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Preface to ”Gravitational Lensing and Optical

Geometry: A Centennial Perspective”

Gravitational lensing is the deflection of light under the influence of gravity as predicted by

Einstein’s general relativity . In 1919, Eddington’s expeditions to Principe and Brazil to observe

the gravitational deflection of star light during a total solar eclipse led to the corroboration of

General Relativity.

To mark the centennial of this important discovery, a Special Issue of Universe entitled

’Gravitational Lensing and Optical Geometry: A Centennial Perspective’ was dedicated to the

theoretical aspects of gravitational lensing.

This has become a thriving subject at the interface of mathematics, astronomy and theoretical

physics, and the variety of affiliations of the contributing authors testifies to that. Additionally,

several mathematical approaches have been developed to study this effect, and one can distinguish

three broad categories: firstly, the standard thin lens approximation in 3-space, which is often used in

astronomy and has been found to be of great mathematical interest, for instance with its applications

of singularity theory to investigate caustics; secondly, a differential geometrical formalism in 3-space,

such as optical geometry and the related approaches: in this setting, the Gauss–Bonnet theorem

has proven useful for finding the deflection angle and topological criteria of image multiplicity;

and thirdly, the study of null geodesics in 4-dimensional spacetime of general relativity and its

modifications. The recent observation of the so-called black hole shadow of M87* by the Event

Horizon Telescope has made black hole photon regions a subject of great current interest as well.

The articles assembled in this volume reflect this range of topics and have been arranged

thematically along these lines. I would also like to take this opportunity to thank the authors

again for contributing to this Special Issue commemorating the foundational event of gravitational

lensing studies.

Marcus C. Werner

Editor
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Abstract: In gravitational lensing, magnification cross sections characterize the probability that a
light source will have magnification greater than some fixed value, which is useful in a variety of
applications. The (area) cross section is known to scale as μ−2 for fold caustics and μ−2.5 for cusp
caustics. We aim to extend the results to higher-order caustic singularities, focusing on the elliptic
umbilic, which can be manifested in lensing systems with two or three galaxies. The elliptic umbilic
has a caustic surface, and we show that the volume cross section scales as μ−2.5 in the two-image
region and μ−2 in the four-image region, where μ is the total unsigned magnification. In both cases
our results are supported both numerically and analytically.

Keywords: strong gravitational lensing; magnification cross sections; caustics

1. Introduction

Magnification cross sections are an important tool in gravitational lensing. Knowing the
magnification cross section allows one to determine the probability that a light source will have
magnification greater than some fixed value. This in turn gives information about the accuracy
of cosmological models, since these predict different probabilities regarding source magnifications
(see Schneider et al. 1992 [1], Kaiser 1992 [2], Bartelmann et al. 1998 [3], and Petters et al. 2001 ([4]
Chapter 13)). Knowing magnification cross sections is also important for observational programs that
use lensing magnification to help detect extremely faint galaxies (see, e.g., Lotz et al. 2017 [5], and
references therein).

It is well known that for the so-called “fold” and “cusp” caustic singularities, the area cross
sections scale asymptotically as μ−2 and μ−2.5, respectively, where μ is the total unsigned magnification
of a lensed source (for the cusp caustic, it is assumed that the source lies in the one-image region
locally). In the case of single-plane lensing, the fold scaling was determined by Blandford and Narayan
1986 [6], while the cusp scaling was determined by Mao 1992 [7] and Schneider and Weiss 1992 [8]. For
multiple-plane lensing, the fold and cusp scalings were determined by Petters et al. ([4] Chapter 13).

In this paper we commence the study of magnification cross sections of “higher-order” caustic
surfaces; in particular, we derive the (single-plane) asymptotic limit of the magnification cross section
for the “elliptic umbilic” caustic surface, which is not a curve but rather a two-dimensional stable
caustic surface in a three-dimensional parameter space (for precise definitions, consult, e.g., Arnold
1973 [9], Callahan 1974 & 1977 [10,11], Majthay 1985 [12], Arnold et al. 1985 [13], Petters 1993 [14],
[1,4]); its magnification “cross section” is therefore a region with volume. As hypothesized in Rusin et
al. 2001 [15] and Blandford 2001 [16], the elliptic umbilic is likely to be manifested inside a triangle
formed by three lensing galaxies, and to involve one positive-parity and three negative-parity images.
As shown in Shin and Evans 2008 [17] and de Xivry and Marshall 2009 [18], elliptic umbilics can also

Universe 2019, 5, 161; doi:10.3390/universe5070161 www.mdpi.com/journal/universe1
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appear in lensing by binary galaxies, if the binary separation is small enough. The asymptotic scaling
of the elliptic umbilic volume cross section will depend on whether the source gives rise to two or
four lensed images locally. We show that, in the two-image region, this volume cross section scales to
leading order as μ−2.5, whereas in the four-image region, its leading order scales as μ−2. In both cases,
our results are supported numerically and analytically. In our derivation of μ−2 in the four-image
region, we make use of a certain magnification relation that holds for higher-order caustic singularities,
and the elliptic umbilic in particular, that was shown to hold in Aazami and Petters 2009 [19].

2. The Elliptic Umbilic Caustic Surface

Let (x, y) denote coordinates on the lens plane and (s1, s2) coordinates on the source plane. Like
all higher-order caustic surfaces, the “elliptic umbilic caustic” has parameters in addition to the two
source plane coordinates. (Such higher-order parameters can, depending on the setting, be used to
model the source redshift, radii of galaxies, ellipticities, distance along the line of sight, etc., of the lens
system in question; see, e.g., ([1] Chapter 8)). A gravitational lensing map in the neighborhood of an
elliptic umbilic critical point, as derived in ([1] Chapter 5), takes the form

η(x, y) = (x2 − y2,−2xy + 4cy) = (s1, s2), (1)

where c ∈ R is a parameter in addition to the source plane coordinates s1, s2; i.e., the elliptic
umbilic caustic is a surface in the parameter space {(s1, s2, c)} = R3, not a curve in the source plane
S := {(s1, s2)} = R2. Accordingly, the “magnification cross section" is a (three-dimensional) volume,
and the asymptotic scaling is the leading order term in the limit as the magnification goes to infinity.
Figure 1 shows the elliptic umbilic caustic surface, while Figure 2 shows a c-slice of it on the source
plane S.

Figure 1. The elliptic umbilic caustic surface in three-dimensional parameter space {(s1, s2, c)} = R3;
s1, s2 are source plane coordinates and c ∈ R an additional parameter. When c = 0 the elliptic umbilic
is the central point shown. A c-slice of this caustic is shown in Figure 2.

If a source located at (s1, s2) on the source plane has a lensed image located at (x, y) on the lens
plane, then the magnification μ̃ of this lensed image is given by

μ̃(x, y) =
1

det(Jac η)(x, y)
=

1
8cx − 4(x2 + y2)

· (2)

Now fix c ∈ R and μ > 0. Consider first the four-image region enclosed by the caustic curve
in Figure 2. Let Cμ denote the subset consisting of those source positions (s1, s2) in the four-image
region with total unsigned magnification equal to μ, where the unsigned magnification of each image
(xi, yi) belonging to (s1, s2) is given by |μ̃(xi, yi)| in Equation (2). Cμ will consist of the closed dashed
curve inside the caustic curve in Figure 2; any source inside the dashed region will have total unsigned
magnification less than μ, while a source in the region D will have total unsigned magnification equal
to μ. Likewise for the two-image region, which is the (unbounded) region outside the caustic curve: For

2
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μ large enough, the enclosed regions A, B, and C comprise those sources whose two lensed images will
have total unsigned magnification greater than μ. (By symmetry, A, B, and C all have the same areas).

I D A

B

C

caustic curve

Figure 2. A generic c-slice of the elliptic umbilic caustic surface, which is the triangular-shaped
solid curve. For level curves in the two-image region, which is the (unbounded) region outside the
closed caustic curve, the magnification volume cross section σ(μ) is, for μ large enough, the sum
of the closed regions A, B, C. A source inside regions A, B, or C has two lensed images and total
unsigned magnification greater than μ. For level curves in the four-image region, which is inside the
triangular-shaped solid curve, σ(μ) is, for μ large enough, the region D inside the triangular-shaped
caustic but outside the closed dashed curve within. A source in region D has four lensed images and
total unsigned magnification greater than μ. Note that the actual caustic and level “curve” are both
surfaces in R3; what is shown here is a c-slice of this surface on the source plane.

Whether in the two- or the four-image region, the asymptotic scaling there is determined as
follows. The areas labeled A, B, C, and D will in general be functions of μ and c; denote any one of
these, e.g., by A(μ, c). To obtain a volume section, denoted V(μ), we integrate

V(μ) =
∫ c2

c1

A(μ, c) dc, (3)

where c1 < c2 are arbitrary but of the same sign. Finally, we take the limit limμ→∞ V(μ) and identify
the leading order term; this is the asymptotic scaling of the elliptic umbilic magnification volume.

We first examine the scalings numerically. For a given c-slice, we compute the total magnification
on a grid in plane S, as shown in Figure 3. The grid is adaptive, meaning that more grid points are used
in regions where the magnification changes quickly and high resolution is needed to obtain accurate
results. We use the grid to approximate the area integral and compute A(μ, c). We then combine
different c-slices to approximate the integral in Equation (3) and obtain V(μ). Figure 4 shows examples
of A(μ, c) and V(μ) for the two-image region, while Figure 5 shows A(μ, c) for the four-image region.

We support our numerical findings with the following analytical arguments. For the four-image
region, there is in fact a succinct argument that confirms the numerical result μ−2, as follows. For
any source in the four-image region (and assuming c �= 0), the lensing map of Equation (1) has three
lensed images with negative magnification and one lensed image with positive magnification, where
the magnification of a lensed image is given by Equation (2). Fix μ̃ > 0 and let Sμ̃ denote the set of
sources in the four-image region whose one positive-magnification image has magnification μ̃; as
usual, let μ denote the total unsigned magnification of this source. In fact Sμ̃ comprises the closed
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dashed curve inside the caustic that we saw in Figure 2. It is straightforward to compute that the area
labeled D — that is, the area outside Sμ̃ but inside the caustic — is equal to

2πc4 −
(

2πc4 − π

8μ̃2

)
=

π

8μ̃2 · (4)
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Figure 3. Level curves of the total unsigned magnification, for different values of c.
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Figure 4. (left) The colored points show the area cross section A(μ, c) in the two-image region,
computed numerically for different c-slices. The dotted lines show the scaling A(μ, c) ∝ μ−2.5.
(right) The points show the volume cross section V(μ) in the two-image region, computed by
integrating c over the range [0.1, 1.0]. The dotted line shows the scaling V(μ) ∝ μ−2.5.
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Figure 5. The colored points show the area cross section A(μ, c) in the four-image region, computed
numerically for different c-slices. The solid line shows A(μ, c) = π/(2μ2), in agreement with the
result obtained analytically in Equation (4) (with μ̃ = μ/2). The cross section curves level off at the
magnification that corresponds to the center of the caustic.

Observe that this area is c-independent. This area is related to A(μ, c), the magnification (area)
cross section, as follows. Let�s be a source in the four-image region whose total unsigned magnification
is μ. Clearly �s /∈ Sμ, since its one positive-magnification image must be less than μ. However, it
is known that the four-image region of the elliptic umbilic, for any c �= 0, satisfies the following
magnification relation.

4

∑
i=1

μ̃i = 0,

where μ̃i is the signed magnification of lensed image i; see [19] for a proof. (For clarity, we use the
notation “μ̃” to denote the magnification belonging to an individual image, and reserve the notation
“μ” to denote the total unsigned magnification of a source). It follows that �s ∈ Sμ/2, because the
positive-magnification image must have magnification μ/2, since the other three magnifications are
negative and must cancel it out. Thus, the closed curve Sμ/2 is precisely the level curve of sources with
total unsigned magnification μ. Observe that when μ̃ = μ/2 in Equation (4), then A(μ, c) = π/(2μ2),
as in Figure 5. And thus the area cross section scales like Equation (4). Figure 5 confirms this result
numerically. Integrating Equation (4) from c1 to c2 yields a volume cross section that clearly scales as
V(μ) ∝ μ−2.

There remains, finally, the two-image region outside the caustic curve shown in Figure 2. Here,
for μ > 0 large enough, those sources with total unsigned magnification greater than μ comprise
the regions labeled A, B, and C, which three enclosed areas are equal by symmetry. In this case the
area enclosed by them is not as easily derivable analytically, due to the complicated nature of the
intersection points of the dashed curves with the caustic. However, it is possible to bound the areas A,
B, and C, from above and below, and to show that these lower and upper bounds, which are functions
of μ and c, both scale to leading order in μ as ∼ μ−2.5, thereby supporting our numerical results in
Figure 4. Figure 6 briefly describes the procedure, foregoing technical details.

5
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Figure 6. In each panel, the blue triangular-shaped curve is (a c-slice of) the elliptic umbilic caustic.
In the leftmost figure, the black curve comprises all source positions with at least one image with
(unsigned) magnification μ̃, for some fixed value of μ̃. In the large magnification limit, the magnification
of one of the images in the two-image region dominates that of the other, in which case the loops
enclosing each cusp in the leftmost panel approach the regions A, B, and C in Figure 2. The closed black
curves in the middle and rightmost figures bound the areas A, B, and C from above and below. It can
be shown that these two area bounds, which are functions of μ and c in general, both scale to leading
order in μ as ∼μ−2.5, where μ is the total unsigned magnification of a source in the two-image region.

3. Conclusions

We have shown that the asymptotic scaling of the magnification volume cross section
corresponding to an elliptic umbilic caustic surface is μ−2.5 in the two-image region and μ−2 in the
four-image region, where μ is the total unsigned magnification. In both cases our results are supported
both numerically and analytically. The goal was to extend to higher-order caustic singularities the well
known (area) cross sections for fold (μ−2) and cusp (μ−2.5) caustics, in particular given that the elliptic
umbilic caustic can be manifested in both binary and three-galaxy lensing systems.
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Abstract: We investigated binary lenses with 1/rn potentials in the asymmetric case with two lenses
with different indexes n and m. These kinds of potentials have been widely used in several contexts,
ranging from galaxies with halos described by different power laws to lensing by wormholes or
exotic matter. In this paper, we present a complete atlas of critical curves and caustics for mixed
binaries, starting from the equal-strength case, and then exploring unequal-strength systems. We also
calculate the transitions between all different topology regimes. Finally we find some useful analytic
approximations for the wide binary case and for the extreme unequal-strength case.

Keywords: gravitational lensing; black holes; wormholes; galaxies

1. Introduction

Space–time is curved by the presence of massive bodies and this curvature influences the motion
of the bodies themselves: this leads to a geometry in constant evolution. One of the consequences
is that even light, supposed to be massless, bends its trajectory while passing close to a massive
body. Einstein deduced it already in 1913, two years before his theory was completed [1], and the
British astronomer Arthur Eddington decided to exploit this intuition experimentally. On 29 May
1919 during a solar eclipse in Principe Islands he showed that stars moved from their position by the
amount precisely predicted by general relativity. This great result was put into evidence by the main
newspapers of that time, like Cosmic Time that titled “Sun’s gravity bends starlight” underlining the
triumph of Einstein’s theory. This was the first observation of gravitational lensing [2].

Gravitational lensing is an important tool in astrophysics and in cosmology widely used to study
both populations of compact objects (including exoplanets, black holes, and other stellar remnants) [3,4],
and extended objects, such as galaxies, clusters of galaxies, and large-scale structures [5–9]. Since most
of the mysteries of our Universe do not show up in observations based on electromagnetic interactions,
gravitational lensing is more and more employed to study the dark side of the Universe, including dark
matter, dark energy, and any kind of exotic matter (such as wormholes) conjectured by theorists [10–15].

Gravitational lensing effects by wormholes were investigated in [16,17], with negative mass
in [18–22], and with positive mass in [23–27]. We want to remark that in 1973, Ellis and Bronnikov
independently found a massless wormhole (the Ellis wormhole) as a wormhole solution of the Einstein
equations, see [28,29]. Spherically symmetric and static traversable Morris–Thorne wormholes were
analyzed in [30,31]. The most general extension of the Morris–Thorne wormhole is the solution of the
stationary and axially symmetric rotating Teo wormhole in [32], the first rotating wormhole solution,
and this was the starting point for the investigation of gravitational lensing by rotating wormholes
explored by Jusufi and Ovgun in [33]. Tsukamoto and Harada studied the light rays passing through a
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wormhole in [34]; Ohgami and Sakai studied the images of wormholes surrounded by optically thin
dust in [35] in order to state if it is possible to identify wormholes by observing shadows; this was also
investigated in [36] in rotating dust flow.

The metric of the Ellis wormhole falls down asymptotically as 1/r2 and its deflection angle goes
as the inverse square of the impact parameter 1/u2 as explored in [37–45]. Metrics falling as 1/rn were
investigated also by Kitamura et al. [46] who found out that the deflection angle falls down with the
same exponent as the metric: α̂ ∼ 1/un with n > 1. Other investigations include [47–52]. Power-law
deflection terms can also be found in gravitational lensing in the presence of plasma [53–57]. Particular
attention was posed on the study of caustics of 1/rn binary lenses by Bozza and Melchiorre in [58] and
to the investigation of gravitational lensing by exotic lenses with a non-standard form of the equation
of state or with a modified gravity theory by Asada [59]. A new method of detecting Ellis wormholes
by the use of the images of wormholes surrounded by optically thin dust was investigated by Ohgami
and Sakai [35].

After the Event Horizon Telescope results [60], consisting in the detection of the shadow of a
supermassive black hole in the center of galaxy M87, many authors tried to explore new frontiers,
and an interesting new reference is from Tsukamoto and Kokubu [61]: they investigate the collision of
two test particles in the Damour–Solodukhin wormhole spacetime where Damour and Solodukhin
stated in [62] that is not possible to distinguish black holes from wormholes with observations on a
limited timescale.

From the side of binary galaxies as binary lenses we must cite the considerable work of Shin and
Evans [63] that discussed the critical curves and caustics in the case n < 1. This applies to generic
galactic halos and isothermal sphere in particular, as the limit n → 0.

Kovner investigated extremal solutions for a singular isothermal sphere with a tide (SIST) [64];
Evans and Wilkinson studied lens models for representing cusped galaxies and clusters, as isothermal
cusps always generate a pseudocaustic [65], while Rhie discussed pseudocaustics of various lens
equations [66]. Wang and Turner studied strong gravitational lensing by spiral galaxies, modeling
them as infinitely thin uniform disks embedded in singular isothermal spheres [67], while Tessore and
Metcalf investigated a general class of lenses following an elliptical power law profile [68]. All these
systems possess pseudocaustics that were also investigated by Lake and Zheng in gravitational
lensing by a ring-like structure [69]. Higher-order caustic singularities, such as the elliptic umbilic,
were discussed by Aazami et al. [70].

In this work we want to extend the symmetric structure already studied by Bozza and Melchiorre
in [58] for 1/rn potentials, in which the two lenses have the same index n, to an asymmetric case in
which the lenses have different indexes. This generalization is particularly useful in both scientific
contexts described by 1/rn potentials. In fact, we may have pairs of galaxies that have very different
structures and thus different halo profiles, e.g., a dwarf galaxy as a satellite to a giant galaxy. On the
other hand, if wormholes or other exotic objects exist, they might be part of a binary system with an
ordinary star or other compact objects. The co-existence of objects with different 1/rn potentials thus
seems plausible in many situations, thus justifying the generalization we are going to undertake here.

In Section 2 we give the lens equation for 1/rn potentials for two exotic lenses with different n.
In Section 3 we study critical curves and caustics presenting three main cases: equal-strength binary
lenses, unequal-strength binary and extreme unequal-strength binary lenses explaining the origin
of the pseudocaustic and of the elliptic umbilic catastrophe for mn < 1. In Section 4 we study the
transitions between different caustic topologies. In Section 5 we derive analytical approximations for
the three cases analyzed in Section 3 in order to have a deeper understanding in the caustic evolution,
in its shape and size. Finally in Section 6 we draw our conclusions.

2. Gravitational Lensing by Objects with 1/rn Potential

Objects whose gravitational potential asymptotically falls as 1/rn (n ≤ 1 for ordinary matter, n > 1
for exotic matter) give rise to a deflection angle that goes as α ∼ 1/|θ|n, where θ is the angular position
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at which the image is observed. The lens equation for a single lens, first studied by Kitamura et al.
in [46] and then generalized by Bozza and Postiglione in [52], is

β = θ − θn+1
E
|θ|n Sign(θ), (1)

where β is the source angular position with respect to the center of the lens, θE is the Einstein radius
of the lens, which depends on the specific parameters of the metric describing the object [46] and the
index n is either the exponent of the halo profile for a normal matter distribution or the ratio between
tangential and radial pressure, n = −2pt/pr, if we consider exotic matter [52].

We want to explore a system composed by two objects in the asymmetric case in which our lenses
have different indexes, here indicated with n and m. The binary lens equation is

�β = �θ − θn+1
E,A

�θ − �θA

|�θ − �θA|n+1
− θm+1

E,B

�θ − �θB

|�θ − �θB|m+1
, (2)

where �θA and �θB are the coordinates of the two objects in the sky.
We note that the Einstein radii θE,A and θE,B appear with different exponents for each lens.

It is thus convenient to use θE,A as a unit of measure for angles and define the “strength ratio” as
γ = θE,B/θE,A. We rewrite the lens equation as follows

�β = �θ −
�θ − �θA

|�θ − �θA|n+1
− γm+1

�θ − �θB

|�θ − �θB|m+1
. (3)

Now we introduce complex coordinates [71]

ζ = β1 + iβ2; z = θ1 + iθ2 (4)

We take the mid-point between the two lenses as the origin of the coordinates, and orient the
real axis along the line joining the two lenses. We thus set zA = −s/2 and zB = s/2, where s is the
normalized angular separation between the lenses. The lens equation becomes

ζ = z − 1(
z + s

2
) n−1

2
(
z̄ + s

2
) n+1

2
− γm+1(

z − s
2
)m−1

2
(
z̄ − s

2
)m+1

2
(5)

The Jacobian determinant of the lens map in complex notation is given by

J(z, z̄) =
∣∣∣∣∂ζ

∂z

∣∣∣∣
2
−
∣∣∣∣∂ζ

∂z̄

∣∣∣∣
2

, (6)

which in our case becomes

J =

[
1 +

1
2

⎛
⎝ n − 1(

z + s
2
) n+1

2
(
z̄ + s

2
) n+1

2
+

γm+1(m − 1)(
z − s

2
)m+1

2
(
z̄ − s

2
) m+1

2

⎞
⎠]2

− 1
4

∣∣∣∣∣∣
n + 1(

z + s
2
) n+3

2
(
z̄ + s

2
) n−1

2
+

γm+1(m + 1)(
z − s

2
)m+3

2
(
z̄ − s

2
)m−1

2

∣∣∣∣∣∣
2 . (7)

We note that the structure of the Jacobian becomes more complicated with respect to the ordinary
point-lenses (m = n = 1), in which many terms disappear. We thus expect a correspondingly richer
phenomenology. The Schwarzschild case was already explored by Schneider and Weiss in [72] for
lenses with the same mass and by Erdl and Schneider for lenses with different masses [73]; Bozza and
Melchiorre investigated the case m = n. In order to compare our results with theirs, it is important to
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note that there is no notion of a combined total Einstein radius when the two lenses have different
indexes for their potentials. Therefore, the notation introduced there, with εi as the ratio of the
individual lens strength to the total strength cannot be replicated here. Their results were expressed
in terms of the ratio q = εB/εA. The relation between our parameter γ = θE,B/θE,A and q is just
γm+1 = q. As a practical example, the Einstein radius scales as

√
q in the Schwarzschild case, where q

becomes the mass ratio of the two lenses.

3. Critical Curves and Caustics

The condition J(z) = 0 defines the critical curves on the lens plane. By applying the lens map on
critical points we find the corresponding points on the source plane, which form the caustics. Critical
curves and caustics are of fundamental importance to understand how gravitational lensing works.
When a source crosses a caustic, a new pair of images is created on the corresponding point in the
critical curve. Therefore, caustics bound regions with a different number of images. Critical curves
distinguish regions in which images have opposite parities.

Our model contains four parameters: the indexes of the two potentials n, m, the separation
between the two lenses s, and the ratio of the two Einstein radii γ. In order to start the exploration of
this parameter space, we first analyze the equal-strength case with γ = 1, and then move to unequal
strength cases.

In all plots presented in this paper, we keep n = 1 fixed for the first lens (ordinary Schwarzschild
lens), with variable m for the second lens: m = 0, 0.5, 1, 2, 3 (we remind that m = 0 is the singular
isothermal sphere, already investigated by Shin and Evans in [63], galactic halos are in the range
0 < m < 1 and m = 2 corresponds to the Ellis wormhole; objects with m > 1 require exotic matter).

Critical curves are obtained by the contour plot of the Jacobian determinant and these contours are
then mapped through the lens equation in order to get the caustics. All computations are performed
by Wolfram Mathematica 111.

3.1. Equal-Strength Binaries

In the equal-strength case, we set γ = 1, which means that θE,A = θE,B: both lenses would
generate a critical curve with the same radius if they were isolated.

For the standard binary Schwarzschild lens [72], we know that three topologies exist:

- close separation, for s < sCI ;
- intermediate separation, for sCI < s < sIW ;
- wide separation, for s > sIW ;

and the two transitions are sCI = 1 and sIW = 2
√

2 in our units.
We find that these three topologies persist for any values of n and m, although the boundary

values may vary somewhat. In order to illustrate the evolution of critical curves and caustics in
intelligible figures, we present the plots for different values of m at fixed values of separation s, starting
from wide separation binaries and then moving the two lens closer.

First, in Figure 1, we have two lenses at wide separations for s = 3.4. Here we clearly see how
the Einstein ring of each lens is distorted by the presence of the partner lens. Comparing the critical
curves obtained at different values of the index m, we clearly see that the distortion is stronger for
small values of m. This is a direct consequence of the fact that the potential decays more steeply for
larger m and thus the first lens feels a weaker tidal field from the second lens. This is particularly
evident for the caustic of the first lens, which becomes very small at m = 3, while it becomes larger
and more shifted at m = 0. The caustic of the second lens is almost independent of m. In practice,

1 https://www.wolfram.com/mathematica/
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the shape and the size of the caustic is mostly determined by the tidal field of the first lens, which we
are keeping fixed with n = 1.

x

x

y
y

Figure 1. Critical curves and caustics in the equal-strength binary, wide separation. Here and in the
following figures the lens on the left side has n = 1 and the lens on the right side has variable m,
coherently with Equation (5).

In Figure 2 we show critical curves and caustics for s = 2
√

2, which corresponds to the
intermediate-wide transition in the standard n = m = 1 case. In fact, the red curves show the
typical beak-to-beak singularity in the origin. For m < 1 we are already in the intermediate regime,
while for m > 1 we are still in the wide regime. As explained before, the fact that the intermediate
regime extends to larger separations for m < 1 is a consequence of the slower decay of the potential.

x

x

y

y

Figure 2. Critical curves and caustics in the equal-strength binary, intermediate-wide transition.

In Figure 3 we see an intermediate separation at s = 1.4: critical curves are larger for smaller
values of m, while caustics are larger for increasing m. Indeed, we are starting to see some kind of
inversion in the behavior of the lenses. Steeper profiles are going to dominate at smaller separations,
as will be more evident in the incoming figures.

In Figure 4 we show the critical curves and caustics at s = 1, which corresponds to the
close-intermediate transition for the standard n = m = 1 case. In fact, the red curve shows the
two symmetric beak-to-beak singularities. Contrary to the previous transition, now the m < 1 caustics
are already in the close regime, with small oval critical curves generating small triangular caustics.
The m > 1 curves are still in the intermediate regime. Following the same reasoning, m < 1 lenses
become subdominant in this regime and their influence on the whole system is smaller. In this regime,
we also find the elliptic umbilic catastrophe that we shall discuss in Section 3.1.2.
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Figure 3. Critical curves and caustics in the equal-strength binary, intermediate separation.
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Figure 4. Critical curves and caustics in the equal-strength binary, close-intermediate transition.

