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Preface to ”Physical and Mathematical Fluid

Mechanics”

Fluid dynamics is one of the oldest physical disciplines. Looking at ancient times, the works 
of Archimedes and Sextus Iulius Frontinus can already be considered as relevant contributions due 
to their technological importance for shipbuilding and water supply. In the Renaissance, Leonardo 
da Vinci dealt with fluid dynamics, and relevant contributions were later made by Galileo Galilei, 
Evangelista Torricelli, Blaise Pascal, Edme Mariotte, Isaac Newton, and Daniel Bernoulli. In view 
of the close relationship between physics and mathematics, the works of Leonhard Euler and 
Jean-Baptiste le Rond d’Alembert can be regarded as pioneering for the subsequent development 
of fluid dynamics because the potential theory that emerged from them, which, in addition to the 
theory of frictionless and vortex-free flows, also enabled the calculation of electromagnetic fields, 
is a prime example of how physics and mathematics inspire each other. Since that time, fluid 
dynamics and physics have been inseparably linked. Despite the success of potential theory, its 
limitations were soon recognized, as became evident from various paradoxes such as the famous 
d’Alembert paradox. The consequent extension of Euler’s theory with regard to viscosity by Claude 
Louis Marie Henri Navier and George Gabriel Stokes to the Navier–Stokes equations posed new 
challenges for mathematics, becoming subject to generations of scientists to this day. The pioneering 
work of William Froude on the flow resistance of ships, Ernst Mach on supersonic aerodynamics, 
Lord Rayleigh on hydrodynamic instability, Vincent Strouhal on excitation of oscillations by detached 
vortices, and Hermann von Helmholtz on vortex dynamics and scientific meteorology was followed 
by the groundbreaking research of Osborne Reynolds and Ludwig Prandtl, and later Andrei 
Nikolayevich Kolmogorov, which formed the basis of boundary layer and turbulence theory and in 
particular made an indispensable contribution to a deeper understanding of viscous flows in general, 
based on advanced mathematical methods. Considerable progress in solving the Navier–Stokes 
equation has been made since the middle of the 20th century thanks to the availability of computers 
and the development of efficient numerical methods. Thereafter, computational fluid dynamics 
(CFD) has emerged as an essential investigative tool in nearly every field of technology. Despite 
a well-developed mathematical theory and available commercial software codes, the computation 
of solutions of the governing equations of motion is still challenging, especially due to the 
nonlinearity involved, giving motivation for further research related to the mathematical and 
physical foundations. This book comprises seven peer-reviewed articles, four research articles, two 
reviews, and one technical report, covering a wide range of topics, methodical approaches, and their 
application to timely fluid flow problems. These include next to standard analytical and numerical 
methods also variational methods based on both deterministic and stochastic approaches. Next to 
incompressible flow problems like channel flow, vortex dynamics in turbulent flow, and flow through 
porous media, compressible flows are also addressed, including acoustic wave propagation in porous 
media. This volume will be of use as a reference to physicists, engineers, and mathematicians in both 
academia and industry.

Markus Scholle

Editor
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Abstract: Fluid mechanics has emerged as a basic concept for nearly every field of technology.
Despite there being a well-developed mathematical theory and available commercial software codes,
the computation of solutions of the governing equations of motion is still challenging, especially due
to the nonlinearity involved, and there are still open questions regarding the underlying physics of
fluid flow, especially with respect to the continuum hypothesis and thermodynamic local equilibrium.
The aim of this Special Issue is to reference recent advances in the field of fluid mechanics both in
terms of developing sophisticated mathematical methods for finding solutions of the equations of
motion, on the one hand, and on novel approaches to the physical modelling beyond the continuum
hypothesis and thermodynamic local equilibrium, on the other.

Keywords: analytical and numerical methods; variational calculus; deterministic and stochastic approaches;
incompressible and compressible flow; continuum hypothesis; advanced mathematical methods

1. Introduction

Fluid Mechanics has a long history, going back at least to the era of ancient Greece,
when Archimedes [1] investigated fluid statics and buoyancy and formulated his famous law, known
now as Archimedes’ principle, which was published in his work, “On Floating Bodies”—generally
considered to be the first major work on fluid mechanics. Later, E. Torricelli and B. Pascal identified
the pressure as a decisive physical quantity [2,3], while I. Newton [4] discovered the viscosity as
another physical phenomenon of basic importance, which was later explored by J. L. M. Poiseuille
and G. Hagen.

Mathematical fluid dynamics was first introduced by D. Bernoulli [5] and developed further
by the mathematicians d’Alembert, Lagrange, Laplace, and Poisson, resulting in the well-known
potential flow theory, being nowadays an essential topic in standard fluid dynamics text books [6–9].
Despite the obvious advantage of making various flow problems more tractable, the approach is
restricted to inviscid and irrotational flows. A consistent mathematical treatment of viscosity by
C.–L. Navier and G. G. Stokes led to the well-known Navier–Stokes equation, which, together with
the continuity equation, continues to play the role of the essential field equation in fluid mechanics
to this day. Initially, solutions of the Navier–Stokes equation could only be obtained for simple flow
geometries until L. Prandtl discovered the mathematical singular boundary layer character of flows
with high Reynolds numbers in the vicinity of rigid walls [10]. Prandtl’s boundary layer theory
and its advancement by T. von Kármán was a keystone both in a mathematical and a physical sense.
Another branch of research is related to the formation of chaotic turbulent flow structures due to
the nonlinearity of the Navier–Stokes equation, beginning with the early studies of O. Reynolds [11]
and later advanced by G. I. Taylor [12] and A. Kolmogorov [13].

Considerable progress in solving the Navier–Stokes equation has been made since the middle
of the 20th century, thanks to the availability of computers and the development of efficient
numerical methods. Following this, computational fluid dynamics (CFD) has emerged as an essential
investigative tool in nearly every field of technology. Despite there being a well-developed
mathematical theory and available commercial software codes, the computation of solutions of
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the governing equations of motion is still challenging, especially due to the nonlinearity involved,
giving motivation for further research related to the mathematical and physical foundations.

2. Overview of this Special Issue

Seven articles are published in the issue—four research articles, two reviews, and one technical
report, covering a wide range of topics and methodical approaches.

In their research article [14], the formation of coherent vortex structures in a turbulent flow is
analysed by direct numerical simulations, followed by image processing techniques and statistical
analysis in order to identify and quantify streak characteristics of the flow. Motivated by the aim to
complete our knowledge about and the understanding of vortices, the authors compare their findings
to three standard vortex models, showing that they all give reasonably close results, and providing
a deeper understanding of the interrelationships among different vortex models.

The basic mechanisms underpinning infiltration and drainage of water in soils and the role of
viscosity is considered by Germann [15], introducing the basics of Newtonian shear flow in permeable
media, presenting experimental applications and exploring the relationships of Newtonian shear flow
with Darcy’s law, Forchheimer’s, and Richards’ equations. An extension of the model to the transport
of solutes and particles is finally presented.

Acoustic traveling waves in dual-phase media, such as a fluid in a porous solid, are investigated by
Jordan [16], utilising the Rubin–Rosenau–Gottlieb theory of generalised continua. Exact and asymptotic
expressions for linear and nonlinear poroacoustic waveforms are obtained. Numerical simulations
are also presented, where von Neumann–Richtmyer “artificial“ viscosity is used to derive an exact
kink-type solution to the poroacoustic piston problem, and possible experimental tests of the findings
are noted.

As a basic problem with respect to agricultural water resources, the turbulent flow in open
channels is studied by [17], who derive a mathematical expression for the characteristic point location
of depth average velocity in channels with flat or concave boundaries, particularly rectangular
and semi-circular channels. For validation of the analytical model, experiments are carried out
through comparison of velocity and discharge.

In their review article, [18] retrace alternative formulations of the Navier-Stokes equation based
on potential fields, ranging from the classical potential theory to recent developments in this evergreen
research field. The focus is centred on two major approaches which are diametrically opposed in
their origin: (i) the Clebsch transformation originally applies to inviscid flow (Re → ∞), while (ii)
the classical complex variable method utilising Airy’s stress function applies to Stokes’ flow (Re → 0).
It is shown how both methods have been generalised by successive advancements and finally applied
to the full Navier-Stokes equation, requiring the extension of the complex variable method to a tensor
potential method. Basic questions relating to the existence and gauge freedoms of the potential fields
and the satisfaction of the boundary conditions required for closure are addressed; with respect to (i),
the properties of self-adjointness and Galilean invariance are of particular interest.

While most research in fluid mechanics is based on the continuum hypothesis, the stochastic
variational description, based on the Lagrangian equations of motion in terms of material path lines
instead of a field description, has proven to be a remarkable alternative to the classical theoretical,
deterministic field approach. An obvious advantage of this approach is that it is very close to
classical Newtonian mechanics, where the Lagrange formalism has been successfully established,
allowing adoption of many of its features. It also closely refers to kinetic models in statistical physics.
Cruzeiro [19] presents a selective review about this research field, regarding the velocity solving
the deterministic Navier–Stokes equation as a mean time derivative taken over stochastic Lagrangian
paths and obtaining the equations of motion as critical points of an associated stochastic action
functional, involving the kinetic energy computed over random paths. Different related probabilistic
methods are discussed.
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Finally, the technical report by [20] analyses the damage characteristics and mechanisms of
a disastrous groundwater inrush that occurred at the Luotuoshan coal mine on 1 March 2010, and gives
a detailed overview about this incident in which 32 people lost their lives. The authors see a serious
need for improvement in the timely detection of groundwater intrusion and its rapid rectification.

3. Conclusions

The seven publication contributions to the special edition cover a wide range of topics,
provide valuable results, and point out open questions and possible future work. [14]’s analysis
of the characteristic dimensions of streaky structures and vortices motivates the suggestion of
straightforward hypotheses concerning the average width of streaks and the average distance between
adjacent streaks, their development from the inner turbulent region to the outer region, the spanwise
vortex density, and the coexistence of three different vortex structures as their contribution to improve
the understanding of the mechanics of coherent structures in turbulent flows. [15] revealed novel
aspects associated with Newton’s infiltration that were not considerable in previous approaches to
preferential flows, and state that the analytical expressions are amenable to mathematical procedures,
such as kinematic wave theory, and their theoretical combinations may lead to new and solid
hypotheses calling for experimental testing. Future work on the poroacoustic RRG theory is outlined
by [16], who suggests the use of homogenisation methods in problems wherein the coefficients
vary with position. Other possible extensions include the poroacoustic generalisation toward
power-law fluids. Follow-on work might also include the study of poroacoustic signalling problems
involving sinusoidal and/or shock input signals, as well as problems in which changes in entropy
and temperature are taken into account. [17] consider an extension of future experimental studies
of flow in open channels with regard to wall roughness to be very useful, especially with respect to
the transition from smooth channels to vegetation-covered channels. Based on a detailed analysis
and discourse, the two different potential approaches considered by [18] can be explained in the light
of their different origins. Despite the very positive stage of development of both methods, some open
questions remain, for instance, whether a general and all-encompassing potential approach exists,
reducing to both the Clebsch and the tensor potential approach as special cases. The search for this
“missing link” between two conceptually different approaches represents another future research topic
of general interest. An extremely attractive further development of the tensor potential method would
be the mapping of the entire problem to a matrix-algebra framework based on quaternions or Dirac
matrices with the goal of developing highly efficient methods of solution. Having demonstrated
the benefits of probabilistic methods for the study of the deterministic Navier–Stokes equation,
Cruzeiro [19] envisages the development of novel numerical methods in the future. Finally, the tragic
incident reported by Cui et al. [20] shows the need to detect and prevent such incidents in time with
improved prediction models. Mathematical fluid mechanics can make a valuable contribution to this.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Low- and high-speed streaks (ejection, Q2, and sweep, Q4, events in quadrant analysis)
are significant features of coherent structures in turbulent flow. Streak formation is closely related
to turbulent structures in several vortex models, such as attached eddy models, streamwise vortex
analysis models, and hairpin vortex models, which are all standard models. Vortex models are
complex, whereby the relationships among the different vortex models are unclear; thus, further
studies are still needed to complete our understanding of vortices. In this study, 30 sets of direct
numerical simulation (DNS) data were obtained to analyze the mechanics of the formation of coherent
structures. Image processing techniques and statistical analysis were used to identify and quantify
streak characteristics. We used a method of vortex recognition to extract spanwise vortices in the x–z
plane. Analysis of the interactions among coherent structures showed that the three standard vortex
models all gave reasonably close results. The attached eddy vortex model provides a good explanation
of the linear dimensions of streaky structures with respect to the water depth and Q2 and Q4 events,
whereby it can be augmented to form the quasi-streamwise vortex model. The legs of a hairpin vortex
envelop low-speed streaky structures and so move in the streamwise direction; lower-velocity vortex
legs also gradually accumulate into a streamwise vortex. Statistical analysis allowed us to combine
our present results with some previous research results to propose a mechanism for the formation
of streaky structures. This study provides a deeper understanding of the interrelationships among
different vortex models.

Keywords: image processing; streaky structures; hairpin vortex; attached-eddy vortex;
streamwise vortex

1. Introduction

Turbulence is generally not altogether chaotic, whereas there are many regular coherent structures
in a turbulent flow. The coherent structures include streaky structures formed by low- and high-speed
streaks, the bursting phenomenon that includes ejection and sweep events (in quadrants Q2 and Q4),
vortex structure models (streamwise vortex model, attached eddy vortex model, hairpin vortex model
and hairpin vortex groups), as well as superscale structures.

Low- and high-speed streaks are important in turbulence dynamics because of their large scale [1].
Experimental research into low- and high-speed streaks using hydrogen bubbles was first conducted by
Kline et al. [2]. The characteristic scales of streaky structures were also identified by many researchers
as the average nondimensional width W = 20–40y* and spanwise distance D = 100y* in the boundary
layer region [3–5]. Note that y* = v/u* defines the inner scale, where v is kinematic viscosity and u* is
friction velocity, which represents the shear stress velocity. Lin et al. [6] used particle image velocimetry

Water 2019, 11, 2005; doi:10.3390/w11102005 www.mdpi.com/journal/water5



Water 2019, 11, 2005

(PIV) to capture the flow fields. Their results show that the spatial distribution of high-speed streaks is
similar to that of low-speed streaks.

Zhong et al. [1] identified elongated streamwise low- and high-speed streaks near the free
surface in open-channel flows by spanwise correlation analysis. The presence of large-scale streaks
across the whole flow depth has been confirmed by many researchers. Previous evidence indicates
that the distance between neighboring low-speed streaks is the water depth scale (H–2H) [7–10].
Sukhodolov et al. [11] found that streamwise streak length could exceed 3H while Zhong et al. [1]
found the length to be greater than 10H. The existence of streaky structures throughout the whole
turbulent layer is now commonly accepted [7,12–14].

Various hypotheses and models of vortices have been created to explain the formation of low- and
high-speed streaky structures. Many studies proposed super-streamwise vortex models of Q2/Q4 events,
which included alternating low- and high-speed streaks in the spanwise direction [9,15,16]. The attached
eddy hypothesis developed by Townsend [17] explained Q2/Q4 events and the development of streaky
structures, which scale linearly with their water depth from the inner region to the outer region. Adrian
and Marusic [18] advocated a model using hairpin vortices and packets: hairpins and packets cause the
ejection of low-speed streaks between the two legs of the hairpin vortex when the super-streamwise
vortices feed themselves by sweeping low-momentum hairpins and packets into the low-speed regions.
Secondary flow cells have also been modelled as vortices which originate in the vicinity of the side
walls [19,20].

The existing research indicates that vortex models have limited use. Researchers accept the
existence of super-streamwise vortices theoretically, but the literature reviewed above shows that there
is no consensus among researchers concerning the formation of vortices. For example, the streamwise
vortex model cannot explain how streak length varies linearly from inner region to outer region.
The attached eddy vortex is a single structure, which does not explain the distribution and organization
of the many funnel vortices in turbulent flow. Hairpin vortex models are usually developed for a
single flow field and vortex structure in the x–y or x–z plane. However, current understanding of the
characteristics of hairpin vortices is insufficient to generate a robust interpretational theory. There are
relatively few studies of vortex models, and thus there is a lack of systematic quantitative vortex model
analysis; vortex models can still be improved.

We used models to investigate vortices as coherent structures in turbulent flow, using direct
numerical simulation (DNS) data. We identified the positions of low- and high-speed streaks using
image processing and calculated the characteristic dimensions of streaky structures in both the inner
and outer layers using a statistical method. We identified streamwise vortices, attached eddy vortices,
and hairpin vortices by analyzing the variation in streak dimensions with respect to water depth and
analyzed the spatial relationships between streaky structures and spanwise vortex position to explain
the relationship between the three vortex models. Finally, we propose a new hypothesis.

The remainder of this paper is organized as follows. Section 2 describes the methods used to
analyze the DNS data and to identify and calculate the characteristic dimensions of streaky structures.
Section 3 presents an analysis of the regular variation in streaky structures and the mechanics of the
three vortex models. Section 4 offers a summary and a brief discussion of our major findings and the
conclusions we draw from them.

2. Materials and Methods

2.1. Closed Channel Flow: DNS

Particle image velocimetry (PIV) is the principal experimental method of measuring the flow field.
The area captured by the camera is relatively small, due to the limited intensity of laser light, as the
physical width (z direction) of the image. Thus the number of low- and high-speed streaks sampled is
relatively small, whereby the characteristic scale of streaks is not particularly accurate. Therefore, we
used the numerical data of Del Alamo et al. [21] to investigate coherent structures in turbulent flow,
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and thereby obtained complete flow field information for closed channel flow. Data series L950, which
we used extensively, contains data for almost all recognized large-scale coherent structures scaled by
water depth [5,21,22]. Figure 1 shows that the dimensionless length and width of the DNS flow field
are both large, whereby the characteristic scales of the streaks are relatively accurate. We give a brief
introductory summary here. Detailed information can be found in Del Alamo et al. [21].

 

Figure 1. The computation region of direct numerical simulation (DNS) in closed channel flow.

The friction Reynolds number for the flow was 934, which indicates that the range of temporal
and spatial fluid scales involved in turbulence was considered to be relatively large. The simulation
covers a spatial domain (x, y, z) of 16πh/3 × 1h × 2πh, where h is the half-channel height and the domain
is discretized into an array (x × y × z) of 2048 × 193 × 1536 points. Each grid point contains three
velocity components corresponding to nine velocity gradient data points. The streamwise (x), vertical
(y), and spanwise (z) dimensions are shown in Figure 1, which summarizes of the DNS data; u, v, and
w represent the instantaneous velocities in the x, y, and z directions, respectively. Major parameters of
the DNS data are summarized in Table 1.

Table 1. Parameters of the DNS (data from Del Alamo et al. [21]).

Parameter Lx/H Lz/H Ly/H Δx+ Δz+ Δyc+ Nx Nz Ny

Original 8π 3π 2 7.6 3.8 7.6 3072 2304 385
Present study 16π/3 2π 1 7.6 3.8 7.6 2048 1536 193

In Table 1, H is the water depth; Lx, Ly, and Lz are the spatial domains along the x, y and z
directions, respectively; Δx and Δz are the grid resolutions in the x and z directions, respectively; Nx

and Nz correspond to the grid numbers; Δyc is wall-normal grid spacing at the channel center; Ny

represents the grid numbers along the y direction; the superscript + denotes normalization by the inner
scale (u* and v); and u* is the friction velocity and represents the shear stress velocity, for example,
Δx+ = Δxu*/v.

For each of the three-dimensional instantaneous velocity fields, totals of 153 × 30 x–y planes,
204 × 30 y–z planes, and 193 × 30 x–z planes were extracted for analysis. There were 2048 × 124 (x–y
plane), 245 × 1536 (y–z plane), and 2048 × 1536 (x–z plane) grid points. We extracted 193 × 30 x–z
planes for analysis, and there are 2048 × 1536 grid points in each x–z plane.

2.2. Detection of Streaky Structures

The formation of low- and high-speed streaks are related to instantaneous turbulence fluctuations.
Three steps were followed to study the characteristics scale of streaky structures: (1) the detection
function was used to identify the high- and low-speed streaks; (2) image processing, including
binarization and morphological operations, was used to extract the image structure of both low- and
high-speed streaks [6,10]; and (3) statistical analysis was used to calculate the characteristic scales
of streaks.
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2.2.1. Detection Function

The method, after modification, used the following two functions,

Fd(m, n, y+, t) =
u′(m, n, y+, t)

ustd(y+)
(1)

Ct(y+) = C×max[ustd]/ustd(y+) (2)

where (m, n) is the grid position in the x–z plane; u’ is the streamwise velocity fluctuation; ustd(y+) is
the standard deviation of the streamwise velocity at y+; Ct(y+) is the water depth threshold at y+; Fd is
the dimensionless value of detection function; C is a constant, equal to 0.6, as recommended by Lin
et al. [6]; and max[ustd] is the maximum value of ustd in the flow domain. Fd > Ct (high-speed) and
Fd < −Ct (low-speed) identify the streaks. Justification for the two equations and specific details are
provided in Wang et al. [10].

Figure 2a shows the contours of Fd for low-speed streaks at y+ = 21.05. The positive and negative
values of Fd indicate the existence of instantaneous streamline fluctuations, forming the low- and
high-speed streaks. Low-speed regions (brown), high-speed regions (blue), and other flow regions
(green) can be recognized by applying a threshold value of Ct(y+) to the contour map, as shown
in Figure 2b.

(a) Original Fd. 

 
(b) After applying threshold to Fd. 

Figure 2. Visualization of streaks represented by the dimensionless value of detection function Fd:
(a) original Fd with the range of the color bar set from −2.5 to 2.5; (b) after applying the threshold value
to Fd.
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2.2.2. Image Processing

To better quantitatively analyze the low- and high-speed streaks, a binary procedure was used to
extract the streaks: values less than−Ct were assigned the value 1, whereas values greater than –Ct were
assigned a value 0. Figure 3 shows the image processing procedure for extracting low-speed streaks.
The procedure for extracting high-speed streaks is similar, but uses a different Ct threshold value.

(a) Binary image. 

(b) Opening operator. 

(c) Closing operator. 

Figure 3. Cont.
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(d) Clean image. 

Figure 3. Image processing: (a) binary image, (b) opening operator, (c) closing operator,
and (d) clean image.

The original Fd image was binarized (Figure 3a), and a basic morphological transformation was
used to filter out noise in the binary images. This transformation was done in two steps [23]. First,
the opening operator (Figure 3b) and closing operator (Figure 3c) were used to delete some isolated
regions and fill some holes. The opening operator is derived from the fundamental morphological
operations of dilation as well as erosion and was used to break the adhesion between objects and
remove small particle noise; the closing operator combines the operations of erosion and dilation and
can be used to connect neighboring regions and fill in small holes. The area of the streak graph does
not change significantly during calculation when using the opening and closing operators.

Second, some isolated objects were deleted from the binary image with the bwareaopen function.
After these two steps were performed, the streaky structures were clearly visible (Figure 3d).
The selection of specific parameters and values is described by Lin et al. and Wang et al. [6,10].

2.2.3. Model of Streaky Structures

We used streak width (w) and the distance between adjacent streaks (d) to scale and characterize
streaky structures. As the structures vary spatiotemporally, the image was parsed line-by-line to
quantify both w and d. We assumed that the number of streaky structures in a line of the image was
ns. The streak widths are denoted by w1, . . . , wi−1, wi, wi+1, . . . , wns when the streak distances are
denoted by d1, . . . , di−1, di, di+1, . . . , dns−1.

For the random row in the image (rth line), the mean streak width of the rth line, w(r), and the
mean streak width of the whole velocity field at each y+, W (y+), were obtained by Equations (3) and (4):

w
(r)

=

ns∑
i=1

wi

ns
, (r = 1, 2, . . . , m) Wy+ =

m∑
r=1

w
(r)

m
(3)

where m is the total number of rows of the flow field. Similarly, the mean spanwise distance of each row,
d(r), and the mean spanwise distance of the whole velocity field at each y+, D(y

+
), were calculated by

d
(r)

=

ns−1∑
i=1

(di+1 − di)

ns− 1
, (r = 1, 2, . . . , m) D(y+) =

m∑
r=1

d
(r)

m
(4)

The dimensionless characteristic scales of the streaks can be obtained by D+ = Du*/v and
W+ =Wu*/v. The 30 instantaneous x–z velocity fields (DNS data) were captured at each y position in
all cases.

10



Water 2019, 11, 2005

Comparisons between characteristic scales and previous data are given in Figure 8 of
Wang et al. [10]. The variations in the mean spanwise distance relative to calculated wall distance
are completely feasible, and the above method can be used to analyze the characteristic scales of
streaky structures.

3. Results

The relationship between the spanwise distance between streaks and the vortex model used is
significant for analysis of the entire phenomenon. The spanwise interstreak distances for both low- and
high-speed streaks D/H and water depth y/H were plotted. Figure 4 shows that the trend of high-speed
streaks is similar to that of low-speed streaks. As water depth y/H increases, D/H reaches a turning
point close to half the water depth of the closed-channel flow. The increased amplitude decreases
significantly near the half water depth due to a weak boundary layer.

Figure 4. Spanwise distances of streaks; D/H varies with water depth y/H.

Most research on streaky structures has been concerned with the inner region (y+) and outer
region (H) scales. The relationship between two streaky structures of different scales is unclear.
We calculated the spanwise distances over the entire water depth continuously for both the inner and
outer regions. The results show that the development of streaky structures along the entire flow depth
is a continuous process.

D/H increases linearly with y/H in the outer layer (i.e., when 0.1 < y/H < 0.8), and the slope is
approximately 2. Streaky structures are closely linked to the vortex model used. Our results are
interpreted in the context of the streamwise and attached eddy vortex models as follows.

3.1. Streamwise Vortex Model

The spanwise distances are approximately twice the water depth, and the formation of streaky
structures in the outer layer is related only to water depth. This is consistent with streamwise vortex
structures being generated automatically from the self-organization of wall-bound turbulence [7].
In this case, the streamwise vortex also shows that the strong pumping action of low-speed fluid creates
an ejection event in the associated second quadrant, Q2 (u < 0, v > 0). Fluid moving at high speed from
the water surface toward the bed creates a sweep event in Q4 (v < 0, u > 0). The low- and high-speed
streaks are located at the downwelling and upwelling sides of the streamwise vortices respectively.

The conceptual streamwise model in Figure 5 was built to explain the formation of streaky
structures and Q2/Q4 events; the distance between adjacent streaks near the water surface is twice the
water depth [1,14,18].
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Figure 5. Representation of the streamwise vortex model.

3.2. Attached Eddy Vortex Model

Figure 6a shows that the increases in the characteristic scales of the streaks are linear, which is
a core assumption of Townsend’s attached eddy vortex hypothesis [17,23]. Our results indicate the
suitability of the attached eddy vortex model.

Figure 6a shows that, according to the model, the attached eddy vortex develops from the
near-wall region into a conical vortex in the streamflow direction. The formation mechanics of low- and
high-speed streaks and the Q2/Q4 events are similar to those of the streamwise vortex. In particular,
the spanwise distances between adjacent low-speed (or high-speed) streaks are closely related to
the size of the streamwise vortices and thus linearly proportional to y. Three cross-stream plane
sections (slices) of the attached eddies at different water depths y are shown in Figure 6; the blue and
red backgrounds indicate the low-speed and high-speed streaks, respectively. Figure 6a shows the
Q2\Q4 events when Figure 6b shows that the dimensions of the vortex increase linearly as water
depth increases and the relationship between D and h remains basically constant with D ≈ 2h. Overall,
the attached eddy vortex model explains the distance between adjacent streaks from the inner region
to the outer region.

 
(a) Diagram of the streaky structures and a pair of attached-eddy hypothesis. 

Figure 6. Cont.
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(b) High- and low-speed streaky structures for each slice. 

Figure 6. Streaky structures described in terms of the attached eddy hypothesis: (a) A pair of vortices
and the (b) corresponding high- and low-speed streaky structures for each slice.

3.3. Hairpin Vortex Model

The hairpin vortex model developed by Adrian is a relatively new vortex model [24].
We investigated the positional relationships between spanwise vortices and streaky structures in the
x–z plane to determine the suitability of the hairpin vortex model.

3.3.1. Vortex Extraction in the X–Z Plane

We used the two-dimensional swirling-strength λci-criterion [25]. Streaky structures form in the
in x–z plane, so a brief introduction to extracting a vortex in the x–z plane is given.

The swirling strength λci is given by

λci =

⎧⎪⎨⎪⎩
√

R− P2/4, 4R− P2 > 0 ;
0 4R− P2 ≤ 0 ;

(5)

where

P = −∂u
∂x
− ∂w
∂z

, R =
∂u
∂x
∂w
∂z
− ∂u
∂y
∂w
∂z

(6)

Following Wu and Christensen [26], we defined the normalized swirling strength Λci as Λci =

λciωz/|ωz|, where ωz is the fluctuating spanwise vorticity and λci and Λci are swirling strength
discriminators. Λrms

ci (y) is the local root mean square of Λci at the wall-normal position y, and we
defined the normalized swirling strength Ωci by

Ωci(x, y) =
Λci(x, y)
Λrms

ci (y)
(7)

In an ideal fluid, there is a clear boundary between rotating and irrotational fluid. Zero (0) can
be used as a threshold to easily extract the vortex. However, in a nonideal (actual) fluid, viscosity
causes dissipation of the vortex, which greatly complicates vortex identification. We used a non-zero
threshold of 1.5 to identify a vortex, following the recommendation of Wu and Christensen [26], so that

|Ωci| ≥ 1.5 (8)

Negative or positive values of Ωci in Equation (8) represent a clockwise or counterclockwise
vortex, respectively.
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3.3.2. Vortex Density

When the vortex structure has been determined by the preceding methods, the vortex population
density Π+ is calculated by

Π+ =
Nvortex(y+)

Nx(y+) ·Nz(y+) · Δx+ · Δz+
(9)

where Nvortex is the spanwise number of vortices at position y+.
The prograde and retrograde vortices in the x–z plane were separated, and the population densities

of the vortices were computed for each position of y+. Figure 7 shows that the population density of 2D
vortices varies with water depth, reaching a maximum in the near-wall region at y+ = 40.22. This result
may be partly due to the number of streamwise vortices in the deeper water. In the outer region, vortex
density decreases gradually as y+ increases. As the shear stress in the x–z plane is approximately zero,
the population density of prograde vortices is equal to that of retrograde vortices at each y+ position.
These results agree with those obtained by Chen et al. [27], which confirms the logic of our vortex
extraction method.

Figure 7. Vortex population density in the x–z plane.

3.3.3. Location of Vortices and Streaks

Figure 8 shows the cores of spanwise vortices surrounded by nine velocity vectors (red), high-speed
streaks (yellow), low-speed streaks (blue), and the in-between region (green) that were obtained by the
preceding methods. We extracted and analyzed 400× 800 grid points in the x–z plane. The dimensionless
area is 3040 × 3040, and x+ and z+ represent the dimensionless length along the streamwise and
spanwise directions, respectively.
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Figure 8. Positional distributions of streaks and spanwise vortices.

To further investigate the relationship between streaky structures and spanwise vortices, the vortex
core (ui,j) velocity and the eight surrounding streamwise velocities (Figure 9) were averaged using
Equation (10). Equation (11) was then used to calculate Fd at the core of each vortex. We use Ct(y) to
identify the region of the distribution of vortex cores.

u =
1
9

9∑
i=1

ui (10)

Fd =
u′

ustd(y+)
(11)

where ū is the average velocity of spanwise vortices in the x–z plane, ū′ is the fluctuating velocity, and
Fd is the detection function of average vortex velocity. We can now calculate the statistical measures of
the vortices in different streaky structures.

 
Figure 9. Grid for streamwise velocity u showing the core of the vortex.

In previous research, streaks have generally been divided into low- and high-speed. However,
to obtain a more detailed analysis of the relationships between spanwise vortices and streaky structures,
we divided the x–z plane into three types using the threshold Ct(y+): low-speed streaks, high-speed
streaks, and in-between regions.

Figure 10 shows that the numbers of vortices differ greatly within the different streaks. The
spanwise vortices in the in-between region occur in the greatest numbers, followed by low-speed
streaks, with the least numbers in the high-speed streaks. When y/H > 0.1 the number of vortices in
high-speed streaks is approximately equal to 0.
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Figure 10. Vortex numbers in low- and high-speed streaks and in-between regions.

It should be noted that the three areas occupied by the three types are also different. By dividing
the number of vortices by the area containing them, we eliminated the influence of area from our
analysis to better understand the distributions of spanwise vortices located in streaky structures.

3.3.4. Vortex Density in Different Streaks

We first calculated the areas of the low- and high-speed streaks. The values of both low- and
high-speed streak widths are influenced by the threshold value (Ct) and are difficult to recognize
relative to the spanwise distance. If Ct is too large, the streak width will not include the whole with of
the streak; nevertheless, if Ct is too small, the streak width will contain parts of the in-between region.
However, even with different threshold values, the change tendencies are basically consistent. Here,
we used the threshold value suggested by Lin et al. [6] to identify the width of low- and high-speed
streaks. Figure 11 shows that as y+ increases, streak width first increases and then decreases. As the
water depth increases from inner region to outer region, the streak scale also increases. When water
depth is close to the surface (about 0.7H), the weak boundary layer restrains the streak scale, and the
streak width will decrease. This trend is stable and clearly demonstrated.

Figure 11. Characteristic dimensions (width) of low- and high-speed streaks varying with y+.

The area percentages of low- and high-speed streaks in the x–z plane at each position y+ are also
important characteristic dimensions and can be regarded as the normalized areas of streaks. The area
percentage, defined as Ps, can be obtained by

As =
m∑

i=1

nsi ·wi (12)
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Ps =
As

At
× 100% (13)

where As is the total area of low- or high-speed streaks and At is the total area of the flow field
(2048 × 1536). Figure 12 shows that the percentage area of both low- and high-speed streaks decreases
as y+ increases. In the near-wall region (y/h < 0.1), the gradients are steep; in the outer region (y/h > 0.3),
the decreasing trends become less steep. This result shows that the streaks occur mainly in the near-wall
region where there is high shear stress. Mean shear stress decreases as y/h increases, and so does its
effect on the streaks. Streaks in the outer region decrease in number and so the percentages of both
low- and high-speed streaks in the x–z plane also decrease.

Figure 12. Percentage area of low- and high-speed streaks along the x–z plane.

