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Preface to ”Nonsmooth Optimization in Honor of the

60th Birthday of Adil M. Bagirov”

Nonsmooth optimization (NSO) refers to the general problem of minimizing (or maximizing)

functions that are typically not differentiable at their minimizers (maximizers). Such functions can

be found in various applications such as image denoising; optimal shape design; computational

chemistry and physics; water management; cybersecurity; machine learning; and data mining,

including cluster analysis, classification, and regression. As the classical optimization theory

presumes differentiability of the functions to be optimized, it cannot be directly applied, nor can

the methods introduced for smooth problems.

The aim of this book was to gather the most recent developments in NSO techniques and

applications. The book opens with the foreword by the Guest Editors and then presents six articles in

the area of NSO and its applications.

The Guest Editors are grateful to Professor Adil Bagirov, with whom they have had the privilege

of conducting research in the area of NSO and its applications, and wish him all the best in his career

and personal life.

The Guest Editors would like to thank all the authors for their contributions to this book,

all reviewers who provided constructive comments, and the editorial staff of the MDPI journal

Algorithms for their support.

Napsu Karmitsa, Sona Taheri

Editors

ix





algorithms

Editorial
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Abstract: Nonsmooth optimization refers to the general problem of minimizing (or maximizing)
functions that have discontinuous gradients. This Special Issue contains six research articles that
collect together the most recent techniques and applications in the area of nonsmooth optimization.
These include novel techniques utilizing some decomposable structures in nonsmooth problems—for
instance, the difference-of-convex (DC) structure—and interesting important practical problems, like
multiple instance learning, hydrothermal unit-commitment problem, and scheduling the disposal of
nuclear waste.

1. Introduction

In this special issue, we take the opportunity to acknowledge the outstanding contributions of
Professor Adil Bagirov (Figure 1) to nonsmooth optimization (NSO) in both theoretical foundations
and its practical aspects during his 35 year long research career. This Special Issue collects together the
most recent techniques and applications in the area of NSO. It contains six excellent research papers by
well-known mathematicians. Some of the authors have at some point collaborated with Adil Bagirov,
and all of them would like to show their respect to him and his work.

Figure 1. Professor Adil Bagirov.

Adil Bagirov received a master’s degree in Applied Mathematics from Baku State University,
Azerbaijan in 1983, and the Candidate of Sciences degree in Mathematical Cybernetics from the

Algorithms 2020, 13, 282; doi:10.3390/a13110282 www.mdpi.com/journal/algorithms1
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Institute of Cybernetics of Azerbaijan National Academy of Sciences in 1989. Then he worked at
the Space Research Institute (Baku, Azerbaijan), Baku State University (Baku, Azerbaijan) and Joint
Institute for Nuclear Research (Moscow, Russia) until 1998.

Bagirov has been joined with Federation University Australia since 1999. He completed his
PhD in Optimization under the supervision of Professor Alexander Rubinov at Federation University
Australia (formerly the University of Ballarat) in 2002. Currently, he holds the full Professor position at
this university. Professor Bagirov has contributed exceptionally to NSO and its applications to real-life
problems. These contributions include writing books on NSO [1] and its applications in clustering [2],
an edited book on NSO methods [3] and more than 170 journal papers, book chapters and papers
in conference proceedings in the area of NSO and its applications (see, e.g., [4–12]). He has also
supervised more than 28 PhD students.

Professor Bagirov has been successful in securing five grants from the Australian Research
Council’s Discovery and Linkage schemes to conduct research in nonsmooth and global optimization
and their applications. He was awarded the Australian Research Council Postdoctoral Fellowship and
the Australian Research Council Research Fellowship. In addition, he is EUROPT Fellow 2009.

The Guest Editors are grateful to Professor Adil Bagirov, with whom they have had the privilege
to do research in the area of NSO and its real-life applications. On behalf of the journal, the Guest
Editors wish him all the best in his career and personal life.

2. Nonsmooth Optimization

NSO refers to the general problem of minimizing (or maximizing) functions that have
discontinuous gradients. These types of functions arise in many applied fields, for instance, in image
deionising, optimal shape design, computational chemistry and physics, water management, cyber
security, machine learning, and data mining including cluster analysis, classification and regression.
In most of these applications, the number of decision variables is very large, and their NSO formulations
allow us to reduce these numbers significantly. Thus, the application of NSO approaches facilitates
the design of efficient algorithms for their solutions, the more realistic modeling of various real-world
problems, the robust formulation of a system, and even the solving of difficult smooth (continuously
differentiable) problems that require reducing the problem’s size or simplifying its structure. These are
some of the main reasons for the increased attraction to nonsmooth analysis and optimization during
the past few years. This Special Issue collects some of the most recent methods in NSO and its
applications. These include novel techniques for solving NSO problems by utilizing, for instance,
the decomposable (difference of convex (DC)) structure of the objective, the nonsmooth Gauss-Newton
algorithm, the biased-randomized algorithm, and also interesting practical problems such as the
multiple instance learning, the hydrothermal unit-commitment problem, and scheduling the disposal
of nuclear waste.

In the first article, “A Mixed-Integer and Asynchronous Level Decomposition with Application to
the Stochastic Hydrothermal Unit-Commitment Problem” by Bruno Colonetti, Erlon Cristian Finardi
and Welington de Oliveira [13], the authors develop an efficient algorithm for solving uncertain
unit-commitment (UC) problems. The efficiency of the algorithm is based on the novel asynchronous
level decomposition of the UC problem and the parallelization of the algorithm.

In the second article “On a Nonsmooth Gauss-Newton Algorithm for Solving Nonlinear
Complementarity Problems” by Marek J. Śmietański [14], the author proposes a new nonsmooth
version of the generalized damped Gauss-Newton method for solving nonlinear complementarity
problems. In the proposed algorithm, the Bouligand differential plays the role of the derivative.
The author presents two types of algorithms (usual and inexact), which have superlinear and global
convergence for semismooth cases.

In the article “Polyhedral DC Decomposition and DCA Optimization of Piecewise Linear
Functions” by Andreas Griewank and Andrea Walther [15], the abs-linear representation of the
piecewise linear functions is extended, yielding their DC decomposition as well as a pair of generalized
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gradients that can be computed using the reverse mode of algorithmic differentiation. The DC
decomposition and two subgradients are used to drive DCA algorithms where the (convex) inner
problem can be solved in a finite many iterations and the gradients of the concave part can be updated
using a reflection technique.

The fourth article, “On the Use of Biased-Randomized Algorithms for Solving Non-Smooth
Optimization Problems” by Angel Alejandro Juan, Canan Gunes Corlu, Rafael David Tordecilla,
Rocio de la Torre and Albert Ferrer [16], introduces the use of biased-randomized algorithms as an
effective methodology to cope with NP-hard and NSO problems in many practical applications,
in particular, those including so called soft constraints. Biased-randomized algorithms extend
constructive heuristics by introducing a nonuniform randomization pattern into them. Thus, they can
be used to explore promising areas of the solution space without the limitations of gradient-based
approaches that assume the existence of the smooth objective.

In the fifth article, “Planning the Schedule for the Disposal of the Spent Nuclear Fuel with
Interactive Multiobjective Optimization” by Outi Montonen, Timo Ranta and Marko M. Mäkelä [17],
the very important problem of the scheduling of nuclear waste disposal is modelled as a multiobjective
mixed-integer nonlinear NSO problem with the minimization of nine objectives. A novel method
using the two-slope parameterized achievement scalarizing functions is introduced for solving this
problem, and a case study adapting the disposal in Finland is given.

Finally, the article “SVM-Based Multiple Instance Classification via DC Optimization” by
Annabella Astorino, Antonio Fuduli, Giovanni Giallombardo and Giovanna Miglionico considers the
binary classification of the multiple instance learning problem [18]. The problem is formulated as a
nonconvex unconstrained NSO problem with a DC objective function, and an appropriate nonsmooth
DC algorithm is used to solve this problem.

The Guest Editors would like to thank all the authors for their contributions in this Special Issue.
They would also like to thank all the reviewers for their timely and insightful comments on the
submitted articles as well as the editorial staff of the MDPI Journal Algorithms for their assistance in
managing the review process in a prompt manner.

Funding: This work was financially supported by Academy of Finland grant #289500.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: Independent System Operators (ISOs) worldwide face the ever-increasing challenge of
coping with uncertainties, which requires sophisticated algorithms for solving unit-commitment (UC)
problems of increasing complexity in less-and-less time. Hence, decomposition methods are appealing
options to produce easier-to-handle problems that can hopefully return good solutions at reasonable
times. When applied to two-stage stochastic models, decomposition often yields subproblems
that are embarrassingly parallel. Synchronous parallel-computing techniques are applied to the
decomposable subproblem and frequently result in considerable time savings. However, due to the
inherent run-time differences amongst the subproblem’s optimization models, unequal equipment,
and communication overheads, synchronous approaches may underuse the computing resources.
Consequently, asynchronous computing constitutes a natural enhancement to existing methods.
In this work, we propose a novel extension of the asynchronous level decomposition to solve
stochastic hydrothermal UC problems with mixed-integer variables in the first stage. In addition,
we combine this novel method with an efficient task allocation to yield an innovative algorithm that
far outperforms the current state-of-the-art. We provide convergence analysis of our proposal and
assess its computational performance on a testbed consisting of 54 problems from a 46-bus system.
Results show that our asynchronous algorithm outperforms its synchronous counterpart in terms of
wall-clock computing time in 40% of the problems, providing time savings averaging about 45%,
while also reducing the standard deviation of running times over the testbed in the order of 25%.

Keywords: stochastic programming; stochastic hydrothermal UC problem; parallel computing;
asynchronous computing; level decomposition

1. Introduction

The unit-commitment (UC) problem aims at determining the optimal scheduling of generating
units to minimize costs or maximize revenues while satisfying local and system-wide constraints [1].
In its deterministic form, UC still poses a challenge to operators and researchers due to the large
sizes of the systems and the increasing modeling details necessary to represent the system operation.
For instance, in the Brazilian case, the current practice is to set a limit of 2 h for the solution of the
deterministic UC [2], while the Midcontinent Independent System Operator (MISO) sets a time limit
of 20 min for its UC [3]. (Note that the Brazilian system and the MISO are different from a physical,
as well as from a market-based, viewpoint, but the problems being solved in these two cases share the
same classical concept of the UC.) Nonetheless, the growing presence of intermittent generation has

Algorithms 2020, 13, 235; doi:10.3390/a13090235 www.mdpi.com/journal/algorithms5
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added yet more difficulty to the problem, giving rise to what is called uncertain UC [4]. The latter
is considerably harder to solve than its deterministic counterpart, and one of the reasons for its lack
of adoption in the industry is precisely its computational burden: Large-scale uncertain UC takes a
prohibitively long time to be solved. In this context, efficient solution methods for the uncertain UC
that can take full advantage of the computational resources at hand are both desirable and necessary to
help system operators cope with uncertain resources.

In particular, to model the uncertainty arising from renewable sources, one of two approaches
is generally employed: robust optimization or stochastic programming [4]. The latter is by far the
most employed, both in its chance-constrained and recourse variants. In stochastic programs with
recourse, uncertainty is, in general, represented by finite-many scenarios, and the problem is formulated
either in a two-stage or multistage setting. In two-stage stochastic problems, the first-stage variables
must be decided before uncertainty is revealed. Once the uncertain information becomes known,
recourse actions are taken to best accommodate the first-stage decisions [5]. In stochastic hydrothermal
unit-commitment (SHTUC) problems, the sources of uncertainties are related to renewable resources,
spot prices, load, and equipment availability [1,4].

The commitment decisions are usually modeled as first-stage variables, while dispatch decisions are
the recourse actions (second-stage variables). Given the mixed-integer nature of commitment decisions,
SHTUC problems in a two-stage formulation give rise to large-scale mixed-integer optimization models
whose numerical solution by off-the-shelf solvers is often prohibitive due to time requirements or
limited computing resources. Consequently, decomposition techniques must come into play [1,4,6,7].
Benders decomposition (BD) and Lagrangian relaxation (LR) are the most used techniques to handle
SHTUC problems. While the BD deals with the primal problem [8], LR is a dual procedure employed to
compute the best lower bound for the SHTUC problem [7,9]. Primal-recovery heuristics are employed
to compute primal-feasible points, which are not, in general, optimal solutions. This is the main
shortcoming of LR-based techniques.

Decomposition techniques yield models that are amenable for parallelization [5]. A common
strategy for solving problems simultaneously is to use a master/worker framework with pre-specified
synchronization points [10], which we call synchronous computing (SYN). In this framework, the master
chooses new iterates and sends them to workers, who, in turn, are responsible for solving one or more
subproblems. Examples of SYN implementations for UC are given in [11–14]. An aspect of SYN is
that, at predetermined points of the algorithm, the master must wait for all workers to respond to
resume the iterative process: the synchronization points. However, the times for workers to finish their
respective tasks might vary significantly. This results in idle times, both for the master and for workers
who respond quickly [10]. One way to reduce idle times is to use asynchronous computing (ASYN).

In contrast to SYN, in ASYN, there are no synchronization points, so the master and workers do
not need to wait until all workers respond to continue their operations. Thus, in an iterative process,
e.g., in BD, the master would compute the next iterate based on information of possibly only a proper,
but nonempty, subset of the workers. Based on this possibly incomplete information, the master sends
a new iterate to available workers, while slower workers are still carrying their tasks on an outdated
iterate. Because in ASYN iterates might not be evaluated by all workers, the evaluation of the objective
function (yielding bounds on the optimal values) is precluded. Hence, a fundamental step in ASYN is
the (scarce) coordination of workers to produce valid bounds.

ASYN implementations have been proposed in the UC literature mainly to solve the dual
problems (issued by LRs) via either subgradient algorithms or cutting-plane-based methods [15–17].
In References [15,16], a queue of iterates is created and its elements are gradually sent to the workers.
Auxiliary lists keep track of the evaluation status of each worker with respect tothe elements in
the queue. Once an element has been evaluated by all workers, a valid bound to the original
problem is available. The authors of Reference [15] demonstrate that their algorithm converges to
a dual global solution regardless of the iterate-selection policy used to choose the iterates from the
queue—first-in-first-out or last-in-first-out. In References [17], the authors keep a list of all the iterates

6
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to compute valid bounds. In addition to solving the dual problem asynchronously, Reference [17] also
conducts the primal recovery asynchronously. While References [15,16] employ a convex trust-region
bundle method, Reference [17] implements an incremental subgradient method. Asynchronous
implementations of BD for convex problems can be found in References [18–20]. In Reference [18],
the dual dynamic-programming algorithm is handled asynchronously in a hydrothermal scheduling
problem. In Reference [19], the stochastic dual dynamic-programming algorithm is used for addressing
the long-term planning problem of a hydro-dominated system: The authors propose to compute
Benders cuts in an asynchronous fashion. This is also the case in Reference [20], where the authors
consider an asynchronous Benders decomposition for convex multistage stochastic programming.

Despite being successfully applied in a variety of fields, e.g., References [18,19] and the references
in References [21], the classical BD is well-known to suffer from slow convergence due to the oscillatory
nature of Kelley’s cutting-plane method [22,23]. Regularized BDs have been proven to outperform
the classical one in several problems: See Reference [24] for (convex) two-stage linear programming,
Reference [25] for (nonconvex) chance-constrained problems, and Reference [26] for robust designed
of stations in water distribution networks. Several types of regularization exist [25,27,28]: proximal,
trust-region, and level sets. Among the regularization methods, the level bundle method [29], also known
as level decomposition (LD) in two-stage programming [24], stands out for its flexibility in dealing
with convex or nonconvex feasible sets, stability functions and centers, and inexact oracles [25,26,30].
Recently, asymptotically level bundle methods for convex optimization were proposed in Reference [31].
The paper presents two algorithms. The first one does not employ coordination, but it makes use
of upper bounds on the Lipschitz constants of the involved functions to compute upper bounds for
the problem. The second algorithm does not make use of the latter assumption but requires scarce
coordination. The authors of Reference [31] focus on the convergence analysis of their proposals
(suitable only for the convex setting) and present limited numerical experiments. In this work, we build
on Reference [31] and extend its asynchronous algorithm with scarce coordination (Algorithm 3 of
Reference [31]) to the mixed-integer setting. Moreover, we consider a more general setting in which
tasks can be assigned to works in a dynamic fashion, as described in Section 3. We highlight that the
convergence analysis given in Reference [31] relies strongly on elements of convex analysis such as the
Smulian’s theorem and the Painlevé–Kuratowski set convergence. Such key theoretical results are
no longer valid in the setting of nonconvex sets, and hence the convergence analysis developed in
Reference [31] does not apply to our mixed-integer setting. For this reason, the convergence analysis of
our asynchronous LD must be done anew. We not only provide convergence analysis of our method
but also assess its numerical performance on a test set consisting of 54 instances of two-stage UC
problems with mixed-integer variables in the first stage.

We care to mention that other asynchronous bundle methods exist in the literature, but they are all
designed for convex optimization problems [15,16,32]. The latter reference proposes an asynchronous
proximal bundle method, whereas References [15,16] consider a trust-region variant for polyhedral
functions. Our approach, which follows the lines of the extended level bundle method of Reference [30],
does not require the involved functions to be polyhedral or the feasible set to be convex. As an
additional advantage, our algorithm is easily implementable.

This work is organized as follows. Section 2 presents a generic formulation of our two-stage
SHTUC problem. The extended asynchronous LD and its convergence analysis are presented in
Sections 2.1 and 2.2, respectively. Section 3 presents more details of the considered SHTUC problem
and states our case studies. Numerical experiments assessing the benefits of our proposal are given in
Section 4. Finally, in Section 5, we present our final remarks.

2. Materials and Methods

We address the problem of an Independent System Operator (ISO) in a hydro-dominated system
with a loose-pool market framework. The ISO decides the day-ahead commitment considering operation
costs, forecast errors in wind generation, and inflows; and the usual generation and system-wide
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constraints. The uncertainties in wind and inflows are represented by a finite set of scenarios, S,
and the decisions are made in two stages. At the first stage, the ISO decides on the commitment of units,
whereas, at the second stage, the operator determines the dispatch according to the random-variable
realization. Full details on the considered stochastic hydrothermal unit-commitment (SHTUC) are
given shortly. For presenting our approach, which is not limited to (stochastic) unit-commitment (UC)
problems, we adopt the following generic formulation.

f∗ := min
x,y

⎧⎪⎪⎨⎪⎪⎩cTx +
∑
s∈S

qT
s ys

∣∣∣∣∣∣
x ∈ X, Tx + Wys ≤ hs,
ys ∈ Ys, s ∈ S

⎫⎪⎪⎬⎪⎪⎭. (1)

In this formulation, the n-dimensional vector x represents the first-stage variables with associated
cost-vector, c. The second-stage variables, ys, and their associated costs, qs, depend on the scenario,
s ∈ S. The cost vector, qs, is assumed to incorporate the positive probability of scenario s. The first-
and second-stage variables are coupled by constraints Tx + Wys ≤ hs: T is the technology matrix; and
W and hs are, respectively, the recourse matrix and a vector of appropriate dimensions. While X � ∅

is a compact possibly nonconvex, the scenario-dependent setYs is a convex polyhedron.
As previously mentioned, depending on the UC problem and number of scenarios, the mixed-integer

linear programming (MILP) Problem (1) cannot be solved directly by an off-the-shelf solver. The problem
is thus decomposed by making use of the recourse functions.

Qs(x) := min
y∈Ys

qT
s y s.t. Wsy ≤ hs −Tsx. (2)

It is well-known that x �→ Qs(x) is a non-smooth convex function of x. If the above subproblem
has a solution, then a subgradient of Qs at x can be computed by making use of a Lagrange multiplier,
πs, associated with a constraint, Wsys ≤ hs −Tsx: −TT

s πs ∈ ∂Qs(x). On the other hand, if the recourse
function Qs is infeasible, then the point x can be cutoff by adding a feasibility cut [5].

Let P be a partition of S into w subsets: P = {P1, . . . , Pw}, with Pj � ∅ for all j ∈ {1, . . . ,w},
and Pj ∩ Pi = ∅ for i � j. By defining f j(x) :=

∑
s∈Pj

Qs(x), Problem (1) can be rewritten as

f∗ = min
x∈X

cTx + f 1(x) + . . .+ f w(x). (3)

In our notation, w stands for the number of workers evaluating the recourse functions. The workers
j ∈ {1, . . . ,w} are processes running on a single machine or multiple machines. Likewise, we define
a master process—hereafter referred to only as master—to solve the master program (which is
defined shortly).

2.1. The Mixed-Integer and Asynchronous Level Decomposition

For every point xk, where k represents an iteration counter, worker j receives xk and provides us
with the first-order information on the component function f j: the value of the function f j(xk) and a
subgradient [23] gj

k ∈ ∂ f j(xk), in the two-stage setting, gj
k := −

∑
s∈Pj

TT
sπs. Convexity of f j implies that

the linearization f j(xk) + 〈g
j
k, x− xk〉 approximates f j(x) from below for all x. By gathering iteration

indices into sets Jj ⊂ {1, 2, . . . , k} along with the iterations at which f j were evaluated, we can construct
individual cutting-plane models for functions f j, with j ∈ {1, . . . ,w}:mini∈Jj { f j(xk) + 〈g

j
k, x− xk〉} ≤ f j(x).

These models define—together with a stability center x̂k, a level parameter flev
k ∈ �, and a given norm

‖·‖2—the following master program (MP)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x,r

‖x− x̂k‖2
s.t. possible feasibility cuts

f j(xi) + 〈g
j
i, x− xi〉 ≤ rj, ∀i ∈ Jj

k,∀j = 1, . . . , w

cTx +
w∑

j=1
rj ≤ flev

k , x ∈ X.

(4)

8
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At iteration k, an MP solution is denoted by xk+1. If any Qs is infeasible at xk+1, then a feasibility
cut is added to the MP. We skip further details on this matter, since it is a well-known subject in the
literature of two-stage programming [5]. On the other hand, if xk+1 (sent to a work j) is feasible for all
recourse functions, Qs, the model f j in the MP is updated. The improvement in the model f j is possibly
based on outdated iterate xa(j), where a(j) < k is the iteration index of the anterior information provided
by worker j. We care to mention that the MP can be infeasible itself depending on the level parameter
flev
k . Due to the convexity of the involved functions, if the MP is infeasible, then flev

k is a valid lower
bound, f low

k , on f * [30].
Without coordination, there is no reason for all workers to be called upon the same iterate. This fact

precludes the computation of an upper bound, f up
k , of f *. Algorithm 2 in Reference [31] deals with

this situation without resorting to coordination techniques, but it requires more assumptions on the
functions f j: upper bounds on their Lipschitz constants should be known. Since we do not make this
assumption, we will need scarce coordination akin to Algorithm 3 of Reference [31] for computing
upper bounds on f *. As in Reference [31], the coordination iterates are denoted by xk. Assuming that
all workers eventually respond (after an unknown time), the coordination allows them to compute
the full value, f (xk), and a subgradient, g ∈ ∂ f (xk), at the coordination iterate. The function value is
used to update the upper bound, f up

k , as usual for level methods; the subgradient is used to update the
bound L on the Lipschitz constant of f.

In our algorithm below, the coordination is implemented by two vectors of Booleans: to-coordinate

and coordinating. The role of to-coordinate[j] is to indicate to the master that worker j will evaluate f j

on the new coordination point xk; (at that moment, to-coordinate[j] is set to false, and coordinating[j]
is set to true). Similarly, coordinating[j] indicates to the master that worker j is responding to a
coordination step, which is used to update the upper bound. When a worker j responds, it is included
in the set A of available workers. If all workers are busy, then A = ∅. Our algorithm mirrors as
much as possible Algorithm 3 of Reference [31], but contains some important specificities to handle (i)
mixed-integer feasible sets and (ii) extended real-valued objective functions (we do not assume that f (x)
is finite for all x ∈ X). To handle (ii), we furnish our algorithm with a feasibility check (and addition of
cuts), and for (i) we not only use a specialized solver for the MP but also change the rule for scarce
coordination. The reason is that the rule of Reference [31] is only valid in the convex setting. Under
nonconvexity, the coordination test ‖xk − xk−1‖ < α

L Δk−1(with α ∈ (0, 1) and L ≥ ‖gi‖, i = 1, . . . , k)
implies that the following inequality (important for the convergence analysis) is jeopardized:

‖xk − x̂k‖2 ≥ ‖xk−1 − x̂k‖2 +
(
αΔk−1

L

)2
. (5)

In the algorithm below, coordination is triggered when (5) is not satisfied and all workers have
already responded on the last coordination iterate (i.e., rr = 0, where rr stands for “remaining
to respond”).

The assumption that the algorithm starts with a feasible point is made only for the sake of
simplicity. Indeed, the initial point can be infeasible, but, in this case, Step 3 must be changed to
ensure that the first computed feasible point is a coordination iterate. For the problem of interest,
the feasibility check performed at line 45 amounts to verifying if f (xk+1) < ∞. In our SHTUC,
the feasibility check comprises an auxiliary problem for verifying if ramp-rate constraints would be
violated by xk+1 and an additional auxiliary problem for checking if reservoir-volume bounds would
be violated. Both problems are easily reduced to small linear-programming problems that can be
solved to optimality in split seconds by off-the-shelf solvers.

9
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Algorithm 1: Asynchronous Level Decomposition.

1. Choose a gap tolerance tolΔ, upper bound f up
1 > f * + tolΔ, lower bound f low

1 < f *, α ∈ (0, 1), L > 0, and x0 a
feasible point. Set x1 = x̂1 = xbest = x0, Δ0 ← f up

1 − f low
1 , Δ̂←∞, rr← 0, A← {1, 2, . . . , w} , k← 0, Jj ← ∅ for

j ∈ A.
2. for k← 1 to k + 1 do

3. if (5) does not hold and rr = 0 then

4. xk ← xk, rr←w, f←cTxk and g← c

5. for all j ∈ A do

6. to_coordinate[j]← false and
7. coordinating[j]← true
8. end for

9. for all j ∈ {1, . . . , w}\A do

10. to_coordinate[j]← true and
11. coordinating[j]← false
12. end for

13. end if

14. Send xk to all available workers j ∈ A and setA = ∅

15. Update the setA of idle workers and receive ( f j(xa( j)), gj
a( j)

) from workers j ∈ A
16. Update Jj←Jj ∪ {a( j)

}
for all j ∈ A and set R ← ∅

17. for all j ∈ A do

18. if coordinating[j] = true then

19. coordinating[j]← false and rr← rr − 1

20. f← f + f j(xa(j)) and g←g + gj
a(j)

21. if rr = 0 then

22. Set L← max
{
L,
∣∣∣∣∣∣g∣∣∣∣∣∣}

23. if f < f up
k then

24. f up
k ← f and xbest←xk

25. end if

26. end if

27. else

28. if to_coordinate[j] = true then

29. Send xk to worker j and set R ← R∪ {j}
30. Set to_coordinate[j]← false and
31. coordinating[j]← true
32. end if

33. end if

34. end for

35. Set A←A\R
36. Set Δk ← f up

k − f low
k

37. if Δk ≤ tolΔ then stop: return xbest and f up
k end if

38. if Δk ≤ αΔ̂ then Set x̂k ← xbest and Δ̂← Δk end if

39. flev
k ← f up

k −αΔk

40. if (4) is feasible then

41. Get a new iterate xk+1 from the solution of (4)
42. else

43. Set f low
k ← f lev

k and go to Step 36
44. end if

45. if xk+1 leads to infeasible subproblems then

46. Add a feasibility cut to the MP (2) and go to Step 40
47. end if

48. Set f up
k+1 ← f up

k , f low
k+1 ← f low

k , x̂k+1 ← x̂k and xk+1 ← xk

49. end for
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2.2. Convergence Analysis

To analyze the convergence of the mixed-integer asynchronous computing (ASYN) level
decomposition (LD) described above, we rely as much as possible on Reference [31]. However,
to account for the mixed-integer nature of the feasible set, we need novel developments like the ones
in Theorem 3.1 below. Throughout this section, we assume tolΔ = 0, as well as the following:

Hypothesis 1 (H1). all the workers are responsive;

Hypothesis 2 (H2). algorithm generates only finitely many feasibility cuts;

Hypothesis 3 (H3). the workers provide bounded subgradients.

As for H1, the assumption H2 is a mild one: H2 holds, for instance, when f is a polyhedral function,
or when X has only finitely many points. The problem of interest satisfies both these properties, and,
therefore, H2 is verified. Due to convexity of f , assumption H3 holds, e.g., if X is contained in an open
convex set that is itself a subset of Dom( f ) (in this case, no feasibility cut will be generated). H3 also
holds in our setting if subgradients are computed via basic optimal dual solutions of the second-stage
subproblems. Under H3, we can ensure that the parameter L in the algorithm is finite.

In our analysis, we use the fact that the sequences of the optimality gap, Δk, and upper bound,
f up
k , are non-increasing by definition, and that the sequence of lower bound, f low

k , is non-decreasing.
More specifically, we update the lower bound only when the MP is infeasible. We count with � the
number of times the gap significantly decreases, meaning that the test of line 38 is triggered, and denote
by k(�) the corresponding iteration. We have the following by construction:

Δk(�+1) ≤ αΔk(�) ≤ α2Δk(�−1) ≤ · · · ≤ α�Δ1 ∀ � = 1, 2, . . . (6)

As in Reference [31], k(�) denotes a critical iteration, and xk(�) denotes a critical iterate. We introduce
the set of iterates between two consecutive critical iterates by K� :=

{
k(�) + 1, . . . , k(�+ 1) − 1

}
.

The proof of convergence of the ASYN LD consists in showing that the algorithm performs infinitely
many critical iterations when tolΔ = 0. We start with the following lemma, which is a particular case of
Reference [31], Lemma 3, and does not depend on the structure of X.

Lemma 1. Fix an arbitrary � and let K� be defined as above. Then, for all k ∈ K� , (a) the MP is feasible, and (b)
the stability center is fixed: x̂k = x̂k(�).

Item (a) above ensures that the MP is well-defined and f low
k is fixed for all k ∈ K�. Note that the

lower bound is updated only when the MP is found infeasible, and this fact immediately triggers the
test at line 38 of the algorithm. Similarly, Algorithm 1 guarantees that the stability center remains fixed
for all k ∈ K�, since an updated on the stability center would imply a new critical iteration.