In Figure 5 we can see critical curves and caustics in the close separation, for s = 0.8.
Primary critical curves are big ovals that become smaller as m increases. In fact, m > 1 curves

tend to be closer to an intermediate regime. Secondary critical curves are small ovals that move far
from the second lens, in the left direction, for m > 1; for m = 0 (magenta line) they converge on
the second lens with the shape of a lemniscate: in this point the lens map is indeterminate and the
corresponding caustics remain open on a circle that is called pseudocaustic. We shall discuss this
structure in Section 3.1.1.

On the other side we find that the central caustics have the typical 4-cusps shape and they become
smaller as m decreases. Secondary caustics are always triangular but are considerably larger for m > 1,
a fact that was already stressed in [58]. Note that for m > 1 triangular caustics move right, while the
central caustic is slightly displaced to the left. The opposite occurs for m < 1. We can find a similar
behavior for standard Schwarzschild binaries with unequal masses. In practice, although we started
with the same Einstein radius for both lenses, steeper profiles (m > 1) behave similarly to heavier
masses in this regime, while shallower profiles (m < 1) behave as lighter masses.

3.1.1. The Pseudocaustic

A pseudocaustic is a closed curve on the source plane that exists for singular distributions with zero
core radius. In the singular limit, the radial critical curve collapses onto the center of the lens, leaving
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no space for the dim central type III image. When the source crosses the corresponding radial caustic,
only one more image forms, while the other image is degenerate with the center of the lens. The radial
caustic is then named pseudocaustic, since it behaves differently from normal caustics [64–69].

x

x

y

y

Figure 5. Critical curves and caustics in the equal-strength binary, close separation. Dashed magenta
circle indicates the pseudocaustic for m = 0.

In the binary case, a pseudocaustic may still exist in the singular limit m = 0. Through an
analytical exploration we find out the points where the two secondary triangular caustics touch
the pseudocaustic.

The pseudocaustic is generated by critical curves collapsing to the center of the lens when m = 0.
In order to explore what happens around the center of the second lens, we set

z =
s
2
+ ε1 + iε2; (8)

we expand around zero at 1/ε order and then we solve with respect to ε2.
We get two symmetric solutions

ε2 = ±
√

s2 + 1√
1 − s2

ε1 (9)

These solutions are two straight lines that cross at the origin of the system, and their angular
coefficient is real only for s < 1. This means that the two small oval critical curves will touch the center
of the m = 0 lens for separations in this regime. By substituting in the lens equation we find

ζ =
s
2
− 1

s
± γ

√
−s2 ±

√
s4 − 1 (10)

These are the coordinates of the four contact points of the two triangular caustics with the
pseudocaustic of radius γ and center ( s

2 − 1
s , 0). The term 1

s shifts the caustic to the left side with
respect to the position of the second lens s

2 .
If the source only crosses the pseudocaustic, we have the sudden creation of one image of negative

parity; if the source crosses a triangular caustic first and then the pseudocaustic, we have the formation
of two images and the one inside the lemniscate (with positive parity) collapses on the lens.

3.1.2. The Elliptic Umbilic

As shown in [58,63], in the range 0 ≤ m < 1 an elliptic umbilic catastrophe exists in the close
separation. In an elliptic umbilic, the size of the small oval critical curves goes to zero and then grows
up to finite size again. The catastrophe lies on a circle centered in the origin of the system, at the
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mid-point between the two lenses, and passing through them. It occurs at a specific separation s,
which depends on the other parameters of the lens γ, m, n.

To find out the separation s, for any m and n, at which the catastrophe occurs we proceed as
follow: first we write the system of equations

{
J = 0
∂J
∂z = 0

(11)

along the circle, i.e., we set

z = s
eiθ

2
. (12)

Then we introduce a new angular variable t in order to simplify our computation

t =
sinm+1(θ/2)
cosn+1(θ/2)

(13)

From Equation (11), we get the angular position of the elliptic umbilic

t =
(m + 1)γm+1

(n + 1)sn−m (14)

and then we finally obtain the value of s at which the catastrophe happens

seuc =

(
1 − mn
m + 1

) 1
n+1

√√√√√1 +
γ2(m + 1)

2
n+1

(n + 1)
2

m+1 (1 − mn)
2(m−n)

(m+1)(n+1)

(15)

Note that the solution exists for mn < 1. In mixed binaries, we may have an elliptic umbilic also
when one of the two lenses has a steep potential with n > 1. In order to illustrate this, we choose n = 2
(exotic matter) and m = 0.25 (a possible galactic halo). We can see, in Figure 6, a zoom on the small
oval critical curve for 0.714 ≤ s ≤ 0.834 in steps of 0.02. The separation at which the catastrophe occurs
is seuc = 0.774. The critical curve shrinks to zero size for growing s, from s = 0.714 to s = 0.774 (lower
curves) and then it grows up again. The corresponding triangular caustics behave similarly.

x

x

y

y

Figure 6. The elliptic umbilic catastrophe for n = 2, m = 0.25 and 0.714 ≤ s ≤ 0.834 in steps of 0.02,
one color for each s from red to blue. The separation at which the catastrophe occurs is seuc = 0.774.
Critical curves on the left side panel, caustics on the right side panel.
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3.2. Unequal-Strength Binary

In the unequal-strength binary case, in order to keep contact with the previous work, we consider
q = 0.1, as in [58], so in terms of the ratio of the Einstein radii, our strength ratio is γ =

√
0.1. We need

to multiply s in [58] by a factor
√

q + 1 =
√

1.1, so the transitions between different topologies for
n = m = 1 occur as follows:

- close-intermediate transition, sCI = 0.807;
- intermediate-wide transition, sIW = 1.772.

Therefore, in this subsection we have the standard lens on the left with bigger Einstein radius
than the lens on the right, for which we vary the potential index m.

We shall discuss each value of m in the range 0 ≤ m ≤ 3 in detail.
In Figure 7 we show the wide separation for s = 2.1. Critical curves are separated and slightly

deformed. The caustic of the left side lens is smaller since the tidal field from the right side lens is
normally weaker. However, for m < 1 the potential decays slower enough to make the left side caustic
bigger than the caustic on the right.

x

x

y

y

Figure 7. Critical curves and caustics in the unequal-strength binary, wide separation. Here and in the
following figures the lens on the left has n = 1 and the lens on the right has variable m.

In Figure 8 we can see the intermediate-wide transition at s = 1.772. For m < 1 (magenta and
blue lines) the transition to the intermediate regime has already occurred, while we are still in the wide
regime for m > 1 (green and yellow lines).
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Figure 8. Critical curves and caustics in the unequal-strength binary, intermediate-wide transition.
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In Figure 9 we can see the intermediate separation for s = 1.05. Critical curves now are all joined
and they get smaller with increasing m. Caustics now have the 6-cusps shape and they get smaller
with decreasing m. Note that the throat of the critical curve is wider for m > 2 and narrower for m < 1.
Correspondingly, the fold between the off-axis cusps is longer for m > 1 and is extremely short for
m = 0, where the two off-axis cusps almost coincide.

x

x

y

y

Figure 9. Critical curves and caustics in the unequal-strength binary, intermediate separation.

In Figure 10 we have the close-intermediate transition for s = 0.807. For m = 0 and m = 0.5,
the primary caustics are already in the close regime, with the smaller ovals detached from the primary
critical curve; for m = 1 we see the transition (red line), for m > 1 we are still in the intermediate
regime. Note that the m = 0 ovals already reached the right side lens and the triangular caustics
reached the pseudocaustic.
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y

y

Figure 10. Critical curves and caustics in the unequal-strength binary, close-intermediate transition.
Dashed magenta circle indicates the pseudocaustic for m = 0.

In Figure 11 we show the close separation for s = 0.63: the main critical curves, that generate the
central caustics, are big ovals growing up in size with decreasing m. Secondary critical curves are small
ovals close to the second lens, moving in the left direction as m increases. Like the equal-strength ratio
case, for m = 0 the secondary critical curves are attached in a lemniscate shape and the corresponding
caustics remain open on the pseudocaustic (see Section 3.1.1).
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On the right panel we have the caustics: as m decreases, the central caustic moves to the right;
secondary caustics become larger for greater values of m.
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y

Figure 11. Critical curves and caustics in the unequal-strength binary, close separation. The dashed
magenta circle indicates the pseudocaustic for m = 0.

3.3. Reversed Unequal-Strength Binary

In the previous section we assumed that the bigger lens was standard (n = 1) and the smaller
lens had a different index m. In this section we study the reverse situation: the standard lens is smaller
and the other lens is bigger. We thus keep γ =

√
0.1, fix m = 1 and let n vary.

In Figure 12 we start from the wide separation. Similarly to Figure 7, the caustic of the
non-standard lens remains unaffected, while the caustic of the standard object strongly depends
on the tidal field of the other lens. The shift and the size are much more affected than before, since now
the standard lens is the weaker one.
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y

Figure 12. Critical curves and caustics in the unequal-strength binary with the standard lens on the
right, wide separation. Here and in the following figures the lens on the right has m = 1 and the lens
on the left has variable n.

In Figure 13, we are at the intermediate-wide transition. The situation is quite similar to Figure 8,
with stronger dependence on the index n, as discussed before.

Figure 14 shows the intermediate topology. Comparing with Figure 9, it is interesting to note that
here the left cusp is common for all caustics, while there it was the right cusp to be shared among all
caustics. Of course, we can still interpret this fact through the variations of the tidal fields.
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Figure 13. Critical curves and caustics in the unequal-strength binary with the standard lens on the
right, intermediate-wide transition.
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Figure 14. Critical curves and caustics in the unequal-strength binary with the standard lens on the
right, intermediate separation.

Figure 15 shows the close-intermediate transition. Note that the red curves (n = m = 1) are
exactly at the transition, while both larger and smaller n curves are in the close regime. This is not
what happens in Figure 10, where larger m curves were still in the intermediate regime. Then we learn
that the close regime is more extended for all n �= 1 in this case.
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Figure 15. Critical curves and caustics in the unequal-strength binary with the standard lens on the
right, close-intermediate transition.
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Finally, Figure 16 shows the close regime. Note that the n = 0 small ovals do not collapse to the
left lens but remain quite far. The pseudocaustic is never reached by the triangular caustics.
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Figure 16. Critical curves and caustics in the unequal-strength binary with the standard lens on the
right, close separation.

4. Transitions between Different Topologies

Now we want to find out the boundaries for the three topology regimes, sCI and sIW , for any n,
m and γ.

As we know that transitions occur via higher order singularities of the lens map (beak-to-beak
singularity in the binary lens case), in order to find out sCI and sIW we need to solve again the system
of equations {

J = 0
∂J
∂z = 0

(16)

We put the origin of the system in the first lens, so we rewrite the lens equation as follows

ζ = z − 1

(z)
n−1

2 (z̄)
n+1

2
− γm+1

(z − s)
m−1

2 (z̄ − s)
m+1

2
(17)

the Jacobian determinant is

J =
1
4

[(
2 +

n − 1

z
n+1

2 z̄
n+1

2
+

(m − 1)γm+1

(z − s)
m+1

2 (z̄ − s)
m+1

2

)2

−
(

n + 1

z
n+3

2 z̄
n−1

2
+

(m + 1)γm+1

(z − s)
m+3

2 (z̄ − s)
m−1

2

)(
n + 1

z
n−1

2 z̄
n+3

2
+

(m + 1)γm+1

(z − s)
m+1

2 (z̄ − s)
m+3

2

)] (18)

and
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∂J
∂z

=
1
4

{
1
2

[(
n + 1

z
n+3

2 z̄
n+1

2
+

(m + 1)γm+1

(z − s)
m+3

2 (z̄ − s)
m−1

2

)(
n2 − 1

z
n+1

2 z̄
n+3

2
+

(
m2 − 1

)
γm+1

(z − s)
m+1

2 (z̄ − s)
m+3

2

)
+

(
(n + 1)(n + 3)

z
n+5

2 z̄
n−1

2
+

(m + 1)(m + 3)γm+1

(z − s)
m+5

2 (z̄ − s)
m−1

2

)(
n + 1

z
n−1
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n+3

2
+
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(z − s)
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2
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−
(

2 +
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z
n+1
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n+1

2
+
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2

)(
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z
n+3
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+
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)
γm+1

(z − s)
m+3

2 (z̄ − s)
m+1

2

)}
(19)

Here we show the analytical procedure to find out sIW ; the other transition, sCI , is only
found numerically.

We require z = z̄ because the beak-to-beak singularity for the intermediate-wide transition occurs
along the line that joins the two lenses, and we introduce two variables

y1 =
(s − z)m+1

zn+1 , y2 =
(s − z)m+2

zn+2 (20)

we replace y1 in Equation (18), we solve and we get

y1 =
zn+1 − 1

γm+1 , (21)

we substitute y2 in Equation (19), we solve and we find

y2 =
n + 1

(m + 1)γm+1 . (22)

We use Equations (21) and (22) in Equation (20), we find two new equations and by a combination
of them we get a complicated expression for z

γ
m+1
n+2

(
1 + γ

n+1
n+2

)m+1
[

z +
(

m+1
n+1

) 1
m+2

γ
m+1
m+2 z

n+2
m+2

]n−m

[
z +
(

m+1
n+1

) 1
m+2

γ
m+1
m+2 z

n+2
m+2

]n+1

−
(

1 + γ
n+1
n+2

)n+1
= 1 (23)

that we can solve only numerically. We call this numerical solution zIW . Finally we get the value of the
intermediate-wide transition for general n and m

sIW = zIW +

(
γm+1zn+2

IW
m + 1
n + 1

) 1
m+2

. (24)

In Figure 17, upper panel, we plot the cases with fixed n = 1 and variable m (upper curves).
The close-intermediate transition sCI is found numerically (lower curves). We can see that the value
of sIW increases with γ and that the transition occurs earlier for greater values of m. The value of sCI
has a different behavior: first it decreases with increasing γ, with a minimum around γ = 0.5, and
then it starts to grow up again. Also in this case the transition occurs earlier for greater values of m.
We remind the reader that we are working in units of the Einstein radius of the first lens.

For the reversed binary case, in Figure 17, lower panel, we plot the cases with fixed m = 1 and
vary n. We can see that the value of sIW increases with γ similarly to the case with fixed m. For sCI
all curves are very closely packed and have a minimum for a value of γ that depends on the specific
choice of n. In particular, for γ =

√
0.1, corresponding to the situation in Figure 15, the transition

occurs for n = 1 at smaller separation than for all other curves.
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s
s

Figure 17. Critical values of the separation for the intermediate-wide transition sIW as a function of γ

(upper curves); critical values of the separation for the close-intermediate transition sCI as a function
of γ (lower curves). The upper panel is for n = 1 and variable m; the lower panel is for m = 1 and
variable n.

5. Analytical Approximations

In order to remark the differences with the Schwarzschild case n = m = 1 and to have a deeper
understanding in the caustics evolution, we now want to explore the analytical approximations
obtained for the most general case, varying both n and m. In particular, we investigated the wide
binary regime and the very small γ regime, but we were not able to get analytical results for the close
binary regime. The main difficulty comes from the fact that the starting point of the expansion would
have the two lenses coinciding in the origin, but the resulting Einstein radius can only be calculated
numerically. Therefore, even the zero order is not analytic.

5.1. Wide Binary

Let us consider the wide binary regime with s >> 1: the case in which an isolated object is
perturbed by another one at a distance much greater than the Einstein radius θE.

We can set the origin of our system in the first lens (zA = 0 and zB = s), so we can use the same
lens equation written in Equation (17) and the Jacobian determinant in Equation (18).

The perturbing object deforms the circular critical curve of the main object with radius ρ and we
can find out this deformation δ through a perturbative approach.

We set

z = ρ(1 + δ)eiθ (25)
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and we substitute in J. In our case ρ = 1 (because for s → ∞ the radius of the critical curves is the
Einstein radius, which, in our case, is θE,A = 1), and take δ = O(1/sm+1). We perform a power series
expansion for J about the zero point with respect to 1/s at first order. Then, we solve J = 0 and find
the correction to the critical curve

δ =
γm+1[1 − m + (m + 1) cos(2θ)]

2(n + 1)sm+1 (26)

Now we put Equation (25) in Equation (17) and we expand around zero with respect to 1/s at
first order, and we take the real and the imaginary parts

Re[ζ(θ)] =
γm+1

sm +
(m + 1)γm+1 cos3(θ)

sm+1 (27)

Im[ζ(θ)] = − (m + 1)γm+1 sin3(θ)

sm+1 (28)

The real part contains the shift γm+1

sm of the caustic toward the direction of perturbing object as we
can see in Figures 1, 7, and 12.

The other term, cos3(θ) + i sin3(θ), describes the shape of the caustic (the 4-cusps astroid) that
remains unchanged by varying m. The coefficient γm+1 (m+1)

sm+1 gives the size of the caustic.
In these approximations the next-to-leading order is given by a term O(1/s2(m+1)). So, for any

values of m the relative importance of these neglected corrections to the analytic caustics of
Equations (27) and (28) is 1/sm+1, which means that for s = 10 and m = 1 we get a 1% error, while for
m = 0 we get a 10% error. In fact, caustics with m = 0 are more heavily affected by tidal fields.

5.2. Extremely Unequal-Strength Ratio Limit

Now we study the caustic evolution in the extreme limit θE,B << θE,A for the close and wide
separations. We remind that, in the case of two Schwarzschild objects (n = m = 1) this is the so-called
“planetary” limit.

5.2.1. Central Caustic

We put the origin of our system in the first lens (zA = 0), the perturbing object is at zB = −s and
we rewrite the lens equation as follows

ζ = z − 1

(z)
n−1

2 (z̄)
n+1

2
− γm+1

(z + s)
m−1

2 (z̄ + s)
m+1

2
. (29)

The Jacobian determinant is

J =
1
4

[(
2 +

n − 1

z
n+1

2 z̄
n+1

2
+

(m − 1)γm+1

(z + s)
m+1

2 (z̄ + s)
m+1

2

)2

−
(

n + 1

z
n+3

2 z̄
n−1

2
+

(m + 1)γm+1

(z + s)
m+3

2 (z̄ + s)
m−1

2

)(
n + 1

z
n−1

2 z̄
n+3

2
+

(m + 1)γm+1

(z + s)
m+1

2 (z̄ + s)
m+3

2

)] (30)

For the critical curve of the main lens, we use the parameterization in J

z = (1 + δ)eiθ (31)

where δ = O(γm+1).
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We expand around zero with respect to γm+1 to first order, solve J = 0 and we find the correction
of the circular critical curve

δ =
2 + 4s cos θ + s2[(m + 1) cos(2θ)− m + 1]

2(n + 1) (1 + 2s cos θ + s2)
m+3

2
γm+1. (32)

We can substitute this δ in Equation (29) and obtain the caustic. Since it is not a simple expression,
we omit it here.

In order to find the size of the caustic, we evaluate it for θ = 0 and θ = π. We have

Δζ = ζ(0)− ζ(π) = sγm+1
[

1
(s − 1)m+1 − 1

(s + 1)m+1

]
(33)

and this is the distance between the left and the right cusp.
We also find that the caustic is invariant under the transformation

s → 1
s

, γm+1 → γm+1

sm−1 . (34)

which expresses the duality of the close-wide regimes in our mixed binary framework.

5.2.2. Caustics of the Perturbing Object

We put the origin of our system in the second lens so that zA = −s and zB = 0 and the lens
equation becomes

ζ = z − 1

(z + s)
n−1

2 (z̄ + s)
n+1

2
− γm+1

z
m−1

2 z̄
m+1

2
(35)

we rewrite the Jacobian determinant as follows

J =
1
4

[(
2 +

n − 1

(z + s)
n+1

2 (z̄ + s)
n+1

2
+

(m − 1)γm+1

(z)
m+1

2 (z̄)
m+1

2

)2

−
(

n + 1

(z + s)
n+3

2 (z̄ + s)
n−1

2
+

(m + 1)γm+1

z
m+3

2 z̄
m−1

2

)(
n + 1

(z + s)
n−1

2 (z̄ + s)
n+3

2
+

(m + 1)γm+1

z
m+1

2 z̄
m+3

2

)] (36)

and we introduce a new expression for z

z = ρ
1

m+1 γeiθ . (37)

We substitute in Equation (36) and we expand with respect to γm+1, around zero at zero order
and the Jacobian determinant becomes

(ρ − 1)(ρ + m)

ρ2 +
(n − 1)(m + 2ρ − 1)− (m + 1)(n + 1) cos(2θ)

2ρs2 − n
s2n+2 = 0 (38)

Then we solve Equation (38), J = 0, with respect to ρ and we find two solutions

ρ± =
(m − 1){sn+1[(1 − n) + (m + 1)(n + 1) cos(2θ)− 2sn+1]±√

Δ}
4 (sn+1 − 1) (sn+1 + n)

(39)

Δ = s2n+2{
[
(m − 1)(2sn+1 + n − 1)− (m + 1)(n + 1) cos(2θ)

]2
+ 16m(sn+1 − 1)(sn+1 + n)} (40)

We have two scenarios: for external objects (when the secondary lens is outside the Einstein
ring of the main lens, s > 1) the critical curves are elongated rings, see Figure 12; for internal objects
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(when the secondary lens is inside the critical curve of the main lens, s < 1) it generates two specular
ovals, see Figure 16.

In order to get the caustics we put our solutions in the lens equation and we get, at first order:

ζ = γρ
1

m+1

[
eiθ
(

n − 1
2sn+1 − 1

ρ
+ 1
)
+

e−iθ(n + 1)
2sn+1

]
− 1

sn (41)

From Equation (41) we can get all the information for the size and for the displacement of the
secondary caustic from the central one.

The displacement along the axis that joins the two lenses is the middle point [ζ(0) + ζ(π)]/2 and
in our case is

ζcenter = s − 1
sn . (42)

because the origin of our system is in the second lens.
Now we want to find out the size of the caustics in the close and wide separation.
For the wide case we have an extension of the caustics in the parallel direction (with respect to

the lens axis), given by [ζ(0)− ζ(π)]

Δζ||,wide = 2(n + 1)
γ

s
m(n+1)

m+1 (sn+1 − 1)
1

m+1

(43)

and in the vertical direction, orthogonal to lens axis, [ζ(−π/2)− ζ(π/2)]:

Δζ⊥,wide = 2(n + 1)
γ

s
m(n+1)

m+1 (sn+1 + n)
1

m+1

(44)

In Figure 18, upper panel, we show the size of the caustic for three different fixed n = 0.5, 1, 2 with
variable m. Keeping γ and s fixed, the size is almost independent of m, as can be seen by neglecting n
in the sum in the denominator of Equation (43).

In the close regime, in order to find the position of the central caustic, we evaluate the lens
equation in ρ± for θ = ±π/2 and we need to distinguish the case mn > 1 from the case mn < 1
changing the sign after taking the square root.

We put θ = π/2 and ρ+ in Equation (41), we take the imaginary part and we find

Im
[
ζ+(π/2)

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(m + 1)γ

[
(1−sn+1)

msn+1

] m
m+1

, if mn < 1

(n + 1)γ
[

1
sm(n+1)(n+sn+1)

] 1
m+1

, if mn > 1

(45)

In order to find the position of the two secondary caustics we need to calculate ζ(π/2) with ρ−,
then we take the imaginary part and we find

Im
[
ζ−(π/2)

]
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(n + 1)γ

[
1

sm(n+1)(n+sn+1)

] 1
m+1

, if mn < 1

(m + 1)γ
[
(1−sn+1)

msn+1

] m
m+1

, if mn > 1

(46)

The measure of the transverse size of the secondary caustics is the difference between the last two
formulas, Im

[
ζ+(π/2)

]
− Im

[
ζ−(π/2)

]
and we plot the result in Figure 18, lower panel, for s = 0.6,

γ = 0.01, for three different fixed n = 0.5, 1, 2, with variable m.
We can see that the size increases with m and n, coherently with what is found in [58], where

large values of m and n produce giant triangular caustics in the close regime. We finally stress that,
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for mn < 1, and so for n = 0.5 especially (green line), the two branches exchange role because of the
elliptic umbilic catastrophe. Then, we must change the sign in our formula for the size.

In these approximations the error is given by a term O(γ2), which means a 1% error for the case
γ = 0.01 examined in our plots.

Figure 18. Upper panel: size of the caustic in the wide case for s = 4, γ = 0.01, for three different fixed
n = 0.5, 1, 2, with variable m. Lower panel: size of the caustic in the close case for s = 0.6, γ = 0.01,
for three different fixed n = 0.5, 1, 2, with variable m.

6. Conclusions

In this paper we have generalized our previous study of binary lenses with 1/rn potential [58],
by extending it to the case of mixed binaries. Of course the mathematics of this general case is
interesting from several points of view, since many earlier results are put in a more general context.
However, this case is also important from the astrophysical point of view. In fact, we now have the
critical curves and caustics of pairs of galaxies with different halos, or we may apply our results to
cases in which one object is made up of exotic matter and the other one is a normal star. For direct
applications of our results to astrophysical objects, we remind that all plots are in units of the Einstein
radius of the first lens. This can be calculated by standard formulae for any specific lens models.

Our figures, together with those of [58] may be considered as a complete atlas of critical curves
and caustics in binary lensing by 1/rn potentials. We studied different limits in which the stronger
(weaker) lens has a steeper (gentler) potential in all three topology regimes.

We have shown that an elliptic umbilic catastrophe exists for mn < 1 and calculated its position.
We have also described the pseudocaustic in the m = 0 limit. We have calculated the boundaries of the
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three topology regimes and provided analytic approximations for the wide binary and the extremely
small-strength secondary lens.

With respect to the m = n binary lens case, we note that for large m we still have large secondary
triangular caustics, but they are not as giant as those in [58]. In fact, the presence of a more standard
lens in the system mitigates the behavior at large distances and pushes back these caustics to more
normal sizes. Indeed, these structures are quite sensitive to the parameters of the lens.

This fact helps us recall that the mixed binary lens described here is still obtained by the linear
superposition of the potentials of two isolated objects. This is physically relevant whenever we can
neglect the non-linear terms in Einstein equations. Even when this is not possible, our results may
serve as a basis for more accurate calculations.
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Bintley, D.; et al. [Event Horizon Telescope Collaboration]. First M87 Event Horizon Telescope Results. IV.
Imaging the Central Supermassive Black Hole. Astrophys. J. 2019, 875, L1.

61. Tsukamoto N.; Kokubu, T. High energy particle collisions in static, spherically symmetric black-hole-like
wormholes. Phys. Rev. D 2020, 101, 044030. [CrossRef]

62. Damour, T.; Solodukhin, S.N. Wormholes as black hole foils. Phys. Rev. D 2007, 76, 024016. [CrossRef]
63. Shin, E.M.; Evans, N.W. Lensing by binary galaxies modelled as isothermal spheres. Mon. Not. R. Astron. Soc.

2008, 390, 505. [CrossRef]
64. Kovner, I. The Quadrupole Gravitational Lens. Astrophys. J. 1987, 312, 22. [CrossRef]
65. Evans, N.W.; Wilkinson, M. Lens Models with Density Cusps. Mon. Not. R. Astron. Soc. 1998, 296, 800.

[CrossRef]
66. Rhie, S.H. Elliptically Symmetric Lenses and Violation of Burke’s Theorem. arXiv 2010, arXiv:1006.0782.
67. Wang, Y.; Turner, E.L. Caustics, critical curves and cross-sections for gravitational lensing by disc galaxies.

Mon. Not. R. Astron. Soc. 1997, 292, 863. [CrossRef]
68. Tessore, N.; Metcalf, R.B. The elliptical power law profile lens. Astron. Astrophys. 2015, 580, A79. [CrossRef]
69. Lake, E.; Zheng, Z. Gravitational lensing by ring-like structures. Mon. Not. R. Astron. Soc. 2016, 465,

2018–2032. [CrossRef]
70. Aazami, A.; Keeton, C.; Petters, A. Magnification Cross Sections for the Elliptic Umbilic Caustic Surface.

Universe 2019, 5, 161. [CrossRef]
71. Witt, H.J. Investigation of high amplification events in light curves of gravitationally lensed quasars.

