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Abstract: This paper extends the univariate Theory of Connections, introduced in (Mortari, 2017),
to the multivariate case on rectangular domains with detailed attention to the bivariate case.
In particular, it generalizes the bivariate Coons surface, introduced by (Coons, 1984), by providing
analytical expressions, called constrained expressions, representing all possible surfaces with assigned
boundary constraints in terms of functions and arbitrary-order derivatives. In two dimensions,
these expressions, which contain a freely chosen function, g(x, y), satisfy all constraints no matter
what the g(x, y) is. The boundary constraints considered in this article are Dirichlet, Neumann,
and any combinations of them. Although the focus of this article is on two-dimensional spaces,
the final section introduces the Multivariate Theory of Connections, validated by mathematical proof.
This represents the multivariate extension of the Theory of Connections subject to arbitrary-order
derivative constraints in rectangular domains. The main task of this paper is to provide an analytical
procedure to obtain constrained expressions in any space that can be used to transform constrained
problems into unconstrained problems. This theory is proposed mainly to better solve PDE and
stochastic differential equations.

Keywords: interpolation; constraints; embedded constraints

1. Introduction

The Theory of Connections (ToC), as introduced in [1], consists of a general analytical framework
to obtain constrained expressions, f (x), in one-dimension. A constrained expression is a function
expressed in terms of another function, g(x), that is freely chosen and, no matter what the g(x) is,
the resulting expression always satisfies a set of n constraints. ToC generalizes the one-dimensional
interpolation problem subject to n constraints using the general form,

f (x) = g(x) +
n

∑
k=1

ηk pk(x), (1)

where pk(x) are n user-selected linearly independent functions, ηk are derived by imposing the n
constraints, and g(x) is a freely chosen function subject to be defined and nonsingular where the constraints
are specified. Besides this requirement, g(x) can be any function, including, discontinuous functions,
delta functions, and even functions that are undefined in some domains. Once the ηk coefficients have
been derived, then Equation (1) satisfies all the n constraints, no matter what the g(x) function is.

Constrained expressions in the form given in Equation (1) are provided for a wide class of
constraints, including constraints on points and derivatives, linear combinations of constraints, as well
as infinite and integral constraints [2]. In addition, weighted constraints [3] and point constraints
on continuous and discontinuous periodic functions with assigned period can also be obtained [1].
How to extend ToC to inequality and nonlinear constraints is currently a work in progress.

Mathematics 2019, 7, 296; doi:10.3390/math7030296 www.mdpi.com/journal/mathematics1
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The Theory of Connections framework can be considered the generalization of interpolation;
rather than providing a class of functions (e.g., monomials) satisfying a set of n constraints, it derives
all possible functions satisfying the n constraints by spanning all possible g(x) functions. This has
been proved in Ref. [1]. A simple example of a constrained expression is,

f (x) = g(x) +
x(2x2 − x)
2(x2 − x1)

[ẏ1 − ġ(x1)] +
x(x − 2x1)

2(x2 − x1)
[ẏ2 − ġ(x2)] . (2)

This equation always satisfies
d f
dx

∣∣∣∣
x1

= ẏ1 and
d f
dx

∣∣∣∣
x2

= ẏ2, as long as ġ(x1) and ġ(x2) are

defined and nonsingular. In other words, the constraints are embedded into the constrained expression.
Constrained expressions can be used to transform constrained optimization problems into

unconstrained optimization problems. Using this approach, fast least-squares solutions of linear [4]
and nonlinear [5] ODE have been obtained at machine error accuracy and with low (actually, very low)
condition number. Direct comparisons of ToC versus MATLAB’s ode45 [6] and Chebfun [7] have been
performed on a small test of ODE with excellent results [4,5]. In particular, the ToC approach to solve
ODE consists of a unified framework to solve IVP, BVP, and multi-value problems. The extension
of differential equations subject to component constraints [8] has opened the possibility for ToC to
solve in real-time a class of direct optimal control problems [9], where the constraints connect state
and costate.

This study first extends the Theory of Connections to two-dimensions by providing,
for rectangular domains, all surfaces that are subject to: (1) Dirichlet constraints; (2) Neumann
constraints; and (3) any combination of Dirichlet and Neumann constraints. This theory is then
generalized to the Multivariate Theory of Connections which provide in n-dimensional space all
possible manifolds that satisfy boundary constraints on the value and boundary constraints on
any-order derivative.

This article is structured as follows. First, it shows that the one-dimensional ToC can be used in two
dimensions when the constraints (functions or derivatives) are provided along one axis only. This is a
particular case, where the original univariate theory [1] can be applied with basically no modifications.
Then, a two dimensional ToC version is developed for Dirichlet type boundary constraints. This theory
is then extended to include Neumann and mixed type boundary constraints. Finally, the theory is
extended to n-dimensions and to incorporate arbitrary-order derivative boundary constraints followed
by a mathematical proof validating it.

2. Manifold Constraints in One Axis, Only

Consider the function, f (x), where f : Rn → R1, subject to one constraint manifold along the ith
variable, xi, that is, f (x)|xi=v = c(xv

i ). For instance, in 3-D space, this can be the surface constraint,
f (x, y, z)|y=π = c(x, π, z). All manifolds satisfying this constraint can be expressed using the additive
form provided in Ref. [1],

f (x) = g(x) + [c(xv
i )− g(xv

i )]

where g(x) is a freely chosen function that must be defined and nonsingular at the constraint
coordinates. When m manifold constraints are defined along the xi-axis, then the 1-D methodology [1]
can be applied as it is. For instance, the constrained expression subject to m constraints along the xi
variable evaluated at xi = wk, where k ∈ [1, m], that is, f (x)|xi=wk = c(xwk

i ), is,

f (x) = g(x) +
m

∑
k=1

{[
c
(

xwk
i
)
− g

(
xwk

i
)]

∏
j �=k

xi − wj

wk − wj

}
. (3)

Note that this equation coincides with the Waring interpolation form (better known as Lagrangian
interpolation form) [10] if the free function vanishes, g(x) = 0.

2
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2.1. Example #1: Surface Subject to Four Function Constraints

The first example is designed to show how to use Equation (3) with mixed, continuous,
discontinuous, and multiple constraints. Consider the following four constraints,

c(x,−2) = sin(2x), c(x, 0) = 3 cos x [(x + 1)mod(2)], c(x, 1) = 9 e−x2
, and c(x, 3) = 1 − x.

This example highlights that the constraints and free-function may be discontinuous by using
the modular arithmetic function. The result is a surface that is continuous in x at some coordinates
(at y = −2, 1, and 3) and discontinuous at y = 0. The surfaces shown in Figures 1 and 2 were obtained
using two distinct expressions for the free function, g(x, y).

Figure 1. Surface obtained using function g(x, y) = 0 (simplest surface).

Figure 2. Surface obtained using function g(x, y) = x2 y − sin(5x) cos(4 mod(y, 1)).

2.2. Example #2: Surface Subject to Two Functions and One Derivative Constraint

This second example is provided to show how to use the general approach given in
Equation (1) and described in [1], when derivative constraints are involved. Consider the following
three constraints,

c(x,−2) = sin(2x), cy(x, 0) = 0, and c(x, 1) = 9 e−x2
.

Using the functions p1(y) = 1, p2(y) = y, and p3(y) = y2, the constrained expression form
satisfying these three constraints assumes the form,

f (x, y) = g(x, y) + η1(x) + η2(x) y + η3(x) y2. (4)

3



Mathematics 2019, 7, 296

The three constraints imply the constraints,

sin(2x) = g(x,−2) + η1 − 2η2 + 4η3

0 = gy(x, 0) + η2

9 e−x2
= g(x, 1) + η1 + η2 + η3,

from which the values of the ηk coefficients,

η1 = 2gy(x, 0) + 12 e−x2 − sin(2x)
3

+
1
3

g(x,−2)− 4
3

g(x, 1)

η2 = −gy(x, 0)

η3 =
sin(2x)

3
− 1

3
g(x,−2)− gy(x, 0)− 3 e−x2

+
1
3

g(x, 1),

can be derived. After substituting these coefficients into Equation (4), the constrained expression that
always satisfies the three initial constraints is obtained. Using this expression and two different free
functions, g(x, y), we obtained the surfaces shown in Figures 3 and 4, respectively. The constraint
cy(x, 0) = 0, difficult to see in both figures, can be verified analytically.

Figure 3. Surface obtained using function g(x, y) = 0 (simplest surface).

Figure 4. Surface obtained using function g(x, y) = 3x2y − 2 sin(15x) cos(2y).

3. Connecting Functions in Two Directions

In this section, the Theory of Connections is extended to the two-dimensional case. Note that
dealing with constraints in two (or more) directions (functions or derivatives) requires particular
attention. In fact, two orthogonal constraint functions cannot be completely distinct as they intersect at
one point where they need to match in value. In addition, if the formalism derived for the 1-D case is
applied to 2-D case, some complications arise. These complications are highlighted in the following
simple clarifying example.

4
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Consider the two boundary constraint functions, f (x, 0) = q(x) and f (0, y) = h(y). Searching the
constrained expression as originally done for the one-dimensional case implies the expression,

f (x, y) = g(x, y) + η1 p1(x, y) + η2 p2(x, y).

The constraints imply the two constraints,{
q(x) = g(x, 0) + η1 p1(x, 0) + η2 p2(x, 0)
h(y) = g(0, y) + η1 p1(0, y) + η2 p2(0, y).

To obtain the values of η1 and η2, the determinant of the matrix to invert is
p1(x, 0) p2(0, y) − p1(0, y) p2(x, 0). This determinant is y by selecting p1(x, y) = 1 and p2(x, y) = y,
or it is x by selecting p1(x, y) = x and p2(x, y) = 1. Therefore, to avoid singularities, this approach
requires paying particular attention to the domain definition and/or on the user-selected functions,
pk(x, y). To avoid dealing with these issues, a new (equivalent) formalism to derive constrained
expressions is devised for the higher dimensional case.

The Theory of Connections extension to the higher dimensional case (with constraints on all axes)
can be obtained by re-writing the constrained expression into an equivalent form, highlighting a
general and interesting property. Let us show this by an example. Equation (2) can be re-written as,

f (x) =
x(2x2 − x)
2(x2 − x1)

ẏ1 +
x(x − 2x1)

2(x2 − x1)
ẏ2︸ ︷︷ ︸

A(x)

+ g(x)− x(2x2 − x)
2(x2 − x1)

ġ1 −
x(x − 2x1)

2(x2 − x1)
ġ2︸ ︷︷ ︸

B(x)

. (5)

These two components, A(x) and B(x), of a constrained expression have a specific general
meaning. The term, A(x), represents an (any) interpolating function satisfying the constraints
while the B(x) term represents all interpolating functions that are vanishing at the constraints.
Therefore, the generation of all functions satisfying multiple orthogonal constraints in n-dimensional
space can always be expressed by the general form, f (x) = A(x) + B(x), where A(x) is any
function satisfying the constraints and B(x) must represent all functions vanishing at the constraints.
Equation f (x) = A(x) + B(x) is actually an alternative general form to write a constrained expression,
that is, an alternative way to generalize interpolation: rather than derive a class of functions
(e.g., monomials) satisfying a set of constraints, it represents all possible functions satisfying the
set of constraints.

To prove that this additive formalism can describe all possible functions satisfying the constraints
is immediate. Let f (x) be all functions satisfying the constraints and y(x) = A(x) + B(x) be the sum of
a specific function satisfying the constraints, A(x), and a function, B(x), representing all functions that
are null at the constraints. Then, y(x) will be equal to f (x) iff B(x) = f (x)− A(x), representing all
functions that are null at the constraints.

As shown in Equation (5), once the A(x) function is obtained, then the B(x) function can be
immediately derived. In fact, B(x) can be obtained by subtracting the A(x) function, where all the
constraints are specified in terms of the g(x) free function, from the free function g(x). For this reason,
let us write the general expression of a constrained expression as,

f (x) = A(x) + g(x)− A(g(x)), (6)

where A(g(x)) indicates the function satisfying the constraints where the constraints are specified in
term of g(x).

The previous discussion serves to prove that the problem of extending Theory of Connections
to higher dimensional spaces consists of the problem of finding the function, A(x), only. In two

5
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dimensions, the function A(x) is provided in literature by the Coons surface [11], f (x, y). This surface
satisfies the Dirichlet boundary constraints,

f (0, y) = c(0, y), f (1, y) = c(1, y), f (x, 0) = c(x, 0), and f (x, 1) = c(x, 1), (7)

where the surface is contained in the x, y ∈ [0, 1]× [0, 1] domain. This surface is used in computer
graphics and in computational mechanics applications to smoothly join other surfaces together,
particularly in finite element method and boundary element method, to mesh problem domains
into elements. The expression of the Coons surface is,

f (x, y) = (1 − x)c(0, y) + x c(1, y) + (1 − y) c(x, 0) + y c(x, 1)− x y c(1, 1)

− (1 − x)(1 − y) c(0, 0)− (1 − x) y c(0, 1)− x (1 − y) c(1, 0),

where the four subtracting terms are there for continuity. Note the constraint functions at boundary
corners must have the same value, c(0, 0), c(0, 1), c(1, 0), and c(1, 1). This equation can be written in
matrix form as,

f (x, y) =
{

1, 1 − x, x
}⎡⎢⎣ 0 c(x, 0) c(x, 1)

c(0, y) −c(0, 0) −c(0, 1)
c(1, y) −c(1, 0) −c(1, 1)

⎤⎥⎦
⎧⎪⎨⎪⎩

1
1 − y

y

⎫⎪⎬⎪⎭ ,

or, equivalently,
f (x, y) = vT(x)M(c(x, y)) v(y), (8)

where

M(c(x, y)) =

⎡⎢⎣ 0 c(x, 0) c(x, 1)
c(0, y) −c(0, 0) −c(0, 1)
c(1, y) −c(1, 0) −c(1, 1)

⎤⎥⎦ and v(z) =

⎧⎪⎨⎪⎩
1

1 − z
z

⎫⎪⎬⎪⎭ .

Since the f (x, y) boundaries match the boundaries of the c(x, y) constraint function, then the
identity, f (x, y) = vT(x)M( f (x, y)) v(y), holds for any f (x, y) function. Therefore, the B(x) function
can be set as,

B(x) := g(x, y)− vT(x)M(g(x, y)) v(y), (9)

representing all functions that are always zero at the boundary constraints, as g(x, y) is a free function.

4. Theory of Connections Surface Subject to Dirichlet Constraints

Equations (8) and (9) can be merged to provide all surfaces with the boundary constraints defined
in Equation (7) in the following compact form,

f (x, y) = vT(x)M(c(x, y))v(y)︸ ︷︷ ︸
A(x,y)

+ g(x, y)− vT(x)M(g(x, y))v(y)︸ ︷︷ ︸
B(x,y)

. (10)

where, again, A(x, y) indicates an expression satisfying the boundary function constraints defined by
c(x, y) and B(x, y) an expression that is zero at the boundaries. In matrix form, Equation (10) becomes,

f (x, y) =

⎧⎪⎨⎪⎩
1

1 − x
x

⎫⎪⎬⎪⎭
T ⎡⎢⎣ g(x, y) c(x, 0)− g(x, 0) c(x, 1)− g(x, 1)

c(0, y)− g(0, y) g(0, 0)− c(0, 0) g(0, 1)− c(0, 1)
c(1, y)− g(1, y) g(1, 0)− c(1, 0) g(1, 1)− c(1, 1)

⎤⎥⎦
⎧⎪⎨⎪⎩

1
1 − y

y

⎫⎪⎬⎪⎭ ,

where g(x, y) is a freely chosen function. In particular, if g(x, y) = 0, then the ToC surface becomes the
Coons surface.

6
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Figure 5 (left) shows the Coons surface subject to the constraints,

c(x, 0) = sin(3x − π/4) cos(π/3)

c(x, 1) = sin(3x − π/4) cos(4 + π/3)

c(0, y) = sin(−π/4) cos(4y + π/3)

c(1, y) = sin(3 − π/4) cos(4y + π/3),

and Figure 5 (right) shows a ToC surface that is obtained using the free function,

g(x, y) =
1
3

cos(4πx) sin(6πy)− x2 cos(2πy). (11)

Figure 5. Coons surface (left); and ToC surface (right) using g(x, y) provided in Equation (11).

For generic boundaries defined in the rectangle x, y ∈ [xi, x f ]× [yi, y f ], the ToC surface becomes,

f (x, y) = g(x, y) +
x − x f

xi − x f
[c(xi, y)− g(xi, y)] +

x − xi
x f − xi

[
c(x f , y)− g(x f , y)

]
+

y − y f

yi − y f
[c(x, yi)− g(x, yi)] +

y − yi
y f − yi

[
c(x, y f )− g(x, y f )

]
−

(x − x f )(y − y f )

(xi − x f )(yi − y f )
[c(xi, yi)− g(xi, yi)]

−
(x − x f )(y − yi)

(xi − x f )(y f − yi)

[
c(xi, y f )− g(xi, y f )

]
−

(x − xi)(y − y f )

(x f − xi)(yi − y f )

[
c(x f , yi)− g(x f , yi)

]
− (x − xi)(y − yi)

(x f − xi)(y f − yi)

[
c(x f , y f )− g(x f , y f )

]
.

(12)

Equation (12) can also be set in matrix form,

f (x, y) = vT
x(x, xi, x f ) M(x, y) vy(y, yi, y f )

7
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where

M(x, y) =

⎡⎢⎣ g(x, y) c(x, yi)− g(x, yi) c(x, y f )− g(x, y f )

c(xi, y)− g(xi, y) g(xi, yi)− c(xi, yi) g(xi, y f )− c(xi, y f )

c(x f , y)− g(x f , y) g(x f , yi)− c(x f , yi) g(x f , y f )− c(x f , y f )

⎤⎥⎦
and

vx(x, xi, x f ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

x − x f

xi − x f
x − xi
x f − xi

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ and vy(y, yi, y f ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

y − y f

yi − y f
y − yi
y f − yi

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

Note that all the ToC surfaces provided are linear in g(x, y), and, therefore, they can be used to
solve, by linear/nonlinear least-squares, two-dimensional optimization problems subject to boundary
function constraints, such as linear/nonlinear partial differential equations.

5. Multi-Function Constraints at Generic Coordinates

Equation (12) can be generalized to many function constraints (grid of functions). Assume a set
of nx function constraints c(xk, y) and a set of ny function constraints c(x, yk) intersecting at the nx ny

points pij = c(xi, yj), then all surfaces satisfying the nx ny function constraints can be expressed by,

f (x, y) = g(x, y) +
nx

∑
k=1

[c(xk, y)− g(xk, y)]∏
i �=k

x − xi
xk − xi

+
ny

∑
k=1

[c(x, yk)− g(x, yk)]∏
i �=k

y − yi
yk − yi

−
nx

∑
i=1

{ ny

∑
j=1

(x − xj)(y − yi)

(xi − xj)(yj − yi)

[
c(xi, yj)− g(xi, yj)

]}
.

(13)

Again, Equation (13) can be written in compact form,

f (x, y) = vT(x)M(c(x, y)) v(y) + g(x, y)− vT(x)M(g(x, y)) v(y)

where,

v(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

∏
i �=1

x − xi
x1 − xi

...

∏
i �=nx

x − xi
xnx − xi

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
and v(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

∏
i �=1

y − yi
y1 − yi

...

∏
i �=ny

y − yi
yny − yi

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
and

M(c(x, y)) =

⎡⎢⎢⎢⎢⎣
0 c(x, y1) . . . c(x, yny)

c(x1, y) −c(x1, y1) . . . −c(x1, yNy)
...

...
. . .

...
c(xnx , y) −c(xnx , y1) . . . −c(xnx , yny)

⎤⎥⎥⎥⎥⎦
For example, two function constraints in x and three function constraints in y can be obtained

using the matrix,

M(c(x, y)) =

⎡⎢⎣ 0 c(x, y1) c(x, y2) c(x, y3)

c(x1, y) −c(x1, y1) −c(x1, y2) −c(x1, y3)

c(x2, y) −c(x2, y1) −c(x2, y2) −c(x2, y3)

⎤⎥⎦

8
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and the vectors,

v(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

x − x2

x1 − x2
x − x1

x2 − x1

⎫⎪⎪⎪⎬⎪⎪⎪⎭ and v(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
(y − y2)(y − y3)

(y1 − y2)(y1 − y3)
(y − y1)(y − y3)

(y2 − y1)(y2 − y3)
(y − y2)(y − y1)

(y3 − y2)(y3 − y1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

Two examples of ToC surfaces are given in Figure 6 in the x, y ∈ [−2, 1]× [1, 3] domain.

Figure 6. ToC surface subject to multiple constraints on two axes: using g(x, y) = 0 (left); and using
g(x, y) = mod(x, 0.5) cos(19y)− x mod(3y, 0.4) (right).

6. Constraints on Function and Derivatives

The “Boolean sum formulation” was provided by Farin [12] (also called “Hermite–Coons
formulation”) of the Coons surface that includes boundary derivatives,

f (x, y) = vT(y)Fx(x) + vT(x)Fy(y)− vT(x)Mxyv(y) (14)

where

v(z) := {2z3 − 3z2 + 1, z3 − 2z2 + z, −2z3 + 3z2, z3 − z2}T

Fx(x) := {c(x, 0), cy(x, 0), c(x, 1), cy(x, 1)}T

Fy(y) := {c(0, y), cx(0, y), c(1, y), cx(1, y)}T

and

Mxy(x, y) :=

⎡⎢⎢⎢⎣
c(0, 0) cy(0, 0) c(0, 1) cy(0, 1)

cx(0, 0) cxy(0, 0) cx(0, 1) cxy(0, 1)
c(1, 0) cy(1, 0) c(1, 1) cy(1, 1)

cx(1, 0) cxy(1, 0) cx(1, 1) cxy(1, 1)

⎤⎥⎥⎥⎦ .

The formulation provided in Equation (14) can be put in the matrix compact form,

f (x, y) = vT(x)M(c(x, y)) v(y), (15)

9
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where
v(z) := {1, 2z3 − 3z2 + 1, z3 − 2z2 + z, −2z3 + 3z2, z3 − z2}T (16)

and the 5 × 5 matrix, M(c(x, y)), has the expression,

M(c(x, y)) :=

⎡⎢⎢⎢⎢⎢⎣
0 c(x, 0) cy(x, 0) c(x, 1) cy(x, 1)

c(0, y) −c(0, 0) −cy(0, 0) −c(0, 1) −cy(0, 1)
cx(0, y) −cx(0, 0) −cxy(0, 0) −cx(0, 1) −cxy(0, 1)
c(1, y) −c(1, 0) −cy(1, 0) −c(1, 1) −cy(1, 1)

cx(1, y) −cx(1, 0) −cxy(1, 0) −cx(1, 1) −cxy(1, 1)

⎤⎥⎥⎥⎥⎥⎦ . (17)

To verify the boundary derivative constraints, the following partial derivatives of Equation (15)
are used,

fx(x, y) = [vT
x(x)M(c(x, y)) + vT(x)Mx(c(x, y))]v(y)

fy(x, y) = vT(x)[MT
y(c(x, y))v(y) +M(c(x, y))vy(y)],

where

dv
dz

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0
6z(z − 1)

3z2 − 4z + 1
6z(1 − z)
z(3z − 2)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, My =

⎡⎢⎢⎢⎢⎢⎣
0 01×4

cy(0, y) 01×4

cxy(0, y) 01×4

cy(1, y) 01×4

cxy(1, y) 01×4

⎤⎥⎥⎥⎥⎥⎦ , and MT
x =

⎡⎢⎢⎢⎢⎢⎣
0 01×4

cx(x, 0) 01×4

cxy(x, 0) 01×4

cx(x, 1) 01×4

cxy(x, 1) 01×4

⎤⎥⎥⎥⎥⎥⎦ .

The ToC in 2D with function and derivative boundary constraints is simply,

f (x, y) = vT(x)M(c(x, y))v(y)︸ ︷︷ ︸
A(x,y)

+ g(x, y)− vT(x)M(g(x, y))v(y)︸ ︷︷ ︸
B(x,y)

(18)

where the M matrix and the v vectors are provided by Equations (17) and (16), respectively.
Dirichlet/Neumann mixed constraints can be derived, as shown in the examples provided in

Sections 6.1–6.4. The matrix compact form is simply obtained from the matrix defined in Equation (17)
by removing the rows and the columns associated with the boundary constraints not provided,
while the vectors v(x) and v(y) are derived by specifying the constraints. Note that in general the
vectors v(x) and v(y) are not unique. The reason the vectors v(x) and v(y) are not unique comes from
the fact that the A(x) term in Equation (6) is not unique.

In the next subsections, four Dirichlet/Neumann mixed constraint examples providing the
simplest expressions for v(x) and v(y) are derived. The Appendix A contains the expressions for the
v(x) and v(y) vectors associated with all the combinations of Dirichlet and Neumann constraints.

6.1. Constraints: c(0, y) and c(x, 0)

In this case, the Coons-type surface satisfying the boundary constraints can be expressed as,

f (x, y) =
{

1 p(x)
} [ 0 c(x, 0)

c(0, y) −c(0, 0)

]{
1

q(y)

}

where p(x) and q(y) are unknown functions. Expanding, we obtain
f (x, y) = c(x, 0)q(y) + p(x)[c(0, y) − c(0, 0)q(y)]. The two constraints are satisfied if,

c(0, y) = c(0, 0)q(y) + p(0)[c(0, y)− c(0, 0)q(y)]

c(x, 0) = c(x, 0)q(0) + p(x)[c(0, 0)− c(0, 0)q(0)].

10
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Therefore, the p(x) and q(y) functions must satisfy p(0) = 1 and q(0) = 1. The simplest
expressions satisfying these equations can be obtained by selecting p(x) = 1 and q(y) = 1. In this case,
the associated ToC surface is given by,

f (x, y) =
{

1 1
} [ g(x, y) c(x, 0)− g(x, 0)

c(0, y)− g(0, y) g(0, 0)− c(0, 0)

]{
1
1

}

Note that any functions satisfying p(0) = 1 and q(0) = 1 can be adopted to obtain the ToC surface
satisfying the constraints f (0, y) = c(0, y) and f (x, 0) = c(x, 0). This is because there are infinite
Coons-type surfaces satisfying the constraints. Consequently, the vectors v(x) and v(y) are not unique.

6.2. Constraints: c(0, y) and cy(x, 0)

For these boundary constraints, the Coons-type surface is expressed by,

f (x, y) =
{

1 p(x)
} [ 0 cy(x, 0)

c(0, y) −cy(0, 0)

]{
1

q(y)

}
= cy(x, 0)q(y) + p(x)[c(0, y)− cy(0, 0)q(y)].

The constraints are satisfied if,

c(0, y) = cy(0, 0)q(y) + p(0)[c(0, y)− cy(0, 0)q(y)],

cy(x, 0) = cy(x, 0)qy(0) + p(x)[cy(0, 0)− cy(0, 0)qy(0)].

Therefore, the p(x) and q(y) functions must satisfy p(0) = 1 and qy(0) = 1. One solution is
p(x) = 1 and q(y) = y. Therefore, the associated ToC surface is given by,

f (x, y) =
{

1 1
} [ g(x, y) cy(x, 0)− gy(x, 0)

c(0, y)− g(0, y) gy(0, 0)− cy(0, 0)

]{
1
y

}
.

6.3. Neumann Constraints: cx(0, y), cx(1, y), cy(x, 0), and cy(x, 1)

In this case, the Coons-type surface satisfying the boundary constraints can be expressed as,

f (x, y) =
{

1, p1(x), p2(x)
}⎡⎢⎣ 0 cy(x, 0) cy(x, 1)

cx(0, y) −cxy(0, 0) −cxy(0, 1)
cx(1, y) −cxy(1, 0) −cxy(1, 1)

⎤⎥⎦
⎧⎪⎨⎪⎩

1
q1(y)
q2(y)

⎫⎪⎬⎪⎭ .

11
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The constraints are satisfied if,

cx(0, y) = q1(y)cxy(0, 0) + q2(y)cxy(0, 1)+

+ p1x(0)[cx(0, y)− q1(y)cxy(0, 0)− q2(y)cxy(0, 1)]+

+ p2x(0)[cx(1, y)− q1(y)cxy(1, 0)− q2(y)cxy(1, 1)]

cx(1, y) = q1(y)cxy(1, 0) + q2(y)cxy(1, 1)+

+ p1x(1)[cx(0, y)− q1(y)cxy(0, 0)− q2(y)cxy(0, 1)]+

+ p2x(1)[cx(1, y)− q1(y)cxy(1, 0)− q2(y)cxy(1, 1)]

cy(x, 0) = q1y(0)cy(x, 0) + q2y(0)cy(x, 1)+

+ p1(x)[cxy(0, 0)− q1y(0)cxy(0, 0)− q2y(0)cxy(0, 1)]+

+ p2(x)[cxy(1, 0)− q1y(0)cxy(1, 0)− q2y(0)cxy(1, 1)]

cy(x, 1) = q1y(1)cy(x, 0) + q2y(1)cy(x, 1)+

+ p1(x)[cxy(0, 1)− q1y(1)cxy(0, 0)− q2y(1)cxy(0, 1)]+

+ p2(x)[cxy(1, 1)− q1y(1)cxy(1, 0)− q2y(1)cxy(1, 1)].

These equations imply p1x(0) = q1x(0) = 1, p1x(1) = q1x(1) = 0, p2x(0) = q2x(0) = 0,
and p2x(1) = q2x(1) = 1. Therefore, the simplest solution is p1(t) = q1(t) = t − t2/2 and
p2(t) = q2(t) = t2/2. Then, the associated ToC surface satisfying the Neumann constraints is
given by,

f (x, y) = vT(x)

⎡⎢⎣ g(x, y) cy(x, 0)− gy(x, 0) cy(x, 1)− gy(x, 1)
cx(0, y)− gx(0, y) gxy(0, 0)− cxy(0, 0) gxy(0, 1)− cxy(0, 1)
cx(1, y)− gx(1, y) gxy(1, 0)− cxy(1, 0) gxy(1, 1)− cxy(1, 1)

⎤⎥⎦ v(y)

where

vT(x) =
{

1, x − x2

2
,

x2

2

}
and v(y) =

{
1, y − y2

2
,

y2

2

}
.

6.4. Constraints: c(0, y), cy(x, 0), and cy(x, 1)

In this case, the Coons-type surface satisfying the boundary constraints is in the form,

f (x, y) =

{
1

p(x)

}T [
0 cy(x, 0) cy(x, 1)

c(0, y) −cy(0, 0) −cy(0, 1)

]⎧⎪⎨⎪⎩
1

q1(y)
q2(y)

⎫⎪⎬⎪⎭ .

The constraints are satisfied if p(0) = 1, p1y(0) = 1, p1y(1) = 0, p2y(0) = 0, and p2y(1) = 1.
Therefore, the associated ToC surface is,

f (x, y) =

{
1
1

}T [
g(x, y) cy(x, 0)− gy(x, 0) cy(x, 1)− gy(x, 1)

c(0, y)− g(0, y) gy(0, 0)− cy(0, 0) gy(0, 1)− cy(0, 1)

]⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

y − y2

2
y2

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

6.5. Generic Mixed Constraints

Consider the case of mixed constraints,

f (x, y1) = c(x, y1)

fx(x, y2) = cx(x, y2)

f (x, y3) = c(x, y3)

and
fy(x1, y) = cy(x1, y)
fy(x2, y) = cy(x2, y)
f (x3, y) = c(x3, y)

. (19)

12
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In this case, the surface satisfying the boundary constraints is built using the matrix,

M(c(x, y)) =

⎡⎢⎢⎢⎣
0 c(x, y1) cx(x, y2) c(x, y3)

cy(x1, y) −cy(x1, y1) −cxy(x1, y2) −cy(x1, y3)

cy(x2, y) −cy(x2, y1) −cxy(x2, y2) −cy(x2, y3)

c(x3, y) −c(x3, y1) −cx(x3, y2) −c(x3, y3)

⎤⎥⎥⎥⎦
and all surfaces subject to the constraints defined in Equation (19) can be obtained by,

f (x, y) = v(x)TM(c(x, y))v(y) + g(x, y)− v(x)TM(g(x, y))v(y),

where

v(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

p1(x, x1, x2, x3)

p2(x, x1, x2, x3)

p3(x, x1, x2, x3)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ and v(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

q1(y, y1, y2, y3)

q2(y, y1, y2, y3)

q3(y, y1, y2, y3)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
are vectors made of the (not unique) function vectors v(x) and v(y) whose expressions can be found
by satisfying the constraints (as done in the previous four subsections) along with a methodology
similar to that given in Section 5.

7. Extension to n-Dimensional Spaces and Arbitrary-Order Derivative Constraints

This section provides the Multivariate Theory of Connections, as the generalization to n-dimensional
rectangular domains with arbitrary-order boundary derivatives of what is presented above for
two-dimensional space. Using tensor notation, this generalization is represented in the following
compact form,

F(x) = M(c(x))i1i2...in vi1 vi2 . . . vin︸ ︷︷ ︸
A(x)

+ g(x)−M(g(x))i1i2...in vi1 vi2 . . . vin︸ ︷︷ ︸
B(x)

(20)

where n is the number of orthogonal coordinates defined by the vector x = {x1, x2, . . . , xn}, vik (xk) is
the ikth element of a vector function of the variable xk, M is an n-dimensional tensor that is a function
of the boundary constraints defined in c(x), and g(x) is the free-function.

In Equation (20), the term A(x) represents any function satisfying the boundary constraints
defined by c(x) and the term B(x) represents all possible functions that are zero on the boundary
constraints. The subsections that follow explain how to construct the M tensor and the vik vectors for
assigned boundary constraints, and provides a proof that the tensor formulation of the ToC defined by
Equation (20) satisfies all boundary constraints defined by c(x), independently of the choice of the free
function, g(x).

Consider a generic boundary constraint on the xk = p hyperplane, where k ∈ [1, n]. This constraint
specifies the d-derivative of the constraint function c(x) evaluated at xk = p and it is indicated by

kcd
p :=

∂dc(x)
∂xd

k

∣∣∣∣∣
xk=p

. Consider a set of �k constraints defined in various xk hyperplanes. This set of

constraints is indicated by kcdk

pk , where dk and pk are vectors of �k elements indicating the order of
derivatives and the values of xk where the boundary constraints are defined, respectively. A specific

boundary constraint, e.g. the mth boundary constraint, can then be written as kcdk
m

pk
m

.

Additionally, let us define an operator, called the boundary constraint operator, whose purpose
is to take the dth derivative with respect to coordinate xk and then evaluate that function at xk = p.
Equation (21) shows the idea.

kbd
p[ f ] ≡ ∂d f

∂xd
k

∣∣∣∣
(x1,...,xk−1,p,xk+1,...,xn)

(21)

13
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In general, for a function of n variables, the boundary constraint operator identifies an n −
1-dimensional manifold. As the boundary constraint operator is used throughout this proof, it is
important to note its properties when acting on sums and products of functions. Equation (22) shows
how the boundary constraint operator acts on sums, and Equation (23) shows how the boundary
constraint operator acts on products.

kbd
p[ f1 + f2] =

kbd
p[ f1] +

kbd
p[ f2] (22)

kbd
p[ f1 f2] =

{
kbd

p[ f1]
kbd

p[ f2], d = 0
kbd

p[ f1] f2 + f1
kbd

p[ f2], d > 0
(23)

This section shows how to build the M tensor and the vectors v given the boundary constraints
defined by the boundary constraint operators. Moreover, this section contains a proof that,
in Equation (20), the boundary constraints defined by c(x) satisfy the function A(x) and, by extension,
the function B(x) projects the free-function g(x) onto the sub-space of functions that are zero on the
boundary constraints. Then, it follows that the expression for the ToC surface given in Equation (20)
represents all possible functions that meet the boundary defined by the boundary constraint operators.

7.1. The M Tensor

There is a step-by-step method for constructing the M tensor.

1. The element of M for all indices equal to 1 is 0 (i.e., M11...1 = 0).
2. The first order tensor obtained by keeping the kth dimension’s index and setting all other

dimension’s indices to 1 can be written as,

M1,...,1,ik ,1,...,1 = kcdk

pk , where ik ∈ [2, �k + 1],

where the vector kcdk

pk contains the �k boundary constraints specified along the xk-axis. For example,
consider the following �7 = 3 constraints on the k = 7th axis,

7cd7

p7 :=

⎧⎨⎩c|x7=−0.3,
∂4c
∂x4

7

∣∣∣∣∣
x7=0.5

,
∂c

∂x7

∣∣∣∣
x7=1.1

⎫⎬⎭ then :

{
d7 = {0, 4, 1}
p7 = {−0.3, 0.5, 1.1}.

3. The generic element of the tensor is Mi1i2...in , where at least two indices are different from 1.
Let m be the number of indices different from 1. Note that m is also the number of constraint
“intersections”. In this case, the generic element of the M tensor is provided by,

Mi1i2...in = 1b
d1

i1−1

p1
i1−1

[
2b

d2
i2−1

p2
i2−1

[
. . .
[

nb
dn

in−1
pn

in−1
[c(x)]

]
. . .
]]

(−1)m+1. (24)

If c(x) ∈ Cs, where s =
n

∑
k=1

dk
ik−1, then Clairaut’s theorem states that the sequence of boundary

constraint operators provided in Equation (24) can be freely permutated. This permutation
becomes obvious by multiple applications of the theorem. For example,

fxyy = ( fxy)y = ( fyx)y = ( fy)xy = ( fy)yx = fyyx.

To better clarify how to use Equation (24), consider the example of the following constraints in
three-dimensional space.

c(x)|x1=0, c(x)|x1=1, c(x)|x2=0,
∂c(x)
∂x2

∣∣∣∣
x2=0

, c(x)|x3=0, and
∂c(x)
∂x3

∣∣∣∣
x3=0

14
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1. From Step 1: M111 = 0
2. From Step 2:

Mi111 =
{

0, c(0, x2, x3), c(1, x2, x3)
}
=
{

0, 1b0
0[c(x)], 1b0

1[c(x)]
}

M1i21 =

{
0, c(x1, 0, x3),

∂c
∂x2

(x1, 0, x3)

}
=
{

0, 2b0
0[c(x)], 2b1

0[c(x)]
}

M11i3 =

{
0, c(x1, x3, 0),

∂c
∂x3

(x1, x2, 0)
}

=
{

0, 3b0
0[c(x)], 3b1

0[c(x)]
}

3. From Step 3, a single example is provided,

M323 = 1b0
1

[
2b0

0
[ 3c1

0(x)
]]
(−1)4 =

∂c(x)
∂x3

∣∣∣∣x1=1
x2=0
x3=0

which, thanks to Clairaut’s theorem, can also be written as,

M323 = 2b0
0

[
3b1

0
[ 1c0

1
]]
(−1)4 = 3b1

0

[
1b0

1
[ 2c0

0
]]
(−1)4.

Three additional examples are given to help further illustrate the procedure,

M132 = − ∂c(x)
∂x2

∣∣∣∣x2=0
x3=0

, M221 = −c(0, 0, x3), and M333 =
∂2c(x)
∂x2∂x3

∣∣∣∣x1=1
x2=0
x3=0

7.2. The v Vectors

Each vector, vk, is associated with the �k constraints that are specified by kcdk

pk . The vk vector is
built as follows,

vk =

{
1,

�k

∑
i=1

αi1 hi(xk),
�k

∑
i=1

αi2 hi(xk), . . . ,
�k

∑
i=1

αi�k
hi(xk)

}
,

where hi(xk) are �k linearly independent functions. The simplest set of linearly independent functions
are monomials, that is, hi(xk) = xi−1

k . The �k × �k coefficients, αij, can be computed by matrix inversion,⎡⎢⎢⎢⎢⎢⎣
kbd1

p1 [h1]
kbd1

p1 [h2] . . . kbd1
p1 [h�k

]
kbd2

p2 [h1]
kbd2

p2 [h2] . . . kbd2
p2 [h�k

]
...

...
. . .

...
kb

d�k
p�k

[h1]
kb

d�k
p�k

[h2] . . . kb
d�k
p�k

[h�k
]

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

α11 α12 . . . α1�k

α21 α22 . . . α2�k
...

...
. . .

