y2 +
3
2

xy2 +
9
5

x2y2 + y3 +
8
5

xy3 + 2x2y3. (41)

Considering the errors, we let:

e fk
2,3 = fk(x, y)− R fk

2,3(x, y) (42)

and:

E fk
2,3 = fk(x, y)− F1 fk

2,3(a, b, c; d; x, y) (43)

for k = 1, 2.
Table 3 lists various values of (x, y), together with the values of the bivariate function f1(x, y),

the truncated Thiele–Newton’s blending expansion R f1
2,3(x, y), and the truncated Appell series

F1 f1
2,3(1, 1, 1; 2; x, y). Furthermore, for comparison purposes, the values of errors e f1

2,3 and E f1
2,3 are

given in this table. It can be seen from Table 3 that the error e f1
2,3 using the truncated Thiele–Newton’s

blending expansion R f1
2,3(x, y) is less than when using the truncated Appell series F1 f1

2,3(1, 1, 1; 2; x, y),

which gives the error E f1
2,3. Similarly, displayed in Table 4 are the numerical results for the bivariate

function f2(x, y) defined by Equation (30). Thus, these results illustrate that the approximation by the
truncated Thiele–Newton’s blending expansion is clearly superior in the two test examples.
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Table 3. Comparison of the numerical results by using R f1
2,3(x, y) and F1 f1

2,3(1, 1, 1; 2; x, y).

(x, y) f1(x, y) R f1

2,3(x, y) e f1

2,3 F1
f1

2,3(1, 1, 1; 2; x, y) E f1

2,3

(0.6,0.5) 2.231435513142 2.175811138576 5.56244× 10−2 2.007583333333 2.23852× 10−1

(0.5,0.4) 1.823215567940 1.801574172062 2.16414× 10−2 1.731400000000 9.18156× 10−2

(0.4,0.3) 1.541506798273 1.534197264544 7.30953× 10−3 1.506843333333 3.46635× 10−2

(0.3,0.2) 1.335313926245 1.333336425463 1.97750× 10−3 1.324153333333 1.11606× 10−2

(0.2,0.1) 1.177830356564 1.177455592535 3.74764× 10−4 1.175210000000 2.62036× 10−3

(0.09,0.1) 1.104983618659 1.104936257854 4.73608× 10−5 1.104746383333 2.37235× 10−4

(0.08,0.09) 1.092907053219 1.092875387558 3.16657× 10−5 1.092744392933 1.62660× 10−4

(0.07,0.08) 1.081091610422 1.081071421327 2.01891× 10−5 1.080985191467 1.06419× 10−4

(0.05,0.06) 1.058210933054 1.058204252599 6.68046× 10−6 1.058173883333 3.70497× 10−5

(0.06,0.05) 1.058210933054 1.058202709844 8.22321× 10−6 1.058150458333 6.04747× 10−5

(0.04,0.05) 1.047129986730 1.047126709307 3.27742× 10−6 1.047111416666 1.85701× 10−5

(0.05,0.04) 1.047129986730 1.047125552862 4.43387× 10−6 1.047095800000 3.41867× 10−5

(0.03,0.02) 1.025650016719 1.025649181797 8.34922× 10−7 1.025642954533 7.06219× 10−6

(0.02,0.03) 1.025650016719 1.025649615899 4.00820× 10−7 1.025647765133 2.25159× 10−6

(0.02,0.01) 1.015237146402 1.015236912398 2.34003× 10−7 1.015235095400 2.05100× 10−6

(0.01,0.02) 1.015237146402 1.015237085235 6.11671× 10−8 1.015236857467 2.88935× 10−7

Table 4. Comparison of the numerical results by using R f2
2,3(x, y) and F1 f2

2,3(1, 2, 2; 2; x, y).

(x, y) f2(x, y) R f2

2,3(x, y) e f2

2,3 F1
f2

2,3(1, 2, 2; 2; x, y) E f2

2,3

(0.4,0.3) 2.527646365268 2.541958340395 −1.43120× 10−2 2.314840000000 2.12806× 10−1

(0.3,0.2) 1.833375742200 1.834880020667 −1.50428× 10−3 1.774760000000 5.86157× 10−2

(0.2,0.1) 1.399789684856 1.399902542529 −1.12858× 10−4 1.387786666667 1.20030× 10−2

(0.09,0.1) 1.225048763570 1.225046790051 1.97352× 10−6 1.223971000000 1.07776× 10−3

(0.08,0.09) 1.197590738753 1.197589594868 1.14389× 10−6 1.196860955200 7.29784× 10−4

(0.07,0.08) 1.171129067101 1.171128457172 6.09930× 10−7 1.170657476267 4.71591× 10−4

(0.06,0.07) 1.145615802753 1.145615507616 2.95138× 10−7 1.145329149600 2.86653× 10−4

(0.05,0.06) 1.121005830888 1.121005702793 1.28095× 10−7 1.120845560000 1.60271× 10−4

(0.06,0.05) 1.121005830888 1.121006469601 −6.38713× 10−7 1.120749100000 2.56731× 10−4

(0.04,0.05) 1.097256671169 1.097256621117 5.00525× 10−8 1.097177266667 7.94045× 10−5

(0.05,0.04) 1.097256671169 1.097256985627 −3.14458× 10−7 1.097113306667 1.43365× 10−4

(0.03,0.02) 1.052182967898 1.052183005275 −3.73770× 10−8 1.052154046400 2.89215× 10−5

(0.02,0.03) 1.052182967898 1.052182961331 6.56692× 10−9 1.052173533600 9.43430× 10−6

(0.02,0.01) 1.030785077555 1.030785083180 −5.62544× 10−9 1.030776771467 8.30609× 10−6

(0.01,0.02) 1.030785077555 1.030785075750 1.80440× 10−9 1.030783868267 1.20929× 10−6

5. Conclusions

From Section 3 in the paper, it is clear to see that we generalized Thiele’s expansion of a
univariate function to the bivariate case. Thus, we obtained a rational approximation method,
say Thiele–Newton’s blending expansion of a bivariate function. Furthermore, we suggested the
Viscovatov-like algorithm, which calculates the coefficients of Thiele–Newton’s expansion and
gave the proof of this algorithm. Finally, the application of the Viscovatov-like algorithm was
given. Numerical experiments and comparisons were presented in Tables 3 and 4, showing that
Thiele–Newton’s blending expansion performed much better approximation than the polynomial
expansion. Moreover, the next step in the research work is the consideration of a vector case by a
similar technique.
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1. Introduction

Solving nonlinear equations h(x) = 0, where function h(x) is defined as h : Ω ⊆ R → R in an
open interval Ω, is a delightful and demanding task in many applied scientific branches, such as
Mathematical Biology, Physics, Chemistry, Economics, and also Engineering, to name a few [1–4].
This is mainly because problems from these areas usually include needing to find the root of a
nonlinear equation. The huge value of this subject has led to the development of many numerical
methods, with most of them having an iterative nature (see [5–7]). With the advanced technology
of computer hardware and the latest software, the topic of solving nonlinear equations by using
numerical methods has gained additional significance. Researchers are utilizing iterative methods for
approximating the solution, since closed-form solutions cannot be obtained in general. In particular,
here we consider iterative methods to compute a multiple root (say, α) with multiplicity m ≥ 1,
i.e., h(k)(α) = 0, k = 0, 1, 2, ..., m − 1 and h(m)(α) �= 0, of the equation h(x) = 0.

There are a plethora of methods of an iterative nature with a different order of convergence,
constructed to approximate the zeros of Equation h(x) = 0 (see [8–18]). The computational efficiency
index is a very effective mechanism, defined by Ostrowski in [19] which categorizes the iterative
algorithms in the form of their convergence order pc and the function evaluations d required per
iteration. It is formulated as I = p1/d

c . The higher the computational efficiency index of an iterative
scheme, the better the scheme is.

This idea becomes more rigid with Kung-Traub’s conjecture [20], which imposes an upper bound
for the convergence order to be limited with fixed functional evaluations. According to this conjecture,
an iterative scheme which requires a d number of function evaluations can attain the convergence
order pc = 2d−1. The iterative methods which obey Kung-Traub’s conjecture are optimal in nature.
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The most basic and widely used method is the well-known modified Newton’s method:

xn+1 = xn − m
h(xn)

h′(xn)
∀ n = 0, 1, 2, . . . .. (1)

This method can efficiently find the required zero of multiplicity, m with a quadratic order of
convergence, provided that the initial approximate x0 is sufficiently nearer to zero [8]. In Traub’s
terminology (see [2]), Newton’s method (1) is called the one-point method. This classical method
attracts many researchers because of its huge applications in several kinds of problems, which are
formulated as non-linear equations, differential equations, integral equations, systems of non-linear
algebraic equations, and even to random operator equations. However, a common issue and main
obstacle in the use of Newton’s method is its sensitivity to initial guesses, which must be sufficiently
nearer to the exact solution for assured convergence. Developing a criterion for selecting these initial
guesses is quite difficult, and therefore, a more effective iterative technique that is globally-convergent
is yet to be discovered. Some other important higher order methods that are based on Newton’s
method (1) have been developed in [11,13,14,21–28].