Astron. Astrophys. 1990, 236, 311.
72. Schneider, P.; Weiss, A. The two-point-mass lens-Detailed investigation of a special asymmetric gravitational

lens. Astron. Astrophys. 1986, 164, 237.
73. Erdl, H.; Schneider, P. Classification of the multiple deflection two point-mass gravitational lens models and

application of catastrophe theory in lensing. Astron. Astrophys. 1993, 268, 453.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

30



universe

Review

The Effects of Finite Distance on the Gravitational
Deflection Angle of Light

Toshiaki Ono and Hideki Asada *

Graduate School of Science and Technology, Hirosaki University, Aomori 036-8561, Japan;
ono@tap.st.hirosaki-u.ac.jp
* Correspondence: asada@hirosaki-u.ac.jp

Received: 19 July 2019; Accepted: 21 October 2019; Published: 1 November 2019

Abstract: In order to clarify the effects of the finite distance from a lens object to a light source and a
receiver, the gravitational deflection of light has been recently reexamined by using the Gauss–Bonnet
(GB) theorem in differential geometry (Ishihara et al. 2016). The purpose of the present paper is to
give a short review of a series of works initiated by the above paper. First, we provide the definition
of the gravitational deflection angle of light for the finite-distance source and receiver in a static,
spherically symmetric and asymptotically flat spacetime. We discuss the geometrical invariance of
the definition by using the GB theorem. The present definition is used to discuss finite-distance effects
on the light deflection in Schwarzschild spacetime for both the cases of weak deflection and strong
deflection. Next, we extend the definition to stationary and axisymmetric spacetimes. We compute
finite-distance effects on the deflection angle of light for Kerr black holes and rotating Teo wormholes.
Our results are consistent with the previous works if we take the infinite-distance limit. We briefly
mention also the finite-distance effects on the light deflection by Sagittarius A∗.

Keywords: gravitational lens; general relativity; black hole; wormhole

1. Introduction

In 1919, the experimental confirmation of the theory of general relativity [1] succeeded [2]. It is
the measurement of the gravitational deflection angle of light. Since then, the gravitational deflection
angle of light has attracted a lot of attention. Many authors have studied the gravitational deflection of
light by black holes [3–16]. The gravitational lens by other objects such as wormholes and gravitational
monopoles also has attracted a lot of interest [17–30]. Very recently, the Event Horizon Telescope (EHT)
team has reported a direct image of the inner edge of the hot matter around the black hole candidate at
the center of M87 galaxy [31–36]. The direct imaging of black hole shadows must again and steeply
raise the importance of the gravitational deflection of light.

Most of those calculations are based on the coordinate angle. The angle respects the rotational
symmetry of the spacetime. Gibbons and Werner (2008) made an attempt at defining, in a more
geometrical manner, the deflection angle of light [37]. In their paper, the source and receiver are
needed to be located at an asymptotic Minkowskian region. The Gauss–Bonnet theorem was applied
to a spatial domain by introducing the optical metric, for which a light ray is expressed as a spatial
geodesic curve. Ishihara et al. have successfully extended Gibbons and Werner’s idea such that the
source and receiver can be at a finite distance from the lens object [38]. They extend the earlier work to
the case of the strong deflection limit, in which the winding number of the photon orbits may be larger
than unity [39]. In particular, the asymptotic receiver and source are not needed. Arakida [40] made
an attempt to apply the Gauss–Bonnet theorem to quadrilaterals that are not extending to infinity and
proposed a new definition of the deflection angle of light, though a comparison between two different
manifolds that he proposed is an open issue. Proposing an alternative definition of the deflection
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angle of light, Crisnejo et al. [41] has recently made a comparison between the alternative definitions in
References [38–40] and showed by explicit calculations that the definition by Arakida in Reference [40]
is different from that by Ishihara et al. [38,39]. Their definition has been applied to study gravitational
lensing with a plasma medium [41].

The earlier works [38,39] are restricted within the spherical symmetry. Ono et al. have extended
the Gauss–Bonnet method with the optical metric to axisymmetric spacetimes [42]. This extension
includes mathematical quantities and calculations, with which most physicists are not very familiar.
Therefore, the purpose of this paper provides a review of the series of papers on the gravitational
deflection of light for finite-distance sources and receivers. In particular, we hope that the detailed
calculations in this paper will be helpful for readers to compute the gravitational deflection of
light by the new powerful method. For instance, this new technique has been used to study the
gravitational lensing in rotating Teo wormholes [43] and also in Damour–Solodukhin wormholes [44].
This formulation has been successfully used to clarify the deflection of light in a rotating global
monopole spacetime with a deficit angle [45].

This paper is organized as follows. Section 2 discusses the definition of the gravitational deflection
angle of light in static and spherically symmetric spacetimes. Section 3 considers the weak deflection
of light in Schwarzschild spacetime. Section 4 discusses the weak deflection of light in the Kottler
spacetime and the Weyl conformal gravity model. The strong deflection of light is examined in Section 5.
Sagittarius A∗ (Sgr A∗) is also discussed as an example for possible candidates. In Section 6, we discuss
the strong deflection of light with finite-distance corrections in Schwarzschild spacetime. Section 7
proposes the definition of the gravitational deflection angle of light in stationary and axisymmetric
spacetimes. Sgr A∗ is also discussed. The weak deflection of light is discussed for Kerr spacetime
in Section 8 and for rotating Teo wormholes in Section 9. Section 10 is a summary of this paper.
Appendix A provides the detailed calculations for the Kerr spacetime. Throughout this paper, we use
the unit of G = c = 1 and the observer may be called the receiver in order to avoid confusion between
rO and r0 by using rR.

2. Definition of the Gravitational Deflection Angle of Light: Static and Spherically
Symmetric Spacetimes

Notation

Following Ishihara et al. [38], this section begins by considering a static and spherically symmetric
(SSS) spacetime. The metric of this spacetime can be written as:

ds2 = gμνdxμdxν

= −A(r)dt2 + B(r)dr2 + r2dΩ2, (1)

where dΩ2 ≡ dθ2 + sin2 θdφ2 and t, θ, and φ are associated with the symmetries of the SSS spacetime.
For a metric of the form in Equation (1), we always have to restrict to the domain where A(r) and B(r)
are positive such that a static emitter and a static receiver can exist. The spacetime has a spherical
symmetry. Therefore, the photon orbital plane is chosen without loss of generality as the equatorial
plane (θ = π/2). We follow the usual definition of the impact parameter of the light ray as:

b ≡ L
E

=
r2

A(r)
dφ

dt
. (2)

From ds2 = 0 for the light ray, the orbit Equation is derived as:

(
dr
dφ

)2
+

r2

B(r)
=

r4

b2 A(r)B(r)
. (3)
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Light rays are described by the null condition ds2 = 0, which is solved for dt2 as:

dt2 = γI JdxIdxJ

=
B(r)
A(r)

dr2 +
r2

A(r)
dφ2, (4)

where I and J denote 1 and 2 and we used Equation (1). We refer to γI J as the optical metric. The optical
metric can be used to describe a two-dimensional Riemannian space. This Riemannian space is denoted
as Mopt. The light ray is a spatial geodetic curve in Mopt.

In the optical metric space Mopt, let Ψ denote the angle between the light propagation direction
and the radial direction. A straightforward calculation gives:

cos Ψ =
b
√

A(r)B(r)
r2

dr
dφ

. (5)

This is rewritten as:

sin Ψ =
b
√

A(r)
r

, (6)

where we used Equation (3).
We denote ΨR and ΨS as the directional angles of light propagation. ΨR and ΨS are measured

at the receiver position (R) and the source position (S), respectively. We denote φRS ≡ φR − φS as
the coordinate separation angle between the receiver and source. By using angles ΨR, ΨS, and φRS,
we define the following:

α ≡ ΨR − ΨS + φRS. (7)

This is a basic tool that was invented in Reference [38]. In the following, we shall prove that the
definition by Equation (7) is geometrically invariant [38,39].

Here, we briefly mention the Gauss–Bonnet theorem. T is a two-dimensional orientable surface.
Differentiable curves ∂Ta (a = 1, 2, · · · , N) are its boundaries. Please see Figure 1 for the orientable
surface. We denote the jump angles between the curves as θa (a = 1, 2, · · · , N). The Gauss–Bonnet
theorem is as follows [46]:

∫∫
T

KdS +
N

∑
a=1

∫
∂Ta

κgd�+
N

∑
a=1

θa = 2π, (8)

where � means the line element of the boundary curve, dS denotes the area element of the surface, K
means the Gaussian curvature of the surface T, and κg is the geodesic curvature of ∂Ta. The sign of �
is chosen to be consistent with the surface orientation.

Suppose a quadrilateral ∞
R �∞

S . Please see Figure 2 for this. This is made of four lines: (1) the
spatial curve for the light ray, (2, 3) two outgoing radial lines from R and from S, and (4) a circular
arc segment Cr that is centered at the lens with the coordinate radius rC (rC → ∞) and intersects the
radial lines at the receiver or the source. We restrict ourselves within the asymptotically flat spacetime.
Then, κg → 1/rC and d� → rCdφ as rC → ∞ (See, e.g., Reference [37]). By using them, we find∫

Cr
κgd� → φRS. Applying this result to the Gauss–Bonnet theorem for ∞

R �∞
S , we obtain:

α = ΨR − ΨS + φRS

= −
∫∫

∞
R �∞

S

KdS. (9)

Therefore, α is shown to be invariant for transformations of the spatial coordinates. In addition,
α is well defined even when L is a singular point. This is because the point L does not appear in the
surface integral nor in the line integral. Furthermore, α vanishes in Euclidean space. This means α is a
measure of the deviation from the flat space.
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Figure 1. Gauss–Bonnet theorem: We consider a closed curve in a surface.

Figure 2. ∞
R �∞

S is a quadrilateral embedded in a curved space.

Here, we explain that α defined in Equation (7) is observable in principle. For simplicity, let us
imagine the following ideal situation. The positions of a source and a receiver are known. For instance,
we assume that the lens object is the Sun, the receiver is located at the Earth, and the source is a pulsar
which radiates radio signals with a constant period in an anisotropic manner. In particular, we assume
that the source is one of the known pulsars of which the spin period and pulse signal behaviors such
as pulse profiles are well understood. By very accurate radio observations such as Very Long Baseline
Interferometry (VLBI), the relative positions of the Earth, Sun, and the pulsar can be determined from
the ephemeris. (1) From this, we can know φRS in principle. (2) We can directly measure the angle ΨR
at the Earth between the solar direction and the pulsar direction. (3) More importantly, the direction of
radiating pulses that reaches the receiver can be also determined in principle because the viewing angle
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of the pulsar seen by the receiver is known from the pulse profiles. The viewing angle is changing with
time because of the Earth’s motion around the Sun. By using the pulsar position and the pulse radiation
direction, we can determine ΨS. Please see Figure 3 for this situation. We explain in more detail how
ΨS at S can be measured by the observer at R. We consider a pulsar of which the spin axis is known
from some astronomical observations. A point is that the spin axis of an isolated pulsar is constant
with time. The pulse shape and profile depend on the viewing angle with respect to the spin axis of the
pulsar. The Earth moves around the Sun, and hence, the observer sees the same pulsar with different
viewing angles with time. Accordingly, the observed pulse shape changes. By observing such a change
in the pulse shape, we can in principle determine the intrinsic direction of the radio emission, namely
the angle between the spin axis and the direction of the emitted light to the observer. In addition, we
can know the intrinsic position (including the radial direction from the lens) of such a known pulsar
from the ephemeris. By using the intrinsic position (its radial direction) and emission direction at S,
ΨS can be determined in principle, though it is very difficult with current technology. As a result, we
can determine in principle ΨR − ΨS + φRS from astronomical observations. Namely, α in Equation (7)
is observable. Note that this procedure does not need to assume a different spacetime, while such a
fiducial spacetime was assumed by Arakida (2018) [40], though the receiver in our universe cannot
observe the fiducial different spacetime but can assume (or make theoretical calculations of) some
quantities on the different spacetime.

Sun
(Lens)

Pulsar
(Source)

Earth
(Receiver)

Viewing angle

Figure 3. Observable α in Equation (7): In this schematic figure, the lens, receiver, and source are
respectively the Sun, the Earth, and a pulsar that periodically radiates radio signals in a specific
anistropic manner. From the pulse profile, we can determine the radiation direction at the source.
By using the ephemeris, we know the relative positions of the Sun, Earth, and the pulsar. Hence, we can
determine φRS and ΨS. By observing the pulsar, we can measure ΨR. In principle, therefore, we can
determine ΨR − ΨS + φRS from these astronomical observations.

One can easily see that, in the far limit of the source and the receiver, Equation (9) agrees with the
deflection angle of light as:

α∞ = 2
∫ u0

0

du√
F(u)

− π. (10)

Here, we define u and u0 as as the inverse of r and the inverse of the closest approach (often
denoted as r0), respectively. F(u) is defined as:

F(u) ≡
(

du
dφ

)2
. (11)

35



Universe 2019, 5, 218

F(u) can be computed by using Equation (3).
The present paper wishes to avoid the far limit for the following reason. Every observed star and

galaxy is never located at infinite distance from us. For instance, we observe finite-redshift galaxies
in cosmology. We cannot see objects at infinite redshift (exactly at the horizon). Except for a few rare
cases in astronomy, the distance to the light source is much larger than the size of the lens. Therefore,
we find a strong motivation for studying a situation in which the distance from the source to the
receiver is finite. We define uR and uS as the inverse of rR and rS, respectively, where rR and rS are
finite. Equation (7) is rewritten in an explicit form as [38,39]:

α =
∫ u0

uR

du√
F(u)

+
∫ u0

uS

du√
F(u)

+ ΨR − ΨS. (12)

Here, we assume light rays that have only one local minimum of the radius coordinate between
rS and rR. This is valid for normal situations in astronomy. However, we should note that multiple
local minima are possible, e.g., if the emitter or the receiver (or both) are between the horizon and the
light sphere in the Schwarzschild spacetime or if the emitter and receiver are at different sides of the
throat of a wormhole spacetime. For such a case of multiple local minima, Equation (12) has to be
modified because it assumes only the local minimum at u = u0.

3. Weak Deflection of Light in Schwarzschild Spacetime

In this section, we consider the weak deflection of light in Schwarzschild spacetime, for which the
line element becomes:

ds2 = −
(

1 − rg

r

)
dt2 +

dr2

1 − rg

r
+r2(dθ2 + sin2 θdφ2), (13)

where rg = 2M in the geometrical unit. Then, F(u) is:

F(u) =
1
b2 − u2 + rgu3. (14)

By using Equation (6), ΨR − ΨS in the Schwarzschild spacetime is expanded as:

ΨSch
R − ΨSch

S ≡ [arcsin(buR) + arcsin(buS)− π]

−1
2

brg

⎛
⎝ u2

R√
1 − b2u2

R

+
u2

S√
1 − b2u2

S

⎞
⎠+ O(br2

gu3
S, br2

gu3
R). (15)

Note that ΨR − ΨS → π in the Schwarzschild spacetime as uS → 0 and uR → 0.

4. Other Examples

This section discusses two examples for a non-asymptotically flat spacetime. One is the Kottler
solution to the Einstein Equation. The other is an exact solution in the Weyl conformal gravity. The aim
of this study is to give us a suggestion or a speculation. We note that the present formulation is limited
within the asymptotic flatness, rigorously speaking. As mentioned in the Introduction, Arakida [40]
made an attempt to apply the Gauss–Bonnet theorem to quadrilaterals that are not extending to infinity,
though a comparison between two different manifolds that he proposed is an open issue. A more
careful study that gives a justification for this speculation or perhaps disproves it will be left for
the future.
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In this section, we do not assume the source at the past null infinity (rS → ∞) or the receiver
at the future null infinity (rR → ∞) because A(r) diverges or does not exist as r → ∞. We keep
in mind that the source and receiver are located at finite distances from the lens object. Therefore,
we use Equation (12). As mentioned already, Equation (6) is more useful in calculating ΨR and ΨS
than Equation (5) because Equation (6) requires only the local quantities but not any differentiation.
By straightforward calculations, we obtain the following results for the above two models.

4.1. Kottler Solution

We consider the Kottler solution [47]. This solution is written as:

ds2 = −
(

1 − 2M
r

− Λ
3

r2
)

dt2 +
dr2

1 − 2M
r

− Λ
3

r2

+r2(dθ2 + sin2 θdφ2), (16)

where the cosmological constant is denoted by Λ.
We use Equation (6) such that ΨR − ΨS can be expanded in terms of 2M and Λ as:

ΨR − ΨS = ΨSch
R − ΨSch

S − bΛ

6uR

√
1 − b2u2

R

− bΛ

6uS

√
1 − b2u2

S

+
buR(−1 + 2b2u2

R)

8(1 − b2u2
R)

3/2

(
4M2u2

R +
4MΛ
3uR

+
Λ2

9u4
R

)

+
buS(−1 + 2b2u2

S)

8(1 − b2u2
S)

3/2

(
4M2u2

S +
4MΛ
3uS

+
Λ2

9u4
S

)

+ O(M3, M2Λ, MΛ2, Λ3). (17)

Here, ΨSch
R − ΨSch

S is a pair of the terms that appear also in a case of the Schwarzschild spacetime.
The above expansion of ΨR − ΨS has a divergent term in the limit as uS → 0 and uR → 0. The reason
for this divergent behavior is that the spacetime is not asymptotically flat and, therefore, the limit of
uS → 0 and uR → 0 is no longer allowed. Hence, the power series in Equation (17) is mathematically
valid only within a convergence radius.

For the Kottler spacetime, F(u) becomes:

F(u) =
1
b2 − u2 + rgu3 +

Λ
3

. (18)

We obtain:

φRS =π − arcsin(buR)− arcsin(buS)

+
rg

b

⎡
⎣ 1√

1 − b2u2
R

(
1 − 1

2
b2u2

R

)
+

1√
1 − b2u2

S

(
1 − 1

2
b2u2

S

)⎤⎦

+
Λb3

6

⎡
⎣ uR√

1 − b2u2
R

+
uS√

1 − b2u2
S

⎤
⎦+

rgΛb
12

[
2 − 3b2u2

R

(1 − b2u2
R)

3
2
+

2 − 3b2u2
S

(1 − b2u2
S)

3
2

]
+ O(r2

g, Λ2). (19)
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By using Equations (17) and (19), α is obtained as:

α =
rg

b

[√
1 − b2u2

R +
√

1 − b2u2
S

]

− Λb
6

⎡
⎣
√

1 − b2u2
R

uR
+

√
1 − b2u2

S

uS

⎤
⎦

+
rgΛb

12

⎡
⎣ 1√

1 − b2u2
R

+
1√

1 − b2u2
S

⎤
⎦+ O(r2

g, Λ2). (20)

This Equation has several divergent terms as buR → 0 and buS → 0. The apparent divergent is
problematic only in the case that the source or receiver is located at the horizon. In other words, all the
terms in Equation (20) are finite and, thus, harmless for astronomical situations.

4.2. Weyl Conformal Gravity Case

Next, we consider the Weyl conformal gravity model. This theory was originally suggested by
Bach [48]. The SSS solution in this model is expressed by introducing three new parameters that are
often denoted as β, γ, and k. For this generalized solution in conformal gravity, Birkhoff’s theorem still
holds [49]. The SSS solution in the Weyl gravity model is [50]:

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2(dθ2 + sin2 θdφ2),

A(r) = 1 − 3mγ − 2m
r

+ γr − kr2. (21)

Here, m ≡ β(2 − 3βγ)/2. kr2 in the metric plays the same role as the cosmological constant in
the Kottler spacetime that has been studied above. Therefore, we omit the r2 term for simplifying
our analysis.

By using Equation (6), we expand ΨR − ΨS in β and γ. The result is:

ΨR − ΨS ≡ΨSch
R − ΨSch

S

+
bγ

2

⎛
⎝ uR√

1 − b2u2
R

+
uS√

1 − b2u2
S

⎞
⎠

− mγ

2

[
buR(2 − b2u2

R)

(1 − b2u2
R)

3/2
+

buS(2 − b2u2
S)

(1 − b2u2
S)

3/2

]
+ O(m2, γ2). (22)

We should note that this expansion of ΨR − ΨS is divergent as uS → 0 and uR → 0. This
divergent behavior is not so problematic because the limit of uS → 0 and uR → 0 is not allowed in
this spacetime. Hence, we note that, rigorously speaking, Equation (22) is mathematically valid only
within a convergence radius.

For the present case omitting k, we obtain:

F(u) =
1
b2 − u2 + 2mu3 + γu2 − γu. (23)

38



Universe 2019, 5, 218

φRS is computed as:

φRS =[π − arcsin(buR)− arcsin(buS)]

+
m
b

⎛
⎝ 2 − b2u2

R√
1 − b2u2

R

+
2 − b2u2

S√
1 − b2u2

S

⎞
⎠

− γ

2

⎛
⎝ b√

1 − b2u2
R

+
b√

1 − b2u2
R

⎞
⎠

+
mγ

2

[
b3u3

R
(1 − b2u2

R)
3/2

+
b3u3

S
(1 − b2u2

S)
3/2

]
+ O(m2, γ2). (24)

Consequently, we obtain α as:

α =
2m
b

(√
1 − b2u2

R +
√

1 − b2u2
S

)

− mγ

⎛
⎝ buR√

1 − b2u2
R

+
buS√

1 − b2u2
S

⎞
⎠+ O(m2, γ2). (25)

The linear terms in γ cancel out each other, and they do not appear in the final expression for the
deflection angle of light. This result may suggest a correction to the results in previous papers [51–53]
that reported nonzero contributions from γ.

4.3. Far Source and Receiver

Next, we investigate a situation of a distant source and receiver from the lens object: buS  1
and buR  1. Divergent terms in the deflection angle appear in the limit as buS → 0. Therefore,
we carefully investigate the leading part in a series expansion where the infinite limit is not taken. As a
result, approximate expressions for the deflection of light are obtained as follows.

(1) Kottler model:

The expression for φRS in this approximation is the same as the seventh and eighth terms of
Equation (5) in Reference [54], the third and fifth terms of Equation (15) in Reference [55], and the
second term of Equation (14) in Reference [56]. On the other hand, they [54–56] did not take account
ΨR − ΨS. In the far approximation, Equation (20) becomes:

α ∼ 4M
b

− 1
6

Λb
(

1
uR

+
1

uS

)
+

1
3

MΛb. (26)

This expression suggestions a correction to the earlier works [54–56]. For instance, only the term
of φRS was considered in Sereno (2009).

(2) Weyl conformal gravity model:

Next, we consider the Weyl conformal gravity model. The deflection angle of light in the far
approximation is computed as:

α ∼ 4m
b

+ O(m2, γ2), (27)

where mγ parts from ΨR − ΨS and from ψRS cancel out each other. Please see also Equations (22)
and (24). For instance, Reference [57] gives the exact expression of the deflection angle for the
asymptotic receiver and source in the Kottler and Weyl conformal gravity spacetimes.
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5. Extension to the Strong Deflection of Light

In the previous sections, we considered the weak deflection of light: A light ray from the source
to the receiver is expressed by a spatial curve. The curve is simply connected. In the strong deflection
limit, on the other hand, it is possible that the spatial curve has a winding number with intersection
points. We thus divide the whole curve into segments. It is easier to investigate each simple segment.

Loops in the Photon Orbit

We begin with one loop case of the light ray curve. This case is shown by Figure 4.
First, we consider the two quadrilaterals (1) and (2) in Figure 5. They can be constructed by

introducing an auxiliary point (P) and, next, by adding auxiliary outgoing radial lines (solid line in this
figure) from the point P in quadrilaterals (1) and (2). The point P does not need to be the periastron.
The directions of the two auxiliary lines in (1) and (2) are opposite to each other. The two auxiliary lines
thus cancel out to make no contributions to α. Here, θ1 and θ2 denote the inner angle at the point P in
the quadrilateral (1) and that in the quadrilateral (2), respectively. We can see that θ1 + θ2 = π. This is
because the line from the source to the receiver is a geodesic and the point P is located in this line.

Figure 4. A one-loop case for the photon orbit in Mopt.

For a quadrilateral in Figure 5, the method in Section 2 is still applicable. By the same way of
obtaining Equation (9), we obtain:

α(1) = (π − θ1)− ΨS + φ
(1)
RS ,

α(2) = ΨR − θ2 + φ
(2)
RS . (28)

Here, φRS is divided into two parts: One is φ
(1)
RS for one quadrilateral, and the other is φ

(2)
RS for the

other quadrilateral.
If rS = rR, quadrilaterals (1) and (2) are symmetric for reflection and φ

(1)
RS = φ

(2)
RS = φRS/2. If not,

φ
(1)
RS is not the same as φ

(2)
RS . In any case, however, φ

(1)
RS + φ

(2)
RS = φRS. ΨS and (π − ΨR) are the inner

angles at S and R, respectively. Therefore:

α = α(1) + α(2)

= ΨR − ΨS + φRS, (29)

where we use θ1 + θ2 = π and φ
(1)
RS + φ

(2)
RS = φRS. This result is the same as Equation (7), though the

validity domain is different.
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Figure 5. Quadrilaterals: They are made from the photon orbit in a non-Euclidean space. See Figure 4.

Next, we investigate a case of two loops shown by Figure 6. For this case, we add lines in order to
divide the shape into four quadrilaterals as shown by Figure 7. We immediately find:

α(1) = (π − θ1)− ΨS + φ
(1)
RS ,

α(2) = (π − θ3)− θ2 + φ
(2)
RS ,

α(3) = (π − θ5)− θ4 + φ
(3)
RS ,

α(4) = ΨR − θ6 + φ
(4)
RS , (30)

where φ
(1)
RS + φ

(2)
RS + φ

(3)
RS + φ

(4)
RS = φRS. Hence, we obtain:

α = α(1) + α(2) + α(3) + α(4)

= ΨR − ΨS + φRS, (31)
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where we use θ1 + θ2 = θ3 + θ4 = θ5 + θ6 = π. Equation (31) is obtained for the two-loop case in the
same form as Equation (7). A loop does make contributions to α only through the terms of φ

(2)
RS + φ

(3)
RS .

Finally, we shall complete the proof. We consider the arbitrary winding number, say W. For this
case, we prepare 2W quadrilaterals. We denote the inner angles at finite distance from L as θ0, · · · , θ2W
in order from S to R as shown by Figure 8. Here, θ0 = ΨS and θ2W = π − ΨR. Neighboring
quadrilaterals (N) and (N+1) make the contribution to α only through φ

(N)
RS + φ

(N+1)
RS . We can

understand this by noting that θ2N−1 + θ2N = θ2N+1 + θ2N+2 = π, and the auxiliary lines cancel
out. By induction, therefore, we complete the proof; Equation (7) holds for any winding number.

Equation (7) is equivalent to Equation (12). This is shown by using the orbit Equation.
This expression is rearranged as:

α = ΨR − ΨS + φRS

= ΨR − ΨS +
∫ 0

uR

du√
F(u)

+
∫ 0

uS

du√
F(u)

+ 2
∫ u0

0

du√
F(u)

. (32)

We define the difference between the asymptotic deflection angle and the deflection angle for the
finite distance case as δα:

δα ≡ α − α∞. (33)

The meaning of this is the finite-distance correction to the deflection angle of light. By substituting
Equations (10) and (32) into Equation (33), we get:

δα = (ΨR − ΨS + π) +
∫ 0

uR

du√
F(u)

+
∫ 0

uS

du√
F(u)

. (34)

This expression implies two origins of the finite-distance corrections. One origin is ΨR and
ΨS. They are angles that are defined in a curved space. The other origin is the two path integrals.
They contain information on the curved space. If we consider a receiver and source in the weak
gravitational field (as common in astronomy), the finite-distance correction reflects only the weak field
region, even if the light ray passes through a strong field region.

Figure 6. Two loops for the light ray in Mopt.
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Figure 7. Quadrilaterals (1)–(4): They are in a non-Euclidean plane Mopt. See also Figure 6.
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Figure 8. A quadrilateral in any loop number: This case is discussed when we prove by induction that
Equation (7) holds in any loop number.

6. Strong Deflection of Light in Schwarzschild Spacetime

In this section, we consider the Schwarzschild black hole. By using F(u) given by Equation (14),
we solve Equation (32) in an analytic manner. The exact expressions involve incomplete elliptic
integrals of the first kind. When the distances from the lens to the source and the receiver are much
larger than the impact parameter of light (rS � b, rR � b) but the light ray passes near the photon
sphere (r0 ∼ 3M), Equation (32) becomes approximately:

α =
2M

b

[√
1 − b2u2

R +
√

1 − b2u2
S − 2

]

+ 2 log

(
12(2 −

√
3)r0

r0 − 3M

)
− π

+ O
(

M2

rR2 ,
M2

rS
2 , 1 − 3M

r0

)
, (35)

where we used a logarithmic term [8] in the last term of Equation (32). Here, the dominant terms
in ΨR and ΨS cancel the terms in the integrals. As a consequence, ΨR and ΨS do not appear in the
approximate expression of Equation (35).