Figures 11 and 12 both show that the formation of streaks between the near-wall region and the
outer layer is a continuous process, as also shown in Figure 4.

3.3.5. Calculation of Vortex Density

Equation (10) was used to calculate the density of spanwise vortices in different streaky structures,
as shown in Figure 13. The density of spanwise vortices is highest in low-speed streaks, intermediate
in the in-between region and least in the high-speed streaks. Thus, there are big differences between
the number of vortices and vortex density located in different streaky structures.

Figure 13. Vortex densities located in different streaky areas.

The hairpin vortex model developed by Adrian [24] has gained widespread acceptance, due to
experimental visualization using particle image velocimetry and direct numerical simulation. Figure 14
shows the standard coherent structure model of a hairpin vortex developed by Adrian [24].
The alignment of coherent vortices induces a low-speed fluid region inside the hairpin packets.
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Due to the closed-loop feedback cycle between hairpin vortex cells and streamwise vortices [1,28],
the streamwise vortices are stable.

Figure 14. Representation of hairpins and hairpin packets by Adrian [24].

Research into hairpin vortex behavior has become an important direction of research. However,
the sample sizes used in the research are fairly small, so the regularity of the relationship between
streaky structures and spanwise vortices in the x–z plane must be further researched by analyzing
large samples.

We obtained statistics from large DNS data samples, and we found that spanwise vortex density
in low-speed streaks is greater than in high-speed streaks. This result indicates that hairpin vortex
legs are closer to the low-speed streaks and further from the high-speed streaks. Thus, the results we
obtained exhibit an important feature of hairpin vortex legs when they envelop low-speed streaks to
move along the quasi-streamwise direction, as shown in Figure 14. The legs of the hairpin vortex are
spanwise vortices in the x–z plane, as shown in Figure 15. Spanwise vortices are mainly distributed in
the region of low-speed streaks, consistent with the structure of hairpin vortices. Our results support
the logic of the hairpin vortex model and reveal mechanisms of hairpin vortex behavior more explicitly.

Figure 15. Representation of hairpin vortex and spanwise vortex.

4. Discussion and Conclusions

4.1. Discussion

A large-scale vortex is a conceptual model, or representation, of a natural phenomenon intended
to be used in the provision of logical explanations of all kinds of coherent structures in turbulent
fluids. Classical and prevailing views of vortices have led to many vortex models being developed.
We identified both low- and high-speed streaks from the wall to the surface using image processing
technology; the meandering large scale motions are impossible to ignore. The low- and high-speed
streaks are formed by an ejection event (Q2, u < 0, v > 0) and a sweep event (Q4, v < 0, u > 0) [14,18].
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We used the super-streamwise vortex (Figure 5) as the interpretative model to explain the preceding
results and the spanwise distance of nearby streaks (2H). We found that the scale of the streaks increased
in proportion to their distance from the wall. The result is consistent with the classical model, which
combines length growth with growth in eddies, developed by Townsend [17]. Our results also explain
the logarithmic growth in open channel flow. The distributions of spanwise vortex density in low- and
high-speed streaky structures suggest further research into hairpin vortices. We statistically sampled
large datasets to compare and analyze three vortex models. Our analysis of the results shows the
benefit of explaining coherent structures from the three different model perspectives.

The literature contains little record of large dataset statistical sampling, but it is urgently needed
to demonstrate the suitability of different vortex models and to clarify the relationships between them.
As stated in the introduction, the large-scale streamwise vortex model provides a good explanation
of the coherent structures of Q2/Q4 events and the spanwise distances between adjacent streaky
structures near the water surface (which is about 2H). However, the large-scale streamwise vortex
model is relatively coarse and represents a large structure (Figure 5), and it cannot accurately explain
the continuous development of streaks from the inner region to the outer region. The attached eddy
vortex model cannot provide a precise organized structure for the large vortices that accumulate in
turbulence. The hairpin vortex model requires more usage and analysis to show its suitability.

Vortex models are limited. However, our research into the characteristic dimensions of streaky
structures across the entire water depth, described in this study, leads us to conclude: the streamwise
vortex model, the attached eddy vortex model, and the hairpin vortex model are all suitable models in
certain circumstances.

We used quantitative analysis to develop a theoretical model in which packets of attached eddy
vortices self-organize and accumulate along the flow direction, thereby forming a cumulative vortex
structure, the streamwise vortex. Figure 16 shows that many attached eddy vortices are connected
along the flow direction to form the large-scale structure of a streamwise vortex. This behavior
provides more details about the formation of large-scale streamwise vortexes. The model explains
the characteristics of streamwise vortices (Q2/Q4 events and low- and high-speed streaky structures)
and linear streaks based on water depth. Our investigation into the spatial relationships between
spanwise vortex density and streaky structures shows that the legs of the hairpin vortex model envelop
low-speed streaks. These low-speed hairpin vortex legs can be organized and accumulated into
larger-scale quasi-streamwise vortices (Figure 16).

Figure 16. Theoretical models of a streamwise vortex, an attached eddy vortex, and a hairpin vortex in
the x–z plane.

Further analysis of the details of the vortex models led us to propose a simple hypothesis: the
three coherent structures, modeled individually as a streamwise vortex, while an attached eddy vortex
and a hairpin vortex both exist separately in turbulent flow. It is likely that they are all manifestations
of the same turbulent structure under different paradigmatic approaches, as shown in Figure 16.
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4.2. Conclusions

We based this study on 30 sets of closed-channel flow DNS data. Image processing was employed
to identify low- and high-speed streaks, using a detection function and a threshold value, Ct. Statistical
methods were used to calculate the characteristic dimensions of both low- and high-speed streaks.
We investigated three models of coherent structures (streamwise vortex, attached eddy vortex, and
hairpin vortices) and demonstrated their application. Analysis of the characteristic dimensions of
streaky structures and vortices and further analysis of the relationships among the three vortex models
led us to suggest a straightforward hypothesis. The results we obtained are summarized as follows.

(1) The average width of streaks and the average distance between adjacent streaks that we observed
are consistent with the results of previous studies, which indicates the suitability of our method
of identifying and calculating both low- and high-speed streaky structures.

(2) The development of streaks from the inner turbulent region to the outer region is a continuous
process. The length of streaky structures increases linearly with the water depth, and it is
approximately twice the water depth. This result also shows the suitability of both the streamwise
vortex and the funnel vortex models.

(3) The spanwise vortex density in the x–z plane is greatest within low-speed streaks, intermediate
in the in-between region, and least in the high-speed streaks. We infer that the legs of the
hairpin vortices envelop the low-speed streaky structures to move in the streamwise direction
and conclude that the hairpin vortex model provides a suitable representation.

(4) The theoretical model of the locations in the x–z plane of streamwise vortices, attached-eddy
vortices and hairpin vortices established the possibility of the coexistence of three vortex
structures; this recognition increases our understanding of the mechanics of coherent structures
in turbulent flows.
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Abbreviations

Parameter Description Unit
As Total area of low- or high-speed streaky structures
At Total area of the flow field (2048 × 1536)
Ct(y+) Streak threshold at y+

d(r) Dimensionless spanwise distance at each y+
D Nondimensional spanwise distance
Fd Detection function value of average vortex velocity
Fd Dimensionless value of detection function
m Total number of rows of the flow field
Nx Grid numbers in the x direction
Ny Grid numbers in the y direction
Nz Grid numbers in the x direction
Nvortex Number of spanwise vortices at position y+

Ps Area percentages of low- and high-speed streaky structures
u Instantaneous velocity in the x direction m/s
u* Friction velocity m/s
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uij Velocity at the position of vortex core
ū Average velocity of spanwise vortices in the x–z plane m/s
ū′ Fluctuating velocity m/s
u′ Streamwise velocity fluctuation m/s
v Instantaneous velocity in the y direction m/s
w Instantaneous velocity in the z direction m/s
W Average nondimensional width
x Streamwise direction
Δx Grid resolution in the x directions
y* Inner scale
y Vertical direction
Δyc Wall-normal grid spacing at the channel left
z Spanwise direction
Δz Grid resolution in the z directions
(m, n) Grid position in the x–z plane
ustd(y+) Standard deviation of the streamwise velocity at y+

λci Two-dimensional swirling-strength 1/s
Λci Dimensionless swirling strength
ωz Fluctuating spanwise vorticity 1/s
Λrms

ci (y) Local root mean square of Λci at the wall-normal position y
Ωci Normalized swirling strength
Π+ Vortex population density
υ Kinematic viscosity cm2/s
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Abstract: The paper argues that universal approaches to infiltration and drainage in permeable media
pivoting around capillarity and leading to dual porosity, non-equilibrium, or preferential flow need
to be replaced by a dual process approach. One process has to account for relatively fast infiltration
and drainage based on Newton’s viscous shear flow, while the other one draws from capillarity and
is responsible for storage and relatively slow redistribution of soil water. Already in the second half
of the 19th Century were two separate processes postulated, however, Buckingham’s and Richards’
apparent universal capillarity-based approaches to the flow and storage of water in soils dominated.
The paper introduces the basics of Newton’s shear flow in permeable media. It then presents
experimental applications, and explores the relationships of Newton’s shear flow with Darcy’s law,
Forchheimer’s and Richards’ equations, and finally extends to the transport of solutes and particles.

Keywords: wetting shock fronts; shear flow; viscosity; capillarity; kinematic waves

1. Introduction

Infiltration is the transgression of liquid water from above the surface of the permeable lithosphere
to its interior, while drainage refers to liquid water leaving some of its bulk. For example, within about
three weeks after liquid manure applications, bad odors appeared in drinking water wells at depths
between 10 to 50 m in English Chalk [1]. In the same geological formations, the annual surplus of the
water balance moved down with about 1 m year−1 as profiles of isotope ratios of 18O/16O revealed [2].
The contrasting observations lead to ratios between 150 and 700 of the velocities of the ‘odor’ front vs.
the isotope front that illustrate well the difference between rapid and slow infiltration.

Fast flow and transport are usually attributed to preferential flow in the macropore domain, while
slower movements are supposedly due to flow in the capillary domain as expressed with Richards’ [3],
allowing for exchanges between the two domains as, for instance [4] and [5] have recently compiled.
This contribution favors a dual-process approach to infiltration and drainage over dual-porosity
approaches, thus avoiding the a-priori delineation between ‘macropores’ and the remaining porosity.

Beginning in the middle of nineteenth century, the next section summarizes the evolution
of permeable media flow concepts for both, saturated and unsaturated flows. The third section
provides the base for Newton’s shear flow, stressing vertical viscous flow during rapid infiltration,
while capillarity is assigned to the much slower redistribution of soil moisture but in all directions.
The fourth section provides experimental evidence, and is followed by the conclusions.

2. Evolution of Infiltration and Drainage Concepts

This section provides some milestones on the way to a dual-process approach to infiltration and
drainage, where Newton’s shear flow covers fast and gravity driven flows, while Richards’ capillary
flow is considered to deal mainly with slower capillary rises and redistributions. By no means is this
section intended to cover the history of infiltration and drainage.

Water 2020, 12, 337; doi:10.3390/w12020337 www.mdpi.com/journal/water23
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2.1. Steady Saturated Flow

In the mid-19th century, there was an increasing interest in flows in saturated soils and similarly
permeable media. Hagen, a German hydraulic engineer, and Poiseuille (1846) [6] a French physiologist,
independently analyzed laminar flow in thin capillary tubes. Darcy (1856) [7], in the quest of
designing a technical filtration system for the city of Dijon, empirically developed the concept of
hydraulic conductivity as proportionality factor of flow’s linear dependence on the pressure gradient.
Dupuit (1863) [8] expanded Darcy’s law to two dimensions as perpendicular and radial flow between
two parallel drainage ditches and towards a groundwater well, respectively. Forchheimer (1901) [9]
added an expression to Darcy’s law that accounts for high pressures, steep gradients, and high flow
velocities in the liquid.

2.2. Early Studies on Flow in Unsaturated Soils

Schumacher (1864) [10], a German agronomist, was probably the first who considered capillarity
as the cause for simultaneous flows of water and air in partially water-saturated soils. He qualitatively
compared the rise of wetting fronts in soil columns with the rise of water in capillary-sized glass tubes,
and concluded that the wetting fronts rise higher but slower in finer textured soils compared with
coarser materials. He also infiltrated water in columns of undisturbed soil and found that infiltration
fronts progressed much faster than the rising wetting fronts. He suggested two separate processes
for the two flow types: (i) slower capillary rise and (ii) faster infiltration, however, without further
dwelling on the latter. Lawes et al. (1882) [11] concluded from the chemical composition of the drain
from large lysimeters at the Rothamsted Research Station that “The drainage water of a soil may thus
be of two kinds (1) of rainwater that has passed with but little change in composition down the open
channels of the soil; or (2) of the water discharged from the pores of a saturated soil.” [11] prioritized
two separate flow paths to explain the observations.

2.3. Universal Capillary Flow in Unsaturated Soils

During the second half of the 19th century, modern irrigation agriculture spread in semi-arid
areas, thus increasing the demand for better understanding the soil-water regime. Buckingham
(1907) [12], working on a universal approach to the simultaneous storage and flow of water and air
in soils, postulated the relationship between the capillary potential ψ Pa and the volumetric water
content θ m3 m−3, also known as the water retention function, retention curve, or water release curve.
The capillary potential follows from the Young–Laplace (1805) [13] relationship, stating that the
pressure difference between a liquid and the adjacent gas phase increases inversely proportional to
the radius of the interface. Capillary potential emerges as energy per unit volume of water in the
permeable medium due to the water’s surface tension. Canceling energy and volume with one length
leads to force per area. Because the menisci’s surfaces are bent into the liquid, ψ < 0, where ψ = 0
corresponds to the air pressure as reference. In addition to the specific weight of the soil water, [12]
introduced the spatial gradient of ψ as the other major driving force. Besides infiltration, this stroke
of a genius accounts for the redistribution of soil water in all directions, evaporation across the soil
surface, transpiration via roots, and capillary rise from perched water including groundwater tables.
In analogy to Fourier’s (1822) [14] and Ohm’s (1825) [15] laws for heat flow and electrical current, and
Darcy’s law for water flow in saturated porous media, [12] postulated the hydraulic conductivity for
flow in unsaturated porous media as function of either K(θ) or K(ψ) m s−1. According to Or (2018) [16],
the British meteorologist Richardson (1922) [17] was most likely the first who introduced a diffusion
type of K-ψ-θ-relationship in the quest of quantifying water exchange between the atmosphere and the
soil as lower boundary of the meteorological system. A second-order partial differential expression
became necessary because ψ depends on θ, and both their temporal variations on flow, while flow
itself is driven by the gradient of ψ.
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The race was on to the experimental determination of the K-ψ-θ-relationships. For instance,
Gardner et al. (1922) [18] used plates and blocks of fired clay with water-saturated pores fine enough
to hydraulically connect the capillary-bound water within soil samples with systems outside them. [3]
applied the technique to the construction of tensiometers that directly measure ψ within an approximate
range of 0 > ψ >≈ −80 kPa. With the pressure plate apparatus he measured ψ-θ-relationships and
determined hydraulic conductivity K(ψ or θ). Similar to [17], he presented a diffusion-type approach
to the transient water flow in unsaturated soils. Numerous analytical procedures evolved for solving
the Richards equation, among them a prominent series of papers by J.R. Philip [19]. Moreover, van
Genuchten (1980) [20] developed mathematically closed forms of K-ψ-θ-relationships that provide the
base for the many hues of HYDRUS i.e., various numerical simulation packages dealing with flow and
storage of water and solutes in unsaturated soils (Simunek et al., 1999, [21]).

2.4. Early Alternatives to Universal Capillary Flow

In his quest of demonstrating the benefit of forests and reforestations on controlling floods and
debris flows from steep catchments in the Swiss Alps and Pre-Alps, Burger (1922) [22] measured in
situ the time lapses Δt100 for the infiltration of 100 mm of water into soil columns of the same length.
In the laboratory, he determined the air capacity AC m3 m−3 of undisturbed samples collected near the
infiltration measurements, where AC is the difference of the specific water volume after standardized
drainage on a gravel bed and complete saturation.

Veihmeyer (1927) [23] investigated water storage in soils with the aim of scheduling irrigation.
He proposed the water contents at field capacity (FC) and at the permanent wilting point (PWP) as
upper and lower thresholds of plant-available soil water. Free drainage establishes FC a couple of days
after a soil was saturated and evapo-transpiration was prevented. The water loss before achieving FC is
referred to as ‘drainable’ or ‘gravitational’ soil water. PWP is considered θ at ψ = −150 kPa (= −15 bar).

2.5. Dual Porosity Approaches

It became unavoidable that concepts based on Buckingham’s (1907) [12] fundamental and seminal
work contradicted with practical and field-oriented research. Veihmeyer (1954) [24], for instance,
stated “Since the distinction between capillary and other ‘kinds’ of water in soils cannot be made
with exactness, obviously a term such as non-capillary porosity cannot be defined precisely since by
definition it is determined by the amount of ‘capillary’ water in the soils”. Additionally, progress in
field instrumentation as well as in computing techniques allowed for producing and processing large
data sets including the numerical solution of Richards equation. In the late 1970s, the development
increasingly unveiled substantial discrepancies between measurements and the numerous approaches
to water movement in unsaturated soils based on [3] capillarity-dominated theory. Particularly
disturbing were observations on wetting fronts advancing much faster than expected from the
Richards approach.

The mid-1970s initiated the thread of dual-porosity approaches to preferential flows.
Bouma et al. (1977) [25] were among the first to introduce the term macropores in view of
non-equilibrium in ψ-θ-relationships, while the compilation by Beven and Germann (1982) [26]
on the subject is still referred to today. The discussion has gradually moved from macropore flow
to preferential flow that summarizes all the flows in unsaturated porous media not obeying the
Richards equation [4]. Numerous reviews on macropore flows, preferential flows, non-equilibrium
flows, and non-uniform flows in permeable media appear periodically, and only the latest are here
referenced [5,27].

Beven (2018) [28] argued that, for about a century, the hardly questioned preference given to
capillarity denied recognition of concepts considering flow along macropores, pipes, and cracks.
Indeed, there is an increasing number of contributions focusing on the dimensions and shapes of
flow paths, their 3-D imaging, and trials to derive flows from them [4]. However, there is hardly an
approach capable of applying the wealth of information about the paths to the quantification of flow.
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Ignoring Veihmeyer’s (1954) [23] warning, the attraction of research on flow paths is so dominant
that, for instance, Jarvis et al. (2016) [4] flatly denied the applicability of Hagen–Poiseuille concepts to
flow in soils. Moreover, advanced techniques of infiltration with non-Newtonian fluids led so far just
to the description of path structures rather than more directly to the flow process [29]. Wide-spread
research in the types, dimensions, and shapes of ‘macropores’ and their apparent relationships to
flow and transport mostly pivot around Richards equation that is numerically applied to either
macropore-/micropore-domains or by modelling flow and solute transport in the macropore domain
with separate rules yet still maintaining a Richards-type approach to micropore-flow. Both types of
approaches allow for exchanges of flow and solutes between the two domains. Imaging procedures
visualize flow in 2-D and 3-D in voids as narrow as some 10 μm, rising hope that the wealth of
information gained so far at the hydro-dynamic scale will eventually lead to macroscopic models at
the soil profile scale of meters [4]. Thus, Beven’s (2018) [28] denial of progress in infiltration research
is here carried a step further. The obsession with pores, channels, flow paths, and their connectivity,
tortuosity, and necks actually retarded research progress towards more general infiltration that has to
be based on hydro-mechanical principles.

2.6. Early Search for Alternatives

The alternative approach should be based on the same principles as Hagen–Poiseuille’s and
Darcy’s laws, whereas Newton’s (1729) [30] shear flow (Nsf) appears as a solid and suitable foundation.
The approach then should close the gap of one to two orders of magnitude of hydraulic conductivity
between saturated flow and flow close to saturation [31].

Unearthing Burger’s (1922) [22] data, [32] found an encouraging coefficient of determination of r2

= 0.77 when correlating via a Hagen–Poiseuille approach 76 pairs of Δt100- and AC-values. Beven and
Germann (1981) [33] modelled laminar flow in tubes and planar cracks, and proposed kinematic wave
theory according to Lighthill and Whitham (1955) [34] as analytical tool for handling Nsf. Germann
(1985) [35] applied the theory successfully to data from an infiltration-drainage experiment carried out
on a block of polyester consolidated coarse sand that experimentally support the flow-(q-) version of
Nsf, where q m s−1 is volume flux density.

Dye experiments confirmed expectations, not the least by purposefully setting the initial and
boundary conditions. [36], for instance, demonstrated preferential flow along earthworm burrows
down to the 0.4 m depth as well as radially away from the channels by inundating with rhodamine
dye and a bromide solution the tops of columns of undisturbed soil. Following [11], who reported
fast drainage, Germann (1986) [37] assessed the arrival times of precipitation fronts in the Coshocton
lysimeters. Accordingly, rains of 10 mm d−1 sufficed to initiate or increase drainage flow within 24 h at
the 2.4 m depth when θ in the upper 1.0 m of the soil was at or above 0.3 m3 m−3. The observations
result in wetting front velocities greater than 3 × 10−5 m s−1.

2.7. Development of Newton’s Shear Flow Approach to Infiltration and Drainage

The advent of TDR- and data recording techniques fostered the water-content-(w-) version
of Nsf (where w m3 m−3 refers to the mobile water content) applicable to in-situ infiltration
experiments using controlled sprinkler irrigation and producing time series of θ at various depths
in soil profiles. Discussions with L. Dipietro and V. P. Singh linked experiments with basic
concepts [38]. Investigations of acoustic velocities across a column of an undisturbed soil during
infiltrations, [39] proved independently from the capillarity narrative that rapidly infiltrating water is
under atmospheric pressure. Originally, macropore flow was the prominent research topic. Shortfalls
of the capillarity-dominated concepts emerged when juxtaposed to matured Nsf-versions [40]. Hence,
this paper is the première of consequently carrying through the dual-process approach to infiltration
and drainage.

There were projects leading off the track. [41], for instance, proposed a kinematic wave approach
to infiltration that included a sink function accounting for water abstraction from the moving to the
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sessile parts. Later rigorous testing of the approach against real data unveiled the misconception.
Additionally, [42] superimposed a bundle of rivulets to model data. That again turned out as
impracticable. [43] were looking for FC in soil profiles after the cessation of infiltration. However,
repeated experiments showed quite variations in expected constant final FCs.

2.8. State of Nsf

Gradually, some of the subordinate concepts lined out above get referenced. However, as of yet,
outside the author’s immediate environment of research, there is hardly an elaborated application
of Nsf to infiltration and drainage. Unavoidably, this leads to the impression of self-indulgence,
particularly in view of the paper’s lopsided list of references. The Guest Editor’s invitation to its
submission may ease the charge. Moreover, although [26] mainly outlined the need for research on
‘macropore flow’ and did not offer much of research guidance, that paper is still frequently referenced,
indicating that researchers have hardly agreed on a basic approach to the problem as they did and still
do, for instance, on the Richards equation.

3. Newton’s Shear Flow in Permeable Media

The section summarizes the basics of Newton’s shear flow (Nsf) in permeable media. Detailed
derivations of the relationships have previously been published [44–46], thus only the major expressions
are here presented. The approach is laid out at the hydro-mechanical scale of spatio-temporal process
integration, allowing for its easy handling with analytical expressions, yet under strict observance of
the balances of energy, momentum, and mass (i.e., the continuity requirements).

The interior of a permeable solid medium contains connected flow paths that are wide enough to
let liquids pass across its considered volume. The definition purposefully avoids further specification
of the flow paths’ shapes and dimensions. Water supply to the surface is thought of a pulse P(qS,TB,TE),
where qS m s−1 is constant volume flux density from the pulse’s beginning at TB to its ending at TE,
both s. (The subscript S refers to the surface of the permeable medium). The pulse initiates a water
content wave (WCW) of mobile water that is conceptualized as a film gliding down the paths of a
permeable medium according to the rules of Newton’s shear flow. The WCW is the basic unit of shear
flow whose hydro-mechanical properties are going to be presented below.

Referring to Figure 1, the parameters film thickness F m and specific contact length L m m−2

per unit cross-sectional area A m2 of the medium specify a WCW. Regardless of the thickness of F,
atmospheric pressure prevails within the film. A WCW supposedly runs along the flow paths while
forming a discontinuous and sharp wetting shock front at zW(t). The WCW partially fills the voids of
the upper part of the medium within 0 ≤ z ≤ zW(t) with the mobile water content w(z,t) m3 m−3, where
w < ε − θante, where ε and θante are porosity and antecedent θ, respectively, both m3 m−3. The lower
part z > zW(t) remains at θante. The coordinate z m originates at the surface and points positively down.
The water film of the WCW consists of an assembly of parallel laminae, each df m thick and moving
with the celerity of c(f ) m s−1. Celerity refers to the wave velocity, for instance of a lamina. Newton
(1729) [30] defined viscosity as “The resistance, arising from the want of lubricity in the parts of a fluid,
is, caeteris paribus, proportional to the velocity with which the parts of the fluid are separated from
each other.” In our case, the definition translates to the shear stress ϕ(f ) Pa in the unit area of L × A
× zW(t) m2 per unit volume A × zw(t) m3 of the medium at distance 0 ≤ f ≤ F m from the soil-water
interface (SWI), acting in the direction opposite to gravity. ϕ(f ) balances the weight of the film from f
to F. Integration of the shear stress balance from 0 to f under consideration of the non-slip condition of
c(0) = 0 leads to the parabolic celerity profile of the laminae within the film. The differential flow of a
lamina is dq(f ) = L × c(f ) × d(f ). Its integration from 0 to F i.e., from the SWI to the air-water interface
(AWI), leads to the volume flux density of the entire film as:

q(F, L) =
g

3 · η · L · F
3 (1)
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m s−1, where g (= 9.81 m s−2) is acceleration due to gravity andη (≈10−6 m2 s−1) is temperature-dependent
kinematic viscosity. The volume of mobile water per unit volume of the permeable medium from the
surface to zW(t) amounts to:

w(F, L) = F · L (2)

m3 m−3. The constant velocity of the wetting shock front follows from the volume balance as:

vW(F) =
q(F, L)
w(F, L)

=
g

3 · η · F
2 (3)

Figure 1. Film flow along a vertical plane, where F m is the film thickness, f m is the thickness variable,
df m is the thickness of a lamina, zW(t) m is the vertical position of the wetting shock front as function
of time t s, and L m m−2 is the specific contact length between the moving water film and the sessile
parts of the permeable medium per its unit horizontal cross-sectional area A m2. AWI and SWI are the
air-water and the solid-water interfaces, respectively ([44]; with permission from the publisher).

Thus, the position of the wetting shock front as function of time becomes:

zW(t) = vW · (t− TB) = (t− TB) · g
3 · η · F

2 (4)

m s−1. Accordingly, L m m−2 is not only the specific contact length of the film per A but, under
consideration of zW(t), L m2 m−3 evolves as the specific vertical contact area of the WCW with the
sessile parts of the permeable medium per unit volume. It thus turns into the locus of exchange of
momentum, heat, capillary potential, water, solutes, and particles between the WCW and the sessile
parts of the medium.
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Equations (1)–(4) hold during infiltration i.e., TB ≤ t ≤ TE. Input ends abruptly at TE and at z = 0
i.e., qS→0, when and where the WCW collapses from f = F to f = 0. All the rear ends of the laminae
are released at once at z = 0. The outermost lamina moves the fastest with the celerity of the draining
front as:

cD =
dq(F)

dw
=

dq(F)
L · d f

=
g
η
· F2 = 3 · vW (5)

m s−1. While vW follows from the volume balance Equation (3), the three times faster cD follows from
the parabolic function c(f ) (see, for instance, Germann and Karlen, 2016). The outer most lamina
moves with cD also during 0 ≤ t ≤ TE. Therefore, the slower moving wetting shock front continuously
intercepts the faster moving laminae. This results in a sharp wetting shock front at zW(t) with θante

+ w between the surface and the wetting shock front and θante ahead of it. The wetting shock front
presents a discontinuity of the WCW. The rear end of the draining front that was released at TE catches
up with wetting shock front at time TI s that follows from setting vW × (TI − TB) = cD × (TI − TE) as

TI =
1
2
· (3 · TE − TB) (6)

Thus, TI is exclusively an expression of the pulse duration. The wetting shock front intercepts the
draining front at depth:

ZI = (TE − TB) · F2 · g
2 · η (7)

m. The two expressions TI and ZI represent the spatio-temporal scale of a WCW. The rear ends of all the
other laminae move with decreased celebrities, ultimately leading to the spatio-temporal distribution
of the mobile water content from the surface to the wetting shock front as:

w(z, t) = L ·
(
η

g

)1/2

· z1/2 · (t− TE)
−1/2 (8)

After TI and beyond ZI the draining front disappears and vW(z,t) decreases with time and depth,
leading to the position of the wetting shock front as:

zW(t) =
(3 ·VWCW

2 · L
)2/3
·
(

g
η

)1/3

· (t− TE)
1/3 (9)

with the mobile water content of:

w(t)
∣∣∣
zW

=

(
η

g

)1/3

·
(3 ·VWCW

2

)1/3
· (t− TE)

−1/3 · L2/3 (10)

while the volume flux density at the wetting shock front becomes:

q(t)
∣∣∣
zW

=
VWCW

2 · (t− TE)
(11)

where VWCW = qS × (TE − TB) m is the total volume of the WCW. Figure 2 illustrates the relationships
describing a WCW.
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Figure 2. Schematic representation of a water-content wave WCW, where the w(z,t)-axis represents the
mobile water content, t and z are the axes of time and depth; wS indicates the mobile water content that
follows from qS; TB and TE s are the beginning and ending times of the water pulse P(qS, TB, TE) that
hits the surface at z = 0; TI and ZI indicate time and depth of the wetting front intercepting the draining
front. The wetting shock front continues beyond t > TI and z > ZI as curve along time and depth. ([44];
with permission from the publisher).

A WCW i.e., w(z,t),translates easily into a volume flux density wave according to:

q(z, t) = b ·w(z, t)3 (12)

with b = g/
(
3 · L2 · η

)
m s−1. The approach applies to laminar flow as assessed with the Reynolds

number:

Re =
F · v
η

=
F3 · g
3 · η2 =

(
3 · v3

g · η
)1/2

(13)

Re ≤ 1 strictly defines laminar flow; however, depending on the application, Re > 1 might be tolerable,
yet within an undisclosed range.

The parameters film thickness F m and specific contact area L m2 m−3 of a WCW due to a pulse
P(qS,TB,TE) follow from time series of either volumetric water contents θ(Z,t) or from volume flux
density q(Z,t), where Z (m) represents a specific depth in the permeable medium. Presumably, F and L
get established shortly after TB. Their sizes are due to qS and the actual properties of the permeable
medium, such as θante and related flow paths supporting F and L. Predictions of F and L are currently
undisclosed, thus restricting the approach to a posteriori data interpretation.

4. Examples

The section provides examples in support and as illustrations of Nsfa. More, and more elaborated
examples are presented in [44].

4.1. Experimental Support of Newton’s Shear Flow in Permeable Media

Constant wetting front velocities, Equation (3): Already [47] observed constant velocities of
wetting fronts during finger flow in sandboxes down to the 0.9-m depth. [48] reported the same kind
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of observations over a depth range of 2 m during infiltration in the Kiel Sand Tank, while [49] found
constant wetting front velocities under natural precipitation regimes across the upper 1.5 m of the
undisturbed soil in a large weighing lysimeter. With 34 FTDR-probes in three boreholes, [50] followed
infiltration in an ancient sand dune in Israel. From their data, [44] deduced two constant wetting
front velocities: one of about 5 × 10−6 m s−1 above the clay-rich layer at the 8-m depth, and one of
about 2 × 10−6 m s−1 down to the 21 m depth. The two coefficients of determination (r2) of the linear
regressions of arrivals vs. depths of the wetting front amounted to 0.83 and 0.94, respectively. Constant
wetting front velocities support the early stage of WCWs, Equation (3), and imply constant F.

Laminar flow: From more than 200 infiltration experiments, [51] reported a range of 10−5 < vW <

2 × 10−2 m s−1. According to Equation (13), this leads to a range of 10−4 < Re < 1.6. The upper limit is
still close to laminar flow. In General, permissible upper limits of Re demand attention in view of the
applicability of Nsf.

Atmospheric pressure behind wetting fronts: Atmospheric pressure in the WCW is a prerequisite
of Nsf-theory. [48] antecedent capillary heads in the range from −1.2 to −0.8 m to collapse to about −0.2
m behind the wetting front. [42] found similar patterns of capillary-head collapses during infiltration
into a column of a sandy-loam textured mollic Cambisol. Additionally, acoustic velocities during
infiltration in a column of an undisturbed loess soil, [39] led [40] to the same conclusion of capillary
head’s break-up close to atmospheric pressure after the passing of the wetting front.

Cohesion of Newton’s shear flow approach: The parameters F and L suffice to treat infiltration
and drainage with Nsf, Equations (1) and (12). In principle, time series of either θ(Z,t) or q(Z,t) permit
calibration of the two parameters: [45] shows their calibration from θ(Z,t), while [47] provide the
procedure from q-series. The latter authors and [44] also demonstrate the cohesion of the approach in
that derivations from both time series resulted in the same amount of L.

4.2. Newton’s Shear Flow vis-à-vis Darcy’s Law and Forchheimer’s Equation

Darcy’s law mutates to the saturated-flow extension of unsaturated vertical shear flow under the
following considerations. When replacing kinematic viscosity with the dynamic viscosity, μ = ρ × η,
follows from Equation (1) that:

θante + w < ε and Δp/Δz = ρ× g q =
F3 L
3 μ
ρ g (14)

where θante m3m−3 is the antecedent volumetric water content, ε m3m−3 is porosity, Δp/Δz Pa m−1 is
the pressure gradient, ρ (= 1000 kg m−3) is the density of water, and μ = ρ η Pa s is dynamic viscosity.
At saturation we get:

θante + w = ε and Δp/Δz = ρ× g : qsat =
F3

satLsat

3μ
ρg = Ksat (15)

while an external pressure gradient leads to:

θante + w = ε and Δp/Δz > ρ× g : q(p) =
F3

satLsat

3μ
Δp
Δz

= qsat
Δp

Δzρg
(16)

Darcy’s law states that q is proportional to Δp/Δz i.e., volume flux density is a linear function of
the flow-driving gradient with the proportionality factor Ksat. In view of the various dimensionalities
of w proportional to (L1, F1), v proportional to (L0, F2), and q proportional to (L1, F3), linearity seems
only possible if Fsat and Lsat remain constant and independent from p in the transition from only
gravity-driven to pressure-driven shear flow at saturation i.e., in the transition from Equation (15)
to Equation (16). The elaboration supports the linearity of Darcy’s law, but it is not an independent
proof of the law’s linearity. As a consequence, w = q/v also remains constant. Further, if θante + w
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= ε, dLsat/dp = 0 and dFsat/dp = 0 then follows the hypothesis that (Fsat × Lsat) represent (F × L)max

leading to Ksat. However, other combinations of (F × L) in unsaturated media are feasible that may
lead to qunsat > qsat = Ksat. The presumption of qunsat > Ksat opens an new view on shear flow and the
basics of infiltration that are in stark contrast to Richards’ capillary flow, where a priori Ksat > K(θ or
ψ). Comparisons of the rates from field infiltration with Ksat-measurements in the laboratory vaguely
support the presumption of [45] and [52] most recently provide experimental evidence of qunsat > Ksat.

