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Preface to “Wireless Rechargeable Sensor Networks

2019”

Wireless sensor networks have attracted much attention recently due to their various

applications in many fields. Due to limited power consumption, these sensor nodes may experience

power shortages and, thus, lead to many problems including network disconnection. Most previous

methods have focused on providing energy-saving strategies to elevate the lifetime of sensor

networks. Another aggressive but different approach is to wirelessly recharge sensor nodes to

increase the lifetime of the sensor networks. This Special Issue, entitled “Wireless Rechargeable

Sensor Networks”, invited articles that address state-of-the-art technologies and new developments

for wireless rechargeable sensor networks (WRSNs). Particularly encouraged was the submission

of articles dealing with the latest hot topics in WRSNs, such as charger deployment, charger

scheduling, wireless energy transfer, mobile charger design, energy-harvesting technique, and energy

provisioning. Of interest as well were articles which discuss protocols, algorithms, and optimization

in WRSN.

For this Special Issue, we received many submissions from different countries all around the

globe in response to our call for papers. Each accepted article has been reviewed by at least three

reviewers. We believe that the accepted papers present the most up-to-date progress in algorithms

and theory for robust wireless sensor networks with respect to different networking problems. First of

all, we would like to thank our authors, who provided their remarkable contributions to this Special

Issue. We also appreciate the outstanding review work performed by the referees of this Special Issue

who provided valuable comments to the authors. Without their full support, this Special Issue would

not have been such a success.

Chang Wu Yu

Editor
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Abstract: Conventional sensor nodes are often battery-powered, and battery power limits the overall
lifetime of the wireless sensor networks (WSNs). Wireless charging technology can be implemented in
WSNs to supply power to sensor nodes and resolve the problem of restricted battery power. This type
of mixed network is called wireless rechargeable sensor networks (WRSNs). Therefore, wireless
charger deployment is a crucial task in WRSNs. In this study, the method of placing wireless chargers
to efficiently extend the lifetime of the WRSNs is addressed. Owing to the data forwarding effect
in WSNs, sensor nodes that are closer to the data collection or sink node drain more power than
nodes that are further away from the data collection or sink node. Therefore, this study proposes
a novel hybrid search and removal strategy for the power balance charger deployment method.
The wireless chargers are placed in the chosen nodes of the WRSNs. The node-chosen problem we
address is called the dominating set problem. The proposed hybrid search and removal strategy
attempts to discover the minimum number of chargers required to cover all sensor nodes in the
WRSN. The proposed algorithm considers the charging power of the wireless directional charger
when arranging its placement to maximize the charging capacity in a power-balanced prerequisite.
Therefore, the proposed deployment strategy preserves the awareness of the presence of the sink
node that could result in unbalanced power distribution in WRSNs. The simulation results show
that the proposed strategy spares more chargers and achieves better energy efficiency than other
deployment approaches.

Keywords: wireless rechargeable sensor networks; hybrid method; wireless charger deployment

1. Introduction

In a wireless sensor network (WSN), the amount of power provided by the battery determines
whether each sensor can operate normally. Such power limitations also affect the stability of the entire
WSN. To solve the problem of limited battery power, scholars have proposed studies on the design
of energy-efficient routing protocols [1] and energy-harvesting wireless sensor networks (WSNs) to
reduce energy consumption [2]. Neither the energy-efficient protocols nor the energy-harvesting
WSNs solves the principle problem. These studies can prolong the life of WSNs. However, when
the sensor exhausts the battery, the WSNs still cannot work properly. Some might argue that WSNs
using solar energy can solve the problem of battery exhaustion. However, solar energy-based sensors
are affected by environmental factors, and the efficiency of WSNs is significantly affected by different
environments. In recent years, some researchers have proposed wireless charging technology, which
can solve the problem of sensor battery power limitation, thus fundamentally solving the WSN lifetime
problem [3]. The power can be transmitted using wireless chargers to RFIDs [4], sensors [5] and
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other terminal devices. TechNavio’s market research shows that wireless charging technology has
great market potential, and the 2020 global annual increase in the wireless charging market is more
than 33% [6]. Due to the convenience and continuous development of wireless charging technology,
wireless charging has drawn the attention of both industry and academia, especially in the realm of
WSN research.

The adoption of wireless charging technology to improve the survival time of WSNs has been
extensively surveyed. The new type of WSN that allows wireless chargers to extend the lifetime of
wireless sensors is called wireless rechargeable sensor networks (WRSNs). The main consideration for
the deployment of wireless chargers in WSNs is to maintain a stable power supply for the sensors
so that the sensors can perform sensing tasks in the sensing area. Based on cost considerations, the
number of wireless chargers in this deployment area should be minimized. However, because the
power supply of the sensors has a significant impact on the performance of the WSNs, this study
attempts to find a deployment strategy that can effectively reduce the number of wireless chargers
while maximizing the charging capacity.

Several studies related to the deployment of wireless chargers in WRSNs have been proposed in
recent years. However, these studies have some limitations, such as the grid partition that does not
fit to the real environment in which the charger can be placed. Some might unrealistically assume
that the data collection node or sink node does not exist. The data collection node or sink node in
WSNs or WRSNs is a critical device. The sensors collect and route data to a data collection or sink
node. If a sensor is near the data collection or sink node, it will bear frequent data forwarding and
consume more energy. Therefore, to address the limitations of previous research, this study explores
the deployment of directional chargers in a given network. In this study, the influence of data collection
or sink nodes is evaluated. Previous studies have failed to address this influence. We also deal with
two different types of chargers: omnidirectional and directional chargers in WRSNs. In this study, a
two-stage strategy called search most and remove useless (SMRU) is proposed. In the first stage, the
candidate position of the directional charger is selected on a sensor randomly. Next, we search for the
number of sensors covered by the chargeable radius at the candidate position of the directional charger.
The deployment given by the proposed SMRU strategy can effectively reduce the required number of
directional chargers and preserve good charging utility. The experimental results demonstrate that our
proposed SMRU approach outperforms previous works.

The three main contributions of the proposed SMRU algorithm are as follows:

1. The SMRU algorithm can deploy the chargers in the WRSN in less time, and the number of
chargers required is relatively small.

2. When the sensor position moves, the SMRU algorithm takes less time to correct and deploy the
charger positions.

3. The SMRU algorithm can calculate the energy consumption of the sink node. Under the premise
of supplying enough power to the sink node, the mechanism of the SMRU algorithm can reduce
the number of chargers used to charge the sink node without affecting the number of chargers
that charge other sensors.

The structure of this study is as follows. In Section 2, this study investigates the relevant literature
and explores the problems of some deployment strategies. In Section 3, the problem description is
presented. Section 4 presents the details of the proposed algorithms. Section 5 explains the experimental
results and give conclusions.
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2. Related Works

2.1. Omnidirectional and Directional Chargers

Previous studies assumed that omnidirectional chargers have the same charging capacity at the
same distance [7,8]. When the distance increases, the received power decays, and when the threshold
distance is finally reached, the received power becomes zero. The charging range of an omnidirectional
charger is defined as the center of the charging range. The coverage area of the directional charger
is a sector [7,8]. Devices from different manufacturers may have different ranges of charging angles.
Due to the somewhat steady power coverage and low cost, directional chargers are frequently used
in WRSNs.

As the mathematical formulation of a charger’s charging power, previous researchers defined the
charging formula as follows (1) [9–11]:

W(dist(ai, si)) =

⎧⎪⎪⎨⎪⎪⎩
α

(dist(ai,si)+β))
, dist(ai, si) ≤ r

0, dist(ai, si) > r
. (1)

In Equation (1), dist(ai,si) is the Euclidean distance between charger ai and sensor si α = ξW0GaGs
CW

( λ4π)
2
,

λ is the wavelength, and ξ is the utility of the rectifier. Ga and Gs are the antenna gains of the charger
and the sensor, respectively. W0 is the charger power and β is the compensation parameter for
short-distance transmission and Cw in α is polarization mismatch loss [9]. When the range is larger
than the charging radius r, the charging power is set to 0.

2.2. Wireless Charger and Sensor Deployment

The deployment of wireless chargers has drawn much attention recently. Several studies have been
conducted in this area. He et al. proposed an energy provisioning method for wireless rechargeable
sensor networks [12]. The proposed method addressed omnidirectional wireless charger deployment,
and the wireless chargers were deployed in the region of interest to supply sufficient charging power
to support the operations in WRSNs. However, He et al. probe the region using a conventional
triangular method. Chiu et al. proposed a mobility-aware charger deployment scheme for WRSNs [13].
The wireless charger placement methods proposed by Chiu et al. [13] considered the trajectories
of mobile sensors. The methods partitioned the regions into grids, and omnidirectional wireless
chargers were arranged on grid intersections. Liao et al. scheduled the sleep period of wireless
chargers to reduce the wastage of battery power and adopted a conical structure to cover the region [7].
In contrast to studies on omnidirectional sensor deployment, some researchers have carried out studies
on directional sensor deployment, which present the directional angle concept [8,14]. Horster and
Lienhart discussed the placement of visual sensors that are directional, and the angles of the devices
are considered [8]. According to Horster and Lienhart, the monitoring area of a visual sensor is
directional and triangles are used to represent the scope [8]. Therefore, they proposed the integer
linear programming solving technique to calculate the optimal coverage, and every grid intersection
represented a possible site of the placement [8]. As the deployment of wireless chargers can be
formulated as a nonlinear programming problem, the deployment problem befits to the NP hard
problem class [15]. Therefore, solving the wireless charger deployment problem is a challenging
task. Han et al. studied the deployment of directional sensors [14]. In their study, the number of
deployed directional sensors was minimized, and the connections among the sensors were considered.
Mo et al. addressed the coordination problem among multiple mobile chargers and formulated the
multiple mobile charger coordination problem as mixed-integer linear programming and proposed a
decomposition approach to solve the problem [16]. Tang et al. simultaneously considered both charging
and routing and proposed an optimization approach to extend the lifetime of the network [17]. In order
to balance the network energy, charging efficiency is dynamically balanced and the charging time is
partitioned according to the energy consumption. Chen et al. proposed a WRSN model equipped
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charging drone [18]. A scheduling algorithm to solve the shortest multi-hop path is developed for the
charging drone.

Most studies did not address the impact of unbalanced battery power distribution caused by
data forwarding to the sink node. Unbalanced battery power distribution can make some sensor
nodes, especially those near the sink node, lose power quicker than other nodes. Previous research
did not consider the existence of a data collection node or sink node. Although the assumption can
allow chargers in an actual environment to be better optimized for deployments, the deployments
would actually result in an unbalanced battery power consumption issue. To address the unbalanced
battery power distribution controversy, Lin et al. proposed a power balance aware deployment (PBAD)
method for wireless chargers and compared the PBAD with random position and random orientation
(RPRO) [10]. They formulated the deployment as a minimum dominating set problem and attempted
to discover the minimal number of chargers required to cover the networks in the WRSNs. Lin et al.
adopted a greedy algorithm to calculate the coverage set, and the influence of the data sink node was
weighted to attain full coverage [10]. Lin et al. proposed a two-stage method. First, the chosen region
was split into several sub-areas, so that each sub-area could have a continuous supply of charging
power. Next, every sub-area was further evaluated to find the minimum dominating sets, after which
an approximated optimal dominating set was chosen. The reviewed literature is tabulated in Table 1.

Table 1. Related deployment literature.

Research Sensor or Charger Charging Type Important Concepts Balanced Battery Power Distribution

He et al., (2012) [12] Charger Omnidirectional

1. Energy provisioning
in WRSNs

2. Physical characteristics of
wireless charging

No

Chiu et al.,
(2012) [13] Charger Omnidirectional

1. Mobility-Aware
charger deployment

2. Optimization of
mobile deployment

No

Liao et al.,
(2013) [7] Charger Omnidirectional

1. Optimized charger
deployment for WRSNs

2. Sleep scheduling
No

Horster and
Lienhart., (2006) [8] Sensor Directional

1. Approximating optimal
visual sensor placement

2. Grid linear programming
No

Han et al.,
(2008) [14] Sensor Directional

1. Deploying directional
sensor networks

2. Guaranteed connectivity
and coverage

No

Lin et al.,
(2016) [10] Charger Directional and

Omnidirectional

1. Power balance aware
wireless
charger deployment

2. Minimum dominating
set problem

Yes

Mo et al. (2019) [16] Charger Omnidirectional

1. The coordination problem
among multiple
mobile chargers

2. Mixed-integer linear
programming problem

No

Tang et al.,
(2020) [17] Charger Omnidirectional

1. Considering both charging
and routing

2. Partitioned charging time
according to the
energy consumption

Yes

Chen et al.,
(2020) [18] Charger Drone

1. A WRSN model equipped
charging drone

2. The shortest multi-hop
path problem

No
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3. Search Most and Remove Useless Algorithm

3.1. Problem Definition

There are several problems with wireless sensor network applications. Among them, the power
and cost of sensors are often the focus of research. In a wireless sensing network, the sensor must operate
continually to maintain the function of receiving and transmitting the information. Therefore, reducing
the sensor’s power consumption and extending battery life is an important problem. The network
architecture called wireless rechargeable sensor network (WRSN) relies on the chargers to continuously
supply the sensors with continuous power. In far-field phased arrays, wireless power can be transmitted
through beams, while power beam transmission technology can transmit energy over longer distances.
The wireless power transfer method proposed in the simulation design in this research is far-field
phased array antennas [19]. As the deployment of wireless sensing networks may use a large number
of sensors, the use of fewer chargers in WRSNs to provide sufficient power for the sensors to reduce
deployment costs and maintain the operation of WRSNs is an important issue. Therefore, this study
proposes a method that uses fewer directional chargers to cover all sensors in WRSNs. In our proposed
method, the deployment position of the charger can be calculated in a short time. Additionally, all
sensors in WRSNs are covered with a small number of chargers, and all sensor power is supplemented
to avoid sensor interruption due to power consumption causing WRSNs to fail, and to reduce the cost
of deploying a WRSN.

3.2. The SMRU Algorithm

The algorithm is divided into two parts. In the first part, the candidate position of the directional
charger is selected on a sensor randomly. Next, we search for the number of sensors covered by the
chargeable radius at the candidate position of the directional charger. The candidate position rotates
360◦ to find the angle that can cover most of the sensors within the charging range. If the number of
sensors covered by the candidate position of the directional charger is more than three, the algorithm
is repeated for each candidate position within the chargeable radius. To find the angle that can cover
most of the sensors within the charging range, the position that covers the most sensors is selected as
the new position of the directional charger. If the number of sensors covered by the candidate position
of the directional charger is less than three, the candidate position is determined as the position of
the directional charger. In the second part, after determining the position of the directional charger,
the proposed algorithm checks whether there is an unnecessary position of the directional charger.
Therefore, the algorithm checks and removes the charger, and the sensors covered by the charger
can be covered by other chargers. This check action can effectively reduce the number of chargers.
The operation of SMRU represented as Algorithm 1 is as follows:

Algorithm 1 Search the least needs of the chargers

Input: The locations of all the sensors si and directional charger ci
Output: Positions of chargers
1: Step 1. Randomly select the sensor position as the position of the charger.
2: Step 2. Search for the number of sensors covered by the chargeable radius d at charger position n.
3: while (distance(si − ci) ≤ d) do

4: Record the number of sensors to n in the range.
5: end while

6: Step 3. The charger rotates 360◦ to find the angle that can cover most of the sensors within the charging
range.
7: Step 4. If the number of sensors covered by Step 2 is more than three, Step 3 is repeated for different
positions of sensors within the chargeable radius, and the position that covers most of the sensors is selected as
the new position of the charger. If the number of sensors covered by Step 2 is less than three, the position of the
charger does not change.

5
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8: if (n ≥ 3) then

9: Search 360◦ and find the best angle that can cover most of the sensors;
10: Record the number of covered sensors;
11: Compare to the number of covered sensors of other chargers;
12: Record the best charger location and the covered sensors in the range;
13: else

14: Search 360◦ and find the best angle that can cover most of the sensors;
15: Record the best charger location and the covered sensors.
16: end if

17: Step 5. Repeat Step 2 until all sensors are covered.
18: Step 6. Remove the excess charger positions in which the charger and the sensors covered by the charger
can be covered by other chargers.
19: Search all locations of chargers and their covered sensors;
20: if (the charger location is redundant) then

21: Remove the redundant charger location;
22: end if

23: return

3.3. An Example of SMRU

In this study, we use the sensor position to deploy a charger, which can ensure that the worst
result of the position selection will converge to the number of sensors. This means that when there are
N sensors in WRSNs, it is only necessary to deploy N chargers in the worst case. This can prevent
the position selection algorithm from converging. The first idea at the beginning of this study is to
search for the charger position that first covers the most sensors among all sensor positions. However,
this method is time-consuming because the same calculation is repeated at 360◦ angles of the charger
for each position. Therefore, this study improves the first idea. This study found that the key point
to covering all sensors in WRSNs with fewer chargers is the charger position with dense sensors.
For example, under the same sensor position configuration, if the charger position is selected as shown
in Figure 1, the charge angle of the charger is limited, so that two chargers are required to fully cover
all the sensors in this area. However, if the algorithm first compares the positions in the dense area and
finds the position that can cover most of the sensors, the algorithm can reduce the number of chargers
to one, as shown in Figure 2.

Figure 1. Covers all sensors with two chargers.
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Figure 2. Covers all sensors with one charger.

Therefore, the proposed algorithm first randomly assigns the position of the charger and then
checks to see if there are more than three sensors in the 360◦ charging range of the charger, after
which it selects the charger position that covers most of the sensors. If not, then directly select this
position and find the best charging angle of the position to save the waste of repeated calculation time
caused by the first idea. The reason for choosing more than three sensors in the charging range as the
comparison standard is that if there are only one or two sensors that can be covered in the charging
range, regardless of the selected position, the number of chargers in the charging range will not be
affected. However, if the number of sensors that can be covered in the charging range is more than
three, the results may be affected. As shown in Figure 3, if the algorithm selects the middle position, all
sensors require two chargers. However, if the algorithm selects the two surrounding positions, it only
needs one charger, as shown in Figure 4.

Figure 3. Covers all sensors with two chargers.

7
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Figure 4. Covers all sensors with one charger.

Finally, although the proposed algorithm minimizes the number of chargers required, experimental
results show that extra chargers are required in some cases. The main reasons are the random selection
of positions as a sequence of charger deployment, the comparison of the other candidate positions in
the charging coverage area of the charger, and the selection of the best position from the candidate
positions. As shown in Figure 5, if there are sensors that are arranged continuously, but the distance
exceeds the chargeable radius, it cannot be applied to the proposed algorithm. Assume that there are
four consecutive sensor positions arranged horizontally. If the order of the positions of the chargers is
not appropriate, three chargers are required to fully cover all the sensors in this area. Therefore, this
study improves the proposed algorithm again. After the initial selection of the charger position, it is
necessary to check whether each charger and the sensors covered by each charger can be covered by
other chargers. Assuming that the position of the charger fits this context, it means that the position of
this charger is redundant. Therefore, after checking, remove the excess charger positions, as shown in
Figure 6.

Figure 5. The position of this charger is redundant.

8
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Figure 6. Remove the excess charger position.

3.4. Sensor Mobility

In this study, we consider how the SMRU algorithm can change the position of chargers when the
position of the sensors is moved. After the sensor moves the SMRU algorithm first confirms whether
the number of sensors covered by the charger has changed. If the number of covered sensors decreases,
the charger is rotated 360◦ to find the charging angle that can cover most of the sensors. If the number of
covered sensors is unchanged or increased, the sensor data will be updated. Next, the SMRU algorithm
examines whether there are any sensors in the WRSNs that are not being charged by any charger. If
it is found that there are uncharged sensors, increase the chargers at the position of this sensor, and
then rotate 360◦ to find the best angle that covers the largest number of sensors. Finally, the SMRU
algorithm performs an optimization operation. If it finds an excess charger, it cancels the deployment
at that position. The sensor movement was not considered in the PBAD algorithm. As PBAD does
not have a mechanism for sensor movement, it needs to be recalculated when the sensors are moved,
which takes twice as much time. However, the SMRU algorithm only needs to modify the position of
chargers that are affected by sensor movement. Therefore, the modified execution time is much shorter
than the original SMRU execution time. The algorithm is shown in Algorithm 2.

Algorithm 2 Changing the charger position after sensor mobility

Input: New locations of all sensors and original locations of chargers.
Output: New locations of all chargers.
1: Step 1. Check the number of sensors covered by each charger position n.
2: Step 2. If the number of covered sensors decreases, the charger is rotated 360◦ to find the charging angle that
can cover most of the sensors.
3: if (n < original covered number of sensors) then

4: Search 360◦ and find the best angle that can cover most of the sensors;
5: Record the best charger location and the covered sensors;
6: else

7: Record the covered sensors;
8: end if

9: Step 3. Check if any sensor is uncharged.
10: Step 4. If it is found that there are sensors being uncharged, increase the chargers at the position of this
sensor, and then rotate 360◦ to find the best angle that covers the largest number of sensors.
11: if (the sensor is not charged) then

12: Add a new charger on the location of the sensor;

9
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13: Search 360◦ and find the best angle that can cover most of the sensors;
14: Record the best charger location and the covered sensors;
15: end if

16: Step 5. Remove the excess chargers
17: if (the charger location is redundant) then

18: Remove the redundant charger location;
19: end if

20: return

3.5. The Charging of Sink Nodes

The SMRU algorithm can calculate the energy consumption of the sink nodes. Under the premise
of supplying enough energy to the sink nodes, the SMRU algorithm can reduce the number of chargers
deployed to charge sink nodes. It also does not affect the number of chargers that need to charge
sensors. First, the sensor will transfer the data to the sink that is closest to itself. After the SMRU
has deployed the charger, it checks the amount of energy consumed by each sink. Next, the SMRU
checks the charger within the charging distance of the sink and checks the number of sensors charged
by the charger. If the number is equal to one, the charging angle is turned to sink. Therefore, the
charger will charge one sensor and one sink. If the number of charging sensors is greater than 1, the
charger rotates 360◦ again to search for the best angle, and the calculation includes the sink node.
If the charging target can be covered more than the previous number (meaning that the previously
charged sensors are covered; it also covers the sink node), the charging angle is updated; otherwise, the
charger maintains the original charging angle. Finally, according to the energy that the sink still lacks,
the SMRU deploys additional chargers around the sink to charge the sink. The number of chargers
deployed can supplement enough energy as the minimum requirement. Consequently, all sink nodes
can have enough power to receive the data sent by the sensor. The SMRU can make good use of
the existing charger resources to charge the sink, so it can reduce the number of additional charger
deployments. The algorithm is shown in Algorithm 3.

