‘ entropy

Mesoscopic
Systems

Edited by
David Sanchez and Michael Moskalets
Printed Edition of the Special Issue Published in Entropy

=4
www.mdpi.com/journal/entropy rM\D\Py




Quantum Transport in Mesoscopic
Systems






Quantum Transport in Mesoscopic
Systems

Editors

David Sanchez
Michael Moskalets

MDPI e Basel o Beijing ¢ Wuhan e Barcelona e Belgrade e Manchester e Tokyo e Cluj e Tianjin

ml\DPI

F



Editors

David Sanchez Michael Moskalets

Institute for Cross-Disciplinary NTU “Kharkiv Polytechnic Institute”
Physics and Complex Systems  Ukraine

TFISC (UIB-CSIC)

Spain

Editorial Office

MDPI

St. Alban-Anlage 66
4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Entropy
(ISSN 1099-4300) (available at: https://www.mdpi.com/journal/entropy/special_issues/Quantum_
Transport).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,
Page Range.

ISBN 978-3-03943-366-7 (Hbk)
ISBN 978-3-03943-367-4 (PDF)

Cover image courtesy of Michele Filippone and Gwendal Feve.

(© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative
Commons Attribution (CC BY) license, which allows users to download, copy and build upon
published articles, as long as the author and publisher are properly credited, which ensures maximum
dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons
license CC BY-NC-ND.




Contents

Aboutthe Editors . . . . . . . . . . ... e

David Sanchez and Michael Moskalets
Quantum Transport in Mesoscopic Systems
Reprinted from: Entropy 2020, 22,977, d0i:10.3390/€22090977 . . . . . . . .. ... ... ... ...

Michele Filippone, Arthur Marguerite, Karyn Le Hur, Gwendal Feve and Christophe Mora
Phase-Coherent Dynamics of Quantum Devices with Local Interactions
Reprinted from: Entropy 2020, 22, 847, doi:10.3390/€22080847 . . . . . . . .. ... .. ... .. ..

Xiaomei Chen and Rui Zhu

Quantum Pumping with Adiabatically Modulated Barriers in Three-Band Pseudospin-1
Dirac-Weyl Systems

Reprinted from: Entropy 2019, 21, 209, doi:10.3390/€21020209 . . . . . .. .. ... .. ... .. ..

Yasuhiro Tokura
Quantum Adiabatic Pumping in Rashba-Dresselhaus-Aharonov-Bohm Interferometer
Reprinted from: Entropy 2019, 21, 828, d0i:10.3390/e21090828 . . . . . . . ... ... ... ... ..

Kazunari Hashimoto and Chikako Uchiyama
Nonadiabaticity in Quantum Pumping Phenomena under Relaxation
Reprinted from: Entropy 2019, 21, 842, doi:10.3390/€21090842 . . . . . . . .. .. .. ... .. ...

Valeriu Moldoveanu, Andrei Manolescu and Vidar Gudmundsson
Generalized Master Equation Approach to Time-Dependent Many-Body Transport
Reprinted from: Entropy 2019, 21,731, d0i:10.3390/€21080731 . . . . . . . .. ... ... ... ...

Devashish Pandey, Enrique Colomés, Guillermo Albareda and Xavier Oriols

Stochastic Schrédinger Equations and Conditional States: A General Non-Markovian Quantum
Electron Transport Simulator for THz Electronics

Reprinted from: Entropy 2019, 21, 1148, d0i:10.3390/€21121148 . . . . . . .. ... ... ... ...

Mohammad H. Ansari, Alwin van Steensel and Yuli V. Nazarov
Entropy Production in Quantum Is Different
Reprinted from: Entropy 2019, 21, 854, doi:10.3390/€21090854 . . . . . .. .. ... .. ... .. ..

Sara Kheradsoud, Nastaran Dashti, Maciej Misiorny, Patrick P. Potts, Janine Splettstoesser
and Peter Samuelsson

Power, Efficiency and Fluctuations in a Quantum Point Contact as Steady-State Thermoelectric
Heat Engine

Reprinted from: Entropy 2019, 21, 777, doi:10.3390/€21080777 . . . . . . . . . .. .. ... .. ...

Radl A. Bustos-Martin and Herndn L. Calvo
Thermodynamics and Steady State of Quantum Motors and Pumps Far from Equilibrium
Reprinted from: Entropy 2019, 21, 824, doi:10.3390/€21090824 . . . . . . . .. ... ... ... ...

Lucas Maisel and Rosa Lépez
Effective Equilibrium in Out-of-Equilibrium Interacting Coupled Nanoconductors
Reprinted from: Entropy 2020, 22, 8, d0i:10.3390/€22010008 . . . . . ... .. ... ... ... ...



Robert Biele and Roberto D’Agosta

Beyond the State of the Art: Novel Approaches for Thermal and Electrical Transport in
Nanoscale Devices

Reprinted from: Entropy 2019, 21, 752, doi:10.3390/€21080752 . . . . . . . .. .. ... ... .. .. 263

Leonardo Medrano Sandonas, Rafael Gutierrez, Alessandro Pecchia, Alexander Croy and
Gianaurelio Cuniberti

Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium
Green'’s Function Techniques

Reprinted from: Entropy 2019, 21, 735, doi:10.3390/€21080735 . . . . . . . .. ... ... ... ... 293

Carmine Antonio Perroni and Vittorio Cataudella

On the Role of Local Many-Body Interactions on the Thermoelectric Properties of

Fullerene Junctions

Reprinted from: Entropy 2019, 21, 754, d0i:10.3390/e21080754 . . . . . . .. .. ... ... ... .. 323

Giuseppe Carlo Tettamanzi
Unusual Quantum Transport Mechanisms in Silicon Nano-Devices
Reprinted from: Entropy 2019, 21, 676, d0i:10.3390/€21070676 . . . . . . . . . . ... .. ... ... 339

Cong Lee, Bing Dong and Xiao-Lin Lei

Enhanced Negative Nonlocal Conductance in an Interacting Quantum Dot Connected to Two
Ferromagnetic Leads and One Superconducting Lead

Reprinted from: Entropy 2019, 21, 1003, d0i:10.3390/€21101003 . . . . . . .. ... ... ... ... 355

Bogdan R. Butka and Jakub Luczak
Current Correlations in a Quantum Dot Ring: A Role of Quantum Interference
Reprinted from: Entropy 2019, 21, 527, doi:10.3390/€21050527 . . . . . . . .. ... .. ... .. .. 371

Flavio Ronetti, Matteo Acciai, Dario Ferraro, Jérome Rech, Thibaut Jonckheere,

Thierry Martin and Maura Sassetti

Symmetry Properties of Mixed and Heat Photo-Assisted Noise in the Quantum Hall Regime
Reprinted from: Entropy 2019, 21, 730, d0i:10.3390/e21080730 . . . . . . . . ... .. ... .. ... 387

Michael Ridley, Michael A. Sentef, and Riku Tuovinen
Electron Traversal Times in Disordered Graphene Nanoribbons
Reprinted from: Entropy 2019, 21, 737, doi:10.3390/€21080737 . . . . . . . .. ... ... ... ... 403

vi



About the Editors

David Sanchez (Senior Lecturer) gained his Ph.D. in Physics at the Autonomous University
of Madrid (2002), and his MA in Hispanic Philology at UNED (2014). He was also a postdoctoral
researcher at the University of Geneva (2002-2004). Later he was a Ramon y Cajal fellow (2005-2008).
Since 2011, he has been an associate professor at the University of the Balearic Islands, and today
he is also a faculty member of the Institute for Cross-Disciplinary Physics and Complex Systems
IFISC (UIB-CSIC). He has been a visiting scholar at the universities of Indiana, Texas, California,
Stanford and ETH Ziirich, has more than a hundred published papers in scientific journals, and
has spoken at more than sixty conferences. His main research areas include nanophysics, quantum

thermodynamics and language variation.

Michael Moskalets (Leading Research Fellow) gained his Dr. of Science in Theoretical Physics
at the Institute for Single Crystals National Academy of Science of Ukraine (2008). He is a leading
research fellow at the Department of Metal and Semiconductor Physics, at the National Technical
University “Kharkiv Polytechnic Institute”, Kharkiv, Ukraine. He has been a visiting scholar at the
Geneva University, Aalto University, ENS Lyon, IFISC (UIB-CSIC) Palma de Mallorca, RWTH Aachen
University, as well as the National Chiao Tung University of Taiwan. More than 100 of his papers
have been published in scientific journals. He is the author of the book “Scattering Matrix Approach
to Non-Stationary Quantum Transport”, Imperial College Press, London, 2011. His main research areas

include quantum coherent single-electronics, nanophysics, quantum thermodynamics






Editorial
Quantum Transport in Mesoscopic Systems

David Sanchez 1'* and Michael Moskalets *

1 Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC),
E-07122 Palma de Mallorca, Spain
Department of Metal and Semiconductor Physics, National Technical University
“Kharkiv Polytechnic Institute”, 61002 Kharkiv, Ukraine
*  Correspondence: david.sanchez@uib.es (D.S.); michael.moskalets@icloud.com (M.M.)

2

Received: 20 August 2020; Accepted: 26 August 2020; Published: 1 September 2020

Keywords: quantum transport; mesoscopic systems; nanophysics; quantum thermodynamics;
quantum noise; quantum pumping; Kondo effect; thermoelectrics; heat transport

Mesoscopic physics has become a mature field. Its theoretical foundations and main models
were established in the last two decades of the past century [1,2]. Ever since, quantum transport
techniques have served as an excellent tool to understand the intriguing properties of charge carriers
in nanoscale conductors [3,4]. However, in the last few years, the number of applications has grown
so quickly that even experts find it difficult to stay updated with the recent advancements. The goal
of the present special issue is to give a current snapshot of the field by means of a collection of review
papers and research works that discuss the hottest theoretical questions and experimental results.

While the average current was the focus of early studies, the interest has gradually shifted
to time-resolved transport. The motivation is partly due to new devices, such as single-electron
emitters, which are able to inject quantized current pulses onto a Fermi sea for the investigation
of inelastic and interaction effects upon electronic collisions. This is the subject of the review paper by
Filippone et al. [5], in which Fermi liquid theories are employed to analyze strong correlations (Coulomb
interactions) in the out-of-equilibrium dynamics of mesoscopic capacitors, a type of mesoscopic
system whose response is purely dynamical. Here, dynamics is enforced via a time-dependent
potential applied to a nearby gate. Under certain circumstances, the interplay of this potential
and Coulomb interactions can lead to fractionalization effects in a single-electron transfer (quantized
pumping). Chen and Zhu [6] find quantum pumping for a double-barrier system in the adiabatic
limit. The novelty lies in their consideration of Dirac-Weyl quasiparticles. Tokura [7] also consider
slow potentials, but the system is now an interferometer that allows not only for Aharanov-Bohm
phases but also for spin-dependent shifts, due to both Rashba and Dresselhaus spin-orbit couplings.
Meanwhile, Hashimoto and Uchiyama [8] tackle the nonadiabatic regime and present a complete
analysis of the pumped charge, spin, and energy induced by temperature modulations in the attached
reservoirs. A particularly useful approach that deals with this kind of problems is based on generalized
master rate equations. Moldoveanu, Manolescu, and Gumundsson [9] illustrate the power of this
method for a hybrid quantum-dot system that hosts both electronic and bosonic degrees of freedom.
Among other things, they solve the master equations, including many-body effects in the transient
response to time-dependent signals applied at the contact regions. Dynamically driven quantum
devices are also suitable systems for testing alternative theoretical formulations. An example is
the work of Pandey et al. [10], in which the Bohmian quantum theory is utilized to elucidate the role
of non-Markovian conditions in graphene probed at very high frequencies.

In the recent cross-fertilization between thermodynamics and quantum physics, mesoscopic systems
play a pivotal contribution. In their review article, Ansari, van Steensel, and Nazarov [11] connect
information-theoretic concepts with the evaluation of entropy in quantum systems. They illustrate
their discussion by calculating the entropy of various quantum heat engines. Quantum point contacts
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are prototypical mesoscopic devices that can precisely work as heat engines. It is, therefore, of utmost
importance to understand their maximum generated power, as discussed by Kheradsoud et al. [12].
Interestingly, they find that power, efficiency, and fluctuations are bounded by thermodynamic
uncertainty relations. Additionally, Bustos, Martn, and Calvo [13] introduce mechanical degrees
of freedom to analyze the dynamics of quantum motors built, e.g., from double quantum dots
coupled to rotors. A Langevin approach allows them to generically describe both motors and pumps
out of equilibrium, which are relevant for quantum refrigeration setups. Remarkably, some of
the well-established results in linear response (Onsager reciprocity, fluctuation-dissipation relations)
also hold far from equilibrium. Maisel and Lépez [14] demonstrate, with a capacitively coupled
doubled quantum dot system, that it is possible to find bias configurations that lead to stalling currents,
around which the above results were verified.

Quantum conductors constitute excellent platforms for the measurement and manipulation
of thermal gradients and currents while keeping the quantum character of energy carriers.
Biele and D’Agosta [15] review the standard theoretical approaches to quantum thermal transport
(Landauer-Biittiker formalism and Boltzmann equation), pointing to their strengths and limitations.
To overcome the latter, they discuss advanced methods, such as time-dependent density functional
theory, the nonequilibrium Green'’s functions approach, and density-matrix formulations. Atomistic
computations are reviewed by Medrano Sandonas et al. [16] in the context of nanophononics.
Clearly, phonons should be taken into account in any general description of heat transport in
nanodevices, especially in molecular junctions. A density-functional tight-binding module specifically
designed to deal with phonon transport is able to compute the phonon conductivity of molecules
sandwiched between thermally biased metallic contacts. Perroni and Cataudella [17] consider
the case of a fullerene and study the combined influence of vibrations and Coulomb interactions in
the thermoelectric transport through the molecule.

In confined mesoscopic systems, electron—electron interactions can lead to strong correlations
visible in transport measurements. A celebrated phenomenon is the Kondo effect, where the unpaired
spin of an electron localized inside a quantum dot forms, at a low temperature, a many-body singlet
with the spin density arising from conduction electrons that propagate in the leads attached to the dot.
Tettamanzi [18] review the Kondo and the Kondo-Fano effects in silicon nanostructures, taking into
account correlations between pseudospins belonging to different degeneracy points in the conduction
bands. Simultaneous fluctuations in both the spin and pseudospin degrees of freedom give rise to
higher symmetry Kondo states. Lee, Dong, and Lei [19] propose a multiterminal setup comprising
a quantum dot attached to two ferromagnetic contacts and one superconducting lead, with the aim
of assessing both local and nonlocal conductances within a slave-boson mean-field approximation.
Their main finding is a competition between the superconductivity proximity effect, Kondo correlations,
and spin polarizations that could be analyzed with a careful study of the conductance.

We began this Editorial with an emphasis on time-dependent currents. We would like to finish
our presentation with a somewhat related quantity, namely, the noise, since current fluctuations are
defined from time correlators. Bulka and Luczak [20] analyze the electric current noise in a ring
structure that supports persistent currents. When the ring is pierced by an external magnetic field,
the interference pattern is affected by the Aharonov-Bohm effect and this is reflected in the noise
as a function of the flux. In mesoscopic conductors, not only charge, but also heat fluctuations,
are significant. This leads to heat and mixed charge-heat correlators, as illustrated by Ronetti et al. [21]
for a harmonically driven quantum Hall bar. The system shows quasiparticle excitations of fractional
charge (Laughlin states), and it is demonstrated that the mixed noise differs for integer and fractional
filling factors. Finally, current—current correlations can provide us with valuable information about
the electronic traversal time through mesoscopic constrictions. Ridley, Sentef, and Tuovinen [22]
calculate the cross-correlations of graphene nanoribbons and find that the sample disorder increased
the traversal time.
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Overall, these papers represent an outstanding perspective of current research in nanophysics.

They show that the field is actively developing and alive with problems that are interesting to a
great variety of physicists, whose concerns range from condensed matter to quantum information
and thermodynamics. There is still plenty of room at the bottom, which implies fruitful opportunities
in the near future.
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Abstract: This review illustrates how Local Fermi Liquid (LFL) theories describe the strongly
correlated and coherent low-energy dynamics of quantum dot devices. This approach consists in an
effective elastic scattering theory, accounting exactly for strong correlations. Here, we focus on the
mesoscopic capacitor and recent experiments achieving a Coulomb-induced quantum state transfer.
Extending to out-of-equilibrium regimes, aimed at triggered single electron emission, we illustrate
how inelastic effects become crucial, requiring approaches beyond LFLs, shedding new light on past
experimental data by showing clear interaction effects in the dynamics of mesoscopic capacitors.

Keywords: dynamics of strongly correlated quantum systems; quantum transport; mesoscopic physics;
quantum dots; quantum capacitor; local fermi liquids; kondo effect; coulomb blockade

1. Introduction

The manipulation of local electrostatic potentials and electron Coulomb interactions has been
pivotal to control quantized charges in solid state devices. Coulomb blockade [1-3] has revealed to be
a formidable tool to trapping and manipulating single electrons in localized regions behaving as highly
tunable artificial impurities, so called quantum dots. Beyond a clear practical interest, which make
quantum dots promising candidates to become the building block of a quantum processor [4-6],
hybrid [7] quantum dot systems also became a formidable platform to address the dynamics of
many-body systems in a controlled fashion, and a comprehensive theory, which could establish
the role of Coulomb interactions when these systems are strongly driven out of equilibrium, is still
under construction.

Beyond theoretical interest, this question is important for ongoing experiments with mesoscopic
devices aimed towards the full control of single electrons out of equilibrium. Figure 1 reports some of
these experiments [8-19], in addition to the mesoscopic capacitor [20-26], which will be extensively
discussed in this review. These experiments and significant others [27-33] have a common working
principle: A fast [34] time-dependent voltage drive V(t), applied either on metallic or gating contacts,
triggers emission of well defined electronic excitations. Remarkably, these experiments achieved to
generate, manipulate, and detect single electrons on top of a complex many-body state such as the
Fermi sea. A comprehensive review of these experiments can be found in Ref. [35].

Entropy 2020, 22, 847; doi:10.3390/e22080847 5 www.mdpi.com/journal/entropy
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a)

Figure 1. Some recent experiments achieving real-time control of single electrons. (a) Leviton generation
by a Lorentzian voltage pulse in metallic contacts, generating a noiseless wave-packet carrying
the electron charge e [8-13]. This wave-packet is partitioned on a Quantum Point Contact (QPC),
whose transmission D is controlled by the split-gate voltage V. (b) Single quantum level electron
turnstile [18,19]. Two superconductors, biased by a voltage Vg, are connected by a single-level quantum
dot. Inset—Working principle of the device: A gate voltage controls the orbital energy of the quantum dot,
which is filled by the left superconductor and emptied in the right one. (c) Long-range single-electron
transfer via a radio-frequency pulse between two distant quantum dots QD1 and QD2 [14-17].
The electron “surfs” along the moving potential generated by the radio-frequency source and is
transferred along a one-dimensional channel from QD1 to QD2. (d) The mesoscopic capacitor [20-26],
in which a gate-driven quantum dot emits single electrons through a QPC in a two-dimensional
electron gas. This platform will be extensively discussed in this review.

In this context, interactions are usually considered detrimental, as they are responsible for
inelastic effects leading to diffusion and dephasing [36]. Interaction screening or, alternatively,
the disappearance of such inelastic effects at low driving energies or temperatures [37-42] is thus
crucial to identify single-electron long-lived excitations (quasi-particles) close to the Fermi surface.
The possibility of identifying such excitations, even in the presence of strong Coulomb interactions,
is the core of the Fermi liquid theory of electron gases in solids [43,44], usually identified with the
o T? suppression of resistivities in bulk metals. It is the validity of this theory for conventional metals
that actually underpins the success of Landauer—Biittiker elastic scattering theory [45-47] to describe
coherent transport in mesoscopic devices.

The aim of this review is to show how a similar approach can also be devised to describe transport
in mesoscopic conductors involving the interaction of artificial quantum impurities. In these systems,
electron-electron interactions are only significant in the confined and local quantum dot regions,
and not in the leads for instance, therefore we use the terminology of a Local Fermi Liquid theory (LFL)
in contrast to the conventional Fermi liquid approach for bulk interactions. Originally, the first LFL
approach [48] was introduced to derive the low energy thermodynamic and transport properties of
Kondo local scatterers in materials doped with magnetic impurities [49]. In this review, we will show
how LFLs provide the unifying framework to describe both elastic scattering and strong correlation
phenomena in the out-of-equilibrium dynamics of mesoscopic devices. This approach makes also clear
how inelastic effects, induced by Coulomb interactions, become visible and unavoidable as soon as
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such systems are strongly driven out of equilibrium. We will discuss how extensions of LFLs and
related approaches describe such regimes as well.

As a paradigmatic example, we will focus on recent experiments showing the electron
transfer with Coulomb interactions [50], (see Figure 2), and, in more detail, on the mesoscopic
capacitor [20-26], (see Figure 6). The mesoscopic capacitor does not support the DC transport, and it
makes possible the direct investigation and control of the coherent dynamics of charge carriers. The LFL
description of such devices entails the seminal results relying on self-consistent elastic scattering
approaches by Biittiker and collaborators [51-56], but it also allows one to describe effects induced
by strong Coulomb correlations, which remain nevertheless elastic and coherent. The intuition
provided by the LFL approach is a powerful lens through which it is possible to explore various
out-of-equilibrium phenomena, which are coherent in nature but are governed by Coulomb interactions.
As an example, we will show how a bold treatment of Coulomb interaction unveils originally
overlooked strong dynamical effects, triggered by interactions, in past experimental measurements
showing fractionalization effects in out-of-equilibrium charge emission from a driven mesoscopic
capacitor [25].

This review is structured as follows. In Section 2, we give a simple example showing how
Coulomb interactions trigger phase-coherent electron state transfer in experiments as those reported
in Ref. [50], Figure 2. Section 3 discusses how the effective LFL approach [57-64] provides the unified
framework describing such coherent phenomena. In Section 4, we consider the study of the low-energy
dynamics of the mesoscopic capacitor, in which the LFL approach has been fruitfully applied [65-69],
showing novel quantum coherent effects. Section 5 extends the LFL approach out of equilibrium and
describes signatures of interactions in measurements of strongly driven mesoscopic capacitors [25].

2. Phase-Coherence in Quantum Devices with Local Interactions

To illustrate the restoration of phase coherence at low temperatures in the presence of interactions,
we consider two counter-propagating edge states entering a metallic quantum dot, or cavity. Such a
system was recently realized as a constitutive element of the Mach—Zender interferometer of Ref. [50],
reported in Figure 2. In that experiment, the observation of fully preserved Mach-Zehnder oscillations,
in a system in which a quantum Hall edge state penetrates a metallic floating island demonstrates an
interaction-induced, restored phase coherence [70,71].

The dominant electron-electron interactions in the cavity have the form of a charging energy [1-3]

He = E[N = Ny(B)]?, M

in which N is the number of electrons in the island, Cg is the geometric capacitance,
and Ny = CgV;(t) /e is the dimensionless gate voltage, which corresponds to the number of charges
that would set in the cavity if N was a classical, non-quantized, quantity. We also define the charging
energy E. = ¢%/2Cg: The energy cost required the addition of one electron in the isolated cavity.
For the present discussion, we neglect the time-dependence of the gate-potential Vg, which will be
reintroduced to describe driven settings. In the linear-dispersion approximation, the right/left-moving
fermions Yy 1, in Figure 2, moving with Fermi velocity v, are described by the Hamiltonian:

Hin =veht Y[ dx¥i(x)(—inde)¥a(x), @

with the sign & = 4/ — multiplying the d, operator for right- and left-movers respectively. The floating
island occupies the semi-infinite one-dimensional space located at x > 0 with the corresponding charge
N=Y, f0°° dx¥i(x)¥(x). It is important to stress that the model (1)~(2) is general and effective
in describing different quantum dot devices. It was originally suggested by Matveev to describe
quantum dots connected to leads through a single conduction channel [72] and it equally describes the
mesoscopic capacitor, see Sections 4 and 5.
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Figure 2. Left—Mach—Zehnder interferometer with a floating metallic island (colored in yellow) [50].
The green lines denote chiral quantum Hall edge states, which can enter the floating island passing
through a gate-tunable QPC (in blue). An additional QPC separates the floating island from
an additional reservoir on its right. Center—The floating island is described by two infinite
counter-propagating edges, exchanging electrons coherently thanks to the charging energy E. of
the island (red arrow). Right—Mach-Zehnder visibility of the device as a function of magnetic field B.
Oscillation of this quantity as function of B signals quantum coherent interference between two paths
encircling an Aharonov-Bohm flux. In the situation sketched in box A, the first QPC is closed and
the interferometer is disconnected from the island and visibility oscillations are observed, as expected
(red line). Remarkably, the oscillations persist (black line) in the situation sketched in box B, where the
leftmost QPC is open and one edge channel enters the floating island. The visibility oscillations are
only suppressed in the situation sketched in box C, where the rightmost QPC is also open and the
island is connected to a further reservoir (blue line).

The model (1)—(2) characterizes an open-dot limit in the sense that it does not contain an
explicit backscattering term coupling the L and R channels. It can be solved exactly by relying
on the bosonization formalism [73-76], which, in this specific case, maps interacting fermions onto
non-interacting bosons [72,77,78]. Using this mapping, one can show that the charging energy E.
perfectly converts, far from the contact, right-movers into left-movers. This fact is made apparent by
the “reflection” Green function Gy [77]:

T/2Zip

sin [%T (T+i(x+x’) - %)] '

GLr = <7'T‘I’{(x, T)¥R(x, 0)> ~ o2 .

which we consider at finite temperature T. In Equation (3), 77 is the usual time-ordering operator
defined as T A(T)B(t") = 6(t — T')A(7)B(t") £ 6(t" — 7) B(t") A(7), in which the sign +/ — is chosen
depending on the bosonic/fermionic statistics of the operators A and B [79] and 6(7) is the Heaviside
step function. As first noted by Aleiner and Glazman [77], the form of Gy at large (imaginary) time T
corresponds to the elastic reflection of the electrons incident on the dot, with a well-defined scattering
phase 7tN. The correlation function (3) would be identical if the interacting dot was replaced with a
non-interacting wire of length vp7fi/Ecy (with Iny = C ~ 0.5772 being Euler’s constant), imprinting
a phase TN, ¢ when electrons are back-reflected at the end of the wire [80].

The physical picture behind Equation (3) is that an electron entering and thereby charging the
island violates energy conservation at low temperature and must escape on a time scale 71/ E. fixed by
the uncertainty principle. The release of this incoming electron can happen either elastically, in which
case the electron keeps its energy, or inelastically via the excitation of electron-hole pairs. As we discuss
in Section 3.1, inelastic processes are suppressed by the phase space factor (¢/E.)?, ¢ being the energy
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of the incoming electron, and they die out at low energy or large distance (time), reestablishing purely
elastic scattering despite a nominally strong interaction.

Equation (3) is thus a remarkable example of how interactions trigger coherent effects in
mesoscopic devices. It has been derived here for an open dot, a specific limit in which the charge
quantization of the island is fully suppressed. However, the restoration of phase coherence at low
energy is more general and applies for an arbitrary lead-island transmission, in particular in the
tunneling limit where the charge states of the quantum dot are well quantized [1-3]. This quantization
is known to induce Coulomb blockade in the conductance of the device, see Figure 3. Nevertheless,
a Coulomb blockaded dot acts at low energy as an elastic scatterer imprinting a phase J [81,82] related
to its average occupation (N) via the Friedel sum rule, see Section 3.2. For weak transmissions, (N)
strongly deviates from the classical value Ny. These features constitute the main characteristics of the
local Fermi liquid picture detailed in the forthcoming sections.

Charge quantization in the dot comes

N in pair with suppressed conductance . Eff ective LFL .
(NG with potential scattering
) -
/ﬂ Hipe = Y excloCho + W(ea, Ec,--2) Y choCro
1 ko kk'o
T Jm( /3/2 — = L > Residual Phase-shift
- ow = —arctan(mvyW)
Energy Coulomb Blockade
<t } —o0

E, 0

Figure 3. Coulomb blockade and emergent LFL behavior. When the typical energy of the system
(temperature, bias-voltage, .. .) is smaller than the charging energy Ec, charge quantization Q = e (N) in
the dot suppresses the conductance G of the system. Degeneracy between different charge occupations
lead to conductance peaks, which become larger the stronger the tunnel exchange of electrons with the
leads. Conductance peaks and charge quantization disappear in the open-dot limit. For any tunneling
strength, the dot behaves as an elastic scatterer described by the LFL theory (8), with potential scattering
of strength W, inducing a phase-shift djy on lead electrons set by the dot occupation (N).

3. What Are Local Fermi Liquids and Why Are They Important to Understand
Quantum-Dot Devices?

In this Section, we introduce the local Fermi liquid theory and discuss its application to quantum
transport devices. The general system considered in this paper is a central interacting region, such as a
quantum dot, connected to leads described as non-interacting electronic reservoirs. The Hamiltonian
takes the general form:

H = Hres + 7'lres—dot + 7'ldot +He. (4)

The first term describes the lead reservoir, which could be either a normal metal [14], a chiral edge
state in the quantum Hall regime [22,29], or a superconductor [18]. In the case of a normal metal, it is
given by:
Hres = ZSkCZCk ’ (©)
k

in which ¢ annihilates a fermion in the eigenstate state k of energy ¢ in the reservoir. For instance,
in Figure 2, the reservoir modes correspond to the x < 0 components of the operators ¥ 1.. The field
Fres(x) = 0(—x)¥r(x) + 0(x)¥1(—x), with 6(x) the Heaviside step function, unfolds the chiral field
onto the interval x € [—o0, 00| and its Fourier transform ¢y = [ dxe™**¥,.s(x) recovers Equation (5)
from Equation (2), with g, = fivrk.
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The single particle physics of the quantum dot is described instead by:

Haot = Y (€4 + &) (6)
7

in which n; = d;rd | counts the occupation of the orbital level / and d; annihilates fermions in that state.
The spectrum can be either discrete for a finite size quantum dot or dense for a metallic dot as in
the case of Figure 2. We also introduced the orbital energy ¢, as a reference. H es_qot describes the
exchange of electrons between dot and reservoir. It has generally the form of a tunneling Hamiltonian:

Hres—dot = tz [Czdl + d;-ck] ’ (7)
k1

in which we neglect, for simplicity, any k dependence of the tunneling amplitude t. The charging
energy H. is given in Equation (1) with the dot occupation operator N = ), ;.

Without any approximation, deriving the out-of-equilibrium dynamics of interacting models such
as Equation (4) is a formidable task. The presence of local interactions leads to inelastic scattering
events, creating particle-hole pairs when electron scatter on the dot (see Figure 4). From a technical
point of view, such processes are difficult to handle and, even if these difficulties are overcome, one has
to identify the dominant physical mechanisms governing the charge dynamics. In our discussion,
interactions are usually controlled by the charging energy E., which cannot be treated perturbatively
in Coulomb blockade regimes. The possibility to rely on Wick’s theorem [83], when performing
perturbative calculations in the exchange term H o5 4ot/ is also denied. Thus, one has to look for a
more efficient theoretical approach.

Elastic Inelastic

Lead Dot @ Electron

O Hole

‘CI)E> e Qe

(CI’€| ei55 ()

Figure 4. Difference between elastic (left) and inelastic (right) events for electrons scattering on a
quantum dot. In the elastic case, electrons do not change energy ¢. The wave function is preserved and
the only residual effect of scattering is a phase-shift J;. In the inelastic case, many-body interactions
trigger the creation of particle-hole pairs. Outgoing electrons are then emitted in a state |®/, ) of energy
¢’ different from the initial ¢ and phase coherence is gradually lost.

3.1. The Local Fermi Liquid

The local Fermi liquid approach is justified by the physical picture already presented in Section 2,
namely that an incoming reservoir electron with an energy much smaller than the charging energy
of the quantum dot is effectively scattered in a purely elastic way [77]. At temperatures well below
the charging energy E., energy conservation prevents any permanent change in the charge of the
quantum dot and each electron entering the dot must be compensated by an electron leaving it within
the (short) time 71/ E. fixed by the uncertainty principle. The electron escape can occur via elastic or
inelastic processes, sketched in Figure 4, depending on whether the electron energy is preserved or not.
Inelastic processes cause decoherence and call for a many-body approach to be properly evaluated.

At low energy ¢ of the incoming electron, the inelastic processes are typically suppressed by the
ratio (¢/Ep)? [4344]. Egy, is a Fermi liquid energy scale, typically of the order of the charging energy
E.. Nevertheless, in the presence of spin-fluctuations, the emergence of strong Kondo correlations,

10



Entropy 2020, 22, 847

to be discussed in Section 3.3.2, can sensibly reduce Ep;, down to the Kondo energy scale T,
(see Equation (26)). Therefore, in the ¢ — 0 limit, inelastic processes are ignored and the scattering is
purely elastic. It is described within a single-particle formalism where the scattering by the quantum
dot imprints a phase shift diy to the outgoing electronic wave functions. This phase shift alone
incorporates all interaction and correlation effects.

The simplest model entailing these features is a free Fermi gas in which a delta barrier located
at x = 0 (the entrance of the dot) scatters elastically quasi-particles. In the language of second
quantization, the delta barrier is described by the electron operator ‘I’Ies(x = 0)¥res(x = 0), and its
strength W has to depend on the parameters of the parent model (such as the orbital energy ¢,
the charging energy E, etc.). Switching to momentum space, such model is a free Fermi gas with a
potential scattering term:

2
£
Hir = Y exchocrr + Wieg, Ee,...) Y cfcpo + O (E—> (8)
ko kKo FL

where the scattering potential leads, as shown in Appendix A, to the quasi-particle phase shift:
dw = —arctan (W) , )

in which vy is the density of states of the lead electrons at the Fermi energy, see also Equation (A21)
in Appendix A for its rigorous definition. In this Local Fermi Liquid Hamiltonian, o labels either a
spin polarization or a channel. The number of channels in the lead can be controlled by the opening
of a quantum point contact [84]. The potential strength W can be cumbersome to compute, but it is
nevertheless related to the occupancy of the quantum dot via the Friedel sum rule, as explained in
Section 3.2.

The simplicity of the local Fermi liquid Hamiltonian (8) makes it powerful to evaluate low energy
properties. Being non-interacting, it also includes the restoration of phase coherence in the scattering
of electrons seen in Section 2. An important assumption that we made is that the system exhibits a
Fermi liquid ground state, or Fermi liquid fixed point in the language of the renormalization group.
Non-Fermi liquid fixed points exist and cannot be described by such Hamiltonian [85], but they are
generally fine-tuned and unstable with respect to perturbations. Furthermore, Equation (8) is not
applicable to genuine out-of-equilibrium regimes, when the perturbations are too strong or vary too
fast with respect to the Fermi liquid energy scale Ey, (typically of the order of the charging energy E).

3.2. The Role of the Friedel Sum Rule in Local Fermi Liquid Theories

In the process of electron backscattering by the quantum dot, or by the interacting central region,
the phase shift relates the incoming and outgoing electronic wavefunctions ¥y (0~) = 2% ¥ (07),
see Appendix A for an explicit illustration on the resonant level non-interacting model. The Friedel
sum rule [86] establishes the relation between the average charge occupation of the dot (N) and this
phase-shift 4. Its form in the case of M conducting channels reads:

M
<M:%;%~ (10)

The Friedel sum rule has been proven rigorously for interacting models [87,88]. It is valid as long
the ground state has a Fermi liquid character. Physically, it can be understood in the following way:
The derivative of the phase shift J; with respect to energy defines (up to /) the Wigner-Smith scattering
time [89], see Equation (A38), that is the time delay experienced by a scattered electron. In the presence
of a continuous flow of electrons, a time delay implies that some fraction of the electronic charge has
been (pumped) deposited in the quantum dot [51,90]. Therefore the phase shift amounts to a left-over

11
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charge and it does not matter that electrons are interacting on the quantum dot as long as they are not
in the leads, which is the essence of the local Fermi liquid approach.

The Friedel sum rule (10) combined with Equation (9) relates the dot occupancy to the potential
scattering strength. For the single-channel case (M = 1), one finds:

(N) = —%arctan(m/OW) . (11)

This is an important result because the dot occupation (N) is a thermodynamic quantity, which can
be also accessed in interacting models, allowing us to address quantitatively the close-to-equilibrium
dynamics of driven settings, as we will discuss in Section 4.5.

We emphasize that the local Fermi liquid approach of Equation (8) can be extended to
perturbatively include inelastic scattering and higher-order energy corrections and relate these terms
to thermodynamic observables. This program has been realized in detail for the Anderson and Kondo
models [57-64,91].

3.3. Derivation of the LEFL Theory in the Coulomb Blockade and Anderson Model

We show now how the effective theory (8) can be explicitly derived from realistic models
describing Coulomb blockaded quantum dot devices [66]. We focus on the Coulomb Blockade Model
(CBM) [2,3]:

2
Hepm = Zskack + tz [C;dl + dfck] + Z(Ed + 8,)!17(1[ + E. (N — Ng) (12)
k k1 I
and the Anderson Impurity Model (AIM), which, in its standard form, reads [92,93]:

Hamv = Egkﬂcz,vckﬂ + tz [C}tlgdg + dzck/g‘] + €4 Zdj;dg + UHTHL . (13)
ko ko I

Adding —eVgN + ECNgZ to the AIM and for U = E,, the charging energy (1) becomes apparent in
Equation (13), as in Equations (4)—(12). The CBM coincides with the Hamiltonian (4) and describes the
mesoscopic capacitor in the Quantum Hall regime: A reservoir of spinless fermions ¢, of momentum k
is tunnel coupled to an island with discrete spectrum ¢;. The AIM includes the spin degree of freedom
and considers a single interacting level in the quantum dot. This model encompasses Kondo correlated
regimes [49,94] and describes well the experiments [95,96].

To derive the LFL Hamiltonian (8), we rely on the Schrieffer-Wolff (SW) transformation [44,97],
first devised to map the AIM [94] onto the Cogblin—Schrieffer model [98], and that we extend here
to the CBM. Far from the charge degeneracy points, in the ¢t < E. limit, the ground-state charge
configuration n = (N) is fixed by the gate potential Vi and fluctuations to 1 £ 1 require energies
of order E.. For temperatures much lower than E, the charge degree of freedom of the quantum
dot is frozen, acting but virtually on the low energy behavior of the system. The SW transformation
is a controlled procedure to diagonalize perturbatively in t the Hamiltonian. The Hamiltonian is
separated in two parts H = Ho + Hyes—dot, in which H is diagonal in the charge sectors labeled by
the eigenvalues 7 of the dot occupation N, which are mixed by the tunneling Hamiltonian H ;es_got,
involving the tunneling amplitude t. The perturbative diagonalization consists of finding the Hermitian
operator S (of order t) generating the unitary U = ¢/ rotating the Hamiltonian in the diagonal form
H' = U'HU. To leading order in S we find:

H' = Ho + Hres-aor +1[5, Hol + 0 (). (14)

12
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This Hamiltonian is block diagonal if the condition:
Z7'£res—clot = [Sr HO] (15)
is fulfilled and Equation (14) becomes:

i

H = Ho + 2 [S, ’Hresfdot] ’ (16)
which is then projected on separated charge sectors.

3.3.1. Coulomb Blockade Model

To derive the effective low-energy form of the CBM model, it is useful, following Grabert [99,100],
to decouple the charge occupancy of the dot from the fermionic degree of freedom of the electrons.
This is achieved by adding the operator i = Y, |n)(n|, measuring to the dot occupation number.
The fermionic operators d; in Equation (12) are replaced by new operators describing a non-interacting
electron gas in the dot. The Hamiltonian (12) acquires then the form:

2
Hepm = Zekczck +t Z [d;ck [n+1) (n] -‘rh.C.] + Zs;d?dl + 41 + E (ﬁ — Ng> . 17)
k nk,l 1

The operator S = s + st fulfilling the condition (15) reads:

1
s =it Spncid; In—1) (n|, I .
k% kin®k l‘ >< ‘ kin slfsk+EC(2n71)+sd

(18)

This operator, when inserted into Equation (16), also generates higher order couplings between sectors
of charge 1 and # & 2, which we neglect in the present discussion. The Hamiltonian becomes then block
diagonal in the sectors given by different values of n. For (Vg —e,Cg/¢) € [-1/2,1/2], the lowest
energy sector corresponds to #n = 0 and the effective Hamiltonian reads H(-g\, = Ho + Hg, with:

tZ
Hp = 5 2 (Sklod;Ck/Czdl — Skllc]tdld;'ck’ + h.C.) . (19)
kk' 11

This interaction can be simplified by a mean-field treatment:
too g [t + t\ gty _ + +
dfexctdy = <dl d,/> cch + <ckck,> dtdy = 81p0(—e;)ckch + G0 (ex)d dy (20)

allowing to carry out part of the sums in Equation (19). Notice that the orbital energy ¢; does not
appear in Equation (20) as it is now only associated to the charge degree of freedom 7, while the Fermi
gases corresponding to ¢, and d; have the same Fermi energy Er = 0. One thus finds the effective low
energy model, which, to leading order, reads [66]:

E.—e¢
Hipy = H +£ln<67d> didy - Y clep 21
CBM 0 0 Ec+ey ;11 gkk (21)
in which we have introduced the dimensionless conductance ¢ = (vt)?, corresponding to the

conductance of the Quantum Point Contact (QPC) connecting dot and lead in units of e2/h.
This Hamiltonian describes two decoupled Fermi gases, but affected by potential scattering with
opposite amplitudes. Equation (21) coincides with the LFL Hamiltonian (8) for the lead electrons.

13
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The phase-shift dyy (9) allows for the calculation of the charge occupation of the dot to leading order by
applying the Friedel sum rule (10):

_‘57W_ chgd
(N) = b 7gln<EC+€d>. o

This result reproduces the direct calculation of the dot occupation [99-101], showing the validity of
the LFL model (8), with Friedel sum rule for the CBM. The extension to M channels is obtained by

replacing ¢ — M(vpt)? in Equation (22). The extended proof to next-to-leading order in g is given in
Ref. [66].

3.3.2. Anderson Impurity Model

Considering the internal spin degree of freedom in the AIM (13), it does not fundamentally affect
the effective LFL behavior. Nevertheless, in the case where a single electron is trapped in the quantum
dot (—U < &4 < 0), the derivation of Equation (8) is more involved, and sketched in Figure 5. The SW
transformation maps the AIM onto a Kondo Hamiltonian including a potential scattering term [94]:

Hym =Ho+JS s+ W Y cf o (23)
kk'o

The spin of the electron in the quantum dot S is coupled anti-ferromagnetically to the local spin of the
lead electrons s = Y ji/r¢/ CZT%CWT/, with o the vector composed of the Pauli matrices, and

2r 1 1 T 1 1
]_Tm<sd+u_5>’ W__ZHV0($d+U+5>' @9

in which we introduced the hybridization energy ' = mvgt?, corresponding to the width acquired
by the orbital level when coupled to the lead and which depends on the density of states of the
lead electrons at the Fermi energy vy, see also Equation (A21) in Appendix A for its rigorous
definition. Neglecting for the moment the Kondo anti-ferromagnetic coupling controlled by |, the LFL
Hamiltonian (8) is directly recovered. Nevertheless, the potential scattering term is absent (W = 0) at
the particle-hole symmetric point e; = —U /2. At this point, the charge on the dot is fixed to one by
symmetry, and the absence of potential scattering allows to derive various rigorous results, for instance
concerning the ground state properties relying on Bethe ansatz [102,103]. It is a well-established fact
that the system described by Equation (23) behaves as a LFL at low energies [48,104,105] and that the
Friedel sum rule applies [87]. As a consequence, the Kondo coupling is responsible for the phase-shift
of the low energy quasi-particles. Particle-hole symmetry, spin degeneracy, and Friedel sum rule fix
the Kondo phase-shift to 6k = 71/2. The Friedel sum rule states that:

(N)=2—", (25)

(N) = 1because of particle-hole symmetry and the factor 2 signals spin degeneracy, fixing dx = /2.
The detailed description of the Kondo effect is far beyond the scope of this review and we direct the
interested reader to Ref. [49] for a comprehensive review and to Refs. [106-111] for the description of
the low energy fixed point relying on boundary conformal field theory. For the scopes of this review it
is enough to mention that below the Kondo temperature: [102,103,112,113]

1
1y [2UT reglegt)
TK — 6477 LE dzudr , (26)
27 T

the spin-exchange coupling | in Equation (23) flows to infinity in the renormalization group sense.
The relevance of this interaction brings the itinerant electrons to screen the local spin-degree of freedom
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of the quantum dot and phase-shifts the resulting quasi-particles by Jk, see Figure 5. The phase-shift
71/2 acquires thus a simple interpretation in one dimension [44,106]: Writing ¥ = ¢*%¥_ for a given
spin channel at the impurity site, 6 = éx = 71/2leads to Y + ¥, = 0. The fact that the wave-function
is zero at the impurity site, corresponds to the situation in which an electron screens the impurity
spin, leading to Pauli blockade (due to Pauli principle), thus preventing other electrons with the
same spin to access the impurity site. This dynamical screening of the impurity spin forms the so
called “Kondo cloud” [114-117], see Figure 5. It is responsible for increasing the local density of
states and leads to the Abrikosov-Suhl resonance [118], which causes the increase, below Tk, of the
dot conductance in Coulomb blockaded regimes [93,119,120]. Remarkably, the Kondo phase-shift
dx = 7t/2 and the Kondo screening cloud have been also directly observed in two recent distinct
experiments [121,122]. In Section 4.7, we illustrate how such phenomena also affect the dynamical
properties of the mesoscopic capacitor in a non-trivial way.

Charge quantization in the dot comes Residual interaction Phase-shift

in pair with suppressed conductance
(N)1G D
pin-exchange otential scattering [6 _ 5 5
= 0K + 0w

JS s+ WI

J(/ oV |_> ow = —arctan(mro W)
ATR T 32 6K:g

Energy \ )

, Coulomb Blockade Kondo screening

| |

E. Tx O
Figure 5. Modification of the physical scenario of Figure 3 in the presence of spin-exchange interactions
between the dot and lead electrons in the Anderson Impurity Model (AIM). Spin-exchange interactions
trigger the formation of the Kondo singlet below the Kondo temperature Tk, which is responsible
for an additional elastic dx = 7r/2 phase-shift of lead electrons in the effective Local Fermi Liquid
(LFL) theory.

It remains to establish the combined role of spin-exchange and potential scattering on the
low-energy quasi-particles. Remarkably, the phase-shift dyy, caused by potential scattering, is additive
to Ok [123-125]:

O = o + ow, 27)

and can thus be calculated independently. The validity of the above expression is demonstrated by
comparison with the exact Bethe ansatz solution of the AIM [102,103]. Inserting the expression (9) for
the phase-shift caused by the potential scattering in the Friedel sum rule one finds:

2 r : :
<N> — E [5,( — arctan(mfow)] =1+ ; (sd +Uu * 5) ' (28)

This expression is consistent with the condition (N) = 1, imposed by particle-hole symmetry, but also
with the static charge susceptibility x., which was derived with the Bethe ansatz [126]:

9(N)
a a€d

8r 12I'

:W<Hﬁ+'”>' (29)

Xe =

u
g=—7

The extension of this proof to next-to-leading order in ¢, is given in Refs. [66,68] and it shows how
LFL approaches are effective in providing analytic predictions out of particle-hole symmetry as well,
extending Bethe ansatz results.
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This discussion concludes our demonstration of the persistence of elastic and coherent effects
triggered by interactions at equilibrium. Local Fermi liquids provide a general framework to describe
interacting and non-interacting systems at low energy, within an effective elastic scattering theory.
Nevertheless, it is important to stress that LFL theories can fail in specific cases, such as overscreened
Kondo impurities [127,128], and that their validity is limited to close-to-equilibrium/low-energy
limits. It is thus expected that interactions become crucial as soon as such systems are driven out of
equilibrium. We will illustrate now how the LFL theory allows to describe exotic, but still coherent in
nature, dynamical effects in a paradigmatic setup such as the mesoscopic capacitor.

4. The Mesoscopic Capacitor

The mesoscopic capacitor in Figure 6 plays a central role in the quest to achieve full control
of scalable coherent quantum systems [4,129,130]. A mesoscopic capacitor is an electron cavity
coupled to a lead via a QPC and capacitively coupled to a metallic gate [51-53]. The interest in this
device stems from the absence of DC transport, making possible the investigation and control of
the coherent dynamics of single electrons. The first experimental realization of this system was a
two-dimensional cavity in the quantum Hall regime [20,21], exchanging electrons with the edge of a
bulk two-dimensional electron gas (2DEG). Operated out of equilibrium and in the weak tunneling
limit, this system allows the triggered emission of single electrons [22-24], and paved the way to
the realization of single-electron quantum optics experiments [131-134], as well as probing electron
fractionalization [25,135], accounted by the scattering of charge density waves (plasmons) in the
conductor [136-143], and their relaxation [26]. On-demand single-electron sources were also recently
realized with real-time switching of tunnel-barriers [27-32], electron sound-wave surfing [14,16,144],
generation of levitons [8-11,13], and superconducting turnstiles [18,19]. We direct again the interested
reader to Ref. [35] for a comprehensive review of these experiments.

The key question concerning the dynamics of a mesoscopic capacitor is which electronic state,
carrying a current Z, is emitted from the cavity following a change in the gate voltage Vy. The linear
response is characterized by the admittance A(w),

I(w) = A(w)Vg(w) + O(Vy). (30)

In their seminal work, Biittiker and coworkers showed that the low-frequency admittance of a
mesoscopic capacitor reproduces the one of a classical RC circuit [51-53],

A(w) = —iwC(1 + iwRqC) + O(w?), (31)

in which both the capacitance C and the charge relaxation resistance Rq probe novel coherent dynamical
quantum effects. The capacitance C was originally interpreted as an electro-chemical capacitance 1/C =
1/Cg +1/Cq, series of a geometric (Cg) and a quantum (Cq) contribution [21,51-53]. The geometric
contribution is classical and depends on the shape of the capacitive contact between gate and quantum
dot. The quantum contribution is a manifestation of the Pauli exclusion principle and was found
proportional to the local density of states in the cavity, see Figure 7. Remarkably, the charge relaxation
resistance Rq = /26> was predicted to be universally equal to half of the resistance quantum in
the case of one conducting channel [20], independently of the transparency of the QPC connecting
cavity and lead. This result is in striking contrast with the resistance measured in DC experiments
and was originally labeled as a Violation of Kirchhoff’s Laws for a Coherent RC Circuit [20]. Reference [21]
extensively reviews the original theoretical predictions and their experimental confirmation, in a
non-interacting and self-consistent setting, which we also review and put in relation with their
Hamiltonian formulation in Appendix B.
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Al

Figure 6. Top—First realization of the mesoscopic capacitor [20]: A two-dimensional electron gas
(2DEQG) in the Quantum Hall regime is coupled to a quantum cavity via a gate-controlled QPC.
Bottom—Working principle of a single electron emission [22-26]. A gate potential moves the quantized
levels of the cavity above and below the Fermi surface of the coupled reservoir. Electron/hole emission
in steps 2 and 3 follows from moving occupied/empty orbitals above/below the Fermi surface.

Below, we discuss how the LFL approach challenges and extends the above studies. In particular:

1. The total capacitance C is given by the static charge susceptibility x. = —e?d (N) /0V; of the
cavity and does not generally correspond to a series of a geometric and quantum contribution,
proportional to the density of states in the cavity. For instance, in Kondo regimes, the charge
susceptibility of the cavity remains small, because of frozen charge fluctuations, while the density
of states increases below the Kondo temperature [49]. This effect was directly probed in a recent
experiment with a quantum dot device embedded in circuit-QED architecture [145];

2. A LFL low energy behavior implies universality of the charge relaxation resistance in the single
channel case. In particular, the universality of Rq stems from a Korringa-Shiba (KS) relation [146]

Im [xe(@)]|y 0 = Whmx2(w = 0), (32)

in which xc(w) is the Fourier transform of the dynamical charge susceptibility (37);

3. The LFL approach shows various non-trivial dissipative effects triggered by strong correlations.
In particular, it predicts a mesoscopic crossover between two universal regimes in which
Rq = h/2¢% — h/e? [65] by increasing the dot size, also at charge degeneracy, in which the
CBM maps on the Kondo model [101]. It also predicts giant dissipative regimes, described by
giant universal peaks in Rq, triggered by the destruction of the Kondo singlet by a magnetic
field [67,147];

4. In proper out-of-equilibrium regimes, interactions and inelastic effects become unavoidable and
circuit analogies, such as Equation (31), do not capture the dynamic behavior of the mesoscopic
capacitor [148]. We show here how previously published data [25] also show a previously
overlooked signature of non-trivial many-body dynamics induced by interactions.
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4.1. Hamiltonian Description of the Quantum RC Circuit: Differential Capacitance and Korringa—Shiba Relation

Expanding the square in Equation (1) and neglecting constant contributions, . renormalizes
the orbital energy e; in Equation (12) and adds a quartic term in the annihilation/creation
operators d;, namely

He = —eVg(t)N + EN?. (33)

The driving gate voltage V; couples to the charge occupation of the quantum dot Q = ¢(N).
In single-electron emitters, one operates on the time dependent voltage drive Vg(t) to bring occupied
discrete levels above the Fermi surface and then trigger the emission of charge, see Figure 6. The current
of the device is a derivative in time of the charge leaving the quantum dot, the admittance reads then,
in the Fourier frequency representation,

_ . Qw)
Alw) = —iw Vel@) " (34)

We start by considering small oscillations of amplitude ¢, of the gate voltage:
Vg(t) = Vg +ew cos(wt). (35)
Close to equilibrium, expression (34) is calculated relying on Kubo's linear response theory [149]
A(w) = —iwe*xc(w), (36)

in which xc(w) is the Fourier transform of the dynamical charge susceptibility:

X(t—1t) = %G(t — ) ([N(#),N(£)]), - (37)

The notation (-)( refers to quantum averages performed at equilibrium, i.e., without the driving term
Vg (t) in Equation (33). The low frequency expansion of x.(w) reads:

A(w) = —iwe? {xc + ilm [xc(w)]} + O(w?), (39)

where we relied on the fact that the even/odd part of the response function (37) coincide with its
real/imaginary part, see Appendix C. We also introduce the static charge susceptibility x. = xc(w = 0).
The expansion (38) matches that of a classical RC circuit (31). Identifying term by term, we find the
expression of the charge relaxation resistance and, in particular, that the capacitance C of the mesoscopic
capacitor is actually given by a differential capacitance Cy:

20(N) _ 9Q

_9Q Imy.(w)
as,,, an !

1
2
C=Cp=¢eYc=—¢ ﬁ w

Rq = (39)

w—0

The differential capacitance is proportional to the density of states of charge excitations on the dot,
which, as mentioned above, generally differs from the local density of states in the presence of strong
correlations. Equation (39) provides also the general condition for the universal quantization of the
charge-relaxation resistance Rq = 1/ 2¢%, namely:

Imc(w) |, 0 = hwx? . (40)

Such kind of relation is known as a Korringa-Shiba (KS) relation [146]. The KS relation establishes
that the imaginary part of the dynamic charge susceptibility, describing dissipation in the system,
is controlled by the static charge fluctuations on the dot, x..

Additionally, we mention that the relation (40) also affects the phase-shift of reflected or transmitted
light through a mesoscopic system in the Kondo LFL regime [150-152]. Such situations have been recently
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realized with quantum-dot devices embedded in circuit-QED architectures [153-159], in which the
driving input signal can be modeled by an AC potential of the form (35).

Lead QPC Dot

D)
Iz

0Q =e oV =
J

) 2
Lead QPC Dot Gate Cq: g =X

o | B>

Figure 7. Physical origin of the quantum capacitance Cq. Pauli exclusion forces electrons entering the
dot to pay an energy price equal to the local level spacing A, resulting in a capacitance Cq = e/A.
On the right, a one-dimensional representation of the mesoscopic capacitor, with a dot of size /.

4.2. The Origin of the Differential Capacitance as a ‘Quantum’ Capacitance as far as Interactions are Neglected

As far as interactions are neglected, the differential capacitance Cj is a manifestation of the
fermionic statistics of electrons, determined by the Pauli exclusion principle. For this reason it
has been originally labeled as a ‘quantum’ capacitance Cq [51-53]. When an electron is added to
the quantum dot, in which energy levels are spaced by A, the Pauli exclusion principle does not
allow one to fill an occupied energy state, but requires to pay a further energy price A, see Figure 7.
The capacitance associated to this process is then Cq = 6Q/JV. For one electron 6Q = eand 6V = A/e.
Substituting these two expressions, we recover a uniform quantum capacitance:

Cq==. (41)

This expression establishes that the quantum capacitance is proportional to the density of states in
the quantum dot at the Fermi energy Cq = ¢>V(Ef), with N'(Ef) = 1/A, to be distinguished from vy,
the density of states of the lead electrons.

Additionally, the quantum capacitance is related to the dwell-time spent by electrons in the cavity.
The general relation is derived in Appendix B, but it also results from simple estimates. Considering the
representation of the mesoscopic capacitor of Figure 7, in the open-dot limit, the time spent by an
electron in the cavity coincides with its time of flight ¢ = £/vr: The ratio between the size of the
cavity ¢ and its (Fermi) velocity vr. The level spacing A of an isolated cavity of size ¢ is estimated by
linearizing the spectrum close to the Fermi level. The distance in momentum between subsequent
levels is 1/ ¢, corresponding to A = hvp /¢ = h/ 7. Substituting in Equation (41) leads to an equivalent
expression for the quantum capacitance:

Cq = - Tf. (42)

On the experimental side, the level spacing of the quantum dot can be actually estimated and,
in the experimental conditions of Ref. [20], it was established to be of the order of A ~ 15 GHz,
corresponding to a quantum capacitance Cq ~ 1 fF. Experimental measurements of C, reported in
Figure 8, give an estimate also for Cg, showing that Cq < Cg. This implies that the level spacing A was
much larger than the charging energy E. = ¢2/2C , of the order of fractions of the GHz, apparently
justifying the mean-field approach to describe experimental results, with the limitations that we are
going to discuss in out-of-equilibrium regimes, see Section 5.
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The argument leading to Equation (41) implicitly assumes the perfect transparency of the QPC,
namely that the probability amplitude r for a lead electron to be reflected when passing though the
QPC to enter the cavity is equal to zero (r = 0). In this limit, the density of states on the dot is uniform.
Finite reflection r # 0 is responsible for resonant tunneling processes, leading to oscillatory behavior of
the local density (or the dwell-time) of states as a function of the gate potential Vg, in agreement with
the experimental findings reported in Figure 8. In Appendix B, we provide a quantitative analysis
of this effect by explicitly calculating the differential capacitance Cy, Equation (39), by neglecting the
term proportional to E.N Zin Equation (33).
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Figure 8. Top—Measurement of the universal charge relaxation resistance from Ref. [20]. The resistance
of two different samples (E3 and E1) is given by the real part of their impedance Z = 1/.A as a function
of the QPC potential Vg, in Figure 6, which also affected the gate potential V. Measurements were
carried out for T = 30mK and a magnetic field B = 1.3T polarizing the electrons, resulting in one
conducting channel. Uncertainties are indicated by the hatched areas. Bottom—Measurement of the
total capacitance C;, = C, through Im(Z) = —1/wC, for the same samples. The oscillatory behavior is
related to resonances in the density of states of the dot.

4.3. The Physical Origin of the Universal Charge Relaxation Resistance

The universality of Rq was also verified experimentally in Ref. [20], see Figure 8. In the quantum
coherent regime the charge relaxation resistance is universal: It does not depend on the microscopic
details of the circuit (Cg, 7,...), but only on fundamental constants, namely Planck’s constant & and
the electron charge e. This is surprising. When applying a DC voltage across a QPC connecting two
leads, the QPC behaves as a resistive element of resistance [160,161]:

h
RDC - E ’ (43)

where D = 1 — |r|? is the QPC transparency. This quantity depends on the amplitude r for electrons
to be backscattered when arriving at the QPC, which can be tuned by acting on a gate potential.
As we considered spinless electrons, the factor 2 in Rq = h/2e? cannot be related to spin degeneracy
and D = 1 in Equation (43). It is rather related to the fact that the dot is connected to a single
reservoir, in contrast to the source-drain reservoirs present in DC transport experiments [56,162].
In direct transport, each metallic contact is responsible for a quantized contact resistance R. = h/2¢?,
the Sharvin-Imry resistance [163,164]. In source-drain experiments, Equation (43) could be recast

in the form Rgpc + 2R., with Rgpe = e%% the resistive contribution proper to the QPC. For the
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case of a mesoscopic capacitor, there is a single reservoir and one would thus expect for the charge

relaxation resistance:
Rexpected h h1—D

q :RQPC'FRCZE'F?? (44)

The fact that Rq does not depend on the transparency D, assuming the universal value h/2¢?, cannot be
attributed to the laws governing DC quantum transport, and this is the reason why one can speak
about the Violation of Kirchhoff’s Laws for a Coherent RC Circuit [20]. The universality of R is rather
a consequence of the fact that R, differently from the contact resistance R, is related to energy
(Joule) dissipation. As electrons propagate coherently within the cavity, they cannot dissipate energy
inside it, but only once they reach the lead. We will illustrate in Section 4.5 how this phenomenon
is a direct consequence of the possibility to excite particle-hole pairs by driven electrons. At low
frequency, dissipation is thus only possible in the presence of a continuum spectrum, accessible in
the metallic reservoirs. The expected resistance (44) is recovered only if electrons lose their phase
coherence inside the dot [56,162], see also Refs. [165,166], which take Coulomb blockade effects
into account. For instance, in the high temperature limit kgT > A, Equation (44) is not recovered.
The reason is that, in scattering theory, temperature is fixed by the reservoirs without affecting the
coherent/phase-preserving propagation in the mesoscopic capacitor.

4.4. The Open-Dot Limit

We address now the role of the charging energy E. and come back to our initial example of the
open dot limit, considered in Section 2. The possibility to rely on an exact bosonized solution for the
model (1)—(2), made possible the derivation of the admittance .A(w) in linear-response theory for a
fully transparent point contact (r = 0) and a finite-sized cavity [65]:

. -1
Alw) = —iwCg <1 - %) . (45)
This expression is important as it makes possible to study the interplay between two different
time-scales, namely the time of flight 7; of electrons inside the cavity, already present in the previous
discussion, and 7. = hCy/¢? the time scale corresponding to the charging energy E.. We mention that,
interestingly, the admittance (45) was also found to describe the coherent transmission of electrons
through interacting Mach—Zehnder interferometers [167,168].

What is quite remarkable about the admittance (45) is that, to linear order in w, the two time
scales 7y and T still combine into the universal charge relaxation resistance Rq= h/2¢% and a series of
a geometrical and quantum capacitance Cq = €27¢/h [51-53] (see also Equation (42)):

1 1 h
&gt 0

The low-frequency behavior of Equation (45) illustrates how interacting systems behave as if
interactions were absent at low energies. What is then also implicit in Equation (45) is that, to observe
separate effects on the charge dynamics, induced by free propagation (7¢) or interactions (1), one has
to consider proper out-of-equilibrium /high-frequency regimes. These regimes will be addressed in
Section 5.

Nevertheless, interactions still matter even in low-frequency regimes. Consider the infinite-size
(metallic) limit for the cavity, 7 — oo. In this limit, also describing the experiment in Figure 2,
one implicitly assumes that the driving frequency w is larger than the internal level spacing of the
dot A,

hw > A. (47)

The discrete spectrum of the dot can thus be treated as a continuum, which allows for energy dissipation
also inside the cavity, see Figure 9. In particular, averaging the admittance (45) over a finite bandwidth
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dw, such that w > éw > A, one exactly recovers the admittance of a classical RC circuit of capacitance
Cg and charge-relaxation resistance R; = h/ 2 [65]:
—iwCq

A = ek )
The mesoscopic crossover Rq = I/ 2¢% — h/¢? is an exquisite coherent effect triggered by interactions.
This phenomenon has fundamentally the same origin of the elastic electron transfer exemplified by the
correlation function (3), considered at the very beginning of this review.

Remarkably, the universality of the charge-relaxation resistance holds in the presence of
backscattering at the dot entrance, without affecting the mesoscopic crossover Rq = h/2¢* — I1/¢* [65].
Nevertheless, the possibility to interpret the differential capacitance as a series of two separate
geometric and quantum term as in Equation (46), is lost. If we locate the entrance of the dot at
x = 0, backscattering corrections to the model (1)—(2) read:

H, = —hrog [‘}’R(O)+‘YL(0) + ‘FL(O)+‘I’R(O)] , (49)

and compromise a non-interacting formulation of the problem, even in its bosonized form [65,72,148].

It becomes then important to understand why and to which extent quantities such as the
charge-relaxation resistance show universal coherent behavior even in the presence of interactions.
The extension of the LFL theory in the quasistatic approximation provides the unified framework to
understand the generality of such phenomena.
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Fermi Level { _ o/ _ Lead Dot .
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- R, Co
Lead Dot 'J\/\/—| |"
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Energy Cg
Fern_li_Le_ve_l ~ o _A Lead Dot w{h
‘ fuw Gate
Rq Rq Co
Lead Dot |_.

Figure 9. Mesoscopic crossover in the charge relaxation resistance. Top—In a small dot, the level
spacing A is larger than the driving energy /i and energy levels in the dot are not excited. The universal
resistance Rq = h/ 2¢? of the equivalent RC circuit is furnished exclusively by the lead electron reservoir.
Bottom—Excitation of energy levels inside the dot are permitted in the large dot limit, which acts as a
further dissipative reservoir in series to the lead.

4.5. The Tunneling Limit and the Quasi-Static Approximation

In Section 3, we showed that a large class of models of the form (4) are effectively described,
in the low-energy limit, by a LFL theory (8), in which the potential scattering coupling constant W
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depends on the orbital energy of the dot ;. The expansion of the charging energy Hamiltonian (33)
made apparent that this energy is renormalized by the gate potential ¢, — e5 — eVg(t). For an AC bias
voltage, we consider then a periodic function of time oscillating at the frequency w:

eq(t) = &%+ eq cos (wt) . (50)

The quasi-static approximation consists in substituting Equation (50) directly in Equation (8).
This condition assumes that the low energy Hamiltonian (8), derived for the equilibrium problem,
follows, without any delay, the orbital oscillations expected from the parent, high-energy, model.
The quasi-static approximation is then a statement about a behavior close to adiabaticity.

We consider then the linear response regime and expand the coupling W (e;) in &,. Focusing on
the single channel case, the extension to multiple channels being straightforward, Equation (8) becomes:

H=Y excic+ [W(eg) + W/ (e%)e cos (wt)} Y cfep. (51)
k k!

We diagonalize the time independent part of this Hamiltonian [104]:
W' (&8
H=Y eafa+ (&) 5 €w COs (wt) Y afa, (52)
o 1+ [rrpW(eh)] 7

where the operators a and a* describe the new quasi-particles diagonalizing the time independent part
of the Hamiltonian (51). The Friedel sum rule (11) establishes that:

oW’ (¢9)
c= 7‘102 , (53)
1+ [mrpW(e%)]
and the Hamiltonian (52) can be cast in the more compact and transparent form:
+ X +
H =Y eagar+ V—;sw cos (wt) Y agay . (54)

kk' kk!

This Hamiltonian shows the mechanism responsible for energy dissipation at low energy for the
rich variety of strongly interacting systems satisfying the Friedel sum rule and LFL behavior at low
energy. The time dependent term pumps energy in the system, which is then dissipated by the creation
of particle-hole pairs. Crucially, this term is controlled by the static charge susceptibility x. of the
quantum dot. The non-interacting Hamiltonian (54) explains why non-interacting results also hold for
the universal charge relaxation resistance in the presence of interactions on the quantum dot.

We now illustrate how the Hamiltonian (54) implies the validity of the KS relation and
thus universality of the charge-relaxation resistance Rq. The proof was originally devised for
spin-fluctuations [169] and we extend it here to the case of charge fluctuations. For drives of the
form (50), the power dissipated by the system is proportional to the imaginary part of the dynamic
charge susceptibility, see Appendix C,

P = %si,wlmxc(w) . (55)

A direct calculation of Imy. is a difficult task and this is where the low-energy model (54) becomes
useful. Similarly as for Equation (55), the LFL theory (54) predicts the dissipated power:

1
P = sewimya(w), (56)
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where the linear response function x4 (t — ') = £0(t — ') ([A(t), A(')]), is a correlator at different
times of the potential scattering operator:

A=y gt 7)
0 k'

responsible for the creation of particle-hole pairs. The Fourier transform of the response function reads:

__1x 1 1
XA(w) - _EVT% r;f(gp)[l _f(ep’)} w4+ ep;lsp/ o+ - w4 ep/;ep Lo+ 4 (58)

in which f(e,) = 1/(ef + 1) is the Fermi distribution. We consider the electron lifetime as infinite,
i.e.,, much longer than the typical time scales 7. and 7. Taking the imaginary part and the continuum
limit for the spectrum in the wide-band approximation, one finds, at zero temperature,

Imy 4 (w) = mhwy?. (59)

The two dissipated powers (55) and (59) have to be identical, implying the Korringa-Shiba relation (32),
enforcing then a universal value for the charge relaxation resistance Rq = /1/2¢?.

4.6. The LFL Theory of Large Quantum Dots: The Mesoscopic Crossover R q = h/ 2¢% — h/e?

The above demonstration has to be slightly adapted to show the mesoscopic crossover
Rq = h/2e? — h/e%. This crossover takes place for the CBM (12), in the infinite-size limit of the dot.
As implicit in the effective description (21) of the CBM, the dot and the lead constitute two separate
Fermi liquids. Sections 2 and 3 illustrated how the energy cost E. prevents the low-energy transfer of
electrons between the dot and lead [77]. The electrons of both these gases are then only backscattered
at the lead/dot boundary with opposite amplitudes. In the quasi-static approximation, all the steps
carried in the previous discussion apply for the Hamiltonian (21). In this case, the time variation of the
orbital energy ¢, also drives particle-hole excitations in the dot. The operator responsible for energy
dissipation becomes:

A=A (Zc,tck, - Zd}d1/> , (60)
Yo \kw I
in which the operators c,t and d? create lead and dot electrons of energy ¢ ; respectively. This formulation

of the operator A adds a further contribution to Equation (58), analogous to the contribution of
particle-hole pairs excited in the lead, namely:

1 1

& —¢|

= - (61)
w+ 5T 40t w+ L ot

2
_ %% Y Flen)[1— Fler)]

o

The limits w — 0 and A — 0 do not commute in the above expression. This fact has a clear physical
interpretation: If the frequency is sent to zero before the level spacing, energy cannot be dissipated
in the cavity and no additional contribution to Imy.(w) is found. If the opposite limit is taken,
the condition (47) is met and the Korringa-Shiba relation is then modified by a factor two:

Imy(w) = 2mhwy?, (62)

which doubles the universal value of the single-channel charge relaxation resistance Rq = h/ é.
The relation (62) was originally shown by explicit perturbation theory in the tunneling amplitude,
close and away from charge degeneracy points [65]. As summarized in Figure 9, driving at a frequency
higher than the dot level spacing induces the creation of particle/hole pairs inside the dot as well,
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enhancing energy dissipation with respect to the small dot limit 7iw < A. As energy can be coherently
dissipated in two fermionic baths (dot and lead), the dot acts effectively as a further (Joule) resistor in
series with the lead, leading to a doubled and still universal charge relaxation resistance.

4.7. The Multi-Channel Case and Universal Effects Triggered by Kondo Correlations

The above discussion also extends to the M channels case, leading to a generalized KS relation:
Imyc(w)],_yo = himw E)&,, (63)
o

which corresponds to a non-universal expression for the charge relaxation resistance [68,69]

h Yo x2
1722 (5, ©9

This expression is analogous to the one obtained by Nigg and Biittiker [54]. In their derivation leading
to Equation (A48), the densities of states, or dwell-times 7, of the o channel in the dot, replace the
susceptibilities x,. The single channel case is remarkable in that the numerator simplifies with the
denominator in Equation (64), leading to the universal value /1/(2¢%), which is thus physically robust.
Otherwise, in the fine-tuned case that all the channel susceptibilities are equal, one finds Rq = h/2e? M.

Spinful systems in the presence of a magnetic field are the simplest ones to study how the
charge-relaxation resistance is affected by breaking the symmetry between different conduction
channels. Indeed, lifting the orbital level degeneracy by a magnetic field breaks the channel symmetry
and the charge relaxation resistance is no longer universal, as it was originally realized in studies of
the AIM (13) relying on the Hartree-Fock approximation [54].

Nevertheless, the self-consistent approach misses important and sizable effects triggered by strong
Kondo correlations. These were originally observed relying on the Numerical Renormalization Group
(NRG) [147]. The numerical results, reported in Figure 10, showed that, for Zeeman splittings of the
order of the Kondo temperature T, the charge relaxation resistance can reach up to 100 times the
universal value of Rq = 1/ (4€?), which would be expected in the two-fold spin degenerate case.
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Figure 10. Left—Dependence of Rq on the Zeeman splitting Az in the Kondo regime from Ref. [147].
These results have been obtained by Numerical Renormalization Group (NRG) calculations with
T = 0.02 and E. = 0.2 (both quantities are measured in units of the contact bandwidth D and the
definition of the hybridization energy I' is provided in Appendix A.3). They show that, for Zeeman
energies of the order of the Kondo temperature, a giant non-universal peak appears in the charge
relaxation resistance. Right—Comparison of Rq as a function of the magnetic field between NRG
calculations (dots) (extracted from Ref. [147]) and our Bethe ansatz results (solid lines) for different
g4/Uand U/T = 20, showing excellent agreement [67,68].
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The LFL approach allows the analytical quantification and physical interpretation of such giant
dissipative phenomenon [67,68]. For two spin channels, the total charge on the dot is the sum of the
two spin occupation (N) = (N4) 4 (N, ). Equation (64) can then be recast in the useful form:

_h Xi
Rq74762<1+)(7% , (65)
in which we introduce the usual charge susceptibility: x. = —d(N)/de; and the charge-magneto
susceptibility
9 (m
e (©6)

This quantity is twice the derivative of the dot magnetization (m) = ((N;) — (N|))/2, with respect
to the orbital energy ;. The charge-magneto susceptibility is an atypical object to study quantum
dot systems, where the magnetic susceptibility x;y = —d (m) /0H is rather considered to study the
sensitivity of the local moment of the quantum dot to variations of the magnetic field H. Equation (65)
shows that the susceptibility of the magnetization of the dot, and not its charge, is responsible for the
departure from the universal quantization 1/ (4¢?) of the charge relaxation resistance. Equation (65)
also separates explicitly charge and spin degrees of freedom of the electrons in the quantum dot.
They can display very different behaviors in correlated systems, as illustrated in Figure 11 in the
Kondo regime, defined for one charge blocked on the dot and Zeeman energies below the Kondo
temperature (26).

In particular, Kondo correlations strongly affect the dot magnetization, but not its occupation.
The points where x,; differs from x. correspond to non-universal charge relaxation resistances.
In Figure 10, the values derived with the LFL approach (65) are compared to those obtained
with NRG [147], showing excellent agreement. Additionally, the LFL approach also allows to
derive an exact analytical description of this peak, showing a genuinely giant dissipation regime:
Simultaneous breaking of the SU(2) (H # 0) and particle-hole symmetry (¢; # —U/2) trigger a peak in
Rq which scales as the 4th(!) power of U /T and has its maximum for Zeeman splittings of the order of
the Kondo temperature. This effect is caused by the fact that breaking the Kondo singlet by a magnetic
field activates spin-flip processes, which dissipate energy through creation of particle-hole pairs [147].

We conclude by discussing the deviations of the differential capacitance Cy from the local density
of states of the cavity, which is clearly apparent in Kondo regimes. The spin/charge separation arising
in the AIM allows to observe important physical effects on the differential capacitance of strongly
interacting systems. Charge and spin on the dot are carried by different excitations: Holons and
spinons. We report in Figure 12 the density of states of these excitations in the particle-hole symmetric
case ¢; = —U /2. In the absence of interactions (U /I" = 0), they have the same shape, but they start
to strongly differ as the interaction parameter U/T is increased. They develop well pronounced
peaks, but at different energies, signaling the appearance of separated charge and spin states. In the
case of holons, the excited charge state appears close to ¢ = U/2, the energy required to change the
dot occupation at particle-hole symmetry. In Ref. [170], it is shown that the density of states of the
holons equals the static charge susceptibility x., coinciding then with the differential capacitance Cy.
At particle-hole symmetry, this quantity scales to zero as 8T / tU?, see Equation (29). Instead, the spinon
density of states develops a sharp peak at zero energy, known as the Abrikosov-Suhl resonance [118],
signaling the emergence of the strongly correlated Kondo singlet. The differential capacitance Cy is
completely insensitive to this resonance, which dominates the fotal density of states on the dot. Such an
effect was distinctly observed in carbon nanotube devices coupled to high-quality-factor microwave
cavities [145]. These systems efficiently probe the admittance (30) also in quantum dots with more than
two internal degrees of freedom [150,152], such as extensions of the AIM to SU(4) regimes, relevant for
quantum dots realized with carbon nanotubes [68,171-177].
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Figure 11. From Ref. [68]. Top—Charge occupation and magnetization of the dot for U/T = 20
as function of the orbital energy ¢; and magnetic field H. The insets show the same quantities on
a logarithmic scale. The light green lines in the linear plots correspond to H = 2¢4, and separate
regions with different charge occupations, while the dark green lines in the insets correspond
to Tx, Equation (26), and separate regions with different magnetization. The charge is not
sensitive to the formation of the Kondo singlet for Zeeman energies below the Kondo temperature
(green line), while the magnetization becomes zero. Bottom—Corresponding charge susceptibility and
charge-magneto susceptibility. The susceptibilities are in units of 1/T". In the insets the same quantities
are plotted on a logarithmic scale and the zone of appearance of the giant peak of the charge relaxation
resistance can be appreciated. It is the region, following Ty, in which x. is close to zero, while x;,
acquires important values because of the formation of the Kondo singlet.

04 T U/ =4 i
FNh(é‘) - 3 4
2
0.2 L R
0
- / -
2

L | e —

wU? 1 T 2 3
€

Figure 12. From Ref. [170]. (Left)—Density of states of local holons on the dot AV}, (¢). ¢ is the excitation
energy. A Coulomb peak emerges increasing the interaction parameter U/I" and vanishes at zero
energy as 8T/ 7tU2. This quantity coincides with x., plotted in Figure 11. (Right)—Density of states
of local spinons N;(¢). It behaves as the holonic one for U/T = 0 and develops the Abrikosov-Suhl
resonance at zero energy, the signature of the formation of the strongly correlated Kondo singlet state.
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The above discussion completes the review of the application of the LFL theory to study the
low-energy dynamics of quantum impurity driven systems. Further applications could be envisioned
to describe various correlation effects on different aspects of weakly driven interacting quantum-dot
systems, as long as they can be described by an effective theory of the form (8). An important case
involves the driving of the coupling term Hesdot — Hres—dot(t) in the Hamiltonian (4), which has
been implemented experimentally, with important metrologic applications [27-32]. Another interesting
perspective concerns the application of the LFL theory to energy transfer [178-180], or coupling
quantum-dot systems to mechanical degrees of freedom [181-187], which are described by similar
models as quantum-dot devices embedded in circuit-QED devices [150,153-158].

Deviations from universal and coherent behaviors are expected in non-LFL regimes, arising when
the reservoirs are Luttinger Liquids [188,189] or in over-screened Kondo impurities, in which the
internal degrees of freedom of the bath surpass those of the impurity [85,190].

We have thus illustrated how a coherent and effectively non-interacting LFL theory accounts for
strong correlation effects in the dynamics of quantum dot devices. It has to be clarified how interaction
are supposed to affect proper out-of-equilibrium regimes. As a direct example, consider again the
admittance (45). Its expansion to low-frequencies completely reproduces the self-consistent predictions
of Refs. [51-53], but it ‘hides’ the qualitative difference between the two time scales 7. and 1, associated
to interactions and free-coherent propagation respectively. Higher-frequency driving will inevitably
unveil this important difference, as we are going to demonstrate by giving a new twist to past
experimental data in the next conclusive section.

5. What about Out-Of-Equilibrium Regimes? A New Twist on Experiments

We conclude this review by showing how interaction inevitably dominate proper out-of-
equilibrium or fastly-driven regimes. We will focus, also in this case, on the mesoscopic capacitor.
In particular, we will show that past experimental measurements, showing fractionalization effects in
out-of-equilibrium charge emission from a driven mesoscopic capacitor [25], also manifest previously
overlooked signatures of non-trivial many-body dynamics induced by interactions in the cavity.

As a preliminary remark, notice that the circuit analogy (31) does not apply for a non-linear
response to a gate voltage change or to fast (high-frequency) drives. An important example is a large
step-like change in the gate voltage V;(t) = V0(t), 6(t) being the Heaviside step function, which is
relevant to achieve triggered emission of quantized charge [24]. Such a non-linear high-frequency
response has been considered extensively for non-interacting cavities [22,24,191-195], where the
current response to a gate voltage step at time ¢ = 0 was found to be of the form of simple exponential
relaxation [22,191,193,195]:

I(f) e H/™RA(1). (67)

For a cavity in the quantum Hall regime the relaxation time g = ¢/ (1 — |r|?), where T is the time
of flight around the edge state of the cavity, see Figures 6 and 7, and r the reflection amplitude of the
point contact.

There have been relatively few studies of the out-of-equilibrium behavior of the mesoscopic
capacitor in the presence of interactions. The charging energy leads to an additional time scale
T = 27thCq/e€? for charge relaxation. The limit 1 — [r|? < 1 of a cavity weakly coupled to the lead,
such that it can effectively be described by a single level, was addressed in Refs. [196-201].

The full characterization of the out-of-equilibrium dynamics behavior of the mesoscopic capacitor,
with a close-to-transparent point contact, was carried out in Ref. [148], extending the analysis of
Ref. [65] to a non-linear response in the gate voltage V. A main result, spectacular in its simplicity,
is that for a fully transparent contact (r = 0) the linear-response admittance (45) also describes
the non-linear response, i.e., the correction terms in Equation (30) vanish for an ideal point contact
connecting cavity and lead [136,202-204]. The Fourier transform of the admittance (45) describes the
real-time evolution of the charge Q(t) after a step change in the gate voltage.
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Figure 13 illustrates that initially, for times up to 7, Q(t) relaxes exponentially with time T,
whereas at time t = T the capacitor abruptly enters a regime of exponentially damped oscillations,
the period and the exponential decay, controlled by a complex function of 7 and 7., which does not
correspond to any time scale extracted from low-frequency circuit analogies. This behavior is not
captured by Equation (67), derived in the non-interacting limit. These oscillations correspond to the
emission of initially sharp charge density pulses, which are damped and become increasingly wider
after every charge oscillation. Such complex dynamics is exquisitely coherent, but totally governed
by interactions.
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Figure 13. From Ref. [148]. Time-evolution of the current/charge density following a sudden gate
voltage shift at time t = 0 for large interaction strength, 7y = 207.. Top—Charge response AQ(t) as
a function of time t. Bottom—Series of snapshots of the current/charge density j(x,t) at different
times. In the inset of panel (a), the real-space representation (reproducing the one adopted in Figure 7
with the dot site { = L) of the mesoscopic capacitor with the profiles of the emitted charge pulses is
given. The times at which the snapshots are taken are indicated by vertical dashed lines in the top
panel. Notice that the scale changes along the vertical axis in the different panels. At time t = 0,
two charge pulses of width ~ vp7. and opposite sign emerge from the point contact (a,b), one pulse
entering the cavity and one pulse entering the chiral edge of the bulk two-dimensional electron gas.
Both pulses have a net charge approaching CgAVy. The pulse that is emitted into the cavity returns
to the point contact at time t = 7. As that pulse leaves the cavity, a second pulse-antipulse pair is
generated (c), partially canceling the original charge pulse that leaves the cavity at t = 7¢. The resulting
pulse exiting the cavity is the sum of the dashed profiles. The repetition of this mechanism leads to
the widening and lowering of successive pulses (d,e) (notice the change of scale between snapshots).
Finally, the asymptotic configuration is attained with a charge CAVy uniformly distributed along the
cavity edge (f).

Additionally, it is also interesting to consider the effect of a small reflection amplitude r in the
point contact. In this case, the charge Q, acquires nonlinear terms in the gate voltage V,,

Qi(t) = Q(t) — ;lc /dt’ A(t — 1) sin27Q(F) /e], 68)
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in which A(t) and Q(t) are the Fourier transform of the admittance and charge for the case of a point
contact with perfect transparency, r = 0, see Equations (30) and (45). The parameter 7 involves both
the (weak) backscattering amplitude r and temperature T, details can be found in Ref. [148].

Experimental Signatures of the Effects of Interaction in Quantum Cavities Driven out of Equilibrium

The prediction that, in the open dot limit, interactions trigger the emission of a series of subsequent
charge density pulses led to the possible explanation of additional effects that relate to a, so far not
satisfactorily explained, part of the Hong-Ou-Mandel current noise measurements at the LPA [25,205].
The experimental setup is the solid state realization of the Hong-Ou-Mandel experiment, see the left
panel in Figure 14: When two electrons collided at the same time on the QPC from different sources
(states 1 and 2), they could not occupy the same state because of Pauli’s exclusion principle and their
probability to end up in different leads (states 3 and 4) was increased. As a consequence, the current
noise was suppressed [132], see the right panels in Figure 14. More generally, Ag(7) measures the
cross-correlation (or overlap) in time of the two incoming currents at the level of the QPC. If the two
incoming currents are identical in each input, one should get Ag(7 = 0) = 0 and the rest of the curve
will reflect on the time trace of the current. However, because of small asymmetries in the two electronic
paths and the two electron sources, the noise suppression is not perfect [205]. In Ref. [25], the current
noise Aq as a function of the time delay T with which electrons arrived at the QPC from different
sources was measured in more detail for the outer and inner edge of the filling factor v = 2 (central and
right panel in Figure 14). The current in the inner edge channel was induced by inter-edge Coulomb
interactions and could be computed with a plasmon-scattering formalism [25,206]. In addition to what
this plasmon scattering model predicted, unexpected oscillations as a function of T were observed.
These could be satisfactorily explained by our prediction [148] of further charge emission triggered
by interactions in the electron sources [205]. From independent calibration measurements, the total
RC time constant of the source could be measured to set the constrain (‘L'f_1 +1 )72 = 1Re =
21 ps. Combining Equation (30) and (45) with the plasmon scattering formalism one could compute
the current noise in the ouput of the Hong-Ou-Mandel interferometer Ag(t) with only one fitting
parameter: The ratio 7¢/7.. The minimization procedure gave the most-likely result: 7z = 136 ps.
The comparison is shown on the right panels of Figure 14, where the model for 7 = 21r¢c [Tc — oo,
i.e., no interaction within the dot] described the fractionalization process due to interedge Coulomb
interactions but not the interactions within the dot itself. This provides a reasonable qualitative and
quantitative agreement with the experimental data reported in Ref. [25]. On the bottom-left panel in
Figure 14 we compared, for 7z = 136 ps, the charge exiting the dot Q(t) with the applied square pulse
sequence on the top-gate V() which had a finite rise time of 30 ps. In particular, it could explain the
appearance of extra rebounds in Ag for time delays T between 70 and 450 ps which was not possible
with a non-interacting dot (7; = 0). This was directly due to the additional effects coming from
the interactions within the dot itself and could not be explained by the fractionalization mechanism.
Indeed, relying exclusively on the model describing fractionalization, we could not reproduce the
pronounced additional rebound for |7| = 200 ps for 7z < 100 ps. This highlights the relevance of
Coulomb interactions in the open dot dynamics.
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Figure 14. Top-Left—Hong-Ou-Mandel experiment from Ref. [25]: Two single electron sources, as that
shown in Figure 6, inject single electron towards the same QPC, which works as a beamsplitter.
Bottom-left—Simulation based on Ref. [148] of the charge exiting the open dot when applying a
square pulse sequence V() with a rise time of 30 ps, one clearly sees the additional pulses coming
from interactions. Top-Right—Normalized Hong-Ou-Mandel current noise Aq of the outer edge as a
function of the time delay T with which charge arrives on the QPC from different sources. Noise is
suppressed for T = 0 because of anti-bunching effects, but additional oscillations were observed for
T # 0, which the theory in Ref. [148] contributed to explain. The points are the experimental data
while the solid and dashed lines are theoretical curves with different fittings for the time of flight 7; for
electrons in the cavity. Bottom-Right—Same as in the central panel but for the inner edge.

6. Conclusions

This review addressed the importance of interactions for the investigation and control of
dynamical quantum coherent phenomena in mesoscopic quantum-dot devices.

In Section 2, we discussed how interactions are the essential ingredient allowing long-range
quantum state transfer in mesoscopic devices. Notice that the same phenomenon has been suggested to
enforce nonlocal phase-coherent electron transfer in wires supporting topologically protected Majorana
modes at their edges [207,208]. Such an effect is currently being considered in various Majorana
network models for stabilizer measurements in corresponding implementations of topological
quantum error correction codes [209-211].