Atmospheric pressure prevails in a WCW in Newton’s shear flow. However, parts of the the WCW
may hit flow paths narrower than F, and p > patm will occur. The difference p > patm will dissipate
almost instantaneously with the acoustic velocity in soil water between 300 and 800 m s−1 [53] if
virtually no water has to be moved over short distances to the next path wider than F. However,
increasing the distances between the paths that are wider than F leads to local pressure build up that
may eventually lead to sessile water above a layer of reduced conductivity. Water saturation may
occur from relatively short periods, for instance shortly after heavy rains, up to seasons as, for instance,
mottles of chemically reduced and oxidized zones in soil profiles may illustrate. Drainage under p >
patm shows as a steeper recession than drainage under p = patm. [49] provide the details. [54] report
θ(t)-time series of TDR-measurements immediately above an impervious soil layer that deviates from
those of free flow during infiltration and that indicates the evolution of sessile soil water.

Forchheimer (1901) [9] added a quadratic term to Darcy’s law that accounts for momentum
dissipation under high flow velocities that occur under high pressure gradients i.e.,

− dp
dx

=
η

K
v +
ρ

k2
v2 (17)

where K and k2 represent hydraulic conductivity and turbulence, respectivly. Neither of the two
conditions apply to Nsf in unsaturated permeable media in the lithosphere near its interface with the
atmosphere. Moreover, [54] estimate the relative contribution of kinetic energy in the range of 10−6 to
10−4 in comparison with viscous momentum dissipation during flow in soils. Thus, Forchheimer’s
equation does not apply to Nsf.

4.3. Gravity and Capillarity

Gravity is the unique driving force in Newton’s shear flow in unsaturated permeable media, while
capillarity is responsible for the soil water’s redistribution and vertical rise from saturated zones. [10]
suggested a two-process approach to water flow and storage in partially saturated permeable media.
While he recognized capillarity as responsible for the water’s rise, and probably also its contribution
to water redistribution in soil columns, he left open the mechanism behind infiltration. Here, the
focus is on infiltration that is completely gravity-driven and viscosity-controlled, yet allowing for
water abstraction due to capillarity from the mobile to the immobile part of the permeable system.
Richards’ universal equation for flow and storage in unsaturated porous media revolves around
capillarity. It prominently, and unnecessarily, reduces the degrees of freedom of flow [39]. Unjustified,
it relates the coefficient of momentum dissipation with antecedent flow conditions i.e., K(θ or ψ),
thus a priori excluding atmospheric pressure in the moving water. The exclusion leads to too slow
advancements of wetting as Germann and Hensel (2006) [55] have demonstrated by comparing the
results from HYDRUS-2 model [21] performances with observed infiltrations from more than 200 sites.
Concentrating on gravity and viscosity liberates infiltration and drainage from the omnipresence of
capillarity in soil hydrology with the benefit of avoiding the difficult definitions of non-equilibrium
flow and the separation of macropores from the remaining pores. With respect to capillarity, the
relative contribution of gravity to flow varies according to cos (α), where α◦ is the angle of deviation
from the vertical. Thus, at cos (0◦) = 1, as in the cases presented above, gravity’s contribution is at
maximum; it reduces to cos (90◦) = cos (270◦) = 0, while it completely opposes capillarity at cos (180◦) =
−1. The juxtaposition illustrates the spatial limitations of Nsf. Moreover, lateral rapid flow requires
saturated conditions along a layer with path widths narrower than F.
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Pressure in the WCW is atmospheric while ψ < 0 typically prevails ahead of it. Therefore, water is
abstracted from the WCW onto L. Abstraction is usually completed during short periods. The amount
of abstraction shows in the difference between θend, when the WCW has ceased, and θante before the
passing of the WCW. θend is approached with Equation (8) for a particular depth Z, while setting the
WCW’s end at w(Z,t)/wS = u, where u << 1 is an arbitrarily selected threshold that depends on the
particular application of Newton’s shear flow. Water abstracted from the WCW is thus available for
redistribution and uptake by plant roots.

4.4. Scales

The process scale during Nsf with constant F and L follows from the time and depth of interception,
TI and ZI, Equations (6) and (7) that depend on the duration (TE − TB) of the input and on F. The velocity
of the wetting shock front reduces after TI and beyond ZI according to Equation (9) [48].

The system-related scales of the applicability of Nsf range from a couple of sand grains at the
mm-scale to the km-scale. From neutron radiographs taken during infiltration in sand boxes, Hincapié
and Germann (2010) [56] calculated fluxes in layers that were about 1 mm thick and volume balances
in the cm3-range. Flow across 21 vertical m of an ancient sand dune was already presented above [49],
while tracer experiment across crystalline rocks suggests the applicability of Newton’s shear flow
approach to the km-range. Dubois (1991) [57] injected the tracers uranin and eosin about 1800 m above
the Mont Blanc car tunnel that connects Chamonix (France) with Courmayeur (Italy). Within 108 d he
detected the tracer fronts in seeps in the car tunnel. This amounts to vW ≈ 2 × 10−4 m s−1 that is well
within the range of the vW-collection reported above. Moreover, the gentle water seeps in the tunnel
revealed that gravity was consumed by viscosity during the long-lasting flow.

The observations of [57] across 1800 m of crystalline rocks of the Mont Blanc massif and the water
balance calculations of finger flow in the sand boxes of [56] at the scale of millimeters hint at the spatial
tolerance of Newton’s shear flow. This may advance the approach to an attractive tool, for instance, for
the study of infiltration into groundwater systems.

4.5. Time-Variable Infiltration

So far input to the surface is considered a single pulse P(qS, TB, TE). Time variable input needs
to be separated into a series of rectangular pulses each carrying its individual parameters. Under
the assumption of the macropore flow restriction i.e., dL/dq = 0, a series of pulses can be routed
as a sequence of kinematic waves according [30], whose mathematical approach models Newton’s
shear flow correctly if a = 3 in Equation (12). [58] provides details of applying characteristics to the
multi-pulse infiltration, while [49] lists some results.

Upon observations of infiltrations with varying durations and the rates from 5, to 10, 20, and
40 mm h−1 into a column of an undisturbed soil [59], postulated the macropore flow restriction
of dL/dqS = 0, meaning that flow occurs along the same paths independently from the input rate.
They tested the relationship of vW (qS) = b1/3 × qS

2/3, Equations (1) to Equation (3), that resulted in an
acceptable coefficient of determination of r2 = 0.95. However, that was an exception hardly achieved
again. This calls for further investigation of the relationship, most likely under consideration of θante.

4.6. Transport of Tracers and Particles

Preferential flow in soil hydrology is frequently associated with enhanced and accelerated particle,
solute and, primarily, pollutant breakthrough [60]. However, Bogner and Germann (2019) [61] report
considerable delays of tracer breakthrough compared with the first arrival of wetting shock fronts
at the drain of soil columns with heights of 0.4 m. They referred to the phenomenon as ‘pushing
out old water’ that is well known in catchment hydrology. They statistically explained 81% of the
observed delay variations with combinations of L and F when applying Newton’s shear flow to the
data. It appears that tracer exchange on large L from thin F of the WCW may be even faster than
presumed ‘preferential’ tracer transport. Under consideration of the mechanistic parameters F and L,
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Newton’s shear flow provides for a novel tool for the unambiguous investigation of tracer transport
and exchange i.e., accelerated as well as decelerated breakthroughs that primarily addresses the tracer’s
mass balance and secondarily diffusion.

Similar considerations may apply to the transport of particles and microbes. Based on a precursor
of Nsf, [62] approached with drag-forces the transport of latex beads and bacteriophages in soils.
The three types of electrically uncharged latex beads had dimeters of 0.5, 1.0, and 1.75 μm. Maximal
particle concentrations relative to the input suspensions reached about 0.003. While the relationships
between relative particle concentrations vs. drag force showed intermediate to strong linearity during
the increasing and decreasing limbs of the drain hydrograph, the drag force in the trailing was
apparently too small to produce a considerable effect on their translocations. The five bacteriophages
H40/l, H4/4, T7, H6/l, and fl carried ζ-potentials in the range of −50.1 to −31.7 mV. Their much weaker
relative concentrations vs. drag force showed pronounced, yet undisclosed hysteresis. Recently, [63]
called for improving our understanding of the transport of microplastic particles in soils, while [64]
found these particles in worm burrows and assumed preferential flow along macropores as the major
transport process. Thus, it might be worthwhile to further develop Newton’s shear flow application
to the particle transport under particular attention of the films thickness F and their specific contact
areas L.

4.7. Ecohydrology

The early 20th century saw numerous runoff studies in headwater catchments, many of them
with the purpose of demonstrating the advantage of forests over open lands in the mitigation of
flood and debris flows from steep slopes, mainly to convince governments for subsidizing huge
reforestation projects. Burger’s (1922) [22] investigations with soil cores as well as his comparative
runoffmeasurements from the 50% forested watershed of Rappengraben vs. the completely forested
catchment of Sperbelgraben are well known in forest hydrology. However, not all the compartments
from precipitation to runoff got the necessary attention in research they would require for closing the
water balance. For instance, the infiltration experiments of [22] were not carried through to assess with
them drainage and runoff in the headwater catchments.

Issues of reforestations’ remedial effects on poorly permeable clay soils at sites in the Swiss
pre-alps have surfaced again because numerous sites require rejuvenation of the more than 100 y old
stands. In this context, Lange et al. (2009) [65] were able to demonstrate positive effects of tree root
density on rapid infiltration in stagnic soils.

Wiekenkamp et al. (2019) [66] compared in the Wüstebach (BRD) catchment the hydrology of a
forest site with the neighboring clear-cut site. They concluded that infiltration via preferential flow
paths increased after deforestation. However, their purposeful exclusion of interception may deprive
them of further interpreting the difference between the two treatments in rapid infiltration because
interception may turn out as major gate controlling the input pulses P(qS,TB,TE).

5. Summary and Conclusions

The first section reports from English chalk rapid contaminant transport about 150 to 700 faster
than the slow tracer movements. The second section deals with the evolution of infiltration-drainage
concepts since the mid-19th Century. Two lines of thought emerge: On the one hand, Schumacher
(1864) [10] suggested a two-processes approach for flow and storage of water in soils, one accounting
for infiltration, the other one for capillary flow. On the other hand, a dual-porosity approach follows
from the observations of Lawes et al. (1882) [11]. In searching an universal approach for storage and
flow of water in partially saturated soils, Buckingham (1907) [12] and Richards (1931) [3] focused
on capillarity and the soil hydrological functions K-θ-ψ. Concepts of non-equilibrium flow emerged
upon discovered discrepancies between theory and observations that led later on to dual-porosity
approaches. The third section takes off from Schumacher’s two-processes approach, exploring fast
infiltration and drainage as gravity-driven and viscosity controlled flow, resulting in a water content
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wave, WCW, that is based on Newton’s shear flow i.e., laminar flow in unsaturated permeable media
lasting two to ten times longer than the duration of input and occurring under atmospheric pressure.
This restriction suggests strong capillary gradients between the WCW and the sessile parts. Because of
the wide specific contact area, expressed with the factor L in the typical range of 500 to 20,000 m2 m−3,
and the thin films F that are typically between 2 and 50 μm thick, exchanges of water, energy, heat,
solutes, and particles are fast and strong. The fourth section elucidates applications of the approach.

On the one side, the universal Richards equation deals with infiltration and redistribution of
soil water. It assumes that entire soil moisture θ participates in the flow process, thus inevitably
leading to apparent conditions of non-equilibrium, while dual-porosity approaches are hoped to lead
away from the uneasy situation. On the other side, Newton’s shear flow focuses on viscosity and
gravity resulting in adequate time scales during infiltration and associated drainage. Once the wetting
shock fronts have ceased to advance, capillarity takes over and soil moisture redistributes towards
ψ-θ equilibria. This leads to a dual-process approach to infiltration and redistribution, where time
and depth of front interception, TI and ZI, serve as scales for separating the two processes. A further
consequence of concentrating flow and transport on Newton’s shear flow are the spatio-temporal
limits of the processes, expressed with a few multiples of TI and ZI. Moreover,’ pushing out old
water’ and assuming flow rates under atmospheric pressure exceeding Ksat indicate novel aspects
associated with Newton’s infiltration that were not considerable in previous approaches to preferential
flows. Finally, the analytical expressions are amenable to mathematical procedures, such as kinematic
wave theory, and their theoretical combinations may lead to new and solid hypotheses calling for
experimental testing.
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Abstract: We investigate linear and nonlinear poroacoustic waveforms under the Rubin–Rosenau–
Gottlieb (RRG) theory of generalized continua. Working in the context of the Cauchy problem, on both
the real line and the case with periodic boundary conditions, exact and asymptotic expressions are
obtained. Numerical simulations are also presented, von Neumann–Richtmyer “artificial” viscosity
is used to derive an exact kink-type solution to the poroacoustic piston problem, and possible
experimental tests of our findings are noted. The presentation concludes with a discussion of possible
follow-on investigations.

Keywords: poroacoustics; Rubin–Rosenau–Gottlieb theory; solitary waves and kinks

1. Introduction

What is known today as the “RRG theory” was put forth by Rubin et al. [1] in 1995.
This phenomenological-based theory of generalized continua is thought capable of modeling dispersive
effects caused by the introduction of a medium’s characteristic length, which Rubin et al. denote as
α. Under RRG theory, α is regarded as an inherent material property. From the modeling standpoint,
this theory exhibits a number of appealing features, the two most important of which are the following:
(i) it is only the pressure stress (i.e., isotropic) part of the Cauchy (i.e., total) stress tensor and the
specific Helmholtz free energy that are modified, but these modifications are achieved by adding
perburtative terms, which must satisfy certain constraint equations, to the constitutive relations of the
former and latter; and (ii), no additional boundary nor initial conditions, beyond those required to
solve classically formulated problems, are needed ([1], p. 4063).

To date, RRG theory has only been applied to single-phase media; see, e.g., Ref. [2] and those
cited therein. Hence, there is an obvious need to investigate the nature of the solutions, e.g., those of
the traveling wave type, predicted by this theory in the case of multi-phase media.

Accordingly, the aim of this communication is to carry out a preliminary investigation of RRG
theory in the context of acoustic problems involving propagation in dual-phase (specifically, fluid +
solid) media—dual-phase media being, of course, the simplest case of multi-phase media. Employing
both analytical and numerical methodologies, we consider linear and finite-amplitude poroacoustic
propagation under the RRG-based generalization of what some refer to as the Brinkman poroacoustic
model (BPM) (Although he does not refer to it as such, the general, multi-D, version of the BPM follows
on setting C = 0 in Burmeister [3].). Here, it should be noted that the original version of the drag law
on which the BPM is based reads (see, e.g., Refs. [4,5])

∇P = μ̃χ∇2u − (μχ/K)u. (1)

In this relation, u is the intrinsic average velocity of the fluid, which it is related to v, the Darcy
velocity, via the Dupuit–Forchheimer relationship v = χu ([4], p. 5); P is a pressure, an intrinsic
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quantity, which is not the thermodynamic pressure ([4], §1.4.1); μ is the usual shear viscosity coefficient;
μ̃ is an effective viscosity ([4], §1.5.3), which is often referred to as the Brinkman viscosity; and K > 0 and
χ ∈ (0, 1), the permeability and porosity of the solid matrix, are assumed to be constants. We should
also note that Equation (1) reduces to Darcy’s law on setting μ̃ := 0.

Before beginning our analysis, we should point out that when traveling wave solutions (TWS)s in
the form of kinks are encountered below, their shock thicknesses shall be expressed using Prandtl’s
definition (see, e.g., (Ref. [6], p. 680)), viz.:

shock thickness :=
F(−∞)− F(+∞)

max
z∈R

|dF(z)/dz| , (2)

where z represents the wave (i.e., similarity) variable. Herein, all traveling wave profiles shall be taken
to be propagating to the right along the axis corresponding to the wave variable under consideration.

2. Mathematical Formulations

2.1. Poroacoustic Model Systems

When entropy production in the fluid, which we hereafter take to be a perfect gas [7], is ignored
(i.e., we take the flow to be homentropic ([7], p. 60)) and the porous matrix is regarded as being both
stationary and composed of a thermally non-conducting rigid solid, the 1D versions of the RRG-based
model we propose and the BPM become, in the case of propagation along the x-axis,

�t + u�x + �ux = 0, (3a)

�(ut + uux) = μ̃χuxx − (μχ/K)u −
{
℘x, BPM,

[℘− 2α2�(uxt + uuxx)]x, RRG,
(3b)

℘ ≈ ℘0(�/�0)
γ (n ≈ n0). (3c)

In System (3), ℘(> 0) is the thermodynamic pressure; �(> 0) is the mass density of the gas; n is
the specific entropy of the gas; the parameter γ denotes the ratio of specific heats, where γ ∈ (1, 5/3]
in the case of perfect gases; we take α(> 0), which carries the unit of length, to be a constant (That
is, we have assumed the simplest version of RRG theory; see (Ref. [1], Equation (20)).); the problem
geometry dictates that, here and henceforth, u = (u(x, t), 0, 0), ℘ = ℘(x, t), and � = �(x, t); and a zero
(“0”) subscript attached to a dependent variable denotes the (constant) equilibrium state value of that
variable, where we note that u0 = (0, 0, 0).

Here, we observe that since the flow has been assumed homentropic, our RRG-based poroacoustic
model is obtained by perturbing only the pressure tensor term in the BPM. Also, we record for later
reference that c0 =

√
γ℘0/�0 is the (constant) equilibrium state value of the sound speed, i.e., the speed

of sound in the undisturbed gas; see, e.g., (Ref. [7], §4.3).

2.2. Finite-Amplitude Equation of Motion: The Case μ := const.

We begin this sub-section with the following observation: Because ∇ × u = (0, 0, 0) holds
identically under the present (1D) geometry, it follows that u = ∇φ; therefore, u(x, t) = φx(x, t), where
φx denotes the scalar velocity potential.

Hence, on invoking the finite-amplitude approximation, and introducing the following
dimensionless variables:

u� = u/Up, s = (� − �0)/�0, φ� = φ/(UpL), x� = x/L, t� = t(c0/L), (4)

where the positive constants L and Up respectively denote a macro-length scale characteristic of the
propagation domain and the magnitude of the peak particle velocity in the gas, it is not difficult to
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establish (See, e.g., the derivation performed in (Ref. [8], §2), and note that (Ref. [8], Equation (10)) is
the σ, δ := 0 special case of Equation (5) herein.) that the μ := const. case of System (3) reduces to the
weakly-nonlinear, bi-directional, equation of motion (EoM)

φtt − [1 − 2ε(β − 1)φt]φxx + ε∂t(φx)
2 = σφtxx + a2

0φttxx − δφt, (5)

where here and henceforth all diamond (�) superscripts have been suppressed for convenience.
In Equation (5), which we note reduces to the corresponding EoM for the (1D) BPM on setting a0 := 0,
ε = Up/c0 is the Mach number, where ε � 1 is assumed; δ = νχL/(c0K) is the dimensionless Darcy
coefficient, where ν = μ/�0 is the kinematic viscosity of the gas; a0, the dimensionless version of
α, is given by a0 = α

√
2/L; we have set σ := χ/ReB, where ReB = c0L/ν̃ is a Reynolds number,

and where ν̃ = μ̃/�0; and β(> 1) denotes the coefficient of nonlinearity [9], which in the case of a perfect
gas is given by

β = (γ + 1)/2. (6)

In deriving Equation (5) we have assumed that δ, σ, a0, |s| ∼ O(ε) and, in accordance with the
finite-amplitude approximation, only nonlinear terms O(ε2) have been neglected.

2.3. Right-Running Equations of Motion for the Case μ := const.

Although derived under the finite-amplitude approximation, Equation (5) is still too complicated
for treatment by analytical means. Fortunately, however, the nature of the problems to be considered
below is such that we may employ the uni-directional approximation to reduce the order of Equation (5)
by one and confine its nonlinearity to a single (quadratic) term. Omitting the details, we find that
under, say, the right-running case of this approximation (See, e.g., Crighton’s ([10], p. 16) derivation
of the acoustic version of Burgers’ equation.), which in the present setting reads φx � −φt, our EoM
becomes, after making use of the relation u(x, t) = φx(x, t) and simplifying,

ut + ux + εβuux − 1
2 a2

0utxx +
1
2 δu = 1

2 σuxx, (7)

which on switching to the variables X = x − t and T = t is further reduced to

uT + εβuuX − 1
2 a2

0uTXX + 1
2 δu = 1

2 σuXX . (8)

If we once again make use of the right-running approximation, which now takes the form
uT � −uX, to re-express only the third order term in Equation (8), which is justified since a0 ∼ O(ε)

(i.e., (a2
0/2)uTXX is a “small” term), then Equation (8) assumes its final form, specifically,

uT + εβuuX + 1
2 a2

0uXXX + 1
2 δu = 1

2 σuXX , (9)

a PDE which we term the damped Burgers–KdV (dBKdV) equation.
In closing this sub-section we stress that Equations (7)–(9) apply only to right-running waveforms;

i.e., to problems wherein reflection (to the left) is not possible.

3. Comparison of Linearized EoMs: The Cauchy Problem

In this section we compare the BPM with its RRG-based counterpart under the linear
approximation, which at the EoM level corresponds to setting ε := 0. We do so in the context
of what is perhaps the best known problem from classical PDE theory.

To this this end, we consider the linearized version of Equation (9) in the setting of the following
initial value problem (IVP), i.e., in the setting of the classical Cauchy problem:

uT + 1
2 a2

0uXXX + 1
2 δu = 1

2 σuXX , X ∈ R, T > 0, (10a)
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u(X, 0) = f (X), X ∈ R. (10b)

Here, we take f (X), our initial condition (IC), to be defined on the real line and such that its
Fourier transform exists.

On applying the Fourier transform to both Equation (10a) and the IC, and then solving the
resulting (first order) ODE, it is readily shown that

û(k, T) = f̂ (k) exp
[
− 1

2

(
δ + σk2 − ia2

0k3
)

T
]
, (11)

where k is the Fourier transform parameter and a hat over a quantity denotes the Fourier transform of
that quantity. In turn, applying F−1(·), the inverse Fourier transform, to Equation (11) gives

u(X, T) =
1

2π
exp(−δT/2)

∫ ∞

−∞
f̂ (k) exp

[
− 1

2

(
σk2 − ia2

0k3
)

T
]
exp(ikX)dk. (12)

3.1. The RRG Case: a0 > 0

Using the convolution theorem, and letting Ai(·) denote the Airy function of the first kind,
the RRG (i.e., a0 > 0) case of Equation (12) can be recast in the more explicit form

u(X, T) = exp(−δT/2)
(

2
3a2

0T

)1/3

×
∫ ∞
−∞ F−1

[
f̂ (k) exp

(
− 1

2 σk2
)]

Ai
[
(X −Y)

(
2

3a2
0T

)1/3
]

dY (T > 0).
(13)

For obvious reasons, the following two special cases of f (X) are of particular interest:

u(X, T) = exp(−δT/2)

(
2

3a2
0T

)1/3

×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
2πσT

∫ ∞
−∞ exp

(
− 1

2σY2/T
)

Ai
[
(X −Y)

(
2

3a2
0T

)1/3
]

dY, f (X) = d(X)

1√
1+bσT

∫ ∞
−∞ exp

[
− 1

2 b(1 + bσT)−1Y2
]

Ai
[
(X −Y)

(
2

3a2
0T

)1/3
]

dY, f (X) = e−bX2/2

(T > 0). (14)

Here, d(·) denotes the Dirac delta function and b(> 0) is a (dimensionless) constant.

3.2. The BPM Case: a0 := 0

If we assume instead the BPM, then the solution of IVP (10) is readily obtained on setting a0 := 0
in Equation (12); for the two aforementioned cases of f (X), we find that

u(X, T) =

⎧⎪⎪⎨
⎪⎪⎩
[

exp(−δT/2)√
2πσT

]
exp

(
− 1

2σ X2/T
)

, f (X) = d(X)

[
exp(−δT/2)√

1+bσT

]
exp

[
− 1

2 b(1 + bσT)−1X2
]
, f (X) = e−bX2/2

(T > 0). (15)

3.3. Remarks: RRG vs. BPM

With regard to the Gaussian IC, the primary difference between the linearized RRG and BPM
cases is that the pulse profile corresponding to the former instantly becomes oscillatory about the
X-axis, due to the Airy function in its integrand, while that of the latter maintains, for all T > 0,
the shape and strict positivity of the initiating Gaussian. The clearly contrasting behaviors exhibited
by these two models should, therefore, allow researchers to experimentally determine which of the
two best describes propagation in a given poroacoustic system.
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4. Comparison of Right-Running, Weakly-Nonlinear, EoMs: Special Cases with μ := const.

Before examining it in its most general form, and for the benefit of those readers who are not well
acquainted with the intricacies of nonlinear evolution equations, it is instructive to first review selected
special cases of Equation (9). The right-running models discussed in the next three sub-sections, all of
which, it should be noted, have applications beyond poroacoustics, will each have a role to play in the
analysis performed in Section 4.4.

4.1. Case (I): Damped KdV (dKdV) Equation

This case follows on setting σ := 0 (i.e., setting μ̃ := 0), under which Equation (9) reduces to

uT + εβuuX + 1
2 a2

0uXXX + 1
2 δu = 0. (16)

This PDE, we observe, is the RRG-modified version of the right-running Darcy–Jordan model;
see Section 4.3 below.

Since we have assumed δ � 1, applying the Kryloff–Bogoliubov asymptotic expansion method to
the dKdV equation yields, as Ott and Sudan [11] have shown, the large-T expression

u(X, T) ∼ exp(−2δT/3) sech2
[
(ζ/a0)

√
εβ
6 exp(−2δT/3)

]
, T ∼ O(1/δ), (17)

where we have taken N(0) = 1 (see Ref. [11]), and we let

ζ = X − εβ
2δ

[
1 − exp

(
− 2

3 δT
)]

; (18)

see also Ref. [12], as well as Ref. [13] (Ref. [13] contains a number of recently identified typographical
errors; see Appendix A below.) and those cited therein. Equation (17) represents a damped,
and decelerating, solitary waveform, and as such it cannot be a soliton in the classical sense [14].
Note, however, that the acoustic version of the classic soliton solution of the KdV equation (see Ref. [8])
is recovered as the limiting case

u(X, T) = sech2
[

a−1
0 (X − εβT/3)

√
εβ
6

]
(δ → 0). (19)

4.2. Case (II): Damped Burgers’ Equation

This case, which corresponds to setting a0 := 0, reads

uT + εβuuX + 1
2 δu = 1

2 σuXX . (20)

Equation (20) is the right-running EoM stemming from the BPM, and in this context it has recently
been investigated by Rossmanith and Puri [15].

As shown by Nimmo and Crighton [16], this generalization of Burgers’ equation does not admit
a linearizing (i.e., Cole–Hopf type) transform. As shown by Malfliet [17], however, its TWS, which
assumes the form of a damped kink, is readily approximated. To the order expressed explicitly in
Ref. [17], the TWS of Equation (20) is given by

u(X, T) ≈ 1
2 exp(−δT/2)[1 − Y(X, T)]{1 + a3(T)[1 + Y(X, T)]Y3(X, T)

+a5(T) [1 + Y(X, T)]Y5(X, T)}.
(21)

Here,

Y(X, T) := tanh
[

2
λB

(
X − εβ[1 − exp(−δT/2)]

δ

)]
, (22)
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where λB = 4σ/(εβ) is the shock thickness exhibited by the TWS given below in Equation (25);

a3(T) = −(1 − exp(−δT/2))/3; (23)

and
a5(T) = −[128 − 160 exp(−δT/2) + δλ2

B exp(−δT/2)/σ + 32 exp(−δT)]/240. (24)

In Ref. [17], the parameter c, which herein has the value c = 2/λB, is defined so that Equation (21)
yields the limiting case

u(X, T) = 1
2

{
1 − tanh

[
2

λB

(
X − 1

2 εβT
)]}

(δ → 0). (25)

Equation (25) and λB are the TWS, which we note takes the form of a Taylor shock, and
corresponding shock thickness, which was determined using Equation (2), respectively, admitted by
the classic Burgers equation.

4.3. Case (III): Damped Riemann Equation

In the poroacoustic context, this case corresponds to the right-running version of the
weakly-nonlinear Darcy–Jordan model (Also known as the Jordan–Darcy model; see Ciarletta and
Straughan [18], as well as Straughan [5].) (DJM) [19]; specifically, the first order PDE [20]

uT + εβuuX + 1
2 δu = 0, (26)

which follows on setting a0 := 0 and σ := 0 in Equation (9).
In the setting of the Cauchy problem, the exact solution of the damped Riemann equation is

readily determined; see, e.g., Crighton ([21], p. 196). In the particular case of Equation (26), this solution
can be expressed as [20]

u(X, T) = u0(ξ) exp(−δT/2), (27a)

α�(X − ξ) = u0(ξ)[1 − exp(−δT/2)]. (27b)

Here, ξ = ξ(X, T) is the wave variable; u0(ξ) is the IC; and α�, the critical amplitude value for
acceleration waves under the DJM, is given by [19]

α� =
δ

2εβ
. (28)

For the particular case u0(X) = cos(2πX), it can be shown (see, e.g., (Ref. [20], p. 3)) that under
System (27)

T∗
B = −2δ−1 ln

(
1 − α∗

2π

)
. (29)

If T∗
B ∈ R

+, then T∗
B is the time at which the solution of the Cauchy problem involving

Equation (26) suffers (finite-time) gradient catastrophe ([22], p. 36), where it is expected that α∗ < 2π

( =⇒ T∗
B ∈ R

+) in all cases of practical interest.

4.4. Numerical Results

Inspired by, and closely following, Zabusky and Kruskal’s [14] analysis of the classic KdV equation,
in this subsection we perform numerical experiments on Equation (9), and its special cases listed above
as Cases (I) and (II), in the setting of the following initial-boundary value problem (IBVP) with periodic
boundary conditions:

uT + εβuuX + 1
2 a2

0uXXX + 1
2 δu = 1

2 σuXX , |X| < 1, T > 0, (30a)
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u(−1, T) = u(1, T), T > 0, (30b)

u(X, 0) = cos(2πX), |X| < 1. (30c)

In (Ref. [14], Figure 1), snapshots of the evolution of the KdV’s solution profile were displayed in
units of (dimensionless) time TB, where Zabusky and Kruskal used TB to denote the “breakdown time”
(i.e., the time at which finite-time gradient catastrophe occurs) of the solution to the Cauchy problem
involving the classic (i.e., undamped) Riemann equation. In our analysis of IBVP (30), T∗

B shall play
the role of TB.

The graphs presented in Figures 1–3 were computed and plotted using MATHEMATICA (ver. 11.2).
Except for the value of β(= 1.2), which corresponds to diatomic gases (e.g., air) [9], all other parameter
values were selected based on our desire to produce clear, illustrative, graphs and the need to satisfy
the assumptions under which Equation (9) was derived.

From Figure 1 it is easy to see that, except for attenuation of the profile (caused by the Darcy term)
and a slight phase shift, the dKdV profiles are qualitatively similar to those of the classic KdV equation
in the setting of IBVP (30). And, as is also true in the case of the latter, reducing (resp. increasing) a0

increases (resp. decreases) the number of pulses seen in Figure 1b.
In contrast, the plots shown in Figures 2 and 3 highlight the fact that, like that of the damped

Burgers equation, the dBKdV profile suffers attenuation, again due to the Darcy term, and it also
develops a “dull sawtooth” appearance as it shocks-up (to the right), but never breaks since σ > 0.
More interesting, however, is the fact that for large-T, both the damped Burgers equation and dBKdV
profiles are seen to re-assume the periodic form of the IC. As Figures 2c and 3c illustrate, both profiles
evolve to become damped, and in the dBKdV case slightly phase-shifted (to the left), versions of the
IC given in Equation (30c). This suggests that for sufficiently large values of T, one may employ the
approximations u(X, T) ≈ u1,2(X, T), where

u1,2(X, T) :=

{
exp[−�1(T)] cos[2πX + ψ1(T)], dBKdV equation

exp[−�2(T)] cos[2πX + ψ2(T)], damped Burgers’ equation
(T � T∗

B), (31)

and where we require �1,2(T) > 0. Comparing the blue-broken curve in Figure 2c with its counterpart
in Figure 3c we see that �2(20T∗

B) > �1(20T∗
B) > 0 while ψ1(20T∗

B) > ψ2(20T∗
B) := 0; here, for

simplicity, we have assumed �1,2(T) and ψ1,2(T) to be linear functions of T. In the setting of IBVP (30),
then, the presence of the third order (i.e., RRG) term in the dBKdV equation gives rise to both a phase
shift and slightly less attenuation vis-à-vis the damped Burgers equation.

While their usefulness may be limited to certain “windows” of T-values, the functions �1,2(T) and
ψ1,2(T) should be constructible based on Equation (31) and numerically generated, large-T, data sets
using one of the many data-fitting methodologies found in the literature.