Recently, Chicharro et al. [28] used the weight function technique to design a class of optimal
second-order one-point iterative methods for simple roots, including Newton’s method. In this paper,
we have applied this technique for the development of a class of optimal second-order one-point
methods for multiple roots. The new proposed family contains the modified Newton’s method and
many other efficient methods. These methods exist when particular weight functions are selected.
Therefore, with a wide range of initial approximations, we can select those methods from the family
which are able to converge towards exact zero, when Newton’s method does not.

The rest of the paper is organized as follows. In Section 2, the technique of the second-order
method is developed and its convergence is studied. In Section 3, the basins of attractors are studied
to check the stability of the methods. Numerical experiments on different equations are performed
in Section 4 to demonstrate the applicability and efficiency of the presented methods. We finish the
manuscript with some valuable conclusions in Section 5.

2. The Method

For a known multiplicity m ≥ 1, we consider the following one–step scheme for multiple roots:

xn+1 = xn − G(νn), (2)

where the function G(νn) : C → C is differentiable in a neighborhood of “0” with νn = h(xn)
h′(xn)

.
In the next result, we prove a theorem for the order of convergence of the scheme (2).

Theorem 1. Let f : C → C be a differentiable function in a region in which a multiple zero (say, α) with
multiplicity m lies. Suppose that the initial approximate x0 is sufficiently close to α—then, the iteration scheme
defined by (2) has a second-order of convergence, provided that G(0) = 0, G′(0) = m, and |G′′(0)| < ∞,
and the error is

en+1 =
(2mC1 − G′′(0)

2m2

)
e2

n + O(e3
n), (3)

where en = xn − α and Ck =
m!

(m + k)!
f (m+k)(α)

f (m)(α)
for k ∈ N.

Proof. Let the error at the n-th iteration be en = xn − α. Using the Taylor’s expansion of f (xn) and
f ′(xn) about α, we have that

f (xn) =
f (m)(α)

m!
em

n

(
1 + C1en + C2e2

n + C3e3
n + O(e4

n)
)

. (4)
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and

f ′(xn) =
f (m)(α)

m!
em−1

n

(
m + (m + 1)C1en + (m + 2)C2e2

n + (m + 3)C3e3
n + O(e4

n)
)

. (5)

By using (4) and (5), we obtained

νn =
en

m
− C1

m
e2

n +
(1 + m)− 2mC1

m3 e3
n + O(e4

n).

If we write the expansion-of-weight function G(νn) about the origin by using the Taylor series, then
we have that

G(νn) ≈ G(0) + νG′(0) + 1
2

ν2G′′(0). (6)

By employing the expression (6) in the scheme (2), we were able to obtain the error equation

en+1 = − G(0) +
(

1− G′(0)
m

)
en −

(−2C1G′(0) + G′′(0)
2m2

)
e2

n + O(e3
n). (7)

To obtain the second-order of convergence, the constant term and coefficient of en in (7) should
simultaneously be equal to zero. This is possible when G(0) and G′(0) have the following values:

G(0) = 0, G′(0) = m. (8)

By using the above values in (7), the error equation becomes

en+1 =
(2mC1 − G′′(0)

2m2

)
e2

n + O(e3
n). (9)

Hence, the second-order convergence is established.

Some Particular Forms of G(νn)

We were able to obtain numerous methods of the family (2) based on the form of function G(ν)

that satisfies the conditions of Theorem 1. However, we limited the choices to consider only some
simple functions. Accordingly, the following simple forms were chosen:

(1) G(νn) = mνn(1 + a1νn) (2) G(νn) =
mνn

1+a2νn
(3) G(νn) =

mνn
1+a3mνn

, (4) G(νn) = m(eνn − 1)

(5) G(νn) = m log[νn + 1] (6) G(νn) = m sin νn (7) G(νn) =
νn

( 1√
m +a4νn)2 (8) G(νn) =

ν2
n+νn

1
m +a5νn

,

where a1, a2, a3, a4 and a5 are arbitrary constants.
The corresponding methods to each of the above forms are defined as follows:

Method 1 (M1):
xn+1 = xn − mνn(1 + a1νn).

Method 2 (M2):
xn+1 = xn − mνn

1 + a2νn
.

Method 3 (M3):
xn+1 = xn − mνn

1 + a3mνn
.

Method 4 (M4):
xn+1 = xn − m(eνn − 1).

Method 5 (M5):
xn+1 = xn − m log(νn + 1).

Method 6 (M6):
xn+1 = xn − m sin νn.
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Method 7 (M7):
xn+1 = xn − νn

( 1√
m + a4νn)2

.

Method 8 (M8):

xn+1 = xn − ν2
n + νn

1
m + a5νn

.

Remark 1. The scheme (2) shows a one-point family of second-order methods which needs only two function
evaluations—namely, h(xn) and h′(xn).

Remark 2. Note that the modified Newton’s method (1) is the special case of the above methods—M1, M2,
M3, and M7—if the corresponding constants a1, a2, a3, and a4 become zero.

3. Complex Dynamics of Methods

Our goal here is to check the complex dynamics of new methods with the help of a graphical tool,
the basins of attraction, of the zeros for a polynomial P(z) in the Argand plane. The nature of the basins of
attraction provides important ideas about the stability and convergence of iterative methods. This idea
was initially introduced by Vrscay and Gilbert [29]. In recent times, most researchers have been using
this concept in their work—see, for example [30,31]. We consider the special cases corresponding to
G(vn) of (2) to analyze the basins of attraction.

The starting approximate z0 is taken in a region of rectangular shape R ∈ C that contains all the
zeros of P(z). A method, when it starts from point z0 in a rectangle, either converges to zero, P(z), or
eventually diverges. Therefore, the stopping criterion is 10−3 up to a number of 25 iterations.

To show complex geometry, we checked the basins of attraction of the methods M1–M8 on the
following four polynomials:

Problem 1. In this problem, we took the polynomial P1(z) = (z2 + 4)2, which has zeros {±2i} with a
multiplicity of 2. We used a mesh of 400× 400 points in a rectangular frame D ∈ C of area [−2, 2]× [−2, 2],
and gave the color green for "2i" and red for "−2i". Each initial point from the green region converges towards
"2i", and from the red region it converges to "−2i". Basins obtained for the methods M1–M8 are shown in
Figure 1. Analyzing the behavior of the methods, we see that the methods M5 and M6 possess lesser numbers of
divergent points, followed by M1, M4, M8, and M2. On the contrary, the method M3 has a higher number of
divergent points, followed by M7.

Problem 2. Let us consider the polynomial P2(z) = (z3 − z)3 having zeros {0,±1} with a multiplicity of 3.
To see the dynamical structure, we considered a rectangular frame D = [−2, 2]× [−2, 2] ∈ C with 400 × 400
mesh points, and gave the colors red, green, and blue to each point in the basins of attraction of −1, 0, and 1,
respectively. Basins obtained for the methods M1–M8 are shown in Figure 2. Analyzing the behavior of the
methods, we observe that the methods M5 and M6 have wider convergence regions, followed by M1, M4, M8,
M2, M3, and M7.
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Figure 1. Basins of attraction of M1–M8 for polynomial P1(z).
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Figure 2. Basins of attraction of M1–M8 for polynomial P2(z).

Problem 3. Next, consider the polynomial P3(z) = (z4 − 6z2 + 8)2 that has four zeros {±2,±1.414 . . .} with
a multiplicity of 2. To view attraction basins, we considered a rectangular frame D = [−2, 2]× [−2, 2] ∈ C
with 400 × 400 mesh points and assigned the colors red, blue, green, and yellow to each point in the basin of
−2, −1.414, . . ., 1.414 . . ., and 2, respectively. Basins obtained for the methods M1–M8 are shown in Figure 3.
Observing the behavior of the methods, we see that the methods M5, M8, M2, M3, M4, M1, and M6 possess a
lesser number of divergent points, and therefore, they show good convergence. On the contrary, the method M7
has a higher number of divergent points.
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Figure 3. Basins of attraction of M1–M8 for polynomial P3(z).

