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Abstract: In the Special Issue “Advanced Control for Electric Drives”, the objective is to address
a variety of issues related to advances in control techniques for electric drives, implementation
challenges, and applications in emerging fields such as electric vehicles, unmanned aerial vehicles,
maglev trains and motion applications. This issue includes 15 selected and peer-reviewed articles
discussing a wide range of topics, where intelligent control, estimation and observation schemes were
applied to electric drives for various applications. Different drives were studied such as induction
motors, permanent magnet synchronous motors and brushless direct current motors.

Keywords: motor drives; advanced control; power converters; estimation; sensor; artificial intelligence

1. Introduction

In recent years, electric drives have attracted the attention of researchers in emerging fields such
as electric vehicles (EV), renewable energy systems (wind, tidal, ocean, etc.) and high precision motion
applications [1–3]. Electric drives are composed of electrical machines, power electronic converters
and control systems. Their efficient operation, for position and speed regulation, is determined by
the control system. Furthermore, electric drives are a highly nonlinear, multivariable, time-varying
system, depending on the type of the electrical machine, and require more complex methods of control.
Therefore, they constitute a theoretical and practical challenge in control, estimation and efficient
operation in different applications [4–7].

2. The Special Issue

This Special Issue covers a wide range of topics in the field of electric drives. It contains 15 articles
studying advanced control schemes, estimation, disturbance rejection and energy management in
different applications of electric drives. This section summarizes the content of these articles.

In [8], a predictive controller was developed for tracking a reference current provided by the
speed control loop in permanent magnet synchronous motors (PMSM). The control scheme includes
a disturbance observer, based on an equivalent input-disturbance approach combined with the
deadbeat predictive controller, to improve its robustness. The provided results demonstrate that
the proposed control method, compared to the conventional proportional-integral (PI) control, offers
smaller fluctuation and shorter settling time for the starting current of the motor. In [9], the bird
swarm algorithm, a bio-inspired evaluation approach, was improved and implemented to develop an
energy management of extended-range electric vehicles. In this optimization technique, the spatial
distance from the center of the bird swarm, instead of fitness function value, was used to stand for
their intimacy of relationship. In [10], a multi-sensor data fusion method was developed to detect
a safe distance between the unmanned aerial vehicle (UAV) and the transmission lines. This approach
takes into consideration the physical model of the UAV in the complex electromagnetic field and the
main factors affecting the UAV to develop an adaptive weighted fusion algorithm to conduct analysis

Electronics 2020, 9, 1762; doi:10.3390/electronics9111762 www.mdpi.com/journal/electronics1
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on the sensor data. In [11], a cascade second order sliding mode control (SMC) scheme was applied
to a PMSM for speed and current control loops. This SMC technique includes an integral action and
takes into consideration the nonlinear dynamics and uncertainties. The control robustness, against
parametric variations, external disturbance and unknown load, was improved using this control
scheme. Another predictive control technique for PMSM current was proposed in [12]. The method
uses a two-step-ahead prediction to compensate the delay between the measurements and actuation
that causes current ripples. Furthermore, the deadbeat principle and the inverse model of PMSM
were used to obtain the reference stator voltage, and an identification system was developed to
deal with parametric inaccuracies of the predictive model. In [13], an adaptive SMC scheme was
proposed to obtain the desired torque trajectory of the clutch transmission in the mode transition
of single-shaft parallel hybrid electric vehicles. Furthermore, a proportional-integral (PI) observer
was designed to estimate the actual transmission torque of the clutch. Finally, a fractional order
proportional-integral-differential (FOPID) controller, with optimized control parameters by particle
swarm optimization (PSO), was employed to realize the accurate position tracking of the direct
current (DC) motor clutch required to ensure clutch transmission torque tracking. In [14], an efficient
proportional derivative (PD) position controller was developed for three-phase motor drives. The effect
of the load disturbance was compensated by a feed forward term. The proposed method was validated
on the two different drives (induction motor, PMSM) and demonstrated good performance with
respect to parametric uncertainties, unknown load disturbance and measurement noise in the position
and current loops. In [15], an estimator and an intelligent controller were proposed for sensorless
control of the PMSM drive. The estimator, for position and rotor speed estimation, was constructed
using a sliding mode observer and a phase-locked loop. The intelligent controller was used for the
velocity control loop. This includes a radial basis function neural network (RBFNN) for self-tuning of
the proportional-integral-derivative (PID) controller. In [16], a low-order finite impulse response (FIR)
filter, for a high-frequency signal injection method in the permanent magnet linear synchronous motor
(PMLSM), was designed for position observation. The filter coefficients were obtained using constraint
equations based on the amplitude–frequency characteristics of the FIR filter. In [17], state-of-the art
position sensor technologies were investigated for use in PMSM drives applied to automotive electric
powertrain systems. Multiple sensor systems were analyzed based on different influencing factors and
performance indicators in the automotive field. In [18], the speed control for brushless direct current
(BLDC) motors, in steel rolling applications, was investigated using a cascade control loop. The load
torque and the speed reference were calculated from the rolling process. In [19], the influence of the
harmonic torque on the performance of PMSM drive, in a pure electric vehicle, was investigated by
considering the dead-time, the voltage drop effects and the nonlinear characteristics of the transmission
system. In [20], a feedback controller was designed for controlling a three-phase linear induction motor.
The system modeling was carried out using a neural network identifier to deal with uncertainties
due to disturbances, unmodeled quantities, sensors and actuators. In [21], a fuzzy logic control was
used for speed tracking in PMSM drives. The intelligent controller was adjusted by a radial basis
function neural network. Furthermore, sensorless control was granted by a sliding mode observer for
the rotor position and the speed estimation. In [22], the SMC method was combined with a fractional
order synergetic technique for speed and current control to deal with nonlinearities and uncertainties.
Furthermore, a sliding mode observer was used to estimate the rotor position and speed, based on the
motor voltages and currents, for sensorless operation. In order to ensure the high performance of the
sensorless control system, a fault detection system was implemented for the current sensors.

3. Future Perspectives

The use of electric drives in sophisticated systems, such as electric and unmanned vehicles,
renewable energy systems and robots, is growing with complicated motion and high precision
requirements. Furthermore, the evolution and involvement of multi-phase electric machines and
power converters require precise, fast and efficient control for the speed and the position, which cannot
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be achieved by conventional control systems. Smart control systems, which incorporate artificial
intelligence tools, sensorless and wireless concepts, and data analysis for adaptive modeling, are
emerging to enhance the operation of electric drives. Therefore, the research in this field will remain
very active [23–26].
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Abstract: The implementation and experimental validation of current control strategy based on predictive
control and equivalent input disturbance approach is discussed for permanent magnet synchronous
motor (PMSM) control system in the paper. First, to realize the current decoupling control, the deadbeat
predictive current control technique is adopted in the current loop of PMSM. Indeed, it is well known
that the traditional deadbeat current control cannot completely reject the disturbance and realize the
zero error current tracking control. Then, according to the model uncertainties and the parameter
variations in the motor, an equivalent input disturbance approach is introduced to estimate the lump
disturbance in the system, which will be used in the feed-forward compensation. Thus, a compound
current controller is designed, and the proposed algorithm reduces the tracking error caused by the
disturbance; the robustness of the drive system is improved effectively. Finally, simulation and experiment
are accomplished on the control prototype, and the results show the effectiveness of the proposed current
control algorithm.

Keywords: PMSM drive; current control; deadbeat predictive control; equivalent input disturbance

1. Introduction

Owning to the multiple advantages of high efficiency, high power density, and exceptional reliability,
permanent magnet synchronous motor (PMSM) has been widely used in different applications [1], such as
electric vehicle drive system, rail traffic, and robot. However, the main weakness of PMSM is the complex
controller for its nonlinear and strong coupling characteristics. Therefore, the vector control strategy is
employed for the practical applications in general. Consequently, a double closed-loop control method
with the inner current loop and the out speed loop is formed. This paper mainly concentrates on solving
the current control problem of PMSM in the face of different disturbance.

In general, the proportional plus integral (PI) current control method is popular for industrial
applications and is not designed based on the mathematical model. The good performance of
zero steady-state error and fixed switching frequency has promoted extensive industrial application.
However, it may not meet the requirement in some special occasions, and the transient response may be
limited. Meanwhile, it is a challenge for engineers to select the PI parameters by trial and error because of
the large parameter uncertainties [2]. Thus, many approaches have been proposed for the motor drive
system, such as, sliding mode variable structure control [3], feedback linearization control [4], finite-time
control [5], predictive control [6], and passive control [7]. These methods may improve the performance
of motor drive system in different aspects, such as good transient response, strong robustness, or lower
torque ripple in the steady state.

Electronics 2019, 8, 1034; doi:10.3390/electronics8091034 www.mdpi.com/journal/electronics

5



Electronics 2019, 8, 1034

Among these methods, predictive control, as an advanced control strategy, has been widely applied
to the power electronics and drives [8,9]. Predictive control can achieve good tracking control and can be
completed easily. For the current control of PMSM, predictive control methods mainly includes deadbeat
predictive control [10,11] and model predictive control (MPC) [12–15]. In comparison, the requirement for
high computational resources is one of the main drawbacks in a drive with MPC. Deadbeat predictive
control, as one of the simplest and best-known predictive control methods, can obtain good tracking
performance with less computational burden. In this method, the discrete time model is used to compute
the reference voltage, and the zero-error can be achieved within one sampling time. Then, the voltage is
translated to the corresponding switching configurations through pulse width modulation or the space
vector PWM [16]. Thus, the deadbeat predictive control is characterized with fixed switching frequency,
fast current dynamic response, and less computational burden.

It is worth emphasizing that the deadbeat predictive control is a model-based control technique,
and the exact model is required. The sensitivity of deadbeat predictive control against uncertainties is
a well-known disadvantage. If the motor parameters are known, the tuning problem is reduced to the
selection of one parameter only in deadbeat predictive control. However, the PMSM drive system faces
inevitable model uncertainties and parameter variations, as the values of stator resistance, stator inductance,
and the rotor flux may change, along with the changes of the operation conditions. Influenced by system
uncertainty, the motor current cannot track the reference value, which will affect the field-oriented control
of the motor, then the performance of the control system will be degraded. Thus, the uncertainties inside the
motor and outside disturbances are the main factors to reduce the system performances. Confronted with
the problem of system uncertainty, effective methods include the disturbance estimation and attenuation
method [17]. Meanwhile, it is proven that this technology has a different but complementary mechanism
to widely used robust control and adaptive control [18]. In the work by the authors of [19], a generalized
proportional integral observer method is proposed to estimate the time-varying disturbance for the speed
current control of PMSM. In the work by the authors of [20], a generalized predictive current control
method is proposed for the current control of PMSM, and a sliding mode compensation controller is
designed to eliminate the disturbance. Meanwhile, several papers focusing on improving the robustness
of deadbeat controller have been published. In the work by the authors of [21], a robust current controller
is designed by using an additional integrator term in deadbeat control. In the work by the authors of [22],
a robust deadbeat current control method is studied through calculating the switch signals applied in
the next sampling period. In the work by the authors of [23], the parameter identification method is
used to estimate the motor parameters in real time, and the robustness is improved, but this method
depends on the identification precision of the model parameters, and the model still contains uncertainties
due to unmodeled dynamics and disturbances. In the work by the authors of [24], a high-order sliding
mode observer is designed for the estimation of disturbance in the current loop for PMSM. In [25–27],
the disturbance observer or extended state observer is designed in the deadbeat current control for PMSM.
In these methods, the system disturbance is estimated through the observer, then they are used for the
feed-forward compensation control to improve the robustness.

In this paper, to enhance the robustness of deadbeat predictive control and improve the consequent
system performance degradation for the uncertainties, a novel disturbance attenuation method based on
equivalent-input-disturbance (EID) is proposed. EID is a signal on the input voltage that produces the same
effect on the current output as actual disturbance does [28–30]. To the best of our knowledge, this method
has not been used in the current control of PMSM at present. In this paper, we applied EID into the current
control of PMSM, and it is used to deal with the disturbance in the drive system. Thus, a composite current
controller by combining the deadbeat predictive control and EID approach is designed. The decoupled
current control is completed by the deadbeat control. Then, according to the parameter variations and
model uncertainties, EID is designed to eliminate the influence triggered by the uncertainties. In the EID,

6
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the lumped disturbance that consists of the model uncertainties and the parameter variations is regarded,
and it is used to the feed-forward compensation control. The main contribution of the paper is the idea
that the EID is introduced to estimate the disturbance in the current control for PMSM. Only the nominal
motor parameters are needed in the controller. Meanwhile, the designed current controller is not complex
and the parameters are convenient to be adjusted. Finally, the simulation and experimental verification
on a speed current closed-loop control system of PMSM is completed, and the effectiveness is verified in
different conditions. Meanwhile, the designed controller can also be used to the torque control of PMSM.

The remainder of this paper is organized as follows. The dynamic model of PMSM considering the
disturbance is derived. The robust predictive current controller based on equivalent-input-disturbance
is studied in Section 3. The simulation and experiment are demonstrated in Section 4, and the final part
states the conclusions.

2. Mathematical Model of PMSM

The electromagnetic model of PMSM in d-q axes can be expressed as [1]{
Ld

did
dt = −Rsid + npωLqiq + ud + ξd

Lq
diq
dt = −Rsiq − npωLdid − npωΦ + uq + ξq

(1)

where Ld and Lq represent d-axes and q-axes stator inductances, respectively; id and iq are the stator
currents; ud and uq are the stator input voltages in dq-axes reference frame; Rs is the per-phase stator
resistance; np is the number of pole pairs; ω is the mechanical angular speed; Φ is the rotor flux; and ξd
and ξq represent the disturbance caused by the parameter variations and model uncertainties as{

ξd = −(ΔRsid − ΔLqnpωiq + ΔLd
did
dt + ηd)

ξq = −(ΔRsiq − ΔLdnpωid + ΔLq
diq
dt + ΔΦnpω + ηq)

(2)

where ηd and ηq represent the model uncertainties.

ΔRs = Rst − Rs, ΔLd = Ldt − Ld,

ΔLq = Lqt − Lq, ΔΦ = Φt − Φ, (3)

in which Rs, Ld, Lq, and Φ denote the nominal parameter values, and Rst, Ldt, Lqt, and Φt denote the actual
parameter values.

3. Current Control Scheme for PMSM

The control structure of PMSM control system with the proposed current control method is shown
in Figure 1. The controller uses a cascade control structure including an out speed loop and two inner
current loops. Here, the PI controller is used in the speed loop to realize the tracking control of motor
speed, thus the q-axes reference current i∗q = kp(ωr − ω) + ki

∫ t
0 (ωr − ω)dt, where ωr is the reference

speed. The reference current i∗d is set to be zero. In this paper, a novel deadbeat predictive controller with
equivalent-input-disturbance is used to solve the current control problem.
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Figure 1. Block diagram of permanent magnet synchronous motor (PMSM) control system.

3.1. Deadbeat Predictive Current Controller for Pmsm

The model of the system (1) can be expressed as[
did
dt
diq
dt

]
=

[ − Rs
Ld

0
0 − Rs

Lq

] [
id
iq

]
+

[
1

Ld
0

0 1
Lq

] [
ud
uq

]
+

[
1

Ld
0

0 1
Lq

] [
fd
fq

]
(4)

where fd = npωLqiq + ξd and fq = −npωLdid − npωΦ + ξq are considered as the lump disturbance,
which include the disturbance and the back-electromotive force.

In the condition of ignoring the lump disturbance, the predictive model of (4) is expressed as
a discrete-time form:[

id(k + 1)
iq(k + 1)

]
=

[
1 − Rs

Ld
Ts 0

0 1 − Rs
Lq

Ts

] [
id(k)
iq(k)

]
+

[ Ts
Ld

0
0 Ts

Lq

] [
ud1(k)
uq1(k)

]
(5)

where Ts is the sample time. ud1 and uq1 are the control input without considering the lump disturbance.

Define the state variable as x(k) =
[

x1(k) x2(k)
]T

=
[

id(k) iq(k)
]T

, the input variable as

u1(k) =
[

ud1(k) uq1(k)
]T

, and the output variable as y(k) =
[

y1(k) y2(k)
]T

=
[

id(k) iq(k)
]T

.
The premise of deadbeat predictive current control is that the actual current I(k) is sampled at the

beginning of the k − th carrier cycle, and the predicted value of current deviation vector ΔI(k) is obtained,
then the reference voltage output is calculated [22]. For achieving the current control, the required input
voltage u1(k) at the current time can be calculated through the sample current x(k) at kT and x(k + 1) at
(k + 1)T. However, in a practical control system, the reference voltage u1(k) is not added to the inverter
immediately at kT, and it is carried out at (k + 1)T. Therefore, the sample current x(k + 1) just reaches the

reference current x∗(k) =
[

i∗d i∗q
]T

at kT .
Take the reference current x∗(k) as the predictive current value at (k + 1)T, thus[

id(k + 1) iq(k + 1)
]
=
[

i∗d i∗q
]
. According to Equation (5), the following can be calculated.

[
ud1(k)
uq1(k)

]
=

[ Ts
Ld

0
0 Ts

Lq

]−1([
i∗d(k)
i∗q (k)

]
−
[

1 − Rs
Ld

Ts 0
0 1 − Rs

Lq
Ts

] [
id(k)
iq(k)

])
(6)

The control laws in (6) are the reference dq-axes voltage based on deadbeat predictive control.
The designed controller can solve the deadbeat control problem in general without additional means of
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support, but the lump disturbance is ignored, and the current control results will be affected in the face of
the strong disturbance.

3.2. Disturbance Observer Based on EID

To suppress the lump disturbance in the system and improve the robustness, an equivalent-
input-disturbance approach combined with the deadbeat predictive controller is studied. EID approach is
a simple disturbance attenuation method and it can be easily implemented in the digital controller
because it does not require an inverse model of the plant or prior information on the disturbance.
Usually, an EID-based control system includes a state observer, an EID estimator, and state feedback [29].
The structural diagram of EID is shown in Figure 2. Thus, the deadbeat predictive controller can be seen
as the state feedback.

Figure 2. Structural diagram of equivalent-input-disturbance (EID).

Firstly, according to (4), the model can be described as{
ẋ = Ax + Bu + Bd
y = cx

(7)

where A =

[ − Rs
Ld

0
0 − Rs

Lq

]
, B =

[
1

Ld
0

0 1
Lq

]
, C =

[
1 0
0 1

]
, u =

[
ud uq

]T
and d =

[
fd fq

]T
.

The system is controllable and observable, and it has no zeros on the imaginary axis, which guarantees
the internal stability of the motor system and allows the speed to track the reference value [31]. Assume the
distubance d satisfies ‖d‖∞ < dM, where dM is an unknown positive real number.

The EID is estimated by making the best use of the state observer of the system. A full-order observer
is used to estimate the EID, then a state observer is defined as{

˙̂x = Ax̂ + Bu1 + L[y − ŷ]
ŷ = cx̂

(8)

where u1 =
[

ud1 uq1

]T
, L is the observer gain, and x̂ is the reconstructed state of x.
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According to the literatures [29,30], the estimator of EID is derived as

d̂ = B1LC[x − x̂] + u1 − u (9)

where B1= (BT B)−1BT .
As the output y contains a measurement noise, to depress the noise of the measured output current,

a low-pass filter is used in the estimator of EID, thus dF = F(s)d̂, F(s) = BF
s+AF

is the low-pass filter.
Combing the deadbeat controller and the EID estimator, the final current controller of PMSM control

system can be given as

u = u1 − dF (10)

In the paper, the model of PMSM is represented as the linear model, which is shown in Equation (7).
The stability of the motor drive system can be broken down into two independent parts: state feedback
and the observer. First, the state feedback is designed by the deadbeat predictive control method. Then,
according to the Theorem 1 in the work by the authors of [31], the conditions are satisfied for the motor
system. Thus, the stability of the control system can be guaranteed.

Meanwhile, the following simulation and experiment in different conditions prove that the motor can
run steadily.

4. Simulation and Experiment

The proposed current control method with deadbeat predictive control and equivalent input
disturbance approach is implemented in simulation and dSPACE based experiment. The motor parameters
used in the simulation and experiment are given in Table 1.

Table 1. Parameters of PMSM.

Description Value Unit

rated speed 3000 r/min
rated torque 2.3 N·m

resistance 4.8 Ω
d-axes inductance 19.5 mH
q-axes inductance 27.5 mH

rotor flux 0.15 Wb

4.1. Simulation and Analysis

The simulation is completed in the speed control system of PMSM. The double closed-loop vector
control method is used for the speed and current control, the out loop is the speed loop, and the inner loop
is the current loop. The motor reference speed is given as ωr = 1000 r/min, and the load torque 1 N·m
is added on the motor. The PI controller is adopted in the speed loop. In order to verify the merit of the
proposed method, in the current loop, both PI current controller and proposed current control method
have been completed, respectively. The parameters of speed loop are consistent with each other in both
methods. In addition, to validate the current tracking performance of the proposed control method while
the motor has parameter perturbation, the values of rotor–flux linkage, armature resistance, and dq-axes
inductance are changed to 80%, 200%, and 150% of the normal values at t = 0.5 s, respectively. Figure 3
shows the motor response waveform based on PI control. Figure 3a,b shows the dq-axes current waveform.
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The motor speed response curve is shown in Figure 3c. The simulation results based on the proposed
current control method are shown in Figure 4.

(a)

(b)

(c)

Figure 3. Simulation results with proportional plus integral (PI) control: (a) d-axes current; (b) q-axes
current; and (c) speed response.

As shown in Figures 3 and 4, compared with the PI control, the proposed predictive current control
method has better current control performance with a faster current response and smaller current
fluctuation. When the motor parameters are changed, the results show that the parameter variations has
little influence to the current control performance, and the proposed method in this paper still has precise
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current tracking and antidisturbance performance. Meanwhile, the control system has the good speed
tracking performance.

(a)

(b)

(c)

Figure 4. Simulation results with the proposed method: (a) d-axes current; (b) q-axes current; and
(c) speed response.

To verify the effectiveness of the proposed method under the change of reference current, the d-axes
reference current is changed from 0 to −1A at t = 0.5 s, and Figure 5 shows the current and speed response
waveform. As shown in the figures, the dq-axes current varies with the change of the reference current,
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and the controller also good current tracking performance. Meanwhile, the motor speed has a small
fluctuation, and it can be stable for a short period of time.

(a)

(b)

(c)

Figure 5. Simulation results with the proposed method when i∗d is changed: (a) d-axes current, (b) q-axes
current, and (c) speed response.

In addition, to test the performance of the controller with load disturbance, the reference speed is
given as 1000 r/min, the load torque is changed from 1 N·m to 2 N·m at t = 0.5 s, and other parameters are
fixed. The results are show in Figure 6. The figures reveal that with the increase of load torque, the q-axis
current increases quickly to produce the same electromagnetic torque. Although the reference current has
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a variation with the change of load torque, the motor current can still track the reference value, and the
robustness can be maintained in steady-state.

(a)

(b)

(c)

Figure 6. Simulation results with the proposed method when the load torque changed: (a) d-axes current,
(b) q-axes current, and (c) speed response.

To better validate the advantage of the proposed current control method under parameter disturbance,
three different comparative methods—PI current control, deadbeat predictive control without equivalent
input disturbance approach, and the proposed method—have been used in the current loop controller of
the drive system, respectively. The reference speed is also given as 1000 r/min, but the motor parameters
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are changed when the motor is started. The results based on three current control methods are shown in
Figures 7–9. The speed loop has the same parameters as the PI control method.

(a)

(b)

Figure 7. Simulation results with PI control method under the parameter disturbance: (a) d-axes current
and (b) q-axes current.

(a)

Figure 8. Cont.
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(b)

Figure 8. Simulation results with deadbeat control method under the parameter disturbance: (a) d-axes
current and (b) q-axes current.

(a)

(b)

Figure 9. Simulation results with the proposed method under the parameter disturbance: (a) d-axes current
and (b) q-axes current.

The results show that compared to the PI control, the proposed method has the smaller current
fluctuation and the shorter settling time when the motor starts. Both methods have strong robustness for
the parameter of disturbance. Although the deadbeat predictive current controller has the fast response,
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there is an obvious error between the output current and the reference values, and the dq-axes current
cannot track the reference values accurately. The above results verify that the proposed method has better
current control performance.

4.2. Experiment and Analysis

The experiment is implemented on a dSPACE-based PMSM control platform, as shown in Figure 10.
The system includes an interior PMSM, a dynamometer, a converter based on IPM, and the dSPACE
MicroAutoBox as the control board. MicroAutoBox is a rapid prototyping (RCP) system, and it is ideally
suited as hardware for prototyping in the motor drive system. The current is measured by the Hall sensor
and it is turned to the digital signal through ACMC module. The experiment is completed on a speed
control system of PMSM based on a doubled closed-loop structure. The deadbeat predictive controller
with EID is used in the current loop control. The parameters of the PMSM are given in Table 1. The sample
time is chosen as Ts = 0.1 ms. The observer gain L is the main parameter to be adjusted in the controller.
The larger the gain is, the faster the observer converges. However, in general, the gain, L, cannot be too
large. Otherwise, the system will be too sensitive to the interference signal and the stability of the system

will decrease. So the observer gain of L =

[
100 0
0 100

]
is chosen in the controller. The low-pass filter is

chosen as F(s) = 200
s+200 .

Figure 10. Experimental platform of PMSM drive system.

First, the motor starting speed is given as 1000 r/min. When the motor is stable, the reference speed
is changed from 1000 r/min to 1500 r/min, and the experimental results are shown in Figures 11 and
12, which include the dq-axes current and speed response waveforms. As seen from Figures 11 and 12,
when the motor is starting, the large starting current is produced, and the dq-axes current reaches to
the reference current value soon. The designed current controller has the good tracking performance.
The practical output current has a small fluctuation, which may be caused by the current harmonic, but the
tracking performance is not affected. The motor speed can also arrive at the given value quickly.
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(a)

(b)

(c)

Figure 11. Experimental results with the proposed method: (a) d-axes current; (b) q-axes current; and
(c) speed response.
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(a)

(b)

(c)

Figure 12. Experimental results with the increase of reference speed: (a) d-axes current; (b) q-axes current;
and (c) speed response.

To further evaluate the performance of the proposed control method, the q-axe reference current
is changed in the experiment. When the motor is working in 1000 r/min, the load torque disturbance
is added to the motor at t = 1 s, and the experimental results are shown in Figure 13. We can see that
the q-axes current changes with the increase of load torque, and it can converge to its reference value
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quickly. In this process, the d-axes current is not affected by the load disturbance, can stay at zero, and the
robustness still can be maintained.

(a)

(b)

(c)

Figure 13. Experimental results with load disturbance: (a) d-axes current, (b) q-axes current, and
(c) speed response.

To further verify the robustness of the proposed method with the parameters perturbation,
the controller parameters are set mismatched with the real motor parameters. In comparison with
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the real values in the controller, the dq-axes inductances are set as two times of the rated values in the
controller. The corresponding results are shown in Figure 14. Although the parameters are not consistent
between the current controller and the motor, there is no large difference in the actual output current and
the reference current. The experimental results prove the designed controller has excellent robustness for
the disturbance.

(a)

(b)

(c)

Figure 14. Experimental results with parameter variations: (a) d-axes current, (b) q-axes current, and
(c) speed response.
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5. Conclusions

In this paper, a novel current control method based on deadbeat predictive control and equivalent-
input-disturbance theory has been proposed for PMSM drive. With the designed deadbeat controller,
the current stabilizing control is achieved. According to the disturbance in the PMSM, we have designed
an equivalent-input-disturbance estimator for the feed-forward compensation, and the robustness can be
maintained under the disturbance. The simulation and experiment results have proved that the controller
has good current tracking performance in different conditions. Meanwhile, the designed current controller
is also suitable for torque control system of PMSM.
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Abstract: The bird swarm algorithm (BSA) is a bio-inspired evolution approach to solving optimization
problems. It is derived from the foraging, defense, and flying behavior of bird swarm. This paper
proposed a novel version of BSA, named as BSAII. In this version, the spatial distance from the center
of the bird swarm instead of fitness function value is used to stand for their intimacy of relationship.
We examined the performance of two different representations of defense behavior for BSA algorithms,
and compared their experimental results with those of other bio-inspired algorithms. It is evident
from the statistical and graphical results highlighted that the BSAII outperforms other algorithms on
most of instances, in terms of convergence rate and accuracy of optimal solution. Besides the BSAII
was applied to the energy management of extended-range electric vehicles (E-REV). The problem is
modified as a constrained global optimal control problem, so as to reduce engine burden and exhaust
emissions. According to the experimental results of two cases for the new European driving cycle
(NEDC), it is found that turning off the engine ahead of time can effectively reduce its uptime on the
premise of completing target distance. It also indicates that the BSAII is suitable for solving such
constrained optimization problem.

Keywords: BSAII; Euclidean distance; energy management; E-REV

1. Introduction

Nowadays, society is facing the increasing depletion of petrochemical energy, the serious
destruction of the ecological environment, and increasing car ownership. These factors promote the
rapid development of new energy vehicles like the electric vehicle. However, the power battery of the
pure electric vehicle has a series of problems, such as high cost, short range and over discharge, which
is not conducive to long-distance driving.

As a transitional model of pure electric vehicle, the extended-range electric vehicle (E-REV)
can effectively address the shortcomings above. The basic structure of a typical E-REV is shown in
Figure 1. The auxiliary engine and power generation device has been added to the mechanism of
the electric vehicle, which extends driving distance of electric vehicle. The integration of engine and
generator constitute is called the range extender (RE), the main function of which is to charge the
battery under the condition of insufficient power supply, for purpose of providing enough power to
extend driving distance. Because of separation of the engine from the road load and the balance of the
battery load, E-REV can keep the engine at the optimum working efficiency point (85%) and improve
the fuel efficiency greatly. Additional E-REV has two energy sources: engine and power battery, so an
efficient control strategy is essential to practice the coordination of the two devices, improve vehicle
performance, e.g., fuel efficiency and exhaust pollution.

Electronics 2019, 8, 1223; doi:10.3390/electronics8111223 www.mdpi.com/journal/electronics25
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Figure 1. System structure of extended-range electric vehicle (E-REV).

The energy management of E-REV has always been a research hotspot [1–3]. Under the different
driving conditions, the on-off time of RE for the E-REV is optimized with the target distance as the
constraint condition. The main principle of the E-REV energy management strategy is that the use of
engine is as little as possible as well as keeps the vehicle running in pure electric mode. The traditional
control strategy is that when the battery power reaches the minimum threshold, the vehicle enters
the extended range mode, the engine starts and drives the generator to produce electricity. Part of
the generated electricity charges the battery, and the other part drives the vehicle to continue driving.
When the battery power reaches the maximum threshold, the engine shuts down and vehicle enters
the pure electric drive mode.

Control method like fuzzy control has been adopted in the energy management. It has been
used for powering the battery, to keep the state of charge (SOC) in the designed threshold and
avoid overcharge and over discharge [4]. As energy management can be considered an optimization
problem, conventional planning methods were applied to the problem, such as dynamic programing,
genetic algorithm (GA), and particle swarm optimization (PSO), etc. A hybrid genetic particle swarm
optimization (GPSO) algorithm was proposed to optimize the parameters of energy management
strategy [5]. In order to solve the problem of frequent start-stop of electric vehicle engines, a
non-dominant sequencing genetic algorithm was used to optimize the start-stop interval of engines.
The optimization effect of the running time of the extender under the two control modes of early
opening and early closing is analyzed, in new European driving cycle (NEDC), urban dynamometer
driving schedule (UDDS) cycles [6]. Energy management strategy of E-REV based on dynamic
programming was designed, and optimal control rules of extender start-stop corresponding to SOC
and motor power were established [7]. Driving behavior based on prediction of vehicle speeds was
integrated into the energy management of the electric vehicle [8].

In recent years, with the unprecedented development of bionic optimization, a series of novel
algorithms have emerged [9–17]. These include the teaching and learning optimization algorithm
(TLBO, 2011) and its variants, the grey wolf optimizer (GWO, 2014) and its variants, the pigeon swarm
algorithm (PSA, 2014), the whale optimization algorithm (WOA, 2016) and the bird swarm algorithm
(BSA, 2016). Compared with GA, PSO and other mature algorithms, the optimization performance
of these new bio-derived algorithms has been greatly improved. Therefore, the application of these
algorithms in engineering attracted the attention of researchers.

The BSA as a novel algorithm, simulates the foraging behavior, defensive behavior and flight
behavior of birds. It has the advantages of few parameters and it is easy to adjust. This paper extends
the basic idea proposed in [17]. We propose a new method called BSAII with new coefficients for
evaluating birds’ ability to reach to the center. Then solve the optimization problem of engine on-off
control in E-REV with the proposed algorithm.

The rest of paper will be organized as follows. Section 2 will outline the background to BSA,
the formulation of motions for BSA, and its variants. We also propose another formulation of defense
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behavior of birds and explain the workflows of optimization with BSAII. Section 3 formulates the
energy management in E-REV. Section 4 conducts extensive optimizing simulation, and analyzes the
experiment results. Section 5 will present the experiment results of the application of BSAII on energy
management of E-REV. Conclusions are drawn at the end of the paper.

2. Principle of Brid Swarm Intelligence

2.1. Bird Swarm Intelligence

Bird swarm foraging is easier to collect more information than individual foraging. It has survival
advantages and good foraging efficiency. BSA is inspired by foraging behavior, defense behavior and
flight behavior in the foraging process of birds. It is based on information sharing mechanism and
search strategy in the foraging process of birds. The core of social behaviors and interactions in the
bird swarm put forward a novel optimization algorithm BSA. Ideally, the basic principles of BSA can
be elaborated as the following five rules [17].

(1) Each bird freely converts between defense and foraging behavior, which is a random behavior.
(2) In the process of foraging, each bird can record and update its own optimal information and

global optimal information about the food. This information is used to find new sources of food.
At the same time, the whole population share the social information.

(3) During the defense, each bird tries to move toward the center, but this behavior is influenced by
competition among populations. Birds with high alertness are more likely to approach the center
than low-alert birds.

(4) The swarm flies to another place each time. The identity of a bird converts between a producer
and a beggar. That is, the most alert bird becomes a producer, while the lowest alert birds become
a beggar. Birds with alertness between the two birds randomly become producers or beggars.

(5) Producers actively seek food, and beggars follow the producers at random.

The above five rules are described in mathematical terms as follows:
We suppose the size of the swarm is M, the number of dimensions is N. Foraging behavior in rule

(1) is formulated;
xt+1

i = xt
i + c1r1(pi − xt

i) + c2r2(g− xt
i) (1)

where, xt
i is the position of each bird, t represents the current number of iterations, i =1, 2 . . . M.

c1 and c2 are non-negative constants which represent cognitive and social acceleration coefficients
independently. r1 and r2 are the random numbers with uniform distribution in [0,1]. pi and g record
the historical optimal location of the ith bird and the historical optimal location of the whole swarm
respectively.

According to the Rule (3), birds in the swarm are trying to get close to the central area, but there is
a competitive relationship between birds. These behaviors can be expressed as follows;

xt+1
i, j = xt

i, j + A1r3(meanj − xt
i, j) + A2r4(pk, j − xt

i, j) (2)

A1 = a1 × e(−
pFiti

sumFit+ε×M) (3)

A2 = a2 × e
(− pFiti−pFitk|pFitk−pFiti |+ε×

M×pFitk
sumFit+ε ) (4)

Among them, a1 and a2 are the constants of [0,2], pFiti represents the optimal value of the ith bird,
sumFit represents the sum of the optimal value of the whole swarm. ε is the smallest real number
in a computer. meanj is average value of positions in the jth dimension. r3 is the random number
between (0, 1), r4 is the random number between (−1, 1). k � i. A1 controls a bird approaching to center
position of the whole swarm and A1r3∈(0,1). A2 represents the competitiveness of ith bird versus
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kth bird. The greater A2 means compared with ith bird, the kth bird is more likely to move to the center
of the swarm.

According to the Rule (4), every once in a while FQ, birds may fly to another place for seeking
food, some birds may become producers, others will become beggars, behavior of producers and
beggars are regulated their new position according to;

xt+1
i, j = xt

i, j + r5xt
i, j (5)

xt+1
i, j = xt

i, j + FLr6(xt
k, j − xt

i, j) (6)

r5 is a Gaussian random number that satisfies the variance of 0 and the mean of 1. r6 is the random
number between (0, 1), and FL stands for the beggars getting food information from producers, FL∈[0,2].
The workflow of BSA for solving optimization problem is illustrated as Figure 2.

If the swarm fly 
to other site?  

 

Beggar, update new 
position using Equation (6) 

 

Forage, update 
new position 

using Equation (1) 

Producer, update 
new position using 

Equation (5) 

Evaluation fitness values for all birds, find 
the global and local optima 

 

End  

No 

Yes 

No 

Yes  

Yes 

Defense, update 
new position 

using Equation (2) 

start 

No 

Yes 

No 

Evaluate fitness values 

Initialize parameters, and generate 

random positions of the birds 

If a bird is a producer? 
Distinguish by Rule (4) 

If rand < probability ? 

Get optimal results 

If t> maximum 
number of iterations? 

Figure 2. Workflow of bird swarm algorithm (BSA).
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2.2. Related Improvement Methods

As a relatively new optimization algorithm, there is not much research on improvement of BSA. The
algorithm is improved by defining inertia weight, with linear differential decline strategy, and linearly
adjusting cognitive coefficient and social coefficient. Then different models are optimized [18]. Levy
flight strategy is applied to position initialization or iteration of BSA [19–21]. In [20], the random
walk mode of Levy flight strategy increased the diversity of population and conduced to jumping
out of local optimum. Inertia weight modified by random uniform distribution improved the search
ability of BSA, besides, linear adjustment of cognitive and social coefficients was used to improve the
solution accuracy. Boundary constraints were adopted to modify candidate solutions outside or on
the boundary in the iteration process, which improves the diversity of groups and avoids premature
problems. On the other hand, accelerated foraging behavior by adjusting the sine-cosine coefficients of
cognitive and social components was achieved in [22].

2.3. BSAII

In the defensive state, a bird should not only move to the center as far as possible, but also compete
with other neighbors. The parameters A1 and A2 are two factors that reflect ability of a bird moving
to the center and competition with its neighbor bird respectively. In the traditional version of BSA,
the fitness function was used to evaluate the weight coefficients of birds flying towards the center and
affected by other birds. The function is one-dimensional, based on which the central position of the
bird swarm is not accurate.

In this paper, we use spatial coordinates of birds to formulate A1 and A2. Based on the position of
the bird group’s center coordinate, the European distance between a bird’s position and the center
is calculated separately, and the traction and competitiveness of a bird flying toward the center are
judged. We used other representations as;

A1 = a1 × epdi (7)

A2 = a2 × e
− pdk−pdi
|pdk−pdi | (8)

where pdi is the normalized Euclidean distance between coordinates of a bird pi and the center of the
swarm meanp.

pdi = norm(
∣∣∣pi −meanp

∣∣∣) (9)

An example of normalized Euclidean distance is shown in Figure 3. The red points are the four
coordinate positions distributed in two-dimensional space, and the blue pentagonal star represents the
central position determined by the average coordinate values of the four points, which is considered as
the center point of the swarm. Pd1-pd4 in the figure mean the normalized Euclidean distance between
four points and the center one, which range from 0 to 1.

Foraging and flying behaviour are formulized as Equations (1), (5) and (6), the same as in the
previous version of BSA.

Initially, we set parameters, i.e., maximum number of iterations T, size of population M, flying
interval FQ, c1, c2, a1 and a2, and created populations x randomly.

For each cycle, within each time interval, we only need to consider two behaviours of birds,
foraging and defence. A bird behaviour is determined randomly, if the bird is looking for food, it would
update position using Equation (1). Otherwise, the bird is on the defensive, and tries to move to the
centre of the swarm. As each bird wants to fly to the centre, it is inevitable to compete with others.
We used A1 and A2 related to normalized European distance to evaluate centralized flight of the bird,
shown as Equations (7) and (8). Meanwhile the new position is regulated via Equation (2). If the
swarm stays at one site for FQ, it needs to move to the next location as a whole. In the flying process,
each bird plays a different role, i.e., beggar or producer. Birds move to new positions according to
Equations (5) and (6) respectively. The outline of BSAII can be written as Algorithm 1.
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Figure 3. Normalized Euclidean distance in a two-dimensional (x-y) coordinate system.

Algorithm 1. BSAII.

Step 1: Set parameters: 
Population and Dimension of bird swarm [M, N]. 
Iteration T, flying interval FQ, a1, a2, FL, Foraging probability P, etc. 

Step 2: Initialize the original positions of birds, iNiii xxxx = , i=1,2,…M.
Step 3: Calculate the fitness function f(xi), find local and global optimal solutions. 
Step 4: For r = 1:T 
1    While r is not an exact multiple of FQ do 

   If (Pi<P)  
Bird forages for food according to Equation (1). 
Otherwise 
Bird conducts defensive action based on Equations (2), (7), and (8). 

End if 
End while 

2   Bird swarm is divided as producers and beggars, and flying to other site. The producers 
fly to new position of Equation (5), and the beggars follow the producers moving to 
Equation (6).    

3   Calculate the fitness function f(xi), update the local and global optimal solutions. 
Step 5: Output the optimal results. 

3. Energy Management of E-REV

Energy management of E-REV in this paper mainly refers to optimize the on-off timing of RE in
E-REV so as to reduce the running time of engine. This problem can be mathematically summed up as
a constrained objective optimization problem. In this paper, the penalty function method is used to
solve this optimization problem.

3.1. Constrained Optimization Problem

Optimization problem with constraints is formulized as,

min f (x), x ∈ Rn

s.t. hi(x) = 0, i = {1, 2, · · · , l}
gj(x) ≥ 0, j = {1, 2, · · · , m}

(10)
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hi and gj are equality and inequality constraints respectively. The feasible region Ω of the problem
is defined as Ω =

{
x ∈ Rn

∣∣∣hi(x) = 0, gj(x) ≥ 0
}
. A popular method to solve constrained optimization

problems is penalty function method. The penalty function [23] is constructed as;

P(x) =
l∑

i=1

h2
i (x) +

m∑
j=1

[
min

{
0, gj(x)

}]2
(11)

Therefore, the objective function is transformed to;

P(x, δ) = f (x) + δP(x) (12)

where δ > 0 is penalty factor. The bigger δ is, the heavier the punishment will be. When x∈Ω, x
is a feasible point, P(x,δ) = f (x), the objective function is not subject to additional penalties. While
x�Ω, x is an infeasible point, P(x,δ) > f (x), the objective function is subject to additional penalties.
When the penalty exists in the objective function, the penalty function should be sufficiently small to
make P(x,δ) reach the minimum value, so that the minimum point of P(x,δ) approximates the feasible
region Ω sufficiently, and its minimum value naturally approximates the minimum value of f (x) on Ω
sufficiently. The constrained optimization problem converts to unconstrained optimization problem,
which is expressed as;

min P(x, δk) (13)

here δk is positive sequence, and δk → +∞ .

3.2. Problem Formulation

A certain type of electric vehicle is selected as research object, and basic parameters of vehicle are
the same with that in [24]. Assuming that the SOC of battery power in electric vehicle should be kept
between 20% and 80%. In order to reduce the uptime of engine in E-REV, and make full use of the
power in the battery, this paper optimizes the uptime of the engine with constraint of distance. The
objective function of the optimization problem is engine running time t, defined as Equation (14);

min t =
Lo f f − Lon

L
Tcycle (14)

Tcycle is the time period, and L is the driving distance under one test condition, e.g., the NEDC cycle.
We choose an E-REV as research object, whose main parameters are listed in Table 1.

Table 1. The main parameters for E-REV.

Parameters Value

Curb weight (m/kg) 1700
Full mass (m/kg) 2100

Wheel radius (r/m) 0.334
Windward area (A/m2) 1.97
Drag coefficients (CD) 0.32

Maximum speed (km/h) >140
Total distance (km) 400

Climbing gradient (%) >20%
Transmission efficiency 0.95

State of charge (SOC) range (%) 20–80
Maximum pure electric driving range (km) >50

The vehicle parameters and component matching parameters (motor, battery, and RE) of the
E-REV were entered into the advanced vehicle simulator (ADVISOR 2002) simulator, then the NEDC
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cycle condition was selected. The simulation results including SOC change curve under the NEDC
cycle were obtained. The results showed an approximate linear relationship between the driving
distance of electric vehicles and the SOC of battery.

y = kx + b (15)

x is SOC, %. y is driving distance of E-REV, km. k and b are constant coefficients, in relation to battery
working mode. When driving distance can be accomplished with one charge and discharge cycle, the
distance when engine starts and shuts down are calculated based on Equations (16) and (17).

Lon = k1(100− ton) (16)

Lo f f = k1(100− ton) + k2(to f f − ton) (17)

ton and toff are timing of engine start-up and shutdown independently, which are represented as SOC.
The equality constraint is the requirement of trip range distance D,

D = k1(100− ton) + k2(to f f − ton) + k3(to f f − 20) (18)

ki, i = 1,2,3, are driving distance per unit charge under different conditions, the specific values are
shown in Table 2.

Table 2. Driving distance per unit charge.

Distance of Unit Charge Driving State Value [km/%]

k1 Initial pure electric 0.7310
k2 Charging 0.3667
k3 Pure electric after charging 0.7210

Inequality constraints satisfy,

to f f − ton > 0
20 < ton, to f f < 80

When the target distance exceeds one charge and discharge cycle, the engine repeatedly starts
and closes. If there are n charge and discharge cycles in the whole trip. Evaluation is processed based
on total uptime of the engine.

min t =
k2

[
60(n− 1) + (Lo f f − Lon)

]
L

Tcycle (19)

The target trip distance is calculated as Equation (20).

D = k1(100− ton) + 60(n− 1)(k2 + k3) + k2(to f f − ton) + k3(to f f − 20) (20)

4. Computational Experiment

In order to verify the effectiveness of BSAII algorithm, 20 benchmark functions were used in
computational experiments, including unimodal and multimodal examples [25,26]. BSA, particle
swarm optimization (PSO), artificial bee colony (ABC) and differential evolution (DE) were used as
algorithms for comparison. In general, two aspects were taken into account to evaluate performance
of algorithms: (1) proximity to the real optima in single operation, and (2) stability and accuracy of
optimal results using different algorithms in multiple operations. Tables 3 and 4 illustrate concrete
content of benchmark functions. In all cases, the population size was 50. The dimensions had two
different types, dimension of population in f 4, f 6–f 8, f 11–f 13, f 15, f 16 f 18–f 20 were set to two, and in
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other cases were 20. The number of iterations was set to 1000. Other parameters used in simulation
were tuned according to Table 5. FQ is the flying interval, and this was set to three. FL is the following
coefficient, and this value was a random number between 0.5 and 0.9. c3 and c4 are acceleration
constants. w is inertia weight linearly decreasing from 0.9 to 0.5 [27]. CR is crossover probability, and F
is the mutation rate [28]. f oodnumber is the number of the food sources which is equal to the number
of employed bees. limit is a predetermined number of cycles [29]. All algorithms were programmed
with MATLAB 2018a. The simulation environment was on a computer with Intel ® core™ i5-8400
CPU @ 2.80 GHz.

Table 3. Benchmark functions.

Id. Name Dimension Boundary Optima

f 1 Sphere 20 [−100,100] 0
f 2 Sum of Different Powers 20 [−1,1] 0
f 3 Sum Squares 20 [−5.12,5.12] 0
f 4 Trid 2 [−4,4] –2
f 5 Rotated Hyper-Ellipsoid 20 [−65.536,65.536] 0
f 6 Easom 2 [−100,100] –1
f 7 Matyas 2 [−10,10] 0
f 8 Booth 2 [−10,10] 0
f 9 Griewank 20 [−600,600]
f 10 Rastrigin 20 [−5.12,5.12] 0
f 11 Schwefel 2 [−500,500] 0
f 12 Shubert 2 [−5.12,5.12] −186.7309
f 13 Schaffer Function No. 2 2 [−100,100] 0
f 14 Rosenbrock 20 [−2.048,2.048] 0
f 15 Beale 2 [−4.5,4.5] 0
f 16 Needle in a Haystack 2 [−5.12,5.12] –3600
f 17 Zakharov 20 [−5,10] 0
f 18 Drop-Wave 2 [−5.12,5.12] –1
f 19 Bukin Function No. 6 2 x1∈ [−15,5], x2∈ [−3,3] 0
f 20 Three-Hump Camel 2 [−5,5] 0

Table 4. Benchmark functions.

Id. Function

f 1 f1(x) =
N∑

i=1
x2

i

f 2 f2(x) =
N∑

i=1
|x|

i+1

f 3 f3(x) =
N∑

i=1
ix2

i

f 4 f4(x) =
N∑

i=1
(xi − 1)2 − N∑

i=2
xixi−1

f 5 f5(x) =
N∑

i=1

i∑
j=1

x2
j

f 6 f6(x) = − cos(x1) cos(x2) exp(−(x1 −π)2 − (x2 −π)2)
f 7 f7(x) = 0.26(x2

1 + x2
2) − 0.48x1x2

f 8 f8(x) = (x1 + 2x2−7)2 + (2x1 + x2 − 5)2

f 9 f9(x) =
N∑

i=1

x2
i

4000 −
N
Π

i=1
cos( xi√

i
) + 1

f 10 f10(x) = 10N +
N∑

i=1
[x2

i − 10 cos(2πxi)]

f 11 f11(x) = 418.9829N − N∑
i=1

xi sin(
√

xi)

f 12 f12(x) = (
5∑

i=1
i cos((i + 1)x1 + i))(

5∑
i=1

i cos((i + 1)x2 + i))

f 13 f13(x) = 0.5 +
sin2(x2

1−x2
2)−0.5

[1+0.001(x2
1+x2

2)]
2

f 14 f14(x) =
N−1∑
i=1

[100(xi+1 − x2
i )

2
+ (xi − 1)2]

f 15 f15(x) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x2

2)
2
+ (2.625− x1 + x1x3

2)
2

f 16 f16(x) = −( 3
0.05+(x2

1+x2
2)
)

2 − (x2
1 + x2

2)
2

f 17 f17(x) =
N∑

i=1
x2

i + (
N∑

i=1
0.5ixi)

2

+ (
N∑

i=1
0.5ixi)

4

f 18 f18(x) = −
1+cos(12

√
x2

1+x2
2)

0.5(x2
1+x2

2)+2

f 19 f19(x) = 100
√∣∣∣x2 − 0.01x2

1

∣∣∣+ 0.01|x1 + 10|
f 20 f20(x) = 2x2

1 − 1.05x4
1 +

x6
1

6 + x1x2 + x2
2
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Table 5. Parameter setting.

Algorithm Parameters

BSAII, BSA a1 = a2 = 1, c1 = c2 = 1.5, P ∈ [0.8, 1], FL ∈ [0.5, 0.9], FQ = 3

PSO c3 = c4 = 2.0, w ∈ [0.5, 0.9]

DE CR = 0.9, F = 0.5

ABC f oodnumber = M
2 , limit = 10

First of all, each algorithm ran once with 1000 iteration independently. Convergence performance
on 20 benchmark functions is shown in Figure 4. Based on the graphical results, except for f 11, f 14, and
f 19, BSAII could reach the real optima in other 17 functions. In addition, better results can be obtained
by BSAII, compared with other four algorithms. Therefore, it can be shown that the performance of
BSAII algorithm outperforms other algorithms.

Additionally, each algorithm was independently performed for 50 times on 20 test instances. Due
to randomness of initial solutions for all algorithms, multiple performance indexes were used for
comparing the performance of BSAII with different algorithms. Table 6 gives the minimum (MIN),
maximum (MAX), mean (MEAN) and standard variation (SD) of 50 trials on each case. We can make
the following remarks from results of Table 6:

1. On instances of f 1~f 7, f 12, f 17, and f 20, BSAII performed better than other algorithms, in terms
of convergence rate and accuracy of optimal solution. Since the four indexes had the smallest
values compared with these obtained by other algorithms.

2. On instances of f 8, it was evident that both BSAII and DE could get the real optima (0 in Table 3),
better than the other algorithms.

3. On instances of f 9 and f 10, BSAII and BSA were better than PSO, ABC, and DE in terms of
performance indexes.

4. On instances of f 13, f 15 and f 18, BSAII, BSA and DE converged to the real optimal value, with the
same accuracy. But the convergence rate of BSAII and BSA in the early stage was faster than DE.

5. Only on instance of f 11, DE acquired the best performance over other algorithms. Solutions found
by BSAII and BSA occasionally fell into local optimum.

6. Only on instance of f 16, BSA converged to the real optimal value (–3600) every time. It was
obvious that BSA was better than the other algorithm on this example. While BSAII fell into local
optimum at times and was not convergent to –3600. But the average value of 50 trials was closer
to the optimum than that obtained by other algorithms.

7. The statistical results of f 14 and f 19 were somewhat complicated. The minimum of optimal fitness
on f 19 was found by BSAII, but the other three performance indexes of MAX, MEAN, and SD
were slightly worse than in DE. BSAII would fall into local optimum when solving benchmark
function of f 14.

Overall, we claimed that BSAII produced better convergence and more stable performance than
BSA, PSO, ABC, and DE, in most cases.
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Figure 4. Convergence of benchmark functions using BSAII, BSA, particle swarm optimization (PSO),
artificial bee colony (ABC) and differential evolution (DE).

Table 6. Statistical results obtained by BSAII, BSA, PSO, ABC, and DE in 50 trails (the best results are
in bold).

Id. Algorithm MIN MAX MEAN SD

f 1

BSAII 0 0 0 0

BSA 6.15 × 10−266 9.98 × 10−176 2.40 × 10−177 0
PSO 3150.775 11924.62 7944.131 1938.963
ABC 0.1627 12.08388 3.873986 2.878341
DE 5.88 × 10−09 8.31 × 10−07 9.04 × 10−08 1.23 × 10−07

f 2

BSAII 0 0 0 0

BSA 5.43 × 10−256 2.53 × 10−63 5.07 × 10−65 3.55 × 10−64

PSO 0.000443 0.032429 0.006521 0.00539
ABC 1.35 × 10−08 1.64 × 10−05 2.37 × 10−06 3.26 × 10−06

DE 2.17 × 10−32 1.02 × 10−20 2.05 × 10−22 1.43 × 10−21

f 3

BSAII 0 0 0 0

BSA 1.13 × 10−242 1.06 × 10−184 3.27 × 10−186 0
PSO 69.29799 315.1082 196.9478 56.54325
ABC 0.001651 0.036862 0.016376 0.008962
DE 2.98 × 10−10 6.99 × 10−09 1.51 × 10−09 1.27 × 10−09

f 4

BSAII −7 −7 −7 2.66 ×10−15

BSA −7 −7 −7 2.29 × 10−14

PSO −6.99272 −6.45886 −6.90539 0.104025
ABC −7 −6.99997 −6.99999 6.26 × 10−06

DE −7 −7 −7 2.66 × 10−15

f 5

BSAII 0 0 0 0

BSA 1.32 × 10−237 1.62 × 10−177 3.27 × 10−179 0
PSO 8375.27 48805.58 30703.65 7607.746
ABC 1.394579 48.57402 14.07298 9.398897
DE 2.91 × 10−08 5.71 × 10−07 1.59 × 10−07 1.12 × 10−07

f 6

BSAII −1 −1 −1 0

BSA −1 −1 −1 3.94 × 10−14

PSO −0.99599 −1.18 × 10−69 −0.29917 0.334968
ABC −1 −8.11 × 10−05 −0.9555 0.197304
DE −1 −1 −1 0

f 7

BSAII 0 0 0 0

BSA 3.79 × 10−251 2.53 × 10−179 5.07 × 10−181 0
PSO 1.75 × 10−05 0.002047 0.000348 0.000447
ABC 2.20 × 10−07 0.000157 3.22 × 10−05 3.99 × 10−05

DE 1.42 × 10−178 2.10 × 10−170 6.36 × 10−172 0
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Table 6. Cont.

Id. Algorithm MIN MAX MEAN SD

f 8

BSAII 0 0 0 0

BSA 0 1.36 × 10−14 2.72 × 10−16 1.90 × 10−15

PSO 0.000117 0.054104 0.011096 0.012605
ABC 2.91 × 10−08 0.000174 3.09 × 10−05 3.93 × 10−05

DE 0 0 0 0

f 9

BSAII 0 0 0 0

BSA 0 0 0 0

PSO 36.51811 113.051 77.5095 17.99438
ABC 0.669883 1.17361 1.027435 0.086522
DE 5.34 × 10−08 0.027025 0.003197 0.006494

f 10

BSAII 0 0 0 0

BSA 0 0 0 0

PSO 118.5101 174.2391 150.3891 13.19794
ABC 16.57457 41.5169 28.29116 5.126784
DE 83.19845 134.5668 110.4572 12.10043

f 11

BSAII 2.55 × 10−05 118.4384 40.26906 56.10528
BSA 2.55 × 10−05 118.4384 30.79399 51.95111
PSO 0.004037 21.11573 2.520817 4.011557
ABC 2.55 × 10−05 6.29 × 10−05 2.97 × 10−05 6.14 × 10−06

DE 2.55 × 10−05 2.55 × 10−05 2.55 × 10−05 0

f 12

BSAII −186.731 −186.731 −186.731 9.59 ×10−14

BSA −186.731 −186.731 −186.731 9.80 × 10−07

PSO −186.717 −184.601 −186.243 0.436279
ABC −186.731 −186.731 −186.731 3.28 × 10−06

DE −186.731 −186.731 −186.731 9.99 × 10−14

f 13

BSAII 0 0 0 0

BSA 0 0 0 0

PSO 2.70 × 10−06 0.017705 0.005071 0.004228
ABC 8.24 × 10−10 1.85 × 10−05 2.82 × 10−06 3.96 × 10−06

DE 0 0 0 0

f 14

BSAII 18.83609 18.97269 18.90242 0.029108

BSA 9.70 ×10−13 18.80166 1.304165 4.264392
PSO 151.1679 709.0956 455.849 117.039
ABC 19.55623 51.37853 28.38958 7.592035
DE 12.17635 16.29873 14.56445 0.859034

f 15

BSAII 0 0 0 0

BSA 0 0 0 0

PSO 2.86 × 10−05 0.012789 0.001782 0.002403
ABC 2.63 × 10−08 0.000207 5.00 × 10−05 5.51 × 10−05

DE 0 0 0 0

f 16

BSAII −3600 −2748.78 -3565.95 166.8039
BSA −3600 −3600 −3600 0

PSO −3599.74 −3024.95 −3504.13 103.0209
ABC −3598.49 −2748.78 −3307.88 297.6948
DE −3600 −2748.78 −2919.03 340.4871

f 17

BSAII 0 0 0 0

BSA 1.21 × 10−240 3.65 × 10−54 7.34 × 10−56 5.11 × 10−55

PSO 60.66649 438.8272 203.5698 81.22512
ABC 101.2244 178.586 140.5003 16.80537
DE 0.003087 0.190539 0.042672 0.037769

f 18

BSAII −1 −1 −1 0

BSA −1 −1 −1 0

PSO −0.99988 −0.93622 −0.97521 0.020419
ABC −1 −0.99996 −0.99999 7.72 × 10−06

DE −1 −1 −1 0

f 19

BSAII 7.97 ×10−05 0.14995 0.066484 0.041502
BSA 0.002607 0.147479 0.070706 0.039185
PSO 0.169037 1.416421 0.729224 0.272299
ABC 0.041325 0.298631 0.166209 0.043545
DE 0.00036 0.126775 0.063711 0.038273

f 20

BSAII 0 0 0 0

BSA 8.88 × 10−249 6.76 × 10−170 1.35 × 10−171 0
PSO 1.16×10−05 0.003825 0.000797 0.000874
ABC 1.00 × 10−16 3.08 × 10−11 1.96 × 10-12 5.64 × 10−12

DE 2.31 × 10−187 1.66 × 10−178 3.68 × 10−180 0
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5. Optimization of On-Off Control Mode

This paper selects NEDC condition for research. The NEDC working condition test consists of two
parts: the urban operation cycles and the suburban operation cycle (Figure 5). The urban operation
cycle consisted of four urban operation cycle units. The test time of each cycle unit was 195 s, including
idling, starting, accelerating and decelerating parking stages. The driving distance of the whole NEDC
was 10.93 km and the testing time was 1184 s. The maximum velocity was 120 km/h, and average
velocity was 33 km/h.

Figure 5. New European driving cycle (NEDC).

In this paper, two instances with different target distances for E-REV are analyzed. One is
short-distance driving, in which the battery can complete the trip with one charge-discharge cycle.
Another case is long-distance driving, and the battery needs multiple charge-discharge processes.

5.1. Traditional On-Off Control Mode

5.1.1. Distance = 100 km

The control strategy was to start the engine and recharge the battery when the power reduced to
20%, and shut down the engine when the battery was charged to 80%. According to the established
model, the driving distance of the vehicle at engine start-up was 58 km. The driving distance of
the vehicle was 80km when engine was shut down (Table 7). The engine was working in a full
charge–discharge cycle, the uptime of the engine in E-REV was 2383 s. Figure 6 shows the variation
of SOC. It can be observed from the figure, that when the battery dropped to 52% after charging,
the vehicle’s distance reached 100 km.

Table 7. On-off control mode.

Mode Time [%] Distance [km] Working time [s]

ton 20 58
2383 stoff 80 80
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Figure 6. Battery volume of the electric vehicle, distance = 100 km.

5.1.2. Distance = 200 km

The distance exceeded 124 km, so more than one charge and discharge cycles would be repeated in
the process of driving motion. According to Equation (20), there were three incomplete charge-discharge
cycles. Working time of engine during vehicle in motion was 5959 s (Table 8). The SOC curve is shown
as Figure 7. From the figure, it is evident that vehicle completed the target distance in the charging
mode, while the battery SOC reached 50%.

Table 8. On-off control mode in the last cycle.

Mode Time [%] Distance [km] Working time [s]

ton 20 189
5959 stoff 50 200

Figure 7. Battery volume of the electric vehicle, distance = 200 km.
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5.2. On-Off Control Mode After Optimization

5.2.1. Distance = 100 km

BSAII was adopted to minimize the working time of engine so as to reduce fuel consumption
and gas pollution. The trip distance was set to 100 km. The optimization problem and the constraints
satisfied Equations (14)–(17). The number of iterations was set to 1000. Start-up and shut-down
time of engine can be obtained by simulation, which are shown in Table 9. According to Table 9, it
was obviously found that the early shutdown of the engine could help reduce fuel consumption and
exhaust emissions of engine. The trade-off relation between the working time t with iterations is shown
in Figure 8. The variation of SOC in the battery can be observed in Figure 9. The working time reduced
to 36.4%, compared with the traditional control strategy.

Table 9. Optimal on-off control mode.

Mode Time [%] Distance [km] Working time [s]

ton 20 58
1515 stoff 58 80

T:1515.9527

Figure 8. Convergence curve of engine uptime optimized via BSAII.

Figure 9. SOC of battery in electric vehicle after optimization, distance = 100 km.
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5.2.2. Distance = 200 km

When the target distance was set to 200 km, it meant that the engine needed to be turned on and
off repeatedly. The working hours of engine was calculated using Equation (19), and the distance
constraint was formulized as Equation (20). The optimal on-offmode found by BSAII is illustrated in
Table 10. According to the results, there were three charge–discharge cycles during driving process.
In the last cycle, the engine turned off when SOC in battery reached 30%, and the electric power which
was just enough to complete the entire distance (200 km). The convergence curve in the optimization
problem is shown as Figure 10. After optimization, the total running time of engine was 5168 s, a 13%
reduction in contrast to 5959 s under the traditional control strategy. The SOC of the battery power for
electric vehicles while the car was in motion is shown in Figure 11.

Table 10. Optimal on-off control mode in the last cycle.

Mode Time [%] Distance [km] Working time [s]

ton 20 189
5168 stoff 30 193

Figure 10. Convergence curve of t optimized with BSAII.

Figure 11. SOC of battery in electric vehicle after optimization, distance = 200 km.

6. Conclusions

This paper proposed another version of BSA, named as BSAII. In the version of BSAII algorithm,
the spatial coordinates of birds in solution-space instead of the fitness function were used to determine
the distance from the center of the whole bird group. Based on this method, the coefficients A1 and A2
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were more accurate than that in BSA. We examined the performance of two different representations of
defense behavior for BSA algorithms, and compared their experimental results with other bio-inspired
algorithms, including PSO, ABC, and DE. It was evident from the statistical and graphical results
highlighted that the BSAII outperformed other algorithms on most of the instances, in terms of
convergence rate and accuracy of the optimal solution. Besides this, it was the first time that BSAII
has been applied to the energy management of electric vehicles, which helps to reduce engine fuel
consumption and exhaust emissions. Based on the analysis in the previous section, it is clear that:

• The BSAII performed statistically superior to or equal to the BSA on 16 benchmark problems. On
these problems, it obtained the real optimal solution. However, in the case of Rosenbrock function
(f 14), it was prone to falling into local optimum.

• The energy management of electric vehicles in this paper referred to minimization uptime of RE.
The uptime was determined by the time interval between engine on and off. Two instances with
different target driving distances were optimized with BSAII. Results indicated that the uptime of
engine could be reduced by 36.4% with a target distance of 100 km, and 13% with a target distance
of 200 km, respectively, in the NEDC condition. Hence we can draw a conclusion that based on
the optimization strategy of BSAII, the on/off timing of the engine can be accurately controlled,
which can effectively shorten the uptime of the engine, reduce fuel consumption and exhaust
emissions, and also facilitate the next external charging.

It is hoped that in future work, more approaches will be designed to avoid the problem of local
optimum, without sacrificing the convergence rate in BSA.
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Abstract: With the increasing application of unmanned aerial vehicles (UAVs) to the inspection of
high-voltage overhead transmission lines, the study of the safety distance between drones and wires
has received extensive attention. The determination of the safety distance between the UAV and
the transmission line is of great significance to improve the reliability of the inspection operation
and ensure the safe and stable operation of the power grid and inspection equipment. Since there is
no quantitative data support for the safety distance of overhead transmission lines in UAV patrol,
it is impossible to provide accurate navigation information for UAV safe obstacle avoidance. This
paper proposes a mathematical model based on a multi-sensor data fusion algorithm. The safety
distance of the line drone is diagnosed. In these tasks, firstly, the physical model of the UAV in the
complex electromagnetic field is established to determine the influence law of the UAV on the electric
field distortion and analyze the maximum electric and magnetic field strength that the UAV can
withstand. Then, based on the main factors affecting the UAV such as the maximum wind speed,
inspection speed, positioning error, and the size of the drone, the adaptive weighted fusion algorithm
is used to perform first-level data fusion on the homogeneous sensor data. Then, based on the
improved evidence, the theory performs secondary fusion on the combined heterogeneous sensor
data. According to the final processing result and the type of proposition set, we diagnose the current
safety status of the drone to achieve an adaptive adjustment of the safety distance threshold. Lastly,
actual measurement data is used to verify the mathematical model. The experimental results show
that the mathematical model can accurately identify the safety status of the drone and adaptively
adjust the safety distance according to the diagnosis result and surrounding environment information.

Keywords: overhead transmission line; UAV inspection; safe distance; multi-source data fusion;
adaptive threshold

1. Introduction

With the continuous development of power systems, in order to ensure the safe and stable operation
of a power system, the power industry needs to conduct regular inspections on overhead transmission
lines, grasp the environment around the transmission line and its operation in a timely manner, and
deal with potential problems accordingly [1–3]. The traditional transmission line inspections are
mostly manual. In this way, the inspection line is very hard, and the operation period is very long. It is
difficult to reach some blind spots with complicated or even dangerous terrain [4]. Due to its strong
maneuverability, simple operation, various forms, high efficiency, and low cost, the unmanned aerial
vehicle (UAV) inspection line has been widely used by domestic and foreign power companies for the
inspection of transmission lines [5,6].
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In order to accurately and clearly collect the operation and fault information of the power line,
the UAV needs to be inspected close to the tower and the transmission line. However, the complex
electromagnetic field environment around the high-voltage transmission line has a great influence
on the inspection system, the navigation, and the communication system of the UAV. If the distance
between the transmission line and the drone is too close, the complex electromagnetic environment
will cause interference to the electronic components that make up the control system, resulting in
data transmission interruption and equipment failure, affecting the flight performance of the drone,
and even causing the drone to crash into the power line or other safety accidents. In such cases,
the UAV will not complete the line inspection task. However, if this distance is too far, the drone’s
inspection system will not have the best inspection effect [7]. Accurate measurement of the safety
distance between the UAV and the transmission line is a key factor restricting the development of
the UAV transmission line inspection system. Accurately measuring the safe distance of the drone
relative to the overhead transmission line is a challenge in the UAV line-of-sight system. An accurate
measurement of the safety distance can not only ensure the safety of the power grid, the equipment,
and the drones, but also improve the quality and reliability of the drone’s inspection of long-distance
outdoor high-voltage transmission lines.

In order to improve the mobility of the UAV inspection, to enable the UAV to perform inspections
under a variety of working conditions, and to improve the safety and reliability of the UAV line
inspection operations, accurately determine the safety between the drone and the transmission line
distance is very important. Therefore, it is necessary to quantify the safe distance between the UAV
and the transmission line. Some researchers have judged the safety distance through the detection and
identification of power lines and achieved good research results. There are some more representative
methods. Some researchers have used spectrum-space methods to detect power lines in UAV remote
sensing images. Using k-means and the expectation maximization (EM) algorithm for spectral
clustering, the pixels are divided into power lines and non-power lines. Thereby, the autonomous
inspection of the power line by the drone can be further achieved [8]. Other researchers have used
lidar, vision sensors, and infrared cameras to detect transmission lines for navigation and obstacle
avoidance [9–11]. However, these methods have certain limitations. Although the laser ranging has
high accuracy and the laser scanning method is used to realize the transmission line detection, it has a
significant effect on the inspection of the drone. The load of the aircraft reduces the flying efficiency
of the drone. At the same time, the processing of data is complicated because the information of
power transmission lines and towers extracted from the pictures taken by laser point clouds and vision
sensors is affected by the complex environment. The data collected by these methods mainly depend
on manual processing, and the work efficiency is low.

In order to solve the detection errors problem of infrared cameras and lidars due to environmental
factors such as temperature differences and the atmosphere, some researchers have used the edge
detection method to effectively extract power lines and suppress non-power line features [12]. However
this method is easily affected by straight roads and rivers and cannot extract the characteristics of
transmission lines well. In [13], Matikainen et al. provided an extensive overview of the possibilities
offered by modern remote sensing sensors in power line corridor surveys and discussed the potential and
limitations of different approaches. The monitoring of power line components and their surrounding
vegetation uses visual, near-infrared, and multispectral images. In [14], the researchers proposed
a method to process continuous images with telemetry data sent by the autopilot, identify online
vegetation, trees, and building areas near the power line, and calculate the relationship between
power lines and vegetation, trees, and buildings the distance. At the same time, the system processes
the images captured by the infrared camera to detect the poor conductivity and hot spots of power
lines, transformers, and substations. In [15], a method for determining the safe flight area of a UAV
patrol inspection based on an electromagnetic field calculation was proposed. The field strength
distribution around the transmission line and the maximum electromagnetic field strength of the
electronic equipment carried by the UAV were analyzed through simulation to realize the control of
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the prediction of a safe flight distance for UAV inspection. In [16], a method for avoiding obstacles of
overhead transmission lines based on multi-sensor information fusion and cylindrical space inspection
was proposed. These methods can better realize the detection and identification of power lines to a
certain extent. They can also better solve the inspection of transmission lines by line inspection drones
and achieve autonomous obstacle avoidance. However, these methods need to extract the transmission
lines from a messy background due to its characteristics, it is difficult to process the data, the real-time
performance is poor, and the efficiency of UAV inspection cannot be met.

The accurate measurement of safety distance is a key technology. At present, in the practical
application of UAV inspection power line engineering, there is still no stable and reliable method to
achieve autonomous line inspection and autonomous obstacle avoidance navigation. Operators still
need to judge by subjective experience. Under the premise of ensuring that the drone is in a controllable
range, the operator can use the control handle to make the drone is as close to the transmission line
as possible to complete the inspection work [17]. This method can effectively avoid the occurrence
of line inspection safety accidents; however, when the drone is far away from the control personnel,
it is difficult to accurately control it, which limits the performance of the drone operation to a great
extent. Relying on the stable electric field and magnetic field information around the transmission line
to navigate the UAV can effectively solve the limitations of traditional sensors and the difficulty of data
processing. The accurate measurement of the safety distance between the UAV and the transmission
line has become a key factor affecting the development of the UAV transmission line inspection
system [18]. Therefore, the study of the safety distance threshold can provide data support for the
navigation of the UAV inspection operation, and it is of great significance for the navigation of the
UAV autonomous obstacle avoidance navigation and the improvement of the safety and reliability of
the inspection operation.

Based on the status of the research, this paper proposes an adaptive multi-sensor data fusion
algorithm for multi-sensor data fusion on the electromagnetic field strength of the UAV’s safe flight,
the performance of the UAV control system, and the size of the UAV. According to the result and the
type of proposition set, we judge the current safety status of the drone to realize the UAV’s adaptive
adjustment of the safety distance threshold. Finally, the mathematical model was verified by using
certain inspection data. The experimental results show that the mathematical model can accurately
identify the safety status of drones. UAVs that use this mathematical model for line inspection
can be adaptively adjusted according to the surrounding environmental factors’ safe distance. The
multi-sensor adaptive fusion has a clear distinction of credibility, which better solves the problem that
a single safety threshold adapts to a single condition, which brings about a large cruise error due to the
field source positioning error.