The local Fermi liquid approach, discussed in Section 3, provides the unifying theoretical
framework to describe the low-energy dynamics of such various mesoscopic devices. Its application
to the various experimental setups mentioned in the Introduction, will be definitively useful to
bring further understanding in the complex and rich field of out-of-equilibrium many-body systems.
The insight given on universal quantum dissipation phenomena, discussed for the mesoscopic capacitor
in Section 4, and, in particular, the novel interaction effects, unveiled in the experiment discussed in
Section 5, give two clear examples of the utility of this approach.
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Beyond the already mentioned potential for quantum dot devices coupled to microwave
cavities [150-159] and to energy transfer [178-180], important extensions of the LFL approach
should be envisioned for understanding the properties of mesoscopic devices involving non-Fermi
liquids at the place of normal metallic leads. The most important cases would involve
superconductors [18,19,212-217] or fractional Quantum Hall edges states, in which quantum noise
measurements have been crucial to address and unveil the dynamics of fractionally charged
excitations [218-235]. Additionally, the recent realization of noiseless levitons [8-12] paves the way
to interesting perspectives to investigate flying anyons [13,220,236] and novel interesting dynamical
effects [188,189,237].
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Abbreviations

The following abbreviations are used in this manuscript:

QPC  quantum point contact

LFL local Fermi liquid

CBM  Coulomb blockade model

AIM Anderson impurity model

SW Schrieffer-Wolff

DC direct current

2DEG  two-dimensional electron gas

KS Korringa-Shiba

AC alternate current

NRG  numerical renormalization group

Appendix A. Scattering Theory, Phase-Shifts and the Friedel Sum Rule

In this Appendix we review some useful results from scattering theory. In Appendix A.1,
we provide the definition of the S- and T-matrix in scattering theory. In Appendix A.2, we derive
the Friedel sum rule for a non-interacting electron gas with an elastic impurity. In Appendix A.3,
we illustrate these concepts on the simple case of a chiral edge state tunnel coupled to a single resonant
level. In Appendix A.4, we derive the phase-shift induced on lead electrons by the scattering potential
of the LFL, Equation (8).

Appendix A.1. General Definitions

We aim at describing the general situation of Figure A1, which is reproduced by mesoscopic
settings, such as a single resonant level coupled to a chiral edge state, which also describes the
mesoscopic capacitor in the non-interacting limit, see also Figure 7 in the main text. Consider a wave
packet emitted and detected in the distant past and future, namely t = —oco and t = +0c0, and which
enters a scattering region at time t = 0. Close to detection and emission, it is assumed that the wave
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packet does not feel the presence of the scatterer, whose interaction range is delimited inside the
dashed line in Figure A1l. The system is described by a single-particle Hamiltonian of the form:

H=Ho+V, (A1)

in which H describes the free propagation of a wave-packet and V the scatterer. The T-matrix describes
the effects of a scatterer on the propagation of a free particle. It is an improper self-energy for the
resolvent of the lead electrons, which appears in a modified form of Dyson’s equation:

G(z) = Go(z) + Go(2)T(2)Go(2), G(z) = (A2)

in which z is a complex number. Gy is the free resolvent describing free electrons:

S
G (z) = (K| GO(2) [K') = Z_""Sk, (A3)

the |k) states being the single particle eigenvectors of the unperturbed Hamiltonian #y. One can
readily show that the T-matrix reads:

T(z) = V(I - Go(z)V) L. (A4)

The general definition of the phase-shift, a key quantity within scattering theory [238,239], reads:

5 = arg [T(e+i07)] . (A5)
IN-State OUT-State
) =)
AN PN
Emitter Receptor
d

€d

|
-0 (0 7N

Lead emitter Lead receptor

Figure Al. Top—Illustration of the physical situation described by the scattering formalism. Electron
wave packets are emitted in the IN-State ¥ ") and then measured in the OUT-state |¥ ) once they
have passed through the scattering region. Bottom—Realization of the scattering setup with a quantum
Hall chiral edge state tunnel coupled (in a region of size 217) with a resonant level of energy ¢;.

We define the IN and OUT states |¥*) as the eigenvectors of energy ¢ of the Hamiltonian of the
whole system, including the scattering region, as the states coinciding asymptotically with free plane
waves in the past and in the future respectively. The scattering matrix S gives the overlap between
these two states:

Sy (e) = (¥ [¥), (A6)
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where k/k’' are the momenta of the OUT/IN states. The T- and S-matrix are related by the
relation [238,239]:
Skk’ = (Skk’ — 27Ti5(€k - gk’)Tkk’ , (A7)

or equivalently, in the energy representation,
S(e) =1 —2mivyT(e). (A8)

The S-matrix is unitary and in the single channel case it is completely defined by a phase
S(e) = ¢%%. The phase J; is the phase-shift caused by scattering and in general the condition S(e) = ¢
is always verified if we take the definition of the phase-shift directly from the T-matrix:

T(e) = _niwsin(sge"ﬁe. (A9)

There is an interesting connection with the Kondo regime. In Section 3.3.2, we illustrated how
particle-hole symmetry enforces that the phase-shift is given by § = dx = /2. The scattering matrix
thus equals the identity. This case is also known as the unitary limit of the Kondo model, in which the
transmission probability through a Kondo correlated dot is unity.

Appendix A.2. The Friedel Sum Rule

We show here the Friedel sum rule for non-interacting electrons scattering on an elastic impurity.
We first consider the total electron occupation (\) of an electron gas, which reads:

W)= /j; dwAq(w)f(w), (A10)

the sum on the label a running over all the eigenstates of the Hamiltonian (A1). A, (w) is the spectral
function of the state «, defined as:

A(w) = %mcm(w +i0t) = 7%Im<zx\G(w +i0%)|a), (A11)

Gu being the retarded Green’s function associated to the state a defined in Equation (A2). In the
absence of the scatterer, Gy (w +i07) = Go(w +i07) = (w +i0" — &)~ ! and Equation (A10) reduces
to a sum over the Fermi function Y f(¢;) giving the total number of electrons (N) in the system.
If the chemical potential is fixed, the introduction of the scatterer modifies the total average number
of electrons. The difference with the initial one gives the amount of electrons (N) displaced by the
scatterer. In the case of a single channel, one obtains:

1 (e}
<N>with scatterer <N>without scatterer — <N> = _;Im /700 d(‘-)Tr[G(w) - GO(w)]f(w) . (A12)

Using Equation (A4) and the fact that %Tr log[A(e)] = Tr {Ail (¢) %A(s)] , one finds:

(N) = N /oo dwf(w)—d log det[I — 27tivy T(w +i07)]
271 - dw
R p N (A13)
= —E/ioodwf(a;)@logdet S(w+i0"),
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in which we applied the definition (A8) of the S-matrix. This is the general form of the Friedel sum
rule. For S(g) = ¢%% and zero temperature it gives a direct relation between the charge displaced by
the impurity and the phase-shift at the Fermi energy Er:

(Ny =2, (A14)

The extension to M channels requires to add an overall sum over the channel label ¢ and leads to
Equation (10) in the main text.

Appendix A.3. Illustration on the Resonant Level Model

We illustrate now the above concepts on a simple situation, sketched in Figure A1, in which the
scatterer is a single resonant level tunnel coupled to chiral electrons propagating on an edge state.
Such a situation is an effective representation of the mesoscopic capacitor, see Figures 7 and A2, and it
is described by the Coulomb Blockade Model (CBM) (12), that we remind here to the reader:

2
Hepm = ESkCZCk + tz {C]tdl + d;ck] + Z(Sd —+ Sl)d?'dl + E. (N — Ng) . (A15)
k k1 !

In this section, we neglect the last term, corresponding to interactions, and, for simplicity, we retain only
a single fermionic level (annihilated by the fermion operator d) for the cavity, with ¢; = 0. One thus
obtains the Hamiltonian of a resonant level:

Hpes = Y excior +1Y (c,td dt ck> teqdtd. (A16)
k k

We first calculate the occupation of the cavity by calculating the retarded Green'’s functions, defined as
Ga(t —t') = —if(t — ') ({d(t),c}(¥)}). They are derived by solving the equations of motion in
frequency space:

(w—£4)Gaa(w) =14t) Gpa(w), (w — &) G (w) = O + tGp (w), (A17)
T

(w = &) G (w) = tGyg(w), (w—£4)Gar = t)_ Gpp(w) . (A18)
k/
Solving the system, the Green’s function for the lead electrons reads:

S 1, 1
G = — G, .
e (@) PR R o dd(w)w —

(A19)

Writing Equation (A19) in the form G = G° + G°TG?, the T-matrix is found to be:
t2

T(w+i0") = PGuy(w+i0T) = ——
( ) a( ) R

eow bw = g — arctan (%) (A20)

in which we introduced the hybridization constant:

I=£) (w+i0" —e) ! ~ mvpt?, (A21)
k

which corresponds to the width acquired by the resonant level by coupling to the lead and which
depends on the density of states of the lead electrons at the Fermi energy .

We can now determine the number of displaced charges (N) as given by Equation (A22) and show
the validity of the Friedel sum rule (A14) in this example. In the wide-band limit, the contribution
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from the second term in Equation (A19) can be neglected. The number of displaced electrons is given
solely by the quantum dot Green’s function G

<N>with dot <N>without dot — <N) = _%Im /700 d(UGdd(w)f(w) = % - %arCtan (Sfd) ’ (Azz)
which is consistent with the Friedel sum rule (A14) with the phase-shift (A20). Equation (A22) is
also meaningful because: i) It shows that, in the wide-band approximation, the number of displaced
electrons (N) is given by the local Green’s function Gz;, which can be interpreted as the charge
occupation of the quantum dot and ii) the number of displaced electrons depends on the orbital energy
4. As a consequence, a time-dependent variation of ¢4 drives a current in the system by displacing
electrons in the leads.

As an additional illustration, clarifying how the scattering phase-shift appears on single particle
wave-functions, we also solve explicitly the same problem in its real-space formulation. We consider
chiral fermions ¥ (x) which tunnel on the resonant level of energy ¢, (and wave-function amplitude ¥,),
from a region of size 27 centered around x = 0, useful to properly regularize the calculation and to
be sent to zero at the end [240]. For lead electrons at the Fermi energy, that we set to zero (w = 0 in
Equation (A20)), the Schrodinger equation reads (for x € [—,7]):

. t t 1
0= —ihopay¥(x) + —¥,, 0= ¥+ — / X" (x'). (A23)
21 217 J—y
By integrating the first equation in the interval [—#,x < 7| and inserting the result for ¥(x) in the
second one, one finds:
t —t
Y(x)=Y(— — Y Y)=—-7-Y(—7). A24
(x) ="¥( '7)+2;7ihv(x+'7) s e (=) (A24)
Notice that 77 does not appear on the last equality and can be sent safely to zero. We consider,
as boundary condition for ¥(x), incoming scattering states of the form ¥ (x < 0) = ¢/**/\/27thvr =
\/%eikx . One thus finds:

1 T

Y= ——
[¥al TELT

Y(0+) = /e, o = & — arctan (id) ) (A25)
2 r

in agreement with Equation (A20). This short calculation illustrates how, just after scattering with the

resonant level, the electron wave-packet at the Fermi energy acquires a phase ¢2% which is fixed by

the resonant level occupation via the Friedel sum rule. Notice that, at the resonance condition for the

orbital energy (¢4 = 0), 6o = 7t/2and ¥(0") + ¥(0~) = 0, as for the unitary limit in the Kondo model,

in which dx = 71/2, see also the discussion in Section 3.3.2.

Appendix A.4. T-Matrix in the Potential Scattering Hamiltonian

We derive now the phase-shift caused by the potential scattering term on lead electrons in a local
Fermi liquid (LFL). It is useful to recall here the LFL Hamiltonian (8):

Hip, = Y exchocer + Wleg, Ee,...) Y cfyco- (A26)
ko k#k'o

We focus on the the single-channel case for simplicity (M = 1). The generalizationtooc =1,... M
channels is straightforward. The Hamiltonian (A26) is quadratic and the Green’s function of the lead
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electrons can be readily obtained relying on the path integral formalism [79]. The partition function
corresponding to Equation (A26) reads:

z= / D [o,cf] e Sinlec], (A27)

where Sy g1, [c, c*} is the action of the system, which reads:

P
SLFL:/ dT{—ZcZ(T)Gk_l( cx(T) +W2ck Yew (T )} , (A28)
0 k KAk
where we introduced the free propagator G, (1) = —9; — & and in which ¢, is a Grassmann

variable. It is practical to switch to the frequency representation ¢y, (7) = %Ziwn e~iwnTey (iwy),
where we defined the fermionic Matsubara frequencies iw, = (2n + 1)7t/B, n € Z. They satisfy the
anti-periodicity property c(B) = —c(0) and lead to:

SipL = E{ ch iwy) Gy (iwn )k (iwn) + W Y f 1wn)ck/(zwn)} , (A29)

icon kEK

with G Yiw,) = iwy — €, which recovers the usual retarded/advanced Green’s functions
by performing the analytical continuation iw, — w #+i0". The full Green’s function
G (iwn) = — (c(iwn)ef (iwn)) is derived by expanding the partition function (A27) in the coupling
W and by applying Wick’s theorem [83]. The pertubation expansion of Gy (iw;,) has the simple form:

b 1 1

G (iwy) = - - -
e (ion) iwy — € iwy — € iwy — €

w[l + X(iwy) + 2 (iwy) + 23 (iwy) +] (A30)
in which we introduced the self-energy:
Y(iwy,) = 2 (A31)

Using the definition (A2), the T-matrix thus reads:

w

T(z) = o5

(A32)

Making the analytical continuation iw, — w +i0" and considering a constant density of states vy for
the lead electrons, we obtain:

+ Wieq) _ Wi(eq) is
Tlew+i07) = 1+impW 1+[nv0W(£d)]26 " (A33)

in which we introduced the phase-shift:
dw = — arctan (tvpW) . (A34)
Applying the definition of the phase-shift given in Equation (A5), one finds Equation (9) in the main

text. As a consistency check, substituting Equation (A33) in Equation (A8), we find that the scattering

matrix reads S = €.
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Appendix B. Self-Consistent Description- of a 2DEG Quantum RC Circuit

In Appendix B.1, we shortly review the self-consistent scattering theory of the mesoscopic
capacitor and, in Appendix B.2, we show how equivalent results can be derived with a Hamiltonian
formulation.

Appendix B.1. Self-Consistent Theory

In this section, we shortly review the description of the mesoscopic capacitor in the seminal
works by Biittiker, Thomas, and Prétre [21,51-53], based on a self-consistent extension of the
Landauer-Biittiker scattering formalism [45-47]. The following discussion is also inspired from
Refs. [20,241,242].

Figure A2 illustrates the intuition behind the interpretation of the mesoscopic capacitor as a
quantum analog of a classical RC circuit. The top metallic gate (a classical metal) and the quantum dot
cannot exchange electrons. These two components make up the two plates of a capacitor on which
electrons accumulate according to variations of the gate potential V. The value of the capacitance
depends on the geometry of the contact and, in the experiment of Ref. [20], the geometrical capacitance Cg
was estimated ~10-100 fF. This capacitance is in series with a quantum point contact. As mentioned
in the main text, direct transport measurements [160,161] consider QPCs as resistive elements of
resistance Rpc = h/e?D, where D is the QPC transparency. The above considerations suggest the
interpretation of the device in Figure A2 as an RC circuit. The admittance of a classical RC circuit reads:

TIWC _ C(1 4 iwCR) + O(w?). (A35)

Alw) =T re =

The admittance (A35) can be calculated with the scattering formalism [45—47], which requires to
be adapted to describe the mesoscopic capacitor in Figure A2. The main problem is the “mixed”
nature of the quantum RC device: The mesoscopic capacitor is composed of a phase-coherent part
(two-dimensional electron gas + quantum dot) in contact to an incoherent top metallic gate. As these
constituents do not exchange electrons, preventing a direct current, electron transport is only possible
by driving the system. We focus on the case of a gate potential oscillating periodically, as Equation (35)
in the main text,

Vg(t) = Vg 4w cos(wt). (A36)

For small oscillation amplitudes ¢, the Landauer-Biittiker formalism allows to derive the circuit
admittance within linear response theory. In the case of a single conduction mode, the admittance
reads [51]:

a(w) = %/ deTr [1 - S*(E)S(£+hw)] . W, (A37)

in which f (¢) is the Fermi distribution function, in which we fix to zero the value of the Fermi energy.
For one channel, the elastic scattering assumption implies that the matrix S(¢) reduces to a pure phase
S(e) = €%, as electrons entering the dot return to the lead with unit probability. The phase-shift J; is
related to the dot electron occupation, via the Friedel sum rule (A14). Additionally, this phase is also
related to the dwell-time that electrons spend in the quantum dot, or Wigner-Smith delay time [89,243]:

e 1 ‘r(g)ds(s) _ 1ds,
h 27i de T de’

(A38)

The interpretation of T as a dwell-time is illustrated in Section 4.2. In the limits T — 0 and w — 0,

Equation (A37) becomes:
2
a(w) = —iw% T+ %iwrz +0(w?) | . (A39)
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The dwell-time T = 7(0) is considered at the Fermi energy. Notice that this expression has the same
frequency expansion as Equation (A35). Matching term by term, one finds:
2

Cq=r, Rq = zh? (A40)
Such relation between time-delays and circuit elements comes from the fact that electrons arriving
on the dot at different times are differently phase-shifted, because of the variations in time of the
gate potential Vg. This effect causes a local accumulation of charges, which is responsible for the
emergence of quantum capacitive effects, corresponding to Cq. The time delay of the electron phase
J with respect to the driving potential U(t) is responsible for energy dissipation, controlled by Rq.
The characteristic time that an electron spends in the quantum dot is given by T = 2R, Cg, twice the
RC time because it includes the charging and relaxation time of the RC circuit. Notice the emergence of
a universally quantized relaxation resistance, regardless of any microscopic detail of the quantum RC
circuit, in contrast with the resistance Rpc = /e?D, sensitive to the transparency D of the QPC and
which would be measured in a DC experiment, see also Equation (43) in the main text.

a) Top view b) Side view

¢)Potentials d) Circuit representation
Coherent  Incoherent

Idev a ("’L"> Cg Igate

® T

Potential
rescaling

|

I dev gate_
- -« C

Figure A2. (a,b) Schematic representation of the quantum RC circuit. Electrons in the edge states of a
two-dimensional electron gas (2DEG) in the integer quantum Hall regime tunnel inside a quantum
dot through a QPC. The dot is driven by a top metallic gate. The dot and the gate are separated by
an insulator and cannot exchange electrons, thus forming the two plates of a capacitor C. The QPC
is a resistive element of resistance R. These two circuit elements are in series and define a quantum
coherent RC circuit. (c,d) The blue region of the two-dimensional gas is phase coherent. The top
metallic gate is an incoherent metal, driven by a time-dependent gate potential Vg (t), which induces
an unknown uniform potential U(t) on the dot. The classical circuit analogy in (d) is made possible by
shifting all energies by —U(t). The whole device behaves as a charge relaxation resistance Rq in series
to a total capacitance C: series of a quantum and geometrical capacitance Cq and Cg.
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Notice that the geometrical capacitance Cg does not appear in the previous discussion.
The admittance Equation (A37) has been derived by applying linear response theory for the driving
potential U(#) in the quantum dot, see Figure A2. The potential U(t) does not coincide with the actual
driving gate-potential Vg (¢). The situation is pictured in Figure A2: The geometric capacitance Cg
leads to a potential drop between gate and dot. In a mean-field/Hartree-Fock treatment, the potential
U(t) on the dot is assumed to be uniform for each electron. This assumption is equivalent to a Random
Phase Approximation (RPA), valid for weak interactions or to leading order in a 1/M expansion,
with M the number of channels connected to the dot [78]. The potential U can then be determined
self-consistently from the constraint of charge/current conservation in the whole device. The current
Igev flowing in the coherent part of the device has to equal the current Igate flowing in the incoherent
metallic gate:
I'=lgey = Igate . (A41)

As all potentials are defined with respect to an arbitrary energy, they can be shifted by —ell(t),
setting the potential to zero in the quantum dot. Thus, the currents in the device and in the metallic
gate read:

lgey = —U(w)g(w), Lgate = —iCqw[U(w) — Ve (w)]. (A42)

Applying the current conservation condition (A41), the potential U can be eliminated, and the
admittance of the total device is derived:

L

Vg ! 41"

a(w) —iwCq

Alw) = (A43)

Recalling the low frequency behavior of 4(w) in Equation (A39), the above expression shows that the
whole device behaves as a RC circuit. Albeit with two capacitances in series, Equation (A43) still gives
a universally quantized Rq = 1/2¢%. The series of Cq and C; gives the total capacitance C, originally
denoted as electro-chemical capacitance [21,51-53].

We can consider a simple model for the mesoscopic capacitor to estimate the behavior of the
dwell-times T setting the quantum capacitance (A40). We consider the case of Figure A2, in which
electrons propagate in the integer quantum Hall edges inside the quantum dot, see also Figure 7 in
the main text. We label ¢ the length of the edge state in the quantum dot and v the Fermi velocity
of the electron. The dwell-time for electrons of velocity vr inside the dot is 7z = ¢/vp. An electric
wave of energy ¢ acquires a phase ¢(¢) = (¢ — el) 7/, when making a tour of the dot. Notice that
we had to shift the energy ¢ of the electron by —el because of the potential shift schematized in
Figure A2. The chiral nature of the edge states allows for a one-dimensional representation of the
problem, pictured in the right-top of Figure 7. For a quantum well of size £/2, close to the Fermi energy,
the level spacing A = hvp/{ is constant. Thus 7 = h/A and, substituting in Equation (A40), leads to
the uniform quantum capacitance Cq = e*1¢/h, derived heuristically in the main text, see Equation (41).
If the reflection amplitude at the entrance of the dot is r and D = 1 — |r|? the transmission probability,
the dot can be viewed as a Fabry—Perot cavity and the phase of the out-coming electron is:

S(e) =r— Dei?(€) i Fi9(e) — ﬂ — i20 (A44)
4=0 1— rei‘l’(f) ’
Applying Equation (A38) we obtain the local density of states:
T 1—72
N(e) = (A45)

" 1 1—2rcos [22 (e —el)Te] + 72
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This quantity is plotted in Figure A3 and reproduces the oscillatory behavior of the capacitance in
Figure 8. In the limit of small transmission (D < 1 and r =~ 1), Equation (A45) reduces to a sum of
Lorentzian peaks of width iy, v = D/ 13

Ne=—2y 1 (A46)
7'(?1’)/ n 1 + (sfzu/fznA)
v

These peaks are the discrete spectrum of the dot energy levels.

The above arguments can be readily generalized to the case with M channels in the lead and in
the cavity. In this case, every single channel ¢ can be considered independently. The admittance (A39)
can be then cast in the form:

.M 1. , )
a(w):—zwﬁag:1 Tg—&-ilwra—i-O(w) . (A47)

The low-frequency expansion of the RC circuit admittance (A35) is then recovered by defining:

2 M Y 2
Ry= — =00 (A48)
h agl 1 2 (X Ta)z

in which 7 are the dwell-times in the quantum dot of electrons in the -th mode.

Appendix B.2. Hamiltonian Description of the Quantum RC Circuit with a Resonant Level Model

In this appendix, we study the resonant level model (A16) as a RC circuit. The generalization of
the following calculations to the many-channel case is straightforward and, in particular, we extend
to the multi-level case. We thus recover the self-consistent scattering theory analysis discussed in
Appendix B.1, corresponding to the limit Cy — oo (non-interacting limit). Our aim is the calculation of
the dynamical charge susceptibility:

Xelt —#) = 16(6 = ) ([N(5), N()])y (A49)

which leads to the admittance of the circuit A(w) = —iwe’x.(w), see also Equation (36) in the
main text. We make use of the path integral formalism as in Appendix A.4. The partition function
corresponding to Equation (A16) reads:

z:/D@H¢MP4MWWW, (A50)

where S [c, ctd, d*} is the action of the system, which reads

SRes = /oﬁ dt {— ZCI(T)GI:I(T)ck(T) —d' () DY (1)d(7) + tz [cz(r)d(T) + c.c.] } ,  (A51)
k

k

with the free propagators:
G ' (t) = —3r — &, D '(1) = —9: — &g, (A52)

in which ¢, and d; are Grassmann variables. It is practical to switch to the Matsubara frequency
representation, which leads to:

41



Entropy 2020, 22, 847

SRes = Z { ZCZ(iwn)G]:] (iwn)ck(iww) dt (an) (lwn)d(iwn)

iwy k

Y [cg(iwn)d(iwn) + d*(iwn)ck(iwn)} } , (A53)
k

with G ! (iwy) = iwy — e and D~ (iwy) = iwy — e4. Reestablishing dimensions, the Fourier transform
of Equation (A49) reads:

Kelivn) = 5 / ) (=) (N(T)N(T)), , (A54)

and xc(w) is recovered by performing the analytical continuation iv — w + i0". This function is
periodic in imaginary time and its Fourier transform is a function of the bosonic Matsubara frequencies
vy = 2n7t/B. N(t) = d'(7)d(t) counts the number of charges on the dot. The cyclic invariance
property of the trace implies that (N(T)N(7')), = f(7 — '), allowing us to recast (A54) in the form:

o(ivy) = 2 <dJr iwy)d (iwy +iv,,)d+(iw2)d(iw2 — ivn)> . (A55)

1w1 2

To calculate this expression, we first perform the Gaussian integral of the lead modes in Equation (A53),
leading to the effective action Sg,, of the resonant level model:

Sf{es = 2d+(iw’1)D(iwn)d(iwn) ’ IDil (iwn) = iwn — &3 — tz ZGk(iwn) . (A56)
i k

1wn

In the wide-band approximation the propagator can be written as D1 (iwy) = iwy — &4 + iTsgn(wy),
where we introduced the hybridization constant I' = 7rvgt?. The action (A56) is quadratic and the
application of Wick’s theorem [83] in Equation (A55) leads to:

2x
2+ )2 — (w/T 112" (A5

ei) = =5 X D Dlion + iv) >~ [ def(T+e)

iwy
where the analytical continuation iv — w + i0* has been performed. At zero temperature, the integral
can be calculated analytically, leading to:
1 &2 + 1?2
—1In — .
€ 4+2i) " & — (w+il)?

1
- A
Xe(w) T ¢ ( (A58)
The low frequency expansion of this expression matches the one of a classical RC circuit (A35).
Reestablishing correct dimensions w — fw, the result recovers Equation (A40) obtained within
scattering theory:

o2

h
Co = ﬁv(sd), Rq= 202 (A59)
where v(g;) is the density of states associated to the single orbital &4
1 T
viea) = — 24 (A60)
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The extension to M channels is straightforward. One can consider a Hamiltonian of the form:
HRes—Mch = ngcltycktf + tz (C]tydlf + dj;cktr) + Z&rd;da ’ (A61)
ko ko 4

with ¢ =1,..., M the number of channels. In this model, each channel can be treated independently
and one finds a a generalization of Equation (A58):

11 L &tI?
nl & ($+2i) & —(w+il)?’

(A62)

This expression, when expanded to low frequency, has also the form (A47), where the dwell-times are
substituted by the density of states of the channels (A60): 7, — v, = V(& ). One thus finds expressions
for the differential capacitance and the charge relaxation resistance analog to Equation (A48):

2 M /Y 12
Co=2Y v, == ol A63
=L T2 (L) e
4
35+ 1
3L ]

AN(EF)

eVy/A

Figure A3. Peaked structure of the local density of states A/ (¢) on the dot as a function of the orbital
energy shift controlled by the gate potential eV, from Equation (A45). N (E) is plotted for different
values of the backscattering amplitude 7. The progressive opening of the dot drives a transition from a
Lorentzian to an oscillatory behavior of Cq, coherent with the experimental measurements illustrated
in Figure 8. For a completely transparent dot (r = 0) the density of states is uniform, which implies
CO = 62 / A.

Multi-Level Case

In this section we carry out the calculation of the quantum dot density of states in the case of a
single channel and an infinite number of equally spaced levels in the quantum dot. The action reads:

s=y { ;CZG;1(iwn)ck - ;d,h);l (iwn)dr + 3 [cles +dfei] } , (A64)

iwy
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with G~ 1 (iwy) = iwy — g and D[l (iwy) = iw, — €. The Gaussian integration of the lead electron
modes leads to the effective action:

s'=) { Zdl (iwn) Dy (iwn)dy (iwn) + 2 Y Gy (iwn) de(iwn)dp(iwn)} . (A65)
iwy k n

Applying Wick’s theorem [83] the full propagator of the dot electrons is readily obtained:

Dy (iwy) = oy Dy (icwn) + Dl(iwn)Dl’(iwn)% , (A66)

where we defined:

Y(iwn) = Y Gyliwn), ®(iwn) = ¥ Dy (icwn) (A67)
k !

In the wide band limit y (iw,) = —iT'sgn(iwy). The charge (Q) = e Y, (dfd,) on the dot is given by:

e .
Q) = B 0" Dy (iw,) = i Z/ def (e) [Dy(e+i0%) — Dy(e—i0")] . (A68)
Liwy,
We write the energy spectrum on the dot as ¢ = —eV; + IA, with | € Z and A the level spacing.

Equation (A66) is then a function of ¢ + eV,. Shifting all energies by eV, the differential capacitance
Co = —0(Q) /9Vg is readily obtained at zero temperature:

2
Co=~—Y [D”(eVg +i0t) — Dy (eVy — i0+)] ) (A69)
27ti 7
with
1 1 iTr
D”(eVgiiOﬂ = F 3
Vg*lA (L’Vg—lA) 1+iT [ZP e\/g%pA]

(A70)

R B W V7 1
A a1 (x+ 121 +ink coth(nx) [

where x = eV, /A and we exploited the fact that ), x%—l =Y%y(1—x) — ¥o(x) = mcoth(mrx), in which
¥o(x) is the digamma function. Substituting this expression in Equation (A69), the sum over levels
can be also carried out, leading to:

nil 1 1 1
Co = ezﬁsinz (n%) [1 +mAcoth< evg> + P (”%)} , (A7)

where we relied on the identity: Y l+r =Y(1—x)—Y¥i(x) = . -

— (zm), in which ¥, (x) is the

polygamma function. Some algebra leads to:

(A72)

This quantity is plotted in Figure A3 as a function of the gate potential V; and reproduces the
oscillations of the capacitance observed in Figure 8, in the main text. As we did not consider
any many-body interaction to derive Cy, this quantity corresponds to the quantum capacitance
Cq = N (EF) corresponding to the density of states at the Fermi level, see also discussion in
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Section 4.2. Such density of states was also derived within scattering theory in Appendix B.1. Indeed,
Equations (A45) and (A72) coincide if one makes the identification (It is useful to recall here that
Tt =h/A)

al  (1-r)? 1-r

A 1—r2 147

al
1-"%

|
1+2L

& r= (A73)
Notice that the fully transparent limit coincides with 77I'/A = 1, corresponding to a change of sign
of the reflection amplitude r (remind that we assumed r to be a real number). Additionally, if we
consider the tunneling limit 7I'/A < 1, we can write r = \/1 — D and, in the low-transparency limit
D < 1 one recovers il'/A = D /4, which is consistent with the expectation D 2 in the tunneling
limit of the Hamiltonian (A16). Notice also that the relation (A73) implies r = —1 in the I' — oo limit,
which can be explained by the formation of bonding and anti-bonding states at the junction between
electrons in the lead and in the dot, suppressing tunneling in the dot [240]. For a single level and one
channel, we recover the universal charge relaxation resistance Rq = h/262.

Appendix C. Useful Results of Linear Response Theory

In this appendix we remind some useful properties of linear response theory following Ref. [244].
In Appendix C.1, we show that the real/imaginary parts of the dynamical charge susceptibility (A49)
are respectively even/odd functions of the frequency, leading to:

A(w) = —iwe? {xc + iIm [xc(w)]} + O(w?), (A74)

that is Equation (38) in the main text. In Appendix C.2, we demonstrate that the power dissipated by
the quantum RC circuit in the linear response regime is given by:

1
P = Eeiwlm}gc(w) , (A75)

that is Equation (55) in the main text.

Appendix C.1. Parity of the Dynamical Charge Susceptibility

The Lehman representation [97] of the dynamical charge susceptibility x.(w) (A49) makes explicit
its real and imaginary parts. This is obtained from the Fourier transform of Equation (A49):

Xe(w) = %/j; d(t—t)el @09t — 1) ([N(£),N(H)]), s (A76)

where the factor i0T is inserted to regularize retarded functions. Inserting the closure relation with the
eigenstates |n) of energy E, of the time independent Hamiltonian 7y, the average can be written as:

(NON(E))g = Y pue™ =) Ny N , (A77)

where p, = e PEv /7 is the Boltzmann weight, fiwym = E; — Eyy and Ny, = (n| N |m) the matrix
elements of the dot occupation. In this representation, the Fourier transform (A76) reads:

1 1 1
=—= NumN, — . A7
Xe(w) h;pn nmNmn (cu—&-iO*—i—wnm w0t —an) (A78)
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Applying the relation ﬁ =P [%] Fintd(x), with P[f(x)] the principal value of the function f(x),
the real and imaginary part of x.(w) are readily obtained:
Re [xc(w)] = _1 Zp?annlen {P {#} -P {;] } , (A79)
I o w + Wy W — Wy
Im [xe(w)] = % anNnmNnm{(S(w + Wam) — 5(w — W) } , (A80)

nm

which are respectively an even and odd function of w. As a consequence, in the low frequency
expansion of the dynamical charge susceptibility yc(w) = xc(0) + wWdwXc(W)|w=0 + O(w?), the linear
term in w has to coincide with the imaginary part of Im[x.(w)], leading to Equation (A74).

Appendix C.2. Energy Dissipation in the Linear Response Regime

In the situation addressed in Section 4, the time dependence of orbital energies in the dot is given
by e4(t) = €% + ¢, cos(wt). In the time unit, the systems dissipates the energy:

W =5(N) ey cos (wt). (A81)
In the stationary regime, the average power P dissipated by the system during the time period T reads:
_ o [T d(N(H)
P = T /0 dt it cos(wt) . (A82)
Neglecting constant contributions, (N(t)) is given by the dynamical charge susceptibility (A49):
(N(H)) = €0 / A xe(t — 1) cos(wt) . (A83)

Substituting this expression in Equation (A82), we obtain:

& ey [T Xe(—w)
P= —iw” Xe(w) = xe(—w)] +WT/0 dt

eziwt — Xe (w)efziwt

i (A84)

Expressing xc(w) = Re [xc(w)] + iIm [xc(w)] as the sum of its real and imaginary part and applying
the parity properties demonstrated in Appendix C.1, the first term recovers Equation (A75) for the
dissipated power:

P = %sf‘,wIm [Xe(w)], (A85)

while the second term in Equation (A84) reduces to vanishing integrals of sin(2wt) and cos(2wt) over
their period. In the case of Section 4.5, describing the energy dissipated by the LFL effective low-energy
theory, we can apply the same considerations by replacing J (N) in Equation (A81) with the average of
the operator A, defined in Equation (57). One thus derives Equation (56) in the main text.
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Abstract: In this work, pumped currents of the adiabatically-driven double-barrier structure based
on the pseudospin-1 Dirac-Weyl fermions are studied. As a result of the three-band dispersion
and hence the unique properties of pseudospin-1 Dirac-Weyl quasiparticles, sharp current-direction
reversal is found at certain parameter settings especially at the Dirac point of the band structure,
where apexes of the two cones touch at the flat band. Such a behavior can be interpreted consistently
by the Berry phase of the scattering matrix and the classical turnstile mechanism.

Keywords: quantum transport

1. Introduction

After quantized particle transport driven by adiabatic cyclic potential variation was proposed by
D.J. Thouless in 1983 [1], such a concept has attracted unceasing interest among researchers concerning
its theoretical meaning and potential applications in various fields such as a precision current standard
and neural networks [2—4]. Mechanism of the quantum pump can be interpreted consistently by the
Berry phase of the scattering matrix in the parameter space within the modulation cycle [2] and the
classic turnstile picture [5,6]. Usually, the pumped current is unidirectional when the phase difference
between the two driving parameters is fixed. In the turnstile picture, the opening order of the two
gates is defined by the driving phase. The first-opened gate let in the particle and the second-opened
gate let it out forming a direct current (DC) current after a cycle is completed. However, reversed
DC current direction has been discovered in various systems even when the driving phase is fixed
such as in monolayer graphene [6] and carbon nanotube-superconductor hybrid systems [7]. This is
because that conventionally a “gate” is defined by a potential barrier and higher barriers allow smaller
transmission probabilities. However, as a result of the Klein tunneling effect, the potential barrier
becomes transparent regardless of its height at certain parameter settings. When higher barrier allows
even stronger transmission, the opening and closing of a “gate” in the quantum pump is reversed and
so the driven current is reversed with the driving phase difference unchanged. The same phenomenon
is also discovered in the superconductive carbon nanotube when Andreev reflection again violates
the higher-barrier-lower-transmission convention and reversed the pumped current under the same
driving forces. This turnstile interpretation of the reversed pumped current coincides with the Berry
phase of the scattering matrix in the parameter space within the modulation cycle. However, a clear
comparison between the two mechanisms is lacking, which is one of the motivations of this work.

About the significance of the comparison between the Berry phase picture and the classic
turnstile mechanism of the adiabatic quantum pumping, we would like to make some further
background remarks.

Entropy 2019, 21, 209; doi:10.3390/e21020209 57 www.mdpi.com/journal/entropy
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The classic turnstile mechanism and the Berry-phase-of-scattering-matrix picture of adiabatic
quantum pumping are proposed based on different physical origin. The former is from classic
mechanics and the latter is from quantum mechanics. General agreement between them is certainly a
surprising result because they have at least the following differences on the conceptual level.

(1) In quantum mechanics, the leftward and rightward transmission probabilities of both the
symmetric and asymmetric double-barrier structure (The former means the height and width of the
two barriers are exactly the same. The latter means the height and width of the two barriers are
different.) are exactly the same if a typical two-lead device is considered. The difference between the
leftward and rightward transmission is in the phase factor of the transmission amplitudes. Such a
phase difference gives rise to a nontrivial Berry phase formed by cyclic modulation of the two barriers
with Vj = Vj,cos(wt + ¢) and Vo = Vy,cos(wt) when time-reversal symmetry is not conserved such
as excluding ¢ = 0 or 7r. In the turnstile picture, the two barriers are treated separately like two
gates. The opening and closing of the two gates is determined by the transmission probability of
the corresponding barrier potential. When higher barrier generates smaller transmission probability,
the opening and closing of the gate is defined conventionally: lifting the barrier means closing the
gate and lowering the barrier means opening the gate. Because the charge carrier density in a typical
semiconductor can be up to 101% ~ 10'% /cm? at room temperature, only a small change in the barrier
height and hence in the transmission probability can justify the definition of the “opening” and
“closing” of the gate for charge carriers. While the same gate-modulation is applied, charge carriers
are driven unidirectionally to one of the reservoirs like the turnstile in daily life. No phase factor is
involved in the picture at all.

(2) In the quantum interpretation of parametric pump, time-reversal symmetry is a vital factor.
The most prominent case is when the driving phase difference ¢ = 7. In this case, time-reversal
symmetry is conserved as the two parameters vary periodically. Because of this, a DC current is
forbidden even when the classic turnstile gives rise to the largest mass flow when the phase lag is
the largest. At this point, the classic and quantum models become incomparable, which is out of our
present discussion.

Therefore, we feel a confirmation of the agreement between the two mechanisms is a significant
step forward to understand the underlying physics of adiabatic quantum pumping. In preparation of
this work, we have proved it in various parameter settings in different systems such as two-dimensional
electron gas and graphene besides the present pseudospin-1 Dirac-Weyl system by calculating term
by term Equation (10). Although we could not provide a general proof, up to now, no numerical
evaluation violates such a conclusion.

After the idea of the adiabatic quantum pump (also called Thouless pump and parametric pump)
is proposed, such a mechanism has been investigated in various transport devices such as a single spin
in diamond [8], quantum-dot structures [9], Rashba nanowires [10], Mach-Zehnder interferometers [11],
the magnetic nanowire with double domain walls [12], magnetic-barrier-modulated two dimensional
electron gas [13], mesoscopic rings with Aharonov—Casher and Aharonov-Bohm effect [14], magnetic
tunnel junctions [15], and monolayer graphene [6,16,17]. Correspondingly, theoretical techniques have
been put forward for the treatment of the quantum pumps such as the scattering matrix formalism [18],
non-equilibrium Green’s function [19-22], and the quantum master equation approach [9]. In this work,
we use the scattering matrix approach for alternating current (AC) transport, which defines the Berry
phase formed within the looped trajectory of the two varying parameters [2,18,23].

Recently, after realization of the monolayer graphene, which is characterized as a pseudospin-1/2
Dirac-Weyl fermionic material, a family of general pseudospin-s (s = 1/2,1,3/2,---) Dirac-Weyl
fermionic materials has been proposed by sharing similar band structure with one or several pairs of
Dirac cones. Pseudospin-1 materials with a band structure of two Dirac cones and a flat band through
where the cones intersect have attracted intense interest in the physical society currently. Numerical or
experimental studies have proposed various host materials of such band structure such as conventional
crystal with special space group symmetries [24,25], in the electronic, photonic, and phononic Lieb
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lattice [26-33], kagome lattice [31,34], dice or T3 lattice [31,35-45], and K4 crystal [46]. Along with
these progress in material building, various transport properties of the pseudospin-1 Dirac-Weyl
fermions have been investigated such as super Klein tunneling effect [47—49], magneto-optics [50],
Hall quantization [51], and Hofstadter butterfly [52] in a magnetic field. While the adiabatic quantum
pumping process serves as an important platform to detect various properties of novel quantum
states, it is worthwhile to apply the idea on newly-emerged pseudospin-1 Dirac-Weyl materials.
To understand how their particular transport properties modify the adiabatically-driven pumped
current is the other motivation of this work.

The plan of the present work is as follows. In Section 2, the model is introduced and the key
formulas for the scattering matrix, Berry phase, and pumped current are given. In Section 3, we present
numerical results of the pumped current and discussions of the underlying mechanisms. In Section 4,
a rigorous proof of the consistency between the quantum Berry phase picture and the classic turnstile
mechanism for adiabatic quantum pumping is provided. A brief summary is given in Section 5.
Detailed derivation of the boundary condition and the scattering matrix are provided in Appendices A
and B, respectively.

2. Model and Formalism

We consider a two-dimensional (2D) non-interacting pseudospin-1 Dirac-Weyl system modulated
by two time-dependent electric potential barriers illustrated in Figure 1. The pseudospin-1 Dirac-Weyl
fermions are charged quasiparticles originating from free electrons moving in the three-band
structure consisting of gapless tip-to-tip two cones intersected by a flat band, which is shown
in Figure 1c. Their dynamics are governed by the dot product of the spin-1 operator and the
momentum. Matrices of the spin-1 operator $ = (Sy, S, 5;) in the S.-representation (the representation
that S is diagonalized) can be deduced from spin-lifting/lowering operators $; = Sy + §y by
S. [S,S;) = \/(S FS,)(S+S,+1)|S,S, +1) [53]. Simple algebra leads to the results that

010 0 —i 0 10 0

A_L A_L' 3 &

Sx=yz| 1O, Sy=05 0 0 =i f, S:=|00 0 . @
010 0 i 0 00 -1

By applying AC gate voltages, Hamiltonian of the pseudospin-1 Dirac-Weyl fermions has the form
A= —ihv,§ -V +V(x,1), 2)

where § is the spin-1 operator defined in Equation (1), vg ~ 10° m/s is the group velocity associated
with the slope of the Dirac cone. As shown in Figure 1a, the potential function has the form

W+Wi(t), 0<x<lLy,
V(x,t) = o+ W, (i), Ly < x <Lz, 3)
0, others,

with Vi (t) = Vy,cos(wt + ¢) and Va(t) = Va,cos(wt). The Fermi energy of the two reservoirs to
the two sides of the double-barrier structure are equalized to eliminate the external bias and secure
energy-conserved tunneling. While the frequency of the potential modulation w is small compared
to the carrier interaction time (Wigner delay time) with the conductor, the quantum pump can be
considered “adiabatic” [1,18,23]. In this case, one can employ an instant scattering matrix approach,
which depends only parametrically on the time t. The Wigner-Smith delay time can be evaluated
by T =Tr(— ihs*aaTsF), with s the scattering matrix defined in Equation (5). Calculations below show
T 22 107! s for all the parameter values. Thus, the adiabatic condition can be well justified when w is
in the order of MHz [3].
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Vl@ @ v, N2 =V, cos (1)

: : : : S S
0 Ll 2 L3 X V, =V, cos(wt+@)

L
(a) (b)
E (c) (d) 20} ——v,=80 mev

— =V,=100 meV
= = =V,=120 meV

150 200

Figure 1. (a) schematics of the adiabatic quantum pump. Two time-dependent gate voltages with
identical width d and equilibrium strength V{ are applied to the conductor. Time variation of the two
potentials V; and and V, is shown in panel (b). V; and V, have a phase difference giving rise to a looped
trajectory after one driving period; (c) two-dimensional band structure of the pseudospin-1 Dirac-Weyl
fermions with a flat band intersected two Dirac cones at the apexes; (d) conductivity of the pseudospin-1
Dirac-Weyl fermions measured by [54] o = 62711‘;1"1 / fﬁz |t(EF, 0) |2 cos 0d0 in single-barrier tunneling
junction as a function of the Fermi energy for three different values of barrier height Vy. kr = Ep/hvg

is the Fermi wavevector and f is the transmission amplitude defined in Equation (5). It can be seen that
higher barrier allowing larger conductivity occurs at the Dirac point Ef = V{y and around Er = V;/2
(see the text).

For studying the transport properties, the flux normalized scattering modes in different regions
can be expressed in terms of the eigenspinors as

lll‘Y*) + hl‘}'(,, x <0,

P ¥ +0%, 0<x <Ly,
Y= P = Y, + Y, Ly <x <Ly, (4)
3 a3¥o +b3%¥2, Lo <x<lLs,

Ilr‘I'r<— + br‘l"ﬂ, x > LS/

where ky = (/E2/ (hvg)2 — k% with Ep the quasiparticle energy at the Fermi level of the reservoirs.

) NT .
Y., = 3 c1059 (3*19, ﬁs,e’9> ekxx for Er # 0 (quasiparticles on the two cone bands) and

7 (fe*’p, 0, eig)T (we also identify it as ¥ for discussions in the next section) for Ef = 0 (quasiparticles
on the flat band). 6 = arctan(ky/ky), and s = sgn(Er). ¥, can be obtained by replacing k, with —k,
inY_,; ¥, /¥ (i =1,2) can be obtained by replacing ky with q,; = \/(EF - Vo— Vf)z/(hvg)z k3
and s with sl’- =sgn(Er — Vo — V;) in ¥, /¥, . The flux normalization factor 21/cos 6 is obtained [55]
by letting ‘F+(BI:I /0ks)¥ = 1. ¢; (i = 1,2,3) picks up the i-th row of the spinor wave function in all the
five regions. Note that quasiparticles on the flat band contribute no flux in the x-direction. However, it
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must be taken into account in the pumping mechanisms while the Fermi energy lies close to the Dirac
point. We will go to this point again in the next section.

The boundary conditions are that ¢; + 13 and ¢, are continuous at the interfaces, respectively [48].
The derivation of the boundary condition is provided in Appendix A. After some algebra, the instant
scattering matrix connecting the incident and outgoing modes can be expressed as

()= () (2) ()

where s is parameter-dependent. Detailed derivation of the scattering matrix is provided in
Appendix B.

The DC pumped current flowing from the « reservoir at zero temperature could be expressed
in terms of the Berry phase of the scattering matrix formed within the looped trajectory of the two
varying parameters as [2,18,23]

we
I = 5o /A O (a) dVidVy, ©)
where 35" 9
_ Sap Oap
Q(a) = %:Im AR @)

A is the enclosed area in the V;-V;, parameter space. While the driving amplitude is small (V},, < V),
the Berry curvature can be considered uniform within A and we have
wesin ¢Vy,Va
Ipa = T‘”‘"Q(a). 8)
Conservation of current flux secures that the pumped currents flowing from the left and right reservoirs
are equal: Iy = Ipr. The angle-averaged pumped current can be obtained as

/2
Lpar = / I cos 0d6. )
—m/2

3. Results and Discussion

Previously, we know that transport properties of the pseudospin-1 Dirac-Weyl fermions differs
from free electrons in two ways. One is super Klein tunneling, which gives perfect transmission
through a potential barrier for all incident angles while the quasiparticle energy equals one half
the barrier height [48]. The other is particle-hole symmetry above and below the Dirac point of a
potential barrier, which is a shared property with pseudospin-1/2 Dirac-Weyl fermions on monolayer
graphene [56]. It gives that the transmission probability closely above and below the Dirac point is
mirror symmetric because hole states with identical dispersion to electrons exist within the potential
barrier unlike the potential barrier formed by the energy gap in semiconductor heterostructures. These
two properties are demonstrated in the conductivity through a single potential barrier shown in
Figure 1d. As a result of super Klein tunneling and because the conductivity also depends on the
velocity or Fermi wavevector of the charge carriers, the maximum is parabolically-shaped under the
present parameter settings and occurs at the Fermi energy larger than half the barrier height. For higher
potential barriers, the maximum can be a sharp A-shaped peak appearing at the Fermi energy equal
to half the barrier height [57]. Because of the existence of the local maximum peak and the V-shape
local minimum in the single-barrier transmission probability and hence in the conductivity, it occurs
that under certain conditions higher barrier allows larger quasiparticle transmission. The mechanisms
of an adiabatic quantum pump in a mesoscopic system can be illustrated consistently by a classic
turnstile picture and by the the Berry phase of the scattering matrix in the parameter space [2,5,6].
The turnstile picture can be illustrated within the framework of the single electron approximation and
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coherent tunneling constrained by the Pauli principle. The two oscillating potential barriers work like
two “gates" in a real turnstile. Usually, lower potential allows larger transmissivity and thus defines
the opening of one gate. When the two potentials oscillate with a phase difference, the two gates open
one by one. Constrained by the Pauli principle, only one electron can occupy the inner single-particle
state confined in the quantum well formed by the two potential barriers at one time, electrons flow in
a direction determined by the driving phase difference. However, in monolayer graphene and in the
pseudospin-1 Dirac-Weyl system, Klein tunneling, super Klein tunneling, and particle-hole symmetry
at the Dirac point give rise to a reversal of the transmissivity-barrier height relation. As a result, the
direction of the DC pumped current is reversed.

Numerical results of the pumped current are shown in Figure 2. It can be seen from Figure 1d
that when the value of Er is between 70 meV and 100 meV, conductivity through higher potential
barriers is larger than that through lower barriers. Angular dependence of the pumped current at
Fermi energies selected within this range is shown in Figure 2b. With ¢ fixed at 77/2, potential barrier
V) starts lowering first and then it rises and V), starts lowering. Usually (like in a semiconductor
heterostructure), higher potential barriers give rise to smaller transmission probability. The process can
be interpreted as “gate” V; “opens” first allowing one particle to enter the middle single-particle state
from the left reservoir and then it “closes” and “gate” V, “opens” allowing the particle to leave the
device and enter the right reservoir. This completes a pump cycle and a DC current is generated. Such
is the classical turnstile picture of the pumping mechanism. However, for pseudospin-1 Dirac-Weyl
fermions, higher potential barriers give rise to larger transmission probability under certain parameter
settings as demonstrated in Figure 1d. In the classical turnstile picture, this means that the definition of
“opening” and “closing” of the "gate" is reversed. This is the reason for the negative (direction-reversed)
pumped current shown in Figure 2b.

b 0.0}
08 S ——E=10 meV S
— osl . - - -E=25mevV ' . 02k
B ¢ oo E=40mev [l B
N o co Y
D o4 . S 3 04f
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e : | : L o -06f s
: ! =T n
:’3 02p " K I : | ——E,=85 meV
- AN RPN - -08} . = = -E.=90 meV
. S _Z G 0 - i
00 0 ' - E=95meV
06 04 102 00 02 04 06 06 04 02 00 02 04 06
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Figure 2. (a—c): angular dependence of the pumped for different Fermi energies with the driving phase
difference ¢ fixed; (d) angle-averaged pumped current as a function of the Fermi energy. Its inset is the
zoom-in close to the Dirac point to show that the large value of the pumped current does not diverge.
Other parameters are Vp = 100 meV, Vy, = Vo, = 0.1 meV,d =5nm, L — L1 = 10nm, and ¢ = 71/2.

It can also be seen in Figure 2 that this turnstile picture of quantum pumping works for all
parameter settings by comparing with Figure 1d. As a result of particle-hole symmetry above and
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below the Dirac point of a potential barrier, transmission probability of the pseudospin-1 Dirac-Weyl
fermions demonstrate a sharp V-shape local minimum at the Dirac point. It should be noted that, at
the Dirac point, eigenspinor wavefunction of the Hamiltonian is ¥ and the transmission probability
is exactly zero. We singled out this point in all of our calculations. Below the Dirac point, higher
potential barriers allow larger transmission probability. Above the Dirac point, higher potential barriers
allow smaller transmission probability. In addition, the difference is very sharp giving rise to a sharp
negative pumped current below the Dirac point and a sharp positive pumped current above the Dirac
point as shown in Figure 2d. In vast Fermi energy regime, the pumped DC current flows in the same
direction for all incident angles as shown in panels (a), (b), and (c) of Figure 2, giving rise to smooth
angle-averaged pumped current shown in Figure 2d. It should also be noted that the sharp current
peak close to the Dirac point does not diverge and the current has an exact zero value at the Dirac
point by taking into account quasiparticles on the flat band, which is a stationary state while the
wavevector in the pump—current direction (x-direction in Figure 1a) is imaginary. The finite value of
the pump—current peak is shown in the zoom-in inset of Figure 2d.

The previous discussion is based on the classical turnstile mechanism, while the pumped current
is evaluated by the Berry phase of the scattering matrix formed from the parameter variation with a
looped trajectory (Equation (8)). Such a consistency needs further looking into, which is elucidated in
the next section.

4. Consistency between the Turnstile Model and the Berry Phase Treatment

In previous literature, consistency between the turnstile model and the Berry phase treatment is
discovered while a clear interpretation is lacking.

Berry curvature ()(«a) of the scattering matrix s is defined by Equation (7) with s defined in
Equation (5). ¢t/ t' and r/r’ are the transmission and reflection amplitudes generated by incidence from
the left/right reservoir with ' = t and ' = —r*t/t*.

Without losing generosity, we consider a conductor modulated by two oscillating potential
barriers X; = V; and X; = V, with the same width and equilibrium height. By defining the modulus
and argument of t and r as t = ptei‘f’f andr = p,ei‘f", we have

Q)= l.;tr dvidvy,  Tdvy dvy”

dp; d¢; d¢; dp; (10)

Analytic dependence of p; and ¢; on the parameters V; and V, cannot be explicitly expressed. We show
numerical results of the Berry curvature Q) (1) and the eight partial derivatives on the right-hand side
of Equation (10) in Figure 3. For convenience of discussion, the parameter space in Figure 3a to (i) is

divided into four blocks. It can be seen from Figure 3a that Q) (I) is negative in block II, positive in
dps dgy gy dpy

block III, and nearly zero in blocks I and IV. For the term pt 7y~ 712 — pt v 77 in Equation (10), pr > 0,
g% = d(P’ is negative throughout the four blocks and dp L dp * is positive in block IT and negative in

block HI (see Figure 3b,g). As a result, this term approx1mates zero in blocks II and III. For the term

pr%s% —pr Z“z 40 in Equation (10), o, > 0, 3‘42 - % is positive throughout the four blocks (see

Figure 3h,i), 9 W ~ 372 is positive in block III and negative in block II. It can also be seen from Figure 3
that in blocks I and IV the values of the two terms cancel out each other giving rise to nearly zero
Q (I). Therefore, the combined result of the two terms is that Q (I) > 0 when 35’ >0and Q () <0
dpr

when < 0. This means that the Berry phase is positive and hence the pumped current is positive
when hlgher potential barrier allows larger reflection probability in block III and that the Berry phase
is negative and hence the pump—current direction is reversed when higher potential barrier allows
smaller reflection probability in block II. Because p? + p? = 1, larger reflection probability means
smaller transmission probability, and consistency between the Berry phase picture and the classical
turnstile model is numerically proved in the pseudospin-1 Dirac-Weyl system.
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Figure 3. Contours of the Berry curvature () (/) and the eight derivatives on the right-hand side of
Equation (10) in the V;-V, parameter space. For all the subfigures, the horizonal and vertical axes are
V1 and V, in the unit of meV, respectively. The magnitudes of the contours are in the scale of (a) 1077;
(b) 107%; () 107%; (d) 1075; (e) 107%; (f) 107%; (g) 1072; (h) 1072; (i) 10~2; and (j) 107>, respectively.
Other parameters are Vy = 100 meV,d = 5nm, L, — L; = 10 nm, Er = 100 meV, and 6 = 0.5 in radians.
For convenience of discussion, the parameter space in the nine panels is divided into four blocks: I
(-1<Vp<0and0< V, <1),I0<V; <land0< Vp, < 1), III(-1<V; <0and -1 <V, <0),
and IV (0 < V3 < 1Tand —1 < V, < 0). The four blocks are illustrated in (a).

If we consider normal incidence, consistency between the Berry phase picture and the classic
turnstile model becomes straightforward. For normal incidence, derivative of ¢/r with respect to V is
equal to derivative of #' /7’ with respect to V. Hence, we have

N
) =20y, (dV1 dVl)' an

From Figure 3, we can see that & — % is positive throughout the parameter space. Therefore,
the Berry phase has the same sign w1th - Wthh demonstrates consistency between the Berry phase
picture and the classic turnstile mechamsm of the adiabatic quantum pumping.

Besides data shown in Figure 3, which are contours of the Berry curvature Q (I) and the eight
derivatives on the right-hand side of Equation (10) in the parameter window of -1 meV for both V; and
V, with V) = 100 meV, Er = 100 meV, and 6 = 0.5 in radians, we have numerically targeted dozens
more parameter windows of £1 meV for V; and V, at other values of Vj, Er, and 6 and no obtained
results violate consistency of the two mechanisms. Although the main focus of the present manuscript
is the pseudospin-1 Dirac-Weyl fermions, we numerically confirmed consistency between the two
mechanisms in various parameter settings in different systems such as two-dimensional electron
gas, graphene, and the pseudospin-1 Dirac-Weyl system by calculating term by term Equation (10).
Although we could not provide a general proof, up to now, no numerical evaluation violates such

a conclusion.
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We observe in this work and previously that the pump—current direction can be reversed in
systems with linear bands such as graphene and pseudospin-1 Dirac-Weyl system. Up to now, similar
behavior has not been observed in systems with parabolic band dispersion such as in the semiconductor
two-dimensional electron gas. We remark that a quantitative argument of the underlying reason for
the dependence of the adiabatic quantum pumping behavior on the band structure as observed
numerically is lacking, due to the topological difference of the band structure.

5. Conclusions

In summary, adiabatic quantum pumping in a periodically modulated pseudospin-1 Dirac-Weyl
system is studied. By using two AC electric gate-potentials as the driving parameters,
a direction-reversed pumped current is found by the Berry phase of the scattering matrix at certain
parameter regimes as a result of super Klein tunneling and particle-hole symmetry close to the Dirac
point of the band structure. Such a phenomenon originates from the abnormal transmission behavior
of the Dirac-Weyl quasiparticles that sometimes they transmit more through a higher electric potential
barrier. As a result, definition of the “opening" and “closing" of a gate is reversed in the classic turnstile
picture and hence direction of the pumped DC current is reversed. We also provide rigorous proof of
the consistency between the quantum Berry phase picture and the classic turnstile mechanism.
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Appendix A. Derivation of the Boundary Condition of the Spinor Wavefunction

In Equation (4), we have defined the spinor wavefunction ¥ of the double-barrier pseudospin-1
Dirac-Weyl system. Within the instant scattering matrix approach, we solve the static Schrodinger
equation

AY = EY, (A1)

where H is defined in Equation (2) and the time f is taken as a constant. Substituting the spin-1 operator
defined in Equation (1), this equation becomes

0 %<%_i%> 0 VA1
J : d
0 5 (F+ik) 0 ¥ (A2)
1 1
+V(X,t) o =E P ,
P3 P3
which is
1 J
G (& i) vn o
—imvg | L (& rid)p+ L (L-id)ws | =E-vEnl| e | (A3)
I :
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This spinor equation equalizes to three scalar equations

. 1 /o0 .0
- zhvgﬁ (E - z®> P =[E—=V (x,0)] 1, (A4)
. 1 (0 .0 1 /o0 .0
—_ 1hUg |:% <a + l@) lp1 + ﬁ <$ - Z@) 1/]3:| = [E -V (x, f)] lpz, (A5)
and
. 1 /o0 .0
7Zhvgﬁ g‘f’l@ 1/)2 = [E*V(X,t)}lp3 (A6)
The boundary condition at x( can be obtained from
xote Xo+¢€
/ A¥dx — / E¥dx. (A7)
Xp—¢€ Xp—¢

By substituting Equations (A3) and (A4) into Equation (A7), we have

—ihvg

7 {1 o )~ o= )]~ ify i (o) 2} (a9
= [E—V (xo,t)] 91 (x0,¥) 2.

Because the energy E, the electric potential V(x, t), and the spinor wavefunction ¥ (x, y) is finite, in the
limit of e — 0, we have the boundary condition

[2 (xo+&y) =2 (x0—&y)] =0, (A9)

which is that ¢, is continuous at x = x(. Similarly, by substituting Equations. (A3) and (A5) into
Equation (A7), we have

T {9 (o +e,y) = 91 (o — e y)] + i (x0,) 2
+ (s (Y0 + &) — 3 (0 — &,)] — i s (x0,y) 2¢ } (A10)

=[E—V (xo,1)] 2 (xo0,¥) 2e.

In the limit of ¢ — 0, we have the boundary condition

[h1 (xo +&y) + 3 (x0 +&y)] — [1 (x0 — & y) + 3 (x0 —&,y)] =0, (A11)

which is that ¢; + 13 is continuous at x = x(. Reproducing the procedure in Equations (A3), (A6), and
(A7), we can reobtain the boundary condition of 1, in Equation (A9).

Therefore, in the case of pseudospin-1 Dirac-Weyl fermions, the boundary condition is that the
second component of the spinor wavefunction ¢, is continuous and the first component plus the third
component of the spinor wavefunction ¥ + 13 is continuous. No derivative of the wavefunction is
involved in the continuity condition.

Appendix B. Detailed Algebra for Obtaining the Scattering Matrix

We use the transfer-matrix method to obtain the instant scattering matrix s defined in Equation (5).
Using the obtained spinor wavefunction (4) and the continuity relation (A9) and (A11), we can have

M1<Z’)M2<Zl>, (A12)
I 1

m _ a
M3<b1>M4<b2>' (A13)
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a a
Ms | 2 ) =Mg| ° ], (A14)
by b3
a a
My [ % =M T, (A15)
bs b,
with
kaiky g cheiky g
M= RER L R L (A16)
V2 ki
Er /hvg EF /hvg
qx1—iky —qx1—iky
+ o+
_ gatiky | —qx1+iky
M; = NG Gu—iky NG — g —iky ’ (A17)
(EF—Vo—W1) [Tog (EF—Vo—V1) /Tog
91 —iky ) ig:1Lq (qurfky ) —iga L
M, — (e e “aait S 1) (A18)
qx1 —iky iqv1Lq —qx1—tky —igy1 Ly /
ﬁ(EF—VO—Vl)/hvge * ﬁ(EF—Vg—Vl)/hvge *
ke —iky ik L —hx—iky —ikyL
M, — <kx+iky +1> et —kx+iky et (A19)
4= kx—iky ikeL —kx—iky ik L ’
ﬁEp/hz;ge i ﬁEF/hvge i
kxfliky 11 eikaz 7kxil:ky +1 e*ikaZ
M5 _ kx+1§y N —kx+zlliy N (AZO)
- x Ky ikyL —Kx—tky ik, L ’
ﬁEF/mge w2 \/iEp/hvge o
T2 —iky iqx2Lo (*‘hz*iky ) —igyLy
M = (ﬂx2+iky + 1) e =ty * e (A21)
6 V22T gl 5 ZTeky igaly ]
(Ep—Vo—V1) /hog (Ep—Vo—V1) /hug
9x2—iky ) iqy2L3 (_’ixz—iky ) —igyLs
M, — (L?xz+iky fkl e —Gx2tiky +_k1 e (A22)
qx2— 1Ky igyoLs —qx2—tky —iqxLs /
ﬁ(gpfvofvﬂ/hvge § ﬁ(Epfvofvl)/npge :
—ky—iky ky—iky
Mo — | TR T L ogsm 1 AD3
8=\ ke ki, (A23)
Er /hog Er /hvg

It should be noted that it is more convenient to use the k./ky, version of the eigenspinors than the
exp(if) version in the numerical treatment because when g,; becomes imaginary, 6 becomes ill-defined.
In addition, the sign function is avoided in the eigenspinors accordingly. For the wavefunction in the
x > L3 region, we used the translated plane wave exp[+iky(x — L3)]. From Equations (A12) to (A23),
we can have

(2)-~(2)
with
M = M; 'Mp,M; "MyM; "MgM;, ' M. (A25)
Then, the scattering matrix s defined in Equation (5) can be obtained by
s= < 0 —Mp >1< -1 Mn > (A26)
1 —Mn 0 My

Numerical results of the transmission coefficients T = |t|> are given in Figure A1, which
reproduced the results reported in Ref. [57]. From Figure A1, we could find the three characteristic
transport properties of the pseudospin-1 Dirac-Weyl fermions: Super Klein tunneling, Klein tunneling,
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and transmission minimum at the Dirac point. Super Klein tunneling means perfect transmission
regardless of the incident angle when the incident energy levels with one half of the electric potential
barrier, which is shown in the black solid line of Figure Ala. This is a unique property demonstrated in
the pseudospin-1 Dirac-Weyl system. Klein tunneling means perfect transmission at normal incidence
regardless of the quasiparticle energy, which is shown in the black solid line of Figure Alb and is also
visible in Figure Ala when the horizontal coordinate equates 0. This is a property shared between the
pseudospin-1 Dirac-Weyl system and the monolayer graphene, the latter of which also belongs to the
pseudospin-1/2 Dirac-Weyl system. Transmission minimum at the Dirac point is shown in the dashed
red and dotted blue curves of Figure Alb. This is also a property shared between the pseudospin-1
Dirac-Weyl system and the monolayer graphene. The transmission of normal incidence at the Dirac

point is not well-defined, which is overlooked in the numerical treatment.
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Figure Al. Static transmission probabilities T = |t| as a function of the incident angle (a) and the
Fermi energy (b), respectively [57]. Parameters Vj, d, and L, — L; are the same as those in Figure 2.
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Abstract: We investigate the quantum adiabatic pumping effect in an interferometer attached
to two one-dimensional leads. The interferometer is subjected to an Aharonov-Bohm flux and
Rashba-Dresselhaus spin-orbit interaction. Using Brouwer’s formula and rigorous scattering
eigenstates, we obtained the general closed formula for the pumping Berry curvatures depending on
spin for general interferometers when the external control parameters only modulate the scattering
eigenstates and corresponding eigenvalues. In this situation, pumping effect is absent in the
combination of the control parameters of Aharonov-Bohm flux and spin-orbit interaction strength.
We have shown that finite pumping is possible by modulating both Rashba and Dresselhaus
interaction strengths and explicitly demonstrated the spin-pumping effect in a diamond-shaped
interferometer made of four sites.

Keywords: spin pump; spin-orbit interaction; quantum adiabatic pump; interferometer;
geometric phase

1. Introduction

Coherent transport in mesoscopic systems is of fundamental interest since it allows realization of
various phenomena observed in quantum optics in a solid-state system. Furthermore, the electron
spin degree of freedom adds an intriguing knob for the manipulation and observation of the
transport phenomena. Spin-orbit interaction (SOI) effect [1] is one of the key ingredients in
narrow-gap semiconductor devices, whose strength can be controlled by external gates [2], in principle,
without changing the electron density. Introducing the effect of SOI to the electron interferometer
structure is quite attractive since it enables perfect spin filtering effect [3-5]. Moreover, transient
behavior in such an interferometer has been investigated [6].

In addition to passive functional devices such as filters, the active functions, for example,
spin-pumping or spin manipulation effect by dynamically modulating the gate voltages [7-9], magnetic
field [10-13], or magnetization of the ferromagnets [14-17], has been investigated. In particular,
quantum adiabatic pumping (QAP) phenomena [18,19], which stems from geometrical properties of
the dynamics, is an active field of research [20-25]. In the non-interacting limit, QAP is related to
the scattering matrix of the coherent transport. We have investigated the QAP effect by adiabatically
modulating the Aharonov-Bohm (AB) phase [26] of the interferometer as well as the local potential in
the interferometer. However, it seems no studies have been made of the adiabatic spin-pumping with
purely geometric means such as Aharonov-Casher phase or AB phase. The fundamental question here
is whether QAP is possible by only modulating the electron geometric phase.

In this work, we studied spin-QAP in Rashba-Dresselhaus-Aharonov-Bohm interferometer
introduced in [3] using Brouwer’s formula [19] and derived an explicit formula of the Berry curvature
for each spin component. Using the obtained result, we clarified the condition of finite spin-pumping.

Entropy 2019, 21, 828; doi:10.3390/e21090828 71 www.mdpi.com/journal/entropy
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In Section 2, we introduce a simple two-terminal setup and the expressions of the scattering amplitudes.
Section 3 explains the details of the eigenstates of the scattering problem. Then, with these states,
the formula of the QAP is derived in Section 4. It is shown that the modulation of the AB phase cannot
induce QAP. Section 5 explains the properties of the diamond-shape interferometer, and is applied to
study QAP assuming Rashba SOI and Dresselhaus SOI strengths as control parameters in Section 6.
Finally, discussions follow in Section 7 and Appendices are included for the detailed derivations of the
formula used in the main text.

We consider a standard setup of scattering problem of spin 1/2 electrons as shown in Figure 1.
A coherent scattering region (interferometer) is attached at the site # = 0 with the one-dimensional
left lead made of sites u = —1,—2,... and is attached at the site # = 1 with the one-dimensional
right lead made of sites u = 2,3,.... The assumption of one-dimensional leads is not essential
as far as the interferometer is coupled to the leads via single mode scattering channels. However,
the one-dimensional tight-binding formalism benefits from its simplicity. Although the analysis is
standard, the obtained rigorous scattering amplitudes and corresponding scattering eigenstates are
essential to clarify the condition and to quantify the quantum adiabatic spin-pumping, as will be
shown in the later sections. We introduce the spinor ket vector at site u,

— CLL
yw) = ( o ) : )

where the two amplitudes ¢, for spin o =1, | satisfy normalization condition |cuT|2 + |ey ¢|2 =1
The total Hamiltonian in the tight-binding approximation is given in general

Hrs = Yeulp(w)) ()l + ) Wio [p(0) (p(u)], )

uv
where the site index u and v run the entire system. The real parameter €, is spin-degenerate site
energy and Wy, is a 2 x 2 hopping matrix satisfying Wi, = W,,. We assume that the hopping

matrix W, is only non-diagonal in the scattering region between u = 0 and u = 1. We neglect the
electron-electron interaction.

-2 -1 0 1 2 3
@ ®
+—>
a

Scattering region

Figure 1. Schematics of the model of a scattering (shaded) region connected with two semi-infinite
one-dimensional leads.

2. Model System

Intheleadsu < —1,u > 2, we sete, = 0 and Wy, = — jI, where I is the two-dimensional unit
matrix and the real hopping parameter j is only nonzero for nearest-neighbor pair of u,v. With a
standard treatment on the tight-binding Hamiltonian, we obtain the eigen-energy e = —2j cos(ka)
and its corresponding eigen-function, [(u)) o e |x), where k is a real wave-number parameter,
a (> 0) is the lattice constant and |)) is a certain state vector.

The system of interferometer is represented between 1 = 0 and u = 1 sites and we choose
€9 = yoand €; = y; and Wop = W and Wy = W'. The microscopic derivations of v, y; and W for a

72



Entropy 2019, 21, 828

diamond-shaped interferometer are demonstrated in Section 5. Then the Schrodinger equations at
sites u = 0,1 read

Yo [9(0)) + W (1)) - jlp(-1)) ely(0)), ®)
yilp(D) + WHp(0)) —jlp(2) = elp(1)). )

The reflection and transmission amplitude matrices for the electron flux with an energy € = €
injected from the left lead is

~
Il

L ineXa [TV = W] - (5)

W iy — W] 6)

>
|

where Y = XoX; with complex parameters X, = e, — yy + je'** (u = 0,1) and we introduced a
parameter of energy dimension 1, = 2jsin(ka). The reflection and transmission amplitude matrices
for the electron flux injected from the right lead is

nAaa1—1
P o= —I+ipXo [HY—W*W} , @)

P i W [Hy - W*W} - ®)

The details of the derivation of these formulae are given in Appendix A. In the next section,
the obtained scattering amplitude matrices are diagonalized and the formulae of the scattering
amplitude eigenvalues are given. Then in Section 4, the Berry curvatures for two spin eigenstates,
Equations (34) and (35), is given, which allow calculation of QAP spin per cycle.

3. Diagonalization of Hopping Operator WW*

In this section, we diagonalize the product of hopping operators W and W' appearing in the
scattering amplitude matrices derived in the previous section. Then we obtain the scattering eigenstates
through an interferometer. This is an extension of the discussion in Reference [3]. We consider an
interferometer in x-y plane made of two one-dimensional arms, b and ¢, represented by real coupling
parameters 7}, 7 and 2 x 2 unitary matrices, U, and UL, showing propagation from the site 0 to 1 via
the arms b and c, respectively. We assume following general expressions characterizing the effect of
AB phase and Rashba or Dresselhaus SOI:

a, e~ (16 + it - &), )
U, = e (' +it' o), (10)

SN

where ¢ is the vector of Pauli spin matrices. ¢ = ¢1 + ¢ = 27t(HS) /Dy is the AB phase with the
magnetic field H in the z direction, the area of the interferometer S, and a magnetic flux quantum ®.
Unitarity condition requires the real parameters, §,’ and real three-dimensional vectors 7, T’ to obey
82+ |7|* = 82 4 |7'|* = 1. The hopping matrix W is given by

W = 30+ 7.l (11)

As shown in Appendix B, the matrix factor appearing in the scattering amplitudes for the electron
flux injected from the left lead, Equation (5), is

WWY = AI+B-¢, (12)
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where

bS
Il

’yi + “yf =+ 277Yc cos ¢ cos w, (13)

o~}
Il

29pYesingsinw . (14)
The real parameter w is determined from cos w = 8¢’ 4+ T - T’ and the unit vector i is defined by

1
n = —(—Ty, Ty,0). 15
171_2( yr tx ) (15)

z

We then introduce two normalized eigenstates of the operator 7 - ¢, |#1) and |—) such that

a-ola) = i), (16)
A-ol-n) = —[-n). 17)

Clearly, these are also the eigenstates of the operator WW such that

WWH |+h) = Ap|zd), (18)
with the eigenvalues
Ae = 9 +E+277ecos(¢ F ). (19)
These eigenvalues are positive since Ay = (| WWT |£a) = ||W* |Ld)] |2 > 0.

To study the scattering eigenstates for the electron flux injected from the right, Equation (7),
we evaluate WHW with similar procedure as above,

WW = Al+B ¢, (20)
where
B = 2y,ycsingsinw i/, (21)
and corresponding unit vector
- ;(Ty, —Ty,0). (22)

V1—12
Then we introduce two normalized eigenstates of the operator 7’ - &, |+#’), which obey
WIW |£//) = AL |xd)), (23)

with the same eigenvalues as Equation (18).
The elements of the scattering matrix are now explicitly evaluated with the obtained scattering
eigenstates. As detailed in Appendix B, we can show that the transmission amplitude matrices are

Po= ot dy (a)+to |—a') (—1], (24)
# by |y (@) +to |—a) (—7'], (25)

where we defined two transmission amplitudes,

iﬂk\//\j:

Y A (26)

L. =
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Similarly, the reflection amplitude matrices are given by

Fo= ryla) (@l +ro|—#) (-], 27)
Poo= L) (]| () 8)
where the reflection amplitudes are
- il’]kxl
Ty = 1+7Y7Ai' (29)
ro_ i Xo
A v (30)

The unitarity condition of the scattering amplitude matrices, ' + ## = 1, is confirmed in
Appendix C. The unitarity condition F*# + #1# =1 can also be checked.

4. Quantum Adiabatic Pump

For a non-interacting system, the response (particle transfer) to the slow modulation of the
system’s controlling parameters is well described by Brouwer’s formula [19], which is expressed by
the elements of the scattering matrix. The particles induced in the left lead in one cycle of the adiabatic
modulation of two control parameters g; and g5 is

Y e, (3D

- /Sdg1dg2Hu(g1,gz), (32)

n

ng

where S is the area in the two-dimensional control parameter space whose edge corresponds to the
trajectory of the cycle. The Berry curvature I1,(g1, g2) for spin o is

(33)

oot abait)
agz ag1 E)g2 agl !

1.
Ir(g1,82) = nif@f{

where 7 and ' are given in Equations (27) and (25) and |¢) is the spinor vector of spin ¢.

If we choose the AB phase ¢ and parameters of the interferometers, for example, X or Xj, but not
the SOI strengths, we can show that the Berry curvature is finite in general as studied in Reference [26].
In the following, however, we focus on the situation that the control parameters are the AB phase ¢
and Rashba or Dresselhaus SOI strength that modulate the eigenvalue A+ as well as the scattering
eigenstates |+#) , |£#’). To calculate the Berry curvature, we need to evaluate the derivatives of the
scattering amplitude matrices, # and #'. Then, as shown in Appendix D, after some manipulations, we
have the Berry curvatures for spin components parallel to %1,

Maguge) = (Ire —r- = [t + 16 ) Corga (34
and
Moa(gug) = (=l —r Pt P+ ) Cog (35)
where the factor at the end is independent of spin and is defined as

1 1 [aTy 0T, 0Ty 0Ty

amn1- 121081982 932081

T 0T, 01, 0Ty JT, ) (arx 0T, 0Ty 0T ) }
B g (S T o (O OT 0T 0T L] 36
1-12 { ) <3g1 032 982981 Y\9g29g1 9219 ] G0

Cgugz
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This is one of the main results of this work.

The vector T is independent of ¢, but only depends on the SOI strength. Therefore, when one
chose the AB phase, g1 = ¢, as one of the control parameters, C¢/g2 is identically zero as is evident
from Equation (36). Hence we do not expect QAP by modulating the AB phase and SOI strength. It is
also obvious that if we chose 1, or . as one of the control parameters and the other by SOI strength,
C1,,0.82 18 Zero since T is independent of 7, and 7. and no pumping is expected.

Even for a fixed AB phase, there is still some freedom to choose two control parameters related to
the SOI strength since we have two types of SOI interaction mechanisms, Rashba and Dresselhaus SOI.
In the next section, we study Rashba-Dresselhaus interferometer in a simple diamond-shape structure
made of four sites and choose the strengths of two types of SOI as control parameters.

5. Diamond Interferometer

We consider an electron transport in two-dimensional system on [001] surface with setting x and
y axis along the (100) and (010) crystal directions, respectively. The Hamiltonian for the SOI is

N h o R
Hr = %kR(PyUx - an'y)r (37)
N h . .
Hp = %kD(pxe - Pyo'y)r (38)

where kg and kp are Rashba and Dresselhaus parameters, respectively. p, (4 = x, y) are the momentum
and m is the electron effective mass.

The interferometer made of four sites is configured as in Figure 2 which is attached to the leads
atsite u = 0 and u = 1 as discussed in Reference [3]. Other two sites constituting the interferometer
are u = b and u = ¢, connected with bonds of length L. We also define the opening angle 2 and the
relative angle v of the diagonal line to x axis. The Hamiltonian reads

i = Yeulp(u)) (p(u)] = Y Uuo (o) ()], (39)

for u,v = 0,c,d,1 where ¢, is the site energy and Uo = JuolUuo, Juo is a hopping energy and Uy
is a 2 x 2 unitary matrix representing the effect of SOI and AB phase. Total Hamiltonian is # =
Hir + Hr + Hg. In the Appendix E, we explain how this problem is reduced to the Schrodinger
equations, Equations (3) and (4).

The coordinates of the four sites are rp = (0,0), r, = (Lcos(v+ B),Lsin(v+ B)), r =
(2L cos(B) cos(v),2Lcos(B) sin(v)), and r, = (Lcos(v — B),Lsin(v — B)). We define ag = kgL,
ap =kpLand { = 4 //Xﬁ + zxzD and introduce another angle 6, such that ag = { cos, and ap = {sin6.
The unitary matrix for the hopping from site at (0,0) to site at (i, uy) is a(o,o),(ux,uy) = exp [iK - &]
with K = ag (uy, —1ix,0) 4 ap(uy, —ity,0) [27]. Therefore, for the hopping from site 0 to b,

Ko, -0 = (sin(§1)0x — gcos((fz)&y = (01, (40)
with 1 = B+ v+ 6 and ¢, = B+ v — 0. Similarly, for the hopping from site c to 0,

Ko-0 = (sin(8y)0x + {cos(E3)0y = 02, (41)

with & = B—v+6and & = B — v — 6. We introduce factors F; = /1 + sin(2v + 2f) sin(26) and
F, = /1 +sin(2v — 2B) sin(20) such that 67 = IF and 67 = IF;. Then, forn = 1,2,

e = ey, + isuby, (42)
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where we defined

cn = cos(Fy(), Sp = Fisin(lf,,g). (43)

. N A P rn A s N P rn
Noting that Uy, = e/%1, Uy = e~ 2 %%, Iy, = ¢7%% and U,y = e2 701,

U, = Upln
= 8_% {HC]CZ — iClsz(ATz + iCleal + 5152@'119'2}
= et (+it o), (44)
where
§ = 100 — s152(sin(2v) sin(26) + cos(28)),
Ty = —c1528in{y + cpsysingy,
Ty = —C182C08{3 — €251 COS G,
T, = s152sin(2B) cos(20). (45)
Similarly,
ac = HOCHEI

ig , o . N JUA
= e2 {lcacq — ispc107 + icps101 + 25102071 }

= (W +it o), (46)

with ¢’ = d and T/ = (1, Ty, —1z). The angle w is determined by cosw = §6' + -7’ = LN Tyz —
2 2
T =1-217.

L(cos(v + B),sin(v + B))

L(cos(v — B),sin(v — B))
C

Figure 2. Schematics of the interferometer made of four sites, 0, b, ¢, and 1 separated by a length L.
The opening angle 2 and relative angle v from x axis determine the geometric structure.

6. QAP in the Diamond Interferometer

We examine the quantum adiabatic spin-pumping by choosing two SOI strengths ¢; = ar and
82 = ap as control parameters. First we examine the basic property of the function Cyy 4, defined in
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Equation (36) and then evaluate the scattering amplitudes. Using these results, we calculate the Berry
curvatures for two spin directions.

6.1. Spin-Independent Function Cyp ap,

The function Cyy 4, has symmetries, Cyj,a, = Cayay, as well as Cuy i, = Cayuor Cagay = Cay,—ata-
Moreover, it also obeys the relation Cyy ap | v = — Cagap | LS Therefore, the angle v = 71/4 is rather
special. At this angle, Cyy ap is identically zero and hence no pumping. One can check this since
F; = F, and hence ¢; = ¢ and s; = sp, then

T = ¢151(sindy —singy) = 2cq51 cos Bsin(6 + g), (47)
T, = —c151(cosd3 4 cosds) = —2c51 cos fcos( — g) (48)
Therefore, the relation T, = —Ty holds for any g and 6 and Cogap = 0.

Because of its symmetric property, we focus on the function Cyy o, in the range 0 < ag, ap < 71.
As an example, we chose § = 71/5 and the results for v = 77/2 and v = 371/8 are shown in Figure 3.
The result for v = 77/4 is uniformly zero as noted above and that for v = 71/8 is similar to that for
v = 37/8 with reversing the sign of the function. There are areas where the absolute value of Cay ay, is
enhanced near (ag,ap) = (5,0), (0, 5 ), which can be understood from Equation (36) since || is very
close to one. If we choose f = 71/4, the scattering states “flips” at 71/2 when R is increased from zero
to 7t with ap = 0 [3]. Then the behavior of Cy op—0 becomes quite singular, which may need further
investigation (not being discussed here).

Figure 3. Contour plot of the function Cyg 4, depending on the Rashba, ag, and Dresselhaus, ap,
SOI strength parameters. We chose the geometric angles B = 7/5 and v = 77/2 (left) and v =
37/8 (right).

6.2. Spin-Dependent Prefactors

In this section, we examine the scattering amplitudes, f+ and r+ and the prefactors of the Berry
curvatures in Equations (34) and (35). We define these factors as d; = |r4 —r— |2 — |t |2 + |t \2 and
djg=—|ry —r- \2 — |ty \2 + |t |2. To be compatible with the analysis in the previous subsection,
we focus on the geometry such that f = 71/5 and v = 71/2. For simplicity, we chose symmetric setup
of the interferometer, where Jo, = J;1 = Joc = Jo1 = jand €y = €1 = €, = €.. Then, v, = 7. = ﬁ
Moreover, in the following calculation we chose €, = —j. First, we show the result of d_; for
€o = 0.9f in Figure 4 with choosing the AB phase ¢ = 77/3. This function is negatively enhanced near
(ag,ap) = (71/2,0) and (0, 71/2). In contrast, the factor dj is much smaller as shown in the linear
plot for ap = 0. If one chose AB phase ¢ = 571/3, d_j is suppressed and alternatively dj is enhanced
near (ag,ap) = (71/2,0) and (0, 1/2) (with changing sign of the data in the left Figure 4). The AB
phase ¢ and site energy €y dependence of d.; are shown in the left and right of Figure 5, respectively.
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Therefore, a large contrast of the QAP in two spin directions can be obtained by choosing ¢ = 7/3
and ey = 0.9j.

-2.0-

Figure 4. (Left) Contour plot of the function d_j; for ¢g = 0.9j and ¢ = 71/3. (Right) Line plot of the
functions d 4 as a function of ag with ap = 0.

ds

101

05}

Figure 5. (Left) AB phase dependence of the function d.; for g = 0.9j and ag = 7/2,ap = 0.
(Right) Site energy dependence of the function d.; for f = /3 and ag = 71/2,ap = 0.

6.3. Berry Curvatures

Finally, we calculate the Berry curvature, [1_;(ag, ap) for the spin in the state |—#) as shown in
the left of Figure 6. Obviously, the Berry curvature becomes large at around (ag, ap) = (%,0), (0, 5).
The other spin state is not much pumped as shown in the right of Figure 6.

v u

&

ap
-w

00 05 25 30

05 / 2
OR

Figure 6. (Left) Contour plot of the Berry curvature for |—#) with § = 71/5 and v = 71/2. We set
¢=1/3, ek =—j, Joo = Jo1 = Joc = Jo1 = jand ey = €1 = €, = €. = 0.9]. (Right) Berry curvatures
for two spin directions with ap = 0.1 with the same parameter with the left panel.
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7. Discussion

We have derived a general expression of the Berry curvature for an interferometer connected to
one-dimensional leads. In this study, we restricted the control parameters in QAP formalism only to
modulate the scattering eigenstates and corresponding eigenvalues through the change of the unitary
operators for each arm. Then the AB phase, which, despite modifying the scattering eigenvalues, A,
does not affect the scattering eigenstates and is shown not to function as a control parameter in QAP.
In a clear contrast, it has been shown [26] that in combination with the potential modulation, affecting
the electron-hopping amplitudes or site energies, QAP by AB phase is possible.