Problem 4. Lastly, we consider the polynomial P4(z) = z6 − 1
2 z5 + 11

4 (1 + i)z4 − 1
4 (19 + 3i)z3 + 1

4 (11 +

5i)z2 − 1
4 (11+ i)z+ 3

2 − 3i that has six simple zeros {1,−1+ 2i,− 1
2 − i

2 , i,− 3i
2 , 1− i}. To view the attraction

basins, we considered a rectangle D = [−2, 2]× [−2, 2] ∈ C with 300 × 300 grid points, and assigned the
colors red, green, yellow, blue, cyan, and purple to each point in the basin of 1, −1 + 2i, − 1

2 − 1
2 i, i, − 3

2 i, and
1 − i, respectively. Basins obtained for the methods M1–M8 are shown in Figure 4. Analyzing the basins of
the methods, we observe that the methods M5, M8, M2, M3, M4, and M6 possess a lesser number of divergent
points. On the contrary, the methods M1 and M7 have a higher number of divergent points.
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Figure 4. Basins of attraction of M1–M8 for polynomial P4(z).

From the graphics of the basins, we can give the judgment on the behavior and suitability of any
method in the applications. In the event that we pick an initial point z0 in a zone where various basins
of attraction contact one another, it is difficult to anticipate which root will be achieved by the iterative
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technique that begins in z0. Subsequently, the choice of z0 in such a zone is anything but a decent
one. Both the dark zones and the zones with various colors are not appropriate for choosing z0 when
we need to obtain a specific root. The most appealing pictures showed up when we had extremely
intricate borders between basins of attraction. These borders correspond to the cases where the method
is more demanding with respect to the initial point.

4. Numerical Results

In this section, we demonstrate the efficiency, effectiveness, and convergence behavior of the
family of new methods by applying them to some practical problems. In this view, we take the special
cases M1–M8 of the proposed class and choose (a1 = 1/10), (a2 = 1/4), (a3 = 1/10), (a4 = 1/10),
and (a5 = 1/5) in the numerical work.

As we know that the constants a1, a2, a3, a4 and a5 are arbitrary, there is no particular reason for
choosing these values for the constants, and we chose the values randomly. The proposed methods are
compared with the existing modified Newton Method (1), also known as MNM.

To verify the theoretical results, we calculate the computational order of convergence (COC) by
using the formula (see [32])

COC =
log |(xn+1 − α)/(xn − α)|
log |(xn − α)/(xn−1 − α)| .

The computational work was performed in the programming software, Mathematica, by using
multiple-precision arithmetic. Numerical results displayed in Tables 1–4 include: (i) the number
of approximations (n) required to converge to the solution such that |xn+1 − xn|+ | f (xn)| < 10−100,
(ii) values of the last three consecutive errors |en| = |xn+1 − xn|, (iii) residual error | f (xn)|, and (iv)
computational order of convergence (COC).

For testing, we chose four test problems as follows:

Example 1 (Eigenvalue problem). Eigen value problem is a difficult problem when characteristic polynomial
involves a huge square matrix. Finding the zeros of characteristic equation of a square matrix with order more
than 4 can even be a challenging task. So, we think about accompanying 9 × 9 matrix

M =
1
8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 0 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The characteristic polynomial of the matrix (M) is given as

h1(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3

+ 6993x2 − 24732x + 12960.

This function has one multiple zero α = 3 with a multiplicity of 4. We chose initial approximations
x0 = 2.75 and obtained the numerical results as shown in Table 1.
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Table 1. Comparison of performance of methods for Example 1.

Methods n |en−2| |en−1| |en| f (xn) COC

MNM 7 1.70 × 10−21 6.84× 10−43 1.11× 10−85 5.90× 10−681 2.000
M1 7 2.79 × 10−21 1.90× 10−42 8.77× 10−85 9.90× 10−674 2.000
M2 7 2.99 × 10−24 1.56× 10−48 4.27× 10−97 8.37× 10−773 2.000
M3 6 2.17 × 10−13 6.50× 10−27 5.80× 10−54 3.68× 10−428 2.000
M4 7 3.39 × 10−18 4.18× 10−36 6.32× 10−72 3.53× 10−570 2.000
M5 6 5.79 × 10−15 3.77× 10−30 1.60× 10−60 5.51× 10−481 2.000
M6 7 1.93 × 10−21 8.86× 10−43 1.86× 10−85 3.69× 10−679 2.000
M7 6 2.28 × 10−13 7.15× 10−27 7.03× 10−54 1.71× 10−427 2.000
M8 7 6.63 × 10−20 1.26× 10−39 4.60× 10−79 1.09× 10−627 2.000

Example 2 (Beam Designing Model). Here, we consider a beam situating problem (see [4]) where a beam of
length r unit is inclining toward the edge of a cubical box with the length of the sides being 1 unit each, to such
an extent that one end of the bar touches the wall and the opposite end touches the floor, as shown in Figure 5.

Figure 5. Beam situating problem.

The problem is: What should be the distance be along the bottom of the beam to the floor from the
base of the wall? Suppose y is the distance along the edge of the box to the beam from the floor, and let
x be the distance from the bottom of the box and of the beam. Then, for a particular value of r, we have

x4 + 4x3 − 24x2 + 16x + 16 = 0.

The non-negative solution of the equation is a root x = 2 with a multiplicity of 2. We consider the
initial approximate x0 = 3 to find the root. Numerical results of various methods are shown in Table 2.

Table 2. Comparison of performance of methods for Example 2.

Methods n |en−2| |en−1| |en| f (xn) COC

MNM 7 1.61 × 10−20 6.50× 10−41 1.06× 10−81 1.86× 10−324 2.000
M1 7 3.37 × 10−21 2.55× 10−42 1.47× 10−84 5.64× 10−336 2.000
M2 7 7.19 × 10−18 1.94× 10−35 1.41× 10−70 1.34× 10−279 2.000
M3 7 2.52 × 10−18 2.22× 10−36 1.73× 10−72 2.63× 10−287 2.000
M4 6 1.85 × 10−22 4.10× 10−47 2.02× 10−96 5.76× 10−388 2.000
M5 7 6.46 × 10−16 2.09× 10−31 2.17× 10−62 1.34× 10−246 2.000
M6 7 1.23 × 10−20 3.75× 10−41 3.52× 10−82 2.31× 10−326 2.000
M7 7 1.35 × 10−17 7.17× 10−35 2.01× 10−69 6.02× 10−275 2.000
M8 6 1.34 × 10−17 9.03× 10−36 4.08× 10−72 1.66× 10−287 2.000

Example 3. Van der Waals Equation of State, which can be expressed as

(
P +

a1n2

V2

)
(V − na2) = nRT,
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explains the conduct of a real gas by taking in the perfect gas conditions two additional parameters, a1 and a2,
explicit for every gas. So as to decide the volume V of the gas as far as the rest of the parameters, we are required
to explain the nonlinear condition in V.

PV3 − (na2P + nRT)V2 + a1n2V − a1a2n3 = 0.

Given the constants a1 and a2 of a specific gas, one can find values for n, P, and T, with the end goal that this
condition has three real roots. By utilizing the specific values, we get the accompanying nonlinear function

f 1(x) = x3 − 5.22x2 + 9.0825x − 5.2675,

having three real roots. One root among three roots is a multiple zero α = 1.75 with a multiplicity of order two,
and other one being a simple zero ξ = 1.72. However, our desired zero is α = 1.75. We considered the initial
guess x0 = 1.8 for this problem. Numerical results of various methods are shown in Table 3.

Table 3. Comparison of performance of methods for Example 3.

Methods n |en−2| |en−1| |en| f (xn) COC

MNM 10 2.22× 10−22 8.24× 10−43 1.13× 10−83 1.36× 10−331 2.000
M1 10 1.49× 10−22 3.70× 10−43 2.27× 10−84 2.22× 10−334 2.000
M2 10 1.52× 10−21 3.88× 10−41 2.52× 10−80 3.43× 10−318 2.000
M3 10 1.05× 10−21 1.83× 10−41 5.64× 10−81 8.54× 10−321 2.000
M4 10 3.11× 10−24 1.59× 10−46 4.15× 10−91 2.39× 10−361 2.000
M5 10 8.82× 10−21 1.32× 10−39 2.93× 10−77 6.32× 10−306 2.000
M6 10 2.42 × 10−22 9.73× 10−43 1.58× 10−83 5.16× 10−331 2.000
M7 10 1.95 × 10−21 6.42× 10−41 6.92× 10−80 1.95× 10−316 2.000
M8 9 9.79 × 10−17 1.57× 10−31 4.02× 10−61 2.10× 10−241 2.000

Example 4. Lastly, we consider the test function

h4(x) =
(

x2 + 1
)(

2xex2+1 + x3 − x
)

cosh2
(πx

2

)
.