Algorithm 3 Charging energy of the sink nodes

Input: Locations of all sensors, locations of all chargers, and locations of all sinks
Output: Locations of new chargers
1: Step 1 Check how much energy is consumed by each sink.
2: Step 2. Find the charger, and if its distance from the sink node is less than the charging distance r.
3: Step 3. If the number of sensors n covered by the charger is greater than one, rotate 360◦ to check whether
the charging of the sink node can be increased without affecting the originally charged sensors. If possible,
update the angle of the charger. If not, maintain the original charging angle of the charger. If the number of
sensors n covered by the charger is equal to 1, then the charging angle of the charger is turned to the sink node.
4: if (n > 1) then

5: Search 360◦ and find the best angle that can cover most of the sensors;
6: Check whether the new covered number (ncn) is bigger than the original covered number (ocn);
7: if (ncn > ocn) then

8: Record the new charging angle;
9: end if

10: else if (n = = 1) then

11: Update charging angle;
12: end if

13: Step 4. Check the lack of energy for each sink node. Around the sink nodes, randomly select the position of
the chargers to deploy the number of chargers needed to supplement the energy required by the sink nodes.
14: return
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4. Experiments and Results

4.1. Experimental Environment and Parameters

In this study, a directional charger was used to conduct a simulation experiment. The experimental
environment was to randomly generate sensor positions on a plane with a length of 100 units and a
width of 100 units. The proposed algorithm was repeated 500 times to find the average result, and
obtain the number of chargers and average execution time. As this study uses a directional charger, its
related parameters are set to a chargeable angle of 90◦ and a chargeable radius of 16 units. Assume
that the reception energy consumption of the sink node is 0.6 units/reception. The performance of the
proposed algorithm is compared with that of the random position and random orientation (RPRO)
and power balance aware deployment (PBAD) [10] algorithms using directional chargers.

4.2. Experimental Results of the Number of Chargers

This experiment compares the relationship between the number of sensors, different algorithms,
and the number of chargers required. The average number of chargers used by the SMRU algorithm is
less than that used by RPRO and PBAD. Figure 7 shows the average number of chargers used. RPRO
selects the charger position and the charging direction randomly. As the charging angle is not selected,
the number of chargers required is significantly large. PBAD searches for 360◦ angles that can cover
most of the sensors for charging after randomly selecting positions. Additionally, PBAD repeatedly
calculates the same sensor position map and selects the best position using a minimal charger as the
deployment location of the charger. In this experiment, PBAD was repeated 10 times to select the best
result. Therefore, the experimental results of PBAD are superior to those of RPRO. SMRU first selects a
random position and then searches for 360◦ of the charging radius at that position. If there are more
than three sensors (three candidate positions) within the charging radius at this position, it chooses the
candidate position that can cover the largest number of sensors and deploy the charger. Additionally,
the elimination of the excess charger positions that may be generated in the previous steps means that
the number of charger requirements can be reduced to less than that of PBAD.

Figure 7. The average number of chargers.
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4.3. Experimental Results of Execution Time

This experiment compares the relationship between the execution time of different algorithms
and the number of sensors. Figure 8 shows the average execution time. As the RPRO algorithm selects
the position and charging direction of the charger randomly and does not have too many calculations,
it requires little execution time. However, the number of chargers required by the RPRO algorithm
is very large. The PBAD algorithm randomly selects the charger position and repeats the operation
multiple times to obtain the best results. Although it can obtain good results, the iterative operations
are performed multiple times. As a result, the average execution time is more than that of SMRU and
RPRO, and the execution time will increase as the number of recalculations increases. When SMRU
selects the position that covers the largest sensor, it decides whether to compare multiple positions.
Only when the number of sensors (candidate positions) around the position is more than three will it
be executed. This is because when the number of candidate positions is less than three, regardless of
the position selected, it does not affect the coverage results, and thus can reduce the execution time
of many repeated calculations. Additionally, the SMRU algorithm only needs to be executed once to
obtain the results, and it is not necessary to repeatedly take the best value like PBAD. Therefore, the
execution time performance is much better than that of PBAD.

Figure 8. The average execution time.

4.4. Experimental Results for Different Charging Angles

This experiment compares the relationship between the size of the charging angle and the average
number of chargers. The experimental angle ranges from 45◦ to 360◦. The RPRO, PBAD, and SMRU
algorithms were tested separately. The charging radius is 16 units, and the number of sensors is 40.
The experiment found that the larger the charging angle, the fewer the number of chargers required.
The different charger requirements for different algorithms are as follows: SMRU has the smallest,
followed by PBAD, and the worst is RPRO. Additionally, for the same parameter settings of the same
algorithm, there seems to be a lower demand limit on the number of charger requirements. As shown
in Figure 9, it can be observed from the experimental results that there is no significant difference
in the average number of chargers after 270◦ between PBAD and SMRU. However, the difference is
significant when the angle is smaller than 270◦.
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Figure 9. The comparison results of different charging angles.

4.5. The Comparison of the Execution Time of Charger Deployment and Modified Deployment Using SMRU

In the experiment, we measured the execution time it takes for the SMUR algorithm to adjust the
position of chargers after sensor mobility. After the SMRU selects the charger position, this experiment
randomly moves the sensors from 0 to 2 units to simulate the movement of the sensors. A comparison
of the execution time of charger deployment and modified deployment using SMRU is shown in
Figure 10.

Figure 10. Comparison of the execution time of charger deployment and modified deployment
using SMRU.

4.6. The Impact of Different Mobility Units

In this experiment, we first discuss the impact of different mobility units and average execution
time for SMRU to adjust the position of chargers after sensor mobility. After the SMRU selects the
charger position, this experiment randomly moves sensors from 2 to 10 units to simulate the movement
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of sensors. Due to SMRU does not recalculate the positions of all the chargers to find the global optimal
solution after sensor mobility; it can reduce many execution times. The experimental results show that
the execution time will increase with the number of sensors, and the increase in the mobility units of
the sensor will increase the average execution time, as shown in Figure 11.

Figure 11. The impact of different mobility units and average execution time for search most and
remove useless (SMRU) strategy to adjust the position of chargers after sensor mobility.

Next, we discuss the number of chargers used for SMRU to adjust the position of chargers after
sensor mobility. Although SMRU does not recalculate the positions of all the chargers to find the global
optimal solution after sensor mobility. However, the experimental results found that the number of
chargers used does not increase too much after the sensor mobility. In addition, the number of chargers
will increase with the number of sensors, and there is no obvious difference in the number of chargers
used between different mobility units, as shown in Figure 12.

Figure 12. The impact of different mobility units and the number of chargers used for SMRU to adjust
the position of chargers after sensor mobility.
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4.7. Energy Consumption and Supplementary of Sink Nodes with Different Sink Rates

In this experiment, we discuss how to deploy enough chargers with different sink rates. In the
experiment, an average of four sink nodes (SN) were deployed in a 100 × 100 unit experimental
environment, with coordinates SN_1 (25, 25), SN_2 (25, 75), SN_3 (75, 25), SN_4 (75, 75). As all sensors
need to send data to the sink node, it is assumed that the radius of the received data of the sink is
36 units in the experiment to cover the entire experimental environment. Every time a sensor transmits
data to the sink node, it increases the sink energy consumption by 0.6 units. Each charger can charge
1 unit of energy to the sink. The total number of sensors deployed in the experimental environment
was 20. This experiment is based on being able to replenish all the energy needed by the sink nodes,
and deploying enough chargers around the sink node to replenish the power. Figure 13 shows the
energy consumption and supplementary of sink nodes with different sink rates.

Figure 13. The energy consumption and supplementary of sink nodes with different sink rates.

4.8. The Impact of Different Densities on the Energy Requirements of Sink Nodes

This experiment compares the impact of different densities on the energy requirements of sink
nodes, as shown in Figure 14. This experiment deploys four kinds of sink node density. The first
case is 4C0S (C = Close, S = Separate) representing four sink nodes that have overlapping coverage.
The second case is 2C2S representing two sink nodes that have overlapping coverage (Sink 1, Sink 2)
and two isolated sink nodes (Sink 3, Sink 4). The third case is 3C1S represents three sink nodes that
have overlapping coverage (Sink 1, 2, 3) and one isolated sink node (Sink 4). The fourth case is 0C4S,
which means four sink nodes are isolated. The positions of sensor nodes are randomly deployed in
the coverage of sink nodes. The experimental results found that the average energy requirements of
sink nodes is almost the same in 0C4S and 4C0S situation, as shown in Figure 12. In the case of sink
nodes that have overlapping coverage, sink nodes can share the processing of sensor nodes in the
same coverage, and so the energy requirements of sink nodes will be shared and reduced. Therefore,
the average energy requirements of sink nodes are the same as the four isolated sink nodes. In 2C2S
and 3C1S situation, some sink nodes have overlapping coverage and some sink nodes are isolated.
As isolated sink nodes have no other sink nodes in the coverage to help process the data from sensor
nodes in the coverage, this causes an increase in the energy requirements of sink nodes, as shown in
Figure 14.
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Figure 14. The impact of different densities on the energy requirements of sink nodes.

5. Conclusions

The deployment of WRSNs may require a large number of sensors. The use of fewer chargers
in WRSNs to provide sufficient power for the sensors, reduce deployment costs, and maintain the
operation of WRSNs is an important issue. Therefore, this study proposes an SMRU algorithm that
uses fewer directional chargers to cover all sensors in WRSNs. In our proposed SMRU, the deployment
position of the charger can be calculated in a short time, and all sensors in WRSNs are covered with a
small number of chargers. Additionally, all sensor power is supplemented to avoid sensor interruption
due to power consumption that causes WRSNs to fail and reduces the cost of deploying WRSNs.
The performance of the proposed algorithm was compared with that of the RPRO and PBAD algorithms.
Experimental results show that the average number of chargers used by the SMRU algorithm is fewer
than that of RPRO and PBAD, and the execution time performance is much better than that of PBAD.
In the future, we shall design a new algorithm that saves more chargers and computing time.
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Abstract: Fast development in hardware miniaturization and massive production of sensors make
them cost efficient and vastly available to be used in various applications in our daily life more
specially in environment monitoring applications. However, energy consumption is still one of
the barriers slowing down the development of several applications. Slow development in battery
technology, makes energy harvesting (EH) as a prime candidate to eliminate the sensor’s energy
barrier. EH sensors can be the solution to enabling future applications that would be extremely
costly using conventional battery-powered sensors. In this paper, we analyze the performance
improvement and evaluation of EH sensors in various situations. A network model is developed
to allow us to examine different scenarios. We borrow a clustering concept, as a proven method to
improve energy efficiency in conventional sensor network and brought it to EH sensor networks to
study its effect on the performance of the network in different scenarios. Moreover, a dynamic and
distributed transmission power management for sensors is proposed and evaluated in both networks,
with and without clustering, to study the effect of power balancing on the network end-to-end
performance. The simulation results indicate that, by using clustering and transmission power
adjustment, the power consumption can be distributed in the network more efficiently, which result in
improving the network performance in terms of a packet delivery ratio by 20%, 10% higher network
lifetime by having more alive nodes and also achieving lower delay by reducing the hop-count.

Keywords: energy harvesting; wireless sensor network; environmental monitoring; clustering; energy
efficiency; network lifetime; transmission power

1. Introduction

The increasing demand of smartness in our daily appliance and novel applications for more
efficient use of the resources have led to a massive boom in the deployment of sensors. Due to
technological advances, sensors are getting smaller and more powerful. However, the efficient
managing of the small energy resource of the sensor is still a challenging task. Therefore, there have
been several energy efficient algorithms and protocols proposed and put in experiments in many
research papers and practical applications [1–4]. Apart from focusing on the efficient use of the limited
power resource, harvesting energy from the ambient environment can be a promising solution for the
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aforementioned challenge. Energy harvesting cannot only extend the network lifetime in a sustainable
manner, but it can also reduce the necessity of using batteries that pollute the environment due to
leakage or when they are discarded [5].

While energy harvesting (EH) is not a new research topic, it has recently attracted more attention
due to the massive implementation of sensors, for example in IoT applications. Imagine applications in
which thousands of sensors are deployed to monitor the soil moisture in a massive farm for scheduling
the watering, or in a forest for the early detection of massive fires. These massive implementations
require sensors to work for a long time without a need of human intervention for maintenance. Thus,
many researchers focus on overcoming research challenges in this area. Several methods of EH are
developed that are powered by sunlight [6], vibration [7], heat [8], and electromagnetic waves [9–11],
even from human body movement and heat [12]. However, the amount of the energy that can be
harvested from these resources can be uncertain and unpredictable, which can cause difficulties in the
design of different network stack protocols [13].

Similar to the effort to prolong the network lifetime in battery powered sensor networks, there are
huge efforts on efficiently using the harvested power in energy harvesting sensor networks (EH-WSN),
to have longer network lifetime and more reliable performance [14]. One of the ways that researchers
have tried to achieve better energy efficiency in EH-WSN is to bring the clustering concept from WSN
and try to remodel and adjust the idea to unique characteristics of EH-WSN. Basically, the clustering
approach is a way to convert distributed decentralized networks into several small virtually centralized
networks, and hence, bringing the benefits of a centralized architecture to a decentralized network [15].
In clustering, the network is divided into clusters, which consist of a cluster-head (CH), gateway nodes
(GW) and member nodes (MN). CH is responsible for managing the MNs and processing the members’
data, and communication between two adjacent clusters happens through GWs. In a cluster-based
WSN, CHs, and GWs form the network backbone [16].

Clustering for EH-WSN can bring the similar benefits that it can bring to conventional WSN.
However, considering the unique characteristic of EH-WSN such as an unpredictable amount of
harvested power, clustering algorithms need to be carefully designed in a way to efficiently use the
harvested power and at the same time try to deal with its uncertainty.

In this paper, we take a closer look at the effect of clustering for EH-WSN. The contributions of
this paper are twofold: First is to study the effect of clustering on the performance of EH-WSN and
second is to propose a way to improve the performance of the clustered network considering energy
harvesting sensors. Therefore, we consider a decentralized network and study the effect of adjusting
transmission power in the performance of the network in both flat (non-clustered) and clustered
network. Given that the randomness in the transmission power can potentially affect the network
topology and in some cases balance the power consumption among nodes with different harvesting
ratios, the goal of this paper is to see how clustering can affect network performance in the existence
of transmission power adjustment. For clustering, we used a simple energy-based clustering where
each node connects to the neighbor with higher available energy. Thus, node A connects to node B as
cluster head if node B has higher available power than node A. As cluster heads usually handle more
traffic, by using this method, we can assure nodes with higher power become cluster head. However,
any other clustering algorithm can be adjusted with the proposed transmission power control method.
We show that, even by using a simple clustering concept, the network shows a fairer distribution of
power consumption, which results in achieving better network end-to-end performance.

The rest of this paper is organized as follows: Section 2 presents the related work in clustering and
power control for energy harvesting sensor networks. The system model is introduced in Section 3.
The numerical results are presented and discussed in detail in Section 4. Section 5 presents the
conclusion and future work.
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2. Related Work

The main design challenge in battery-powered WSN is to prolong the network lifetime by using
energy-efficient algorithms and protocols in medium access control (MAC) and Network layers [17,18].
Therefore, energy efficiency has been a very popular keyword in WSN literature. Researchers have been
trying to tackle this issue by different means such as proposing methods that directly focus on energy
conservation such as sleep scheduling [19], or by proposing energy efficient algorithms such as energy
efficient routing, energy efficient medium access control protocol, using clustering [20], and even
energy efficient coverage enhancement specially in mobile sensors case [21,22], which perform their
classical task more energy efficiently. For example, as is discussed in Reference [19], by carefully
selecting a certain number of nodes to be activated to cover a desired portion of a monitored area,
network life-time can improve more than 80% in certain areas.

Clustering algorithms, as one of the important ways to reduce the network load and conserve
energy, are widely studied in the literature [16]. Like conventional WSN, clustering approaches are
widely applied in EH-WSN. However, in EH-WSN, as the amount of harvested energy is uncertain, the
protocols should deal with unique challenges and specific characteristics. Several clustering algorithms
are proposed for EH-WSN based on the famous Low Energy Adaptive Clustering Hierarchy (LEACH)
protocol [23]. One of these extensions is Energy Potential LEACH (EP-LEACH), [24], which predicts
the amount of energy that each node might harvest and tries to avoid using a low energy potential
node as a cluster head. Using this method, EP-LEACH tries to construct more stable clusters and
balance the power. Solar LEACH (sLEACH) is another extension of LEACH for energy harvesting
sensors [25]. In sLEACH, the network consists of both solar and battery powered sensors. sLEACH
gives higher priority to solar powered sensors with a high level of energy to become a cluster head.

Authors in Reference [26] proposed a centralized genetic-based unequal clustering algorithm
for energy harvesting network (EHGUC). The main idea is that a base station creates clusters
with different cluster sizes, in a way that the clusters that are closer to the base station will have
smaller sizes, so as to make them consume less power. It uses several parameters such as the
distance between nodes and energy harvesting rate as weighting parameters to select the cluster head.
A gradient-based energy-efficient clustering (GEEC) packet forwarding mechanism is introduced in
Reference [27]. Based on the relative position of the nodes and hop counts to the sink, a gradient
model is constructed [27]. Cluster heads are selected in a distributed manner by considering the energy
harvesting rate and the distance between a CH candidate and the center line of its circular ring. Thus,
unequal clusters are formed to lower network overhead and balance network power consumption.
The authors in Reference [28] proposed the use of energy harvesting sensors for relaying CH traffic.
The concept of clustering is used in [29] to facilitate the routing in EH-WSN. Energy Neutral Clustering
(ENC) [30], with the goal of providing perpetual network operation, groups the network into several
clusters. It uses a mechanism called Cluster Head Group (CHG), which allows each cluster to have
multiple cluster heads to distribute the traffic load. Using this method, the frequency of clustering and
control message overhead is reduced. Moreover, using convex optimization techniques, the optimum
number of clusters are computed. Another centralized clustering algorithm proposed is Reference [31]
uses discrete particle swarm optimization (DPSO) for clustering where base station uses the status of
all the nodes to modify the DPSO algorithm for clustering.

Apart from clustering and due to potentially unlimited harvested energy, several authors proposed
various ideas about how to efficiently use the harvested power to achieve best performance [32]. One of
the ways that is explored is by adjusting transmission power of the nodes. Optimal energy management
policies for energy harvesting sensors are considered in Reference [33]. The discounted throughput
is maximized over an infinite horizon, where queuing for data is also considered. In Reference [34],
the authors proposed a solution to maintain the battery at a certain level in a network with time-varying
battery recharging rate. In this work, two algorithms, namely, QuickFix and SnapIt, to compute
the sampling rate and routes and to adapt to the rate, are respectively proposed. In Reference [35],
to maximize the successful transmission and control energy–error probability tradeoff, Markov
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Decision Processes (MDP) have been used to choose between multiple transmissions. The authors
in Reference [36] developed a discrete time Markov model for different energy profile and storage
capabilities to analyze node outage probabilities. A complete information Markov decision process
model is developed in Reference [37] to characterize sensor’s battery recharge/discharge process to
achieve optimal transmit policies. In Reference [38], the authors used an infinite time–horizon Markov
decision process (MDP) to formulate the power control. They obtained a closed-form threshold-based
optimal power control solution for EH-WSN. The authors in Reference [39] formulate the power control
as a stochastic optimization problem and solve the optimization problem using Lyapunov techniques.
Without requiring historical knowledge of energy harvesting only based on the channel fade conditions
and current energy state of the battery, their proposed algorithm adjusts the transmission power.

To the best of our knowledge, there is a limited number of contributions in the literature about
clustering and power control on energy harvesting sensor networks. However, there are some similar
works on conventional battery powered sensors. Li et al. [40] proposes an Energy-Efficient Unequal
Clustering (EEUC) mechanism, which partitions nodes into unequal cluster sizes in a way that clusters
closer to the base station have smaller sizes than those clusters that are farther away from the base
station. Using this method, there would be less power consumption due to intra-cluster data forwarding
for cluster heads closer to the base station.

Rehman Khan et al. [41] proposed two routing protocols, namely power-controlled routing (PCR)
and enhanced power-controlled routing (EPCR), where the basic idea of both is nodes only change
their transmission power when they want to transfer their data to the cluster-heads. Thus, nodes that
are closer to the cluster-head can transmit with lower power, which eventually results in less power
consumption. The authors in Reference [42] propose a clustering algorithm and a transmission power
control mechanism for an ad hoc network, aiming to reduce the impacts of mobility and adaptive
transmission power. The idea is that the cluster-head adjusts its transmission power to the changes in
its cluster. For example, if CH receives a weak signal from a sensor or a report about unusual error rate,
it increases its transmission power to the maximum to cover all the nodes in its vicinity. In another
work, the authors in Reference [43] propose a power aware multihop routing protocol for a cluster
based sensor network, where the objective is to minimize the power consumption of CH, then it sends
the data in a power-aware multihop manner to the base station through a quasi-fixed route (QFR),
where nodes vary their transmission power based on the distance to the receiver.

This paper does not aim to propose a novel clustering scheme for energy harvesting sensors,
nor does it intend to propose a novel power control scheme for WSN. As energy harvesting is
spatio-temporal dependent, nodes might harvest energy with different ratios. Considering this
uncertainty in available energy, the main goal of this paper is to study how transmission power control
can be effective in a clustered or structured network in EH-WSN.