In the current analysis, the control parameters are assumed to purely modulate the phase of
the electrons. In real experiments, unintended modulation of hopping amplitudes, ], or the site
energies, €, or €. by the gate voltages may induce additional effects. We demonstrated that by using
the two types of the SOI as the two control parameters, spin-QAP is possible. However, in the
experiments, independent control of the Rashba SOI and Dresselhaus SOI will be a complicated task.
Fortunately, as shown in Figure 6, the area of large Berry curvature is well isolated and the tiny change
of Dresselhaus SOI may be sufficient to observe QAP. It would be interesting if other types of SOI
interaction [5] could be another control parameter of the QAP.
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Abbreviations

The following abbreviations are used in this manuscript:

SOI  Spin-orbit interaction
QAP  Quantum adiabatic pumping
AB Aharonov-Bohm

Appendix A. Scattering Matrix

In this Appendix, we argue the scattering problem through the interferometer. First, we inject an
electron flux with an energy € = ¢, from the left lead. The wavefunction for u < 0is

[p(u)) = ™ |xin) +e " xo), (A1)
and the wavefunction for u > 1is
p(u)) = Dy, (A2)

where |xin) is the injected wavefunction and |x;), |xt) are the (un-normalized) wavefunctions of
reflection and transmission. In particular, at sites u = 0, —1,

[$(0)) = |xin) + |xx) » [p(—1)) = ™ |xin) + e |xz), (A3)
and atsitesu = 1,2,
[9(1) = Ixo), [9(2)) = ™ [xt) - (A4)

By putting these into Equations (3) and (4), we have

(e = vo) {lxim) + 1)} = Wlx) = {e™ lxin) + ™ |xe) }, (A5)
W {lin) + e} — ™ 1) (46)

(ex = 1) [xo)
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Then from Equation (A6),

1 At
[xe) = WW {xin) + [x0) 3 (A7)
and putting this into Equation (A5), we have
1

e AU YR D) S L

(ex —yo+je ™) [xin) + (ex — yo + je™) [xr) = W

Defining complex parameters X, = € —y, + je'* (1 = 0,1) and noting e — yo + je ™ = Xo — in,
we solve this equation

X = - [onxl - WVW] - [HX()Xl - Wt — Hi’?kxl] [ Xin) -

Then we have obtained the reflection amplitude matrix

~
M1l

- [onxl - WW*] ! [onxl ~WWt - Hiqul]

ing 1y - WY (A9)

where we have introduced Y = X(X;. Using this, transmitted state is calculated with Equation (A7),

1 4
Ixe) = X71W+{|Xin>+‘xr>}
1, ‘ NS
= WHI-T+ipX, [HY*WW] [ Xin)
X1

N NI |
= W [IY = W] ),
hence the transmission amplitude matrix is
2 it rat]
b= ipW [Hy —WW } . (A10)

We alternatively consider the situation that the electron is injected from the right lead.
The wavefunction for u > 1 is

[p(n)) = e KDL ke (A11)
and the wavefunction for u < 0is
lp(n) = e ™ |x), (A12)

where |x},) is the incoming wavefunction and [x}), |x{) are the (un-normalized) wavefunctions of
reflection and transmission. At sitesu = 1,2,

[9(1)) = Ixin) + x5, 9(2)) = e ™ |xfn) + € |x1), (A13)
and at sitesu = 0, —1,

[ (0)) = [xt), lp(=1)) = & |x0). (A14)
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By putting these into Equations (3) and (4), we have

(ex—yo) Ixt) = W {lxh) +1x0)} —je™ [xt). (A15)
(ee —y) {Ixk) + 120} = W) = {e= xda) + €™ 1)} (A16)
From Equation (A15),
1
) = WAl + ) (A17)
and putting this into Equation (A16),
. NI N
(Xy =) [xin) + X xe) = W= W {lxin) + x0)}

(A18)

which is solved as

1) {Hy - W*W] o {— (]IY - W*Vv) + inkXO]I} )

. ArtTa -1 ’
L+ ineXo [IY = W] 8 )
Therefore, the reflection amplitude matrix is
NS
P o= —I+ipXo [JIY Wt w] . (A19)

Putting this into Equation (A17),

W ) a1
) = Xfo{]l—ﬂ—i-zquo {HY—W*W] }\Xf:&

= inW 1Y - W] ),

and hence the transmission amplitude matrix is

N L gL

N [HY W W] . (A20)
Appendix B. Scattering Eigenstates

In this appendix, we show the details of the calculations of the scattering eigenstates discussed in
Section 3. First, we evaluate

WA = (90 + 7ele) (1T + 7 U)
= (B+HP+rrc(0+ah), (A21)

with # = U, U] representing the total development around the interferometer in the order 0 — b —
1 — ¢ — 0. We study following matrix

0 = e I5+it o) (18 —it - o)
= e’iq’{]léﬁ’—i&r’-&—&-ié’r-&—&-(r&)(r’-&)}

= e’iqb{]léé’ +i(d't—67) o +It T +i(txT)- fr}.
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We introduce a unit vector defined by
i = N{dt—ét'+Tx1'} = (ny,nymn), (A22)

where N is a normalization constant. We define z-direction (in spin space) in parallel to §'t —
dt/, namely

N{dt-s7'} = n, (A23)
with a unit vector 2 in z-direction. Since T x T’ is orthogonal to §'t — 67/, we set
N{txt} = nmt+n, (A24)

with unit vectors in x, y-directions. Solving Equation (A23) for t/, we have

& n
/ _ v _ 72/\
T = 5 T 6/\/'2' (A25)
and hence
TxT = —;X/(rxi). (A26)

Using this, we obtain for T = (7, T, 72),

ny = 3?~./\/'{r><r’}:—%ry. (A27)

Similarly, we also have n, = %Tx. Normalization condition requires

_ [ Nz 2 hz 2 2_1*Tz22
1= er) +(5T‘*) t= g (A28)
hence we determine
o= 2 (A29)
V1—12
and
1
n = ———(—7Ty,Ty,0). A30
—— (T, T,0) (A30)

4

Therefore,

=
I
>

e’i‘p{ﬂ(§5’+r-r’)+i1 -ar}

3 2|

e~ {Tcos w + i sin wi - (A31)
where the real parameter w is determined from cos w = 66’ + 7 - T’. The unitarity condition of 7 can
be checked by noting

1 ! / /
— = |fTt—6T+Tx T

N2

2

|(5/T—(5T/‘2+(T>< ) (T xT)
= 245?200t T +(1-6")(1-6%) —(t-T')?
1- (00" +7-7)2=1-cos?w, (A32)
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where we used the relation (7 x ) - ( x ') = |7|*|7'|* = (t- T')%. Now, the operator i + " is
calculated as

a+a" = 2cos¢coswl+2singsinwi - &, (A33)
hence
Wt (72 + 1)1+ 2947 (cos ¢ cos Wl + sin P sin wit - &)
= Al+B-o. (A34)
We defined
A = P +92 4297 coscosw, (A35)
B = 2y,ycsin¢gsinwit. (A36)

Alternatively, we evaluate

WW = ('Yba;JF'Yca:)('YhabJr'YcUc)
= (B +1I+ (0 +0F), (A37)

where 7 = U}, which represents the total development around the interferometer in the order
1 — ¢ — 0 — b — 1. With similar procedure done for i1, we have

0= e*"¢{1[55’+i(5’r—5r’)~fr+1lr’-r+i(r’xr)mr}
= ¢ ¥ {lcosw+isinwi’ - &}, (A38)
where
Al 1
= (Ty/ —Txs 5)/ (A39)

V1—12

and with the same w as before. Now, by calculating the factor 7’ + 0'f, we obtain

Wtw = ('yi + 92T + 297 (cos ¢ coswl + singsinwit’ - &)
= AI+B ¢, (A40)
where
B' = 2yycsingsinwi’. (A41)

As shown in the main text, we introduce two sets of normalized eigenstates of the operators 7 - &
and #’ - &, |£#) and |£#’), which obey
WWT ) = Ay l|+a),
WIW |£//) = AL |£d"), (A42)

with the same eigenvalues as Equation (19).
It can be shown that these two sets of eigenstates {|+7), |£#’)} are related with each other by

|xa') = \/%W* |+4), (A43)

84



Entropy 2019, 21, 828

with double-sign correspondence. This can be checked by the eigen-equation

1

WIW [+4') = WH W) |+
) = W ()
1
= WHAL |+h
T A |&=11)
= Ay |xd'), (A44)
and the normalization condition
(A | £4) = L (£a|WWF| £4)
Ax
= (fa|+a) =1 (A45)
Similarly, we can also prove the relation
|£7) = Lw |+4") (A46)
VA '
We have the spectral decomposition of the matrices Wt and W by
Wh = VAL ) (A + VAZ =R (<4, (A47)
W = VAg ) (@ + A |—h) (-7, (A48)

where the second relation is obtained by taking Hermite conjugate of the first relation.
Now, let us turn to discuss the scattering wavefunctions using these eigenstates. For the left
incoming states, we choose |xin) = |£), then the transmitted states are

Ixt+) Hiﬁ)

~ A A -1
= ipWt [HY—WW*} |£h)
= ipWHIY —TA4] ! 2a)

= e WtiLa)

Y- A4
_ iﬂk A~/
= Y_Ai\/)\iH:n}
- (A49)

where we used Equations (5) and (A47) and defined two transmission amplitudes,

ii]k\/ )\:E
te Yo (A50)

Using the orthogonality of the eigenstates, the transmission amplitude matrix f is expressed as in
Equation (24). Similarly, the reflected states are

o) = 7|Ea) =re|£a), (A51)

where the reflection amplitudes are

(A52)
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The reflection amplitude matrix # is diagonal and is given in Equation (27). Similarly, for the right
incoming states, the transmitted states are

Ixte) = FlEA) =ts|£a), (A53)

and hence the transmission amplitude matrix # is given in Equation (25). The reflected states are

Xoe) = 7|EA") =7 |8, (A54)
where we defined
ro— i’?kXO
ry = 1+ YAy (A55)

and hence the reflection amplitude matrix 7' is given in Equation (28).

Appendix C. Unitarity of the Scattering Matrix
The scattering matrix needs to satisfy the unitarity condition, such that
Fi4str = 1L (A56)
Using the results of Equations (24) and (27),

2 ata 205\ /5 2 ~ ~ 205\ /& 2 ~
PR+ = |t P () (] + [t " [=) (<A + |ro*[A) (@] + [r-|* | =4) (~a].

Therefore, if |t |* + |r+|* = 1, using the completeness relation of |£), the unitarity is confirmed.
Let us check this:

. 2 . 2
2 2 _ |V _ i Xa

[tL|”+ re]” = Y oAy +' 1+7Y7Ai
_ Mers 14 Xy ipXy 71X

Y — As)? Y'—Ar Y—=Ar |y —ALf?
_ ]Jriﬂkxi‘(y—/\i)—xl(y*—/\i) m(Ax + X%

Y — A [Y — A
= 1+ ‘Yvig‘z [i{XT(Y*?\i) =X (Y = A} Fop(Ase + |X1|2)] .
— A+

The factor in the square bracket is
[o] = —i(X] —X)Ax +i(Xo X1 = X5 X1 ?) + (A + [Xa]?)
= [=i(=im) + ] A + [iCim) + ] X1 P =0,
hence |t|* + |r+|* = 1 is confirmed.

Appendix D. Derivatives of the Scattering Amplitude Matrices

In this Appendix, we evaluate the Berry curvature, Equation (33), with two control parameters,
€1, g2, which only modify the scattering eigenvalues A+ and corresponding eigenvectors |+) , |£#’).
We need to calculate the derivatives of the scattering amplitude matrices by a control parameter
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(& = 81,82), % and ?Tf/. Since scattering amplitude matrices are expressed with the eigenstates as
shown in Equations (24) and (27), we first evaluate the first order derivative of the basis states

J |7) _ ag b, |72)
ag( |—ﬁ>> B (Eﬁ i ) ( 1) ) (A7)
Ay by ‘fll
by ay ) ( —#) ) (AS8)

d 3 (i 3 i
2 alay = (%) \ﬁ)+(ﬁ|%:a§+ag:0, (A59)

Since the basis states are normalized,

and a4 should be pure imaginary. Similarly, 4y, 4, and 4y are also pure imaginary. Using the
orthogonality condition, we have the relation

9 o (] ol-n) _ ..
al—a) = [ 20 |- 7 = = A
3 6l =) < r ) =)+ (3 25~ b+ =0, (A60)
and b; + I;g/ =0.
To have the formula for ag, by and Eg, we consider a unit vector i = (ny, 1y, ng) =

(sin © cos P, sin O sin P, cos O), with angles © and ®. Since the operator 7 - ¢ in the matrix form,

: —i®
cos®  sin®e )/ (A61)

n-& = . .
(sm@e’d’ —cos©®

has two eigenvalues A = +1, the eigenvector in a form (cy, ¢;)! satisfies for A = 1, (cos® — 1)c; +
(sin ®e~®)c, = 0 and normalization condition, and hence

) t
ny —iny  \/1—n,
n) = , , (A62)
‘ > ( V 2(1 - ”z) \ﬁ )
and for A = —1, (cos © + 1)¢; + (sin ®@e~'®)c, = 0, hence
t
—ny +iny /1+n;
—n) = , . A63
=) <\/2(1+nz) V2 ) (469

Differentiation with g gives

Iy .ony . o, ony t
) S it (ny —iny)S= Sz
—|n) = ( I 9 4 VT V% % , (A64)

ag 20—n2)  2v2(1-n)32" 22T —n,
and
) . t
el ) = _aa% + zaigy (ny — my)aa’—(’g,Z aa% (A65)
ag 2(1—nz)  2v2(1+n:)3/2" 221+ n; |

87



Entropy 2019, 21, 828

Therefore,
_ 9, i oy ony,
ag = (n|%|n) ==y {ny o2 — Ny 3 } (A66)
o 9 _ i ony any
o= gl = g (G (Ae7)
9
by = (—nl%ln)
1 . Ony in any anz}
= iy + A68
2\/1—n§{ Yoy oy T ag (Ao
. d N
by = (n|@| —n) = —bg
1 . a an]/ aﬂz }
= ———— < —in +ing—=+—— A69
24/1—n2 { yag Yog o og (Ao
We also evaluate a1, 4/, by and E + similarly. From Equations (A30) and (A39), we found that
following relations hold ag = dg, Ay = Ag and by = by and b r = —bq.
Using these relations, we evaluate the derlvatlves of the scattermg amplitudes:
T U d|n) 9 (#]
% @|"><"|+7+ g (@] 7y |7 )@
ar . d|—7n . i
5= =) ol B o) 2R
oy [ (]
= (|a),|-a))f o (A70)
( ) 8 <7n‘
with defining a matrix
Ire ry —r_)b}
pe = % (r o KN (A71)
(re — Vf)bg kT3
Similarly,
o ate . ala) ., oy o]
w @W)("Pﬁt g @'+ t4 |7) 3
ot N a1 0 ‘7ﬁ> A~ <7ﬁ/|
b G e S i) 2
Y
= — A72
(1), | -) ( U ) (a72)
with defining a matrix
o tibg — b7
o= % e (A73)
8 t+bg — t7b§ Té:

Obviously, it is convenient to take the scattering eigenstates |+7) to the spin axis |c = £1) in the
Berry curvatures, which is written as

1. (/. .
M/ a(g182) = S {(rgz g1+t’gzgl)( )/(22)}' (A74)
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. PRI
Then the diagonal components of 7g,7¢ is

ar+ 8r+

s ot _
(rgzrﬁ)(l,l) = g g Il b A7)
or_ ar*
s af _ —
(rgzrgl>(z,2) T 9g 9gy Flre —r-F gy s (476)
and the diagonal components of téz t’;l
oA oty ot
+ _ + Y+ * * 1% *
(tézt;,l) o = amae (t1bg, — E_BE))(FL b5, — £ bg,), (A77)
oA ot_ ot*
+ _ — *
(i) ey = agag e~ BRI by, (A78)

As stated before, we restrict the type of control parameters, g, that only change the eigenvalues
A4 in the transmission amplitudes, r1. and t.. and corresponding eigenstates, and we take

or+ o A4 Ors ot4 B JAL Ot
oy T agan g og oh e
Then the factors in the Berry curvature, Equations (A75) and (A77),
drs ory Ay Ay |are |?
_ A80
g2 981 g2 0g1 |0A~ (A80)
ot 2
ot4+ oy _ OA+ 0N | ot (A81)
g2 91 g2 0g1 |9A~
are real and are not contributing to the pumping.
Then, the Berry curvature for the spin |#) is
1 o 2% * * 1k *
Mi(gr,82) = 9 {\’Jr — 1 |Tbg,bg, + (t1bg, — by, ) (£ b5, — t—bgl)}
1
= sl =P =P+ 1) (bﬁbg hgzh;il) . (A82)
Using Equation (A68) and the relation
on; 1 0y 8ny
5 T <nx a2 + 1y 32 (A83)

derived from n, = /1 —n2 — n2 the factor in the last bracket of Equation (A82) is manipulated to
* y i [Onydny  Ony ony )
= (X2 ZL-ZL_2)=2 . A84
bgzbgl bé’zb 21, (agz 981 91 92 7-”681/82 (A84)

From Equation (A30), the derivatives of the elements of 7 by some control parameter g are
calculated as

ony 1 T, T In
% viElm rww) o
ony, 1 ATy T Ty a'rz}
ony o 9% A86
g \/1—T§{Bg 1-120g (450
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therefore, the factor Cg, o, in Equation (A84) is obtained as Equation (36) and the Berry curvatures are

given as Equations (34) and (35).

Appendix E. Formulation of Diamond-Shape Interferometer

This section explains the foundation of the Schrodinger Equations (3) and (4). At the four sites in

the interferometer, the Schrodinger equation is
(e—eu)|p(u)) = - Zauv [$(v))
v

Explicitly, at sites # = 0,1, b, c:

jlp(2)

(e—e0) [$(0)) = — (Uop (b)) + Uoc[9(c))) —jl(—
(e—enlp) = — (U lp®) + T l9(e)) -
(e—e)lp®) = — (U 19(0) + U [9(1))),
(e—e) lp(e)) = — (T [9(0) +Ua p(1))).

1
€—€p
1
€ —

<
=
S
>
=
Il

<
—~
a
NS
=
Il

By putting these into Equation (A88),

=) lp0) = U (~o ) [0 19(0) + T lp(1)]

€ —€p

o (— ) [T 910D + Ut (1)) = (-1

_ (IObIbo n ]0c]c0) 19(0)) + {HObabl . Uoc

€—e€, €—¢c €—¢€p €—
Then we define real variables

]uv]uw

,
€— €y

Yuvw

and introducing a 2 x 2 matrix

W = Uy Uy n Uoc U
€—¢€p € —€c
= Yoo UopUp1 + voer Uoc U1,

we obtain the relation equivalent to Equation (3)

(628, 19(0) + Tyt [p(1)}]

o [0 19 () + T [p(1))]

€

(€=wo)[9(0) = Wip()) —jlp(-1)),

90

”} p(1) — jlp(~1)).

(A87)

(A88)
(A89)

(A90)

(A91)

(A92)

(A93)

(A94)

(A95)

(A96)
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where we defined renormalized site energy at u = 0, yo = €g + Yopo + Y0c0- By putting Equation (A92)
in Equation (A89),

(e —e) [p(1))

0ty (22 ) [0 () + G lp(1)]
4 (2 ) [ak o) + G lp(a)] - lp(2)

(Lol g, + o gt ) ooy + (L0002l i)y — gy

€—€, €—¢€

Hence, we have the equation equivalent to Equation (4)

e—y)lp@) = W) —jlp(), (A97)

where we introduced renormalized site energy at u = 1, y1 = €1 + Y1p1 + Y1c1. We defined v, = ygp1,
Ve = 0 and Uy, = Uy Uy, Ue = Uge Uy
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Abstract: The ability to control quanta shown by quantum pumping has been intensively studied,
aiming to further develop nano fabrication. In accordance with the fast progress of the experimental
techniques, the focus on quantum pumping extends to include the quicker transport. For this purpose,
it is necessary to remove the “adiabatic” or “slow” condition, which has been the central concept of
quantum pumping since its first proposal for a closed system. In this article, we review the studies
which go beyond the conventional adiabatic approximation for open quantum systems to transfer
energy quanta and electron spins with using the full counting statistics. We also discuss the recent
developments of the nonadiabatic treatments of quantum pumping.

Keywords: nonadiabaticity; quantum heat pumping; spin pumping; relaxation

1. Introduction

According to the rapid development of experimental techniques, the downsizing of devices has
been accelerated to extend possibilities to control single-electron current [1], spin-polarized current [2,3]
and even thermal transport [4]. The trend is based on the aim to construct electronics with low energy
consumption, quantum information processing, as well as quantum metrology [1,5].

Quantum pumping phenomena have attracted intensive attention, since they show the
controllability of quantum transfer to extend the possibility of nano fabrications. The first proposal
of quantum pumping was given by Thouless to transport electrons between two environments [6,7].
Its essential point is to adiabatically or slowly modulate the potential, which is described with the
superposition of two standing waves in an out-of phase way [6-8]. Since the work of Thouless,
the “adiabatic” change or “slow” modulation of parameters has played a central role in theoretical
treatments of quantum pumping phenomena. However, the fast development of experimental
techniques after the first experimental study on electron pumping with a quantum dot [9] requires
us to investigate conditions on transferring quanta quicker and more precisely. In the present review,
we classify the meaning of “quick” or “slow” in quantum pumping and show a standardized theoretical
treatment—called full counting statistics (FCS)—to attain the purpose.

The physical situations referred to by the same term “adiabaticity” are roughly divided into three
categories: (1) slow change in potential to allow the application of the adiabatic approximations to
wave functions associated with transported particles [6,7]; (2) slow and small change of parameter(s)
such as the chemical potential and voltage to allow a linear expansion of the scattering matrix [10-17]
or Green functions [18-26] associated with transported electron charge or spin; and (3) slow change of
parameters compared with the relaxation time of the relevant system with using FCS [27-32]. Different
from the former two treatments, the third succeeds in including explicitly the finite relaxation time in
adiabaticity. Because isolating any quantum system from its surroundings is impossible, considering
relaxation phenomena is indispensable in implementing quantum pumping systems. With further
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developments of experimental techniques in mind, removing the adiabatic condition in this third
instance is necessary. Before going further, let us provide a quick review of the conventional studies on
pumping phenomena from the view point of the above summarized classifications of the adiabaticity.

Sinitsyn and Nemenman treated the classical two-state stochastic system [27] using FCS
to represent the pumped quantity with a geometrical phase, first expounded in Reference [33].
The relationship between finite relaxation time and adiabaticity in the context of open quantum systems
was first discussed by Ren, Hanggi, and Li [28] by extending the FCS approach in Reference [27].
Considering a two-level system coupled to two environments, they found that the pumping of
energy quanta occurs under out-of-phase conditions and sufficiently slow (adiabatic) temperature
modulations of the environments even if the bias is averaged out during a period. The power of the FCS
approach can be found in the further application to electron charge pumping through single or double
quantum dot(s) coupled to two leads [29-31]. They found that the sufficiently slow and out-of-phase
modulations of the chemical potential can induce electron charge pumping, which is represented by a
geometrical formula. In these instances, the condition for a sufficiently slow (adiabatic) environmental
modulation means that the relevant two-level system approaches steady state sufficiently quickly.

In many varieties of quantum pumping phenomena, the generation of spin polarized electron
current (spin current) by periodic parameter modulation has attracted a great deal of attention because
of its promising applications in spintronics. Referred to as spin pumping, much effort has been made
to develop its protocols. Conventionally, the protocols fall roughly into three classes: those using
(i) a precession of magnetization in a magnetic material attached to a normal metal [12,13,19-26,34-36];
(ii) a periodic modulation of parameters such as gate voltages and/or tunneling amplitudes in a
system consisting of quantum dots subjected to a magnetic field and normal metal leads [14,32,37-40];
and (iii) a periodic modulation of strength of magnetization in addition to parameters in a system
consisting of quantum dots attached to a magnetic lead and/or normal metal leads [34,35,41,42].
Among these protocols, those using precession of magnetization—protocol (i)—have attracted
intensive studies because it can generate pure spin current in a simple ferromagnet/normal metal
heterojunction [3]. So far, the protocol has been mostly studied in situations where the precession
of the magnetization is sufficiently slow, which is called adiabatic pumping. It was first proposed
by Tserkovnyak et al. [12,13] based on the scattering theory of adiabatic quantum pumping given by
Brouwer [11]. Its alternative formalisms based on Green’s function [19,20,22-26,36] have also been
proposed by several authors. In these studies, the adiabatic contribution to the spin current generation
has been obtained as a linear response to the precession, which corresponds to adiabaticity No. (2),
with an implicit assumption of an infinite relaxation time. There are a few studies addressing adiabatic
spin pumping with a finite relaxation time [34,35], where a slow modulation means smallness of the
precession frequency comparing with the tunneling rate.

In the present article, we intend to review our recent studies on the role of nonadiabaticity
with a finite relaxation time in quantum pumping of energy quanta and electron spins. For the
purpose, we rely on adiabaticity condition No. (3), where the adiabaticity means a slow modulation
of parameters compared to the relaxation time of the relevant system—defining the relaxation time
of the relevant system as 7;, we find that the condition for a slow modulation requires 7, to be much
shorter than the period of the temperature modulation, which is written equivalently in terms of
the modulation frequency Q, 7,1 > Q. Thus, we consider the nonadiabatic regime up to 7, ! > Q
in the following. As a formulation of nonadiabatic pumping, we present our extension of the FCS
approach to quantum pumping toward the nonadiabatic regime. By applying the formulation to the
pumping phenomena of energy quanta and electron spin, we find the following features: For the
former, we demonstrate that nonadiabaticity yields a contribution to the pumped quantity in addition
to the terms such as dynamical and geometrical phase terms which were obtained under adiabatic
conditions. For the latter, surprisingly, we show that there are no contributions under the adiabatic
condition and nonadiabaticity is an essential feature.
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In the rest of the paper, we present in Section 2 our formulation describing the pumped quantity
based on FCS. We discuss quantum heat pumping in Section 3 and spin pumping in Section 4,
followed by a discussion and conclusion in Section 5.

2. General Formalism

We formulate a model of quantum pumping under periodic modulation of a parameter applying
the FCS based on two-point projective measurements [43,44]. Let us consider a system consisting of a
relevant system (S) and an environment (E) described by the Hamiltonian

H = Hy + Hsg, (€

where Hy = Hg + Hg and Hgg, is the system-environment interaction. The FCS provides the statistical
average of the net amount of a physical quantity, such as energy and particle number, exchanged
between the system and the environment during a certain time interval. It is based on a joint probability
of outcomes of two successive projective measurements of an observable of the environment Q
corresponding to the exchanged quantity. The measurement scheme is—at t = t;, we perform a
projective measurement of Q to obtain a measurement outcome qt;s for t; <t < tj;q, the system
undergoes a unitary time evolution through an interaction between the system and the environment;
and at t = t;;1, we perform a second projective measurement of Q to obtain another outcome g;
The joint probability for the measurement scheme is given by

i1

Plgt;,1,q4) = Tr[Py, Ultiga, i) Py, W(t) Py U (£, 81) Py, ], @

where Tr denotes the trace taken over the total system, P;, = [q;)(g:| the projective measurement of Q
att, U(t, t;) the unitary time evolution operator for the total system, and W (¢;) the initial condition
of the total system (see Note [45]). The net amount of exchanged quantity during the time interval
Ot = t; 1 — t;is then given by Aq; = g1, — g1, where its sign is chosen to be positive when the physical
quantity is transferred from the system to the environment. The statistics of Ag; is contained in its
probability distribution function

P(Agi)= Y. 5(Agi— Gty — 494)) Pl 1) ®3)

Tti1-t;
The moments of Ag; are provided by the moment generating function,
z() = [ p(ag)eidng, @)

where A is the counting field associated with Q, for example, the mean value is computed from

_9Z(\)
<A’iz> - a(l)\)

. ©)

A=0

Our next task is to describe the time evolution of Z(A). Using the Definition (3) and introducing

the modified evolution operator U, (t,t;) = ¢"*QU(t, t;)e <, the moment generating function Z(A) is
expressed as

Z() =W (t:9)], ®)

with
WO () = Uy o, )W (U o (1 1), @)
where W(t;) = ¥, Py W(t;)Py, is the diagonal part of W(t;). For A = 0, WA=0) (1) reduces to the

usual reduced density matrix of the total system. By taking the time derivative of WV (t), we obtain a
modified Liouville-von Neumann equation
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i=WW () = cAWND (), ®)

with a modified Liouvillian LMW (1) = 1~ [H, WM (£)],, where [A,B], = AWB - BAY,
and AWM = ¢1Q/24,-1AQ/2 Ip Appendix B, we explain the connection between the formalism
of the FCS based on two-point measurements and the formalism by Sinitsyn and Nemenman in
Reference [27].

By introducing a projection operator P : W) (#) — Trg[WW (+)] © pg, where Trg, is the partial
trace taken over the environment and p is a fixed state of the environment, the equation of motion for
the reduced operator of the relevant system p(*) (t) = Trg[W}) (#)] can be cast into the form of a time
convolutionless (TCL)-type quantum master equation [46-53].

Assuming that the initial state is factorized between system and environment as W(t;) = p(t;) ® pg
and the fixed state of the environment pg, is the Gibbs state with an inverse temperature 8, the TCL
master equation including the counting field is expressed as

S0 (0) = M (0p (1) ©
The super-operator ¢ ()‘)(t) is expanded as a sum of “ordered cumulants” of the interaction
Hamiltonian Hgg up to infinite order. Taking leading terms up to second-order, we have

£V (D (0) = — 55,0 ()] - = [ deTrglttss, [Hep (<), oV () 9l (10

Note that the time dependence of the memory kernel reflects the finiteness of the correlation time
of the dot-lead interaction, which allows us to describe the non-Markovian dynamics.

To work with the super-operator, it is convenient to introduce its supermatrix representation,
where we represent the density matrix p*) in vector form and the super-operator ¢*) in matrix form.
In this representation, the formal solution of the master equation Equation (9) is expressed as

|p()»>(t)>> =Ty exp{/tbtg(?»)(s)ds} \pw(fz‘)», (11)

i

where [pY)(t))) represents the vector form of p*)(t), T exp the time-ordered exponential, and &) (t)
the supermatrix form of &%) (s). With the representation, the moment generating function Equation (6)
is rewritten as Z(A) = Trg[o™) (t;11)] = (1|o™M (ti11))), where Trg is the partial trace taken over the
relevant system and ((1] the vector representation of the partial trace Trs. Using the formal solution
Equation (11), we recast the expression of the mean value into the form

tip
a) = [ J()ds (12)

s

with the inertial flow of the quantity,

=(A)
10 = | 5] e, (13)

To formulate quantum pumping based on the above framework, we need to accumulate transfers
of the physical quantity under a cyclic modulation of system and/or environmental parameters during
a period 7. For this purpose, we consider a step-like change of the parameters; specifically, dividing
the period 7 into N intervals, t; <t < t;;1 (i=1,2,--- ,N)with f; = 0and ty;1 = 7, fixing a value
of the parameters during each interval, and changing the value at each #; discretely. With the total
density matrix factorized at each t;, the mean value as well as the inertial flow of the quantity for each
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interval are given by Equations (12) and (13), respectively. The time integration of (t) over one period
T provides the accumulated value of the quantity over one cycle

T N
(aa) = [ o)t = (o), (14

where (Ag;) is the mean value of the net transferred quantity in the ith interval.
3. Pumping of Energy Quanta

3.1. Model

Let us consider the energy transfer via a two-level system between two environmental systems
(L and R) consisting of an infinite number of bosons [28,54-56]. With the definition of the lower (higher)
level of the two-level system as |0) (|1)), respectively, the Hamiltonian of the model is written as

Hs = Y enlm)(ml, He= Y hwp,bf,be,,
m=0,1 kv

Hee = YX(0)1[+]1)(0),  (v=LR), (15)
v

where X, = Y hgkﬂ,(b;(rlv + byy), with b;;v and by, the creation and annihilation boson operators of the
kth mode of the vth environment. The model scheme is shown in Figure 1A.

We consider the energy transfer from out-of-phase temperature modulations of the two
environments, corresponding to the bias averaged out during a period 7 [28]. To discuss the
nonadiabaticity for this model, we study energy (boson) transfers under cyclic and piecewise
modulations of the environmental temperatures T; and Ty dividing 7 into N intervals, t; < t < t; 11
(i=1,---,N)witht; =0and ty1 = 7. We need to discretize the temperature modulation because
conventional treatments describing relaxation phenomena require the environmental temperature to
remain constant. By changing the number of intervals of the temperature modulation, we compared
each time interval with the relaxation time of the relevant two-level system and thus we are able to
discuss nonadiabaticity explicitly, for example, from the scale between 7, and Q. In taking the limit
N — oo, we reveal energy transfer features under a continuous modulation. In Figure 1B, we plot the
time dependence of the temperature modulations used in this study calculated for a typical number of
discrete time intervals N = 20.

(A) (B
300 TL (f)
E,:‘ -
.q'\ 250
Environment Environment Il
L R 1 200
g 150
anharmonic junction E(S.

BB
oS

Figure 1. (A) Model scheme: a two-level system as an anharmonic junction interacts with two
environments (L and R). (B) Temperature modulations, Ty (t) = 200 4 100 cos(wt + 71/4), and T (t) =
200 + 100 sin(wt + 7t/4), discretized with N = 20.

3.2. FCS Formalism Applied to Pumping of Energy Quanta

We apply the general formalism of the FCS in the former section to this model focusing on weak
system—environment coupling and considering long time (Born-Markovian) limits by taking t — co in
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the upper bound of the integral in Equation (10). In this limit, the super-operator ¢(*) (t) becomes time
independent during each interval. We find that the mean value of the transferred quantity between
the relevant two-level system and the vth environment in the ith time interval, (AgY) is written as

ti
(agf) = ho{ A [t puo(t') - Blet), (16)

with wp = (g1 — £0) /T, poo(t) = (0[p*=0)(£)|0), and 6t = t;;; — t;. AY and BY in Equation (16)
are coefficients defined as A} = f(kg/i + k;ri) and B/ = —k; ; with rate constants k; ; and kj ,,
which govern the time evolution of pg(t) during t;_1 < t < t;. Their explicit expressions are
kj;=Tvn,;and ky ; = Ty(1+n,,;), where n,; = 1/ (exp[1p}wo] — 1) is the Bose-Einstein distribution
for the inverse temperature B} of the vth environment during the ith interval and I', denotes the
feature of the system—environment coupling as I', = 27th, (wp) with the coupling spectral density
hy(w) = Yx g%rvé (w — wyy) = Aw exp[—w/w,], where A is the coupling strength and w is the cutoff
frequency. To obtain (Ag¥), we need pgo(t), the time evolution for which is

poo(t) = —Kgip00(t) + Kyyip11(t)

with K;; =), k;’i and K, ; = Y, kf{,i' The differential equation for pg(t) is solved to give

p00(t) = psi + € (poo(ti-1) — ps,i), 17)
where we denote p;; = —K,,;/A; with A; = —(K; + K, ;). Using Equations (12), we find that the
total transferred energy during the period is calculated to be

N+1
(Ag") = ) (Aq)) = hewo(GF + G5 +G3), (18)
i=1
where
N+1
Gl = Y (Alpsi—B})t, (19)
i=1
N AY
G, = 2 Al (Ps,i+1 = Ps,i)r (20)
i=1 M+l
N+1 AV A st
gé/ = E ¢01+Z Os,i—1 — Ps,i le (Ps,n 1— Psn) 1Lenot, (21)
with
¢0; = (poo(0) —ps1)f(1,1), (22)
AY
P = A1 A5t+2f"zm+1) (23)
m=i
AL 1 Aot A 40t
frpa) = JlebrrMoi(eht —1). (24)
q

In the next subsection, we show the physical meanings of these obtained terms.

3.3. Adiabatic and Nonadiabatic Contributions

Taking the Riemann sum on G} and Gj by setting N — co and 6t — 0, we find that they reduce to
the dynamical and geometrical phases, respectively. For instance, we obtain the energy transfer with
the environment R with setting v = R as [56]
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T no_ ’
gR — / g FLER (1L () — ne(E)) 25)
0 K
withK=Y,_; g Tv(1+2n,(t)), and
R _ 20 TR(TL +TR) dng dny,
G2 = / / dTLdTR{ K3 dTg dT}, } (26)

which coincide with the ones in Reference [28] and imply that the sum of G} and G} corresponds to
the adiabatic contribution.

Considering this point, we find that the nonadiabatic contribution is described with a new extra
term in (Ag") added to the adiabatic contribution in the form,

(A9") = G + Graar @7)

with Q;’d =G/ +Gj and gym = G5. This is consistent with the expression of G, which shows that,
when pgg(0) = ps1 and the absolute value of A;6t is sufficiently large, we can neglect G§. The former
condition corresponds to the adiabatic approximation in Reference [28], where the population of the
relevant system instantaneously approaches the steady state for the temperature setting at an initial
time. The term gg shows that the nonadiabatic contribution to the transferred quantity explicitly
depends on the initial condition of the relevant system, pgo(0). Moreover, expanding Equation (13)
about 6t up to the first order, we find that the nonadiabatic effect described in Q; shows a correction to
both G} and Gj. In the following, we present a numerical evaluation of the formulas obtained.

3.4. Numerical Evaluation of the Nonadiabatic Spin Pumping

3.4.1. Population Dynamics

Figure 2 presents the transient time evolution of py(t) during the first period of modulation
by changing the time interval 6t while keeping the number of divisions N constant at N = 40.
We set parameters as A = 0.01, w, = 3wy, and fiwy = 25 meV which shows the relaxation time
T = woTr ~ 5. (The value of fiwy is chosen to be the same as the typical value for a molecular
junction in Reference [28].) Setting the initial condition of the two-level system with the effective
inverse temperature as s = f:’ﬁ = PB(0)(~1.07) corresponding to the stationary state for the
initial temperature setting, we plot the time dependence of the population in the lower state, pgo(#).
The population pgo(t) under the adiabatic approximation (Figure 2, red line) shows that the relevant
system quickly approaches the stationary state corresponding to the temperature setting in each time
interval. Setting the interval éf to be much larger than the relaxation time as in Figure 2A corresponding
to the lower modulation frequency (2 = 0.3 THz, we find that the relevant system mostly follows the
temperature modulation as the stationary state is approached, which shows the feature close to the
adiabatic approximation. With decreasing interval 6 (Figure 2B,C), we find that the relevant system
does not follow the temperature modulation thus exhibiting nonadiabaticity.

poo(f)

Figure 2. Time dependence of the population in the lower state of the two-level system with changing
modulation frequency : (A) O = 0.3 THz, (B) Q = 1 THz, and (C) Q) = 5 THz with s = 0.01, w, = 3wy,
hwy = 25meV , and N = 40. The time variable is scaled with w as f = wyt.
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3.4.2. Frequency Dependence

We show in Figure 3 the frequency dependence of the pumped quantity lenergy = Thlwo ((AgR) —
{(Aqh)). For comparison, we also exhibit the frequency dependence of the quantity under the adiabatic
approximation presented as a geometric phase in Reference [28]. We find that the nonadiabatic term
decreases the pumped quantity in the higher frequency region. We also find that the pumped quantity
depends on the initial condition of the two-level system. The feature shown in Figure 3 is universal for
different settings of these parameters. For example, when we increase 7, by decreasing the coupling
strength with keeping the value of wy, we find the similar feature of the frequency dependence ranging
up to ~10 GHz which corresponds to the maximum driving frequency of electronic voltage due to the
limitation of experimental bandwidth at the present time. The parameter setting of A in this study is
chosen to expect the further acceleration of the recent rapid development of Tera Hz technology in
a future.

Tenergy (meV /ps)

Figure 3. (Color online) Frequency dependence of pumped quantity lenergy with A = 0.01, w, = 3wy,
and fiwy = 25 meV with changing initial conditions of the two-level system 5 values: (1) the black line
corresponds to Bs = B(0)(~1.07) which is the effective inverse temperature of the stationary state for
the initial temperature setting, (2) the blue dotted line to s = 5; (3) the red dottdashed line represents
the frequency dependence of the net geometrical phase [28].

4. Spin Pumping
4.1. A Minimum Model of Spin Pumping

We consider a minimum model of spin pumping involving a quantum dot with dynamic
magnetization and an electron lead (Figure 4A). The magnetization of the dot M(t) rotates around the
z-axis with a period 7. An electron in the quantum dot is spin polarized because of the s—d exchange
interaction with magnetization and is represented by the two-component creation and annihilation
operators at = (d% dI), and d, where 1 and | denote the direction of the electron’s spin magnetic
moment parallel and antiparallel, respectively, to the z-axis.

The Hamiltonian of the minimum model consists of three terms H(t) = Hq(t) + Hy + He. Hq(t),
describing the dot, is defined by

Hy(t) = d'leq — M(1) - o]d, (8)

where €4 is the unpolarized energy of a dot electron, M(t) = M(sinfsin¢(t),sinfsin¢(t), cosh),
and ¢ = (0x, 0y, o) the vector of Pauli matrices. Introducing the eigenstates |j;, j; ) (with j;() = 0or 1)
of the number operator of the dot electron Y, d}.d, as a basis, the dot Hamiltonian is represented by
the matrix
|0,0) |0, 1) 1,0) [1,1)
0 0 0 0
0 €q+Mcosf —Meti#*sing 0
0 —Me ¥Wsing ey — Mcosb 0
0 0 0 2¢q

(29)
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(A) B

! C ti
Dot “%ad® Lead

Figure 4. (A) The minimum model consists of a ferromagnetic quantum dot attached to an electron
lead. The dot has a dynamic magnetization M(t) that rotates around the z-axis with a period 7.
The number of transferred electrons with spin magnetic moment 1 (|) is captured by the counting field.
(B) Schematic of the spin current generation in the minimum model. The scheme can be summarized as
follows: (1) an electron with |-spin enters from the lead onto the dot subject to the dot-lead interaction;
(2) the spin of the electron is flipped by the precessing magnetization; (3) the electron with -spin
moves back from the dot to the lead.

The electron lead is described by the term

Hi= Y Y ech con (30)
=11 k

where ¢, and ¢!, with o =1 or | are annihilation and creation operators of a lead electron with energy
€ and spin-o. The dot-lead interaction is assumed to be spin conserving with

Hy =YY hop(dicor +cf ydo), (31)
ok

where vy is the coupling strength, which we assume to be weak.

Intuitively, the generation of the spin current in the minimum model is summarized by the
following scheme (see Figure 4B): (1) an electron with |-spin moves from lead to dot under the
dot-lead interaction, (2) the spin of the electron is flipped by the precessing magnetization, and (3) an
electron with 7-spin moves back from dot to lead. For spin-current generation, the essential conditions
required in setting parameter values are

eq—-M<u<eg+M and B! <2M, (32)
where B is the inverse temperature of the lead.

4.2. FCS Formalism of the Spin Pumping

In the following, we apply the FCS outlined in Section 2 to evaluate the number of transferred
electrons with spin ¢ from projective measurements of the electron number in the lead represented by
Ne =34 C;’kcg,k. By associating Hy(t), H), and Hy with Hg, Hg, and Hgg, respectively, and defining
an outcome of the projective measurement at time t as 1., we analyze the electron dynamics under
spin pumping.

In order to explicitly examine the influence of the relaxation process on the spin current generation,
we discretize the rotation of M(t): divide the period 7 into N intervals, t; <t < t; 1 (i=1,---, N)
with ty = 0 and fy41 = T fix the direction of M(t) during each interval; and change ¢ at each ¢;
discretely with substitution ¢; = ¢;_1 + 6¢ with ¢g = 0, o = 27r and é¢ = 271/ N (see Note [57]).
The net number of electrons with spin-o- during the ith interval can be evaluated from the difference in
outcomes Ang; = gt | — Not;-
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By introducing counting fields A4 and A| corresponding to observables Ny and N, respectively,
we can evaluate the mean value of transferred electrons,

tit1
(Ang(y) i) = /t Tt (), (33)
with an inertial flow of electrons
9zt () As(y=0
ho® =@l S e, (34)
W (At () Ay(y=0

The inertial flow of electrons provides an instantaneous spin current,

Jspin(t) = J3(8) = ], (8), (35)

and its time integration over one period provides a temporal average of the spin current,

1 /T
Ispin = T /0 ]spin(t)dt- (36)

To discuss the role of nonadiabaticity in spin pumping, we focus the Born-Markovian (long-time)
limit by taking the limit t — oo of the supermatrix ZM(t) in each interval. In this limit, the matrix
elements of ZY) are time-independent during each interval and determined by the direction of M in
each interval.

4.3. Absence of Adiabatic Contribution

Let us first show absence of the adiabatic contribution to the spin pumping in the minimum model.
In previous studies, the adiabatic regime of the spin pumping in the minimum model has been studied
based on the linear expansion of the Green function in the rotation frequency of M(t) [23,24], which we
referred to as the adiabaticity No. (2). The purpose of the present subsection is to re-examine the
adiabatic contribution of the spin pumping from the view point of the adiabaticity No. (3), where we
consider a sufficiently slow rotation of M(t) comparing to the relaxation time, that is, Q < 7, !
following the procedure by Sinitsyn and Nemenman in Reference [27].

Following the procedure, the adiabatic regime is assessed by dividing the cycle of modulation
into time intervals 6t(= 7 /N) and assuming a quick approach of the system to its steady state in
each interval. In the steady state of the minimum model, we can expect that the quantum dot is
occupied by a single electron whose spin is aligned toward the direction of M(t), and, because of
the rotational symmetry of the model, the steady state populations of the quantum dot are invariant
under the rotation of M(t) around the z-axis. It indicates that no electron transfer occurs in the
adiabatic regime. As a result, we can expect absence of the adiabatic contribution to the spin current
generation. We provide an analytical proof of the intuitive observation in Appendix C (see also the
original argument in Section 4 in Reference [58]).

As a result, we need to include the nonadiabatic effect to obtain a finite spin current. It is in
marked contrast to the previous example of the energy pumping, where the adiabatic contribution to
the energy pumping G, is finite.

4.4. Numerical Evaluation of the Nonadiabatic Spin Pumping

We now turn to examine nonadiabaticity in spin pumping. For this purpose, we evaluate
numerically the instantaneous spin current ]spm(t) and its temporal average Ispin.

To describe the dot-lead coupling, we use the Ohmic spectral density with an exponential cutoff
o(w) = T4 036(w — wy) = Awexp[—w/w,], where A is the coupling strength and w is the cutoff
frequency. For the numerical calculation, we chose 2M, the energy difference between the spin-1 and
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-] states in the dot, as an energy unit. We distinguish parameters normalized by their units using an
overbar (see Note [59]). Specific values of the normalized parameters are given in the figure captions.
As we are focusing on the spin transfer driven by the rotating magnetization, the dot is set in a steady
state Equation (A25) at f = 0 to exclude any transient spin transfer caused by the dot-lead contact.

4.4.1. Electron Transfer Dynamics

Let us first examine electron transfer dynamics under the cyclic rotation of the magnetization to
show the generation of the spin current in the nonadiabatic regime. For this purpose, we numerically
evaluate the time evolution of the populations p;(t) = (j,f| 0O (8)]j,7") (ooo: empty state, p1o:
half-filled state with spin-1, pg1: half-filled state with spin-|, and p11: completely filled state) and
corresponding instantaneous electron and spin currents, Tt (t) and ]spin(t). In Figure 5A,B, we present
the time evolution of populations and instantaneous currents for one cycle of the step-like rotation
with division number N = 5 and time interval 6t = 20. The change in angle at each subsequent t; is
d¢ = 2m/5, thatis ¢; = ¢;_1 + 271/5 with ¢g = 0.

A) .

Population

Instantaneous current J

Figure 5. (A) Time evolution of the populations in the dot under the step-like precession of the
magnetization with 6f = 20 and N = 5. The populations deviate from their steady-state values
just after a sudden change of the angle ¢, but then they approach new steady state-values for each
¢;. The figure shows the steady-state values of the populations to be invariant. This is because of
the rotational symmetry of the system about the z-axis. (B) The instantaneous electron and spin
currents J;(t) (red line), J (t) (blue line) and Jspin(t) (black line) corresponding to the population
dynamics in panel (A). The time dependences of the instantaneous currents indicate that electrons
starts moving between dot and lead just after the sudden change of ¢, and J; and ]| have opposing
directions. The latter trend show that the instantaneous electron currents are balanced as a result of
charge conservation in the lead. In contrast, the instantaneous spin current Jspin always takes positive
values indicating constant spin current generation. The parameters are set to €4 = 10, fi = 10, § = 100,
A =0.01, @, = 4,60 =51/6,and d¢ = 271/5, which satisfies the condition (32).

In Figure 5A, we find that initially the populations deviate from their steady-state values by
changing ¢ at t;, but then they approach new steady-state values for each ¢; with the populations
remaining unchanged from their initial values because the steady-state populations are independent
of ¢ (see the analytic expression of the steady state, Equation (A25)). In the figure, the time evolution
of the components pg; and p1o (blue and red lines) exhibit oscillations caused by transitions between
states |0,1) and |1,0) in consequence of the applied magnetization M (Larmor precession). Its period
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is given by the inverse of the Larmor frequency T; = h/2M = t,. The other two components pgg
and p1; also exhibit transient behavior after changing ¢ but they do not exhibit a Larmor precession
because the magnetization contributes transitions including neither |0,0) nor |1,1) (see Equation (29)).

In Figure 5B, the colored lines representing ], show that spin-1 electrons (red line) and spin-|
electrons (blue line) are moving in opposite directions; the former move from dot to lead, whereas
the latter move from lead to dot. These trends show that the instantaneous electron currents J; and ]|
are balanced as a result of charge conservation in the lead. In contrast, the instantaneous spin current
(black line) always takes positive values, [spin > 0, indicating the generation of positive spin current
into the lead without an associated charge current, which we call pure spin current.

4.4.2. Frequency Dependence
We next consider the dependence of the spin current on the frequency of precession Q) = 271/
Here we change the period of precession 7" = Nt by varying the time interval 6t while the number of
divisions remains fixed to N = 20. All other parameters and initial conditions are set as before.
In Figure 6, we plot the dependence of the averaged spin current Ipin against the normalized
frequency Q) = Q/wy.
The frequency dependence of Isp;n features two characteristic regimes: a low-frequency regime,
where Ispin depends linearly on Q (OO < 0.0025) and a high-frequency regime, where Ispin exhibits
oscillations with respect to Q). These characteristics are explained by comparing the time interval §f
and the relaxation time 7, of the population of dot electrons (7, = 5 in the present case; see Figure 5A).
For lower frequencies, for which 6f > %, the numerator of the time integral of Jspin(t) in Equation (36)
becomes constant because the instantaneous spin current has already vanished at a certain < 6F
(see Figure 5A), which results in the linear dependence of Iypin, on Q). As Q) becomes larger and the
time interval satisfies 6f < 7, the angle ¢ changes during the relaxation process. In this situation,
the electron dynamics exhibits two extreme features; when 4t is an integer multiple of the period of the
Larmor precession & /2M, we have resonance enhancement of the transition between half-filled states
[0,1) and [1,0) by the sudden change of ¢ to exhibit a maximum of Ispin, whereas it is anti-resonantly
suppressed to exhibit a minimum when 67 is a half-integer multiple of the period [58].

Ispin
0.0025 !
t
0.0020 f» !
] ‘
e ‘
0.0015 I !
R 4
Y *
0.0010 A Y {
R S S A 4
[l L] Il
0.0005 . IR 1Y
FTAAVIA N
0 / Q
0015 0.020

0 0.005 0.010

Figure 6. Frequency dependence of the temporal average of spin current Ispin. The division number
of the step-like precession is now set to N = 20. With fixed d¢ = 71/10, the frequency is changed by
changing ét. The frequency dependence exhibits two characteristic features: the spin current depends
linearly on Q) for O < 0.0025, whereas it exhibits oscillation with respect to Q) for Q0 > 0.0025. The other

parameters are the same as in Figure 5.
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Calculating the spin current for different values of 8, we find that the spin polarization of the spin
current exhibits a dependence on 6 in that for 0 < 6 < 77/2 the spin polarization is antiparallel to the
z-axis, whereas for 71/2 < 6 < 7 the spin polarization is parallel to the z-axis. For 6 =0, /2, 7,
the spin current vanishes because the spin flip in the quantum dot does not occur for 6 = 0, 7 or the
two half-filled states in the dot |1,0) and |0, 1) degenerate for 6 = 7t/4 (see Equation (29)).

Finally, we note that the averaged spin current Ipin diverges with respect to ). The divergence is
caused by the accumulation of a nonzero impetus of current Jspin(t) just after the sudden change of
¢ (see Figure 5). In Reference [60], we showed that the nonzero impetus of ]spin(t) is an unphysical
effect caused by the Born-Markovian approximation, and the divergence is eliminated by taking into
account the non-Markovian effect by keeping the upper bound of the time integration in (10) finite.

5. Discussion and Conclusions

In this paper, we reviewed studies which go beyond the conventional adiabatic approximation
for open quantum systems to transfer energy quanta and electron spins with using the full counting
statistics, which could provide conditions to show quicker transport. We considered a setup consisting
of a two-level system representing an anharmonic junction or a quantum dot and its environment(s)
representing a canonical or grand canonical ensemble of the energy quanta and the electron to be
transferred. We needed to take into account relaxation phenomena in discussing the transfer. In this
case, the adiabatic approximation corresponded to the situation where the relevant system such as the
two-level system approaches its stationary state faster than the period of modulation, that is, 7,71 > O
with 7, the relaxation time of the two-level system and () the modulation frequency. Because the
relaxation time is finite, the condition for which the adiabatic approximation is valid corresponds to
the much longer period of the modulation than 7,. This means that we can analyze systematic features
including adiabatic as well as nonadiabatic features by changing the ratio of the modulation period
and 7. To clarify the relationship between modulation period and 7, we discretized the external
modulation thereby permitting a systematic analysis of the ratio by changing each interval while
retaining the validity of the Born—-Markov approximation. For energy quanta pumping, we showed
that the nonadiabatic effect contributes a new term to the formula for the pumped quantity under the
adiabatic approximation. For spin pumping, we showed that adiabaticity made no contribution but
nonadiabaticity is essential. Comparing these features, we showed that the adiabatic contribution can
vanish when the stationary state does not depend on the external modulation as for spin pumping.
This means that we need to pay attention to the feature of the stationary state in using the adiabatic
approximation in describing relaxation phenomena. (We would draw the reader’s attention to the
differences in the meaning of nonadiabaticity which has been used in the electron charge pumping by
modulation of single gate voltage [61,62].)

With the same setup, the role of nonadiabaticity in pumping phenomena involving energy
quanta was discussed more extensively under continuous modulation [63] where the relaxation of the
two-level system is treated within the Born-Markovian approximation. In recent work of the present
authors on the role of the non-Markovian effect on spin pumping phenomena [60], we found that a
nonzero impetus of the dynamics of the pumped quantity under the Born-Markovian approximation
shows an unphysical effect, especially for higher modulation frequencies or for the short time regimes.
Because the instantaneous impetus contributes strongly under continuous modulation, including the
non-Markovian effect would also be necessary in pumping phenomena of energy quanta, especially
in evaluating the feature under continuous modulation. This situation remains an open problem.
In addition, we described in this work the relaxation process with ordered cumulants of up to second
order in the system—environment interaction. An extension to higher orders of cumulants is necessary if
we are to discuss relaxation phenomena under strong system-environment interactions. The inclusion
of cumulants up to infinite order within the Markovian approximation has been discussed for spin
pumping phenomena within the linear response regime using the Green functions [19]. To discuss the
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non-Markovian effect, it would be necessary to include higher-order cumulants, a topic that remains
for a future study.

We can find recent extensions of the treatments with full counting statistics into the strong
system-environment coupling for heat transfer [64] and electron pumping [65]. The essential idea to go
beyond the weak coupling is to use the similarity (unitary) transformations: the polaron transformation
(the reaction coordinate mapping) is used in the former (latter) studies, respectively. As mentioned
in the general formalism of FCS, it should be noted that we need careful treatments on the joint
probability, Equation (2), when we use the similarity (unitary) transformations on the time evolution
operator. The transformation of the projective measurement is also necessary to recover the original
joint probability (See Reference [45]). It might be necessary to compare the dynamics of transported
quantity with and without the transformation of the projective measurement.

Since the treatment of FCS to discuss the nonadiabatic effects on quantum pumping is general,
we can apply it to many other cases: One of the most interesting issues is to study the non-adiabatic
treatment on the combined effect caused by multiple external parameters such as in References [66-68]
where adiabatic transport of charge and/or heat is discussed under time-dependent potential and two
reservoirs with biased potentials. We can find other issues to remove the adiabatic approximation in
spin pumping via a quantum dot between reservoirs with biased chemical potentials [69] and in the
quantum transport and/or quantum pumping under dynamical motion of quantum dot [70] based on
the recent developments of experimental techniques on microelectromechanical systems [71]. Further,
it would be interesting to discuss the non-adiabatic effect on ac-driven electron systems coupled to
multiple reservoirs at finite temperature whose adiabatic treatment is discussed in Reference [72].
We expect that these treatments could provide insights to find new applications, such as the design of
nanomachines and understanding of the quantum thermodynamics, as well as quicker transport.
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Appendix A. Derivation of Quantum Master Equation for FCS

When we consider the FCS [44], the density operator W} (¢) evolves in time in accordance with
the modified Liouville-von Neumann equation

WM () = —icMWwM (), (A1)

where LW is the Liouville operator defined as £L(M A = #[H\A — AH_,] = }[H, A, for arbitrary
operator A with Hy = (/DM o= (/A — H, 4 Hgg 5. With these relations, £ is divided into

L = M4 o (A2)

where 1 1
iMa= =[HoA - AHy] LNA = +[HsgaA — AHgg, ). (A3)

We eliminate the variables of the environment using a projection operator P, which satisfies the
idempotent relation, P? = P. We also introduce a complementary operator Q = 1 — P. Denoting the
relevant and irrelevant parts of the time evolution operator as [52]

x(t) = Pe LYy () = Qeit™M (A4)
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with an initial time ¢y = 0, we obtain

Lty = P(iLW)x(t) + P(—iLD)y(r), (A5)
and i
Lyt) = Q(=iM)x(t) + Q(—iLW )y (). (A9)

The formal solution of Equation (A6) is given by
of . .
y(t) = / e~ QLN (=) o (LitW)x(t)dr + e~ 2EVQ, (A7)
0
Using x(7) = PtV (t=1)=iLWt — PeiL® (=) (x(t) + y(t)) and
t_Qic® (W)L T
o(t) = 1 7/0 e~ QLT Q(LipWypeitMTar = 1~ o(1), (A8)
we rewrite the formal solution of y(t) in the form
y(t) = 00 (1= B(1)x() + e~ 2 Q). (A9)
By substituting Equation (A9) into Equation (A5), we obtain
() = P(=iL™)o() "x(t) + P(—iLM)g(t)"1eQ LM g, (A10)

which holds for arbitrary projection operator and initial condition. Using the relation 8(t) ™1 = Y3 or(t)",
the first term on the right-hand side of Equation (A10) is rewritten as

P(—iLM)o()Tx(t) = P(—i™)x(t) + P(=iLo()x(t) +- - - . (A11)
To pick out the lower order of L (/\), we use the relation

Ay

—Qlli(’\)tQ _,LO tQT+exp/ dt'e 11:0 tQ( irA )Q —11;( } (A12)

and P,CSA) = E((J)‘)P, which gives

P(—iLM)o() x(t) = P(—ilM)x(t) +P(—i/W) f‘ —iLy) TQ(—iﬁ/(A))Peiﬁé"JTde(t)-‘r (A13)
= P(=iLM)x(t) + P(—iL'W) .fo (—il'M) (—1))PdTx(t) +
where we have used the definition
£M(t) = eife /Wity (A14)

When we multiply the initial condition W*) (0) by the right-hand side of Equation (A8), we obtain
the TCL equation for reduced density operator under FCS.

Let us consider a projection operator P = pgTrg where Trg refers to a trace operation over the
environment. When we multiply the initial condition of the density operator of the total system,
W(A,0) from the right by x5 () in Equation (A2), we obtain

(W (0) = peTrgW ™ (#) (A15)

Defining TrgWW (t) = p(M) (), we obtain the TCL equation for the reduced density operator
under FCS,
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400 (8) = Teg (~i£)p™ (9] + €V () (1) + D (1), (A16)

with
W = fa&”(t), (A17)
PN () = Trg[(—il)o(t) e QWM (0)). (A18)

Equation (9) with (10) is obtained by taking the lower term of ¢ A (b up to second order in £ and
replacing §§A) (£) with M (1),

EVpA) = [ Trel(—£) QL (~1))pep(A, ld. (A19)

with the factorized initial condition of the total system as W" (0) = pgo*(0), which makes the third
term on the right-hand side of Equation (A16) vanish. With the assumption Trg Hgg y, = 0, we have

M (B)pM(t)
= (%)ZTYE[HSE[HSE( ), 060 (H1A12],
= (4)*Trg[Hsg Hse A (—T)ppp™ (t) — Hsp apep™ () Hsg, A (—7)

( (A20)
—Hsp A (—T)ppp™ ())Hsg,—p + ppp™ () Hge,— 7 (—T)Hsg, -,

which coincides with Equation (110) in [44].

Appendix B. Connection between Two Formalisms of the FCS

We next explain the relationship between the two formalisms of the FCS provided by Esposito et al.
in Reference [44] and by Sinitsyn and Nemenman in Reference [27]. To establish the connection between
the two formalisms, we consider the number of quanta N as the observable to be measured to identify
the number of quantum transfers from S to E, as stipulated in Reference [27]. For a large class of open
quantum systems, the system—environment interaction is described by an interaction Hamiltonian of
the form Hsg = Vi + V_ = A ® B" + A' ® B, where Bt and B are creation and annihilation operators
of a quanta in the environment, respectively, and A is either a Hermitian or non-Hermitian operator
acting on the relevant system. V. = A ® B or V_ = VI describes transfer of a quanta from S to E or
from E to S. In this instance, the number operator of the quanta is given by N = B*B. The generalized
Liouvillian is expressed as LY = Lo+ Ly M2 L e M2 where LoWWY = 7 (HyW?) — WD Hy)
is the unperturbed Liouvillian, £ W) = a~H (V. W) — WV and £ W = = (VW) —
WM V) are Liouvillians describing the transfer of a quanta from S to E and from E to S, respectively.
Using the formal solution of Equation (8) with the given Liouvillian in Equation (6), we obtain a formal
expression for the moment generating function

Y Pue™, (A21)
n=—co
with P, the probability of having n net transitions from Sto E, e.g.,
t t t3 ty
p =] ([ dntite )ittt + [ s [t [ it ts) (i)
t; t; t t (A22)
X UO(i’3, tz)(—i[:_)uO(tz, tl)(—i£+)U0(t1, i’i) s > W(t,):| ,

where Uy(t1,t2) = exp[—iLo(t; — t2)] is the unperturbed time evolution operator. The expression for
the moment generating function corresponds to Equation (9) in Reference [27].
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Appendix C. An Analytical Proof of the Absence of Adiabatic Contribution to the Spin Pumping

Following the procedure by Sinitsyn and Nemenman in Reference [27], we divide the cycle
of precession into intervals Jt, which correspond to the step-like changes of M. For the step-like
precession, the density matrix of the dot during t; < t < t;, is given by

':‘0) 11 EU
() = €= & 1ol (0)), (A23)
j=1

where we denote the density matrix and the generator in the ith interval as |p§0)(t))) and EEO),

respectively, and | pgo) (0))) is the initial condition in the first interval. Taking the spectral decomposition

of EI@ and assuming a quick approach of the system to its steady state in each interval in

Equation (A23), as in Reference [27], the terms remaining in the decomposition are those that contain
the steady state |1 (t;))) satisfying & ._. \uo( i))) = 0. Evaluating the density matrix up to first order in
ot, we find the first-order term vamshes, implying the invariance of the steady state populations of the
dot under the step-like rotation of ¢ in our model (see Appendix D in Reference [58]). Thus, we find
that the density matrix at time t under the adiabatic limit can be approximated by the steady state as
| pg)) (1) = |u(()0) (t;))). For this steady state \u(gO) (t))) given by Equation (A25), we also find that there
is no electron transfer between dot and lead; specifically, we find that

tit aE( ) 0
Angi)~ [ af (1] | = Oty = A24
o = [ ar[Fs] e =o (A24)
indicating that there is no net electron transfer in the interval and hence the generated spin current
represented by Equation (36) is totally absent in the adiabatic limit. We therefore need to include the
nonadiabatic effect to generate a finite spin current. The result is in marked contrast to the previous
example of the energy pumping, where the adiabatic contribution to the energy pumping G, is finite.

Appendix D. Steady State of the Minimum Model

The steady state \ué)"zo) (t;))), satisfying & \_4()“’70 \uéAU:O) (t;))) = 01is analytically obtained using a
graphical method discussed in Reference [73]. In Appendix C of Reference [58], we provide a detailed
derivation of the steady state. For use in the present paper, here we simply present the result.

The dynamics of the populations described by the TCL master equation is closed for
the six components of the reduced density matrix, pgo(t) (0,0] p()‘0:0>(t)|0,0>, 001 ()
(0,1|P(A”:0)(t)|0,1), porno(t) = (0,1 =0 (£)[1,0), pro0 () (1,0jp*=0(£)[0,1), p1o(t) =
(1,004=0(£)[1,0), and p11(t) = (1,1]p?=)(¢)|1,1). By arranging these connected components
as [pP=0 (1)) = [ooo(t), por(t), o110 (1), pr001(t), P10(£), 011 (£)]t, Where [- - -]t denotes transposition,
an analytic expression of its steady state obtains,

frlepf (e)

OFAFef (e it e e

LoDy — | €70 cos BsimlF e (e) — (e e)

D = et con Eein Bl () (e) — - (en)f (e | ()
sin? 4+ (e1)(e,) + cost §f~ (er) (e

fH(er)f*(e)
where T (g) = Trl[cz/kcg,kpleq], f(ex) = T [cg,kcz/kpleq}, €4 =€g —Mand e = eq+ M. From the

expression, we find that the steady-state values of the populations pg, po1, p10 and p11 are independent
of angle ¢. Thus, the steady state populations remain unchanged by changing ¢.
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Abstract: We recall theoretical studies on transient transport through interacting mesoscopic systems.
It is shown that a generalized master equation (GME) written and solved in terms of many-body states
provides the suitable formal framework to capture both the effects of the Coulomb interaction and
electron-photon coupling due to a surrounding single-mode cavity. We outline the derivation of this
equation within the Nakajima—Zwanzig formalism and point out technical problems related to its
numerical implementation for more realistic systems which can neither be described by non-interacting
two-level models nor by a steady-state Markov-Lindblad equation. We first solve the GME for a lattice
model and discuss the dynamics of many-body states in a two-dimensional nanowire, the dynamical
onset of the current-current correlations in electrostatically coupled parallel quantum dots and transient
thermoelectric properties. Secondly, we rely on a continuous model to get the Rabi oscillations of
the photocurrent through a double-dot etched in a nanowire and embedded in a quantum cavity.
A many-body Markovian version of the GME for cavity-coupled systems is also presented.

Keywords: time-dependent transport; electron-photon coupling; open quantum systems

1. Introduction

Few-level open systems stand as everyday ‘lab rats” in corner stone experiments and future
technologies in nanoelectronics [1] and quantum optics [2]. Generically, they are electronic systems
with a discrete spectrum (e.g., artificial atoms [3], nanowires or superconducting qubits [4]) connected
to particle reservoirs or embedded in bosonic baths. Depending on the nature of the environment
(i.e., fermionic or bosonic) to which the open systems are coupled, their theoretical investigation
started with two toy-models, namely the single-level Hamiltonian of quantum transport and the
Jaynes—Cummings (JC) Hamiltonian of a two-level system (TLS).

Surprisingly or not, studying the sequential tunneling transport regime or the optical properties of
quantum emitters eventually boils down to solve formally similar Markovian master equations (MEs)
for the so called reduced density operator (RDO). The latter defines the non-unitary evolution of the
small system in the presence of the infinite degrees of freedom of the reservoirs. Such MEs are derived
by tracing out the reservoir’s degrees of freedom and are known from the early days of condensed
matter and quantum optics (see the seminal works of Bloch [5], Wangsness [6] and Redfield [7]).
The master equation cleverly bypasses the fact that the Liouville-von-Neumann (LvN) equation of the
coupled systems (i.e., the open system and the reservoirs) is impossible to solve and takes advantage
of the fact that all observables associated to the small and open system can be calculated as statistical
averages w.r.t. the RDO.

Indeed, the RDO associated to the Jaynes-Cummings model has been a central object in quantum
optics [8,9] (e.g., in the study of lasing and for the calculation of photon correlation functions). In this
context the master equation (ME) approach goes as follows: (i) one studies an atomic few-level system
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whose eigenvalues and eigenfunctions are supposed to be known; (ii) the dissipation in the system
(e.g., cavity losses or various non-radiative recombination processes) is included through the so called
‘jump’ operators; (iii) the occupation of atomic levels changes due to photon emission or absorption,
but the particle number is conserved as the system is not coupled to particle reservoirs; (iv) under the
Markov approximation the ME acquires a Lindblad form, usually solved in the steady-state regime.

The above scenario changes when one aims to derive a quantum master equation describing
transport phenomena. (i) The Coulomb interaction effects on the spectrum and eigenstates of the
system cannot be always neglected, especially for confined systems like quantum dots or nanowires;
this requires a many-body derivation of the master equation; (ii) The tunneling between source/drain
probes prevents the charge conservation in the central system and the main quantity of interest is
the electronic current; (iii) Finally, the steady-state regime does not cover the whole physics and
cannot even be guaranteed in general; moreover, the validity of the rotating-wave (RWA) and Markov
approximations must be established more carefully [10,11]. In fact it turns out that when applied to
transport processes the master equation must rather be solved in its non-Markovian version.

Such generalized master equations which take into account the memory effects have been mostly
derived and implemented for time-dependent transport in non-interacting [12,13] and interacting [14]
quantum dots, nanowires, and rings [15]. It turns out that the generalized master equation (GME)
method is a valuable tool for modeling and monitoring the dynamics of specific many-body states as
well as for investigating time-dependent propagation along a sample [16] or capturing charge sensing
effects [17] and counting statistics in electrostatically parallel QDs [18]. In particular, Harbola et al. [19]
showed that a Lindblad form of the quantum master equation is still recovered in the high bias limit
and by assuming the RWA.

Since then, a lot of theoretical work has been done to improve and refine the quantum
master equation formalism. A formally exact memory-kernel for the Anderson model was derived
and calculated using real-time path integral Monte Carlo methods [20]. A hierarchical quantum
master equation approach with good convergence at not too low temperature was put forward by
Hartle et al. [21]. As for molecular transport calculations one can rely on the GME written in terms of
the many-body states of the isolated molecule [22,23]. A recent review on non-markovian effects in
open systems is also available [24].

As we shall see below the implementation of GME approach to many-level systems with specific
geometries poses considerable technical difficulties. These are related to the many-body structure of
the central interacting system, to the accurate description of the contact regions and, more importantly,
to the evaluation of the non-Markovian kernels which become complicated objects once we go beyond
non-interacting single-level models.

A second useful extension of the ME method emerged in the context of cavity quantum
electrodynamics. Here the system under study is a hybrid one, as the electronic system is still
coupled to source/drain reservoirs (i.e., leads) but also interacts with a quantum cavity mode, the
latter being subjected to dissipation into leaky modes described by a bosonic bath. Such systems are
currently used in state-of-the-art measurements in cavity quantum electrodynamics [25-29]. Again, the
many-body nature of the problem is essential, as the electron-photon coupling leads to the formation of
dressed states whose dynamics in the presence of both particle and dissipative bosonic reservoirs is far
from being trivial. The relevant reduced density operator now acts in the many-body electron-photon
Fock space and describes the dynamics of dressed-states. This fact brings new technical difficulties in
the derivation [30,31] and implementation of ME [32,33]. Let us also mention here recent studies on
ground state electroluminescence [34,35] and on cavity enhanced transport of charge [36].

In view of the abovementioned comments, the aim of this work is: (i) to briefly review the
development of the generalized master equation approach to time-dependent many-body transport in
the presence of both fermionic and bosonic environments and (ii) to illustrate in a unified framework
how the method really works, from formal technicalities to numerical implementation. In Section 2
we shall therefore derive a non-Markovian master equation which describes the dynamics and the
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transport properties of rather general ‘hybrid” system consisting in an electronic component S; which
is connected to particle reservoirs (i.e., leads) and a second subsystem S,. The latter, although not
coupled to particle reservoirs, interacts with system S; or with some leaky modes described as
bosonic baths. Then we specialize this master equation to several systems of interest. More precisely,
in Section 3 we recall GME results on transient charging of excited states and Coulomb-coupled
quantum dots. Section 4 deals with thermoelectric transport. Applications to transport in cavity
quantum electrodynamics are collected in Sections 5 and 6. We conclude in Section 7.

2. Formalism

2.1. Generalized Master Equation for Hybrid Systems

Non-Markovian master equations for open systems have been derived in many recent textbooks
or review papers via projection methods (e.g., Nakajima-Zwanzig formalism or time-convolutionless
approach [37]). Nonetheless it is still instructive to outline here some theoretical and computational
difficulties one encounters when solving transport master equation for interacting many-level systems.

From the formal point of view the projection technique is quite general and the derivation of a
master equation for the RDO does not depend on a specific model (i.e., on the geometry and spectrum
of the central system or on the correlation functions of fermionic/bosonic reservoirs). In general,
as long as one can write down a system-reservoir coupling Hamiltonian Hgg a master equation can
be derived.

For the sake of generality we shall consider a hybrid system S made of an electronic structure S;
which is coupled to 7, particle reservoirs characterized by chemical potentials and temperatures
{u, 11}, 1 = 1,2,..,n,, and a second subsystem S, (i.e., a localized impurity, or an oscillator,
or a single-mode quantum cavity). The subsystem S, can only be coupled to thermal or photonic baths
which are described as a collection of oscillators with frequencies {wy}. Let Fg, and Fg, be the Fock
spaces associated to the two systems. Typically Fs, is a set of interacting many-body configurations of
the electronic system whereas Fs, is made by harmonic oscillator Fock states.

The dynamics of the open system S; and of nearby ‘detector” system S; are intertwined by a coupling
V. Under a voltage bias or a temperature difference the system S; carries an electronic or a heat current
which need to be calculated in the presence of the second subsystem. Conversely, the averaged observables
of S, (e.g., mean photon number or the spin of a localized impurity) will also depend on the transport
properties of S;. The Hamiltonian of the hybrid structure is:

Hg = H51 + Hsz + V. 1)

In this work Hg, will describe various Coulomb-interacting structures: a single quantum dot,
a 2D wire or parallel quantum dots. We shall denote by |v) and E, the many-body configurations and
eigenvalues of Hg,, that is one has Hg, |v) = Ey|v). Hg, can be equally expressed in terms of creation
and annihilation operators {c},,, ¢} associated to a spin-dependent single-particle basis {i,s} of
a single-particle Hamiltonian h(S?) (see the next sections for specific models), such that:

Hs, = HY + W, )

where H, gf) is the 2nd quantized form of héo) and W is the Coulomb interaction. Similarly, the eigenstates
and eigenvalues of the second subsystem S, will be denoted by |j) and e; such that Hs,|j) = ¢;|j). As for
the coupling V' one can mention at least three examples: The exchange interaction between a quantum dot
and a localized magnetic impurity with total spin S, the electron—photon coupling in a quantum-dot cavity

and the electron—-vibron coupling in nanoelectromechanical systems [38,39].
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The total Hamiltonian of the system coupled to particle and /or bosonic reservoirs R reads as:
H(t) = Hs + Hg + Hgr(t) := Ho + Hsr (), ®

where the system-reservoir coupling Hgg collects the coupling to the leads (Ht) and the coupling of a
bosonic mode to a thermal or leaky bosonic environments (H):

Hsg(t) = Hr(t) + Hg. (4)

Note that the interaction with the bosonic environment Hr does not depend on time.
The lead-sample tunneling term Hrp carries a time-dependence that will be explained below.
The Hamiltonian of the reservoirs,

HR = Hieads + Hpath ®)

describes at least two semiinfinite leads (left-L and right-R) but could also contain a bosonic or a thermal bath.

This general scheme allows one to recover several relevant settings. If S; describes an optically
active structure and S, defines a photonic mode then V could become either the Rabi or the
Jaynes—Cummings electron-photon coupling. The absence of the particle reservoirs simplifies Hg to
well known models in quantum optics, while by adding them one can study photon-assisted transport
effects (e.g., Rabi oscillation of the photocurrents or electroluminescence). Also, by removing S;,
V and the bosonic dissipation one finds the usual transport setting for a Coulomb interacting purely
electronic structure.

Let € (q) and 1[1,11(7 be the single particle energies and wave functions of the [-th lead. For simplicity
we assume that the states on the leads are spin-degenerate so their energy levels do not depend on the
spin index. Using the creation/annihilation operators C:;l +/ Cq1o associated to the single particle states,
we can write:

Hieads = ZHZ = /dq Zgl(q)c;rlacqlv . (6)
1 I

As for the bosonic bath, it is described by a collection of harmonic oscillators with frequencies wy
and by corresponding creation/annihilation operators b} / by:

Hpath = Y_ hawib{by. (7)
k
The tunneling Hamiltonian has the usual form:
Hr(t) = D [ daxi (8)(Thuchocns + hic), ®)
| no

where we considered without loss of generality that the tunneling processes are spin conserving.
For the simplicity of writing the spin degree of freedom ¢ will be henceforth tacitly merged with the
single-particle index n and restored if needed.

The time-dependent switching functions x; () control the time-dependence of the contacts between
the leads and the sample; these functions mimic the presence of a time dependent potential barrier.
We emphasize that in most studies based on ME method the coupling to the leads is suddenly switched at
some initial instant #, such that for each lead x;(t) = 6(t — ty) where 6(x) is the Heaviside step function.
This choice is very convenient if one imposes the Markov approximation in view of a time-local Master
equation. Here we allow for more general switching functions: (i) a smooth coupling to the leads or
(ii) time-dependent signals applied at the contacts to the leads. In particular, if the potential barriers
oscillate out of phase the system operates like a turnstile pump under a finite constant bias.

The coupling Tl;n describes the tunneling strength between a state with momentum g of the lead
I and the state 1 of the isolated sample with wavefunctions ;. In the next sections we shall show
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that these matrix elements have to be calculated for each specific model by taking into account the
geometry of the system and of the leads.
The associated density operator WV of the open system obeys the Liouville-von Neumann equation:

L OW(t
ih at( ) = ﬁ(t)W(t), W(to) = ps(to) ® PR, 9)
where:
L(t) = Lo+ Lsg, Lo = [Ho,]. (10)
We also introduce the notations:
Ls-=[Hs,], Lsg-= [Hsg,-]- (11)

The Nakajima-Zwanzig projection formalism leads to an equation of motion for the reduced
density operator p(t) = Trr{W}. The initial state W, := W(t;) factorizes as:

Wy = 00 X Pleads @ Phath = P0 & PR, (12)
where the equilibrium density operator of the leads reads:

e—Pi(H—pNy)

Pleads = H m/ (13)

and B; = 1/kgT}, y; and N denote the inverse temperature, chemical potential and the occupation
number operator of the lead /. Similarly,

Pbath = Hefhwkb;bk/kBT(l _ efhwk/kBT). (14)
k

Finally, pg is simply a projection on one of the states of the hybrid system, and as such its
calculation must take into account the effect of the hybrid coupling V' (see the discussion in Section 2.2).
We now define two projections:

P-=ppTrr{-}, Q=1-P. (15)

It is straightforward to check the following properties:
PLs = LsP, PLsr(t)P =0. (16)

The Liouville Equation (9) splits then into two equations:

ihPaV;t(t) —  PL()PW(E) + PL(HQW(F) (17)
w0~ ornow( + ocmPwir), 8)

and the second equation can be solved by iterations (T being the time-ordering operator):

QW(t) tdsTexp {—% /: ds/Ql:(s’)} QL(s)PW(s). (19)

iy

117



Entropy 2019, 21, 731

Inserting Equation (19) in Equation (17) and using the properties of P we get the
Nakajima-Zwanzig equation:
. OW(t)

ihP= = = PLsW(1)

1 : i
+ ﬁPz:SR(t)Q/tO dsTexp{—ﬁ/s ds’Qz:(s/)Q} QLsr(s)PW(s). 20)

In order to have an explicit perturbative expansion in powers of Hgg () one has to factorize the
time-ordered exponential as follows:

it
Texp {f% /S ds’QE(s')Q} =exp{QLoQ}(1+R), (21)

where the remainder R contains infinitely deep commutators with inconveniently embedded projection
operators. Usually one considers a truncated version of the Nakajima—-Zwanzig equation up to the
second order contribution w.r.t. the system-reservoir Hgg:

L 1 b itis
ihp(t) = Lsp(t) + aTrR {£5R/t dsei(t ‘)KOESR(s)pRp(s)}. (22)
0

Now, by taking into account that for any operator A acting on the Fock space of the hybrid system
et A = e~ A¢itHo and denoting by Uy(t,s) = e~*(!=9)H0 the unitary evolution of the disconnected
systems we arrive at the well known form of the GME:

inp(t) = [Hs,p(t)] -
[Hs, p(#)] =

ug (¢
Uk (t to)Trr ft; ds [Asg(t), [Hsr(s),f(s)pr]] } Us(t to),

S~ =~

(o) Trg g/;; ds [Fisg(t), [Fsr (s), p(s)pr]] % Uy (t, to)

where in order to get to the last line we removed the evolution operators of the environment from both
sides of the trace. At the next step one observes that when performing the trace over the reservoirs and
environment degrees of freedom the mixed terms in the double commutator vanish because each of
the coupling terms Hy and HE carries only one creation or annihilation operator for the corresponding
reservoir such that:

Trr{€); ()i (5)0R} = Tricads {Ch1 ()Pleads } - Trbatn {Bx(5)batn } = 0. (23)

Moreover, the time evolution of each term can be simplified due to the commutation relations
[Hpath, Hr] = [Hicads, Hg] = O:

HAr(t) = e%ste%leeadsHTe*%ste*%leeads, (24)
Ae(t) = ertHsertHoan e~ itHs o= ftHoan, (25)
The GME then reads as:
. i 1 t ~ ~ -
p(t) = _7[HS/P(t)} - 7u;(t/ tO)Trleads ds [HT(t)f [HT(S)/P(S)pleads]] uS(tr tO)
h ik t
0
1 b 8 3
- hiu;(f/ to) Trpath {/t ds [Hg(t), [He(s), p(5)pbatn] ] } Us(t, to) (26)
0
i
= _7[HS/ P(t)} - Dleads [P/ t} - Dbath [‘0/ t]' (27)
h

Equation (27) is the generalized master equation for our hybrid system. It provides the reduced
density operator p in the presence of particle and bosonic reservoirs and also takes into account the
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memory effects and the non-trivial role of time-dependent signals applied at the contact regions
through the switching functions x;. The third term in Equation (27) is needed only if Hg, describes a
quantized optical or mechanical oscillation mode. In our work on open QD-cavity systems we always
assume that the coupling between the cavity photons and other leaky modes is much smaller that the
electron-photon coupling gry (see Section 5). On the other hand, for our calculations gpy < fiw, w
being the frequency of the cavity mode. Then the RWA holds and Dy, [p, ] can be cast in a Lindblad
form. Let us stress that in the ultrastrong coupling regime on typically has gpp/fiw > 0.2 and the
derivation of the dissipative term is more complicated and involves the dressed states of the QD-cavity
system [30]. In order to describe dissipative effects in the ultrastrong coupling regime beyond the
RWA one needs more elaborate techniques [40,41].

For further calculations one has to solve the GME as a system of coupled integro-differential
equations for the matrix elements of the RDO with respect to a suitable basis in the Fock space
Fs = Fs, ® Fs,. We discuss this issue in the next subsection.

2.2. "Hybrid’ States and Diagonalization Procedure

The starting point in solving the GME is to write down the matrix elements of the
system-environment operators Hr and Hr w.r.t. the ‘disjointed’ basis formed by the eigenstates
of Hs, and Hg,, thatis |v, j) := |v) ® |j). However this strategy does not help much when evaluating
the time evolution (see Equations (24) and (25)) as Hg is not diagonal w.r.t. to |v,j) such that one
cannot easily write down the matrix elements of the unitary evolution Us(t, ty). In fact we are forced
to solve the GME by using the eigenstates |¢,) and eigenvalues £, of the Hamiltonian Hg. The former
are written as:

lop) = LV ). (28)
vi]

Here the round bracket notation |¢,) is meant to underline that the state ¢, describes the
interacting system S, in the sense that both Coulomb interactions and the coupling to the bosonic
modes were taken into account when diagonalizing Hg. This notation also prevents any confusion
if the “free’ states |v, j) were also labelled by a single index p’. In that case the above equation is
conveniently rewritten as |¢,) = ¥,/ V:f) |p"). Note that p is usually a multiindex carrying information
on relevant quantum numbers. In most cases of interest the coupling V between the two systems leads
to a strong mixing of the unperturbed basis elements |v, j) and is not necessarily small. Therefore we
shall not follow a perturbative approach but rather calculate £, and the weights Vv(f) by numerically
diagonalizing Hs on a relevant subspace of ‘disjointed” states.

Prior to any model specific calculations or numerical implementations it is useful to comment
a bit on the two dissipative contributions in Equation (27). It is clear that the evolution operator Ug
describes the joint systems S; and S, and therefore the hybrid interaction cannot be simply neglected
neither in Djeuqs nor in Dy,yy; in fact one can easily check that V' does not commute with Hg or Hr.
Moreovert, as has been clearly pointed out by Beaudoin et al. [30], by disregarding the qubit-resonator
interaction when calculating Dp,y, one ends up with unphysical results. In what concerns the role of V
in the leads’ contribution, a recent work emphasized that for QD-cavity systems the corresponding
master equation must be derived in the basis of dressed-states [31].

The diagonalization of Hg poses serious technical problems because both spaces Fs, and Fs,
are in principle infinite dimensional. Besides that, the Coulomb interaction in Hs, prevents one to
derive the interacting many-body configurations {|v)} analytically. We now propose a step-by-step
diagonalization procedure leading to a relevant set of interacting states of the full Hamiltonian.
The procedure requires several ‘intermediate” diagonalization operations:

(D1) Analytical or numerical calculation of the single-particle states of the Hamiltonian fl(s?) which
describes the non-interacting electronic system S;. As we shall see in the next sections, this step may
not be trivial if the geometry of the sample is taken seriously into account. Let us select a subset of
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Nses single-particle states {1, ¥, ..., N, } (if needed this set of states includes the spin degree of
freedom). Typically we choose the lowest energy single-particle states but in some cases [12] it is more
appropriate to select the subset of states which effectively contribute to the transport (i.e., states located
within the bias window).

(D7) The construction of a second set of Nes non-interacting many-body configurations (NMBS)
{IA) }A=1,... Nimes from the Nies single-particle states introduced above. Note that for computational
reasons we have to keep Npes < 2Nses for larger Nses. Then, if iﬁ is the occupation number of the
single-particle state ,,, a non-interacting many-body configuration |A) reads as:

IA) = |if, it ify, ) (29)

(D3) Diagonalization of the Coulomb-interacting electronic Hamiltonian Hs, = Hé?) + W on
the subspace of non-interacting many-body states from Fs . As a result one gets Nmes interacting
many-body states (IMBS) |v) and the associated energy levels E, introduced in Section 2.1. We also
introduce the ‘free’ energies of Hs, + Hg,, thatis &, V(’Oj) = Ey +¢;. Note that in view of diagonalization
the interaction V between the two subsystems must be also written w.r.t. the ‘free’ states {|v,j)}.
If the second subsystem is not needed then the GME must be solved w.r.t. the set {|v)} and the
diagonalization procedure stops here. It is worth pointing out here that even in the absence of bosonic
fields and electron-photon coupling, the master equation for Coulomb interacting systems cannot
be written in terms of single particle states. In spite of the fact that the unitary evolution Us is
diagonal w.r.t. the many-body basis {|v)}, the matrix elements of the fermionic operators in the
interaction picture (v|uo(t)[v') depend on energy differences E, — E,» which, due to the Coulomb
effects, cannot be reduced to the single-particle energy ;.

(D4) Diagonalization of the fully interacting Hamiltonian Hg on a subspace of F made by the
lowest energy NpesT interacting MBS of Hg, and jmax eigenstates of Hs,. Remark that after the 1st
truncation w.r.t. NMBSs we perform here a 2nd double truncation both w.r.t. IMBS (as Nyest < Nmes)
and w.r.t. the states in Fs,.

Once this procedure is performed, one can express the system-environment couplings Hr and
Hp in the fully interacting basis and use the eigenvalues £, to replace the unitary evolution Us by the
corresponding diagonal matrix e~ Jppr- Finally, the GME is to be solved w.r.t. the fully interacting
basis (see Section 2.3).

Now let us enumerate and explain the advantages of this stepwise procedure when compared to
a single and direct diagonalization of Hs.

(a) Numerical efficiency and accuracy. Both diagonalization methods (stepwise and direct)
require a truncation of both bases and are not free of numerical errors which in principle should
diminish as the size of the bases increase. It is clear that in the stepwise procedure the Npest
interacting MBSs are derived from a larger set of non-interacting states {|A)} -1, n,.- Then the
calculated Ny := NpesT X jmax fully interacting states are more accurate than the ones obtained by
diagonalizing once a N, X N, matrix. On the other hand, enlarging the full space to0 Nmes X jmax
elements could be challenging in terms of CPU times. Convergence calculations relevant to circuit
quantum electrodynamics have been presented in [42]. In particular it was shown that the inclusion of
the (usually neglected) diamagnetic term in the electron-photon coupling improves the convergence of
the diagonalization procedure.

The size of various effective bases used in the numerical calculation is decided both by physical
considerations and convergence tests. Typically, out of the Nges single-electron states we construct the
set of non-interacting MBSs containing up to N, electrons, the size of this set being, of course, (1\{3?‘)
The accuracy of numerical diagonalization which leads to the interacting many-body configurations
with up to N, electrons is essentially assessed by comparing the spectra associated obtained for
different Nges. In particular, if we discretize our open system in a small number of lattice sites we can
use all single-electron states as a basis, and we can calculate all many-body electron states (like in the
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discrete case presented in [12]. Obviously, this is no longer possible for a more complex geometry,
and then we need to evaluate the convergence of the results when the basis is truncated.

For the continuous model an extensive discussion on the convergence of the numerical
diagonalization w.r.t. the various truncated bases is given in a previous publication [42]. Let us
stresonly extensive tests can be performed to resolve this issue. s here that once the geometry of the
system and the spatially-dependent interactions are accounted for there is no simple way to count
ahead how many states one needs to get stable transport simulations.

(b) Physical interpretation. It is obvious that the Coulomb interaction W mixes only the
non-interacting many-body configurations |A) while the hybrid coupling V mixes both A and j states.
For this reason the weights of a non-interacting state |A, j) in a fully interacting state |¢,) (as provided
by a single diagonalization) cannot be easily associated with one of the interacting terms. In view of
physical discussion it is more intuitive and natural to analyze the dynamics of the Coulomb-interacting
system S; in the presence of the second subsystem S,. One such example is a self-assembled quantum
dot embedded in a single-mode quantum cavity [31]. In this system the optical transitions couple
electron-hole pairs which are genuine interacting many-body states. A second example is a double
quantum dot patterned in a 2D quantum wire which is itself placed in a cavity. There the interdot
Coulomb interaction affects the optical transitions as well.