Theorem 1. Assume that X is a compact set and that H1-H3 hold. Let tolΔ = 0 in the algorithm, and then
lim

k
Δk = 0.

Proof of Theorem 1. By (6), we only need to show that the counter � increases indefinitely (i.e., that there
are infinitely many critical iterations). We obtain this by showing that, for any �, the set K� is finite;
for this, suppose that Δk > Δ > 0 for all k ∈ K�. We proceed in two steps, showing the following:
(i) The number of asynchronous iterations between two consecutive coordination steps is finite,
and (ii) the number of coordination steps in K� is finite, as well. If case (i) were not true, then (5)

and Lemma 3.1(b) would give ‖xk − x̂k(�)‖2 ≥ ‖xk−1 − x̂k(�)‖2 +
(
αΔ
L

)2
, for all k ∈ K� greater than the

iteration k of the last coordination iterate. Applying this inequality recursively up to k, we obtain

Diam(X)2 ≥ ‖xk − x̂k(�)‖2 ≥ (k − k − 1)
(
αΔ
L

)2
. However, this inequality, together with H1 and L < ∞
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(due to H3) contradicts the fact thatX is bounded. Therefore, item (i) holds. We now turn our attention
to the item (ii): Let s, s′ ∈ K� such that s < s′ be the iteration indices of any two coordination steps.
At the moment in which xs′ is computed, the information ( f j(xs), gj

s) is available at the MP for all
j = 1, . . . , w. As a result of the MP definition, the following constraints are satisfied by xs:

f j(xs) + 〈gj
s, xs′ − xs〉 ≤ rj and cTxs′ +

w∑
j=1

rj ≤ flev
s′−1. (7)

By assuming these inequalities and rearranging terms, we get f (xs)− flev
s′−1 ≤ 〈c +

w∑
j=1

gj
s, xs − xs′ 〉 ≤

Γ‖xs − xs′ ‖, where the constant ∞ > Γ ≥ L ≥ ‖c +
w∑

j=1
gj

s‖ is ensured by H3. The definition of

f lev
s′ = f up

s′ −αΔs′ and inequality f (xs) ≥ f up
s′ gives ‖xs − xs′ ‖ ≥ α

Δs′
Γ ≥ αΔ

Γ > 0. If there was an infinite
number of coordination steps inside K�, the compactness of X would allow us to extract a converging
subsequence, and this would contradict the above inequality. The number of coordination steps inside
K� is thus finite. As a conclusion of (i) and (ii), the index-set K� is hence finite, and the chain (6)
concludes the proof. �

2.3. Dynamic Asynchronous Level Decomposition

In the asynchronous approach described in Algorithm 1, the component functions f j are statically
assigned to workers—worker j always evaluates the same component function j. Likewise, the usual
implementation of the synchronous LD strategy is to task workers with solving fixed sets of Qs. We call
these strategies static asynchronous LD and static synchronous LD. However, as previously mentioned,
such task-allocation policies might result in significant idle times—even for the asynchronous method
because we need the first-order information on all f j to compute valid bounds. To lessen the idle times,
we implement dynamic-task-allocation strategies, in which component functions are dynamically
assigned to workers as soon as they become available. Our dynamic allocation differs from Reference [15]
because we do not use a list of iterates. To ease the understanding of the LD methods applied in
this work—and to highlight their differences—we introduce a new figure: a coordinator process.
The coordinator is responsible for tasking workers with functions to be evaluated. Note, however,
that this additional figure is only strictly necessary in the dynamic asynchronous LD; in the other three
methods, this responsibility can be taken by the master. Nonetheless, in all methods, the master has
three roles: solving the MP, getting iterates, and requesting functions to be evaluated at the newly
obtained iterates. By construction, in the synchronous methods, the master requests the coordinator to
evaluate all functions f j at the same iterate, and it waits until the information of the all functions has
been received to continue the process. On the other hand, in the asynchronous variants, the master
computes a new iterate, requests the coordinator to evaluate it on possibly not all f j, and receives
information on outdate iterates from the coordinator. Given that the master has requested an iterate
x′ to be evaluated in some f j, the main difference between the static and the dynamic asynchronous
methods is that, in the static form, the coordinator always sends x′ to the same worker who has
been previously tasked with solving f j, while in the dynamic one, the coordinator sends x′ to any
available worker.

3. Modeling Details and Case Studies

The general formulation of our SHTUC is presented in (8)–(19).

f∗ = min
∑
g∈G

⎡⎢⎢⎢⎢⎢⎣
∑
t∈T

⎛⎜⎜⎜⎜⎜⎝CSg·agt +
∑
s∈S

Cg·tggts

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦ +
∑
b∈B

∑
t∈T

CL·(δ+bt + δ
−
bt) +

∑
s∈S

fωs (v) (8)
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s.t :
t∑

o=t−TUg+1

ago ≤ Igt,
t∑

o=t−TDg+1

bgo ≤ 1− Igt (9)

agt − bgt = Igt − Igt−1, zht − uht = wht −wht−1 (10)

zht, uht, wht, agt, bgt, Igt ∈ {0, 1} (11)

Igt·Pg ≤ tggts ≤ I·Pg (12)

tggts − tggt−1s ≤ Igt−1·Rg + (1− Igt−1)·SUg (13)

tggt−1s − tggts ≤ Igt·Rg + (1− Igt)·SDg (14)

vhts − vht−1s + f v
hts(q, s) + Ahts = 0 (15)

Vh ≤ vhts ≤ Vh, wht·Qh
≤ qhts ≤ wht·Qh, 0 ≤ shts ≤ Sh (16)

0 ≤ hghts ≤ f hg
hts(q, s) (17)

f p
bts

(
tg, hg, δ+, δ−

)
+ WGbts − Lbt = 0 (18)

TLl ≤ f l
lts

(
tg, hg, δ+, δ−

)
≤ TLl,∀l ∈ L (19)

In our model, the indices and respective sets containing them are g ∈ G for thermal generators,
h ∈ H for hydro plants, b ∈ B for buses, l ∈ L for transmission lines, and t and o ∈ T for periods.
In (5), thermal generators’ start-up costs are CS, and we assume that the shutdown cost is null.
The thermal-generation costs are C; CL is the per-unit cost of load shedding (δ+) and generation
surplus (δ−). Expected future-operation cost for scenario s is represented by the piecewise-affine
function, fωs (vs) : R|H| → R , where vs ∈ R|H| are the reservoir volumes in the last period of scenario s.
The first-stage decisions are thermal generators’ commitment, start-up, and shutdown, respectively, I,
a, and b, and their hydro counterparts (w, z, and u). Set X in (1) contains the feasible commitments
of thermal and hydro generators in our SHTUC, and it is defined by Constraints (9)–(11). In this
work, we model the statuses of hydro plants with associated binary variables only in the first 48 h,
to reduce the computational burden. For the remaining periods, the hydro plants are modeled only
with continuous variables. The minimum up-time Constraint (9) ensures that, once turned on, thermal
generator g remains on for at least TUg periods. Likewise, the minimum downtime in (9) requires
that once g has been turned off, it must remain off for at least TDg periods. Constraints (10) guarantee
the satisfaction of logical relations of status, start-up, and shutdown for thermal and hydro plants.
The sets Ys are defined by (12)–(19). Constraints (12) are the usual limits on thermal generation tg;
(13) and (14) are the up and down ramp-rate limits, and the start-up and shutdown requirements of
generators g. Equation (15) is the mass balance of the hydro plant h’s reservoir. The Ahts is the inflow
to reservoir h in period t of scenario s. Moreover, the affine function f v

hts(q, s) : R2·|H|·|T |·|S| → R maps
the inflow to h’s reservoir in period t of scenario s given the vectors of turbine discharge q and spillage
s. The constraints in (16) are the limits on reservoir volume, v, turbine discharge, q, and spillage, s.
In (17), the piecewise-affine function f hg

hts(q, s) : R2·|H|·|T |·|S| → R bounds the hydropower generation
hghts of plant h. We use the classical DC network model: Equation (18) is the bus power balance,
where the linear function f p

bts(tg, hg, δ+, δ−) : R|T |·|S|·(|G|+|H|+2·|B|) → R maps the controlled generation
at each bus into the power injection at bus b, WGbts is the wind generation at bus b, and Lbt is the
corresponding load at b. Lastly, (19) are the limits on the flow of transmission line l in period t and
scenario s, defined by the affine function f l

lst(tg, hg, δ+, δ−) : R|T |·|S|·(|G|+|H|+2·|B|) → R .
We assess our algorithm on a 46-bus system with 11 thermal plants, 16 hydro plants, 3 wind farms,

and 95 transmission lines. The system’s installed capacity is 18,600 MW, from which 18.9% is due
to thermal plants, hydro plants represent 68.1%, and wind farms have a share of 13%. We consider
a one-week-long planning horizon with hourly discretization. Thus, a one-scenario instance of our
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SHTUC would have 7848 binary variables and 5315 constraints at the first stage; and 36,457 continuous
variables and 100,949 constraints for each scenario in the second stage. Furthermore, the weekly peak
load in the baseline case is 11,204 MW—nearly 60.2% of the installed capacity. The hydro plants are
distributed over two basins and include both run-of-river ones and plants with reservoirs capable of
regularization. Further information about the system can be found in the multimedia files attached.

The uncertainty comes from wind generation and the inflows. In all tests, we use a scenario set
with 256 scenarios. To assess how our algorithm performs in distinct scenario sets, three sets (A, B,
and C) are considered. Moreover, we use three initial useful-reservoir-volume levels: 40%, 50%,
and 70%. The impact of different load levels on the performance of our algorithms is analyzed through
three load levels: low (L), moderate (M), and high (H). Level H is our baseline case regarding load.
Levels M and L have the same load profile as H’s, but with all loads multiplied by factors of 0.9 and 0.8,
respectively. Lastly, to investigate how our algorithm’s convergence rate is affected by different choices
of initial stability centers, we implement two strategies for obtaining the initial stability center. In both
strategies, we solve an expected-value problem, as defined in Reference [5]. In the first one, we use the
classical Benders decomposition (BD) with a coarse relative-optimality-gap tolerance of 10% to get a,
possibly, low-quality stability center (LQSC). To obtain the stability center of hopefully high quality,
which we refer to as high-quality stability center (HQSC), we solve the expected-value problem directly
with Gurobi 8.1.1 [33] with a relative-optimality-gap tolerance of 1%. The time limit for obtaining the
initial stability centers LQSC and HQSC is set to 5 min. Additionally, the computing setting consists of
seven machines of two types: 4 of them have 128 GB of RAM and two Xeon E5-2660 v3 processors with
10 cores clocking at 2.6 GHz; the other 3 machines have 32 GB of RAM and two Xeon X5690 processors
with cores cores clocking at 3.47 GHz. All machines are in a LAN with 1-Gbps network interfaces.
We test two machine combinations. In the first one, in Combination 1, there are four 20-core machines
and one with 12 cores. In Combination 2, we replace one machine with 20 cores by 2 with 12 cores.
Regardless of the combination, one 12-core machine is defined as the head node, where only the master
is launched. Except for the master—for which Gurobi can take up to 10 cores—for all other processes,
i.e., the workers, Gurobi is limited to computing on a single core.

Our computing setting is composed of machines with different configurations. Naturally, solving
the same component function in two distinct machines may result in different outputs—and different
runtimes. Consequently, the path taken by the MP across iterations might change significantly between
experiments on the same data. More specifically to asynchronous methods, the varying order of
information arrival to the MP may also yield different convergence rates. Hence, to reduce the effect of
these seemingly random behaviors, we conducted 5 experiments for each problem instance. Therefore,
our testbed E is defined as E = {40, 50, 70} × {A, B, C} × {L, M, H} × {LQ-SC, HQ-SC} × {Trial 1, . . . ,
Trial 5} × {Combination 1, Combination 2}—we have 54 problems and 540 experiments. In all instances
in E, we divide S into 16 subsets. Thus, following our previous definitions, w = 16 and any subset
Pj is such that |Pj| = 16. Additionally, we set a relative-optimality-gap tolerance of 1% and a time
limit of 30 min for all instances in E. Gurobi 8.1.1 is used to solve the MILP MP and the component
functions (linear-programming problems) that form the subproblem. The inter-process communication
is implemented with mpi4py and Microsoft MPI v10.0.

4. Results

In this section, the methods are analyzed based on their computing-time performances. We focus
on this metric because our results have not shown significant differences among the methods for other
metrics, e.g., optimality gap and upper bounds. In addition to analyzing averages of the metric, we use
the well-known performance profile [34]. Multimedia files containing the main results for the set E are
attached to this work.

Figure 1 presents the performance profiles of the methods considering the experiments E.
In Figure 1, ρ(τ) and τ are, respectively, the probability that the performance ratio of a given method is
within a factor τ of the best ratio, as in Reference [34]. Applying the classical Benders decomposition
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(BD) on the set {40, 50, 70} × {A} × {L, M, H} × {Combination 1} results in the convergence only of
the problem in {70} × {A} × {M} × {Combination 1}, for which BD converges to a 1%-optimal solution
in 1281.42 s. Thus, it is reasonable to expect that the classical BD would also perform poorly for the
remaining experiments E.

Figure 1. Performance profiles over the set E.

In Figure 1, we see that the dynamic asynchronous LD outperforms all other methods for most
instances E. Its performance ratio is within a factor of 2 from the best ratio for about 500 instances
(about 92% of the total). Moreover, the static asynchronous LD has a reasonable overall performance—it
is within a factor of 2 from the best ratio for more than 400 instances. Moreover, we see that
the dynamic-allocation strategy provides significant improvements for both the asynchronous and
synchronous LD approaches. The dynamic synchronous LD converges faster than its static counterpart
for most of the experiments. Figures 2 and 3 show the performance profiles considering only instances
in Ewith machine Combinations 1 and 2, respectively.

Figure 2. Performance profiles for the instances with machine Combination 1.
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Figure 3. Performance profiles for the instances with machine Combination 2.

Figure 2 illustrates that, for a distributed setting in which workers are deployed on machines with
identical characteristics, the performances of the methods with dynamic allocation and those with
static allocation are similar. Nonetheless, we see that the asynchronous methods still outperform the
synchronous LD for most experiments.

In contrast to Figure 2, Figure 3 shows that the dynamic-allocation strategy provides significant
time savings for the instances in Ewith Machine Combination 2. This is due to the great imbalance
between the different machines in Combination 2—machines with processors Xeon E5-2660 v3 are
much faster than those with processors Xeon X5690.

Table 1 gives the average wall-clock computing times over subsets of E. From this table, we see
that the relative average speed-up of the dynamic and static asynchronous LD over the entire set Ew.r.t.
The static synchronous LD are 54% and 29%, respectively—considering the dynamic synchronous
LD, the speed-ups are 45% and 16%, respectively. Moreover, we see that the time savings are more
significant for harder-to-solve instances, e.g., instances with high load and/or low-quality initial
stability centers. Additionally, Table 1 shows that the dynamic asynchronous LD provides considerable
reductions in the standard deviations of the elapsed computing times, in comparison with the other
methods. For example, for the problems with high load level (H), the dynamic asynchronous LD has
a standard deviation of about 16%, 13%, and 27% smaller than that of the static asynchronous LD,
dynamic synchronous LD, and static synchronous LD, respectively.

Based on the data from Table 1, we can compute the speed-up provided by our proposed dynamic
ASYN LD w.r.t., and the other three variants are considered here. To better appreciate such speed-ups,
we show them in Table 2, where we see that the proposed ASYN LD provides consistent speed-ups
over the entire range of operating conditions considered here.

The advantages of the asynchronous methods are made clearer in Figure 4, where we see that not
only the asynchronous methods provide (on average) better running times but also present significantly
less variation among the problems in E. The latter is relevant in the day-to-day operations of ISOs,
since, if there are stochastic hydrothermal unit-commitment (SHTUC) cases that take significantly
more time to be solved than the expected, subsequent operation steps that depend on the results of the
SHTUC might be affected. Take, for instance, the case from the Midcontinent Independent System
Operator reported in Reference [3], where the (deterministic) UC is reported to have solution times
varying from just 50 to over 3600 s. Such variation can be problematic in the day-to-day operation of
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power systems since it may disrupt tightly scheduled operations. Naturally, methods that can reduce
such variance and still produce high-quality solutions in reasonable times are appealing.

Table 1. Average elapsed time and standard deviation in seconds.

Asynchronous Synchronous

Dynamic Static Dynamic Static

40 135 (340) 240 (497) 364 (569) 338 (490)
50 130 (279) 222 (414) 195 (293) 267 (404)
70 127 (249) 139 (242) 161 (157) 250 (300)
A 143 (280) 226 (418) 187 (270) 216 (303)
B 137 (340) 192 (406) 305 (515) 347 (530)
C 112 (247) 184 (377) 229 (335) 291 (340)
L 102 (195) 157 (317) 172 (398) 201 (396)
M 108 (179) 112 (111) 142 (126) 205 (210)
H 182 (425) 333 (585) 405 (492) 449 (506)

HQSC 105 (202) 129 (193) 156 (258) 159 (118)
LQSC 156 (357) 272 (523) 324 (473) 411 (534)

Combination 1 120 (282) 207 (447) 227 (387) 243 (416)
Combination 2 141 (301) 194 (348) 253 (393) 327 (393)

The rows indicate that the average elapsed times and standard deviation given in parentheses are computed
considering only the instances inEwith the parameter given in the column 1. For example, the averages and respective
standard deviations in row 3 are computed considering all experiments for which the initial useful-reservoir-volume
level is 40%. Likewise, rows 4 and 7 provide the averages over instances with scenario set A and load level L,
respectively. In rows 10 and 11, HQSC and LQSC stand for high-quality stability center and low-quality stability
center, respectively.

Table 2. Speed-ups in % provided by the asynchronous computing (ASYN) with respect to the level
decomposition (LD)

Static SYN LD Dynamic SYN LD Static ASYN LD

40 60 63 44
50 51 33 41
70 49 21 9
A 34 23 37
B 61 55 29
C 61 51 39
L 49 41 35
M 47 24 4
H 59 55 45

HQSC 34 33 19
LQSC 62 52 42

Combination 1 50 47 42
Combination 2 57 44 27

As in Table 1, the rows indicate that the average speed-up computed considering only the instances in E with
the parameter given in the column 1. Moreover, the columns indicate the method the speed-up is computed for.
For example, column Static SYN (synchronous computing) LD gives the speed-ups provided by the ASYN LD over
instances in the first column w.r.t. to the static synchronous level decomposition.
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Figure 4. Boxplot of the methods over the set E.

5. Conclusions

In this work, we present an extension of the asynchronous level decomposition of Reference [31] in
a Benders-decomposition framework. We show a convergence analysis of our algorithm, proving that it
converges to an optimal solution, if one exists, in finite-many iterations. Our experiments are conducted
on an extensive testbed from a real-life-size system. The results show that the proposed asynchronous
algorithm outperforms its synchronous counterpart in most of the problems and provides significant
time savings. Moreover, we show that the improvements provided by the asynchronous methods
over the synchronous ones are even more evident in a distributed-computing setting with machines
of different computational powers. Additionally, we show that the asynchronous method is further
enhanced by implementing a dynamic-task-allocation strategy.
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Abstract: In this paper, we propose a new version of the generalized damped Gauss–Newton
method for solving nonlinear complementarity problems based on the transformation to
the nonsmooth equation, which is equivalent to some unconstrained optimization problem.
The B-differential plays the role of the derivative. We present two types of algorithms
(usual and inexact), which have superlinear and global convergence for semismooth cases. These
results can be applied to efficiently find all solutions of the nonlinear complementarity problems
under some mild assumptions. The results of the numerical tests are attached as a complement of the
theoretical considerations.

Keywords: Gauss–Newton method; nonsmooth equations; nonsmooth optimization; nonlinear
complementarity problem; B-differential; superlinear convergence; global convergence

1. Introduction

Let F : Rn → Rn and let Fi, i = 1, ..., n denote the components of F. The nonlinear complementarity
problem (NCP) is to find x ∈ Rn such that

x ≥ 0, F(x) ≥ 0 and xT F(x) = 0. (1)

The ith component of a vector x is represented by xi. Solving (1) is equivalent to solving a
nonlinear equation G(x) = 0, where the operator G : Rn → Rn is defined by

G(x) =

⎡
⎢⎣ ϕ(x1, F1(x))

...
ϕ(xn, Fn(x))

⎤
⎥⎦

with some special function ϕ. Function ϕ may have one of the following forms:

ϕ1(a, b) = min{a, b};
ϕ2(a, b) =

√
a2 + b2 − a− b;

ϕ3(a, b) = θ(|a− b|)− θ(a)− θ(b),

where θ : R→ R is any strictly increasing function with θ(0) = 0, see [1].
The (NCP) problem is one of the fundamental problems of mathematical programming,

operations research, economic equilibrium models, and in engineering sciences. A lot of interesting
and important applications can be found in the papers of Harker and Pang [2] and Ferris and Pang [3].
We can find the most essential applications in:

Algorithms 2020, 13, 190; doi:10.3390/a13080190 www.mdpi.com/journal/algorithms21
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• engineering—optimal control problems, contact or structural mechanics problems, structural
design problems, or traffic equilibrium problems,

• equilibrium modeling—general equilibrium (in production or consumption),
invariant capital stock, or game-theoretic models.

We borrow a technique used in solving some smooth problems. If g is a merit function of G,
i.e., g(x) = 1

2 G(x)TG(x), then any stationary point of g(x) is a least-squares solution of the equation
G(x) = 0. Then, algorithms for minimization are equivalent to algorithms for solving equations.
The usual Gauss–Newton method (known also as the differential corrections method), presented by
Ortega and Rheinboldt [4] in the smooth case, has the form

x(k+1) = x(k) −
[

G′(x(k))TG′(x(k))
]−1

G′(x(k))TG(x(k)). (2)

Local convergence properties of the Gauss–Newton method was discussed by Chen and Li [5],
but only for some smooth case. The Levenberg–Marquardt method is also considered, which is a
modified Gauss–Newton method, in some papers, e.g., [6] or [7]. Moreover, some comparison of
semismooth algorithms for solving (NCP) problems has been made in [8].

In practice, we may also consider the damped Gauss–Newton method

x(k+1) = x(k) −ωk

[
G′(x(k))TG′(x(k)) + λk I

]−1
G′(x(k))TG(x(k)) (3)

with parameters ωk and λk. Parameter ωk may be chosen to ensure suitable decrease of g. If λk is
positive for all k, then the inverse matrix in (3) always exists because G′(x(k))TG(x(k)) is a symmetric
and positive semidefinite matrix. The method (3) has the important advantage: the search direction
always exists, even if G′(x) is singular. Naturally, in the case of nonsmooth equations, some additional
assumptions are needed to allow the use of some line search strategies and to ensure the global
convergence. Because, in some cases, a function G is nondifferentiable, so the equation G(x) = 0 will
be nonsmooth, whereby the method (3) may be useless. Some version of the Gauss–Newton method for
solving complementarity problems was also introduced by Xiu and Zhang [9] for generalized problems,
but only for linear ones. Thus, for solving nonsmooth and nonlinear problems, we propose two new
versions of a damped Gauss–Newton algorithm based on B-differential. The usual generalized
method is a relevant extension of the work by Subramanian and Xiu [10] for a nonsmooth case.
In turn, an inexact version is related to the traditional approach, which was widely studied, e.g.,
in [11]. In recent years, various versions of the Gauss–Newton method were discussed, although most
frequently for solving nonlinear least-squares problems, e.g., in [12,13].

The paper is organized as follows: in the next section, we review some notions needed, such as
B-differential, BD-regularity, semismoothness, etc. (Section 2.1). Next, we propose a new optimization
problem-based methods for the NCP, transforming the NCP into an unconstrained minimization
problem by employing a function ϕ3 (Section 2.2). We state its global convergence and superlinear
convergence rate under appropriate conditions. In Section 3, we present the results of numerical tests.

2. Materials and Methods

2.1. Preliminaries

If F is Lipschitz continuous, the Rademacher’s theorem [14] implies that F is almost everywhere
differentiable. Let the set of points, where F is differentiable, be denoted by DF. Then, the B-differential
(the Bouligand differential) of F at x (introduced in [15]) is

∂BF(x) =
{

lim
x(n)→x

F′
(

x(n)
)

, x(n) ∈ DF

}
,
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where F′(x) denotes the usual Jacobian of F at x. The generalized Jacobian of F at x in the sense of
Clarke [14] is

∂F(x) = conv∂BF(x)

We say that F is BD-regular at x, if F is locally Lipschitz at x and if all V ∈ ∂BF(x) are nonsingular
(regularity on account of B-differential). Qi proved (Lemma 2.6, [15]) that, if F is BD-regular at x, then
a neighborhood N of x and a constant C > 0 exist such that, for any y ∈ N and V ∈ ∂BF(y), V is
nonsingular and

∥∥∥V−1
∥∥∥ ≤ C.

Throughout this paper, ‖·‖ denotes the 2-norm.
The notion of semismoothness was originally introduced for functionals by Mifflin [16].

The following definition is taken from Qi and Sun [17]. A function F is semismooth at a point x,
if F is locally Lipschitzian at x and

lim
V∈∂F(x+th′),h′→h,t↓0

Vh′

exists for any h ∈ Rn. F is also said semismooth at x, if it is directionally differentiable at x and

Vh− F′ (x, h) = o (‖h‖) .

Scalar products and sums of semismooth functions are still semismooth functions.
Piecewise smooth functions and maximum of a finite number of smooth functions are also semismooth.
The semismoothness is the almost usually seen assumption on F in papers dealing with nonsmooth
equations because it implies some important properties for convergence analysis of methods in
nonsmooth optimization.

If for any V ∈ ∂F(x + h), as h→ 0

Vh− F′ (x, h) = O
(
‖h‖1+p

)
,

where 0 < p ≤ 1, then we say F is p-order semismooth at x. Clearly, p-order semismoothness implies
semismoothness. If p = 1, then the function F is called strongly semismooth. Piecewise C2 functions
are examples of strongly semismooth functions.

Qi and Sun [17] remarked that, if F is semismooth at x, then, for any h→ 0

F(x + h)− F(x)− F′(x; h) = o (‖h‖) ,

and, if F is p-order semismooth at x, then for any h→ 0

F(x + h)− F(x)− F′(x; h) = O
(
‖h‖1+p

)
.

Remark 1. Strong semismoothness of the appropriate function usually implies quadratic convergence of method
instead of the superlinear one for semismooth function.

In turn, Pang and Qi [18] proved that semismoothness of F at x implies that

sup
V∈∂F(x+h)

{F(x + h)− F(x)− Vh} = o (‖h‖) .

Moreover, if F is p-order semismooth at x, then
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sup
V∈∂F(x+h)

{F(x + h)− F(x)− Vh} = O
(
‖h‖1+p

)
.

2.2. The Algorithm and Its Convergence

Consider nonlinear equation G(x) = 0 defined by ϕ3. The equivalence of solving this equation
and problem (NCP) is described by the following theorem:

Theorem 1 (Mangasarian [1]). Let θ be any strictly increasing function from R into R, that is,
a > b⇔ θ(a) > θ(b), and let θ(0) = 0. Then, x solves the complementarity problem (1) if and only if

θ(|Fi(x)− xi|)− θ(Fi(x))− θ(xi) = 0, i = 1, 2, ..., n. (4)

For the convenience, denote

Gi(x) := θ(|Fi(x)− xi|)− θ(Fi(x))− θ(xi) (5)

for i = 1, 2, ..., n.

We assume that the function θ in Theorem 1 has the form

θ(ξ) = ξ |ξ| .
Let G(x) be the associated function. We define function g in the following way:

g(x) =
1
2
‖G(x)‖2 ,

which allows for solving system G(x) = 0 based on solving the nonlinear least-square problem

min
x

g(x). (6)

Let us note that x∗ solves G(x) = 0 if and only if it is a stationary point of g. Thus, from Theorem 1,
x∗ solves (1).

Remark 2. On the other hand, the first-order optimality conditions for problem (6) are equivalent to the
nonlinear system

∇g(x) = G′(x)TG(x) = 0,

where ∇g is the gradient of g, provided G is differentiable and G′ is the Jacobian matrix of G.

The continuous differentiability of the merit function g for some kind of nonsmooth functions
was established by Ulbrich in the following lemma:

Lemma 1 (Ullbrich, [19]). Assume that the function G : Rn ⊃ D → Rn is semismooth, or, stronger, p-order
semismooth, 0 < p ≤ 1, then the merit function 1

2 ‖G(x)‖2 is continuously differentiable on D with gradient
∇g(x) = VTG(x), where V ∈ ∂G(x) is arbitrary.

Lemma 2. For any x ∈ Rn, let Ax = VT
x Vx, where Vx ∈ ∂BG(x). Suppose that ∇g(x) �= 0. Then, given

λ > 0, the direction d given by

(Ax + λI)d = ∇g(x)

is an ascent direction for g. In particular, there is a positive w such that g(x−wd) < g(x).
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Proof. There exist constants β ≥ 0 and γ > 0 such that

β ‖h‖2 ≤ hTAxh ≤ γ ‖h‖2 for all h ∈ Rn,

because Ax defined as VT
x Vx is symmetric and positive semidefinite.

It follows that

(β + λ) ‖h‖2 ≤ hT(Ax + λI)h ≤ (γ + λ) ‖h‖2 for all h ∈ Rn.

Since ∇g(x) �= 0, d �= 0. If we take h = d, we obtain

dT∇g(x) ≥ (β + λ) ‖d‖2 > 0.

It follows that ∇g(x)d > 0 and that d is a ascent direction for g (Section 8.2.1 in [4]).

Now, we present the generalized version of the damped Gauss–Newton method for solving the
nonlinear complementarity problem.

Algorithm 1: The damped Gauss-Newton method for solving NCP

Let β, δ ∈ (0, 1) be given. Let x(0) be a starting point. Given x(k), the steps for obtaining x(k+1)

are:
Step 1: If ∇g(x(k)) = 0, then stop. Otherwise, choose any matrix Vk ∈ ∂BG(x(k)) and let
Ak = VT

k Vk.
Step 2: Let λk = g(x(k)).
Step 3: Find d(k) that is a solution of the linear system

(Ak + λkI)d(k) = ∇g(x(k)).