In our earlier work, we proposed a transmission power control for an unstructured/flat network,
where each node sends their data to the base-station that is located in the center of the network using
multihop forwarding. We have concluded that the power control can help the load balancing among
the sensors in directional communication from sensors to base-station, which results in the better
end-to-end performance. However, in this paper, we take a step further to study how power control
can affect the performance of the network where there is more dynamicity in the transmission among
the nodes. Therefore, we considered a network without any central entity, where sensors communicate
together in multihop fashion bi-directionally. Thus, at one round, a node can be a forwarder and
at another, it can be the receiver of the packet. We study this dynamicity and randomness in an
unstructured network, and then we compare it with a structured network.

The main contributions of this paper can be summarized as follows:

• Studying the effect of power control in an uninstructed network where nodes communicating
together in a random multi-hop fashion.

• Studying the adaptive transmission power control effect in the clustered network.
• Comparing the proposed method with some existing work in terms of network lifetime.
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3. System Model

We assume there are N sensors deployed non-uniformly in the network, where each sensor
is equipped with an energy harvesting unit that is capable of harvesting energy from its ambient
environment, e.g., solar, radio wave. The harvested energy is stored in a storage device such as a
supercapacitor to supply power for data transmission.

The system operates in a discrete slotted time t ∈ {0, 1, 2, . . . } and all operations are performed
in each slot with duration Δt. Let Eh(t) denote the amount of harvested energy, and Ec(t) denote the
amount of consumed energy both during time slot t. Let ρc ∈ (0, 1] and ρd ∈ [1,∞) denote charging
and discharging efficiency, respectively. Thus, the remaining energy at the beginning of slot t + 1 is
denoted by Er(t + 1) and is defined as

Er(t + 1) = ρdEr(t) + (ρcEh(t) − Ec(t))∀t (1)

In this work, for simplicity, the charging and discharging rate of the supercapacitor are considered
negligible, thus ρc ≈ ρd ≈ 1. Considering Emax as the maximum storage capacity, thus 0 ≤ Er(t) ≤ Emax.

In a real-world application, the available harvested energy would be spatio-temporal dependent,
which means it varies based on the location of the sensors and time. To emulate this effect, we divide
the network in different regions Ri where nodes located in each region harvest with the same probability
ηi that is a uniformly distributed random number. Let Eh,max and Eh,min denote the maximum and
minimum harvesting rate, which should satisfy Eh,min ≤ ηi ≤ Eh,max. In this paper [Eh,min,Eh,max] =
[0.5,1] is considered. In a solar powered sensor, ηi value 0.5 is considered to mimic a partially clouded
area where nodes in that region can harvest with half the value of Eh,max, and ηi= 1 represents a clear
sky where nodes can harvest energy with the highest ratio.

Based on the remaining energy of each node i ∈ N, Er,i, a node i can be in three different states,
namely stable, medium, and critical, denoted as Nsi,s, Nsi,m and Nsi,c, respectively. Thus, for node i,
it becomes

Nsi =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Nsi,s defines as Eri ≥ α
Nsi,m defines as β ≤ Eri < α
Nsi,c defines as θ ≤ Eri < β

, (2)

where α, β, and θ are power parameters that are tunable based on network requirements.
When using transmission power control, for each node, three different transmission power levels

are considered, namely, normal, medium, and high, denoted by Ntp,n, Ntp,m,and Ntp,h, respectively.
A node switches between these three modes based on its own power level and their neighboring nodes’
power condition, as depicted in Equation (3). Therefore, each node adapts its transmission power
based on the other nodes’ condition in its surrounding environment. Thus, for node i , we have

Ntpi =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ntpi,n if Nsi,c ∨ Nsj,s, ∀ j ∈ Nngh,i

Ntpi,m if (Nsi,s ∨ Nsi,m) ∧ Nsj,c, ∀ j ∈ Nngh,i

Ntpi,h if Nsi,s ∧ Nsj,c, ∀ j ∈ Nngh,i

, (3)

where Nngh,i is the set of node i neighbors in which Nngh,i ∈ N.
In each round (t), a certain number of the nodes Nd generates and transmits their event to a random

destination (another node inside the network) over a time-varying wireless channel. The packets are
forwarded using neighboring nodes towards the destination in a greedy manner using the shortest
hop distance. Therefore, each node might work either as a relay or as a data source or data destination.
Therefore, at each round t, node energy consumption is calculated as the maximum power required to
sense its own packet or summation of all relayed packets at each round, which can be expressed as

Ec,i(t) = max
{

Eti(t),
∑

k∈Nngh,i
P f ,k(t)

}
, (4)
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where Eti is the energy node i consumes for transmitting its sensing packet and P f ,k is the of number of
forwarded packets from node i neighbors.

Each node can communicate with the neighboring nodes in its coverage region. A circular region
centered on a node is referred to as coverage region of a node, where the radius of the circle can
vary, and it is determined by each node transmission power and pathloss model. There are several
pathloss models that are used in the literature. In this paper we model the pathloss using log-distance
model [44] as follows

PRdB(d) = PTdB − 10n log10(d). (5)

where PRdB(d) is the average received power in dB at separation distance d, PTdB is the transmission
power in dB, and n is the path loss exponent. Considering the normal distribution, Equation (5) can be
written as

PRdB(d) = PTdB − 10n log10(d) + Xσ, (6)

where Xσ ∼ N(0, σ) is a Gaussian random variable with zero mean and standard deviation σ in dB.
Thus, PRdB(d) is also Gaussian distributed, and can be formulated as

PRdB(d) ∼ N
(
PTdB − 10n log10(d), σ

)
. (7)

When the receiver sensitivity is lower than the received power, the received signal can be readable
at the receiver. Therefore, as PRdB(d) is Gaussian distributed, we use the Q-function to calculate the
probability of P

(
PRdB(d) > γdB

)
(successful received signal) by calculating the tail probability of the

standard normal distribution [44]. Thus, we have

P
(
PRdB(d) > γdB

)
= Q

⎛⎜⎜⎜⎜⎜⎜⎝γdB −
(
PTdB − 10n log10(d)

)
σ

⎞⎟⎟⎟⎟⎟⎟⎠. (8)

Thus, each packet will be successfully delivered to the next hop with a probability of
P
(
PRdB(d) > γdB

)
at each round. Packets might not reach the destination due to disconnected links,

shortage of remaining energy in nodes, or channel conditions. In those cases, the packet will be
dropped and measurement outage occurs.

4. Performance Evaluation

As it is costly to have testbed or implementation in a large scale, we have decided to study the
performance of the network using MATLAB, where various conditions and different sets of simulations
have been conducted using real life parameter values and features that would help us understand
the behavior in the design and planning phase of the network. 100 CR sensor nodes deployed
non-uniformly in a 1000 m × 1000 m area, which can emulate a 100 hectares’ forest. We assume each
node is equipped with a supercapacitor such as 3FNESSCAP [45], as energy storage for harvested
energy. At the initial stage, the supercapacitor is considered fully charged and it can hold up enough
power for 300 events. Simulation runs for 1000 rounds and in each round 30 randomly chosen sources
transfer a packet to 30 randomly chosen destinations using the shortest available path, where several
performance metrics such as average packet delivery ratio (PDR), average hop-count, and consumed
power are studied. To achieve reliable results, reducing the effect of randomness and obtaining
sufficient confidence, we run the simulation with 50 different network setups. Results are averaged
with a 90% confidence interval. Simulation parameters are summarized in Table 1.
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Table 1. Simulation parameters.

Parameter Value

Number of nodes 100, 200
Network size 1000 m × 1000 m

Transmission range Default = 100, Δ = 150, δ = 200 m
Power parameters A = 50%, β = 25%, θ = 10%

Capacitor 300 energy units
Packet rate 30 packets per round

Energy harvesting rate 6 units per round
Consumption rate 1,3,10 units per round depending on transmission power

Noise Floor 0, 10, 20, 30, 40 dB
Simulation run 50 rounds

Confidence interval 90%

4.1. Non-Clustered Network Performance Evaluation

In the first simulation, a flat (non-clustered) network is considered where each node can
communicate with the neighboring nodes within its transmission range. The result of this simulation
is depicted in Figures 1–4. Figure 1 depicts an example of a deployed network, with the heatmap
highlighting the amount of available energy in the deployment field, where x and y axis defining the
size of the field. The figure shows the case with power control ON and OFF. Each case is shown with
four subgraphs that are obtained as time evolves in the simulation. As can be observed, the nodes in
the center of the network that usually relay more traffic deplete their energy faster than those nodes in
the outskirts of the network. However, using adaptive power control, it can be observed that energy is
distributed more uniformly than the case without power control.

 
Figure 1. Network power level heatmap demonstrating the changes in the nodes power level in four
stages of the running network.

Figure 2 depicts the effect of power control on the percentage of inactive and disconnected nodes.
Inactive nodes are defined as those nodes that ran out of power and are deactivated until they harvest
enough energy to go back to sensing state. Meanwhile, disconnected nodes are defined as those nodes
that have enough power to operate, however, they got disconnected from the rest of the network
because of the broken links due to the inactive nodes. As can be observed from Figure 2a, when power
control is ON, the network shows a slightly lower number of inactive nodes. The reason is that,
by using power control, the nodes balance the energy consumption in a way that they try to reduce
the traffic load on low power nodes indirectly forcing them to consume less energy. By increasing
the number of nodes to 200, we can see more nodes that are running out of energy, where in round
1000, it reaches 9% and 13%, with and without power control, respectively. The reason behind this
sharp increase in the number of inactive nodes can be due to longer hop routes from each source to
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destination, which causes more energy consumption. The effect of those inactive nodes on the network
can be seen in Figure 2b, where the inactive nodes cause a part of the network to be disconnected
from the rest. As it is shown earlier in Figure 1, nodes that are usually handling more traffic deplete
their energy faster and run out of batteries. As those nodes are usually located in the central area
and work as bridges between two sections of the network, their deaths cause network partitioning
and disconnected nodes. However, as is shown, using adaptive power control, the network stays
connected even in the presence of the same number of inactive nodes as nodes find new connections in
the network since nodes can increase their transmission power. By increasing the number of nodes to
200, the network shows lower disconnected nodes due to more connections available that each node
has. However, the pattern is still the same.

 
(a) (b) 

Figure 2. Network performance in terms of (a) number of inactive nodes and (b) number of
disconnected nodes.

  
(a) (b) 

Figure 3. Network performance in terms of (a) average packet delivery ratio and (b) average length
of path.

 
(a) (b) 

Figure 4. Network performance in terms of (a) average remaining power per node and (b) average
power consumed per delivered packet.
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The effect of power control on network end-to-end performance is depicted in Figure 3. The figure
reveals that using power control, the network achieves around 20% higher PDR ratio compared
to without the use of it, in both 100 and 200 nodes scenarios. The main reason is the number of
disconnected nodes from the network in which they cannot reach the rest of the network as observed
in Figure 2b. In terms of average hop count depicted in Figure 3b, due to higher transmission range
when power control is ON, it shows slightly lower average hop count, which can result in a lower
delay. By increasing the number of nodes to 200, the network expands and shows, on average, 2 hop
longer routes, but the same behavior.

The network performance in terms of power consumption is shown in Figure 4. It can be observed
from Figure 4a that using adaptive power control, the network consumes more energy (as it is expected)
and the average remaining energy per node is less than that when not using power control. This is due
to the increase in transmission power of some nodes to keep the network connected. It can be seen
from Figure 4b that using adjustable transmission power, the network performs the same with and
without power control when having 100 nodes, but when having 200 nodes, the network consumes
more energy for each packet while using the power control. The reason is again the extra power used
in the power control case to keep the network connected. However, considering that it achieves 20%
extra PDR (see Figure 3a), it is a reasonable tradeoff.

4.2. Clustered Network Performance Evaluation

Figures 5–8 show the performance of the network where nodes are divided into clusters based
on the conditions explained in the system model. Similar to Figure 1, Figure 5 shows the changes in
power intensity of a clustered network in different stages. As is shown, using adaptive power control,
the network balances the energy consumption in different parts of the network. Compared to Figure 1,
it can be observed that, with clustering, the network achieves better energy distribution that results in
better performance.

 

Figure 5. Clustered network power level heatmap demonstrating the changes in the nodes power level
in four stages of the running network.

Figure 6 shows the performance of the network in terms of the lifetime of nodes. As can be seen
from Figure 6a from round 200, some nodes start running out of batteries. As can be seen, using an
adaptable power control network shows slightly lower number of inactive nodes. Like the flat network,
in cluster network increasing the number of nodes to 200, we observe more inactive nodes. However,
using clustering network shows around 3% less inactive nodes compared to a flat network. Similar to
Figure 2b, in Figure 6b, it can also be observed that, due to those inactive nodes, several other nodes
get disconnected from the network. However, by adjusting the power control to the network condition,
nodes stay connected. Comparing Figures 2 and 6, we can see how clustering in the network improves
the performance and we observe a lower number of inactive and disconnected nodes.
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(a) (b) 

Figure 6. Network performance in a clustered network in terms of (a) number of inactive nodes and
(b) number of disconnected nodes.

Figure 7 depicts the network end-to-end performance. As can be seen in Figure 7a, without using
power control network achieves around 70% with 100 nodes and 80% with 200 nodes, which shows
improvement compared to the network without clustering that is around 62% and 70% in the 100 and
200 nodes case, respectively (Figure 3a). The reason behind this improvement is the lower disconnected
nodes in the network. While using adaptable power control, the network reaches higher PDR and
the performance is similar with the network without clustering and it shows around 80% and more
than 90% PDR in the 100 and 200 nodes case, respectively. In terms of average hop-count depicted in
Figure 7b, the network shows almost the same pattern with a slight increase in hop count compared to
a network without clustering.

  
(a) (b) 

Figure 7. Network performance in a clustered network in terms of (a) average packet delivery ratio
and (b) average length of path.

Figure 8 shows the network performance in terms of power consumption. It can be seen that,
due to an increase in transmission power using adaptive power control network, it consumes more
power on average and it drops to nearly 35% and 45% for the 100 and 200 nodes, respectively. However,
comparing Figure 8a with Figure 4a, it can be observed that using clustering network results in more
than a 10% increase in remaining power per node than when not using it. In terms of packet cost,
with and without power control, the network shows the same performance and it consumes 15 power
units on average, where this value is 17 units without clustering for 100 nodes. Using 200 nodes,
the network shows the same pattern with an increase in packet cost that reaches 20 units per packet.
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(a) (b) 

Figure 8. Network performance in a clustered network in terms of (a) average remaining power per
node and (b) average power consumed per delivered packet.

A comparison of the proposed protocol with three well-known protocols energy-efficient unequal
clustering (EEUC), hybrid, energy-efficient, distributed clustering (HEED) [46], and low energy
adaptive clustering hierarchy (LEACH) [47] has been performed in order to study the performance
of the proposed protocol. The result of the comparison is depicted in Figure 9. As can be seen from
the figure, the proposed protocol start losing some nodes around round 300, while other protocols
start performing better. The reason behind is the sudden increase in the transmission power of some
nodes in the proposed protocol. However, the rate of dying nodes starts to slow down by round 500.
Other protocols maintain most of the nodes’ power, but they face a sudden decrease in the number of
alive nodes, as by then, most of the nodes lost their high percentage of power. As can be seen, by round
700 to 800, most of the nodes are dead in the other protocol, while the proposed protocol shows better
performance having around 50% of the nodes alive. The reason is that nodes are relaying lower traffic
due to the loss of some connections.

 

Figure 9. Performance comparison regarding the network lifetime.

5. Conclusions

Energy harvesting is a sustainable way to prolong lifetime of a sensor network, which enable
us to target various applications that are not feasible using battery-powered sensors. However,
the uncertainty in the amount of available energy poses design challenges. This paper studied the
effect of using adaptive transmission power control for energy harvesting sensors in both clustered
and non-clustered networks. The adaptive transmission power control adjusts the transmission power
of each individual node independently based on the node residual power and its neighboring nodes’
energy condition. Once a node energy level goes below a predefined threshold level, the neighboring
nodes increase their transmission power control based on their residual power accordingly, to reduce the
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traffic load on the low energy node. Using this method, power can be consumed more uniformly among
the nodes in the network. The numerical results indicate that the proposed adaptive transmission
power control improves the performance of non-clustered networks. We also have proven that a basic
power control can still improve the clustered network performance further and help the network to
achieve better end-to-end performance. In this paper, we have used a simple energy-based clustering,
greedy routing, and relatively simple power control mechanism to prove the efficiency. However,
in the future other clustering and routing algorithms are going to be considered, which we believe
results in further improvement of network performance metrics.
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Abstract: Wireless rechargeable sensor networks (WRSNs) have gained much attention in recent
years due to the rapid progress that has occurred in wireless charging technology. The charging
is usually done by one or multiple mobile vehicle(s) equipped with wireless chargers moving
toward sensors demanding energy replenishing. Since the loading of each sensor in a WRSN can be
different, their time to energy exhaustion may also be varied. Under some circumstances, sensors may
deplete their energy quickly and need to be charged urgently. Appropriate scheduling of available
mobile charger(s) so that all sensors in need of recharge can be served in time is thus essential to
ensure sustainable operation of the entire network, which unfortunately has been proven to be an
NP-hard problem (Non-deterministic Polynomial-time hard). Two essential criteria that need to
be considered concurrently in such a problem are time (the sensor’s deadline for recharge) and
distance (from charger to the sensor demands recharge). Previous works use a static combination
of these two parameters in determining charging order, which may fail to meet all the sensors’
charging requirements in a dynamically changing network. Genetic algorithms, which have long been
considered a powerful tool for solving the scheduling problems, have also been proposed to address
the charging route scheduling issue. However, previous genetic-based approaches considered only
one charging vehicle scenario that may be more suitable for a smaller WRSN. With the availability
of multiple mobile chargers, not only may more areas be covered, but also the network lifetime
can be sustained for longer. However, efficiently allocating charging tasks to multiple charging
vehicles would be an even more complex problem. In this work, a genetic approach, which includes
novel designs in chromosome structure, selection, cross-over and mutation operations, supporting
multiple charging vehicles is proposed. Two unique features are incorporated into the proposed
algorithm to improve its scheduling effectiveness and performance, which include (1) inclusion
of EDF (Earliest Deadline First) and NJF (Nearest Job First) scheduling outcomes into the initial
chromosomes, and (2) clustering neighboring sensors demand recharge and then assigning sensors
in a group to the same mobile charger. By including EDF and NJF scheduling outcomes into the
first genetic population, we guarantee both time and distance factors are taken into account, and the
weightings of the two would be decided dynamically through the genetic process to reflect various
network traffic conditions. In addition, with the extra clustering step, the movement of each charger
may be confined to a more local area, which effectively reduces the travelling distance, and thus the
energy consumption, of the chargers in a multiple-charger environment. Extensive simulations and
results show that the proposed algorithm indeed derives feasible charge scheduling for multiple
chargers to keep the sensors/network in operation, and at the same time minimize the overall moving
distance of the mobile chargers.
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1. Introduction

In wireless sensor networks (WSN), hundreds or thousands of homogenous sensors with limited
battery power are deployed in the region where information will be collected. Sensor nodes detect
their proximate environment for specific information and send that information to a base station.
While sensors are deployed uniformly in a wireless sensor network, sensors located in different
positions bear different communication responsibilities. Accordingly, the energy consumption of
sensors in the network may be heterogeneous, so some may drain their power earlier than the others
and cause subsequent network failure.

Fortunately, as a result of advances in wireless charging technology [1], it is now possible to
recharge the sensors through a vehicle equipped with a charger (will be referred to as mobile charger
hereafter) [2–4]. WSNs that possess such a recharging capability, which are called wireless rechargeable
sensor networks (WRSNs), may potentially extend their network life time. However, the scheduling of
recharges needs to take the dynamic change in loading of each sensor, which usually comes in bursts
when events occur, into consideration. Otherwise part of the sensors may deplete their energy before
being charged, thus resulting in possible network failure. In other words, an efficient scheduling of
mobile charger(s) to perform its/their duty has/have to consider varied sensor requirements. Note
that, regardless of the number of mobile chargers used in a WRSN, optimal charging scheduling and
its related issues have been proven to be an NP-hard problem and so far only heuristic/near-optimal
solutions can be provided.

Two essential factors that are often used to determine the order of recharge are time (the sensor’s
deadline for recharge or energy consumption rate) and distance (from charger to the sensor demands
recharge) [5,6]. The two factors have usually been combined together through some pre-determined
weights in previous works. For example, in reference [5], both factors are considered equally,
while reference [6] argues that a 100% (time, in terms of energy consumption rate, which is not
constant as reference [5] assumes) and 80% (distance) split would be more favorable. However, as we
have stated earlier, in a dynamic changing sensor network environment, it is questionable whether
any static combination of the two parameters will meet all the sensors’ charging requirements.

Accordingly, in this work, we propose a genetic approach to solve the emergent charging
scheduling problem. The proposed algorithm is unique in adopting the following two strategies.
First, the genetic optimization process incorporates the Earliest Deadline First (EDF) and Nearest Job
First (NJF) scheduling outcomes into the initial chromosome population, which guarantees that the
results of the genetic optimization would be no worse than the EDF and NJF results. More importantly,
it also implies that both the time and distance (encoded in chromosomes based on EDF and NJF
generated outcomes) factors in charge scheduling are taken into consideration, while the genetic
process is used in some way to derive the weightings of the two. Secondly, the proposed algorithm
may assign the charging tasks to single or multiple chargers to meet the in-time charging limitations.
In the case of a multiple-charger arrangement, a clustering step is applied prior to every chromosome
re-generation procedure. The clustering process proceeds by grouping neighboring sensors that
demand recharges so that each group may be assigned to one of the available chargers, which thus
confines the movement of each mobile charger in a more local region. The advantages of the above
two strategies, as will be shown later in the simulation results, are improving the successful sensor
recharge rate and greatly shortening the overall moving distance of mobile chargers. In other words,
the charging need of sensors can be addressed, while reducing the energy consumption of mobile
chargers. In addition, the proposed algorithm is generic as it makes no assumption regarding what
target power level (i.e., charging deadline) sensors may issue charging requests and poses no restriction
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to both a charging vehicle’s moving speed and a sensor’s charging rate. However, the issue with
genetic process is that scheduling may need a more powerful platform as compared to the method
used in reference [5].