The function has a multiple zero α = i of multiplicity 4. We chose the initial approximation x0 = 1.25i to obtain
the zero of the function.

Table 4. Comparison of performance of methods for Example 4.

Methods n |en−2| |en−1| |en| f (xn) COC

MNM 7 2.87 × 10−15 2.75× 10−30 2.51× 10−60 5.82× 10−478 2.000
M1 7 2.88 × 10−15 2.76× 10−30 2.53× 10−60 6.21× 10−478 2.000
M2 7 3.41 × 10−15 3.95× 10−30 5.30× 10−60 2.45× 10−475 2.000
M3 7 4.43 × 10−15 6.84× 10−30 1.63× 10−59 2.14× 10−471 2.000
M4 7 5.70 × 10−15 1.16× 10−29 4.75× 10−59 1.24× 10−467 2.000
M5 7 5.48 × 10−15 1.07× 10−29 4.06× 10−59 3.53× 10−468 2.000
M6 7 2.99 × 10−15 2.98× 10−30 2.95× 10−60 2.10× 10−477 2.000
M7 7 4.48 × 10−15 6.97× 10−30 1.69× 10−59 2.90× 10−471 2.000
M8 7 3.37 × 10−15 3.82× 10−30 4.91× 10−60 1.29× 10−475 2.000

5. Conclusions

In this paper, we presented a new one-point family of iterative methods with quadratic
convergence for computing multiple roots with known multiplicity, based on the weight function
technique. Analysis of the convergence showed the second order of convergence under some
suppositions regarding the nonlinear function whose zeros are to be obtained. Some efficient and
simple cases of the class were presented, and their stability was tested by analyzing complex geometry
using a graphical tool—namely, the basin of attraction. The methods were employed to solve some
real-world problems, such as the Eigenvalue problem, beam positioning problem, and the Van dar
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Waal equation of state, and were also compared with existing methods. Numerical comparison of the
results revealed that the presented methods had good convergence behavior, similar to the well-known
modified Newton’s method.
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Abstract: In this paper, we study the oscillation of second-order neutral differential equations
with delayed arguments. Some new oscillatory criteria are obtained by a Riccati transformation.
To illustrate the importance of the results, one example is also given.

Keywords: oscillatory solutions; nonoscillatory solutions; second-order; neutral differential equations

1. Introduction

The main focus of this study was the oscillation criteria of the solution of second-order delay
differential equations of the form[

a (�)
(
z′ (�)

)β
]′
+ p (�) f (z (τ (�))) = 0‚ � ≥ �0, (1)

where z (�) = x (�) + q (�) x (σ (�)) and β is a quotient of odd positive integers. Throughout the paper,
we always assume that:

(H1) a ∈ C1 ([�0‚ ∞), R+) , a′ (�) ≥ 0, a (�) > 0, p, q ∈ C ([�0‚ ∞), [0‚ ∞)), 0 ≤ p (t) < 1, , σ, τ ∈
C ([�0‚ ∞), R) , τ (�) ≤ �, σ (�) ≤ �, lim

�→∞
τ (�) = ∞ and lim

�→∞
σ (�) = ∞,

(H2) f ∈ C (R‚ R) , f (u) /u
β ≥ k > 0, for u �= 0.

By a solution of (1), we mean a function z ∈ C ([�0‚ ∞), R) , �z ≥ �◦, which has the property
a (�) [z′ (�)]β ∈ C1 ([�0‚ ∞), R) , and satisfies (1) on [�z‚ ∞). We consider only those solutions z of (1)
which satisfy sup{|z (�)| : � ≥ �z} > 0, for all � > �z. We assume that (1) possesses such a solution.
A solution of (1) is called oscillatory if it has arbitrarily large zeros on [�z‚ ∞), otherwise it is called
non-oscillatory. (1) is said to be oscillatory if all its solutions are oscillatory. Likewise, the equation
itself is called oscillatory if all of its solutions are oscillatory.

Differential equations are of great importance in the branches of mathematics and other sciences.
In 1918, researchers were interested in studying differential equations. Since then, there has been much
research on the subject of the oscillation of differential and functional differential equations—see [1–10].

The differential equation in which the highest-order derivative of the unknown function appears
both with and without delay is called a neutral delay differential equation. In past years, researchers
have been interested in the oscillation of neutral differential equations—see [11–14].

Many authors have discussed the oscillations of second-order differential equations, and have
also proposed several ways to achieve oscillation for these equations. For treatments on this subject,
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we refer the reader to the texts, [15–21]. Here are some of the results that served as motivation for
this work.

Cesarano and Bazighifan [22] discussed the equation[
a (�)w′ (�)

]′
+ q (�) f (w (τ (�))) = 0 (2)

and used the classical Riccati transformation technique.
Moaaz and Bazighifan [23] considered the oscillatory properties of second-order delay

differential equations [
a (�)

(
w′ (�)

)β
]′
+ p (�) f (w (τ (�))) = 0,

under the condition ∫ ∞

�0

1

a
1
β (�)

d� < ∞

and he proved it was oscillatory if

kq (�)
τ2 (�)

�2 > M.

Grace et al. [24] studied the differential equations[
a (�)

(
z′ (�)

)β
]′
+ p (�) zβ (τ (�)) = 0‚ � ≥ �0,

under the conditions ∫ ∞

�0

1

a
1
β (�)

d� = ∞.

Trench [25] used the comparison technique for the following[
a (�)w′ (�)

]′
+ q (�)w (τ (�)) = 0,

which they compared with the first-order differential equation, and on the condition∫ ∞

�0

1
a (�)

dz = ∞.

In this paper we used the Riccati transformation technique, which differs from those reported
in [26] to establish some conditions for the oscillation of (1) under the condition∫ ∞

�0

1

a
1
β (s)

ds < ∞. (3)

An example is presented to illustrate our main results.
We begin with the following lemma.

Lemma 1 (See [1], Lemma 2.1). Let β ≥ 1 be a ratio of two numbers, G, H, U, V ∈ R. Then,

G
β+1

β − (G − H)
β+1

β ≤ H
1
β

β
[(1 + β) G − H] , GH ≥ 0,

and

Uy − Vy
β+1

β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
, V > 0.
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2. Main Results

In this section, we state the oscillation criteria for (1). To facilitate this, we refer to the following:

B (�) :=
∫ ∞

�

1

a
1
β (s)

ds.

A (�) = kq (�) (1− p (τ (�)))β.

D (τ (�)) = B(�+
1
β

∫ �

�1

B(s)Bβ(τ (s))A (s) ds.

Ď (�) = exp

⎛⎝−β
∫ �

τ(�)

a (s)
−1
β

D (s)
ds

⎞⎠ .

Φ (�) = δ (�)

⎡⎣A (�)− 1− β

a
1
β (�) ηβ+1(�)

⎤⎦ .

θ (�) =
δ′+ (�)

δ (�)
+

(β + 1)

a
1
β (�) η(�)

.

ρ′+ (�) := max
{

0, ρ′ (�)
}

and δ′+ (�) := max
{

0, δ′ (�)
}

Theorem 1. Assume that (3) holds. If there exist positive functions ρ, δ ∈ C1 ([�0, ∞) , (0, ∞)) such that

∫ ∞

�0

[
ρ (s) A (s) Ď (s)− a (s) (ρ′+ (s))β+1

(β + 1)β+1 ρβ (s)

]
ds = ∞ (4)

and ∫ ∞

�0

(
Φ (s)− δ (s) a (s) (θ (s))β+1

(β + 1)β+1

)
ds = ∞, (5)

then every solution of (1) is oscillatory.

Proof. Let x be a non-oscillatory solution of Equation (1), defined in the interval [�0, ∞). Without loss
of generality, we may assume that x (�) > 0 . It follows from (1) that there are two possible cases,
for � ≥ �1, where �1 ≥ �0 is sufficiently large:

(C1) z′ (�) > 0,
(

a (�)
(
z′ (�)

)α
)
< 0,

(C2) z′ (�) < 0,
(

a (�)
(
z′ (�)

)α
)
< 0.

Assume that Case (C1) holds. Since τ(�) ≤ t and z′ (�) > 0, we get

x(�) = z(�)− p(�)x(τ(�)) (6)

≥ (1− p(�))z(�),

which, together with (1), implies that[
a (�)

(
z′ (�)

)β
]′ ≤ −kq (�) f (x (τ (�))) (7)

≤ −kq (�) xβ (τ (�))

≤ −kq (�) (1− p (τ (�)))βzβ (τ (�))

≤ −A (�) zβ (τ (�)) .
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On the other hand, we see

z(�) = z(�1) +
∫ �

�1

1

a (s)
1
β

a (s)
1
β z′ (s) ds (8)

≥ B(�)a (�)
1
β z′ (�) .