Step 4: Compute the smallest nonnegative integer mk such that

g(x(k) + βmd(k))− g(x(k)) ≤ −δβm∇g(x(k))Td(k)

and set

x(k+1) = x(k) + βmk d(k).

Remark 3. (i) In Step 2, letting λk = g(x(k)) is one of the simplest strategy because then {λk} converges to 0.
(ii) The line search step (Step 4) in the algorithm follows the Armijo rule.

Theorem 2. Let x(0) be a starting point and {x(k)} be a sequence generated by Algorithm 1. Assume that:

(a) supk ‖Vk‖ < ∞ for all Vk ∈ ∂BG(x(k));

(b) ∇g(x) is Lipschitzian with a constant Lg > 0 on the level set L =
{

x : g(x) ≤ g(x(0))
}

.

Then, the generalized damped Gauss–Newton method described by Algorithm 1 is well defined and either {x(k)}
terminates at a stationary point of g, or else every accumulation point of {x(k)}, if it exists, is a stationary point
of g.

Proof. The proof is almost the same as Theorem 2.1 in [10], providing appropriately modified
assumptions.
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For the nonsmooth case, the alternative condition may be considered instead of Lipschitz
continuity of ∇g(x) (similar as in [10]). Thus, we have the following convergence theorem:

Theorem 3. Let x(0) be a starting point and {x(k)} be a sequence generated by Algorithm 1. Assume that:
(a) the level set L =

{
x : g(x) ≤ g(x(0))

}
is bounded;

(b) G is semismooth on L.

Then, the generalized damped Gauss–Newton method described by Algorithm 1 is well defined and either {x(k)}
terminates at a stationary point of g, or else every accumulation point of {x(k)}, if it exists, is a stationary point
of g.

Now, we take up the rate of convergence of the considered algorithm. The following theorem
shows suitable conditions in various cases.

Theorem 4. Suppose that x∗ is a solution of problem (1), G is semismooth, and G is BD-regular at x∗.
Then, there exists a neighborhood N∗ of x∗ such that, if x(0) ∈ N∗ and the sequence {x(k)} is generated by
Algorithm 1, we have:
(i) x(k) ∈ N∗ for all k and the sequence {x(k)} is linear convergent to x∗;
(ii) if δ < 0.5, then the convergence is at least superlinear;
(iii) If G is strongly semismooth, then the convergence is quadratic.

Proof. The proof of similar theorem given by Subramanian and Xiu [10] is based on three lemmas,
which have the same assumptions as theorem. Now, we present these lemmas in versions adapted to
our nonsmooth case.

Lemma 3. Assume that dx is a solution of the equation

(Ax + λxI)dx = ∇g(x),

where
λx = g(x) and Ax = VT

x Vx

for some matrix Vx taken from ∂BG(x). Then, there is a neighborhood D1 of x∗ such that, for all x ∈ D1,

‖x− dx − x∗‖ = o (‖x− x∗‖) .

Lemma 4. There is a neighborhood D2 of x∗ such that, for all x ∈ D2,
(a) g(x) = 1

2 (x− x∗)TA∗(x− x∗) + o
(
‖x− x∗‖2

)
,

(b) g(x) = 1
2 (x− x∗)TAx(x− x∗) + o

(
‖x− x∗‖2

)
.

Lemma 5. Suppose that the conditions of Lemma 1 hold. Then, there is a neighborhood D3 of x∗ such that,
for all x ∈ D3,

g(x− dx)− g(x) +
1
2
∇g(x)Tdx ≤ o

(
‖x− x∗‖2

)
.

The proofs of Lemmas 5 and 6 are almost the same as in [10]; however, in the proof of Lemma 4,
we have to take into account the semismoothness and to use Lemma 1 to obtain the desired result.

At the same time, in a similar way, we may show a suitable rate of convergence.
Now, we consider the inexact version of the considered method, which computes an approximate

step, using the nonnegative sequence of forcing terms to control the level of accuracy.
For the above inexact version of the algorithm, we can state the analogous theorems which are

equivalents of Theorems 2–4. Based on our previous results, the proof can be carried out almost in the
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same way as that of theorems for the ’exact’ version of the method. However, the condition (7), implied
by inexactness given in Step 3 of Algorithm 2, has to be considered. Thus, we omit both theorems as
proofs here.

Algorithm 2: The inexact version of the damped Gauss-Newton method for solving NCP

Let β, δ, θ ∈ (0, 1) and ηk ∈ [0, 1) for all k given. Let x(0) ∈ Rn be a starting point. Given x(k),
the steps for obtaining x(k+1) are:

Step 1: If ∇g(x(k)) = 0, then stop. Otherwise, choose any matrix Vk ∈ ∂BG(x(k)) and let
Ak = VT

k Vk.
Step 2: Let λk = g(x(k)).
Step 3: Find d(k) that is a solution of the linear system

∥∥∥(Ak + λkI)d(k) +∇g(x(k))
∥∥∥ ≤ ηk

∥∥∥∇g(x(k))
∥∥∥ . (7)

Step 4: If

∥∥∥∇g(x(k) + d(k))
∥∥∥ ≤ θ

∥∥∥∇g(x(k))
∥∥∥

then let

x(k+1) = x(k) + d(k)

and go to Step 1.
Step 5: Compute the smallest nonnegative integer mk such that

g(x(k) + βmd(k))− g(x(k)) ≤ −δβm∇g(x(k))Td(k)

and set

x(k+1) = x(k) + βmk d(k)

and go to Step 1.

3. Numerical Results

In this section, we present results of our numerical experiments, obtained by coding both
algorithms in Code:Blocks. We use double precision on an Intel Core i7 3.2 GHz running under
the Windows Server 2016 operating system. We applied the generalized damped Gauss–Newton
method to solve three nonlinear complementarity problems. In the following examples: N1 and N2

denote the number of performed iterations to satisfy the stopping criterion
∣∣∣x(k+1) − x(k)

∣∣∣ < 10−7 ,
using Algorithms 1 and 2, respectively. The forcing terms in Algorithm 2 were chosen as follows:
ηk = (10k)−1 for all k.

Example 1 (from Kojima and Shindo [20]). Let the function F : R4 → R4 have the form

F1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

F2(x) = 2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2,

F3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9,

F4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.
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Problem (NCP) with the above function F has two solutions:

x∗ = (1, 0, 3, 0)T and x∗∗ = (
√

6/2, 0, 0, 0.5)T

for which

F(x∗) = (0, 31, 0, 4)T and F(x∗∗) =
(

0, 2 +

√
6

2
, 0, 0

)T

.

Thus, x∗ is a non-degenerate solution of (NCP) because

L :=
{

i : x∗i = 0, Fi(x∗) = 0
}
= ∅,

but x∗∗ is a degenerate solution.
Depending upon the starting point, we obtained the convergence iteration process to both solutions (see

Table 1 or Figure 1).

Table 1. Results for Example 1.

x(0) N1 N2 Solution

(1, 0, 0, 0)T 9 11 x∗∗
(0, 0, 1, 0)T failed 18 x∗∗
(0, 0, 0, 1)T failed failed -
(1, 0, 1, 0)T 7 10 x∗
(1, 0, 0, 1)T 7 9 x∗∗
(1, 0, 1,−5)T 6 8 x∗∗

Figure 1. Number of iterations for various starting points (for Example 1).

Example 2. Let function F : R2 → R2 be defined as follows:

F(x) =

[
2x1 + x2

2 − 6
−x2

1 + 4x1 +
1
2 x2 − 3

]
.
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Then, problem (NCP) has two solutions:

- non-degenerate
x∗ = (0, 6)T for which F(x∗) = (30, 0)T

- degenerate
x∗∗ = (3, 0)T for which F(x∗∗) = (0, 0)T.

Similar to Example 1, we obtained the convergence iteration process for both solutions, depending on the starting
point (see Table 2 or Figure 2).

Table 2. Results for Example 2.

x(0) N1 N2 Solution

(0, 0)T 5 7 x∗
(1, 0)T 1 2 x∗∗
(0, 1)T 4 7 x∗
(1,−1)T 2 4 x∗∗
(−1, 1)T 4 7 x∗∗
(5, 5)T 3 5 x∗
(100, 100)T 3 6 x∗

Figure 2. Number of iterations for various starting points (for Example 2.)

Example 3 (from Jiang and Qi [21]). Let function F : Rn → Rn has the form F(x) = Mx + q, where

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 ... 0 0
−1 4 −1 ... 0 0
0 −1 4 ... 0 0
... ... ... ... ... ...
0 0 0 ... 4 −1
0 0 0 ... −1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, q = (−1, ...,−1)T .

Because F is strictly monotonic, the proper problem (NCP) has exactly one solution.
Calculations have been made for various n with one starting point x(0) = (0, ..., 0)T. For all tests, we

obtain the same number of iterations N1 = 3 and N2 = 4.

29



Algorithms 2020, 13, 190

4. Conclusions

We have given the nonsmooth version of the damped generalized Gauss–Newton method
presented by Subramanian and Xu [10]. The generalized Newton algorithms related to the
Gauss–Newton method are well-known important tools for solving nonsmooth equations, which
arise from various nonlinear problems such as nonlinear complementarity or variational inequality.
These algorithms are especially useful when the problem has many variables. We have proved that the
sequences generated by the methods are superlinearly convergent under mild assumptions. Clearly,
the semismoothness and BD-regularity are sufficient to obtain only a superlinear convergence of
methods, while strong semismoothness even gives quadratic convergence. However, if function G is
not semismooth or BD-regular or the gradient of g is not Lipschitzian, the Gauss–Newton methods
may be useless.

The performance of both methods was evaluated in terms of the number of iterations required.
The analysis of the numerical results seems to indicate that the methods are usually reliable for solving
semismooth problems. The results show that the inexact approach can produce a noticeable slowdown
by the number of iterations (compare N1 and N2 in Figures 1 and 2). In turn, an important advantage
is that the algorithms allow us to find various solutions to the problem (this can be observed in two
examples: the first and second one). However, if there are many solutions of the problem, then the
relationship between the starting point and the obtained solution may be unpredictable.

Clearly, traditional numerical algorithms aren’t the only method for solving the nonlinear
complementarity problems, regardless of the degree of nonsmoothness. Except for the methods
presented in the paper and mentioned in the Introduction, some computational intelligence algorithms
can be used to solve (NCP) problems, i.a., monarch butterfly optimization (see [22,23]), the earthworm
optimization algorithm (see [24]), the elephant herding optimization (see [25,26]), or the moth search
algorithm (see [27,28]). All of these approaches are bio-inspired metaheuristic algorithms.
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Abstract: For piecewise linear functions f : Rn ÞÑ R we show how their abs-linear representation
can be extended to yield simultaneously their decomposition into a convex qf and a concave partpf , including a pair of generalized gradients qg P Rn Q pg. The latter satisfy strict chain rules and can
be computed in the reverse mode of algorithmic differentiation, at a small multiple of the cost of
evaluating f itself. It is shown how qf and pf can be expressed as a single maximum and a single
minimum of affine functions, respectively. The two subgradients qg and ´pg are then used to drive
DCA algorithms, where the (convex) inner problem can be solved in finitely many steps, e.g., by a
Simplex variant or the true steepest descent method. Using a reflection technique to update the
gradients of the concave part, one can ensure finite convergence to a local minimizer of f , provided
the Linear Independence Kink Qualification holds. For piecewise smooth objectives the approach can
be used as an inner method for successive piecewise linearization.

Keywords: DC function; abs-linearization; DCA

1. Introduction and Notation

There is a large class of functions f : Rn ÞÑ R that are called DC because they can be represented
as the difference of two convex functions, see for example [1,2]. This property can be exploited in
various ways, especially for (hopefully global) optimization. We find it notationally and conceptually
more convenient to express these functions as averages of a convex and a concave function such that

f pxq “ 1
2 p qf pxq ` pf pxqq with qf pxq convex and pf pxq concave.

Throughout we will annotate the convex part by superscriptqand the concave part by superscriptp,
which seems rather intuitive since they remind us of the absolute value function and its negative.
Since we are mainly interested in piecewise linear functions we assume without much loss of generality
that the functions f and the convex and concave components are well defined and finite on all of the
Euclidean space Rn. Allowing both components to be infinite outside their proper domain would
obviously generate serious indeterminacies, i.e., NaNs in the numerical sense. As we will see later we
can in fact ensure in our setting that pointwise

pf pxq ď f pxq ď qf pxq for all x P R
n , (1)

which means that we actually obtain an inclusion in the sense of interval mathematics [3]. This is one
of the attractions of the averaging notation. We will therefore also refer to pf and qf as the concave and
convex bounds of f .

Algorithms 2020, 13, 166; doi:10.3390/a13070166 www.mdpi.com/journal/algorithms33
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Conditioning of the Decomposition

In parts of the literature the two convex functions qf and ´ pf are assumed to be nonnegative, which
has some theoretical advantages. In particular, see, e.g., [4], one obtains for the square h “ f 2 of a DC
function f the decomposition

h “ 1
4 p qf ` pf q2 “ 1

2

� 1
4 p qf 2 ` pf 2qlooooomooooon

”ȟ

` 1
4 r´p qf ´ pf q2sloooooomoooooon

”ĥ

(
. (2)

The sign conditions of qf and pf are necessary to ensure that the three squares on the right hand
side are convex functions. Using the Apollonius identity f ¨ h “ 1

2 rp f ` hq2 ´ f 2 ´ h2s one may then
deduce in a constructive way that not only sums but also products of DC functions inherit this property.
In general, since the convex functions qf and ´ pf have both supporting hyperplanes one can at least
theoretically always find positive coefficients α and β such that

qf pxq ` α ` β}x}2 ě 0 ě pf pxq ´ α ´ β}x}2 for x P R
n .

Then the average of these modified functions is still f and their respective convexity/concavity
properties are maintained. In fact, this kind of proximal shift can be used to show that any twice
Lipschitz continuously differentiable function is DC, which raises the suspicion that the property by
itself does not provide all that much exploitable structure from a numerical point of view. We believe
that for its use in practical algorithms one has to make sure or simply assume that the condition number

κp qf , pf q ” sup
xPRn

| qf pxq| ` | pf pxq|
| qf pxq ` pf pxq| P r1, 8s

is not too large. Otherwise, there is the danger that the value of f is effectively lost in the rounding
error of evaluating qf ` pf . For sufficiently large quadratic shifts of the nature specified above one
has κ „ β. The danger of an excessive growth in κ seems akin to the successive widening in interval
calculations and similarly stems also from the lack of strict arithmetic rules. For example doubling f
and then subtracting it yields the successive decompositions

p2 f q ´ f “ p qf ` pf q ´ 1
2 p qf ` pf q “ p qf ´ 1

2
pf q ` p pf ´ 1

2
qf q “ 1

2 rp2 qf ´ pf q ` p2 pf ´ qf qs . (3)

If in Equation (3) by chance we had originally ´ pf “ 1
2

qf ą 0 so that f “ 1
2

qf with the condition
number κp qf , ´0.5 qf q “ 3 we would get after the doubling and subtraction the condition number
κp2.5 qf , ´2 qf q “ 9. So it is obviously important that the original algorithm avoids as much as possible
calculations that are ill-conditioned in that they even just partly compensate each other.

Throughout the paper we assume that the functions in question are evaluated by a computational
procedure that generates a sequence of intermediate scalars, which we denote generically by u, v and
w. The last one of these scalar variables is the dependent, which is usually denoted by f . All of them
are continuous functions u “ upxq of the vector x P Rn of independent variables. As customary in
mathematics we will often use the same symbol to identify a function and its dependent variable.
For the overall objective we will sometimes distinguish them and write y “ f pxq. For most of the paper
we assume that the intermediates are obtained from each other by affine operations or the absolute
value function so that the resulting upxq are all piecewise linear functions.

The paper is organized as follows. In the following Section 2 we develop rules for propagating the
convex/concave decomposition through a sequence of abs-linear operations applied to intermediate
quantities u. This can be done either directly on the pair of bounds pqu, puq or on their average u and their
halved distance δu “ 1

2 pqu ´ puq. In Section 3 we organize such sequences into an abs-linear form for f
and then extend it to simultaneously yield the convex/concave decomposition. As a consequence of
this analysis we get a strengthened version of the classical max´min representation of piecewise linear
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functions, which reduces to the difference of two polyhedral parts in max- and min-form. In Section 4
we develop strict rules for propagating certain generalized gradient pairs pqg, pgq of pqu, puq exploiting
convexity and the cheap gradient principle [5]. In Section 5 we discuss the consequences for the DCA
when using limiting gradients pqg, pgq, solving the inner, linear optimization problem (LOP) exactly,
and ensuring optimality via polyhedral reflection. In Section 6 we demonstrate the new results on
the nonconvex and piecewise linear chained Rosenbrock version of Nesterov [6]. Section 7 contains
a summary and preliminary conclusion with outlook. In the Appendix A we give the details of the
necessary and sufficient optimality test from [7] in the present DC context.

2. Propagating Bounds and/or Radii

In Equation (3) we already assumed that doubling is done componentwise and that for a difference
v “ w ´ u of DC functions w and u, one defines the convex and concave parts by

­pw ´ uq “ qw ´ pu and {pw ´ uq “ pw ´ qu ,

respectively. This yields in particular for the negation

~p´uq “ ´pu and zp´uq “ ´qu . (4)

For piecewise linear functions we need neither the square formula Equation (2) nor the more
general decompositions for products. Therefore we will not insist on the sign conditions even though
they would be also maintained automatically by Equation (4) as well as the natural linear rules for the
convex and concave parts of the sum and the multiple of a DC function, namely

­pw`uq “ p qw`quq and {pw`uq “ p pw ` puq ,~pc uq “ c qu and zpc uq “ c pu if c ě 0 ,~pc uq “ c pu and zpc uq “ c qu if c ď 0 .

However, the sign conditions would force one to decompose simple affine functions
upxq “ aJx ` β as

upxq “ maxp0, aJx ` βq ` minp0, aJx ` βq ” 1
2 pqupxq ` pupxqq , (5)

which does not seem such a good idea from a computational point of view.
The key observation for this paper is that as is well known (see e.g., [8]), one can propagate the

absolute value operation according to the identity

|u| “ maxpu, ´uq “ 1
2 maxpqu ` pu, ´qu ´ puq

“ maxpqu, ´puq ` 1
2 ppu ´ quq

ðñ ||u| “ 2 maxpqu, ´puq and x|u| “ pu ´ qu . (6)

Here the equality in the second line can be verified by shifting the difference 1
2 ppu ´ quq into the

two arguments of the max. Again we see that when applying the absolute value operation to an
already positive convex function u “ 1

2 qu ě 0 we get ||u| “ 2qu and x|u| “ ´qu so that the condition
number grows from κpqu, 0q “ 1 to κp2qu, ´quq “ 3. In other words, we observe once more the danger
that both component functions drift apart. This looks a bit like simultaneous growth of numerator
and denominator in rational arithmetic, which can sometimes be limited through cancelations by
common integer factors. It is currently not clear when and how a similar compactification of a given
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convex/concave decomposition can be achieved. The corresponding rule for the maximum is similarly
easy derived, namely

maxpu, wq “ 1
2 maxpqu ` pu, qw ` pwq “ 1

2 pmaxpqu ´ pw, qw ´ puq ` ppu ` pwqq .

When u and w as well as their decomposition are identical we arrive at the new decomposition u “
maxpu, uq “ 1

2 ppqu ´ puq ` 2puq, which obviously represents again some deterioration in the conditioning.
While it was pointed out in [4] that the DC functions u “ 1

2 pqu ` puq themselves form an algebra,
their decomposition pairs pqu, puq are not even an additive group, as only the zero p0, 0q has a negative
partner, i.e., an additive inverse. Naturally, the pairs pqu, puq form the Cartesian product between the
convex cone of convex functions and its negative, i.e., the cone of concave functions. The DC functions
are then the linear envelope of the two cones in some suitable space of locally Lipschitz continuous
functions. It is not clear whether this interpretation helps in some way, and in any case we are here
mainly concerned with piecewise linear functions.

Propagating the Center and Radius

Rather than propagating the pairs pqu, puq through an evaluation procedure as defined in [5] to
calculate the function value f pxq at a given point x, it might be simpler and better for numerical
stability to propagate the pair

u “ 1
2 pqu ` puq ^ δu “ 1

2 pqu ´ puq ðñ qu “ u ` δu ^ pu “ u ´ δu . (7)

This representation resembles the so-called central form in interval arithmetic [9] and we will
call therefore u the central value and δu the radius. In other words, u is just the normal piecewise
affine intermediate function and the δu is a convex distance function to the hopefully close convex and
concave part. Should the potential blow-up discussed above actually occur, this will only effect δu but
not the central value u itself. Moreover, at least theoretically one might decide to reduce δu from time
to time making sure of course that the corresponding qu and pu as defined in Equation (7) stay convex
and concave, respectively. The condition number now satisfies the bound

κpu ` δu, u ´ δuq “ sup
x

|u ` δu| ` |u ´ δu|
2|u|

“ sup
x

1
2

!ˇ̌̌
1 ` δu

u

ˇ̌̌
`

ˇ̌̌
1 ´ δu

u

ˇ̌̌)
ď 1 ` sup

x

ˇ̌̌ δu
u

ˇ̌̌
.

Recall here that all intermediate quantities u “ upxq are functions of the independent variable
vector x P Rn. Naturally, we will normally only evaluate the intermediate pairs u and δu at a few
iterates of whatever numerical calculation one performs involving f so that we can only sample
the ratio

ρupxq ” |δupxq{upxq|
pointwise, where the denominator is hopefully nonzero. We will also refer to this ratio as the relative
gap of the convex/concave decomposition at a certain evaluation point x. The arithmetic rules for
propagating radii of the central form in central convex/concave arithmetic are quite simple.

Lemma 1 (Propagation rules for central form). With c, d, x P R two constants and an independent variable
we have

v “ c ` d x ùñ δv “ 0 ùñ ρv “ 0 if v ‰ 0

v “ u ˘ w ùñ δv “ δu ` δw ùñ ρv ď |u|`|w|
|u˘w| maxpρu, ρwq

v “ c u ùñ δv “ |c| δu ùñ ρv “ ρu if c ‰ 0

v “ |u| ùñ δv “ |u| ` 2 δu ùñ ρv P r1, 1 ` 2ρus .

(8)
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Proof. The last rule follows from Equation (6) by

δp|u|q “ 1
2

´||u| ´ x|u|
¯

“ maxpqu, ´puq ´ 1
2 ppu ´ quq

“ maxpqu ´ δu, ´pu ´ δuq ` 2 δu

“ maxpu, ´uq ` 2 δu “ |u| ` 2 δu .

The first equation in Equation (8) means that for all quantities u that are affine functions of the
independent variables x the corresponding radius δu is zero so that qu “ u “ pu until we reach the first
absolute value. Notice that δv does indeed grow additively for the subtraction just like for the addition.
By induction it follows from the rules above for an inner product that

δ
´ mÿ

j“1

cjuj

¯
“

mÿ
j“1

|cj| δuj , (9)

where the cj P R are assumed to be constants. As we can see from the bounds in Lemma 1 the relative
gap can grow substantially whenever one performs an addition of values with opposite sign or applies
the absolute value operation. In contrast to interval arithmetic on smooth functions one sees that the
relative gap, though it may be zero or small initially immediately jumps above 1 when one hits the
first absolute value operation. This is not really surprising since the best concave lower bound on
upxq “ |x| itself is pupxq “ 0 so that δu “ |x|, qupxq “ 2|x| and thus ρupxq “ 1 constantly. On the positive
side one should notice that throughout we do not lose sight of the actual central values upxq, which can
be evaluated with full arithmetic precision. In any case we can think of neither ρ nor κ ď 1 ` ρ as small
numbers, but we must be content if they do not actually explode too rapidly. Therefore they will be
monitored throughout our numerical experiments.

Again we see that the computational effort is almost exactly doubled. The radii can be treated as
additional variables that occur only in linear operations and stay nonnegative throughout. Notice that
in contrast to the (nonlinear) interval case we do not loose any accuracy by propagating the central
form. It follows immediately by induction from Lemma 1 that any function evaluated by a evaluation
procedure that comprises a finite sequence of

• initializations to independent variables
• multiplications by constants
• additions or subtractions
• absolute value applications

is piecewise affine and continuous. We will call these operations and the resulting evaluation
procedure abs-linear. It is also easy to see that the absolute values | ¨ | can be replaced by the maximum
maxp¨, ¨q or the minimum minp¨, ¨q or the positive part function maxp0, ¨q or any combination of them,
since they can all be mutually expressed in terms of each other and some affine operations. Conversely,
it follows from the min-max representation established in [10] (Proposition 2.2.2) that any piecewise
affine function f can be evaluated by such an evaluation procedure. Consequently, by applying the
formulas Equations (4)–(6) one can propagate at the same time the convex and concave components
for all intermediate quantities. Alternatively, one can propagate the centered form according to the
rules given in Lemma 1. These rules are also piecewise affine so that we have a finite procedure
for simultaneously evaluating qu and pu or u and δu as piecewise linear functions. The combined
computation requires about 2–3 times as many arithmetic operations and twice as many memory
accesses. Of course due to the interdependence of the two components it is not possible to evaluate
just one of them without the other. As we will see the same is true for the generalized gradients to be
discussed later in Section 4.
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3. Forming and Extending the Abs-Linear Form

In practice all piecewise linear objectives can be evaluated by a sequence of abs-linear operations,
possibly after min and max have been rewritten as

minpu, wq “ 1
2 pu ` w ´ |u ´ w|q and maxpu, wq “ 1

2 pu ` w ` |u ´ w|q . (10)

Our only restriction is that the number s of intermediate scalar quantities, say zi, is fixed, which is
true for example in the max ´ min representation. Then we can immediately cast the procedure in
matrix-vector notation as follows:

Lemma 2 (Abs-Linear Form). Any continuous piecewise affine function f : x P Rn ÞÑ y P R can be
represented by

z “ c ` Zx ` Mz ` L|z| ,

y “ d ` aJx ` bJz ,
(11)

where z P Rs, Z P Rsˆn, M, L P Rsˆs strictly lower triangular, d P R, a P Rn, b P Rs and |z| denotes the
componentwise modulus of the vector z.

It should be noted that the construction of this general abs-linear form requires no analysis
or computation whatsoever. However, especially for our purpose of generating a reasonably tight
DC decomposition, it is advantages to reduce the size of the abs-normal form by eliminating all
intermediates zj with j ă s for which |zj| never occurs on the right hand side. To this end we may
simply substitute the expression of zj given in the j-th row in all places where zj itself occurs on the
right hand side. The result is what we will call a reduced abs-normal form, where after renumbering,
all remaining zj with j ă s are switching variables in that |zj| occurs somewhere on the right hand
side. In other words, all but the last column of the reduced, strictly lower triangular matrix L are
nontrivial. Again, this reduction process is completely mechanical and does not require any nontrivial
analysis, other than looking up which columns of the original L were zero. The resulting reduced
system is smaller and probably denser, which might increase the computation effort for evaluating
f itself. However, in view of Equation (9) we must expect that for the reduced form the radii will
grow slower if we first accumulate linear coefficients and then take their absolute values. Hence we
will assume in the remainder of this paper that the abs-normal form for our objective f of interest
is reduced.

Based on the concept of abs-linearization introduced in [11], a slightly different version of a
(reduced) abs-normal form was already proposed in [12]. Now in the present paper, both z and y
depend directly on z via the matrix M and the vector b, but y does no longer depend directly on |z|.
All forms can be easily transformed into each other by elementary modifications. The intermediate
variables zi can be calculated successively for 1 ď i ď s by

zi “ ci ` Zix ` Miz ` Li|z| , (12)

where Zi, Mi and Li denote the ith rows of the corresponding matrix. By induction on i one sees
immediately that they are piecewise affine functions zi “ zipxq, and we may define for each x the
signature vector

σpxq “ psgnpzipxqqqi“1...s P t´1, 0, 1us .

Consequently we get the inverse images

Pσ ” tx P R
n : sgnpzpxqq “ σu for σ P t´1, 0, 1us , (13)
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which are relatively open polyhedra that form collectively a disjoint decomposition of Rn. The situation
for the second example of Nesterov is depicted in Figure 3 in the penultimate section. There are six
polyhedra of full dimension, seven polyhedra of co dimension 1 drawn in blue and two points,
which are polyhedra of dimension 0. The point p0, ´1q with signature p0, ´1, 0q is stationary and the
point p1, 1q with signature p1, 0, 0q is the minimizer as shown in [7]. The arrows indicate the path of our
reflection version of the DCA method as described in Section 5.

When σ is definite, i.e., has no zero components, which we will denote by 0 R σ, it follows from
the continuity of zpxq that Pσ has full dimension n unless it is empty. In degenerate situations this may
also be true for indefinite σ but then the closure of Pσ is equal to the extended closure

sPσ̃ ” tx P R
n : σpxq ă σ̃u Ą closepPσ̃q (14)

for some definite 0 R σ̃ ą σ. Here the (reflexive) partial ordering ă between the signature vectors
satisfies the equivalence

σ̊ ă σ ðñ σ̊iσi ď σ2
i for i “ 1 . . . s ðñ sPσ̊ Ă sPσ

as shown in [13]. One can easily check that for any σ ą σ̊ there exists a unique signature

pσ Ź σ̊qi “
#

σi if σ̊i ‰ 0

´σi if σ̊i “ 0
for i “ 1 . . . s (15)

We call σ̃ ” σ Ź σ̊ the reflection of σ at σ̊, which satisfies also σ̃ ą σ̊ and we have in factsPσ̃ X sPσ “ sPσ̊. Hence the relation between σ and σ̃ is symmetric in that also σ “ σ̃ Ź σ̊. Therefore
we will call pσ, σ̃q a complementary pair with respect to σ̊. In the very special case zi “ xi for
i “ 1 . . . n “ s ´ 1 the sPσ are orthants and their reflections at the origin t0u “ sP0 Ă Rn are their
geometric opposites sPσ̃ with σ̃ “ ´σ. Here one can see immediately that all edges, i.e., one-dimensional
polyhedra, have Cartesian signatures ˘ei for i “ 1 . . . n and belong to sPσ or sPσ̃ for any given σ.
Notice that x̊ is a local minimizer of a piecewise linear function if and and only if it is a local minimizer
along all edges of nonsmoothness emanating form it. Consequently, optimality of f restricted to a
complementary pair is equivalent to local optimality on Rn, not only in this special case, but whenever
the Linear Independence Kink Qualification (LIKQ) holds as introduced in [13] and defined in the
Appendix A. This observation is the basis of the implicit optimality condition verified by our DCA
variant Algorithm 1 through the use of reflections. The situation is depicted in Figure 3 where the
signatures p´1, ´1, ´1q and p1, ´1, 1q as well as p1, ´1, 1q and p1, 1, ´1q form complementary pairs at
p0, ´1q and p1, 1q, respectively. At both reflection points there are four emanating edges, which all
belong to one of the three polyhedra mentioned.