On the other hand, the above procedure will not be appropriate if one is interested in including
a time-dependent driving term in Hg. This would be the case for a pumping potential or for
a modulating optical signal.

Finally we shall comment on the typical sizes of many-body Fock spaces used to model steady-state
or transient transport in various systems. One of the simplest yet promising system for solid-state
quantum computation is a double quantum dot accomodating at most two electrons on each dot such that
the relevant Fock space already comprises 256 interacting many-body states (counting the spin). In this
case transport simulations can be obtained even without truncating the basis, especially if the spectral
gaps allows one to disregard the contribution of higher energy configurations. However, when studying
transport on edge states due to a strong perpendicular magnetic field in 2D systems (e.g., graphene
or phosforene) one is forced to consider the low energy bulk-states as well. In our previous
numerical studies we find that one has to take into account at least 10 single-particle states; obviously,
performing time-dependent simulations for 2!° MBSs is quite inconvenient so a truncation is needed.
More importantly, a realistic description of complex systems like rings or double dots etched in a 2DEG
cannot be obtained with only few single-particle states. Note that the optical selection rules and matrix
elements of the electron—photon interaction depend on the these states as well.

In the calculation of one, rather deep, QD embedded in a short quantum wire we are using 52
single-electron states, asking for 52 one-electron states, 1326 two-electron states and 560 three electron
states. Of these we take the lowest in energy 512 and tensor multiply by 17 photon states to obtain a
basis of 8704 MBS to calculate the dressed MBS. Then for the transport, we select the lowest in energy
128 dressed states and construct the 16,384 dimensional Liouville space. All this choice is taylored for
a rather narrow section of a parameter space, if we consider the wire length, the confinement energy
and the shape of the QD and the range of the magnetic field.

Markovian or non-markovian master equation method have been also developed for transport
simulations in molecular junctions; here a truncation is required w.r.t. to the basis states describing
the molecular vibrations. In particular, Schinabeck et al. [43] proposed a hierarchical polaron master
equation which was successfully implemented numerically for two molecular orbitals and several tens
of vibrational states.

2.3. Numerical Implementation and Observables

The last step before numerical implementation requires the calculation of the system-environment
couplings Hr and Hg w.rt. the full basis |¢p,). Clearly, to this end we shall use the unitary
transformations [A) <« [v) and |v,j) < |@p) which are already at hand due to the stepwise
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diagonalization procedure introduced in the previous section. Then let us introduce some generalized
‘jump’ operators collecting all transitions, between pairs of fully interacting states, generated by
tunneling of an electron with momentum g from the [-th lead to the single-particle levels of the
electronic system Sy:

Ti@) = Y. Tow@lep) @yl (T(@)ppy = X Tan(oplehloy) - (30)
Py

n

Then the dissipation operator associated to the particle reservoirs reads:
1 .
Dicslp ] =~ ¥ [ dq (0T, 0 ()] + he), Q)
I=LR

with the following notation:

(1) = Us(t, o) [ ds u(5) 1 ()6 C-OMADUL (1, 1), (32)
0
My (s) = U5, to) (T'0(s) (1= i) = p(9)Ti*fr) Us(s o), (33)

and where for simplicity we omit to write the energy dependence of the Fermi function f;.
Similarly, the bosonic operators have to written down w.r.t. the full basis which then leads to the
calculation of Dy,y,. Under the Markov approximation w.r.t. the correlation function of the bosonic
reservoir the latter becomes local in time.

The GME is solved numerically by time discretization using the Crank-Nicholson method which
allows us to compute the reduced density operator for discrete time steps p(t,), starting with an initial
condition corresponding to a given state of the isolated central system, i.e., before the onset of
the coupling with the leads. We take advantage of the fact that, by discretizing the time domain,
the operator Qg (#,+1) obeys a recursive formula generated by the incremental integration between t,
and t,, 41, that is:

Ogi(tus1) = Us (b1, b)) Qg (b ) U (B s1, t0) + Agi(bnst, i p (b)), p(80)), (34)

where the second term of the right-hand side depends on the yet unknown p(t,41). For any pair of time
steps {fu, t,11} we initially approximate p(t,11) in Ay by the already calculated p(t4), and perform
iterations to recalculate p(t; 1) via the GME, each time updating p(t, 1) in A, until a convergence
test for p(t,41) is fulfilled. At any step of the iteration we also calculate and include Dy [0, tin]
into the iterative procedure; its calculation is much simpler as the Markov approximation w.r.t. the
bath degrees of freedom takes care of the time integral so this dissipative term becomes local in
time. Finally, we check numerically the conservation of probability and the positivity of the diagonal
elements of p(ty,), i.e., the populations of fully interacting states |¢,) at the corresponding time step
and for each iteration.

There are several reasons to extend the GME method beyond single-level models. (1) The
electronic transport at finite bias collects contributions from all the levels within the bias window. This
feature leads to the well known stepwise structure of the current-voltage characteristics; (2) In the
presence of Coulomb interaction the GME must be derived in the language of many-body states which
allows us to perform exact diagonalization on appropriate Fock subspaces; (3) The minimal model
which describes the effect of the field-matter coupling in optical cavities with embedded quantum dots
requires at least two single-particle levels.

Both the GME and non-equilibrium Green'’s function formalism (NEGF) rely on the partitioning
approach and allow for many-body interaction in the central system, while the leads are assumed to be
non-interacting (this assumption leads in particular to the Fermi distribution of the particle reservoirs).
There is however a crucial difference between the two methods. The perturbative expansion of the
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dissipative kernel forces restricts the master equation approach to weak lead-sample tunnelings while
the interaction effects are accounted for exactly. In contrast, the Keldysh formalism is not limited
to small system-reservoir couplings but the Coulomb effects have to be calculated from appropriate
interaction self-energies. Which method fits better is simply decided by the particular problem at hand.

As stated in the Introduction, the advantage of the RDO stems from the fact that it can be used to
calculate statistical averages of various observables O of the hybrid system:

(0) =Trr{p(t)O} . (35)

Useful examples are averages of the photon number operator N = a*a and of the charge
operator Q = ), chn. Also, the average currents in a two-lead geometry (i.e.,, | = L,R can be
identified from the continuity equation:

(Q) = Trr{Qp(t)} = JL(t) = JR(®). (36)
2.4. Coupling between Leads and Central System

The modeling of the central systems and the reservoirs can be performed either by using
continuous confining potentials or a spatial grid. Examples are a short parabolic wire [44,45],
ring [46,47], parallel wires with a window coupler [48], and wire with embedded dot [44,49] or dots [50].
The coupling between the leads and the central system with length L, is described by Equation (8),
and in order to reproduce scattering effects seen in a Lippmann-Schwinger formalism [15,51,52] the
coupling tensor is defined as

Tllm = /()sto drdr’ (‘P;(ﬂ)) ‘I’i(r)g;n(r, v')+hec., 37)

1

for states with wavefunction ‘I’; inlead I, and ¥y, in the central system. The domains for the integration
of the wavefunctions in the leads are chosen to be

QL = {(xy) _f% fZaw,f%_ X [—=3ayw, +3ayw] t, 38)
Or = ()] [+5,+5 +200| x [-3a0, +3au] |,
and for the system as
ok = J(xy) -—%,—% +2aw- X [=3ay, +3ay] ¢, @9)
0f = {@y)l [+ — 200, +5 | x (B, +304]
The function
—|E, —¢€
Ehn(r,1') = ghexp |3} (x = ) = 83(y —y')?] exp (’M) : (40)
E

withr € QL and r' € () determines the coupling of any two single-electron states by the “nonlocal
overlap” of their wave functions in the contact region of the leads and the system, and their energy
affinity. A schematic view of the coupling is seen in Figure 1. The parameters 6} and &} define the
spatial range of the coupling within the domains QIS x () [44].
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L S R

Figure 1. A schematic of the coupling of the system to the leads. The transparent green areas correspond
to the contact regions defined by the nonlocal overlap function glqi,’,R in Hy(t).

The short quantum wire is considered to have hard wall confinement in the transport direction,
the x-direction, at x = £L,/2, and parabolic confinement in the y-direction with characteristic
energy /(). Possibly, the leads and the central system are considered to be placed in a perpendicular
homogeneous external magnetic field B = Bz. Together they lead to a natural length scale, the effective
magnetic length a;, with a2,Qy, = h/m, with Q2, = [(Q9)? + (ws)?]'/?, and the cyclotron frequency
we = (eB/m). For GaAs with effective mass m = 0.067m, relative dielectric constant x, = 12.3 and
confinement energy Qg = 2.0 meV, a,, = 23.8 nm. The magnetic field B = 0.1 T.

The energy spectrum of the quasi 1D semi-infinite lead ! is represented by €' (g), with g standing
for the momentum quantum number of a standing wave state, and the subband index n'. The spectrum
in the absence of spin orbit interactions can be evaluated exactly analytically [53]. The coupling of the
leads and the central systems in the continuous representation conserves parity of the electron states
across the tunneling barrier.

The full strength of the continuous approach emerges as it is applied to describe the transport of
interacting electrons through 3D photon cavities in the transient time regime or the long time regime
ending in a steady state of the system. This will be reported below (see Sections 5 and 6). The numerical
calculations can sometimes be simplified by describing the leads and the central system on a discrete
spatial lattice, where the geometric details of the central system are usually implemented by hard walls
and Dirichlet boundary conditions. The spatial integral of the coupling tensor (37) are then reduced to
a set of contact points between the leads and the central system [12,17].

3. Many-Body Effects in the Transient Regime

In this section we review some results on the transient transport in interacting systems described
by a lattice model [12,14]. For the sake of generality we extend the GME method by including
as well the spin degree or freedom which was previously neglected. The lattice model matches
naturally to the partitioning transport setting, facilitates the geometrical description of the central
sample (e.g., a parallel quantum dot) and captures the dependence of the tunneling coefficients on the
localization of the single-particle wavefunctions at the contact regions. A more realistic description is
provided by the continuous model (see the previous section) which requires however a very careful
tailoring of the confining potentials.

The results presented in this section are also meant to illustrate the usefulness of the GME
approach in describing the transient regime in terms of the dynamical occupations of the interacting
many-body configurations. Such a description cannot be recovered within the non-equilibrium Greens’
function formalism.

Developing the GME method in the language of interacting many-body states was equally
motivated by experimental works. Recording the charging of excited states of QDs in the
Coulomb blockade regime constitutes the core of transient current spectroscopy and pump-and-probe
techniques [54]. Also, transient currents through split-gate quantum point contacts (QPSs) and
Ge quantum dots have been measured some time ago by Nasser et al. [55] and by Lai et al. [56].
Another relevant class of transport phenomena which can be modeled and understood within the GME
method is the electron pumping through QDs with tunable-barriers (see e.g., the recent review [57]).
In this context we investigated the transient response of a quantum dot submitted to a sequence of
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rectangular pulses applied at the contact to the input [58] and the turnstile protocol for single-molecule
magnets [59].

3.1. Transient Charging of Excited States

We consider a two-dimensional system of length L, and width L, described by a lattice with Ny
sites on the x axis and Ny, sites on the y axis. The total number of sites is denoted by Ny, = NxNj.
By setting the two lattice constants a, and ay one has Ly = ayNy and L, = a;Ny. Once we know
the single-particle eigenstates of the electronic subsytem S; we can write down its Hamiltonian
Hg; := H, é?) -+ W in a second quantized form w.r.t. this basis, that is:

0 _ yM 7.(0) too_ +
H51 - X:n,ny’:l <¢"|hsl |lpn’>cncn’ = Zn €nCyCn (41)
w = 1y v, fel
5 Lnmn! m! Vamn'm' CnCmCm! Cn!

where the Coulomb matrix elements are given by (r, r’ are sites of the 2D lattice):

Vimn'm = 2#’; (r)ll’f% (r/)VC(r - r/)lpn’ (l‘)ll’m’ (rl)- (42)

T,
The Coulomb potential itself is given by

o2

N —
V) = el

(43)
where 7 is a small positive regularization parameter.

Like in the continuous model, the tunneling coefficients Tén are associated to a pair of states
{1pf7, ¥, } from the lead I and the sample S;. However the lattice version is much simpler:

Thw = Vit (00)uiy), (44)

where 0 is the site of the lead / which couples to the contact site 7; in the sample. The wavefunctions of
the semi-infinite lead are known analytically:

vy = D),

In the above equation 7 is the hopping energy of the leads. The integral over g in the tunneling
Hamiltonian (see Equation (8) from Section 2) counts the momenta of the incident electrons such that
¢!(g) scans the continuous spectrum of the semi-infinite leads 0; € [~27 + A, 27 + A] where A is a
shift which is chosen such that ¢} covers the lowest-energy many-body spectrum of the central system.
The construction of the coupling coefficients Tén shows that a single-particle state which vanishes
at the contact sites does not contribute to the currents. This is the case for states which are mostly
localized at the center of the sample, while in the presence of a strong magnetic field the currents will
be carried by edge states.

In [12] we implemented GME for a non-interacting lattice Hamiltonian, whereas the Coulomb
interaction effects were introduced in [14]. In what concerns the geometrical effects we essentially
showed that the transient currents depend on the location of the contacts (through the value of the
single-particle wavefunctions of the sample at those points) but also on the initial state and on the
switching functions x;(t) of the leads. It turns out that the stationary current does not depend on
the last two parameters, in agreement with rigorous results [60,61]. We also identified a delay of the

&g = 2T oS (. (45)

output currents which was attributed to the electronic propagation time along the edge states of the
Hofstadter spectrum.
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The presence of Coulomb interaction brings in specific steady-state features known from previous
calculations like the Coulomb blockade and the step-like structure of the current-voltage characteristics.
On the other hand the GME method naturally allows a detailed analysis of the time-dependent currents
associated to each many-body configuration as well as of the relevant populations.

Since the Hamiltonian Hg, of the interacting system commutes with the total number operator
Q =Y, ctey, its eigenstates |v) can still be labelled by the occupation N, of the non-interacting MBSs
from which the state is built. Then the single index v can be replaced by two indices, the particle
number N, and an index i, = 0, 1,2, ... for the ground (i, = 0) and excited states (i, > 0, where i,
also counts the spin degeneracy). The notation for the interacting many-body energies is changed
accordingly &, — 5185)

We now define some useful quantities for our time-dependent analysis. The charge accumulated
on N-electrons states is calculated by collecting the associated populations:

qn(t) = eN ZNWIP(t)IV), (46)

v,y =

where the sum counts all states whose total occupation n, = N. Similarly one can identify the transient
currents J; i carried by N-particle states. These currents can be traced back form the right hand side of
the GME:
(Q) =Y ULn(t) = Jrn (1) = Y} an(t). 47)
N N
Throughout this work we shall adopt the following sign convention for the currents associated to
each lead: [ > 0 if the electrons flow from the left lead towards the sample and Jg > 0 if they flow
from the sample towards the right lead.
The sequential tunneling processes change the many-body configurations of the electronic system.
The energy required to bring the system to the i-th MBS with N particles is measured w.r.t. the ground
state with N — 1 electrons (i = 0, 1, ...). We introduce two classes of chemical potentials of the sample:

Hon = &Y — &0 (48)
Wi =&l el (49)

where yéz;)N characterizes transitions from the ground state (N — 1)-particle configuration to various

N-particle configurations. In particular y((gol)\] describes addition processes involving ground-states

éi;]()) refers to transitions from (N — 1)-particle ground state to
excited N-particle configurations. The chemical potentials y(Yl)N describe transitions from the 1st
(N —1)-particle excited states to configurations with N particles. In a transition of this type an electron
tunnels on the lowest single particle state to the central system which already contains one electron on
the excited single-particle state |07). As a result some of the triplet states are being populated. We shall

see that these transitions play a role especially in the transient regime.

with N — 1 and N electrons while u

For numerical calculations we considered a 2D quantum wire of lenght Ly = 75 nm and
width L, = 10 nm. The lowest two spin-degenerate single-particle levels are e; = 0.375 meV and
g7 = 3.37 meV. The non-interacting MBSs are described by the spins of the occupied single-particle
levels, e.g., |0107) is a two-particle configuration with a spin ¢ associated to the lowest single-particle
state and a second electron with opposite spin orientation on the energy level ¢;. Besides the usual
singlet (S) and triplet (T) states we find that the Coulomb interaction induces the configuration
mixing of the antiparallel configurations | 11.1) and | T2l2). More precisely, we get an interacting
ground two-particle state mostly made of | T1)1) (whose weight is 0.86) and with a small component
(weight 0.14) of state | 12.2). Conversely, | T111) is also found in the highest energy two-particle state.
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We stress here that the configuration mixing decreases and eventually vanishes if the gap E4, |, — Ey, |,
between two non-interacting energies is much larger that the corresponding matrix element.

In Figure 2a we show the chemical potentials corresponding to interacting MB configurations
with up to three electrons. As long as the chemical potential yé(;}\] lies within the bias window the
corresponding state will contribute both to the transient and steady-state currents. We shall see that
if yé{)N < R the state |i, N) contributes only to the transient currents. Finally, when ]/tgg\, >y the
state |i, N) is poorly populated and will not contribute to transport. Let us stress here a rather unusual

transition from |07) to the ground two-particle state which is mostly made of |77 ). The corresponding

addition energy yi()z) = 2meV is smaller than the energy required for the usual transition |07) — |0707).

This happens because of the Coulomb mixing between | 1/1) and | T2J2) which makes possible the
transition from the excited single-particle state to the mixed interacting two-particle groundstate.
2

The chemical potential y1,’y describes the transition from the excited single-particle state |o,) to the

triplet states.
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Figure 2. (a) The chemical potentials ]45(;}\] (red crosses) and ‘uil)N (blue crosses) for N-particle
configurations, N = 1,2, 3. For a given particle number N the chemical potentials are ordered vertically
according to the index i = 0, 1, .... The horizontal lines correspond to specific values of the chemical
potentials in the leads (see the discussion in the text); (b) The time-dependent currents in the left lead
at different values of the bias window pj — pug.

Already by analysing Figure 2 one can anticipate to some extend how the transport takes place in
terms of allowed sequential tunneling processes. Suppose that the chemical potentials of the leads are
selected such that yé?l) <uR < V&) <yup < F‘g,)z) (as an example we set yg = 1 meV and yj, = 4 meV).
Then both single-particle levels are available for tunneling but one expects that the double occupancy
is excluded because i < ygjz) ~ 5 meV. According to this scenario, more charge will accumulate
on g1, the excited states |03) will eventually deplete and the steady-state current vanishes in the
steady-state. This is the well known Coulomb blockade effect. However, we see in Figure 2b that
the steady-state current vanish only when pj, < Vél,l) as well, which suggest that the presence of the
excited single-particle states within the bias window leads to a partial lifting of the Coulomb blockade.
We stress that such an effect cannot be predicted within a single-site model with onsite Coulomb
interaction. A third curve shows the current for y; = 5.5 meV and y; = 4 meV.

Figure 3 presents the evolution of the relevant populations at two values of the bias window.
In Figure 3a the population Pj; = Py, + P|, of the ground single-particle states dominates in the steady
state. This is expected, as the corresponding chemical potential lies below the bias window so this state
will be substantially populated. The other configurations contributing to the steady-state are just the
ones which can be populated by tunnelings from the left lead, that is the excited single-particle states
and all two-particle states except for the single configuration which cannot be accessed. By looking at

Figure 2a one infers that the two-particle states are being populated when one more electron is added
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from the left lead on the initial excited single-particle state |0»). In particular, the ground two-particle
state is populated only due to the Coulomb-induced configuration mixing.
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Figure 3. The populations of ground (g) and excited (x) N-particle states (N = 1,2, 3) for two bias
windows; (a) y;, = 4meV, ug = 2meV; (b) yu, = 5.5meV, g = 4meV. In panel (a) P; is negligible and
was omitted.

A completely different behavior is noticed in Figure 3b. As the bias window is pushed upwards
such that ygf < R < yg < pr the transitions from the lowest states |o7) to two-particle states
are also activated. Consequently, the population P>, of the excited two-particle configurations
exceeds Pjg and dominate in the steady-state regime. Note that P,y > P because it collects the
population of the degenerate triplet states. In the transient regime the excited single particle states are
populated much faster than the ground states. This happens because of the different localizations of
the single-particle wavefunctions on the contact regions. We find that the wavefunction associated
to the 2nd single-particle state has a larger value at the endpoints of the leads. A drop of P, follows
as the ground one-electron states and the other two-particle configurations become active (a similar
feature is noticed in Figure 3a). A small populations of the three particle states can be also observed.
The steady-state current increases considerably (see Figure 2b) and is due to the two-particle states.

We end this section with a discussion on the partial currents J;  and Jr n associated to N-particle
states. Although they cannot be individually measured, these currents provide further insight into the
transport processes, in particular on the way in which the steady-state regime is achieved.

Figure 4a shows that in the steady-state regime the currents carried by the one-particle states
Ji,1 and Jr 1 achieve a negative value when yg)l) < y;l) < ur < yé?z) < pr, whereas the two-particle
currents evolve to a larger positive value such that the total current J; will be positive as already shown
in Figure 2b. When the bias window is shifted down to y; = 4meV and yr = 2meV all transients are
mostly positive (see Figure 4b). One observes that the single-particle configurations are responsible

for the spikes of the total current J; and that the two-particle currents display a smooth behavior.
(0)
81

is well within the bias window, the population of

These features can be explained by looking at the charge occupations g5 shown in Figure 4c,d. As u

and yéll) are both below yg = 4meV while yg

the single-particle states increases rapidly in the transient regime but then also drops in favour of P,
the total occupation of two-particle states. Such a redistribution of charge among configurations with
different particle numbers is less pronounced in Figure 4d, because in this case the smaller contribution
of the two-particle states is only due to transitions allowed by Vi(,jz) and ;4(]% which are now located
within the bias window. The slope of g, also changes sign in the transient regime and one can check

from Figure 4b that on the corresponding time range Jr » slightly exceeds | ».
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Figure 4. (a) The transient currents J;  and g n associated to one and two-particle configurations for
ur = 5.5meV, ur = 4meV; (b) The same currents for a bias window i, = 4meV, jig = 2meV; (c) The
charge gy accumulated on N-particle states at y; = 5.5meV, ugr = 4meV; (d) gy for p; = 4meV,
ur = 2meV, and qy are given in units of electron charge e.

The occupation of the three-particle configurations is negligible so g3 is also small and was
included here only for completeness while the associated currents were omitted.

3.2. Coulomb Switching of Transport in Parallel Quantum Dots

After using the GME formalism to describe transient transport via excited states in a single
interacting nanowire we now extend its applications to capacitively coupled quantum systems.
Besides Coulomb blockade, the electron-electron interaction cause momentum-exchange which leads to
the well known Coulomb drag effect in double-layer structures [62] and double quantum dots [63-65]
or wires [66]. Also, theoretical calculations on thermal drag between Coulomb-coupled systems were
recently presented [67,68].

Here we consider a very simple model for two parallel quantum dots [17] (a sketch of the system
is given in Figure 5). Each system is described by a 1D four-sites chain and for simplicity we neglect the
spin degree of freedom which will only complicate the discussion of the effects. The diagonalization
procedure provides all 256 many-body configurations emerging from the 8 single-particle states.
Let us point out that the interdot and intradot interactions are treated on equal footing beyond the
single-capcitance model. The hopping energy within the dots is tp = 1 meV and the time unit is
expressed in units of /1/tp. Then the currents are calculated in units of efp /f. The tunneling rates to
the four leads are all equal Vi, = Vg, = Vi = Vgy.

We shall use the GME method to study the onset of the interdot Coulomb interaction. In order to
distinguish the transient features due to mutual capacitive coupling we consider a transport setting
in which each dot is connected to the leads at different times. More precisely, one system, say QD,
is open at the initial instant ¢, = 0 and then reaches a stationary state (J;, = Jr,) at some later time
T;. The coupling of the nearby system to its leads is switched on at t, > T, such that the changes in
the current J, can only be due to mutual Coulomb interaction. Note that the usual Markov-Lindblad
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version of the master equation simulate the transport when the four leads are coupled suddenly and
simultaneously to the double-dot structure.

> (=) <=
> () <=

Figure 5. A sketch of the parallel double-dot system. Each QD is coupled to source-drain particle
reservoirs described by chemical potentials ji1 s and pgs, s = a, b. There is no interdot electron tunneling
but the systems are correlated via Coulomb interaction.

As before, the interacting many-body configurations can be labeled by to the occupations of each

dot according to the correspondence &£, — & I(\;;z Npy* Here N, is the number of electrons in the system
v Npy

s associated to a many-body configuration v. If the two systems are identical the lowest chemical

potentials are introduced as:

0 0 0 0 0
P‘g(z )(Na, Np) = gz(vﬂ),Nb - 51(\1,1)71,1\1,, = gl(\l,z),Nb - 51<\1a),1\1,,71' (50)
because of the degeneracy w.r.t. to the total occupation number £ I(\g, ) N, = € I(\g, >,N,, For the parameters

chosen here one finds: yéo) (1,1) =3 meV, yéo) (2,0) =4 meV and yéo) (2,1) = 4.5 meV. The location
of the several chemical potentials w.r.t. the two bias windows already suggests the possible interdot
correlation effects. The main point is that the transport channels through one dot also depend on the
occupation of the nearby dot. One therefore expects that the currents J;, and Jr, also depend on the
bias applied on the nearby system.

To discuss this effect we performed transport simulations for two arrangements (A and B) of the
bias window ji;s — pgs. In the A-setup we select the four chemical potentials such that the chemical
potentials associated to the many-body configurations relevant for transport obey the inequalities
yé(go)(l, 1) < pgs < yéo) (2,0) < prs < yéo) (2,1). The scenario is easy to grasp: As QD, is coupled to the
leads and the nearby dot is disconnected and empty, it will accumulate charge and evolve to a steady
state where the current is essentially given by tunneling assisted transitions between Séfg ~ 51(%).
This behavior is observed in Figure 6a up to t;, = 150 ps when QD), is also coupled to its leads.
Note also that the charge occupation of QD, almost saturates at Q, = 1.6. As expected, fort > t, a
transient current develops in QDy, but a simultaneous drop the J;, and Jg, shows the dynamical onset
of the charge sensing effect between the two systems. In the final steady-state the two currents nearly
vanish, thus proves their negative correlation due to the mutual Coulomb interaction. The charges
Qu,p reach the same value and suggest that in the long time limit the double system contains one
electron on each dot. Remark that in the final steady-state the dominant population corresponds to
the many-body energy 51(’01) which is not favorable for transport through any of the dots as long as

y(go) (2,1) = Ség) - 51(,01> is outside the bias window.

Figure 6b,d present the currents and the charge occupations for the second setup B which is
defined by the inequalities yéo) (2,0) < pgs < ;450) (2,1) < prs. Following the same reasoning as before
one infers that now QD, will enter the Coulomb blockade regime before t = t; because there are no
transport channels within the bias window. However, the blockade is removed due to the second
dot whose charging activates tunneling through yéo) (2,1) = ;4(2,0) (1,2). This is an example of positive
correlations between the two systems. Further discussions can be found in a previous publication [17].
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Figure 6. The transient currents in the two systems for different chemical potentials of the leads:
(@) pra = prp = 425 meV, pgy = pigp = 3.75meV; (b) prs = pipp = 475 meV, gy = pigp = 4.35 meV;
(c,d) The charge occupations of the two systems associated to the currents in Figure 6a,b. The charges
Qq,p are given in units of electron charge e.

4. Thermoelectric Transport

Until now we showed results for the charge transport driven by an electric bias of the leads due to
different chemical potentials. The GME formalism allows also, in a straightforward way, the presence
of a temperature bias. Instead of different chemical potentials in the left and right leads, i r, one can
easily consider different temperatures, Ty r, and calculate the resulting currents after switching on the
contacts between the leads on the central system. Notice that, like in the case of an electric bias, there is
no requirement that the temperature bias is small, such that the nonlinear thermoelectric regime is
directly accessible [69]. In addition, since the Coulomb interaction between electrons in the central
system is already incorporated via the Fock space, the GME allows the inclusion of Coulomb blocking
and other electron correlation effects in the thermoelectric transport [70,71].

The thermoelectric transport at nanoscale is a reach and active topic within the context of the
modern quantum thermodynamics, partly motivated by novel ideas on the conversion of wasted heat
into electricity, and partly by the characterization of nanoscale system by methods complementary
to pure electric transport [72]. For example, an effect specific to nanosystems is the sign change of
the thermoelectric current or voltage when the electronic energy spectrum consists of discrete levels.
This effect was predicted in the early 90" [73] and detected experimentally for quantum dots [74-76]
and molecules [77]. This means that thermoelectric current in a nanoelectronic system may flow
from the hotter contact to the colder one, but also from the colder to the hotter, although the second
possibility might appear counter-intuitive. A simple explanation of this sign change of the current is
that in a nanoscale system with discrete resonances the current can be seen as having two components,
one carried by populated states above the Fermi energy, and another one carried by depopulated states
below it. By analogy with a semiconductor, the former states correspond to electrons in the conduction
band and the later states to holes in the valence band. Whereas an electric bias drives the electric
currents due to particles and holes in the same direction, such that they always add up, a thermal bias
drives them in opposite directions, such that the net current is their difference, which can be positive,
negative, or zero.
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We can describe this effect with the GME, first assuming a simple model with unidimensional and
discretized leads, and just a single site in between them as central system. By using the Markov approximation
one can show analytically that the current in the leads, in the steady state, are obtained as [71]

1 VEVE
IR = vy FuB) = fr(E)] (1)

whereV] r are the coupling parameters of the leads with the central site, T is the hopping energy on
the leads, and E is the energy of the central site. We see that the sign of the current depends on the
difference between the Fermi energies in the leads at the resonance energy,

1
fi(E) = Em T 51 I=LR. (52)

Thus, in the presence of a thermal bias, say T; > Tg, but in the absence of an electric bias, i.e.,
UL = MR, the current is zero and changes sign around y; = E. In addition, the current may also vanish
if the chemical potential in the leads is sufficiently far from the resonance such that the two Fermi
functions are both close to zero or one. Which means that if the central system has more resonant
energies the current may also change sign when y; is somewhere between two of them.

In Figure 7 we show an example of thermoelectric currents calculated with the GME, using the
same model as in Section 3. The lowest single-particle levels having energies £y = 0.375 meV and
gy = 3.37 meV are followed by the two-particle singlet state with E; = 5.39 meV and triplet with
E; = 5.62 meV, and then by another excited two-body state with zero spin with energy E; = 10.5 meV.
We consider temperatures kgT;, = 0.5 meV and kgTg = 0.05 meV in the left and right lead, respectively
(or Ty, = 5.8 Kand Tr = 0.58 K), and equal chemical potentials. In Figure 7a one can see the time
dependence of the currents in the leads after they are coupled to the central system, for two values of
the chemical potentials, 4.8 meV and 5.4 meV, selected on each side of the singlet state. Compared to
the results shown in Section 3 here we increased the coupling parameters between the leads and the
central system 1.4 times, such that the steady state is reached sooner.
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Figure 7. (a) The time evolution of the currents in the left and right leads, J; r, driven by a temperature
bias where T;, = 5.8 Kand T = 0.58 K. With red color the results for the chemical potential yj = g =
48 meV, and with blue color for yi; = pg = 54 meV. In the steady state the currents have opposite sign;
(b) The current in the steady state for two different temperatures of the left lead, T;, = 5.8 K (red) and
T; = 11.5K (blue), for variable chemical potentials y = pg.

As predicted by Equation (51), the currents in the steady state have opposite sign. But in fact,
as shown by the red curve of Figure 7b, here we do not resolve the energy interval between the singlet
and triplet states with kgT; > E;y — E; = 0.23 meV, such that we obtain one single (common) sign
change for these two levels (or “resonances”). Next, by increasing the chemical potential within the
larger gap between E; and E, the current in the steady state approaches zero and changes sign again,
for y; = 7.0 meV, and for y; = 7.8 meV when the temperature of the hot lead is doubled, T; = 11.5 K.
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By varying the chemical potential below the singlet energy E; we obtain a similar decreasing
trend of the current, except that now there is no sign change close to the energy ¢, = 3.37 meV, but only
a succession of minima and maxima. The reason is the level broadening due to the coupling of the
central system with the leads [71]. Still, from such data one can observe experimentally the charging
energy, as the interval between consecutive maxima, or minima, or mid points between them [77].

In the present review we show only the thermoelectric current, which corresponds to a
short-circuit experimental setup, i.e., a circuit without a load. To obtain a voltage with the GME
method one has to simulate a load by considering also a chemical potential bias. Thus, one can obtain
the open-circuit voltage, which corresponds to that electric bias jig — p1, which totally suppresses the
thermoelectric current, or the complete I-V characteristic of the “thermoelectric device”. Interestingly,
the sign change of the thermoelectric current or voltage can also be obtained by increasing the
temperature of the hot lead, while keeping the other lead as cold as possible [70,78-80].

A novel example of sign reversal of the thermoelectric current has been recently predicted in
tubular nanowires, either with a core-shell structure or made of a topological insulator material,
in the presence of a transversal magnetic field [81]. In this case the energy spectra are continuous,
but organized in subbands which are nonmonotonic functions of the wavevector along the nanowire,
yielding a transmission function nonmonotonic with the energy, and the reversal of the thermoelectric
current, even in the presence of moderate perturbations [82,83].

5. Electron Transport through Photon Cavities

5.1. The Electron-Photon Coupling

From the beginning our effort to model electron transport through a nano scale system placed in
a photon cavity has been geared towards systems based on a two-dimensional electron gas in GaAs
or similar heterostructures. We have emphasized intersubband transitions in the conduction band,
active in the teraherz range, in anticipation of experiments in this promising system [84].

Here, subsystem S is a two-dimensional electronic nanostructure placed in a static (classical)
external magnetic field. The leads are subjected to the same homogeneous external field. The electronic
nanostructure, via split-gate configuration, is parabolically confined in the y-direction with a
characteristic frequency g. The ends of the nanostructure in the x-direction at x = +L,/2 are
etched, forming a hard-wall confinement of length L. The external classical magnetic field is given by
B = Bz with a vector potential A = (—By, 0,0). The single-particle Hamiltonian reads:

~(0 1 2 1
1 1 1 .
= %Pi + %pi + Emﬂﬁ,yz +iweypx , (53)

where m is the effective mass of an electron, —q its charge, p the canonical momentum operator,
wc = qB/m is the cyclotron frequency and Oy = 4/w? + O3 is the modified parabolic confinement.
The spin degree of freedom is included with either a Zeeman term added to the Hamiltonian [85],
or with Rashba and Dresselhaus spin orbit interactions, additionally [86].

Hs, is simply the free field photon term for one cavity mode and by ignoring the zero point
energy can be written as Hs, = fiwpa'a where hiwy, is the single photon energy and a (a') is the bosonic
annihilation (creation) operator. The electron-photon interaction term V_p, can be split into two

terms Ve _ph = Ve(llz ph + Ve(lzj ph where
1
vl = ZZ<¢, %(n-AEM+AEM~n)(¢j>c,ch (54)
7]
2
2
Vil = X <¢i oy ¢j> e (55)
o]
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with 7t = p + A the mechanical momentum. The term in Equation (54) is the paramagnetic interaction,
whereas the diamagnetic term is defined by Equation (55). By assuming that the photon wavelength is
much larger than characteristic length scales of the system one can approximate the vector potential
amplitude to be constant over the electronic system. Let us stress here that, in contrast to the usual
dipole approximation, we will not omit the diamagnetic electron-photon interaction term. Then the
vector potential is written as:

&
Apn = eApy (') =@ iR 56
EM = €Agpm (ata ) quwaw (aJra (56)
where & is the unit polarization vector and & = gApmQuayw is the electron-photon coupling strength.
For a 3D rectangular Fabry Perot cavity we have Agy = /f1/ (2a;pV€0) where V is the cavity volume.
Linear polarization in the x-direction is achieved for a TEy;; mode, and in the y-direction with a
TE]Ol mode.

Using the approximation in Equation (56), the expressions for the electron-photon interaction
in Equations (54) and (55) are greatly simplified by pulling Agy in front of the integrals. For the
paramagnetic term, we get

1
ngljph ~ & <a + u+) Z:gijc;-rcj . (57)
b

where we introduced the dimensionless coupling between the electrons and the cavity mode

i = gwe [[dr g () {790} + Ll (0} gy (0)] - (58)

As for the diamagnetic term, we get

2
@ . & o 1 1744 .

Velfph_th Ku u+§ +§< a +ua) N©, (59)
where A/¢ is the number operator in the electron Fock space. Note that Ve(lszh does not depend on the
photon polarization or geometry of the system in this approximation. We do not use the rotating wave
approximation as in our multilevel systems even though a particular electron transition could be in

resonance with the photon field we want to include the contribution form others not in resonance.

For the numerical diagonalization of Hs we shall use the lowest Npest << Nmes IMBS of Hs, and
photon states containing up to Ngy photons, resulting in a total of Npest X (Ngym + 1) states in the
"free’ basis {|v,j) }.

5.2. Results

Groups modeling the near resonance interaction of one cavity mode with a two level electronic
system have expressed the importance of using a large enough, or the correct type, of a photon basis
in the strongly interacting regime [87,88]. In many level systems where wavefunction and geometric
effects are accounted for our experience is that convergence in numerical diagonalization is more
sensitive to proper truncation of the electronic sector of the Fock many-body space. This reflects the
polarizability of the electric charge by a cavity field in the construction of the photon-dressed electronic
states. At the same time the inclusion of the diamagnetic interaction curbs the need for states with a
very high photon number [42,50,89].

The polarizability of the first photon replica of the two-electron ground state is displayed in
Figure 8 as a function of ggm, the photon energy fiw and its polarization [50].
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Figure 8. The expectation value ((r/ay)?) for the first photon replica of the two-electron ground state
in the closed system at t = O for x- and y-polarization of the photon field. iw = 2.0 meV, B = 0.1 T.
Two parallel quantum dots are embedded in the central system.

The polarizability is nonlinear, anisotropic, and largest for the cavity photon close to a resonance
with the confinement energy in the y-direction.

A Rabi oscillation of two electrons in the double quantum dot system embedded in the short
quantum wire leads to oscillating charge with time in the system. The oscillating probability of charge
presence in the contact areas of the short wire thus lead to oscillations in the current leaving the system
through the left and right leads [33], see Figure 9.
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Figure 9. The left (black) and right (gold) currents and the mean electron number (blue) for initially
fully entangled Rabi-split singlet two-electron states as the interacting system discharges in the transient
regime. fiw = 2.0 meV, B = 0.1 T. Two parallel quantum dots are embedded in the central system.

Alternatively, one may view this as the consequence of the Rabi resonance entangling two states
with different tunneling probability to the leads.

In the transient or the late transient regime we have used the non-Markovian GME to investigate
several results: Thorsten Arnold et al. used a time-convolution-less (TCL) version of the GME
to study the effects of magnetic field and photons [46] on the transport of interacting electrons
through a quantum ring with spin-orbit interactions in a photon cavity with circular [86] and linear
polarization [90]. Aharonov-Bohm oscillations were established in the time-dependent transport
through a ring structure with additional vortexes in the contact region of the quantum wire. x-polarized
photons with energy 0.3 meV attenuate the Aharonov-Bohm oscillations over a broad range of magnetic
field, but y-polarized photons influence the transport in a more complex fashion. The oscillations
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are generally attenuated, but one oscillation peak is split and the charge current is enhanced at a
magnetic field corresponding to a half-integer flux quantum [46]. With the spin-orbit interactions the
spin polarization and the spin photo currents of the quantum ring are largest for circularly polarized
photon field and a destructive Aharonov—-Casher (AC) phase interference. The dip in the charge current
caused by the destructive AC phase becomes threefold under the circularly polarized photon field as
the interaction of the angular momentum of the electron and the spin angular momentum of the light
create a many-body level splitting [86]. The detailed balance between the para- and the diamagnetic
electron-photon interactions has been studied for an electron in the quantum ring structure when
excited by a short classical dipole pulse [47].

Nzar Rauf Abdullah et al. have used the GME formalism to investigate photon assisted
transport [91], photon mediated switching in nanostructures [48,49,92], the balancing of magnetic
and forces caused by cavity photons [93], cavity-photon affected thermal transport [94,95], and the
influence of cavity photons on thermal spin currents in a system with spin orbit interactions [96,97].

6. Steady-State

The investigation of the time dependent transport of electrons through a photon cavity soon made
it clear that for the continuous model the inherent time scales can lead to relaxation times far beyond
what is accessible with simple integration of the GME [32,45,46,49,91]. The underlying cause for the
diverse relaxation times is on one hand electron tunneling rates affected by the shape or geometry of
the system and the condition of weak coupling. Different many-body states can have a high or low
probability for electrons to be found in the contact areas of the central system. On the other hand are
slow rates of FIR or terahetz active transitions, that are furthermore affected by the geometry of the
wavefunctions of the corresponding final and initial states. In addition, the cavity decay, or coupling to
the environment, affects relaxation times as we address below [98]. To avoid confusion it is important
to remember that we calculate the eigenstates of the closed central system, the interacting electron and
photon system, and the opening up of the system to the leads or the external photon reseroir is always
a neccessary triggering mechanism for all transitions later in time, photon active or not.

6.1. The Steady-State Limit

In order to investigate the long-time evolution and the steady state of the central system under
the influences of the reservoirs we resort to a Markovian version of the GME, whereby we assume
memory effects in the kernel of the GME (26) to vanish, relinquishing the reduced density operator
local in time enabling the approximation [99]

/oo ds e(Es~E=9) v 5(Ep — By —e), (60)
JO

where a small imaginary principle part is ignored. We have furthermore assumed instant lead-system
coupling at t = 0 with x;(t) = 6(t), the Heaviside unit step function, in Equation (8) for Hr.
In order to transform the resulting Markovian equation into a simpler form we use the vectorization
operation [100], that stacks the columns of a matrix into a vector, and its property

vec(ApB) = (BT @ A)vec(p) (61)

through which the reduced density matrix can always be moved to the right side of the corresponding
term, and a Kronecker product has been introduced with the property B® A = {B, gA}. The Kronecker
product of two Nimes X Nimes matrices results in a N2, X N2
has brought forth that the natural space for the Liouville-von Neumann equation is not the standard
Fock space of many-body states, but the larger Liouville space of transitions [101-103].

No further approximations are used to attain the Markovian master equation and due

to the complex structure of the non-Markovian GME we have devised a general recipe

matrix, and effectively the vectorization
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published elsewhere [99] to facilitate the analytical construction and the numerical implementation.
The Markovian master equation has the form

drvec(p) = Lvec(p), (62)

and as the non-Hermitian Liouville operator £ is independent of time the analytical solution of
Equation (62) can be written as

vec(p(t)) = {U[exp (Laiagt)|V}vec(p(0)), (63)
in terms of the matrices of the column stacked left ¢/, and the right V eigenvectors of £
LY =VLig, and UL = LgiagU, (64)

obeying
Uy =1, and VU =1 (65)

Special care has to be taken in the numerical implementation of this solution procedure as many
software packages use another normalization for I/ and V. Calculations in the Liouville space using (63)
are memory (RAM) intensive, but bring several benefits: No time integration combined with iterations
is needed, thus time points can be selected with other criteria in mind. The solution is thus convenient
for long-time evolution, that is not easily accessible with numerical integration. The complicated
structure of the left and right eigenvector matrices for a complex system with nontrivial geometry
makes Equation (63) the best choice to find the properties of the steady state by monitoring the limit
of it as time gets very large. The complex eigenvalue spectrum of the Liouville operator £ reveals
information about the mean lifetime and energy of all active transitions in the open system, and the
zero eigenvalue defines the steady state.

In the steady state the properties of the system do not change with time, but underneath
the “quiet surface” many transitions can be active to maintain it. The best experimental probes
to gauge the underlying processes are measurements of noise spectra for a particular physical variable.
They are available through the two-time correlation functions of the respective measurable quantities.
For a Markovian central system weakly coupled to reservoirs the two-time correlation functions can
be calculated applying the Quantum Regression Theorem (QRT) [104,105] stating that the the equation
of motion for a two-time correlation function has the same form as the Markovian master equation (62)
for the operator [106]

x(7) = Trg {e—iHT/thT(O)EHHT/h} , (66)

where H is the total Hamiltonian of the system, pr its density operator, and the trace is taken with
respect of all reservoirs. For photon correlations X = a + at as in [50], or X = QA! for current
correlations as in [107], where Q = }; c;rci is the fermionic charge operator and Al is the Liouville
dissipation operator for lead /. The structure of y (66) indicates that the two-time correlation function
is then
(X(1)X(0)) = Trs {X(0)x(7)}, (67)
with
vec(x(1)) = {U[exp (Laiagt)]V }vec(x(0)). (68)

The left side of Equation (67), the two-time correlation function, is written in the Heisenberg picture,
in contrast to the Schrodinger picture used elsewhere in the article. The Fourier spectral density for the
photon two-time correlation function is denoted by S(E), and for the current-current correlation the
corresponding Fourier spectral density denoted by D;;/(E), where | and !’ refer to L and R, the Left
and Right leads.
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6.2. Results

To date we have used the Markovian version of the master equation to investigate properties
of the steady state, and how the system with electrons being transported through a photon cavity
reaches it. We assume GaAs parameters with effective mass m = 0.0671m1,, effective relative dielectric
constant €, = 12.3, and effective Landé g-factor g = —0.44. The characteristic energy of the parabolic
confinement of the semi-infinite leads and the central system in the y-direction is 1)y = 2.0 meV.
The length of the short quantum wire is Ly, and the overall coupling coefficient for the leads to the
system is gLRui,/Z = 0.124 meV.

We start with a central system made of a finite parabolic quantum wire without any embedded
quantum dots. Figure 10 demonstrates that the approach to build and solve the Markovian master
Equations (62)-(63) works for an interacting system with 120 many-body states participating in the
transport [108].
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Figure 10. (upper left) For the closed system as functions of the number of the eigenstate y,
the many-body energy (squares), the mean photon () and electron content (¢), and the mean spin
z-component (S;). The horizontal yellow lines represent the chemical potentials of the left (y1) and
right leads (ytg) when the system will be coupled to them. (upper right) The mean electron (solid)
and photon number (dashed) in the central system as a function of time. The mean occupation of
the many-body eigenstates of the system for ggp = 1 x 107% meV (lower left), and ggy = 0.05 meV
(lower right). Ve = —16mV, hw = 0.8 meV, x-polarization, x = 1 x 1075 meV, L, = 150 nm,
and B = 0.1 T. No quantum dots in the short wire.

The upper right panel displays the properties of the lowest 32 many-body states at the plunger
gate voltage Vo = —1.6 mV. With p; = 1.4 meV and p = 1.1 meV there are 8 states below the
bias window and five states within it. In the bias window is one spin singlet two-electron state
(the two-electron ground state) and two spin components of two one-electron states with a non-integer
mean photon content indicating a Rabi splitting. The upper left panel of Figure 10 show the mean
electron and photon numbers in the central system when it is initially empty. With a very low coupling,
gEM = 1 x 107° meV, between the electrons and photons, the charging is very slow with the probability
approaching unity around ¢ & 108 s. With increasing ggy the charging becomes faster, and during
the phase the mean photon number in the system rises. The lower panels of Figure 10 reveal what
is happening. With the low photon coupling (lower left panel) electrons tunnel non-resonantly into
the two spin components of the ground state, |1) and |2) as the vacuum state |3) looses occupation,

138



Entropy 2019, 21, 731

and to a small fraction the two-electron state |9) gets occupied. When the coupling of the electrons and
the photons is not vanishingly small (lower right panel) the charging of the system takes a different
rout. The finite ggp allows the incoming electron to enter the Rabi-split one-electron states in the
bias window as these are a linear combination of electron states with a different photon number.
This explains the growing mean number of photons in the system for intermediate times. These states
are eigenstates of the central system, but not of the open system, so at a later time they decay into
the the one- and two-electron ground states as before bringing the system into the same Coulomb
blocked steady state as before. We thus observe electromagnetically active transitions in the system in
an intermediate time regime [108].

The on-set of the steady state regime is difficult to judge only from the shape of the charge
being accumulated in the system or the current through or into it as a function of time [85]. For a
system of two parallel quantum dots embedded in a short quantum wire (L, = 150) nm the charging
and the current as functions of time look the same (see Figures 4 and 5 in ref. [85]), but when the
occupation of the eigenstates of the closed system is analyzed, see Figure 11, a clear difference is seen
for the approach to the steady state depending on whether the initial state contains only one or no
photon [85]. In the case of neither photon nor an electron in the cavity initially an electron tunnels into
the system into the two spin components of the one-electron ground state, which happens to be in the
bias window for Vo = —2.0 mV. Thus, the steady state is a combination of the empty state and these
two one-electron states. In the case of one photon and no electron initially in the system an electron
tunnels non-resonantly into the 1-electron states |8) and |9) with energy slightly below 2 meV, and
thus well above the bias window. The mean photon content of these states is close to unity and at
a later time the electron ends up in the two spin components of the one-electron ground state via a
radiative transition [85]).
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Figure 11. The mean occupation of the many-body eigenstates of the system when the initial state is
the ground state |1) (left), or the first photon replica of the ground state |2) (right). ggyp = 0.05 meV.
Ve =—-20mV, hiw = 0.8 meV, x-polarization, Ly = 150 nm, and B = 0.1 T. Two parallel quantum dots
embedded in the short wire, but no photon reservoir.

Note that the “irregularly” looking structure around ¢ ~ 2000 ps will be addressed below.
Please note that the numbering of interacting many-body state depends on the structure of the system,
and the plunger gate voltage V.

In the steady state all the mean values of the open system have reached a constant value. In order
to query about the active underlying processes it is necessary to calculate the spectral densities of the
photon or current correlations. We present these for the central system consisting of a short quantum
wire (Ly = 150) nm with two embedded quantum dots in Figure 12 (see refs. [107,109]).
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Figure 12. The spectral density S(E) of the emitted cavity radiation for the central system in a
steady state (left), and the spectral densities for the current-current correlations Dy (E) (right).
gem = 0.1meV, Vo = —2.0mV, fiw = 0.72 meV, x = 1 x 1073 meV, and L, = 150 nm. Two parallel
quantum dots embedded in the short wire.

Importantly we show in Ref. [50] that both the paramagnetic and the diamagnetic electron-photon
interactions can lead to a Rabi resonance. The resonance for the diamagnetic interactions is much
smaller, but the symmetry of the two parallel quantum dots leads to selection rules where for
x-polarized cavity photon field the paramagnetic interaction is blocked, but both are present for
the y-polarized field. Here, the active states are the one-electron ground state and the first excited
one-electron state, with which the first photon replica of the ground state interacts for iw = 0.72
meV. The spectral density of the photon-photon two-time correlation function, S(E) seen in the left
panel of Figure 12 shows one peak at the energy of the cavity mode fiw = 0.72 meV, and two side
peaks for the y-polarization. The central peak is the ground state state electroluminescence and
the side peaks are caused by the Rabi-split states [34,109,110]. Here, we observe the ground state
electroluminescence even though the electron-photon coupling is not in the ultra strong regime, as we
diagonalize the Hamiltonian in a large many-body Fock space instead of applying conventional
perturbative calculations.

For the x-polarized cavity field we find a much weaker ground state electroluminescence caused
by the diamagnetic electron-photon interaction [109]. In addition, we identify these effects for the
fully interacting two-electron ground state, where they are partially masked by many concurrently
active transitions. The spectral density for the current—current correlation functions Dy (E) displayed
in the right panel of Figure 12 show only peaks at the Rabi-satellites, as could be expected [107].
An inspection of Dy (E) over a larger range of energy reveals more transitions active in maintaining
the steady state, both radiative transitions and non radiative [107]. Moreover, we notice that when the
steady state is not in a Coulomb blocking regime the spectral density of the current-current correlations
always shows a background to the peaks with a structure reminiscent of a 1/ f behavior, that is known
in multiscale systems.

An “irregularly” looking structure in the mean occupation, the current current, and the mean
number of electrons and photons. This is a general structure seen in all types of central system we
have investigated in the continuous model. In Figure 13 we analyze it in a short parabolically confined
quantum wire of length L, = 180 nm with two asymmetrically embedded quantum dots [111].
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Figure 13. The mean electron (e), photon (), z-component of the spin (S;), trace of the reduced
density matrix, and the Réniy-2 entropy (S) as functions of time. fiw = 0.373 meV, x-polarization,
x = 1 x 1075 meV, ggy = 0.05 meV, and Ly = 180 nm. Two asymmetrically embedded quantum dots
in the short wire.

An increased number of time points on the logarithmic scale shows regular oscillations. A careful
analysis reveals two independent oscillations: A spatial charge oscillation between the quantum
dots with the Rabi frequency in the system, and a still slower nonequilibrium oscillation of the spin
populations residing as the system is brought to a steady state [111].

The steady-state Markovian formalism has been used to investigate oscillations in the transport
current as the photon energy or the electron-photon coupling strenght are varied with or without flow
of photons from the external reservoir [112,113]. Moreover, the formalism has been used to establish
the signs of the Purcell effect [114] in the transport current [98].

In light of the experimental interest of using a two-dimensional electron gas in a GaAs
heterostructure [84] we have calculated the exact matrix elements for the electron-photon interaction
taking into account the spatial variation of the vector field A of the electronic system. This is
a small correction in most cases but may be important when studying high order transitions or
nonperturbational effects caused by the photon field. This has led us to discover a very slow high
order transition between the ground states of two slightly dissimilar quantum dots [115].

The fist steps have been taken to investigate thermoelectric effects in the central system coupled
to cavity photons, in the steady state. In a short quantum wire with one embedded quantum dot
in the resonant regime, an inversion of thermoelectric current is found caused by the Rabi-splitting.
The photon field can change both the magnitude and the sign of the thermoelectric current induced by
the temperature gradient in the absence of a voltage bias between the leads [116].

7. Summary

It goes without saying that as transport experiments at nanoscale become more involved
the formal tools must be suitably extended or adapted. In particular, the unavoidable charging
and correlation effects at finite bias pushed the theoretical calculations from the very convenient
single-particle (or at most mean-field) Landauer—Biittiker picture to the complicated many-body
perturbation theory of the non-equilibrium Keldysh-Green'’s functions [117].

Here we summarized some results on time-dependent transport in open interacting systems
which argue for the similar idea that if one looks for transient effects and dynamics of excited states the
simple rate equation approach must be extended to the non-markovian generalized master equation.

The GME we used in all examples is constructed and solved w.r.t the exact many-body states
of the central open system and can be therefore implemented numerically without major changes to
study both Coulomb-interacting and hybrid systems where the fermion-boson interaction is crucial,
like QD-cavity systems or nano-electromechanical systems. A consistent derivation of the GME
the full knowledge of the eigenvalues and eigenfunctions of complicated interacting Hamiltonian
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(e.g., cavity-coupled systems must be described by ‘dressed’ states). With very few exceptions coming
from quantum optics (i.e., the Jaynes-Cummings model for two-level or A and V three-level systems)
such a task can only be achieved via numerically exact diagonalization of large matrices, especially for
elecron-photon systems. To bypass this difficulty we proposed and succesfully used a stepwise
diagonalization procedure.

The dynamics of excited states in a quantum wire, the onset of current-current correlations for
a pair of electrostatically coupled quantum dots and thermoelectric effects were presented within a
simple lattice model which however captures the relevant physics.

When turning to QED-cavity system we developed the GME within a continuous model which
accounts for the geometrical details of the sample and of the contact regions. Moreover, the calculations
were performed by taking into account both the paramagnetic and diamagnetic contributions to
the electron-photon coupling and without relying on the rotating-wave approximation. This is an
important step beyond the Jaynes-Cummings model. Also, the number of many-body stated needed in
the calculations increased considerably. Thus, the accuracy of the stepwise numerical diagonalization
had to be carefully discussed. Finally, for systems with long relaxation time a markovian version of
GME was proposed and implemented via a clever vectorization procedure.

We end this review by pointing out possible improvements of the GME method and some of
its future applications. At the formal level, perhaps the most challenging upgrade is the inclusion
of time-dependent potentials describing laser pulses or microwave driving signals. Provided this
is succesfully achieved, one could study transport through driven nano-electromechanical systems
(NEMS) or the physics of Floquet states emerging in strongly driven systems [118,119]. Let us mention
here that at least for closed systems (i.e., not connected to particle reservoirs) studies based on
Floquet master equations for two-level system are already available [120,121]. As for more immediate
applications we aim at the theoretical modeling of transport in Tavis—-Cummings systems, motivated by
the recent observation of state readout in a system of distant coupled quantum dots individually
connected to a pair of leads and interacting via cavity photons [29].
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Abstract: A prominent tool to study the dynamics of open quantum systems is the reduced density
matrix. Yet, approaching open quantum systems by means of state vectors has well known computational
advantages. In this respect, the physical meaning of the so-called conditional states in Markovian and
non-Markovian scenarios has been a topic of recent debate in the construction of stochastic Schrédinger
equations. We shed light on this discussion by acknowledging the Bohmian conditional wavefunction
(linked to the corresponding Bohmian trajectory) as the proper mathematical object to represent, in terms
of state vectors, an arbitrary subset of degrees of freedom. As an example of the practical utility of these
states, we present a time-dependent quantum Monte Carlo algorithm to describe electron transport in
open quantum systems under general (Markovian or non-Markovian) conditions. By making the most of
trajectory-based and wavefunction methods, the resulting simulation technique extends to the quantum
regime, the computational capabilities that the Monte Carlo solution of the Boltzmann transport equation
offers for semi-classical electron devices.

Keywords: conditional states; conditional wavefunction; Markovian and Non-Markovian dynamics;
stochastic Schrodinger equation; quantum electron transport

1. Introduction

Thanks to its accuracy and versatility, the Monte Carlo solution of the Boltzmann transport
equation has been, for decades, the preferred computational tool to predict the DC, AC, transient,
and noise performances of semi-classical electron devices [1]. In the past decade, however, due to the
miniaturization of electronic devices (with active regions approaching the de Broglie wavelength of the
transport electrons), a majority of the device modeling community has migrated from semi-classical
to fully quantum simulation tools, marking the onset of a revolution in the community devoted
to semiconductor device simulation. Today, a number of quantum electron transport simulators
are available to the scientific community [2-4]. The amount of information that these simulators
can provide, however, is mainly restricted to the stationary regime and therefore their predicting
capabilities are still far from those of the traditional Monte Carlo solution of the semi-classical
Boltzmann transport equation [1]. This limitation poses a serious problem in the near future as electron
devices are foreseen to operate at the Terahertz (THz) regime. At these frequencies, the discrete nature
of electrons in the active region is expected to generate unavoidable fluctuations of the current that
could interfere with the correct operation of such devices both for analog and digital applications [5].

A formally correct approach to electron transport beyond the quasi-stationary regime lies on the
description of the active region of an electron device as an open quantum system [6,7]. As such, one can
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then borrow any state-of-the-art mathematical tool developed to study open quantum systems [8,9].
A preferred technique has been the stochastic Schrodinger equation (SSE) approach [10-17]. Instead
of directly solving equations of motion for the reduced density matrix, the SSE approach exploits
the state vector nature of the so-called conditional states to alleviate some computational burden
(and ensure a complete positive map by construction [18]). Even if this technique allows to always
reconstruct the full density matrix, a discussion on whether dynamical information can be directly
extracted from such conditional states in non-Markovian scenarios has appeared recently in the
literature [19,20]. This debate is very relevant to us as we are interested in computing not only one-time
expectation values (i.e., DC performance) but also dynamical properties (i.e., AC, transient, and noise),
such as multi-time correlation functions, at THz frequencies. At these frequencies the environment
correlations are expected to decay on a time-scale comparable to the time-scale relevant for the system
evolution [21]. Furthermore, the displacement current becomes important at very high frequencies and
a self-consistent solution of the Maxwell equations and the Schrodinger equation is necessary [21,22].

Some light on how to utilize the SSE technique to access dynamical information without the need
of reconstructing the reduced density matrix has already been shed by Wiseman and Gambetta by
acknowledging the Bohmian conditional wavefunction as the proper mathematical tool to describe
general open quantum systems in non-Markovian scenarios [23,24]. In this work we reinforce this idea
by showing that the Bohmian conditional wavefunction, together with the corresponding Bohmian
trajectory, is an exact decomposition and recasting of the unitary time-evolution of a closed quantum
system that yields a set of coupled, non-Hermitian, equations of motion that allows to describe the
evolution of arbitrary subsets of the degrees of freedom on a formally exact level. Furthermore,
since the measurement process is defined as a routine interaction between subsystems in Bohmian
mechanics, conditional states can be used to describe either the measured or unmeasured dynamics of
an open quantum system. As an example of the practical utility of the conditional wavefunctions, we
present here a Monte Carlo simulation scheme to describe quantum electron transport in open systems
that is valid both for Markovian or non-Markovian regimes and that guarantees a dynamical map that
preserves complete positivity [25-29].

This paper is structured as follows. In Section 2 we provide a brief account on the SSE approach
and on how nanoscale electron devices can be understood as open quantum systems. Section 3 focuses
on the physical interpretation of the conditional states (i.e., system states conditioned on a particular
value of the environment) in the contexts of the orthodox and Bohmian quantum mechanical theories.
Section 4 provides an overall perspective on the points raised in the previous sections and puts into
practice the conditional wavefunction concept to build a general purpose electron transport simulator,
called BITLLES, beyond the steady state (Markovian) regime. As an example of the use of conditional
states, numerical simulations of the THz current in a graphene electron device are presented in
Section 5. Final comments and conclusions can be found in Section 6.

2. Electron Devices as Open Quantum Systems

In this section we introduce the SSE approach to open quantum systems and discuss how it can
be used to reconstruct the reduced density matrix. We then explain how a nanoscale electron device
can be understood as an open quantum system and how the SSE approach can be applied to predict
its performance.

2.1. Open Quantum Systems

As usual, we start with a closed quantum system (see Figure 1a). This system is represented by a
pure state, [¥(t)), which evolves unitarily according to the time-dependent Schrédinger equation:

_O[¥(H) A
ins = Al (D). )
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Finding a solution to Equation (1) is inaccessible for most practical scenarios due to the large
number of degrees of freedom involved. Therefore, it is a common practice to partition the system into
two subsets of degrees of freedom, viz., open system and environment [6]. The open system can be
described by a reduced density matrix:

Psys (1) = Treny [[¥ (1)) (¥ (D], @

where Treny denotes the trace over the environment degrees of freedom. The reduced density matrix
Psys can be shown to obey, in most general circumstances, a non-Markovian master equation [30,31]:

aAS S t < T Y b N A / /
pgt( ) = —i [Hine(t), Psys(t)] + /to K(t,t')psys(t')dt’, 3)

where Hin(t) is a system Hamiltonian operator in some interaction picture and K(t,s) is the “memory
kernel” superoperator, which operates on the reduced state dsys(t) and represents how the environment
affects the system. If the solution to Equation (3) is known then the expectation value of any observable
A of the system can be evaluated as:

<A(t)> = Trsys [ﬁSyS(t)A]~ “4)

Unfortunately, solving Equation (3) is not an easy task. The effect of K(t,s) on fsys(t) cannot be
explicitly evaluated in general circumstances. Moreover, even if the explicit form of K(t,s) is known,
the solution to Equation (3) is very demanding as the density matrix psys(t) scales very poorly with the
number of degrees of freedom of the open system. Finally, if one is aiming at computing multi-time
correlations functions, then it is necessary to incorporate the effect (backaction) of the successive
measurements on the evolution of the reduced density matrix, which is, in general non-Markovian
regimes, a very complicated task both from the practical and conceptual points of view.

2.2. Stochastic Schrodinger Equations

A breakthrough in the computation of the reduced density matrix in Equation (2) came from the
advent of the SSE approach [32]. The main advantage behind the SSE approach is that the unknown to
be evaluated is in the form of a state vector (of Nsys degrees of freedom) rather than a matrix (of size
stys) and thus there is an important reduction of the associated computational cost. In addition,
it provides equations of motion that, by construction, ensure a complete positive map [18] so that
the SSE approach guarantees that the density matrix always yields a positive probability density,
a requirement that is not generally satisfied by other approaches that are based on directly solving
Equation (3) [33].

The central mathematical object in the SSE approach to open quantum systems is the conditional
state of the system:

({al @ fys) [¥(2))
P(q,1)

where P(q,t) = (g(5)|¢g(1)) = (¥ (t)|Leys ® |q)(q] @ Loys[¥(t)) and |q) are the eigenstates of the
so-called unraveling observable Q belonging to the Hilbert space of the environment. To simplify the
discussion, and unless indicated, q represents the collection of degrees of freedom of the environment.
Using the eigenstates |g) as a basis for the environment degrees of freedom, it is then easy to rewrite

the full state [¥(¢)) as: ‘
[¥(1) = [ day/P(a,1la)  194()), ©®)

which can be simply understood as a Schmidt decomposition of a bipartite (open system plus
environment) state. Thus, a complete set of conditional states can be always used to reproduce
the reduced density matrix at any time as:

[9q(8)) = . ®)
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poys(t) = [ daP (g, )y (1) (1) )

Let us note that no specific (Markovian or non-Markovian) assumption was required to write
Equation (7). In fact, the above definition of the reduced density matrix simply responds to the
global unitary evolution in Equation (1), which (as depicted in Figure 1a) does not include the effect of
any measuring apparatus.

2.3. Nanoscale Electron Devices as Open Quantum Systems

At first sight, one could be inclined to say that a nanoscale electron device perfectly fits into
the above definition of open quantum system. The open system would then be the device’s active
region and the environment (including the contacts, the cables, ammeter, etc.) the so called reservoirs
or contacts (see Figure 1a). In addition, the observable of interest A in Equation (4) would be, most
probably, the current operator I. As long as we are interested only in single-time expectation values, i.e.,
static or stationary properties, this picture (and the picture in Figure 1a) is perfectly valid. Therefore,
the SSE approach introduced in Equations (5)—(7) can be easily adopted to simulate electron devices
and hence to predict their static performance.

{ Environment \i :." EnvironmentiiR Meter
Ll oo nar L N
i ctive Region i i Active Region! :
B JL i T .
&L ! T i
NI / L = )

Unitary Evolution Non-unitary Evolution

(a) (b)

Figure 1. Panel (a): Schematic representation of an open quantum system, which can be partitioned
into active region and environment. The evolution of the entire device is described by the state |'¥(t))
that evolves unitarily according to the time-dependent Schrodinger equation. Panel (b): Schematic
representation of a measured open quantum system, which can be partitioned into meter, active region,
and environment. The evolution of the device plus environment wavefunction is no longer unitary
due to the (backaction) effect of the measuring apparatus.

However, if one aims at computing dynamical properties such as time-correlation functions,
e.g., (I(t+ 1)I(t)), then a valid question is whether such an expectation value is expected to be
measurable at the laboratory. If so, what would then be the effect of the measurement of I at time f on
the measurement of I at a later time ¢ + 7?. Figure 1b schematically depicts this question by drawing
explicitly the measuring apparatus (or meter). As it is well known, the action of measuring in quantum
mechanics is not innocuous. It is quite the opposite: in many relevant situations, extracting information
from a system at time # has a non-negligible effect on the subsequent evolution of the system and hence
also on what is measured at a later time ¢ + 7. Therefore, as soon as we are concerned about dynamic
information (i.e., time-correlation functions), we need to ask ourselves whether an approach to open
quantum systems such as the SSE approach can be of any help. In the next section we will answer this
question and understand whether the conditional states |1, (t)) defined in Equation (5) do include the
backaction of the measuring apparatus depicted in Figure 1b.

3. Interpretation of Conditional States in Open Quantum Systems

The conditional states in Equation (5) were first interpreted as a simple numerical tool [32], that is,
exploiting the result in Equation (7) as a numerical recipe to evaluate any expectation value of interest.
This interpretation is linked to the assumption that the operator A in Equation (4) is the physically
relevant operator (associated to a real measuring apparatus), while the operator Q associated to the
definition of the conditional state in Equation (5) is only a mathematical object with no attached

152



Entropy 2019, 21, 1148

physical reality, i.e., it merely represents a basis. In more recent times, however, it has been generally
accepted that the conditional states in Equation (5) can be interpreted as the states of the system
conditioned on a type of sequential (sometimes referred to as continuous) measurement [34] of the
operator Q of the environment (now representing a physical measuring apparatus that substitutes
the no longer needed operator A) [6,12,35]. From a practical point of view, this last interpretation
is very attractive as it would allow to link the conditional states, |{,(t)), at different times and thus
compute time-correlation functions without the need of introducing the measuring apparatus or of
reconstructing the full density matrix. Whether or not this later interpretation is physically sound in
general circumstances is the focus of our discussion in the next subsections.

3.1. The Orthodox Interpretation of Conditional States

Let us start by discussing, in the orthodox quantum mechanics theory, what is the physical
meaning of the conditional states that appear in Equation (5). When the full closed system follows the
unitary evolution of Figure 1a, the conditional state |,(t)) can be understood as the (renormalized)
state that the system is left in after projectively measuring the property Q of the environment (with
outcome ¢). This can be easily seen by noting that the superposition in Equation (6) is, after a projective
measurement of Q, reduced (or collapsed) to the product state

[¥q(t)) = \/P(a,1)]q) @ [p(£))- ®)

It is important to notice that the conditional state |1, (t)) at a later time, #' > t, can be equivalently
defined as the state of the system when the superposition in Equation (6) is measured at time '
and yields the outcome 4. This interpretation, however, is only valid if no previous measurement
(in particular at t) has been performed, as depicted in Figure 2a. Otherwise, the collapse of the
wavefunction at time ¢, yielding the state \/P(q,t)|q) ® |i¢4(t)), should be taken into account in the
future evolution of the system, which would not be the same as if the measurement had not been
performed at the previous time. Therefore, the equation of motion of the conditional states, as defined
in Equation (5), cannot be, in general, the result of a sequential measurement protocol such as the one
depicted in Figures 1b or 2b. This conclusion seems obvious if one recalls that our starting point was
Figure 1a, where there is no measurement.

3.1.1. Orthodox Conditional States in Markovian Scenarios

Even if the conditional states solution of the SSE cannot be generally interpreted as the result of
a sequential measurement, such an interpretation has been proven to be very useful in practice for
scenarios that fulfill some specific type of Markovian conditions. We are aware that there is still some
controversy on how to properly define Markovianity in the quantum regime (see, e.g., Ref. [18]), so it
is our goal here only to acknowledge the existence of some regimes (i.e., particular observation time
intervals) of interest where the role of the measurement of the environment has no observable effects.
In this regime, Figure 1a,b as well as Figure 2a,b can be thought to be equivalent.
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SSE Approach

Sequential Measurement Approach

(b)

Figure 2. Panel (a): Schematic representation of the SSE approach. The states of the system conditioned
on a particular value of the environment at time ¢, [p;(t)), can be given a physical meaning only if
no measurement has been performed at a previous time ' < t. This approach can be always used to
reconstruct the correct reduced density matrix of the system at any time but cannot be used to link
in time the conditional states for non-Markovian scenarios. Panel (b): Schematic representation of a
sequential measurement. The wavefunction of the system plus environment is measured sequentially.
In this picture, the link between the states of the full system plus environment at different times is
physically motivated.

In our pragmatical definition of Markovianity the entanglement between system and environment
decays in a time scale tp that is much smaller than the observation time interval 7, i.e., tp < 7. In this
regime, the environment itself can be thought of as a type of measuring operator (as appears in
generalized quantum measurement theory [36]) that keeps the open system in a pure state after the
measurement. The open system can be then seen as an SSE in which the stochastic variable q; (sampled
from the distribution P (g, t)) is directly the output of a sequential measurement of the environment.
The stochastic trajectory of this conditioned system state generated by the (Markovian) SSE is often
referred to as a quantum trajectory [6,12,35] and can be used, for example, to evaluate time-correlation
functions of the environment as:

(QOQU+D) =" [ [ Plar )P @qrir t+ Dadrscdadgir = (QUNQUE+T).  ©)

Let us emphasize that the stochastic variables q; and g;4 in Equation (9) are sampled, separately,
from the probability distributions P(q:,t) = (4(t)|¢4(t)) and P(qs1r, t +T) = (¥g(t + )| (t + 7).
Therefore, as we have schematically depicted in Figure 3, no matter how the trajectories {g;} are
connected in time, one always obtains the correct time-correlation function (Q(#)Q(t + 7)).
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Figure 3. Schematic representation of the combined system plus environment wavefunction (blue
Gaussians) measured at different times that result in a state of the system [¢;(t)) conditioned to the
set of environment values {g;} shown in dark blue circles. In the Markovian regime there exists no
specific recipe about how the different g;'s must be connected in time (colored solid lines). No matter
how these points are connected in time, one always gets the right expectation value in Equation (9).

It is important to realize that we started our discussion on the physical meaning of the Markovian
SSE with an open system whose environment is not being measured (see Figures 1a and 2a). Noticeably,
we have ended up discussing an environment that is being measured at every time interval T (see
Figure 2b). How is that possible? Well, the reason is that measuring the environment at time ¢ does not
affect the system conditional states at a later time T when the built-in correlations in the environment
due to the measurement at time t decay in a time interval fp much smaller than the time interval
between measurements 7. In other words, Figure 1a,b as well as Figure 2a,b are not distinguishable
when tp < 7. In this sense, the Markovian regime has some similarities with a classical system, where
it is accepted that information can be extracted without perturbation.

3.1.2. Orthodox Conditional States in Non-Markovian Scenarios

For nanoscale devices operating at very high (THz) frequencies, the relevant dynamics and
hence the observation time interval 7 are both below the picoseconds time-scale and the previous
assumption of Markovianity, i.e., tp < T, starts to break down. Under the condition tp ~ T,
non-Markovian SSE have been proposed which allow an alternative procedure for solving the reduced
state [, (t)) [17,33,37—41]. However, non-Markovian SSEs constructed from Equation (5), unlike the
Markovian SSEs, suffer from interpretation issues [17]. In the non-Markovian regime, the perturbation
of the environment due to the quantum backaction of a measurement at time  would not be washed
out in the time lapse T ~ tp and hence the joint probability distribution would not become separable,
ie., P(qt,qgi+7)) # P(qt)P(gi+<)- As a direct consequence, connecting in time the different solutions
gt and g;+r (sampled independently from the probability distributions P(q;,t) and P(qi4<,t + T) as
in Figure 3 to make a trajectory “would be a fiction” [17,19,20]. Here, the word “fiction” means that
the time-correlations computed in Equation (9) are wrong, i.e., the expectation value in Equation (9)
would simply be different from the experimental result.
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According to D’Espagnat the above discussion can be rephrased in terms of the so-called
proper and improper mixtures [42]. Following D’Espagnat arguments, the reduced density matrix
in Equation (7) is an improper mixture because it has been constructed by tracing out the degrees of
freedom of the environment. On the contrary, a proper mixture is a density matrix constructed to
simultaneously define several experiments where a closed system is described, at each experiment,
by different pure states. Due to our ignorance, we do not know which pure state corresponds to which
experiment, so we only know the probabilities of finding a given pure state. D’Espagnat argues that the
ignorance interpretation of the proper density matrix, cannot be applied in the improper density matrix
discussed here (See Appendix A). To understand why under a Markovian regime open systems can be
described by pure states (using a proper mixture), we remind that Markovianity implies conditions on
the observation time. For a given correlation time tp, a given open system can be in the Markovian or
non-Markovian regimes depending on the time of observation 7. That is, for small enough observation
times all open systems are non-Markovian and hence must be understood as an improper mixture.
On the contrary, for large enough observation times, open systems can behave as closed systems (with
a negligible entanglement with the environment) and be effectively represented by pure states.

3.2. The Bohmian Interpretation of Conditional States

So, under non-Markovian (i.e., the most general) conditions, the conditional states |y (t)) can
be used to reconstruct the reduced density matrix as in Equation (7) but cannot be used to provide
further information on its own. This interpretation problem is rooted in the fact that orthodox
quantum mechanics only provides reality to objects whose properties (such as g) are being directly
measured. However, as explained in the previous subsection, it is precisely the fact of introducing
the measurement of g (without including the pertinent backaction on the system evolution) which
prevents the conditional states |¢;(t)) of the non-Markovian SSE from being connected in time for
tp ~ 7. In this context, a valid question regarding the interpretation of [¢4(t)) is whether or not we can
obtain information of, e.g., the observable Q without perturbing the state of the system. The answer
given by orthodox quantum mechanics is crystal clear: this is not possible (except for Markovian
conditions) because information requires a measurement, and the measurement induces a perturbation.
Notice, however, that the assumption that only measured properties are real is not something forced
on us by experimental facts, but it is a deliberate choice of the orthodox quantum theory. Therefore,
we here turn to a nonorthodox approach: the Bohmian interpretation of quantum mechanics [43—48].

A fundamental aspect of the Bohmian theory is that reality (of the properties) of quantum
objects does not depend on the measurement. That is, the values of some observables, e.g., the
value of the positions of the particles of the environment, exist independently of the measurement.
If g is the collective degree of freedom of the position of the particles of the environment and x
is the collective degree of freedom of the position of particles of the system; then, the Bohmian
theory defines an experiment in the laboratory by means of two basic elements: (i) the wavefunction
(q,x|'¥(t)) = ¥(x,q,t) and (ii) an ensemble of trajectories Q'(t), X'(t) of the environment and of
the system. We use a superindex i to denote that each time an experiment is repeated, with the
same preparation for the wavefunction ¥ (x, g, t), the initial positions of the environment and system
particles can be different. They are selected according to the probability distribution |¥(X?, Q',0)|? [44].
The equation of motion for the wavefunction ¥ (x, g, t) is the time-dependent Schrodinger equation in
Equation (1), while the equations of motion for the environment and system trajectories Q(t), X' (t)
are obtained by time-integrating the velocity fields v, (x,q,t) = J;(x,q,t)/[¥(x,q,t)|* and vx(x, g, t) =
Jx(x,q,t)/¥(x,q,t)|* respectively. Here, J;(x,q,t) and J«(x, g, t) are the standard current densities of
the environment and the system respectively. We highlight the (nonlocal) dependence of the Bohmian
velocities of the particles of the environment on the particles of the system, and vice-versa. This shows
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just the entanglement between environment and system at the level of the Bohmian trajectories.
According to the continuity equation

¥ (x,0,1)

i + Va(0x(x, 4, 1)[¥ (x,4,8)%) + V(09 (x, 4, 1) [¥ (x,4,8)%) = 0, (10)

the ensemble of trajectories {Q(t), X(#)} = {Q (), X' (t), Q*(t), X2(1)....QM(t), XM ()} with M — o
can be used to reproduce the probability distribution [¥(x, g,t)|? at any time. Thus, by construction,
the computation of ensemble values from the orthodox and Bohmian theories are fully equivalent,
at the empirical level.

From the full wavefunction (x,q|%¥(t)) = ¥(x, g, ) (solution of Equation (1)) and the trajectories
Qi(t), X(t), one can then easily construct the Bohmian conditional wavefunction of the system and
environment as lI]Qi(t) (x,t) = ¥(x,Q(t),t), and IIJX,'(t) (q,t) = ¥(X!(t),q,t) respectively. Notice that
this Bohmian definition of conditional states does not require to specify if the system is measured or not
because the ontological nature of the trajectories {Q(t), X(t)} does not depend on the measurement.
Consequently, the conditional wavefunctions q}Qi(t) (x, t), with the corresponding Bohmian trajectories,
contain all the required information to evaluate dynamical properties of the system no matter whether
Markovian or non-Markovian conditions are being considered. This can be seen by noticing that the
velocity of the trajectory X' (t) given by v,(X'(t), Q'(t)) can be equivalently computed either from (the
x—spatial derivatives of) the global wavefunction ¥ (x, Q, t) evaluated at X'(t) and Q'(t) or from (the
x-spatial derivative of) the conditional wavefunction irQ,(t) (x,t) evaluated at X!(t). In other words,
the Bohmian velocities computed from ¥ (x, Q, ) or lZJQ,‘ 0 (x,t) are identical. Thus, in a particular
experiment i and for a given time ¢, the dynamics of the Bohmian trajectory X(t) can be computed
either from ;) (x,t) or from ¥ (x, g, t).

The Bohmian conditional wavefunction of the system can now be connected to the orthodox
conditional wavefunction in Equation (5) by imposing Q'(t) = g;. Then one can readily write:

(94, () = P(qe, 1) [9q, (1)) an

At first sight, one can think that the difference between the Bohmian and orthodox conditional states is
just a simple renormalization constant P(q;, t) (see Appendix B for a more detailed explanation of the
role of this renormalization constant). However, the identity in Equation (11) has to be understood as
to be satisfied at any time f, which implies that the following identity should prevail:

Q(t) = qu, Vit (12)

We emphasize the importance of Equation (12) in ensuring the accomplishment of Equation (11). If we
consider another experiment Q/(t) = g, , we have to define another conditional state |l/3q; (t)). It can
happen that, at a particular time t = #;, both conditional states become identical i.e., |l[~1,7i1 (h)) =
|l/3q£] (t1)). However, this does not imply that both conditional wavefunctions can identically be used
in the computation of time-correlations. This is because every Bohmian trajectory has a fundamental
role in describing the history of the Bohmian conditional state for one particular experiment. Therefore,
the trajectory Q'(t) uniquely describes the evolution of the conditional wavefunction |¢, (t)) for
one experiment (labeled by the index i in the Bohmian language) the same way as the trajectory
Q/(t) and the conditional wave function |lﬁq; (t)) describes the experiment labeled by j. As we said,
|lﬁm] (h)) = ‘1’77‘7;1 (t1)) are the same orthodox conditional states, but do not necessarily represent
the same Bohmian conditional wavefunction. This subtle difference explains why SSEs cannot be
connected in time and used to study the time-correlation of non-Markovian open system whereas the
same can be done through the Bohmian conditional states, without any ambiguity.

The mathematical definition of the measurement process in Bohmian mechanics and in the
orthodox quantum mechanics differs substantially [44]. In the orthodox theory a collapse (or reduction)
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law, different from the Schrodinger equation, is necessary to describe the measurement process [45].
Contrarily, in Bohmian mechanics the measurement is treated as any other interaction as far as the
degrees of freedom of the measuring apparatus are taken into account [44]. Therefore, while in the
orthodox theory the conditional states |¢4, ()) cannot be understood without the perturbation of the
full wavefunction ¥ (x, g, ), in Bohmian mechanics the states |, (t)) do have a physical meaning even
when the full wavefunction ¥(x, g,t) is unaffected by the measurement of the environment [23].
Interestingly, this introduces the possibility of defining what we call “unmeasured (Bohmian)
conditional states” when it is assumed that there is no measurement or that the measurement of
gt at time t has a negligible influence on the subsequent evolution of the conditional state.

Importantly, the Bohmian conditional states and the corresponding Bohmian trajectories can
be used not only to reconstruct the reduced density matrix in Equation (7) at any time but the
environment trajectories {Q(t)} allow us to correctly predict any dynamic property of interest
including time-correlation functions, e.g.,

M .
(QUQU+) = 37 L QOQ+7) = [ [ Pla g dadgs-o, (13)
i=1
where M — 0 is the number of experiments (Bohmian trajectories) considered in the ensemble and
we have defined P(q;, qir) = 4 L%y 0(qe — Q'(£))8(qr+7 — Q'(t + 1)) As it is shown in Figure 4,
the evaluation of Equation (13) and any other dynamic property when tp ~ T can be done only by
connecting the (Bohmian) trajectories at different times in accordance with the continuity equation in
Equation (10). This is in contrast with the evaluation of the dynamics in the Markovian regime where

any position of the environment at time #; can be connected to another position of the environment at

time #, (see Figure 3) and hence we can write (Q(t)Q(t + 7)) CA # Zf\f Qi(H)Q/(t + 7). This very

relevant point was first explained by Gambetta and Wiseman [23,24].
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Figure 4. Schematic representation of the combined system+environment wavefunction (blue
Gaussians) that is measured at different times and results in a Bohmian conditional state ‘l[}q(f)}
conditioned to the set of environment values {g;} shown in dark blue circles. In the non-Markovian
regime only those values from the set of values satisfying the continuity equation in Equation (10)
can be linked in time to form a trajectory (shown as connected red circles). Dashed lines represent
connections that do not follow the continuity equation and hence cannot be used to evaluate any
dynamic property.
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Although the Bohmian theory can also provide measured properties of the system that coincide
with the orthodox results in Figure 2b, let us emphasize once more the merit of the unmeasured
properties provided by the Bohmian theory, which remains mainly unnoticed in the literature. As it
has been already explained, in the orthodox theory, measuring a particular value of the environment
property g at time ¢ cannot be conceived without the accompanying perturbation of the wavefunction
¥ (x,q,t). Under non-Markovian conditions, it is precisely this perturbation that prevents the
conditional states of the system |, (t)) from being connected in time to form a trajectory. Contrarily,
in Bohmian mechanics, the existence of the environment trajectories { Q(t)}, even in the absence of any
measurement, allows the possibility of connecting in time the conditional states |, (f)) even when
tp ~ T.

Note that in the Bohmian framework, where the measurement apparatus is simply represented
by an additional number of degrees of freedom interacting with the system (i.e., without requiring
any additional collapse law), a discussion about measured and unmeasured properties of quantum
systems is pertinent [49]. At a practical level, the measurement of many classical systems implies
non-negligible perturbations. In particular, electronic devices at high frequencies are paradigmatic
examples where such perturbations occur. It is well-known that the experimental setup (for e.g.,
a coaxial cable) connecting the electronic device to the meter induces dramatic perturbations in
high-frequency measurements. An important task for device engineers is to determine what part of
the measured signal is due to the intrinsic behaviour of the electron device and what part is due to rest
of the experimental setup. When trying to predict the “intrinsic” behaviour of the electronic devices,
the coaxial cables are modelled by “parasitic” capacitors or inductors to account for their “spurious”
effect. Even the measurement of the whole experimental setup is repeated twice, with and without the
“intrinsic” device under test (DUT), to subtract the results and determine experimentally the “intrinsic”
properties of the electronic device alone. Such “intrinsic” properties of the electronic devices are what
we define in this manuscript as the unmeasured properties of quantum systems.

4. Bohmian Conditional Wavefunction Approach to Quantum Electron Transport

The different notions of reality invoked by the orthodox quantum theory and Bohmian mechanics
lead to practical differences in the abilities that these theories can offer to provide information about
quantum dynamics. Specifically, we have shown that contrarily to orthodox quantum mechanics,
Bohmian mechanics allows to physically interpret (i.e., link in time) the conditional states of the SSE
approach in general non-Markovian scenarios. The reason is that whereas in the Bohmian theory the
reality of the current is independent of any measurement, the orthodox theory gives reality to the
electrical current only when it is being measured (this is the so-called eigenstate—eigenvalue link).
From the practical point of view, this has a remarkable consequence. In the Bohmain approach the total
current can be defined in terms of the dynamics of the electrons (Bohmian) trajectories without the
need to define a measurement operator. As it will be shown in this section, the possibility of computing
the total current at high frequencies without specifying the measurement operator is certainly a great
advantage of the Bohmian approach in front of the orthodox one [44]. In particular, one can then
avoid cumbersome questions like, is the measurement operator of the electrical current strong or
weak? If weak, how weak? How often do such operator acts on the system? Every picosecond, every
femtosecond? At high frequencies, how we introduce the contribution of the displacement current in
the electrical current operator?

In this section we provide a brief summary of the path that the authors of this work followed
for developing an electron transport simulator based on the use of Bohmian conditional states.
The resulting computational tool is called BITLLES [28,29,50-56]. Let us start by considering an
arbitrary quantum system. The whole system, including the open system, the environment, and the
measuring apparatus, is described by a Hilbert space H that can be decomposed as H = H, ® H,
where H, is the Hilbert space of the open system and #, the Hilbert space of the environment.
If needed, the Hamiltonian #H, can include also the degrees of freedom of the measuring apparatus as
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explained in Section 3.2. We define x = {x1, x...x, } as the degrees of freedom of n electrons in the
open system, while g collectively defines the degrees of freedom of the environment (and possibly the
measuring apparatus). The open system plus environment Hamiltonian can then be written as:

A=HeL+l®A+V (14)

where H, is the Hamiltonian of the system, I:Iq is the Hamiltonian of the environment (including the
apparatus if required), and V is the interaction Hamiltonian between the system and the environment.
We note at this point that the number of electrons # in the open system can change in time and so the
size of the Hilbert spaces H» and #H, can depend on time too.

The equation of motion for the Bohmian conditional states (x|(,, (t)) = 14, (x, t) in the position
representation of the system can be derived by projecting the many-body (system-environment)
Schrodinger equation into a particular trajectory of the environment g; = Q(t), i.e., [26,57]:

. dlﬁqr(xl t) _ a . dqt
ih—=7== = (q:| @ (x[H[Y (1)) + V(g @ (x[¥ ()|, Z (15)
Equation (15) can be rewritten as:
L dPg, (x,t) 2 ;
R — |2 U (x,0)| G (x,1), (16)
where
l:l;{f(x,t) =U(x, t) + V(x,qet) + A(x, g, t) +iB(x, g1, t). 17)

In Equation (17), U(x,t) is an external potential acting only on the system degrees of freedom,
V(x,qs,t) is the Coulomb potential between particles of the system and the environment evaluated
)!q:m and B(x, gt t) =
WV ¥ (x,q,t)/¥(x,q,t) |q:qf’7t (with g; = dq;/dt) are responsible for mediating the so-called kinetic
and advective correlations between system and environment [26,57]. Equation (16) is non-linear and
describes a non-unitary evolution.