Thus, we easily prove that(
z(�)− B(�)a (�)

1
β z′ (�)

)′
= −B(�)

(
a (�)

1
β z′ (�)

)′
.

Applying the chain rule, it is easy to see that

B(�)
(

a (�)
(
z′ (�)

)β
)′

= βB(�)
(

a (�)
1
β z′ (�)

)β−1 (
a (�)

1
β z′ (�)

)′
.

By virtue of (7), the latter equality yields

−B(�)
(

a (�)
1
β z′ (�)

)′
=

1
β

B(�)
(

a (�)
1
β z′ (�)

)1−β

A (�) zβ (τ (�)) .

Thus, we obtain(
z(�)− B(�)a (�)

1
β z′ (�)

)′
≥ 1

β
B(�)

(
a (�)

1
β z′ (�)

)1−β

A (�) zβ (τ (�)) .

Integrating from �1 to � , we get

z(�) ≥ B(�)a (�)
1
β z′ (�) +

1
β

∫ �

�1

B(s)
(

a
1
β (s) z′ (s)

)1−β

A (s) zβ (τ (s)) ds.

From (8), we get

z(�) ≥ B(�)a (�)
1
β z′ (�)

+
1
β

∫ �

�1

B(s)
(

a
1
β (s) z′ (s)

)1−β

A (s) Bβ(τ (s))a (τ (s))
(
z′ (τ (s))

)β ds,

and this

z(�) ≥ B(�)a (�)
1
β z′ (�)

+
1
β

∫ �

�1

B(s)
(

a
1
β (s) z′ (s)

)1−β

A (s) Bβ(s)a (s)
(
z′ (s)

)β ds,

≥ a (�)
1
β z′ (�)

(
B(�) +

1
β

∫ �

�1

B(s)Bβ(τ (s))A (s) ds
)

.

Thus, we conclude that

z(τ (�)) ≥ a (τ (�))
1
β z′ (τ (�)) D (τ (�)) . (9)

Define the function ω (�) by

ω (�) := ρ (�)
a (�) (z′)β (�)

zβ (�)
, (10)
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then ω (�) > 0 for � ≥ �1 and

ω′ (�) = ρ′ (�)
a (�) (z′)β (�)

zβ (�)
+ ρ (�)

(
a (z′)β

)′
(�)

zβ (�)
− βρ (�)

zβ−1 (�) z′ (�) a (�) (z′)β (�)

z2β (�)
, (11)

= ρ′ (�)
a (�) (z′)β (�)

zβ (�)
+ ρ (�)

(
a (z′)β

)′
(�)

zβ (�)
− βρ (�) a (�)

(
z′ (�)
z (�)

)β+1

.

From (9), we obtain

z(�) ≥ a (�)
1
β z′ (�) D (�) (12)

and this
z′ (�)
z (�)

≤ 1

a (�)
1
β D (�)

.

Integrating the latter inequality from τ (�) to �, we get

z′ (τ (�))

z (�)
≥ exp

⎛⎝−
∫ �

τ(�)

a (s)
−1
β

D (s)
ds

⎞⎠ . (13)

Combining (7) and (13), it follows that[
a (�) (z′′′ (�))β

]′
zβ (�)

≤ −A (�)

(
z (τ (�))

z (�)

)β

(14)

≤ −A (�) exp

⎛⎝−β
∫ �

τ(�)

a (s)
−1
β

D (s)
ds

⎞⎠
≤ −A (�) Ď (�) .

By (10) and (11), we obtain that

ω′ (�) ≤ ρ′+ (�)

ρ (�)
ω (�)− ρ (�) A (�) Ď (�)− β

(ρ (�) a (�))
1
β

ω
β+1

β (�) .

Now, we let

G :=
ρ′+ (�)

ρ (�)
, H :=

β

(ρ (�) a (�))
1
β

, y := ω (�) .

Applying the Lemma 1, we find

ρ′+ (�)

ρ (�)
ω (�)− β

(ρ (�) a (�))
1
β

ω (�)
β+1

β ≤ a (�) (ρ′+ (�))β+1

(β + 1)β+1 ρβ (�)
.

Hence, we obtain

ω′ (�) ≤ −ρ (�) A (�) Ď (�) +
a (�) (ρ′+ (�))β+1

(β + 1)β+1 ρβ (�)
. (15)

Integrating from �1 to �, we get

∫ �

�1

[
ρ (s) A (s) Ď (s)− a (s) (ρ′+ (s))β+1

(β + 1)β+1 ρβ (s)

]
ds ≤ ω (�1) , (16)
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which contradicts (4).
Assume that Case (C2) holds. It follows from

(
a (�) (z′ (�))β

)
≤ 0, that we obtain

z′ (s) ≤
(

a (�)
a (s)

)1\β

z′ (�) .

Integrating from � to �1, we get

z (�1) ≤ z (�) + a1\β (�) z′ (�)
∫ �1

�
a−1\β (s) ds. (17)

Letting �1 → ∞, we obtain

z(�) ≥ −B(�)a (�)
1
β z′ (�) ,

which implies that (
z (�)
B (s)

)′
≥ 0.

Define the function ψ (t) by

ψ (t) := δ (�)

[
a (�) (z′ (�))β

zβ (�)
+

1
ηβ(�)

]
, (18)

then ψ (t) > 0 for t ≥ t1 and

ψ′ (�) = δ′ (�)
a (�) (z′ (�))β

zβ (�)
+ δ (�)

(
a (�) (z′ (�))β

)′
zβ (�)

−βδ (�) a (�)
(z′)β+1 (�)

zβ+1 (�)
+

αδ (�)

a
1
β (�) ηβ+1(�)

.

Using (18), we obtain

ψ′ (�) =
δ′+ (t)
δ (t)

ψ (�) + δ (�)

(
a (�) (z′ (�))β

)′
zβ (�)

(19)

−βδ (�) a (�)
[

ψ (�)

δ (�) a (�)
− 1

a (�) ηβ(�)

] β+1
β

+
βδ (�)

a
1
β (�) ηβ+1(�)

.

Using Lemma 1 with G = ψ(�)
δ(�)a(�) , H = 1

a(�)ηβ(�)
, we get

[
ψ (�)

δ (�) a (�)
− 1

a (�) ηβ(�)

] β+1
β ≥

(
ψ (�)

δ (�) a (�)

) β+1
β

(20)

− 1

βa
1
β (�) η(�)

(
(β + 1)

ψ (t)
δ (�) a (�)

− 1
a (�) ηβ(�)

)
.
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From (7), (19), and (20), we obtain

ψ′ (�) ≤ δ′+ (t)
δ (t)

ψ (�)− δ (�) A (�)− βδ (�) a (�)
(

ψ (�)

δ (�) a (�)

) β+1
β

−βδ (�) a (�)

⎡⎣ −1

βa
1
β (�) η(�)

(
(β + 1)

ψ (t)
δ (�) a (�)

− 1
a (�) ηβ(�)

)⎤⎦ .

This implies that

ψ′ (�) ≤
⎛⎝ δ′+ (�)

δ (�)
+

(β + 1)

a
1
β (�) η(�)

⎞⎠ ψ (�)− β

(δ (�) a (�))
1
β

ψ
β+1

β (�) (21)

−δ (�)

⎡⎣A (�)− 1− β

a
1
β (�) ηβ+1(�)

⎤⎦ .

Thus, by (19) yield

ψ′ (�) ≤ −Φ (�) + θ (�)ψ (�)− β

(δ (�) a (�))
1
β

ψ
β+1

β (�) . (22)

Applying the Lemma 1 with U = θ (�) , V = β

(δ(�)a(�))
1
β

and y = ψ (�), we get

ψ′ (�) ≤ −Φ (�) +
δ (�) a (�) (θ (�))β+1

(β + 1)β+1 . (23)

Integrating from �1 to �, we get

∫ �

�1

(
Φ (s)− δ (s) a (s) (θ (s))β+1

(β + 1)β+1

)
ds ≤ ψ (�1)− ψ (�) ≤ ψ (�1) ,

which contradicts (5). The proof is complete.

Example 1. As an illustrative example, we consider the following equation:

(
�2

(
x (�) +

1
3

x
(
�

2

))′)′
+ x

(
�

3

)
= 0, � ≥ 1. (24)

Let
β = 1, a (�) = �2, p (�) =

1
3

, q (�) = 1, σ (�) =
�

2
, τ (�) =

�

3
.

If we now set δ (�) = ρ (�) = 1 and k = 1, It is easy to see that all conditions of Theorem 1
are satisfied.

B (�) :=
∫ ∞

�0

1
a1/β (s)

ds =
1
�
< ∞.