As mentioned above, it follows that the logarithmic term by the strong gravity is free from
finite-distance corrections such as

√
1 − (buS)2. By chance, δα in the strong deflection limit

(See Equation (32)) is apparently the same as that for the weak deflection case (See, e.g., Equation (29)
in Reference [39]). Therefore, the finite-distance correction in the strong deflection limit is again:

δα ∼ O
(

Mb
rS

2 +
Mb
rR2

)
. (36)

This is the same expression as that for the weak field case (e.g., Reference [38]). Namely,
the correction is linear in the impact parameter. The finite-distance correction in the weak deflection
case (large b) is thus larger than that in the strong deflection one (small b), if the other parameters
remain the same.
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Sagittarius A∗

Next, we briefly mention an astronomical implication of the strong deflection. One of the most
feasible candidates for the strong deflection is Sagittarius ∗ (Sgr A∗) that is located at our galactic center.
In this case, the receiver distance is much larger than the impact parameter of light and a source star
may live in the bulge of our Galaxy.

The apparent size of Sgr A∗ is expected to be nearly the same as that of the central massive object
of M87. However, the finite-distance correction to Sgr A∗ becomes much larger than that to the M87
case because Sgr A∗ is much closer to us than M87.

For Sgr A∗, Equation (36) is evaluated as:

δα ∼ Mb
rS

2

∼ 10−5arcsec. ×
(

M
4 × 106M�

)(
b

3M

)(
0.1pc

rS

)2
, (37)

where the central black hole mass is assumed as M ∼ 4 × 106M� and we take the limit of strong
deflection b ∼ 3M. Rather interestingly, this correction as ∼ 10−5arcsec. will be reachable by the Event
Horizon Telescope [31–36] and near-future astronomy.

See Figure 9 for numerical estimations of the finite-distance correction by the source distance.
This figure and Equation (37) suggest that δα is ∼ ten (or more) micro arcseconds if a source star is
sufficiently close to Sgr A∗ for instance within a tenth of one parsec from Sgr A∗. For such a case,
the infinite-distance limit does not hold even though the source is still in the weak field. We should
take account of finite-distance corrections that are discussed in this paper.

Figure 9. The finite-distance correction for Sgr A∗ as δαGM: The horizontal axis denotes the source
distance rS. The vertical one means the finite-distance correction to the light deflection. The solid line
(blue in color) and dashed one (red in color) mean b = 102 M and b = 104 M, respectively. The dotted
curve (yellow in color) denotes the leading term of δαGM given by Equation (33). These three lines are
substantially overlapped with each other. This implies that δαGM is weakly dependent on the impact
parameter b.

In the strong deflection case, each orbit around the black hole will have a slightly different r0,
thereby producing a number of “ghost” images (often called relativistic images). In this paper, detailed
calculations about it for the finite-distance source and receiver are not done. It is left for the future.

45



Universe 2019, 5, 218

7. Defining the Gravitational Deflection Angle of Light for a Stationary and Axially
Symmetric Spacetime

7.1. Optical Metric for the Stationary, Axisymmetric Spacetime

In this section, a stationary and axisymmetric spacetime is considered, for which we shall
discuss how to define the gravitational deflection angle of light especially by using the Gauss–Bonnet
theorem [42]. The line element in this spacetime is [58–60]:

ds2 =gμνdxμdxν

=− A(y1, y2)dt2 − 2H(y1, y2)dtdφ

+ F(y1, y2)γpqdypdyq + D(y1, y2)dφ2. (38)

Here, p and q mean 1 and 2, γpq is a two-dimensional symmetric tensor, μ, ν are from 0 to 3,
and the t and φ coordinates respect the Killing vectors. We rewrite this metric into a form such that γpq

can be diagonal. We prefer to use the polar coordinates rather than the cylindrical ones because the
Kerr metric and the rotating Teo wormhole one are usually expressed in the polar coordinates. In this
paper, we thus use the polar coordinates. In the cylindrical coordinates, the line element is known as
the Weyl-Lewis-Papapetrou form [58–60]. Equation (38) is rewritten as

ds2 =− A(r, θ)dt2 − 2H(r, θ)dtdφ

+ B(r, θ)dr2 + C(r, θ)dθ2 + D(r, θ)dφ2, (39)

where a local reflection symmetry is assumed with respect to the equatorial plane θ = π
2 .

This assumption is expressed as:

∂gμν

∂θ

∣∣∣∣
θ= π

2

= 0. (40)

The functions are A(r, θ) > 0, B(r, θ) > 0, C(r, θ) > 0, D(r, θ) > 0, and H(r, θ) > 0.
This assumption by Equation (40) is needed for the existence of a photon orbit on the equatorial
plane. Note that we do not assume the global reflection symmetry with respect to the equatorial plane.

The null condition ds2 = 0 is solved for dt as [61,62]:

dt =
√

γijdxidxj + βidxi, (41)

where i and j denote from 1 to 3 and γij and βi are defined as:

γijdxidxj ≡ B(r, θ)

A(r, θ)
dr2 +

C(r, θ)

A(r, θ)
dθ2 +

A(r, θ)D(r, θ) + H2(r, θ)

A2(r, θ)
dφ2, (42)

βidxi ≡− H(r, θ)

A(r, θ)
dφ. (43)

This spatial metric γij( �= gij) is used in order to define the arc length (�) along the photon orbit as:

d�2 ≡ γijdxidxj, (44)

for which we define γij by γijγjk = δi
k. γij defines a 3-dimensional Riemannian space (3)M, where

the photon orbit is a spatial curve. In the appendix of Reference [62], they show that � is an affine
parameter of a light ray.

If the spacetime is static, spherically symmetric, and asymptotically flat, βi is zero and γij is
nothing but the optical metric. The photon orbit follows a geodesic in a 3-dimensional Riemannian
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space. In this section and after, we refer to γij as the generalized optical metric. Note that the metric γij
has been called the Fermat metric and the one-form βi is called the Fermat one-form by some authors.

We apply the Gauss–Bonnet theorem to a surface (See Figure 1). The Gauss-Bonnet theorem is
expressed as:

∫∫
R∞
R

S∞
S

KdS +
∫ S

R
κgd�+

∫ R∞

S∞
κ̄gd�+ [ΨR + (π − ΨS) + π] = 2π, (45)

where we note that the geodesic curvatures of the path from S to S∞ and the path from R to R∞ are
both 0 because these paths are geodesic. κg is the geodesic curvature of the photon orbit, and κ̄g is the
geodesic curvature of the circular arc segment with an infinite radius.

7.2. Gaussian Curvature

In this subsection, we examine whether the rotational part (βi) of the spacetime makes a
contribution to the Gaussian curvature. The Gaussian curvature on the equatorial plane is expressed
by using the 2-dimensional Riemann tensor (2)Rrφrφ:

K =
(2)Rrφrφ

det γ
(2)
ij

=
1√

det γ
(2)
ij

⎡
⎣ ∂

∂φ

⎛
⎝
√

det γ
(2)
ij

γ
(2)
rr

(2)Γφ
rr

⎞
⎠− ∂

∂r

⎛
⎝
√

det γ
(2)
ij

γ
(2)
rr

(2)Γφ
rφ

⎞
⎠
⎤
⎦ , (46)

where (2)Rrφrφ and (2)Γß
jk are defined by using the generalized optical metric γij on the equatorial

plane. det γ
(2)
ij is the determinant of the generalized optical metric in the equatorial plane.

dS in Equation (45) becomes:

dS =
√

det γ(2)drdφ. (47)

The surface integration of the Gaussian curvature in Equation (45) is rewritten explicitly as:

∫∫
R∞
R �S∞

S

KdS =
∫ φR

φS

∫ ∞

rOE

K
√

det γ(2)drdφ, (48)

where rOE means the solution of the orbit Equation.

7.3. Geodesic Curvature

Let us imagine a parameterized curve in a surface. Roughly speaking, the geodesic curvature of
the parameterized curve is a measure of how different the curve is from the geodesic. The geodesic
curvature of the parameterized curve is defined as the surface-tangential component of the acceleration
(namely the geodesic curvature) of the curve. The normal curvature is defined as the surface-normal
component of the acceleration. The normal curvature does not appear in the present paper because we
consider only the curves on the equatorial plane.

The geodesic curvature in the vector form is defined as (see, e.g., Reference [63,64]):

κg ≡ T′ · (T × N) , (49)

where, for a parameterized curve, T denotes the unit tangent vector for the curve by reparameterizing
the curve using its arc length, T′ means its derivative with respect to the parameter, and N indicates
the unit normal vector for the surface. The geodesic curvature of a curve vanishes if the curve follows
the geodesic. This zero is because the acceleration vector T′ vanishes.

47



Universe 2019, 5, 218

7.4. Photon Orbit with the Generalized Optical Metric

In this subsection, we discuss geometrical aspects of a photon orbit in terms of the generalized
optical metric. The unit vector tangent to the spatial curve is generally expressed as:

ei ≡ dxi

d�
, (50)

where a parameter � is defined by Equation (44).
The flight time T of a light from the source to the receiver is obtained by performing the integral

of Equation (41):

T =
∫ tR

tS

dt =
∫ R

S

(√
γijdeidej + βidei

)
d�. (51)

The light ray follows the Fermat’s principle, namely δT = 0 [65]. The Lagrangian for a photon
can be expressed as:

L =
√

γijeiej + βiei. (52)

From this, we obtain:

d
d�

∂L
∂ek =γikei

,l el + γik,l eiel + βk,iei, (53)

∂L
∂xk =

1
2

γij,keiej + βi,kei, (54)

where we used γijeiej = 1 and the comma (,) defines the partial derivative. The Euler–Lagrange
Equation is calculated as:

ej
,l el + γkj

(
γik,l eiel − 1

2
γil,keiel

)
= γkj(βl,k − βk,l)el . (55)

This leads to the Equation for the light ray [62]:

dei

d�
= −γil(γl j,k −

1
2

γjk,l)ejek + γij(βk,j − β j,k)ek.

Therefore, the geodesic Equation is equivalent to:

ei
|je

j =
dei

d�
+ (3)Γi

jkejek

=
dei

d�
+ γil(γl j,k −

1
2

γjk,l)ejek

=γij(βk,j − β j,k)ek, (56)

where we define | as the covariant derivative with respect to γij. (3)Γi
jk means the Christoffel symbol

by γij.
The acceleration vector ai is defined by:

ai ≡ ei
|je

j = γij(βk|j − β j|k)e
k = γij(βk,j − β j,k)ek. (57)
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By using the Levi–Civita symbol εijk, we express the cross (outer) product: of A and B in the
covariant manner:

√
γεijk AjBk = (A × B)i. (58)

The Levi–Civita tensor εijk is defined by εijk ≡
√

γεijk, where and εijk is the Levi–Civita symbol
(ε123 = 1).

The Levi–Civita tensor εijk in a three-dimensional satisfies:

εsjkεslm =
√

γεsjk
1√
γ

εslm = δl
jδ

m
k − δm

j δl
k, (59)

εsjkεs
lm = γjlγkm − γjmγkl . (60)

By using Equations (58)–(60), Equation (57) is rewritten as:

ai = γijekεsjk(∇× β)s. (61)

Vector ai is the spatial vector representing the acceleration due to βi. In particular, ai is caused in
gravitomagnetism [66]. To be more precise, the gravitomagnetic vector has an analogy to the Lorentz
force in electromagnetism ∝ v × (∇× Am), in which Am denotes the vector potential. The vector
potential is defined as B = ∇× Am, E = −∇φ − ∂Am

∂t , where E and B are the electric and magnetic
fields, respectively, and the electric potential is φ.

γij is not an induced metric but the generalized optical metric. If βi is nonvanishing,
the photon orbit may be different from a geodesic in (3)M with γij, even though the light ray in
the four-dimensional spacetime follows the null geodesic.

In a stationary and axisymmetric spacetime, it is always possible to find out coordinates such that
g0i can vanish and ai = 0. In this case, the photon orbit is considered a spatial geodesic curve in (3)M.

We study axisymmetric cases which allow g0i �= 0. Therefore, geodesic curvature κg does not
always vanish in the photon orbit in the Gauss–Bonnet theorem because the geodesic curvature κg for
a photon orbit is due to the gravitomagnetic effect. This nonvanishing κg for the photon orbit leads to
a crucial difference from the SSS case [38,39].

7.5. Geodesic Curvature of a Photon Orbit

Equation (49) is rearranged to be in the tensor form:

κg = εijk Niajek, (62)

where �T and �T′ correspond to ek and aj, respectively.
In this paper, the acceleration vector of the photon orbit depends on βi. Hence, the geodesic

curvature for the photon orbit also depends on it. A nonvanishing integral of the geodesic curvature
along the light ray appears in the Gauss–Bonnet theorem in Equation (8).

Substituting Equation (57) into ai in Equation (62) leads to:

κg =εijk Niγjl(βn|l − βl|n)e
nek

=γjaNiekebεijkεsabεsml βl|m

=Niekeb(δi
sδk

b − δi
bδk

s)ε
sml βl|m

=− εijk Niβ j|k, (63)
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where we used γijeiej = 1 and γijei Nj = 0. The unit vector normal to the equatorial plane is:

Np =
1√
γθθ

δθ
p, (64)

where the upward direction is chosen without loss of generality.
For the equatorial plane, we obtain:

εθpqβq|p = − 1√
γ

βφ,r, (65)

where we use εθrφ = −1/
√

γ and βr,φ = 0 because of the axisymmetry.
By using Equations (64) and (65), κg in Equation (63) becomes:

κg = − 1√
γγθθ

βφ,r. (66)

By using Equation (44), the line element in the path integral is obtained as:

d� =

√
γrr

(
dr
dφ

)2
+ γφφdφ, (67)

where θ = π/2.

7.6. Geodesic Curvature of a Circular arc Segment

In a flat space, the geodesic curvature κ of the circular arc segment of radius R is obtained as:

κ =
1
R

. (68)

The geodesic curvature κ̄g of a circular arc segment of radius Rc = R∞ is obtained as:

κ̄g =
1
R c

, (69)

where the radius Rc is sufficiently larger than rR and rS and the circular arc segment is in the
asymptotically flat region.

Equation (44) becomes d�2 = dr2 + r2(dθ2 + sin2 θdφ2) because we assume an asymptotically flat
spacetime. Hence, the line element in the path integral of κ̄g is obtained as:

d� = Rcdφ, (70)

where we choose θ = π/2 and r = Rc for the circular arc segment.
Therefore, the path integral of κ̄g in Equation (45) is rewritten as:

∫ R∞

S∞
κ̄gd� =

∫ φR

φS

dφ = φR − φS = φRS, (71)

where we denote the angular coordinate values of the receiver and the source as φR and φS, respectively.
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7.7. Impact Parameter and Light Rays

By using Equation (39), we study the orbit Equation on the equatorial plane. The Lagrangian for
a photon in the equatorial plane is obtained as:

L̂ = −A(r)ṫ2 − 2H(r)ṫφ̇ + B(r)ṙ2 + D(r)φ̇2, (72)

where the dot denotes the derivative with respect to the affine parameter and the
functions A(r), B(r), D(r), and H(r) mean, to be rigorous, A(r, π/2), B(r, π/2), D(r, π/2),
and H(r, π/2) respectively.

The metric (or the Lagrangian L̂ in the 4-dimensional spacetime) is independent from t and
φ. Therefore:

d
d�

∂L̂
∂ṫ

= 0,

d
d�

∂L̂
∂φ̇

= 0.

Then, associated with the two Killing vectors ξμ = (1, 0, 0, 0) and ξ̄μ = (0, 0, 0, 1), respectively:

∂L̂
∂ṫ

= gμνξμkν,

∂L̂
∂φ̇

= gμνξ̄μkν, (73)

where kμ = dxμ

d� is the vector tangent to the light ray in the four-dimensional spacetime. There are two
constants of motion:

E = A(r)ṫ + H(r)φ̇, (74)

L = D(r)φ̇ − H(r)ṫ, (75)

where E denotes the energy of the photon and L means the angular momentum of the photon.
The impact parameter of the photon is defined as:

b ≡ L
E

=
−H(r)ṫ + D(r)φ̇
A(r)ṫ + H(r)φ̇

=
− H(r) + D(r)

dφ

dt

A(r) + H(r)
dφ

dt

. (76)

In terms of the impact parameter b, L̂ = 0 can be considered as the orbit Equation:

(
dr
dφ

)2
=

A(r)D(r) + H2(r)
B(r)

D(r)− 2H(r)b − A(r)b2

[H(r) + A(r)b]2
, (77)

where we used Equation (39). By introducing u ≡ 1/r, we rewrite the orbit Equation as:

(
du
dφ

)2
= F(u), (78)
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where F(u) is:

F(u) =
u4(AD + H2)(D − 2Hb − Ab2)

B(H + Ab)2 . (79)

We examine the angles (ΨR and ΨS in Figure 10) at the receiver position and the source one.
The unit vector tangent to the photon orbit in (3)M is ei. Its components on the equatorial plane are
expressed as:

ei =
1
ξ

( dr
dφ

, 0, 1
)

, (80)

where ξ satisfies:

1
ξ
=

A(r)[H(r) + A(r)b]
A(r)D(r) + H2(r)

. (81)

This can be derived also from γijeiej = 1 by using Equation (77).
In the equatorial plane, the unit radial vector is:

Ri =
( 1√

γrr
, 0, 0

)
, (82)

where the outgoing direction is chosen for a sign convention.
By using the inner product between ei and Ri, we therefore define the angle as:

cos Ψ ≡γijeiRj

=
√

γrr
A(r)[H(r) + A(r)b]
A(r)D(r) + H2(r)

dr
dφ

, (83)

where Equations (80)–(82) are used. This is rewritten as:

sin Ψ =
H(r) + A(r)b√

A(r)D(r) + H2(r)
, (84)

where Equation (77) is used. We should note that sin Ψ in Equation (84) is more useful in practical
calculations, because it needs only the local quantities. On the other hand, cos Ψ by Equation (83)
needs the derivative dr/dφ. In addition, the domain of this Ψ is 0 ≤ Ψ ≤ π and, hence, sin Ψ is
always positive.

By substituting rR and rS into r of Equation (84), we obtain sin ΨR and sin ΨS, respectively.
We note that the range of the principal value of y = arcsin x is −π

2 ≤ y ≤ π
2 as usual. However,

the range of ΨR (ΨS) is 0 ≤ ΨR(ΨS)≤ π. By using the usual principal value, Equation (84) for (ΨR) and
(ΨS) becomes:

sin ΨR =
H(rR) + A(rR)b√

A(rR)D(rR) + H2(rR)
, (85)

sin(π − ΨS) =
H(rS) + A(rS)b√

A(rS)D(rS) + H2(rS)
, (86)

respectively because ΨR is an acute angle and ΨS is an obtuse angle as shown by Figure 10.

52



Universe 2019, 5, 218

Figure 10. ΨR and ΨS: ΨR is the angle between the radial direction and the light ray at the receiver
position. ΨS is that at the source position.

7.8. Gravitational Deflection Light in the Axisymmetric Case

We define:
α ≡ ΨR − ΨS + φRS (87)

for the equatorial plane in the axisymmetric spacetime. This definition apparently depends on
the angular coordinate φ. By using the Gauss–Bonnet theorem in Equation (8), this Equation is
rearranged as:

α = −
∫∫

∞
R �∞

S

KdS −
∫ S

R
κgd�. (88)

Here, d� is positive when the photon is in the prograde motion, whereas it is negative for the
retrograde case. Equation (88) means that α is coordinate-invariant for the axisymmetric case. Up until
now, we did not use any Equations for gravitational fields. Therefore, the above discussion and results
still stand not only in the theory of general relativity but also in a general class of metric theories of
gravity only if the light ray in the four-dimensional spacetime is a null geodesic.

8. Weak Deflection of Light in Kerr Spacetime

8.1. Kerr Spacetime and γij

In this section, we focus on the weak deflection of light in the Kerr spacetime as an axisymmetric
example. Kerr metric in the Boyer–Lindquist form is expressed as:

ds2 =−
(

1 − 2Mr
Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdφ

+
Σ
Δ

dr2 + Σdθ2 +

(
r2 + a2 +

2a2Mr sin2 θ

Σ

)
sin2 θdφ2, (89)
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where Σ and Δ are defined as:

Σ ≡ r2 + a2 cos2 θ, (90)

Δ ≡ r2 − 2Mr + a2. (91)

Using the Gauss–Bonnet theorem, the deflection angle of light in the Kerr spacetime was calculated
for the asymptotic source and receiver by Werner [67]. However, his method based on the osculating
metric is limited within the asymptotic case. Later, Ono et al. developed a different approach using the
Gauss–Bonnet theorem that enables the calculation of the deflection angle for the finite distance case in
the Kerr spacetime [42].

By using Equations (42) and (43), the generalized optical metric γij and the gravitomagnetic term
βi for the Kerr metric are obtained as:

γijdxidxj =
Σ2

Δ(Σ − 2Mr)
dr2 +

Σ2

(Σ − 2Mr)
dθ2

+

(
r2 + a2 +

2a2Mr sin2 θ

(Σ − 2Mr)

)
Σ sin2 θ

(Σ − 2Mr)
dφ2, (92)

βidxi =− 2aMr sin2 θ

(Σ − 2Mr)
dφ. (93)

Note that γij has no linear terms in the Kerr spin parameter a because only g0i in gμν has a
linear term in a and g0i ∝ H contributes to γij through a quadratic term g0ig0j ∝ H2, as shown by
Equation (42).

In order to calculate the Gaussian curvature K of the equatorial plane, the geodesic curvature κg

of the light ray and the geodesic curvature κ̄g of the circular arc of an infinite radius and of the angles
ΨR and ΨS, we use two approximations for the weak field and slow rotation, where M and a play roles
as book-keeping parameters though they are dimensional quantities.

By using Equation (77), we obtain the orbit Equation:

(
dr
dφ

)2
=

b2
{

a2

b2 +
r
b (

r
b − 2M

b )
}2 { a2

b2 (
2M

b + r
b )− 4aM

b2 + 2M
b − r

b +
r3

b3

}
r
b{ 2aM

b2 + r
b − 2M

b }2

=
r4

b2 − r2 + 2Mr − 4r3

b3 aM +O(a2), (94)

where the weak-field and slow-rotation approximations are used in the last line. There are no
M-squared terms in the last line. The orbit Equation becomes:

(
du
dφ

)2
= F(u) =

1
b2 − u2 + 2Mu3 − 4u

b3 aM +O(a2u4). (95)

We solve iteratively Equation (95). In order to find the zeroth-order solution, we solve the
truncated Equation (95):

(
du
dφ

)2
=

1
b2 − u2 +O(Mu3, aMu4, a2u4). (96)

The zeroth-order solution for this Equation is:

u =
sin φ

b
, (97)
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where we use du
dφ

∣∣∣
φ=π/2

= 0 as the boundary condition. This condition means that the closest approach

of the photon orbit is expressed as r = r0 = 1/u0, φ = π/2. We assume that the linear-order solution
with M is u = sin φ

b + u1(φ)M. In order to obtain u1(φ), we substitute this expression of u into the
Equation (95) with terms linear in M:

(
du
dφ

)2
=

1
b2 − u2 + 2Mu3 +O(aMu4, a2u4). (98)

u1(φ) is thus obtained as:

u1(φ) =
1
b2 (1 + cos2 φ), (99)

where we used the boundary condition mentioned above. The solution with a is in a form of u =
sin φ

b + M
b2 (1 + cos2 φ) + u2(φ)a. Since Equation (95) does not include any linear term in a, we find

u2(φ) = 0. The solution with aM is u = sin φ
b + M

b2 (1 + cos2 φ) + u3(φ)aM. We substitute this solution
into Equation (95):

aM
b

{
b3 du3(φ)

dφ
cos φ + b3u3(φ) sin φ + 2 sin φ

}
+O(a2u4) = 0.

(100)

Hence, u3(φ) is obtained as:

u3(φ) = − 2
b3 . (101)

Bringing the above results together, the iterative solution of Equation (95) is expressed as:

u =
sin φ

b
+

M
b2 (1 + cos2 φ)− 2aM

b3 +O
(

M2

b3 ,
a2

b3

)
. (102)

Next, we solve Equation (102) for φ. We obtain φ as:

φ =

⎧⎨
⎩

arcsin(bu) + −2+b2u2

b
√

1−b2u2 M + 2aM
b2
√

1−b2u2 +O
(

M2

b3 , a2

b3

)
(|φ| < π

2 )

π − arcsin(bu)− −2+b2u2

b
√

1−b2u2 M − 2aM
b2
√

1−b2u2 +O
(

M2

b3 , a2

b3

)
(π

2 < |φ|)
, (103)

where we can choose the domain of φ to be −π ≤ φ < π without loss of generality. In the following,
the range of the angular coordinate value φS at the source point is −π

2 ≤ φS < π
2 and the range of the

angular coordinate value φR at the receiver point is |φR| > π
2 . We find |bu| < 1 because the square

root in Equation (103) must be real and nonzero, and the values of b and u are positive. Therefore, bu
satisfies 0 < bu < 1 in our calculation.

8.2. Gaussian Curvature on the Equatorial Plane

Let us explain how to compute the Gaussian curvature by using Equation (46). In the Kerr case,
it becomes:

K =
M
(
−6r

(
a2 + M2)+ 6a2M + 7Mr2 − 2r3)

r5(r − 2M)

=− 2M
r3 +O

(
M2

r4 ,
a2M

r5

)
, (104)

where the weak-field and slow-rotation approximations are used in the last line.
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Next, we discuss the area element on the equatorial plane by using Equation (47). In the Kerr case,
the area element of the equatorial plane is expressed as:

dS = [r + 3M +O(M2/r)]drdφ. (105)

By using Equations (104) and (105), the surface integral of the Gaussian curvature in Equation (88)
is performed as:

−
∫∫

R∞
R �S∞

S

KdS =
∫ φR

φS

∫ rOE

∞
(−2M

r3 r)drdφ +O
(

M2

b2 ,
aM2

b3 ,
a2M
b3

)

=2M
∫ φR

φS

∫ 1
b sin φ+ M

b2 (1+cos2 φ)− 2aM
b3

0
dudφ +O

(
M2

b2 ,
aM2

b3 ,
a2M
b3

)

=2M
∫ φR

φS

[1
b

sin φ
]
dφ +O

(
M2

b2 ,
aM2

b3 ,
a2M
b3

)

=
2M

b

[
cos φS − cos φR

]
+O

(
M2

b2 ,
aM2

b3 ,
a2M
b3

)

=
2M

b

[√
1 − b2uS

2 +
√

1 − b2uR2
]
+O

(
M2

b2 ,
aM2

b3 ,
a2M
b3

)
, (106)

where rOE in the first line is the solution of Equation (94), we transform the integral variable as r = 1/u
in the second line, and we used cos φS =

√
1 − b2uS

2 + O(M/b) and cos φR = −
√

1 − b2uR2 +

O(M/b) from Equation (103) in the last line.

8.3. Path Integral of κg

Substituting Equation (93) into βi in Equation (66) leads to:

κg =− 2aM
r2(r − 2M)

⎛
⎜⎜⎝ 1 −

2M
r

+
a2

r2

1 +
a2

r2 +
2a2M

r3

⎞
⎟⎟⎠

1/2

=− 2aM
r3 +O

(
aM2

r4

)
, (107)

where the weak-field and slow-rotation approximations are used in the last line. We stress that the
terms of an M (n ≥ 2) do not exist in this expression.

The line element for the path integral by Equation (67) becomes:

d� =
[

b
sin2 φ

+O(M)

]
dφ, (108)

where Equation (102) was used for a relation between r and φ.
By using Equations (107) and (108), the path integral of κg in Equation (88) is performed as:

−
∫ S

R
κgd� =−

∫ R

S

2aM
r3 d�+O

(
aM2

r4

)

=− 2aM
b2

∫ φR

φS

sin φdφ +O
(

aM2

r4

)

=− 2aM
b2 [

√
1 − b2uR2 +

√
1 − b2uS

2] +O
(

aM2

b3

)
. (109)
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Here, we assumed d� > 0, such that the orbital angular momentum can be parallel with the
spin of the black hole, and we used a linear approximation of the photon orbit as 1/r = u =

sin φ/b +O(M/b2, aM/b3) from Equation (102). In the retrograde case, d� becomes negative and the
magnitude of the above path integral thus remains the same but the sign of the integral is opposite.

