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Preface to “Real-Time Optimization” 

Process optimization is the method of choice for improving the performance of industrial 

processes, while enforcing the satisfaction of safety and quality constraints. Long considered as an 

appealing tool but only applicable to academic problems, optimization has now become a viable 

technology. Still, one of the strengths of optimization, namely, its inherent mathematical rigor, can also 

be perceived as a weakness, since engineers might sometimes find it difficult to obtain an appropriate 

mathematical formulation to solve their practical problems. Furthermore, even when process models 

are available, the presence of plant-model mismatch and process disturbances makes the direct use of 

model-based optimal inputs hazardous. 

In the last 30 years, the field of real-time optimization (RTO) has emerged to help overcome the 

aforementioned modeling difficulties. RTO integrates process measurements into the optimization 

framework. This way, process optimization does not rely exclusively on a (possibly inaccurate) process 

model but also on process information stemming from measurements. Various RTO techniques are 

available in the literature and can be classified in two broad families depending on whether a process 

model is used (explicit optimization) or not (implicit optimization or self-optimizing control). 

This Special Issue on Real-Time Optimization includes both methodological and practical 

contributions. All seven methodological contributions deal with explicit RTO schemes that repeat the 

optimization when new measurements become available. The methods covered include modifier 

adaptation, economic MPC and the two-step approach of parameter identification and numerical 

optimization. The six contributions that deal with applications cover various fields including refineries, 

well networks, combustion and membrane filtration. 

This Special Issue has shown that RTO is a very active area of research with excellent opportunities 

for applications. The Guest Editor would like to thank all authors for their timely collaboration with 

this project and excellent scientific contributions. 

Dominique Bonvin 

Special Issue Editor 
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Abstract: This paper presents an overview of the recent developments of modifier-adaptation
schemes for real-time optimization of uncertain processes. These schemes have the ability to
reach plant optimality upon convergence despite the presence of structural plant-model mismatch.
Modifier Adaptation has its origins in the technique of Integrated System Optimization and Parameter
Estimation, but differs in the definition of the modifiers and in the fact that no parameter estimation
is required. This paper reviews the fundamentals of Modifier Adaptation and provides an overview
of several variants and extensions. Furthermore, the paper discusses different methods for estimating
the required gradients (or modifiers) from noisy measurements. We also give an overview of the
application studies available in the literature. Finally, the paper briefly discusses open issues so as to
promote future research in this area.

Keywords: real-time optimization; modifier adaptation; plant-model mismatch

1. Introduction

This article presents a comprehensive overview of the modifier-adaptation strategy for real-time
optimization. Real-time optimization (RTO) encompasses a family of optimization methods that
incorporate process measurements in the optimization framework to drive a real process (or plant)
to optimal performance, while guaranteeing constraint satisfaction. The typical sequence of steps
for process optimization includes (i) process modeling; (ii) numerical optimization using the process
model; and (iii) application of the model-based optimal inputs to the plant. In practice, this last step
is quite hazardous—in the absence of additional safeguards—as the model-based inputs are indeed
optimal for the model, but not for the plant unless the model is a perfect representation of the plant.
This often results in suboptimal plant operation and in constraint violation, for instance when optimal
operation implies operating close to a constraint and the model under- or overestimates the value of
that particular constraint.

RTO has emerged over the past forty years to overcome the difficulties associated with
plant-model mismatch. Uncertainty can have three main sources, namely, (i) parametric uncertainty
when the values of the model parameters do not correspond to the reality of the process at hand;
(ii) structural plant-model mismatch when the structure of the model is not perfect, for example in the

Processes 2016, 4, 55 1 www.mdpi.com/journal/processes



Processes 2016, 4, 55

case of unknown phenomena or neglected dynamics; and (iii) process disturbances. Of course these
three sources are not mutually exclusive.

RTO incorporates process measurements in the optimization framework to combat the detrimental
effect of uncertainty. RTO methods can be classified depending on how the available measurements
are used. There are basically three possibilities, namely, at the level of the process model, at the level of
the cost and constraint functions, and at the level of the inputs [1].

1. The most intuitive strategy is to use process measurements to improve the model. This is the main
idea behind the “two-step” approach [2–5]. Here, deviations between predicted and measured
outputs are used to update the model parameters, and new inputs are computed on the basis of the
updated model. The whole procedure is repeated until convergence is reached, whereby it is hoped
that the computed model-based optimal inputs will be optimal for the plant. The requirements for
this to happen are referred to as the model-adequacy conditions [6]. Unfortunately, the model-adequacy
conditions are difficult to both achieve and verify.

2. This difficulty of converging to the plant optimum motivated the development of a modified
two-step approach, referred to as Integrated System Optimization and Parameter Estimation
(ISOPE) [7–10]. ISOPE requires both output measurements and estimates of the gradients of the
plant outputs with respect to the inputs. These gradients allow computing the plant cost gradient
that is used to modify the cost function of the optimization problem. The use of gradients is
justified by the nature of the necessary conditions of optimality (NCO) that include both constraints
and sensitivity conditions [11]. By incorporating estimates of the plant gradients in the model,
the goal is to enforce NCO matching between the model and the plant, thereby making the
modified model a likely candidate to solve the plant optimization problem. With ISOPE, process
measurements are incorporated at two levels, namely, the model parameters are updated on the
basis of output measurements, and the cost function is modified by the addition of an input-affine
term that is based on estimated plant gradients.

Note that RTO can rely on a fixed process model if measurement-based adaptation of the cost and
constraint functions is implemented. For instance, this is the philosophy of Constraint Adaptation
(CA), wherein the measured plant constraints are used to shift the predicted constraints in the
model-based optimization problem, without any modification of the model parameters [12,13].
This is also the main idea in Modifier Adaptation (MA) that uses measurements of the plant
constraints and estimates of plant gradients to modify the cost and constraint functions in the
model-based optimization problem without updating the model parameters [14,15]. Input-affine
corrections allow matching the first-order NCO upon convergence. The advantage of MA, which
is the focus of this article, lies in its proven ability to converge to the plant optimum despite
structural plant-model mismatch.