45



Water 2020, 12, 807

u
a

u
b

u
c

Figure 1. The dKdV case of IBVP (30). (a–c) correspond to T = T∗
B , 3.6T∗

B , and 20T∗
B , respectively, where

T∗
B ≈ 1.382. Red curves: u vs. X for a0 = (0.005)

√
2, σ = 0, εβ = 0.12, δ = 0.12, and α� = 0.5. Blue

curves: IC given in Equation (30c).
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Figure 2. The dBKdV case of IBVP (30). (a–c) correspond to T = T∗
B , 3.6T∗

B , and 20T∗
B , respectively,

where T∗
B ≈ 1.382. Purple curves: u vs. X for a0 = (0.005)

√
2, σ = 0.005, εβ = 0.12, δ = 0.12, and

α� = 0.5. Blue curves (solid): IC given in Equation (30c). Blue-broken curve: u1(X, 20T∗
B) vs. X (see

Equation (31)), where we have set �1(20T∗
B) := (29.9)δT∗

B and ψ1(20T∗
B) := (0.1013)T∗

B based on a series
of trial-and-error “visual fits”.
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Figure 3. The damped Burgers equation case of IBVP (30). (a–c) correspond to T = T∗
B , 3.6T∗

B , and
20T∗

B , respectively, where T∗
B ≈ 1.382. Green curves: u vs. X for a0 := 0, σ = 0.005, εβ = 0.12, δ = 0.12,

and α� = 0.5. Blue curves (solid): IC given in Equation (30c). Blue-broken curve: u2(X, 20T∗
B) vs. X

(see Equation (31)), where we have set �2(20T∗
B) := (29.946)δT∗

B and ψ2(20T∗
B) := 0 based on a series

of trial-and-error “visual fits”.

48



Water 2020, 12, 807

5. The RRG Case with “Artificial” μ

In 1950, von Neumann and Richtmyer (vNR) [23] introduced their artificial viscosity coefficient.
In this section, we make use of this celebrated artifice not to regularize numerical schemes used to
calculate shock profiles, as was vNR’s aim, but rather to obtain an analytical solution to the poroacoustic
version of the piston problem (Unlike Ref. [23], wherein Lagrangian coordinates were used, in this
communication we employ the Eulerian description; see, e.g., (Ref. [24], §V-D-1) wherein vNR’s system
is recast under the latter.).

To this end, we return to the RRG case of System (3) and assume that

μ ∝ α2�|ux|, (32)

but continue to regard μ̃ as a positive constant. Here, we have expressed the length-scale factor in
vNR’s artificial viscosity coefficient as α, instead of some grid spacing Δx.

For simplicity, we now assume that the porous solid in question is comprised of packed beds
of rigid solid spheres, all of radius r(> 0), which are fixed in place. For such a configuration,
the permeability is given by the well known Kozeny–Carmen relation [4]:

K =
r2χ3

45(1 − χ)2 . (33)

As these spheres are scatters of acoustic waves, we take α to be proportional to the characteristic
length now associated with our dual-phase medium; i.e., we take α = b1r, where b1(> 0) is an
“adjustable” (dimensionless) constant ([24], p. 233).

If, moreover, we limit our focus to kink-type waveforms, as physical intuition suggests, and have the
piston located at x = −∞ and moving to the right along the x-axis, then ux < 0 and Equation (32) becomes

μ = −b2
1r2�φxx, (34)

where we have used the relation u = φx. Returning to our dimensionless variables, and once
again applying the finite-amplitude approximation, it is readily established that, under the
aforementioned assumptions, the following (simpler) weakly-nonlinear PDE replaces Equation (5) as
our bi-directional EoM:

φtt − [1 − 2ε(β − 1)φt]φxx + ε(1 − δ1)∂t(φx)
2 = σφtxx + a2

1φttxx (artificial μ). (35)

In Equation (35), which we observe applies only to the RRG case, we have set a1 := b1r
√

2/L,
where we require that a1 ∼ O(ε), and

δ1 :=
εb2

145(1 − χ)2

χ2 (0 < δ1 < 1), (36)

where the requirement δ1 ∈ (0, 1) implies that b1 must satisfy the inequality

0 < b1 <
1

3
√

5ε

(
χ

1 − χ

)
. (37)

Assuming the gas at x = +∞ is in its equilibrium state, and thus motionless, and observing that in
the present context Up is the dimensional speed of the piston, we let φ(x, t) = G(η), where η = x − v1t
and the (dimensionless) shock speed v1 is taken to be a positive constant, and then substitute into
Equation (35). On integrating once with respect to η and then imposing/enforcing the asymptotic
conditions g → 1, 0 as η → ∓∞, respectively, Equation (35) is reduced to the ODE

a2
1v1g′′ − σg′ − εβ1g(1 − g) = 0, (38)
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where we note that the resulting constant of integration is zero. In Equation (38), g(η) = G′(η), where
a prime denotes d/dη; we have defined

β1 := β − δ1, (39)

recalling that β is the coefficient of nonlinearity (see Equation (6)); and

v1 = 1
2 εβ1 +

√
1 + 1

4 ε2β2
1 (v1 > 1), (40)

which we observe is the positive root of

v2
1 − εβ1v1 − 1 = 0. (41)

To apply the solution methodology employed in (Ref. [2], §2) to Equation (38), the following
condition must be satisfied:

25a2
1(v

2
1 − 1) = 6σ2. (42)

In (Ref. [2], §2), satisfying Equation (42) required that the value of the Mach number be fixed,
a constraint which clearly limits the usefulness of the TWSs presented in that article. Here, however,
we shall use this restriction to our advantage; specifically, in the following sense: Since the value of μ̃

for a given poroacoustic flow is, in general, not known, and we are seeking a kink-type TWS, then the
only possible solution of Equation (42) in the present context is

σ = 5a1

√
v2

1 − 1
6

=⇒ μ̃ =
5�0b1r

χ

√
v2

1 − c2
0

3
, (43)

where we observe that v1 = v1c0 is the dimensional shock speed and, moreover, that v1 > 1 implies
v1 > c0.

On imposing the usual wave front condition g(0) = 1/2, but otherwise referring the reader to
(Ref. [2], §2) for details regarding its derivation, the TWS we seek is

g(η) =
1
4

sech2
(

27η

16λ1
+K

)
+

1
2

[
1 − tanh

(
27η

16λ1
+K

)]
, (44)

where K = tanh−1
(
−1 +

√
2
)

. Letting λ1 = �1/L denote the dimensionless shock thickness (Recall
Equation (2)) admitted by Equation (44), it is easily established that

λ1 =
135a2

1v1

8σ
=

81a1v1

4
√

6(v2
1 − 1)

=⇒ �1 =
81v1b1r

4
√

3(v2
1 − c2

0)
, (45)

where �1 is the corresponding dimensional shock thickness. Also, with regard to computing λ1, it should
be noted that g′′(η∗) = 0, where η∗(< 0) is given by

η∗ =
10a2

1v1

[
tanh−1(1/3)−K

]
σ

, (46)

and where it should also be noted that g(η∗) = 5/9.
The usefulness of Equation (45) might be ascertained as follows. Assume that v1 and �1 can both

be determined, either directly or indirectly, from experimental measurements and, moreover, that
both are (at most) slowly varying functions of time. With v1 known, b1 can, of course, be computed
using Equations (36), (39) and (40). If this (inferred) value of b1 satisfies the inequality in Equation (37),
a1 ∼ O(ε) is also satisfied, and the measured value of �1 is in agreement with that computed from
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Equation (45) over, say, some span of time t ∈ T , then we can expect Equation (45) to prove useful as
an approximation within the transition region of our kink-type traveling wave profile for t ∈ T .

6. Discussion: Possible Follow-On Studies

In addition to gaining a better understanding of how the solution of IBVP (30) behaves for
large-T, in particular, determining to what extent (if any) the recurrence behavior seen in Figures 2c
and 3c is related to the functional form of a given IC, future work on poroacoustic RRG theory could
included the use of homogenization methods in problems wherein K and/or χ vary with position.
Other possible extensions include the poroacoustic generalization of the study carried out in Ref. [25],
wherein α was taken to be a function of (ux)2, and also the case in which μ̃ is a power-law function of
the shear rate tensor. Follow-on work might also include the study of poroacoustic signaling problems
involving sinusoidal and/or shock input signals, as well as problems in which changes in entropy and
temperature are taken into account.
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Appendix A. Corrections to Ref. [13]

As kindly confirmed by Prof. Leibovich [26], Equations (4b), (4d), and (13), and the caption
of FIG. 2, in Ref. [13] contain typographical errors; the required corrections, also provided by
Prof. Leibovich [26], read as follow:

• In Equation (4b), replace a1 with a0.
• In Equation (4d), replace the exponent 3/2 with −3/2.
• In Equation (13), delete the factor ν.
• In the caption of FIG. 2, replace (16) with (15).
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Abstract: Based on the flow partition theory, we derive a mathematical expression by using the
log-law for the characteristic point location (CPL) of depth average velocity in channels with flat or
concave boundaries. It can manifest the position of the characteristic points in the vertical direction
relative to the channel side wall or bed. Taking rectangular and semi-circular channels as research
objects, we put forward a method to calculate the discharge of channels with CPL. Additionally,
we carried out some experiments on rectangular and semi-circular channel sections. CPL’s analytic
expression is validated against experimental results through comparison of velocity and discharge.
The proposed formulation of characteristic point location could be extensively employed in flow
measurements of flat and concave boundary channels, which has practical application value in
simplifying the flow measurement steps of open channels.

Keywords: log-law; flow partitioning theory; characteristic point location; velocity; discharge

1. Introduction

The contradiction between the serious shortage of agricultural water resources and unreasonable
utilization has been restricting the development of agricultural economy [1]. Precision agriculture
provides the potential to enhance irrigation efficiency through specific methods of flow measurement
in channels.

Flow measurement methods through weir-gate structures [2] and velocity–area methods are
widely used in flow measurement. The principle of a sluice gate or weir is based on the concept of
critical flow, making it possible to measure only the depth and calculate the flow rate, thus simplifying
the continuous monitoring of flow rate [3]. However, critical flow in open channels can be formed
through two general methods: raising the bottom of the channel or contracting the cross-sectional area
of the flow [3,4]. Neither of these two methods is easy to implement. Impurities on the sluice gate or
weir accumulate easily and need to be cleaned regularly, which is difficult to achieve during actual
production. Apart from measuring with weir-gate structures, the velocity–area method for calculating
discharge in an open channel is considered to be particularly reliable. However, a large number
of measurements results in an associated time cost of measurement. Numerous researchers have
proposed different forms of the velocity distribution law in order to predict flow discharge accurately.

Water 2020, 12, 430; doi:10.3390/w12020430 www.mdpi.com/journal/water53
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The study of velocity distribution is critical to the calculation of the discharge. Relevant research
can be traced back to the 1930s. In 1938, Keulegen [5] first proposed that the log-law could be used to
describe the time-averaged velocity distribution of fully developed open channel uniform turbulence:

u
u∗

=
1
κ

ln
u∗ × y
ν

+ω (1)

where u is the velocity in the channel, u∗ is frictional velocity, ν is the coefficient of kinematic viscosity,
κ is the von Kármán constant, and ω is constant.

Nikuradse made an artificial sand rough pipe using pasting sand with a uniform particle size on
the wall of a pipe [6,7]. The analysis of the experimental data of the smooth sand tube showed that the
values of parameters κ and ω in log-law are 0.4 and 5.5. Different researchers have given different
values of the von Kármán constant κ and constant ω according to their experimental data [8–10].
This paper uses the parameter values given by Nikuradse for further derivation.

Under the guide of velocity distribution, researchers have used different methods to measure
velocity. Chiu [11–13] developed the entropy model, correlating the mean flow velocity to the
maximum value using the linear relationship Um = ϕ(M)Umax, which depends on the entropic
parameter M. Maghrebi [14] used the similarity between the magnetic field of a current wire and the
isovel contours in a channel cross-section to derive the isovel patterns. Then, one can easily obtain the
discharge using a single point on the isovel patterns of velocity measurement. However, the measured
points are only selected from the upper half of the water depth and away from the boundaries,
which would be much closer to the measured discharge. Bretheim et al. [15] used the restricted
nonlinear (RNL) model to simulate wall turbulence and obtained the real mean velocity distribution in
the channel at a low Reynolds number. Hong et al. [16] employed a systematic measuring technology
combining ground-penetrating radar and surface velocity radar and established the rating curves
representing the relation of water surface velocity to the channel cross-sectional mean velocity and flow
area. Then, stream discharge was deduced from the resulting mean velocity and flow area. Moramarco
et al. [17] proposed a new method for estimating discharge from surface velocity monitoring (usurf).
Based on entropy theory and sampling usurf, it can identify the two-dimensional velocity distribution
in the cross-sectional flow area. This method is more accurate for rivers with a lower aspect ratio
where secondary currents are expected. Johnson and Cowen [18,19] predicted the mean streamwise
velocity and the depth-averaged velocity by permitting remote determination of the velocity power-law
exponent. Then, the volumetric discharge from surface measurements of currents can be determined.
Khuntia et al. [20] presented a new methodology to predict the depth-averaged velocity. They used
multi-variable regression analysis to develop five models to predict the point velocities in terms of
non-dimensional geometric and flow parameters at any desired location. Through these attempts,
researchers have discussed new thoughts of quantifying channel discharge. But few people determine
the average velocity of a channel by looking for the location of characteristic points.

Overall, this study investigates a new concept of characteristic point location aimed at estimating
the discharge in open channels, which is based on flow partitioning theory and the log-law. This method
is applied to flat channels (e.g., a rectangular channel) and concave channels (e.g., a semi-circle channel).
The derived theoretical expression of characteristic point location is also verified by the experimental
data. We expect that the method for flow measurement conveniently proposed by this paper could be
used widely for different varieties of irrigation channels.

2. Methodology

This paper assumes that characteristic points exist on the channel cross-section whose velocities
could be called characteristic velocities. We can measure these points to get the precise measurements
of velocity and discharge. The positions of these points are called characteristic point locations of
depth average velocity (CPL).
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2.1. CPL in Rectangular Channels

2.1.1. Existing Form of the Division Line in Rectangular Channels

Consider the case of steady, uniform flow in a smooth rectangular channel with an aspect ratio of
b/h, where h =water depth and b = channel width. Due to existence of a secondary current, the division
line is actually a zero Reynolds shear stress line in the flow area, and also a line without energy
cross-transfer [21]. Yang et al. [22] have proven the physical existence of division lines by using
experimental data recorded at the Hydraulics Laboratory, University of Wollongong, as well as the
experimental data recorded previously by Melling and Whitelaw [23] and that of Tracy [24].

Einstein [25] proposed that the flow cross-sectional area can be divided into three sub-sections that
correspond to the side wall and channel bed. However, he did not propose any method of determining
the exact location of the division line. Chien and Wang [26] performed an in-depth study of Einstein’s
idea. They gave the total overall boundary shear stress, τ0, as:

τ0 = ρgRSe (2)

where ρ = fluid density; g = gravitational acceleration; R = hydraulic radius; and Se = energy slope.
Then, they divided τ0 into two parts corresponding to the bed, τb, and side wall, τw. They also

defined two hydraulic radii, one for the wall Rw, and one for the bed Rb. Thus:

τw = ρgRwSe = ρgSeAw/h (3)

τb = ρgRbSe = ρgSeAb/b (4)

where τb =mean bed shear stress;τw =mean wall shear stress; Ab = flow area corresponding to channel
bed; Aw = flow area corresponding to channel side wall; Rw = hydraulic radius corresponding to side
wall; and Rb = hydraulic radius corresponding to bed.

According to Yang [27], the mechanical energy contained in any flow will be transmitted to the
boundary nearest to the “relative distance” and dissipated. The dimensionless relative distance Φ
is defined as the ratio of geometrical length between a point in the flow field and the characteristic
boundary length, representing the energy dissipation capacity of the boundary (for a smooth boundary
channel, this would be the viscous layer thickness Ds).

The side wall and bed will each have their own fair share of surplus energy transferred from
the main flow depending on the minimum relative distance Φ. Accordingly, for any unit volume
in the flow field, there are two possible ways to transfer the surplus energy: either toward the bed
(Φb) or toward the side wall (Φw). If Φw ≤ Φb, the energy will be transferred toward the side wall.
Conversely, if Φw ≥ Φb, then the energy will be transported to the bed. It follows that the condition
where Φw = Φb will define a division line by which the flow region near the corner is divided into two
sub-flow sections.

Therefore, the division line (Φw = Φb) in Figure 1a can be expressed as:

z
Dsw

=
y

Dsb
(5)

where z and y denote the horizontal and vertical axes in the Cartesian coordinates system, respectively;
y = vertical direction normal to bed; z = transverse flow direction;Dsw = characteristic length for smooth
side wall; and Dsb = characteristic length for smooth channel bed.

Substituting Dsw = Csν/u∗w and Dsb = Csν/u∗b into Equation (5) gives:

z = ky; k =
u∗b
u∗w

. (6)
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where Cs = constant; u∗w = mean side wall shear velocity; and u∗b = mean bed shear velocity.
The geometric significance of k in Figure 1a is the reciprocal of the slope of the line OD. Point D is the
intersection of the division line and the water surface line.

(a)                                    (b) 

Figure 1. Division lines for smooth rectangular channels: (a) b/h ≥ α; (b) b/h ≤ α.

Then, it can be obtained that:

Rw =
Aw

h
=

1
2 kh2

h
(7)

Rb =
Ab
b

=
bh− kh2

b
(8)

Using Equations (3)–(8), k can be evaluated, yielding:

τb

τw
=
ρu∗b2

ρu∗w2 = k2 =
1− kh

b
k
2

(9)

Or:
k3 + (2h/b)k− 2 = 0;

b
h
≥ α (10)

Using a similar method, Yang and Lim [27] also gave the evaluation of k1 in Figure 1b:

k1
3 + (b/2h)k1 − 2 = 0;

b
h
≤ α (11)

where k1 represents the slope of the division line OD in Figure 1b.
Highly inspired by the derivation of Yang and Lim [27], we also take the two cases of Figure 1 to

analyze. It has been proven that the critical aspect ratio α is equal to 2 in smooth rectangular channels
by Yang and Lim [27]. As the rectangle is axisymmetric, we take the vertical line of the channel section
as the axis and only analyze half of it.

(a) Determination of the location of division line in wide–shallow channel (b/h ≥ 2)

The division line can be determined by Equation (10) when b/h ≥ 2 (Figure 1a). Since 2h/b is a constant,
solving Equation (10) will give the value of k.

Referring to the value of k, a comparison relationship between 1/k and 2h/b is as follows:

1
k
− 2h

b
≥ 0 (12)
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It can be shown from Inequality (13), so

1
k
≥ 2h

b
;

2h
b
≤ 1 (13)

That is to say, when b/h≥ 2, the slope of the division line is always greater than 2h/b. The intersection
point of the division lines is on or above the water surface line.

(b) Determination of the location of division line in narrow–deep channel (b/h ≤ 2)

The division line can be determined by Equation (11) when b/h ≤ 2 (Figure 1b). Since b/2h is a constant,
the value of k1 can be obtained by solving Equation (11).

Referring to the value of k1, a comparison relationship between k1 and 2h/b is as follows:

k1 − 2h
b
≥ 0 (14)

It can be shown from Inequality (15), so

k1 ≥ 2h
b

;
b

2h
≤ 1 (15)

That is to say, when b/h≤ 2, the slope of the division line is always greater than 2h/b. The intersection
point of the division lines is on or above the water surface line, the same as b/h ≥ 2.

By combining cases (a) and (b), we know that Figure 1b will not occur. Whether in a wide–shallow
or in a narrow–deep channel, the existing form of the division line is always shown as Figure 1a.

2.1.2. CPL of Lines in Rectangular Channel

As shown in Figure 2, taking the left half cross-section of the channel as an example, the dividing
line divides the cross-section of the channel into regions I (ABCD), II (OAD) and III (ODE).

Figure 2. Flow partitioning in rectangular channels.
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In region I, the discharge of the shadow rectangle area can be expressed using Equation (16):

dQ = udA = udydz (16)

where dQ is the discharge of the shadow rectangle area; dA is the area of shadow rectangle; and u is the
longitudinal velocity of any point in the area.

By integrating y, the discharge Q can be obtained as follows:

Q = dz
∫ hI

0
udy (17)

As the rectangular area can be expressed as A = hIdz, the average velocity of this flow area can be
obtained as:

u =
Q
A

=
dz
∫ hI

0 udy

hIdz
=

∫ hI
0 udy

hI
(18)

According to the log-law of vertical velocity in channel section:

u
u∗

= 2.5 ln
(u∗y
ν

)
+ 5.5 (19)

Substituting Equation (19) to (18) gives:

u = 2.5u∗ ln
u∗ · hI

ν
+ 3u∗ (20)

Combining Equations (19) and (20) gives:

u = 2.5u∗ ln
u∗ · hI

ν
+ 3u∗ = 2.5u∗ ln

u∗ · y
ν

+ 5.5u∗ (21)

y is expressed as:

y = yI =
hI

e
=

h
e

(22)

where yI represents the location of depth average velocity in region I, and hI(= h) is the water depth of
the channel.

In region II, yII represents the CPL of depth average velocity, which is similar to region I:

yII =
hII

e
(23)

where yII represents the location of depth average velocity in region II, and hII is the distance
perpendicular to the channel bed to the division line.

In region III, as shown in Figure 2, the discharge of the shadow rectangle area can be expressed as:

dQ = udA = udydz (24)

Integrating z along the direction of z axis, the discharge can be determined using Equation (25):

Q = dy
∫ hIII

0
udz (25)

where hIII is the horizontal distance from the side wall of the channel to the division line.
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As the rectangular cross-sectional area can be expressed as A = hIIIdy, the average velocity of this
flow area can be obtained as shown as Equation (26):

u =
Q
A

=
dy
∫ hIII

0 udz

hIIIdy
=

∫ hIII
0 udz

hIII
(26)

According to the log-law of vertical velocity in channel section:

u
u∗

= 2.5 ln
(u∗z
ν

)
+ 5.5 (27)

Using Equations (26) and (27), z can be evaluated using:

∫ hIII
0 udz

hIII

u∗
= 2.5 ln

(u∗z
ν

)
+ 5.5 (28)

Giving:

z = zIII =
hIII

e
(29)

where zIII represents the location of the depth average velocity in region III.

2.1.3. CPL of Regions in Rectangular Channel

For region I, according to Equation (22), since the water depth h in the channel is constant,
measuring the velocity of the CPL of depth average velocity can provide the average velocity for the
whole section of region I. Therefore, the average discharge can be obtained by multiplying the average
cross-section velocity by the area of the region. Similarly, the flow in regions II and III can be obtained
using the same method. Figure 3 shows that PI, PII, and PIII are the characteristic points that represent
the mean velocities in regions I, II, and III, respectively.

Figure 3. Location map of the characteristic points in different regions.

For region II, the discharge Q can be expressed using Equation (30):

Q = u∗
∫ z0

0
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where e is a constant; S is the slope of channel; and z0 is shown in Figure 3.
The mean velocity can be calculated from the value of Q/A, which can be expressed using

Equation (31):

u =
Q
A

=

2 u∗
k

(
z0

2
(
1.25 ln

( √
gS

eν

( z0
k

)1.5
)
+ 1.8125

))

z0h0
(31)

Using Equations (6), (19) and (31), Equation (32) can be obtained:
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Therefore, the y and z value of the point PII can be calculated using Equation (33):

{
zII =

z0
e0.125

yII =
y0

e1.125
(33)

where zII and yII represent the coordinates of PII.
For region III, the analysis method is similar to that of region II. The z and y value of the point PIII,

which can be used to calculate the value of Q of region III, can be expressed using Equation (34):

{
zIII =

z0
e1.125

yIII =
y0

e0.125
(34)

where zIII and yIII represent the coordinates of PIII.

2.2. CPL in Semi-Circular Channel

The concave boundary cross-section is one of the most commonly used cross-section forms in
farmland canal systems, open-flow culverts, urban drainage pipelines and other projects. Compared
with the rectangular section, it has a larger hydraulic radius under the same conditions, so the velocity
of the cross section is larger and the water flow that can be transported is also larger [28]. In order
to obtain the discharge of the concave boundary cross-section channel more quickly and accurately,
it is necessary to master the velocity distribution of the cross-section. Figure 4 shows the semi-circle
channel cross-section.

Figure 4. Section diagram of semi-circular channel.

As shown in Figure 4, a straight line, which crosses the center of the circle and is angled with the
center line (θ), is taken from a semicircular channel with radius R and maximum water depth h.
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The coordinate system is established by taking the straight line and the direction perpendicular to
the straight line as the coordinate axis. According to Figure 4, the rectangle FGJK is Ln in length and dr
in width, where Ln is the length of the underwater part of the radius. With the rectangle FGJK, the area
is AFGJK = Ln · dr and the discharge through FGJK can be expressed as:

Q = u ·AFGJK = u · Ln · dr (35)

Then, taking a shadow rectangle whose edge lengths are dρ and dr (dρ and dr are infinitesimal),
the discharge through the shadow rectangle is:

dQ = u · dr · dρ (36)

By integrating dρ in the direction of y’ and substituting the log-law, we get:

Q = dr ·
∫ Ln

0
udρ = dr · u∗ · Ln ·

(
2.5 ln

Ln · u∗
ν

+ 3
)

(37)

Substituting the log-law into Equation (35) gives:

Q = Ln · dr · u∗ ·
(
2.5 ln

u∗ · ρ
ν

+ 5.5
)

(38)

For Equations (37) and (38), the coordinates of the characteristic points representing the average
velocity of the straight line can be obtained from Equation (39):

ρ =
Ln

e
(39)

where ρ is the CPL of the depth average velocity of the line.

2.3. Discharge of Rectangular and Semi-Circular Channel

2.3.1. Discharge in a Rectangular Channel

According to Section 2.1.3, based on the CPLs of different regions, the discharge from the
cross-section can be given by Equation (40):

Qrec = 2× (AIupI
+ AIIupII

+ AIIIupIII
) (40)

where AI, AII and AIII represent the areas of three regions, and uPI , uPII and uPIII represent the velocities
of points PI, PII, and PIII.

2.3.2. Discharge in a Semi-Circular Channel

Similar to a rectangular channel, in a semi-circle channel, after obtaining the CPL of every normal
line, it is necessary to know how to calculate the discharge through simplified point distribution.
As shown in Figure 5, two straight lines passing through the center of the circle have divided the angle
into θ1, θ2 and θ3. The discharge can be expressed as Equation (41):

Qcir = 2× (αc ·A1 · uCPL1 + A2 ·
uCPL1 + uCPL2

2
+ αc ·A3 · uCPL2) (41)

where A1, A2 and A3 represent sub-areas, uCPL is the velocity of the normal line and αc is the velocity
coefficient along the bank. αc can be determined according to the test conditions.
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Figure 5. Discharge calculation in a semi-circular channel with the two-line method.

3. Experimental Setup

Table 1 summarizes the test conditions and relevant parameters of a channel cross-section.
The rectangle and semi-circle channel section tests are shown in the table. In order to increase the
reliability of the test data, the tests are carried out in different places, such as the Fluid Laboratory of
the University of Wollongong, the Hydraulic Experiment Hall of the China Agricultural University and
the Semi-Circular Test Open Channel of the British Council for Scientific and Engineering Research [29].
Different groups were set up by changing the discharge (or water depth) of the channel. Using acoustic
doppler velocimetry (ADV) and other velocity measurement tools to measure the vertical velocity of a
cross-section, a large amount of velocity data can be obtained.

Table 1. Summary of experimental conditions.

Cross-Sectional Shape Conditions Channel Width: b (m) Channel Radius: r (m) Flow Discharge: Q (m3/s) Water Depth: h (m)

Rectangle

R1 a

0.3 -
0.004 0.065

R2 a 0.004 0.091
R3 a 0.004 0.110

R4 b

0.8 -

0.031 0.120
R5 b 0.033 0.128
R6 b 0.039 0.137
R7 b 0.044 0.153

Semi-circle

S1 c
- 0.120

0.005 0.0813
S2 c 0.012 0.1200

S3 a

- 0.150
0.003 0.075

S4 a 0.005 0.085
S5 a 0.008 0.100

a Experiment data are from the Fluid Laboratory of the University of Wollongong(UOW). b Experiment data are from
the Hydraulic Experiment Hall of China Agricultural University(CAU). c Experiment data are from Knight [29].

4. Results and Discussion

4.1. Analysis with Rectangular Channels

The consistency of CPL of R1, R2 and R3 in rectangular channels is analyzed in Figure 6.
These scatter points cover three regions of the rectangular cross-section. The abscissa of the scatter
points in the figure represents the theoretical value of CPL and is calculated by Equations (22), (23)
and (29). The longitudinal coordinates of points represent the measured value of CPL, which can
be obtained by interpolating the experimental data. It can be seen that the data points are mostly
distributed within the error line of ±15%. Therefore, it can be proven that the formulas of CPL in
Section 2.1.2 can be applied to rectangular cross-section channels.
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Figure 6. Comparison of the CPL between the theoretical and measured values in a rectangular channel.

In order to further verify the correctness of the theoretical derivation, a series of experiments were
conducted at different water depths at the CAU (China). We collated the experimental data of R4-R7
and selected the representative data points to draw in Figure 7. Since the perpendicular bisector is in
region I, we calculated the point of CPL with Equation (22). Since the number of measuring points was
less, and there were some test errors, the relative error between CPLt and CPLm still existed. With the
increase in water depth, the influence of several measuring points on the results is apparent (R7).
The velocities of CPLt and CPLm have a greater consistency when the number of measuring points is
high. Hence, we have reason to think that the velocity of CPLt can represent the average velocity of the
centerline in rectangular channels.

Figure 7. Velocity on the perpendicular bisector with R4-R7 in a rectangular channel.
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The characteristic points of depth average velocity in each region are plotted in Figure 8 and
recorded as PI, PII and PIII, which are calculated by Equations (22), (33) and (34), respectively. We can
obtain the discharge by using the values of PI, PII and PIII in Equation (40). Curves in the graph are
isovel patterns in the rectangular cross-section channel based on UOW test data, which is consistent
with the contour line measured by Chiu and Chiou [30]. It can be seen from the figures that the velocity
near the wall is small and the velocity far from the wall is large. This can be explained by the log-law of
velocity distribution. Increasing the monotone leads to the velocity increasing as the distance from the
channel side wall or bed increases. Therefore, the maximum velocity point of the cross-section should
theoretically be located at the intersection of the vertical line of the channel and the water surface.

Figure 8. Isovel patterns in a rectangular channel (e.g. R1: b/h = 4.615).

However, in Figure 8, we can see that the maximum velocity point is below the water surface,
not on it. This phenomenon was first observed about a century ago [31,32], and further experimental
studies showed that it was induced by the presence of secondary cross-sectional flow structures [33].
Due to the occurrence of anisotropic turbulence and cross-sectional secondary currents, which tend to
shift the maximum velocity from the free surface to the bed, its identification is still a complex task in
hydraulics [34].

4.2. Analysis with Semi-Circular Channels

Mechanical energy is always transmitted to the closest boundary. As shown in Figure 9, this refers
to the normal line direction. So, in a concave boundary channel, the analysis is carried out along the
normal direction perpendicular to the tangent direction of the wall.

Figure 9. Semi-circular channel cross-section and notation.
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In order to compare the accuracy of velocity distribution analysis along the vertical direction and
along the normal wall direction, the following analysis has been made. The error values obtained by
the experimental condition S2 (in Table 1) and log-law formulas are compared in tabular analysis in
Table 2. The calculation formula of the average error value is given by:

E =
Em − Ec

Em
× 100% (42)

where E is the average error value in Table 2, Em denotes the measured value, and Ec denotes the
calculated value.

Table 2. Accuracy comparison of velocity distribution along the vertical wall and normal directions
with S2: h = 0.1200.

Average Error Value along Normal Direction Average Error Value along Vertical Direction

Normal Slope kn Average Error Value E (%) The Distance from the Vertical Line to the Central Line z/b Average Error Value E (%)

11.9 2.156661 0.083 3.528655
5.91 3.117373 0.167 3.441878
3.87 2.578154 0.250 2.827718
2.82 3.073467 0.333 7.846099
2.18 3.217222 0.417 6.557529
1.73 2.584048 0.500 10.55338
1.39 2.047317 0.583 12.39980
1.11 2.207014 0.667 19.05022
0.88 2.758453 0.750 21.84237
0.66 4.707039 0.833 30.18244

From Table 2, we can conclude that the average error value obtained by normal analysis along the
wall is much lower than that obtained by vertical analysis when consistency analysis of the velocity
measurements and the log-law is carried out. Hence, the correctness of the analysis of the concave
boundary channel along the normal direction perpendicular to the wall is proved.

Figure 10 shows the comparison of average velocity along the normal line under S1−S5.
The horizontal ordinates in the figure are the average value of the velocity at each normal measuring
line. The vertical coordinates are obtained by theoretical calculation. Specifically, the CPL is calculated
by the formula from Section 2.2, and then the average velocity on the normal line is obtained by
substituting it into the log-law.

  
(a) (b) 

Figure 10. Comparison of measured and theoretical values of mean radial velocity (a) S1, S2; (b) S3, S4, S5.

Despite some fluctuations of a few test points in Figure 10, most of them are within the error range
of 5%. The statistical rules of a large number of test points can still prove the accuracy of the theoretical
deduction in Section 2.2. Therefore, the velocity corresponding to the CPL calculated by Equation (39)
can represent the average velocity of the channel wall along the normal line to the water surface
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line. Most points, especially the measuring points close to the water surface, are located above the
agreement line, which implies that Ut is bigger than Um. This is because the log-law appears to deviate
near the water surface. Based on this, the log-wake law was proposed by Coles [35], which appears to
be the most reasonable extension of the log-law. However, the value of Π in the log-wake law seems
not to be universal [36]. So, more research is needed to correct the velocity near the water surface.

As shown in Figure 11, the theoretical and measured values of CPL on each normal line are very
close, located in the middle and lower part of the normal line. The solid and dotted lines are smooth
arc curves, which are consistent with the concave boundary. Therefore, the accuracy of the formula in
Section 2.2 can be proved. It is advisable to use the velocity of CPL to represent the average velocity of
the normal line.

(a) 

(b) 

(c) 

Figure 11. Comparison of measured and theoretical values of CPL (a) S1; (b) S4; (c) S5.
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When the S1 condition is applied to Equation (41), we can calculate the discharge of the semi-circular
channel. Here, αc = 0.8. Table 3 shows the calculated discharge of the channel with the combination
of six kinds of angles. Only the first is a uniform partition; the others are all non-uniform. Relative
error refers to the error value of the calculated discharge relative to the measured discharge. It can be
found that the relative error value is the smallest only when the angle is divided uniformly, about 5%.
Therefore, we can reasonably conclude that the accuracy of the discharge calculation is the highest
only if the angle is divided uniformly while using the two-line method.