8.4. φRS Part

The displacement of the angular coordinate φ in Equation (87) is computed as:

φRS =
∫ R

S
dφ

=2
∫ u0

0

1√
F(u)

du +
∫ 0

uS

1√
F(u)

du +
∫ 0

uR

1√
F(u)

du, (110)

where the orbit equation of Equation (78) was used. We substitute Equation (95) into F(u) in
Equation (110) to obtain:

φRS =
∫ u0

uS

(
1√

u02 − u2
+ M

u0
3 − u3

(u02 − u2)3/2 − 2aM
u0

3(u0 − u)
(u02 − u2)3/2

)
du

+
∫ u0

uR

(
1√

u02 − u2
+ M

u0
3 − u3

(u02 − u2)3/2 − 2aM
u0

3(u0 − u)
(u02 − u2)3/2

)
du

+O(M2u0
2, a2u0

2)

=

⎛
⎝π

2
− arcsin

(uS
u0

)
+ M

(2u0 + uS)
√

u02 − u2
S

u0 + uS
− 2aM

u0
3
√

u02 − u2
S

u02 + u0uS

⎞
⎠

+

(
π

2
− arcsin

(uR
u0

)
+ M

(2u0 + uR)
√

u02 − uR2

u0 + uR
− 2aM

u0
3
√

u02 − uR2

u02 + u0uR

)

+O
(

M2u2
0, a2u2

0

)
, (111)

where the prograde case is assumed. In the retrograde motion, the sign of the linear term in a is
opposite. In Equation (111), the impact parameter b is rewritten in terms of the closest approach u0 for
the integration from uS(or uR) to u0. Namely, Equation (95) tells us the relation between the impact
parameter b and the inverse of the closest approach u0 as b = u−1

0 + M − 2aMu0 +O(M2u0, a2u0) in
the weak-field and slow-rotation approximations. By making use of this relation, Equation (111) is
rearranged as:

φRS =π − arcsin(buS)− arcsin(buR) +
M(2 − b2uS

2)

b
√

1 − b2uS
2
+

M(2 − b2uR
2)

b
√

1 − b2uR2

− 2aM
b2

[ 1√
1 − b2uS

2
+

1√
1 − b2uR2

]
+O

(
M2/b2, a2/b2

)
. (112)

The first line of this equation recovers Equation (32) of Reference [38].
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8.5. Ψ Parts

In the Kerr spacetime by Equation (89), Equation (85) is:

sin ΨR =
b

rR
×

1 −
2M
rR

+
2aM
brR√

1 −
2M
rR

+
a2

rR2

,

=
b

rR

(
1 − M

rR
+

2aM
brR

)
+O

(
M2

rR2 ,
a2

rR2 ,
aM2

rR3

)

=buR

(
1 − MuR +

2aMuR
b

)
+O

(
M2uR

2, a2uR
2, aM2uR

3
)

, (113)

and Equation (86) is calculated as:

sin(π − ΨS) = buS

(
1 − MuS +

2aMuS
b

)
+O

(
M2uS

2, a2uS
2, aM2uS

3
)

, (114)

where rR = 1/uR, rS = 1/uS and we used the weak-field and slow-rotation approximations.
By combining Equations (113) and (114), we obtain ΨR and ΨS as:

ΨR = arcsin
[

buR

(
1 − MuR +

2aMuR
b

)]
+O

(
M2uR

2, a2uR
2, aM2uR

3
)

= arcsin(buR)−
MbuR

2√
1 − b2uR2

+
2aMuR

2√
1 − b2uR2

+O
(

M2uR
2, a2uR

2, aM2uR
3
)

,

π − ΨS = arcsin(buS)−
MbuS

2√
1 − b2uS

2
+

2aMuS
2√

1 − b2uS
2
+O

(
M2uS

2, a2uS
2, aM2uS

3
)

. (115)

By combining these relations, we obtain the Ψ part in Equation (87) as:

ΨR − ΨS = arcsin(buR) + arcsin(buS)− π − MbuR
2√

1 − b2uR2
− MbuS

2√
1 − b2uS

2

+
2aMuR

2√
1 − b2uR2

+
2aMuS

2√
1 − b2uS

2
+O

(
M2u2

R, M2u2
S, a2u2

R, a2u2
S, aM2u3

R, aM2u3
S

)
. (116)

8.6. Deflection of Light in Kerr Spacetime

On the equatorial plane in the Kerr spacetime, the deflection angle of light is described by
Equations (87) and (88). Let us examine whether the two results agree with each other.
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First, we substitute Equations (112) and (116) into Equation (87). We obtain the deflection angle of
light as:

αprog = arcsin(buR) + arcsin(buS)− π − MbuR
2√

1 − b2uR2
− MbuS

2√
1 − b2uS

2

+
2aMuR

2√
1 − b2uR2

+
2aMuS

2√
1 − b2uS

2

+ π − arcsin(buS)− arcsin(buR) +
M(2 − b2uS

2)

b
√

1 − b2uS
2
+

M(2 − b2uR
2)

b
√

1 − b2uR2

− 2aM
b2

[ 1√
1 − b2uS

2
+

1√
1 − b2uR2

]
+O

(
M2

b2

)

=
2M

b

(√
1 − b2uR2 +

√
1 − b2uS

2
)

− 2aM
b2

(√
1 − b2uR2 +

√
1 − b2uS

2
)
+O

(
M2

b2

)
, (117)

where the prograde orbit of light is assumed. For the retrograde motion, we obtain:

αretro =
2M

b

(√
1 − b2uR2 +

√
1 − b2uS

2
)

+
2aM

b2

(√
1 − b2uR2 +

√
1 − b2uS

2
)
+O

(
M2

b2

)
. (118)

Next, we substitute Equations (106) and (109) into Equation (88). Then, we obtain the deflection
angle of light in the prograde motion as:

αprog =
2M

b

(√
1 − b2uR2 +

√
1 − b2uS

2
)

− 2aM
b2

(√
1 − b2uR2 +

√
1 − b2uS

2
)
+O

(
M2

b2

)
, (119)

and the deflection angle for the retrograde case as:

αretro =
2M

b

(√
1 − b2uR2 +

√
1 − b2uS

2
)

+
2aM

b2

(√
1 − b2uR2 +

√
1 − b2uS

2
)
+O

(
M2

b2

)
. (120)

Note that the a2 terms in the deflection angle in Equation (87) cancel out thanks to Equation (88).
Here, we consider the limit as uR → 0 and uS → 0. In this limit, we get:

α∞ prog →4M
b

− 4aM
b2 + O

(
M2

b2

)
, (121)

α∞ retro →
4M

b
+

4aM
b2 + O

(
M2

b2

)
. (122)

This shows that Equations (117) and (118) agree with the asymptotic deflection angles that are
known in earlier works [4,68–70]. Precise analytic treatments of the deflection angle of light were done
in a conventional approach, on the equatorial plane of a Kerr black hole [70] and for generic photon
orbits in terms of the generalized hypergeometric functions of Appell and Lauricella [71]. They assume
that both the source and the receiver are located at the null infinity.
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If we wish to consider the deflection angle of light in a case where the receiver point is closer to
the source point than the closest approach point, Equations (117) and (118) become:

αprog =
2M

b

(√
1 − b2uS

2 −
√

1 − b2uR2
)

− 2aM
b2

(√
1 − b2uS

2 −
√

1 − b2uR2
)
+O

(
M2

b2

)
,

αretro =
2M

b

(√
1 − b2uS

2 −
√

1 − b2uR2
)

+
2aM

b2

(√
1 − b2uS

2 −
√

1 − b2uR2
)
+O

(
M2

b2

)
.

If we wish to consider the deflection angle of light in such a case that the source point is closer to
the receiver than the closest approach point, Equations (117) and (118) become:

αprog =
2M

b

(√
1 − b2uR2 −

√
1 − b2uS

2
)

− 2aM
b2

(√
1 − b2uR2 −

√
1 − b2uS

2
)
+O

(
M2

b2

)
,

αretro =
2M

b

(√
1 − b2uR2 −

√
1 − b2uS

2
)

+
2aM

b2

(√
1 − b2uR2 −

√
1 − b2uS

2
)
+O

(
M2

b2

)
.

8.7. Finite-Distance Corrections

In the previous subsections so far, we discussed an effect of the spin of the lens object to the
deflection of light. In particular, we do not require the receiver and the source to be located at
infinity. The finite-distance correction to the deflection angle of light is defined as δα. This is the
difference between the asymptotic deflection angle α∞ and the deflection angle for the finite distance
case. Namely:

δα ≡ α − α∞. (123)

Equations (117) and (118) tell us the magnitude of the finite-distance correction to the
gravitomagnetic bending angle due to the spin. The result is:

|δαGM| ∼O

(
aM
r2

S
+

aM
r2

R

)

∼O

(
J

r2
S
+

J
r2

R

)
, (124)

where buR, buS < 1 is assumed, J ≡ aM denotes the spin angular momentum of the lens, and the
subscript GM means the gravitomagnetic part. We introduce the dimensionless spin parameter as:
s ≡ a/M. Hence, Equation (124) is rearranged as:

|δαGM| ∼ O

(
s
(

M
rS

)2
+ s
(

M
rR

)2
)

. (125)

This implies that δαGM is of the same order as the second post-Newtonian effect (with the
dimensionless spin parameter).

60



Universe 2019, 5, 218

The second-order Schwarzschild contribution to α is 15πM2/4b2. This contribution can be
obtained also by using the present method, especially by using a relation between b and r0 in M2

in calculating φRS. Appendix A provides detailed calculations at the second order of M and a. We
explain detailed calculations for the integrals of K and κg in the present formulation. Note that
δαGM in the above approximations is free from the impact parameter b. We can see this fact from
Figures 11–13 below.

8.8. Possible Astronomical Applications

What are possible astronomical applications? As a first example, we consider the Sun, in which
its higher multipole moments are ignored for simplicity. Its spin angular momentum denoted as J�
is ∼2 × 1041 m2 kg s−1 [72,73]. This means GJ�c−2 ∼ 5 × 105 m2, for which the dimensionless spin
parameter becomes s� ∼ 10−1.

Here, our assumption is that a receiver on the Earth observes the light deflected by the Sun,
while the distant source is safely in the asymptotic region. For the light ray passing near the Sun,
Equation (125) allows us to make an order-of-magnitude estimation of the finite-distance correction.
The result is:

|δαGM| ∼ O

(
J

r2
R

)

∼ 10−12arcsec. ×
(

J
J�

)(
1AU

rR

)2
, (126)

where 4M�/R� ∼ 1.75 arcsec. ∼ 10−5 rad., where Modot means the solar mass and R� denotes the
solar radius. This correction is nearly a pico-arcsecond. Therefore, the correction is beyond the reach of
present and near-future technology [74,75].

Figure 11 shows the finite-distance correction to the light deflection. Our numerical calculations
are consistent with the above order-of-magnitude estimation. This figure shows also the very weak
dependence of δα on b.

See Figures 12 and 13 for the deflection angle with finite-distance corrections for the prograde
motion and retrograde one, respectively, where we choose rS ∼ 1.5 × 108 km and rR ∼ ∞.
The finite-distance correction reduces the deflection angle of light. As the impact parameter b increases,
the finite-distance correction also increases.

As a second example, we discuss Sgr A∗ that is located at our galactic center. This object is a good
candidate for measuring the strong gravitational deflection of light. The distance to the receiver is
much larger than the impact parameter of light. On the other hand, some of the source stars may live
in our galactic center.

For Sgr A∗, Equation (125) becomes:

|δαGM| ∼ s
(

M
rS

)2

∼ 10−7arcsec. ×
( s

0.1

)( M
4 × 106M�

)2 (0.1pc
rS

)2
, (127)

where we assume that the mass of the central black hole is M ∼ 4× 106M�. This correction is nearly at
a sub-microarcsecond level. Therefore, it is beyond the capability of present technology (e.g., [31–36]).

See Figure 9 for the finite-distance correction due to the source location. The result in this figure
is in agreement with the above order-of-magnitude estimation. This figure suggests the very weak
dependence on the impact parameter b.
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Figure 11. δαGM for the Sun: The horizontal axis is the distance of the receiver distance rR. The vertical
axis means the finite-distance correction due to the gravitomagnetic deflection angle of light. The
solid curve (blue in color) and dashed one (red in color) denote b = R� and b = 105R�, respectively.
The dotted line (black in color) corresponds to the leading term in δαGM given by Equation (124). These
three curves are overlapped. This implies the very weak dependence of δαGM on b.

Figure 12. α in the prograde motion: The horizontal axis is the impact parameter for a photon orbit.
The vertical axis means the deflection angle of light. The blue curve is the asymptotic deflection angle
by a Kerr black hole. The orange curve means the deflection angle with finite-corrections by a Kerr
black hole. The green curve shows the difference between the asymptotic bending angle and the
deflection angle with finite-corrections by a Kerr black hole.
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Figure 13. α for light of retrograde motion: The horizontal axis denotes the impact parameter for a
photon orbit, and the vertical axis denotes the deflection angle of light. The blue curve is the asymptotic
deflection angle by the Kerr black hole. The orange curve is the deflection angle with finite-correction
by the Kerr black hole. The green curve shows the difference between the asymptotic bending angle
and the deflection angle with finite-correction by the Kerr black hole.

9. Rotating Teo Wormhole: Another Example

9.1. Rotating Teo Wormhole and Optical Metric

In this section, we consider a rotating Teo wormhole [76] in order to examine how our method
can be applied to a wormhole spacetime. The spacetime metric for this wormhole is:

ds2 =− N2dt2 +
dr2

1 − b0
r

+ r2H2
[
dθ2 + sin2 θ(dφ − ωdt)2

]
, (128)

where we denote:

N =H = 1 +
d(4ā cos θ)2

r
, (129)

ω =
2ā
r3 . (130)

Here, b0 means the throat radius of this wormhole, ā is corresponding to the spin angular
momentum, and d is a positive constant.

For the rotating Teo wormhole of Equation (128), the components of the generalized optical metric
are [43]:

γijdxidxj =
r7

(r − b0)
(
r4 − 4ā2 sin2 θ

)
(16dā2 cos2 θ + r)2 dr2

+
r6

r4 − 4ā2 sin2 θ
dθ2 +

r10 sin2 θ(
r4 − 4ā2 sin2 θ

)2 dφ2. (131)
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Here, γij is not the induced metric in the Arnowitt-Deser-Misner(ADM) formulation.
The components of βi are obtained as:

βidxi =− 2ār3 sin2 θ

r4 − 4ā2 sin2 θ
dφ. (132)

In this section, we restrict ourselves within the equatorial plane, namely θ = π/2. On the
equatorial plane, the constant d in the metric always vanish because d is always associated with cos θ.

We employ the same way for the Kerr case; we first derive the orbit Equation on the equatorial
plane from Equation (77) as:

(
dr
dφ

)2
=− r5(b0 − r)

(
4ā2b2 − 4ābr3 − b2r4 + r6)

(−4ā2b + 2ār3 + br4)
2

=
r4

b2 − r2 − b0r3

b2 + b0r − 4ār3

b3 +
4āb0r2

b3 +O(ā2/b2), (133)

where b denotes the impact parameter of the light ray and we use the weak field and slow rotation
approximations in the last line. There are no b0 squared terms in the last line. The orbit Equation
thus becomes:

(
du
dφ

)2
=

1
b2 − u2 − b0u

b2 + b0u3 − 4āu
b3 − 4āb0u2

b3 +O(ā2/b6). (134)

This Equation is iteratively solved as:

u =
sin φ

b
+

cos2 φ

2b2 b0 −
2
b3 ā +O

(
b0

2

b3 ,
āb0

b4

)
. (135)

Solving Equation (135) for φS and φR, we obtain φS and φR as:

φS = arcsin(buS)−
b0
√

1 − b2uS
2

2b
+

2ā
b2
√

1 − b2uS
2
+O

(
b0

2

b2 ,
āb0

b3

)
, (136)

φR =π − arcsin(buR) +
b0
√

1 − b2uR2

2b
− 2ā

b2
√

1 − b2uR2
+O

(
b0

2

b2 ,
āb0

b3

)
. (137)

9.2. Gaussian Curvature

In the weak-field approximation, the Gaussian curvature of the equatorial plane is:

K =− b0

2r3 − 56ā2

r6 +O
(

ā2b0

r7 ,
ā4

r10

)
, (138)

where ā and b0 play roles as book-keeping parameters in the weak-field approximation. It is not
surprising that this Gaussian curvature deviates from Equation (26) in Jusufi and Övgün [77], because
their Gaussian curvature describes a different surface that is defined by using the Randers–Finsler
metric. The Randers–Finsler metric is quite different from our generalized optical metric γij.
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When we perform the surface integral of the Gaussian curvature in Equation (88), we use
Equation (135) for a boundary of the integration domain. The surface integral of the Gaussian
curvature in Equation (88) is thus calculated as:

−
∫∫

∞
R �∞

S

KdS =
∫ φR

φS

∫ r(φ)

∞

(
− b0

2r2

)
drdφ +O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2

∫ φR

φS

∫ sin φ
b +

cos2 φ

2b2 b0− 2
b3 ā

0
dudφ +O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2

∫ φR

φS

[ sin φ

b

]
dφ +O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2

[
− cos φ

b

]φR

φ=φS
+O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2b

(√
1 − b2uR2 +

√
1 − b2uS

2
)
+O

(
b0

2

b2 ,
āb0

b3

)
, (139)

where we use sin φR = buR +O(āb−2, b0b−1) and sin φS = buS +O(āb−2, b0b−1) by Equations (137)
and (136) in the last line.

9.3. Geodesic Curvature of Photon Orbit

We study the geodesic curvature of the photon orbit on the equatorial plane in the stationary and
axisymmetric spacetime by using the generalized optical metric. It generally becomes [42]:

κg = −
√

1
γγθθ

βφ,r. (140)

In the Teo wormhole, this expression is rearranged as:

κg =− 2ā
r3 +

āb0

r4 +
āb0

2

4r5 +
āb0

3

8r6 +O
(

ā3

r7 ,
ā3b0

r8

)
. (141)

We compute the path integral of the geodesic curvature of the photon orbit. The detailed
calculations and result are:

∫ R

S
κgd� =

∫ S

R

2ā
r3 d�+O

(
b0

2

b2 ,
āb0

b3

)

=
∫ π/2−φS

π/2−φR

2ā cos ϑ

b2 dϑ +O
(

b0
2

b2 ,
āb0

b3

)

=
2ā
b2

[
sin
(π

2
− φS

)
− sin

(π

2
− φR

)]
+O

(
b0

2

b2 ,
āb0

b3

)

=
2ā
b2

(√
1 − b2uS

2 +
√

1 − b2uR2
)
+O

(
b0

2

b2 ,
āb0

b3

)
, (142)

for the retrograde orbit of the photon. In the last line, we used sin φR = buR +O(āb−2, b0b−1) and
sin φS = buS + O(āb−2, b0b−1) from Equation (135). The above result becomes 4ā/b2, as rR → ∞
and rS → ∞. The sign of the right-hand side in Equation (142) is opposite if the photon is in
prograde motion.
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9.4. φRS Part

The rotating Teo wormhole is an asymptotically flat spacetime, as seen from Equation (128).
Therefore, the integral of the geodesic curvature of the circular arc segment with an infinite radius can
be expressed simply as φRS. By using Equations (136) and (137), φRS is obtained as:

φRS =φR − φS

=π − arcsin(buR)− arcsin(buS) +
b0
√

1 − b2uR2

2b
+

b0
√

1 − b2uS
2

2b

− 2ā

b2
√

1 − b2uR2
− 2ā

b2
√

1 − b2uS
2
+O

(
b0

2

b2 ,
āb0

b3

)
. (143)

9.5. Ψ Parts

For the rotating Teo wormhole in Equation (128), Equation (85) is computed as:

sin ΨR =buR + 2āuR
2 − 4ā2buR

5, (144)

and Equation (86) becomes:

sin(π − ΨS) =buS + 2āuS
2 − 4ā2buS

5, (145)

where the slow-rotation approximation is not needed.
Therefore, we obtain ΨR and ΨS as:

ΨR = arcsin(buR) +
2āuR

2√
1 − b2uR2

+
2ā2buR

5 (2b2uR
2 − 1

)
(b2uR2 − 1)3/2 +O(ā3/b6), (146)

π − ΨS = arcsin(buS) +
2āuS

2√
1 − b2uS

2
+

2ā2buS
5 (2b2uS

2 − 1
)

(b2uS
2 − 1)3/2 +O(ā3/b6), (147)

where we used the slow-rotation approximation.

9.6. Deflection Angle of Light

We combine Equations (139) and (142) to obtain the deflection angle of light in the prograde
orbit as:

αprog =
b0

2b

(√
1 − b2uR2 +

√
1 − b2uS

2
)
− 2ā

b2

(√
1 − b2uR2 +

√
1 − b2uS

2
)

+O
(

b0
2

b2 ,
āb0

b3

)
. (148)

The deflection angle of the retrograde light is:

αretro =
b0

2b

(√
1 − b2uR2 +

√
1 − b2uS

2
)
+

2ā
b2

(√
1 − b2uR2 +

√
1 − b2uS

2
)

+O
(

b0
2

b2 ,
āb0

b3

)
. (149)
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Next, by using Equations (143), (146), and (147), we obtain the deflection angle of the prograde
light as:

αprog =π − arcsin(buR)− arcsin(buS) +
b0
√

1 − b2uR2

2b
+

b0
√

1 − b2uS
2

2b

− 2ā

b2
√

1 − b2uR2
− 2ā

b2
√

1 − b2uS
2
+ arcsin(buR) +

2āuR
2√

1 − b2uR2

− π + arcsin(buS) +
2āuS

2√
1 − b2uS

2
+O

(
b0

2

b2 ,
āb0

b3

)

=
b0

2b

(√
1 − b2uR2 +

√
1 − b2uS

2
)
− 2ā

b2

(√
1 − b2uR2 +

√
1 − b2uS

2
)

+O
(

b0
2

b2 ,
āb0

b3

)
. (150)

The deflection angle of light in the retrograde orbit is:

αretro =
b0

2b

(√
1 − b2uR2 +

√
1 − b2uS

2
)
+

2ā
b2

(√
1 − b2uR2 +

√
1 − b2uS

2
)

+O
(

b0
2

b2 ,
āb0

b3

)
. (151)

The deflection of light in the prograde (retrograde) orbit is weaker (stronger) when increasing the
angular momentum of the Teo wormhole. The reason is as follows. The local inertial frame in which
the light travels at the light speed c in general relativity moves faster (slower). Hence, the time-of-flight
of light becomes shorter (longer). On light propagation, a similar explanation is done by using the
dragging of the inertial frame also by Laguna and Wolsczan [78]. They discussed the Shapiro time
delay. The expression of the deflection angle of light by a rotating Teo wormhole is similar to that
by Kerr black hole. This implies that it is hard to distinguish a Kerr black hole from a rotating Teo
wormhole by the gravitational lens observations.

In Equations (150) and (151), the source and receiver can be located at finite distances from the
wormhole. In the limit as rR → ∞ and rS → ∞, Equations (148) and (149) become:

αprog → b0

b
− 4ā

b2 +O
(

b0
2

b2 ,
āb0

b3

)
,

αretro → b0

b
+

4ā
b2 +O

(
b0

2

b2 ,
āb0

b3

)
. (152)

They are in complete agreement with Equations (39) and (56) in Jusufi and Övgün [77], where
they restrict themselves within the asymptotic source and receiver (rR → ∞ and rS → ∞).

9.7. Finite-Distance Corrections in the Teo Wormhole Spacetime

To be precise, we define the finite-distance correction to the deflection angle of light as the
difference between the asymptotic deflection angle α∞ and the deflection angle for the finite distance
case. It is denoted as δα.

We consider the following situation. An observer on the Earth sees the light deflected by the solar
mass. The source of light is located in a practically asymptotic region. In other words, we choose
b0 = M�, ā = J�, rR ∼ 1.5 × 108 km, rS ∼ ∞. See Figure 14 for the finite-distance correction due to the
impact parameter b. In Figure 14, the green curve means the difference between the asymptotic bending
angle and the deflection angle with finite-distance corrections, the blue curve denotes the asymptotic
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deflection angle, and the orange curve is the deflection angle with finite-distance corrections by the
rotating Teo wormhole. The deflection angle is decreased by the finite-distance correction. If the impact
parameter b increases, the finite-distance correction also increases.

See also Figure 15 for numerical calculations of the finite-distance correction due to the impact
parameter b. In Figure 15, the blue curve is the deflection angle with finite-distance correction by a Kerr
black hole and the red curve is the deflection angle with finite-correction by a rotating Teo wormhole.
The deflection of light is stronger in a Kerr black hole case for the chosen values.

 

Figure 14. α in the Teo wormhole: The blue curve is the asymptotic deflection angle by the rotating
Teo wormhole. The orange curve is the deflection angle with finite-distance corrections by the rotating
Teo wormhole. The blue curve shows the difference between the asymptotic deflection angle and the
deflection angle with finite-distance corrections by the rotating Teo wormhole.

 

Figure 15. α for prograde motion of light: The horizontal axis is the impact parameter of photon orbit.
The vertical axis means the deflection angle of light. The blue curve means the deflection angle with
finite-distance corrections by the Kerr black hole. The red curve corresponds to that by the rotating Teo
wormhole. For the purpose of this comparison, the mass of a Kerr black hole M and the throat radius
of a rotating Teo wormhole b0 are chosen as M = b0 = M�. The spin angular momentum of a Kerr
black hole and that of a rotating Teo wormhole are chosen as the same as that the Sun for simplicity.
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10. Summary

In this paper, we provided a brief review of a series of works on the deflection angle of light for
a light source and receiver in a non-asymptotic region. [38,39,42,43]. The validity and usefulness of
the new formulation come from the GB theorem in differential geometry. First, we discussed how to
define the gravitational deflection angle of light in a static, spherically symmetric, and asymptotically
flat spacetime, for which we assume the finite-distance source and receiver. We examined whether our
definition is invariant geometrically by using the GB theorem. By using our definition, we carefully
computed finite-distance corrections to the light deflection in Schwarzschild spacetime. We considered
both the cases of weak deflection and the strong one. Next, we extended the definition to stationary and
axisymmetric spacetimes. This extension allows us to compute finite-distance corrections for Kerr black
holes and rotating Teo wormholes. We verified that these results are consistent with previous works in
the infinite-distance limit. We mentioned also the finite-distance corrections to the light deflection by
Sagittarius A∗. It is left as future work to apply the present formulation to other interesting spacetime
models and also to extend it to a more general spacetime structure.

Funding: This work was supported in part by JSPS research fellowship for young researchers (T.O.); in part
by Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research, No. 18J14865 (T.O.) and No.
17K05431 (H.A.); and in part by by the Ministry of Education, Culture, Sports, Science, and Technology, No.
17H06359 (H.A.).