...
α�k1 α�k2 . . . α�k�k

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

⎤⎥⎥⎥⎥⎦ . (25)

To supplement the above explanation, let us look at the example of Dirichlet boundary conditions
on x1 from the example in Section 7.1. There are two boundary conditions, c(x)|x1=0 and c(x)|x1=1,
and thus two linearly independent functions are needed,

vi1 =
{

1, α11h1(x1) + α21h2(x1), α12h1(x1) + α22h2(x1)
}

.

Let us consider, h1(x1) = 1 and h2(x1) = x1. Then, following Equation (25),[
1b0

0[1]
1b0

0[x]
2b0

1[1]
2b0

1[x]

] [
α11 α12

α21 α22

]
=

[
1 0
1 1

] [
α11 α12

α21 α22

]
=

[
1 0
0 1

]
→

[
α11 α12

α21 α22

]
=

[
1 0

−1 1

]
,

15



Mathematics 2019, 7, 296

and substituting the values of αij, we obtain vi1 =
{

1, 1 − x1, x1

}
.

7.3. Proof

This section demonstrates that the term A(x) from Equation (20) generates a surface
satisfying the boundary constraints defined by the function c(x). First, it is shown that A(x)
satisfies boundary constraints on the value, and then that A(x) satisfies boundary constraints on
arbitrary-order derivatives.

Equation (23) for d = 0 allows us to write,

kb0
pq−1

[A(x)] = kb0
pq−1

[Mi1i2...ik ...in ]vi1 vi2 . . . kb0
pq−1

[vik ] . . . vin . (26)

The boundary constraint operator applied to vk yields,

kb0
pq−1

[vik ] =

{
= 1, ik = 1, q

= 0, ik �= 1, q.
(27)

Since the only nonzero terms are associated with ik = 1, q, we have,

kb0
pq−1

[A(x)] =
(

kb0
pq−1

[Mi1i2...1...in ] +
kb0

pq−1
[Mi1i2...q...in ]

)
vi1 vi2 . . . vin . (28)

Applying the boundary constraint operator to the n − 1-dimensional M tensor where index
ik = q has no effect, because all of the functions already have coordinate xk substituted for the value
pq−1 (see Equation (24)). Moreover, applying the boundary constraint operator to the M tensor where
index ik = 1 causes all terms in the sum within the parenthesis in Equation (28) to cancel each other,
except when all of the non-ik indices are equal to one. This leads to Equation (29).

kb0
pq−1

[A(x)] =
(
M11...1...1 +M11...q...1

)
v1v1 . . . v1 (29)

Since vj = 1 when j = 1 and M11...1 = 0 by definition, then,

kb0
pq−1

[A(x)] = M11...q...1 = c(x1, x2, . . . , pq−1, . . . , xn),

which proves Equation (20) works for boundary constraints on the value.
Now, we show that Equation (20) holds for arbitrary-order derivative type boundary constraints.

Equation (23) for d > 0 allows us to write,

kb
dq−1
pq−1 [A(x)] = kb

dq−1
pq−1 [Mi1i2...ik ...in ]vi1 vi2 . . . vik . . . vin +Mi1i2...ik ...in vi1 vi2 . . . kb

dq−1
pq−1 [vik ] . . . vin . (30)

From Equation (23), we note that boundary constraint operators that take a derivative follow the
usual product rule when applied to a product. Moreover, we note that all of the v vectors except vik do
not depend on xk, thus applying the boundary constraint operator to them results in a vector of zeros.
Applying the boundary constraint operator to vik yields,

kb
dq−1
pq−1 [vik ] =

{
= 1, ik = q

= 0, ik �= q,

16
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and applying the boundary constraint operator to M yields,

kb
dq−1
pq−1 [Mi1i2...1...in ] =

⎧⎨⎩= kb
dq−1
pq−1 [Mi1i2...1...in ], ik = 1

= 0, ik �= 1.

Substituting these simplifications into A(x) = Mi1i2...ik ...in vi1 vi2 . . . vik . . . vin , after applying the
boundary constraint operator, results in Equation (31).

kb
dq−1
pq−1 [A(x)] =

(
kb

dq−1
pq−1 [Mi1i2...1...in ] +Mi1i2...q...in

)
vi1 vi2 . . . vin (31)

Similar to the proof for value-based boundary constraints, based on Equation (24), all terms in the
sum within the parenthesis in Equation (31) cancel each other, except when all of the non-ik indices are
equal to one. Thus, Equation (31) can be simplified to Equation (32).

kb
dq−1
pq−1 [A(x)] =

(
kb

dq−1
pq−1 [M11...1...1] +M11...q...1

)
v1v1 . . . v1 (32)

Again, all of the vectors v were designed such that their first component is 1, and the value of the
element of M for all indices equal to 1 is 0. Therefore, Equation (32) simplifies to,

kb
dq−1
pq−1 [A(x)] = M11...q...1 =

∂dc(x)
∂xd

k

∣∣∣∣
xk=pq−1

,

which proves Equation (20) works for arbitrary-order derivative boundary constraints.
In conclusion, the term A(x) from Equation (20) generates a manifold satisfying the boundary

constraints given in terms of arbitrary-order derivative in n-dimensional space. The term B(x) from
Equation (20) projects any free function g(x) onto the space of functions that are vanishing at the
specified boundary constraints. As a result, Equation (20) can be used to produce the family of all
possible functions satisfying assigned boundary constraints (functions or derivatives) in rectangular
domains in n-dimensional space.

8. Conclusions

This paper extends to n-dimensional spaces the Univariate Theory of Connections (ToC),
introduced in Ref. [1]. First, it provides a mathematical tool to express all possible surfaces
subject to constraint functions and arbitrary-order derivatives in a boundary rectangular domain,
and then it extends the results to the multivariate case by providing the Multivariate Theory of
Connections, which allows one to obtain n-dimensional manifolds subject to any-order derivative
boundary constraints.

In particular, if the constraints are provided along one axis only, then this paper shows that the
univariate ToC, as defined in Ref. [1], can be adopted to describe all possible surfaces satisfying the
constraints. If the boundary constraints are defined in a rectangular domain, then the constrained
expression is found in the form f (x) = A(x) + B(x), where A(x) can be any function satisfying the
constraints and B(x) describes all functions that are vanishing at the constraints. This is obtained by
introducing a free function, g(x), into the function B(x) in such a way that B(x) is zero at the constraints
no matter what the g(x) is. This way, by spanning all possible g(x) surfaces (even discontinuous,
null, or piece-wise defined) the resulting B(x) generates all surfaces that are zero at the constraints
and, consequently, f (x) = A(x) + B(x), describes all surfaces satisfying the constraints defined in
the rectangular boundary domain. The function A(x) has been selected as a Coons surface [11] and,
in particular, a Coons surface is obtained if g(x) = 0 is selected. All possible combinations of Dirichlet
and Neumann constraints are also provided in Appendix A.

17
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The last section provides the Multivariate Theory of Connections extension, which is a
mathematical tool to transform n-dimensional constraint optimization problems subject to constraints
on the boundary value and any-order derivative into unconstrained optimization problems.
The number of applications of the Multivariate Theory of Connections are many, especially in the area
of partial and stochastic differential equations: the main subjects of our current research.
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Appendix A. All combinations of Dirichlet and Neumann constraints

cx,0 c0,y cx,1 c1,y cx
0,y cx

1,y cy
x,0 cy

x,1 v(x) v(y)

� �
{

1
1

} {
1
1

}

� �
{

1
1

} {
1
y

}

� �
{

1
x

} {
1
y

}

� � �
{

1
1

} ⎧⎪⎨⎪⎩
1

1 − y2

y2

⎫⎪⎬⎪⎭
� � �

{
1
1

} ⎧⎪⎨⎪⎩
1
1
y

⎫⎪⎬⎪⎭
� � �

{
1
x

} ⎧⎪⎨⎪⎩
1

1 − y
y

⎫⎪⎬⎪⎭
� � �

{
1
x

} ⎧⎪⎨⎪⎩
1

y − y2

y2

⎫⎪⎬⎪⎭
� � �

{
1
1

} ⎧⎪⎨⎪⎩
1

y − y2/2
y2/2

⎫⎪⎬⎪⎭
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cx,0 c0,y cx,1 c1,y cx
0,y cx

1,y cy
x,0 cy

x,1 v(x) v(y)

� � �
{

1
x

} ⎧⎪⎨⎪⎩
1

y − y2/2
y2/2

⎫⎪⎬⎪⎭
� � � �

⎧⎪⎨⎪⎩
1

1 − x
x

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
1 − y

y

⎫⎪⎬⎪⎭
� � � �

⎧⎪⎨⎪⎩
1

1 − x
x

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
y − y2

y2

⎫⎪⎬⎪⎭
� � � �

⎧⎪⎨⎪⎩
1

1 − x
x

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
y − y2/2

y2/2

⎫⎪⎬⎪⎭
� � � �

⎧⎪⎨⎪⎩
1

x − x2

x2

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
y − y2

y2

⎫⎪⎬⎪⎭
� � � �

⎧⎪⎨⎪⎩
1

x − x2

x2

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
y − y2/2

y2/2

⎫⎪⎬⎪⎭
� � � �

⎧⎪⎨⎪⎩
1

x − x2/2
x2/2

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
y − y2/2

y2/2

⎫⎪⎬⎪⎭
� � �

{
1
1

} ⎧⎪⎨⎪⎩
1
1
y

⎫⎪⎬⎪⎭
� � �

{
1
x

} ⎧⎪⎨⎪⎩
1
1
y

⎫⎪⎬⎪⎭
� � � �

⎧⎪⎨⎪⎩
1

1 − x
x

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
1
y

⎫⎪⎬⎪⎭
� � � �

{
1
1

} ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1 − y2

y − y2

y2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
� � � �

{
1
x

} ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

1 − y2

y − y2

y2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
� � � �

{
1
1

} ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
1

y − y2/2
y2/2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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cx,0 c0,y cx,1 c1,y cx
0,y cx

1,y cy
x,0 cy

x,1 v(x) v(y)

� � � �
{

1
x

} ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
1

y − y2/2
y2/2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
� � � �

⎧⎪⎨⎪⎩
1
1
x

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
1
y

⎫⎪⎬⎪⎭
� � � �

⎧⎪⎨⎪⎩
1

x − x2/2
x2/2

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
1
y

⎫⎪⎬⎪⎭
� � � �

⎧⎪⎨⎪⎩
1
1
x

⎫⎪⎬⎪⎭
⎧⎪⎨⎪⎩

1
1
y

⎫⎪⎬⎪⎭
� � � � �

⎧⎪⎨⎪⎩
1
1
x

⎫⎪⎬⎪⎭
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
1 − y2

y − y2

y2
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� � � � �
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1
1
x
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
1

y − y2/2
y2/2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
� � � � �

⎧⎪⎨⎪⎩
1

1 − x
x

⎫⎪⎬⎪⎭
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
1 − y2
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� � � � �

⎧⎪⎨⎪⎩
1
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⎫⎪⎬⎪⎭
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
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y2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
� � � � �

⎧⎪⎨⎪⎩
1
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x

⎫⎪⎬⎪⎭
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1
1

y − y2/2
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⎫⎪⎪⎪⎬⎪⎪⎪⎭
� � � � �

⎧⎪⎨⎪⎩
1
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⎫⎪⎬⎪⎭
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1
1
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⎫⎪⎪⎪⎬⎪⎪⎪⎭
� � � � �

⎧⎪⎨⎪⎩
1

x − x2/2
x2/2

⎫⎪⎬⎪⎭
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1
1
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⎫⎪⎪⎪⎬⎪⎪⎪⎭
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Abstract: In this paper, we investigate and design multiscale simulations for stochastic multiscale
PDEs. As for the space, we consider a coarse grid and a known multiscale method, the generalized
multiscale finite element method (GMsFEM). In order to obtain a small dimensional representation
of the solution in each coarse block, the uncertainty space needs to be partitioned (coarsened).
This coarsenining collects realizations that provide similar multiscale features as outlined in GMsFEM
(or other method of choice). This step is known to be computationally demanding as it requires
many local solves and clustering based on them. In this work, we take a different approach and
learn coarsening the uncertainty space. Our methods use deep learning techniques in identifying
clusters (coarsening) in the uncertainty space. We use convolutional neural networks combined
with some techniques in adversary neural networks. We define appropriate loss functions in the
proposed neural networks, where the loss function is composed of several parts that includes terms
related to clusters and reconstruction of basis functions. We present numerical results for channelized
permeability fields in the examples of flows in porous media.

Keywords: generalized multiscale finite element method; multiscale model reduction; clustering;
deep learning

1. Introduction

Many problems are multiscale with uncertainties. Examples include problems in porous media,
material sciences, biological sciences, and so on. For example, in porous media applications,
engineers can obtain fine-scale data about pore geometries or subsurface properties at very fine
resolutions. These data are obtained in some spatial locations and then generalized to the entire
reservoir domain. As a result, one uses geostatistical or other statistical tools to populate the media
properties in space. The resulting porous media properties are stochastic and one needs to deal with
many porous media realizations, where each realization is multiscale and varies at very fine scales.
There are other realistic problems which have multiscale properties with uncertainties such as the
multiscale public safety systems, [1], multiscale social networks [2]; these problems usually have
more data.

Simulating each realization can be computationally expensive because of the media‘s multiscale nature.
Our objective is to simulate many of these realizations. To address the issues associated with spatial and
temporal scales, many multiscale methods have been developed [3–12]. These methods perform simulations
on the coarse grid by developing reduced-order models. However, developing reduced-order models
requires local computations, which can be expensive when one deals with many realizations. For this
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reason, some type of coarsening of the uncertainty space is needed [13]. In this paper, we consider
some novel approaches for developing coarsening of uncertainty space as discussed below.

To coarsen the uncertainty space, clustering algorithms are often used; but a proper distance
function should be designed in order to make the clusters have physical sense and achieve a reduction
in the uncertainty space. The paper [13] proposed a method that uses the distance between local
solutions. The motivation is that the local problems with random boundary conditions can represent
the main models with all boundary conditions. Due to a high dimension of the uncertainty space,
the authors in [13] proposed to compute the local solutions of only several realizations and then use the
Karhunen–Loeve expansion [14] to approximate the solutions of all the other realizations. The distance
function is then defined to be the distance between solutions and the standard K-means [15] algorithm
is used to cluster the uncertainty space.

The issue with this method is computing the local solutions in the local neighborhoods. It is
computationally expensive to compute the local solutions; although the KL expansion can save time to
approximate the solutions of other realizations, one still needs to decide how many selected realizations
we need to represent all the other solutions. In this paper, we propose the use of deep learning
methodology and avoid explicit clustering as in earlier works. We remark that the development of
deep learning techniques for multiscale simulations are recently reported in [16–20].

In this work, to coarsen the uncertainty space, we propose a deep learning algorithm which will
learn the clusters for each local neighborhood. Due the nature of the permeability fields, we can use
the transfer learning which uses the parameters of one local neighborhood to initialize the learning of
all the other neighborhoods. This saves significantly computational time.

The auto encoder structure [21] has been widely used in improving the K-mean clustering
algorithm [22–24]. The idea is to use the encoder to extract features and reduce the dimension;
the encoding process can also be taken as a kernel method [25] which maps the data to a space which
is easier to be separated. The decoder is used to upsample the latent space (reduced dimension feature
space) back to the input space. The clustering algorithm is then used to cluster the latent space,
which will save time due to the low dimension of the latent space and also preserve the accuracy due
to the features extracted by the encoder.

Traditionally, the learning process is only involved in reconstructing the input space. Such kind
of methods ignore the features extracted by latent space; so, it is not clear if the latent space is good
enough to represent the input space and is easily clustered by the K-means method. In [24], the authors
proposed a new loss which includes the reconstruction loss meanwhile the loss results from the
clustering. The authors claimed that the new loss improves the clustering results.

We will apply the auto encoder structure and the multiple loss function; however, we will design
the auto encoder as a generative network, i.e., the input and output space are different. More precisely,
the input is the uncertain space (permeability fields) and the output will be the multiscale functions
co-responding to the uncertain space. Intuitively, we want to use the multiscale basis to supervise the
learning of the clusters so that the clusters will inherit the property of the solution. The motivation is
the multiscale basis can somehow represent the real solutions and permeability fields; hence, the latent
space is no longer good for clustering the input space but will be suitable for representing the multiscale
basis function space.

To define the reconstructing loss, the common idea is the mean square error (MSE); but many
works [26–29] have shown that the MSE tends to produce the average effect. In fact, in the area of
image super-resolution [26–36] and other low level computer vision tasks, the generated images are
usually over-smooth if trained using MSE. The theory is the MSE will capture the low frequency
features like the background which is relatively steady; but for images with high contrast, the MSE
will usually try to blur the images and the resulting images will lose the colorfulness and become
less vivid [26]. Our problem has multiscale nature and we want to capture the dominant modes and
multiscale features, hence a single MSE is clearly not enough.
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Following the idea from [27,29], we consider adding an adversary net [37]. The motivation is the
fact that different layers of fully convolutional network extract different features [29,38,39]. Deep fully
convolutional neural networks (FCN) [40–45] have demonstrated its power in almost all computer
vision tasks. Convolution operation is a local operation and the network with full convolutions are
independent with the input size. People now are clear about the functioning of the different layers of
the FCN. In computer vision task, the lower layers (layers near input) tend to generate sharing features
of all objects like edges and curves while the higher layers (near output) are more object oriented. If we
train the network using the loss from the lower layers, the texture and details are persevered, while the
higher layers will keep the general spatial structure.

This motivates us using the losses from different layers of the fully convolutional layers.
Multiple layers will give us a multilevel capture of the basis features and hence measure the basis in a
more complete way. To implement the idea, we will pretrain an adversary net; and input the multiscale
basis of the generative net and the real basis. The losses then come from some selected layers of the
adversary net. Although it is still not clear the speciality of each layer, if we consider the multiscale
physical problem, the experiments show that the accuracy is improved and, amazingly, the training
becomes easier when compared to the MSE of the basis directly.

The uncertain space coarsening (cluster) is performed using the deep learning idea described
above. Due to the space dimension, we will perform the clustering algorithm locally in space; that is,
we first need a spatial coarsening. Due to the multiscale natural of the problem, this motivates us using
the generalized multiscale finite element methods (GMsFEM) which derive the multiscale basis of a
coarse neighborhood by solving the local problem. GMeFEM was first proposed in [46] and further
studied in [3–10]. This method is a generalization of the multiscale finite element method [47,48].
The work starts from constructing the snapshot space for each local neighborhood. The snapshot
space is constructed by solving local problems and several methods including harmonic extension,
random boundary condition [49] have been proposed. Once we have the snapshot space, the offline
space which will be used as computing the solution are constructed by using spectral decomposition.

Our method is designed for solving PDEs with heterogeneous properties and uncertainty.
The heterogeneity and uncertainty in our models come from the permeability κ(x, s). To verify
our method, we numerically simulate around 240,000 local spatial fields which contain complex
information such as the moving channels. Our model is then trained and tested based on the generated
spatial fields. It should be noted that our method could be applied to some other realistic problems
which contain large-scale data such as detecting extreme values with order statistics in samples from
continuous distributions [50], as well as to some other subjects, e.g., multiscale social networks [2] and
the multiscale public safety systems [1]. These topic will be studied in the future.

The rest of the work is organized as follow: in Section 2, we consider the problem setup and
introduce both uncertain space and spatial coarsening. In Section 3, we introduce the structure of the
network and the training algorithm. In Section 4, we will present the numerical results. The paper
ends with conclusions.

2. Problem Settings

In this section, we will present some basic ideas involving the use of the generalized multiscale
finite element method (GMsFEM) for parameter-dependent problems. Let D be a bounded domain
in R2 and Ω be the parameter space in RN . We consider the following parameter-dependent
elliptic problem:

−∇ · (κ(x, s)∇u(x, s)) = f (x, s), (x, s) ∈ D × Ω, (1)

u(x, s) = 0, (x, s) ∈ ∂D × Ω, (2)
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where κ(x, s) is a heterogeneous coefficient depending on both the spatial variable x and the parameter
s, and f ∈ L2(D) is a given source. We remark that the differential operators in Equation (1) are defined
with respect to the spatial variable x. This is the case for the rest of the paper.

2.1. The Coarsening of the Parameter Space. The Main Idea

The parameter space Ω is assumed to be of very high dimension (i.e., large N) and consists of very
large number of realizations. For a given realization, the idea is to find its representation in the coarse
space and use the coarse space to perform the computation. We will use the deep cluster learning
algorithm to perform the coarsening. Due to the heterogeneous properties of the proposed problem,
fine mesh is used; this will bring difficulties in coarsening the parameter space and in computation of
the solution. We hence perform the parameter coarsening locally in the space D, i.e., we also coarsen
the spatial domain. To coarsen the spatial domain, we use coarse grids and consider the GMsFEM.

In Figure 1, we present an illustration of the proposed coarsening technique. On the left figure,
the coarse grid blocks in the space are shown. Each coarse grid has a different cluster in the uncertainty
space Ω, which corresponds to the coarsening of the uncertainty space. The main objective in multiscale
methods is efficiently finding the clustering of the uncertainty space, which is our main goal.

Figure 1. Illustration of coarsening of space and uncertainties. Different clusters for different coarse
blocks. On the left plot, two coarse blocks are shown. On the right plot, clusters are illustrated.

2.2. Space Coarsening—Generalized Multiscale Finite Element Method

It is computationally expensive to capture heterogeneous properties using very fine mesh. For this
reason, we use GMsFEM to coarsen the spatial representation of the solution. The coarsening of the
parameter space will be performed in each local spatial neighborhood. We will achieve this goal by the
GMsFEM, which will briefly be discussed. Consider the second order elliptic equation Lu = f in D
with proper boundary conditions; denote the the elliptic operator as:

L(u) = − ∂

∂xi
(kij(x)

∂

∂xj
u). (3)

Let the spatial domain D be partitioned by a coarse grid T H ; this does not resolve the multiscale
features. Let us denote K as one cell in T H and refine K to obtain the fine grid partition T h (blue
box in Figure 2). We assume the fine grid is a conforming refinement of the coarse grid. See Figure 2
for details.
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Figure 2. Domain Partition T H .

For the i-th coarse grid node, let ωi be the set of all coarse elements having the vertex i (green
region in Figure 2). We will solve local problem in each coarse neighborhood to obtain set of multiscale
basis functions {φ

ωi
i } and seek solution in the form:

u = ∑
i

∑
j

cijφ
ωi
j , (4)

where φ
ωi
j is the offline basis function in the i-th coarse neighborhood ωi and j denotes the j-th basis

function. Before we construct the offline basis, we first need to derive the snapshot basis.

2.2.1. Snapshot Space

There are several methods to construct the snapshot space; we will use the harmonic extension of
the fine grid functions defined on the boundary of ωi. Let us denote δh

l (x) as fine grid delta function,
which is defined as δh

l (xk) = δl,k for xk ∈ Jh(ωi) where Jh(ωi) denotes the boundary nodes of ωi.
The snapshot function ψ

ωi
l is then calculated by solving local problem in ωi:

L(ψωi
l ) = 0 (5)

subject to the boundary condition ψ
ωi
l = δh

l (x). The snapshot space Vωi
snap is then constructed as the

span of all snapshot functions.

2.2.2. Offline Spaces

The offline space Vωi
o f f is derived from the snapshot space and is used for computing the solution

of the problem. We need to solve for a spetral problem and this can be summarized as finding λ and
v ∈ Vωi

snap such that:

aωi (v, w) = λsωi (v, w), ∀w ∈ Vωi
snap, (6)

where aωi is symmetric non-negative definite bilinear form and sωi is symmetric positive definite
bilinear form. By convergence analysis, they are given by

aωi (v, w) =
∫

ωi

κ∇v · ∇w, (7)

sωi (v, w) =
∫

ωi

κ̃v · w. (8)

In the above definition of sωi , the function κ̃ = κ ∑ |∇χj|2 where {χj} is a set of partition of
unity functions corresponding to the coarse grid partition of the domain D and the summation
is taken over all the functions in this set. The offline space is then constructed by choosing the
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smallest Li eigenvalues and we can form the space by the linear combination of snapshot basis using
corresponding eigenvectors:

φ
ωi
k =

Li

∑
j=1

Ψωi
kj ψ

ωi
j , (9)

where Ψωi
kj is the jth element of kth eigenvector and Li is the number of snapshot basis. Vo f f is then

defined as the collection of all local offline basis functions. Finally we are trying to find uo f f ∈ Vo f f
such that

a(uo f f , v) =
∫

D
f v, ∀v ∈ Vo f f (10)

where a(u, v) =
∫

D κ∇u · ∇v. For more details, we refer the readers to the references [8–10].

2.3. The Idea of the Proposed Method

We present the general methodology in this section. The target is to save the time in computing
the GMsFEM basis φ

ωi
k for all ωi and for all uncertain space parameters. We propose the clustering

algorithm to coarsen the uncertain space in each local neighborhood. The key to the success of the
clustering is that: the cluster should inherit the property of the solution, that is, the local heterogeneous
fields κ(x, s) clustered into the same group should have similar solution properties. When the cluster is
learned by the some learning algorithm, the only computation involved is to fit the local neighborhood
of the given testing heterogeneous field into some cluster. This is a feed forward process including
several convolution operations and matrix multiplications and compared to the direct computing,
we save a lot of time in computing the spectral problem in Equation (6) and the inverse of a matrix
Equation (10). The detailed process is illustrated in the following chart (Figure 3):

1. (Training) For a given input local neighborhood ωj, we train the cluster (which will be detailed in

next section) of the parameter space Ω and get the clusters Sj
1, ..., Sj

n, where n is the number of
clusters and is uniform for all j. Please note that we may have different cluster assignments in
different local neighborhoods.

2. (Training) For each local neighborhood ωj and cluster Sj
i , define the average κ̄ij and compute

generalized multiscale basis for κ̄ij.
3. (Testing) Given a new κ(x, s) and for each local neighborhood ωj, fit κ(x, s) into a Sj

i by the trained
network (step 1) and use the pre-computed GMsFEM basis (step 2) to find the solution.

It should be noted that we perform clustering using the heterogeneous fields; however, the cluster
should inherit the property of the solution corresponding to the heterogeneous fields. This makes the
clustering challenging. The performance of the standard K-means algorithm relies on the initialization
and the distance metric. We may initialize the algorithm based on the clustering of the heterogeneous
fields but we need to design a good metric. In the next section, we are going to introduce a
learning algorithm which uses an auto-encoder structure and multiple losses to achieve the required
clustering task.
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Figure 3. Work flow of the proposed method.

3. Deep Learning

The network is consisted of two sub networks. The first one is targeted to performing the clustering
and the second one, which is the adversary net, will serve as the reconstruction of loss function.

3.1. Clustering Net

The cluster net is aimed for clustering the heterogeneous fields κ(x, s); but the resulting clusters
should inherit the properties of the solution corresponding to the κ(x, s), i.e., the heterogeneous fields
grouped in the same cluster should have similar corresponding solution properties. This similarity
will be measured by the adversary net which will be introduced in Section 3.3. We hence design the
network demonstrated in Figure 4.

Figure 4. Cluster network.

The input X ∈ Rm,d, where m is the number of samples and d is the dimension of one local
heterogeneous field, of the network is the local heterogeneous fields which are parametrized by the
random variable s ∈ Ω. The output of the network is the multiscale basis (first GMsFEM basis) which
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somehow represents the solution corresponding to the coefficient κ(x, s). This is a generative network
which has an auto encoder structure. The dimension reduction function F(X) can be interpreted as
some kind of kernel method which maps the input data to a new space which is easier to be separated.
This can also be interpreted as the learning of a good metric function for the later performed K-mean
clustering. We will perform K-means clustering algorithm in latent space F(X). G(·) will then transfer
the latent space data to the space of multiscale basis function. This process can be taken as a generative
process and we reconstruct the basis from the extracted features. The detailed algorithm is as follow
(see Figure 5 for an illustration):

Figure 5. Deep learning algorithm.

Steps illustrated in Figure 5:

1. Initialize the networks and clustering the output basis function.
2. Compute the loss function L (defined later) and run optimization.
3. Cluster the latent space by K-means algorithm (reduced dimension space, which is a middle

layer of the cluster network); the latent space data are computed using the previous optimized
parameters; the assignment will be denoted as A.

4. Basis functions whose corresponding inputs are in the same cluster (basing on assignment A) will
be grouped together. No training or fitting-in involved in this step.

5. Repeat step 2 to step 4 until the stopping criteria is met.

3.2. Loss Functions

Loss function is the key to the deep learning. Our loss function is consisted of cluster loss and the
reconstruction loss.

1. Clustering loss C(θF, θG): this is the mean standard deviation of all clusters of the learned basis
and θ is the parameters we need to optimize. It should be noted that the loss here is computed
using the learned basis instead of the input of the network. This loss controls the clustering
process, i.e., the smaller the loss, the better the clustering in the sense of clustering the multiscale
basis. Let us denote κij as jth realization in ith cluster; G(F(κij)) ∈ Rd will then be jth learned
basis in cluster i and let θG and θF be the parameters associated with G and F, the loss is then
defined as follow,

C(θF, θG) =
1
|A|

|A|
∑

i

Ai

∑
j

1
Ai

‖G(F(κij))− φ̄i‖2
2, (11)

where |A| is the number of clusters which is a hyper parameter and Ai denotes the number of
elements in cluster i; φ̄i ∈ Rd is the mean of cluster i. This loss clearly serves the purpose
of clustering the solution instead of the input heterogeneous fields; however, in order to
guarantee the learned basis are closed to the pre-computed multiscale basis, we need to
define the reconstruction loss which measures the difference between the learned basis and
the pre-computed basis.

2. Reconstruction loss R(θF, θG): this is the mean square error of multiscale basis Y ∈ Rm,d, where m
is the number of samples. This loss controls the construction process, i.e., if the loss is small,
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the learned basis are close to the real multiscale basis. This loss will supervise the learning of the
cluster. It is defined as follow:

R(θF, θG) =
1
m

m

∑
i
‖G(F(κi))− φi‖2

2, (12)

where G(F(κi)) ∈ Rd and φi ∈ Rd are learned and pre-computed multiscale basis of ith sample
κi separately.

The entire loss function is then defined as L(θF, θG) = λ1C + λ2R, where λ1, λ2 are predefined
weights. We are going to solve the following optimization problem:

min
θG ,θF

L(θF, θG) (13)

for the required training process.

3.3. Adversary Network Severing as an Additional Loss

We have introduced the reconstruction loss which measures the similarity between the learned
basis and the pre-computed basis in the previous section. It is the mean square error (MSE) of the
learned and pre-computed basis. MSE is a smooth loss and easy to train but there is a well known fact
about MSE that this loss will blur the image. In the area of image super-resolution and other low level
computer vision tasks, the loss is not friendly to inputs with high contrast and the resulting generated
images are usually over smooth. Our problem has multiscale nature and is similar with the low level
computer vision task, i.e., this is a generative task; hence blurring and over smoothing should happen
if the model is trained by MSE. To define a great reconstruction loss is important.

Motivated by some works about the successful application of deep fully convolutional network
(FCN) in computer vision, we design a perceptual loss to measure the error. It is now clear that
the lower layers in the FCN usually will extract some general features shared by all objects like the
horizontal (vertical) curves, while the higher layers are usually more objects oriented. This gives
people the insight to train the network using different layers. Johnson then proposed the perceptual
loss [29] which is the combination of the MSE of selected layers of the VGG model [51]. The authors
claim in their paper that the early layers tends to produce images that are visually indistinguishable
from the input; however if reconstruct from higher layers, image content and overall spatial structure
are preserved but color, texture, and exact shape are not.

We will adopt the perceptual loss idea and design an adversary network to compute an additional
reconstruction loss. The network structure can be seen in Figure 6.

The adversary net is fully convolutional with input and output both pre-computed multiscale
basis. The network has an auto encoder structure and is pre-trained; i.e., we are going to solve the
following minimization problem:

min
θA

1
m ∑

i
‖ f (φi)− φi)‖2

2, (14)

where φi is the multiscale basis and f is the adversary net associated with trainable parameter θA.
Denote f j(·) as the output of layer j of the adversary network. The additional reconstruction loss is
then redefined as:

A(θF, θG) =
1
m

m

∑
i=1

∑
j∈I

‖ f j(G(F(κi)))− f j(φi)‖2
2, (15)
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where I is the index set which contains some layers of the adversary net. The complete optimization
problem can be now formulated as:

min
θG ,θF

λ1C + λ2R + λ3 A. (16)

Figure 6. The complete network.

4. Numerical Experiments

In this section, we will demonstrate a series of experiments. We are going to apply our method on
problems with high contrast including moving background and moving channels. he experiments
are related to subsurface simulations. The moving background and moving channels simulate some
important characteristics in the field. We numerically generate heterogeneous fields which contain
moving channels and varying well rates. In Section 4.1, we first demonstrate a set of simulated
heterogeneous oil fields to be used to train and solve the PDE modeling the reservoirs simulation;
the deep learning model settings are also detailed in this section. In Section 4.2, we simulate some
other more complicated heterogeneous fields and conduct the experiments to demonstrate the power
of clustering algorithm. This experiments can show that our method is robust to handle complicated
problems. In the last section, we will solve the PDE using the proposed method based on the
heterogeneous field proposed in Section 4.1 and compute the relative error to demonstrate the accuracy
of our method.
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4.1. High Contrast Heterogeneous Fields with Moving Channels

We consider solving Equations (1)–(2) for a heterogeneous field with moving channels
and changing background. Let us denote the heterogeneous field as κ(x), where x ∈ [0, 1]2,
then κ(x) = 1000 if x is in some channels which will be illustrated later and otherwise,

κ(x) = eη·sin(7πx)sin(8πy)+sin(10πx)sin(12πy),

where η follows discrete uniform distribution in [0, 1]. The channels are moving and we include
cases of the intersection of two channels and formation and dissipation of the channels in the fields.
These simulate the realistic petroleum oil fields. In Figure 7, we demonstrate 20 heterogeneous fields.

Figure 7. Heterogeneous fields, the yellow strips are the channels.

It can be observed from the images that, vertical channel (at around x = 30) (not always) intersects
with horizontal channels (at around y = 40); and the channel at x = 75, y = 25 demonstrates the case
of generation and degeneration of a channel.

We train the network using 600 samples using the Adam gradient descent. We find that the cluster
assignment of 600 realizations in uncertain space is stable(fixed) when the gradient descent epoch
reaches a certain number, so we set the stopping criteria to be: the assignment does not change for 100
iteration epochs; and the maximum number of iteration epochs is set to be 1000. We also find that the
coefficients in Equation (16) can affect the training result. We set λ1 = λ2 = λ3 = 1.

It should be noted that we train the network locally in each coarse neighborhood. The fine mesh
element has size 1/100 and 5 fine elements are merged into one coarse element.

The dimension reduction network F contains 4 fully connected layers to reduce the size of local
coarse elements from 100 to 60, 40, 30, 20 gradually. The K-means clustering is conducted in space F(x)
of dimension 20; the reconstruction net G is designed symmetrically with the reduction network F.
The adversary net is fully convolutional. All convolution layers except the last layer have kernels of
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size 3 by 3 with stride 1; we use 1 by 1 convolution in the last layer to reduce the number of channels
to 1. The number of channels is doubled if the spatial dimension is reduced and half-ed if the spatial
dimension is increased. Max pooling of size 2 by 2 is used to reduce the spatial dimension in the
encoder; and to increase the dimension in the decoder, we perform the nearest neighbor resize followed
by convolution [52].

4.2. Results

We will present the numerical results of the proposed method in this section. We are going to
show the cluster assignment experiment first, followed by two other experiments which demonstrate
the error of the method.

4.2.1. Cluster Assignment in a Local Coarse Element

Before diving into the error analysis, we will show some of the cluster results in a local
neighborhood. In this neighborhood, we manually created the cases such as: the extraction of a
channel (longer), the expansion of a channel(wider), the discontinuity of a channel, the diagonal
channels, the intersection of channels, and so on. In Figure 8, the number on top of each image is the
cluster assignment ID number.

Figure 8. Cluster results of 28 samples, images shown are heterogeneous fields, the number on top of
each image is the cluster assignment ID number.

We also demonstrate the clustering result in Figure 9 of another neighborhood which is around
(25, 45) in Figure 7. From the results in both Figures 8 and 9, we observe that our proposed clustering
algorithm based on deep learning is able create a good clustering of the parameter space. That is,
heterogeneous coefficients with similar spatial structures are grouped in the same cluster.
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Figure 9. Cluster results of 20 samples, images shown are heterogeneous fields, the number on top of
each image is the cluster assignment ID number.

4.2.2. Relation of Error and the Number of Clusters

In this section, we will demonstrate the error change when the hyperparamter—the number
of clusters—increases. Given a new realization κ(x, ŝ) where ŝ denotes the parameter and a fixed
neighborhood, suppose the neighborhood of this realization will be fitted into cluster Si by the model
trained. We compute κ̄i =

1
|Si | ∑

|Si |
j=1 κij where |Si| is the number of points in this cluster Si. The GMsFEM

basis of this neighborhood can then be derived using κ̄i. We finally construct the solution using the
GMsFEM basis pre-computed in all neighborhoods. We define the l2 relative error as :

ratio =

∫
D(u − uH)

2dx∫
D u2dx

, (17)

where u is the exact solution computed by finite element method with fine enough mesh and uH is the
solution of the proposed method. We test the network on newly generated 300 samples and take the
average of the errors.

In this experiment, we calculate the l2 relative error with the number of clusters increases.
The number of clusters ranges from 5 to 11; and for each case, we will train the model and compute
the l2 relative error. The result can be seen in Figure 10 and it can be observed from the picture that,
the error is decreasing with the number of cluster increases.

Figure 10. The l2 error when the number of clusters changes, colors represent the number of
GMsFEM basis.
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4.2.3. Comparison of Cluster-based Method with Tradition Method

In the second experiments, we first compute the l2 relative error (defined in Equation (17) with
uH denoting the GMsFEM solution) of traditional GMsFEM method with given κ(x, ŝ). This means
that the construct multiscale basis functions using the particular realization κ(x, ŝ). We then compare
this error with the cluster method proposed (11 clusters). The comparison can be seen in Figure 11.

Figure 11. The l2 error cluster solution (11 clusters) vs. solution by real κ(x, ŝ). Color represents number of basis.

It can be seen that the difference is negligible when the number of clusters reaches 11. We can
then benefit from the deep learning; i.e., the fitting of κ(x, ŝ) into a cluster is fast; and since we will use
the pre-computed basis, we also save time on computing the GMsFEM basis.

4.3. Effect of the Adversary Net

The target of this task is not the learning of multiscale basis; the multiscale basis in this work is
just a supervision of learning the cluster. However, to demonstrate the effectiveness of the adversary
network, we also test the the effect of the adversary net. There are many hyper-parameters like the
number of clusters and coefficients of the loss function which can affect the result; so to reduce the
influence from the clustering, we remove the clustering loss from the training, so this is a generative
task which will generate the multiscale basis from the output of the first network in Figure 6. The loss
function now can be defined as:

min
θG ,θF

λ1R + λ2 A, (18)

where R and A are defined in Equations (12) and (15), separately; and λ1 and λ1 are both set to be 1.
We compute the relative error with Equation (17) first by using the learned multiscale basis which is
trained by Equation (18); and second by using the multiscale basis trained without the adversary loss
Equation (15), i.e.,

min
θG ,θF

A. (19)

The l2 relative error improves from 41.120439 to 36.760918 if we add one middle layer from the
adversary net.

We also calculate the MSE difference of two learned basis (by loss Equation (18) and Equation (19),
separately) and real multiscale basis, i.e., we calculate ‖Blearned basis − Breal basis‖MSE, where Blearned basis
refers to two basis trained with Equation (18) and Equation (19), separately and Breal basis is the real
multiscale basis formed using the input heterogeneous field. The MSE amazingly decreases from
0.9073400 to 0.748312 if we use basis trained with the adversary loss Equation (18). This can show the
benefit from the adversary net.
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5. Conclusions

We propose a deep learning clustering technique within GMsFEM to solve flows in heterogeneous
media. The main idea is to cluster the uncertainty space such that we can reduce the number of
multiscale basis functions for each coarse block across the uncertainty space. We propose the adversary
loss motivated by the perceptual loss in the computer vision task. We use convolutional neural
networks combined with some techniques in adversary neural networks, where the loss function is
composed of several parts that includes terms related to clusters and reconstruction of basis functions.
We present numerical results for channelized permeability fields in the examples of flows in porous
media. In future, we would like to study the relation between convolutional layers and quantities
related to multiscale basis functions. In addition, we are going to study the application of our method
in the area of multiscale social network and other studies like extreme value prediction.
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Abstract: Polynomial chaos expresses a probability density function (pdf) as a linear combination
of basis polynomials. If the density and basis polynomials are over the same field, any set of basis
polynomials can describe the pdf; however, the most logical choice of polynomials is the family that
is orthogonal with respect to the pdf. This problem is well-studied over the field of real numbers
and has been shown to be valid for the complex unit circle in one dimension. The current framework
for circular polynomial chaos is extended to multiple angular dimensions with the inclusion of
correlation terms. Uncertainty propagation of heading angle and angular velocity is investigated
using polynomial chaos and compared against Monte Carlo simulation.