In summary, Bohmian conditional states can be used to exactly decompose the unitary
time-evolution of a closed quantum system in terms of a set of coupled, non-Hermitian, equations of
motion [26,57-59]. An approximate solution of Equation (16) can always be achieved by making an
educated guess for the terms A and B according to the problem at hand. Specifically, in the BITLLES
simulator the first and second terms in Equation (17) are evaluated through the solution of the Poisson
equation [29]. The third and fourth terms are modeled by a proper injection model [60] as well as
proper boundary conditions [56,61] that include the correlations between active region and reservoirs.
Electron-phonon decoherence effects can be also effectively included in Equation (16) [25].

In an electron device, the number of electrons contributing to the electrical current are mainly those
in the active region of the device. This number fluctuates as there are electrons entering and leaving
the active region. This creation and destruction of electrons leads to an abrupt change in the degrees of
freedom of the many body wavefunction which cannot be treated with a Schrodinger-like equation for
g, (x, t) with a fixed number of degrees of freedom. In the Bohmian conditional approach, this problem
can be circumvented by decomposing the system conditional wavefunction ¢, (x,t) into a set of
conditional wavefunctions for each electron. More specifically, for each electron x;, we define a single
particle conditional wavefunction 1/:th (x;, Xi(t),t), where X;(t) = {X1(t), .., xi_1(t), xi 11, .., Xu(t) } are
the Bohmian positions of all electrons in the active region except x;, and the second tilde denotes
the single-electron conditional decomposition that we have considered on top of the conditional

at a given trajectory of the environment, A(x, g¢, t) = E—f"fv%‘i’(x, q,t) /¥ (x,q,t
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decomposition of the system-environment wavefunction. The set of equations of motion of the
resulting 1(t) single-electron conditional wavefunctions inside the active region can be written as:

o . N
200 Hmv; ol (xl,xl(txt)} (1, a0, 9
g (e, Ra0)1) 12 o -

lhw - |:_27nv§'n + uq»ff(xmxn(t)rt)} l/’qt(xmxn(t)rt)~ (19)

That is, the first conditional process is over the environment degrees of freedom and the second
conditional process is over the rest of electrons within the (open) system.

We remind here that, as shown in Figure 2b, the active region of an electron device (acting as the
open system) is connected to the ammeter (that acts as the measuring apparatus) by a macroscopic
cable (that represents the environment). The electrical current provided by the ammeter is then the
relevant observable that we are interested in. Thus, the evaluation of the electrical current seems to
require keeping track of all the degrees of freedom, i.e., of the system and the environment, which is of
course a formidable computational task (see (d) Table 1). At THz frequencies, however, the electrical
current is not only the particle current but also the displacement current. It is well-known that the total
current defined as the particle current plus the displacement current is a divergence-less vector [21,22].
Consequently, the total current evaluated at the end of the active region is equal to the total current
evaluated at the cables. So the variable of the environment associated to the total current, g; = I(t),
can be equivalently computed at the borders of the open system. The reader is referred to Ref. [62] for
a discussion on how I() can be defined in terms of Bohmian trajectories with the help of a quantum
version of the Ramo-Schokley—Pellegrini theorem [63]. In particular, it can be shown that the total
(particle plus displacement) current in a two-terminal devices can be written as [63]:

e ") o e ") it (i, Xi(t),
1) = ¥ 0q (050, K0, = Y1 (W)

i=1

, (20)
xi=X;(t)

where L is the distance between the two (metallic) contacts, e is the electron charge, and
vy, (X;(t), X;(t),t) is the Bohmian velocity of the i-th electron inside the active region. Let us note
that I(t) is the electrical current given by the ammeter (although computed by the electrons inside
the open system). Since the cable has macroscopic dimensions, it can be shown that the measured
current at the cables is just equal to the unmeasured current (taking into account only the simulation
of electrons inside the active region) plus a source of (nearly white) noise which is only relevant at
very high frequencies [62]. The basic argument is that the (non-simulated) electrons in the metallic
cables have a very short screening time. In other words, the electric field generated by an electron in
the cable spatially decreases very rapidly due to the presence of many other mobile charge carriers in
the cable that screen it out. Thus, the contribution of this outer electron to the displacement current at
the border of the active region is negligible [64].

Summarizing, for the computation of the current at THz frequencies, the degrees of freedom
of the environment can be neglected without any appreciable deviation from the correct current
value [62]. This introduces an enormous computational simplification as shown (e) in Table 1. This is,
for the specific scenarios that we are interested in, the computation cost of the Bohmian conditional
wavefunction approach has the same computational cost as the orthodox SSE approach (see Table 1).
Yet, in contrast to the orthodox conditional states, which can be used only to evaluate the dynamics of
quantum systems in the Markovian regime, the Bohmian conditional states provide direct information
on the dynamics of both Markovian or non-Markovian systems.
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Table 1. An estimation of the computational cost (in memory) of different approaches mentioned in
the text. Here Nsys and Ny are the number of degrees of freedom of the system and the environment
while M denotes the number of elements required.

Computational N° of N° of Degrees of Computational
Element Trajectories Freedom Cost
(a) Full wave function ¥(x,q,t) - Nsys ; Neno Nsys X Neno
(b) Density Matrix p(x,x") - Nays stys
Orthodox Conditional
© state (SSE) Yo (1) ;e M Nsys M(Ngy5 +1)
Bohmian Conditonal - -
(d) ° mla‘;tat(;n ttona lqu,(X,f) ;th(q,t) s qt 5 Xt M Nsys 5 Neno M(Nsys + Neno + 2)
© Bohmian Conditonal B (6,1) 520 M Nays M(Nsys + 1)

state (used in Section 5)

5. Numerical Results

In this section we present numerical results obtained with the BITLLES simulator (see Section 4)
that demonstrate the ability of the Bohmian conditional wavefunction approach to provide dynamics
information for both Markovian and non-Markovian scenarios. We simulate a two-terminal electron
device whose active region is a graphene sheet contacted to the outer by two (ohmic) contacts.
Graphene is a 2D material that has attracted a lot of attention recently because of its high electron
mobility. It is a gapless material with linear energy band, which differs from the parabolic energy
bands of traditional semiconductors. In graphene, the conduction and valence bands coincide at
an energy point known as the Dirac point. Thus, the dynamics of electrons is no longer governed
by an (effective mass) Schrodinger equation but by the Dirac equation, allowing transport from the
valence to the conduction band (and vice versa) through Klein tunneling. A Bohmian conditional
bispinor (instead of a conditional scalar wavefunction) is used to describe electrons inside the device.
The change from a wavefunction to a bispinor does not imply any conceptual difficulty but just a mere
increment of the computational cost. More details can be found in Appendix C.

In particular, we want to simulate electron transport in graphene at very high frequencies (THz)
taking into account the electromagnetic environment of the electron device. Typically, nanoscale
devices are small enough to assume that, even at THz frequencies, the electric field is much more
relevant than the magnetic field. Therefore, only the Gauss law (first Maxwell’s equations) is enforced
to be fulfilled in a self-consistent way (i.e., taking into account the actual charge distribution in the
active region). However, the environment of nanoscale devices is commonly a metallic element of
macroscopic dimensions. In there, the magnetic and electric fields become both relevant, acting as
active (detecting or emitting) THz antennas. For the typical electromagnetic modes propagating in
the metals, the magnetic and electric fields are translated into the language of currents and voltages
and the whole antenna is modeled as a part of an electric circuit. In this work, the graphene device
interacts with an environment that is modeled by a Resistor (R) and a capacitor (C) connected in series
through ideal cables (see the schematic plots in Figure 5a—c).

The active region of the graphene device is simulated with the Bohmian conditional wavefunction
approach explained in the previous section, while the RC circuit is simulated using a time-dependent
finite-difference method. We consider the system plus environment to be in equilibrium. Specifically,
the self-consistent procedure to get the current is as follows: an initial (at time f = 0) zero voltage
is applied at the source (Vs(0) = 0) and drain (Vp(0) = 0) contacts of the graphene active region.
At room temperature this situation yields a non-zero current from Equation (20) (i.e., I(0) # 0) because
of thermal noise. Such current I(0) enters the RC circuit and leads to a new voltage Vs(dt) # 0 at the
next time step dt (where dt represents the time step that defines the interaction between the RC circuit
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and the quantum device which was set to dt = 0.5fs). The new source Vs(dt) # 0 and fixed drain
Vp(dt) = 0 voltages now lead to a new value of the current I(dt) # 0 in (20) which is different from
zero not only because of thermal noise but also because there is now a net bias (Vp (dt) — Vs(dt) # 0).
This new current I(dt) is used (in the RC circuit) to get a new Vs(2dt) that is introduced back in the
device to obtain I(2dt) and so on. Importantly, as the system and environment are in equilibrium,
the expectation value of I(t) is zero at any time, i.e., (I(t)) =0 Vt.

We consider three different environments (with different values of the capacitance). In Figure 5a
we plot the total (particle plus displacement) electrical current at the end of the active region when
R = 0 and C = . The same information is shown in Figure 5b,c for two different values of the
capacitance C = 2.6 x 1077 Fand C = 1.3 x 1077 F. In all cases the value of the resistance is
R =187 ), and we assumed the current I(f) to be positive when it goes from drain to source.

The effect of the RC circuit is, mainly, to attenuate the current fluctuations, which are originated
due to thermal noise. This can be seen by comparing Figure 5a with Figure 5b,c. The smaller the
capacitance the smaller the current fluctuations. This can be explained as follows: when the net current
is positive, the capacitor in the source starts to be charged and so the voltage at the source increases
trying to counteract the initially positive current. Therefore, the smaller the capacitance the faster the
RC circuit reacts to a charge imbalance.
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Figure 5. Total (particle plus displacement) electrical current I(t) evaluated at the ammeter as a function
of time for a graphene device connected to three different RC circuits with R = 187 (). The values of
the capacitances are: (a) C = oo, (b) C = 2.6 x 1077 Fand (¢) C=13 x 1077 F.

In Figure 6 we plot the total (particle plus displacement) current—current correlations as a function
of the observation time 7 for the three scenarios in Figure 5. Correlations at very small observation
times provide information of the variance of the current, which, as explained above, is reduced as the
value of the capacitance is increased. Numerical simulations (not shown here) exhibit that the role of the
resistor R is less evident because the active region itself has a much larger (than R = 187 ()) associated
resistance. Numerically the distinction between Markovian and non-Markovian dynamics boils down
to the comparison of time correlations as defined in Equations (9) and (13). Since there is no net bias
applied to the graphene device (i.e., it is in equilibrium), an ensemble average of the current (over
an infinite set of trajectories like the one depicted in Figure 5) yields (I(t)) = 0 Vt. Time correlation
functions computed in Equation (9) are thus zero by construction, i.e., (I(t)){I(t+ 1)) =0 Vi, 7.
Therefore, the non-Markovian dynamics occurring at very high-frequencies (below the ps time-scale in
Figure 6 expressly shows) fixes the correlation time of the environment at tp ~ ps. Although all three
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values of the capacitance C in Figure 6 yield the same order of magnitude for tp ~ ps, it seems also
true that the smaller the value of the capacitance, the smaller fp.

Current—current correlations shown in Figure 6 can be better understood by assessing the transit
time of electrons. For a velocity of roughly 10° m/s inside an active region of L = 40 nm length is
roughly 7 = L/vyx = 0.04 ps. Positive correlations correspond to transmitted electrons traveling from
drain to source (as well as electrons traversing the device from source to drain). While 0 < t < tr
electrons are transiting inside the active region, such electrons provide always a positive (or negative)
current as seen in expression (20). In other words, if we have a positive current at time t because
electrons are traveling from drain to source, we can expect also a positive current at times ' satisfying
t < t' < t+ tr. The negative correlations belong to electrons that are being reflected. They enter
in the active region with a positive (negative) velocity and, after some time 7y inside the device,
they are reflected and have negative (positive) velocities until they leave the device after spending
roughly 27R in the active region. Thus, during the time T < t < 271g which will be different for
each electron depending on the time when they are reflected, we can expect negative correlations.
Interestingly, during the 4 ps simulation the number of Bohmian trajectories reflected are double in the
black (C = co) simulation than in the red one (C = 1.3 x 107 F). This can be explained in a similar
way as we explained the reduction of the current fluctuations. The fluctuations of the electrical
current imply also fluctuations of the charge inside the active region, which are translated (through
the Gauss law) into fluctuations of the potential profile. Thus, the larger the noisy current, the larger
the noisy internal potential profile. This implies a larger probability of being reflected by the Klein
tunneling phenomenon. Therefore, if one aims at describing the dynamics of nanoscale devices with
a time-resolution 7 that is comparable to (or goes beyond) the electron transit time 77, a non-Markovian
approach is necessary. This is so because the total current I(t) (which has contributions from the
displacement and the particle currents) shows correlations at times that are smaller than the electron
transit time.

60 i Circui't witlinou't RC (C= :I>o) 4
—— Circuit with RC (C=1.3 x 10"F)
Circuit with RC (C=2.6 x 107"F)
540 i
© . _
— Markovian limit
g (IO1t+0)) = (1OXI(t+)y = 0
=20t
] T
0.001 0.01 0.1

Figure 6. Total current—current correlation as a function of time for the three different experiments in
Figure 5. The zero is indicated by a dashed line to show the tendency of the total current, understood as
a property of the environment, to vanish at long times 7. Zero autocorrrelation implies an independence
between I(t) and I(t + T) which is typical for Markovian scenarios. This is not true for the short T
considered here which are the representatives of the non-Markovian dynamics.

164



Entropy 2019, 21, 1148

6. Conclusions and Final Remarks

Theoretical approaches to open quantum systems that rely on the manipulation of state vectors
instead of a reduced density matrix have well known computational advantages. Two major benefits
are the substantial reduction of the dimensionality of the involved mathematical objects and the
preservation of complete positivity [18]. However, substituting density matrices by state vectors
constitutes also an attempt to achieve a more detailed description of the dynamics of open quantum
systems [6,19]. It is well recognized, for example, that the continuous measurement of an open
quantum system with associated Markovian dynamics can be described by means of a SSE (see Table 2
O4). The conditional state solution to such an equation over some time interval can be linked to
a “quantum trajectory” [12,19] of one property of the environment. Thus, the conditional state can
be interpreted as the state of the open system evolving while its environment is under continuous
monitoring. This is true in general for Markovian systems, no matter whether or not the environment
is being actually measured (i.e., it is valid for both Figure 1a,b). This fact is of great importance for
designing and experimentally implementing feedback control in open quantum systems [35]. If this
interpretation could also be applied to non-Markovian SSEs [33,37], then this would be very significant
for quantum technologies, especially in condensed matter environments (e.g., electron devices), which
are typically non-Markovian [6].

Table 2. Validity of Bohmian vs. orthodox conditional states to provide dynamic information of open
quantum system depending on the relation between the environment decoherence time fp and the
observation period 7. Here (un)measured refers to unmeasured and measured indistinctively.

Validity of Conditional Non-Markovian Non-Markovian Non-Markovian Markovian
States to Provide -Measured- -Unmeasured- -(Un)measured- -(Un)measured-
Dynamic Information tp>1=0 tp>1t=0 tp~T>0 tp LT
Orthodox o1 v (02) ¥ (03) x O4) v
Bohmian (B1) v (B2) v (B3) v (B4) v

Unfortunately, for non-Markovian conditions, the above interpretation is only possible for the
rather exotic scenario where the environment is being continuously monitored and the system is
strongly coupled to it. As no correlation between the system and the environment can build up,
the evolved system is kept in a pure state. This is the well-known quantum Zeno regime [65,66],
under which conditional states can be trivially used to describe the frozen properties of the system
(see Table 2 O1). Without the explicit consideration of the measurement process (as in Figure 1a),
however, the postulates of the orthodox theory restrict the amount of dynamical information that
can be extracted from state vectors (see Table 2 O2). In most general conditions, for T > 0 and
non-Markovian dynamics, while conditional states can be used to reconstruct the reduced density
matrix, they cannot be used to evaluate time-correlations (see Table 2 O3) [20,23]. This is not only true
when the environment is being measured (as in Figure 1b), but also when it is not measured (as in
Figure 1a).

Therefore, we turned to a nonorthodox approach: the Bohmian interpretation of quantum
mechanics. The basic element of the Bohmian theory (as in other quantum theories without observers)
is that the intrinsic properties of quantum systems do not depend on whether the system is being
measured or not. Such ontological change is, nevertheless, fully compatible with the predictions of
orthodox quantum mechanics because a measurement-independent reality of quantum objects is not
in contradiction with non-local and contextual quantum phenomena. Yet, the ontological nature of the
trajectories in Bohmian mechanics introduces the possibility of evaluating dynamic properties in terms
of conditional wavefunctions for Markovian and non-Markovian dynamics, no matter whether the
environment is being actually measured or not (see Table 2, B1-B4 and Figure 7a,b).
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In summary, the Bohmian conditional states lend themselves as a rigorous theoretical tool to
evaluate static and dynamic properties of open quantum systems in terms of state vectors without the
need of reconstructing a reduced density matrix. Formally, the price to be paid is that for developing
a SSE-like approach based on Bohmian mechanics one needs to evaluate both the trajectories of
the environment and of the system see (d) Table 1. Nonetheless, we have seen that this additional
computational cost can be substantially reduced in practical situations. For THz electron devices (see
Section 5), for example, we showed that invoking current and charge conservation one can easily get
rid of the evaluation of the environment trajectories. This reduces substantially the computational
cost associated to the Bohmian conditional wave function approach (as shown (e) in Table 1). Let us
also notice that here we have always assumed that the positions of the environment are the variables
that the states of the system are conditioned to. However, it can be shown that the mathematical
equivalence of the SSEs with state vectors conditioned to other “beables” of the environment (different
from the positions) is also possible. It requires using a generalized modal interpretation of quantum
phenomena, instead of the Bohmian theory. A review on the modal interpretation can be found
in [67,68].

Unmeasured Bohmian Approach

Bohmian unmeasured current

t1 to tn
(a)

Measured Bohmian Approach
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Figure 7. (a) Figure depicting the Unmeasured Bohmian approach in which the computation of any
property (electric current in an electron device) is independent of the measuring apparatus. (b) The
continuous measurement of the electric current through an ammeter (measuring apparatus) can be
also described in Bohmian mechanics by including the degrees of freedom of the measuring apparatus.

As an example of the practical utility of the Bohmian conditional states, we have introduced
a time-dependent quantum Monte Carlo algorithm, called BITLLES, to describe electron transport
in open quantum systems. We have simulated a graphene electron device coupled to an RC circuit
and computed its current-current correlations up to the THz regime where non-Markovian effects
are relevant. The resulting simulation technique allows to describe not only DC and AC device’s
characteristics but also noise and fluctuations. Therefore, BITLLES extends to the quantum regime
the computational capabilities that the Monte Carlo solution of the Boltzmann transport equation has
been offering for decades for semi-classical devices.
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Appendix A. D’Espagnat Distinction between “Proper” and “Improper” Mixtures

An alternative explanation on the difficulties of state vectors in describing open quantum system
comes from the distinction between “proper” and “improper” mixtures by D’Espagnat.

e  The “proper” mixture is simply a mixture of different pure states of a closed system. We define
such pure states as [¢;) with g = 1, .., N. We know that each of these states represent the closed
system in one of the repeated experiments, but we ignore which state corresponds to each
experiment. We only know the probability P(q) that one experiment is represented by the pure
state [{;). Then, if we are interested in computing some ensemble value of the system, over
all experiments, von Neumann introduced the mixture p = [ P(q)|tpq) (¢4|dg. It is important to
notice that we are discussing here human ignorance (not quantum uncertainty). The system is
always in a well-defined state (for all physical computations), but we (the humans) ignore what
the state is in each experiment.

e  The “improper” mixture refers to the density matrix that results from a trace reduction of a pure
sate (or statistical operator) of a whole system that includes the system and the environment.
The reduced density of the system alone is given by tracing out the degrees of freedom of the
environment, giving the result in Equation (7), which is mathematically (but not physically)
equivalent to the results of the "proper" mixture constructed from our “ignorance” of which state
represents the system.

D’Espagnat claims that the ignorance interpretation of the “proper” mixture cannot be given to
the “improper” mixture. The D’Espagnat’s argument is as follows. Let us assume a pure global system
(inclding the open system and the environment) described by Equation (1). Then, if we accept that the
physical state of the system is given by |;()), we have to accept that the system-plus-environment
is in the physical state |q) ® |ip,(t)) with probability P(q). The ignorance interpretation will then
erroneously conclude that the the global system is in a mixed state, not in a pure state as assumed in
Equation (1). The error is assuming that the system is in a well-defined state that we (the humans)
ignore it. This is simply not true. D’Espagnat results shows that a conditional state cannot be
a description of an open system with all the static and dynamic information that we can get from the
open system.

In addition, let us notice that the conclusion of D’Espagnat applies to any open quantum system
without distinguishing between Markovian or non-Markovian scenarios. However, indeed, there
is no contradiction between the D’Espagnat conclusion and the attempt of the SSE of using pure
states to describe Markovian open quantum systems for static and dynamic properties. Both are
right. D’Espagnat discussion is a formal (fundamental) discussion about conditional states, while the
discussion about Markovian scenarios is a practical discussion about simplifying approximation when
extracting information of the system at large 7.
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Finally, let us notice that the D’Espagnat conclusions do not apply to Bohmian mechanics because
the Bohmian definition of a quantum system involves a wave function plus trajectories. The conditional
state Py (x, 1) = ¥(x, Qi(t),t), together with the environment and system trajectory Q'(t) and
X{(t), contains all the (static and dynamic) information of the open system in this i-th experiment.
An ensemble over all experiments prepared with the same global wavefunction ¥(x, g, t) requires
an ensemble of different environment and system trajectories Q(t) and X'(t) fori = 1,2,..., M with
M — co.

Appendix B. Orthodox and Bohmian Reduced Density Matrices

The orthodox and Bohmian definitions of a quantum state are different. The first uses only a wave
function, while the second uses the same wave function plus trajectories. It is well known that both
reproduce the same ensemble values by construction. Here, we want to discuss how the orthodox
density matrix (without trajectories) can be described by the Bohmian theory with trajectories.

We consider a system plus environment defined by a Hilbert space # that can be decomposed as
H = Hx @ H, where x is the collective positions of particles of the system while g are the collective
positions of the particles of the environment.The expectation value of any observable O, of the
system can be computed as (Oy) = (¥|0; ® [;|'¥) with I, the identity operator for the environment.
We describe the typical orthodox procedure to define the orthodox reduced density matrix by tracing
out all degrees of freedom of the environment:

p(x,x’t) = /dq‘Y*(x Lq,6)¥(x,q,t) (A1)

From Equation (A1) the mean value of the observable Oy can be computed as,
(0x) = [ dx (Oxp(x,¥', )] 1) (A2)
In this appendix, we want to describe Equations (A1) and (A2) in terms of the Bohmian conditional
wavefunctions and trajectories described in the text. The conditonal wavefunction associated to the
system during the i-th experiment conditioned on a particular value of the environment Q' (t) is defined

as Yoi(y (x,t) = ¥(x,Q'(t),t), being ¥(x,q,t) = (x,q|¥) the position representation of the global state.
We start from the general expression for the ensemble value in the position representation as,

= /dx /dq ¥ (x,q,t)0x¥(x,q,t) (A3)

Multiplying and dividing by ¥*(x, g,t) we get,

(00) = / dx / dg q"I’*‘i(,);, )(m, )
- (H)]0[(g — Q'(1)]Ox¥ (x, 9, 1)
- ke fa’ 50,0
= Z/ ?F:Pxx'Qz )) §)f5(x X'(#)) (Ad)
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where we have used the quantum equilibrium condition |¥(x,q,t)[> = & XM, 6[(x — X'(1)]0[(q —
Qi(t)] with M — co. Now, we multiply and divide by ¥*(x, Q!(t), t) to get,

- 1 M x‘F*(x/Qi(t)/t)T(x/Qi(t)/t) i
©) = mL ) e omaE - oE X
M . .
_ / dx [oXZpiqsl*(x/,t)@l(x,t) (A5)
i=1 x'=x=X(t)

where P; = 1/M can be interpreted as the probability associated to each i = 1,2, ..., M experiment and
we have defined: )

Flx, Q(1), 1)
o A6
X0, Q0,1 "o

Now, once we arrive at Equation (A5), one can be tempted to define a type of Bohmian reduced density

P(xh) =

matrix in terms of the conditional wavefunctions fori = 1,2, ..., M experiments as,

M . M i i
puls ) = 3P 50 ) - B Q0,0 ¥ Q1)1 )

t
i i=1 i), Q(1), 1) ¥ (XI(1), Q' (1), 1)

where we have arbitrarily eliminated the role of the trajectories. However, strictly speaking
Equation (Al) is not equal to Equation (A7). If we include all i = 1,2,.., M experiments in
the computation of (A7), there are trajectories Q(t) and QJ(t) that at the particular time t can
be represented by the same conditional wavefunction §(x,t) = §/(x,t) if Q'(t) = QI(t). Such
over-summation due to the repetition of the same trajectories is not present in (Al).

To simplify the subsequent discussion, let us assume that g is one degree of freedom in a 1D space.
Let us cut such 1D space into small intervals of length Ag. Each interval is defined as j Ag < q <
(j+ 1) Ag and it is labelled by the index j. Then, we can define G/(t) as the number of positions Q' ()
that are inside the j-interval at time ¢ as:

M (j+1) Ag

Gl = ). /] slg— Q'(1)]dg (A8)

i Aq

With this definition, assuming that Aq is so small that all Q'(t) inside the interval and all the
corresponding Bohmian conditional wave functions ¥(x, Q/(t),t), system positions X'(t), and
probabilities P; are almost equivalent, and given by ¢/, ¥(x,¢/,t), ¥/ and P; respectively, we can
change the sum over i = 1, ..., M experiments into a sum over j = ..., —1,0, 1, ... spatial intervals to
rewrite Equation (A7) as:

e Y (x/, g/, 1) ¥(x,q,1) , ,
L) = j 1 - N/ N x/,q j
pw(x ', x, 1) j:z,wc (t)P; ¥ (g0, 1) ¥, g1, ) dg/NI( x'q, )Y (x,q,t) (A9)

where N/(t) = G/ (P / (¥~ (x/,q/,£)¥(xJ,q/,1)). So, finally, a proper normalization of the Bohmian
conditional states allows us to arrive to Equation (Al) from Equation (A7). Such normalization is
already discussed in quation (11) in the text. The moral of the mathematical developments of this
appendix is that open systems are more naturally described in terms of density matrix than in terms
of conditional states when using the orthodox theory, while the contrary happens when using the
Bohmian theory. Because of the additional variables of the Bohmian theory, the conditional states are
a natural Bohmian tool to describe open systems.
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Appendix C. Equations of Motion for Single-Electron Conditional States in Graphene

As said in the text, graphene dynamics are given by the Dirac equation and not by the usual
Schrodinger one. The presence of the Dirac equation on the description of the dynamics of electrons in
graphene is not due to any relativistic correction but to the presence of a linear energy-momentum
dispersion (in fact, the graphene Fermi velocity vy = 10° /s is faster than the electron velocity in
typical parabolic band materials but still some orders of magnitude slower than the speed of light).
Thus, the conditional wavefunction associated to the electron is no longer a scalar but a bispinor.
In particular, the initial bispinor is defined (located outside of the active region) as:

1
(izgiiD - (se’%) Ye(x,z,t), (A10)

where ¥ (x,z,t) is a Gaussian function with central momentum k. = (kxc kzc), s =1 (s = =1)if
the electron is in the conduction band (valence band) and 9% = atan(k;c/kyc). The wave packet
can be considered as a Bohmian conditional wavefunction for the electron, a unique tool of Bohmian
mechanics that allows to tackle the many-body and measurement problems in a computationally
efficient way [25,62]. The two components are solution of the mentioned Dirac equation:

9 (g1 _ V(x,z,t) —ihvfa hvfaz Py L 3 1
1h (le> <7ihvf%+hvf% V(x,z,t) ) lhvf(a V+V) ¥ )’ (A1

where vy = 10° /s is the mentioned Fermi velocity and V/(x, z,t) is the electrostatic potential. 7 are

the Pauli matrices:
_ 01 0 —i
T (UX,UZ) - ((1 0) ' <Z 0 >> . (Alz)

Usually, in the literature, one finds ¢ as 0, however, since we defined the graphene plane as the XZ
one, the notation here is different. Then, we can obtain a continuity equation for the Dirac equation
and then we can easily identify the Bohmian velocities of electrons as [44]

L op(E )Ty ( )
(7 t) = TeEOE (A13)

By time integrating (A13) we can obtain the quantum Bohmian trajectories. The initial positions of
the trajectories must be distributed according to the modulus square of the initial wavefunction, i.e.,
satisfying the quantum equilibrium hypothesis and thus certifying the same empirical results as the
orthodox theory [44]. All this formalism was introduced in the BITLLES simulator in order to correctly
model graphene and other linear band structure materials.
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Abstract: Currently, ‘time” does not play any essential role in quantum information theory. In this
sense, quantum information theory is underdeveloped similarly to how quantum physics was
underdeveloped before Erwin Schrodinger introduced his famous equation for the evolution of
a quantum wave function. In this review article, we cope with the problem of time for one of
the central quantities in quantum information theory: entropy. Recently, a replica trick formalism,
the so-called ‘multiple parallel world” formalism, has been proposed that revolutionizes entropy
evaluation for quantum systems. This formalism is one of the first attempts to introduce ‘time” in
quantum information theory. With the total entropy being conserved in a closed system, entropy
can flow internally between subsystems; however, we show that this flow is not limited only to
physical correlations as the literature suggest. The nonlinear dependence of entropy on the density
matrix introduces new types of correlations with no analogue in physical quantities. Evolving a
number of replicas simultaneously makes it possible for them to exchange particles between different
replicas. We will summarize some of the recent news about entropy in some example quantum
devices. Moreover, we take a quick look at a new correspondence that was recently proposed that
provides an interesting link between quantum information theory and quantum physics. The mere
existence of such a correspondence allows for exploring new physical phenomena as the result of
controlling entanglement in a quantum device.

Keywords: time evolution; quantum information; entropy production; Renyi entropy; quantum
thermodynamics

1. Introduction

Entropy is one of the central quantities in thermodynamics and, without its precise evaluation,
one cannot predict what new phenomena are to be expected in the thermodynamics of a device.
In quantum theory, entropy is defined as a nonlinear function of the density matrix, i.e., S = —TrgInp,
in the units of the Boltzmann constant kg. The mere nonlinearity indicates that entropy is not physically
observable because, by definition, observables are linear in the density matrix. Let us further describe
this statement. Here, we do not assume that the density matrix is a physical quantity. The reason is
that evaluating all components of a many-body density matrix requires many repetitions of the same
experiment with the same initial state. Not only is this difficult but also the fact that measurement
changes quantum states prevents exact evaluation. A physical quantity, such as energy or charge, can
be measured in the lab in real time and can be defined in quantum theory to linearly depend on the
density matrix. This is not true for entropy and therefore we cannot assume it is a physical quantity
directly measurable in the lab.

In fact, the precise time evolution of entropy is still an open problem and has not been properly
addressed in the literature [1-3]. A consistent theory of quantum thermodynamics can only be
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achieved after finding nontrivial relations between the quantum of information and physics. In recent
years, exquisite mesoscopic scale control over quantum states has led technology to the quantum realm.
This has motivated exploring new phenomena such as exponential speed up in computation as well as
power extraction from quantum coherence [4-8]. Recently, there have been attempts to implement
quantum versions of heat engines using superconducting qubits [9]. However, recent developments
in realizing quantum heat engines, such as in References [10-12], rely on semiclassical stochastic
entropy production after discretizing energy. A long-lasting question is how the superposition of states
transfers heat and how much entropy is produced as the result of such a transfer.

A quantum heat engine (QHE) is a system with several discrete quantum states and, similar to
a common heat engine, is connected to several environments kept at different temperatures. In fact,
a number of large heat baths in these engines share some degrees of freedom quantum mechanically.
Such a system is supposed to transfer heat according to the laws of quantum mechanics. The motivation
for research in QHE originates from differences they may controllably make on the efficiency and
output powers. Let us consider the example of two heat baths A and B, both coupled through a
quantum system g that contains discrete energies and allows for the superposition of states with long
coherence time. Let us clarify that, in this paper, we study the flow of thermodynamic Renyi and von
Neumann entropies between the heat baths and quantum system g. Therefore, other entropies are
beyond the scope of this paper. This quantum system coupled to the two large heat baths is in fact
a physical quantum system that is energetically coupled to the reservoirs and allows for stationary
flow of heat as well as a flow of thermodynamic entropy from one reservoir to another. We will see in
the next section that, similar to physical quantities such as energy and charge, the total entropy of a
closed system is a conserved quantity and does not change in time. However, internally, entropy can
flow from one subsystem to another. Therefore, sub-entropies may change in time and this change
may indicate a change in the energy transfer. Some important questions one may ask are: Does a
quantum superposition change entropy? This is one of the questions that we will address in this almost
pedagogical review paper and we will furthermore describe how the information content in entropy
can be meaningful in physics.

In a typical engine made of reservoirs A, B and an intermediate quantum system g with discrete
energy levels, the change of entropy in one of the reservoirs, say B, between the time 0 and ¢ is Sg () —
Sp(0) =—Tr{p (t)Inpp (t)} —Trp {pzq Inp}! }, where in the first term we have safely replaced one of
the two partial density matrices with the total density matrix, and accordingly replaced the partial trace
with total one. The conservation of entropy tells us that the total entropy maintains its initial value at
the separable compound state p (0) = pg (0) 3105 ie, =Tr {p () Inp ()} = —Try {pg (0)Inp, (0)} —
Yiap Tt {pfq In pfq}. After a few lines of algebra one can find that the change of entropy at the

reservoir is S (£) — S5 (0) = Sp (o (1) [|05108 (1) 04 (0)) + Licq 4 Tri { (0 (+) — i (0)) Inp; (0)}, with
S(plle’) = Tr{plnp} — Tr {plnp’} being the relative entropy. Since relative entropy is a positive
number [13] and equals zero only for identical density matrices p = p’, the first part of the entropy
flow is positive and irreversible. This satisfies the classical laws of thermodynamics. We will show that,
in contrast to what has been so far presented in the literature [14], the second term in the entropy flow
is not heat transfer—the average change of energy at the two times Qg = (H (0))p — (H (t)) . Instead,
it is the difference of incoherent and coherent heat transfers [15], i.e., (Qpincon (t) — QB con (1)) —
(QBincoh (0) — QB,con (0)). This is the new result that heavily modifies the flow of entropy in some
quantum heat engines and leads to some recent new physics [16-19].

In this review paper, we look at some of the simplest and most important quantum heat engines.
Depending on the external drive or internal degeneracy, the exact evaluation of entropy is indeed
very different from what has been presented in the literature so far. We will describe how to precisely
evaluate entropy and its flow by using a replica trick that properly allows for the mathematically
involved nonlinearity. We introduce a new class of correlations that allow information transfers and are
different from physical correlations. For equilibrium systems, these informational correlations satisfy a
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generalized form of Kubo-Martin-Schwinger (KMS) relation [20,21]. This part of the analysis will be
presented in a self-contained fashion after reviewing some of the classical and quantum definitions of
entropy and introducing our replica trick for evaluating the time evolution of generalized Keldysh
contours. We describe a short protocol for evaluating Keldysh diagrams and in some examples perform
the evaluation of a number of diagrams. We present results of example quantum devices such as a
two-level quantum heat engine, a photocell, as well as a resonator, each one mediating heat transfer
between two large heat baths. Finally, we briefly report on the new correspondence that makes
entropy flow directly measurably in the lab by monitoring physical quantities, i.e., the statistics of
energy transfer.

2. Classical Systems

2.1. Classical Entropy

Many systems in classical physics carry entropy. Some of the most studied systems are: charge
transport at a point contact [22,23], energy transport in heat engines [24], and a gravitational
hypersurface falling into a black hole [25-28]. Let us for simplicity of the discussion review classical
entropy by means of the example of charge transport through a point contact. Consider for this purpose
two large conductor plates connected at a point, the so-called “point contact system’. This classical
point contact either transmits a charged particle with probability p or blocks the transmission with
probability 1 — p. Let us consider N attempts take place. For N >> 1 it is most likely that, in pN out
of N times, the particles are successfully transferred and, in (1 — p) N out of N times, they are not.
For unmarked particles, the order of events does not matter, therefore the number of possibilities with
pN transfers out of N attempts is

N NN 1
M= < pN ) T (NN [(1 = p) NJOTTIN N (1 — ) AN .

This number rapidly grows with N. In order to keep the number small, we take its logarithm.
This defines the so-called Shannon entropy, i.e., Sgjannon = log, N'= —N [plog, p+ (1 — p)log, (1 —p)].

The linear dependence of the Shannon entropy on the number of attempts N indicates its additivity.
The definition of entropy can be generalized to account for extended geometries such as a k + 1-path
terminal that connects any reservoir to k others. In this case, k probabilities contribute to understanding
the possibility of transmission from a reservoir to any one of the other k reservoirs, thus entropy is
generalized to Sgpapnon = —N Zﬁ:l pnlog, pu. This entropy may vary in time. One possible reason
for such variation could be due to time-dependent probabilities p, (t). Another possibility for time
evolution of entropy could be the presence of some bias in controlling the system. For example,
consider that, after one successful transfer, the transmission is reduced or closed for a rather long time
before it opens again to another transfer attempt. The entropy of such a system depends on whether or
not a success transfer has taken place in the past.

In fact, in this paper, what we call entropy production refers to the time variation of partial entropy
associated with a part of a closed system. Moreover, as stated in the Introduction, in this paper, we
are only interested in the time variation in thermodynamic systems such as heat baths; therefore, our
focus is only on thermodynamic entropies and its time evolution, namely ‘entropy production’. In this
section, although we discuss Shannon entropy Sgjq,non, We have to distinguish between the Shannon
entropy, which can be measured as a number of bits, and the rest of the paper in which we study von
Neumann thermodynamic entropy measured in the unit Joule per Kelvin. The Shannon entropy and
the thermodynamic entropy are related by the Boltzmann constant kg, i.e., S Thermodynamic = KBS Shannon-
Without the loss of generality, we use the convention that kg = 1, although the reader should keep in
mind that, in this paper, we are interested in finding changes in thermodynamic entropy flow as the
result of energy exchange processes.
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2.2. Renyi Entropy

Alfred Renyi introduced the generalization of Shannon entropy that maintains the additive
property [29]. For a finite set of k probabilities p; withi =1, - - - , k, the Renyi entropy of degree M is
defined as

Sm = ﬁlOgZ(Pi)Mr @

with positive entropy order M > 0. The symbol 8, indicates that this is the original definition of
Renyi entropy to make it distinct from the simplified definition Sj; we use in this paper. The constant
prefactor 1/(1 — M) in Equation (2) has certain advantages. One of the advantages is that it helps to
compactify the definition of some other entropies using Equation (2); i.e., the analytical continuation of
Renyi entropy in the limit of M approaching 1 (o) defines Shannon (min) entropy. Another advantage
of the prefactor is that it allows for interpretation of the quantity as the number of bits (thanks to one
of the referees for pointing out these remarks).

Here, we present a simplified version of the definition. The logic behind such simplification
is that the calculation in the limits requires L'Hopital’s rule; i.e., Sspannon, min = liMp1—1,c0 SRM =
— limpg—1,00 d(log Y ( pi)™)/dM. We define a rescaled Renyi entropy, which is different from the
original definition by a prefactor 1/(M — 1):

Sm=—log}_ (p)". €)

The reason to define the simplified formula is that evaluating entropy itself is beyond the scope
of this paper. Instead, we need to find the time derivative of the entropy (i.e., entropy flow). Due to
the presence of a logarithm in Equation (3), any contact prefactor in the definition of entropy will be
canceled out from the numerator and denominator of entropy flow. The only trouble is that we must
keep in mind that the Shannon entropy can be reproduced after taking the dSy;/dM in the limit of
M — 1. In fact, given that dxM/dM = d exp (MInx) /dM = ¥M1n x, one can write

. M .
m dSm — _ lim Li(pi)” Inp;

— np; = . 4
]V}al aM Mo Zi(Pi)M IZPI N p;i = Sshannon 4

In the rest of the paper, we use the simplified definition. However, given that the difference
between the two definitions is marginal, only a constant factor, the reader may decide to use either
definition, subject to the discussion above.

In a point contact, given that Renyi entropy is additive for independent attempts, the total
Renyi entropy after N uncorrelated attempts will be Sy = —Nlog (p™ + (1 — p)™). In a classical heat
reservoir, the Renyi entropy is more closely related to free energy. Consider a bath at temperature T with
a large number of energy states €;. The corresponding Gibbs probabilities are p; = exp (—€;T) /Z(T)
and Z (T) = Y p; is the corresponding partition function. The Renyi entropy of the heat bath is
Sm = —In(L;exp (—Me;T)) + MInZ (T). The free energy will be F(T) = —TInZ (T), which is
related to the Renyi entropy as Sy = (M/T) (F(T) — F(T/M)), i.e., the free energy difference at
temperatures T and T/ M.

3. Quantum

3.1. Von Neumann and Renyi Entropy

Let us now consider that a large system A with many degrees of freedom interacts with a small
quantum system q. This can be thought of as the two share some degrees of freedom. The two exchange
some energy via those shared degrees of freedom. Quantumness indicates that g carries a discrete
energy spectrum and can be found in superposition between energy levels. Let p be the density matrix
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of the compound system. The partial density matrix of A is defined by tracing out the system q from p,

ie., pa = Tryp. The von Neumann entropy for system A in the Boltzmann constant unit is defined as
S = _Trpalnpy (5)

and the generalization of entropy in quantum theory will naturally give rise to defining the following
quantum Renyi entropy for system A:

S = —InTra (pa)™. (6)

The density matrix of the isolated compound system evolves between the times ' and t > ' using
a unitary transformation that depends on the time difference U (t — t'). Therefore, one can evaluate
Tra (o A)M using the unitary transformation to trace it back to the time #'; i.e.,

Tr{(u (t—t)p (F) U (t— t’))M} — e {u -y ()M Ut (- 1))

= Trp ()"

Tr (o ()™

After taking the logarithm from both sides, one finds that the Renyi entropy remains unchanged
between the two times t and #. In other words, in a closed system, similar to energy and charge, Renyi
entropy is a conserved quantity:

dSm
I = 0. (7)

Let us consider for now that there is no interaction between A and 4. One can expect naturally
that partial entropies are conserved as the result of no interaction because each subsystem can evolve
with an independent unitary operator:

dsit)  asiy

dt a ®

Interesting physical systems interact. Therefore, let us now consider that A and g interact.
Consider that the total Hamiltonian is H = Hy + H; + Hyag. For interacting systems, there is an
important difference between conserved physical and information quantities. For physical quantities,
the conservation holds in the whole system as well as in each subsystem. As far as Renyi entropies are

concerned, there is a conservation law for the total Renyi entropy In S;?M) ; however, this quantity

is only approximately equal to the sum In Sg\j?) +1In 51(3[) , up to the terms proportional to the volume
of the system. Therefore, no exact conservation law can be expected for the extensive quantity
summation: In 51(\;?) +1InS ;Z) [30]. The reason is that, although the evolution of the entire system is
governed by a unitary operator, the subsystem evolves non-unitarily. In the limit of weak coupling
|[Haql/|Ha + Hy| < 1, the entropy of entire system can only be approximated with the sum of two
partial entropies, thus the sum of partial entropies can only approximately satisfy a conservation,
ie., ng\?) /dt + de(\Z) /dt =~ 0. Outside of the validity of the weak coupling approximation, we must
expect that, although the total entropy conserves, the interacting parts have entropy flows different
from each other: @) @
dsiM — dSiM ©)
dat dt

This makes the conservation of Renyi entropy different from the conservation of physical
quantities. The root for the difference is in fact in the nonlinear dependence on the density matrix,

namely ‘non-observability” of entropy [31].
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3.2. Replica Trick

Calculating the full reduced density matrix for a general system is the subject of active research.
Here, we use a different method that is reminiscent of the ‘replica trick” in disorder systems. The trick
has been introduced in the context of quantum field theory by Wilczek [32] and Cardy [33] and later in
the context of quantum transport by Nazarov [31]. The key point is that, if we can evaluate Trp™ for
any M > 1, we are able to evaluate the von Neumann entropy using the following relation:

One can see that there is no need to take the logarithm of Tr4 (p A)M. This is only a mathematical
simplification in the vicinity of M — 1, i.e., when we want to reproduce von Neumann entropy by
analytically continuing the derivative of the Renyi entropy. Otherwise, the presence of the logarithm
is essential for the definition of the Renyi entropy. It might be useful to further comment that the
Renyi entropy without the logarithm has many names such as Tsallis entropy or power entropy, etc.
However, the presence of the logarithm is necessary for what we call the Renyi entropy. Otherwise, we
would have limy_,1 TrpM =1, which, in this important limit, cannot be a true measure of information.

However, calculating Tr 4 (p A)M for a real or complex number M is a hopeless task. The ‘replica
trick” does the following: compute Tr 4 (p A)M only for integer M and then analytically continue it to a
general real or even complex number.

3.3. Time Evolution of Entropy

Let us mention that we limit our analysis here only to weak coupling. In this regime, the dynamics
of a quantum system are reversible and can be formulated in terms of the density matrix evolution. This
time evolution depends on the the time-dependent Hamiltonian H (t) = H4 + Hp + Hyp as follows:

do i
— = —[H(t),p(t)]. 11
L~ [H(),p() ay

We transform the basis to the interaction frame by using defining a unitary operator with the
non-interaction part of the Hamiltonian U(t) = exp [—i (H4 + Hp) t]. The density matrix transforms
as R (t) = U (t) p (t) UT (), thereby not changing its entropy, neither in parts nor in total. In the new

basis, Equation (11) becomes
dR i o4
o= [utHsmu), R (12)

Let us refer to the interaction Hamiltonian Hap in the new basis as Hy, i.e.,, Hy = U (t) Hap (t) U (t).
The solution to the time evolution Equation (12) can be written as

R(t) = Rg+ R (1) + 0(2) (13)
with
Ro = R(0) (noninteracting) (14)
/ t
RO = - /O ds [H; (s), Ro] (Ist order) (15)

This solution can (repeatedly) be inserted back into the right side of Equation (12), declaring its cycle
of internal interaction:

d%” =AM +A® 1+ 0(3) (16)

180



Entropy 2019, 21, 854

with '

% [Hi (), Ro], (1st order) 17)
t

_%/0 ds [Hj (t),[Hi (), Ro]] - (2nd order). (18)

AL =

A2

In order to find the time evolution of the Renyi and von Neumann entropies, we first notice that
the unitary transformation U(t), defining the basis change, also transforms any power of the density
matrix, i.e.,

RM=u) (p()M) u'(). 19)

Now, all we need to do is to generalize the evolution of density matrix to the powers of density
matrix (R (£))™. We follow the terminology of Nazarov in [31] and name each copy of replica R () in
the matrix (R (t))M a ‘world’, thus (R (t))™ is the generalized density matrix of M worlds:

GROM) = [ZRO]REOM RO [ZRO| RO
o REOM2 | TRO| RO + RO ZRO).

By substituting the solutions of Equations (13) to (18), and limiting the result to second order, we
find the the following time evolution of the M-world density matrix:

d M B B B
Z(ROM) = ADRYT 4 RAPIRY 24 4 RY1AG
+A® {R(URSA’Z +RRORMS3 4. ¢ R{)‘A*ZR(U}
+RoAD {RU)RQH +RoRORM4 4. ¢ RQ‘*3R(1)}

+R3AD {R“>R@4—4 +RRORMS5 ... R34—4R<1>}
+ PR
+ {RU)R{)‘A*Z + RpRWRM=3 .. 4 R3HR<1>} A, (20)

This is how the M-world density matrix evolves in time. The first line in Equation (20) denotes
the case where the 2nd order perturbation takes place in one world while the M — 1 remaining worlds
are left non-interacting. All these remaining terms have in common that they don’t contain a 2nd order
term occurring in a single replica. Instead, these terms contain two 1st order interactions, each acting
in a single replica, which together combine to give a 2nd order perturbation term. These new terms
have recently been found [34].

If you decide to consider higher perturbative orders, say up to k-th order with k < M, there will
be terms like RSAilA(k) in the expansions that have k interactions taking place in one replica, leaving
M — 1 replicas noninteracting as well as terms having k first-order configurations combining to give

a kth order interaction term, such as Réw*k A(1)>k. In the case k > M, some of the lowest-order
interactions will obviously become excluded from the summations.

Let us show the time evolution pictorially using the following diagrams, in which the evolution
of (R(t))M is shown by M parallel lines, each one denoting the time evolution of one world, starting in
the past at the bottom and arriving at the present time on the top. In the following diagrams, we show
five time-slices by horizontal dashed lines. Blue dots denote the interaction H;(t) and our diagrams
are limited to the 2nd order only. Curly photon-like lines connect the two interactions and represent
the correlation function.
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The first line of Equation (20) contains all terms that have two interactions in a single world.
These two interactions within the same world are called ‘self-replica interactions’. They can be
illustrated pictorially by the following diagrams in Figure 1 from left to right:

an h Z A2

. G € <
£ o o P
]I 59 B ) Jof e )
¢- ¢ ¢

A[zl-Ran Ry Ho Al Rolo  Ho Ry R[}R“A[Jl

Figure 1. Diagrammatic representation of terms in the first line in Equation (20).

The following diagram in Figure 2 illustrates the typical term (Rg)*> AN RyR™) (Rg)M™* from
Equation (20) and pictorially shows the contribution of two first order interactions in two different
worlds that together evolve the generalized density matrix of M worlds in the second order.

ed h
N N )
£ (1al )
= b Tlal
‘. N

\ )
RoRo A Hy RY Ry Ry Hy

Figure 2. A typical diagram with two first order interactions acting on two different worlds.

A typical higher order digram limited to two-correlation interactions can diagrammatically be
shown as below in Figure 3.

-4 -, Ped
N P 3
L \ o L
1) Lal [yl
. N .
N ) A

Figure 3. A typical higher order diagram.
3.4. Extended Keldysh Diagrams

In all the above diagrams, quantum states have been represented as labels on the contours.
By definition, we know that the density matrix contains both ket and bra states. The second order
interactions can, in fact, only take place either between two kets, two bras, or between a ket and a
bra. This internal degree of freedom makes it necessary to add more details to our diagrams and
represent each replica with the well-known Keldysh contour diagrams [35]. The Keldysh technique
permits a natural formulation of the density matrix dynamics in terms of path integrals, which is a
generalization of the Feynman-Vernon formalism.

Considering that the time evolution of a quantum system takes place by the Hamiltonian
H, kets evolve as | (t)) = exp (iHt) | (0)) and bras evolve with the opposite phase: (¢ (t)| =
(¢ (0) | exp (iHt). Based on this simple observation, bras (kets) evolve in the opposite (same) direction
of time along the Keldysh contour.

The evolution of the density matrix R from the initial time to the present time can diagrammatically
be represented in the following way: one can start at a bra at the present time, move down along
the contour to the initial time, pass there through the initial density matrix thereby changing from a
bra to a ket, and finally move upwards to end with a ket at the present time. Taking a trace from the
density matrix can be shown diagrammatically by closing the contours at the present time: i.e., we
connect the present ket to the present bra. It is of course awkward to do this for the total density
matrix, as this will simply yield one at any time; however, taking a trace is meaningful for multiple
interacting subsystems.

The two subsystems A and B each require a contour, resulting in a double contour. We assume
separability of A and B at the initial time: R (0) = R4 (0) Rp (0). Interaction results in energy exchange,
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which we represent by a cross between the two contours, somewhere between initial and present times,
ie, 0 <t < t. In the case we are interested in the evolution of one of the subsystems, say B, the partial
trace over A should be taken, which in the diagram can be done by connecting the present bra and ket

of system A, see the right diagram in Figure 4. Further details about this Keldysh representation of
quantum dynamics can be found in [16].

. R(f) - jil\_,‘,' Z_.-f )
= N
i R(t)
- - R(f’)
v - -y FVvy
A"
F ©) E Rp(0)

Figure 4. The Keldysh diagram for the time evolution of: (left) one world made of one subsystem,

(right) a world made of two interacting subsystems. Each contour represents a subsystem and the
crosses denote interactions.

In order to evaluate the time evolution of the von Neumann and Renyi entropies, we need
extended Keldysh contours in multiple parallel worlds (replicas). For this purpose, we consider
multiple copies of the Keldysh diagram, one for each world, and add the initial state of the density

matrix in each world along the contour at the initial time. The overall trace will get the contours of
different worlds connected.

In the second order, one can find:

d 1 B B B
Esﬁwl” = —— T {A?RB OM 1+ RAP R ()M 2+ + Ry ()M 1A§32>}
SM

1 — —
— 2@ B {84 [RERE (M7 4+ + Ry (0) R
SM

+Rp (0) Ay [RG Ry (M7 + -+ 4 Rp () P RY] + -

+ [RYRp M -+ Ry (0)M2RY] A} @)

The first line contains terms with second-order interactions taking place in only one world.
A typical such diagram for M = 3 has been shown in Figure 5.

t—T

Rg(0) Rg(0) Rp(0)

Figure 5. A diagram with two energy exchanges in one replica and no interaction in others.

The rest of the lines other than the first line in Equation (21) denote maximally no more than
first-order interaction in a replica. The diagram in Figure 6 shows a typical such term.
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Rg(0) Rg(0) Rp(0)
Figure 6. A diagram with two replicas taking over 1st order interactions and the others remain intact.

3.5. Calculating the Diagrams

The main reason why the time evolution of entropy in Equation (21) has been diagrammatically
represented is that, due to the multiplicity in time ordering interactions, these extended Keldysh
diagrams can help to correctly determine all possible symmetries that may simplify the problem.
We need to express all ‘single-world” interactions that carry the highest order perturbation as well as
all “cross-world” terms with lower orders of perturbation.

We assume the interaction Hamiltonian does not implicitly depend on time through its parameters;
instead, the time dependence is globally assigned in the rotating frame and state evolutions. The explicit
formulation of quantum dynamics and keeping track of symmetries between different diagrams have
resulted in the following rules for the evaluations of the diagrams:

1. With each system having its own contours in each world, label each separate segment of these
contours, according to the state of the associated bra or ket of that segment. The state of the bras
and kets change after an interaction, at the initial time and at the final time.

2. Starting from the present time in any of the worlds, say the leftmost world, and encompassing
the contours, the following operators or changes must be added along the contour:

(@) Every interaction on a ket contour will be (i/%) H; (') and will be (—i/h) Hy (') on a

bra contour.
(b)  After passing an interaction, the states must change. The new states remain the same until a

new interaction is encountered, or if the initial time or the final time is reached.
(c) A contour arriving at the initial time will capture the initial density matrix in the interaction

picture Ro.

3. Ingeneral, the result should be integrated over the individual interaction times, i.e., fow fooo dtydty,
subject to time order between them. This can be simplified for a small quantum system coupled
to a large reservoir kept at a fixed temperature. The reason being that the correlation function
of absorption and decay of particles only depends on the time difference between the two
interactions [36]. In this case, the double integral over dt; and df; can be be simplified to only
contain a single integral over the time difference between the two interactions, i.e., j;)oo dr.

3.6. Quantum Entropy Production

Let us consider that two large heat reservoirs A and B, each one containing many degrees of
freedom and kept at a temperature, are coupled to one another via only a few numbers of shared
degrees of freedom. The Hamiltonian can be written as H = Hy + Hp + Hzp with H4p representing
the coupled degrees of freedom.

In order to compute the flow of a quantity between A and B, that quantity should be conserved
in the combined system A + B. As we discussed in the first section of this paper, Renyi entropy is
a conserved quantity in a closed system, therefore dIn S E\ZH'B) /dt = 0. However, one should notice
that there is a difference between the conservation of physical quantities such as energy and the
conservation of entropy. Because physical quantities linearly depend on the density matrix, when it
is conserved for a closed system, internally it can flow from a subsystem to another one such that its
production in a subsystem is exactly equal to the negative sign of its removal from the other subsystem.
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However, entropy is not so. In fact, due to nonlinear dependence of entropy on the density matrix,
when it is conserved for a bipartite closed system, it is not equally added and subtracted from the
subsystem due to the non-equality in Equation (9).

Below, we will present some example systems with rather general Hamiltonians and, using the
diagram rules, we evaluated all entropy production diagrams.

3.6.1. Example 1: Entropy in a Two-Level Quantum Heat Engine

In Ref. [15], we used the extended Keldysh technique and evaluated entropy flow for the simplest
quantum heat engine in which a two-level system couples two heat baths kept at different temperatures,
see Figure 7. After taking all physical and informational correlations into account, we found that the
exact evaluation in the second order is much different from what physical correlations predict. Here, we
reproduce the exact result by giving a pedagogical use of the diagram evaluation described above.

Let us consider two heat baths that are kept at different temperatures weakly interact by
exchanging the quantum energy w,. Such a quantum system can be thought of as a two-level
system that couples the two heat baths through shared excitations and de-excitations. The Hilbert
space of the two-level system contains the states |0) and |1). The free Hamiltonian contains heat

bath energy levels E,&A) s and E/(SB)S and quantum system energies E, with n = 0,1, ie., Hy =

o BVl @l + £ B 1B) (Bl + Lo Enl) (.

Toor

Figure 7. A two-level system quantum heat bath.

We assume the so-called ‘transversal’ interaction is taken into account between A/B and the
two-level system g. This means that they interact via exchanging the quantum of energy w,. Of course,
we can generalize the discussion to longitudinal interactions in which no energy is exchanged; however,
since such interactions are not of immediate interest for heat transfer in quantum heat devices. we
ignore them.

This interaction we assume for the heat bath has the following general form: Hy,; = Y-, u—q1 |11) {11]

P(,(,ﬁ) (wo) + pet (wo)] subject to Ey, # E, and Xy representing energy absorption/decay in heat baths.

The summation in Hj,; can be generalized to an arbitrary number of heat baths interacting at shared
degrees of freedom.

Moreover, the entire system including the two-level system is externally driven. The classical heat
baths are naturally not influenced effectively by the driving field; however, the driving can pump in and
out energy to the two-level system by the following Hamiltonian Hy, = Q cos(wg,t) (|0) (1] + [1)(0]).

For simplicity, we take the Hamiltonian into the rotating frame that makes excitation/relaxation
with the frequency wy,. In this frame, the excited and ground states are transformed as follows: |1)g =
exp (iwg,t) 1) and |0)g = |0). This will introduce the unitary transformation Ug = exp (iw,t[1) (1])
on the Hamiltonian, i.e,, Hg = UgHU} + i (9Ug /0t) UL. A few lines of simplification will result in
the following Hamiltonian in the rotating frame:
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Hg

Hy + VqA + VqB + Vap + Vi,
A B
Hy = Eol0){0] + (E1 — wy) [1)(1] + Y ESY o) (2] + Y EP
® [

Via = 001G (0 et + 1) 01R50) (et = T ) (m|Ki) (et (22)
n,m=0,1(n#m)
_ (B) iwg,t &(B) —iwgt — (B) i gy fnmt
VqB = ‘O><1|X01 (t)e +|1><0|X10 (t)e = Z ‘”><m‘Xnm(t)e ’
n,m=0,1(n#m)
Q
Vap = 0, Var =7 (10)(A[+[1)(0]),
with 7791 = —10 = 1 and 590 = #11 = 0. Given the fact that there is no direct exchange of

energy between A and B, the density matrix can be represented as R = Ry4 ® Rp + Ra ® Ry
in an interaction picture, thus determining entropy flow in the heat bath B will depend on the
quantum system and the heat bath B, although indirectly the heat bath A will influence the quantum

system. In general, d (RB)M /dt = Try {d (RqB)M / dt}. Let us recall that this quantity determines

the flow of von Neumann entropy and, using Equation (10), it can be simplified to dS(8) /dt =
limpy 1 d (TrBTr,7 {(dR,,B /dt) (Rgp)™ ™+ -+ (Rgp)™ " (dRyp/dt) }) JdM. Each term in the
sum is evaluated in the interaction picture using dR/dt = (—i)[V,R]. One can show
that the external driving will cause the density matrix to evolve as dRu,/dt|; =
(iQ2/2) (Ruo0m1 + Ru10m0 — 6n0R1m — 0u1 Rom)-

The interaction Hamiltonian evolves quantum states and below we evaluate the entropy flow in
the M = 3 example to the second order perturbation theory. As discussed above, there are in general
two types of diagrams in the second order: (1) ‘self-interacting” diagrams with second order interaction
taking place in one replica, and (2) cross-world-interacting terms in which two different replicas take
on each 1st order interaction. The self-interacting diagrams for the two-level system are listed in
Figure 8.

EE TIEE LEE JIEE
v Ay A v a v A v Avw¥ a D O v Ay a4y a
LMeE A N By |
£5(0) £5(0) £5(0) #5(0) #5(0) p5(0) #5(0) #5(0) #5(0) #5(0) ps@)  r5(0)
(@) (b) © (@

Figure 8. Self-interacting diagrams for interaction between a quantum system and a heat bath.

These diagrams correspond to the following flows, respectively:

@ —1) fooo dtTrp {ka 01(m£K) z(nk)(tl)X( ) (' —1) RBRmmg*iwdrﬂkagfwdr(’1mk+’7km)f/f{%}
a): r s
Trp (R})
+1) [ drT KB D RaR KB (#) e~ iarnkT i (unk+1ien ) R2
oy (+1) Jo dTTrp { L k—o1(mk) Xk (' — TRpRi Xy, () e e B
' TI‘B (R:’é) !
o T et KEORRAL (et )
c): _ ,
Trp (R3)
. 1) fooo d7Trg {ka 01(mstk) R R 1Xr(r5()(tl _ T)X}EZ) () e—iwdrﬂmk‘reiwdr(’?mk+’7km)t/R%}

Trp (R3)
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In all these terms, there is a time dependent factor ei@ar(Tut1en)t which is identical to 1 because
we always have the following relation valid: 7,y = —#k,,. We assume that heat baths are large
and, at equilibrium, therefore the correlation function is the same at all times ¢’ and only depends
on the time difference T between the creation and annihilation of a photon. In the heat bath
B, the equilibrium correlation is defined as S,(,,B,,)r,,q (t) = Trp ()A(,(HB,B (0) X;g) (1) RB). The Fourier
transformation of the correlation defines the following frequency-dependent correlation: SSnB,B,pq (w) =
S dtTrg ()A(,(ni) (0) X;I;) (1) RB) exp (iwT). Therefore, in the case of M = 1 (i.e., the absence of the
last term R%), the diagrams a—d can be rewritten in terms of Sﬁ,ﬁ),pq (w). For example, the diagram (a) for

the case of M = 1 can be simplified to — Y, o 1 (k) Rium [5~ dTTrp {)A(irf? (O)X}EZ> (1) RBe*fwm'?ka}
in which the integral is half of the domain in Fourier transformation and therefore it
can be proved to simplify to — Y, k—01(mk) Rom [(1/2) ani)’km (Wdrtmk) + i Lk o (wdriymk)}
with Tlyypg = (i/27) fdeEfn),pq (v)/ (w—v). What is left to be determined is the
frequency-dependent correlation function SE,,BJ/W (w), which turns out to become completely
characterized by the set of reduced frequency-dependent susceptibilities defined as ;zﬁf,f,p[, (w) =

()(,(f,?,pq (w) f)(;,?,,)mn(fw» /i, with the dynamical susceptibility in the environment being

X,(,,B,E,pq (w) = (—i) ffm Trp { [XEHBH) (1) ,}A(ég) (0)} RB} exp (—iwt). The fluctuation—dissipation
theorem provides a link between the equilibrium correlation and the reduced dynamical
susceptibility in the classical thermal bath B at temperature Tg. This relation is usually called
the Kubo-Martin-Scwinger (KMS) relation: SE,?,,),M (w) = np (w/Tp) XS,EZ,M (w) with ng (w/Tg) =
1/ (exp (wTp) — 1) being the Bose distribution and kg the Boltzmann constant.

» Generalized KMS

In the presence of replicas, similarly, the generalized correlations are defined. For the case in
which there are M replicas in total and between creation and annihilations there are N replicas with

0 < N < M, the generalized correlation function is defined as

Trg (Rind (0) RYR}q) (1) RY)

N,M (B)
S = - 23
mn,pq T Trp (Rg/l) (23)

Similarly, one can show that

oo (B) (0 pN % (B) pPM—N i N,M (B
Jo° dtTrg {X,,m (O)RNRE) (r) RY elwr} ) SNMB) () O ) o1
Trg (Rgﬂ) 2 mn,pq ’
with the definition H%;%;B) (w) = (i/2n) fde%;%éB) (v) / (w—=v). One can also check from
definitions that, for any heat bath, the following identities: S,I:f;,{\f,q(fw) = S%;ﬂ]}]’M (w),
it (—w) = Tyt ™ (@), and Fun,pg (—@) = —Fpgmn (w).

Fourier transformation of this generalized correlation will define the frequency-dependent
generalized correlation and, following the same mathematics as above, one can show at equilibrium
thermal bath of temperature Tj that all correlation functions can be determined through a generalized

KMS relation:
w _ N
Sﬁ,’{jﬁ%m (w) =np (T—B) )(,(,fn),pq (w)e *Ts. (25)

Further details can be found in [34]. <
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Using these definitions as well as Equation (25), the sum of diagrams (a)—(d) in Figure 8 can be
further simplified to

. 1
Z Rynm {* <§Si;§:/§f]z (wdrﬂmk) + lHkm gnk) (wdrﬂmk)>
0,1(m

k= #k)

1
(2 S?ni Ecm) (@Wartim) + ZHmk g(m) (wdrﬁkm)) }
. 1 .
Y Ru { + (2 Sjni O (warttiom) + zﬂfn'i,(kf,f (%r’?km))
=0,1(m

1238
+ (55;%5”1{) (wdrﬂmk) + lHkm Snk) (("}drﬂmk)> } ’

= ) 5?,1;3; (km) (warTim) Ronm + Smk (km) (wWartmk) Rig. (26)

m,k=0,1(m+#k)

In total, there are M number of terms similar to the last line in Equation (26) associated with
similar diagrams at M worlds. It is important to notice that these self-replica correlated terms are
determined in fact only by physical correlations and they make already known results for the flow
of von Neumann entropy in the heat bath [37]. To see this more in more detail, one can expand the
summation and use the KMS relation and its generalized version in Equation (25). After generalizing
the result for M replicas, taking derivative with respect to M and analytically continuing the result to
M — 1, the incoherent part of flow in von Neumann entropy is

4s(B)

1
= (F(TB>P0 - l"iB)pl) , (27)

incoherent

with T%B) = X (np (wgy/Tp) +1) and I"EB) = xng (war/Ts), X = X10,01, and p, = Ryy. These are only
self-interacting replicas, which are incomplete as they ignore the following diagrams.

The new diagrams are the cross-world interactions. As discussed previously, cross-world
diagrams cannot transfer physical quantities as they rely on the fact that entropy depends nonlinearly
on the density matrix and therefore it is not a physical observable quantity. Some of these types of
diagrams are shown in Figure 9—for the case that one interaction takes place in the leftmost replica
and the second interaction in the middle replica, thus leaving the third replica intact.

iici o e < E € E T =
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Figure 9. Cross-replica interacting diagrams for a quantum system and a heat bath.
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(e) - / dtTrg { Z X;ﬁg(t’)ﬁgﬁmkﬁ( ) (' — T) RgRyye T s EkaB} /Trp (%)
m,n,k,l

(f) : _/() dtTrg { Z Xr(ni)(tl — T)RBRkaE,?) (i’,) RBane_iwd'”"’krfsEmk,ElnRB} /Trp (RSB) ,
m,nk,l

(8): /0 dtTrp { Y X RR R R, X (¢ — 1) e iarmnTop, o R } /Trp
(h) : /0 dtTrg { Z Xr(ni)(t, — T)RBRmkRBR[nXI(nB) (t) —’WerkaJE mkEn IRB /Trg (R

(i) : / dTTrB{ Y RpRiu &5 (1) &) (¢ — 1) RgRyge " armiTop R }/TrB( 5).

m,nk,l
(]) : / dTTI'B { Z RBRk"’XI((m> (t — T)Xl(f) (t/) ﬁBR 7’“’””"’”755}0” EI,,RB /TI'B R%) ,
m,nk,l
(k) : / dTTI‘B { ZklRBkaXI(cm)(t/)RBRI”X}S?) (t, — T) eiwd'nl"TfsE,n,E”,kﬁB} /TI'B (R‘Z’;) ’
mn
(l) : / dTTI‘B { Z RBRk’”XIEm)(t - T)RBIAQZ”X;:’;) (t/) eidekadEkm,E”lﬁB} /TI‘B (A )
m,nk,l

where we used the following identity elwar ()t _ 5 Enun Egp-

One can evaluate all diagrams associated with a general number of replicas using the above
example. After carefully analyzing all diagrams and proper simplifications—see [34]—the flow of
Renyi entropy dSy;/dt in the heat bath B can be found, and consequently the so-called coherent part
of entanglement (von Neumann) entropy can be found as follows:

(B _ p®)
=-+ T |Ro1 [ (28)

coherent

4s(B)

This is the new part of the entropy flow that comes from the generalized KMS correlations. We call
this part the coherent part because it is nonzero for degenerate states or equivalently a two-level system
driven by their detuning frequency.

Therefore, the entanglement entropy flow is naturally separated into two parts and therefore it is
equal to the sum between the two parts:

ds(®) ds(B) ds(B)
.

’

incoherent coherent

1 r,-r
= —TB(rwpo—erl)— iTB LRt %, 9)

in which the first term on the second line is what in textbooks has so far been mistakenly taken as total
entropy flow.

As we can see, Equation (29) is not directly related to energy flow—which here corresponds to the
incoherent part instead of a finite flow that depends on the quantum coherence (Ryq; ).

Consider that the two-level system with energy difference w, is driven at the same frequency,
ie, H = Qcos(w,t) and weakly coupled to two heat reservoirs at temperatures T4 and Tp.
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From Equation (1) of Ref. [34], one can find the following time evolution equations for the density
matrix and setting them to zero determines the stationary solutions:

dR iQ
711 = ~5 (Ror — Ryo) =T Ry +T1Rgo =0,
dR, iQ 1
G- = —5 (Ri—Ro) =5 (T, +T1) Ry =0, Roo+Ru =1,

which finds the stationary ground state population Rog = (T} (T} +T+) + Q?)/((T} +T4)? +20?)
and the stationary off-diagonal density matrix element Ryg = —iQ(1 —2Rq)/(I'} + T}), withT| =
I“(lA> + Fim and 'y = I“%m + F§B>. By considering that B is a probe environment with zero temperature,
substituting all solutions in Equation (28), the incoherent and coherent parts of entropy flow in the

probe environment have been plotted in Figure 10 for different driving amplitudes and wy/T4.

(b)

Figure 10. Entropy production in a probe bath that is kept at zero temperature and is coupled to a

two-level system depicted in Figure 7. The entropy is the sum of two parts: the incoherent and the
coherent parts. (a) the incoherent part of entropy is nothing new and can be determined by standard
correlations. It is positive by the convention that entropy enters from a higher temperature bath (via
the two-level system); (b) the coherent part of entropy is a previously unknown part as it comes
from the informational correlations between different replicas. This part depends quadratically on
the off diagonal density. Quite nontrivially, this part of entropy is negative and summing it with the
incoherent part will result in a positive flow yet with much smaller magnitude for entropy at small
driving amplitudes.

3.6.2. Example 2: Entropy in a Four-Level Quantum Photovoltaic Cell

Scovil and Schulz-DuBois first introduced a model of a quantum heat engine (SSDB heat engine)
in which a single three-level atom, consisting of a ground and two excited states, is in contact with two
heat baths [38,39]. A large enough difference between the heat bath temperatures can create population
inversion between the two excited states and a coherent light output. One hot photon is absorbed
and one cold photon is emitted; therefore, a laser photon is produced. The SSDB heat engine model
gives a clear demonstration of the quantum thermodynamics. However, we notice that some detailed
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properties of this lasing heat engine, e.g., the threshold behavior and the statistics of the output light,
are still not well studied. There are a number of applications for the model, such as light-harvesting
biocells, photovoltaic cells, etc.

Since then, the model has been modified to describe other systems such as light-harvesting
biocells, photovoltaic cells, etc.

Recently, in Ref. [40], one of us studied the entropy flow using the replica trick for a 4-level
photovoltaic cell with two degenerate ground states and two excited states, see Figure 11. This heat
engine was first proposed by Schully in [11] and recently studied in many further details by Schully
and others [17,41].

[}
|3
wBI wa

13 12)

Figure 11. A four-level doubly degenerate photovoltaic cell.

After finding all extended Keldysh diagrams for an arbitrary Renyi degree M, evaluating all
self-interacting and cross-interacting diagrams and simplifying the results, the von Neumann entropy
flow in heat bath A becomes [40]:

L e 0 Iy )
dt | , = Ta YP4 AX42 Ta P2 AX41 Ta P
—X1a,42 {‘UAﬁ (ﬂ> +wafl (ﬂ)} ReRjp
’ Ty Ta
1
3 y WAX14,42\R12|2}~ (30)
=12

The first two lines can be found using physical correlations. The last line, however, which plays
an essential role in the entropy evaluation, can be obtained only through informational correlations.
Here, the state probabilities are py = Ry with x being 1,2, 3,4 and depending on the characteristics
of all heat baths. The dynamical response function is fni = Kinai(wiy) withi = 1,2 and « = 3,4,
and Fiau2 = v/ Xu1Xa2- Moreover, v = Y1, [ (wa/Ta) + 1] waXsi-

In order to evaluate the stationary value of the entropy flow in this heat bath, we must solve
the quantum master equation for the density matrix time evolution. This can be found in Ref. [40].
The solution is such that the coupling between the environment and the quantum system introduces
decoherence in quantum states. Energy exchange between the heat bath and a quantum system
introduces a limited coherence time, namely 7;, for quantum state probabilities. The phase of a
quantum state can fluctuate and, depending on environmental noise, the lifetime of quantum state can
be limited to 7. These two coherence times affect all elements of the density matrix. From solving the
quantum Bloch equation, one can see that the only stationary solution in the off-diagonal part is the
imaginary part of R1, whose real part of exponential decay due to dephasing is: ImR1, ~ exp(t/12).

One can substitute the stationary solution of the density matrix in Equation (30) and the flow of
entropy in the heat bath changes depending on the dephasing time—see Figure 2a,b in [40]. In fact,
increasing the dephasing time will increase the contribution of the coherent part of the entropy flow,
i.e., information correlations. This will reduce the total entropy flow in the heat bath, which will
equivalently increase the output power in this photovoltaic cell.

3.6.3. Example 3: Entropy in a Quantum Resonator/Cavity Heat Engine

Using a rather different technique—i.e., the correspondence between entropy and statistics of
energy transfer that we discuss in the next section—in [15,16], we calculated entropy production for a
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resonator/cavity coupled two different environments kept at two different temperatures, see Figure 12.
One of the two baths is a probe environment at a temperature of zero for which we calculate the flow
of entropy.

Knowing how entropy flows as the result of interactions between the resonator, cavity and
other parts of the circuit can help to obtain important information about the possibility of leakage
or dephasing in the system and ultimately give rise to modifications of quantum circuits [4].
A good understanding of cavities/resonators is beneficial to search for the nature of non-equilibrium
quasiparticles in quantum circuits [42,43]. This can help with detecting light particles like muons
whose tunnelling in a quantum circuit can signal a sudden jump in the entropy flow [44-46]. Given that
entropy flow can be measured by the full counting statistics of energy transfer, see the next section,
it is important to keep track of entropy flow in a resonator.

Figure 12. A quantum cavity heat engine.

Again, we use the standard technique that we described above. Let us consider a single harmonic
oscillator of frequency wy and Hamiltonian H= wo(ﬁ+ﬁ +1/2), which is coupled to a number of
environments at different temperatures with different coupling strengths. We concentrate on a probe
environment that is weakly coupled to the oscillator. In addition, the oscillator is driven by an external
force at frequency (). We calculate the Renyi flow and consequently the von Neumann entropy
flow of the probe environment. The coupling Hamiltonian between the harmonic oscillator and the
probe reservoir is H(t) = X(#)a' () + h.c., with X being the probe reservoir operator. The Fourier
transform of the correlator is: Sy (w) = [ exp(—iwt)Sy (t)dw/27. Due to the conservation of energy,
the energy exchange occurs either with quantum ) or with quantum wy.

We note that the time dependence of the average of two operators can be written as (4" (t)a(t')) =
((ata))eiwot=t) 4 (a(t))(a® ('), where the time dependence of {a(t)) is due to the driving force and
therefore oscillates at frequency Q: (a(t)) = (a). exp(iQt) + (a)_ exp(—iQt). This corresponds to the
fact that the oscillator can oscillate both at its own frequency and at the frequency of external force.

Obtaining the entropy flows from the extended Keldysh correlators is straightforward.
The generalized KMS relation in Equation (25) helps to describe the correlators in the thermal bath B
in terms of their dynamical susceptibility. The result can be summarized as follows:

dsy’ M (Mwo/Tp) N
d};/[ (M —1)wy/Tg) 7 (wo/ Tg) {<<u Jets = ({aa >>},

where we defined Tresonator to be the effective temperature of the harmonic oscillator ((aa®)) =
71(wo/ Tresonator) + 1 and ((a*a)) = 7i(wo/ Tresonator)- Taking the derivative with respect to M
and analytically continuing the result in the limit of M — 1 will determine the thermodynamic

entropy flow:
as®
7 = ? {ﬁ (WO/Tresonator) -7 (WO/TB)} . (31)

B

The entropy flow changes sign at the onset temperature Tresonator = Tp. Moreover, after the
exact evaluation of the incoherent part of the entropy flow, one should notice that it contains some
terms proportional to (a) and (at). These terms oscillate with the external drive and are nonzero.
However, they are all cancelled out by the coherent part of entropy flow such that the overall flow
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will only depend on the temperatures, and not on the driving force. Therefore, the entropy flow is
robust in the sense that it only depends on the temperatures of the probe and harmonic oscillator and
is completely insensitive to the external driving force.

The insensitivity of entropy flow to external driving force is interesting and a direct result of
including coherent flow of entropy that is absent in semi-classical analysis. The difference can put the
coherent entropy flow into an experimental verification.

In the absence of cross-replica correlators, the thermodynamic entropy of a probe environment,
coupled to a thermal bath via a resonator, will dramatically depend on the amplitude of the external
driving. If no such dependence on the driving amplitude is found, then this is an indication that they
are absent; they are in fact eliminated by quantum coherence!

4. Linking Information to Physics: A New Correspondence

As discussed above, the Renyi entropies in quantum physics are considered unphysical,
i.e., non-observable quantities, due to their nonlinear dependence on the density matrix.
Such quantities cannot be determined from immediate measurements; instead, their quantification
seems to be equivalent to determining the density matrix. This requires reinitialization of the density
matrix between many successive measurements. Therefore, the Renyi entropy flows between the
systems are conserved measures of nonphysical quantities. An interesting and nontrivial question is:
Is there any relation between the Renyi entropy flows and the physical flows?

An idea of such a relation was first put forward by Levitov and Klich in [23], where they proposed
that entanglement entropy flow in electronic transport can be quantified from the measurement of the
full counting statistics (FCS) of charge transfers [22,47-49]. The validity of this relation is restricted to
zero temperature and obviously to the systems where interaction occurs by means of charge transfer.
Recently, we presented a relation that is similar in spirit [15]. We derived a correspondence for coherent
and incoherent second-order diagrams in a general time-dependent situation.

This relation gives an exact correspondence between the informational measure of Renyi entropy
flows and physical observables, namely, the full counting statistics of energy transfers [47,50].

We consider reservoir B and quantum system g. We assume that B is infinitely large and is kept
in thermal equilibrium at temperature Tp. System g is arbitrary as it may carry several degrees of
freedom as well as infinitely many. It does not have to be in thermal equilibrium and is in general
subject to time-dependent forces. It is convenient to assume that these forces are periodic with a period
of T; however, the period does not explicitly enter the formulation of our result, which is also valid for
aperiodic forces. The only requirement is that the flows of physical quantities have stationary limits.
The stationary limits are determined after averaging instant flows over a period and—for aperiodic
forces—by averaging over a sufficiently long time interval. In the case of energetic interactions, energy
transfer is statistical. The statistics can be described by the generating function of the full counting
statistics (FCS), namely ‘FCS Keldysh actions’.

Recently, in Ref. [15], we proved that the flow of thermodynamic entropy as well as the flow of
Renyi entropy between two heat baths via a quantum system is exactly equivalent to the difference
between two FCS Keldysh actions of incoherent and coherent energy transfers. In the limit of long T
and for a typical reservoir B with temperature Tp, the incoherent and coherent FCS Keldysh actions are
fi (&, Tp) and fc (&, Tp), with & being the counting field of energy transfer. These generating functions
can be determined using Keldysh diagrams, see [16]. After their evaluation, one finds the statistical
m-th cumulant function C,;, by taking the derivative of the generating function in the limit of zero
counting function, i.e., C;, = lim,;ﬂo a"f/ac™.

In fact, any physical quantity should depend on the cumulants and consequently on a zero
counting field. However, informational measures are exceptional. Detailed analysis shows that
the flow of Renyi entropy of degree M in the reservoir B at equilibrium temperature Tj is exactly,
and unexpectedly, the following: dSys (Tg) /dt = M [f;(¢*, Tg/ M) — fo(&*, T/M)]| with &* = i(M —
1)/Tp. Notice that in this correspondence the temperature on the left side is Tp while it is Tg/M
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on the right side. In addition, it is important to notice that the entropy is evaluated by using the
generating function of full counting statistics at nonzero counting field ¢*. This relation is valid in the
weak-coupling limit where the interaction between the systems can be treated perturbatively.

5. Discussion

Currently, ‘time” does not play any essential role in quantum information theory. In this sense,
quantum theory is underdeveloped similarly to how quantum physics was underdeveloped before
Schrodinger introduced his wave equation. In this review article, we discussed a fascinating extension
of the Keldysh formalism that consistently copes with the problem of time for one of the central
quantities in quantum information theory: entropy. We characterized the flows of conserved entropies
(both Renyi and von Neumann entropies) and illustrated them diagrammatically to introduce new
correlators that have been absent so far in the literature.

Given that entropy is not an observable, as it is a nonlinear function of the density matrix, one
can use a probe environment to make an indirect measurement of the entropy in light of the new
correspondence between entropy and full counting statistics of energy transfer. This can be done
equally well for the imaginary and real values of the characteristic parameter. The measurement
procedures may be complex, yet they are feasible and physical. The correspondence can have many
other advantages. For instance, a complete understanding of entropy flows may help to identify the
sources of fidelity loss in quantum communication and may help to develop methods to control or
even prevent them.
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Abstract: The trade-off between large power output, high efficiency and small fluctuations in the
operation of heat engines has recently received interest in the context of thermodynamic uncertainty
relations (TURs). Here we provide a concrete illustration of this trade-off by theoretically investigating
the operation of a quantum point contact (QPC) with an energy-dependent transmission function
as a steady-state thermoelectric heat engine. As a starting point, we review and extend previous
analysis of the power production and efficiency. Thereafter the power fluctuations and the bound
jointly imposed on the power, efficiency, and fluctuations by the TURs are analyzed as additional
performance quantifiers. We allow for arbitrary smoothness of the transmission probability of the
QPC, which exhibits a close to step-like dependence in energy, and consider both the linear and
the non-linear regime of operation. It is found that for a broad range of parameters, the power
production reaches nearly its theoretical maximum value, with efficiencies more than half of the
Carnot efficiency and at the same time with rather small fluctuations. Moreover, we show that by
demanding a non-zero power production, in the linear regime a stronger TUR can be formulated in
terms of the thermoelectric figure of merit. Interestingly, this bound holds also in a wide parameter
regime beyond linear response for our QPC device.

Keywords: thermoelectricity; heat engines; quantum transport; mesoscopic physics; fluctuations;
thermodynamic uncertainty relations

1. Introduction

Nanoscale thermodynamics has attracted considerable attention during the last three decades.
Key motivations are the prospect of on-chip cooling and power production as well as an enhanced
thermoelectric performance arising from unique properties of nanoscale systems, such as quantum
size effects and strongly energy-dependent transport properties [1-9]. Among various nanoscale
systems, quantum point contacts (QPC) [10] are arguably the simplest devices which show a
thermoelectric response [11]. A requirement of such a response is an energy-dependent transmission
probability [12,13], which breaks the electron-hole symmetry. Within non-interacting scattering theory,
the transmission probability fully determines the thermoelectric response of a two-terminal device.
The QPC and similar devices provide a particularly interesting thermoelectric platform as their
transmission probability may approximate a step function, maximizing the power generation [14,15].
This feature is in contrast to the case of a quantum dot, where the transmission probability may
approximate a Dirac delta distribution, maximizing the efficiency of heat-to-power conversion [16-20].
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Most previous studies on the thermoelectric properties of QPCs focused on the linear response
regime [11,12,21-24]. In this regime, the optimal performance of thermodynamic devices was
extensively investigated, especially the efficiency at maximum power which is limited by the
Curzon-Ahlborn efficiency [25-27]. There are however several works considering various aspects of
the thermoelectric response in the non-linear regime [14,15,28-37]. This includes a Landauer-Biittiker
scattering approach to the weakly non-linear regime [35,37], detailed investigations of the relation
between power and efficiency when operating the QPC as a heat engine or refrigerator [14,15,36,37] as
well as the full statistics of efficiency fluctuations [28].

Here, we review the thermoelectric effect of a QPC acting as a steady-state thermoelectric heat
engine. We focus on the non-linear-response regime and analyze the output power and the efficiency for
different parameter regimes, varying the smoothness of the step in the transmission probability of the
QPC. In addition to a high efficiency and power production, it is desirable to have as little fluctuations as
possible in the output of a heat engine. However, these three quantities, which we will analyze as three
independent performance quantifiers, are often restricted by a thermodynamic uncertainty relation
(TUR), preventing the design of an efficient and powerful heat engine with little fluctuations [38—44].
In this paper, we use a TUR-related coefficient as an additional combined performance quantifier,
accounting for power output, efficiency, and fluctuations together. While TURs have been rigorously
proven for time-homogeneous Markov jump processes with local detailed balance [39,41], they are
not necessarily fulfilled in systems well described by scattering theory [45]. Nevertheless, we find the
TUR to be valid in a temperature- and voltage-biased QPC. We note that recently, it has been shown
that a weaker, generalized TUR applies whenever a fluctuation theorem holds [46,47]. Here, we show
further constraints on the TUR under the restriction that the thermoelectric element produces power,
necessary to define a useful performance quantifier. Interestingly, in linear response, this constraint
can be related to the figure of merit, ZT.

This paper is structured as follows. In Section 2, we introduce the model of a QPC with
smooth energy-dependent transmission, as well as the transport quantities and resulting performance
quantifiers of interest. The latter are then analyzed for the QPC with different degrees of smoothness of
the transmission function, namely the output power in Section 3, the efficiency in Section 4, the (power)
fluctuations in Section 5, and the combined performance quantifier deduced from the TUR in Section 6.

2. Model System and Transport Theory

We consider the two-terminal setup shown in Figure 1, with a single-mode QPC connected to a left
(L) and a right (R) electronic reservoir, characterized by electrochemical potentials yi, = pig — eV}, and
UR = Ho — eVR, and kept at temperatures T;, = Tj (cold reservoir) and Tgr = Tp + AT (hot reservoir),
respectively. Here, V1 and VR are externally applied voltages, j1o denotes the electrochemical potential
in the absence of voltage bias, Ty corresponds to the background temperature and AT > 0 stands for
the temperature difference due to heating of the right reservoir. In the following, we always set /¢ as
the reference energy.

2.1. Quantum Point Contact

We employ the established model for a QPC [12] and describe the energy-dependent transmission
probability as
1

- 1+exp<%+£0) .

This is a step-like function of the energy E, see Figure 1b, where Eq and < denote the position and
width in energy of the step, respectively. For a vanishingly small width, v — 0, the transmission
probability reduces to a step function, D(E) — 6(E — Ey).

In experiments with 2DEGs, the width or smoothness of the QPC barrier v, typically takes
values of the order of 1 meV (corresponding to temperatures of the order of 10 K) [11,32,48,49].

D(E) (€
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The results presented in this paper are equally valid for different types of conductors, where the
transmission function has a (smooth) step-like behavior, such as quantum wires with interfaces or
controlled by finger gates. Here, smoothness parameters vy of values down to several peV are expected
(corresponding to temperatures of the order of 10-100 mK) [29].
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Figure 1. (a) Schematic depiction of the system, with a quantum point contact (QPC) connected to two
electronic reservoirs, L and R, with electrochemical potentials y; and pr and temperatures Ty, and Tg,
respectively. (b) Transmission probability D(E) shown as a function of energy, Equation (1), with a
step positioned at energy Ej and energy-smearing width, or smoothness, . The solid line shows the
limit of vanishing width ¢ — 0.