Acknowledgments: We are grateful to Marcus Werner for the stimulating and very fruitful discussions.
We thank Takao Kitamura, Asahi Ishihara, and Yusuke Suzuki for useful conversations. We would like to
thank Yuuiti Sendouda, Ryuichi Takahashi, Yuya Nakamura, and Naoki Tsukamoto for useful conversations.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Detailed Calculations at O(M2/b2) and O(a2/b2) in Kerr Spacetime

First, we investigate the Gaussian curvature K of the equatorial plane in the Kerr spacetime.
Here, we assume the weak-field and slow-rotation approximations. Up to the second order, K is
expanded as:

K =
Rrφrφ

γ

= −2M
r3 +

3M2

r4 + O
(

a2M
r5

)
, (A1)

where γ denotes det (γij). There are no a2 terms in K. More interestingly, only the a2M term at the
third-order level exists in K. By noting that K begins with O(M), what we need for the second-order
calculations is only the linear-order term in the area element on the equatorial plane. This is obtained as:

dS ≡√
γdrdφ

=

[
r + 3M + O

(
M2

r

)]
drdφ, (A2)

where terms at O(a) and at O(a2) do not exist in dS. This is because all terms including the spin
parameter cancel out in γ for θ = π/2 and γ thus depends only on M, as shown by direct calculations.
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By using Equations (A1) and (A2), the surface integration of the Gaussian curvature is
performed as:

−
∫∫

KdS =
∫ rOE

∞
dr
∫ φR

φS

dφ
(
− 2M

r3 +
3M2

r4

)
(r + 3M) + O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)

=
∫ 1

b sin φ+ M
b2 (1+cos2 φ)

0
du
∫ φR

φS

dφ (2M + 3uM2) + O
(

M3

b3 ,
aM2

b3 ,
a2M
b3

)

=
∫ φR

φS

[2M
b

sin φ +
M2

2b2 (7 + cos2 φ)
]
dφ + O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)

=
2M

b

[
cos φ

]φS

φR
+

M2

2b2

[30φ + sin(2φ)

4

]φR

φS
+ O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)

=
2M

b

[√
1 − b2uS

2 +
√

1 − b2uR2
]

+
15M2

4b2 [π − arcsin(buS)− arcsin(buR)]

+
M2

4b2 [
buS(15 − 7b2uS

2)√
1 − b2uS

2
+

buR(15 − 7b2uR
2)√

1 − b2uR2
] + O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)
, (A3)

where we use, in the second line, an iterative solution for the orbit equation of Equation (77) in the
Kerr spacetime.

Next, we study the geodesic curvature. On the equatorial plane, we find:

κg =− 1√√√√ Σ2

Δ(Σ − 2Mr)

(
r2 + a2 +

2a2Mr sin2 θ

Σ

)
Σ sin2 θ

(Σ − 2Mr)

βφ,r

=− 2aM
r3 + O

(
aM2

r3

)
. (A4)

Note that a2 terms do not exist. Therefore, we obtain:

∫
cp

κgd� =−
∫ R

S
d�
[

2aM
r2 + O

(
aM2

r3

)]

=− 2aM
b2

∫ φR

φS

cos ϑdϑ + O
(

aM2

b3

)

=
2aM

b2 [
√

1 − b2uR2 +
√

1 − b2uS
2] + O

(
aM2

b3

)
, (A5)

where we use sin φS =
√

rS
2 − b2/rS + O(M/rS) and sin φR = −

√
rR2 − b2/rR + O(M/rR).
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By combining Equations (A3) and (A5), we obtain:

α ≡−
∫∫

∞
R �∞

S

KdS −
∫ S

R
κgd�

=
2M

b

[√
1 − b2uS

2 +
√

1 − b2uR2
]

+
15M2

4b2 [π − arcsin(buS)− arcsin(buR)]

+
M2

4b2

[
buS(15 − 7b2uS

2)√
1 − b2uS

2
+

buR(15 − 7b2uR
2)√

1 − b2uR2

]

− 2aM
b2

[√
1 − b2uR2 +

√
1 − b2uS

2
]
+ O

(
M3

b3 ,
aM2

b3 ,
a2M
b3

)
. (A6)

Note that a2 terms and a3 ones do not appear in α for the finite distance situation as well as in the
infinite distance limit. If we assume the infinite distance limit uR, uS → 0, Equation (A6) becomes:

α → 4M
b

+
15πM2

4b2 − 4aM
b2 . (A7)

This agrees with the known results, especially on the numerical coefficients at the order of M2

and aM.
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Abstract: In this research, we used the Gibbons–Werner method (Gauss–Bonnet theorem) on the
optical geometry of a black hole and wormhole, extending the calculation of weak gravitational
lensing within the Maxwell’s fish eye-like profile and dark-matter medium. The angle is seen as a
partially topological effect, and the Gibbons–Werner method can be used on any asymptotically flat
Riemannian optical geometry of compact objects in a dark-matter medium.
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1. Introduction

Black holes are an essential component of our universe, and one of the most important discoveries
in astrophysics is that, when stars die, they can collapse to become extremely small objects. Black
holes provide an important opportunity for probing and testing the fundamental laws of the universe.
For example, gravitational waves from black holes and neutron star mergers have been recently
detected [1]. Black holes may also hint at the nature of quantum gravity at small scales that change
the area law of entropy. Quantum gravity is far from understood, though theoretically it has seen
tremendous progress, and, in a few years, the Event Horizon Telescope may provide some more
information about it [2–5].

In 1854, Maxwell presented the solution to a mathematical problem related to the passage of rays
through a sphere of variable refractive index, and he noted that the potential existence of a medium
of this kind would possess exceptional optical properties [6]. This is similar to the reflection of the
crystalline lens in fish. This optical tool is Maxwell’s fish eye (MFE), the condition in which all light
rays form circular trajectories. It was a remarkable accomplishment to visualize that a lens whose
refractive index increases toward a point could form perfect images [7].

Luneburg discovered that the ray propagation of MFE is equivalent to ray propagation on a
homogeneous sphere with a unit radius and a unit refractive index within geometrical optics [8]. This
showed that the imaging of variants that have been applied to microwave devices and the fish-eye
lens in photography form an extremely wide-angled image, almost hemispherical in coverage. In 2009,
Leonhardt showed that MFE is also good for waves, and it enables the production of super-resolution
imaging with perfect lensing, which requires negative refractive-index materials. This began a
debate and offered a rich area of research to explore [9–11]. It was shown that perfect imaging
in a homogeneous three-dimensional region is also possible [12]. MFE happens when all light rays
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arising from any point within converge at its conjugate, which means that power released from a
source can only be fully absorbed at its image point, resulting in perfect imaging. There has been a
rapid increase in the importance of perfect imaging in theoretical and experimental optics [13–15].

Fermat’s principle says that light rays always follow extremal optical paths, with path length
being measured by refractive index n. The formula for MFE indicates the interesting possibility that
rays generate a perfect image in a black hole. The refractive index depends only on distance r from the
origin [13,14]. In this paper, we try to understand the effect of an MFE-like profile on the deflection
angle. For simplicity, we used the uniform MFE-like profile, which is different from a nonuniform
MFE profile.

Gravitational lensing is a useful tool of astronomy and astrophysics [16], in which light rays from
distant stars and galaxies are deflected by a planet, a black hole, or dark matter [17,18]. The detection
of dark-matter filaments [19] using weak deflection is a very relevant topic because it can help in
understanding the large-scale structure of the universe [20]. To build a sky map (the refractive index of
the entire visible universe), there is ongoing research on the observation of the effect of cosmological
weak deflection on temperature fluctuations in the cosmic microwave background (CMB) [21]. From a
theoretical point of view, new methods have been proposed to calculate deflection angle. One of them
is the Gauss–Bonnet theorem (GBT), which was first proposed by Gibbons and Werner using optical
geometry [22–24]. The deflection angle is seen as a partially topological effect that can be calculated
by integrating the Gaussian curvature of the optical metric outward from the light ray by using the
following equation: [22,23]

α̂ = −
∫ ∫

D∞
KdA. (1)

Since Gibbons and Werner’s paper on weak deflection angles by GBT provided a unique perspective,
this method has been applied in various cases [25–47].

Dark matter makes up to 27% of the total mass–energy of the universe [48]. We can only detect
dark matter from its gravitational interactions, and we only know that dark matter is nonbaryonic,
nonrelativistic (or cold), and it has weak nongravitational interactions. There are many dark-matter
candidates, such as weakly interacting massive particles (WIMPs), super-WIMPs, axions, and sterile
neutrinos [49]. It has been proposed that dark matter is a composite, such as the dark-atom model,
which we investigate here using the deflection of light through it. Dark matter, although suppressed,
generally has electromagnetic interactions [50], such that the medium of dark matter should have some
optical properties that a traveling photon can sense because of the frequency-dependent refractive
index. The refractive index regulates the speed at which a wave is propagated via a medium. The
particles of dark matter do not get electrically charged, but they can couple to other particles that have
a virtual electromagnetic charge, and can also couple to photons [51–54]. To find the amplitude of
dark-matter annihilation into two photons, we must first calculate the scattering amplitude. One can
obtain the index of the refractive of light, where the real part is related to the speed of propagation.

To investigate weak deflection through dark matter, we consider the propagation effects for the
case that particles of dark matter (warm thermal relics or axionlike particles) have low mass whose
number density is larger than ordinary matter. Put simply, dark matter interacts with photons (if only
through quantum fluctuations), resulting in a refractive index. The relationship between refractive
index and the forward Compton amplitude at relatively low photon energies [50] (Mfwd ∼ −ε2e2) is

n = 1 +
ρ

4m2
dmω2

Mfwd, (2)

where ω is the measured photon frequency, and ρ = 1.1 × 10−6 GeV/cm3 is the present-day
dark-matter density [50]. Neglecting spin, the amplitude is a real and even function of ω (for photon
energies below the inelastic threshold); additionally, the coefficients of the O(ω2n) terms are positive
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and spin-dependent interactions can lead to odd powers in the expansion about ω. Their presence
could give information on the spin of dark matter. Hence, the refractive index becomes [50]:

n = 1 +
ρ

4m2
dm

[
A

ω2 + B + Cω2 +O
(

ω4
)]

. (3)

To do so, we suppose that photons can be deflected through dark matter due to dispersive effects. We
used the index of refractive n(ω) that is manipulated by the scattering amplitude of the light and dark
matter in the forward [50].

Gravitational lensing in plasma has been studied in various cases [45,46,55–57]. For the first
time, Bisnovatyi-Kogan and Latimer showed that, due to the dispersive properties of plasma, even
in homogeneous plasma, gravitational deflection differs from a vacuum deflection angle [56,57].
Moreover, it was shown that the deflection angle is increased due to the presence of plasma [55].
Afterward, Crisnejo and Gallo calculated weak lensing in a plasma medium using the GBT [45].

The main motivation of this research is to shed light on the unexpected features of spacetimes in
regards to an MFE-like profile, and to derive the deflection angle of black holes using the Gauss–Bonnet
theorem in weak limits for a dark-matter medium. We suppose that the refractive index of the medium
is spatially nonuniform but it is uniform at large distances. We also investigated the effect of various
parameters on the refractive index of the medium, which has not been covered in previous studies.

2. Effect of Medium on Deflection Angle of Schwarzschild Black Hole Using
Gauss–Bonnet Theorem

In this section, we first describe the black-hole solution in a static and spherically symmetric
spacetime. Then, we apply the MFE-like profile within the GBT to calculate the weak deflection angle.

The Schwarzschild black-hole spacetime reads

ds2 = − f (r)dt2 + g(r)dr2 + r2(dθ2 + sin2 θdϕ2), (4)

with metric functions

f (r) = g(r)−1 = 1 − 2M
r

. (5)

Analysis of the geodesics equation, the ray equation, is calculated by

ϕ =
∫ b

√
g(r)dr

r2
√

1
f (r) −

b2

r2

, (6)

where b is the impact parameter of the unperturbed photon.
Our universe is homogeneous and isotropic on large scales. Now, we consider isotropic

coordinates that are nonsingular at the horizon and time direction is a Killing vector. Moreover,
time slices become Euclidean with a conformal factor, and one can calculate refractive index n of light
rays around the black hole. Another important feature of isotropic coordinates is that they satisfy
Landau’s condition of coordinate clock synchronization:

∂

∂xj

(
− g0i

g00

)
=

∂

∂xi

(
−

g0j

g00

)
(i, j = 1, 2, 3). (7)

Using transformation

r = ρ

(
1 +

M
2ρ

)2
, (8)
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the Schwarzschild black hole is rewritten in isotropic coordinates (where ρ is an isotropic radial
coordinate) [45]

ds2 = −F(ρ)dt2 + G(ρ)(dρ2 + ρ2dΩ2), (9)

with

F(ρ) =

(
ρ − M

2

ρ + M
2

)2

, and G(ρ) =

(
ρ + M

2
ρ

)4

. (10)

The metric becomes nonsingular at horizon r = 2M. It can also be written in Fermat form of the metric:

ds2 = F(ρ)[−dt2 + n(ρ)2(dρ2 + ρ2dΩ2)], (11)

with index of refractive n(ρ) = c
v(ρ) . For the Schwarzschild black-hole medium, the refractive

index reads

n =

(
1 + M

2ρ

)3

(
1 − M

2ρ

) , (12)

and it can be approximated for large ρ � M

n ≈ 1 +
2M

ρ
. (13)

Now, the ray equation becomes

ϕ =
∫ bdρ

ρ2
√

n2 − b2

ρ2

. (14)

To discuss the deflection angle and extract information of the MFE-like profile, the GBT was used
instead of the null geodesics method. The GBT is calculated using the negative Gauss curvature of the
optical metric.

2.1. Case 1

Let us start from the constant case for medium nm as refractive index:

nm = n0, (15)

where n0 is a constant refractive index of the medium; here, we consider the GBT to obtain the
deflection angle in a medium in weak field limits.

Let us write the optical Schwarzschild spacetime in an equatorial plane [45]:

dσ2 =
n2

m
f (ρ)

[g(ρ)dρ2 + ρ2dϕ2]. (16)

Then, we calculate the Gaussian optical curvature:

K = −2
M

n0
2ρ3 + 3

M2

n0
2ρ4 + O(M3), (17)

which is negative everywhere that gives a universal property of black-hole metrics [23].
It reduces to this form at a linear order of M:

K ≈ −2
M

n0
2ρ3 . (18)
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This result is used to evaluate the deflection angle using a nonsingular domain outside the light
ray (Dρ, with boundary ∂Dρ = γ ∪ Cρ) [22]:

∫∫
Dρ

K dS +
∮

∂Dρ

κ dt + ∑
i

θi = 2πχ(Dρ), (19)

where κ stands for the geodesic curvature, and K is the Gaussian optical curvature, with exterior
angles θi = (θO, θS) and Euler characteristic number χ(Dρ) = 1. At weak limits, (ρ → ∞), θO + θS → π.
Then, the GBT reduces to

∫∫
Dρ

K dS +
∮

Cρ

κ dt
ρ→∞
=

∫∫
D∞

K dS +
∫ π+α̂

0
dϕ = π. (20)

For geodesics γ, geodesic curvature vanishes κ(γ) = 0, and we have

κ(Cρ) = |∇Ċρ
Ċρ|, (21)

with Cρ = ρ = constant. The GBT becomes

lim
ρ→∞

∫ π+α̂

0

[
κ

dσ

dϕ

] ∣∣∣∣
Cρ

dϕ = π − lim
ρ→∞

∫ ∫
Dρ

KdS, (22)

and one can calculate
dσ

dϕ

∣∣∣∣
Cρ

= nm

(
ρ3

ρ − 2M

)1/2

, (23)

where, for very large radial distance,
κ(Cρ)dt = d ϕ. (24)

Therefore, as expected, for this number density profile and physical metric (which imply that the
optical metric is asymptotically Euclidean), we corroborate that

lim
ρ→∞

κ
dσ

dϕ

∣∣∣∣
Cρ

= 1. (25)

At a linear order in M, it follows to use Equation (22) in limit ρ → ∞, and taking geodesic curve
γ, approximated by its flat Euclidean version parametrized as ρ = b/ sin ϕ, with b representing the
impact parameter in the physical spacetime that

α̂ = − lim
ρ→∞

∫ π

0

∫ ρ

b
sin ϕ

KdS. (26)

After nontrivial calculation, we calculate that the deflection angle of the Schwarzschild black hole in
medium for the leading order terms is

α̂ = 4
M

n0 b
, (27)

which agrees with the well-known results in the limit at which its presence is negligible (n0 = 1); this
expression reduces to known vacuum formula α̂ = 4 M

b ., so that GBT exhibits a partially topological
effect. This method can be used in any asymptotically flat Riemannian optical metrics.

2.2. Case 2

Now, we apply the different model of the MFE-like medium [10]

n =
z0

1 + z2 , (28)
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where z0 and z are a constant.
The Gaussian curvature of the optical metric approximating in leading orders is negative

everywhere and found as:

K = −2

(
z2 + 1

)2 M
z0

2ρ3 + O(M3), (29)

Then, using the same method, we calculate the deflection angle as follows:

α̂ � 4
Mz2

z0 b
+ 4

M
z0 b

. (30)

At z = 0 and z0 = 1, it reduces to the exact Schwarzschild case.

2.3. Case 3

The refractive index for the dark-matter medium [50]

n(ω) = 1 + βA0 + A2ω2 (31)

where β = ρ0
4m2ω2 and ρ0 are the mass density of the scattered dark-matter particles, and

A0 = −2ε2e2 and A2j ≥ 0.
The terms in O

(
ω2) and higher are related to the polarizability of the dark-matter candidate.

Note that the order of ω−2 is due to the charged dark-matter candidate and ω2 for a neutral dark-matter
candidate. Moreover, there may be a linear term in ω when parity and charge-parity asymmetries
are present.

The Gaussian curvature is obtained as:

K ≈ −2
M

(A2 ω2 + β A0 + 1)2
ρ3

+ O(M3) (32)

The deflection angle is found as follows:

α̂ = 4
M

(A2 ω2 + 1) b
− 4

MA0

(A2 ω2 + 1)2 b
β + O

(
β2
)

(33)

The effect of dark matter can be seen by comparison with the above deflection angle by the
Schwarzschild black hole. Hence, dark matter gives a small deflection angle compared to the
standard case.

3. Effect of Medium on Deflection Angle of Schwarzschild-Like Wormhole Using
Gauss–Bonnet Theorem

In this section, we consider the static Schwarzschild-like wormhole solution [58] with metric

ds2 = −(1 − 2M/r + λ2)dt2 +
dr2

1 − 2M/r
+ r2dΩ2

(2) , (34)

which reduces to the black-hole metric in Equation (4) at λ = 0. Using the transformation of
t → t/

√
1 + λ2 and M → M(1 + λ2), the metric functions of the Schwarzschild-like wormhole

spacetime become:

f (r) = 1 − 2M
r

, g(r)−1 = 1 − 2M(1 + λ2)

r
. (35)
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3.1. Case 1

We first use the constant profile as refractive nm = n0 to calculate the deflection angle in the
medium in weak field limits. Using the same procedure, we obtain the optical metric, and calculate
the Gaussian optical curvature for the Schwarzschild-like wormhole at a linear order of M as follows:

K ≈ −
(
λ2 + 2

)
M

ρ3n0
2 + O(M3), (36)

and after similar calculations, the corresponding deflection angle in the leading order terms is

α̂ = 2
Mλ2

n0 b
+ 4

M
n0 b

, (37)

which agrees with the well-known results in the limit in which the medium is negligible (n0 = 1) [42].

3.2. Case 2

To see the effect of the MFE-like medium, we use [10]

n =
z0

1 + z2 , (38)

where z0 and z are a constant. The Gaussian curvature of the optical metric approximating in leading
orders is negative everywhere and found as:

K ≈ −
(
z2 + 1

)2 (
λ2 + 2

)
M

ρ3z0
2 (39)

Using the GBT, the deflection angle is calculated as follows:

α̂ � 2
Mλ2z2

z0 b
+ 2

Mλ2

z0 b
+ 4

Mz2

z0 b
+ 4

M
z0 b

. (40)

At z = 0 and z0 = 1, it reduces to the previous result [42].

3.3. Case 3

Finally, we use the refractive index for dark matter given in Equation (31) to calculate the deflection
angle of a wormhole in a medium. The Gaussian curvature is obtained as:

K ≈ −
(
λ2 + 2

)
M

ρ3 (A2ω2 + A0 β + 1)2 (41)

The deflection angle is found as follows:

α̂ = 2
Mλ2

(A2 ω2 + A0 β + 1) b
+ 4

M
(A2 ω2 + A0 β + 1) b

(42)

We find that the deflected photon through dark matter around the Schwarzschild-like wormhole
has a large deflection angle compared to the standard case.

4. Conclusions

We calculated the deflection angle of black holes and wormholes in a dark-matter medium using
the GBT. This was achieved by constructing optical metrics. In summary, we investigated that GBT
is a partially topological effect. We demonstrated this by using three different cases. In the first
case, we used the constant profile as a refractive index. Then, by constructing the optical geometry
and using the GBT, we obtained the deflection angle in the weak field limit. The deflection angle of
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the Schwarzschild black hole was correctly calculated in a medium that has a constant n0 refractive
index. In the second case, we used the MFE-like model (but uniform in large distances), repeated the
calculation, and showed that it produces a similar effect.

In Section 2, we repeated our method on the Schwarzschild-like wormhole to see the effect of the
dark-matter medium when light is propagated through it. Note that we supposed that the refractive
index is spatially nonuniform as long as it is uniform at large distances. In the first case, we again used
the constant refractive index, we considered the MFE-like profile, and, finally, the medium for the dark
matter was taken to find the deflection angle in the weak field limit. We concluded that the deflection
angle by a black hole decreases in a medium of dark matter, as seen in Equation (33). On the other
hand, deflection angle by a wormhole increases, as seen in Equation (42).

These results suggest that weak deflection within a dark-matter medium or MFE-like model
(perfect imaging), can be calculated using the Gibbons and Werner method, which gives us hints to
understanding the nature of dark matter.
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Abstract: In this paper, we revisit the rotating global monopole metric and extend the metric to
a rotating dyonic global monopole in the presence of a perfect fluid. We then show that the surface
topology at the event horizon, related to the metric computed, is a 2-sphere using the Gauss-Bonnet
theorem. By choosing ω = −1/3, 0, 1/3 we investigate the effect of dark matter, dust and radiation
on the silhouette of a black hole. The presence of the global monopole parameter γ and the perfect
fluid parameters υ also deform the shape of a black hole’s shadow, which has been depicted through
graphical illustrations. Finally, we analyse the energy emission rate of a rotating dyonic global
monopole surrounded by perfect fluid with respect to parameters.

Keywords: rotating black hole; global monopole; perfect fluid; scalar field; shadows

1. Introduction

Black holes are fascinating objects predicted to exist by Einstein’s theory of general relativity.
Recent astrophysical observation shows that such objects may exist at the center of almost every
galaxy [1,2]. By studying the light-like geodesics around black holes it is shown that photons can be
absorbed by the black hole or can escape from black holes [3]. That is to say a boundary is defined
between these two categories of light-like geodesics, giving rise to a dark region known as the shadow.
Very recently, a project known as the Event Horizon Telescope (EHT) Collaboration announced the
first image concerning the detection of an event horizon of a supermassive black hole at the center
of a giant elliptical galaxy, M87 [4,5]. That being said, the black hole shadow has recently become
a hot topic among researchers for the simple fact it is best to evaluate the soon-expected observational
data. Historically, Synge was the first to propose the apparent shape of a spherically symmetric black
hole [6]. After that Luminet [7] discussed the appearance of a Schwarzschild black hole, the shadow
of a Kerr black hole was studied by Bardeen [8], the shadow of Kerr-Newman black holes [9], naked
singularities with deformation parameters [10], Kerr-Nut spacetimes [11], while shadows of black
holes in Chern-Simons modified gravity, Randall-Sundrum braneworlds, and Kaluza-Klein rotating
black holes have been studied in References [12–14], and many other interesting studies concerning the
effect of dark matter and cosmological constant on the shadow images [15–22], Kerr-like wormholes as
well as traversable wormholes and many other interesting studies [23–31]. Some authors have also
tried to test theories of gravity by using the observations obtained from the shadow of Sgr A* [32–35].
Note that the new general approach for shadow calculation for axially symmetric black holes was

Universe 2020, 6, 23; doi:10.3390/universe6020023 www.mdpi.com/journal/universe85
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developed in Reference [36], while the intrinsic curvature and topology of shadows in Kerr spacetime
was developed in References [37,38].

Global monopoles are topological defects which may have been produced during the phase
transitions in the early universe. In fact, global monopoles are just one type of topological defects.
Other types of topological objects are expected to exist including domain walls and cosmic strings
(e.g., [39]). More precisely, a global monopole is a heavy object characterized by spherically symmetry
and divergent mass. Such objects, which may have been formed during the phase transition of a system
composed of a self-coupling triplet of scalar fields φa which undergoes a spontaneous breaking of
global O(3), gauge symmetry down to U(1). The gravitational field of a static global monopole
was found by Barriola and Vilenkin for the first time and are expected to be stable against spherical
as well as polar perturbations [40]. According to their model, global monopoles are configurations
whose energy density decreases with the distance r−2 and whose spacetimes exhibit a solid angle
deficit given by Δ = 8π2γ2, where γ is the scale of gauge-symmetry breaking. The rotating metric of
a global monopole was investigated by Filho and Bezerra [41] Gravitational lensing by rotating global
monopoles has been investigated in Reference [42] and more recently in Reference [43]. Among other
things, global monopoles are expected to rotate and to carry magnetic charges.

In this paper, we aim to study the impact of the rotating global monopole black hole surrounded
by perfect fluid on the black hole shadow. In Section 2, we consider the gravitational field of
a static dyonic black hole (SDBH) with a global monopole surrounded by perfect fluid. In Section 3,
by applying a complex coordinate transformation known as the Newman-Janis method [44] we find
the spacetimes of a rotating dyonic black hole (RDBH) with a global monopole surrounded by perfect
fluid. In Section 4, we consider the null geodesics using Hamilton-Jacobi equation. In Section 5,
we study the impact of dark matter, dust and radiation on the shape of global monopole shadow.
In Section 6, we study the energy emission rate. Finally in Section 7, we comment on our results.

2. An SDBH with a Global Monopole in Perfect Fluid

The action, S(EM), for Einstein Maxwell gravity along with actions S(D) and S respectively
defining presence of a global monopole and matter distribution, can be altogether written as:

S = S(EM) + S(D) + S . (1)

The Einstein-Maxwell action S(EM) is given by:

S(EM) =
∫ √

−gd4x
(R

2κ
− 1

4
FμνFμν

)
, (2)

where κ = 8π. The quantities g, R and Fμν are, respectively, the determinant of the metric gμν

associated to the gravitational field, the scalar invariant and the electromagnetic tensor. Also μ,
ν = 0, 1, 2, 3.

The corresponding Einstein field equations read:

Rμν −
1
2

gμνR = 8πTμν. (3)

While the corresponding Maxwell equations are:

∇μFμν = 0. (4)
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Here Tμν is the total stress energy tensor which we discuss later in this section. Since we are
considering a dyonic black hole, which means that it is comprised of both electric charge QE and
magnetic charge QM, the electromagnetic potential has two non zero terms, that is, [45,46]:

A =
QE
r

dt − QM cos θdϕ. (5)

The only non-vanishing components of the electromagnetic tensor:

Ftr = −Frt =
QE

r2 , Fθϕ = −Fϕθ = QM sin θ. (6)

Now the action S(D) corresponds to the matter having a defect– a global monopole which is
a heavy object formed in the phase transition of a system composed by a self-coupling scalar triplet
field Φs, where s runs from 1 to 3. Thus the action in presence of a matter field Φs coupled to gravity
that characterizes a global monopole [40]:

S(D) =
∫ √

−gd4x
(

1
2

gμν∂μΦs∂νΦs − λ

4

(
Φ2 − γ2

)2
)

, (7)

where Φ2 = ΦsΦs, while λ is the self-interaction term and γ is the scale of a gauge-symmetry
breaking. The monopole can be described through the field configuration Φs = γh(r)xs

|x| , in which

xs = {r sin θ cos ϕ, r sin θ sin ϕ, r cos θ }, such that |x| = r2, and h(r) is a function of radial coordinate r.
The field equations for the scalar field Φs reduces to a single equation for h(r) given as:

f (r)h′′(r) +
[

2 f (r)
r

+
1

2 f (r)
( f 2(r))′

]
h′(r)− 2h(r)

r2 − λγ2h(r)
(

h2(r)− 1
)
= 0. (8)

With these equations in mind, and without loss of generality we can choose a spherically
symmetric metric written as follows:

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dθ2 + r2 sin2 θdϕ2. (9)

In our case the total stress-energy momentum reads:

Tμν = T(EM)
μν + T(D)

μν + Tμν (10)

in which:

T(EM)
μν =

1
4π

(
FμσFν

σ − 1
4

gμνFρσFρσ

)
, (11)

T(D)
μν = ∂μφa∂νφa − 1

2
gμνgρσ∂ρφa∂σφa − gμνλ

4

(
φ2 − γ2

)2
, (12)

and Tμν is the energy-momentum tensor of the surrounding matter. The energy momentum-tensor of
the surrounding fluid has the following components [47]:

T t
t = T r

r = −ρ, (13)

and:
T θ

θ = T ϕ
ϕ =

1
2
(1 + 3ω)ρ. (14)
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Outside the core h → 1 and the energy-momentum tensor of the monopole has the following
components [40]:

T(D)t
t = T(D)r

r = −γ2
[

h2

r2 + f (r)
(h′)2

2
+

λγ2

4
(h2 − 1)2

]
→ −γ2

r2 , (15)

T(D)θ

θ = T(D)ϕ

ϕ = −γ2
[

f (r)
(h′(r))2

2
+

λγ2

4
(h2(r)− 1)2

]
→ 0. (16)

The surrounding matter, whose action is denoted by S in Equation (1), can generally be a dust,
radiation, quintessence, cosmological constant, phantom field or even any combination of them. Thus,
the Einstein’s field equations yield:

r f ′(r) + f (r)− 1
r2 +

8πγ2

r2 +
Q2

E
r4 +

Q2
M

r4 + 8πρ = 0, (17)

r f ′′(r) + 2 f ′(r)
2r

− Q2
E

r4 − Q2
M

r4 − 4πρ(3ω + 1) = 0. (18)

Now by solving the set of differential equations (18) and (19) one obtains the following general
solution for the metric:

f (r) = 1 − 8πγ2 − 2M
r

+
Q2

E
r2 +

Q2
M

r2 − υ

r1+3ω
, (19)

with the energy density in the form:

ρ = − 3 ω υ

8πr3(1+ω)
. (20)

Note that, υ is the perfect fluid parameter. From the weak energy condition it follows the positivity
of the energy density of the surrounding field, ρ ≥ 0, which should satisfy the following constraint
ωυ ≤ 0.