Overall, the objective of this research is to develop an effective genetic-based scheduling algorithm
to sustain the lifetime of sensor networks in a multi-charger (include single charger) context. The novel
design of chromosome structure, selection, cross-over and mutation operations, together with the
afore-mentioned two strategies to fulfill the above goal will be presented and implemented. Extensive
simulations with parameters setting that is as realistic as possible will be conducted to evaluate the
performance of the proposed genetic approach, the effectiveness of incorporating one or both of the
strategies, and the effects of the number of mobile chargers. Performance comparisons will also be
made among ours and the other similar implementations. Note that a preliminary idea for this work
appeared in reference [7].

The rest of the paper is organized as follows. In the related work section, we review previous
works in the field of rechargeable wireless sensor networks. The proposed genetic approach to solve
the charging scheduling problem is provided in the following section. Extensive simulation results
of the proposed approach will be described and discussed in the simulation results and discussions
section. Finally, we conclude this paper and list possible future research directions in the final section.

2. Related Works

Wireless sensor networks have received a lot of attention and have been widely used in collecting
data in various fields in the past two decades [8]. However, energy drain due to the limited battery
power of the sensor nodes has been one of the major issues that results in eventual network failure.
However, the energy of sensors can be replenished by collecting ambient energy, such as solar
power, vibration energy, and so on. Nevertheless, the energy that can be harvested is unstable
and unpredictable. Fortunately, the feasibility of wireless power transfer through magnetic resonance,
as demonstrated by Kurs et al. [1], makes sustainable wireless sensor networks possible. Accordingly,
a WSN that possesses such a battery recharge capability, the Wireless Rechargeable Sensor Network
(WRSN) has emerged to become one of the popular areas in current WSNs research [9–11].

Some research proposed to use static charging devices to charge the sensors [12,13]. The required
number of charging devices may be increased proportionally to the area of the wireless sensor network,
which induces more cost. Moreover, due to the limited range of wireless power transmission, the static
charger solution may not be as energy efficient as compared to the mobile charger solutions [14].

In terms of mobile charger solutions, single or multiple charging vehicle(s) may be used.
The former may work well in a small scale environment [15]. Yet, in a larger network, one mobile
charger may not be feasible, considering the limited amount of energy it can carry. However, in both
cases, one of the most essential issues is to schedule the mobile charger(s) so that it/they can charge
whichever sensor that is running out of energy in time to keep the network operating.

L. Fu et al. [16] proposed an energy synchronized mobile charging (ESync) protocol,
which simultaneously reduces both of the charger’s travel distance and the charge waiting time
of sensor nodes. Their algorithm operates by constructing a set of nested TSP (Travelling Salesman
Problem) tours, which is an NP-hard problem, based on the sensor nodes’ energy consumption rate.
Sensor nodes are grouped according to their power consumption rate and charger is scheduled to visit
nodes belonging to the group in the order of descending consumption rate. However, the possible
issue with this technique would be that scheduling has to be redone once the power consumption rate
of the sensors changes, which happens quite often when new events spotted in the network.

L. Xie et al. [17] showed that WSN can remain operational forever through periodic wireless energy
transfer. They assumed that the node’s energy consumption is fixed. After careful analysis, the near
optimal charging schedule is obtained. The same team [18] also proposed to exploit the multi-node
wireless energy transfer technology provided by magnetic resonant coupling. Their algorithm
partitions a two-dimensional plane into adjacent hexagonal cells, and the charging vehicle visits
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these cells and charges multiple sensor nodes from the center of a cell. They then pursue a formal
optimization framework by jointly optimizing the traveling path, flow routing and charging time.
The result was a provably near-optimal solution for any desired level of accuracy. Both techniques
mentioned above work on finding the (near) optimal traveling paths for mobile charger so that it
may visit and charge sensor nodes periodically. In other words, the issue of on-demand recharging
requirements of sensors was not addressed.

Y. Shu et al. [19] proposed to control the velocity of mobile chargers in order to reduce the traveling
time of chargers so that effective time spent on sensors charging can be increased. They first proved
that velocity control of mobile charger in the specified problem to be NP-hard, and then developed
a heuristic solution with a provable upper bound. Although the work does not relate directly to the
recharge scheduling problem, yet it indicates a potential factor to be considered in future research.

M. Pan et. al. [20] proposed a heuristic algorithm to solve the charging problem. In their method,
the charging vehicle not only charges the sensors, but also collects data from some sensors acting as
intermediate sinks and then brings back the information to the base station. The goal is to reduce the
propagation of data packets among sensor nodes, which is the primary source of energy consumption.
This appears to be a good idea, since reducing the energy consumption of sensors relieves the burden
of chargers, which may deserve further attention in our future study. However, on-demand recharging
requirement of sensors was still not addressed in their work.

Jie Jia et al. [21] used a heuristic algorithm to locate sensors that need charging, followed
by a genetic approach to find a shorter moving sequence. The proposed strategy used only one
mobile charger, but the authors did not discuss how to fulfill the dynamic requirements of sensors.
A.H. Mohamed [22] also adopted a genetic algorithm to the charging vehicle scheduling problem.
They used a cluster structure to decrease the complexity of a genetic algorithm. That is, their algorithm
finds a better moving path among cluster heads only. The mobile charger charged the cluster heads,
which then charged their members in the cluster hierarchy via energy propagation. The advantage
of such a hierarchical design would thus be reducing the traveling distance of the mobile charger.
However, the possibility of using multiple charging vehicles and dynamic charging requirements was
not included in their research scope.

H. Dai et al. [15] proved that the optimal quantity of the charging vehicles in the wireless sensor
network is an NP-hard problem, and they use an approximation approach to obtain a better solution.
The authors proposed a heuristic approach to get the minimal number of charging vehicles to keep the
residual energy of sensors above some working threshold. In their work, the energy consumption of
each sensor is assumed to be uniform and constant, which under many circumstances may not be true.
In other words, the diversity of sensor requirements should be taken into consideration in charging
scheduling. Moreover, the efficient use of the charging vehicles to address the dynamic charging
requests is not included in their research.

According to the aforementioned prior research, with either one charger or multiple chargers,
the optimal charging scheduling and its related issues, have either been proven to be an NP-hard
problem [15,16,18] or only heuristic/near-optimal solutions can be provided [18,20–22]. Accordingly,
in this paper, a genetic approach like Jie Jia et al. [21] and A.H. Mohamed [22] is adopted. However,
the scheduling problem will be addressed in the context of multiple mobile chargers and the dynamic
sensors charging requirement will also be taken into consideration. In addition, meeting the recharging
requirements of sensors while reducing the travelling distance is also one of the major issues that was
addressed [16,19], which will be a major point in our proposed solution as well.

3. Genetic Approach for Multiple Mobile Chargers Scheduling

In this section, the proposed genetic approach for scheduling multiple mobile chargers in
WRSN is presented, followed by the context and assumptions of the proposed approach, and the
algorithm details.
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First of all, assume that there are a total of Ncar mobile chargers and the positions of sensors are
already known to the base station (BS). In addition, a sensor node will send a recharge request to the
BS when its battery power drops to some predefined threshold, which means the BS is also aware of
the residuals of the sensor, i.e., its remaining work time (RWT). All sensor nodes, together with their
remaining work time and positions, that demand charging are kept in the charging_list. With the above
information, the BS may determine when to initiate a charge scheduling and determine the charging
routes for the mobile chargers. The goal is to minimize the moving distance of the chargers while
meeting the requirement that all sensors are recharged in time if possible. Specifically, when the BS
finds the “start of charge scheduling” condition (as described later) occurs, it initiates the scheduling
procedure (a genetic algorithm as described later in this section) and then assigns missions to the
mobile chargers accordingly.

3.1. Conditions for Start of Charge Scheduling

The preliminary requirement to meet the “start of charge scheduling” condition is the availability
of mobile charger(s). In other words, there must be at least one (out of Ncar) charger available at BS’s
disposal. The number of available chargers is denoted as Ncar_available, 0 ≤ Ncar_available ≤ Ncar. In case
Ncar_available ≥ 1, either one of the following two scenarios: (1) the number of sensor nodes demanding
charging reaches the capacity of recharging (Q) that currently available chargers can provide, or (2) the
minimum recharging deadline time, min_RDT, beyond that some sensor nodes may die if a charging
mission does not start, which will trigger the initiation of a charge scheduling procedure.

The capacity of charging, Q, is the total number of sensor nodes that can be charged given a
specific number of available chargers. It may be estimated according to the total battery power required
by the sensors and the battery power may be provided by the available charging vehicles. To simplify
the matter, let us assume that each charging vehicle is capable of charging an equal number of sensor
nodes, Ncharge. In case there are Ncar_available chargers, Q can be expressed by Equation (1).

Q = Ncar_available × Ncharge (1)

The minimum recharging deadline time (min_RDT), can be computed as follows. First, sort
the charging tasks demanded by sensor nodes in the charging_list according to the Earliest Deadline
First (EDF) order [23] and distribute these tasks evenly to all available mobile chargers. The arrival
time, ATSi , of each charger to each assigned sensor node, Si, can be calculated given the facts that
visiting order, distance to sensor node and moving speed of mobile charger are known. The estimated
recharging deadline time RDTSi for sensor node Si, can be derived by computing the difference
between the arrival time (of mobile charger) and its remaining work time, as depicted in Equation (2).

RDTSi = ATSi− LTSi (2)

To deriving the minimum recharging deadline time (min_RDT) is then equivalent to finding the
minimum among all the RDTSi , Si ∈ charging_list

3.2. The Proposed Genetic Charge Scheduling Algorithm

The proposed genetic scheduling algorithm starts by randomly generating initial population P.
After an iteration (and every subsequent iteration) of the genetic process, the best α% chromosomes in
the population are preserved for the next generation. Also, β% chromosomes of the new population are
newly and randomly generated as done in the initial phase. The remaining chromosomes of the new
population (1−α%−β%) are generated by using the crossover function from two randomly selected
chromosomes of previous generation, among which some might be mutated with γ probability.
The genetic process would proceed until it reaches a pre-determined maximum iteration count
(max_Iteration) or the fitness function has not been further improved for t consecutive iterations.
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The detailed genetic algorithm is listed in Algorithm 1. Note that Algorithm 1 would be performed n
times with parameter Number_of_car iterates from 1 to n, where n equals to the number of charging
vehicles available at the moment when the algorithm starts. The goal is finding the number of charging
vehicles (k, 1 ≤ k ≤ n) that achieves the best recharge scheduling.

Algorithm 1. Genetic algorithm for recharging scheduling

Input: Number_of_car, charging_list
Output: the best chromosome for recharging scheduling using Number_of_car vehicles
1 Generating initial population P.
2 Select the first chromosome from P to be the best_one chromosome
3 fitness_unchanged_count = 0
4 for i = 0 to max_Iteration do

5 Calculating fitness value of each individual in P
6 Sorting P ascendingly according to the values of individuals
7 Select the first chromosome from P to be the new_best_one chromosome
8 if best_one is equal to new_best_one
9 fitness_unchanged_count ++

10 else

11 Set best_one to be the new_best_one chromosome
12 fitness_unchanged_count = 0
13 end

14 if fitness_unchanged_count > t
15 Return the best_one chromosome
16 end

17 Set population next_P to {}
18 Add first α% individuals in P to next_P
19 Generate and add β% new individuals to next_P by using Algorithm 2
20 for j = 0 to Population_size·(1−α%−β%) do

21 Select two parents p1 and p2 from P by using Algorithm 3
22 Cross p1 with p2 by using Algorithm 4, and produce child p’
23 Cross p2 with p1 by using Algorithm 4, and produce child p”
24 Choose the better one from p’ and p” to be pchild
25 Mutate pchild by using Algorithm 5 with probability γ

26 Add pchild into next_P
27 next j
28 next i
29 Return the first chromosome of P

In the following, the design and generation of chromosomes (Algorithm 2), fitness function,
selection (Algorithm 3), crossover (Algorithm 4), and mutation (Algorithm 5) operations that are
involved in the afore-mentioned genetic scheduling algorithm will be presented in more detail.

3.2.1. Chromosome Design and Generation

Assume that there are m sensors that need to be recharged in the entire wireless sensor network.
In the case of single mobile charger, a chromosome may be designed to contain m genes, with each
gene assigned the serial number of the sensor. In other words, a chromosome and a gene represent the
list of sensors demand charging and the sensors ID in that list, respectively. The position of gene in a
chromosome stands for the charging order of a sensor. Figure 1 depicts a possible gene combination of
a chromosome in the case of seven sensors requesting a recharge. In this specific case, sensor 1 would
be charged first, followed by sensors 5, 3, 2, 7, 6, and 4.
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Figure 1. A sample chromosome.

To allocate the charging tasks to multiple mobile chargers, the assignment of sensors to the
charging vehicles should also be included in the chromosome. Accordingly, each gene now contains
not only the serial number of a sensor, but also the serial number of the charger that is responsible for
recharging of that specific sensor. Figure 2 shows a scenario with 3 chargers and 7 sensors waiting to
be recharged. The charging order is {1, 5, 3, 2, 7, 6, 4} and chargers 1, 2, and 3 are assigned to charge
sensors {1, 2, 7}, {5, 6}, and {3, 4}, respectively. In that case, the chromosome encoding is depicted in
Figure 2.

Figure 2. A sample chromosome for solving the charge scheduling problem with multiple chargers.

Algorithm 2 shows the detailed process of chromosome generation. Note that, assigning adjacent
sensors demand recharging to the same charger may be an effective way to reduce the energy cost
of moving chargers back and forth among sensors located apart from each other for their missions.
To explore and incorporate this idea into our proposed method, we adopt a notion of clustering that
is similar to the k-center algorithm. To be more specific, in case there are k available chargers and m
to-be-charged sensor nodes, this process may divide these sensors into k groups based on their locality
and assign them to the k available chargers. Taking the scenario depicted in Figure 3 as an example,
the clustering process proceeds as follows: (1) Calculate the angle, θi (1 ≤ i ≤ m), of the ray originating
from BS to each sensor node i (as the θ shown in Figure 3a, −π < θ ≤ π). (2) Sort θi in ascending
order and derive the sensor nodes list {7, 6, 5, 4, 3, 2, 1, 8}, which may be considered as a circular
queue (3) Pick randomly a sensor from the list as the starting node and assigned sensors evenly to each
available chargers. For example, if the second node, 6, is selected, the assignment would go like: {6, 5,
4}→charger 1, {3, 2, 1}→charger 2, and {8, 7}→charger 3, as shown in Figure 3b.

 
(a) (b) 

Figure 3. A scenario depicting how the clustering process in Algorithm 2 works. (a) Calculation of the
angle of the ray originating from BS to the sensors. (b) Grouping and assigning sensors to be charged
to mobile chargers.
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Algorithm 2. Algorithm for generating chromosome instances

Input: Number_of_available_car, charging_list
Output: a randomly generated chromosome Chrom
1 Sort sensors in the charging_list in ascending order by the angle of the ray originating from BS to the sensors

to be charged and derive new charging _list in angle sequence.
2 Set Chrom = {}
3 Ncharge_list = size of charging_list

4 Navg =
∣∣∣Ncharging_list / num_of_available_car

∣∣∣
5 for i = 1 to Ncharging_list
6 Set gene.node_id to a randomly selected sensor ID from charging_list
7 Mark gene.node_id in charging_list as used
8 Set angle_seq as the position of gene.node_id in charging_list
9 Set gene.car_id =

⌊
angle_seq / Navg

⌋
10 Add gene to Chrom
11 next i
12 Return Chrom

3.2.2. Fitness Function

The goal of the proposed charge scheduling algorithm is to charge all the sensors before their
batteries exhausted and to minimize the energy consumption of the mobile charger. From the point of
view of charging vehicles, the amount of power required for a charging mission does not change no
matter what the charging sequence is. Accordingly, minimizing the moving distance of the mobile
charger(s) corresponds to saving its/their energy. Before going further with our discussion, a summary
of the notations to be used later is listed in Table 1.

Table 1. Notations used in this work.

Symbol Definition

Dbase, p1
k

The distance from the base station to the first sensor to be charged in charging path k.
Dpi

k , pi+1
k

The distance between the i-th and i+1-th sensors to be charged in charging path k.

τ
pi

k
arrive

The time of the charging vehicle arrives at the i-th sensor of charging path k.

τ
pi

k
charge The time needed to charge the i-th sensor in the charging path to the target power level

Speedcar The moving speed of charging vehicles
Speedcharge The charging speed of battery

Rpi
k

target The target power level of i-th sensor in the charging path k

Rpi
k

residual
The current power level of i-th sensor in the charging path k

RWTpi
k

The remaining working time of i-th sensor in the charging path k
sendtimepi

k
The time stamp of i-th sensor in charging path k that sends charging request

deadldinepi
k

The deadline of i-th sensor in charging path k to be charged
Distancek

car The moving distance of k-th charging vehicle
Distancetotal The sum of moving distances of all charging vehicles

pi
k The i-th sensor in charging path k (for k-th charging vehicle)

PathLengthk The length of charging path k

In case of using a single charger, the fitness function is designed to be the moving distance of
the charger. Since the charging vehicle departs from the base station for charging, and returns to the
base station after completing its tasks, the fitness function for some charging path p1: p1

1, p2
1, p3

1, . . . ,
pn

1 containing n sensors is defined as follows.
The objective is to minimize

f (p1) = Distance1
car, (3)
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Distance1
car = Dbase,p1

1
+ ∑n

i=1 Dpi
1,pi+1

1
+ Dpn

1 ,base, (4)

We have
τ

pi
1

arrive = τ
pi−1

1
arrive + τ

pi
1

charge for 2 ≤ i ≤ n, (5)

where

τ
pi

1
arrive = timecurrent +

Dbase,p1
1

Speedcar
, (6)

and

τ
pi

1
charge =

Rpi
1

target − Rpi
1

residual

Speedcharge
for 1 ≤ i ≤ n, (7)

Since each sensor sends its charging request to the base station with the estimated remaining
working time RWTpi

1
, the base station can get the deadldinepi

1
by summing sendtimepi

1
and RWTpi

1
.

For every node i in charging path p1, we have

τ
pi

1
arrive ≤ deadldinepi

1
, (8)

While there are m charging vehicles available with m charging paths pk: p1
k, p2

k, p3
k, . . . , pnk

k (1 ≤ k ≤ m),
the fitness function has to take into consideration the sum of all charging vehicles’ moving distance. Similar
to Equation (4), the Distanceark

c is defined below.

Distancek
car = Dbase,p1

k
+ ∑nk−1

i=1 Dpi
k ,pi+1

k
+ Dp

nk
k ,base, (9)

Fitness function for a chromosome x is modified as follows.

f (x) = ∑m
k=1 Distancek

car, (10)

Equations (5)–(7) are modified as follows.

τ
pi

k
arrive = τ

pi−1
k

arrive+τ
pi

k
charge for 2 ≤ i ≤ nk, where (11)

τ
p1

k
arrive = timecurrent +

Dbase, p1
k

Speedk
car

and, (12)

τ
pi

k
charge =

R
pi

k
target − R

pi
k

residual

Speedk
car

, (13)

So the problem can be formulated as a linear programming formula as follows:
Objective function:

Minimize ∑m
k=1 Distancek

car, subject to τ
pi

k
arrive ≤ deadldinepi

k
for 1 ≤ i ≤ nk and 1 ≤ k ≤ m. (14)

Note, only the scenarios where the charging vehicles move at constant speed and charge sensors
at the same rate will be considered in the following discussions. But according to equations above
(i.e., Equations (12) and (13)), there is no restriction on both the charging vehicle’s moving speed and
the sensor’s charging rate. In addition, sensors can issue requests at different target power levels and
provide different charging deadline. As a result, the fitness function as designed and presented above
can potentially deal with dynamic sensors’ charging requirements with multiple mobile chargers,
which may be an interesting problem to be addressed in the future.

In addition, the charging time should also be included in the fitness function. A schedule that
cannot complete the charging tasks is given a larger fitness value so that this schedule has lower
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possibility of being selected. On the other hand, for charging schedules that can complete charging
tasks in time should be given scores according to the times they needed for these tasks. Finally,
the fitness function is defined as follows.

f (x) = a × τovertime + b × τtotal + c × Distancetotal , (15)

τovertime = ∑m
k=1 ∑PathLengthk

i=1 (deadldine pi
k
− τ

pi
k

arrive), (16)

τtotal = max
1 ≤ k ≤ m

(τ
p

PathLengthk
k

arrive +
D

p
PathLengthk
k ,base

Speedk
car

), (17)

Distancetotal =
m

∑
k=1

Distancek
car, (18)

The constants a, b, c used in Equation (15) are predefined constant values as the weights of
τovertime, τtotal and Distancetotal , respectively. In the simulations performed in this work, a is set
to a very larger number (e.g., 1,000,000) to avoid adopting charging schedules that are not able
to fulfill their missions. On the other hand, b and c are both set to 1 for simplicity. In the future,
it may be possible to explore various combinations of these three parameters to potentially improve
scheduling performance.

3.2.3. Selection

In order to ensure that better chromosomes may possess higher probabilities of being selected to
generate new chromosomes, the chromosome pool is first sorted in ascending order according to the
fitness values (smaller fitness value implies better chromosome, which would be placed at the forepart
of pool). Assume that there are n chromosomes in the pool. Then a random number s is selected from
0 to n2 − 1 and the (n − �√s	)-th chromosome would be selected. To sum up, the algorithm to select a
chromosome from the chromosome pool is listed below.