3. Finally, the third way of incorporating process measurements in the optimization framework
consists in directly updating the inputs in a control-inspired manner. There are various ways of
doing this. With Extremum-Seeking Control (ESC), dither signals are added to the inputs such
that an estimate of the plant cost gradient is obtained online using output measurements [16].
In the unconstrained case, gradient control is directly applied to drive the plant cost gradient
to zero. Similarly, NCO tracking uses output measurements to estimate the plant NCO, which
are then enforced via dedicated control algorithms [17,18]. Furthermore, Neighboring-Extremal
Control (NEC) combines a variational analysis of the model at hand with output measurements to
enforce the plant NCO [19]. Finally, Self-Optimizing Control (SOC) uses the sensitivity between
the uncertain model parameters and the measured outputs to generate linear combinations of the
outputs that are locally insensitive to the model parameters, and which can thus be kept constant
at their nominal values to reject the effect of uncertainty [20].
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The choice of a specific RTO method will depend on the situation at hand. However, it is highly
desirable for RTO approaches to have certain properties such as (i) guaranteed plant optimality upon
convergence; (ii) fast convergence; and (iii) feasible-side convergence. MA satisfies the first requirement
since the model-adequacy conditions for MA are much easier to satisfy than those of the two-step
approach. These conditions are enforced quite easily if convex model approximations are used instead
of the model at hand as shown in [21]. The rate of convergence and feasible-side convergence are also
critical requirements, which however are highly case dependent. Note that these two requirements
often oppose each other since fast convergence calls for large steps, while feasible-side convergence
often requires small and cautious steps. It is the intrinsic capability of MA to converge to the plant
optimum despite structural plant-model mismatch that makes it a very valuable tool for optimizing
the operation of chemical processes in the absence of accurate models.

This overview article is structured as follows. Section 2 formulates the static real-time optimization
problem. Section 3 briefly revisits ISOPE, while Section 4 discusses MA, its properties and several MA
variants. Implementation aspects are investigated in Section 5, while Section 6 provides an overview
of MA case studies. Finally, Section 7 concludes the paper with a discussion of open issues.

2. Problem Formulation

2.1. Steady-State Optimization Problem

The optimization of process operation consists in minimizing operating costs, or maximizing
economic profit, in the presence of constraints. Mathematically, this problem can be formulated
as follows:

u�
p = arg min

u
Φp(u) := φ(u, yp(u)) (1)

s.t. Gp,i(u) := gi(u, yp(u)) ≤ 0, i = 1, . . . , ng,

where u ∈ IRnu denotes the decision (or input) variables; yp ∈ IRny are the measured output variables;
φ : IRnu × IRny → IR is the cost function to be minimized; and gi : IRnu × IRny → IR, i = 1, . . . , ng, is the
set of inequality constraints on the input and output variables.

This formulation assumes that φ and gi are known functions of u and yp, i.e., they can be
directly evaluated from the knowledge of u and the measurement of yp. However, in any practical
application, the steady-state input-output mapping of the plant yp(u) is typically unknown, and only
an approximate nonlinear steady-state model is available:

F(x, u) = 0, (2a)

y = H(x, u), (2b)

where x ∈ IRnx are the state variables and y ∈ IRny the output variables predicted by the model.
For given u, the solution to (2a) can be written as

x = ξ(u), (3)

where ξ is an operator expressing the steady-state mapping between u and x. The input-output
mapping predicted by the model can be expressed as

y(u) := H(ξ(u), u). (4)

Using this notation, the model-based optimization problem becomes

3
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u� = arg min
u

Φ(u) := φ(u, y(u)) (5)

s.t. Gi(u) := gi(u, y(u)) ≤ 0, i = 1, . . . , ng.

However, in the presence of plant-model mismatch, the model solution u� does not generally
coincide with the plant optimum u�

p.

2.2. Necessary Conditions of Optimality

Local minima of Problem (5) can be characterized via the NCO [11]. To this end, let us denote the
set of active constraints at some point u by

A(u) =
{

i ∈ {1, . . . , ng} | Gi(u) = 0
}

. (6)

The Linear Independence Constraint Qualification (LICQ) requires that the gradients of the active
constraints, ∂Gi

∂u (u) for i ∈ A(u), be linearly independent. Provided that a constraint qualification such
as LICQ holds at the solution u� and the functions Φ and Gi are differentiable at u�, there exist unique
Lagrange multipliers μ� ∈ IRng such that the following Karush-Kuhn-Tucker (KKT) conditions hold at
u� [11]

G ≤ 0, μTG = 0, μ ≥ 0, (7)

∂L
∂u

=
∂Φ
∂u

+ μT ∂G

∂u
= 0,

where G ∈ IRng is the vector of constraint functions Gi, and L(u, μ) := Φ(u) + μTG(u) is the
Lagrangian function. A solution u� satisfying these conditions is called a KKT point.

The vector of active constraints at u� is denoted by Ga(u�) ∈ IRna
g , where na

g is the cardinality of
A(u�). Assuming that LICQ holds at u�, one can write:

∂Ga

∂u
(u�)Z = 0,

where Z ∈ IRnu×(nu−na
g) is a null-space matrix. The reduced Hessian of the Lagrangian on this null

space, ∇2
rL(u�) ∈ IR(nu−na

g)×(nu−na
g), is given by [22]

∇2
rL(u�) := ZT

[
∂2L
∂u2 (u

�, μ�)

]
Z.

In addition to the first-order KKT conditions, a second-order necessary condition for a local
minimum is the requirement that ∇2

rL(u�) be positive semi-definite at u�. On the other hand, ∇2
rL(u�)

being positive definite is sufficient for a strict local minimum [22].

3. ISOPE: Two Decades of New Ideas

In response to the inability of the classical two-step approach to enforce plant optimality,
a modified two-step approach was proposed by Roberts [8] in 1979. The approach became known under
the acronym ISOPE, which stands for Integrated System Optimization and Parameter Estimation [9,10].
Since then, several extensions and variants of ISOPE have been proposed, with the bulk of the
research taking place between 1980 and 2002. ISOPE algorithms combine the use of a parameter
estimation problem and the definition of a modified optimization problem in such a way that, upon
convergence, the KKT conditions of the plant are enforced. The key idea in ISOPE is to incorporate plant
gradient information into a gradient correction term that is added to the cost function. Throughout

4
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the ISOPE literature, an important distinction is made between optimization problems that include
process-dependent constraints of the form g(u, y) ≤ 0 and problems that do not include them [7,9].
Process-dependent constraints depend on the outputs y, and not only on the inputs u. In this section,
we briefly describe the ISOPE formulations that we consider to be most relevant for contextualizing
the MA schemes that will be presented in Section 4. Since ISOPE includes a parameter estimation
problem, the steady-state outputs predicted by the model will be written in this section as y(u, θ) in
order to emphasize their dependency on the (adjustable) model parameters θ ∈ IRnθ .