Applying the propagation rules from Lemma 1, one obtains with δx “ 0 P Rn the recursion

δz1 “ δpc1 ` Z1xq “ 0

δzi “ p|Mi| ` 2|Li|qδz ` |Li||z| for i “ 2 . . . s ,

where the modulus is once more applied componentwise for vectors and matrices. Hence, we have
again in matrix vector notation

δz “ p|M| ` 2|L|qδz ` |L||z| , (16)

which yields for δz the explicit expression

δz “ pI ´ |M| ´ 2|L|q´1|L||z| “
νÿ

j“0

p|M| ` 2|L|qj |L||z| ě 0 . (17)
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Here, ν is the so-called switching depth of the abs-linear form of f , namely the largest ν P N

such that p|M| ` |L|qν ‰ 0, which is always less than s due to the strict lower triangularity of M and
L. The unit lower triangular pI ´ |M| ´ 2|L|q is an M-matrix [14], and interestingly enough does not
even depend on x but directly maps |z| “ |zpxq| to δz “ δzpxq. For the radius of the function itself,
the propagation rules from Lemma 1 then yield

δ f pxq “ δy “ |b|Jδz ě 0 . (18)

This nonnegativity implies the inclusion Equation (1) already mentioned in Section 1, i.e.:

Theorem 1 (Inclusion by convex/concave decomposition). For any piecewise affine function f in abs-linear
form, the construction defined in Section 2 yields a convex/concave inclusion

pf pxq ď f pxq ” 1
2 p qf pxq ` pf pxqq ď qf pxq .

Moreover, the convex and the concave parts qf pxq and pf pxq have exactly the same switching structure as
f pxq in that they are affine on the same polyhedra Pσ defined in (13).

Proof. Equations (16) and (17) ensure that δ f pxq is nonnegative at all x P Rn such that

pf pxq “ f pxq ´ δ f pxq ď f pxq ď f pxq ` δ f pxq ď qf pxq .

It follows from Equation (17) that the radii δzipxq are like the |zipxq| piecewise linear with
the only nonsmoothness arising through the switching variables zpxq themselves. Obviously this
property is inherited by δ f pxq and the linear combinations qf pxq“ f pxq ` δ f pxq and pf pxq“ f pxq ´ δ f pxq,
which completes the proof.

Combining Equations (16) and (18) with the abs-linear form of the piecewise affine function f
and defining z̃ “ pz, δzq P R2s, one obtains for the calculation of f̃ pxq ” ỹ ” py, δyq the following
abs-linear form

z̃ “ c̃ ` Z̃x ` M̃z̃ ` L̃|z̃| , (19)

ỹ “ d̃ ` ãJx ` b̃Jz̃ (20)

with the vectors and matrices defined by

c̃“
«

c
0

ff
P R

2s, Z̃ “
«

Z
0

ff
P R

2sˆn, M̃ “
«

M 0
0 |M| ` 2|L|

ff
P R

2sˆ2s,

L̃“
«

L 0
|L| 0

ff
P R

2sˆ2s, d̃“
«

d
0

ff
P R

2, ã“
”

a 0
ı

P R
nˆ2, b̃“

«
b 0
0 |b|

ff
P R

2sˆ2.

Then, Equations (19) and (20) yield«
z
δz

ff
“

«
c
0

ff
`

«
Z
0

ff
x `

«
M 0
0 |M| ` 2|L|

ff «
z
δz

ff
`

«
L 0

|L| 0

ff «
|z|
|δz|

ff
“

«
c ` Zx ` Mz ` L|z|

p|M| ` 2|L|qδz ` |L||z|

ff
«

y
δy

ff
“ d̃`ãJx`b̃Jz̃ “

«
d
0

ff
`

«
aJx
0

ff
`

«
b 0
0 |b|

ffJ«
z
δz

ff
“

«
d`aJx`bJz

|b|Jδz

ff
,

i.e., Equations (16) and (18). As can be seen, the matrices M̃ and L̃ have the required strictly lower
triangular form. Furthermore, it is easy to check, that the switching depth of the abs-linear form of f
carries over to the abs-linear form for f̃ in that also p|M̃|`|L̃|qν ‰ 0 “ p|M̃|`|L̃|qν`1. However, notice

40



Algorithms 2020, 13, 166

that this system is not reduced since the s radii are not switching variables, but globally nonnegative
anyhow. We can now obtain explicit expressions for the central values, radii, and bounds for a given
signature σ.

Corollary 1 (Explicit representation of the centered form). For any definite signature σ S 0 and all x P Pσ

we have with Σ “ diagpσq

zσpxq “ pI ´ M ´ LΣq´1pc ` Zxq and |zσpxq| “ Σzσpxq ě 0 (21)

δzσpxq “ pI ´ |M| ´ 2|L|q´1|L| Σ pI ´ M ´ LΣq´1pc ` Zxq ě 0 (22)

∇zσ “ pI ´ M ´ LΣq´1Z ùñ ∇σ f “ aJ` bJpI ´ M ´ LΣq´1Z (23)

∇ qfσ “ aJ`
”
bJ` |b|JpI ´ |M| ´ 2|L|q´1|L| Σ

ı
pI ´ M ´ LΣq´1Z (24)

∇ pfσ “ aJ`
”
bJ´ |b|JpI ´ |M| ´ 2|L|q´1|L| Σ

ı
pI ´ M ´ LΣq´1Z , (25)

where the restrictions of the functions and their gradients to Pσ are denoted by subscript σ. Notice that the
gradients are constant on these open polyhedra.

Proof. Equations (21) and (23) follow directly from Equation (12), the abs-linear form (11) and the
properties of Σ. Combining Equation (16) with (21) yields Equation (22). Since qf pxq “ f pxq ` δ f pxq
and pf pxq“ f pxq ´ δ f pxq, Equations (24) and (25) follow from the representation in abs-linear form and
Equation (23).

As one can see the computation of the gradient ∇ fσ requires the solution of one unit upper
triangular linear system and that of both ∇ qfσ and ∇ pfσ one more. Naturally, upper triangular systems
are solved by back substitution, which corresponds to the reverse mode of algorithmic differentiation
as described in the following section. Hence, the complexity for calculating the gradients is exactly
the same as that for calculating the functions, which can be obtained by one forward substitution for
fσ and an extra one for δ fσ and thus qfσ and pfσ. The given ∇ fσ,∇ qfσ and ∇ pfσ are proper gradients
in the interior of the full dimensional domains Pσ. For some or even many σ the inverse image Pσ

of the map x ÞÑ sgnpzpxqq may be empty, in which case the formulas in the corollary do not apply.
Checking the nonemptiness of Pσ for a given signature σ amounts to checking the consistency of a set
of linear inequalities, which costs the same as solving an LOP and is thus nontrivial. Expressions for
the generalized gradients at points in lower dimensional polyhedra are given in the following Section 4.
There it is also not required that the abs-linear normal form has been reduced, but one may consider
any given sequence of abs-linear operations.

The Two-Term Polyhedral Decomposition

It is well known ([15], Theorem 2.49) that all piecewise linear and globally convex or concave
functions can be represented as the maximum or the minimum of a finite collection of affine
functions, respectively. Hence, from the convex/concave decomposition we get the following drastic
simplification of the classical min-max representation given, e.g., in [10].

Corollary 2 (Additive max/min decomposition of PL functions). For every piecewise affine function
f : Rn ÞÑ R there exist k ě 0 affine functions αi`aJ

i x for i “ 1 . . . k and l ě 0 affine functions β j`bJ
j x for

j “ 1 . . . l such that at all x P Rn

f pxq “ max
i“1...k

pαi`aJ
i xqlooooooomooooooon

” 1
2

qf pxq

` min
j“1...l

pβ j`bJ
j xqlooooooomooooooon

” 1
2

pf pxq

(26)

where furthermore pf pxq ď f pxq ď qf pxq.
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The max-part of this representation is what is called a polyhedral function in the literature [15].
Since the min-part is correspondingly the negative of a polyhedral function we may also refer to
Equation (26) as a DP decomposition, i.e., the difference of two polyhedral functions.

We are not aware of a publication that gives a practical procedure for computing such a collection
of affine functions αi ` aJ

i x, i “ 1 . . . k, and β j ` bJ
j x, j “ 1 . . . l, for a given piecewise linear function

f . Of course the critical question is in which form the function f is specified. Here as throughout
our work we assume that it is given by a sequence of abs-linear operations. Then we can quite easily
compute for each intermediate variable v representations of the form

v “
m̄ÿ

i“1

max
1ďjďki

pαij`aJ
ij xq `

n̄ÿ
i“1

min
1ďjďli

pβij`bJ
ij xq (27)

“ max
jiPIi

1ďiďm̄

m̄ÿ
i“1

pαiji `aJ
iji xq ` min

jiPJi
1ďiďn̄

n̄ÿ
i“1

pβiji `bJ
iji xq . (28)

with index sets Ii “ t1, . . . , kiu, 1 ď i ď m̄, and Ji “ t1, . . . , liu, 1 ď i ď n̄, since one has to consider
all possibilities of selecting one affine function each from one of the m̄ max and n̄ min groups,
respectively. Obviously, (28) involves

śm
i“1 ki and

śn
i“1 �i affine function terms in contrast to the

first representation (27) which contains just
řm

i“1 ki and
řn

i“1 �i of them. Still the second version
conforms to the classical representation of convex and concave piecewise linear functions, which yields
the following result:

Corollary 3 (Explicit computation of the DP representation). For any piecewise linear function given as
abs-linear procedure one can explicitly compute the representation (26) by implementing the rules of Lemma 1.

Proof. We will consider the representations (27) from which (26) can be directly obtained in the
form (28). Firstly, the independent variables xj are linear functions of themselves with gradient a “ ej
and inhomogeneity α “ 0. Then for multiplications by a constant c ą 0 we have to scale all affine
functions by c. Secondly, addition requires appending the expansions of the two summands to each
other without any computation. Taking the negative requires switching the sign of all affine functions
and interchanging the max and min group. Finally, to propagate through the absolute values we have
to apply the rule (6), which means switching the signs in the min group, expressing it in terms of max
and merging it with the existing max group. Here merging means pairwise joining each polyhedral
term of the old max-group with each term in the switched min-group. Then the new min-group is the
old one plus the old max-group with its sign switched.

We see that taking the absolute value or, alternatively, maxima or minima generates the strongest
growth in the number of polyhedral terms and their size. It seems clear that this representation is
generally not very useful because the number of terms will likely blow up exponentially. This is not
surprising because we will need one affine function for each element of the polyhedral decompositions
of the domain of the max and min term. Typically, many of the affine terms will be redundant, i.e.,
could be removed without changing the values of the polyhedral terms. Unfortunately, identifying
those already requires solving primal or dual linear programming problems, see, e.g., [16]. It seems
highly doubtful that this would ever be worthwhile. Therefore, we will continue to advocate dealing
with piecewise linear functions in a convenient procedural abs-linear representation.

4. Computation of Generalized Gradients and Constructive Oracle Paradigm

For optimization by variants of the DCA algorithm [17] one needs generalized gradients of the
convex and the concave component. Normally, there are no strict rules for propagating generalized
gradients through nonsmooth evaluation procedures. However, exactly this is simply assumed in
the frequently invoked oracle paradigm, which states that at any point x P Rn the function value
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f pxq and an element g P B f pxq can be evaluated. We have argued in [18] that this is not at all a
reasonable assumption.

On the other hand, it is well understood that for the convex operations: Positive scaling, addition,
and taking the maximum the rules are strict and simple. Moreover, then the generalized gradient in
the sense of Clarke B qf pxq Ă Rn is actually a subdifferential in that all its elements define supporting
hyperplanes. Similarly B pf pxq might be called a superdifferential in that the tangent planes bound the
concave part from above.

In other words, we have at all x P Rn and for all increments Δx

qf px ` Δxq ě qf pxq ` qgJΔx if qg P B qf pxq

and pf px ` Δxq ď pf pxq ` pgJΔx if pg P B pf pxq ,

which imply for qg P B qf pxq and pg P B pf pxq that

pf px`Δxq` qf pxq`qgJΔx ď 2 f px ` Δxq ď qf px`Δxq` pf pxq`pgJΔx , (29)

where the lower bound on the left is a concave function and the upper bound is convex, both with
respect to Δx. Notice that the generalized superdifferential B pf being the negative of the subdifferential
of ´ pf is also a convex set.

Now the key question is how we can calculate a suitable pair of generalized gradients pqg, pgq P
B qf pxqˆB pf pxq. As we noted above the convex part and the negative of the concave part only undergo
convex operations so that for v “ c u

Bqv “

$’’&’’%
c Bqu if c ą 0

0 if c “ 0

c Bpu if c ă 0

and Bpv “

$’’&’’%
c Bpu if c ą 0

0 if c “ 0

c Bqu if c ă 0

(30)

and for v “ u ` w
Bqv “ Bqu`B qw and Bpv “ Bpu`B pw . (31)

Finally, for v “ |u| we find by Equation (6) that Bpv “ Bpu ´ Bqu as well as

1
2 Bqv “ B maxpqu, ´puq “

$’’&’’%
B qu if u ą 0

convtBqu Y p´Bpuqu if u “ 0 ,

´Bpu if u ă 0

(32)

where we have used that u “ 1
2 pqu ` puq in Equation (32). The sign of the arguments u of the absolute

value function are of great importance, because they determine the switching structure. For this reason,
we formulated the cases in terms of u rather than in the convex/concave components. The operator
convt¨u denotes taking the convex hull or envelope of a given usually closed set. It is important
to state that within an abs-linear representation the multipliers c will stay constant independent of
the argument x, even if they were originally computed as partial derivatives by an abs-linearization
process and thus subject to round-off error. In particular their sign will remain fixed throughout
whatever algorithmic calculation we perform involving the piecewise linear function f . So, actually
the case c“0 could be eliminated by dropping this term completely and just initializing the left hand
side v to zero.
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Because we have set identities we can propagate generalized gradient pairs p∇qu,∇puq P BquˆBpu
and perform the indicated algebraic operations on them, starting with the Cartesian basis vectors

∇qxj “ ∇pxj “ ∇xj “ ej since qxj “ pxj “ xj for j “ 1 . . . n .

The result of this propagation is guaranteed to be an element of B qf ˆB pf . Recall that in the merely
Lipschitz continuous case generalized gradients cannot be propagated with certainty since for example
the difference v “ w ´ u generates a proper inclusion Bv Ă Bw ´ Bu. In that vein we must emphasize
that the average 1

2 p∇ qf `∇ pf q need not be a generalized gradient of f “ 1
2 p qf ` pf q as demonstrated by

the possibility that pf “ ´ qf algebraically but we happen to calculate different generalized gradients
of qf and ´ pf at a particular point x. In fact, if one could show that B f “ 1

2 pB qf ` B pf q one would have
verified the oracle paradigm, whose use we consider unjustified in practice. Instead, we can formulate
another corollary for sufficiently piecewise smooth functions.

Definition 1. For any d P N, the set of functions f : Rn ÞÑ R, y “ f pxq, defined by an abs-normal form

z “ Fpx, z, |z|q ,

y “ ϕpx, zq,

with F P CdpRn`s`sq and ϕ P CdpRn`sq, is denoted by Cd
abspRnq.

Once more, this definition differs slightly from the one given in [7] in that y depends only on z
and not on |z| in order to match the abs-linear form used here. Then one can show the following result:

Corollary 4 (Constructive Oracle Paradigm). For any function f P C2
abspRnq and a given point x there exist

a convex polyhedral function |Δ f px; Δxq and a concave polyhedral function xΔ f px; Δxq such that

f px ` Δxq ´ f pxq “ 1
2

´ |Δ f px; Δxq ` xΔ f px; Δxq
¯

`Op}Δx}2q

Moreover, both terms and their generalized gradients at Δx “ 0 or anywhere else can be computed with the
same order of complexity as f itself.

Proof. In [11], we show that

f px ` Δxq ´ f pxq “ Δ f px; Δxq `Op}Δx}2q ,

where Δ f px; Δxq is a piecewise linearization of f developed at x and evaluated at Δx. Applying
the convex/concave decomposition of Theorem 1, one obtains immediately the assertion with a
convex polyhedral function |Δ f px; Δxq and a concave polyhedral function xΔ f px; Δxq evaluated at Δx.
The complexity results follow from the propagation rules derived so far.

We had hoped that it would be possible to use this approximate decomposition into polyhedral
parts to construct at least locally an exact decomposition of a general function f P Cd

abspRnq into a
convex and compact part. The natural idea seems to add a sufficiently large quadratic term β}Δx}2 to

f px ` Δxq ´ f pxq ´ 1
2

xΔ f px; Δxq “ 1
2

|Δ f px; Δxq `Op}Δx}2q

such that it would become convex. Then the same term could be subtracted from xΔ f px; Δxq maintaining
its concavity. Unfortunately, the following simple example shows that this is not possible.
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Example 1 (Half pipe). The function

f : R2 ÞÑ R, f px1, x2q “ maxpx2
2 ´ maxpx1, 0q, 0q (33)

“
$’&’%

x2
2 if x1 ď 0

x2
2 ´ x1 if 0 ď x1 ď x2

2
0 if 0 ď x2

2 ď x1

,

in the class C8
abspRnq is certainly nonconvex as shown in Figure 1. As already observed in [19] this generally

nonsmooth function is actually Fréchet differentiable at the origin x “ 0 with a vanishing gradient ∇ f p0q “ 0.
Hence, we have f pΔxq “ Op}Δx}2q and may simply choose constantly |Δ f p0; Δxq ” 0 ” xΔ f p0; Δxq. However,
neither by adding β}Δx}2 nor any other smooth function to f pΔxq can we eliminate the downward facing kink
along the vertical axis Δx1 “ 0. In fact, it is not clear whether this example has any DC decomposition at all.

2

0

x 2-22

1
x 1

0

-1

0

4

2

-2

ϕ
(.
)

Figure 1. Half pipe example as defined in Equation (33).

Applying the Reverse Mode for Accumulating Generalized Gradients

Whenever gradients are propagated forward through a smooth evaluation procedure, i.e.,
for functions in C2pRnq, they are uniquely defined as affine combinations of each other, starting from
Cartesian basis vectors for the components of x. Given only the coefficients of the affine combinations
one can propagate corresponding adjoint values, or impact factors backwards, to obtain the gradient
of a single dependent with respect to all independents at a small multiple of the operations needed
to evaluate the dependent variable by itself. This cheap gradient result is a fundamental principle
of computational mathematics, which is widely applied under various names, for example discrete
adjoints, back propagation, and reverse mode differentiation. For a historical review see [20] and for a
detailed description using similar notation to the current paper see our book [5]. For good reasons,
there has been little attention to the reverse mode in the context of nonsmooth analysis, where one can
at best obtain subgradients. The main obstacle is again that the forward propagation rules are only
sharp when all elementary operations maintain convexity, which is by the way the only constructive
way of verifying convexity for a given evaluation procedure. While general affine combinations and
the absolute value are themselves convex functions, they do not maintain convexity when applied to a
convex argument.

The last equation of Lemma 1 shows that one cannot directly propagate a subgradient of the
convex radius functions δu because there is a reference to v “ |u| itself, which does not maintain
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convexity except when it is redundant due to its argument having a constant sign. However, it follows
from the identity δu “ 1

2 pqu ´ puq that for all intermediates u

∇qu P Bqu ^∇pu P Bpu ùñ 1
2 p∇qu ´∇puq P Bδu .

Hence one can get affine lower bounds of the radii, although one would probably prefer upper
bounds to limit the discrepancy between the convex and concave parts. When v “ |u| and u “ 0 we
may choose according to Equation (32) any convex combination

1
2∇qv “ p1 ´ μq∇qu ´ μ∇pu for 0 ď μ ď 1 . (34)

It is tempting but not necessarily a good idea to always choose the weight μ equal to 1
2

for simplicity.
Before discussing the reasons for this at the end of this subsection, let us note that from the

values of the constants c, the intermediate values u, and the chosen weights μ it is clear how the next
generalized gradient pair p∇qv,∇pvq is computed as a linear combination of the generalized gradients
of the inputs for each operation, possibly with a switch in their roles. That means after only evaluating
the function f itself, not even the bounds qf and pf , we can compute a pair of generalized gradients in
B qf ˆB pf using the reverse mode of algorithmic differentiation, which goes back to at least [21] though
not under that name. The complexity of this computation will be independent of the number of
variables and relative to the complexity of the function f itself. All the operations are relatively benign,
namely scaling by constants, interchanges and additions and subtractions. After all the reverse mode
is just a reorganization of the linear algebra in the forward propagation of gradients. Hence, it appears
that we can be comparatively optimistic regarding the numerical stability of this process.

To be specific we will indicate the (scalar) adjoint value of all intermediates qu and pu as usual bysqu P R and spu P R. They are all initialized to zero except for either sqy “ 1 or spy “ 1. Then at the end of the
reverse sweep, the vectors psxjqn

j“1 represent either∇qy or∇py, respectively. For computational efficiency
one may propagate both adjoint components simultaneously, so that one computes with sextuplets
consisting of qu, pu and their adjoints with respect to qy and py. In any case we have the following adjoint
operations. For v “ u ` w

p sqw, spwq `“ psqv, spvq and psqu, spuq `“ psqv, spvq ,

for v “ c u

psqu, spuq `“

$’’&’’%
c psqv, spvq if c ą 0

p0, 0q if c “ 0

c pspv, sqvq if c ă 0

,

and finally for v “ |u|

psqu, spuq `“

$’’&’’%
p2sqv ´ spv, spvq if u ą 0

p´spv ` 2p1 ´ μqsqv, spv ´ 2μsqvq if u “ 0

p´spv, spv ´ 2sqvq if u ă 0

. (35)

Of course, the update for the critical case u “ 0 of the absolute value is just the convex combination
for the two cases u ą 0 and u ă 0 weighted by μ. Due to round-off errors it is very unlikely that
the critical case u “0 ever occurs in floating point arithmetic. Once more, the sign of the arguments
u of the absolute value function are of great importance, because they determine on which faces of
the polyhedral functions qf and pf the current argument x is located. In some situations one prefers a
gradient that is limiting in that it actually occurs as a proper gradient on one of the adjacent smooth
pieces. For example, if we had simply f pxq “ v “ |x| for x P R and chose μ “ 1

2 we would get
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qv “ 2|x|, pv “ 0 and find by Equation (34) that ∇qv “ 2p 1
2 ´ 1

2 q “ 0 at x “ qx “ px “ 0. This is not a
limiting gradient of qv since Bqv “ r´2, 2s, whose interior contains the particular generalized gradient 0.

5. Exploiting the Convex/concave Decomposion for the DC Algorithm

In order to minimize the decomposed objective function f we may use the DCA algorithm [17]
which is given in its basic form using our notation by

Choose x0 P Rn

For k “ 0, 1, 2, . . .
Calculate gk P ´B` 1

2
pf ˘pxkq

Calculate xk`1 P B` 1
2

qf ˘˚pgkq
where

` 1
2

qf ˘˚ denotes the Fenchel conjugate of
` 1

2
qf ˘

. For a convex function h : Rn ÞÑ R one has

w P Bh˚pyq ô w P argmin
xPRn

thpxq ´ yJxu,

see [15], Chapter 11. Hence, the classic DCA reduces in our Euclidean scenario to a simple recurrence

xk`1 P argmin
xPRn

! qf pxq ` pgJ
k x

)
for some pgk P B pf pxkq . (36)

The objective function on the left hand side is a constantly shifted convex polyhedral upper bound
on 2 f pxq since qf pxq ` pgJ

k x “ 2 f pxq ´
´ pf pxq ´ pgJ

k x
¯

ě 2 f pxq ´ pf pxkq ` pgJ
k xk . (37)

It follows from Equation (29) and xk`1 being a minimizer that

f pxk`1q ď 1
2

´ qf pxk`1q ` pf pxkq ` pgJ
k pxk`1 ´ xkq

¯
ď 1

2

´ qf pxkq ` pf pxkq
¯

“ f pxkq .

Now, since (36) is an LOP, an exact solution xk`1 can be found in finitely many steps, for example
by a variant of the Simplex method. Moreover, we can then assume that xk`1 is one of finitely many
vertex points of the epigraph of qf . At these vertex points, f itself attains a finite number of bounded
values. Provided f itself is bounded below, we can conclude that for any choice of the pgk P B pfσpkq the
resulting function values f pxkq can only be reduced finitely often so that f pxkq “ f pxk´1q and w.l.o.g.
xk “ xk´1 eventually. We then choose the next pgk “ ∇ pfσpkq with σpkq “ σpk´1q Ź σpxkq as the reflection
of σpk´1q at σpxkq as defined in (15). If then again f pxk`1q “ f pxkq it follows from Corollary A2 that xk is
a local minimizer of f and we may terminate the optimization run. Hence we obtain the DCA variant
listed in Algorithm 1, which is guaranteed to reach local optimality under LIKQ. It is well defined
even without this property and we conjecture that otherwise the final iterate is still a stationary point
of f . The path of the algorithm on the example discussed in Section 5 is sketched in Figure 3. It reaches
the stationary point p0, ´1q where σ “ p0, ´1, 0q from within the polyhedron with the signature
p´1, ´1, ´1q and then continues after the reflection p1, ´1, 1q “ p´1, ´1, ´1q Ź p0, ´1, 0q. From within
that polyhedron the inner loop reaches the point p1, 1q with signature p1, 0, 0q, whose minimality is
established after a search in the polyhedron sPp1,1,´1q.

If the function f pxq is unbounded below, so will be one of the inner convex problems and
the convex minimizer should produce a ray of infinite descent instead of the next iterate xk`1.
This exceptional scenario will not be explicitly considered in the remainder of the paper. The reflection
operation is designed to facilitate further descent or establish local optimality. It is discussed in the
context of general optimality conditions in the following subsection.
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Algorithm 1 Reflection DCA

Require: x0 P Rn,
1: Set f´1 “ 8 and Evaluate f0 “ f px0q
2: for k “ 0, 1, . . . do

3: if fk ă fk´1 then Ź Normal iteration with function reduction
4: Choose 0 R σ ą σpxkq Ź Here different heuristics may be applied
5: Compute pgk “ ∇ pfσ Ź Apply formula of Corollary 1
6: else Ź The starting point was already optimal
7: Reflect σ̃ “ σ Ź σpxkq Ź The symbol Ź is defined in Equation (15).
8: Update pgk “ ∇ pfσ̃

9: end if

10: Calculate xk`1 P argmin
! qf pxq ` pgJ

k x
ˇ̌̌
x P Rn

)
Ź Apply any LOP finite solver

11: Set fk`1 “ f pxk`1q
12: if fk`1 “ fk “ fk´1 then Ź Local optimality established
13: Stop
14: end if

15: end for

5.1. Checking Optimality Conditions

Stationarity of xk happens when the convex function qf pxq ` pgJ
k x is minimal at xk so that for all

large k
0 P B qf pxkq ` pgk ðñ pgk P B pf pxkq X p´B qf pxkqq ‰ H . (38)

The nonemptiness condition on the right hand side is known as criticality of the DC decomposition
at xk, which is necessary but not sufficient even for local optimality of f pxq at xk. To ensure the latter
one has to verify that all pgk P B pf pxkq satisfy the criticality condition (38) so that

B pf pxkq Ă ´B qf pxkq ðñ BLpf pxkq Ă ´B qf pxkq . (39)

The left inclusion is a well known local minimality condition [22], which is already sufficient
in the piecewise linear case. The right inclusion is equivalent to the left one due to the convexity of
B qf pxkq.

If qf and pf were unrelated convex and concave polyhedral functions, one would normally consider
it extremely unlikely that pf were nonsmooth at any one of the finitely many vertices of the polyhedral
domain decomposition of qf . For instance when pf is smooth at xk we find that B pf pxkq “ tpgku is
a singleton so that criticality according to Equation (38) is already sufficient for local minimality
according to Equation (39). As we have seen in Theorem 1 the two parts have exactly the same
switching structure. That means they are nonsmooth on the same skeleton of lower dimensional
polyhedra. Hence, neither BLqf pxkq nor BLpf pxkq will be singletons at minimizing vertices of the upper
bound so that checking the validity of Equation (39) appears to be a combinatorial task at first sight.

However, provided the Linear Independence Kink Qualification (LIKQ) defined in [7] is satisfied
at the candidate minimizer xk, the minimality can be tested with cubic complexity even in case of
a dense abs-linear form. Moreover, if the test fails one can easily calculate a descent direction d.
The details of the optimality test in our context including the calculation of a descent direction are
given in the Appendix A. They differ slightly from the ones in [7]. Rather than applying the optimality
test Proposition A1 explicitly, one can use its Corollary A2 stating that if x̊ with σ̊ “ σpx̊q is a local
minimizer of the restriction of f to a polyhedron sPσ with definite σ ą σ̊ then it is a local minimizer of
the unrestricted f if and only if it also minimizes the restriction of f to sPσ̃ with the reflection σ̃ “ σ Ź σ̊.
The latter condition must be true if x̊ also minimizes f pxq `∇ pfσ̃, which can be checked by solving that
convex problem. If that test fails the optimization can continue.