2.2. Non-Linear-Transport Theory

The transport properties of the system are described by scattering theory [21]. In the non-linear-
transport regime, the scattering properties of the QPC become dependent on the applied voltages
WL and VR of the reservoirs and V; of the QPC-defining split gate [50] and possibly also on the
temperature bias [5,35,51]. Since the details of this dependence will not be of importance for our
analysis, we for simplicity consider a basic model with the QPC-potential capacitively coupled with
equal strength, C;, = Cr = C, to the two terminals L and R. This leads to a modification of the
transmission probability as D(E) — D(E + e[(Vg + V1.)C + VCg]/ [2C 4 Cg]), where Cg is the split
gate-QPC capacitance. In the following, we absorb the gate potential dependence into the step energy
Ep+eCgVy/(2C + Cg) — Eo(Vg) = Ep. This modification of the transmission probability guarantees
a gauge-invariant formulation of the problem with observable quantities only dependent on the
potential differences V = Vi — Vg, VL — Vg and Vg — V. We here refrain from including the effect
of a large temperature difference in the treatment of the transmission probability D(E), which is not
required by fundamental principles such as gauge invariance and which has been little addressed so
far, and postpone its study to future work.

For the study of the average currents of interest, namely charge current, I,, and heat current, J,,
we now consider a symmetric biasing Vi, = —Vg = V /2. We can then write the average currents that
are flowing out of reservoir « as

e {oe]
L= [ _dED(B)[fu(B) - fa(E), @
and 1 e
Jo= g | dE(E+eV/2D(E) [fa(E) - f(E)] )
Here, @ should be understood as follows: L = Rand R = L, whereas 7. = 1 and i = —1.
In Equations (2) and (3), we have introduced the Fermi distribution functions f,(E),
-1
fo(E) = |1+ exp Et meV/2 for a=LR. 4)
kg T
While current conservation ensures I}, = —Ig = I, energy conservation results in J|, = —Jg — IV.
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To analyze the fluctuations in the system we also need the zero-frequency charge-current noise,
given by [52]

62 )
si="5 [ 4E{D(E®) [L(E)(1 = A(E)) + fu(E) (1 - fu(E))] ©)
+D(E)[1 - D(E)][fu(E) — fa(E)]’}.
In addition to the study of the noise, it is often convenient to analyze the Fano factor

Si

= el ©

being a measure of how much the noise deviates from the one of Poissonian statistics (for which F = 1).

2.3. Thermodynamic Laws and Performance Quantifiers

The laws of thermodynamics set very general constraints on the quantities introduced above and
on the performance quantifiers, which we are going to study in this paper. We describe these quantities
within scattering theory, known to correctly reproduce the laws of thermodynamics [5]. The first law
of thermodynamics guarantees energy conservation and can be written as

Ju+]r =P @)
Here, we have introduced the electrical power produced,
P=-VI, ®)

where —VI > 0 if the current flows against the applied bias. Please note that throughout the work,
we limit our analysis of performance quantifiers to the relevant regime of positive power production.
The second law of thermodynamics states that the entropy production ¢ is non-negative. In our
two-terminal geometry, it can be written as

=L Ty ©)
L Tr

This expression determines the direction of energy flows through the system. It equals zero in case

that a process is reversible.

To determine the performance of the QPC as a heat engine, we now consider three independent
quantities and combine them with each other. The first performance quantifier is given by the electrical
power, Equation (8), which following the first law, Equation (7), is fully produced from heat.

The second performance quantifier we consider is given by the efficiency
rp_ Vi

TR T TR

where JR is the heat current that flows out of the hot reservoir. As long as power is positive, the
efficiency is bounded by the second law of thermodynamics, Equation (9),

(10)

T, AT

<7< i =1-—==_-—
0<n<nc with gc=1 Te ~ Tyt AT’

(11)
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where 77c denotes the Carnot efficiency. The dissipation arising from an inefficient heat to work
conversion is quantified by the entropy, which thereby relates efficiency and produced electrical power
to each other

P Sl 12)

To 7

It is desirable to have a thermoelectric heat engine which not only produces large power, at high
efficiency, but also minimizes fluctuations. The third independent performance quantifier is therefore
provided by the low-frequency power fluctuations

Sp = V25, (13)

Interestingly, a trade-off between these quantities in the form of a TUR usually exists, as discussed
in more detail in Section 6. This trade-off is typically written in the form of [38,39]

1
=_—- <= 14
Qrur 3 <5 (14)
where we have introduced the coefficient Qrygr. While this inequality is not always fulfilled for systems
well described by scattering theory, see e.g., the discussion in [45,53], we find it to be respected in our
system for all parameter values. Importantly this coefficient can be cast into the form [42]
n_ ksTo
Qrug = P—1— . B0, 15)
TR =P, (

where we used Equations (12) and (13). Thus, under the constraint of positive power production and
efficiency, we identify Qryr as a convenient combined performance quantifier, accounting for power
production, efficiency and power fluctuations together, where 1/2 sets the optimum value.

2.4. Linear-Response Regime

To compare with the much more studied linear-transport regime, we here present the relevant
transport properties in this limit. Specifically, with small applied voltage and thermal bias, we can
write the heat and charge current in the convenient matrix form [21],

<§>:<f4f<>(AVT> (16)

where (only due to linear response!) | = Ji = —Jgr, and the matrix elements are defined as
2
e _ M e .
G= HIO' L= T, th T, K= 7 (k3 To) Iy, 17)
with ;
b E dfo(E)
Iy = ED(E)| —— — . 1
" .[wd ( )<kBTO> < oE (18)

Here fy(E) is the Fermi-Dirac distribution in Equation (4) with V, = 0 and T, = Tp. In the same limit,
the charge-current noise reduces to the equilibrium noise, given by S; = 2kgTyG, in accordance with
the fluctuation-dissipation relation.
Another performance quantifier, which is often used in the linear response, is the figure of merit
ZT. Itis given by [5]
LZ
- GK - 12T,

in terms of the response coefficients given above.

zZT To, (19)

201



Entropy 2019, 21,777

3. Power Production

To characterize the performance of the engine, we first consider the power P produced. The power
as a function of applied bias V, for different values of the step energy Ej and temperature difference
AT, is shown in Figure 2 for both sharp (y — 0) and smooth (y = kgT) transmission step.
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Figure 2. Power P, normalized by the power bound Py, defined in Equation (23), as a function of
applied bias eV / (kgAT) for a set of step energies Ey/ (kgTy), shown in different columns, and thermal
bias values AT /Ty, represented by different styles of lines (the same for all panels, see inset in (g)).
Panels (a-d) [(e-h)] correspond to transmission functions with a step smoothness of v — 0 [y = kgTp].

As is seen from the figure, a common feature for all P-vs-V curves is that they first increase
monotonically from P = 0 at V = 0 with increasing negative voltage. At some voltage Viax the
power reaches its maximal value, PY,,, and then decreases monotonically to zero, reached at the
stopping voltage Vs. The maximum power with respect to voltage is a function of Ey/ (kgTp), AT/ Ty

and ’}’/(kBTg), Le.,
Ey AT v

py =pv (=2 —— ) 2
max max (kBTO, TO ’ kBTO) ( 0)

In addition, we note that in the linear-response regime we have Py, = [L2/(4G)]AT? with Vipax =
Vs/2 = —(L/[2G])AT. From Figure 2, it is clear that the power as a function of voltage depends
strongly on all parameters Ey/ (kgTp), AT/ Ty and v/ (kgTp). In particular, going from the linear to
the non-linear regime by increasing AT /Ty, the maximum power PY.,, might increase or decrease
depending on the step properties y and Ey.

3.1. Maximum Power

To further analyze the properties of PY,, we first recall from the seminal work of
Whitney [14,15,54] that the power is bounded from above by quantum mechanical constraints.
It was shown that the upper bound is reached for a QPC with a sharp step, v — 0, for which,
using Equations (2) and (8), the power becomes

(kBTO)Z' % { eV

Poharp = = koTo LksTo <1 + %) In[fr(Eo)] +1In [fL(Eo)]} . (21)
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Maximizing this expression with respect to eV /(kgTp) and Ey/(kgTp) we find that the maximizing
voltage is given by eVinax = —CkpAT where & = 1.14 is the solution of In(1 +¢ %) = —& ¢/ (1+¢ %) [5].
Moreover, the maximizing step energy Egmax and temperature difference ATyax are related via [14,28]

EO max ATmax
: = 1 . 22
ksTo e\t 2T, (22)

Inserting this expression, together with the relation for the maximizing voltage, into Equation (21) we
reach the upper bound for the power established by Whitney [54] and related to the Pendry bound [55],

) 2
Py = ,(kB%T) ¢ln (1 + g§> ~ 0.32 @, (23)

which, we emphasize, holds in the linear as well as in the non-linear regime. To relate to this upper
bound, in Figure 3a—c we present a set of density plots of Py, as a function of Ey/ (kgTy) and AT/ Ty
for different values of step smoothness parameters 7.

Sharp barrier (yv=0) Smooth barrier (y=kgTo) Smooth barrier (v=3kgTo)
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Figure 3. Maximum power with respect to voltage, Py, as a function of Eo/(kgTy) and AT/T
presented for three different values of the step smoothness 7/ (kgTy) = 0, 1,3 (a—c). The white dashed
lines in (a,f) illustrate Equation (22). (d,e) show close-ups of regions in (a,b), respectively, indicated
with yellow dotted rectangles. On the other hand, (f) corresponds to an extended parameter regime
of (c).

From the figure it is clear that for a sharp step, ¥ — 0, there is a broad range of Ey/ (kgTp) and
AT/ Ty around the dashed line in the (Eg, AT)-space, given by Equation (22), for which Py, is close to
the theoretical maximum value Py . For a step smoothness up to y ~ kgTp, the situation changes only
noticeably for small AT/ Ty. This is illustrated clearly in the close-ups in Figure 3d,e. Increasing the
smoothness further, the region with maximum power close to Py shifts to higher values Ey and AT,
although still largely centered around Equation (22), as is shown in Figure 3f.

To provide a more quantitative analysis of this behavior, below we investigate two limiting cases
for 7 in further detail.
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3.1.1. Small Smoothness Parameter 7/ (kgTp) < 1

In the limit, where the value of the smoothness parameter 7 is small, v/ (kg Tp) < 1, the expression
for the transmission probability in Equation (1) can be expanded to leading order in v as [56]

2 d
D(E) = 0(E — Eg) + 2 < ﬁJ(E Ep). (24)
Inserting this into the expression for the charge current, Equation (2), and performing a partial
integration for the delta function derivative, we get the power

2
P = Pgharp — 726:'72 ik [fL(Eo) — fr(Eo)], (25)

with Pyharp given in Equation (21). To estimate how the overall maximum power is modified due to
finite smoothness we insert into Equation (25) the values for eV /(kgTy), Eo/ (kgTp) and AT/ Ty along
the line in the (Eo, AT)-space, see Figure 3, which gives the bounded power for the sharp barrier.
We find

2
_ _ vy b
P(EO,maX/ Vmax) = PW{l 1. 06(kBTO> 1+ AT/TO }/ (26)

noting that Eymax and AT are related via Equation (22). This expression quantifies the effect of the
barrier smoothness visible in Figure 3, namely that the maximum power Py, in the region along the
line in the (Eo, AT) plane defined by Equation (22) is mainly affected for small AT/ T), and approaches
Py in the strongly non-linear regime, AT /Ty > 1.

3.1.2. Smoothness v = kg Ty

Also in the case where the barrier gets smoother, such that 7y equals the base temperature,
v = kgTp, we can perform an analytical investigation. Focusing on the linear-response regime,
AT/Ty < 1, where the effect of the smoothness is most pronounced, we can write the power in a
compact form as

eV AN (Eo) 2 AN(Ey) AT
p= —7{{—/\/(E0)—E0 I V—EE T, 27)
where NV (E) is the Bose-Einstein distribution function, N'(E) = { exp[E/ (kgTo)] — 1} . As discussed

above, in the linear-response regime the maximizing Voltage is Vmax = Vs/2, where the stopping
voltage V; is the voltage that makes the expression in the curly bracket in Equation (27) vanish. Further
maximizing over Eg then gives Eg max = 1.6 kgTp, which inserted into the power expression gives

PYE ~ 0.5 Py. (28)

From Figure 3 it is clear that both Eg max and PIY{aEXO are in good agreement with the numerical result.

4. Efficiency

Taking into account the aspect of limited resources, the power output is often not the most
significant performance quantifier. A more relevant quantity is then the efficiency of a device. For a
heat engine, it is defined as the power output divided by the heat absorbed from the hot bath,
Equation (10).

We show the efficiency of the QPC as a steady-state thermoelectric heat engine in Figure 4.
Panels (a) to (d) show the efficiency for the sharp barrier as function of voltage eV / (kgAT) for different
temperature differences AT/ Ty and step energies Ey/ (kgTp). For small absolute values of the step
energies, see panels (a) and (b) for two examples with Ey/ (kgTp) = —1,0, the efficiency is rather small
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with respect to the Carnot efficiency, 7/1j¢ < 0.25 and its overall shape only weakly depends on the
temperature difference. This is radically different for larger values of Ey: panels (c) and (d) of Figure 4
show a strong increase of the efficiency, which for Ey/ (kgTp) = 15 and large temperature differences
can reach about 90% of the Carnot efficiency. Also, the stopping voltage Vs, at which the efficiency
is zero and the device stops working as a thermoelectric, is strongly increased, depending on the
temperature difference.
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Figure 4. Efficiency as function of voltage for a sharp barrier (a—d) and for a smooth barrier,
v = kgT (e-h), for selected temperature differences AT (see different lines) and step energies E

(see different columns).

For large Ey, see panel (d) of Figure 4, and small temperature differences, where large maximum
efficiency values are reached, the efficiency-voltage relation takes a close-to-triangular shape. In this
regime, we have that E eV /2 > Ty, Ty + AT for all energies above the step energy Eg. Therefore,
only the tails of the Fermi functions contribute in Equations (2) and (3) and the efficiency in linear
response in AT can be approximated as

_elv| AT
n= Eo 9<eV+E0 To>' (29)

This formula describes well the triangular shape of the curves in panel (d), including the stopping
voltage at small AT and large E, given by eVs/kgAT ~ —E(/kgTy, from the argument of the Heaviside
function 0 in Equation (29). We note that for V' — V; the efficiency § — AT/ Ty = #c, i.e., the efficiency
approaches the Carnot limit, see Equation (11). The mechanism for this is the same as described in
Ref. [20]; transport effectively takes place in a very narrow energy interval around Ej, where the
distribution functions f1.(Eo) = fr(Eo).

Panels (e) to (h) of Figure 4 show results for the changes in the efficiency for a smooth barrier,
v = kgTp. At temperature differences that are much larger than the smoothness—here the case
for kgAT/y = 5,15—the results for the efficiency are very similar to the case of the sharp barrier.
This agrees with the discussion on the power production in the previous section, Section 3. At small
temperature differences, however, the efficiency gets strongly reduced by the effect of the smoothness.
This is particularly striking for large step energies, see panels (g)—(h) for Ey/kgTy = 5, 15, respectively.
Here, efficiencies that were close to Carnot efficiency for a sharp barrier get reduced by a factor three
due to the barrier smoothness. The reason is that increasing smoothness leads to a broadening of the
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energy interval where the transport takes place, and hence a breakdown of the mechanism for Carnot
efficiency discussed in Ref. [20].

4.1. Maximum Efficiency

We now focus our study on the maximum value of the efficiency that can be reached over
the whole range of voltages, fjy.y, a function of Ey/ (ksTo), AT/ To, v/ (ksTo). The results of this
maximization procedure are shown in Figure 5, where panel (a) corresponds to a sharp barrier (y = 0)
while smooth barriers with oy = kgTj and v = 3kgTy are presented in panels (b) and (c), respectively.

Sharp barrier (v=0) Smooth barrier (y=kgTo) Smooth barrier (v=3kgTo)

20 T T T T 100 1
(c'
A15 J i 80 7 0.8
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Figure 5. Density plots of the maximum efficiency 7%, (that is, maximized over the voltage V)
as a function of temperature difference AT and step energy Ey, for three different values of barrier
smoothness, v/kgTy = 0,1,3 (a—c). Please note that in panel (c) the axes ranges are strongly enlarged.

Two important results can be immediately seen from these density plots of the efficiency 17y«
as a function of temperature difference AT /Ty and step energy Eo/(kgTp). First, we confirm the
observations about the response to small temperature differences made from Figure 4. While for a
sharp barrier, efficiencies close to Carnot efficiency are reached in the linear response (close to the
stopping voltage, as we know from Figure 4), for even only slightly smoothed barriers this is not the
case anymore. For v/kgTy = 3, the maximum efficiency in the linear response is even suppressed
down towards zero. This clearly shows that whenever the barrier step is not truly sharp, non-linear
response is required to get a thermoelectric response with large power output and with high efficiency.
Second, panels (b) and (c) of Figure 5 show that for temperature differences much larger than the
smoothness—or, in other words, with one of the reservoir temperatures being much larger than the
smoothness—almost the same (large) efficiency as in the sharp-barrier case is found, as long as the
step energy is sufficiently large. Note, however, that these large-efficiency regions are far from those
regions, which were previously identified as the ones of large power output, and are furthermore
limited to regions with very large temperature differences and step energies.

4.2. Power-Efficiency Relations

The relation between power and efficiency for a sharp barrier, v = 0, was investigated in detail in
Refs. [14,15,28,36]. A convenient way to present the efficiency at a given power output, and vice versa,
is in the form of lasso diagrams, as shown in Figure 6.
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Figure 6. So-called lasso diagrams, showing the efficiency at every power output. The parameter that is
changed along the lasso-line is the applied voltage V. We show results for a sharp barrier (a-d) and for a
barrier with smoothness v = kgTj (e-h), for selected values of the step energy Eq/ (kpTp) (see different
columns) and temperature differences AT /Ty (see different lines), in analogy to Figures 2 and 4.

Atsmall step energies, Eg/ (kgTp) = —1,0, the maximum power as well as the maximum efficiency
are relatively small. However, maximum efficiency and maximum output power basically happen
at the same parameter values. This is advantageous for operation of a thermoelectric device, where
one typically must decide whether to optimize the engine operation with respect to efficiency or
power output.

This trend continues also for larger step energies, see panels (c) and (d) of Figure 6, as long
as the temperature difference is larger or of the order of the step energy, kAT Z Ej (meaning
that Ty + AT > Ey/kg > Tp). In this case, the power output is close to its maximum value P ~ Py,
while the efficiency still takes values of up to the order of 7 ~ 0.6 77c, in agreement with the bounds
discussed in Refs. [14,15,28]. These results clearly show the promising opportunities of step-shaped
energy-dependent transmissions, as they can possibly be realized in QPCs, for thermoelectric
power production.

Please note that the impressively large values for the efficiency at maximum output power do not,
however, violate the Curzon-Ahlbohrn [25] bound, 7ca, which relates to the Carnot efficiency as

Ic
flca = —75 - (30)
14 (14+AT/Ty) 2

This predicts a bound on the efficiency at maximum power of 57cp = 0.5 ¢ in linear response in AT.
That this bound is respected, can for example be verified by noting that the efficiency at maximum
power of the grey solid line for AT /Ty = 0.01 in panel (c) is only slightly above 0.47c. Equally, one can
check from the green dashed-dotted line in the same panel that the efficiency at maximum power does
not exceed the bound for AT /Ty = 5 given by 5ca = 0.7 7c.

For step energies that are large with respect to the temperature of both reservoirs, Ty, Tp + AT <
Eo/kg, the power output is reduced, the maximum efficiency, however, increases. In the limit of linear
response in the temperature difference, efficiencies close to Carnot efficiency are reached at the expense
of close-to-zero power output.
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5. Power Fluctuations and Inverse Fano Factor

During recent years it has become clear that in addition to the power and the efficiency as
performance indicators of a heat engine, the fluctuations of the power output, Sp, should also
be considered [40]. A reliable operation of the heat engine, i.e., where fluctuations are limited, is
desirable. This is particularly relevant for nanoscale devices, where fluctuations are always a sizable
effect. To analyze the effect of power fluctuations, we note that the relevant fluctuations in this QPC
steady-state thermoelectric heat engine are the charge-current fluctuations, since Sp = V2S;. Therefore,
we shift the analysis of power fluctuations to the more straightforward analysis of the Fano factor,
see Equation (6).

In Figure 7, we plot the inverse Fano factor 1/F as a function of voltage eV / (kgAT) for different
barrier smoothness v, thermal gradients AT /Ty, and step energies Ey/ (kgTp). Please note that we
set the inverse Fano factor to zero outside the parameter range where power is produced, to be
able to use it as a performance quantifier. This performance quantifier 1/F is desired to be large,
meaning that current fluctuations are small with respect to the average. For all parameters, we find
that increasing the (negative) voltage decreases the inverse Fano factor 1/F (meaning that the Fano
factor F increases). This behavior is attributed to the decrease in charge current as the voltage is moved
closer to the stopping voltage Vs, while the total noise is less affected. For small voltages, as well as
small and negative step energies, increasing the thermal gradient generally increases the inverse Fano
factor. These results can be understood from the linear-response expression for the currents and noise,
Equations (16)—(18) and below, giving the inverse Fano factor

1 eV eL AT

F bl " kG T’ v

where the absolute value can be omitted when focusing on the voltage window in which power
is produced. This expression increases with AT and decreases as V' goes to more negative values.
Increasing AT thus increases the current without an accompanied increase in fluctuations because
S; = 2kgTpG is independent of the bias in the linear response. For large step energies E, the inverse
Fano factor no longer increases monotonically in AT but a non-monotonic behavior is observed,
indicating a more subtle interplay between the fluctuations and the mean value of the current. We note
that for almost all parameter values, the inverse Fano factor is substantially smaller than one which
can be attributed to the relatively large thermal noise in the present system.

In Figure 8, the inverse Fano factor maximized over the voltage, (1/F )xax, is shown for the same
parameters as used in Figures 3 and 5. Please note that the maximization only includes the voltage
window where positive electrical power is produced. We find that for all three values of smoothness,
the maximum inverse Fano factor increases monotonically with increasing AT, saturating at values a
bit above unity. The Fano factor is thus slightly below unity, a signature of almost uncorrelated, close-to
Poissonian, charge transfer (for Poissonian statistics, F = 1). At small AT < Ty, close to equilibrium,
the noise is large even though the average electrical current is small. As noted above, this is purely
due to thermal fluctuations, resulting in a small inverse Fano factor.
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Figure 7. Inverse Fano factor as a function of voltage for sharp barrier (a-d) and for smooth barrier
(e-h), for selected gradients AT (see different lines) and step energies Ej (see different columns). Please
note that we set the inverse Fano factor to zero outside the parameter regime where power is produced.
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Figure 8. The inverse Fano factor maximized over all those bias values V leading to a non-negative
output power, (1/ F)X\ax, as a function of temperature difference AT and step energy Ey, for three

different values of barrier smoothness, v/kgTy = 0,1,3 (a—c).

6. Thermodynamic Uncertainty Relation

We now turn to the investigation of the TUR, cf. Equation (14), which provides a combined
performance quantifier accounting for power output, efficiency and power fluctuations. We first
consider the TUR-coefficient Qryr in the linear-response regime. Together with Equation (14),
we therefore use the relations for power, power fluctuations, entropy and efficiencies, given in
Equations (8)-(13). The linear-response expressions for the charge and heat currents occurring in these
relations are given in Equation (16) and we furthermore use S; = 2kgTyG. With this, we find

Orug = (GV + LAT)? To 32)
TUR = AT(LTyV + KAT) + VTo(GV + LAT) ' 2G

Maximizing this expression with respect to voltage we find Vinax — oo, resulting in Qryr = 1/2,
and hence, the inequality becoming an equality. However, this voltage is within a voltage regime
where power is dissipated (P < 0) and not produced; power production (P > 0) would instead require
Vs <V <0. Thus, this is not of practical relevance for the engine performance. Adding the extra
condition that P > 0 we instead find Vinax — 0. The corresponding value of Qtyr on the left-hand
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side of Equation (32) then becomes L?Ty/(2GK). Expressing this in terms of the figure of merit ZT,
given in Equation (19), we can write the bound on the operationally meaningful TUR-coefficient in the
linear-response regime as

1 ZT
<z .=
Qrur < 2 11727 (33)

This shows that in the linear response, the parameters of the steady-state thermoelectric heat engine
are actually subjected to a tighter bound than given by Equation (32). Please note that this bound
is saturated in the limit V' = 0, where the power production, the power fluctuations, as well as the
efficiency all vanish. Also, only for ideal thermoelectrics, with ZT — co, does the bound become 1/2.
As seen in Figure 9d, this maximal bound is actually reached for large step energies Ey.
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Figure 9. Coefficient Qryr as a function of voltage for sharp barrier (a-d) and for smooth barrier (e-h),
for selected gradients AT (see different lines) and step energies E (see different columns). We note that
we set the QTyr to zero outside the parameter regime where power is produced. The black-dashed
line in all panels corresponds to the bound that is given by Equation (33).

The full TUR-coefficient beyond linear response is illustrated in Figures 9 and 10. We find that
the inequality Qryr < 1/2 is always respected, even though this is not guaranteed by scattering
theory [45]. Interestingly, we find the tighter bound in Equation (33) to be respected for most
parameters, even though the inequality is only proven to hold in the linear-response regime and
the bound is expressed in terms of linear-response quantities (given by Equation (17)), only. Violations
of the bound given in Equation (33) beyond linear response are observed for sufficiently low Ey and
when the temperature difference is of the order of the magnitude of Ey (cf. Figure 9a for a sharp barrier).
The regimes where a violation can occur are extended when the barrier is smooth (cf. Figure 9e,f).
These violations agree with the general notion that dissipation increases when moving away from
the linear response [39]. Furthermore, from Figure 9, we find that in the linear response, as well as
for small and negative Ey, Qryr decreases monotonically as the (negative) voltage is increased. This
reflects the behavior of the inverse Fano factor in Figure 7. Importantly, for sharp step energies Ey,
and beyond the linear response, Qryr is a non-monotonic function of the voltage and takes on its
maximum at a point where power production is finite. This non-monotonicity is a consequence of
the interplay between the monotonically decreasing inverse Fano factor and the strongly increasing
efficiency and power (cf. Figures 2 and 4), as the voltage is changed to more negative values.

Figure 10 shows the TUR-coefficient maximized over voltage, Q"\F/UR,maX’ as a function of the
thermal gradient AT and the step energy Ej. As for the inverse Fano factor, the maximization only
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includes the voltage window where power is non-negative. For all values of the barrier smoothness,
we find that Q¥UeraX generally decreases as a function of AT, and a closer inspection reveals small
non-monotonic features related to the small violations of Equation (33). This contrasts with the
maximized inverse Fano factor, which shows the opposite behavior, cf. Figure 8. The decrease of the
fluctuations with AT is thus overcompensated by an increase in dissipation which results in the highest
values for Q¥UeraX being reached in the linear-response regime. This shows that Q¥UR,max is maximal
in regimes, where the 77V, is large. Note however that the maximal Qryg is reached at zero voltage,
the maximized efficiency 7 is reached close to the stopping voltage Vs # 0. Furthermore, no features
of the line of optimal power production close to Py can be identified in the panels of Figure 10.

Sharp barrier (y=0) Smooth barrier (y=kgTo) Smooth barrier (y=3ksTo)
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Figure 10. TUR-coefficient maximized over the bias V, Q¥UR,max’ as a function of temperature
difference AT and step energy E, for three different values of barrier smoothness, 7y /kg Ty = 0, 1,3 (a—c).

7. Conclusions and Outlook

In this paper, we have reviewed and extended the analysis of a QPC (or a QPC-like) device,
with a transmission probability with a smoothed step-like energy-dependence, as a steady-state
thermoelectric heat engine. The interest in a QPC for heat-to-power conversion derives from its
optimal performance with respect to the output power, which goes along with rather large efficiencies.
We have analyzed the influence of the barrier smoothness on this behavior and found that strong
non-linear-response conditions are required to recover a comparable performance.

In addition to the typically studied performance quantifiers—output power and efficiency—we
have broadened the analysis by adding the power fluctuations as an independent quantification of
performance. The bound on the combination of these three quantities set by the recently identified
thermodynamic uncertainty relation, suggests investigating this as a combined performance quantifier.

We have shown that the bound of the thermodynamic uncertainty relation is further restricted if
one adds the practical constraint of finite (positive!) output power. In the linear response, we quantify
this restriction by the figure of merit ZT. Interestingly, we have found that this combined performance
quantifier maximized over the voltage has large values in those parameter regions in which the
maximized efficiency is large, while regions of maximal output power are not distinguished. However,
while efficiencies take their maximal value in regions close to the stopping voltage in which finite
power is produced, accounting for fluctuations shifts the optimal performance value to the limit of
zero voltage and zero power production.

Whether this result is unique to the QPC as steady-state heat engine or can be generalized for
other thermoelectric devices is a topic of further studies. Our analysis also naturally raises the question
of how to quantify the performance of the QPC when operated as a refrigerator [14,15]. Given that
QPCs are standard components in many mesoscopic experiments and both the currents and noise
are experimentally accessible, we anticipate that our results could be tested in experiments in the
near future.
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Abstract: In this article, we briefly review the dynamical and thermodynamical aspects of different
forms of quantum motors and quantum pumps. We then extend previous results to provide new
theoretical tools for a systematic study of those phenomena at far-from-equilibrium conditions.
We mainly focus on two key topics: (1) The steady-state regime of quantum motors and pumps,
paying particular attention to the role of higher order terms in the nonadiabatic expansion of
the current-induced forces. (2) The thermodynamical properties of such systems, emphasizing
systematic ways of studying the relationship between different energy fluxes (charge and heat
currents and mechanical power) passing through the system when beyond-first-order expansions are
required. We derive a general order-by-order scheme based on energy conservation to rationalize
how every order of the expansion of one form of energy flux is connected with the others. We use this
approach to give a physical interpretation of the leading terms of the expansion. Finally, we illustrate
the above-discussed topics in a double quantum dot within the Coulomb-blockade regime and
capacitively coupled to a mechanical rotor. We find many exciting features of this system for arbitrary
nonequilibrium conditions: a definite parity of the expansion coefficients with respect to the voltage
or temperature biases; negative friction coefficients; and the fact that, under fixed parameters, the
device can exhibit multiple steady states where it may operate as a quantum motor or as a quantum
pump, depending on the initial conditions.

Keywords: quantum thermodynamics; steady-state dynamics; nonlinear transport; adiabatic
quantum motors; adiabatic quantum pumps; quantum heat engines; quantum refrigerators; transport
through quantum dots

1. Introduction

In recent years, there has been a sustained growth in the interest in different forms
of nanomachines. This was boosted by seminal experiments [1-8], the blooming of new theoretical
proposals [9-30], and the latest developments towards the understanding of the fundamental physics
underlying such systems [31-45]. Quantum mechanics has proven to be crucial in the description
of a broad family of nanomachines, which can be put together under the generic name
of “quantum motors” and “quantum pumps” [13,46-53]. They typically consist of an electromechanical
device connected to electronic reservoirs and controlled by nonequilibrium sources; see Figure 1.
These nonequilibrium sources may include temperature gradients and bias voltages among
the reservoirs or even an external driving of the internal parameters of the system. The dimensions
of the electronic component of these devices are normally within the characteristic coherence
length of the electrons flowing through them, hence the essential role of quantum mechanics
in their description.
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Various aspects of quantum motors and pumps have been extensively studied in the literature.
For example, it has been shown that quantum interferences can be exploited to boost the performance
of these devices. Remarkably, some systems operate solely due to quantum interference, e.g., quantum
pumps and motors based on chaotic quantum dots [13,39,54], Thouless quantum pumps
and motors [13,22,55], or Anderson quantum motors [56], among others. On the other hand,
the strong Coulomb repulsion between electrons in quantum-dot-based pumps and motors has
shown to enhance the performance (or even induce the activation) of these nanodevices [26,42,57-59].
The effect of decoherence has also been addressed [22,39,54,60], as well as the influence of the friction
forces and the system-lead coupling in the dynamics of quantum motors and pumps [22].
Indeed, the thermodynamics of those systems has proven to be a key aspect to study. In the last
few years, different individual efforts have coalesced to give rise to a new field dubbed
“quantum thermodynamics” [48-53,61], which studies the relations among the different energy fluxes
that drive the motion of those machines where quantum mechanics plays a fundamental role.

(b)

Shuttle

Hitting device

Permanent charges

Figure 1. Examples of local systems (enclosed by dashed lines) where the movement of a mechanical
piece (in blue) is coupled to the flux of quantum particles traveling from/to infinite reservoirs
(black hemiellipses). (a) A Thouless’ adiabatic quantum motor made of charges periodically arranged
on the surface of a rotational piece and interacting with a wire coiled around it [22]. (b) An Anderson’s
adiabatic quantum motor made of a multi-wall nanotube where the outer one, with random
impurities, is shorter than the inner one. Another example of it can be made with a rotating
piece as in (a), but with charges randomly distributed. (¢) A double quantum dot capacitively
coupled to a rotor with positive and negative permanent charges. The dots are assumed to be weakly
coupled to the electron reservoirs [42]. (d) As a result of an external agent, a tip hits a conductive
wire capacitively coupled to permanent charges underneath. This starts the oscillation of the wire,
which in turn pumps electrons between the reservoirs [23].

Despite the progress in the theoretical description of quantum motors and pumps,
most of the research has focused on parameter conditions that lie close to the thermodynamic
equilibrium, i.e., small bias voltages, temperature gradients, or frequencies of the external
driving [48-53,61]. This is reasonable since under such conditions, the linear response regime
of the nonequilibrium sources gives an accurate description of the problem, greatly simplifying
its general treatment. For example, in this regime, it is common to define dimensionless figures
of merit made by some combination of linear response coefficients, which give a measurement
of the efficiency or the maximum power that quantum devices can achieve. It is also known that such
figures of merit fail in nonlinear regime conditions [52]. Although efforts have been made in this
direction, currently, there is not a nonlinear version for the figures of merit, and the performance
must be calculated from the microscopic details of the system’s dynamics. One strategy to deal
with such situations is to use phenomenological models where the linear response coefficients are
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parameterized with respect to the voltage biases, the temperature gradients, or to other relevant
parameters of the system; see [52] and the references therein. However, such parameterizations usually
hide the physics behind the nonlinearities and require the optimization of a number of variables that
grow very fast with the complexity of the model. The weakly nonlinear regime of transport has also
been explored within the scattering matrix formalism. Under these conditions, it is enough to expand
the response coefficients up to second order of the voltage biases and temperature gradients, which can
be done by using standard quantum transport techniques. This approach has been applied to a variety
of situations, where it proved to be a valuable strategy; see [48] and the references therein. However,
it would be also important to extend this method to more general situations without hindering
the description of the physical processes that take part in the nonlinear effects, while keeping the deep
connections between the response coefficients.

Regarding the dynamics of quantum motors and pumps, one can notice that most of the works
in the literature assume a constant terminal velocity of the driving parameters without a concrete
model for them. A typical problem is that when these devices are coupled to nonequilibrium
sources, nonconservative current-induced forces (CIFs) appear. These CIFs come, in the first place,
by assuming a type of Born-Oppenheimer approximation where the electronic and mechanical
degrees of freedom can be treated separately and, secondly, by evaluating the mean value
of the force operator [10,11,22,24,26,34,35,37,39,42,44,49-51,62-71]. Because of the delayed response
of the electronic degrees of freedom to the mechanical motion, one should include the so-called
nonadiabatic corrections with the CIFs. This phenomenon is translated into a possible complex
dependency of the CIFs on the velocity of the mechanical degrees of freedom. When the effect of the
mechanical velocities on CIFs can be treated in linear response, it is clear whether it is adequate or not
to assume a constant terminal velocity [22,39,42]. However, in far-from-equilibrium conditions, this
subject has not been fully addressed.

In this article, we discuss two key aspects of far-from-equilibrium quantum motors and pumps:
their steady-state dynamics, especially when CIFs present nontrivial dependencies on the terminal
velocities; and their nonequilibrium thermodynamical properties, when a linear response description
is not enough. We provide a systematic expansion to study the relations between the different energy
fluxes that drive the quantum device. These aspects are illustrated in a concrete example where
nonlinear effects due to nonequilibrium sources play a major role in the steady-state properties
of the system. We show that these nonlinearities may result in, e.g., negative friction coefficients
or motor/pump coexistence regimes.

Our work is organized as follows: In Section 2, we present the general model that describes
the considered type of systems, and we derive an effective Langevin equation that characterizes
the dynamics of the mechanical degrees of freedom, treated classically in the present context.
In Section 3, we discuss in general terms the steady-state dynamics of quantum motors and pumps,
highlighting some key aspects that differentiate close-to and far-from equilibrium conditions.
In Section 4, we derive, on general grounds, the first law of thermodynamics for the kind
of systems treated. Then, we expand the different energy fluxes passing through the system in
terms of the nonequilibrium sources (temperature gradients, bias voltages, and velocities) for an
arbitrary number of reservoirs. In this way, we obtain an order-by-order relation between the different
energy fluxes entering and leaving the device. In Section 5, we perform a derivation of the rate
of entropy production from first principles. Then, based on the second law of thermodynamics,
we discuss the limits of the efficiency for different forms of quantum motors and pumps in general
nonequilibrium conditions. In Section 6, we analyze and give physical interpretation to some
of the relations obtained in Section 4. Finally, in Section 7, we consider the CIFs for strongly-interacting
electrons in a particular example based on a double quantum dot system coupled to a mechanical
rotor. We then analyze in detail the effects of higher order terms in the CIFs on the final steady state
of the electromechanical system.
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2. Current-Induced Forces and Langevin Equation

In this section, we introduce the generic model for the treatment of CIFs and the standard method
employed in the description of the dynamics of the mechanical degrees of freedom. As a starting
point, we consider as the local system the region where electronic and mechanical degrees of freedom
are present and coupled to each other, like the examples shown in Figure 1. Such a local system is
generically modeled by the following Hamiltonian:

Hlocal =H; (Xv) +

+U(X, 1), )

where X = (Xj, ..., Xy) is the vector of mechanical coordinates and P = (P, ..., PN) collects their
associated momenta, 7y is the effective mass related to X, and U(X, t) represents some external
potential, of a mechanical nature, that may be acting on the local system. The explicit time dependence
on this potential thus emphasizes the fact that an external agent can exert some effective work
on the local system. The Hamiltonian H, includes both the electronic degrees of freedom and their
coupling to the mechanical ones through:

AL(R) = L ER) i) (i, @

where the sum runs over all possible electronic many-body eigenstates |i). The local system is then
coupled to macroscopic reservoirs, and the total Hamiltonian, including the mechanical degrees
of freedom, reads:
H'co'cal = Hlocal + Z HV + 2 Hs,r- (3)
T r

Each lead r is described as a reservoir of noninteracting electrons through the Hamiltonian:

N U
Hr = ZE}’kcykJCrkU/ (4)
ko

where CA;Tk o+ (ko) creates (annihilates) an electron in the r-reservoir with state-index k and spin projection
0. As usual, the reservoirs are assumed to be always in equilibrium, characterized by a temperature T,
and electrochemical potential y,. The coupling between the local system and the r-lead is determined

by the tunnel Hamiltonian:
Asr = Y (tdfyéps + ), ®)

kot

where t,, denotes the tunnel amplitude, assumed to be k and ¢ independent for simplicity,
and the fermion operator a}a (t;lw) creates (annihilates) one electron with spin ¢ in the /-orbital
of the local system. The tunnel-coupling strengths T,; = 27p,|t,¢|* then characterize the rate
at which the electrons enter/leave the local system from/to the r-reservoir, where p, is the density
of states in the r-lead. Note that H is defined in the eigenstate basis, while I:Is,, is written in terms
of single-particle field operators. The tunnel matrix elements accounting for transitions between
different eigenstates can then be obtained from linear superpositions of the above tunnel amplitudes [72].
To obtain an effective description of the dynamics of the mechanical degrees of freedom through a
Langevin equation, we start from the Heisenberg equation of motion for the P operator, which yields:

ak o N
Moo + VUK, ) = —VH(X). ©)

The measured value Apeasureq Of an observable described by an operator A can always be
taken as its mean value A = (A) plus some fluctuation &4 around it, i.e., Apeasured = A + Ca-
We will work under the nonequilibrium Born-Oppenheimer approximation [13,22,34,35,37,39,49,73,

218



Entropy 2019, 21, 824

74] (or Ehrenfest approximation [33,63,75-77]), where the dynamics of the electronic and mechanical
degrees of freedom can be separated and the latter is treated classically. This allows us to neglect the
fluctuations of the terms appearing in the left-hand side of Equation (6) and describe the mechanical
motion only through the mean value X, which is reasonable for large or massive objects. With this
in mind, we obtain the following Langevin equation of motion:

dx
Mett™ 3 + Fext = F+¢, (7)

where F = — <VAHS> =i <[HS(X ), 13}> and ¢ account for the mean value and the fluctuation of the CIF,
respectively (throughout this manuscript, we take i = 1 for simplicity). As we shall see later on,
the external force applied to the mechanical part of the local system, Fext, plays the role of an eventual
“load” force for a quantum motor or a “driving” force for a quantum pump. As this force will be
typically opposed to the CIF, we define Fox; with a minus sign for better clarity in future discussions.
The main task, therefore, relies on the calculation of the CIFs from appropriate formalisms capable
of describing the dynamics of the electronic part of the system. Once these forces are calculated,
we can use Equation (7) to integrate the classical equations of motion and obtain the effective dynamics
of the complete electromechanical system.

In most previous works, F is expanded up to first order in X, i.e., F ~ F(®) — o . X The resulting
CIF is then the sum of an adiabatic contribution F() and its first nonadiabatic correction F1) = —yX,
respectively. Under this approximation, Equation (7) turns into:

dx .
meffa""Fext:F(o) _'Y'X""g- (8)

Explicit formulas for the calculation of F(), ¢, and € in terms of Green functions and scattering
matrices were derived in [10,11,34,35,37] and extended in [22,39] to account for decoherent events.
Although these expressions were obtained in the context of noninteracting particles, they can be used
in effective Hamiltonians derived from first principles calculations [62,64]. In [49-51], the CIFs
were obtained from the Floquet-Green’s function formalism. The role of Coulomb interactions was
addressed through different formalisms and methods like, e.g., many-body perturbation theory based
on nonequilibrium Green’s functions [44]; modeling the system as a Luttinger liquid [24]; and using
a time-dependent slave-boson approximation [26]. In [42], explicit expressions for the CIFs within
the Coulomb blockade regime of transport were obtained using a real-time diagrammatic approach [78],
which we present in more detail in Section 7 when considering the example of Figure 1c.

3. Mechanical Steady State

In this paper, we will restrict ourselves to systems that perform overall cyclic motions.
Immediate examples are shown in Figure 1a,c, where the rotation angle of the rotor can be assigned
as the natural mechanical coordinate. On the other hand, the examples shown in Figure 1b,d
may also, under certain circumstances, sustain cyclic motion, though the general coordinate could
be not so obvious. As a possibility for the quantum shuttle of Figure 1b, the cyclic motion would
involve a cyclic reversal of the bias voltage (AC-driven). This AC-driven case, though intriguing,
goes beyond the scope of the present manuscript, as we are not considering here time-dependent
biases. Another scenario would be that of Figure 1d, where the cyclic motion is in principle
attainable by periodically hitting the device. Note that we are not dealing with the steady-state
of sets of interacting nanomotors, such as those described in, e.g., [79-81]. Instead, here we are
interested in the steady-state of the mechanical part of isolated quantum motors and pumps that
interact solely with the electrons of a set of reservoirs and where, at most, Coulomb interactions are
only taken into account within the local system.
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To discuss the dynamics of cyclic motions in simple terms, we start by projecting Equation (7)
on a closed trajectory defined in the space of X. By assuming a circular trajectory, the dynamics can be
described by an angle 0, its associated angular velocity 6, the moment of inertia Z, and the torques F,
Fext, and ¢p. Using this, we obtain an effective angular Langevin equation equivalent to Equation (7),

O P Feut il ©

We assume that after a long waiting time, the system arrives at the steady-state regime where
the mechanical motion becomes periodic, and it is then characterized by a time period T such that
0(t+7) = 0(t) and O(t + T) = 0(t). Moreover, we will assume that the stochastic force plays a minor
role in the above equation, such that it does not affect the mean values of the dynamical variables
0 and 0, i.e., the mean trajectories with or without the stochastic force approximately coinciding.
This occurs, for example, at low temperatures or in mechanical systems with a large moment
of inertia [22,39,42]. In the following, we will just ignore {y for practical purposes (this is the opposite
regime of another type of nanomotors, the Brownian motors [1,82]). Under the above assumptions, we
integrate both sides of Equation (9) from an initial position 6; to a final one 6y and obtain:

z

Zlg-o] - [l

The torques in this equation are, in general, intricate functions of both 6 and 0.

Therefore, the calculation of the 6-dependent angular velocity usually requires the resolution
of a transcendental equation (see, e.g., [42]). Alternatively, one can obtain 6(t) from the numerical
integration of the equation of motion by standard techniques like, e.g., the Runge-Kutta method.
All this greatly complicates the study of quantum motors and pumps, to the point where it becomes
almost impossible to draw any general conclusion. For this reason, one common simplification
consists of taking the terminal velocity as constant during the whole cycle [13,22,24,26,39,49-51,56,74].
Indeed, this description is exact if the external agent compels the constant velocity condition to be
fulfilled in a controllable manner, as is often conceived in quantum pumping protocols. However,
this is not the case in general, and typically, one expects internal variations for 6 in one period. We
now address this interesting issue in more detail. First, we take the integral in Equation (10) over the
whole period. This gives:

T . T .
Wext = We, where Wr — / Fodt, and W — / Fou O dt. at)
0 0

The above stationary state condition thus establishes that the work originated from the CIF
is always compensated by the external mechanical work in the case that this regime can be reached.
Now, let us assume for a moment that the terminal velocity of a nanodevice is constant and positive
(we leave the discussion of the effect of the sign of § for later when treating a concrete example
in Section 7.1). If we now expand F in terms of 6, Equation (11) yields:

2 gk r| de 4
Wee = ;(/0 | w ) 12
0

Two important conclusions can be extracted from the above formal solution. First, there may be
conditions where some roots of Equation (12) are complex numbers, meaning that the assumption
6 = const. is nonsense, as the periodicity condition required for the steady-state regime would not be
fulfilled. Second, for real solutions, it was shown in [22,42] that the moment of inertia Z not only affects
the time that it takes the mechanical system to reach the stationary regime, but also the internal range
in the angular velocity, i.e., the difference AB = OBmax — Bpmin in one period. According to Equation (12),

6=
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6 is independent of Z, while the variation of 6 scales with 71, cf. Equation (10). Then, the ratio AO/9,
which is the relevant quantity in our analysis, should vanish for large Z values, justifying the constant
velocity assumption for large or massive mechanical systems.

The value of Fex; is supposed to be controllable externally, as well as the voltage and temperature
biases, which, in turn, affect the current-induced torque . Therefore, under the above discussed conditions,
6 can be thought as a parameter that surely depends on the internal details of the system, but it is also tunable
by external “knobs”. Let us analyze a concrete example: Consider a local system connected to two leads
at the same temperature and with a small bias voltage eV = 1 — ug. By considering the current-induced
torque up to its first nonadiabatic correction, i.e., F ~ F(©) — 48, and assuming that Fey is independent
of 0, the following relation must hold, according to the above discussion,

~ Qe <V7 Wext> _ Qg Vest

0 = , 13
27y Qrn (13)

27y

where 7 is the average electronic friction coefficient along the cycle, Qp, is the pumped charge
to the right lead, and we used Onsager’s reciprocal relation between F and the charge current I
in the absence of magnetic fields [22,39,42,49]. Alternatively, if we assume that the external torque
is of the form Feyt = 'yext(-'}’, one finds:

QrV 1 QrV

0~ = .
2m ("7 + ’7ext) 27T'Yeff

(14)

Note in the above equations that, at least in the present order, the effect of the external forces can be
described as a renormalization of the bias voltage V' or the electronic friction coefficient y. Numerical
simulations in [22,42] showed that the above equations agree well in general with the steady-state
velocities found by integrating the equation of motion. However, at very small voltages, essential
differences may appear. There is a critical voltage below which the dissipated energy per cycle cannot
be compensated by the work done by the CIF, and thus, § = 0. We dubbed this the “nonoperational”
regime of the motor. Moreover, when increasing the bias voltage, there is an intermediate region
where a hysteresis cycle appears, and two values of the velocity are possible (§ = 0 and those given
by the above equations). Although in Section 7.1, we will take 6 as constant when discussing a specific
example, the reader should keep in mind that this approximation does not always hold, especially at
very small voltages or 7.

4. Order-by-Order Energy Conservation

In the previous sections, we introduced and discussed the role of the mechanical degrees
of freedom, emphasizing certain parameter restrictions, which allowed for the simplification
in their dynamics. In this section, we are going to derive, on general grounds, essential relations
between the electronic and mechanical degrees of freedom from the point of view of energy
conservation. Importantly, we will focus on systematic expansions beyond the standard linear regime
of nonequilibrium sources like, e.g., the mechanical velocity, the bias voltage, and the temperature
gradient in systems composed by an arbitrary number of reservoirs.

As already pointed out, we are treating the mechanical degrees of freedom classically, such that
their effect on the electronic degrees of freedom enters as a parametric dependence in the electronic
part of the total Hamiltonian, which now reads:

H: ZHV+H5+ZHs/r- (15)
r r
The mechanical part of the local system, when treated classically in Equation (7), introduces an explicit

time dependence into [ that, in turn, makes d (H) /dt # 0. According to the above Hamiltonian,
the total internal energy of the electronic system, U = (F), can be split into energy contributions from
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the reservoirs, the local system, and the tunnel couplings. The time variation of the internal energies
associated with the different partitions of the system is:

Uﬂ=]§+<aa?>, where ]§:i<[H, 8]) (16)
which is the mean value of the energy flux entering in the subsystem = {r, (s, r),s}. The value of
(atHﬁ> is zero when we evaluate the energy flux in the reservoirs and the tunnel couplings, but equals
—Wr when B is evaluated in the local system. Although, strictly speaking, Wr is time independent
when considering a closed trajectory, we used the symbol W to denote the power delivered by the CIF,
ie, Wp = — <a,HS> = F- X. The latter comes from the definition of the CIF given in Equation (7). Note
that the energy fluxes fulfill the condition ¥, (JE + JE,) + JE = 0. Therefore, the variation of the total
internal energy of the electrons yields the following conservation rule:

U= YU+ Y U+ Us = Y (JF +JE) + JE = Wr = W, (17
r r r
Conservation of the total number of particles implies a relation between the particle currents
of the reservoirs N, and that of the local system Ns:

. d d . . .
Niotal = & (Niotar) = Z dt Ny) I (Ns) = = ZN’ = —N;. (18)

This is so since no particle can be assigned to the coupling region. Now, let us assume
the system is in the steady-state regime and integrate Equation (17) over a time period 7 of the cyclic
motion. Under this condition, the above-defined local quantities only depend periodically on time,
ie, Us(t+ 1) = Us(t), Us,(t+7) = Us,(t), and Ns(t +7) = Ns(t). Therefore, the following quantities
should evaluate to zero, i.e.,

T rT T
/ Us, df =0, / U,df =0, and / Nodt =0, (19)
0 0 0

as these are integrals of a total derivative of some periodic function. This means that no energy
(or particles) is accumulated /extracted indefinitely within the finite regions defined by the local system
or its coupling to the leads. Equation (19) can be used together with Equation (18) to prove the charge
current conservation between reservoirs, ), fOT I, dt = 0, where the charge current of the r reservoir
is defined as I, = eN,, with ¢ > 0 being minus the electron’s charge.

We will take the following definition for the heat current J, in the reservoir r:

Ir= ]rE - VrNr- (20)

In [43,50,83], the authors proposed a different definition for the heat current of the reservoirs, J, =
JE + (]5,/ 2) — u,;N;. However, the inclusion or not of half the heat current of the coupling region,
( ]sEl, /2), does not make any difference in the present paper, as this quantity integrates to zero over a
cycle, Equation (19), and does not contribute to the rate of entropy production, as we will see in the
next section, Equation (30). Replacing Equation (20) in Equation (17) and integrating over a period
result in:

T T
Y (Q), + Q%) = W, where Q) :/0 J,di, and Qp :/0 Idt, @1)
r
where 6V, = (ur — pig)/e and pg is an arbitrary reference’s potential. We, in addition, defined

the quantities Qj, and Qj,, which are, respectively, the total heat and charge pumped to reservoir r
in a cycle. Note that in the above equation, we used conservation of the total charge.
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Before we continue, we would like to emphasize that the periodic motion imposed
by the steady-state regime can be further exploited to reduce the number of mechanical coordinates
to an effective description of the CIE. In principle, one can always recognize a generalized coordinate ,
which parameterizes the closed mechanical trajectory. This, for example, can be accounted for by taking
X = Qmod(t, 7), such that ¥ = Q = 27r/7. In other words, one can always find a natural scale,
) in the present case, for all mechanical velocities along the trajectory. We will take this natural
scale as the expansion variable for the CIF. The current-induced work then reads Wr = foT Fn Q) dt,
where F = F - 9, X. Of course, with this y-parameterization, the velocity is constant by definition,
but at the expense that now the calculation of Fp, requires the knowledge of the mechanical trajectory.
For circular trajectories and the conditions discussed in Section 3, the coordinate x would be |6].
For other cases, it would not be that simple to find x, and one should first solve the system’s equation
of motion.

In addition to the mechanical velocity (), the CIF and the currents can also be expanded in terms
of the remaining nonequilibrium sources, corresponding to voltage and temperature deviations
OV = (6V4,0Vs,..)T and 6T = (6T}, 6T, ...)T, respectively, from their equilibrium values Veq and Teq.
For an arbitrary observable R, this general expansion takes the form:

(O, 0V, 01" gy 22)

R= Y R*= i eq’

|a[>0 |a[>0

where we used the following multi-index notation: & = (nQ,nvl,...,nTl,...); al = nglnylonp .
(Q,8V,6T)* = QmagV, 16T, " ..; and:
a(nn+nvl+...n7-l+...)

T aqreav™ o

19

(23)

This, in turn, allowed us to recognize in the integral quantities of Equation (21) the following
expansion coefficients:

T T T
Wjif:./o FaQdt, Q};:/O j*di, and Q‘}‘yz/o 1=dt, (24)

where I, J¥, and I all have the form given by Equation (22). To find a consistent order-by-order
conservation relation from Equation (21), we should first note that the involved terms enter in different
orders: W§ contains an additional ) from the time-integral as compared with the pumped currents,
while the term Q‘}‘ré V; is one order higher in 6V, than the other two. Therefore, the following relation
must hold for every order « of the expansion:

Q1+ Qi ov = wp®), (25)

where 1 = (1,1,...)7, Qf = (Q‘}‘l,Q'}‘z,...), Q'}‘W) = (Q‘;‘l(v1),Q‘;z(V2>,...), and we used the shorthand
«(Q) = (nqg — 1,ny,,..,ny,..) and a(V;) = (nq,ny,,...,ny, — 1,..,ng,,...). Equation (25) results in
being important for a systematic study of far-from-equilibrium systems, as it helps to rationalize
how every order of the expansion of an energy flux is connected with the others. The equation is
completely general and valid for any value of the relevant quantities (), 6V, and 6T. Importantly,
the above conservation rule can be extended to other nonequilibrium sources like, e.g., spin polarization
in ferromagnetic leads, such that other types of currents could also be considered in the energy transfer
process between the electronic and mechanical parts of the system.
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5. Entropy Production And Efficiency

In 1865, Rudolf Clausius proposed a new state function, the thermodynamic entropy S, that turned
out to be crucial to study the limits and the efficiency of different physical processes. The thermodynamic
entropy is defined as the amount of heat JQ; that is transferred in a reversible thermodynamic
process, S = 6Qrev/T. Here, we are assuming that each reservoir r is in its own equilibrium
at a constant temperature T, and chemical potential j, (we are not going to treat time-dependent T, or ;).
As the reservoirs are considered to be macroscopic, the aforementioned equilibrium state is not altered
by the coupling to the local system. This assumption allows us to associate the reservoirs’ heat flux with
the variation in their thermodynamic entropy, i.e., §Q;, = T,0S;. Therefore, from Equation (16) and the
definition of the heat current given in Equation (20), we can write:

Ur = Trsr + Nr]l% (26)

The information theory entropy, known as the Shannon or von Neumann entropy, times the Boltzmann
constant equals the thermodynamic entropy for equilibrium states. There is a debate on whether this
equality can be extended to nonequilibrium states; see, e.g., [84-86]. However, for the purpose of this
article, only the change of the entropy of the reservoirs is needed, not that of the system. Besides, we
will not need to evaluate the entropy from the density matrix. Therefore, the thermodynamic definition
of entropy sulffices in our case.

Now, let us consider the sum of the internal energy over the set of all reservoirs coupled
to the local system,

YU = YT+ Y N, @7)
r r r

If we take T, = 6T, + Ty and p; = po + 614y, add and subtract the change of the internal energy
of the local system U, and that of the couplings between the local system and the reservoirs ), Us,,,
one can rearrange the above equation to the following:

TOZSV = (us + Zur + Zus,r> - ZNrdﬂr - ZsraTr - (us + Zus,r> — Ko <2Nr> . (28)

Note that the values of iy and Tj are completely arbitrary, and there is no need to identify them
with the chemical potential and temperature of the central region, which can be ill-defined far from
equilibrium.

Replacing S, by = ],/ T, in the right-hand side of the above equation, using energy conservation (17)
and particle number conservation (18), allows one to rewrite Equation (28) as:

: ST, . . .
ToSres = —FoQ—Y LoV, —Y (—T’> — <u5+§ us,y> + poNs, (29)
T T r r

where Sres = Y S, is the variation of the entropy of the electrons of all reservoirs, and we used eN, = I,.
The CIF can be split into “equilibrium” and “nonequilibrium” terms, F(¢1) and F("®), respectively,
where one can prove that F (eq) ig always conservative [13,22,42,63]. We are interested in the steady-state
situation of our local system. As discussed around Equation (19), the change of the internal energy
of the electronic part of the local system and that of the coupling region must be zero after a cycle,
as energy cannot be accumulated indefinitely within a finite region. The same argument is true for
the number of particles accumulated in a cycle, which should be zero. At steady state, we therefore
recognize the reversible component of the entropy variation as that given by:

SE;EV) = 7?() <F(()eq)0 + Us + Z Us,r — F‘0N5> . (30)
r
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Obviously, this quantity will not contribute to the total entropy production. Therefore, the rate

of entropy production SES;EV) yields:

simev) _ 1 (p(ne)
glimrev) _ = (FQ“e O—T1-6V— ].(57') , G1)
where 67 = (6Ty/T1,6T2/Ts,..)T, and the currents are defined through I = (I, I,...)

and J = (J1, ]2, ...). Integrating Equation (31) over a cycle and taking into account the second law
of thermodynamics, one finds:
OZW}:+Q1-(5V+QJ-(5T. (32)

The above general formula, also valid far from equilibrium, can be used to set efficiency bounds
for energy transfer processes between the electronic and mechanical degrees of freedom. For example,
if we take 67 =0, Q7 - 6V < 0, and Wr > 0, then the system should operate as a nanomotor driven
by electric currents, and the following relation holds:

W

Z —w, (33)

while for Qy - 6V > 0 and Wr < 0, the system operates as a charge pump, and Equation (32) implies:

_Qiov

1>
=z Wr

(34)

Notice that, because of the steady-state condition, Wr equals Weyi, where Wey; can be taken
as the output or the input energy, depending on the considered type of process. Therefore, the above
formulas describe the efficiency # of the device’s process, defined as the ratio between the output
and input energies per cycle. It is also interesting to note that the above equations reflect no more
than energy conservation in this particular case. A different situation occurs for 6V = 0and 67 # 0,
where Equation (32) yields:

Wr Q- 0T

>__F > - .
Z-Q 0T and 1> Wi (35)

The first equation thus corresponds to a quantum heat engine and the second one to a quantum
heat pump, respectively. Now, because of the factor 67, the above formulas differ from
what is expected from energy conservation solely. This is clear in a two-lead system, where 7 is limited
by Carnot’s efficiency of heat engines and refrigerators, respectively. To illustrate this, let us consider
a hot and a cold reservoir and set the temperature of the cold reservoir as the reference. For the heat
engine, this gives:

Teold Teold W
S . B O
Qy Qo Thot Thot Qlpot 0

where the left-hand side of the second equation represents the Carnot limit for heat engines.
Other energy transfer processes mixing voltage and temperature biases can also be analyzed
in the context of Equation (32) to set the bounds of their associated efficiencies.

6. Pump-Motor Relations

It is clear from Equation (25) that there is an infinite number of relations that can be used
to connect the pumped heat or charge and the work done by the CIF. In this section, we give some
physical interpretation to the leading orders in the general expansion, which highlights the utility
of Equation (25).
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We start from the order-by-order relations by taking |«| = 0. Importantly, Equation (25) with |¢| = 0
seems to impose the evaluation of terms with negative coefficients. For example, in the exponent of Qj,
one would be tempted to evaluate (V;) = (0, —1,0,0...), but this term is not defined in the expansions
of Equation (24), and then, it should be taken as zero. Therefore, Equation (25) yields,

Q1= Y [ (g dt=0. 37)

This simply reflects the fact that no net heat current occurs at equilibrium. For || = 1, all relations
are summarized in the following three cases:

s/ <a1r> oa-o y [ (f’fr> vt =0, and ¥ ["(S) smat=0 @9

where we used the fact that equilibrium forces are conservative [13,22,42,50,63], i.e., fo eq) Qdt =0,
and that there are no net charge currents in equilibrium, thus fo (L) eth = 0. The above relations
mean that, at first order, there is a conservation of pumped heat between reservoirs. For |a| = 2,
there are many relations and cases, but we restrict ourselves to only a few of them. For nq = 2, ny, =0,
and nr, = 0, Equation (25) gives:

[0 (3, Fa\
,Z,O/z<a02> /( )qut. (39)

Now, the quantity (dnFq )eq is minus the electronic friction coefficient at equilibrium. Therefore,
this relation shows that the energy dissipated as friction in the motor is delivered as heat

to the reservoirs; more precisely, as a second-order pumped heat. For nq = 0, ny, = 1, ny, = 1,
and nt, = 0, Equation (25) yields:

9y o al;
Z/zsv(sv (avav) th - 2/5V5V <8V>eth, (40)

where we used Onsager’s reciprocity relation (dv;Ii)eq = (9v;]j)eq [42,49]. The quantities (dy;I;)eq
are the linear conductances in the limit of small bias voltages. Therefore, this relation shows that
these leakage currents, defined as those currents that cannot be used to perform any useful work,
are also dissipated as heat in the reservoirs, a phenomenon known as Joule heating or the Joule
law [27,43,50,83]. Finally, for nq = 1, ny, = 1, and ny, = 0, Equation (25) results in:

T

T T
2], ) Al Y
Q(SV-( dt+/0<—’> SVidt = / (—) Qdt. (1)
ZO/ oo ), 7 P \ea ) .

0

Now, using Onsager’s reciprocity relation (—dy,Fn)eq = (9 1;)eq [22,39,42,49], one finds that the
first term in the left-hand side of the above equation vanishes, which is an unexpected conservation
relation for this second-order pumped heat. We remark that the utility of Equation (25) relies on the
fact that it provides a physical interpretation for the connection between different order contributions
that participate in the energy conservation rule. One can continue analyzing the other relations for
|| = 2 and beyond, but the number of relations and cases grows very fast with |«|, and each relation
may have its own physical interpretation. The study of higher-order terms in |a| may result in being
useful when addressing particular nonlinear effects in the involved energy currents. However, for the
purpose of the present article, we believe that the above analysis is enough to illustrate the approach
proposed by Equation (25) regarding multi-index expansions.
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As the full dynamics of the complete system typically involves a formidable task, many methods
in quantum transport treat this problem through a perturbative expansion in Q. This is the case
of the real-time diagrammatic theory we use in Section 7, where the effective dynamics of the electronic
part of the system is described through a perturbative expansion in the characteristic frequency
of the driving parameters (which in our case is modeled by the mechanical system), while the voltage
and temperature biases are treated exactly. In this case, the expansion in () comes naturally from
the theory itself. In situations like this, it may result in being more useful to simplify the expansions
by restricting ourselves to those nonequilibrium sources whose perturbative treatment is inherent
to the formalism used, as in [42,87].

Regarding the above discussion, we now use Equation (25) to describe how the different energy
contributions are linked in an () expansion provided by the theory. The zeroth order terms in () reads:

Q-1+ v =0 42)

This equation shows that the total amount of heat delivered by the leads comes from the bias
voltage maintained between them. Its interpretation is similar to that of Equation (40). The heat term
can be associated with the leakage energy current, i.e., the energy flowing from source to drain leads
without being transferred to the local system. The next order in this expansion yields:

QY -1+ v =-w, 3)

and can be understood as a generalization of the motor—pump relation, le) SO0V = —Wéo),
discussed in [13] for arbitrary bias voltages and temperature gradients. Therefore, according
to Equation (43), deviations of the mentioned relation at finite voltages are due to the pumped heat
induced by the mechanical motion of the local system. When we evaluate the currents in equilibrium
by setting 6V = 0 and 4T = 0, Equation (38) implies Wﬁo) = 0, meaning that no external work is done
in a cycle, and the pumped energy from the leads can again be considered as a leakage current since
no net effect on the mechanical system is performed. If, on the other hand, some bias is present
(either thermal or electric), the energy transfer from the leads to the local system imprints a mechanical
motion, which in turn, produces some useful work. The second-order term in Q2 gives:

QP -1+Q v =-w, (44)

and generalizes Equation (39) to finite voltage and temperature biases. The right-hand side
of Equation (39) can be interpreted as the dissipated energy of the mechanical system, which is
delivered to the electronic reservoirs. However, in the above equation, WIE-]) is not guaranteed to be
always negative, and from the point of view of the mechanical system, this can be interpreted as a
negative friction coefficient.

Now, we return to the multi-variable expansion of the energy currents to establish which orders
should be considered in a consistent calculation of the efficiency of quantum motors and pumps.
Assuming that in Equation (25), we take |a| up to some truncation value amax, the order-by-order
scheme implies that, for example, the efficiency of the electrically-driven quantum motor should
be given by:

i W

T, & oV

n=- (45)

To illustrate this, let us take the case of a local system coupled to left and right reservoirs
at voltages V, and Vg, respectively. We assume the leads are at the same temperature, and we
set 0V; = —dVr = 8V /2 as the voltage biases. Depending on which kind of expansion we take,
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one can obtain different expressions for the efficiencies. On the one hand, when expanding in terms
of 0V = Vi — Vg and Q up to amax = 2, the above general expression yields:

. W}(TO’O) +W§’O) +W1(:0/1) o Wél/o) +W§°/])
(ng,o) N ng) N ng,n) oV (le,o) N ng,n) v

(46)

where the superscripts indicate the order in the expansions in () and V/, respectively, and we defined
I = (I, — Ir)/2. As we already mentioned, the zeroth order contributions WI(_-O’O) and Q}O/O) are simply
zero as they correspond to the work done by the conservative part of the CIF and the equilibrium
charge current, respectively. On the other hand, when performing an expansion up to a#max = 2 but

only in terms of (), Equation (45) turns into:

w +w
T="70 . A0 1 A2\ 50’ (47)
(@ +afV + Q) ov

where now Wé()) and ng) are nonzero in general, since they are not necessarily evaluated

at equilibrium. Although we here restricted ourselves to the efficiency of a nanomotor driven by electric
currents, its extension to other operational modes of the device can be obtained from Equation (32)
in a similar way to that of Equation (45). This procedure then allows us to obtain efficiency expressions
for arbitrary expansions in the nonequilibrium sources, which could be useful in the evaluation
of the device’s performance far from equilibrium.

7. Quantum Motors and Pumps in the Coulomb Blockade Regime

In this section, we consider the CIFs in the so-called Coulomb blockade regime of transport. In this
regime, the strong electrostatic repulsion that takes place inside a small quantum dot (usually taken
as the local system) highly impacts the device’s transport properties, as for small bias voltages,
no additional charges can flow through the dot and the current gets completely blocked. The full system
dynamics in this strongly interacting regime cannot be described by, e.g., the scattering matrix approach,
and one needs to move to some other theoretical framework. A suitable methodology is given by
the real-time diagrammatic theory [78], which allows for an effective treatment of the quantum dot
dynamics by performing a double expansion in both the tunnel coupling between the dot and the leads
and the frequency associated with the external driving parameters. Since then, many extensions
and application examples appeared in the context of quantum pumps [12,57-59,87-94] and quantum
motors [42].

To lowest order in the tunnel coupling, the dot’s reduced density matrix obeys the following
master equation:

d
5P =W, (48)

where the vector p = {p;(t)} describes the dot’s occupation probabilities and W is the evolution
kernel matrix accounting for the transition rates between the quantum dot states, due to its coupling
to the leads. In the context of CIFs, we assume that the time scale of the mechanical motion,
characterized by X, is large as compared to the typical dwell time of the electrons in the local system.
This allows for an expansion of the reduced density matrix as p = Y x~¢ p®), with p®) of order (Q/T)k.
Here, () and I denote the characteristic scales for the velocity of the mechanical degrees of freedom
and the tunnel rate of the electronic system, respectively, and we always assume () < I'. The above
master equation, in turn, takes the following hierarchical structure [12,78]:

Wp<0) =0, and Wp(k) = %p(kfl). (49)
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In the first equation, p(?) (X) represents the steady-state solution the electronic system arrives
at when the mechanical system is “frozen” at the point X. As the mechanical coordinate moves
in time, this order corresponds to the adiabatic electronic response to the mechanical motion.
This needs not to be confused with the steady-state regime of the mechanical system, which obviously
takes a much longer time to be reached. The second equation contains higher-order nonadiabatic
corrections p¥) (X, X) due to retardation effects in the electronic response to the mechanical motion.
In all these equations, the matrix elements of the kernel are of zeroth order in the mechanical velocities,
i.e, W = W(X). The normalization condition on the dot’s density matrix implies e" p®) = ¢, with e”
the trace over the dot’s Hilbert space. This allows for the definition of an invertible pseudo-kernel W,
whose matrix elements are W; j = Wij — Wj;, such that we can write:

d
(k) — 1 (0)
p {W t} pV. (50)

Once we know the different orders of the reduced density matrix, it is possible to compute
the expectation value of any observable R after calculation of its corresponding kernel WX. This implies
the same expansion as before, and it reads:

R0 = eTWRp®), (51)

The observables we are going to address here are the charge and heat currents I, and J, associated
with the r lead and defined in Section 4. In lowest-order in tunneling and under the assumption that
coherences are completely decoupled from the occupations, it is possible to obtain simple expressions
for the current kernels in terms of the number of particles n; and energy E; associated with the dot
state |7) [87,95]:

Wi = —e(n;—n)[Wilg, W = = [Ei— Ej — e (mi — )] [Wilyg. (52)

The CIF was derived in Section 2 under the assumption that the mechanical part of the system,
characterized by coordinates X and associated momenta P, only interacts with local parameters
of the quantum dot through their many-body eigenenergies, cf. Equation (2). This implies that
the v-component of the CIF operator, defined as B, = —9H,/9X,, is local in the quantum dot basis.
For this local operator, then, we can simply define a diagonal kernel of the form:

-

i = ax, i (53)

such that Equation (51) gives the k order in the () expansion for any observable. Importantly,
when adding up all contributions from the leads, the above kernel definitions, together with the sum
rule }; Wj; = 0, lead to the following conservation rule for all orders in (2 [87]:

d - . r
Z]f _ CT >(k 1) k=1 x _ Z%Ir(k). (54)
r

This equation, equivalent to (17), thus expresses the first principle of thermodynamics,
which in this case relates the total heat flowing from/into the leads with the variation of the internal
energy of the dot and the power contributions due to both mechanical and electrochemical external
sources. By considering a system coupled to two reservoirs L and R, with periodic motion characterized
by a time period 7, and taking the time integral of the above equation, we recover the frequency
expansion of Equation (25):

Q) + oV = —wi Y, (55)

229



Entropy 2019, 21, 824

where the bias voltage 0V is defined through u; = —ur = edV/2, Q) = Qj + Qp
and Q; = (Q 1, — Qi) /2. The sign convention employed here implies, for example, that if the left-hand
side of Equation (55) is positive, then there is some amount of energy entering into the leads in one
cycle, and work is being extracted from the local system.

7.1. Example: Double Quantum Dot Coupled to a Rotor

In this section, we illustrate the discussions of the previous sections in a concrete example
based on a double quantum dot (DQD) system locally coupled to a mechanical rotor (see Figure 1c).
We assume a capacitive coupling between the dots and the fixed charges in the rotor such that no charge
flows between the two subsystems. The DQD system is described as in [42,87,89],

N ; .o u o t .
Ho= Y ey +Unpig+— Y fy(y—1)— = <dAL7der -‘rh.c.) , (56)
(=LR 2 Ik 2

where ¢/ is the on-site energy and /iy = ), dA}:VdA o the number operator in the ¢-dot, U and U’ the inter-
and intra-dot charging energies, respectively, and ¢, the interdot hopping amplitude. We will work
in the strong coupling regime t. > I', such that non-diagonal elements (coherences) in the reduced
density matrix are decoupled from the diagonal ones (occupations) and can be disregarded in first
order in tunneling. To simplify the analysis (by reducing the number of states in the two-charge block),
we work in the limit U’ — oo, such that double occupation in a single dot is energetically forbidden.
Diagonalization of the above DQD Hamiltonian yields the bonding (b) and antibonding
(a) basis for the single-electron charge block, and the reduced density matrix
reads p = (po, Pot/ Pols Pats Pals P11/ P1l Pit P 1)T.  These elements thus denote the probability
for the DQD to be either empty (pp), occupied by one electron in the £ = b (or a) orbital with spin ¢
(pes), or by two electrons (p,), one of them in the left dot and with spin ¢ and the other electron in
the right dot and with spin ¢’. The many-body eigenenergies are therefore Ey = 0 for the empty DQD,

2 2
€L +€ €] — € t
Ev/a = LZRI\/<L2R)+<ZC> (57)

for single occupation in the bonding or the antibonding orbital and E, = e + eg + U for the
doubly-occupied DQD, respectively.

To account for the coupling between the electronic and mechanical degrees of freedom, we take
as the mechanical coordinate the angle 6 describing the orientation of the rotor axis. We assume the
following dependence through the on-site energies:

GL(Q) =€+ Axp = €L + de COS(Q), and GR(G) = ER + AXgR = €R + ¢ sin(G), (58)

which defines a circular trajectory in energy space of radius 6. = Arg (19 measures the actual radius
of the rotor) around the working point (é1,ég). For simplicity, in what follows, we will focus
on the tangential component of the force only, by assuming that the radial component is always
compensated by internal forces in the rotor (e.g., fixed charges along the rotor’s axis). By applying
this form in Equation (7), we obtain the equation of motion (9) for the angular velocity 6, where:
I = mefﬂ’é is the rotor’s moment of inertia, 7 = Y ;(—dgE;)p; = roF - 0 is the current-induced
torque, Fext is the torque produced by the external force, which is assumed to be constant along the
whole trajectory, and ¢y accounts for the force fluctuations. The stationary regime is reached once
the rotor performs a periodic motion (characterized by a time period ) with no overall acceleration,
i.e.,, when Equation (11) is fulfilled. We show in Figure 2 some examples of the evolution of the rotor’s
angular velocity for different initial conditions. This is plotted as a function of the number of cycles
performed by the rotor, instead of time, to unify scaling along the horizontal axis. Here, we take
a sufficiently large moment of inertia such that the variation Af over one period is small as compared
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to the average value of 6 in one cycle. This, in turn, implies a large number of cycles for the rotor
to reach the steady-state regime.

(®)

2.5 2.5 \ :
o e = 100kgT,V =2kgT
=
X 0 1 0 1
:m e = 100kgT,V =2 kT 6e = 10kgT, V = 15.42kgT
= Ceu = 05CY Cexi = 0.5CY +0.05ksT

-25 1-25

5 i i i 5 i i i 10 i i i
0 0.5 1 15 2 0 0.5 1 15 20 15 30 45 60
number of cycles (x 10%) number of cycles (x10%) number of cycles (x 10%)

Figure 2. Evolution of the rotor’s angular velocity (average over cycle) as a function of the number
of cycles for different initial conditions. In (a,b), we choose d¢ = 100kgT and V = 2kgT, and we take in
(0)

(@) Cext = 0.5C éo) , so the device operates as a motor, while in (b), we use Cext = 1.5C FO , so the device
operates as a pump, cf. Equation (62). (¢) A situation in which two stable velocities with opposite sign
are possible, for é¢ = 10kgT, V = 15.42kgT, and Cext = Céo) +0.05kgT. The other parameters are:
6T =0,U =20kgT, tc = 10kgT, T, = T'r = 0.25kgT, while for the trajectories, we used as working

point & = ég = —6kgT + 0c/ /2.

As discussed in Section 3, when we take Z sufficiently large, A@ — 0, and it is possible to approximate
0 as constant during the whole cycle. This allows us to take out this quantity from the integrals defining
the different orders of the energy currents, as we did in Equation (12). The problem is, however,
that the sign in f is not a priori known and, with it, the direction of the trajectory for the line integrals
defining qu. To become independent of this issue, we denote by s the sign of §, and notice that
Fk) = fék> 0%, where fe(k> = 8’5]—' la—o/ k! only depends parametrically on 6, so we have:

(k) _ rh . 4x = ) — { P }'k: (k) gk
W] .7§C(s) d /0 F®dg s/o F9do| ok = scMek, (59)

where, importantly, the coefficients Cék) are independent of s, so the 6k and the extra sign s

accompanying C ék) in the right-hand side of the equation give the correct sign for Wék). As discussed
in Section 3, the steady-state condition in Equation (11) can be viewed as the equation for the final

velocity that the rotor acquires as a function of the external force, which in the present case turns into:

0= ;cﬁ’ék ~ Coxt (60)

where we defined Cext = 27T Fext. The stability of the final solution is inherited from Equation (9), and
in our case with 6 constant, it is given by:

Y ket <o, 61)

k
Notice the specific case where Cext = Céo), i.e., the external work equals the bias work coming
from the first-order currents, cf. Equation (55) for k = 1. In this case, there is always a trivial
solution, given by 6 = 0. Of course, this solution is useless as the system becomes frozen, and there
is no energy transfer between the leads and the mechanical system. However, this situation marks one
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of the transition points between the operation modes of the device. If we now consider an infinitesimal
difference between these two coefficients, we can faithfully treat Equation (60) up to linear order in 6,
such that the solution is: )
. Coxt—C
0 — ext F , (62)
c
F

together with the condition C l(fl) < 0, in agreement with Equation (61). This implies that the integral

of the friction coefficient over a cycle needs to be positive; otherwise, the rotor cannot reach

the stationary regime. As the sign in Cl(tl) is fixed to this order, the sign in [ only depends

on the relation between Cey; and Cl(ro). This, together with the stationary condition Wext = Wg,
establishes the operation mode of the device, in the sense that with this information, we can deduce
the sign of Wext = sCext and, hence, the direction of the energy flow. If, for example, Wext < 0,
the external energy is delivered into the DQD, which in turn goes as energy current to the leads,
so the device acts as an energy pump. On the other hand, if Wext > 0, the energy current coming
from the leads goes into the DQD, and it is transformed into mechanical work, so the device operates
as a motor. These two scenarios are shown in Figure 2, where we take Cext > 0, such that the positive
sign in the final velocity implies that the device acts as a motor (see Panel a), while a negative sign
implies that the device operates as a pump (see Panel b). Of course, when regarding the device
as an energy pump, the above criterion only establishes those regions in Ceyx¢ where we can expect
some kind of pumping mechanism. Depending then on the specific type of pumping we have in mind,
the ranges in Cex; Will be subject to additional conditions. For example, if we would like to have
this device acting as a quantum charge pump, then we should check those regimes in Cext Where
the electrons flow against the bias voltage. This discussion will be reserved to the next section,
and for now, we will only define the operation mode from the direction of the energy flow.

2)

Let us now consider second-order effects due to Cy~ in Equation (60), where we obtain:

2
. C(l) ( C(l) ) Coxt — C(O)
fp=——FE_+ E + E_, (63)
20 20 c?

together with the conditions:

2
o cO e
( ol B (2)“, +c? <o, (64)
20! ct

The first inequality ensures a positive argument in the square root of Equation (63), so 6 is a real
number, while the second inequality comes from the stability condition given by Equation (61) and tells

us which branch one should choose in Equation (63) to get the stable solution: if CI(TZ) > 0, then 6_,

and if Cﬁz) < 0, then 6. Importantly, far from equilibrium (e.g., 6V > kpT), it is possible to arrive
at the odd situation where Cl(rl) > 0, and the “dissipated” energy 1/\/}(:l> =sC }(TI)G =C 1(_-1) 6] is positive.
This, however, does not prevent the rotor from reaching the stationary regime (to this order in 6),
since the lower-order terms compensate this energy gain. Therefore, one can end up in a situation
where the second-order energy current comes from the leads and it is delivered into the mechanical
system (thus favoring the motor regime), contrary to the standard situation where the “dissipated”
energy flows to the leads. Regarding Equation (63), the sign of 6 now depends on the relation between
the first term and the square root, together with the sign of Cg), so this analysis is not that simple
as in the linear case. However, once we have the Cr-coefficients, we can always determine if the
rotor is able to reach the stationary regime and infer whether W,y is positive or negative and, with it,

the operation mode of the device.
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For higher orders in 6, the above analysis for the operation mode of the device is the same,
but more ingredients may come into play due to the (order-dependent) specific solutions
for the stationary value of 0. Interestingly, by including higher order terms in Equation (60), it could
happen that for a fixed choice of the parameters (Fext, 6V, 6T, etc.), the system presents more than
one stable solution, and even with different signs in Weyt, so the initial condition on 6 decides
the operation mode of the device once the rotor reaches the stationary regime. In Figure 2c, we show
this nonlinear effect in the dynamics of the rotor’s velocity. This was done by taking  up to third
order in the § expansion, where we find two stable solutions (§ ~ —7.4 x 1073 kgT and 6.7 x 103 kgT)
and one unstable solution in between (8 = 2 x 1073 kgT). Notice that, in this case, if the rotor starts
with a positive initial condition below the unstable solution (see gray arrow), then it cannot reach
the negative stable solution, as once § = 0, the rotor gets trapped in a local minimum.

In Figure 3, we show how the Cp-coefficients contribute to the current-induced work as a function
of the bias voltage for different values of the orbit radius Jde. According to Equation (59),
these coefficients can only be compared upon multiplication with the k-power of some frequency
of reference (). We assess this frequency of reference by performing the following analysis:
from Equation (50), we can estimate the maximum allowed value for f compatible with the frequency
expansion. Since W11 withT =T 4 I, and:

d _ Jde; 0
dr % 92 90 O¢;’ (65)
we obtain:
% 2 1" Qs 1
— -1 i (0) 22 Ce
Pt { 92 30 ael} x {r kBT] g (66)

where we use the fact that dpe; o dc and the energy derivative of both p(o) and W1 are proportional
to 1/kgT. As the consistency of the frequency expansion relies on the convergence of the occupations,
this yields the adiabaticity condition [42,87]:

Q kT

al i 67
r < ©n
from which we can estimate the maximum allowed frequency Qmax as:
k T
Omax = 5T (68)
€

Obviously, this extreme value sets the point where the expansion could diverge, so to illustrate
the different order contributions to the current-induced work, we take, in Figure 3, an intermediate
reference frequency Oy = Qmax/2. As we can see, for a long range of the bias voltage (V < 10kgT),
both the zeroth- and first-order terms contribute, while higher order terms are almost negligible.
The zeroth-order contributions (black) show a linear dependence whose slope increases with the orbit size,
up to some saturation value, related with the quantization of the pumped charge. The first-order terms
(red) remain almost constant and negative in this bias regime. This implies that the linear-order treatment
given in Equation (62) is enough, as long as Cext ~ C éo)' For V 2 10kgT, we can observe non-equilibrium
effects like “inverse dissipation”, i.e., a positive contribution from the first-order term (red) in Figure 3a.
Additionally, the higher order terms (blue and green) can become larger than the first two, and they need
to be included in the calculation of the final velocity through Equation (60) or in the current-induced force
appearing in Equation (9). This, in turn, could lead to several stable solutions whose validity should be
determined through a systematic convergence analysis, which is beyond the scope of the present work.
For the particular choice of parameters used in Figure 2c, we check if the next-order coefficient (C 1&4)) has
a negligible impact on the third-order solutions.
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Figure 3. Order-by-order contributions to the current-induced work as a function of the bias voltage
for different orbit radius: (a) éc = 10 and Qx = 2.5 x 1072, (b) dc = 20 and QO = 1.25 x 1072, (c)

e = 50 and Oy = 5x 1073, and (d) dc = 100 and Qx = 2.5 x 1073, in units of kgT. We show,
in solid lines, the zeroth- (black), first- (red), second- (blue) and third- (green) orders in 6, respectively.
The circles accompanying the lines correspond to (C}k) +C §k)z5 V)Qiki]) , with C§k) and C;k) defined
in Equation (70), and numerically confirm Equations (55) and (71). The remaining parameters coincide

with those of Figure 2.

To clarify the role of Cr-coefficients in the operation regime of the device, let us take for example
de = 100kgT (see Figure 3d) and 6V ~ 2kgT. As the sign in Cﬁl) is negative, the linear-order solution
given by Equation (62) is stable. If we start with Cex¢ = 0, then 0 is positive, so for 0 < Cext < C éo),
the device acts as a motor (see Figure 2a). When Cext > C }(TO) > 0,  becomes negative, and hence,
the device operates as a pump (see Figure 2b). Additionally, when Cext < 0, the angular velocity
is still positive, but as we changed the sign in Cext, we have that Wey: < 0, so the device operates
as a pump. This is the other transition point between the two operation modes of the device, i.e., the sign
in Wext = sCext changes with s and the sign of Cex:. It is also interesting to notice how the operation
regimes change with the sign of the bias voltage. For the force coefficients, we can see in the figure that

they have definite parity with respect to the bias voltage:
k k
¢ (—ov) = (-1 e ov), (©9)

since () remains constant for a fixed orbit radius. For the chosen parameters é, = ég, ', = I'g,
and 6T = 0, the transformation 6V — —dV can be regarded as the inversion operation (L, R) — (R, L),
which changes the sign of 8, i.e., 8(—3V) = —8(8V). In this sense, if there is some finite temperature
gradient, this operation should also involve the sign inversion of 6T. To infer how this bias inversion

234



Entropy 2019, 21, 824

affects the final velocity of the device, we can replace Equation (69) in Equation (60). We can therefore
recognize the transformation 8(—8V) = —8(8V) if we also change the sign of the external force,
such that Cext(—0V) = —Cext(6V). The even/odd parity in the k-order coefficient thus implies that
the current-induced work is invariant under such a transformation, cf. Equation (59), and the ranges
for the operation regimes of the device remain the same if we invert the sign of the external force.
Of course, this analysis is no longer valid in more general situations where é; # ég or I'y # I'g,
such that the change in the sign of 6V (or 6T) cannot be related to the left-right inversion operation.

As an additional test for Equations (55) and (25), we define equivalent coefficients for the amount
of transported charge and heat in a cycle:

de
= (70)
0

21 k]
C(k) _ / -0
I 0o ok

do <k>_/2”3&
Ok!' U

b= 6=
such that ng =sC I(k)ék’l, and ng) = sC;k>9k’1. These contributions can be evaluated independently
from the Cp-coefficients, and in Figure 3, these are shown in circles, which gives numerical agreement
for the energy conservation principle:

e ey = Y, (71)

in the considered orders of 6. For the considered example in Figure 3, the current coefficients C; and C;
also show (independently) a definite parity with respect to the bias voltage. In fact, as Equation (71)
suggests, the heat current coefficients C ](k) present the same parity as C ékil), while the charge current
coefficients Cl(k) need to have the opposite parity since they are multiplied by 6V.

Motor-Pump Efficiencies

As we stated above, the sign of the external force, together with the rotor’s stationary condition
and the first law of thermodynamics, determines the direction of the energy flow and, with it,
the operation mode of the device. Obviously, as no other power sources are involved in this example,
the efficiency of this energy conversion, defined as 77 = (output power)/(input power), is always equal
to one. This, however, only establishes those regions in the parameter space where we can expect
the device operating as a quantum motor or a quantum energy pump. In this section, we discuss
the particular conditions that appear when the device operates through a specific type of current.
In this sense, the motor regime corresponds to the situation in which a transport current (e.g., charge,
heat, spin, etc.) flowing through the leads in response to a bias (voltage, temperature, spin polarization,
etc.) delivers some amount of energy into the local system, which can be used as mechanical
work. The pump regime, on the other hand, corresponds to the inverse operation in which the
external work is exploited to produce a current flowing against the imposed bias. This topic was also
discussed in [87] for charge and heat currents in a DQD device, where limitations to the efficiency
of the considered processes were attributed to the different orders appearing in the frequency expansion
of the currents. We here provide a similar analysis in terms of our explicit model for the mechanical
system. The inclusion of the external force in the description of the model, as we shall see next, appears
as the key ingredient in bridging the motor and pump regimes for a given choice of the bias.