Algorithm 3. Algorithm for randomly selecting a chromosome

Input: an integer number n
Output: a chosen chromosome
1 Select a uniformly distributed random number s from 0 to n2−1
2 Choose the (n − �√s	)-th chromosome from the sorted chromosome pool to be the selection result

3.2.4. Crossover

Crossover proceeds by first randomly selecting two chromosomes Ca and Cb from the chromosome
pool using the selection method mentioned above (Algorithm 3). A cutting point k is then randomly
generated. Let C[i] represent for the gene at position i of chromosome C, and C[i, j] represents a subsequence
of genes of chromosome C from the position i to j. Then the content of the crossover chromosome Cc is
composed of Ca[0, k − 1] and Cb[k, n − 1]. However, since the contents of Ca[0, k − 1] and Cb[k, n − 1] may
be duplicated, the crossover steps are modified accordingly as follows.

For example, a possible crossover process, as depicted in Algorithm 4, of two chromosomes,
Ca and Cb, with each containing 5 genes and with cutting point k being set to 3 is shown in Figure 4.
As can be seen, the crossover result, Cc, receives its first 3 (=k) and last 2 genes from Ca and Cb,
respectively. However, since the two genes from Cb contain sensor IDs that have overlapped with the
ones from Ca, they would be marked with −1 and later been replaced with ones that are not shown in
genes from Ca, which would be sensor ID 4 and 5.
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Algorithm 4. Algorithm for chromosomes’ crossover

Input: Two chromosomes Ca and Cb.
Output: A new chromosome Cc

1 Randomly select an integer k, where 1 ≤ k < |Ca| −1.
2 Set Cc [0, k − 1] = Ca [0, k − 1].

3 Set Cc[i] =

{
−1, i f Cb[i] ∈ Cc[0, k − 1]

Cb[i], otherwise
where k ≤ i ≤ n − 1

4 Find the elements from Cb that have not yet been placed in Cc, and fill them sequentially to the positions
marked with −1 in Cc.

Ca

Cb

k

Cc

Figure 4. An illustration of the crossover operation.

3.2.5. Mutation

As a chromosome should contain each sensor to be charged just once, a sensor ID in a chromosome
cannot just change to another one randomly. Thus, the mutation operation is designed to swap the
IDs of two randomly selected genes in a chromosome. The algorithm to mutate a chromosome Cm

is presented in Algorithm 5 below. Figure 5 is an illustration of the mutation process depicted in
Algorithm 5.

Cm

x y

Figure 5. An illustration of the mutation operation.

Algorithm 5. Algorithm for mutating a chromosome

Input: chromosome Cm

Output: mutated chromosome Cm

1 Select two distinct number x and y randomly, 0 ≤ x, y ≤ n − 1.
2 Swap the ID values of Cm[x] and Cm[y].
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4. Simulation Results and Discussions

The simulation program was coded with Visual Studio C# and executed on a personal computer
with an Intel i7-8700 CPU running Microsoft Windows 10. The simulation environment is specified
by a 1000 × 1000 meters’ rectangular region with 1000 sensors uniformly and randomly deployed.
The base station is located at the center of the area. Mobile chargers are equipped with independent and
unlimited power source for their movement. Also assume that a gradient based routing tree [24] has
been built already. Packets are sent from nodes to the base station hop by hop. Based on the free space
model proposed in reference [25], to transmit l bits over d distance would cost ETx(l, d) and to receive
l bits would cost ERx(l) as shown below.

ETx(l, d) = lEelec + lε f sd2

ERx(l) = lEelec

Eelec = 50
nJ
bit

ε f s =
10pJ
bit

/m2

The traffic load of each node is assigned a random value uniformly distributed within range
[0, x/n], where n is the total number of nodes. In other words, in every second, each sensor node has a
probability in between 0 and x/n in generating a packet. Whenever a node finds that its remaining
energy is lower than the preset percentage (Eth), it needs to send the charging request packet to the
base station. Both the request packet and the data packet are fixed at a size of 10 kB in the following
simulations. Packet transmission is set to 1/100 s for one hop delivery. The content of a charging
request packet includes node id, energy consumption rate Rc, residual energy Ec, and demand time
Tcurrent. Energy consumption rate Rc and Remaining Work Time (RWT) are calculated using the
following equations.

Rc =
Ef ull − Ec

Tcurrent − Tf ull
,

where Efull and Tfull are battery capacity and time that the sensor was last charged.

RWT = Ec/Rc

Unless otherwise specified, the parameters used in simulations are summarized in Table 2. All the
results are the average of 100 simulations. Three performance metrics, as listed below, are used for
evaluating the simulation results.

• Percentage or number of sensors been charged—the percentage of sensors can be successfully
charged. This is the primary goal of the proposed algorithm: the more sensors been charged
successfully, the longer the network life time would be expected.

• Moving distance—the average moving distance of the charging vehicles in charging a sensor.
It is calculated by dividing the total moving distance of charging vehicles by the total number of
sensors been charged. The shorter the average moving distance, the lower the cost in charging
the sensors.

• Percentage of data packets been delivered—the percentage of all transmitted data packets that are
successfully delivered to their destinations.

Note, as shown in Table 3, most of our parameter settings are based on those used by
Tsoumanis et al. [26], and three other research articles [5,6,17]. In some cases, the values of our
parameters were chosen to be even harsher than theirs. Examples of this were the network traffic,
battery power of chargers and sensor nodes’ initial energy power. Also, according to our assessment
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(through simulation), the energy consumption rate of the free space model is also higher than the other
models in our scenario, and thus puts more pressure on the network. Finally, other than the assumption
that mobile chargers have an independent and unlimited power source for their movement, all the
other parameter settings are chosen so that they are as close as possible to a realistic scenario.

Table 2. Simulation parameter settings.

Parameters Values

Network size 1000 × 1000 m2

Number of nodes 1000
Energy capacity of node 500 J

Energy capacity of mobile charger 10000 J
Traveling speed of mobile charger 5 m/s

Energy consumption of moving mobile charger 0
Charging rate 5 J/s

Initial residual of nodes 5%~25% ([0..20%] + 5%)
Residual of sensor triggering charging request 10%

Energy consumption model Free space model
Network traffic (Probability of a node generating a packet per second) [0, 1/100], [0, 1/10]

Transmission range of nodes 60 m
Packet length 10 kB

Parameters t, α, β, and γ used in Algorithm 1 20, 10, 10, 0.2
Population size (of GA procedure) 200
max_Iteration (used in Algorithm 1) 200

Table 3. Parameter settings used in other methods.

[5] [6] [17] [26]

Battery full 100 kJ 500 J 10.8 kJ 1
Network size 100 × 100 m2 100 × 100 m2 1000 × 1000 m2 1 × 1

Number of nodes 100 20–100 50, 100 1000
Transmission range − − − 0.06

WCV traveling speed 4 m/s 3 m/s 5 m/s −
WCV energy − 50,000 J − −
WCV moving
consumption − 10 J/m − −
Packet length − − − −

Charging speed − − 5 J/s −
Network traffic(for each

node) − − [1,10 kb/s] [0, 1/1000]

Node initial energy full − − −
Energy consumption

model 0.002 kJ/s TB-Powercast Multi-path μr3, μ=1,3,5

Request threshold 30% 225 J (45%) 540 J (5%) 10%, 50%, 90%

We have designed and conducted five simulations, with the results shown in the
following sub-sections.

4.1. The Impacts of Genetic Algorithm Parameters

The first simulation is designed to assess the two important parameters, population size and
maximal number of iterations, of a genetic procedure. To speed up the simulation, the simulation time
is limited to 10,000 seconds with network traffic set at [0, 100/n], while the other parameters are the
same as shown in Table 2. In these simulations, the values of both the population size and maximal
number of iterations are set in between 200 and 800. The following figures show the results of all the
three performance metrics listed above plus the average computation time (the average time required
for completing a scheduling task on the simulation personal computer) by varying the population
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size and maximal number of iterations. Figure 6 reveals that increasing the value of population size
only slightly improves the percentage of sensors being charged and packets received, and the average
moving distance. On the other hand, the increase in maximal number of iterations not only has no
apparent impact on the performance, but also greatly prolongs the computation process. This may
imply that the genetic algorithm usually converges before it reaches the maximal iteration counts.
Thus, in the following simulations, it may be adequate to set the population size and the maximal
number of iteration to 200 and 200, respectively.
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Figure 6. The performance metrics of the proposed genetic algorithm when varying population sizes
and maximal number of iterations. (a) percentage of sensors been charged, (b) average moving distance,
and (c) percentage of packets received, and (d) average computation time, vs population sizes and
maximal number of iterations. Note that simulation time and network traffic are set at 10,000 s and
[0, 100/n], while the other parameters, except population size and maximum number of iterations,
are the same as shown in Table 2.

4.2. The Impacts of Vehicle Parameters

The second simulation is to investigate the effects of charging vehicle’s moving speed and sensor
charging speed, which determine the cost (in time) of charging tasks. Intuitively, the smaller the
time cost, the easier it is to find a feasible solution to complete the charging tasks. As expected,
Figure 7a,c show that with a higher vehicle speed and charging rate, it is easier to get charging tasks
done, which again improves the packets received rate. Figure 7b shows that when charging tasks
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can be mostly completed (vehicle speed ≥ 5 m/s and charging rate ≥ 5 J/s), both vehicle speed
and charging rate do not have much impact on the average moving distance (of charging vehicles).
Accordingly, the following simulations will set the speed of vehicle and battery charging rate to 5 m/s
and 5 J/s, respectively.
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Figure 7. The performance metrics under different vehicle moving speed and battery charging rate.
(a) percentage of sensors been charged, (b) average moving distance, and (c) percentage of packets
received, vs moving speed of charging vehicle and charging rate of sensor. Note that simulation time
and network traffic are set at 10,000 s and [0, 100/n], while the other parameters, except for vehicle
moving speed and sensor charging speed are the same as shown in Table 2.

4.3. The Impacts of Clustering and Incorporation of EDF/NJF Outcomes to Initial Chromosomes

In the following simulation, performance of variations of our proposed genetic scheduling
approach is examined. Five possible variations include: implementations with clustering step only
(denoted by Clustering), with clustering step plus incorporating EDF and/or NJF scheduling outcomes
into the initial chromosome (denoted by EDF-Clustering, NJF-Clustering, and EDF + NJF-Clustering),
and with none of the above (denote Random, meaning no clustering is performed and all initial
chromosomes are generated randomly).

From the results shown in Figure 8, it is obvious that, when comparing to pure genetic algorithm
(Random), the full implementation of all additional steps (EDF + NJF + Clustering, which includes
clustering and EDF + NJF) of our proposed algorithm performs significantly better in all three
performance metrics. It is also interesting to see the impacts of each extra steps. First of all, clustering
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alone does not have any physical effect when there is only one charger, which is within our expectations.
Clustering only starts to have moderate performance margin over the random genetic implementation
in multi-charger scenarios. Second, NJF-Clustering appears to perform better (in terms of successful
recharging and data packet delivery rate) than EDF-Clustering in cases with less available chargers.
However, as the number of chargers increases (≥3), the performances of the two start going the
opposite directions. It appears that when there are more chargers at our disposal, the weighting in
“time” is more essential than the “distance” factor. Note, NJF-Clustering does still perform better
in terms of average moving distance, which is reasonable as it takes “distance” as its first priority.
Third, although EDF + NJF + Clustering implementation consistently achieves less in average moving
distance of chargers, it seems to be the only one that this metric increases as the number of cars.
The reason for this may be due to the sometimes conflicting circumstances between the “time” and
“distance” factors, and the compromise made by the genetic procedure causes the increase in average
moving distance.

se
ns

or
s 

be
en

 c
ha

rg
ed

 (%
)

number of cars

 RANDOM
 Clustering
 EDF+Clustering
 NJF+Clustering
 EDF+NJF+Clustering

(a) 

m
ov

in
g 

di
st

an
ce

 (m
)

number of cars

 RANDOM
 Clustering
 EDF+Clustering
 NJF+Clustering
 EDF+NJF+Clustering

(b) 

re
ce

iv
ed

 p
ac

ke
ts

 (%
)

number of cars

 RANDOM
 Clustering
 EDF+Clustering
 NJF+Clustering
 EDF+NJF+Clustering

 
(c) 

Figure 8. Performance comparisons among variations of our proposed algorithm in terms of:
(a) percentage of sensors being charged successfully, (b) average moving distance of charging vehicles,
and (c) percentage of successful data packets delivery. Note that simulation time and network traffic
are set at 10,000 s and [0, 100/n], while the other parameters are the same as shown in Table 2.
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4.4. The Impacts of Varying Number of Chargers

In this simulation, we try to investigate the effects of increasing the number of chargers under
light ([0..10/n]) and heavy ([0..100/n]) network traffic scenarios. Note, the full implementation of
our algorithm (i.e., the EDF + NJF + Clustering implementation) is adopted in this and the following
simulations. Also, the simulation time is extended to 1,000,000 s to explore the comparatively long-term
effects of our algorithm.

As shown in Table 4, we can see that under light traffic conditions, an increase in the number of
chargers available does not improve much in terms of both a successful sensor charging rate and data
packet delivery rate. On the other hand, it does show a positive impact as network traffic becomes
heavier, especially in terms of data packet delivery rate. Note that less than 100% of the percentage
of sensors that have been charged may be due to the strict setting in the initial residual of nodes
(in-between 5% and 25%) and the hot spot effect around the base station, which result in the early
death of nodes without having any chance of being recharged. In addition, we may also observe the
results and realize how the failure of even a small percentage of sensors may affect the final successful
data delivery. For example, in a scenario with heavy network traffic and one available charger, a less
than 4% rate of recharge misses may cause drops in packet delivery by more than a quarter.

When it comes to moving distance, more chargers mean more add-on costs induced by moving
these chargers back to the base station for energy replenishment, and thus increase the average moving
distance of charging vehicles. Overall, having more chargers is definitely helpful in prolonging a sensor
network’s operations. However, the average moving distance of chargers in light traffic conditions
all appear to be longer. It seems that there are less recharge requests expected in that case. As a
result, each scheduled mission of a charger turns out to service less sensor nodes, and thus increases
the average moving distance per sensor charged. Also, due to the same afore-mentioned reasons
(the strict setting in initial residual of nodes and the hot spot effect around the base station), the chargers
(initially located at the base station) usually tend to service nearby sensor nodes in the beginning of
the simulation. As the simulation proceeds over time, the effect would be less obvious. That is why
we see results with significantly lower average moving distances (less than 100 m) from previous
simulations when their simulation time was set to 10,000, instead of 1,000,000 s in this simulation and
the following ones.

Table 4. Simulation results with varying numbers of chargers.

Number of cars
Sensor Been Charged (%) Moving Distance (m) Packet Delivery Rate (%)

[0..10/n] [0..100/n] [0..10/n] [0..100/n] [0..10/n] [0..100/n]

1 99.810% 96.041% 199.9 218.6 99.998% 72.188%
2 100% 97.080% 256.3 221.9 99.999% 74.596%
3 99.810% 98.008% 263.7 232.2 99.999% 80.925%
4 99.683% 99.084% 262.6 240.9 99.998% 94.895%

(Note, simulation time and network traffic are set at 1,000,000 s, while the other parameters are the same as shown
in Table 2.).

4.5. Comparison of Scheduling Performance with Other Mrthods

In the final simulation, we compare scheduling performance between ours and the
afore-mentioned algorithm [5], which uses static combination of “time” and “distance” with the
same weight. The algorithm was called TemporAl and Distantial Priority charging scheduling
algorithm (denoted by TADP). EDF scheduling outcomes are also included and used as the baseline
for comparison. The simulations are done under both light ([0..10/n]) and heavy ([0..100/n]) network
traffic scenarios with one charger. The results, as shown in Table 5, indicate that our algorithm
outperforms the other two implementations in all three performance metrics under both network
loading conditions.
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Table 5. Performance comparison between ours and the other methods.

Method
Sensor Been Charged (%) Moving Distance (m) Packet Delivery Rate (%)

[0..10/n] [0..100/n] [0..10/n] [0..100/n] [0..10/n] [0..100/n]

EDF 94.479% 87.473% 346.3 292.2 89.272% 70.094%
TADP 89.270% 87.640% 335.1 289.4 78.603% 70.201%
Ours 99.810% 96.041% 199.9 218.6 99.998% 72.188%

(Note, simulation time and network traffic are set at 1,000,000 s, while the other parameters are the same as shown
in Table 2).

One thing that deserves noting is that TADP performs worse than EDF in the lighter traffic
condition, and only does slightly better when traffic is heavier. It appears that given “time” and
“distance” the same weight as TADP may result in a scenario with a sensor node closer to the charger
but with an less urgent need to be recharged first. In the meantime, another sensor that needs
immediate attention yet located a few hops away may just drain its last bit of power. On the other
hand, EDF would have made a completely different decision, which may just have enough time
to save both sensors from dying in a less busy network environment. In fact, the lower successful
recharge percentage / data delivery rate and shorter average moving distance of TADP (as compared
to EDF) imply that this would very likely be the case. However, when network traffic becomes
heavier, “time”-first or “time and distance”-balanced do not seem to have much difference. Either
way, the results indicate that charge scheduling that depends on putting on some pre-determined
and static weights upon the “time” and “distance” may not be a good idea. This, along with a much
better performer in both light and heavy traffic conditions, demonstrates that the dynamic nature of
our proposed recharge scheduling algorithm may well be a better answer to the constantly changing
sensor network environment.

5. Conclusions

In this paper, a genetic approach to solve the emergent charging scheduling problem with
multiple charging vehicles for rechargeable wireless sensor networks is proposed. The multiple
charging vehicles scheduling problem is nicely transformed to a genetically evolving process through
a novel design of chromosome structure, selection, cross-over and mutation operations. The major goal
is to ensure a sustainable sensor network, while at the same time minimizing the traveling distance of
the mobile chargers.

In terms of the number of mobile chargers used in a WRSN, there can be one or multiple ones
available. However, with either one charger or multiple chargers, the optimal charging scheduling
and its related issues have been proven to be an NP-hard problem and only heuristic/near-optimal
solutions can be provided. Our proposed genetic-based scheduling algorithm is distinct and different
from the others in the following three aspects. First of all, the proposed algorithm incorporates the
EDF (Earlier Deadline First) and NJF (Nearest Job First) scheduling algorithm generated outcomes
into the initial populations (aside from the other randomly generated ones), which guarantees that the
results of our genetic optimization would be no worse than the EDF and NJF results. Second, we adopt
an extra step where clusters sensors would be charged to k groups based on their locality and assigned
to k available chargers in newly generated populations of each generation. This step ensures sensor
nodes that are closer been assigned to the same charger later on, which then effectively reduces the
moving distance of chargers. Finally, the fitness function we developed imposes no restriction on the
charging vehicle’s moving speed and the sensor’s charging rate. Sensors are also allowed to issue
requests at different target power levels and provide different charging deadlines. These facts imply
that the fitness function, and thus our genetic approach, can be used to deal with dynamic sensors’
charging requirements in the multiple mobile chargers scenarios. In other words, the proposed genetic
algorithm may be applied to WRSNs with heterogeneous sensors and mobile chargers.
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With extensive simulations, the impacts of many parameters in the proposed genetic algorithm
are revealed and investigated further so that more insights may be gained, and adjustments made
accordingly. The simulations also show that the proposed approach can find efficient scheduling paths
for multiple charging vehicles while making sure virtually all the sensors in need are charged in time.
In addition, the idea of clustering charging requests made by adjacent sensors and assigning these
requests to the same mobile charger has proven to be a very good strategy in reducing the overall
moving distance of chargers, and thus saving battery power and efficiency in charging the sensors.

For future research, it would be interesting to apply the proposed genetic algorithm to WRSNs
with heterogeneous sensors and mobile chargers. In addition, designing a more efficient genetic
approach to deal with more sensors and more charging requirements so that the overall computation
time may be reduced in order to respond promptly to more realistic and complex situations will be our
other concern. Finally, our algorithms assume that mobile chargers always return to the base station for
recharge until its/their next missions. We also assume there would always be some available charger(s)
ready for deployment. In reality, the recharging of the chargers themselves [27,28] (includes battery
for charging sensor nodes and battery for their movement, and whether or not the base station is the
only source for providing energy to the chargers) is another issue that deserves further exploration,
which will also be our future research topic.
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Abstract: The increase of the technology related to radio localization and the exponential rise in
the data traffic demanded requires a large number of base stations to be installed. This increase
in the base stations density also causes a sharp rise in energy consumption of cellular networks.
Consequently, energy saving and cost reduction is a significant factor for network operators in
the development of future localization networks. In this paper, a localization method based on
ray-tracing and fingerprinting techniques is presented. Simulation tools based on high frequencies
are used to characterize the channel propagation and to obtain the ray-tracing data. Moreover,
the fingerprinting technique requires a costly initial learning phase for cell fingerprint generation
(radio-map). To estimate the localization of mobile stations, this paper compares power levels and
delay between rays as cost function with different distance metrics. The experimental results show
that greater accuracy can be obtained in the location process using the delay between rays as a cost
function and the Mahalanobis distance as a metric instead of traditional methods based on power
levels and the Euclidean distance. The proposed method appears well suited for localization systems
applied to indoor and outdoor scenarios and avoids large and costly measurement campaigns.

Keywords: distributed networks; fingerprinting; localization; ray-tracing; wireless sensors

1. Introduction

Localization is an important aspect of GPS-alternative positioning systems and has considerable
importance in general communications areas [1]. The development of new radio access standards
prompted the exploration of new techniques to improve the location accuracy, which is based on the
signals available from the wireless devices that comprise these standards [2–6]. In this communication,
the problem of the indoor location, which is based on the signals available in the wireless devices that
comprise Wi-Fi and Wi-Max networks within the broadband wireless systems, is presented [7–10]. The
location process employs a fingerprinting technique that operates with the relationship between the
levels of power and/or relative delays between signals due to the multipath by reflections effect [11].
By comparing other techniques, such as the angle of arrival (AOA) or time of arrival (TOA), which
presents several limitations due to multipath effects and non-line of sight (N-LOS), implementation
of the fingerprinting technique is relatively easy [12]. In traditional indoor location systems based
on Wi-Fi networks, the Euclidean distance between the radio frequency (RF) power levels of the
received signals and the RF levels stored in a database (radio-map) is employed as a metric in the
location process [13]. Due to an increase in new broadband networks (UWB), for example, Wi-Max,
the exploration of new techniques is necessary to improve the location accuracy using alternative
detection methods based on the relative delays of available signals in the observing points, which are
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provided by these emergent technologies [14,15]. In this study, we proposed a novel fingerprinting
technique using the relative ray delays due to the ray-tracing effects as fingerprints instead of RSSI.
Greater accuracy will be obtained by this technique.