3.1. ISOPE Algorithm

The original ISOPE algorithm does not consider process-dependent constraints in the optimization
problem, but only input bounds. At the kth RTO iteration, with the inputs uk and the plant
outputs yp(uk), a parameter estimation problem is solved, yielding the updated parameter values θk.
This problem is solved under the output-matching condition

y(uk, θk) = yp(uk). (8)

Then, assuming that the output plant gradient
∂yp
∂u (uk) is available, the ISOPE modifier λk ∈ IRnu

for the gradient of the cost function is calculated as

λT
k =

∂φ

∂y

(
uk, y(uk, θk)

) [∂yp

∂u
(uk)− ∂y

∂u
(uk, θk)

]
. (9)

Based on the parameter estimates θk and the updated modifier λk, the next optimal RTO inputs
are computed by solving the following modified optimization problem:

u�
k+1 = arg min

u
φ(u, y(u, θk)) + λT

k u (10)

s.t. uL ≤ u ≤ uU.

The new operating point is determined by filtering the inputs using a first-order exponential filter:

uk+1 = uk +K(u�
k+1 − uk). (11)

The output-matching condition (8) is required in order for the gradient of the modified cost
function to match the plant gradient at uk. This condition represents a model-qualification condition
that is present throughout the ISOPE literature [7,10,23,24].

3.2. Dealing with Process-Dependent Constraints

In order to deal with process-dependent constraints, Brdyś et al. [25] proposed to use a modifier
for the gradient of the Lagrangian function. The parameter estimation problem is solved under
the output-matching condition (8) and the updated parameters are used in the following modified
optimization problem:

u�
k+1 = arg min

u
φ(u, y(u, θk)) + λT

k u (12)

s.t. gi(u, y(u, θk)) ≤ 0, i = 1, . . . , ng,

where the gradient modifier is computed as follows:

5
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λT
k =

[
∂φ

∂y

(
uk, y(uk, θk)

)
+ μT

k
∂g

∂y

(
uk, y(uk, θk)

)] [∂yp

∂u
(uk)− ∂y

∂u
(uk, θk)

]
. (13)

The next inputs applied to the plant are obtained by applying the first-order filter (11), and the
next values of the Lagrange multipliers to be used in (13) are adjusted as

μi,k+1 = max{0, μi,k + bi(μ
�
i,k+1 − μi,k)}, i = 1, . . . , ng, (14)

where μ�
k+1 are the optimal values of the Lagrange multipliers of Problem (12) [7]. This particular ISOPE

scheme is guaranteed to reach a KKT point of the plant upon convergence, and the process-dependent
constraints are guaranteed to be respected upon convergence. However, the constraints might be
violated during the RTO iterations leading to convergence, which calls for the inclusion of conservative
constraint backoffs [7].

3.3. ISOPE with Model Shift

Later on, Tatjewski [26] argued that the output-matching condition (8) can be satisfied without
the need to adjust the model parameters θ. This can be done by adding the bias correction term ak to
the outputs predicted by the model,

ak := yp(uk)− y(uk, θ). (15)

This way, the ISOPE Problem (10) becomes:

u�
k+1 ∈ arg min

u
φ(u, y(u, θ) + ak) + λT

k u (16)

s.t. uL ≤ u ≤ uU,

with

λT
k :=

∂φ

∂y
(uk, y(uk, θ) + ak)

[
∂yp

∂u
(uk)− ∂y

∂u
(uk, θ)

]
. (17)

This approach can also be applied to the ISOPE scheme (12) and (13) and to all ISOPE algorithms
that require meeting Condition (8). As noted in [26], the name ISOPE is no longer adequate since,
in this variant, there is no need for estimating the model parameters. The name Modifier Adaptation
becomes more appropriate. As will be seen in the next section, MA schemes re-interpret the role of the
modifiers and the way they are defined.

4. Modifier Adaptation: Enforcing Plant Optimality

The idea behind MA is to introduce correction terms for the cost and constraint functions such
that, upon convergence, the modified model-based optimization problem matches the plant NCO.
In contrast to two-step RTO schemes such as the classical two-step approach and ISOPE, MA schemes
do not rely on estimating the parameters of a first-principles model by solving a parameter estimation
problem. Instead, the correction terms introduce a new parameterization that is specially tailored
to matching the plant NCO. This parameterization consists of modifiers that are updated based on
measurements collected at the successive RTO iterates.

6
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4.1. Basic MA Scheme

4.1.1. Modification of Cost and Constraint Functions

In basic MA, first-order correction terms are added to the cost and constraint functions of the
optimization problem [14,15]. At the kth iteration with the inputs uk, the modified cost and constraint
functions are constructed as follows:

Φm,k(u) := Φ(u) + εΦ
k + (λΦ

k )
T(u − uk) (18)

Gm,i,k(u) := Gi(u) + ε
Gi
k + (λGi

k )T(u − uk) ≤ 0, i = 1, . . . , ng, (19)

with the modifiers εΦ
k ∈ IR, ε

Gi
k ∈ IR, λΦ

k ∈ IRnu , and λ
Gi
k ∈ IRnu given by

εΦ
k = Φp(uk)− Φ(uk), (20a)

ε
Gi
k = Gp,i(uk)− Gi(uk), i = 1, . . . , ng, (20b)

(λΦ
k )

T =
∂Φp

∂u
(uk)− ∂Φ

∂u
(uk), (20c)

(λGi
k )T =

∂Gp,i

∂u
(uk)− ∂Gi

∂u
(uk), i = 1, . . . , ng. (20d)

The zeroth-order modifiers εΦ
k and ε

Gi
k correspond to bias terms representing the differences

between the plant values and the predicted values at uk, whereas the first-order modifiers λΦ
k and λ

Gi
k

represent the differences between the plant gradients and the gradients predicted by the model at uk.

The plant gradients ∂Φp
∂u (uk) and

∂Gp,i
∂u (uk) are assumed to be available at uk. A graphical interpretation

of the first-order correction for the constraint Gi is depicted in Figure 1. Note that, if the cost and/or
constraints are perfectly known functions of the inputs u, then the corresponding modifiers are equal
to zero, and no model correction is necessary. For example, the upper and lower bounds on the input
variables are constraints that are perfectly known, and thus do not require modification.

u

G
p
,i
,
G

i,
G

m
,i
,k

εGi

k

(λGi

k )T(u− uk)

Gi(u)

Gp,i(u)

Gm,i,k(u)

uk

Figure 1. First-order modification of the constraint Gi at uk.