Table 3. Analysis of calculated and measured discharge under different combinations of angles (S1).

Degree of Angle with the Two-Line Method Q Calculation
(m3/s)

Q Measurement
(m3/s)

Relative Error (%)
θ1 (◦) θ2 (◦) θ3 (◦)
71/3 71/3 71/3 0.00526

0.005

5.10
18 34 19 0.00565 12.90
18 23 30 0.00531 6.27
29 32 10 0.00551 10.09
35 26 10 0.00542 8.48
36 21 14 0.00533 6.61

5. Summary

This study has investigated a fast flow measurement method based on the distribution of measuring
points by conducting laboratory experiments. The principal achievements from the comparison of the
theoretical derivation and experimental study are summarized below.

(1) Based on Yang et al.’ s partitioning theory [21,22,27], this paper gives a re-description of the
existing form of the division line of a rectangular cross-section channel. That is, whether the
channel cross-section is wide–shallow or narrow–deep with the center line of the cross-section
as the symmetrical axis, and whether the intersection points of the left and right division lines
intersect on or above the water surface.

(2) This paper analyzes characteristic points in flat channels (e.g., rectangular channel) and concave
boundary channels (e.g., semi-circular channel). In the rectangular channel, the division line
divides the section into three regions. In each region, the analysis is conducted in the direction
perpendicular to the bottom or side wall of the channel. In the semi-circular channel, the analysis
is conducted along the normal direction. Based on the log-law, the theoretical expressions for
calculating the location of the average velocity characteristic points in flat and concave boundary
channels are derived through the formula transformation.

(3) The velocity data in different experimental sites are used to verify the validity of the CPL formulas
applied to flat and concave boundary channels. Moreover, the discharge calculation formulas of
channels are given through discussion with CPL.

6. Conclusions

The determination of CPL has provided a theoretical basis for simplifying and accurately measuring
channel flow. It is precisely because of the realization of CPL that the average cross-section discharge
can be calculated quickly so that the accuracy and stability of flow measurement in irrigation channels
can be further improved.

The results of this paper can only serve for smooth open channels. However, if the roughness
is non-uniform, the location of the division lines in the channel cross-section will be different [25].
It is also difficult to ensure that the velocity distribution in each sub-region is the same. With the
comprehensive ecological treatment of channels becoming a hot topic, the transition from smooth
channels to vegetation covered channels becomes relevant. So, it is of necessity to conduct experiments
in open channels with roughness for future research.
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Abstract: The use of potential fields in fluid dynamics is retraced, ranging from classical potential
theory to recent developments in this evergreen research field. The focus is centred on two major
approaches and their advancements: (i) the Clebsch transformation and (ii) the classical complex
variable method utilising Airy’s stress function, which can be generalised to a first integral
methodology based on the introduction of a tensor potential and parallels drawn with Maxwell’s
theory. Basic questions relating to the existence and gauge freedoms of the potential fields and
the satisfaction of the boundary conditions required for closure are addressed; with respect to (i),
the properties of self-adjointness and Galilean invariance are of particular interest. The application
and use of both approaches is explored through the solution of four purposely selected problems;
three of which are tractable analytically, the fourth requiring a numerical solution. In all cases,
the results obtained are found to be in excellent agreement with corresponding solutions available in
the open literature.

Keywords: potential fields; Clebsch variables; Airy’s stress function; Goursat functions; Galilean
invariance; variational principles; boundary conditions; film flows
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1. Introduction

In various branches of physics, potentials continue to be used as additional auxiliary fields for the
advantageous reformulation of one or more governing equations. Classical electrodynamics serves as
a prime illustrative example of their use [1], enabling Maxwell equations in their commonly expressed
form, comprised of two scalar and two vector equations for the two observables—electric field �E and
magnetic flux density �B—to be formulated differently in terms of the derivatives of a scalar potential
ϕ and a vector potential �A, such that �E = −∇ϕ − ∂t �A and �B = ∇× �A, respectively; in which case,
two of the four Maxwell equations are fulfilled identically while the other two form a self-adjoint
pair—i.e., can be obtained from a variational principle. Moreover, followed by proper gauging of
the potential fields, a fully decoupled form of Maxwell’s equations in terms of two inhomogeneous
d’Alembert equations is obtained. From a mathematical viewpoint, amendments to the original
equations comprise:
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• A reduction in the number of equations and unknowns;
• Self-adjointness of the equations;
• A full decoupling of the equations;
• Transformation of the equations to a known mathematical type.

Despite the above benefits, a historical debate reaching back to Heaviside [2,3] has surrounded the
Maxwell potentials and their rationale, which were not free of polemics [4–6]. A major objection against
the use of potential fields has surrounded their mathematical non-uniqueness, implying that they are
not observable by physical measurements. In the case of the Maxwell potentials, the transformation

�A → �A′ = �A +∇χ (1)

ϕ → ϕ′ = ϕ − ∂tχ (2)

in terms of an arbitrary scalar field χ defines an alternative set of potentials related identically to the
observable fields �E and �B. The non-uniqueness of the original Maxwell potentials does not reflect
a weak point in the theory; on the contrary, it defines a symmetry that has proven formative in
the usage of potential fields in modern theoretical physics as well as ground-breaking with respect
to the subsequent development of gauge theory [7]. Each of which confirm Maxwell’s theory to
be a significant reference point for other field theories, an obvious example being the potential
representation of the Weyl tensor in general relativity [8,9].

Subsequently, based on the publications of Ehrenberg and Siday [10], Aharonov and Bohm [11],
the so-called Aharonov–Bohm solenoid effect—which takes place when the wave function of a charged
particle passes around a long solenoid and experiences a phase shift as a result of the enclosed magnetic
field, despite the magnetic field being negligible outside the solenoid—gave rise to a second debate
concerning the physical meaning of the vector Potential �A. This effect is frequently misunderstood:
it does not allow for a point-wise “measurement” of �A since only the integral magnetic flux can be
determined from the phase shift, while the gauge transformation in Equation (1) is still a symmetry
of the Schrödinger–Maxwell theory predicting the effect properly; thus any gradient field ∇χ can be
added to the vector potential �A leading to the same experimental result. Nevertheless, the question still
remains an open one as to what physical role the vector potential plays and controversy surrounding
it persists; see, for example, [12–18].

In summary, the use of potentials is motivated from both a mathematical and physical viewpoint:
mathematically the original equations can be manipulated in beneficial ways, while physically new
insight concerning the structure of the theory is provided via the reformulated equation set. Both of
these aspects are considered subsequently.

The particular aim henceforth is to demonstrate the application of potential methods to fluid
mechanics. As is well known in the case of an incompressible inviscid irrotational fluid flow,
by expressing the velocity field �v in terms of a scalar potential ϕ:

�v = ∇ϕ (3)

the associated equations of motion are reduced to Bernoulli’s equation, resulting as a first integral of
Euler’s equations together with a Laplace equation

∇2 ϕ = 0 (4)

for the potential via the continuity equation. Since Bernoulli’s equation is essentially the conditional
equation for the pressure field, only Equation (4) remains to be solved, elevating potential flow theory
to the status of an essential topic in standard fluid dynamics text books [19–22]. Despite the obvious
advantage of making various flow problems more tractable, the approach is restricted to inviscid and
irrotational barotropic flows. In order to extend the methodology to encompass a wider range of flow
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problems, generalisations of and alternatives to Equation (3) have emerged. Of these, the following
two major strands only are explored in the present work:

1. The so-called Clebsch transformation [19,20,23] and related methodologies enabling, in the first
instance, Euler’s equation to be reformulated as a generalised Bernoulli equation complemented
with two transport equations for the Clebsch potentials. The approach was subsequently
generalised to encompass baroclinic flow by Seliger and Witham [24], but still with the restriction
that the flow is inviscid and heat conduction absent. Note that the Clebsch transformation has
been applied to physical problems beyond fluid mechanics including Maxwell theory in classical
electrodynamics [25], the field of Magnetohydrodynamics [26], relativistic dynamical systems [27]
and even in relation to quantum theory within the context of (a) the quantisation of vortex tubes
Madelung [28], Schoenberg [29], (b) generalised membranes [30] and (c) relativistic quantum
vorticity [31].

2. The complex variable method, developed in the first half of the 20th century and originally related
to problems in plane linear elasticity [32,33]. The method was subsequently adopted by the
fluid mechanics community: in the case of 2D Stokes flow (Re → 0) it has led to solutions based
on a complex-valued Goursat representation of the stream function in terms of two analytic
functions, which has been generalised incrementally, starting with Legendre [34] and followed
by Coleman [35], Ranger [36], and Scholle et al. [37], Marner et al. [38], resulting finally in an
exact complex-valued first integral of the 2D unsteady NS equations, based on the introduction of
an auxiliary potential field. A further generalisation to 3D viscous flow has been achieved
only recently using a tensor potential in place of the complex potential field employed in
two-dimensions [39].

Historically, both approaches have been subject to limitations on their usage: the Clebsch
transformation originated for the case of inviscid flow (Re → ∞) and the complex variable method for
that of 2D Stokes flow (Re → 0). Recent advancements have lifted these restrictions. In this review,
the origin and evolution of both methods is retraced and potential future developments highlighted.
Section 2 considers the Clebsch transformation, starting from its origins in inviscid barotropic flow
theory, Section 2.1. After commenting on the global existence of the Clebsch variables, Section 2.2,
it is demonstrated via a rigorous symmetry analysis, Section 2.2, that the Clebsch representation of
the velocity is a natural outcome of Galilean invariance via Noether’s theorem. An extended Clebsch
transformation for viscous flow is then presented in Section 2.3 and followed, Section 2.4, by applying
it to the problem of viscous stagnation flow. The complex variable method and its progression to
a tensor potential approach is outlined in Section 3, beginning in Section 3.1 with the use of Airy’s
stress function with respect to steady-state equilibrium conditions for an arbitrary continuum in
general and for Stokes’s flow in particular. In Section 3.2, the approach is generalised to encompass
the full unsteady 2D-NS equations, utilising a complex potential. A serendipitous benefit is that of
enabling the integration of the dynamic boundary condition along a free surface, or interface, and its
reduction to a standard form, as shown in Section 3.3, as subsequently utilised in Section 3.4 for the
numerical solution of a free surface film flow problem. Latterly, a particularly noteworthy advance,
Section 3.5, has been that of overcoming the 2D restriction. This has been achieved by rearranging
the complex equations in a tensor form leading to a potential-based first integral of the full 3D-NS
equations with a seamless extension to an analogous form of the 4D relativistic energy momentum
equations. Concluding remarks are provided in Section 4.

Finally, it would be remiss and incomplete not to point out that in the field of fluid mechanics
other approaches to the use of potentials for solving the equations of motion exist that have not been
considered in the present text. In this sense and as instructive examples, the reader is referred to the
work of Papkovich and Neuber [40], Lee et al. [41], Greengard and Jiang [42].
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2. Clebsch Transformation Approach

2.1. The Clebsch Transformation for Inviscid Flows

For inviscid flow, Clebsch [19,20,23] proposed a non-standard potential representation for the
velocity field, in terms of the so-called Clebsch variables ϕ, α, β, of the form:

�u = ∇ϕ + α∇β . (5)

From a mathematical viewpoint, the potential representation in Equation (5) is a decomposition
of the velocity field into a curl-free part ∇ϕ and a helicity-free part α∇β. Schoenberg [29] has shown
that the above decomposition is not unique; by applying the gauge transformation:

ϕ −→ ϕ′ = ϕ + f (α, β, t)

α −→ α′ = g(α, β, t) (6)

β −→ β′ = h(α, β, t)

an equivalent set of Clebsch variables ϕ′, α′, β′ is given if and only if the functions f , g, h fulfil the
following two PDEs:

∂ f
∂β

+ g
∂h
∂β

= α , (7)

∂ f
∂α

+ g
∂h
∂α

= 0 . (8)

By applying Equation (5) to Euler’s equations for inviscid flows, one obtains:

�0 =
D�u
Dt

+∇[P + U] = ∇
[

∂ϕ

∂t
+ α

∂β

∂t
+

�u2

2
+ P (�) + U

]
+

Dα

Dt
∇β − Dβ

Dt
∇α , (9)

with the pressure function P (�) =
´

�−1dp and U the specific potential energy of the external force.
The operator D/Dt = ∂/∂t + �u · ∇ is the material time derivative. Being basically of the form:

∇ [· · · ] + [· · · ]∇α + [· · · ]∇β =�0 , (10)

this vector equation can be decomposed according to:

∂ϕ

∂t
+ α

∂β

∂t
+

�u2

2
+ P + U = F(α, β, t), (11)

Dα

Dt
= −∂F

∂β
, (12)

Dβ

Dt
=

∂F
∂α

, (13)

containing an unknown function F(α, β, t); which, making use of the gauge transformation of
Equation (6), leads to F → 0. The above three scalar field equations represent a first integral of
Euler’s equations and are self-adjoint. However, their most intriguing feature is that the vorticity:

�ω =
1
2
∇× �u =

1
2
∇α ×∇β, (14)

is given by the two scalar fields α, β, only. Hence, the vortex dynamics is reduced to and conveniently
captured by the two transport Equations (12) and (13). This beneficial feature has been exploited by,
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for example, Prakash et al. [43], who utilised the Clebsch transformation as a generalisation of classical
potential theory for the simulation of bubble dynamics.

Another beneficial feature of the transformed field equations is their self-adjointness: they result
from a variational principle:

δ

t2ˆ

t1

˚

V

� (�, α, ∂ϕ, ∂β,�x, t)dVdt = 0, (15)

with respect to free and independent variation of the four fields �, ϕ, α, β and their first order spatial
and temporal derivatives for fixed values at initial and final time, t1,2, with the Lagrangian given
as [25]:

� (�, α, ∂ϕ, ∂β,�x, t) = −�

[
∂ϕ

∂t
+ α

∂β

∂t
+

1
2
(∇ϕ + α∇β)2 + e (�) + U (�x, t)

]
, (16)

for the specific elastic energy e (�) fulfilling e (�) + �e′ (�) = P (�). For generalisations of the above
variational principle toward thermal degrees of freedom, reference is made to [24,44–46].

2.2. A Note on the Global Existence of the Clebsch Variables

When introducing potentials as auxiliary fields, their existence has to be clarified first. Referring
to the classical example �u = ∇ϕ from potential theory corresponding to the special case of the
Clebsch representation in Equation (5) with α = β = 0, it is obvious that it applies only to vortex-free
fields, i.e., ∇ × �u = �0. However, according to Equation (14), velocity fields with non-vanishing
vorticity (Equation ((14)) can be considered, but not arbitrary ones, as demonstrated in the following,
Moreau [47], Moffatt [48] having identified the helicity

H =

˚

V

2�u · �ωdV (17)

as a decisive quantity in the case of inviscid fluid flow. Under the assumption that the potential
ϕ is continuously differentiable and single-valued then by expressing, via Equations (5) and (14),
the velocity and the vorticity in terms of the Clebsch variables and their gradients, the helicity density
can be re-written as:

2�u · �ω = [∇ϕ + α∇β] · (∇α ×∇β) = ∇ϕ · (∇α ×∇β) ,

= ∇ϕ · �ω = 2∇ · (ϕ�ω)− 2ϕ∇ · �ω︸ ︷︷ ︸
�0

implying, utilising Gauss’s theorem with ∂V denoting the surface of the flow domain and�n the normal
vector, the global helicity to be:

H = 2
˚

V

∇ · (ϕ�ω)dV =

‹

∂V

ϕ�ω ·�ndA . (18)

The issue raised by the above formula is the occurrence of the potential ϕ as a non-observable in
the sense that it can, according to Equation (6), be replaced by a re-gauged potential ϕ′ = ϕ + f (α, β),
leading to a corresponding helicity given by:

H′ = H + 2
‹

∂V

f (α, β) �ω ·�ndA . (19)
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Since, due to its definition (Equation ((17)), the helicity is an observable and therefore
a gauge-invariant quantity, i.e., H′ = H, the integral on the right hand of Equation (19) has to
vanish for any choice of the function f (α, β), implying that �ω ·�n = 0 along the entire boundary
∂V of the flow domain. Finally, the latter implies also that the helicity vanishes. As a consequence,
the classical Clebsch transformation with continuously differentiable and single-valued potentials only
applies to flows the total helicity of which is zero.

There are two different approaches to overcoming this restriction: the first utilises a multi-valued
potential ϕ, as demonstrated by Yahalom [49], Yahalom and Lynden-Bell [50]; the second is based on the
use of multiple pairs of variables, such as�u = ∇ϕ+ α1∇β1 + α2∇β2 + · · · , in the sense that the number
of pairs has to be chosen adequately depending on the topological features of the respective individual
flow problem—such flows with closed vortex lines that form linked rings or ones with isolated points
of zero vorticity are discussed, for example, by Balkovsky [51], Yoshida [52]. More recent work
on this topic is presented by Ohkitani and Constantin [53], Cartes et al. [54], Ohkitani [55]. However,
independently of the question of how many pairs of Clebsch variables are useful for representing the
topology of a flow, there is a minimum number of two pairs for which global existence can be granted,
as demonstrated in Appendix A.

Subsequently, for convenience, attention is paid to the classical form in Equation (5) only on the
understanding that an extension via more pairs of variables is possible if required.

Derivation of a Clebsch-Like Form by Galilean Invariance and Self-Adjointness

The question of global existence discussed briefly above, Section 2.2, has become a research topic
to which many research groups have contributed over several decades, while the use of the Clebsch
variables remained restricted to the realm of inviscid flows. In contrast, the focus here is to provide
a rationale for the use of Clebsch variables for arbitrary continuous physical systems, the dynamics
of which are assumed to be given by a variational principle, following an in-depth analysis of the
underlying Galilean group and its consequences for the resulting balances of mass and momentum.

If a system is physically closed, i.e., isolated from the surrounding, its equations of motion are
invariant with respect to the following four universal symmetry transformations of the Galilean group,
corresponding to homogeneity of time and space, isotropy of space and equality of all inertial frames:

time translations:

t → t′ = t + τ (20)

space translations:

�x → �x′ = �x +�s (21)

rigid rotations:

�x → �x′ = R�x (22)

Galilei boosts:

�x → �x′ = �x − �u0t (23)

Here, the scalar τ, the two vectors�s and�u0 and the unitary matrix R fulfilling RTR = 1 and det R =

1 are constants. Via Formulae (20)–(23) the four symmetries are obviously well-defined for discrete
systems; for instance, systems of point masses in Newtonian mechanics. For continuous systems,
the situation is essentially different: in field theories, the Formulae (20)–(23) have to be supplemented by
the respective transformation formulae for the fields in order to define the transformations completely.
For demonstration purposes consider the Lagrangian (16) for inviscid barotropic flows in the absence
of external forces, U = 0:

�
(
�, α, ϕ̇,∇ϕ, β̇,∇β

)
= −�

[
ϕ̇ + αβ̇ +

1
2
(∇ϕ + α∇β)2 + e (�)

]
, (24)
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where the dot indicates the partial time derivative ∂/∂t. Obviously, the Lagrangian (24) is invariant
with respect to space and time translations in Equations (20), (21) and rigid rotations (22) if the
four fields, �, ϕ, α, β are assumed to be likewise invariant. In contrast, invariance with respect to Galilei
boosts requires the first Clebsch variable ϕ to be transformed according to [26]:

ϕ → ϕ′ = ϕ − �u0 ·�x +
�u2

0
2

t , (25)

implying, according to Equation (5), that consequently �u → �u′ = �u − �u0 for the velocity field and
compensating the non-invariance ∂/∂t → ∂/∂t + �u0 · ∇ of the partial time derivatives occurring in
the Lagrangian. The fact that the Galilei boost becomes manifest as a combination of the geometric
transformation in Equation (23) with the gauge transformation in Equation (25) is an unfavourable
feature since, for each physical system depending on an arbitrary set of fields, the transformation
formulae for the fields involved have to be defined individually. However, there is a way to eliminate
this disadvantage: by means of the substitution:

ϕ = Φ + ζ , (26)

with the generating field:

ζ :=
�x 2

2t
. (27)

The Lagrangian (24) can be re-written in the alternative form:

�̃

(
�, α,

◦
Φ,∇Φ,

◦
β,∇β

)
= −�

[
◦
Φ +α

◦
β +

1
2
(∇ϕ + α∇β)2 + e (�)

]
, (28)

where the ring symbol ◦ indicates the dual time derivative [56]:

◦
Φ=

{
∂

∂t
+∇ζ · ∇

}
Φ , (29)

which in contrast to the conventional time derivative is invariant with respect to Galilei boosts.
As a consequence, the Lagrangian in its alternative form in Equation (28), subsequently called the dual
representation, proves to be invariant with respect to Galilei boosts if all fields including Φ are assumed
to be likewise invariant. Thus, the essence of the dual representation in Equation(28) is that Galilei
boosts become manifest as pure geometrical transformations without the need to combine them with
a re-gauging of potentials. Vice versa, for the dual Lagrangian (28), time and space translations become
manifest as mixed transformations consisting of a geometric part in combination with a re-gauging of
the potential Φ [56]. Subsequently, a Lagrangian is termed strictly invariant if it is invariant with respect
to a purely geometric transformation without the need of re-gauging one of the potential fields. In this
sense, Equation (24) is strictly invariant with respect to space and time translations while Equation (28)
is strictly invariant with respect to Galilei boosts but not vice versa.

This poses the question of whether the coexistence of two different representations of a given
Lagrangian, one being strictly invariant with respect to space and time translations and the other one
being strictly invariant with respect to Galilei boosts, is an individual feature of the theory of inviscid
barotropic flows or if other examples exist. Scholle [56] undertook a rigorous analysis to investigate
this question, arriving at the conclusion that this coexistence is a universal property of every continuum
being ruled by self-adjoint equations of motions invariant with respect to the full Galilean group: if
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the state of a continuous system is defined by N independent fields ψi , i = 1 · · · , N and its evolution
determined by a variational principle:

δ

t2ˆ

t1

˚

V

� (ψi, ψ̇i,∇ψi)dVdt = 0 , (30)

based on free and independent variation of the fields ψi and their first order spatial and temporal
derivatives for fixed values at the initial and final time, t1,2, then a variable transformation

ψi = Ki
(
Ψj, ζ,∇ζ

)
, (31)

exists with the generating field ζ defined via Equation (27), fulfilling the identity:

�
(
Ki
(
Ψj, ζ,∇ζ

)
, K̇i

(
Ψj, ζ,∇ζ

)
,∇Ki

(
Ψj, ζ,∇ζ

))
=�

(
Ψi,

◦
Ψi,∇Ψi +

1
t
�Ki
(
Ψj
))

, (32)

�Ki
(
Ψj
)

:= lim
ζ,∇ζ→0

∂Ki
∂(∇ζ)

, (33)

giving rise to the dual representation of the Lagrangian on the right hand of Equation (32) depending

on the dual time derivatives
◦
Ψi= Ψ̇i +∇ζ · ∇Ψi of the transformed fields.

Since the conventional representation � (ψi, ψ̇i,∇ψi) is obviously strictly invariant with respect

to space and time translations while the dual representation �

(
Ψi,

◦
Ψi,∇Ψi + �Ki

(
Ψj
)

/t
)

is strictly

invariant with respect to Galilei boosts, simultaneous invariance with respect to translations and Galilei
boosts is granted by Equation (32), which consequentially can be understood as a collective symmetry
criterion for the Galilean group and has to be fulfilled by any Lagrangian related to a physically closed
continuous system. One implication is that the gauge transformation:

ψi → ψi
′ = Ki

(
ψj, ε, 0

)
(34)

is likewise defined as being a symmetry transformation of the Lagrangian. This induced gauge
transformation is remarkable since it is an indirect consequence of the Galilean invariance.

The above-mentioned general properties of Lagrangians in continuum theory entail additional
general implications for the physical balances resulting from the variational Principle (30) by utilising
Noether’s theorem [57–59], the essence of which is that each Lie symmetry of the Lagrangian gives rise
to a physical balance equation and to a canonical definition of the density and flux density involved.
In the present context, the balances for mass and momentum,

∂�

∂t
+∇ · (��u) = 0 , (35)

∂�p
∂t

+∇ · Π =�0 , (36)
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are related (via Noether’s theorem) to the induced gauge Transformation (34) and (from the space
translation in Equation (21)) with the mass density �, the mass flux density�j = ��u, the momentum
density �p and the momentum flux density Π which are given by [56]:

� = − ∂�

∂ψ̇i
K0i

(
ψj
)

, (37)

�j = ��u = − ∂�

∂∇ψi
K0i

(
ψj
)

, (38)

�p = − ∂�

∂ψ̇i
∇ψi , (39)

Π = �1 − ∂�

∂∇ψi
⊗∇ψi , (40)

with the infinitesimal Generator K0i
(
ψj
)

defined as:

K0i
(
Ψj
)

:= lim
ζ,∇ζ→0

∂Ki
∂ζ

. (41)

In Equations (37)–(40) and subsequently, the following Einstein notation is utilised: an index variable
appearing twice in a single term implies summation of that term over all values of the index.

Note that in contrast to classical continuum mechanics, the mass flux density and the momentum
density need not to be equal. The difference between both, �p ∗ := �p −�j = �p − ��u, is called the
quasi-momentum density and can be interpreted as contributions to the momentum due to non-material
degrees of freedom, for example, electromagnetic fields, thermal fields and also due to phenomena
beyond the scope of continuum theories on a molecular scale, for example, Brownian motion.
After analysing the Noether balance resulting from Galilei-boosts, a constitutive relation between
momentum and mass flux can be identified [56] implying the identity:

�p ∗ = − ∂

∂t

[
∂�

∂ψ̇i
�Ki
(
ψj
)]

−∇ ·
[

∂�

∂∇ψi
⊗ �Ki

(
ψj
)]

. (42)

for the quasi-momentum density.
In classical continuum mechanics, mass flux density and momentum density are assumed

to be equal, implying �p ∗ = �0, which according to Equations (42) and (33) requires the variable
Transformation (31) to be independent of ∇ζ, leading to a drastic mathematical simplification of
Criterion (32) and allowing derivation of the following universal scheme for Lagrangians [56]: without
loss of generality the conventional representation of the Lagrangian can be written in terms of N fields,
(ψi) = (ϕ, ϑ1, · · · , ϑN−1) as:

�
(

ϕ̇,∇ϕ, ϑj, ϑ̇j,∇ϑj
)
= L

(
ω, ϑj,

�
ϑj,∇ϑj

)
, (43)

with the abbreviations:

ω := ϕ̇ +
1
2
(∇ϕ)2 , (44)

�
ϑj := ϑ̇j +∇ϕ · ∇ϑj , j = 1, · · · , N − 1 , (45)

fulfilling Criterion (32) for the following form of the variable Transformation (31):

ϕ = Φ + ζ , (46)

ϑj = Θj , j = 1, · · · , N − 1 . (47)

79



Water 2020, 12, 1241

Consequently, the Lagrangian (24) for inviscid barotropic flows corresponds to the universal

Scheme (43) with L = −�
[
ω + α

�
β + 1

2 (α∇β)2 + e (�)
]

but also any other Lagrangian of a continuous
system with Galilean invariance and equality of momentum density and mass flux density. Moreover,
in [56], it is certified that the velocity field fulfils all transformation rules with respect to the Galilean
Group in any case.

For the universal Scheme (43), the mass density (Equation ((37)) simplifies to

� = − ∂L
∂ω

, (48)

while the momentum density, which equals the mass flux density, according to Equation (39), becomes:

��u = �p = − ∂L
∂ω︸ ︷︷ ︸
�

∇ϕ − ∂L

∂
�
ϑi

∇ϑi , (49)

Therefore, the velocity field takes the form:

�u = ∇ϕ + γi∇ϑi , (50)

of a generalised Clebsch representation with:

γi = γi

(
ω, ϑj,

�
ϑj,∇ϑj

)
:= −1

�

∂L

∂
�
ϑi

. (51)

The surprising result from the above investigations is that the Clebsch representation of the
velocity field is an inevitable consequence of the Galilean invariance. More precisely, the essence of the
above can be formulated in the following theorem:

Theorem 1. If a continuum, no matter whether it is a solid or a fluid, fulfils the following three requirements:

• Its dynamics are deducible from Hamilton’s Principle (30),
• The associated Lagrangian fulfils Galilean invariance, i.e., invariance with respect to (21–23),
• Equivalence �p = ��u of momentum density and mass flux density is given,

then the velocity field takes, via Noether’s theorem, the analytic form (Equation (50)) of a (generalised) Clebsch
representation.

In terms of the above theorem, the Clebsch representation is substantiated from fundamental
symmetries in physics.

2.3. An Extended Clebsch Transformation for Viscous Flow

Consider now the NS equations together with the continuity equation:

D�u
Dt

− νΔ�u +∇
[

p
�
+ U

]
= �0 , (52)

∇ · �u = 0 , (53)

assuming incompressible flow according to Equation (53), commensurate with the classical theory
of viscous flow [19], such that ν denotes the kinematic viscosity. As demonstrated in Section 2.1 for
inviscid flow, the key feature of the Clebsch transformation is that it enables the Euler equations to be
written in the form of Equation (10), being a natural outcome of the mathematical structure of inviscid

80



Water 2020, 12, 1241

flow theory. For the viscous case, it is less obvious how the transformation applies, since the specific
viscous force −νΔ�u in the NS equations reads, when written in terms of the Clebsch variables, as:

− νΔ�u = 2ν∇× �ω − 2ν∇ (∇ · �u)︸ ︷︷ ︸
0

= νΔβ∇α − νΔα∇β − ν (∇α · ∇)∇β + ν (∇β · ∇)∇α , (54)

which does not correspond directly to the mathematical Scheme (10). Despite this, it is shown
in [60] that it is possible to decompose the viscous term according to Equation (10) by introducing
an additional field ξ. In addition and as demonstrated subsequently, this procedure applies to any
vector field, not only to the specific viscous friction force (Equation (54)).

Theorem 2. Let�a be an arbitrary vector field, �u the velocity field given in Clebsch representation according to
Equation (5) based on the Clebsch variables ϕ, α, β and �ω the vorticity given according to Equation (14). Then,
a decomposition of�a according to Scheme (10) is always possible, i.e., three fields ξ, λ and μ exist fulfilling:

�a = ∇ξ + λ∇α + μ∇β , (55)

for prescribed fields α, β where the auxiliary field ξ results as the solution of the conditional equation:

�ω · ∇ξ = �ω ·�a (56)

and the two coefficients λ, μ explicitly as:

λ =
�ω × [�a −∇ξ]

2�ω2 · ∇β , (57)

μ = − �ω × [�a −∇ξ]

2�ω2 · ∇α . (58)

Proof. The conditional Equation (56) is obtained by taking the inner product of Equation (55) with
2�ω = ∇α ×∇β. Once having solved Equation (56), the identity:

�ω × (�ω × [�a −∇ξ]) = �ω (�ω · [�a −∇ξ])︸ ︷︷ ︸
0

− [�a −∇ξ] �ω2 = −�ω2 [�a −∇ξ] (59)

follows and therefore:

�a −∇ξ =
(�ω × [�a −∇ξ])× �ω

�ω2 =
(�ω × [�a −∇ξ])× (∇α ×∇β)

2�ω2

=
(�ω × [�a −∇ξ]) · ∇β

2�ω2︸ ︷︷ ︸
=:λ

∇α− (�ω × [�a −∇ξ]) · ∇α

2�ω2︸ ︷︷ ︸
=:μ

∇β (60)

as the desired decomposition of �a − ∇ξ as a linear combination of ∇α and ∇β according to
Equation (55).

Like the Clebsch variables Φ, α, β, the auxiliary field ξ is not uniquely given, since any particular
solution ξp of the inhomogeneous linear first order PDE (56) can be superposed with any solution
ξh of the respective homogeneous PDE �ω · ∇ξh = 0. Since three independent solutions are given by
α, β and t, the mathematical theory of linear first order PDE implies ξh = F(α, β, t) for an arbitrary
function F. As a consequence:

ξ −→ ξ ′ = ξ + F(α, β, t), (61)

is a gauge transformation for the auxiliary field, which is used subsequently to provide a favourable
form of the resulting equations.
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Note that the decomposition in Equation (60) is applicable to an arbitrary vector field �a,
including for instance non-conservative forces. In the case of viscous flow, the specific viscous
force in Equation (54) in the NS Equations (52) can be partitioned into two parts [60], namely
�a = ν (∇β · ∇)∇α − ν (∇α · ∇)∇β on the one hand and −ν∇2�u −�a = νΔβ∇α − νΔα∇β on the
other, which makes sense at first glance since the latter contributions already have the desired form
of Equation (10). However, a major disadvantage of this partition is that the selected field�a is not
gauge invariant with respect to the transformation shown in Equation (6). Although not representing
a problem mathematically, this feature makes the field equations resulting from the generalised Clebsch
transformation less transparent from a physical viewpoint.

In contrast to the above, the full specific viscous force in Equation (54) is considered in the
following, i.e.,

�a = 2ν∇× �ω , (62)

leading to a physically more transparent representation of the field equations, as provided in [60]. This
procedure allows the NS Equations (52) to be written as:

�0 = ∇
[

∂ϕ

∂t
+ α

∂β

∂t
+

�u2

2
+

p
�
+ U + ξ

]
+

[
Dα

Dt
+ μ

]
∇β +

[
−Dβ

Dt
+ λ

]
∇α , (63)

with ξ, λ, μ given according to Theorem 2. As in Section 2.1, by proper gauging of the potentials,
the bracketed terms in Equation (63) vanish separately, resulting in the following set of PDEs

∂ϕ

∂t
+ α

∂β

∂t
+

�u2

2
+

p
�
+ U + ξ = 0 (64)

Dα

Dt
− �ω × [2ν∇× �ω −∇ξ]

2�ω2 · ∇α = 0 (65)

Dβ

Dt
− �ω × [2ν∇× �ω −∇ξ]

2�ω2 · ∇β = 0 (66)

supplemented by the conditional equation:

�ω · ∇ξ = 2ν�ω · (∇× �ω) (67)

for the auxiliary field and the continuity Equation (53). The latter, in terms of Clebsch variables [43],
becomes:

∇2 ϕ + α∇2β + 2∇α · ∇β = 0 . (68)

Physically, Equation (64) can be interpreted as a generalised Bernoulli’s equation and
Equations (65) and (66) as generalised transport equations covering the entire vortex dynamics of
the flow.