Keywords: polynomial chaos; Szegő polynomials; directional statistics; Rogers-Szegő; state estimation

1. Introduction

Engineering is an imperfect science. Noisy measurements from sensors in state estimation [1,2],
a constantly changing environment in guidance [3–5], and improperly actuated controls [6] are all
major sources of error. The more these sources of error are understood, the better the final product
will be. Ideally, every variable with some sort of uncertainty associated with it would be completely
and analytically described with its probability density function (pdf). Unfortunately, even if this is
feasible for the initialization of a random variable, its evolution through time rarely yields a pdf with
an analytic form. If the pdf cannot be given in analytic form, then approximations and assumptions
must be made.

In many cases, a random variable is quantified using only its first two moments—as with the
unscented transform [7]—and a further assumption is that the distribution is Gaussian. In cases where
the variable’s uncertainty is relatively small and the dynamics governing its evolution are not highly
nonlinear, this is not necessarily a poor assumption. In these cases, the higher order moments are
highly dependent on the first two moments; i.e., there is a minimal amount of unique information in
the higher order moments. In contrast, if either the uncertainty is large or the dynamics become highly
nonlinear, the higher order moments become less dependent on the first two moments and contain
larger amounts of unique information. In this case, the error associated with using only the first two
moments becomes significant [8,9].

One method of quantifying uncertainty that does not require an assumption of the random
variable’s pdf is polynomial chaos expansion (PCE) [10–14]. PCE characterizes a random variable
as a coordinate in a polynomial vector space. Useful deterministic information about the random
variable lies in this coordinate, including the moments of the random variable [15]. The expression of
the coordinate depends on the basis in which it is expressed. In the case of PCE, the bases are made
up of polynomials that are chosen based on the assumed density of the random variable; however,
any random variable can be represented using any basis [16]. It is strongly noted that assuming
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the density of the random variable simply eases computation; with enough computing power, any
random variable can be quantified with any basis [17]. The most common basis polynomials are
those that are orthogonal with respect to common pdfs, such as the Hermite-Gaussian and Jacobi-beta
polynomial-pdf pairs.

Polynomial chaos has been used to quantify and propagate the uncertainty in nonlinear systems
including fluid dynamics [18–21], orbital mechanics in multiple element spaces [22], and has been
expanded to facilitate Gaussian mixture models [23]. While polynomial chaos has been well-studied
for variables that exist in the n-dimensional space of real numbers (Rn), many variables do not lie in
this field. The variables that are of concern in this paper are angular variables. When estimating an
angular random variable, such as the true anomaly of a body in orbit or vehicle attitude, a common
approach is to assume that the variable is approximately equal to its projection on Rn and use
methods designed for variables on that space. When the uncertainty is very small, this approximation
is relatively effective; however, as the uncertainty increases, this approximation becomes invalid.
Recently, work on directional statistics has been incorporated into state estimation, providing a method
for estimating angular random variables directly on the n-dimensional special orthogonal group
(Sn) [24–26]. Recent work [27] has shown that polynomial chaos can be used to estimate the mean
and variance of one-dimensional angular random variables and the set of equinoctial orbital elements
elements [28]. In neither case was a correlation estimated that included an angular state.

The sections of this paper include a detailed discussion of orthogonal polynomials in Section 2,
including those that are orthogonal on the unit circle and two of the more common circular pdfs. In
Section 3 an overview of polynomial chaos is given as well as the extension that has been made to
include angular random variables, including the correlation between two angles. Finally, in Section 4,
numerical results are presented comparing the correlation between two angular random variables
calculated using Monte Carlo and PCE.

2. Orthogonal Polynomials

Let Vn be an n-dimensional vector space. A basis of this vector space is the minimal set of vectors
that spans the vector space. An orthogonal basis is a subset of bases consisting of exactly n basis
vectors such that the inner product between any two basis vectors, βm and βn, is proportional to the
Kronecker delta (δmn). Given mathematically with angle brackets, this orthogonal inner product takes
the following form:

〈βm, βn〉 = c δmn ,

where m and n are part of the set of positive integers, including zero. In the event c = 1, the set is
termed orthonormal. The ith standard basis vector of Vn is generally the ith vector of the n-dimensional
identity; however, there are infinitely many bases for each vector space. It should be noted that it
is not a requirement that a basis be orthogonal, merely linearly independent; however, the use of
non-orthogonal bases is practically unheard-of.

An element α ∈ V can be expressed in terms of an ordered basis B = {β1, β2, . . . , βn}, as the
linear combination

α = a1β1 + a2β2 + · · ·+ anβn , (1)

where [a1, a2, . . . , an] is the coordinate of α. While any set of independent vectors can be used as a
basis, different bases can prove beneficial—possibly by making the system more intuitive or more
mathematically straightforward. When expressing the state of a physical system, the selection of a
coordinate frame is effectively choosing a basis for the inhabited vector space. Consider a satellite in
orbit. If the satellite’s ground track is of high importance (such as weather or telecommunications
satellites), an Earth-fixed frame would be ideal. However, in cases where a satellite’s actions are
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dictated by other space-based objects (such as proximity operations), a body-fixed frame would
be ideal.

It is common to constrict the term vector space to the spaces that are easiest to visualize, most
notably a Cartesian space, where the bases are vectors radiating from the origin at right angles. The
term vector space is much more broad than this though. A vector space need only contain the zero
element and be closed under both scalar addition and multiplication, which applies to much more
than vectors.

Most notable in this work is the idea of a polynomial vector space. LetPn+1 be an (n+1)-dimensional
vector space made up of all polynomials of positive degree n or less with standard basis B = {1, x, . . . , xn}.
The inner product with respect to the function ω on the real-valued polynomial space is given by

〈 f (x), g(x)〉ω(x) =
∫
S

f (x)g(x)dω(x) ,

where ω(x) is a non-decreasing function with support S and f and g are any two polynomials of
degree n or less. A polynomial family Φ(x) is a set of polynomials with monotonically increasing
order that are orthogonal. The orthogonality condition is given mathematically as

〈φm(x), φn(x)〉ω(x) =
∫
S

φm(x)φn(x)dω(x) = 0 (2a)

〈φ2
m(x)〉ω(x) =

∫
S

φm(x)φm(x)dω(x) = c , (2b)

where φk(x) is the polynomial of order k, c is a constant, and S is the support of the non-decreasing
function ω(x). Note that while polynomials of negative orders (k < 0), referred to as Laurent
polynomials, exist, they are not covered in this work.

The most commonly used polynomial families are categorized in the Askey scheme, which
groups the polynomials based on the generalized hypergeometric function (pFq) from which they are
generated [29–31]. Table 1 lists some of the polynomial families, their support, the non-decreasing
function they are orthogonal with respect to (commonly referred to as a weight function), and
the hypergeometric function they can be written in terms of. For completeness, Table 1 lists both
continuous and discrete polynomial groups; however, the remainder of this work only considers
continuous polynomials.

Table 1. Common Orthogonal Polynomials.

Type Polynomial Hypergeometric Series Support Weight Function/Distribution

C
on

ti
nu

ou
s Legendre 2F1 [−1, 1] Uniform

Jacobi 2F1 [−1, 1] Beta
Laguerre 1F1 [0, ∞) Exponential

Probabilists’ Hermite 2F0 (−∞, ∞) Normal

D
is

cr
et

e Charlier 2F0 {0, 1, 2, . . . } Poisson
Meixner 2F1 {0, 1, 2, . . . } Negative Binomial

Krawtchouk 2F1 {0, 1, . . . , N} Binomial
Hahn 3F2 {0, 1, . . . , N} Hypergeometric

2.1. Polynomials Orthogonal on the Unit Circle

While the Askey polynomials are useful in many applications, their standard forms place them
in the polynomial ring R[x], or all polynomials with real-valued coefficients that are closed under
polynomial addition and multiplication. These polynomials are orthogonal with respect to measures
on the real line. In the event that a set of polynomials orthogonal with respect a measure on a curved
interval (e.g., the unit circle) is desired, the Askey polynomials would be insufficient.
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In [32], Szegő uses the connection between points on the unit circle and points on a finite real
interval to develop polynomials that are orthogonal on the unit circle. Polynomials of this type are
now known as Szegő polynomials. Since the unit circle is defined to have unit radius, every point
can be described on a real interval of length 2π and mapped to the complex variable ϑ = eiθ , where
i is the imaginary unit. All use of the variable ϑ in the following corresponds to this definition.
The orthogonality expression for the Szegő polynomials, φk(ϑ), is

〈φm(ϑ), φn(ϑ)〉ω(θ) =
1

2π

∫ π

−π
φm(ϑ)φn(ϑ)ω(θ)dθ = δmn ,

where φn(ϑ) is the complex conjugate of φn(ϑ) and ω(θ) is the monotonically increasing weight
function over the support. Note that, as opposed to Equation (2a), the Kronecker delta is not scaled,
implying all polynomials using Szegő’s formulation are orthonormal.

While the general formulation outlined by Szegő is cumbersome—requiring the calculation of
Fourier coefficients corresponding to the weight function and large matrix determinants—it does
provide a framework for developing a set of polynomials orthogonal with respect to any conceivable
continuous weight function. In addition to the initial research done by Szegő, further studies have
investigated polynomials orthogonal on the unit circle [33–38].

Fortunately, there exist some polynomial families that are given explicitly, such as the
Rogers-Szegő polynomials. The Rogers-Szegő polynomials have been well-studied [39–41] and were
developed by Szegő based on work done by Rogers over the q-Hermite polynomials. For a more
detailed description of the relationship between the Askey scheme of polynomials and their q-analog,
the reader is encouraged to reference [31,42].

The generating function for the Rogers-Szegő polynomials is given as

φn(ϑ; q) =
n

∑
k=0

(
n
k

)
q
ϑk , (3)

where (n
k)q is the q-binomial

(
n
k

)
q
=

(q; q)n

(q; q)k(q; q)n−k
and (a; q)n =

n−1

∏
j=0

(1 − aqj) .

The weight function that satisfies the orthogonality condition of these polynomials is

ω(θ) =
1√

−2π ln(q)

∞

∑
j=−∞

exp
{
(θ + 2π j)2

2 ln(q)

}
0 < q < 1 . (4)

In addition to the generating function, a three-step recurrence [43] exists, which is given by

φn+1(ϑ; q) = (1 + ϑ)φn(ϑ; q)− (1 − qn)ϑφn−1(ϑ; q) . (5)

For convenience, the first five polynomials are:

φ0 = 1

φ1 = ϑ + 1

φ2 = ϑ2 + (q + 1)ϑ + 1

φ3 = ϑ3 + (q2 + q + 1)ϑ2 + (q2 + q + 1)ϑ + 1

φ4 = ϑ4 + (q + 1)(q2 + 1)ϑ3 + (q + 1)(q2 + q + 1)ϑ2 + (q + 1)(q2 + 1)ϑ + 1 .
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As is apparent, the q-binomial term causes the coefficients to be symmetric, which eases
computation, and additionally, the polynomials are naturally monic.

2.2. Distributions on the Unit Circle

With the formulation of polynomials orthogonal on the unit circle, the weight function ω(θ) has
been continuously mentioned but not specifically addressed. In the general case, the weight function
can be any non-decreasing function; however, the most common polynomial families are those that
are orthogonal with respect to well-known pdfs, such as the ones listed in Table 1. Because weight
functions must exist over the same support as the corresponding polynomials, pdfs over the unit circle
are required for polynomial orthogonal on the unit circle.

2.2.1. Von Mises Distribution

One of the most common distributions used in directional statistics is the von Mises/von
Mises-Fisher distribution [44–46]. The von Mises distribution lies on S1 (the subspace of R2 containing
all points that are unit distance from the origin), whereas the von Mises-Fisher distribution has
extensions into higher dimensional spheres. The circular von Mises pdf is given as [24]

pm(θ; μ, κ) =
eκ cos(θ−μ)

2π I0(κ)
,

where μ is the mean angular direction on a 2π interval (usually [−π, π]), κ ≥ 0 is a concentration
parameter (similar to the inverse of the standard deviation), and I0 is the zeroth order modified Bessel
function of the first kind. The reason this distribution is so common is its close similarity to the normal
distribution. This can be seen in Figure 1a, where von Mises distributions of various concentration
parameters are plotted.
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κ
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(b)
Figure 1. Common Circular probability density functions (pdfs). (a) Circular von Mises distribution
for multiple values of κ. (b) Wrapped normal distribution for multiple values of σ.
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2.2.2. Wrapped Distributions

The easiest to visualize circular distribution, or rather group of distributions, that is discussed is
the set of wrapped distributions. The wrapped distributions take a distribution on the real line and
wrap it onto the unit circle according to

pw(θ) =
∞

∑
j=−∞

p(θ + 2π j) ,

where the support of p(·) is an interval of R, and the domain of pw is an interval on R with length 2π.
For example, wrapping a normal distribution takes the pdf

pn(x; μ, σ2) =
1√

2πσ2
exp

{
− (x − μ)2

2σ2

}
,

where the domain of x is R, and μ and σ are the mean and standard deviation, respectively, and wraps
it, resulting in the wrapped pdf (in this case wrapped normal)

pwn(θ; μ, σ2) =
1√

2πσ2

∞

∑
j=−∞

exp
{
− (θ − μ + 2π j)2

2σ2

}
,

where the domain of θ is an interval on R with length 2π. Zero-mean normal distributions with
varying values of σ are wrapped, with the results shown in Figure 1b.

Recall the weight function of the Rogers-Szegő polynomials in Equation (4). As the log function is
monotonically increasing, the term log(1/q) increases monotonically as q decreases. Observing the
extremes of q: as q approaches 1, log(1/q) approaches 0, and as q approaches 0, log(1/q) approaches
∞. Letting log(1/q) = σ2 and μ = 0, this becomes a zero-mean wrapped normal distribution.

It is clear from Figure 1 that both distributions described previously have strong similarities to
the unwrapped normal distribution. Figure 1 also shows the difference in the standard deviation
parameter. Whereas the wrapped normal distribution directly uses the standard deviation of the
unwrapped distribution, the von Mises distribution is with respect to concentration parameter that is
inversely related to the dispersion of the random variable. This makes the wrapped normal distribution
slightly more intuitive when comparing with an unwrapped normal distribution.

2.2.3. Directional Statistics

The estimation of stochastic variables generally relies on calculating the statistics of that variable.
Most notable of these statistics are the mean and variance, the first two central moments. For pdfs
(p(x)) on the real line that are continuously integrable, the central moments are given as

μ1 =
∫
S

xp(x)dx

μk =
∫
S
(x − μ1)

k p(x)dx k ≥ 2 ,
(6)

where S is the support of p(x). Although less utilized in general, raw moments are commonly used in
directional statistics and are given as

ρk =
∫
S

xk p(x)dx ,

or

ρk =
∫
S

ϑk p(θ)dθ ,
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where the slight distinction is that the integration variable is within the variable ϑ = eiθ . In addition,
mean direction and circular variance are not the first and second central moments [24]. Instead, both
are calculated from the first moment’s angle (θ1) and length (R1):

θ1 = arg(ρ1) = tan−1 imag(ρ1)

real(ρ1)
(7a)

R1 = ‖ρ1‖ , (7b)

where ‖ · ‖ is the l2-norm. From Mardia [24], the length can be used to calculate the circular variance
V1 and circular standard deviation σ1 according to

V1 = 1 − R1 (8a)

σ1 =
√
−2 ln(R1) . (8b)

Effectively, as the length of the moment decreases, the concentration of the pdf about the mean
direction decreases and the unwrapped standard deviation (USTD) increases. Note that while the
subscript in Equations (7) and (8) is 1, there are corresponding mean directions and lengths associated
with all moments; however, these are rarely used in applications.

3. Polynomial Chaos

At any given instance in time, the deviation of the estimate from the truth can be approximated
as a Gaussian distribution centered at the mean of the estimate. The space of these mean-centered
Gaussians is known as a Gaussian linear space [11]; when that space is closed (i.e., the distributions
have finite second moments), it falls into the Gaussian Hilbert space H. At this point, what is needed
is a way to quantify H, as this gives the uncertainty between the estimate and the truth. This can be
achieved by projecting H onto a complete set of orthogonal polynomials when those basis functions
are evaluated at a random variable ξ ∈ H. While the distribution at any point in time natively exists in
H, its projection onto the set of orthogonal polynomials provides a way of quantifying it by means of
the ordered coordinates, as in Equation (1).

The homogeneous chaos [10] specifies ξ to be normally distributed with zero mean and unit
variance (i.e., unit Gaussian), and the orthogonal polynomials to be the Hermite polynomials due
to their orthogonality with respect to the standard Gaussian pdf [47]. Not only does this apply for
Gaussian processes, but the Cameron-Martin theorem [48] says that this applies for any process
with a finite second moment. Although the solution does converge as the number of orthogonal
polynomials increases, further development has shown that, for different stochastic processes, certain
basis functions cause the solution to converge faster [16], leading to the more general polynomial
chaos (PC).

To begin applying this method mathematically for a general stochastic process, let a stochastic
variable, ε, be expressed as the linear combination over an infinite-dimensional vector space, i.e.,

ε(x, ξ) =
∞

∑
k=0

εk(x)Ψk(ξ) , (9)

where εi(x) is the deterministic component and Ψi(ξ) is an ith-order orthogonal basis function
evaluated at, and orthogonal with respect to, the weight function, ξ. The polynomial families
listed in Table 1 have been shown by Xiu [16] to provide convenient types of chaos based on their
weight functions.
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In general, the elements of the coordinate ([ε]) are called the polynomial chaos coefficients. These
coefficients hold deterministic information about the distribution of the random variable; for instance,
the first and second central moments of ε can be calculated easily as

E[ε] = μ1 = ε0 (10a)

E
[
(ε − E[ε])2

]
= μ2 =

∞

∑
k=1

ε2
k〈Ψ2

k〉p(ξ) , (10b)

where E[ ] denotes expected value.
Now, let ε be an n-dimensional vector. Each of the n elements in ε are expanded separately;

therefore, Equation (9) is effectively identical in vector form

ε(x, ξ) =

⎡⎢⎢⎢⎢⎣
ε(1)(x(1), ξ)

ε(2)(x(2), ξ)
...

ε(n)(x(n), ξ)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
∑∞

k=0 ε
(1)
k (x(1))Ψk(ξ)

∑∞
k=0 ε

(2)
k (x(2))Ψk(ξ)

...

∑∞
k=0 ε

(n)
k (x(n))Ψk(ξ)

⎤⎥⎥⎥⎥⎥⎦ .

Because the central moments are independent, the mean and variance of each their calculations
similarly do not change. In addition to mean and variance, the correlation between two random
variables is commonly desired. With the chaos coefficients estimated for each random variable and the
polynomial basis known, correlation terms such covariance can be estimated.

3.1. Covariance

Let the continuous variables a and b have chaos expansions

a(x, ξ) =
∞

∑
j=0

αj(x)Ψj(ξ) and b(z, ζ) =
∞

∑
k=0

βk(z)Φk(ζ) . (11)

The covariance between a and b can be expressed in terms of two nested expected values

cov(a, b) = E[(a − E[a])(b − E[b])] ,

the external of which can be expressed as a double integral yielding

cov(a, b) =
∫
A

∫
B

(a − E[a])(b − E[b])dbda , (12)

where A and B are the supports of a and b respectively. Substituting the expansions from Equation (11)
into Equation (12) and acknowledging that the zeroth coefficient is the expected value gives

cov(a, b) =
∫
A

∫
B

(ab − aE[b]− bE[a] + E[a]E[b])dbda

=
∫
A

∫
B

(ab − β0a − α0b + α0β0)dbda

= −α0β0 +
∫
A

∫
B

(ab)dbda (13a)

= −α0β0 +
∫
X

∫
Z

∞

∑
j=0

αj(x)Ψj(ξ)
∞

∑
k=0

βk(z)Φk(ζ)dζdξ . (13b)

Note the change of variables between Equations (13a) and (13b). This is possible because the random
variable and the weight function (a/ξ and b/ζ in this case) are over the same support. Additionally,
the notation of the support variable is changed to be consistent with the integration variable.
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As long as the covariance is finite, the summation and the integrals can be interchanged [49],
giving a final generalized expression for the covariance to be

cov(a, b) =
∞

∑
j=1

∞

∑
k=1

αj(x)βk(z)
∫
X

∫
Z

Ψj(ξ)Φk(ζ)dζdξ . (14)

In general, no further simplifications can be made; however, if the variables x and z are expanded
using the same set of basis polynomials, then integration reduces to

cov(a, b) =
∞

∑
k=1

∞

∑
j=1

αk(x)β j(z)
∫
X

Ψk(ξ)Ψj(ξ)p(ξ)dξ , (15)

containing a single variable with respect to the base pdf. Taking advantage of the basis polynomial
orthogonality yields the following simple expression:

cov(a, b) =
∞

∑
k=1

αk(x)βk(z)〈Ψ2
k〉p(ξ) . (16)

Combined with the variance, the covariance matrix of the 2 × 2 system of x and z just discussed is
given as

P =
∞

∑
k=1

[
α2

k αkβk
αkβk β2

k

]
〈Ψ2

k〉p(ξ) .

For an n-dimensional state, let ε be the n × ∞ matrix for the n, theoretically infinite, chaos
coefficients. Written generally, the covariance matrix in terms of a chaos expansion is

P =
∞

∑
k=1

εkεT
k 〈Ψ2

k〉p(ξ) .

In cases where orthonormal polynomials are used, the polynomial inner product disappears completely
leaving only the summation of the estimated chaos coefficients

P =
∞

∑
k=1

εkεT
k . (17)

3.2. Coefficient Calculation

The two most common methods of solving Equation (9) for the chaos coefficients are
sampling-based and projection-based. The first, and most common, approach requires truncating the
infinite summation in Equation (9) to yield

ε(x, ξ) =
N

∑
k=0

εk(x)Ψk(ξ) , (18)

where the truncation term N, which depends on the dimension of the state n and the highest order
polynomial p, is

N + 1 =
(n + p)!

n!p!
.

Drawing Q samples of ξ, where Q > N, and evaluating Ψk and ε at these points effectively results
in randomly sampling ε directly. After initial sampling, ε can be transformed in x (commonly x is
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taken to be time so this indicates propagating the variable forward in time) resulting in a system of Q
equations with N + 1 unknowns that describe the pdf of ε after the transformation that is given by

ε(x, ξ1) = ε0(x)Ψ0(ξ1) + ε1(x)Ψ1(ξ1) + · · ·+ εN(x)ΨN(ξ1)

ε(x, ξ2) = ε0(x)Ψ0(ξ2) + ε1(x)Ψ1(ξ2) + · · ·+ εN(x)ΨN(ξ2)

...

ε(x, ξQ) = ε0(x)Ψ0(ξQ) + ε1(x)Ψ1(ξQ) + · · ·+ εN(x)ΨN(ξQ) .

This overdetermined system can be solved for ε using a least-squares approximation. The coefficients
can then be used to calculate convenient statistical data about ε (e.g., central and raw moments).

While the sampling-based method is more practical to apply, the projection based method is not
dependent on sampling the underlying distribution. Projecting the pdf of ε onto the jth basis yields

〈
ε(x, ξ), Ψj(ξ)

〉
p(ξ) =

〈
∞

∑
k=0

εk(x)Ψk(ξ), Ψj(ξ)

〉
p(ξ)

.

The inner product is with respect to the variable ξ; therefore, the coefficient ε acts as a scalar. The
inner product is linear in the first argument; therefore, the summation coefficients can be removed
from the inner product without alteration, that is

〈
ε(x, ξ), Ψj(ξ)

〉
p(ξ) =

∞

∑
k=0

εk(x)
〈
Ψk(ξ), Ψj(ξ)

〉
p(ξ) . (19)

In contrast, if the summation is an element of the second argument, the linearity condition still
holds; however, the coefficients incur a complex conjugate. Recall the basis polynomials are generally
chosen to be orthogonal, so the right-hand inner product of Equation (19) reduces to the scaled
Kronecker delta, resulting in

〈
ε(x, ξ), Ψj(ξ)

〉
p(ξ) =

∞

∑
k=0

εk(x)
〈
Ψk(ξ), Ψj(ξ)

〉
p(ξ)

=
∞

∑
k=0

εk(x)c δkj .

This leaves only the jth term (with the constant c = 〈Ψ2
j (ξ)〉p(ξ)), and an equation that is easily

solvable for εj is

εj(x) =

〈
ε(x, ξ), Ψj(ξ)

〉
p(ξ)

〈Ψ2
j (ξ)〉p(ξ)

(20a)

=

∫
Z

ε(x, ξ)Ψj(ξ)dp(ξ)∫
Z

Ψ2
j (ξ)dp(ξ)

, (20b)

which almost always requires numeric approximation.

3.3. Implementation Procedure

For convenience, the procedure for estimating the mean and covariance of a random state is given
in Algorithm 1. Let ε be the state of a system with uncertainty defined by mean m and covariance P
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subject to a set of system dynamics over the time vector T. The algorithm outlines the steps required
to estimate the mean and covariance of the state after the amount of time specified by T.

Algorithm 1 Estimation of mean and covariance using a polynomial chaos expansion.
1: procedure PCE_EST(m0, P0) � Estimation of m and P using PCE
2: for k = 1 to T do
3: Draw samples of ξ based on chaos type � Either randomly or intelligently
4: εk−1 ← mk−1, Pk−1, ξ � Sample ε based on ξ
5: εk from propagating ε based on state dynamics
6: ε ←Equation (20a)
7: mk ←Equation (10a)
8: Pk ←Equation (17)
9: end for

10: return m, P
11: end procedure

3.4. Complex Polynomial Chaos

While polynomial chaos has been well-studied and applied to a various number of applications
in Rn, alterations must be made for the restricted space Sn due to its circular nature. A linear
approximation can be made with little error when a circular variable’s uncertainty is small; however,
as the uncertainty increases, the linearization can impose significant error. Figure 2 shows the effects
of projecting two wrapped normal distributions with drastically different standard deviations onto
a tangent plane. The two wrapped normal distributions are shown in Figure 2a,b, with USTDs of
0.25 and 0.4 rad, respectively. Clearly, even relatively small USTDs result in approximately uniform
wrapped pdfs.

One of the most basic projections is an orthogonal projection from an n-dimensional space onto an
n − 1 dimensional plane. In this case, the wrapped normal pdf is projected orthogonally onto the plane
(1, x, z), which lies tangent to the unit circle at the point (1,0), coinciding with the mean direction of both
pdfs. The plane, and the projection of the pdf onto this plane are shown in Figure 2c,d. Approximating
the circular pdf as the projected planar pdf comes with an associated loss of information. At the
tangent point, there is obviously no information loss; however, when the physical distance from
the original point to the projected point is considered, the error associated with the projected point
increases. As is the case with many projection methods concerning circular and spherical bodies, all
none of the information from the far side of the body is available in the projection. The darkness of the
shading in all of Figure 2 comes from the distance of the projection where white is no distance, and
black is a distance value of least one (implying the location is on the hemisphere directly opposite the
mean direction).

To better indicate the error induced by this type of projection, Figure 2e,f also include a measure
that shows how far the pdf has been projected as a percentage of the overall probability at a given point.
At the tangent point, there is no projection required, therefore the circular pdf has to be shifted 0% in
the x direction. As the pdf curves away from the tangent plane, the pdf has to be projected farther. The
difference between Figure 2e and Figure 2f is that the probability approaches zero nearing y = ±1 in
Figure 2e; therefore, the effect of the error due to projection is minimal. In cases where the information
is closely concentrated about one point, tangent plane projections can be good assumptions. Contrarily,
in Figure 2f the pdf does not approach zero, and therefore the approximation begins to become invalid.
Accordingly, the red error line approaches the actual pdf, indicating that the majority of the pdf has
been significantly altered in the projection.

51



Mathematics 2020, 8, 171

−1

0

1 −1
0

1

0

0.5

1

1.5

X Y

p
w
n
(θ
;0
,0
.2
52
)

(a)

−1

0

1 −1
0

1

0

0.5

1

1.5

X Y

p
w
n
(θ
;0
,2
.4

2
)

(b)

−1
0

1 −1
0

1

0

0.5

1

1.5

X Y

p
w
n
(θ
;0
,0
.2
52
)

(c)

−1
0

1 −1
0

1

0

0.5

1

1.5

X Y

p
w
n
(θ
;0
,2
.4

2
)

(d)

−1
0

1 −1
0

1

0

0.5

1

1.5

X Y

p
w
n
(θ
;0
,0
.2
5
2
)

(e)

−1
0

1 −1
0

1

0

0.5

1

1.5

X Y

p
w
n
(θ
;0
,2
.4

2
)

(f)
Figure 2. Error induced by approximating a circular distribution as linear, tangent at the mean.
(a) Wrapped normal distribution with pdf pwn(θ; 0, 0.252). (b) Wrapped normal distribution
approaching wrapped uniform distribution with pdf pwn(θ; 0, 2.42). (c) Projection of pwn(θ; 0, 0.252)

onto a plane tangent to the unit circle. (d) Projection of pwn(θ; 0, 2.42) onto a plane tangent to the
unit circle. (e) Error associated with projecting pwn(θ; 0, 0.252) onto a plane tangent to the unit circle.
(f) Error associated with projecting pwn(θ; 0, 2.42) onto a plane tangent to the unit circle.

In addition to restricting the space to the unit circle, most calculations required when dealing
with angles take place in the complex field. In truth, the bulk of expanding polynomial chaos to be
suitable for angular random variables is generalizing it to complex vector spaces. Previous work by the
authors [27] has shown that a stochastic angular random variable can be expressed using a polynomial
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chaos expansion. Specifically, the chaos expansion is one that uses polynomials that are orthogonal
with respect to probability measures on the complex unit circle as opposed to the real line.

3.5. Szegő-Chaos

For the complex angular case, the chaos expansion is transformed slightly, such that

ε(x, ϑ) =
∞

∑
k=0

εk(x)Ψk(ϑ) , (21)

where, once again, ϑ = eiθ . The complex conjugate is not required in Equation (21), but it must
be remembered that the expansion must be projected onto the conjugate of the expansion basis in
Equation (20b). While ultimately a matter of choice, it is more convenient to express the expansion in
terms of the conjugate basis, rather than the original basis.

Unfortunately, while the first moment is calculated the same for real and complex valued
polynomials, the real valued process does not extend to complex valued polynomials. This is because
of the slightly different orthogonality condition between real and complex valued polynomials. While
the inner product given in Equation (2a) is not incorrect, it is only valid for real valued polynomials.
The true inner product of two functions contains a complex conjugate, that is

〈Ψm, Ψn〉p(x) =
∫
X

Ψm(x)Ψn(x)p(x)dx = c δmn .

The difference between R[x] and C[x] is that the complex conjugate has no effect on R[x].
Fortunately, the zeroth polynomial of the Szegő polynomials is unitary just like the Askey polynomials.
The complex conjugate has no effect; therefore the zeroth polynomial has no imaginary component
and is calculated the same for complex and purely real valued random variables.

The complex conjugate of a real valued function has no effect; therefore, the first moment takes
the form;

μ1 =
∞

∑
k=0

εk(x)
∫
X

Ψk(ξ)Ψ0(ξ)p(ξ)dξ =
∞

∑
k=0

εk(x)
∫
X

Ψk(ξ)Ψ0(ξ)p(ξ)dξ . (22)

In general, calculation of the second raw moment and the covariance cannot be simplified beyond

μ2 =
∞

∑
j=0

∞

∑
k=0

εjεk

∫
X

Ψj(ξ)Ψk(ξ)p(ξ)dξ

=
∞

∑
j=0

∞

∑
k=0

εjεk

〈
Ψj(ξ), Ψk(ξ)

〉
p(ξ)

(23)

cov(x, z) =
∞

∑
j=1

∞

∑
k=1

αjβk

∫
X

∫
Z

Ψj(ζ)Φk(ξ)p(ζ, ξ)dζdξ . (24)

The simplification from Equation (14) to Equation (15) as a result of shared bases can similarly
be applied to Equation (24). This simplifies Equation (24) to a double summation but only a singular
inner product (i.e., integral), i.e.,

cov(x, z) =
∞

∑
j=1

∞

∑
k=1

αjβk

∫
X

Ψj(ξ)Ψk(ξ)p(ξ)dξ

=
∞

∑
j=1

∞

∑
k=1

αjβk〈Ψj(ξ), Ψk(ξ)〉p(ξ) .
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The familiar expressions for the second raw moment given in Equation (10b) and the covariance
given in Equation (16) are special cases for R[x] rather than general expressions.

3.6. Rogers-Szegő-Chaos

The Rogers-Szegő polynomials and the wrapped normal distribution provide a convenient basis and
random variable pairing for the linear combination in Equation (21). The Rogers-Szegő polynomials in
Equation (3) can be rewritten according to [39]

φn

(
− ϑ√

q
, q
)
=

n

∑
k=0

(−1)n−k
(

n
k

)
q
q

n−k
2 ϑk , (25)

where q is calculated based on the standard deviation of the unwrapped normal distribution: q = e−σ2
.

These polynomials satisfy the orthogonality condition

1
2π

∫ π

−π
φm

(
− ϑ√

q
, q
)

φn

(
− ϑ√

q
, q
)

ϑ3

(
θ

2
,
√

q
)

dθ = (q; q)n δmn ,

where ϑ3(α, β) is the theta function

ϑ3(α, β) =
∞

∑
k=−∞

βk2
e2ikα , (26)

which is another form of the wrapped normal distribution. Note the distinction between the variables
ϑ3 and ϑ = e.

For convenience, the inverse to the given theta function is

ϑ−1
3 (α, β) = 2α + π + 2

∞

∑
k=1

βk2
sin(2kα)

k
.

The inverse of the theta function is particularly useful if the cumulative distribution function (cdf)
is required to draw random samples. The number of wrappings in Equation (26) significantly affects
the results. For reference, the results presented in this work truncate the summation to ±1000.

Written out, the first five orders of this form of the Rogers-Szegő polynomials are

φ0 = 1

φ1 = ϑ − q1/2

φ2 = ϑ2 − q1/2(q + 1)ϑ + q

φ3 = ϑ3 − q1/2(q2 + q + 1)ϑ2 + q(q2 + q + 1)ϑ − q3/2

φ4 = ϑ4 − q1/2(q + 1)(q2 + 1)ϑ3 + q(q2 + 1)(q2 + q + 1)ϑ2 − q3/2(q + 1)(q2 + 1)ϑ + q2 ,

and are shown graphically in Figure 3. Because the polynomials are complex valued, the real and
imaginary components are show, separately. In both cases, the polynomials are oscillatory, with the
real component being symmetric about θ = 0, and the imaginary component being antisymmetric
about θ = 0. Additionally, the amplitude of the oscillations increase both with increasing order and
distance from θ = 0.
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Figure 3. The zeroth through fourth Rogers-Szegő polynomials with an unwrapped standard deviation
of 0.1. (a) Real Component. (b) Imaginary Component.

The zeroth polynomial is one, as is standard; therefore, the difference between the two generating
functions given in Equations (25) and (26) will only be apparent in the calculation of moments beyond
the first.

3.7. Function Complexity

As is to be expected, the computational complexity increases with increasing state dimension. It is
therefore of interest to develop an expression that bounds the required number of function evaluations
as a function of number of states and expansion order. Due to the many different methods of calculating
inner products, all with different computational requirements, the number of functional inner products
is what will be enumerated.

Let x ∈ SP be a P-dimensional state vector consisting of angular variables, and let q ∈ NP be
the expansion order of each element in x, where N is the set of natural numbers, including zero. The
number of inner products required to calculate the chaos coefficients in Equation (20b) for element xi
is 2(qi + 1), where {i ∈ N : k ≤ P} and qi is the ith element of q.

Assume that the mean, variance, and covariance are desired for/between each element. The
mean does not require any extra inner products, since the mean is simply the zeroth coefficient. The
variance from Equation (23) requires an additional (qi + 1)2 inner products for a raw moment, or q2

i
inner products for a central moment. Similarly, the covariance from Equation (24) between the ith and
jth elements requires (qi + 1)(qj + 1) additional evaluations for a raw moment and qiqj for a central
moment. Combining these into one expression, the generalized number of inner product evaluations
for raw moments with P ≥ 2 is

2(q1 + 1) + (q1 + 1)2 +
P

∑
i=2

(
2(qi + 1) + (qi + 1)2 +

i−1

∑
j=1

(qi + 1)(qj + 1)

)
,
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and for central moments is

2(q1 + 1) + q2
1 +

P

∑
i=2

(
2(qi + 1) + q2

i +
i−1

∑
j=1

qiqj

)
.

It should be noted that this is the absolute maximum number of evaluations that is required for
an entirely angular state. In many cases inner products can be precomputed, the use of orthonormal
polynomials reduces the coefficient calculation inner products by two, and expansions using real
valued polynomials do not require these inner product calculations at all.

4. Numerical Verification and Discussion

To test the estimation methods outlined in Section 3.5, a system with two angular degrees of
freedom is considered. The correlated, nonlinear dynamics governing this body, the initial mean
directions φ/θ, initial USTDs, and constant angular velocities φ̇/θ̇ are given in Table 2.

Table 2. Initial conditions and governing equations of the dynamical system in Section 4.

Angle Mean Direction USTD Angular Velocity (const.) Dynamics

φ π/30 [rad] 0.1 [rad] 0.2 [rad/s] Δφ =
√
|θk−1|φ̇ΔT

θ π/4 [rad] 0.1 [rad] 0.2 [rad/s] Δθ = θk−1 θ̇ΔT

For every simulation, the run time is 4 s with ΔT being 0.05 s; this equates to 81 time steps in
each simulation. In Figure 4, the joint pdf propagates from the initial conditions (bottom left) to
the final state (top right). The initial joint pdf clearly reflects an uncorrelated bivariate wrapped
normal distribution. After being transformed by the dynamics, the final joint pdf exhibits not just
translation and scaling, but also rotation: indicating a non-zero correlation between the two angles,
which is desired.

Figure 4. Evolution of the joint pdf from uncorrelated to correlated bivarite wrapped normal pdf.

For a practical application, the mean and standard deviation/variance of each dimension, as well
as the covariance between dimensions is desired. When dealing with angles, the mean direction and
the standard deviation can be obtained from the first moment, omitting the second moment. Therefore,
only the first moment and the covariance will be discussed. Recall the equations for the first moment
and covariance are in terms of chaos coefficients and are given generally in Equations (22) and (24).
Because two angles are being estimated, the supports of the integrals in Equations (22) and (24) are set
as [−π, π): but it should be noted that the support is not rigidly defined this way, the only requirement
is that the support length be 2π.
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Rather than exploit the computational efficiency of methods such as quadrature integral
approximations on the unit circle [50–52], the integrals are computed as Riemann sums. Therefore, it
is necessary to determine an appropriate number of elements that provides an adequate numerical
approximation, while remaining computationally feasible.

Figure 5 show the settling effect that decreasing the elemental angle has on the estimation of the
covariance. Note that this figure is used to show the sensitivity of the simulation to the integration
variable rather than the actual estimation of the covariance, which will be discussed later in this section.
Both plots show the relative error of each estimate with respect to a Monte Carlo simulation of the
joint system described in Table 2. Clearly, as the number of elements increases, the estimates begin to
converge until the difference between dθ = 0.01 rad (629 elements) and dθ = 0.005 rad (1257 elements)
is perceivable only near the beginning of the simulation. Because of this, it can reasonably be assumed
that any error in the polynomial chaos estimate with dθ = 0.005 is not attributed to numerical
estimation of the integrals in Equations (22) and (24). Additionally, these results should also indicate
the sensitivity of the estimate to the integration variable. Even though the dynamics used in this
work’s examples result in a joint pdf that somewhat resembles wrapped normal pdfs, the number of
elements used in the integration must still be quite large. The final numerical element that must be
covered is the Monte Carlo. For these examples, 5 × 107 samples are used in each dimension.
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(b)
Figure 5. Effects of integration variable on estimated covariance relative error. Each line represents a
different elemental angle ranging from 0.04 to 0.005 rad. (a) Angle Component. (b) Length Component.