The rest of the paper is organized as follows. Section 2 establishes the physical model of the UAV
patrol overhead transmission line, analyzes the influence of the UAV on the electric field distribution
and the variation law of the maximum distorted electric field on the surface of the UAV, and analyzes
the anti-electromagnetic interference performance of the UAV. In Section 3, based on the multi-sensor
data fusion algorithm, the mathematical model of autonomous obstacle avoidance navigation is
established. The main influencing factors affecting the safety distance of the UAV are considered
comprehensively, and the decision of the UAV inspection status based on the fusion result and the
set proposition is realized. In Section 4, according to the actual situation of the UAV patrol overhead
transmission line, the patrol data is collected to verify the mathematical model in the text, the results are
analyzed, and finally, the scientific, practical, limitations, and considerations of the proposed algorithm
and mathematical model are discussed in Section 5.
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2. Materials and Methods

2.1. Analysis of the Influence of Distorted Electric Field on UAV

When a patrol drone is placed as an electric conductor in an electric field, an induced electric
charge is generated on its surface to form an induced electric field. The superposition of the induced
electric field with the original electric field changes the distribution of the original electric field to
form a "distorted electric field" [19]. When the UAV is inspected near the overhead transmission line,
the influence of the "distortion field" on the drone is much greater than that of the original field on the
drone, the distortion is not linear, and it is difficult to completely eliminate it. Therefore, the analysis
of the distortion generated by the UAV in the electric field is of great significance for the accurate
identification of the safety distance threshold.

During the inspection of the overhead transmission line with a power frequency voltage, when the
UAV is located under the transmission line for inspection, a capacitor series circuit is formed between
the UAV, the overhead transmission line, and the ground. Its equivalent physical model is shown in
Figure 1.

Overhead transmission line

UAV equivalent model

Ground

Figure 1. Unmanned aerial vehicle (UAV) patrol transmission line equivalent physical model.

As shown in Figure 1, where U is the phase voltage of the overhead transmission line, C1 is the
equivalent capacitance between the UAV and the transmission line, and C2 is the equivalent capacitance
between the UAV and the ground.

It can be seen from the analysis in Figure 1 that when the UAV is near the transmission line for
patrol inspection, a capacitor series circuit is formed among the UAV, the overhead transmission line,
and the ground, and there will be impedance among the UAV, the transmission line, and the ground.

Here, the impedance between the UAV and the transmission wire can be expressed as:

Z1 = kD1 (1)

where k is the rate of impedance change, which is related to external environmental factors, and D1 is
the distance between the UAV and overhead transmission wire.

Therefore, the physical model of the field strength between the drone and the wire during the
inspection process can be expressed as:

E1 =
Uk

Z1 + Z2
(2)
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where U is the voltage between the conductor and the ground, Z1 is the impedance between the UAV
and the transmission conductor, and Z2 is the impedance between the UAV and the ground.

Since the distance between the UAV and the conductor is far less than the distance between the
UAV and the ground, the impedance change between the UAV and the ground in the inspection
process is much smaller than that between the UAV and the transmission conductor, so the impedance
between the UAV and the ground can be regarded as a fixed value [20]. Therefore, the analysis in
Formula (2) shows that with the voltage U remaining unchanged, as the distance D1 between the drone
and the wire decreases, the field strength E1 between them gradually increases, and if D1 is extremely
small, the air between the drone and the transmission line is broken down, causing the phenomenon of
induced electrification. The field strength E1 enhancement will interfere with the normal operation of
the drone. In order to study the distortion of the electric field by the drone, the drone line is established.
The simulation model is shown in Figure 2.

Overhead transmission line

UAV

Ground

Figure 2. Modeling of a UAV in an electric field.

The main components of the patrol drone are modeled, and the finite element analysis method
is used to simulate the UAV model placed in the electric field in order to study the effect of electric
fields on drones through the inspection of power lines by drones. As shown in Figure 3, the electric
field distortion caused by the drone’s patrol operation is on the same horizontal plane as that of the
edge conductor.

Figure 3. Effect of UAV on electric field distortion.

It can be seen from the analysis in Figure 3 that when the patrol drone is close to the transmission
line for patrol inspection, the rotor, the tripod, and the internal electronic components of the fuselage
will have distortion effects on the spatial electric field distribution around the line, especially near
the motor. At the tip of the wing or at the stand, charge accumulation and field distortion are prone
to occur, especially in the electric field distortion around the motor. This kind of distorted electric
field will have a great impact on the navigation system and communication system of the drone,
even causing the drone to get out of control and cause a safety accident, leading to an inability to
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complete the safety inspection. The analysis of the distortion field under actual working conditions
has an extremely important influence on the accurate identification of the safety distance. Therefore,
this paper simulates and analyzes the influence of a distorted electric field on a UAV inspection system
in 500 kV and 220 kV common voltage transmission lines.

According to the relevant standards of China’s GB 50545-2010 “110–750 kV overhead transmission
line design” and “National Power Transmission and Transformation Engineering Universal Design
(2011 Edition)”, the related parameters such as wire type, ground height, and wire diameter of the
overhead transmission line are set. Our experiments consider a wire to be a smooth cylinder with
infinitely long straight parallel ground and the surface of the wire as an equipotential surface. Ignoring
the end effect of the wire and the sag, the earth is approximated as an equipotential body with a
potential of 0. After simplifying the high-voltage overhead transmission line, the AC/DC module of the
finite element analysis software COMSOL Multiphysics 5.3 multiphysics simulation software is used to
analyze the transient transmission lines of 500 kV and 220 kV AC voltage lines. The three-dimensional
wire model uses a horizontally distributed four-split wire, the material is taken to be copper, and the
wire is added to a three-phase alternating current. The simulation results are shown in Figures 4 and 5.

Figure 4. 500 kV vertical section electric field strength contour.

Figure 5. 220 KV vertical section electric field strength contour.

From the simulation results of Figures 4 and 5, the distribution law of the electric field intensity
on the y–z plane perpendicular to the three-phase transmission line is as follows. At the 500 kV
voltage level, the highest field strength is on the three transmission lines, and the maximum electric
field strength is 6.87 × 105 V/m. At the voltage level of 220 kV, the highest field strength is on the
three transmission lines, and the maximum electric field strength is 6.21 × 105 V/m. The maximum
electric field strength appears on the wire, and the electric field strength contour intersects between
the two transmission lines. The field strength of the electric field is gradually reduced away from the
transmission line, and the field strength decreases faster as it moves away from the wire.

Then, we need to further analyze the influence of the UAV on the field strength distortion during
the operation of the UAV patrol overhead transmission line and the variation of the distortion field
with the distance between the transmission lines. In order to do so, we establish a four-rotor UAV
inspection 500 kV, 220 kV high-voltage overhead transmission line simulation model and carry out
simulation experiments. In the experiment, the distance from the wire is 0.5–12 m, and the maximum
field strength of the surface of the patrol UAV is scanned. The scanning result is shown in Figure 6.
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Figure 6. The relationship between the maximum electric field strength of the surface of the UAV and
the distance.

It can be seen from the analysis in Figure 6 that the maximum field strength of the surface of the
220 kV voltage class overhead transmission line is reduced with the increase of the distance from the
conductor, and the field strength and distance are roughly inversely proportional. The farther the
distance, the smaller the rate of change. The variation of the distortion field strength in relation to the
distance between the outer side and the middle line of the edge conductor is similar. The maximum
field strength at a distance of 1 m is about 150 kV/m, and when the distance is 3.5 m, the field strength
is attenuated to 40 kV/m. When the UAV patrols the 500 kV voltage class overhead transmission line,
the maximum field strength and the field strength change rate of the UAV surface gradually decrease
with the increase of the distance.

When the UAV is 1 m away from the side conductor, the maximum field strength is 180 kV/m, and
when the distance is 5 m, the field strength is attenuated to 50 kV/m. The electric field distortion of the
500 kV voltage level has a greater influence on the surface of the UAV than the voltage level of 220 kV,
but the variation of the field strength with the distance and the rate of change of the field strength
are similar under the two voltage levels. For the electronic components that make up the UAV flight
control system and the inspection system, as well as the conditioning circuit and protection circuit
of the sensor, the maximum electric field strength that can resist electromagnetic interference under
normal operation is generally 50 kV/m [21,22]. Therefore, in order to operate the UAV and the normal
collection of environmental information, the maximum electric field strength of the UAV surface is
generally less than 50 kV/m. In this paper, this electric field strength value is used as the safety field
strength threshold of the normal inspection operation of the unmanned aerial vehicle.

2.2. Analysis of the Influence of Magnetic Field on UAV

The complex electromagnetic environment during the inspection of the unmanned aerial vehicle
will cause interference to the electronic components that constitute the UAV patrol system and
communication system, affecting the flight performance of the UAV. If the distance between the
inspection drone and the transmission line is too close, the electromagnetic field will have a greater
impact on the flight performance of the drone. When the electromagnetic interference is serious, the
effect is macroscopic: due to the occurrence of clutter, the data transmission is not accurate, causing
the equipment to malfunction and the drone to hit the power line. At the same time, according to
Biot–Savart Law, the magnetic field strength at a point around the wire through which the current is
passed is proportional to the current in the wire and inversely proportional to the distance from the
point to the wire. When the UAV moves in a complex magnetic field, it will be attracted by the wire
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and hit the line; subsequently, it will be unable to complete the line inspection task. A current-carrying
wire generates a magnetic field around the space as shown in Equation (3):

→
B =

∫
L

μ0I
4π

dl×→er

r2 (3)

where μ0 = 4π × 10−7 is the vacuum permeability, I is the source current, L is the integral road force, dl is
the microfluidic source, and r is the distance between a point in the space and the current-carrying wire.

The patrol UAV is generally composed of a magnetic field sensor, a GPS positioning system, an
accelerometer gyroscope, a barometer, a motor, a flight control system, and a digital transmission
module [23]. The magnetometer provides patrol navigation for the UAV, which is resistant to a
magnetic interference that is three to four times the magnetic field strength. Therefore, during the
inspection operation, if the magnetic induction generated by the current in the transmission line is
greater than 220 μT, the magnetometer of the unmanned aerial vehicle will be disturbed, which will
affect the normal operation.

The GPS receiver contains circuits of various frequencies, and the electronic components that
make up the GPS internal circuit system are also subject to interference from electromagnetic fields.
The national standard GB/T18314-2001 "Global Positioning System (GPS) Measurement Specifications"
stipulates that when GPS observation is performed, the observation instrument should be 50m away
from the high-voltage transmission line, affecting the inspection and monitoring of transmission lines
using drones that carry GPS. In the literature [24], Silva and Whitney et al. carried out related research
on the influence of the power carrier wave on the accuracy of NGPS (National GPS) received signals
in the United States. The quality has a certain impact, because NGPRS uses a mid-band modulation
signal. However, in [25], Xingfa and Hui et al. analyzed the impact of high-voltage transmission lines
on GPS received signals by comparing positioning errors at different distances from the high-voltage
transmission lines. Field tests were conducted under AC high-voltage transmission lines. The test
results showed that the GPS positioning coordinate accuracy did not significantly decrease at different
distances from the transmission lines, and there were no obvious rules for GPS positioning accuracy,
distance, or whether the line was live. It proves that the error of the high-voltage transmission line on
the GPS receiving signals of nearby operations is not enough to affect the navigation of the line-drone
UAV. At the same time, research analysis shows that the carrier signal L1 frequency of the GPS satellite
is 1575.42 MHz, and the L2 frequency is 1227.6 MHZ. The frequency used by overhead transmission
lines in China is 50 Hz. The radio interference in this frequency band is close to background noise.
The impact on GPS is within the range of the UAV positioning and navigation error. Therefore, under
normal circumstances, the electromagnetic field radiation around the transmission line will not affect
the operation of the GPS positioning system;

The servo motor is an important part of the UAV, and the internal reluctance is easily interfered by
the electromagnetic field. The magnetic field required for normal operation is about 600 μT. The UAV
used to analyze the distorted electric field was placed in the magnetic field for simulation analysis by
finite element analysis. Taking the unmanned aerial vehicle in the same horizontal plane as the side
conductor, the simulation results are shown in Figure 7.
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Figure 7. Magnetic field distribution on the surface of the drone.

From the analysis in Figure 7, it can be seen that in the simulation model, the UAV has a small
effect on the spatial magnetic field distribution around the wire; this is mainly because the constituent
materials of the UAV inspection system are mainly carbon fibers, which have a small magnetic
permeability and are not easy magnetized.

In order to further analyze the relationship between the influence of the magnetic field on the UAV
and the distance of the transmission line during the operation of the UAV patrol overhead transmission
line, the four-rotor UAV patrols two 500 kV and 220 kV high-voltage overhead transmission lines
as examples to carry out simulation experiments. The finite element analysis method is used to
simulate the influence of the magnetic field distribution around the high-voltage transmission line on
the patrol UAV. The transmission current of China’s 220 kV overhead transmission line is 0.6–1.2 kA.
The simulation model established in the paper applies 1.2 kA, the transmission current of the 500 kV
transmission line is 2–4 kA, and the current applied to the two poles of this simulation line is 3 kA.
The variation law of the maximum magnetic induction intensity on the surface of the drone inspection
operation and the distance between the transmission wires is shown in Figure 8.

Figure 8. The variation of the surface magnetic field of the UAV with the distance.

It can be seen from the analysis of Figures 7 and 8 that the surface magnetic field distortion law
of the UAV patrol overhead transmission line is similar to the electric field distribution. Taking the
unmanned aerial vehicle in the same horizontal plane as the side-phase conductor as an example,
the inspection model of the UAV in the complex electromagnetic field is established, and the rate
of change of the magnetic field strength of the UAV surface is simulated and analyzed. The rate of
change of the magnetic induction intensity on the surface of the UAV and the distance between the
drone and the transmission line changes are shown in Figure 8. When the UAV patrols a 220 kV
high-voltage overhead transmission line with a current intensity of 1.2 kA and a 500 kV voltage-grade
high-voltage overhead transmission line with a current of 3 kA, the surface magnetic field changes with
distance similar to the electric field. The magnetic field at the 500 kV voltage level has a greater impact
on the drone, but its rate of change is similar. Generally, the overhead transmission line inspection
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has polarization effects and performance differences related to its components. In order to ensure
the normal operation of the UAV, the magnetic field strength should be less than 220 μT. As can be
seen from the analysis of Figure 8, the relationship between the minimum safe distance d and the
transmission current I is [17]:

d = I. (4)

2.3. Electromagnetic Field Experiment Results and Analysis

In the laboratory environment, a high-voltage transmission line simulation experiment platform
was built to simulate and analyze the minimum safe distance of the electromagnetic interference
caused by the inspection of the UAV. In the high-voltage laboratory, a 100 kV experiment transformer
without local power-off frequency was built to generate a power-frequency electromagnetic field to
conduct experimental research on the model of UAV being interfered by the electromagnetic field.
According to the operation requirements, the UAV is fixed on the side of the transmission wire, and
self-inspection is completed. Then, we gradually increase the voltage and current strength according
to the experimental requirements, after which we observe the stability and controllability of the UAV.
During the test, the model DJI-NAZA quadrotor experimental drone was used. The drone used for the
experiment was 0.68 m long, 0.68 m wide, and 0.4 m high. It was made of carbon fiber and had good
hover stability. The experimental steps are shown in Figure 9.

Begin

According to the experimental 
requirements, the experimental scene 

is arranged and the UAV is fixed to the 
side of the transmission line according 
to the operation requirements, and the 

self-test is completed.

Debugging and controlling the flight 
attitude of the drone while gradually 

passing high-voltage alternating 
current

When the communication system of 
the drone is abnormal and the fuselage 

is discharged, recording the current 
electromagnetic field strength and 

voltage level

By calculating and analyzing the 
recorded data, the maximum electric 

field and magnetic field strength of the 
unmanned aerial vehicle can be 

obtained.

End
 

Figure 9. Experimental steps for a safe distance of UAVs against electromagnetic interference.
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The experiment is completed according to the experimental steps shown in Figure 9, where the
experimental layout equivalent diagram is shown in Figure 10, and the experimental scene diagram
is shown in Figure 11. The UAV is fixed at a distance of 1 m from the conducting wire. During
the experiment, the voltage control console is used to control the transformer to generate a high
voltage of 0–80 kV. During the voltage regulation process, we observe the drone controllability and the
transmission system stability while recording the voltage level and electric and magnetic field strength
at each moment.

Distance

Transmission line High voltage 
field source

UAV

High voltage 
field source

 
Figure 10. Schematic diagram of the electromagnetic field experiment.

Transmission 
line

Patrol UAV
 

Figure 11. Experimental scene diagram.

During the experiment, when the field strength around the UAV is 70–80 kV/m, the UAV platform
starts to shake, and the phenomenon of delay occurs when the unmanned aerial vehicle is controlled by
the ground control terminal. The image transmission has streaks, snowflake spots, and occasionally the
black screen appears; the picture transmission is interrupted, and the UAV communication system and
the control system are disturbed, which affects the stability of the data transmission system, and the
drone cannot perform normal inspection operations. When the magnetic field strength is 200–210 μT,
the UAV platform starts to shake, the magnetometer starts to be disturbed, and the drone slowly drifts
toward the wire side; subsequently, abnormal handling performance and abnormal data transmission
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occur, and the inspection operation cannot be performed normally. In the actual implementation of
the inspection operation, in order to ensure the safety inspection of the UAV, a certain safety margin
should be left. Experimental research and simulation analysis show that in order to prevent the
electromagnetic pulses generated between the UAV and the overhead wires from causing interference
to the drone’s communication and control system, and to avoid the electromagnetic field around the
power line from affecting the normal inspection operations of the UAV. It is reasonable to set the safety
threshold of the field strength to 50 kV/m and the magnetic field strength to 180 μT.

3. Adaptive Security Threshold Data Fusion Algorithm

3.1. Analysis of the Safe Distance of the UAV Patrol Power Line

In order to ensure the stability of the inspection of the unmanned aerial vehicle, in addition to the
electronic components to meet certain anti-electromagnetic interference performance, the flight speed,
wind speed, navigation positioning error, and the size of the drone structure and these factors have a
great influence on the determination of the safe distance of the UAV line [20].

Assume that the positioning error of the navigation system of the patrol drone is D1. In order
to indicate the influence of the structure of the unmanned aerial vehicle on the determination of the
safety distance, the length of the maximum diagonal of the lined drone is D2. At the maximum wind
speed of the allowed flight, the deviation due to the wind speed V1 is D3, the patrol speed of the drone
is V2, the communication time is recorded as t, The maximum electric field strength experienced by a
UAV equipped with an electronic device during normal operation is E, and the maximum magnetic
field strength experienced by the electronic device is B. The analysis in this paper is based on the
D-S multi-source data fusion algorithm; the sensor data is collected and processed to give decision
results in real time, and the adaptive adjustment of the safety distance threshold is realized. The block
diagram of the decision system is shown in Figure 12.

UAV 
inspection 

system

Electric field 
sensor

Magnetic field 
sensor

Accelerometer

Anemometer

Adaptive weighted fusion

D-S 
data 

fusion

Safe 
distance 
decision

UAV positioning error

UAV geometry size

Adaptive weighted fusion

Adaptive weighted fusion

Adaptive weighted fusion

 
Figure 12. Block diagram of multi-sensor data fusion decision system.

3.2. Homogeneous Multi-Source Data Adaptive Weighted Fusion Algorithm

Each sensor can extract a part of the obstacle-avoiding navigation information, and the extracted
part of the information cannot accurately reflect the accurate information of the target or can only
extract a certain part of the target information due to interference of other factors. The state of the target
object cannot be accurately determined. Multi-sensors are used to detect and fuse various navigation
information during the inspection process, and different sensors are used to collect and detect changes
of the external environment and extract meaningful information from the collected information. When

56



Electronics 2019, 8, 1467

different sensors distributed in different spatial positions of the unmanned aerial vehicle are used to
measure obstacles such as transmission lines, towers, and electromagnetic field strength, the sensors
will be different at different times and in different spaces to form a set of observations [26,27]. It is
assumed that there are m sensors in the process of patrolling to measure the same variable. In a certain
period of time, a single sensor obtains n measurement data, and the set is represented by Z as:

Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Z1(1) Z1(2) · · · Z1(n)
Z2(1) Z2(2) · · · Z2(n)

...
...

. . .
...

Zm(1) Zm(2) · · · Zm(n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (5)

where Zm(n) represents the measured value of the n-th sensor at the m-th moment.
Suppose there is an estimated true value X. At the first moment, the estimated mean and variance

of the X acquired by the same sensor are: {
Z+

i = Zi(1)
P+

i = σ2
i (1)

. (6)

Based on the time recursive estimation theory, after the sensor collects the information, the
estimated mean Z+

i and variance P+
i are used as the statistical characteristics of the next measurement,

and the new measurement data is used to correct the one-time recursive calculation. The time fusion
estimation value Z+

i (k) and variance P+
i (k) after k measurement of the same sensor can be obtained as

follows:

Z+
i (k) =

P+
i (k− 2) + σ2

i (k)

2[P+
i (k− 2) + P+

i (k− 1) + σ2
i (k)]

Z+
i (k− 1)

+
P+

i (k− 1) + P+
i (k− 2)

2[P+
i (k− 2) + P+

i (k− 1) + σ2
i (k)]

Z+
i (k)

(7)

P+
i (k) =

P+
i (k− 1)σ2

i (k)

P+
i (k− 1) + σ2

i (k)
(8)

where the measurement variance can be obtained by calculating the auto-covariance factor and
cross-covariance factor of a single sensor. For the k-th measurement, the estimation value of m sensors is
Z+

1 (k), Z+
2 (k), . . . , Z+

m(k); the mean square error is P+
1 (k), P+

2 (k), . . . , P+
m(k), the weighting coefficient

is W1(k), W2(k), . . . , Wm(k), and the optimal result of sensor space fusion is
−
Z(k):

−
Z(k) =

m∑
i=0

Wi(k)Z+
i (k),

m∑
i=0

Wi(k) = 1. (9)

Since the measured estimates Z+
1 (k), Z+

2 (k), . . . , Z+
m(k) are independent of each other, the total

mean square error of the k-th multi-sensor measurement spatiotemporal fusion is:

σ2(k) = E[(X − −Z(k))
2
] =

m∑
i=0

Wi
2P+

i (k). (10)

From the above formula, σ2(k) is a quadratic function of Wi(i = 1, 2, . . . , m); then, the minimum value
of σ2(k) can be obtained by using the weighting coefficients W1(k), W2(k), . . . , Wm(k) to satisfy the
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constraint multivariate function extremum. The weighting factor of the total mean square error is
shown in Equation (11):

Wi(k) = 1/(P+
i (k)

m∑
j=1

1
P+

j (k)
), i = 1, 2, . . . , m. (11)

The corresponding total mean square error at this time is as shown in Formula (12):

σ2
min(k) = 1/(

m∑
j=1

1
P+

j (k)
). (12)

3.3. Evidence-Based Multi-Source Information Fusion Algorithm

Multi-source information fusion is based on the comprehensive processing of multiple kinds of
information to accurately determine the state of the target object. D-S evidence theory is a reasoning
method that was first proposed by Dempster and further developed by his student Shafer; it is also
known as Dempster–Shafer evidence theory (D-S evidence theory). As a reasoning method, D-S
(Dempster–Shafer) evidence theory can combine heterogeneous data information based on Bayes
theory. It has outstanding features related to solving the problem of uncertainty, satisfies the conditions
weaker than Bayes probability theory, and has the ability to directly express "uncertainty". The core
idea is the combination rule of evidence theory. D-S (Dempster–Shafer) evidence theory is widely used
in many fields such as medical diagnosis, target recognition, military command, etc., which need to
comprehensively consider uncertain information from multiple sources [28]. The three basic elements
of D-S (Dempster–Shafer) evidence theory are as follows: the basic probability assignment function m,
the reliability function Bel(A), and the likelihood function pl(A). Firstly, the pre-processing of various
sensor data is performed to solve the basic probability distribution function m, the belief function
Bel(A), and the plausibility function Pl(A). Then, according to the combination rule, each value under
the comprehensive evidence is solved. Finally, the reasonable judgment principle is adopted to take
the maximum assumption of the belief function and the plausibility function as the final result of the
data processing [29–31].

Let the set of all possible propositions in the universe be a recognition frame Θ. The basic
probability distribution on the recognition frame Θ is a function m of 2Θ → [0, 1], which satisfies:

m(φ) = 0 (13)∑
A⊆Θ

m(A) = 1 (14)

where Φ represents an empty set; m (A) is a basic probability distribution function, which represents
the degree of trust of the focus element A. The belief function Bel (A) and the plausibility function Pl (A)
respectively represent the degree of support and possibility for the proposition A, and the expressions
are expressed as follows.

Assuming ∀A ⊆ 2Θ, then:
Bel(A) =

∑
B⊆A

m(B) (15)

Pl(A) =
∑

A∩B�φ

m(B). (16)
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The synthetic rules of D-S (Dempster–Shafer) evidence theory provide a synthetic formula that
can fuse multiple evidence elements to provide evidence:

K =
∑

Ai∩Bj=φ

m1(Ai)m2(Bj) < 1. (17)

Then:

m(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

Bi∩Cj
m1(Bi)m2(Cj)

1−K A � φ
0 A = φ

. (18)

K is a collision factor, reflecting the degree of conflict of evidence, and 1/(K − 1) is called a
normalization factor. This combination rule is equivalent to assigning an empty set (conflict) to each
set in the combination.

In view of the actual working conditions of the UAV while inspecting an overhead transmission
line, the various influencing factors of the safety distance are mutually influential, and one of the
factors will cause the other factors to change. For example, the inspection speed of the drone will
affect the measurement of the relative wind speed and affect the detection of the electric field and
magnetic field strength. When the evidence conflict is more serious, the D-S (Dempster–Shafer)
algorithm cannot focus according to different weights. Some identification frameworks may have a
probability of 0. The combined result will often have a large error with the actual situation, which
makes the system unable to make a more accurate judgment on the safe distance of the inspection.
Therefore, this paper improves the D-S (Dempster–Shafer) evidence theory synthesis Formula (18),
and uses the improved evidence theory synthesis formula as the global fusion algorithm of each
environmental factor information data. Assuming the degree of conflict between evidences in the
formula is represented by the parameter K, the evidence trust degree is represented by the parameter ε,
and the evidence average trust degree function is represented by q(A), then:

m(φ) = 0 (19)

m(A) = p(A) + Kεq(A) (20)

p(A) =
∑

Bi∩Cj

m1(Bi)m2(Cj) (21)

q(A) =
1
n

n∑
i=1

mi(A) (22)

ε = e−s (23)

s =
K

n(n− 1)/2
(24)

where s is the sum of each pair of evidence sets in n evidence sets, which reflects the degree of conflict
between the two sides of the evidence. Meanwhile, ε is a decreasing function of s, reflecting the
credibility of the evidence; when the conflict between the evidences increases, the degree of trust of the
evidence will decrease; s is different from K in the D-S (Dempster–Shafer) theory. K can reflect the
overall degree of conflict of evidence. When K increases, s does not necessarily increase.

In the D-S (Dempster–Shafer) decision theory to solve the decision process based on multi-objective
fusion, the evidence acquisition is very difficult. It embodies the scientific rationality of constructing
the basic probability distribution function, and whether the allocation of basic probability numbers
is reasonable directly determines whether the conclusions after the combination of evidence are
credible [32,33]. The traditional solution is to ask for help in the field, but the credibility of the
information given by the authoritativeness of the experts has a certain deviation. In order to avoid
unnecessary deviation caused by human subjectivity, this paper uses the typical sample-based method
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to automatically perform basic probability distribution. This paper also uses the distance between the
measured value and the typical value to construct the density function of the normal distribution curve,
and then constructs the basic probability distribution function. In this paper, the BPA (Basic Probability
Assignment) is obtained by constructing a normal curve from the Hamming distance between each
evidence and a typical sample. Based on the above analysis, the specific steps of implementing the
adaptive safety threshold algorithm for the overhead transmission line of the UAV are as follows.

It is assumed that there are m sensors in the process of patrolling to measure the same variable.
In a certain period of time, a single sensor obtains n measurement data, and the set is represented by
Z as:

Z =
{
Zi(k)

}
(i = 1, 2, . . . , m; k = 1, 2, . . . , n). (25)

Then, we perform the first-level fusion of the data measured by the same variable according to
the homogenous multi-source data adaptive weighting fusion algorithm described in the paper, and
obtain the estimation result after the fusion of each parameter variable.

Assuming that the number of target patterns is p, the number of evidence is l, and the construction
recognition framework is Θ =

{
X1, X2, · · · , Xp

}
, in this framework, the typical value of each target

pattern Xj on each evidence is
{
Z1 j, Z2 j, · · · , Zlj

}
( j = 1, 2, · · · , p), and the results of the adaptive

weighted fusion of the measured values of the evidences are {Z1, Z2, . . . , Zl}.
The average Hamming distance between them is solved based on the measured fusion results

and typical sample values:

Hij =
∣∣∣Zi −Zij

∣∣∣, Hi =
1
p

p∑
j=1

Hij. (26)

Using the normal curve to find the similarity between the evidence Zi and the corresponding
typical value Zij in the target pattern Xj:

Pij = e−Ak2
(27)

where
A = 0.5, k = Hij/Hi. (28)

The basic probability of evidence Zi and the corresponding target mode Xj is:

Mi(Xj) = Pij/
p∑

j=1

Pij. (29)

According to the D-S (Dempster–Shafer) evidence fusion algorithm, the target mode A basic
probability distribution function m(A) can be calculated and solved, and the decision is made based
on this.

4. Results

Data Fusion Algorithm Verification and Analysis

In order to detect the safety distance of the inspection UAV according to the real-time data of
each sensor under the current unmanned aerial vehicle inspection condition, judging the security
status of the current location according to the matching of the data collected by various heterogeneous
sensors and the evaluation rules, the patrol UAV can conduct an autonomous obstacle avoidance
navigation control according to the decision result, or transmit the decision result to the ground
terminal. Based on the decision result, the operator can make accurate judgment on the real working
condition of the patrol inspection of the UAV and carry out a remote control of it. When performing
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data fusion of heterogeneous sensors, the identification framework should be constructed reasonably.
The identification framework constructed in this paper is assumed to be:

Θ = {A, B, C} (30)

where A = {Farther away}, B = {Suitable distance}, and C = {Dangerous distance}.
According to a large number of experiments and principle analysis, and using the expert knowledge

to give the basic probability assignment, the attribute interval of each detection condition is set as
shown in Table 1 below.

Table 1. Conditional attribute discrete interval setting.

Conditional
Attribute

Electric Field
Strength
(kV/m)

Magnetic Field
Strength

(μT)

Wind
Speed
(m/s)

Navigation
Error
(m)

Inspection
Speed
(m/s)

UAV
Size (m)

Farther
away (0, 50) (0, 180) (0, 3) (0, 1.5) (3, 5) (~, 1.5)

Suitable
distance (50, 150) (180, 225) (3, 8) (1.5, 3) (5, 10) (1.5, 3)

Dangerous
distance (150, ~) (225, ~) (8, ~) (3, ~) (10, ~) (3, ~)

In the experiment, four power frequency electric field sensors are used to collect the electric field
intensity signals around the transmission lines. Four magnetic field sensors collect the magnetic field
strength signals around the transmission lines, and the accelerometer is used to measure the speed
of the UAV. The measurement of wind speed and direction is realized by the anemometer, and data
fusion of various sensors such as the structural size parameters of the drone and the positioning error
is used to realize the decision of the safety distance.

First, we select a set of data collected during the inspection process of a drone as the verification of
the data fusion algorithm. Then, we select the data collected by each sensor within a certain period of
time, according to the adaptive weighted fusion method described in the paper, by firstly merging the
same sensor in time, and then adapting the fused data result between homogenous sensors. The result
of the weighted fusion data is used as the detection data of this type of sensor. In a certain period of
time, the data of each type of sensor after adaptive weighted fusion is selected as the D-S evidence
theory algorithm to verify the UAV patrol overhead transmission line conditions.

In this paper, based on the typical sample method, the density function of normal distribution is
constructed by elastic Hamming distance [26], and then the basic probability distribution function
is constructed. The basic probability assignment of each influencing factor obtained through the
processing of the data is shown in Table 2.

Table 2. Basic probability assignment assignment table.

A B C

Electric field strength 0.752 0.203 0.045

Magnetic field strength 0.876 0.113 0.011

Inspection speed 0.658 0.241 0.101

Wind speed 0.381 0.528 0.091

Positioning error 0.274 0.456 0.27
UAV size 0.525 0.373 0.102

The evidences of electric field strength, magnetic field strength, wind speed, inspection speed,
and UAV positioning error are m1, m2, m3, m4, and m5, and the value of the obtainable probability
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assignment function m(A) is calculated according to the DS fusion algorithm. The m(A) obtained by
fusing each proposition case is shown in the following table.

From the analysis of the fusion results and propositional hypotheses in Table 3, we can see that
the UAV inspection status is proposition A; that is, the UAV is far away from the transmission line, and
the inspection sensor carried by the UAV is not optimal. The inspection effect should control the drone
to approach the field source to achieve a proper inspection distance, which can ensure the safety of the
inspection of the drone, and also enable the detection sensor to reach the optimal detection state.

Table 3. Fusion results under various propositional conditions.

Proposition Hypothesis A B C

Fusion result 0.97 0.025 0.005

At the same time, for this theory, we take the 220 kV and 500 kV high-voltage AC transmission
lines of the patrol line unmanned aerial vehicle inspection as an example to analyze the safety distance
of the inspection. In the case where all error parameters take the maximum value, the positioning error
of the navigation system of the UAV inspection system is set to 2.5 m; the maximum wind speed of the
patrol UAV that allows the drone to operate during wind-resistant flight under the normal inspection
and the standard deviation allowed is 1.5 m. Therefore, the deviation due to the wind speed is 1.5 m,
and the distance between the unmanned aerial vehicle and the wire is 3 m under the condition of the
AC 220 KV voltage level and the maximum electric field strength required for the normal operation
of the electronic equipment of the UAV. When the electronic device is working normally under the
maximum magnetic field strength required, the distance between the drone and the wire is 1.2 m;
under the condition of an AC 500 KV voltage level and the maximum electric field strength required
for the normal operation of the electronic equipment of the drone, the distance between the UAV and
the wire is 5 m.

Under the condition of the maximum magnetic field strength required for normal operation of
electronic equipment, the distance between the UAV and the conductor is 3 m. In this model, the
maximum diagonal length of the unmanned aerial vehicle (taking into account the length of the wing)
is 1 m. Here, we assume that the patrol unmanned aerial vehicle speed of the aircraft is v = 5 m/s, and
the communication time between the UAV and the ground is t = 0.2 s. Therefore, the safety inspection
distance of patrol unmanned aerial vehicle inspection at the 220 kV voltage level is about 8 m; at the
500 kV voltage level, the safety inspection distance of the inspection line drone is about 11 m. However,
it is less likely that the error parameters will take the maximum value at the same time during the actual
inspection. It is unreasonable to judge the safety status of the high-voltage overhead transmission
line of the UAV with a fixed safety threshold as a standard. This method adapts to a single working
condition and does not achieve the optimal inspection effect.

The safety distance threshold is different under different environmental factors. If the decision
is made with a fixed threshold, in some cases, the safety distance threshold is too close to cause
the inspection accident, while in other cases, the fixed safety threshold is larger. The inspection
equipment carried by the drone can not exert the best test performance, so that the situation of missed
detection and misjudgment will not be achieved, and the expected inspection effect will not be achieved.
The multi-sensor data fusion algorithm is used to perform multi-source data fusion on each sensor data
and intelligently determine the current safety distance threshold to avoid problems caused by a single
safety distance threshold. According to the analysis of the fusion results, the probability assignment of
the corresponding propositions is more concentrated after D-S (Dempster–Shafer) evidence theory
fusion, and the credibility distinction is more obvious. The adaptive security threshold algorithm has
good rationality and scientificity.

62



Electronics 2019, 8, 1467

5. Discussion and Conclusions

(1) In this paper, we establish a physical model of the UAV in the complex electromagnetic field
environment, combined with the anti-electromagnetic interference capability and the influence of the
electric field distortion of the electronic components that constitute the UAV inspection system. Finally,
the electric field strength of the UAV safety inspection is 50 kV/m, and the magnetic field strength is
180 μT. The comprehensive analysis of the common voltage level of the UAV inspection shows that the
relationship between the UAV safety inspection distance d (m) and the through current I (kA) in the
wire is approximately:

d = I. (31)

(2) Analysis of the simulation results shows that the electric field distribution on the surface
of the UAV is not uniform. The field strength distribution at the tip of the rotating motor and the
wing is concentrated, and the electric field distortion is large. Therefore, in the design of the UAV,
the installation of the electric field measuring device should be as far as possible. Here, we avoid
burrs or tips to prevent electric field distortion from affecting the measurement and determination of
safety distance.

(3) This paper adopts a multi-sensor data fusion decision-making method to the data fusion of
the main factors affecting UAV flight speed, wind speed, navigation positioning error, and structural
size. According to the fusion result and the set proposition, the UAV inspection status is determined,
and the UAV is adaptively adjusted according to the inspection operation environment. Then, the
algorithm is verified. According to the analysis of the fusion results, the reliability of the multi-sensor
adaptive fusion is more obvious, which better solves the single safety threshold adaptation condition
and brings about a large cruise error due to the field source positioning error.

By studying the safety distance of overhead transmission lines for unmanned aerial vehicles, it can
provide reference for improving the safety and reliability of UAV power inspection operations, and
ensure the safe and stable operation of UAVs, power grids, and inspection equipment. The important
significance provides a theoretical basis for the next step of studying with UAV.
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Abstract: This paper presents a cascade second-order sliding mode control scheme applied to
a permanent magnet synchronous motor for speed tracking applications. The control system is
comprised of two control loops for the speed and the armature current control, where the command of
the speed controller (outer loop) is the reference of the q-current controller (inner loop) that forms the
cascade structure. The sliding mode control algorithm is based on a single input-output state space
model and a second order control structure. The proposed cascade second order sliding mode control
approach is validated on an experimental permanent magnet synchronous motor drive. Experimental
results are provided to validate the effectiveness of the proposed control strategy with respect to
speed and current control. Moreover, the robustness of the second-order sliding mode controller is
guaranteed in terms of unknown disturbances and parametric and modeling uncertainties.

Keywords: permanent magnet synchronous motor; second-order sliding mode control; cascade
control; robustness

1. Introduction

Permanent magnet synchronous motors (PMSM) have been broadly deployed in variable speed
drives due to their efficiency, high power density and fast dynamics. However, the control efficiency
of PMSM drives is affected by parametric inaccuracies, load disturbances and uncertainties in real
applications. Furthermore, they are nonlinear multivariable systems with modeling uncertainties and
parameters changing during operation.

High performance control of PMSMs is difficult to attain, using model-based methods, due to the
above drawbacks. Therefore, various robust and advanced control methods have been conducted to
improve the PMSM efficiency. In [1], an adaptive speed regulator was designed with no information
about the PMSM parameters, the load and the torque values. Another adaptive control method was
investigated in [2] through adapting the feedforward compensation gain with respect to the identified
inertia and an extended state observer was used to estimate both the states and the disturbances
simultaneously. A disturbance torque estimation and nonlinear control was developed in [3] and
predictive control strategy in [4]. Similar to other works, tracking performance and robustness
were performed through disturbance estimation, which alleviate the computation burden of such
controllers [5,6].

High order sliding mode control (SMC) has emerged as an efficient control method due to its
insensitivity with respect to system inaccuracies and unknown disturbances. Furthermore, it has
advantages over the traditional SMC to overcome the chattering problems [7,8]. Different second-order
SMC strategies have been developed for PMSMs. In [9] and [10], SMC-based disturbance observer, for
uncertainties compensation, was proposed to reduce chattering and designed for the speed control
loop. In [11], a second order SMC was presented as a direct torque and flux controller for PMSM
without chattering. In [12], a second order SMC algorithm, using proportional-plus-integral sliding
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plane, was developed to improve the tracking and robustness performance compared to conventional
first order SMC. In [13], a second order SMC was designed using an integral manifold for the speed
control from the mechanical equation of the permanent magnet synchronous generator-based wind
energy system. Other strategies, related to SMC applied to deferent drives and systems, are available
in the literature [14–18]. In [19], a feedback linearization was combined with optimization to deal with
parametric changes and applied to a pendulum like a robot. In [20], a standard SMC scheme was
derived from the SISO case and used as a decoupled input-to-flat-output model for a robot manipulator
with good performance. Despite the good performance of such control strategies, it is difficult to
assess the behavior of SMC strategies when dealing with both mechanical and electrical models of
the PMSM system. In general, the SMC method is applied to the speed equation of the machine and
the conventional vector control, PI-based method, which is used for the electrical equation for the
current control loop due to the computational burden and implementation limitation when applying
advanced controllers [13]. This matter will be explored in this work by considering both mechanical
and electrical systems to develop a cascade structure of an advanced control strategy and using the
powerful Opal-RT real time experimental system for control implementation. Furthermore, this work
deals with a cascade structure and interaction between different SMC controllers for multivariable
control, which will help in understanding the implementation issues of such controller in the area of
multivariable control. The second-order SMC scheme provides higher capabilities for dealing with
nonlinearities and uncertainties compared with conventional control methods, such as PI control
and linearization control, as changes in the system do not require tuning of its parameters or adding
mechanisms to deal with parametric uncertainties.

In this paper, a second-order SMC is designed for multivariable control, in a cascade scheme,
of PMSM drive. The output tracking error dynamic, for rotational speed and d-q components of the
current, is modelled under a single input-output state space model and decoupled by considering the
nonlinear terms in new variable inputs. Furthermore, the unknown load torque effect is rejected by the
proposed second-order SMC through integral action in the controller without the need for observing
the load torque or identifying the inertia seen by the rotor shaft. In general, any other uncertainties
in the mechanical and electrical systems of the PMSM, such as unmodeled quantities, parameters’
variations and external disturbance, will be compensated by the proposed control scheme, which
constitutes the contribution of this work compared to [9–13]. The proposed controller for speed and
current tracking is robust against parametric variations and uncertainties in the system.

2. PMSM Model

The PMSM model, in the d-q rotating reference frame, is described by

d
dt

[
isd
isq

]
=

⎡⎢⎢⎢⎢⎢⎣ − R
Ld

Lq
Ld

pωr

−Ld
Lq

pωr − R
Lq

⎤⎥⎥⎥⎥⎥⎦[ isd
isq

]
+

⎡⎢⎢⎢⎢⎣ 1
Ld

0
0 1

Lq

⎤⎥⎥⎥⎥⎦[ vsd
vsq −ϕvpωr

]
(1a)

dωr

dt
=

1
J

(
p
(
ϕvisq +

(
Ld − Lq

)
isdisq

)
− fωr − TL

)
(1b)

where, isd is the d-axis of the stator current; isq is the q-axis of the stator current; vsd is the d-axis control
voltage; vsq is the q-axis control voltage; ϕv is the permanent magnet magnetic flux linkage; p is the
poles pairs number; R is the stator resistance; Ld is the d-axis of the inductance of the stator winding;
Lq is the q-axis of the inductance of the stator winding; ωr is the rotational speed; J is the moment of
inertia; f is the viscous friction coefficient; and TL is the load torque.

The variables to be controlled are the rotor speed ωr and the d-axis of the stator current isd to
track external references and the q-axis of the stator current isq to track a reference produced by the
outer loop of speed control. Furthermore, the load torque is an unknown disturbance and will be
compensated by the proposed controller.
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3. Cascade Second-Order SMC

3.1. Control Developement

The state space model, based on single input single output (SISO), has the following expression

.
x(t) = −Ax(t) + Bv(t) + d(t) (2)

where, x is the state variable, v is the input variable and d is an unknown bounded disturbance.
The control objective is to ensure a zero steady state error such as

e(t) = xref(t) − x(t) = 0 (3)

where, xref is the reference, and e is the tracking error.
The tracking error dynamic is carried out using (2) and (3) and expressed by

.
e =

.
xref − .

x = −Ae + u− d (4)

where, u is the new control input.
The new control input is expressed by

u = −Bv + Axref +
.
xref (5)

Then, let us consider the second-order SMC for perturbation elimination [8,18]⎧⎪⎪⎨⎪⎪⎩ u = −k1|e| 12 sgn(e) + w
.

w = −k2sgn(e)
(6)

where, k1 and k2 are positive constants, and sgn is the switching function

sgn(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 x > 0
0 x = 0
−1 x < 0

(7)

Finally, from (5) and (6), the command v in (2) for regulating x to track the reference xref is
provided by ⎧⎪⎪⎨⎪⎪⎩ v = 1

B

[
Axref +

.
xref + k1|e| 12 sgn(e) −w

]
.

w = −k2sgn(e)
(8)

The stability of the second order SMC (8) applied to (4) to ensure e(t)→0 can be demonstrated in a
similar manner as in [8].

The advantage of the second-order SMC compared to the traditional SMC is that it takes
into consideration the nonlinearities and uncertainties with better performance as it includes an
integral action. It is well known that an integral action enhances the control efficiency in dealing
with uncertainties.

3.2. Cascade Second Order SMC Structure

The cascade control scheme, depicted in Figure 1, includes two loops for the control systems such
as: (1) the outer loop control for speed regulation provides the q-axis of the current reference applied
to the inner control loop. (2) The inner loop control for current regulation that provides the voltage
commands to generate the six pulses to control the DC-AC converter.
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Figure 1. Block diagram of the proposed cascade second order SMC for a PMSM.

3.2.1. Outer Loop Control

The second-order SMC is developed using the motion equation. The control system provides the
q-axis current as a reference for the inner loop in order to track the desired speed reference.

The motion Equation (1b) is expressed under the form (2) as

.
ωr(t) = −Aωωr(t) + Bωisq(t) + dω(t) (9)

where, Aω =
f
J , Bω =

p
J

(
ϕv +

(
Ld − Lq

)
isd

)
, dω = −TL

J .
The speed tracking error dynamic is expressed by

.
eω = −Aωeω + uω − dω (10)

where, eω = ωref −ωr is the speed tracking error, and the new control input uω is provided by

uω = −Bωisq + Aωωref +
.
ωref (11)

Therefore, the q-axis current reference based on the 2-SMC law (8) is expressed as⎧⎪⎪⎨⎪⎪⎩ isqref =
1

Bω

[
Aωωref +

.
ωref + k1|e| 12 sgn(eω) −wω

]
.

wω = −k2sgn(eω)
(12)

3.2.2. Inner Loop Control

The sliding mode control is applied to the electrical model in order to provide the components of
the stator voltage which minimizes the difference between the stator current components (isd, isq) and
the current references (isdref, isqref), respectively.

The electrical equation (1.a) is expressed, under the form (2), as{
disd(t)/dt = −Adisd(t) + Bvvd(t) + dd(t)
disq(t)/dt = −Aqisq(t) + Bqvq(t) + dq(t)

(13)

where, Ad = R
Ld

, Bd = 1
Ld

, Aq =
R
Lq

, Bq =
1
Lq

.
The input variables (vd, vq) represent the decoupling components to linearize the system (1a) and

are expressed as {
vd = Lqpωrisq + vsd

vq = −Ldpωrisd −ϕvpωr + vsq
(14)

70



Electronics 2019, 8, 1508

The current tracking error dynamics are expressed by{ .
ed = −Aded + ud − dd
.
eq = −Aqeq + uq − dq

(15)

where, ed=isdref − isd and eq=isqref − isq are the (d, q) current tracking errors.
The new control inputs are given by{

ud = −Bdvd + Adisdref + disdref/dt
uq = −Bqvq + Aqisqref + disqref/dt

(16)

The second-order SMC for d-q current control is carried out from (14)–(16), using the control
design (5)–(8), and the voltage command components are given by⎧⎪⎪⎨⎪⎪⎩ vsd = Lqpωrisq + Ld

[
Adisdref + disdref/dt + k1|ed| 12 sgn(ed) −wd

]
.

wd = −k2sgn(ed)
(17a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ vsq = Ldpωrisd + Lq

[
Aqisqref + disqref/dt + k1

∣∣∣eq
∣∣∣ 1

2 sgn
(
eq
)
−wq

]
.

wq = −k2sgn
(
eq
) (17b)

3.3. Chattering Reduction

The reduction of the chattering phenomenon in the control laws (12) and (17), the sgn function is
modified such as

sgn(e)→ sat
( e
α

)
=

{
sgn(e) if |e| ≥ α

e
α if |e| < α (18)

where, α > 0 represents the boundary layer thickness.

4. Robustness to Uncertainties

The PMSM dynamics are uncertain and include uncertainties such as unmodeled quantities,
parametric variations, and unknown and external disturbances. Therefore, the control design must be
robust to compensate all these uncertainties and enhance the tracking performance.

The PMSM limitations, related to the boundedness of the rotor acceleration and speed,
the electrical-mechanical parameters in (1), and the load torque, during its operation are described
by [13] ∣∣∣ .

ωr
∣∣∣ ≤ .
ω

M
r and |ωr| ≤ ωM

r (19){
R = R + ΔR; Ld,q = Ld,q + ΔLd,q

|ΔR| ≤ δR; |ΔL| ≤ δL

{
J = J + ΔJ; f = f + Δ f
|ΔJ| ≤ δJ;

∣∣∣Δ f
∣∣∣ ≤ δ f

(20)

|TL| ≤ δTω
M
r (21)

where, ωM
r is the upper value of the rotor speed, and

.
ω

M
r is the upper value for the rotor acceleration.

Note: the symbol “−” is used for the nominal value, Δ represents the uncertainty, and δ(·) are
bounded positive constants.

Stability analysis for perturbed systems, controlled by a second-order SMC, has been detailed
in [8]. The asymptotic stability of the closed-loop system is guaranteed by selecting control gains that
satisfy the following conditions ⎧⎪⎪⎨⎪⎪⎩ k1 > 2δ

k2 > k1
5k1δ+4δ
2(k1−2δ)

(22)
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Let us define the system (1) with uncertainties

d
dt

is = (A + ΔA)is + (B + ΔB)vs + ds (23a)

d
dt
ωr = −(Aω + ΔAω)ωr + (Bω + ΔBω)isq + dω (23b)

where, is =

[
isd
isq

]
, A =

⎡⎢⎢⎢⎢⎢⎣ − R
Ld

Lq
Ld

pωr

−Ld
Lq

pωr − R
Lq

⎤⎥⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎢⎣ 1
Ld

0
0 1

Lq

⎤⎥⎥⎥⎥⎦, vs =

[
vsd

vsq −ϕvpωr

]
, ds =

[
dd
dq

]
and

Δ(·) are parametric uncertainties.
The equations in (23) are rearranged with all uncertainties included in single terms such as

d
dt

is = (A + ΔA)is + (B + ΔB)vs + dsnew (24a)

d
dt
ωr = −(Aω + ΔAω)ωr + (Bω + ΔBω)isq + dωnew (24b)

where, dsnew = ΔAis + ΔBvs + dsnew and dωnew = −ΔAωωr + ΔBωisq + dωnew.
The new perturbation terms, in (24), include parametric uncertainties, unmodeled quantities and

unknown disturbances. The SMC laws (12) and (17) will reject the bounded perturbations, which is
one of the major characteristics of the SMC [7]. The advantage of the proposed cascade second-order
SMC, compared to model based methods, such as optimal, feedback and predictive control, is that the
knowledge about the load torque is not required, by measurement or estimation, and will be rejected
to achieve zero steady-state tracking error.

5. Opal-RT HIL and Experimental System

The experimental system is shown in Figure 2, and the hardware connection is depicted in
Figure 3. It includes a PMSM drive; speed encoder; power supply; insulated-gate bipolar transistor
(IGBT) inverter; inductor line; dynamometer connected to the rotor shaft acting as a load; and data
acquisition board (OP8660) with inputs for current, voltage and speed measurements and outputs for
inverter pulses. The system is driven by the Opal-RT real-time simulator (OP5600). The schematic
of the hardware connections between all modules is shown in Figure 4. The proposed cascade
second-order SMC scheme is implemented in the Simulink/MATLAB and RT-LAB real-time simulation
software environment, executed in the OP5600 and deployed to the system drive through the OP5600.
The hardware in the loop (HIL) system, that includes the PMSM drive, the OP8660 and the OP5600,
is illustrated in Figure 4. Details about the communication and deployment are available in [21].
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Figure 2. Experimental PMSM drive.

 
Figure 3. Schematic of the experimental PMSM drive.
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Figure 4. HIL PMSM drive system.

6. Experimental Results and Discussions

Experiments were conducted to validate the proposed cascade second-order SMC scheme under
multiple operating conditions that include tracking performance under variable speed, robustness to
parametric uncertainties (electrical and mechanical), rejection of external disturbance (sudden change
in the power supply voltage), and unknown load torque. The PMSM parameters are provided in
Table 1. In all scenarios, the control gains, provided in Table 2, were selected by trial and error method
and remain constant for all experiments. The experimental results are illustrated in Figures 5–10.

Table 1. PMSM parameters.

Parameter Unit Value

Rated power W 260
Rated current A 3
Stator resistance Ω 1.3
Stator d-axis inductance mH 1.5
Stator q-axis inductance mH 1.5
Flux linkage Wb 0.027
Number of pole pairs − 3
Moment of inertia kg·m2 1.7 × 10−6

Friction coefficient Nm·s/rad 0.3141 × 10−6
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Table 2. Control gains.

Gain Value

Speed control (outer loop)

k1, k2 103, 104

δ 0.2
α 0.01

Current controller (inner loop)

k1, k2 (d-axis) 102, 103

k1, k2 (q-axis) 102, 103

6.1. Speed Tracking Performance for Variable Reference

A variable step reference was generated to check the speed tracking performance at sudden
changes for the motor operating at no load. First, the second order-SMC control law was tested using
the sgn function. It can be observed from the results of the speed tracking and d-q axes currents control,
shown in Figure 5a,b, respectively, that the steady state error was eliminated by the controller without
any overshoot and a fast response time at the reference signal transitions. However, the chattering
occurs in the speed tracking error, Figure 5a, the speed control law (iq command), and d-q currents,
Figure 5b.

(a) (b) 

Figure 5. Tracking response for a variable speed reference (SMC with sgn function). (a) Speed tacking
and error; (b) d-q currents tracking and q-command.

Then, the second-order SMC law was tested using the modified sgn function (18). It can be
observed from the results of the speed tracking, Figure 6a, and the speed control law (iq command),
Figure 6b, that the chattering has been significantly reduced; however, the speed error at the transitions
has slightly increased but without diminishing the overall performance of the control law.

  
(a) (b) 

Figure 6. Tracking response for a variable speed reference (SMC with modified sgn function). (a) Speed
tacking and error; (b) d-q currents tracking and q-command.
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The only exception, in both cases, is the chattering in the d-q currents response, which was not
eliminated by the second version of the control law even with control gains’ change in multiple trials.
The reason that the phenomenon is not only software from the control law, but hardware as the power
supply, in the experimental set-up, includes fluctuations in its voltage signal as shown in Figure 8.
Also, noises in data acquisition and IGBT pulses contribute to the chattering. Compared to similar
works in this field on PMSM, as in [4] and [21], the current response is acceptable.

Overall performance of the cascade control strategy is satisfactory as the main objective is to track
a speed reference while maintaining the current within its limit.

6.2. Parameter Uncertainties

The robustness of the proposed control scheme against parametric uncertainties was verified in
this experiment. The uncertainties include the mechanical parameters (moment of inertia and viscous
coefficient) and the electrical parameters (magnetic-flux, resistance and inductance). The parameters
were set in the control laws with different values than the real ones of the machine. Random and
extreme variation were chosen, where the values of the mechanical parameters were increased by
50% in the controller and the values of the electrical parameters’ variations were changed separately
(ϕv increased by 20%, R decreased by 20% and Ld,q increased by 40%). Practically, the two important
parameters to be tested are the resistance, which changes during the motor’s operation due to the heat,
and the rotor inertia, which varies when coupled with an unknown load. In this work, variations of
different parameters were tested in order to prove the control strategy effectiveness. Figure 7a shows
the speed response under parametric variations, where a good speed tracking performance is reached
with a zero steady-state error. Figure 7b represents the q-current command to ensure robustness against
parametric variations.

  
(a) (b) 

Figure 7. Speed tracking response under mismatched model. (a) Speed tacking and error; (b) Speed
control output (q-command).

6.3. External Disturbance

In order to check the disturbance rejection of the proposed second-order SMC, the voltage VDC

of the power supply, considered constant, is varied along its nominal value with ± 10% change as
shown in Figure 8. This change is considered extreme as in general the power supply is well stabilised.
The DC voltage variation can be presented as an external disturbance because the controller has no
information about this change. The system is controlled to track a constant reference and it can be
observed from the result, shown in Figure 9a, that the speed response was affected by the variation
of the power supply, however, the zero steady-state error was established after each variation due to
the 2-SMC speed controller output, shown in Figure 9b, which proves the capability of the proposed
controller to reject external disturbance with a good performance.
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Figure 8. DC power supply variation (External disturbance).

 
(a) (b) 

Figure 9. Speed tracking response under external disturbance. (a) Speed tacking and error; (b) Speed
control output (q-command).

6.4. Unknown Load

Finally, to verify the effects of an unknown load, the parameters of a dynamometer, coupled with
the motor through a belt with a gear ratio 1:2, were not included in the controller design. Figure 10a,b
represent the speed tracking response and speed controller output, where it can be observed that the
speed tracking performance is successfully achieved even with the unknown perturbation.
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(a) (b) 

Figure 10. Speed tracking response under unknown load disturbance. (a) Speed tacking and error;
(b) Speed control output (q-command).

7. Conclusions

A cascade second-order sliding mode control scheme for a permanent magnet synchronous
motor drive has been presented. The outer loop control is a speed controller to track the rotor speed
trajectory, while the inner loop control, a current control, regulates the d-axis current. The aim of the
proposed second-order SMC is to achieve accurate speed tracking despite the system inaccuracies such
as parametric uncertainties and unknown perturbations. The second-order SMC law is developed for
a state space model and applied to the PMSM drive by decoupling and linearizing its model. Opal-RT
real time technology-based HIL is used to implement the control strategy. An experimental setup
was used to experimentally validate of the proposed second-order SMC under different conditions.
Experimental results have proved the effectiveness and the robustness of the proposed control scheme
with respect to reference variations and system inaccuracies. The second-order SMC provides more
features concerning system uncertainties compensation as it includes an integral action.
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Abstract: Predictive current control (PCC) applied on permanent magnet synchronous motors
(PMSMs) has been developed into mainly three methods: the conventional finite-control-set PCC,
the double voltage vectors PCC, and deadbeat PCC. However, each approach has its particular
calculation way for voltage vectors selection and respective execution duration. This paper, based
on the deadbeat idea, presents a unified predictive current control scheme of PMSMs. Under this
scheme, the prior three classes are able to be clearly unified into one frame with lower calculation
effort. Furthermore, to cope with problem of parameter mismatch in dq-axis current predictive
model, a integrated identification method is proposed. Firstly, data selectors are designed to
reject abnormal data of sampling signals, and then the interval-varying multi-innovation least
squares algorithm is combined with forgetting factor (V-FF-MILS) to approximate the error terms
caused by electromagnetic parameters error. The estimated results are online fed to the model
of PMSM to enhance its accuracy. Finally, the processor in loop (PIL) simulation results verify
that the proposed integrated scheme has advantages in current control of PMSMs with large-scale
parameter uncertainty.

Keywords: PMSM; current control; model predictive control; parameter identification

1. Introduction

Owing to its advantages on efficiency, power density, and compact structure, PMSMs have been
widely employed in various electrical drive appliances in vehicle, aerospace, and other industrial
fields. There are a variety of control strategies designed to improve PMSMs’ output performance.
Field-oriented control (FOC), also called vector control, and direct torque control (DTC) are the two
most common control frames together with many other modified methods. It is well known that FOC
and DTC have limitations on necessity of independent d-q current controllers with a pulse modulator
and considerable torque ripple, respectively [1]. Recently, thanks to the continuous advancement of
digital signal processing technology over the last decades [2], the model predictive control (MPC),
with intuitive operation principle and good transient performance, has gained attention on regulating
the output current or torque of PMSMs, yielding the predictive current control (PCC). Overall, the PCC
can be divided into three categories: the conventional finite-control-set PCC, the Double VVs, and
deadbeat PCC. They have been successfully implemented on controllers of PMSMs [3,4].

The conventional finite-control-set PCC, also known as direct PCC, takes advantage of the inherent
nature of inverter that has a finite number of switching states Sn, where n = 8 for the commonly
used two-level voltage source inverter; thus, there are eight voltage vectors (VVs) including six active
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VVs and two null VVs. All the VVs are used to predict possible stator currents ip(k + 1) based on
the discrete model of motor. The one that minimizes a cost function evaluating the error between
the reference current i∗(k + 1) and the predictions ip(k + 1) and other constraints is selected as the
action of the next control period. Although the conventional PCC has feature of intuitive principle,
there are several drawbacks, e.g. high current ripple as amplitude, phase of the action VV cannot
be adjusted, and computational burden result from the enumerated way to search the optimal VV.
The inverter is operated in a variable switching frequency because of only one VV per period with
no need for a modulator, causing large harmonics [2]. To overcome this, the Double VVs PCC is
introduced by taking account of exerting two voltage vectors using a PWM modulator in a control
period. Combination forms of two VVs have been explored. The authors of [3–5] considered one
active vector and a successively null vector as a set, thus amplitude of the resultant vector can be
adjusted. However, Zhang and Yang [6] showed it has an inferior steady-state performance at high
speed. Therefore, Liu et al. [7] considered all the feasible combinations of two VVs so that the phase of
the composed vector can be adjusted, but the situation that two non-adjacent vectors are combined
would increase the switching loss of inverter. The duty cycle of each vector is calculated based on the
current dead-bead principle in the above methods, which considers the current will reach the reference
value at the end of this operation.

The Deadbeat PCC is similar to the FOC scheme, which usually has a space vector PWM
modulator, and its optimal control set composed by two adjacent active VVs and a null VV is
determined by the reference voltage, which is directly obtained from the predictive model of
PMSMs based on the deadbeat idea [3], while that of FOC is from a specific PI or other complex
current controller.

The performance differences about the three PCC schemes can be found in [3]. Each scheme
has its unique advantage, such as less nonlinearity of inverter introduced for direct PCC in each
control period. In this paper, the above three methods are simply denoted as 1-PCC, 2-PCC and 3-PCC,
respectively. The numeric symbols represent the number of voltage vectors applied per control period.
Currently, there are numerous variations of those schemes implemented in different computation ways.
For example, the 1-PCC is implemented on αβ-frame based on an enumerated way, while the 2-PCC
usually takes d-q coordinate, which is not convenient for engineers. One study on unifying the 1-PCC
and 2-PCC method in one frame [8] reveals that an alternative cost function about voltage vector is
equivalent to the conventional one, but its calculation process is still not intuitive. This paper proposes
a generalized predictive current control scheme based on the principle of deadbeat control and vector
composition in an explicit way. It is shown that 3-PCC can easily be reduced to 2-PCC and 1-PCC by
judging simple linear equations. The durations of VVs for 2-PCC can be calculated simultaneously.
Consideration for the system uncertainty can also be included.

An inevitable issue is that the PCC heavily relies on the model parameters of motor, resulting in
current tracking performance deterioration when occurring in parameter mismatch. The nonlinear
control is widely used to cope with this situation. For example, the sliding mode observers are
frequently designed to estimate the disturbance caused by parameter uncertainty [9–11]. The uncertain
term in the predictive model can be replaced by nonlinear function [12]. Advanced robust techniques
are often introduced to design control law, such as the control-Lyapunov function [13], disturbance
estimation [14], and differential flatness [15]. Another strategy lies in the parameter identification,
such as a recursive inductance estimator [9], multi-parameter identification with a decoupling
method [16], model reference adaptive technique [17], extended Kalman filter [18], modified particle
swarm optimization [19], Adaline neural network [20], etc. All those methods aim to acquire accurate
parameters, which is not necessary in the PCC schemes. In this paper, we estimate three model error
terms caused by parameter perturbation. Thus, the identification model can be simplified into a linear
regression model. Then, a integrated identification method is proposed to approximate the error terms.

This paper is organized as follows. The predictive model of a surface-mounted PMSM and
the calculation of the inverter’s output voltage are presented in Section 2. Section 3 proposes the
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generalized predictive current control scheme. The model identifying method based on a modified
multi-innovation recursive least square to estimate the model error is presented in Section 4. Section 5
presents the PIL test results of proposed method. Finally, the conclusions are drawn in Section 6.

2. System Model

2.1. Discrete Predictive Model of PMSMs

The stator voltage equation of a surface-mounted PMSM described in the synchronous reference
can be found in [3]. After discretizing it by Euler forward difference method, the current predictive
model in dq frame can be expressed as follows,

ip(k + 1) = A(k)i(k) + BŪ(k) + Hω(k) (1)

where A(k) = A0(k) + Aδ, B = B0 + Bδ, H = H0 + Hδ, and

A0(k) =

[
1 − R0

L0
Ts ωe(k)Ts

−ωe(k)Ts 1 − R0
L0

Ts

]
B0 = diag (Ts/L0, Ts/L0) H0 = [0,−Tsψ0/L0]

T

Aδ = diag (δ1, δ1) Bδ = diag (δ2, δ2) Hδ = [0, δ3]
T

i(k) =
[
id(k), iq(k)

]T
U(k) =

[
ūd(k), ūq(k)

]T
ω(k) = ωe(k)

ip(k + 1) is the predictive current at instant k + 1 with respect to the control input Ū(k), i(k) is the
sampling current at instant k and the electrical angular velocity ωe(k), and Ts represents the sample
period of current. The matrices of nominal model A0(k), B0, and H0 are determined by the values of
R0, L0, and ψ0, which represent the electromagnetic parameters, with stator resistance, inductance,
and magnetic flux, respectively. Aδ, Bδ, and Hδ are the perturbation parts composed of three error
terms δ1, δ2, δ3 independently, which result from differences between nominal parameters and real
values. For instance, the estimation errors of stator resistance and inductance jointly lead to the error
term δ1. The symbol diag(.) means it is a diagonal matrix. The control input Ū(k) is produced by a
switching sequence of inverter per control period, thus ūd(k) and ūq(k) are mean voltages at the d-axis
and q-axis, respectively.

2.2. Inverter Model

As shown in Figure 1, the PMSM is fed by a two-level voltage source inverter, which is composed
of three phase legs (a, b, c), and each leg has two opposite switching states. Since there are eight
different switching sates, which can be defined as Sn = [Sa, Sb, Sc]T , n = 0, . . . , 7, the index number
satisfies n = Sa · 20 + Sb · 21 + Sc · 22, and each one generates a voltage vector Vn. The stator voltage in
dq-axis can be expressed as a function of the switching states Sn

Un(k) =
2
3

vdcT(k)DSn (2)

where

T(k) =

[
cos θe(k) sin θe(k)
− sin θe(k) cos θe(k)

]
D =

⎡⎢⎣1 −1
2

−1
2

0

√
3

2
−
√

3
2

⎤⎥⎦
vdc is the DC bus voltage of inverter and θe(k) represents electrical angular of rotor at instant k.

The transformation method is based on the amplitude unchanged principle, thus the coefficient is 2/3.
It would be

√
2/3 if the power unchanged principle were adopted. Obviously, when n equals 0 or 7,

Un(k) = 0.
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After gaining stator voltage, the control input Ū(k) can be obtained under the principle of
volt-second balance

Ū(k) =
ti
Ts

Ui(k) +
tj

Ts
Uj(k) +

t0

Ts
Uz(k)

= d̄iUi(k) + d̄jUj(k) + d0Uz(k)
(3)

Ts = ti + tj + t0 (4)

where i, j ∈ {1, 2, .., 6} , z ∈ {0, 7}. ti, tj, and t0 are durations of the respective stator voltage vector
during the kth control period. Uz(k) is zero vector, thus

Ū(k) = Uij(k)d̄(k) (5)

where the d̄(k) = [d̄i, d̄j]
T = [ti/Ts, tj/Ts] is duty cycle vector of active voltage vectors and Uij(k) =

[Ui(k), Uj(k)]. We define Sij = [Si, Sj]; combined with Equation (2), Uij(k) can be expressed as

Uij(k) =
2
3

vdcT(k)DSij (6)

Figure 1. PMSM fed by a two-level voltage source inverter.

3. The Proposed Control Scheme

The conventional one-horizon PCC method has a time delay between the measurements and
actuation, which causes current ripple [21]. A simple solution to compensate this delay is to consider a
two-step-ahead prediction. The predictive current at instant k + 2 can be obtained by

ip(k + 2) = A(k + 1)ip(k + 1) + BŪ(k + 1) + Hω(k + 1) (7)

The angular velocity ωe(k) is deemed as a constant during the two sampling periods.
Because current dynamics are much faster than those of speed, A(k) = A(k + 1). The control aim is
achieved by a cost function that is defined as follows:

gi = ‖i∗ − ip(k + 2)‖2 (8)

where i∗, as the output of speed controller, is the reference current that is also deemed as a constant
from kth to (k + 2)th period. In this paper, we take the Euler 2-norm to define the cost function, thus
the objective is to search the control action to minimize the distance of between reference current and
predictive value.
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3.1. Deadbeat PCC

The reference stator voltage in dq-frame is obtained based on deadbeat principle and the inverse
model of PMSM, which is shown as follows:

V∗(k + 1) = B−1[i∗ − A(k + 1)ip(k + 1)− Hω(k + 1)]

= B−1[i∗ − A(k)ip(k + 1)− Hω(k)]
(9)

The matrix B is obviously invertible. We can define an alternative cost function with respect to
motor voltage

gv = ‖V∗(k + 1)− Ū(k + 1)‖2 = ‖VE(k + 1)‖2 (10)

It is easily seen that, if the control input Ū(k + 1) gradually approximates the reference voltage
V∗(k + 1) = [v∗d(k + 1), v∗d(k + 1)]T , the resultant current i(k + 2) will approach the reference current
i∗. Therefore, the cost function gv is equivalent to gi. After obtaining the reference voltage, we need to
make sure its position in the voltage vector plane that is divided into six sectors, as shown in Figure 2.
The sector position of reference voltage can be calculated by solving an arc-tangent function

θv = arctan [v∗d(k + 1)/v∗q(k + 1)] + θe (11)

The reference voltage is composed of the two active voltage vector

V∗(k + 1) = Ū(k + 1) = Uij(k + 1)d̄(k + 1) (12)

where the Ui and Uj are two adjacent vectors, and i < j to flexibility produce pulse sequence;
for example, when the reference voltage is located in Sector II, then i = 2, j = 6. Clearly, Uij(k + 1) is
invertible, thus the duty cycles of the vectors are calculated by

d̄(k + 1) = U−1
ij (k + 1)V∗(k + 1)

=
3

2vdc
F−1

N T−1(k + 1)V∗(k + 1)
(13)

where FN = DSij, which can be calculated offline to reduce the computational burden. N denotes
the sector index. T−1(k + 1) can be directly obtained from the elements of the park transformation
matrix T. If d̄i + d̄j > 1, it means the reference voltage has gone over the scope of voltage vector plane,
and a common overmodulation method can be used d̄i = d̄i/(d̄i + d̄j), d̄j = d̄j/(d̄i + d̄j). The duty
cycle of the null VV is calculated by d̄0 = 1 − d̄i − d̄j, and then a space vector pulse width modulation
(SVPWM) is applied to produce the switching sequence of inverter.

Figure 2. Position of reference voltage in space voltage vector plane.
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3.2. Direct PCC

The direct PCC selects only one optimal voltage vector that minimizes the cost function in
Equation (10), which aims to search error voltage vector VE with shortest length. After locating
position of reference voltage, the two adjacent active VV and null VV in the sector are feasible optimal
VV and necessary to be checked by the cost function. For example, we assume reference voltage is
located in Sector I, as shown in Figure 3a. The triangular sectors are divided into three equal parts by
their three center lines. The reference voltage is located in the third part. The shortest VE is the result
of the difference between V∗ and active voltage vector U6, which is depicted by the red dashed line.
As a result, U6 is selected as the optimal VV. Similarly, if reference VV lies in the first part or second
part of Sector I, then the optimal VV is Uz or U4, respectively. Therefore, once we confirm to which
part the reference voltage belongs, the optimal actuation can be directly obtained. The three parts
in a sector are mapped in the d̄i − d̄j coordinate axis because of the linear feature of vector synthesis.
As shown in Figure 3b, each part can be judged by a set of inequalities as follows.

(a) (b)

Figure 3. Selection of optimal VV: (a)Distribution of reference voltage, (b) Confirm the optimal VV.

1

{
d̄i + 2d̄j − 1 ≤ 0

2d̄i + d̄j − 1 ≤ 0
⇒ Uz 2

{
d̄i − d̄j ≥ 0

2d̄i + d̄j − 1 > 0
⇒ Ui 3

{
d̄i − d̄j < 0

d̄i + 2d̄j − 1 > 0
⇒ Uj (14)

Consequently, after getting d̄i and d̄j with Equation (13), we can directly select the optimal VV
from in the above inequalities of duty cycles, which greatly reduce the computational burden compared
with the enumeration-based method, and makes it convenient to switch control method from Deadbeat
PCC to Direct PCC.