At the kth RTO iteration, the next optimal inputs u�
k+1 are computed by solving the following

modified optimization problem:

u�
k+1 = arg min

u
Φm,k(u) := Φ(u) + (λΦ

k )
Tu (21a)

s.t. Gm,i,k(u) := Gi(u) + ε
Gi
k + (λGi

k )T(u − uk) ≤ 0, i = 1, . . . , ng. (21b)

7
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Note that the addition of the constant term εΦ
k − (λΦ

k )
Tuk to the cost function does not affect the

solution u�
k+1. Hence, the cost modification is often defined by including only the linear term in u, that

is, Φm,k(u) := Φ(u) + (λΦ
k )

Tu.
The optimal inputs can then be applied directly to the plant:

uk+1 = u�
k+1. (22)

However, such an adaptation strategy may result in excessive correction and, in addition,
be sensitive to process noise. Both phenomena can compromise the convergence of the algorithm.
Hence, one usually relies on first-order filters that are applied to either the modifiers or the inputs.
In the former case, one updates the modifiers using the following first-order filter equations [15]:

εG
k = (Ing − Kε)εG

k−1 + Kε
(
Gp(uk)− G(uk)

)
, (23a)

λΦ
k = (Inu − KΦ)λΦ

k−1 + KΦ
(

∂Φp

∂u
(uk)− ∂Φ

∂u
(uk)

)T
, (23b)

λ
Gi
k = (Inu − KGi )λGi

k−1 + KGi

(
∂Gp,i

∂u
(uk)− ∂Gi

∂u
(uk)

)T
, i = 1, . . . , ng, (23c)

where the filter matrices Kε, KΦ, and KGi are typically selected as diagonal matrices with
eigenvalues in the interval (0, 1]. In the latter case, one filters the optimal RTO inputs u�

k+1 with
K = diag(k1, . . . , knu), ki ∈ (0, 1]:

uk+1 = uk + K(u�
k+1 − uk). (24)

4.1.2. KKT Matching Upon Convergence

The appeal of MA lies in its ability to reach a KKT point of the plant upon convergence, as made
explicit in the following theorem.

Theorem 1 (MA convergence ⇒ KKT matching [15]). Consider MA with filters on either the modifiers or
the inputs. Let u∞ = lim

k→∞
uk be a fixed point of the iterative scheme and a KKT point of the modified optimization

Problem (21). Then, u∞ is also a KKT point of the plant Problem (1).

4.1.3. Model Adequacy

The question of whether a model is adequate for use in an RTO scheme was addressed by Forbes
and Marlin [27], who proposed the following model-adequacy criterion.

Definition 1 (Model-adequacy criterion [27]). A process model is said to be adequate for use in an RTO
scheme if it is capable of producing a fixed point that is a local minimum for the RTO problem at the plant
optimum u�

p.

In other words, u�
p must be a local minimum when the RTO algorithm is applied at u�

p.
The plant optimum u�

p satisfies the first- and second-order NCO of the plant optimization Problem (1).
The adequacy criterion requires that u�

p must also satisfy the first- and second-order NCO for the
modified optimization Problem (21), with the modifiers (20) evaluated at u�

p. As MA matches the
first-order KKT elements of the plant, only the second-order NCO remain to be satisfied. That is, the
reduced Hessian of the Lagrangian must be positive semi-definite at u�

p. The following proposition
characterizes model adequacy based on second-order conditions. Again, it applies to MA with filters
on either the modifiers or the inputs.
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Proposition 1 (Model-adequacy conditions for MA [15]). Let u�
p be a regular point for the constraints and

the unique plant optimum. Let ∇2
rL(u�

p) denote the reduced Hessian of the Lagrangian of Problem (21) at u�
p.

Then, the following statements hold:

i If ∇2
rL(u�

p) is positive definite, then the process model is adequate for use in the MA scheme.
ii If ∇2

rL(u�
p) is not positive semi-definite, then the process model is inadequate for use in the MA scheme.

iii If ∇2
rL(u�

p) is positive semi-definite and singular, then the second-order conditions are not conclusive with
respect to model adequacy.

Example 1 (Model adequacy). Consider the problem min
u

Φp(u) = u2
1 + u2

2, for which u�
p = [0, 0]T.

The models Φ1(u) = u2
1 + u4

2 and Φ2(u) = u2
1 − u4

2 both have their gradients equal to zero at u�
p, and their

Hessian matrices both have eigenvalues {2, 0} at u�
p, that is, they are both positive semi-definite and singular.

However, Φ1 is adequate since u�
p is a minimizer of Φ1, while Φ2 is inadequate since u�

p is a saddle point of Φ2.

4.1.4. Similarity with ISOPE

The key feature of MA schemes is that updating the parameters of a first-principles model is not
required to match the plant NCO upon convergence. In addition, compared to ISOPE, the gradient
modifiers have been redefined. The cost gradient modifier (20c) can be expressed in terms of the
gradients of the output variables as follows:

(λΦ
k )

T =
∂Φp

∂u
(uk)− ∂Φ

∂u
(uk), (25)

=
∂φ

∂u
(uk, yp(uk)) +

∂φ

∂y
(uk, yp(uk))

∂yp

∂u
(uk)

− ∂φ

∂u
(uk, y(uk, θ))− ∂φ

∂y
(uk, y(uk, θ))

∂y

∂u
(uk, θ).

Notice that, if Condition (8) is satisfied, the gradient modifier λΦ
k in (25) reduces to the ISOPE

modifier (9). In fact, Condition (8) is required in ISOPE in order for the gradient modifier (9) to
represent the difference between the plant and model gradients. Put differently, output matching is a
prerequisite for the gradient of the modified cost function to match the plant gradient. This requirement
can be removed by directly defining the gradient modifiers as the differences between the plant and
model gradients, as given in (25).

4.2. Alternative Modifications

4.2.1. Modification of Output Variables

Instead of modifying the cost and constraint functions as in (18) and (19) , it is also possible to
place the first-order correction terms directly on the output variables [15]. At the operating point uk,
the modified outputs read:

ym,k(u) := y(u) + ε
y
k + (λ

y
k )

T(u − uk), (26)

with the modifiers ε
y
k ∈ IRny and λ

y
k ∈ IRnu×ny given by:

ε
y
k = yp(uk)− y(uk), (27a)

(λ
y
k )

T =
∂yp

∂u
(uk)− ∂y

∂u
(uk). (27b)

9
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In this MA variant, the next RTO inputs are computed by solving

u�
k+1 = arg min

u
φ(u, ym,k(u)) (28)

s.t. ym,k(u) = y(u) + ε
y
k + (λ

y
k )

T(u − uk)

gi(u, ym,k(u)) ≤ 0, i = 1, . . . , ng.

Interestingly, the output bias ε
y
k is the same as the model shift term (15) introduced by

Tatjewski [26] in the context of ISOPE. The MA scheme (28) also reaches a KKT point of the plant upon
convergence and, again, one can choose to place a filter on either the modifiers or the inputs [15].