In each of the examples in Section 4.1, the polynomial chaos estimate first evaluates the
Rogers-Szegő polynomials at each of the 1257 uniformly distributed angles (ξ), solves Equation (20b)
for the chaos coefficients, and uses Equations (22) and (24) to estimate the mean and covariance. After
this, the 1257 realizations of the state (ε(ξ)) are propagated forward in time according to the system
dynamics. At each time step the system is expanded using polynomial chaos to estimate the statistics.
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4.1. Simulation Results

The estimations of the first moment and covariance of the system described by the simulation
parameters in Table 2 are shown in Figures 6 and 7. In both cases, the angle and length of the
estimate are presented, rather than the exponential form used in the polynomial chaos expansion.
This representation much more effectively expresses the mean and concentration components of the
estimate, which are directly of interest when examining statistical moments.
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Figure 6. Estimation of the first moment of both angles using a fifth order polynomial chaos expansion
compared against Monte Carlo simulation. (a) Angle Component. (b) Length Component.

Beginning with the mean estimate from a fifth order polynomial chaos expansion in Figure 6, the
mean direction of the angle θ is nearly identical to the Monte Carlo estimate, while the estimate of
φ begins to drift slightly as the simulation progresses. Of the two angles, this makes the most since;
recalling Table 2, only the dynamics governing φ are correlated with θ, the dynamics governing θ

are only dependent on θ. In comparison, the estimates of the lengths are both much closer to the
Monte Carlo result. Looking closely at the end of the simulation, it can be seen that, again, θ is
practically identical, and there is some small drift in φ downwards, indicating that the estimate reflects
a smaller concentration. Effectively, the estimation of the mean reflects some inaccuracy; however, this
inaccuracy is partly reflected in the larger dispersion of the pdf.

Similarly to the mean, a small drift can be seen in the estimate of the covariance in Figure 7. In
both cases the initial estimate is nearly identical to the Monte Carlo result; however, throughout the
simulation a small amount of drift becomes noticeable. While this drift is undesirable, the general
tracking of the polynomial chaos estimate to the Monte Carlo clearly shows that the correlation between
two angles can be approximated using a polynomial chaos expansion.
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Figure 7. Estimation of the covariance between the two angles using a fifth order polynomial chaos
expansion compared against Monte Carlo simulation. (a) Angle Component. (b) Length Component.

4.1.1. Unwrapped Standard Deviation and Joint PDF Assumptions

From the discussion of the generating function for the Rogers-Szegő polynomials Equation (25),
it is clear that these polynomials are dependent on the USTD. Unfortunately this means that the
polynomials are unique to any given problem, and while they can still be computed ahead of
time and looked up, it is not as convenient as problems that use polynomials that are fixed (e.g.,
Hermite polynomials).

Additionally, the inner product in Equation (23), which describes the calculation of the covariance,
requires the knowledge of the joint pdf between the two random variables. In practice, there is no
reasonable way of obtaining this pdf; and if there is, then the two variables are already so well know,
that costly estimation methods are irrelevant.

It is therefore of interest to investigate what effects making assumptions about the USTD and
the joint pdf have on the estimates. The basis polynomials are evaluated when solving for the chaos
coefficients Equation (20b) and when estimating the statistical moments Equations (22)–(25) at every
time step. If no assumption is made about the USTD, then the generating function in Equation (25) or
the three step recursion in Equation (5) must be evaluated at every time step as well. In either case, the
computational burden can be greatly reduced if the basis polynomials remain fixed, requiring only an
initial evaluation. Additionally, if the same USTD is used for both variables, than the simplification
from two to one integrals in Equation (25) can be made.

While only used in the estimation of the covariance, a simplification of the joint pdf will also
significantly reduce computation and increase the feasibility of the problem. The most drastic of
simplifications is to use the initial, uncorrelated joint pdf. Note that the pdf used in the inner product
is mean centered at zero (even for Askey chaos schemes); therefore, the validity of the estimation will
not be effected by any movement of the mean.

Assuming the USTD to be fixed at 0.1 for both random variables and the joint pdf to be stationary
throughout the simulation led to estimates that are within machine precision of the unsimplified results
in Figures 6 and 7. This is to be expected when analyzing Askey-chaos schemes (like Hermite-chaos)
that are problem invariant. In instances where the USTD of the wrapped normal distribution is
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low enough that probabilities at ±π are approximately zero, the wrapped normal distribution is
effectively a segment of the unwrapped normal distribution, because the probabilities beyond ±π are
approximately equal to zero. However, in problems where the USTD increases, the wrapped normal
distribution quickly approaches a wrapped uniform distribution, this makes the time-invariant USTD
a poor assumption. While a stationary USTD assumption may not hold as well for large variations in
USTD, highly correlated, or poorly modeled, dynamical systems, it shows that some assumptions and
simplifications can be made to ensure circular polynomial chaos is a practical method of estimation.

4.1.2. Chaos Coefficient Response

The individual chaos coefficients are not always inspected for problems using Askey-chaos
simply due to the commonality of Askey-chaos. The adaptation of polynomial chaos to use the
Szegő polynomials, and thus expanding from real to complex valued estimates presents a case that
warrants inspection of the chaos coefficients. Figure 8 show the time evolution of the first 13 chaos
coefficients (including the zeroth coefficient) that describe the random variable φ.
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Figure 8. Time evolution of the first 13 chaos coefficients describing the random variable φ. (a) Real
Coefficient Evolution. (b) Imaginary Coefficient Evolution. (c) Imaginary and Real Coefficient
Evolution. (d) Complex Coefficient Evolution.
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What becomes immediately apparent is that the coefficients are roughly anti-symmetrically paired
until the length of the coefficient begins to approach zero. In this specific case, the eighth coefficient in
Figure 8 initiates this trend. This is the first coefficient that does not have an initial estimate coinciding
with lower ordered coefficients. All coefficients following this one show very little response to the
system. This is to be expected. Recall the calculation of the chaos coefficient includes the product
of polynomial and pdf as well as a division by the self inner product of each polynomial order (i.e.,
〈Ψ2

k(ζ)〉p(ζ)). The polynomial and pdf product have opposing behaviors when approaching ±π from
0. Whereas the polynomial oscillation amplitude increases, the tails of the pdf approach probability
values of zero. This ensures the growth in the higher order polynomials is mitigated.

For brevity, only the coefficients from the variable φ are shown. These have a much more
interesting response than θ due to the nature of the dynamics. The most notable part of the coefficients
from θ is that none of the coefficients ever move beyond the complex unit circle, which from Figure 8c,
is clearly not the case for φ. In fact, the coefficients describing θ stay close to the complex unit circle
and just move clockwise about it. Similarly, the eighth and higher coefficient lengths begin collapse to
zero rad. For this problem (and presumably most problems) almost all of the information is coming
from the first two coefficients. Comparing the estimates using two, three, and ten coefficients yields the
same results to within machine precision. This is not surprising when considering the inner products
(Table 3) that are required to estimate the covariance; each of the inner products are effectively zero
when compared with 〈φ0, φ0)〉pwn

and 〈φ1, φ1)〉pwn
. While having to only compute two significant

chaos coefficients makes computation easier, it also limits the amount of information that is used in the
estimate; however, for simple problems such as this one, two significant coefficients are satisfactory.

Table 3. Rogers-Szegő Inner Products.〈
ψi, ψj

〉
pwn

j = 0 j = 1 j = 2 j = 3

i = 0 1.00 −4.77e-16−3.15e-15i −3.35e-15−2.00e-16i −1.21e-16−1.65e-16i
i = 1 −4.77e-16+3.15e-15i −0.01−1.94e-16i 1.94e-4+3.06e-16i −5.71e-06−3.27e-17i
i = 2 −3.35e-15+2.00e-16i 1.94e-4−3.06e-16i 1.84e-4+4.61e-17i −1.09e-05−3.70e-17i
i = 3 −1.21e-16+1.65e-16i −5.71e-06+3.27e-17i −1.09e-05+3.70e-17i −4.53e-06−2.45e-16i

5. Conclusions and Future Work

One method of quantifying the uncertainty of a random variable is a polynomial chaos expansion.
For variables that exist only on the real line, this type of expansion has been well studied. This work
developed the alterations that must be made for a polynomial chaos expansion to be valid for random
variables that exist on the unit circle, specifically the complex unit circle (where the y coordinate
becomes imaginary).

Previous work has shown that polynomial chaos can be used with the Rogers-Szegő polynomials
to estimate the raw moments of a random variable with a wrapped normal distribution. A generalized
set of expressions for the mean and covariance of multi-dimensional systems for both real and complex
systems has been presented that do not make the assumption that each variable has been expanded
with the same set of basis polynomials. An example of two angular random variables—one with
correlated dynamics, and one without—has been presented. The mean of each random variable as
well as the covariance between them is estimated and compared with Monte Carlo estimates. In the
case of the uncorrelated random variable, the mean estimates are highly accurate. For the correlated
random variable, the estimate is found to slowly diverge from the Monte Carlo result. A similar
small divergence is observed in the covariance estimate; however, the general trend is similar enough
to indicate the error is not in the formulation of the complex polynomial chaos. Additionally, an
approximation to the basis polynomials and time-varying joint probability density function (pdf)
is made, without loss of accuracy in the estimate. From the estimates of the mean and covariance,
it is clear that the Rogers-Szegő polynomials can be used as an effective basis for angular random
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variable estimation. However, for more complex problems, different polynomials should be considered,
specifically polynomials with an appropriate number of non-negligible self inner products.
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[CrossRef]

40. Hou, Q.; Lascoux, A.; Mu, Y. Continued Fractions for Rogers-Szegő Polynomials. Numer. Algorithms 2004,
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Abstract: The interpolation of Thiele-type continued fractions is thought of as the traditional rational
interpolation and plays a significant role in numerical analysis and image interpolation. Different to
the classical method, a novel type of bivariate Thiele-like rational interpolation continued fractions
with parameters is proposed to efficiently address the interpolation problem. Firstly, the multiplicity
of the points is adjusted strategically. Secondly, bivariate Thiele-like rational interpolation continued
fractions with parameters is developed. We also discuss the interpolant algorithm, theorem, and dual
interpolation of the proposed interpolation method. Many interpolation functions can be gained
through adjusting the parameter, which is flexible and convenient. We also demonstrate that the
novel interpolation function can deal with the interpolation problems that inverse differences do
not exist or that there are unattainable points appearing in classical Thiele-type continued fractions
interpolation. Through the selection of proper parameters, the value of the interpolation function
can be changed at any point in the interpolant region under unaltered interpolant data. Numerical
examples are given to show that the developed methods achieve state-of-the-art performance.

Keywords: Thiele-like rational interpolation continued fractions with parameters; unattainable point;
inverse difference; virtual point

1. Introduction

The interpolation method plays a critical role in approximation theory and is a classical topic
in numerical analysis [1–6]. It is believed that interpolation polynomial and rational interpolation
are two popular interpolation methods. They have many applications, such as image interpolation
processing, numerical approximation [1], extensive applications in terms of arc structuring [1,2],
and so on. Kuchminska et al. [3] proposed a Newton-Thiele-like Interpolating formula for two variate
interpolation. Pahirya et al. [4] developed the problem of the interpolant function of bivariate by
two-dimensional continued fractions. Li et al. [5] generalized Thiele’s expansion of a univariate
rational interpolation function to the Thiele-Newton blending rational interpolation. The authors also
developed the Viscovatov-like algorithm to calculate the coefficients of Thiele-Newton’s expansion.
Cuyt et al. [6] used a multivariate data fitting technique to solve various scientific computing problems in
filtering, meta-modelling, queueing, computational finance, networks, graphics, and more. Li et al. [7]
analyzed the fractional-order unified chaotic system by different fractional calculus numerical methods.
Xu et al. [8] introduced the truncated exponential radial function for surface modeling. Massopust [9]
constructed non-stationary fractal functions and interpolation based on non-stationary versions of fixed
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points. In recent years, different aspects of rational multivariate interpolation were studied, especially in
Newton form. Cuyt et al. [10] define multivariate divided differences of the multivariate Newton–Padé
approximants. Akal et al. [11] modified Cuyt and Verdonk’s approach to multivariate Newton–Padé
approximations. Ravi [12] studied the minimal rational interpolation problem using algebrogeometric
methods. Bertrand et al. [13] proposed a new polynomial projector on a space of functions of many
variables, and studied the main approximation properties of the new projectors. One multipoint
multivariate polynomial interpolation method from the Goodman–Hakopian polynomial interpolation
was generalized to the case of rational interpolation in the paper [14]. The authors presented the scale
of mean value multipoint multivariate Padé interpolations which includes as particular cases both the
scale of mean value polynomial interpolations and the multipoint multivariate Padé approximations.
Based on the collocation polynomial and Hermite interpolation, Li et al. [15] proposed a numerical
explicit gradient scheme, which has higher convergence order.

The interpolation method also was applied to graphic image morphing and image
processing [16–24]. In the paper [16], an effective directional Bayer color filter array demosaicking
method based on residual interpolation is presented. The proposed algorithm guaranteed the quality
of color images and reduced the computational complexity. Zhou et al. [17] developed an interpolation
filter called an all-phase discrete sine transform filter and used it for image demosaicking. Min et al. [18]
proposed a nonlinear approximation method based on Taylor series to describe and approximate images
with intensity inhomogeneity. He et al. [19,20] presented a Thiele-Newton’s rational interpolation
function in the polar coordinates which was then applied to image super-resolution. The new method
had a lower time cost and a better magnified effect. Yao et al. [21] proposed a new approach to
bivariate rational interpolation. The presented interpolation method was identified by the values of
shape parameters and scaling factors from the paper [21]. Zhang et al. [22] presented a single-image
super-resolution algorithm based on rational fractal interpolation. Based on a multi-scale optical
flow reconstruction scheme, Ahn et al. [23] proposed a fast 4K video frame interpolation method.
Wei et al. [24] adopted the bilinear interpolation to obtain the Region of Interest pooling layer in image
manipulation detection. In recent years, Zhang et al. [25,26] have reported on some new types of
weighted blending spline interpolation. By selecting different coefficients and appropriate parameters,
the value of the spline interpolation function can be modified at any point, in the interpolant region
under unchanging interpolant data, so the interpolation functions of geometric surfaces can be adjusted,
even for the given data, in actual design, but the computation is complicated. One of the authors
proposed an associated continued fractions rational interpolation and its Viscovatov algorithm through
Taylor expansion, proposed some different types of bivariate interpolation, and studied several general
interpolation functions [27]. Tang and Zou [28,29] studied and provided some general interpolation
frames with many interpolation formulae. For the given interpolation data, it could handle some special
interpolant problems through selecting parameters appropriately. However, it is still a quite difficult
problem to select appropriate parameters and then design the interpolation format while meeting
the conditions in the computational process. It is difficult to determine such a function without the
process of comparison and trial. Zhao et al. [30] presented the block-based Thiele-like blending rational
interpolation. For the given interpolation points, many types of block-based Thiele-like blending
rational interpolation were studied based on different block points of data. For image processing and
computer-aided geometric design, there is still substantial demand for complicated models and the
integration of design and fabrication, but two problems remain:

1. How to construct a proper polynomial or rational interpolation with explicit mathematical
expression and a simple calculation which make the function easy to use and convenient to
study theoretically;

2. For the given data, how to modify the curve or surface shape to enable the function to meet the
actual requirements.

In the classical interpolation method, the interpolation function is unique to the interpolation
points, and it is almost impossible to resolve the above two problems.
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Thus, this raises an interesting question: whether many unique rational interpolations based on
inverse difference exist. At present, the Thiele-type rational interpolation continued fractions is the hot
topic regarding methods of rational interpolation; however, it is unique for the given interpolation
data, and this limits its application. The Thiele-like rational interpolation continued fractions may
meet nonexistent inverse differences and unattainable points. To avoid the problems mentioned
above, this paper aims to develop bivariate Thiele-like rational interpolation continued fractions by
introducing one or more parameters, which can adjust the shape of the curves or surfaces without
altering the given interpolation points, so as to meet the practical requirements. Meanwhile, in contrast
to the classical interpolation method in [1], our method can avoid unattainable points and nonexistent
inverse differences in interpolation problems and performs better. In contrast to the interpolation
methods presented in [1,28,31,32], it is unnecessary to adjust the nodes, and only the addition of
multiple numbers in the sight of unattainable points is required, which makes it simple to numerate.
To solve the above problem, in the paper [33–35], the authors developed a univariate Thiele-like rational
interpolation continued fractions with parameters. The question can be solved with the proposed
method in the paper, but the authors only discussed the univariate case. We generalize the results to
the bivariate case in this paper.

The organization of the paper is as follows: We give a brief review on univariate Thiele-like
rational interpolation continued fractions with parameters and discuss a special rational interpolation
problem where unattainable points and inverse differences do not exist, and solve it through univariate
Thiele-like rational interpolation with parameters in Section 2. We propose four bivariate Thiele-like
branched rational interpolation continued fractions with parameters in Section 3. In addition to the
bivariate Thiele-like branched rational interpolation continued fractions with unattainable points,
the dual interpolation format of bivariate Thiele-like branched rational interpolation continued fractions
with a single parameter and bivariate Thiele-like branched rational interpolation continued fractions
with a nonexistent partial inverse difference are also discussed. As an application of the proposed
methods, numerical examples are given to illustrate the effectiveness of the methods in Section 4.

2. Univariate Thiele-Like Interpolation Continued Fractions with Parameters

Let us consider the following univariate rational interpolation problem. If we consider a function
y = f (x) and support points set {(x0,y0),(x1,y1), . . . (xn,yn)} on interval [a, b], we can gain the following
classical Thiele-like rational interpolation continued fractions [1]:

Rn(x) = b0 +
x− x0

b1 +

x− x1

b2 + · · ·+
x− xn−1

bn
(1)

where bi (i = 1, . . . , n) represents the inverse differences of f (x).

2.1. Thiele-Like Rational Interpolation Continued Fractions with Parameter

It is well known from the literature that if Thiele-type continued fractions rational interpolation
functions exist, they are unique compared with the popular method. This is inconvenient for
practical application. To solve this problem, many scholars have proposed several improved methods.
Zhao et al. [25] demonstrated the block-based Thiele-like blending rational interpolation. For a given
set of interpolation points, many kinds of Thiele-type continued fractions interpolation functions
can be constructed based on different block points. However, since every interpolation function is
constructed for a special block method, one cannot derive different interpolation functions for special
block points, and the interpolation function cannot adjust and may meet unattainable points. For a
special block-based method, one must construct a polynomial or rational interpolation and calculate
the block-based inverse difference and then construct the block-based Thiele-like blending rational
interpolation. This requires a large amount of calculation and is inconvenient for the interpolation
application. So, Zou et al. [33–35] constructed several novel univariate Thiele-like rational interpolation
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continued fractions with parameters, which has many advantages. By introducing a new parameter,
λ (λ � 0), the authors [33,34] considered taking a point of the original points (xk, yk) (k = 0, 1, . . . , n) as
a virtual double point, and the multiplicity of the other points remains the same.

Let
y0

i = yi, i = 0, 1, . . . , n. (2)

Suppose k < n, when j = 1, . . . , k + 1, for i = j, j + 1, . . . , n,

yj
i =

xi − xj−1

yj−1
i − yj−1

j−1

. (3)

For i = k + 1, k + 2, . . . , n,
zk+1

i =
xi − xk

yk+1
i − 1

λ

. (4)

When j = k + 2, k + 3, . . . , n, for i = j, j + 1, . . . , n,

zj
i =

xi − xj−1

zj−1
i − zj−1

j−1

. (5)

The Thiele-like rational interpolation continued fractions with a single parameter have the formula
as follows:

Rn
(0)(x) = c0 +

x− x0

c1 + · · ·+
x− xk−1

ck +

x− xk

c0
k+1

+

x− xk
ck+1 +

x− xk+1

ck+2 + · · ·+
x− xn−1

cn
, (6)

where

ci =

{
yi

i, i = 0, 1, . . . , k,
zi

i, i = k + 1, k + 2, . . . , n,

(7)c0
k+1 =

1
λ

.

Without loss of generality, the authors [33,34] generalized the results to the Thiele-like rational
interpolation continued fractions with two parameters. The authors discussed two categories:
an arbitrary point of the original points is considered as a treble virtual point; two arbitrary points
of original points are considered as the virtual double points. It can be seen that the new kind of
Thiele-like continued fraction is not unique, and it satisfies the given interpolation condition. We know
that it could meet nonexistent inverse differences and unattainable points in the classical Thiele-type
continued fractions interpolation. As a fact, the Thiele-like rational interpolation continued fractions
with parameters can solve the above interpolation problem. We discuss this problem in the next
two subsections.

2.2. The Interpolation Problem with Unattainable Points

Definition 1 ([31]). Suppose the given point is D =
{
(xi, yi)| i = 0, 1, . . . , n} and xi is diverse, R(x) = N(x)

D(x) is
the Thiele-type interpolation continued fractions in Formula (1) if (xk, yk) satisfies

N(xk) −D(xk)yk = 0, R(xk) =
N(xk)

D(xk)
� yk. (8)

Then, (xk, yk) is an unattainable point of R(x).
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Theorem 1 ([31,32]). Suppose the given point is D =
{
(xi, yi)| i = 0, 1, . . . , n} , and xi is diverse, the Thiele-type

interpolation continued fraction is as shown in Formula (1), where bk � ∞, (k = 0, 1, . . . , n − 1), bn � 0,
and then the necessary and sufficient condition of (xk, yk) for an unattainable point is

Rk(xk) = 0, (9)

where Rk(x) =
Nk(x)
Dk(x)

is irreducible and

Rn−1(x) = bn, Ri(x) = bi+1 + (x− xi+1)Ri+1
−1(x), i = n− 2, n− 3, . . . , k. (10)

Theorem 2. The Thiele-like rational interpolation continued fractions with a single parameter defined by
Equations (2)–(5) satisfies

Rn
(0)(xk) = yk. (11)

Proof. From Equation (6), let Rk
(0)(x) = 1

λ +
x−xk

Rk+1
(0)(x)

, where

Rn
(0)(x) = cn,

Ri
(0)(x) = ci +

x− xi

Ri+1
(0)(x)

(i = n− 1, n− 2, . . . , k + 1).

Then, Rk
(0)(xk) =

1
λ � 0 from Theorem 1, (xk, yk) is an unattainable point of Rn

(0)(x), and then
we have Rn

(0)(xk) = yk.
The proof is complete. �

2.3. The Thiele-Like Rational Interpolation Continued Fractions Problem with a Nonexistent Inverse Difference

Given diverse interpolation data
{
(x0, y0), (x1, y1), . . . , (xn, yn)

}
, in the process of constructing

Thiele-like rational interpolation continued fractions, the inverse difference would be ∞ if the
denominator equals zero, i.e., the inverse difference does not exist, which results in the failure
of Thiele-type continued fractions interpolation function. Considering this case, assume that yk+1

k+1
does not exist (i.e., yk+1

k+1 = ∞), we introduce a parameter η (η � 0), and construct the novel inverse
difference as shown in Table 1.

From Equation (4), we can get

zk+1
k+1 =

xk+1 − xk

yk+1
k+1 − 1

η

=
xk+1 − xk

∞− 1
η

= 0. (12)

Using the method given in Formula (6), we can construct a Thiele-like rational interpolation
continued fractions with a parameter:

Rn
(3)(x) = c0 +

x− x0

c1 + · · ·+
x− xk−1

ck +

x− xk

c0
k+1

+

x− xk
ck+1 +

x− xk+1

ck+2 + · · ·+
x− xn−1

cn
. (13)

Additionally, the calculating method of ci (i = 0, 1, . . . , n) follows Formulas (2)–(5), c0
k+1 = 1

η .

It is easy to prove that Rn
(3)(x) satisfies the interpolation condition.

For the special interpolation problems discussed in Sections 2.2 and 2.3, there are four methods to
overcome them: (a) adjust the interpolation nodes [1,30]; (b) replace the inverse difference by divided
differences [36]; and (c) replace the inverse difference by block-based inverse differences [28,36,37].
In addition, there is also a method provided through the selection parameter in papers [27–29].
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Compared with the methods above, it is easy to see that the method in this paper is simpler and
more convenient.

Table 1. Inverse differences table where an inverse difference does not exist.

Nodes
0 Order
Inverse

Differences

1 Order
Inverse

Differences
k

k + 1 Order
Inverse

Differences

k + 2 Order
Inverse

Differences

n + 1 Order
Inverse

Differences

x0 y0
0

x1 y0
1 y1

1
...

...
...

. . .
xk y0

k y1
k · · · yk

k
xk y0

k y1
k · · · yk

k
1
η

xk+1 y0
k+1 y1

k+1 · · · yk
k+1 yk+1

k+1 zk+1
k+1

...
...

... · · · ...
...

...
. . .

xn y0
n y1

n · · · yk
n yk+1

n zk+1
n · · · zn

n

3. Multivariate Thiele-Like Branched Rational Interpolation Continued Fractions
with Parameters

Now, we generalize the previous methods to the computation of the multivariate case.
For simplicity, and also without loss of generality, we restrict ourselves to the case where bivariate
problems are involved.

Suppose
∏

m,n ⊂ D ⊂ R2 is the diverse rectangular net on rectangular region D, f (x, y) is the real
function defined on rectangular region D, and let

f (xi, yj) = fi, j, i = 0, 1, . . . , m, j = 0, 1, . . . , n. (14)

The bivariate Thiele-like branched rational interpolation continued fractions is as follows:

R(x, y) = b0,0 +
y−y0
b0,1 +

y−y1
b0,2 + · · ·+

y−yn−1
b0,n +

x−x0

b1,0+
y−y0
b1,1 +

y−y1
b1,2 + · · ·+

y−yn−1
b1,n

+ · · ·+
x−xm−1

bm,0+
y−y0
bm,1 +

y−y1
bm,2 + · · ·+

y−yn−1
bm,n

(15)

and bi, j(i = 0, 1, . . . , m; j = 0, 1, . . . , n) represent the bivariate partial inverse differences.

Theorem 3 ([1,2,38]). If bi, j(i = 0, 1, . . . , m; j = 0, 1, . . . , n) exists, then

R(xi, yj) = fi, j,∀(xi,yj) ∈
∏

m,n
, i = 0, 1, . . . , m; j = 0, 1, . . . , n. (16)

3.1. Bivariate Thiele-Type Branched Rational Interpolation Continued Fractions with a Single Parameter

By introducing new parameters λ (λ � 0), an arbitrary point of the original points (xk, yl, fk,l)(k =

0, 1, . . . , m; l = 0, 1, . . . , n) is treated as a virtual double point, and the multiplicity of the other points
remains the same. We can construct the bivariate Thiele-like branched rational interpolation continued
fractions with a single parameter λ using the following Algorithm 1:
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Algorithm 1 Algorithm of the bivariate Thiele-like branched rational interpolation continued fractions with a
single parameter

Step 1: Initialization.

f (0,0)
i, j = f (xi, yj), i = 0, 1, . . . , m; j = 0, 1, . . . , n. (17)

Step 2: For j = 0 , 1 , . . . , n ; p = 1 , 2 , . . . , m ; i = p , p + 1 , . . . , m ,

f (p,0)
i, j =

xi − xp−1

f (p−1,0)
i, j − f (p−1,0)

p−1, j

. (18)

Step 3: For i = 0 , 1 , . . . , k− 1 , k + 1, . . . , m ; q = 1 , 2, . . . , n ; j = q , q + 1 , . . . , n ,

f (i,q)i, j =
yj − yq−1

f (i,q−1)
i, j − f (i,q−1)

i,q−1

. (19)

Step 4: By introducing parameter λ into the formula f (k,0)
k, j ( j = 0, 1, . . . , n), then one can calculate them with

Formulas (2)–(5), and mark the final results as

(ak,0, ak,1 , . . . , ak,l, a0
k,l+1 , ak,l+1, ak,l+2 , . . . , ak,n)

T
. (20)

Step 5: Using the elements in Formulas (19) and (20), the Thiele-like interpolation continued fractions with a
single parameter with respect to y can be constructed:

Ai(y) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f (i,0)i,0 +

y−y0

f (i,1)i,1
+

y−y1

f (i,2)i,2
+ · · · +

y−yn−1

f (i,n)i,n

, i = 0, 1, . . . , k− 1, k + 1, . . . , m,

ak,0 +
y−y0
ak,1 + · · · +

y−yl−1
ak,l +

y−yl
a0

k,l+1 +
y−yl
ak,l+1 +

y−yl+1
ak,l+2 + · · · +

y−yn−1
ak,n

, i = k,
. (21)

Step 6: Let

R0
m,n(x, y) = A0(y) +

x− x0

A1(y) +

x− x1

A2(y) + · · ·+
x− xm−1

Am(y)
. (22)

Then, R0
m,n(x, y) is a bivariate Thiele-like branched rational interpolation continued fractions with a

single parameter.

Theorem 4. Given the interpolation data (xi, yj, fi, j) (i = 0, 1, . . . , m; j = 0, 1, . . . , n) , the bivariate Thiele-like
branched rational interpolation continued fractions with a single parameter R0

m,n(x, y) satisfies

R0
m,n(xi, yj) = fi, j,∀(xi,yj) ∈

∏
m,n

, i = 0, 1, . . . , m; j = 0, 1, . . . , n. (23)

Proof. For an arbitrary point(xi, yj, fi, j), i = 0, 1, . . . , k− 1, k + 1, . . . , m, obviously

Ai(yj) = f (i,0)i,0 +
yj − y0

f (i,1)i,1
+

yj − y1

f (i,2)i,2
+ · · · +

yj − yt−1

f (i, j)i, j

= · · · = f (i,0)i, j .

If i = k,

Ai(y) = ak,0 +
y− y0

ak,1 + · · · +

y− yl−1

ak,l +

y− yl

a0
k,l+1

+

y− yl

ak,l+1 +

y− yl+1

ak,l+2 + · · · +

y− yn−1

ak,n
,
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Regardless of 0 ≤ j < l, j = l, n ≥ j > l, from Theorem 1 in the Thiele-like rational interpolation
continued fractions with a single parameter [33,34], we can derive

Ai(yj) = ak,0 +
yj−y0

ak,1 + · · · +

yj−yl−1
ak,l +

yj−yl

a0
k,l+1 +

yj−yl
ak,l+1 +

yj−yl+1
ak,l+2 + · · · +

yj−yj−1
ak, j

= · · · = f (i,0)i, j ,

From Theorem 3, we can derive,∀(xs,yt) ∈∏m,n,

R0
m,n(xi, yj) = A0(yj) +

xi−x0
A1(yj) +

xi−x1
A2(yj) + · · ·+

xi−xi−1
Ai(yj)

= f (0,0)
0, j + xi−x0

f (1,0)
1, j +

xi−x1

f (2,0)
2, j + · · ·+

xi−xi−1

f (i,0)i, j

= · · · = f (0,0)
i, j = fi, j.

Then, we have proved the Theorem 4. �

3.2. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Multiple Parameters

Without loss of generality, we just develop the Thiele-like branched interpolation continued
fractions with two parameters, which can be divided into three cases: one is taking a point as a virtual
treble point, one is taking two virtual double points in the same column, and the other is taking two
virtual double points in the different columns. The bivariate Thiele-like branched rational interpolation
continued fractions with more than two parameters can be discussed similarly.

3.2.1. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Two Parameters
Based on a Virtual Treble Point

By introducing new parameters α, β (α � 0, β � 0), an arbitrary point of the original point
(xk, yl, fk,l) (k = 0, 1, . . . , m; l = 0, 1, . . . , n) is regarded as a treble virtual point, and the multiplicity of
the other points remains the same. We can construct the bivariate Thiele-like rational interpolation
continued fractions with two parameters α, β using Algorithm 2:
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Algorithm 2 Algorithm of the bivariate Thiele-like rational interpolation continued fractions with two
parameters

Step 1: Initialization:

f (0,0)
i, j = f (xi, yj), i = 0, 1, . . . , m; j = 0, 1, . . . , n. (24)

Step 2: If j = 0 , 1 , . . . , n ; p = 1 , 2 , . . . , m ; i = p , p + 1 , . . . , m ,

f (p,0)
i, j =

xi − xp−1

f (p−1,0)
i, j − f (p−1,0)

p−1, j

. (25)

Step 3: For i = 0 , 1 , . . . , k− 1 , k + 1, . . . , m ; q = 1 , 2, . . . , n ; j = q , q + 1 , . . . , n ,

f (i,q)i, j =
yj − yq−1

f (i,q−1)
i, j − f (i,q−1)

i,q−1

. (26)

By introducing parameters α, β into the formula f (k,0)
k, j ( j = 0, 1, . . . , n), then one can calculate the final result as

(ak,0, ak,1, . . . , ak,l, a0
k,l+1, a1

k,l+1 , ak,l+1, ak,l+2, . . . , ak,n)
T

. (27)

Step 4: By using the elements in Formulas (26) and (27), the Thiele-like interpolation continued fractions with a
single parameter with respect to y can be constructed:

Ai(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (i,0)i,0 +
y−y0

f (i,1)i,1
+

y−y1

f (i,2)i,2
+ · · · +

y−yn−1

f (i,n)i,n

, i = 0, 1, . . . , k− 1, k + 1, . . . , m,

ak,0 +
y−y0
ak,1 + · · · +

y−yl−1
ak,l +

y−yl
a0
k,l+1

+

y−yl
a1
k,l+1

+

y−yl
ak,l+1 +

y−yl+1
ak,l+2 + · · · +

y−yn−1
ak,n

, i = k,
(28)

Step 5: Let

R1
m,n(x, y) = A0(y) +

x− x0

A1(y) +

x− x1

A2(y) + · · ·+
x− xm−1

Am(y)
. (29)

Then, R1
m,n(x, y) is a bivariate Thiele-like branched rational interpolation continued fractions with two

parameters based on a treble virtual point.

Theorem 5. Given the interpolation data (xi, yj, fi, j) (i = 0, 1, . . . , m; j = 0, 1, . . . , n), the bivariate Thiele-like
branched rational interpolation continued fractions with two parameters based on a treble virtual point
R1

m,n(x, y) satisfies

R1
m,n(xi, yj) = fi, j,∀(xi,yj) ∈

∏
m,n

, i = 0, 1, . . . , m; j = 0, 1, . . . , n. (30)

We can prove Theorem 5 by using Theorem 3 and the method similar to the Theorem 1 in the
Thiele-like rational interpolation continued fractions with a single parameter [33,34].

3.2.2. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Two Parameters
Based on Two Virtual Double Points in the Same Column

Similar to the univariate Thiele-like interpolation continued fractions, we can get the bivariate
Thiele-like branched rational interpolation continued fractions with two parameters. By introducing
new parametersφ, δ (φ � 0, δ � 0), two arbitrary points of the original points (xk, yl, fk,l),(xk, ys, fk,s)(s >
l,k = 0, 1, . . . , m;l, s = 0, 1, . . . , n) are treated as two virtual double points, and the multiplicity of the
other points remains the same. One can construct the Thiele-like branched rational interpolation
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continued fractions with parameters φ, δ based on two virtual double points in the same column using
Algorithm 3:

Algorithm 3 Algorithm of the Thiele-like branched rational interpolation continued fractions with two
parameters in the same column

Step 1: Initialization:

f (0,0)
i, j = f (xi, yj), i = 0, 1, . . . , m; j = 0, 1, . . . , n. (31)

Step 2: If j = 0 , 1 , . . . , n ; p = 1 , 2 , . . . , m ; i = p , p + 1 , . . . , m ,

f (p,0)
i, j =

xi − xp−1

f (p−1,0)
i, j − f (p−1,0)

p−1, j

. (32)

Step 3: For i = 0 , 1 , . . . , k− 1 , k + 1, . . . , m ; q = 1 , 2, . . . , n ; j = q , q + 1 , . . . , n ,

f (i,q)i, j =
yj − yq−1

f (i,q−1)
i, j − f (i,q−1)

i,q−1

. (33)

Step 4: By introducing parameters φ, δ into f (k,0)
k, j ( j = 0, 1, . . . , n), then one can calculate them with inverse

differences similar to Equation (2)–(5) , and mark the final results as

(ak,0 , ak,1 , . . . , ak,l , a0
k,l+1 , ak,l+1 , ak,l+2 , . . . , ak,s , a0

k,s+1 , ak,s+1 , ak,s+2 , . . . , ak,n)
T

. (34)

Step 5: Using the elements in Formulas (52) and (53), the univariate Thiele-like interpolation continued
fractions with two parameters with respect to y can be constructed:

Ai(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (i,0)i,0 +
y−y0

f (i,1)i,1 +
y−y1

f (i,2)i,2 + · · · +
y−yn−1

f (i,n)i,n

, i = 0, 1, . . . , k− 1, k + 1, . . . , m,

ak,0 +
y−y0
ak,1 + · · · +

y−yl−1
ak,l +

y−yl

a0
k,l+1 +

y−yl
ak,l+1 +

y−yl+1
ak,l+2 + · · · +

y−ys−1
ak,s +

y−ys

a0
k,s+1 +

y−ys
ak,s+1 +

y−ys+1
ak,s+2 + · · · +

y−yn−1
ak,n

, i = k,

. (35)

Step 6: Let

R2
m,n(x, y) = A0(y) +

x− x0

A1(y) +

x− x1

A2(y) + · · ·+
x− xm−1

Am(y)
. (36)

Then, R2
m,n(x, y) is a bivariate Thiele-type branched interpolation continued fraction with two parameters

based on two virtual double nodes in the same column.

Theorem 6. Given the interpolation data (xi, yj, fi, j) (i = 0, 1, . . . , m; j = 0, 1, . . . , n), the bivariate Thiele-like
branched rational interpolation continued fractions with two parameters based on two double virtual nodes in
same column R2

m,n(x, y) satisfies

R2
m,n(xi, yj)= fi, j,∀(xi,yj) ∈

∏
m,n

,i = 0, 1, . . . , m; j = 0, 1, . . . , n. (37)

We can prove Theorem 6 by using the method similar to the Theorem 1 in the Thiele-like rational
interpolation continued fractions with a single parameter [33,34].
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3.2.3. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Two Parameters
Based on Two Virtual Double Points in Different Columns

By introducing new parameters ϕ,	 (ϕ � 0,	 � 0), two arbitrary points of the original points
(xk, yl, fk,l),(xs, yt, fs,t) (s � k, t � l,s, k = 0, 1, . . . , m; l, t = 0, 1, . . . , n) are treated as two virtual double
points, and the multiplicity of the other points remains the same. One can construct the Thiele-like
rational interpolation continued fractions with parameters ϕ,	 based on two virtual double points on
the different columns using Algorithm 4:

Algorithm 4 Algorithm of the Thiele-like rational interpolation continued fractions with two parameters on
the different columns

Step 1: Initialization.

f (0,0)
i, j = f (xi, yj), i = 0, 1, . . . , m; j = 0, 1, . . . , n. (38)

Step 2: If j = 0 , 1 , . . . , n ; p = 1 , 2 , . . . , m ; i = p , p + 1 , . . . , m ,

f (p,0)
i, j =

xi − xp−1

f (p−1,0)
i, j − f (p−1,0)

p−1, j

. (39)

Step 3: For i = 0 , 1 , . . . , k− 1 , k + 1, . . . , s− 1 , s + 1, . . . , m ; q = 1 , 2, . . . , n ; j = q , q + 1 , . . . , n ,

f (i,q)i, j =
yj − yq−1

f (i,q−1)
i, j − f (i,q−1)

i,q−1

. (40)

Step 4: By introducing parameter ϕ into f (k,0)
k, j ( j = 0, 1, . . . , n), we can calculate them by using Formulas (2)–(5)

and mark the final results as

(ak,0, ak,1 , . . . , ak,l, a0
k,l+1 ak,l+1 , ak,l+2, . . . , ak,n)

T
. (41)

Step 5: By introducing parameter 	 into f (s,0)
s, j ( j = 0, 1, . . . , n), we can calculate them by using Formulas (2)–(5),

and mark the final results as

(as,0, as,1, . . . , as,t, a0
s,t+1, as,t+1, as,t+2, . . . , as,n)

T
. (42)

Step 6: By using the elements in Formulas (40)–(42), the Thiele-like interpolation continued fractions with a
single parameter with respect to y was constructed:

Ai(y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (i,0)i,0 +
y−y0

f (i,1)i,1
+

y−y1

f (i,2)i,2
+ · · · +

y−yn−1

f (i,n)i,n

, i = 0, 1, . . . , k− 1, k + 1, . . . , s− 1, s + 1, . . . , m,

ak,0 +
y−y0
ak,1 + · · · +

y−yl−1
ak,l +

y−yl
a0

k,l+1 +
y−yl
ak,l+1 +

y−yl+1
ak,l+2 + · · · +

y−yn−1
ak,n

, i = k,

as,0 +
y−y0
as,1 + · · · +

y−yt−1
as,t +

y−yt
a0

s,t+1 +
y−yt
as,t+1 +

y−yt+1
as,t+2 + · · · +

y−yn−1
as,n

,
i = s,

. (43)

Step 7: Let

R3
m,n(x, y) = A0(y) +

x− x0

A1(y) +

x− x1

A2(y) + · · ·+
x− xm−1

Am(y)
. (44)

Then, R3
m,n(x, y) is a bivariate Thiele-like branched rational interpolation continued fractions with two

parameters based on two virtual double points in the different columns.
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Theorem 7. Given the interpolation data (xi, yj, fi, j) (i = 0, 1, . . . , m; j = 0, 1, . . . , n), the bivariate Thiele-like
branched rational interpolation continued fractions with two parameters based on two virtual double points in
different columns R3

m,n(x, y) satisfies

R3
m,n(xi, yj)= fi, j,∀(xi,yj) ∈

∏
m,n

, i = 0, 1, . . . , m; j = 0, 1, . . . , n. (45)

We can prove Theorem 7 by using Theorem 3 and the method similar to the Theorem 1 in the
Thiele-like rational interpolation continued fractions with a single parameter [33,34].