48



Algorithms 2020, 13, 166

5.2. Proximal Rather Than Global

By some authors the DCA algorithm has been credited with being able to reach global minimizers
with a higher probability than other algorithms. There is really no justification for this optimism in
the light of the following observation. Suppose the objective f pxq “ 1

2 p qf pxq ` pf pxqq has an isolated
local minimizer x˚. Then there exists an ε ą 0 such that the level set tx P Rn : f pxq ď f px˚q ` εu has a
bounded connected component containing x˚, say Lε. Now suppose DCA is started from any point
x0 P Lε. Since f0pxq ” 1

2 p qf pxq ` pf px0q ` pgpx0qJpx ´ x0qq is by Equation (37) a convex upper bound
on f pxq its level set t f0pxq ď f px0qu will be contained in Lε. Hence any step from x0 that reduces the
upper bound f0pxq must stay in the same component, so there is absolutely no chance to move away
from the catchment Lε of x0 towards another local minimizer of f , whether global or not. In fact, by
adding the convex term

1
2

´ pf px0q ` pgpx0qJpx ´ x0q ´ pf pxq
¯

ě 0 ,

which vanishes at x0, to the actual objective f pxq one performs a kind of regularization, like in the
proximal point method. This means the step is actually held back compared to a larger step that might
be taken by a method that only requires the reduction of f pxq itself.

Hence we may interpret DCA as a proximal point method where the proximal term is defined
as an affinely shifted negative of the concave part. Since in general the norm and the coefficient
defining the proximal term may be quite hard to select, this way of defining it may make a lot of sense.
However, it is certainly not global optimization. Notice that in this argument we have used neither the
polyhedrality nor the inclusion property. So it applies to a general DC decomposition on Euclidean
space. Another conclusion from the "holding back" observation is that it is probably not worthwhile to
minimize the upper bound very carefully. One might rather readjust the shift pgJx after a few or even
just one iteration.

6. Nesterov’s Piecewise Linear Example

According to [6], Nesterov suggested three Rosenbrock-like test functions for nonsmooth optimization.
One of them given by

f pxq “ 1
4 |x1 ´ 1| `

n´1ÿ
i“1

|xi`1 ´ 2|xi| ` 1| (40)

is nonconvex and piecewise linear. It is shown in [6] that this function has 2n´1 Clarke stationary
points only one of which is a local and thus the global minimizer. Numerical studies showed that
optimization algorithms tend to be trapped at one of the stationary points making it an interesting
test problem. We have demonstrated in [23] that using an active signature strategy one can guarantee
convergence to the unique minimizer from any starting point albeit using in the worst case 2n iterations
as all stationary points are visited. Let us first write the problem in the new abs-linear form.

Defining the s “ 2 n switching variables

zi “ Fipx, |z|q “ xi for 1 ď i ă n, zn “ Fnpx, |z|q “ x1 ´ 1,

and

zn`i “ Fn`ipx, |z|q “ xi`1 ´ 2 |zi| ` 1 for 1 ď i ă n, zs “ 1
4 |zn| `

n´1ÿ
i“1

|zn`i|
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the resulting objective function is then simply identical to y “ f pxq “ zs. With the vectors and matrices

cJ “ p0, ´1, eJ
n´1, 0q P R

pn´1q`1`pn´1q`1, Z “

»———–
In´1 0
In´1 0

0 1
0 0

fiffiffiffifl P R
sˆpn´1q`1 ,

M “ 0 , L “

»———–
0 0 0 0
0 0 0 0

´2 In´1 0 0 0
0 1

4 eJ
n´1 0

fiffiffiffifl P R
sˆpn´1q`1`pn´1q`1 , d “ 0 P R,

a “ 0 , bJ “ p0, ¨ ¨ ¨ , 0, 1q P R
p2n´1q`1 ,

where Z and L have different row partitions, one obtains an abs-linear form (11) of f . Here, Ik denotes
the identity matrix of dimension k, eJ “ p1, ¨ ¨ ¨ , 1q P Rk the vector containing only ones and the symbol
0 pads with zeros to achieve the specified dimensions. One can easily check that |L|2 ‰ 0 “ |L|3,
hence this example has switching depth ν “ 2. The geometry of the situation is depicted in Figure 3,
which was already briefly discussed in Sections 3 and 5.

Since the corresponding extended abs-linear form for f̃ “ py, δyq does not provide any new insight
we do not state it here. Directly in terms of the original equations we obtain for the radii

δzi “ 0 for 1 ď i ď n, δzn`i “ 2|zi| “ 2|xi| for 1 ď i ă n (41)

and

δ f “ δzs “ 1
4 |zn| `

n´1ÿ
i“1

p|zn`i| ` 2δzn`iq

“ 1
4 |x1 ´ 1| `

n´1ÿ
i“1

p|xi`1 ´ 2 |xi| ` 1| ` 4|xi|q . (42)

Thus, from Equation (7) we get the convex and concave part explicitly as

qzi “ zi “ pzi for 1 ď i ď n ,qzn`i “ xi`1 ` 1pzn`i “ xi`1 ´ 4|zi| ` 1 “ xi`1 ´ 4|xi| ` 1

+
for 1 ď i ă n

and most importantly

qf “ zs ` δzs “ 1
2 |x1 ´ 1| ` 2

n´1ÿ
i“1

`ˇ̌
xi`1 ´ 2 |xi| ` 1

ˇ̌ ` 2|xi|
˘

pf “ zs ´ δzs “ ´ 4
n´1ÿ
i“1

|xi| .

Clearly pf is a concave function and to check the convexity of qf we note thatˇ̌
xi`1 ´ 2 |xi| ` 1

ˇ̌ ` 2|xi| “ ˇ̌
2 |xi| ´ 1 ´ xi`1

ˇ̌ ` `
2|xi| ´ 1 ´ xi`1

˘ ` xi`1 ` 1

“ 1 ` xi`1 ` 2 max
`
0, 2|xi| ´ xi`1 ´ 1

˘
. (43)

The last expression is the sum of an affine function and the positive part of the sum of the
absolute value and an affine function, which must therefore also be convex. The corresponding term in
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Equation (42) is the same with the convex function 2|xi| added, so that δ f is also convex in agreement
with the general theory. Finally, one verifies easily that

pf ď f “ 1
2 p qf ` pf q ď qf ,

which is the whole idea of the decomposition. It would seem that the automatic decomposition by
propagation through the abs-linear procedure yields a rather tight result. The function f as well as
the lower and upper bound given by the convex/concave decomposition are illustrated on the left
hand side of Figure 2. Notice that the switching structure is indeed identical for all three as stated in
Theorem 1. On the right hand side of Figure 2, the difference 2δ f between the upper, convex and lower,
concave bound is shown, which is indeed convex.

Figure 2. Nesterov–Rosenbrock test function polyhedral inclusion for n “ 2.

It is worthwhile to look at the condition number of the decomposition, namely we get the
following trivial bound

κp qf , pf q “ sup
xPRn

1
2 |x1 ´ 1| ` 2

řn´1
i“1

´ˇ̌̌
xi`1 ´ 2 |xi| ` 1

ˇ̌̌
` 4|xi

ˇ̌̌
q

1
2 |x1 ´ 1| ` 2

řn´1
i“1 |xi`1 ´ 2 |xi| ` 1|

“ 1 ` sup
xPRn

8
řn´1

i“1 |xi|
1
4 |x1 ´ 1| ` 2

řn´1
i“1 |xi`1 ´ 2 |xi| ` 1| “ 8 .

The disappointing right hand side value follows from the fact that at the well known unique
global optimizer x˚ “ p1, 1, . . . , 1q P Rn the numerator is zero and the denominator positive. However,
elsewhere, we can bound the conditioning as follows.

Lemma 3. In case of the example (40) there is a constant c P R such that

κp qf pxq, pf pxqq ď 1 ` c
minp}x ´ x˚}, 3q . (44)

Proof. Since the denominator is piecewise linear and vanishes only at the minimizer x˚ there must be
a constant c0 ą 0 such that for }x ´ x˚}8 ď 3

8
řn´1

i“1 |xi|
1
4 |x1 ´ 1| ` 2

řn´1
i“1 |xi`1 ´ 2 |xi| ` 1| ď 8

řn´1
i“1 |xi|

c0}x ´ x˚}8
ď 8pn ´ 1q}x}8

c0}x ´ x˚}8
ď 32pn ´ 1q

c0}x ´ x˚}8
,

which takes the value 32pn ´ 1q{p3c0q on the boundary. On the other hand we get for }x}8 ě 2 and
thus in particular }x ´ x˚}8 ě 3

8
řn´1

i“1 |xi|
1
4 |x1 ´ 1| ` 2

řn´1
i“1 |xi`1 ´ 2 |xi| ` 1| ď 4pn ´ 1q}x}8

max1ďiăn |2|xi| ´ xi`1 ´ 1| ď 4pn ´ 1q
2 ´ 1 ´ 1{2

ď 8pn ´ 1q .
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Assuming without loss of generality that c0 ď 4{3 we can combine the two bounds to obtain the
assertion with c ” 32pn ´ 1q{c0.

Hence, we see the condition number κpqf pxq, pf pxqq is nicely bounded and the decomposition should
work as long as our optimization algorithm has not yet reached its goal x˚. It is verified in the
companion article [24], that the DCA exploiting the observations made in this paper reaches the global
minimizer in finitely many steps. It was already shown in [7] that the LIKQ condition is satisfied
everywhere and that the optimality test singles out the unique minimizer correctly. In Figure 3,
the arrows indicate the path of our reflection version of the DCA method as described in Section 5.

σ = (−1,−1,−1)

(−1,−1, 1)
σ =

(1,−1, 1)
σ = σ =

(1, 1, 1)

σ =
(1, 1,−1)

σ =
(1,−1,−1)

x1

−1 0 1

−1

0

1

x2

Figure 3. Signatures and reflection-based DCA for Nesterov–Rosenbrock variant (40) with n “ 2.

7. Summary, Conclusions and Outlook

In this paper the following new results were achieved

• For every piecewise linear function f given as an abs-linear evaluation procedure, rules for
simultaneously evaluating its representation as the average of a concave lower bound pf and a
convex upper bound qf are derived.

• The two bounds can be constructively expressed as a single maximum and minimum of affine
functions, which drastically simplifies the classical min ´ max representation. Due to its likely
combinatorial complexity we do not recommend this form for practical calculations.

• For the two bounds qf and pf , generalized gradients qg and pg can be propagated forward or
reverse through the convex or concave operations that define them. The gradients are not unique
but guaranteed to yield supporting hyperplanes and thus provide a verified version of the
oracle paradigm.

• The DCA algorithm can be implemented such that a local minimizer is reached in finitely
many iterations, provided the Linear Independence Kink Qualification (LIKQ) is satisfied. It is
conjectured that without this assumption the algorithm still converges in finitely many steps to a
Clarke stationary point. Details on this can be found in the companion paper [24].

These results are illustrated on the piecewise linear Rosenbrock variant of Nesterov.
On a theoretical level it would be gratifying and possibly provide additional insight, to prove

the result of Corollary A3 directly using the explicit representations of the generalized differentials of
the convex and concave part given in Corollary 1. Moreover, it remains to be explored what happens
when LIKQ is not satisfied. We have conjectured in [25] that just verifying the weaker Mangasarian
Fromovitz Kink Qualification (MFKQ) represents an NP hard task. Possibly, there are other weaker
conditions that can be cheaply verified and facilitate the testing for at least local optimality.
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Global optimality can be characterized theoretically in terms of ε´subgradients, albeit with ε

arbitrarily large [26]. There is the possibility that the alternative definition of ε-gradients given in [18]
might allow one to constructively check for global optimality. It does not really seem clear how these
global optimality conditions can be used to derive corresponding algorithms.

The implementation of the DCA algorithm can be optimized in various ways. Notice that for
applying the Simplex method in standard form, one could use for the representation as DC function
the max-part in the more economical representation Equation (27) introducing m̄ additional variables,
rather than the potentially combinatorial Equation (28) to assemble the constraint matrix. In any case it
seems doubtful that solving each sub problem to completion is a good idea, especially as the resulting
step in the outer iteration is probably much too small anyhow. Therefore, the generalized gradient of
the concave part, which defines the inner problem, should probably be updated much more frequently.
Moreover, the inner solver might be an SQOP type active signature method or a matrix free gradient
method with momentum term, as is used in machine learning, notwithstanding the nonsmoothness of
the objective. Various options in that range will be discussed and tested in the companion article [24].

Finally, one should always keep in mind that the task of minimizing a piecewise linear function
will most likely occur as an inner problem in the optimization of a piecewise smooth and nonlinear
function. As we have shown in [27] the local piecewise linear model problem can be obtained easily by
a slight generalization of automatic or algorithmic differentiation, e.g., ADOL-C [28] and Tapenade [29].
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Appendix A. Polynomial Optimality Test Based on Abs-Linear Form

As illustrated for the Nesterov test function, it may be advantageous to use intermediate variables
zi that are not arguments of the absolute value themselves. For simplicity, we assume that these
switching variables that do not impose nonsmoothness are located in the last components of z and that
only the s̃ ď s components z1, . . . zs̃ are arguments of the absolute value. Let us abbreviate the current
iterate xk with x̊ ” xk and denote the corresponding switching vector by z̊ “ zpx̊q, the signature vector
σ̊ “ sgnpz̊q and the active index set by α ” ti ď s̃ : σ̊i “ 0u with cardinality m ” |α| ď s̃. Consequently,
there are exactly 2m definite signatures by σ ą σ̊ and the same number of limiting gradients for the
three generalized differentials B qf , B pf , and B f .

For all x P Pσ̊, the signature σ̊ is constant and we can use Corollary 1 to define the smooth function

zσ̊pxq “ pI ´ M ´ LΣ̊q´1pc ` Zxq “ c̊ ` Z̊x , (A1)

where we have pulled out the unit lower triangular factor pI ´ M ´ LΣ̊q such that

Z̊ “ pI ´ M ´ LΣ̊q´1Z and c̊ “ pI ´ M ´ LΣ̊q´1c .

For x « x̊ to be contained in the extended closure sPσ̊ as defined in Equation (14), it must satisfy
the m linear equations

Pαzpxq “ 0 P R
m for Pα “ peJ

i qiPα P R
mˆs̃

with ei denoting the ith unit vector in Rs̃. Thus it is necessary and sufficient for sPσ̊ to be a polyhedron of
dimension n ´ m that the Jacobian PαZ̊ P Rmˆn has full row rank m. This rank condition was introduced
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as LIKQ in [7] and obviously requires that no more than n switches are active at x̊. As discussed in [7],
for the point x̊ to be a local minimizer of f it is necessary that it solves the trunk problem

min aJx ` bJz s.t. |Σ̊|z ´ c̊ ´ Z̊x “ 0 .

Here |Σ̊| P Rs̃ˆs̃ is the projection onto the s̃ ´ m vector components whose indices do not belong
to α so the equality constraint combines (A1) and the constraint Pαz “ 0. Now we get from KKT theory
or equivalently LOP duality that x̊ is a minimizer on Pα if and only if for some Lagrange multiplier
vector λ P Rs̃

aJ “ ´λJZ̊ and bJ “ λJ|Σ̊| . (A2)

Since I “ |Σ̊| ` PJ
α Pα we derive that

λJpI ´ |Σ̊|qZ̊ “ λJ
α PαZ̊ “ ´aJ´ bJZ̊ . (A3)

where λα ” Pαλ. This is a generally overdetermined system of n equations in the m components of
λα. If it is solvable the full multiplier vector λ “ PJ

α λα ` |Σ̊|b is immediately available. Because of the
assumed full rank of the Jacobian PαZ̊ we have m ď n, and if x̊ is a vertex in that m“n the tangential
stationarity condition (A3) is automatically satisfied.

Now it is necessary and sufficient for local minimality that x̊ is also a minimizer of f on all
polyhedra sPσ with definite σ ą σ̊. Any such σ ą σ̊ can be written as σ “ σ̊ ` γ with γ P t´1, 0, 1us̃

structurally orthogonal to σ̊ such that for Γ “ diagpγq we have the matrix equations

Σ “ Σ̊ ` Γ and Σ̊ Γ “ 0 “ |Σ̊| Γ .

Then we can express the zpxq “ zσpxq for x P Pσ as

zσpxq “ zσ̊`γpxq “ pI ´ M ´ LΣ̊ ´ LΓq´1pc ` Zxq
“ pI ´ L̊Γq´1pc̊ ` Z̊xq ,

with L̊ ” pI ´ M ´ LΣ̊q´1L . Now x̊ must be the minimizer of f on sPσ, i.e., solve the problem

min aJx ` bJz s.t. pI ´ L̊Γqz “ c̊ ` Z̊x, PαΓz ě 0 P R
m . (A4)

Notice that the inequalities are only imposed on the sign constraints that are active at x̊ since the
strict inequalities are maintained in a neighborhood of x̊ due to the continuity of zpxq. Then we get
again from KKT theory or equivalently LOP duality that still aJ “´λJZ̊ and for a second multiplier
vector 0 ď μ P Rm the equalities

aJ “ ´λJZ̊ and bJ “ λJpI ´ L̊Γq ` μJPαΓ . (A5)

Multiplying from the right by the projection |Σ̊| we find that the conditions (A2) and (A3) must
still hold so that λ remains exactly the same. Moreover, multiplying from the right by ΓPJ

α we get with
PαPJ

α “ Im and ΓΓ “ PJ
α Pα after some rearrangement the inequality

pλ ´ bqJΓPJ
α “ λJ L̊PJ

α ´ μJ ď λJ L̊PJ
α . (A6)

Now the key observation is that this condition is linear in Γ and is strongest for the choice
γi “ sgnpλi ´ biq for i P α yielding the inequalities

|λi ´ bi| ď eJ
i L̊Jλ for i P α . (A7)
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In other words, x̊ is a solution of the branch problems (A4) if and only if it is for the worst case
where γi “ sgnpλi ´ biq for i P α. When coincidentally λi “ bi we can define γi arbitrarily. Note that the
complementarity condition μJPαzpx̊q “ 0 associated with Equation (A4) is automatically satisfied at x̊
for any μ, since Pα z̊ “ 0 by definition of the active index set α. These observations yield immediately:

Proposition A1 (Necessary and sufficient minimality condition). Assume LIKQ holds in that PαZ̊ has
full row rank m “ |α|. Then the point x̊ is a local minimizer of f if and only if we have tangential stationarity in
that a ` Z̊Jb belongs to the range of Z̊JPJ

α and normal growth holds in that |Pαpλ ´ bq| ď Pα L̊Jλ .

The verification that LIKQ holds and subsequently the test whether tangential stationarity is
satisfied can be based on a QR decomposition of the active Jacobian PαZ̊ P Rmˆn. The main expense
here is the calculation of Z̊ itself, which requires one forward substitution on pI ´ M ´ LΣ̊q for each of
n columns of Z and hence at most ns2{2 fused multiply adds. Very likely this effort will already be
made by any kind of active set method for reaching the candidate point x̊. Once the multiplier vector λ

is obtained the remaining test (A7) for normal growth is almost for free so that we have a polynomial
minimality criterion provided LIKQ holds. Otherwise one may assume a weaker generalization of the
Mangasarian Fromovitz constrained qualification called MFKQ in [25]. However, we have conjectured
in [19] that verifying MFKQ is probably already NP-hard.

Corollary A1 (Descent direction in the nonoptimal case). Suppose that LIKQ holds. If tangential
stationarity is violated there exits some direction d P Rn such that PαZ̊d “ 0 but paJ` bJZ̊qd ă 0, which
implies descent in that f px̊ ` τdq ă f px̊q for τ Á 0. If tangential stationarity holds but normal growth fails
there exists at least one i P α with |λi ´ bi| ą eJ

i L̊Jλ. Defining γ “ sgnpλi ´ biqei P Rs̃, any d satisfying
PαpI ´ L̊Γq´1Z̊d “ Pαγ is a descent direction.

Proof. In the first case it is clear that x̊ ` τd P Pσ̊ for τ Á 0 since the components of zpx̊ ` τdq with
indices in α stay zero and the others vary only slightly. Then the directional derivative of f p.q at x̊ in
direction τd is given by

τaJd ` τbJZ̊d “ τpaJd ` bJZ̊dq ă 0 ,

which proves the first assertion. Otherwise, λ is well defined and we can choose i P α with |λi ´ bi| ą
eJ

i L̊Jλ. Setting γ “ γiei with γi “ sgnpλi ´ biqei, one obtains for d with PαpI ´ L̊Γq´1Z̊d “ γ that
x̊ ` τd P Pσ̊`γ for τ Á 0. On that polyhedron the Lagrange multiplier vector μ is also well defined by
Equation (A6) but we have

μi “ eJ
i L̊Jλ ´ pλi ´ biqγi “ eJ

i L̊Jλ ´ |λi ´ bi| ă 0 .

Then we get the directional derivative of f p.q at x̊ in direction τd

τaJd ` τbJpI ´ L̊Γq´1Z̊d “ τp´λJZ̊d ` λJZ̊d ` μJPJ
α ΓpI ´ L̊Γq´1Z̊dq

“ τμiγ
2
i ă 0 ,

where we have used identity (A5). Hence we have again descent, which completes the proof.

Corollary A2 (Optimality via Reflection). Suppose an x̊ where LIKQ holds has been reached by minimizingqf pxq ` pgJx with pg “ ∇ pfσ for 0 R σ ą σ̊. Then x̊ is a local minimizer of f on Rn if and only if it is also a
minimizer of qf pxq `∇ pf J̃

σ x with σ̃ “ σ Ź σ̊ as defined in (15).

Proof. By assumption x̊ solves one of the branch problems of f itself. Hence we must have tangential
stationarity (A5) with the corresponding Γ “ diagpγq for γ “ σ ´ σ̊. Since σ̃ ´ σ̊ “ ´γ we conclude
from (A6) that

pλ ´ bqJΓPJ
α ď λJ L̊PJ

α ě pλ ´ bqJp´ΓqPJ
α “ ´pλ ´ bqJΓPJ

α
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which implies that ˇ̌̌
pλ ´ bqJPJ

α

ˇ̌̌
“

ˇ̌̌
pλ ´ bqJΓPJ

α

ˇ̌̌
ď λJ L̊PJ

α . (A8)

Hence both tangential stationarity and normal growth are satisfied, which completes the proof by
Proposition A1 as the converse implication is trivial .

The key conclusion is that if an x̊ is the solution of two complementary convex problems it must
be locally optimal in the full dimensional space Rn. Hence one can establish local optimality just using
the preferred convex solver. If this test fails one naturally obtains descent to function values below
f px̊q until eventually a local minimizer is found.

Appendix A.1. Equivalence to DC Optimality Condition

Using the explicit expressions given in Lemma 1 we find that (see [18])

BLf px̊q“
ď

0“γJσ̊

!
aJ` bJpI ´ L̊Γq´1Z̊

)
, (A9)

where γ ranges over all complements of σ̊ such that σ̊ ` γ P t´1, 1us is definite. Similarly we obtain with

b̃J ” |b|JpI ´ |M| ´ 2|L|q´1|L| ě 0 P R
s

the limiting differentials of the convex and the concave part as

BLqf px̊q “
ď

0“γJσ̊

!
aJ` pbJ` b̃JΣ̊ ` b̃JΓqpI ´ L̊Γq´1Z̊

)
, (A10)

BLpf px̊q “
ď

0“γJσ̊

!
aJ` pbJ´ b̃JΣ̊ ´ b̃JΓqpI ´ L̊Γq´1Z̊

)
. (A11)

Hence we have an explicit representation for the limiting gradients of f as well as its convex and
concave part qf and pf at x̊. It is easy to see that the minimality condition (A5) requires a to be in the
range of Z̊J so that we have again aJ “ ´λJZ̊ yielding

BLqf px̊q “
ď

0“γJσ̊

!
pbJ´ λJ ` λJ L̊Γ ` b̃JΣ̊ ` b̃JΓqpI ´ L̊Γq´1Z̊

)
, (A12)

BLpf px̊q “
ď

0“γJσ̊

!
pbJ´ λJ ` λJ L̊Γ ´ b̃JΣ̊ ´ b̃JΓqpI ´ L̊Γq´1Z̊

)
. (A13)

We had hoped to be able to derive directly from these expressions that normal growth implies
the condition (39), but we have so far not been able to do so. However, we can indirectly derive the
following equivalence.

Corollary A3 (First order minimality condition). Under LIKQ the limiting differential BLpf px̊q is contained
in the convex hull of ´BLqf px̊q if and only if tangential stationarity and normal growth condition hold according
to Proposition A1.
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Abstract: Soft constraints are quite common in real-life applications. For example, in freight
transportation, the fleet size can be enlarged by outsourcing part of the distribution service and
some deliveries to customers can be postponed as well; in inventory management, it is possible
to consider stock-outs generated by unexpected demands; and in manufacturing processes and
project management, it is frequent that some deadlines cannot be met due to delays in critical steps
of the supply chain. However, capacity-, size-, and time-related limitations are included in many
optimization problems as hard constraints, while it would be usually more realistic to consider
them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of
the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the
objective function into a non-smooth one. Despite its many practical applications, non-smooth
optimization problems are quite challenging, especially when the underlying optimization problem
is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an
effective methodology to cope with NP-hard and non-smooth optimization problems in many
practical applications. Biased-randomized algorithms extend constructive heuristics by introducing
a nonuniform randomization pattern into them. Hence, they can be used to explore promising
areas of the solution space without the limitations of gradient-based approaches, which assume
the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily
parallelized, thus employing short computing times while exploring a large number of promising
regions. This paper discusses these concepts in detail, reviews existing work in different application
areas, and highlights current trends and open research lines.

Keywords: non-smooth optimization; biased-randomized algorithms; heuristics; soft constraints

1. Introduction

Optimization models are used in many practical situations to represent decision-making
challenges in areas such as computational finance, transportation and logistics, telecommunication
networks, smart cities, etc. [1]. Many of these challenges can be transformed into optimization
problems (OPs) that can be then solved using a plethora of methods of both exact and approximate
nature. Typically, solving an OP implies exploring a vast solution space while searching for one
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solution that minimizes or maximizes a given objective function. In addition, the solution has to satisfy
a series of constraints in order to be a feasible one [2]. It is frequent to model these OPs by using
linear programming (LP), integer programming (IP), or mixed integer linear programming (MILP)
methods. Unfortunately, in many real-life situations, these OPs are also NP-hard, which implies that
the computing time requested to find an optimal solution grows extraordinarily fast as the size of the
problem increases [3]. Hence, one has to make use of heuristic-based algorithms if reasonably good
solutions are needed in short computing times for large-scale NP-hard OPs [4]. Moreover, the effective
use of exact methods might be also limited whenever the mathematical model does not comply with
desirable properties such as convexity or smoothness. In particular, the existence of non-convex and
non-smooth objective functions might limit the efficiency of gradient-based optimization methods.

Bagirov and Yearwood [5] discuss a non-smooth OP called the minimum sum-of-squares
clustering problem. According to the authors, previously employed approaches such as dynamic
programming, branch-and-bound, or the k-means algorithm are efficient only for small instances of
this problem. The authors also support the idea that the use of heuristic-based approaches becomes
necessary for large-size instances. Similarly, Bagirov et al. [6] analyze another non-smooth OP related
to the facility location problem in a wireless sensor network. Roy et al. [7] study non-smooth
power-flow problems, while Lu et al. [8] propose an adaptive hybrid differential evolution algorithm
to cope with a non-smooth version of the dynamic economic dispatch problem. To the best of
our knowledge, however, there is a lack of publications considering realistic non-smooth cost
functions in many OPs. Nevertheless, OPs with soft constraints might frequently appear in real-life
applications. As discussed in Hashimoto et al. [9], “in real-world simulations, time windows and
capacity constraints can be often violated to some extent”. Hence, for example, in cost minimization,
problems violating these soft constraints might generate penalty costs that might be taken into account
in the objective function. These penalty costs will typically come in the form of a piecewise cost
function, which can transform the objective function into a non-smooth one.

This paper reviews different examples of OPs with non-smooth objective functions and then
analyzes how biased-randomized algorithms (BRAs) can constitute an effective methodology to
generate reasonably good solutions in very short computing times. As described in Ferone et al. [10],
BRAs make use of skewed probability distributions to integrate a “biased” (nonuniform) random
behavior into a heuristic. This allows one to quickly generate a large set of alternative good solutions
by simply changing the seed of the pseudo-random number generator [11,12]. Hence, each execution
of the BRA can be seen as an individual “agent” searching the solution space following the logic behind
the heuristic but starting from a different point and using a different searching (Figure 1). Moreover,
the execution of these BRA agents can be performed in parallel, thus consuming virtually the same
time as the original heuristic (i.e., milliseconds in most cases).

Figure 1. Exploring the solution space using biased-randomization algorithms.

According to our previous experience with using BRAs to solve OPs in different application
fields, these algorithms can be especially useful in cases where the solution space is highly irregular
(non-convex and/or non-smooth) and requires an extensive exploration stage, thus reducing the
effectiveness of traditional optimization methods. Actually, BRAs have been already proposed to solve
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non-smooth OPs in different application areas. For instance, they have been used to solve different rich
and realistic variants of the well-known vehicle routing problem (VRP), including the two-dimensional
VRP [13], VRP variants with horizontal cooperation [14], multi-agent versions of the VRP [15], the
location routing problem [16], the fleet mixed VRP with backhauls [17,18], the multi-period VRP [19],
and even other versions of the multi-depot VRP [20]. BRAs have also been employed in solving other
OPs, such as the single-round divisible load scheduling [21], the stochastic flow-shop scheduling [22],
scheduling heterogeneous multi-round systems [23], the minimization of open stacks problem [24], the
dynamic home service routing [25], waste collection management [26], or the maximum quasi-clique
problem [27].

Accordingly, the main contributions of this paper are as follows: (i) a discussion on the importance
of considering non-smooth objective functions in realistic combinatorial OPs, mainly due to the
existence of soft constraints which might be violated to some extent by incurring non-smooth penalty
costs, and (ii) a discussion on how BRAs can be employed in different applications to solve these
non-smooth OPs in short computing times. The remainder of the paper is structured as follows:
Section 2 reviews some basic concepts related to non-smooth OPs. Section 3 presents a review of
recent works on BRAs. Sections 4–6 review applications of BRAs to non-smooth OPs in logistics,
transportation, and scheduling, respectively. Section 7 provides an overview on current trends and
open research lines. Finally, Section 8 concludes by highlighting the main contributions of this work.