4.2.2. Modification of Lagrangian Gradients

Section 3.2 introduced the algorithmic approach used in ISOPE for dealing with process-dependent
constraints, which consists in correcting the gradient of the Lagrangian function. An equivalent approach
can be implemented in the context of MA by defining the modified optimization problem as follows:

u�
k+1 = arg min

u
Φm,k(u) := Φ(u) + (λL

k )
Tu (29a)

s.t. Gm,i,k(u) := Gi(u) + ε
Gi
k ≤ 0, i = 1, . . . , ng, (29b)

where ε
Gi
k are the zeroth-order constraint modifiers, and the Lagrangian gradient modifier λL

k represents
the difference between the Lagrangian gradients of the plant and the model,

(λL
k )

T =
∂Lp

∂u
(uk, μk)− ∂L

∂u
(uk, μk). (30)

This approach has the advantage of requiring a single gradient modifier λL
k , but the disadvantage

that the modified cost and constraint functions do not provide first-order approximations to the plant
cost and constraint functions at each RTO iteration. This increased plant-model mismatch may result
in slower convergence to the plant optimum and larger constraint violations prior to convergence.

4.2.3. Directional MA

MA schemes require the plant gradients to be estimated at each RTO iteration. Gradient estimation
is experimentally expensive and represents the main bottleneck for MA implementation (see Section 5
for an overview of gradient estimation methods). The number of experiments required to estimate
the plant gradients increases linearly with the number of inputs, which tends to make MA
intractable for processes with many inputs. Directional Modifier Adaptation (D-MA) overcomes
this limitation by estimating the gradients only in nr < nu privileged input directions [28,29].
This way, convergence can be accelerated since fewer experiments are required for gradient estimation
at each RTO iteration. D-MA defines a (nu × nr)-dimensional matrix of privileged directions,
Ur = [δu1 . . . δur], the columns of which contain the nr privileged directions in the input space.
Note that these directions are typically selected as orthonormal vectors that span a linear subspace of
dimension nr.

At the operating point uk, the directional derivatives of the plant cost and constraints that need to
be estimated are defined as follows:

∇Ur jp :=
∂jp(uk + Urr)

∂r

∣∣∣∣
r=0

, jp ∈ {Φp, Gp,1, Gp,2, . . . , Gp,ng}, (31)

where r ∈ IRnr . Approximations of the full plant gradients are given by

10
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∇̂Φk =
∂Φ
∂u

(uk)(Inu − UrU
+
r ) +∇Ur ΦpU+

r , (32)

∇̂Gi,k =
∂Gi
∂u

(uk)(Inu − UrU
+
r ) +∇Ur Gp,iU

+
r , i = 1, . . . , ng, (33)

where the superscript (·)+ denotes the Moore-Penrose pseudo-inverse, and Inu is the nu-dimensional
identity matrix. In D-MA, the gradients of the plant cost and constraints used in (20c) and (20d) are
replaced by the estimates (32) and (33). Hence, the gradients of the modified cost and constraint
functions match the estimated gradients at uk, that is, ∂Φm

∂u (uk) = ∇̂Φk and ∂Gm,i
∂u (uk) = ∇̂Gi,k.

Figure 2 illustrates the fact that the gradient of the modified cost function ∂Φm
∂u (uk) and the plant

cost gradient ∂Φp
∂u (uk) share the same projected gradient in the privileged direction δu, while ∂Φm

∂u (uk)

matches the projection of the model gradient ∂Φ
∂u (uk) in the direction orthogonal to δu.

.

u1

u
2

∂Φp

∂u ∂Φ
∂u

∂Φm

∂u

uk

δu

λΦ
k

Figure 2. Matching the projected gradient of the plant using D-MA.

In general, D-MA does not converge to a KKT point of the plant. However, upon convergence,
D-MA reaches a point for which the cost function cannot be improved in any of the privileged
directions. This is formally stated in the following theorem.

Theorem 2 (Plant optimality in privileged directions [29]). Consider D-MA with the gradient
estimates (32) and (33) in the absence of measurement noise and with perfect estimates of the directional
derivatives (31). Let u∞ = lim

k→∞
uk be a fixed point of that scheme and a KKT point of the modified optimization

Problem (21). Then, u∞ is optimal for the plant in the nr privileged directions.

The major advantage of D-MA is that, if the selected number of privileged directions is much
lower than the number of inputs, the task of gradient estimation is greatly simplified. An important
issue is the selection of the privileged directions.

Remark 1 (Choice of privileged directions). Costello et al. [29] addressed the selection of privileged input
directions for the case of parametric plant-model mismatch. They proposed to perform a sensitivity analysis of the
gradient of the Lagrangian function with respect to the uncertain model parameters θ. The underlying idea is that,
if the likely parameter variations affect the Lagrangian gradient significantly only in a few input directions, it will
be sufficient to estimate the plant gradients in these directions. The matrix of privileged directions Ur is obtained
by performing singular value decomposition of the normalized (by means of the expected largest variations of
the uncertain model parameters θ) sensitivity matrix δL2

δuδθ evaluated for the optimal inputs corresponding to
the nominal parameter values. Only the directions in which the gradient of the Lagrangian is significantly

11
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affected by parameter variations are retained. Other choices of Ur are currently under research. For example, it is
proposed in [30] to adapt Ur at each RTO iteration and considering large parametric perturbations.

D-MA is particularly well suited for the run-to-run optimization of repetitive dynamical systems,
for which a piecewise-polynomial parameterization of the input profiles typically results in a large
number of RTO inputs, thus making the estimation of full gradients prohibitive. For instance,
Costello et al. [29] applied D-MA very successfully to a flying power-generating kite.

4.2.4. Second-Order MA

Faulwasser and Bonvin [31] proposed the use of second-order modifiers in the context of MA.
The use of second-order correction terms allows assessing whether the scheme has converged to a
point satisfying the plant second-order optimality conditions. Note that, already in 1989, Golden and
Ydstie [32] investigated second-order modification terms for single-input problems.

Consider the second-order modifiers

Θ
j
k :=

∂2 jp

∂u2 (uk)− ∂2 j
∂u2 (uk), j ∈ {Φ, G1, G2, . . . , Gng}, (34)

with Θ
j
k ∈ IRnu×nu . These modifiers describe the difference in the Hessians of the plant and model

costs (j = Φ) and constraints (j = Gi), respectively. Second-order MA reads:

u�
k+1 = arg min

u
Φ(u) + εΦ

k + (λΦ
k )

T(u − uk) + 1
2 (u − uk)

TΘΦ
k (u − uk)︸ ︷︷ ︸

=: Φm,k(u)

(35a)

s.t. Gi(u) + ε
Gi
k + (λGi

k )T(u − uk) +
1
2 (u − uk)

TΘ
Gi
k (u − uk)︸ ︷︷ ︸

=: Gm,i,k(u)

≤ 0, (35b)

i = 1, . . . , ng,

u ∈ C, (35c)

with

uk+1 = uk + K(u�
k+1 − uk). (36)

Note that, in contrast to the first-order formulation (21), we explicitly add the additional constraint
u ∈ C in (35c), where C denotes a known nonempty convex subset of IRnu . This additional constraint,
which is not subject to plant-model mismatch, will simplify the convergence analysis.

