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Abstract: The computational revolution in simulation techniques has shown to become a key
ingredient in the field of Bayesian econometrics and opened new possibilities to study complex
economic and financial phenomena. Applications include risk measurement, forecasting, assessment
of policy effectiveness in macro, finance, marketing and monetary economics.

Keywords: Bayesian econometrics; forecasting; MCMC methods; macroeconomic and
financial applications

This special issue aims to contribute to this literature by collecting a set of carefully evaluated
papers that are grouped amongst two topics in financial economics: the first three papers refer to
macro-finance issues for the real economy; the last three papers focus on cryptocurrency and stock
market predictability.

The first paper, written by Nguyen Ngoc Thach, studies the elasticity of factor substitution (ES)
in the Cobb–Douglas production function (see Thach 2020). It proposes a new Bayesian nonlinear
mixed-effects regression via Random-walk Metropolis Hastings (MH) algorithm to estimate the average
ES through the specification of an aggregate constant elasticity of substitution (CES) function and
applies it to the Vietnamese nonfinancial enterprises. Results indicate that the CES function estimated
for the researched enterprises has an ES lower than one, i.e., capital and labor are complimentary.
This finding shows that Vietnamese nonfinancial enterprises can confront a downward trend of
output growth.

The second paper, written by Marco Lorusso and Luca Pieroni, investigates government public
spending components in order to analyze their effects on the economy (see Lorusso and Pieroni 2019).
It develops a Dynamic Stochastic General Equilibrium Model (DSGE) model with civilian and military
expenditures and is applied to U.S. data. It estimates it on U.S. data taking account of financial
liberations with Bayesian methods. Results show that total government spending has a positive effect
on output, but it induces a fall in private consumption. Moreover, sizeable differences between the
effects of civilian and military spending exist: civilian spending has a more positive impact on output
than military expenditure.

The third paper, written by Martin Feldkircher and Florian Huber, focuses on quantitative easing,
monetary policy and economics (see Feldkircher and Huber 2018). Employing a time-varying vector
autoregression with stochastic volatility studies the transmission of a conventional monetary policy
shock with that of an unexpected decrease in the term spread, unconventional monetary policy shocks.
Results indicate that the spread shock works mainly through a boost to consumer wealth growth,
while a conventional monetary policy shock affects real output growth via a broad credit/bank lending
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channel. Moreover, the conventional monetary policy shock has a small effect during the period of
the global financial crisis and stronger effects in its aftermath, whereas the spread shock has affected
output growth most strongly during the crisis and less so thereafter.

The fourth paper, written by Rick Bohte and Luca Rossini, studies the forecasting ability of
cryptocurrency time series (see Bohte and Rossini 2019). Working on the four most capitalised
cryptocurrencies, Bitcoin, Ethereum, Litecoin and Ripple, different Bayesian models are compared,
including models with constant and time-varying volatility, such as stochastic volatility and GARCH.
Results show that stochastic volatility improves both point and density forecasting accuracy. Using
a different type of distribution, for the errors of the stochastic volatility, the student-t distribution is
shown to outperform the standard normal approach.

The fifth paper, written by Camilla Muglia, Luca Santabarbara and Stefano Grassi, investigates
whether Bitcoin is a good predictor of the Standard and Poor’s 500 Index (see Muglia et al. 2019).
Using Bayesian dynamic model averaging (DMA) and Bayesian dynamic model selection (DMS)
methodologies, the analysis shows that Bitcoin does not show any direct impact on the predictability
of Standard and Poor’s 500.

The sixth paper, written by Chiari Limongi Concetto and Francesco Ravazzolo, investigates how
investor sentiment affects stock market returns and evaluates the predictability power of sentiment
indices on U.S. and EU stock market returns (see Limongi Concetto and Ravazzolo 2019). Investor
sentiment indices have an economic and statistical predictability power on stock market returns.
Moreover, comparing the two markets, the analysis indicates a spillover effect from the U.S. to Europe.

The guest editors want to thank all referees for a speedy and high quality evaluation procedure.
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Abstract: Most studies in Vietnam use the Cobb-Douglas production function and its modifications
for economic analysis. Extremely rigid presumptions are a main weak point of this functional form,
particularly if the elasticity of factor substitution (ES) is equal to one, which hides the role of the ES for
economic growth. The CES (constant elasticity of substitution) production function with more flexible
presumptions, concretely its ES, is not unitary, and has been used more and more widely in economic
investigations. So, this study is conducted to estimate the average ES through the specification of
an aggregate CES function for the Vietnamese nonfinancial enterprises. By performing Bayesian
nonlinear mixed-effects regression via Random-walk Metropolis Hastings (MH) algorithm, based
on the data set of the listed nonfinancial enterprises of Vietnam, the author found that the CES
function estimated for the researched enterprises has an ES lower than one, i.e., capital and labor
are complimentary. This finding shows that Vietnamese nonfinancial enterprises can confront a
downward trend of output growth.

Keywords: ES; CES function; Bayesian nonlinear mixed-effects regression

1. Introduction

Since appearing in 1928, the Cobb-Douglas function has been a highly crucial tool in economic
research. This functional form has become very popular due to its ease of use and empirical adaptation
to different data sets. Solow (1957) and his followers used the Cobb-Douglas in their growth theories.
However, this type of function is criticized because of its rigid premises. One of them is the unit
ES, which, according to many empirical results, does not coincide with facts. Moreover, the unit ES
masks the role of the ES for economic growth processes. Several theoretical and empirical studies
published have explored this limitation. For example, among others, Antrás (2004) stated that the
ES is not appropriate for the US economy, and Werf (2007) argued that the Cobb-Douglas function is
not suitable for modeling policies for climate change, while Young (2013) revealed that the ES of the
aggregate production function and the production function of most U.S. industries could not be equal
to one and had estimates less than 0.62. Therefore, the CES function with an ES other than one was
announced in 1961 (Arrow et al. 1961). Since then, an increasing amount of studies around the world
have used the CES function for economic analysis, while the number of works evaluating elasticities
using the Cobb-Douglas function decreased substantially. Specifically, Heubes (1972) theoretically
argued that either the time path or the level of the output growth rate depends on the ES value. Among
empirical studies, Ferguson (1965), La Grandville (1989), Klump and Grandville (2000), Pitchford (1960),
Azariadis (1993), and Galor (1995) focussed on the effects of the ES on economic growth. In Vietnam, to
the knowledge of the author, the Cobb-Douglas function and its different modifications are commonly
used, and at present, no empirical research on the CES function has been carried out. Besides, most
previous research on production functions applied mainly traditional quantitative methods, such as
the accounting method or the frequentist approach, being a subject of much criticism from modern
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statisticians as it gave unreliable results in many cases (Briggs and Nguyen 2019; Anh et al. 2018;
Kreinovich et al. 2019).

Because of the above reasons, the author conducted this study to estimate the ES via
specifying an aggregate CES function using a non-frequentist method, namely the Bayesian nonlinear
mixed-effects regression.

The remainder of the paper is structured as follows. Section 2 introduces the theoretical framework
of the ES and its relationship with economic growth. Section 3 provides the theoretical analysis of the
ES in the CES. Empirical studies on the ES in the CES and its association with economic growth are
reviewed in Section 4. Section 5 discusses the data and estimation method. Bayesian simulation results
are provided in Section 6. Section 7 includes the conclusion.

2. Theoretical Background of the ES

2.1. The ES

Production functions are an important instrument of economic analysis in the neoclassical
tradition. They are often utilized to analyze the economic performance of an economy, as well as those
of enterprises, industries and industrial complexes. Homogeneity and returns to scale particularize a
neoclassical production function under the conditions of uniform changes in all inputs. Nonetheless,
when the inputs change at different rates, how does the function change? In this case, the nature of the
production function varies depending on the ES. In general, the ES plays a significant role in economic
growth process.

The marginal rate of technical substitution between two inputs (MRSij) illustrates the rate at
which one input must decrease to hold a production level unchanged when another input increases:

MRSij = −
(dxj

dxi

)
=

fi
f j

where xi, xj are the first and second inputs, respectively.
The limitation of this coefficient is that it is dependent on the measurement unit of resources.

Therefore, the usage of the ES instead is more appropriate:

σi j =
∂
(
xj/xi

)
∂MRSij

× MRSij

xj/xi
,

where σi j—the ES of input xi for input xj.
The ES denotes how the ratio of inputs changes if the marginal rate of technical substitution

between them varies by one percent. Hicks (1932) first proposed this definition for the case of two
inputs. In the case of n inputs, the method of calculating the ES is inconsistent. In a later work of Hicks
and Allen (1934), a generalized ES was suggested. Accordingly, the formula for the two-input case is
applied to any two inputs in a multivariate function with the assumption that other inputs remain
unchanged. This is the Hicks Elasticity of Substitution (HES). However, the restriction of the HES
is that because the optimal quantity of all inputs is simultaneously decided by enterprises, the ratio
between any two inputs is affected not only by relative prices but also by the prices of other inputs.
The optimization behavior of enterprises requires:

MRSij =
fi
f j
=

pj

pi
.

then

σi j =
∂
(
xj/xi

)
∂
(
pj/pi

) × pj/pi

xj/xi
.
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where pj, pi are the price of xj, xi, respectively.
Under the optimization condition, the ES indicates how the input ratio varies if their price ratio

changes by one percent. Let us consider a function with three inputs f (x1, x2, x3). With this preposition,
MRS12 =

p2
p1

. The HES between x1 and x2 shows how the ratio between them changes if MRS12 =
p2
p1

changes by one percent with the assumption of a fixed amount of x3. However, it is noted that a change
of p2

p1
may make the amount of x3 vary due to variations in the ratios of p2

p3
and p1

p3
. Thus, the assumption

of a fixed quantity of the third input is not always correct. The use of the HES is correct only for the
Cobb-Douglas and the CES because the change in the third input does not impact on the ratio between
the first two inputs. In the meanwhile, for generalized functions, the HES may yield biased results.

Hicks and Allen proposed a Partial Elasticity of Substitution to measure the ES. Later, this
coefficient was studied in detail by Allen and Uzawa, so it was called the Allen-Uzawa Elasticity of
Substitution (AUES). AUES is calculated by the following formula:

σi j =
x1 × f1 + · · ·+ xn × fn

xi × xj
× Fij

F
,

where F = det[0 f1 . . . fn f1 f11 . . . f1n fn fn1 · · · fnn ],

fi j(y, p) =
∂2 f

∂xi × ∂xj
,

where Fij denotes algebraic addition to element fi j in F.
In the two-input case, AUES is reduced to the HES. Nevertheless, Blackorby and Russell (1981)

claim that deduction from the ES between two inputs to the ES between multiple inputs is not correct.
They proved the non-informativeness of AUES in several cases. So, the Morishima Elasticity of
Substitution (MES) was proposed instead:

Mij(y, p) =
pi ×Cij(y, p)

Cj(y, p)
− pi ×Cij(y, p)

Ci(y, p)
.

where C(y, p) is a cost optimization function derived from:

Ci(y, p) =
∂C(y, p)
∂pi

, Cij(y, p) =
∂2C(y, p)
∂pi × ∂pj

.

McFadden (1963) created a new development in the elasticity theory showing the possibility of
the ES to have different values for various input pairs. According to this author, it is not possible
to construct a neoclassical production function with an arbitrary set of the ES when the number of
inputs is more than two. That is, if we propose different ES for various input groups, it is necessary to
use a different type of production function that may not be fixed at different input quantities and at
various prices.

In this study, the author uses the ES between the two inputs, capital and labor. In this case, the ES
is a measure of the ease of substitution between capital and labor, or a measure of their similarity from
a technological view. When the ES is large, the inputs are similar to each other. So when an input
increases, the technology enables this factor to be easily substituted for the element remaining constant.
In the case of a small ES, the technology views the inputs as unsimilar, so it is difficult to substitute one
input for the other. In other words, as expressed by Nelson (1965), the ES can be referred to as an index
of the rate at which diminishing marginal return sets in as one input increases in relation to the other.
If the ES is great, then it is easy to substitute one input for the other or to increase output by increasing
one input. Hence, a diminishing marginal return will set in slowly or not set at all. From here, we could
confirm that the ES has an effect on the economic growth as long as inputs grow at different rates so
their proportions change.

5
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2.2. Impact of the ES on Economic Growth

In order to show the positive effect of the ES on economic growth, let us use a 2-factor linear
homogenous production function with Hicks-neutral technical change (A):

y = A(t) × F(K, L) (1)

Differentiating (1), we get:

dy
dt

=
∂A
∂t
× F(K, L) + A× ∂F

∂K
× ∂K
∂t

+ A× ∂F
∂L
× ∂L
∂t

(2)

As known, 1− α = ∂y
∂K

K
y , α = ∂y

∂L
L
y . Hence, the output growth rate is the following:

Δy
y

=
ΔA
A

+ (1− α)ΔK
K

+ α× ΔL
L

(3)

We have:
gy = gA + gk + α(gl − gk) (4)

The elasticity of production with respect to labor is written as a function of the ES:

α = (1− α) w/r
K/L

, w =
∂y
∂L

, r =
∂y
∂K

, (5)

or in logs and differentiating with respect to time:

dlnα
dt

=
dln(1− α)

dt
+

dln(w/r)
dln(K/L)

× dln(K/L)
dt

− dln(K/L)
dt

(6)

It is known:
dln(w/r)
dln(K/L)

=
1
σ

(7)

Therefore
dlnα

dt
=

dln(1− α)
dt

+
dln(K/L)

dt

(1− σ
σ

)
(8)

and
Δα
α

= − 1
1− α × Δα+

1− σ
σ

(ΔK
K
− ΔL

L

)
(9)

So, we get:

Δα = α(1− α)σ− 1
σ

(gl − gk) (10)

Assuming the constant growth rates of technical progress and the inputs, the output growth rate
(gy) may vary only because of changes in α. Combining (4) with (10), we obtain:

dgy

dt
= α(1− α)σ− 1

σ
(gl − gk)

2 (11)

In case gl � gk, the sign of (11) will be positive if σ > 1 and negative if σ < 1. Thus, the magnitude
of the ES effects is dependent of the difference between the growth rates of capital and labor. In case
gl ≈ gk, the variation of gy over time is small or the impact of the ES on economic growth rate is weak.

6
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In addition, Heubes (1972) stated that not only the time path but also the level of the output
growth rate are functions of the ES. Let us differentiate (4) with respect to time and σ to get for small dt
and dσ;

dgy =

(
∂α
∂t

dt +
∂α
∂σ

dσ
)
(gl − gk)=

⎧⎪⎪⎨⎪⎪⎩ α(1− α)(gl − gk)dt− cα
σ2

ln(K/L)

c + (K/L)
1−σ
σ

dσ

⎫⎪⎪⎬⎪⎪⎭(gl − gk) (12)

In case gl > gk (gl < gk) and K/L < 1 (K/L > 1), the higher growth rate of output is correlated to

a greater ES. Hence,
δgy
δσ > 0. If the ES is low, a strong impact of the relatively scarce input on output

emerges as its elasticity of production is great. With a growing σ, the elasticity of production diminishes
for the scarce input, but it increases for the relatively abundant factor. The impact of the ES change on
the output growth rate becomes small for high levels of the ES. The growth rate is independent of the
ES when K/L = 1.

3. ES in the CES Function

Before analyzing the ES in the CES, we consider the Cobb-Douglas function. The work of Cobb
and Douglas (1928) is a turning point in the field of production functions. It can be said, although
there have been some previous studies on production functions (Schumpeter 1954; Stigler 1952; Barkai
1959; Lloyd 1969; Velupillai 1973; Samuelson 1979; Humphrey 1997), for the first time the relationship
between inputs and outputs is mathematically formulated and empirically assessed in (Cobb and
Douglas 1928). During a vacation at Amherst, Paul Douglas asked math professor Charles Cobb to
suggest an equation describing the relationship between capital and labor and output based on time
series data on the U.S. manufacturing sector for the period 1889–1922. As a result, a joint paper showed
up, where the authors concluded that their model fits the data well. The initial Cobb-Douglas function
has the following form:

y = A× xα1 × x1−α
2 (13)

where x1 is capital (K), x2 is labor (L); A, α are parameters.
However, in the later works, Douglas removed the assumption that sum of elasticities of output

by capital and labor equals one, and used the functional form (14):

y = A×Ka1 × La2 (14)

where A denotes technical change; a1, a2 are exponentials and elasticities of output by capital and
labor, respectively.

The Cobb-Douglas has some properties. First, it belongs to the neoclassical class with 0 < a1 < 1,
0 < a2 < 1 and therefore, reflects the law of positive and diminishing marginal productivity. Second, its
homogeneity is a1 + a2. In case a1 + a2 = 1, we get a linear homogenous function. If a1 + a2 > 1, then the
multiplicative function points to a growing economic system as the output grows faster than the inputs.
Then, returns to scale (ε) increase. Meanwhile, if a1 + a2 < 1, returns to scale decrease. a1 + a2 = 1
denotes constant returns to scale. Returns to scale are also the homogeneity of the production function
and equal to a1 + a2 :

ε =
dy/y
ydx/x

= a1 + a2 (15)

where dy
y = a1 × dx1

x1
+ a2 × dx2

x2
; dx1

x1
= dx2

x2
= dx

x .
As we know, in the Cobb-Douglas function, the ES equals one.
Although the Cobb-Douglas is a powerful mathematical tool to describe production processes, as

mentioned above, this functional form has extremely rigid premises. Hence, the CES function came
into sight. The CES was established by Arrow et al. (1961) or ACMS for short. The authors dedicated
the analysis to the ES. The production functions at that time assumed that the ES receives a fixed value,

7
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such as zero for Leontieff and one for Cobb-Douglas, which, in their view, is too rigid. Moreover, in
order to assess the impact of economic policies on factor income, the CES is more appropriate (Miller
2008) or the Cobb-Douglas hides the role of the ES on economic growth and technical progress (Pereira
2003).

To examine the goodness of fit of the Leontieff and Cobb-Douglas functions, ACMS performed
econometric analysis of the behavior of the ratio of labor income to nominal output. As long as
output and input prices remain unchanged, the proportion is fixed and determined only by the
parameters of the function. Rejection of the Cobb-Douglas (and Leontieff) functions are based on the
arguments below.

The invariance of labor share in the Cobb-Douglas is expressed as follows:

p2 × L
y

= a2 (16)

Equation (16) is rewritten in logs:

ln
y
L
= a + ln(p2) (17)

where ln 1
a2

= a.
For the Leontieff function, the ratio between inputs arises from the production process, but is not

influenced by price, i.e.,:
L
y
= γ (18)

Equation (18) takes the form of logs:

ln
( y

L

)
= a (19)

where ln
(

1
γ

)
= a.

Hence, we need to analyze the following function:

ln
( y

L

)
= c + b× ln(p2) + ε (20)

where ε is a random error.
It is necessary to test the hypotheses b = 0, b = 1. Investigating a data sample of 24 industries of

19 countries, ACMS came to the conclusion that, in most cases, the hypotheses b = 0, b = 1 are rejected.
The above finding encouraged the researchers to construct a new type of production function

with a more flexible labor share, which is expressed in the following:

ln
( y

L

)
= c + b× ln(p2) (21)

where parameter b can have any value, but not zero or one.
From (21), under a condition of nonexistence of restraints on b, we can get a CES function. Through

some transformations, the last version of the CES is the following:

F(K, L) = γ(δ×K−θ + (1− δ)L−θ)
−1
θ (22)

where θ = 1−b
b is substitution parameter, δ = a1 × γθ is distribution parameter; γ is efficiency

parameter and a1 + a2 = γ−θ, the ES, σ = 1
1+θ .

So that the CES function (22) is a neoclassical one, assumptions 0< δ< 1; γ >0; θ >− 1 must be
made. The premise of Hicks-neutral technical progress in the CES implies that the output produced
by combining capital with labor is assumed to grow exponentially in a way that does not alter the
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marginal rate of technical substitution between the inputs. Therefore, the parameters of the production
function will be stable over time.

In case σ > 1, i.e., −1 < θ < 0, capital and labor are substitutable, so rising K/L leads to an increase
in capital share.

If σ < 1, i.e., 0 < θ < ∞, capital and labor are complementary, and thus, when K/L increases, labor
share rises.

In case σ = 1 (θ = 0), then the Cobb-Douglas is obtained.

4. Empirical Research on the Elasticity of Factor Substitution and Its Association with Economic
Growth

4.1. Estimation of the ES

Solow (1957) was a pioneer, and his followers used the Cobb-Douglas function, where technical
change is referred to as neutral, and therefore changes in the ES were completely ignored (the ES
is always equal to one). In their models, technical change is called total factor productivity (TFP).
Nevertheless, in many empirical studies, the ES varies. For example, among others, Nerlove (1967) on a
survey found that changes in period or concept may generate the different values of the ES. Comparing
ES estimates from six alternative functional forms, five different measures of the rental price of capital,
and two estimation techniques, Berndt (1976) went to a similar conclusion. McFadden (1978) tested the
constancy of the ES for the steam-electric generating industry and revealed that the ES obtains a value
of approximately 0.75. Hamermesh (1993) showed that the ES varies from 0.32 to 1.16 in the US and
from 0.49 to 6.86 in the UK.

The consideration of the U.S. processing industry over a 200-year period indicates that ES values
tend to change. The evidence shows that the ES was close to zero in the 19th century (Asher 1972;
Uselding 1972; Schmitz 1981), close to one in the mid-20th century (Zarembka 1970), and greater
than one in the late 20th century (Blair and Kraft 1974; Hsing 1996). Duffy and Papageorgiou (2000)
estimated the ES based on a CES function on a cross-section of 82 countries and found the ES greater
than one for developed economies and lower than one for developing economies. These authors
concluded that the ES level is related to a country’s stages of development. Using a Variable Elasticity
of Substutution (VES) for 12 OECD countries (1965–1986), Genç and Bairam (1998) revealed that the
average ES is greater than one. It is noteworthy that the diversity of results is because of the difference
in data sets and estimation techniques. The above analyses also revealed that the ES is stable for a
sample period, but rises with economic development.

4.2. Impact of the ES on Economic Growth

Theoretically, in early growth theory, some authors attempted to prove the significance of the ES.
Solow (1957), Pitchford (1960), and Sato (1963) stated that allowing the ES to get any value will generate
multiple growth paths, and some of them will be unbalanced. Recently, Azariadis (1993), using the
overlapping generations model of growth, showed the possibilities of poverty traps depending on the
values of the ES.

Ferguson (1965) ensured that in the case of a non-unitary ES, the output growth rate is dependent
on the ES, as well as the growth rate of the savings ratio. La Grandville (1989), making use of the
Slutsky equation, provided another evidence on the positive relationship between the ES and the
output. The larger the ES, the higher production level that can be obtained. Barro and Sala-i-Martin
(1995) found that under certain conditions, a large ES generates endogenous, steady-state growth. Later,
Klump and Grandville (2000) proved that a greater ES leads to more probable endogenous growth and
higher long-term growth rates. Also, the greater the ES, the higher steady-state income per capita. If
the ES is more than one, we can achieve a unique steady-state and possibility of endogenous growth
(Barro and Sala-i-Martin 1995). In the meantime, Pitchford (1960), Azariadis (1993), and Galor (1995),
among others, considered that an ES lower than one in a CES function indicates multiple steady-states
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and poverty traps for per capita output. Two studies relying on La Grandville conducted by Yuhn
(1991) and Cronin et al. (1997) attempted to test the relationship between the ES and economic growth.
Comparing the US with South Korea, Yuhn (1991) found that the ES was higher for South Korea, which
helps explain the higher growth rates acquired in this country after the 1960s. Utilizing data set for
the 1961–1991 period, Cronin et al. (1997) estimated an ES of 13.01 between telecommunication and
capital. Changes in the ES affect growth rate since production is an increasing function of the ES. In the
CES case, the ES influences growth in almost every case, except when both inputs are increasing at the
same rate (Kamien and Schwartz 1968).

Most studies on production functions in Vietnam made use of the frequentist methods or
accounting method to estimate the Cobb-Douglas function. As known, this production function has an
ES of one. Tu and Nguyen (2012) used the Cobb-Douglas function to analyze the impact of inputs
on coffee productivity in DakLak province. Q.H. Nguyen (2013) applied the accounting method to
build a Cobb-Douglas function for Hung Yen province to identify the resources of economic growth
of this province. Khuc and Bao (2016) built an extended Cobb-Douglas function to identify factors
contributing to the Vietnamese industry growth. Using the accounting method, Le estimated Vietnam’s
Cobb-Douglas function based on enterprise data of mining, processing industry, electricity and water
production and distribution. The results show that the proportion of labor and fixed assets in the total
output of the studied sectors ranges from 0.11 to 0.39 and 0.89 to 0.61, respectively.

For other types of the Cobb-Douglas function, Pham and Ly (2016) constructed a translog
Cobb-Douglas function for the manufacturing enterprises of Vietnam, having net revenue as the
output and capital, labor, and other costs as the inputs, based on data extracted from the 2010 Vietnam
Enterprise Survey by the General Statistics Office. Huynh (2019) used the MLE method on a dataset
extracted from the Enterprise Survey of the General Statistics Office for the period 2013-2016 to build a
Battese-Coelli production function and analyze the factors affecting technical efficiency of small and
medium enterprises in Vietnam.

It is noted that in the production function theory, many studies have tried to «soften» the premises
of the Cobb-Douglas and the CES. But so far no other functions could surpass them in terms of
popularity. Moreover, because of the very rigid premises of the Cobb-Douglas, the CES is increasingly
explored. Hence, in the present work, the CES is selected to estimate the ES based on the data set of
the Vietnamese nonfinancial enterprises.

5. Methodology and Data

5.1. Method and Model

There are several methods applied to estimate the ES, but different techniques can be divided
into two main groups: Direct and indirect. A direct method allows for estimating the ES through the
specification of a production function. The indirect method explores the link between the ES and factor
shares to obtain the estimates. We can estimate the ES via the first-order profit maximization condition
for labor employment. McFadden (1978) considered that choosing estimation methods depends on
data availability, while Mizon (1977) preferred the direct method to the indirect way as the former
provides estimates for a large number of functional forms using a common estimation technique and
data set. In this study, following Mizon (1977), the author chooses the direct method.

Note that most of the previous studies estimated the ES within the frequentist framework using
the CES or the VES. However, in the last three decades, the Bayesian approach has been popularized
in social sciences thanks to some of its important strengths (Nguyen et al. 2019; Briggs and Nguyen
2019; Thach et al. 2019; Thach 2019). So, the question of when to use Bayesian analysis and when to
use frequentist analysis depends on our specific research problem. For instance, firstly, if we would
like to estimate the probability that a parameter belongs to a given interval, the Bayesian framework
is appropriate. But if we want to perform a repeated-sampling inference about some parameter,
the frequentist approach is needed. Secondly, from what was just mentioned, frequentist confidence
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intervals do not have straightforward probabilistic interpretation compared to Bayesian credible
intervals. A 95% confidence interval can be explained as follows: If the same experiment is repeated
many times and confidence intervals are computed for each experiment, then 95% of those intervals will
contain the true value of the parameter. The probability that the true value falls in any given confidence
interval is either one or zero, and we do not know which. Meanwhile, a 95% Bayesian credible interval
provides a straightforward interpretation that the probability that a parameter lies in an interval is
95%. Thirdly, frequentist analysis is performed to approximate the true values of unknown parameters,
while Bayesian analysis provides the entire posterior distribution of model parameters.

In the current study, making use of the direct method, the author estimates the ES through
specifying an aggregate CES function. To estimate the CES function, the Bayesian nonlinear
mixed-effects regression is performed. The Bayesian mixed-effects models with the grouping structure
of the data consisting of multiple levels of nested groups contain both fixed effects and random
effects. Our two-level mixed-effects model accounts for the variability between enterprises, which are
identified by the id variable. According to Nezlek (2008), the results of analyses of multilevel data that
do not take into account the multilevel nature of the data may (or perhaps will) be inaccurate. Based
on Equation (22), our nonlinear model has the following expression:

lnyi = β0 − 1
θ

ln
(
δ×Ki

−θ + (1− δ)Li
−θ)+ εi (23)

where lnyi is natural logarithm of output, Ki and Li are natural logarithm of capital and labor used,
respectively, β0 is an intercept, θ is used to calculate σ = 1

1+θ , εi is a random error. The conditions
0 < δ < 1, θ > −1 must be satisfied so Equation (23) is a neoclassical function.

In Bayesian analysis, we use conditional probability:

p(B) =
p(A, B)

p(B)
(24)

to derive Bayes’s theorem:

p(A) =
p(A|B) × p(B)

p(A)
(25)

where A, B are random vectors.
Assuming that a data vector y is a sample from a probability model with the unknown parameter

vector θ, this model is written using a likelihood function:

L(θ; y) = f (y;θ) =
n∏

i=1

f (yi
∣∣∣θ) (26)

where f (yi
∣∣∣θ) is a probability density function of y given θ.

Relying on given data y, we infer some properties of θ. In Bayesian analysis, model parameters θ
is a random vector.

We begin Bayesian analysis by specifying a posterior model. The posterior model combines given
data and prior information to present the probability distribution of all parameters. Therefore, the
posterior distribution has two components: A likelihood function containing information about the
model parameters based on observed data, and prior distribution, including known information about
the model parameters. By Bayes’ law, the likelihood function and priors are combined to form the
posterior model:

Posterior ∝ Likelihood × Prior (27)
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Because both y and θ are random variables, we apply Bayes’s theorem to obtain the posterior
distribution of θ given y:

p(y) =
p(y
∣∣∣θ) × p(θ)

p(y)
=

f (y;θ) ×π(θ)
m(y)

(28)

where m(y) ≡ p(y) known as the marginal distribution of y which is formulated as follows:

m(y) =
∫

f (y;θ) ×π(θ) × d(θ) (29)

where f (y;θ) is a likelihood function of y given θ, π(θ) is a prior distribution for θ, m(y) is also known
as the prior predictive distribution.

In cases when the posterior distribution is derived in closed form, we can proceed immediately
to the inference step. However, except for some special models, the posterior distribution is scarcely
available and needs to be estimated through simulation. Bayesian methods can be used to simulate
many models. To simulate Bayes models, MCMC algorithms often require effective sampling and
verify convergence of MCMC chains to the stationary distribution.

Experience of fitting Bayesian models shows that the specification of priors can rest on previous
studies and expert knowledge. In our research, the propositions of a neoclassical production functions
and previous research can suggest us to specify priors. To specify the CES, referring to Arrow et
al. (1961), Afees (2015) or Lagomarsino (2017), we proposed to assign the normal N(1,100) prior to
parameter β0, the uniform(0,1) prior to parameter δ, the gamma(1,1) prior to parameter θ, and the
Igamma(0.001, 0.001) prior to the variance component for u1 j (σ2

id) and the overall variance parameter
(σ2

0) in this research.
Our Bayesian nonlinear mixed-effects regression model is as follows:
The likelihood function:

lnyij = β0 − 1
θ

ln
(
δ× lnk2010i j

−θ + (1− δ)lnli j
−θ)+ u1 j + εi j (30)

The priors:
β0 ∼ N(1, 100)

δ ∼ uni f orm(0, 1)

θ ∼ gamma(1, 1)

u1 j ∼ N
(
0, σ2

id

)
σ2

id ∼ Igamma(0.001, 0.001)

σ2
0 ∼ Igamma(0.001, 0.001) (31)

where lnyij, lnk2010i j, lnli j are natural logarithm of output, capital, labor employed, respectively in
constant 2010 prices, β0 is efficiency parameter, θ is substitution parameter, δ is distribution parameter,
εi j is the random error, year i = 2008, . . . , 2018, and enterprise j = 1, 2, 3, . . . , 227.