The remainder of this paper is organized as follows: In Section 2, a review of the localization
techniques is presented. Section 3 describes the algorithms and techniques that have been developed
and introduces the ray-tracing theory. In Section 4, simulated scenarios are introduced, and the
corresponding results are presented. Section 5 discusses the challenges and open issues of the
localization in real-world situations. Conclusions are presented in Section 6.

2. Review of Techniques for Localization

As our research includes a study of localization algorithms in distributed wireless networks that
are applied to hybrid scenarios, describing the techniques that can be employed is important. In this
section, we briefly review the state of the techniques that can be applied for localization in hybrid
indoor–outdoor environments. The following techniques are described:

1. Time of arrival (ToA)
2. Time difference of arrival (TDoA)
3. Angle of arrival (AoA)
4. Received signal strength (RSS)
5. Hybrid techniques
6. Fingerprinting technique

2.1. Time of Arrival

In the technique of location by time of arrival (ToA), the distance between a mobile and an
antenna is directly proportional to the propagation time [16]. To determine the position in 2D, the
measurements made with the ToA technique must be made with respect to at least three reference
points. By geometric calculations (technique known as lateration), the points of intersection in the ToA
circles are obtained, the propagation time in one direction is measured and the distance between the
transmitter and the receiving unit is calculated [17].

2.2. Time Difference of Arrival

The idea of the time difference of arrival (TDoA) technique is to determine the relative position of
the mobile by examining the time difference in which the different signals reach the receiver instead of
obtaining the absolute time of arrival. For each TDoA measurement, the transmitter must resolve a
hyperboloid between the two units of measurement [18].

2.3. Angle of Arrival

The angle of arrival (AoA) technique, which is also referred to as the direction of arrival (DoA),
uses multi-array antennas to determine the angle of arrival of the incoming signal from the mobile
target via spatial diversity of the antennas [19,20].

In the AoA technique, the estimation of the target mobile can be obtained by intersecting pairs of
line angles, which are each formed by a circle of radius from the base station to the target mobile [21,22].

2.4. Received Signal. Strength (RSS)

The RSS detection method is based on the loss of power that the signal experiences in the
propagation medium as the power of the signal in the free space decays with the square of the distance.
This method applies the received signal strength indicator (RSSI) parameter, which collects the power
with which the signal from the target mobile to be located arrives at the receiving station [23–25].
The distance between the target mobile and the base stations can be calculated using the RSSI value
considering the losses in the propagation.
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Due to the various shadows and multipath effects in indoor environments, path-loss models are
not always available. In addition, the parameters of the model directly depend on the scenario. The
accuracy of this technique can be increased using the RSSI measurements in areas around the base
stations or multiple measurements from several base stations [26,27].

2.5. Hybrid. Techniques

Implementation of a hybrid system that combines AoA and ToA [28,29], in which ToA forms
a circle to which it cuts a straight AoA line, is possible and offers greater accuracy and a shorter
response time [30]. Another possible solution is to combine ToA and TDoA. With this system, the
deficiencies of the TDoA technique in NLOS environments are improved [31]. AoA and TDoA have
also been combined to improve accuracy and limit multipath effects, which enables locating only with
two base stations via the intersection of the straight line and the hyperbola of the AoA and TDoA
measurements [32,33]. Some techniques combine measures of time and power [34].

2.6. Fingerprinting Techniques

In recent years, location-based services (LBS) have proliferated; however, the main challenge is to
determine the locations of mobile terminals within a certain accuracy.

As we have indicated, traditional localization techniques based on radio frequency are subjected
to strong fluctuations in a signal due to the NLOS between transmitters-receivers and other causes,
such as the multipath effect, which produces variations in the information of the parameter RSSI
applied as a pattern in the localization process.

To avoid these signal fluctuations, an increase in the number of access points in the scenario is
possible to minimize the cases of NLOS. This idea served as the basis for introducing the fingerprinting
technique, which consists of comparing the available power levels in a set of points, as fingerprints,
in known positions with those obtained in the target mobiles to be located when they are excited by
the same antennas. The final position of the mobile is determined by assigning the coordinates of the
fingerprint of the shortest distance in the scenario.

The fingerprinting technique is a deterministic localization method that is divided into two phases:

1. Off-line phase: It constitutes the calibration phase in which a database or radio-map is generated
with the power measurements obtained on the mesh fingerprinting when excited by the antennas
of the environment.

2. On-line phase: it constitutes the testing phase; a significant number of mobile stations are
randomly located within the coverage area of the radio-map to obtain the corresponding power
measurements when excited by the same antennas.

The vector with the values of the different RSSI measurements obtained in a certain position of the
mesh is referred to as the location of the fingerprinting in this point. The estimation of the location is
obtained by an algorithm that computes the distance between a fingerprint and a target. In most cases,
the Euclidean distance, although other distance metrics can be employed (refer to Section 3.1), between
the RSS values in the target mobiles (on-line phase) and the RSS values of each fingerprint stored in the
radio-map (off-line phase) is computed. The coordinates associated with the fingerprint that provides
the shortest distance metric are utilized as the final position for the target mobile (Figure 1).
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Figure 1. Fingerprinting technique: (Left) off-line phase; (Right) on-line phase.

The most common application of this method is the location in indoor environments [35–37].
In Ref. [38], the properties of the RSSI signal are analysed. In Ref. [39], a study is presented with
the estimation of the expected error using this technique. In Ref. [40], a study of channel modelling
is presented. In Ref. [41], an improvement of the algorithm is presented using interpolation with
neighbouring fingerprints (K-NN).

For outdoor applications, we identify a classic study in Ref. [42]. Using fingerprinting outside
the Wi-Max standard, a localization proposal is presented in Ref. [43]. Conversely, in Ref. [44], the
fingerprinting technique is presented as a complement to the external location when the GPS signal is
degraded or not available.

One of the largest problems with this technique used for outdoor locations is the large number
of fingerprints that is needed in the off-line phase of the algorithm to obtain the required accuracy.
In Refs. [45,46], clustering techniques are proposed to minimize this impact. In Ref. [47], hyperbolic
techniques are employed to optimize the changes in the environment in the off-line phase.

As one of the main problems is the variability of the radio signal [48], learning techniques are
proposed in Ref. [49] to predict the fluctuations in the signal. Similarly, Ref. [50] introduces neural
networks that enable modelling of the channel.

Additionally, several studies expand the possibilities of the fingerprinting technique, which is
primarily employed with Wi-Fi, to other standards and applications. In Ref. [51], a neural network
on UWB is introduced. Other standards include ZIGBEE in Ref. [52] and RFID in Ref. [53]. In
Ref. [54], the fingerprinting technique is combined with a Kalman filter to estimate trajectories in
indoor environments.

2.7. Summary

This section presents a comparison of several figures of merit, such as, cost, precision, energy
efficiency, and complexity, related with the techniques previously presented. As can be seen in Table 1,
the fingerprinting algorithm combined with the hybrid detection method (in our study, power level
and ray-delay) present the best results.
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Table 1. Summary of localization techniques.

Algorithm Cost Precision Efficiency Complexity Hardware

ToA high medium low large large
TDoA low high high large medium
AoA high low medium large large
RSS low medium medium low small

Hybrid low high high low small
Fingerprinting medium high high low small

3. Novel Localization Techniques

In this section, the localization techniques developed in this study are presented. Although
these techniques are based on the fingerprinting method, instead of using the RSSI information of the
received power detected in each fingerprint, information about the relative delay between two rays
due to multipath effects is employed. The final objective is to increase the accuracy of a location in
hybrid indoor–outdoor scenarios, where existing localization solutions do not guarantee adequate
accuracy or coverage [55–57].

First, different distance metrics that are proposed to match the off-line and on-line phases of the
fingerprinting technique are introduced. Second, different detection techniques that are used as cost
functions are detailed. Last, additional techniques that improve the localization accuracy are presented.

3.1. Distance Metrics

A distance metric is a key component that is utilized by the fingerprinting technique in the
localization process [58]. Exploration of different similarity measures is important to determine the best
distance metric that minimizes the positioning average error. Four metrics have been implemented to
explore improving the location accuracy. The vector of sample F denotes the data from the fingerprints
(radio-map), vector of sample T denotes the data from the target mobiles, and N is the number of
antennas available in the scenario.

In the Euclidean distance Equation (1), the mobile station will have more confidence in the
fingerprint radio map if the distance is smaller. A more moderate approach is obtained with the
Manhattan distance Equation (2) using the sum of the absolute differences rather than their squares as
the total measure of dissimilarity. In the Bray-Curtis Equation (3) distance, the numerator signifies the
difference, and the denominator normalizes the difference. For the Mahalanobis distance Equation (4),
the (F-T)’ term denotes the (F-T) transpose vector, and the Cov term denotes the covariance matrix,
where the retrieval performance is sensitive to the scenario topology. The idea is to find the coordinates
of (xi, yi)T that minimize the distance to (xi, yi)F:

DE(F, T) =

√√√ N∑
i=1

(Fi − Ti)
2 (1)

DM(F, T) =
N∑

i=1

|Fi − Ti| (2)

DBC(F, T) =
N∑

i=1

|Fi − Ti|
Fi + Ti

(3)

DMah(F, T) =
√
(F− T)′Cov(F)−1(F− T) (4)
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3.2. Cost Function Based on RSSI

When the detection method employed in the fingerprinting technique is based on power levels,
the distribution of RSSI is obtained from each fingerprint and each access point available in the scenario.
Figure 2 shows a distribution of the power levels due to all fingerprints in a generic scenario. It shows
the power level (in dBm units) in each fingerprint available in the radio-map. The level of power
depends on the position of the fingerprint with respect to each AP, and hence, of the scenario. Lower
values of power mean that a specific fingerprint is not seen by all APs. Conversely, higher values of
power mean that the fingerprint is seen by most APs (an accumulative function is used to add to each
fingerprint the values of power received by each AP). The map of power is unique, it is the information
that identifies each fingerprint, and is used in the cost function represented by Equation (5).

 

Figure 2. Distribution of power levels in the radio map. It represents the visibility of each fingerprint
with respect to each AP available in the scenario, and it is the information used in the cost function
based on RSSI.

For example, using the Euclidean Distance as a metric, the cost function measures the distance
based on power levels (in dBm units) between each fingerprint (RSS(x, y)F) and each target mobile
(RSS(x, y)T) and for each antenna (N) available in the scenario Equation (5).

DE(Fi, Ti) =

√√√ N∑
i=1

(
(
RSS(xi, yi)F −RSS(xi, yi)T)

2
)

(5)

3.3. Cost Function Based on Relative Ray-Delay

When the detection method used in the fingerprinting technique is based on the relative ray-delay,
the Time Delay Ray (TDR) profile is obtained from each fingerprint and each access point available in
the scenario. This detection method is based on the information provided by the ray-tracing due to the
different effects: direct ray, reflected ray, diffracted ray, and any combination of them. Figure 3 shows
an example of a ray-delay profile obtained in one fingerprint of the scenario.

This figure represents the arrival time and the power of each ray due to the different effects. The
first ray to arrive is the direct ray between the AP and the receiver, the others, that arrive more delayed,
are due to reflections, diffractions, double reflections, etc.; produced by the different obstacles present
in the scenario. The TDR is the delay of each ray with respect to the first or the direct ray.

If the Euclidean Distance is used as a metric, the cost function measures the distance based on
the ray-tracing profile (in nanoseconds units) between each fingerprint (TDR(x, y)F) and each target
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mobile (TDR(x, y)T), considering E as the number of ray-tracing effects and N as the number of access
points (AP) in the scenario Equation (6).

DE(Fi, Ti) =

√√√√ N∑
i=1

(
E∑

j=1

(
TDR(xi, yi)F − TDR(xi, yi)T)

2
)

(6)

 

Figure 3. Relative delays and levels between rays due to ray-tracing effects.

3.4. Hybrid. Detection

An alternative detection method consists in using both the power levels and the relative delays
between two rays in a hybrid manner. The μ parameter was used to consider power levels or ray-delays.
By applying this method in the Euclidean distance metric (Equation (8)), if the value of μ = 0.25 is
already set (it was set to 0.25 by experimentation), we perform a hybrid detection between power
levels and relative ray-delays. In this case, more weight is assigned to detection by ray-delays in
fingerprints whose power level is at least four times below the power level of the corresponding mobile
with respect to the same access point. Equation (7) can be easily extended to the remaining metrics.

DE(Fi, Ti) = μ·
√

N∑
i=1

(
(
RSS(xi, yi)F −RSS(xi, yi)T)

2
)
+ (1− μ)·

√
N∑

i=1
(

E∑
j=1

(
TDR(xi, yi)F − TDR(xi, yi)T)

2
)

(7)

The localization technique has been implemented by a novel detection algorithm that combines
the profile of the relative ray-delay obtained from ray-tracing due to multi-path effects with different
distances employed as the metric.

Figure 4 shows the pseudo-code of the algorithm used for hybrid detection. The algorithm
first obtains the map of effects for both targets and fingerprints. Due to the multipath effects of the
ray-tracing, only fingerprints and targets with the same map of effects (reflections, diffractions, and its
combinations) are considered. If the map of effects is different, then the fingerprint is not considered
and the next is processed. When a fingerprint and a target have the same map of effects, and for all the
antennas used in the simulations, the algorithm computes the vector of metrics from a specific target
to each fingerprint. If the algorithm reaches the last fingerprint, then it finds the minimal distance
between the target and all the fingerprints and uses the coordinates of that fingerprint as position of
the target. Finally, the algorithm repeats the process for the rest of the targets.
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Figure 4. Pseudo-code of the localization algorithm.

3.5. Interpolation

As an interpolation technique, we propose the K-Nearest Neighbours (K-NN) algorithm that
considers the nearest k neighbours, instead of a single neighbour by assigning the majority category of
the set of K neighbours. The interpolation technique is applied in the on-line phase of the fingerprinting
technique by seeking the k-fingerprints that are closest to the target mobile based on the error
information obtained when applying the corresponding distance metric.

In addition, a pre-filter removes incoherent values from the radiomap when a specific transmitter
is not seen at all (out of range or defective). In these cases, an interpolation with neighbouring values
is applied.

Figure 5 shows the concept of interpolation over four random fingerprints, and Equation
(8) represents the mathematical concept, where N is the number of fingerprints employed in the
interpolation process, and Xj is the value of the distance between the mobile to be located and the
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j-fingerprint. OldPosition refers to the (x, y, x) coordinates of the target before the interpolation, and
NewPosition refers to the new target coordinates after the interpolation.

NewPosition (x, y, z) =

∑N
j=1(

OldPosition (x,y,z)
Xj

)

∑N
j=1

(
1

Xj

) (8)

 

Figure 5. Interpolation technique implemented with four fingerprints.

4. Ray-Tracing Theory

Powerful electromagnetic simulation tools, which are capable of accurately reproducing the values
of radioelectric signals that would be obtained in the real case, have been developed. NewFasant [59]
is a tool that simulates antennas on board platforms, such as satellites and aircrafts, and radio
wave propagation in urban and indoor scenarios [60–62]. This software has been developed by the
Electromagnetic Computational group of the Alcala University and is based on asymptotic techniques,
such as physical optics, combined with the Physical Theory of Diffraction (PO/PTD) and Geometrical
Optics (GO) with the Uniform Theory of Diffraction (UTD) [63,64].

The NewFasant programme can be applied to different electromagnetic problems: study of the
propagation in outdoor/indoor environments, mobile communications, radar cross-section of complex
structures, electromagnetic compatibility, analysis and design of antennas, and radiation patterns of
antennas on board complex structures.

Given a source point (transmitter antenna), the ray-tracing technique determines the number of
rays that arise to a given observation point. To achieve this goal, possible reflections and diffractions in
the environment are considered. In addition, a detailed description of the environment is important
for a precise calculation of the rays involved in the propagation model. The geometrical information
uses Non-Uniform Rational Bezier Splines (NURBS) surfaces. To obtain the ray-tracing paths between
a source and a destination, two steps exists:

1. Obtain all points that define the ray-path (reflection and diffraction points).
2. Discard the rays occluded by any part of the geometry to perform the shadowing test.

Figure 6 shows an example of ray-tracing in a complex scenario. This area is an area of Terminal
4 of the Adolfo-Suarez Barajas Airport in Madrid. A parked airplane is placed beside a finger, an
antenna is placed in front of the aircraft, and an observation point is placed in front of the antenna. The
NewFasant software computes all rays generated from the antenna to the receiver.

In Figure 6, the antenna is the red dot. The observation point of black colour is the point that
can be seen in front of the plane. The colour of the rays depends on the effect: yellow is the double
reflection and the other colours correspond to other effects (reflection, reflection-diffraction, etc.).
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Figure 6. Ray-tracing scenario at the airport.

NewFasant provides associated information about each ray, such as the power level at the
observation point (RSS), time of arrival (ToA) and direction of arrival (TDoA). Different ray-tracing
effects (direct ray, reflected ray, and diffracted ray) and multiple combinations of them, such as the
double reflections effect and reflection-diffraction effect, can be taken into account (Figure 7). With
this information provided by NewFasant, the profile of the relative delays between rays (as shown in
Figure 3) can be obtained, and the localization cost function can be computed according to expression 7.

 

Figure 7. Different rays and effects computed by NewFasant software.

The computational cost associated with ray tracing is very high but speeding algorithms, such as
Angular Z-buffer [65], can considerably reduce the computational time. This reduction enables the
analysis of an excessive number of observation points in complex structures, such as an airport with
parked aircrafts in a short period.

Table 2 shows the computational cost obtained for different configurations of the number of
antennas and number of reflections.
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Table 2. NewFasant computational cost.

Configuration X Points Y Points Total Points Computational Cost (Hours)

5 antennas 2
reflections 140 120 16,800 70

5 antennas 3
reflections 12 145 1740 104

10 antennas 2
reflections 100 50 5000 55

5. Validations and Results

The aim is to simulate various localization scenarios using the techniques described here, using
powerful and precise ray tracing tools. First, we simulate typical indoor scenarios. Second, we conduct
outdoor simulations in more complex environments.

The performance of any localization algorithm depends on the quality of the scenario under
testing. For this reason, in each scenario, a complex CAD model of plane facets for the geometrical
description of the environment was used to study the fast fading caused by multipath propagation and
the interference between the different paths. Because the accuracy of the results depends on network
geometry [66,67], different granularities (grid size) were used in the simulations. To evaluate the
performance of each algorithm in the different tested scenarios, two statistical indicators, which will
be applied to make comparisons, have been established. These indicators are the total average error
(AvError), as an indicator of first order, and the typical deviation (TypDev), as a second-order indicator.
The results have been analysed in the MATLAB environment.

5.1. Indoor Scenarios

The indoor scenario that is analysed corresponds to a real section of the Polytechnic building in
Madrid, Spain (Figure 8).

Figure 8. Indoor scenario: A representative section of the University Polytechnic of Madrid (Spain).

Four different scenarios were analysed. A total of 99 target mobiles and 9 APs were employed at
two different frequencies (2.4 and 5.2 GHz):

1. Grid size of 72 × 72 m with 5184 fingerprints at 2.4 GHz
2. Grid size of 72 × 72 m with 5184 fingerprints at 5.2 GHz
3. Grid size of 36 × 36 m with 1296 fingerprints at 2.4 GHz
4. Grid size of 36 × 36 m with 1296 fingerprints at 5.2 GHz

Figure 9 shows a 2D view of the simulation area that corresponds with scenario number 3.

63



Energies 2019, 12, 2943

Figure 9. 2D view of the University Polytechnic of Madrid simulation area: A section of 36 × 36 m
containing 1296 fingerprints, 99 mobiles to locate and 9 APs.

Indoor simulations are focused on the granularity of the scenario and the frequency. The goal is to
evaluate the impact of the detection method (power, ray-delays and hybrid) for these variations. The
Euclidean distance was employed as a metric. The results are shown in Figures 10 and 11.

Figure 10. Detection methods comparison: Power, delay and hybrid detection at a frequency of
2.4 GHz.

64



Energies 2019, 12, 2943

Figure 11. Detection methods comparison: Power, delay and hybrid detection at a frequency of
5.2 GHz.

From Figure 10, we observe that when the granularity of the fingerprints used in the off-line phase
(radio-map) increases, the error committed is reduced. This reduction is independent of the detection
method used as a cost function in the localization algorithm, but this reduction of the error is more
noticeable when the method used is by ray-delays or hybridization. On the other hand, the reduction
obtained by using power levels is not significant.

Figure 11 shows the same conclusions, but in this case, we also observe that the average error
increases with the frequency. This is because the frequency is more than double (2.4 GHz versus 5.2
GHz) when comparing the Figure 11 with the Figure 10, or what is the same, the wavelength is less
than half (0.057 m versus 0.125 m), what it means that the average error for the same grid resolution
is increased (the power average error for a grid size of 36 × 36 m at 2.4 GHz was 1.98, similar to the
2.08 power average error for a grid size of 72 × 72 m at 5.2 GHz). In addition, the loss due to attenuation
of the radio signal increases with the square of the power, which implies having a quarter of the power
received with respect to the lower frequency band and contributing to the increase of the mentioned
average error.

Table 3 shows information about the error and deviation values.
As it can be seen, the detection method based on power levels presents more error in the localization

than using hybrid or delay detection methods. The pure delay detection method reaches the best
results, because hybrid detection uses power levels information in the cost function.

The impact of frequency is not very relevant. For the same granularity, it has no impact on the
delay detection method but improves the accuracy when it increases for power and hybrid methods.

The last two columns reflect the average error rate, which is improved by comparing the hybrid
detection versus power detection and detection by ray-delays against power detection.