2. Non-Smooth Optimization Problems

OPs can be broadly classified as convex or non-convex. Convex OPs are usually characterized by
a convex objective function and a set of constraints that form a convex region. Each constraint restricts
the solution space to a convex region, and the intersection of these regions, which form the feasible
solutions, is also convex. The main feature that makes convex OPs easy to work with is that any local
optimum is also a global optimum. This significantly reduces the computational time yielding exact
solutions in reasonable times. Therefore, if doable, it is of interest to convert any optimization problem
into a convex OP. Despite the specific structure needed for a convex OP, we find several applications of
it in real-life problems. For example, those problems that can be modeled as a linear programming
model are convex problems because all linear functions are by definition convex [28]. Nevertheless,
there are some other problems that cannot be modeled as a convex OP. Non-convex problems have
either non-convex objective functions or non-convex feasible regions (or both). This brings in several
challenges to solve these problems. The main challenge is that the solution methods employed for
convex OPs cannot be directly applied for non-convex ones because of the availability of many disjoint
regions in the solution space, each of which usually has its own local optimum. Therefore, it is easy for
the algorithm to get trapped into one of these local optima, which may indeed be far away from the
global optimum. Also, it is usually time-consuming—or even impossible—to demonstrate that the
algorithm reached the global optimum or whether a feasible solution can be obtained.

Another way of classifying an OP is by whether it is a smooth or a non-smooth one. Smooth
optimization problems have smooth objective functions and constraints. A smooth function has
derivatives of all orders and is differentiable. On the contrary, a non-smooth one has an objective
function—or at least one constraint—that does not possess at least one of the properties of a smooth
function. Figure 2 shows an example of a one-dimensional function which is neither smooth nor convex.
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Figure 2. Example of a non-convex and non-smooth piecewise objective function.

From a combinatorial point of view, non-smooth OPs possess similar properties as non-convex
OPs because they are time consuming to solve. The lack of derivative information makes it
almost impossible to determine the direction in which the function is increasing or decreasing.
Likewise, the solution space may also have several disjoint regions, each of which has its own local
optimum. Unfortunately, non-convex and non-smooth OPs arise in several application domains,
including telecommunication networks, economic load dispatch, portfolio optimization, vehicle
routing, regression, or clustering problems. For instance, the minimum sum-of-squares clustering
problem is solved by Bagirov et al. [29] and by Karmitsa et al. [30]. Both papers formulate the clustering
problem as a non-smooth and non-convex optimization problem and make use of incremental
algorithms. However, the former is based on the difference of convex functions and the latter is
based on the limited memory bundle method. Real world data sets are used to test both approaches,
demonstrating numerically their efficiency compared to other incremental algorithms. Difference of
convex functions are also used by Bagirov et al. [31] to solve the nonparametric regression estimation
problem. These authors propose an algorithm to minimize a non-convex and non-smooth empirical
L2-risk function. Synthetic and real-world data sets are used to test it. Compared to other algorithms,
this approach is proved to be a good alternative in terms of computational time and several prediction
indicators.

Several studies have investigated the applicability of well-known metaheuristic approaches—such
as tabu search, artificial bee colony optimization, or particle swarm optimization—to solve non-smooth
and non-convex OPs [32]. For example, tabu search has been used in Al-Sultan [33] for the clustering
problem and in Oonsivilai et al. [34] for a telecommunication network problem. Ant colony
optimization has been used to solve the non-smooth economic load dispatch problem in Hemamalini
and Simon [35], while particle swarm optimization has been investigated for the same problem in
Niknam et al. [36] and Basu [37]. Both ant colony optimization and particle swarm optimization
have been utilized for the non-smooth portfolio selection problem in Schlüter et al. [38] and Corazza
et al. [39], respectively. The remainder of this paper discusses the use of BRAs in solving non-smooth
optimization problems in logistics, transportation, and scheduling.

3. Basic Concepts on Biased-Randomized Algorithms

Pure greedy constructive heuristics are algorithms that iteratively build a solution by selecting the
next movement from a list of candidates. Such candidates have been sorted previously according to
some criteria, such as costs, savings, profits, etc. These heuristics typically select the “most promising”
(in the short run) candidate from the list. Since they follow a constructive logic, a good final solution is
expected by the end of the procedure. Nevertheless, these algorithms are deterministic, i.e., the solution
is always the same every time the heuristic is executed. This means that the exploration process is
poor, which prevents the algorithm from finding better solutions unless more complex searching
structures—i.e., local searches and perturbation movements—are considered by investing more
computing time. Examples of such heuristics are the well-known savings heuristic for the VRP [40],
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the nearest neighbor criterion for the traveling salesman problem [41], or the shortest processing time
dispatching rule for some scheduling problems [42].

As described in Juan et al. [43], using a skewed (nonuniform) probability distribution to introduce
a biased-randomization behavior into the process that selects the candidates from the sorted list is
an efficient way of generating better solutions. The idea is to assign a weighted probability to each
candidate in the list, in such a way that the more promising candidates—those at the top of the
list—receive a higher probability of being selected than those below them. This randomization process
leads to the generation of slightly different solutions every time the algorithm is executed. Hence,
multiple executions of a BRA—either completed in a sequential or in a parallel mode—will yield a set
of alternative solutions, all of them based on the logic behind the heuristic. Since we are executing
many biased-random variations of the constructive procedure defined by the heuristic, chances are
that some of these “near-greedy” heuristics lead to solutions that outperform the one generated by the
greedy heuristic [10]. Algorithm 1 shows a pseudo-code description of a basic BRA that performs in a
sequential way.

Algorithm 1: Biased-Randomized Algorithm (BRA; basic sequential version).

1 bestSol← execute the deterministic (greedy) heuristic
2 while more time is allowed do

3 seed← select a seed for the pseudo-random number generator
4 rng← start a pseudo-random number generator with seed
5 dist← select a skewed probability distribution (and its parameters)
6 newSol← start an empty solution
7 list← create the list of ‘building blocks’ for the solution
8 sortedList← sort the list according to the heuristic logic
9 while sortedList is not empty do

10 nextElement← use dist and rng to select and extract the next block from sortedList
11 if nextElement can be added without losing feasibility then

12 newSol← add nextElement to the incumbent solution
13 end

14 end

15 end

16 if newSol is better than bestSol then

17 bestSol← newSol
18 end

19 return bestSol

Notice that, by using this approach, a broad exploration of the solution space is carried out,
which might be specially beneficial in the case of highly irregular objective functions as the ones
characterizing non-smooth OPs. The proposed methodology can be seen as a natural extension of the
basic greedy randomized adaptive search procedure (GRASP) [44], as analyzed in Ferone et al. [10].
Instead of employing empirical probability distributions—which require time-consuming parameter
fine tuning and thus might slow down computations—a theoretical probability distribution such as
the geometric distribution or the decreasing triangular distribution can be used. Random variates
from these theoretical distributions can be quickly generated by employing analytical expressions.
Moreover, they tend to have less parameters and these are typically easy to set. Application fields such
as food logistics [45], flow-shop scheduling [46], or mobile cloud computing [47] have successfully
utilized geometric distributions to introduce biased-randomized processes during the selection of
the candidates that are employed to construct a feasible solution. Figure 3 illustrates how geometric
probability distributions with four different parameter values (p ∈ {0.1, 0.3, 0.6, 0.9}) will have a
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different behavior while assigning probabilities of being selected to the elements of the sorted list
during the iterative construction of a biased-randomized solution.

Figure 3. Biased-random sampling of elements from a list using a geometric distribution.

Thus, while for p = 0.1 the distribution is closer to a uniform one (i.e., the probabilities are
distributed among a relatively large number of top positions in the sorted list), for p = 0.9, the behavior
is closer to the greedy one that characterizes a classical heuristic, with the top element in the sorted list
accumulating most of the chances of being the next selected element. Both extremes (p→ 0 and p→ 1)
represent diversification and greediness, respectively. Usually, parameter values in the middle of both
extremes are able to provide a better trade-off between these two cases, thus promoting some degree
of diversification without losing the rational (domain-specific) criterion employed to sort the list.

4. Applications in Logistics

The field of logistics encompasses several problems, including supply chain design, facility
location, warehouse management, etc. All of these problems have been studied extensively in
the literature, mostly with the consideration of hard constraints and smooth objective functions.
Nevertheless, as previously discussed, real-world problems in the field of logistics may allow some
constraints to be violated by incurring a penalty cost, which needs to be incorporated into the objective
function. This typically leads to the emergence of non-smooth objective functions. Therefore, traditional
exact methods cannot always be efficiently employed to solve these problems and heuristic-based
algorithms are required. This section focuses on the use of BRAs in solving the facility location problem
(FLP) [48] and its variants. This problem consists of locating a set of facilities—e.g., production plants,
distribution centers, warehouses, etc.—from which a set of customers must be served. Basic decisions
are as follows: (i) which potential facilities must be open (or remain open) and which ones must be
closed (or not open) and (ii) how to allocate customers to open facilities. This problem is NP-hard [49].
Moreover, facilities can be considered capacitated or uncapacitated. The former refers to the case in
which each facility has a limited capacity that cannot be exceeded by the total demand served from
there. In the latter, the facilities’ total capacity is virtually infinite or at least much greater than the
cumulative demand of all customers.
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BRAs have been applied successfully to solve both capacitated and uncapacitated FLPs. The latter
has been tackled mainly considering hard constraints [50]. In Correia and Melo [51], the authors
considered a multi-period FLP in which customers are sensitive to delivery lead times (i.e., some
flexibility is allowed regarding the delivery dates). Using similar concepts, Estrada-Moreno et al. [52]
consider soft constraints and a non-smooth and non-convex objective function for the single-source
capacitated FLP. In this context, “single-source” refers to an additional constraint stating that each
customer must be served from just one facility. The capacity of each facility may be exceeded by the
consideration soft constraints. In real world, decision-makers manage this by using strategies such
as storing safety stocks, performing emergency deliveries, and outsourcing part of the customers’
service. These strategies tend to generate additional costs that need to be considered as well during
the optimization process. The aforementioned authors propose the following model to represent the
single-source FLP with soft capacity constraints:

Minimize ∑
i∈J

f ∗i yi + ∑
(i,j)∈I×J

cijxij

subject to:

∑
j∈J

xij = 1 ∀ i ∈ I

xij ≤ yj ∀ (i, j) ∈ I × J

yj(1− yj) = 0 ∀ j ∈ J

xij(1− xij) = 0 ∀ (i, j) ∈ I × J

yj ∈ R ∀ j ∈ J

xij ∈ R ∀ (i, j) ∈ I × J

In this model, xij is a binary variable that takes the value of 1 if customer i is serviced by facility j
(0 otherwise). Similarly, yj is another binary variable that takes the value 1 if facility j is open; cij is the
service cost of assigning customer i to facility j; and f ∗j is a piecewise function representing the cost of
opening a facility j:

f ∗j =

⎧⎨
⎩ f j if ∑i∈I dixij ≤ sjyj

fj + λ
(

d∗j , sj

)
otherwise

where di > 0 is the demand of customer i; sj � max{di} is the nominal capacity of facility j;

d∗j = ∑i∈I dixij is defined for any j ∈ J; and λ
(

d∗j , sj

)
is a non-smooth function which will be applied

whenever the total demand assigned to facility j exceeds its maximum capacity sj.
A BRA is integrated within an iterated local search metaheuristic to solve the OP above.

The algorithm contains the following components: (i) an initial solution generation, based on a
BRA; (ii) a local search procedure composed of functions that open or close facilities; (iii) a perturbation
procedure that destroys the current solution by opening a number of closed facilities and reallocating
all customers to the newly open facilities; and (iv) an acceptance criterion based on the concept of
“credit”, in which a solution with a worse cost is accepted if this credit is not exceeded. The objective
is to explore other regions of the solution space to escape from local optima. A total of 60 small-,
medium-, and large-scale instances are used to test this approach. Different levels of penalties are also
tested. Authors demonstrate the advantages of using soft constraints, obtaining costs that are lower
than the optimal ones found in the literature for hard constraints. Authors show that, if penalty costs
are low or moderate, hard constraints’ violation is worth because some facilities do not need to be
open and a more efficient allocation of customers can be made. Finally, a comparison between their
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BRA-inspired metaheuristic and the solution provided by the commercial tool LocalSolver is drawn.
Both approaches obtain similar solutions for small- and medium-scale instances, but the BRA-based
algorithm proves to be superior for large-scale instances.

5. Applications in Transportation

Transportation and distribution are two fields belonging to the operational level of decisions
in logistics. The vehicle routing problem [53,54] and the arc-routing problem (ARP) [55,56] are two
well-known optimization problems in the area of transportation and freight distribution. A traditional
VRP consists of a graph formed by a set of nodes and a set of arcs. One of the nodes represents a depot
and the rest represent customers, which are connected to each other by the set of arcs. A network of
routes must be designed to visit each customer in order to meet a known demand. A single vehicle
departing and returning to the depot is assigned to each route. The objective is to minimize the total
cost of traversing the arcs. The traditional ARP is similar to the VRP, but the former assigns a demand
to each arc and not to each node. Moreover, in the ARP, the underlying graph is not usually a complete
one. These problems are NP-hard, i.e., as the number of customers grows, the quantity of alternative
solutions increases almost exponentially. Therefore, heuristic and metaheuristic algorithms have been
employed extensively to solve these OPs. The problems become even more difficult to solve in the
presence of non-smooth and non-convex objective functions, as when soft constraints are considered.
In this context, soft constraints would include time window constraints or capacity constraints that are
allowed to be violated to some extent [9]. These soft constraints also allow decision-makers to consider
more realistic models that take into account different management strategies and policies. For instance,
customers would accept a delayed delivery if the supplier offers a discount. Likewise, a percentage of
the deliveries can be outsourced if in-house capacity is exceeded.

In the VRP case, Juan et al. [43] consider a capacitated version of the problem with a non-smooth
and non-convex objective function and soft constraints. These authors propose a BRA-based approach
called MIRHA.This is a multi-start procedure consisting of two phases: a first phase in which a
biased-randomized version of a constructive heuristic is designed according to a geometric probability
distribution and a second (improvement) phase in which an adaptive local search procedure is
implemented. Several instances from the literature are used to test the proposed algorithm and to
compare it with a traditional GRASP. In general, the new algorithm outperforms the existing ones in
terms of solution quality (efficiency), both in the presence of hard and soft constraints. In the case of
the ARP, De Armas et al. [57] propose a BRA to solve the capacitated version of the problem with a
non-smooth and non-convex objective function. The base heuristic considered is SHARP [58]. Firstly,
they propose the following model:

Minimize ∑
ρ∈S

c∗ρ

subject to:

S ∈ CSR

∑
(i,j)∈ρ

qijxk
ij ≤ Q ∀ ρ ∈ S , ∀ k ∈ T

xk
ij(1− xk

ij) = 0 ∀ (i, j) ∈ ρ, ∀ ρ ∈ S , ∀ k ∈ T

where ρ represents a route in a set of routes S ; CSR represents a complete set of routes (i.e., a solution);
c∗ρ is the total cost of using route ρ; qij is the demand of arc (i, j); and xk

ij is a binary variable that takes
the value 1 if and only if the arc (i, j) is covered by a vehicle k in the set of vehicles T. The cost function
associated with any route ρ is defined as a piecewise function as follows:
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c∗ρ =

⎧⎪⎨
⎪⎩

cρ if cρ ≤ C

cρ + λ
(
cρ, C

)
otherwise

(1)

In the former expression, λ
(
cρ, C

)
is a non-smooth function which will be applied whenever the

actual route cost exceeds the threshold value allowed for any route, C. In this work, the associated
penalty factor is linearized to obtain a truncated version of the problem. Then, the authors propose
a BRA combined with an iterated local search metaheuristic. This hybrid algorithm is divided into
four main phases: (i) an initial solution generation using a biased-randomized version of the SHARP
heuristic; (ii) a perturbation procedure based on destruction-reconstruction strategies; (iii) a local
search phase using cache memory; and (iv) the use of an acceptance criterion based on a simulated
annealing procedure. A total of 87 artificial and real-world instances are used to test this approach.
The mathematical model is solved using the CPLEX commercial tool and is used to obtain lower
bounds for optimal costs. Thus, the performance of the metaheuristic is assessed, obtaining important
average gap reductions regarding previous methods.

The results obtained in the previous studies demonstrate clear advantages of considering soft
constraints over hard ones. Moreover, the associated models are better representation of the real-world
problems. For example, budget limits established per route can be violated in the model as it is done
in real life. The soft constraints are not free, but they enhance profitability. For instance, penalization
costs must be incurred for violating budget limits. However, this violation leads to better route design,
which generates savings for the company. In the end, it might be worthy to explore if the value of
the savings compensates the penalties incurred. Finally, the consideration of soft constraints implies
the construction of a more generic model, which includes a combination of soft and hard constraints.
A more generic model yields more alternative solutions, and therefore, decision makers have more
options to design a routing or distribution plan that better fits their utility function.

6. Applications in Scheduling

In the operations research field, scheduling OPs are among the most studied topics. According to
Pinedo [59], “scheduling is a decision-making process [...] that deals with the allocation of resources to
tasks over given time periods and its goal is to optimize one or more objectives.” A typical example
considers that the resources are machines, that the tasks are operations carried out by these machines,
and that the objective is the minimization of the makespan—i.e., the completion time of the last task.
This apparently simple definition actually includes a huge family of problems that are NP-hard as well.

BRAs have been proved to be useful also for scheduling problems. For instance, Martin et al. [15]
used them in a multi-agent based framework to solve both routing and scheduling problems. Usually,
hard constraints are considered in the literature. However, Ferrer et al. [60] solved the permutation
flow-shop problem (PFSP) with a non-smooth objective function. This problem consists of a set of jobs
that must be processed by a set of machines. Each job is composed of a set of operations in which the
quantity is equal to the number of machines. Moreover, all operations in each job must be executed in
the same sequence by the set of machines. The processing time of each operation in each machine is
known, although it is different for each job. The idea is to determine the sequence in which jobs must be
executed in order to minimize the makespan. One of the contributions of the aforementioned authors
is the consideration of the failure-risk term in the objective function. This term is incorporated into the
traditional makespan target. The failure-risk cost is incurred when a machine operates continuously
without a break, which is highly usual when minimizing the makespan. This cost is equivalent to a
penalty cost in logistics and transportation problems, and therefore, the failure-risk cost introduces
a non-smooth component into the objective function. A mathematical model is proposed to tackle
this problem. Then, a BRA is combined with an iterated local search to develop the solving approach.
Its basic steps are as follows: (i) generation of an initial solution through a biased-randomized version
of a classical heuristic; (ii) perturbation and local search procedures are implemented to improve the
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solution quality; and (iii) the consideration of an acceptance criterion, based on simulated annealing,
which may accept worst solutions with the purpose of exploring the solution space and escape from
local minima. A total of 120 benchmark instances are used to test this approach. Results show that
explicit consideration of the reduction in failure-risk cost leads to a reduction of the total cost for
all sets of instances (negative gaps are shown). The makespan cost increases, but the reduction in
failure-risk costs compensate this rise. A comparison with other metaheuristic approaches shows that
the performance of the new method is similar or even better. This novel approach proves to be useful
for decision makers since they have more solution alternatives to select, given the particular goals of
each company, i.e., for some decision-makers, the makespan may show a higher relevance, but for
others, failure-risk cost may be a more important indicator.

7. General Insights from Previous Numerical Experiments

Based on the data provided by Juan et al. [43] for the non-smooth VRP, De Armas et al. [57] for
the non-smooth ARP, Ferrer et al. [60] for the non-smooth permutation FSP, and Estrada-Moreno et al. [52]
for the non-smooth FLP, Figure 4 shows percentage gaps between the corresponding BRA and the
reference value employed in the corresponding work.

Figure 4. Percentage gaps between BRAs and reference values in non-smooth optimization
problems (OPs).

Precaution has to be used while interpreting this figure, since these gaps depend on the particular
OP being considered, the specific instances, the selected reference value, etc. However, some insights
can be obtained: (i) in all four OPs, BRAs have been able to obtain negative gaps with respect the
reference values, which in several cases represent the best-known solutions for the hard-constrained
version of the problem; (ii) whenever soft constraints can be considered in a real-life scenario, it might
pay off to design solutions that violate these constraints to some extent, since the associated benefits
might overcome the corresponding penalties; (iii) since they combine good diversification (exploration)
and heuristic-based rational searching of the solution space, BRAs constitute an effective tool to cope
with non-smooth OPs with highly irregular objective functions; and (iv) in some particular cases,
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considering soft constraints instead of hard ones might generate noticable improvements in the quality
of the solution; hence, modeling and solving experts should always consider how really hard is a
constraint in practice. Finally, it should be also noticed that, in all the four studies and regardless of the
specific OP being solved and the application field, the authors illustrated with numerical examples the
limitations of exact methods when solving non-smooth OPs. Despite this generalized conclusion, they
also recommended to investigate combinations between exact methods (from global optimization and
mathematical programming) and heuristic-based algorithms. The latter can play a more exploratory
role and can identify promising areas, while the former can intensify the searching process inside these
selected areas.

8. Conclusions

Many real-world problems can be more accurately modeled using soft constraints rather than hard
ones. Soft constraints can be violated to some extent, and whenever this occurs, a penalty cost—which
is usually defined via a piecewise function depending on the magnitude of the violation—has to be
taken into account. Hence, non-smooth and non-convex optimization models are highly relevant
in many practical applications. In general, decision makers may consider some constraints to be
soft, specifically when the associated capacity limitations can be outsourced or certain delays in the
service can be managed with the customer. This paper has reviewed several works in this area. These
works refer to the consideration of non-smooth objective functions in popular OPs such as the vehicle
routing problem, the arc routing problem, the facility location problem, and the permutation flow-shop
problem. In all these cases, the use of BRAs has shown to be an effective tool to generate a myriad
of high-quality solutions in short computing times, even for large-size instances of these NP-hard
OPs. Also, these BRAs have outperformed other classical optimization methods from the areas of
mathematical programming, global optimization, and even metaheuristics.

The reviewed papers demonstrate that using BRAs enhances the exploration of the solution
space by generating iteratively. The execution of these algorithms might be easily parallelized by
simply changing the seed of the pseudo-random number generator, which means that, in many cases,
high-quality solutions—close to near-optimal ones—can be frequently obtained in real-time (less than
a second). Part of the effectiveness of these algorithms lies in the fact that they preserve the logic of a
good constructive heuristics while, at the same time, they offer a much larger exploration capability
of the solution space. The paper has also discussed how these BRAs can be hybridized with classical
metaheuristic frameworks—e.g., iterated local search, simulated annealing, etc.—in order to increase
the searching process if more computing time is allowed.

Several research lines can be explored for future work: (i) the hybridization of the BRAs with
the ECAM global optimization algorithm [61], so that the former can provide different starting points
(exploration) that the latter can use to intensify the search in promising regions; (ii) other optimization
problems can be considered as well, especially in application fields such as smart cities, e-commerce,
computational finance, or bioinformatics; and (iii) considering even more realistic versions of the
optimization problems by adding stochastic and dynamic conditions into them, for which hybridization
of BRAs with simulation and machine learning techniques might be necessary.
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Abstract: Several countries utilize nuclear power and face the problem of what to do with the spent
nuclear fuel. One possibility, which is under the scope in this paper, is to dispose of the fuel assemblies
in the disposal facility. Before the assemblies can be disposed of, they must cool down their decay
heat power in the interim storage. Next, they are loaded into canisters in the encapsulation facility,
and finally, the canisters are placed in the disposal facility. In this paper, we model this process as
a nonsmooth multiobjective mixed-integer nonlinear optimization problem with the minimization
of nine objectives: the maximum number of assemblies in the storage, maximum storage time,
average storage time, total number of canisters, end time of the encapsulation, operation time of
the encapsulation facility, the lengths of disposal and central tunnels, and total costs. As a result,
we obtain the disposal schedule i.e., amount of canisters disposed of periodically. We introduce
the interactive multiobjective optimization method using the two-slope parameterized achievement
scalarizing functions which enables us to obtain systematically several different Pareto optimal
solutions from the same preference information. Finally, a case study adapting the disposal in Finland
is given. The results obtained are analyzed in terms of the objective values and disposal schedules.

Keywords: achievement scalarizing functions; interactive method; multiobjective optimization;
nonsmooth optimization; spent nuclear fuel disposal

1. Introduction

The disposal of the spent nuclear fuel is a challenging task where the careful planning and
optimization of processes definitely pays dividends. The difficulty of the decision making is increased
also by the fact that the disposal continues for the distant future and many parameters are still
unknown. Indeed, the decisions made now have long term consequences. Thus, it is only reasonable to
investigate different scenarios by utilizing multiobjective optimization from the different perspectives.

The disposal is a topical issue since many of the countries utilizing nuclear power have not yet
disposed of any spent nuclear fuel. Nevertheless, all of them have to do something for it sooner or
later. Long-term storage in interim storage is not considered a safe or ethical solution [1]. At the same
time, the geological disposal is stated to be widely accepted as a safe method [1]. Finland is going to
be one of the first countries to dispose of the spent nuclear fuel by starting the disposal in 2020s [2].

The aim in the geological disposal is to isolate the spent nuclear fuel to the bedrock such that it has
no more impacts on the environment than the regular background radiation. First, the fuel assemblies
are removed from the reactor and stored in the water pool in the reactor hall in order to decrease the
radiation and the decay heat power to the suitable level such that the assemblies can be transferred
to the water pool in the interim storage facility for decades. When the assemblies are cool enough,
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they can be transferred to the encapsulation facility, where the assemblies are encapsulated into the
copper-iron canisters. After that, the canister moves on towards the disposal facility, in depth of more
than 400 m. The disposal facility consists of the central tunnel and several parallel disposal tunnels
that are connected to the central tunnel. The canister is placed vertically in the hole on the floor of the
disposal tunnel. Finally, the disposal tunnel is filled up and sealed. In this study, we divide the disposal
process into three parts: the interim storage, the encapsulation facility, and the disposal facility.

As the entire nuclear waste management is a large task, optimization related studies about
it are usually focused on some smaller entities. Some of these entities are concentrated more on
political or social aspects like to determine where to put a disposal repository [3] or how to route the
transfer of the nuclear waste, or hazardous waste in general [4,5]. More safety-related aspects are the
optimization of the nuclear safeguards [6,7] and the safety assessment of nuclear waste repositories [8].
In our study, we aim to produce a disposal schedule such that several goals related to all the interim
storage, the encapsulation facility, and the disposal facility are taken into account simultaneously with
multiobjective optimization. Other studies aiming at a disposal schedule are, for example, [9] where
a single-objective mixed-integer linear programming (MILP) model minimizing the costs is given
and [10] trying to achieve the minimal area of the disposal facility with a linear transportation model.
Another research related to the disposal facility is discussed in [11], where the multiobjective MILP
problem is given to optimize the nuclear waste placement in the disposal facility. In addition, there are
attempts to optimize the loading of canisters in Finland [9,12], Slovenia [13], and Switzerland [14].

This study continues the work of [9], where the aim was to minimize the total costs of the
disposal in Finland by selecting the schedule of the disposal. Here, this work has been continued
by remodeling the situation as the nonsmooth multiobjective mixed-integer nonlinear programming
(MINLP) problem. As a nonsmooth optimization problem [15–17], the objectives and the constraints
are not necessarily continuously differentiable functions. This allows us to model the situation more
accurately. Indeed, many practical applications have nonsmooth nature (see e.g., [18–20]) even if they
are modeled as differentiable problems in many cases in practice.

Many practical problems also involve several objectives [21–24]. As a problem of this scale, this
application has several conflicting objectives to offer naturally. Besides total costs, it is reasonable to
optimize, for instance, the area of the disposal facility. In our model, this is done by minimizing the
lengths of both disposal and central tunnels. In total, our model contains nine objectives. In addition to
the previous three objectives, we have three objectives related to the interim storage and three related
to the encapsulation facility. In the interim storage, we want to minimize the maximum number of
assemblies in the storage, the maximum storage time, and the average storage time. On the other hand,
the operation time of the encapsulation facility is aimed to be minimized and al number of canisters,
or in other words, the number of the empty assembly positions.

These objectives indeed are conflicting. For instance, we want the whole disposal process to
be over as early as possible, but this raises the heat production load of the canister. This in its turn,
increases the distances between the canisters in the disposal facility. However, the heat load of the
canister can be decreased by leaving empty assembly positions, but then more canisters are needed.
Another option is to increase the cooling time which again delays the end of the disposal, but if the
disposal delays, more storage space is needed. Obviously, all of these decisions have an impact on costs.
As exemplified, the minimization of only one objective may lead to an unsatisfactory solution with
respect to some other objective. This leads us to a situation where compromises are certainly needed.

As a result of the multiobjective optimization, we obtain several mathematically equally good
compromises, called Pareto optimal solutions. The final selection is left to the decision-maker who
has more insight into the problem. In this paper, we propose an interactive procedure utilizing the
achievement scalarizing function (ASF), in particular, the two-slope parameterized ASF [25] which
bases on parameterized ASF [26] and two-slope ASF [27] generalizing both of them by combining
their advantages. Via scalarization, the original multiobjective problem is transformed into one
single-objective problem. The idea in brief with ASF is that the decision-maker gives a reference point
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including the decision maker’s wishes towards the final solution. Then, the closest optimal solution
with respect to some metric is found. If we use only one metric, as is the case in general with ASF,
the selected metric defines which solution is found [28–30]. With the parameterization, we are able
to use several metrics, nine in this particular case, and thus, yield different solutions with reasonable
distribution. This ability to systematically generate different solutions from the same preference
information is utilized in the interactive framework.

This paper is organized as follows. In Section 2, we begin by depicting the situation under
the consideration and give a nonsmooth multiobjective MINLP model for it. In Section 3, we first
introduce some fundamental preliminaries about multiobjective optimization, and then describe the
multiobjective interactive method utilizing two-slope parameterized ASFs (MITSPA). In Section 4,
one special case study of the disposal in Finland is given and the solutions are analyzed. Finally,
in Section 5 some concluding remarks are discussed.