5.2. Data Description

The study utilizes panel data collected from the financial statements and annual reports of 227
non-financial enterprises listed at Ho Chi Minh Stock Exchange and Ha Noi Stock Exchange in Vietnam
for the period 2008–2018. All these enterprises belong to different manufacturing industries and thus,
to capture their varying effects on the outcome, we perform the mix-effects regression. Time frequency
indicates the year. The dataset has 1,974 observations. In Bayesian statistics, due to combining prior
information with observed data, inferential results are valid to sparse data, and thus a small sample
does not affect MCMC simulation results. It is noted that the 2008–2018 sample period includes years
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2008–2009, when many countries around the world faced a sharp economic decline, but the Vietnamese
enterprises were much less impacted by this global crisis. Statistical figures show that the economic
growth of Vietnam achieved good performance, 5.7%, in 2008, and 5.4% in 2009 (World Bank 2019).
Net revenue and fixed assets represent the enterprises’ output and capital variables. The figures of
net revenue and fixed assets are calculated based on the 2010 production price index of the General
Statistics Office. The units of net revenue, fixed assets and labor are million VND, million VND and
number of employees, respectively. The nonfinancial enterprises are chosen for our analysis since
this sector is a powerful engine of Vietnamese economic growth, so to a great extent it stands for the
national production. Moreover, according to Karabarbounis and Neiman (2014), the use of data on
the enterprises listed on the stock market allows labor and capital shares not to be skewed owing to
statistical errors that often occur when we take into account the mixed incomes from households’ labor
and capital contributions as well as those in the state-owned sector which are difficult to be measured
accurately. The measurements of the variables are presented in Table 1.

Table 1. The measurements of the variables.

Variable Notation Measurement Data Source

Input Labor Lnl Natural logarithm (Number of
personal)

Enterprises’ annual
report

Capital Lnk2010 Natural logarithm (net fixed
assets/Production price index)

Enterprises’
financial statement

Output Product Lny2010 Natural logarithm (net
revenue/Production price index)

Enterprises’
financial statement

PPI Production price
index PPI 2010 as base year General Statistics

Office

6. Empirical Results

6.1. Descriptive Statistics

Table 2 shows that variables y2010, l, and k2010 obtain maximum value of 4.00 × 107, 19,828 and
2.27 × 107, minimum value of 5320, 17 and 270, mean of 1,519,804, 1186 and 497,570, respectively.
Standard deviation (Std. Dev) measures the variation or dispersion of a set of values. It equals 3,516,699,
1793 and 1,614,555 for y2010, l and k2010, respectively.

Table 2. Descriptive statistics.

Variables Observations Mean Std.Dev Min Max

y2010 1974 1,519,804 3,516,699 5,320.232 4.00 × 107

l 1974 1,185.77 1,793.31 17 19,828
k2010 1974 497,569.7 1,614,555 270.336 2.27 × 107

6.2. Bayesian Simulation Results

Acceptance rate and efficiency are two criteria for evaluating the efficiency of MCMC sampling
in Bayesian models. The acceptance rate is the number of proposals accepted in the total number
of proposals, while efficiency means the mixing properties of MCMC sampling. Both of these
rates influence MCMC convergence. The simulation results demonstrate that our model has a high
acceptance rate of 0.6. According to Roberts and Rosenthal (2001), acceptance rates between 0.15–0.5
are optimal. Therefore, the MCMC sampling of our regression model has reached an acceptable
acceptance rate. The smallest, average and largest efficiency of the MCMC sampling is 0.044, 0.21 and
0.97, which are greater than the warning level of 0.01 (Table 3). The MC errors (MCSE) of the posterior
mean estimates are close to one decimal. The smaller these values are, the more accurate the estimates.
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In Bayesian analysis, posterior confidence intervals, as stated above, have a straightforward probability
interpretation. For example, for our model, the probability of the posterior mean of the parameter β0 in
the range (10.7; 11.2) is 95% (Table 3).

Table 3. Estimation results of the model.

Parameters Mean Std.Dev MCSE Median
Equal-Tailed [95% Cred.

Interval]

β0 10.93202 0.1151538 0.009685 10.92836 10.71778 11.16215
δ 0.7393157 0.1598364 0.013872 0.7644217 0.3930561 0.9687505
θ 1.932563 1.48309 0.11108 1.613252 0.0643177 5.390139
σ2

0 0.1457225 0.0049185 0.000091 0.1455947 0.136648 0.1558061
σ2

id 1.410874 0.1324938 0.002484 1.401432 1.173098 1.700959

Random intercepts for u1 j (id) denote the varying effects of 227 enterprises studied on the outcome
of the model. Means of all the random effects get MCSE close to one decimal, which is reasonable for
MCMC algorithms. For illustration, we demonstrate the random intercepts of the first 10 enterprises in
Table 4.

Table 4. Estimated random effects of the first 10 enterprises.

Identifier of
Enterprises

Mean Std. Dev. MCSE Median
Equal-Tailed

[95% Cred. Interval]

lny2010

id

1 0.8898169 0.1584065 0.005874 0.8922153 0.57769821 0.196495
2 −0.436001 0.1433862 0.006788 −0.4331991 −0.7247438 −0.1631326
3 −0.2109199 0.1437552 0.006945 −0.2091555 −0.4940332 0.0669913
4 −0.5319857 0.1439332 0.006037 −0.5303992 −0.8170173 −0.2592058
5 0.401608 0.1442947 0.006929 0.3997867 0.1252465 0.6856987
6 0.632537 0.2053234 0.006576 0.6323702 0.23859711 0.022473
7 1.133266 0.1508498 0.006596 1.129083 0.84428331 0.429053
8 1.204492 0.144532 0.005785 1.206624 0.90718511 0.489364
9 −1.363611 0.1438093 0.005982 −1.362593 −1.648538 −1.089397

10 1.146486 0.1522397 0.006884 1.147387 0.83553091 0.442738

6.3. Convergence Test for MCMC Chains

The convergence of MCMC chains should be tested before Bayes inference is performed, because
Bayesian inference is robust only when the MCMC chains converge to a stationary distribution.
According to the results recorded in Figure 1, with respect to our model, the diagnostic graphs are
reasonable. Trace plots exhibiting no trends, run relatively quickly through the distribution towards
the constant values of mean and variance; the autocorrelation plots are acceptable; histograms resemble
the shape of probability distributions (Figure 1). In general, MCMC chains of our model have good
mixing. Therefore, it can be concluded that there is no serious convergence problem and the MCMC
chains have converged to the target distribution.
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Figure 1. Graphical convergence diagnostics.

In addition, cusum plots are also a visual method for inspecting MCMC convergence. In our case,
the cusum lines are not smooth but jagged, which surely points to MCMC convergence (Figure 1).

Besides visual inspection, formal test in which effective sample size can be used is a common
method (Table 5). Efficiency greater than one is suggested satisfactory. Results presented in Table 5
demonstrate no sign of a non-convergence problem since the efficiency of all the model parameters is
more than 4, whereas the highest correlation time is 22 lags.

Table 5. Effective sample size.

Parameters ESS Corr. Time Efficiency

β0 141.36 21.22 0.0471
δ 132.77 22.60 0.0443
θ 178.27 16.83 0.0594
σ2

0 2903.02 1.03 0.9677
σ2

id 2844.00 1.05 0.9480

6.4. Estimation Result of the ES

According to the results shown in Table 3, our estimated CES function has the value of efficiency
parameter β0 = 10.9, a distribution parameter of δ = 0.7, and a substitution parameter of θ = 1.9.
The Bayesian simulations do not provide point estimates in a frequentist sense. Tests for MCMC
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convergence allow to confirm whether or not estimation results are robust. In our work, we already
performed the convergence diagnostics, which produced acceptable results, as shown in the above.
Once Bayesian inference is valid, MCMC iterations do yield similar estimates of the model parameters.
These estimates point to the properties of a neoclassical production function. Because θ > 0, the ES
is smaller than one (0 < σ < 1). These empirical results coincide with most of previous studies
(for example, Berndt 1976; Hamermesh 1993; Pereira 2003; Chirinko 2008; Young 2013). In case σ < 1,
we can provide two main explanations for the Vietnamese nonfinancial enterprises’ output growth.

First, our data set used in this study indicates that there is a marked difference between the growth
rates of capital and labor. Hence, with the ES lower than one, the sign of (12) is negative. Based on this
finding, it can be concluded that the output growth rate of the Vietnamese nonfinancial enterprises has
a falling trend in the long run. We should note that compared to enterprises in advanced economies,
the Vietnamese ones have a very low contribution of technical change to production, and hence they are
not capable of generating the unbounded endogenous growth. Therefore, stimulating R&D activities
in enterprises is extremely important.

Second, as gl < gK and K
L > 1, the higher growth rate of output is associated with a larger ES,

i.e.,
δgy
δσ > 0. According to our result, the ES is less than one, so capital as a relatively scarce factor

strongly influences the output since its elasticity of production is great (≈0.73). While the ES is
rising, the elasticity of production will be diminishing for the capital, but it will increase for the labor.
Under the current conditions of the Vietnamese economy, capital is a scarce factor of the economy, so
substantially increasing investment should be one of the most significant growth policies. Specifically,
it is necessary to attract more foreign direct investment and expand positive spillover effects from
foreign corporations to the national enterprises.

7. Conclusions

The present research uses the Bayesian non-linear mixed-effects regression method via the
Random-walk MH algorithm to estimate the ES of the CES production function for nonfinancial
businesses listed at Hanoi Stock Exchange and Ho Chi Minh City Stock Exchange in Vietnam. The CES
was chosen over the Cobb-Douglas because its premises are more flexible, and in particular, its ES
shall have useful implications for economic growth. The results of the convergence tests show that the
MCMC chains converge to the target distribution so that the Bayesian inference is robust. Besides,
the results of the statistical tests point out that our estimated model is consistent with the observed data.
Mixed-effects estimates denote the varying impact of the studied enterprises on the model outcome.
The CES function specified is a neoclassical one with a constant ES of less than one, i.e., capital and
labor are complementary. So, it is concluded that the output growth rate of the Vietnamese nonfinancial
enterprises is going down in the long-term. Thus, Vietnamese enterprises need to expand investment
and intensify R&D activities in order to increase the capital-labor ratio as well as the contribution of
technical progress to production, thanks to which the possibility of the unceasing endogenous growth
can be created in the earliest prospect.
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Abstract: In this paper, we disentangle public spending components in order analyse their effects on
the U.S. economy. Our Dynamic Stochastic General Equilibrium Model (DSGE) model includes both
civilian and military expenditures. We take into account the changes in the effects of these public
spending components before and after the structural break that occurred in the U.S. economy around
1980, namely financial liberalisation. Therefore, we estimate our model with Bayesian methods for
two sample periods: 1954:3–1979:2 and 1983:1–2008:2. Our results suggest that total government
spending has a positive effect on output, but it induces a fall in private consumption. Moreover,
we find important differences between the effects of civilian and military spending. In the pre-1980
period, higher civilian spending induced a rise in private consumption, whereas military spending
shocks systematically decreased it. Our findings indicate that civilian spending has a more positive
impact on output than military expenditure. Our robustness analysis assesses the impact of public
spending shocks under alternative monetary policy assumptions.

Keywords: military and civilian spending; DSGE model; fiscal policy; monetary policy; Bayesian
estimation
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1. Introduction

The effect of an increase in government spending is a central issue in macroeconomics. In this
regard, different macroeconomic models have achieved contrasting conclusions about the response
of private consumption to government spending shocks (see, among others: Baxter and King 1993;
Ambler and Paquet 1996; Linnemann and Schabert 2006; Forni et al. 2009; Leeper et al. 2010;
Enders et al. 2011; Coenen et al. 2012; Corsetti et al. 2012; Kormilitsina and Zubairy 2018;
Beidas-Strom and Lorusso 2019).

It is also well known that around the early 1980s, the transmission of fiscal policy shocks
actually changed (see, for example: Fatás and Mihov 2001; Blanchard and Perotti 2002; Perotti 2005;
Galí et al. 2007). Such a change is related to the increased asset market participation by households
(Bilbiie et al. 2008). During the 1960s and the 1970s, a large fraction of households was prevented access
to financial markets due to significant restrictions. Starting from the early 1980s, financial liberalisation
widened private access to financial markets. In turn, such a change had an important influence on the
private consumption response to government spending shocks.

In this paper, we develop and estimate a Dynamic Stochastic General Equilibrium (DSGE) model,
which includes two different components of government spending, namely civilian and military
expenditures. In line with the so-called “military Keynesianism” (see Pieroni et al. 2008), we assume
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that spending decisions for these two different government components are independent. According
to the proponents of this view, defence expenditure satisfies two particular conditions: Firstly, it
is financed independently of the other public spending categories (such as education and health).
Secondly, decisions about the defence sector are taken from institutions that are independent of the
other government sectors (the Department of Defence in the U.S.).

Our DSGE model tries to explain the possible sources of crowding in/out effects in consumption
observed in the data. To do so, we take into consideration heterogeneous households as in Galí et al.
(2007) and Lorusso and Pieroni (2017). A share of households does not have access to the bond market
and consumes their current disposable income at each date. On the other hand, a share of households
has access to financial markets, smoothing their consumption in the desired way. Firms that produce
differentiated goods decide on labour input and set prices according to the model of Calvo (1983).
The fiscal policy authority purchases consumption goods, which are divided into spending for the
military and non-military sectors, and raises lump-sum taxes and income taxes and issues nominal
debt. Finally, our model encompasses a central bank, which sets its policy instrument, the nominal
interest rate, by the rule of Taylor (1993).

We estimate our model with Bayesian techniques using U.S. data for two sub-samples:
1954:3–1979:2 (S1) and 1983:1–2008:2 (S2). This sample split allows us to analyse the changes in fiscal
shocks before and after the potentially important changes to the financial markets mentioned above.

The main contribution of this paper with respect to previous literature is twofold. Firstly, we
include the disaggregated components of civilian and military spending in a DSGE theoretical
framework. This allows us to assess the effects of these two public spending components on
several macroeconomic aggregates and, in particular, on private consumption. Secondly, we use
the Bayesian approach to estimate the effects of fiscal policy shocks on the economy. This allows us
to avoid the well-known shortcomings in the identification of military shocks that are associated
with the neoclassical literature (Ramey and Shapiro 1999; Ramey 2011) based on the so-called
“narrative approach”.1

Our estimated results show that, in the U.S., the share of asset holders increased after the financial
liberalisation that occurred in the early 1980s. Such an increase has important consequences on
the effects of public spending shocks on the economy. In particular, we find that total government,
non-military and military spending shocks affect the U.S. economy differently. An increase in total
government expenditure has a positive effect on output, but it induces a fall in private consumption
(the so-called crowding-out effect). This occurs because the negative wealth effect generated by
the increase in taxation leads both non-asset and asset-holders to increase their labour supply.
Accordingly, the fall in the aggregate wage lowers households’ disposable income, and in turn,
private consumption decreases.

On the other hand, an increase in non-military spending induced a crowding-in effect on
consumption in the pre-1980s period. Such an outcome occurred because the lower persistence
of the non-military spending shock implies a lower wealth effect on asset holders, and subsequently,
the shift in labour demand dominates the shift in labour supply. Accordingly, the real wage increases
enough to raise aggregate consumption. Our results also indicate that military spending shocks have a
less positive effect on output than civilian spending shocks in both sub-samples.

Finally, we analyse the role of monetary policy in the presence of several public spending shocks.
We find that a higher nominal interest rate associated with a more aggressive monetary policy tends to
strengthen household incentives to postpone consumption, inducing a negative effect on output.

The rest of the paper is structured as follows. The model is presented in Section 2. In Section 3, we
describe the data used for our analysis, discuss the parameters of the model, and report the estimated

1 For a detailed discussion about the criticism of the narrative approach, refer to Perotti (2005).
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results. Section 4 presents the impulse response analysis of our estimated models, and Section 5
provides the robustness analysis. Finally, Section 6 concludes.

2. The Model

In this section, we present our DSGE model, which is in line with the theoretical framework
developed by Bilbiie et al. (2008).2

2.1. Households

We assume a continuum of infinitely-lived households [0, 1] that are divided in two fractions:
asset holders and non-asset holders. Asset holders are denoted with the fraction 1 − λ. They trade a
risk-less one period bond and hold shares in firms. The non-asset holders are denoted by λ. They do
not participate in asset markets and simply consume their disposable income.

2.1.1. Asset Holders

These households face the following intertemporal problem:

max
{CA,t ,LA,t ,BA,t+1}

Et

∞

∑
t=o

βt

(
CA,tL

ϕ
A,t

)1−σ

1 − σ
(1)

where β ∈ (0, 1) denotes the discount factor, ϕ indicates the inverse of the Frish elasticity and σ is
the inverse of the intertemporal elasticity of substitution. Moreover, CA,t, LA,t and BA,t+1 denote,
respectively, consumption, leisure and nominal bond holdings for each asset holder.

The asset holder intertemporal budget constraint is expressed by:

R−1
t BA,t+1 + PtCA,t + PtTt = BA,t + (1 − τ) (WtNA,t + PtDA,t) (2)

where τ is the income tax rate that is assumed to be constant and (Tt) denotes the real lump-sum taxes
that are adjusted to a rule specified below. Moreover, we indicate by Rt the gross nominal return on
bonds purchased in period t, whereas Pt is the price level, Wt the nominal wage and DA,t the real
dividend payments to households who own shares in the monopolistically-competitive firms. Finally,
NA,t indicates the hours worked by the asset holder. If we assume that time endowment is normalized
to one, then we have: NA,t = 1− LA,t.

2.1.2. Non-Asset Holders

In each period t, these households solve the following intratemporal problem:

max
{CN,t ,LN,t}

(
CN,tL

ϕ
N,t

)1−σ

1 − σ
(3)

subject to the following budget constraint:

PtCN,t = (1 − τ)WtNN,t − PtTt (4)

where CN,t and NN,t denote consumption and hours worked by non-asset holders, respectively.
Equation (4) implies that non-asset holder consumption equals their net income.

2 Appendices A–C report the full derivation of the model.

23



J. Risk Financial Manag. 2019, 12, 141

2.2. Firms

Firms in the final goods market are competitive. They use the following aggregation technology:

Yt =

⎛
⎝ 1∫

0

Yt (i)
ε−1

ε di

⎞
⎠

ε
ε−1

(5)

where Yt (i) denotes the quantity of intermediate goods i ∈ [0, 1], at time t, used as input. Moreover, ε

is the constant elasticity of substitution.
Firms in the final goods market have the following profit maximization problem:

max
{Yt(i)}

PtYt −
1∫

0

Pt (i)Yt (i) di (6)

where Pt is the price index for the final goods and Pt (i) denotes the price of the intermediate goods
i. From the first order condition for Yt (i), we obtain the downward sloping demand for each
intermediate input:

Yt (i) =
(

Pt (i)
Pt

)−ε

Yt (7)

This implies a price index equal to:

Pt =

⎡
⎣ 1∫

0

(Pt (i))
1−ε di

⎤
⎦

1
1−ε

(8)

The intermediate goods, Yt (i), are produced by monopolistically-competitive producers that face
a production function that is linear in labour and subject to a fixed cost F:

Yt (i) = Nt (i)− F, if Nt (i) > F, otherwise, Yt (i) = 0 (9)

Thus, real profits for these firms correspond to:

Ot (i) ≡
[

Pt (i)
Pt

]
Yt (i)−

[
Wt

Pt

]
Nt (i)

We assume that intermediate goods firms face Calvo-style price-setting frictions (Calvo 1983).
This implies that intermediate firms can reoptimize their prices with probability (1 − α), whereas with
probability α, they keep their prices constant as in a given period. A firm i, resetting its price in period
t, solves the following maximization problem:

max
{P∗

t (i)}
Et

∞

∑
s=0

αsΛt,t+s [P∗
t (i)Yt,t+s (i)− Wt+sYt,t+s (i)] (10)

subject to the demand function:

Yt+s (i) =
(

P∗
t (i)
Pt+s

)−ε

Yt+s (11)

where P∗
t (i) is the optimal price chosen by firms resetting prices at time t. Finally, the expression for

the price law of motion is equal to:

Pt =
[
α (Pt−1)

1−ε + (1 − α) (P∗
t )

1−ε
] 1

1−ε (12)
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2.3. Fiscal Policy

The government budget constraint is given by:

R−1
t Bt+1 = Bt + Pt [Gt − τYt − Tt] (13)

where (τ) and (Tt) denote distortionary and lump-sum taxes, respectively. Moreover, (Bt) indicates
the one-period nominal discount bonds.

We analyse two different cases: firstly, we focus on the model with total government spending;
secondly, we disentangle public expenditure into civilian and military components.

2.3.1. Total Government Spending

In the model with aggregated public expenditure, total government spending is treated as an
exogenous AR(1) process:

log (Gt) = ρG log (Gt−1) + εG
t (14)

where: εG
t ∼ N

(
0, σ2

G

)

where ρG indicates the persistence of total government spending and εG
t is an i.i.d. distributed error

term that captures the shock volatility.

2.3.2. Non-Military and Military Expenditures

In the model with disaggregated components of public expenditure, we adopt the additive
principle where total government spending can be seen as the sum of its different components.
Thus, government spending is divided into civilian sector spending (NMt) and military sector
spending (Mt):

Gt = NMt + Mt (15)

We assume that civilian and military expenditure levels are independent and exogenous AR(1)
processes:

log (NMt) = ρNM log (NMt−1) + εNM
t , (16)

where: εNM
t ∼ N

(
0, σ2

NM

)
log (Mt) = ρM log (Mt−1) + εM

t , (17)

where: εM
t ∼ N

(
0, σ2

M

)

where ρNM and ρM are, respectively, the persistence parameters of the civilian and military shocks,
while εNM

t and εM
t are, respectively, the stochastic civilian and military terms that are i.i.d. distributed.

2.3.3. Financing Mechanism of Public Expenditure

The government primary deficit is defined as:

Dt = Gt − τYt − Tt (18)

Equation (18) simply means that government primary deficit is the total non-interest spending less
revenues. Moreover, we assume that the government incurs a structural deficit (Ds,t), which is given
by the changes in the primary deficit adjusted by automatic responses of tax revenues resulting from
deviations on output from its steady state value (Y):

Ds,t = Dt + τ (Yt − Y) = Gt − Tt − τY (19)
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We assume that the structural deficit is adjusted according to the following log-linearized rule:

ds,t = ηds,t−1 + φgGYgt (20)

This type of rule is in line with those used by Bohn (1998) and Galí and Perotti (2003). The parameter
η captures the possibility that budget decisions are autocorrelated. The parameters φg measure the
response of structural deficit to changes in government spending.

2.4. Monetary Policy

We assume that the monetary authority sets the nominal interest according to the following
log-linearized monetary policy reaction function:

rt = ρRrt−1 +
(

1 − ρR
) {

π̄t + rπ (πt−1 − π̄t) + ry (yt − y)
}
+ εR

t (21)

where ρR is an interest rate smoothing parameter, whereas πt denotes the inflation rate. Equation
(21) implies that the central bank responds to deviations of lagged inflation from an inflation
objective and to an output gap defined as the difference between actual and steady state output
(Rabanal and Rubio-Ramírez 2001).

Our monetary policy rule assumes two exogenous shocks: The first is a shock to the inflation
objective (π̄t), which is assumed to follow a first order autoregressive process:

log (π̄t) = ρπ̄ log (π̄t−1) + επ̄
t (22)

where: επ̄
t ∼ N

(
0, σ2

π̄

)
(23)

The second shock is a temporary i.i.d. monetary policy shock εR
t ∼ N

(
0, σ2

R
)
.

2.5. General Equilibrium and Aggregation

The final goods market clearing condition is given by:

Yt = Ct + Gt (24)

that is production equals demand by total household consumption and total government spending.
The aggregate consumption is given by:

Ct = λCN,t + (1 − λ)CA,t (25)

The equilibrium in the labour market is given by:

Nt = λNN,t + (1 − λ) NA,t (26)

that is the wage level is such that demand by firms for labour equals total labour supply. Finally, the
equilibrium in the share market is given by:

Bt+1 = (1 − λ) BA,t+1 (27)

that is households hold all outstanding equity shares and all government debt is held by asset holders.

3. Estimating the Model

In this section, we focus on the estimated results of our model. We start by describing the data,
then we discuss the assumptions on the prior distributions of the parameters estimated with Bayesian
techniques. Finally, we present the posterior estimates of such parameters.
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3.1. Data Description

Our model is estimated on U.S. data for two samples, 1954:3–1979:2 (S1) and 1983:1–2008:2 (S2).
As we explained above, in the early 1980s, financial liberalisation occurred. Therefore, our choice of
splitting the overall sample reflects the hypothesis of a structural break in such a period.

Our choice of ending S2 in 2008:2 is because this period coincides with the beginning of the U.S.
financial crisis. As a consequence, the Fed adopted an unconventional monetary policy, which resulted
in the short-term nominal interest rate approaching the zero-lower bound. As Christiano et al. (2011)
and Ramey and Zubairy (2018) argued, in such a situation, the effects of fiscal spending shocks on
several macroeconomic aggregates substantially changed with respect to “normal” times.

As we mentioned above, we have two separate models. In the first model, we assumed that the
whole economy was driven by three exogenous shocks: total government spending (εG

t ), inflation
objective (επ̄

t ) and monetary policy (εR
t ). Since there were three exogenous shocks, we used three

observed variables to estimate this model: total government spending, inflation rate and short-term
nominal interest rate. The series of the total government spending was taken from the U.S. Bureau of
Economic Analysis (BEA). The inflation rate corresponded to the quarterly growth rate of the GDP
price index. For the short-term nominal interest rate, we considered the effective federal funds rate
expressed in quarterly terms. The source of these two data series was the website of the Federal
Reserve Bank of St. Louis.

In the second model, we disaggregated total public spending into non-military and military
components. Thus, the exogenous processes governing the economy were four: non-military
expenditure (εNM

t ), military spending (εM
t ), inflation objective (επ̄

t ) and monetary policy (εR
t ). Thus, we

used four observed variables to estimate this model: non-military expenditure, military expenditure,
inflation rate and short-term nominal interest rate. The data series for non-military and military
spending were obtained from the U.S. BEA. In particular, military spending corresponded to national
defence data, whereas non-military spending was obtained from the difference between government
consumption expenditures and gross investment data and national defence data. For inflation rate and
short-term nominal interest rate, we used the data series that we mentioned above.

In both models, we deflated all variables using their respective deflators. Moreover, we
expressed the several variables in log per capita terms. Finally, we detrended all the series using the
Hodrick–Prescott filter with a smoothing parameter equal to 1600.

3.2. Prior Distributions of the Parameters

We split the parameters of our models into two groups. The first set was kept fixed. The
parameters of this group can be viewed as strict priors, and we set their values in line with previous
literature (Galí et al. 2007; Bilbiie et al. 2008). The second group of parameters was estimated using the
Bayesian method.

Table 1 shows the fixed parameters in the two sub-samples for both the aggregate government
spending model and the disaggregated model. From Panel (a), we note that the share of government
expenditure on GDP in S1 was higher than the one in S2. This reflects that fact that the average of
public spending decreased over time. Focusing on the disaggregated model, Panel (b) shows that also
the shares of non-military spending on GDP (NMY) and military spending on GDP (MY) decreased
from S1 to S2.
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Table 1. Fixed parameters for both models. S, Sub-sample.

Parameter S1 (1954:Q3–1979:Q2) S2 (1983:Q1–2008:Q2)

(a) Model with Total Government Spending

β 0.99 0.99
GY 0.28 0.18
τ 0.30 0.30
φg 0.17 0.64
η 0.51 0.71
α 0.75 0.75
σ 2.00 2.00
N 0.25 0.25

(b) Model with Non-Military and Military Expenditures

β 0.99 0.99
GY 0.28 0.18
MY 0.10 0.06

NMY 0.18 0.12
φg 0.17 0.64
η 0.51 0.71
τ 0.30 0.30
α 0.75 0.75
σ 2.00 2.00
N 0.25 0.25

In line with Bilbiie et al. (2008), we kept φg equal to 0.17 in S1 and 0.64 in S2 for both the aggregate
government spending model and the disaggregated expenditure model. This implies that there was a
greater reliance on deficits to finance an extra public spending unit in S2 than S1. Following Bilbiie et al.
(2008), we fixed η equal to 0.51 in the first sub-sample and to 0.71 in the second sub-sample for both
the aggregate government expenditure model and the disaggregated spending model. Such values
imply a greater persistence of deficits in the second sub-sample.

For the remaining fixed parameters, we used the same values for both sub-samples and in both
models. The discount factor (β) corresponded to 0.99, which implies an annual steady state real interest
rate of 4%. Moreover, we assumed that, in the steady state, agents spend one-fourth of their time
endowment working. Following Bilbiie et al. (2008), we set the inverse of the intertemporal elasticity of
substitution (σ) equal to two. The price elasticity of demand for intermediate goods (ε) was chosen such
that the mark-up in the steady state equalled 20%. Moreover, in line with Del Negro and Schorfheide
(2008), we fixed the probability that prices did not change in a given period (α) at 0.75. Finally, we set
the steady state tax rate (τ) equal to 0.3. Together with the assumption that the steady-state share of
debt was zero, these last two parameters pinned down lump-sum transfers in the steady state.

Table 2 displays the prior distributions of the endogenous parameters estimated with Bayesian
techniques for both models in S1 and S2. We start by describing our prior assumptions on the share of
non-asset holders. In line with the findings by Bilbiie et al. (2008), for both models, we assumed that
(λ) was gamma distributed and had a higher prior mean in S1 than S2.

28



J. Risk Financial Manag. 2019, 12, 141

Table 2. Priors of endogenous parameters for both models.

Parameter Prior Distribution Prior Mean Prior St. Dev.

(a) Model with Total Government Spending

S1 S2 S1 S2

ρR Beta 0.65 0.65 0.10 0.10
rπ Gamma 1.50 1.50 0.10 0.10
ry Gamma 0.10 0.10 0.05 0.05
λ Gamma 0.50 0.30 0.01 0.01

(b) Model with Non-Military and Military Expenditure

S1 S2 S1 S2

ρR Beta 0.65 0.65 0.10 0.10
rπ Gamma 1.50 1.50 0.10 0.10
ry Gamma 0.10 0.10 0.05 0.05
λ Gamma 0.50 0.30 0.01 0.01

Notes: In the above table, S1 denotes the first sub-sample, whereas S2 indicates the second sub-sample.

Turning to the parameters of the monetary policy rule, we chose a pretty general and agnostic
approach by assuming the same prior distributions in both sub-samples and for both models. Our
priors were in line with the values found by Smets and Wouters (2007). In particular, we assumed that
the interest rate smoothing parameter was beta distributed with prior mean and standard deviation
corresponding to 0.65 and 0.10, respectively. The prior for the coefficient on inflation was assumed to
have a gamma distribution with mean equal to 1.5 and standard deviation equal to 0.1. Moreover, we
assumed that the coefficient on output was gamma distributed with mean equal to 0.10 and standard
deviation equal to 0.05.