A (�) = kq (�) (1− p (τ (�)))β =

(
1− 1

3

)
=

2
3

.

D (τ (�)) = B(�) +
1
β

∫ �

�1

B(s)Bβ(τ (s))A (s) ds =
1
�

∫ �

�1

2
3

1
sτ (s)
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Ď (�) = exp

⎛⎝−β
∫ �

τ(�)

a (s)
−1
β

D (s)
ds

⎞⎠
∫ ∞

�0

[
ρ (s) A (s) Ď (s)− a (s) (ρ′+ (s))β+1

(β + 1)β+1 ρβ (s)

]
ds =

∫ ∞

�0

2
3

ds = ∞

and ∫ ∞

�0

(
Φ (s)− δ (s) a (s) (θ (s))β+1

(β + 1)β+1

)
ds = ∞.

Hence, by Theorem 1, every solution of Equation (24) is oscillatory.

3. Conclusions

This article was interested in the oscillation criteria of the solution of second-order delay
differential equations of (1). It has also been illustrated through an example that the results obtained
are an improvement on the previous results. Our technique lies in using the generalized Riccati
substitution, which differs from those reported in [26]. We offered some new sufficient conditions,
which ensure that any solution of Equation (1) oscillates under the condition (3). Equation (1) is
a neutral delay differential equation when τ (�) ≤ �, σ (�) ≤ �. Furthermore, we could study
τ (�) ≥ �, and be able to get the oscillation criteria of Equation (1) if z (�) = x (�) − q (�) x (σ (�))

in our future work.
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Abstract: We propose a derivative free one-point method with memory of order 1.84 for solving
nonlinear equations. The formula requires only one function evaluation and, therefore, the efficiency
index is also 1.84. The methodology is carried out by approximating the derivative in Newton’s
iteration using a rational linear function. Unlike the existing methods of a similar nature, the scheme of
the new method is easy to remember and can also be implemented for systems of nonlinear equations.
The applicability of the method is demonstrated on some practical as well as academic problems
of a scalar and multi-dimensional nature. In addition, to check the efficacy of the new technique, a
comparison of its performance with the existing techniques of the same order is also provided.
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1. Introduction

In this study, we consider the problem of solving the nonlinear equations F(x) = 0; wherein
F : D ⊂ Rm → Rm is a univariate function when m = 1 or multivariate function when m > 1 on an
open domain D, by iterative methods. Univariate function is usually denoted by f (x).

Newton’s method [1–3] is one of the basic one-point methods which has quadratic convergence
and requires one function and one derivative evaluation per iteration but it may diverge if the
derivative is very small or zero. To overcome this problem, researchers have also proposed some
derivative free one-point methods, for example, the Secant method [2], the Traub method [2], the
Muller method [4,5], the Jarratt and Nudds method [6] and the Sharma method [7]. These methods
are classified as one-point methods with memory whereas Newton’s method is a one-point method
without memory (see Reference [2]). All the above mentioned one-point methods with memory require
one function evaluation per iteration and possess order of convergence 1.84 except Secant which has
order 1.62.

In this paper, we develop a new efficient one-point method with memory of convergence order
1.84 by using rational linear interpolation. The method consists of deriving the coefficients of a rational
function that goes through by three points. Then, the derived coefficients are substituted into the
derivative of the considered rational function which, when used in Newton’s scheme, gives the new
scheme. The formula uses one function evaluation per step and has an efficiency index equal to the
efficiency of the aforementioned methods of the same order. However, the main advantages of new
method over the existing ones are its simplicity and suitability to solve systems of nonlinear equations.

The contents of the paper are organized as follows: in Section 2, the new method is developed
and its convergence is discussed; in Section 3, some numerical examples are considered to verify the

Mathematics 2019, 7, 604; doi:10.3390/math7070604 www.mdpi.com/journal/mathematics181
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theoretical results and to compare the performance of proposed technique with existing techniques;
the proposed method is generalized for solving the system of nonlinear equations in Section 4.

2. The Method and Its Convergence

Our aim is to develop a derivative-free iterative method by Newton’s scheme

xn+1 = xn − f (xn)

f ′(xn)
, n = 0, 1, 2, . . . , (1)

wherein f ′(xn) is approximated by using the rational linear function

R(t) =
t − xn + a

b(t − xn) + c
, (2)

such that

R(xn−2) = f (xn−2), R(xn−1) = f (xn−1), R(xn) = f (xn), n = 2, 3, 4, . . . . (3)

Imposing the conditions (3) in (2), we have that

(b(xn−2 − xn) + c) f (xn−2) = xn−2 − xn + a,

(b(xn−1 − xn) + c) f (xn−1) = xn−1 − xn + a,

c f (xn) = a. (4)

Then

b(xn−2 − xn) f (xn−2) + c( f (xn−2)− f (xn)) = xn−2 − xn,

b(xn−1 − xn) f (xn−1) + c( f (xn−1)− f (xn)) = xn−1 − xn, (5)

equivalently

b f (xn−2) + c f [xn−2, xn] = 1,

b f (xn−1) + c f [xn−1, xn] = 1, (6)

where f [s, t] = f (s)− f (t)
s−t is the Newton first order divided difference.

Solving for b and c, we obtain that

b =
f [xn−2, xn]− f [xn−1, xn]

f [xn−2, xn] f (xn−1)− f [xn−1, xn] f (xn−2)
(7)

and

c =
f (xn−2)− f (xn−1)

f [xn−1, xn] f (xn−2)− f [xn−2, xn] f (xn−1)
. (8)

Some simple calculations yield

R′(xn) =
1− b f (xn)

c

=
f [xn−1, xn] f [xn−2, xn]

f [xn−2, xn−1]
. (9)

182



Mathematics 2019, 7, 604

Assuming that f ′(xn) is approximately equal to R′(xn), then, in view of (9) the method (1) can be
presented as

xn+1 = xn − f [xn−2, xn−1]

f [xn−1, xn] f [xn−2, xn]
f (xn). (10)

The scheme (10) defines a one-point method with memory and requires one function evaluation
per iteration.

In the following theorem, we shall find the order of convergence of (10). We use the concept
of R- order of convergence given by Ortega and Rheinboldt [8]. Suppose {xn} is a sequence of
approximation generated by an iteration method. If the sequence converges to a zero α of f with R-
order ≥ r, then we write

en+1 ∼ er
n. (11)

Theorem 1. Suppose that f (x), f ′(x), f ′′(x) and f ′′′(x) are continuous in the neighborhood D of a zero (say, α)
of f . If the initial approximations x0, x1 and x2 are sufficiently close to α, then the R-order of convergence of the
method (10) is 1.84.

Proof. Let en = xn − α, en−1 = xn−1 − α and en−2 = xn−2 − α be the errors in the n-th, n − 1-th and
n − 2-th iterations, respectively. Using Taylor’s expansions of f (xn) , f (xn−1) and f (xn−2) about α and
taking into account that f (α) = 0 and f ′(α) �= 0, we have that

f (xn) = f ′(α)
[
en + A2e2

n + A3e3
n + · · · ], (12)

f (xn−1) = f ′(α)
[
en−1 + A2e2

n−1 + A3e3
n−1 + · · · ], (13)

f (xn−2) = f ′(α)
[
en−2 + A2e2

n−2 + A3e3
n−2 + · · · ], (14)

where A1 = 1 and Ai = (1/i!) f (i)(α)/ f ′(α), i = 2, 3, 4, . . .
Using Equations (12) and (13), we have

f [xn−1, xn] = f ′(α)(1 + A2(en + en−1) + A3(e2
n + e2

n−1 + enen−1) + · · · ). (15)

Similarly we can obtain

f [xn−2, xn] = f ′(α)(1 + A2(en + en−2) + A3(e2
n + e2

n−2 + enen−2) + · · · ), (16)

f [xn−2, xn−1] = f ′(α)(1 + A2(en−2 + en−1) + A3(e2
n−2 + e2

n−1 + en−2en−1) + · · · ). (17)

Using Equations (12), (15)–(17) in (10), we obtain that

en+1 = en − en + A2e2
n + A3e3

n + A2(en−2en + en−1en) + A3(enen−1en−2) + · · ·
1 + A2(en + en−2) + A2(en + en−1) + A2

2(e
2
n + enen−2 + en−1en + en−1en−2) + · · ·

= (A2
2 − A3)enen−1en−2 + · · · ,

that is
en+1 ∼ enen−1en−2. (18)

From (11), we have that

en ∼ e
1
r
n+1, (19)

en−1 ∼ e
1
r
n (20)

and

en−2 ∼ e
1
r
n−1 ∼ e

1
r2
n . (21)
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Combining (18), (20) and (21), it follows that

en+1 ∼ ene
1
r
n e

1
r2
n = e

1+ 1
r +

1
r2

n . (22)

Comparison of the exponents of en on the right hand side of (11) and (22) leads to

r3 − r2 − r − 1 = 0,

which has a unique positive real root 1.84. That means the order r of method (10) is 1.84.