3.3. Double VVs PCC

This method needs to apply two VVs in every control period, which can either be one active
VV and one null VV or two active VVs, and the resultant voltage vector is located on one side of a
triangular sector. Thus, the exploration to find the minimum cost function is to identify the shortest
distance between the reference VV and the near sides. Obviously, VE needs to be perpendicular to the
nearest side. For instance, as depicted in Figure 4a, the reference voltage V∗

1 is located in the second
part, thus it is close to U4. VE is normal to U4 and obtained by

VE = V∗
1 − d4U4 = d̄6U6 + (d̄4 − d4)U4 (15)

It is noted that VE is in the same direction as vector 2U6 − U4, thus

d4 =
2d̄4 + d̄6

2
(16)
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d4 is the actual duty cycle, the residual duration 1 − d4 belongs to the null voltage vector UZ, and
the principle to choose a null VV is subject to minimum switching number. Similarly, when reference
voltage V∗

2 lies in the first part in Figure 4a, the optimal vector combination is (U4, U6). VE equals
(d̄6 − d6)U + (d̄4 − d4)U4, which is in the same direction as vector −(U4 + U6), and d6 = 1 − d4. Thus,
the duration of U4 can be calculated as follows:

d4 =
1 + d̄4 − d̄6

2
(17)

In summary, we firstly need to identify in which part the reference voltage is located, and then
confirm the optimal vector combination. Finally, we calculate the respective duty cycle. The process is
summarized as below:

1

{
d̄i + 2d̄j − 1 > 0

2d̄i + d̄j − 1 > 0
⇒ (Ui, Uj) ⇒

⎧⎪⎪⎨⎪⎪⎩
di =

1 + d̄i − d̄j

2

dj =
1 − d̄i + d̄j

2

(18)

2

{
d̄i − d̄j ≥ 0

d̄i + 2d̄j − 1 ≤ 0
⇒ (Ui, Uz) ⇒

⎧⎪⎨⎪⎩ di =
2d̄i + d̄j

2
d0 = 1 − di

(19)

3

{
d̄i − d̄j < 0

2d̄i + d̄j − 1 ≤ 0
⇒ (Uj, Uz) ⇒

⎧⎪⎨⎪⎩dj =
d̄i + 2d̄j

2
d0 = 1 − dj

(20)

(a) (b)

Figure 4. Selection of optimal VVs: (a) The shortest error VV, (b) Confirm the optimal VVs.

Supplementing other sectors in the voltage vector plane, we can acquire the maps to directly
select optimal actuation according to the position of reference voltage. Figure 5a shows the distribution
of optimal voltage vector of direct PCC method, and its duration is the whole control period with no
need for a pulse modulator. The distribution of optimal two VVs combination is shown in Figure 5b.
The execution time of two VVs is t = Tsd; thus, a pulse modulator is needed to produce switching
signals. It can be seen that the above three PCCs are unified into a frame with little calculation effort,
and we can easily adjust the current control method in practical application.

Inevitably, predictive current control heavily depends on the accuracy of motor model, and
an exact predictive model is the precondition of this control scheme. Therefore, an identification
algorithm aiming to approximate the uncertain terms in model is incorporated into the scheme.
A block diagram of the unified predictive current control (UPCC) scheme is depicted in Figure 6.
Before acquiring accurate model, 1-PCC is chosen to be the operation method because of its better
robustness performance [3], and the fewer switches also reduce the influence of dead band of inverter
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per period. The results of identification are fed into the PMSM’s model online, thus enhancing the
model accuracy. The detailed estimation method is introduced in the next section.

(a) (b)

Figure 5. Distribution of optimal VVs: (a) Optimal VV of Direct PCC, (b) Optimal VVs of Double
VVs PCC.

Figure 6. The proposed control scheme.

4. Identification for Model Uncertain Term

In this section, we estimate the three error terms caused by inaccurate resistance, inductance, and
flux linkage in the current error predictive model, rather than identify the electromagnetic parameter
in the nonlinear model. Based on Equation (1), we can predict the (k + 1)th current ip(k + 1) at the
kth instant, and acquire the real value i(k + 1) at the next instant of the predictive current error model
Δi(k + 1) = A0i(k) + B0Ū(k) + H0ω(k), namely

[
Δip

d(k + 1)
Δip

q (k + 1)

]
=

[
id(k) ud(k) 0
iq(k) uq(k) we(k)

] ⎡⎢⎣ δ1

δ2

δ3

⎤⎥⎦ (21)

It can be seen that we can estimate the whole error vector ϑ = [δ1, δ2, δ3]
T just by the q-axis error

equation. Since the sample time of angular velocity is much slower than electrical dynamic, ωe(k)
staying constant during several sampling intervals of current is not accurate if only the q-axis dynamic
information is used. Therefore, we firstly utilize the d-axis electrical information to identify the first
two error term δ1 and δ2, and then independently analyze the third term δ3.

Most of identification methods make full use of the dynamic information of motor system,
but the obtained current and rotor position of the system is commonly accompanied by large noise
signal, which causes failure of some ideal methods despite the presence of the filter. An effective
method of interval-varying multi-innovation least squares (V-MILS) was proposed by Ding et al. [22]
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to overcome missing measurement data. Thus, we combine a data selector and interval-varying
multi-innovation least squares with forgetting factor (V-FF-MILS) algorithm to identify the error vector
in d-axis prediction error equation.

Firstly, we define an integer sequence ts, s=0, 1, 2. . . to label the signals passed from selector S1 as

S1[id(ts), Δip
d(ts + 1)] =

{
id(k) ∈ [a b]

Δip
d(k + 1) ∈ [c d]

(22)

ts satisfies 0 = t0 < t1 < t2 < . . . < ts−1 < ts, and the interval ts − ts−1 ≥ 1. [a b] and [c d] are
the reasonable ranges of d-axis current and its predictive error, respectively. Based on the principle of
V-MILS, the predictive error model of d-axis current can be represented in linear regressive form,

y (p, ts) = ΦT (p, ts) ϑ + v (p, ts) (23)

where
y (p, ts) = [y (ts) , y (ts − 1) , . . . , y (ts − p + 1)]T

=
[
Δip

d (ts + 1) , Δip
d (ts) , . . . , Δip

d (ts − p + 2)
]T ∈ R

p

Φ (p, ts) = [ϕ (ts) , ϕ (ts − 1) , . . . , ϕs (ts − p + 1)] ∈ R
2×p

ϕ (ts) = [id (ts) , ud (ts)]
T , ϑ = [δ1, δ2]

T , v (ts) = [v1 (ts) , v2 (ts)]
T

The interval-varying multi-innovation least squares with forgetting factor algorithm can be
written as follows,

ϑ̂ (ts) = ϑ̂ (ts−1) + P (ts)Φ (p, ts)
[
y (p, ts)− ΦT (p, ts) ϑ̂ (ts−1)

]
(24)

P (ts) =
1
η

P (ts−1)− 1
η

L (ts)ΦT (p, ts)P (ts−1) (25)

L (ts) = P (ts−1)Φ (p, ts)
[
ηIp + ΦT (p, ts)P (ts−1)Φ (p, ts)

]−1
(26)

The forgetting factor satisfies 0 < η ≤ 1. The initial condition is set as ϑ̂(0) =

[1/p0, 1/p0]
T , P(0) = p0 I3, p0 = 106. The two error terms are approximated after finite recursive

estimation. A termination principle of identification is designed as

tmax − tmin
tmax + tmin

≤ ε (27)

tmax and tmin are the maximum and minimum value of identification during an interval with
enough length. ε can reflect the fluctuation amplitude of online identifying results. After acquiring
estimated δ1 and δ2, the third error term can be derived by real-time information of q-axis current
equation. Our strategy is to command the angular velocity of rotor in a constant values; choose
the effective q-axis data by a similar selector S2

[
iq(k), Δiq(k + 1), ωe(k)

]
;, and then online analyze the

proportional relation between the error term result from δ3 and ωe in a linear regression technique.
The ratio is the estimated value of δ3.

5. PIL Test Results

The proposed methods were verified using processor-in-loop (PIL) simulation, which means
the algorithm was conducted in a real microprocessor. The mathematical model of the plant was
run in the PC host and exchanged data by serial communication. The real parameters of this PMSM
were R = 0.33 Ω, L = 1.8 mH, ψ = 0.0145 Wb, and p = 4. The DC bus voltage was Vdc = 36V.
The speed controller utilized PI regulator with kp = 0.01 and ki = 0.18. Its sample time was set equal
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to 1 ms, and for current controller was 100 μs. The TI TMS32F28335 was selected as control processor.
The identification for three uncertain term in motor model was tested in two designed cases. In Case 1,
the nominal resistance R0 was enlarged two times, with three times flux linkage, and the inductance
was a quarter of real values. In Case 2, we assumed that inductance was known but a small deviation
δ2 = −0.2 was artificially created to generate enough current prediction error. The nominal resistance
R0 and flux linkage ψ0 were enlarged as R0 = 10R and ψ0 = 5ψ, independently. Both cases considered
the disturbance of noise signal. All the sampling signals were accompanied with a noise signal of
which expectation equaled zero, and variance was σ2 = 0.12. Results are presented and compared in
the following figures. The labels 1-PCC, 2-PCC, and 3-PCC represent the proposed predictive current
control methods. C-PCC, FOC, and DTC-SVM denote the conventional PCC, vector control, and direct
torque control with a space vector modulator, respectively.

Figures 7a and 8 show the transient performances at the start-up phase after the speed command
of 1000 r/min. It is illustrated that all methods have the same current transient response in Figure 7a,b,
in which both approximate current reference value at the time of 0.005 s. In Figure 8, performance of
speed response at start-up phase of all methods are compared. They all show a similar capability that
reaches the speed command at about 0.2 s, which verifies that the proposed PCCs keep the superior
transient performance of classical current regulation strategies.

(a) (b)

Figure 7. q-axis current response at start-up: (a) Performance of proposed PCCs, (b) Performance of
comparison group.

Figure 8. Speed response comparison at start-up.

In Figures 9 and 10, the transient performance of the proposed controller is further verified under
the change of load and speed. Figure 9 compares the q-axis current tracking capability, where the red
line denotes the reference values i∗q from speed controller, it can be seen that C-PCC and 1-PCC have
almost the same current response when the load is suddenly changed from 0.2 Nm to 0.4 Nm at the
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instant of 0.5 s. Performance of 3-PCC is close to that of FOC, which are both slightly better than
2-PCC with less ripple during tracking the reference current. DTC-SVM has the largest ripple during
the transient process. In Figure 10, we gradually reduce the rotational speed from 1000 r/min to
−1000 r/min at a constant rate within 1 s. The u-phase current regulation capabilities of 1-PCC and
C-PCC show same tracking accuracy, but they both encounter large current perturbation when the
motor is in counter rotation at the time of 4.0 s. 2-PCC, 3-PCC, and FOC show higher accuracy whether
tracking phase current or speed. Similarly, DTC-SVM presents large ripple of u-phase current with the
speed adjusted.

Figure 9. q-axis current tracking when occurring load perturbation.

Figure 10. u-phase current response comparison when speed adjusted.

Figure 11a,b compares the steady-state performance of output torque within 0.1 s, and the
standard deviations of q-axis current that represent the degree of torque ripple are 0.3689 and 0.3687
for C-PCC and 1-PCC, respectively, both inevitably leading to large output torque ripple. Relatively,
the steady-state errors in 2-PCC and 3-PCC are much smaller, with 0.0576 and 0.0181 standard
differences, respectively. These results are in accordance with other researcher’s work [3]. FOC shows
a high accuracy for torque, while DTC-SVM is the worst case. It is noted that the control parameters of
FOC in this test were searched by optimization algorithm in Matlab software to make sure of the best
output performance.
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(a) (b)

Figure 11. Output torque in steady-state: (a) Performance of proposed PCCs, (b) Performance of
comparison group.

In Figure 12, the left column depicts total harmonic distortion (THD) of u-phase current of
the proposed PCCs in steady state, with 20.05%, 5.84%, and 1.28% for 1-PCC, 2-PCC, and 3-PCC,
respectively. The right column presents the corresponding THD of comparison group. Obviously,
the optimal FOC has minimum THD, which is roughly equal to that of 3-PCC. The largest THD
belongd to DTC-SVM. The harmonic quality of C-PCC and 1-PCC are similar based on the same
current response and THD values. Therefore, the results in Figures 11a,b and 12 show that the
proposed approaches have advantage in steady-state output accuracy, especially 2-PCC and 3-PCC.

Figure 12. Harmonic quality comparison.

The quantifiable metrics in speed response time in start-up phase and the steady performance
verified by harmonic component and current standard deviation of each approach are listed in Table 1.
It can be seen that the transient response has no obvious difference. 2-PCC and 3-PCC present superior
steady output accuracy. Although FOC has slightly better performance, it is difficult to obtain
the optimal control parameters in practical application, while the proposed PCCs have no need of
parameter tuning.
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Table 1. Quantifiable metrics comparison.

Speed Response Time Harmonic Component Current Standard Deviation

1-PCC 0.16 s 20.05% 0.3687
2-PCC 0.16 s 5.84% 0.0576
3-PCC 0.16 s 1.28% 0.0181
C-PCC 0.17 s 20.3% 0.3689

FOC 0.16 s 1.13% 0.0119
DTC-SVM 0.16 s 27.14% 0.4356

The execution duration of PCC has important influence on its output capability. The conventional
predictive current controller is based on an enumerated search strategy causing a high computation
time. As shown in Figure 13, the execution time of C-PCC is 88.7 μs, followed by 62.8 μs for 2-PCC
and 60.8 μs for 3-PCC. 1-PCC takes the minimum computing time as it does not include the pulse
modulator comparing with 2-PCC and 3-PCC. Therefore, the proposed calculation frame has advantage
in alleviating computational burden.

Figure 13. Execution time for each algorithm.

Figures 14a–18b show the performance of the proposed integrated identification algorithm.
Estimated values of δ1 and δ2 are shown in Figure 14a,b, respectively. It can be seen that both estimated
values in ideal environment have high steady-state accuracy of less than 5% error rates under the
wave rate ε = 5%. However, when they are faced with noise condition, the results show small
fluctuation and slight deviation from the actual values. When the termination parameter was set as
ε = 15%, the final results are ϑ̂ = [0.1215,−0.1618]T . Compared with the actual values δ1 = 0.1283
and δ2 = −0.1667, the error rates are 5.3% and 2.9%, respectively.

(a) (b)

Figure 14. Error terms estimation in Case 1: (a) Estimation of δ1, (b) Estimation of δ2.
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(a) (b)

Figure 15. Original data of d-axis current error equation in Case 1: (a) Data in ideal environment,
(b) Data in noise environment.

(a) (b)

Figure 16. Error terms estimation in Case 2: (a) Estimation of δ1, (b) Estimation of δ2.

(a) (b)

Figure 17. Original data of d-axis current error equation in Case 2: (a) Data in ideal environment,
(b) Data in noise environment.
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(a) (b)

Figure 18. δ3 estimation in noise condition: (a) Estimation results in Case 1, (b) Estimation results in
Case 2.

The estimated results are the coefficients of planes in Figure 15a,b, which show the original data
in different condition of d-axis current, voltage, and lumped predictive current error caused by δ1 and
δ2. The left figure indicates that signals were sampled without the disturbance of noise, thus the data
are almost located in the estimated plane, while some points deviate from estimated plane in the noisy
environment.

Similarly, Figure 16a,b presents the identification process of Case 2. The ideal results also show an
opposite steady-state error because of the deviation of d-axis current by the out-of-step rotor position
signal. Estimated values in noise condition fluctuate in an allowable range ε = 15%, with δ̂1 = 0.1605
and δ̂2 = −0.1955, independently. The real values are ϑ = [0.165,−0.2]T , thus the identification error
rates are 2.7% and 2.3%, respectively. Figure 17a,b shows the original data of d-axis current error
equation in Case 2, which have the same results in Figure 15a,b.

After identifying the first two error factors, the motor is running at near constant velocity, and the
q-axis signals are recorded online. The third error factor can be directly derived based on enough data
during a short time in a simple linear regressive method. The slopes of the blue lines in Figure 18a,b
represent estimated results of the third error factor δ̂3 in noise condition of Cases 1 and 2, respectively.
The estimated value of δ̂3 equals 0.0088 in Case 1, which achieves a satisfactory accuracy comparing
with the real value of 0.0089. In Case 2, the result also has a high precision with estimation of 0.0030
compare to the real value of 0.0032.

The results of identification are fed to the PMSM’s model online to enhance the accuracy of
predictive model. For instance, when the PMSM system was operated in the direct predictive
current control (1-PCC) scheme, the nominal parameters took that of Case 1. In Figure 19a,b,
before identification is finished, each predictive current in dq-axis presents a biggish error. However,
errors of predictive dq-axis current are both substantially decreased after the feedback of the previous
three estimated values at instant 1.7 s. As shown in Figure 20a, the magnitude of d-axis current error
in whole frequency range is highly decreased, which is also shown for the error of q-axis current in
Figure 20b. On the other hand, the fall of power spectral density (PSD) of errors of predictive current
with noise shown in Figure 21a,b further verifies that identification and compensation are able to
enhance the efficiency of electric drive system.
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(a) (b)

Figure 19. Errors of predictive current: (a) Error of d-axis predictive current, (b) Error of q-axis
predictive current.

(a) (b)

Figure 20. Analysis in frequency domain of current errors: (a) Changes of d-axis current error
after compensation, (b) Changes of d-axis current error after compensation.

(a) (b)

Figure 21. Analysis of power spectral density (PSD) of current errors with noise: (a) PSD of d-axis
current error, (b) PSD of q-axis current error.

6. Conclusions

In this paper, a unified predictive current control scheme based on deadbeat principle for PMSM
drive system is proposed. We define an alternative cost function that simplifies the calculation of
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optimal vectors. The results show that the performance of proposed 1-PCC is not inferior to the
conventional PCC. Moreover, its computation time has an advantage over that of C-PCC. The merits
of the proposed 2-PCC and 3-PCC are reflected in their much better steady-state accuracy with a
little increase computing burden comparing with the 1-PCC. Detailed comparisons of transient and
steady capabilities with optimal FOC and DTC-SVM were also conducted, and the results verify
that the proposed PCCs have superior output performance. The proposed integrated identification
method aiming to approximate the error term in predictive model shows allowable accuracy even in
noisy environments. After compensation by the estimated values, the precision of predictive current
was significantly improved. The analysis results in frequency domain and PSD further show the
increase of system efficiency. In summary, the proposed unified control scheme with compensation
is able to ease the application of model predictive control in electric drive system with large-scale
parameter uncertainty.
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Abstract: The mode transition of single-shaft parallel hybrid electric vehicles (HEVs) between engine
and motor has an important impact on power and drivability. Especially, in the process of mode
transition from the pure motor-drive operating mode to the only engine-drive operating mode,
the motor starting engine and the clutch control problem have an important influence on driving
quality, and solutions have a bit of room for improving dynamic performance. In this paper, a novel
mode transition control method is proposed to guarantee a fast and smooth mode transition process
in this regard. First, an adaptive sliding mode control (A-SMC) strategy is presented to obtain the
desired torque trajectory of the clutch transmission. Second, a proportional-integral (PI) observer
is designed to estimate the actual transmission torque of the clutch. Meanwhile, a fractional order
proportional-integral-differential (FOPID) controller with the optimized control parameters by particle
swarm optimization (PSO) is employed to realize the accurate position tracking of the direct current
(DC) motor clutch so as to ensure clutch transmission torque tracking. Finally, the effectiveness
and adaptability to system parameter perturbation of the proposed control approach are verified
by comparison with the traditional control strategy in a MATLAB environment. The simulation
results show that the driving quality of the closed-loop system using the proposed control approach
is obviously improved due to fast and smooth mode transition process and better adaptability.

Keywords: hybrid electric vehicles (HEVs); mode transition; adaptive sliding mode control (A-SMC);
clutch actuator; PI observer; fractional order proportional-integral-differential (FOPID)

1. Introduction

Hybrid electric vehicles (HEVs) have received extensive attention from the automotive industry
and academia, and are widely regarded as one of the most effective solutions to the growing use of
petroleum fuels for transportation and environmental problems [1,2]. HEVs possessing multiple power
sources have different working modes, the control strategy for the vehicle determines the working
mode according to the driver’s intention and the driving state of the car [3]. The hybrid system
equipped with an automatic clutch and an electric motor (EM) has to perform the mode transition
process from the pure electric driving mode to the engine-on driving mode in most conditions, in
which the engine needs to be started and engaged into the driveline via the clutch [4–6]. In this process,
the differences in response characteristics of each power source and the change of the state of the
transmission or the clutch may cause a sudden change in engine or motor torque, which may lead
to a non-negligible impact on the powertrain system [7,8]. Therefore, control approaches with high
performance need to be developed to guarantee the fast and smooth process of mode transition.

During the mode transition of the single-shaft hybrid powertrain, the engine can be started and
engaged into the driveline by the clutch. The performance of mode transition mainly relies on the
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quality of the clutch control [9,10], hence, the control of clutch engagement remains an important and
challenging issue during mode transition. Some researchers have dedicated much valuable work
to achieve fast and smooth clutch engagement control of mode transition for HEVs. For example,
a nonlinear feedforward-feedback controller and PID algorithm are developed in [10] to effectively
improve both riding comfort and engine-start time of a P2 hybrid vehicle. A robust control-based
hierarchical mode transition control approach is proposed in [11] to reduce the mode transition time and
obtain acceptable vehicle jerk. The double closed-loop control strategy is designed in [12] to control the
clutch transmitting required torque of engine–start process, which contains a fuzzy method as an outer
loop and a modified predictive functional method as an inner loop. Although the dynamic process and
the control objectives of the clutch engagement process of mode transition of the single-shaft parallel
hybrid powertrain are significantly different from that of the conventional vehicle, the dry clutch
engagement control design of the conventional vehicle could be a reference to the clutch control of
mode transition process. For the clutch control of the conventional vehicle, many effective approaches
have been put forward. A model predictive control approach is developed in [13] to comply with
constrains to ensure a comfortable lockup and to avoid the stall of the engine as well as to reduce
the clutch engagement time. For example, a model predictive control method with the correction
of clutch wear is proposed in [14] based on the estimation of resistance torque to achieve precise
position control of the clutch. A modified predictive functional control approach with a sliding mode
observer is proposed in [15] to obtain a satisfying performance for the automated clutch control of
vehicle. The optimal control method is designed in [16] to generate the reference trajectories of the
clutch slip speed and motor torque to provide satisfactory performance even under large variation of
vehicle mass and road grade. Moreover, another approach has been extensively studied and utilized,
such as triple-step control method [17,18] and backstepping control method [19] are adopted to solve
the optimal trajectory tracking problem to achieve accurate clutch control.

Motivated by the aforementioned analysis, in this paper, aiming at further improving the control
performance of clutch engagement during the mode transition from the pure motor-drive operating
mode to the only engine-drive operating mode, a novel control method is proposed to solve the vehicle
jerk and clutch slipping energy loss issues of mode transition process. The main feature of the proposed
method has three aspects. One is that adaptive sliding mode control (A-SMC) is introduced into the
clutch transmission torque command to generate the desired clutch transmission torque trajectory
based on the rotating speed difference between the clutch driving and driven discs. The second is that
the unmeasurable actual transmission torque of the clutch is estimated by a PI observer employing the
EM speed. The third is that the realization of the clutch transmission torque tracking is accomplished
through a fractional order proportional-integral-differential (FOPID) controller with the optimized
control parameters by particle swarm optimization (PSO), which results in performing the accurate
position tracking of the direct current (DC) motor clutch.

The rest of the paper is organized as follows. In Section 2, the dynamic models of the driveline
of a single-shaft parallel powertrain and the automatic dry clutch actuating mechanism are built.
In Section 3, the mode transition control strategy is designed. Simulation results and discussions are
given in Section 4. Finally, the paper is concluded in Section 5.

2. System Modeling

In this paper, a single-shaft parallel powertrain with the automated mechanical transmission
(AMT) is investigated, as shown in Figure 1. It consists of a conventional engine, automatic dry clutch,
electric motor (EM), and a five-speed AMT. The clutch is controlled to perform the mode transition.
In this system, the clutch is placed inside the drive motor. This HEV can operate in a variety of
driving modes: pure electric driving mode, pure engine driving mode, hybrid driving mode, engine
active charging mode, and regenerative braking mode. When the vehicle speed reaches the switching
threshold, the hybrid control unit (HCU) will send the mode transition signal to the transmission
control unit (TCU). When the TCU receives the mode transition signal, the clutch will quickly start
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to engage. Furthermore, the HCU will send the torque command to the EM control unit (MCU) and
the engine control unit (ECU) to satisfy the driving torque of the vehicle. The main parameters of the
single-shaft parallel vehicle are given in Table 1.

 

Figure 1. Structure of single-shaft parallel hybrid powertrain.

Table 1. Main parameters of single-shaft parallel hybrid vehicle.

Components Description

Engine Max torque: 150 Nm, peak power: 78 kW.

Electric motor (EM) Permanent magnet synchronous motor (PMSM), max torque: 80 Nm,
peak power: 30 kW.

Clutch Max torque: 180 Nm.

Automated mechanical
transmission (AMT) Gear ratios: 3.583, 1.956, 1.327, 0.968, 0.702. Final gear ratio: 4.05.

Battery Lithium iron phosphate battery, capacity: 10 Ah, nominal voltage:
288 V.

2.1. Powertrain System Dynamic Modeling

The models of main components of the single-shaft parallel hybrid powertrain related to the mode
transition process are given in this part. Based on the configuration characteristics of the single-shaft
parallel hybrid powertrain, the simplified schematic of the powertrain model in a mode transition
process is presented for the design of the control strategy in Figure 2. Where Te, Tc, Tm and Tr are the
engine torque, the clutch torque, the EM torque and the vehicle resistant torque, respectively. ωe and
ωm represent the engine speed and the EM speed, respectively. Ie, Im and Ir represent the engine inertia
moment, the EM inertia moment and the vehicle inertia moment, respectively. ia and ig are the gear
ratio and the final gear ratio of AMT, respectively.
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Figure 2. Simplified model sketch of mode transition.

Assuming that the tires slip is ignored, and according to the vehicle longitudinal dynamics, the
vehicle resistant torque can be calculated as follows [20]:

Tr = (mg f cosα+
CDAv2

21.15
+ mg sinα)rw (1)

where m, g, f , α, CD, A, v and rw are vehicle mass, gravity acceleration, rolling resistance coefficient,
road slope angle, air resistance coefficient, frontal area of the vehicle, vehicle speed, and wheel
radius, respectively.

In this paper, according to the clutch operating characteristics [12], the mode transition process
from EM driving mode to engine driving mode is divided into three stages:

(i) Clutch disengaged stage

During this stage, the engine is still, the clutch is in the disengaged state, and the vehicle is solely
driven by the EM. The dynamical equation of this stage can be expressed as follows:

Tm = Tv + (Iv + Im)
.
ωm (2)

where Iv = Ir/(i2a i2g) is the equivalent inertia moment of the vehicle at the EM output shaft. Tv =

Tr/(iaig) is the equivalent load torque of hybrid powertrain on the EM output shaft.

(ii) Clutch slipping stage

In this stage, the clutch starts to engage after receiving the command from the TCU, and the EM is
used to start the engine and drive the vehicle simultaneously. The dynamical equation during this
stage can be expressed as follows:

Tm = Tv + Tc + (Iv + Im)
.
ωm (3)

Tc = Ie
.
ωe − Te (4){

Te = −beωe , ωe ≤ ω f ire
Te = f (β,ωe), ωe > ω f ire

(5)

where be, ω f ire and β are engine frictional coefficient, engine idle speed and engine throttle opening
angle, respectively. f (β,ωe) represents that the engine torque is a nonlinear function of the engine
speed and the throttle opening angle.

The clutch torque can be expressed as follows [21]:

Tc = μkrcnFnsign(ωm −ωe) (6)
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where μk is the frictional coefficient, rc is the effective radius of the clutch disk, n is the number of
clutch plate, Fn is the pressing force on the plates. sign(·) is the sign function described as follows:

sign(ωm −ωe) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 , ωm −ωe > 0
0 , ωm −ωe = 0
−1,ωm −ωe < 0

(7)

At this stage, the engagement speed of the clutch has an important influence on the quality of the
mode transition. In order to meet the longitudinal jerk of the vehicle, the engagement time should be
minimized to avoid unnecessary energy loss of slipping friction.

(iii) Clutch engaged stage

In this stage, the clutch is engaged fast, the vehicle is driven by both engine torque and EM torque.
The dynamic equation can be described as follows:

Te + Tm = Tv + (Ie + Im + Iv)
.
ωm (8)

2.2. Clutch System Dynamic Modeling

The schematic diagram of the automatic dry clutch system is shown in the red dotted frame of
Figure 1. As shown in Figure 1, the clutch system consists of dry clutch and actuating mechanism.
The actuating mechanism includes a direct current (DC) motor used as impetus, worm gear and
planetary row employed as transmission mechanism to reduce speed. The rotational motion of the
motor is transformed into linear motion via the transmission mechanism, and the release bearing can
be released by the release fork.

According to Newton’s second law and Kirchhoff’s law, the DC motor’s voltage balance equation
and torque balance equation [17] can be described as follows:

Ld
.
id = ud −Rdid −Kbωd (9)

Id
.
ωd = Kaid −Kcωd − TCL (10)

where Ld,ωd, Id, id, Rd and ud are the armature inductance, the motor rotational angle velocity, the motor
rotational inertia moment, the armature current, the armature resistance and the battery voltage,
respectively. Ka, Kb and Kc are the torque constant, the Back electromotive force (EMF) constant and
the frictional coefficient, respectively. TCL is the load torque of the motor.

Assuming that the actuating mechanism has no mechanical deformation, and according to
mechanical transmission principle, the dynamics of the actuating mechanism is described as follows:

TCL = Ieq
.
ωd +

FxthL
ηtit

(11)

θd =
yc

L
it (12)

where Ieq is the equivalent inertia moment at the DC motor output shaft. L, it and ηt is the release
fork arm length, the transmission ratio and the transmission efficiency of the actuating mechanism,
respectively. θd is the motor rotational angle. Fxth is the return force of diaphragm spring. yc is the
release bearing position. Moreover, it is difficult to build an accurate model to calculate the return force
of diaphragm spring, so the test dada from the clutch manufacturer is used in this paper to regard as a
lookup table in simulation, the relationship between Fxth and yc is shown in Figure 3.
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Figure 3. Relationship between spring pressure and release bearing position.

3. Mode Transition Controller Design

According to the stage division described in Section 2.1, the flow chart of the mode transition
process from EM driving mode to engine driving mode is shown in Figure 4.

 

Figure 4. Flow chart of the mode transition from EM driving to engine driving.

Firstly, the clutch disengaged begins to engage. Due to the driven disk not touching the active
disk, the clutch doesn’t transmit torque and the engine speed is zero. Secondly, as the clutch position
continuously increases, the driven disk of clutch moves past the free displacement, the clutch begins to
slip and transmit torque to the engine for speed increase. When the engine speed reaches and exceeds
the idle speed, the engine begins to fire and then will be synchronized with EM via the ECU. Finally,
the clutch engages rapidly and the engine is engaged into the powertrain. However, the fixed clutch
engagement speed will cause excessive slipping energy loss and vehicle jerk. Therefore, the mode
transition control problem could be converted to clutch control problem to achieve the fast and smooth
mode transition. The vehicle jerk and the slipping energy loss are crucial indexes of mode transition
performance, which can be described as follows:⎧⎪⎪⎨⎪⎪⎩ j = da

dt

w =
∫ t2

t1 Tc|ωm −ωe|dt
(13)
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where j is the vehicle jerk. w is the slipping energy loss. t1 and t2 are the starting time and stopping
time of the clutch sliding process, respectively. a is the vehicle acceleration.

The effect of clutch control is characterized by the following requirement:

(1) The vehicle jerk is controlled within 10 m/s3 during the clutch engagement process;
(2) The mode transition time should be within 1 s;
(3) The engine doesn’t turn off during the mode transition process;
(4) The clutch slipping energy loss should be as little as possible during the mode transition process.

The schematic diagram of the proposed control approach to mode transition from EM driving
mode to engine driving mode is shown in Figure 5.

 

Figure 5. Schematic diagram of the proposed control method.

From Figure 5, it can be seen that the proposed control strategy consists of two parts: the design of
clutch torque command and the torque tracking control. In the consideration of the nonlinear dynamics
of the clutch engagement and some uncertainties exiting in this process, the A-SMC technique is
adopted to generate the clutch torque command. Moreover, considering that the transmitted torque of
the dry clutch is usually not measurable, a PI observer is designed to estimate the actual clutch torque.
Meanwhile, a FOPID controller is adopted to control the torque tracking. Because FOPID is recognized
to guarantee better performance besides the simplicity realization and fine stability of the classical
PID controller due to the more flexibility and more robust in presence of parameters’ uncertainties
both in the controlled system and the controller itself [22,23]. Similar to classical PID, the controller
parameters of FOPID should be defined in advance by the designer. To overcome time-consuming
of the manual tuning and fractional calculus, an optimal tuning method is required to determine the
control parameters of FOPID. In this paper, PSO is adopted to optimize the control parameters of
FOPID offline.

3.1. Design of Clutch Torque Command based on A-SMC

Engine and EM should be considered together to design the clutch torque command. In light of
nonlinear dynamics of the clutch engagement and uncertainty during the mode transition process,
an A-SMC-based generator of the clutch torque command is designed.
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According to the powertrain dynamic Equations (3) and (4), the state variables and the control
variable of the powertrain system are selected as:

x = ωe, xd = ωm, e1 = x− xd, e1α =

∫
(x− xd) dt, u = T∗c

the system model can be expressed as follows:{ .
e1α = e1
.
e1 = 1

Ie
(u + Te) + N

(14)

where N represents the whole disturbance resulting from the clutch engagement process including the
effect from the EM, which is not measureable but bounded with |N| ≤ N, N is regarded as an unknown
constant although it can be estimated by the limit value of the worst case, which can be handled by
adaptive technique instead of robust control.

Therefore, the control law u = T∗c will be designed based on the sliding mode control and the
adaptive backstepping technique. Furthermore, there is the following proposition.

Proposition 1. For the powertrain system (3)–(4) operating the mode transition from the motor driving to
engine driving, the reference trajectory of the clutch torque during the clutch engagement process can be generated
by the output of an adaptive sliding mode controller designed as follows:

T∗c = u = Ie[−(k1 + c1)e1 − N̂sgn(s) − h(s + βsgn(s))] − Te (15)

with adaptive update law:
.

N̂ = −γ|s| (16)

and a sliding mode surface:
s = k1e1α + e2 (17)

where e2 = e1 + c1e1α. N̂ is the estimate of the unknown constant N. c1, k1, h, β and γ are adjustable positive
real values, and c1, k1, h should be chosen satisfying the following condition:

c1 + hk2
1 > 0, h(c1 + k1) >

1
4

(18)

Proof. Firstly, a Lyapunov function is constructed as follows:

V1 =
1
2

e2
1α (19)

considering e2 as the virtual control, the time derivative of V1 is calculated as:

.
V1 = e1α

.
e1α = e1αe2 − c1e2

1α (20)

And then, a Lyapunov function for the system (14) is constructed as follows:

V2 = V1 +
1
2

s2 (21)

considering (20), it follows:

.
V2 = e1αe2 − c1e2

1α + s
[
k1e1 +

1
Ie
(u + Te) + N − .

xd + c1e1

]
(22)
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Therefore, when the control law u is designed as (15) with (17), the following inequality holds.

.
V2 ≤ e1αe2 − c1e2

1α − hs2 − hβ|s|+ N|s| − N̂|s| = −eTQe− hβ|s|+ Ñ|s| (23)

where

Q =

[
c1 + hk2

1 hk1 − 1
2

hk1 − 1
2 h

]
, eT = [e1α, e2], Ñ = N − N̂

Finally, a Lyapunov function for the whole closed-loop system is constructed as follows:

V3 = V2 +
1

2γ
Ñ2 (24)

considering (23), the time derivative of V3 satisfies the following inequality.

.
V3 ≤ −eTQe− hβ|s|+ Ñ|s| − 1

γ
Ñ

.

N̂ (25)

then, considering the adaptive update law (16), it follows:

.
V3 ≤ −eTQe− hβ|s| (26)

Due to the condition (18), Q is a positive definite matrix so that
.

V3 ≤ 0, ∀e, s, Ñ, thus, the whole
system is Lyapunov stable at the equilibrium (e1α = 0, s = 0, Ñ = 0). Furthermore, based on the
principle of LaSalle’s invariant set, it follows that e1 → 0 , namely, ωe → ωm as t→∞ .

It means that if the clutch torque output is rendered as the trajectory T∗c (15), the whole driveline
dynamics during the clutch engagement process under the mode transition from motor driving to
engine driving is stable and the engine speed can be synchronized with motor speed. Meanwhile,
it should be noted from (26) that the convergence rate of ωe → ωm is dependent on Q, β, namely,
is closely related to the choice of the adjustable parameters c1, h, k1, β. Thus, for better convergence
performance, these parameters should not be too small, but they should not be too large to avoid
oscillations in the trajectory under the premise of satisfying the condition (18). �

3.2. Design of PI Observer

The dry clutch system has a strong nonlinearity and many factors have an effect on the clutch
engagement performance, such as the plate temperature and the slipping speed. Therefore, it is
difficult to accurately calculate and measure the transmitted torque of the dry clutch in engineering.
For this regard, according to [24,25], a PI observer is designed to estimate the transmitted torque of the
dry clutch.

The actual transmitted torque of the dry clutch can be expressed as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
Tc = Tc0 + Δ(ε)∣∣∣Δ(ε)∣∣∣ ≤ ψ(ε)
ε = ω̂m −ωm

(27)

where Tc0 is the initial transmitted torque, ψ(ε) is the bound of the unknown function Δ(ε), and ω̂m is
the estimate of the EM speed. Thus, a PI observer of the transmitted torque is designed as follows:⎧⎪⎪⎨⎪⎪⎩ T̂c = ξpε+ ξi

∫
εdt+ψ(ε)sign(ε)

.
ω̂m = 1

Im
(Tm − Tv − T̂c)

(28)

where ξp and ξi are the proportional gain and the integral gain of the PI observer, respectively.
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The selection of the two parameters follows the principle that they should not be too small for the
better convergence accuracy of the observer, but they should not be too large to avoid overshoot, that
is to say, the compromise is required between better transient and steady-state performance. The detail
can refer to the adjusting rules of PI gains presented in [25].

3.3. Design of Clutch Torque Tracking Controller

For guaranteeing the clutch transmission torque fast tracking the desired torque trajectory obtained
by the SMC-based adaptive controller (21), a FOPID controller in the following form [26] is adopted to
generate the voltage ud of the DC motor to actuate the clutch.

ud(t) = kpde(t) + kid
d−λ
dt

e(t) + kdd

∫
eδ(t)dt (29)

where e(t) = T∗c(t) − T̂c(t). kpd, kid and kdd are the proportional, integral and differential gains,
respectively, and λ and δ are positive coefficients of the fractional-order. The detail on the adjusting
rules of FOPID parameters can refer to the description in [27], and to avoid the fractional calculus,
an optimal tuning method is usually required to determine the control parameters of FOPID.

In this paper, the PSO algorithm is adopted to seek optimal gains of FOPID controller [28].
It should be noted that the PSO algorithm is executed offline to obtain the optimal parameters of
FOPID. The schematic diagram of the parameter optimization offline and the flowchart of the PSO
algorithm are shown in Figure 6.

 

 
(a) (b) 

Figure 6. Schematic diagram of the particle swarm optimization (PSO) algorithm. (a) Schematic
diagram of the parameter optimization offline, (b) flowchart of PSO.

In the algorithm, m is chosen as the number of particles, and each particle Xi = [kpd, kid, kdd,λ,μ].
The integrated time absolute error (ITAE) criterion is utilized as the fitness function, which can be
described as follows:

ITAE =

∫
t
∣∣∣e(t)∣∣∣dt (30)
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where e(t) = Tcd(t) − Tc(t), Tcd(t) is given as the idea trajectory of the clutch torque during the clutch
engaging process, and Tc(t) is the clutch torque output of the model (6) with the driveline dynamics
established in Simulink. The update principles of the velocity Vi and position Xi of each particle during
the iterations can be described as follows:⎧⎪⎪⎨⎪⎪⎩ Vk+1

id = ωVk
id + λ1ξ1(Pk

id −Xk
id) + λ2ξ2(Pk

gd −Xk
id)

Xk+1
id = Xk

id + Vk+1
id

(31)

where i = 1, 2, . . . , m, d = 1, 2, . . . , 5. k is iteration steps, k = 0, 1, 2, 3, . . . , km. Pi, Pg are the individual
optimal position and global optimal position, respectively. λ1 and λ2 are acceleration factors that are
non-negative constants. ξ1 and ξ2 are random numbers between 0 and 1.

In this paper, considering the calculation accuracy and the large computing burden of PSO, choose
m = 20, km = 100, select Ximax = [1,1,1,2,2] and Ximin = [0.00001,0.00001,0.00001,0.00001,0.00001].
The parameters are offline optimized as: kpd = 0.5, kid = 0.5, kdd = 0.0001, λ = 0.97, δ = 0.83.

4. Simulation Results

In this section, the simulation model of single-shaft parallel hybrid powertrain is built based
on MATLAB/Simulink. It is worth mentioning that the system modelling presented in Section 2 is
a control-oriented model, but the model with high fidelity in the simulation is further detailed in
order to simulate the real vehicle powertrain more realistically, such as more realistic nonlinearity
and complexity are modeled for the dynamical description of the whole driveline system, and the
delays of the control transmission and measurement are also taken into account. The simulations of
launching and accelerating process are carried out to verify the effectiveness of the proposed method.
The driver’s demand torque in simulation is shown in Figure 7. The main system parameters of the
studied hybrid powertrain are given in Table 2.

= = = = = = =

= = = = =

 

Figure 7. Driver’s demand torque.

Table 2. Main parameters of the simulation model.

Parameter Value Parameter Value

m 1250 kg ω f ire 800 r/min
g 9.8 m/s2 Ld 0.0003 H
f 0.022 Id 0.0001 kg m2

α 0 Rd 0.2 Ω
CD 0.9 Ka 0.041 V/(rad/s)
A 2.4 m2 Kb 0.041 Nm/A
rw 0.293 m Kc 0.001 Nm/(rad/s)
Ie 0.2 kg m2 Je 0.003 kg m2

Im 0.1 kg m2 L 0.045 m
Ir 1.9 kg m2 it 135.8
be 0.025 Nm/(rad/s) ηt 0.61
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Moreover, in the simulation, according to the selecting principle presented as in the previous
section, the control parameters of the A-SMC, PI observer and FOPID controller are chosen as:

c1 = 0.8, k1 = 0.3, h = 0.9, β = 2.5, γ = 0.1, ξp = 0.005, ξi = 1.1,
kpd = 0.5, kid = 0.5, kdd = 0.0001, λ = 0.97, δ = 0.83

(32)

4.1. Comparative Analysis

To evaluate the control performance of the proposed method, the comparison with the conventional
engineering control method is presented. Firstly, Figure 8 shows the effect of the observer of the
clutch torque.

 

Figure 8. Result of PI observer.

As seen in the Figure 8, the estimated value of clutch torque converges to the actual value quickly
in approximate 0.7 s, and the estimate error is within an acceptable scale.

Further, the comparison result during the mode transition from EM driving mode to engine driving
mode is shown in Figure 9. Meanwhile, for clarifying the comparison on the control performance
index, these comparison results are summarized in Table 3.

  
(a) (b) 

  
(c) (d) 

Figure 9. Comparison result in simulation. (a) Engine and EM torque, (b) engine and EM speed,
(c) vehicle jerk, (d) clutch slipping energy loss.
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Table 3. Summary of comparison results for two methods.

Performance Index Proposed Novel Control Conventional Control

Mode transition time [s] 0.75 0.6
Vehicle jerk [m/s2] 8.1 23.9

Clutch slipping energy loss [J] 1976 2051

As shown in Figure 9a,b, and Table 3, the mode transition time of the proposed control method
is 0.75 s, longer than that 0.6s of the conventional engineering control method, which is helpful to
reduce the vehicle jerk. The whole mode transition process takes no more than 0.8 s and vehicle keeps
accelerating in the novel method, which meets the control target. It can be seen from Figure 9c and
Table 3, the maximum value of vehicle jerk 8.1 m/s3 is less than 10 m/s3 in the novel method during
the mode transition process, which is far less than that 23.9 m/s3 of conventional method. Moreover,
the novel method generates less slipping energy loss 1976 J than that of conventional method 2015 J,
shown in Figure 9d and Table 3. Comparison of vehicle jerk and slipping energy loss indicates the fast
and smooth advantages of the novel control method.

4.2. Adaptability Analysis

Some system parameters may change as the system and road conditions change during the actual
mode transition process of single-shaft parallel hybrid electric vehicles, such as the frictional coefficient
be, vehicle mass m, rolling resistance coefficient fr, road slope angle α, clutch mechanical deformation
and so on. In this subsection, the vehicle jerk and clutch slipping energy loss of mode transition with
different be, m and fr are studied to verify the adaptability of the proposed novel control method.
The simulation result is shown in Figure 10 and summarized in Table 4.

  
(a) (b) 

  

(c) (d) 

Figure 10. Cont.
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(e) (f) 

Figure 10. Comparison result for adaptability analysis. (a) Vehicle jerk under different engine frictional
coefficients, (b) clutch slipping energy loss under different engine frictional coefficients, (c) vehicle jerk
under different vehicle mass, (d) clutch slipping energy loss under different vehicle mass, (e) vehicle
jerk under different rolling resistance coefficient, (f) clutch slipping energy loss under different rolling
resistance coefficient.

Table 4. Summary of comparison results for different parameter variations.

Physical Name Parameter Variation Vehicle Jerk Clutch Slipping Energy Loss

Frictional coefficient
be = 0.02
be = 0.03
be = 0.04

8.34
8.31
8.08

1990
2071
2152

Vehicle mass
m = 1200
m = 1300
m = 1400

9.01
8.21
8.45

2013
1998
2003

Rolling resistance
coefficient

fr = 0.01
fr = 0.016
fr = 0.022

8.95
8.26
8.23

2046
2031
1997

From Table 4, Figure 10a,b, it can be seen that both vehicle jerk and clutch slipping energy loss are
very small in the different engine frictional coefficients 0.02, 0.03, 0.04. It indicates that the proposed
novel control method is adaptive to different engine frictional coefficients. Similarly, as seen from
Table 4, Figure 10c,d, and Figure 10e,f, the vehicle jerk and the clutch slipping energy loss are all very
small in different vehicle masses 1200 kg, 1300 kg, 1400 kg, and different rolling resistance coefficients
0.01, 0.015, 0.022. These demonstrate that the proposed novel control method is adaptive to different
vehicle masses and rolling resistance coefficients.

5. Conclusions

A novel control strategy of mode transition from EM driving to engine driving has been developed
to reduce vehicle jerk and slipping friction energy loss for a single-shaft parallel hybrid powertrain
in this paper. The proposed control strategy includes a SMC-based adaptive controller obtaining
the desired clutch torque, a FOPID controller actuating the clutch mechanism to track the desired
clutch torque, and a PI observer estimating the unmeasurable actual clutch torque. These three parts
cooperate well to accomplish the mode transition from the EM driving mode to the engine driving
mode with satisfactory control performance. For better tracking control performance, a PSO algorithm
is used to optimize the control parameters of the FOPID offline. Both theoretical analysis and the
simulation comparison with the traditional control strategy verify this point. Moreover, the simulation
results under various physical parameter variations also show that the proposed novel control method
is adaptive to system parameter perturbation.

In this paper, the effects of the clutch wear isn’t taken into account in the controller design, so
mode transition control considering more performance index including clutch wear will be studied in
future work.
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Abstract: This document presents an efficient proportional derivative (PD) position controller
for three-phase motor drives. The regulator has been designed in frequency domain, employing
the direct–quadrature (d–q) synchronous rotating reference frame and the indirect vector control.
The presented position regulator is easy to tune and incorporates a feed forward (FF) term to
compensate effectively the effect of the load disturbance. This position controller has been validated
experimentally by using two industrial three-phase motors: an induction motor (IM) of 7.5 kW and
a permanent magnet synchronous motor (PMSM) of 3.83 kW. The inner proportional integral (PI)
current loops of both machines have also been designed in the frequency domain. Each machine has
connected in its shaft an incremental encoder of 4096 pulses per revolution, to measure the position.
Several simulations and experimental tests have been carried out with both motors, in favorable
conditions and also with various types of adversities (parametric uncertainties, unknown load
disturbance and measurement noise in the position and current loops), getting very good results and
suggesting that this controller could be used in the research area and also in the industry.

Keywords: indirect vector control; position control of motor; induction motor; permanent magnet
synchronous motor

1. Introduction

Three-phase motors are widely used in civil engineering and in industry applications, where the
most employed are the induction motor (IM) and permanent magnet synchronous motor (PMSM).
IM are the most used machines in general (cranes, heavy industrial processes, motor pumps, trains,
etc.), but the use of permanent magnet synchronous motors are increasing considerably last years (tool
machines, electrical vehicles, etc.). IM offers good characteristics like a low maintenance, low moment
of inertia, robust architecture, low torque ripple and low price. On the other hand, PMSM provides
very good torque–weight ratio, high efficiency and accuracy. Depending on the application, both kinds
of motors are controlled by using the Direct Torque Control (DTC) or Field Oriented Control (FOC)
techniques. The FOC or vector control strategy is well settled such in civil engineering as in the industry,
due to the fact that this technique gets excellent dynamics performance of the three-phase machine.
That is due to using FOC techniques the three-phase machine is controlled like an independent
excitation Direct Current (DC) machine, in which the electromagnetic torque and field flux are
controlled separately [1]. This way, in the three-phase machine are also controlled independently the
electromagnetic torque and rotor flux. The position control of the three-phase motor is an application
that takes advantage the vector control benefits. One of the first research works related is [2], in which
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the experimental implementation by using FOC for speed and position control of IM and PMSM is
presented. Very interesting position control schemes for IM are presented during the last decades,
by using the classical proportional derivative (PD)/PID [3,4], and by employing advanced position
regulators as a fuzzy [5], passivity-based [6], model predictive control [7], sliding-mode control [8,9],
optimization-based sensorless [10] and poles placement [11]. Regarding PMSM, it is typical to find
sensorless-based research works due to that position sensorless techniques are considerably easier
to implement in these machines than in induction ones, where the classical PD/PID algorithms are
employed in the position regulation loops [12,13]. However, to get high accuracy is necessary to
have installed the position sensor in the system. Thus, several advanced position controllers as a
sliding-mode control [14,15], fuzzy [16–18] and model predictive control [19,20] are presented. All these
position controllers provide good dynamics and high accuracy, in spite of much of them not detailing
the last one explicitly. Taking similar conditions in experiments, for IM [8] offers best steady-steady
state accuracy, getting between 0 and 0.00038 rad of the position error, [7] and [11] provide an accuracy
of 0.005 rad, while the steady-steady state accuracy of the presented proposal for IM is very close to it,
0.007 rad. On the other hand, for PMSM, [14] offers a position accuracy between 0.002 and 0.005 rad, [17]
provides a position accuracy around 0.017 rad, while the presented proposal provides an accuracy of
0.002 rad. This way, advanced controllers provide excellent performance to these machines, but their
control laws and tuning can be too complex to use them experimentally, i.e., in the industry, much of
them do not offer a clear way or rules to tune. The real applications area needs efficient controllers but
at the same time be easy to tune. The presented position regulator provides good dynamics and high
accuracy, it is easy to tune with a simple control law and it is valid for different three-phase motors.
In [4], a PD position controller tuned in the frequency domain for IM was presented and experimentally
validated. The presented proposal in this paper takes this PD regulator and extends to the PMSM the
experimental validation. Moreover, practical tuning recommendations for both motors are given and
experimental comparatives between them are done.

The goal of this paper is to offer an effective and easy to tune PD position controller for the most
employed three-phase machines, that is IM and PMSM. The paper is organized as follows. Section 2
describes the dynamics of the motors and the position and current regulators design in the frequency
domain with the study of stability. Section 3 presents the employed two tests benches, and the tests
(simulations and real experiments) done with both motors. Finally, Section 4 discusses and gets
the conclusions.

2. Three-Phase Motor Position Proportional Derivative Controller Design

2.1. Induction Motor Dynamics

Induction motor dynamics can be expressed by employing the next five differential equations,
expressed in the direct–quadrature (d–q) synchronous rotating reference frame and taking that the q
(quadrature) component of the stator current (electromagnetic torque current component, isq) and the d
(direct) component of the stator current (rotor flux current component, isd) are decoupled, due to that
the q component of rotor flux is null, ψrq = 0 and this way the rotor flux is the same as its d (direct)
component, ψr = ψrd, [21],

Te − TL = J
d2θm

dt
+ Bv

dθm

dt
(1)

Te =
3
4

p
Lm

Lr
ψrdisq (2)

dψrd

dt
=

Rr

Lr
Lmisd − Rr

Lr
ψrd (3)

vsd = Rsisd + σLs
disd
dt

+
Lm

Lr

dψrd

dt
−ωsσLsisq (4)
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vsq = Rsisq + σLs
disq

dt
+ωs

Lm

Lr
ψrd +ωsσLsisd (5)

where TL is the load disturbance, θm is the mechanical position, ωs is the synchronous speed, vsd
is the d component of the stator voltage and vsq is the q component of the stator voltage. The rest
of the parameters are described in Section 3.1.1. As it is well known, the isd current is employed to
regulate the ψr rotor flux of the machine. This flux keeps constant its value, the typically rated value.
Then, considering the steady state and taking Equation (3), it is possible to get the relation between
both variables,

ψrd = Lmisd (6)

and taking Equation (2) of the electromagnetic torque, it can be expressed as

Te = KTisq (7)

where the KT torque constant is defined as

KT =
3p
4

Lm

Lr
ψrd =

3p
4

L2
m

Lr
isd (8)

Now Equation (7) can be replaced in Equation (1), obtaining the following Expression (9), which
contains the first three equations.

KTisq = J
d2θm

dt
+ Bv

dθm

dt
+ TL (9)

This way, Equation (9) contains the electromagnetic and mechanical equations, while Equations
(4) and (5) contain the electrical equations.

2.2. Permanent Magnet Synchronous Motor Dynamics

PMSM motor dynamics are shown by using the next four differential equations, where like
in the previous case (IM), all of them are expressed in a d–q synchronous rotating reference frame
and supposing that the isq electromagnetic torque current component and the isd rotor flux current
component are decoupled, that is ψrq = 0 and ψr = ψrd. Moreover, as the PMSM has its own rotor flux
generated by its rotor magnets, that is ψM (constant), then rotor flux generated electrically is usually
fixed to zero, and consequently isd = 0, [22],

Te − TL = J
d2θm

dt
+ Bv

dθm

dt
(10)

Te =
3p
4
ψMisq (11)

vsd = Rsisd + Lsd
disd
dt
−ωrLsqisq (12)

vsq = Rsisq + Lsq
disq

dt
+ωr(Lsdisd +ψM) (13)

where ωr is the electrical rotor speed, and the rest of the parameters are described in Section 3.1.2.
As the ψM is constant, then Equation (11) of the electromagnetic torque can be rewritten as follows,

Te = KTisq (14)

where the KT torque constant is,

KT =
3p
4
ψM (15)
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As in the IM case, Equation (14) can be replaced in Equation (10), obtaining the following
Expression (17), which contains the first two equations of the dynamics of PMSM,

KTisq = J
d2θm

dt
+ Bv

dθm

dt
+ TL (16)

In this sense, Equation (16) contains the electromagnetic and mechanical equations, while
Equations (12) and (13) contain the electrical equations.

2.3. Position Proportional Derivative with a Feed-Forward Controller Design

Figure 1 shows the complete vector position control scheme for the three-phase motor scheme,
employing the d–q synchronous rotating reference frame. The objective of this scheme is to regulate the
θm mechanical position of the motor’s shaft, which is the main variable (outer loop), by using the PDθm
regulator. This regulator provides the best electromagnetic torque current reference, isq*, according to
(7) and (15). On the other hand, the rotor flux current reference, isd*, imposes the value of the rotor flux
that the motor needs. This way, the inner loops (current loops) are controlled by two PI regulators,
where their objective is to get the best voltage references, vsd* and vsq*, corresponding to their current
references, isd* and isq*, respectively. The ABC -> dq block implements the Clarke–Park transformations,
and the dq -> ABC block the inverse Park–Clarke transformations. The voltage sourced inverter (VSI)
block represents the three-phase Voltage Sourced Inverter, which receives the control signals from the
SVPWM (Space Vector Pulse Width Modulation) block. This modulator generates the control signals
according to the voltage references obtained from the inner loops, asking to the inverter to generate
these voltages in its three-phase output. Calc θs calculates the d–q synchronous rotating reference
frame’s angle with respect the α–β stationary reference frame. For that it is used the indirect vector
control, by integrating the ωs synchronous speed. Thus for the PMSM motor, this speed is the same as
the ωr electrical speed

ωs = ωr (17)

which is obtained from the ωm mechanical speed (measured) by using this expression,

ωr = ωm
p
2

(18)

 
Figure 1. The proportional derivative position indirect vector control scheme for the three-phase motor.
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On the other hand, for the IM motor, this speed is given by Equation (19),

ωs = ωr +ωslip (19)

where the ωslip slip speed is calculated easily with Equation (20)

ωslip =
Lm

ψr

Rr

Lr
isq (20)

As we have seen in the previous subsections, both three-phase machines have the same
electromechanical Equations (9) and (16). This way, the design of the position regulator for both
is the same. Taking into account that the dynamics of the two PI current regulators, the SVPWM
modulator and the VSI inverter are faster than the electromechanical and PD dynamics, then the
following simplified scheme can be obtained,

Thus, taking the electromechanical equation and considering null the load disturbance (TL = 0)
and applying Laplace’s transformation, the following transfer function can be obtained

G(s) =
θm(s)
Isq(s)

=
KT/Bv

1 + sτm

1
s
=

KT

Js + Bv

1
s

(21)

where τm = J/Bv is the mechanical time constant. Now taking the causal PD regulator

PDθm(s) =
(
Kpθm +

sKdθm
s + val

)
(22)

where Kpθm and Kdθm are the proportional and derivative coefficients, respectively, of the PD regulator,
and val is the absolute value of the pole to convert this regulator in the causal transfer function.
This value has to be large enough to simplify its dynamics compared with the zero’s dynamics.

The open loop transfer function (OLTF) of the simplified diagram presented in Figure 2, can be
obtained as:

OLTFθm(s) =
(
Kpθ +

sKdθm
s + val

)
KT

Js + Bv

1
s

(23)

 
Figure 2. Simplified scheme for proportion derivative (PD) position indirect vector control for the
three-phase motor.

It is well known from engineering control that at the ωGCθm gain cross-over frequency the module
is the unity ∣∣∣OLTFθm(s)

∣∣∣
s= jωGCθm

= 1 (24)

and the phase Equation is (26), where PMθm is the phase margin of the position loop

arg (OLTFθm(s))
∣∣∣
s= jωGCθm

= −180
◦
+ PMθm (25)
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Now, taking the system of these two Equations, (25) and (26), where theωGCθmand PMθmare the design
data, and by solving them, the two coefficients of the PD regulator (Kpθmand Kdθm) necessary for that will
be obtained. For this resolution, the following group of intermediate variables are necessary (den,a,b)

den = (Bv + J · val)2ωGCθm
4 + (Bv · val ·ωGCθm − J ·ωGCθm

3)
2

(26)

KT
2·[(Kdθm + Kpθm)

2ωGCθm
2 + (Kpθm · val)2] = den (27)

a = ωGCθm
3(Bv + J·val) +ωGCθm tg(PMθm)

(
Bv · val ·ωGCθm − JωGCθm

3
)

(28)

b =
(
val·ωGCθm

2·tg(PMθm) −ωGCθm
3
)
(Bv + J · val)

−
(
ωGCθmtg(PMθm) + val

)(
Bv · val ·ωGCθm − JωGCθm

3
) (29)

Kdθm =
1

KT

√
den

ωGCθm2(1 + 2·a/b) + (a/b)2(ωGCθm2 + val2)
(30)

Kpθm = Kdθm
a
b

(31)

The effect of the TL load disturbance can produce important problems when the objective is to get
an efficient position tracking. To avoid this problem, it can be added as a Feed-Forward (FF) action
in the controller, where for that it is necessary to know the disturbance’s value, Figure 3. This way,
the control law contains both actions, PD and FF,

i∗sq(t) = i∗sq_pd(t) + i∗sq_ f f (t) = i∗sq_pd(t) + T̂L(t)/KT (32)

Figure 3. Simplified scheme for PD position control with Feed-Forward (FF) action for the
three-phase motor.

As in many cases it is impossible to know the load disturbance, and therefore an easy way to solve
this issue is to estimate it by using a load estimator or observer. A simple and effective load observer is
obtained directly from the electromechanical Equation (9)/(16),

T̂L = Te − J
d2θm

dt
− Bv

dθm

dt
(33)

2.4. Current Proportional Integral Controllers Design

The design of the current regulators or inner loops for both motors is very similar. In the IM
motor, the design of the two loops is done only for one, that is for isq current, considering that for isd
current the regulator is the same, [21]. This is due to that in both loops the σLs factor is the same, but in
the function of the expected results, it could be necessary for an independent tuning of both. Then for
the IM machine, taking the Equations (4) and (5), and considering that the last two terms of each one
are disturbances and neglecting them, where taking into account that the dynamics of the SVPWM
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modulator and VSI inverter are faster than the electrical and PI dynamics (Figure 1), then the following
transfer function and simplified scheme can be obtained for the isq current loop,

Isq(s)
V∗sq(s)

=
1

sσLs + Rs
(34)

From Figure 4, the open loop transfer function (OLTF) of the simplified diagram is obtained,

OLTFi(s) =
(
Kpi +

Kii
s

)( 1
Rs + sσLs

)
(35)

Figure 4. Simplified scheme of the PI regulator for isq and isd currents loops (induction motor (IM)
machine case).

As in the position loop has been done, we know that at the ωGCi gain cross-over frequency the
module is the unity ∣∣∣OLTFi(s)

∣∣∣
s= jωGCi

= 1 (36)

where the phase equation is (37), in which PMi is the phase margin of the currents loop

arg (OLTFi(s))
∣∣∣
s= jωGCi

= −180
◦
+ PMi (37)

Next, taking these two equations, (36) and (37), being the ωGCi and PMi design data, and solving
them, the two coefficients of PI regulator (Kpi and Kii) necessaries to comply the imposed design are
obtained, where for this resolution the δ intermediate variables is necessary

δ = tg
(
PMi − π2 + arctg

ωGCiLsσ

Rs

)
(38)

Kii =
ωci

√
Rs2 + (ωGCi Lsσ)

2

√
1 + δ2

(39)

Kpi =
Kiiδ
ωGCi

(40)

In the PMSM machine, as Lsd and Lsq are different, it is correct to think that initially the tuning for
each loop would be different. However, a way to start with a tuning can be using the same tuning for
both, and go adjusting each one according to expected results. In this sense, an arithmetic mean value
of both stator inductances is necessary to calculate, that is Ls,

Ls = (Lsd + Lsq)/2 (41)

Then for the PMSM machine, taking Equations (12) and (13), and considering the last term of
each one as a disturbance and neglecting it, where as in the IM case, also taking into account that the
dynamics of the SVPWM modulator and VSI inverter are faster than the electrical and PI dynamics
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(Figure 1), then the following transfer function and simplified scheme can be obtained for the isq

current loop,
Isq(s)
V∗sq(s)

=
1

sLs + Rs
(42)

Like it was done for the IM machine, now the open loop transfer function (OLTF) of the simplified
diagram of Figure 5 is obtained for the PMSM,

OLTFi(s) =
(
Kpi +

Kii
s

)( 1
Rs + sLs

)
(43)

where for the ωGCi gain cross-over frequency the module and phase equations are obtained, (44) and
(45) respectively ∣∣∣OLTFi(s)

∣∣∣
s= jωGCi

= 1 (44)

arg (OLTFi(s))
∣∣∣
s= jωGCi

= −180
◦
+ PMi (45)

Figure 5. Simplified scheme of the PI regulator for isq and isd currents loops (permanent magnet
synchronous motor (PMSM) machine case).

Finally, taking this two equations system, (43) and (44), and solving them, where the ωGCi and
PMi are the design data, the two coefficients of the PI regulator (Kpi and Kii) are obtained, where for
this resolution the λ intermediate variables is necessary.

λ = tg
(
PMi − π2 + arctg

ωGCi Ls

Rs

)
(46)

Kii =
ωGCi

√
Rs2 + (ωGCiLs)

2

√
1 + λ2

(47)

Kpi =
Kiiλ
ωGCi

(48)

As it can be seen, these last three equations are very similar to (38), (39) and (40), where the unique
difference is that σLs term for the IM machine has been replaced by Ls for the PMSM case.

2.5. Estability Demonstration of PD Position and PI Current Controlled Systems

The stability of the position closed loop is guaranteed choosing a PMθm phase margin positive,
and the currents closed loops are stable while their PMi phase margin is positive.

3. Simulation and Experimental Results

3.1. Tests Benchees

The following two tests benches have been employed to do the experiments, Figure 6:
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(a) (b) 

Figure 6. (a) IM tests bench and (b) PMSM tests bench.

3.1.1. IM Tests Bench

The IM tests platform is based on a M2AA 132M4 ABB industrial induction motor, of the die cast
aluminum squirrel-cage type, Figure 6a, with these parameters:

• P, rated active power, 7.5 kW;
• V, rated stator voltage, 380 V;
• Te, rated electromagnetic torque, 50 N·m;
• n, rated mechanical rotor speed, 1445 rpm (151.32 rad/s);
• Rs, stator resistance, 0.729 Ω;
• Rr, rotor resistance, 0.40 Ω;
• Lm, magnetizing inductance, 0.1125 H;
• Ls, stator inductance, 0.1138 H;
• Lr, rotor inductance, 0.1152 H;
• σ, coefficient of magnetic dispersion, 0.0346 (dimensionless);
• p, number of poles, 4;
• J, moment of inertia, 0.0503 kg·m2;
• Bv, viscous friction coefficient, 0.0105 N·m/(rad/s);
• Is, rated stator current, 15.24 A;
• Isq, rated torque current, 20 A;
• Isd, rated rotor flux current, 8.026 A;
• Ψr, rated rotor flux, 0.9030 Wb.

The load disturbance is generated by employing a commercial 190U2 Unimotor synchronous AC
servo motor (controlled in torque) of 10.6 kW, which is mechanically connected in the shaft of the IM
machine. Both machines are connected to a DC bus of 537 V by using three-phase VSI inverters working
at 10 kHz of switching frequency. The control and monitoring tasks are done from a PC, in which
are installed MatLab/Simulink, dsControl and a DS1103 real time interface of dSpace. For measuring
the mechanical position, an incremental encoder of 4096 square pulses/revolution is used, where by
quadruplicating them it is getting a resolution of 0.000385 rad (0.022◦).

3.1.2. PMSM Tests Bench

The PMSM experiments platform is built on a 142U2C300BACAA165240 Unimotor synchronous
AC servo motor (PMSM motor), Figure 6b, with the following parameters:

• P, rated active power, 3.83 kW;
• V, rated stator voltage, 400 V;
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• Te, rated electromagnetic torque, 12.2 N·m;
• n, rated mechanical rotor speed, 3000 rpm (314.16 rad/s);
• Rs, stator resistance, 0.49 Ω;
• Lsd, stator d inductance, 0.0039 H;
• Lsq, stator q inductance, 0.0069 H;
• p, number of poles, 6;
• J, moment of inertia, 0.0055 kg·m2;
• Bv, viscous friction coefficient, 0.014 N·m/(rad/s);
• Is, rated stator current, 7.62 A;
• ΨM, rotor magnets flux, 0.3556 Wb.

The load disturbance is implemented by using another 142U2C300BACAA165240 Unimotor
commercial synchronous AC servo motor (controlled in torque) and is mechanically connected in the
shaft of the PMSM motor. The DC bus employed for both machines is one of 625 V and a switching
frequency of 10 kHz for each VSI. The control and monitoring system is also done from a PC, where
are installed MatLab/Simulink, dsControl and a DS1006 real time interface of dSpace. The mechanical
position is measured by employing the same incremental encoder and quadruplicated system that are
in the IM tests bench, and consequently getting the same resolution of 0.000385 rad (0.022◦).

3.2. D1 and D2 Position and Currents Regulators Design

The bandwidth of these designs are for closed loop systems, by using the cross-over frequency
(ωC), but as this frequency matches approximately with the open loop gain cross-over frequency
(ωGC), then by choosing ωGC the closed loop bandwidth is chosen. The following two tables (Tables 1
and 2) show two designs for each type of motor. For both, D1 is used to work with low-medium load
disturbances, and it takes a bandwidth (ωGCθm) between 40 and 50 rad/s, and a PMθm around 70◦.
For both kind of machines, D2 is employed for working with medium-height load disturbances, using
a higher bandwidth than in D1, between 75 and 85 rad/s, and PMθm also higher than D1, around 80◦,
to compensate better than D1 the effect of a higher load torque. If there is any interest to get more
derivative action (to get a faster response and to reduce oscillations in the response), keeping the same
bandwidth, it is necessary to increase the PMθm. Regarding the PI current regulators, the employed
tuning is valid for both designs in both machines and it is enough faster than the PD position regulator
and electromechanical dynamics (in order to neglect the fastest blocks, done in Section 2.3). The variable
val takes a value of 1000, (22). All regulators have been designed in continuous time but to do the
simulations and experiments, they have been discretized at 100 μs to take advantage of the switching
frequency (10 kHz).

Table 1. D1 and D2 position controller designs for the IM machine.

Design ωGCθm PMθm ωGCi PMi

D1 50 rad/s
Kpθm = 11.1,

74◦
Kdθm = 914.63,

3000 rad/s
Kpi = 10.82,

70◦
Kii = 14401

D2 85 rad/s
Kpθm = 15.23,

79◦
Kdθm = 1597,

3000 rad/s
Kpi = 10.82,

70◦
Kii = 14401

Table 2. D1 and D2 position controller designs for the PMSM machine.

Design ωGCθm PMθm ωGCi PMi

D1 45 rad/s
Kpθm = 2.8,

70◦
Kdθm = 139.25,

3000 rad/s
Kpi = 15,

70◦
Kii = 18004

D2 75 rad/s
Kpθm = 4.25,

75◦
Kdθm = 248.15,

3000 rad/s
Kpi = 15,

70◦
Kii = 18004
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3.3. Simulation and Experimental Results

Figure 7 shows both tests, simulation and experimental, using the D1 position regulator for IM.
The tests were using a position square waveform of 2 rad of amplitude and 0.25 Hz of frequency during
6 s, and also, a constant load torque of 25 N·m (50% of rated torque) starting from 3rd second to the end.
As it can be seen, the response of the motor was fast and without overshoot (a), (b) and (c). Moreover,
the position error in the steady state was practically 0 rad (0◦) for the simulation case and less than
0.002 rad (0.1146◦) for the experimental one, without load disturbance. With disturbance the position
error increased a bit, the simulation case error was less than 0.002 rad (0.1146◦) and the experimental
case error was around 0.007 rad (0.4011◦), but the position tracking was still very good. Regarding the
electromagnetic torque, (e), this was as smooth and effective as its current, (f), and the estimated load
torque was very similar to the load disturbance, demonstrating that the estimator worked fine. Finally,
the real rotor flux current, (g), tracked very properly its reference, consequently the machine generated
the imposed rotor flux. Comparing both tests, it could be observed that they were very similar.

Figure 7. Simulation and experimental tests’ performances employing the D1 design for the IM
machine: (a) rotor position, reference and real (rad); (b) rotor position error (rad); (c) rotor position error
zoom (rad); (d) rotor speed (rad/s); (e) electromagnetic torque (Te), estimated load torque (TL est) and
load torque (TL), (N·m); (f) torque current, isq (A) and (g) rotor flux current, reference and real, isd (A).
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Figure 8 shows the performance of the experimental test using the D2 position regulator for IM.
The test employs a position square waveform of 2 rad of amplitude and 0.25 Hz of frequency during
10 s, and also, a square load torque of 37.5 N·m (75% of rated torque) of amplitude and 0.25 Hz of
frequency. As it could be observed, the response of the motor was fast and with small overshoot a) and
(b). The position error in the steady state was small or equal to 0.015 rad (0.8594◦), getting very good
tracking. In spite of high load disturbance, the electromagnetic torque, (c), was not aggressive and
neither was its current, (d). The estimated load torque also worked properly in the hard condition,
getting a very similar waveform to the load disturbance. The real rotor flux current, (e), also tracked
very properly its reference in hard conditions, this way the machine produced the imposed rotor flux
without any problem.

Figure 8. Experimental test employing the D2 design for the IM machine: (a) rotor position, reference
and real (rad); (b) rotor position error (rad); (c) rotor position error zoom (rad); (d) electromagnetic
torque (Te), estimated load torque (TL est) and load torque (TL), (N·m); (e) torque current, isq (A) and
(f) rotor flux current, reference and real, isd (A).

Figure 9 shows the simulation and experimental tests, using the D1 position regulator for PMSM.
The tests were using the same conditions employed in Figure 4, but now using a constant load torque
of 6.1 N·m (50% of rated torque). Seeing (a), (b) and (c) graphs, it could be observed the fast and
without overshoot response of the motor. Besides, the position error in the steady state tended to
be 0 rad (0◦) for the simulation and also for the experimental case, without load disturbance. In the
presence of the disturbance, the position error increased a bit in the simulation case, producing an error
of 0.002 rad (0.1146◦) and in the experimental case with an error around 0 rad (0◦), getting excellent
position tracking. The electromagnetic torque, (e), was as smooth and effective as its current, (f), and
the estimator of load torque provided a value similar to the real load torque, demonstrating that the
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estimator worked properly. The real rotor flux current, (g), presents good tracking to 0 A (as it has
been designed), and as a consequence the machine generated only the magnets rotor flux.

Figure 9. Simulation and experimental tests’ performances employing the D1 design for the PMSM
machine: (a) rotor position, reference and real (rad); (b) rotor position error (rad); (c) rotor position
error zoom (rad); (d) rotor speed (rad/s); (e) electromagnetic torque (Te), estimated load torque (TL est)
and load torque (TL), (N·m); (f) torque current, isq (A); (g) rotor flux current, reference and real, isd (A).