3.3. Dual Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with a Single Parameter

It is easy to see that the new interpolation methods were computed with respect to the partial
inverse difference of x firstly, and then with respect to the partial inverse difference of y from Algorithms
1–4. In fact, we can also do that with respect to the partial inverse difference of y and then with respect
to the partial inverse difference ofx. By introducing a new parameter θ (θ � 0), an arbitrary point of
the original points (xk, yl, fk,l) (k = 0, 1, . . . , m; l = 0, 1, . . . , n) is treated as a virtual double point, and
taking Algorithm 3 as an example, the multiplicity of the other points remains the same. One can
construct the Thiele-like branched rational interpolation continued fractions with parameters θ (θ � 0)
based on this virtual double point using Algorithm 5:

Algorithm 5 Algorithm of the dual bivariate Thiele-like branched rational interpolation continued fractions
with a single parameter

Step 1: Initialization:

f (0,0)
i, j = f (xi, yj), i = 0, 1, . . . , m; j = 0, 1, . . . , n. (46)

Step 2: If i = 0, 1, . . . , m; q = 1, 2, . . . , n; j = q, q + 1, . . . , n,

f (0,q)
i, j =

yj − yq−1

f (0,q−1)
i, j − f (0,q−1)

i,q−1

. (47)

Step 3: For j = 0, 1, . . . , l− 1, l + 1, . . . , n; p = 1, 2, . . . , m; i = p, p + 1, . . . , m,

f (p, j)
i, j =

xi − xp−1

f (p−1, j)
i, j − f (p−1, j)

p−1, j

. (48)

Step 4: By introducing a parameter θ into f (0,l)
i,l (i = 0, 1, . . . , m), we can calculate them using Formulas (2)–(5)

and mark the final results as
a0,l, a1,l, . . . , ak,l, a0

k+1,l, ak+1,l, ak+2,l, . . . , am,l. (49)

Step 5: By using the elements in Formulas (48) and (49), the Thiele-type interpolation continued fractions with
a single parameter regarded to x can be constructed:

Aj(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f (0, j)
0, j + x−x0

f (1, j)
1, j +

x−x1

f (2, j)
2, j + · · · +

x−xm−1

f (m, j)
m, j

, j = 0, 1, . . . , l− 1, l + 1, . . . , n,

a0,l +
x−x0
a1,l + · · · +

x−xk−1
ak,l +

x−xk
a0

k+1,l +
x−xk
ak+1,l +

x−xk+1
ak+2,l + · · · +

x−xm−1
am,l

, j = l,
. (50)

Step 6: Let

R4
m,n(x, y) = A0(x) +

y− y0

A1(x) +

y− y1

A2(x) + · · ·+
y− yn−1

An(x)
. (51)

Then, R4
m,n(x, y) is a dual bivariate Thiele-like branched rational interpolation continued fractions with a single

parameter.
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Theorem 8. Given the interpolation data (xi, yj, fi, j) (i = 0, 1, . . . , m; j = 0, 1, . . . , n), the dual bivariate
Thiele-like branched rational interpolation continued fractions with a single parameter R4

m,n(x, y) satisfies

R4
m,n(xi, yj) = R0

m,n(xi, yj)= fi, j,∀(xi,yj) ∈
∏

m,n
, i = 0, 1, . . . , m; j = 0, 1, . . . , n. (52)

Proof. For an arbitrary point (xi, yj, fi, j), it is easy to prove

R0
m,n(xi, yj) = fi, j.

If j = 0, 1, . . . , l− 1, l + 1, . . . , n, obviously, we have

Aj(xi) = f (0, j)
0, j +

xi − x0

f (1, j)
1, j

+

xi − x1

f (2, j)
2, j

+ · · · +

xi − xi−1

f (i, j)i, j

= . . . = f (0, j)
i, j .

If j = l,

Aj(x) = a0,l +
x− x0

a1,l + · · · +

x− xk−1

ak,l +

x− xk

a0
k+1,l

+

x− xk
ak+1,l +

x− xk+1

ak+2,l + · · · +

x− xm−1

am,l
.

Regardless of 0 ≤ i < k, i = k, n ≥ i > k, from the Theorem 1 in the Thiele-like rational interpolation
continued fractions with a single parameter [33,34], we have

Aj(xi) = a0,l +
xi − x0

a1,l + · · · +

xi − xk−1

ak,l +

xi − xk

a0
k+1,l +

xi − xk

ak+1,l +

xi − xk+1

ak+2,l + · · · +

xi − xi−1

ai,l
= · · · = f (0, j)

i, j .

So, we have

R4
m,n(xi, yj) = A0(xi) +

yj−y0

A1(xi) +

yj−y1

A2(xi) + · · ·+
yj−yj−1

Aj(xi)

= f (0,0)
i,0 +

yj−y0

f (0,1)
i,1 +

yj−y1

f (0,2)
i,2 + · · ·+

yj−yj−1

f (0, j)
i, j

= · · · = f (0,0)
i, j = fi, j.

Then, we can obtain the result. �

We call R4
m,n(x, y) as the dual interpolation of R0

m,n(x, y). In addition, we can also study many dual
bivariate Thiele-like branched rational interpolation continued fractions with two or more parameters,
similar to the discussion in Section 3.3.

According to the process of the various new rational interpolation, it can be easily seen that
every new Thiele-like rational interpolation continued fractions with parameters has many special
interpolations which enables proper parameters to be selected. The advantages of the proposed
methods are easy to compute, have adjustable parameters, deal with unattainable points, and so on.
Different interpolation functions can be derived according to their own practical needs. Meanwhile,
the novel interpolation functions can be adjusted at an arbitrary point in the interpolant region under
unaltered interpolant data by selecting appropriate parameters, so the interpolation curves or surfaces
were modified. However, it is still difficult to select appropriate parameters and then construct a
proper interpolation function for meeting the practical geometric design requirement and the need for
image interpolant processing and other related problems. We will study the geometric design and
image interpolation based on the new Thiele-like interpolation continued fractions with parameters in
the future.

77



Mathematics 2020, 8, 71

3.4. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions with Unattainable Points

Definition 2. Given the point set D =
{
(xi, yj, fi, j)

∣∣∣ i = 0, 1, . . . , m, j = 0, 1, . . . , n
}

, where (xi, yj) is diverse,

R(x, y) =N(x,y)
D(x,y) is the bivariate Thiele-like branched rational interpolation continued fractions in Formula (15)

if the point (xk, yl, fk,l) satisfies

N(xk, yl) − fk,l ·D(xk, yl) = 0, R(xk, yl) =
N(xk, yl)

D(xk, yl)
� fk,l. (53)

Then, (xk, yl, fk,l) is regarded as an unattainable point of R(x, y).

Theorem 9 ([31]). Suppose the bivariate Thiele-like branched rational interpolation continued fractions which is
diverse for the given point set D =

{
(xi, yj, fi, j)

∣∣∣ i = 0, 1, . . . , m, j = 0, 1, . . . , n
}

, shown in Formula (15), satisfies

aij � ∞(i = 0, 1, . . . , m− 1, j = 0, 1, . . . , n− 1 ), amj � 0, ain � 0, i = 1, 2, . . . , m; j = 1, 2, . . . , n, (54)

then the necessary and sufficient condition of (xk, yl, fk,l) is an unattainable point where A( j)
k (yj) = 0 ,

and A(s)
k (y)=

N(s)
k (y)

D(s)
k (y)

is irreducible, and

A(n−1)
k (y) = ai,n, A(s)

k (y) = ak,s+1 + (y− ys+1)/A(s+1)
k (y), s = n− 2, n− 3, . . . , j. (55)

Theorem 10. The bivariate Thiele-like rational interpolation branched continued fraction with a single parameter
R0

m,n(x, y) by Algorithm 3 satisfies

R0
m,n(xi, yj)= fi, j,∀(xi,yj) ∈

∏
m,n

,i = 0, 1, . . . , m; j = 0, 1, . . . , n. (56)

This makes the unattainable point change into an accessible point.

The proof method is similar to Theorem 2.

3.5. Bivariate Thiele-Like Branched Rational Interpolation Continued Fractions for Nonexistent Partial
Inverse Difference

Similar to the univariate Thiele-like rational interpolation continued fractions with a nonexistent
inverse difference, when we construct bivariate Thiele-like branched rational interpolation continued
fractions for the diverse interpolation data on the given rectangular net,

{
(x0, y0), (x1, y1), . . ., (xn, yn)

}
,

it may meet the interpolation problem that the partial inverse difference does not exist. In this case,
we can adjust the multiple numbers of interpolation points. We also can solve this problem by
using the bivariate Thiele-type branched rational interpolation continued fractions with one or two
parameters or the dual bivariate Thiele-like branched rational interpolation continued fractions with
one or more parameters.

4. Numerical Examples

In this section, we provide some examples to illustrate how this method is implemented and
its flexibility. The first example is given to demonstrate that the Thiele-like interpolation continued
fractions with parameters are stable for the Runge function. The second example shows the interpolation
with unattainable points in classical Thiele-type continued fractions rational interpolation. The third
example is the multivariate Thiele-like rational interpolation continued fractions with parameters.
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To enrich the application of the proposed algorithm, we present an image zoom example based on
parameterized bivariate Thiele-like rational interpolation continued fractions in the fourth example.

Example 1. For the function f (x) = 1
1+25x2 , the higher-degree polynomial interpolation is unstable.

We can derive the classic Newton polynomial interpolation with the given data at points −1, −0.8, −0.6,
−0.4, −0.2, 0:

P = 0.03846 + 0.1018(x + 1) + 0.26025(x + 1)(x + 0.8) + 0.7916667(x + 1)(x + 0.8)(x + 0.6)
+2.686979(x + 1)(x + 0.8)(x + 0.6)(x + 0.4) − 6.36354(x + 1)(x + 0.8)(x + 0.6)(x + 0.4)(x + 0.2)

We can get the Thiele-type continued fractions interpolation:

R =
1923
5000

+
x + 1

9.823182711 +

x + 0.8
−0.06018033 +

x + 0.6
−37.753208 +

x + 0.4
0.021847219 +

x + 0.2
−5883.58062

.

We can use Thiele-like interpolation continued fractions with parameters to calculate it. As the function has
symmetry, we just discuss the condition within[−1, 0] of the interpolation interval. If we set [−0.8, 0.05882] as
a virtual double point, we can get

R = 1923
5000 + x+1

509
5000 +

x+0.8
c +

x+0.8
−1

5(c + 1566193
26025000 )

+
x+0.6

−(26025000c + 1566193)(62787500c + 4111193)
50000(32680893750c + 1793617763)

+
x+0.4

−(24(32680893750c + 1793617763)(27478062500c + 1461475921))
2545(26025000c + 1566193)(16895932679c + 956527052)

+
x+0.2

(16895932679c + 956527052)(844806165185c + 47828425248)
8(32680893750c + 1793617763)(1689901538395c + 95660995792)

As shown in Table 2, the Thiele-like interpolation continued fractions can perform better than the
Newton polynomial interpolation with six points. However, these two methods cannot interpolate all
of the interpolation data. The Thiele-like rational interpolation continued fractions with a parameter
invariably satisfies the interpolation condition with different values of parameter c, and gives a better
effect, and we also can get some new Thiele-like rational interpolation continued fractions formulas by
selecting parameters. This is similar to the block-based Thiele-like blending rational interpolation [30].
We also can construct many other Thiele-type rational interpolation continued fractions using other
virtual points or many parameters.

Table 2. Comparison table of different interpolation.

xi f(xi)=
1

1+25x2
i

Newton Interpolation p6(x)
Thiele Continued

Fractions Interpolation

Thiele Continued
Fractions Interpolation

with c = 1

Thiele Continued
Fractions Interpolation

with c = −10

−1.00 0.03846 0.03846 0.03846000000 0.03846000000 0.03846000000
−0.96 0.04160 0.03298 0.04159488287 0.04159595868 0.04159595865
−0.90 0.04706 0.03770 0.04705547745 0.04705768836 0.04705768826
−0.86 0.05131 0.04534 0.05130475006 0.05130739205 0.05130739185
−0.80 0.05882 0.05882 0.05882000000 0.05882000000 0.05882000000
−0.76 0.06477 0.06763 0.06476367286 0.06476628712 0.06476628741
−0.70 0.07547 0.07971 0.07546947663 0.07547137553 0.07547137561
−0.66 0.08410 0.08737 0.08410290267 0.08410410847 0.08410410852
−0.60 0.10000 0.10000 0.09999999823 0.10000000000 0.10000000000
−0.56 0.11312 0.11071 0.11312302677 0.11312226113 0.11312226113
−0.50 0.13793 0.13338 0.13793269272 0.13793118870 0.13793118867
−0.46 0.15898 0.15487 0.15898409183 0.15898264914 0.15898264914
−0.40 0.2000 0.20000 0.19999998642 0.20000000000 0.20000000000
−0.36 0.23585 0.24042 0.23584678820 0.23584889034 0.23584889036
−0.30 0.30769 0.31883 0.30768550203 0.30769184706 0.30769184712
−0.26 0.37175 0.38372 0.37173857114 0.37174665711 0.37174665718
−0.20 0.50000 0.50000 0.49999990866 0.50000000000 0.50000000000
−0.16 0.60976 0.73720 0.60977966699 0.60975745619 0.60975745603
−0.10 0.80000 0.73720 0.80009647464 0.80000519086 0.80000519027
−0.06 0.91743 0.84193 0.91756721089 0.91743821176 0.91743821096
0.00 1.0000 1.00000 0.99999979851 1.00000000000 1.00000000000
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Example 2. Given the following interpolation data in Table 3, the corresponding inverse difference table of
Thiele-type continued fractions interpolation is shown in Tables 4 and 5.

Table 3. Interpolation data.

i 0 1 2

xi 2 1 0

fi 1 0 0

Table 4. Table of inverse differences.

Nodes 0 Order Inverse Differences 1 Order Inverse Differences 2 Order Inverse Differences

2 1
1 0 1
0 0 2 −1

Table 5. Table of inverse differences with a parameter.

Nodes 0 Order Inverse Differences 1 Order Inverse Differences 2 Order Inverse Differences 3 Order Inverse Differences

2 1
2 1 λ
1 0 1 1

λ−1
0 0 2 2

λ−2 3− 2
λ − λ

So, we can get the Thiele-type continued fractions rational interpolation:

r(x) = 1 +
x− 2

1 +

x− 1
−1

= 0.

As r(x0) = r(2) = 0 � 1, we can see that (2, 1) is a unique unattainable point. Following the algorithm in this
paper, by adding multiple numbers of node (2, 1), the osculating interpolation which has a first-order derivative
at point (2, 1), introducing parameter λ(λ � 0), and constructing the inverse difference table shown in Table 5
above, we gain the corresponding Thiele-type osculatory rational interpolation:

R2(x) = 1 +
x− 2
λ +

x− 2
1
λ−1

+

x− 1
3− 2

λ − λ
.

It is easy to verify that
R2(xi) = fi (i = 0, 1, 2) .

So, by choosing the different value of parameterλ, the function R2(x) invariably satisfies the given interpolation
data. Meantime, this method can well solve this kind of special interpolation problem, and it is easy to construct
and calculate. In addition, the function R2(x) can be converted into many other rational interpolation functions.
For example, we can choose the following functions:If we choose λ = −3, we can get

R2(x) = 1 +
x− 2
−3 +

x− 2

− 1
4

+

x− 1
20
3

.

If we chooseλ = 80, we can get

R2(x) = 1− x− 2
−80 +

x− 2
40x
3081 − 1

39

. (57)

As can be seen from Figure 1, both functions satisfy the interpolation condition. We can choose other values of
the parameters λ(λ � 0), and the function R3(x) can change into other functions.
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(a) (b) 

Figure 1. (a) Graph of R2(x) with λ = −3, (b) graph of R2(x) with λ = 80.

Example 3. The interpolation data are given in Table 6.

Table 6. Interpolation data.

(xi,yj) x0=0 x1=0.5 x2=1

y0 = 0 2 2.3 2.5
y1 = 0.5 1.8 2 2.1
y1 = 1 1.5 1.55 1.5

We can get the bivariate Thiele-type blending rational interpolation using the method presented in [1]:

R(x, y) = 2− y
5
2 +

y−0.5
−1

+
x

5
3 +

y
3
5+

y−0.5

− 25
24

+

x− 0.5
3
2 +

y

− 5
9+

y−0.5

− 9
2

.

Following Algorithm 3 in this paper, we add the multiplicity of point (0, 0, 2) and construct the osculating
interpolation which has its first-order derivative at point (0, 0, 2) by introducing parameter λ:

R(0)(x, y) = 2 +
y

λ+
y

−1
2λ + 5+

y−0.5
−(2 λ+ 5)(λ + 2)

2(λ + 3)

+
x

5
3 +

y
3
5+

y−0.5

− 25
24

+

x− 0.5
3
2 +

y

− 5
9+

y−0.5

− 9
2

.

It is easy to verify that the functionR2(x) invariably satisfies the given interpolation data with the different value
of parameter λ, i.e.,

R(xi, yj) = R(0)(xi, yj) = fi j(i, j = 0, 1, 2).

We can modify the bivariate blending rational interpolation by selecting parameters, but R(x, y) cannot,
so our method gives a new choice for the application, and it gives a new method for studying the rational
interpolation theory.

Example 4. Image interpolation is an important method in pixel level image processing, the interpolated
data are often regarded as a certain interpolation kernel and a linear combination of the input image pixels
in traditional methods. Due to the influence of light, natural background and image texture characteristics,
generally speaking, the adjacent pixels of an image are not a simple linear relationship. In order to obtain more
effective and better visual results, many nonlinear methods have been proposed for the image interpolation in the
literature. To enrich the application of the proposed parameterized bivariate Thiele-like rational interpolation
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continued fractions algorithm, we take an image zoom as an example. We choose λ = 1, the performances of the
proposed parameterized Thiele-like continued fraction rational interpolation method can be deduced from image
interpolation process. In our experiment, we take the image ”Lenna” as the test image as shown in Figure 2.
The original image is resized by a factor 2 (see Figure 3) with four image interpolation methods. The experiment
results demonstrate that the zoomed images do not have obvious jagged edges with the proposed parameterized
Thiele-like continued fraction rational interpolation method, so the proposed algorithm can be used for image
interpolation processing effectively. It is obvious that our new method is implemented without producing the
so-called mosaics or blocky effect, and the results maintain clearness of the image, including edges, and the details
are maintained well, hence, it offers more detailed information. From Figure 4 , we can see, when the image is
enlarged by a larger factor, the new proposed algorithm still has better visual performance.

 

Figure 2. The original Lenna Image.

  
(a) (b) 

  
(c) (d) 

Figure 3. The zoomed images by factor 2 based on four different interpolant methods. (a) The zoomed
images by factor 2 based on the nearest-neighbor interpolation method, (b) the zoomed images by
factor 2 based on the bilinear interpolation, (c) the zoomed images by factor 2 based on the bicubic
interpolation, (d) the zoomed images by factor 2 based on the proposed method.
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(a) (b) 

Figure 4. Comparison of eye effects of the nearest neighbor interpolation and the proposed rational
interpolation. (a) The zoomed images by factor 4 based on the nearest-neighbor interpolation method,
(b) the zoomed images by factor 4 based on the proposed method.

5. Conclusions and Future Work

In this paper, by strategically selecting the multiplicity of the interpolation nodes, we have
developed many types of univariate and bivariate Thiele-like rational interpolation continued fractions
with parameters. We also discussed the interpolant algorithms, interpolant theorems, and dual
interpolation. The new kinds of Thiele-like rational interpolation continued fractions are easy to use
and extend the theoretical research and application of the rational interpolation functions. The value
of the interpolation function can be changed at any point in the interpolant region under unaltered
interpolant points by selecting appropriate parameters; therefore, it can be used to design a curve or
surface. Based on the geometric design needs, it can alter the shape of curves or surfaces to satisfy
actual needs. However, it is still a complicated problem. The selection of proper parameters and
construction of an appropriate interpolation method for actual geometric design requirements are a
very practical and interesting problem, and we will study it in the future. Further research on the
following aspects will be summarized in our next study:

• How to select appropriate parameters and suitably alter the shape of the curves or surfaces
according to actual requirements.

• The geometric properties of curves/surfaces based on the Thiele-like rational interpolation
continued fractions function with parameters.

• How to design geometric modeling using Thiele-like rational interpolation continued fractions
functions with parameters.

• The proposed Thiele-like rational interpolation continued fractions with parameters algorithm can
be implemented in other pixel level image processing, such as image inpainting, removal of salt
and pepper noise, image rotation, image super-resolution reconstruction, image metamorphosis
and image upscaling.

• How to generalize the proposed algorithms to lacunary rational interpolants, rational interpolants
over triangular grids.

To conclude, by using of the Sampson generalized inverse, it is not complicated to generalize the
Thiele-like rational interpolation continued fractions algorithms with parameters to vector-valued
cases or matrix-valued cases [1,2].
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Abstract: In this paper, the solution of the Darcy-Forchheimer model in high contrast heterogeneous
media is studied. This problem is solved by a mixed finite element method (MFEM) on a fine
grid (the reference solution), where the pressure is approximated by piecewise constant elements;
meanwhile, the velocity is discretized by the lowest order Raviart-Thomas elements. The solution
on a coarse grid is performed by using the mixed generalized multiscale finite element method
(mixed GMsFEM). The nonlinear equation can be solved by the well known Picard iteration.
Several numerical experiments are presented in a two-dimensional heterogeneous domain to show
the good applicability of the proposed multiscale method.

Keywords: Darcy-Forchheimer model; flow in porous media; nonlinear equation; heterogeneous
media; finite element method; multiscale method; mixed generalized multiscale finite element
method; multiscale basis functions; two-dimensional domain

1. Introduction

The Darcy-Forchheimer equation is commonly used for describing the high velocity flow near
oil and gas wellbores and fractures, which is a correction formula of the well known Darcy’s law by
supplementing a nonlinear velocity quantity as follows:

μk−1u + βρ |u| u +∇p = 0, (1)

where μ, k, ρ and β represent the viscosity, the permeability, the density, and the dynamic viscosity
coefficient of the fluid, respectively. β is also mentioned as the Forchheimer coefficient, whose values
stand for the nonlinear intensity. In contrast, Darcy’s law, which is valid for the extremely small
velocity case, is usually used to show the linear relationship between the velocity vector u and the
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pressure gradient ∇p. The Darcy-Forchheimer model can be obtained by coupling Equation (1) with
the following conservation law equation:

∇ · u = f . (2)

In recent years, the Darcy-Forchheimer model has been studied by many researchers within
numerical discretized methods. Girault et al. in [1] proved the existence and uniqueness of the
solution of the Darcy-Forchheimer model. Then, they considered mixed finite element methods by
piecewise constant and nonconforming Crouzeix-Raviart elements to approximate the velocity and
the pressure, respectively. Park in [2] gave a mixed finite element method (MFEM) for generalized
Darcy-Forchheimer flow. Pan et al. in [3] presented an MFEM to approximate the velocity based on
the Raviart–Thomas element or the Brezzi–Douglas–Marini element and piecewise constant for the
pressure of the Darcy-Forchheimer model. Rui et al. in [4] published a block-centered finite difference
method (BCFDM) for the Darcy-Forchheimer model. The authors in [5] established a BCFDM for
the Darcy-Forchheimer model with variable parameter β(x). Rui and Liu in [6] introduced a two
level BCFDM for the Darcy-Forchheimer model. Huang, Chen, and Rui in [7] designed a nonlinear
multigrid method for the two-dimensional Darcy-Forchheimer model with a Peaceman–Rachford-type
iteration as a smoother and proposed a better choice of the parameter used in the splitting. We point
out that the constructed multigrid method with an almost linear computational cost is convergent
independent of the critical parameters.

To solve the problem in heterogeneous media, a very fine mesh should be used for solving a
heterogeneity scale problem, which results to a large number of degrees of freedom. For dimension
reduction and fast solvers of such problems, some model reduction techniques are needed. In [8],
the authors introduced the mixed multiscale finite element methods and presented the main
convergence results for the solution of second order elliptic equations with heterogeneous coefficients,
which oscillate rapidly. Mixed multiscale finite element methods are widely used for solving the
reservoir simulation problems [9–11]. In [12–14], we developed a mixed generalized multiscale finite
element method (GMsFEM), where we enriched a multiscale space by new degrees of freedom, which
was obtained by solving local spectral problems on the snapshot space.

In this paper, we consider a solution of the Darcy-Forchheimer model in heterogeneous media.
We construct an efficient algorithm of the mixed generalized multiscale finite element method to
make an approximation of the problem on the coarse grid. The construction is based on solving
the local problems for calculating multiscale basis functions of the velocity. Meanwhile, we use
piecewise constant elements to approximate the pressure. In the mixed formulation, we firstly define a
snapshot space, which provides a solution space in each local area. Then we solve the local spectral
problem in the snapshot space to find out multiscale basis functions. We use the Picard iteration
to address the non-linearity when solving the problems on the multiscale spaces [15,16]. Note that
when constructing multiscale basis functions, we do not take into account the nonlinear part of the
Darcy-Forchheimer equation.

The remainder of this article is organized as follows: The model problem and its weak formulation
in mixed form and the discrete weak formulation are demonstrated in Section 2. The fine grid
approximation and coarse gird approximation are presented in Section 3 and Section 4, respectively.
Some numerical experiments using our mixed generalized multiscale finite element method are carried
out in Section 5 to verify the efficiency of the presented method. Finally, conclusions and further ideas
are presented in Section 6.
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2. Mathematical Model

We consider the steady state Darcy-Forchheimer model to describe a single phase fluid flow in a
heterogeneous porous medium.

μk−1(x)u + β(x)ρ|u|u +∇p = 0, x ∈ Ω,

∇ · u = f , x ∈ Ω,
(3)

where Ω ∈ R2 is a bounded domain and ∂Ω is Lipschitz continuous; |v| = (v, v)
1
2 , (·, ·) denotes

the L2 inner product; k and β are the heterogeneous permeability and the heterogeneous non-Darcy
coefficient, respectively.

Complemented with Dirichlet boundary condition,

p = fD, x ∈ ∂Ω. (4)

Without loss of generality, we suppose that fD = 0, namely the homogeneous Dirichlet boundary
condition. Then, we get the following problem:

μk−1(x)u + β(x)ρ|u|u +∇p = 0, x ∈ Ω,

∇ · u = f , x ∈ Ω,

p = 0, x ∈ ∂Ω.

(5)

Remark 1. The boundary condition (4) can be replaced by the Neumann boundary condition,

u · n = fN , x ∈ ∂Ω, . (6)

f and fN should satisfy the compatibility condition by the Gauss theorem,∫
Ω

f (x)dx =
∫

∂Ω
fN (s)ds. (7)

3. Fine Grid Approximation

In this section, mixed finite element methods have been borrowed to handle Problem (5) in the
fine grid. Here, we use the standard Sobolev spaces notation to define the function spaces and their
norms as follows:

V =
{

v ∈ L3(Ω)2;∇ · v ∈ L2(Ω)
}

, ‖u‖V = ‖v‖0,3,Ω + ‖∇ · v‖0,2,Ω, ∀v ∈ V.

Q = L2(Ω), ‖q‖Q = ‖q‖0,2,Ω, ∀q ∈ Q.

Then, we obtain the following variational formulation: find (u, p) ∈ V × Q such that:∫
Ω

μk−1(x)u v dx +
∫

Ω
β(x)ρ|u|u v dx −

∫
Ω

p∇ · v dx = 0, ∀v ∈ V,

−
∫

Ω
q∇ · u dx = −

∫
Ω

f q dx, ∀q ∈ Q.
(8)

The variational formulation (8) and the problem (5) are equivalent by the following
Green’s formula: ∫

Ω
∇p v dx = −

∫
Ω

p∇ · v dx +
∫

∂Ω
p v · n ds, ∀v ∈ V. (9)
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Let Ω be a polygon in two dimensions, which can be entirely covered by a shape regular
decomposition Th, in the sense of Ciarlet [17], into triangles, with h being the maximum diameter of
the elements of the triangles. Therefore, Th is a family of conforming triangulations of Ω,

Ω =
⋃

T∈Th

T.

Here, we discretize the velocity u in the lowest order Raviart–Thomas space:
Given a simplex T ∈ R2, the local Raviart–Thomas space of order k ≥ 0 is defined by:

RTk(T) = Pk(T)2 + x Pk(T),

where Pk denotes the set of all polynomials in two variables of degree ≤ k. Then, we can get the lowest
order global Raviart–Thomas space, which is the conforming finite element space of the velocity u:

Vh = RT0 (Ω) = {v ∈ V : v|T ∈ RT0(T) ∀ T ∈ Th} . (10)

The pressure p is approximated in the following piecewise constant space:

Qh =
{

q ∈ L2(Ω) : q|T ∈ P0 ∀ T ∈ Th

}
. (11)

Then, we can obtain the discrete weak formulation of (8): find a pair (uh, ph) ∈ Vh × Qh:∫
Ω

μk−1(x)uh vh dx +
∫

Ω
β(x)ρ|uh|uh vh dx −

∫
Ω

ph ∇ · vh dx = 0, ∀vh ∈ Vh,

−
∫

Ω
qh ∇ · uh dx = −

∫
Ω

f qh dx, ∀qh ∈ Qh.
(12)

In [3], the authors demonstrated the existence and uniqueness of the continuous problem and
the discrete problem, respectively. Moreover, if Th is quasi-uniform and (u, p) ∈ Ws,3(Ω)2 × Ws, 3

2 (Ω),
then the following error estimates can be proven; see ([3], Theorem 4.4) for details:

‖u − uh‖2
0,2 + ‖u − uh‖3

0,3 ≤ Ch2s, 1 ≤ s ≤ k + 1, (13)

‖p − ph‖0,2 ≤ Chs, 1 ≤ s ≤ k + 1. (14)

where Ws,p(Ω) is the standard Sobolev space of index (s, p), where s is a nonnegative integer and
p ≥ 1.

Ws,p(Ω) = {v ∈ Lp(Ω) : Dαv ∈ Lp(Ω) for all |α| ≤ s} ,

where Dαv is the weak derivative of v; see the details in [18].
Let:

uh =
m1

∑
i=1

uiξ i, ph =
m2

∑
i=1

piθi,

where u = [u1, u2, . . . , um1 ]
T , p = [p1, p2, . . . , pm2 ]

T are the coefficients of the finite element
approximations with m1, m2 dimensions, in terms of a basis ξ of the velocity and a basis θ of the
pressure, respectively.

We apply the Picard iteration for solving the resulting discrete nonlinear system.
Find un+1

h ∈ Vh, pn+1
h ∈ Qh with an arbitrary initial guess u0

h ∈ Vh, such that:∫
Ω

μk−1(x)un+1
h vh dx +

∫
Ω

β(x)ρ|un
h |un+1

h vh dx −
∫

Ω
pn+1

h ∇ · vh dx = 0, ∀vh ∈ Vh,

−
∫

Ω
qh ∇ · un+1

h dx = −
∫

Ω
f qh dx, ∀qh ∈ Qh.

(15)

90



Mathematics 2019, 7, 1212

We rewrite the iteration (15) into the following matrix form.(
A(un

h) BT

B 0

)(
un+1

h
pn+1

h

)
=

(
0
F

)
, (16)

where A(uh) is the matrix associated with the term:∫
Ω

μk−1(x)uh vh dx +
∫

Ω
β(x)ρ|uh|uh vh dx,

where B is the matrix corresponding to −
∫

Ω qh ∇ · uh dx, and F is the vector associated with the linear
functional −

∫
Ω f qh dx.

In the practical implementation, we use the following termination criterion to control the iteration,

max(ru, rp) < tol,

where:

ru =
∥∥∥μk−1(x)un+1

h + β(x)ρ|un+1
h |un+1

h +∇pn+1
h

∥∥∥
0

,

rp =

⎧⎨⎩
∥∥∥ f −∇ · un+1

h

∥∥∥
0

/ ‖ f ‖0 , when ‖ f ‖0 �= 0,∥∥∥ f −∇ · un+1
h

∥∥∥
0

, when ‖ f ‖0 = 0.

4. Coarse Grid Approximation

In this section, we describe the construction of the approximation on a coarse grid using the mixed
generalized multiscale finite element method (mixed GMsFEM). We construct a square uniform coarse
grid TH for the computational domain Ω with a coarse grid size H; EH = ∪NE

i=1Ei is the set of all facets
of a coarse mesh, and NE is the number of facets of a coarse mesh. To construct the multiscale basis
function, we build a uniform triangular fine grid, which is obtained by refinement of a coarse grid.
In the mixed GMsFEM, we compute the multiscale basis functions for the velocity in the local domains
ωi that correspond to the coarse edge Ei ∈ EH (Figure 1).

ωi = ∪j{Kj ∈ TH |Ei ⊂ ∂Kj},

where Kj is the coarse grid cell, which is equal to a square element of TH .
We build a multiscale space for the velocity ums ∈ Vms:

Vms = span{ψ1, ..., ψMωi ·NE}, (17)

where ψi are the multiscale basis functions, which are calculated in the local domain ωi and Mωi is
the number of basis functions in each local domain. For pressure, we use the space Qms of piecewise
constant functions on the coarse cells.

We start with constructing a snapshot space in the local domain ωi and then make an
approximation on the coarse grid using the solution of the local spectral problem on the snapshot
space. The snapshot space is obtained by solving the next local problem in ωi: find (φj, η) ∈ Vωi

h × Qωi
h

such that: ∫
ωi

k−1φi
jv dx −

∫
ωi

η ∇ · v dx = 0, v ∈ Vωi
h ,∫

ωi

r ∇ · φi
jdx =

∫
ωi

cj r dx, r ∈ Qωi
h ,

(18)
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with boundary condition:
φi

j · n = 0, x ∈ ∂ωi, (19)

where n is the unit exterior normal vector to the boundary ∂ωi.
On the fine facet ej, we apply an additional boundary condition:

φi
j · n = δij, x ∈ ej, (20)

where j = 1, . . . ,Jωi is the number of the fine facets ej on which we define the boundary condition (20),

cj =
|ej |
Sωi

is chosen by the compatibility condition
∫

∂ωi
φi

j · n =
∫
∇ · φi

j, |ej| presents the length of the
fine grid facet ej, and Sωi denotes the volume of the local domain ωi. Here, Jωi is the number of fine

grid edges ej on Ei, Ei = ∪Jωi

j=1ej, and δij is a piecewise constant function defined on Ei, which takes the
value of one on ej and zero on each other edge of the fine grid.

Figure 1. Illustration of the heterogeneous property, coarse grid, and multiscale basis functions in the
local domain.

Therefore, we can define the snapshot space in each local domain ωi:

Vi
snap = span{φi

1, ..., φi
Ji
}.

To compute a multiscale basis function, we solve a local spectral problem in each local domain ωi.
The spectral problem allows us to find the most important characteristics of the problem. Then, we use
multiscale basis functions to define the multiscale space to get an approximation on the coarse grid.
In each ωi, we solve the spectral problem on Vi

snap:

Ãωi ψ̃
ωi
l = λl S̃ωi ψ̃

ωi
l , Ãωi = Rωi Aωi (Rωi )T , S̃ωi = Rωi Sωi (Rωi )T , (21)

where:

(Rωi )T = [φi
1, ..., φi

Jωi ],

and:
Aωi = [aωi

mn], aωi
mn = aωi (φm, φn) =

∫
Ei

k−1(φm · n)(φn · n) ds, (22)
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Sωi = [sωi
mn], sωi

mn = sωi (φm, φn) =
∫

ωi

k−1φmφn dx +
∫

ωi

∇ · φm∇ · φn dx. (23)

For construction of the multiscale space, we select the first Mωi smallest eigenvalues and take
the corresponding eigenvectors ψ

ωi
l = (Rωi )Tψ̃

ωi
l as basis functions (l = 1, 2, . . . , Mωi ). We note

that the presented spectral decomposition in the snapshot space is motivated by theoretical analysis
(see Theorem 4.3 in [12]). Moreover, the oversampling techniques can be used for the construction of the
multiscale basis functions to enhance the accuracy of mixed GMsFEM. The main idea of oversampling
techniques is to introduce a small dimensional snapshot space using the POD (proper orthogonal
decomposition) approach, where snapshot vectors are constructed in larger regions that contain the
interfaces of two adjacent coarse blocks [12].

Remark 2. For the construction of the multiscale basis functions, we can use other types of spectral problems
(see [12,19]). For example, we can solve the following spectral problem:

S̃ωi ψ̃
ωi
l = μlψ̃

ωi
l , S̃ωi = Rωi Sωi (Rωi )T , (24)

with:
Sωi = [sωi

mn], sωi
mn = sωi (φm, φn) =

∫
ωi

k−1φmφn dx, (25)

on the snapshot space and taking eigenvectors corresponding to the largest eigenvalues as a multiscale basis
functions (λl = 1/μl ).

Additionally, we calculate the first basis function by the solution of the following local problem in
the domain ωi: find (χωi , η) ∈ Vωi

h × Qωi
h such that:∫

ωi

k−1χωi v dx −
∫

ωi

η ∇ · v dx = 0, v ∈ Vωi
h ,∫

ωi

r ∇ · χωi dx =
∫

ωi

c r dx, r ∈ Qωi
h ,

(26)

with the following boundary conditions:

χωi · n = 0, x ∈ ∂ωi, χωi · n = 1, x ∈ Ei, (27)

where c = |Ei |
Sωi

, |Ei| is the length of coarse facet Ei.
Finally, we obtain the following multiscale space for velocity:

Vms = span{χωi , ψ
ωi
l , 1 ≤ l ≤ Mωi , 1 ≤ i ≤ NE}. (28)

The illustration of the local multiscale basis functions with an additional basis are presented in
Figure 1.

For the construction of the coarse grid system, we define a projection matrix:

R =

[
Ru 0
0 Rp

]
, Ru = [Ru,1, . . . , Ru,NE ]

T , (29)

where (Ru,i)
T = [χωi , ψ

ωi
1 , ..., ψ

ωi
Mωi

] and Rp is the projection matrix for pressure, where we set one for
each fine grid cell in the current coarse grid cell. Here, NE is the number of facets of the coarse grid,
and Mωi is the number of multiscale basis functions in local domain ωi.
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We use the constructed multiscale space and write the approximation in the coarse grid in
matrix form: (

Ak
c BT

c
Bc 0

)(
uk+1

c
pk+1

c

)
=

(
0
Fc

)
, (30)

where:
Ak

c = Ru AkRT
u , Bc = RuBRT

p , Fc = RpF, (31)

and finally, we reconstruct the solution on the fine grid uk+1
ms = RT

u uk+1
c .