2. Mathematical Model

In this section, we give a comprehensive description of the model for scheduling the disposal of
the spent nuclear fuel. The aim is to provide general guidelines for the disposal schedule and we only
plan how many canisters are disposed of rather than which assemblies are placed in which canister
nor give any complex lay-out for the disposal facility. We model the situation adapting the disposal
in Finland as described in the introduction with some limitations like we omit the transportation
between the facilities. Furthermore, we suppose that nothing is disposed of yet and only one type of
fuel is considered. Some other simplifying assumptions are that we have access to all the assemblies,
assemblies are identical, and the bedrock is homogeneous such that we can build tunnels anywhere.

The model formulated is a nonsmooth multiobjective MINLP problem having nine objectives.
One obvious objective is total costs. Due to the long term time perspective of the disposal, the costs
will probably change during the years so we minimize also some cost factors as their own objectives.
Besides being a cost factor, these objectives have also other reasons to be selected as an objective.
The interim storage-related objectives minimize storage times and amounts. The faster the assemblies
get under the ground, the safer it is. Other safety issues are handled as constraints, like the cooling
time of the assembly must be sufficient, the maximum decay heat power of the canister is limited,
and the distances between disposal tunnels and canisters depend on the heat load of the canister.
While we allow empty positions in canisters, we still try to keep the total amount of the canisters as
low as possible. The other objectives related to the encapsulation facility aim to get disposal done as
soon as possible. Finally, the area of the disposal facility is minimized.

2.1. Parameters

The model involves several parameters mostly dealing with lower and upper bounds and costs.
First, we begin with two parameters determining the size of the model. Let

N be a total number of disposal periods
Z be a total number of removals from the reactor.

In addition, we define two sets of indices: the set of periods N = {1, . . . , N} and the set of
removals from the reactor Z = {1, . . . , Z}. Note that part of the removals are done before the first
disposal period begins. In order to link the removals from the reactor and periods, we introduce
two parameters:

a the last removal before the first disposal period
b the disposal period when the last removal is done.

In the following, we specify notation and measurement units for some physical magnitudes:
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Mi number of assemblies belonging to the removal i ∈ Z
Q length of one disposal tunnel [m]

Ai,j storage time of an assembly belonging to the removal i ∈ Z
in the period j ∈ N [period]

Pi,j decay heat power of an assembly belonging to the removal i ∈ Z
in the period j ∈ N [W].

The next seven parameters describe the cost information needed as an input data for the model:

CAS storage cost per one assembly per period [e]
CIS costs related to the interim storage per period [e]
CSP cost of a storage place per one assembly [e]
CCA cost of one canister [e]
CEF costs related to operating the encapsulation facility per period [e]
CDT cost of a disposal tunnel per meter [e]
CCT cost of a central tunnel per meter [e].

Finally, we give some parameters related to the upper and lower bounds:

R minimum storage time of an assembly [period]
K maximum capacity of a canister
T minimum number of canisters disposed in one period
U maximum number of canisters disposed in one period

plow
max, pup

max lower and upper bound for the maximum average power of
a canister [W]

dlow
CA , dup

CA lower and upper bound for the distance between canisters [m]
dlow

DT , dup
DT lower and upper bound for the distance between disposal

tunnels [m].

2.2. Continuous Variables

The model involves N(2Z + 1) + 3 continuous variables such that they all are assumed to be
non-negative. The continuous variables used are:

xi,j number of assemblies belonging to the removal i ∈ Z disposed during
the period j ∈ N

yj number of canisters disposed during the period j ∈ N
zi,j number of assemblies belonging to the removal i ∈ Z being in storage

at the end of the period j ∈ N
pmax maximum average power of a canister
dDT distance between two adjacent disposal tunnels
dCA distance between two adjacent canisters in a disposal tunnel.

Note that the first three variables have integer nature, but in order to ease the computation, they
are relaxed as continuous variables.

2.3. Binary Variables

Besides continuous variables, the model consists also N(2Z + 3) binary variables listed below:

ej
ON encapsulation starts in the beginning of the period j ∈ N

ej
OFF encapsulation ends in the beginning of the period j ∈ N

ej encapsulation facility is in operation during the period j ∈ N
si,j assemblies belonging to the removal i ∈ Z take off from disposal

at the beginning of the period j ∈ N
ri,j indicates that assemblies belonging to the removal i ∈ Z

can be disposed during the period j ∈ N .
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2.4. Objectives

The model involves nine objectives such that six of them are nonlinear and three are linear. These
objectives are:

min max

{
a

∑
i=1

Mi,
a+j

∑
i=1

zi,j, ∑
i∈Z

zi,l

∣∣∣ j ∈ {1, . . . , b− 1}, l ∈ {b, . . . , N}
}

(1)

min max{Ai,jsi,j − 1 | i ∈ Z , j ∈ N} (2)

min
∑i∈Z ∑j∈N Ai,jxi,j

∑i∈Z Mi
(3)

min ∑
j∈N

yj (4)

min max{ej
OFF · j− 1 | j ∈ N} (5)

min ∑
j∈N

ej (6)

min dCA ∑
j∈N

yj (7)

min
1
Q

dCAdDT ∑
j∈N

yj (8)

min CAS ∑i∈Z ∑j∈N Ai,jxi,j + CIS max{ej
OFF · j− 1 | j ∈ N}

+ CSP max

{
∑a

i=1 Mi, ∑
a+j
i=1 zi,j, ∑i∈Z zi,l

∣∣∣ j ∈ {1, . . . , b− 1}, l ∈ {b, . . . , N}
}

+ CCA ∑j∈N yj + CEF ∑j∈N ej + CDTdCA ∑j∈N yj + CCT
1
Q dDTdCA ∑j∈N yj.

(9)

Note that from nonlinear objectives, the objectives (1), (2), (5) and (9) are also nonsmooth. The
objectives (1)–(3) are related to the interim storage such that (1) minimizes the maximum number of
assemblies in the storage, (2) minimizes the maximum storage time, and (3) minimizes the average
storage time. In the objective (1), with the first component we take into account the first a removals
from the reactor where all the assemblies must be stored simultaneously. The second component
handles the cases when removals are accomplished during the disposal periods. Finally, with the third
component the cases when all removals are done are considered.

The next three objectives (4)–(6) are related to the encapsulation facility. The objective (4)
minimizes the total number of canisters, (5) aims to stop the disposal as early as possible, and (6)
minimizes the time which the encapsulation facility is in operation.

The objectives (7) and (8) aim to minimize the size of the disposal facility such that (7) minimizes
the total length of disposal tunnels and (8) minimizes the length of the central tunnel.

Finally, the ninth objective (9) minimizes the total costs of the disposal process. The costs taken
into account are related to the storage, cost of individual canisters, the encapsulation facility operating
costs, and the building costs of the disposal and central tunnels.
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2.5. Constraints—Interim Storage

The first set of constraints are related to the interim storage. All of these Z(5N + 2) + N + 2
constraints are linear.

zi,1 −Mi + xi,1 = 0, i ∈ Z (10)

zi,j − zi,j−1 + xi,j = 0, i ∈ Z , j ∈ N \ {1} (11)

zi,N = 0, i ∈ Z (12)

∑
j∈N

si,j = 1 i ∈ Z (13)

ri,1 = e1
ON − si,1, i ∈ Z (14)

ri,j = ri,j−1 + ej
ON − si,j, i ∈ Z , j ∈ N \ {1} (15)

ri,j ≤ ej, i ∈ Z , j ∈ N (16)

xi,j ≤ UKri,j, i ∈ Z , j ∈ N (17)

xi,j(Ai,j − R) ≥ 0, i ∈ Z , j ∈ N (18)

The constraints (10)–(12) define the variables zi,j depicting the amount of assemblies in storage.
The constraint (13) enforces all the assemblies to be disposed once. With the constraints (14)–(16) the
variables ri,j are defined. The constraint (17) ensures that the production capacity is not exceeded and
the constraint (18) ensures that the assembly disposed has been cooling long enough.

2.6. Constraints—Encapsulation Facility

In order to guarantee the acceptable encapsulation, the following 4N + 1 linear constraints
are needed.

∑
j∈N

ej
ON = 1 (19)

∑
j∈N

ej
OFF = 1 (20)

e1 = e1
ON − e1

OFF (21)

ej = ej−1 + ej
ON − ej

OFF, j ∈ N \ {1} (22)

yj ≥ 1
K ∑

i∈Z
xi,j, j ∈ N (23)

yj ≤ Uej, j ∈ N (24)

yj ≥ T(ej − ej+1
OFF), j ∈ N \ {N}. (25)

The constraints (19) and (20) ensures that the encapsulation facility is switched on and off exactly
once meaning that all the canisters must be encapsulated at once. The constraints (21) and (22) define
the variable ej. The constraints (23)–(25) guide the encapsulation process: (23) guarantees that there
exist enough canisters such that all the assemblies can be disposed, (24) keeps the number of canisters
under the production capacity, and (25) forces the minimum production to be fulfilled.

78



Algorithms 2019, 12, 252

2.7. Constraints—Disposal Facility

The number of constraints related to the disposal facility is N + 4 such that N + 1 of them are
nonlinear, and three of the constraints are box constraints.

∑
i∈Z

Pi,jxi,j − pmaxyj ≤ 0, j ∈ N (26)

dCA − g(pmax, dDT) = 0 (27)

pmax ∈
[

plow
max, pup

max

]
(28)

dCA ∈
[
dlow

CA , dup
CA

]
(29)

dDT ∈
[
dlow

DT , dup
DT

]
(30)

The constraints (26) and (27) are the nonlinear constraints of this model. The constraint (26)
ensures that the heat power of the canisters disposed is allowable while the constraint (27) defines
the dependence between the variables dCA, pmax, and dDT . In our case, this nonlinear function
g : R2 → R is approximated with a piece-wise linear function (see Appendix A). Finally, the box
constraints (28)–(30) give lower and upper bounds for variables pmax, dCA, and dDT , respectively.

Finally, we give some boundaries for the variables:

xi,j ≥ 0, zi,j ≥ 0 for all i ∈ Z , j ∈ N ,

yj ≥ 0 for all j ∈ N ,

ej
ON ∈ {0, 1}, ej

OFF ∈ {0, 1}, ej ∈ {0, 1} for all j ∈ N
si,j ∈ {0, 1}, ri,j ∈ {0, 1} for all i ∈ Z , j ∈ N .

To conclude, the model has nine objectives such that 6 are nonlinear and 3 are linear. The rest
of the dimensions of the model are depending on two parameters: the number of periods N and the
number of the removals from the reactor Z. Number of constraints is 5(N(Z + 1) + 1) + 2Z, where
are Z(5N + 2) + 4N + 1 linear, N + 1 nonlinear and 3 box constraints. The total number of variables
is 4N(Z + 1) + 3 and N(2Z + 1) + 3 of them are non-negative continuous variables and N(2Z + 3)
are binary variables. Evidently, with any realistic values of N and Z, for example N = 19 and Z = 11
when one period is five years, the size of the problem will come quite large.

3. Multiobjective Optimization Approach

In this section, we define some fundamental aspects on multiobjective optimization, and then,
describe the family of two-slope parameterized achievement scalarizing functions (ASFs) [25] with its
properties. Finally, the interactive method utilizing two-slope parameterized ASFs is introduced.

3.1. Mathematical Background

We consider the following multiobjective MINLP problem of the form

min
x∈X

f (x) = { f1(x), . . . , fk(x)}, (31)

where x ∈ X = {x = (y, z) | y ∈ Rn, z ∈ Zm}∩C is a decision variable, C is the set of constraints, and X
is a nonempty and compact set of feasible solutions. The objectives fi : X → R for all i ∈ I = {1, . . . , k}
are assumed to be lower semicontinuous with respect to y and at least partially conflicting. Therefore,
we cannot find a minimal solution for every objective simultaneously and the minimization of only one
objective may lead to an arbitrary bad solution with respect to other objectives. In order to compare
the objectives, for x, y ∈ Rk we denote by x < y if xi < yi for all i ∈ I and x ≤ y if xi ≤ yi for all i ∈ I.
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In multiobjective optimization, we say that a solution is Pareto optimal if we cannot improve any
objective without causing a deterioration for some other objective at the same time. Mathematically
speaking, a solution x∗ ∈ X is Pareto optimal if there does not exist any solution x ∈ X such that
f (x) ≤ f (x∗) and f j(x) < f j(x∗) for at least one index j ∈ I. It is noteworthy that usually we do not
have a unique Pareto optimum but a set of Pareto optimal solutions, called the Pareto set. All these
Pareto optimal solutions belong also to a larger class of weakly Pareto optimal solutions. The solution
x′ ∈ X is an element of this class if there does not exist another solution x ∈ X such that f (x) < f (x′).

In order to obtain some information about the Pareto set, we can define an ideal and a nadir
vector, f id ∈ Rk and f nad ∈ Rk, to give the lower and the upper bound for a Pareto optimal solution,
respectively. The ideal vector consists of individual minima of the objectives. This means that the
component f id

i is calculated as a solution of the problem minx∈X fi(x). Due to the conflicting objectives,
the ideal vector is not feasible. The nadir vector, in its turn, represents the worst objective values
in the Pareto set. Unfortunately, the exact calculation of the nadir vector needs the maximization of
objectives over the set of Pareto optimal solutions being a hard task. Thus, the nadir vector needs to be
approximated, for example, with a pay-off table (see e.g., [31,32]).

3.2. Two-Slope Parameterized ASFs

We approach the multiobjective mixed-integer problem with a special type of achievement
scalarizing functions. In general, the utilization of the achievement scalarizing function (ASF)
aims to find a Pareto optimal solution being as close as possible to a so-called reference point f R.
The components f R

i , i ∈ I include the decision maker’s wishes for each objective. This search is done
by transforming the multiobjective optimization problem to a certain type of a scalarized problem and
then applying some suitable single-objective optimization method.

We use here the two-slope parameterized ASF, proposed in [25], which is a generalization of the
parameterized ASF [26] and the two-slope ASF [27]. Usually, to find the closest point to the reference
point f R, the distance from f R is measured with only one metric. With the parameterization used
in the parameterized ASF and the two-slope parameterized ASF, we can combine different metrics
such that L∞ and L1 metrics are the extreme cases. Thus, by systematically producing different Pareto
optimal solutions from the same preference information, we can give the decision maker a wider
perspective to the range of Pareto optimal solutions. Another benefit of the two-slope parameterized
ASF, as well as the two-slope ASF, is that we do not need to test the achievability of the reference
point. This is due to the fact that the different weights are used depending on if the reference point is
achievable (i.e., the reference point belongs to the image of the feasible solutions in the objective space)
or unachievable. The use of different weights is reasonable since the decision-maker usually prefers
different solutions if the reference point is achievable or not, as was suggested in [28].

In order to solve the model described in Section 2, we apply the two-slope parameterized ASF.
Once the multiobjective problem is converted to the single-objective one, we obtain a scalarized version
of the problem (31) in the form [25]

min
x∈X

max
Iq⊆I
|Iq |=q

{
∑
i∈Iq

[
max{λU

i ( fi(x)− f R
i ), 0}+ min{λA

i ( fi(x)− f R
i ), 0}

]}
, (32)

where the weighting vectors λU
i , λA

i > 0 for all i ∈ I are for the unachievable and the achievable
reference point, respectively. The parameter q ∈ I specifies which metric is used and Iq is a
set containing q integers from the interval [i, k], where k is the total number of objectives. Then,
the maximization is taken over all the sets including q integers from the interval [1, k]. In order to gain
the benefits of the parameterization, or in other words, to use more metrics than only L1 (i.e., q = k)
and L∞ (i.e., q = 1), the problem must contain at least three objectives while the maximum number of
different metrics equals the number of the objectives.
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Next, we are interested to know what can be deduced from the optimal solution of the scalarized
problem. As the justification for the use of the two-slope parameterized ASF, we can proof the following
results by adapting the proofs from [25].

Theorem 1 ([25]). For the scalarized problem (32) it holds that:

(i) Any optimal solution of the scalarized problem is weakly Pareto optimal for the problem (31).
(ii) Among optimal solutions of the scalarized problem, there exists at least one Pareto optimal solution for the

problem (31).
(iii) If x∗ is a weakly Pareto optimal solution for the problem (31), then it is a solution of the scalarized problem

(32) with f R = f (x∗), and the optimal value is zero.

Proof. (i) Assume that x∗ is an optimal solution of the problem (32) but not a weakly Pareto optimal
solution of the problem (31). Then there exists a feasible solution x′ ∈ X such that f (x′) < f (x∗).
For any x ∈ X, denote Ix = {i ∈ Iq | f R

i ≤ fi(x)}, Jx = {i ∈ Iq | f R
i > fi(x)} and sq

R( f (x), λU , λA) as
the objective of the scalarized problem (32). Now

sq
R( f (x′), λU , λA) = max

Iq⊆I
|Iq |=q

{
∑

i∈Ix′
λU

i ( fi(x′)− f R
i ) + ∑

i∈Jx′
λA

i ( fi(x′)− f R
i )

}

< max
Iq⊆I
|Iq |=q

{
∑

i∈Ix′
λU

i ( fi(x∗)− f R
i ) + ∑

i∈Jx′
λA

i ( fi(x∗)− f R
i )

}

≤ max
Iq⊆I
|Iq |=q

{
∑

i∈Ix∗
λU

i ( fi(x∗)− f R
i ) + ∑

i∈Jx∗
λA

i ( fi(x∗)− f R
i )

}

= sq
R( f (x∗), λU , λA)

yielding to a contradiction.
(ii) Assume that x∗ is an optimal solution of the problem (32) but not a Pareto optimal solution of the
problem (31). Therefore, there exists x′ ∈ X such that f (x′) ≤ f (x∗) and at least one index j ∈ I such
that f j(x′) < f j(x∗). Similarly to (i), we can deduce that sq

R( f (x′), λU , λA) ≤ sq
R( f (x∗), λU , λA). If the

equality holds, x′ is an optimal solution for the problem (32) and Pareto optimal for the problem (31).
In the case of strict inequality, this yields to a contradiction with an assumption that x∗ is an optimal
solution for the problem (32).
(iii) First, we observe that sq

R is strictly increasing (i.e., sq
R( f (x1), λU , λA) < sq

R( f (x2), λU , λA) for
any f (x1), f (x2) having f (x1) < f (x2) and x1, x2 ∈ X). Indeed, by taking x1, x2 ∈ X such that
f (x1) < f (x2), we see that

sq
R( f (x1), λU , λA) = max

Iq⊆I
|Iq |=q

{
∑

i∈Ix1

λU
i ( fi(x1)− f R

i ) + ∑
i∈Jx1

λA
i ( fi(x1)− f R

i )

}

< max
Iq⊆I
|Iq |=q

{
∑

i∈Ix2

λU
i ( fi(x2)− f R

i ) + ∑
i∈Jx2

λA
i ( fi(x2)− f R

i )

}

= sq
R( f (x2), λU , λA).

The claim is obtained, since for any strictly increasing ASF it holds that a weakly Pareto optimal
solution x∗ for the problem (31) is a solution of the scalarized problem with f R = f (x∗) and the
optimal value of sq

R is zero (see [32]).
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Thus, we know that every Pareto optimal solution can be obtained and the solution of the
scalarized problem (32) is weakly Pareto optimal for the original multiobjective problem. In order to
guarantee the Pareto optimality of solutions, a so-called augmentation term [32]

ρ ∑
i∈I

λi( fi(x)− f R
i ), ρ > 0 (33)

may be added to the objective of the scalarized problem (32) [25]. Note that similarly to Theorem 8
in [25] it can be proven that if the set X and the objectives fi, i ∈ I are convex, then sq

R( f (x), λU , λA)

preserves the convexity.

3.3. Multiobjective Interactive Method Utilizing the Two-Slope Parameterized ASFs

In the following, we state an outline of the multiobjective interactive solution approach
utilizing the two-slope parameterized ASFs (MITSPA) applying reference point based preference
information. The general framework of interactive methods is usually similar: firstly, some range for
Pareto optimal solutions is given the decision-maker, secondly, the decision-maker provides some
preference information, thirdly, some solutions are presented for the decision-maker, and fourthly, the
decision-maker express his/her opinion on the solutions and modify the preference information as
a base for the new solutions. The process is stopped when the decision-maker is satisfied with the
solution. The main differences in various interactive methods can be found in the ways the preference
information is given and which solvers are applied (see e.g., [32,33]).

Similar approaches to ours in terms of the utilization of scalarization functions and the reference
point as preference information are proposed, for instance, in [32–38]. Compared with these, in our
case with the two-slope parameterized ASFs, we can systematically produce different Pareto optimal
solutions to obtain a reasonably distributed selection of Pareto set.

Multiobjective interactive method utilizing the two-slope parameterized ASFs (MITSPA)

Step 0. Give the ideal vector f id, the nadir vector f nad, and/or some Pareto optimal solution f 0 to the
decision maker in order to illustrate the Pareto set.

Step 1. Set the iteration counter h = 1 and select the maximum number of iterations hmax. Ask the
decision maker to provide the reference point f R

h and the number of solutions s ∈ {1, . . . , k}
presented for each reference point. Initialize the positive coefficients λU and λA.

Step 2. Update the coefficients λU and λA if needed. Solve the problem (32) with the augmentation term
(33) with the current reference point f R

h .
Step 3. Present s solutions to the decision maker and ask the decision maker to select the most preferable

solution among them as the current solution f h and go to Step 5 or if more solutions for the
current reference point f R

h are needed go to Step 4.
Step 4. Present supplementary solutions to the decision maker. Ask the decision maker to select the

most preferable solution among the previous s solutions and the supplementary solutions as the
current solution f h and go to Step 5.

Step 5. If h = hmax or the decision maker is satisfied with the current solution f h, stop with the current
solution as the final solution f ∗. Otherwise, ask the decision maker to specify the new reference
point f R

h+1 as the current reference point, set h = h + 1, and go to Step 2.

Some remarks about the above algorithm are in order. Step 0 consists of the illustration of the
Pareto set. Some Pareto optimal solutions for the decision-maker to start with can be calculated,
for example, by using the two-slope parameterized ASF (32) with an ideal vector as a reference point
or by applying some suitable no-preference method like descent methods [39–43]. In Step 3, s ∈ [1, k]
solutions are presented to the decision-maker, where the k is the number of objectives. As mentioned,
with the two-slope parameterized ASF we are able to solve as many different solutions as there are
objectives. If the number of objectives is high, it facilitates the task of the decision-maker if only some
of these solutions are presented. However, if the decision-maker is willing to see more solutions
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from the same reference point, this is enabled in step 4. If more than k solutions are needed in total
for one reference point, they can be obtained by varying the coefficients λU and λA. During the
solution process, the decision maker is able to learn about the model and after seeing some solutions,
the decision maker has more insight into the problem and might want to change the opinion on the
good reference point. Thus, in Step 5, a new reference point is allowed and new solutions are solved
in Step 2.

4. Case Study: The Disposal in Finland

In practice, the scalarized problem (32) with an augmentation term (33) in Step 2 of MITSPA is
solved with a branch-and-cut type method for single-objective MINLP problems called BARON [44,45]
in GAMS [46]. The CPU time of solving each problem (32) presented here varies from 9 s to 28000 s
while the average CPU time is 3475 s and the median CPU time is 142 s. The weighting vectors used
are of the form

λU =
1

f nad − f R , λA =
1

f R − f id

such that f nad − f R > 0 and f R − f id > 0 as suggested in [27]. The approximation of the nadir vector
used is obtained with a pay-off table [31,32].

We investigate the disposal of the spent nuclear fuel from the European pressurized water reactor
(EPR) produced by Olkiluoto 3 in Finland starting to operate in the near future. The length of one
disposal period is selected to be 5 years, and the parameters N and Z are 19 and 11, respectively.
The other parameters used are given in Appendix A, except the cost parameters that are omitted due
to their commerce-related nature. This parameter selection yields a multiobjective MINLP problem
with 9 objectives, 440 continuous and 475 binary variables, 1144 linear constraints, 20 nonlinear
constraints, and three box constraints. Apart from these, we need some auxiliary variables and
constraints to overcome the non-smoothness of the problem. Indeed, the two-slope parameterized
ASFs are nonsmooth, but due to their min-max structure, the problem (32) can be written in the MINLP
form as in [25]. Similarly, this trick can be applied also for the nonsmooth objectives. After that,
we have to solve a single-objective problem with 441 continuous and 484 binary variables, 1153 linear
constraints, 21–146 nonlinear constraints and 3 box constraints.

Before we proceed to the solution process, we discuss the trade-offs of the problem. There are
three parts in the final disposal of spent nuclear fuel: the interim storage, the encapsulation facility,
and the disposal facility. These three parts interact with each other as is exemplified in the following.

• Interim storage versus disposal facility: The interim storage-related goals all imply transferring
the spent nuclear fuel from the interim storage as rapidly as possible. However, in order to
minimize the disposal facility-related goals, the cooling times should be maximized.

• Encapsulation facility versus interim storage: By delaying the start of disposal, it is possible to
shorten the operation time of the encapsulation facility, and thus, decrease the operating costs.
Again, the delay at the start of the encapsulation can cause an increase of the inventories in the
interim storage.

• Encapsulation facility versus disposal facility: The disposal should be started and ended as soon
as possible. Both of these aims have a tendency to increase the canister heat load, and hence, affect
the disposal facility goals. To minimize the operation time of the encapsulation facility, empty
assembly positions can be used. However, the price to pay is the increased number of canisters.
In addition, a larger number of canisters necessitates an increase in the disposal facility area.

In order to investigate these, and other trade-offs, the interactive method MITSPA is employed.
In each iteration of MITSPA, some new preference information is asked from the decision-maker
reflecting his/her preferences. For each iteration, we compute nine solutions by using the current
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reference point with different metrics by varying the value of the parameter q from 1 to 9 in Step 2.
In order to exemplify this, the nine solutions computed using reference point 1 are shown in Figure 1.
These nine solutions represent different trade-offs between objective function values. The results
obtained are scaled to the interval from 0 to 1 such that 0 is the value of the ideal vector and 1 is the
value of the nadir vector for the objective under consideration. The different solutions are labeled
based on the reference point used and the value of the parameter q. For example, the solution r1q1 is
the result obtained by using the reference point 1 and q = 1. Moreover, the reference point 1 is labeled
with r1.

Figure 1. The objective values of 9 solutions obtained using the reference point 1.

In Step 3, two solutions are selected to be presented for the decision-maker for the closer inspection.
The number of presented solutions s is restricted to two in order to aid the decision maker’s task to
select best out of only two options and in order to keep the presentation clear. At each iteration, one
solution with a smaller value of q and one with a larger value of q are presented and different values
of q are demonstrated in order to exemplify the variety of solutions. Next, we present four iterations
of MITSPA.

Iteration 1. At the first iteration, the decision maker begins by investigating the trade-off between
operation time of the encapsulation facility and the cooling times of assemblies by deciding to start
with the unachievable reference point such that the operation time is short and the cooling time is
long. The two solutions chosen for reference point 1 are shown in Figure 2a together with reference
point 1. The solution obtained by using value q = 1 (r1q1) shown in the green line corresponds to the
early starting time of disposal. The solution obtained by using value q = 9 (r1q9) shown in the orange
line corresponds to the late starting time of the disposal. In Figures 2b,c, the corresponding disposal
schedules are given. The solution r1q9, has the shortest possible encapsulation time but the maximum
cooling time is long. The solution r1q9, like r1q1, has a high maximum number of assemblies in the
storage (see the objective (1)), but the maximum and average storage times (the objectives (2) and (3))
are slightly shorter. The solution r1q9 does not allow any empty positions in canisters while the
solution r1q1 does (see (4)), but the encapsulation ends much later (see (5)) in the solution r1q9 than in
r1q1. However, the operation time of the encapsulation facility (see (6)) is shorter in the solution r1q9
than in r1q1. When the disposal facility-related objectives (see (7) and (8)) are compared, the solution
r1q9 needs a smaller area than the solution r1q1. Moreover, the solution r1q9 is cheaper than the
reference, while the solution r1q1 is more expensive than the reference (see (9)). Mainly due to the
significant difference in the costs, the decision maker selects the solution r1q9 as the current solution f 1.
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(a) The objective values for the selected solutions q = 1 and q = 9 and the reference point 1.

(b) The disposal schedule for q = 1. (c) The disposal schedule for q = 9.
Figure 2. Results for the iteration 1.

Iteration 2. In order to learn more about the trade-off between the operation time of the
encapsulation facility and the cooling time, another reference point (reference point 2) is selected.
In this case, the reference point is achievable. Now we try to find solutions such that the operation
time is longer and cooling time shorter. The two solutions chosen for reference point 2 are shown in
Figure 3a and the corresponding disposal schedules in Figure 3b,c. Again, the solution obtained with
the small value q = 1 (r2q1) represents the early starting time of the disposal. This is depicted with the
green line in Figure 3a while the orange line depicts the solution obtained using value q = 9 (r2q9)
corresponding to the late starting time of the disposal.

If we compare the disposal schedules in Figure 3b,c to the schedules for reference point 1 given
in Figure 2b,c, we notice some similarity. Even though the starting and ending times differ as well
as the total number of canisters, the solutions with the parameter q value 1 and value 9 have the
same shape. The smaller q suggests the schedule such that first, we encapsulate a small number of
canisters per period and the number of canisters is growing while the time goes by, whereas the larger
q recommends the schedule where all the canisters are encapsulated within two periods. The solution
r2q1 captures the reference point well since they coincide with respect to other objectives than the
objectives (1) and (5) which are better than the reference values. Thus, the decision maker is willing to
continue with the solution r2q1 as the current solution f 2.

Iteration 3. The long operation time of the encapsulation facility (the objective (6)) is still under
the microscope at the third iteration but the decision-maker is tempted by the short central tunnel
appeared in the previous iteration and combines the long operation time with small disposal facility
area. Like the first reference point, also this is unachievable. The solution obtained by using q = 2
(r3q2) is shown in green and the solution obtained with q = 8 (r3q8) is shown in orange in Figure 4a.
Figure 4b illustrates that the solution r3q2 yields a schedule with an early starting date and the disposal
takes the longest time while the solution r3q8 starts the disposal later but it is performed faster as seen
in Figure 4c. The solution r3q8 yields almost ideal value for the costs, and we can deduce that in order
to achieve lower costs we have to give up in the objectives related to the storage capacity and times.
Moreover, the disposal ends rather late. For the current solution f 3 the decision-maker selects the
solution r3q8 due to the low costs and small disposal facility area.
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(a) The objective values for the selected solutions q = 1 and q = 9 and reference point 2.