Observing the simulation test and the experiment, we could realize that both had a large similarity.
Figure 10 shows the experimental performance of the D2 position regulator for the PMSM machine.

The test was the same as that employed and shown in Figure 5, but in this case using a square load
torque of 9.15 N·m (75% of rated torque). Observing the response of the motor, it was fast and with
small overshoot (a) and (b). The position error in the steady state was small or equal to 0.004 rad
(0.2292◦), obtaining excellent position tracking taking into account the hard load disturbance conditions.
In spite of this, the electromagnetic torque, (c), was smooth, like its current, (d). The estimator of the
load torque also worked very fine, obtaining a very similar disturbance’s waveform. Finally, it could
be seen that the real rotor flux current, (e), tracked very properly its reference in these hard situations,
obtaining that the machine produced only the magnet rotor flux successfully.
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Figure 10. Experimental test employing the D2 design for the IM machine: (a) rotor position, reference
and real (rad); (b) rotor position error (rad); (c) rotor position error zoom (rad); (d) electromagnetic
torque (Te), estimated load torque (TL est) and load torque (TL), (N·m); (e) torque current, isq (A) and
(f) rotor flux current, reference and real, isd (A)

4. Conclusions

Taking into account the results obtained in the simulation and in the experimental tests, the next
conclusions could be remarked. For three-phase machines of several units of kW, a very good position
tracking was obtained employing a bandwidth (ωGCθm) between 40 and 50 rad/s, and a phase margin
(PMθm) around of 70◦ for the PD regulator, when a step type position reference and the load torque
was unknown and its value took up to 50% or less than the rated value of the electromagnetic torque.
Really excellent results were obtained, with a position error of 0.007 rad (0.4011◦) for IM and 0.002 rad
(0.1146◦) for PMSM. For load torque that was 75% or higher of the rated value of the electromagnetic
torque, a bandwidth (ωGCθm) between 75 and 85 rad/s, and a phase margin (PMθm) around of 80◦ were
necessary, obtaining also excellent results: a position error of 0.015 rad (0.8594◦) for IM and between
0.004 rad (0.2292◦) and 0, for PMSM. The PMSM motor provided better accuracy than the IM machine
by employing the same PD position controller. The implementation of the load torque estimator was
essential to obtain these results. Regarding the two PI inner loops, the tuning of a bandwidth (ωGCi) of
3000 rad/s and a phase margin (PMi) of 70◦, was adequate for both loops (isd and isq), in both machines,
due to that the current tracking was also very good in all cases. Moreover, despite PMSM having
different stator inductances (Lsd and Lsq), the solution was to get their arithmetic mean value (Ls) and
employ it in tuning for both loops, obtaining good results.
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The methodology presented in this paper consists of a simple way to tune the position PD regulator
for the most employed kind of commercial/industrial three-phase motors, that is IM and PMSM,
obtaining excellent results, as well as much other advanced position controllers. This methodology
could be used for other three-phase machines like Switched Reluctance Motor (SRM), Brushless
DC (BLDC), Double Feed Induction Machine (DFIM) and including DC motors, for machines of
different power.
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Abstract: This paper presents the sensorless control algorithm for a permanent magnet synchronous
motor (PMSM) drive system with the estimator and the intelligent controller. The estimator is
constructed on the novel sliding mode observer (SMO) in combination with a phase-locked loop
(PLL) to estimate the position and speed of the rotor. The intelligent controller is a radial basis
function neural network (RBFNN)-based self-tuning PID (Proportional-Integral-Derivative) controller,
applied to the velocity control loop of the PMSM drive control system to adapt strongly to dynamic
characteristics during the operation with an external load. The I-f startup strategy is adopted to
accelerate the motor from standstill, then switches to the sensorless mode smoothly. The control
algorithm program is based on MATLAB and can be executed in simulations and experiments.
The control system performance is verified on an experimental platform with various speeds and the
dynamic load, in which the specified I-f startup mode and sensorless mode, inspected by tracking
response and speed regulation. The simulation and experimental results demonstrate that the
proposed method has worked successfully. The motor control system has smooth switching, good
tracking response, and robustness against disturbance.

Keywords: permanent magnet synchronous motor; sensorless control; sliding mode observer;
RBFNN-based self-tuning PID controller; I-f startup strategy

1. Introduction

Applying the advanced developments in power electronics, microprocessors and digital signal
processors (DSP), permanent magnet synchronous motors (PMSMs) have been extensively used in
industrial automatic control applications, from washing machines to electric vehicles, due to their
efficient performance characteristics, high power transmission efficiency, large torque-to-weight ratio,
and long service life. Among various PMSM drive control techniques, field-oriented control (FOC) has
been the most essential and efficient scheme, in which the rotor’s position and speed data are required.
As a sensor-based solution, these data are managed by a typical sensor, such as a resolver, encoder, or
Hall sensor, installed on the motor’s shaft. However, this makes the PMSM drive control system more
expensive and larger in size. In some cases, the sensors are environment-sensitive, reducing control
reliability and adaptiveness. To solve these shortcomings, various back-EMF-based (back electromotive
force based) sensorless control techniques are designed and applied, such as the extended Kalman
filter (EKF) approaches [1–3] or the sliding mode observer (SMO) approaches [4–7]. The EKF involves
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a lot of recursive computations because it consists of prediction and innovation. Meanwhile, the SMO
is robust against disturbance, has a high accuracy estimation potential, and is easy to be implemented.
Generally, the conventional SMO solutions are impacted by chattering problems and noise effects
because of using the on-off function and traditional arctangent calculation, so that the novel SMO and
PLL combinations are widely applied to enhance the estimator’s robustness and accuracy [6,8–10].
Due to the back EMF value being small at the standstill or the low-speed region, the startup strategies
are implemented to speed up the motor to the specific speed threshold at which the back-EMF is large
enough to be estimated precisely. A simple I-f startup strategy was presented [11] and applied [1,5].
It involves the closed-loop current control to ensure the motor starts successfully under different
external load situations without initial rotor position estimation and machine parameters estimation.

A proper motor drive control system requires a wide adjustable speed range, adaption to load
disturbances and parameter variations, high instantaneous torque response, and lower torque ripple
during the operating condition. It is essential to improve the motor control algorithm to obtain optimal
performance. Therefore, various controllers have been proposed, such as the ANFIS controller [12], the
neural network controller [13], the hybrid fuzzy-PID (Proportional-Integral-Derivative) controller [14],
and the backstepping controller [4]. Among these algorithms, the radial basis function neural network
(RBFNN)-based self-tuning PID controller is considered to enhance the speed control quality of the
PMSMs drive control system. This intelligent controller not only inherits the typical PID controller’s
structural simplicity but also is optimized by online adjusting the operating parameters based on the
advantages of a neural network such as the ability to identify nonlinear system dynamics, the ability to
learn, generalize, and adapt.

In the realization of the motor control system, the DSP of Texas Instruments provides a flexible
solution, improving system reliability and efficiency. The DSP integrates highly optimized peripheral
circuits, memory, and a single-chip CPU structure. It exhibits powerful processing and high performance
for complex real-time control systems. In particular, with MATLAB’s Embedded Coder Support
Package utilities, it is resourceful to build up the motor control algorithm in Simulink. The DSP
application development time is significantly shortened. Accordingly, in this paper, an RBFNN-based
self-tuning PID speed controller is implemented to improve the performance of the DSP-based
sensorless PMSM drive control system with an estimator based on the novel SMO in combination
with a PLL (the novel SMO-PLL). The MATLAB-based implemented control algorithm is not only
executed in simulation but also applied to the real-time experiment system. The I-f startup mode,
tracking response, and speed regulation are investigated to evaluate the control system performance.
The proposed control algorithm is verified on an experimental platform with a PMSM, inverter, control
circuit, a Texas Instruments DSP F28379D, and the dynamic load.

This paper is organized into the following sections. Section 2 describes the sensorless PMSM
drive control system with the mathematical model, the estimator based on the novel SMO-PLL, and
the I-f startup strategy. Section 3 introduces the self-tuning PID controller based on an RBFNN.
Section 4 presents the implementation of the control algorithm in MATLAB Simulink. In Section 5,
the control system performance is inspected in the digital simulation to evaluate the correctness and
the effectiveness of the control algorithm. In Section 6, the proposed algorithm is verified on the
experimental platform. Finally, the conclusion is given in Section 7.

2. Description of the Sensorless PMSM Drive System

The architecture of the proposed DSP-based sensorless PMSM drive control system based on
the novel SMO-PLL estimator and the RBFNN-based self-tuning PID controller is shown in Figure 1.
As mentioned above, two control modes are investigated from low speed to high speed, including a
startup mode and a sensorless mode. The first mode is the I-f startup strategy mode in the low-speed
range. The switches are activated in position 1. The second mode is the sensorless control mode
in the high-speed range. The switches are activated in position 2. In the sensorless control mode,
there are two closed control loops—the inner current control loop and the outer velocity control
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loop. The current control loops are executed on the PI (Proportional-Integral) controller and the FOC
algorithm. The velocity control loop is implemented by an RBFNN-based self-tuning PID controller.
The detailed formulation and control algorithm are described as follows.

rω
eθ

autoθ

di =

pid
qi

qi

nnω

rω

rω

qi

 

Figure 1. The architecture of a self-tuning PID (Proportional-Integral-Derivative) speed controller
based on the radial basis function neural network (RBFNN) for the sensorless permanent magnet
synchronous motor (PMSM) drive control system with the dynamic load.

2.1. Modeling of the PMSM

In general, the typical mathematical model of a PMSM is formulated in the d-q synchronous
rotating coordinate as: {

vd = rsid + Ls
d
dt id −ωeLsiq

vq = rsiq + Ls
d
dt iq +ωeLsid +ωeλ f

(1)

where vd, vq are the voltages of the d and q axis, respectively; rs is the stator winding resistance per
phase; Ls = Ld = Lq (for SPMSM) and Ld, Lq are the inductances of the d and q, axis respectively; id, iq are
the currents of the d and q axis respectively; ωe is the rotating speed of magnet flux; λ f is the permanent
magnet flux linkage.

In Figure 1, the current control of PMSM is decoupled to torque control (iq) and flux control (id)
based on the Clarke and Park transformation. Therefore, the PMSM is controlled in a similar way to
controlling a DC motor. When the current id is controlled to zero, the torque of PMSM can be expressed
by the following equation:

Te =
3Np

4
λ f iq � Ktiq (2)

with:

Kt =
3Np

4
λ f (3)

where Te is the electromagnetic torque, Kt is the torque constant, Np is the pole pairs.
The dynamic equation of a PMSM drive system with the mechanical load can be presented as:

dωr

dt
=

1
J
(Te − TL − Bωr) (4)

where ωr is the rotor speed, TL is the load torque; J and B are the inertia and friction constants of the
PMSM, respectively.
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2.2. Novel Sliding Mode Observer

Applying the inverse Park transformation for (1), the circuit equation of PMSM on the α − β
stationary coordinate can be represented by the following equation:{

vα = rsiα + Ls
d
dt iα + eα

vβ = rsiβ + Ls
d
dt iβ + eβ

(5)

where iα, iβ are the current, vα, vβ are the voltage of the α and β axis, and eα, eβ are the back EMF, which
are expressed by {

eα = −ωeλ f sinθe

eβ = ωeλ f cosθe
(6)

where θe is the electrical rotor position and
.
θe = ωe.

Combining (5) and (6), the current equation can be derived as:⎧⎪⎨⎪⎩ d
dt iα = 1

Ls
(−rsiα + vα − eα)

d
dt iβ = 1

Ls
(−rsiβ + vβ − eβ)

(7)

According to the novel sliding mode observer theory, the current observer formulation is written
as follows: ⎧⎪⎨⎪⎩ d

dt îα = 1
Ls
(−rsiα + vα − kH(îα − iα))

d
dt îβ = 1

Ls
(−rsiβ + vβ − kH(îβ − iβ))

(8)

where îα, îβ are the estimated current in the α and β axis. The k is the gain and H(x) is the Sigmoid
function, which is defined as:

H(x) =
2

1 + e−2μx − 1 =
1− e−2μx

1 + e−2μx (9)

where μ is the shape parameter. Moreover, when (8) subtracts (7), the estimated current error can be
represented in the dynamic equation as the following equation:⎧⎪⎪⎨⎪⎪⎩ d

dt̃ iα = 1
Ls
(−rs̃iα + eα − kH(̃iα))

d
dt̃ iβ = 1

Ls
(−rs̃iβ + eβ − kH(̃iβ))

(10)

where ĩα, ĩβ are the estimated current error in the α and β axis, and are defined as: ĩα = îα − iα, and
ĩβ = îβ − iβ.

To analyze the stability of the novel sliding mode observer, the Lyapunov function is chosen as:

V =
1
2
(̃i2α + ĩ2β) (11)

Taking the derivative of the Lyapunov function by the time, we obtain

.
V = ĩα × d

dt̃
iα + ĩβ × d

dt̃
iβ (12)

Furthermore, if we design k > max(|eα|,
∣∣∣eβ∣∣∣) and use (10), we have⎧⎪⎪⎪⎨⎪⎪⎪⎩ ĩα × d

dt̃ iα =
ĩα
Ls
(−rs̃iα + eα − kH(̃iα)) ≤ − rs

Ls
ĩ2α ≤ 0

ĩβ × d
dt̃ iβ =

ĩβ
Ls
(−rs̃iβ + eβ − kH(̃iβ)) ≤ − rs

Ls
ĩ2β ≤ 0

(13)
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Therefore,
.

V ≤ 0, the estimated current will converge to the actual current. The back EMF can be
obtained as: ⎧⎪⎪⎨⎪⎪⎩ eα ≈ êα = kH(îα − iα) = kH(̃iα)

eβ ≈ êβ = kH(îβ − iβ) = kH(̃iβ)
(14)

where êα, êβ are the estimated back EMF.
Moreover, a low pass filter is implemented to reduce the noise effect in estimated back EMF.{

êαF = ωc
s+ωc

êα
êβF = ωc

s+ωc
êβ

(15)

where ωc = 2π fc and fc is the cut-off frequency of the low pass filter.
Once the back EMF can be estimated, the phase-locked loop is executed to estimate the rotor

position. The architecture of the novel SMO with a PLL is shown in Figure 2.
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Figure 2. Novel sliding mode observer with a phase-locked loop.

From (6), an estimated error is defined by

ε = −êαFcos(θ̂e) − êβFsin(θ̂e) (16)

If this error is controlled to zero by a PI controller, the rotor speed is estimated by⎧⎪⎪⎪⎨⎪⎪⎪⎩
ω̂e = KP fI(ε) + Ki

∫
fI(ε)dt

fI(ε) = ε√
ê2
αF+ê2

βF

(17)

and, the estimated rotor position can be obtained by

θ̂e =

∫
ω̂edt (18)

Finally, a phase shift compensation is calculated to correct the estimated rotor position, rejecting
the phase delay effect in the back EMF’s low pass filter.

Δθ̂e = arctan
(
ω̂e

ωc

)
(19)
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2.3. The I-f Startup Strategy

During the inter-mode transition from the startup stage to the sensorless FOC algorithm stage,
the I-f startup strategy smooths torque and speed transition. It is based on the closed-loop current
controller architecture. According to the study of [11], the I-f startup method is implemented in a
three-stepped sequence, shown in Figure 3, and described as follows:

sw
r rω ω∗ ≥

sw
L eθ θ≤

sw
r rω ω∗ =

rω

qi

q q ri i ω∗ ∗= =
a i
e eθ θ=

a
eθ

Figure 3. The I-f startup strategy flowchart.

Step 1: Ramping up reference speed with the constant i∗q regulation at the initial start. This step
aims to accelerate the motor from standstill to the switching reference speed where the back-EMF
signal is large enough for the novel SMO-PLL estimator, which can obtain the rotor position and speed
information accurately. The reference current i∗q and reference speed ω∗r are set to:

i∗q(k) = i∗q0 (20)

ω∗r(k + 1) =
{
ω∗r(k) + KrampTs i f ω∗r < ωsw

r
ωsw

r i f ω∗r ≥ ωsw
r

(21)

θa
e(k + 1) = θa

e(k) +ω
∗
rTs with θa

e(0) = θ
i
e (22)

where i∗q0 is the initial current in q-axis; θa
e ,θi

e are the auto-generated rotor position and its initial value;
ωsw

r is the specific reference speed for switching to the sensorless mode, and Kramp is the proportional
gain for ramping up the reference rotor speed.

Step 2: Keeping reference speed constant with decreasing i∗q axis current at the end of step 1.
The purpose of this step is to reduce the current i∗q, while the same torque is generated as before and
balanced the load torque. In addition, the load torque angular θL reduces to a critical threshold to
guarantee the smooth switching condition.

i∗q(k + 1) = i∗q(k) −KaTs (23)

ω∗r(k + 1) = ω∗r(k) = ωsw
r (24)

while:
θL = θ̂e − θa

e > θ
sw
e (25)

where θsw
e is the angular threshold value of switching condition and Ka is the proportional gain for

ramping down the current command i∗q.
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Step 3: Switching to the sensorless FOC mode operation based on the novel SMO-PLL estimator
at the end of step 2.

3. The Self-Tuning PID Controller Based on an RBFNN

3.1. PID Controller

In Figure 1, the velocity loop is executed with a PID controller to regulate the reference current
i∗q in the q-axis. The algorithm of an incremental PID controller can be written as the following
discrete-time equation:

i∗q(k) = i∗q(k− 1) + kpẽp(k) + kĩei(k) + kdẽd(k) (26)

with: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẽp(k) = e(k) − e(k− 1)
ẽi(k) = e(k)
ẽd(k) = e(k) − 2e(k− 1) + e(k− 2)

(27)

where the rotor speed error is defined as:

e(k) = ω∗r(k) − ω̂r(k) (28)

and kp, ki, kd are the proportional, integral, and differential gains of the controller, respectively.
Meanwhile ẽp(k), ẽi(k), ẽd(k) are the proportional, integral, and differential variations in one sampling
time, successively.

3.2. Radial Basis Function Neural Network

To get a self-tuning PID controller, the PMSM drive control system is identified by an RBFNN.
Then, the controller’s parameters should be adjusted suitably. Therefore, the RBFNN structure is
shown in Figure 4. It comprises the feedforward neural network architecture, consisting of three
layers—an input layer with three inputs, a hidden layer with five neurons, and a single output layer.

qi kΔ

r kω −

r kω −

r kω

nn kω

nne k

Figure 4. The RBFNN for tuning the PID parameters.

The input vector is defined as:

x(k) =
[
Δi∗q(k) ω̂r(k− 1) ω̂r(k− 2)

]T
(29)

with:
Δi∗q(k) = i∗q(k) − i∗q(k− 1) (30)
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In the hidden layer, the activation function is implemented by a Gaussian function

hj(k) = exp

⎛⎜⎜⎜⎜⎜⎜⎝−x(k) −Cj(k)
2

2b2
j (k)

⎞⎟⎟⎟⎟⎟⎟⎠ (31)

where Cj(k) =
[
c1 j(k) c2 j(k) c3 j(k)

]T
and bj, cij are the width and center of the Gaussian function.

In the output layer, the output is a linear sum of hidden nodes:

ω̂nn(k) =
5∑

j=1

wj(k)hj(k) (32)

Furthermore, to simplify the online adaptive updating law for the parameter of RBFNN, the cost
function is defined as:

J(k) =
1
2
(ω̂r(k) − ω̂nn(k))

2 =
1
2

e2
nn(k) (33)

According to the stochastic gradient descent (SGD) method, the learning algorithm can be
calculated and updated by the below equations [15]:⎧⎪⎪⎨⎪⎪⎩ Δω j(k) = −η ∂J(k)

∂ω j(k)
= ηenn(k)ω j(k)

ω j(k) = ω j(k− 1) + Δω j(k) + α(ω j(k− 1) −ω j(k− 2))
(34)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Δbj(k) = −η ∂J(k)
∂bj(k)

= ηenn(k)ω j(k)hj(k)
x(k)−Cj(k)

2

2b3
j (k)

bj(k) = bj(k− 1) + Δbj(k) + α(bj(k− 1) − bj(k− 2))
(35)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Δcij(k) = −η ∂J(k)
∂cij(k)

= ηenn(k)ω j(k)
xi(k)−cij(k)

b2
j (k)

cij(k) = cij(k− 1) + Δcij(k) + α(cij(k− 1) − cij(k− 2))
(36)

where i = 1, 2, 3; j = 1, 2...5; η is the learning rate; α is the momentum factor.
Furthermore, the Jacobian transformation can be obtained as:

∂ω̂r

∂Δi∗q
≈ ∂ω̂nn

∂Δi∗q
=

∑5

j=1
wj(k)hj(k)

c1 j(k) − ∂Δi∗q(k)
b2

j (k)
(37)

3.3. Adjusting Mechanism Of PID Controller

In the closed-loop control, the parameters of the PID controller are adjusted online to minimize
the square rotor speed error between the reference speed and the estimated rotor speed. Therefore, the
cost function can be expressed as:

E(k) =
1
2
(ω∗r(k) − ω̂r(k))

2 =
1
2

e2(k) (38)

Then, using the SGD method, the parameters of the PID controller can be updated and optimally
tuned as the following equations [16]:⎧⎪⎪⎨⎪⎪⎩ Δkp = −η ∂E∂kp

= η ∂E∂ω̂r

∂ω̂r
∂Δi∗q

∂Δi∗q
∂kp
≈ ηe(k) ∂ω̂nn

∂Δi∗q
ẽp

kp(k) = kp(k− 1) + Δkp
(39)

⎧⎪⎪⎨⎪⎪⎩ Δki = −η ∂E∂ki
= η ∂E∂ω̂r

∂ω̂r
∂Δi∗q

∂Δi∗q
∂ki
≈ ηe(k) ∂ω̂nn

∂Δi∗q
ẽi

ki(k) = ki(k− 1) + Δki

(40)
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⎧⎪⎪⎨⎪⎪⎩ Δkd = −η ∂E∂kd
= η ∂E∂ω̂r

∂ω̂r
∂Δi∗q

∂Δi∗q
∂kd
≈ ηe(k) ∂ω̂nn

∂Δi∗q
ẽd

kd(k) = kd(k− 1) + Δkd

(41)

where η is the learning rate.

4. Implementation of a Sensorless Speed Control Algorithm in MATLAB Simulink

Among the motor control system realization approaches, the DSP-executed hardware solution
requires transforming the system description equation from the continuous-time domain to the
discrete-time domain. The sliding mode observer is represented by the discrete-time equation as:⎧⎪⎪⎨⎪⎪⎩ îα(k + 1) = e−

rs
Ls Ts îα(k) + 1

rs
(1− e−

rs
Ls Ts)(vα(k) − êα(k))

îβ(k + 1) = e−
rs
Ls Ts îβ(k) + 1

rs
(1− e−

rs
Ls Ts)(vβ(k) − êβ(k))

(42)

where Ts is the sampling time.
The motor control system expression is standardized in the per-unit system, so the current observer

is rewritten as: {
îα,pu(k + 1) = Fîα,pu(k) + G(vα,pu(k) − êα,pu(k))
îβ,pu(k + 1) = Fîβ,pu(k) + G(vβ,pu(k) − êβ,pu(k))

(43)

with: F = e−
rs
Ls Ts and G = Um

Im
1
rs
(1− e−

rs
Ls Ts)

where Um and Im are the base phase voltage and current, F and G are the feedback and gain factors
of the SMO block system, respectively.

Additionally, the back EMF’s low pass filter is also represented by the discrete equation, as:⎧⎪⎪⎨⎪⎪⎩ êαF(k + 1) = êαF(k) + KLPF[êα(k) − êαF(k)]
êβF(k + 1) = êβF(k) + KLPF

[
êβ(k) − êβF(k)

] (44)

where KLPF = ωcTs.
Generally, a DSP-based control system is programmed in C/C++ languages, which requires some

coding and debugging skills. However, in the case of using the Texas Instruments’ DSP controller, the
algorithm is not only being implemented directly by Code Composer Studio (CCS) software but is
also enhanced by utilizing MATLAB and CCS software. The algorithm is firstly designed in MATLAB
Simulink, then compiled the block system into C/C++ languages by Embedded Coder. Successively,
the code is imported into CCS to execute, debug, and monitor the real-time system. Moreover, with
enhanced functions of the Embedded Coder Support Package for Texas Instruments in MATLAB,
it is very convenient to develop a motor control algorithm with Simulink. This shortens the DSP
application development time significantly.

For developing the FOC algorithm, the Digital Control Motor (DCM) blocks are provided with
the pre-built functions of not only the Clarke, Park, and Inverse Park transformations, but also for
SVPWM, and current PI controllers. The FOC block is not shown in this paper with these functions,
because it is already described in MATLAB manuals. Moreover, the TI IQmath library is supported for
highly optimized and high precision mathematical functions of cosine, sine, magnitude, etc. Therefore,
the sensorless PMSM control algorithm is easily developed in MATLAB Simulink for both simulation
and experiment. Figure 5 presents the detailed block diagram of the novel SMO, the sigmoid function,
the low pass filter, and the PLL in Simulink.
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Figure 5. The block diagram of the novel sliding mode observer (SMO) with a phase-locked loop (PLL)
in Simulink.

According to the design technique in the literature [15,17], the discrete PID controller algorithm
in (26)–(28), (39)–(41) and an RBFNN identification algorithm in (29)–(37) are implemented as two
function blocks, integrated in the closed velocity control loop (Figure 6).
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nnω

 

Figure 6. The block diagram of PID and RBFNN based on MATLAB function.

5. The Simulation Results

The platform of a motor speed control system was built on the PMSM’s parameters, shown in
Table 1. The control algorithm is verified in both the simulation and experiment under three cases.
The first case is the I-f startup mode and switching to the sensorless FOC algorithm. The second one is
the tracking response for checking the transient specification and the steady-state error. The last one
is the speed regulation for evaluating the system stability regarding external disturbances. All the
instances are operated with the dynamic load system, which includes an electrical circuit and a
generator, coupled to the PMSM. The electrical circuit consists of a rectifier, a capacitor, and resistors,
which are connected in parallel.
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Table 1. Parameters.

Parameters Values

Rated power 750 W
Input voltage 220 VAC
Rated current 4.24 A
Rated speed 2000 rpm
Rated torque 3.655 Nm

Phase resistance 1.326 Ω
Phase inductance 2.952 mH
BEMF constant 56.5 (VL-L/krpm)
Torque constant 0.86 Nm/A

Inertia 3.63 Kgcm2

Slot/poles 12S/8P

The complete design of the sensorless PMSM drive control system is shown in Figure 7, which
includes three blocks. The first block (A) is built for real-time platform modeling. The discrete times
of the PMSM model, the inverter, and the generator are 50 μs. The second block (B) is the motor
control algorithm, which is executed in simulation and the real-time experiment. The third block
(C) is used to monitor and acquire the simulation data. Within the control algorithm block, five
subblocks are executed as the reference speed regulator, the discrete RBFNN-based self-tuning PID
controller, the i∗q regulator of I-f mode, the FOC algorithm, and the novel sliding mode observer with a
phase-locked loop, respectively. The sampling time of the velocity loop is 1ms, while the sampling
times of the FOC algorithm and the novel SMO-PLL estimator are 50 μs. In the current control loop,
two PI controllers are adopted for the currents in d-q axis. Those PI controllers’ parameters are set
as KPd = 0.25, KId = 0.025, KPq = 0.25, KIq = 0.025. In the speed control loop, it is implemented by a
self-tuning PID controller based on an RBFNN. The neuron parameters of those compositional five
hidden nodes are initially set, as node centers (c1 = −0.01, c2 = −0.005, c3 = 0.0, c4 = 0.005, c5 = 0.01),
node widths (b1 = b2 = b3 = b4 = b5 = 0.005), connective weights (w1 = w2 = w3 = w4 = w5 = 0.000625).
The learning rate is 0.475, and the momentum factor is 0.95. Additionally, the discrete PID’s initial
parameters are designed as KPs = 0.725, KIs = 0.0105, KDs = 0.483. These initial values are tuned during
the operating time. The dynamic load system is set up with an initial resistance load of 100 Ω and a
capacitor of 470 μF.

 

Figure 7. The simulation structure of the sensorless speed control algorithm for the PMSM drive system
with a dynamic load system in MATLAB Simulink.
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Figure 8 shows the motor’s speed responses while speeding up the rotor speed from 0 to 2000
rpm. The reference speed is changed in a period of 1s with a sequence of 200→ 400→ 700→ 1000→
700→ 1000→ 1400→ 1700→ 2000 rpm. Figure 8a refers that the novel SMO-PLL estimated rotor
speed is closely tracked to the reference speed, and overlaps the actual rotor speed, calculated by the
encoder. Figure 8b presents the current response in the d-q axis. The current iq is varied and regarded
to the reference speed. When the rotor speed is increased, the external load becomes higher. Therefore,
the more torque is required in the motor, and the current iq is regulated to be larger. The current id
almost is equal to zero and has some small pulses when changing the speed. Figure 8c–f illustrates the
electrical positions of the rotor, separately calculated by the novel SMO-PLL estimator and the encoder,
with the estimated errors at the speeds of 700, 1000, 1400, and 2000 rpm. There are 7, 10, 14 and 20
position cycles in a period of 0.15s, respectively. Correspondingly, the rotation frequencies are 46.67,
66.67, 93.33, and 133.33 Hz. These values are suitable for the mentioned rotor speed. The estimated
and actual positions are approximated to each other; thus, the estimated error is equal to zero. The PID
gains are updated during the operating time. At = 3.5 s (as ωr = 700 rpm), the PID gains are tuned to
KPs = 0.7424, KIs = 0.0107, and KDs = 0.4806. At = 4.5 s (as ωr = 1000 rpm), the PID gains are tuned to
KPs = 0.7694, KIs = 0.0110, and KDs = 0.4768. At t = 7.5 s (as ωr = 1400 rpm), the PID gains are tuned to
KPs = 0.8549, KIs = 0.0117, and KDs = 0.4648. Lastly, the rotor speed reaches 2000 rpm and the PID gains
are also tuned to KPs = 1.0288, KIs = 0.0131, and KDs = 0.4400 at t = 9.5 s.

Figure 9 demonstrates the detailed speed response for the startup motor mode and switching
to the sensorless control mode at the speed of 200 rpm. The ramp-up speed ratio is set at 500 rpm/s.
As mentioned in step 1 of the I-f strategy, the rotor speed is increased, following the ramp function,
with the initial reference current i∗q of 0.63 A. The actual rotor speed reaches 200 rpm in 0.415 s. At t =
0.441 s, the actual rotor speed reaches the maximum of 207.6 rpm, so the maximum error is +7.6 rpm.
In step 2 of the I-f strategy, from t = 0.5 s, the reference current i∗q decreases down to 0.183 A, with a
current down ratio of 0.42 A/s. The actual rotor speed is kept close to 200 rpm. At t = 1.585 s, the actual
rotor speed is reduced to a minimum of 191.3 rpm, so the minimum error is −9.7 rpm. At t = 1.682 s,
the switching operation occurs, when the deviation of the estimated position and the auto-generated
position is 3.6 degrees. Three rotor position curves are almost overlapped together. The current iq has
a small ripple, while the small pulse (about 0.05 A) appears in the current id. Therefore, the switching
transient is smooth. Then, the motor begins to operate in the sensorless control mode.

Figure 10 shows the motor’s speed responses while slowing down the rotor speed from 2000
to 400 rpm. The reference speed is sequentially varied as 2000 → 1700 → 1400 → 1200 → 800 →
1000→ 1200→ 1400→ 1000→ 700→ 400 rpm. Figure 10a shows that the estimated rotor speed is
closely tracked by the reference speed and overlaps the actual rotor speed. Figure 10b presents the
current response in the d-q axis. The current iq is also varied to the rotor speed. When the rotor speed
is decreased, the external load becomes lower. Therefore, the less torque is required to the motor,
and the current iq is regulated to be smaller. Moreover, the self-tuning PID controller’s parameters
are also tuned successfully. At t = 12.5 s (as ωr = 1200 rpm), the PID gains are tuned to KPs = 0.8490,
KIs = 0.0115, KDs = 0.4666. At t = 17.5 s (as ωr = 1000 rpm), the PID gains are tuned to KPs = 0.6567,
KIs = 0.0094, KDs = 0.4947. Lastly, the rotor speed decreases to 400 rpm and the PID gains are also
tuned to KPs = 0.6020, KIs = 0.0087, KDs = 0.5026 at t = 19.5 s.

Figure 11 presents the system performance when changing the external load. In the beginning, the
dynamic load system is operated with a capacitor of 470 μF, and the total resistor of 100 Ω, connected
in the electrical circuit. The motor starts up and increases the rotor speed following the sequence
of 200→ 500→ 1000→ 1500→ 2000 rpm. The rotor speed reaches 2000 rpm after 5 s. The current
iq is approximately 1.79 A. At t = 6 s, the resistance load is changed from 100 Ω to 50 Ω by turning
on some resistors in parallel connection. The external load is enhanced. The rotor speed reduces to
the minimum of 1838 rpm, at t = 6.037 s, and stabilizes at 2000 rpm again at t = 6.468 s. The speed
reduction is 162 rpm, and the recovery time is 0.431 s. The current iq is increased to 2.51 A. Additionally,
at t = 8 s, the resistance load is returned to the initial value of 100 Ω by turning off the same resistors.
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The motor speed is increased to the maximum of 2170 rpm at t = 8.041 s and stabilized at 2000 rpm
again at t = 8.492 s. The speed increment is 170 rpm, and the recovery time is 0.451 s. The current
iq is decreased to the previous value of 1.79 A because the additional external load is removed. It
can be inferred that the motor still operates stably with the sensorless control algorithm by the novel
SMO-PLL estimator in the dynamic load condition.
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Figure 8. Simulation results in the speed increasing strategy, from 0 to 2000 rpm, for (a) speed response,
(b) current response, and rotor position response at (c) 700, (d) 1000, (e) 1400, (f) 2000 rpm.
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Figure 9. Simulation results in the startup mode and sensorless switching, from 0 rpm to 200 rpm for
(a) speed response, (b) current response, (c) rotor position response.

As a summary, the various reference speed changes and the dynamic load condition are investigated
in Figures 8–11 to analyze the controller performance. Referring to those results, it is easy to find that
the rotor speed almost tracks to the commands very well, in which all the steady-state errors approach
zero, and the overshoot or undershoot is also too small. The estimator works successfully because
the estimated position approaches the actual position. The estimated error is almost zero. Moreover,
the system has a good mode transition and robust performance against disturbance. The simulation
results confirm that the proposed estimation and control algorithm for the sensorless PMSM drive
system are correct and effective.
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Figure 10. Simulation results in the speed decreasing strategy, from 2000 rpm to 400 rpm for (a) speed
response, (b) current response.
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Figure 11. Simulation results in the case of the varied external load (RL = 100↔ 50 Ω) at 2000 rpm for
(a) speed response, (b) current response.
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6. The Experimental Verification and Results

After finishing the simulation, to verify the algorithm and analyze the system performance, the
motor control algorithm is implemented by the platform in Figure 12. The hardware platform consists
of a PMSM coupled to a generator, with an electrical load system, an inverter, a DSP F28379D (as
TI-DSP), and a control circuit. The parameters of PMSM are listed in Table 1. The DSP F28379D is
equipped with 200 MHz dual C28xCPUs and dual CLAs, 1 MB Flash, 16-bit/12-bit ADCs, comparators,
12-bit DACs, HRPWMs, eCAPs, eQEPs, CANs, etc. The control circuit is designed to isolate the PWM
signal between the inverter and TI-DSP, process the phase current measurement, and protect the
overcurrent status. When the overcurrent happens, the PWM control signal generated by TI-DSP
will be locked. The electrical load system includes a rectifier, a capacitor of 470 μF-450 V, and power
resistors of 100 Ω-100 W.

 

Figure 12. Experimental system with (a) real platform, (b) electrical load.

In the simulation structure in Figure 7, only the second block (B) is compiled to generate the
algorithm code in C/C++ language, which is imported into the CCS software. The CCS software was
responsible for connecting, downloading, debugging, and monitoring online the variables during the
operation of the system. Moreover, some data in the block (C) are acquired online by MATLAB, based
on the SCI function.

The sampling times of the velocity loop, the current loop and the novel SMO-PLL estimator,
are still set as the same as the simulation values. The inverter’s switching frequency is set at 15
Khz. The parameters of PI current controller are set as KPd = 0.25, KId = 0.025, KPq = 0.25, and KIq
= 0.025. The RBFNN’s initial parameters are setup as the node centers (c1 = -0.0025, c2 = -0.00125,
c3 = 0.0, c4 =0.00125, c5 = 0.0025), the node widths (b1 = b2 = b3 = b4= b5 = 0.5), the connective weights
(w1 = w2 = w3 = w4 = w5 = 0.0000625). The learning rate is 0.435 and the momentum factor is 0.75.
Additionally, the discrete PID’s initial parameters are designed as KPs = 0.735, KIs = 0.00435, and
KDs = 0.478. All experimental results are implemented with an initial resistance load of 100Ω-400 W, a
capacitor of 470μF-450V in the dynamic load system.

Figure 13 shows the motor’s speed responses while speeding up the rotor speed from 0 to 2000
rpm. The reference speed is changed in a period of 5s with the sequences as 300→ 500→ 700→ 1000
→ 800→ 1200→ 1600→ 1800→ 2000 rpm. Figure 13a refers that the novel SMO-PLL estimated rotor
speed is closely tracked to the reference speed, and overlapped the actual rotor speed, measured by
the encoder. Although there is the oscillation of the current responses in Figure 13b, their average
value still follows the current command. Figure 13c–f illustrates the electrical positions of the rotor,
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separately calculated by the novel SMO-PLL estimator and the encoder, with the estimated errors
at the speeds of 500, 1000, 1600, 2000 rpm. There are approximately 5, 10, 16 and 20 position cycles
in a period of 0.15s, respectively. Correspondingly, the rotation frequencies are 33.33, 66.67, 106.67,
and 133.33 Hz. These values are suitable for the rotor speed. The estimated and actual positions are
approximated to each other, so the estimated error approaches zero. The self-tuning PID controller’s
parameters are also updated during the operating time. The PID gains are tuned to KPs = 0.7378,
KIs = 0.0039, KDs = 0.4751 at t = 12 s (as ωr = 500 rpm); KPs = 0.7583, KIs = 0.0039, KDs = 0.4692 at t = 22
s (as ωr = 1000 rpm); KPs = 0.8408, KIs = 0.0034, KDs = 0.4619 at t = 37.5 s (as ωr = 1600 rpm). Lastly,
rotor speed reaches 2000 rpm, and KPs = 0.8672, KIs = 0.0034, KDs = 0.4487 at t = 46 s.
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Figure 13. Experimental results in the speed increasing strategy, from 0 to 2000 rpm for (a) speed
response, (b) current response, and rotor position response at (c) 500, (d) 1000, (e) 1600, (f) 2000 rpm.
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Figure 14 demonstrates the detailed speed response for the startup motor mode and switching to
the sensorless control mode at the speed of 300 rpm. The ramp-up speed ratio is set up at 66.67 rpm/s.
At t = 0.623 s, the motor starts to speed up. The rotor speed is increased, following the ramp function
with the initial reference current i∗q of 0.635 A. The actual rotor speed reaches 295 rpm at t = 5.2 s. Then,
the reference current i∗q decreases down to 0.336 A with a current down ratio of 0.085 A/s. The reference
speed is kept at 300 rpm, and the actual rotor speed is still close to 300 rpm. At t = 6.403 s, the actual
rotor speed reaches the maximum of 302.7 rpm. The maximum speed error is +2.7 rpm. At t = 8.832 s,
the actual rotor speed drops to a minimum of 286.1 rpm. The minimum speed error is −13.9 rpm.
The estimated position leads the auto position by 27.95 degrees at t = 5 s, while the estimated position
error is 39.02 degrees. These values are reduced in the current down region. The switching operation
occurs at t = 8.782 s when the deviation of estimated position and auto position (θL) is also equal to
3.6 degrees. The estimated position error is only 0.175 degrees. The ripple of the current iq is roughly
0.06 A, while the current id fluctuates around zero within a range of 0.1 A. The motor switches the
control mode smoothly. After this, the motor begins to operate in the sensorless control mode.
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Figure 14. Experimental results in the startup mode and sensorless switching, from 0 rpm to 300 rpm,
for (a) speed response, (b) current response, (c) rotor position response.

Figure 15 shows the motor’s speed responses while slowing down the rotor speed from 1800
to 300 rpm. The reference speed is sequentially varied as 1800 → 1600 → 1400 → 1000 → 1200 →
800 → 500 → 300→ 500 → 700 → 1000 rpm. Figure 15a shows that the estimated rotor speed is
closely tracked by the reference speed and overlaps the actual rotor speed. Figure 15b presents the
current response in the d–q axis. The current iq is also varied according to the rotor speed. When the
rotor speed is decreased, the external load becomes lower. Therefore, the less torque is required by
the motor, and the current iq is regulated to be smaller. Moreover, the self-tuning PID controller’s
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parameters are also tuned effectively. The PID gains are tuned to KPs = 0.832, KIs = 0.0039, KDs = 0.4531
at t = 62 s (as ωr = 1400 rpm); KPs = 0.7280, KIs = 0.0044, KDs = 0.4580 at t = 77 s (as ωr = 800 rpm); and
KPs = 0.7046, KIs = 0.0044, KDs = 0.4639 at t = 87 s (as ωr = 300 rpm).
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Figure 15. Experimental results in the speed decreasing strategy, from 1800 rpm to 300 rpm for (a)
speed response, (b) current response.

Figure 16 presents the system performance when the external load is varied. In the beginning,
the dynamic load is set up with a capacitor of 470 μF-450 V, the total resistor of 100 Ω-400 W.
The motor starts up and increases the rotor speed, reaching 2000 rpm. The current iq fluctuates around
1.56 A. At t = 37.99 s, the total resistance load is changed to 50 Ω-800 W by turning on more resistors.
At t = 38.11 s, the actual rotor speed (red line) drops to a minimum of 1797 rpm while the minimum
estimated value (blue line) is 1817 rpm. The recovery time is 2.99 s when the motor reaches 1995 rpm
again at t = 40.98 s. The average current iq reaches 2.42 A due to the external load increment. In addition,
at t = 45.60 s, the total resistance load is returned to the initial value of 100 Ω-400 W by turning off the
same resistor. The actual rotor speed is increased to the maximum of 2171 rpm at t = 45.71 s, while
the maximum estimated value is 2157 rpm. The recovery time is 1.06 s when the motor stabilizes at
2000 rpm again at t = 46.66 s. The average current iq is decreased to 1.57 A because of the external load
reduction. Within the speed regulation at 2000 rpm, the estimate speed error is about +5 rpm, while
this error is larger at the up peak (20 rpm) or the low peak (14 rpm). The maximum control speed
steady-state error is ±5 rpm at 2000 rpm. Although the system is affected by the disturbance of the
external load, the motor still operates stably and successfully with the sensorless control algorithm
based on the novel SMO-PLL estimator.
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Figure 16. Experimental results in the case of the varied external load (RL = 100↔ 50 Ω) at 2000 rpm
for (a) speed response, (b) current response.

Finally, similar to the simulation, the experimental results in Figures 13–16 show that the rotor
speed almost tracks to the command very well, all the steady-state errors approach zero (within
±5 rpm in tolerance), and the overshoot or undershoot is also too small. The novel SMO-PLL estimator
works successfully. The estimated position approaches the actual position. The estimated error is
close to zero. Additionally, the real-time system has a good mode transition and robust performance
against disturbance. The experimental results again confirm that the proposed estimation and control
algorithm of the PMSM system are correct and effective in the real-time system. Furthermore, the DSP
application for the PMSM drive control system is built in MATLAB Simulink properly, and is deployed
to CCS software to realize the real-time system successfully. This deployment method shortens the
application development time.

7. Conclusions

In this paper, a self-tuning PID controller based on a radial basis function neural network and a
rotor position estimator based on the novel SMO in combination with a PLL for the sensorless PMSM
drive control system have been described and developed successfully. The control algorithm, consisting
of the I-f startup strategy, novel SMO-PLL estimator, RBFNN-based self-tuning PID controller, and
FOC algorithm, was deployed properly in both the simulation and the real-time hardware, established
on a DSP F28379D. The system performance has been verified in three terms: startup mode, tracking
response, and speed regulation with the dynamic load system. The simulation and experimental
results indicate that the motor control system has a smooth transition from the startup mode to the
sensorless control mode with the low ripple in the current and the rotor speed. The novel SMO-PLL
estimator is stable, and the estimated position approximates to the actual position, so the estimated
error is almost minimal and negligible. The PID gains are tuned effectively. The rotor speed tracks
properly to the reference speed, and the overshoot or undershoot is very small. The steady-state

150



Electronics 2020, 9, 365

errors approach zero. Additionally, the system provides a robust performance against disturbance.
Accordingly, the system performance confirms that the proposed intelligent control algorithm and the
position estimator for the sensorless PMSM drive control system are correct and effective. Furthermore,
the DSP application for the PMSM drive control system is implemented based on the combination of
MATLAB and CCS software. Therefore, we can easily develop additional intelligent controllers for the
motor control system. It also has the advantage of faster testing, monitoring and acquisition of data
online, and troubleshooting of systems. This motivates the improvement of the proposed algorithm
for the wide speed range control in further works.
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Abstract: In position sensorless control based on a high-frequency pulsating voltage injection method,
filters are used to complete the extraction of high-frequency response signals for position observation.
A finite impulse response (FIR) filter has the advantages of good stability and linear phase. However,
the FIR filter designed by using traditional methods has a high order which will cause a large time
delay. This paper proposes a low-order FIR filter design method for a high-frequency signal injection
method in the permanent magnet linear synchronous motor. Based on the frequency characteristics
of the current signal, the requirement that the FIR filter needs to meet were analyzed. According
to the amplitude–frequency characteristic of the FIR filter, these requirements were converted into
constraint equations. By solving these equations, the coefficient of the FIR filter could be obtained.
The simulation and experiment results showed the effectiveness of this low-order FIR filter.

Keywords: PMLSM; position sensorless control; high-frequency square-wave voltage injection; FIR
filter; maglev train

1. Introduction

Due to the fact of its high efficiency and high-power density, the permanent magnet linear
synchronous motor (PMLSM) is used in the drive system of the maglev train. For the PMLSM control
system, position detection is crucial. There are many traditional position detection methods [1–5].
The inductive looped-cable method was used in References [1–3] which requires signal process units,
crossed-looped cables, and antennas. In addition, the crossed-looped cables need to be placed along the
rails which will make the system very expensive to construct and maintain [4]. In References [4,5], radio
millimeter waves and Doppler radar are used to detect the position of the maglev train. Although they
do not need to lay lines, they need additional equipment and design such as radar and mobile, base,
and central stations. This will also increase the cost and the complexity of mechanical installation [6].
Therefore, the position sensorless control method has received increasing research attention.

Position sensorless control can be classified into two types. The first type is based on the back
electromotive force (EMF) of the motor [7]. To improve the performance of the position sensorless
control system, the extended back EMF method [8], sliding mode observer [9], and extended Kalman
filter [10] are used in this method. However, when the motor is at zero or low speed, the back EMF is too
small to detect which means this method is not applicable. The second type is based on motor saliency
which can realize position estimation at zero or low speed, and the high-frequency signal injection
method is representative of this type. Currently, research on the high-frequency signal injection method
is mainly concentrated on the permanent magnet synchronous motor (PMSM). As the PMLSM and
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PMSM have the same working principles and similar mathematical models, these high-frequency
signal injection methods can be directly used for PMLSM. Injecting a high-frequency rotating voltage
into a stationary reference frame and injecting a high-frequency pulsating voltage into an estimated
synchronous reference frame are two traditional methods of high-frequency signal injection method [11].
In addition, after years of research, many improvements have appeared [12–16]. In Reference [12],
the high-frequency pulsating signal was injected into the estimated fixed-frequency rotating reference
frame instead of the estimated synchronous reference frame. In addition, the high-frequency pulsating
signal was injected into the stationary reference frame in Reference [13] and was injected into the
ABC reference frame in Reference [14]. In Reference [15], a bidirectional rotating signal was used,
and a high-frequency square-wave voltage signal was used in Reference [16]. The differences among
these methods lay in the form of the injection signal and the selection of the injection reference frame.
However, all methods are required in order to extract the high-frequency response signal which carries
magnetic pole position information from the motor current. This extraction process directly determines
the accuracy of the position estimation.

In the PMLSM control system, the inverter will induce a large amount of harmonics. When the
high-frequency square-wave voltage injection method is used to realize position estimation, these
harmonics will affect the estimation accuracy [16]. Increasing the amplitude of injection voltage can
increase the signal-to-noise ratio (SNR) which can reduce the effect of harmonics. However, the voltage
utilization will be reduced [17]. Moreover, when PMLSM is used in the maglev train drive system and
the high-frequency square-wave voltage is injected, the current will fluctuate and generate normal
force fluctuation. This means that increasing the amplitude of injection voltage will increase the
impact on the suspension system. In addition to increasing the amplitude of injection voltage, digital
filters can also help to improve the SNR. The infinite impulse response (IIR) filters were designed in
References [18,19]. However, the IIR filter is a nonlinear phase filter and requires output feedback
which increases the complexity of the control system. Furthermore, according to the research in
Reference [20], the FIR filter has a better performance than the IIR filter in the position estimation
system. An FIR filter was designed in Reference [21], but its order is as high as 17 which will cause
a large time delay. A moving average filter was designed in Reference [22] which can provide the
system with a higher bandwidth and better harmonics suppression capability. But it is also an FIR
filter with a high order of 21. In order to reduce the time delay, many studies have proposed different
improvements. An algebraic operation was used in References [23,24] to separate carrier signals,
but this calculation process is ideal without considering the influence of harmonics. A direct signal
demodulation method was proposed in Reference [25] which can remove the low-pass filter, but it is
mainly used in the initial position estimation. Reference [26] designed an all-pass filter to calculate the
position which can eliminate the time delay caused by the band-pass filter and low-pass filter, but the
nonlinearity of the inverter is not considered either.

After considering the influence of the inverter and the time delay caused by the filter, this paper
proposes a low-order FIR filter design method. Different from the traditional design method, this new
method does not need to determine the passband and stopband of the filter. Based on the analysis of
the motor current components, the amplitude–frequency characteristics at some special frequencies
were mainly considered. Compared with the traditional design method, this new method can reduce
the order of the FIR filter which will reduce the time delay. Moreover, compared with the filterless
estimation system, the amplitude of the injection voltage can be reduced which will increase the voltage
utilization [17] and reduce the normal force fluctuation.

2. Basic Principles of High-Frequency Square-Wave Voltage Injection Method

The high-frequency square-wave voltage injection method is based on the saliency of the PMLSM.
In this paper, a surface-mounted motor was used in the experiment, so the saliency was saturated
saliency. The generation of saturated saliency comes from the characteristics of the magnetization
curve of silicon steel. As the magnetic field strength H increases, the magnetic field in the silicon steel
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gradually saturates, and the rising rate of the magnetic induction B becomes slower. According to the
definition of magnetic permeability, μ = B/H, μ also becomes smaller as H increases, thereby reducing
the inductance. Since the permanent magnet is in the d-axis magnetic circuit, the d-axis inductance will
be less than the q-axis inductance at saturation.

By injecting a high-frequency square-wave signal into the virtual d-axis, the current of PMLSM will
carry the high-frequency signal that contains position information of the magnetic pole. By extracting
this high-frequency current signal, the position estimation can be realized.

The voltage equation of PMLSM can be described in the d–q synchronization reference frame
(SRF) as shown in Equation (1) [27].[

ud
uq

]
=

[
R + pLd −πv

τ Lq
πv
τ Ld R + pLq

][
id
iq

]
+
πv
τ

[
0
ψ f

]
(1)

where ud, uq, id, iq, Ld, Lq are d-axis voltage, q-axis voltage, d-axis current, q-axis current, d-axis
inductance, and q-axis inductance, respectively. And R, v, τ, ψf, and p are the resistance of motor
winding, speed, pole pitch, flux linkage of the permanent magnet, and differential operator, respectively.

With high-frequency excitation, Equation (1) can be simplified. The frequency of the injected
square-wave voltage is very high, which means the voltage drop in the resistor is much smaller than
the voltage drop in the motor inductor. Therefore, the voltage drop in the resistor can be ignored.
In addition, the high-frequency square-wave voltage injection method is used when PMLSM is at low
speed, which means speed v is approximately 0. Therefore, the parts related to v can be also ignored in
Equation (1). After simplification, Equation (1) can be expressed as:[

udh
uqh

]
=

[
pLd

pLq

][
idh
iqh

]
⇒ d

dt

[
idh
iqh

]
=

⎡⎢⎢⎢⎢⎣ 1
Ld

1
Lq

⎤⎥⎥⎥⎥⎦[ udh
uqh

]
(2)

where idh, iqh, udh, uqh, denote d, q components of high-frequency response current and d, q components
of high-frequency injection voltage in SRF, respectively.

Because PMSM and PMLSM generate the three-phase synthetic magnetic field in the same way,
the working principle of them are the same. In addition, vector control was used based on the rotating
reference frame. Therefore, PMLSM can be analyzed using a rotating reference frame just like PMSM.
In order to achieve this goal, the d–q axis in PMLSM was converted to a rotating reference frame
in Figure 1. In addition, the d̂ − q̂ reference frame is also defined in Figure 1 which represents the
estimated magnetic pole position. Δθ = Δx/τ*π indicates the estimation error which was converted
to the rotating reference frame, and ωr = v/τ*π indicates the motor speed which was converted to
angular velocity.

q
∧

d
∧

d

q

θΔ

rω

Figure 1. Relationship of the two reference frames.
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The variables in the two coordinates shown in Figure 1 can be converted to each other via
Equation (3). [

xd
xq

]
= Ht

[
xd̂
xq̂

]
=

[
cos Δθ sin Δθ
− sin Δθ cos Δθ

][
xd̂
xq̂

]
(3)

where xd and xq denote the physical quantities in the d–q reference frame and xd̂ and xq̂ denote the
physical quantities in the d̂− q̂ reference frame. Ht is the transformation matrix.

By using the coordinate transformation in (3), Equation (2) can be derived as:

d
dt

[
id̂h
iq̂h

]
= Ht

−1

⎡⎢⎢⎢⎢⎣ 1
Ld

1
Lq

⎤⎥⎥⎥⎥⎦Ht

[
ud̂h
uq̂h

]
= 1∑

L2−ΔL2 ×
[ ∑

L + ΔL cos 2Δθ ΔL sin 2Δθ
ΔL sin 2Δθ

∑
L− ΔL cos 2Δθ

][
ud̂h
uq̂h

]
(4)

where
∑

L = (Ld + Lq)/2 and ΔL = (Lq − Ld)/2.
A high-frequency square-wave voltage, which is shown in Figure 2, was injected into the virtual

d-axis. Its magnitude and period were Vh and Th, respectively. Due to the simple form of the square
wave signal, its frequency could be increased to the inverter switching frequency level. From the above
analysis, it can be seen that under high-frequency excitation, the influence of resistance is ignored, and
the model of the motor is simplified. The effect of resistance decreases as the frequency of the injected
signal increases. Therefore, when the high-frequency square-wave signal injection method is used,
it is beneficial to simplify the high-frequency model of PMLSM. Moreover, as the signal frequency
increases, the saliency ratio of the motor increases [28] which can enhance the performance of position
sensorless control based on saliency.

thThT

hV

hV−

dh
u t

Figure 2. High-frequency square-wave voltage signal diagram.

This injected signal can be expressed as:[
ud̂h
uq̂h

]
=

[
Vh(−1)k

0

]
(k = 0, 1, 2, 3 . . .) (5)

From Equations (4) and (5), the high-frequency current response can be derived as:

d
dt

[
id̂h
iq̂h

]
=

Vh(−1)k∑
L2 − ΔL2

[ ∑
L + ΔL cos 2Δθ
ΔL sin 2Δθ

]
(6)

It can be seen from Equation (6) that the high-frequency response current includes Δθwhich is
the difference between the estimated value and actual value of the magnetic pole position. In order to
get the actual position, an observer is needed, as Figure 3 shows.

In Figure 3, iq̂ f ir is the filtered current of iq̂ which is used for current loop feedback. iq̂h is the
high-frequency response current caused by injection voltage. It will be eliminated by the FIR filter at
first, and then it will be obtained by signal processing. Subsequently, the differential of iq̂h is multiplied
by (−1)k. The result is shown below.

f (Δθ) = Δiq̂h × (−1)k =
VhΔLTs∑
L2 − ΔL2 sin(2Δθ) (7)
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d
dt

q
i

q fir
i

qh
i x θ

k−

Figure 3. Structure of the position observer.

Finally, the processed signal passes through the PI regulator to change the estimated angle θ̂ so
that f (Δθ) becomes 0. At this time, Δθ will converge to 0 or π which means the actual position of
the magnetic pole coincides with the estimated position or differs by one pole distance. Therefore,
in order to obtain an accurate magnetic pole position, polarity detection is necessary. This paper
used the d-axis current peak value comparison method to achieve this goal. Figure 4 shows the basic
principle of this method. When Δθ converges to 0, the positive d-axis current will increase the magnetic
field. At this time, the saturation of the d-axis magnetic circuit is increased, so the d-axis inductance is
reduced. Therefore, the positive current peak |idmax| will be greater than the absolute value of negative
current peak |idmin|. Conversely, when Δθ converges to π, the negative d-axis current will increase the
magnetic field which means |idmax| will be smaller than |idmin|. Therefore, by comparing |idmax| and
|idmin|, the magnetic pole polarity can be detected.

thThT

dhu

t

dmaxi
dmini

thThT

dhu

t

dmaxi

dmini

dmaxi >

dmini

dminidmaxi <
idh idh

(a)  = 0                                   (b)  = 

Figure 4. Ideal d-axis current waveform at different Δθ.

For the d-axis current, when the observed value of the position converges to the actual value,
it can be expressed as in Equation (8).

did̂h
dt

=
Vh(−1)k∑

L−�L
(8)

As the injection voltage increases, the fluctuation of the d-axis current becomes larger.
The relationship between linear motor normal force and d-axis current can be approximated as
in Equation (9) [29] {

Fy ∝ (Fd + 2F f )
2

Fd ∝ id
(9)

where Fd denotes the magnetomotive force of the d-axis, and Ff denotes the magnetomotive force of the
permanent magnet. Therefore, fluctuations in the d-axis current can cause fluctuations in the normal
force of PMLSM which will affect the suspension system.
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3. FIR Filter Analysis and Design

3.1. Current Frequency Spectrum Analysis

Since the filter design was based on the frequency characteristics and the position was estimated
using iq̂, the frequency characteristics of iq̂ needed to be analyzed. When using the space vector pulse
width modulation (SVPWM) strategy to control the motor, it was necessary to modulate the calculated
reference wave with a high-frequency carrier to generate a pulse-width modulating (PWM) signal to
control the inverter. In this process, harmonic components related to the carrier wave are generated.
When considering the influence of SVPWM harmonics, iq̂ can be expressed as:

iq̂ = iq̂ f + iq̂h + iq̂hm (10)

where iq̂ f , iq̂h, and iq̂hm are a fundamental current, a high-frequency response current generated by the
injection voltage, and a harmonic current generated by SVPWM, respectively.

When the motor runs stably, iq̂ f remains basically unchanged. So, iq̂ f can be regarded as a DC
component. Even if the motor’s operating state changes, iq̂ f changes much slower than iq̂hm and iq̂h.
Therefore, the frequency of iq̂ f can be approximately considered as 0 Hz [30].

The harmonics of SVPWM are mainly the sideband harmonics near the first and second carrier
frequencies [31]. Considering the motor speed is low, it can be approximated that the frequency of iq̂hm
is concentrated on the first and second carrier frequencies.

It can be seen from Equation (6) that the frequency of iq̂h is the same as that of the high-frequency
injection signal. By using the Fourier transform, the frequency domain expression of the signal shown
in Figure 2 can be incorporated into Equation (11), which indicates the frequency of iq̂h is mainly the
odd-numbered multiples of the injection signal.

v(ω) = bn sin(
2πn
Th

t) (11)

where bn =

{
0(n is even number)
4

nπ (nis odd number)
.

In this paper, the carrier frequency of SVPWM was 10 kHz, the injection signal frequency was
5 kHz, and the current sampling frequency was 50 kHz. The components less than the Nyquist
frequency were considered. The frequency distribution of the three components in iq̂ are expressed in
Table 1.

Table 1. Distribution of the components of iq̂.

Component Frequency (kHz)

iq̂ f Approximate 0
iq̂hm 10, 20
iq̂h 5, 15

3.2. Principle of FIR Filter

The essence of the FIR filter is to weigh and sum the input values of the past time. Compared with
the IIR filter, there is no need to feedback the output, so the structure is simple and easy to implement
in programming. The FIR filter can be described as:

y[n] =
M∑

k=0

bkx[n− k] (12)

where y[n] is the filter output of the current moment, x[n − k] is the system input of the k sampling
moment before the current moment, M is filter order, and bk are the filter coefficients.
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As can be seen from Equation (12), the FIR filter uses the current input and the past M samples to
calculate the system output. The filter coefficient bk represents the “weight” of the system input at
different times. The determination of bk is the core of filter design.

When bk is determined, the frequency response of the FIR filter can be described as:

H(ejω̂) =
M∑

k=0

bke− jω̂k (13)

where ω̂ = ωTs denotes the normalized angular frequency, and ω and Ts are the actual angular
frequency and sampling frequency, respectively. When the coefficients of the filter are even and
symmetrical, approximately M/2 (i.e., bk = bM-k (k = 0,1,2,· · · M/2)), the FIR filter will be a linear phase
filter. Using the Euler formula, Equation (13) can be derived as:

H(ejω̂) = e− j M
2 ω̂A(ω̂) (14)

where

A(ω̂) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
b M

2
+

M
2 −1∑
k=0

2bk cos ω̂(M
2 − k) M = 2, 4, 6, 8 · · ·

M−1
2∑

k=0
2bk cos ω̂(M

2 − k) M = 1, 3, 5, 7 · · ·
(15)

In Equation (15), A(ω̂) is a real number which has no influence on the phase of the output signal.
The norm of e− j M

2 ω̂ is 1 which means it has no effect on the amplitude of the output signal. Therefore,
the amplitude–frequency characteristic and phase–frequency characteristic of the frequency response
function in Equation (14) can be expressed as in Equation (16).{ ∣∣∣H(ejω̂)

∣∣∣ = ∣∣∣A(ω̂)
∣∣∣

∠H(ejω̂) = −M
2 ω̂

(16)

It can be seen from the phase–frequency characteristic in Equation (16) that the time delay caused
by the FIR filter is proportional to the filter order M. As the filter order decreases, the time delay
caused by the filter also decreases. Therefore, it is necessary to reduce the order of the filter when the
requirements are met.

3.3. FIR Filter Design Method

According to the signal processing flow illustrated in Figure 3, iq̂h needs to be removed at first.
Therefore, at the frequency of iq̂h, the amplitude response of the designed filter should be as small
as possible. So, it is better to change bk to make the amplitude response zero at the frequency of
iq̂h. In Table 1, since the frequencies of iq̂h are mainly 5 kHz and 15 kHz, the amplitude–frequency
characteristics of the FIR filter should satisfy Equation (17):{ ∣∣∣H(ejω̂5k)

∣∣∣ = 0∣∣∣H(ejω̂15k)
∣∣∣ = 0

(17)

where ω̂5k = 0.2π and ω̂15k = 0.6π denotes the normalized frequency of 5 kHz and 15 kHz, respectively.
In Figure 3, iq̂h is regained by subtraction. To ensure the harmonic signals introduced by SVPWM

are eliminated at the same time, the amplitude–frequency characteristics at the frequencies of 10 kHz
and 20 kHz must be the same. Therefore, the amplitude–frequency response of the filter should also
satisfy Equation (18). ∣∣∣H(ejω̂10k)

∣∣∣ = ∣∣∣H(ejω̂20k)
∣∣∣ (18)
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where ω̂10k = 0.4π and ω̂20k = 0.8π denotes the normalized frequency of 10 kHz and
20 kHz, respectively.

Combining Equations (17) and (18) with Equation (15) and (16), a system of equations in matrix
form is obtained. When M is an even number, it can be described as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
2 cos M

2 ω̂5k · · · 2 cos ω̂5k 1
2 cos M

2 ω̂15k · · · 2 cos ω̂15k 1
sub(M

2 ) · · · sub(1) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
...

b M
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 (19)

When M is an odd number, it can be described as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos M

2 ω̂5k · · · cos 1.5ω̂5k cos 0.5ω̂5k
cos M

2 ω̂15k · · · cos 1.5ω̂15k cos 0.5ω̂15k
sub(M

2 ) · · · sub(1.5) sub(0.5)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b0
...

b M−1
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = 0 (20)

where sub(n) = |cos nω̂10k − cos nω̂20k| n =M/2, M/2-1, M/2-2, · · · (n > 0).
Equations (19) and (20) are homogeneous linear equations. When the filter order M is determined,

unknown quantities are only bk, the filter coefficients. When the rank of the coefficient matrix is smaller
than the number of unknown quantities, the system of equations has a non-zero solution. When M
= 6 or M = 7, the number of unknown quantities is four. Since the maximum rank of the coefficient
matrix of Equations (17) and (18) is three, the equations must have a non-zero solution. Therefore,
the maximum filter order is only seven in this design. The solution process of the filter coefficients can
be expressed with the flowchart in Figure 5, and the obtained solution vector is bk.

M 

M

M

 
Figure 5. Solution process of filter coefficients.

According to this method, a non-zero solution appears when M = 5, i.e. bk = [1,0,0,0,0,1]T and M
is less than seven, consistent with the theoretical analysis. This designed FIR filter can be described as
in Equation (21).

y[n] = x[n] − x[n − 5] (21)

Its amplitude–frequency response curve and phase–frequency response curve are shown in
Figure 6.
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Figure 6. Amplitude–frequency response curve (left) and phase–frequency response curve (right).

From Figure 6, it can be seen that the amplitude–frequency response of the filter meets the expected
requirements at 5 kHz, 10 kHz, 15 kHz, and 20 kHz. Since there is no phase shift at 10 kHz and 20 kHz,
the phase compensation can be omitted. In other words, the phase compensation is 0 in this design.
Meanwhile, the amplitude gain of this filter at 10 kHz and 20 kHz is two. Thus, the filter output should
be multiplied by 0.5 before subtraction in the process of extracting iq̂h.

4. Simulation and Experiment Results

In order to verify the effectiveness of the FIR filter designed in this paper, simulation and
experimental verification were carried out. The frequency of injection signal and the switching
frequency of inverter were 5 kHz and 10 kHz, respectively. The topology of the inverter based on
MOSFET was a three-phase full bridge, and the digital controller used for experiments was based on
a TMS320F28335. The experiment platform is shown in Figure 7, and the parameters of PMLSM are in
Tables 2 and A1.

 

Mover

Rail

 
Figure 7. Experimental platform used for the test.

Table 2. Parameters of PMLSM.

Parameter Value

Resistance (Ω) 1.3
Inductance (mH) 7.8

Continuous current (A) 7.5
Pole pitch (m) 0.018

Thrust constant (N/A) 65.5
Mover mass (kg) 5.8
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Figure 8 is the overall block diagram of the position sensorless control system. The observer in
this control system is shown in Figure 3.

 
Figure 8. Block diagram of the position-sensorless control system based on high-frequency square-wave
voltage injection.

With the help of the fast Fourier transform tool in MATLAB/Simulink, spectrum analysis of current
is given. Figure 9 shows the frequency spectrum comparison of iq̂ before and after signal filtering
in simulation which verifies the effect of FIR filter and signal separation. In PMLSM, 0 Hz, 10 kHz,
and 20 kHz components were the main interference in q-axis current, which is shown in Figure 9a.
After filtering, 5 kHz and 15 kHz components were eliminated, leaving only 0 Hz, 10 kHz, and 20 kHz
components. The amplitude and phase of 0 Hz, 10 kHz, and 20 kHz components in original current
and filtered current were the same. Therefore, by subtracting the filtered current from the original
current, these components disappeared and only 5 kHz and 15 kHz components were left, which is
shown in Figure 9b. Although there were other components besides 5 kHz and 15 kHz components in
Figure 9b, the amplitude of these noise components was much smaller than that of 0 Hz, 10 kHz, and
20 kHz components which means the main interference was eliminated. Therefore, the main goal was
achieved, and the simulation results were consistent with the theoretical analysis.

 
(a) before signal processing (b) after signal processing 

Figure 9. Frequency spectrum comparison of iq̂ before and after signal processing.

In order to further verify the effectiveness of the designed filter, position estimation experiments
were conducted on the experimental platform shown in Figure 7. After the experiment was over,
the experiment results were exported for plotting which are shown in Figures 10–14.

The initial position of the magnetic pole was set to 6 mm ahead of A-phase axis, and the position
observation was divided into two stages. At 0~0.3 s, the initial position was estimated. After 0.3 s,
the motor started to move at low speed. The experiment results of position estimation after using this
low-order FIR filter is shown in Figure 10. It can be seen that the estimated position value converged
near the actual value. Therefore, the position estimation of PMLSM can be achieved by using this
low-order FIR filter.

Figures 11–13 shows the results of magnetic pole position estimation under different conditions.
In order to describe the error better, this paper used the absolute value of the ratio of deviation to pole
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pitch as the standard for measuring accuracy. In Figure 11, the position observation error exceeded
7% of the pole pitch with no filter used when the amplitude of the injection voltage was 50 V. When
the amplitude of the injection voltage increased to 100 V, the position observation result is shown in
Figure 12. The maximum error of the observation did not exceed 4% of the pole pitch, improving
the observation accuracy. Figure 13 shows the observation result after adding the low-order FIR
filter designed in this paper with an injection voltage of 50 V. In this case, the maximum error was
only slightly higher than 4% of the pole pitch. Therefore, with this low-order FIR filter, the position
estimation accuracy can be improved to an approximate level compared with the method of increasing
injection voltage amplitude.

 
Figure 10. Position observation result at zero and low speed.

 
Figure 11. Position observation results at an injection voltage of 50 V without filter.

 
Figure 12. Position observation results at an injection voltage of 100 V without a filter.

 
Figure 13. Position observation results at an injection voltage of 50 V with the FIR filter designed in
this paper.
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In order to analyze the impact on the suspension system when the injection voltage amplitude is
different, Figure 14 shows the d-axis current with an injection voltage of 50 V and 100 V. It can be seen
that the d-axis current fluctuation became significantly smaller when the injection voltage was 50 V.
From the analysis in Section 2, the d-axis current fluctuation was related to the normal force fluctuation.
Smaller d-axis current fluctuation can reduce the fluctuation of normal force, thereby reducing the
impact on the suspension system. Under the condition of ensuring observation accuracy, the FIR filter
design method proposed in this paper can reduce the amplitude of injection voltage compared with the
filterless method. Therefore, it can bring a smaller fluctuation of the d-axis current and normal force.

  
(a) The amplitude of injection voltage is 50 V (b) The amplitude of injection voltage is 100 V 

Figure 14. The d-axis current at different amplitudes of injection voltage.

5. Conclusions

In the high-frequency signal injection method, digital filters were used to extract high-frequency
response currents. This paper presented a design method of an FIR filter based on the frequency
spectrum of motor current and the frequency response characteristics of the FIR filter. Through
theoretical analysis, simulation, and experiment, the following conclusions can be drawn:

1. The time delay caused by the FIR filter was proportional to the filter order. It was necessary to
reduce the order of the filter when the requirements are met;

2. By using the designed method proposed in this paper, a low-order FIR filter can be obtained.
Its order was as low as five which was much lower than that of the FIR filter designed by the
traditional method;

3. The low-order FIR filter designed in this study can complete the magnetic pole position estimation.
Compared with the estimation system without filter, the application of this new filter can improve
the position estimation accuracy without increasing injection voltage amplitude.
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Nomenclature

Abbreviation or Variable Definition

PMLSM permanent magnet linear synchronous motor
PMSM permanent magnet synchronous motor
IIR infinite impulse-response
FIR finite impulse-response
SNR signal-to-noise ratio
SRF synchronization reference frame
iq̂ f fundamental current
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iq̂h high-frequency response current
iq̂hm harmonic current
Vh injection voltage amplitude
Δθ error between the estimated position and the actual position
ΔL half of the difference of d–q axis inductance∑

L half of the sum of d–q axis inductance
τ pole pitch
p differential operator
ψf flux linkage of the permanent magnet
θ̂ estimated position
v motor speed
M filter order
bk filter coefficient

Appendix A

Table A1. Parameters of PMLSM.

Parameter Value

Resistance (Ω) 1.3
Inductance (mH) 7.8

Continuous current (A) 7.5
Pole pitch (m) 0.018

Thrust constant (N/A) 65.5
Mover mass (kg) 5.8
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Abstract: Rotor shaft position sensors are required to ensure the efficient and reliable control of
Permanent Magnet Synchronous Machines (PMSM), which are often applied as traction motors
in electrified automotive powertrains. In general, various sensor principles are available, e.g.,
resolvers and inductive- or magnetoresistive sensors. Each technology is characterized by strengths
and weaknesses in terms of measurement accuracy, space demands, disturbing factors and costs,
etc. Since the most frequently applied technology, the resolver, shows some weaknesses and is
relatively costly, alternative technologies have been introduced during the past years. This paper
investigates state-of-the-art position sensor technologies and compares their potentials for use
in PMSM in automotive powertrain systems. The corresponding evaluation criteria are defined
according to the typical requirements of automotive electric powertrains, and include the provided
sensor accuracy under the influence of mechanical tolerances and deviations, integration size, and
different electrical- and signal processing-related parameters. The study presents a mapping of the
potentials of different rotor position sensor technologies with the target to support the selection of
suitable sensor technologies for specified powertrain control applications, addressing both system
design and components development.