5. Numerical Results

In this section, we present several numerical results of the Darcy-Forchheimer model in the
domain Ω = [0, 1]2. We used a structured 160 × 160 fine grid with 77,120 edges and 51,200 cells
(triangles) and a 10 × 10 coarse grid with 220 edges and 100 cells (see Figure 2).

Figure 2. Coarse grid (left) and fine grid (right).

In the numerical study, we set μ = 1, ρ = 1, and f = 1. For the Picard iteration, we set tol = 10−8.
The permeability tensor k is heterogeneous and presented in Figure 3, where we considered two test
cases. We set the Darcy-Forchheimer coefficient β = C · k−1 from [20,21], where the parameter C
controls the influence of the nonlinear part of the equation. We studied the proposed multiscale solver
for C = 10.24, C = 34.93, C = 1584.14, and C = 71,554.17. With such values of C, we could investigate
the behavior of a method with the various influences of the nonlinear part. By increasing the parameter
C, we obtained a Darcy-Forchheimer equation with the dominant nonlinear part.

Figure 3. Heterogeneous coefficient for Test 1 (left) and Test 2 (right).

At first, we considered a test case with β = 0. Fine scale and multiscale solutions using eight
multiscale basis functions are presented in Figures 4 and 5 for coefficient k from Test 1 and Test 2.
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In Table 1, the relative errors in the L2 norm for different numbers of multiscale basis functions are
presented for β = 0. Here, DOFc and DOFf denote the size of the multiscale and fine grid solutions
(DOFf = 128,320), and M is the number of multiscale basis functions. By #iter, we denote the number of
Picard iterations, and eu and ep are the relative errors in L2 norm for velocity and pressure, respectively.
To calculate the error of the pressure, the average values over the coarse grid cells are used.

Figure 4. Fine grid solution (top) and multiscale solution using eight multiscale basis functions
(bottom). Coefficient k from Test 1 with β = 0.

Figure 5. Fine grid solution (top) and multiscale solution using eight multiscale basis functions
(bottom). Coefficient k from Test 2 with C = 34.93.

The numerical results for C = 34.93 with coefficient k from Test 1 and Test 2 using eight multiscale
basis functions are presented in Figures 6 and 7. In Tables 2–5, we show the relative error in the L2

norm between the multiscale solution and the fine grid solution for different numbers of multiscale
basis functions. The errors are presented for different values of C to see the influence of the nonlinear
part on the accuracy of mixed GMsFEM. According to the obtained results, we observed that the
method worked well with the presented problem. When we increased the number of multiscale bases,
we observed that the error decreased. For large values of C the error was greater than for smaller
values. This was due to the fact that for large C values, the influence of the nonlinear part of the
equation increased, and our multiscale bases did not take into account the nonlinear part. From the
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tables, we can observe that the number of Picard iterations of mixed GMsFEM was significantly smaller
than the number of iterations of the fine grid solution for large C. For Test 1 and Test 2, we obtained
similar results for the presented multiscale solver.

Figure 6. Fine grid solution (top) and multiscale solution using eight multiscale basis functions
(bottom). Coefficient k from Test 1 with C = 34.93.

Figure 7. Fine grid solution (top) and multiscale solution using eight multiscale basis functions
(bottom). Coefficient k from Test 2 with β = 0.

Table 1. Relative error in the L2 norm for different numbers of multiscale basis functions. Coefficient k
from Test 1 (left) and Test 2 (right) with β = 0.

M DOFc eu, % ep, % M DOFc eu, % ep, %

1 320 10.069 1.212 1 320 11.279 1.451
2 540 1.112 0.031 2 540 2.943 0.104
4 980 0.253 0.001 4 980 0.579 0.004
8 1860 0.061 0.001 8 1860 0.152 0.001
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Table 2. Relative error in the L2 norm for different numbers of multiscale basis functions. Coefficient k
from Test 1 (left) and Test 2 (right) with C = 10.24.

M DOFc eu, % ep, % #iter M DOFc eu, % ep, % #iter

1 320 10.334 1.856 9 1 320 11.042 2.155 7
2 540 2.329 0.136 8 2 540 3.585 0.252 6
4 980 2.174 0.129 7 4 980 2.897 0.199 5
8 1860 2.054 0.102 6 8 1860 2.856 0.195 5

Iterations on the fine grid = 5 Iterations on the fine grid = 5

Table 3. Relative error in the L2 norm for different numbers of multiscale basis functions. Coefficient k
from Test 1 (left) and Test 2 (right) with C = 34.93.

M DOFc eu, % ep, % #iter M DOFc eu, % ep, % #iter

1 320 10.389 2.052 24 1 320 11.021 2.374 22
2 540 2.766 0.171 23 2 540 4.059 0.319 20
4 980 2.567 0.151 21 4 980 3.469 0.248 19
8 1860 2.561 0.151 19 8 1860 3.446 0.244 17

Iterations on the fine grid = 21 Iterations on the fine grid = 21

Table 4. Relative error in the L2 norm for different numbers of multiscale basis functions. Coefficient k
from Test 1 (left) and Test 2 (right) with C = 1581.14.

M DOFc eu, % ep, % #iter M DOFc eu, % ep, % #iter

1 320 10.415 2.181 387 1 320 11.033 2.518 399
2 540 2.998 0.197 403 2 540 4.364 0.364 388
4 980 2.814 0.177 389 4 980 3.868 0.294 371
8 1860 2.799 0.175 368 8 1860 3.843 0.291 348

Iterations on the fine grid = 1162 Iterations on the fine grid = 1143

Table 5. Relative error in the L2 norm for different numbers of multiscale basis functions. Coefficient k
from Test 1 (left) and Test 2 (right) with C = 71,554.17.

M DOFc eu, % ep, % #iter M DOFc eu, % ep, % #iter

1 320 10.416 2.185 744 1 320 11.033 2.522 794
2 540 3.003 0.198 854 2 540 4.372 0.365 809
4 980 2.821 0.177 886 4 980 3.878 0.295 805
8 1860 2.805 0.176 864 8 1860 3.853 0.291 777

Iterations on the fine grid = 16,489 Iterations on the fine grid = 14,466

6. Conclusions

In this paper, we conducted a numerical study of the solution of the Darcy-Forchheimer model in
high contrast heterogeneous media. To solve this problem, we used the mixed multiscale finite element
method. The method showed good accuracy in two model problems. The obtained solutions were
compared with the fine grid solution using the mixed finite element method. The study showed that
the accuracy of this method depended on the number of multiscale basis functions and was almost
independent of the influence of the nonlinear part of the equation. Mixed GMsFEM provided a good
solution for any β values, and the accuracy of the method was improved by using more basis functions.
The method showed good efficiency, since the number of Picard iterations with a large influence of the
nonlinear part was much less than when solving a problem on a fine grid.
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Abstract: Surface modeling is closely related to interpolation and approximation by using level set
methods, radial basis functions methods, and moving least squares methods. Although radial basis
functions with global support have a very good approximation effect, this is often accompanied by an
ill-conditioned algebraic system. The exceedingly large condition number of the discrete matrix makes
the numerical calculation time consuming. The paper introduces a truncated exponential function,
which is radial on arbitrary n-dimensional space Rn and has compact support. The truncated
exponential radial function is proven strictly positive definite on Rn while internal parameter l
satisfies l ≥ � n

2 �+ 1. The error estimates for scattered data interpolation are obtained via the native
space approach. To confirm the efficiency of the truncated exponential radial function approximation,
the single level interpolation and multilevel interpolation are used for surface modeling, respectively.

Keywords: radial basis functions; native spaces; truncated function; interpolation; approximation;
surface modeling

1. Introduction

Radial basis functions can be used to construct trial spaces that have high precision in arbitrary
dimensions with arbitrary smoothness. The applications of RBFs (or so-called meshfree methods)
can be found in many different areas of science and engineering, including geometric modeling with
surfaces [1].The globally supported radial basis functions such as Gaussians or generalized (inverse)
multiquadrics have excellent approximation properties. However, they often produce dense discrete
systems, which tend to have poor conditioning and lead to a high computational cost. The radial basis
functions with compact supports can lead to a very well conditioned sparse system. The goal of this
work is to design a truncated exponential function that has compact support and is strictly positive
definite and radial on arbitrary n-dimensional space Rn and to show the advantages of the truncated
exponential radial function approximation for surface modeling.

2. Auxiliary Tools

In order to make the paper self-contained and have a complete basis for the theoretical analysis in
the later sections, we introduce some concepts and theorems related to radial functions in this section.

2.1. Radial Basis Functions

Definition 1. A multivariate function Φ : Rn → R is called radial if its value at each point depends only
on the distance between that point and the origin, or equivalently provided there exists a univariate function
ϕ : [0, ∞) → R such that Φ(x) = ϕ(r) with r = ‖x‖. Here, ‖ · ‖ is usually the Euclidean norm. Then, the
radial basis functions are defined by translation Φk(x) = ϕ(‖x − xk‖) for any fixed center xk ∈ Rn.
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Definition 2. A real-valued continuous function Φ : Rn → R is called positive definite on Rn if it is even and:

N

∑
j=1

N

∑
k=1

cjckΦ(xj − xk) ≥ 0 (1)

for any N pairwise different points x1, · · ·, xN ∈ Rn, and c = [c1, · · ·, cN ]
T ∈ RN. It is the Fourier transform

of a (positive) measure. The function Φ is strictly positive definite on Rn if the quadratic (1) is zero only for
c ≡ 0.

The strictly positive definiteness of the radial function can be characterized by considering the
Fourier transform of a univariate function. This is described in the following theorem. Its proof can be
found in [2].

Theorem 1. A continuous function ϕ : [0, ∞) → R such that r → rn−1 ϕ(r) ∈ L1[0, ∞) is strictly positive
definite and radial on Rn if and only if the n-dimensional Fourier transform:

Fn ϕ(r) =
1√

rn−2

∫ ∞

0
ϕ(t)t

n
2 J(n−2)/2(rt)dt (2)

is non-negative and not identically equal to zero. Here, J(n−2)/2 is the classical Bessel function of the first kind
of order (n − 2)/2.

2.2. Multiply Monotonicity

Since Fourier transforms are not always easy to compute, it is convenient to decide whether a
function is strictly positive definite and radial on Rn by the multiply monotonicity for limited choices
of n.

Definition 3. A function ϕ : (0, ∞) → R, which is in Ck−2(0, ∞), k ≥ 2, and for which (−1)l ϕ(l)(r) is
non-negative, non-increasing, and convex for l = 0, 1, · · ·, k − 2, is called k-times monotone on (0, ∞). In the
case k = 1, we only require ϕ ∈ C(0, ∞) to be non-negative and non-increasing.

This definition can be found in the monographs [2,3]. The following Micchelli theorem (see [4])
provides a multiply monotonicity characterization of strictly positive definite radial functions.

Theorem 2. Let k = � n
2 �+ 2 be a positive integer. If ϕ : [0, ∞) → R, ϕ ∈ C[0, ∞), is k-times monotone on

(0, ∞), but not constant, then ϕ is strictly positive definite and radial on Rn for any n such that � n
2 � ≤ k − 2.

2.3. Native Spaces

Every strictly positive definite function can indeed be associated with a reproducing kernel Hilbert
space (or its native space see [5]).

Definition 4. Suppose Φ ∈ C(Rn) ∩ L1(Rn) is a real-valued strictly positive definite function. Then, the
native space of Φ is defined by

NΦ(R
n) = { f ∈ L2(Rn) ∩ C(Rn) :

f̂√
Φ̂

∈ L2(Rn)},

and equip this space with the norm

‖ f ‖2
NΦ(Rn) =

∫
Rn

| f̂ (ω)|2
Φ̂(ω)

dω < ∞. (3)
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For any domain Ω ⊆ Rn, NΦ(Ω) is in fact the completion of the pre-Hilbert space HΦ(Ω) =

span{Φ(·, y) : y ∈ Ω}. Of course, NΦ(Ω) contains all functions of the form:

f =
N

∑
j=1

cjΦ(·, xj)

provided xj ∈ Ω, and can be assembled with an equivalent norm:

‖ f ‖2
NΦ(Ω) =

N

∑
j=1

N

∑
k=1

cjckΦ(xj, xk). (4)

Here, N = ∞ is also allowed.

3. Truncated Exponential Function

In this section, we design a truncated exponential function:

ϕ(r) = (e1−r − 1)l
+ (5)

with r ∈ R, and l is a positive integer. By Definition 1, it becomes apparent that Φ(x) = ϕ(r) is a radial
function centered on the origin on Rn when r = ‖x‖ and x ∈ Rn.

The following theorem characterizes the strictly positive definiteness of Φ(x).

Theorem 3. The function Φ(x) = (e1−‖x‖ − 1)l
+ is strictly positive definite and radial on Rn provided

parameter l satisfies l ≥ � n
2 �+ 1.

Proof. Theorem 2 shows that multiply monotone functions give rise to positive definite radial
functions. Therefore, we only need to verify the multiply monotonicity of univariate function ϕ(r)
defined by (5).

Obviously, the truncated exponential function ϕ(r) is in Cl−1(0, ∞) when r ∈ (0, ∞) and

ϕ(r) = (e1−r − 1)l
+ ≥ 0,

ϕ′(r) = −le1−r(e1−r − 1)l−1
+ ≤ 0,

ϕ′′(r) = l(l − 1)(e1−r)2(e1−r − 1)l−2
+ + le1−r(e1−r − 1)l−1

+ ≥ 0.

For any positive integers p and q, (e1−r)p and (e1−r − 1)q
+ are non-negative, but with negative

derivatives. Therefore,
(−1)n ϕ(n)(r) ≥ 0, n = 0, 1, · · ·, l − 1,

and ϕ(r) is (l + 1)-times monotone on (0, ∞). Then, the conclusion follows directly by Theorem 2.

There are two ways to scale ϕ(r):
(1) In order to make ϕ(0) = 1, we can multiply (5) by the positive constant 1

(e−1)l such that

ϕ(r) = 1
(e−1)l (e1−r − 1)l

+. Here, ϕ(r) is still strictly positive definite and has the same support as (5).
(2) Adding a shape parameter ε > 0, the scaled truncated exponential function can be given by:

ϕ(r) = (e1−εr − 1)l
+. (6)

Obviously, a smaller ε causes the function to become flatter and the support to become larger, while
increasing ε leads to a more peaked ϕ(r) and therefore localizes its support.
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4. Errors in Native Spaces

This section discusses the scattered data interpolation with compactly supported radial basis
functions Φ(x, xk) = (e1−‖x−xk‖ − 1)l

+, x, xk ∈ Rn.
Given a distinct scattered point set X = {x1, x2, · · ·, xN} ⊂ Rn, the interpolant of target function

f can be represented as:

Pf (x) =
N

∑
j=1

cjΦ(x, xj), x ∈ R
n. (7)

Solving the interpolation problem leads to the following system of linear equations:

Ac = y, (8)

where the entries of matrix A are given by Ai,j = Φ(xi, xj), i, j = 1, · · ·, N, c = [c1, · · ·, cN ]
T , and

y = [ f (x1), · · ·, f (xN)]
T . A solution to the system (8) exists and is unique, since the matrix A is positive

definite.
Let u∗(x) = [u∗

1(x), · · ·, u∗
N(x)]

T be a cardinal basis vector function, then Pf also has the following
form (see [6]):

Pf (x) =
N

∑
j=1

f (xj)u∗
j (x), x ∈ R

n. (9)

Comparing (9) with (7), we have:
Au∗(x) = b(x), (10)

where b(x) = [Φ(x, x1), · · ·, Φ(x, xN)]
T .

Equation (10) shows a connection between the radial basis functions and the cardinal basis
functions.

First, the generic error estimate is as follows.

Theorem 4. Let Ω ⊆ Rn, X = {x1, x2, · · ·, xN} ⊂ Ω be distinct and Φ ∈ C(Ω × Ω) be the truncated
exponential radial basis function with l ≥ � n

2 �+ 1. Denote the interpolant to f ∈ NΦ(Ω) on the set X by Pf .
Then, for every x ∈ Ω, we have

| f (x)− Pf (x)| ≤ PΦ,X (x)‖ f ‖NΦ(Ω).

Here
PΦ,X (x) =

√
C − (b(x))T A−1b(x), C = (e − 1)l .

Proof. Since f ∈ NΦ(Ω), the reproducing property yields

f (x) = 〈 f , Φ(·, x)〉Nφ(Ω).

Then

Pf (x) =
N

∑
j=1

f (xj)u∗
j (x) = 〈 f ,

N

∑
j=1

u∗
j (x)Φ(·, xj)〉Nφ(Ω).

Applying the Cauchy–Schwarz inequality, we have

| f (x)− Pf (x)| =

∣∣∣∣∣〈 f , Φ(·, x)−
N

∑
j=1

u∗
j (x)Φ(·, xj)〉NΦ(Ω)

∣∣∣∣∣
≤ || f ||NΦ(Ω)

∣∣∣∣∣
∣∣∣∣∣Φ(·, x)−

N

∑
j=1

u∗
j (x)Φ(·, xj)

∣∣∣∣∣
∣∣∣∣∣
NΦ(Ω)

.
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Denote the second term as

PΦ,X (x) =

∣∣∣∣∣
∣∣∣∣∣Φ(·, x)−

N

∑
j=1

u∗
j (x)Φ(·, xj)

∣∣∣∣∣
∣∣∣∣∣
NΦ(Ω)

.

By the definition of the native space norm and Equation (10), PΦ,X (x) can be rewritten as

PΦ,X (x) =
√

Φ(x, x)− (b(x))T A−1b(x).

Then, the conclusion follows directly by the strict positive definiteness of Φ.

One of the main benefits of Theorem 4 is that we are now able to estimate the interpolation
error by computing PΦ,X (x). In addition, PΦ,X (x) can be used as an indicator for choosing a good
shape parameter.

When equipping the dataset X with a fill distance (or sample density, see [7]):

hX ,Ω = sup
x∈Ω

min
xj∈X

‖x − xj‖,

for any symmetric and strictly positive definite Φ ∈ C2k(Ω × Ω), the following generic error estimate
can be obtained.

Theorem 5. Suppose Ω ⊆ Rn is bounded and satisfies an interior cone condition. Suppose Φ ∈ C2k(Ω × Ω)

is symmetric and strictly positive definite. Denote the interpolant to f ∈ NΦ(Ω) on the set X by Pf . Then,
there exist some positive constants h0 and C such that:

| f (x)− Pf (x)| ≤ Chk
X ,Ω

√
DΦ(x)‖ f ‖NΦ(Ω),

provided hX ,Ω ≤ h0. Here
DΦ(x) = max

|β|=2k
max

w,z∈Ω∩B(x,chX ,Ω)
|Dβ

2 Φ(w, z)|

with B(x, chX ,Ω) denoting the ball of radius chX ,Ω centered at x.

Proof. The estimate can be obtained by applying the Taylor expansion. The technical details can be
found in [2,3].

Since the truncated radial basis function Φ is only in C0(Ω × Ω), hk
X ,Ω is vanishing in the above

error estimate of Theorem 5. Therefore, we need to bound the DΦ(x) by some additional powers of
hX ,Ω in order to obtain the estimate in terms of fill distance. The resulting theorem is as follows.

Theorem 6. Suppose Ω ⊆ Rn is bounded and satisfies an interior cone condition. Suppose Φ is the truncated
exponential radial basis function with l ≥ � n

2 �+ 1. Denote the interpolant to f ∈ NΦ(Ω) on the set X by Pf .
Then, there exist some positive constants h0 and C such that:

| f (x)− Pf (x)| ≤ Ch
1
2
X ,Ω‖ f ‖NΦ(Ω),

provided hX ,Ω ≤ h0.
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Proof. From [2], for C0 functions, the factor DΦ(x) can be expressed as:

DΦ(x) = ‖Φ‖L∞(B(0,2chX ,Ω))

independent of x. Selecting h0 ≤ 1
4c , we bound the DΦ(x) determined by the truncated exponential

radial basis function.
Using the definition of Φ and Lagrange’s mean value theorem, we have:

‖Φ‖L∞(B(0,2chX ,Ω)) = max
r∈(0,4chX ,Ω)

|e1−r − 1|l

≤ C max
r∈(0,4chX ,Ω)

|1 − r|l

= C‖Ψ‖L∞(B(0,2chX ,Ω))

with Ψ denoting the truncated power radial basis function. From [2],

‖Ψ‖L∞(B(0,2chX ,Ω)) ≤ Ch
1
2
X ,Ω.

5. Numerical Experiments

5.1. Single-Level Approximation

This subsection shows how our truncated exponential radial basis function (TERBF) works at
a single level. Our first 2D target surface is the standard Franke’s function. In the experiments, we
let the kernel Φ in (7) be the truncated exponential radial function Φ(x) = (e1−ε‖x‖ − 1)2

+. A Halton
point set with increasingly greater data density is generated in domain [0, 1]2. Tables 1–8 list the test
results of Gaussian interpolation, MQ (Multiquadrics) interpolation, IMQ (Inverse Multiquadrics)
interpolation, and TERBF interpolation with different values of ε respectively. In the tables, the
RMS-error is computed by

RMS-error =

√√√√ 1
M

M

∑
k=1

[ f (ξk)− Pf (ξk)]2 =
1√
M

‖ f − Pf ‖2,

where ξk are the evaluation points. The rate listed in the Tables is computed using the formula:

ratek =
ln(ek−1/ek)

ln(hk−1/hk)
, k = 2, 3, 4, 5, 6,

where ek is the RMS-error for experiment number k and hk is the fill distance of the k-level. cond(A)

is the condition number of the interpolation matrix defined by (8). From Tables 1–6, we observe that
the globally supported radial basis functions (Gaussian, MQ, IMQ) can obtain ideal accuracy when
assembling a smaller value of ε. However, the condition number of the interpolation matrix will become
surprisingly large as the scattered data increase. We note that MATLAB issues a “matrix close to
singular” warning when carrying out Gaussian and MQ interpolation experiments for N = 1089, 4225
and ε = 10. Tables 7 and 8 show that TERBF interpolation can not only keep better approximation
accuracy, but also produce a well conditioned interpolation matrix. Even for N = 4225 and ε = 0.7, the
condition number of the presented method is relatively smaller (about 105). The change of RMS-error
with varying ε values is displayed in Figure 1. We see that the error curves of Gaussian and MQ
interpolation are not monotonic and even become erratic for the largest datasets. However, the curves
of IMQ and TERBF interpolation are relatively smooth. In particular, TERBF greatly improves the
condition number of the interpolation matrix. To show the application of TERBF approximation
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to compact 3D images, we interpolate Beethoven data in Figure 2 and Stanford bunny in Figure 3.
Numerical experiments suggest that TERBF interpolation is essentially faster than the scattered data
interpolation with globally supported radial basis functions. However, we observe that TERBF
interpolation causes some artifacts such as the extra surface fragment near the bunny’s ear from the
left part of Figure 3. This is because the interpolating implicit surface has a narrow band support. It
will be better if the sample density is smaller than the width of the support band (see the right part of
Figure 3). Similar observations have been reported in Fasshauer’s book [3], where a partition of unity
fits based on Wendland’s C2 function was used. The same observation was also made in [1].

Table 1. Gaussian interpolation to the 2D Franke’s function with ε = 20.

N RMS-Error Rate cond(A)

9 3.633326 × 10−1 - 1. 000028 × 10+0

25 3.138226 × 10−1 0.211341 1. 006645 × 10+0

81 2.003929 × 10−1 0.647118 3. 170400 × 10+0

289 6.616318 × 10−2 1.598731 3. 761572 × 10+1

1089 1.205109 × 10−2 2.456865 1. 925205 × 10+5

4225 2.908614 × 10−4 5.372688 2.687885 × 10+16

Table 2. Gaussian interpolation to the 2D Franke’s function with ε = 10.

N RMS-Error Rate cond(A)

9 3.256546 × 10−1 - 1. 129919 × 10+0

25 1.722746 × 10−1 0.918633 1. 667637 × 10+0

81 5.465624 × 10−2 1.656252 2. 601726 × 10+1

289 1.391350 × 10−2 1.973901 7. 316820 × 10+4

1089 3.273510 × 10−4 5.409503 1.179104 × 10+16

4225 1.135157 × 10−6 8.171803 1.906108 × 10+20

Table 3. MQ interpolation to the 2D Franke’s function with ε = 20.

N RMS-Error Rate cond(A)

9 1.224583 × 10−1 - 5. 366051 × 10+1

25 5.646454 × 10−2 1.116874 3. 124063 × 10+2

81 6.998841 × 10−3 3.012157 5. 534539 × 10+3

289 1.418117 × 10−3 2.303139 2. 324743 × 10+5

1089 3.627073 × 10−4 1.967099 8. 803829 × 10+7

4225 4.969932 × 10−5 2.867508 5.331981 × 10+11

Table 4. MQ interpolation to the 2D Franke’s function with ε = 10.

N RMS-Error Rate cond(A)

9 1.146184 × 10−1 - 8. 464360 × 10+1

25 5.193997 × 10−2 1.141921 6. 680998 × 10+2

81 4.534144 × 10−3 3.517943 2. 158362 × 10+4

289 9.608696 × 10−4 2.238418 5. 033541 × 10+6

1089 1.506154 × 10−4 2.673471 3.025049 × 10+10

4225 4.603113 × 10−6 5.032116 5.613893 × 10+16
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Table 5. IMQ interpolation to the 2D Franke’s function with ε = 20.

N RMS-Error Rate cond(A)

9 2.491443 × 10−1 - 2.733942 × 10+0

25 9.914856 × 10−2 1.329318 6.933813 × 10+0

81 3.257319 × 10−2 1.605907 5.444834 × 10+1

289 1.159691 × 10−2 1.489945 1.022341 × 10+3

1089 3.420734 × 10−3 1.761362 1.850967 × 10+5

4225 6.703871 × 10−4 2.351240 5.607685 × 10+8

Table 6. IMQ interpolation to the 2D Franke’s function with ε = 10.

N RMS-Error Rate cond(A)

9 2.065836 × 10−1 - 5. 995564 × 10+0

25 5.366442 × 10−2 1.944688 2. 312141 × 10+1

81 1.517723 × 10−2 1.822057 4. 053520 × 10+2

289 5.181480 × 10−3 1.550472 3. 889766 × 10+4

1089 9.630601 × 10−4 2.427667 1. 155244 × 10+8

4225 4.615820 × 10−5 4.382967 1.158439 × 10+14

Table 7. TERBF interpolation to the 2D Franke’s function with ε = 1.

N RMS-Error Rate cond(A)

9 1.951235 × 10−1 - 6.639719 × 10+0

25 5.018953 × 10−2 1.958929 2.405994 × 10+1

81 1.628459 × 10−2 1.623879 1.669026 × 10+2

289 6.727682 × 10−3 1.275326 1.250365 × 10+3

1089 2.402630 × 10−3 1.485495 1.058555 × 10+4

4225 9.728457 × 10−4 1.304332 9.410946 × 10+4

Table 8. TERBF interpolation to the 2D Franke’s function with ε = 0.7.

N RMS-Error Rate cond(A)

9 1.728785 × 10−1 - 1.275042 × 10+1

25 4.535991 × 10−2 1.930269 5.066809 × 10+1

81 1.335521 × 10−2 1.764015 3.608813 × 10+2

289 5.013012 × 10−3 1.413653 2.719227 × 10+3

1089 1.773595 × 10−3 1.499001 2.305630 × 10+4

4225 7.107796 × 10−4 1.319203 2.050036 × 10+5

(a) ε curves of Gaussian interpolation (b) ε curves of MQ interpolation

Figure 1. Cont.
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(c) ε curves of IMQ interpolation (d) ε curves of TERBF interpolation

Figure 1. RMS-error curves for Gaussian, MQ, IMQ, and TERBF interpolations.

Figure 2. TERBF approximation of the Beethoven data. From top left to bottom right: 163 (a), 663 (b),
1163 (c), and 2663 (d) points.

Figure 3. TERBF approximation of the Stanford bunny with 453 (left) and 8171 (right) data points.
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5.2. Multilevel Approximation

The multilevel scattered approximation was implemented first in [8] and then studied by a
number of other researchers [9–13]. In the multilevel algorithm, the residual can be formed on the
coarsest level first and then be approximated on the later finer level by the compactly supported
radial basis functions with gradually smaller support. This process can be repeated and be stopped
on the finest level. An advantage of this multilevel interpolation algorithm is its recursive property
(i.e., the same routine can be applied recursively at each level in the programming language), of course
the disadvantage being the allocation that memory needs.

In this experiment, suppose a 3D target surface is an explicit function f (x, y, z) = 64x(1− x)y(1−
y)z(1 − z). We generate a uniform points set in the domain [0, 1]3, with levels k = 1, 2, 3, 4 and
N = 27, 125, 729, 4913. The scale parameter ε = 0.07 × 2[0:3], and l = 3. The corresponding slice plots,
the iso-surfaces, and slice plots of the absolute error are shown in Figures 4–7. Both the iso-surfaces and
the slice plots are color coded according to the absolute error. At each level, the trial space is constructed
by a series of truncated exponential radial basis functions with varying support radii. Hence, the
multilevel approximation algorithm can produce a well conditioned sparse discrete algebraic system
in each recursion and keep ideal approximation accuracy at the same time. Numerical experiments
show that TERBF multilevel interpolation is very effective for 3D explicit surface approximation.
These observations can be found from Figures 4–7. Similar experiments and observations are reported
in detail in Fasshauer’s book [3], where Wendland’s function C4 has been used for approximation.
However, to improve the allocation memory needs of the multilevel algorithm, we can make use of the
hierarchical collocation method developed in [13].

(a) Point sets (b) Iso-surface plot

(c) Slice plot (d) Slice plot of absolute error

Figure 4. Fits and errors at Level 1.
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(a) Point sets (b) Iso-surface plot

(c) Slice plot (d) Slice plot of absolute error

Figure 5. Fits and errors at Level 2.

(a) Point sets (b) Iso-surface plot

(c) Slice plot (d) Slice plot of absolute error

Figure 6. Fits and errors at Level 3.
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(a) Point sets (b) Iso-surface plot

(c) Slice plot (d) Slice plot of absolute error

Figure 7. Fits and errors at Level 4.

6. Conclusions

The truncated exponential radial function, which has compact support, was introduced in
the paper. The strictly positive definiteness of TERBF was proven via the multiply monotonicity
approach, and the interpolation error estimates were obtained via the native space approach. Moreover,
the TERBF was applied to 2D/3D scattered data interpolation and surface modeling successfully.

However, we found that Φ(x) = (e1−ε‖x‖ − 1)l
+ was only in C0 space. In the error estimates in

terms of the fill distance, the power of hX ,Ω was only 1/2. There are many possibilities for enhancement
of TERBF approximation:

(1) We can construct new strictly positive definite radial functions with finite smoothness from
the given Φ(x) by a “dimension-walk” technique.

(2) We can do in-depth analysis of the characterization of TERBF in terms of Fourier transforms
established by Bochner and Schoenberg’s theorems.

(3) TERBF can also be used for the numerical solution of partial differential equations. The
convergence proof will depend on the approximation of TERBF trial spaces, the appropriate inverse
inequality, and the sampling theorem.
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Abstract: This article concerns the expressive power of depth in neural nets with ReLU activations
and a bounded width. We are particularly interested in the following questions: What is the minimal
width wmin(d) so that ReLU nets of width wmin(d) (and arbitrary depth) can approximate any
continuous function on the unit cube [0, 1]d arbitrarily well? For ReLU nets near this minimal width,
what can one say about the depth necessary to approximate a given function? We obtain an essentially
complete answer to these questions for convex functions. Our approach is based on the observation
that, due to the convexity of the ReLU activation, ReLU nets are particularly well suited to represent
convex functions. In particular, we prove that ReLU nets with width d + 1 can approximate any
continuous convex function of d variables arbitrarily well. These results then give quantitative depth
estimates for the rate of approximation of any continuous scalar function on the d-dimensional cube
[0, 1]d by ReLU nets with width d + 3.

Keywords: Deep Neural Nets; ReLU Networks; Approximation Theory

1. Introduction

Over the past several years, neural nets, particularly deep nets, have become the
state-of-the-art in a remarkable number of machine learning problems, from mastering go to image
recognition/segmentation and machine translation (see the review article [1] for more background).
Despite all their practical successes, a robust theory of why they work so well is in its infancy. Much
of the work to date has focused on the problem of explaining and quantifying the expressivity (the
ability to approximate a rich class of functions) of deep neural nets [2–11]. Expressivity can be seen
both as an effect of both depth and width. It has been known since at least the work of Cybenko [12]
and Hornik-Stinchcombe-White [13] that if no constraint is placed on the width of a hidden layer, then
a single hidden layer is enough to approximate essentially any function. The purpose of this article,
in contrast, is to investigate the “effect of depth without the aid of width.” More precisely, for each
d ≥ 1, we would like to estimate:

wmin(d) := min

{
w ∈ N

∣∣∣∣ ReLU nets of width w can approximate any
positive continuous function on [0, 1]d arbitrarily well

}
. (1)

Here, N = {0, 1, 2, . . .} are the natural numbers and ReLU is the so-called “rectified linear unit,”
ReLU(t) = max{0, t}, which is the most popular non-linearity used in practice (see (4) for the exact
definition). In Theorem 1, we prove that ωmin(d) ≤ d + 2. This raises two questions:

Q1. Is the estimate in the previous line sharp?

Q2. How efficiently can ReLU nets of a given width w ≥ wmin(d) approximate a given continuous
function of d variables?
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A priori, it is not clear how to estimate ωmin(d) and whether it is even finite. One of the
contributions of this article is to provide reasonable bounds on ωmin(d) (see Theorem 1). Moreover,
we also provide quantitative estimates on the corresponding rate of approximation. On the subject
of Q1, we will prove in forthcoming work with M.Sellke [14] that in fact, ωmin(d) = d + 1. When
d = 1, the lower bound is simple to check, and the upper bound follows for example from Theorem 3.1
in [5]. The main results in this article, however, concern Q1 and Q2 for convex functions. For instance,
we prove in Theorem 1 that:

wconv
min (d) ≤ d + 1, (2)

where:

wconv
min (d) := min

{
w ∈ N

∣∣∣∣ ReLU nets of width w can approximate any
positive convex function on [0, 1]d arbitrarily well

}
. (3)

This illustrates a central point of the present paper: the convexity of the ReLU activation makes
ReLU nets well-adapted to representing convex functions on [0, 1]d.

Theorem 1 also addresses Q2 by providing quantitative estimates on the depth of a ReLU net
with width d + 1 that approximates a given convex function. We provide similar depth estimates
for arbitrary continuous functions on [0, 1]d, but this time for nets of width d + 3. Several of our
depth estimates are based on the work of Balázs-György-Szepesvári [15] on max-affine estimators in
convex regression.

In order to prove Theorem 1, we must understand what functions can be exactly computed by a
ReLU net. Such functions are always piecewise affine, and we prove in Theorem 2 the converse: every
piecewise affine function on [0, 1]d can be exactly represented by a ReLU net with hidden layer width at
most d+ 3. Moreover, we prove that the depth of the network that computes such a function is bounded
by the number affine pieces it contains. This extends the results of Arora-Basu-Mianjy-Mukherjee
(e.g., Theorem 2.1 and Corollary 2.2 in [2]).

Convex functions again play a special role. We show that every convex function on [0, 1]d that is
piecewise affine with N pieces can be represented exactly by a ReLU net with width d + 1 and depth N.

2. Statement of Results

To state our results precisely, we set notation and recall several definitions. For d ≥ 1 and a
continuous function f : [0, 1]d → R, write:

‖ f ‖C0 := sup
x∈[0,1]d

| f (x)| .

Further, denote by:
ω f (ε) := sup{| f (x)− f (y)| | |x − y| ≤ ε}

the modulus of continuity of f , whose value at ε is the maximum that f can change when its
argument moves by at most ε. Note that by the definition of a continuous function, ω f (ε) → 0
as ε → 0. Next, given din, dout, and w ≥ 1, we define a feed-forward neural net with ReLU activations,
input dimension din, hidden layer width w, depth n, and output dimension dout to be any member of
the finite-dimensional family of functions:

ReLU ◦An ◦ · · · ◦ ReLU ◦A1 ◦ ReLU ◦A1 (4)

that map Rd to R
dout
+ = {x =

(
x1, . . . , xdout

)
∈ Rdout | xi ≥ 0}. In (4),

Aj : Rw → R
w, j = 2, . . . , n − 1, A1 : Rdin → R

w, An : Rw → R
dout
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are affine transformations, and for every m ≥ 1:

ReLU(x1, . . . , xm) = (max{0, x1}, . . . , max{0, xm}) .

We often denote such a net by N and write:

fN (x) := ReLU ◦An ◦ · · · ◦ ReLU ◦A1 ◦ ReLU ◦A1(x)

for the function it computes. Our first result contrasts both the width and depth required to
approximate continuous, convex, and smooth functions by ReLU nets.

Theorem 1. Let d ≥ 1 and f : [0, 1]d → R+ be a positive function with ‖ f ‖C0 = 1. We have the following
three cases:

1. ( f is continuous) There exists a sequence of feed-forward neural nets Nk with ReLU activations, input
dimension d, hidden layer width d + 2, and output dimension 1, such that:

lim
k→∞

∥∥ f − fNk

∥∥
C0 = 0. (5)

In particular, wmin(d) ≤ d + 2. Moreover, write ω f for the modulus of continuity of f , and fix ε > 0.
There exists a feed-forward neural net Nε with ReLU activations, input dimension d, hidden layer width
d + 3, output dimension 1, and:

depth (Nε) =
2 · d!

ω f (ε)d (6)

such that:
‖ f − fNε‖C0 ≤ ε. (7)

2. ( f is convex) There exists a sequence of feed-forward neural nets Nk with ReLU activations, input dimension
d, hidden layer width d + 1, and output dimension 1, such that:

lim
k→∞

∥∥ f − fNk

∥∥
C0 = 0. (8)

Hence, ωconv
min (d) ≤ d + 1. Further, there exists C > 0 such that if f is both convex and Lipschitz with

Lipschitz constant L, then the nets Nk in (8) can be taken to satisfy:

depth (Nk) = k + 1,
∥∥ f − fNk

∥∥
C0 ≤ CLd3/2k−2/d. (9)

3. ( f is smooth) There exists a constant K depending only on d and a constant C depending only on the
maximum of the first K derivative of f such that for every k ≥ 3, the width d + 2 nets Nk in (5) can be
chosen so that:

depth(Nk) = k,
∥∥ f − fNk

∥∥
C0 ≤ C (k − 2)−1/d . (10)

The main novelty of Theorem 1 is the width estimate wconv
min (d) ≤ d + 1 and the quantitative

depth estimates (9) for convex functions, as well as the analogous estimates (6) and (7) for continuous
functions. Let us briefly explain the origin of the other estimates. The relation (5) and the corresponding
estimate wmin(d) ≤ d + 2 are a combination of the well-known fact that ReLU nets with one hidden
layer can approximate any continuous function and a simple procedure by which a ReLU net with input
dimension d and a single hidden layer of width n can be replaced by another ReLU net that computes
the same function, but has depth n + 2 and width d + 2. For these width d + 2 nets, we are unaware of
how to obtain quantitative estimates on the depth required to approximate a fixed continuous function
to a given precision. At the expense of changing the width of our ReLU nets from d + 2 to d + 3,
however, we furnish the estimates (6) and (7). On the other hand, using Theorem 3.1 in [5], when f is
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sufficiently smooth, we obtain the depth estimates (10) for width d + 2 ReLU nets. Indeed, since we are
working on a compact set [0, 1]d, the smoothness classes Ww,q,γ from [5] reduce to classes of functions
that have sufficiently many bounded derivatives.

Our next result concerns the exact representation of piecewise affine functions by ReLU nets.
Instead of measuring the complexity of such a function by its Lipschitz constant or modulus of
continuity, the complexity of a piecewise affine function can be thought of as the minimal number of
affine pieces needed to define it.