3. An RDBH with a Global Monopole in Perfect Fluid

We now extend the study of static global monopole solution and obtain its rotating counterpart.
For this we apply Newman-Janis formalism to the metric (9) along with (19). As a first step to this
formalism, we transform Boyer-Lindquist (BL) coordinates (t, r, θ, φ) to Eddington-Finkelstein (EF)
coordinates (u, r, θ, φ). This can be achieved by using the coordinate transformation:

dt = du +
dr

1 − 8πγ2 − 2M
r +

Q2
E

r2 +
Q2

M
r2 − υ

r3ω+1

, (21)

which yields line element in the form:

ds2 = −
(

1 − 8πγ2 − 2M
r

+
Q2

E
r2 +

Q2
M

r2 − υ

r3ω+1

)
du2 − 2dudr + r2dΩ2, (22)

where dΩ2 = dθ2 + sin2 θdφ2. It is worth noting that, compared to the previous work in Reference [41],
we shall use the metric form (9) along with f (r) given by Equation (19) to obtain a simple metric for the
rotating black hole with a global monopole. This metric can be decomposed in terms of null tetrads as:

gμν = −lμnν − lνnμ + mμmν + mνmμ, (23)
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where the null vectors are defined as:

lμ = δ
μ
r , (24)

nμ = δ
μ
u − 1

2

(
1 − 8πγ2 − 2M

r
+

Q2
E

r2 +
Q2

M
r2 − υ

r3ω+1

)
δ

μ
r , (25)

mμ =
1√
2 r

(
δ

μ
θ +

ι̇

sin θ
δ

μ
φ

)
, (26)

mμ =
1√
2 r

(
δ

μ
θ − ι̇

sin θ
δ

μ
φ

)
. (27)

It is obvious from the notation that m̄μ is a complex conjugate of mμ. These vectors further satisfy
the conditions for normalization, orthogonality and isotropy as:

lμlμ = nμnμ = mμmμ = m̄μm̄μ = 0, (28)

lμmμ = lμm̄μ = nμmμ = nμm̄μ = 0, (29)

−lμnμ = mμm̄μ = 1. (30)

Following the Newman–Janis prescription we write:

x′μ = xμ + ia(δμ
r − δ

μ
u ) cos θ →

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u′ = u − ia cos θ,
r′ = r + ia cos θ,
θ′ = θ,
φ′ = φ.

(31)

in which a stands for the rotation parameter. Next, let the null tetrad vectors Za = (la, na, ma, m̄a)

undergo a transformation given by Zμ = (∂xμ/∂x′ν)Z′ν, following:

l′μ = δ
μ
r , (32)

n′μ = δ
μ
u − 1

2
Fδ

μ
r , (33)

m′μ =
1√
2 Σ

[
(δ

μ
u − δ

μ
r )ι̇a sin θ + δ

μ
θ +

ι̇

sin θ
δ

μ
φ

]
, (34)

m′μ =
1√
2 Σ

[
(δ

μ
u − δ

μ
r )ι̇a sin θ + δ

μ
θ +

ι̇

sin θ
δ

μ
φ

]
, (35)

where we replaced f (r) to F (r, a, θ) and h(r) = r2 to Σ(r, a, θ). With the help of the above equations
the contravariant components of new metric are computed as:

guu =
a2 sin2 θ

Σ
, guφ =

a
Σ

, gur = 1 − a2 sin2 θ

Σ
,

grr = F +
a2 sin2 θ

Σ
, grφ = − a

Σ
, gθθ =

1
Σ

,

gφφ =
1

Σ sin2 θ
. (36)

The new metric is found as follows:

ds2 = −Fdu2 − 2dudr + 2a sin2 θ (F − 1) dudφ + 2a sin2 drdφ + Σdθ2

+ sin2 θ
[
Σ + a2 (2 −F ) sin2 θ

]
dφ2. (37)
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Using the method without a complexification introduced in Reference [48] we revert the EF
coordinates back to BL coordinates by using the following transformation:

du = dt + λ(r)dr, dφ = dϕ + χ(r)dr, (38)

where

λ(r) =
−a2 − k(r)

f (r)h(r) + a2 , χ(r) =
−a

f (r)h(r) + a2 , k(r) = h(r) = r2, (39)

with

F =
f (r)h(r) + a2 cos2 θ

(k(r) + a2 cos2 θ)
2 Σ. (40)

Hence the rotating black hole solution in Boyer-Lindquist coordinates turns out to be [49]:

ds2 = − f (r)h(r) + a2 cos2 θ

(k(r) + a2 cos2 θ)
2 Σdt2 + 2a sin2 θ

f (r)h(r)− k(r)

(k(r) + a2 cos2 θ)
2 Σdtdϕ +

Σ
f (r)h(r) + a2 dr2 + Σdθ2

+ Σ sin2 θ

[
1 + a2 sin2 θ

2k(r)− f (r)h(r) + a2 cos2 θ

(k(r) + a2 cos2 θ)
2

]
dϕ2.

Following Reference [48] using the condition k(r) = h(r) = r2 one can find Σ = r2 + a2 cos2 θ.
Finally the metric can also be written as:

ds2 = −
(

1 − r2(1 − f (r))
Σ

)
dt2 − 2a sin2 θ

(
r2(1 − f (r))

Σ

)
dtdϕ +

Σ
Δ

dr2 + Σdθ2

+ sin2 θ

[
(r2 + a2)2 − a2Δ sin2 θ

Σ

]
dϕ2, (41)

where in order to simplify the notation we introduce the following quantities:

Δ = r2 f (r) + a2 = r2 + a2 − 2Mr − 8πr2γ2 + Q2
E + Q2

M − υ

r3ω−1 , (42)

where f (r) is given by Equation (19). In this work, we consider three different cases of ω = −1/3
dark matter dominant, 0 (dust dominant) and 1/3 (radiation dominant). For spin a = 0, perfect
fluid parameter υ = 0 and no charges, the above metric reduces to Schwarzschild black hole with
global monopole [50]. It would certainly be interesting to generalize our solution by including the
cosmological constant as well. As a particular example, we point out the Kerr-Newman-NUT black hole
which is a subclass of the Plebanski-Demianski class [51], but our solution it seems not to be the case.
The shadows of Kerr-Newman-NUT black holes with cosmological constant has been investigated
by Grenzebach et al. [52]. The electromagnetic field of a black hole is defined by its vector potential.
As already mentioned, in case of a static black hole the vector potential is given by Equation (5).
For the rotating case, the Newman-Janis method can also be applied on Equation (5) using a gauge
transformation such that grr = 0 and Ar = 0. For the detailed procedure the authors refer the readers
to Reference [46]. The vector potential computed through Newman-Janis formalism for a rotating
dyonic black hole is given by [46]:

A =

(
rQE − aQM cos θ

Σ

)
dt +

(
− ra

Σ
QE sin2 θ +

r2 + a2

Σ
QM cos θ

)
dϕ. (43)
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It has been shown in Reference [48] that metric similar to (41) satisfies the Einstein field equations.
For the Einstein tensor Gμν and energy-momentum tensor Tμν, the Einstein field equations are given
by Gμν = Rμν − 1/2gμν R = 8πTμν. For simplicity, let f (r) = 1 − 2F(r)/r2, where F(r) = 4πγ2r2 +

Mr − (Q2
E + Q2

M)/2 + υ r1−3ω/2, then the nonvanishing components of Gμν are:

Gtt =
2

Σ3

(
2F(r)−

(
(r2 + a2) + a2 sin2 θ

)) (
F(r)− rF′(r)

)
− a2 sin2 θ

Σ2 F′′(r),

Grr =
2

ΣΔ
(

F(r)− rF′(r)
)

,

Gθθ =
−2
Σ
(

F(r)− rF′(r)
)
− F′′(r), (44)

Gtϕ =
4a sin2 θ

Σ3

(
(r2 + a2)− F(r)

) (
F(r)− rF′(r)

)
+

a
Σ2

(
r2 + a2

)
sin2 θF′′(r),

Gϕϕ =
sin2 θ

Σ3

(
4a2 sin2 θF(r)− (r2 + a2)

(
2(r2 + a2) + a2 sin2 θ

)) (
F(r)− rF′(r)

)
− (r2 + a2) sin2 θ

Σ2 F′′(r).

In terms of the orthogonal basis, for the metric (41):

eμ
t =

1√
ΣΔ

(
r2 + a2, 0, 0, a

)
, eμ

r =
1√
Σ
(0, 1, 0, 0) , (45)

eμ
θ =

1√
Σ
(0, 0, 1, 0) , eμ

ϕ =
1√
ΣΔ

(
a sin2 θ, 0, 0, 1

)
.

and the Einstein tensor Gμν, the energy momentum tensor is expressed as:

pt =
1

8π
eμ

t eν
t Gμν, pr =

1
8π

eμ
r eν

r Gμν,

pθ =
1

8π
eμ

θ eν
θ Gμν, pϕ =

1
8π

eμ
ϕ eν

ϕ Gμν. (46)

Equations (41)–(46) gives the components for energy momentum tensor as:

pt =
1

8πΣ2

(
8πγ2r2 − 3υωr1−3ω + (Q2

E + Q2
M)
)
= −pr, (47)

pθ = −pr −
1

8πΣ

(
8πγ2 − 3υω(1 − 3ω)

2r1+3ω

)
= pϕ.

Analogous to a Kerr black hole, a ring singularity resides inside the black hole defined by
metric (41). This can be demonstrated by computing the points at which the Kretschmann scalar
Ks = RμνσρRμνσρ turns to infinity. For the metric (41), the Kretschmann scalar has the value:

Ks =
Z(r, a, θ, QE, QM, ω, υ, γ)

r2(1+3ω)(r2 + a2 cos2 θ)2
. (48)

where Z(r, a, θ, QE, QM, ω, υ, γ) is a tedious function. From the above expression, we observe that
for ω = −1/3, 0, 1/3 the poles lie r2 + a cos2 θ = 0 or when r = 0 and θ = π/2. This leads us to the
interpretation that a test particle moving in an equatorial plane θ = π/2 will hit the singularity at
r = 0.

3.1. Surface Topology

It is interesting to determine the surface topology of the global monopole spacetime at the event
horizon. At a fixed moment in time t, and a constant r = r+, the metric (41) reduces to:

ds2 = Σ(r+, θ)dθ2 +

(
2Mr+ + 8πr2

+γ2 − Q2
E − Q2

M +
υ

r3ω−1
+

)2
sin2 θ

Σ(r+, θ)
dϕ2, (49)
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The above metric has the following determinant:

det g(2) =

(
2Mr+ + 8πr2

+γ2 − Q2
E − Q2

M +
υ

r3ω−1
+

)2

sin2 θ. (50)

Theorem 1. Let M be a compact orientable surface with metric g(2), and let K be the Gaussian curvature with
respect to g(2) on M. Then, the Gauss-Bonnet theorem states that:

∫∫
M

K dA = 2πχ(M). (51)

Note that dA is the surface line element of the 2-dimensional surface and χ(M) is the Euler
characteristic number. It is convenient to sometimes express the above theorem in terms of the Ricci
scalar, in particular for the 2-dimensional surface there is a simple relation between the Gaussian
curvature and Ricci scalar given by:

K =
R
2

. (52)

Yielding the following from:
1

4π

∫∫
M

RdA = χ(M). (53)

A straightforward calculation using the metric (49) yields the following result for the Ricci scalar:

R =
2(r2

+ + a2)(r2
+ − 3a2 cos2 θ)(

r2
+ + a2 cos2 θ

)3 (54)

From the GBT we find:

χ(M) =
1

4π

∫ 2π

0

∫ π

0

[
2(r2

+ + a2)(r2
+ − 3a2 cos2 θ)(

r2
+ + a2 cos2 θ

)3

]√
det g(2)dθdϕ. (55)

Finally, solving the integral we find:

χ(M) = 2. (56)

Hence the surface topology is a 2-sphere at the event horizon, since we know that χ(M)sphere = 2.

3.2. Shape of Ergoregion

Let us now proceed to study the shape of the ergoregion of an RDBH with a global monopole.
In particular we shall be interested to plot the shape of the ergoregion in the xz-plane. Recall that the
horizons of the RDG can be found by solving Δ = 0:

r2 + a2 − 2Mr − 8πr2γ2 + Q2
E + Q2

M − υ

r3ω−1 = 0, (57)

on the other hand, the limit surfaces or inner and outer ergosurface is given by gtt = 0, i.e.,

r2 + a2 cos2 θ − 2Mr − 8πr2γ2 + Q2
E + Q2

M − υ

r3ω−1 = 0. (58)

There is an interesting process which relies on the presence of an ergoregion, namely from such
a rotating black hole energy can be extracted, and is known as the Penrose process. In Figure 1 we
plot the shape of ergoregion for different values of a, ω, γ, and υ. One can observe that the event
horizon and static limit surface meet at the poles while the region between them is the ergoregion
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which supports negative energy orbits. Furthermore, the shape of ergoregion depends on the spin a,
however due to the small values of υ we observe small changes related to the value of ω.
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Figure 1. Plots showing the shape of ergoregion in xz-plane for different values of a, ω, and υ. We have
chosen QE = QM = 0.1 in all plots. The blue and the red lines correspond to horizons and static limit
surfaces, respectively. The outer red line corresponds to the static limit surface, whereas the two blue
lines correspond to the two horizons. Due to the small values of υ and a arbitrary value of a we observe
almost indistinguishable plots for the shape of the ergoregion.

4. Null Geodesics

Our main objective is to study the shadow cast by the black hole defined by metric (41). To do so,
we first need to analyze the geodesics structure of photons moving around the compact gravitational
source. This will enable us to detect the unstable photon orbits which in turn defines the boundary of
the shadow.

To observe the null geodesics around the RDGM present in perfect fluid, we consider the
Hamilton-Jacobi method. The Hamilton-Jacobi equation is given by:

∂τJ = −H. (59)
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In the above equation:

On Left Side J is the Jacobi action, defined as the function of affine parameter τ and coordinates xμ

i.e., J = J (τ, xμ).
On Right Side H is the Hamiltonian of test particle’s motion and is equivalent to gμν∂μJ ∂νJ .

In the spacetime under consideration, along the photon geodesics the energy E and momentum
L, defined respectively by Killing fields ξt = ∂t and ξφ = ∂φ, are conserved. The mass m = 0 of the
photon is also constant. Using these constants of motion we can thus separate the Jacobi function as:

J =
1
2

m2τ − Et + Lφ + Jr(r) + Jθ(θ), (60)

where the functions Jr(r) and Jθ(θ) respectively depends on coordinates r and θ.
Combining Equations (59) and (60) yields a set of equations, which describes the dynamics of

a test particle around the rotating black hole in perfect fluid matter, as:

Σ
dt
dτ

=
r2 + a2

Δ
[E(r2 + a2)− aL]− a(aE sin2 θ − L), (61)

Σ
dr
dτ

=
√
R(r), (62)

Σ
dθ

dτ
=
√

Θ(θ), (63)

Σ
dϕ

dτ
=

a
Δ
[E(r2 + a2)− aL]−

(
aE − L

sin2 θ

)
, (64)

where R(r) and Θ(θ) read as:

R(r) = [E(r2 + a2)− aL]2 − Δ[m2r2 + (aE − L)2 +K], (65)

Θ(θ) = K−
(

L2

sin2 θ
− a2E2

)
cos2 θ, (66)

with K the Carter constant.

5. Circular Orbits

Now we consider a gravitational source placed between a light emitting source and an observer at
infinity. The photons emitted from the light source will form two kinds of trajectories—the ones which
eventually fall into the black hole and the ones which scatter away from it. The region separating these
trajectories contains unstable circular orbits. These unstable circular orbits form a dark region in sky
thus forming the contour of the shadow. In this section we intend to discuss the presence of unstable
circular orbits around the black hole under consideration. For this we consider photon as a test particle
and hence take m = 0. We can express the radial geodesic equation in terms of effective potential Veff
of photon’s radial motion as:

Σ2
(

dr
dτ

)2
+ Veff = 0.

For our convenience we introduce two independent parameters ξ and η [53] as:

ξ = L/E, η = K/E2. (67)

The effective potential in terms of these two parameters is then expressed as:

Veff = Δ((a − ξ)2 + η)− (r2 + a2 − a ξ)2, (68)
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where we have replaced Veff/E2 by Veff. Figure 2 shows the variation in effective potential associated
with the radial motion of photons. From the figure we observe that in all three cases the value of
effective potential decreases with increase in parameter γ. Now the circular photon orbits exists when
at some constant r = rc the conditions:

Veff(r) = 0,
dVeff(r)

dr
= 0 (69)

are satisfied. We then use Equation (68) in Equation (69) and thus obtain:

[η + (ξ − a)2]Δ − (r2 + a2 − aξ)2 = 0, (70)

4(r2 + a2 − aξ)− [η + (ξ − a)2]A(r) = 0, (71)

where:
A(r) = 1 − 8πγ2 − M

r
+ (

3ω − 1
2

)
υ

r1+3ω
. (72)
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Figure 2. The effective potential of photon moving in equatorial plane, with respect to its radial motion:
ω = 1/3 for radiation, ω = 0 for dust and ω = −1/3 for dark matter.

Combining Equations (70) and (71) results in:

a ξ = r2 + a2 − 2 Δ
A(r)

, (73)

η =
4Δ

A(r)2 − 1
a2

(
r2 − Δ

A(r)2

)2
(74)

It is worth mentioning here that impact parameters, ξ and η, will be affected not just by radial
coordinate r, spin parameter a and mass of black hole M but also by electric charge QE, magnetic
charge QM, monopole parameter γ and perfect fluid parameter υ. The unstable circular orbits are
located at local maxima of the potential curves, that is, when V

′′
eff < 0 or:

(
Δ′2 + 2ΔΔ′′

)
r + 2ΔΔ′ > 0 (75)

6. Silhoutte of Black Holes

In this section, we extend our calculations to observe shadow of RDGM surrounded by perfect
fluid. To gain the optical image we specify the observer at position (ro, θo), where ro = r → ∞ and
θo is the angular coordinate at infinity, on observer’s sky. The new coordinates, also widely known
as celestial coordinates, α and β, are then introduced. These coordinates are selected such that α and
β correspond to the apparent perpendicular distance of the image from axis of symmetry and its
projection on the equatorial plane, respectively.
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Due to the presence of global monopole, we have asymptotically non flat solutions due to the
global nontrivial topology. Now we obtain the proper celestial coordinates for the asymptotically
non-flat solution by adopting [10]:

α = lim
r→∞

−r
p(φ)

p(t)
(76)

β = lim
r→∞

r
p(θ)

p(t)
(77)

where (p(t), p(r), p(θ), p(φ)) are the tetrad components of the photon momentum with respect to locally
nonrotating reference frame. So basically one can define the observer’s sky as the usual cases in which
the observer bases eμ

(ν)
can be expanded as a form in the coordinate bases. In the limit r → ∞ can relate

the above coordinates to parameters ξ and η, which then yield:

α = −
√

1 − 8πγ2 ξ

sin θ
(78)

β = ±
√

1 − 8πγ2
√

η + a2 cos2 θ − ξ2 cot2 θ, (79)

for the case ω = 0 and ω = 1/3. And similarly:

α = −
√

1 − 8πγ2 − υ
ξ

sin θ
(80)

β = ±
√

1 − 8πγ2 − υ
√

η + a2 cos2 θ − ξ2 cot2 θ (81)

for the case of quintessence, that is, ω = −1/3. We observe that in the dark matter case there is
a similar contribution term compared to the global monopole. In the limit γ → 0 and υ → 0 we obtain
the usual relations for celestial coordinates for the asymptotically flat solution. We expect that the
parameters involved in RDGM in the presence of a perfect fluid will affect the shape of its shadow.
This can be clearly confirmed through Equation (81) as it depends not only on spin parameter a and
angular coordinate θo but also on γ, ω and perfect fluid parameter υ. Later, we will justify our results
also through graphical interpretations.

As our observer is placed in the equatorial plane (θ = π/2), α and β reduce to:

α = −
√

1 − 8πγ2 ξ (82)

β = ±
√

1 − 8πγ2 √η, (83)

for the case ω = 0 and ω = 1/3. And

α = −
√

1 − 8πγ2 − υ ξ (84)

β = ±
√

1 − 8πγ2 − υ
√

η (85)

for the case ω = −1/3. Figures 3 and 4 show deformation in the shapes of the shadow with respect to
monopole parameter γ and perfect fluid parameter υ, respectively. It is a well known observation now
that the rotational effect in a black hole distorts its shape. That being said, we notice in Figure 3 that
for small spin parameter, a, the shadow of the black hole maintains a circular shape along with the
increase in its size with the inclination of γ. As for larger spin values, the shadow is clearly distorted
and matches with its Kerr counterpart in perfect fluid [19] for γ = 0. Figure 4 shows the effect of
parameter υ on the rotating dyonic black hole with a global monopole present in perfect fluid. It is
noticed in Figure 4 that as perfect fluid parameter, υ, increases the size of the shadow also increases.
A distortion is noticed in shape of the shadow when the spin parameter a is increased. Also, in the
case of dark matter and dust, there is a significant change in the size of the shadow with respect to υ.
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On the other hand, in the case of radiation we do not observe any significant effect of perfect fluid
parameter υ, in fact the effect is negligibly small.

In [10], the authors introduce two observables, radius Rs and distortion δs, to analyze the size and
form of the shadow. The first observable Rs is the approximate radius of the shadow. It is defined by
considering a reference circle passing through three points on the boundary of the shadow, such that
(αtp, βtp) is the top most point on the shadow, (αbm, βbm) is the bottom most point on the shadow and
(αr, 0) is the point corresponding to unstable circular orbit seen by an observer on reference frame.
Thus:

Rs =
(αtp − αr)2 + β2

tp

2|αtp − αr|
. (86)
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Figure 3. Variation in shape of a rotating dyonic global monopole surrounded by a perfect fluid.
Magnetic and electric charges are kept constant such that QE = 10−2 = QM. In each graph the Kerr
case, that is, γ = 0 and υ = 0, is represented by a solid line, γ = 0.05 by dotdashed and γ = 0.08 by
dashed lines. For dark matter (ω = −1/3) and dust (ω = 0) case υ = 0.01, whereas υ = −0.01 in the
case of radiation (ω = 1/3).
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Figure 4. Variation in the shape of a rotating dyonic black hole with global monopole surrounded by
a perfect fluid, for different values of perfect fluid parameter υ. Magnetic and electric charges along
with the global monopole parameter are kept constant such that QE = 10−2 = QM and γ = 0.08. For
dark matter and dust case υ = 0 (Solid), 0.05 (DotDashed) and 0.1 (Dashed). In the case of radiation
υ = 0 (Solid), −0.01 (DotDashed) and −0.05 (Dashed).

The second observable δs is the distortion parameter. Let DCS be the difference between the
contour of shadow and the reference circle. Then for the point (α̃p, 0) lying on the reference circle and
the point (αp, 0) lying on the contour of the shadow, DCS = |α̃p − αp|. Thus:

δs =
α̃p − αp

Rs
.

For our case, we consider the points (α̃p, 0) and (αp, 0) to be on the equatorial plane, opposite
to the point (αr, 0). The variations in these observables with respect to monopole parameter γ are
graphically presented in Figure 5. The dependence of Rs on parameter γ is such that as γ increases the
radius Rs also increases. Thus the size of the shadow increases with increase in monopole parameter γ.
Whereas the distortion δs decreases monotonically with an increase in γ. This tells us that with respect
to circumference of reference circle, the shadow of the rotating black hole is significantly distorted for
γ ∈ [0, 0.1] but for γ > 0 it may not show any distortion and thus we may obtain a perfect circle.
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Figure 5. The quantities Rs and δs with respect to parameter γ.

As we have considered our observer to be at infinity so in this case the area of the black
hole shadow will be approximately equal to high energy absorption cross section as discussed in
Reference [18]. For a spherically symmetric black hole the absorption cross section oscillates around
Πilm, a limiting constant value. For a black hole shadow with radius Rs, we adopt the value of Πilm as
calculated by [18]:

Πilm � πR2
s .

The energy emission rate of the black hole is thus defined by:

d2E(σ)
dσdt

= 2π2 Πilm

eσ/T − 1
σ3,

where σ is the frequency of the photon and T represents the temperature of the black hole at outer
horizon, that is, r+, given by:

T(r+) = lim
r→r+

∂r
√

gtt

2π
√

grr

=
(

2a2 ( f (r)− 1) + r(r2 + a2) f
′
(r)
) r

4π (r2 + a2)
2

For all three cases, radiation, dust and dark matter, the energy emission rate is graphically
presented in Figure 6 where we notice that the energy emission rate decreases with an increase in
parameter γ. A slight shift to the lower frequency is also observed while γ increases. The spin
parameter a also effects the shape of the energy emission rate as an abrupt decrease in energy emission
rate is noticed for higher spin value.

Recent studies have pointed out a connection between the topology of the shadow shape by
introducing a new quantity such as the local curvature radius of the shadow. In our paper, we have
applied the Gauss-Bonnet theorem to the horizon surface area to prove that the topology is a 2 sphere.
It will be interesting to see if one can find the shadow radius by means of Gauss-Bonnet theorem
applied directly to metric by using a relation between the horizon radius and the photon sphere.
We are planning to work on such a project in the near future.
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Figure 6. The figure shows the energy emission rate when a = 0.46 (upper panel) and a = 0.92
(lower panel).

7. Conclusions

In this paper, we have used the complex transformations pointed out by Newman and Janis to
obtain an RDGM solution in the presence of a perfect fluid matter. Using the Gauss-Bonnet theorem
we have shown that the surface topology of an RDGM is indeed a 2-sphere. Furthermore by choosing
ω = −1/3, 0, 1/3 we have explored the impact of dark matter, dust, radiation, as well as the global
monopole parameter γ, and perfect fluid parameters υ, on the silhouette of a black hole. We have
found that a rotating dyonic black hole with a global monopole retains a circular shape for small
spin parameter. Whereas for high spin like a = 0.98M the shadow of RDGM is distorted. Also as
monopole parameter γ increases, a slight shift towards the right is also noticed in the shape of the
shadow of the black hole under consideration. The two observables, Rs and δs, are also discussed.
Finally, we analyze the energy emission rate of a rotating dyonic global monopole surrounded by
perfect fluid with respect to parameters.
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Abstract: Hypothetical ultralight bosonic fields will spontaneously form macroscopic bosonic halos
around Kerr black holes, via superradiance, transferring part of the mass and angular momentum
of the black hole into the halo. Such a process, however, is only efficient if resonant—when the
Compton wavelength of the field approximately matches the gravitational scale of the black hole.
For a complex-valued field, the process can form a stationary, bosonic field black hole equilibrium
state—a black hole with synchronised hair. For sufficiently massive black holes, such as the one at
the centre of the M87 supergiant elliptic galaxy, the hairy black hole can be robust against its own
superradiant instabilities, within a Hubble time. Studying the shadows of such scalar hairy black
holes, we constrain the amount of hair which is compatible with the Event Horizon Telescope (EHT)
observations of the M87 supermassive black hole, assuming the hair is a condensate of ultralight
scalar particles of mass μ ∼ 10−20 eV, as to be dynamically viable. We show the EHT observations set
a weak constraint, in the sense that typical hairy black holes that could develop their hair dynamically,
are compatible with the observations, when taking into account the EHT error bars and the black
hole mass/distance uncertainty.