Table 3 shows the priors of the stochastic processes. The distribution for these parameters was the
same in both models and sub-samples. In line with Smets and Wouters (2007), we assumed that the
persistence parameters of the AR(1) processes were beta distributed with means equal to 0.70 and
standard deviations equal to 0.20. Finally, the standard errors of the innovations were assumed to
follow inverse-gamma distributions with mean equal to 0.01 and infinite degrees of freedom.

Table 3. Priors of shock processes for both models.

Parameter Prior Distribution Prior Mean Prior St. Dev.

(a) Model with Total Government Spending

S1 S2 S1 S2

ρG Beta 0.70 0.70 0.20 0.20
ρπ Beta 0.70 0.70 0.20 0.20
σG Inverse-Gamma 0.01 0.01 In f . In f .
σπ Inverse-Gamma 0.01 0.01 In f . In f .
σR Inverse-Gamma 0.01 0.01 In f . In f .

(b) Model with Non-Military and Military Expenditure

S1 S2 S1 S2

ρNM Beta 0.70 0.70 0.20 0.20
ρM Beta 0.70 0.70 0.20 0.20
ρπ Beta 0.70 0.70 0.20 0.20

σNM Inverse-Gamma 0.01 0.01 In f . In f .
σM Inverse-Gamma 0.01 0.01 In f . In f .
σπ Inverse-Gamma 0.01 0.01 In f . In f .
σR Inverse-Gamma 0.01 0.01 In f . In f .

Notes: In the above table, S1 denotes the first sub-sample, whereas S2 indicates the second sub-sample.
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3.3. Posterior Estimates of the Parameters

In both models and in both sub-samples, for the group of parameters estimated with the Bayesian
method, firstly, we estimated the mode of the posterior distribution by maximising the log posterior
function, which combined the priors with the likelihood function given by the data. Secondly, we used
the Metropolis–Hastings algorithm to obtain the full posterior distribution.3 Our samples included
1,000,000 draws, and we dropped the first 250,000 of them. The acceptancerates for the total government
spending model corresponded to 35% in S1 and 33% in S2, whereas for the model with disaggregated
public spending, the components in S1 and S2 were equal to 32% and 33%, respectively. In order to test
the stability of the samples, we used the diagnostic test of Brooks and Gelman (1998). We also used
other diagnostic tests for our estimates, including the Monte Carlo Markov Chain (MCMC) univariate
diagnostics and the multivariate convergence diagnostics. In terms of parameters identification, we
performed the test of Iskrev (2010).4 Such a test shows that all the parameters for both models and in
both sub-samples were identifiable in the neighbourhood of our estimates. Finally, we tested for the
possibility of the misspecification of our DSGE model. In line with Albonico et al. (2019), we estimated
the DSGE-VAR counterparts (in the spirit of Del Negro and Schorfheide 2004) for the models with
aggregate government spending, as well as disaggregated non-military and military expenditures in
both sub-samples. Overall, our results indicated that, in both sub-samples, the benchmark models
outperformed the different DSGE-VAR models.5

Tables 4 and 5 report the posterior means for the parameters of both models for S1 and S2 with a
90% confidence interval.

Table 4. Estimated posteriors of endogenous parameters for both models.

Parameter Posterior Mean Confidence Interval Posterior Mean Confidence Interval

S1 (1954:Q3–1979:Q2) S2 (1983:Q1–2008:Q2)

(a) Model with Total Government Spending

ρR 0.3240 0.2576 0.3894 0.3961 0.3362 0.4557
rπ 1.5330 1.3677 1.6937 1.4920 1.3314 1.6513
ry 0.1396 0.0363 0.2355 0.1286 0.0340 0.2237
λ 0.4484 0.4390 0.4559 0.2898 0.2743 0.3051

(b) Model with Non-Military and Military Expenditures

ρR 0.2419 0.1647 0.3208 0.3664 0.2969 0.4362
rπ 1.5194 1.3634 1.6816 1.4835 1.3201 1.6416
ry 0.1183 0.0290 0.2009 0.1252 0.0300 0.2142
λ 0.4488 0.2998 0.5384 0.2901 0.2745 0.3053

3 All the estimations were done with Dynare (http://www.dynare.org/).
4 All the relative figures are reported in Appendix D together with prior and posterior distributions of the parameters

estimated with Bayesian methods.
5 In Appendix F, Tables A1 and A2 compare the different DSGE-VAR models against the benchmark models, reporting their

marginal log densities and Bayes factors.
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Table 5. Estimated posteriors of shock processes for both models.

Parameter Posterior Mean Confidence Interval Posterior Mean Confidence Interval

S1 (1954:Q3–1979:Q2) S2 (1983:Q1–2008:Q2)

(a) Model with Total Government Spending

ρG 0.8231 0.7340 0.9116 0.7628 0.6653 0.8607
ρπ 0.9629 0.9305 0.9980 0.9580 0.9223 0.9966
σG 0.4954 0.4390 0.5520 0.3155 0.2819 0.3492
σπ 0.2270 0.1624 0.2927 0.2921 0.1976 0.3900
σR 1.3924 1.1659 1.6141 1.2582 1.0998 1.4162

(b) Model with Non-Military and Military Expenditures

ρNM 0.6152 0.4861 0.7413 0.8049 0.7192 0.8934
ρM 0.9291 0.8830 0.9785 0.8394 0.7552 0.9236
ρπ 0.9601 0.9264 0.9975 0.9564 0.9196 0.9962

σNM 0.5104 0.4501 0.5688 0.3273 0.2919 0.3624
σM 0.9652 0.8502 1.0741 0.8604 0.7671 0.9534
σπ 0.2101 0.1482 0.2689 0.2894 0.1936 0.3869
σR 1.4603 1.2293 1.6907 1.2815 1.1146 1.4454

We start by describing the estimates of the share of non-asset holders (λ). From Table 4, we observe
that asset market participation differed considerably across periods. More specifically, for the model
with aggregate government spending, the share of consumers who did not smooth consumption by
trading in assets was estimated as 0.45 in S1 and as 0.29 in S2. Similar values were found for the model
with disaggregated public spending components. These results imply that access to asset markets
widened with the important institutional changes in the early 1980s. As we will discuss below, this
result had important implications for the several fiscal policy shocks.

Focusing on the estimated parameters for monetary policy, we note that for the model with
aggregate government spending in both sub-samples, the nominal interest responded more strongly
to inflation than output changes. Our finding was in line with Andrés et al. (2009). Interestingly, we
found that the interest smoothing parameter had a larger value in S2 than S1. The estimates for these
parameters showed a similar value for the model with disaggregated government spending.

A number of observations are worth making regarding the estimated exogenous processes. In the
model with aggregate government spending, we found that the expenditure shock volatility (σG) was
much larger in S1 than S2. Similarly, government spending shocks were more persistent in S1 than S2.
Regarding the shocks to monetary policy, the inflation target shock was more volatile in S2 than S1,
whereas the nominal interest rate shock had a higher volatility in the first sub-sample. Such results
confirm a stronger central bank response to inflation in the second sub-period.

Focusing on the model with non-military and military expenditures, we noted remarkable
differences across the two sub-samples and between the two components. Firstly, we noted that
the volatilities of the government spending components were larger in the first sub-sample. Secondly,
we found that civilian spending shocks were more persistent in S2, whereas the opposite occurred to
military expenditure shocks. Thirdly, our results showed that σM was almost double of σNM in both S1
and S2. Such findings confirmed that military spending shocks were much more volatile than civilian
shocks. Similarly, military expenditure shocks were more persistent than civilian spending shocks in
both sub-samples.

4. Analysing the Effects of Different Public Spending Shocks on the Economy

In this section, we show the impulse responses by assuming a 1% increase in total government,
civilian and military expenditures. More specifically, we set the values of the several parameters equal
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to their mean estimates of their posterior distributions. This strategy allowed us to compare the effects
of several public spending shocks on the economy effectively.6

4.1. Model with Aggregate Government Spending

Figure 1 plots the impulse responses to a positive government spending shock. We observed that
such a shock was more persistent in the first sub-sample. This result was in line with the studies by
Fatás and Mihov (2003) and Perotti (2005).

Figure 1. Total government spending shock. Notes: Simulated 1% increase in total government
spending. Parameters are set according to their estimated values. The blue lines indicate the responses
of the estimated model for S1, whereas the red lines denote the responses of the estimated model in S2.

Our results indicate that, on the shock impact, output increased by 0.15% in S1 and 0.16% in
S2. However, from the fourth quarter onwards, we noted a smaller increase in GDP during the
post-financial liberalisation period than in S1. Our findings were in line with Albonico et al. (2017),
who found that in recent years, and especially during the Great Recession, the discretionary fiscal
stimulus has played a negligible role in stabilising the U.S. economy.

From Figure 1, we note that, in both sub-samples, an increase in government spending induced
an increase in hours worked. This occurred because both non-asset and asset holders increased their
labour supply due to the negative wealth effect induced by the increase in taxation. Aggregate wages
fell in response to the shock because the shift in labour supply dominated the shift in labour demand.

Moreover, the nominal interest rate increased. As a consequence, private consumption decreased.
Such a finding confirmed the predictions of standard neoclassical models in which higher government
spending tends to depress the consumption of asset holders. The reason was the negative wealth effect
resulting from the induced increase in the tax burden. Such an effect was strengthened by the increase

6 In Appendix E, we report the estimated IRFs and their relative error bands for all three public spending shocks in both
sub-samples.
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in the nominal interest rate. A more aggressive monetary policy implies a higher real interest rate and,
in turn, lowered the incentive of asset holders to postpone consumption.

Interestingly, we found that private consumption had a larger fall in S1 than S2. This is explained
by the higher persistence of the government spending shock in the first sub-sample that increased the
present discounted value of taxes and the wealth effect on asset holders.

4.2. Model with Non-Military and Military Expenditures

Figures 2 and 3 show the impulse responses to non-military and military spending shocks,
respectively.

We start by describing the effects of a 1% increase in non-military spending (Figure 2). We
observed that the persistence of the shock was much lower in S1 than S2. Moreover, our results
showed that, on impact, output increased by 0.13% in the first sub-sample and by 0.10% in the second
sub-sample. Similarly, hours worked increased in both S1 and S2.

Figure 2. Non-military spending shock. Notes: Simulated 1% increase in non-military spending.
Parameters are set according to their estimated values. The blue lines indicate the responses of the
estimated model for S1, whereas the red lines denote the responses of the estimated model in S2.

Interestingly, we noted that the responses of aggregate wage and private consumption were very
different across the two sub-samples. In particular, we observed an increase in these two variables
in S1, whereas they both fell in S2. Therefore, our results showed the crowding-in effect before the
1980s and the crowding-out effect thereafter. The reason for the crowding-in effect in S1 was the strong
enough rise in the real wage. Such an increase induced a rise in the consumption of non-asset holders,
which more than offset the fall in consumption of asset holders. The increase in the aggregate wage
crucially depended on the interaction between labour demand and supply. On the one hand, a positive
civilian spending shock increased the demand for goods and, in turn, affected labour demand. The
firms that could not change their prices and had to adjust their quantities hence shifted labour demand
at a given wage. On the other hand, labour supply shifted for two different reasons. Firstly, non-asset
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holders would work more as tax burden increased. Secondly, asset holders also increased labour
supply for a given wage: this was due both to the wealth effect and to intertemporal substitution.

The lower persistence of the civilian spending shock in S1 implied a lower wealth effect on asset
holders, and in turn, the shift in labour demand dominated the shift in labour supply. Accordingly,
the real wage increased enough to raise aggregate consumption. Since the opposite effects occurred
in the second sub-sample, we observed crowding-out on private consumption. Finally, we note that
the nominal interest rate increased more in the first sub-sample, weakening the positive effect of the
civilian spending shock on consumption.

We now turn to the effects of a 1% increase in military spending. As we can observe in Figure 3,
the persistence of this shock was higher in S1 than S2. Interestingly, we note that the positive effect
on output implied by these shocks was lower compared to the increased civilian spending for both
sub-samples (0.04% in S1 and 0.05% in S2).

Figure 3. Military spending shock. Notes: Simulated 1% increase in military spending. Parameters are
set according to their estimated values. The blue lines indicate the responses of the estimated model
for S1, whereas the red lines denote the responses of the estimated model in S2.

Moreover, it is possible to observe that in both S1 and S2, hours worked increased in response
to the shock due to the negative wealth effect associated with the increase in taxation. Our results
indicated a larger fall in the aggregate wage during the first sub-sample. As a consequence, private
consumption dropped more substantially in S1 than S2.

From these results, it is evident that there were important differences between the effects of
civilian and military spending. In the pre-1980 period, an increase in civilian expenditure induced a
crowding-in effect on private consumption for the U.S. economy. On the contrary, military spending
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shocks caused a systematic fall in private consumption. Moreover, we note that the civilian spending
had a more positive impact on output than military expenditure for both sub-samples.7

5. Robustness Analysis: Different Assumptions about the Taylor Rule

In this section, we investigate the role of monetary policy in the presence of the shocks to total
government, non-military and military spending. In particular, we provide a counterfactual analysis
in which the central bank has a more aggressive monetary policy. More specifically, we assumed that
in the Taylor rule (21), the parameters measuring the response of the policy rate to output (ry) and
inflation (rπ), as well as the interest rate smoothing parameter (ρR) assumed values that were double
those estimated by our models.

Figure 4 shows the responses for both output and consumption in the case of an increase in total
government, non-military and military spending, respectively. The black lines represent the responses
of output and consumption in the presence of the actual monetary policy, whereas the green lines
show the IRFs for the same variables in the presence of a more aggressive monetary policy.

As we explained in the previous section, a more aggressive monetary policy implies a higher
nominal interest rate that strengthened household incentives to postpone consumption. As a
consequence, private consumption and output were lower. In fact, the top panels of Figure 4 show
that in the case of total government spending, for the first sub-sample, both output and consumption
were lower in the presence of a more aggressive monetary policy (on the shock impact, 0.01% lower
than in the benchmark case). In the second sub-sample, the same effects with similar magnitudes can
be observed.

The mid panels of Figure 4 show a more striking difference in the responses of consumption and
output to an increase in non-military spending. In S1, although in the presence of the actual monetary
policy, private consumption increased, when a more aggressive monetary policy was in operation, the
crowding-out effect emerged. In turn, this implies that output in the counterfactual scenario was lower
than in the actual case by 0.02%. These effects are less pronounced in the second sub-sample. Finally,
the bottom panels of Figure 4 show that different monetary policies had negligible effects in the case of
an increase in military spending.

7 In order to further assess the different contribution of fiscal spending shocks on aggregate output, we also performed the
forecast error variance decomposition for 1, 4, 10, and 30 quarters ahead (Albonico et al. 2019). Our results indicated that
fiscal spending shocks had larger contributions on GDP during the post-financial liberalisation period. Moreover, we found
that non-military spending shocks contributed to output changes more than military spending shocks.
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Total Government Spending Shock

Non-Military Spending Shock

Military Spending Shock

Figure 4. Alternative assumptions on the Taylor rule. Notes: In the above graphs, the black lines
denote the IRFsin the presence of the actual U.S. monetary policy, whereas the green lines indicate the
IRFs associated with the counterfactual monetary policy.
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6. Conclusions

In this paper, the impact of total government, non-military and military spending shocks on the
U.S. economy was assessed. We accounted for the established evidence that public spending shocks
have changed substantially in the post-1980s. Therefore, we estimated our DSGE model with recent
Bayesian techniques for two sample periods: 1954:3–1979:2 and 1983:1–2008:2. Our new Keynesian
DSGE model featured limited asset market participation as a potential institutional explanation for
different degrees of fiscal policy effectiveness. Therefore, our model allowed us to relate the differences
in the transmission of public spending shocks to important financial changes in the U.S. economy.

Our results suggested that asset market participation increased noticeably in the post-1980s, in
line with previous evidence in the economic literature. Moreover, we found that an exogenous increase
in total government spending led to a higher output, but decreased consumption. Our findings also
indicated that, in the first sub-sample, an increase in non-military spending induced a crowding-in
effect on consumption. On the contrary, positive shocks to military spending tended to depress private
consumption. We also found that military spending shocks had a less positive effect on output than
civilian spending shocks in both sub-samples. Finally, we assessed the role of monetary policy in the
presence of different public spending shocks. Our findings suggested that a more aggressive monetary
policy tended to lower private consumption and output.

Overall, our results indicated that the U.S. economy seemed to benefit from increases in
non-military spending. On the other hand, the military Keynesianism hypothesis, which still has many
supporters in the U.S., can be at least questionable. The policy implications that can be drawn from
our analysis suggested that switching government priorities in favour of supplying civilian goods and
services, rather than financing federal defence spending, should foster the U.S. economy.

As future work, it will be intriguing to extend this work by considering a Markov switching
rational expectation new-Keynesian model in order to analyse in more detail the change in volatility of
fiscal spending shocks in the pre- and post-financial liberalisation periods.
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Appendix A. Maximization Problems of the Model

From the asset holders utility maximization problem, we obtain the following FOCsfor CA,t
and LA,t:

λt = − Lϕ
A,t(

CA,tL
ϕ
A,t

)σ
1
Pt

(A1)

ϕCA,tL
ϕ−1
A,t(

CA,tL
ϕ
A,t

)σ = −λt [(1 − τ)Wt] (A2)

Putting (A1) into (A2), we obtain the labour decision equation:

CA,t

LA,t
=

(1 − τ)

ϕ

Wt

Pt
(A3)

The FOC for BA,t+1 is:

λt
1
Rt

= λt+1β (A4)
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Putting (A1) into (A5), we obtain the Euler equation:

1
Rt

= β

(
CA,t

CA,t+1

)σ (
LA,t+1

LA,t

)ϕ(1−σ) Pt

Pt+1
(A5)

Thus:
R−1

t = βEt [Λt,t+1]

where:

Λt,t+s = βs
(

CA,t

CA,t+s

)σ (
LA,t+s

LA,s

)ϕ(1−σ) Pt

Pt+s
(A6)

This is the stochastic discount factor.
From the non-asset holders utility maximization problem, we obtain the following FOCs for CN,t

and LN,t:

λt =
Lϕ

N,t(
CN,tL

ϕ
N,t

)σ
1
Pt

(A7)

ϕCN,tL
ϕ−1
N,t(

CN,tL
ϕ
N,t

)σ = λt [(1 − τ)Wt] (A8)

Putting (A8) into (A9) gives the labour decision equation:

CN,t

LN,t
=

(1 − τ)

ϕ

Wt

Pt
(A9)

Given the following production function for intermediate goods:

Yt (i) = Nt (i)− F, (A10)

we can write real profits as:

Ot (i) ≡
[

Pt (i)
Pt

]
Yt (i)−

[
Wt

Pt

]
Nt (i) (A11)

A firm i sets P (i) in order to solve the following problem:

max
{P∗

t (i)}
Et

∞

∑
s=0

αsΛt,t+s [P∗
t (i)Yt,t+s (i)− Wt+sYt,t+s (i)]

s.t : Yt (i) =
(

P∗
t (i)
Pt

)−ε

Yt

that is:

max
{P∗

t (i)}
Et

∞

∑
s=0

αsΛt,t+s

[
P∗

t (i)
(

P∗
t (i)
Pt

)−ε

Yt − Wt

(
P∗

t (i)
Pt

)−ε

Yt

]

The FOC is given by:

Et

∞

∑
s=0

αsΛt,t+s

[
P∗

t (i)− ε

ε − 1
Wt+s

]
= 0 (A12)

Appendix B. Steady States

The Euler equation in the steady state gives:

R =
1
β

(A13)
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In the steady state, from the FOC of the price setting in the intermediate goods firm’s problem,
we have for the real wage:

W
P

=
ε − 1

ε
(A14)

we can rewrite (A14) as:
W
P

=
Y
N

1 + FY
1 + μ

(A15)

The ratio of profits to output is given by:

OY ≡ μ − FY
1 + μ

(A16)

We assume, in the steady state, that:

NN = NA = N (A17)

Because of preference homogeneity, we need to ensure that steady-state consumption shares are
also equal across groups. This can be seen comparing the two labour decision equations evaluated in
the steady state:

CA
L

=
1 − τ

ϕ

W
P

=
CN
L

(A18)

implying:
CA = CN = C (A19)

The steady-state coefficients needed for our log-linear approximation above are fully
determined as:

(1 − τ)
W
P

N
Y

= (1 − τ)
1 + FY
1 + μ

(A20)

CN
Y

= (1 − τ)
1 + FY
1 + μ

− TY (A21)

TY = GY − τ (A22)

CA
Y

= (1 − τ)
1

1 − λ

(
1 − λ

1 + FY
1 + μ

)
− TY (A23)

We thus achieve equalization of steady-state consumption shares by making an assumption on
technology. Specifically, we ensure that asset income in the steady state is zero. This requires assuming
that the fixed cost of production is characterised by:

FY = μ (A24)

Substituting in (A22) gives:

CA
Y

=
CN
Y

= 1 − τ − TY = 1 − GY (A25)

We want to find hours in steady state. Given the equalization of hours and consumption between
the two groups and normalizing P = 1, the intratemporal optimality condition implies:

(1 − τ)WN − T =
(1 − τ)

ϕ
W (1 − N) (A26)
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dividing by Y and using (A20) and the expression for the fixed cost, we obtain the following expression
for the steady-state hours:

N
1 − N

=
1
ϕ

1 − τ

1 − GY
(A27)

Given τ and GY, we chose the steady state N to match average hours worked. From (A27), this
implies a unique value for ϕ.

Appendix C. The Log-Linearized Model

Below, we show the log-linearized equations of our model around the non-stochastic steady state.
We denote by small letters the log deviation of a variable from its steady-state value, while for any
variable Xt, X stands for its steady-state value and XY its steady-state share in output, X/Y.

The log-linearized Euler equation for asset-holders is given by:

cA,t = EtcA,t+1 − 1
σ
(rt − Etπt+1) +

(
1
σ
− 1

)(
1 +

TY
1 − GY

)
(EtnA,t+1 − nA,t) (A28)

The log-linearization of the labour decision equation for asset holders is given by:

N
1 − N

nA,t = wt − cA,t (A29)

The log-linearized labour decision equation for non-asset holders is equal to:

N
1 − N

nN,t = wt − cN,t (A30)

The consumption for non-asset holders is obtained log-linearizing their budget constraint and is
given by:

(1 − GY) cN,t = (1 − τ) (wt + nN,t)− TYtt (A31)

From the last two relations, we obtain a reduced-form labour supply for non-asset holders:

nN,t =
ϕ

1 + ϕ

[ −TY
1 − GY + TY

]
(wt − tt) (A32)

The log-linearized expression for aggregate hours is given by:

nt = λnN,t + (1 − λ) nA,t (A33)

The log-linearized expression for aggregate consumption is given by:

ct = λcN,t + (1 − λ) cA,t (A34)

The log-linearized aggregate production function is given by:

yt = (1 + FY) nt (A35)

We note that the share of the fixed cost F in the steady-state output governs the degree of increasing
returns to scale. The log-linearized new-Keynesian Phillips curve is given by:

πt = βEtπt+1 +
(1 − α) (1 − αβ)

α
wt (A36)
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In both models of aggregate government spending and disaggregated non-military and military
components, the log-linearization of the budget constraint around a steady state with zero debt and a
balanced primary budget gives the following expression:

βbt+1 = bt + GYgt − TTtt − τyt (A37)

Moreover, in the model with disaggregated non-military and military spending, we have that:

gtGY = NMYnmt + MYmt (A38)

The log-linearized structural primary deficit is given by:

ds,t = GYgt − TYtt (A39)

Finally, the log-linearized goods market clearing can be written as:

yt = gtGY + ct (1 − GY) (A40)
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Appendix D. Diagnostic Tests

Appendix D.1. Prior and Posterior Distributions

S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A1. Total government spending model. Notes: In the above graphs, the grey lines represent the
prior distributions, whereas the black lines correspond to the posterior distributions.
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S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A2. Non-military and military spending model. Notes: In the above graphs, the grey lines
represent the prior distributions, whereas the black lines correspond to the posterior distributions.
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Appendix D.2. Monte Carlo Markov Chain Univariate Diagnostics

Figure A3. Total government spending model: S1 (1954:Q3–1979:Q2). Notes: In the above graphs, the
blue lines represent the 80% interval range based on the pooled draws from all sequences, whereas the
red lines indicate the mean interval based on the draws of the individual sequences. The first column
shows the convergence diagnostics for the 80% interval. The second and the third column with labels
denote an estimate of the same statistics for the second and third central moments.
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Figure A4. Total government spending model, S2 (1983:Q1–2008:Q2). Notes: In the above graphs, the
blue lines represent the 80% interval range based on the pooled draws from all sequences, whereas the
red lines indicate the mean interval based on the draws of the individual sequences. The first column
shows the convergence diagnostics for the 80% interval. The second and the third column with labels
denote an estimate of the same statistics for the second and third central moments.
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Figure A5. Non-military and military spending model: S1 (1954:Q3–1979:Q2). Notes: In the above
graphs, the blue lines represent the 80% interval range based on the pooled draws from all sequences,
whereas the red lines indicate the mean interval based on the draws of the individual sequences. The
first column shows the convergence diagnostics for the 80% interval. The second and the third column
with labels denote an estimate of the same statistics for the second and third central moments.
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Figure A6. Non-military and military spending model: S2 (1983:Q1–2008:Q2). Notes: In the above
graphs, the blue lines represent the 80% interval range based on the pooled draws from all sequences,
whereas the red lines indicate the mean interval based on the draws of the individual sequences. The
first column shows the convergence diagnostics for the 80% interval. The second and the third column
with labels denote an estimate of the same statistics for the second and third central moments.
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Appendix D.3. Multivariate Convergence Diagnostics

S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A7. Total government spending model. Notes: In the above graphs, the diagnostics is based on
the range of the posterior likelihood function.
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S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A8. Non-military and military spending model. Notes: In the above graphs, the diagnostics is
based on the range of the posterior likelihood function.
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Appendix D.4. Smoothed Shocks

S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A9. Total government spending model. Notes: In the above graphs, the black line represents
the estimate of the smoothed structural shocks.
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S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A10. Non-military and military spending model. Notes: In the above graphs, the black line
represents the estimate of the smoothed structural shocks.
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Appendix D.5. Historical and Smoothed Variables

S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A11. Total government spending model. Notes: In the above graphs, the dotted black lines
indicate the observed data. The red lines indicate the estimates of the smoothed variables.
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S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A12. Non-military and military spending model. Notes: In the above graphs, the dotted black
lines indicate the observed data. The red lines indicate the estimates of the smoothed variables.
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Appendix D.6. Parameters’ Identification

S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A13. Total government spending model. Notes: In the above graphs, blue bars indicate the
identification strength of the parameters based on their prior means, whereas orange bars denote the
identification strength of the parameters based on their standard deviations.
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S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A14. Non-military and military spending model. Notes: In the above graphs, blue bars indicate
the identification strength of the parameters based on their prior means, whereas orange bars denote
the identification strength of the parameters based on their standard deviations.
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Appendix E. Estimated Impulse Response Functions

S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A15. Total government spending shock. Notes: The above graphs show the responses of the
key variables together with their 95% confidence intervals.
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S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A16. Non-military spending shock. Notes: The above graphs show the responses of the key
variables together with their 95% confidence intervals.
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S1 (1954:Q3–1979:Q2)

S2 (1983:Q1–2008:Q2)

Figure A17. Military spending shock. Notes: The above graphs show the responses of the key variables
together with their 95% confidence intervals.
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Appendix F. Benchmark Model vs. DSGE-VARs

Table A1. Comparison between the benchmark model and DSGE-VARs: model with total government
spending.

Sub-Sample 1

Marginal Log Density Bayes Factor vs. Benchmark Model

DSGE-VAR (1) −189.714 exp[27.449]
DSGE-BVAR(2) −175.595 exp[13.331]
DSGE-BVAR (3) −170.572 exp[8.308]
DSGE-BVAR (4) −171.844 exp[9.579]

Benchmark Model −162.264 exp[0.000]

Sub-Sample 2

Marginal Log Density Bayes Factor vs. Benchmark Model

DSGE-VAR (1) −156.199 exp[−10.742]
DSGE-BVAR (2) −154.106 exp[−12.835]
DSGE-BVAR (3) −156.258 exp[−10.684]
DSGE-BVAR (4) −171.844 exp[4.902]

Benchmark Model −166.941 exp[0.000]

Notes: As in Bekiros and Paccagnini (2014), the DSGE-VARs are estimated with different numbers of lags
(from 1–4). The tightness parameter is set equal to 0.5.

Table A2. Comparison between the benchmark model and DSGE-VARs: model with non-military and
military expenditures.

Sub-Sample 1

Marginal Log Density Bayes Factor vs. Benchmark Model

DSGE-VAR (1) −372.712 exp[46.058]
DSGE-BVAR (2) −368.905 exp[42.252]
DSGE-BVAR (3) −368.800 exp[42.146]
DSGE-BVAR (4) −361.313 exp[34.659]

Benchmark Model −326.653 exp[0.000]

Sub-Sample 2

Marginal Log Density Bayes Factor vs. Benchmark Model

DSGE-VAR (1) −347.561 exp[36.952]
DSGE-BVAR (2) −329.899 exp[19.290]
DSGE-BVAR (3) −336.235 exp[25.626]
DSGE-BVAR (4) −326.873 exp[16.264]

Benchmark Model −310.609 exp[0.000]

Notes: As in Bekiros and Paccagnini (2014), the DSGE-VARs are estimated with different numbers of lags
(from 1–4). The tightness parameter is set equal to 0.5.
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Abstract: In this paper, we compare the transmission of a conventional monetary policy
shock with that of an unexpected decrease in the term spread, which mirrors quantitative
easing. Employing a time-varying vector autoregression with stochastic volatility, our results are
two-fold: First, the spread shock works mainly through a boost to consumer wealth growth, while
a conventional monetary policy shock affects real output growth via a broad credit/bank lending
channel. Second, both shocks exhibit a distinct pattern over our sample period. More specifically, we
find small output effects of a conventional monetary policy shock during the period of the global
financial crisis and stronger effects in its aftermath. This might imply that when the central bank has
left the policy rate unaltered for an extended period of time, a policy surprise might boost output
particularly strongly. By contrast, the spread shock has affected output growth most strongly during
the period of the global financial crisis and less so thereafter. This might point to diminishing effects
of large-scale asset purchase programs.

Keywords: unconventional monetary policy; transmission channel; Bayesian TVP-SV-VAR

JEL Classification: C32; E52; E32

1. Introduction

With the onset of the global financial crisis, the U.S. Federal Reserve (Fed) began to lower interest
rates to stimulate the economy. Since December 2008, however, the federal funds rate (FFR) is effectively
zero, leaving no room for conventional monetary policy to further enhance economic growth. Against
the backdrop of lackluster economic conditions and the perceived risks of deflation at that time, the
U.S. Fed decided to engage in an “unconventional” monetary policy, which took mostly the form
of asset purchases from the private banking and non-banking sector. After three large-scale asset
purchase programs (LSAPs), assets on the central bank’s balance sheet more than quadrupled since
2007 to about 4500 billion U.S. dollars in February 2015.