For the device acting as a motor, the output power should be given by Wey/ T, under the condition
Wext > 0, but we still need to specify the input power. If we consider that the mechanical rotor is driven
by the electric current, i.e., due to some applied bias voltage and no thermal gradient applied, the input
power is given by —Qy - 6V /1, and hence, the efficiency of this type of motor is:

_ Wext -1 Q]
=709/ 6v O1V"

(72)
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Equation (33) establishes that the maximum efficiency for this device is 7 < 1, and the above
equation tells us that the heat current produced by the bias voltage reduces the motor’s performance.
As in this work, we calculate such currents through an expansion in the angular velocity, the efficiency
is also limited by this expansion. If in the calculation of §, we consider Equation (60) up to first order
inC l(:k) , then, as discussed in Section 6, order-by-order energy conservation demands that the currents
are to be considered up to second order, and in terms of the current coefficients, this takes the form:

Cext/ 2%
=== - (73)
cV¢-14cM +cPé
In the limits of the motor’s operation regime, given by Cext = 0 and Cext = Céo), it is easy

to see that the efficiency goes to zero, since for Cexy = 0, the numerator in the above expression

)

is zero, and for Cext = C I(EO the rotor’s velocity goes to zero, so the denominator grows to infinity due

to the contribution C;O) /8 from the leakage current. The same happens if we consistently include
higher order terms in this expression. For example, if we use Equation (63) for the rotor’s angular
velocity, then we should add C 1(3>92 in the denominator.

Away from this region, we enter in the “pumping domain” characterized by a charge current,
which opposes the “natural” direction dictated by the bias voltage and Wext < 0. In this sense,
the input power and the output power are inverted with respect to the motor region, and consequently,

the efficiency of this “battery charger” device is given by:

¢ e+
Cext/fsv

(74)

In this regime there is, however, an additional condition to be fulfilled, which is Q;6V > 0.
Regarding the different orders in Qj, it usually happens that close to the transition point Cext = C IEO),
the charge current still flows in the bias direction, since it is dominated by the leakage current.
In this region, we say that the pumping mechanism is “frustrated” as the energy delivered by the rotor
is not enough to reverse the direction of the charge current. Going away from this region, the angular

velocity acquires some finite value, reducing the zeroth-order contribution C 1(0) /8 to the point where

it is equal to the higher order contributions Cl(l) + CI(Z) 6, thus marking the activation point of the charge
pump. In Figure 4a, we show the efficiency of the device as a function of the external force for different
orbit sizes and fixed bias 6V = 2kgT. In all cases, the device starts from Cext = 0 as a motor, and
its efficiency reaches a maximum, which increases with the orbit size. Soon after this point, the motor’s
efficiency decreases to zero due to the leakage current effect, which becomes dominant at Cext = C 20)_
From this point, we can observe the gapped region for the frustrated pump, which is more pronounced

)

for small orbits, since the first-order pumped charge le is smaller than its quantized limit, and

thereby, it takes a larger value of Cex; to compensate the amount of pumped leakage current Q;O) in
a cycle.
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Figure 4. Normalized efficiencies as a function of the normalized external work (Cext/C 20)) and orbit
radius: Je = 10 (red), 20 (blue), 50 (green), and 100 (orange), in units of kgT. Panel (a) shows the electric
motor/pump lowest order efficiencies (solid lines) for the device driven by a bias voltage 6V = 2kgT and
OT = 0. The next-order efficiency for the smallest orbit is shown in the dotted red and in the inset for
negative Cext. Panel (b) shows the heat engine/refrigerator lowest order efficiencies for the device driven
by a temperature gradient 6T = 0.5T and 6V = 0. The other parameters coincide with those of Figure 2.

Up to this point, we have discussed only the effect of the lowest order terms of the expansion
in 6, given by Equations (62), (73), and (74). For the smallest orbit, in addition, we show in the
dotted red line the next-order efficiency, obtained from Equation (63) and adding the Q§3) term to
Equations (73) and (74). We can see that for the motor regime, there are no significant changes, but for
the pump regime, important differences appear. Firstly, in the Cex; > 0 region, there is a cut-off
for the external force in which the pumping mechanism is again frustrated, i.e., the charge current
again points in the bias direction. As can be seen in Figure 5a,c, this decreasing in the efficiency is
not attributed to the extra heat dissipated to the reservoirs, as one may expect. Note in the figure

that the extra contribution to the pumped heat, Q;S), is negligible as compared to the lowest order

terms. What happens here is that the third-order contribution to the pumped charge Qg3) rapidly
becomes dominant in the charge pump region, causing a sudden drop in the efficiency and, with it,
the appearance of a second frustrated-pump region. Secondly, another higher order effect appears
in the Cext < 0 region. There, the efficiency is nonzero for Cext/C l(go) < —8 (see the inset in Figure 4a),
meaning that the pumping mechanism can be activated even when the external force points in the same
direction as that of the current-induced force. Given the convention used for Fey: in Equation (7)
and the chosen parameters, in this region, the sign of 6 remains the same as that when Fe¢ = 0.
There, the zeroth- and first-order contributions to the charge current flow in the same direction. In
the analyzed case, again the third-order term is the one that reverses the direction of the total charge
current; see Figure 5b. It is important to mention that the purpose of the present discussion is only to
highlight deviations from the linear solution of Equation (62), not to analyze the convergence of the
total pumped current. For the larger values of é. used in Figure 4a, we do not show the next-order
corrections, as they are negligible in the shown range of Cex.

An analysis similar to the above one can be carried out for the device driven by a temperature
gradient 6T, defined through T; = T +6T/2and Tg = T — 4T /2 and no bias voltage applied, such that
for 6T > 0, we have Ty = Tp and Teo)q = Tr. When Weyxt > 0, we have a motor device driven
by a heat current in response to a thermal gradient (heat engine), then the input power should be given
by —Qj, ../ T, and Equation (35) implies:
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Figure 5. Different order contributions to the pumped charge and heat as a function of the normalized

Kth

external work for the case d¢ = 10kgT (dotted red in Figure 4a). Panels (a,b) show the k"'-order

pumped charge ng) = (QYZ) — Qg? )/2. The sum of all these contributions is shown in solid black and
denoted as Q(Imtal). (c) Pumped heat contributions to the left and right reservoirs Q;k) = Qyz) + Q}’;),
divided by Q;mml) ,i.e., the sum of all contributions from k = 0 to k = 3. The vertical gray lines mark

different transition points: Cext/ CEO) = 11is the motor/pump (energy pump) transition, while the other
lines correspond to transitions between frustrated-pump/charge-pump regimes, i.e., when ngal)

changes its sign.

As compared with Equation (73), we can see that the efficiency of the quantum heat engine,
now given by:

Cext
1= 0, oD o@Dy 76)
Claa? ™+ Ch T C1a?

is defined in the same range for Cext as in the electric motor. Regarding Figure 4b, the engine’s
normalized efficiency 7 /#carmot looks similar to that of the electric motor. Perhaps the only difference
here is that for the smallest orbit dc = 10kgT, the efficiency maximum is very low, such that it cannot
be appreciated on the employed scale of the plot.

Now, we move to the heat pump region where the device acts as a refrigerator, as we demand
that the heat current flows against the direction dictated by JT. Therefore, in addition to the Weyxt < 0
condition, the overall amount of pumped heat in the cold reservoir should be negative, i.e., Q Jeotd < 0-
The efficiency of the refrigerator, or coefficient of performance (COP), is then given by:

T
_ Q]cold _ Q]hot 1< cold = COPcarmot, (77)

COP <
Wext Q] Thot - Tcold

where we can consistently expand Qj_,, in terms of 6. In Figure 4b, we show the lowest
order contribution from Equation (62), as the next-order calculation does not change significantly
the efficiencies in the considered regimes of the parameters. Again, we can observe in Figure 4b a gap
region where the device is frustrated since the work delivered by the rotor is not enough to reverse
the direction of the heat current. One of the differences with the electric counterpart is that,
for the refrigerator, the normalized COP develops a maximum that is always smaller than that
of the quantum heat engine, while the obtained efficiency maxima (motor and pump) for a fixed orbit
in Figure 4a are very similar. Additionally, for the chosen value dT = 0.5 T and small orbit radius,
the device can only work as a heat engine, and the refrigerator cannot be activated even if the external
force is large, as happens for de = 20kgT (solid blue line). The reason for this relies on the competition
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between the different orders in the pumped heat Q;_,: the reduction of the leakage pumped
current, Q;())l by increasing the magnitude of 6, is accompanied by an increase of the second-order

contribution, Q e ) - such that the first-order term, Q 4’ May not be able to compensate these two
and the requlrement QJoa < 0 cannot be fulfilled; see Flgure 6.

2 T T T

2
Cou/CY

Figure 6. Different order contributions to the pumped heat as a function of the normalized external work
for the case d¢ = 20kgT (solid blue line in Figure 4b). Here, Qgtoml) refers to the sum of all contributions.

8. Summary

Throughout this manuscript, we revisited some fundamental aspects related to the physics
of quantum motors and pumps. Previous results based on the steady-state properties and energy
conservation law were extended to deal with arbitrary nonequilibrium conditions in a systematic
way. By considering the dynamics of the mechanical degrees of freedom through a Langevin
equation, we were able to treat the motor/pump protocols on the same footing. This allowed us
to describe the related energy transfer processes through a single parameter: the external force done
on the local system.

In the steady-state regime, we treated in general terms the validity of the constant velocity
assumption, in Section 3. For arbitrary orders of the nonadiabatic expansion in the CIFs, this was
linked to the separation between the electronic and mechanical dynamic scales through a large moment
of inertia. We then performed a general expansion (in terms of nonequilibrium sources) of the energy
fluxes that took part in the quantum transport problem. This enabled us to derive an order-by-order
scheme for the energy conservation law, Equation (25). This equation may be of help in recognizing
the physical processes that enter at each order in the expansion, thereby providing a useful tool
for the analysis of nonlinear effects. To illustrate this, we discussed the leading orders of the global
expansion and showed how different types of expansions of the energy fluxes change the expressions
for the efficiency of quantum motors and pumps.

In Section 7, we introduced a specific example of a quantum motor/pump based on a double
quantum dot. There, we discussed in more depth how higher order terms of the CIFs affect
the stationary state conditions. We found that multiple solutions for the device’s terminal velocity could
in principle be available for a fixed choice of parameters (voltage and temperature biases and external
force). In such a case, the stability of such solutions imposes an additional constraint on the force
coefficients, and the final steady state strongly depends on initial conditions. Interestingly, it is possible
to obtain more than one stable solution, each of them belonging to a different operation mode
of the device. The treated example is also appealing as it is possible to study the transition between
different operational modes by continuously moving the external force. This corresponds to the point
at which the steady-state velocity changes its sign and, with it, the direction of the energy flow.
When considering a specific type of pumped current (charge or heat), there is an intermediate region
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where the pumping mechanism is “frustrated”. In this situation, the energy delivered by the external
force is not enough to reverse the natural direction of the charge or heat currents. We found other
interesting features of the studied example such as negative friction coefficients at finite voltages
or a definite parity of the expansion coefficients with respect to the bias voltage and the temperature
gradient, which is a manifestation of the inversion symmetry in the total energy flux. We also used
this example to confirm numerically the order-by-order energy conservation law up to third order
in the final velocity. Finally, for heat currents, we found parameter conditions under which the device
can never work as a “refrigerator”, even for large values of the external force. We explained this
behavior in terms of the competition between the different orders that participated in the pumped
heat of the cold reservoir, highlighting the importance of the order-by-order conservation laws.
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Abstract: In the present work, we study a mesoscopic system consisting of a double quantum dot in
which both quantum dots or artificial atoms are electrostatically coupled. Each dot is additionally
tunnel coupled to two electronic reservoirs and driven far from equilibrium by external voltage
differences. Our objective is to find configurations of these biases such that the current through
one of the dots vanishes. In this situation, the validity of the fluctuation—dissipation theorem and
Onsager’s reciprocity relations has been established. In our analysis, we employ a master equation
formalism for a minimum model of four charge states, and limit ourselves to the sequential tunneling
regime. We numerically study those configurations far from equilibrium for which we obtain a
stalling current. In this scenario, we explicitly verify the fluctuation—dissipation theorem, as well
as Onsager’s reciprocity relations, which are originally formulated for systems in which quantum
transport takes place in the linear regime.

Keywords: quantum transport; quantum dots; fluctuation-dissipation theorem; Onsager relations

1. Introduction

The two paradigms of statistical mechanics for systems that are close to equilibrium are: (i) the
Onsager—Casimir reciprocity relations [1]; and (ii) the fluctuation—dissipation theorem (FDT) [2—4].
Both relations are not only inherent to classical systems but are also applicable to the quantum regime.
The Onsager—Casimir reciprocity relations state that the Onsager matrix that relates physical fluxes and
their conjugate forces is symmetric. For example, considering as forces the electrostatic and thermal
gradients, and their associated currents being the electrical and heat fluxes, these relations set an
identity between the thermoelectrical conductance (electrical response to a thermal gradient) and the
electrothermal conductance (response of the heat current to an electrical bias). On the other hand,
the FDT establishes that statistical fluctuations occurring in a system at equilibrium behave similarly
to the dissipation that takes place under the action of an external perturbation. Major examples of
manifestations of the FDT are found in Einstein’s treatment of Brownian motion where the diffusion
constant is found to be proportional to the mobility [5] or the Johnson-Nyquist formula for electronic
white noise [6]. In the context of quantum transport through electronic nanodevices, the FDT allows us
to relate the dissipative response of one current with respect to a variation of its affinity or conjugate
force with its spontaneous fluctuations. This property of equilibrium systems is a very important
topic when we are interested in controlling dissipation due to currents induced through quantum
conductors by external forces.

As mentioned above, the range of validity of the FDT is limited to the linear response
regime, i.e., for sufficiently small perturbations. Going beyond this regime requires generalizing
this formulation to non-equilibrium conditions. This has been done by introducing additional
correlations involving the activity, a magnitude related to the transition rates and the excess of
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entropy production that is modified antisymmetrically by the external potential that drives the system
out of equilibrium [7-10]. In this view, these extensions to the FDT are indeed fluctuation—-dissipation
relations (FDR) that establish the frequency at which a system produces entropy to the environment
between forward and backward processes. The interest of the FDR has been highlighted in the field of
quantum transport [1,11-13].

However, here we adopt a different perspective, reported in the work of B. Altaner, M. Polettini,
and M. Esposito [14], in which the concept of stalling currents is introduced in the context of stochastic
thermodynamics. A current that traverses a system can be nullified because of the cancellation of a
set of distinct internal processes, and is then called a stalling current. Under these conditions, if the
perturbative force solely affects the microscopic transitions that contribute to this current, the FDT is
restored [14,15]. In addition, we test numerically that Onsager reciprocity relations are additionally
satisfied at stalling conditions. We speculate that this property is attained due to the lack of entropy
production at stalling conditions forced by the tight coupling between the charge and heat currents
(see below). The conclusion is that all contributing elemental transitions being internally equilibrated
is equivalent to them being microscopically reversible. One interesting application to the stalling
configuration is that, even though correlations are usually difficult to access experimentally, the fact
that the FDT is applicable makes it rather easy to obtain such correlations by means of a response
function instead.

Our purpose in this work is to implement these conclusions in a nanodevice consisting of two
interacting conductors. Such setup was previously investigated by R. Sdnchez et al. [16] to analyze the
drag effect. The device consists of a parallel double quantum dot system in which the quantum dots
interact electrostatically via a mutual capacitance. Besides, each quantum dot is tunnel-connected to
two electronic reservoirs. A drag current is encountered in one of the dots, which is unbiased, due to
the charge fluctuations provoked by the electrical current driven through the other dot. The detection
of this drag current has been demonstrated experimentally [17] showing that high-order tunneling
events such as cotunneling have a significant contribution. Besides, a drag current control has been
proposed by attaching to the dots different materials with nontrivial energy-dispersion relations [18].
This system has additionally been proposed for the implementation of a Maxwell demon [19], in which
one of the dots (the demon) acquires information from the other one, allowing a current to flow
opposite to the applied bias voltage in the other dot.

Our goal in this article is to explore the transport properties in an out-of-equilibrium configuration
that drives the system into an effective equilibrium in which both the Onsager relations and the FDT
are recovered. For this purpose, we compute the electrical and heat currents through each quantum
dot. By a numerical search of stalling currents in one of the dots, we check whether or not Onsager
relations and the FDT are satisfied. We consider different situations. Firstly, we consider the case where
both the electrical and heat flows are cancelled simultaneously under non-equilibrium configurations.
This can be achieved only in the so-called strong coupling regime. For this case, we demonstrate
that the system indeed behaves as at equilibrium. We also analyze the scenario where only one of
the currents vanishes (either the charge or the heat flow), while the other one is kept finite. Finally,
we show that the absence of stalling currents prevents the fulfillment of the Onsager relations and the
FDT as expected. To conclude, we go beyond the FDT and additionally check the FDRs for the third
cumulant in the presence of stalling currents.

2. Theoretical Model

2.1. Description of the System and Underlying Framework

We consider the case of two conductors that are mutually connected via the Coulomb interaction.
Each conductor consists of a quantum dot with a single level active for transport. We omit spin
indices due to spin degeneracy. Besides, we consider a large on-site Coulomb interaction that prevents
the double occupancy in each dot. Each quantum dot is tunnel-coupled to two electronic reservoirs

246



Entropy 2020, 22,8

that can be biased with electrostatic and thermal gradients. Each tunneling barrier is modeled by
capacitors denoted by C; with i = 1,2,3,4. As mentioned above, the two quantum dots interact
electrostatically through a capacitor C. A sketch for this system is depicted in Figure 1b. Under these
circumstances, we describe the system using four possible charge states |0) = [0,0,4), |u) = [1,0,),
|d) =10,14), and |2) = |1,1,), where n,n,; denotes the charge state with 1, electrons in the upper dot
and n, electrons in the lower dot. For simplicity, we consider an isothermal configuration in which all
reservoirs are held at a common temperature T. We also keep different bias voltages V; applied to the
four terminals.

We are interested in the charge and heat transport in the sequential tunneling regime, in which
the tunneling rate (denoted by I') satisfies i/l" < kpT. In this regime, transport of electrons along
each quantum dot occurs in a sequence of one electron transfer event at each time. Electrons can hop
into a quantum dot, and then relax before they jump again. This restriction eliminates the transitions
[0(2)) — |2(0)) and |u(d)) — |d(u)). Additionally, we consider that there is no particle transfer from
one dot to another by tunneling. The only interaction between the dots is then due to their mutual
influence caused by the electrostatic interactions.

a) Fii,%i b) c Cy
1% Va
Vi, Ty \ 'VQ,TQ o—mIm—@
C
C- C.
YW@

Figure 1. (a) Double quantum dot capacitively coupled to four terminals held at potentials V; and
temperatures T;, for i = 1,2,3,4. The transition rates Fii and 'yii for each barrier are described in the
main text. (b) Electrostatic sketch showing the capacitors and voltages involved in the description of
the energy levels of the quantum dots.

The theoretical framework employed to describe the quantum transport in our system is called
stochastic thermodynamics [14,20-22]. Quite generally, we can consider a setup with an arbitrary number
of states n € {1,2,...,, N} and picture each state as a node in a connected network. We draw edges
e connecting states between which a transition may occur, and require these to be possible in both
directions. However, transitions along +-e are not required to happen at the same rate or with the same
probability. Note that two nodes may be connected with several edges if there are various physical
mechanisms through which the system can transition between the associated states. The evolution of
the system is modeled as a Markov jump process, i.e., the probability that the system jumps from one
state to another is independent of its previous history. This evolution can also be visualized as a random
walk on the network. A physical model is defined by prescribing the forward and backward transition
rates w4, which evidently may be functions of the physical parameters involved. The fluctuating
current along an edge e, je(t) = Y4 5(t — ) (dree, — O—ee, ), is a stochastic variable that peaks if the
system transitions along the directed edge ey at time t;. Physical currents, i.e., currents associated
to the transport of physical quantities such as charge or heat, are weighted currents J, = Y. dgje,
where d% , = —d* , specifies the amount of a physical variable « exchanged with an external reservoir
along a transition edge e.

When applying the previous theoretical treatment to our particular system, we consider that the
tunneling rates depend on the energy of the system. Specifically, we consider the value of I'; for the
tunneling of electrons between a reservoir i and a quantum dot whenever the other dot is empty, and -;
when the other dot is occupied. Then, the transition rates (previously called w-.) are thus dependent
on the dot charge states. The transition rates are defined according to Fermi’s golden rule as
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T =Tif (o —qvi) ()
I =T (1~ f(peo —qVi)) 2
Y = 7if (e — qVi) ®3)
v =7 (1= f(pey — Vi) @)

where f(x) = (1 +e*/ kBT) ' is the Fermi-Dirac distribution function, the — superscript stands for the
tunneling from the lead to the dot, and + for the reverse process. The transition rates are schematically
represented in a network diagram in Figure 2. In our arrangement, we take the up dot (¢ = u) connected
to left and right reservoirs with i = {1,2}, and the down dot (¢ = d) to reservoirs with i = {3,4}.
Note that the numerical subindex in the previous transition rates thus indicates the reservoir involved
in the transition, as shown in Figure 1a. The chemical potential for the dot /, i.e., 17 (114,1), corresponds
to the situation in which the other dot is empty (occupied).

Figure 2. Scheme for the transition rates between the two dot states.

To determine the effective chemical potentials of the dots, we must develop a model that takes
into account how their energy levels are influenced by electrostatic interactions. When interactions are
properly included as in our description, all currents are gauge invariant, as they depend only on voltage
differences. Hereafter, we shorten the notation and define V;; = V; — V;. Under these considerations, the
dot levels become

€un — HPun = ey + U (1,0) — U (0,0) + Ecdyy (5)
Edn = Hdn = €4+ u (0/ 1) -u (0,0) + Ecén (6)

where ¢, and ¢, are the bare energy levels, and n = 0 (1) corresponds to the case where other dot
is empty (occupied). Here, Ec = 24°C/ (CgyCsy — C?) is the charging energy with Craw) = Ci3) +
Co(4) + C. The chemical potential i, 4) ,, is defined as the change in the electrostatic energy when the
charge number N,(;) changes by one when the dot d() is either empty (1 = 0) or occupied by one
electron (n = 1). The electrostatic energy is computed from U(Ny, N;) = ¥; Oqu dQ! ¢:(Q}) where ¢;
is the internal potential in each quantum dot obtained by means of elementary electrostatic relations.
Then, the arguments of the Fermi functions appearing in the tunneling rates read [16]:

1 2
Hun —qV1 = ey + ConCog = C2 [%Czd + 9 (CsaCaVa1 + CCsVa1 + CC4V41)] + Ecdin @)
U
1 2
Hupn —qVa = ey + ConCoy = C2 [%Cz.j +9 (CeaC1Vi2 + CCsVap + CC4V42)] + Ecdin ®)
u
1 2
Han —qV3 =4+ ConCog = C2 [%CZu +9 (CauCsViz + CC1 Vi3 + CCsza)} +Ecén )
u
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1 qz

—|tc Cy CaVis + CCyViy + CC V. Ees 10
ConCay 2 | 2 o T4 (CeuCaVas + CC1Va + CCoVay) | + Econ (10)

Han —qVa = €1+
that now depend only on voltage differences. The four pyn — Vi), and pg, — V34 are the
electrochemical potentials. We take Vi, Vi3 and V34 as the only independent biases, since the rest of
voltage differences can be expressed as linear combinations of these values.

As discussed above, we apply the Markov approximation in order to determine the dynamics
of the probabilities of finding the system in one of the four states. Specifically, we employ the master
equation formalism, where the time evolution of the system is governed by a master equation that
gives the probability distribution of the considered stochastic variables in terms of the transition rates
between the different states. Defining I“ui( 0= £, + I’i ny the following relations are found:

1(3)
Po I, =T, Iy r; 0 po
pu | _ r, T -7y 0 5 Pu
wl = 3 R 4 (11)
Pd r; 0 7. — Iy Y pd
P2 0 75 o - = P2

As we are interested in the steady state, we set all p; = 0. Considering the normalization condition
Y. pi =1, we obtain:

po =+ [T (0F +77) + T 0d (05 +72)] 12)
pu= % [TuTd (i +94) +7vg (Tw +15)] (13)
pa= % [TiTy (nd +93) + 77y (Tw +15)] (14)
mzﬂﬁﬁ@}ﬂﬂ+mﬁﬁ+mww} (15)

with

w=T, [T (nl +97) +vg (e + T + T T (v +97) +Tavg v +Tuvgva+  (16)
+ 95 [Th (vu+73) + 7u 7d]

and I'y () = l";r(d) + F;(d) (similar for 7, (4))-

We now compute the electrical current I; that flows between the first lead and the upper dot,
which, we from now on call drag current for historical reasons (note that since generally Vi, # 0itis
not a current arising solely from the drag effect). This current is obtained by weighting the transition
probabilities with the electron charge 4. The result is

L=q(Typo—T{ pu+77pa— 7 p2) 7)
Because of electric charge conservation, we immediately know I, = —I; = I for the current between
the second terminal and the up dot (we assign a + sign whenever the current flows from a lead into a
dot, and a — sign otherwise). We can also compute the heat current by weighting the transitions with
the amount of transferred effective energy (the electrochemical potential),

Ji = fuo (Ty po = T3 pu) + flug (71 Pa — 7i p2) (18)

where fiyn = pun — qV1. Similar expressions are obtained for the rest of the J;. Energy conservation
leads to [1 + o + J3 + J4 = I1 Vo1 + I3Va3. These currents were investigated by Sédnchez et al. [16]
when the up dot is at equilibrium with V; = V,; a nonzero drag current I; then appears when I'1y, #
71I'2. This means that the current in the lower terminals (drive system) drives the upper dot towards a
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non-equilibrium situation by the appearance of a drag current. The drag phenomenon can be clearly
understood from the following Joule relation found for this setup

h+h+]e = —LVp (19)
B+li—Jc = -1V
where E
Je= =i TaTd = v v TiTy) (20)

is the heat flow between the drag and the drive system. This expression generalizes the relation found
in Reference [23] for a three-terminal double quantum dot. In such a system, the drag conductor is
connected to two reservoirs, whereas the drive dot is coupled to a single contact. Therefore, the drive
subsystem does not support any charge current. Under these considerations, the drive dot carries a
heat flow | (with a similar form to Equation (20), which is proportional to the drag charge current
when I, = 91 = 0, i.e. in the so-called strong coupling regime. Here, Equation (19) demonstrates
the existence of a heat flow ], between the drag and drive subsystems. This energy flow appears
in addition to the heat flows [, J» through the drag conductor and the heat currents J3, J; in the
drive subsystem, even when they are held at common temperature and no particle transfer exists
between them.

Returning to our purpose, which is to find a route to an effective equilibrium state, we address
the issue of whether the opposite phenomenon to the drag is possible, i.e., if we can achieve a
non-equilibrium configuration with V; # V; for which the drag effect causes the stalling of the upper
currents. Under this novel situation, we check whether our system reaches an “effective linear response
regime” by testing the microreversibility property through the Onsager relations and the fulfilment
of the FDT. To this end, we focus on the up dot and consider three stalling configurations: (i) when
both the electrical and the heat flow vanish, i.e., I; = 0 and J; = 0, which we call the globally stalled
scenario; (ii) when the charge current is nullified, I; = 0, but there is a finite heat flow J; # 0; and (iii)
when there is a finite electrical current I; # 0 but no heat flow, J; = 0. These situations correspond
to the locally charge-stalled and heat-stalled cases, respectively. The simplest manner to achieve the
globally stalled case is tuning the system to the strong coupling configuration by setting y; = T, = 0.
Under this situation, electrons can only tunnel in and out of the top-left reservoir if the lower dot is
empty, and of the top-right reservoir if the lower dot is occupied.

2.2. Detailed Balance and Behavior at Equilibrium

Before presenting our results, we carefully revise the behavior of systems near thermodynamic
equilibrium. In this situation, all existing currents in a system tend to zero on average. This behavior is
called global detailed balance. According to statistical mechanics, systems subject to these conditions
exhibit the property that the correlations of the spontaneous fluctuations and the dissipative response
to an external perturbation obey the same rules, which is primarily known as Onsager’s regression
hypothesis [14]. This important statement is the heart of the fluctuation—dissipation theorem (FDT).
If we consider an arbitrary physical current ], (such as a heat or charge current) and its affinity or
conjugate force /1, (which in these cases would correspond to gradients in temperature or electrical
potential, respectively), the theorem can be expressed as

O, Ju (x°7) = Dy (2°7) @1

where D, , is a generalized diffusion constant proportional to (J.J). The vector x contains all the
parameters the current may depend on, and satisfies J, (x*7) = 0 for all currents in the system;
their conjugate forces are evidently also required to vanish. The previous equation can be generalized
in such a way that it expresses the FDT for the combination of two currents and their conjugate
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forces by changing one index « for a different one and symmetrizing both sides of the expression
(see complementary material of Reference [14]).

Another major result in thermodynamics close to equilibrium is found in Onsager’s reciprocal
relations (RRs), which actually follow from the FDT if the system enjoys the property of being
time-reversible [15]. In the following, we restrict ourselves to relations between heat and charge
currents, following Onsager’s original article [1]. For a system where transport of these quantities
exists, the mechanisms are usually not independent, but interfere with each other leading to the well
known thermoelectric effects. If we consider a system at equilibrium, small fluctuations or external
perturbations may allow for the transport of small quantities of charge and heat while the system is
returning to its original state. Onsager established that, in these situations, the responses of a current
due to a variation of the other current’s conjugate force are equal, i.e. the heat current responds in the
same way to a variation of the electrical potential as the charge current to a temperature fluctuation.
This result is best visualized by writing the currents in matrix form. For a simple system with a single
heat and charge current, we have:

( ]charge ) _ < Ly Lip ) < 0 (AV) ) (22)
Jneat Loy Ly 6(AT/T)

where L1 and Ly, are the electrical and thermal conductances, and L1a = 9a1,7/charge and Loy =
OAV Jhear Tepresent the electrothermal and thermoelectrical coefficients that arise from the interference
of the two transport mechanisms. Onsager’s statement is then equivalent to the requirement that
the conductance matrix be symmetric, L1 = Li,. In addition to these relations, the scattering theory
formalism ensures that both the thermal and the electrical conductances are semipositive.

Despite these theorems being major cornerstones in our understanding of the behavior of systems
obeying global detailed balance, most complex systems live out of equilibrium. Accordingly, similar
relations have been sought for systems where detailed balance is explicitly broken, since their finding
would allow us to characterize and study out-of-equilibrium systems in a similar manner as when
detailed balance is satisfied.

2.3. Local Detailed Balance and Equilibrium-Like Relations

A central assumption in stochastic thermodynamics far from equilibrium, when global detailed
balance is not satisfied, is local detailed balance (LDB). It relates the forward and backward transition
rates w into and out of a state A by means of a mechanism v and reads [24]

%
w:/an — e*ﬁVAe (23)
w

B—A

where B, is the inverse temperature of the reservoir involved in the transition and Ae is the difference
between the energies of states A and B. It can be easily checked that the rates in Equations (1)—(4)
indeed satisfy the LDB condition.

In Reference [14], it was reported that, if LDB is satisfied in a system driven arbitrarily far from
equilibrium, its response to a perturbation or a spontaneous fluctuation may obey a relation similar to
the equilibrium FDT if certain additional conditions are fulfilled. More precisely, it has been established
that a current J, in such a system obeys Equation (21) with x7 replaced by x%, where x* corresponds to
a configuration of the parameters of the current such that J, (x”) =0, i.e., the considered current stalls.
This is valid if the force h, couples exclusively to those transitions that contribute to the conjugate
current J,. It is important to notice the difference between this statement and the first FDT valid
only near equilibrium, since we now only require a given current to stall internally. This may be a
consequence of the appropriate tuning of the rest of the currents in the system, which are no longer
required to vanish, and can in fact assume arbitrary magnitudes.
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Similarly, Onsager’s reciprocal relations have also been extended to non-equilibrium situations,
under the condition of a marginal time-reversibility [25]. Again, it is required that the currents stall in
order for the RRs to hold far from equilibrium.

3. Results and Discussion

In this section, we present the main results of our work. We verify the RRs and the FDT for a
complete understanding of the impact of stalling currents in coupled conductors.

Roots of the Drag Current and Equilibrium-Like Behavior

The aim of our study is to verify the generalized non-equilibrium reciprocity relations and the
fluctuation—dissipation relations. As discussed above, they require that the involved currents be at
stall in order to hold arbitrarily far from equilibrium. We exclusively focus on situations where the
stalling currents are those between the upper dot and the first lead, i.e., the ones in the drag system.
Since I} = —I, it is enough for our purposes to seek for roots of I;. We also only look for roots
of J;, even though J; # J,. For all the out-of-equilibrium calculations, we consider the isothermal
case T = T;, withi = 1,...,4. Since we are only interested in the responses of the currents to small
temperature fluctuations in one of the leads (with the rest held constant), we must formally treat the
temperatures in each lead as independent of each other for computational means. However, in the
end, all derivatives are evaluated at temperature T.

The electric current I [Equation (17)] is a highly nonlinear function of the biases V5, Vi3 and Va4.
Consequently, the solutions to I; = 0 must be found by means of numerical analysis in order to verify
Onsager’s relations and the FDT (further justifications below). To this purpose, we setI'; = 79; =T
except for 3 = 0.1I', kgT = 51T, qz/C,' = 20nT, qz/C = 50AI and ¢, = ¢; = 0. Furthermore,
we consider natural units where i = —q = kg = I' = 1. Unless otherwise mentioned, these parameters
are used in the rest of this work.

We remark that our analysis is purely numerical since the solutions for I; = 0 require large values
of Vi, at a given set of voltages Vi3 and V34. This fact prevents us from employing a perturbative
scheme in terms of the dc voltages. The charge current through the upper dot is composed of the
current directly induced by the bias Vi, and the contribution due to the charge fluctuations caused
by the transport in the lower dot. The latter contribution is precisely the drag effect, which is much
less significant to the creation of a charge flow through the up dot than the effect of a voltage directly
applied between the upper terminals. The need for a numerical analysis of this system is hereby
justified. To find the roots of the currents for a given set of parameters, we implemented a bisection
algorithm (see Appendix A).

Since there is no magnetic field present in our system, its dynamical evolution is time-reversible.
Accordingly, microreversibility ensures that the RRs should be satisfied for stalling currents far from
equilibrium, as discussed in Reference [15]. In this section, we analyze both the case when the charge
and heat currents stall at the same time, as well as the scenario when they do not necessarily vanish
simultaneously for the same voltage configuration. The Onsager matrix for our two dot system with
four leads should be of dimension 8 x 8 with elements denoted by L; jmn- I the absence of a magnetic
field, Onsager’s relations imply Ljj sy, = Ljimn- Furthermore, charge conservation laws imply relations
such as I, = —I; and therefore more elements of the Onsager matrix are related. At the stalling
configuration, we thus check for the fulfilment of the particular relation L1311 = Lyj,11, with

oh 1 9J;
L =Lp=-—=, L =Ly = 24
=Ly =a0, Lan =la =75y (24)
As we can see, [t = Ijgge and J1 = Jjeqr in terms of the example in Equation (22). Here,

we consider as conjugate forces the absolute potentials and temperatures. This is justified since
the thermodynamic variables of the quantum dots do not show up in the currents, and therefore
differentiating them with respect to the gradients (); — Qg yields the same result as differentiating
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with respect to (); (Where () represents either a voltage or a temperature). A summary of our first results
is presented in Figure 3. We show the coefficients for a given Vj; as a function of V3. It is understood
that the value of V34 at each point corresponds to the one where stalling has been numerically found.
We consider four cases: (i) the globally stalled configuration depicted in Figure 3a; (ii) the locally
charge-stalled case shown in Figure 3b; (iii) the locally heat-stalled scenario in Figure 3¢; and (iv) a
configuration where none of the currents vanish, as shown in Figure 3d. Firstly, we notice that the
RRs are satisfied at the configurations where the current I; stalls [cases shown in Figure 3a,b] with
J1 being either zero or not. On the other hand, considering the stalling points of |; [see Figure 3c],
in general, we do not observe an equality between L, and Ly;. Even so, there are some exceptions
(not shown here) in which the RR are satisfied despite having I; # 0 and J; = 0. For these cases,
however, we checked that they do not follow the FDT.

We now move on to study the validity of the fluctuation-dissipation theorem. In this case, we only
consider the FDT for the charge currents. Firstly, we give explicit expressions for the relations between
the transport coefficients, i.e., the FDRs. They have been established for the non-equilibrium case.
Here, it is instructive to first consider the FDT near equilibrium. We consider the following voltage
expansion of the currents around the equilibrium point V; = 0:

I = %cj’ﬁvﬁ + ﬁz Gall, VgV + 0 (V) (25)
Y

are related to nth order FDRs.

where the nth order conductances G,egvlmv” = (8” I/ aVvl...an)Vi -0

For instance, at second-order equilibrium FDRs lead to the FDT
S = ksT (Gl + Gyl ) (26)

The non-equilibrium FDT is then established to have the same form replacing the equilibrium
condition by the stalling condition.

0.012
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Figure 3. Onsager coefficients L1, and Ly; versus the Vi3 bias voltage at the indicated V;; biases:
(a) strong coupling configuration (I';, = v = 0)with [y =0and J; =0;(b) I; =0and J; #0;(c) I; # 0
and J; = 0;and (d) I[; # 0,and J; # 0. T; = 7; = T except for 7, = 0.1T, kgT = 5hT, g>/C; = 20hT,
qZ/C = 50nT and ¢, = ¢; = 0. Furthermore, we consider natural units where i = —q =kp =T = 1.
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For our particular device, we investigated the non-equilibrium FDT for two cases. We tested the
FDT only for the upper dot charge current, i.e., I = —I,. The results are shown in Figure 4, where we
check the FDT for the drag current, i.e.,

S11 =2kgTGy 1 (27)

as well as the FDT involving the cross-correlations between the drag current (I;) and the drive current
(I3) contributions, i.e.,
S13 =kpT (G153 + Gs,1) (28)

where in both cases the noise S,5 was computed by applying the Full Counting Statistics (FCS)
formalism described in Appendix B. We observe that only the former relation for the drag current is
satisfied (Figure 4a,b) since I; vanishes but I3 does not. The FDT involving cross-correlations between
I; and I, also holds since both of the currents stall (not included). These results are independent of
whether the heat current vanishes (see Figure 4a for J; = 0, i.e., the strong coupling regime) or not (see
Figure 4b with J; # 0). In the two remaining cases (Figure 4c,d), the fact that the drive current I3 does
not vanish prevents the fulfilment of the FDT for the cross-correlations Si3.

To make a complete description of the transport under stalling conditions we now discuss
a remarkable result involving the third cumulants of the current. In this case, we talk about
fluctuation—dissipation relations instead of the FDT. As mentioned in the Introduction, the FDRs
were originally formulated by adding to the transition rates and the excess of entropy production
the external potential that drives the system out of equilibrium [8]. In that sense, it is possible to
establish relations between the transport coefficients such as nonlinear conductances, non-equilibrium
noises, and the third cumulant. In all these cases, the transport coefficients are computed at the
non-equilibrium configuration. In particular, Lépez et al. [26] found that the following FDR is satisfied
under equilibrium conditions:

Capy = (ks T)? (Gapy + Gpya + Goap) (29)

where Cop, = (lulgly) are the third-order cumulants. We ignored the indices referring to the spin
degree of freedom appearing in the original paper as in our system we have spin degeneracy due to
the absence of a magnetic field. Here, we checked for the fulfilment of the previous relation at stalling
conditions far from equilibrium, where all the nonlinear transport coefficients G, g, are computed
under non-equilibrium conditions. Note that this can be rewritten as

Cupy =3 (ksT)* Gl gy (30)

where we understand G, 4,) as the symmetrization with respect to the three indices, G, g,) =
(1/31) (Gu,py + Gayp + Gpya + Gpay + Gyup + G )

We explored the fulfilment of Equation (29) when stalling currents are present in the system,
with G,g, again computed with help of FCS (see Appendix B). Figure 5 represents the third cumulant
fluctuation relations. The case in which I; = 0 is shown in Figure 5a when J; = 0 and in Figure 5b
when J; # 0. In these two scenarios, the FDRs are fulfilled. However, when the cumulant relation
involves currents from both the drive (either I3 or I;) and the drag (either I; or I) subsystems, then the
corresponding FDR is no longer satisfied. Finally, for completeness, our last result is shown in Figure
6, where the FDT and third-order cumulant relations are displayed for cases where the system is not in
a stalling configuration. As can be seen, none of these relations hold, as expected.

254



Entropy 2020, 22,8

(a) (b)
@ —
o
1k 4
S ooa ] 0
£
S
g =
EX o 0
— Sll — Sl]
%TGy - — - %TGy — — -
-0.04 1 1 I -0.1 I I I
150 75 0 75 150  -150 75 0 75 150
‘ d
© B @
ET 000031  2KTGuy - = - . 4 00011 4
o s
E=l e A
S 0 7 o——" - - - - - -
¢ = ’ _ -
- -’ L - -
S X 000031 P 1 -0.0011 4
- L - --- Si3
ATGs - = =
L L L L L L
150 75 0 75 150 -150 75 0 75 150
|q|Vas/hT lq| Vi3 /T

Figure 4. Fluctuation—dissipation theorem S5 = 2kgTG(, g) for: (a) the strong coupling regime for the
drag current, I} = 0 and J; = 0; (b) the locally charge-stalled configuration, I; = 0 and J; # 0; and
(c,d) the drag and drive currents with [; = 0and J; = 0,and I; = 0 and J; # 0, respectively. The rest
of the parameters are those of Figure 3.
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Figure 5. Third-order fluctuation—dissipation relations Cyg, = 3 (kBT)2 G(a,py) for: (a) the strong
coupling regime for the drag current I; = 0 and J; = 0; (b) the locally charge-stalled configuration
I; =0and J; # 0; and (c,d) the drag and drive currents for I; =0and J; =0,and I; = 0and J; # 0,
respectively. The rest of the parameters are those of Figure 3.
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Figure 6. Fluctuation-dissipation theorem in a non-stalled configuration I; # 0 and J; # 0 for: (a) the
drag current; and (b) the drag and drive currents. Fluctuation—dissipation relations in a non-stalled
configuration I; # 0 and J; # 0 for: (c) the drag current; and (d) the drag and drive currents. The rest
of the parameters are those of Figure 3.

4. Conclusions

We provide evidence for the validity of the fluctuation-dissipation theorem and Onsager’s
reciprocal relations far from equilibrium at stalling configurations where I; = 0. Additionally,
we successfully tested the fluctuation relations for the third cumulant in which all the transport
coefficients are calculated at stalling but far from equilibrium. The positive results are good news,
as they confirm that there are indeed some situations in which a system driven far from equilibrium
enjoys near-equilibrium properties, and can therefore be analyzed by means of the well-known
theoretical models of equilibrium thermodynamics.

A possible extension to this work is to investigate the behavior of stalling currents and the validity
of the non-equilibrium relations with transport coefficients at stalling configurations in cases where the
system exhibits purely quantum effects, such as quantum transport under the preservation of phase
coherence when higher-order tunneling effects are included.

Author Contributions: Formal analysis, R.L. and L.M.; Investigation, R.L. and L.M.; Methodology, R.L. and L.M.;
Project administration, R.L.; Software, L.M.; Supervision, R.L.; Validation, R.L. and L.M.; Writing — original draft,
R.L.; Writing — review and editing, R.L. and L.M.

Funding: L.M. acknowledges the SURF@IFISC program. We acknowledge the the MICINN Grant No. MAT2017-82639
for its financial support.

Acknowledgments: We thank David Sanchez for enriching our work with fruitful discussions and his useful
remarks. Finally, we acknowledge the indirect help of Jong Soo Lim for providing some of his previous work,
which helped in understanding some of the theoretical framework.

Conflicts of Interest: The authors declare no conflict of interest.
Appendix A. Bisection Method

To find the roots of the drag current at a certain point of parameter space, we make extensive use
of the bisection algorithm. Firstly, we fix the value of the biases V}; and V;3. We are now interested in
finding V34 such that I; (Vyp, Vi3, Vas) = 0. Let f(x) = I (V12, Vi3, x). We iteratively seek two points a
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and b such that f(a)f(b) < 0. Since I; is continuous, which implies there is a root lying in the interval
(a,b). To find this root with a tolerance €, once we have localised such points, where € represents the
largest value for the width of the interval centered at the point that we ultimately accept as a root,
we proceed as follows:

We define ¢ = (a + b) /2.

2. Iff(c) =0or (b—a)/2 < e we accept c as a root and stop.

3.  Otherwiseif f(a)f(c) < 0, we redefine b = ¢ and return to Step 1. If not, we redefine a = c and
return to Step 1.

Despite the fact that the width of the interval decreases only linearly with this method,
thus making it rather slow, it is always ensured to converge if there is a root lying inside the original
interval. Furthermore, for a highly nonlinear function, which may present a behavior that is difficult to
picture, such as the drag current, this method is far superior to non-fixed interval algorithms such as
the Newton method.

Appendix B. Full Counting Statistics and Computation of Cumulants

Despite this method being extensively discussed in References [27,28], a good understanding of
it has been crucial for this work. However, several different approaches are found in the literature,
and therefore we consider it adequate to clarify the precise path we have taken. The derivation that
follows closely follows the one found in the additional material of Reference [26].

The central quantity we are involved with is P ({ny,n,1n3,1n4};t) = P ({n}; ), the probability
that n; electrons have been transferred through the terminal j. The associated cumulant generating
function (CGF) F ({x};t) follows from

exp [F({x};t)] = {E} P ({n};t)exp (iZXj”j> (A1)
n j

From the CGE, we can obtain the desired cumulants by taking partial derivatives with respect to
the counting fields x; at x; = 0:

Cpgrs = 95}1 a?xza;mafmf( {x};0) . (A2)
=
Then, the current cumulants in the long-time limit are simply given by
dcC
(R 1115) = (—qyrrorrss e (a3)
t—o0

However, in general, the expression for the CGF is difficult to obtain and handle, and must be
computed recursively. We first introduce the operator £() as the Fourier transform of the entries of
our matrix £(0) = L satisfying ¢p = L£p. When only sequential tunneling is considered, it is obtained
by adding counting fields to the off-diagonal entries of £, with a plus (minus) sign when the transition
corresponds to an electron entering (leaving) the corresponding lead (we skip the details). For our
matrix (Equation (11)), it assumes the form

I, —TI; Ifelt 4T etz TFelts T eins 0
- d ° L L
Lo = | Do malee T -y 0 E A IV
Tye % 4T e i1 0 —y, —TF ¥ e 4 oS elx2
0 73*3*1')(3 + 7473*"7(4 7;("%1 + 72*6*1')(2 —yiF - 7;

257



Entropy 2020, 22,8

In the long-time limit, the CGF can be written as

F{xh:t) = Aolx)t (A5)

where Ag(x) is the minimum eigenvalue of £(x) [27]. If we are able to compute it, then the current
correlations easily follow from Equation (A3) as

<If1§l§[j> = (—q)pratres 3&13?)(28;?(3815'%4/\0()() . (A6)
=

To calculate Ay (), we have employed Flidnt’s method, which is discussed now. First, we write

L(x) as )
L(x)=L+L(x) (A7)

where £ = £(0) and £(x) = L(x) — £. Next, we define operators P = |0)(0| and Q@ = 1 — P,
where [0) = (po, pu, pa, p2)" and (0] = (1,1,1,1) are the left and right null eigenvectors of L. Clearly,
PL=LP=0and QL = LQ = L. To determine the CGF from Equation (A5), we must solve

LE10(x)) = [£+ L] 0(0) = Ao(x)I0(x)) (A8)
By choosing (0| 0())) = 1, it follows that
(0[20(x) = LI0(x)) = Ao(x) = (OIL(x)I0(x)) (A9)
and using Q on |0()) we also find
10(x)) = 10) + Q[0(x)) (A10)
From Equation (A8), using that £ and Q commute and Q% = Q, we obtain
Ql0(x)) = Qo) — £]* QL()I0(x)) (A11)

We now define

R[A0(0)] = QL ~Ao(x)] ' Q (A12)
and substitute Equation (A11) into Equation (A10) to find
00x)) = 10) = R [Ao(x)] £(x)10(x)) (A13)
so that finally
0(0)) = {1+ R M0 £(x)} " o) (A14)
and therefore using Equation (A9) we arrive at

Ao(x) = (01 £(0) {1+ R [Ae(0)] £(x)} " 0) (A15)

We now Taylor expand the previous expression. In our case of four counting fields, £(x) is
expanded as

L(x) = LI (ixy) 4 £OLO0) (jx5) 4 £OO10) () 4 £O00D) (s )4
+% [Z(Z’O’O’O)(i)(l)z + E(O/Z,O,O)(iXZ)Z + E(O’O/Z’O)(i)(3)2 + [:(0,0,0,2)(1'%4)2+
+ 2L000) (31 ) (ixa) + 2L 8010 (ixy ) (ixz) + 2L 300D (i) (ixa) +
+ 2L019) (ix) (ixs) + 2L 00 (i) (ixca) + 200 (ixa) (ixa) | + O () (A16)
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where we use £(0) = 0 as follows from the definition. Similarly we obtain for R [Ag(X)]
(with R(0) = R)

R [A0(x)] = R+ RO (ix7) + ROW (i5) + RO (i3) + RO (ix) + 0 () (A17)
where

ﬁ(pqrs) aP aq oo E( ) , ’R(F’/q/r/s) aP aq ol 9% 'R[)\O(){)}

IX1iX2 TIX3 TN 0 X1 1X2 TIX3 TIX4 (A18)
x=

x=0

From the definition in Equation (A1), it follows that 7 ({0};¢) = 0, so that A¢(0) = 0, and therefore
R = 0L 'Q. This operator satisfies LR = RL, RLR = R, and LRL = L and is therefore called the
Drazin pseudoinverse. It can be shown that for a matrix of rank 4 it can be computed as

R = (a3) 2 LB} (A19)
with the rules
ﬁo =1 ap = 1 BO = 14 (AZO)
L1 = LBy ay = —Tr(Ly)/1 By =L1+a1ly (A21)
Ly = LB ap = *Tr(ﬁz)/z By = Ly +ayly (A22)
L3 = LB, a3 = —Tr(L3)/3 (A23)

Furthermore, it is possible to prove that the first derivatives of R, which are required for the
computation of the third-order cumulants, satisfy

R(1000) — R2 (o] £(1000)|0) (A24)
RO0100) _ 122 (o £(01,00) |0) (A25)
R0010) _ 12 0] 5(0,0/1/0)|O> (A26)
R(O001) — R2 (g £(0001)|0) (A27)

Finally, we find Ag() in the form of a power series,
Ao(x) = 01 £(x) [1 = REG) + (RER))* =] 0) (a28)

or, explicitly,

/\O(X 0|{ (1,0,0,0) (1X1)+£(0100)(1X2)+L( 010)(1X3)+E(0001)(1X4)

+%{ (2000) (jx1 )2 4 £0200) ()2 4 £O0020) (jx5)2 + £0002) (jx )24
+ 28000 (31 (ixz) + 2L0010) (i31) (i) + 22000V (i ) (i) +
+ 220110 (ix5) (ix3) + 220100 (ixy) (ixa) +2L00MD (ix3) (i) —
— 2LRDO)R £000) (jx; )2 — 2 £AOOOR £O00) (jx 1) (ix5) —
— 2LIOOORLOMO (i) (ix3) — 2LV RLOVON (ixy ) (ixra) -
— 2LOTOOR L0 (j5) (ixy) — 2LOMOORLOT) (ix5)2
— 2 OO0 R FO0L0) (3 (ix3) — 2LOLO0 R £OOO1) () (ixy) —
2LOOVOR LI (ies) (ixy) — 2L OOPORLOTIN (ixe3) (ix2) —
725(0,0,1,0)735(0010)(1)(3)2725( 01,0) 70 #(0,0,0,1) (IXS)(1X4)
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2£(0001)RE (1,0,0,0) (1X4)( ) 2,5(0’0’0’1)73,[,(0’1’0’0)(i}(4)(i)(2)*
— 2LO00DR L0010 (i) (ix3) — 2L OOVRLOOD ix, 2] +0 () o) (A29)

We can now apply Equation (A2) to compute all cumulants recursively. To first order, we get

(except for a factor of t)

Cioo = (0] £ 0) (A30)

Cow00 = (0] L0199 |0) (A31)

Cooro = (0] L0019 |0) (A32)

Cooor = (0] £0001) |0) (A33)

To second order, we obtain

Caooo = (0] £2000) 2 £(1000) 2 £(1000)|0) (A34)
Conoo = (0] £(0200) _2£(0100) 2 £(0100) |y (A35)
Coozo = {0 £0020) _ 5 #(0,0,10) 72 #(0,0,1,0) |0> (A36)
Coooz = (0] £(0002) _2£(0001) 2 £(0001) | (A7)
Ciigo = (0] £(A00) — £(LO00) R £(0100) _ £(0100) R £(1000) o) (A38)
Cioto = (0] £(MOA0) — £(LO00) R £(0010) _ £(0010) R £(1000) o) (A39)
Cioo1 = (0] £(1001) _ £(L000) 2 £(0001) _ E(OOODRﬁ (1000)|0) (A40)
Corto = (0] £OA0) — £OLO0) R £0010) _ £0010) R £(0100) o) (A41)
Cotor = (0] £O101) _ £0100)2 £(0001) _ F0001)73 £(0,1,0,0) gy (A42)
Coont = (0] 20011 _ £0010) 2 £(0001) _ F0001)7 £(0,0,10) gy (A43)

and the same procedure is applied to higher-order cumulants. The expressions become rather
cumbersome, but the recipe is clear and easy to use with some algebra.
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Abstract: Almost any interaction between two physical entities can be described through the
transfer of either charge, spin, momentum, or energy. Therefore, any theory able to describe these
transport phenomena can shed light on a variety of physical, chemical, and biological effects,
enriching our understanding of complex, yet fundamental, natural processes, e.g., catalysis or
photosynthesis. In this review, we will discuss the standard workhorses for transport in nanoscale
devices, namely Boltzmann’s equation and Landauer’s approach. We will emphasize their strengths,
but also analyze their limits, proposing theories and models useful to go beyond the state of the art in
the investigation of transport in nanoscale devices.

Keywords: electronic transport; thermal transport; strongly correlated systems; Landauer-Biittiker
formalism; Boltzmann transport equation; time-dependent density functional theory;
electron—phonon coupling

1. Introduction

Some of the most spectacular advancements in the description of nature have come from the
observation that apparently diverse effects are in reality based on the same physical principles. One of
these is the realization that whatever interaction between two entities happens through the exchange
of some physical quantity, either momentum, energy, spin, or particles. It is, therefore, of paramount
importance to be able to describe how this transfer happens at a nanoscopic level, since these
principles are usually fundamental to understand more complex systems, such as materials for energy
applications, biological systems, and so on [1-4]. For example, it is now clear that our current inability
in reproducing solar energy conversion that takes place normally in plants is related to the difficulties
in understanding how light is transformed into an electrical current inside a leaf, in particular how the
carriers are split and then move away from the light-receptor centers. At the same time, one key point
in this energy conversion process is how excess energy is dissipated. Nature has developed for the
leaf feedback mechanisms avoiding it being burnt if storing too much energy—these self-regulating
mechanisms are yet outside our understanding and only recently with the advancement of both
theoretical and experimental methods have some breakthroughs have been made [5,6].

In this review, we will discuss some of the most common approaches of widespread use in the
nanoscale transport community. Here, we assume that a “device” of size ranging from 1 to a few
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hundreds nm is connected to some macroscopic metallic leads that can induce electrical and energy
transfer through the device. We will focus on two fundamental models to describe this transport: on the
one hand we will discuss the Landauer’s formalism for quantum transport. This is valid when the flow
crosses the device essentially without being scattered, i.e., in the so-called ballistic regime: an accurate
description when the mean free path of the particles, i.e., the distance between two scattering events,
is larger than the dimensions of the device. On the other hand, we will consider the Boltzmann’s
equation for transport. Here, we assume particle are effectively described by a distribution function
and they can be scattered by particle—particle interaction, impurities, or by the device. In this case,
the mean free path must be small, otherwise the description through an out-of-equilibrium distribution
function does not hold. Both theories can be equally applied to the problem of energy and electric
current transport, i.e., to the description of the dynamics of electrons and phonons. The ability of
treating on essentially equal footing electrons and phonons allows for a comprehensive description
of the device maintaining somewhat a consistent level of accuracy. In general, the outcome of the
theory are the transport coefficients [1,2,4]. They serve in describing how the device responds to
external stimuli such as a thermal gradient or a bias voltage. We will therefore focus on the electrical
conductance ¢, the Seebeck’s coefficient S, and the electron and phonon thermal conductances x, and
Kp, respectively.

After having introduced the fundamental models, we will discuss some of their uses,
generalizations, and other methods applicable to the intermediate regime where the mean free path is
comparable with the dimension of the device. In particular, we will discuss the role of electron—electron
and electron-phonon coupling in modifying the transport coefficients. The review is organized as
follows: Section 2 introduces Boltzmann's equation and Landauer’s quantum transport formalisms.
We will discuss their formulation using the most advanced electronic structure methods and discuss
critically their advantages and limits. This section also allows us to introduce a consistent notation
for the rest of the presentation; In Section 3 we will discuss some recent attempts to go beyond the
standard approaches. We will explore, for example, the role of electron-phonon interaction and strong
electron correlation in affecting the transport coefficients, and introduce theories and models that allow
description of these effects efficiently while maintaining the strength of the general formalisms; Finally,
Section 4 contains an outlook of some potential lines of further investigation.

2. Static Approaches: Semiclassical and Quantum Transport Approaches

The calculation of the transport coefficients of a nanoscale device requires an accurate description
of both electron and phonon (or, whenever translational invariance is broken, vibrational) properties.
This description is used into standard methodologies to evaluate the transport coefficients and
afterwards, e.g., the figure-of-merit of thermoelectric energy conversion. In this review, we will
describe two of these methods, namely the Boltzmann'’s transport theory which can be seen as
a semiclassical method since it is based on the evaluation of the distribution function through
velocities and density of states of the device, and the Landauer’s approach to quantum transport,
which on the other hand describes a ballistic particle transfer through scattering between states in
the leads [1,2,4]. There are many Approaches, however, of high scientific significance due to their
accurate description of particle-particle interaction that we will not discuss here. One of these is the
rate equations formalism [7], which can be made extremely accurate and describe strongly correlated
system, but its wild scaling with the number of states reduces its applicability to either simplified
models or small systems.

2.1. Semiclassical Boltzmann Transport

To calculate macroscopic transport coefficients, such as electronic or thermal conductivity,
one needs to analyze the microscopic processes happening when electrons are scattered by phonons or
impurities in a metal or semiconductor. The idea is to treat the electronic excitations as particles and
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follow their motion over time. For example, an electron in a metal exposed to an electric field E gets
accelerated to a velocity v, and over time gains the kinetic energy

Ae = vEL. 1)

However, the velocity of the electron cannot grow forever as the electron will be scattered sooner or
later with impurities or by phonons, changing its direction and losing part of its kinetic energy. If we
do not know the exact microscopic details of how this scattering happens, we might just consider
a macroscopic relaxation time 7. This is the average time an electron gets accelerated by the electric
field before being scattered, i.e., the time between electron—phonon transitions. After the collision
takes place the particle starts again with its acceleration parallel to the electric field until further
scattering. The averaged velocity (over time and many different scattering events) due to acceleration
and scattering is responsible for the finite electrical conductivity, as the current density is J] = nev,
where 7 is the electron concentration and e its charge.

Let us now consider the conductivity of a metal or semiconductor in more details. An electron
in a crystal occupies states according to its distribution function f(r, k, t), giving the probability of
finding an electron at position r and time ¢ with the crystal momentum k. At equilibrium, when no
fields or temperature gradients are applied, this is given by Fermi function,

1
follo T) = =kt 5 17 ?

where u is the total chemical potential and €, (k) the energy of an electron in the n-th band with
momentum k, kg the Boltzmann’s constant and T the temperature. However, if we now apply,
for example, a potential bias, electrons will get excited and the actual distribution functions shifts
to higher energies. The equal interplay between acceleration on the one hand and collisions and
scattering on the other, will possibly set up a steady-state condition. When we switch off the electrical
field again, the system relaxes back to its equilibrium state.

In 1872, Boltzmann laid down an equation for f connecting thermodynamics with non-equilibrium
kinetics [8]. Although this was long before the birth of modern quantum mechanics, his transport
theory consists of a probabilistic description for the one-particle distribution function f(rk,t).
This equation for out-of-equilibrium situations is called the semiclassical Boltzmann transport equation
(BTE). Here, we will lay down the basic equation and see how to solve it for systems which are close
to equilibrium, while in Section 2.2 we review a fully quantum-mechanical treatment for transport
properties. As mentioned before, we will treat crystal electrons as semiclassical particles fulfilling
the equations

dk 1

@ o ®
1

v = 5Vien(l). @

Here, F, is the force acting on the electron and v its velocity. Considering the total change in time of
the distribution function

df(rk,t)  of of 1
ar ot Toatar Tarok ar TV VS gFe Vi ®

o Of | okof

and setting it equal to the scattering rate, we arrive at the BTE,

of 1 of
STV Vet Vif=o) 6)

scatt
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The BTE states that the electron distribution changes due to in- and out-going scattering events
which together form % |scatt- Although the Boltzmann transport theory is probabilistic, it is still classical
as in quantum mechanics one cannot specify the canonical variables p and r simultaneously, due to the
Heisenberg uncertainty principle, ApAx > . The assumption here is that the uncertainty in space and
momentum is small enough compared to the system size that the electrons can be treated as particles.
The scattering term, % |scatt, is the most interesting and complicated part of the BTE which accounts for
the change of the electron probability due to electron—electron or electron-phonon scattering events,
which we can treat quantum mechanically.

Without taking care of the exact form of the underlying scattering mechanisms, the constant
relaxation time approximation (CRTA)assumes that the system seeks to return to the equilibrium
configuration fj in a time T after being disturbed by external electric or temperature fields. In general,
7, known as relaxation time, should depend on the direction of the scattering events, energy, and on
the exact scattering mechanisms. However, the easiest version of the CRTA assumes one constant
momentum relaxation time for all modes, direction, and scattering processes and the collision term
can be written in the form [9,10]

of (r,k, t) _ f(r k1)
ot scatt o T (7)

Here, the rate of change of f(r,k, t) due to collisions is assumed to be proportional to the deviation
from the equilibrium distribution, 6f = f — fyo. To better understand the meaning of the CTRA,
we assume no electric field present (no F.) and spatial uniformity (gradient with respect to r vanishes).
Then the BTE, Equation (6), in the CRTA takes the form

of _ _of
ot T’ ®
which has the familiar solution for the deviation from equilibrium
Sf(t) = of(0)e /. ©)

This means that the perturbed system relaxes with a typical timescale T to its equilibrium
distribution. The CRTA is a crude approximation that fails for certain systems as we will see later in
this section.

When going beyond the simple CRTA and concentrating on the phonon-limited carrier mobilities
in semiconductors, it is common to consider the electron—phonon scattering as the dominant
mechanism. Furthermore, we adopt the notation for crystals in k-space, as such, the distribution
function depends on the band index # and the momentum k, i.e., f,i. Therefore, for time-independent
and homogenous fields, the BTE in k-space reads

% af nk _ af nk

ot ok ot | (10)

Neglecting magnetic fields and considering only the presence of electric fields, the BTE for
phonon-limited carrier mobilities is given by [11,12]

U _ :
EE% = ﬁ Yo J dqlgmno(k, q)
X {fnk [1 - frnk+q} [(”qv +1)0(en — €mk+q — hqu) + ”qv‘s(enk — €mk+q + hqu)] (11)

_fmk+q [1 - fnk] [(nqv +1)0(€enc — €mk+q T hqu) + nqv‘s<€nk — €mk+q — hqu)} }

The first two terms in the second line represent scattering of an electron from energy band n
with momentum k into the state m, k + q by either the emission (g, + 1) or the absorption (14y) of

266



Entropy 2019, 21, 752

a phonon with frequency wgo. The factor fyi[1 — fik+q] make sure that the initial electronic state is
occupied while the final state is unoccupied. The last two terms represent the backscattering events
from state m, k 4 q towards the state in the energy band n with momentum k. Here, Q) is the volume
of the primitive unit cell, the /-functions ensure energy conservation during the scattering process and
nqo is the Bose-Einstein distribution function, giving the probability that a crystal phonon with moment
q is present in branch v. The term g0 (k, q) is the electron—-phonon coupling matrix element, which is
normally calculated within density functional perturbation theory [13-15]. Taking the derivative with
respect to the i-component of the electric field E;, and linearizing the equation around the equilibrium
distribution f 0 we get a direct equation for dg, f,1c [12]

P 910 Qr, f k
af};:( - ea€:ivnk,iTnk+ "k Z/ 5 +q |gmno (K, q) 12)

X { [1 + gy — fnk}é(enk ~ €mk+q + hqu) + [nqy + fy?k}é(enk — €mk+q hqu)}/

where the inverse of the electron energy relaxation time due to the electron-phonon interaction is
(T, p) 2;l Z / dq|gmmo(k,q)| { [11oq + foscs q) O (€nk — Emkcrq + Ivgo)

+[1og + 1= fics o) $(€ntc — €mkcrq — Ivgo) } (13)

Note here that the Fermi distribution for the electrons is a function of both temperature and
chemical potential, while the phonon distribution function depends on the temperature. Equation (12)
is the linearized BTE (LBTE) for phonon-limited carrier transport and is valid for most semiconductors
where the acceleration of the free carriers is smaller than the thermal energy, eEvt < kgT. We would
like to point out that in contrast to the CRTA, here the relaxation time depends on the energy and
momentum of the electron. The LBTE needs to be solved self-consistently for the variation of the
electron distribution function with respect to the applied field, therefore also called iterative BTE.
By neglecting the integral part of the LBTE, one obtains an equation for the distribution function which
can be solved directly,

afnk _ 9 ;(1)k
BEZ- - eaenk Unk,i Tnk (14)

and is called the self-energy relaxation time approximation (SERTA). This is due to the analogy
that the relaxation time 7 in Equation (13) is related to the Fan-Migdal electron self-energy by
*1 = ZImZEII\(/I [13]. In the SERTA, the electron mobility takes the form

. eQ) afy?k(T/P‘)
Vut‘B(T’ “l/l) - 7W HEZCB/devnk,avnk/ﬁTnk(Tr ]") (15)

When calculating the mobility within SERTA or LBTE, the relaxation time in Equation (13) is evaluated
on a very fine k-grid by integrating over a dense q-grid for the phonons. This direct Brillouin zone
sampling is computationally very demanding and hence cannot be applied for complex material
screening. For example, the EPW code [16] calculates the electron—phonon coupling on a coarse grid in
the BZ and maps it onto a fine grid by using Wannier’s function interpolation. This method is however
still very costly and therefore other approaches are needed to tackle the calculations of thermoelectric
transport properties. One approach solves the BTE within the CRTA, Equation (7): This leads to good
results for electrical conductors where the energy relaxation time depends weakly on the electron
energy, €, [10,17] and allows for a single constant relaxation time. However, when performing the
CRTA one needs to estimate the relaxation time within simplified models, such as the deformation
potential (DP) approximation [18-20] or Allen’s formalism [21,22]. For most materials, T is strongly
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anisotropic, depending on energy and carrier concentration and the CRTA cannot be applied and
we need to revert to first-principles computations for predicting 7,x. The so-called electron—phonon
averaged (EPA) approximation [23] turns the demanding integral over momentum in Equation (13)
into an integration over energy. This is done by replacing quantities that depend on momentum
(|8mno(k, q)|?, woq) by their energy-dependent averages (g2 (€, €mk+tq)  @p)- This allows a much
coarser grid in the electron energies therefore reducing computational cost drastically. Technical details
and derivations can be found in [23] and the final relaxation time within the EPA is given by

v Ye,uT) = % E {g%(e,e +@y) [1(@o, T) + fOe + @y)] ple + @y)

+ (6,6 — @) [1(@o, T) + 1 — e — @o)]ole —@)}, (16)

where @, is the average phonon mode energy and p(¢) is the electron density of states per unit energy
and unit volume. The EPA is implemented in the Quantum Espresso suite [24] and Boltztrap code [25].

Figure 1 compares the relaxation time calculated within Equation (13) by the EPW code and
within the EPA, Equation (16) for (a) HfCoSb and (b) HfNiSn. We see that the relaxation times in both
approaches are in a good agreement, and furthermore that approximating the relaxation times with
a constant, as done in CRTA, might fail for predicting the electron conductivity of real materials.

(a) HfCoSb p=0.06 T=400°C (b) HfNiSn n=0.01 T=400°C
20 80

L 1'|=4fs I - 1'=|3OfsI I
— EPA — EPA

15 e EPW 60 o EPW b
& &2
- 10 — 40F i 4
~ ~ N 2

i

5 b 20F 1 E

0 1 1 1 0 1 1 1
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eleV e/eVv

Figure 1. Relaxation time for (a) HfCoSb and (b) HfNiSn calculated within the EPA (Equation (16))
compared to the complete sampling of the Brillion zone (Equation (13)). Both approaches are in
good agreement and the CRTA (dashed blue line) might fail to accurately calculate the conductivity.
Reprinted with permission from [23]. Copyright (2018) John Wiley and Sons.

2.2. Landauer-Buttiker and Quantum Transport

The Landauer—Buttiker’s formalism (LB) is an elegant and economic way to study transport
through molecular devices [26-28]. The idea at its core is deceivingly simple: The overall device is
separated into three or more regions of space, one of which the central, usually characterizes the
physical properties of the overall system. The other regions serve as sink or reservoir of electrons.
The only property that is required from the reservoirs is that they connect smoothly with the central
region, thus avoiding backscattering due to the contacts, and that they are either perfect emitters
or absorbers, in the sense that one electron entering them cannot leave through the central region
again. This requires also that their spectral density is essentially flat over a wide range of energies
around the Fermi level of the central system. LB then describes the currents flowing between the leads,
through the probability that an electron entering through the lead i is scattered by the central region,
and thus leaves through the lead j, T; ;. In this respect thus the LB formalism is a scattering theory and
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the transmission probability is its central ingredient. Finally, one sums over all the allowed electron
energies [26-28]. The electrical current is therefore given by

1= [ de (fie) - fi(e) Tisle), a7)

where f; is the Fermi function describing the electron occupations of the lead i, e is the electron charge,
h is the Plank’s constant, and the factor 2 takes into account spin degeneracy. Generally, the Fermi
functions depend upon the local temperature T; of the lead i, their chemical potential y;, and the bias
applied to the lead, V;. Without loss of generality, in the presence of the bias V; we can assume that
u; = 0. It is important to realize the important approximation of the model: we are assuming that
the occupation of the electrons entering from the lead i, depends only on the equilibrium physical
parameter of the i lead. Finally, we have also assumed that the central system is essentially one
dimensional—in this case, the density of states and the electron velocity cancel out to achieve the
universal result of Equation (17). A thorough discussion of the derivation and the physical implications
of the Landauer transport theory goes way beyond the aim of this review and the topic has been
discussed in a large number of publications, including reviews and monographs [1,2,4,26-29].

Given the current I from the different terminals, one can easily calculate the two-terminal
conductance, in the linear-response regime 6V; ; — 0,

=
1,

m lij = g/def/(e)T‘ i(e) (18)
=0 5V1,] h WA

where f'(e) is the first derivative of the Fermi function with respect to the energy, and oV;; = V; — V;
the bias difference between the leads i and j. The simplest most striking prediction that the LB theory
makes is the quantization of the conductance. Indeed, in the low temperature limit, f' — 6(e — Ef)

where Er is the Fermi energy of the leads, so that [26-28]

2¢?
ij = TTi,j(EF) (19)
If we assume that N; ; states are fully open to transport current, i.e., their transmission probability goes

to 1, we have 5
Tij = Z%Niri
as it has been carefully verified in many experiments, for example in the quantum Hall effect [30,31]
or in the ballistic regime of a quantum point contact [32-34]. Equation (19) is what is normally called
the “Landauer’s formula” and it is deceivingly simple. However, its physical interpretation has
puzzled the community for many years. In particular, one question that arises naturally is from
where this conductance originates. Clearly, we are describing an almost ideal system. The electrons
flow seamlessly from the leads to the central region, and they are transmitted to the other lead with
probability 1, so there is no scattering in these states. In addition, yet, we have a finite conductance
thus associated with energy loss and potential drops. The solution of this apparent paradox lies in
the different dimensionality of the leads with respect to the central system. The “adjustment” of the
wave-function to adapt to the reduced dimensionality of the center causes a charge accumulation at
the interfaces between the center and the leads, no matter how smooth these interfaces are. This extra
charge that accumulates as soon as we contact the central region, creates a finite bias that opposes the
one applied to the reservoir and finite conductance appears.
One of the main advantages of the Landauer’s formalism lies in treating on the same footing
different physical problems. For example, the study of thermal transport both by electrons and

(20)
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phonons can be easily recast in the form of a scattering problem for the electrons and phonons trough
the central region. Therefore, the energy current due to the electrons is evaluated as

=2 [ dete— ) (fle) ~ fie)) Tyj(e) 1)

while the phonon contribution is given by

Iij = % / dww (ni(w) = nj(w)) T j(w), @2)

where 7; is the Bose distribution of the phonons in the lead 7 kept at temperature T;. In the following
we assume that T; = T + AT;, where AT; defines the difference between the temperature of the lead i
and the reference temperature T. As we did for the electrical conductance, we can calculate the thermal
conductance for the phonons and the electrons by simply assuming that a small thermal gradient is
present between the leads. Moreover, if one assumes that both the potential and thermal gradient are
small, the Landauer formalism reduces to the Onsager linear-response out-of-equilibrium transport
theory, with the advantage of providing a reliable way of calculating the Onsager’s coefficients [1,35].
Indeed, if one defines the functions (Lorentz’s integrals)

L, = / de(e — )" f'(€) T j(€) 23)
we have the Onsager’s relations (restricting ourselves to only two leads)
I = EL AV — §L AT (24)
- n 0 hT 1 ’
Je = —%L AV+£L AT (25)
e = I 1 nT 2 .

The electron transport coefficients, namely the electrical conductance, the thermal conductance
and the Seebeck’s coefficient then follow from their physical definitions and are expressed solely
in terms of the functions L,. Indeed, the electrical conductance is ¢ = [/AV|p7=¢ = 2¢%Lo/H,
the Seebeck’s coefficient is S = —AV/AT|;—9g = —Ly/eTLy, while the thermal conductance is
k= ]/AT|—o =2(Ly — L% /Lo)/hT. Notice that the physical definition of the transport coefficients is
in general not restricted to the linear-response regime, so one could define the Seebeck coefficient as
S = —AV/AT also for large AT, but the expression in terms of the Onsager’s coefficients and Lorentz
integrals is valid only in linear response.

Moreover, the formula for the phonon energy current Equation (22) predicts the surprising result
that the low energy phonons, usually responsible for large part of the energy transport since they have
the longer wavelength, have a quantized thermal conductance,

2 2
K:kBrf
P 3k

T, (26)

per each open channel, as predicted by Rego and Kirczenow [36] and verified by Schwab et al. [37].
Although the Landauer’s theory appears quite natural, its physical implications are far reaching as
we have seen with the introduction of the quantum of conductance [30-34] and the quantum of thermal
conductance that has been observed [37]. However, the maximum strength of the theory is reached
when it is coupled with the standard method for electronic structure calculations, namely static
Density Functional Theory (DFT), and the non-equilibrium Green’s function formalism (NEGF).
These two methods made the Landauer’s theory and the Boltzmann’s transport theory, the base for
almost any recent transport calculations. DFT indeed produces a reliable description of the system
energy and electron density and of the electronic band structure, both necessary for the evaluation
of the transmission probability although its use on transport modeling should be taken with care
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as we will discuss shortly. Starting from the DFT description the NEGF method can express the
transmission coefficients T; ; in terms of the Green’s functions of the leads and those of the central
system. This combination allows for an almost parameter-free description of quantum transport at the
atomistic level and it is the actual reference method for this kind of physical problems.

So far we have not discussed how to calculate the transmission probabilities between the leads i
and j, T; ;. This is usually a difficult problem since to make an accurate description of the scattering
process we need modeling the states of the electrons inside the central region. Fortunately, we can
combine the predictive power of DFT, which precisely describes the states of the system with the
NEGF formalism which (as we will see) allows calculation of the transmission probability. A detailed
derivation of all the results would be outside the scope of this review. There are a significant number
of detailed monographs dedicated to the subject and we refer the interested reader to them [29,38].
Given a Hamiltonian H, we formally define its advanced and retarded Green’s functions through
(we set from now on /i = 1)

{—i% - H} GRA (L) =5(t— 1), 27)
with the conditions GR(t,#') = 0if t < #' and GA(t,#') = 0is t > t'. An equivalent definition of the
retarded and advanced Green’s functions is based on their representation in terms of energy, i.e., after a
Fourier transform,

[(E+in) — HI GRA(E) =1 (28)

where 7 is an infinitesimal positive quantity that serves to establish the analytical properties of GR(4).
When we select a basis set for the Hilbert space, the Green'’s functions (as well as the Hamiltonian)
can be represented as infinite matrices. However, normally only a certain number of states will be
relevant for the dynamics (in our case those close to the Fermi energy or electrochemical potential y)
and therefore only a submatrix of the total Green’s function will be needed.

For the study of electron transport through a nanoscale device, we need to describe the system
(a central region) coupled to at least two external reservoirs. A pictorial representation of a device is
given in Figure 2.

Figure 2. A central region (C) is connected to two external energy and particle left and right reservoirs
(L and R) by metallic contacts. Current flows between the reservoirs when a temperature or bias
gradient is established. The reservoirs are semi-infinite, namely the left proceeds from —co to C,
the right goes from C to +-co.

If separated, each of these objects can be described by their Hamiltonian and Green’s functions.
When we couple the central region with the reservoirs, we are effectively introducing an interaction
potential that couples states in the reservoirs with states in the leads. We introduce the following
notation: Hy with A = L, R, or C is the Hamiltonian of the left or right reservoir, or the central
region, respectively; Vap with AB = RC, LC, CR, or RL represent the coupling between the central
region with the left and right reservoirs, respectively. V4 can be for example a tunneling Hamiltonian
between the lead and the central system. We assume there is not direct coupling between the reservoirs,
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so electrons must travel through the central region. In a matrix representation, we can think of the
total Hamiltonian as a matrix whose sub-matrices are H4 and Vg,

H Vie 0
H= VC L HC VC R . (29)
0 Vrc Hr

Clearly, one could define a Green’s function associated with this Hamiltonian whose dynamical
equation can be written as

E—-H +iy  —Vic 0 GR Gk 0
—Ver E—Hc+iy —Ver G, GE G& | =1, (30)
0 ~Vee  E—Hg+iy 0 GR. GR

where we have used the previous notation for the elements of GR, and 1 is the identity matrix.
This system of equations can be solved exactly to first express GK- and G& in terms of G¥ and then,
solve for the latter. The exact result is

GE:[E-&-ir]—HC—Zer:[E—HC—ZR - 31

where we have defined the self-energy
£R = Ve (E +in — Hi) ™ Vie + Vi (E+in — Hr) ™' Vi, (32)

where with a + we indicate the Hermitian conjugate of V. Notice that in Glé the analytic properties are
finally determined by those of the self-energy ¥ and one can therefore neglect the terms i5. A similar
equation can be derived for GZ. It is important to point out that in this theory, the leads enter both
in the interaction with the central region through V¢ and Vic and their isolated Green’s function

-1
Glry = (E +in — HL(R))

To solve this set of equations, one assumes that there is no particle—particle interaction in the
leads. This approximation can be justified by observing that they are thought of as normal metals
and thus the screening length is relatively small, thus particles can be treated as weakly interacting
if not independent. Within this scheme, Gy ) are uniquely determined and can be used to arrive at
the lead self-energies to solve for G¥ and G£. In these last quantities, however, we cannot neglect
particle—particle interaction. Due to the complexity of the problem, the exact many-body Hamiltonian
Hc is replaced with the so-called Kohn-Sham (KS) Hamiltonian, where an external single-particle
potential (generally unknown) serves to mimic the effect of the interaction (see also the following
sections for somewhat deeper discussion) [39-42]. The KS Hamiltonian is tailored to reproduce the
exact ground-state energy and density, but it often produces an accurate description of the total Green’s
function of the isolated central region.

Finally, we connect the Green'’s function formalism with the Landauer’s approach to quantum
transport, since the former gives direct access to the transmission probability T; ;. This step can be done
by, for example, introducing the states for the left and right leads and solve the scattering problem
with the central region by using the Green’s functions. After some manipulations, one writes the
transmission function T(E) as [43]

T(E) = Tr (TLGATRGE) , (33)

L(R)
models to the calculation of the transmission probability are clearly possible, and provide the tools

where I'y (g) =i (ZR - Z‘L“( R)> is the so-called spectral function of the leads. Other approaches or
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to investigate novel and interesting phenomena, see for example Ref. [44] and the references in that
focus issue.

This formalism is suited to describe both thermal and electrical transport since we have never
specified the kind of gradient we maintain between the reservoirs. We are therefore entitled to consider
both a bias voltage, and a temperature gradient that modifies the particle distribution functions in
the reservoirs.

Quite naturally the formalism can be extended to consider the transport of energy through
phonons or more generally vibrations. Formally, the only difference lies in replacing the particle
Green’s function G with the vibration Green’s function D which is a solution of

<w2 +in — Hz,) DR(w) =1 (34)

where w is the frequency of the vibration, and H, the Hamiltonian function describing the vibration
dynamics. Following the same steps as before, one can introduce the transmission function of the
vibration T(w) and derive a formula similar to Equation (33).

It is fair to examine here some of the problems one might face when using DFT + NEGF for the
electronic transport calculations:

e  The original static DFT is in principle limited to provide the ground-state density and energy
and nothing about the excited states of a system. Whatever result one extracts from the theory
for example on the band-gap, band structure (and related quantities) should then be checked
with independent methods and with experiments. It is well known for example that DFT with its
standard approximation tends to underestimate the band-gap of many materials.

e Although the use of the NEGF greatly extends the applicability of the theory, the approximations
behind the standard DFT codes makes the results not suitable for strong correlated materials
where the effect of the Coulomb interaction is stronger. We will come back on this point later.

e  Even if the description of the excited states happened to be accurate, the electron and heat
current are dynamical quantities so in principle beyond the static approach of DFT. There are
methods to go beyond this limit while remaining in the realm of a time-independent formalism.
“Dynamical corrections” need to be included in the theory to take dynamics into account [45,46].

3. Advanced Methods

The Boltzmann’s equation and the Landauer-Biittiker formalism can be considered the de-facto
standard methods to study transport in nanoscale devices, especially when coupled with accurate
electronic structure calculations of the Density Functional Theory. It has become clear however that
these methods have severe limitations that reduce the ensemble of systems to which they can be
applied. In this section, we will discuss some attempts we made to go beyond and include novel
effects outside the limitations of the state of the art. Some of these methods are admittedly in their
infancy and a consistent amount of work is necessary before they can be admitted in the mainstream
research methods. We hope that this section can motivate the interested readers to enter this enticing
field which still bears endless possibilities.

3.1. Time-Dependent Density Functional Theory

Density Functional Theory proved an important point of quantum mechanics, i.e., that some
exact properties of a many-body interacting system can be extracted from the study of a Doppelganger
of non-interacting particles [40-42,47]. The simplification brought about cannot be underestimated:
it is enough to think that an interacting system requires an exponentially large Hilbert’s space for
its accurate numerical description, while the same system of non-interacting particles requires only
a polynomially large (with the number of states) space. This difference separates being able to treat
just a few particles from studying complex molecules or crystal unit cells. There are two prices to
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pay for this simplification; On the one hand, we are ready to give up the complete information about
the many-body system and study only certain quantities. The standard DFT formalism was aimed
at the ground-state energy and density. Any other quantity that is then obtained in DFT must then
be checked against other models; On the other hand, the particle-particle interaction is replaced in
the so-called Kohn-Sham (KS) system with a non-linear external potential (known as KS potential)
that is assumed to depend only on the single-particle ground-state density [39,47,48]. This potential
is clearly unknown and we need to revert to some sort of approximation to make the theory useful.
Standard approximations have been developed and admittedly work rather well especially when
dealing with atoms and small molecules, but failure is also around the corner. Indeed, some of the
standard problems of DFT in dealing with transport calculation derives from a combination of these
points: band-gap and transport coefficients are normally not static ground-state properties, and the
standard approximations for the KS potential consistently underestimate the electronic band-gap.
Finally, there are classes of problems that are outside the realm of standard DFT, such as for example
the calculation of spectroscopic quantities. A detailed introduction to DFT would bring us far away
from the scope of this review. We can however, recommend excellent introductory material for the
interested reader [40-42,47].

There are many ways to go beyond these issues. We can formulate the theory in the time domain,
in such a way that we can extract the exact time dynamics of some of the quantities of the many-body
interacting system [49-51]. This is the case of Time-Dependent Density Functional Theory. Meanwhile,
we can improve the standard approximations of the KS potential, for example introducing corrections
that take into account some part of the strong correlation between particles in certain regimes [52].

In the next sections we will introduce the Time-Dependent Density Functional Theory
(TDDEFT) [40,41] and its further extensions and later the so-called “i-DFT” that can be used to introduce
strong correlation effects, such as Coulomb blockade into a TDDFT formulation (see Section 3.2) [53,54].

3.1.1. Time-Dependent Density Functional Theory—Fundamentals

The standard approach of DFT is based on the existence of a one-to-one mapping between the exact
ground-state density and the external potential applied to a quantum system [48]. Furthermore, one can
extend this mapping between two systems, the many-body interacting “real” system and a many-body
non-interacting “Kohn-Sham” system [39] where we introduce an effective external potential
(dubbed KS potential). This second mapping allows for calculating quantities, i.e., the ground-state
density and energy, belonging to the real system by using the KS system, bringing about a large
numerical simplification. DFT is therefore the actual method of choice for calculating electronic
structure of materials as well as the energies of complex atoms and molecules [42]. The KS mapping
was later extended to the dynamics of the single-particle density by Runge and Gross [55]. The existence
of this second mapping lays the foundations for performing, e.g., numerical spectroscopy with so-called
ab-initio methods, i.e., without—in principle—any fitting parameter [41]. TDDFT can theoretically
be used for studying electrical transport (see for example Ref. [56-60]), but the information it can
provide is only partial [61,62].

It appears natural therefore, from the Runge and Gross’ theorem (RG), to establish a mapping
between the single-particle current density and the external (vector) potential applied to the real
system [63]. In principle, this Time-Dependent Current-Density Functional Theory (TDCDFT)
should be the workhorse for charge transport calculations, but the lack of suitable approximations
for the KS’s potential renders the theory of little use at the moment. One the other hand,
addressing thermal transport phenomena within DFT would require instead a non-equilibrium theory
based on either a local temperature or a local energy density. Recently, a functional theory based on
the excess energy density as the basic variable has been presented [64,65] which is suited to study
thermoelectrical phenomena in the static and time-dependent case. In the following, we will look only
at standard TDDFT.
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The RG theorem proves that for a general time-dependent Hamiltonian H that describes the
dynamics of a many-body system,

H(t) = T+Vint+vext(t) (35)

there exists a one-to-one mapping between the single-particle density n(r, t) and the external potential
Vext (1, 1), given the initial conditions. Here, T is the kinetic energy, Vit the particle-particle interaction,
and Vey the time-dependent external potential. The proof of the theorem assumes that both density
and potential can be expanded in series around the initial time: a detailed proof and the physical
assumption on which this is based can be found in [40,41]. It has since been shown that there exists
a system of non-interacting particles whose single-particle density is identical at each time to n(r, t) of
the interacting system [66]. The existence of this mapping then allows investigation of the dynamics
of a system by looking at its non-interacting Doppelganger. Clearly, this brought about the same
reduction of computational requirements as the standard DFT. However, as was the case with DFT,
we are exchanging some of the physical information about the system to reduce the dimensionality
of the problem. It should then come as no-surprise that TDDFT cannot for example reproduce the
exact single-particle current density j(r, t) since some of its contributions are not derivable from the
knowledge of the density alone [67]. Indeed, if starting from the continuity equation,

on(r,t) = =V -j(r,t), (36)

we need to conclude that given the density we can determine only the longitudinal part of j(r, t)
and any term jr such that j(r,t) = jp(r,t) +jr(r,t) and V - jr = 0 cannot be obtained from
Equation (36). However, some information about the total current can still be obtained from the
continuity equation [68].