Keywords: automotive electric powertrain; permanent magnet synchronous motor; rotor position
sensor; resolver; inductive position sensor; eddy current position sensor; Hall sensor; magnetoresistive
position sensor

1. Introduction

The electrification of vehicles is becoming increasingly widespread in order to reduce greenhouse
gas emissions and fulfill the corresponding exhaust emission legislations. Regardless of the electric
powertrain architecture, e.g., Hybrid Electric Vehicle (HEV) or Battery Electric Vehicle (BEV), there
are two main types of traction motors used today: Induction Motors (IM) and Permanent Magnet
Synchronous Motors (PMSM). The control strategies differ significantly according to the selected
motor type [1]. Thus, feedback for controlling the electric machine, which is delivered by a rotor
shaft sensor, can be separated into two signal types: the rotor speed signal when applying an IM and
the rotor position information when utilizing a PMSM. Sensorless control, as it is often found in the
literature [2,3], is not used in automotive powertrains due to high demands on control reliability and is
therefore not discussed further in detail here.

In general, the automotive industry sets high demands on the control of electrical drive trains,
which are required for the correct electronically controlled commutation of these motor types. Accurate
rotor speed and position information is vital to obtain precise torque and speed control. This enables
the best motor efficiency, resulting in increased driving ranges, increased comfort (by reducing torque
ripple) and maintaining Functional Safety (FUSA)-relevant issues, e.g., according to the ISO 26262 [4–6].
In addition, real-time information about rotor speed and position is required for a defined starting
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direction from vehicle standstill and the prevention of the powertrain from unintended blocking. As an
example, Automotive Safety Integrity Level-D (ASIL level-D) applications, which refer to the highest
classification of injury risk and the most stringent level of safety measures, define a maximum position
sensing angle error of 2◦ [7].

Contrary to the IM, the PMSM shows better efficiency and is therefore in widespread use in
state-of-the-art automotive propulsion systems. Owing to this fact, the present paper focusses on
the analysis of rotor position measurement technologies for PMSM-based automotive drivetrains.
In general, different rotor shaft position sensor technologies are available for PMSM, whereby the
selection of a suitable system is influenced by several factors, such as accuracy demands; sensibility to
mechanical, magnetic and electrical disturbance; integration size; costs; etc. Investigations from the
course of this research show that currently applied rotor position sensors in PMSM are resolver-types,
inductive/eddy current-based sensors, magnetoresistive sensors or encoders. However, the latter
type is not applied in automotive powertrains, since a high accuracy can only be achieved with high
(expensive) effort.

In today’s electric powertrain development processes, the sensor specifications delivered by sensor
manufacturers are taken into account [8], but these do not provide sufficient details about the sensor
characteristics. This often leads to a challenge for the automotive industry when selecting an unbiased
sensor. In this context, the present work delivers detailed investigations of typical rotor position sensor
technologies to provide a comparison of the respective sensor systems. A comprehensive evaluation of
the sensor characteristics was performed regarding the angle accuracy under a variety of mechanical
installation tolerances, operating temperatures and driving profiles (i.e., rotary speed variances). The
aforementioned research activities are performed with the aid of a unique sensor test bench, which
enables a highly accurate gauging of objects under test. Furthermore, important selection criteria for
the drivetrain development, such as the sensor housing size and sensitivity to magnetic fields, costs,
electrical supply effort and signal processing effort, were evaluated. Consequently, a holistic overview
of state-of-the-art rotor position sensor system potentials is provided, including an analysis of the
provoked error characteristics. The results of the study support the selection of sensor technology in
terms of the described influencing factors for a given drivetrain application.

The paper is organized as follows. Section 2 provides a general overview of different state-of-the-art
rotor position sensors for both automotive electric powertrains and auxiliaries, including a listing
of general strengths and weaknesses of each sensor technology. In conjunction with the description
of each sensor principle, a representative automotive application was selected to provide boundary
conditions for the application of the different sensor technologies to be evaluated. In Section 3, a sensor
test bench and measurement plan are introduced to deliver an overview of both the performed testing
procedure and the data acquisition technologies. The measurement results of the different sensor
technologies are presented in Section 4. The evaluation results are discussed in Section 5, which also
includes a holistic comparison of the measurement results and an assessment of the potentials of the
different sensor principles. Finally, conclusions are given in Section 6.

2. Automotive Rotor Position Sensors

Rotor position sensors are used in various fields of application in the automotive industry, e.g.,
in electric powertrain systems, electric cooling fans or pumps. As stated in [9], position measurement
in automotive applications can be performed by different approaches. In general, contacting and
non-contacting technologies come into use. An exemplary contacting-based angular measurement
principle represents the electronic accelerator pedal (E-GAS), which is comprised of a potentiometer
using wipers sliding on copper tracks. Such sensor architectures suffer from wear in long term use,
and do not enable angle determination greater than 360◦. Thus, this principle is not appropriate for
the focused investigation object, which is an electric powertrain that requires non-contacting rotor
position measurement. In what follows, state-of-the-art automotive non-contacting sensor principles
are introduced and discussed, which are investigated in the scope of this work. These technologies
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include resolver-, inductive-/eddy current-, Hall effect-based- and magnetoresistive-position sensors.
Figure 1 represents a graphical overview of the four main types.

Figure 1. Considered automotive non-contacting rotor position sensor principles.

2.1. Principle of the Resolver Position Sensor

The state-of-the-art position sensing technology in automotive traction systems is the resolver,
due to a great reliability in terms of rough conditions, for example contamination, temperature, shock
and vibrations. The resolver appears in two types: Wound Field (WF) and Variable Reluctance (VR)
resolvers. The difference lies in the design of the sensor’s rotor. The WF resolver has a sinusoidal
distributed excitation winding with a constant Air Gap (AG) [10]. In contrast, the VR resolver has a
uniform distributed excitation winding, in combination with a sinusoidal-shaped AG rotor design [11].
Since the VR resolver is the most established resolver type in automotive drivetrain architectures, the
present work focusses on this type. The discussed VR resolver consists of three coils: one excitation
coil and two sensing coils. The excitation coil operates as a transmitter. Therefore, the resolver can be
considered as a rotating electric transformer. The excitation signal itself is a high frequency sinusoidal
voltage Uexc at typically f = 10 kHz. The generated electromagnetic flux is coupled through the shape
of the rotor, which consists of a stamped ferromagnetic material. The sensing coils induce an electrical
voltage comprising the excitation signal and a rotor position-dependent magnitude. Note that both
sensing coils are mechanically displaced to deliver both a sine- and a cosine-shaped output signal
while the rotor is in motion. Consequently, the sensor provides two Amplitude Modulated (AM)
signals, which are shifted by 90◦. To determine the angular information θ, the excitation term must be
removed. This process is performed in a specific Resolver-to-Digital Converter (RDC). Comprehensive
study of this sensor system has been performed in previous works, see [12–14]. Figure 2 depicts the
operating principle of a VR resolver including an exemplary sensor, which is utilized in automotive
drivetrains of BEVs.
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(a) (b) 

Figure 2. Variable Reluctance (VR) resolver position sensor. (a) Operating principle [13];
(b) Exemplary sensor for Battery Electric Vehicles (BEVs), reproduced from [15]. Copyright 2000–2020
MinebeaMitsumi Inc.

Hereafter, the principle is formulated mathematically by Equations (1)–(4). The utilized variables
are described as follows. A represents the amplitude of the respective voltage. The resolver can be
considered as a rotating transformer; thus, the feedback voltages Usin and Ucos are reduced by a certain
factor, which is denoted as transformation ratio k. The electrical rotor shaft position θ is determined
by an arctangent function of the demodulated signals Vsin,demod and Vcos,demod, which results in an
extraction of the excitation term.

Vexc = A × sin(ωt) (1)

Vsin = kA × sin(ωt) × sin(θ) (2)

Vcos = kA × sin(ωt) × cos(θ) (3)

θ = arctan(
Vsin,demod

Vcos,demod
) (4)

The resulting electrical angle is usually multiplied by a factor, which describes the number of poles.
For electric powertrains, the number of poles of the resolver is related to the number of poles of the
traction motor. A higher number of resolver poles increases the accuracy of the sensor, but also increases
the costs, since a higher number of windings is required. These multi-speed resolvers are preferred for
applications with high requirements on sensor system performance, e.g., electric drivetrains.

In the automotive sector, a resolver position sensor system is most commonly used for controlling
PMSM-based powertrains. This is mainly because of the robustness and high accuracy of the technology.
In the following, the state-of-the-art architecture of a resolver-based rotor position system and the
corresponding signal processing are described. As shown in Figure 3, it consists of the resolver
itself, a carrier generation unit, which comprises a digital stage and an analog amplification circuit,
an Analog-to-Digital Converter (ADC) for digitizing the resolver feedback signals, a demodulation
stage and an angle computation algorithm.
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Figure 3. Exemplary illustration of a resolver rotor position signal processing system.

All signal processing stages are integrated in the RDC, which can be either a separate module or
be integrated in the powertrain’s ECU. The sensor is electrically connected differentially for both the
excitation and the feedback signals using Twisted Pair (TP) cables to eliminated external interferences.
The angular information is passed on by an interface, e.g., a Transistor Transistor Logic (TTL) encoder
emulation, an Inter-Integrated Circuit (I2C) bus when the RDC unit is placed closely to the subsequent
Motor Control Unit (MCU) on a single PCB, or a CAN bus in case of a distributed system architecture.
A detailed functional description of the individual processing stages can be found in [12,14]. Table 1
outlines the strengths and weaknesses of state-of-the-art VR resolver position sensors.

Table 1. Property summery of VR resolvers.

Attributes

Advantages
High accuracy and resolution

Reliable
Robust

Disadvantages

High costs
High weight and inertia (speed limitation)

Relatively large installation space
High power consumption due to excitation

Complex signal processing required for angle determination (i.e., RDC)
Sensitiveness to mechanical tolerances e.g., eccentricity

Not immune against stray fields

2.2. Inductive Position Sensor

An alternative to the resolver position sensor is the inductive sensor principle, also denoted as an
eddy current position sensor [8]. This sensor principle comprises two main components; a metallic
rotor that can be of copper or aluminum and a coil design, which is printed on a two-sided Printed
Circuit Board (PCB). Angular position determination, including signal processing, is computed on a
dedicated sensor chip, which is also mounted on the same PCB [16]. Figure 4 depicts an exemplary
inductive sensor application, including relevant components.
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Chip

Figure 4. Inductive position sensor, reproduced from [16]. Copyright 2019, IDT. (a) Illustration of a
through-shaft integration; (b) Relevant sensor components scheme.

As evident in the figure above, the inductive sensor can be integrated as a through-shaft design in
the same manner as the formerly introduced resolver. It should be mentioned that, for the inductive
sensor, other designs are feasible, e.g., end-of-shaft (EoS) or side-shaft (i.e., arc design). This makes this
sensor technology flexible for a wide range of applications in electric vehicles and auxiliaries.

The working principle of inductive sensors is based on two fundamental physical principles:
Michael Faraday’s law of induction, and the effects of eddy currents, which have been discovered by
Léon Foucault [16,17] (Michael Faraday (1791–1867): scientist in the field of electromagnetism and
electrochemistry [18]; Léon Foucault (1819–1868): French physicist who discovered eddy currents and
the effect of the earth’s rotation [19]). The stator of the sensor (i.e., the PCB) comprises one transmitter
coil and two receiver coils. These coils are implemented as copper traces, as depicted in Figure 4b. The
first receiving trace is geometrically designed in a sinusoidal shape. The second coil is mechanically
displaced by 90◦, leading to a cosine-shaped feedback signal. The transmitter trace is excited by a high
frequency sinusoidal current, typically between 2 MHz and 6 MHz [20], which is generated by the
sensor chip on the PCB. This planar excitation coil builds an LC resonant circuit in combination with
additional capacitors. Note that the inductance L is given by the coil trace itself. Electrical interferences
can be reduced by ohmic resistors, where one pin is connected to the printed transmitter trace and the
other pin is bonded to the capacitors, which are connected with the electrical Ground (GND). The LC
resonant circuit generates a magnetic induction field and induces eddy currents in the rotating metallic
target. According to the rotor position, a reaction field shields the excitation field in the area beneath
the rotating target and induces voltages in the receiving traces. Consequently, inductive position
sensors measure the disturbance of a magnetic field by a conductive target.

The sensor accuracy strongly depends on the selected coil design; hence, an ideal receiver coil
geometry leads to an ideal sine- and cosine feedback voltage at the open circuit-designed coils. In
operation, when the rotating target is facing the sensing area, the magnetic field induces the mentioned
eddy currents into the target surface. As a result, these eddy currents produce a counter magnetic
field, which leads to a reduction of the flux density beneath the target. This non-uniform flux density
generates an electrical voltage at the receiver coil terminals according to Faraday’s law of induction.
The rotation of the target leads to a change in amplitude and polarity. A mathematical description of
the inductive sensor principle is given by Equation (5). The variables are described as follows. The
alternating field, which is created by the excitation, is given by be(t). The alternating magnetic field,
which opposes be(t), is described by bs(t). The surface area of the receiving coil is represented by A.

VI =
dφ
dt

= −d
∫
[be(t, x, y) + bs(t, x, y)]dA

dt
=

d
dt

∫
be(t, x, y)dA +

∫
bs(t, x, y) dA (5)

For signal processing, the feedback signals are amplified, rectified and filtered before being
converted in the digital domain by an integrated ADC. Especially for this sensor type, the signal
processing procedure is highly dependent on the application. Consequently, the sensor chip can
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provide the absolute angular position of the rotor shaft in degrees, based on a trigonometric-based
arctan function [21]. If this operation is performed in a subsequent module, e.g., a vehicle’s Electronic
Control Unit (ECU), only the demodulated feedback signals of the receiver coils are available, which
leads to a reduction of signal processing complexity in the sensor, and therefore to lower costs [16,22].

In summary, inductive position sensors offer miscellaneous utilization for both automotive and
non-automotive applications. The sensor’s principle benefits are high accuracy, immunity against stray
fields, an absolute rotor position determination from the electrical start up, and low costs due to both
the low amount of copper wires and lack of magnetic material. The latter benefit makes the sensor more
eligible for automotive applications compared to other sensor principles, such as magnetoresistive
sensors, which will be described in the further context section. Another major advantage over other
sensor technologies is that, in safety-critical applications, multiple sensing areas can be placed on the
stator PCB. This enables it to combine multiple position sensors in one housing. In addition to the
strengths mentioned, this sensor principle has some weaknesses, which are discussed below. Although
the housing of the sensor requires only a small mounting area, a certain space is required for the PCB.
In addition, the sensor is sensitive to AG variations in terms of mechanical misalignment or target
eccentricity and wobbling.

Hereafter, a typical automotive application of an inductive position sensor system is presented.
Since the inductive sensor is fully integrated on a single PCB, a small size can be realized, e.g., for the
use in the electronic throttle valves of Internal Combustion Engines (ICEs), as shown in Figure 5.

Figure 5. State-of-the-art inductive-based E-Gas actuator position sensor system. Reproduced from [23].
Copyright 1998-2020, Microchip Technology Inc.

In this example, the inductive position sensor acts as a feedback system for throttle valve control.
The driver’s request is delivered by the electronic accelerator pedal. The MCU determines the flap
position and operates a Brushless Direct Current (BLDC) motor. To provide exact information about
the flap position for the proper control of the actuator, an inductive position sensor is placed at the
moving flap shaft.

Today, different electric motor manufacturers search for alternative technologies to replace the
resolver position sensors with smaller and potentially more cost-efficient inductive sensor systems.
Table 2 lists the strengths and weaknesses of the inductive position sensor principle.
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Table 2. Summary of pros and cons of the inductive position sensor principle.

Attributes

Advantages

High accuracy and resolution
Robust

Immune to stray fields
Requires no magnetic material

Small installation space compared to the resolver technology
Adaptable coil design for both linear and rotary movements

Low system costs
Redundant implementation possible

Disadvantages
Temperature-depending accuracy

Thermal limitations of the PCB
Sensitiveness to AG variations

2.3. Hall Effect Position Sensor

The fundamental principle of this sensor is based on the eponymous effect discovered by Edwin
Hall in 1879 [24] (Edwin Hall (1855–1938): American physicist and innovator of the Hall effect [25]).
Hall effect sensors are widely utilized in various fields due to their main advantage of miniaturization
and contactless measurement. Applications range from low-cost household products to complex
industrial, automotive and aviation machines. Typical examples include BLDC motor commutation
sensors, and crankshaft and level measurement. Figure 6 depicts a state-of-the-art Hall effect sensor.

   
(a) (b) (c) 

Figure 6. Hall effect sensor. (a) Electrical sensor component, reproduced from [26]. Copyright
2009-2013, Allegro MicroSystems, LLC; (b) Inner view of a Hall effect sensor comprising the mounted
die and the bond wire connections to the external pins for supply, output signal and GND (from
left to right) [27]; (c) Hall Integrated Circuit (IC) chip, reproduced from [27]. Copyright 2009–2013,
Allegro MicroSystems, LLC.

The effect of the Hall sensor is based on the Lorentz-force, which acts on moving charge carriers.
In this way, an electrical voltage is applied to the Hall plate, which results in an electrical current flow.
When the current-carrying Hall plate is exposed perpendicularly to magnetic induction, e.g., by the
use of a magnet, the charge carriers are deflected by a repulsion force to a certain angle, which is
orthogonal to the applied field. This deviation is due to the aforementioned Lorentz-force. Accordingly,
a Hall-voltage VH, which is directed transverse to the current direction, can be picked-off between two
opposite points on the Hall plate. The voltage is proportional to the magnetic field and the current. The
Hall-voltage can be described as shown in Equation (6), where I is the current, B is the applied magnetic
field, q0 defines the charge of an electron, N states the carrier density, d represents the Hall plate
thickness and RH specifies the Hall-coefficient [9,27]. The physical process is illustrated in Figure 7.

VH
IB

q0Nd
= RHI

(B
d

)
(6)
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Figure 7. Illustration of the Hall effect principle, reproduced from [9]. Copyright 2007,
Robert Bosch GmbH.

There are two main types of Hall effect sensors: linear devices and threshold types. Linear Hall
sensors provide a proportional analog output voltage according to the magnetic field strength of the
applied magnet. The output voltage moves into the supply direction (e.g., at a south pole) or GND
(e.g., in case of a north pole). This can be achieved by a differential Operational Amplifier (OPAMP).
As a result, the output voltage is dependent on the orientation of the magnet. When no magnet is
detected at all, a bias voltage is present, which is also described as a Null voltage. Note that the fixed
offset introduced is to avoid putting two power supplies in the processing circuit, which reduces the
overall system costs [28]. A linear Hall sensor can be found, for example, in automotive throttle pedals.

The threshold type provides a digital state at the output (i.e., on and off) in case the field strength of
the approached magnet obtains a certain magnetic amplitude or polarity. In terms of signal processing,
this sensor configuration comprises a Schmitt-Trigger, which enables a solid, binary output voltage.
In addition, these sensors can be configured as latching devices. Here, the sensor output is in the
on-state when a south pole is detected (i.e., the magnetic operating point), and it turns offwhen a north
pole appears (i.e., the magnetic release point). This characteristic is often used for rotary speed and
position determination [28]. One example is the wheel speed sensor, which is used for an exemplary
description of this sensor system in the following.

The measurement of the vehicle wheel speeds is i.a. used for safety and assistance systems, e.g.,
Anti-lock Braking System (ABS) and Electronic Stability Control (ESC). The design of wheel speed
sensor systems is simple due to robustness. Since the Hall sensor is highly reliable, it can be placed
close to the bearings of the wheels. A rotary ring includes permanent magnets for speed determination,
as depicted in Figure 8.
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(a) (b) 

Figure 8. Hall-based wheel speed sensor. (1) wheel hub, (2) ball bearing, (3) permanent magnet ring,
(4) wheel speed sensor. (a) Exploded assembly drawing, reproduced from [9]. Copyright 2007, Robert
Bosch GmbH.; (b) Exemplary sensor on the sensor test bench.

Hall sensors provide a TTL signal to the vehicle ECU, which counts the pulses that correspond to
the magnets passing the Hall element. When removing one magnet from the ring, a zero-mark can be
obtained to enable absolute position detection.

In conclusion, Hall effect sensors are at their most versatile used when it comes to the measurement
of position or rotary speed, since they can withstand rough environmental conditions (e.g., high
temperature, shock, dust, contamination), and offer low system costs and miniaturization. However,
Hall effect-based sensors are not found in powertrains, since a large amount of both Hall elements and
magnets are required to achieve a sufficient accuracy, which increases the costs. Table 3 outlines the
strengths and weaknesses of Hall sensors.

Table 3. Advantages and disadvantages of the Hall effect sensor technology.

Attributes

Advantages

Reliable due to contactless measurement
Highly repeatable

Fast reaction
Broad temperature range

Low system costs

Disadvantages External power supply required
Short range detection only in terms of AG

2.4. Magnetoresistive Position Sensor

Magnetoresistive position sensors rely on a similar principle to the previously introduced Hall
sensors, because they interact with an external magnetic field. A classification can be made in
two types of magnetoresistive position sensors: the Anisotropic Magnetoresistive (AMR) type and
the Giant Magnetoresistive type. The physical principle of both is based on Lorentz force [9,29].
A thin-film nickel-iron (NiFe) alloy coating, mostly the permalloy Ni81Fe19, with a thickness of 30
to 50 nanometers has an electromagnetically anisotropic characteristic. Accordingly, the material’s
electrical resistance changes depending on the direction of an external magnetization [9,29,30]. William
Thomson discovered this effect in 1857, which describes electrons with different spin orientations
possessing variable energy levels, resulting in a magnetic field-dependent conductivity when an external
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magnetic field is present [29,30] (William Thomson (1824–1907): Scottish engineer, mathematician and
physicist [31]). Equation (7) shows the electrical resistance as a function of the magnetization direction.

R(θ) = R0 + R cos2 θ = R0

(
1 +

ΔR
R

)
cos2 θ (7)

The term ΔR/R describes the maximum possible variation of resistance. The squared cosine term
in Equation (7) depicts that the AMR sensor generates two sine-shaped curves over one full mechanical
revolution. For the determination of the angular position, four magnet-depending resistors are usually
combined into a Wheatstone bridge, where the second AMR resistor bridge is mechanically rotated by
45◦ on the substrate. This enables an additional signal, as a cosine function, to determine the angular
position by an arctan computation. In other words, one bridge delivers a sine output signal, the other
bridge a cosine signal. The calculation of the resulting voltage per bridge is given by Equation (8).
Consequently, the position can be determined according to Equation (9).

VBridge 1 = A(T)sin(2α); VBridge 2 = A(T)cos(2α) (8)

θ =
1
2

arctan(
VBridge 1

VBridge 2

)
(9)

Note that, in practical applications, both bridges are placed in one system by one manufacturing
process to compensate for resistive temperature influence leading to a nearly equal amplitude per
output signal. As a result, high-quality angular information without temperature influences (i.e., drifts)
is achievable. Figure 9 demonstrates the principle and layout of an AMR angle sensor for a rotary
measurement application in the range of 360◦, as it is used in automotive applications.

 
 

 

(a) (b) (c) 

Figure 9. AMR sensor principle. (a) Sensor bridge circuit, where BH is the control induction, Usin

and Ucos are the measurement voltages, UDD and USS are the supply voltages and Bext is the external
magnetic field with the angle of rotation ϕ of the magnet; (b) Resulting sensor signals; (c) Electro
microscopical exposure of a 360◦ AMR sensor layout, reproduced from [9]. Copyright 2007, Robert
Bosch GmbH.

AMR are typically used in BLDC-driven auxiliary units, e.g., in electric water/oil pumps or cooling
fans. In case of the 360◦ variant, an additional planar coil is added, which is placed above the AMR
resistors. When an electrical current is applied there, an auxiliary field is generated, which evokes
changes in the output signals of each AMR bridge to differentiate the measurement range. With
this sensor principle, a very high measurement accuracy of less than 1◦ can be achieved. However,
the accuracy is strongly dependent on the utilized magnet and its central placement vertical to the
sensing area.

The other sensor principle is based on the GMR effect, which was discovered in 1988. This sensing
effect occurs in multilayer structures of interchangeable ferromagnetic and non-ferromagnetic materials.
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In a simplified view, two alignment characteristics of this multilayer structure exist; the anti-parallel
and the parallel alignment. In case of a lack of an applied external magnetic field, the structure is
aligned in an anti-parallel order. This state is also called the initial state. When the multilayers are
exposed to an external magnetic field (e.g., by a permanent magnet), the ferromagnetic layers are forced
to align to the applied field direction. As a result of this alignment, the resistance of the multilayer
structure decreases dependent on the applied magnetic field strength. The minimum resistance of
the multilayers is reached when the applied magnetic field surpasses the anti-ferromagnetic coupling,
so that all layers are oriented parallel in respect to the external field (saturation point). In conclusion,
the GMR layers show a minimum resistance in parallel aligned magnetizations and a maximum
resistance in counter-directed magnetization, as shown in Figure 10 [9,29,30,32,33].

  
(a) (b) 

Figure 10. GMR sensor principle. (a) GMR multilayer structure with FerroMagnetic (FM) and Non
FerroMagnetic (NM) layers; (b) Resistance characteristic according to an applied magnetic field,
reproduced from [9]. Copyright 2007, Robert Bosch GmbH.

The characteristic of a GMR multilayer sensor can be described according to Equation (10).

GMR =
Rmin −Rmax

Rmin
=

Rsaturated −R0

Rsaturated
(10)

Since this effect is uniaxial, the resistance is proportional to the cosine of the angle θ of the applied
external field according to Equation (11).

R = R0 − ΔR cos(θ) (11)

Focusing on rotational GMR spin valve sensors for automotive applications, two Wheatstone
bridges are used; the same as for the AMR principle to determine the position of the rotating shaft,
as shown in Figure 11.
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Figure 11. Exemplary GMR sensor die in a magnetic field (i.e., north pole (N) and south pole (S))
containing the sensitive GMR bridges, where Vx and Vy are the sinusoidal output voltages for further
angle determination accessible via differential ADC outputs (i.e., ADCx+, ADCx−, ADCy+, ADCy−),
reproduced from [34]. Copyright 2020, Infineon Technologies AG.

Considering one bridge for explanation, the output voltage of the bridge (i.e., VX and VY) resolves
according to Equation (12) [35].

VX,Y =
ΔR(1− αΔT)

2R0(1 + αΔT) + ΔR(1− αΔT)
×VDD; ΔR =

1
2

(ΔR
R

)
Rs

iW
d

cos
(
Θp −Θf

)
(12)

The parameters in Equation (12) are described as follows. The basic GMR and bridge resistance
is given by R0. ΔR is the variable resistance that depends on the direction of the magnetic field, and
VDD represents the bridge biasing voltage. In addition, the sensor is temperature dependant. For that
reason, α0 describes the absolute temperature coefficient of R0, αΔ represents the absolute temperature
coefficient of ΔR and T the relative temperature to a reference temperature [35]. Owing to the fact that
the resistance is dependent upon the GMR material, the width is described by W and the thickness of
the plate is given by d. The parameters Θp and Θf are the angles of magnetization of both the pinned
and the free layers [36]. As a result, the orientation of the magnetic field—and thus the position of the
magnet—can be determined by way of the resistance-dependent voltage. This analog voltage (i.e.,
VX and VY) is digitized by an ADC for further processing.

In contrast to the formerly introduced AMR position sensors, GMR sensors offer an inherent
complete angular measurement range of 360◦, where the calculated arctan position information repeats
after exceeding 180◦. Thus, no additional measures are required, contrary to the AMR sensor, where an
additional planar coil is necessary. In addition, GMR sensors are very robust in terms of temperature,
which is important for automotive applications (−40 ◦C to +150 ◦C). Even if the accuracy of GMR is in
the same range as that of AMR, higher measurement signals, and magnets with lower field strength
and therefore lower costs can be utilized. Unlike the AMR sensors, the GMR sensors do not only
consist of one magnetic functional layer, but rather of a complex layer system. Additional descriptions
regarding the differences of both introduced magnetoresistive sensor principles can be found in [29].

Concerning both types, AMR and GMR, the material of the rotary permanent magnet is vital to
achieve a good angular measurement performance. Usually, magnets with a diametrically magnetized
characteristic are selected. A scheme of the sensor setup is shown in Figure 12, where the permanent
magnet is mounted at the end of a rotating shaft, the position of which is the information of interest. In
general, the magnet needs to be placed very close to the sensing area of the AMR/GMR sensor, in an
orthogonal way. As it can be seen, this design makes the sensor and therefore the accuracy vulnerable
to mechanical deviations such as axial displacements and AG variations.
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Figure 12. Typical setup of an AMR/GMR sensor.

Table 4 concludes both the strengths and weaknesses of the AMR/GMR position sensor technology.

Table 4. Listing of the strengths and weaknesses of magnetoresistive sensors.

Attributes

Advantages

Small installation space
High accuracy

Broad temperature range
Fast operation

High rotary speed range
Low system costs

Different data interfaces possible (e.g., analog, digital, bus)

Disadvantages
External power supply required

Short range detection only in terms of small AG
Sensitive to mechanical tolerances and eccentricity

3. Experimental Characterization Method

In order to benchmark the performance of the previously introduced sensor technologies,
an experimental method was applied by use of a rotor position sensor test bench. The corresponding
sensor test bench has been specifically designed for rotor position sensor system error
characterizations [12–14].

For analysis, the Device Under Test (DUT) is driven by an induction motor, which can reach a
maximum speed of n = 24,000 rpm by a maximum angular acceleration of a = 10,000 rpm/s. This motor
simulates the driving profiles of an electric powertrain. The speed is controlled by a highly accurate
Hall-based position sensor with 8192 increments per rotation [37], which fulfills two tasks. Since the
reference sensor provides an encoder emulation by the use of three TTL-based signals (i.e., A-, B- and
Z-track), the speed is derived by the zero-position mark, which is the Z-track TTL signal for controlling
the test bench drive comprising both the power electronics plus the control algorithm unit. In addition,
the reference position information is used to evaluate the DUT angular accuracy in terms of potential
angle error. The Hall-based reference sensor is doubly designed, and provides an angular resolution of
θ < 0.1◦ at the maximum speed. Both angular data of the DUT position and the reference position
are captured by a state-of-the-art 5 mega-samples per second (MS/s) Field Programmable Gate Array
(FPGA)-based data acquisition unit [38]. This setup enables a universal analysis of various rotation
position sensors with different interfaces (e.g., analog, digital, CAN-bus). In addition, a comprehensive
sensor system characterization can be performed by integrating the corresponding DUT-ECUs [13].

The test bench not only provides high measurement accuracy, data acquisition rate and speed, but
also automated adjustment of mechanical displacements of the DUT, as well as variation of sensor
supply voltage and sensor operating temperature. For the investigation of the DUT sensitiveness
regarding mechanical displacements (caused, for example, by production tolerances), the DUT stator is
mounted on precisely displaceable motorized positioning actuators. This allows for the misalignment
of the sensor stator relative to the rotor in four axes: x, y, z and the vertical tilt. The variation of the
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sensor supply voltage to simulate voltage fluctuations in the vehicle is performed by a controlled
power supply. In addition, the ambient operation temperature can be varied by the use of a controlled
climatic chamber surrounding the DUT during testing. Figure 13 shows the schematic test bench setup
and a photo of the test facility.

 
(a) 

 
(b) 

Figure 13. Sensor test bench (a) sensor test bench system overview; (b) sensor test bench and
relevant components: 1, electric drive; 2, reference sensor; 3, device under test (DUT); 4, specific
temperature chamber (removed for demonstration—see dashed box); 5, data acquisition housing (incl.
electromagnetic compatibility (EMC) shielding); 6, motorized positioning actuators; 7, electronic control
unit (ECU); 8, controlled power supply; 9, temperature conditioning system; 10, thermal tubes (for
thermal transfer) [13].

In the present work, all investigated position sensors were evaluated in the same procedure.
The resolvers are both powered and captured by a generic RDC evaluation board from Texas
Instruments [39]. The angular information was provided by a TTL-based encoder emulation interface
to the universal data acquisition card of the test bench to enable precise angle error determination. For
the inductive sensors, the demodulated sine and cosine signals were captured by the analog inputs of
the test bench data acquisition card. The angular position data of the magnetoresistive sensors were
transferred by a CAN-bus interface onto the universal data acquisition card.
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To enable both flexible and precise mounting of the different investigated sensor types, a universal
adapter was used. The adapter system joins the rotary part of the DUT with the rotating drive shaft
of the test bench by use of a high-precision clamping. To prevent vibrations at high speed testing,
a specific balancing system was designed in the rotary adapter. Figure 14a depicts the universal sensor
adapter with an exemplary rotating part of a resolver. Figure 14b shows the highly flexible stationary
adapter, holding the stator of a resolver rotor position sensor as an example.

  
(a) (b) 

Figure 14. Rendering of the universal sensor adapter system. (a) Rotary part with an exemplary
mounted resolver rotor (green part); (b) Stator adapter strap with an exemplary resolver stator, shown
in yellow.

In the following section, the results of the comprehensive rotor position sensor investigations are
presented. Figure 15 shows the definitions of reference coordinate system, tilt angle ΔΦ and rotation
speed Δn used during the different test cases.

 
Figure 15. Coordinate system, tilt angle and rotational speed applied during the sensor system tests.
The speed is defined as positive clockwise from +z view and the tilt angle positive clockwise from
bottom view (+y).
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4. Results of a Comprehensive Rotor Position Sensor Technology Evaluation

The investigations focus on the angular accuracy of the previously introduced position sensor
technologies (see Section 2). In total, 14 rotor position sensor types have been analyzed by the specified
measurement series on the sensor test bench: six resolver-, seven inductive-/eddy current- and one
AMR-position sensor. The considered sensors are from different manufacturers and differ in terms of
their technical characteristics, e.g., number of pole pairs, mechanical sizes (i.e., rotor diameter) and
the AG. Table 5 provides an overview of main data of the tested sensors. Observe that all sensors
with an around shaft design are tested with an axial nominal AG of z = 0 mm, since the rotor is
surrounded by the circular stator. However, a radial offset between stator and rotor still exists due to
the rotor geometry.

Table 5. Technical details of the tested sensors.

Resolver Position Sensor

Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Sample #6
Number of
Pole Pairs

3 4 3 3 4 10

Maximal
Operating
Speed [rpm]

17,550 15,000 17,550 22,000 18,000 9000

Operating
Temperature
Range [◦C]

−40 to
+150

−40 to
+180

−40 to
+150

−40 to
+150

−40 to
+150

−40 to
+150

Design Around
Shaft

Around
Shaft

Around
Shaft

Around
Shaft

Around
Shaft

Around
Shaft

Nominal AG
[mm]

0 0 0 0 0 0

Inductive Position Sensor
Sample #1 Sample #2 Sample #3 Sample #4 Sample #5 Sample #6 Sample #7

Number of
Pole Pairs

3 3 3 2 4 4 2

Maximal
Operating
Speed [rpm]

24,000 24,000 24,000 20,000 20,000 20,000 20,000

Operating
Temperature
Range [◦C]

−40 to
+150

−40 to
+150

−40 to
+150

−40 to
+150

−40 to
+150

−40 to
+150

−40 to
+150

Design Full Radial
EoS

Around
Shaft

Full Radial
EoS

Arc 180◦
EoS

Arc 90◦
EoS

Arc 90◦
EoS

Arc 90◦
EoS

Nominal AG
[mm]

1 0 4.9 3 3 2 3

AMR
Sample #1

Maximal
Operating
Speed [rpm]

7000

Operating
Temperature
Range [◦C]

−40 to
+150

Design Full Radial
Nominal AG
[mm]

4
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The evaluation results are based on a variety of test cases in terms of mechanical- and
temperature-based variation, considering both varying sensor geometries and operational range.
The sensor systems’ error characteristics are compared in terms of the angular average peak-to-peak
error. Since the peak-to-peak error is the worst-case scenario, the resulting value reveals, from the mean
of the collected results, the angular peak-to-peak error of every single measured test case. Observe that
the angular errors shown correspond to the mechanical error, as measured in relation to the drive shaft.
The peak-to-peak error of every single measured test case N is defined as

Epp(N) =max[Δθ(t)] −min[Δθ(t)] (13)

where Δθ(t) is the determined angular error:

Δθ(t) = θDUT(t) − θReference(t); with θDUT(t) = arctan(Vsin(t)/Vcos(t)). (14)

As a result, the utilized average peak-to-peak error can be determined according to (14).

Epp, avg =
1
N

∫ N

0

∣∣∣Epp(N)
∣∣∣dN (15)

4.1. Speed-Dependant Angular Error Evaluation

Figure 16 illustrates the angle error characterization of the investigated sensor technologies in
the mechanical initial point. The initial point is defined as the point at which the sensor is centrally
adjusted according to the data sheet. This implies that all mechanical variation parameters are nulled
(i.e., Δφ = Δx = Δy = Δz = 0 [◦/mm]). Note that, for both the inductive sensors and the AMR sensor,
the nominal AG, which was defined by the manufacturer (see Table 5), is applied. The measurements
have been performed at a temperature of 25 ◦C, which is defined as Room Temperature (RT) in further
context. The only parameter varied in this test case was the rotational speed of the drive axle according
to the maximal speed specification of the manufacturer (e.g., n = 17,550 rpm, see Table 5-resolver
sample #1). The minimum rotational speed, which is described in Figure 16 below, was chosen in a
way such that a sufficient number of angular periods was available. The step size of the speed was
chosen in hundreds of steps and, respectively, thousands of steps.
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Figure 16. Experimental comparison of the resolver-, inductive- and AMR-position sensor technology,
based on a variable applied speed and both constant temperature (T = 25 ◦C = RT) and constant centric
sensor placement.

Considering the error characteristics of resolvers shown in Figure 16, it can be summarized that
this technology offers a high accuracy. This is one of the reasons why this sensor type is the preferred
choice in electric powertrain architectures today. Basically, it can be argued that a higher number of
pole pairs results in better accuracy. However, this is not always the case, as a comparison of the
different types shows (e.g., Resolver Sample #4 vs. Sample #5 and #6).

In general, inductive position sensors can reach a similar level of accuracy as resolvers (see
Inductive Sample #1, #5, #6). Full radial sensor designs with a circumference of 360◦ deliver higher
accuracy in principal, but other parameters, e.g., the AG, also have a considerable influence; compare
Inductive Sample #1 and #3, with AG = z = 1 mm at sample #1 and AG = z = 4.9 mm at sample #3.
Inductive Sample #2 with an around shaft design shows a lower accuracy, which might be caused
by additional eddy currents induced by the steel-made drive shaft. Observing the arc designs of
the inductive position sensors, the angular accuracy is comparably good to the resolvers and other
inductive sensor designs. A resolver can be replaced by an inductive position sensor with two pole
pairs and an arc design measuring a half circle (i.e., 180◦); see Figure 16, Inductive Sample #4. The best
accuracy is provided by two different 90◦ arc design inductive position sensors with four pole pairs.
For example, a ten-pole pair resolver shows a similar accuracy to a four-pole pair arc 90◦ inductive
sensor, while the inductive sensor has lower installation space requirements and, probably, lower costs.
However, the number of pole pairs should be taken into account, since a lower amount of pole pairs
(e.g., Inductive Sample #7) shows a comparatively high angle error compared to a sample with similar
specifications and nominal AG (e.g., Inductive Sample #5).

Concerning the AMR technology, the advantage of miniaturization is diminished by the sensitivity
of mechanical impacts. This can be seen in the comparatively low accuracy performance, which is in
the middle range of the analyzed inductive sensors.

Besides a comparison of the different sensor technologies, Figure 16 shows that the sensor design,
in terms of pole pairs and implementation (e.g., arc versus full circle in the case of the inductive sensor
principle), strongly influences the accuracy. In the following subsection, mechanical displacements are
also considered, in addition to the speed variation, in order to investigate the sensitivity of the sensors
with regard to mechanical installation tolerances.
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4.2. Multi-Mechanical Parameter Angular Error Characterization

The results of the multi-mechanical parameter variation tests, considering both geometrical
misalignment and speed variations, are represented in Figure 17. The Figures A1–A3 in the Appendix A
provide an overview of the conducted mechanical parameter variation range of each sensor, where
the darker color represents the selected point. The angle error determination performed is based on
Equations (13)–(15) and the average peak-to-peak error of each measurement series per parameter
variation is considered.

 
Figure 17. Benchmark of both mechanical and rotor speed parameter variations at RT = 25◦, by use of
the average angular peak-to-peak error from each test case, which is one parameter variation.

The inductive sensor principle is capable of reaching the characteristics of the resolver technology
in terms of mechanical deviations and speed variation (e.g., Inductive Sample #5 & #6). The design
of the inductive position sensor is highly responsible for the angular accuracy, e.g., arc design vs.
360◦ design.

The magnetoresistive sensor principle is suitable for miniaturized applications, and the angular
accuracy performance is in the range of the other two sensor types. Furthermore, the robustness in
terms of mechanical misalignment in all axes shows that some sensors offer a very good performance
(e.g., the Resolver Sample #3), while other sensors are more sensitive to mechanical deviations (e.g.,
Inductive Sample #1). In general, it can be concluded that the greater the difference between the
respective bars of a specific sensor in the figure above, the more sensitive it is to x-, y-, z- and
tilt-orientation-related tolerances.

4.3. Temperature Variation-Based Angular Accuracy of Non-Resolver Position Sensors

The error response at different operating ambient temperature conditions was investigated over
both the speed range and the mechanical initial position. Since it is known that resolver position sensors
are very robust against temperature influences [40], only the inductive- and AMR-based sensors were
examined here. Different thermal conditions can lead to angle error distortion for these sensor types,
owing to the temperature coefficient of the PCB material (i.e., the inductive sensor) or the magnetic
material (i.e., the magnetoresistive position sensor). Figure 18 depicts the error characteristics based on
the thermal influences, which were provoked on the sensor system test bench by use of the climatic
conditioning system. The angular error for each applied speed at a certain temperature was evaluated
based on Equations (13)–(15).
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Figure 18. Inductive- and AMR-based sensor accuracy characteristics in the sensor systems’ sweet
spots at different operational ambient temperatures.

Besides the fact that the sensor systems’ accuracy strongly depends on the design of both the target
(i.e., the rotor) and the stator coil structure, temperature plays an important role for accurate operation.
Aside from Inductive Sample #2, with its around shaft design, all the other evaluated devices show
the highest angular error at maximum temperature. It can also be seen that thermal changes do not
influence the accuracy very significantly when considering the inductive sensors. However, the AMR
sensor principle, which is based on the magnetoresistive effect, shows the best performance at the
lowest temperature and worst performance at maximum temperature. The selected temperature of
T = 80 ◦C is a common operational condition in drivetrain applications, and T = 140 ◦C represents
high load conditions, which typically occur for a short duration. It can be concluded that the angular
accuracy varies in the range of a maximum of 25% for inductive sensors and about 120% for the AMR.
Either way, the absolute angular deviation is about 0.25◦ for inductive sensors and about 0.90◦ for
the AMR.

4.4. Validation of the Presented Results

This subsection provides a validation of the previously presented results. To summarize,
the experimentally-based evaluation method consisted of three main phases. In the first phase, the DUT
was mounted on the test bench on both the motorized stator positioning system (Figure 13) and the
rotating shaft (Figure 14). In addition, the electrical installation was conducted, i.e., the sine and cosine
feedback signals were connected with the data acquisition unit of the test bench. The experimental
characterization was performed in phase two of the investigation process, which started with loading
the test cases that are defined for each parameter variation (e.g., speed n, temperature T, other
mechanical parameters x, y, z, Φ). In the following, the test procedure was started by conditioning the
influencing parameters on the test bench. The process of the determination of the angular information
of both the reference sensor and the DUT was repeated for every test case. This process included
signal acquisition and data storage. After completing every test case, the data was processed in phase
three. This comprised the conversion of the mechanical reference angle to the electrical angle value
by consideration of the number of pole pairs of the DUT. Furthermore, both electrical angles were
compensated in terms of the angular offset. As a result, each position started from 0◦. This process was
repeated after every overflow, i.e., exceeding 360◦. Based on these data, the electrical angle error was
subsequently determined, including both the computation and storage of the angular peak-to-peak
error for each test case number. To achieve the final result for each parameter variation, which is
presented in the figures above, the mean peak-to-peak error of every single parameter variation was
conducted. The previously described process is graphically summarized in Figure 19.
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Figure 19. Illustration of the sensor characterization process.

Sensor signal data processing and validation are exemplarily shown for the Inductive Sample #4
at a constant speed of n = 4000 rpm under RT, which includes both the speed variation and temperature
variation test. The resulting signals can be seen in Figure 20.
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Figure 20. Measurement and processed signals of the Inductive Sample #4 at n = 4000 rpm and RT.

The sensor delivers two sinusoidal signals, i.e., sine and cosine (first sublot, Figure 20). The resulting
electrical position of the sensor is illustrated in the second subplot of Figure 20. Based on the
characterization method, the scaled and offset compensated reference angle can also be found in this
graph. The resulting angle error of four periods, i.e., twice the number of pole pairs, is shown in the
third subplot in Figure 20. The periodical error can be seen at a glance. Observe that the evaluation
was performed over the recorded samples. Consequently, the peak-to-peak error is 2.11◦ electrically
and 1.06◦ mechanically, since the pole pairs of this sample are two. Table 6 outlines the results for all
measurements of the mentioned parameter variation, including the exemplary test, which is presented
above. In addition, the mean peak-to-peak error for this specific test series is stated, as considered
in Figure 16.

Table 6. Results of the speed variation test of Inductive Sample #4.

Speed n [rpm] Temperature T [◦C]
Angle Error

Peak-to-peak [◦, el.]
Angle Error

Peak-to-peak [◦, mech.]

1000 25 2.09 1.05
2000 25 2.02 1.01
4000 25 2.11 1.06
6000 25 2.03 1.01
8000 25 2.04 1.02

10,000 25 2.27 1.13
20,000 25 2.57 1.29

- - Mean peak-to-peak error
[◦, mech.] 1.08

5. Discussion

The present research provides a comprehensive investigation of the angular accuracy of different
rotor position sensor technologies in terms of a variation of multi-mechanical and thermal parameters.
The considered sensor types in this work include resolver-, inductive-/eddy current-, Hall- and
magnetoresistive-based position sensors.

The results show that the inductive sensors are able to reach the performance of resolver position
sensors. It was found that the accuracy of the inductive sensor technology strongly depends on
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the sensor design. As an example, a full circle design has the potential to perform in a comparable
accuracy-range to a resolver; the arc design can even achieve equal or better accuracy characteristics.
It has to be considered that both parameters, the number of pole pairs and the nominal AG, are
important influencing factors. The AMR sensor principle comes with a great advantage for miniaturized
applications, but its angular accuracy is heavily reliant on mechanical tolerances.

When operating the position sensor in a powertrain, the accuracy in terms of thermal deviations
is an important criterion. Since resolver sensors show nearly constant accuracy over the holistic
temperature range [38], non-resolver-based position sensors were investigated according to their
angular accuracy under different automotive ambient temperatures. The tested inductive- and
magnetoresistive- position sensors show higher sensitivity to temperature changes, because the PCB
material is more sensitive in terms of geometrical form changes at induction sensors, and the magnetic
performance varies as a function of the ambient temperature in the case of magnetoresistive sensors.
In general, the accuracy of the sensor deteriorates at higher temperatures.

Figure 21 shows the potentials of the different sensor technologies under consideration of selected
performance indicators, which is relevant for the application in automotive powertrain systems. Based
on the results of the study, it can be stated that the resolver is one of the most accurate and, at the same
time, robust sensors for powertrain applications. However, complex signal processing (leading to
relatively high costs), and comparatively high weight and mechanical size are disadvantages of this
sensing principle.

 
Figure 21. Comparison of the different sensor technologies related to selected performance indicators.

Inductive sensors are capable of fulfilling key requirements to a high level, comparable to resolver
performance. An important characteristic is the design (i.e., full 360◦ vs. arc design) of the sensor, since
it has an influence on the accuracy. Furthermore, the thermal sensitivity of the PCB carrier material
influences the angular error in the temperature-sensitive application of traction motors. For AMR
and GMR sensors, current state-of-the-art semiconductor sensor manufacturing technology enables
a very precise determination of the measured rotating shaft. Inductive- and eddy-current position
sensors offer less rotor mass and a smaller sensor housing. However, the present research deals with
increasing the sensor performance to achieve equal fidelity compared to the commonly-used resolver
technology, which is accomplishable by improving the coil design. Hall sensors can be used in large
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numbers to measure the rotor position quite precisely (e.g., as a reference sensor utilized on the test
bench). When applying this sensing method, the larger magnet size needs to be taken into account
compared to magnetoresistive sensors. Larger magnets including a higher number of Hall elements
(required for high accuracy) also increase the housing size, which might restrict the usability for
automotive applications with high demands for compact design. The investigated AMR/GMR sensors
offer higher resolution and, at the same time, a small installation space. Therefore, when a precise
position determination of the rotating shaft is demanded, e.g., at small BLDC motors, magnetoresistive
sensors are preferable. In the case of low requirements on the position information, reduced numbers
of Hall elements, e.g., three elements mechanically displaced by 120◦, might be sufficient.

Evaluating the sensor costs, the resolver is the most high-priced system. This is due to the fact
that a high amount of copper wires and a complex winding process is required, similar to an electric
motor. Also, signal processing is effortful, demanding a performant microcontroller (μC), raising
the system costs. Inductive position sensors are cheaper compared to resolvers, since all sensing
components can be placed on a low-cost PCB. Only the rotor needs to be made of a ferromagnetic
material. Especially in mass production, the inductive sensor principle can play to its benefit in
comparison to the resolver. Hall-based and magnetoresistive sensors can also be produced relatively
cheaply; hence, semiconductor mass production allows low cost manufacturing. The only matter of
expense in these sensor systems is the required magnet(s), the costs of which depend mainly on the
magnet size and material.

The electrical supply of the sensor plays a key role when it comes to efficiency in automotive
applications. Figure 21 shows that the resolver has the highest electric power demand because of its
relatively high excitation currents and voltage. Thus, a powerful driver stage is inevitable, increasing
the costs and influencing other electrical components in terms of Electromagnetic Compatibility
(EMC). Inductive and magnetoresistive sensors do not need such high power for sensor operation.
The Hall-effect sensor only requires low constant DC-Voltage to detect a magnet and change the
output stage.

Resolvers are used in various powertrains of BEVs and HEVs offering robust rotary measurements
today. Even in aviation and military practice, this sensor principle can be found because of its high
durability and fail safety behavior. The same characteristics are applicable to the Hall sensor. Regarding
inductive and magnetoresistive sensor principles, the overall robustness can be considered equal
in case that a solid housing is designed. There are rough conditions for accurate position sensing
in electric powertrains, especially when the sensor is mounted close to the electric machine, which
produces strong electromagnetic fields. Resolver and inductive position sensors are more sensitive
to electromagnetic influences than Hall- and magnetoresistive sensors. Both resolvers and inductive
sensors rely on a similar principle, using a ferromagnetic rotor material to determine the position
of the rotating shaft. An external field can influence the feedback signals and so distort the angular
information. Today, different research activities are ongoing for inductive position sensors to improve
their performance in terms of EMC. All magnet-based rotor position sensors show a certain sensitivity
against stray fields. For that reason, they are rated as “medium”, compared to resolver and inductive
sensor technology.

Sensitiveness to mechanical tolerances is one of the investigations in this work, so this attribute is
rated based on each sensor working principle. Mechanical tolerances can occur during installation
processes, resulting in mechanical offset from the ideal-considered centric position, leading to an
angular measurement error. For resolvers and inductive position sensors, this sensitivity is quite low.
Resolvers usually operate under certain mechanical boundaries (i.e., the inner side of the stator), and
are mainly sensitive to vertical tilt and axial offsets. Inductive position sensors show quite similar good
characteristics, because the coil design can be optimized to the operating point. However, mechanical
deviations of the rotating target in respect to the stator can cause biased angular information. Hall
elements sense only in a relatively small distance. Larger AG ranges between sensor element and
magnet or fluctuations (e.g., wobble) distort the measurement result. AMR/GMR position sensors are
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typical EoS applications, and show high sensitivity regarding mechanical tolerances. Minor axial- or
radial displacements cause relatively high angular errors.

In terms of signal processing complexity, the resolver technology requires more complex
signal processing, comprising digitalization, filtering, demodulation of the AM feedback signals,
trigonometric-based angular calculation and optional observer algorithms to process the rotor position.
All these steps, performed in both hardware and software, usually on a multi-core μC, are integrated in
a so-called Resolver-To-Digital Converter (RDC), also denoted as an R2D. The high complexity of signal
processing is cost-intensive, and can cause additional angular errors, which can be seen as potential
drawback of this technology. In inductive position sensors, the feedback signals on the sine- and cosine
traces are also AM signals, which need to be demodulated. Typical sensors using this principle offer
signal processing as a powerful one-chip solution directly on the PCB. In this way, the resulting angular
information can be read in directly by the MCU without drawing computational power, which reduces
the effort of angle determination compared to resolver technology. Hall sensors and magnetoresistive
sensors are less complex in terms of signal processing effort. Hall sensors provide either an analog
or a digital output signal to the subsequent control unit (e.g., ECU, MCU), where, in the case of an
analog signal, the information only needs to be digitalized and interpreted. For most applications,
digital signals are used in form of TTL pulses. The position is then calculated by counting the pulses,
enabling a simple signal processing complexity. Magnetoresistive sensors contain Wheatstone Bridges,
delivering (magnet) position dependant sinusoidal voltages at the output as a result of resistance
changes. These electrical circuits are relatively low in complexity, and are designed similarly to analog
Hall sensors. In this case, the analog voltage is interpreted by an external controlling unit to determine
the absolute rotary position.

Resolvers tend to be relatively large radial sensors with considerable weight and rotor inertia.
Inductive position sensors only require space for the PCB-based stator and a thin rotary target with
distinctly less inertia compared to the resolver. Hall and magnetoresistive sensors are very small
components with a chip size of a few millimeters. However, in the case of Hall-sensors, a higher
number of elements might be necessary to provide the specified accuracy. Miniaturization can be
enabled due to semiconductor manufacturing; consequently, these sensor types need less installation
space than resolvers and inductive position sensors. One parameter to be considered is the size of the
magnet that is used. All sensors, apart from resolvers, can operate at very high speeds (n ≥ 20 k rpm),
due to the relatively small rotor inertia.

The findings of the temperature-related investigations show that resolvers cover the full automotive
range due to their thermally robust sensor design. Here, temperature-biased errors stem only from
the thermal resistance change of the copper windings. Hall sensors can also withstand high and
low temperatures. AMR/GMR sensors can be designed to be temperature-compensating to reduce
temperature-biased angular errors. For both Hall and magnetoresistive sensors, the only limiting
criterion is the Curie Temperature TC of the magnet. Inductive position sensors are able to operate
within the automotive temperature range, but the thermal properties of the PCB substrates need to be
taken into account.

6. Conclusions

The present research provides a detailed benchmark of modern rotor position sensor technologies
for application in automotive electric drive trains, considering different influencing factors.
The investigated sensor systems were evaluated considering the typical performance indicators of
automotive powertrain applications, including sensor accuracy, sensitiveness to mechanical tolerances
and electromagnetic fields, effort of signal processing and temperature robustness, as well as the
required installation space and cost aspects. For this purpose, a specific sensor test bench, including
sophisticated measurement equipment, mechanical and electrical misalignment equipment, as well as
a thermal conditioning system, was used. The measurement results are displayed in diagrams and
discussed to elaborate the strengths and weaknesses of the different investigated sensor technologies.
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For application in modern electric powertrain systems, resolver (as the most used technology)
and inductive sensors show the best potentials due to their high accuracy and robustness against
mechanical, thermal and electrical disturbances. For non-traction applications, e.g., auxiliaries driven
by BLDC-motors, magnetoresistive and Hall-based sensors seem to be more suitable, due to lower cost
and installation space. Nevertheless, the position sensor technology has to be selected according to the
requirements of the specific application. In this context, the present work contributes to the selection of
suitable sensor technology in the development of new electric propulsion systems.
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Appendix A

 

Figure A1. Tilt variation measurement plan for all evaluated sensors; blue, resolvers; green, inductive
sensors; orange, AMR sensor.
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Figure A2. Test case plan for the x and y variation to evaluate all available sensors; blue, resolvers;
green, inductive sensors; orange, AMR sensor.

 

Figure A3. Measurement plan for the axial evaluation of all rotor position sensors; blue, resolvers;
green, inductive sensors; orange, AMR sensor.
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Abstract: This paper proposes the novel idea of eliminating the front-end converters used indirect
current (DC) bus voltage variation, thereby allowing for control of the speed of the brushless direct
current (BLDC) motors in the two-quadrant operation of a permanent magnet brushless direct
current (PMBLDC) motor, which is required for multiple bi-directional hot roughing steel rolling
mills. The first phase of steel rolling, the manufacture of plates, strips etc., using hot slabs from
the continuous casting stage, is carried out for thickness reduction, before the same is sent to the
finishing mill for further mechanical processing. The hot roughing process involves applying high,
compressive pressure, using a hydraulically operated mechanism, through a pair of backup rolls
and work rolls for rolling. Overall, the processes consist of multiple passes of forward and reverse
rolling at increasing roll speeds. The rolling process was modeled, taking into account parameters
like roller dimensions, angle and length of contact, and rolling force, at various temperatures, using
actual data obtained from a steel mill. From this data, speed and torque profiles at the motor shaft,
covering the entire rolling process, were created. A profile-based feedback controller is proposed
for setting the six-pulse inverter frequency and parameters of the pulse width modulated (PWM)
waveform for current control, based on Hall sensor position, and the same is implemented for closed
loop operation of the brushless direct current motor drive system. The performance enhancement
of the two different controllers was also evaluated, during the rolling of 1005 hot rolled (HR) steel,
and was taken into consideration in the research analysis. The entire process was simulated in
the MATLAB/Simulink platform, and the results verify the suitability of an entire-drive system for
industrial steel rolling applications.

Keywords: Hall sensors; brushless direct current motor drive system; power electronics;
industrial application

1. Introduction

Steel manufacturing is a highly power-intensive process, wherein about 8% of the total energy
consumption is absorbed in hot steel rolling. During the beginning stage of the rough rolling mill,
steel slabs from the continuous casting stage are rolled to produce products like plates or strips.
Subsequent stages use the above intermediate products for production of thin sheets and similar items.
In order to eliminate oxide layers, the hot steel slab specimen has to undergo surface cleaning by means
of scrubbing. With the deployment of high-powered electric motors using a gear train arrangement,
the set of work and backup rolls are initiated. The physical parameters of the material, like the
dimensions of the roller, the work temperature, and the metallurgical properties, are considered during
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the rolling process, while the torque and rolling force need to be calculated during the multi-pass
operation. Profiles involving forward–reverse rolling based on the above calculations facilitate fixing
the speed of the shaft and the torque that constitute the operating points of the motor that is driving.

The choice of electric motors includes induction-based motors, synchronous motors, and direct
current (DC) motors. Among the various motors, a specially designed motor called the Brushless direct
current motor is preferred, based on inherent features like low maintenance, owing to the absence of
brushes, no sparking, and less wear and tear.

The modeling of the closed loop drive system, along with a controller using speed and current
feedback, integrated with equations governing the steel rolling process, is presented in this paper.
A Simulink [1] schematic of the drive system was created to meet the requirements of the work profile.
The performance characteristics of the drive motor were ascertained for ten passes of steel rolling.
The characteristics involving the back EMF (electromotive force), such as the current of the stator,
the speed of the shaft, and the electromagnetic torque are clearly manifested in this paper by means
of simulation.

2. Model of a Rolling Mill

Figure 1 shows a simplified schematic of a typical rough rolling mill for handling hot steel slabs
for thickness reduction. The Brushless Direct Current (BLDC) motor [2] drive operates the system of
backup rolls, the pair of work rolls, and a gear train [3] mechanism. The above drive system is made up
of a four-pole BLDC motor [4] and a six-pulse inverter fed from a DC source. The control configuration
senses the speed error signal, which is processed through a Proportional plus Integral controller to
generate reference torque. The actual stator current is compared with the generated reference current
for producing logic and timing signals required for gate control of the six-pulse IGBT inverter.

Figure 1. Direct current (DC) motor drive system coupled to a hot rough rolling mill.

2.1. Formulae Governing the Hot Rolling Process

The deformation due to the rolling of a hot slab of steel (which is known by the term draft
D) leading to the reduction of thickness of the material [5,6], under specified operating conditions,
is governed by the following equation:

D = TI−TF (1)

where D = draft in mm; TI= starting thickness in mm; and TF = final thickness in mm.
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The work piece under consideration is rolled based on thickness, with ε being the true strain
whose equation, before and after the rolling of the work material, is given by

ε = ln
(

TI

TF

)
. (2)

The following equation is used to compute the average flow stress (Yf)on the work material during
flat rolling, where K is the strength coefficient of the material in MPa, and n is the strain-hardening
exponent obtained as in Figures 2 and 3 for 1005 Hot Rolled steel material:

Yf =
Kεn

1 + n
(3)

 

Figure 2. Coefficient versus temperature for a 1005 hot rolled steel specimen.

 
Figure 3. Exponent versus temperature for a 1005 hot rolled steel specimen.

The contact length (CL ) is given by

CL = [RR (TI −TF )] 0.5 (4)

where RR = Radius of the work roll in mm.
Rolling force (F) is given by

F = Yfw CL (5)

where w = steel slab width in mm.
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Load torque (TL ) is given by which is related to force as follows:

TL = FCL (6)

2.2. Rolling Process Parameters

For the low carbon specimen of 1005 HR steel [7,8], the metallurgical data and parameters [9]
were obtained from the standard ASM Metals Handbook and shown in Table 1. Figure 2 shows the
variation of the strength coefficient (K) and Figure 3 the strain hardening coefficient (n) with respect to
temperature in ◦C.

Table 1. Mechanical properties of 1005 HR Steel.

Properties 1005 HR Steel

Density (gr/cm3) 7.872
Modulus of Elasticity (GPa) 210

Yield strength (MPa) >280
Poisson’s ratio 0.27 to 0.3

Break Elongation (%) 28 (in 80 mm)
Hardness, Vickers 105

Tensile strength (MPa) 325

The actual rolling of the steel slab [10] was carried out in a forward–reverse manner, cyclically,
over 10 passes with successive thickness reductions and increases in roll speed, as shown in Table 2.

Table 2. Rolling parameters for ten passes.

Pass Temperature, ◦C K, MPa n

1 800 200 0.18
2 795 205 0.177
3 790 210 0.174
4 785 215 0.171
5 780 220 0.168
6 775 225 0.165
7 770 230 0.162
8 765 235 0.159
9 760 240 0.156
10 750 245 0.153

3. Creation of Speed and Torque Values

The speed and torque values were deduced from the equations formed from the hot rolling
process by employing various values from the graphs of the strength coefficient versus temperature,
and the strain hardening exponent versus temperature. It is desirable for the thickness reduction to be
performed at a higher speed, provided that the operation is quick and utmost care is taken, as a slight
reduction in temperature causes hardening of the hot specimen. Hence, several passes are suggested
for rolling operations and the direction of rotation of the work roll reverses at the end of the work
specimen, which also makes the steel slab move in the reverse direction. This action is repeated several
times to realize multiple-roll operation. Alternate positive and negative values were acquired from
both the torque and drive speed, corresponding to the 1st and 3rd quadrant operation of the BLDC
motor [11–13]. Table 3 indicates the values of roller speed, motor speed, shaft torque, and thickness
reduction for the total time duration of 50 s.
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Table 3. Profile values of speed and torque (operation: 10 passes).

Roller Speed
(RPM)

Motor Speed
(RPM)

Shaft Torque
(N-m)

Reduced
Thickness (cm)

Time Duration (s)

20 800 423 9.7 5
−20 −800 −432 9.4 5
22.5 900 449 9.1 5
−22.5 −900 −466 8.8 5

25 1000 483 8.5 5
−25 −1000 −500 8.2 5
27.5 1100 518 7.9 5
−27.5 −1100 −536 7.6 5

30 1200 555 7.3 5
−30 −1200 −575 7.0 5

4. Feedback Controller Design

The profile values from Table 3 are the specific values of torque and speed for the steel rolling
operation of the mill. The BLDC drive should confine its operation to the required stator current and
inverter frequency. This was effected by means of a suitable controller, and a suitable inner and outer
control loop. A PI controller was used in the loops. Speed error was processed in the outer loop of the
controller, which produced a reference for the torque, in order to generate the three phase currents that
were used as a further reference in the control mechanism as follows:

ωe(t) =ω*(t) −ωact(t) (7)

T∗(t) = Kpωe(t) + Ki

∫ t

0
ωe(t) (8)

I∗(t) =
T∗(t)

Kt
(9)

I∗a(t) = I∗(t)0◦ (10)

I∗b(t) = I∗(t) − 120◦ (11)

I∗c(t) = I∗(t) − 240◦. (12)

The actual values of the phase currents belonging to the motor were compared with the above
generated reference currents, involving a bang-bang control for limiting the signal within the hysteresis
band, for further generation of six gating pulses for the three-phase inverter [2]. The first and third
quadrant operation of the brushless DC motor, for both forward and reverse operation was governed by
profile values of speed and torque, with polarity reversal in the rolling operation. Suitable parameters
for the controller were chosen for the smooth operation of the entire system.

5. Schematic of the Modeled System

The MATLAB/Simulink simulation platform was employed to carry out the modeling of the
hot roughing steel rolling mill, as depicted in Figure 4. Along with the various parameters of the
process model, torque–speed profile values at the motor shaft over ten passes, as shown in Table 3,
were specified. These profile data [14–16] correspond to the operating conditions during multi-cyclic,
forward–reverse runs of rolling being carried out [17,18].
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Figure 4. The entire closed loop system in Simulink.

Simulation Results

A simulation run was captured for a period of 50 s, portraying the stator current, back EMF,
electromagnetic torque, and speed of the rotor.

Figure 5 shows the simulation results of the rolling operation over an entire period of 50 s for
ten passes, depicting the first and third quadrant operation of the BLDC drive system following the
speed profile.

Figure 5. Speed over a period of 50 s.

In Figure 6, the back-EMF waveform is shown for 50 s over ten passes, depicting the first and
third quadrant operation of the BLDC drive system. Its expanded view, which is trapezoidal, is shown
over a particular period in Figure 7.

The waveform shown in Figure 8 depicts the simulated output of the electromagnetic torque over
an entire period of 50 s and for the ten passes required for the first and third quadrant operation of the
BLDC drive system [19,20] following the torque profile.

The efficacious nature of the controller is clearly demonstrated in the rapid reversal involved,
with respect to the torque and speed characteristics, needed during the rolling process, as shown
in Figures 5 and 8. As the rolling process progresses, the quick response of the drive system for
bidirectional rolling clearly presents a series of stepped increases of all variables over successive periods.
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Figure 6. Back-Electro Motive Force waveform in phase A over 50 s.

Figure 7. View of the motor’s back electromotive force waveform.

Figure 8. Torque over 50 s.

The stator current waveform, shown in Figure 9, depicts the simulation results for an entire period
of 50 s, over ten passes, and its expanded view is also shown in Figure 10, over a particular period,
which is rectangular in shape.
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Figure 9. Current waveform over 50 s.

Figure 10. View of the stator’s current waveform.

A profile-based feedback controller is proposed for setting the six-pulse inverter frequency and
parameters of the PWM waveform for current control based on Hall sensor position, and the same is
implemented for the closed loop operation of the brushless direct current motor drive system. The speed
response of the two different controllers, controller 1 and controller 2, are shown in Figure 11, and its
expanded view depicts that controller 2 provided a smoother response compared with controller 1.
In contrast, controller 1 has a higher amount of overshoot, which is quite evident in the expanded
view. Moreover, controller 1 and controller 2 had different gain parameters selected for obtaining
better performance.

Table 4 shows the ratings and parameters of the BLDC motor used in this paper.

Table 4. Brushless direct current (BLDC) motor parameters.

Back EMF Motor Rating Trapezoidal62 HP

Voltage 3-phase, 440 V
Rated Speed 1500 RPM

Resistance (Phase) 0.21 Ω
Inductance (Phase) 8.5 mH

Number of pole pairs 2
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Figure 11. Rotor speed of the two different controllers following the speed profile, and its expanded view.

6. Hardware Setup

Figure 12 illustrates the hardware setup of the drive system employed for the research, in a
laboratory-based environment. It consisted of an IGBT-based intelligent power module (IPM),
the brushless direct current (BLDC) motor belt coupled to a direct current (DC) generator, and the load
arrangements. For the drive system to operate in a closed-loop mechanism, an ARM development
board with speed sensors and interfaces was employed. A three-phase alternating current (AC) supply
fed the bridge rectifier for obtaining the DC supply to drive the BLDC motor. The generated reference
parameters were compared with the actual parameters, as discussed earlier, by means of a suitable
controller mechanism. A CPU that was interfaced with the BLDC motor drive system was employed
for monitoring the actual and reference speeds. This can be clearly observed from the screen display in
Figure 12.

Figure 12. Brushless DC motor drive hardware arrangements.

The actual rotor speed of the BLDC motor, following the set or reference speed is shown in
Figure 13. The reference speed ranges from 900 RPM to 1300 RPM, with incremental steps of 100 RPM.
A red-colored line indicates the reference or set speed, which was set by the user and accordingly the
motor speed tracked the set speed indicated in a blue color.
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Figure 13. Actual speed of brushless DC motor tracks increased values of set speed viewed in a
Graphical User Interface (GUI).

The forward motion of the Brushless DC motor tracked the set or reference speed with decreasing
values spanning from 1300 RPM to 900 RPM in steps of 100 RPM, as shown in Figure 14.

Figure 14. Actual speed of the brushless DC motor tracked decreasing values of set speed, as viewed
in the GUI.

7. Conclusions

A total system for hot rough steel rolling, consisting of a BLDC motor drive, coupled to a set of
work rolls and backup rolls, along with a closed loop controller, with a multi-loop configuration has
been presented in this paper. The set of mathematical equations covering the steel rolling process,
the BLDC motor model, and the controller model have been developed for simulation. The simulation
results, corresponding to the first and third quadrant operation of the BLDC motor drive system,
for a multi-pass steel roughing mill of a 1005 hot rolled steel feed specimen, have been obtained.
A profile-based controller has been successfully employed for the smooth operation of the entire
system. Furthermore, the performance of the drive system proved it to be an efficient mechanism for
fast hot rolling. Hence, it is concluded that a BLDC-motor-based drive system, as presented in this
paper, can serve as a powerful replacement for the traditional induction motor drive systems that
have been employed for steel rolling, thereby eliminating the need for front-end converters, which in
turn eliminates the cost of equipping the components used in them, and, thus, also improving the
conversion efficiency.
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Abstract: In order to study the influence of harmonic torque on the performance of the integrated
electric drive system (permanent magnet synchronous motor + reducer gear pair) in a pure electric
vehicle (PEV), the electromechanical coupling dynamic model of a PEV was established by considering
the dead-time effect and voltage drop effect of an inverter and the nonlinear characteristics of the
transmission system. Based on the model, the dynamic characteristics of an integrated electric drive
system (IEDS) are studied, and the interaction between the mechanical system and electrical system
is analyzed. On this basis, a harmonic torque reduction strategy for an IEDS is proposed in this paper.
The simulation results show that the proposed strategy can effectively reduce the harmonic torque of
the motor and reduce the speed fluctuation and dynamic load of the system components, which can
improve the stability of the IEDS and prolong the life of the mechanical components.

Keywords: integrated electric drive system; permanent magnet synchronous motor; electromechanical
coupling; harmonic torque reduction strategy

1. Introduction

1.1. Motivation

Electric drive assembly is the key component of a pure electric vehicle (PEV), which plays a key
role in the driving experience. Recent studies have shown that the integration of a drive motor and
reducer can greatly improve the efficiency, power density, and reliability of the drive system, and it
can also effectively reduce the volume, weight, and production cost of a PEV [1,2]. The research and
development of high speed, high efficiency, high power density, lightweight integrated motor-reducer
assembly has become a hotspot. The general structure of an integrated electric drive system (IEDS)
is shown in Figure 1, which mainly includes a permanent magnet synchronous motor (PMSM),
motor control system, helical gear pair reducer, and output shaft. The IEDS includes the driving motor
part and the mechanical transmission part.

1.2. Literature Review

Due to the dead-time effect of an inverter, the voltage drop effect, and the structural factors of the
motor itself, electromagnetic torque generated by the motor contains harmonic torque [3], which will
cause adverse effects on the mechanical transmission system. At the same time, due to the nonlinear
factors such as gear time-varying stiffness and meshing error, the mechanical transmission system will
also affect the stability of the electrical system and finally significantly affect the performance of the
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PEV. Therefore, scholars have paid much attention to the research of this problem, mainly including
two categories: (1) motor and controller research and (2) gear transmission system research.

Figure 1. General structure diagram of an integrated electric drive system.