Remark 1. According to Ostrowski’s formula [9] for the efficiency measure of an iterative method of order r; if
c is the computational cost measured in terms of the number of evaluations of the function f and its derivatives
that are required for each iteration, then the efficiency index of the method is given by r1/c. Thus the efficiency
index of Newton’s method is 1.414, the Secant method is 1.62 whereas in the case of the Muller, Jarratt-Nudds,
Traub, Sharma and new methods (10) this index is 1.84.

3. Numerical Results

We check the performance of the new method (10), now denoted by NM, using the computational
software package Mathematica [10] with multiple-precision arithmetic. For comparison purposes, we
consider the Muller method (MM), the Traub method (TM), the Jarratt-Nudds method (JNM) and the
Sharma method (SM). These methods are given as follows:

Muller method (MM):

xn+1 = xn − 2a2

a1 ±
√

a2
1 − 4a0a2

,

where

a0 =
1
D

[
(xn − xn−2)( f (xn)− f (xn−1))− (xn − xn−1)( f (xn)− f (xn−2))

]
,

a1 =
1
D

[
(xn − xn−2)

2( f (xn)− f (xn−1))− (xn − xn−1)
2( f (xn)− f (xn−2))

]
,

a2 = f (xn),

D = (xn − xn−1)(xn − xn−2)(xn−1 − xn−2).

Traub method (TM):

xn+1 = xn − f (xn)

f [xn, xn−1]
+

f (xn) f (xn−1)

f (xn)− f (xn−2)

( 1
f [xn, xn−1]

− 1
f [xn−1, xn−2]

)
.

Jarratt-Nudds method (JNM):

xn+1 = xn +
(xn − xn−1)(xn − xn−2) f (xn)( f (xn−1)− f (xn−2))

(xn − xn−1)( f (xn−2)− f (xn)) f (xn−1) + (xn − xn−2)( f (xn)− f (xn−1)) f (xn−2)
.

Sharma method (SM):

xn+1 = xn − 2 f (xn)(b f (xn)− d)
c ±√

c2 − 4a f (xn)(b f (xn)− d)
,
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where

c =
a(h1δ2 − h2δ1) + bδ1δ2(h1δ1 − h2δ2)

δ2 − δ1
,

d =
a(h2 − h1) + b(h2δ2

2 − h1δ2
1)

δ2 − δ1
,

hk = xn − xn−k,

δk =
f (xn)− f (xn−k)

xn − xn−k
, k = 1, 2.

We consider five examples for numerical tests as follows:

Example 1. Let us consider Kepler’s equation; f1(x) = x − α1 sin(x) − K = 0, where 0 ≤ α1 < 1 and
0 ≤ K ≤ π. A numerical study, based on different values of parameters K and α1, has been performed
in [11]. We solve the equation taking K = 0.1 and α1 = 0.25. For this set of values the solution α is
0.13320215082857313.... The numerical results are shown in Table 1.

Table 1. Comparison of performance of methods for function f1(x), taking x0 = 0.5, x1 = − 0.3,
x2 = 0.1.

Methods n |x4 − x3| |x5 − x4| |x6 − x5| COC CPU-Time

MM 7 2.860(−4) 2.271(−7) 1.184(−13) 1.82 0.0952
TM 7 2.832(−4) 2.247(−7) 1.143(−13) 1.82 0.0944
JNM 7 2.846(−4) 2.259(−7) 1.163(−13) 1.82 0.1246
SM (a = 1, b = 1) 7 2.850(−4) 2.262(−7) 1.169(−13) 1.82 0.1107
SM (a = 1, b = 2) 7 2.845(−4) 2.258(−7) 1.162(−13) 1.82 0.0973
SM (a = 1, b = −1) 7 2.897(−4) 2.302(−7) 1.239(−13) 1.82 0.0984
NM 7 2.670(−4) 2.116(−7) 1.013(−13) 1.82 0.0921

Example 2. Next, we consider isentropic supersonic flow across a sharp expansion corner (see Reference
[12]). The relationship between the Mach number before the corner (i.e., M1) and after the corner (i.e., M2) is
expressed by

f2(x) = b1/2

(
tan−1

(
M2

2−1
b

)1/2 − tan−1
(

M2
1−1
b

)1/2
)
−

(
tan−1(M2

2 − 1)1/2 − tan−1(M2
1 − 1)1/2

)
− δ,

where b = γ+1
γ−1 and γ is the specific heat ratio of the gas. We take values M1 = 1.5, γ = 1.4 and δ = 100.

The solution α of this problem is 1.8411294068501996.... The numerical results are shown in Table 2.

Table 2. Comparison of performance of methods for function f2(x), taking x0 = 1.1, x1 = 2.3, x2 = 1.7.

Methods n |x4 − x3| |x5 − x4| |x6 − x5| COC CPU-Time

MM 7 8.212(−3) 3.223(−5) 3.369(−9) 1.83 0.3312
TM 7 8.228(−3) 4.906(−5) 6.104(−9) 1.83 0.3434
JNM 7 8.220(−3) 4.048(−5) 4.636(−9) 1.83 0.3163
SM (a = 1, b = 1) 7 8.215(−3) 3.537(−5) 3.841(−9) 1.83 0.3754
SM (a = 1, b = 2) 7 8.217(−3) 3.752(−5) 4.175(−9) 1.83 0.3666
SM (a = 1, b = −1) 7 8.207(−3) 2.724(−5) 2.660(−9) 1.83 0.3627
NM 7 8.228(−3) 4.905(−5) 5.395(−9) 1.83 0.3024
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Example 3. Consider the equation governing the L-C-R circuit in electrical engineering [13]

L
d2q
dt2 + R

dq
dt

+
q
C

= 0,

whose solution q(t) is

q(t) = q0e−Rt/2L cos

⎛⎝√
1

LC
−

(
R
2L

)2
t

⎞⎠ ,

where at t = 0, q = q0.

A particular problem as a case study is given as: Assuming that the charge is dissipated to 1 percent of
its original value (q/q0 = 0.01) in t = 0.05 s, with L = 5 Henry and C = 10−4 Farad. Determine the proper
value of R?

Using the given numerical data, the problem is given as

f3(x) = e−0.005x cos
(√

2000− 0.01x2 (0.05)
)
− 0.01 = 0,

where x = R. Solution of this problem is, α = 328.15142908514817.... Numerical results are displayed
in Table 3.

Table 3. Comparison of performance of methods for function f3(x), taking x0 = 430, x1 = 200,
x2 = 315.

Methods n |x4 − x3| |x5 − x4| |x6 − x5| COC CPU-Time

MM 7 4.446(−1) 2.182(−3) 3.303(−8) 1.83 0.2075
TM 7 6.515(−1) 4.078(−3) 1.381(−7) 1.84 0.2185
JNM 7 1.259(−1) 1.767(−4) 2.058(−10) 1.83 0.1721
SM (a = 1, b = 1) 7 4.446(−1) 2.182(−3) 3.303(−8) 1.83 0.2126
SM (a = 1, b = 2) 7 4.446(−1) 2.182(−3) 3.303(−8) 1.83 0.1979
SM (a = 1, b = −1) 7 4.446(−1) 2.182(−3) 3.303(−8) 1.83 0.2034
NM 7 1.818(−1) 3.112(−4) 6.976(−10) 1.83 0.1568

Example 4. Law of population growth is given as (see References [14,15])

dN(t)
dt

= λN(t) + ν,

where N(t) = population at time t, λ = constant birth rate of population and ν = constant immigration rate.
The solution of this differential equation is given by

N(t) = N0eλt +
ν

λ
(eλt − 1),

where N0 is initial population.

A particular problem for the above model can be formulated as: Suppose that a certain population
consists of 1,000,000 people initially. Further suppose that 435,000 people immigrate into the community in the
first year and 1,564,000 people are present at the end of one year. Determine the birth rate (λ) of this population.

To find the birth rate, we will solve the equation

f4(x) = 1564− 1000ex − 435
x

(ex − 1) = 0,
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wherein x = λ. Solution of this problem is, α = 0.10099792968574979.... The numerical results are
given in Table 4.

Table 4. Comparison of performance of methods for function f4(x), taking x0 = −0.4, x1 = 0.5,
x2 = 0.05.