2.4. Axisymmetric Stagnation Flow

The problem of an axisymmetric stagnation flow against a solid wall, see Figure 1, is considered
one of prototypical character in fluid mechanics, since the underlying features of Navier–Stokes theory
are exposed, especially the formation of a boundary layer at the solid wall z = 0. It is one of the few
boundary layer problems that allow for an analytical treatment of the full NS equations, without the
necessity of neglecting higher order terms. In the inviscid case, the velocity field, written in cylindrical
coordinates (r, φ, z), is given by Mayes et al. [61]:

�uinvis = Ar�er − 2Az�ez . (69)

Although Equation (69) is a solution of the NS equations, it does not match to the no-slip condition
�er ·�u = 0 at the wall and therefore represents a good approximation for the far field only, i.e., the field in
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the region z �
√

ν/A far beyond the boundary layer; whereas, in the vicinity of the wall, a boundary
layer becomes manifest in which the velocity is assumed to take the slightly different form:

�u = r f ′(z)�er − 2 f (z)�ez , (70)

containing the function f (z) that has to be determined. Note that the continuity Equation (53) is fulfilled
identically by Equation (70). The associated boundary conditions are (i) the no-slip/no-penetration
condition �u =�0 at z = 0 and (ii) the matching condition �u → �uinvis for z → ∞, leading to:

f (0) = 0 , f ′(0) = 0 , lim
z→∞

f ′(z) = A . (71)

Now the extended Clebsch transformation developed in Section 2.3 is applied: writing the
vorticity and the specific viscous force as:

�ω =
r
2

f ′′ (z)�eφ , (72)

2ν∇× �ω = ν
[
2 f ′′ (z)�ez − r f ′′′ (z)�er

]
, (73)

the conditional equation simplifies to:
∂ξ

∂φ
= 0 , (74)

implying ξ = ξ (r, z, t) as a general solution. Since a steady axisymmetric flow is considered, it
is subsequently assumed independent of time and azimuthal angle for all potentials ξ, α, β and ϕ.
The remaining equations of interest are the generalised transport Equations (65) and (66) which, after
minor mathematical manipulation, take the form:[

r2 f ′ (z) f ′′ (z)− 2ν f ′′ (z) +
∂ξ

∂z

]
∂α

∂r
−
[

2r f (z) f ′′ (z) + νr f ′′′ (z) +
∂ξ

∂r

]
∂α

∂z
= 0 , (75)[

r2 f ′ (z) f ′′ (z)− 2ν f ′′ (z) +
∂ξ

∂z

]
∂β

∂r
−
[

2r f (z) f ′′ (z) + νr f ′′′ (z) +
∂ξ

∂r

]
∂β

∂z
= 0 . (76)

The generalised Bernoulli Equation (64) and the continuity Equation (68) are decoupled from
Equations (75) and (76); they provide the third Clebsch variable ϕ and the pressure p, both of which
are not required here.

Three unknown fields ξ, α, β are involved in the two decisive PDEs (75) and (76) due to the
freedoms given by the gauge symmetry with respect to the transformation in Equation (6). This
provides the opportunity to choose the potentials in a beneficial way: for instance, by considering that
the vorticity in Equation (72) can be written as 2�ω = r f ′′ (z)�eφ = r f ′′ (z)�ez ×�er = ∇ f ′ (z)×∇r2/2
and comparison with Equation (14) motivates the choice:

α = f ′ (z) (77)

β =
r2

2
(78)

for the two Clebsch variables. By inserting these into Equations (75) and (76), the following simplified
equations:

∂ξ

∂r
= −2r f (z) f ′′ (z)− νr f ′′′ (z) , (79)

∂ξ

∂z
= 2ν f ′′ (z)− r2 f ′ (z) f ′′ (z) , (80)
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result for the auxiliary field which are both integrable, leading to:

ξ = −r2 f (z) f ′′ (z)− ν

2
r2 f ′′′ (z) + F1(z) , (81)

ξ = 2ν f ′ (z)− r2

2
f ′ (z)2 + F2(r) , (82)

containing the two integration functions F1(z) and F2(r). By subtracting Equation (81) from (82),
the auxiliary field is eliminated, giving:

r2

2

[
ν f ′′′ (z) + 2 f (z) f ′′ (z)− f ′ (z)2

]
+ F2(r) + 2ν f ′ (z)− F1(z) = 0 . (83)

Next, taking the limit r → 0 of the above equation leads to F1(z) = F2(0) + 2ν f ′ (z); alternatively,
the limit z → ∞, in tandem with the matching condition f ′(z) → A according to Equation (71),
gives F2(r)− F2(0) = A2r2/2. On re-inserting these explicit forms of the integration functions into
Equation (83), the following ODE for the unknown function f (z) is obtained:

ν f ′′′(z) + 2 f (z) f ′′(z)− f ′(z)2 + A2 = 0. (84)

Finally, the substitution f (z) =
√

νA f̄ (z̄) with z̄ =
√

A/νz transforms the latter into the more
convenient form:

f̄ ′′′(z̄) + 2 f̄ (z̄) f̄ ′′(z̄)− f̄ ′(z̄)2 + 1 = 0 , (85)

well-known in the literature as the Falkner-Skan equation [61].

y

z

x

Figure 1. Schematic of an axisymmetric stagnation flow in the vicinity of a solid wall.

3. Complex Variable and Tensor Potential Approach

3.1. The Classical Complex Variable Method

Consider the case of an arbitrary homogeneous continuum, with plane stress given by the tensor:

T =

(
σx τxy

τxy σy

)
(86)

under a load provided by a conservative force with specific potential energy U. Assuming a steady
state, the equilibrium condition:

∇ · T + �∇U =�0 (87)

has to be fulfilled. By defining the complex variable:

ξ := x + iy , (88)
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the three fields σx, σy and τxy can be considered as functions of ξ and its complex conjugate, ξ, and the
equilibrium Condition (87) reads:

�0 =

(
∂

∂ξ
+

∂

∂ξ
, i

∂

∂ξ
− i

∂

∂ξ

)(
σx + �U τxy

τxy σy + �U

)

=
1
2

(
∂

∂ξ

[
σx + σy + 2�U

]
+ ∂

∂ξ

[
σx − σy + iτxy

]
+ c.c.

−i ∂
∂ξ

[
σx + σy + 2�U

]
− i ∂

∂ξ

[
σx − σy + iτxy

]
+ c.c.

)
(89)

where c.c. denotes the conjugate complex of the preceding expression. It is convenient to introduce
the hydrostatic pressure p := (σx + σy)/2 and the complex stress σ := (σx − σy)/2 + iτxy, allowing
Equation (89) to be written as �

(
∂ [p + �U] /∂ξ + ∂σ/∂ξ

)
= 0 and �

(
∂ [p + �U] /∂ξ + ∂σ/∂ξ

)
= 0

and therefore:
∂

∂ξ

[
p
�
+ U

]
+

1
�

∂σ

∂ξ
= 0, (90)

as the complex form of the equilibrium Condition (87). The equilibrium Condition (90) is fulfilled
identically by introducing a real-valued potential field Φ according to:

σ

�
= −4

∂2Φ

∂ξ
2 , (91)

p
�
+ U = 4

∂2Φ
∂ξ∂ξ

. (92)

The potential Φ is the well known Airy stress function from the theory of linear elasticity [32,62].
Since, however, no assumptions regarding the constitutive equations of the respective continuum are
required for the above derivation of the complex equilibrium Condition (87) and the use of Airy’s
stress function according to Equations (91) and (92), this approach applies to any continuum and thus
also to Stokes flow. By assuming a steady flow and neglecting the nonlinear terms for the case of
very small Reynolds numbers, the NS Equations (52) simplify to the Stokes equation; being of the
general form in Equation (87) with stress tensor Tij = −pδij + �ν

(
∂iuj + ∂jui

)
, leading to a complex

stress field:
σ

�
= −2ν

∂u
∂ξ

, (93)

where u denotes the complex velocity:
u = ux + iuy . (94)

On introducing a stream function Ψ, satisfying:

u = −2i
∂Ψ
∂ξ

, (95)

which fulfils the continuity Equation (53) identically [37,38], the constitutive Equation (93), written in
terms of the stream function, becomes:

σ

�
= 4iν

∂2Ψ

∂ξ
2 . (96)

By inserting Equation (96) into (91), the fully integrable equation:

∂2

∂ξ
2 [Φ + iνΨ] = 0, (97)
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results; the double integration of which gives the general solution:

Φ + iνΨ = g0 (ξ) + ξg1 (ξ) , (98)

containing integration functions g0 (ξ) and g1 (ξ), known as Goursat functions [62]. Note that, such
an approach leads to the well-known Sherman–Lauricella equations [63–65] and to a reproduction of
the Muskhelishvili–Kolosov formula [32,33].

The complex variable method has been applied successfully to various Stokes’ flow
problems [35,66–69], usually by adopting a conformal mapping on the Goursat functions known
for a simple flow domain in order to obtain the respective Goursat functions for a non-trivial domain.
Being holomorphic, the Goursat functions can be recovered alternatively from their boundary values
determined by the boundary conditions as utilised in [70–72] as an investigative tool for studying the
internal flow structure of film flows over corrugated walls.

3.2. Integration of the Full 2D Navier–Stokes Equations

Making use again of the complex variable transformation in Equations (88) and (94), the NS
Equations (52) and continuity Equation (53) can be reformulated as:

∂u
∂t

+ 2
∂

∂ξ

[
ūu
2

+
p
�
+ U

]
+ 2

∂

∂ξ

(
u2

2

)
= 4ν

∂2u
∂ξ∂ξ

, (99)

�
(

∂u
∂ξ

)
= 0, (100)

in terms of the complex coordinate ξ, the complex velocity field u and their complex conjugates, with
� denoting the real part of the subsequent complex expression. It is obvious that by introducing
a stream function Ψ, according to Equation (95), the continuity Equation (100) is fulfilled identically.
Accordingly, the complex NS Equation (99) can be written as:

∂

∂ξ

[
ūu
2

+
p
�
+ U − i

∂Ψ
∂t

]
+

∂

∂ξ

(
u2

2

)
= 2ν

∂2u
∂ξ∂ξ

. (101)

By introducing a new complex potential M according to

ūu
2

+
p
�
+ U − i

∂Ψ
∂t

= 2
∂M
∂ξ

, (102)

an integrable form of Equation (99),

∂

∂ξ

[
2

∂M
∂ξ

+
u2

2
− 2ν

∂u
∂ξ

]
= 0 , (103)

is obtained which, after integration with respect to ξ, gives:

2
∂M
∂ξ

+
u2

2
− 2ν

∂u
∂ξ

= f (ξ), (104)

having integration function f (ξ) on the right hand side. The latter can be conveniently set to zero by
re-gauging the potential M as follows:

M −→ M +
1
2

F(ξ),
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with F′(ξ) = f (ξ), since according to Equation (102) any complex function of ξ can be added to M
without having any effect. Making use of Equation (95), Equation (104) simplifies to:

2
∂

∂ξ

[
M + 2iν

∂Ψ
∂ξ

]
+

u2

2
= 0 . (105)

Finally, a second complex potential χ is introduced via:

M + 2iν
∂Ψ
∂ξ

= 2
∂χ

∂ξ
, (106)

by which the two complex equations together with Equations (102) and (105) take the final form:

ūu
2

+
p
�
+ U − i

[
∂Ψ
∂t

− 4ν
∂2Ψ
∂ξ∂ξ

]
= 4

∂2χ

∂ξ∂ξ
, (107)

−u2

2
= 4

∂2χ

∂ξ
2 . (108)

By Equations (107) and (108), two complex equations are given containing the complex potential
χ, the real-valued stream function Ψ and the pressure p as unknowns. They constitute a first integral of
Navier–Stokes equations [73] in the sense that by taking the difference of the derivative of Equation (108)
with respect to ξ with the derivative of Equation (107) with respect to ξ, the complex NS Equation (99)
is recovered.

Compared to the classical complex variable approach outlined in Section 3.1, a complex valued
potential field χ is required for the integration of the full 2D-NS equation in place of the real valued Airy
stress function Φ utilised for the Stokes equation. A relationship between χ and Φ can be established
for the particular case of steady flow: by setting ∂Ψ/∂t = 0, Equation (107) simplifies to:

ūu
2

+
p
�
+ U = 4

∂2

∂ξ∂ξ
[χ − iνΨ] ,

which, apart from the additional nonlinear term ūu/2, corresponds to Equation (92) if Φ =

χ − iνΨ is identified as the Airy stress function. Thus, for the steady flow case the two field
Equations (107) and (108) simplify to:

ūu
2

+
p
�
+ U = 4

∂2Φ
∂ξ∂ξ

, (109)

4iν
∂2Ψ

∂ξ
2 +

u2

2
= −4

∂2Φ

∂ξ
2 , (110)

in accordance with [38]. Note that Equation (109) takes the form of Bernoulli’s equation apart from the
second order derivative of the potential on its right hand side.

3.3. Integration of the Dynamic Boundary Condition

The mathematical derivation is completed by the specification of appropriate boundary conditions,
which take the form of no-slip/no-penetration conditions at solid walls, inflow and outflow conditions
and, in the case of film or multiphase flows, kinematic and dynamic boundary conditions at a free
surface or internal interface. These are discussed in detail in [38,73]. However, a key feature of
the above approach that requires emphasising is that the dynamic boundary condition associated
with a free surface or internal interface can be similarly integrated in the case of steady flow leading
to a corresponding first integral form that greatly simplifies enforcing such a condition compared
to the standard method of addressing such problems employing the standard NS equations and
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boundary conditions written in primitive (i.e., observable) variables. Accordingly, this case as outlined
briefly below.

Consider a simply connected domain with a boundary ξ = f (s), parametrised with respect to
the arc length s of the boundary; furthermore, tangential and normal unit vectors along the boundary
are taken to be f ′(s) and n = i f ′(s), respectively. In terms of the stream function Ψ, the kinematic
boundary condition �(u f̄ ′) = 0 ensures that along a free surface/interface the velocity in the normal
direction vanishes, resulting in:

∂Ψ
∂s

= 0 . (111)

The original dynamic boundary condition, after transformation into complex representation, reads:

p0 − p
�

n − 2iν
∂u
∂ξ

f̄ ′ =
σ

�
f ′′ . (112)

By making use of Equations (109) and (110), the pressure p and the viscous stresses iν∂u/∂ξ can
be replaced by derivatives of Φ, implying:

− u
dΨ
ds

+

(
U +

p0

�

)
n =

d
ds

[
σ

�
f ′ + 4i

∂Φ
∂ξ

]
, (113)

as the boundary condition for Φ. Since the specific potential energy U can be gauged with a constant,
U + p0/� can be replaced by U. Making use of the kinematic boundary condition in Equation (111),
integration of Equation (113) leads to:

4i
∂Φ
∂ξ

= −σ

�
f ′ +
ˆ

Unds , (114)

as a first integral of the dynamic boundary condition. In [38], the same boundary condition is derived
in real-valued form and where it is demonstrated that it can be decomposed into a Dirichlet and
a Neumann boundary condition for Φ. The reduction of the original non-standard boundary condition
in Equation (112) containing mixed contributions from different fields u and p to a mathematical
standard form has proven to be extremely beneficial for the implementation of numerical methods of
solution, as demonstrated in [6,38,74].

3.4. Particular Flow Geometries as Exemplars

Three different flow problems are used to demonstrate applications of the tensor approach
described above; two of which lead to closed form analytical solutions, the third requiring
a numerical solution.

3.4.1. Uniaxial Flow: Flow over an Oscillating Plate

Consider the case of a uniaxial flow geometry with, uy = 0, or equivalently in complex
formulation: u − ū = 0. With reference to Equation (95), the following PDE:

∂Ψ
∂ξ

+
∂Ψ
∂ξ

= 0

has to be satisfied, implying the following explicit forms:

Ψ = Ψ

(
ξ + ξ

2i
, t

)
= Ψ (y, t) (115)

u = −2i
∂Ψ
∂ξ

= Ψ′ (y, t) (116)
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for the stream function and the velocity; the prime denotes differentiation with respect to y. The general
solution of Equation (108) is given by:

χ = ξw0(ξ, t) + w1(ξ, t) +
1
2

ˆ [ˆ
Ψ′ (y, t)2 dy

]
dy, (117)

containing the two analytic functions w0(ξ, t), w1(ξ, t), being generalisations of the so-called Goursat
functions [38]. Following the insertion of Equation (117), Equation (107) simplifies to:

p
�
+ U − i

[
Ψ̇ − νΨ′′] = 4w′

0(ξ, t) :, (118)

the dot over a symbol denoting its time-derivative.
A horizontal plate of infinite extent covered by a fluid invokes a flow by a forced oscillatory

movement, see Figure 2.

�
u(y, t)

�
y

�x

��

U cos(ωt)
Figure 2. Schematic showing the geometry for the flow over an oscillating plate.

The no-penetration condition is already fulfilled due to the prescribed flow configuration uy = 0,
while the no-slip condition compels the fluid to mimic the oscillatory behaviour of the plate according
to ux(y, 0) = U cos(ωt). By re-writing the latter in terms of the stream function Ψ via ux = ∂Ψ/∂y, it
takes the form of a Neumann boundary condition Ψ′(0, t) = U cos(ωt). Since the stream function is
gaugeable by an arbitrary constant, the additional Dirichlet condition Ψ(0, t) = 0 can be formulated
without loss of generality. Additionally, the asymptotic condition Ψ′(y, t) → 0 has to be fulfilled to
ensure that the fluid tends to a state at rest far away from the plate.

Assuming vanishing pressure p = 0 and a wave-like solution of the form

Ψ = U�
{

exp(−iωt)
exp(iky)− 1

k

}
, (119)

together with fulfilment of the no-slip and no-penetration condition, then Equation (118) leads to
the identity:

− iU�
{−iω + νk2

k
exp(i[ky − ωt]) + i

ω

k
exp(−iωt)

}
= 4w′

0(ξ, t) ,

requiring k and ω to satisfy the dispersion relation:

iω = νk2 (120)

for damped transverse waves in accordance to the classical result [22]. The Goursat function w0 takes
the form:

w0 = − i
4

ξνU� [k exp(−iωt)] . (121)

89



Water 2020, 12, 1241

3.4.2. Axisymmetric Flow: The Lamb-Oseen Vortex

Consider a class of flows given by the following particular form:

Ψ = Ψ(r, t) , (122)

u = −2i
∂Ψ
∂ξ

= − iξ
r

Ψ′ (r, t) , (123)

r :=
√

ξξ , (124)

of the stream function with the prime denoting differentiation with respect to r; that is flows,
the streamlines of which form concentric circles, see Figure 3a. Assuming a particular solution
for Equation (108) of the form χp = χp(r, t) leads to the the following expression:

r
∂

∂r

(
χ′

p

r

)
=

1
2

Ψ′ (r, t)2 , (125)

and therefore:
χ′

p

r
=

1
2

ˆ
Ψ′ (r, t)2

r
dr . (126)

By inserting the above into Equation (107), the following simplified PDE results:

p
�
+ U − i

[
Ψ̇ − ν

r
∂

∂r
(
rΨ′)]− ˆ Ψ′ (r, t)2

r
dr = 0 . (127)

(a) �
�
���

�

�

z

r
��� �

��
��� �

2

5

r
r0

2πr0u
Γ t = 0

t = t1

t = 2t1

t = 4t1

t = 10t1

t = 27t1

t1 =
r2

0
80ν

(b)

Figure 3. Vortex geometry (a) and time evolution of the velocity profile (b).

Via the introduction of the following similarity variable:

z =
r√
νt

solutions of the form Ψ = f (z) are now searched for. Under the above assumptions the imaginary part
of Equation (127) takes the form:

1
t

[
z
2

f ′(z) +
1
z

d
dz
(
z f ′(z)

)]
= 0
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which, after making the substitution g(z) = z f ′(z), can be written conveniently as;

g′(z) +
z
2

g(z) = 0 ,

which, in turn, is easily solved by taking:

g(z) = g0 exp
(
− z2

4

)
, (128)

leading to:

f (z) = g0

ˆ
1
z

exp
(
− z2

4

)
dz =

g0

2
Ei
(
− z2

4

)
, (129)

where Ei denotes the integral exponential function. This particular solution contains a singularity;
however, by considering the superposition:

Ψ =
g0

2
Ei
(
− z2

4

)
− Γ

2π
ln r,

with the well-known potential vortex Γ
2π ln r as an alternative solution to Equation (127), the singularity

is removed as follows: the complex velocity field resulting from Equation (123) reads

u = − iξ
r

Ψ′ (r, t) =
i
r

[
Γ

2π
+ g0 exp

(
− r2

4νt

)]
exp (iϕ) ,

which is convergent in the limit r → 0 if and only if 2πg0 = Γ. Finally, the solution reads:

u =
iΓ

2πr

[
1 − exp

(
− r2

4νt

)]
exp (iϕ) , (130)

which is a reproduction of the classical Lamb-Oseen vortex [19]. The velocity profile |u| is shown in
Figure 3b.

3.4.3. Steady Film Flow over Topography

In the context of the numerical solution of flow problems, possibly involving a free surface, for which
inertial effects cannot be ignored, the LSFEM, Cassidy [75], Thatcher [76], Bolton and Thatcher [77], has
gained wide acceptability as a very effective and flexible approach—in particular when simple equal
order elements in conjunction with highly efficient multigrid solvers are employed [6], exploiting the
symmetry and positive definiteness of the resulting system matrices [78].

For reasons of practicality, the complex field Equations (109) and (110) are expressed as real-valued
ones in terms of the velocity variables ux = �u = ∂yΨ, uy = �u = −∂xΨ and first order derivatives,
φx = ∂xΦ, φy = ∂yΦ, of the Airy stress function leading, together with the continuity Equation (53)
and the condition:

∂φ1

∂y
− ∂φ2

∂x
= 0, (131)

to a system of four equations involving first order derivatives of ux, uy, φx, φy only, conforming ideally
to a first-order system least squares methodology.

Figure 4 shows the problem of gravity-driven film flow down a corrugated rigid surface inclined
at an angle α to the horizontal considered by Marner [6]. Along the stationary corrugated surface,
velocity Dirichlet conditions are imposed. While at the free surface, in addition to a kinematic boundary
condition, two dynamic conditions are imposed resulting as inhomogeneous Dirichlet conditions for
φ1 and φ2 from Equation (114) by decomposition into real and imaginary parts; these depend on the
surface tension, the curvature and the potential energy density. The resulting free surface profile is
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obtained by iterating over the kinematic condition while solving a sequence of flow problems with
prescribed dynamic conditions in a fixed domain using the LSFEM.

�
�Fg

Fixed rigid surface:

ui(s) = 0

At the free surface:

U(x, y) = g[cos(α)y − sin(α)x]

1) Dynamic condition:

εijφj(s) =
σ

2�
ti(s)−

1
2

ˆ s

s0

U(s̃)ni(s̃)ds̃

2) Kinematic condition:

ui(s)ni(s) = 0

Figure 4. Schematic of gravity-driven film flow down a corrugated rigid surface inclined at an angle α

to the horizontal. The indices i and j in the boundary conditions run from 1 to 2.

Two representative results for two differently contoured and repeating surface shapes are shown
in Figure 5:

Figure 5. Streamlines elucidating steady film flow over two different periodically corrugated inclined
surfaces: on the left a smoothly varying feature, on the right a feature involving sharp, step changes.

The resulting streamline patterns reproduce exactly the observed corresponding experimental
results of [79], obtained using silicon oil Elbesil 145: � = 964.8 kg/m3, ν = 144.2 mm2/s, σ =

20.1 mN/m, λ = 20 mm, A = 4 mm, H0 = 5 mm, α = 10◦.
Overall, the numerical method was shown [6] to produce an accurate and reliable result over

a wide range of Reynolds and capillary numbers for the above problem.

3.5. Tensor Potential Approach

The obvious limitation of the 2D complex-variable formulation is its extension beyond
two dimensions, since for the case of 3D viscous flow, a corresponding complex first integral
formulation is, by definition, not possible; however, a real-valued tensor form is. In two dimensions,
such a form can be established by decomposing both Equations (108) and (107) into real and imaginary
parts and taking the linear combinations �(107) ± �(108), leading to four real-valued equations:

u2
1 +

p
�
+ U =2∂2

2�χ + 2∂1∂2�χ , (132)

u2
2 +

p
�
+ U =2∂2

1�χ − 2∂1∂2�χ , (133)

u1u2 =−
{

∂2
1 − ∂2

2

}
�χ − 2∂1∂2�χ , (134)

∂tΨ =−∇2 [�χ − νΨ] , (135)
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which, in the context of extension to higher dimensions, can be written in the following convenient
and compact tensor form:

uiuj +

[
p
�
+ U

]
δij = −∂k∂k ãij + ∂i Aj + ∂j Ai − ∂k Akδij , (136)

with the tensor and vector fields given by ãij = −�χδij and Aj = ∂i ãij + ε jk∂k�χ, respectively.
The abbreviations ∂k := ∂/∂xk and ∂t := ∂/∂t imply partial differentiation, while δij and εij denote the
Kronecker delta function and the two-dimensional Levi-Civita symbol, respectively.

Recently [39], the corresponding tensor potential formulation for three dimensions has been
established, an essential underpinning being analogies drawn with the methodical reduction of
Maxwell’s equations [6]. The continuity Equation (53) is shown to be fulfilled identically following
the introduction a streamfunction vector Ψk for the velocity, in accordance with ui = εijk∂jΨk and
εijk denoting the corresponding 3D Levi-Civita symbol, representing a 3D generalisation of the 2D
streamfunction [21]. Compared to the 2D first integral of the NS equations, the corresponding 3D
formulation utilises an independent symmetric tensor potential ãij and a vector potential ϕi with the
indices i, j taking values from 1 to 3. The auxiliary vector field Aj in the 3D case reads:

Aj = ∂k ãkj + ε jlk∂l ϕk , (137)

and Equation (135) has to replaced by its corresponding 3D form:

∂tΨn = ν∂k∂kΨn − εnkl∂k∂mãml . (138)

Like the Clebsch variables considered in Section 2, the tensor potential ãij and the vector potential ϕi
are not unique and can be gauged in a beneficial way. Obviously, by performing the operations:

ãij −→ ãij + ∂iαj + ∂jαi − ∂kαkδij , (139)

ϕi −→ ϕi + ∂iζ , (140)

for an arbitrary vector field αi and an arbitrary scalar field ζ, the field Equations (136) remain invariant.
These rules are utilised in [39] to establish bona fide gauging scenarios. In the same paper the
prescription of appropriate commonly occurring physical and necessary auxiliary boundary conditions,
incorporating for completeness the derivation of a first integral of the dynamic boundary condition
at a free surface, is established, together with how the general approach can be advantageously
reformulated for application in solving unsteady flow problems with periodic boundaries.

Using a tensor formulation, the approach is suitable for use in the case of an arbitrary number of
dimensions: in [80], a potential-based first integral form is established for the 4D energy-momentum
equations for flows under relativistic conditions.

4. Discussion

Based on a detailed analysis and discourse, the two different approaches considered above can be
explained in the light of their different origins: the Clebsch representation of the velocity can, according
to recent analysis [56], be understood as a natural outcome of Galilean invariance; whereas, Airy’s
stress function originates historically from the 2D static equilibrium of internal forces. In the course
of a long and growing series of research contributions both approaches have been generalised and
made available for use in solving arbitrary flow problems. A Clebsch transformation has emerged that
applies to arbitrary forces in the equations of motion, including viscous ones, while extensions to the
Airy stress function approach applies to cases beyond static equilibrium, in particular to unsteady flows
with inertia and, after rearrangement of the complex equations, to tensor equations (in terms of a tensor
potential) for 3D viscous flows and even for the case of 4D relativistic flows. The use of a tensor potential
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has parallels to Maxwell’s theory of electromagnetism [6,39,80]. The capabilities of both approaches
have been convincingly demonstrated through the solution of a variety of illustrative examples.

Despite the very positive stage of development of both methods, some open questions remain:
the first is that the field Equations (64)–(68) resulting, via the extended Clebsch transformation
according to Theorem 2, from the NS equations are not self-adjoint; as in the inviscid flow case.
The non-existence of a Lagrangian appears to be due to energy dissipation caused by viscosity.
Anthony [81] poses a possible strategy to overcome this problem by including thermal degrees of
freedom and related inner energy in order to remain consistent with Noether’s theorem, which implies
conservation of energy for Lagrangians being invariant with respect to time-translations. Note that the
present work, by dissipation, the irreversible transfer of energy from mechanical to thermal energy is
understood from the physicist’s viewpoint, while the total energy (the sum of mechanical and thermal
energy) is conserved. Based on Seliger and Witham [24]’s classical work, Zuckerwar and Ash [82,83]
suggest a Lagrangian considering only volume viscosity, leading to equations of motion containing,
only qualitatively, the effect of volume viscosity but differing quantitatively from the compressible
NS equations—also known as the Navier–Stokes–Duhem equations [84,85] without shear viscosity.
They interpret their result as a generalisation of the theory of viscous flow towards thermodynamic
non-equilibrium. A Lagrangian for viscous flow considering both shear viscosity and volume viscosity
has been suggested by Scholle and Marner [86], Marner et al. [87], again leading to equations of motion
that differ from the Navier–Stokes–Duhem equations by non-equilibrium terms. A striking feature of
their Lagrangian is a discontinuity, causing fluctuations on a microscopic scale and revealing parallels
to a stochastic variational description as in statistical physics; see, for example, [88–93]. Since these
considerations go beyond the scope of classical fluid mechanics, further research on this particular
field is required.

A second unanswered question is whether a general and all-encompassing potential approach
exists reducing to both the Clebsch and the tensor potential approach as special cases. The search for
this ’missing link’ between two conceptually different approaches represents another future research
topic of general interest. A promising first step could be an analysis of the Clebsch transformation in the
sense of general relativity [94], followed by a particular classical limit as shown in Lightman et al. [95],
problem 5.31 pp. 35, 227–228.

Thirdly, the first integral of the 4D energy-momentum equations based on a tensor potential [80]
points to the future use of mathematical techniques and methods of solutions not currently applicable to
the field equations in their original form, in particular the use of matrix structures within the framework
of Clifford algebra, based on quaternions or Dirac matrices with the goal of developing highly efficient
methods of solution. Having mapped the entire problem to a matrix-algebra framework, the limit
c → ∞ could be applied in order to provide efficient solutions of the classical NS equations. Although
implementation of such a matrix-algebra techniques remains speculative at this stage, it deserves
further investigation since its utilisation can lead to significant economic gains in the computation of
fluid flows, in a similar fashion to the use of quaternions representing spatial rotation operations [96,97],
potentially leading to the formulation of highly efficient and predictive CFD software.
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2/3/4D two-/three-/four-dimensional
LSFEM least square finite element method
NS Navier–Stokes
ODE ordinary differential equation
PDE partial differential equation

Appendix A. Proof of the Existence of a Representation with Two Pairs of Clebsch Variables

Lin [44,46] proposed a variational principle for superfluid helium resulting by variation in
a Clebsch representation with three pairs of variables:

�u = ∇Φ + λ1∇ξ1 + λ2∇ξ2 + λ3∇ξ3 , (A1)

where the three fields ξi (i = 1, 2, 3) are identified physically as material coordinates while the three
conjugated fields λi have been introduced as Lagrange multipliers. It can be proven easily that for
a fluid flow a representation of the velocity in the form of Equation (A1) always exist, even if Φ = 0
is assumed. The essence is the existence of both a field representation ψ = ψ (xi, t) and material
representation ψ = Ψ

(
ξ j, t

)
for an arbitrary field ψ and a related invertible transformation:

xi = xi
(
ξ j, t

)
, (A2)

between both [22,98]. By taking the gradient of Equation (A2), the relation:

�ei = ∇xi =
∂xi
∂ξ j

∇ξ j, (A3)

is obtained with the deformation gradient ∂xi
∂ξ j

. Thus for an arbitrary field �u = ui�ei it follows that:

�u = ui�ei = ui
∂xi
∂ξ j︸ ︷︷ ︸
λj

∇ξ j, (A4)

corresponding to the form (A1) with Φ = 0.
Next the material representation λ3 = Λ3

(
ξ j, t

)
for the variable λ3 is utilised in order to derive

the identity:

�u = λ1∇ξ1 + λ2∇ξ2 + Λ3
(
ξ j, t

)
∇ξ3

= ∇
ˆ

Λ3
(
ξ j, t

)
dξ3 +

[
λ1 −

∂

∂ξ1

ˆ
Λ3
(
ξ j, t

)
dξ3

]
∇ξ1 +

[
λ2 −

∂

∂ξ2

ˆ
Λ3
(
ξ j, t

)
dξ3

]
∇ξ2 ,

corresponding via the definitions:

ϕ :=
ˆ

Λ3
(
ξ j, t

)
dξ3

∣∣∣∣
ξ j=ξ j(xi ,t)

(A5)

α1 := λ1 −
∂

∂ξ1

ˆ
Λ3
(
ξ j, t

)
dξ3

∣∣∣∣
ξ j=ξ j(xi ,t)

(A6)

α2 := λ2 −
∂

∂ξ2

ˆ
Λ3
(
ξ j, t

)
dξ3

∣∣∣∣
ξ j=ξ j(xi ,t)

(A7)

β1 := ξ1 (A8)

β2 := ξ2 (A9)
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to a Clebsch representation with two pairs of Clebsch variables:

�u = ∇ϕ + α1∇β1 + α2∇β2 (A10)
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Abstract: We present a stochastic Lagrangian view of fluid dynamics. The velocity solving the
deterministic Navier–Stokes equation is regarded as a mean time derivative taken over stochastic
Lagrangian paths and the equations of motion are critical points of an associated stochastic action
functional involving the kinetic energy computed over random paths. Thus the deterministic
Navier–Stokes equation is obtained via a variational principle. The pressure can be regarded as a
Lagrange multiplier. The approach is based on Itô’s stochastic calculus. Different related probabilistic
methods to study the Navier–Stokes equation are discussed. We also consider Navier–Stokes
equations perturbed by random terms, which we derive by means of a variational principle.

Keywords: Navier–Stokes equation; stochastic Lagrangian flows; stochastic variational principles;
stochastic geometric mechanics

1. Introduction

The dynamics of an incompressible viscous fluid is modeled by the Navier–Stokes equation,
a second order, nonlinear, partial differential equation describing the balance of mass and momentum
of the fluid flow. In the absence of external forces and considering a perfectly incompressible fluid,
the Navier–Stokes equation reads

∂

∂t
u + (u.∇)u = νΔu −∇p (1)

where the velocity field u is required to satisfy the incompressibility condition divu = 0, the fluid
density being equal to 1. The constant ν denotes the kinematic viscosity and u the fluid velocity.
Moreover, the symbol p stands for the pressure within the fluid, and is yet another unknown in the
equation. Equation (1) has a huge number of applications in physics and engineering.