According to these results, the hybrid detection obtains an improvement in the average error of
71.28% for a mesh of 72 × 72 m at 2.4 GHz, 75% for a mesh of 72 × 72 m at 5.2 GHz, 32.82% for a mesh
of 36 × 36 m at 2.4 GHz and 62.69% for a mesh of 36 × 36 m at 5.2 GHz. The detection method by
ray-delays obtains an improvement in the average error of 87.17% for a mesh of 72 × 72 m at 2.4 GHz,
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87.98% for a mesh of 72 × 72 m at 5.2 GHz, 74.24% for a mesh of 36 × 36 m at 2.4 GHz and 75.48% for a
mesh of 36 × 36 m at 5.2 GHz.

Table 3. Indoor simulations results: Localization error when comparing the detection methods.

Power Hybrid Delay Hybrid vs. Power Delay vs. Power

Grid size Frequency AvError TypDev AvError (%)

72 × 72
2.4 GHz

1.9554
0.1871

0.5621
0.0821

0.2504
0.0366 71.28 87.17

72 × 72
5.2 GHz

2.0844
0.1843

0.5207
0.0841

0.2504
0.0366 75 87.98

36 × 36
2.4 GHz

1.9801
0.2029

1.1337
0.1610

0.5155
0.0572 32.82 74.24

36 × 36
5.2 GHz

2.5275
0.2548

0.9497
0.1142

0.5155
0.0572 62.69 75.48

5.2. Outdoor Scenarios

The analysed outdoor geometry corresponds to a real section of parking area at the Adolfo-Suarez
Madrid-Barajas International Airport (Figure 12).

 

Figure 12. Outdoor scenario: Terminal 4 at Adolfo-Suarez Madrid-Barajas International Airport.

As part of the airport infrastructure, we propose enhancing the airport surveillance by providing
several wireless access points in each boarding finger, which would be required to obtain the
maximum coverage.

Three different scenarios were analysed. In all cases, to estimate the accuracy of the algorithm,
100 target mobiles were randomly located:

• Case 1: Grid size of 12 × 145 m

In the first scenario, the simulation area was 12 × 145 m for a grid resolution (distance between
fingerprints) of 1 m. In this area, 1740 fingerprints and 5 APs at 2.4 GHz were employed (Figure 13).
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Figure 13. 2D view of Terminal 4 at Adolfo-Suarez Madrid-Barajas International Airport simulation
area: A section of 12 × 145 m containing 1740 fingerprints, 99 mobiles to locate and 5 APs.

• Case 2: Grid size of 80 × 80 m

In our second scenario, the simulation area was 80 × 80 m for a grid resolution (distance between
fingerprints) of 1 m. In this area, 6400 fingerprints and 5 APs at 2.4 GHz were utilized (Figure 14).

 

Figure 14. 2D view of Terminal 4 at Adolfo-Suarez Madrid-Barajas International Airport simulation
area: A section of 80 × 80 m containing 6400 fingerprints, 99 mobiles to locate and 5 APs.

• Case 3: Grid size of 200 × 120 m

In this final scenario, the simulation area was 200 × 120 me for a grid resolution (distance between
fingerprints) of 1 m. In this area, 24,000 fingerprints and 5 APs at 2.4 GHz were employed (Figure 15).

The results obtained from the outdoor simulations scenarios that were previously described are
shown. In this case, four distance metrics (Euclidean, Manhattan, Bray-Curtis and Mahalanobis)
and two fingerprinting detection methods (power levels and relative ray-delay between rays) were
compared. Figures 16–18 show the simulation results for all cases.
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Figure 15. 2D view of Terminal 4 at Adolfo-Suarez Madrid-Barajas International Airport simulation
area: A section of 200 × 120 m containing 24,000 fingerprints, 99 mobiles to locate and 5 APs.

Figure 16. Case 1 results: Localization error when comparing power vs. delay detection methods with
four distance metrics in a section of 12 × 145 m.
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Figure 17. Case 2 results: Localization error when comparing power vs. delay detection methods with
four distance metrics in a section of 80 × 80 m.

Figure 18. Case 3 results: Localization error when comparing power vs. delay detection methods with
four distance metrics in a section of 200 × 120 m.
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From Figure 16, we observe that if the relative delay between rays is used as a detection method,
the average error decreases when comparing with the power level detection method. Moreover, if
Mahalanobis distance is selected as a metric, we obtain the best results in terms of localization error
reduction. Figure 17 shows similar conclusions, but in this case, the average error decreases as the
granularity of the radio map increases. From Figure 18, we can obtain similar conclusions. Table 4
shows detailed information about the mean error values obtained in the simulations.

Table 4. Outdoor simulations results: Localization error when comparing power vs delay detection
methods and distance metrics in each scenario.

Distance
Metric

Grid Size

12 × 145 (m) 80 × 80 (m) 200 × 120 (m)

Detection Method

Power Rays Power Rays Power Rays

Mean Error (m)

Euclidean 3.10 0.49 1.43 0.56 2.02 0.52
Manhattan 1.03 0.56 1.14 0.66 1.44 0.56
Bray-Curtis 0.55 0.55 0.59 0.59 0.56 0.56

Mahalanobis 0.50 0.48 0.57 0.42 0.80 0.49

In Table 4, we can analyse the numeric values of mean error obtained after simulating each
scenario. According to Figures 16–18, the first two columns correspond with the first scenario (grid
size of 12 × 145 m), the next two columns with the second scenario (80 × 80 m), and the last two
columns correspond with the third scenario (200 × 120 m). In each scenario, we represent the mean
error obtained using two different detection methods in the cost function of the localization algorithm,
power and ray-delays. We observe how the relative delay between rays used as a detection method
provides lower mean error than using power levels.

As we confirmed for indoor scenarios, from outdoor scenarios we observe that the relative
ray-delay detection method also provides the best localization results for all analysed cases, while the
size of the grid is not decisive. Mahalanobis distance metric improves the accuracy, compared with
Euclidean, Manhattan or Bray-Curtis, because the relations between all samples used in the scenario
are represented in its covariance matrix.

It can also be observed that the location errors obtained in the two scenarios, indoor and outdoor,
are similar. In both cases there are multiple obstacles, so much information is obtained about ray-tracing
and therefore the TDR factor in each fingerprint is distinctive for each of them.

6. Discussion, Assumptions and Further Work

Using a ray-tracing dataset, the main multipath effects are a result of the built environment and
other static objects, all of which are captured in the modelling. The dynamic effects from mobile
scatterers can be addressed by identifying these components via identifying the Doppler shift and
eliminating them when comparing against the ray-tracing data. This issue will be the subject of further
research in this project.

A description of the impact of electromagnetic noise on our simulations at the results level is not
available. In an airport, for instance, many users who operate phones, other purposes of WIFIs, and
other uncontrolled signals share the same spectrum (such as Bluetooth). To expect our system to have
excellent performance even in these contexts, a more detailed noised scenario will be modelled in
future research.

Reflective objects (aircrafts) and a more complex environment were considered in the analysis.
However, a more detailed environment, which refers to the density of the multipath, will be further
implemented to obtain more multipath components with increased path delay.
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The scheme is not dependent on the delay values but a relationship between delay and other
parameters, such as the BS location at which these parameters are recorded and the frequency,
were analysed. Thus, the purpose of training (radio map) is to establish a relationship among the
supporting vectors.

Referring to mobile scatterers in the environment, the sensitivity of the approach with mobile
scatterers is not currently known and requires further study; thus, this issue would be the subject
of future research. Possibilities exist to mitigate the effects of mobile scatterers by identifying these
components via identifying the Doppler shift and eliminating when comparing against the ray-tracing
data. An analogy exists with radar processing in removing clutter in this case. Thus, further processing
using similar techniques to remove multipath components as a result of moving scatterers will be the
subject of further research. In our study, ultra-wide band (UWB) systems that can resolve individual
multipath effects are assumed.

In the same manner, a similar assumption for AOA estimation with multi-antenna systems was
supplied. Massive MIMO systems have a large number of APs that are assumed to be capable of
super-resolution AOA estimation. Both these assumptions are related to current and emerging 5G
technologies and will be a part of further studies.

Time delay estimators, including bandwidth and SNR, will be required. Super-res algorithms can
be used to achieve timing resolutions below the reciprocal of the bandwidth.

The method of localization proposed in this study is being evaluated against traditional techniques
(TOA and TDOA) with the same framework and data. Thus, any limitation in the accuracy of the
ray-tracing impacts are relatively similar since they employ the same test data in terms of the time
delay measurements. Note that only the first arriving paths are applied in the methodology.

Not modelling the error due to bandwidth limitations may be the correct approach, which enables
us to isolate the errors due to the estimators and directly compare their performance. Including
additional errors due to the assumed bandwidth limitation may mask the difference in performance or
make the results bandwidth-specific.

In a second phase, we intend to make simulations with random mobile objects. In any case, small
objects and people will present reflections of very low power, so we expect that main reflections will be
due to large static objects.

Finally, because validation was only done on a simulation approach, no experiments have been
performed. Real experiments will be obtained through a pre-processing step supported by DSPs (Digital
Signal Processor) to model the channel through an IFFT (Inverse Fast Fourier Transform) to obtain the
impulse response and the multipath effects from the power spectrum [68], and a post-processing phase
where to implement our algorithms after collecting data from real APs nodes. In order to obtain the
relative delays with enough resolution in the time domain, these APs must be Ultra-Wide Band (UWB)
devices because of their great bandwidth [69,70].

7. Conclusions

In this study, alternative detection methods that can be employed in the fingerprinting technique
for a mobile location have been presented. These methods facilitate the analysis and design of
indoor/outdoor location services. Using the NewFasant simulation tool, we obtain indoor/outdoor
coverage by a complete 3D model combined with powerful ray-tracing techniques. This approach is
very useful for avoiding complex and expensive measure campaigns and performing the off-line phase
of the fingerprinting technique in a quick and accurate manner.

The location algorithm computes the Euclidean distance and other proposed metrics between the
power levels and ray-delay samples available in unknown positions of a mobile and each fingerprint
stored in the database. This study applies the multipath effects due to ray-tracing as a competitive
advantage. Thus, a comparative study has been conducted between three detection methods that
utilize different information as a cost function: power levels, relative ray delays and a hybrid method.

71



Energies 2019, 12, 2943

All algorithms were validated in indoor and outdoor scenarios using different granularities (grid
size) and frequencies.

As a result of this study, we can conclude that the relative ray-delay detection technique, which
presents better results in the indoor/outdoor location process than the power detection technique, is
extensively applied in traditional Wi-Fi systems (based on the 802.11 standard). When information
about certain fingerprints introduces ambiguities or errors in the localization using the powers levels,
the hybrid detection method appears to be a suitable alternative. Due to the different effects caused by
the ray-tracing, the proposed method uses the information about the relative ray-delay of the signals
available in the fingerprints.

With respect to the metric, we conclude that conventional distance metrics, such as Euclidean or
Manhattan, may not obtain the best location accuracy. The Mahalanobis distance metric improves the
location accuracy when the geometry has irregularities that can been modelled among measures by
the covariance matrix.

We can affirm that frequency does not have a significant impact on the accuracy of the results and
that the grid size improves the results. Thus, the off-line phase of the fingerprinting technique can be
carefully calibrated to obtain an optimized radio-map.
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Abstract: Nowadays, wireless sensor networks (WSNs) are becoming increasingly popular due to
the wide variety of applications. The network can be utilized to collect and transmit numerous types
of messages to a data sink in a many-to-one fashion. The WSNs usually contain sensors with low
communication ability and limited battery power, and the battery replacement is difficult in WSNs
for large amount embedded nodes, which indicates a balanced routing strategy is essential to be
developed for an extensive operation lifecycle. To realize the goal, the research challenges require not
only to minimize the energy consumption in each node but also to balance the whole WSNs traffic
load. In this article, a Shortest Path Tree with Energy Balance Routing strategy (SPT-EBR) based on a
forward awareness factor is proposed. In SPT-EBR, Two methods are presented including the power
consumption and the energy harvesting schemes to select the forwarding node according to the
awareness factors of link weight. First, the packet forwarding rate factor is considered in the power
consumption scheme to update the link weight for the sensors with higher power consumption and
mitigate the traffic load of hotspot nodes to achieve the energy balance network. With the assistance
of the power consumption scheme, hotspot nodes can be transferred from the irregular location to the
same intra-layer from the sink. Based on this feature, the energy harvesting scheme combines both
the packet forwarding rate and the power charging rate factors together to update the link weight
with a new battery charging rate factor for hotspot nodes. Finally, simulation results validate that
both power consumption and energy harvesting schemes in SPT-EBR achieve better energy balance
performance and save more charging power than the conventional shortest path algorithm and thus
improve the overall network lifecycle.

Keywords: Wireless Sensor Network; Dijkstra routing algorithm; load balance; power consumption;
energy harvesting

1. Introduction

Wireless sensor networks (WSNs) have caused a lot of attention among scholars due to the
growth of the Internet-of-Things (IoT) [1], and have achieved a wide success in daily life and industrial
applications, such as smart grid [2], safety monitoring [3], and risk prevention [4]. The lifecycle of
sensor nodes generally depends on the supplied battery power and numerous possible deployment
methods to avoid unnecessary power depletion, including data processing, power control [5], energy
efficient routing [6], etc. Long-term monitoring service is a key purpose for designing WSNs, but it is
notably influenced by the network energy imbalance [7]. The challenge study issue of maximizing
network lifecycle is preventing the energy imbalance, the condition happens when some nodes are
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exhausted, while others have plenty of residual energy, causing hotspot nodes in data transmission
networks [8,9].

Directly sending packets with long distances from sensors to the data sink is unattractive, the
routing protocols are usually designed in a multi-hop fashion, which can be classified into two cases:
flat routing [10] and hierarchical routing [11]. In the flat routing case, routing paths from the sending
sensors to sink are computed according to the minimum energy cost. The energy expense can be
reduced by using shorter distance communication. In the hierarchical routing case, the network
topology is constructed by clusters, and each cluster head (CH) is able to fuse packets with data
correlations; hence, it is helpful for removing redundant packets, and decreases the total amount of
packets, thus improves operation lifecycle.

Inventing a particular routing algorithm for energy efficient packet transmission is one main
research direction. To consider the transmission costs and remaining battery power of sensors in [12],
the authors formulate the network lifecycle maximum problem to a linear optimization problem and
select the optimal shortest paths with the lowest cost, and near optimal lifecycle can be reached. To
consider routing optimization in scenarios with obstacles in [13], a geographical routing is presented
for the shortest path selection by using the Dijkstra algorithm. Each sensor is able to determine routing
path according to location information of itself and the adjacent sensors, thus it is appropriate for the
large scale WSNs. Another direction for balancing energy consumption is the modification on the
typical flat and hierarchical routing schemes. To eliminate the unbalance power consumption of CH,
the author in [14] studied how to determine the optimal cluster size for a decentralized hierarchical
network. In addition, a General Self-Organized Tree-Based Energy-Balance (GSTEB) routing protocol
is proposed in [15] to dynamically update the tree routing topology for the real-time situation and
nodes can cooperate with each other via beacons to select the next node by their own routing decisions.
Although all CHs produce an equal number of collected packets in [16], which leads the energy
imbalance problem around the sink connection area (SCA), while causing underutilized energy for all
the other sensors. Consequently, the research challenge issues in developing energy balance routing
protocol are to equalize the power consumption among hotspots and achieve better power utilization
of other sensors to improve the overall network lifecycle [17–19].

Another favorable technology to improve the lifecycle of WSNs is contributed by the recent energy
harvesting models [20–23]. Each sensor captures the energy from the surrounding environment with
energy harvesting abilities, including solar radiations or vibrations, and collects the energy into its
own rechargeable battery. Therefore, it has a high probability to achieve the immortal WSNs when
the energy harvest amount in each node is greater than the energy consumption amount for packet
transmission. However, the major limitation of the method is the intermittent energy capture, which
can make the network performance degraded.

To mitigate the irregular energy harvesting problem, wireless power transfer (WPT) transmits
power distantly to the sensors, which provides an attractive opportunity for harvesting ambient
energy [22]. Given the wireless charger, the energy transfer to the sensors can be controlled and make
the network optimization in lifecycle extension. In [23], the authors optimize the network lifecycle
performance under the condition that the energy consumption by each sensor is less than its harvested
energy. Hence, the network operation lifecycle depends on not only how the wireless charger transfers
the power to the sensors, but also how the sensors spend the reception power.

To jointly consider the energy balanced routing and energy harvesting benefits, a Shortest Path
Tree with Energy Balance Routing strategy (SPT-EBR) is proposed in this article. In SPT-EBR, two
methods are presented including the power consumption and the energy harvesting schemes to select
the forwarding node according to the awareness factors of link weight. The SPT-EBR is a positive and
early-intervention method, and includes the following contributions:

(1) To avoid excessive load concentration among SCA, a power consumption scheme is presented to
generate the multiple shortest path trees in the early stage for data dissemination and distributes
traffic load to the path trees according to the packet forwarding rate factor. The contribution is to
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improve the construction of routing solution and avoid the frequent routing update messages
causing the excessive load concentration, thus prolonging the network lifecycle.

(2) In addition, the power consumption scheme is utilized to transfer some traffic load in the
congested SCA to several sub-trees with the lowest load. This makes a part of paths with good
load-balance level and high energy efficiency during the iteration process of the algorithm. As
a result, each intra-layer from the sink can be expected to have the similar traffic load in terms
of the balanced power consumption. The intra-layer is defined as the nodes with the same hop
length to the sink.

(3) Using the late-remedy routing solutions [15,16], hotspot nodes are usually spatially distributed.
With the assistance of the power consumption scheme, hotspot nodes can be transferred from the
irregular location to the same intra-layer and this benefit makes the implementation of efficient
wireless power charging over a large area is possible.

(4) To achieve the design aim of immortal WSNs, an energy harvesting scheme is proposed to jointly
combine both the packet forwarding rate and the power charging rate factors together to make
the energy charging efficient for the hotspots in the SCA. With the assistance of load balancing
on SCA and energy harvesting, the contribution helps to accelerate the generation of the whole
network balance routing solution, improving both the routing survivability and energy harvesting
efficiency, as well as prolonging the network longevity.

The remainder of this paper is arranged as follows. The literature review is introduced in Section 2.
Section 3 presents the problem statement and motivation. In Section 4, a network model is introduced
and the SPT-EBR is presented including the power consumption and the energy harvesting schemes.
In Section 5, the power consumption performances between the SPT-EBR and the Dijkstra algorithms
are compared and the benefits of energy harvesting scheme are also demonstrated with computer
simulations. Finally, conclusions are described in Section 6.

2. Related Work

2.1. Routing Based on Forwarding Factors

Many types of load-balanced transmission strategies have been proposed, including routing
based on forwarding factors, hybrid power transmission, power control, etc. In the routing based on
forwarding factors [16,24–27], routing paths are usually selected in accordance with several forwarding
factors, such as the residual battery capacity, the distance to the sink, the degree of the nodes, and
so forth.

The authors in [24] studied the ant colony optimization(ACO)-based path selection schemes
by considering several factors, including the battery level of forwarding nodes, the distance to the
sink, the travelled distance, and so on. Based on the one-dimensional queue network, the authors
in [25] proposed an opportunistic routing protocol by considering forwarding factors with the distance
to the sink and the remaining battery capacity of the sensors. Based on the multiple forwarding
factors, a position-aware routing scheme [26] is proposed to consider the factors of the residual
energy, node degree, and distance to the sink to balance the node energy and improve the network
lifetime. A mixed transmission scheme is proposed in [27] that each node trades off between the
multi-hop and single-hop transmission to extend the network lifetime by considering the forwarding
factors including the link reliability, the degree of nodes and the remaining battery capacity. In [16],
two hybrid multi-hop/single-hop transmission strategies (power efficiency and power utilization
strategies) with adaptive routing are proposed to extend the network lifetime of wireless sensor
networks (WSNs). The power efficiency strategy aims to minimize the overall power consumption
and the power utilization strategy endeavors to minimize the maximum power consumption among
hotspots. In addition, the adaptive routing method is a late-remedy method to consider the channel
status in each operation round.
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2.2. Wireless Power Transfer

With recent energy harvesting models, optimizing data routing is a common approach to reduce
energy consumptions of the nodes and improve the lifecycle of WSNs. Considering the power transfer
task, the chargers construct power beams [28] to improve the wireless power transfer (WPT) efficiency,
such that more power could be harvested by the sensors. To maximize the power reception by the
sensor, the present approaches are based on the dominant channel eigenvector of energy beam [29,30].
Even the energy beamforming is optimized; if the nodes consume energy inefficiently, the power would
be wasted and the network lifecycle performance will be degraded. To maximize the network lifecycle
and achieve the immortality of the WSNs, the authors propose to reduce the energy consumption
of sensors by optimizing the data routing among the sensors and to improve the WPT efficiency by
optimizing the energy beamforming of the chargers [31].

Energy harvesting and WPT are capable of relieving the battery limitation of sensors, an
amplify-and-forward relay network (AF-RN) is proposed in [32]. The strategy is a joint power
control and energy transfer scheme to maximize the throughput by considering the energy causality
constraints. In [33], an AF-RN with energy harvesting (EH) source and relay nodes is investigated.
To consider the energy arrival profiles and the energy cooperation between EH nodes, a joint power
control and transfer is designed to maximize the total data rate, subject to energy causality and battery
storage constraints. With the total source transmission power budget and energy-causality constraints,
the authors in [34] formulated an energy efficiency maximization (EEM) optimization problem for the
multi-user multicarrier energy-constrained amplify-and-forward (AF) multi-relay network. Under the
simultaneous wireless information and power transfer (SWIPT) model, each forwarding node is solely
powered by the source nodes, employing an energy harvesting time-switching (EHTS) scheme to
harvest the energy via the radio-frequency (RF) signal transmitted from the source nodes. In addition,
a suboptimal and best relay selection algorithm is also examined to trade-off between complexity
and performance.