In order to reduce the motor torque ripple caused by the nonlinear characteristics of the inverter,
scholars have done a lot of research on the optimization and improvement of the electrical system control
strategy, mainly including the following two aspects: (1) inverter optimization research and (2) motor
control strategy. From the aspect of inverter optimization, scholars have proposed various inverter
topologies, which can greatly reduce the torque ripple [4–6], but this method has high requirements for
development cost and it cannot be popularized in a short time. So, scholars have done a lot of research
on the switching control strategy of an inverter such as hybrid space vector modulation (SVM) strategies
in [7,8] to reduce torque ripple. In [9], a minimum root mean square (RMS) torque ripple-remote-state
pulse-width modulation (MTR-RSPWM) technique was proposed for minimizing the RMS torque
ripple under the reduced common-mode voltage condition of three-phase voltage source inverter-fed
brushless alternating current motor drives. Besides, a new modulation method, modified trapezoidal
modulation (MTM), was proposed for an inverter–PMSM drive in [10], which can increase torque
and reduce torque ripple simultaneously. [11] studied the theoretical distortion index of a multilevel
motor drive considering control sensitivity. By calculating the distortion index, the optimal equivalent
carrier frequency to minimize the torque ripple was obtained. In addition to optimizing the inverter,
some scholars studied the motor control strategy. In [12–14], the duty cycle of direct torque control
(DTC) was optimized to reduce the torque and flux ripple at low switching frequency. Furthermore,
in order to reduce the torque and flux ripple under all operating conditions, the three-level direct torque
control (3L-DTC) based on constant switching frequency, which was suitable for low and constant
switching frequency operation [15], and generalized direct torque control (GDTC) strategy, which was
suitable for any voltage level inverter [16], were studied. Refs [17,18] proposed a seven-level torque
comparator and a multi band torque hysteresis controller respectively, in which the voltage vectors
were optimized to reduce the torque ripple at different speeds. Some scholars also adopted predictive
torque control to reduce torque, flux ripple, and switching frequency [19]. In terms of motors for robots,
the modified distributed control framework and on-line tuning fuzzy proportional-derivative (PD)
controller of controlling of 5 degree-of-freedom (DOF) robot manipulators based on the equivalent
errors method were used in [20,21] to improve the dynamic performance of robots under large
disturbance and high frequency. In recent years, the harmonic injection method [22–26] has attracted
the attention of many scholars. By adding a harmonic current feedback loop and harmonic voltage
compensation loop to the traditional motor double closed-loop control system, and then using the
method of injecting harmonic voltage [22] and harmonic current [23–26], the electromagnetic torque
ripple of the motor was significantly reduced.

From single-stage gear transmission research to multi-stage gear transmission research, the field
of gear system dynamics has formed a relatively mature theoretical system with the joint efforts
of scholars [27]. Many scholars have studied the influence law of external load [28], time-varying
meshing stiffness, backlash, tooth surface wear [29,30], meshing frequency, eccentricity [31], error,
position error, bearing stiffness, and other internal and external factors on the gear transmission system,
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and they have conducted in-depth research on the nonlinear dynamic characteristics of the gear system.
Among them, gear noise and dynamic load caused by vibration are areas of major concern [32]. Due to
the rise of IEDS, scholars have done some research on the electromechanical coupling characteristics of
IEDS in recent years. A kind of trajectory-based stability preserving dimension reduction (TSPDR)
methodology was proposed to investigate the nonlinear dynamic characteristics of the gear–motor
system in the literature [33], which revealed the relationship between the stability and resonance of
the gear motor system combined with modal analysis. Combining the nonlinear permeance network
model of a squirrel cage induction motor (IM) and the bending torsion coupling dynamic model of a
planetary gear rotor system and considering external excitation such as load mutation and voltage
transient, [34] analyzed the dynamic characteristics of electromechanical coupling of a motor–gear
system, and the author further provided an effective method for detecting the asymmetric voltage sag
condition [35]. In [36], nonlinear damping characteristics, the time-varying meshing stiffness of gears,
the wheel rail contact relationship, and other nonlinear factors were considered to reveal the dynamic
performance of the motor car–track system model.

From the above analysis, it can be seen that scholars all over the world have conducted in-depth
research on torque ripple within motor systems and the dynamic load of gear transmission systems,
but little attention has been paid to the influence of coupling between a mechanical system and an
electrical system on the dynamic performance of an IEDS. A small number of electromechanical coupling
studies only focus on the electromechanical coupling characteristics of the IEDS, rarely conducting
in-depth study on the overall torque ripple of the IEDS, and they do not propose methods to improve the
system performance, which limits the ride comfort and NVH (noise, vibration, harshness) performance
improvement of a PEV equipped with an IEDS.

1.3. Original Contributions of This Paper

In order to explore the influence of motor harmonic torque on the stability and dynamic load of an
IEDS, the electromechanical coupling dynamic model of a PEV equipped with an IEDS is established
in this paper. The simulation results show that the mechanical nonlinear factors such as time-varying
meshing stiffness and meshing error will lead to the fluctuation of the motor shaft speed. The dead-time
effect and voltage drop effect of the inverter will cause the harmonic torque of the motor and increase
the dynamic load of the mechanical system. To reduce the influence of motor torque on the IEDS,
a harmonic torque reduction strategy is proposed in this paper. Harmonic voltage is injected into the
traditional field-oriented control (FOC) to reduce the harmonic torque of the IEDS, and it can ensure
the system’s stability and a response equal to the traditional FOC Furthermore, the simulation results
show that the harmonic torque reduction strategy proposed in this paper can effectively reduce the
speed fluctuation and dynamic load of the system components and improve the stability of the IEDS.

2. Dynamics Modeling of PEV Equipped with IEDS

The structure of a PEV equipped with an IEDS is shown in Figure 2. Its power transmission
system mainly includes an IEDS, final drive, differential, axle shaft, and wheel. In order to study the
influence of harmonic torque on the working performance of an IEDS, the transient models of the
electrical system and mechanical transmission system of an IEDS are established in this paper. On this
basis, the dynamic model of the PEV equipped with an IEDS is established.

2.1. Harmonic Torque Mathematical Model of PMSM

Combined with Clarke transform and Park transform, the mathematical model of a three-phase
PMSM in a d-q rotating coordinate system can be obtained. The stator voltage equation is as follows:{

ud = Rid + Ld
d
dt id −ωeLsiq

uq = Riq + Lq
d
dt iq +ωe(Lsid +ψ f )

(1)
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where ud and uq are the voltages of the d-axis and q-axis respectively; id and iq are the currents of the
d-axis and q-axis respectively; Ld and Lq are the stator inductance of the d-axis and q-axis respectively;
R is the stator resistance of the motor; and ωe is the rotor angular velocity.

 

Figure 2. Structure diagram of a pure electric vehicle (PEV) power transmission system equipped with
an integrated electric drive system (IEDS).

The torque equation of a surface-mounted permanent magnet synchronous motor (SPMSM) is
as follows:

Tm =
3
2

Pniq
[
id(Ld − Lq) +ψ f

]
. (2)

Stated thus, through the transformation from an a-b-c coordinate system to a d-q rotating
coordinate system, the electromagnetic torque of PMSM is only related to its q-axis current. This means
that by controlling the q-axis current of the motor, the electromagnetic torque control of the motor can
be realized. The parameters of PMSM used in this paper are shown in Table 1.

Table 1. Parameters of the permanent magnet synchronous motor (PMSM) in this paper.

Parameter Value Unit

Peak power 60 kW
Peak torque 250 Nm

Maximum speed 7000 rpm
Base speed 2292 rpm
DC voltage 650 V

Stator resistance 0.153 Ω
Stator inductance 1.8 mH

Permanent magnet flux linkage ψ f 0.2778 Wb
Pole number Pn 4 -

Phase current limit 150 A

The inverter circuit of the PMSM for an electric vehicle is shown in Figure 3. Sa, Sb, Sc, S’a, S’b,
and S’c are defined as the switch states of the inverter. The working principle of the inverter is as
follows: when Sa/Sb/Sc is in 1 state, S’a/S’b/S’c is in 0 state. At this time, the three switching devices
of the upper bridge arm of the inverter circuit are on, while the three switching devices of the lower
bridge arm of the inverter circuit are turned off.

Figure 4 shows a structural diagram of the A-phase bridge arm of the inverter, in which the switch
device is an insulated gate bipolar transistor (IGBT), and the motor stator winding is equivalent to a
resistance inductance circuit, forming a series structure with the voltage source. As shown in Figure 4,
when the inverter switching device Sa is on, S’a must be turned off. If the speed of Sa is turning on
faster than that of S’a is turning off, the bridge arm will be short-circuited. Therefore, in order to ensure
the safe operation of the inverter, dead time Tdead should be added to the process of switching between
the two switches. During the dead time, it can be equivalent to the switch of the upper or lower leg of
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the inverter being on. There is a deviation between the actual switch signal and the ideal switch driving
signal, which leads to the deviation between the actual output voltage and the demand voltage.

Udc

ia

ib

ic

r

Figure 3. Inverter circuit of the PMSM.

R
dcu

dcu

L

EA

ai >

ai <

Figure 4. Structure diagram of the A-phase bridge arm of the inverter.

The dead time in the actual output voltage waveform of the inverter can be expressed as follows:

Td = td + ton − to f f (3)

where ton and toff represent the on time and off time of the IGBT respectively; while td represents the
preset dead time in the switch driving signal.

The above content is the error voltage brought by the dead time of the inverter to the system.
The switch tube voltage drop and freewheeling diode conduction voltage drop will also bring an error
voltage to the system. As shown in Figure 5, the current direction and path in the inverter bridge arm
are different under different switching states. The error voltage Uerr considering dead time and tube
voltage drop is obtained by making a difference, as shown in Figure 5. vt is the conduction voltage drop
of the switch tube, and vd is the conduction voltage drop of the freewheeling diode. Supposing that
Ts1 and Ts2 are the real turn-on times of Sa and S’a of the upper and lower switches in the A-phase of
the inverter respectively during a pulse width modulation (PWM) cycle, the average error voltage Δu
can be obtained by averaging the error voltage in a period of time according to the area equivalent
principle. After averaging the error voltage over a period of time, a square wave signal can be obtained,
as shown in Figure 6.

Through Fourier decomposition of the square wave signal, the mathematical expression of the
average error voltage of the inverter can be obtained as follows:

uerr =
4Δu
π

(
sinωt +

1
3

sin 3ωt +
1
5

sin 5ωt +
1
7

sin 7ωt + · · ·
)
. (4)
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Figure 5. Voltage waveform of the A-phase bridge arm.
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Figure 6. Error voltage waveform generated by inverter nonlinear characteristics.

From the results of Fourier decomposition, it can be seen that the nonlinear characteristics such as
the dead-time effect and voltage drop of the inverter will introduce a large number of harmonics into
the motor voltage, then causing the motor to produce a harmonic current. Since the stator winding of
the PMSM mostly adopts star connection mode, the 3rd and integral multiple harmonic components of
the stator current can not be circulated. Therefore, the actual system mainly includes 5th, 7th, 11th,
and 13th harmonic components [37]. The specific parameters of the inverter used in this paper are
shown in Table 2.

Table 2. Parameters of the inverter in this paper. IGBT: insulated gate bipolar transistor.

Parameter Valve Unit

DC bus voltage udc 650 V
Modulation carrier period TPWM 100 μs

IGBT turn on time ton 1 μs
Voltage drop of IGBT switch tube ut 3 V
Modulation carrier frequency fPWM 10 kHz

Dead time td 4 μs
IGBT turn off time toff 2 μs

Conduction voltage drop of freewheeling diode ud 2 V

In the a-b-c coordinate system, the rotation speed of the 5th harmonic voltage vector in the motor
stator winding is −5ω, and the rotation speed of the 7th harmonic voltage vector in the motor stator
winding is 7ω [38]. Therefore, the stator voltage equation in the three-phase static coordinate system
can be expressed as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ua = u1 sin(ωt + θ1) + u5 sin(−5ωt + θ5) + u7 sin(7ωt + θ7) + · · ·
ub = u1 sin

(
ωt + θ1 − 2

3π
)
+ u5 sin

(
−5ωt + θ5 − 2

3π
)
+ u7 sin

(
7ωt + θ7 − 2

3π
)
+ · · ·

uc = u1 sin
(
ωt + θ1 +

2
3π

)
+ u5 sin

(
−5ωt + θ5 +

2
3π

)
+ u7 sin

(
7ωt + θ7 +

2
3π

)
+ · · ·

(5)

where θ1 is the initial phase angle of the stator fundamental voltage; θ5 and θ7 are the initial phase
angles of the 5th and 7th harmonic voltages of the stator, respectively; u1 is the amplitude of the stator

214



Electronics 2020, 9, 1241

fundamental voltage; and u5 and u7 are the amplitude of the 5th and 7th harmonic voltages of the
stator, respectively.

Adopting the amplitude invariable transformation, the stator voltage equation expressed in
Equation (5) is transformed into a d-q rotating coordinate system, and the converted stator voltage
equation of the d-axis and q-axis is obtained as follows:{

ud = ud1 + u5 cos(−6ωt + θ5) + u7 cos(6ωt + θ7)

uq = uq1 + u5 sin(−6ωt + θ5) + u7 sin(6ωt + θ7)
(6)

where ud1 and uq1 are the d-axis and q-axis components of fundamental voltage in the d-q rotating
coordinate system, respectively.

It can be seen from Equation (6) that in the d-q rotating coordinate system, the 5th and 7th harmonic
components on the stator of the motor in the original three-phase static coordinate system are shown
as the 6th harmonic component, with the rotation directions of them being opposite. If there is
harmonic voltage in the stator voltage, there will be a corresponding harmonic current. In the same
way, transforming the three-phase current of the motor into the d-q rotating coordinate system by
means of amplitude invariance, the stator current equation in the d-q rotating coordinate system is
obtained as follows: {

id = id1 + i5 cos(−6ωt + θ′5) + i7 cos(6ωt + θ′7)
iq = iq1 + i5 sin(−6ωt + θ′5) + i7 sin(6ωt + θ′7)

(7)

where id1 and iq1 represent the d-axis and q-axis components of the stator fundamental current in
the d-q rotating coordinate system; i5 and θ5 represent the amplitude and initial phase angle of the
5th harmonic current in the d-q rotating coordinate system; and i7 and θ7 represent the amplitude and
initial phase angle of the 7th harmonic current of the motor in the d-q rotating coordinate system.

Ignoring the harmonic caused by the motor itself, there is no harmonic flux component in the
permanent magnet flux linkage. By substituting Equation (7) into Equation (1), the stator voltage
equation with harmonic component is obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ud = −ωeLsiq1 + Rid1 + 5ωeLsi5 sin(−6ωt + θ′5) + Ri5 cos(−6ωt + θ′5)
−7ωeLsi7 sin(6ωt + θ′7) + Ri7 cos(6ωt + θ′7)

uq = ωeψ f +ωeLsid1 + Riq1 − 5ωeLsi5 cos(−6ωt + θ′5) + Ri5 sin(−6ωt + θ′5)
+7ωeLsi7 cos(6ωt + θ′7) + Ri7 sin(6ωt + θ′7)

. (8)

Projecting the fundamental current and harmonic current of the motor into the d-q rotating
coordinate system, the current in the d-q axis is obtained as follows:⎧⎪⎪⎨⎪⎪⎩ id = id1 + i′d5 + i′d7 + i′d11 + i′d13

iq = iq1 + i′q5 + i′q7 + i′q11 + i′q13
(9)

where id1 is the d-axis component of the stator fundamental current; i′d5, i′d7, i′d11, and i′d1 are
the d-axis components of the stator harmonic current of 5th, 7th, 11th, and 13th harmonic currents,
respectively; iq1 is the q-axis component of the stator fundamental current; and i′q5, i′q7, i′q11, and i′q13

are the q-axis components of the stator harmonic current of the 5th, 7th, 11th, and 13th harmonic
currents, respectively.

By introducing Equation (9) into the electromagnetic torque equation of the motor, the harmonic
equation of the torque is obtained as follows:

Tm = 3
2 Pnψ f iq

= 3
2 Pnψ f

[
iq1 +

(
i′q5 + i′q7

)
+

(
i′q11 + i′q13

)]
= Te0 + Te6 + Te12

(10)
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where Te0 is the constant component of electromagnetic torque; and Te6 and Te12 are the 6th and
12th harmonics of the electromagnetic torque respectively.

It can be seen from Equation (10) that the constant component of electromagnetic torque is
generated by the interaction of fundamental current and permanent magnet flux linkage under the
premise of ignoring the harmonics introduced by the motor. The 6th harmonic of electromagnetic
torque is mainly generated by the interaction of the rotor flux and stator 5th and 7th harmonic currents.
Similarly, the 12th harmonic of electromagnetic torque is mainly generated by the interaction of the
rotor flux and stator 11th and 13th harmonic currents. Generally, the larger the harmonic number,
the smaller the corresponding harmonic torque amplitude becomes.

2.2. Transmission System Model of IEDS

The mechanical transmission system of an IEDS mainly includes a wheel gear reducer and output
shaft. The dynamic model of a helical gear transmission system is established as below.

The meshing displacement of the gear tooth along the meshing line is:

δy = R1θ1 −R2θ2 − e (11)

where θ1 is the angular displacement of gear 1; θ2 is the angular displacement of driven gear 2; R1 is
the radius of gear 1; R2 is the radius of gear 2; and e is the meshing error.

The normal elastic deformation of the fear tooth along the contact line is as follows:

δi = δy cos βb (12)

where βb is the helix angle of the base circle.
The meshing force of the gear pair can be expressed as follows:

Fm = cm
·
δi + kmδi =

[
cm(R1

·
θ1 −R2

·
θ2 − ·e) + km(R1θ1 −R2θ2 − e)

]
cos βb (13)

where cm is the gear meshing damping and km is the gear meshing stiffness. The calculation methods
of the two will be described in detail later.

The y-direction meshing force of the gear pair can be expressed as follows:

Fy = Fm cos βb =
[
cm(R1

·
θ1 −R2

·
θ2 − ·e) + km(R1θ1 −R2θ2 − e)

]
cos2 βb. (14)

The torsional vibration model of a parallel shaft helical cylindrical gear pair is as follows:⎧⎪⎪⎨⎪⎪⎩ I1
··
θ1 = T1 − FyR1

I2
··
θ2 = −T2 + FyR2

(15)

where I1 is the moment of inertia of gear 1; I2 is the moment of inertia of gear 2; T1 is the active torque
acting on gear 1; and T2 is the load torque acting on gear 2.

The specific parameters of helical gears involved in this paper are shown in Table A1 of Appendix A.
By calculating the length change of the meshing line in the process of gear meshing and describing
the time-varying meshing stiffness of the helical gear by the angular displacement of the driving
gear, the relationship between the stiffness and angular displacement of the driving gear is obtained,
as shown in Figure 7.
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km

Figure 7. Time-varying meshing stiffness of gear pair.

The meshing damping of the gear pair can be expressed as follows:

cm = 2ξm

√
k12

m1m2

m1 + m2
(16)

where ξm is the meshing damping ratio in the range of 0.03–0.17; and mi is the mass of gear i.
The mathematical expression of the gear meshing error is as follows:

e = em + er sin(Z1θ1 + δ) (17)

where em is the constant value of the meshing error, and er is the amplitude of the meshing error,
both of which are related to the manufacturing accuracy of the gear; and δ is the initial phase of the
meshing error.

2.3. Vehicle Powertrain Model

The moment of inertia of the whole vehicle is equivalent to the wheel in this paper, and the torsional
vibration model of the whole vehicle powertrain is obtained, as shown in Figure 8. Ignoring the
translational vibration of the system, a 6-DOF dynamic model of the power transmission system is
established by using the lumped parameter method, as shown in Equation (18).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Im
··
θm + cs1(

·
θm −

·
θ1) + ks1(θm − θ1) = Tm

I1
··
θ1 − cs1(

·
θm −

·
θ1) − ks1(θm − θ1) + R1Fy = 0

I2
··
θ2 + cs2(

·
θ2 −

·
θg) + ks2(θ2 − θg) −R2Fy = 0

Ig
··
θg − cs2(

·
θ2 −

·
θg) − ks2(θ2 − θg) + 2/i0·ca(

·
θg/i0 −

·
θw) + 2/i0·ka(θg/i0 − θw) = 0

Iw
··
θw − ca(

·
θg/i0 −

·
θw) − ka(θg/i0 − θw) + cw(

·
θw −

·
θV) + kw(θw − θV) = 0

IV
··
θV − 2cw(

·
θw −

·
θV) − 2kw(θw − θV) = −TL

(18)

where Tm is the electromagnetic driving torque generated by PMSM; and TL is the external resistance
load when the vehicle is working. The parameters and their values represented by other symbols are
shown in Table A2 of Appendix A.

Among them, the resistance load of the vehicle can be expressed as follows:

TL = (mg f cosα+
CDA
21.15

V2 + mg sinα)·r (19)

where r is the wheel radius of the car.
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Figure 8. 6-DOF torsional vibration model of a power transmission system.

3. Research on Electromechanical Coupling Characteristics of IEDS

In order to study the electromechanical coupling effect of an IEDS, the transmission system
dynamic model, PMSM, and PMSM control system model are built in this paper. The speed and
torque of the motor shaft are used as common variables to transfer data between the electrical system
and mechanical system in real time. Figure 9 shows the electromechanical coupling model of a PEV
in motor torque mode. It should be noted that the simulation model of the IEDS is built on the
MATLAB/Simulink 2018b simulation platform and the computer processor is Intel(R) Core(TM) i7-8700
CPU@ 3.20 Ghz.
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Figure 9. Electromechanical coupling dynamic model of a PEV.

In order to explore the electromechanical coupling characteristics of an IEDS under the condition
of uniform speed, the simulation conditions are set as: the speed of PMSM is 1000 rpm; the vehicle
load is 100 Nm; and the motor working mode is torque control mode. When the speed of the PMSM is
1000 rpm (the rotation frequency is 16.67 Hz), the electric angular frequency of the motor is 66.67 Hz,
and the gear meshing frequency of the reducer of the IEDS is 283.33 Hz. The electromagnetic torque
and its frequency spectrum of the PMSM are shown as Figure 10a,b, respectively. Under the influence
of nonlinear factors such as inverter dead-time effect and voltage drop effect, the electromagnetic torque
shows the characteristics of pulsation. Moreover, the fluctuation range of harmonic torque is about
11 Nm, and the fluctuation frequencies of harmonic torque are mainly 400 Hz, 800 Hz, and 1200 Hz,
which are 6 times, 12 times, and 18 times the angular frequency, respectively. Figure 11a shows the
three-phase current of the PMSM, and it can be seen that the current waveform in the time domain is not
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completely sinusoidal. The frequency domain analysis of the A phase current in three-phase current by
fast Fourier transform (FFT) shows that in addition to the fundamental frequency (67 Hz), the current
also contains harmonic currents, among which the obvious components are 333 Hz, 467 Hz, 733 Hz,
and 867 Hz, which are 5 times, 7 times, 11 times, and 13 times the angular frequency, respectively,
as shown in Figure 11b.

Time (s)  Frequency (Hz)  

(a) (b) 

Figure 10. Electromagnetic torque of PMSM in an IEDS: (a) Electromagnetic torque in time domain;
(b) Frequency spectrum of electromagnetic torque.

ia
ib
ic

  
(a) (b) 

Figure 11. Three-phase current of PMSM in an IEDS: (a) Three-phase current in time domain;
(b) Frequency spectrum of A phase current.

The shaft speed and the frequency spectrum of the PMSM are shown as Figure 12a,b, respectively.
Under the influence of harmonic torque, gear time-varying stiffness, gear meshing error, and other
factors, the motor shaft speed fluctuates continuously, and the fluctuation amplitude is about 2 rpm.
The main components of the motor shaft speed fluctuation are gear meshing frequency (283 Hz),
2nd gear meshing frequency (567 Hz), motor 6th harmonic torque (400 Hz), and 12th harmonic torque
(800 Hz). The gear pair speed and the frequency spectrum of the reducer in the IEDS are shown in
Figure 13, which shows that the speed of the driving and driven gears fluctuates constantly, and the
main frequency component of fluctuation is the same as that of the motor shaft. In conclusion,
under the influence of mechanical transmission system factors such as gear time-varying stiffness and
gear meshing error, the rotational speed of each component of the IEDS presents the characteristics of
fluctuation. Meanwhile, the harmonic torque of the motor introduces more harmonics to the speed of
each component, which intensifies the speed fluctuation of each component.
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(a) (b) 

Figure 12. Shaft speed of the PMSM in the IEDS: (a) Shaft speed in time domain; (b) Frequency
spectrum of shaft speed.

  

(a) (b) 

  

(c) (d) 

Figure 13. Gear pair speed of reducer in the IEDS: (a) Driving gear speed in time domain; (b) Frequency
spectrum of driving gear speed; (c) Driven gear speed in time domain; (d) Frequency spectrum of
driven gear speed.

The meshing force and the frequency spectrum of the gear pair of the reducer in the IEDS is
shown in Figure 14, and the meshing displacement and its frequency spectrum is shown in Figure 15.
Under the influence of time-varying meshing stiffness and meshing error, the meshing force fluctuates
around the theoretical meshing force. The frequency domain analysis of the gear meshing force and
meshing displacement not only includes the gear meshing frequency (283 Hz) and its 2nd harmonic
frequency (567 Hz), but it also includes the 6th harmonic torque (400 Hz) and the 12th harmonic
torque (800 Hz). The dynamic transfer torque and the frequency spectrum of the motor shaft are
shown in Figure 16, and that of the output shaft of the IEDS is shown in Figure 17. The dynamic
torque transmitted by the two shafts also fluctuates continuously. It can be seen from the frequency
domain analysis diagram that the main component of the fluctuation is the same as the meshing force
of the gear.
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(a) (b) 

Figure 14. Gear pair meshing force of the reducer in the IEDS: (a) Meshing force in the time domain;
(b) Frequency spectrum of the meshing force.

  
(a) (b) 

Figure 15. Gear pair meshing displacement of the reducer in the IEDS: (a) Meshing displacement in the
time domain; (b) Frequency spectrum of the meshing displacement.

  
(a) (b) 

Figure 16. Dynamic transfer torque of the motor shaft in the IEDS: (a) Dynamic transfer torque in the
time domain; (b) Frequency spectrum of dynamic transfer torque.

Through the above simulation and analysis of the electromechanical coupling characteristics of
the IEDS under uniform speed conditions, it is found that the electrical system and mechanical system
of the IEDS will affect each other. Gear meshing frequency is the main component of motor shaft speed
fluctuation, which means that mechanical nonlinear factors such as time-varying meshing stiffness and
meshing error are the main causes of motor shaft speed fluctuation. Besides, the electrical system will
also affect the operation of mechanical system, because the dead-time effect and voltage drop effect of
the inverter make the output electromagnetic torque of the PMSM contain 6th and 12th harmonics.
The harmonic torque frequency of the motor is included in the meshing force of the gear and the
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transmission torque of the shaft, which means that the harmonic torque of the motor will increase the
dynamic load of the mechanical system.

  
(a) (b) 

Figure 17. Dynamic transfer torque of the output shaft in the IEDS: (a) Dynamic transfer torque in the
time domain; (b) Frequency spectrum of the dynamic transfer torque.

It should be noted that when designing an IEDS, if the 6th harmonic torque of the motor is
consistent with the gear meshing frequency, the amplitude of the motor speed fluctuation may be
larger after superposition, which is not conducive to the smooth operation of the motor. Moreover,
the dynamic load amplitude of the mechanical system is larger and the service life of the mechanical
system is reduced. So, in order to avoid it, the gear meshing frequency of the reducer should not be
equal to 6 times that of the electric angular frequency of the motor, namely Zp1 � 6Pn (where Zp1 is the
number of driving gear teeth of the reducer gear pair; and Pn is the number of magnetic pole pairs).

4. Harmonic Torque Reduction Strategy for IEDS

According to the analysis above, the harmonic torque will cause additional load fluctuation in
an IEDS, which will aggravate the speed fluctuation of each component of the IEDS, and that is not
conducive to the stable and efficient operation of the system. To solve the above problems, a harmonic
torque reduction strategy to reduce the adverse effects of motor harmonic torque in an IEDS is proposed
this section.

4.1. Design of Harmonic Torque Reduction Strategy

The stator of the motor mainly contains the 5th and 7th harmonic currents. In the three-phase
static coordinate system, the rotation speed of the 5th harmonic current is −5ω, and the rotation
speed of the 5th harmonic current is 7ω. To better control the 5th and 7th harmonic currents of the
motor, the 5th and 7th rotation coordinate systems are established in this section. Through coordinate
transformation, the 5th harmonic voltage and current are converted into DC flow in the 5th rotation
coordinate system, while the 7th harmonic voltage and current are converted into DC flow in the 7th
rotation coordinate system. In a relative manner, other current components are converted into AC flow.

Consequently, at this time, a low-pass filter can be used to separate the 5th and 7th harmonics
in the three-phase current of PMSM, and then the synchronous rotation a proportional-integral (PI)
controller can be used to make the actual d-q axis current follow the reference current command to
realize the injection of harmonic voltage to eliminate the torque harmonic component.

The 5th and 7th synchronous rotation coordinate systems used in Figure 18 are shown in Figure 19.
It should be noted that the transformation matrix between the coordinate systems is shown in
Appendix B.
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Figure 18. Separation strategy of 5th and 7th harmonic currents of a PMSM.
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Figure 19. 5th and 7th synchronous rotation coordinate systems of a motor.

Based on the above coordinate transformation, Equation (8) is transformed into a 5th d-q rotating
coordinate system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ud5 = ωeψ f sin(−6ωt + θ0) −ωeLsi1 sin(6ωt + θ′′1 ) + Ri1 cos(6ωt + θ′′1 )
+5ωeLsiq5 + Rid5 − 7ωeLsi7 sin(12ωt + θ′7) + Ri7 cos(12ωt + θ′7)

uq5 = ωeψ f cos(−6ωt + θ0) +ωeLsid1 cos(6ωt + θ′′1 ) + Ri1 sin(6ωt + θ′′1 )−5ωeLsid5 + Riq5 + 7ωeLsi7 cos(12ωt + θ′7) + Ri7 sin(12ωt + θ′7)

(20)

where id5 and iq5 are the d-axis and q-axis DC current components in the 5th d-q rotation
coordinate system.

The harmonic steady-state voltage equation in the 5th d-q rotating coordinate system is obtained
by omitting the AC quantities contained in Equation (20), which is written as:{

ud5 = 5ωLqiq5 + Rid5
uq5 = −5ωLqiq5 + Rid5

. (21)

Similarly, Equation (8) is transformed into the 7th d-q rotating coordinate system:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ud7 = ωeψ f sin(6ωt + θ0) −ωeLsi1 sin(−6ωt + θ′′1 ) + Ri1 cos(−6ωt + θ′′1 )

+5ωeLsi5 sin(−12ωt + θ′5) + Ri5 cos(−12ωt + θ′5) − 7ωeLsiq7 + Rid7
uq7 = ωeψ f cos(6ωt + θ0) +ωeLsi1 cos(−6ωt + θ′′1 ) + Ri1 sin(−6ωt + θ′1)

−5ωeLsi5 cos(−12ωt + θ′5) + Ri5 sin(−12ωt + θ′′5 ) + 7ωeLsid7 + Riq7

(22)

where id7 and iq7 are the d-axis and q-axis DC current components in the 7th d-q rotation
coordinate system.

The harmonic steady-state voltage equation in the 7th d-q rotating coordinate system is obtained
by omitting the AC quantities contained in Equation (22), which is written as:{

ud7 = −7ωLqiq7 + Rid7
uq7 = 7ωLqiq7 + Rid7

(23)
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Using a PI controller, combined with the 5th and 7th harmonic steady-state voltage equations,
the harmonic current loop control strategy is obtained, as shown in Figure 20a,b. Among them,
the 5th and 7th harmonic steady-state voltage and current are coupled with each other. In order to
better control the harmonic current, this paper realizes the decoupling of stator harmonic voltage and
current by adding compensation terms. Superimposing the voltage generated by the harmonic voltage
steady-state equation and the harmonic current PI controller, the required injection voltage of each
harmonic current in the rotating coordinate system can be obtained.
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Figure 20. Control block diagram of motor harmonic current decoupling: (a) 5th harmonic current;
(b) 7th harmonic current.

As shown in Figure 21, after coordinate transformation, injecting the harmonic output from the
harmonic current controller into voltage signal U′α and U′β and then adding them to the required
voltage U∗α and U∗β of the motor itself, harmonic voltage injection is realized, which constitutes the new
reference voltage signals Uβ and Uβ of the motor as the inverter demand voltages.
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Figure 21. Harmonic torque reduction control strategy.
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4.2. Simulation Analysis of Harmonic Torque Reduction Control Strategy Effectiveness

The electromechanical coupling dynamic model of a PEV with a harmonic torque reduction
strategy is shown in Figure 22. In order to verify the effect of the harmonic torque reduction strategy,
the simulation conditions are set as: the speed of the PMSM is 1000 rpm; the load of the vehicle is
100 Nm; and the motor is in torque control mode.
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Figure 22. Electromechanical coupling dynamic model of a PEV considering harmonic torque.

Figure 23a,b show the three-phase current before and after adding the harmonic reduction strategy,
respectively, while Figure 23c,d show the frequency domain analysis of the three-phase current
before and after adding the harmonic reduction strategy, respectively. Moreover, Figure 24a,b show
the electromagnetic torque of the motor before and after adding the harmonic reduction strategy,
respectively, while Figure 24c,d show the frequency domain analysis of the motor electromagnetic
torque before and after adding the harmonic reduction strategy, respectively. Under the effect of
the harmonic reduction strategy, the 5th and 7th harmonics in the current are significantly reduced.
Furthermore, the sinusoidal degree of the current is significantly improved, and the 6th harmonic
torque of the motor is effectively reduced. It can be found that the amplitude of the 5th harmonic
current is reduced from 1.234 A to 0.06 A, and that of the 7th harmonic current is reduced from 0.214 A
to 0.006 A. Meanwhile, the total fluctuation amplitude of electromagnetic torque is reduced by 50%
from 10 Nm to 5 Nm. The 6th harmonic torque amplitude of the motor is reduced from 2.909 Nm to
0.060 Nm. From the analysis of the above results, it can be seen that the harmonic current content can
be effectively reduced by harmonic voltage injection, and then the harmonic torque can be reduced.

Figure 25a compares the motor shaft speed before and after adding the harmonic reduction
strategy while Figure 25b,c show the frequency domain analysis of the motor shaft speed before and
after adding the harmonic reduction strategy, respectively. The fluctuation amplitude of the motor
shaft speed caused by the 6th harmonic torque of motor is reduced from 0.25 to 0.01 rpm, which means
that the overall fluctuation amplitude of the motor speed is effectively reduced.
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Figure 23. Three-phase current of a PMSM in an IEDS: (a) Three-phase current of the stator in the time
domain before adding the harmonic reduction strategy; (b) Three-phase current of the stator in the
time domain after adding the harmonic reduction strategy; (c) Frequency spectrum of the A-phase
current before adding the harmonic reduction strategy; (d) Frequency spectrum of the A-phase current
after adding the harmonic reduction strategy.

Time (s)  Time (s)  
(a) (b) 

Frequency (Hz)  Frequency (Hz)  
(c) (d) 

Figure 24. Electromagnetic torque of a PMSM in an IEDS: (a) Electromagnetic torque in the time
domain before adding the harmonic reduction strategy; (b) Electromagnetic torque in the time domain
after adding the harmonic reduction strategy; (c) Frequency spectrum of electromagnetic torque before
adding the harmonic reduction strategy; (d) Frequency spectrum of electromagnetic torque after adding
the harmonic reduction strategy.
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(a) (b) (c) 

Figure 25. Shaft speed of a PMSM in an IEDS: (a) Shaft speed in the time domain; (b) Frequency
spectrum of the shaft speed before adding the harmonic reduction strategy; (c) Frequency spectrum of
the shaft speed after adding the harmonic reduction strategy.

Figure 26a compares the driving gear speed of the reducer of the IEDS before and after adding the
harmonic reduction strategy, while Figure 26b,c shows the frequency domain analysis of the reducer
driving gear speed before and after adding the harmonic reduction strategy, respectively. The results
show that the fluctuation amplitude of the driving gear speed caused by the 6th harmonic torque of
the motor is reduced from 0.44 to 0.01 rpm.

   
(a) (b) (c) 

Figure 26. Driving gear speed of the reducer in an IEDS: (a) Driving gear speed in the time domain;
(b) Frequency spectrum of the driving gear speed before adding the harmonic reduction strategy;
(c) Frequency spectrum of the driving gear speed after adding the harmonic reduction strategy.

Moreover, Figure 27a compares the driving gear speed of the reducer of IEDS after adding the
harmonic reduction strategy, while Figure 27b,c respectively show the frequency domain analysis of
the driven gear speed of the reducer before and after adding the harmonic reduction strategy. It can be
seen that the fluctuation amplitude of the driven gear speed caused by the 6th harmonic torque of
the motor decreases from 0.33 to 0.01 rpm, and the overall fluctuation amplitude of the driven gear
speed decreases slightly. Under the effect of the harmonic reduction strategy, the 6th harmonic torque
component of the motor speed harmonics of each component of the IEDS is significantly reduced, and
the fluctuation amplitudes of the speed of each component are reduced to a certain extent, which is
conducive to the smooth operation of the system.

The meshing force of the reducer gear pair of the IEDS before and after adding the harmonic
reduction strategy is shown in Figure 28a, while the frequency domain analysis of the meshing force
of the gear pair before and after adding the harmonic reduction strategy is shown in Figure 28b,c
respectively. It can be found that the amplitude of the gear pair meshing force caused by the 6th harmonic
torque of motor is reduced from 26.09 to 0.67 Nm. Figure 29a compares the dynamic transmission
torque of the motor shaft of the IEDS before and after adding the harmonic reduction strategy; then,
Figure 29b,c show the frequency domain analysis of the motor shaft dynamic transmission torque
before and after adding the harmonic reduction strategy, respectively. The amplitude of the motor
shaft dynamic transmission torque caused by the 6th harmonic torque of the motor decreases from
0.64 to 0.02 Nm. Figure 30a compares the dynamic transmission torque of the output shaft of the
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IEDS before and after adding the harmonic reduction strategy. Then, Figure 30b,c show the frequency
domain analysis of the output shaft dynamic transmission torque before and after adding the harmonic
reduction strategy. The dynamic transmission torque of the output shaft caused by the 6th harmonic
torque of the motor is reduced from 0.92 to 0.02 Nm. That is to say, under the effect of the harmonic
reduction strategy, the 6th harmonic torque component of the dynamic load of each component of
the IEDS is significantly reduced, which is conducive to improving the reliability of the system and
prolonging the service life of the mechanical system.

   
(a) (b) (c) 

Figure 27. Driven gear speed of the reducer in an IEDS: (a) Driven gear speed in the time domain;
(b) Frequency spectrum of the driven gear speed before adding the harmonic reduction strategy;
(c) Frequency spectrum of the driven gear speed after adding the harmonic reduction strategy.

   
(a) (b) (c) 

Figure 28. Driven meshing force of the reducer gear pair in an IEDS: (a) Reducer gear pair meshing force
in the time domain; (b) Frequency spectrum of the meshing force before adding the harmonic reduction
strategy; (c) Frequency spectrum of the meshing force after adding the harmonic reduction strategy.

  
(a) (b) (c) 

Figure 29. Dynamic torque of the motor shaft in an IEDS: (a) Motor shaft dynamic torque in the time
domain; (b) Frequency spectrum of dynamic torque before adding the harmonic reduction strategy;
(c) Frequency spectrum of dynamic torque after adding the harmonic reduction strategy.

The detailed data comparison of IEDS before and after the harmonic torque reduction strategy is
shown in Table 3. The simulation results show that the 5th and 7th harmonic currents of the PMSM are
obviously reduced under the action of the harmonic torque reduction strategy, which makes the 6th
harmonic torque successfully reduced, thus reducing the speed fluctuation of each component of the
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IEDS and making the system run more stably. At the same time, the reduction of harmonic current
also helps reduce the motor heating and improve the efficiency of the motor.

  
(a) (b) (c) 

Figure 30. Dynamic torque of the output shaft in an IEDS: (a) Output shaft dynamic torque in the time
domain; (b) Frequency spectrum of dynamic torque before adding the harmonic reduction strategy;
(c) Frequency spectrum of dynamic torque after adding the harmonic reduction strategy.

Table 3. Data comparison of the IEDS before and after adding the harmonic torque reduction strategy.

Parameter
Before Adding

Harmonic Torque
Reduction Strategy

After Adding
Harmonic Torque

Reduction Strategy

Optimization
Effect (%)

5th harmonic current
amplitude (A) 1.234 0.06 95.1

7th harmonic current
amplitude (A) 0.214 0.006 97.2

6th harmonic torque (Nm) 2.909 0.06 97.9

Overall fluctuation amplitude
of motor torque (Nm) 10 5 50.0

Fluctuation amplitude of
motor shaft speed (rpm) 0.25 0.01 96.0

Amplitude of driving gear
speed fluctuation caused by
6th harmonic torque (rpm)

0.44 0.01 97.7

Fluctuation amplitude of
driven gear speed caused by
6th harmonic torque (rpm)

0.33 0.01 97.0

Amplitude of meshing force
fluctuation of gear pair caused

by 6th harmonic torque (N)
26.09 0.67 97.4

Amplitude of shaft dynamic
load fluctuation caused by 6th

harmonic torque (Nm)
0.64 0.02 96.9

Amplitude of output shaft
dynamic load fluctuation
caused by 6th harmonic

torque (Nm)

0.92 0.02 97.8

5. Conclusions

In this paper, the electromechanical coupling model of an electric vehicle equipped with an IEDS is
established, and the electromechanical coupling characteristics of the IEDS are simulated and analyzed.
On this basis, the method to suppress the harmonic torque of a PMSM is studied. There are two points
that should be noted:

1. The electrical system and mechanical system of the IEDS will interact with each other.
Mechanical nonlinear factors such as time-varying meshing stiffness and the meshing error
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of the gears can lead to a speed fluctuation of the motor shaft. Meanwhile, the dead-time effect
and voltage drop effect of the inverter will cause the 6th harmonic torque and 12th harmonic torque
of the motor, which will increase the dynamic load of the mechanical system. When designing an
IEDS, the gear meshing frequency of the reducer should not be equal to 6 times that of the electric
angular frequency of the motor, namely Zp1 � 6Pn. In order to avoid that when the 6th harmonic
torque of the motor is always consistent with the gear meshing frequency, the superposition
may lead to a more serious speed fluctuation of the system, resulting in a greater dynamic load
amplitude of the mechanical system and reducing the service life of the mechanical system.

2. By injecting harmonic voltage, a harmonic torque reduction strategy is proposed for an IEDS in
this paper. Under the effect of the harmonic torque reduction strategy, the 5th and 7th harmonic
currents are effectively reduced, and the total fluctuation amplitude of the electromagnetic torque
is reduced by 50%. The simulation results show that the harmonic torque reduction strategy
proposed in this paper can effectively reduce the harmonic torque of the IEDS, thus reducing the
speed fluctuation and dynamic load of each component of the system and improving the stability
of the IEDS.
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Appendix A

Table A1. Parameters of the helical gear pair.

Parameter Driving Gear Driven Gear Unit

Teeth number Z1 = 17 Z2 = 28 -
Normal modulus mn 3 3 mm

Modulus of end face mt 3.19 3.19 mm
Tooth surface width b 23 23 mm

Normal pressure angle αn 20 20 deg
Transverse pressure angle αt 21.17 21.17 deg

Pitch circle helix angle β 20 20 deg

Table A2. Parameters of the transmission system.

Parameter Value Unit

Numerical motor rotor and motor shaft moment of inertia Im 0.035 kg·m2

Rotational inertia of driving gear of reducer I1 1.67 × 10−4 kg·m2

Rotational inertia of driven gear of reducer I2 1.2 × 10−3 kg·m2

Equivalent moment of inertia of final drive and differential Ig 8 × 10−3 kg·m2

Wheel moment of inertia Iw 0.915 kg·m2

Body equivalent moment of inertia IV 139.8 kg·m2

Torsional stiffness of motor shaft ks1 8 × 104 Nm/rad
Normal meshing stiffness per unit length of gear pair ku 6 × 109 Nm/mm

Torsional stiffness of output shaft ks2 2 × 105 Nm/rad
Half shaft torsional stiffness ka 8 × 103 Nm/rad

Wheel torsional stiffness kV 4.5 × 103 Nm/rad
Torsional damping ratio of motor shaft cs1 2 Nm·s/rad

Gear meshing damping cm 800 N/(m/s)
Torsional damping ratio of output shaft cs2 2 Nm·s/rad
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Appendix B
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Abstract: This work introduces a neural-feedback control scheme for discrete-time quantized
nonlinear systems with time delay. Traditionally, a feedback controller is designed under ideal
assumptions that are unrealistic for real-work problems. Among these assumptions, they consider a
perfect communication channel for controller inputs and outputs; such a perfect channel does
not consider delays, or noise introduced by the sensors and actuators even if such undesired
phenomena are well-known sources of bad performance in the systems. Moreover, traditional
controllers are also designed based on an ideal plant model without considering uncertainties,
disturbances, sensors, actuators, and other unmodeled dynamics, which for real-life applications are
effects that are constantly present and should be considered. Furthermore, control system design
implemented with digital processors implies sampling and holding processes that can affect the
performance; considering and compensating quantization effects of measured signals is a problem
that has attracted the attention of control system researchers. In this paper, a neural controller is
proposed to overcome the problems mentioned above. This controller is designed based on a neural
model using an inverse optimal approach. The neural model is obtained from available measurements
of the state variables and system outputs; therefore, uncertainties, disturbances, and unmodeled
dynamics can be implicitly considered from the available measurements. This paper shows the
performance and effectiveness of the proposed controller presenting real-time results obtained on a
linear induction motor prototype. Also, this work includes stability proof for the whole scheme using
the Lyapunov approach.

Keywords: quantized; nonlinear systems; time delay; lyapunov approach; real-time implementation

1. Introduction

Traditionally, a control system is designed based on many assumptions, which are rarely satisfied
in real-life systems. One of these assumptions is a mathematical model that perfectly represents the
behavior of the system. However, most of the used mathematical models do not consider disturbances,
uncertainties, parametric variations, unmodeled dynamics, among other issues. Moreover, there is
the assumption that the state measurements and calculated control signals are transmitted through
ideal communication channels without the noise of sensors, signal delays, and packet losses, which
are phenomena that are present in the day to day systems. These factors are sources that need to be
compensated adequately by the controller to have proper performance and avoid stability problems.
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In control system design, the existence of delays can severely degrade the performance of the
controllers, as well as causing a loss in system stability, among other undesirable effects [1–3]. Ignoring
measurement noise when designing a controller can cause undesired performance or system failure,
especially for systems with high sensitivity to uncertainties [4]. Furthermore, control system design
implemented with digital processors implies sampling and holding processes; both operations can
severely affect the performance of the designed controller [5]. Moreover, the design of controllers
that consider and compensate quantization effects of measured signals is a problem that has attracted
the attention of control system researchers for many years [6], which is highly relevant due to the
importance that the investigation of networked control systems has gained recently [7].

Previous research [8,9] show a successful trajectory tracking based on ideal conditions. Also,
the use of intelligent system techniques has allowed the control schemes to be designed in a manner
inspired by nature. These complex dynamic systems include robotic navigation, synchronization,
complex networks, control of complex processes, smart grids, among others, see [10–13]. Mainly, neural
networks and fuzzy logic systems have made significant progress in designing solutions for complex
control systems. In [14], deterministic learning is presented to identify nonlinear dynamic systems
based on sampled data sequences with simulation results applied to chaotic systems using radial basis
neural networks. In [15], a backstepping controller based on a fuzzy observer for the control of a
nonlinear system with strict second-order feedback is presented. In [16], an adaptive neural controller
for uncertain nonlinear systems with state and input restrictions is presented, with simulation-level
results, for a single-link robot.

Regarding the design of controllers considering quantization, in [17], a feedback control with static
quantization is presented for discrete-time systems. In [18], a feedback optimal neural controller is
designed for nonlinear systems quantized in discrete time with input constraints. In [19], the case of the
stabilization of nonlinear systems based on three-layer neural networks as a universal approximator of
dynamic systems is considered. In [20], a quantized adaptive controller for uncertain nonlinear systems
in the presence of external disturbances is presented. Another current approach is described in [21],
which shows the design of an adaptive fault-tolerant controller with input prescribed performance for
trajectory tracking with quantization and unknown control directions. A similar problem is analyzed
in [3], where the use of a Takagi–Sugeno fuzzy controller is proposed for systems in the network under
actuator saturation, measurement noise, and quantization. In [22], an inverse optimal neural controller
is presented for nonlinear discrete systems considering disturbances; in [2], time delays, as well as
disturbances, are considered in neural controller design. Nevertheless, it must be noted that none of
the above-referenced works include a real-time implementation of a controller, which considers at the
same time disturbances, noise, delays, and quantization for a system with an unknown model.

Please note that all the controllers mentioned above only include simulation-level results due to the
difficulty of adequately measuring the effects referred above and the complexity of their corresponding
stability analysis.

Motivated by these facts, this paper presents the design and implementation of a discrete-time
neural controller for quantized nonlinear systems with delays and measurement noise, while
presenting disturbances, uncertainties and unmodeled dynamics, also, without the need for prior
knowledge of the system model or the need to estimate its bounds, nor nominal models. Accordingly,
the main contributions of this paper can be defined as follows: First, it is designed a neural controller
for uncertain nonlinear systems under the inverse optimality approach; second, such controller is
implemented in real time and third stability proof of the entire system is included using a Lyapunov
approach considering: quantization of the state and input signals, unknown state delays, measurement
noise, external disturbances, uncertainties, unknown model, among others.

This paper is organized as follows: Section 2 includes some preliminary concepts and problem
statement. Section 3 describes the design of the discrete-time neural controller for uncertain nonlinear
systems, including the Lyapunov proof. Section 4 presents real-time results, and in Section 5,
conclusions about our proposal are presented.
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2. Problem Statement

We propose to solve the problem of designing a discrete-time neural controller for quantized
uncertain nonlinear systems under the presence of delays, without the need to have prior knowledge
of the system model. First, essential definitions are considered below to define a neural model that
considers all the dynamics caused by the above-mentioned phenomena. Based on such a model,
a controller is designed to achieve trajectory tracking.

2.1. System Definition

Let us consider a discrete-time unknown nonlinear delayed system that can be written in an affine
form as follows:

x (k + 1) = f (x (k)) + g(x (k))u (k) ,

y (k) = Cx (k) , (1)

where x (k) ∈ 
n is the state of the system, u (k) ∈ 
m is the control input, and f (x (k)) : 
n → 
n

and g(x (k)) : 
n → 
n×m are smooth maps. Without loss of generality, system (1) is assumed to have
an equilibrium point at x (k) = 0.

Then (1) can be rewritten as:

x (k − l) =
[

x1 (k) . . . xi (k) . . . xn (k)
]�

,

d (k) =
[

d1 (k) . . . di (k) . . . dn (k)
]�

,

xi (k + 1) = fi(x (k)) + gi(x (k))u (k) ,

y (k) = Cx (k) . (2)

2.2. Inverse Optimal Control Methodology

The main idea behind inverse optimal control methodology is to design a control law and
then the cost functional [23]. For the state feedback control synthesis, it is necessary to fulfill the
following Assumption:

Assumption 1. The full state x (k) of system (1) is available.

If the full state vector is not available for measurement, Assumption 1 may be fulfilled using a
state estimator considering the discrete-time separation principle for nonlinear systems.

The trajectory tracking problem can be solved as a regulation problem for an error system that
should be regulated to the origin. For such transformation, an auxiliary error system should be defined
using error equations and its dynamics, in this case, let us consider the trajectory tracking error as:

ψ (k) = x (k)− xd (k) , (3)

with xd (k) the desired trajectory for x (k), it is important to note that the proposed controller only
requires the knowledge of xd (k + 1) and there is no longer a restriction for xd, which is an improvement
with respect to other controllers. Let us propose a control Lyapunov function (CLF) as

V(ψ (k)) =
1
2

ψT (k)Pψ (k) , P = PT > 0, (4)

to ensure the stability of the trajectory tracking error (3), which will be achieved by defining
an appropriate matrix P . Instead of solving the Hamilton-Jacobi-Bellman (HJB) equation,
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the inverse optimal control synthesis is based on the knowledge of V(ψ (k)). The control law u(k)
can be defined as:

u(k) = −1
2
R−1 (ψ (k)) gT (ψ (k))

∂V (ψ (k + 1))
∂ψ (k + 1)

= −1
2

(
R (ψ (k)) +

1
2

gT (ψ (k))Pg (ψ (k))
)−1

gT (ψ (k))P f T (ψ (k)) , (5)

where R(ψ (k)) = RT(ψ (k)) > 0 is a weighting matrix whose entries can be functions of the system
state or can be fixed, i.e., it can be selected as R(ψ (k)) = R. Since P and R(ψ (k)) are positive
definite and symmetric matrices, the existence of the inverse in (5) is ensured [22,23]. Now, the control
synthesis goal is to obtain an appropriate matrix P for (5) such that P = PT > 0, and its values
are determined heuristically in order to improve trajectory tracking performance; stability analysis
guarantees optimality of the inverse optimal controller. The following theorem establishes a sufficient
condition for the matrix P regarding inverse optimal control.

Theorem 1 ([23]). Consider the system (1). If there exists a matrix P = PT > 0 such that the following
inequality holds:

Vf (ψ (k))− 1
4
PT

1 (ψ (k)) (R (ψ (k)) + P2 (ψ (k)))−1 P1 (ψ (k)) ≤ −ψT (k)Qψ (k) ,

where

Vf (ψ (k)) =
1
2

f T (ψ (k))P f (ψ (k))− V (ψ (k)) ,

P1 (ψ (k)) = gT (ψ (k))P f (ψ (k)) ,

P2 (ψ (k)) =
1
2

gT (ψ (k))Pg (ψ (k)) , (6)

V (ψ (k)) as defined in (4) and Q = QT > 0, then, the equilibrium point ψ (k) = 0 from the system (1) is
globally exponentially stabilized by the control law (5). Moreover, this control law is inverse optimal in the sense
that it minimizes the meaningful functional given by

J (k) =
∞

∑
k=0

(
l (ψ (k)) + uT (k)R (ψ (k)) u (k)

)
, (7)

with l (ψ (k)) = −V (ψ (k + 1)) + V (ψ (k))− u∗TR (ψ (k)) u∗ (k).

Proof. For the detailed proof of Theorem 1, we refer the reader to [23].

System (1), is described in an affine form, which is not a trivial requirement for general nonlinear
systems, mainly for unknown nonlinear systems. Therefore, in this paper, a neural identifier is used to
provide an accurate model for the nonlinear system to be controlled. The model should be presented
in a block control form [23].

2.3. Quantizers in a Control Loop

Different kinds of quantizers are considered in the literature. These include static, dynamic,
uniform, logarithmic, hysteresis, among other kinds of quantizers. However, in practice, uniform
quantizers are typically used, mainly due to technological constraints, although other quantizers may
be advantageous for analytical purposes [7]. In our work, a dynamic uniform quantizer is considered.
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In this paper, the general quantizer is defined as the one described in [17]. Let us assume that
v ∈ 
s and that there exist numbers M > 0 and D > 0 such that the following condition holds:

|q(v)− v| ≤ D, if |v| ≤ M, (8)

where v is the signal to be quantized, q(v) is the signal after quantization, M denotes the range of the
quantizer, and D stands for the quantization error boundary of the quantizer. In the developed control
strategy, we consider the one-parameter family of quantizers that can be defined as:

qμ(v) = μq
(

v
μ

)
, (9)

where μ > 0 is the parameter of the quantizer which can be computed independently, therefore q(v)
in (8) can be defined as (9), although, in this paper, it is considered unknown. Let us consider the
quantized measured state signal and the quantized control input signal in the following form:

xq (k) = qμx (x (k)) = μxq
(

x (k)
μx

)
, (10)

uq (k) = qμu (u (k)) = μuq
(

u (k)
μu

)
, (11)

where qμ∗ (·) is a dynamic quantizer defined by (9), which is comprised of a dynamic scaling μ∗ and
by a static quantizer q (·) defined by (8) with range M∗ and error D∗ [18].

3. Neural Controller Design

The inverse optimal controller defined in the previous section is defined for an ideal system.
Such a system is considered ideal since the calculated control law is directly applied to the system
without the actuator limitations and input quantization. Moreover, such a controller considers full
access to the ideal value of state variables, i.e., without quantization error in sensors. However,
real-time applications include the system to be controlled as well as attached sensors and actuators.
These actuators and sensors are part of the entire system. Therefore, their dynamics affect system
operation and should be considered for the control design. In this section, a discrete-time neural
controller is proposed for quantized nonlinear systems with signal delays. First, it is necessary to
obtain an accurate model for the unknown nonlinear system. The use of a recurrent high order neural
network is proposed to identify the unknown nonlinear system. Second, based on the obtained neural
model, a controller is designed using an inverse optimality approach. It is important to note that
the system to be modeled by the neural network includes the system itself, and the dynamics of the
actuators and sensors. This is possible since the neural network is trained with physical measurements
from sensors, as depicted in Figure 1.
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Figure 1. Schematic representation for neural identification of discrete-time unknown nonlinear
quantized delayed systems with measurement noise.

3.1. Neural Identification

As previously explained, the quantization error is a source of problems that can be
encountered in real-time implementations. In almost all quantized output feedback control systems,
quantization effects exist in the communication channel from sensor-to-controller, as well as from
controller-to-actuator [17]. From now on, let us consider that the measured system signals and the
controller output will be quantized before they are transmitted to the controller and the plant via a
communication network.

However, it is necessary to consider that both measurement and actuator errors due to the
unmodeled dynamics that appear in real-life problems; in this manner, an identification scheme can be
represented as in Figure 1. Moreover, for unknown nonlinear systems with uncertainties, disturbances,
and delays, a neural identifier can give an accurate model. System illustrated in Figure 1, can be
modeled as:

xi (k + 1) = fi (x (k − l)) + gi (x (k − l)) u (k) + di (k) , i = 1, · · · , n,

y (k) = Cx (k) , (12)

where x is the quantized state, u represents the ideal calculated control law, l is the unknown delay
for the state, and di represents unknown disturbances. From Figure 1, it can be seen that a recurrent
high order neural network (RHONN) is trained with quantized measured values of the state x and
calculated values of the input u .

In this paper, the measured values of the state x are considered to be an unknown nonlinear
function which depends on its quantized error es, delay l and time k, as follows:

x (k − l) = δ
(
xq (k) , es (k) , l, k

)
< δ,

with γ an unknown function assumed bounded by γ which is also considered unknown; also, xq is
defined as in (10). Then, we propose a neural identifier for the system (12), with the following structure:

240



Electronics 2020, 9, 1274

x̂ (k) =
[

x̂1 (k) . . . x̂i (k) . . . x̂n (k)
]�

,

x̂i(k + 1) = w�
i zi(x (k − l) , u (k)), (13)

with zi(x (k − l) , u (k)) defined as

zi(x(k), �(k)) =

⎡⎢⎢⎢⎢⎣
zi1
zi2
...

ziLi

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Πj∈I1 ξ
dij(1)
ij

Πj∈I2 ξ
dij(2)
ij

...

Πj∈ILi
ξ

dij(Li)

ij

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

with dij(k) being non-negative integers, and

ξi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξi1
...

ξin
ξin+1

...
ξin+m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S(x1)
...

S(xn)

u1(k)
...

um(k)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

where S(•) is defined as any sigmoid function as:

S(ς) =
1

1 + exp(−βς)
, β > 0, (16)

and ς is any real valued variable.
As discussed in [24], the general discrete-time nonlinear system (1) can be approximated by a

RHONN. In this paper the following discrete-time RHONN has been selected:

x (k + 1) = w∗�z (x (k − l) , u (k)) + εz, (17)

and in the state component-wise form as

xi (k + 1) = w∗�
i zi (x (k − l) , u (k)) + εzi , i = 1, · · · , n, (18)

where x is the measured plant state, and εzi is a bounded approximation error, which can be reduced
by increasing the number of the adjustable weights [24]. Let us assume that there exists an optimal
weights vector w∗

i ∈ 
Li , such that ‖εzi‖ is minimized on a compact set wzi ⊂ 
Li which is an artificial
quantity required only for analytical purposes. In general, it is assumed that this optimal weight vector
exists, and it is constant but unknown [24].

Let us define the estimate of w∗
i as wi; then, the weight estimation error w̃i (k) and identification

error x̃i (k) are defined, respectively as

w̃i (k) = w∗
i − wi (k) , (19)

and
x̃i (k) = xi (k)− x̂i(k). (20)
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The weight vectors are updated online with a decoupled extended Kalman filter (EKF) training
algorithm, described by

wi (k + 1) = wi (k) + ηi (k)Ki (k) x̃i (k) , (21)

Ki (k) = Pi (k) Hi (k) Mi (k) , (22)

Pi (k + 1) = Pi (k)− Ki (k) H�
i (k) Pi (k) + Qi (k) , (23)

with

Mi (k) =
[

Ri (k) + H�
i (k) Pi (k) Hi (k)

]−1
, (24)

i = 1, · · · , n,

and the identification error is defined as in (20). The dynamics of xi (k + 1) can be expressed as

x̃i (k + 1) = xi (k + 1)− x̂i (k + 1) + eqxi (k) , (25)

with
eqxi (k) = xi (k)− xi (k) , (26)

as the state quantization error. From (10), this last equation can be rewritten as:

eqxi (k) = μx

(
q
(

x (k)
μx

)
− x (k)

μx

)
. (27)

To determine the state quantization error, first consider the property defined in (8), then,∣∣∣∣ x (k)μx

∣∣∣∣ ≤ Mx, (28)

and ∣∣∣∣q( x (k)
μx

)
− x (k)

μx

∣∣∣∣ ≤ Dx, (29)

By using the homogeneity property of the Euclidian norm, from (27) the following equation is obtained

∣∣eqxi (k)
∣∣ =

∣∣∣∣μx

(
q
(

x (k)
μx

)
− x (k)

μx

)∣∣∣∣
= μx

∣∣∣∣(q
(

x (k)
μx

)
− x (k)

μx

)∣∣∣∣ ≤ μxΔx. (30)

Considering the quantized system (18) and (13), the dynamics of (25) can be defined as:

x̃i (k + 1) = xi (k + 1)− x̂i (k + 1) + eqxi (k)

= w̃T
i (k) zi (x(k)) + εzi + eqxi (k) . (31)

By using (21), the weight estimation error dynamics (19) can be defined as:

w̃i (k + 1) = w̃i (k)− ηi (k)Ki (k) x̃i(k). (32)

Thus, considering (12), (31) and (32), then, it is possible to establish the following main result for an
unknown nonlinear system with nonlinear output.
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Theorem 2. For a quantized delayed system (12), the neural identifier (13), trained with the EKF-based
algorithm (21), ensures that the identification error (25) and the weight estimation error (32) are semi-globally
uniformly ultimately bounded (SGUUB).

Proof of Theorem 2. Step 1. For each element of V (k), defined as Vi (k) for i = 1, 2, · · · , n, let us
consider the following Lyapunov function candidate:

Vi (k) = γi (x̃i (k))
2 + w̃T

i (k) Pi (k) w̃i (k) . (33)

Its first difference can be written as:

ΔVi (k) = γi (x̃i (k + 1))2 + w̃T
i (k + 1) Pi (k + 1) w̃i (k + 1)− γi (x̃i (k))

2

−w̃T
i (k) Pi (k) w̃i (k) . (34)

Substituting (31) and (32) in (34) it yields

ΔVi (k) = γi

(
w̃T

i (k) zi (x (k − l) , u (k)) + εzi + eqxi (k)
)2

+ (w̃i (k)− ηi (k)Ki (k) x̃i (k))
T (Pi (k)− Ai (k))

× (w̃i (k)− ηi (k)Ki (k) x̃i (k))− γi (x̃i (k))
2 − w̃T

i (k) Pi (k) w̃i (k) .

Then,

ΔVi (k) = γi

(
w̃T

i (k) zi (x (k − l) , u (k))
)2 − w̃T

i (k) Ai (k) w̃i (k)

+η2
i (k) x̃T

i (k)KT
i (k) Pi (k)Ki (k) x̃i (k)− γi (x̃i (k))

2

−ηi (k) x̃T
i (k)KT

i (k) Ai (k) x̃i (k) + 2γiw̃T
i (k) zi (x (k − l) , u (k)) εzi

+2γiw̃T
i (k) zi (x (k − l) , u (k)) eqxi (k)− ηi (k) w̃T

i (k) Pi (k)Ki (k) x̃i (k)

+w̃T
i (k) Ai (k) x̃i (k)− ηi (k) x̃T

i (k)KT
i (k) Pi (k) w̃i (k)

+ηi (k) x̃T
i (k)KT

i (k) Ai (k) w̃i (k) + γiε
2
zi
+ 2γiεzi eqxi (k) + γie2

qxi
(k) .

with Ai (k) = Ki (k) H�
i (k) Pi (k)− Qi (k). Now, using the following inequalities

XTX + YTY ≥ 2XTY,

XTX + YTY ≥ −2XTY,

−λmin (P) (XTX) ≥ −XT PX ≥ −λmax (P) (XTX), (35)
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which are valid ∀X, Y ∈ 
n with ∀P ∈ 
n×n, P = PT > 0, using (35), then ΔVi (k) can be rewritten as

ΔVi (k) ≤ γi

(
w̃T

i (k) zi (x (k − l) , u (k))
)2 − w̃T

i (k) Ai (k) w̃i (k)

+η2
i (k) x̃T

i (k)KT
i (k) Pi (k)Ki (k) x̃i (k)− γi (x̃i (k))

2

−ηi (k) x̃T
i (k)KT

i (k) Ai (k) x̃i (k) + 4γi

(
w̃T

i (k) zi (x (k − l) , u (k))
)2

+ ε2
zi

+4γi

(
w̃T

i (k) zi (x (k − l) , u (k))
)2

+ e2
qxi

(k) + η2
i (k) x̃T

i (k)KT
i (k)Ki (k) x̃i (k)

+Ai (k) w̃i (k) w̃T
i (k) Ai (k) + η2

i (k) w̃T
i (k) Pi (k) PT

i (k) w̃i (k)

+Ki (k) x̃i (k) x̃T
i (k)KT

i (k) + w̃T
i (k) Ai (k) AT

i (k) w̃i (k)

+x̃i (k) x̃T
i (k) + η2

i (k) x̃T
i (k)KT

i (k)Ki (k) x̃i (k)

+Pi (k) w̃i (k) w̃T
i (k) Pi (k) + γiε

2
zi
+ 2γiεzi eqxi (k) + γie2

qxi
(k) .

Then,

ΔVi (k) ≤ γi ‖w̃i (k)‖2 ‖zi (x (k − l) , u (k))‖2 − ‖w̃i (k)‖2 λmin (Ai (k))

−γi ‖x̃i (k)‖2 + η2
i (k) ‖x̃i (k)‖2 ‖Ki (k)‖2 λmax (Pi (k))

−ηi (k) ‖x̃i (k)‖2 λmin (Ki (k)) λmin (Ai (k))

+8γ2
i ‖w̃i (k)‖2 ‖zi (x (k − l) , u (k))‖2 + |εzi |2

+
∣∣eqxi (k)

∣∣2 + η2
i (k) ‖x̃i (k)‖2 ‖Ki (k)‖2 + ‖Ai (k)‖2 ‖w̃i (k)‖2

+η2
i (k) ‖w̃i (k)‖2 ‖Pi (k)‖2 + ‖Ki (k)‖2 ‖x̃i (k)‖2

+ ‖w̃i (k)‖2 ‖Ai (k)‖2 + ‖x̃i (k)‖2 + η2
i (k) ‖x̃i (k)‖2 ‖Ki (k)‖2

+ ‖w̃i (k)‖2 ‖Pi (k)‖2 + γi |εzi |2 + 2γi |εzi |
∣∣eqxi (k)

∣∣+ γi
∣∣eqxi (k)

∣∣2 . (36)

Defining

Ei (k) = −γi ‖zi (x (k − l) , u (k))‖2 + λmin (Ai (k))− 8γ2
i ‖zi (x (k − l) , u (k))‖2

−2 ‖Ai (k)‖2 − η2
i (k) ‖Pi (k)‖2 − ‖Pi (k)‖2 ,

Fi (k) = −η2
i (k) ‖Ki (k)‖2 λmax (Pi (k)) + γi + ηi (k) λmin (Ki (k)) λmin (Ai (k))

−2η2
i (k) ‖Ki (k)‖2 − ‖Ki (k)‖2 − 1,

and selecting γi, ηi, Qi and Ri such that Ei > 0 and Fi > 0, ∀k, then (36) can be expressed as:

ΔVi (k) = −‖w̃i (k)‖2 Ei (k)− ‖x̃i (k)‖2 Fi (k) + |εzi |2 + |Dxi |2 + γi |εzi |2
+2γi |εzi | |Dxi |+ γi |Dxi |2 , (37)

with
∣∣eqxi (k)

∣∣ ≤ μxDx from (30). Then, ΔVi (k) < 0 when

‖w̃i (k)‖ >

√
|εzi |2 + |Δxi |2 + γi |εzi |2 + 2γi |εzi | |Δxi |+ γi |Δxi |2

Ei (k)
≡ κ1 (k) , (38)

or

‖x̃i (k)‖ >

√
|εzi |2 + |Δxi |2 + γi |εzi |2 + 2γi |εzi | |Δxi |+ γi |Δxi |2

Fi (k)
≡ κ2 (k) . (39)

Step 2. Now, for V (k), consider the Lyapunov function candidate

V (k) =
n

∑
i=1

(
γi (x̃i (k))

2 + w̃T
i (k) Pi (k) w̃i (k)

)
. (40)
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Its first difference can be written as:

ΔV (k) =
n

∑
i=1

(
γi (x̃i (k + 1))2 + w̃T

i (k + 1) Pi (k + 1) w̃i (k + 1)

−γi (x̃i (k))
2 − w̃T

i (k) Pi (k) w̃i (k)
)

. (41)

Substituting (31) and (32) in (41) yields

ΔV (k) =
n

∑
i=1

(
γi

(
w̃T

i (k) zi (x (k − l) , u (k)) + εzi + eqxi (k)
)2

+ (w̃i (k)− ηi (k)Ki (k) x̃i (k))
T (Pi (k)− Ai (k))

× (w̃i (k)− ηi (k)Ki (k) x̃i (k))

−γi (x̃i (k))
2 − w̃T

i (k) Pi (k) w̃i (k)
)

. (42)

Defining

Ai (k) = Ki (k) H�
i (k) Pi (k)− Qi (k) ,

Ei (k) = −γi ‖zi (x (k − l) , u (k))‖2 + λmin (Ai (k))− 8γ2
i ‖zi (x (k − l) , u (k))‖2

−2 ‖Ai (k)‖2 − η2
i (k) ‖Pi (k)‖2 − ‖Pi (k)‖2 ,

Fi (k) = −η2
i (k) ‖Ki (k)‖2 λmax (Pi (k)) + γi + ηi (k) λmin (Ki (k)) λmin (Ai (k))

−2η2
i (k) ‖Ki (k)‖2 − ‖Ki (k)‖2 − 1,

and selecting γi, ηi, Qi and Ri such that Ei > 0 and Fi > 0, ∀k, then (42) can be expressed as:

ΔVi (k) =
n

∑
i=1

(
−‖w̃i (k)‖2 Ei (k)− ‖x̃i (k)‖2 Fi (k) + |εzi |2 + |Δxi |2

+γi |εzi |2 + 2γi |εzi | |Δxi |+ γi |Δxi |2
)

. (43)

Then, ΔVi (k) < 0 when (38) and (39) is fulfilled for i = 1, 2, · · · , n. Therefore, considering Step 1 and
Step 2 for (40), the solution of (31) and (32) is SGUUB.

Remark 1. Considering Theorem 2 and its proof, it can be demonstrated that the result can be extended for
systems with multiple delays such as x (k − li) with i = 1, 2, · · · used instead of x(k − l) in (1), and for systems
with time-varying delays x(k − li (k)) with li (k) bounded by li (k) ≤ li in such case x(k − li (k)) can be
substituted by x (k − li) and can be handled as in previous proof due to the boundedness of RHONN. Also,
from (43) it can be seen that RHONN (38) can identify a quantized discrete-time unknown delayed nonlinear
system, this neural model can be arbitrarily designed in an affine form in order to deal with control goals.

3.2. Neural Inverse Optimal Control

In the previous section, a neural identifier has been designed for a quantized discrete-time
unknown delayed nonlinear system under disturbances and uncertainties; all these phenomena are
now modeled by the neural identifier (13) without the need to measure or estimate or even know their
boundaries. In this section, the obtained neural model is used to design a controller for such systems,
using the inverse optimality methodology, a controller for the system is designed.

Then, considering Theorem 1 and Theorem 2, it is possible to establish the following main result,
for the closed-loop system:
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Theorem 3. Consider a control law (5) for a quantized delayed system (12) modeled by a RHONN (13), trained
with an EKF (21), ensuring that the identification error (31) and the trajectory tracking error (3) are SGUUB;
moreover, the RHONN weight (32) remain bounded.

Proof. Consider the following augmented Lyapunov function candidate

V (k) = V1 (k) + V2 (k) , (44)

with

V1 (k) =
n

∑
i=1

(
Γi (x̃i (k))

2 + w̃T
i (k) Pi (k) w̃i (k)

)
, (45)

V2 (k) =
1
2

ψT (k)Pψ (k) . (46)

The first difference from (44) results

ΔV (k) = V1 (k + 1)− V1 (k) + V2 (k + 1)− V2 (k)

=
n

∑
i=1

(
Γi (x̃i (k + 1))2 + w̃T

i (k + 1) Pi (k) w̃i (k + 1)
)

−
n

∑
i=1

(
Γi (x̃i (k))

2 + w̃T
i (k) Pi (k) w̃i (k)

)
+

1
2

ψT (k + 1)Pψ (k + 1)− 1
2

ψT (k)Pψ (k) . (47)

Case 1. For ΔV1 (k). From Theorem 2, (47) can be expressed as:

ΔV1 (k) =
n

∑
i=1

(
−‖w̃i (k)‖2 Ei (k)− ‖x̃i (k)‖2 Fi (k) + |εziu |2 + |Δxi |2

+Γi |εziu |2 + 2Γi |εziu | |Δxi |+ Γi |Δxi |2
)

. (48)

Then, ΔV1 (k) < 0 when (38) and (39) is fulfilled for i = 1, 2, · · · , n.
Case 2. For ΔV2 (k). Consider (1) and (3), then

ΔV2 (k) =
1
2

f T (ψ (k))P f (ψ (k)) +
1
2

f T (ψ (k))Pg (ψ (k)) u (k)

+
1
2

uT (k) gT (ψ (k))P f (ψ (k)) +
1
2

uT (k) gT (ψ (k))Pg (ψ (k)) u (k)

−1
2

ψT (k)Pψ (k) , (49)

with (5). From Theorem 1 [23], ΔV2 (k) ≤ −ψT (k)Qψ (k) with Q = QT > 0. Therefore, considering
Case 1 and Case 2, for (44), the solutions of (25), (32) and (3) are SGUUB.