While a large body of empirical literature has hitherto investigated how conventional U.S.
monetary policy affects the real economy, there is less empirical research on the transmission of
quantitative easing (QE). QE implies switching from interest rate targeting steered via reserve
management to targeting the quantity of reserves (Fawley and Juvenal 2012). In the USA, the Fed
did so by buying longer term securities either issued by the U.S. government or guaranteed by
government-sponsored agencies. This should directly put downward pressure on long-term yields in
these markets. In addition, financing conditions will ease more generally, since investors selling to
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the Fed reinvest those proceeds to buy other longer term securities such as corporate bonds and other
privately-issued securities (portfolio re-balancing, Joyce et al. 2012). On the back of increased equity
prices and heightened loan demand, both private sector wealth and asset growth in the banking sector
should tick up, leading to an increase in aggregate demand.

The strength of these transmission channels is likely to depend on the current economic
environment. In fact, and considering the transmission of conventional monetary policy,
several authors have suggested that the transmission mechanism has changed over time;
see, e.g., (Boivin and Giannoni 2006; Boivin et al. 2010; Breitfuß et al. 2018). In a recent contribution,
Kastner et al. (2018) found empirical evidence for a change in transmission related to inflation, namely
a considerable price puzzle (i.e., an increase in the price level after a monetary policy contraction) in
the 1960s, which starts disappearing in the early 1980s. Miranda-Agrippino and Ricco (2017) showed
for the USA that price and output puzzles vanish once a robust identification strategy and a rich
information set are considered. They also acknowledged that the emergence of such puzzles can indeed
depend on the sample period under study. Looking at more recent data, the global financial crisis was
a severe rupture of the financial system and could have potentially changed the way monetary policy
was conducted. Arguments why a monetary policy shock might have smaller effects during recessions
associated with financial crises such as the one in 2008/2009 include balance sheet adjustments and
deleveraging in the private sector, which typically takes place after economic boom phases that
predate financial crises (Bech et al. 2014). Furthermore, heightened uncertainty might weigh on the
business climate and impede investment growth. The works in Aastveit et al. (2017) and Hubrich
and Tetlow (2015) investigated monetary policy in times of financial stress or heightened uncertainty
and found smaller effects in these periods for the USA. The work in Tenreyro and Thwaites (2016)
more generally found that U.S. monetary policy is less effective during recessions. Whether these
arguments carry over to unconventional monetary policy is less researched. Recent work actually
suggests the opposite. For example, Engen et al. (2015) emphasized the role of quantitative easing in
underpinning the commitment of the Fed to be accommodative for a longer period. This signaling
channel is more effective when financial markets are impaired and economic conditions characterized
by high uncertainty. This reasoning ascribes quantitative easing the greatest effectiveness during the
onset of a crisis, contrasting the empirical work on the effectiveness of conventional monetary policy
during financial crises. In a recent paper, Wu (2014) corroborated this result attesting the latest asset
purchase programs having a smaller effect than the earlier ones.

In this paper, we address these questions within a coherent econometric framework.
More specifically, and to cover a broad range of potential transmission channels, we propose a simple
Bayesian estimation framework that handles medium- to large-scale models and that allows for
drifting parameters and time-varying variances and covariances. Accounting for time variation and
including a rich information set enhance the model to yield an appropriate representation of the
underlying data. Moreover, since we assume that changes happen gradually, no further assumptions
about the number of regimes such as in a Markov-switching framework have to be made. Akin to
Baumeister and Benati (2013), we model the asset purchases of the U.S. Fed by assuming a compression
of the yield curve. The transmission of the “spread shock” is compared with that of a conventional
monetary policy shock.

Our main results can be summarized as follows: First, we find evidence that unconventional
monetary policy works mainly via the wealth channel to spur aggregate demand. There is less
evidence for the credit/bank lending channel. Second, conventional monetary policy works strongly
through expanding assets and deposits of the banking sector, while the impact on consumer wealth
growth is more modest. Last, for both shocks, we find a distinct pattern over our sample period.
More specifically, we find small output effects of a conventional monetary policy shock during the
period of the global financial crisis and stronger effects in its aftermath. This might imply that when
the central bank has successfully committed the policy rate to a certain value, an unexpected deviation
from that commitment might boost output growth particularly strongly. By contrast, the spread shock
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has affected output growth most strongly during the period of the global financial crisis, when the
Fed launched its first asset purchase program, and less so thereafter. This might point to diminishing
effects of large-scale asset purchase programs on real output growth.

The paper is structured as follows. Section 2 introduces the econometric framework and how
we identify the monetary policy and the term spread shock. Section 3 investigates the effects and the
transmission of the two shocks over time, while Section 4 concludes.

2. Econometric Framework

In this section, we introduce the data, the econometric framework and the identification strategy
to investigate the transmission of unconventional and conventional monetary policy. We use a novel
approach to estimation based on the work by Lopes et al. (2013) that can handle medium- to large-scale
time-varying vector autoregressions with stochastic volatility (TVP-SV-VAR).

2.1. Data

Our analysis is based on variables typically employed in monetary vector autoregressions and on
a quarterly frequency. The time period we consider spans from 1984Q1 to 2015Q1, and the variables
comprise real GDP growth (Δgdp), consumer price inflation (Δp), the federal funds rate (is) and the
term spread (sp) defined as the yield on 10-year-government bonds minus the federal funds rate.
In addition to these standard variables, we include several variables that should allow us to gauge the
importance of different channels for monetary policy transmission. These are growth in net household
and non-profit organizations’ wealth (Δwealth), growth in commercial banks’ assets and deposits
(Δbanks_assets, Δbanks_deposits) and the net interest rate margin (nim) of large U.S. banks. Growth
rates are calculated as log-differences and are thus in quarter-on-quarter terms.1

2.2. The TVP-SV-VAR Model with a Cholesky Structure

In what follows, we draw on a new approach to estimate a TVP-SV-VAR. This approach differs
from standard estimation by recasting the VAR as a system of unrelated regressions and imposing
a recursive structure on the model a priori.

We collect the data in an m = 8 × 1 vector:

yt = (Δgdpt, Δpt, Δwealtht, is,t, Δbanks_assetst, Δbanks_depositst, spt, nimt)
′.

Now, we assume the individual elements of yt to be described by a set of equations, with the
first equation i = 1 given by:

y1t = c1t +
p

∑
j=1

b1j,tyt−j + e1t (1)

e1t ∼ N (0, λ1t) (2)

1 Data on real GDP growth (GDPC96), CPI inflation (CPALTT01USQ661S), the effective federal funds rate (FEDFUNDS)
calculated as the quarterly average of daily rates, 10-year-government bond yields to proxy long-term interest rates
(IRLTLT01USQ156N), net worth of households and nonprofit organizations resembling consumer wealth (TNWBSHNO)
deflated by the personal income deflator (PCECTPI) and net interest rate margins for large U.S. banks (USG15NIM)
are from the Fred database, https://research.stlouisfed.org/fred2/. Data on commercial banks’ assets (FL764090005.Q,
FL474090005.Q), deposits (FL763127005.Q, FL764110005.Q FL763131005.Q, FL763135005.Q, FL762150005.Q) are from the
financial accounts database of the Federal Reserve System, https://www.federalreserve.gov/releases/z1/current/. By and
large, all transformed data are stationary according to an augmented Dickey–Fuller test.
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and for i = 2, . . . , m:

yit = cit +
i−1

∑
s=1

ais,tyst +
p

∑
j=1

bij,tyt−j + eit (3)

eit ∼ N (0, λit) (4)

where cit (i = 1, . . . , m) denotes a constant and b′
ij,t (j = 1, . . . , p) are m-dimensional coefficient vectors

associated with the p = 2 lags of yt in each equation. The triangular structure is imposed on the
contemporaneous coefficients. More specifically, the ais,t denote coefficients associated with the first
i − 1 elements of yt with a1s,t = 0 for s = 1, . . . , i − 1. Finally, eit is a normally distributed error with
time-varying variance given by λit. Note that all coefficients in Equations (1)–(4) are allowed to vary
over time.

We assume that ais,t evolves according to:

ais,t = ais,t−1 + uit for i = 2, . . . , m. (5)

uit is a standard white noise error term with variance σ2
i . Equation (5) implies that the parameters

associated with the contemporaneous terms are following a random walk.
Let us define an mp-dimensional vector bit = (bi1,t, . . . , bip,t)

′. Similarly to Equation (5), we
assume that bit follows the subsequent law of motion:

bit = bit−1 + vit. (6)

with vit being a vector white noise error with the variance-covariance matrix equal to Qi. Finally,
the λits follow:

hit = μi + ρi(hi,t−1 − μi) + ηit for i = 1, . . . , m, (7)

where hit = log(λit) denotes the log-volatility, μi is the mean of the log-volatility and ρi ∈ (−1, 1) the
autoregressive parameter. ηit is the zero-mean error term with variance ς2

i . Several studies have shown
that it is important to allow for both changes in residual variances and parameters. Assuming constant
error variances, while they are in fact time-varying, could lead to misleading parameter estimates of
the VAR.2 Moreover, changes in the economic environment can affect how monetary policy transmits
to the real economy. In other words, previous literature suggested that the volatility of economic
shocks also tends to influence real activity (Bloom 2009; Fernández-Villaverde et al. 2011).

The reason why the log-volatility process is assumed to be stationary in contrast to the
non-stationary state equation of the autoregressive parameters is mainly due to the fact that a random
walk assumption for the log-volatility would imply that it is unbounded in the limit, hitting any lower
or upper bound with probability one. In practice, however, the differences between a stationary and
non-stationary state equation are negligible since the data are not really informative about the specific
value of ρi.3

The model given by Equations (1)–(4) can be recast in a more compact form by collecting all
contemporaneous terms on the left-hand side:

Atyt = ct +
p

∑
j=1

Bjtyt−j + et (8)

2 See, for example, Cogley and Sargent (2005), who in response to the criticism raised by Sims (2001), extended their TVP
framework put forward in Cogley and Sargent (2002) to allow for stochastic volatility.

3 In fact, experimenting with stationary state equations for ait and bit leaves our results qualitatively unchanged.
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where At denotes an m × m lower triangular matrix with diagonal diag(At) = ιm and the typical
non-unit/non-zero element given by −asj,t. Here, we let ιm be an m-dimensional unit vector. In what
follows we collect free elements of At in an m(m − 1)/2 vector at. ct is an m × 1 vector of
constants, and Bjt = (b′

1j,t, . . . , b′
mj,t)

′ denotes an m × m dimensional coefficient matrix to be estimated.
The m-dimensional error vector has zero mean and a diagonal time-varying variance-covariance matrix
given by Λt = diag(λ1t, . . . , λmt). Equation (8) resembles the structural TVP-SV-VAR model put forth
in Primiceri (2005). The lower triangular nature of At is closely related to a recursive identification
scheme, which assumes a natural ordering of variables. In fact, we use the ordering as the variables
appear in yt. However, note that we do not identify the shocks based on this Cholesky decomposition.
Rather, we impose the triangular structure due to computational reasons only, while identification of
the shocks will be based on sign restrictions discussed in Section 2.4. These are two isolated steps, and
the a priori Cholesky decomposition does not interfere with identification based on sign restrictions,
which re-weights orthogonalized errors (that we directly obtain from the estimation stage of the
model) and selects those that fulfill the postulated sign restrictions. Our structural analysis will thus
be unaffected by the triangular structure imposed on the model. For an excellent overview on sign
restrictions, see Fry and Pagan (2011). In Section 3.5, we show that estimates based on a different
ordering yield virtually the same impulse response functions.

In the absence of specific assumptions on At, the model in Equation (8) is not identified. Thus,
researchers usually estimate the reduced form imposing restrictions that originate from theory ex-post.4

The reduced form of the TVP-SV-VAR is given by:

yt = dt +
p

∑
j=1

F jtyt−j + ut (9)

with dt = A−1
t ct, F j = A−1

t Bj and ut = A−1
t et. The reduced form errors ut are normally distributed

with the variance covariance matrix given by Σt = A−1
t Λt(A−1

t )′. It can easily be seen that the matrix
At establishes contemporaneous links between the variables in the system.

To emphasize the distinct features of our estimation strategy, it is worth mentioning how this
model is traditionally estimated. Typically, one would start with the complete system of reduced form
equations given in Equation (9) and obtain reduced form parameter estimates by employing Gibbs
sampling coupled with a data augmentation scheme (Cogley et al. 2005; Primiceri 2005). This approach
to estimation comes along with a significant computational burden. To be more precise, if as in our
case, m = 8 and the number of lags is set to p = 2, the algorithms outlined in Carter and Kohn (1994)
and Frühwirth-Schnatter (1994) require the inversion of a k × k variance-covariance matrix at each
point in time. In our case, k = m(mp + 1) would be k = 136, rendering estimation with the traditional
algorithms cumbersome.5

Following Lopes et al. (2013), we impose a Cholesky structure a priori, estimate the structural form
in an equation-by-equation fashion and use the estimated coefficients to solve Equation (8) to finally
obtain Equation (9). Using an equation-by-equation approach decreases the computational burden
significantly, by first reducing the dimension of the matrices that have to be inverted. More specifically,
while the inversion of a k × k matrix requires m3(mp + 1)3 operations using Gaussian elimination,
we reduce this to m(mp + 1)3, which is a marked gain as compared to full-system estimation. Second,
and more importantly, equation-by-equation estimation can make full use of parallel computing.
Recently, Carriero et al. (2015) suggested a related estimation strategy, which imposes a triangular
structure on the errors rather than the contemporaneous coefficients related to the dependent variable.

4 For notable exceptions, see, among others, Sims and Zha (1998) and Baumeister and Hamilton (2015).
5 Another strand of the literature proposes factor augmented VARs (FAVARs) with drifting parameters and stochastic volatility

(Korobilis 2013). While FAVARs provide a flexible means of reducing the dimensionality of the estimation problem at hand,
they could also lead to problems with respect to identification and structural interpretation of the underlying shocks.
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While this approach is invariant to the ordering of the variables, it prohibits parallel computing, and
hence, computational gains are more limited.

2.3. Bayesian Inference

We use a Bayesian approach and impose tight priors on the variance-covariance structure in the
various state equations, which describe the law of motion for the parameters.

General Prior Setup and Implementation

Following Primiceri (2005) and Cogley et al. (2005), we impose a normally distributed prior on
the free elements of the initial state At, which are collected in a vector a0 and on b0 = vec(Bj0):

a0 ∼ N (a0, V a), (10)

b0 ∼ N (b0, V b), (11)

where a0 and b0 are prior mean matrices and V a and V b are prior variance-covariance matrices.
We follow common practice (Primiceri 2005) and use a training sample of T = 30 quarters to scale the
priors. We set the prior mean for a0 and b0 equal to the OLS estimate based on this training sample.
The prior variance-covariance matrices are specified such that V a = 4 × V̂ a and V b = 4 × V̂ b, with V̂ a

and V̂ b being the variances of the OLS estimator.6

The priors on the variance-covariances in the state Equations (5) and (6) are of the inverted
Wishart form:

S ∼ IW(vS, S), (12)

Q ∼ IW(vQ, Q), (13)

with S denoting the variance-covariance matrix of at. This matrix is block-diagonal with each block
corresponding to the m equations of the system. The degree of freedom parameters are denoted by
vS and vQ, and the corresponding prior scaling matrices are labeled as S and Q. In principle, we
set vS = vQ = T and S = k2

S × V̂ a, with kS being a scalar parameter controlling the tightness on the
propensity of at to drift. We set k2

S = 0.01 after having experimented with a grid of different values.
The results remain qualitatively unchanged as long as the prior is not set too loose, placing much prior
mass on regions of the parameter space, which imply explosive behavior of the model. We use the
same hyperparameters for the prior on Q, i.e., vQ = T and Q = k2

b × V̂ b with k2
b = 0.01. Again, this

choice is based on experimenting with a grid of values ruling out hyperparameter choices that imply
excessively explosive behavior of the model.

We impose the following prior setup on the parameters of Equation (7):

μi ∼ N (μ
i
, Vμ) (14)

ρi + 1
2

∼ Beta(γ0, γ1) (15)

ς2
i ∼ G(1/2, 1/2Bσ). (16)

Finally, we follow Kastner and Frühwirth-Schnatter (2013) and set μ
i
= 0 and Vμ = 10, implying

a loose prior on the level of the log-volatility. The prior on ρi is set such that much prior mass is
centered on regions for ρi close to unity, providing prior evidence for the non-stationary behavior of
hit. Thus, we set γ0 = 25 and γ1 = 1.5. For the non-conjugate Gamma prior on ς2

i , we set Bσ equal to

6 Since we estimate the model on an equation-by-equation basis, V̂ a and V̂ b are block diagonal matrices.
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one. The Appendix contains a brief sketch of the Markov Chain Monte Carlo (MCMC) algorithm to
estimate the model.

2.4. Structural Identification

To identify a U.S. monetary policy shock and a shock to the term spread, we use a set of sign
restrictions put directly on the impulse responses.7 More specifically, we identify a “monetary policy”
or “term spread” shock by singling out from a set of generated responses those that comply with our
a priori reasoning about how the economy typically responds to either of the shocks. The restrictions
refer to the directional movements of impulse responses on impact and are outlined in Table 1.

Table 1. Identification via sign restrictions.

Shock Channel Aggregate Demand

is sp Δwealth nim Δbanks_assets Δbanks_deposits Δp Δgdp

Monetary Policy ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑
Term Spread 0 ↓ ↑ ↓ demand ↑/supply ↓ = ? ↑ ↑ ↑

Notes: All restrictions are imposed on impact only. For the sake of completeness and unrelated to the
identification scheme, note that we set all coefficients in the interest rate equation to zero for the first eight
quarters, assuming that the interest rates do not respond to either shocks. By this, we mimic an extended
period of the interest rate tied to the zero lower bound (Baumeister and Benati 2013).

We look at two shocks related two monetary policy and three broad transmission channels.8

We assume that an expansionary conventional monetary policy shock works via an unexpected
lowering of the short-term interest rate. The most direct way lower interest rates feed into the economy
is via the “interest rate/investment” channel. The decrease in the policy rate lowers the user cost
of capital, thereby spurring investment and real GDP growth (Ireland 2005). In addition, aggregate
demand can also increase through a boost to “consumption wealth”, as advocated in Ludvigson et al.
(2002). Following a monetary expansion, equity prices are likely to tick up since the price of debt
instruments rises in parallel with the reduction of the short-term rate, making them less attractive for
investors (Ireland 2005). This leads to an increase in consumer wealth, which might boost consumption
spending and aggregate demand (Ludvigson et al. 2002).

The cut in short-term interest rates has also bearings on the financial side of the economy.
We assume an increase in the term spread in response to a decrease of the policy rate. This can
be motivated by an imperfect pass-through along the term structure, implying that long-term interest
rates do not follow the decrease in short-term interest rates one-to-one (Baumeister and Benati 2013).9

Trailing the term spread, net interest rate margins of banks tend to increase (Adrian and Shin 2010).
This affects asset and deposit growth of the banking sector along two dimensions. First, the decrease

7 There is a huge literature on the identification of conventional monetary policy shocks, but a consensus seems so far
out of reach. Alternatively, one could use recursive identification, such as heavily used in the early literature; see,
e.g., (Christiano et al. 2005). Recursive identification got criticized recently because of the stark underlying assumptions
about the information set of the respective central bank and the unrealistic timing of the shocks, especially when also dealing
with financial data. Since then, a number of authors proposed the use of external instruments, based on either the narrative
approach (Romer and Romer 2004) or high frequency information (Gertler and Karadi 2015; Miranda-Agrippino and Ricco
2017). However, also, this literature came under criticism, since as pointed out by Hamilton (2018), Fed announcements
provide not only information about a policy action, but about the Fed’s assessment of future economic conditions, and
these effects are not easily separated. An approach to separate these effects is provided in Miranda-Agrippino (2016) and
Nakamura and Steinsson (2018).

8 One aspect of monetary policy that we do not capture directly is forward guidance. There is a fast-growing literature
assessing the effects of forward guidance; see, e.g., McKay et al. (2016), who present a theoretical model in which the power
of forward guidance is highly sensitive to the assumption of complete markets. More recently, Nakamura and Steinsson
(2018) provided an external instrument that measures also changes in the path of future interest rates in response to Fed
announcements, which allows one to capture forward guidance effects empirically.

9 More specifically, an unexpected monetary expansion can be expected to drive up inflation and therefore inflation
expectations. This in turn implies long-rates to decrease less strongly than short rates, causing a widening of the yield curve
(Benati and Goodhart 2008).
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in the long-term rate (even if less pronounced than that of short-rates) makes taking a loan cheaper,
implying that the demand for loans is strengthened by the policy-induced decrease of the short-term
rate. This effect is amplified by an improvement of balance sheets of households and firms on the back
of the policy-induced rise of asset prices, which increases the demand for loans by those that were
previously excluded from access to credit (“balance-sheet channel”). Second and since net interest
rate margins increase, generating new loans becomes more attractive for banks (compared to faring
excessive reserves with the Fed). Thus, the supply for loans is stimulated as well. As a consequence,
deposit growth is assumed to tick up. The newly-generated loans will increase deposits mechanically
since for each newly-issued loan, the bank creates a deposit of the same amount. On top of that,
the increase of reservable deposits created by the monetary expansion will reduce the amount of
managed liabilities banks need to fund their loans. This might be passed on to their clients by lowering
loan rates and increasing loan supply (Bernanke and Blinder 1988; Black et al. 2007). We summarize
these developments under a broad “credit and bank lending channel”. Naturally, aggregate demand is
positively affected by loan growth, which leads to more investment and consumption.

Second, we investigate a shock to the term spread. Since the purchases of longer term securities
have significantly lowered longer term yields, as demonstrated, e.g., in Doh (2010), Gagnon et al. (2011),
Krishnamurthy and Vissing-Jorgensen (2011) and Hamilton and Wu (2012), assuming a reduction
of the term spread can be thought of as a way to model the effects of quantitative easing within
a standard monetary VAR framework. In contrast to a conventional expansionary monetary policy
shock, asset purchases by the central bank will trigger a decrease in the term spread. As with the
monetary policy shock, a shock to the term spread will trigger an increase in equity prices since
yields on debt securities decline. An increase in consumer wealth, coupled with eased finance
conditions, should spur economic activity and inflation. That asset purchase programs had an
effect on consumer confidence through signaling has been emphasized in Engen et al. (2015) and
Wu (2014). While we can investigate the signaling channel implicitly by tracing the effectiveness of
unconventional monetary policy through periods of different financial and economic conditions, we
cannot model this transmission mechanism explicitly by including a suitable control variable. Looking
at the financial side of the economy, the reduction of the term spread triggers a decrease in net interest
margins of commercial banks: since the cost of funding (the short-term interest rate) is unaltered and
tied to the zero lower bound, the revenues of lending (approximated by the long-term interest rate)
decrease. As in Adrian and Shin (2010), this implies an inward shift of the supply curve of credit and is
likely to contain new lending. This effect, however, might be offset by a stronger demand for lending,
since lower long-term rates make it more attractive to take a loan. Since a priori, we do not know
which of these effects is likely to dominate, we leave the signs on growth in bank assets unrestricted.
Next and in line with the assumption about the monetary policy shock, we assume an initial increase
in banks’ deposits. This increase is rather mechanical since the proceeds of the asset purchase will be
deposited in the investors’ bank accounts, raising deposits of the banking sector, and might be rather
short-lived, as pointed out in Butt et al. (2014).10

Last and to mimic the zero lower bound environment, we will hold the response of the short-term
interest rate constant at zero for eight quarters (Baumeister and Benati 2013). Note that this is unrelated
to identification of the shock, for which restrictions are only binding on impact. The Appendix provides
further details on the technical implementation of the sign restrictions and the zero restriction on the
short-term interest rate for the spread shock.

10 In the case that the Fed purchases assets directly from the banking sector, the proceeds would be charged to the banks’
reserve balances with the Fed, leaving deposits untouched. The positive restriction on deposit growth is warranted since
part of the Fed’s purchases directly concern the private non-banking sector.
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3. Empirical Results

In this section, we investigate the transmission of the monetary policy and the term spread shock,
examine whether overall effects vary over time and establish that both shocks mattered historically in
determining fluctuations in the time series considered in this paper. We start by briefly summarizing
the movements of the two identified shocks over time. This should yield further confidence regarding
the appropriateness of the proposed restrictions to recover the shocks. Figure 1 shows the structural
shocks, the left panel relating to the term spread shock and the middle panel to the monetary policy
shock. For completeness, we also show the evolution of the actual federal funds rate and the term
spread in the right panel.

Looking at the term spread shock first, we have indicated three distinct time periods by red
vertical bars, namely the start of the Clinton debt buyback program (Q1 2000–Q4 2001), which was
in many ways similar to an LSAP, and the start of LSAPs I–III (Q4 2008, Q4 2010 and Q3 2012;
see (Dunne et al. 2015)). The figure shows that negative surprises to the term spread indeed coincide
with these periods. There is also a pronounced negative shock visible in the last quarter of 2003 in
which the term spread started to decrease sharply (see the right panel, Figure 1).

The monetary policy shock is shown in the middle panel. For comparison, we also plot a monetary
policy shock series based on the narrative approach put forward in Romer and Romer (2004), extended
to cover the period up until Q4 2008.11 Both shocks identified the same monetary policy cycle, and the
correlation between the series amounted to about 0.6.

3.1. How Do Term Spread and Monetary Policy Shocks Affect Output Growth and Inflation?

In this section, we examine through which channels both shocks affect aggregate demand and
CPI inflation. To this end, we report impulse response functions in Figures 2 and 3 and a related
forecast error variance decomposition in Table 2. Since we use a time-varying framework, the reported
impulse responses showed how the economy would react to a hypothetical shock at a specific point in
time. This holds equally true for sample periods where actually no monetary policy/spread shock
occurred.12 Both shocks were normalized to a 100 basis point (bp) reduction, either of the policy rate
(monetary policy shock) or the term spread (spread shock). Results are shown for real GDP growth,
inflation, wealth growth and banking sector variables.

The top panel of Figure 2 lists results for real output growth: on the left-hand side in response
to the conventional monetary policy shock and on the right-hand side in reaction to the term spread
shock. Note that we have opted for slicing the time-varying impulse responses by fixing time periods
of interest to show accompanying credible sets (50% in dark blue and 68% in light blue). These periods
relate to the global financial crisis, namely the pre-crisis period (Q1 1991–Q3 2007), the crisis period
(Q4 2007–Q2 2009) and its aftermath (Q3 2009–Q1 2015).13

11 To be precise, the narrative shock is transformed to quarterly frequency by simply averaging over the corresponding months.
The monetary policy shock corresponds to the smoothed structural shocks. In general, residuals of the VAR are more volatile
due to the inherent iid assumption, which is why we opted for smoothing the shocks, facilitating visual comparison to the
more persistent narrative shocks.

12 All results are based on 500 draws from the full set of 15,000 posterior draws that have been collected after a burn-in phase
of 15,000 draws.

13 These are based on the National Bureau of Economic Research (NBER) dating of recessions, available at http://www.
nber.org/cycles.html. The full history of impulse responses over time and for all variables is available from the authors
upon request.
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Table 2. Forecast error variance decomposition.

Monetary Policy Shock

1991Q1–2007Q3 2007Q4–2009Q2 2009Q3–2015Q1 1991Q1–2015Q1

Real GDP growth 0.10 0.10 0.08 0.10
Inflation 0.06 0.04 0.04 0.06
Consumer wealth growth 0.07 0.08 0.07 0.07
Short-term interest rate 0.07 0.07 0.06 0.07
Banks’ deposit growth 0.10 0.10 0.09 0.10
Banks’ asset growth 0.13 0.11 0.10 0.12
Term spread 0.11 0.13 0.10 0.11
Net interest rate margin 0.08 0.09 0.07 0.08

Term Spread Shock

1991Q1–2007Q3 2007Q4–2009Q2 2009Q3–2015Q1 1991Q1–2015Q1

Real GDP growth 0.08 0.07 0.07 0.08
Inflation 0.10 0.05 0.08 0.09
Consumer wealth growth 0.13 0.08 0.10 0.12
Short-term interest rate 0.12 0.06 0.09 0.11
Banks’ deposits 0.11 0.08 0.10 0.11
Banks’ assets 0.11 0.09 0.10 0.11
Term spread 0.12 0.06 0.09 0.11
Net interest rate margin 0.17 0.10 0.12 0.15

The table shows a forecast error variance decomposition after 20 quarters based on the posterior;
simple averages over the time periods considered.

Looking at the unexpected lowering of the policy rate first, we find positive and tightly estimated
responses up until eight quarters, indicating rather persistent effects on output growth. This holds true
throughout the sample periods considered. The size of the effects, however, varies with the period
under consideration. More specifically, the 100-bp decrease in the policy rate accelerates real GDP
growth on impact by around 0.3–0.4 percentage points prior to and during the crisis. In the aftermath
of the global financial crisis, this effect increases markedly to about 0.7 percentage points.14 To put
our results into perspective, we compare the cumulative responses with established findings of the
literature, which are mainly based on pre-crisis data. In cumulative terms, the responses prior to the
crisis point to an increase in real GDP by 1.8%, whereas previous findings indicate peak level effects of
about 0.3%–0.6%; see, e.g., (Bernanke et al. 1997; Leeper et al. 1996; Uhlig 2005). In a more recent paper,
Gorodnichenko (2005) reported a peak effect in real GDP of approximately 0.8%. See Coibion (2012)
for an excellent and more comprehensive summary of the relevant literature.

Responses of output growth to the lowering of the term spread are depicted on the right-hand side
of the top panel of Figure 2. The term spread shock accelerates real GDP growth throughout the sample
period. Our estimates are broadly in line with those provided in Baumeister and Benati (2013), who
report an annualized impact response of about 2% for 2010. Compared to findings on the conventional
monetary policy shock, however, the effects of the term spread shock are rather short-lived and peter
out after one to two quarters. This finding is in contrast to Inoue and Rossi (2018), who proposed
identifying conventional and unconventional monetary policy shocks in a unified manner by modeling
an exogenous shift of the whole term structure. Their results imply similar effects of conventional on
unconventional monetary policy on both output growth and inflation. In Table 2, we present a forecast
error variance decomposition. At the 20-quarter forecast horizon, the monetary policy shock explains
about 20%–30% more forecast error variance than the spread shock.

The middle panel of Figure 2 shows impulse responses of consumer price inflation. Both shocks
drive up inflation by about 0.2–0.3 percentage points on impact, as we have ruled out a price puzzle
by assumption. Adjustment of inflation turns negative in response to lowering the policy rate,

14 Responses are to be interpreted as the reaction of a variable to a hypothetical 100-bp monetary policy/term spread shock
independent of the actual value of the FFR during that period.
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while effects are positive and then quickly converge to zero in response to the spread shock. The spread
shock accounts for a larger part of forecast error variance throughout the sample period. Summing
up, we find that both shocks accelerate output growth and drive up inflation. While the effects of
a conventional monetary policy shock on output growth are rather persistent and tightly estimated,
the effects of the term spread shock are short-lived. Responses of CPI inflation are accompanied by
wide credible sets for both shocks.