Keywords: ultralight particles; black hole shadow; event horizon telescope

1. Introduction

The hypothesis that all astrophysical black holes (BHs) when near equilibrium are well described
by the Kerr metric [1]—the Kerr hypothesis—yields a remarkable scenario. It means that throughout
the whole mass spectrum, ranging from solar mass BHs, with M ∼ M�, all the way until the most
supermassive black holes known, with M ∼ 1010M�, the immense population of astrophysical
BHs correspond to the very same object, with only two macroscopic degrees of freedom. One of
these is the mass, which merely rescales the BH, leaving a single degree of freedom with impact on
the BH phenomenology—the spin. The Kerr hypothesis, therefore, encodes an economical natural
order: The landscape of gravitational atoms (BHs) that compose the dark Universe is made up of
a single species, varying only in size (by, at least, ten orders of magnitude!) and spin, but otherwise
indistinguishable. Such uniformity is a trademark of the microscopic world, where all elementary
particles of a given species are indistinguishable, but not of the macroscopic world, where variety
is ubiquitous.

Despite the current lack of tension between observations and the Kerr hypothesis, there are reasons
to consider the latter but a fair approximation, within current precision, rather than a fundamental
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truth. Both fundamental problems—such as a quantum version of the laws of gravity, and how it
impacts on the physics of horizons and classical singularities—and the phenomenological problem of
accounting for the elusive dark matter and dark energy, suggest our current understanding of gravity
is incomplete. It may therefore be that the Kerr hypothesis is strictly false for astrophysical BHs at
all scales. But an alternative possibility is that the Kerr hypothesis is violated at a higher degree at
some narrow interval of scales only, wherein new physics exists, remaining an excellent approximation
outside this interval.

A concrete realisation of the latter possibility is provided by scenarios of hypothetical ultralight
bosonic particles that could constitute part of the dark matter population [2–4]. Inspired by the QCD
axion [5], and with theoretical support in string theory [6], these scenarios suggest that a landscape
of such particles, negligibly interacting with standard model constituents, might exist, leaving their
gravitational interactions as the only possible smoking gun for their identification. Amongst these,
an exciting possibility, is their interaction with BHs, which, could single out a scale (or a range of
scales) wherein BHs deviate from the Kerr paradigm.

Spinning BHs (in particular Kerr BHs) are energy and angular momentum reservoirs that
can be classically mined. A very well suited tool for such mining is an ultralight bosonic field.
Then, through the phenomenon of superradiance [7,8] an appropriate small seed of such field
(provided, say, as a quantum fluctuation) will grow into a macroscopic condensate of bosonic
particles—a Bose–Einstein condensate—storing a non-negligible fraction of the original BH mass
and angular momentum. When the energy/angular momentum transfer from the BH to the bosonic
halo saturates, the corresponding BH-halo state may or may not be stationary. If the bosonic field is
real, the BH-halo system emits gravitational radiation and slowly decays back to a Kerr BH [9]. But if
the bosonic field is complex, the BH-halo system is stationary, which is, in fact, a hairy BH—dubbed
BHs with synchronised hair [10].

BHs with synchronised hair are not absolutely stable. They are themselves prone to their own
superradiant instabilities [11–13]. However, the timescale of these instabilities is larger than the
one of the initial Kerr superradiant instability that formed the hair, and, in the right mass range it
becomes cosmologically large. A suggestive possibility is then the following. A Kerr BH develops
ultralight bosonic hair in an astrophysical time scale; the hairy BH is then effectively stable, since it is
superradiantly unstable only in a cosmological timescale. This turns out to be a realisable scenario
for supermassive BHs, such as the one recently observed by the Event Horizon Telescope (EHT)
collaboration [14–16] at the centre of the supergiant elliptic galaxy M87, henceforth referred to as the
M87 BH.

The scenario in this paper is therefore that the M87 BH is hairy, due to an appropriate ultralight
scalar field. Appropriate means its mass is in the right range to make the superradiant instability of
the original Kerr BH grow in a sufficiently small fraction of the Hubble time, yielding a hairy BH
that is stable in a cosmological time scale. Since the shadows of a Kerr and a hairy BH with the same
total mass and angular momentum differ [17], and since the EHT observation is compatible with the
M87 BH being of Kerr type, we shall then inquire how much the EHT observations constrain the
hair. As we shall see, for the most interesting mass ranges, as to make the hairy BH dynamically
viable, the EHT constraint is weak, and it is essentially compatible with a hairy BH that could have
dynamically formed from superradiance and it is in a long lived, albeit not absolutely stable, state.

This paper is organised as follows. In Section 2 we discuss the physical scenario under which
a BH with synchronised scalar hair could form from superradiance and be effectively stable within
a cosmological timescale. In Section 3 we describe the part of the domain of existence of hairy
BHs that is dynamically viable, according to the criteria in Section 2 and that we shall study in the
remaining of the paper. In Section 4 we consider the Kerr BH shadow and we obtain an approximate
expression for the shadow areal radius, valid for arbitrary observation angle and dimensionless spin
value. In Section 5 we analyse the shadows of the hairy BHs in the relevant domain and obtain
an approximate expression for the areal shadow radius, in terms of that of a comparable Kerr BH, i.e.,
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with the same mass, and a parameter measuring the hairiness of the BH. In Section 6 the expression
obtained in Section 5 is applied to the case of the M87 supermassive BH. Then, considering the
EHT observational errors, together with the errors in the mass estimate, we constrain the hairiness
compatible with the observations. Brief final remarks are given in Section 7. Unless otherwise stated,
natural units c = 1 = G = h are used.

2. The Hair Formation and Hair Instability Timescales

The timescale of BH superradiance is extremely sensitive to the occurrence, or not, of a resonance
between the gravitational scale of the BH and the Compton wavelength of the ultralight particles.
Consider a massive, complex, scalar field, Φ, described by the Klein–Gordon equation, �Φ = μ2Φ, with
mass μ, on the background of a Kerr BH with mass M. Maximal efficiency occurs for Mμ � 0.4 [18]
and for a spin close to extremality; for the M87 BH, for which we take MM87 ∼ 6 × 109M�1 this
resonant scalar field mass is:

μr =
0.4

MM87
� 4 × 10−20 eV . (1)

At maximal efficiency, the e-folding time of the superradiant instability’s leading mode is [18]:

Δt ∼ 107τLC , (2)

where τLC is the light crossing time of the BH. For the M87 BH, Δt ∼ 104 years. We call this the hair
formation timescale. This means that if an ultralight boson of mass μr exists, the M87 BH would develop
scalar hair in an astrophysically short time scale.

If the resonance μ = μr is missed, however, this timescale grows extremely fast: as (Mμ)−8 [23]
for the leading mode and Mμ  1; or as 107e3.7Mμ for Mμ � 1 [9,24]. In other words, if Mμ misses
the resonant sweet spot by one order of magnitude, either above or below, the timescale of the leading
mode of the superradiant instability of Kerr becomes considerably larger than the Hubble time, and the
Kerr BH does not become hairy. On the lower end, the hair formation timescale becomes larger
than one tenth of the Hubble time for Mμ < 0.05 [13], for the M87 BH mass. Thus, a conservative
bound on the formation timescale is to take Mμ > 0.1, when the formation timescale becomes around
a thousandth of the Hubble time.

Supermassive BHs in matter rich environments, such as galactic centres, are expected to grow in
time. Thus, a supermassive BH with ∼ 109M�, such as the one at the centre of M87, will have evolved,
due to accretion and mergers, from one (or many) BHs with mass several orders of magnitude lower,
see e.g., [25]. Only when the BH grows to the size that resonates with ∼ μr does the superradiant
energy/angular momentum extraction becomes efficient producing a sufficiently non-Kerr BH. At all
other scales BHs remain Kerr-like.

Once the hairy BH forms, one must consider its leading superradiant instability. The leading
instability has an e-folding time, dubbed hair instability timescale, larger than the Hubble time if
Mμ � 0.25 [13]. Thus, a Kerr BH with mass M = MM87 becomes hairy in an astrophysical timescale
and the hair is stable in a cosmological timescale if (conservatively rounding off 0.25 to 0.3):

μMM87 ∈ [0.1, 0.3] ⇒ μ ∈ [1 , 3]× 10−20 eV . (3)

We remark that there is a dependence on the BH dimensionless spin parameter a in determining
the resonant scalar field mass μr, although the instability is considerably more sensitive to Mμ than a.
If the spin is not near extremal, this changes the ideal value of Mμ given in Equation (1), which could

1 For the considerations in this section this approximate value suffices. More accurate values will be considered in Section 6.
This value is suggested from stellar dynamics [19] and favoured by the EHT observations [14]. A value half of this is
suggested by gas dynamics [20]. The spin of the M87 BH is largely unknown, with different claims in the literature,
see e.g., [21,22].
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push down slightly, but not significantly, the lower end value of the interesting mass range given in
Equation (3) (see also discussion in Section 7).

How much energy can be extracted from the Kerr BH region into the hair? Fully non-linear
numerical evolutions of the superradiant instability of a Kerr BH triggered by a complex vector field
were performed in [26], leading to the formation of that BH with synchronised (vector) hair [27],
first discussed in [28]. These simulations showed that the maximal energy extracted was ∼ 0.09M
of the original BH with mass M. The largest energy extraction, moreover, occurred for the lowest
values of Mμ (Mμ = 0.25, for the simulations in [26]), for which the superradiant growth was slower.
The trend moreover suggests that the 9% may be close to the maximal possible value, in the vector case.
The corresponding value in the scalar case is unknown. Since the process is slower in the scalar case,
it is conceivable that larger energy extractions are possible—see [29]. But, in any case, thermodynamic
sets a limit of 29% to the rotational energy that can be extracted from a Kerr BH.

3. The Selected Part of the Domain of Existence

The full domain of existence of BHs with synchronised scalar hair was obtained in [10,30].
These are stationary and axisymmetric solutions of the Einstein–(massive, complex)Klein–Gordon
system. The shadows of these BHs have been explored in [17,31,32]. However, a detailed study of
the shadow properties in the region of dynamical interest unveiled in the previous section remains
to be done. The goal of the reminder of this paper is to perform such study and relating it to the
EHT observations.

The part of the domain of existence describing the astrophysically viable solutions, in relation
to the M87 BH, as described in the last section, corresponds to values of Mμ in accordance with
Equation (3). For Mμ � 0.1, obtaining numerically the hairy BH solutions becomes challenging, due to
the different scales involved in the problem. So, we shall perform our analysis of the shadows in
a section of the domain of existence for 0.2 � Mμ � 0.5, which allowed us to obtain interpolations
with more data. The main conclusions are not substantially affected by this choice of sample. As we
shall see, the obtained trend is already informative.

In Figure 1 we exhibit the configurations analysed to obtain the behaviour of the shadows of the
hairy BHs in the dynamically viable region.

 0.2

 0.3

 0.4

 0.5

 0.95  0.96  0.97  0.98  0.99  1

M

H/

Figure 1. The section of the domain of existence of hairy black holes (BHs) to be analysed. We have
chosen sequences of representative solutions with constant Mμ—black dots. Their shadow properties
are analysed and the corresponding trends interpolated for the whole region. The dashed-dotted line
separates solutions with more (to the right) and less (to the left) than 29% of the spacetime energy in
the scalar hair.
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They are displayed in the configuration space (ΩH/μ, Mμ), with ΩH and μ being, respectively,
the BH horizon angular velocity and the boson mass. The synchronisation condition2 means that
ω = ΩH for this family of solutions, where ω is the frequency of the complex scalar field, that oscillates
harmonically (but with a time independent energy momentum tensor). The Kerr limit, in which the
hair vanishes, is provided by the dotted blue line; the rotating boson star limit, in which the horizon
vanishes, is provided by the solid red line.

As an alternative to the {ΩH/μ, Mμ} labelling of this section of the domain of existence of the
hairy BHs, each solution can also be labelled by the pair {p, Mμ}, where [33]:

p ≡ 1 − MH
M

, (4)

MH is the horizon energy (measured by a Komar integral) and M the ADM energy. Thus, p measures
the fraction of the spacetime energy in the hair. This parameter satisfies 0 � p � 1; p = 0 (p = 1)
corresponds to the Kerr (boson star) limit, displayed as the dotted blue (solid red) lines in Figure 1.
In the figure, a dotted-dashed black line denotes the p = 0.29 threshold, above which the hairy BHs
cannot form from the superradiant instability of Kerr. Nevertheless, configurations with p > 0.29 are
also equally valid equilibrium solutions to the Einstein–Klein–Gordon field equations. Although at the
moment this is unclear, these configurations could perhaps form by alternative channels other than the
superradiant instability. For the analysis being performed, considering configurations with p > 0.29
increases the sample size for the shadow interpolations in Section 5.

4. The Kerr BH Shadow

The calculation of the BH shadow for a Schwarzschild and Kerr BH was introduced by Synge [34]
and Bardeen [35] respectively. A pioneering computation in an astrophysical environment was done
by Luminet [36,37] and its measurability was first assessed in [38]—see [39] for a review and [40] for
a working setup to compute shadows via ray tracing.

Given an observational setup, the observer can measure the BH shadow image3 area A. We define
the shadow areal radius as:

S ≡
√

A
π

, (5)

which is well defined even for non-circular shadow shapes. In what follows, the shadow radius4 S
will be compared between hairy and Kerr BHs. The latter is known analytically in particular cases,
as we shall now review for our subsequent application.

4.1. Two Cases for Which the Kerr Shadow Areal Radius Is Exactly Computable

For an observer at infinity, the Kerr shadow edge is known analytically for all spin values a = J/M [39],
where J is the total angular momentum of the spacetime and the existence of a horizon requires
0 � a2 � M2. From this analytic knowledge of the shadow edge, however, it might not always be possible
to compute A exactly, and hence the Kerr shadow areal radius, denoted SKerr(a, θo), which generically
depends on a and the polar angle of the observer θo. But in two special cases this is possible.

The first case is when the observer is on the rotation axis, i.e., when θo = {0, π}. Then, the Kerr
shadow edge is circular due to axial-symmetry. In this case the shadow radius SKerr(a, axis) is
fully determined by a zero angular momentum spherical photon orbit with a Boyer–Linquist radial

2 The synchronization condition is an equilibrium requirement on the existence of these hairy BH solutions (i.e., within the
valid domain in Figure 1), and it is not directly used in the rest of the analysis.

3 The shadow in the image domain is rescaled with respect to its angular size ϑ by a factor R, see Equation (12).
4 Other possible measures for the shadow size can be found in the literature, e.g., see [41].
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coordinate r. For this special case A can be obtained exactly and so can the shadow areal radius.
Using the results in [42], the latter is obtained to be, as a function of a:

SKerr(a, axis) =
√

χ + a2 , (6)

where:

χ = r2
(

3r2 + a2

r2 − a2

)
,

r
M

= 1 + 2

√
1 − a2

3
cos

⎛
⎜⎜⎝1

3
arccos

⎡
⎢⎢⎣ 1 − a2√(

1 − a2

3

)3

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

Observe that for a = 0, then r = 3M, χ = 27M2 and SKerr(0, axis) =
√

27M, which are the familiar
Schwarzschild light ring coordinate, the corresponding impact parameter (squared) and shadow areal radius.

The second case is for an extremal Kerr BH (i.e., |a| = M), viewed from the equatorial plane,
i.e., with θo = π/2. Then, the shadow edge is not circular. However, the shadow shape y(x) in
Cartesian-like coordinates (x, y) simplifies into [39] (in units of M):

y(x) = ±
√

11 + 2x − x2 + 8
√

2 + x , x ∈ [−2 , 7] ,

in which case, the area A can be explicitly computed:

A =
∫ 7

−2
2 y(x) dx = (15

√
3 + 16π)M2 ,

which leads to a shadow radius:

SKerr

(
±M,

π

2

)
=

√
16 +

15
√

3
π

M . (7)

4.2. An Approximation for the Areal Radius of the Kerr Shadow

We were not able to find an exact expression for the Kerr shadow areal radius in the generic case.
We have verified, however, that as seen by an observer at infinity, SKerr(a, θo) can be estimated (within
an error � 0.8%) as:5

SKerr(a, θo) � SKerr(a, axis) +
2|a|θo

πM

[
SKerr

(
M,

π

2

)
− SKerr(M, axis)

]
, (8)

where SKerr(M, axis) = (2 + 2
√

2)M. This approximation will be used in the following.
To make contact with the Kerr limit in the domain of existence displayed in Figure 1, we observe

that from the points along the blue dotted line therein, the Kerr spin |a| can be obtained from Mμ using:

a =
M2ΩH

M2Ω2
H + 1/4

, MΩH � b1 + b2 Mμ + b3 M2μ2 ,

where the first expression is exact for Kerr BHs, and the second is a good approximate relation along
the Kerr existence (blue) line in Figure 1, with parameters:

(b1, b2, b3) = (−0.00926172, 1.08238,−0.209874) . (9)

5 This error was determined through a direct comparison of the approximate formula with the corresponding Kerr values.
Recall that the Kerr shadow edge is known analytically and determining the shadow areal radius amounts to solving,
numerically, the area integral. Thus the Kerr shadow areal radius, albeit obtained numerically, is computed with a precision
considerably better than 0.8%.
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Thus, for the Kerr BHs in Figure 1, the shadow areal radius becomes a function of Mμ and θo,
SKerr(a(Mμ), θo).

5. Hairy BHs Shadow in the Considered Domain of Existence

Since the shadows of the hairy BHs were obtained through a numerical ray tracing procedure [40],
they correspond to an observer at finite, rather than infinite, distance from the BH. The observer
is placed at a finite perimetral distance R =

√gϕϕ(ro, π/2), where ∂/∂ϕ is the Killing vector field
associated to axial-symmetry. The quantity R is defined for each radial coordinate ro. For two
observers {O1,O2}, respectively with {R1,R2} � M and corresponding shadow radii {S1, S2},
a simple extrapolation can provide a good approximation for the shadow radius S∞ at infinity:

S∞ � S2 −
(

S2 − S1

1 −R2/R1

)
.

In our setup, we take R1 = 100M and R2 = 200M.

Hairy BH Shadow Approximation for θo = 17o

The angle between the M87 BH spin and the line of sight has been estimated to be 17o from
the observed jet [43]. Choosing, then, θo = 17o in order to compare with EHT’s M87 observation,
the shadow’s areal radius at infinity of the hairy BHs, Shairy(p, Mμ, θo) can be approximated within
an error � 0.8% as:

Shairy(p, Mμ, 17o) � (1 − p)

(
SKerr(a(Mμ), 17o) + β1 p M2μ

)
, β1 � 1.21455 , (10)

The accuracy of this approximation is clear from Figure 2, where both the shadow radius of the
hairy BHs and the function Shairy(p, Mμ, 17o), are exhibited.
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Figure 2. Areal shadow radius for hairy BHs and the analytic approximation of Equation (10).
Circles correspond to data for the individual solutions in Figure 1. Each straight line is a set with
constant Mμ in Figure 1, given by Mμ = 0.5 − i/20 and i = {0, · · · , 6} as we go from the top to the
bottom straight line. The function exhibited in the y-axis is Shairy(p, Mμ, 17o)/M − i/2, as to more
clearly distinguish the different lines, where i is a function of Mμ via i = 10 × (1 − 2Mμ).
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The analysis of the hairy BHs data, leading to Equation (10), shows that the shadow’s areal
radius relative deviation δS, between hairy and Kerr BHs, depends very weakly on Mμ. It is therefore
accurately parameterized by a function of p only:

δS(p) ≡ 1 −
Shairy(p, Mμ, 17o)

SKerr(a(Mμ), 17o)
� p + p(p − 1)A , with A � 0.111159 . (11)

This approximation is represented in Figure 3 as a solid line, together with the corresponding
data (red circles), showing a very good agreement.
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Figure 3. Deviation δS between the hairy BHs shadow areal radius and that of Kerr BHs, as function of
p, for θo = 17o. The fit function p + A p(p − 1) with A � 0.111159 captures the main features of δS.

A rough conclusion from this analysis is that a Kerr deviation no larger than ∼10% is compatible
with a p � 11% (dotted line in Figure 3). Indeed, the EHT measurement of the M87 BH shadow has
an error bar of around 10% as discussed in the next section where a more precise statistical analysis is
performed. To make contact with the observations, we note that for a dimensionless areal radius S/M,
the corresponding angular radius in the sky is:

ϑ = (S/M)
M
R . (12)

This relates theory with observation. Using it we will now restrict the values of p of a hairy BH
that may be compatible with the EHT M87 BH observation data.

6. Application to the M87 BH Shadow

The EHT observation measures the emission ring diameter to be 42 ± 3 μas [14]. As discussed
in [16], this emission ring diameter is not simply assumed to be the edge of the shadow.
Calibration between the emission ring diameter and the photon ring (determining the edge of the
shadow) based on GRMHD simulations leads to a 10% offset between the two. Although this offset is
estimated from Kerr, it is conceivable that a similar effect arises for hairy BHs in the region of interest
of Figure 1, which are still very much Kerr-like. Thus, we assume the M87 BH shadow diameter is 10%
smaller than the EHT’s observed emission ring, leading to an observed angular size of the shadow
(corresponding to the areal radius) of:

ϑo = ( 18.9 ± 1.5) μas . (13)

The error bars in Equation (13) already provide some margin to accommodate a non-Kerr BH
with the same mass. But a proper analysis must, in addition, take into account the error in the mass
measurement, which must be an independent measurement from the EHT observations. As discussed
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in [16], both the independent measurements of the M87 BH mass, by Gebhardt et al. [19] based on star
dynamics, and Walsh et al. [20] based on gas motion, actually directly measure the ratio λ = M/L,
rather than M, where L is the luminosity distance, that we identify with R. The mass in these works is
then obtained assuming L = 17.9 Mpc, since the relative error for the distance is smaller. Taking their
reported values for M and inferring the associated ratios for that distance, one has:

Gebhardt et al. (star motion): M = (6.6 ± 0.4)× 109M� , λ = 0.369 ± 0.022
(

109M�
Mpc

)
,

Walsh et al. (gas motion): M = 3.5+0.9
−0.7 × 109M� , λ = 0.196+0.05

−0.04

(
109M�

Mpc

)
.

Choosing either of these data sets, we can now analyse the domain in the (p, λ) plane that
provides an angular shadow size; using Equations (10) and (12) yields:

ϑ = λ
Shairy(p, Mμ, 17o)

M
� λ(1 − p)

(
SKerr(a(Mμ), 17o)

M
+ β1 p Mμ

)
, (14)

consistent with the EHT shadow, within a certain number of standard deviations. This analysis is
performed in Figure 4.
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Figure 4. (p, λ = M/L) domain providing values of ϑ = λShairy(p, Mμ, 17o)/M consistent with the
Event Horizon Telescope (EHT) observation. (Left panel) within one and two standard deviations for
the star motion data. (Right panel): within three standard deviations for the gas data. Small numbers
indicate value of Mμ.

The left panel considers the star motion data. The shaded regions encode values of (p, λ)

consistent with the EHT shadow observation, within one and two standard deviations, for the limiting
values of Mμ in the sample of solutions analysed. We conclude that within one standard deviation,
0 < p < 0.12, and within two standard deviations 0 < p < 0.24, for Mμ = 0.2. Slightly more
restrictive values hold for Mμ = 0.5. The right panel considers the gas data. In this case, values in the
(p, λ) domain exhibited can only agree with the EHT observation within 3 standard deviations of the
observation error.

Considering the star dynamics data within one standard deviation, a hairy BH with p � 0.12 is
compatible with the EHT observations. The trend with Mμ in Figure 4 indicates, moreover, that for
even lower values of Mμ—recall Equation (3)—the accommodated p is even slightly larger. Taking the
simulations with a vector field discussed in Section 2 as an estimate of how much energy could be
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extracted dynamically into the hair, the tentative conclusion (with the caveat that the precise maximum
amount of energy extractable dynamically is unknown in the scalar case) is that dynamically viable
hairy BHs are compatible with the EHT observations, given the error bars.

The gas data, on the other hand, disfavours the hairy BHs, which is manifest in the mostly empty
right panel of Figure 4, but it is also at some tension with the Kerr model, from the EHT observations.
Within two standard deviations the data is incompatible with the model.

7. Final Remarks

With the advent of the first observation of a BH shadow by the EHT collaboration [14–16], a new
direct window has now been opened into the strong gravity regime surrounding BHs. Together with
the recent breakthroughs in gravitational wave astrophysics [44,45], and the precision upgrades that
are expected to follow, the shadow observation opens the tantalizing possibility of testing existing BH
models with direct observations.

In this paper, we have considered the possibility that the M87 supermassive BH has ultralight
synchronised hair. We have made the case that some of these hairy BHs could be dynamically viable as
a model of such a supermassive BH. Moreover, we have shown that the current EHT data, when taken
together with the most favoured independent measurement of the mass of the M87 BH is compatible
with the estimated range for dynamically viable hair. Thus such a hairy BH could be mistaken by
a Kerr BH within all current measurements. See [43,46–50] for other constraints on ultralight dark
matter from EHT data and, e.g., [51–54] for the impact of these data on other scenarios for M87.

Our analysis contains assumptions and some possible caveats, including:

• In Equation (1) we considered the resonant mass corresponding to the most efficient superradiant
scenario, which in particular assumes a near extremal Kerr BH. If the spin is not near extremal
(i.e., ideal to make superradiance as efficient as possible) this changes the ideal value of Mμ given
in Equation (1) in the text and, most importantly, it reduces the efficiency of the process and
increases the timescale—see Figure 6 of [18]. As the dimensionless spin of the Kerr BH varies
from 0.5 to 0.999, the timescale at maximal efficiency can vary by almost four orders of magnitude.
This still allows the formation of scalar hair in less than 1% of a Hubble time in the M87 case:
for maximal efficiency the time scale was 104 years for the M87 mass. This variation in the most
efficient Mμ could push down slightly, but not significantly, the lower end value of the interesting
mass range given in Equation (3).

• Although we have considered that the most interesting mass interval in the context of our analysis
is given by Equation (3), the analysis of hairy BH solutions was performed in a different mass
range, cf. Figure 1. This was justified in Section 3 and we believe the main conclusions are not
substantially affected by this choice of sample.

• Our work assumes the scalar hair around M87 is truly stationary, described by a minimally
coupled massive, complex scalar field and forms from superradiance. If other mechanisms can
form hairier BHs, or for other sorts of BHs with scalar hair (even if only approximately stationary),
our conclusions do not apply, as, for example, in the scenario discussed in [47,55].

• In this paper we have used a single number (the shadow aerial radius) to set constraints. Other shadow
measures could also be introduced (e.g., shadow deviation from a circle). However, due to the
precision of the EHT measurement, such quantities would be too poorly constrained, at the moment.
Such an analysis will be certainly interesting when more precise observations become possible.

• We have assumed that the M87 BH spin makes an angle of 17o with the line of sight, as suggested
from the jet [43] and also assumed by the EHT analysis.

• We have assumed that there is an offset of about 10% between the size of the photon ring
and the emission ring observed by the EHT. For Kerr this is justified by numerical GRMHD
simulations—see also [56,57] for a discussion on this point. Since the hairy BHs in the region of
interest are not very hairy, it is conceivable this offset is of a similar order.
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• The gas data [20] was included in our discussion for completeness, as it was in the EHT paper
VI [16]. However, this data is under tension even with the Kerr hypothesis, as discussed in detail
in [16]. If the gas observations were to hold, they would have major implications concerning the
Kerr paradigm. The conclusion that could be extracted here from this data is not different from
the EHT paper: it is in tension with the models that were considered (including Kerr).

It would be very interesting to repeat the current analysis for the case of BHs with ultralight
synchronised vector hair or scalar hair with self-interactions.
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