The Navier–Stokes equation is deterministic, but it is well known that some of its solutions seem
to exhibit random behavior, which might eventually provide an insight into the onset of turbulence
although from a purely mathematical point of view, the very important problem of existence and
smoothness of the solutions to Equation (1) remains largely unsolved to this day. In this article we will
review various ways of introducing randomness into the analysis of the solutions to Equation (1).

In Physics, the most famous deterministic equation hiding randomness is the Schrödinger
equation. There is no mathematical probability theory behind it, but there is manifestly randomness in
any Quantum Physics Lab. This puzzling situation did not prevent Quantum Theory to develop an
impressive corpus of techniques to control, in particular, the transition from (in principle differentiable)
solutions of classical equations of motion to some forms of randomness. Is it possible to draw an
analogy between this classical/quantum relation and the one between Euler and Navier–Stokes
equations? Of course the status of the two hydrodynamical equations are quite different from the
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above ones. Euler equation, although modeling only “dry water” (Von Neumann) is already quite
complicated. It does not seem, yet, to have proof that it does not produce singularities. But the
abovementioned analogy could, in particular, provide an insight into the onset of turbulence.

There are different ways to introduce randomness: uncertainty may have its origin in errors in
the initial conditions, for example. In this case statistical approaches are considered: one studies the
time evolution of some probability measure, supported on the relevant physical initial data. This is
part of the statistical approach to turbulence, initiated already in the 19th century (c.f, among many
others, [1,2]). Other various types of Langevin dynamics, using stochastic diffusion processes, have
been proposed to describe equilibrium and non-equilibrium dynamics as well as Kraichnan’s model
in turbulent advection (c.f, for instance, [3]). On the other hand uncertainty may be generated by
the chosen numerical model (we refer to [4] for a discussion on these issues in climate modeling,
see also [5]).

Another very popular way to introduce stochasticity is to perturb the Navier–Stokes equation
with random forces, so that stochastic partial differential equations then come into play. There is a
huge literature in this subject, after the pioneering mathematical work [6]. Stochasticity is typically
introduced at a Eulerian level, although some stochastic Lagrangian models of Langevin type (with
smooth Lagrangian trajectories and stochastic velocities) have also been considered in turbulence ([7]).

More recently stochastic advection by Lie transport was introduced by D.D. Holm in [8].
The resulting equations of motion are stochastic partial differential equations and the approach
is also Eulerian.

It would be impossible to mention here all stochastic approaches to fluid dynamics. We have only
chosen some topics and a few corresponding references. It is worthwhile to mention that there are
some interesting probabilistic representation formulae. Representing solutions of partial differential
equations as expected values of functionals of stochastic processes is a tradition in the field of stochastic
analysis and has also been considered for fluid dynamics. Very roughly speaking, we can find three
different approaches: the probabilistic representation of the vorticity field as in [9], the analysis through
branching processes and the Fourier transform as in [10] and that using Lagrangian diffusion processes
as in [11].

On the other hand, in this paper, we are concerned with variational principles for deterministic
dissipative fluid dynamics, and a brief state-of-the-art review follows. There are relatively few
references on the special stochastic view of deterministic fluid dynamics advocated here. The oldest
we know are [12,13], where the Laplacian term of the Navier–Stokes equation was interpreted, quite
informally, as the presence of an underlying Brownian motion. In the famous paper [14], as well as in
[15,16], a rigorous geometric strategy for the Euler equation was developed. These geometric ideas
have been extended by us to the Navier–Stokes equation, together with the associated variational
principle, giving rise to a new stochastic geometric approach to dissipative dynamics. Recently, [17,18],
more physical-oriented works, were influenced by references [12,13] and also by our work.

The review paper presented here is, of course, very selective, not in terms of the qualities of quoted
references, but in terms of their perspectives, in relation with the interplay between deterministic and
stochastic viewpoints. We apologize to the many authors whose important works we were not able to
describe here. We hope, however, to describe a special viewpoint in a consistent manner.

In a nutshell, the goal of this review is to show that probabilistic methods play a central role in
the study of the deterministic Navier–Stokes equation, both from a conceptual and a practical point of
view. Indeed, on the one hand the solutions to that equation satisfy stochastic variational principles.
On the other hand, since the solutions to the Navier–Stokes equation may be interpreted as drifts of
diffusion processes, one may import many techniques from stochastic analysis to investigate them.
Those techniques include the use of stochastic differential equations, of forward–backward stochastic
systems and of related numerical techniques.
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2. Results

As a dissipative system, there are well known obstructions if we want to derive the classic
Navier–Stokes equation from a deterministic variational principle. Allowing the Lagrangian paths to be
random and using Itô differential calculus (c.f [19]), we show how we can still derive the Navier–Stokes
equation, without any randomness in the external forces, from a (stochastic) variational principle,
where the Lagrangian functional is still the classic one, but computed over random Lagrangian
trajectories. In some sense, the equation can be regarded as a generalized geodesic equation defined in
some suitable space and the variational principle reduces to Hamilton’s principle for the incompressible
Euler equation when the viscosity vanishes. Our variational approach can be extended in order to
consider stochastic Navier–Stokes equations as well.

After recalling Arnold’s variational approach to the Euler equation, we describe in Section 4 two
stochastic variational principles for the Navier–Stokes equation. The first is a “direct” generalization
of Arnold’s variational principle to the viscous case, the viscosity being associated with the random
behavior of the particles. Incompressibility is incorporated in the definition of their trajectories.
The second imposes incompressibility via a Lagrange multiplier.

Having justified our approach of Navier–Stokes equation using stochastic Lagrangian paths,
Section 5 is devoted to several possible mathematical methods to study such paths. We can use
the theory of forward–backward stochastic differential equations: this is explained in Section 5.1.
We can also use entropy methods, since our action functional is essentially given by an entropy
quantity. A notion of weak solutions, in the spirit of Brenier’s work for the Euler equation and of
optimal transport theory, allows us to consider cases where other methods are not accessible by
lack of regularity. In Section 6 we describe some stability properties of the Navier–Stokes stochastic
Lagrangian flows. The following paragraph is devoted to stochastic perturbations of the Navier–Stokes
equation: we show that they can also be derived from a variational principle. Other equations and
methods are mentioned in Section 8, as well as some future research problems. Finally a brief appendix
contains basic notions of Itô stochastic calculus that are used in this paper.

3. The Non Viscous Case

As pointed out by Arnold ([14]), the incompressible Euler equation, corresponding to the case
where the viscosity of the fluid is equal to zero, is an equation of geodesics on a suitable (infinite
dimensional) space of functions. If we consider Lagrangian paths g(t, x) such that ∂

∂t g(t, x) =

u(t, g(t, x)), with u solution of the Euler equation

∂

∂t
u + (u.∇)u = −∇p, divu = 0, (2)

the acceleration ∂2

∂t g is equal to a gradient function and thus, at every time, orthogonal (for the L2 scalar
product) to vector fields of zero divergence. This means that, if we endow the space of diffeomorphisms
preserving the volume measure m of the underlying configuration space a structure of manifold, the
Lagrangian flows g(t, ·) will be geodesics in such a manifold since its tangent space will consist of
divergence free vector fields. In particular they will be critical points of the action functional defined
by the kinetical energy:

S[g] =
1
2

∫ T

0

∫
|ġ(t, x)|2dm(x)dt =

1
2

∫ T

0
‖ġ(t)‖2

L2(dm)dt. (3)

More precisely, Arnold showed that the Euler equation above corresponds to the equation
of the geodesic flow of the (right-invariant) L2 metric on the group of diffeomorphisms of the
underlying configuration space that preserve the volume measure and have a certain Sobolev regularity.
The velocity can be recovered from the Lagrangian flow: u(t, x) = ( ∂

∂t gt)(g−1
t (x)).
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This program was rigorously developed in [15] and geodesics were shown to exist locally and
under certain regularity restrictions on the initial conditions. Moreover the information on the
geometry of the problem had important consequences, for instance in describing the chaotic behavior
of Euler Equation (c.f [16]) and its consequences for weather prediction. Instability of the geodesic
Euler flows can be described in terms of the sectional curvatures of the group of volume preserving
diffeomorphisms. Explicit estimates for the curvatures, being non positive, show that, essentially,
the weather is unpredictable.

Notice that this is a special case of Lagrangian system treated in Geometric Mechanics via
variational principles on Lie groups ([20]). Indeed the space of volume preserving diffeomorphisms
has also a group structure for the composition of maps and the L2 metric is right-invariant.

4. The Deterministic Navier–Stokes Equation

The situation concerning variational principles for the Navier–Stokes equation is radically
different since, contrary to the Euler one, this system is dissipative. Our approach describes dissipation
through an introduction of noise in the Lagrangian trajectories. We replace deterministic Lagrangian
paths by semimartingales of the form

dξt(x) = dMt(x) + Dtξt(x), ξ0(x) = x (4)

where Mt is a martingale (for instance, a Brownian motion) and Dtξt denotes the bounded variation
part of the semimartingale. The use of the notation Dt is not an accident, since it corresponds to
a mean derivative in time (recall that, almost-everywhere, ξt satisfying Equation (3) will not be
time-differentiable). Consider the definition of the generalized derivative Dt. Namely, for every
regular function F,

DtF(t, ξt) = lim
ε→0

1
ε

Et[F(t + ε, ξt+ε)− F(t, ξt)], (5)

where Et denotes the conditional expectation with respect to the past information of the process ξ.
Applying this definition to the identity function, and since the operator Dt vanishes when considered
on martingales, we see that Dtξt coincides with the drift of the process and can indeed be understood
as a regularized derivative. This notion has been known in Stochastic Analysis since its beginnings,
as it corresponds to the definition of the generator of the process ξt, but it became more relevant in
dynamics with the works of Nelson [21].

When ξ takes values in a non-Euclidean space, notably a Riemannian manifold or a Lie group,
one can extend the definition of generalized derivative using parallel transport. In this paper we
will mainly consider the Euclidean setting. We denote the configuration space by O and, for now,
we assume that O has no boundary (case with periodic boundary conditions, for example).

4.1. Stochastic Geometric Mechanics Approach

We consider the space GV of bijective maps g : O → O which belong to L2 = L2(dm) and keep
the volume measure invariant, namely such that

∫
f (g(x))dm(x) =

∫
f dm(x) for every (continuous)

function f . This infinite dimensional space of maps has a group structure under composition and a
Riemannian one with respect to the L2 metric ([15]). The tangent space to the identity map consists
of vector fields on O with zero divergence. Moreover a simple covariant derivative can be defined:
for such two vector fields X and Y, ∇XY = Π(∂XY) where ∂ is the usual Lie derivative and Π the
projection operator from L2 to divergence free vectors associated to the Helmholtz (or Hodge, according
to the source) decomposition.

The next result was proved in [22], then extended to Riemannian manifolds in [23] and formulated
on general Lie groups in [24].
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We consider a stochastic action functional where the Lagrangian is the kinetic energy computed
on the generalized derivative of a semimartingale. The corresponding norm is the L2 one. More
precisely, for a GV-valued semimartingale ξ as in Equation (4) we define

S[ξ] =
1
2

E
∫ T

0

∫
O
|Dtξt(x)|2dtdm(x) (6)

where E means expectation with respect to the underlying probability. A particular class of such
semimartingales is the following. To a time dependent vector field with zero divergence u(t, ·),
t ∈ [0, T], and belonging to L2, we associate the stochastic differential equation (c.f [19], for example,
as a reference for Itô stochastic calculus, as well as the Appendix A in this article),

dgu
t (x) =

√
2ν dWt + u(t, gu

t (x))dt, gu
0 (x) = x (7)

where W is a standard Brownian motion. This equation defines a stochastic flow of maps on O that
belong to GV and satisfy Dtgu

t = u(t, gt).
Considering a simple Brownian motion may be regarded as oversimplifying. Actually one should

introduce martingales driven by vector fields modeling the correlations observed in the physical model
([8]). Typically Lagrangian paths are of the form

dgt = ∑
k

Hk(gt)dWk
t + u(t, gt)dt

where Hk are correlation eigenvectors and Wk independent Brownian motions. Our approach covers
such cases ([22,24,25]) and we chose here a Brownian motion only to simplify the exposition.

We are interested in derivating S[gu]; in particular we want to consider variations of the paths
gu for which the functional above is still well defined, i.e., they are still GV-valued semimartingales.
Consider the exponential type functions

et(εv)(x) = x + ε
∫ t

0
v̇(s, es(εv)(x))ds

with ε > 0 and where v(t, ·) is a smooth time dependent vector field such that v(0) = v(T) = 0
and div v(t, ·) = 0 for every t ∈ [0, T]. Notice that, up to the first order in ε, we have et(εv)(x) �
x + εv(t, x). The variations of the paths gu(t) will be defined by left composition, since the functional
is right-invariant:

gu,ε
t = et(εv) ◦ gu(t)

We have, using Itô calculus,

dgu,ε
t = ∇et(εv)(gu

t )
√

2νdWt + [ėt(εv) + (u.∇)et(εv) + νΔet(εv)](gu
t )]dt

By the definition of et(v),

d
dε

∣∣∣∣
ε=0

S[e·(εv) ◦ gu(·)] = E
∫ T

0

(∫
Dtgu(t)(x).Dtv(gu(t)(x))dm(x)

)
dt

and by Itô’s formula,

d
∫

Dtgu(t)(x).v(gu(t)(x))dm(x) =
∫

dDgu(t)(x).v(guu(t)(x))dm(x)+
∫

Dgu(t)(x).dv(gu(t)(x))dm(x)

+
∫

dDtgu(t)(x).dv(gu(t)(x))dm(x)
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The last (Itô’s contraction) term is equal to

2ν(
∫
(∇v ⊗∇u)(gu(t)(x))dm(x))dt

As v(0) = v(T) = 0 this implies,

d
dε

∣∣∣∣
ε=0

S[e·(εv) ◦ gu(·)] = −E
∫ T

0
(
∫
(DtDtgu(t)(x)dm(x))dt− 2νE

∫ T

0
(
∫
(∇v⊗∇u)(gu(t)(x))dm(x))dt

On the other hand

DtDtgu(t) = Dtu(t, gu(t)) = (
∂

∂t
u + (u.∇)u + νΔu)(gu(t)).

Therefore, using the invariance of the measure with respect to the process gu and integration by parts,
we obtain

d
dε

∣∣∣∣
ε=0

S[e·(εv) ◦ gu(·)] = −E
∫ T

0

∫ (
([

∂

∂t
u + (u.∇)u − νΔu].v)(t, gu(t)(x))dm(x)

)
dt

= −
∫ T

0

(∫
([

∂

∂t
u + (u.∇)u − νΔu].v)(t, x)dm(x)

)
dt

for every v with zero divergence, which means that ∂
∂t u + (u.∇)u − νΔu is the gradient of

some function.
We have therefore the following

Theorem 1. Let u(t, ·) be a smooth time dependent divergence-free vector field defined on [0, T]×O. Let gu(t)
be a stochastic Brownian flow with diffusion coefficient

√
2ν and drift u (as in Equation (7)). Then gu is a critical

point of the energy functional S if and only if there exists a function p such that u(t) verifies the incompressible
Navier–Stokes Equation (1).

Remark 1. When O is a Riemannian manifold (say, without boundary), we can still define an action functional
of the form in Equation (6), but some more concepts are needed.

In that case the Itô differential of an O-valued semimartingale Y is defined by

dYt = P (Y)t d
(∫ ·

0
P (Y)−1

s ◦ dYs

)
t

where P (Y)t : TY0 M → TYt M is the parallel transport associated with the Levi–Civita connection along
t �→ Yt. Alternatively, in local coordinates,

dYt =

(
dYi

t +
1
2

Γi
jk(Yt)dYj

t ⊗ dYk
t

)
∂i

where Γi
jk are the Christoffel symbols of this connection.

If the semimartingale Yt has an absolutely continuous drift, we denote it by DYt: for every
1-form α ∈ Γ(T∗O), the finite variation part of

∫ ·
0 〈α(Yt), dYt〉 is

∫ ·
0 〈α(Yt), DYt dt〉. We consider an

incompressible Brownian flow gu(t) with covariance a ∈ Γ(TO ⊗ TO) and time dependent drift
u(t, ·) ∈ Γ(TO). We assume that for all x ∈ O, a(x, x) = 2νg−1(x) for some ν > 0, where g denotes
the metric tensor of the manifold. Such incompressible flows are known to be well defined on compact
symmetric spaces and on compact Lie groups.
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This means that
dgu(t)(x)⊗ dgu(t)(y) = a (gu(t)(x), gu(t)(y)) dt,

dgu(t)(x)⊗ dgu(t)(x) = 2νg−1 (gu(t)(x)) dt,

the drift of gu(t)(x) is absolutely continuous and satisfies Dgu(t)(x) = u(t, gu(t)(x)). Then, using the
same kind of variations as in the flat case, we derive (c.f [23]), from the energy functional

S(gu) =
1
2

E
[∫ T

0

(∫
O
|Dgu(t)(x)|2 dm(x)

)
dt
]

,

the equation
∂

∂t
u +∇uu = νLu −∇p

where L = dd∗+ d∗d is the the Laplace–de Rham operator. We recall that when computed on forms and,
in particular, on vector fields, L differs from the usual Levi–Civita Laplacian by a Ricci curvature term.

4.2. Lagrange Multipliers Approach

Here we describe another stochastic variational principle for the Navier–Stokes equation, that
uses a Lagrange multiplier formulation. Its advantage is that it does not need to be formulated in the
space GV , since incompressibility is not incorporated in the definition of the flows, but given instead by
the multiplier condition. The problem becomes strictly finite-dimensional and variations of the paths
may be defined simply by shifts. It also allows us to consider domains with boundary. References for
the Lagrange multipliers approach are [26,27], where one can find detailed proofs. The first concerns
the case of a domain without boundary (more precisely the torus) and in the second one can find its
extension to a domain with boundary.

Let O be a domain with a regular boundary. We consider the Navier–Stokes equation with
Neumann boundary condition on [0, T]×O, namely the condition ∇u.n = 0, where n denotes the unit
vector normal to the boundary. The stochastic Lagrangian flows can now take into account reflections
at the boundary of the domain and can be written,

dgt(x) =
√

2νdWt + u(t, gt(x))dt + n(gt(x))d�(t), g0(x) = x ∈ Ō (8)

where �(t) =
∫ t

0 1δO(gs(x))d�(s) is the local time, representing the amount of time spent by the
diffusion process in the neighborhood of points in the boundary.

The action functional is defined as

S(g, p) =
1
2

E
∫ T

0

∫
|Dtgt(x)|2dtdm(x) + E

∫ T

0

∫
p(t, gt(x))(det∇gt(x)− 1)dtdm(x) (9)

:= S1(g, p) + S2(g, p) (10)

The extra term S2 corresponds to a Lagrange multiplier whose constraint forces the paths to keep
the volume measure preserved during the evolution (incompressibility condition). The variable p is
defined in the linear space L2([0, T]×O). We consider variations of the form

gt(·) → gε
t (·) = gt(·) + εh(t, gt(·))

p(t, ·) → pε(t, ·) = p(t, ·) + εϕ(t, gt(·))

with h(t, x) and ϕ(t, x) deterministic and smooth, satisfying h(T, ·) = h(0, ·) = 0, h = 0 on ∂O.
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Concerning S2, we have,

d
dε

∣∣∣∣
ε=0

S2(gε, pε) = E
∫ T

0

∫
ϕ(t, gt(x))(det∇gt(x)− 1)dtdm(x) (11)

+ E
∫ T

0

∫
(∇p(t, gt(x)).h(t, gt(x))(det∇gt(x)− 1)dtdm(x) (12)

+ E
∫ T

0

∫
p(t, gt(x))

d
dε

∣∣∣∣
ε=0

det∇(gt(x) + εh(t, gt(x))dtdm(x) (13)

Since ϕ is arbitrary we conclude from the first term of Equation (11) that critical points of the action
are volume-preserving diffeomorphisms (det∇gt(x) = 1) and therefore have divergence-free drifts. It
follows immediately that Equation (12) is also equal to zero. The computation of the third term gives

d
dε

∣∣∣∣
ε=0

S2(gε, pε) = −E
∫ T

0

∫
(∇p(t, gt(x)). h(t, gt(x)))dtdm(x).

Actually this last computation does not use stochastic calculus:

d
dε

∣∣∣∣
ε=0

det∇(gt(x) + εh(t, gt(x))) = det∇gt(x) tr
(
(∇gt(x))−1 d

dε

∣∣∣∣
ε=0

∇gε
t (x)

)

= det(∇gt(x)) tr
(
(∇gt(x))−1∇(h(t, gt(x)))

)
.

Since

∂i(p(t, gt)(∇gt)
−1
ij h(t, gt)

j) = ∂i(p(t, gt))(∇gt)
−1
ij h(t, gt)

j + p(t, gt)(∇gt)
−1
ij ∂i(hj(t, gt))

+p(t, gt)hj(t, gt)∂i(∇gt)
−1
ij ,

(13) = −E
∫ T

0

∫
[∂i(p(t, gt))(∇gt)

−1
ij + p(t, gt)∂i((∇gt)

−1
ij )]hj(t, gt)det∇gt dtdx.

Notice that we already concluded that det∇gt = 1. On the other hand,

∑
i

∂i(∇gt)
−1
ij = 0.

Indeed, derivating the equality det∇gt = 1, we get

∂k det(∇gt) = tr
(
(∇gt)

−1∂k(∇gt)
)
= ∑

i
(∇gt)

−1
ij ∂k∂ig

j
t = 0.

Also, derivating equality (∇gt)
−1
ij ∂kgj

t = δik, we obtain

∑
i

∂i(∇gt)
−1
ij ∂kgj

t + (∇gt)
−1
ij ∂i∂kgj

t = 0;

therefore

∑
i

∂i(∇gt)
−1
ik = −

(
(∇gt)

−1
ij ∂k∂ig

j
t
)
(∇gt)

−1
jk = 0

and

(13) = −E
∫ T

0

∫
(∂i(p(t, gt(x)))(∇gt(x))−1

ij )hj
t(gt(x))det∇gt(x))dtdm(x)
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= −E
∫ T

0

∫
(∇p(t, gt(x)).h(t, gt(x)))dtdm(x).

We now look at the derivation of S1. We can prove, using Itô calculus and similarly to the
computation in Section 4.1, that

d
dε

∣∣∣∣
ε=0

S1(gε, pε) = E < DgT , h(T, gT) > −E < Dg0, h(0, g0) > −E
∫ T

0

∫
(DtDtgt(x).h(t, gt(x)))dtdx

−E
∫ T

0

∫
(dDtgt(x).dh(t, gt(x)))dx.

= −E
∫ T

0

∫
(DtDtgt(x).h(t, gt(x)))dtdm(x)− 2νE

∫ T

0
(∇u.∇h)(t, gt(x))dtdm(x)

Using equality DtDtgt(x) = ( ∂
∂t u + (u.∇)u + νΔu + n∇u �(t))(t, gt(x)) and integration by parts,

we deduce that

d
dε

∣∣∣∣
ε=0

S1(gε, pε) = −E
∫ T

0

∫
[((

∂

∂t
u + (u.∇)u − νΔu). h) + (n.∇u) h �(t)](t, gt(x))dtdm(x).

Combining the expressions above for the variation of the action functional and using the
invariance of the volume measure for the flows, we obtain the following result,

Theorem 2. A diffusion gt of the form of Equation (8) and a function p are critical for the action functional in
Equation (9) if and only if the drift u(t, ·) of gt satisfies the Navier–Stokes equation

∂tu + (u.∇)u = νΔu −∇p, div u(t, ·) = 0, ∇u.n = 0 in ∂O (14)

with t ∈ [0, T].

5. Constructing Solutions of Navier–Stokes Equation by Probabilistic Methods

5.1. Forward–Backward Stochastic Differential Systems

The stochastic Lagrangian flows gt(·) obtained either via the geometric or the Lagrangian
multiplier approach described above satisfy an equation of Newton type. More precisely, on a
fixed time interval [0, T] and after the change of time v(t, x) = −u(T − t, x), we have Dgt(x) =

−v(T − t, gt(x)) and
Dtv(t, gt(x)) = −∇p(t, gt(x)), g0(x) = x (15)

or, regarded as an equation in the weak L2 sense,

Dtv(t, gt(·)) = 0, g0 = id. (16)

Formally, when the viscosity is zero, this is Arnold’s geodesic equation and ours can be seen, indeed,
as a generalized geodesic equation. Moreover, although we only consider in this paper an Euclidean
setting, the framework can be extended without essential difficulties to a general Riemannian manifold
or a Lie group ([23,24]).

How does one solve directly this equation of motion? One possible way is to characterize it
in terms of forward–backward stochastic differential systems, which are second order stochastic
equations (c.f the Appendix A). We have formulated the problem in [28] first, then solved it in [29,30]
for some specific function spaces and in two and three dimensions, respectively. The characterization
in terms of forward–backward stochastic differential equations has also the advantage that it may
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allow to implement numerical methods, known for such systems (c.f for example, [31] and the recent
work [32]).

The forward–backward system solved by our stochastic Lagrangian flows can be written in
the form {

dgt =
√

2ν dWt + Ytdt
dYt = ZtdWt −∇p(gt)dt

together with a given initial condition for the forward equation (g0 = x) and a final condition for the
backward one, YT . It can be proved these type of systems are well posed and their solutions are of the
form Yt = Yt(x) = v(t, gt(x))(= −u(t, gt(x))) for some vector field v. We have,

DtYt = DtDtgt = −∇p(gt)

(compare with Equation (15)). Variable Z, although a priori unknown, is a posteriori determined and
equal to

√
2ν∇v(gt).

To be more precise, let u be a solution of the Navier–Stokes equation in the time interval
t ∈ [0, T] and assume that u is regular. Let gt

s(x) be the unique solution of the following stochastic
differential equation, {

dgt
s(x) =

√
2νdWs − u(T − s, gt

s(x))ds

gt
t(x) = x,

with s > t. We define Yt
s (x) = u(T − s, gt

s(x)), Zt
s(x) = ∇u(T − s, gt

s(x)); applying Itô’s
formula directly, the following forward–backward stochastic differential system with solution
(gt

s(x), Yt
s (x), Zt

s(x), u(t, x), p(t, x)) is derived,⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dgt
s(x) =

√
2νdWs − u(T − s, gt

s(x))ds

dYt
s (x) =

√
2νZt

s(x)dWs −∇p(T − s, gt
s(x))ds

Yt
t (x) = u(T − t, x)

gt
t(x) = x, Yt

T(x) = u0(gt
T(x))

(17)

Recall also that the pressure satisfies the following identity

Δp(t, x) =
3

∑
i,j=1

∂iuj(t, x)∂jui(t, x). (18)

On the other hand, if (gt
s(x), Yt

s (x), Zt
s(x), u(t, x), p(t, x)) is a solution of Equation (17) together

with Equation (18) and u is regular enough, then the vector field u(t, x) := YT−t
T−t (x) satisfies the

Navier–Stokes equation for t ∈ [0, T]. In particular, we can show that div u(t, x) = 0 due to the
expression of p(t, x) given by Equation (18).

In order to incorporate Equation (18) in the forward–backward system and obtain a closed system
of equations we proceed as follows. Denote by N the Newton’s potential in R

d, d ≥ 3, i.e., the operator
Δ−1 which is given by

N f (x) = C(d)
∫
Rd

f (y)
|x − y|d−2 dy,

where C(d) is a constant depending on the dimension d. Then we can write Equations (17) and (18) as⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

dgt
s(x) =

√
2νdWs − u(T − s, gt

s(x))ds

dYt
s (x) =

√
2νZt

s(x)dWs −∇N
(

∑i,j ∂ivj − ∂jvi
)
(T − s, gt

s(x))ds

Yt
t (x) = u(T − t, x)

gt
t(x) = x, Yt

T(x) = u0(gt
T(x)),

(19)
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Using suitable Lp bounds of the operator ∇N
(

∑i,j ∂ivj − ∂jvi
)

we have constructed in [30] local
unique solutions of the system in Equation (19), and therefore of the Navier–Stokes equation, in some
Sobolev-type functional spaces in dimension d ≥ 3. The two-dimensional case was studied in a similar
way [29], but via the vorticity equation.

Such type of forward–backward differential equations were also studied on general Lie groups
in [33].

5.2. Entropy Methods

In a closely related recent work ([34]), we explored the fact that the stochastic kinetic energy
used here coincides in fact with a relative entropy, of the law of the diffusion process associated
with Navier–Stokes in relation to the Wiener law. Brenier’s relaxation of Arnold’s geodesic problem,
extended to the stochastic setting, becomes, in this sense, an entropy minimization problem.

Recall that the relative entropy of a probability measure Q on some measurable set X with respect
to a reference probability measure R on X is defined as

H(Q|R) =
∫

X
log
(dQ

dR

)
dQ

when Q is absolutely continuous with respect to R. What we have named the Brenier–Schrödinger
problem in [34] consists of the following. Consider X to be an Euclidean space and fix as reference
measure R as the law of the reversible Brownian motion on a time interval [0, T], namely R =∫

X Pxdm(x) for Px the law of a Brownian motion starting at x. The we look for a measure Q minimizing
the relative entropy H(Q|R) under the constraint that Qt, the marginals at time t, are given, and that
the joint law at initial and final times, Q0T , is also given. In our case the relevant condition for the
marginals is the incompressibility condition Qt = m for all times.

This is a convex minimization problem reminiscent of the Schrödinger problem in Quantum
Mechanics ([35–37]) and, simultaneously, a generalization of a Monge–Kantarovich mass transportation
problem (c.f [38]).

The relation between the entropy problem and our stochastic variational one relies on the fact
that, by Girsanov’s theorem (c.f for instance [19]), if the Lagrangian path is given by the stochastic
differential equation dgu

t =
√

2νdWt + u(t, gu
t )dt with initial condition R, and if Q denotes the law of

this stochastic process, we have

H(Q|R) = H(Q0|R) +
1
2

E
∫ T

0
|u(t, gu

t )|2dt

Therefore the entropy minimization problem corresponds to our stochastic variational principle,
described here in Section 4. We can use then tools of convex analysis, establish the existence of a
solution, consider a dual problem that provides the pressure term and exhibit Lagrange multipliers.
Since our solution is the law of a stochastic process which is absolutely continuous with respect to
the reference measure, one can write its Radon–Nikodym derivative and compare it to an alternative
expression obtained from convex duality. We find that the drifts of our Lagrangian flows, written
as velocity fields, have unusual properties: when stratified (conditioned to the arrival point of the
stochastic process), the backward velocity is the gradient of the solution to a Hamilton–Jacobi–Bellman
equation, while the pressure remains independent of the arrival point. We recover, with this method, a
structure that is analogous to Brenier’s stratified solutions in [39].

5.3. A Weak Notion of Navier–Stokes Solutions

One cannot expect that the stochastic variational approach will determine solutions of the
Navier–Stokes in full generality. It is already the case that geodesics associated with Euler equation
do not exist in some situations. The main difficulty is that the topology induced by the energy is not
strong enough to deal with the needed regularity of the Lagrangian maps. In order to overcome the
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problem, Brenier has introduced a concept that he named “generalized solutions", replacing the notion
of geodesic path by a probability measure over geodesic paths, in the spirit of the Monge–Kantarovich
problem ([40]). An extension of Brenier’s framework to the stochastic Lagrangian setting (and in
particular to the Navier–Stokes equation) can be found in [41].

For the Euler equation, Brenier looked for probability measures P on the path space C([0, T];O)

which minimize the energy functional

1
2

∫
C([0,T];O)

[ ∫ T

0
|γ̇(t)|2dt

]
dP(γ)

with the incompressibility constraints (et)∗P = dm(x), where et : γ → γ(t) is the evaluation map.
A solution of such problem gives rise to a weaker type of Lagrangian flows for the Euler equation.
Indeed one can define a probability measure μ on [0, T]×O2 by

∫
f (t, x, v)dμ =

1
T

∫
C([0,T];O)

f (t, γ(t), γ′(t))dP(γ)dt

and μ solves the Euler equation in a weak sense, namely
∫
[v.w′(x)α′(t) + v.(∇w(x).v)α(t)]dμ(t, x, v) = 0

holding for all smooth test functions α(t) and every smooth divergence free vector field v. These
kind of weak solutions of partial differential equations is known as solutions in the sense of Di Perna
and Majda.

In the viscous case, we consider O-valued semimartingales gt of the form dgt =
√

2νdWt + utdt
(remark that the drift can be random) and their corresponding laws Pg on the path space C([0, T];O):
for every cylindrical functional F,

∫
C([0,T],O)

F(γ(t1), ..., γ(tn))dPg(γ) =
∫
O

[∫
C([0,T],O)

F(gt1(x), ..., gtn(x))dPg
x

]
dm(x)

where P
g = P

g
x ⊗ dm(x). Under Pg

x, the semimartingale gt starts from x.
We say that the semimartingale gt is incompressible if, for each t > 0,

EPg [ f (gt)] =
∫
O

f (x)dx, for all f ∈ C(O)

and we define the energy functional of a semimartingale g by the formula

1
2

∫
O

E
P

g
x
(
∫ T

0
|Dtg(x)|2dt)dm(x) =

1
2

∫
O

E
P

g
x

( ∫ T

0
|ut(gt(x))|2 dt

)
dm(x)

Considering suitably admissible variations we concluded in [41] that the semimartingales which
are critical points of the energy functional above solve the Navier–Stokes equation in the following
weak form: ∫

O

∫ T

0
< ut, α′(t)w + α(t)∇w · ut − ν α(t)Δw > dtdm(x) = 0 (20)

for all smooth functions of time α and all smooth vector fields w such that div(w) = 0. Moreover we
have showed that, in the case where O is the torus (corresponding to periodic boundary conditions)
and under certain additional assumptions, classical solutions of the Navier–Stokes are minimizers of
the energy action functional.
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6. Stability Properties

In finite dimensions it is well known that the behavior of geodesics can be expressed in terms of
the curvature of the underlying manifold via the Jacobi equation.

Arnold’s approach to the Euler equation allowed to show, in many cases, that the curvature of
the spaces of diffeomorphisms is negative and therefore that the fluid trajectories are unstable (or
“chaotic”), i.e., their distance, starting from different initial conditions, grows exponentially during
time evolution (c.f [16]).