Next, we present an extension to Theorem 1 that shows the potential advantages of second-order
MA. To this end, we make the following assumptions:

A1 Numerical feasibility: For all k ∈ N, Problem (35) is feasible and has a unique minimizer.
A2 Plant and model functions: The plant and model cost and constraint functions are all twice

continuously differentiable on C ⊂ IRnu .

Proposition 2 (Properties of second-order MA [31]). Assume that the second-order MA scheme ((35)
and (36)) has converged with u∞ = lim

k→∞
uk. Let Assumptions A1 and A2 hold, and let a linear independence

constraint qualification hold at u∞. Then, the following properties hold:

i u∞ satisfies the KKT conditions of the plant, and
ii the cost and constraint gradients and Hessians of the modified Problem (35) match those of the plant at u∞.

In addition, if (35) has a strict local minimum at u∞ such that, for all d ∈ Rnd ,

12
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dT∇2
rL(u∞)d > 0, (37)

then

iii Φp(u∞) is a strict local minimum of Φp(u).

Proposition 2 shows that, if second-order information can be reconstructed from measurements,
then the RTO scheme ((35) and (36)) allows assessing, upon convergence, that a local minimum of the
modified Problem (35) is also a local minimum of the plant.

Remark 2 (Hessian approximation). So far, we have tacitly assumed that the plant gradients and Hessians are
known. However, these quantities are difficult to estimate accurately in practice. Various approaches to compute
plant gradients from measurements will be described in Section 5.1. To obtain Hessian estimates, one can rely
on well-known approximation formulas such as BFGS or SR1 update rules [33]. While BFGS-approximated
Hessians can be enforced to be positive definite, the convergence of the SR1 Hessian estimates to the true
Hessian can be guaranteed under certain conditions ([33] Chap. 6). However, the issue of computing Hessian
approximations that can work in a RTO context (with a low number of data points and a fair amount of noise) is
not solved yet!

Remark 3 (From MA to RTO based on surrogate models). It is fair to ask whether second-order
corrections allow implementing model-free RTO schemes. Upon considering the trivial models Φ(u) = 0
and Gi(u) = 0, i = 1, . . . , ng, that is, in the case of no model, the modifiers are

ε
j
k = jp(uk), (λ

j
k)

T =
∂jp

∂u
(uk), Θ

j
k =

∂2 jp

∂u2 (uk), j ∈ {Φ, G1, G2, . . . , Gng},

and the second-order MA Problem (35) reduces to a Quadratically Constrained Quadratic Program:

u�
k+1 = arg min

u
Φp(uk) +

∂Φp

∂u
(uk)(u − uk) +

1
2 (u − uk)

T ∂2Φp

∂u2 (uk)(u − uk)

s.t. Gp,i(uk) +
∂Gp,i

∂u
(uk)(u − uk) +

1
2 (u − uk)

T ∂2Gp,i

∂u2 (uk)(u − uk) ≤ 0, (38)

i = 1, . . . , ng,

u ∈ C,

where C is determined by lower and upper bounds on the input variables, C = {u ∈ IRnu : uL ≤ u ≤ uU}.
Note that the results of Proposition 2 also hold for RTO Problem(38). Alternatively, the same information can be
used to construct the QP approximations used in Successive Quadratic Programming (SQP) approaches for
solving NLP problems [33]. The SQP approximation at the kth RTO iteration is given by,

u�
k+1 = arg min

u
Φp(uk) +

∂Φp

∂u
(uk)(u − uk) +

1
2 (u − uk)

T ∂2Lp

∂u2 (uk)(u − uk)

s.t. Gp,i(uk) +
∂Gp,i

∂u
(uk)(u − uk) ≤ 0, i = 1, . . . , ng, (39)

u ∈ C,

where the constraints are linearized at uk, and the Hessian of the Lagrangian function is used in the quadratic
term of the cost function. Properties (i) and (iii) of Proposition 2 also hold for RTO Problem (39), and the
Hessian of the Lagrangian function of Problem (39) matches the Hessian of the plant upon convergence.
As the approximations of the cost and constraints are of local nature, a trust-region constraint may be
added [33,34]. Obviously, such an approach leads to a SQP-like RTO scheme based on a surrogate model.
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A thorough investigation of RTO based on surrogate models is beyond the scope of this paper. Instead, we refer
the reader to the recent progress made in this direction [35–38].

4.3. Convergence Conditions

Arguably, the biggest advantage of the MA schemes presented so far lies in the fact that any
fixed point turns out to be a KKT point of the plant according to Theorem 1. Yet, Theorem 1 is
somewhat limited in value, as it indicates properties upon convergence rather than stating sufficient
conditions for convergence. Note that properties-upon-convergence results appear frequently in
numerical optimization and nonlinear programming, see for example methods employing augmented
Lagrangians with quadratic penalty on constraint violation ([39] Prop. 4.2.1). Hence, we now turn
toward sufficient convergence conditions.

4.3.1. RTO Considered as Fixed-Point Iterations

In principle, one may regard any RTO scheme as a discrete-time dynamical system. In the case
of MA, it is evident that the values of the modifiers at the kth RTO iteration implicitly determine the
values of the inputs at iteration k + 1.

We consider here the second-order MA scheme with input filtering from the previous section.
Let vec(A) ∈ Rn(n+1)/2 be the vectorization of the symmetric matrix A ∈ Rn×n. Using this short hand
notation, we collect all modifiers in the vector Λ ∈ RnΛ , nΛ = (ng + 1)

(
nu +

nu(nu+1)
2

)
+ ng + 1,

Λk :=
(

εΦ
k , (λΦ

k )
T, vec(ΘΦ

k ), εG1
k , (λG1

k )T, vec(ΘG1
k ), . . . , ε

Gng
k , (λ

Gng
k )T, vec(Θ

Gng
k )

)T
. (40)

As the minimizer in the optimization problem (35) depends on Λk, we can formally state
Algorithm (35 and 36) as

uk+1 = (1 − α)uk + αu�(uk, Λk), (41)

whereby u�(uk, Λk) is the minimizer of (35), and, for sake of simplicity, the filter is chosen as the scalar
α ∈ (0, 1). Clearly, the above shorthand notation can be applied to any MA scheme with input filtering.
Before stating the result, we recall the notion of a nonexpansive map.