Theorem 2. Let d ≥ 1 and f : [0, 1]d → R+ be the function computed by some ReLU net with input
dimension d, output dimension 1, and arbitrary width. There exist affine functions gα, hβ : [0, 1]d → R such
that f can be written as the difference of positive convex functions:

f = g − h, g := max
1≤α≤N

gα, h := max
1≤β≤M

hβ. (11)

Moreover, there exists a feed-forward neural net N with ReLU activations, input dimension d, hidden
layer width d + 3, output dimension 1, and:

depth (N ) = 2(M + N) (12)

that computes f exactly. Finally, if f is convex (and hence, h vanishes), then the width of N can be taken to be
d + 1, and the depth can be taken to be N.

The fact that the function computed by a ReLU net can be written as (11) follows from Theorem 2.1
in [2]. The novelty in Theorem 2 is therefore the uniform width estimate d + 3 in the representation on
any function computed by a ReLU net and the d + 1 width estimate for convex functions. Theorem 2
will be used in the proof of Theorem 1.

3. Relation to Previous Work

This article is related to several strands of prior work:

1. Theorems 1 and 2 are “deep and narrow” analogs of the well-known “shallow and wide” universal
approximation results (e.g., Cybenko [12] and Hornik-Stinchcombe-White [13]) for feed-forward
neural nets. Those articles show that essentially any scalar function f : [0, 1]d → R on the
d-dimensional unit cube can be arbitrarily well approximated by a feed-forward neural net
with a single hidden layer with arbitrary width. Such results hold for a wide class of nonlinear
activations, but are not particularly illuminating from the point of understanding the expressive
advantages of depth in neural nets.

2. The results in this article complement the work of Liao-Mhaskar-Poggio [3] and
Mhaskar-Poggio [5], who considered the advantages of depth for representing certain hierarchical
or compositional functions by neural nets with both ReLU and non-ReLU activations. Their
results (e.g., Theorem 1 in [3] and Theorem 3.1 in [5]) give bounds on the width for approximation
both for shallow and certain deep hierarchical nets.

3. Theorems 1 and 2 are also quantitative analogs of Corollary 2.2 and Theorem 2.4 in the work of
Arora-Basu-Mianjy-Mukerjee [2]. Their results give bounds on the depth of a ReLU net needed to
compute exactly a piecewise linear function of d variables. However, except when d = 1, they do
not obtain an estimate on the number of neurons in such a network and hence cannot bound the
width of the hidden layers.

4. Our results are related to Theorems II.1 and II.4 of Rolnick-Tegmark [16], which are themselves
extensions of Lin-Rolnick-Tegmark [4]. Their results give lower bounds on the total size (number
of neurons) of a neural net (with non-ReLU activations) that approximates sparse multivariable
polynomials. Their bounds do not imply a control on the width of such networks that depends
only on the number of variables, however.
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5. This work was inspired in part by questions raised in the work of Telgarsky [8–10]. In particular,
in Theorems 1.1 and 1.2 of [8], Telgarsky constructed interesting examples of sawtooth functions
that can be computed efficiently by deep width 2 ReLU nets that cannot be well approximated by
shallower networks with a similar number of parameters.

6. Theorems 1 and 2 are quantitative statements about the expressive power of depth without the
aid of width. This topic, usually without considering bounds on the width, has been taken up
by many authors. We refer the reader to [6,7] for several interesting quantitative measures of the
complexity of functions computed by deep neural nets.

7. Finally, we refer the reader to the interesting work of Yarofsky [11], which provides bounds on
the total number of parameters in a ReLU net needed to approximate a given class of functions
(mainly balls in various Sobolev spaces).

4. Proof of Theorem 2

Proof of Theorem 2. We first treat the case:

f = sup
1≤α≤N

gα, gα : [0, 1]d → R affine

when f is convex. We seek to show that f can be exactly represented by a ReLU net with input
dimension d, hidden layer width d + 1, and depth N. Our proof relies on the following observation.

Lemma 1. Fix d ≥ 1, and let T : Rd
+ → R be an arbitrary function and L : Rd → R be affine. Define an

invertible affine transformation A : Rd+1 → Rd+1 by:

A(x, y) = (x, L(x) + y) .

Then, the image of the graph of T under:

A ◦ ReLU ◦A−1

is the graph of x �→ max{T(x), L(x)}, viewed as a function on Rd
+.

Proof. We have A−1(x, y) = (x,−L(x) + y). Hence, for each x ∈ Rd
+, we have:

A ◦ ReLU ◦A−1(x, T(x)) =
(

x, (T(x)− L(x)) 1{T(x)−L(x)>0} + L(x)
)

= (x, max{T(x), L(x)}) .

We now construct a neural net that computes f . We note that the construction is potentially
applicable to the study of avoiding sets (see the work of Shang [17]). Define invertible affine functions
Aα : Rd+1 → Rd+1 by:

Aα(x, xd+1) := (x, gα(x) + xd+1) , x = (x1, . . . , xd),

and set:
Hα := Aα ◦ ReLU ◦A−1

α .

Further, define:
Hout := ReLU ◦ 〈�ed+1, ·〉 (13)
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where�ed+1 is the (d + 1)th standard basis vector so that 〈�ed+1, ·〉 is the linear map from Rd+1 to R that
maps (x1, . . . , xd+1) to xd+1. Finally, set:

Hin := ReLU ◦ (id, 0) ,

where (id, 0) (x) = (x, 0) maps [0, 1]d to the graph of the zero function. Note that the ReLU in this
initial layer is linear. With this notation, repeatedly using Lemma 1, we find that:

Hout ◦ HN ◦ · · · ◦ H1 ◦ Hin

therefore has input dimension d, hidden layer width d + 1, depth N, and computes f exactly.

Next, consider the general case when f is given by:

f = g − h, g = sup
1≤α≤N

gα, h = sup
1≤β≤M

hβ

as in (11). For this situation, we use a different way of computing the maximum using ReLU nets.

Lemma 2. There exists a ReLU net M with input dimension 2, hidden layer width 2, output dimension 1, and
depth 2 such that:

M (x, y) = max{x, y}, x ∈ R, y ∈ R+.

Proof. Set A1(x, y) := (x − y, y), A2(z, w) = z + w, and define:

M = ReLU ◦A2 ◦ ReLU ◦A1.

We have for each y ≥ 0, x ∈ R:

fM(x, y) = ReLU((x − y)1{x−y>0} + y) = max{x, y},

as desired.

We now describe how to construct a ReLU net N with input dimension d, hidden layer width
d + 3, output dimension 1, and depth 2(M + N) that exactly computes f . We use width d to copy the
input x, width 2 to compute successive maximums of the positive affine functions gα, hβ using the net
M from Lemma 2 above, and width 1 as memory in which we store g = supα gα while computing
h = supβ hβ. The final layer computes the difference f = g − h.

5. Proof of Theorem 1

Proof of Theorem 1. We begin by showing (8) and (9). Suppose f : [0, 1]d → R+ is convex, and fix
ε > 0. A simple discretization argument shows that there exists a piecewise affine convex function
g : [0, 1]d → R+ such that ‖ f − g‖C0 ≤ ε. By Theorem 2, g can be exactly represented by a ReLU net
with hidden layer width d + 1. This proves (8). In the case that f is Lipschitz, we use the following,
a special case of Lemma 4.1 in [15].

Proposition 1. Suppose f : [0, 1]d → R is convex and Lipschitz with Lipschitz constant L. Then, for every
k ≥ 1, there exist k affine maps Aj : [0, 1]d → R such that:∥∥∥∥∥ f − sup

1≤j≤k
Aj

∥∥∥∥∥
C0

≤ 72L d3/2k−2/d.
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Combining this result with Theorem 2 proves (9). We turn to checking (5) and (10). We need the
following observations, which seems to be well known, but not written down in the literature.

Lemma 3. Let N be a ReLU net with input dimension d, a single hidden layer of width n, and output dimension
1. There exists another ReLU net Ñ that computes the same function as N , but has input dimension d and
n + 2 hidden layers with width d + 2.

Proof. Denote by {Aj}n
j=1 the affine functions computed by each neuron in the hidden layer of N

so that:

fN (x) = ReLU

(
b +

n

∑
j=1

cj ReLU(Aj(x))

)
.

Let T > 0 be sufficiently large so that:

T +
k

∑
j=1

cj ReLU(Aj(x)) > 0, ∀1 ≤ k ≤ n, x ∈ [0, 1]d.

The affine transformations Ãj computed by the jth hidden layer of Ñ are then:

Ã1(x) :=
(
x, Aj(x), T

)
and Ãn+2(x, y, z) = z − T + b, x ∈ R

d, y, z ∈ R

and:
Ãj(x, y, z) =

(
x, Aj(x), z + cj−1y

)
, j = 2, . . . , n + 1.

We are essentially using width d to copy in the input variable, width 1 to compute each Aj, and
width 1 to store the output.

Recall that positive continuous functions can be arbitrarily well approximated by smooth functions
and hence by ReLU nets with a single hidden layer (see, e.g., Theorem 3.1 [5]). The relation (5) therefore
follows from Lemma 3. Similarly, by Theorem 3.1 in [5], if f is smooth, then there exists K = K(d) > 0
and a constant Cf depending only on the maximum value of the first K derivatives of f such that:

inf
N

‖ f − fN ‖ ≤ Cf n−1/d,

where the infimum is over ReLU nets N with a single hidden layer of width n. Combining this with
Lemma 3 proves (10).

It remains to prove (6) and (7). To do this, fix a positive continuous function f : [0, 1]d → R+ with
modulus of continuity ω f . Recall that the volume of the unit d-simplex is 1/d!, and fix ε > 0. Consider
the partition:

[0, 1]d =

d!/ω f (ε)
d⋃

j=1

Pj

of [0, 1]d into d!/ω f (ε)
d copies of ω f (ε) times the standard d-simplex. Here, each Pj denotes a single

scaled copy of the unit simplex. To create this partition, we first sub-divide [0, 1]d into at most ω f (ε)
−d

cubes of side length at most ω f (ε). Then, we subdivide each such smaller cube into d! copies of
the standard simplex (which has volume 1/d!) rescaled to have side length ω f (ε). Define fε to be a
piecewise linear approximation to f obtained by setting fε equal to f on the vertices of the Pj’s and
taking fε to be affine on their interiors. Since the diameter of each Pj is ω f (ε), we have:

‖ f − fε‖C0 ≤ ε.
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Next, since fε is a piecewise affine function, by Theorem 2.1 in [2] (see Theorem 2), we may write:

fε = gε − hε,

where gε, hε are convex, positive, and piecewise affine. Applying Theorem 2 completes the proof of (6)
and (7).

6. Conclusions

We considered in this article the expressive power of ReLU networks with bounded hidden layer
widths. In particular, we showed that ReLU networks of width d + 3 and arbitrary depth are capable of
arbitrarily good approximations of any scalar continuous function of d variables. We showed further
that this bound could be reduced to d + 1 in the case of convex functions and gave quantitative rates
of approximation in all cases. Our results show that deep ReLU networks, even at a moderate width,
are universal function approximators. Our work leaves open the question of whether such function
representations can be learned by (stochastic) gradient descent from a random initialization. We will
take up this topic in future work.
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Abstract: In this paper, we propose a deep-learning-based approach to a class of multiscale problems.
The generalized multiscale finite element method (GMsFEM) has been proven successful as a
model reduction technique of flow problems in heterogeneous and high-contrast porous media.
The key ingredients of GMsFEM include mutlsicale basis functions and coarse-scale parameters,
which are obtained from solving local problems in each coarse neighborhood. Given a fixed medium,
these quantities are precomputed by solving local problems in an offline stage, and result in a
reduced-order model. However, these quantities have to be re-computed in case of varying media
(various permeability fields). The objective of our work is to use deep learning techniques to mimic
the nonlinear relation between the permeability field and the GMsFEM discretizations, and use
neural networks to perform fast computation of GMsFEM ingredients repeatedly for a class of media.
We provide numerical experiments to investigate the predictive power of neural networks and the
usefulness of the resultant multiscale model in solving channelized porous media flow problems.

Keywords: generalized multiscale finite element method; multiscale model reduction; deep learning

1. Introduction

Multiscale features widely exist in many engineering problems. For instance, in porous media
flow, the media properties typically vary over many scales and contain high contrast. Multiscale finite
element methods (MsFEM) [1–3] and generalized multiscale finite element methods (GMsFEM) [4,5]
are designed for solving multiscale problems using local model reduction techniques. In these
methods, the computational domain is partitioned into a coarse grid T H , which does not necessarily
resolve all multiscale features. We further perform a refinement of T H to obtain a fine grid T h,
which essentially resolves all multiscale features. The idea of local model reduction in these methods is
based on idenfications of local multiscale basis functions supported in coarse regions on the fine grid,
and replacement of the macroscopic equations by a coarse-scale system using a limited number of local
multiscale basis functions. As in many model reduction techniques, the computations of multiscale
basis functions, which constitute a small dimensional subspace, can be performed in an offline stage.
For a fixed medium, these multiscale basis functions are reusable for any force terms and boundary
conditions. Therefore, these methods provide substantial computational savings in the online stage,
in which a coarse-scale system is constructed and solved on the reduced-order space.
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However, difficulties arise in situations with uncertainties in the media properties in some local
regions, which are common for oil reservoirs or aquifers. One straightforward approach for quantifying
the uncertainties is to sample realizations of media properties. In such cases, it is challenging to find
an offline principal component subspace which is able to universally solve the multiscale problems
with different media properties. The computation of multiscale basis functions has to be performed in
an online procedure for each medium. Even though the multiscale basis functions are reusable for
different force terms and boundary conditions, the computational effort can grow very huge for a large
number of realizations of media properties. To this end, building a functional relationship between
the media properties and the multiscale model in an offline stage can avoid repeating expensive
computations and thus vastly reduce the computational complexity. Due to the diversity of complexity
of the media properties, the functional relationship is highly nonlinear. Modelling such a nonlinear
functional relationship typically involves high-order approximations. Therefore, it is natural to use
machine learning techniques to devise such complex models. In [6,7], the authors make use of a
Bayesian approach for learning multiscale models and incorporating essential observation data in the
presence of uncertainties.

Deep neural networks is one class of machine learning algorithm that is based on an artificial
neural network, which is composed of a relatively large number of layers of nonlinear processing
units, called neurons, for feature extraction. The neurons are connected to other neurons in the
successive layers. The information propagates from the input, through the intermediate hidden layers,
and to the output layer. In the propagation process, the output in each layer is used as input in the
consecutive layer. Each layer transforms its input data into a little more abstract feature representation.
In between layers, a nonlinear activation function is used as the nonlinear transformation on the
input, which increases the expressive power of neural networks. Recently, deep neural network
(DNN) has been successfully used to interpret complicated data sets and applied to tasks with pattern
recognition, such as image recognition, speech recognition and natural language processing [8–10].
Extensive researches have also been conducted on investigating the expression power of deep neural
networks [11–15].

Results show that neural networks can represent and approximate a large class of functions.
Recently, deep learning has been applied to model reductions and partial differential equations. In [16],
the authors studied deep convolution networks for surrogate model construction. on dynamic flow
problems in heterogeneous media. In [17], the authors studied the relationship between residual
networks (ResNet) and characteristic equations of linear transport, and proposed an interpretation
of deep neural networks by continuous flow models. In [18], the authors combined the idea of the
Ritz method and deep learning techniques to solve elliptic problems and eigenvalue problems. In [19],
a neural network has been designed to learn the physical quantities of interest as a function of random
input coefficients. The concept of using deep learning to generate a reduced-order model for a dynamic
flow has been applied to proper orthogonal decomposition (POD) global model reduction [20] and
nonlocal multi-continuum upscaling (NLMC) [21].

In this work, we propose a deep-learning-based method for fast computation of the GMsFEM
discretization. Our approach makes use of deep neural networks as a fast proxy to compute GMsFEM
discretizations for flow problems in channelized porous media with uncertainties. More specifically,
neural networks are used to express the functional relationship between the media properties and the
multiscale model. Such networks are built up in an offline stage. Sufficient sample pairs are required to
ensure the expressive power of the networks. With different realizations of media properties, one can
use the built network and avoid computations of local problems and spectral problems.

The paper is organized as follows. We start with the underlying partial differential equation that
describes the flow within a heterogeneous media and the main ingredients of GMsFEM in Section 2.
Next, in Section 3, we present the idea of using deep learning as a proxy for prediction of GMsFEM
discretizations. The networks will be precisely defined and the sampling will be explained in detail.
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In Section 4, we present numerical experiments to show the effectiveness of our presented networks on
several examples with different configurations. Finally, a conclusive discussion is provided in Section 5.

2. Preliminaries

In this paper, we are considering the flow problem in highly heterogeneous media

−div
(
κ ∇u

)
= f in Ω,

u = 0 or
∂u
∂n

= 0 on ∂Ω,
(1)

where Ω is the computational domain, κ is the permeability coefficient in L∞(Ω), and f is a source
function in L2(Ω). We assume the coefficient κ is highly heterogeneous with high contrast. The classical
finite element method for solving (1) numerically is given by: find uh ∈ Vh such that

a(uh, v) =
∫

Ω
κ∇uh · ∇v dx =

∫
Ω

f v dx = ( f , v) for all v ∈ Vh, (2)

where Vh is a standard conforming finite element space over a partition Th of Ω with mesh size h.
However, with the highly heterogeneous property of coefficient κ, the mesh size h has to be

taken extremely small to capture the underlying fine-scale features of κ. This ends up with a large
computational cost. GMsFEM [4,5] serves as a model reduction technique to reduce the number of
degrees of freedom and attain both efficiency and accuracy to a considerable extent. GMsFEM has
been successfully extended to other formulations and applied to other problems. Here we provide a
brief introduction of the main ingredients of GMsFEM. For a more detailed discussion of GMsFEM
and related concepts, the reader is referred to [22–26].

In GMsFEM, we define a coarse mesh T H over the domain Ω and refine to obtain a fine mesh
T h with mesh size h � H, which is fine enough to restore the multiscale properties of the problem.
Multiscale basis functions are defined on coarse grid blocks using linear combinations of finite element
basis functions on T h, and designed to resolve the local multiscale behaviors of the exact solution.
The multiscale finite element space Vms, which is a principal component subspace of the conforming
finite space Vh with dim(Vms) � dim(Vh), is constructed by the linear span of multiscale basis
functions. The multiscale solution ums ∈ Vms is then defined by

a(ums, v) = ( f , v) for all v ∈ Vms. (3)

We consider the identification of dominant modes for solving (1) by multiscale basis functions,
including spectral basis functions and simplified basis functions, in GMsFEM. Here, we present the
details of the construction of multiscale basis functions in GMsFEM. Let Nx = {xi |1 ≤ i ≤ Nv} be the
set of nodes of the coarse mesh T H . For each coarse grid node xi ∈ Nx, the coarse neighborhood ωi is
defined by

ωi =
⋃
{Kj ∈ T H ; xi ∈ Kj}, (4)

that is, the union of the coarse elements Kj ∈ T H containing the coarse grid node xi. An example of
the coarse and fine mesh, coarse blocks and a coarse neighborhood is shown in Figure 1. For each
coarse neighbourhood ωi, we construct multiscale basis functions {φ

ωi
j }Li

j=1 supported on ωi.

For the construction of spectral basis functions, we first construct a snapshot space V(i)
snap spanned

by local snapshot basis functions ψi,k
snap for each local coarse neighborhood ωi. The snapshot basis

function ψi,k
snap is the solution of a local problem

−div(κ∇ψi,k
snap) = 0, in ωi

ψi,k
snap = δi,k, on ∂ωi.

(5)
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Figure 1. An illustration of coarse mesh (left), a coarse neighborhood and coarse blocks (right).

The fine grid function δi,k is a function defined for all xs ∈ ∂ωi, where {xs} denote the fine degrees
of freedom on the boundary of local coarse region ωi. Specifically,

δi,k(xs) =

{
1 if s = k

0 if s �= k.
(6)

The linear span of these harmonic extensions forms the local snapshot space V(i)
snap = spank{ψi,k

snap}.
One can also use randomized boundary conditions to reduce the computational cost associated with
snapshot calculations [25]. Next, a spectral problem is designed based on our analysis and used
to reduce the dimension of local multiscale space. More precisely, we seek for eigenvalues λi

m and
corresponding eigenfunctions φ

ωi
m ∈ V(i)

snap satisfying

ai(φ
ωi
m , v) = λi

msi(φ
ωi
m , v), ∀v ∈ V(i)

snap, (7)

where the bilinear forms in the spectral problem are defined as

ai(u, v) =
∫

ωi

κ∇u · ∇v,

si(u, v) =
∫

ωi

κ̃uv,
(8)

where κ̃ = ∑j κ|∇χj|2, and χj denotes the multiscale partition of the unity function. We arrange the
eigenvalues λi

m of the spectral problem (7) in ascending order, and select the first li eigenfunctions
{φ

ωi
m }li

m=1 corresponding to the small eigenvalues as the multiscale basis functions.
An alternative way to construct the multiscale basis function is by using the idea of simplified

basis functions. This approach assumes the number of channels and position of the channelized
permeability field are known. Therefore we can obtain multiscale basis functions {φ

ωi
m }li

m=1 using these
information and without solving the spectral problem [27].

Once the multiscale basis functions are constructed, the span of the multiscale basis functions will
form the offline space

V(i)
ms = span{φ

ωi
m }li

m=1,

Vms = ⊕iV
(i)
ms .

(9)
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We will then seek a multlscale solution ums ∈ Vms satisfying

a(ums, v) = ( f , v) for all v ∈ Vms, (10)

which is a Galerkin projection of the (1) onto Vms, and can be written as a system of linear equations

Acuc = bc, (11)

where Ac and bc are the coarse-scale stiffness matrix and load vector. If we collect all the multiscale basis
functions and arrange the fine-scale coordinate representation in columns, we obtain the downscaling
operator R. Then the fine-scale representation of the multiscale solution is given by

ums = Ruc. (12)

3. Deep Learning for GMsFEM

In applications, there are uncertainties within some local regions of the permeability field κ in the
flow problem. Thousands of forward simulations are needed to quantify the uncertainties of the flow
solution. GMsFEM provides us with a fast solver to compute the solutions accurately and efficiently.
Considering that there is a large amount of simulation data, we are interested in developing a method
utilizing the existing offline data and reducing direct computational effort later. In this work, we aim
at using DNN to model the relationship between heterogeneous permeability coefficient κ and the
key ingredients of GMsFEM solver, i.e., coarse scale stiffness matrices and multiscale basis functions.
When the relation is built up, we can feed the network any realization of the permeability field and
obtain the corresponding GMsFEM ingredients, and further restore fine-grid GMsFEM solution of (1).
The general idea of utilizing deep learning in the GMsFEM framework is illustrated in Figure 2.

Figure 2. A flow chart in illustrating the idea of using deep learning in the generalized multiscale finite
element method (GMsFEM) framework.

Suppose that there are uncertainties for the heterogeneous coefficient in a local coarse block
K0, which we call the target block, and the permeability outside the target block remains the same.
For example, for a channelized permeability field, the position, location and the permeability values of
the channels in the target block can vary. The target block K0 is inside three coarse neighborhoods,
denoted by ω1, ω2, ω3. The union of the 3 neighborhoods, i.e.,

ω+(K0) = ω1 ∪ ω2 ∪ ω3, (13)

are constituted of by the target block K0 and 12 other coarse blocks, denoted by {Kl}12
l=1 A target block

and its surrounding neighborhoods are depicted in Figure 3.
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Figure 3. An illustration of a target coarse block K0 and related neighborhoods.

For a fixed permeability field κ, one can compute the multiscale basis functions φ
ωi
m (κ) defined

by (7), for i = 1, 2, 3, and the local coarse-scale stiffness matrices AKl
c (κ), defined by

[AKl
c (κ)]

i,j
m,n =

∫
Kl

κ∇φ
ωi
m (κ) · ∇φ

ωj
n (κ), (14)

for l = 0, 1, . . . , 12. We are interested in constructing the maps gm,i
B and gl

M, where

• gm,i
B maps the permeability coefficient κ to a local multiscale basis function φ

ωi
m , where i denotes

the index of the coarse block, and m denotes the index of the basis in coarse block ωi

gm,i
B : κ �→ φ

ωi
m (κ), (15)

• gl
M maps the permeability coefficient κ to the coarse grid parameters AKl

c (l = 0, · · · , 12)

gl
M : κ �→ AKl

c (κ). (16)

In this work, our goal is to make use of deep learning to build fast approximations of these
quantities associated with the uncertainties in the permeability field κ, which can provide fast and
accurate solutions to the heterogeneous flow problem (1).

For each realization κ, one can compute the images of κ under the local multiscale basis maps gm,i
B

and the local coarse-scale matrix maps gl
M. These forward calculations serve as training samples for

building a deep neural network for approximation of the corresponding maps, i.e.,

Nm,i
B (κ) ≈ gm,i

B (κ),

N l
M(κ) ≈ gl

M(κ).
(17)

In our networks, the permeability field κ is the input, while the multiscale basis functions φ
ωi
m

and the coarse-scale matrix AKl
c are the outputs. Once the neural networks are built, we can use the

networks to compute the multiscale basis functions and coarse-scale parameters in the associated
region for any permeability field κ. Using these local information from the neural networks together
with the global information which can be pre-computed, we can form the downscale operator R with
the multiscale basis functions, form and solve the linear system (11), and obtain the multiscale solution
by (12).
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3.1. Network Architecture

In general, an L-layer neural network N can be written in the form

N (x; θ) = σ(WLσ(· · · σ(W2σ(W1x + b1) + b2) · · · ) + bL), (18)

where θ := (W1, W2, · · · , WL, b1, b2, · · · , bL), W’s are the weight matrices and b’s are the bias vectors,
σ is the activation function, x is the input. Such a network is used to approximate the output y.
Our goal is then to find θ∗ by solving an optimization problem

θ∗ = argmin
θ

L(θ), (19)

where L(θ) is called loss function, which measures the mismatch between the image of the input x
under the the neural network N (x, y; θ) and the desired output y in a set of training samples (xj, yj).
In this paper, we use the mean-squared error metric to be our loss function

L(θ) = 1
N

N

∑
j=1

‖yj −N (xj; θ)‖2
2, (20)

where N is the number of the training samples. An illustration of a deep neural network is shown
in Figure 4.

Figure 4. An illustration of a deep neural network.

Suppose we have a set of different realizations of the permeability {κ1, κ2, · · · , κN} in the target
block. In our network, the input xj = κj ∈ Rd is a vector containing the permeability image pixels

in the target block. The output yj is an entry of the local stiffness matrix AKl
c , or the coordinate

representation of a multiscale basis function φ
ωi
m . We will make use of these sample pairs (xj, yj) to

train a deep neural network Nm,i
B (x; θ∗B) and N l

M(x; θ∗M) by minimizing the loss function with respect
to the network parameter θ, such that the trained neural networks can approximate the functions gm,i

B
and gl

M, respectively. Once the neural is constructed, for some given new permeability coefficient
κN+1, we use our trained networks to compute a fast prediction of the outputs, i.e., local multiscale
basis functions φ

ωi ,pred
m by

φ
ωi ,pred
m (κN+1) = Nm,i

B (κN+1; θ∗B) ≈ gm,i
B (κN+1) = φ

ωi
m (κN+1), (21)

and local coarse-scale stiffness matrix AKl ,pred
c by

AKl ,pred
c (κN+1) = N l

M(κN+1; θ∗M) ≈ gl
M(κN+1) = AKl

c (κN+1). (22)
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3.2. Network-Based Multiscale Solver

Once the neural networks are built, we can assemble the predicted multiscale basis functions to
obtain a prediction Rpred for the downscaling operator, and assemble the predicted local coarse-scale
stiffness matrix AKl ,pred

c in the global matrix Apred
c . Following (11) and (12), we solve the predicted

coarse-scale coefficient vector upred
c from the following linear system

Apred
c upred

c = bc, (23)

and obtain the predicted multiscale solution upred
ms by

upred
ms = Rpredupred

c . (24)

4. Numerical Results

In this section, we present some numerical results for predicting the GMsFEM ingredients and
solutions using our proposed method. We considered permeability fields κ with high-contrast channels
inside the domain Ω = (0, 1)2, which consist of uncertainties in a target cell K0. More precisely,
we considered a number of random realizations of permeability fields κ1, κ2, κ3, · · · , κN+M.
Each permeability field contained two high-conductivity channels, and the fields differ in the target
cell K0 by:

• in experiment 1, the channel configurations were all distinct, and the permeability coefficients
inside the channels were fixed in each sample (see Figure 5 for illustrations), and

• in experiment 2, the channel configurations were randomly chosen among five configurations,
and the permeability coefficients inside the channels followed a random distribution (see Figure 6
for illustrations).

In these numerical experiments, we assumed there were uncertainties in only the target block K0.
The permeability field in Ω \ K0 was fixed across all the samples.

We followed the procedures in Section 3 and generated sample pairs using GMsFEM. Local
spectral problems were solved to obtain the multiscale basis functions φ

ωi
m . In the neural network, the

permeability field x = κ was considered to be the input, while the local multiscale basis functions
y = φ

ωi
m and local coarse-scale matrices y = AKl

c were regarded as the output. These sample pairs
were divided into the training set and the learning set in a random manner. A large number N of
realizations, namely κ1, κ2, . . . , κN , were used to generate sample pairs in the training set, while the
remaining M realizations, namely, κN+1, κN+2, . . . , κN+M are used in testing the predictive power of
the trained network. We remark that, for each basis function and each local matrix, we solved an
optimization problem in minimizing the loss function defined by the sample pairs in the training set,
and build a separate deep neural network. We summarize the network architectures for training local
coarse scale stiffness matrix and multiscale basis functions as below:

• For the multiscale basis function φ
ωi
m , we built a network Nm,i

B using

– Input: vectorized permeability pixels values κ,
– Output: coefficient vector of multiscale basis φ

ωi
m (κ) on coarse neighborhood ωi,

– Loss function: mean squared error
1
N

N

∑
j=1

||φωi
m (κj)−Nm,i

B (κj; θB)||22,

– Activation function: leaky ReLu function,
– DNN structure: 10–20 hidden layers, each layer have 250–350 neurons,
– Training optimizer: Adamax.

• For the local coarse scale stiffness matrix AKl
c , we build a network N l

M using
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– Input: vectorized permeability pixels values κ,
– Output: vectorized coarse scale stiffness matrix AKl

c (κ) on the coarse block Kl ,

– Loss function: mean squared error
1
N

N

∑
j=1

||AKl
c (κj)−N l

M(κj; θM)||22,

– Activation function: ReLu function (rectifier),
– DNN structure: 10–16 hidden layers, each layer have 100–500 neurons,
– Training optimizer: Proximal Adagrad.

For simplicity, the activation functions ReLU function [28] and Leaky ReLU function were used
as they have the simplest derivatives among all nonlinear functions. The ReLU function proved to
be useful in training deep neural network architectures. The Leaky ReLU function can resolve the
vanishing gradient problem which can accelerate the training in some occasions. The optimizers
Adamax and Proximal Adagrad are stochastic gradient descent (SGD)-based methods commonly
used in neural network training [29]. In both experiments, we trained our network using Python API
Tensorflow and Keras [30].

Once a neural network was built on training, it can be used to predict the output given a new
input. The accuracy of the predictions is essential in making the network useful. In our experiments,
we used M sample pairs, which were not used in training the network, to examine the predictive
power of our network. On these sample pairs, referred to as the testing set, we compared the prediction
and the exact output and computed the mismatch in some suitable metric. Here, we summarize the
metric used in our numerical experiment. For the multiscale basis functions, we compute the relative
error in L2 and H1 norm, i.e.,

eL2(κN+j) =

⎛⎜⎝
∫

Ω

∣∣∣φωi
m (κN+j)− φ

ωi ,pred
m (κN+j)

∣∣∣2∫
Ω

∣∣φωi
m (κN+j)

∣∣2
⎞⎟⎠

1
2

,

eH1(κN+j) =

⎛⎜⎝
∫

Ω

∣∣∣∇φ
ωi
m (κN+j)−∇φ

ωi ,pred
m (κN+j)

∣∣∣2∫
Ω

∣∣∇φ
ωi
m (κN+j)

∣∣2
⎞⎟⎠

1
2

.

(25)

For the local stiffness matrices, we computed the relative error in entrywise �2, entrywise �∞ and
Frobenius norm, i.e.,

e�2(κN+j) =
‖AKl

c (κN+j)− AKl ,pred
c (κN+j)‖2

‖AKl
c (κN+j)‖2

,

e�∞(κN+j) =
‖AKl

c (κN+j)− AKl ,pred
c (κN+j)‖∞

‖AKl
c (κN+j)‖∞

,

eF(κN+j) =
‖AKl

c (κN+j)− AKl ,pred
c (κN+j)‖F

‖AKl
c (κN+j)‖F

.

(26)

A more important measure of the usefulness of the trained neural network is the predicted
multiscale solution upred

ms (κ) given by (23) and (24). We compared the predicted solution to ums defined
by (11) and (12), and computed the relative error in L2 and energy norm, i.e.,
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eL2(κN+j) =

⎛⎜⎝
∫

Ω

∣∣∣ums(κN+j)− upred
ms (κN+j)

∣∣∣2∫
Ω

∣∣ums(κN+j)
∣∣2

⎞⎟⎠
1
2

,

ea(κN+j) =

⎛⎜⎝
∫

Ω κj

∣∣∣∇ums(κN+j)−∇upred
ms (κN+j)

∣∣∣2∫
Ω κj

∣∣∇ums(κN+j)
∣∣2

⎞⎟⎠
1
2

.

(27)

4.1. Experiment 1

In this experiment, we considered curved channelized permeability fields. Each permeability
field contained a straight channel and a curved channel. The straight channel was fixed and the curved
channel struck the boundary of the target cell K0 at the same points. The curvature of the sine-shaped
channel inside K0 varied among all realizations. We generated 2000 realizations of permeability fields,
where the permeability coefficients were fixed. Samples of permeability fields are depicted in Figure 5.
Among the 2000 realizations, 1980 sample pairs were randomly chosen and used as training samples,
and the remaining 20 sample pairs were used as testing samples.

Figure 5. Samples of permeability fields in the target block K0 in experiment 1.

For each realization, we computed the local multiscale basis functions and local coarse-scale
stiffness matrix. In building the local snapshot space, we solved for harmonic extension of all the
fine-grid boundary conditions. Local multiscale basis functions were then constructed by solving the
spectral problem and multiplied the spectral basis functions with the multiscale partition of unity
functions. With the offline space constructed, we computed the coarse-scale stiffness matrix. We used
the training samples to build deep neural networks for approximating these GMsFEM quantities, and
examined the performance of the approximations on the testing set.
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Tables 1–3 record the error of the prediction by the neural networks in each testing sample and
the mean error measured in the defined metric. It can be seen that the predictions were of high
accuracy. This is vital in ensuring the predicted GMsFEM solver is useful. Table 4 records the error
of the multiscale solution in each testing sample and the mean error using our proposed method.
It can be observed that using the predicted GMsFEM solver, we obtained a good approximation of the
multiscale solution compared with the exact GMsFEM solver.

Table 1. Percentage error of multiscale basis functions φωi
1 in experiment 1.

Sample ω1 ω2 ω3

j eL2 eH1 eL2 eH1 eL2 eH1

1 0.47% 3.2% 0.40% 3.6% 0.84% 5.1%
2 0.45% 4.4% 0.39% 3.3% 1.00% 6.3%
3 0.34% 2.3% 0.40% 3.1% 0.88% 4.3%
4 0.35% 4.2% 0.43% 5.4% 0.94% 6.6%
5 0.35% 3.3% 0.37% 3.9% 0.90% 6.1%
6 0.51% 4.7% 0.92% 12.0% 2.60% 19.0%
7 0.45% 4.1% 0.38% 3.2% 1.00% 6.4%
8 0.31% 3.4% 0.43% 5.5% 1.10% 7.7%
9 0.25% 2.2% 0.46% 5.6% 1.10% 6.2%
10 0.31% 3.5% 0.42% 4.5% 1.30% 7.6%

Mean 0.38% 3.5% 0.46% 5.0% 1.17% 7.5%

Table 2. Percentage error of multiscale basis functions φωi
2 in experiment 1.

Sample ω1 ω2 ω3

j eL2 eH1 eL2 eH1 eL2 eH1

1 0.47% 4.2% 0.40% 1.4% 0.32% 1.1%
2 0.57% 3.2% 0.31% 1.4% 0.30% 1.1%
3 0.58% 2.7% 0.31% 1.4% 0.33% 1.1%
4 0.59% 3.6% 0.13% 1.3% 0.32% 1.1%
5 0.53% 4.0% 0.51% 1.6% 0.27% 1.0%
6 0.85% 4.3% 0.51% 2.1% 0.29% 1.3%
7 0.50% 2.7% 0.22% 1.5% 0.29% 1.0%
8 0.43% 4.5% 0.61% 1.9% 0.35% 1.1%
9 0.71% 2.9% 0.14% 1.4% 0.27% 1.1%
10 0.66% 4.4% 0.53% 1.8% 0.26% 1.1%

Mean 0.59% 3.6% 0.37% 1.6% 0.30% 1.1%

Table 3. Percentage error of the local stiffness matrix AK0
c in experiment 1.

Sample j e�2 eF

1 0.67% 0.84%
2 0.37% 0.37%
3 0.32% 0.38%
4 1.32% 1.29%
5 0.51% 0.59%
6 4.43% 4.28%
7 0.34% 0.38%
8 0.86% 1.04%
9 1.00% 0.97%
10 0.90% 1.08%

Mean 0.76% 0.81%
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Table 4. Percentage error of multiscale solution ums in experiment 1.

Sample j eL2 ea

1 0.31% 4.58%
2 0.30% 4.60%
3 0.30% 4.51%
4 0.27% 4.60%
5 0.29% 4.56%
6 0.47% 4.67%
7 0.39% 4.70%
8 0.30% 4.63%
9 0.35% 4.65%
10 0.31% 4.65%

Mean 0.33% 4.62%

4.2. Experiment 2

In this experiment, we considered sine-shaped channelized permeability fields. Each permeability
field contained a straight channel and a sine-shaped channel. There were altogether five channel
configurations, where the straight channel was fixed and the sine-shaped channel struck the boundary
of the target cell K0 at the same points. The curvature of the sine-shaped channel inside K0 varied
among these configurations. For each channel configuration, we generated 500 realizations of
permeability fields, where the permeability coefficients followed random distributions. Samples
of permeability fields are depicted in Figure 6. Among the 2500 realizations, 2475 sample pairs were
randomly chosen and used as training samples, and the remaining 25 sample pairs were used as
testing samples.

Figure 6. Samples of permeability fields in the target block K0 in experiment 2.

Next, for each realization, we computed the local multiscale basis functions and local coarse-scale
stiffness matrix. In building the local snapshot space, we solved for harmonic extension of
randomized fine-grid boundary conditions, so as to reduce the number of local problems to be solved.
Local multiscale basis functions were then constructed by solving the spectral problem and multiplied
the spectral basis functions with the multiscale partition of unity functions. With the offline space
constructed, we computed the coarse-scale stiffness matrix. We used the training samples to build
deep neural networks for approximating these GMsFEM quantities, and examined the performance of
the approximations on the testing set.
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Figures 7–9 show the comparison of the multiscale basis functions in two respective coarse
neighborhoods. It can be observed that the predicted multiscale basis functions were in good agreement
with the exact ones. In particular, the neural network successfully interpreted the high conductivity
regions as the support localization feature of the multiscale basis functions. Tables 5 and 6 record the
mean error of the prediction by the neural networks, measured in the defined metric. Again, it can be
seen that the prediction are of high accuracy. Table 7 records the mean error between the multiscale
solution using the neural-network-based multiscale solver and using exact GMsFEM. we obtain a
good approximation of the multiscale solution compared with the exact GMsFEM solver.

Figure 7. Exact multiscale basis functions φω1
m (left), predicted multiscale basis functions φ

ω1,pred
m

(middle) and their differences (right) in the coarse neighborhood ω1 in experiment 2. The first row and
the second row illustrate the first basis function φω1

1 and the second basis function φω1
2 , respecitvely.

Figure 8. Exact multiscale basis functions φω2
m (left), predicted multiscale basis functions φ

ω2,pred
m

(middle) and their differences (right) in the coarse neighborhood ω2 in experiment 2. The first row and
the second row illustrate the first basis function φω2

1 and the second basis function φω2
2 , respecitvely.
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Figure 9. Exact multiscale basis functions φω3
m (left), predicted multiscale basis functions φ

ω3,pred
m

(middle) and their differences (right) in the coarse neighborhood ω3 in experiment 2. The first row and
the second row illustrate the first basis function φω3

1 and the second basis function φω3
2 , respecitvely.