For viscous flows it is expected that particles become closer and closer after some possible initial
stretching. For our model, at least in the case of the two dimensional torus, we could show ([23]
and also [42]) that sensitivity with respect to initial conditions of the trajectories is enhanced by their
stochasticity. The behavior will depend of the choice of diffusion coefficients that we consider in the
Lagrangian paths or, in other words, on which scales and with what strength the motion is excited.

We have considered on the two-dimensional flat torus T = (R/2πZ)2 a Brownian motion of
the form

dBt = ∑
k∈Z2

(k2,−k1)
√

νλk AkdWk
t

where A2k(x) = cos(2k.x), A2k+1(x) = sin((2k + 1).x), k ∈ Z
2, x ∈ T. The coefficients λk have to

be such that the process B is well defined, which is achieved by assuming a certain decay at infinity
of those coefficients (see [22]). The Lagrangian stochastic processes associated to the Navier–Stokes
equation will be defined as in Equation (7), with Wt replaced by Bt.

Consider the following distance between trajectories:

ρ2(g, g̃) =
∫
T

|g(x)− g̃(x)|2dm(x).

By using Itô calculus we have deduced, in particular, that under the assumption that the Navier–Stokes
solution u satisfies ∇u(t, x) ≤ c1e−c2t, we have an estimate for the distance between trajectories of
the form

ρt ≥ ρs exp
(

Zt + c3t − c1

c2
(1 − e−c2t

)
for s ≤ t, where Z is a 1-dimensional Brownian motion, c3 another constant which depends on the
coefficients λ.

The assumption on the gradient of u implies that the velocity decays to zero at exponential
rate. On the contrary the stochastic Lagrangian flows, describing the position of the fluid, get apart
exponentially, at least for short times. Moreover, by the explicit expression of the constant c3 ([23]),
we observe that the stochastic Lagrangian trajectories for a fluid with a given viscosity constant
tend to get apart faster when the higher Fourier modes (and therefore the smaller length scales) are
randomly excited.

We can also show how the rotation of two particles, when their distance is small, becomes more
and more irregular as time evolves, with explicit formulae in the torus case.

7. A Stochastic Navier–Stokes Equation

When we consider random forces, Navier–Stokes becomes a stochastic partial differential equation.
In this paragraph we formulate some of these type of equations by a variational principle, where the
action functional is suitably perturbed.
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We define the action functional, which is now a random variable (in particular we remove the
expectation) with some extra stochastic terms in the Lagrangian, as

Sω(g, p) =
1
2

∫ T

0

∫
|Dtgt(x)|2dtdm(x) +

∫ T

0

∫
p(t, gt(x))(det∇gt(x)− 1)dtdm(x) (21)

+
∫ T

0

∫
Dtgt(x)dMg

t (x)dm(x)−
√

2ν
∫ T

0

∫
Dtgt(x)dWtdm(x) (22)

where Mg denotes the martingale part of the diffusion process g. We use the same variations as
in Section 4.2. The variation of the two extra terms gives

∫ T

0

∫
[(h(t, gt).

√
2νdWt) + (Dtgt.(∇h(t, gt).dWt))− (h(t, gt).

√
2νdWt)]dm(x)

that reduces to
∫ T

0

∫
v(t, gt(x).(∇h(t, gt(x)).dWt)dx =

∫ T

0
v(t, x).(∇h(t, x).dWt)

= −
∫ T

0
((∇v(t, x).h(t, x)).dWt)

equality which holds for all h, P-almost surely.
Hence we obtain the following (c.f [25,26]),

Theorem 3. A diffusion gt of Equation (8) and a function p are critical for the action functional Sω if and only
if the drift u(t, ·) of gt satisfies the stochastic Navier–Stokes equation

dtu + (u.∇)udt =
√

2ν∇udWt + νΔudt −∇pdt, div u(t, ·) = 0, ∇u.n = 0 in ∂O (23)

with t ∈ [0, T].

The stochastic Navier–Stokes equation written above can also be regarded as a stochastic
perturbation of Euler equation in the sense that, replacing Itô differentials by Stratonovich ones,
Equation (23) is equivalent to

dtu + (u.∇)udt =
√

2ν∇u ◦ dWt −∇pdt, div u(t, ·) = 0, ∇u.n = 0 in ∂O

with t ∈ [0, T] and where ◦d stands for Stratonovich differential.
We remark that much more general noises can be considered and that we have only chosen a

simple Brownian motion for simplicity. On the other hand the fact that we obtain a transport type
noise is intrinsically related to our model.

There are many references for stochastic partial differential equations which are perturbations of
Euler or Navier–Stokes. One can find in the recent work [5] a model where, as in our case, the noise is
multiplicative.

In a general Lie group framework a variational approach to stochastic partial differential equations
was developed in [25].

8. Other Equations, Methods and Discussion

The stochastic approach to Navier–Stokes described in this review can, in principle, be applied to
describe any second order perturbation of a conservative first-order ordinary differential equation,
when the latter is formulated in a suitable geometric way, as the Euler equation is formulated via a

114



Water 2020, 12, 864

geodesic equation. This is the case, for example, for the Camassa–Holm equation, the Hunter–Saxton
equation, the average Euler equation and the equations governing the motion of rigid bodies.

The viscous Camassa–Holm equation was studied in detail in [43]. It corresponds to replacing the
L2(dm) metric, the energy in the Lagrangian, by the Sobolev H1 metric and this equation reads

∂

∂t
v + (u.∇)v = νΔv + ∑

j
∇uj.Δuj −∇p, divu = 0

where v = u − Δu.
Compressible Navier–Stokes or viscous Magnetohydrodynamical equations, on the other hand,

have to be coupled with tracers (advected quantities) that need to be modeled by extra variables.
Mathematically one introduces, together with the Lie group for the Lagrangian flows, a semidirect
product vectorial structure (c.f [44]). We refer to [25] for a study of these various equations where
we use stochastic methods, and stress again the fact that we can derive such equations by means of
variational principles without any reference to thermodynamic considerations.

An extension of Arnold’s geometric framework, describing compressible fluid dynamics (and
other systems) with Newton’s equations on a space of probability densities, can be found in the
recent paper [45]. It reveals interesting connections with optimal transport and information theory,
in particular.

The construction of solutions as critical points of the stochastic action functionals does not
easily follow from the direct methods of the calculus of variations. We have instead indicated an
indirect approach based on forward–backward stochastic differential equations, but even there we
encountered many technical difficulties. Other possibilities are the use of entropy methods, as described
in Section 5.2, or the relaxation of the notion of solution (c.f Section 5.3).

For conservative dynamical systems, it is well known that one can take advantage of the
symmetries of such systems to reduce the complexity of the equations. Symmetries also play an
important role in the implementation of numerical algorithms designed to investigate the equations in
question. The natural objects to be introduced in order to replace constants of motion are martingales,
since a martingale M, by definition, is a quantity whose generalized derivative vanishes (Dt M = 0).
One can find a Noether theorem for a certain class of diffusion processes in [46]. We refer to [47] for a
brief discussion on symmetries in our context.

Finally, let us point out that numerical methods tied up with our probabilistic approach still have
to be developed.
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grant “Schrödinger’s problem and Optimal Transport: a multidisciplinary perspective”, with reference
PTDC/MAT-STA/28812/2017.
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Appendix A. Some Basic Notions of Stochastic Calculus

We start by recalling the definition of a (R-valued) Brownian motion Wt, t ∈ [0, T]. This is a
continuous stochastic process (namely, a function of time and of a random parameter in some standard
probability space (Ω,B, P)) that verifies the following properties:

(i) W0 = x;
(ii) Wt has independent increments;
(iii) For s < t, Wt − Ws has a normal distribution N (0, t − s).

A R
d Brownian motion corresponds to a collection of independent and identically distributed

copies of one dimensional Brownian motions. A Brownian motion is also called a Wiener process.
We generally omit the random variable in the notation when we write a stochastic process.
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Suppose that the probability space is endowed with a filtration, namely an increasing family Pt

of sub σ-algebras of B. Typically each Pt represents the events that occur before a time t. A stochastic
process Mt is a (R-valued) martingale with respect to Pt if

(i) Mt is Pt-measurable for all t (we also say that Mt is adapted to Pt);
(ii) E|Mt| < +∞;
(iii) For s < t, Es(Mt) = Ms. Here E and Et denote respectively expectation and conditional

expectation with respect to Pt. Multidimensional martingales are defined analogously.

A real-valued Brownian motion can also be characterized as a martingale with continuous sample
paths such that, for all t, W2

t − t is also a martingale.
When a martingale is (a.s.) continuous in time and satisfies the assumption E|Mt|2 < +∞,

we define its quadratic variation as the limit, in probability, of the sums

< M, M >t= ∑
ti ,ti+1

(Mti+1 − Mti )
2

when the mesh of the partition {ti} goes to zero. For a Brownian motion defined in [0, T] and starting
from zero, this limit is equal to T. One defines the covariation between two martingales Mt and Nt as
the limit of the sums

< M, N >t= ∑
ti ,ti+1

(Mti+1 − Mti )(Nti+1 − Nti ).

A stochastic process Xt is a semimartingale if, for every t it can be decomposed into a sum

Xt = Mt + At

of a martingale Mt and a process of bounded variation (or almost-surely differentiable) At, with
A0 = 0 a.s. The martingale part describes a diffusion, the bounded variation part an evolution which
is “similar” to a deterministic one. The quadratic variation of a semimartingale is, by definition, equal
to the quadratic variation of its martingale part.

Martingales and, in particular, Brownian motion, are (almost surely) never differentiable in time;
therefore one cannot integrate with respect to them with a Lebesgue–Stieltjes kind of integration. Itô
introduced a theory of stochastic integration, now named Itô’s stochastic calculus. The Itô’s integral is
defined by the following limit

∫ t

0
X(s)dW(s) = lim ∑

ti ,ti+1

X(ti)(Wti+1 − Wti ),

the limit being taken in probability and when we consider partitions of the time interval [0, t] with mesh
converging to zero. Itô’s integral is well defined when Xt is a semimartingale such that E|Xt|2dt < +∞.

Notice that the values of the integrand Xt are taken on the left point of the intervals [ti, ti+1].
Unlike in usual Lebesgue–Stieltjes integration, considering its values in any other point of these
intervals leads to completely different results. Another common and interesting way to define a
stochastic integral is the so-called Stratonovich integral:

∫
X(s) ◦ dW(s) = lim

1
2 ∑

ti ,ti+1

(X(ti) + Xti+1)(Wti+1 − Wti ).

Each type of integrals present its own advantages. Although Stratonovich integral demands more
regularity on the integrand in order to be well defined, it is a more intrinsic concept and more adapted
to be extended to semimartingales with values in curved spaces, for example. Also, as we shall write
below, the rules of differential calculus are analogous to the classical ones for these integrals (and
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quite different for the Itô integral), which makes Stratonovich somehow popular in applications or in
Physics. Nevertheless it turns out that

∫ t
0 X(s)dW(s) is a martingale, where

∫ t
0 X(s) ◦ dW(s) is not, in

general. More important for us, any martingale is in fact a stochastic Itô integral and therefore any
semimartingale can be decomposed into an Itô integral representing a diffusion, or a pure fluctuation,
and a bounded variation part that represents the mean dynamical content of the process. So even
though, when both integrals are defined, they are related by the following formula,

∫ t

0
X(s) ◦ dW(s) =

∫ t

0
X(s)dW(s) +

1
2

∫ t

0
d < X, W >s,

dynamics is better identified using Itô integration.

Rules of differentiation are given by the so-called Itô’s formula. If f is a regular function and Xt a
(Rd valued) semimartingale,

f (Xt) = f (X0) +
d

∑
i=1

∫ t

0

∂

∂xi
(Xs)dXi(s) +

1
2

d

∑
i,j=1

∫ t

0

∂2

∂xi∂xj
f (Xs)d < Xi, Xj >s

or, in differential form,

d f (Xt) =
d

∑
i=1

∂

∂xi
(Xt)dXi(t) +

1
2

d

∑
i,j=1

∂2

∂xi∂xj
f (Xt)d < Xi, Xj >t .

For Stratonovich integrals we have, as in usual differential calculus,

d f (Xt) =
d

∑
i=1

∂

∂xi
(Xt) ◦ dXi(t).

If f is time dependent one has to add the term ∂ f
∂t (t, Xt)dt in the formulae.

Recall that, in the case of independent Brownian motions Wi
t , and writing id(t) = t, we have

d < Wi, Wj >t= δij dt, d < Wi, id >t= 0 ∀i.

Stochastic differential equations generalize ordinary differential ones. Given σ with values in
matrices of type d × r, a vector field (possibly time-dependent) u and an initial random variable X0,
these equations take the form

dXt = σ(Xt).dW(t) + u(t, Xt)dt.

Using Itô’s formula we deduce that, if Xt is a solution of such an equation and X0 = x, we have,
for a smooth function f ,

limt→0
1
t

Ex( f (Xt)− f (0, x)) = L f (x),

where L is the second order linear operator

L f (x) =
1
2 ∑

i,j
(σσT)

j
i

∂2 f
∂xi∂xj

+ (u.∇ f ).

The operator L is called the generator of the process Xt.
Solutions of stochastic differential equations are particular cases of semimartingales. They are

defined globally in time when the coefficients σ and u are smooth and bounded. Many works, even
very recent ones, have been devoted to extend existence of solutions for less regular coefficients, in
particular of Sobolev type.
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When considering diffusion processes on domains rather than in all the Euclidean space, and
subject to boundary conditions, we need to use the notion of local time. The local time of a Brownian
motion is a family of (a.s.) continuous non negative random variables �(t, x) such that, for any set A
and t > 0 we have

∫ t

0
1A(Ws)ds = 2

∫
A
�(t, x)dm(x).

It may also be regarded as the limit

�(t, x) = limε→0
1
4ε

∫ t

0
1]x−ε,x+ε[(Ws)ds.

Local time corresponds to the amount of time spent by a Brownian path in a neighborhood of a point
x ∈ R. This concept was introduced by Paul Lévy in 1948 (see, for example [48]). The concept extends
naturally to the multidimensional case as well as to semimartingales Xt. We have,

∫ t

0
f (Xt)d < X, X >t= 2

∫ +∞

−∞
f (x)�(t, x)dm(x)

for every regular function f , where �(t, x) =
∫ t

0 1∂O(Xs(x))d�(s). Then we can consider stochastic
differential equations in domains O ⊂ R

d, of the form

dXt = σ(Xt).dW(t) + u(t, Xt)dt + n(Xt)d�(t), X0 = x,

where n denotes the unitary vector normal to the boundary. These stochastic processes are reflected
at the boundary and, in terms of partial differential equations (their generators), they correspond to
considering Neumann boundary conditions.

Finally we consider the more recent notion of forward–backward stochastic differential equation
(cf., for example [49]).

For given (smooth) coefficients σ, u, v, initial condition X0 and final condition h, one looks for
semimartingales Xt, Yt, t ∈ [0, T] which are solutions of the following system of stochastic differential
equations (written here in integral form),{

Xt = X0 +
∫ t

0 σ(Xs).dWs +
∫ t

0 u(s, Xs)ds

Yt = h(XT)−
∫ T

t Zs.dWs +
∫ T

t v(s, Xs, Ys, Zs)ds

with E
∫ T

0 [|Xt|2 + |Yt|2 + |Zt|2]dt < ∞. There are two remarkable features of such systems: one is that,
in spite of a condition given at a final time (h), these solutions turn out, in fact, to be adapted to the
past filtration. Another one is that, even if a priori we have three unknowns X, Y and Z, the last one
will be in fact equal to Zt = ∇u(Xt). These kind of systems are natural generalizations of second order
ordinary differential equations to the stochastic setting.
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Abstract: On 1 March 2010, a disastrous groundwater inrush occurred at the Luotuoshan coalmine in
Wuhai (Inner Mongolia, China). Great effort was taken during the post-accident rescue. However,
triggered by a large amount of groundwater rushed in from the Ordovician limestone aquifer
underlying the No.16 coal seam through the fractured sandy claystone and the karst collapse column,
it caused great damage, including 32 deaths and direct economic losses of over 48 million yuan.
The groundwater inrush originated from the floor heave in the air return gallery of the No.16 coal
seam. The peak inflow rate was 60,036 m3/h. The gallery excavation under conditions caused by
the incompletely recognized hydrogeological environment induced the accident. The unidentified
spatial distribution of the karst collapse column triggered the accident directly. The high-pressure
groundwater accumulated in the collapse column and the gallery excavation, which caused the
redistribution of the in situ stress, contributing to progressive fractures in the floor of the No. 16 coal
seam. Eventually, an intensive water-conductive passage consisting of the fractured floor and the
karst collapse column formed. Administratively/technically, that mandatory regulations on gallery
excavation were not carried out which contributed the accident. Moreover, the poor awareness about
groundwater inrush recognition and quick remediation also contoirbuted to the disastrous extent of
the accident.

Keywords: groundwater inrush; the Luotuoshan coalmine; damage mechanism; karst collapse column

1. Introduction

Underground gallery excavation and coal mining can severely influence the nearby strata.
Meanwhile, the nearby hydrogeological conditions will also change seriously. As a result, groundwater
inrushes into mining areas occur sometimes all over the world. Cases happening in the United Kingdom,
Italy, Slovenia, Poland, Australia, India, etc., have been reported and the causes discussed [1–5].
Eventually, for mitigating their great damage, many effective methods were proposed [6–8].

In China, to meet great requirement of the rapid economic progress in recent decades, annual coal
production has increased and remained at a very high level. Coalmine water inrushes have occurred
sometimes during this process. Figure 1 details some properties of the groundwater inrushes from
2000. The number of the accidents and deaths obviously decreased, but unfortunately, some serious
groundwater inrush episodes brought great damage [9,10]. Therefore, there is still a long way to go for
their prevention.

Water 2020, 12, 655; doi:10.3390/w12030655 www.mdpi.com/journal/water121
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Figure 1. Characteristics of coalmine water disasters occurred in China from 2000 to 2018.

Actually, in China, a great number of related studies have been conducted. Causes, geological
circumstances, categories, early recognition, forecasting, prevention and control methods for the
inrushes were the focus in these studies [11–16]. Subsequently, some research-based and practice-tested
techniques and methods formed gradually [17–21]. All of these effectively strengthen safety of
underground coal mining operations.

Nevertheless, at 7:20 am on 1 March 2010, a disastrous groundwater inrush occurred at the
Luotuoshan coalmine located in Wuhai, Inner Mongolia, China. When the accident happened,
the coalmine was in gallery-construction mode and 77 miners were working in galleries. Fortunately,
45 miners escaped from the accident, but 32 miners were drowned. Furthermore, the accident caused
direct economic losses of over 48 million Yuan.

2. The Coalmine

Located in Wuhai (Figure 2), Inner Mongolia, the Luotuoshan coalmine began its construction
in 2006. Its annual design capacity was 1.5 million tons of raw coal. The coalfield is about 10-km
long along the north-south direction and 4-km wide along the east-west direction. Its area is about
38.7 km2. The coal reserves are estimated at about 0.42 billion tons and the exploitable amount is about
0.25 billion tons.

Figure 2. Location sketch of the Luotuoshan coal mine.

Before the date of the groundwater inrush, construction of the main inclined shaft, auxiliary
inclined shaft and vertical air return shaft of the coalmine had been completed. Meanwhile, construction
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of main galleries in the No. 9 zone and the No. 16 coal seam had been completed, too. As shown in
Figure 3, at the time of the groundwater inrush, two air return galleries in the No. 9 coal seam and an
air return gallery in No. 16 coal seam were under construction.

Figure 3. Distribution sketch of the shafts and galleries in the Luotuoshan pit.

3. The Geological Setting

The Luotuoshan coalfield is located in a semi-desert region. Mountains and valleys exist on its
east and west boundary. It rains a little and a drought climate prevails. Surface runoff forms scarcely.
The Yellow River passes through the west of the coalfield. Normal faults develop in the shallow ground
of the coalfield.

Sand beds and gravels cover the surface. As shown in Figure 4, the formed strata in the coalfield,
in chronological order, include: (1) karst limestone formed in the Ordovician Period, (2) coal seam,
sandy claystone, sandstone and claystone formed in the Carboniferous Period, (3) coal seam, sandy
claystone, sandstone and claystone formed in the Permian Period, (4) sandy claystone and coarse
sandstone formed in the Triassic Period and, (5) sand bed and gravel formed in the Quaternary Period.
Thickness of the Ordovician strata is about 200 m. Thickness of the Carboniferous strata is about
40–100 m. Total thickness of the Permian and Triassic strata is about 236–897 m. Thickness of the
Quaternary strata is about 0–25 m.

Coal seams in the Luotuoshan coalfield are located mainly in the Permian and the Carboniferous
strata. The No. 9, the No. 10 and the No. 16 coal seam are the main minable ones. Their total thickness
is about 10.41 m. Their properties are detailed as follows: the thickness of the No. 9 coal seam varies
from 0.94 m to 8.24 m and the average is about 4.32 m. Its roof and floor are comprised of claystone.
The average thickness of the No. 10 coal seam is about 0.98 m. The average thickness of the No. 16
coal seam is about 5.13 m. Its roof is comprised of sandy claystone, claystone and sandstone. Its floor
is comprised of siltstone, fine sandstone, sandy claystone and claystone.

Based on lithological properties, three types of aquifers developed in the coalfield. They are the
Quaternary porous phreatic aquifer, Permian, Carboniferous fractured sandstone confined aquifer,
and Ordovician karst limestone confined aquifer.

Alluvium, diluvium, aeolian sand, loessial sand and colluvium compose the Quaternary phreatic
aquifer. Its maximum total thickness is about 25 m and the average is about 6 m. The alluvium and
diluvium are located at the dry river valleys and terraces with different elevations. They comprise
sand and gravel layers. Pores are partly filled with groundwater. The depth of the groundwater
varies from 1.15 to 19.13 m. Because of their limited distribution in space, aeolian sand, loessial sand
and colluvium contain litter groundwater. They are recharged directly by rainfall. Meanwhile, they
recharge the neighbor underlying strata.
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Figure 4. Strata and aquifer distribution at the Luotuoshan coal mine.

The fractured sandstone-confined aquifers comprise four parts. Their properties are detailed as
follows. As shown in Figure 4, the first is located in Late and Middle Permian strata overlying the
No. 1 coal seam. Its thickness varies from 144 m to 487 m. The elevation of the groundwater table is
about +1262.25 m. The second is located in Early Permian strata between the No. 3 and the No. 8 coal
seams. Its thickness is about 15 m. The elevation of the groundwater table varies from +1295.93 m to
+1272.12 m. The third is located in the Carboniferous strata between the No. 10 and the No. 16 coal
seams. Its thickness is about 11.5 m. The elevation of the groundwater table varies from +1210.67 m to
+1274.02 m. The fourth is located in the Carboniferous strata between the No. 16 and the No. 18 coal
seams. Its thickness is about 15 m. The elevation of the groundwater table is about +1276.50 m.

Finally, the karst-confined aquifer is located in the Ordovician limestone. Its thickness is bigger than
200 m. Elevation of the groundwater table varies from +1117.75 m to +1070 m. The water-abundance
is proportional to the porosity. It possesses a high water-abundance in the porous area and a low
water-abundance in the intact area.

The average vertical distance between the No. 16 coal seam and top of the Ordovician limestone
is only about 20 m. As a result, the top of the karst aquifer will probably heave because of the goaf
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formed during the underground coal mining. Furthermore, groundwater in the karst aquifer will
probably rush into the goaf when any fractures induced by the heave meet the goaf. The probable
groundwater inrush will seriously damage the underground mining.

4. The Accident Sequence and the Rescue Operations

At 5:50, 1 March 2010, a jet stream gushed out from a blast hole in the heading face of the air
return gallery in the No. 16 coal seam. It continued for approximate 5 s.

At 6:10, more jet streams appeared from 5-6 blast holes. The maximum diameter of the water
streams was approximate 20 cm. Meanwhile, a small part of the floor heaved 0.1-0.3 m. This part was
10-m long and 1.2-m wide. As shown in Figure 3, it originated from a location where the distance
between it and the heading face was approximate 26 m. An obvious fracture appeared at the boundary
of the heaved part. The fracture was approximate 10-m long, 4-cm wide and 5-cm deep.

At 6:30, more and more blast holes were filled with gushing streams. The height of the heaved
part was increasing.

At 7:20, a great amount of groundwater gushed out and galleries in the No. 16 coal seam were
flooded. The depth of the accumulated water reached approximately 1 m. At that moment, miner
evacuation and rescue operations were initiated immediately.

At 8:05, the accumulated groundwater reached bottom of the vertical air return shaft with an
elevation of +893.50 m.

At 14:00, the elevation of the accumulated groundwater reached +1079.05 m. Galleries located in
No. 16 and No. 9 coal seams were almost submerged.

At 24:00, 3 March, the maximum elevation of the accumulated groundwater table in the pit
reached +1093.00 m, as Figure 3 illustrates.

During the post-accident rescue, large-scale drainage was performed. Meanwhile, surface
boreholes were conducted to connect the galleries for probable survivors. At 09:24, 7 March, six
boreholes connected the galleries in the No. 9 coal seam with an elevation of +1100 m. Unfortunately,
no survivors was found. After that, the drilling ended. Grouting and continuous drainage were
conducted for the coalmine recovery. The grouting ended on 28 April. The drainage ended on 10 May.
Underground rescue started on 14 April and ended on 7 May. Finally, 32 drowned miners were found
in the pit.

5. Characteristics and Mechanism of the Groundwater Inrush

5.1. The Source

According to recall of some of the miners who escaped from the flooded pit and post-accident
site-reconnaissance, the groundwater inrush originated from the floor heave, in the air return gallery
in the No. 16 coal seam, as Figure 5 illustrates.

The inburst groundwater is from the Ordovician limestone aquifer, which underlies the No. 16
coal seam. The reasons are as follows: Firstly, according to the hydrochemical test results, the properties
of the inburst groundwater are similar to those of the nearby Ordovician karst groundwater, as shown
in Table 1. Secondly, based on monitoring records of tables of the accumulated groundwater in the
pit and drainage flow rates in the post-accident rescue, as Figure 6 illustrates, variations of the two
curves show that the inburst groundwater behaved with obvious characteristics of the Ordovician
karst groundwater. This conclusion is supported by the following facts: 1� During the initial drainage
period, i.e., the a-b segment in Figure 6, the groundwater table still increased slowly even if the
drainage flow rate remained a certain constant scale. This showed that the groundwater in the pit
was recharged strongly and continuously. The recharge behaved with obvious characteristics of the
Ordovician karst groundwater. 2� The groundwater table in the pit decreased obviously on increasing
of the drainage flow rate. Then the decrease developed slowly because of the increased recharge,
i.e., b-c and f-g segments in Figure 6. It behaved with obvious characteristics of the Ordovician karst
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groundwater, too. 3� The groundwater table recovered obviously on decreasing of the drainage flow
rate, i.e., c-d, e-f and h-i segments in Figure 6. It showed that the groundwater in the pit was recharged
strongly and continuously. The recharge behaved with obvious characteristics of the Ordovician karst
groundwater, too.

 
Figure 5. A plane sketch of the origin of the groundwater inrush.

Table 1. Hydrochemical properties of the Ordovician karst groundwater from different coalmines/places.

Sampling Site

Drained-out
Groundwater

during the
Post-Accident

Rescue

The Ordovician Karst
Groundwater Sampled in
the Galleries of the No.16

Coal Seam before the
Accident

The Ordovician
Karst

Groundwater
Sampled at a

Nearby Coalmine

The Ordovician
Karst Groundwater
Sampled in a nearby

Supply Well

Sampling date 4 March 2010 1 January 2008 6 March 2010 7 March 2010

Total hardness 284.50 266.24 399.3 494.60

Carbonate
hardness 194.88 199.18 220.2 179.64

Ca2+ 65.64/3.27 57.11/2.85 93.2/4.65 116.35/5.81

Mg2+ 29.29/2.41 30.02/2.47 40.5/3.33 49.97/4.11

Na+ 85.45/3.72 73.16/3.18 91.2/3.97 84.02/3.65

K+ 4.77/0.12 3.18/0.08 5.50/0.14 3.50/0.09

Total cation 185.25/9.53 163.47/8.58 230.4/12.09 253.81/13.66

Cl− 95.42/2.69 80.83/2.28 108.1/3.05 94.06/2.67

SO4
− 141.26/2.94 87.42/1.82 194.1/4.14 350.52/7.30

HCO3
− 237.61/3.89 242.85/3.98 268.5/4.40 219.01/3.59

F− 0.65/0.03 0.43/0.02 0.50 1.02/0.05

Total anion 474.41/9.53 427.32/8.35 580.70/11.65 664.36/13.65

PH value 6.9 7.5 7.5 7.82

Total solid 700 600.12 684.95 429.87

Sample
temperature 20.5 °C 25 °C 19 °C 20 °C

Unit: mg·L−1/mmol·L−1.
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Figure 6. Monitoring records of the groundwater table and the drainage flow rate in the
post-accident rescue.

Furthermore, according to volume of the flooded galleries and shafts, i.e., approximate 67,000 m3,
from 7:30 to 8:40 on 1 March, an estimated peak flow rate of the groundwater inrush was 60,036 m3/h.
It behaved an obvious characteristic of the Ordovician karst groundwater inrush.

5.2. The Passage and the Water Inrush Mechanism

With respect to the passage, as shown in Figure 7, a water-conductive karst collapse column was
uncovered by some boreholes drilled after the site rescue. The collapse column, the gallery excavation
and the high-pressure groundwater induced together the passage to form gradually.

 
Figure 7. Distribution sketch of the passage of the inburst groundwater.
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Firstly, the vertical distance between the floor of the No. 16 coal seam and the top of the Ordovician
limestone was approximate 34 m. However, according to the site tests and theoretical calculations,
the safe thickness of the aquiclude was approximate 11.5 m. Therefore, the karst groundwater had
no way to touch the floor of the No.16 coal seam under tectonic influence conditions or absent a
geological anomaly. Secondly, based on the borehole surveying and the related analysis, as Figure 7
illustrates, excavation of the air-return gallery of the No.16 coal seam triggered the underlain sandy
claystone to fracture. Therefore, the floor heave formed gradually. Furthermore, the high-pressure
groundwater accumulated in the water-conductive collapse column induced the overlying sandy
claystone to fracture, too. The fractured sandy claystone expanded gradually and eventually the
water-conductive passage formed. As a result, the high-pressure groundwater in the Ordovician
limestone aquifer rushed into the galleries in a large scale and the disastrous accident occured quickly.

According to the drilling surveys, the width of the top of the collapse column, a-b segment
in Figure 7, was approximately 10 m. As shown in Figure 8, core samples in the collapse column
are seriously fractured, poorly sorted and poorly rounded. They present obvious properties of the
collapse mass.

 
Figure 8. Core samples obtained from the collapse column.

6. Causes of the Accident

First of all, the gallery excavation contrary to related regulations triggered the disastrous accident.
The excavation was conducted under conditions where the hydrogeological environment was not
fully recognized. No detailed distribution of the collapse column underlying the No. 16 coal seam
was detected and confirmed during the excavation. The conduct was against mandatory items in
Regulations on Coal Mine Water Hazard Controlling issued by National Coal Mine Safety Administration
in 2009. According to the regulations, comprehensive exploration must be carried out before a gallery’s
construction. Furthermore, effective countermeasures such as grouting, drainage, reservation of
waterproof coal (rock) pillar, can be used to control a potential groundwater inrushes triggered by the
appearance of a geological anomaly or complications due to hydrogeological conditions. However,
in this case the necessary exploration to secure the gallery excavation was not conducted. Therefore,
high-pressure groundwater accumulated in the collapse column and the gallery excavation, which
caused the redistribution of the in situ stress that contributed to progressive fracturing in the floor
of the No. 16 coal seam. Eventually, an intensive passage formed consisting of the fractures and the
collapse column. The high-pressure groundwater from the underlying Ordovician limestone aquifer
rushed into the galleries immediately and strongly.

Second, some other technical mistakes also contributed the disastrous accident. They are detailed
as follows: 1� an immediate response was absent. From 5:50 to 7:20 on March 1, i.e., from the time
obvious signals appeared to that of a great amount of groundwater inrushing, an evacuation order
was not given quickly. The delayed retreat was against the related regulations. Furthermore, it caused
great disastrous damage. 2� Precision of the hydrogeological achievements didn’t secure the gallery
excavation and underground mining in the future completely. Actually, some geological explorations
were conducted and finished during other galleries’ excavation. However, no geological anomaly, such

128



Water 2020, 12, 655

as a collapse column, was found. Most of all, during the excavation, water-abundance exploration and
potential release tests were not carried out although they were the most effective measures to secure
the excavation.

7. Conclusions and Suggestions

On 1 March 2010, a disastrous groundwater inrush occurred at the Luotuoshan coal mine in
Wuhai, Inner Mongolia, China. The accident caused great damage, including 32 deaths and direct
economic losses of over 48 million yuan.

The groundwater inrush originated from the floor heave in the air return gallery in the No. 16 coal
seam. Results of the hydrochemical tests and relevant records showed that the inburst groundwater
was from the Ordovician limestone aquifer underlying the No. 16 coal seam. An estimated peak
flow rate of the groundwater inrush was 60,036 m3/h. It behaved with obvious characteristics of an
Ordovician karst groundwater inrush.

Results of subsequent drilling explorations and related theoretical analysis showed that the
passage consisted of the fractures formed in the sandy claystone underlying the No.16 coal seam
and the collapse column developed in the Ordovician limestone. The high-pressure groundwater
accumulated in the collapse column and the gallery excavation, which caused a redistribution of the
in situ stress, contributing to progressive fracturing in the floor of the No. 16 coal seam. Eventually,
an intensive water-conductive passage formed. The groundwater from the underlain Ordovician
limestone aquifer rushed into the galleries immediately and strongly.

The gallery excavation without necessary site exploration was against relevant regulations and
triggered the disastrous accident. Furthermore, the poor awareness of groundwater inrush recognition
and responses also contributed to the disastrous extent of the accident.

Some important lessons can be learned from this event, as follows: Some important regulations,
for example, Regulations on Coal Mine Water Hazard Controlling, must be obeyed thoroughly during
underground coal mining. The awareness about groundwater inrush recognition and control must be
strengthened. Some treatments must be conducted immediately on the site.
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