Definition 2 (Nonexpansive map). The map Γ : C → C is called nonexpansive, if

∀x, y ∈ C : ‖Γ(x)− Γ(y)‖ ≤ ‖x − y‖.

Theorem 3 (Convergence of MA [31]). Consider the RTO scheme (41). Let Assumptions A1 and A2 hold
and let α ∈ (0, 1). If the map u� : u �→ u�(u, Λ(u)) is nonexpansive in the sense of Definition 2 and has at
least one fixed point on C, then the sequence (uk)k∈N of RTO iterates defined by (41) converges to a fixed point,
that is,

lim
k→∞

‖u�(uk, Λ(uk))− uk‖ = 0.

Remark 4 (Reasons for filtering). Filtering can be understood as a way to increase the domain of attraction of
MA schemes. This comes in addition to dealing with noisy measurements and the fact that large correction steps
based on local information should be avoided.

4.3.2. Similarity with Trust-Region Methods

The previous section has investigated global convergence of MA schemes. However, the analysis
requires the characterization of properties of the argmin operator of the modified optimization problem,
which is in general challenging. Next, we recall a result given in [40] showing that one can exploit the
similarity between MA and trust-region methods. This similarity has also been observed in [41].
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To this end, we consider the following variant of (21)

u�
k+1 = arg min

u
Φm,k(u) := Φ(u) + (λΦ

k )
Tu (42a)

s.t. Gm,i,k(u) := Gi(u) + ε
Gi
k + (λGi

k )T(u − uk) ≤ 0, i = 1, . . . , ng, (42b)

u ∈ B(uk, ρk). (42c)

The only difference between this optimization problem and (21) is the trust-region constraint (42c),
where B(uk, ρk) denotes a closed ball in IRnu with radius ρk centered at uk.

Consider

ωk :=
Φp(uk)− Φp(u�

k+1)

Φm,k(uk)− Φm,k(u
�
k+1)

If ωk � 1, then, at u�
k+1, the plant performs significantly better than predicted by the modified

model. Likewise, if ωk  1, the plant performs significantly worse than predicted by the modified
model. In other words, ωk is a local criterion for the quality of the modified model. In trust-region
methods, one replaces (input) filtering with acceptance rules for candidate points. In [40], it is suggested
to apply the following rule:

uk+1 :=

{
u�

k+1 if ωk ≥ η1

uk otherwise
(43)

Note that this acceptance rule requires application of u�
k+1 to the plant.

Another typical ingredient of trust-region methods is an update rule for the radius ρk. Consider the
constant scalars 0 < η1 ≤ η2 < 1, 0 < γ1 ≤ γ2 < 1, and assume that the update satisfies the
following conditions:

ρk+1 ∈

⎧⎪⎨⎪⎩
[ρk, ∞) if ωk ≥ η2

[γ2ρk, ρk] if ωk ∈ [η1, η2)

[γ1ρk, γ2ρk] if ωk ≤ η1

(44)

As in the previous section, we assume that Assumptions A1 and A2 hold. In addition, we require
the following:

A3 Plant boundedness: The plant objective Φp is lower-bounded on IRnu . Furthermore, its Hessian is
bounded from above on IRnu .

A4 Model decrease: For all k ∈ N, there exists a constant κ ∈ (0, 1] and a sequence
(βk)k∈N > 1 such that

Φm,k(u
�
k )− Φm,k(u

�
k+1) ≥ κ‖∇Φm,k(uk)‖ · min

{
ρk,

‖∇Φm,k(uk)‖
βk

}
.

Now, we are ready to state convergence conditions for the trust-region-inspired MA scheme given
by (42)–(44).

Theorem 4 (Convergence with trust-region constraints [40]). Consider the RTO scheme (42)–(44) and let
Assumptions A1–A4 hold, then

lim
k→∞

‖∇Φp(uk)‖ = 0.

The formal proof of this result is based on a result on convergence of trust-region methods given
in [34]. For details, we refer to [40].
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Remark 5 (Comparison of Theorems 3 and 4). A few remarks on the convergence results given by
Theorems 3 and 4 are in order. While Theorem 3 is applicable to schemes with first- and second-order correction
terms, the convergence result is based on the nonexpansiveness of the argmin operator, which is difficult to verify
in practice. However, Theorem 3 provides a good motivation for input filtering as the convergence result is based
on averaged iterations of a nonexpansive operator. In contrast, Theorem 4 relies on Assumption A4, which
ensures sufficient model decrease ([34] Thm. 6.3.4, p. 131). However, this assumption is in general not easy
to verify.

There is another crucial difference between MA with and without trust-region constraints. The input
update (43) is based on ωk, which requires application of u�

k+1 to the plant. Note that, if at the kth RTO
iteration the trust region is chosen too large, then first u�

k+1 is applied to the plant, resulting in ωk < η1 and
thus to immediate (re-)application of uk. In other words, a trust region that is chosen too large can result in
successive experiments that do not guarantee plant cost improvement. In a nominal setting with perfect gradient
information, this is clearly a severe limitation. However, in any real world application, where plant gradients
need to be estimated, the plant information obtained from rejected steps may be utilized for gradient estimation.

4.3.3. Use of Convex Models and Convex Upper Bounds

Next, we turn to the issue of convexity in MA. As already mentioned in Proposition 1, for a
model to be adequate in MA, it needs to be able to admit, after the usual first-order correction, a strict
local minimum at the generally unkown plant optimum u�

p. At the same time, it is worth noting
that the model is simply a tool in the design of MA schemes. In Remark 3, for instance, we pointed
toward second-order MA with no model functions. Yet, this is not the only possible choice. It has
been observed in [21] that the adequacy issue is eliminated if one relies on strictly convex models and
first-order correction terms. The next proposition summarizes these results.

Proposition 3 (Use of convex models in MA [21]). Consider the MA Problem (21). Let the model cost and
constraint functions Φ and Gi, i = 1, . . . , ng, be strictly convex functions. Then, (i) Problem (21) is a strictly
convex program; and (ii) the model satisfies the adequacy condition of Definition 1.

Remark 6 (Advantages of convex models). The most important advantage of convex models in MA is that
model adequacy is guaranteed without prior knowledge of the plant optimum. Furthermore, it is well known
that convex programs are, in general, easier to solve than non-convex ones. Note that one can relax the strict
convexity requirement to either the cost being strictly convex or at least one of the active constraints being
strictly convex at the plant optimum [21].

4.4. Extensions

Several extensions and variants of MA have recently been developed to account for specific
problem configurations and needs.