3.2. The Transmission of Monetary Policy and Term Spread Shocks

In this section, we analyze the potential transmission mechanisms starting with the wealth channel.
In the bottom panel of Figure 2, we depict responses for consumer wealth growth. Looking at the
conventional monetary policy shock first, we find positive responses of consumer wealth throughout
most of the sample period. These effects, however, are very short-lived and peter out immediately
after impact. By contrast, the reduction of the term spread spurs wealth growth throughout the sample
periods, and effects tend to be slightly more persistent compared to responses to the monetary policy
shock discussed before. In terms of forecast error variance and with the exception of the period of
the global financial crisis, the term spread shock explains about 1.5–2-times as much variance as the
monetary policy shock. Taken at face value, the results reveal the wealth channel as an important facet
of the transmission mechanism through which unconventional monetary policy can affect aggregate
demand. In terms of persistence, the channel seems less important when monetary policy is conducted
by steering short-term interest rates. This result is in line with Ludvigson et al. (2002), who attest
the wealth channel having only a minor role in the transmission of conventional monetary policy to
consumption.

Next, we investigate the bank lending/credit channel. Figure 3 shows the responses of growth
in assets and deposits of commercial banks, as well as net interest rate margins and Table 2 the
corresponding forecast error variance decomposition.

The impact response of asset growth to a conventional monetary policy shock is shown in the
top panel of the figure. A loosening of monetary policy spurs asset growth for all three time periods
considered; responses are tightly estimated; and the effects tend to be very persistent. Next, we look at
the growth of deposits depicted in the middle panel of Figure 3. Albeit that for both shocks, we have
assumed an immediate acceleration of deposit growth, the effects of the term spread immediately peter
out after one quarter, while responses to the conventional monetary policy shock are rather persistent
and mostly tightly estimated. That is, the impact of the term spread shock on asset and deposit growth
is negligible, while we find tightly estimated responses to the conventional monetary policy shock.
This impression is broadly confirmed by a forecast error variance decomposition, shown in Table 2.
At the 20-quarter forecast horizon, the spread shock accounts for 11% of both the error variance of
banks’ asset and deposit growth. Shares of explained variance in banks’ deposit growth are comparable
to that explained by the spread shock. Shares related to banks’ asset growth explained by the monetary
policy shock are somewhat higher. Strong and persistent effects of a conventional monetary policy
shock on asset and deposit growth and a large share of explained forecast error variance reveal
an important role for the credit/bank lending channel for monetary policy transmission. By contrast,
this channel seems less important in the case that the stimulus comes from lowering the term spread.

For completeness, we show responses of net-interest rate margins in the bottom panel of Figure 3.
An unexpected decrease of the policy rate triggers an increase in net interest rate margins, probably
driven by an imperfect pass through of the policy rate change to the long end of the yield curve.
After four quarters, effects start hovering around zero and are accompanied by wide credible sets.
Responses to the term spread shock show a different pattern: net interest rate margins decrease
in response to a lowering of the term spread. These effects are very persistent for all three time
periods considered. Naturally, and since net interest margins follow the term spread, the term spread
shock explains considerably more forecast error variance as the conventional monetary policy shock.
This holds true throughout the sample period.
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Summing up, positive effects on output growth seem to be driven by an expansion of asset and
deposit growth of the banking sector, lending empirical support for the importance of the credit/bank
lending channel in case stimulus comes from lowering the policy rate. By contrast, the spread shock
has no significant effect on asset and deposit growth. Rather, positive (and short-lived) effects on
output growth are triggered by an acceleration of consumer wealth growth.

3.3. Do Effects Vary over Time?

Having established through which channels both shocks transmit to the real economy, we now
investigate more closely their overall effects. The strength of both shocks might depend on the specific
economic environment when the shock is carried out. For example, Jannsen et al. (2014) found strong
effects of monetary policy during recessions associated with financial crises, which holds especially true
for the recent global financial crisis. They attribute their finding to the particular effectiveness of the
credit/bank lending channel in a recession, as advocated in Bernanke and Gertler (1995). Others find
the opposite, namely that monetary policy is less effective in times of heightened uncertainty
(Aastveit et al. 2017; Bech et al. 2014). Considering the term spread shock, recent empirical research
hints at diminishing effectiveness of the LSAP programs; see, e.g., (Wu 2014).

So far, results reported in Figures 2 and 3 have indicated changes in the strength of the shocks’
impacts on the variables considered in this study. However, these results might be driven by the
normalization of the shocks to 100 basis points, which is achieved by dividing through the impact
response of the short-term interest rate and the term spread (both which have diminished strongly,
since the period the FFR is technically zero). To investigate this further, we report the ratio of the
cumulative response after 20 quarters to the one standard deviation shock on impact, with the standard
deviation varying over the sample. These “elasticities” are thus free of the normalization effect and
show the responsiveness of a given variable in cumulative terms to the two shocks on impact over the
sample period.

Elasticities shown in Figure 4 reveal a very systematic pattern over time. Stimulus from
conventional monetary policy is less effective during the period of the global financial crisis compared
to prior to the crisis. This is particularly so in terms of output growth for which the elasticity reaches
its trough over the whole sample period during the crisis. Hence, we qualitatively corroborate the
findings of Bech et al. (2014), Aastveit et al. (2017), Hubrich and Tetlow (2015), who attributed smaller
effects of monetary policy during financial crises to balance sheet adjustments and the deleveraging
of the private sector. on the one hand, and heightened uncertainty weighing on the business climate,
on the other hand. Strikingly, elasticities in the aftermath of the crisis do not simply revert back to
their pre-crisis values. The responsiveness of all variables except net interest rate margins evens peaks
during the aftermath of the crisis. This finding is certainly less related to the episode of the crisis
and its long-lasting consequences for the economy. Rather, the specific monetary environment with
the policy rate bound at zero seem to drive this result. Taken at face value, our finding implies that
monetary policy is particularly effective if the policy rate is altered after it has been committed to a
particular value for a prolonged time.

Elasticities related to the term spread shock spike for most variables during the crisis and during
the period from 2000–2001. In the latter period, the Clinton debt buyback program took place, which
was in many ways similar to an LSAP. See Greenwood and Vayanos (2010) for an in-depth analysis of
the buyback program and its effect on the Treasury yield curve. This time pattern holds in particular
true for inflation, consumer wealth and growth in bank’s assets and deposits. The effects of lowering the
term spread on output growth have also diminished after the launch of the first LSAP. Our findings thus
ascribe the latter to LSAPs’ smaller effects on the macroeconomy than the first programs, corroborating
the results of Wu (2014) and Engen et al. (2015). The work in Engen et al. (2015) explicitly attributed
the stronger effects of the earlier programs to the fact that they have been implemented at times when
market conditions were highly strained, and a signal of commitment to accommodative policy over
a longer horizon—such as the launch of quantitative easing—would be most effective.
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Figure 4. Elasticity of cumulative response to the size of shock on impact. Notes: The figure shows
the ratio of the cumulative response of particular variable to the impact shock of the conventional
monetary policy shock (black, solid line) and the spread shock (red, dashed line). Elasticities are in
absolute terms. The shaded grey area indicates the period of the recession associated with the global
financial crisis.
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Summing up, we find that monetary policy effectiveness in boosting aggregate demand decreases
significantly in the run-up of the global financial crisis. In the aftermath of the crisis, however,
a hypothetical monetary policy shock would lead to strong effects on output growth and inflation.
The opposite holds true for the spread shock, which is particularly stimulating during the period of the
crisis when the Fed’s engagement in quantitative easing served as an important signal to longer term
accommodative monetary policy. In the aftermath of the crisis, the effectiveness of the hypothetical
spread shock declines.

3.4. Did Term Spread and Monetary Policy Shocks Matter Historically?

Last, we examine the contribution of both shocks in explaining deviations from trend growth in the
variables under consideration. These are depicted in Figure 5. We would expect higher contributions
of the monetary policy shock prior to the global financial crisis and increasing contributions of the
spread shock thereafter. The historical decomposition of most time series actually corroborates this
presumption. More specifically, monetary policy shocks explain larger shares of movements in real
GDP growth, inflation and banks’ asset growth prior to and after the global financial crisis. However,
the ratio of monetary policy to spread shock contribution declined significantly from end-2008 to the
end of our sample. Even more visible are contributions related to the term spread, banks’ deposit
growth, consumer wealth growth and net interest margins, for which the spread shock explains
a considerably larger part of movements than the monetary policy shock in the aftermath of the crisis.

Summing up, a historical decomposition analysis revealed that the monetary policy shock
can explain movements in real GDP growth and inflation to a comparably larger extent than the
spread shock throughout the sample period. By contrast, the spread shock explains movements
in the term spread, consumer wealth growth, banks’ deposit growth and net interest margins to
a comparably larger extent. For all variables considered, the importance of the spread shock has
increased significantly since end-2008, the period in which the first LSAP was launched. This finding
is in line with our expectations and thus leads to further confidence in the statistical framework used
in this study.

Figure 5. Cont.
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Figure 5. Historical decomposition of time series. Notes: Historical decomposition of time series based
on the posterior median. The overall contribution of all shocks except the term spread and monetary
policy shock in red. Contributions of the monetary policy shock and the term spread shock in blue and
yellow, respectively. The shaded grey area indicates the period of the recession associated with the
global financial crisis.
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3.5. Robustness and Extensions

In this section, we investigate the robustness of our results. We do this by first looking at
another measure of banks’ asset growth taking a broader definition of the banking sector, by including
investment growth as a further variable to the system and last by imposing different orderings of the
variables to demonstrate that our estimates remain qualitatively unaffected.

First, since the shadow banking sector has expanded rapidly over the last decade in the USA,
it has been argued that focusing on commercial banks’ assets might yield an incomplete assessment of
monetary policy transmission; see, e.g., (Adrian et al. 2010; Nelson et al. 2018). Hence, we substitute
commercial banks’ assets with assets of the shadow banking sector and re-run the analysis outlined in
Section 3. Shadow banks are defined as financial intermediaries that conduct functions of banking
without access to central bank liquidity and, in the definition following Nelson et al. (2018), comprise
finance companies, issuers of asset-backed securities and funding corporations.15 In a nutshell,
credit intermediation through the shadow banking system is comparable to credit intermediation of
a traditional bank with wholesale investors at the deposit end, and at the loan origination end are
finance companies and traditional banks.

Figure 6 shows impulse responses of asset growth, deposit growth and real GDP growth. Overall,
results on real activity are nearly unaffected by inclusion of shadow assets, albeit the uncertainty of the
estimates is slightly more elevated especially in the most recent part of our sample. While the shape
of asset and deposit growth responses is very similar to our baseline estimates, including shadow
assets yields stronger responses in terms of overall magnitudes. This holds true for all time periods
considered, for both shocks and for both variables. However, these stronger magnitudes are estimated
with much uncertainty and hence do not translate into overall stronger responses of real GDP growth.
The responses of the other variables are very similar to the results of our baseline estimation. This is
also evident from Table 3, top panel, which lists correlations of median impulse responses with the
baseline model. The fact that we get very similar results of asset responses to both shocks contrasts the
findings of Nelson et al. (2018), who reported a decrease of commercial banks’ assets and an increase of
shadow assets in response to a contractionary monetary policy shock. Note that we have not restricted
the responses of asset growth, and our results are hence purely data driven. They might differ from
those of Nelson et al. (2018) since we use a richer framework in terms of included variables and covered
transmission channels.

Second, and as pointed out in Stein (2012), a reason why the effects of asset purchase programs
might have diminished over time are smaller effects via investment spending. In principle, a decrease in
longer term borrowing costs for firms should boost investment spending. If, however, borrowing costs
are further reduced by additional asset purchase programs, firms might simply pay back short-term
debt and issue more and less expensive long-term debt. In that case, there is no additional impetus
to the economy via investment spending. To investigate this in more depth, we re-run our analysis
with gross fixed investment growth as an additional variable. We also modify the characterization
of the two shocks provided by the restrictions in Table 1. Here, we add further restrictions saying
that investment growth ticks up in response to both, a conventional monetary policy expansion and a
shock to the term spread. Figure 7 shows the elasticity of the cumulative response with respect to the
initial size of the shock.

15 Data on shadow assets (FL504090005.Q, FL674090005.Q, FL614090005.Q) are from the financial accounts database of the
Federal Reserve System, http://www.federalserver.gov/releases/z1/about.htm.
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(a) Real GDP growth (b) Inflation

(c) Consumer wealth growth (d) Investment growth

(e) Banks’ asset growth (f) Banks’ deposit growth

Figure 7. Elasticity of cumulative response to size of shock on impact; investment growth included.
Notes: The figure shows the ratio of the cumulative response of a particular variable to the impact
shock of the conventional monetary policy shock (black, solid line) and the spread shock (red, dashed
line). Elasticities are in absolute terms. The shaded grey area indicates the period of the recession
associated with the global financial crisis.
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Looking at investment growth points indeed to a smaller elasticity in the aftermath of the crisis
compared to the crisis period itself. The pattern of the other variables is consistent with our baseline
estimates, stronger effects during the crisis and smaller impacts in the aftermath regarding the term
spread shock, while the opposite holds true for the monetary policy shock. In general, including
investment growth has rendered elasticities more volatile in the aftermath of the crisis. This is due to
the fact that with the additional restrictions imposed, it is harder to find rotation matrices fulfilling the
complete set of identifying assumptions. More specifically, while impulse responses of our baseline
estimate are typically based on 250–300 rotation matrices each ten quarters we sample them, the
number of successfully sampled matrices decreases to about 150 per sampling point when including
investment growth. Considering impulse responses (available from the authors upon request), the
inclusion of investment growth leaves our results broadly unchanged.

Last and to add further confidence to our results, we change the ordering of the variables for
our estimation setup. For the baseline ordering, we put real GDP growth first, followed by inflation,
wealth, short-term interest rates, banks’ deposits and assets, the term spread and net interest rate
margins. This ordering is motivated in Christiano et al. (1996) and states that output cannot be
contemporaneously affected by inflation, consumer wealth and the policy rate. Results of the baseline
ordering are compared to results under 10 randomly chosen orderings. As stressed before and since
we rely on an explicit identification of the shocks via sign restrictions, the ordering of the variables
should not affect our results qualitatively. This is evident in the bottom panel of Table 3, which shows
average correlations of median impulse responses under the baseline and the 10 permuted orderings.
In fact, correlations are in almost all cases virtually unity. These small differences can be well attributed
to sampling error.

Table 3. Correlation of median impulse responses.

Correlation of Shadow Assets with Baseline

Monetary policy shock Term spread shock

1991Q1–2007Q3 2007Q4–2009Q2 2009Q3–2015Q1 1991Q1–2007Q3 2007Q4–2009Q2 2009Q3–2015Q1

Real GDP growth 0.976 0.969 0.968 0.984 0.979 0.948
Inflation 0.957 0.991 0.914 0.963 0.950 0.938
Wealth 0.996 0.998 0.997 0.995 0.996 0.994
Short-term interest rate 0.994 0.999 0.978 1.000 0.999 1.000
Banks’ deposits 0.775 0.658 0.768 0.930 0.694 0.810
Banks’ assets 0.934 0.956 0.926 0.497 0.457 0.625
Term spread 0.999 0.999 0.996 0.990 0.978 0.988
Net interest rate margin 0.996 0.994 0.994 0.930 0.694 0.786

Average Correlation of Different Cholesky Orderings with Baseline

Monetary policy shock Term spread shock

1991Q1–2007Q3 2007Q4–2009Q2 2009Q3–2015Q1 1991Q1–2007Q3 2007Q4–2009Q2 2009Q3–2015Q1

Real GDP growth 0.999 0.995 0.999 0.998 0.997 0.990
Inflation 0.998 0.998 0.995 0.996 0.998 0.995
Wealth 0.999 0.999 0.999 1.000 1.000 0.999
Short-term interest rate 0.999 0.989 1.000 1.000 1.000 1.000
Banks’ deposits 0.998 0.993 0.998 0.998 0.984 0.986
Banks’ assets 0.998 0.997 0.999 0.999 0.997 0.961
Term spread 1.000 0.996 1.000 0.999 0.997 1.000
Net interest rate margin 1.000 0.998 0.999 0.987 0.954 0.837

Notes: The table shows the correlation of median impulse responses to the conventional and unconventional
monetary policy shocks, over three selected horizons. Correlations in the top panel refer to those of a model
using assets of the shadow banking sector instead of commercial banks’ assets with estimates of the baseline
model. Correlations in the bottom panel refer to estimates using 10 randomly-permuted Cholesky orderings
and the baseline model.

4. Conclusions

In this paper, we have analyzed the effects and transmission of conventional and unconventional
monetary policy in the USA. For that purpose, we have proposed a medium- to large-scale model
that allows parameters to drift and residual variances to change over time. Our main results remain
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qualitatively unaffected when considering an alternative measure for banking sector assets, including
investment growth as a further transmission channel and using different Cholesky orderings in the
estimation stage of the model. These can be summarized as follows:

First, we discuss the monetary policy shock. The rate cut has positive and rather persistent effects
on output growth. These are driven by an expansion of asset and deposit growth of the banking
sector and thus by a broad credit/bank lending channel. By contrast and in line with previous findings
(see, e.g., (Ludvigson et al. 2002)), the wealth channel appears less important for the transmission
of conventional monetary policy in the USA. A forecast error variance decomposition lends further
support to these findings. More importantly though, we find a pronounced and distinct pattern of
monetary policy effectiveness over time. More specifically, our results point to comparably modest
effects on output growth in response to a hypothetical and unexpected lowering of the policy rate
during the period of the global financial crisis. In this sense, our results corroborate the findings of
a recent strand of the literature stating that monetary policy is weak in recessions associated with
either high economic uncertainty or more generally financial crises; see, e.g., (Aastveit et al. 2017;
Bech et al. 2014; Hubrich and Tetlow 2015; Tenreyro and Thwaites 2016). There is less empirical work
on the effectiveness of monetary policy in the aftermath of the global financial crisis, a period in
which the main U.S. policy rate was effectively zero. Our results show the strongest responsiveness
of the economy to a hypothetical monetary policy shock during that period. From the perspective
of a policymaker, this seems less relevant in practical terms, since obviously, the policy rate cannot
enter negative territory. However, it is rather the fact that the policy rate has not changed for an
extended time than the level at which the policy rate stood that drives this result. If changes in the
policy rate are rare, volatility associated with a monetary policy shock is low, and a deviation from the
commitment can provide a particularly strong boost to output growth. Note, however, that a central
bank’s loss function typically consists of other additional targets such as price stabilization, and hence,
our finding does not directly translate into a policy recommendation to deviate from a commitment.
Still, it suggests that effects of a correction of the monetary policy stance after an extended period of
unchanged monetary policy might have large macroeconomic effects.

Second, and looking at the term spread shock, we find positive, but short-lived effects on output
and consumer price growth. These work mainly through the consumer wealth channel and via steering
inflation, while there is less evidence of impetus via banks’ asset and deposit growth. Effects of the
term spread shock show also a distinct pattern over time. More specifically, we find that the term
spread shock impacts most strongly the output growth during the period of the global financial crisis
and less so in its aftermath. Taken at face value, this result implies that the effectiveness of the Fed’s
unconventional monetary policy measures has abated since the early programs. Smaller effects in the
most recent period stem from a decrease in stimulus of consumer wealth and a smaller responsiveness
of inflation. These might be attributed to an implicit signaling channel, which is particularly effective
when financial markets are impaired and economic conditions are characterized by high uncertainty
(Engen et al. 2015). In addition, we show that effects of quantitative easing on investment growth have
diminished over time providing, thereby less stimulus for overall GDP growth.
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Appendix A. Structural Identification

To implement the sign restrictions technically, note that Equation (8) can be written as:

Atyt = ct +
p

∑
j=1

Bjtyt−j + Λ0.5
t vt, (A1)

where Λ = Λ0.5
t Λ0.5

t and vt ∼ N (0, Im) is a standard normal vector error term. Multiplication from
the left by Λ−0.5

t yields:

Ãtyt = c̃t +
p

∑
j=1

B̃jtyt−j + vt (A2)

with Ãt = Λ−0.5
t At, c̃t = Λ−0.5

t ct and B̃jt = Λ−0.5
t Bjt.

It can be shown that left multiplying Equation (A2) with an m × m-dimensional orthonormal
matrix R with R′R = Im leaves the likelihood function untouched. This implies that impulse responses
are set-identified. To implement the sign restrictions approach, we simply draw R using the algorithm
outlined in Rubio-Ramírez et al. (2010) until the impulse response functions satisfy a given set of
sign restrictions to be chosen by the researcher. This has to be done for each draw from the posterior,
which in our application boils down to 500 draws randomly taken from the full set of 15,000 posterior
draws. To speed up computation, we do not search for each point in time a new rotation matrix.
Instead, we look for new rotation matrices after 10 quarters and check whether the restrictions are
fulfilled throughout the sample. These leaves us with 11 time periods for which we look for new
rotation matrices. For each of these time points, we recovered 250–300 rotation matrices that fulfilled
our restrictions. There was no visible time pattern over the amount of sign restrictions recovered
throughout our sample period.

To impose the additional restriction that the short-term interest rate reacts sluggishly with respect
to an unconventional monetary policy shock, we construct the following deterministic rotation matrix
(Baumeister and Benati 2013):

S =

(
Im−2 0m−2×2

02×m−2 U

)
(A3)

with:

U =

(
cos(ϑ) − sin(ϑ)
sin(ϑ) cos(ϑ)

)
. (A4)

The rotation angle is defined as:

ϑ = tan−1([ÃtR′]ij/[ÃtR′]ii). (A5)

Here, the notation [ÃtR′]ij selects the i, j-th element of the impact matrix, corresponding to the
contemporaneous response of variable the short-term interest rate (variable i) to an unconventional
monetary policy shock (variable j). Multiplying the impact matrix with U from the right yields a new
impact matrix that satisfies the set of sign restrictions specified in Section 2.4 and the zero impact
restriction described above.

Since we assume that the central bank is constrained by the zero lower bound, we zero-out the
structural coefficients of the monetary policy rule for the first eight quarters after the shock hit the
economy. This procedure, however, is subject to the Lucas critique because economic agents are not
allowed to change their behavior accordingly. However, the findings in Baumeister and Benati (2013)
suggest that the differences between the results obtained by manipulating the structural coefficients or
by manipulating the historical structural shocks to keep the interest rate at the zero lower bound are
quite similar. Moreover, manipulating the structural shocks gives rise to additional shortcomings like
the fact that this approach ignores the impact of agents expectations about future changes in the policy
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rate. In addition, the systematic component of monetary policy implies that the short-term interest
rate reacts to different shocks. However, the unsystematic part, by construction, offsets this behavior,
and the corresponding shocks would no longer originate from a white noise process.

Appendix B. A Brief Sketch of the Markov Chain Monte Carlo Algorithm

Since we impose a Cholesky structure on the model a priori and estimate the system
equation-by-equation, our Markov chain Monte Carlo (MCMC) algorithm consists of the following
three steps:

1. Sample aT = (a1, . . . , aT)
′ and bT = (b1, . . . , bT)

′ using the algorithm of Carter and Kohn (1994).
2. Sample the variances of Equations (5) and (6) using Gibbs steps by noting that the conditional

posteriors are again of inverted Wishart form.
3. Sample hT = (h1, . . . , hT)

′ and the corresponding parameters of Equation (7) through the
algorithm put forth in Kastner and Frühwirth-Schnatter (2013). A brief description of this
algorithm is provided in Appendix C.

Step 1 is a standard application of Gibbs sampling in state-space models. In Step 2, we draw
the parameters of the corresponding state equations conditional on the states. Step 3 is described
in more detail in the Appendix. Finally, note that we sample the parameters of the different
equations simultaneously.

Appendix C. Sampling Log-Volatilities

To simulate the full history of log-volatilities for the i-th equation hT
i = (hi1, . . . , hiT)

′, we use the
algorithm outlined in Kastner and Frühwirth-Schnatter (2013). This algorithm samples hT

i , all without
a loop. This is achieved by rewriting hT

i in terms of a multivariate normal distribution. Moreover, the
parameters of the state equation in Equation (7) are sampled through simple Metropolis–Hastings
(MH) or Gibbs sampling steps. To achieve a higher degree of sampling efficiency, we sample the
corresponding parameters from the centered parameterization in Equation (7) and a non-centered
variant given by:

h̃it = ρi h̃it−1 + εit, εit ∼ N (0, 1). (A6)

To simplify the exposition, we illustrate the algorithm for the case when i = 2, . . . , m. For i = 1,
the same steps apply with only minor modifications. Let us begin by rewriting Equation (4) as:

eit = cit −
i−1

∑
s=1

ais,tyst −
p

∑
j=1

bij,tyt−j = λ0.5
it ε. (A7)

Squaring and taking logarithms yield:

e2
it = hit + ln(u2

it). (A8)

Since ln(u2
it) follows a χ2(1) distribution, we use a mixture of Gaussian distribution to render

Equation (A8) conditionally Gaussian,

ln(u2
it)|rit ∼ N (mit, s2

it), (A9)

where rit is an indicator controlling the mixture component to use at time twith rit ∈ {1, . . . , 10}.
mit and s2

it define the mean and the variance of the mixture components employed.
The mixture indicators allow us to rewrite Equation (A8) as a linear Gaussian state space model:

e2
it = mir,t + hit + ξit, ξit ∼ N (0, s2

ir,t). (A10)

The algorithm then consists of the following steps.
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1. Sample hi,−1|rit, μi, ρi, σih, Ψit or h̃ij,−1|rij, ρi, σih, Ψit, all without a loop (AWOL). Here, Ψit =

(cit, ais,t, . . . , aii−1,t, bi1,t, . . . , bip,t)
′ is a vector of stacked coefficients and hi,−1 = (hi2, . . . , hiT)

′.
Following Rue (2001), hi,−1 can be written in terms of a multivariate normal distribution:

hi,−1 ∼ N (Ω−1
hi

ci, Ω−1
hi

). (A11)

Similarly, the normal distribution corresponding to the non-centered parameterization is given by:

h̃i,−1 ∼ N (Ω̃
−1
hi

c̃i, Ω̃
−1
hi

). (A12)

The corresponding posterior moments are:

Ωhi
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
s2

rij,2
+ 1

σ2
ih

−ρi
σ2

ih
0 · · · 0

− ρi
σ2
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(A13)

and:

ci =
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⎜⎜⎜⎜⎝

1
s2

rij,2
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...
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rij,T

(ỹ2
ij,T − mrij,T ) +
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ih

⎞
⎟⎟⎟⎟⎠ . (A14)

Multiplying by σ2
ih yields the moments for the non-centered parameterization: Ω̃i = σ2

ihΩhij

and c̃ij = σ2
ihcij. Finally, the initial states of hT

i , hi1 and h̃i1 are obtained from their respective
stationary distributions.

2. Obtain the parameters of Equation (7) and Equation (A8). Since we impose a non-conjugate
Gamma prior on σih, we employ a Metropolis-within-Gibbs algorithm to sample μi, ρi and σi for
both parameterizations. For the centered variant, we simulate μi and ρi with a single Gibbs step,
and σ2

i is sampled through an MH step. For the non-centered parameterization, we sample ρi
with MH and the other parameters with Gibbs steps.

3. Sample the mixture indicators with inverse transform sampling. Note that we can rewrite
Equation (A8) as:

e2
it − hit = ξ̃it, ξ̃it ∼ N (mir,t, s2

it). (A15)

This allows us to compute the posterior probabilities that rit = j, which are given by:

p(rit = c|•) ∝ p(rit = c)
1

sik
exp

(
− (ξ̃it − mik)

2s2
rit

)
, (A16)

where p(rit = c|•) are the unnormalized weights associated with the c-th mixture component.

The algorithm simply draws the parameters under both parametrizations and decides ex-post
which of the parametrizations to use. This choice depends on the relationship between the variances
of Equations (7) and (A8). For more information, see Kastner and Frühwirth-Schnatter (2013) and
Kastner (2013).

The sampled log-volatilities are shown in Figure A1.

88



J. Risk Financial Manag. 2018, 11, 71

F
ig

u
re

A
1

.
St

oc
ha

st
ic

vo
la

ti
lit

y
ov

er
ti

m
e.

N
ot

es
:P

os
te

ri
or

m
ea

n
of

re
si

du
al

va
ri

an
ce

ov
er

ti
m

e.

89



J. Risk Financial Manag. 2018, 11, 71

Reduced form volatility of the short-term interest rate and the term spread has increased
considerably in the run-up of the global financial crisis, a period during which the Fed has aggressively
lowered interest rates. Volatility has spiked around mid-2008 and hence in the midst of the crisis.
While the crisis peak of residual variance associated with the short-term interest rate marked also the
peak over our sample period, volatility of the term spread peaked in the early 1990s.

The middle panel of Figure A1 shows the volatilities for variables related to the real side of the
economy. Residual variance associated with real GDP growth was elevated in the early 2000s and
peaked around the same time as the financial variables discussed above. During the early 2000s,
the so-called “dot-com bubble” burst, causing the slowing down of the U.S. economy. Stochastic
volatility of wealth, which is strongly anchored on movements in stock market prices, naturally was
also elevated during that period. In contrast to the volatility of real GDP, residual variance of wealth
was pronounced for a longer period during the global financial crisis. Residual variance of CPI
inflation started to rise more considerably from the beginning of the 2000s until 2008, a period that
was characterized by sound growth in price dynamics in the USA. Residual variance peaked in the
aftermath of the crisis and hence a little later than that associated with real GDP growth, when CPI
inflation reverted from negative to positive territory.

Last, the bottom panel of Figure A1 shows residual variance for variables related to the banking
sector. Residual variance of asset growth of commercial banks was elevated during the early 2000s
and the global financial crisis, where it peaked around the same time as residual variance of real GDP
growth, short-term interest rates and the term spread. Since 2009, estimated volatility has declined and
is considerably smaller in the most recent period in our sample compared to its peak value. Residual
variance associated with bank deposits and net interest margins show a slightly different pattern. Bank
deposit volatility increased gradually from the beginning of 2004 until 2009, after which it gradually
started to decline until the end of our sample period. Volatility associated with net interest margins
spiked around 1997 and peaked in late 2009. That is, for both variables, banking deposits and net
interest margins, volatility spikes during the global financial crisis occurred slightly later than those of
the other variables considered in this study.
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Abstract: This paper studies the forecasting ability of cryptocurrency time series. This study is about
the four most capitalised cryptocurrencies: Bitcoin, Ethereum, Litecoin and Ripple. Different Bayesian
models are compared, including models with constant and time-varying volatility, such as stochastic
volatility and GARCH. Moreover, some cryptopredictors are included in the analysis, such as S&P 500
and Nikkei 225. In this paper, the results show that stochastic volatility is significantly outperforming
the benchmark of VAR in both point and density forecasting. Using a different type of distribution,
for the errors of the stochastic volatility, the student-t distribution is shown to outperform the standard
normal approach.

Keywords: Bayesian VAR; cryptocurrency; Bitcoin; forecasting; density forecasting; time-varying
volatility

1. Introduction

Nowadays it is more common to handle your affairs online. According to the World Payments
Report (Capgemini and BNP Paribas 2017), electronic payments are expected to increase by almost
11% each year worldwide from 2015 to 2020. The world is becoming more online accessible due to
innovations and modern technology. Online investing on the open market is due to technology much
easier to do, for example there are applications such as eToro, Robinhood and Plus500 where people
can invest money with their mobile devices.