The entire closed-loop system is depicted in Figure 2. Theorem 3 ensures the stability of the
closed-loop system, without the assumption of persistent excitation. It is necessary to point out that
the inverse optimal controller is designed for the neural model not for the system model, which is
considered unknown. This means that the neural model considers system dynamics, sensor errors,
actuators errors, disturbances, uncertainties, and unmodeled dynamics.
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Figure 2. Schematic closed-loop system representation of a discrete-time unknown nonlinear quantized
delayed system with measurement noise.

Remark 2. It is important to note that in this paper, the unknown discrete-time quantized delayed system (12)
is modeled by a RHONN (13), trained with an EKF learning algorithm (21), then the controller is designed
based on the RHONN model. Therefore, the RHONN model (13) is designed in order that the controllable block
form required by the controller (5) can be easily obtained in the required affine form. Furthermore, controllability
weights of RHONN model (13) are selected as fixed weights to avoid singularities due to controller feedback [23].

Remark 3. As explained in Section 3.2 any nonlinear trajectory tracking problem can be transformed into an
error regulation problem [9]; this transformation is displayed in Figure 3 including the design of a neural inverse
optimal control (NIOC).

Figure 3. Scheme of a NIOC.
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4. Real-Time Results

4.1. Implementation to a LIM

In this section, a NIOC scheme is designed to be implemented in a linear induction motor
(LIM) prototype in the presence of all the phenomena, as mentioned earlier. First, a neural identifier
is designed for the LIM system, considering an unknown model with disturbances, uncertainties,
quantization in measured signals, measurement noise, and delays. Therefore, the obtained neural state
model is used to design a controller for the LIM using the inverse optimal methodology considering
actuator limitations.

A LIM is an electrical machine in which electrical energy is directly transformed into mechanical
energy as a translational movement. LIMs have excellent performance characteristics [25,26], such
as high-starting thrust force, elimination of gears between motor and motion devices, reduction of
mechanical losses and size of motion devices, high-speed operation, silent operation, among others.
The driving principles of a LIM are similar to the ones of a traditional rotary induction motor. However,
the LIM mathematical model is more complicated; its control design is also a complex task due to the
exceedingly time-varying nature of its parameters. This is due to the change of operating conditions,
such as speed, temperature, and rail configuration, to name a few. LIMs have been used for mass public
transportation, 3D printing, material transportation, elevators, aircraft carrier, industrial processes,
automation, and home appliances, among others [25].

From previous works, it is possible to remark that in [22], a neural inverse optimal controller has
been proposed for a LIM; however, such controller only considers disturbances meanwhile delays
are disregarded. Also, a neural identifier for a LIM is proposed in [1]. Then, in [2], time delays
are considered as well as disturbances, with a sliding mode neural controller for the same system.
Nonetheless, none of the above-referenced works include real-time implementation of the controller
when simultaneously considering, disturbances, noise, delays, actuator limitations, and quantization
for a system with an unknown model. Therefore, in this section, the design of a neural controller for a
LIM is proposed. Such a controller considers all the phenomena mentioned earlier while intending to
control complex systems with conditions increasingly closer to that of real-time experimentation.

4.2. NIOC Scheme

4.2.1. RHONN Model

The α − β mathematical model for a LIM is represented by the state vector (50), which includes
position, velocity, flux magnitude, α current, and β current. The control law vector u(k) to be designed
using the NIOC algorithm, given by (51), and its entries, namely uα (k) and uβ (k), represent the α and
β components, of the input voltage applied to the LIM, respectively.

x (k) =

⎡⎢⎢⎢⎢⎢⎣
x1 (k)
x2 (k)
x3 (k)
x4 (k)
x5 (k)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
p (k)
v (k)
ψ (k)
iα (k)
iβ (k)

⎤⎥⎥⎥⎥⎥⎦ , (50)

u(k) =

[
uα (k)
uβ (k)

]
. (51)

For the design of the proposed RHONN identifier, which is given through (53), the state variables
x1, x2, x4 and x5 are considered as measurable signals, and Ψ (k) = fα (k)

2 + fβ (k)
2 where fα and fβ

are the α and β flux components, respectively, estimated by a nonlinear observer [22]. The function
S(υ) is defined as (54), and the identifier’s state variables are defined as:
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x̂(k) =

⎡⎢⎢⎢⎢⎢⎣
x̂1 (k)
x̂2 (k)
x̂3 (k)
x̂4 (k)
x̂5 (k)

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
p̂ (k)
v̂ (k)
ψ̂ (k)
îα (k)
îβ (k)

⎤⎥⎥⎥⎥⎥⎦ . (52)

For the identifier in (53), the quantized fluxes f α and f β, are not considered since the implemented
prototype shown in Figure 4 cannot measure magnetic fluxes. As mentioned before, these variables are
estimated by a reduced-order state-observer [22]. Also, the following weights are fixed: w f = 0.001,
w12 = 0.001, w24 = 0.001, w25 = 0.001, w45 = 0.05, w55 = 0.05 for controllability purposes, these
values have been obtained heuristically in order to improve identification performance [27], neural
identification accuracy is obtained due to the adaptable weight connections of the neural network
another solution is the zero-crossing avoidance studied in [28]; the remaining weight vectors wi from
the identifier in (53) are trained online by the EKF training algorithm in (21), with the parameters
shown in Table 1.

Figure 4. Linear induction motor (LIM) prototype. (a) Computer with dSPACE R© software and RTI
1104 board installed, (b) dSPACE R© RTI 1104 panel connector, (c) Linear induction motor, (d) Voltage
sensor, (e) Current sensor, (f) Power supply, (g) TTL to CMOS converter, (h) encoder, (i) IGBT module
(or insulated-gate bipolar transistor), (j) Auto-transformer.

x̂1 (k + 1) = w11 (k) S (p (k − l)) + w12v (k − l) ,

x̂2 (k + 1) = w21 (k) S (v (k − l)) + w22 (k) S (ψα (k − l)) + w23 (k) S
(
ψβ (k − l)

)
−w24

(
S (ψα (k − l)) + S

(
ψβ (k − l)

))
iα

+w25
(
S (ψα (k − l)) + S

(
ψβ (k − l)

))
iβ,

x̂3 (k + 1) = w31 (k) S (ψα (k − l))2 + w32 (k) S
(
ψβ (k − l)

)2

+w33 (k)w f S (v (k − l))2

+2w f
(
w31 (k) S (ψα (k − l))− w32 (k) S

(
ψβ (k − l)

))
iα (k − l)

+2w f
(
w31 (k) S (ψα (k − l)) + w32 (k) S

(
ψβ (k − l)

))
iβ (k − l) ,

x̂4 (k + 1) = w41 (k) S (v (k − l)) + w42 (k) S (ψα (k − l)) + w43 (k) S
(
ψβ (k − l)

)
+w44 (k) S

(
iα (k − l)

)
+ w45uα (k) ,

x̂5 (k + 1) = w51 (k) S (v (k − l)) + w52 (k) S (ψα (k − l)) + w53 (k) S
(
ψβ (k − l)

)
+w54 (k) S

(
iβ (k − l)

)
+ w55uβ (k) , (53)

S (υ) = tanh (υ) . (54)
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Table 1. EKF training parameters.

i η P Q R

w1 0.5 2 0.63759 0.0061914
w2 0.5 2 × I3×3 0.0067168 × I3×3 0.0061914
w3 0.5 2 × I3×3 0.0067168 × I3×3 0.0061914
w4 0.5 2 × I4×4 0.0045569 × I4×4 0.0061914
w5 0.5 2 × I4×4 0.0045569 × I4×4 0.0061914

4.2.2. Inverse Optimal Control

It is easy to see that the identifier in (53) is written as an affine system, as given by (1). Using the
obtained model for the identifier, the system can be represented by the following blocks

X̂1 (k + 1) = x̂1 (k + 1) , (55)

X̂2 (k + 1) =

[
x̂2 (k + 1)
x̂3 (k + 1)

]
, (56)

X̂3 (k + 1) =

[
x̂4 (k + 1)
x̂5 (k + 1)

]
. (57)

Then, considering the desired trajectory X̂1d for X̂1, the system can be represented as (58)–(60).

ψ1 (k + 1) = X̂1 (k + 1)− X1d (k + 1) = x̂1 (k + 1)− x1d (k + 1) , (58)

ψ2 (k + 1) = X̂2 (k + 1)− X2d (k + 1) =

[
x̂2 (k + 1)− x2d (k + 1)
x̂3 (k + 1)− x3d (k + 1)

]
, (59)

ψ3 (k + 1) = X̂3 (k + 1)− X3d (k + 1) =

[
x̂4 (k + 1)− x4d (k + 1)
x̂5 (k + 1)− x5d (k + 1)

]
. (60)

For this implementation, X1d is the desired position trajectory, X2d is defined as X2d =
[
x2d , x3d

]
, where

x2d (v reference) is determined as

k1ψ1 (k) = f1 (x (k)) + g1 (x (k)) x2 (k)− X1d (k + 1) ,

k1ψ1 (k) = w�
f1
(k) z f1 (x (k)) + wg1 x2 (k)− X1d (k + 1) ,

X2d (x (k)) = w−1
g1

[
−w�

f1
(k) z f1 (x (k)) + k1ψ1 (k) + X1d (k + 1)

]
,

and x3d (Ψ reference) is the given flux magnitude reference; the X3d reference is defined as
X3d =

[
x4d , x5d

]
, which gives both the α and β current references and is computed as

k2ψ2 (k) = f2 (x (k)) + g2 (x (k)) X3 (k)− X2d (k + 1) ,

k2ψ2 (k) = w�
f2
(k) z f2 (x (k)) + wg2 X3 (k)− X2d (k + 1) ,

X3d (x (k)) = w−1
g2

[
−w�

f2
(k) z f2 (x (k)) + k2z2 (k) + X2d (k + 1)

]
.

Finally, the schematic representation for the calculation of u used in (5) is presented in Figure 5.
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Figure 5. Schematic representation for control law calculation.

Remark 4. The LIM prototype used to test in real time the proposed controller can be modeled by a RHONN,
which can be designed in an affine block controllable form composed of two blocks. The first block contains the
two desired signals to be controlled, which are controlled by virtual controllers (controllers that are not physically
applied to the LIM). These virtual controllers are designed as a feedback linearization system in a block control
form whose last block is controlled using an inverse optimal controller to achieve trajectory tracking, minimizing
a functional cost criteria [23].

4.3. Results

The following results were obtained from a real-time testing prototype using a LIM; the complete
setup is shown in Figure 4. The proposed scheme is programmed in Matlab\Simulink R©(Matlab
and Simulink are registered trademarks of MathWorks), and then loaded to a dSPACE R©(dSPACE
is a registered trademark of dSPACE GmbH) 1104R&D board, mounted on the PC equipment
(Figure 4a), which computes the proposed controller–identifier algorithm using all the information
coming from the prototype; all its inputs and outputs go through the connector panel. The dSPACE R©
ControlDesk R©(ControlDesk is a registered trademark of dSPACE GmbH) software is used to visualize
and store the input and output signals, as well as managing the LIM prototype.

The test is performed in real time on a LIM prototype, using the dSPACE R© 1104R&D controller
board with a sampling time equal to 0.3 ms. Blocks to induce delays in the signals during the test
are programmed, and they are activated at 4 s, 7 s and 11 s for the position, α current, and β current
signals, respectively. These blocks randomly substitute the information of the most recent sample with
the information form one of the previous ten samples; moreover, each delaying block performs this
operation independently from one another in a way that the number of samples that each signal is
delayed is chosen randomly as well.

The control objective of the test is the tracking of a trapezoidal reference and the performance is
shown in Figure 6, where two zoomed graphs are also presented with intervals 6.8 s to 7.2 s and 10 s to
10.4 s. Figure 7, shows trajectory tracking error for position. Figure 8, shows norm of weight vectors
of identifier (53) confirming their boundedness as stated in Theorem 3. From Figures 6 and 7 it can
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be observed that the measured signal closely follows the reference, clearly establishing the excellent
behavior of the proposed controller, moreover, it can also be seen that the measured and identified
waveforms are superimposed to one another, which also verifies the superior performance of the
proposed identifier structure.

Figure 6. Tracking performance of our proposed neural control scheme for a trapezoid signal and
zoomed images at the same time intervals of the zoomed images of the control signals.

Figure 7. Position tracking error.

From results depicted in Figures 6 and 7, it is easy to see that the obtained trajectory tracking results
are SGUUB, due to the boundedness of the trajectory tracking error depends of the unknown bounds
of all the error sources, like quantization error, unmodeled dynamics, uncertainties, disturbances,
sensor noises, among others. All these unknown quantities contribute to trajectory tracking error,
consistent with the result obtained in Theorem 3 regarding SGUUB [23].
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Figure 8. Norm of weight vectors.

In this paper, a stressing profile for the position has been used to show the applicability and
relevance of the proposed controller, showing significant results for real-time trajectory tracking of
nonlinear systems, which is not easily found in previous works of quantized systems.

The time instances shown in Figure 6 coincide with the ones of the zoomed graphs in
Figures 9 and 10, where both the uα and uβ components computed by the proposed controller are
compared against the α and β components of the LIM input voltage, measured in volts (V), at its
terminals by voltage sensors. The zoomed images are presented to give an insight into the quantization
effects, measurement noise, and delays. It is important to note that the measured signals are converted
to α − β quantities in the controller board, and then compared with the ones calculated by the
proposed controller.

Figure 11 shows two graphs corresponding to the differences between the computed control
signals and the ones obtained from measurements of the prototype. It must be noticed that
this difference remains bounded and that even though the difference is relatively significant,
the performance of our proposed discrete-time neural control scheme is as expected. This can be
verified from Figure 7, where the tracking error of the reference trapezoidal signal from Figure 6 is
shown to be very small. It is worth noting that the effects considered (quantization from the analog
to digital conversion of the measured signals, noise introduced by the measurement sensors, and the
induced delay, which can represent a delay of up to ten samples) do not represent conditions that
diminish the excellent performance of the proposed controller.
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Figure 9. Control signal uα from the test and the zoomed image for a time interval from 6.8 s to 7.2 s.

Figure 10. Control signal uβ from the test and the zoomed image for a time interval from 10 s to 10.4 s.
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Figure 11. Control error signals between desired control signals and measured signals.

It is important to consider that the proposed identifier has an excellent performance, such that
in Figure 6 is almost impossible to note differences between plant state variables and RHONN ones;
therefore, to measure such differences, their statistical information is included in Table 2. As can be
seen from Table 2, the identification errors are small enough to confirm the validity and accuracy
of the RHONN-based identifier model for the LIM, in actual operating conditions and with real-life
effects considered. In order to further support this claim, the identification RMSE of the state variables
from the LIM system are given in Table 2. These errors correspond to the difference between xi − x̂i;
meanwhile, the flux errors are described by the difference between the observed flux signal and the
identified flux signal; all RMSE values are calculated for the 12 s window of the test. As can be
seen from Table 2, the identification errors are small enough to confirm the validity and accuracy
of the RHONN-based identifier model for the LIM, in actual operating conditions and with real-life
effects considered.

Table 2. Identification root mean square errors.

State Variable RMSE

x1 0.000153 m
x2 0000607 m/s
x3 0.004495 Wb2

x4 1.88391 A
x5 1.3332866 A

4.4. Comparative Analysis

To compare the proposed controller against existing ones, Table 3, displays the mean value and
standard deviation for speed tracking error, to a comparison between an optimal tracking control
(OTC) [29], a conventional discrete-time sliding mode control (SMC) scheme [30], a NIOC with a
neural observer (NIOCNO) [22] with respect to the proposed Quantized NIOC. It is shown that the
proposed Quantized NIOC presents the best performance.
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Table 3. Position tracking error information.

Controller Mean Value (m/s) Standard Deviation (m/s)

OTC [29] 0.027393 0.04821
SMC [30] 0.008358 0.09212

NIOCNO [22] 0.002468 0.04703
NIOC 0.001023 0.00763

4.5. Discussion about Experimental Environment

Real-time implementations involve major challenges caused by unknown dynamics, actuator
limitations, quantization errors, unknown delays, and disturbances that can be magnified by the
prototype components shown in Figure 11; all these components affect the algorithm. However, all
these effects are absorbed and compensated by the proposed identifier-controller approach, as has
been displayed by results of Section 4.3 and comparative analysis of Section 4.4. To exemplify this kind
of effects, most of them are explained for each of the prototype components:

• Voltage and current sensors are characterized by the presence of noise, measurement error,
and quantization error.

• IGBT module has a limited frequency of operation as well as the AC power supply saturates its
output. Moreover, the IGBT module has its controllers for IGBTs, which provoke unknown dynamics.

• TTL to CMOS converter, cause noise, uncertainties and unknown dynamics and quantization effects.
• Computer equipment and dSPACE R© 1104 board, presents quantization effects mainly due to the

signal conversions at input and output and unknown dynamics provoked by inner circuits.
• LIM contains high nonlinear behaviors, including end effects and unknown uncertainties,

mainly due to winding heating, unknown dynamics, hysteresis effects, and parasitic currents,
among unknown disturbances by mass effects and the presence of friction, among others.
Moreover, this kind of system does not exhibit evident delays effects. However, in this experiment,
the delays have been externally included through a time-delay MATLAB R© block, as explained in
Section 4.3.

These effects can be easily seen in Figure 10, which shows control error signals between desired
control signals and measured signals. Therefore, this paper presents real-time implementation of
the controller when simultaneously considering, disturbances, noise, delays, actuator limitations,
and quantization for a system with unknown plant model.

These are common problems for real-life implementations, and their consequences can be observed
in the results included above in this section. Figures 6 and 7 show that due to the capabilities of the
RHONN as an identifier (53), it can replicate LIM dynamics, with small identification errors, as shown
in Table 2. In Figures 9 and 10 depict the α − β components of the calculated control law and the
components of the actual measured signal. The difference is presented in Figure 11. This notable
error is the consequence of all the phenomena mentioned above, among others. However, meaningful
capabilities of the proposed NIOC scheme allow us to obtain good performance for trajectory tracking
as is shown in the results depicted in Figures 6 and 7, accompanied of the statistical information
included in Table 3 for identification RMSEs, even without the need for previous knowledge of a
model for the controlled system nor an explicit estimation of its bounds. In order to explain the nature
of the above-mentioned effects, in Figure 12 schematic representation of the control signal route is
included, from the calculated value of vector u(k) along with its application to the LIM prototype and
its measurement for α − β components calculation to be depicted in Figures 9–11.
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Figure 12. Control signal route: From calculated to applied signal.

5. Conclusions

This work reports a complete neural identifier-control model that deals with quantization error,
measurement noise, disturbances, uncertainties, and signal delays. For any such conditions, it is not
necessary to know neither the nominal model nor its estimations or bounds. The proposed controller
is applied to an actual LIM in a real-time experimental test, which shows that the identification errors
for all the state variables and the trajectory tracking errors are small enough. The presented results
were obtained working with a LIM without knowledge of its model or parameters.

It is important to note that the experimental test intrinsically considers quantization error,
measurement noise, disturbances, uncertainties, and delay. However, an additional delay of up
to ten samples is randomly applied to the position, α current, and β current signals. Despite all this,
the proposed neural identifier-control scheme shows an excellent real-time performance with a sample
time equal to 0.3 ms. As seen from the results, the tracking of the reference signal is effectively achieved
even though a trapezoidal waveform represents a difficult task for a LIM.

Moreover, a Lyapunov analysis is included with the proof of the semi-globally uniformly
ultimately boundedness (SGUUB) of the proposed scheme. Furthermore, it must be noticed that
the stability proof requires neither persistent excitation condition nor separation principle relaxing
conditions to achieve boundedness of the entire identifier-control scheme. Proposed results can be
extended for systems with hysteresis, backlash, friction, and other interesting problems.

For the experimental results included in this paper, controller parameters have been heuristically
selected. However, as future work, authors consider the use of an evolutionary algorithm to define an
auto-tuning approach.
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Abbreviations

The following abbreviations are used in this manuscript:

RHONN Recurrent high order neural network
EKF Extended Kalman filter
SGUUB Semi-globally uniformly ultimately bounded
NIOC Neural inverse optimal control
LIM Linear induction motor
RMSE Root mean square error
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Abstract: A neural fuzzy controller (NFC)-based speed controller for the sensorless permanent magnet
synchronous motor (PMSM) drive control system is realized in this paper. The NFC is a fuzzy logic
controller (FLC), which adjusts the RBFNN-based (radial basis function neural network) parameter
by adapting the dynamic system characteristics. For sensorless PMSM drive, the integration of sliding
mode observer (SMO) and phase-locked loop (PLL) is executed to estimate the rotor position and
speed. To eliminate the initial rotor position estimation and overcome the conventional PLL-based
position estimation error in the direction reversion transition, the I-f control strategy is applied to
start up the motor and change the rotational direction effectively. The system performance was
verified in various experimental conditions. The simulation and experimental results indicate that
the proposed control algorithm is implemented efficiently. The motor starts up with diverse external
loads, operates in a wide speed range for both positive and negative directions, and reverses the
rotational direction stably. Furthermore, the system presents robustness against disturbance and
tracks the command speed properly.

Keywords: permanent magnet synchronous motor; sliding mode observer; sensorless control;
neural fuzzy controller; I-f control strategy

1. Introduction

Recently, permanent magnet synchronous motors (PMSMs) have been applied in industrial
applications and electric vehicles because of their outstanding specifications such as high efficiency,
high power density, and large torque-to-weight ratio. In these applications, the field-oriented control
(FOC) algorithm is executed effectively, requiring precise rotor position and speed, which are usually
measured by a mechanical position sensor installed on the motor’s shaft such as digital encoder,
resolver, and Hall sensor. However, the position sensor installation increases the size and cost for
the PMSM drive control system. In some cases, sensor failure makes the PMSM system unstable
and reduces control reliability. To solve these shortcomings, sensorless control techniques have been
studied. Since the back electromotive force (EMF) provides the information of rotor position and speed,
back EMF-based estimators are widely proposed, such as the Luenberger observer [1,2], the extended
Kalman filter (EKF) observer [3–5], the model reference adaptive system (MRAS) observer [6,7], or the
sliding mode observer (SMO) [8–15]. Among those observers, SMO is the most applicable because
it has simple structure, robustness against disturbance, low sensitivity to parameter perturbations,
and easy implementation.

Generally, the arctangent function is realized to get the rotor position information based on the
estimated back EMF obtained by the SMO solution. However, the back EMF is impacted by the
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chattering problem and noise. To increase the estimator’s accuracy and robustness, several phase-locked
loop (PLL) structures have been widely researched [11–13,15–18]. The conventional PLL is suitable
for one-direction rotation motor only when the parameters are already configured. The reason is
that it is utilized with an estimation error, influenced by the sign of speed in the estimated back EMF,
which makes a large error of 180◦ in rotor position estimation when the direction reversion transition
happens. Thus, the conventional PLL is not applied in some applications, requiring reversible motor
rotational direction operation. To overcome the disadvantage of the conventional PLL, the tangent
function-based estimation error is introduced in [16]. However, it is very sensitive to noise, and the
obvious estimation error may be obtained when the back EMF crosses zero. Other research using
the back EMF signal reconstruction-based estimation error is presented in [12,18]. Although two
abovementioned solutions can solve the limitation of the conventional PLL, the position estimation
error is not guaranteed to converge to zero because they have three stable points in the phase portrait.
Additionally, the estimation error in three aforementioned structures of PLL is constructed from the
estimated back EMF, which is too small at the standstill stage or the low-speed region and is affected by
noise significantly. Furthermore, to ensure the estimator works precisely, the motor must be ramped
up to the specific speed threshold, where the back EMF is large enough for estimation. Therefore,
to overcome the startup and reversal problems, the combination of the I-f control strategy and the
SMO-PLL estimator is implemented in this paper, where the conventional PLL is modified by a position
offset value.

The high-performance motor drive control system requires a good tracking response, robustness
against disturbance, adaption to parameter variations, and a wide adjustable speed range. Therefore,
many speed controllers, such as the RBFNN (radial basis function neural network)-based self-tuning
PID (Proportional-Integral-Derivative) controller [15], the sliding mode controller [19], the fuzzy neural
network controller [20], and the adaptive fuzzy controller [21] have been proposed to improve system
performance. Among these algorithms, in this paper, the neural fuzzy controller (NFC) researched
in [22] with only the simulation results for the sensor-based PMSM drive control system is presented
and realized in the real-time hardware platform. The main core of NFC is the fuzzy logic controller
(FLC). FLC is one of the most effective approaches for controlling the nonlinear system, converting
the linguistic control rules based on experts’ knowledge into an inference mechanism to regulate the
control signals on the system appropriately. Although several successful industrial applications of FLC
have been implemented, proper fuzzy membership functions and fuzzy rules designation without
the online learning and adaptive adjustment algorithm are not easy to be executed. Thus, FLC has
incorporated a neural network with an adaptive mechanism. This integrated controller inherits the
merits of both the FLC and the neural network. It performs the identification and learning ability,
the parameter adaptation, and uncertain information handling concurrently. In the structure of NFC,
the system is firstly identified by an RBFNN which has a simple neural network structure with fast
convergence property. Then, the parameters of FLC are tuned by an adjusting mechanism based on the
real-time identified plant information (Jacobian transformation) and the gradient descent method to
adapt to the dynamics system characteristics.

Accordingly, in our paper, an NFC-based speed controller is realized to enhance the performance
of the sensorless PMSM drive control system, which is based on the combination of the SMO-PLL
estimator and the I-f control strategy. The control algorithm was first evaluated in simulation and then
deployed to a real-time platform, established on the DSP (Digital Signal Processor) F28379D (C2000™
LAUNCHXL, Texas Instruments, Inc., Dallas, TX, USA). The system performance is checked under the
different experimental conditions with a dynamic load system. The analyzed results demonstrate that
the system starts up with diverse external loads, operates in two directions, and switches the rotational
direction stably. Comparing to the PI (Proportional-Integral) speed controller, the NFC-based speed
controller presents a better tracking performance, faster response and robustness against disturbance.
Additionally, the development time for DSP application is substantially shortened when the motor
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control algorithm is integrated into MATLAB Simulink (MATLAB 2017a, The Mathworks, Inc., Natick,
MA, USA) based on the Embedded Coder Support Package utilities.

The remainder of this paper is arranged as follows. Section 2 presents the sensorless PMSM
drive control system, including the sliding mode observer, the PLL’s structures, and the I-f control
strategy. The structure of neural fuzzy controller is described in Section 3, consisting of the FLC,
the RBFNN, and the adjusting mechanism. In Section 4, the effectiveness and the correctness of the
control algorithm are evaluated by the simulation results. The proposed algorithm is confirmed on the
real-time platform in Section 5. Finally, Section 6 gives the conclusion.

2. Description of the Sensorless PMSM Drive Control System

The overall architecture of the NFC-based speed controller for the sensorless PMSM drive control
system is presented in Figure 1. As mentioned above, the I-f control mode and the sensorless control
mode are investigated to control the motor in a wide speed range for both directions, which also
includes starting the motor from the standstill stage and the rotational direction reversion. In the
low-speed range, the PMSM is controlled in the I-f control mode, where the switches are activated in
position 1. In the medium- to high-speed range, the motor operates in the sensorless control mode,
where the switches are activated in position 2. For the sensorless control, the control algorithm includes
two closed control loops—the outer speed control loop and the inner current control loop. The FOC
algorithm and two PI controllers are implemented in the current control loop. The speed control loop is
realized by an NFC-based speed controller, consisting of an FLC, an RBFNN, an adjusting mechanism,
and a PI controller. The detailed control algorithm and related formulation are described as follows.
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Figure 1. The overall architecture of the neural fuzzy controller (NFC)-based speed controller for the
sensorless permanent magnet synchronous motor (PMSM) drive control system.

2.1. Sliding Mode Observer

The modeling of the PMSM was presented in detail previously [15]. In this paper, the main
equations for PMSM and the principle of sliding mode observer are summarized as follows.

On the α–β stationary coordinates, the current equation of the surface-mounted PMSM (SPMSM)
can be expressed by ⎧⎪⎪⎨⎪⎪⎩ d

dt iα = 1
Ls
(−rsiα + vα − eα)

d
dt iβ = 1

Ls

(
−rsiβ + vβ − eβ

) (1)

where, iα, iβ, vα, vβ represent the current and the voltage of the α and β axis, respectively; eα, eβ are
the back EMF, satisfying eα = −ωeλ f sinθe, eβ = ωeλ f cosθe ; θe is the electrical rotor position; λ f is the
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permanent magnet flux linkage; ωe is the rotating speed of magnet flux; and rs and Ls are the phase
resistance and the phase inductance, respectively.

The current observer formulation for SPMSM can be formulated as follows, based on the sliding
mode observer theory: ⎧⎪⎪⎨⎪⎪⎩ d

dt îα = 1
Ls

(
−rsîα + vα − kH(îα − iα)

)
d
dt îβ = 1

Ls

(
−rsîβ + vβ − kH(îβ − iβ)

) (2)

where îα, îβ represent the estimated current of the α and β axis, H(x) is the sigmoid function, and k is
the observer gain value. Additionally, formulated in the dynamic equation, the estimated current error
can be expressed by subtracting Equation (1) from Equation (2):⎧⎪⎪⎨⎪⎪⎩ d

dt̃ iα = 1
Ls

(
−rs̃iα + eα − kH(̃iα)

)
d
dt̃ iβ = 1

Ls

(
−rs̃iβ + eβ − kH(̃iβ)

) (3)

where ĩα, ĩβ represent the estimated current error of the α and β axis, defined as: ĩα = îα − iα and
ĩβ = îβ − iβ.

Furthermore, the asymptotic stability of the SMO based on the Lyapunov theory is guaranteed
when the observer gain k is designed to be a sufficiently large positive value, k > max

(
|eα|,

∣∣∣eβ∣∣∣).
Therefore, the estimated current will converge to the actual current. The estimated back EMF êα, êβ can
be obtained as: ⎧⎪⎪⎨⎪⎪⎩ êα = kH(îα − iα) = kH(̃iα)

êβ = kH(îβ − iβ) = kH(̃iβ)
(4)

2.2. Speed and Position Estimation Method

Based on the estimated back EMF, the rotor position is directly determined by the arctangent
function in the traditional method

θ̂e = arctan
(

êα
êβ

)
(5)

and the electrical rotor speed can be obtained by ω̂e = dθ̂e
dt . However, due to using the arctangent

function, the estimated position and speed are vulnerable to noise and harmonics. Particularly,
the apparent estimation errors can be obtained when êβ crosses zero. Therefore, the phase-locked loop
algorithm is executed to mitigate the adverse effect. The structure of the PLL is shown in Figure 2.
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Figure 2. The structures of the PLL (phase-locked loop).
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In the conventional PLL [15], the estimation error of rotor position is expressed by

ε=
1√

ê2
α + ê2

β

[
−êαcos(θ̂e) − êβsin(θ̂e)

]
= −êαncos(θ̂e) − êβnsin(θ̂e)

= sin(θe)cos(θ̂e) − cos(θe)sin(θ̂e)

= sin(θe − θ̂e) ≈ θe − θ̂e

. (6)

In the tangent function-based PLL [16], the estimation error of rotor position is expressed by

ε =
− êα

êβ
− tan

(
θ̂e
2

)
1 − êα

êβ
tan

(
θ̂e
2

) =
tan(θe) − tan

(
θ̂e
2

)
1 + tan(θe)tan

(
θ̂e
2

) = tan
(
θe − θ̂e

2

)
. (7)

In the back EMF signal reconstruction-based PLL [12,18], the estimation error of rotor position is
expressed by

ε =
1√

ê2
2α + ê2

2β

[
−ê2αcos(2θ̂e) − ê2βsin(2θ̂e)

]
= sin

[
2
(
θe − θ̂e

)] (8)

where ê2α , ê2β are the modified back EMF signal, defined as: ê2α = 2êαêβ = −
(
ωeλ f

)2
sin(2θe) and

ê2β = ê2
β − ê2

α =
(
ωeλ f

)2
cos(2θe).

The phase portrait of the PLLs is presented in Figure 3. In the tangent function-based PLL and
back EMF signal reconstruction-based PLL, there are three stable points for both positive and negative
rotor speed, which are (0,0), (π,0) and (−π,0). When the PI regulator’s parameters are tuned properly,
the rotor position estimation error can approach to the origin point. However, in practical application,
when the motor changes its direction, the back EMF is very small and is affected by noise significantly
in the low-speed region, which causes a large estimation error. Moreover, depending on the initial
rotor position and speed estimation error, the trajectories can converge to the stable point (0,0) or
(±π,0) when the motor starts up from the standstill stage. Especially, in the case of the I-f startup
strategy without initial rotor position estimation, the estimation error uncertainly converges to the
origin point. It implies that the position estimation error can be obtained of 0 or π (rad). Otherwise,
the cycle of rotor position is 2π; thus, the conventional PLL is considered to always have only one
stable point in each direction. In the conventional PLL, when the motor reverses its direction from
the positive rotor speed to the negative rotor speed, the stable point (0,0) changes into the saddle
point while the saddle points (±π,0) become stable points. This shows that, when the speed reversion
transition occurs, the trajectories in the phase portrait of the conventional PLL system will deviate
from (0,0) to reach (±π,0), and cause a rotor position estimation error of π (rad). To solve this problem,
the PI regulator’s parameters should be reset. However, it is not easy to adjust to the real-time control
system. To overcome the abovementioned problems, during the direction reversion transition, the I-f
control strategy in the combination with the modified conventional PLL is studied to make sure that
the motor can switch the rotational direction stably, and the conventional PLL can work effectively for
both directions. That also rejects the effect of the back EMF estimation error in the low-speed region.
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Therefore, a position offset is considered to modify the estimated rotor position. The estimation error
of rotor position for the conventional PLL is rewritten by

ε =
1√

ê2
α + ê2

β

[
−êαcos(θ̂e + θo f f set) − êβsin(θ̂e + θo f f set)

]

with θo f f set =

{
0 i f ω̂e ≥ 0
π i f ω̂e < 0

(9)

Figure 3. The phase portrait of: (a) the conventional PLL for positive rotor speed; (b) the conventional
PLL for negative rotor speed; (c) the tangent-based PLL for both positive and negative rotor speed;
and (d) the back EMF (electromotive force) signal reconstruction-based PLL for both positive and
negative rotor speed.

If the estimation error is attracted to zero by a PI regulator, the rotor position and speed are
estimated by {

ω̂e = KPε+ Ki
∫
εdt

θ̂e =
∫
ω̂edt

. (10)

2.3. The I-f Control Strategy for the Direction Reversion Transition

The I-f startup strategy was described and implemented previously [15,23], which smooths the
torque and speed transition during the inter-mode transition from the startup stage to the sensorless
control stage. Furthermore, for the direction reversion transition, the I-f control strategy is extended to
make sure that the motor can switch the rotational direction stably. This procedure is presented in
Figure 4 and portrayed as the following steps:
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Figure 4. The I-f control strategy flowchart for the direction reversion transition.

Step 1: When the speed command is set up to reverse the rotational direction, the system captures
the reference current i∗q and decelerates the rotor speed until the specific speed threshold value for
switching condition. When the rotor speed is lower than the abovementioned value, the back-EMF
signal is not large enough and significantly affected by noise, which causes the rotor position and
speed information to be obtained by the SMO-PLL estimator inaccurately. Thus, the system switches to
the I-f control mode. The speed command is decreased by a ramp function and i∗q is regulated properly.
The reference current i∗q and reference speed ω∗r are expressed by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

i∗q(k + 1) = i∗q(k) −KaTsi∗qsw
ω∗r(k + 1) = ω∗r(k) ∓KrTs with

∣∣∣ω∗r∣∣∣ < ωsw
r

θa
e(k + 1) = θa

e(k) +ω∗rTs with θa
e(k0) = θ̂e(k0),

for k > k0 (11)

where the symbol “−” denotes the positive–negative direction transition, and the symbol “+” denotes
the negative–positive direction transition; i∗qsw is the reference current at the time the direction reversion
command is set up; Ka is the proportional gain for decreasing the current i∗q; θa

e is the auto-generated
rotor position; ωsw

r is the specific speed threshold value for switching to the sensorless control mode;
and Kr is the proportional gain of the ramp function for the command speed.

Step 2: When the reference current i∗q approaches zero, it is reset to the certain value to speed up
the motor, while the reference speed is still changed by the ramp function.

i∗q(k) = −Kci∗qsw (12)
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where Kc is the proportional gain of the reference current i∗q in the new direction.
Step 3: When the reference speed approaches ωsw

r , the reference current i∗q is decreased, similar to
the procedure in the I-f startup strategy.{

i∗q(k + 1) = i∗q(k) ∓KaTs

ω∗r(k + 1) = ω∗r(k) = ωsw
r

while θL = θ̂e − θa
e > θ

sw
e (13)

where θsw
e is the angular threshold value of the switching condition.

Step 4: The motor is switched to operate in the sensorless control mode.

3. The Neural Fuzzy Controller Design for PMSM Drive Control System

3.1. Fuzzy Logic Controller

In Figure 1, there are two inputs for FLC, the rotor speed error e and the rotor speed error change
de, which are expressed by {

e(k) = ω∗r(k) − ω̂r(k)
de(k) = e(k) − e(k− 1)

(14)

and the output of the FLC is presented as uf.
According to the fuzzy control theory, the design procedure of the FLC algorithm in this paper

is depicted as follows. Firstly, the input variables are selected, where their linguistic variables are
presented by E and dE. There are seven linguistic values for each input variables, labeled as {A1, A2, A3,
A4, A5, A6, A7} and {B1, B2, B3, B4, B5, B6, B7}, respectively. The membership functions are constructed
on the symmetrical triangular type, as shown in Figure 5. Secondly, the membership degrees for e and
de are computed. For any input value, there are only two active linguistic values and the membership
degrees are obtained by ⎧⎪⎪⎨⎪⎪⎩ μAi(e) =

ei+1 − e
ei+1 − ei

and μAi+1(e) = 1− μAi(e)

μBj(de) =
dej+1 − de
dej+1 − dej

and μBj+1(de) = 1− μBj(de)
(15)

(d
e) B

B
de

de
μ

μ
=

−

B
de

μ

de

(e)

A Ae eμ μ= −

A eμ
e

Figure 5. The membership function of e, de and fuzzy rule table.
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Thirdly, the initial FLC rules are designed by referring to the dynamic response characteristics,
such as

IF e is Ai and de is Bj THEN uf is cj,i (16)

where i, j = 1, 2 . . . 7 and cj,i is the real number. There are 49 fuzzy rules in the fuzzy rule table.
Finally, the product-inference rule, singleton fuzzifier, and central average defuzzification technique
are implemented to infer the output uf(e, de) of the fuzzy system. For any input value (e, de), the value
of (i,j) is determined, and only four fuzzy rules result in a non-zero output. Therefore, four linguistic
values Ai, Ai+1, Bj, and Bj+1 and the corresponding consequent values cj,i, cj+1,i, cj,i+1, and cj+1,i+1 are
active, and the output of the fuzzy system can be obtained by

u f (e, de) =

∑i+1
n=i

∑ j+1
m= j cm,n�μAn(e) × μBm(de)�∑i+1

n=i
∑ j+1

m= j μAn(e) × μBm(de)
=

i+1∑
n=i

j+1∑
m= j

cm,n × dm,n (17)

where dm,n = μAn(e) × μBm(de), and the value of the
i+1∑
n=i

j+1∑
m= j

dm,n = 1 in Equation (17) can be easily

derived by using Equation (15). Moreover, the cm,n are adjustable parameters of the FLC.
Additionally, in Figure 1, for the sensorless control mode, the reference current i∗q is expressed by

the output of the fuzzy controller uf as the following equation:

i∗q(k) = uiw(k− 1) +
(
Kpw + Kiw

)
× u f (k) (18)

where Kpw and Kiw are the proportional and integral gain of PI controller in the speed control
loop, respectively.

3.2. Radial Basis Function Neural Network

The parameters of FLC in the NFC-based speed controller should be adjusted effectively. That needs
the Jacobian transformation obtained from the dynamic system characteristics. Therefore, the PMSM
drive control system must be identified. In Figure 6, an RBFNN is designed to acquire that information.
It is a feedforward neural network architecture comprised of an input layer, a hidden layer, and a
single output layer.

qi k

r kω −

r kω −

r kω

nn kω

nne k

Figure 6. The structure of RBFNN (radial basis function neural network) in the NFC-based speed controller.

There are three inputs in the input layer, namely i∗q(k), ω̂r(k− 1), ω̂r(k− 2), and the input vector
form is expressed by

x(k) =
[
i∗q(k) ω̂r(k− 1) ω̂r(k− 2)

]T
(19)
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In the hidden layer, there are five neurons and the Gaussian function is used as the activation
function, which is presented by the following equation

hl(k) = exp

⎛⎜⎜⎜⎜⎜⎝−
∣∣∣∣∣∣x(k) −Cl(k)||2

2b2
l (k)

⎞⎟⎟⎟⎟⎟⎠ (20)

where Cl(k) = [c1l(k) c2l(k) c3l(k)]
T and crl, bl, are the center and width of the Gaussian function.

In the output layer, the output is formulated by a linearly weighted sum of hidden nodes:

ω̂nn(k) =
5∑

l=1

wl(k)hl(k) (21)

Additionally, to adjust the parameters of RBFNN by the online learning law, the instantaneous
cost function is presented by

J(k) =
1
2
(ω̂r(k) − ω̂nn(k))

2 =
1
2

e2
nn(k) (22)

According to the stochastic gradient descent (SGD) method, the weights, node widths, and node
centers can be calculated and updated by the learning algorithm as below equations [24]:⎧⎪⎪⎨⎪⎪⎩ Δωl(k) = −η ∂J(k)

∂ωl(k)
= ηenn(k)hl(k)

ωl(k) = ωl(k− 1) + Δωl(k) + α(ωl(k− 1) −ωl(k− 2))
(23)

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Δbl(k) = −η ∂J(k)
∂bl(k)

= ηenn(k)ωl(k)hl(k)
∣∣∣∣∣∣x(k)−Cl(k)||2

b3
l (k)

bl(k) = bl(k− 1) + Δbl(k) + α(bl(k− 1) − bl(k− 2))
(24)

⎧⎪⎪⎨⎪⎪⎩ Δcrl(k) = −η ∂J(k)
∂crl(k)

= ηenn(k)ωl(k)hl(k)
xr(k)−crl(k)

b2
l (k)

crl(k) = crl(k− 1) + Δcrl(k) + α(crl(k− 1) − crl(k− 2))
(25)

where α is the momentum factor; η is the learning rate, and r = 1, 2, 3; l = 1, 2 . . . 5.
Additionally, the Jacobian transformation can be expressed by

∂ω̂r

∂i∗q
≈ ∂ω̂nn

∂i∗q
=

5∑
l=1

wl(k)hl(k)
c1l(k) − i∗q(k)

b2
l (k)

(26)

3.3. Adjusting Mechanism of Fuzzy Logic Controller

To achieve the smallest squared error between the reference speed and the estimated rotor speed,
the FLC parameters are adjusted online in the closed-loop control. Hence, the cost function can be
firstly defined by

Je(k) =
1
2
(ω∗r(k) − ω̂r(k))

2 =
1
2

e2(k) (27)

Then, the NFC learning law is derived based on the gradient descent method. In the fuzzy rule
table (Figure 5), parameters of cm,n can be updated and optimally adjusted according to

Δcm,n = −γ ∂Je

∂cm,n
(28)
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where γ is the adaptive rate. The chain rule is executed, and the partial differential equation for Je in
Equation (28) can be presented by

∂Je

∂cm,n
= − ∂Je

∂ω̂r

∂ω̂r

∂u f

∂u f

∂cm,n
(29)

Furthermore, from Equation (15) and using the Jacobian transformation from Equation (26),
the following equations are obtained:

∂u f

∂cm,n
= dm,n (30)

and
∂ω̂r

∂u f
=
∂ω̂r

∂i∗q

∂i∗q
∂u f
≈

(
Kpw + Kiw

)∂ω̂r

∂i∗q
=

(
Kpw + Kiw

) 5∑
l=1

wl(k)hl(k)
c1l(k) − i∗q(k)

b2
l (k)

(31)

Substituting Equations (30) and (31) into Equation (29), the parameters cm,n of FLC defined in
Equation (17) can be adjusted by the following equation:

Δcm,n(k) = γe(k)
(
Kpw + Kiw

)
dm,n

5∑
l=1

wl(k)hl(k)
c1l(k) − i∗q(k)

b2
l (k)

(32)

with m = j, j+1 and n = i, i+1.

4. Simulation Results

To demonstrate the correctness of the proposed control algorithm for the PMSM drive system,
the system performance was tested in both a simulation and real-time hardware within different
experimental conditions. The first case is controlling the motor for two directions in the wide speed
range to validate the tracking response and the estimator’s correction. The estimated values were
compared to the actual values, which were measured by the digital incremental encoder. The second
case is the direction reversion transition to make sure that the system can switch the direction stably.
The third case is starting up the motor with the different initial external load and comparing the
system performance between the proposed NFC-based speed controller and the PI speed controller.
That confirms the executed ability of the I-f startup strategy and the system’s robustness against
disturbance. All instances are inspected on the PMSM control system and dynamic load system,
where the PMSM’s parameters are listed as rated power of 750 W, rated current of 4.24 A, rated speed
of 2000 rpm, phase resistance of 1.326 Ω, phase inductance of 2.952 mH, back-EMF constant of
56.5 VL-L/krpm, torque constant of 0.86 Nm/A, inertia of 3.63 Kg·cm2, and pole pairs of 4.

Furthermore, the PI speed controller has fixed parameters and not flexible to the PMSM drive
control system, which is a dynamic, multivariable, and nonlinear system. Especially, the PMSM drive
control system is usually operated under various conditions or dynamics load. Therefore, the PI
controller only works effectively at a specific operating condition, where the PI parameters are designed
in correspondence to the system characteristics. For a fair comparison between the NFC-based speed
controller and the PI speed controller, the system performances were analyzed with the same PI’s
parameters. In the third experimental condition, the PI speed controller is firstly set for the case of
an external load of 50 Ω, satisfying the performance criteria such as the transient response without
the overshoot or undershoot, and with the short settling time and the zero steady-state error. Then,
the operating condition is varied by applying two different external load values on the system to
evaluate the system performance for both the PI and NFC-based speed controllers.

The NFC-based speed controller for the sensorless PMSM drive control system was completely
designed in MATLAB Simulink, and the overall system is shown in Figure 7. The sampling frequency
for real-time platform modeling (block A) is 20 kHz. In the motor control algorithm (block B),
the sampling frequency for speed loop control is 1 kHz, while the sampling frequency for the estimator
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and the current control loop is 20 kHz. The simulation data (block C) are acquired and monitored with
the sampling frequency of 20 kHz. The PI controllers’ parameters are set in the current control loop
as KPq = 0.25, KIq = 0.025, KPd = 0.25, KId = 0.025. The NFC-based speed controller is realized in the
speed control loop. For the FLC, the membership function’s values are set as E= [ e1 e2 e3 e4 e5 e6 e7]
= [−225 −150 −75 0 75 150 225] and dE = [de1 de2 de3 de4 de5 de6 de7] = [−187.5 −125 −62.5 0 62.5 125
187.5]. The initial fuzzy rule table values are set as in Table 1. These parameters are adjusted during
the operating time with the adaptive rate of 0.25. For the neural network, the initial neuron parameters
are set as follows: node centers Cl = [−0.5 −0.25 0.0 0.25 0.5], node widths b = [0.25 0.25 0.25 0.25 0.25],
connective weights w = [0.00625 0.00625 0.00625 0.00625 0.00625], momentum factor α = 0.95, and the
learning rate η = 0.475. Moreover, the PI’s parameters of the PI and NFC-based speed controller are
set as Kpw = 1.725 and Kiw = 0.030. Additionally, the dynamic load system is modeled by a generator
and the electrical load. The electrical load is comprised of a rectifier, a capacitor of 470 μF, and the
resistor load bank. In the first and second experimental conditions, the motor is operated with a total
resistance load of 100 Ω.

 

Figure 7. The overall simulation structure of the sensorless PMSM drive control system with a dynamic
load system in MATLAB Simulink.

Table 1. The initial fuzzy rule table of fuzzy logic controller (FLC).

dE

E
A1 A2 A3 A4 A5 A6 A7

B1 −0.324 −0.324 −0.324 −0.324 −0.216 −0.108 0
B2 −0.324 −0.324 −0.324 −0.216 −0.108 0 0.108
B3 −0.324 −0.324 −0.216 −0.108 0 0.108 0.216
B4 −0.324 −0.216 −0.108 0 0.108 0.216 0.324
B5 −0.216 −0.108 0 0.108 0.216 0.324 0.324
B6 −0.108 0 0.108 0.216 0.324 0.324 0.324
B7 0 0.108 0.216 0.324 0.324 0.324 0.324

Figure 8 presents the motor’s performance in the positive direction for the wide speed range,
including: (1) the startup from the standstill; (2) stepping up to the rated speed; and (3) slowing
down. The command speed is varied in a sequence of 0 → 200 → 500 → 1000 → 1500 → 2000 →
1600 → 1200 → 800 → 1000 rpm. Figure 8a indicates that the estimated rotor speed overlaps the
actual value and closely tracks the command speed properly. Figure 8b implies that the current iq is
regulated proportionally to the command speed while the current id almost is equal to zero. Figure 8c–f
illustrates the estimated position, actual position, and the estimation errors at the speeds of 500, 1000,
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1500, and 2000 rpm in a period of 0.15 s. There are 5, 10, 15, and 20 position cycles, corresponding to
the rotation frequencies of 33.33, 66.67, 100, and 133.33 Hz, respectively. These values are proper to
the motor with four pole pairs. The actual and estimated positions come close to each other; thus,
the estimation error is equal to zero.

 

Figure 8. Simulation results in the wide speed range in the positive direction for: (a) speed response;
(b) current response; and rotor position response at (c) 500; (d) 1000; (e) 1500; and (f) 2000 rpm.

The motor’s performance in the negative direction for the wide speed range is illustrated in
Figure 9. The waveform of the command speed is the same as in the positive direction, only the speed
has the opposite value. Comparing to Figure 8, the speed response, the current, and the rotor position
in the negative direction are just the reverse of their value. In the positive direction, the rotor position
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is increased from 0◦ to 360◦ for one electrical cycle, while the rotor position is decreased from 360◦ to
0◦ in the negative direction. Therefore, Figures 8 and 9 refer that the motor control system has worked
for two directions with the same quality. In both rotational directions, the motor startups from the
standstill stage with the initial reference current i∗q of 0.63 A. The ratio for decreasing the reference
current i∗q is set up at the value of 0.42 A/s. The motor control algorithm is switched to the sensorless
control mode at t = 1.788 s, where the reference current i∗q is decreased to 0.1213 A.

 

Figure 9. Simulation results in the wide speed range in the negative direction for: (a) speed response;
(b) current response; and rotor position response at (c) 500; (d) 1000; (e) 1500; and (f) 2000 rpm.

The motor’s speed performance in the reversal operation is presented in Figure 10. Firstly,
the motor is started in the positive direction, and then accelerated and decelerated, following the
sequence: 0→ 200→ 700→ 200 rpm. Secondly, the command speed is set up to reverse the rotational
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direction from 200 to −200 rpm at t = 4 s. The motor control algorithm is transferred to the I-f control
mode from the sensorless control mode. When the motor has already operated in the negative direction,
the motor control algorithm is switched to the sensorless control mode again and the command speed
is varied by the sequence: −200→ −700→ −200 rpm. Thirdly, a similar procedure is implemented
when the command speed is changed to reverse the rotational direction from −200 to 200 rpm at
t = 7 s. During the operation of the motor, the estimated rotor speed almost tracks the reference speed
and approximates the actual rotor speed for both the sensorless control mode and the I-f control
mode. Moreover, the current response in Figure 10b indicates that the reference current i∗q is regulated
differently for the sensorless control mode and the I-f control mode in the rotational direction reversion.
Therefore, the rising time and settling time are different in the speed transition between the rotational
direction reversion and the varied speed in one direction. It takes a larger time to reverse the direction.
Figure 10c illustrates the rotor position when the motor changes its direction to the negative direction;
there is a larger estimation error and the maximum value is −38.67◦ at t = 4.077 s. Additionally,
the maximum rotor position estimation error is 45.25◦ at t = 7.078 s in the case of changing the direction
from the negative value to the positive value in Figure 10d. However, these estimation errors could be
accepted because the direction reversion time only takes about 0.111 s. It is the period that the system
is operated in the I-f control mode. Therefore, Figure 10 implies that the I-f control mode makes the
motor change the direction stably and the modified conventional PLL works effectively. The estimation
error still equals to zero after changing the rotational direction.

 
Figure 10. Simulation results in the case of the varied rotational direction for: (a) speed response;
(b) current response; (c) rotor position (positive–negative); and (d) rotor position (negative–positive).
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The system performance for the PI speed controller and the NFC-based speed controller is
presented in Figure 11 when the motor startups with the initial resistance load of 100 Ω. The rotor
speed follows the sequence of 0→ 200→ 500→ 1000 rpm until t = 4 s. Then, the command speed
is regulated as a square wave with a period of 1 s and the speed variation from 1000 to 1500 rpm.
At t = 5.5 s, more resistance load is added to the total value of 50 Ω. It implies that the larger external
load is suddenly applied to the motor, resulting in a drop of rotor speed briefly because it takes some
time to raise the energy supplied to the system. In the PI controller, the rotor speed decreases to the
minimum of 950 rpm at t = 5.531 s and steadies at 1000 rpm again at t = 5.751 s. The recovery time
is 0.220 s with a speed reduction of 50 rpm. In the NFC controller, the rotor speed decreases to the
minimum of 964 rpm at t = 5.523 s and steadies at 1000 rpm again at t = 5.679 s. The recovery time is
0.156 s with a speed reduction of 36 rpm.

 

Figure 11. Simulation results for PI (Proportional-Integral) controller: (a) speed response; and (b)
current response; and for NFC controller: (c) speed response; and (d) current response in the case of
RL = 100→ 50 Ω.
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Figure 12 shows the system performance when the motor startups with the initial resistance
load of 50 Ω. The speed command is also varied as the same as its waveform, as shown in Figure 11.
Because the larger external load is applied in the startup mode, before the earlier sensorless control
mode switching at t = 1.702 s, the reference current i∗q is reduced to the value of 0.1818 A (Figure 12),
which is higher than the case shown in Figure 11. Those corresponding values in Figure 11 are 1.778 s
and 0.1213 A, respectively. At t = 5.5 s, the resistance load is varied to obtain the total value of 100 Ω.
It implies that less external load is applied to the system. In the PI controller, the motor increases the
speed until reaching the maximum speed of 1051 rpm, at t = 5.526 s, and then stabilizes at 1000 rpm
again at t = 5.724 s. The recovery time is 0.198 s with the speed increment of 51 rpm. In the NFC
controller, the rotor speed is increased to the maximum of 1025 rpm, at t = 5.519 s, and stabilizes at
1000 rpm again at t = 5.687 s. The recovery time is 0.168 s with the speed increment of 25 rpm.

Figure 12. Simulation results for PI controller: (a) speed response; and (b) current response; and for
NFC controller: (c) speed response; and (d) current response in the case of RL = 50→ 100 Ω.
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The comparison of the different speed performances for the PI speed controller and the NFC-based
speed controller is presented in Figures 13 and 14. It is easy to see that the system has a better
performance in the NFC-based speed controller. The motor speed tracks the command speed perfectly,
without the overshoots or undershoots for two cases of external load. It also has a faster response,
with the settling time of 0.149 s. However, there is a little difference in the speed performance for
two cases of external load in the PI speed controller. In the case of RL = 100 Ω, the system has an
overshoot and an undershoot, at about +10 rpm, and the settling time of 0.267 s. The system has
better performance, without overshoots or undershoots, and the settling time of 0.164 s in the case of
RL = 50 Ω, where the PI’s parameters are set appropriately. Figures 13 and 14 demonstrate that the
PI speed controller can only work properly at the defined condition (RL = 50 Ω), while the proposed
NFC-based speed controller works effectively for both cases to obtain a good performance because it
has a mechanism to adjust its parameters, adapted to the dynamic system characteristic.

Figure 13. Comparison of the speed response of simulation results in the case of the varied external
load for RL = 100→ 50 Ω: (a) PI controller; and (b) NFC controller.

Figure 14. Comparison of the speed response of simulation results in the case of the varied external
load for RL = 50→ 100 Ω: (a) PI controller; and (b) NFC controller.
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In summary, the motor control system’s performance is analyzed in Figures 8–14. Several command
speed waveforms and the varied dynamic load conditions are applied. Those results imply that the
estimator works successfully. The estimated values approach the actual values for both rotor speed
and rotor position. The NFC-based speed controller improves the system performance effectively and
presents the robustness against disturbance. The rotor speed almost tracks the command perfectly,
with a zero steady-state error, without overshoot or undershoot, and having shorter settling time,
in comparison to the PI speed controller. Additionally, the system switches the control mode smoothly
and reverses the rotational direction stably when the I-f control strategy is implemented. The simulation
results have already confirmed that the proposed control algorithm for the sensorless PMSM drive
control system is correct and effective.

5. Experimental Verification and Results

After evaluating the system performance by simulation, the motor control algorithm was compiled
and deployed to the experimental PMSM drive control system, as presented in Figure 15. Moreover,
to analyze the system performance, the system data were transmitted to MATLAB Simulink by the
SCI function, integrated into the DSP with the sampling frequency of 2 kHz. The experimental
system involves a PMSM coupled to a generator, an inverter, a control circuit, and a DSP F28379D.
The DSP F28379D is equipped with 200 MHz dual C28xCPUs and dual CLAs, 1 MB Flash, 16-bit/12-bit
ADCs, comparators, 12-bit DACs, HRPWMs, eCAPs, eQEPs, CANs, etc. The isolation and protection
functions are integrated into the control circuit, which helps lock the PWM control signal in the case of
overcurrent problem. The electrical load is comprised of a rectifier, a capacitor of 470 μF and 450 V,
and the resistor load bank.

 

Figure 15. The experimental system with: (a) real platform; and (b) electrical load.

The sampling frequencies of the speed control loop, the current control loop and the SMO-PLL
estimator are 1, 20, and 20 kHz, respectively. The inverter’s switching frequency is set at 15 kHz.
The PI controllers’ parameters are set as KPq = 0.25, KIq = 0.025, KPd = 0.25, KId = 0.025, Kpw = 0.735,
and Kiw = 0.00918. The membership function’s values are set the same as the simulation configuration.
The fuzzy rule table values are initialized with a ratio of 0.833 to the values in Table 1 and adjusted with
the adaptive rate of 0.25. The neural network’s parameters are set as follows: node centers Cl = [−2.5
−1.25 0.0 1.25 2.5], node widths b = [2.5 2.5 2.5 2.5 2.5], connective weights w = [0.025 0.025 0.025 0.025
0.025], momentum factor α = 0.75, and learning rate η = 0.435. In the first and second experimental
conditions, the motor is operated with the total resistance load of 100 Ω and 400 W.
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Figure 16 presents the motor’s performance in the positive direction for the wide speed range.
The motor startups from the standstill stage at t = 1.193 s and switches to the sensorless control mode at
t = 9.213 s. The rotor speed is accelerated to the rated speed and then decelerated. The command speed
is varied in a sequence of 0→ 300→ 500→ 1000→ 1500→ 2000→ 1600→ 1200→ 800→ 1000 rpm for
each period of 5 s. Figure 16a refers that the estimated rotor speed overlaps the actual rotor speed and
closely tracks the command speed perfectly. In Figure 16b, although the current iq fluctuates around
the reference current i∗q, its average value is still regulated proportionally to the command speed while
the current id almost oscillates around the zero value. Figure 8c–f illustrates the estimated position,
actual position, and the estimation errors at the speeds of 500, 1000, 1500, and 2000 rpm in a period of
0.15 s. There are 5, 10, 15 and 20 position cycles corresponding to the rotation frequencies of 33.33, 66.67,
100, and 133.33 Hz, respectively. These values are proper to the motor with four pole pairs. The actual
and estimated positions come close to each other; thus, the estimation error approximates zero.

 

Figure 16. Experimental results in the wide speed range in the positive direction: (a) speed response;
(b) current response; and rotor position response at: (c) 500; (d) 1000; (e) 1500; and (f) 2000 rpm.
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Figure 17 illustrates the motor’s performance in the negative direction for the wide speed range.
The waveform of the command speed is the same as in the positive direction, only the speed has
the opposite value. The motor starts up at t = 1.035 s and switches to the sensorless control mode
at t = 9.201 s. Comparing to Figure 16, in the positive direction, the rotor position is increased from
0◦ to 360◦ for one electrical cycle and the estimation error is close to zero, while the rotor position is
decreased from 360◦ to 0◦ in the negative direction and the estimation error is not completely equal to
zero; the maximum error values can reach to 12◦. Therefore, the reference current i∗q is regulated with
a little larger value, in comparison to the case of the positive direction. However, the rotor position
still tracks the command speed very well. In both rotational directions, the motor starts up from the
standstill stage with the initial reference current i∗q of 0.635 A. The ratio for decreasing the reference
current i∗q is set up at the value of 0.085 A/s.

 

Figure 17. Experimental results in the wide speed range in the negative direction: (a) speed response;
(b) current response; and rotor position response at: (c) 500; (d) 1000; (e) 1500; and (f) 2000 rpm.

The motor’s speed performance in the reversal operation is presented in Figure 18. Firstly,
the motor rotates in the negative direction, and the rotor speed is varied in the sequence of −300→
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−700→ −300 rpm. Secondly, the command speed is set up to reverse the rotational direction from
−300 to +300 rpm at t = 11 s. The motor control algorithm is transferred to the I-f control mode from
the sensorless control mode. The motor is decelerated to zero and accelerated to the command speed,
following a ramp function with a ratio of 266.67 rpm/s. The actual rotor speed reaches 300 rpm at
t = 13.28 s. It takes about 2.28 s to reverse the rotational direction from the negative direction to the
positive direction. When the motor has already operated in the positive direction, the motor control
algorithm is switched to the sensorless control mode again at t = 14.79 s. The I-f control mode is
implemented in a period of 3.79 s in this direction reversion transition. Then, the command speed is
varied by the sequence: 300→ 700→ 1200→ 300 rpm. Thirdly, a similar procedure is applied when
the command speed is changed to reverse the rotational direction from +300 to −300 rpm at t = 36 s.
The actual rotor speed reaches −300 rpm at t = 38.26 s. It takes about 2.26 s to reverse the rotational
direction from the positive direction to the negative direction. The I-f control mode is active in a period
of 4.02 s. During the operation of the motor, the estimated rotor speed almost tracks the command
speed and approximates the actual rotor speed for both the sensorless control mode and the I-f control
mode. Moreover, the current response in Figure 18b indicates that the reference current i∗q is regulated
differently for the sensorless control mode and the I-f control mode in the case of the rotational direction
reversion. Therefore, the rising time and settling time are different in the speed transition between the
rotational direction reversion and the uni-direction speed variation. It takes a larger time to reverse the
rotational direction. In the first direction reversion transition, the current i∗q is regulated from −0.3652
to 0.6226 A, and then reduced to 0.3362 A before switching to the sensorless control mode. In the
second transition, those corresponded values are 0.3694, −0.6558, and −0.3237 A, respectively.

Figure 18. Experimental results in the case of the varied rotational direction for: (a) speed response;
and (b) current response.

Figure 19a–c illustrates the rotor position when the motor changes the rotational direction to
the positive direction. When the actual speed crosses the zero value, there is a large estimation error
because the modified PLL changes the parameter θoffset from 180◦ to 0◦. However, this error is reduced
significantly when the system is switched to the sensorless control mode. In Figure 19e–f, a similar
result is analyzed for rotor position in the case of changing the rotor speed from the positive value to
negative value. The parameter θoffset is transferred from 0◦ to 180◦. Finally, Figures 18 and 19 verify
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that the I-f control mode makes the motor change the rotational direction stably and the modified
conventional PLL is worked effectively, which is not affected by noise, inaccurate back-EMF estimation
or large estimation error in the low-speed range. The estimated position still approaches the actual
value after the direction reversion transition has occurred.

Figure 19. Experimental results of rotor position in the case of the varied rotational direction: from
negative to positive (a–c); and from positive to negative (d–f).

Figure 20 presents the system performance for the PI speed controller and the NFC-based speed
control when the motor startups with the initial resistance load of 100 Ω and 400 W. The motor startups
at t = 2.821 s and switches to the sensorless control mode at t = 10.915 s. The rotor speed follows the
sequence of 0→ 300→ 500→ 1000 rpm. Then, the command speed is regulated as a square wave
with a period of 5s and the speed variation from 1000 to 1500 rpm. In the PI controller, at t = 28.94 s,
more power resistors are added to increase the external load, and the total resistance load transfers to
the new value of 50 Ω and 800 W. At t = 29.06 s, the rotor speed reduces to the low peak, with the
estimated value (blue line) of 878 rpm and the actual value (red line) of 867 rpm. The rotor speed
steadies at 1000 rpm again at t = 29.84 s. The recovery time is 0.78 s with the actual speed reduction of
133 rpm. In the NFC controller, the external load is enhanced at t = 30.00 s. The rotor speed reduces
to the low peak, with the estimated value of 930 rpm and the actual value of 914 rpm at t = 30.09 s.
The rotor speed steadies at 1000 rpm again at t = 30.67 s. The recovery time is 0.58 s with the actual
speed reduction of 86 rpm.
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Figure 20. Experimental results for PI controller: (a) speed response; (b) current response; and for NFC
controller: (c) speed response; and (d) current response in the case of RL = 100→ 50 Ω.

By the initial resistance load of 50 Ω and 800 W, the system performance for the PI speed controller
and the NFC-based speed controller is shown in Figure 21. The speed command is the same as its
waveform presented in Figure 20. Comparing to the results in Figure 20, because a larger external
load is applied in the startup mode, the reference current i∗q is ramped down to 0.5063 A, and then the
system switches to the sensorless control mode in a shorter time. It takes a period of 6.087 s (for NFC)
in the I-f control mode. The corresponding values in Figure 20 are 0.3362 A and 8.094 s, respectively.
In the PI controller, at t = 28.08 s, some power resistors are removed to reduce the external load, and the
total resistance load varies to the new value of 100 Ω and 400 W. At t = 28.19 s, the rotor speed increases
to the up peak, with the estimated value of 1132 rpm and the actual value of 1141 rpm. The rotor speed
steadies at 1000 rpm again at t = 28.89 s. The recovery time is 0.70 s with the actual speed increment of
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141 rpm. In the NFC controller, the external load is reduced at t = 28.92 s. The rotor speed goes to the
up peak with the estimated value of 1072 rpm and the actual value of 1083 rpm at t = 29.00 s. The rotor
speed stabilizes at 1000 rpm again at t = 29.50 s. The recovery time is 0.50 s with the actual speed
increment of 83 rpm. Lastly, Figures 20 and 21 indicate that the sensorless motor control algorithm still
works stably and successfully, robust to the disturbance of the external load.

 
Figure 21. Experimental results for PI controller: (a) speed response; (b) current response; and for NFC
controller: (c) speed response; and (d) current response in the case of the RL = 50→ 100 Ω.

The comparison of the detailed speed performances for the PI speed controller and the NFC-based
speed controller is presented in Figures 22 and 23. This demonstrates that the NFC-based speed
controller creates better performance. The motor speed tracks the command speed perfectly, without
the overshoots or undershoots for two cases of external load and the settling time of 0.50 s. However,
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there is a little difference in the speed performance for the PI speed controller. In the case of RL = 100 Ω
and 400 W, the system has an overshoot and an undershoot, at about +17 rpm, and the settling time of
0.78 s. While the system has a good performance, without overshoots or undershoots, and the settling
time of 0.53 s in the case of RL = 50 Ω and 800 W. Figures 22 and 23 prove again that the PI speed
controller can only work properly at the specific condition (RL = 50 Ω and 800 W), while the proposed
NFC-based speed controller works effectively for both cases to obtain a good performance because it
has a mechanism to adjust its parameters, adapting to the dynamic system characteristic.

 

Figure 22. Comparison of speed response of experimental results in the case of the varied external load
for RL = 100→ 50 Ω: (a) PI controller; and (b) NFC controller.

 

Figure 23. Comparison of speed response of experimental results in the case of the varied external load
for RL = 50→ 100 Ω: (a) PI controller; and (b) NFC controller.

In summary, the experimental results in Figures 16–23 verify that the proposed control algorithm
for the sensorless PMSM drive control system is realized effectively. The motor can startup with
different initial external load and switch to the sensorless control mode smoothly. Furthermore,
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the motor operates in two rotational directions and the direction reversion transition is executed stably.
It confirms that the estimator is implemented successfully in combination with the I-f control strategy.
The estimated values approach the actual value for both rotor speed and rotor position. Moreover,
compared to the PI speed controller, the NFC-based speed controller improves the system performance
excellently and presents robustness against disturbance. The rotor speed tracks the command properly,
without the overshoot or undershoot. The steady-state error almost comes close to zero (within ±5 rpm
in the tolerance). Additionally, the DSP application for the PMSM drive control system is properly
designed in MATLAB Simulink, deployed to Code Composer Studio software (Version 8.0.0.00016,
Texas Instruments, Inc., Dallas, TX, USA) and successfully realized in the real-time system. Therefore,
the development time for DSP application is substantially shortened by this deployment method.

6. Conclusions

In this work, the NFC-based speed controller and SMO-PLL estimator for the sensorless PMSM
drive control system are presented and realized effectively. The proposed control algorithm was
designed in MATLAB Simulink and deployed to the real-time platform, based on a DSP F28379D.
Different experimental conditions were executed to evaluate system performance. The combination
of the SMO-PLL estimator and the I-f control strategy eliminates the initial rotor position estimation
and overcomes the reversal problem. The motor can startup with a diverse external load, operate
in two directions in a wide speed range, and switch the rotational direction stably. The analyzed
results demonstrate that the estimator works correctly. The estimated values come close to the
actual value for both rotor position and speed so that the estimation error is almost insignificant.
Furthermore, the NFC-based speed controller improves the system performance outstandingly and
presents robustness against disturbance. The rotor speed almost tracks the command perfectly,
with a zero steady-state error, without overshoot or undershoot, and having shorter settling time
in comparison to the PI speed controller. Therefore, the system performance demonstrates that the
proposed control algorithm for the sensorless PMSM drive control system is correct and effective.
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Abstract: The field oriented control (FOC) strategy of the permanent magnet synchronous motor
(PMSM) includes all the advantages deriving from the simplicity of using PI-type controllers,
but inherently the control performances are limited due to the nonlinear model of the PMSM,
the need for wide-range and high-dynamics speed and load torque control, but also due to the
parametric uncertainties which occur especially as a result of the variation of the combined rotor-load
moment of inertia, and of the load resistance. Based on the fractional calculus for the integration and
differentiation operators, this article presents a number of fractional order (FO) controllers for the
PMSM rotor speed control loops, and id and iq current control loops in the FOC-type control strategy.
The main contribution consists of proposing a PMSM control structure, where the controller of the
outer rotor speed control loop is of FO-sliding mode control (FO-SMC) type, and the controllers for the
inner control loops of id and iq currents are of FO-synergetic type. Superior performances are obtained
by using the control system proposed, even in the case of parametric variations. The performances
of the proposed control system are validated both by numerical simulations and experimentally,
through the real-time implementation in embedded systems.

Keywords: permanent magnet synchronous motor; fractional order control; synergetic control;
sliding mode control

1. Introduction

The permanent magnet synchronous motor (PMSM) is widely used in industrial applications,
the aerospace industry, electric vehicles, robotics, electric drives and computer peripherals.
The popularity of using the PMSM for a very wide range of applications is due to a set of advantages
such as efficiency, small size, high power and high torque density. Naturally, for the control of the
PMSM, a number of algorithms and control strategies have been developed, both in the range of the
classic type of control, and also as through modern and unconventional approaches. The field oriented
control (FOC) and direct torque control (DTC) [1–7] can be distinguished among the control strategies
of the PMSM. The DTC strategy is characterized by a simpler structure in terms of controllers which are
generally ON-OFF, but inherently the performance of the control system is affected by the occurrence
of oscillations. The FOC strategy contains a cascade control structure, where the outer loop controls
the PMSM rotor speed, and the inner control loops control currents id and iq. In the classical approach,
the FOC strategy controllers are PI type. This approach includes all the advantages provided by the
simplicity of using such controllers, but inherently the control performances are limited due to the
nonlinear model of the PMSM, the need for wide-range and high-dynamics speed and load torque
control, but also due to the parametric uncertainties which occur especially as a result of the variation
of the combined rotor-load moment of inertia, and of the load resistance.
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Among the more complex control systems used to obtain superior performances we can mention
the adaptive control [8–10], the predictive control [11–13], the robust control [14,15], the backstepping
control [16], the sliding mode control (SMC) [17,18] and the synergetic control [19,20]. These types of
control systems provide superior performance in terms of the response time, the overshoot and the
parametric robustness, and the real-time implementation in embedded systems can be achieved with
digital signal processors (DSP) with common performance, with a very good performance/price ratio.