The above energy balance approaches seem to be comprehensive; however, they are just passive
and late-remedy solutions based on multiple forwarding factors to determine an appropriate routing
path. On the other hand, the above efficient wireless charging schemes consider the efficient routing
node selection instead of the balanced routing node determination. To jointly consider the design issues
on the balanced routing and the effective WPT, a SPT-EBR is proposed to improve the load balance
and thus improve the WPT efficiency. The SPT-EBR is an early-intervention method to make the load
balancing in the SCA layer and all the other intra-layers. The proposed method can also avoid the
frequent routing update messages and the excessive load concentration in the following maintenance
phase. After load balance in each intra-layer, the energy harvesting scheme can be applied to efficiently
charge for the hotspot nodes.

3. Problem Statement and Motivation

3.1. Problem Statement

When considering traditional multi-hop routing with many-to-one traffic patterns, unbalanced
energy consumption is an inherent problem in WSNs. However, the multi-hop routing method can
achieve better energy efficiency than the single-hop routing method in networks. In the multi-hop
routing method, each sensor node can transmit and forward packets to the data sink through the
shortest path, either occasionally or periodically. After a period of operation, hotspot nodes will be
generated when the high traffic routing paths are converged and most of the traffic load congested
at some specific nodes. Typically, sensors near the sink forward a larger amount of traffic load than
sensors that are far from the sink. Therefore, the hotspot nodes near the data sink deplete the battery
faster than other sensors. Since the network operation lifecycle is usually defined as the occasion when
a battery of the first node is exhausted, the remaining energy capacity of other sensors can be regarded
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as underutilized energy, and the energy consumption discrepancy results in the considerable network
lifetime degradation.

A traditional hierarchical WSN routing scenario that includes 81 clusters with one data sink and
an evenly distributed two-dimensional network is shown in Figure 1. According to the energy capacity,
a cluster head (CH) is selected from the sensors in each cluster. In the cluster, each CH is responsible to
manage the sensors, merges all the sensing data from sensors, and sends the collected data to the sink.
In order to achieve balance energy utilization, the node with the largest remaining battery capacity is
designated as a CH in turn.

Figure 1. An 81-cluster example illustration for wireless sensor networks (WSN) deployment.

In the WSNs example, it is assumed that the nodes are deployed in a uniform distribution; the
communication distance between two adjacent nodes is d. Each node transmits the sensing data to the
sink through the forwarding node along the shortest path. The power consumption is assumed to be
proportional to d2 in the path loss model. Note that the shortest path from each node to the sink is
calculated by the Dijkstra algorithm. From the perspective of data application, the traffic generated
in each node is periodically sent to the target sink. After a specific network operation cycle, each
node calculates the number of sending and forwarding packets, and then sends the statistics of the
total transmitted packets along with data packets to the sink. Finally, the statistics of each node are
calculated by the sink to estimate the number of paths forwarded.

In Figure 2, the average forwarding path load amount is illustrated. The 36 nodes in the red area
are mainly forwarded through the node 32, the 20 nodes in the blue area are mainly forwarded by the
node 40, the 20 nodes in the green area are mainly forwarded via the node 42, and the four nodes in
the purple area are mainly forwarded by the node 50. Even though both nodes 32 and 50 are directly
connected to the sink, the number of packets forwarding via node 32 is nine times that of node 50.
Therefore, an interesting phenomenon is observed which leads to uneven traffic load among the sink in
the network even with a uniform node distribution and each node has a uniform packet transmission
rate. Specifically, the power consumption rate is unbalanced in the sink connectivity area (SCA), where
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the power consumption rate can be calculated by the total number of packets sent and forwarded in
the period of each node.

Figure 2. An illustrated example of packet forwarding amount for the sink connection area (SCA).

In the SCA, it is expected that the four primary forwarding nodes 32, 40, 42, and 50 achieve the
approximate power consumption rate per operation cycle. Unfortunately, the Dijkstra algorithm uses
the first shortest path and does not consider the following shortest paths; a non-uniform forwarding
packet load distribution phenomenon was found in the SCA. In addition, the battery capacity of node
32 was first exhausted because the number of packets forwarded by the primary forwarding node
adjacent to the data sink presents an uneven load distribution. The earliest exhausted node also causes
the sub-area network to be unserved, thereby reducing the lifetime of the entire network. As a result,
there are 35 nodes with good battery conditions, but these nodes cannot send data packets to the data
sink through the primary forwarding node 32. As a result, the energy resource of the other nodes is not
fully utilized in terms of the overall network underutilization. To improve the routing survivability,
the highest traffic load can be transferred to several sub-trees with the least load, in order to speed up
load balance among different nodes of the network.

3.2. Motivation

With the same link weight in each path, the Dijkstra algorithm computes the shortest path for all
nodes of multi-hop network initially. After that, the routing path of each node changes as the path cost
variation. To mitigate the power consumption of the hotspot nodes, the nodes with lighter traffic can
share the forwarding packets if the hotspot nodes increase their path costs. At the same time, because
the packet forwarding amount of hotspots next to the sink is very large, the packet forwarding rate is
much higher than other nodes. Therefore, it is possible to design an energy balanced routing strategy
by the amount of packet forwarding in each node and the packet forwarding rate can be utilized as a
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forward awareness factor of path cost or link weight. It can be expected that after several transmission
cycles, the SCA and other nodes in each communication layer centered at the sink can achieve the
effect of load balance in terms of the energy balance of each network layer.

In Figure 2, four main forwarding nodes directly connected to the sink can be observed that
the number of forwarding packets via node 32 is nine times than that of node 50. We aimed to
design a method with the packet forwarding rate for the path cost and to achieve the effect of load
balancing of the four main forwarding nodes. Taking node 9 as an example in Figure 1, node 9
can reach sink 41 either from the primary node 32 or 42. Originally, the resulting shortest path is
9→8→7→6→5→14→23→32 by the Dijkstra algorithm. After a certain period of operation, if the
forwarding amount of node 32 is greater than the other primary nodes in SCA, the path cost of node
32 is increased and an alternative path 9→8→7→15→25→34→33→42 could be generated. Thus, the
packets originally forwarded by the node 32 will be forwarded by the node 42 afterward and the traffic
load of node 32 can be mitigated. After that, when the forwarding amount of the node 42 is relatively
increased and the path cost of the node 42 will be increased. As a result, the shortest path for node 9
can be alternative switched either via node 32 or node 42.

On the other hand, the forwarding traffic load via node 42 such as nodes 78 to 81 will also be
transferred to node 50, since it has a small number of forwarding packets than node 42. After changing
the path cost of hotspots to update the new routing paths of other sensors, our first aim is to design
a uniform forwarding packet rate for the main forwarding nodes and all the other communication
layers. In addition, the hotspot nodes location can be transferred from the irregular distributed area
into the SCA intra-layer. Finally, the ideal balanced shortest tree of multi-hop networks can be seen in
Figure 3. Based on the balanced shortest tree routing, the energy harvest capability is jointly deployed
for each sensor to effectively utilize the harvested energy and towards to achieve the main goal for an
immortal WSN.

Figure 3. The ideal balanced shortest tree of multi-hop networks.
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4. The Proposed Strategy

4.1. The Network Model

It is assumed that all sensors are evenly distributed in a two-dimensional region R with a radius
of d for the network model. With unlimited energy, a static data sink is located at the center of the
two-dimensional region. Each sensor is located within a cluster and transmits the sensed packet
to its associated cluster head (CH). Then each CH aggregates and transmits packets along with the
constructed shortest paths to the data sink. To evenly assign the CH among sensors, the CH is
alternated with an equal probability in the same cluster and all sensors have the same amount of initial
energy Einit [9].

In the network application, each sensor collects parameters such as humidity, temperature, air
quality, or other related events at the outside environment and the fused data can be forwarded to
the sink via the CHs along the transmission path. Where m is a variable that is represented the total
amount of sending packets and forwarding packets from CH u to the sink. In each data cycle, pk is the
probability that a CH fuses the kth event and generates number of packets gk. As a result, the packet
generation rate r for any CH u in each data cycle can be expressed as:

ru =
m∑

k=1

pkgk (1)

To simplify the power computation model, the transmission power is the main factor to be taken
into consideration in the path loss model since it spends a larger amount of power than the reception
and idle situations. Hence, the power consumption for the multi-hop transmission can be represented
as PM(ru). Consequently, the network lifecycle of CH node u is expressed by:

N(u) =
Einit

PM(ru)
(2)

where Einit is the initial amount of battery capacity of each sensor and the lifecycle is defined as the
network operation round from sensors placement till the first sensor depletes its battery capacity [16].

4.2. The Proposed SPT-EBR Strategy

In order to prolong the lifecycle of WSNs with node energy efficiency and energy balance, this
paper proposes two novel schemes by using forward awareness factors as path cost to select the next
node for packet transmission. One is the power consumption scheme, and the other is the energy
harvesting scheme. The power consumption scheme considers the packet forwarding rate as the
forward awareness factor for each node to alter the desired routing path. The packet forwarding rate is
proportional to the power consumption rate and it is considered to keep the sensors using the shortest
path, thus making the packets transmission efficient. Simultaneously, the power consumption between
the hotspots is also balanced, achieving the effect of both packet transmission efficiency and load
balancing design goal.

In general, hotspot nodes are usually spatially distributed. With the assistance of the power
consumption scheme, hotspot nodes can be transferred from the irregular location to the same
intra-layer, and this benefit makes the implementation of efficient wireless power charging over a
large area is possible. In the energy harvesting scheme, it is assumed that the network nodes have the
capability to capture energy. The role of the charging station can be deployed by a nearby data sink or
other RF base stations, and the sensing node can be charged in a random model or a constant model.
The power charging rate in each node is combined with the packet forwarding rate as the forward
awareness factor to calculate the path cost for next node selection, achieving the design goal of energy
balance and permanent utilization WSNs.
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4.2.1. The Power Consumption Scheme

In the power consumption rate scheme, time resource is allocated as a time slot that operates
periodically to avoid frequent paths updating. In the beginning, the sink calculates the shortest path
from all nodes to itself by the Dijkstra algorithm. The shortest path is then passed from sink to each
sensor to establish a minimum spanning tree routing. Packets transmission with the shortest path
will make the transmission of the entire network more energy efficient. In each time slot, each node
calculates whether its own packet transmission rate is greater than the threshold value. The threshold
value is determined by the sink and can be defined as the average of the overall packet forwarding rate.
Then, the sink passes the threshold value to all nodes together when the routing paths are transmitted.
After that, each node can update the path cost according to the threshold value.

In each time slot, if the total amount of packet transmission value P is greater than the threshold
T in each node, the path cost is increased by one. When the packet transmission amount P of the
node is less than or equal to T, the value of path cost keep the same. In order to avoid communication
overhead, path cost can be transmitted to the sink along with the sensing data. When the sink receives
the data, if the path cost changes, the sink recalculates and updates the path to the nodes with high
traffic load.

In each time slot, the node with a faster packet transmission rate can mitigate forwarding packets
by increases the path cost. Let other nodes near the sink share the network traffic load and achieve
the traffic load balance in each layer of the network. Repeat the load balancing operation can balance
the transmission packets of the hotspot nodes since the hotspots can share the forwarding packets
in turn from all the other sensors. Distributing the traffic load allows network load balancing to be
achieved while letting the global nodes to fully utilize their energy. Alternatively, the shortest path
transmission also minimizes overall power consumption for efficient energy utilization. Generally, the
power consumption scheme achieves both energy efficiency and energy balance to extend the overall
network lifecycle. The detail design flowchart of the power consumption scheme is shown in Figure 4.

4.2.2. The Energy Harvesting Scheme

Wireless renewable sensor network is another major research issue in this paper. Assuming
that the nodes have energy capture capabilities, the sensing nodes can replenish energy from the
energy radiated by the solar or RF base stations. Here, an integration of power charging rate and data
forwarding rate is proposed as shown in Figure 5. The operation calculation cycle is scheduled from
t(0), t(1), t(2) to t(n) time slots. At each operation cycle, each node has the opportunity to capture
random ambient energy a(i), which represents the power capture rate of the i-th node. The packet
transmission rate can be converted into the function of the power consumption rate in each node, and
the packet transmission rate is proportional to the power consumption rate. Therefore, the packet
transfer amount P is converted into a corresponding power consumption function p(i), which represents
the power consumption of the i-th node at each time slot. The initial battery capacity of each node is
b(0), and the new battery capacity is updated in each time slot. The current battery capacity b(i) can be
obtained from the previous battery capacity b(i− 1), plus the current charging energy a(i) and minus
the power consumption rate for packets transmission. The current battery capacity can be formulated
in Equation (3):

b(i) = b(i− 1) + a(i) − p(i)
i = 1, 2, 3 . . . n

(3)
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Figure 4. The illustrated flowchart of packet forwarding rate scheme.
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Figure 5. The illustration of the battery charging rate of the energy harvesting scheme.

From Equation (3), the charge rate of the battery capacity unit Δb can be obtained. The Δb
represents the deviation of the current battery capacity with the battery capacity in the previous cycle
b(i− 1). It is also the result of the rate of harvested energy minus the rate of consumed power in
each node.

To achieve the immortal WSNs, an additional parameter called battery charging rate Δb is
introduced to be the forward awareness factor. If the parameter Δb is greater than 0, it means that
the battery of the sensing node is always in the positive charging state and will not be affected by
the power consumption of packet transmission. The battery charging rate is the main considering
parameter to update the path cost of each node. If the parameter is less than or equal to 0, it means
that the power consumption rate of the node is faster than the power charging rate, and the power
consumption rate is regarded as the main consideration factor. Therefore, the path cost design of the
energy harvesting scheme can be considered together with both the packet forwarding rate and energy
harvest rate.

The operation of the forward awareness factor as the path cost of power harvesting scheme can be
described as follows. In each time slot, it is required to consider whether the Δb parameter is a positive
value. If Δb is greater than 0, the path cost still keeps the same. In contrast, if the charging rate is less
than or equal to 0, it is considered to follow the design principle of the first power consumption scheme.
When the power consumption rate p(i) in each node is greater than the average power consumption
threshold value pavg (i), the path cost is increased by 2. If the p(i) is less than or equal to the pavg(i), the
path cost is incremented by 1. The detail design flowchart of the energy harvesting scheme are shown
in Figure 6.

In real operation, the extra cost is generated to deploy the energy harvesting device and it will
increase some subordinate costs. However, it can effectively extend the lifecycle of the sensing network
and eliminate the requirement to replace the battery. To joint consider the energy balanced routing and
energy harvesting benefits, the design aim of the immortal WSNs can be achieved when the energy
harvesting rate in the hotspots is greater than energy consumption rate for packet transmission.
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Figure 6. The illustrated flowchart of power harvest scheme.

5. Simulation Results

To validate the effectiveness of the proposed strategy, the network performances of energy
routing protocols including the proposed SPT-LBR and the conventional Dijkstra algorithms are
both investigated. To estimate the energy routing performances, a two-dimensional planar network
with one data sink (Identification, ID 41) and 80 CHs nodes are studied here. The 80 CHs are even
distributed in a given operation area and each cluster owns several sensors to detect the cluster area.
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The four primary nodes in the SCA are 32, 41, 42, and 50. The SPT-EBR and the Dijkstra algorithms
are both applied to compute the shortest paths with various forward awareness factors including
the packet forwarding rate and the energy harvesting rate. With regard to the packet transmission,
each sensor sends packets to the CHs and each CH fuses data as well as forwards them to the sink
periodically. Two performances including the power consumption rate distribution and the network
lifetime are compared between the power consumption scheme, power harvesting scheme, and the
Dijkstra algorithm.

Figure 7 shows the power consumption rate distribution of the power consumption scheme in
the red line and the Dijkstra algorithm in the blue line are both examined. In the Dijkstra algorithm,
node 32 has the greediest power consumption compared to the other primary nodes, and is nine times
than node 50 in average power consumption. In the power consumption scheme of SPT-EBR, the
highest power consumption is at nodes 50, 1.4 times than node 41 in average power consumption.
As a result, the power consumption scheme achieves better energy utilization with the load balance
factor design. From the perspective on hotspot nodes distribution, the hotspot nodes 14, 23, 32, 40,
and 42 are spatially distributed in the inter-layers by the Dijkstra routing. With the assistance of the
power consumption scheme, the hotspot nodes can be evenly distributed around the sink connectivity
area. In addition, the power consumption rate distribution in each intra-layer is more even than the
conventional scheme.

 

Figure 7. The power consumption rate distribution of the power consumption scheme in Shortest Path
Tree with Energy Balance Routing strategy (SPT-EBR).
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In Figure 8, the power consumption rate distribution of the larger network with 169 nodes for both
the power consumption scheme and the Dijkstra algorithm are investigated. In the Dijkstra algorithm,
node 72 encounters the highest power consumption rate than all the other primary nodes and there is
13 times than node 98 in average power consumption. This may lead to an inevitable energy unbalance
problem in hotspot nodes as the network size grows. In the power consumption scheme of SPT-EBR,
the highest power consumption rate is occurred at nodes 98 and there is 1.56 times than node 86 in
average power consumption. With the load balance factor to select the next forwarding node, the
power consumption scheme achieves better energy utilization than the Dijkstra algorithm. In addition,
the energy unbalance problem can be controlled with the packet forwarding rate factor in the power
consumption scheme.

 
Figure 8. The power consumption scheme for larger SPT-EBR networks.

To evaluate the energy harvesting scheme, a uniform distribution of energy harvesting mode is
introduced here to perform the simulation. The energy harvesting strategy includes the full nodes
charging and the partial nodes charging strategies. The partial nodes charging strategy is designed to
charge the 20% heavy traffic nodes and save the deployment cost in realizing the energy charging.
The power charging value is uniformly distributed from 0 to 18 for the energy harvesting scheme and
the average battery charging rate of the overall nodes is 7. Figure 9 shows the power consumption
rate distribution of the energy harvesting scheme and both schemes achieve the identical power
consumption for the four primary hotspot nodes. In general, the full nodes charging method achieves
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better performance than the partial nodes charging approach for most of the other nodes in power
consumption since it spends more operation cost for energy charging.

 

Figure 9. The power consumption rate distribution of the power harvest scheme in SPT-EBR.

For network lifecycle evaluation, the initial energy at each node is set to 0.6 J, and the network
lifecycle is evaluated by operation rounds. The energy consumption per transmission bit is 50 nJ/bit
and the data is 1000 bits in length [35]. The primary node with the highest power consumption rate is
considered as the hotspot, which will limit the overall network lifecycle. Thus, the network lifecycle is
inversely proportional to the highest power consumption rate of the hotspot. An additional model,
called constant power charging rate is also designed in the energy harvesting scheme to achieve the
everlasting WSNs. Figure 10 shows the network lifecycle of both SPT-EBR and Dijkstra algorithms. The
power consumption scheme demonstrates an improvement of almost 52% over the Dijkstra scheme,
and the power harvest scheme almost doubles the lifecycle than that of the Dijkstra scheme. In addition,
the constant power charging rate can extend almost 6.5 times than the Dijkstra scheme in the overall
network lifecycle. From the results, it can be concluded that the immortal WSNs can be achieved when
the energy harvesting rate is greater than the power consumption rate, especially for the hotspot nodes.
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Figure 10. The network lifecycle of SPT-EBR and Dijkstra algorithms.

Figure 11 shows that the battery charging rate Δb of three cases includes the low, the medium
and the high charging conditions for the worst hotspot node of packet transmission. The constant
charging rate for the low case is 10 units/round, the medium case is 20 units /round, and the high case
is 30 units/round. The high battery charging rate case achieves the best energy harvesting performance
since the deployment cost is the highest. Because the parameter Δb is greater than 0 in the high
charging rate case, it means that the battery of the worst sensing node is always in the positive charging
state and will not be affected by the power consumption of packet transmission. In other words, the
immortal WSNs can be achieved by control the positive charging rate for the worst hotspot node
during packet transmission. In addition, the peak power consumption rate is 36/27/18/9 for the four
intra-layers from the sink for the conventional scheme (blue curve) and is 23.2/11.9/6.9/3.9 for the
SPT-EBR scheme in Figure 7, respectively. The peak power consumption rate means that the minimum
charging power for each layer and thus the proposed method can save the charging power about 55.7%
in average in each operation round.

92



Energies 2019, 12, 2336

 
Figure 11. The battery charging rate of the worst hotspot node for SPT-EBR.

Figure 12 shows the routing computation cost of power consumption scheme and energy harvesting
scheme in the SPT-EBR and the Dijkstra algorithm. It can be observed that the Dijkstra algorithm
achieves the least computation time to make the routing path convergence. To achieve lower power
consumption rate and higher network lifecycle, the power consumption scheme spends additional
34% time cost for balanced routing computation. In the energy harvesting scheme, three strategies
including the full nodes harvesting, the partial nodes harvesting and the constant harvesting achieve
better network lifecycle extension but spends additional 72% time cost to generate the balanced routing
paths. From the above results, it is better to spend routing computation cost in the early period rather
than the late-remedy strategy in the maintenance phase to extend the network lifecycle.
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Figure 12. The routing computation cost of SPT-EBR and Dijkstra algorithms.

6. Conclusions

To joint consider the energy balanced routing and energy harvesting benefits, a Shortest Path Tree
with Energy Balance Routing strategy (SPT-EBR) is proposed in the article. In SPT-EBR, two methods
are presented, including the power consumption and the energy harvesting schemes to select the
forwarding node according to the awareness factors of link weight. First, the packet forwarding rate
factor was considered in the power consumption scheme to update the link weight for the sensors
with higher power consumption and mitigate the traffic load of hotspot nodes to achieve the energy
balance network. Then, the energy harvesting scheme combines both the packet forwarding rate and
the power charging rate factors together to update the link weight with a new battery charging rate
factor for the hotspots. Finally, simulation results validate that both power consumption and energy
harvesting schemes in SPT-EBR achieve better energy balance performance and save more charging
power than the conventional shortest path protocol and thus improve the overall network lifecycle.
Additionally, it can also be inferred that the immortal WSNs has a high probability to be realized
when the energy harvesting rate is greater than the power consumption rate especially for the hotspot
nodes. As a result, the design aim of immortal WSNs can be achieved, which profits from the effective
harvested energy and load balanced routing strategy.
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