In the last decades, a new type of currency is launched on the financial market and has gained
importance. In particular, it is a virtual currency of which the main feature is the total absence of any
intrinsic value. In 2009, Nakamoto (Nakamoto 2008) documented the creation of the first decentralised
cryptocurrency, called Bitcoin. Since its introduction, it has been gaining more attention from the media,
the finance industry, and academics. There are several reasons for this interest: Firstly Japan and South
Korea have recognised Bitcoin as a legal method of payment (Bloomberg 2017a; Cointelegraph 2017).
Second, some central banks are exploring the use of cryptocurrencies (Bloomberg 2017b). Third,
the Enterprise Ethereum Alliance was created by a large number of companies and banks to make use
of cryptocurrencies and the related technology called blockchain (Forbes 2017). These are just three of
the many reasons the interest in cryptocurrencies has spiked. After the introduction of Bitcoin, many
cryptocurrencies (around 1000) were created and became a new investment opportunity for trades.
Hereafter, a short overlook of the four most important cryptocurrencies is described.

Bitcoin (BTC) is based on decentralisation, which means that it is controlled and owned by
its users. This decentralisation is often criticised due to the lack of control over the whole system.
Despite this criticism, Bitcoin increased in value from a couple of cents in the beginning (2009) to
about 20,000 US dollar at the end of 2017. Ethereum (ETH, Ethereum 2014) is also decentralised and
features smart contract functionality. Due to this contractual agreement, there is no possibility of fraud,
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downtime, third party interference or censorship. The researcher and programmer Vitalik Buterin
proposed it in late 2013 and Ethereum went live at the end of July in 2015.

Ripple (XRP, Ripple 2012) is founded by Ryan Fugger in 2004. It is a blockchain network that
incorporates both a currency system known as XRP and a payment system. This enables real-time
international payments and is therefore currently used by multiple banks. Litecoin (LTC, Litecoin 2014)
was created in 2011 by Charles Lee and is based on the same peer to peer protocol used by Bitcoin.
It is often considered Bitcoin’s rival due to its improvements in transactions; these transactions are
significantly faster than Bitcoin. Therefore it could be particularly attractive in certain situations to
invest in.

Recently, researchers have started to study cryptocurrencies by applying different models and
techniques. However, apart from Catania et al. (2019), a forecasting analysis of cryptocurrencies
has not been strongly used and proposed. This paper tries to continue the analysis initialised by
Catania et al. (2019) and to improve it by comparing different multivariate models for point and
density forecasting of the four most capitalised cryptocurrencies previously described.

To study and forecast the cryptocurrencies, vector autoregressive models and moreover its
extension to time-varying volatility have been introduced. Vector autoregressions (VARs) are used
in models for empirical macroeconomic applications. VARs were introduced by Sims (1980) and
have been widely adopted for forecasting and analysis of macroeconomic variables. The formulation
of VARs is simple, however they tend to forecast well and are often used as the benchmark to
compare the performance of forecasts among models. Sims and Zha (2006) emphasised the value
of volatility modelling for improving efficiency. Accordingly, taking time variation in volatility into
account should improve the estimation of a VAR-based model and inference common in analysis of
macroeconomic variables. Modelling changes in volatility of VARs should also improve the accuracy
of density forecasts. Forecast densities are potentially either too wide or too narrow, due to shifts
in volatility. D’Agostino et al. (2013) showed that the combination of time-varying parameters and
stochastic volatility improves the accuracy of point and density forecasts. One application of these
regressions on a macroeconomic level is investing in assets, stocks and, as the purpose for this paper,
in cryptocurrencies, as mentioned above.

VAR models can have many parameters if they include many lags, however using non-data
information and turning it into priors is found to greatly improve the forecast performance. In Bayesian
estimation algorithms, the stochastic volatility specification is computationally tractable, while in
frequentist estimation it is captured with a single model. This is one of the reasons, in this paper, the
Bayesian approach is used. Another reason is that the Bayesian approach gives some advantages in
parameter uncertainty, computing of probabilistic statements and estimation with many parameters.
As a standard procedure, the normal distribution is often used as a distribution of the so called “noise”.
For this paper, not only the normal distribution, but also the student-t distribution is used for modelling
the errors.

A strong improvement of our paper is the introduction of time-varying specifications for
multivariate models for better forecasting the cryptocurrencies behaviour. In particular, the use
of time-varying volatility jointly with the multivariate time series is of interest for capturing the
possible heteroscedasticity of the shocks and non-linearities in the simultaneous relations among
the different cryptocurrencies in the models. Moreover, taking into account the time variation in
volatility improves the VAR-based estimation and inference that have been shown in the preliminary
cryptocurrencies analyses.

Our results show that including time-varying volatility and in particular stochastic volatility
provides forecasting gains in terms of point and density forecasting relative to the multivariate
autoregressive model. The inclusion of cryptopredictors can lead to better forecasting with respect
to the benchmark but not strong improvements with respect to time-varying volatility models with
only lags of the cryptocurrencies included. Directional predictability indicates that using stochastic
volatility with heavy tails can be used to create profitable investment strategies.
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The content of this paper is structured as follows. In Section 2, some literature used as research
background is reviewed, especially research in the field of Bayesian VARs and cryptocurrencies.
Section 3 describes the data. Section 4 presents our models, estimation methodology and metrics
used to assess our results, which are discussed in Section 5 together with the major findings. Finally,
Section 6 concludes.

2. Literature Review

Cryptocurrency is becoming a hot topic in academia and outside of it. In particular, in the last
years, the interest in cryptocurrencies has exploded from around 19 billion Dollars in February 2018 to
around 800 billion Dollars in December 2017, thus much research has been done about this subject.
Although Bitcoin is a relatively new currency, there have already been some studies on this topic.

Hencic and Gourieroux (2015) investigated the presence of bubbles in Bitcoin/US Dollar
exchange rate by applying a non-causal AR model; the dynamics of the daily Bitcoin/USD exchange
rate shows episodes of local trends, which can be modelled and interpreted as speculative bubbles.
Cheah and Fry (2015) focused on the same issue; as with many asset classes, they showed that
Bitcoin exhibits bubbles. They found empirical evidence that the fundamental price of Bitcoin
is zero. The volatility of six major currencies against the volatility of Bitcoin was measured by
Sapuric and Kokkinaki (2014), the results indicate a high volatility for Bitcoin exchange rate. Then,
Chu et al. (2015) did a statistical analysis of the log-returns of the exchange rate of Bitcoin against the
US Dollar and the generalised hyperbolic distribution is shown to give the best fit. Yermack (2015)
wondered whether Bitcoin can be considered a real currency on the financial market.

Fernández-Villaverde and Sanches (2016) analysed privately issued fiat currencies, checked the
existence of price equilibria and showed that there exists an equilibrium in which price stability is
consistent with competing private monies. However, they also concluded that the value of private
currencies monotonically converges to zero by equilibrium trajectories. Dyhrberg (2016) showed that
the movements of the volatility of Bitcoin has several similarities to gold and the dollar. Bianchi (2018)
investigated if there is a relationship between returns on cryptocurrencies and traditional asset classes.
There was a mild correlation with some commodities, but not that many macroeconomic variables.

Catania et al. (2018) showed that predicting volatility can be improved by using leverage and
time-varying skewness at different forecast horizons. Hotz-Behofsits et al. (2018) used time-varying
parameter VAR with t-distributed measurement errors and stochastic volatility to model three
cryptocurrencies: Bitcoin, Ethereum and Litecoin. Griffin and Shams (2018) investigated whether the
cryptocurrency called Tether is directly manipulating the price of Bitcoin, increasing its predictability.
By using algorithms to analyse the data, they found that purchases with Tether go along with sizeable
increases in Bitcoin prices.

In 2019, there are more studies done on cryptocurrencies. Muglia et al. (2019) investigated the
predictability of the S&P 500 by the movement of Bitcoin, showing that Bitcoin does not have any
direct impact on the predictability of the S&P 500. Catania et al. (2019) found that point forecasting
is statistically significant for Bitcoin and Ethereum when using combinations of univariate models.
They also concluded that density forecasting for all four cryptocurrencies is significant when relying
on time-varying multivariate models.

The exercise in this paper is generalised to multivariate models where the four cryptocurrencies are
predicted jointly using Bayesian VAR models with stochastic volatility as in Koop and Korobilis (2013).
Johannes et al. (2014) predicted stock prices using time-varying parameter and stochastic volatility
VAR models and found statistically and economically significant portfolio benefits for an investor who
uses models of return predictability.

Many institutions tried to investigate the relationship between Bitcoin and the stock market.
An article by Bloomberg (2018) stated that “big investors may be dragging Bitcoin toward Market
correlation”, thus investors looking for high gains may be attracted to the increasing risk of this
cryptocurrency. Stavroyiannis et al. (2019) studied the relation between Bitcoin and the S&P500 and
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found that it does not hold any of the hedge, diversifier, or safe-haven properties and the intrinsic
value is not related to US markets.

There are still no studies that can confirm that Bitcoin is a good stock market predictor. This paper
tries to fill the gap, analysing whether Bitcoin, Ethereum, Litecoin and Ripple can be forecasted by its
lags and other macroeconomic variables.

3. Data

The data collected for the sample span from 8 August 2015 to 28 February 2019, giving a total of
1301 observations. The data can be seen in Figure 1, which shows a big spike around the end of 2017.
Chinn’a “Big Three” exchanges were pending closure around that time; however, the cryptocurrencies
were largely buoyed by a bullish sentiment and went up. In December 2017, the peaks were reached
and a couple days later they dropped. At this time, cryptocurrencies are mainly considered as an
alternative investment, due to the fact that their use for payment is still limited. This can create
correlations with other assets in the financial market for at least two main reasons. The first regards
investors, who usually allocate wealth in a global portfolio and hedge across investments; the second
relates to market sentiments that spread fast among different assets. See the work of Bianchi (2018)
for similar arguments.

Figure 1. Price of the four cryptocurrencies from 8 August 2015 to 28 February 2019.

In this paper, we consider different cryptopredictors, as described below. The choice of these
cryptopredictors is due to the fact that possible correlations between cryptocurrencies and these assets
can be created, because Bitcoin and other currencies are considered as an alternative investment and
their use as payment is still poor. We use the following list of predictors for cryptocurrencies as stated
in Catania et al. (2019) as proxying market sentiments: international stock index prices (the S&P 500,
Nikkei 225 and Stoxx Europe 600); commodity prices (gold and silver); interest rates (the 1-month
and 10-year US Treasury rates); and the VIX closing price. To study the possible dependence between
cryptocurrencies, a transformation is necessary. The percentage daily log returns of cryptocurrencies is
computed as follows:

yt = 100 × log(St/St−1),

where St is the price on day t and yt is the cryptocurrency log return. Table 1 reports the descriptive
statistics of the cryptocurrencies. In Figure 2, the transformed data are plotted against time;
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as documented in Chu et al. (2015), the cryptocurrencies display high volatility, non-zero skewness,
very high kurtosis and several spikes.

Table 1. Descriptive statistics, calculated between 8 August 2015 and 28 February 2019.

Coin Bitcoin Ethereum Ripple Litecoin

Maximum 22.5119 41.2337 102.7356 51.0348
Minimum −20.7530 −31.5469 −61.6273 −39.5151

Mean 0.2071 0.4001 0.2781 0.1912
Median 0.2343 −0.0884 −0.3537 0.0000
Std Dev. 3.9543 6.7950 7.4433 5.7424

Skewness −0.2624 0.4898 3.0179 1.2631
Kurtosis 7.8178 7.6368 42.6234 15.3417

Ripple has the highest volatility due to the highest kurtosis. Litecoin has also a high volatility
but not that high compared to Ripple. The other two (Bitcoin and Ethereum) are compared to the
aforementioned cryptocurrencies less volatile, however the kurtosis is still far away from the normal
distribution, which has a kurtosis of three. Another interesting statistic is the skewness; Bitcoin is the
only one with a negative skewness. This indicates that the tail is at the left side of the distribution,
so the probability of lower values than the mean is higher than the normal distribution, which has
a skewness of zero. With a positive skewness, this is the case for the other cryptocurrencies, the
opposite is true. As before, Ripple has the highest skewness, which indicates that Ripple has the
highest probabilities of higher values than its mean.

In Figure 2, the transformation of daily log returns is shown. This gives some more insight into
the cryptocurrencies. Ripple is the most volatile crypto, the descriptive statistics of which are also
indicated. In addition, Ethereum stands out in the first half and after that it is more stable, which
means that it is less volatile. Bitcoin is the most stable crypto according to Figure 2.

Figure 2. Daily log returns of the four cryptocurrencies.

The crypto market is open 24/7, however the predictor variables are not. For this reason, the
data have to be adapted to use for forecasting. The procedure is simple; when the market is closed,
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for a variable, the previous value of that variable is used. This gives a return of zero, however this
is the best way since the variable is actually not changing for a day. Figure 3 shows the plots of the
predictor variables.

Figure 3. Daily log returns of the eight cryptopredictors from 8 August 2015 to 28 February 2019.

4. Methodology

Studies have provided strong evidence of time-varying volatility in macroeconomic variables,
however VARs with constant volatility are used in this paper. By using constant volatility,
the performance of point forecasting should not be affected that much by conditional heteroscedasticity,
which is the case for heteroscedastic models such as GARCH and stochastic volatility.
Heteroscedasticity is a major concern in the regression analysis, as well as in the analysis of variance,
as it can invalidate statistical tests. These tests assume that the errors, obtained by modelling, are
uniform and uncorrelated. For example, the ordinary least squares (OLS) estimator is still unbiased
in the case of heteroscedasticity, thus is inefficient because the actual variance and covariance are
underestimated.

In this paper, three types of specifications are analysed: the standard VAR model, VAR with
stochastic volatility and VAR with GARCH. The reason for multiple specifications of the model
is to really see if the forecasting performance of a more complex model is better than a simple
model. The Bayesian approach gives some advantages, as the parameter uncertainty can be mitigated.
The probabilistic statements can be computed without assumption. Another advantage is that the
estimation of complex nonlinear models with many parameters is feasible. For the stochastic volatility,
two different models are investigated: one where the normal distribution is used and the other where
the student-t distribution is used. These procedures by using these models are not the same, thus could
end up with different results. This way, there can also be a conclusion about which distribution would
give more accurate forecasts between all the models.
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As stated in Catania et al. (2019), the number of lags of the VAR models is selected equal to
three based on the BIC. The lag of interest of the cryptopredictors is the first lag. Thus, eight
models are discussed and used in this paper: Bayesian VAR(3), Bayesian VARX(3), Bayesian
VAR(3)-SV, Bayesian VARX(3)-SV, Bayesian VAR(3)-GARCH, Bayesian VARX(3)-GARCH, Bayesian
VAR(3)-SVt and Bayesian VARX(3)-SVt. These models are constant parameter vector autoregressive
and among the most common models applied in financial and macroeconomic forecasting
(see Koop and Korobilis (2010); Lutkepohl (2007)). Regarding time-varying parameters, we left this
issue as future research. To compare the models with each other, the Bayesian VAR(3) is chosen to be
the benchmark. In the next subsections, the models used for the in-sample analysis and the forecasting
exercise are explained briefly.

4.1. Bayesian VAR

First, the focus is on the benchmark model; the Bayesian VAR(3) model is described as follows:

yt = β1yt−1 + β2yt−2 + β3yt−3 + εt, εt ∼ N(0, Σεt), for t = 1, · · · , T,

with T the number of total days of the data. Since this model is for every cryptocurrency, the equation
above can be rewritten in stacked form:

Yt = Ztβ + εt, β = vec(β1, β2, β3),

Zt = (IN ⊗ Xt),

where Xt = [yt−1, yt−2, yt−3]
′, for every cryptocurrency.

Bayesian VARX

To introduce possible dependence to other variables, it is possible to extend the Bayesian VAR
model, by including other variables of interest. The so-called VARX model can be described as:

yt = β1yt−1 + β2yt−2 + β3yt−3 +
8

∑
j=1

γjWj,t + εi,t, εt ∼ N(0, Σεt), for t = 1, · · · , T,

with T the number of total days of the data and where γj and Wj,t are the parameter and cryptopredictor,
respectively. Since this model is for every cryptocurrency, the equation above can be rewritten in
stacked form:

Yt = Ztβ + εt, β = vec(β1, β2, β3, γ1, · · · , γ8),

Zt = (IN ⊗ Xt),

with T the number of total days of the data and where Xt = [yt−1, yt−2, yt−3, W1t, · · · , W8t]
′, for every

cryptocurrency.

4.2. Bayesian VAR-SV

In the following section, the models with time-varying volatility are described in detail by
differentiating between SV and GARCH. First, the Bayesian VAR(3) with stochastic volatility is similar
to the previous model, however there is a difference in the innovations term. This allows the model to
take different approaches over time, for example in times of high uncertainty there could be a higher
variance in the innovations. For this reason, one should use stochastic volatility, since the model adapts
to the movement and volatility of the time series.
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The Bayesian VAR-SV(3) model is described in the following way:

yt = β1yt−1 + β2yt−2 + β3yt−3 + εt,

εt = A−1Λ0.5
t εt, εt ∼ N(0, Ik), Λt ≡ diag(λ1t, · · · , λkt),

log(λt) = log(λt−1) + νt,

νt = (ν1t, ν2t, · · · , νkt)
′ ∼ N(0, Φ), for t = 1, · · · , T

with T the number of total days of the data and where A is a lower triangular matrix with non-zero
coefficients below the diagonal, which are ones. Λt is a diagonal matrix which contains the time-varying
variances of shocks. This model implies that the reduced form variance-covariance matrix of
innovations to the VAR is var(εt) ≡ Σt = A−1Λt(A−1)′ (Clark and Ravazzolo (2015)).

4.3. Bayesian VAR-GARCH

The Bayesian VAR(3) with GARCH(1,1) innovations is almost the same as the VAR-SV model,
however there is a difference in the innovations term. This allows the model to take different
approaches over time, for example in times of high uncertainty there could be a higher variance
in the errors. It also has a memory over time so it can compare the observations with the past to get
a better estimate of the predictions. For this reason, one should use GARCH over SV, because of the
memory over time.

The Bayesian VAR(3) with GARCH(1,1) innovations is described in the following way:

yt = β1yt−1 + β2yt−2 + β3yt−3 + εt,

εt = H0.5
t ηt, ηt ∼ N(0, Ik), Ht = DtRtDt, Dt = diag(h0.5

1t , · · · , h0.5
kt ),

ht = ω + Bε
(2)
t−1 + Ght−1, for t = 1, · · · , T,

with T the number of total days of the data. R is the conditional correlation matrix. ht follows
a GARCH(1,1) model where ht = [h1t, h2t, · · · , hkt]

′ and ε
(2)
t = [ε2

1t, ε2
2t, · · · , ε2

kt]
′ are

conditional variances and squared errors, respectively. ω and B and G are matrices of coefficients
(Carnero and Eratalay (2014)).

4.4. Bayesian VAR-SVt

The following model description is similar to the VAR-SV, but now with a student-t distribution.
This model, referred to as VAR-SVt, is described as:

yt = β1yt−1 + β2yt−2 + β3yt−3 + εt,

εt = A−1Λ0.5
t εt, εt ∼ t(0, Ik, η), Λt ≡ diag(λ1t, · · · , λkt),

log(λt) = log(λt−1) + νt,

νt = (ν1t, ν2t, · · · , νkt)
′ ∼ t(0, Φ, η), for t = 1, · · · , T

with T the number of total days of the data and η the degrees of freedom. A is a lower triangular matrix
with non-zero coefficients below the diagonal which are ones, Λt is a diagonal matrix, which contains
the time-varying variances of shocks. This model implies that the reduced form variance–covariance
matrix of innovations to the VAR is var(εt) ≡ Σt = A−1Λt(A−1)′ (Clark and Ravazzolo (2015)).

4.5. Forecasting

To forecast the cryptocurrencies, the methodology used is called a rolling window. The estimation
part is from 8 August 2015 to 8 August 2017, i.e. a two-year estimation window. Using the results from
this estimation, the point forecast one-day ahead is calculated. The next forecast is done by estimating
a day later than before, thus from 8 September 2015 to 8 September 2017 . This procedure continues
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until the end of the data is reached (28 February 2019), i.e. 567 days, thus the number of one-day
ahead forecasts is 567. As a prior for the SV and GARCH models, the Minnesota prior is used as
a start. This approach is standard and can be extended to other priors; for this paper, the standard
approach is sufficient enough to investigate the cryptocurrencies. For every one-day forecast, a total
of 6000 simulations are drawn and the first 1000 simulations are burned. This burning of the first
simulation is due to the fact that the first simulations can be correlated and/or inaccurate. Over time,
the simulations are independent of each other and can be used for measures.

4.6. Measures

To compare the performances of the forecasts, we use five different types of measures. The first
three are measures of point forecasts, while the last two are measures of density forecasts. The difference
between measures using point forecasts and measures using density forecasts is that measures using
point forecasts use the mean of the simulations, while measures using density forecasts use all
simulations. Measures using density forecasts give a great view of the full simulation and are not be
averaged out as the measures using point forecasts. However, measures using point forecasts still give
a good interpretation of the performance and are more efficient in time.

The first measure is the so-called 95% credible interval, which is an interval obtained by
simulations. The 2.5% and 97.5% quantiles of the simulations are the lower and upper bounds,
respectively. The idea behind this credible interval is that in 95% of the cases the forecast will be in
this interval. Another measure is the sign predictability, in this paper referred as the “success rate”,
which is the percentage of the forecasts which are in the right direction, as the actual observations.
When the actual observation goes down and the forecast as well, then it counts as a “success”. It is
also a “success” when the actual observation goes up and the forecast as well. In the two other cases,
it counts as a “fail”; in this way, the “success rate” is built. We do not perform sign predictability
tests for the reason indicated by Christoffersen and Diebold (2006). Tests that rely on the sign give no
information about volatility dynamics, which is potentially valuable for detecting sign predictability.

The third measure is called the Root Mean Squared Error (RMSE). The RMSE is preferred
over the Mean Squared Error (MSE) since it is on the same scale as the data. Some authors
(e.g., Armstrong (2001)) recommend the use of the RMSE since it is more sensitive to outliers than
commonly used Mean Absolute Error (MAE). The RMSE is computed for each cryptocurrency series,
i = Bitcoin, Ethereum, Ripple and Litecoin:

RMSEi =

√
∑T−1

t=R (ŷi,t+1 − yi,t+1)2

T − R

where R is the length of the rolling window, T is the number of observations, ŷi,t+1 is the ith
cryptocurrency forecast at time t, and yi,t+1 is the actual observation at time t.

The fourth type of measure is for evaluating the density forecasts; this measure is called the Log
Predictive Score (LS). In the same way as for the RMSE, it is computed for each series:

LSi =
T−1

∑
t=R

ln f (yi,t+1)

where f (yi,t+1) is the predictive density for yi,t+1, given the information up to time t. The fifth measure
is the Continuous Rank Probability Score (CRPS). This is a continuous extension of the RPS and can
be defined by considering an integral of the Brier scores over all possible thresholds x. Denoting the
predicted cumulative density function by F(x) = p(X ≤ x) and the observed value of X by yi,
the continuous ranked probability score can be written for each series as:

CRPSi = E
(∫ ∞

−∞
[F(x)− H(x − yi)]

2dx
)

,
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where H(x − yi) is the Heaviside function that takes the value 0 when the observed value is smaller
than the threshold, and 1 otherwise (Jolliffe and Stephenson 2003, Forecast Verification).

For the RMSE, LS and CRPS, we apply the t-test by Diebold and Mariano (1995) for each model
versus the benchmark. This test gives a p-value which indicates a certain significance level. If in a
table a value has one asterisk, then the model performs better, by a significance level of 5%, than the
benchmark model. If in a table a value has two asterisks, then the model performs better, by a
significance level of 1%, than the benchmark model. The first row of the tables contain the results of
the RMSE, LS and CRPS of the benchmark, which is the BVAR model. Ratios of each models RMSE
and CRPS to the benchmark are done such that entries less than 1 indicate that the given model yields
forecasts more accurate than those from the benchmark. The differences of each models LS to the
benchmark are performed such that a positive number indicates a model beats the baseline.

The other procedure we use is the model confidence set procedure of Hansen et al. (2011) using a
R package called MCS, detailed by Bernardi and Catania (2016). The model confidence set procedure
compares all the predictions jointly and deletes a model if it is significantly worse, finally ending
up with the best possible models of the models that were put in. The models which have a grey
background in tables are chosen to be not significantly worse than the other models.

5. Results

As stated in Section 4.6, we use different measures for point and density forecasting. Initially,
the focus is on point forecasting. The first results of the forecasts are given in Table 2; these are
the percentages of actual observations outside of the 95% credible interval obtained by simulation.
To compare the BVAR model with the BVAR-GARCH model, the forecasts of the BVAR-GARCH model
is only for Ripple not more often in the 95% credible interval. This would imply that the forecasts
are less volatile using the BVAR-GARCH model compared to the BVAR model, and for Ripple this
would be the opposite. This is in line with the expectations since the kurtosis of Ripple (see Table 1)
is significantly higher than the other cryptocurrencies. The BVAR-SV and BVARX-SV models have
the highest percentages of all the cryptocurrencies except for Bitcoin. This would suggest that using
Stochastic Volatility will not give a good prediction overall using credible intervals. The results between
the BVAR model and the BVARX model are close to each other, thus there is not a clear distinction
between these two models. However, the BVARX-GARCH model is the model that stands out the most,
which gives the most forecasts in the 95% credible interval, the only exceptions are the BVAR-GARCH
model for Ethereum and the BVARX-SV model for Bitcoin.

Overall, the use of the cryptopredictor variables would be helpful to simulate forecasts due to the
fact that in almost every case using the cryptopredictor variables would give a lower percentage of
actual observations outside of the 95% credible interval. Using a student-t distribution in the SV model
is only for Bitcoin more often out of the interval, which is expected as Bitcoin is the least volatile of the
cryptocurrencies. Including the cryptopredictor variables into the SV-t model, this percentage is only
smaller for Ripple, however not by a lot.

Table 2. Percentage of actual observations outside of the 95% credible interval retrieved by simulation.

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR 8.9947 5.1146 4.7619 6.5256
BVAR-SV 5.8201 21.517 14.991 16.755

BVAR-GARCH 5.9965 3.7037 5.4674 4.4092
BVARX 9.1711 4.5855 4.9383 6.7019

BVARX-SV 3.5273 13.404 8.9947 8.9947
BVARX-GARCH 5.6437 4.0564 4.0564 3.351

BVAR-SVt 7.7601 6.5256 9.7002 10.582
BVARX-SVt 8.1129 6.3492 9.1711 10.582
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For every cryptocurrency, the credible intervals are also plotted (see Figures A1–A4 in
Appendix A). In these figures, the credible interval of the BVAR models are pretty steady for all
cryptocurrencies, hence these models are not capturing the volatile movements of the data that well.
When one uses a more expanded version, e.g., the BVAR-SV or BVAR-GARCH model, the credible
levels captures the movements better; when there are shocks, the credible levels adapt to its movement.
However, the BVARX-SV models stands out the most; there is much noise in the credible levels,
thus using the predictors would not be helpful to give a more narrow credible interval to predict one
day ahead.

Table 3 shows the results for the second point forecasting measure previously described.
This predictability is not statistically tested but gives an insight into the accuracy of the movement
of the forecasts. The returns are used to see if the direction of predictions is correct. The BVAR-SV
model is compared to the BVAR model and BVAR-GARCH model in all cases more in the right
direction. Another observation is that only for Ethereum and Ripple including the cryptopredictor
variables predict the direction more precisely. The reason for this behaviour would be that Ripple is
more dependent on market movement than the other cryptocurrencies. However, the percentages
are under 50% or close to 50%, which would imply that these models (BVAR and BVAR-GARCH)
cannot predict the movement very precise. That statement only applies for now on the prediction of
the cryptocurrency going up or down.

An important observation of this table is that the stochastic volatility models have the best scores
overall and are in some cases about 60–67%, which is much more precise than for example 35.45% of
the BVAR-GARCH for Bitcoin. This is especially the case for the SV model with a student-t distribution,
thus using a SV model with student-t distribution is the best way, among these models, to forecast the
direction of the cryptocurrencies.

Table 3. Percentage of forecasts in the right direction (up or down).

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR 51.675 43.563 48.325 44.621
BVAR-SV 51.852 55.556 55.556 55.732

BVAR-GARCH 35.45 37.39 38.801 38.448
BVARX 47.795 45.15 49.735 43.034

BVARX-SV 51.852 56.085 56.614 50.794
BVARX-GARCH 35.097 41.446 41.975 36.861

BVAR-SVt 61.905 62.963 61.905 67.901
BVARX-SVt 62.434 62.963 58.025 67.725

Moving to the last point forecast measure, Table 4 contains the results of the ratio of the RMSE.
For these results, the RMSE of the benchmark model (BVAR) and the ratios of the other models are
reported. As expected in the descriptive statistics, Ripple is the cryptocurrency with the highest RMSE
due to the high kurtosis.

For Ripple and Litecoin, the SV models are significantly better than the benchmark model.
The GARCH model is in all cases not significantly better than the benchmark; the cause could be that
cryptocurrencies do not follow such dynamics. We could state that including the cryptopredictor
variables does not affect the RMSE of the models enough to increase the performance of the forecasts.
For Bitcoin, there is no model significantly better performing than the VAR, this could be caused by
the aforementioned stability of Bitcoin compared to the other cryptocurrencies.

105



J. Risk Financial Manag. 2019, 12, 150

Table 4. Ratio of RMSE against benchmark.

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR 4.6091 5.6996 7.6627 6.7055

BVAR-SV vs. BVAR 0.99466 0.99466 0.98465 ** 0.97735 **
BVAR-GARCH vs. BVAR 1.0072 1.0106 1.0189 1.0163
BVARX vs. BVAR 1.0111 1.0113 1.0057 1.0098
BVARX-SV vs. BVAR 0.99585 0.99598 0.98555 ** 0.98187 *
BVARX-GARCH vs. BVAR 1.013 1.02 0.99486 1.0065
BVAR-SVt vs. BVAR 0.99593 0.98915 ** 0.98254 ** 0.98709 **
BVARX-SVt vs. BVAR 0.99744 0.98927 * 0.98349 ** 0.98774 **

Notes: (1) The “X” indicates models with the cryptopredictor variables included, the “t” indicates that
the student-t distribution is used. (2) For BVAR, the benchmark model, the table reports the RMSE, for
other models it reports the ratio between the RMSE of the current model and the benchmark. Entries less
than 1 indicate that forecasts from current model are more accurate than forecasts from the benchmark
model. (3) ** and * indicate RMSE ratios are significantly different from 1 at 5% and 10%, according to the
Diebold–Mariano test. (4) Gray cells indicate models that belong to the Superior Set of Models delivered by
the Model Confidence Set procedure at confidence level 10%.

The grey areas indicate the model confidence set; this also confirms our conclusion that using the
SV model is in almost every case (except for Litecoin and VARX-SV) in this set. If one wants to forecast
these cryptocurrencies with one of these models, then the preferred option, by looking at the RMSE,
is using stochastic volatility.