Among these control systems, due to their robustness to parametric variations, the SMC-type
control systems have a special role, as well as the development of low-order controllers, with obvious
advantages in the real-time implementation in embedded systems. To counter SMC’s main disadvantage
due to the occurrence of the chattering phenomenon, a series of techniques have been developed,
among which we mention the use of a proportional-integral type of sliding surface plus integrator or a
second-order SMC. Further, we recall that the synergetic control can be considered as a generalization
of the SMC-type control, retaining the decoupling and model order reduction properties of this type of
control and the advantages provided by this approach for the synthesis of the controller.

We can mention the following intelligent control systems: fuzzy [21], neuro-fuzzy [22],
artificial neural network (ANN) [23–25], particle swarm optimization (PSO) or genetic algorithms [26].
These types of control also provide superior performance, but in the real-time implementation in
embedded systems it is necessary to use very fast DSPs, with relatively high costs, in addition to a
number of specific software libraries of the control application development environments. Thus,
the performance/price ratio does not recommend the widespread use of these types of controllers.

Regarding the elimination of the speed sensors, in order to increase the reliability of the system,
Luenberger [27], model reference adaptive system (MRAS) [28], and sliding mode observer (SMO) speed
observers [29,30] are used for the deterministically described systems, and Kalman type observers [31]
are used for the stochastic description of the system. Evidently, according to the performance-cost
criterion, the deterministic observers are the most commonly used. Furthermore, a range of observers
have been developed for the detection of faults, one of the most useful observers being used for the
detection of faults in current sensors on the supply phases of the PMSM.

One of the special applications of using the fractional calculus for integration and differentiation
operators consists of obtaining the fractional order (FO) controllers [32–35], in order to obtain superior
control performance. In this sense, the first approaches were obviously aimed at obtaining FO-PI-type
controllers. Although the development of the FO-type controllers is very attractive due to the possibility
for finer tuning of certain tuning parameters, which are traditionally integer and fixed parameters
(for example the power of operator s in the structure of the PI or PID-type controller), the study of these
controllers was greatly accelerated with the development of specialized toolboxes such as the fractional
order modeling and control (FOMCON) integrated into the MATLAB/Simulink environment.

Among the usual applications of the PMSM control systems we mention: maintaining the speed
according to a profile set by a speed reference generator, but also master/slave type multi-motor
applications where the coupling is rigid or flexible and it is necessary to maintain the same speed
or maintain the torque developed by each engine in the narrowest range possible [36]. Furthermore,
the electric vehicles drive control applications raise the problem of multi-motor speed control [37].
Applications such as the automatic control of the hydropower dam spillway require that the error
accumulated in each drive chain corresponding to each engine be less than the set value [38].
These applications are generally achieved using the controllers described above, but of the integer order
type. In this article we will focus on the fractional order controllers which provide superior control
performance, but also on the increased difficulties regarding the implementation in embedded systems.

This article compares the performances obtained using FO-PI, tilt integral derivatives (TID),
FO-lead lag controller, and SMC speed controllers against the classic PI-type speed controller in an
FOC-type control structure of the PMSM, under the conditions where the controller of the current
loops is of PI type. It also presents the performances obtained by using the synergetic control for the
control of currents id and iq, within an FOC-type control structure of the PMSM with PI speed controller.
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The main contribution consists of proposing a PMSM control structure, where the controller of the
outer rotor speed control loop is of FO-SMC type, and the controllers for the inner control loops of id
and iq currents are of FO-synergetic type. Superior performances are obtained by using the control
system proposed, even in the case of parametric variations. The FO-SMC controller outputs the current
reference iqref, while idref = 0 according to the FOC control strategy. The FO-synergetic-type controllers
directly provide the control inputs ud and uq, and the control of the inverter is performed through
the inverse Park and Clarke transformations from d-q reference frame system to abc reference frame
system. The validation of the results presented is achieved by numerical simulations, but also by
real-time implementation in embedded systems.

The rest of the paper is organized as follows: the basic concepts of the fractional calculus for
integration and differentiation operators are presented in Section 2, the FOC-type control strategy and
the transfer function of the PMSM are presented in Section 3. The fractional order speed controllers
for the PMSM are presented in Section 4, Section 5 presents the fractional order synergetic current
controllers for the PMSM and Section 6 presents the observers for rotor speed estimation and fault
detection. Sections 7 and 8 present the numerical simulations and the experimental results, respectively.
Some conclusions are presented in the last section.

2. Fractional Order Calculus

Let us note that the non-integer order operator for integration and differentiation as aDαt , where
α represents the fractional order, a and t represent the limits of the interval at which the operator is
applied [27,28].

aDαt =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dα
dtα Re(α) > 0
1 Re(α) = 0∫ t

a (dt)−α Re(α) < 0
(1)

Although there are several ways to define this operator, not all have a generally accepted meaning.
The most widely used definition is the Riemann–Liouville differintegral [32,33]:

aDαt f (t) =
1

Γ(m− α)
(

d
dt

)m t∫
α

f (τ)

(t− τ)α−m+1
dτ (2)

where m− 1 < α < m, m ∈ N, and Γ(·) represents Euler’s gamma function. Another useful definition
in practical applications is given by Grünwald–Letnikov [32,33]:

aDαt f (t) = lim
h→0

1
hα

( t−α
h )∑

j=0

(−1) j
(
α
j

)
f (t− jh) (3)

where (·) represents the integer part.
Similarly to the case of the integer order of the operator defined in (1), the Laplace transform is

applied and the transfer function for signals and with fractional derivative is defined. For example,
if the orders of the fractional operator s are integer multiples in relation to the commensurate order
q, (q ∈ R+, 0 < q < 1, αk = kq), the transfer function H(λ) can be expressed as follows:

H(λ) =

m∑
k=0

bkλ
k

n∑
k=0

akλk
(4)

where λ = sq.
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However, in the case of linear and time-invariant systems, in the fractional case, the state space
representation becomes:

Dqx(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(5)

Furthermore, the stability of the system (5) can be verified by fulfilling the following relationship:

|arg(eig(A))| > q
π
2

(6)

where 0 < q < 1 represents the commensurate order, and eig(A) is the eigenvalue of the associated
matrix A.

To obtain a good approximation of a transfer function with fractional order in a specified frequency
range (ωb,ωh) and of order N, Oustaloup’s recursive filter for sγ and 0 < γ < 1 can be used as
follows [32,33]:

G f (s) = K
N∏

k=−N

s +ω′k
s +ωk

(7)

where ω′k, ωk and K are given by:

ω′k = ωb

(
ωh
ωb

) k+N+ 1
2 (1−γ)

2N+1

; ωk = ωb

(
ωh
ωb

) k+N+ 1
2 (1+γ)

2N+1

; k = ω
γ
h (8)

Furthermore, a refined Oustaloup filter is given by [32]:

sα ≈
(

dωh
b

)α( ds2 + bωhs
d(1− α)s2 + bωhs + dα

)
Gp (9)

Gp = K
N∏

k=−N

s +ω′k
s +ωk

; ωk =

(
bωh

d

) α+2k
2N+1

; ω′k =
(

dωb
b

) α−2k
2N+1

(10)

In Equations (9) and (10), usually b = 10 and d = 9.

3. Mathematical Model of PMSM. Transfer Function Representation. FOC Strategy of PMSM

The mathematical model of the PMSM in the rotor reference frame (d-q frame) by applying the
Park transform and according to [1,2] is obtained in the following form:[

uq

ud

]
=

[
Rq + ρLq ωeLd
−ωeLq Rd + ρLd

][
iq
id

]
+

[
ωeλ0

ρλ0

]
(11)

where ud, uq and id, iq are the stator voltages and currents in the d-q reference frame of the PMSM, Lq,
Ld and Rq, Rd are the stator inductances and resistances in the d-q reference frame, ωe is the electrical
angular velocity of the rotor, λ0 is the flux linkage, and ρ is the differential operator.

The flux on the d-q axes is expressed as:

λq = Lqiq
λd = Ldid + λ0

(12)

By indicating the electromagnetic torque developed by the PMSM as Te, the following relations
on the PMSM dynamics can be expressed:

Te =
3
2 np

(
λdiq − λqid

)
; Te = Ktiq

Te = TL + Bω+ J dω
dt

(13)
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where Kt = 3
2 npλ0 represents the torque constant, B represents the viscous friction coefficient,

J represents the rotor inertia, np represents the number of pole pairs, and TL represents the load torque.
By assuming the following simplifications Ld = Lq = L, Rd = Rq = Rs, and ωe = np·ω, where ω is the

angular velocity of the rotor, the following PMSM model can be obtained:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
.
id.
iq
.
ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
−Rs

L npω 0

−npω −Rs
L −npλ0

L
0 Kt

J −B
J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

id
iq
ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ud
L
uq
L

−TL
J

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (14)

Using the Equations (11)–(14) describing the PMSM, Figure 1 shows the block diagram by reduced
transfer functions of the PMSM rotor speed control system. In addition to the notations presented
above, we denote the transfer functions of current and speed sensors as Hc(s) and Hω(s) in Figure 1.
Usually these are 1st order transfer functions where the time constant is in the order of milliseconds,
thus allowing a simplified approach to the reduction of these transfer functions to constants.

 

Figure 1. The block diagram of the speed loop of the permanent magnet synchronous motor
(PMSM) drive.

The transfer function of the inverter is as follows:

Hin =
Kin

1 + sTin
(15)

where: Kin = 0.65·(Vdc/Vcm) and Tin = 1/(2·fc), Vdc represents the dc link voltage (input of the inverter),
Vcm represents the maximum control voltage, and fc represents the switching frequency of the inverter.

In Figure 1 by shifting the point of intersection of the back-electromotive force (back-EMF) loop
with the speed loop to the point of intersection with the current loop, an equivalent form of defining
the fixed part (the current control loop of iq) as transfer functions is shown in Figure 2 [39].

 
Figure 2. The block diagram of the current control loop of the PMSM drive.

In Figure 2, using the following notations:{
Ka =

1
R ; Ta =

L
R ; Km = 1

B ; Tm = J
B ; Kb = KtKmλ0;

Ti = 0.1Tm; Kin = 20; Ki = (TmKin)/(T2Kb)
(16)

is the transfer function of the inner current loop which represents the fixed part of the speed control
system (outer control loop) which becomes as follows:
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H f =
KtKi

(as3 + bs2 + cs + d)
(17)

where {
a = TiLJ; b = LJ + Ti(LB + RsJ)

c = LB + RsJ + Ti(RsB + λ0Kt); d = RsB + λ0Kt
(18)

Figure 3 shows the proposed general block diagram of the enhanced FOC control type strategy
for PMSM. In this paper, the speed controller of the outer control loop is a classic PI-type controller,
but, as shown in Section 4, it can be replaced with FO-PI, TID, FO-lead-lag, and FO-SMC controllers.
Furthermore, compared to the classic approach, the PI-type current controllers in the inner control loop
can be replaced with synergetic and FO-synergetic controllers, as presented in Section 5. The output of
these controllers provides the reference iqref for the inner current control loop, where idref = 0. Section 6
presents improvements that can be made to the classic FOC-type scheme by using an SMO-type
observer to estimate the rotor position and speed, but also an FDO observer to detect the faults on the
PMSM supply phases.

 

Figure 3. Enhanced field oriented control (FOC) control strategy for the PMSM—general block diagram.

4. Fractional Order Speed Controllers for PMSM

By using the fractional-type control, whose basic elements were described in Section 2, this section
presents the equations of certain fractional-type controllers that will replace the PI-type speed controller
in the FOC-type control strategy of PMSM.

4.1. FO-PI Speed Controller

Furthermore, in terms of the fractional controllers, the most commonly used are the PIλDμ

controllers, which can be expressed as follows [33]:

u(t) = Kpe(t) + KiD−λe(t) + KdDμe(t) (19)

where e(t) represents the error signal.
After applying the Laplace transform to Equation (19), by assuming zero initial conditions,

the following equation is obtained:

Gc(s) = Kp +
Ki

sλ
+ Kdsμ (20)
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where Kp represents the proportional gain, Ki represents the integrator gain, λ represents the integrator
order (positive), Kd represents the differentiator gain, and μ represents the differentiator order.
For λ = μ = 1, the result is the usual integer-order PID controller.

4.2. TID Speed Controller

Another fractional controller used in applications is the TID controller, which can be described by
the next transfer function [33]:

Gc(s) =
Kt

s1/n
+

Ki
s
+ Kds (21)

where Kt represents the tilt gain, n represents the tilt integrator order, Ki represents the integrator gain,
and Kd represents the differentiator gain.

4.3. Lead-Lag Speed Controller

The general form of the transfer function of an FO-lead-lag controller is given by [33]:

Gc(s) = Kc

⎛⎜⎜⎜⎜⎝ s + 1
λ

s + 1
xλ

⎞⎟⎟⎟⎟⎠α = Kcxα
(
λs + 1
xλs + 1

)α
, 0 < x < 1 (22)

where λ represents the fractional order of the FO-lead-lag controller.
It is noted that, for α > 0, a lead effect of the FO-lead-lag controller is obtained, while for α < 0,

a lag effect of the FO-lead-lag controller is obtained.
For k′ = Kcxα, the common form of the FO-lead-lag controller is obtained:

Gc(s) = k′
(
λs + 1
xλs + 1

)α
(23)

For k′ = α = 1, λ =
Kp
Ki

, and x has a very high value (for example x > 10,000), the transfer function
of the FO-lead-lag controller becomes the transfer function of the FO-PI controller. It can therefore be
concluded that there is an increased flexibility in the use of the FO-lead-lag controller in a control loop.

4.4. FO-SMC Speed Controller

To achieve an SMC-type controller for the control of a PMSM motor described by Equation (14),
the state variables x1 and x2 described below are selected [1]:

x1 = ωre f −ω (24)

where x1 represents the tracking error of the speed.

x2 =
.
x1 =

ωre f −ω
dt

= − .
ω (25)

Equation (26) defines the sliding surface S of the zero-error manifold. Through differentiation,
the following equation is obtained (27):

S = cx1 + x2 (26)
.
S = cx2 +

.
x2 = cx2 −D

.
iq (27)

where c represents the positive adjustable parameter and D =
3npλ0

2J is obtained from Equation (13).
In order to control the response time of the PMSM control system, the condition of time evolution

of the surface S is imposed like in Equation (28):

.
S = −εsgn(S) − qS, ε, q > 0 (28)
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where ε and q represent the positive adjustable parameters; sgn() represents the signum function.
To reduce the chattering effect (characteristic of the SMC design), the sgn function is replaced with

the sigmoid function defined as follows:

H(x) =
2

1 + e−a(x−c)
− 1 (29)

For a = 4 and c = 0, H ∈ [−1 1], the transition of the function H from −1 to 1 is smoothed and
ensures the reduction of the chattering effect. Based on these, after some calculations, the SMC-type
controller output value is obtained in the following form:

iqre f (t) =
1
D

∫ t

0
[cx2 + εH(S) + qS]dt (30)

It can be specified that iqref represents the current reference for the control loop on q axis, while idref
is set to zero according to the FOC-type control strategy [23]. To demonstrate the stability of the PMSM
control system under the action of the control law given by Equation (30), the Lyapunov function
candidate is selected in the following form V = 1

2 S2 [1].

.
V = S

.
S = S[−εH(S) − qS] = −εH(S) − qS2 (31)

After some calculations,
.

V ≤ 0 is obtained, where
.

V is given by the relation (31). To achieve the
FO-SMC controllers, the sliding surface S is selected as follows:

S = kpx1 + kdDμx1 = kpx1 + kdDμ−1x2 (32)

After differentiation, the following relation is obtained:

.
S = kp

.
x1 + kdDμ+1x1 = kpx2 + kdDμ−1 .

x2 (33)

Based on the mathematical model of the PMSM described in Section 3, the following relation
is obtained:

.
x2 =

..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω (34)

By inserting Equation (34) into Equation (33), the following relation is obtained:

.
S = kpx2 + kdDμ−1

(
..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω

)
(35)

For
.
S = 0, the following relation is obtained:

− εH(S) − qS− kpx2 = kdDμ−1
(

..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω

)
(36)

By applying operator D1−μ (described in Section 2) to both members of Equation (36), the following
relation is obtained:

D1−μ(−εH(S) − qS− kpx2
)
= kd

(
..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω

)
(37)

This results in the following relation:

1
kd

D1−μ(−εH(S) − qS− kpx2
)
=

..
ωre f −

3npλ0

2J

.
iq +

1
J

.
TL +

B
J

.
ω (38)
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Equation (38) can be rewritten as follows:

1
J

3
2

npλ0
.
iq =

..
ωre f +

1
J

.
TL +

B
J

.
ω− 1

kd
D1−μ(−εH(S) − qS− kpx2

)
(39)

The current reference iqref is obtained from Equation (39) as follows:

iqre f (t) =
1

1
J

3
2 npλ0

t∫
0

[
..
ωre f +

1
J

.
TL +

B
J

.
ω− 1

kd
D1−μ(−εH(S) − qS− kpx2

)]
dt (40)

5. Fractional Order Synergetic Current Controllers for PMSM

The synergetic control can be considered as a generalization of the sliding mode control (SMC),
retaining the decoupling design procedure and model order reduction properties of this type of control
and the advantages provided by this approach for the synthesis of the control. Thus, in this section,
the PI-type current controllers will be replaced for the inner current control loops in the FOC-type
control strategy, with synergetic and FO-synergetic type controllers to obtain superior performances.

For the synergetic control, a macro-variable is defined as a function of the states of the system,
as follows [19]:

Ψ = Ψ(x, t) (41)

The synthesized control inputs will force the system to operate on the manifold Ψ = 0, in a similar
manner to the SMC. A number of macro-variables equal to the number of control inputs are defined.
The dynamic evolution of each macro-variable is defined according to the following equation:

T
.

Ψ + Ψ = 0, T > 0 (42)

where T is selected so as to achieve the rate of convergence of the system evolution towards the
desired manifold.

By differentiating the macro-variable Ψ:

.
Ψ =

dΨ
dx

.
x, (43)

and by inserting Equation (43) into (42) using the explicit description of the states
.
x from the

mathematical model, in the case of the PMSM expressed by Equation (14), the control law is obtained
as follows:

u = u(x, Ψ(x, t), T, t) (44)

In case of applying the FOC type strategy for the PMSM control (see Figure 4), the outer speed
control loop supplies the reference iqref at the PI-type speed controller output for the inner control loop
whose controller proposed in this paper is synergetic. According to Equations (42)–(44), the synergetic
controller provides the controls ud and uq. Furthermore, according to the FOC control strategy of the
PMSM idref = 0.

According to [20], in order to achieve superior control performance under static and dynamic
regime, ωacc and ωdec are defined as the angular velocity of the rotor by selecting the current limit mode
of operation for accelerating and decelerating transients, respectively, of the following form:

ωacc = ωre f − kq
(∣∣∣iqmax

∣∣∣− iqre f
)

ωdec = ωre f − kq
(
−
∣∣∣iqmax

∣∣∣− iqre f
) (45)
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Figure 4. FO-synergetic current control for the PMSM—general block diagram.

For ω > ωacc and ω < ωdec the macro-variable on q axis Ψq can be represented as in the following
equation:

Ψq =
(
ω(t) −ωre f

)
+ kq

(
iq(t) − iqre f

)
(46)

and for ω ≤ ωacc the macro-variable on q axis Ψq is represented in Equation (47), and for ω ≥ ωdec the
macro-variable on q axis Ψq is represented in Equation (48).

Ψq = iq(t) −
∣∣∣iqmax

∣∣∣+ kiq

t∫
0

(
iq(t) −

∣∣∣iqmax
∣∣∣)dt (47)

Ψq = iq(t) +
∣∣∣iqmax

∣∣∣+ kiq

t∫
0

(
iq(t) +

∣∣∣iqmax
∣∣∣)dt (48)

where iqmax is the maximum admissible current on q-axis, and kq is a value which is dynamically
adjusted as a function of the angular velocity of the rotor error. The control law for q axis can be
expressed as follows: for ωacc < ω < ωdec, uq is given by Equation (49), for ω ≤ ωacc, uq is given by
Equation (50), and for ω ≥ ωdec, uq is given by Equation (51):

uq(t) = Rsiq + npω(Lid + λ0) +
L
Tq

(
iqre f − iq

)
+

L
Tqkq

(
ωre f −ω

)
+

L
Jkq

(
−Ktiq + Bω+ TL

)
(49)

uq(t) = Rsiq + npω(Lid + λ0) +
L
Tq

(∣∣∣iqmax
∣∣∣− iq

)
+ kiqL

(∣∣∣iqmax
∣∣∣− iq

)
− kiqL

Tq

t∫
0

(
iq −

∣∣∣iqmax
∣∣∣)dt (50)

uq(t) = Rsiq + npω(Lid + λ0) +
L
Tq

(
−
∣∣∣iqmax

∣∣∣− iq
)
+ kiqL

(
−
∣∣∣iqmax

∣∣∣− iq
)
− kiqL

Tq

t∫
0

(
iq +

∣∣∣iqmax
∣∣∣)dt (51)

The macro-variable on d axis Ψd can be represented as in the following equation:

Ψd =
(
id(t) − idre f

)
+ kid

t∫
0

(
id(t) − idre f

)
dt (52)
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After some calculus, the control law for d axis can be expressed as follows [20]:

ud(t) = Rsid − npωLiq − L
Td

(
id − idre f

)
− kidL

(
id − idre f

)
− kidL

Td

t∫
0

(
id − idre f

)
dt (53)

Following the calculations made for the synergetic control of the PMSM, using definitions (1) and
(2) of the fractional calculus for integration and differentiation operators, in this section we will obtain
the values of the controls ud(t) and uq(t).

We define the macro-variable on q axis Ψq similarly to (46) for ω > ωacc and ω < ωdec, as follows:

Ψq(x) = Dμx3 + kqx1 (54)

where: x1 = iq − iqre f , x3 = ω−ωre f , and μ > 0. Next,
.

Ψq is calculated, and the following relation is
obtained:

.
Ψq(x) = Dμ

.
x3 + kq

.
x1 = Dμ

.
ω+ kq

.
iq (55)

By inserting (55) into the Equation (42) of dynamic evolution of macro-variable Ψq, for T = Tq,
the following relation is obtained:

Tq

[
Dμ

(
Ktiq

J − Bω
J − TL

J

)
+ kq

(
−Rsiq

L − npωid − npλ0ω
L +

uq
L

)]
+

+Dμ
(
ω−ωre f

)
+ kq

(
iq − iqre f

)
= 0

(56)

By rearranging the terms in Equation (56) the following relation is obtained:

TqDμ
(

Ktiq
J − Bω

J − TL
J

)
+ Tqkq

(
−Rsiq

L − npωid − npλ0ω
L

)
+

+
Tqkquq

L + Dμ
(
ω−ωre f

)
+ kq

(
iq − iqre f

)
= 0

(57)

After some calculations, Equation (56) becomes:

Tqkquq
L = TqDμ

(
−Ktiq

J + Bω
J + TL

J

)
+

TqkqRsiq
L +

+npω(Lid + λ0)
Tqkq

L + Dμ
(
ω−ωre f

)
+ kq

(
iq − iqre f

)
= 0

(58)

Based on this, the control uq of the PMSM is obtained:

uq(t)= L
Jkq

Dμ
(
−Ktiq + Bω+ TL

)
+ Rsiq + npω(Lid + λ0)

+ L
Tqkq

Dμ
(
ω−ωre f

)
+ L

Tq

(
iq − iqre f

) (59)

Similarly to relations (47) and (48), control uq is obtained for ω ≤ ωacc and ω ≥ ωdec, respectively.
Next, the macro-variable on d axis Ψd is defined:

Ψd(x, t) = Dμx2 + kd

t∫
0

x2(t)dt (60)

where x2 = id − idre f and μ > 0.

Next,
.

Ψd is calculated, and the following relation is obtained:

.
Ψd(x) = Dμ

.
x2 + kdx2 = Dμ

.
id + kd

(
id − idre f

)
(61)
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By inserting (61) into the Equation (42) of dynamic evolution of macro-variable Ψd, for T = Td,
the following relation is obtained:

Td

{[
Dμ

(
npωiq − Rsid

L
+

ud
L

)]
+ kd

(
id − idre f

)}
+ Dμ

(
id − idre f

)
+ kd

t∫
0

(
id − idre f

)
dt = 0 (62)

By applying the operator defined in (1), D−μ (which becomes Iμ) to both members of Equation (62)
the following relation is obtained:

Td

(
npωiq − Rsid

L
+

ud
L

)
+ TdkdIμ

(
id − idre f

)
+ id − idre f + kdIμ+1

(
id − idre f

)
= 0 (63)

After some calculations, Equation (63) becomes:

Tdud
L

=
RsidTd

L
− npωiqTd − TdkdIμ

(
id − idre f

)
−

(
id − idre f

)
− kdIμ+1

(
id − idre f

)
= 0 (64)

Based on this, the control ud of the PMSM is obtained:

ud(t) = Rsid − npωiqL− LkdIμ
(
id − idre f

)
− L

Td

(
id − idre f

)
− Lkd

Td
Iμ+1

(
id − idre f

)
(65)

6. Rotor Speed Estimation and Fault Detection

This section presents two observers, which complete the classic FOC-type control structure. Thus,
the sensorless characteristic of the control is ensured by an SMO-type observer which estimates the
PMSM speed. Furthermore, the use of an FDO-type observer enables the fault detection of the current
sensors on the PMSM supply lines.

6.1. Rotor Speed and Position Estimations Based on SMO-Type Observer

By using the PMSM operating equations given by the relations (11)–(14), and by applying the
inverse Park transform, the equations of the currents iα and iβ and the back-EMF eα and eβ are obtained
in α-β frame [2]:

iα = id cos(θe) − iq sin(θe)

iβ = id sin(θe) + iq cos(θe)
(66)

eα =
dλα
dt = −λ0ωe sin(θe)

eβ =
dλβ
dt = −λ0ωe cos(θe)

(67)

Based on these, the PMSM operating equations can be rewritten as:

diα
dt = −Rs

L iα − 1
L eα + 1

L uα
diβ
dt = −Rs

L iβ − 1
L eβ + 1

L uβ
(68)

The equations of the SMO-type observer according to which the rotor speed and position can be
estimated are given by the equations [23,25]:

dîα
dt = −Rs

L îα + 1
L uα − 1

L kH(îα − iα)
dîβ
dt = −Rs

L îβ + 1
L uβ − 1

L kH(îβ − iβ)
(69)

where: k represents the observer gain, and H is a sigmoid type function described in Equation (29).
The sliding vector is selected as follows:

Sn = [Sα Sβ]
T = [îα − iα îβ − iβ]

T
= [iα iβ]

T
(70)
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To demonstrate the stability of the proposed observer, a Lyapunov function is selected of the
form [25]:

V =
1
2

ST
n Sn =

1
2

(
S2
α + S2

β

)
(71)

The current error system is defined in the form:

.

iα =
.
îα −

.
iα = −Rs

L iα + 1
L eα − 1

L kH(iα).

iβ =
.
îβ −

.
iβ = −Rs

L iβ + 1
L eβ − 1

L kH(iβ)
(72)

According to these,
.

V is calculated, and the following relation is obtained:

.
V = −Rs

L

(
i
2
α + i

2
β

)
+

1
L

[
(eα − k)iαH(iα) +

(
eβ − k

)
iβH(iβ)

]
< 0 (73)

By selecting the observer gain as k ≥ max
(
|eα|,

∣∣∣eβ∣∣∣), the stability condition of the observer is

obtained:
.

V < 0.
Based on this, on the sliding surface, the following relation is obtained:

[
.
Sα

.
Sβ]

T
= [Sα Sβ]

T ≈ [0 0] (74)

Based on relations (73) and (74), are obtained the estimations for eα and eβ:

êα = kH(iα) = −λ0ω̂e sinθe

êβ = kH(iβ) = λ0ω̂e cosθe
(75)

Finally, the estimates for the speed and position of the PMSM rotor can be obtained as below:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ω̂e =

√
ê2
α+ê2

β

λ0

θ̂e(t) =
t∫

t0

ω̂e(t)dt + θ0

(76)

where: θ0 represents the initial electrical position of the rotor.
Figure 5 shows the implementation in the MATLAB/Simulink environment in order to perform

the numerical simulations of the SMO-type observer for the estimation of the position and rotor speed
of the PMSM.

Figure 5. Sliding mode observer (SMO)-type observer—MATLAB/Simulink implementation
block diagram.
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6.2. Fault Detection Based on FDO-Type Observer

To detect the faults of the current sensors on the PMSM supply phases, an FDO-type observer will
be used. In the α-β frame, the equations analogous to those described in Equation (11) for a PMSM are
as follows: [

uα
uβ

]
= Rs

[
iα
iβ

]
+ ρL

[
iα
iβ

]
+ωe

[
λ0 0
0 λ0

][ − sinθe

cosθe

]
(77)

According to Equation (77), the following relation can be written:

ρ

[
iα
iβ

]
=

Rs

L

[
iα
iβ

]
+

1
L

[
uα
uβ

]
+
ωe

L

[
λ0 0
0 λ0

][ − sinθe

cosθe

]
(78)

Considering the flux linkage λext = λ0 in α-β frame is obtained the following relation:

λext,αβ =

[
λext,α

λext,β

]
=

[
λ0 0
0 λ0

][
cosθ
sinθ

]
(79)

Let us note: x =
[

iα iβ
]T

, u =
[

uα uβ
]T

, A =

[ −Rs
L 0

0 −Rs
L

]
, B =

[ 1
L 0
0 1

L

]
, C =

[
1 0
0 1

]
,

F =

[
0 ωe

L
ωe
L 0

]
= −ωe

L J, J =
[

0 −1
1 0

]
.

According to Equation (78), the equation of the PMSM which has an embedded FDO-type observer
can be written as [40]: { .

x(t) = Ax(t) + Bu(t) + Fλext,αβ + Ed
y(t) = Cx(t) + G fs

(80)

where fs =
[

fsα fsβ
]T

is the stator current sensor fault vector, d =
[

d1 d2
]T

is the unknown
but bounded disturbance vector, x is the state vector, u and y represents the input and output vector,

respectively, G =

[
1 0
0 1

]
, and E =

[
1 0
0 1

]
.

Consider a new state variable z, which is just variable y, but filtered, with a, b constants:

.
z = −az + by (81)

By selecting a = 0, b = 1, Equation (81) becomes:

.
z = y = Cx(t) + G fs (82)

Based on relations (80)–(82), the system of equations of the PMSM with embedded FDO observer
becomes: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

.
x(t) = Ax(t) + Bu(t) + Fλext,αβ + Ed

.
z(t) = Cx(t) + G fs

w = z
(83)

Consider fs the actuator fault of the system described by (83). The FDO-type observer has the
following form [40]: ⎧⎪⎪⎨⎪⎪⎩

.
x̂(t) = Ax̂(t) + Bu(t) + Fλext,αβ + Eν1.

ẑ(t) = Cx̂(t) + G f̂s + ν2
(84)

ν1 and ν2 are selected, as control signals for the correction of the sliding mode, as follows:{
ν1 = L1H(ex)

ν2 = L2H(ez)
(85)
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where ex = x− x̂ and ez = z− ẑ, and L1 and L2 are positive design constants. Let us note es = fs − f̂s.
Based on this, the equations of the errors can be written as follows:⎧⎪⎪⎨⎪⎪⎩

.
ex =

.
x− .

x̂ = Aex + E(d− ν1)
.
ez =

.
z− .

ẑ = Cex + Ges − ν2
(86)

To demonstrate the stability of FDO-type observers, the Lyapunov function is selected as follows:

.
V = eT

x ex + eT
z ez + eT

s Qes (87)

where Q > 0 is a constant matrix with appropriate dimensions.
By calculating

.
V, the following relation is obtained:

.
V ≤ 2‖ex‖ ‖E‖(‖d‖ − L1) + 2‖ez‖(‖C‖ ‖ex‖ − L2) + 2eT

s

(
Gez −Q

.
f̂ s

)
(88)

To ensure stability, by selecting L1 > ‖d‖ and L2 > C‖ex‖, the law of adaptation for faults vector fs
is obtained: .

f̂ s = Q−1Gez (89)

Since iα and iβ can be derived from ia,b,c in the form:⎧⎪⎪⎨⎪⎪⎩ iα = ia
iβ =

ib−ic√
3
=

2ib+ia√
3

, (90)

Then, the effect of the occurrence of faults fsα and fsβ, propagate in the form of faults fa and fb
in phases a and b of the PMSM power windings in the form of equations and laws of adaptation
described by Equations (91)–(93): ⎧⎪⎪⎨⎪⎪⎩ fsα = fa

fsβ =
2 fb+ fa√

3

(91)

.
f̂ a =

.
f̂ sα = Q−1ez1 (92)

.
f̂ b =

√
3

.
f̂ sβ −

.
f̂ sα

2
= Q−1

√
3ez2 − ez1

2
(93)

In order to achieve the implementation of the FDO-type observer in the MATLAB/Simulink
environment, it is necessary to define the equations presented in this section explicitly, by components.
For implementation, Q = G = I2. Thus, Equation (83) is defined explicitly in the form of
Equations (94)–(96). ⎧⎪⎪⎨⎪⎪⎩

.
iα = −Rs

L iα +
uα
L + ωeλ0

L + d1.
iβ = −Rs

L iβ +
uβ
L − ωeλ0

L + d2
(94)

{ .
zα = yα = iα + fα
.
zβ = yβ = iβ + fβ

(95)⎧⎪⎪⎨⎪⎪⎩ zα = 1
s (iα + fα)

zβ = 1
s

(
iβ + fβ

) (96)

Equations (84) and (85) are defined explicitly by components in the form of Equations (97)–(99).⎧⎪⎪⎪⎨⎪⎪⎪⎩
.
îα = −Rs

L îα +
uα
L + ωeλ0

L + L1H
(
iα − îα

)
.
îβ = −Rs

L îβ +
uβ
L − ωeλ0

L + L1H
(
iβ − îβ

) (97)
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⎧⎪⎪⎨⎪⎪⎩
.
ẑα = îα + f̂α + L2H(zα − ẑα).
ẑβ = îβ + f̂β + L2H

(
zβ − ẑβ

) (98)

{
ezα = zα − ẑα
ezβ = zβ − ẑβ

(99)

Equation (89) is implemented as follows:[
f̂α
f̂β

]
=

[
zα − ẑα
zβ − ẑβ

]
;

⎧⎪⎪⎨⎪⎪⎩ f̂α = 1
s (zα − ẑα)

f̂β = 1
s

(
zβ − ẑβ

) (100)

We specify that s represents the complex variable in Equations (70)–(73). Figure 6 shows the
implementation in MATLAB/Simulink of the FDO-type observer using the equations defined explicitly
by components (94)–(100).

Figure 6. FDO-type observer—MATLAB/Simulink implementation block diagram.

7. Numerical Simulations

For the numerical simulations performed in MATLAB/Simulink and presented in this section, the
PMSM parameters are shown in Table 1.

Table 1. Nominal parameters of PMSM.

Motor Parameter Symbol Value Unit

Stator resistance Rs 2.875 Ω
d axes inductance Ld 0.0085 H
q axes inductance Lq 0.0085 H

Combined inertia of rotor and load J 0.0008 kg·m2

Combined viscous friction of rotor and load B 0.005 N·m·s/rad
Flux induced by permanent magnets of rotor in stator phases λ0 0.175 Wb

Pole pairs number np 4 -
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7.1. Numerical Simulations—Fractional Order Speed Controllers for PMSM

The block diagram for the implementation in MATLAB/Simulink of the PMSM control system
based on the FOC strategy proposed in this article is presented in Figure 7. The results of the behavior of
the PMSM control system are presented comparatively, using the classic PI controller, FO-PI controller,
TID controller, FO-lead-lag controller and FO-SMC controller for the control of the outer PMSM rotor
speed control loop. The other blocks in Figure 7 implement the speed reference generator, the load
torque generator, the time evolution I/O signals and the model of the PMSM drive. The sensorless
function of the control system of the rotor speed is provided by the use of an SMO-type observer
described in Section 6. Additionally, to detect the faults of the current sensors on the supply phases
of the PMSM, an FDO-type observer as described in Section 6 is embedded in the general control
structure in Figure 7.

 

Figure 7. MATLAB/Simulink implementation block diagram for sensorless control of PMSM based on
fractional order speed controllers, PI current controllers, SMO speed observer and FDO.

Starting from Equations (17) and (18), which represent the transfer function of the fixed part of the
PMSM rotor speed control system, for the nominal parameters presented in Table 1, the theoretical
transfer function of the fixed part is obtained:

H f (s) =
2.857

5.44 · 10−4s3 + 2.588 · 10−5s2 + 0.03761 s + 0.7637
(101)

The discrete form obtained for the transfer function based on Equation (101) according to the
Tustin method for a sampling period of 0.1 ms is:

H f (z) =
0.004648z3 + 0.01394z2 + 0.01394z + 0.004648

z3 − 2.166z2 + 1.837z− 0.6607
(102)
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The transfer function of the fixed part of the PMSM rotor speed control system is obtained by
using the MATLAB System Identification Toolbox, through identification in continuous and discrete
form in Equations (103) and (104), respectively:

H f _ident(s) =
0.002373

s3 + 0.0663s2 + 0.01484s + 8.163 · 10−6 (103)

H f _ident(z) =
2.96 · 10−3 z3 + 8.89 · 10−3 z2 + 8.89 · 10−3 z + 2.96 · 10−3

z3 − 3z2 + 3z− 0.99
(104)

The tuning of PI controllers by using Ziegler–Nichols methods is a well-known technique. In the
fractional case, the FOMCON toolbox for the MATLAB utility program is used for the tuning of FO-PI
controllers. In order to obtain the optimal tuning parameters in the fractional case, a number of
optimization methods are incorporated in the FOMCON toolbox, both in the frequency range and in the
time domain. In the frequency range, the goal of optimizing the parameters is achieved by obtaining
optimal performance in terms of the sensitivity function S(jω) for disturbance rejection for the low
and middle frequency range and the rejection of the high frequency noise using the complementary
sensitivity function T(jω). In the time domain, the tuning of fractional controllers is carried out by
minimizing optimal criteria, such as the integral absolute error (IAE) [41].

Using the FOMCON toolbox for MATLAB, an FO-PI controller described by Equation (20) can be
tuned for the control of the PMSM rotor speed. For Kp = 1.2, Ki = 12, λ = 1.1, and Kd = μ = 0, the transfer
function of the FO-PI controller is obtained:

HPI =
1.2s1.1 + 12

s1.1
(105)

The closed loop transfer function of the PMSM rotor speed control, where the controller is given
by Equation (20) and the fixed part is given by Equation (103), is expressed in the following form:

HCL_PI =
4.3272 · 108s1.1 + 4.3272 · 109

s3.2 + 73730s2.2 + 4.3746 · 108s1.1 + 4.3272 · 109
(106)

Using the FOMCON toolbox for MATLAB, the stability of the closed loop system of the PMSM
rotor speed control, in other words, the fulfillment of the condition given by the relation (6) is graphically
presented in Figure 8, where it is noted that the system is stable.

The step response for the FO-PI controller given by the relation (105), considering the fixed part is
represented by both the theoretical transfer function and by the transfer function obtained through
identification, in other words, the relations (101) and (103), respectively, is presented in Figure 9.

A similar response is noted in the two cases, with a good behavior under both the dynamic and
stationary regimes and which additionally proves the similarity between the transfer function of the
fixed part obtained theoretically and by identification.

Figure 10 shows the closed loop system consisting of the FO-PI controller given by relation (105)
and theoretical transfer function given by relation (101), Bode diagram, Nyquist diagram and Nichols
diagram. The stability of the system can be inferred from the specific interpretation of these diagrams
and, in addition (to the conclusions in Figure 8), an amplitude stability margin of 12 dB can be noted.

For the implementation in DSP, it is necessary to obtain the transfer function of the FO-PI controller
given in Equation (105) in an equivalent form as discrete variable z, but of integer order. For this,
according to those presented in Section 2, an approximation of the fractional order transfer function
can be obtained with an integer-order continuous transfer function, by using the Oustaloup filter.
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Figure 8. Graphical representation for the stability of the PMSM rotor speed control system—closed loop.

Figure 9. Unit step response of the PMSM rotor speed control system with FO-PI controller and fixed
part with: (a) theoretical transfer function; (b) transfer function obtained through identification.
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Figure 10. Bode, Nyquist and Nichols diagram representations for closed-loop system composed from
FO-PI controller and theoretical transfer function of PMSM given by Equations (101) and (105).

In the usual frequency range for the presented application ω = (10−2; 103) rad/s, in Equation (107)
is expressed and the equivalent transfer function obtained. In order to obtain the discrete form of this
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equivalent transfer function, the Tustin substitution is used, and the obtained discrete transfer function
is expressed in Equation (108).

HPI_INT(s)=
1.2(s + 280.6)(s + 354.8)(s + 35.48)(s + 25.88)(s + 6.918)(s + 4.422)

s(s + 354.8)(s + 218.8)(s + 35.48)(s + 28.18)(s + 3.548)
·

· (s + 3.548)(s + 0.3575)(s + 0.3548)(s + 0.0355)(s + 0.03548)
(s + 0.3548)(s + 0.2818)(s + 0.03548)(s + 0.02818)

(107)

HPI_INT(z)=
1.2031(z− 0.7554)(z− 0.7013)(z− 0.9651)(z− 0.9745)

(z− 1)5(z− 0.9972)(z− 0.9965)(z− 0.9722)
·

·1.2031(z− 0.7554)(z− 0.7013)(z− 0.9651)(z− 0.9745)

(z− 1)5(z− 0.9972)(z− 0.9965)(z− 0.9722)

(108)

Another fractional order controller is presented in Equation (21) and for Kt = 1.2, Ki = 12, n = 10,
and Kd = 0, the following transfer function of the fractional order TID controller is obtained:

HTID =
1.2 + 12s0.1

s1.1
(109)

The closed loop transfer function for the fixed part presented above in Equation (103) and the TID
controller given by Equation (109) is the following:

HCL_TID =
4.3272 · 108s0.91 + 4.3272 · 109

s3.1 + 7373s2.1 + 4.3746 · 108s0.91 + 4.3272 · 109
(110)

The response to the unit step of the PMSM rotor speed control loop with fractional TID controller
is shown in Figure 11. A good performance is noted in dynamic and stationary regime.

Figure 11. Unit step response of the PMSM rotor speed control system with transfer function obtained
through identification for the fixed part and fractional TID controller.

Proceeding as above in the case of the FO-PI controller, using the Oustaloup filter zpk, in the TID
controller case the results for integer-order will be as follows:

HTID_INT(s) =
656.44(s + 114.1)(s + 17.33)(s + 6.938)(s + 0.8839)(s + 0.08997)

s(s + 901.6)(s + 90.16)(s + 9.016)(s + 0.9016)(s + 0.09016)
(111)

HTID_INT(z) =
0.25176(z + 0.7516)(z− 0.8922)(z− 9828)(z− 0.9931)(z− 1)

(z− 1)3(z− 0.991)(z− 0.9138)(z− 0.4059)
(112)

309



Electronics 2020, 9, 1494

In case of another fractional order controller which is presented in Equation (23), and for k’ = 300,
x = 50, λ = 1.4 and α = 0.11, the following transfer function of the FO-lead-lag controller is obtained:

HLL =
3.606 · 108

s2.1 + 7.373 · 104s1.1 + 4.74 · 106
(113)

The closed loop transfer function for the fixed part presented above in Equation (103) and the
FO-lead-lag controller given by Equation (113) is the following:

HCL_LL =
abs

(
1.0561 · 1011 − 6.942 · 109 · i

)
s2.1 + 73730s1.1 + abs(1.0561 · 1011 − 6.942 · 109 · i) (114)

The response to the unit step of the PMSM rotor speed control loop with the FO-lead-lag controller
is shown in Figure 12. Furthermore, for this type of fractional order controller a good performance is
noted in the dynamic and stationary regimes.

Figure 12. Unit step response of the PMSM rotor speed control system with transfer function obtained
through identification for the fixed part and FO-lead-lag controller.

By using the Oustaloup filter zpk in the FO-lead-lag controller case the results for integer-order
will be as follows:

HLL_INT(s) =
1.8073 · 108(s + 354.8)2(s + 35.48)2

(s + 7.37 · 104)(s + 354.8)(s + 272.4)(s + 35.48)(s + 3.603)(s + 3.548)
·

· (s + 3.548)2(s + 0.3548)2(s + 0.03548)2

(s + 0.3552)(s + 0.3548)(s + 0.03548)(s + 0.03548)(s2 + 68.99s + 1465)

(115)

HLL_INT(z) =
1.2103(z + 1.071)(z− 1)4(z− 0.9965)2

z(z− 1)4(z− 0.9965)(z− 0.9964)(z− 0.9651)
·

· (z− 0.9651)2(z− 0.7013)2(z + 0.0003655)
(z− 0.7616)(z− 0.7013)(z2 − 1.932z + 0.9333)

(116)

Figure 13 presents the results of the simulation of the PMSM rotor speed control, where the
speed controller is FO-PI-type and PI-type, respectively. For a speed reference of 2000 rpm, with no
load torque, good dynamic and static results are obtained, but with an obvious advantage of the
FO-PI controller. The variations of the stator currents ia,b,c, and of currents id and iq are presented,
and compliance with reference idref = 0 is noted according to the FOC strategy.
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Figure 13. Comparative simulation of the PMSM time evolution with FO-PI speed controller and PI
speed controller—ωref = 2000 rpm, TL = 0 Nm, Kp = 1.2, Ki = 12, λ = 1.1 and Kd = μ = 0.

In Figure 14, the FO-PI controller is compared to the PI controller for the PMSM rotor speed
control system, for a speed reference of 2000 rpm and a load torque of 5 Nm. The overshooting by
the speed PI-type controller and the good static and dynamic performance provided by the speed
FO-PI-type controller can be noted in the detail in the said figure.

Figure 14. Comparative simulation of the PMSM time evolution with FO-PI speed controller and PI
speed controller—ωref = 2000 rpm, TL = 5 Nm, Kp = 1.2, Ki = 12, λ = 1.1 and Kd = μ = 0.

The parametric robustness provided by the FO-PI controller for the PMSM rotor speed control loop
is presented in Figure 15, where, for the speed and load torque references presented in Figure 14 plus a
50% increase of the J parameter (combined inertia of rotor and load), it is presented by maintaining a
response with good dynamic and stationary performance.
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Figure 15. Comparative simulation of the PMSM time evolution with FO-PI speed controller and PI
speed controller—ωref = 2000 rpm, TL = 5 Nm, Kp = 1.2, Ki = 12, λ = 1.1, Kd = μ = 0 and 100% increase
of J parameter.

Figure 16 shows the response of the control system in the case of ωref = 300 rpm and double the
nominal load torque, TL = 10 Nm. Figure 16 also shows the time evolution of the electromagnetic
torque, of the stator currents, as well as currents id and iq. A very good response time (12 ms) is noted,
given the lack of overshooting and the evolution of the id current around zero. For the implementation
of the FO-SMC-type control described in Section 4, the parameters ε = 300, q = 200, c = 100 and μ = 0.55
were selected.

Figure 16. Simulation of the PMSM time evolution with FO-SMC speed controller for ωref = 300 rpm,
TL = 10 Nm, ε = 300, q = 200, c = 100 and μ = 0.55.

Figure 17 also shows the good performance of the PMSM control system using the FO-SMC-type
controller for the outer rotor speed control loop if the speed reference ωref = 2200 rpm and the load
torque TL = 2 Nm.
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Figure 17. Simulation of the PMSM time evolution with FO-SMC speed controller for ωref = 2200 rpm,
TL = 2 Nm, ε = 300, q = 200, c = 100 and μ = 0.55.

The parametric robustness of the PMSM control system is noted in Figure 18, where, for the same
speed and load torque references in Figure 17, however, with a 100% increase of J parameter and an
added uniformly distributed noise, good static and dynamic performances are noted, while there is an
override of less than 2%.

Figure 18. Simulation of the PMSM time evolution with FO-SMC speed controller for ωref = 2200 rpm,
TL = 2 Nm and uniformly distributed noise, ε = 300, q = 200, c = 100, μ = 0.55 and 100% increase of
J parameter.

For a comparison between the performance obtained for the PMSM rotor speed control by using the
speed PI controller, the FO-PI speed controller, the TID speed controller, the FO-lead-lag speed controller
and the FO-SMC speed controller, Figure 19 shows the system response in closed loop for a reference
of 300 rpm and a load torque of 10 Nm. The superiority of the speed FO-PI-type speed controller,
TID-type speed controller, FO-lead-lag speed controller and FO-SMC speed controller over the speed
PI-type controller is noted. This can be intuited by the fact that the first two controllers mentioned
have a higher number of tuning parameters than the PI-type controller, and their mathematical
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model can be considered more accurate due to the use of the fractional calculus for integration and
differentiation operators. Of the four speed controllers compared, the superiority is apparent for the
speed FO-SMC-type controller which does not feed any overshooting, and the response time is below
15 ms for the nominal load torque.

(a) 

(b) 

(c) 

Figure 19. Cont.
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(d) 

(e) 

(f) 

Figure 19. Comparative simulation of the PMSM time evolution with FO-SMC speed controller,
FO-lead-lag speed controller, TID speed controller, FO-PI speed controller and PI speed controller—ωref

= 300 rpm, TL = 10 Nm: (a) speed comparison; (b) torques, stator currents and id and iq currents
for PI speed controller; (c) torques, stator currents and id and iq currents for FO-PI speed controller;
(d) torques, stator currents and id and iq currents for TID speed controller; (e) torques, stator currents
and id and iq currents for FO-lead-lag speed controller; and (f) torques, stator currents and id and iq
currents for FO-SMC speed controller.
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The value of the speed/torque ripple is defined as follows:

xrip =

√√√
1
N

N∑
i=1

(
x(i) − xre f (i)

)2
(117)

where N represents the number of samples, x and xref represent the rotor speed/torque and the
prescribed reference of speed/torque, respectively.

Table 2 compares a number of performance indices obtained by using fractional speed controllers
for a reference speed ωref = 300 rpm and a load torque reference TL = 10 Nm. The performances of
these types of controllers are presented both in the case of nominal parameters, and in the case of J
parameter doubling. It can be noted that the fractional controllers and especially the FO-SMC speed
controller have superior performance.

Table 2. Comparison of performance indices of the fractional order proposed speed controllers.

Performance Indices
PI Speed

Controller
FO-PI Speed

Controller
TID Speed
Controller

FO-Lead-Lag
Speed Controller

FO-SMC
Speed Controller

Overshoot (%)
nominal J 0 0 0 0 0

Overshoot (%)
double J 0 0 0 0 0

Settling time (ms)
nominal J 300 240 220 180 16

Settling time (ms)
double J 450 300 280 220 40

Steady state error (%)
nominal J 0.11 0.11 0.1 0.1 0.09

Steady state error (%)
double J 0.12 0.12 0.11 0.1 0.09

Speed ripple (rpm)
nominal J 121.78 81.14 142.24 112.94 102.81

Speed ripple (rpm)
double J 289.28 192.35 216.14 204.91 131.15

Torque ripple (Nm)
nominal J 13.68 17.16 10.08 9.23 18.91

Torque ripple (Nm)
double J 11.8 15.45 12.91 12.1 16.01

7.2. Numerical Simulations for Rotor Speed Estimation and Fault Detection

Figure 20 shows the evolution of the SMO-type observer for the estimation of the PMSM rotor
speed. Very good stationary results are noted, except for the first 100 ms, when, normally, at the start
of PMSM, it is controlled in the open loop, according to a predefined sequence.

The numerical simulation parameters L1 = 150,000 and L2 = 50 (amplification factors of the
FDO-type observer) are selected to test the efficiency of the FDO-type observer described in Section 6.
Thus, Figure 21 shows the efficiency of this type of observer due to the fact that it very precisely
reconstructed the currents iα and iβ together with the outputs zα and zβ provided by Equation (84),
which describes the implementation of the FDO-type observer under the conditions where faults of the
current sensors may occur.

Based on Equations (91)–(93), which express the relationships between the fault flags on phases α
and β in the α-β reference frame and the real supply phases a, b, c of the PMSM, Figure 22 shows that,
for the occurrence of a fault on phase a, it is detected, and a specific fault flag is set to logic 1, during
the occurrence of such a fault of the current sensor. The detection threshold used is 4 A, and a fast
response of the FDO-type observer of 60 ms is noted.
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Figure 20. Simulation of the back-EMF, rotor position and rotor speed time evolution from the
SMO-type observer.

Figure 21. Estimated signals time evolution based on FDO-type observer.

Figure 22. Estimated fault on phase “a” based on FDO-type observer.
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The response time of the FDO-type observer is the time between the moment of occurrence of a
fault of the sensor and the setting of the fault flag, under the conditions where the occurrence of false
fault detections is eliminated by setting of the 4 A threshold, and the disturbance on the system (d1 and
d2, described in Equation (80) used the in this numerical simulation is a uniform random variable with
amplitude in the range −10 to 10 A.

7.3. Numerical Simulations—Fractional Order Synergetic Current Controllers and PI Speed
Controller for PMSM

Figure 23 presents the block diagram of the MATLAB/Simulink implementation of the PMSM
sensorless control system based on the synergetic current control or the FO-synergetic current control
for the inner current loops control.

Figure 23. Simulink block diagram for the PMSM sensorless control based on PI speed controller,
FO-synergetic current controllers, SMO speed observer and FDO.

The main functional blocks represented in the block diagram of the control system are: the PI
speed controller which supplies current iqref (idref = 0 according to the FOC control strategy), the speed
reference generator, the synergetic controller or the FO-synergetic controller, the load torque generator,
the PMSM motor drive, the SMO-type observer, the acceleration and deceleration of the rotor angular
velocity and the Clarke and Park transformation.

The synergetic current controllers or the FO-synergetic current controller block provides the
controls ud and uq by implementing Equations (49)–(51) and (53) for the synergetic current control,
and Equations (59) and (65) for the FO-synergetic current control, respectively.

For a speed reference of 500 rpm and a torque load of 1 Nm when using a synergetic controller,
Figure 24 presents the qualitatively superior response of the system with an override below 8%,
but with a notable performance response time of 2 ms.

For the numerical simulations in which the FO-synergetic type controller is used, the parameters
described in Section 5 are: kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and μ = 0.5
(for Equations (54) and (60)).

In Figure 25, by replacing the synergetic controller with the FO-synergetic controller, for the same
conditions presented in Figure 24, the reduction of the override to 4% and an excellent performance
determined by the 1 ms response time are noted.
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Figure 24. Simulation of the PMSM time evolution with synergetic controller and FOC strategy—
ωref = 500 rpm, TL = 1 Nm, kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3 and kid = 10,000.

Figure 25. Simulation of the PMSM time evolution with FO-synergetic controller, and FOC strategy—
ωref = 500 rpm, TL = 1 Nm, kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and μ = 0.5.

Figures 24 and 25 additionally present the evolution of the electromagnetic torques, load torques
and stator currents ia, ib, ic and currents id and iq.

Figure 26 presents the comparative time evolution of the numerical simulation for the FOC
strategy with PI current controllers, synergetic current controllers and FO-synergetic current controllers
of the PMSM. Figure 26 shows that very good performance achieved by using the synergetic control
for the inner current loops id and iq. Obviously, due to the additional control parameters, between
the two types of synergetic control, the best performance is obtained by using the FO-synergetic
current controllers.
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Figure 26. Comparative time evolution of the numerical simulation for FOC strategy with PI controller,
synergetic controller and FO-synergetic controller of the PMSM—ωref = 500 rpm and TL = 1 Nm.

Table 3 compares a number of performance indices obtained by using fractional current controllers
for a reference speed ωref = 500 rpm and a load torque reference TL = 1 Nm. The performances of
these types of controllers are presented both in the case of nominal parameters, and in the case of J
parameter doubling. It can be noted that the synergetic controllers, and especially the FO-synergetic
current controller, have superior performance.

Table 3. Comparison of performance indices of the fractional order proposed current controller.

Performance Indices PI Current Controller Synergetic Current Controller FO-Synergetic Current Controller

Overshoot (%)
nominal J 0 8 2

Overshoot (%)
double J 0 14 3.5

Settling time (ms)
nominal J 6 1.2 1

Settling time (ms)
double J 11 1.8 1.6

Steady state error (%)
nominal J 0.1 0.08 0.07

Steady state error (%)
double J 0.1 0.08 0.07

Speed ripple (rpm)
nominal J 182.16 112.91 102.45

Speed ripple (rpm)
double J 214.91 129.54 107.63

Torque ripple (Nm)
nominal J 15.21 17.95 15.82

Torque ripple (Nm)
double J 19.44 21.02 18.73

7.4. Numerical Simulations—Fractional Order Speed Controllers and Fractional Order Synergetic Current
Controller for PMSM

This subsection presents the numerical simulations for the structure proposed in this article,
namely, an FOC control strategy of the PMSM where the speed controller is of the SMC or FO-SMC
types, and the controllers for the current control loops are of synergetic and FO-synergetic type.
Figure 27 shows the block diagram of the MATLAB/Simulink implementation.
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Figure 27. Simulink block diagram for the PMSM sensorless control based FO-SMC speed controller,
FO-synergetic current controller, SMO speed observer and FDO.

For the implementation of the FO-SMC-type control described in Section 4, the parameters ε = 300,
q = 200, c = 100 and μ = 0.55 were selected, and for the FO-synergetic type controller described in
Section 5, the parameters kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and μ = 0.5,
for Equations (54) and (60), were selected.

The evolution of the time response for the PMSM control system with FO-SMC speed controller
and FO-synergetic current controller for ωref = 500 rpm, TL = 1 Nm is presented in Figure 28. Very good
static and dynamic performances can be noted, of which we mention the response time of 0.92 ms and
an overshoot of less than 1.2%.

Figure 28. Simulation of the PMSM time evolution with FO-SMC speed controller and FO-synergetic
current controller—ωref = 500 rpm, TL = 1 Nm, (ε = 300, q = 200, c = 100 and μ = 0.55 for FO-SMC speed
controller), (kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and μ = 0.5 for FO-synergetic
current controllers).

In Figure 29, under the same conditions, but for a load torque of 10 Nm, very good performances of
the PMSM control system with a response time of 1.2 ms are also obtained. The parametric robustness
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of the proposed control system is demonstrated in Figure 30 by obtaining a response time of 1.6 ms
under the conditions where a uniformly distributed noise with 0.2 Nm magnitude additionally acts
on the load torque, J parameter has a 100% increase, and also the stator resistance Rs has double the
nominal value.

Figure 29. Simulation of the PMSM time evolution with FO-SMC speed controller and FO-synergetic
current controller—ωref = 500 rpm, TL = 10 Nm, (ε = 300, q = 200, c = 100 and μ = 0.55 for FO-SMC speed
controller), (kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3, kid = 10,000 and μ = 0.5 for FO-synergetic
current controllers).

Figure 30. Simulation of the PMSM time evolution with FO-SMC speed controller and FO-synergetic
current controller—ωref = 500 rpm, TL = 10 Nm and uniformly distributed noise, (ε = 300, q = 200,
c = 100 and μ = 0.55 for FO-SMC speed controller), (kiq = 10,000, kq = 10,000, iqmax = 50, Td = 3, Tq = 3,
kid = 10,000 and μ = 0.5 for FO-synergetic current controllers), 100% increase of J parameter and 100%
increase of stator resistance Rs.

Figure 31 compares the response of four PMSM control systems obtained by combinations of SMC
and FO-SMC speed control systems, and the current controllers are of synergetic and FO-synergetic
type. Table 4 presents the comparative results of the performance of these control systems according
to: overshoot, settling time, steady state error and speed ripple defined in relation (117). It is obvious
that the control system proposed in this article based on FO-SMC speed controller and FO-synergetic
current controllers has the best performance.
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Figure 31. Simulation of the PMSM time evolution comparative fractional order controllers—ωref = 500
rpm and TL = 1 Nm.

Table 4. Comparison of performance indices of the fractional order proposed controllers.

Performance Indices
SMC Speed Controller

and Synergetic
Currents Controller

FO-SMC Speed Controller
and Synergetic

Currents Controller

SMC Speed Controller and
FO-Synergetic

Currents Controller

FO-SMC Speed Controller
and FO-Synergetic
Currents Controller

Overshoot (%)
nominal J 1.15 1.15 1.18 1.15

Overshoot (%)
double J 1.18 1.9 1.8 1.2

Settling time (ms)
nominal J 1.4 1.3 1 0.92

Settling time (ms)
double J 1.5 1.7 1.22 1.8

Steady state error (%)
nominal J 0.07 0.07 0.06 0.06

Steady state error (%)
double J 0.08 0.07 0.06 0.06

Speed ripple (rpm)
nominal J 123.03 118.73 104.50 95.34

Speed ripple (rpm)
double J 149.25 148.16 120.85 83.09

Torque ripple (Nm)
nominal J 14.92 14.74 126.29 14.71

Torque ripple (Nm)
double J 20.96 20.82 112.13 14.33

It is obviously noticeable that the values obtained for the settling time are 0.92 ms under nominal
parameters of the PMSM, along with the other performance indices which can be considered as very
good for the FO-SMC speed controller and the FO-synergetic current controller. The PMSM used
in these numerical simulations is implemented in Power Systems/Simscape Electrical toolbox from
Simulink, and in many scientific papers it is used as benchmark, and, to our best knowledge, the
settling time of 0.92 ms obtained when using the FO-SMC speed controller and the FO-synergetic
current controller is the best settling time obtained for a usual range of the speed reference and load
torque, and for any other proposed controllers.

In addition, under the same conditions as a classic FOC-type control system of a PMSM, Figure 32
also shows an improvement in the THD of the currents in the PMSM supply phases. Thus, THD is
reduced from 50% to 22%. Obviously, for further reduction of the THD, additional specialized systems
as those presented in [42] can also be added.
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Figure 32. THD current analysis: (a) PMSM control system with PI speed controller and PI
current controllers; (b) PMSM control system with FO-SMC speed controller and FO-synergetic
current controllers.

8. Experimental Results

For the experimental validation of the simulations of the proposed PMSM control algorithms,
which were presented and validated by numerical simulations in the previous section, this section
presents the development platform used for their real time implementation in embedded systems.

The developed algorithms are implemented in MATLAB/Simulink and use dedicated functions
from specialized libraries in the Model-Based Design Toolbox S32K1xx Series which contains the
Automotive Math and Motor Control Library Set for NXP S32K14x devices, a toolbox which is dedicated
to the PMSM control.

The hardware platform dedicated for the PMSM control for the experimental testing of the
proposed algorithms is an S32K144 development kit which contains an S32K144 evaluation board
(S32K144EVB-Q100), DEVKIT-MOTORGD board based on SMARTMOS GD3000 pre-driver and Linix
45ZWN24-40 PMSM type. The controller of the development platform is S32K144 MCU which is of
32bit Cortex M4F type, which has a time base of 112 MHz with 512 KB of flash memory and 54 KB
of RAM.

There are also a number of dedicated hardware peripherals (FTM, ADC, PDB, PWM, timers)
for the PMSM control, common analog and digital I/O processing blocks, but also a wide range of
communication blocks which are common for the industrial environment. Among the communication
interfaces we mention OpenSDA serial debug interface, CAN controller with CAN-FD protocol.

Figure 33 shows an image of the experimental platform.
The software application block diagram of the implementation in MATLAB/Simulink and

Model-Based Design Toolbox S32K1xx Series NXP for the embedded system of the PMSM control
system is presented in Figure 34. The main blocks presented are: data acquisition and commands,
which is supervised by the dispatcher software interrupters, current controllers from inner loop and
speed controller from outer loop.
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Figure 33. Experimental platform image.

 

Figure 34. Software block diagram of the implementation in MATLAB/Simulink and Model-Based
Design Toolbox S32K1xx Series NXP embedded system for PMSM control.

Figure 35 presents the block diagram of the software for the outer speed control loop
MATLAB/Simulink model utilizing the bit accurate models for the Automotive Math and Motor
Control Library Set for NXP S32K14x devices. The main blocks are: speed reference, initialization
speed loop, switching block output command, classical PI speed controller and FO-PI speed controller.
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The Discrete Zero-Pole function from Simulink [43] is used for the implementation of the FO-PI speed
controller described in Section 4. Equation (108), which represents the discrete form of the FO-PI speed
controller, is implemented through this function.

 

Figure 35. Software block diagram of the outer loop speed control MATLAB/Simulink model utilizing
the bit accurate models for Automotive Math and Motor Control Library Set for NXP S32K14x devices.

The inner loop for the current control runs every 0.1 ms and the outer loop for the speed control
runs every 1 ms. By comparison, each program implemented for numerical simulations, presented in
Section 7, runs at each 0.001 ms.

Based on FreeMaster, which is a real-time debugging monitoring software interface for data
visualization, configuration and tuning of embedded software applications, the next figure presents
the real time evolution of the parameters of the PMSM control system. For reasons of communication
between the FreeMaster software interface from the host PC and the controller of the PMSM,
the sampling time for the evolution of parameters in Figures 36–44 is 10 ms. Figures 36–38 present the
real-time evolution of the PMSM rotor speed with classical PI speed controller.

Figures 39–41 present the real-time evolution of the PMSM rotor speed with FO-PI speed controller.
The superior performance of the FO-PI speed controller is clearly noticeable.

The following figures show the real-time evolution of the main PMSM control parameters of
interest using the FO-PI speed controller. The real-time evolution of the stator currents are presented
in Figure 42, the real-time evolution of id and iq currents are presented in Figures 43 and 44 presents
the real-time evolution of the electromagnetic torque.
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Figure 36. Real time evolution of the rotor speed of PMSM with classical PI speed controller for ωref =

1150 rpm and no load torque.

 

Figure 37. Real time evolution of the rotor speed of PMSM with classical PI speed controller for ωref

between 1150 rpm and 2000 rpm and no load torque.

 

Figure 38. Real time evolution of the rotor speed of PMSM with classical PI speed controller for ωref =

2000 rpm and no load toque.
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Figure 39. Real time evolution of the rotor speed of PMSM with FO-PI speed controller for ωref = 1150
rpm and no load toque.

 

Figure 40. Real time evolution of the rotor speed of PMSM with classical FO-PI speed controller for
ωref between 1150 rpm and 2000 rpm and no load toque.

 

Figure 41. Real time evolution of the rotor speed of PMSM with FO-PI speed controller for ωref = 2000
rpm and no load toque.
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Figure 42. Real time evolution of the stator currents of PMSM with FO-PI speed controller.

 

Figure 43. Real time evolution of the id and iq currents of PMSM with FO-PI speed controller.

 

Figure 44. Real time evolution of the electromagnetic torque of PMSM with FO-PI speed controller.

It can be noted that there is a similarity between the results obtained by numerical simulation in
Figure 13 for the control of the PMSM using an FO-PI speed controller, ωref = 2000 rpm and no load
torque, and the experimental results presented in Figures 42–44 concerning the stator currents, the
electromagnetic torque and id and iq currents. Furthermore, Figures 36–41 show the superiority of
the FO-PI speed controller over the classic PI speed controller, in the case of implementation in an
embedded system.
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9. Conclusions

Based on fractional calculus, this article presents a number of fractional controllers for the
PMSM rotor speed control loops and id and iq current control loops in the FOC-type control strategy.
The proposed system for the PMSM control is based on an FO-SMC speed controller and FO-synergetic
current controllers. Due to the additional control parameters generated in the structure of the fractional
order controllers, superior performances are obtained for the PMSM rotor speed control. In addition,
the sensorless-type PMSM control structure detects the faults of the current sensors and performs
a significant reduction in the THD. The parametric robustness of the proposed control system is
demonstrated by very good control performances achieved even when the uniformly distributed noise
is present in the load torque TL, and under variations by 100% of the load torque TL, of the moment of
inertia of J rotor and of the stator resistance Rs. The performances of the proposed control system are
validated both by numerical simulations and experimentally, through real-time implementation in
embedded systems.

Author Contributions: Conceptualization, M.N.; data curation, M.N. and C.-I.N.; formal analysis, M.N. and C.-I.N.;
funding acquisition, M.N.; investigation, M.N. and C.-I.N.; methodology, M.N. and C.-I.N.; project administration,
M.N.; resources, M.N. and C.-I.N.; software, M.N. and C.-I.N.; supervision, M.N. and C.-I.N.; validation, M.N.
and C.-I.N.; visualization, M.N. and C.-I.N.; writing—original draft, M.N. and C.-I.N.; writing—review and
editing, M.N. and C.-I.N. All authors have read and agreed to the published version of the manuscript.

Funding: This paper was developed with funds from the Ministry of Research and Innovation as part of the
NUCLEU Program: PN 19 38 01 03.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Utkin, V.; Guldner, J.; Shi, J. Automation and Control Engineering. In Sliding Mode Control in Electromechanical
Systems, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; pp. 223–271.

2. Bose, B.K. Modern Power Electronics and AC Drives; Prentice Hall: Upper Saddle River, NJ, USA, 2002;
pp. 439–534.

3. Alkorta, P.; Barambones, O.; Cortajarena, J.A.; Martija, I.; Maseda, F.J. Effective Position Control for a
Three-Phase Motor. Electronics 2020, 9, 241. [CrossRef]

4. Yuan, T.; Wang, D. Performance Improvement for PMSM DTC System through Composite Active Vectors
Modulation. Electronics 2018, 7, 263. [CrossRef]

5. Wang, H.; Leng, J. Summary on development of permanent magnet synchronous motor. In Proceedings of
the Chinese Control and Decision Conference (CCDC), Shenyang, China, 9–11 June 2018; pp. 689–693.

6. Bao, G.; Qi, W.; He, T. Direct Torque Control of PMSM with Modified Finite Set Model Predictive Control.
Energies 2020, 13, 234. [CrossRef]

7. Wu, Z.; Gu, W.; Zhu, Y.; Lu, K. Current Control Methods for an Asymmetric Six-Phase Permanent Magnet
Synchronous Motor. Electronics 2020, 9, 172. [CrossRef]

8. Wang, W.; Tan, F.; Wu, J.; Ge, H.; Wei, H.; Zhang, Y. Adaptive Integral Backstepping Controller for PMSM
with AWPSO Parameters Optimization. Energies 2019, 12, 2596. [CrossRef]

9. Wang, J. Fuzzy Adaptive Repetitive Control for Periodic Disturbance with Its Application to High Performance
Permanent Magnet Synchronous Motor Speed Servo Systems. Entropy 2016, 18, 261. [CrossRef]

10. Lu, S.; Tang, X.; Song, B. Adaptive PIF Control for Permanent Magnet Synchronous Motors Based on GPC.
Sensors 2013, 13, 175–192. [CrossRef]

11. Zhao, Y.; Liu, X.; Zhang, Q. Predictive Speed-Control Algorithm Based on a Novel Extended-State Observer
for PMSM Drives. Appl. Sci. 2019, 9, 2575. [CrossRef]

12. Tang, M.; Zhuang, S. On Speed Control of a Permanent Magnet Synchronous Motor with Current Predictive
Compensation. Energies 2019, 12, 65. [CrossRef]

13. Zhang, G.; Chen, C.; Gu, X.; Wang, Z.; Li, X. An Improved Model Predictive Torque Control for a Two-Level
Inverter Fed Interior Permanent Magnet Synchronous Motor. Electronics 2019, 8, 769. [CrossRef]

14. Liu, X.; Zhang, Q. Robust Current Predictive Control-Based Equivalent Input Disturbance Approach for
PMSM Drive. Electronics 2019, 8, 1034. [CrossRef]

330



Electronics 2020, 9, 1494

15. Ma, Y.; Li, Y. Active Disturbance Compensation Based Robust Control for Speed Regulation System of
Permanent Magnet Synchronous Motor. Appl. Sci. 2020, 10, 709. [CrossRef]

16. Larbaoui, A.; Belabbes, B.; Meroufel, A.; Tahour, A.; Bouguenna, D. Backstepping Control with Integral
Action of PMSM Integrated According to the MRAS Observer. IOSR J. Electr. Electron. Eng. 2014, 9, 59–68.
[CrossRef]

17. Merabet, A. Cascade Second Order Sliding Mode Control for Permanent Magnet Synchronous Motor Drive.
Electronics 2019, 8, 1508. [CrossRef]

18. Qian, J.; Ji, C.; Pan, N.; Wu, J. Improved Sliding Mode Control for Permanent Magnet Synchronous Motor
Speed Regulation System. Appl. Sci. 2018, 8, 2491. [CrossRef]

19. Bounasla, N.; Hemsas, K.E.; Mellah, H. Synergetic and sliding mode controls of a PMSM: A comparative
study. J. Electr. Electron. Eng. 2015, 3, 22–26. [CrossRef]

20. Bogani, T.; Lidozzi, A.; Solero, L.; Di Napoli, A. Synergetic Control of PMSM Drives for High Dynamic
Applications. In Proceedings of the IEEE International Conference on Electric Machines and Drives, San
Antonio, TX, USA, 15 May 2005; pp. 710–717.

21. Khettab, K.; Ladaci, S.; Bensafia, Y. Fuzzy adaptive control of fractional order chaotic systems with unknown
control gain sign using a fractional order Nussbaum gain. IEEE/CAA J. Autom. Sin. 2019, 6, 816–823.
[CrossRef]

22. Wang, M.-S.; Hsieh, M.-F.; Lin, H.-Y. Operational Improvement of Interior Permanent Magnet Synchronous
Motor Using Fuzzy Field-Weakening Control. Electronics 2018, 7, 452. [CrossRef]
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