(b) The disposal schedule for q = 1. (c) The disposal schedule for q = 9.
Figure 3. Results for the iteration 2.

(a) The objective values for the selected solutions q = 2 and q = 8 and reference point 3.

(b) The disposal schedule for q = 2. (c) The disposal schedule for q = 8.
Figure 4. Results for the iteration 3.

Since one motivation for this research was to take into account more goals than just the costs, we
are eager to see what happens if we omit the costs and solve the problem with only the first eight
objectives (1)–(8). The reference point 3’ is similar to the reference point 3 without the value for the
costs. The results with q = 2 (r3’q2) and q = 8 (r3’q8) are given in Figure 5. Note that since there
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are now only eight objectives, the scalarized function is different than in the case of nine objectives.
The solutions in Figure 5 are quite similar and there is less variation than in the solutions in Figure 4a.

Figure 5. The objective values corresponding the selected solutions q = 2 and q = 8 for the modified
reference point 3 with objectives (1)–(8).

Iteration 4. The current solution f 3 has high interim storage capacity and a small amount of
canisters. At the fourth iteration, the decision maker is interested in to see if the opposite is possible,
namely a solution with small interim storage capacity with allowing the higher number of canisters.
Again, the reference point is unachievable. In Figure 6a, the reference point 4 and the solutions with
q = 4 (r4q4) and q = 9 (r4q9) are illustrated. The solutions are shown in green and orange, respectively.
Again, the corresponding disposal schedules are given in Figures 6b,c. As we see, the solution r4q4
satisfies the wishes towards the interim storage capacity as well as the utilization of the empty canister
positions quite well. Additionally, the better values than the reference are obtained in the repository
area related goals and the costs. The solution r4q9 express this as well, but the original wishes towards
the interim storage capacity are not satisfied. Since the solution r4q4 captures better the ideas of the
decision-maker, it is selected for the current solution f 4.

(a) The objective values for the selected solutions q = 4 and q = 9 and reference point 4.

(b) The disposal schedules for q = 4. (c) The disposal schedules for q = 9.
Figure 6. Results for the iteration 4.
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Eventually, the decision maker is ready to make the final choice. During the solution process, we
have learned that the solutions obtained from 4 different reference points can be split broadly into two
main groups. The first group includes solutions where the disposal starts early while the other group
includes the solutions with late starting. The most striking fact is that the solutions of the first group
are obtained with smaller values of q and the solutions of the second group with the larger values
of q. This phenomenon is repeated with all of four reference points. Interestingly, with the modified
reference point 3 where only eight objectives were considered, mainly solutions with earlier starting
time were obtained. In general, the earlier starting time of the disposal improves the objectives (1)–(3)
and impairs others compared with the case where the disposal starts later. In general, we notice that
the solutions obtained adapt the reference points quite well.

In Figure 7, the solutions related to the first group with an early starting time are illustrated. It can
be seen that even if all these solutions suggest the early start of the disposal, they still have some
differences. One can improve goals (7) and (8) by disposing of spent fuel with a small volume at the
beginning. However, this declines goals (1)–(3), (5), (6) and (9) which can be seen from the solution
r3q2. It is possible to improve the goals (1)–(3), (5) and (6) by allowing some canister positions to be
empty. However, this in its turn declines goals (4) and (7)–(9) which can be seen from the solution r4q4.
As the final solution, the decision maker likes to return to the reference point 2 and the solution r2q1
looks like a good compromise when disposal begins early.

Figure 7. The four solutions where disposal starts early.

A similar examination is done for the solutions of the second group with the late starting time.
The solutions in terms of the objective function values and the disposal schedules are given in Figure 8.
Again, we can observe some differences. The differences depend on the number of years the start of
disposal operations is prolonged. It can be seen from Figure 8, that the disposal volume is large in
every solution where disposal starts late. On the one hand, one can improve goals (7)–(9) by delaying
the start of disposal but on the other hand, this declines goals (2), (3) and (5), as illustrated in the
solution r3q8. When the disposal starts late, empty canister positions have only a minor impact on the
solution. One can improve goals (2), (3), and (5) by allowing empty canister positions. This yields to
the impairing of the goals (4), and (7)–(9) which can be seen from the solution r4q9. Again, the decision
maker is willing to return to the reference point 2 and consider the solution r2q9 as a satisfactory
solution when the disposal starts late. Additionally, the decision maker selects this solution also for
the final solution f ∗, since it yields a rather good solution for other objectives than the maximum
storage. However, we learned that this is the price of the lower costs and smaller disposal facility area.
Moreover, compared with the solution r2q1 also presented from the reference point 2, the later starting
does not delay the ending of the disposal.
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Figure 8. The four solutions where disposal starts late.

5. Conclusions

In this paper, we have proposed the nonsmooth multiobjective MINLP model to optimize the
spent nuclear fuel disposal in order to obtain a disposal schedule. The modeled process is described
and the model is presented in detail. Then, the two-slope parameterized ASF is briefly stated and
validated the use of it. Additionally, we proposed an interactive solution method utilizing these ASFs.
Finally, some numerical results from the case study are given. The solutions obtained are exemplified
and analyzed in terms of objective function values and disposal schedules.

With slight modifications, the model presented is applicable to other countries than Finland as
well, if the spent nuclear fuel is decided to dispose of the disposal facility. It is possible to change the
objectives or leave some of them out. Indeed, this model has quite many objectives, and in some cases
it may be advantageous to have fewer goals either to ease the decision maker’s task or reduce the
computations needed.

The schedules obtained are realistic and viable. One conspicuous feature for the solutions is that
they are segmented in two groups based on the value of the parameter q enabling the parameterization
when the two-slope parameterized ASF is used. With the lower values of q (i.e., closer to L∞ metric),
the disposal starts early and with the larger values of q (i.e., closer to L1 metric) the later start of the
disposal is suggested. If only one metric, for instance L∞ metric, was used, no solutions with late
starting would have been obtained in these iterations. For further studies, it would be interesting
to investigate, is this kind of phenomenon observable in other applications as well, if the two-slope
parameterized ASF is used. The role of q is also fascinating in terms of which value of q yields the most
desirable solution for the decision maker.

As future research, it would also be interesting to include all of the three different fuel types used
in Finland. Another interesting topic would be including the possible hiatus for the operation of the
encapsulation facility in the model.
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Appendix A. Parameters of the Case Study

The parameters used in the case study given in Section 4 are

Mi = 360, i ∈ {1, 3, 5, 7, 9, 11} R = 4 plow
max = 1300

Mi = 240, i ∈ {2, 4, 6, 8, 10} U = 500 dup
DT = 50

a = 5 T = 50 dlow
DT = 25

b = 6 Q = 350 dup
CA = 15

K = 4 pup
max = 1830 dlow

CA = 6

and the values for Ai,j and Pi,j are given in Tables A1 and A2, respectively. Furthermore, the following
approximation is used in the constraint (27):

g(pmax, dDT) = max{ − 2.26911dDT + 0.00675pmax + 54.5228,

− 0.05833dDT + 0.00596pmax − 0.727083,

− 0.14dDT + 0.17701pmax − 350.651}.

Table A1. Values for the parameters Ai,j.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11 j = 12 j = 13 j = 14 j = 15 j = 16 j = 17 j = 18 j = 19

i = 1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
i = 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
i = 3 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
i = 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
i = 5 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
i = 6 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i = 7 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
i = 8 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
i = 9 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
i = 10 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
i = 11 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Table A2. Values for the parameters Pi,j.

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10 j = 11 j = 12 j = 13 j = 14 j = 15 j = 16 j = 17 j = 18 j = 19

i = 1 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251 238 227 216 207
i = 2 inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251 238 227 216
i = 3 inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251 238 227
i = 4 inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251 238
i = 5 inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264 251
i = 6 inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280 264
i = 7 inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297 280
i = 8 inf inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316 297
i = 9 inf inf inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338 316

i = 10 inf inf inf inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361 338
i = 11 inf inf inf inf inf inf inf inf inf inf 695 632 578 531 489 451 418 388 361
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Abstract: A multiple instance learning problem consists of categorizing objects, each represented
as a set (bag) of points. Unlike the supervised classification paradigm, where each point of the
training set is labeled, the labels are only associated with bags, while the labels of the points inside the
bags are unknown. We focus on the binary classification case, where the objective is to discriminate
between positive and negative bags using a separating surface. Adopting a support vector machine
setting at the training level, the problem of minimizing the classification-error function can be
formulated as a nonconvex nonsmooth unconstrained program. We propose a difference-of-convex
(DC) decomposition of the nonconvex function, which we face using an appropriate nonsmooth DC
algorithm. Some of the numerical results on benchmark data sets are reported.

Keywords: multiple instance learning; support vector machine; DC optimization; nonsmooth optimization

1. Introduction

Multiple instance learning (MIL) is a recent machine learning paradigm [1–3], which consists of
classifying sets of points. Each set is called bag, while the points inside the bags are called instances.
The main characteristic of an MIL problem is that in the learning phase the instance labels are hidden
and only the labels of the bags are known.

An MIL seminal paper is [4], where a drug-design problem has been faced. Such a problem
consists of determining whether a drug molecule (bag) is active or non-active. A molecule provides
the desired drug effect (positive label) if, and only if, at least one of its conformations (instances) binds
to the target site. The crucial question is that it is not known a priori which conformation makes the
molecule active.

Some MIL applications are image classification [5–8], drug discovery [9,10], classification of text
documents [11], bankruptcy prediction [12], and speaker identification [13].

For this kind of problems, there are various solutions in the literature that fall into three
different classes: instance-space approaches, bag-space approaches, and embedding-space approaches.
In instance-space approaches, classification is performed at the instance level, finding a separation
surface directly in the instance space, without looking at the global structure of the bags; the label
of each bag is determined as an aggregation of the labels of its corresponding instances. Vice-versa,
in bag-space approaches (for example, see [14–16]), the separation is performed at a global level,
considering the bag as a whole entity. A compromise between these two kinds of approaches is
constituted by embedding-space techniques, where each bag is represented by one feature vector and
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the classification is consequently performed in the instance space. An example of an embedding-space
approach is presented in [17].

The method we propose uses the instance-space approach and provides a separation hyperplane
for the binary case, where the objective is to discriminate between positive and negative bags. We start
from the standard MIL assumption stating that a bag is positive if, and only if, at least one of its
instances is positive and it is negative whenever all its instances are negative.

Some examples of linear instance-space MIL classifiers can be found in [18–22]. In particular,
in [18], two different models have been proposed. The first one is a mixed-integer nonlinear
optimization problem solved using a heuristic technique based on the block coordinate descent
method [23] and faced in [19] using a Lagrangian relaxation technique. The second model, which will
be the objective of our analysis in the next section, is a nonsmooth nonconvex optimization problem,
solved in [21] using the bundle type method described in [24]. In [20], a semi-proximal support
vector machine (SVM) approach is used, coming from a compromise between the classical SVM [25]
and the proximal approach proposed in [26] for supervised classification. Finally, an optimization
problem with bilinear constraints is analyzed in [22], where each positive bag is expressed as a convex
combination of its instances and a local solution is obtained by solving successive linear programs.

Recently, nonlinear instance-space MIL classifiers have also been proposed in the literature, such
as in [27] and in [28], where a spherical separation approach is adopted: in particular, in the former
a variable neighborhood search method [29] is used, while in the latter a DC (difference of convex)
model is solved using an appropriate DC algorithm [30]. In passing, we stress that many DC models
have been introduced in machine learning, in the supervised [31–35], semisupervised [36,37] and
unsupervised cases [38–40].

In this work, we propose a DC optimization model providing a linear classifier for binary MIL
problems. The solution method we adopt is the proximal bundle method introduced in [30] for the
minimization of nonsmooth DC functions. The paper is organized as follows. In the next two sections,
we describe, respectively, the DC optimization model and the corresponding nonsmooth solution
algorithm. Finally, in Section 4, we report the results of our numerical experimentation performed on
some data sets drawn from the literature.

2. A DC Decomposition of the SVM-Based MIL

We tackle a binary MIL problem whose objective is to discriminate between m positive bags and k
negative ones using a hyperplane

H(w, b) � {x ∈ R
n | wTx + b = 0},

where w ∈ Rn and b ∈ R. Indicating by J+i , i = 1, . . . , m, the index set of the instances belonging to
the ith positive bag and by J−i , i = 1, . . . , k, the index set of the instances belonging to the ith negative
bag, we recall that, on the basis of the standard MIL assumption, a bag is positive if, and only if, at
least one of its instances is positive and it is negative vice-versa. As a consequence, while a positive
bag is allowed to, possibly, straddle the hyperplane, the negative bags should lie completely on the
negative side.

More formally, indicating by xj ∈ Rn the jth instance of a positive or negative bag, the hyperplane
H(w, b) performs a correct separation if, and only if, the following conditions hold:

⎧⎪⎨
⎪⎩

wTxj + b ≥ 1, for at least an index j ∈ J+i and for all i = 1, . . . , m

wTxj + b ≤ −1, for all j ∈ J−i and for all i = 1, . . . , k.
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As a consequence (see Figures 1 and 2), a positive bag J+i , i = 1, . . . , m, is misclassified if

max
j∈J+i

(wTxj + b) < 1

and a negative one J−i , i = 1, . . . , k, is misclassified if

max
j∈J−i

(wTxj + b) > −1.

side (+1)

side (−1)

wTx+ b = 0

wTx+ b = 1

wTx+ b = −1

J+
i

J+
i is misclassified

side (+1)

side (−1)

wTx+ b = 0

wTx+ b = 1

wTx+ b = −1

J+
i

J+
i is well classified

Figure 1. Positive bag J+i .

side (+1)

side (−1)

wTx+ b = 0

wTx+ b = 1

wTx+ b = −1

J−i

J−i is misclassified
side (+1)

side (−1)

wTx+ b = 0

wTx+ b = 1

wTx+ b = −1

J−i

J−i is well classified

Figure 2. Negative bag J−i .

Then, we come out with the following error function, already introduced in [18]:

f (w, b) � 1
2
‖w‖2 + C

[
m

∑
i=1

max{0, 1−max
j∈J+i

(wTxj + b)}+
k

∑
i=1

max{0, 1 + max
j∈J−i

(wTxj + b)}
]

, (1)

where C > 0 represents the trade-off between two objectives: the maximization of the separation
margin, characterizing the classical SVM [25] approach, and the minimization of the classification error.

To minimize function f , we propose a DC decomposition based on the following formula:

max{0, 1− h(y)} = max{1, h(y)} − h(y), (2)
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where h is a convex function. By applying Equation (2) to our case, we can write f in the form:

f (w, b) = f1(w, b)− f2(w, b),

where

f1(w, b) � 1
2
‖w‖2 + C

k

∑
i=1

max{0, 1 + max
j∈J−i

(wTxj + b)}+ C
m

∑
i=1

max{1, max
j∈J+i

(wTxj + b)}

and

f2(w, b) � C
m

∑
i=1

max
j∈J+i

(wTxj + b)

are convex functions. Hence, we come up with the following nonconvex nonsmooth optimization
problem, DC-MIL,

min
w,b

[ f1(w, b)− f2(w, b)]. (3)

3. Solving DC-MIL using a Nonsmooth DC Algorithm

We start by recalling some preliminary property of the DC optimization problem, by adopting the
same notation as above. Given the DC optimization problem

min
y

[ f1(y)− f2(y)] (4)

where both f1 and f2 are convex nonsmooth functions, we say that a point y∗ is a local minimizer if
f1(y∗)− f2(y∗) is finite and there exists a neighborhood N of y∗ such that

f1(y∗)− f2(y∗) ≤ f1(y)− f2(y), ∀y ∈ N . (5)

Considering that, in general, the Clarke subdifferential calculus cannot be used to compute
subgradients of the DC function since

∂cl f (y) ⊆ ∂ f1(y)− ∂ f2(y), (6)

where ∂cl f (·) denotes Clarke’s subdifferential, different stationary points can be defined for nonsmooth
DC functions. A point y∗ is called inf-stationary for problem Equation (4) if

∅ �= ∂ f2(y∗) ⊆ ∂ f1(y∗). (7)

Furthermore, a point y∗ is called Clarke stationary for problem Equation (4) if

0 ∈ ∂cl f (y∗), (8)

while, it is called a critical point of f if

∂ f2(y∗) ∩ ∂ f1(y∗) �= ∅. (9)

Denoting the set of inf-stationary points by Sin f , the set of Clarke stationary points by Scl , and the
set of critical points of the function f by Scr, the following inclusions hold

Sin f ⊆ Scl ⊆ Scr

as shown in (Proposition 3, [30]).
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Nonsmooth DC functions have attracted the interest of several researchers, both, from the theoretical
and from the algorithmic viewpoint. Focusing in particular on the algorithmic side, the most relevant
contribution has probably been provided by the methods based on the linearization of function f2

(see, [41] and references therein), where the problem is tackled via successive convexifications of function
f . In the last years, nonsmooth-tailored DC programming has experienced a lot of attention as it
has a lot of practical applications (see [28,42]). In fact, several nonsmooth DC algorithms have been
developed ([30,43–47]).

Here, we adopt the algorithm DCPCA, a bundle-type method introduced in [30] to solve
problem Equation (4), which is based on a model function built by combining two convex piecewise
approximations, each related to one component function. More in details, a simplified version of
DCPCA works as follows:

• It iteratively builds two separate piecewise-affine approximations of the component functions,
grouping the corresponding information in two separate bundles.

• It combines the two convex piecewise-affine approximations and generates a DC piecewise-
affine model.

• The DC (hence, nonconvex) model is locally approximated using an auxiliary quadratic program,
whose solution is used to certify approximate criticality, or to generate a descent search-
direction to be explored via a backtracking line-search approach.

• Whenever no descent is achieved along the search direction, the bundle of the first function is
enriched, thus, obtaining a better model function with this being the fundamental feature of any
cutting plane algorithm.

In fact, the DCPCA is based on constructing a model function as the pointwise maximum of
several concave piecewise-affine pieces. To construct this model, starting from some cutting-plane
ideas, the information coming from the two component functions are kept separate in two bundles.
We denote the stability center by z (i.e., an estimate of the minimizer), and by I and L, the index sets of
the points generated by the algorithm where the information of function f1 and f2 have been evaluated,
respectively. Therefore, we denote the two bundles of information as

B1 = {(g(1)i , α
(1)
i ) : i ∈ I}

and
B2 = {(g(2)l , α

(2)
l ) : l ∈ L}

where, for every i ∈ I, g(1)i ∈ ∂ f1(yi) with

α
(1)
i = f1(z)−

(
f1(yi) + g(1)Ti (z− yi)

)
,

and, for every l ∈ L, g(2)l ∈ ∂ f2(yl) with

α
(2)
l = f2(z)−

(
f2(yl) + g(2)Tl (z− yl)

)
.

We remark that both component functions, along with their subgradients, could be evaluated at
some iterate-point, and, indeed, we assume that (g(1)(z), 0) ∈ B1 and (g(2)(z), 0) ∈ B2, where g(1)(z) ∈
∂ f1(z) and g(2)(z) ∈ ∂ f2(z).

To approximate the difference function

(
f1(z + d)− f2(z + d)

)
−
(

f1(z)− f2(z)
)
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at a given iteration k the following nonconvex model function Γk(d) is introduced

Γk(d) � max
i∈I

min
l∈L

{(
g(1)i − g(2)l

)Td− α
(1)
i + α

(2)
l

}
, (10)

which is defined as the maximum of finitely many concave piecewise-affine functions. The model-
function Γk is used to state a sufficient descent condition of the type

(
f1(z + d)− f2(z + d)

)
−
(

f1(z)− f2(z)
)
≤ mΓk(d)

where m ∈ (0, 1). The interesting property of such a model-function is that whenever the sufficient
descent is not achieved at points that are close to the stability center, say z + d̄, then an improved
cutting-plane model can be obtained by only updating the bundle of f1 with the appropriate
information related to the point z + d̄. On the other hand, it looks obviously difficult to adopt
the minimization of the model-function Γk as a building block of any algorithm, given its nonconvexity.
In fact, DCPCA does not require the direct minimization of Γk(d), but the search direction can be
obtained by solving the following auxiliary quadratic problem:

min
d∈Rn ,v∈R

v +
1
2
‖d‖2

v ≥ (g(1)i − g(2)l̄ )Td− α
(1)
i ∀i ∈ I

QP(I)

where l̄ ∈ L(0) � {l ∈ L : α
(2)
l = 0}. We observe that L(0) �= ∅ as B2 is assumed to contain the

information about the current stability center. More precisely, DCPCA works by forcing L(0) to be a
singleton, hence by letting g(2)l̄ = g(2)(z). Denoting the unique optimal solution of Equation (QP(I))
by (d̄, v̄), a standard duality argument ensures that

d̄ =−∑
i∈I

λ̄i(g(1)i − g(2)l̄ ) (11)

v̄ =−
∥∥∥∥∥∑i∈I

λ̄i(g(1)i − g(2)l̄ )

∥∥∥∥∥
2

−∑
i∈I

λ̄iα
(1)
i (12)

where λ̄i ≥ 0, i ∈ I, are the optimal variables of the dual of QP(I), with ∑i∈I λ̄i = 1.
Given that any starting point z = y0, DCPCA returns an approximate critical point z∗ ,

see (Theorem 1, [30]). The following parameters are adopted: the optimality parameter θ > 0,
the subgradient threshold η > 0, the linearization-error threshold ε > 0, the approximate line-search
parameter m ∈ (0, 1), and the step-size reduction parameter σ ∈ (0, 1). In Algorithm 1, we report
an algorithmic scheme of the main iteration, namely of the set of steps where the stability center is
unchanged. An exit from the main iteration is obtained as soon as a stopping criterion is satisfied
or whenever the stability center is updated. To make the presentation clearer, without impairing
convergence properties, we skip the description of some rather technical steps, which are strictly
related to the management of bundle B2. Details can be found in [30].
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Algorithm 1 DCPCA Main Iteration

1: Solve QP(I) and obtain (d̄, v̄) � Find the search-direction and the predicted-reduction

2: if |v̄| ≤ θ then � Stopping test

3: set z∗ = z and exit � Return the approximate critical point z∗

4: end if

5: Set t = 1 � Start the line-search

6: if f (z + td̄)− f (z) ≤ mtv̄ then � Descent test

7: set z := z + td̄ � Make a serious step

8: calculate g(1)+ ∈ ∂ f1(z) and g(2)+ ∈ ∂ f2(z) �

9: update α
(1)
i for all i ∈ I and α

(2)
l for all l ∈ L �

10: set B1 = B1 \ {(g(1)i , α
(1)
i ) : α

(1)
i > ε, i ∈ I} ∪ {(g(1)+ , 0)} �

11: set B2 = B2 ∪ {(g(2)+ , 0)} �

12: update appropriately I and L, and go to 1 �

13: else if t‖d̄‖ > η then � Closeness test

14: set t = σt and go to 6 � Reduce the step-size and iterate the line-search

15: end if

16: Calculate g(1)+ ∈ ∂ f1(z + td̄) � Make a null step

17: calculate α
(1)
+ = f1(z)− f1(z + td̄) + tg(1)�+ d̄ �

18: set B1 = B1 ∪ {(g(1)+ , α
(1)
+ )}, update appropriately I, and go to 1 �

We remark that the stopping condition v̄ ≥ −θ, checked at Step 2 of the DCPCA, is an approximate
θ-criticality condition for z∗. Indeed, taking into account Equation (12), the stopping condition
ensures that ∥∥∥∥∥∑i∈I

λ∗i g(1)i − g(2)l̄

∥∥∥∥∥ ≤
√

θ and

∥∥∥∥∥∑i∈I
λ∗i α

(1)
i

∥∥∥∥∥ ≤
√

θ,

which in turn implies that g(1)∗ ∈ ∂θ f1(z∗) and g(2)∗ ∈ ∂ f2(z∗) such that

‖g(1)∗ − g(2)∗ ‖2 ≤ θ,

namely, that
dist (∂θ f1(z∗), ∂ f2(z∗)) ≤ θ,

an approximate θ-criticality condition for z∗, see Equation (9).

4. Results

We tested the performance of the algorithm DCPCA applied to the DC-MIL formulation (3)
by adopting two sets of medium- and large-size problems extracted from [18]. The relevant characteristics
of each problem are reported in Tables 1 and 2, where we list the problem dimension n, the number of
instances, and the number of bags.
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Table 1. Medium-size test problems.

Data Set Dimension Instances Bags

Elephant 230 1320 200
Fox 230 1320 200

Tiger 230 1220 200
Musk-1 166 476 92
Musk-2 166 6598 102

Table 2. Large-size test problems.

Data Set Dimension Instances Bags

TST1 6668 3224 400
TST2 6842 3344 400
TST3 6568 3246 400
TST4 6626 3391 400
TST7 7037 3367 400
TST9 6982 3300 400

TST10 7073 3453 400

The two-level cross-validation protocol has been used to tune C and to train the classifier.
Before proceeding with the training phase, the model-selection phase is aimed at finding a promising
value of parameter C in the set {2−7, 2−6, . . . , 1, . . . , 26, 27}, using a lower-level cross-validation protocol
on each training set. The selected C value, for each training set, is the one returning the highest average
test-correctness in the model-selection phase.

Choosing a good starting point is a critical phase to ensure good performance for a local
optimization algorithm like DCPCA. For each training set, denoting the barycenter of all the instances
belonging to positive bags by w+ and the barycenter of all the instances belonging to negative bags by
w−, we have selected the starting point (w0, b0) by setting

w0 = w+ − w− (13)

and choosing b0 such that the corresponding hyperplane correctly classifies all the positive bags.
We adopted the Java implementation of algorithm DCPCA by running the computational

experiments on a 3.50 GHz Intel Core i7 computer. We limited the computational budget for every
execution of DCPCA to 500 and 200 evaluations of the objective function for medium-size and large-size
problems, respectively, and we restricted the size of the bundle to 100 elements adopting a restart
strategy, as soon as, the bundle size exceeds the threshold and a new stability center is obtained.
The QP solver of IBM ILOG CPLEX 12.8 has been used to solve quadratic subprograms. The following
set of parameters, according to the notation introduced in [45], has been selected: the optimality
parameter θ = 0.7, the subgradient threshold η = 0.7, the approximate linesearch parameter m = 0.01,
the step-size reduction parameter σ = 0.01, and the linearization-error threshold ε = 0.95.

We compare our DC-MIL approach against the algorithms mi-SVM [18], MI-SVM [18], MICA [22],
MIL-RL [19], and for medium-size problems also against the MICBundle [21] and DC-SMIL [28]. All such
methods have been briefly surveyed in the introduction section.

To analyze the reliability of our approach, in Tables 3 and 4, we report the numerical results
in terms of the percentage test-correctness averaged over 10 folds, with the best performance being
underlined. We remark that some data are not reported in Table 5 as the corresponding results are
obtained by adopting only nonlinear kernels in [18,22]. Moreover, to provide some insight into the
efficiency of DC-MIL, we report in Tables 5 and 6, the average train-correctness (train, %), the average
cpu time (cpu, sec), the average number of function evaluations (nF), and the average number of
subgradient evaluations of the two functions (nG1 and nG2). The reliability results show a good and
balanced performance of the DC-MIL approach equipped with DCPCA, both, for the medium-size
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problems, where in one case DC-MIL slightly outperforms the other approaches, and for the large-size
problems. Moreover, we observe that our approach looks strongly efficient as it manages to achieve
high train-correctness in reasonably small execution times even for large-size problems.

Table 3. Average test-correctness (%) for medium-size problems.

Data Set DC-MIL MIL-RL DC-SMIL mi-SVM MI-SVM MICA MICBundle

Elephant 84.0 83.0 84.5 82.2 81.4 80.5 80.5
Fox 57.0 54.5 56.0 58.2 57.8 58.7 58.3

Tiger 84.5 75.0 81.0 78.4 84.0 82.6 79.1
Musk-1 74.5 80.0 76.7 - - - 75.6
Musk-2 74.0 73.0 79.0 - - - 76.8

Underlined means the best performance being.

Table 4. Average test-correctness (%) for large-size problems.

Data Set DC-MIL MIL-RL mi-SVM MI-SVM MICA

TST01 94.3 95.5 93.6 93.9 94.5
TST02 80.0 85.5 78.2 84.5 85.0
TST03 86.5 86.8 87.0 82.2 86.0
TST04 86.0 79.8 82.8 82.4 87.7
TST07 79.8 83.5 81.3 78.0 78.9
TST09 68.3 68.8 67.5 60.2 61.4
TST10 78.0 77.5 79.6 79.5 82.3

Underlined means the best performance being.

Table 5. DC-MIL average efficiency. Medium-size test problems.

Data Set Train Cpu nF nG1 nG2

Elephant 91.0 3.14 500 243 208
Fox 79.9 3.05 500 81 80

Tiger 95.5 2.83 500 237 197
Musk-1 96.9 1.29 500 197 177
Musk-2 93.5 6.52 500 174 167

Table 6. DC-MIL average efficiency. Large-size test problems.

Data Set Train Cpu nF nG1 nG2

TST01 100.0 70.22 200 93 91
TST02 94.2 69.87 200 83 82
TST03 99.6 64.77 200 82 81
TST04 93.5 67.58 200 84 83
TST07 99.2 74.11 200 85 84
TST09 94.4 67.99 200 82 81
TST10 91.9 72.24 200 81 80

5. Conclusions

We have considered a multiple instance learning problem consisting of classifying sets instead
of single points. The resulting binary classification problem, addressed by a support vector machine
approach, is formulated as an unconstrained nonsmooth optimization problem for which an original
DC decomposition is presented. The problem is solved by a proximal bundle-type method, specialized
for nonsmooth DC optimization, which is tested on some benchmark datasets against a set of
state-of-the-art approaches. The numerical results in terms of reliability show, on one hand, that there
are no outperforming methods on all the test problems, on the other hand, that our method achieves
comparable performance with other approaches. Moreover, the encouraging results obtained in terms
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of efficiency show that there is room for improvement by further investigating the parameter settings
in relation to specific test problems.
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