As with the static DFT, we study the KS Hamiltonian Hks,

Hys = Ts + Vs (37)

where Ts = Y, p?/2m is the kinetic energy of the non-interacting particles of mass m and momenta
{pi}, and Vks = Vext + Viixe. The potential Vi is the sum of the Hartree and exchange—correlation
(xc) potentials that replace the particle-particle interaction. By the RG theorem Vi, is a functional of
the density only, Viixe = Vixe[1](r, t), and the dynamics of the single-particle density of the real system
evolving with Hamiltonian H is identical to the dynamics of the single-particle density evolving with
Hys. Notice that in principle, given the particle-particle interaction of the original many-body problem,
Viixc is a universal functional and does not depend on the external potential Vext. This implies for
example that if we are interested in the dynamics of an electronic system, Vi is the same either if
we are studying an atom, a molecule, a slab, or a bulk, i.e., this potential is transferrable to whatever
system we want to study. This high transferability makes finding reliable approximation for V.
difficult. Indeed, the universal Vi for the electrons contains the physical information needed to go
from the standard weakly interacting Landau’s Fermi liquid, to the strongly correlated Wigner’s crystal
or superconducting phases. Notice that for the electrons, a large part of Vi is given by the Hartree’s
(mean-field) interaction, and only a relatively small contribution of the overall energy determines all
these interesting phases of matter. Therefore, standard approaches to build some approximation to
Viixc are based on interpolating the numerical solution of the many-body problem with some known
high- and low-density limits [69,70]. Many of these approximations are static. To apply them to the
dynamics, a common method is the so-called adiabatic local density approximation (ALDA). In this
approximation, we take a static Vi [#1] and replace the static density with the instantaneous density
n(r,t). Indeed, this neglects the history of the system—while we generally expect that the xc potential
to be history dependent. For example, one can show that in this approximation there is not relaxation
induced by particle-particle interaction, in contrast with observation [71,72].
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3.2. Strongly Correlated System

The Landauer approach coupled with Density Functional Theory through the Non-Equilibrium
Green’s function formalism provides a reliable and presently standard method to calculate the transport
properties of many devices. Countless are the successes of the theory, far beyond its actual range of
applicability. Nonetheless there are many reasons to go beyond this state of the art. A simple reason is
that we need alternative methods to provide benchmarks for the DFT + LB theory and learn from them.
Indeed, the strength of DFT lies also in adapting the KS potential to the cases under investigation.
On the other hand, we might need to go beyond some of the fundamental approximations and thus
build a different theory.

Meanwhile, a striking example of the limits of the DFT + LB theory is related to one of the most
fascinating outcomes of the so-called mesoscopic physics. Imagine that the device we place between
two leads is a small molecule or a quantum dot. Both these systems are thought of having just a few
states close to the Fermi energy (or the electrochemical potential). Imagine that one electron enters
the device and occupies the lowest energy state. The next electron then faces an increased energy
barrier, since beside the energy to occupy the lowest available energy states it also musts overcome the
Coulomb interaction with the other electron. Normally, for large devices this energy is small since the
electron density is “diluted”, but when we consider small dots or molecules, the Coulomb interaction
might be the dominating energy scale and transport can be “blocked” until either the first electron
leaves the device or the second electron has enough energy to overcome the Coulomb interaction.
A standard DFT + LB approach to this problem is most likely going to fail. Indeed, DFT describes the
electrons through their density and therefore it does not produce the sharp energy transition due to
the addition of a single electron. This effect goes normally under the name of “Coulomb blockade”,
and it is the epitome of a strongly correlated system where essentially the dynamics is dictated by
electron interaction and correlation.

However, it is important to point out that these limits are related to our ability of inventing KS
potentials able to describe certain physical regime. Per se, DFT can describe the ground-state properties
of the system and thus give the exact energy for the single and double occupied electron states. It is our
inability of encoding these effects into the KS potential that makes the theory fails. Indeed, progress has
been made to include strong correlation into the KS potential into a pure DFT scheme. Here, we will
consider the extension of DFT to deal with the Coulomb blockade regime. To do that, we first need to
extend the theory to include the transport properties in a more accurate way. As we will see this step
corrects the electronic conductance that is calculated from the standard DFT approach.

Our starting point is the observation that generally speaking, the quantities we want to investigate
in studying the device of Figure 2 are the local electron density n(r) and the total current I flowing
from one reservoir to the other due to a thermal gradient or a bias voltage. For the moment, we will
focus on the steady state, i.e., we assume the system has evolved from an initial state and approached,
as time goes by, a constant density and current. The external fields that we are applying are the
bias voltage V and the gate voltage v which controls the electron density and the total number of
particles. We assume that the nuclear potential is not affected by the electron distribution and it is,
therefore, constant (we assume uniform temperature). We see V and v as a perturbation and #(r)
and I as response. To make a DFT theory for this set of variables, we need to prove that they are
uniquely connected. Specifically, that the pair #(r) and I uniquely determine both V and v. Moreover,
we are interested in n(r) and I only inside a finite region, R, surrounding the device. The proof of the
theorem entails the evaluation of the Jacobian of the mapping {n(r),I} — {v(r),V} forany r € R.
One can prove that around V = 0 this mapping is invertible since the Jacobian does not vanish [53].
We can therefore follow the KS construction and find a system of non-interacting particles which can
reproduce 7(r) and I of the original system by replacing the interaction with the external potentials

Vg[n, I} V[n, I} + ch[ﬂ, 1] (38)
vs[n, I = o[n, I +ogn, I (39)
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where Vy. and vy, are the xc potentials (in vf,. we include also the Hartree mean-field potential).
n(r) and I in the KS system are determined by

n = 23 {f <€, VZV“) Aulte)+ f (e+ Vzv“) AR(r,e)} (40)

RN

where Ay = (r|G(e)Tg()G'(€)[r) is the right (left) KS partial spectral function, G(e) the
Green’s function of the KS system in the energy representation, and T () the transmission function
(see Equation (33)). Notice that the right-hand sides are expressed solely in terms of KS quantities,
while in the left-hand side we have the many-body quantities. In these expressions, the gate voltage v
enters in the KS partial spectral function and the transmission coefficient only. We want now to derive
an expression for the electrical conductance o and the Seebeck’s coefficient S solely determined from
the KS quantities. We are focusing here to the linear-response regime, i.e., we will take at the end the

limit V' — 0. In this limit Vi (1) vanishes for any density n, since otherwise we would have a finite
current when no external perturbation is present in contradiction with the theorem of uniqueness.

We have - B .
=1+ <5 ) SEF () T(e) = (1+ = )as (42)
V=0 < dv |y_y/) J 271 v ly—o

where we have introduced the KS conductance 05 = [ de/27f’ (¢) T(¢). To evaluate the term in the
round bracket we use the standard chain rules, remembering that our “variables” are n(r) and I,

,_ 4L
%

dVye
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X
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since the last term vanishes in the linear-response regime, Vyc(1);=¢ = 0. Inserting this expansion into

the previous result, we find finally
s
o= ——" (44)
1- BX;C g

Notice that in general we should expect that a‘a/l“ # 0, and therefore o # os. Although for the
conductance we can find a general correction, for the Seebeck’s coefficient we can derive an analytical
formula only in the Coulomb blockade regime. In this particular physical condition, we are interested

only in the total number of particles, N = [, drn(r) and we can prove that

dN
§=-4L 45)
r-m
if p is the electrochemical potential. In a similar way as for the conductance, we find for the Seebeck
coefficient in the Coulomb blockade regime, the expression

a'Uch
oT

S=S5s+ (46)
where Sg is the Seebeck’s coefficient calculated from the Landauer’s approach [73]. We can compare
our result with the standard DFT approach and with the exact solution provided by the rate
equations [7,74,75]. Other approaches are possible to directly calculate the transmission probability,
with and without interaction in the central region [44,76,77]. A direct comparison of the different
methods would be desirable, but difficult, since one needs to map each set of parameters appropriately.

Figure 3 report the Seebeck’s coefficient as calculated from the exact many-body theory, the rate
equations, the correction Equation (46) and the standard DFT approach Ss. We notice that the
dynamical correction brings Ss to coincide with the exact results. Notice that N in this case is well
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reproduced both by the dynamical approach as well as by the standard DFT, therefore in this case is
a variable less sensitive to the approximations used. When considering more than one level, we use
a constant interaction model. For the case of two levels, we find some discrepancies from the exact
theories and the present approach (see Figure 4). This discrepancy originates from using the total
number of particles N rather than the single occupation of each states 71 and 7, as our basic variables.
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Figure 3. The Seebeck’s coefficient for a single quantum dot in the Coulomb blockade regime as
a function of the gate voltage v. The exact many-body (MB), the rate equation (RE), and the present
theory (DFT) agree quite well in the whole range of the gate voltage v considered. The standard KS
gives the correct asymptotic but fails in the central region. In cyan, we plot the effect of the dynamical
correction ag’%‘“. In the inset, we report the total number of particles N. All the theories agree quite
well for this quantity. Reprinted from [73]. Copyright (2015) American Physical Society.

20

10

S (a.u.)
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Figure 4. Left pane, the total number of particles N and the occupation of the second (highest) energy
level as a function of the gate voltage v. While the first is exactly reproduced by both DFT and rate
equations, the second differs. This originates differences also in the Seebeck’s coefficient which is
sensitive to the single particle occupations (right pane). These differences are however small compared
with the correction brought about by the dynamical approach. Reprinted from [73]. Copyright (2015)
American Physical Society.

3.3. Open-Quantum Systems

The theory of open-quantum systems (OQS) is a well-established model of the coupling between
a system and an external environment [78-80]. Usually, the latter is considered to be a large reservoir of
particles, momentum, and energy which it freely exchanges with the system. The coupling between the
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system and the environment might be quite general, and we can couple more than one environment,
with different macroscopic thermodynamic parameters, such as temperature, chemical potential,
or pressure, at a time. Usually the theory is used to describe the dynamical relaxation of the system
towards some steady state or thermal equilibrium, but it has found also widespread applications
in quantum optics, transport modeling, surface hopping in chemical reactions [81], and so forth
(see also Section 3.4).

In the following, we are making some standard assumptions about the environment(s):

(1)  They are usually unaffected by the coupling with the systems. This means that the macroscopic
parameters that describe the environment are not modified by the coupling with the system.
This holds (partially) true if the environment is thought of as made of infinitely many degrees
of freedom.

(2)  The external parameters are controllable in time, and due to the previous assumption, there is
no-feedback between the environment and the system. For example, this implies that the
establishment of an electrical current between two reservoirs at different chemical potentials
through a molecular junction does not change the electrochemical potential, the temperature,
or charge distribution in the reservoirs.

An efficient way to deal with the environment is therefore by tracing out its degrees of freedom
and introduce effective correlation functions, (usually dependent on the thermodynamic parameters)
with which we describe the dynamics of the quantum system. The way the tracing is made defines the
accuracy of the theory. Normally, one can identify two large families of approximations: in the first
(called Markovian) the system dynamics does not have any history. The state is determined solely by
the evolution at a certain time f and does not depend on any time # < t. On the other hand, we have
non-Markovian dynamics where the state of the system depends on all or some of the previous times,
the history of the system, since the initial time #. Into this second family, we then distinguish how
the kernel generated by the coupling with the environment depends on the actual state of the system.
Let us therefore establish some notation and the standard results. In the following, we will work on
a formulation based on the density matrix. Alternative formulations based on a vector state in the
Hilbert space are possible and will be briefly discussed later [78,80].

We assume that a system S is coupled to an environment B. When there is no coupling,
the dynamics of S is described by a set of operators acting on a Hilbert space Hg, while the dynamics
of B by operators acting on Hp. We further assume that these Hilbert spaces are disjoint, therefore the
total Hilbert space of S + B is given by Hs ® Hp, and thus the state of the total system S + B is
represented by a density matrix in this space. It follows that each operator of S commutes with each
operator of B. We now assume that there is a coupling between S and B, Hsp = 2;7 AiVis ® V; p where
Vi s(p) is an operator acting on the 7 g space, and 4 the number of operators coupling the system
with the bath. Notice that this expansion is always possible due to the commutativity between the
operators acting on S and B. For the moment, we focus on the simple case 4 = 1, but the extension to
the more general case g > 1 is trivial, so in the following we set A; = A. The density matrix of the total
system evolves according to the von-Neumann equation,

ap(t) = —1 [H,p(], @)

where H = Hg + Hp + Hgp is the total Hamiltonian. A basis set for the total Hilbert space is given by
{lj, k) } where j is a element of the basis for g and k for Hp.

Clearly, if we are interested in the dynamics of the system S only, this equation contains much
more information than needed, since it entails the dynamics of the many degrees of freedom of the
environment. We wish therefore to obtain an equation of motion for a density matrix, where the
coupling with the environment is effectively described by some macroscopic parameters. This is
possible when one assumes that the coupling strength A is sufficiently small and we can use
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perturbation theory. The exact definition of the “smallness” of A is actually an open problem, and we
will refer the interested reader elsewhere [78-80].

The aim of the theory is to obtain the dynamics of the reduced density matrix, whose element
(1,7) is given by

(or)ij = (trgp);; = ) (i,klolk,j). (48)
keHp

The reduced density matrix is therefore a density matrix in the space of the system S, but its
dynamics is determined not only by Hg but also by the dynamics of the environment. The derivation
of the equation of motion for the reduced density matrix of the system stems from the dynamics of the
density matrix of the bath when decoupled from the system, pg(t) = exp (—iHgt) pp(0) exp (iHpt),
the factorization of the initial density matrix p(0) = ps(0) ® pp(0), and the vanishing of the quantum
averages of the bath operators V3 to first order in A, trp (ppVp) « A2 (this latter assumption can be
relaxed and would eventually contribute an effective force that redefines the system Hamiltonian).
This standard procedure leads, after some straightforward algebra, to [78,80]

d .
B — —ilHs,ps] + A% [Vs, M (t) = M(1)] (49)
where we have defined
ot . ’ . ’
M(i’) _ /0 dt’C(t, t/)e—sz(t—t )Vsps(t/)esz(t—t ) (50)
and
C(t,t') = trp [pp(0) Vp(£) Va(t')] (51)

is the bath correlation function, where V(t) = exp(iHpt)Vp(0) exp(—iHpt) is the time evolution of
the bath operators. Equation (49) is difficult to solve for two reasons. On the one hand, the density
matrix is usually a dense matrix of N 2 elements, if we have N elements in the basis set. This usually
requires long computation time and large amounts of memory. On the other hand, it contains the full
history of the system and at each time step this history needs to be evaluated to calculate the integrals
in Equation (50). To deal with the first problem, one can formally derive an equation of motion for
a state vector in the Hilbert space that somewhat resembles a wave-function dynamics [82-84] and
scales as N although its physical interpretation is slightly different [85,86]. However, the state vector
follows a stochastic dynamic and therefore one needs to average over the realizations of the stochastic
noise, balancing the computation gain of the reduced dimensionality. To deal with the second problem,
we have two ways: we can neglect completely the history of the system, or retain part of it. In the
Markov approximation [78-80] one arrives to the so-called Lindblad equation [87]

d ) A2

% = —i[Hs,ps] + 5 (Vs Vsps + ps Vs Vs — 2V5 psVs). (52)
Lindblad proved that this equation is the most general master equation of the Markov’s type that

preserves trace, positiveness and hermiticity of the density matrix pg at each time steps up to second

order in A. A second approach follows from the observation that up to second order in A, ps(t) = ps(0).

Then, up to the same order of approximation, one replaces p(#') with p(t), in Equation (50), i.e.,
t . / . /
M(t) ~ / dt'C(t, t')e Hs=1) vgpg(£)etHs (1), (53)
Jo
This operator is now local in time, although one needs to calculate it at each time step. In the

absence of any magnetic field, the bath dynamics satisfies time-reversal symmetry, and this is usually
sufficient for C(t,t') = C(t — t'), especially if p5(0) is the equilibrium statistical density matrix of the
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bath pp eq = exp(—BHpg) where p = 1/kpT and T the bath temperature, we can separate this integral
and arrive at the Redfield master equation [80,88].

To describe thermal transport within OQS one needs to couple two environments, kept at different
temperature, locally to the system

d )
% = —i [Hs,ps] + L [ps] + Lr [pS] (54)

Here, £ and Ly describe the left and right environment, respectively. A possible nano-junction
attached to two environments is shown in the upper panel of Figure 5. Furthermore, in Figure 5a one
sees the voltage drop over the device induced by the applied temperature gradient, AT, due to the
environmental coupling. One can observe a linear-response regime for small AT, a regime of rapid rise
in AV and for large temperature gradients a region where the voltage drop has reached saturation due
to the finite size of the system. The inset of Figure 5 shows the thermopower S = —d(AV)/d(AT) that
presents a maximum in response to the thermal gradient at AT =~ 0.25 [a.u.].

Y\

Figure 5. Upper Panel: Nanostructure connected locally to two reservoirs kept at different temperature.
Below: Voltage drop, AV as a function of the temperature gradient, AT. The inset shows the
thermopower S = — % Reprinted (adapted) with permission from [89]. Copyright (2009) American

Chemical Society.

Note that all the shown quantities correspond to the steady-state solution of the master equations,
where the long-time limit has been reached. In general, the OQS approach is not limited to this
regime and can also be used to study time-dependent phenomena in nanoscale devices beyond linear
response [78,90,91].

For the purposes of this review, it is relevant to point out that the quantum system is in
general a device made of interacting electrons and ions. This, as we have seen (Section 3.1.1), is an
incredibly complex problem and the coupling with the external environment does not make it simpler.
Fortunately, we can use the theory of open quantum systems with (time-dependent) DFT to extract
from a non-interacting open-quantum system information about the dynamics of the interacting
one [58,83,92-95]. More surprisingly, it has been shown that the DFT for open-quantum system can
be constructed in such a way that the KS system can be made closed. This means that the effects of
the external environment can be included in the KS potentials [94,95]. However, it is not clear how
one could effectively build the required KS potentials which would be depending on the coupling
operators between the system and the environment. These difficulties have so far hindered a full
development of the theory and its routine application for the investigation of transport in complex
devices and physical conditions.
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3.4. Influence of Decoherence onto Thermoelectrical Transport

The observation or measurement process acting on a classical object does not influence its
physical properties. However, when entering the nanoscale world and the quantum realm one
needs to revisit some classical concepts. In the smallest nanodevices, electrons are usually set
up in coherent superpositions, and a global measurement would destroy most of their coherence
changing the dynamical response. Decoherence does not only originate from the measurement by
a macroscopic observer, but it also occurs when the quantum system interacts locally with another
quantum system. This effect of local quantum observation covers a variety of situations, such as,
e.g., local electron-phonon coupling and continuous [96] or frequent [97] quantum non-demolition
measurements. It has been shown that decoherence influences the efficiency of energy transport in
biological [98-100] and molecular devices [100-102] and is responsible for the decoupling of the
system from the environment via the Quantum Zeno effect [103,104].

While standard static transport approaches such as the BTE or LB fails in catching up with these
dynamical effects, methods such as TDDFT or OQS approaches allow for the time-resolved study
of electron transport and energy dissipation. Additionally, methods describing the dynamics within
a density matrix formalism are suitable to study the role of coherence in nanoscale transport devices.
Indeed, by modeling decoherence as an additional environment within a master equation approach,
one can include it into a consistent thermodynamic formalism [105],

Lplps] = Ap[2[B)(Bles|B) (Bl — 1B)(Blos — os|B)(Bl]- (55)

Here |B) is the ket-vector representing the state of the spatial region where decoherence takes place.
This bath can change the coherence of the system and has; in contrast to classical reservoirs that are in
a thermal ensemble state, no temperature is associated with it [106]. This formalism has been applied
to a ratchet-like device shown in Figure 6a [105].

By changing the on-site energy levels on the parallel horizontal branches of the device
(graphically indicated by the size of the spheres), a spatial asymmetry is introduced. In the upper
branch the on-site energies increase from left to right in equal proportion, while in the lower branch
this is reversed. Therefore, the device acts as a quantum ratchet by the presence of two rectifiers on
each branch in opposite direction. This directional transport device driven by thermal and quantum
fluctuations has a preferred electronic current direction, in this example clockwise. In the ratchet,
a hot (H) and cold (C) reservoir introduce a thermal gradient in the device while at the same time the
decoherence bath (D) is acting at site

dps

T [Hs, ps] + Lulos] + Lclos] + Lplos]. (56)

While in this set-up energy is exchanged via the baths, particle current is then confined inside the
device. Figure 6b shows the electronic current at steady state for the upper branch. Please note that by
charge conservation, the current in the lower branch is exactly the same but flowing in the opposite
direction. Here, red indicates a positive current, from left to right in the upper branch. If no decoherence
is applied (Ap = 0), the current is flowing in the clockwise direction through the ratchet. Increasing
the decoherence, the ring current decreases until its direction gets reversed. It has been found that the
local quantum observer cannot only control the particle current but also energy currents in direction
and strength inside the device [105]. This demonstrates that in thermoelectric nanodevices the current
and heat flows are not only dictated by the temperature and potential gradients, but can also be
manipulated by the external control of the coherence of the device. This effect is illustrated in Figure 6c.
When looking at the whole picture the water flows uphill, however, when we only observe current
flow in the circle (and ignore the rest of the illustration) it seems the water flows down the channel.
This apparent paradox mimics the coherent superposition of two quantum states (water flowing
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up/down). The observation process in specific parts of our system can tune between these two
quantum states and hence change the ‘physical response of the nanodevice’ in a controlled way.
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Figure 6. Influence of quantum decoherence on the thermoelectric flows in a quantum ratchet shown
in (a). (b) The electrical current in the upper branch can be seen. The current can change direction
as a function of both Ap and AT. (c) Artistic illustration (copyright K. Aranburu) of the role of
decoherence in a nanodevice: When observing inside the black circle, it appears the water flows
down the channel, instead, by looking at the whole painting the water actually flows uphill. This
apparent paradox mimics the coherent superposition of two quantum states (water flowing up/down).
By observing at specific parts of our system one is able to tune between these two states and hence

change the ‘physical response of the nanodevice’ in a controlled way. Parts (a,b) are adapted from [105].
Copyright (2017) SpringerNature.

3.5. Time-Dependent Thermal Transport Theory

Modeling thermal transport and thermoelectric effects at the nanoscale is difficult, because besides
the intricacies of certain materials, we lack a working definition of temperature at those scales. Indeed,
the concepts of equilibrium and thermodynamic limits are difficult to extend to the case of a few
electrons or phonons strongly localized in a nanodevice. Clearly, also the idea that the leads/reservoirs
have a well-established temperature (distribution function) down to the contact with the device is
an abstraction. Many attempts have been tried to remedy this situation and general extensions of
some thermodynamics concepts to the nanoscale have been attempted [107,108].

One of such attempts is to completely remove the needs for macroscopic reservoirs and leads
by replacing them with an effective radiation of known properties. One might think for example,
of replacing the electrostatic bias with the time-dependent vector potential that produces the same
electric field. A similar attempt can be made with the temperature gradient. We replace the coupling
to the energy reservoirs by two black bodies each radiating according to their own temperature
and spectral properties: the electromagnetic field of the blackbody radiation is then included in the
system dynamics and establish in this way the needed temperature gradient and transport dynamics.
To maintain a steady state and avoid that the energy stored in the device saturates, we assume that
the system is weakly coupled to an external environment at a given temperature. This corresponds to
an experimental set-up; the quantum systems gets excited out of its equilibrium by thermal radiation
and at the same time can release energy to its surrounding. (such as a metal heated up by a laser
and starts to glow). Recent progress has been made to include these quantum-electro-dynamical
effects into an ab-initio formalism [109]. Being able to study and detect the radiation produced by the
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transport dynamics could possibly allow the definition of an effective “local temperature” based on
the electrodynamics theory.

We assume each blackbody to be located far away from the devices, therefore for all our purposes
we will consider the radiation they produce as composed solely of plane waves propagating along the
line connecting the device and the blackbody. In Figure 7 the considered nanodevice is shown and the
left and right blackbody radiation is indicated by Ay and A respectively. While the blackbodies radiate
according to their respective temperature T;, and Ty, the system is interacting with an environment
at temperature Tg. The amplitude of each plane wave of the blackbody field is determined by the
temperature of the blackbody itself. We assume therefore the thermal radiation of the form

Aumﬁj):EO/dQMQn(Qﬂlm»sm&xiﬂt+¢KDL 7)

where n(Q,T) is the Bose-Einstein distribution, Ey = Epe,. Here, Eq is the strength of the
corresponding electric field, where ey is the unit vector in the y direction and k is the momentum of the
photon with frequency Q). We have considered a random phase, ¢(Q)) € [0,27) that ensures the plane
waves are incoherently reaching the device. In principle, there are more realistic, but numerically more
expensive, ways to model the blackbody thermal radiation [110,111]. A comparison of these methods
with the results of Equation (57) is still missing. Due to the coupling with an external environment,
we expect that the system reaches a steady state. This coupling is effectively described through a
master equation where the environmental power spectrum for |w| < w, is

C(w) = 4|wl’n(|wl|, Tg) + 6(-w), (58)

where 6(w) is the Heaviside step function, and w, is a cutoff frequency determined by the scale of
the system. For |w| > w,, C(w) = 0. We apply this model to the case of a device described in the
tight-binding formalism where the electrons are not interacting. In this case, the Hamiltonian for the
system is given by
He=Y Tclc, (59)
(i)

where the operator c; destroys an electron in the site j and T; ; is the hopping parameters. The blackbody
radiation enters here as a Peierls transformation into the Hamiltonian

. [Ri
TU::twexp{AJJ;vdr(AL(Lt)+fAR(ntD , (60)
where t; ; is the hopping parameter in the absence of the radiation. We align the device along the
direction joining the two blackbodies. If one considers initially the case where the blackbodies and

the environment have the same temperature, we see that the dynamics of the system points towards
a steady state with no net energy transport in the long-time limit [109].
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Figure 7. Set-up under consideration. Six tight-binding sites are connected locally to the radiation of

two blackbody at temperature, Ty and Tg. Furthermore, the system is connected to an environment at
temperature Tg. Reprinted (adapted) from [109]. Copyright (2015) American Physical Society.
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In the case of a finite temperature gradient we observe in Figure 8 a turnover of the energy
current, jr, with respect to the flux of energy from the blackbodies. Here, (S) is the time-averaged
Poynting vector indicating the coupling strength to the blackbodies. Indeed, for small fluxes, the energy
current increases when increasing the flux, then reaches a maximum and later vanishes for intense
radiations. The reason for this turnover lies in the finite number of states available to carry energy.
For small fluxes almost all states are empty and there is the possibility to allocate for a larger number
of carriers. When the flux increases, the states fill up, and less and less will be available for conduction,
until essentially all the states will by full and no dynamics is possible [109]. We want to point out that
this theory can be applied to large temperature gradients: the coupling with the black body radiation
is not restricted to linear response, while the system is coupled weakly to the environment [109].
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Figure 8. Thermal current along the x direction for different temperature gradients as a function
of the strength of the coupling (S). For large coupling, the current decreases since the energy level
are all filled, and the dynamics is quenched. Reprinted (adapted) [109]. Copyright (2015) American
Physical Society.

4. Discussion

The investigation of energy and electrical transport in nanoscale devices has recently attracted
a consistent amount of interest for its wide range of potential applications in technology,
biomedicine and energy materials to name just a few. A comprehensive look at the field would,
therefore, require more than a reasonably short review. We have preferred a bird-eye introduction to
what we believe are the actual more promising theoretical methods, the Boltzmann's equation and the
Landauer-Biittiker formalism for quantum transport. These methods are somewhat complementary
since they apply to different regimes, namely a diffusive regime where scattering events are important,
or a ballistic regime where the quantum-mechanical effects are dominant. While these methods
might not be the most accurate for any situation, most of the recent progress in our understanding
of thermal, energy, and electronic transport at the nanoscale is based upon them or some of their
extensions. Both methods benefit from an accurate description of the quantum-mechanical properties
of the material under investigation. In this respect, the method of choice is Density Functional
Theory, since its practical implementation allow for an almost straightforward interfacing with both
the Boltzmann or Landauer theories (the last one through the Non-Equilibrium Green'’s functions
formalism). Therefore, the use of DFT methods for electronic structure calculations (including phonon
and vibration properties) combined with Boltzmann’s or Landauer’s theories is to some extent the
state of the art of modern calculations.

We have briefly discussed the need to go beyond this state of the art both in terms of the limits
of DFT or the limits of the approximations used in the methods themselves. Clearly, this is a very
fertile field of investigation and in most cases it requires novel paradigms. We have exposed a few
here: the introduction of methods beyond the constant relaxation time approximations ameliorates
the description of electron and phonon transport by introducing energy-dependent relaxation times;
The static DFT cannot, in principle, be the theory to study transport, an inherent out-of-equilibrium
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problem. We therefore introduce extension of DFT able to properly take into account the dynamics of
the electrons and show how this theory naturally allows for the description of strongly correlated effect
in nanoscale molecular transport, in particular how it corrects the calculation of the Seebeck coefficient.
We finally introduced the theory of open-quantum system, where the system under investigation is
“open” to an external environment with which it could exchange energy, momentum, and particles.
The external environment might have a passive role of driving an otherwise out-of-equilibrium system
toward a steady or ground state, or an active role in which it drives the system itself allowing for
novel quantum-mechanical effects to be exploited. As the OQS approach describes the dynamics of
the density operator, this theory can be also used to investigate the influence of coherence in quantum
transport devices. This might pave the way for novel strategies to construct quantum devices for
thermoelectric energy conversion, photonics, spintronic injection, and sensing, to just name a few.

Clearly, the previous description cannot be complete. For example, we are aware of other
DFT methods to include thermoelectric phenomena [64,65] or strong correlations [52,112-114] in the
Kohn-Sham system, or an accurate description of vibrational modes and energy transport with classical
methods by solving the Newton’s equations [115,116], or the inclusion of non-harmonic effects in the
non-equilibrium Green’s function for the phonons [117]. Each of these topics deserves a complete
introduction per se.

We hope this review serves both to the young researcher to have an outlook of the actual state
of the art and potential ways beyond it, without striving through the immense amount of literature
currently available and in continuous development, and to the experienced scientist as a reference
where some of the most fundamental results and future outlooks are collected.
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Abbreviations

The following abbreviations are used in this manuscript:

ALDA Adiabatic Local Density Approximation

BTE Boltzmann Transport Equation

LBTE Linearized Boltzmann Transport Equation
CRTA Constant Relaxation Time Approximation
DFT Density Functional Theory

EPA Electron-Phonon Averaged approximation
KS Kohn-Sham

LB Landauer—Biittiker

NEGF Non-Equilibrium Green Function

RG

Runge-Gross

TDDFT Time-Dependent Density Functional Theory
TDCDFT  Time-Dependent Current-Density Functional Theory

0Qs

Open-Quantum Systems

SERTA Self-Energy Relaxation Time Approximation

EPW Electron-Phonon Wannier
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Abstract: A crucial goal for increasing thermal energy harvesting will be to progress towards
atomistic design strategies for smart nanodevices and nanomaterials. This requires the combination
of computationally efficient atomistic methodologies with quantum transport based approaches. Here,
we review our recent work on this problem, by presenting selected applications of the PHONON
tool to the description of phonon transport in nanostructured materials. The PHONON tool is
a module developed as part of the Density-Functional Tight-Binding (DFTB) software platform.
We discuss the anisotropic phonon band structure of selected puckered two-dimensional materials,
helical and horizontal doping effects in the phonon thermal conductivity of boron nitride-carbon
heteronanotubes, phonon filtering in molecular junctions, and a novel computational methodology
to investigate time-dependent phonon transport at the atomistic level. These examples illustrate the
versatility of our implementation of phonon transport in combination with density functional-based
methods to address specific nanoscale functionalities, thus potentially allowing for designing novel
thermal devices.

Keywords: phonon transport; nanostructured materials; green’s functions; density-functional tight
binding; Landauer approach, time-dependent transport

1. Introduction

The accelerated pace of technological advances, which has taken place over the last half-century,
has driven the continuous search for higher speed and cheaper computing with the concomitant
developments of larger integration densities and miniaturization trends based on novel materials
and processes [1]. The negative counterpart of this amazing technological developments consists
in the increasing problems with the thermal management, which is ultimately leading to limiting
the efficiency of many of these technological advances, mostly in the domain of nanoelectronics.
As a response to this challenge, a novel field, nanophononics, has emerged, providing a large variety
of interesting physical effects and potential applications [2-5]. The major goal of nanophononics is
to develop efficient strategies for controlling the heat flux in organic and inorganic nanostructured
materials, and it was originally aiming at realizing thermal devices such as diodes, logic gates, and
thermal transistors [2,6]. However, more recent efforts in the field have triggered radically new
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applications in nanoelectronics [7,8], renewable energy harvesting [9,10], nano- and optomechanical
devices [11], quantum technologies [12,13], and therapies, diagnostics, and medical imaging [14].

An important milestone in the field was the theoretically predicted [15] and subsequently
measured quantization of the phononic thermal conductance in mesoscopic structures [16] at low
temperatures, this result building the counterpart of the well-known quantization of the electrical
conductance in quantum point contacts and other nanostructures (with conductance quantum given
by €%/, e being the electron charge and & Planck constant). Thermal conductance quantization has
also been found in smaller nanostructures, such as gold wires, where quantized thermal conductance
at room temperature was shown down to single-atom junctions [17,18]. The issue is, however, still
a subject of debate (see, e.g., [19] for a recent discussion). In contrast to the electrical conductance
quantization, the quantum of thermal conductance xy depends, however, on the absolute temperature
T through: xy = nZkZB T/3h, with kg being the Boltzmann constant. This highlights a first important
difference between charge and phonon transport. The second one is related to the different energy
windows determining the corresponding transport properties: for electrons, the important window
lies around the Fermi level, while, for phonons, the conductance results from an integral involving the
full vibrational spectrum. Working with a broad spectrum of excitations poses major challenges when
it comes to designing thermal devices such as cloaks and rectifiers [2,4], or for information processing
in phonon-based computing [6].

From the experimental perspective, it is obviously more difficult to tune heat flow than electrical
currents. Unlike electrons, phonons are quasi-particles with zero mass and zero charge, thus they
cannot be directly controlled through electromagnetic fields in a straightforward way. Moreover, while
considerable progress has been achieved in nanoelectronics in the implementation of local electrodes
and gates over very short length scales, establishing temperature gradients over nanoscopic length
scales remains a considerable challenge. In this respect, for characterizing thermal devices, novel
sophisticated experimental techniques have been developed, such as the 3w method [20] and the
frequency domain thermoeflectance [21], pioneered by Cahill et al. [22]. This has led, in turn, to the
modification of atomic force microscopes for thermometry [17,23] and to the development of Scanning
Thermal Microscopy [18,24].

Turning nanophononics into a practical field with specific applications in energy management
requires nanoscale engineering of the thermal transport properties. This approach has been successfully
implemented in nanostructured thermoelectric materials. Even though the fundamental tool to
understand nanophononics—non-equilibrium thermodynamics—is well established at the macroscale,
many open issues remain at the nanoscale, having deep consequences for the development of relevant
strategies to control heat transport in low dimensions. Low-dimensional materials have finite cross
sections along one or more spatial dimensions and a large surface-to-volume ratio; as a result, their
vibrational spectrum and, consequently, the heat transport mechanisms can be dramatically modified
(see the recent reviews in [2—4]). Different simulation tools have been used to study heat transport
in nanomaterials [4,25]. These approaches can be grouped into three categories, although overlaps
between them are clearly possible. The first group includes methodologies based on molecular
dynamics (MD) simulations, the equilibrium versions (EMD) based on the Green-Kubo formula [26],
and the non-equilibrium versions (NEMD) exploiting Fourier’s law [27,28]. The second category
includes approaches based on the Boltzmann transport equation (BTE) [29,30] and lattice dynamics
(LD) [31]. Finally, the last category covers methodologies relying on the Landauer approach, or more
generally on non-equilibrium Green'’s functions (NEGF) [32-35]. All these methodologies have found
extensive application in the prediction of the thermal transport properties of various low-dimensional
materials, yielding correct trends and results in good agreement with experimental studies [36-38].
As it turns out, the thermal response is sensitively determined by different parameters such as surface
boundaries, overall device geometry, spatial confinement, doping, and structural defects [37,39-43].

Moreover, in non-stationary situations with time-dependent external parameters able to affect the
transport characteristics, phonon dynamics becomes crucial. For instance, time-varying temperature
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fields [44,45] or local heating mediated by laser fields [46,47] can be exploited to exert additional control
over thermal transport. Thus, novel non-equilibrium effects such as heat pumping [48,49], cooling [50],
and rectification [51,52] have been theoretically proposed. The description of such phenomena requires
in many instances to work in the time domain, which is very challenging from a numerical point of
view. Although noticeable progress has been achieved in dealing with time-dependent spin [53,54] and
electron [55-60] transport, much less attention has been paid to vibrational degrees of freedom [61-63].

Despite the previously delineated methodological advances to model and understand nanoscale
thermal transport, there are many basic questions about thermal management of thermoelectric
materials, phononic devices, and integrated circuits that must be addressed. In the current paper,
we review our recently implemented atomistic models based on the NEGF technique, allowing to
address transient and steady quantum phonon transport in low-dimensional systems. We have
successfully used our methodology to propose different routes for improved thermal management,
eventually leading to realizing novel nanoscale applications.

The paper is organized as follows. In Section 2, the basics of the NEGF approach to compute
quantum ballistic transport are introduced. We proceed then to review few selected applications by
using the NEGF in combination with a Density-Functional based Tight-Binding approach (DFTB),
which allows addressing nanostructures at the atomistic level with considerable accuracy and large
computational efficiency. The reviewed applications include 2D materials, BNC heteronanotubes, and
molecular junctions. In Section 3, the NEGF formalism previously introduced is expanded to deal with
time-dependent thermal transport by exploiting an auxiliary mode approach. This methodology is
illustrated for a one-dimensional chain and simple nanoscale junctions based on polyethylene and
polyacetylene dimers.

2. DFTB-Based Quantum Transport

2.1. Ballistic Phonon Transport

One of the most powerful methodologies to study quantum (thermal) transport is the
non-equilibrium Green’s functions (NEGF) formalism [35,64,65]. The NEGF method has its origin
in quantum field theory [66], and has been developed to study many-particle quantum systems
under both equilibrium and nonequilibrium conditions. Different formulations were derived during
the early 1960s [67-69]. Thus, Keldysh developed a diagrammatic approach, Kadanoff and Baym
formulated their approach based on equations of motion. Both methods are suitable for studying a
dynamic system in nonequilibrium. For instance, by using the Keldysh formalism, one can obtain
formal expressions for the current and electron density [70]. The method has also been successfully
used to study electron transport properties in open quantum systems [71,72]. Moreover, NEGF has
been recently used on thermal transport investigations not only in the ballistic regime [73-75], but
also including phonon—phonon scattering [76-79]. In this section, we describe the NEGF formalism
to address ballistic phonon transport in nanostructures. Phonon—phonon interactions require the
inclusion of extra self-energy terms, which depend on products of single-phonon Green’s functions, so
that the whole problem must be solved self-consistently; however, this goes beyond the scope of this
review (see [35,64] for more details concerning this point).

The main difference between the NEGF formalism and ordinary equilibrium theory is that all
time-dependent functions are defined on the so-called Schwinger-Keldysh contour (see Figure 1).
However, a simplification occurs when ty; — —co (Keldysh contour). If the interactions are switch
on adiabatically, the contribution from the [fo, o + ] piece vanishes. The information lost by this
procedure is related to initial correlations. In many physical situations, such as in steady state
transport, it is a plausible approximation to assume that initial correlations have been washed out
by the interactions when one reaches the steady state. On the contrary, for the transient response,
the role of initial correlations may be important (see Section 3). Here, we consider the Keldysh contour
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consisting of two branches running from —co to co and from co to —co. Therefore, one can introduce a
contour-ordered Green’s function as [80]:

G(t,7) = —i <TcA(T)BT(T/)>, )
with T¢ as the contour-order operator. Based on it, six real-time Green'’s functions can be defined [35]:
A

) y

)

T (t05 'lﬁ)

Figure 1. Schwinger/Keldysh contour C in the imaginary time plane, C = {t € C,R t €
[tg, 0] t € [to,—pl}. For more clarity, the different contour branches are displayed slightly off
the axes. Time-ordering: time f; is later on the contour than time t, and t is larger than #; [80].

- Thelesser GF, G=<(t,t') = —i (A (¢ BT( ))-

- The greater GF, G” (t,t') = —i (A(t)BT (¥')).

- The retarded GF, G (¢, t) —i®(t —t') ([A(t), BT(#)]).

- The advanced GF, G*(t,t') = z@(t/ —t)({[A (t) BT (1")]).

- The time-ordered GF, G'(t,t') = ©(t — ')G~ (t, ') + @(t’ HG=(t,t').

- The anti-time-ordered GE, GI(t,t/) = O(t' — )G (t, ') + O(t — ') G=<(t, V).

A(t) and B(t) are operators in the Heisenberg picture and ©(t) is the Heaviside step function.
The angular brackets denote trace with the canonical density matrix, i.e., {---) = Tr(p---), with
p=ePH/Tr(e"PH) and p = 1/(kpT), and H is the Hamiltonian of the system. The notation {[A, BT])
represents a matrix and should be understood as (ABT) — <BAT>T.

In equilibrium or non-equilibrium steady state, the Green’s functions only depend on the time
difference, t — t'. The Fourier transform of G’ (t — ') = G (¢, ) is defined as G" [w] = /+ G’ (t)e'“tdt.

Using the basic definitions, the following linear relations hold in both frequency and time domains [35]:

G —G"=G” +G~,
G'+G =G> +G*, )
G'—G' =G +G"

Only three of the six Green’s functions are linearly independent. In systems with time translational
invariance, the functions G and G are related by G[w] = (G'[w])". Hence, under general
non-equilibrium steady-state conditions, only two are independent, with a typical choice of working
with G" and G<, although other combinations are possible. Extra relations are defined in the frequency
domain for bosons [81]:

Gilw]f = - G%w),
G'[~w] = G'[w]", ®)
G<[~w] = G”[w]" = —Glw]* + G'w]" - G"[w]".
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Therefore, based on the last two equations, only the positive frequency part of the functions
is needed. Equations (2) and (3) are generally valid for non-equilibrium steady states. However,
for systems in thermal equilibrium satisfying the fluctuation-dissipation theorem [82], there is an
additional equation relating G" and G=:

G lw] = f(w) (G"w] = G"[w]), )

, -1
where f(w) = (e"%T — 1) is the Bose—Einstein distribution function at temperature T. kg is the
Boltzmann constant. Indeed, the correlation function G= contains information of fluctuations, while
G" — G* describes dissipation of the system. G~ [w] = eP¥G<[w] also applies for equilibrium systems
and, consequently, there is only one independent Green’s function under equilibrium conditions.

In phonon transport calculations, a partitioning scheme is applied, consisting in splitting the
whole system in three regions: one central region (also denoted as device region), connected to two
thermal baths on the left (L) and right (R) (see Figure 2). At the simplest level, the thermal baths can be
considered as a collection of non-interacting harmonic oscillators. All elastic and/or inelastic scattering
processes are therefore assumed to be confined to the central (or device) region. Since we focus on
thermal transport mediated by the vibrational system, the phonon Hamiltonian of the whole system is
given by [80]:

H= Y He+ @)V + uC)TVvRUR + v, (5)
a=L,C,R

where H, = 1(L't"‘)TL't”‘ + %(u"‘)TK"‘u”‘ represents the Hamiltonian of the region o; « = L, C, R, for the
left, center, and right regions, respectively. u* is a column vector consisting of all the displacement
variables in region &, and #* is the corresponding conjugate momentum. The following transformation
of coordinates has been considered, u; = , /mjx;, where x; is the relative displacement of jth degree
of freedom. K* is the mass-reduced force constant matrix. This matrix is the mass-weighted second
derivative of energy with respect to displacement at the equilibrium positions:

1 0’E
[K'yﬂ]ij =K = ©)

ij 7 :
/ /Mt Bu?uf

VLC = (VCL)T is the coupling matrix between the left lead to the central region; and similarly for VCR.
The last term V), represents possible many-body interactions, such as phonon—phonon interaction [35].
It contains higher order (higher than 2) derivatives of the energy with respect to the displacements,
evaluated at the equilibrium positions.

Transport setup for a NEGF calculation

Left Central region, H¢ Right
heat bath, Hy, (or device region) heat bath, Hy

Figure 2. Schematic representation of the common partitioning scheme for phonon transport calculation
using Green’s function technique. The entire system is split into three regions: central region and,
left and right heat baths. Each of this region are characterized by their own Hamiltonian H, with
a = L,C, R. The coupling matrices between heat baths and central region are V'€ and VRC.
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The most important quantity to calculate is the heat flux ], which is defined as the energy
transferred from the heat source to the junction in a unit time, and is equal to the energy transferred
from the junction to the heat sink in a unit time. Here, it is assumed that no energy is accumulated in
the junction. According to this definition, the heat flux out of the left lead is:

Ju == (F(t) =i ([H(8), H]) = i ([HL(), V1) ). )

In the steady state, energy conservation means that J; + Jg = 0. For simplicity, we set i = 1.
Using Heisenberg’s equation of motion, [, can be written as:

JL

(@M (VECu(r)
= IV (O 0). ®

/

Thus, the heat flux depends on the expectation value of (LZ]L)T(t’ )uf (t), which can be written

. . . T o .
in terms of the lesser Green’s function G (t, ) = —i (ul(¥' JuC(t)T)". Since operators u and i are
related in Fourier space (frequency domain) as t(w] = —iwu|w], the derivative is eliminated and
one obtains:

l 00

L= o] Tr <VLCGC<L[w}) wdw. 9)

The Green’s functions of interacting systems can be efficiently obtained by solving their equations
of motion (EOM) [64]. In this section, EOMs will only be used to obtain expressions for retarded and
lesser GFs of the central region. This topic will be expanded with more details in Section 3. First,

we have that the contour-ordered GF G(t, 1) = —i (Tru(t)u(t’ )T> satisfies the following equation:
az ( 4 /) / /
————— —KG(7,7) =11, T 1
Salzl G(t,7') = I8(t,T') (10)

The equation per each region is obtained by partitioning the matrices G and K into submatrices
G* and K%', a, &/ = L, C, R. The free Green’s function for the decoupled system g is easily obtained
by solving:

(7, 7)
a2

The corresponding free GFs in frequency domain are written as:

—K*%"(t,7') = I8(7, 7). (11)

shle] = [(w+in? — k], (12)

where 7 is an infinitesimal positive quantity to single out the correct path around the poles when
performing an inverse Fourier transform, such that ¢" = 0 for t < 0. Other Green’s functions
can be obtained using the general relations among them (see Equations (2) and (3)). Hence,
the contour-ordered non-equilibrium GF can be written as:

GCL(T, T/) — / dT//GCC(T, T//)VCLgL(T”, T/), (13)
G (1, 7) = ¢%(z,7) + /dT1 / A58t (1, 11)% (1, )G (1, T'), (14)
with X(1y, 7) being the total self-energy including the coupling to the baths and given by:

X, =2Z(n,n)+Zr(n,n) = VCLgL(T],Tz)VLC + VCRgR(Tl,TZ)VRC. (15)
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gL and gR are the GF of the isolated semi-infinite leads. Since the bath-device interaction terms
are short-ranged, it is usually only necessary to compute the projection of the bath GF on the layer
directly in contact with the device. The resulting GF can be calculated by an iteration method [83] or
by decimation techniques [84]. The Dyson equation (see Equation (14)) can be written in the frequency
domain as:

Grclw] = ((w+in1 - KE - 2'fu])
Geclw] = Gl [w]Gelw].

(16)

Several physical quantities can be calculated using these relations, e.g., the local density of states
(LDOS) is expressed as:

1(w) = -2 (ImG'[w]) a7)

1
and the total phonon DOS as 77(w) = YN, #;(w). The DOS and LDOS give the distribution of phonons
in frequency as well as in real space [81]. This is very useful to analyze quantum transport processes,
as shown below. Although Equation (17) is obtained for the special case of no phonon-phonon
interactions, the same formula is valid in the presence of phonon-phonon interactions described by an
interaction self-energy such as in Equation (16). This typical approach assumes that the non-crossing
approximation applies, allowing to treat the effect of contacts and interactions as two independent
additive contributions. Clearly, this is valid in the limit of small interactions acting only within the

central region.
Next, it is useful to introduce the I' function describing the phonon scattering rate into the

thermal baths:
[Nw] =i (X[w] — Ew]) = Trw] + Trlw], (18)

This function has an important relation with the spectral function, Alw] = G"[w]l'[w]G*(w].
By applying the Langreth theorem [64] to Equation (13), the lesser GF G§; turns into:

Géplw] = Geelw]VEter [w] + Geclw] Ve [wl. (19)
Consequently, the heat flux coming from the left lead (see Equation (9)) can be written as:

I = _% /7.:0 dewwTr (G’[w]Zf[w} + G<[w]2‘i[w]) . (20)

For simplicity, the subscripts C related to the central region have been dropped. The upperletters
are used to identify Green’s functions on the central region and lowercase letters for the leads.
After symmetrizing with respect to the left and right leads, the heat flux becomes:

1
J= g U tTi=Tr =) - @

The final expression reads:

= /Oc’o g—:hwrph[a;] (f - fr).- 22)

This result is formally similar to the Landauer equation obtained for electron transport. Here,
however, f; r are the Bose-Einstein distributions for the left and right leads and Tph [w] is the phonon
transmission function, given by:

Tpnlw] = Tr (G [w]T'L [w] G [w]TR[w]) - (23)
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The retarded GF of the central region connected to the thermal baths is given by:

G'lw] = [(@+ )1 = K€ = T} [w] - T[] 24)

Then, the thermal conductance can then be computed according to x,;, = limar_o L, AT as

the temperature difference between the thermal baths, with T, = T+ AT/2 and T = T — AT/2,
respectively. A linear expansion of the Bose-Einstein distribution in AT yields [80]:

Kph = % /Ooo dwa[w]%. (25)

Notice that the thermal conductance can only be obtained by an integration over the whole
frequency range of the phonon transmission. In practice, the derivative of the Bose-Einstein
distribution will reduce (depending on the temperature) the real integration range. This is in contrast
to the Landauer conductance for electrons, where, strictly speaking, only states near the Fermi energy
are playing a role.

2.2. Density Functional Tight-Binding

The main quantities to obtain the quantum phonon transport properties by using the NEGF
formalism are the mass-reduced force constant matrix in each region K* (x = L,C,R) and the
coupling matrices of the left and right bath to the central region, VL€ and VR, respectively [80].
The accuracy of the results depends on the reliability of these quantities to catch the atomistic features
of the system. Density-functional theory (DFT) is nowadays the main computational approach used
in chemistry and physics to perform quantitative studies on molecules and materials due to its
favorable accuracy-to-computational-time ratio [85]. The strong increase in accuracy coming from the
development of gradient corrected and hybrid functionals such as PBE [86] and B3LYP [87], which
compensate deficiencies of older approximations, has largely contributed to a further increase in
popularity. However, hybrid functionals are computationally demanding, limiting DFT to a maximum
of a few hundreds of atoms, depending on the chemical species. Classical force fields appear as a
reasonable solution to this problem but, in many cases, they suffer of limited transferability and do not
yield any information on the electronic structure.

Semiempirical methods appear as another option to DFT, conceptually lying between empirical
force fields and first principle approaches, allowing for the treatment of thousands of atoms [88].
These methods can be understood as approximations to more accurate methods (full DFT or
Hartree-Fock), but including empirical parameters that are fitted to reproduce reference data.
One example of a semiempirical method, which is used in the present work, is the density
functional tight-binding (DFTB) approach [89-91]. Here, the basic electronic parameters (Slater-Koster
parameters) are consistently obtained from full DFT-based calculations for atom pairs, while the
repulsive part of the electronic energy is fitted by means of splines. Based on it, the Hamiltonian and
Overlap matrices of a specific system can be decomposed into pair interactions (not only between
nearest-neighbors) yielding a generalized tight-binding Hamiltonian. Many studies have been carried
out by using the DFTB method, including transport properties of 2D materials [92-94], stability
and mechanical properties [95], vibrational signatures [96], computation of molecular absorption
spectra [97], and of charge transfer excitation energies [98] (see recent review papers [99-101] for
additional topics).

Three different DFTB models have been proposed up to now, which are derived by expanding
the DFT total energy functional around a reference density pg to first, second, and third order,
respectively [101]. The choice of the DFTB model depends on the system under study. The non
self-consistent DFTB method (or DFTBO) is more appropriate for systems with negligible charge transfer
between atoms (typically homonuclear systems or those involving atoms of similar electronegativity as
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in hydrocarbons [102]). Ionic systems with large inter-atomic charge transfer can also be treated with
this method [103]. On the other hand, in systems where a delicate charge balance is crucial such as
biological and organic molecules [104,105], a self-consistent charge treatment is required (DFTB2 and
DFTB3) [101,106]. Based on the advantages of DFTB for accurately describing large systems involving
few thousand of atoms, the force constant matrices of the studied systems are numerically obtained by
applying a finite difference method to get the second derivatives of the total energy with respect to the
atomic displacements (implemented in the DFTB+ software) [80]. These matrices can also be obtained
by density functional perturbation theory, which in the case of DFTB reduces to analytic expressions
involving derivatives of only two-center matrix elements [107].

2.3. Application of the DFTB-Based PHONON Tool

From electron transport studies, it is well-known that transport properties of nanoscale systems
can be tailored by varying different control parameters. This can include covalent or non-covalent
chemistry [108,109], atomic doping [35,110], topological defects [111,112], quantum confinement [113],
and mechanical strains [114,115], among others. Similarly, a major focus of research on phonon
transport is to identify the major variables allowing for effectively tuning the heat transport properties
of nanoscale materials. In this section, we review few of our previous research in this direction using
the NEGF-DFTB method [116-121], which is already implemented as a tool in the DFTB+ code (for
details of the PHONON tool, see [80]). We focus on 2D orthorhombic materials, BNC heteronanotubes,
and phonon filter effects in molecular junctions.

2.3.1. 2D Orthorhombic Materials

The effect of anisotropic atomic structure on the phonon transport of two-dimensional puckered
materials was studied by Medrano Sandonas et al. [117]. From this new family of 2D materials [122-125],
three representative members, phosphorene, arsenene, and SnS monolayers, which display the main
features of this family, were studied. The unit cell of these materials is composed by four atoms, as
depicted in Figure 3. Each atom is pyramidally bonded to three neighboring atoms of the same type
(phosphorene and arsenene, for homoatomic) or of different type (tin sulfide (SnS), for heteroatomic)
forming a puckered-like honeycomb lattice. As shown in Table 1, the lattice constants computed with
the DFTB approach quantitatively agree (error < 5%) with those obtained at the full DFT level by other
authors for all three materials.

We used a standard approach to compute the phonon band structure [80]. This consists in
diagonalizing the dynamical matrix at selected k-points, after obtaining them through a Fourier
transformation of the real-space force constants (this method is also part of the PHONON tool). Due to
the absence of imaginary frequencies, all studied systems can be considered as mechanically stable
(see the three lower panels of Figure 3). The acoustic branches display the typical dispersion of 2D
materials: longitudinal (LA) and transversal (TA) acoustic branches show linear dispersion as q (wave
vector) approaches the I' point, while out-of-plane ZA branches show on the other hand a quadratic
dispersion as a result of the rapid decay of transversal forces. The behavior of the dispersion relation
for homoatomic puckered materials is almost identical, except for the maximum frequency of the
optical modes, which is a consequence of the difference in mass between As (~75 u) and P (~31 u).
We also remark that the phonon dispersion for P and As computed with DFTB agrees quite well with
DFT results[117]. Only for SnS monolayer the high frequency optical modes are shifted upwards.
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Figure 3. Phonon dispersion for homo-and heteroatomic two-dimensional puckered materials:
(a) phosphorene; (b) arsenene; and (c) tin sulfide (SnS) monolayer. We also show the atomistic view of
the two-dimensional materials, highlighting the zigzag (ZZ) and armchair (AC) transport directions.
The figure is reproduced with permission from Ref. [117]. Copyright 2016 American Chemical Society.

Table 1. Calculated lattice constants of two-dimensional puckered materials along zigzag (ZZ) and
armchair (AC) directions. For comparison, the lattice constants from other published theoretical studies
are also given. In general, the DFTB lattice parameters agree quite well with those calculated by using
DFT method, error < 5%. The table is reproduced with permission from Ref. [117]. Copyright 2016
American Chemical Society.

Transport Direction

Systems ZZ [A] AC[A] Other Works (ZZ, AC) [A]

Phosphorene 3.49 4.34 (3.28, 4.43) [126] (3.32, 4.58) [127]
Arsenene 3.81 4.75 (3.68,4.77) [128] (3.69, 4.77) [129]
SnS monolayer 3.93 4.51 (4.03, 4.26) [124] (4.01, 4.35) [130]

Furthermore, based on the group velocities values obtained for ZZ (I' = X) and AC (I' — Y)
transport directions, we may expect that these materials will display strong anisotropy in their thermal
transport. Indeed, the group velocities for the longitudinal acoustic (LA) branch in phosphorene
were found to be 8.35 km/s and 4.74 km /s along the I'-X (ZZ) and I'-Y (AC) directions, respectively,
comparable to DFT results [127,131,132]. The values for arsenene, 5.01 km/s for ZZ and 2.71 km/s for
AC, are also in good agreement with those in Ref. [129]. The SnS monolayer displayed group velocities
of 6.48 km/s (ZZ) and 2.14 km/s (AC). We note that thermal anisotropy has only been reported for
phosphorene [126,132] and arsenene [128,129], but not for SnS monolayers. Accordingly, the largest
anisotropy in the thermal conductance was found in SnS monolayers due to the dominant contribution
of acoustic modes to thermal transport [117].

2.3.2. Doping Influence on BNC Heteronanotubes

Ternary boron carbonitride nanotubes have recently been in the focus of theoretical and
experimental activities because of their excellent mechanical, electrical, and non-linear optical
properties which could be controlled by varying their chemical composition [133-135]. Hence, BNC
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heteronanotubes may play an important role as new generation of thermoelectric materials, and are
also of great interest in environmentally relevant issues such as waste heat recovery and solid-state
cooling [9,136]. In Ref. [120], we studied the influence of doping on the thermal transport properties
of (6,6)-BNC heteronatubes, by considering three different BN doping distribution patterns of a
carbon nanotube: helical, horizontal, and random. For this, a (6,6)-CNT of length 43.3 A was the
reference structure (supercell composed by 432 C atoms). Helical BN strips, BN chains (parallel to the
transport direction, which corresponds to the z-axis), and BN rings (one ring containing 3B and 3N
atoms) were introduced in an otherwise perfect (6,6)-CNT to represent helical, horizontal, and random
impurity distributions (see Figure 4a). For a helical distribution, the BN concentration was varied
from ¢ = 11% to ¢ = 89%, while for other cases concentrations ranging from ¢ = 16% to ¢ = 84%
were studied. The limits of 0% and 100% correspond to pure carbon and hexagonal boron—nitride
nanotubes, respectively.

The geometry of the BNC heteronanotubes (BNC-HNT) was optimized with the DFTB
method [137,138] with periodic boundary conditions along the z-axis. C-C and B-N bond lengths
amount to 1.43 A and 1.48 A, respectively. The optimized helical BNC-HNT presented a wave-like
profile along the axial direction resulting from the difference between bond lengths at the interfaces
(see, e.g., [80,139,140]). Since the doping distribution can be introduced in different ways, the
phonon transmission for random and horizontal distributions were averaged over five and three
different atomic configurations, respectively. For the transport calculations, the baths are composed
of twice the optimized supercell, and the central region includes only one supercell. To have a better
understanding of the influence of doping on the transport properties, we introduce the quantity
Rpos = 71x(w) /1otar (W), where 117,401 (w) is the total DOS given by Equation (17), and #x (w) can be
either the LDOS of C or BN domains.
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Figure 4. (a) Atomistic view of BNC heteronanotubes with helical, horizontal, and random distribution
of BN domains. Carbon atoms (cyan), boron atoms (pink), and nitrogen atoms (blue) are shown. (b)
Variation of the phonon transmission function, Tphs of helical BNC heteronanotubes after increasing the
BN concentration, c. (c) Comparison of 7, for different doping distribution patterns with ¢ = 50%.
Variation of Rppg for carbon domains as a function of the vibrational frequency (d) for helical BNC
heteronanotubes at three different doping concentrations and (e) for helical, horizontal, and random
BNC heteronanotubes at ¢ = 50%. Reproduced from Ref. [120] with permission from the PCCP
Owner Societies.

In Figure 4b, the influence of helical BN stripes on the phonon transmission of a (6,6)-CNT is
shown. The high frequency modes (w > 1400 cm 1) are strongly affected by increasing the BN
concentration. These modes correspond to local vibrations related to carbon atoms; this is seen in
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Rpos after increasing the doping concentration (see Figure 4d). On the contrary, the transmission
of low-frequency vibrations below 200 cm~! is not changed much when varying the disorder
concentration. Figure 4c shows the phonon transmission of BNC-HNT with fixed concentration
¢ = 50% and different BN spatial arrangements. As expected, a random distribution of B and N
atoms blocks the transmission over almost the whole frequency spectrum; only low-frequency modes
experience less scattering at the localized impurities, so that their transmission is much less affected.
Helical and horizontal disorder in BNC-HNT leads to a stronger blocking of the transmission at high
frequencies (w > 1400 cm™1) due to the absence of B-N-C local vibrations in that range (see Figure 4e).

Figure 5 shows the concentration dependence of the phonon thermal conductances, ;, for each
doping distribution pattern at T = 300 K. Horizontal BNC-HNT shows the highest thermal
conductance, while the lowest «,, is obtained for (6,6)-CNT with BN domains randomly distributed.
The thermal conductance of helical BNC-HNT remains nearly constant (~2.5 nW/K) for concentrations
between 30% and 80%, and then increases until it reaches the value corresponding to a pristine BNNT,
~3.0nW/K. An additional case was studied with a helical BNC-HNT connected to CNT leads and, as a
consequence of the new contact-device interface, the thermal conductance is continuously suppressed
with increasing concentration. Notice that the dominant contribution to the thermal conductance at
300 K mostly derives from long wavelength modes with frequencies < 200 cm~! [120].
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Figure 5. Phonon thermal conductance as a function of the BN concentration for helical, horizontal,
and random pattern distributions. Results for helical BNC heteronanotubes connected to two CNT
leads are also shown. Reproduced from Ref. [120] with permission from the PCCP Owner Societies.

2.3.3. Selective Molecular-Scale Phonon Filtering

We have recently proposed nano-junctions consisting of two colinear (6,6)-nanotubes (NT) joined
by a central molecular structure as a potential molecular-scale phonon filter (see Figure 6a) [121].
The nanotubes act as heat baths kept at the same temperature. The left NT is considered as a reference
bath with a broad phonon frequency spectrum, playing the role of a “source” of phonon modes.
The molecular system in the central part is as a mode selector, and selected modes are then propagated
to the right contact [80]. Besides carbon NTs, boron-nitride (BN) and silicon carbide (SiC) nanotubes as
right baths were also considered. The filtering capability of the device thus depends on a mode-specific
propagation resulting from the combined effect of molecular vibrations selection rules and the overlap
of the contact spectral densities with the molecular region.

The phonon transport problem was treated using the previously described Green’s function
technique as implemented in the PHONON tool. Figure 6b,c shows the influence of interconnecting
chains on the filtering effect for the case where both thermal baths are (6,6)-CNTs with wp ~ 1800 cm ™.
As bridging molecular systems four parallel chains of ethylene, benzene, and azobenzene were
chosen [121]. In Figure 6b, spectral gaps emerge in the transmission induced by the presence of
the molecular chains. The overall transmission of the junctions is reduced by roughly a factor of
four when compared with the infinite CNT due additional phonon scattering effects at the interfaces.
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The influence of azobenzene chains is stronger comparing to the other monomers. Thus, chains with
only two monomers already induce phonon gaps and filter out roughly half of the spectral range (see
the lower panel of Figure 6b). Contrary to the benzene case, the transmission at low frequencies was
strongly reduced, a result probably related to the lower number of modes and additional scattering at
lower frequencies induced by larger structural distortions [141,142]. As a result, azobenzene-based
junctions display the lowest thermal conductance, «;, (see Figure 7b for only CNT-based leads).
In brief, it becomes clear that channel selection and phonon filtering can be strongly controlled by the
chemical composition of the bridge [121].
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Figure 6. (a) Schematic representation of the nanoscale phonon filter proposed in Ref. [121].
A two-terminal junction is considered, where the role of the thermal baths is played by two semi-infinite
(6,6) nanotubes (CNT, BNT, SiCNT) which are bridged by molecular chains consisting of ethylene,
benzene, and azobenzene monomers. wp represents the Debye frequency in each nanotube. (b) Phonon
transmission functions 7, for benzene-based junctions. We also added the plot corresponding to
the phonon transmission function of and infinite CNT (grey) and a single infinite molecular chain
of benzene monomers (brown). Highlighted with dashed-line circles are the regions where phonon
gaps clearly develop by increasing the chain length. (c) Variation of 1y (j = 4, N) as a function of the
number of monomers (N) in the different studied molecular junctions by considering both thermal
baths made of (6,6)-CNTs. Each junction consists of four molecular chains in parallel, j = 4. The figure
is reproduced with permission from Ref. [121]. Copyright 2019 American Chemical Society.

To quantify the deviation from the “source of modes” distribution (or degree of filtering),
quantified in our case by the transmission spectrum of the CNT, a key design magnitude ¢ (j, N) was
defined as [121]:

wCNT
D

X 1 TenNT (W
wL(j, N) = @/0 dw tent (W) TNt

() (26)
with the index j referring to the number of molecular chains in parallel interconnecting the two thermal
baths and N the number of monomers in one chain. ent(w) and 7y j(w) are the corresponding
transmission functions for an infinite CNT and for the CNT-molecule junction containing j molecular
chains in parallel. A perfect filter (zero transmission) yields xy.(j, N) — oo, while no filtering at
all yields txy.(j, N) = 0. As shown in Figure 6¢, the azobenzene junctions display the highest iy,
(i-e., highest filter efficiency) due to the efficient blocking of high-frequency modes above 1000 cm ™.
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The ethylene-based chains are less efficient, but still display a larger effect than the benzene chains;
this is mostly related to two issues: the complete filtering of frequencies larger than 1500 cm~! and the
presence of a relatively large phonon gap between 500 cm™! and 750 cm ™. 1y, for benzene-based
junctions also increases with the length of the molecular chain and shows a tendency to saturate for
N > 12 monomers.
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8.0 ——1— 1.2 ——1— 2= T
| (a) (b) () A’A (d)
6.0 — ,A OO:
— 08 Lt 08 9 1 osh .
7 r 1 A o)
= A 00 - e
=T/ A TE S
o L J J o)
“ 0.4 & oottod o.4—§ - 04f f oo
20k | ,'”D f, :w 8[38
LA s} J L/ J
L i é Ethylene 1 Benzene £ Azobenzene
! "' ! ", I "' I
0'00 400 800 400 800 400 800 % 400 800
Temperature [K] Temperature [K]

Figure 7. Phonon thermal conductance x,;, as a function of the temperature. (a) «,), values of the
infinite CNT and BNNT as well as of the CNT-BNNT junctions. The remaining panels show the thermal
conductance in the different junction types with a chain length corresponding to four monomers for:
(b) ethylene; (c) benzene; and (d) azobenzene. The figure is reproduced with permission from Ref. [121].
Copyright 2019 American Chemical Society.

Figure 7 highlights the influence of changing the material of the right bath on the phonon
filtering. In these calculations, all chains consist of four monomers. The thermal conductance of
CNT-BNNT junctions is reduced when compared to the perfect tubes due to interface scattering (see
Figure 7a [143-146]). By inserting the molecular system, a reduction of the thermal conductance by
roughly a factor of 34 is produced, the effect being more pronounced for the azobenzene junction [121].
For azobenzene-based molecular junctions, the thermal conductance barely changes when going from
CNT-CNT to CNT-BNNT (see Figure 7d). This is a consequence of the strong suppression of high
frequency transport channels in the transmission. The saturation of the thermal conductance is
determined by the nanotube with the smaller Debye cutoff (going from CNT (wp ~ 1800 cm ™) to
BNNT (wp ~ 1400 cm 1) to SiCNT (wp ~ 880 cm 1)), the value of the saturation point is, however,
influenced by the specific composition of the molecular chains.

3. Atomistic Framework for Time-Dependent Thermal Transport

A novel atomistic approach able to treat transient phonon transport was recently developed by
Medrano Sandonas et al. [147]. The approach is based on the solution of the equation of motion for
the phonon density matrix o'(t), calculated within the NEGF formalism, by using an auxiliary-mode
approach [80,147]. The latter has been previously used for time-resolved electron transport [55-57].
Unlike recent related approaches with limited application range (in terms of an atomistic treatment of
the underlying system) [61-63], our method can be efficiently combined with an atomistic description
as implemented in standard first-principle or parameterized approaches.

The basic structure of this approach is shown in Figure 8. Two thermal baths made of
non-interacting harmonic oscillators in thermal equilibrium are contacted to a scattering region,
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whose vibrational features are assumed to be well represented by a quadratic Hamilton operator.
The total system is described by the Hamiltonian:

1 1 1
H=Hc+}, <§P§k + Ewﬁk”§k> +) 5 <uT Vgt + U VI - “) . (27)
ak ok

Left lead Right lead
T, Ty

[~ 4 ¢

Figure 8. Schematic representation of the target molecular junctions by using the TD-NEGF approach.
A molecular system is connected to two harmonic thermal baths, which are the source for the heat flow
in the molecule. The figure is reproduced with permission from Ref. [147]. Copyright 2018 American
Chemical Society.

The first term He = (1/2)p” - p + (1/2)u” - Ko - u is the Hamiltonian of the central domain,
u is a column vector consisting of all the displacement variables in the region, and p contains the
corresponding momenta. Both vectors have length N, with N being the number of degrees of freedom
in the central region. We chose renormalized displacements u; = ,/m;x;, where m; is the mass
associated to the ith vibrational degree of freedom, and x; is the actual displacement having the
dimension of length [80,147]. The effective force-constant matrix K¢ = K + K¢ has dimension
N x N, and includes the force constant matrix of the central region, K, and a counter-term K [80,147].
The index & € {L, R} labels the left (L) and right (R) heat baths and k denotes their vibrational
modes with frequency wy,. The second term of Equation (27) is the Hamiltonian of the heat bath.
The last term represents the interaction between the central region and the baths, given by coupling
vectors V,; which are assumed to vanish before time fy — —oco. Written in this form, the coupling
leads to a renormalization of the bare force-constant matrix, which can be canceled by the above
introduced counterterm Ket = Y- 1 (Vi - VZk) / wik [80,147]. Hence, the coupling to the thermal baths
will introduce dissipation but no shift in the vibrational spectrum [148]. The equations of motion
(EOM) for the central region (u and p) and normal modes of one lead (1) read [80,147]:

d u u 0
at(p):’ceff'<p);uk<vk>- (28)

The 2N x 2N dimensional auxiliary matrices (denoted by caligraphic symbols) are given by the
expressions [80,147]:

(10 [0 1 _ 0 1\_( 0 1 0 0
I_<OI>/ Q_<_IO>/ ICEff_(_Keﬁ0>_<_K0>+<_Kd0>

The energy of the central region can be written in terms of the phonon density matrix o(t) =
iG=(t,t), with G=(t,t) being a lesser Green'’s function [80,147]:

Ec(t) = %Tr (KL 0o}, 29)
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and the total energy is Eqy(t) = Ec(t) + Epa(t). In the absence of external forces, the total energy

is conserved, and the heat current coming from the heat baths can be defined as J(t) = — = Ec(t).
Hereafter, i = 1 is taken. The time evolution of the heat flux is related to the lesser GF as [62,63]:
‘ tal(t)  (u(t)p’(t))
GS(tH) = —i (u( . (30)
=T T (0) (pipT ()

To obtain the time dependence of the lesser GF, Dyson’s equation was derived (see Ref. [80] for
details). Using Langreth’s rules, the lesser GF can be written in terms of retarded and advanced GFs:

G<(t,t') = /de /dr3 GR(L ) - S<(1, 1) - G (3, 1), 31)

For the latter, EOMs are given by [80,147]:

igR(f/ ) =05(t,t)Q+ Kegr - GR (1) + Q- /dfz SR(t, 1) - GR(ta, ). (32)

ﬁgA(t )y =68(t,1)QT + GA(L ) - eff+/dt2 GA(t 1) - SA(t, ') - QT (33)

SRA< denotes the respective self-energy. Setting ' — t in Equation (31), the EOM for lesser
GF becomes:

26700 = Kar- G<(0,0) +G7 (1) - KTy
+0Q. U dr, (87 (4, 1)0< (1, t) - S<(1, Tz)g>(Tz,t))} (34)
U dn, (67 (4, )S< (1, t) — G<(¢, T2)$>(T2,t))} QT
where the thermal current matrices I'l, (¢) are defined as:
/ ity (07 (1, 1) S5 (10, t) — G5 (1, 12)S7 (10, 1)) - (35)
For harmonic baths, Sy~ (,') can be obtained as:
SE(Ht) = fi/oo dw coth ———cosw(t —t') £isinw(t —t') | Lo(w). (36)
A 0o T Zk Ta
Ty is the bath temperature and £, (w) is the spectral density of reservoir a [148,149]. The EOM

for the phonon density matrix reads [80,147]:

]

50(0) = Kegg-o(t) +0(t) - Klg +i ) (H‘X(t) QT - h.c.> . 37)

ae{L,R}

3.1. Auxiliary-Mode Approach

An auxiliary-mode approach was used to expand the self-energies Sy~ (t,¢) in exponential
functions to achieve a numerically efficient implementation to calculate the time evolution of I, (t).
The approach has been previously implemented for electrons [55-57] and for vibrations [150,151]. Since
the cos and sin functions in Equation (36) can be easily expressed in terms of exponential functions,
the only term which has to be considered is the hyperbolic cotangent. Different schemes have been
proposed to obtain a suitable pole decomposition of this term [150]. To bypass the slow convergence
of the so-called Matsubara decomposition, a more advanced pole decomposition was suggested by
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Croy and Saalmann [55], based on a partial fraction decomposition method that displays a faster
convergence. However, one needs in this method high-precision arithmetic to compute the poles
correctly, so that it is of advantage to have a pole decomposition of the coth function with purely
imaginary poles [80]. A Pade decomposition method was recently proposed by Hu et al. [152], which
shows very rapid convergence: the hyperbolic cotangent can be written in terms of simple poles
as [150]:

th(x)~1+% #-i- ! (38)
co ~ p:117p G 6

where 77, are residues and ¢, (with Im &, > 0) are the poles. Here, Np denotes the number of poles.

Following this auxiliary-mode approach, a spectral density with a Drude regularization
(i-e., adding a cut-off frequency w) of the form £, (w) = (w2w)/(w? + wg)L&O) was considered [148].
ﬁff’) = diag(A,&m, 0) contains the coupling matrix ALY between the central domain and the leads.
This quantity contains the wide-band limit as a special case for w. — co. Using a linear combination of
Lorentzians, any spectral density can in principle be approximated. The Drude spectral density
is inserted into the expression for the lesser/greater self-energies (see Equation (36)), and for
T=t—t > 0,it turns into [80,147]:

2
St t) =0 {C,x(‘r) :i:sgn(‘r)%e“”“'ﬂ} . (39)
with:
e wle ©
Cu(T) = 1_/700E <m> cothme , (40)

As mentioned above, the goal of the auxiliary-mode approach is to expand the self-energies
and C,(7) in terms of exponentials. Using the Pade decomposition of the hyperbolic cotangent in
Equation (40), one obtains [80,147]:

Np
Ca(T) = —ikpTawee™ T =i )" Ryp (wee™ T — xope %erT),

p=1
. 2kpTyw? )
with R,y = ﬁqp and Xa,p = —i2kpT,,. Hence:
c ,p
S<(E ) = 9 <> —bw(t—t’)ﬁ(o) _ a_/\/<,> Pt 41
s (/)*gpgoua,pe : a*a (,) ()

where the coefficients a5 and by, are related to the auxiliary-mode decomposition. For 7 < 0,

the coefficients are u§;§’> and by , [147].

The phonon current matrices I, (¢) (see Equation (35)) can be written as [80,147]:

Np
(5 = . [0 +ay5Q-£L], (42)
p=0

with:
t
®f(t) = /to dt (G5 (61) Kl Ny, 8) = 07 (8 8) - Kl Nip (1))
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The EOM for ®} (1) is given by [80,147]:

9 l(1) =

0) OF
: +Q-0l),

AL - ®f(t,t) - BE - KL £ (43)

with A} = K — b, v, BY = iwedy o0 (t) + ayy Q. The functions Qf(f) = L ZNP Qp P(t) correlate
the main features of both heat baths and their values are obtained by performing the tlme derivative of
Qi,i(t), which is expressed as [147]:

9

PP
gnlxa

(1) =Chrel) - o Kkl £l ~ Dhralr(p)

- we (5;7/,0529) Kot RL(1) = 8,000 (1) - Kl £ (0>) ’ @

where CPP = aa, p,aap a> p,a,’;j; and DD’:,,D’: - ba//‘nr + b;p Thus, the initial
integro- d1fferent1al equatlon for the reduced density matrix has been mapped onto a closed set
of ordinary differential equations (Equations (37), (43), and (44)), which can be solved using,
e.g., a fourth-order Runge-Kutta method [80,147].

— hlcl] } .

are real numbers.

The thermal current is calculated as [80,147]:

{ G QL M)

J(t) = (45)

3.2. Applications of TD-NEGF Approach

3.2.1. Proof-of-Principle: One-Dimensional Atomic Chain

To illustrate this approach, a one-dimensional (1D) chain with N atoms interacting via force
constants with strength A =1.0eV/ uA was considered (see Figure 9a) for N = 4 [80,147]. The atomic
masses of the atoms was set to 1.0 11, and only nearest-neighbor interactions were considered.

(@) (b) : : : :
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iz

Number of atoms
Figure 9. (a) Scheme of the one-dimensional atomic chain studied in this work for the case of N = 4
atoms, with the filled atoms representing the beginning of the heat baths. A and 7 are the spring force
constants between the atoms and the coupling of the central region to the baths. Time-dependent NEGF
approach: (b) Variation of the total energy of a dimer at Ty = 300 K after increasing the number of
atoms in the one-dimensional atomic chain for different cut-off frequency (left) and 7 parameter (right).
For comparison, we also plotted the energy values corresponding to the ideal harmonic oscillator case
(dashed lines). Panel (b) is reproduced with permission from Ref. [147]. Copyright 2018 American
Chemical Society.

First, a benchmark of the influence of spectral density parameters on the steady state properties
was carried out. In Figure 9b, the dependence of the system energy at 300 K on N for different
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cut-off frequency w, and 1 parameter is displayed [80,147]. The energy is compared to that obtained
for an ideal harmonic oscillator in equilibrium, Ec = YN, fiw; (n(w;) +1/2), with n(w) being the
Bose—Einstein distribution function and w; are the frequencies of the isolated central system. For fixed
7 = A, increasing w, leads to an increase of the system energy, since the spectral density includes more
vibrational states. Contrarily, the energy gets closer to the harmonic oscillator values after reducing #
for fixed w. = 400 THz. This phenomena is expected because, for # — 0, the chain can be considered
as an isolated harmonic system with no heat injection from the bath and Ejpchain = Ec-

A similar effect is also found by analyzing the phonon transmission 7, (w) calculated along the
lines of Section 2.1. Using the spectral density A(w) = (w2w)/(w? + w?)A®), one gets [147]:

00 2
Sy g [T A (_wiw ) w w(t—t')
T4 1) 1/700 . <w2+w3> Al {coth ot 11} ¢ . (46)

Hence, the retarded self-energy in time domain is written as:

~00 2
N o A (0) dw ([ wiw io(t—t!
Tt =0t — iy [ o (m) elwlt=t, 47)

By performing a Fourier transform of the previous equation and considering the counter-term,
the self-energies are given by:

2

Zyw) = [i35 0 | A = 2" ()

The retarded Green-function finally reads:
-1
G'(w) = [ - K - T () ~ ()] (49)

where K is the force constant matrix of the one-dimensional chain. The transmission function 7, (w)
is computed with Equation (23) and the steady heat flux is calculated by using the Landauer approach
(see Equation (22)).

Figure 10a shows 1 (w) for different N with a cut-off at 400 THz. New transmission peaks
appear for larger N due to emergence of new vibrational modes [80]. In addition, it was found that
the maximum frequency w;;qy with non-zero transmission depends on N. Thus, for N > 8, wyax
remains constant (~195 THz). For N — oo, Tpp, is constant and is zero for w > Wy, i-e., all modes
have the same transmission probability 7,; = 1.0 (see also [33]). Figure 10b shows the influence of 7
for a dimer with w. = 400 THz. 1 has a considerable influence on the phonon transmission. For 7 > A,
Tpn, is similar to a Gaussian and the dimer cannot be understood as a weakly coupled system anymore.
For 7 < 0.8A, on the contrary, two main transmission peaks corresponding to the two dimer modes can
be resolved. For even weaker coupling, Tph will yield two delta functions at these frequencies, correctly
describing the vibrations of the system. This result confirms the analysis carried out for the system
energy and shown in Figure 9b. The influence of the cut-off frequency on 7, is weak compared to :
increasing w, ten times only leads to a slight reduction of the phonon transmission at high frequencies
and the frequency spectrum becomes wider (see Figure 10c) [80,147].

Based on the Landauer formalism, the temperature of the heat baths only appears in the
Bose—Einstein distribution (see Equation (22)). However, in the TD-NEGF approach, the temperatures
appear in the auxiliary-mode expansion of the self-energy. Once the system is in thermal equilibrium,
a symmetric temperature bias AT = T; — Tg = 2¢Tj (¢ > 0) is applied, with T being the mean
temperature at which the system was previously equilibrated [80,147]. The left and right baths
temperatures are expressed as Tp, = (1 + &) T and T = (1 — §)Tp. Figure 11a shows the steady heat
flux as a function of N for different 1 (w, = 400 THz). The heat flux values were obtained for a mean
temperature of Ty = 300 K and ¢ = 0.1. The values in both methods become closer after reducing
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7 in agreement with the above discussed results in Figures 9b and 10b. Additionally, the heat flux
converges for a given N for all #s [80,147].
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Figure 10. Landauer approach: (a) Variation of the phonon transmission function 7, of an
one-dimensional atomic chain as a function of the number of atoms. (b) Influence of the coupling
parameter on the phonon transmission function 7, of an atomic dimer. (c) Variation of 7, with respect
to the cut-off frequency for N = 2 (top) and N = 4 (bottom). The figure is reproduced with permission
from Ref. [147]. Copyright 2018 American Chemical Society.
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Figure 11. Landauer approach: (a) Steady heat flux as a function of the number of atoms in the
one-dimensional atomic chain for different # values. (b) Cut-off frequency w, dependence of the steady
heat flux for the atomic dimer at various temperatures bias AT. For comparison, we also plotted the
values obtained using Landauer approach. The figure is reproduced with permission from Ref. [147].
Copyright 2018 American Chemical Society.

The influence of w, on the steady heat flux was studied for 7 = A (see Figure 11b). One sees that
each approach displays a different behavior, i.e., the heat flux increases and decreases after increasing
w, for the TD-NEFG method and the Landauer approach, respectively [80,147]. This effect can be
tuned by the value of AT. However, independently of AT, the heat flux for both approaches become
closer with increasing we.

3.2.2. Atomistic System: Carbon-Based Molecular Junctions

Medrano Sandonas et al. [147] showed that the TD-NEGF method reviewed in this section can be
combined with atomistic methodologies for addressing the phonon dynamics in real systems. Due
to the larger number of degrees of freedom, the matrix dimensions considerably increase and, hence,
the computational cost. As typical examples, the work in Ref. [147] focused on poly-acetylene (PA, 4
atoms) and poly-ethylene (PE, 6 atoms) dimers connected to thermal baths (see Figure 12a for the case
of PA dimer). The main difference between the two systems was the presence of double C bonds in PA
compared with single bonds in PE. Both structural optimization and force constant calculations were

performed with the Gaussian09 code [153]. AEKO) will thus take values corresponding to realistic bonds
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between the central region and the reservoirs (for more details, see [80]). For both junctions, a cut-off
we = 100 THz was used (roughly two times the maximum frequency of the vibrational spectrum).
The number of poles in the auxiliary-mode expansion at 100 K, 300 K, and 500 K was 10, 8, and 4,
correspondingly [80,147].
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Figure 12. Time-dependent NEGF approach: (a) Energy density plot for molecular junctions made of
poly-acetylene (PA) dimer. (b) Variation of the steady-state heat flux as a function of ¢ for the PA dimer
at different Tp. Inset: Dynamics of the heat flux for both leads for PA and PE dimers after applying a
temperature bias of AT = 60 K at Ty = 300 K. The figure is reproduced with permission from Ref. [147].
Copyright 2018 American Chemical Society.

To gain a deeper understanding of the thermal properties in the transient state, the energy density
D(E, t) was defined as:

N 2
= L/rvamewl- (E-E)/1v2) ] (50)

with v = 0.001 eV and {E;} the set of eigenvalues of Z(t). In Figure 12a, the results for PA dimer
during thermal equilibration at Tp = 300 K are displayed. As shown in the figure, all modes of the
Z(t) matrix display very low energy at the beginning of the transient. The lowest lying modes gain
then energy and reach a maximum at equilibrium. However, the eigenvalues in PE need a longer time
to converge as compared to PA [147]. This difference arises from the different coupling strengths to the
leads (related to the matrices A,&O)). Consequently, the magnitude of the oscillations in the heat flux
during the transient after applying a temperature bias is different, being larger for PA, as shown in
the inset of Figure 12b. This difference in covalently bonded configurations also leads to a larger heat
flux for the PA dimer [147]. Moreover, in agreement with linear response, the heat flux behaves nearly
linear in ¢ for different mean temperatures Ty (see Figure 12b) [80,147].

4. Summary and Outlook

In the current review, we address selected applications of our recent implementations of quantum
transport methodologies in low-dimensional materials. Hereby, we highlight the possibility to perform
systematic investigations with atomic resolution, thus addressing material-specific problems for
designing potential (nano)phononic devices.

We combined the NEGF formalism with the DFTB methodology to address quantum ballistic
transport in various low-dimensional materials with atomistic resolution. This computational approach
is implemented as a tool in the DFTB+ software. Although these systems may also be tractable using
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classical molecular dynamics, extensive parameterizations may be required to study different material
combinations (here, machine learning approaches may be of interest). It is therefore more suitable
to use the NEGF-DFTB approach, where the chemistry of the problem is naturally included in the
first-principle calculation of the Hessian matrix. We showed that 2D puckered materials display strong
thermal anisotropy due to their atomic structure, thus transporting heat preferably along the zigzag
direction (higher phonon group velocity). As a next application, the influence of BN concentration and
defect distribution on the thermal transport of BNC heteronanotubes was considered. Independently
of the specific spatial BN distribution, the phonon transmission of pristine (6,6)-CNT is reduced at
high frequencies after increasing the BN concentration. As a last application, we demonstrated that
the vibrational features of molecular junctions can be exploited in conjunction with an appropriate
choice of nanoscale thermal baths to implement a molecule-based phononic filter. This model offers
the possibility of engineering different phonon filters based on the rich molecular chemical space.
These three reviewed studies clearly demonstrate the potential of the PHONON tool to investigate
nanoscale ballistic phonon transport.

In the last section, we present an atomistic method combining time-dependent NEGF with a
first-principle based modeling to address phonon dynamics in nanoscale systems. The method is
based on solving the equation of motion of the phonon density matrix with an efficient auxiliary-mode
approach. The approach was applied to study thermal transport in the transient regime of a 1D chain,
providing results in agreement with the Landauer formalism. By using density-functional theory to
obtain the force constants and coupling matrices, the phonon dynamics of small molecular junctions
was considered. Although the presented study is based on a Drude regularization of the spectral
density, realistic scenarios can be easily addressed. This computational approach builds one of the first
attempts to deal with time-dependent quantum phonon transport and it will allow studying various
topical questions such as heat pumping, on a fully atomistic basis.

We are, however, not yet able to address physical effects such as thermal rectification from a fully
quantum picture. Although rectification can be induced by structural asymmetries, phonon-phonon
interactions play a dominant role, too. The latter are also crucial when dealing with phonon transport
at high temperatures. An implementation combining NEGF with first-principles requires, besides
computing the dynamical matrix as the basic input, third and fourth order anharmonic coefficients as
well [76,78]. They contribute additional self-energies in the Green'’s functions of the scattering region,
and involve convolutions in frequency space of two-and three phonon Green’s functions. As a result,
the problem needs to be solved self-consistently, thus considerably increasing the computational effort.

Another issue is the inclusion of electron—phonon coupling in the description of heat transport.
Although it has already been implemented within the NEGF approach to address electronic
transport [154-158], there are not many atomistic-based studies related to their impact on phonon
transport. Since the interaction with the electronic system will provide an additional energy exchange
channel, it will be of interest to elucidate how some of the effects discussed in this review as well as
in other investigations, such as thermal rectification and phonon filtering, will be modified by the
inclusion of electron-phonon interactions.
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Abbreviations

The following abbreviations are used in this manuscript:

CNT
DFT
DFTB
DOS
EOM
GF
LDOS
NEGF

Carbon nanotube

Density functional theory

Density functional tight-binding
Density of states

Equation of motion

Green'’s functions

Local density of states
Non-equilibrium Green’s functions

NEMD  Non-equilibrium molecular dynamics

MD Molecular dynamics

PA Poly-acetylene

PE Poly-ethylene

D Time-dependent
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Abstract: The role of local electron—vibration and electron—electron interactions on the thermoelectric
properties of molecular junctions is theoretically analyzed focusing on devices based on fullerene
molecules. A self-consistent adiabatic approach is used in order to obtain a non-perturbative
treatment of the electron coupling to low frequency vibrational modes, such as those of the
molecule center of mass between metallic leads. The approach also incorporates the effects of
strong electron—electron interactions between molecular degrees of freedom within the Coulomb
blockade regime. The analysis is based on a one-level model 