Tables 5 and 6 contain the results of the density measures CRPS and PL. The results of the CRPS
measure are not that different from the RMSE. One difference is that by the CRPS, GARCH outperforms
the VAR for Bitcoin and for Ripple if the cryptopredictor variables are included. Hence, the density of
Bitcoin and Ripple follow the dynamics of a GARCH model more than the benchmark. However, the
SV model also outperforms the GARCH model since the values of the SV model are in many cases
lower. In the model, confidence set is now also the GARCH for Bitcoin included.

Table 5. Ratio of CRPS against benchmark.

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR 2.4707 3.1043 3.9479 3.453

BVAR-SV vs. BVAR 0.95108 ** 0.99346 0.90827 ** 0.9735 *
BVAR-GARCH vs. BVAR 0.96574 ** 1.0443 0.99732 1.0226
BVARX vs. BVAR 1.0125 1.012 1.007 1.0131
BVARX-SV vs. BVAR 1.066 1.0298 0.93993 ** 0.99681
BVARX-GARCH vs. BVAR 0.97812 * 1.042 0.97615 * 1.0216
BVAR-SVt vs. BVAR 0.95964 ** 0.98594 0.88674 ** 0.96403 **
BVARX-SVt vs. BVAR 0.96002 ** 0.98764 0.88773 ** 0.96525 **

Notes: (1) The “X” indicates models with the cryptopredictor variables included, the “t” indicates that
the student-t distribution is used. (2) For BVAR, the benchmark model, the table reports the CRPS, for
other models it reports the ratio between the CRPS of the current model and the benchmark. Entries less
than 1 indicate that forecasts from current model are more accurate than forecasts from the benchmark
model. (3) ** and * indicate CRPS ratios are significantly different from 1 at 5% and 10%, according to the
Diebold–Mariano test. (4) Gray cells indicate models that belong to the Superior Set of Models delivered by
the Model Confidence Set procedure at confidence level 10%.

The conclusion drawn from the first measure of density forecast (CRPS) is that for Ethereum
the case is now the same as the case for Bitcoin by using the RMSE; there is no model significantly
better than the benchmark. The reason could be that the density of the forecasts of Ethereum are not
following the movement captured by the used models, such that the predictability of Ethereum is low
caused by its uncertainty being higher than those of the other cryptocurrencies.

Regarding the density forecast for CRPS, the main conclusion is that including stochastic volatility
in the model formulation lead to better results with respect to the benchmark (VAR model) and to
GARCH specification. In particular, the inclusion of student-t specification of the errors in the SV
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models leads to better results and to great improvements for every cryptocurrency. If one includes
the cryptopredictors in the analysis, there are not so great improvements except when the errors are
student-t specified for stochastic volatility.

Table 6. Differences of PL against benchmark.

Cryptocurrency Bitcoin Ethereum Ripple Litecoin

BVAR −3.2676 −3.1777 −3.7552 −3.8476

BVAR-SV vs. BVAR 0.28254 −1.6413 ** −0.030439 −0.17147
BVAR-GARCH vs. BVAR −0.081207 −0.76657 * 0.27199 0.27338
BVARX vs. BVAR −0.023045 −0.0085887 * −0.025829 −0.027074
BVARX-SV vs. BVAR 0.28375 −0.85084 ** 0.25762 0.39481
BVARX-GARCH vs. BVAR 0.239 −0.27849 0.3654 0.40684
BVAR-SVt vs. BVAR 0.38974 0.067936 0.59546 0.63765
BVARX-SVt vs. BVAR 0.43121 0.064834 0.55927 0.4663

Notes: (1) The “X” indicates models with the cryptopredictor variables included, the “t” indicates that the
student-t distribution is used. (2) For BVAR, the benchmark model, the table reports the PL, for other models it
reports the difference between the PL of the current model and the benchmark. Entries greater than 0 indicate
that forecasts from current model are more accurate than forecasts from the benchmark model. (3) ** and *
indicate PL differences are significantly different from 0 at 5% and 10%, according to the Diebold–Mariano test.
(4) Gray cells indicate models that belong to the Superior Set of Models delivered by the Model Confidence
Set procedure at confidence level 10%.

The predictive likelihood (PL, or log predictive score (LS)) has some different results compared to
the previous measures. At first, the predictive likelihood is very close to each other if one compares
the cryptocurrencies, which indicates that the models perform the same for the cryptocurrencies.
Only for Ethereum there are models significantly better performing than the VAR. The SV models are
in that case the most significant and the GARCH and VAR including the cryptopredictor variables are
less significant.

Overall, the model confidence set is as before containing the SV models. However, this time the
SV-t models are not in this set, only for Litecoin including the cryptopredictor variables. Litecoin has
however almost a full set, only the SV-t model is not in it, thus Litecoin is not following a single model,
but can be explained by multiple models. The GARCH models are now in the model confidence set as
well, which illustrates that the log score of the forecasts are describable as GARCH movements.

Regarding the density forecast for PL, the main conclusion is that including stochastic volatility in
the model formulation leads for Ethereum to better results with respect to the benchmark (VAR model)
and to GARCH specification. Contrarily, the CRPS inclusion of the student-t specification of the errors
in the SV model lead to no significant better results. If one includes cryptopredictors in the analysis,
there are only for Ethereum improvements if there is no student-t specification.

Robustness Check

In this section, we perform the forecasting exercises by including different univariate models.
We report the results for different possible benchmark models. We consider the following two
univariate models: an autoregressive model with one lag (AR(1)) and an autoregressive model with
the first three lags (AR(3)) based on the BIC criterion.

Table 7 reports the point and density forecasting for the AR(1) and AR(3) versus the benchmark
model considered in Section 5. All models are run by using the usual Bayesian priors for 5000
iterations. Furthermore, we perform the root mean square error (RMSE) and the CRPS for the four
main cryptocurrencies. As stated in Table 7, the results for the point and density forecasting are
qualitatively similar to multivariate benchmark case, VAR(3).
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Table 7. Point (RMSE) and Density forecasting (CRPS) for Bayesian AR(1), AR(3) and VAR(3).

Models Bitcoin Ethereum Ripple Litecoin

RMSE
BAR(1) 4.6033 5.6470 7.5795 6.5794
BAR(3) 4.6069 5.6517 7.5984 6.6076
BVAR(3) 4.6091 5.6996 7.6627 6.7055

CRPS
BAR(1) 2.4717 3.0790 3.8395 3.4161
BAR(3) 2.4730 3.0809 3.8816 3.4245
BVAR(3) 2.4707 3.1043 3.9479 3.453

6. Conclusions

Recently, cryptocurrencies have attracted attention from researchers and financial institutions
due to their importance. In this paper, a comparison of the performance of several models has
been investigated to predict four of the most capitalised cryptocurrencies: Bitcoin, Ethereum,
Ripple and Litecoin. A set of cryptopredictors is applied and eight model combinations are proposed
for combining these predictors. The results show statistically significant improvements in point
forecasting for all the cryptocurrencies when using a combination of stochastic volatility and a
student-t distribution. In density forecasting for all cryptocurrencies, the stochastic volatility model
gives the best predictability. One recommendation for future research is to allow different weights
across time and time-varying parameters to improve the point and density forecasting. Moreover,
other cryptopredictors based on the dynamics of the cryptomarket might be interesting for modelling.

Author Contributions: The work was equally divided between the two coauthors. The origin and development
of the paper was a joint initiative. R.B. focused on collection of data and econometric analysis; L.R. worked on
writing results and the working paper.

Funding: This research was supported by the European Union Horizon 2020 research and innovation programme
under the Marie Sklodowska-Curie grant agreement No 796902.

Acknowledgments: We thank the editor, two anonymous referees and Lennart Hoogerheide for helpful comments
and suggestions to improve this work. Luca Rossini acknowledges financial support from the European Union
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 796902.

Conflicts of Interest: The authors declare no conflict of interest.

108



J. Risk Financial Manag. 2019, 12, 150

Appendix A. Results

Figure A1. Credible interval for Bitcoin.

Figure A2. Credible interval for Ethereum.
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Figure A3. Credible interval for Litecoin.

Figure A4. Credible interval for Ripple.
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Abstract: The paper investigates whether Bitcoin is a good predictor of the Standard & Poor’s 500
Index. To answer this question we compare alternative models using a point and density forecast
relying on Dynamic Model Averaging (DMA) and Dynamic Model Selection (DMS). According to
our results, Bitcoin does not show any direct impact on the predictability of Standard & Poor’s 500
for the considered sample.
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averaging; dynamic model selection; forgetting factors

1. Introduction

The idea of cryptocurrency and the related technology, Blockchain, was suggested in 2009 by
an anonymous user known as Satoshi Nakamoto. He posted a paper to a cryptographic mailing list
introducing a new electronic cash system with very low transaction costs able to avoid the presence of
a central bank: the Bitcoin, see Nakamoto (2009). In the last ten years, cryptocurrencies have become
more and more popular among researchers and investors, with around 2000 cryptocurrencies available
at the time of writing. In recent months, the Bitcoin has experienced a dramatic price increase and
consequently, the global interest in cryptocurrencies has spiked substantially. Despite the price increase,
there are other numerous reasons for this intensified interest, just to mention a few: Japan and South
Korea have recognised Bitcoin as a legal method of payment (Bloomberg 2017a; Cointelegraph 2017);
some central banks are exploring the use of the cryptocurrencies (Bloomberg 2017b); a large number of
companies and banks created the Enterprise Ethereum Alliance1 to make use of the cryptocurrencies
and the related technology called blockchain (Forbes 2017). Finally, the Chicago Mercantile Exchange
(CME) started the Bitcoin futures on 18 December 2017, see Group (2017), Nasdaq and the Tokyo
Financial Exchange will follow, see Bloomberg (2017b).

Although Bitcoin is a relatively new currency, there have already been some studies on this topic:
Hencic and Gourieroux (2015) applied a non-causal autoregressive model to detect the presence of
bubbles in the Bitcoin/USD exchange rate. The study of Cheah and Fry (2015) focused on the same
issue. Fernández-Villaverde and Sanches (2016) analysed the existence of price equilibria among privately
issued fiat currencies and Yermack (2015) wondered whether the cryptocurrency can be considered
a real currency. Sapuric and Kokkinaki (2014) measured the volatility of the Bitcoin exchange rate
against six major currencies. Chu et al. (2015) provided a statistical analysis of the log–returns of the
exchange rate of Bitcoin versus the USD. Catania and Grassi (2018) analysed the main characteristics of
cryptocurrency volatility.

1 Source: https://entethalliance.org/members/.
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Moreover Bianchi (2018) tried to investigate some of the key features of cryptocurrency returns
and volatilities, such as their relationship with traditional asset classes, as well as the main driving
factors behind the market activity. He found that returns on cryptocurrencies are moderately correlated
with commodities and a few more assets.

Other studies have analyzed cryptocurrency manipulation and predictability. For instance,
Hotz-Behofsits et al. (2018) applied a time-varying parameter VAR with t-distributed measurement errors
and stochastic volatility. Griffin and Shams (2018) investigated whether Tether (another cryptocurrency
backed by USD) is directly manipulating the price of Bitcoin, increasing its predictability. Catania et al.
(2019) studied cryptocurrencies’ predictability using several alternative univariate and multivariate models.
They found statistically significant improvements in point forecasting when using combinations of
univariate models and in density forecasting when relying on a selection of multivariate models.

Many institutions tried to investigate the relationship between Bitcoin and the stock market.
In some articles, it was speculated that the Bitcoin can improve stock market’s predictability, in this
case, Bitcoin could be used as a leading indicator. In an article by Bloomberg (2018), Morgan Stanley’s
analysts stated that “big investors may be dragging Bitcoin toward Market correlation”: the increasing
risk of this cryptocurrency may have had an attraction for investors who were seeking for high gains.
Stavroyiannis and Babalos (2019) examine the dynamic properties of Bitcoin and the Standard & Poor’s
500 (S&P500) index. They study whether Bitcoin can be classified as a possible hedge, diversifier,
or safe-haven with respect to the US markets. They found that it does not hold any of the hedge,
diversifier, or safe-haven properties and it exhibits intrinsic attributes not related to US markets.

To the best of our knowledge, there are still no studies to confirm that Bitcoin is a good stock
market predictor. This paper tries to fill this gap, analyzing whether Bitcoin could be used as a leading
indicator for the S&P500.

To answer this question, we allow for parameter and model uncertainty, avoiding Markov
Chain Monte Carlo (MCMC) estimation at the same time. This is accomplished using the
forgetting factors methodology (also known as discount factors) which have been recently proposed
by Raftery et al. (2010) and found to be useful in economic and financial applications, see Dangl
and Halling (2012) and Koop and Korobilis (2012) (KK). Another advantage of this methodology
is to provide, in close form, both the marginal and predictive likelihood (PL), which are useful in
model selection.

The rest of the paper proceeds as follows: Section 2 presents the general model and the estimation
strategy; Section 3 presents the Dataset; Section 4 discusses the empirical results; finally, Section 5
reports some conclusions.

2. Models and Estimation Strategy

Let yt ≡ (y1, . . . , yt)′ denote the time series of interest and xt ≡ (x1, . . . , xt)′ the series of
exogenous variables, then the model can be written as:

yt = ztγt + εt, εt ∼ N(0, Ht),

γt = γt−1 + ηt, βt ∼ N(0, Qt),
(1)

where yt is a scalar representing the observed time series at time t, zt = {yt−1, . . . , yt−p, xt−1, . . . , xt−q}
is a 1 × m vector (m = p + q) stacking all the lags of the series of interest and of the exogenous variable;
γt = {γ1,t, . . . , γj,t} is an m × 1 vector containing the time varying states γs, which are assumed to
follow a random-walk dynamic. Finally, the errors, εt and βt, are assumed to be mutually independent
at all leads and lags. The Ht contains the time-varying volatilities of the series. The state space model
(SSM) of Equation (1) has been used in several recent papers, see among others, Primiceri (2005)
and Koop and Korobilis (2012).

In order to estimate the quantities of interest, maximum likelihood or Bayesian estimation based
on MCMC can be used. However, these two estimation approaches end up being computationally
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complex and, most of the time, infeasible. To reduce the computational burden, KK proposed two
main adjustments to the usual MCMC.

The first is to replace the variance-covariance matrix Qt with an approximation. Latent states—
γt—can then be obtained with a closed-form expression avoiding maximum likelihood or MCMC,
see Supplementary Materials. The second adjustment is to replace the measurement error variance
matrix Ht with an Exponential Weighted Moving Average (EWMA) type filter.

As discussed in Supplementary Materials, this methodology requires the specification of the
hyperparameters λ, α and κ and the specification of the initial condition of the states γ0 and Σ0. Refer to
KK for an extensive discussion of the problem.

3. Dataset Description

Table 1 reports the dataset used for the analysis, with the transformation and the data source.
The sample goes from 11 August 2015 to 19 July 2018 and consists of 740 daily observations.
The crypto–market is open 24 h a day, seven days a week; hence, for computing returns we use
the closing price at midnight (UTC). As discussed in Catania et al. (2019), the data are available from
https://coinmarketcap.com/ with daily frequency; unfortunately, hourly data that could allow for a
more precise analysis are not freely available. To investigate non-stationary issues, three Unit-Root
tests have been performed: Augmented Dickey-Fuller (ADF) Test, Philips-Perron (PP) Test and
Kwiatkowsky, Phillips, Schmidt and Shin (KPSS) Test. All of them confirm the stationarity of each
transformed series, results are available from the authors upon request.

Table 1. Data overview and transformation. The table reports the series divided by type, Financial
predictors, Commodity predictors and Crypto predictors. The series are available for the period
11 August 2015 to 19 July 2018. For each variable the table reports the abbreviation code, the full name,
the data source and the transformation applied.

Code Full Name Transformation Data Source

Analyzed serie
S&P500 Standard & Poor’s 500 Log-First-Difference Thomson Reuters Eikon

Financial predictors
EF300 FTSEuroFirst300 Log-First-Difference Thomson Reuters Eikon

NASDAQ Nasdaq 100 Index Log-First-Difference Thomson Reuters Eikon
VIX CBOE Market Volatility Index Log-First-Difference Thomson Reuters Eikon

1mUS 1-month US Treasury Constant Maturity Rate First-Difference Federal Reserve System
10yUS 10-years US Treasury Constant Maturity Rate First-Difference Federal Reserve System

Commodity predictors
OIL ICE Brent Crude Eletronic Energy Future Log-First-Difference Thomson Reuters Eikon

GOLD SPDR Gold Shares Log-First-Difference Thomson Reuters Eikon

Crypto predictors
BTC Bitcoin Log-First-Difference Coinmarketcap
BHL Bitcoin High minus Bitcoin Low Log Coinmarketcap

Figure 1 reports Bitcoin closing price (BTC) which shows a steep rise in 2017 reaching the value
of almost 20,000 US dollars in December 2017. This ascending trend was severely interrupted at the
beginning of 2018, when price quickly dropped down to $6000. At the time of writing, BTC’s price is
fluctuating between 5000 and 6000 dollars.

The series reported in Table 1 are divided in: financial predictors, such as VIX; commodity
predictors, such as GOLD and crypto predictors such as BTC. Among the financial predictors, the VIX,
see Figure S1 in Supplementary Materials (Panel (c)), is the most volatile, as expected. It displays a
very steep peak between January and February 2018, the same period in which BTC’s price started
to fall.
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Table S1 in Supplementary Materials reports the correlation matrix of the predictors. As the
table shows the BTC appears to be highly positively correlated with all the financial indexes: S&P500,
EF300 and NASDAQ.

BTC Daily Closing Price

Figure 1. The figure reports the Bitcoin (BTC) closing price from August 2015 to July 2018. The plot
clearly shows the steep rise in the price 2017 and the sharp drop in 2018.

4. Analysis

The out-of-sample period begins on 1st September 2016 and the forecast horizon ranges from h = 1
to h = 7 days ahead. The analysis compares the performances of two models: the first—M1—includes
all the predictors: financial, commodity and crypto predictors, see Table 1. The second, M2, excludes
crypto predictors. The benchmark model, denoted with M0, is an ARMA(1,1)-GARCH(1,1) model.
M1 and M2 can suffer from massive model uncertainty due to the number of possible predictor’s
combination at each time point t. For example, M1 has 29 = 512 models at each point in time.
To mitigate this fact, we use the DMA and DMS as described in Koop and Korobilis (2012) and
reported in Supplementary Materials. As already mentioned, the methodology requires fixing three
hyperparameters: the forgetting factor λ for the parameter variation; the decay factor κ for the EWMA;
and, finally, the discount weight α that weights each model based on forecast performances.

The results reported in this section are based on κ = 0.94. This value suits daily data,
see Riskmetrics (1996) and Prado and West (2010). The other parameters are set to α = 0.99 and
λ = 0.99, coherently with Raftery et al. (2010). In Section 4.2 a robustness analysis for the forgetting
factors α and λ is carried out. Moreover, we also tried to optimize at each time point λt using a standard
data-driven approach minimizing the expected prediction error. Unfortunately, the optimized λt with
crypto time series seems to be very unstable; we leave this issue as a topic of further research.

The analysis begins with the investigation of the posterior inclusion probabilities of each predictor:
the higher the probability the higher the predictor’s influence over the dependent variable. Figure 2
depicts the posterior probabilities of BTC (Panel (a)), and of BHL (Panel (b)). Time-varying posterior
probabilities of inclusion for the other exogenous variables are reported in Supplementary Materials.
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(a) Posterior inclusion probability for BTC.

(b) Posterior inclusion probability for BHL.

Figure 2. Posterior inclusion probabilities. Panel (a) shows posterior inclusion probability for BTC.
Panel (b) shows posterior inclusion probability for BHL.

The figures show that the importance of each predictor switches rapidly over time, with a high
inclusion probability of BTC in some specific periods. One important change is in 2016 when the
inclusion probability suddenly jumped from 0.5 to 0.9 increasing the correlation with the S&P500 and
potentially its role as a leading indicator.

After a calm period during 2017, the BTC gained importance once again at the end of the same year
with a steep rise in price. During this period, a lot of articles pointed out a correlation between BTC and
financial markets. Bloomberg (2018) stated that “big investors may be dragging Bitcoin toward market
correlation” and see BTC as an asset which guarantees the highest potential risk/return combination in
the market. This may have attracted the interest of big investors able to move huge amounts of funds
and consequently correlate BTC to the USA stock market. Another article by Cointelegraph (2018)
asserted that BTC might be correlated with VIX, but there is no evidence that it may influence the
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S&P500 index. An extensive analysis of the latter issue is carried out in the next sections using point
and density forecast.

4.1. Forecast Metrics

To assess the leading property of BTC we use point and density forecast. For the point forecasts,
we use the mean absolute forecast error (MAFE) for each forecast horizon, h = 1, . . . , 7:

MAFEh =
1

T − R

T−h

∑
t=R

∣∣∣ŷi,t+h|t − yi,t+h

∣∣∣ , (2)

where T is the number of observations, R is the length of the rolling window, ŷt+h|t is the S&P500
forecast made at time t for horizon h and yt+h is the realization.

To evaluate the density forecasts, we use predictive log score (LS) that is commonly viewed as the
broadest measure of density accuracy, see Geweke and Amisano (2010). As for the MAFE, we compute
the LS for each horizon:

sh(yi) =
T−h

∑
t=R

ln ( f (yt+h|It)), (3)

where f (yt+h|It) is the predictive density for yt+h constructed using information up to time t.
We report the MAFEs and the LSs as a ratio of each model’s with respect to the baseline. Entries

smaller than 1 indicate that a given model yields forecasts that are more accurate than those from
the baseline and differences in score relative to the baseline, such as a negative number, indicates a
model that beats the baseline. In order to statistically assess the differences between alternative models,
we apply the Diebold and Mariano (1995) test for equality of the average loss (with loss defined as
squared error and negative log score) of each model versus the ARMA(1,1)-GARCH(1,1) benchmark
and we also employ the Model Confidence Set procedure of Hansen et al. (2011) using the R package
MCS detailed in Bernardi and Catania (2016) to jointly compare all predictions. Differences are tested
separately for each forecast horizon.

4.2. Point Forecast

Point forecast is evaluated through MAFE for both DMA and DMS as well as for their special
case, Bayesian Model Averaging (BMA). For each forecast horizon, the errors are calculated using
the following combination of forgetting and discount factors: λ = α = 0.99, λ = α = 0.95, λ = 1
and α = 0.99, λ = 0.99 and α = 1, and finally λ = α = 1. In all the cases, the decay factor is fixed to
κ = 0.94.

Table 2 compares point forecast for M1 and M2 as a ratio M0 (top) and against M0 (bottom).
From the upper table, it emerges that the errors are increasing in accordance with the forecast
horizon. Moreover, when h increases, the ratio increases, meaning that the benchmark model displays
better results than DMA and DMS. Table S8 in Supplementary Materials B shows that increasing the
forecasting horizon to h = 10 does not improve the forecasting performance of M1 and M2. However,
Section 4.3, which analyses density forecasts results, reveals different outcomes.

Another peculiarity is that forecasts improve when α and λ tend to 1. When α = λ = 0.95 we
get the worst forecast performance for DMA and DMS, while the best results are obtained with BMA.
This may be due to the nature of the series: the presence of outliers and high peaks in BTC series may
distort the point forecast.

To see if BTC improves predictability over the S&P 500 a DM test is performed with a level of
significance equal to α = 95%. Results are reported in Supplementary Materials Table S2. There is no
evidence of an improvement in prediction when the BTC is added to the set of predictors. Further
results for different forecast horizons are reported in Supplementary Materials.

Using point forecast it seems that BTC does not improve predictability over the S&P 500 index.
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4.3. Density Forecast

Density forecast is more informative than point forecast, as it is a measure of the prediction
uncertainty. The PL, which is the basis of density forecast, comes as a by-product of the adopted
estimation strategy. Table 3 reports the LS: the evidence is striking and the results are almost opposite
to those in Section 4.2. Both M1 and M2 provide statistically superior forecasts with respect to M0.

Table 3. Log Score (LS), computed over the forecast horizon. Results are reported relative to the
benchmark specification (ARMA(1,1)-GARCH(1,1)) for which the absolute score is reported. Values in
bold indicate rejection of the null hypothesis of Equal Predictive Ability between each model and the
benchmark according to the Diebold-Mariano test at the 5% confidence level. Grey cells indicate those
models that belong to the Superior Set of Models delivered by the Model Confidence Set procedure at
confidence level 10%. As the table shows, the difference between M1 and M2 is very poor.

Days Ahead M0 M1 − M0 M2 − M0

h = 1 −1659.997 −1023.949 −1024.600
h = 2 −1651.352 −1767.424 −1763.904
h = 3 −1647.144 −2188.181 −2187.612
h = 4 −1643.063 −2496.529 −2498.355
h = 5 −1639.526 −2733.322 −2740.850
h = 6 −1636.366 −2930.505 −2927.831
h = 7 −1631.968 −3097.841 −3093.876

The first column reports the PL for the benchmark model (M0), and the other columns report
the differences of M1 and M2 with respect to the benchmark. Among the three models, M0 shows the
worst results in contrast with the results of Section 4.2. The best forecast result is obtained for M1 when
h = 1; however, the difference between M1 and M2 is almost irrelevant. Following the same strategy
previously adopted the DM test is carried out, with a significance level of 95%.

The DM statistics, equal to −2.236, suggest that the null hypothesis of equal forecasting ability
is rejected. As discussed in Harvey et al. (1997), the DM test could be over-sized when the forecast
horizon is greater than one, so in those cases, we used the modified test given by:

S∗
1 =

[
P+1−2h+P−1h(h−1)

P

]1/2
S1,

where S1 is the original statistics, h is the forecast horizon, P is the forecast evaluation period.
The modified version of DM test maintains the same null hypothesis of equal forecasting ability.
Whereas, the alternative is that model M2 is more accurate than model M1.

H1 is accepted in this case since the test shows a very high p-value (0.987). In other words, model
M2 is performing better than M1 in terms of forecasting. Finally, the MCS indicates that DMS and
DMA has similar performance across horizons and they are both superior to the benchmark.

Therefore, the density forecast shows a different outcome to that of the point forecast. While the
benchmark model performs better than DMA and DMS in terms of MAFEs, the opposite is true when
the density forecast is considered. DMA and DMS give much better predictions for the S&P 500 when
the PL is considered.

The main goal of the paper is to understand whether BTC can be assumed to be a good predictor
for the S&P 500. Point forecast does not give any contribution to answering this question. A more
precise result is reached when the density forecast is used. Even though the PL are close to each other,
it has been found that the model that excludes the BTC related series outperforms the one that includes
them at lag one. For the other lags, the results are mixed and almost all the models are included
in the MCS without a clear superior model. This indicates that BTC does not seem to improve the
predictability of the S&P 500 index.

Table S9 in Supplementary Materials reports the results for α = λ = 0.99 and κ = 0.94 when
the Dow Jones (DJ) index is substituted to S&P500. It emerges that, using DJ, the BTC improves the
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result of both point and density forecast for shorter horizon (one or two days ahead). These results are
promising and carrying out an extensive analysis for different markets is a topic for further research.

5. Conclusions

This work investigates whether BTC can be used as a leading indicator for the S&P500 index.
We use the methodologies recently introduced by Raftery et al. (2010), which allow the predictor’s weight
to change dynamically over time. The study is based on two distinct models: the first—M1—includes
all the predictors; the second—M2—excludes the crypto-predictors. The benchmark model—M0—is
estimated using an ARMA(1,1)-GARCH(1,1).

The forecasting analysis is based on both point and density forecast. Results coming from the
point forecast are not very satisfactory: the M0 outperforms both M1 and M2. Density forecast provides
a totally different outcome: M1 and M2 strongly outperform M0. Unfortunately, in this case, the DM
and the MCS do not give clear evidence about which of the two models is the best. Accordingly,
from our results we can conclude that BTC does not show any predictive power over the S&P500 index.
In the coming years, cryptocurrencies will surely receive more and more consideration and there is the
possibility that our result may be disavowed.

Supplementary Materials: The supplementary materials are available online at http://www.mdpi.com/1911-
8074/12/2/93/s1.
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Abstract: This paper investigates how investor sentiment affects stock market returns and evaluates
the predictability power of sentiment indices on U.S. and EU stock market returns. As regards the
American example, evidence shows that investor sentiment indices have an economic and statistical
predictability power on stock market returns. Concerning the European market instead, investigation
provides weak results. Moreover, comparing the two markets, where investor sentiment of U.S.
market tries to predict the European stock market returns, and vice versa, the analyses indicate a
spillover effect from the U.S. to Europe.
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1. Introduction

Optimism, also known as market sentiment, reveals the movements in the financial markets
dictated by the psychological perception of determined operations or trades. This could create situations
of mispricing, leading investors to lower returns than they expected. These movements in sentiment
can conduct price distant from economic fundamentals and pose new research questions. For example,
is optimism, and consequently pessimism, a factor of influence in financial markets? Accordingly,
investor sentiment, which captures these fluctuations, is increasingly a topic of research relevance.

Several studies have been conducted in order to examine the presence and the effects of sentiment
in financial markets. Before of an investment, investors behave differently. According to their
propensity to the risk and the future expectations, they are divided into rational and irrational traders.
Many individuals, defined irrational, in making decisions underreact or overreact to fundamentals and
returns. Therefore, evaluation and decision-making are biased with the result of mispricing, i.e., moving
from its fundamental value. Definitions as overconfidence, conservatism, and representativeness can
explain the concept, but there is no academic consensus on a theory or a right formula to quantify
it. We dedicate the next section to a literature review and discussion on what has been found on the
relationship between investor sentiments and stock market returns.

The aim of this paper is to extend the research on investor sentiments and stock market returns
in three directions. First, the majority of studies investigates this relationship with American stock
markets, because of their financial significance and the higher likelihood to access the data. One of the
few exception is (Fernandes et al. 2013) that provide an examination of the Portuguese market. This
paper would like to contribute to the literature by analysing and comparing a strong and stable market
like the U.S. to a smaller one, but with economic significance, like Europe.
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Second, we apply Bayesian inference allowing us to set priors such as that the posterior distribution
of the parameters of the predictive return regression can better learn from the data. This is particular
useful when the sample size is small and priors help to reduce parameter uncertainty as in our
European case.

Third, we evaluate the out-of-sample predictability power of investor sentiment acting on this
association and interpret the economic effects of the findings. Using various indices, which measure
sentiment both in an implicit and explicit way, the U.S. and the European market are studied over
the periods 1990–2014 and 2001–2017, respectively. Extending previous evidence, we add sentiment
indices as a further regressor to those typically considered in stock market predictability; see, for
example, the list in (Welch and Goyal 2008). The forecasts in both examples start from the year 2008
because of its economical relevance due to the financial crisis. Further analyses compare the two
markets to each other, searching for a spillover effect. In this case, investor sentiment of U.S. market
tries to predict the European stock market returns, and vice versa.