Methods n |x4 − x3| |x5 − x4| |x6 − x5| COC CPU-Time

MM 7 1.464(−3) 4.958(−6) 5.588(−11) 1.83 0.1924
TM 7 3.061(−3) 1.670(−5) 7.659(−10) 1.84 0.1884
JNM 7 7.093(−4) 1.013(−6) 2.558(−12) 1.82 0.1811
SM (a = 1, b = 1) 7 3.061(−3) 1.670(−5) 7.659(−10) 1.84 0.2194
SM (a = 1, b = 2) 7 3.061(−3) 1.670(−5) 7.659(−10) 1.84 0.2033
SM (a = 1, b = −1) 7 3.061(−3) 1.670(−5) 7.659(−10) 1.84 0.1875
NM 7 1.980(−3) 1.078(−6) 8.160(−12) 1.85 0.1727

Example 5. Next, we consider an example of academic interest, which is defined by

f5(x) =

{
x3 ln x2 + x5 − x4, x �= 0,
0, x = 0.

It has three zeros. Note that α = 0 is the multiple zero of multiplicity 3. We consider the zero α = 1 in our work.
Numerical results are displayed in Table 5.

Table 5. Comparison of performance of methods for function f5(x), taking x0 = 1.2, x1 = 0.9, x2 = 1.05.

Methods n |x4 − x3| |x5 − x4| |x6 − x5| COC CPU-Time

MM 8 3.206(−3) 5.057(−5) 2.720(−8) 1.84 0.0943
TM 9 1.090(−2) 9.025(−4) 5.898(−6) 1.83 0.0821
JNM 8 4.915(−3) 1.525(−4) 1.955(−7) 1.85 0.0798
SM (a = 1, b = 1) 8 1.010(−2) 7.066(−4) 3.901(−6) 1.85 0.0942
SM (a = 1, b = 2) 8 1.048(−2) 7.960(−4) 4.777(−6) 1.83 0.0933
SM (a = 1, b = −1) 9 1.185(−2) 1.188(−3) 9.274(−6) 1.83 0.0931
NM 8 1.930(−3) 4.728(−5) 1.766(−8) 1.85 0.0775

Numerical results shown in Tables 1–5 contain the required iterations n, computed estimated
error |xn+1 − xn| in first three iterations (wherein A(-h) denotes A × 10−h), computational order of
convergence (COC) and CPU time (CPU-time) are measured during the execution of the program.
Computational order of convergence (COC) is computed by using the formula [16]

COC =
ln(|xn+1 − xn|/|xn − xn−1|)

ln(|xn − xn−1|/|xn−1 − xn−2|) .

The necessary iterations (n) are obtained so as to satisfy the criterion (|xn+1 − xn|+ | f (xn)|) < 10−100.
The first two initial approximations x0 and x1 are chosen arbitrarily, whereas third x2 is taken as the
average of these two. From the numerical results displayed in Tables 1–5, we can conclude that the
accuracy of the new method (NM) is either equal to or better than existing methods. Moreover, it
requires less CPU-time compared with that of existing methods. This character makes it more efficient
than the existing ones.

187



Mathematics 2019, 7, 604

4. Generalized Method

We end this work with a method for solving a system of nonlinear equations F(x) = 0; F : D ⊂
Rm → Rm is the given nonlinear function F = ( f1, f2, ..... fm)T and x = (x1, ...., xm)T . The divided
difference F[x, y] of F is a matrix of order m × m (see Reference [2], p. 229) with elements

F[x, y]ij =
fi(x1, ...., xj, yj+1, ...., ym)− fi(x1, ...., xj−1, yj, ...., ym)

xj − yj
, 1 ≤ i, j ≤ m. (23)

Keeping in mind (10), we can write the corresponding method for the system of nonlinear equations
as:

x(n+1) = x(n) − F[x(n−1), x(n)]−1F[x(n−2), x(n−1)]F[x(n−2), x(n)]−1F(x(n)), (24)

where F[·, ·]−1 is the inverse of the divided difference operator F[·, ·].

Remark 2. The computational efficiency of an iterative method for solving the system F(x) = 0 is calculated
by the efficiency index E = r1/C, (see Reference [17]), where r is the order of convergence and C is the total cost
of computation. The cost of computation C is measured in terms of the total number of function evaluations per
iteration and the number of operations (that means products and divisions) per iteration. The various evaluations
and operations that contribute to the cost of computation are described as follows. For the computation of F in
any iterative function we evaluate m scalar functions fi , (1 ≤ i ≤ m) and when computing a divided difference
F[x, y], we evaluate m(m − 1) scalar functions, wherein F(x) and F(y) are evaluated separately. Furthermore,
one has to add m2 divisions from any divided difference. For the computation of an inverse linear operator, a
linear system can be solved that requires m(m − 1)(2m − 1)/6 products and m(m − 1)/2 divisions in the
LU decomposition process, and m(m − 1) products and m divisions in the resolution of two triangular linear
systems. Thus, taking into account the above considerations of evaluations and operations for the method (24),
we have that

C =
2
3

m3 + 8m2 − 8
3

m and E = 1.84
3

2m3+24m2−8m .

Next, we apply the generalized method on the following problems:

Example 6. The following system of m equations (selected from [18]) is considered:

m

∑
j=1,j �=i

xj − e−xi = 0, 1 ≤ i ≤ m.

In particular, we solve this problem for m = 10, 30, 50, 100 by selecting initial guesses x(0) = {2, 2,
m· · ·

, 2}T, x(1) = {−1,−1,
m· · ·,−1}T and x(2) = { 1

2 , 1
2 ,

m· · ·, 1
2}T towards the corresponding solution:

α = {0.100488400337 . . . , 0.100488400337 . . . ,
10· · ·, 0.100488400337 . . .}T ,

α = {0.033351667835 . . . , 0.033351667835 . . . ,
30· · ·, 0.033351667835 . . .}T ,

α = {0.020003975040 . . . , 0.020003975040 . . . ,
50· · ·, 0.020003975040 . . .}T ,

α = {0.010000498387 . . . , 0.010000498387 . . . ,
100· · ·, 0.010000498387 . . .}T .

Numerical results are displayed in Table 6.
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Table 6. Performance of new method (NM) for Example 6.

m n ‖x4 − x3‖ ‖x5 − x4‖ ‖x6 − x5‖ COC CPU-Time

10 7 1.139(−2) 7.395(−5) 1.310(−9) 1.84 1.935
30 7 6.776(−3) 1.937(−5) 5.181(−11) 1.84 16.832
50 7 5.251(−3) 9.485(−6) 9.630(−12) 1.84 57.704
100 7 3.691(−3) 3.463(−6) 9.131(−13) 1.84 407.912

Example 7. Consider the system of m equations (selected from Reference [19]):

tan−1(xi) + 1− 2
m

∑
j=1,j �=i

x2
j = 0, 1 ≤ i ≤ m.

Let us solve this problem for m = 10, 30, 50, 100 with initial values x(0) = {−1,−1,
m· · ·,−1}T, x(1) =

{0, 0,
m· · ·, 0}T and x(2) = {−0.5,−0.5,

m· · ·,−0.5}T towards the corresponding solutions:

α = {−0.209906976944 . . . ,−0.209906976944 . . . ,
10· · ·,−0.209906976944 . . .}T ,

α = {−0.123008700800 . . . ,−0.123008700800 . . . ,
30· · ·,−0.123008700800 . . .}T ,

α = {−0.096056797272 . . . ,−0.096056797272 . . . ,
50· · ·,−0.096056797272 . . .}T ,

α = {−0.068590313107 . . . ,−0.068590313107 . . . ,
100· · ·,−0.068590313107 . . .}T .

Numerical results are displayed in Table 7.

Table 7. Performance of new method (NM) for Example 7.

m n ‖x4 − x3‖ ‖x5 − x4‖ ‖x6 − x5‖ COC CPU-Time

10 9 7.661(−2) 1.423(−2) 1.304(−4) 1.84 3.386
30 10 4.195(−1) 5.623(−2) 6.824(−3) 1.84 25.600
50 10 6.603(−1) 5.572(−2) 1.354(−2) 1.84 87.531
100 10 1.076 2.307(−2) 1.106(−2) 1.84 593.691

In Tables 6 and 7 we have shown the results of the new method only, because the other methods
are not applicable for nonlinear systems. We conclude that there are numerous one-point iterative
methods for solving a scalar equation f (x) = 0. Contrary to this fact, such methods are rare for
multi-dimensional cases, that is, for approximating the solution of F(x) = 0. Since the method uses
first divided difference, a drawback of the method is that if at some stage (say j) the denominator
xj = yj in the Formula (23), then the method may fail to converge. However, this situation is rare since
we have applied the method successfully on many other different problems. In the present work, an
attempt has been made to develop an iterative scheme which is equally suitable for both categories viz.
univariate and multivariate functions.
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