Table 5. Mean percentage error of multiscale basis functions φωi
m in experiment 2.

Basis ω1 ω2 ω3

m eL2 eH1 eL2 eH1 eL2 eH1

1 0.55 0.91 0.37 3.02 0.20 0.63
2 0.80 1.48 2.17 3.55 0.27 1.51

Table 6. Percentage error of the local stiffness matrix AK0
c in experiment 2.

e�2 e�∞ eF

Mean 0.75 0.72 0.80

Table 7. Percentage error of multiscale solution ums in experiment 2.

eL2 ea

Mean 0.03 0.26

5. Conclusions

In this paper, we develop a method using deep learning techniques for fast computation of
GMsFEM discretizations. Given a particular permeability field, the main ingredients of GMsFEM,
including the multiscale basis functions and coarse-scale matrices, are computed in an offline stage by
solving local problems. However, when one is interested in calculating GMsFEM discretizations for
multiple choices of permeability fields, repeatedly formulating and solving such local problems could
become computationally expensive or even infeasible. Multi-layer networks are used to represent the
nonlinear mapping from the fine-scale permeability field coefficients to the multiscale basis functions
and the coarse-scale parameters. The networks provide a direct fast approximation of the GMsFEM
ingredients in a local neighborhood for any online permeability fields, in contrast to repeatedly
formulating and solving local problems. Numerical results are presented to show the performance of
our proposed method. We see that, given sufficient samples of GMsFEM discretizations for supervised
training, deep neural networks are capable of providing reasonably close approximations of the exact
GMsFEM discretization. Moreover, the small consistency error provides good approximations of
multiscale solutions.
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Abstract: Numerical methods for the solution of ordinary differential equations are based on
polynomial interpolation. In 1952, Brock and Murray have suggested exponentials for the case
that the solution is known to be of exponential type. In 1961, Gautschi came up with the idea of
using information on the frequency of a solution to modify linear multistep methods by allowing the
coefficients to depend on the frequency. Thus the methods integrate exactly appropriate trigonometric
polynomials. This was done for both first order systems and second order initial value problems.
Gautschi concluded that “the error reduction is not very substantial unless” the frequency estimate is
close enough. As a result, no other work was done in this direction until 1984 when Neta and Ford
showed that “Nyström’s and Milne-Simpson’s type methods for systems of first order initial value
problems are not sensitive to changes in frequency”. This opened the flood gates and since then there
have been many papers on the subject.

Keywords: second order initial value problems; linear multistep methods; Obrechkoff schemes;
trigonometrically fitted

1. Introduction

In this article, we discuss various methods for the numerical solution of the second order initial
value problem

y′′ = f (x, y),
y(x0) = y0,
y′(x0) = y′0.

(1)

If the initial value problem contains y′(x) then it is usually converted to a system of first order

y′1(x) = y2,
y1(x0) = y0,
y′2(x) = f (x, y1, y2),
y2(x0) = y′0,

(2)

by defining new variables y1 = y, y2 = y′. In vector notation the system (2) can be written as

y′ = f(x, y), y(x0) = y0, (3)

where y = [y1, y2]
T , f = [y2, f (x, y1, y2)]

T , and y0 = [y0, y′0]
T .

Here we are concerned with trigonometrically-fitted methods for (1) and (3).
There are several classes of methods, such as linear multistep methods (including Obrechkoff

methods) and Runge-Kutta methods. Here we will introduce each class and then review the extension
of those to solution of problems for which the frequency is approximately known in advance.

Mathematics 2019, 7, 1197; doi:10.3390/math7121197 www.mdpi.com/journal/mathematics141
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Linear multistep methods for the solution of (3) are given by

k

∑
j=0

αjyn+j = h
k′

∑
j=0

β j fn+j, (4)

and of (1) are given by
k

∑
j=0

αjyn+j = h2
k′

∑
j=0

β j fn+j, (5)

where yn+j is the approximate value at xn+j and similarly for fn+j. In here k is called the step-number
and k′ is either k − 1 or k. In the former case the method is called explicit and in the latter it is called
implicit. The coefficients αj and β j are chosen to satisfy stability and convergence, as we describe in
the sequel.

We now introduce the first and second characteristic polynomials,

ρ(ζ) =
k

∑
j=0

αjζ
j, (6)

σ(ζ) =
k′

∑
j=0

β jζ
j. (7)

For (3) explicit methods for which ρ(ζ) = ζk − ζk−1 are called Adams-Bashforth and the implicit
ones are called Adams-Moulton. Explicit methods for which ρ(ζ) = ζk − ζk−2 are called Nyström
methods and the implicit ones are called Generalized Milne-Simpson methods. Gautschi [1] has developed
Adams-type methods for first order equation as well as Nyström methods for the second order
equation. Neta and Ford [2] only developed Nyström and Generalized Milne-Simpson methods for
first order equation.

Definition 1. If, for an arbitrary smooth enough test function z(x), we have

k

∑
j=0

αjz(x + jh)− h
k′

∑
j=0

β jz′′(x + jh) = Cp+1hp+1z(p+1)(x) + O(hp+2), (8)

then, p is called the order of the linear multistep method (4) and Cp+1 is its error constant.
The expression given by (8) is called the local truncation error at xn+k of the method (4), when z(x) is the

theoretical solution of the initial value problem (1).

In a similar fashion we have for (5)

k

∑
j=0

αjz(x + jh)− h2
k′

∑
j=0

β jz′′(x + jh) = Cp+2hp+2z(p+2)(x) + O(hp+3). (9)

Throughout, we shall assume that the linear multistep method (4) satisfies the following
hypotheses (see [3]):

• αk = 1, |α0|+ |β0| �= 0,
k′

∑
j=0

|β j| �= 0.

• No common factors for the characteristic polynomials ρ and σ.
• ρ(1) = 0, ρ′(1) = σ(1); this is a necessary and sufficient condition for the method to be consistent.
• The method is zero-stable; that is, all the roots ζ� of ρ satisfy |ζ�| < 1 for � > 1 and ζ1 = 1.
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For the method (5) for second order initial value problems we have

• αk = 1, |α0|+ |β0| �= 0,
k′

∑
j=0

|β j| �= 0.

• No common factors for the characteristic polynomials ρ and σ.
• ρ(1) = ρ′(1) = 0, ρ′′(1) = 2σ(1); which is a necessary and sufficient condition for the method to

be consistent.
• The method is zero-stable.

We now consider the test equation (see, e.g., Chawla and Neta [4])

y′′(x) = −λ2y(x). (10)

Let ζs, s = 1, 2, . . . , k denote the zeros of the polynomial

Ω(ζ, H2) = ρ(ζ) + H2σ(ζ), (11)

for H = λh and let ζ1, ζ2 correspond to perturbations of the principal roots of ρ(ζ). We define interval
of periodicity (0, H2) if, for all H2 in the interval, the roots ζs of (11) satisfy ζ1 = eiθ(H), ζ2 = e−iθ(H),
|ζs| ≤ 1, s ≥ 3 and θ(H) is real.

If the interval of periodicity is (0, ∞), then the method is called P-stable. Lambert and Watson [5]
had shown that P-stable linear multistep methods are implicit of order at most 2.

Remark 1. If the problem (1) has periodic solutions and the period is not known, then the P-stability is desirable.
If the period is known approximately, then one can use the ideas in Gautschi [1], Neta and Ford [2], and others
to be reviewed here.

Another important property when solving (1) is the phase lag which was introduced by Brusa and
Nigro [6]. Upon applying a linear two-step method to the test Equation (10), we obtain a difference
equation of the form

A(H)yn+2 + B(H)yn+1 + C(H)yn = 0, (12)

whose solution is
yn = B1λn

1 + B2λn
2 , (13)

where B1 and B2 are constants depending on the initial conditions. The quadratic polynomial

A(H)λ2 + B(H)λ + C(H) = 0, (14)

is called the stability polynomial. The solutions to (14) are given by

λ1 = e(−a(H)+ib(H))H ,
λ2 = e(−a(H)−ib(H))H .

(15)

If a(H) ≡ 0 and b(H) ≡ 1, then we get the exact solution to the test Equation (10). The difference
between the amplitudes of the exact solution of (10) and numerical solution is called dissipation error,
see [7]. The expansion b(H) − 1 in powers of H is called phase lag expansion. The modulus of the
leading terms is the phase lag of the method. See also Thomas [8] and Twizell [9].

Remark 2. Raptis and Simos have developed methods with minimal phase-lag and also P-stable methods
in [10–14].

We now introduce an extension to the linear multistep methods. These are called multiderivative
or Obrechkoff methods, see Obrechkoff [15] or [16].
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For the first order equation we have

k

∑
j=0

αjyn−j+1 =
�

∑
i=1

k

∑
j=0

βi jhiy(i)n−j+1, (16)

and for the second order equation

k

∑
j=0

αjyn−j+1 =
�

∑
i=1

k

∑
j=0

βi jh2iy(2i)
n−j+1. (17)

According to Lambert and Mitchell [17], the error constant decreases more rapidly with increasing
� rather than the step k. Thus, one can get one-step high order methods. A list of Obrechkoff methods
for various k and � is given in [17] for first order equations and in [18] for second order equations.

Several P-stable Obrechkoff methods for second-order initial-value problems (for � ≤ 3) were
derived by Van Daele and Vanden Berghe [19]. Ananthakrishnaiah [18] has also included the case
� = 4.

Lastly, we introduce Runge-Kutta-Nyström (RKN) methods.
The general form of an explicit k-stage two-step Runge-Kutta-Nyström method (RKN) for the

solution of (1) is given by, see Franco and Rández [20]

Yi = (1 + ci)yn − ciyn−1 + h2
k

∑
j=1

ai j f
(
xn + cjh, Yj

)
, (18)

yn+1 = 2yn − yn−1 + h2
k

∑
i=1

bi f (xn + cih, Yi) . (19)

Vigo-Aguiar and Ramos [21] introduced methods based on Runge-Kutta collocation.

Definition 2. Trigonometrically-fitted RKN method (18)–(19) integrates exactly the functions sin(λx) and
cos(λx) with λ > 0 the principal frequency of the problem when applied to the test Equation (10).

In general, a method integrates exactly the set of functions {u1(x), u2(x), . . . , ur(x)}, r ≤ k if the
following conditions are satisfied

u�(xn + h) = 2u�(xn)− u�(xn − h) + h2
k

∑
i=1

biu′′
� (xn + cih), � = 1, . . . , r

u�(xn + cih) = (1 + ci)u�(xn)− ciu�(xn − h) + h2
k

∑
j=1

ai ju′′
� (xn + cjh),

i = 1, . . . , k, � = 1, . . . , r

(20)

2. Methods Based on Linear Multistep Methods

The idea of fitting functions other than monomials goes back to Greenwood [22], Brock and
Murray [23], Dennis [24], Gautschi [1] and Salzer [25].

The first paper suggesting the use of the frequency of the solution is due to Gautschi [1]. He
considered Störmer type methods for the solution of (1). The idea is to allow the coefficients to depend
on the frequency ω. Let L be a functional defined by

Ly =
k

∑
j=0

[
αjy(x0 + (n + 1 − j)h)− hβ j f (x0 + (n + 1 − j)h)

]
, (21)
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where α0 = 1. Since we are introducing trigonometric functions, we refer to order as algebraic order and
define trigonometric order as follows:

Definition 3. A linear functional L ∈ Cs[a, b] is said to be of algebraic order p, if

Lxr ≡ 0, r = 0, 1, . . . , p,

and Lxp+1 does not vanish. Therefore we have p + 1 conditions for methods of algebraic order p.
The method

k

∑
j=0

αjyn+j = h
k′

∑
j=0

β j(v) fn+j, (22)

where v = ωh and αk = 1 is said to be of trigonometric order q relative to the frequency ω if the associated
linear functional

Ly(x) =
k

∑
j=0

αjyn+j − h
k′

∑
j=0

β j(v)y′n+j

satisfies
L1 ≡ 0,

and
L cos(rωx) ≡ L sin(rωx) ≡ 0, r = 1, 2, . . . , q,

and L cos((q + 1)ωx) and L sin((q + 1)ωx) are not both identically zero.

Therefore, methods of trigonometric order q satisfy 2q + 1 conditions.
Linear multistep or trigonometrically fitted method for second order ordinary differential

equations (ODEs) (1) satisfy an additional condition

Lx ≡ 0

for the same order, see Lambert [3].

Remark 3. The trigonometric order is lower than the algebraic order, since the trigonometric polynomials
requires two conditions for each degree, see Lambert [3].

Gautschi [1] allowed the coefficients αj to depend on v and listed several explicit and implicit
methods of trigonometric orders q ≤ 3. The form of the explicit methods is:

yn+1 + αq 1(v)yn + αq 2(v)yn−1 = h2
2q−1

∑
j=1

βq j(v) fn+1−j. (23)

We only list the methods of trigonometric orders 1 and 2 using powers of cos(v) instead of the
Taylor series expansions shown in [1]. Those Taylor series expansions should be used when h → 0.

For q = 1, the coefficients are:

α1 1 = −2, α1 2 = 1, β1 1 =

(
2 sin(v/2)

v

)2

. (24)
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For q = 2, the coefficients are:

α2 1 =
2
3
(cos(2v)− 4 cos(v)) ,

α2 2 = −α2 1 − 1,

β2 1 =
1
6
−16 cos(v)3 + 9 cos(v) + 7

v2(2 cos(v) + 1)
,

β2 2 =
1
3

8 cos(v)3 − 9 cos(v)2 − 3 cos(v) + 4
v2(2 cos(v) + 1)

,

β2 3 =
1
2

1 − cos(v)
v2(2 cos(v) + 1)

.

(25)

The form of the implicit methods is:

yn+1 + αq 1(v)yn + αq 2(v)yn−1 = h2
2q−2

∑
j=0

βq j(v) fn+1−j. (26)

For q = 1, the coefficients are:

α1 1 =
2 cos(v)

1 − 2 cos(v)
,

α1 2 = −α1 1 − 1,

β1 0 =
2(1 − cos(v))

v2(2 cos(v)− 1)
.

(27)

For q = 2, the coefficients are:

α2 1 = −2,

α2 2 = 1,

β2 0 =
1
2

1 − cos(v)
v2(2 cos(v) + 1)

,

β2 1 =
2 + cos(v)− 3 cos(v)2

v2(2 cos(v) + 1)
,

β2 2 = β2 0.

(28)

Neta and Ford [2] have constructed the Nyström and Generalized Milne-Simpson methods for a first
order (3) where the coefficients β j are functions of the frequency. Here we list a few of those.

For q = 1, the explicit method is

yn+2 − yn =
2 sin(v)

v
h fn+1. (29)
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For q = 2, the explicit method is

yn+4 − yn+2 = −h
sin(v)

v(1 + 2 cos(v))
[ fn + 2(1 − 2 cos(v))(1 + cos(v)) fn+1

+(4 cos(v) cos(2v) + 1) fn+2 − 4 cos(v)(1 + cos(v)) fn+3] .

(30)

For q = 1, the implicit method is a one-parameter family

yn+2 − yn = h
[

β0 fn +

(
2 sin(v)

v
− 2β0 cos(v)

)
fn+1 + β0 fn+2

]
. (31)

Note that the choice β0 = 0 leads to the explicit method (29).
For q = 2, the implicit method is

yn+3 − yn+1 = h
sin(v)

v(1 + 2 cos(v))
[ fn+1 + 2(1 + cos(v)) fn+2 + fn+3] . (32)

Vigo-Aguiar and Ramos [26] show how to choose the frequency for nonlinear ODEs.
Van der Houwen and Sommeijer [27] have developed predictor-corrector methods. Neta [28]
has developed exponentially fitted methods for problems whose oscillatory solution is damped.
Raptis and Allison [29] have used the idea for the solution of Schrödinger equation. Stiefel and
Bettis [30] have stabilized Cowell’s method [31] by fitting trigonometric polynomials. Lambert and
Watson [5] introduced symmetric multistep methods which have non-vanishing interval of periodicity.
Quinlan and Termaine [32] have developed high order symmetric multistep methods. Simos and
Vigo-Aguiar [33] have developed exponentially-fitted symmetric methods of algebraic order eight
based on the work of [32]. They demonstrated the superiority of their method on two orbital examples
integrated on a long time interval t ∈ [0, 105]. Another idea developed by Neta and Lipowski [34] is to
use the energy of the system instead of integrating the angular velocity. They have demonstrated the
benefit of their method using several examples for perturbation-free flight and a more general case on
long time flight. Vigo-Aguiar and Ferrándiz [35] have developed a general procedure for the adaptation
of multistep methods to numerically solve problems having periodic solutions. Vigo-Aguiar et al. [36]
and Martín-Vaquero and Vigo-Aguiar [37] have developed methods for stiff problems by using
Backward Differentiation Formulae (BDF) methods. See also Neta [38].

Sommeijer et al. [39] have suggested a different idea for trigonometrically-fitted methods. Instead
of requiring fitting cosine and sine functions of multiple of the frequency, they suggest taking several
frequencies in some interval around the known frequency. The frequencies are chosen to be the roots
of a Chebyshev polynomial, so that we minimize the maximum error. Such methods were called
minimax methods. See also Neta [40].

We now give more details. Suppose we have an interval [ω, ω̄] of frequencies and we pick
q frequencies

ωj =
1
2

(
(ω̄)2 + (ω)2

)
+

1
2

(
(ω̄)2 − (ω)2

)
cos(

2j − 1
2q

π)]1/2.

The idea is to interpolate the sine and cosine functions of those frequencies

L1 ≡ 0,

and
L cos(ωrx) ≡ L sin(ωrx) ≡ 0, r = 1, 2, . . . , q.
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Thus for the second order initial value problem, we have the system

(hωj)
2

{
k/2−1

∑
�=0

2b� cos((k/2 − �)hωj) + bk/2

}
= −

k

∑
�=0

a� cos((k/2 − �)hωj),

for j = 1, . . . , q. Unfortunately, this yields very messy coefficients and we will not list any of them here.

3. Methods Based on Obrechkoff Methods

Simos [41] has developed a P-stable trigonometrically-fitted Obrechkoff method of algebraic order
10 for (1).

yn+1 − 2yn + yn−1 =
3

∑
j=1

h2j
[
bj 0y(2j)

n+1 + 2bj 1y(2j)
n + bj 0y(2j)

n−1

]
, (33)

where
b1 0 =

89
1878

− 15120
313

b3 1,

b1 1 =
425
939

+
15120
313

b3 1,

b2 0 = − 1907
1577520

+
660
313

b3 1,

b2 1 =
30257

1577520
+

690
313

b3 1,

b3 0 =
59

3155040
− 13

313
b3 1.

(34)

In order to ensure P-stability, the coefficient b3 1 must be

b3 1 =
(

190816819200[1 − cos(H)]− 95408409600H2 + 7950700800H4

−265023360H6 + 4732560H8 − 52584H10 + 1727H12
)

/(3568320H12).

(35)

The method requires an approximation of the first derivative which is given by

y′n+1 =
1

2h
(yn−1 − 4yn + 3yn+1)−

h
12
(
y′′n−1 + 2y′′n + 3y′′n+1

)
. (36)

He showed that the local truncation error is

LTE =

(
− 2923

209898501120
+

59
1577520

b3 1

)
h12y(12)

n .

Wang et al. [42] have suggested a slight modification to the coefficient b3 1 as follows

b3 1 =
3155040 − 1428000H2 + 60514H4 − a1 cos(H)

5040H2(−15120 + 6900H2 − 313H4 + a2 cos(H))
, (37)

where a1 = 3155040 + 149520H2 + 3814H4 + 59H6 and a2 = 15120 + 660H2 + 13H4.
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Wang et al. [42] have developed a method of algebraic order 12 as follows

yn+1 − 2yn + yn−1 = h2 (α1
(
y′′n+1 + y′′n−1

)
+ α2y′′n

)
+ h4 (β1

(
y′′n+1 + y′′n−1

)
+ β2y′′n

)
+ h6 (γ1

(
y′′n+1 + y′′n−1

)
+ γ2y′′n

)
,

(38)

where
α1 =

229
7788

, β1 = − 1
2360

, β2 =
711

12980
,

γ1 =
127

39251520
, γ2 =

2923
3925152

,

and α2 is chosen so the method is P-stable,

α2 = −2H−2 + H2β2 − H4γ2 + 2 cos(H)
(

H−2 − α1 + H2β1 − H4γ1

)
.

The method is of algebraic order 12 and the local truncation error is now

LTE =
45469

1697361329664000
h14

(
ω12y′′n − y(14)

n

)
.

The first order derivative is obtained by

y′n+1 =
1

66h
(305yn+1 − 544yn + 239yn−1) +

h
1980

(
−5728y′′n − 571y′′n−1 + 119y′′n+1

)
+

h2

2970
(
128y′′′n − 173y′′′n−1

)
+

h3

2970

(
−346y(4)n − 13y(4)n−1

)
+

h5

62370

(
−71y(6)n + y(6)n−1

)
.

Remark 4. Neta [43] has developed a P-stable method of algebraic order 18.

Vanden Berghe and Van Daele [44] have suggested fitting a combination of monomials and
exponentials, i.e., the set {1, x, . . . , xK, e±μx, xe±μx, . . . , xPe±μx}. Clearly when μ is purely imaginary,
we get the cosine and sine functions. When K = −1, we get only the exponential functions and when
P = −1 we get only monomials (which is the well known Obrechkoff method). Even when K = −1,
we are not getting the cosine and sine functions of multiples of the frequency as in the previously
discussed methods. They developed methods of algebraic order 8. Here we list only two of those, one
with K = 5, P = 1 (39) and the other with K = 7, P = 0 (40).

The first method is given by

b1 0 =
1

12
− 2b2 0 − 2b2 1,

b1 1 =
5

12
+ 2b2 0 + 2b2 1,

b2 0 =
v5 sin(v) + 2(cos(v) + 5)v4 + 48(cos(v)− 1)A

12v4(v3 sin(v)− 4(1 − cos(v))2)
,

b2 1 =
5v5 sin(v)− 2 cos(v)(cos(v) + 5)v4 − 48(cos(v)− 1)B

12v4(v3 sin(v)− 4(1 − cos(v))2)
,

(39)
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where A = (v2 + cos(v)− 1) and B = (v2 cos(v) + cos(v)− 1).
The second method is

b1 0 =
1
30

− 12b2 0,

b1 1 =
7
15

+ 12b2 0,

b2 0 =
4 cos(v)v2 + 56v2 − 3v4 + 120 cos(v)− 120

120v2(12 cos(v)− 12 + cos(v)v2 + 5v2)
,

b2 1 =
1
40

+ 5b2 0.

(40)

4. Methods Based on Runge-Kutta

For a trigonometrically-fitted method, we have (see Franco and Rández [20])

k

∑
i=1

bi cos(civ) =
2(cos(v)− 1

v2 ,

k

∑
i=1

bi sin(civ) = 0,

k

∑
j=1

ai j cos(civ) =
cos(civ) + ci cos(v)− (1 + ci)

v2 , i = 1, . . . , k,

k

∑
j=1

ai j sin(civ) =
sin(civ)− ci sin(v)

v2 , i = 1, . . . , k.

(41)

The solution for k = 3 is given in Franco [45]

c1 = −1,
c2 = 0,
c3 = 1,

b1 =
2 cos(v)− 2 − v2

2v2(cos(v)− 1)
,

b2 =
(2 − v2) cos(v)− 2

v2(cos(v)− 1)
,

b3 = b1,
a3 1 = 0,

a3 2 =
2(cos(v)− 1)

v2 ,

a3 3 = 0.

(42)

This method has an algebraic order 2 and reduces to the two-stage explicit Numerov method of
Chawla [46]. The method integrates exactly the set of functions {1, x, x2, cos(ωx), sin(ωx)}, similar to
the idea of Vanden Berghe and Van Daele [44].

Franco and Rández [20] have developed a 7-stage method of algebraic order 7 which integrates
exacly the monomials up to x6 and sin(ωx) and cos(ωx). A 5-stage family of methods of algebraic
order 6 listed here and in Tsitouras [47] has been developed by Fang et al. [48]. Here we list just one
member of the family.

c1 = −1, c2 = 0, c3 =
1
2

, c4 = −1
2

, c5 = 1, (43)
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a3 1 = − sin2(v/4)
v2 cos(v/2)

,

a3 2 =
2 cos(v/2) + 2 cot(v) sin(v/2)− 3

2v2 ,

a4 1 =
36 + v2 − 36 cos(v/2)

72v2 cos(v/2)
,

a4 2 =
36 sin(v/2)− v2 sin(3v/2)− 18 sin(v)

36v2 sin(v)
,

a4 3 =
1
36

,

a5 1 = − 2
9 cos(v/2)

,

a5 2 =
2 cos(v)− 2

v2 − 1
3 cos(v/2)

− 2 sin(3v/2)
9 sin(v)

,

a5 3 =
2
9

,

a5 4 =
2
3

,

(44)

b1 = b5 =
6 cos(v)− 6 − v2 − 2v2 cos(v/2)

48v2 sin4(v/4)
,

b2 =
(18 + v2) cos(v)− 18 − 10v2 cos(v/2)

24v2 sin4(v/4)
,

b3 = b4 =
12 + 5v2 + (v2 − 12) cos(v)

24v2 sin4(v/4)
.

(45)

Demba et al. [49] have developed fourth and fifth order Runge-Kutta-Nyström
trigonometrically-fitted methods for (1). The idea is based on using 3-stage method to get a 4-stage
trigonometrically-fitted method. Here we list the coefficients

yn+1 = yn + hy′n + h2
s

∑
i=1

bi f (xn + hci, Yi) (46)

y′n+1 = y′n + h
s

∑
i=1

di f (xn + hci, Yi) (47)

where Yi are given by (18) and

c1 = 0,

c2 =
3

16
v3 cos(v)− 5v2 sin(v) + 4v3 − 32v cos(v) + 160 sin(v)− 128v

v(6v sin(v) + v2 + 30 cos(v)− 30)
,

c3 = − 3
500

−11v6(4 + cos(v)) + 55v5 sin(v) + v4(38 cos(v) + 1536) + T1 + T2

v2(6v sin(v) + v2 + 30 cos(v)− 30)
,

a2,1 =
1

32,

a3,1 = − 1
1000

−11v5 + 384v3 + 2112 sin(v)− 2112v
v3 ,

a3,2 =
44

125
,

(48)

where

T1 = −1920v3 sin(v) + 2112v cos(v) sin(v)− v2(672 cos(v) + 4448) + 10560 cos(v)2,
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and
T2 = +3008v sin(v)− 21120 cos(v) + 10560,

b1 =
1
24

,

b2 =
16
165

v4 + 66v sin(v)− 21v2 + 330 cos(v)− 330
v2(v2 − 32)

,

b3 =
25
264

,

d1 =
1
24

,

d2 =
16
33

,

d3 =
125
264

.

(49)

The Taylor series expansion of the coefficients is given by

a3,1 = −4/125 − (33/5000)v2 + (11/26250)v4 − (11/1890000)v6,
b2 = 4/11 − (1/3600)v4 + (1/161280)v6,
c2 = 1/4 − (1/26880)v4 + (19/7741440)v6,
c3 = 4/5 + (13/4375)v4 − (257/3780000)v6.

(50)

5. Comments on Order

Definition 1 of order (see (8) and (9)) can be extended to trigonometrically fitted methods. Note
that a method is of order p for first (second) order ODEs if it fits monomomials up to degree p + 1
(p + 2), respectively. Therefore, methods of trigonometric order q are methods of order 2q. Method,
such as (39) for second order ODEs is of eighth order, since it fits monomial up to degree 5, and
xn cos(ωx), xn sin(ωx), n = 0, 1. In Table 1, we will list all methods used in the examples with
their order.

Table 1. The order of methods used in the examples for first and second order ODEs.

Method First Order Second Order
ODEs ODEs

(25) 4
(30) 4
(51) 4
AI2 4
AI3 6
(32) 4
(66) 6
(46) 4

6. Numerical Examples

The methods developed originally by Gautschi [1] and those that follow by Neta and Ford [2] fit
low order monomials and the sine and cosine functions of multiples of the frequency. On the other
hand, the methods developed later by Vanden Berghe and Van Daele [44] use monomials and product
of monomials and sine and cosine functions of the frequency. We will demonstrate via the first three
examples the difference between the two strategies. Vanden Berghe and Van Daele [50] compared the
two approaches in some cases but not used schemes developed by Neta and Ford [2]. In the latter
examples we also compare the results to Runge-Kutta-Nyström based method (46)–(49), see [49].
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First, we list a method of trigonometric order 2 based on the idea of Vanden Berghe and
Van Daele [44], which we obtained using Maple software, see Chun and Neta [51].

yn+1 + a1yn + a2yn−1 = h2(b1 fn + b2 fn−1 + b3 fn−2), (51)

where
a1 = − sin(v)v − 2 cos(v),
a2 = −1 − a1,

b1 =
v(v sin(v)− 1)(cos(v) + 1) + 2 sin(v)

v3(1 + cos(v))
,

b2 =
v(2 − v sin(v))(cos(v) + 1)− 4 sin(v) cos(v)

v3(1 + cos(v))
,

b3 =
2 − v sin(v)− 2 cos(v)

v3 sin(v)
.

(52)

The Taylor series expansion of the coefficients are

a1 = −2 +
1

12
v4 − 1

180
v6,

a2 = −1 − a1,

b1 =
13
12

− 19
120

v2 +
37

4032
v4 − 41

362880
v6,

b2 = −1
6
+

3
20

v2 − 59
10080

v4 +
13

36288
v6,

b3 =
1
12

+
1

120
v2 +

17
20160

v4 +
31

362880
v6.

(53)

Example 1. The first example is chosen so that the exact solution in a combination of sine and cosine of multiples
of the frequency, i.e.,

y′′(x) + 9y(x) = 3 sin(6x), 0 ≤ x ≤ 40π (54)

subject to the initial conditions
y(0) = 1, y′(0) = 3. (55)

The exact solution is

yexact(x) =
11
9

sin(3x) + cos(3x)− 1
9

sin(6x). (56)

The results using h = π/500 are given in Table 2. We expect the methods that fit sine and cosine
of multiples of the frequency will do better.

Table 2. The L2 norm of the error for the first example using three methods for three different values
around the exact frequency.

Method ω L2 Error

(25) 2.95 0.984529(-5)
(25) 3. 0.215491(-43)
(25) 3.05 0.109415(-4)

(30) 2.95 0.155534(-6)
(30) 3 0.974885(-16)
(30) 3.05 0.168859(-6)

(51) 2.95 0.113080(-6)
(51) 3. 0.396444(-9)
(51) 3.05 0.116944(-6)
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Based on the results we see that (25) is best when the frequency is known exactly. If it is not
known exactly, the method prefers underestimation of the frequency. The second best is (30). This
method will have no preference to underestimation.

Example 2. The second example is very similar

y′′(x) + 9y(x) = 3 sin(3x), 0 ≤ x ≤ 40π (57)

subject to the initial conditions
y(0) = 1, y′(0) = 3. (58)

The exact solution is

yexact(x) =
7
6

sin(3x) + cos(3x)− 1
2

x cos(3x). (59)

The results are given in Table 3. Now we expect that the method (51) due to Chun and Neta [51] will
perform better, since the exact solution has a product of monomial and cosine. In fact this is the case followed
by (25). The method (30) requires smaller step size to converge and the results are not as good as those of the
other two methods. Note that for this example all methods have no preference to underestimation of the frequency.

Table 3. The L2 norm of the error for the second example using three methods for three different values
around the exact frequency.

Method ω L2 Error

(25) 2.95 0.302359(-3)
(25) 3. 0.109032(-5)
(25) 3.05 0.338322(-3)

(30) 2.95 0.448371(-2)
(30) 3 0.447345(-2)
(30) 3.05 0.446280(-2)

(51) 2.95 0.347311(-5)
(51) 3. 0.134979(-40)
(51) 3.05 0.364011(-5)

Example 3. What if the frequency of the forcing term is not an integer multiple of the frequency of the
homogeneous solution? We now consider the following example

y′′(x) + 9y(x) = 3 sin(4x), 0 ≤ x ≤ 40π (60)

subject to the initial conditions
y(0) = 1, y′(0) = 3. (61)

The exact solution is

yexact(x) =
11
7

sin(3x) + cos(3x)− 3
7

sin(4x). (62)

The results are given in Table 4. Now (51) is best followed by (30).
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Table 4. The L2 norm of the error for the third example using three methods for three different values
around the exact frequency.

Method ω L2 Error

(25) 2.95 0.980898(-5)
(25) 3. 0.195799(-9)
(25) 3.05 0.109015(-4)

(30) 2.95 0.286524(-6)
(30) 3 0.412154(-6)
(30) 3.05 0.557602(-6)

(51) 2.95 0.112995(-6)
(51) 3. 0.685320(-10)
(51) 3.05 0.116839(-6)

Based on the three examples, we find that (51) is best in the last two examples, but not in the first
case where the frequency of the forcing term is a multiple of the frequency of the homogeneous solution.

Before moving to the rest of the experiments, we have decided to rerun the first example on a
much longer interval. This will test the quality of those methods in long-term integration. We have
taken the same step size h = π/500 and integrated for 0 ≤ x ≤ 4000π. The results are given in Table 5.
It is clear that the method due to Neta and Ford is no longer viable. The method (51) gave same errors
when ω = 3 but all other cases show lower accuracy at the end of the longer interval

Table 5. The L2 norm of the error for the first example using three methods for three different values
around the exact frequency.

Method ω L2 Error

(25) 2.95 0.985005(-3)
(25) 3. 0.102448(-41)
(25) 3.05 0.109355(-2)

(30) 2.95 Div.
(30) 3 Div.
(30) 3.05 Div.

(51) 2.95 0.113480(-4)
(51) 3. 0.396444(-9)
(51) 3.05 0.117327(-4)

Example 4. The fourth example is a system of two second order initial value problems

u′′(x) = − u(x)
(u2(x) + v2(x))3/2 , 0 ≤ x ≤ 12π

v′′(x) = − v(x)
(u2(x) + v2(x))3/2 , 0 ≤ x ≤ 12π

(63)

subject to the initial conditions
u(0) = 0, u′(0) = 1,
v(0) = 1, v′(0) = 0.

(64)

The exact solution is given by

uexact(x) = sin(x), vexact(x) = cos(x). (65)

We have converted this to a system of first order equations and solved it numerically using implicit Adams
methods of trigonometric orders 2 and 3 (denoted AI2 and AI3, respectively) and generalized Milne-Simpson
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methods (GMS) of the same order, which are (32) and (66), respectively. We also included results from [51] and
Runge-Kutta-Nyström method [49]. The results are given in Table 6. For Adams implicit, we have used the
Taylor series coefficients as given in [1]. For GMS with q = 2, we used the coefficients as given in [2]. They did
not give the coefficients for q = 3 but suggested to numerically solve the system for the coefficients. We were able
now to get the coefficients

yn+5 = yn+3 + h (b0 fn + b1 fn+1 + b2 fn+2 + b3 fn+3 + b4 fn+4 + b5 fn+5) , (66)

where

b0 =
1
6

sin(v)
d1

,

b1 = −1
3

sin(v)(2 cos2(v)− 1)
d2

,

b2 =
1
3

sin(v)
(
16 cos5(v) + 8 cos4(v)− 16 cos3(v)− 6 cos2(v) + 4 cos(v) + 1

)
d1

,

b3 = −1
3

sin(v)
(
8 cos3(v)− 2 cos(v) + 1

) (
4 cos3(v)− 4 cos(v)− 1

)
d1

,

b4 =
1
6

sin(v)
(
16 cos4(v) + 24 cos3(v) + 4 cos2(v)− 2 cos(v) + 1

)
d2

,

b5 =
2
3

sin(v) cos2(v)(4 cos(v) + 3)
d1

,

(67)

where

d1 = v cos(v)
(

8 cos3(v) + 8 cos2(v)− 1
)

,

and
d2 = v cos(v)

(
4 cos2(v) + 2 cos(v)− 1

)
.

Table 6. The L2 norm of the error for the fourth example using two implicit methods of trigonometric
orders 2 and 3 and one explicit from [51] and one based on Runge-Kutta-Nyström.

Method L2 Error

AI2 0.312117(-14)
AI3 0.407362(-14)
(32) 0.470327(-18)
(66) 0.177952(-17)
(51) 0.218575(-37)
(46) 0.207559(-10)

Remark 5.

1. Adams implicit using the Taylor series for the coefficients did not improve the accuracy by using a
higher order.

2. GMS of second trigonometric order gave better results than the Adams implicit. There is no improvement
by using q = 3.

3. The method (51) is superior followed by GMS with q = 2 given by (32).
4. The method based on Runge-Kutta-Nyström could not compete with the others.

Example 5. The fifth example is the “almost periodic" problem studied by Stiefel and Bettis [30]

z′′ + z = 0.001eit, 0 ≤ t ≤ 12π (68)
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subject to the initial conditions
z(0) = 1,
z′(0) = 0.9995i.

(69)

The exact solution is

zexact(t) = cos t + 0.0005t sin t + i(sin t − 0.0005t cos t). (70)

The solution represents motion on a perturbation of a circular orbit in the complex plane; the point z(t)
spirals slowly outwards.

The first order system equivalent was solved numerically using the above six methods. The results
for h = π/60 and the exact value of ω = 1 are given in Table 7.

Table 7. The L2 norm of the error for the fifth example using the six methods of the previous example
for the exact frequency.

Method L2 Error

AI2 0.446246(-9)
AI3 0.755130(-13)
(32) 0.777595(-12)
(66) 0.610169(-14)
(51) 0.693938(-38)
(46) 0.991561(-14)

It is clear that the methods of trigonometric order 3 are better than the lower order ones. Also the
GMS is better than Adams implicit due to Gautschi [1]. Again, the method (51) is superior.

The next two examples demonstrate the quality of method for long-term integration.

Example 6. The sixth example is the cubic oscillator as given in [52]

y′′(x) + y(x) = εy(x)3, ε = 10−3, (71)

with the initial conditions
y(0) = 1,
y′(0) = 0,

(72)

and the frequency ω =
√

1 − 0.75ε. The exact solution to cubic order in ε is given in [52]

y(x) = cos(ωx) +
ε

128
(cos(3ωx) + cos(ωx)) + O

(
ε3
)

.

The results are given in Table 8. It is clear that the methods that converged gave similar results.
The methods (32) and (66) did not converge. The error is computed at x = 2000π.

Table 8. The L2 norm of the error for the sixth example using the six methods of the previous example
for the exact frequency.

Method L2 Error

AI2 0.209074(-3)
AI3 0.195944(-3)
(32) Div
(66) Div
(51) 0.150279(-3)
(46) 0.148082(-3)
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Example 7. The last example is a system of two second order ODEs describing two coupled oscillators with
different frequencies, see [52].

x′′(t) + x(t) = 2εx(t)y(t),
y′′(t) + 2y(t) = εx(t)2 + 4εy(t)3,

(73)

with initial conditions
x(0) = 1,
x′(0) = 0,
y(0) = 1,
y′(0) = 0,

(74)

where ε = 10−3. The frequencies ωx = 1 and ωy =
√

2 − 3ε

2
√

2
can be found in [52]. We have compared the

solution using the same methods to RKF45 of Maple. The L2 norm of the difference between the solution of
RKF45 and the six methods is given in Table 9. Now Adams implicit based method of trigonometric order 3 and
our method (51) performed better than the others. Again, the methods due to Neta and Ford diverged.

Table 9. The L2 norm of the error for the seventh example using the six methods of the previous
example for the exact frequency.

Method L2 Error

AI2 0.401275
AI3 0.748492(-2)
(32) Div
(66) Div
(51) 0.552675(-2)
(46) 0.545854(-1)

7. Conclusions

We reviewed various trigonometrically-fitted methods and implemented representatives on
several examples of second order initial value problems. In most examples our method from [51]
was superior to others except for the first example for which Gautschi’s method performed better.
The methods (32) and (66) due to Neta and Ford failed to converge for the last two examples and
in the long-term integration of example 1. The method based on Runge-Kutta-Nyström due to
Demba et al. [49] could not compete with our method based on Obrechkoff.
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