As regards the American example, we find that sentiment indices have a negative impact on
the stock market returns and provide accurate predictions of next month stock returns. Excluding it
from the set of regressors decreases substantially the economic and statistical predictability power.
With respect to the European market, evidence show weak findings. Only the Consumer Confidence
Index provides in-sample evidence of predictability, but none gives out-of-sample more accurate
predictions that the random walk in mean benchmark. Finally, the results show the presence of a
spillover effect between the two markets. From an economic standpoint, Europe, which has been
affected by globalisation and quick communication, is more prone to follow the influence of the
American sentiment, because of the stronger U.S. economy.

The structure of the paper is as follows: Section 2 provides the literature review, deepening what is
investor sentiment and diversifying between its measurements. Section 3 deals with the methodology,
the empirical applications, and the relative results. Section 4 sums up the conclusion and suggests
issues for future works.

2. Literature Review

This chapter provides a brief definition of investor sentiment, supported by theories, extended
to behavioural reasons and effects; and a review of the empirical analyses on its relationship with
stock markets.

2.1. Investor Sentiment

First of all, it is pivotal to define what investor sentiment is and why it has become more important
in recent times. Investor sentiment is also known as market sentiment since it reveals the movements
in the financial markets dictated by the psychological perception of determined operations or trades.
Investors are subject to the sentiment of the market, i.e., to the belief about future expectations and
investment risks that are not consistent with the statistical data or real facts. When the business
performance is driven by emotions, a distortion of the price from its fundamental value occurs, entailing
the risk in itself to be misunderstood from the investors and worsen the situation. Therefore, sentiment
represents generally the attitude of economic agents, from consumers to investors, towards the market.

Barberis, Shleifer, and Vishny (Barberis et al. 1998) introduce an investor sentiment, focusing on
overreaction and underreaction. They explain that information could be misleading. Indeed, optimistic
announcements drive the investors to an exaggerated optimism about future news and, therefore, to
overreaction, which leads stock prices to increase. Unfortunately, the following “news announcements
are likely to contradict his optimism, leading to lower returns” (Barberis et al. 1998). This idea simply
resumes the evidence that optimistic investors tend to overreact and, in the end, receive less of what they
expected. Furthermore, another mechanism arises: conservatism, which “states that individuals are
slow to change their beliefs in the face of new evidence” (Barberis et al. 1998). Then, investors, divided
into optimistic and pessimistic traders, behave differently according to the weight they designate to
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a particular announcement, and are unlikely to change their mind, even though a strong proof is
supplied. This wrong assessment leads to persistent mispricing and a deterioration of the final wealth.

Baker and Wurgler (Baker and Wurgler 2006) argue that the issue of mispricing derives from
an “uninformed” sentimental demand shock. According to behavioural finance, there is a strong
debate on market efficiency, since the allocation of capital could be prone to encounter several risks (for
example, fundamental and noise trader risk) during the investment and implies costs due to mispricing
(Barberis and Thaler 2003).

2.2. Empirical Investigation

Various authors have contributed to influence the scientific field with a great number of papers
regarding the investor sentiment and its effects. Hereafter, we provide a brief summary of the ones we
consider the most worthy and appropriate previous studies on this topic.

Fisher and Statman (Fisher and Statman 2000) investigate three different groups of investors:
individuals, newsletter writers, and Wall Street strategists. While the first two are almost perfectly
correlated, there is no correlation of them with the last group. The study reveals that the future
S&P500 returns have a negative and statistically significant relationship with individual investors and
strategists of Wall Street.

Additionally, Brown and Cliff (Brown and Cliff 2005) prove that sentiment is negatively related to
future returns. Then, if the investor sentiment is high (low), it will imply lower (higher) stock returns
in the future. Smaller companies tend to be less affected by sentiment, while large firms even in long
horizon are more influenced, with a consequently higher level of predictability power.

Baker and Wurgler (Baker and Wurgler 2006) explore the effect of the investor sentiment on
cross section of stock returns. The results suggest that the sentiment is inversely proportional
to stock returns—small, young, extreme growth, unprofitable, distressed, high volatility, and
non-dividend-paying stocks. Another salient conclusion is that firm characteristics, that theoretically
should not exercise any unconditional predictive power, show instead conditional patterns (for example,
the U shape) as the sentiment is conditioned. This outcome can be explained as a compensation for
the systematic risks, where some countermeasures, as the orthogonalisation of the investor sentiment
index to macroeconomic circumstances, demonstrate inconsistency with this interpretation.

Baker and Wurgler (Baker and Wurgler 2007) examine in depth, theoretically and empirically,
the investor sentiment, looking for an optimal way to measure it and to discern and quantify the
consequences of it. They confirm that sentiment influences the cost of capital, with effects on the
allocation of investments.

Lemmon and Portniaguina (Lemmon and Portniaguina 2006) investigate the time-series
relationship between investor sentiment and stock returns using consumer confidence as a measure of
investor optimism. Lemmon and Portniaguina (Lemmon and Portniaguina 2006) distinguish from
a rational and an irrational part, the letter proxy by regression residuals. They find that a negative
relationship between the sentiment and the stock market returns exists, even if a mispricing seems to
be eventually corrected by noise traders.

From an international point of view, Schmeling (Schmeling 2009) researches if consumer confidence
could have an impact on the expected stock returns in 18 industrialised countries. As before, Schmeling
(Schmeling 2009) shows that sentiment has a negative relationship with forecasts of aggregate stock
market returns. In addition, he provides a cultural explanation of why some countries have higher
sentiment; indeed, most of them are more prone to overreact and to have a herding behaviour.

On the other hand, Verma and Soydemir (Verma and Soydemir 2006) point out that rational and
irrational factors are both constituent parts of the investor sentiment, individual, as well as institutional.
Furthermore, they brought to light a significant phenomenon: the contagion effect. The exploration
consists of searching for an influence of one country’s sentiment upon the assets of other markets.
Their research evidences that the U.S. investor sentiment affects Mexico and Brazil, at an institutional
stage, and U.K. at both the institutional and individual level.
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Verma, Baklaci, and Soydemir (Verma et al. 2008) consider the impact of arbitrageurs and noise
traders’ sentiment on both the Dow Jones Industrial Average and the S&P500 returns. They find that
irrational investor sentiment has a stronger effect on stock returns than rational one, justifying it with
the speed of processing information about economic fundamentals.

Chung, Hung, and Yeh (Chung et al. 2012) also inspect investor sentiment in the business
cycles and report that the predictability of the sentiment is meaningful only during the expansion,
while in periods of recession there is no significance. Therefore, the investor sentiment results to
be regime-dependent.

Huang et al. (Huang et al. 2014) propose a new investor sentiment, denoted as aligned, which
outperforms the others, in terms of fitting, reducing incredibly the noise component, and predictability,
with good results even in the out-of-sample forecasting method. Widely basing on the previous
predictor of Baker and Wurgler (Baker and Wurgler 2006), they compare the results between the Baker
and Wurgler (BW) sentiment and the aligned sentiment partially least square (SPLS).

Finally, Fernandes, Gonçalves, and Vieira (Fernandes et al. 2013) provide an examination of the
“small” Portuguese stock market. Starting from the same hypothesis of the majority of the essays
cited before, they investigate whether there exists predictability not only of aggregate stock returns,
but also at industrial indices levels for Portugal, over the period 1997–2009. Using the residuals of
the Economic Sentiment Indicator (ESI) for Europe and applying the principal component analysis
technique to obtain macroeconomic factors, they document that sentiment shows a negative relation to
returns. In addition, they inspect for the presence of a contagious effect of the U.S. investor sentiment
on the local market.

3. Methodology

3.1. Indices and Models

Many different indicators have been proposed as investor sentiment index. Additionally, there
are several different measurement mechanisms to build it. They can be divided mostly into two
macro-categories: direct and indirect measures. Direct measures are all the indices, where the data are
obtained through surveys conducted to consumers, investors or other agents, who explicitly give a
response and their sentiment towards some specific questions and issues. The indirect measure is,
instead, a financial or pure mathematical index used as a proxy to define the new sentiment indicator.

In the surveys, investors usually divide into bull, neutral, or bear. Alternatively, they are asked
to express an opinion through numbers indicating high or low expectations. Some examples are the
American Association of Individual Investors (AAII), which officially conducts and publishes surveys
on investors; the Conference Board Consumer Confidence Index, which elaborates the surveys on
individuals’ expectations about issues in macroeconomics; and others that can deal with businesses or
industrial sectors.

The literature provides many example of indirect measurements that can be assumed as sentiment
indices. The more applied are: the IPOs, the number and average of first-day returns on Initial
Public Offerings; NYSE turnover, measuring trading volume; CEFD, closed-end fund discount, since it
seems to be inversely correlated to sentiment; dividend premium, which is the difference between
average market-to-book ratios of payers and non-payers. All these proxies are considered as subject
to sentiment, even though with probably different timing. Consequently, Baker and Wurgler, and
Huang et al. (Baker and Wurgler 2006; Huang et al. 2014) combine more of these proxies to create one
unique index.

Huang et al. (Huang et al. 2014) and before Baker and Wurgler (Baker and Wurgler 2006, 2007)
study how the investor sentiment works and which factors are its constituents. Both indices are
constructed from the same set of variables. Both the BW investor sentiment, created by Baker and
Wurgler (Baker and Wurgler 2006, 2007), and the aligned one (here-hence denominated as SPLS),
created by (Huang et al. 2014), are obtained from the following six individual sentiment proxies:
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- Close-end fund discount rate (CEFD);
- Share turnover (TURN);
- Number of IPOs (NIPO);
- First-day returns of IPOs (RIPO);
- Dividend premium (PDND); and
- Equity share in new issues (EQTI).

In constructing the sentiment index, Huang et al. (Huang et al. 2014) and Baker and Wurgler
(Baker and Wurgler 2006) use equal structure and the same choice of proxies (see above). The reference
equation to create investor sentiment is written as follows:

Sentt= CEFDt β1 + TURNt β2 + NIPOt β3 + RIPOt β4 + PDNDt β5 + EQTIt β6 (1)

Baker and Wurgler (Baker and Wurgler 2006) apply a first principal component, Huang et al.
(Huang et al. 2014) prefer the partial least squares. According to (Huang et al. 2014), PC fails to
produce significant forecasts because it can accumulate approximation errors coming from parts of the
variations of the proxies. Hence, every one of the aforementioned proxy is moved on average with six
months smoothing, standardised, and elaborated upon other regressions on industrial production,
durable, and nondurable consumption, service consumption, employment, and a series of dummy
variables in order to reduce the business cycle variation. In addition, the residuals coming from these
regressions are used as proxy to be combined to build a new investor sentiment index. This procedure
is the orthogonalisation to macro variables in order to compensate for systematic risk and to prevent
high correlations, if the raw data are conditioned from macroeconomic factors.

Then, Huang et al. (Huang et al. 2014) apply a linear regression model where they regress
sentiment indices at time t to predict returns at t + 1. We extend the regression in two directions. First,
we include in the linear regression a set of control variables. Indeed, investor sentiment indices could
proxy other information and we control for it. The resulting model is:

Rt+1 = α+ β Sentt,k + δXt + εt+1, εt+1 ∼ i.i.d.
(
0, σ2
)
, k = 1, . . . , K (2)

where Rt+1 is the excess market return at time t + 1, Sentt,k is the investor sentiment at time t, and k is
one of the K alternative investor sentiment indices, Xt is a set of predictors described in the next section.
Second, we apply Bayesian inference. Barberis (Barberis 2000), Kandel and Stambaugh (Kandel and
Stambaugh 1996), and Hodrick (Hodrick 1992) are among the first papers to advocate the use of
Bayesian inference for investigating stock market predictability. Bayesian inference allows to set priors
such as that the posterior distribution of the parameters of the predictive return regression can better
learn from the data. This is particular useful when the sample size is small and priors help to reduce
parameter uncertainty. Moreover, priors can be set to improve long-term asset allocation and to remove
biases. Recently, Pettenuzzo, Timmermann, and Valkanov (Pettenuzzo et al. 2014) documented that
economic constraints based on prior beliefs systematically reduce uncertainty about model parameters,
reduce the risk of selecting a poor forecasting model, and improve both statistical and economic
measures of out-of-sample forecast performance. We apply a normal-inverted gamma prior for our
linear regression. We set prior mean values equal to OLS estimates and large prior variance values
to keep the likelihood dominant on the prior. Degrees of freedom are set equal to 10% of the sample
size. Our priors result in a closed form solution for parameter posteriors and predictive distributions.
Precisely, the parameters β will follow a Student’s t posterior distribution and the predictive density
will also be t-Student distributed. See (Koop 2003) for exact values.1 The estimation is run recursively.

1 We also investigate uniform flat priors. For the US example the results are almost identical; for the EU exercise we find large
parameter uncertainties and lower forecast accuracy.

127



J. Risk Financial Manag. 2019, 12, 85

Up to the last observation posterior distributions and predictive densities are computed to predict the
following value. In the next period, when new data are available, the process is repeated to obtain
further predictions.

3.2. Data

The data span from January 1990–December 2014 (300 months) for the U.S. example, whereas the
European example range from June 2001 through April 2017 (191 months). The European sample is
unfortunately quite limited since the data are not available before the selected start point for all the
components of the variables considered. As for the U.S. example, the length of the sample ends in 2014,
because the data for the (Baker and Wurgler 2006, 2007) investor sentiment and the aligned investor
sentiment calculated by (Huang et al. 2014) are available only until that year.

The dataset for the analysis in the U.S. market consists of the following variables:

• Stock excess market returns of U.S. market, SEMRUS: calculated from price of S&P500, including
dividends and in excess of the risk free rate (3-month US treasury bill);

• Continuous compounding of S&P500, COMPOUND: calculated without dividends, in excess of risk
free rate (10-year US treasury bill);

• Investor sentiment index, BW: calculated by (Baker and Wurgler 2006), through the PC method;
• Orthogonalised investor sentiment index, BWORT: calculated by (Baker and Wurgler 2006), the

orthogonalisation is applied in order to reduce the systematic risk;
• Aligned investor sentiment index, SPLS: calculated by (Huang et al. 2014), through the PLS method;
• Orthogonalised aligned investor sentiment index, SPLSORT: calculated by (Huang et al. 2014), the

orthogonalisation is applied for the same reasons as before;
• Conference Board Consumer Confidence Index of US, CB_CONS: calculated through surveys on

expectations about business conditions, employment and income, from consumers over a
six-month horizon;

• CBOE’s Volatility of S&P500, VIX: annualised standard deviation, also known as uncertainty index,
it is calculated from near expectations (one-month horizon) about stock market volatility.

Therefore, our sample includes four indirect measures and two direct measures of sentiment. The
indirect measures of sentiment are downloaded from the Guofu Zhou website.

On the other hand, the dataset for the European consists of the following variables:

• Stock excess market returns of EU market, SEMREU: calculated from price of Euro Stoxx 50, including
dividends and in excess of the risk free rate (3-month Euribor);

• Continuous compounding of Euro Stoxx 50, COMPOUND: calculated without dividends, in excess of
risk free rate (10-year German government bond);

• Economic Sentiment Indicator of European countries, ESI_EU: published monthly by the European
Commission, it consists of five sectoral confidence indicators (based on results from business
surveys), which are: industry (40%), services (30%), consumers (20%), construction (5%) and retail
trade (5%);

• Economic Sentiment Indicator of Eurozone, ESI_EUZONE: composite calculated only for the
Eurozone countries;

• Consumer Confidence Indicator of Europe, CONSCONF: calculated from surveys on the financial
situation of households, the general economic situation, unemployment expectations and savings,
over one year horizon;

• Industrial Confidence Indicator of Europe, INDUCONF: calculated from surveys on production
expectations, order books and stocks of finished products;

• Economic Sentiment Indicator of Germany, ZEW_DEU: calculated from surveys on expectations
about macroeconomic development, financial and industrial profit situation over the following
six months;
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• Ifo Business Climate Index, IFO: dealing with the assessments of business situation and future
expectations, it is calculated from surveys on different sectors from enterprises, such as
manufacturing, construction, wholesaling and retailing, over a six-month horizon.

Therefore, the European example includes only direct measures of sentiment.
Our list of control for the U.S. stock market includes the 15 economic variables which are popular

stock return predictors and are directly linked to economic fundamentals and risk aversion. We use
the updated data From (Welch and Goyal 2008). Most of the predictors fall into four broad categories,
namely: (i) valuation ratios capturing some measure of ‘fundamentals’ to market value such as the
dividend yield, the earnings–price ratio, the 10-year earnings–price ratio or the book-to-market ratio; (ii)
measures of bond yields capturing level effects (the three-month T-bill rate and the yield on long-term
government bonds), slope effects (the term spread) and default risk effects (the default yield spread,
defined as the yield spread between BAA and AAA rated corporate bonds, and the default return
spread, defined as the difference between the yield on long-term corporate and government bonds); (iii)
estimates of equity risk, such as the long-term return and stock variance (a volatility estimate based on
daily squared returns); (iv) three corporate finance variables, namely the dividend payout ratio (the log
of the dividend–earnings ratio), net equity expansion (the ratio of 12-month net issues by NYSE-listed
stocks over the year-end market capitalization) and the percentage of equity issuance (the ratio of
equity issuing activity as a fraction of total issuing activity). Finally, we consider a macroeconomic
variable, inflation, defined as the rate of change in the consumer price index, and the net payout
measure, which is computed as the ratio between dividends and net equity repurchases (repurchases
minus issuances) over the last 12 months and the current stock price. As in (Welch and Goyal 2008),
lag inflation is lagged an extra month to account for the delay in CPI releases.

For the European exercise, we could not collect all the 15 predictors and have eight variables: the
dividend yield, the earnings–price ratio, the book-to-market ratio, the short-term interest rate, the
long-term yield, the term spread, the default risk, the default return spread (where 10-years German
bund rates are used as the government rate), stock variance (European VIX, VSTOXX), and inflation.

3.3. Empirical Results

3.3.1. The U.S. Market

The dependent variable is the excess market return, continuously compounded log return on the
S&P 500 index (including dividends), minus the risk-free rate. The risk free rate is represented by the
three-month U.S. Treasury bill.

Figure 1 shows four of the sentiment indices used for the U.S. market. Both the BW index and
the SPLS have a similar pattern, since they are constructed starting from the same six variables, even
though using different methods (PC and PLS, respectively). For this reason, the sentiment indices
cannot be applied all together, but regress in separate equations.
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Figure 1. Plot of the sentiment indices group for the entire range of 1990–2014.

Figure 2 reports two sentiment indices, SPLS, and BWORT, and stock market returns. The figure
documents that the latter variable is much more volatile than the sentiment, with great positive and
negative peaks in short periods. As discussed in (Baker and Wurgler 2006, 2007), first, orthogonalisation
applied to sentiment indices reduces the systematic risk. Second, the sentiment changes are more
difficult to be detected, and its volatility expressed only in periods of high speculation.

Figure 2. Plot of the sentiment indices, SPLS and BWORT, and the stock market returns, SEMRUS, for
the entire range of 1990–2014.

Table 1 reports the results of the U.S. regression. The first four variables refer to indirect sentiment
indices; the last two to (direct) consumer or market indices. All coefficients have negative posterior
means, almost all the posterior mass has negative mass as the Bayesian t-statistics confirms and the
posterior distribution assigns probability to positive numbers lower than 1%. The coefficient and the
forecasts evaluation are consistent with the literature, proving that there exists a negative relationship
between stock market returns and investor sentiment, supported by (Baker and Wurgler 2006, 2007;

130



J. Risk Financial Manag. 2019, 12, 85

Huang et al. 2014). Economically, one-percentage change in the independent variable is associated
with an average decrease of −2.20 (for the BW) in the excess market return.

Table 1. Set of regressions run on the U.S. market.

Variable Post Mean ß Bayesian t-Stat Positive Post. Distr. MSPE Ratio

SPLS −1.079 −1.965 0.050 0.933 **
BW −2.200 −3.149 0.002 0.926 **

SPLSORT −1.041 −2.068 0.040 0.940 **
BWORT −2.350 −3.318 0.001 0.939 **

CB_CONS −0.046 −1.685 0.093 0.938 **
VIX −0.259 −5.150 0.000 0.954 **

Note: This table reports the posterior mean of the sentiment indices used in the various regressions with US data;
the Bayesian t-statistics, computed as the ratio of the posterior mean and the posterior standard deviation of the
parameter; the probability of the positive posterior distribution. The last column gives the out-of-sample mean
square error (MSPE) relative to the MSPE of the random walk benchmark. A MSPE ratio lower than 1 means that the
alternative model based on the sentiment index outperforms the random walk benchmark. We measure statistical
significance relative to the benchmark model using the (Diebold and Mariano 1995) t-tests for equality of the average
loss. Asterisks indicate significance at * 10% and ** 5% levels. All results are based on the whole forecast evaluation
period January 2008–December 2014.

As next step, we produce one-month forecasts from January 2008 to December 2014 using an
expanding window approach. We compute mean square prediction errors (MSPE) by comparing
each (point) forecast to the realization. We also compute forecasts using the standard benchmark
model used for studying return predictability, the random walk in mean. We report MSPE ratios by
dividing the MSPE of each of our models based on one of the sentiment indices by the MSPE of the
benchmark. A MSPE ratio lower than 1 means that the alternative model based on the sentiment index
outperforms the random walk benchmark. A MSPE ratio larger than 1 means that the benchmark
is more accurate. We also test the difference of the MSPE based on the alternative model and the
one based on the benchmark model using the (Diebold and Mariano 1995) test; see (West 1996) for
theoretical foundations.

Among the sentiment indices, we find that BW provides the most accurate predictions of stock
market returns with a reduction on MSPE relative to the benchmark of almost 7.5%. The difference
is statistically significant. This result contrasts with (Huang et al. 2014), who found the SPLS being
more accurate in the out-of-sample analysis. The SPLS is still statistically superior to the benchmark,
but adding the control variables in (Welch and Goyal 2008) reduces marginally its economic gains.
When testing the difference in MSPE of the models based on BW and SPLS indices, the null of equal
predictability is not rejected.

When comparing to the other indices, we find that all models statistically outperform the
benchmark model and the VIX variable gives the lower gains. Interesting, an index like the
CB_CONS, which is made up of opinions and should be more inclined to errors, seems to be
more appropriate (economically, but not statistically) to represent the investor sentiment, providing a
larger predictability power than a financial variable as the VIX. We notice that the VIX and the stock
variance in (Welch and Goyal 2008) dataset are highly correlated and this can create some imprecision
on estimation. Finally we run two further set of regression models. The first one is a model based only
on the (Welch and Goyal 2008) regressors and exclude the sentiment indices. The model gives a 3%
reduction on MSPE relative to the benchmark, confirming the predictability power of the sentiment
indices which all results on lower ratios. The second set of models removes control variables and
apply the six sentiment indices individually in each regression. MSPE gains reduces, but BW and
CB_CONS still provide a statistical significant reduction up to 5%, providing further evidence of their
predictability power.
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3.3.2. The European Market

In this section, we deal with the analysis and interpretation of the EU example. The excess stock
market returns of the Euro Stoxx 50 is predicted through different European sentiment indices and a
set of control variables.

Figure 3 plots the sentiment group on the entire sample, formed by the two Economic Sentiment
Indicators, one for all Europe and one for the Eurozone, and the Consumer and Industrial Confidence
Index. For making visible the trend of the series, the mean value is subtracted to the variables ESI_EU
and ESI_EUZONE, levelling them to the other two indices. The two sentiment indices cannot be used
all together because of multicollinearity issue since INDUCONF and CONSCONF are two of the five
component sectors of the ESI.

Figure 3. Plot of the sentiment indices group for the entire range 2001–2017.

Figure 4 show the volatile pattern of Euro Stoxx 50 compared to Consumer and Industrial Indices.
At the end of the 2008 the negative peak in sentiment indices due to the financial crises is evident.
On the contrary, on the same period, in particular the following months, stock returns recorded an
increasing evolution with positive peaks.
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Figure 4. Plot of the economic indices, CONSCONF and INDUCONF, and the stock market returns,
SEMREU, for the entire range 2001–2017.

Table 2 shows regression results. In this example, the Economic Sentiment Indicator and two
specific components of it substitute the BW and SPLS indices. The economic indicators we choose are
German industrial confidence index, ZEW_DEU and IFO indicators. The choice of these two German
indices comes from different reasons. First, Germany is considered as a leading country in Europe,
with a stronger economic and political stability. Second, Germany is an industrial and financial centre,
with contacts to many European regions. Finally, the surveys reflect optimistic and pessimistic share
for the future expected economic development not only in Germany, but also in France, Italy, and other
relevant countries.

Table 2. Set of regressions on the EU market.

Variable Post Mean ß Bayesian t-Stat Positive Post. Distr. MSPE Ratio

ESI_EU −0.040 −0.410 0.663 1.000
ESI_EUZONE −0.040 −0.332 0.740 0.999
CONSCONF −0.490 −2.690 0.006 1.000
INDUCONF 0.012 0.143 0.894 1.002
ZEW_DEU 0.013 0.723 0.463 1.036

IFO 0.052 0.503 0.584 1.030

Note: This table reports the posterior mean of the sentiment indices used in the various regressions with European
data; the Bayesian t-statistics, computed as the ratio of the posterior mean and the posterior standard deviation
of the parameter; the probability of the positive posterior distribution. The last column gives the out-of-sample
mean square error (MSPE) relative to the MSPE of the random walk benchmark. A MSPE ratio lower than 1 means
that the alternative model based on the sentiment index outperforms the random walk benchmark. We measure
statistical significance relative to the benchmark model using the (Diebold and Mariano 1995) t-tests for equality of
the average loss. Asterisks indicate significance at * 10% and ** 5% levels. All results are based on the whole forecast
evaluation period January 2008–April 2017.

Except for the Consumer Confidence Index, posterior probabilities of other variables assign large
probabilities to positive numbers. Therefore, apart from CONSCONF, there is no strong evidence on
the role of sentiment indices to drive the EU stock market. From the economic point of view, this can
be justified by the fact that Europe has not a strong financial impact comparable to the volumes of the
U.S., which has been historically the leader of the worldwide markets. Fernandes, Gonçalves, and
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Vieira (Fernandes et al. 2013) concluded that the Portuguese market has tendency to be affected by the
sentiment, because of the high level of collectivism in the country. The herding is counterbalanced
by the presence of institutional investors, which are considered as rational. This statement could
lead to think that it is likely to notice a majority of rational investors in the EU market, because of
institutional level, than noise traders. The forecasting exercise over the sample 2008–2017 confirms
evidence and all models perform similarly in terms of MSPE. None models statically outperform the
random walk benchmark.

3.3.3. Spillover Effect

Our forecasting sample deals with the period during and after the financial crisis, which had a
global effect. Therefore, we investigate the possibility that the markets are not independent, where
booms and recessions spread around different geographic regions.

Table 3 shows the results of predicting the European stock returns with U.S. sentiment indices. In
these regressions, we exclude the set of control variables and just focus on the spillover effects. The
output demonstrates a spillover effect for almost all the U.S. sentiment indices to European markets.
Only the VIX does not support this evidence. The survey indicator CB_CONS is the only with a
positive coefficient. BW produces the lowest MSPE, but it is not statistically significant relative to
the benchmark model. One explanation for the result is that European investors misinterpret U.S.
sentiment fluctuations, also due to the large capitalization of the U.S. market, confusing them with
fundamental news and reacting to them in their European portfolio.

Table 3. Set of estimations run using the U.S. sentiment in order to predict the EU stock returns.

Variable Post Mean ß Bayesian t-Stat Positive Post. Distr. MSPE Ratio

SPLS −3.880 −3.061 0.003 1.095
BW −3.195 −3.055 0.003 0.990

SPLSORT −4.964 −3.588 0.001 1.064
BWORT −3.283 −2.902 0.005 1.018

CB_CONS 0.097 2.224 0.029 1.037
VIX −0.161 −1.566 0.121 1.037

Note: This table reports the posterior mean of the sentiment indices used in the various regressions; the Bayesian
t-statistics, computed as the ratio of the posterior mean and the posterior standard deviation of the parameter; the
probability of the positive posterior distribution. The last column gives the out-of-sample mean square error (MSPE)
relative to the MSPE of the random walk benchmark. A MSPE ratio lower than 1 means that the alternative model
based on the sentiment index outperforms the random walk benchmark. We measure statistical significance relative
to the benchmark model using the (Diebold and Mariano 1995) t-tests for equality of the average loss. Asterisks
indicate significance at * 10% and ** 5% levels. All results are based on the whole forecast evaluation period January
2008–April 2017.

Table 4 reports the estimations of the U.S. stock returns through the European sentiment indices.
As shown, all the variables have almost all the posterior mass in the negative support. Economically, it
seems that the Economic Sentiment Indicator, elaborated by the European Commission, has a stronger
link with American investors, enabling predictions on stock returns, than with the EU market. The
model based on it outperforms the random walk benchmark at a 5% significance level. We notice that
gains are, however, smaller than using U.S. sentiment indices. Zew and Ifo indices were not inserted in
this table because of the unavailability of data for the entire range.
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Table 4. Set of estimations run using the EU sentiment indices in order to predict the U.S. market.

Variable Post Mean ß Bayesian t-Stat Positive Post. Distr. MSPE Ratio

ESI_EU −0.120 −3.997 0.000 1.021
ESI_EUZONE −0.127 −4.387 0.000 0.997
CONSCONF −0.191 −4.862 0.000 0.976 *
INDUCONF −0.117 −3.550 0.001 1.060

Note: This table reports the posterior mean of the sentiment indices used in the various regressions; the Bayesian
t-statistics, computed as the ratio of the posterior mean and the posterior standard deviation of the parameter; the
probability of the positive posterior distribution. The last column gives the out-of-sample mean square error (MSPE)
relative to the MSPE of the random walk benchmark. A MSPE ratio lower than 1 means that the alternative model
based on the sentiment index outperforms the random walk benchmark. We measure statistical significance relative
to the benchmark model using the (Diebold and Mariano 1995) t-tests for equality of the average loss. Asterisks
indicate significance at * 10% and ** 5% level. All results are based on the whole forecast evaluation period January
2008 to December 2014.

To sum up, Tables 3 and 4 document a link between financial markets and the two markets are not
independent, but interdependent.

4. Conclusions

This paper applies the sentiment index in regression models to predict US and European stock
market returns. Many measurements are experimented, from direct sentiment indices, like surveys, to
indirect measures of investor sentiment, such as the ones calculated by (Huang et al. 2014; Baker and
Wurgler 2006, 2007). Differently than the previous literature, we control for a set of variables often
used in return predictability and apply Bayesian inference to reduce parameter uncertainty due to the
short sample, in particular for the European example.

As regards the American example, the results showed that globally sentiment has a negative
impact on the stock market returns and BW resulted to have the highest predictive power. With respect
to the European market, evidence shows weak findings and no relationship is found. Finally, the
results show the presence of spillover effect between the two markets. Therefore, it can be concluded
that U.S. and EU are two interdependent markets. In the end, this idea can justify the weak outputs
on the European markets. From an economic standpoint, affected from globalisation and quick
communication, Europe could be more prone to follow the influence of the American sentiment,
because of the stronger economy.

Unfortunately, due to unavailability of data, the analysis is conducted on a limited range. The short
period is a limitation on estimating the best model, since there could be omitted factors influencing the
estimation. The use of Bayesian priors limits somewhat such effects. However, in future works it could
be interesting to explore the difference between the rational and irrational factors of the sentiment,
deepening the irrational analysis (i.e., the residual part).
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