4.4.1. MA Applied to Controlled Plants

MA guarantees plant feasibility upon convergence, but the RTO iterates prior to convergence might
violate the plant constraints. For continuous processes, it is possible to generate feasible steady-state
operating points by implementing the RTO results via a feedback control layer that tracks the constrained
variables that are active at the RTO solution [42]. This requires the constrained quantities in the
optimization problem to be measured online at sufficiently high frequency. Navia et al. [43] recently
proposed an approach to prevent infeasibilities in MA implementation by including PI controllers
that become activated only when the measurements show violation of the constraints. In industry,
model predictive control (MPC) is used widely due to its ability to handle large multivariable systems
with constraints [44]. Recently, Marchetti et al. [45] proposed an approach for integrating MA with
MPC, wherein MPC is used to enforce the equality and active inequality constraints of the modified
optimization problem. The remaining degrees of freedom are controlled to their optimal values along
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selected input directions. In order to implement MA on a controlled plant, the gradients are corrected
on the tangent space of the equality constraints.

The approach used in industry to combine RTO with MPC consists in including a target
optimization stage at the MPC layer [44]. Since the nonlinear steady-state model used at the RTO
layer is not in general consistent with the linear dynamic model used by the MPC regulator, the
optimal setpoints given by the RTO solution are often not reachable by the MPC regulator. The target
optimization problem uses a (linear) steady-state model that is consistent with the MPC dynamic
model. Its purpose is to correct the RTO setpoints by computing steady-state targets that are reachable
by the MPC regulator [46,47]. The target optimization problem executes at the same frequency as the
MPC regulator and uses the same type of feedback. Three different designs of the target optimization
problem have been analyzed in [48], each of which guarantees attaining only feasible points for the
plant at steady state, and reaching the RTO optimal inputs upon convergence.

Another difficulty arises when the inputs of the model-based optimization problem are not the
same as the plant inputs. This happens, for instance, when the plant is operated in closed loop, but
only a model of the open-loop system is available [49]. In this case, the plant inputs are the controller
setpoints r, while the model inputs are the manipulated variables u. Three alternative MA extensions
have recently been proposed to optimize a controlled plant using a model of the open-loop plant [50].
The three extensions use the cost and constraint gradients of the plant with respect to the setpoints r:

1. The first approach, labeled “Method UR”, suggests solving the optimization problem for u, but
computes the modifiers in the space of the setpoints r.

2. The second approach, labelled “Method UU”, solves the optimization problem for u, and
computes the modifiers in the space of u.

3. The third approach, labelled “Method RR”, solves the optimization problem for r, and computes
the modifiers in the space of r. It relies on the construction of model approximations for the
controlled plant that are obtained from the model of the open-loop plant.

As shown in [50], the three extensions preserve the MA property of reaching a KKT point of the
plant upon convergence.

4.4.2. MA Applied to Dynamic Optimization Problems

There have been some attempts to extend the applicability of MA to the dynamic run-to-run
optimization of batch processes [51,52]. The idea therein is to build on the repetitive nature of batch
processes and perform run-to-run iterations to progressively improve the performance of the batches.

The approach used in [51] takes advantage of the fact that dynamic optimization problems can
be reformulated as static optimization problems upon discretization of the inputs, constraints and
the dynamic model [17]. This allows the direct use of MA, the price to pay being that the number
of decision variables increases linearly with the number of discretization points, as shown in [51].
Note that, if the active path constraints are known in the various intervals of the solution, a much more
parsimonious input parameterization can be implemented, as illustrated in ([17] Appendix).

The approach proposed in [52] uses CA (that is, MA with only zeroth-order modifiers) for the
run-to-run optimization of batch processes. Dynamic optimization problems are characterized by the
presence of both path and terminal constraints. Because of uncertainty and plant-model mismatch, the
measured values of both path and terminal constraints will differ from their model predictions. Hence,
for each run, one can offset the values of the terminal constraints in the dynamic optimization problem
with biases corresponding to the differences between the predicted and measured terminal constraints
of the previous batch. Path constraints are modified similarly, by adding to the path constraints
a time-dependent function corresponding to the differences between the measured and predicted
path constraints during the previous batch. An additional difficulty arises when the final time of the
batch is also a decision variable. Upon convergence, the CA approach [52] only guarantees constraint
satisfaction, while the full MA approach [51] preserves the KKT matching property of standard MA.
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4.4.3. Use of Transient Measurements for MA

MA is by nature a steady-state to steady-state RTO methodology for the optimization of uncertain
processes. This means that several iterations to steady state are generally needed before convergence.
However, there are cases where transient measurements can be used as well. Furthermore, it would be
advantageous to be able to use transient measurements in a systematic way to speed up the steady-state
optimization of dynamic processes.

The concept of fast RTO via CA was introduced and applied to an experimental solid oxide fuel-cell
stack in the presence of operating constraints and plant-model mismatch [53]. Solid oxide fuel-cell stacks
are, roughly speaking, electrochemical reactors embedded in a furnace. The electrochemical reaction
between hydrogen and oxygen is almost instantaneous and results in the production of electrical
power and water. On the other hand, thermal equilibration is much slower. The fast RTO approach
in [53] is very simple and uses CA. The RTO period is set somewhere between the time scale of the
electrochemical reaction and the time scale of the thermal process. This way, the chemical reaction has
time to settle, and the thermal effects are treated as slow process drifts that are accounted for like any
other source of plant-model mismatch. This shows that it is possible to use RTO before steady state has
been reached, at least when a time-scale separation exists between fast optimization-relevant dynamics
and slow dynamics that do not affect much the cost and constraints of the optimization problem.

In [54], a framework has been proposed to apply MA during transient operation to steady state
for the case of parametric plant-model mismatch, thereby allowing the plant to converge to optimal
operating conditions in a single transient operation to steady state. The basic idea is simply to implement
standard MA during the transient “as if the process were at steady state”. Optimal inputs are computed
and applied until the next RTO execution during transient. Hence, the time between two consecutive
RTO executions becomes a tuning parameter just as the filter gains. Transient measurements obtained
at the RTO sampling period are treated as if they were steady-state measurements and are therefore
directly used for computing the zeroth-order modifiers and estimating the plant gradients at “steady
state”. There are two main advantages of this approach: (i) standard MA can be applied; and (ii) the
assumption that transient measurements can play the role of steady-state measurements becomes more
and more valid as the system approaches steady state. Simulation results in [54] are very encouraging,
but they also highlight some of the difficulties, in particular when the dynamics exhibit non-standard
behaviors such as inverse response. A way to circumvent these difficulties consists in reducing the
RTO frequency. Ultimately, this frequency could be reduced to the point that MA is only solved at
steady state, when the process dynamics have disappeared. Research is ongoing to improve the use
of transient measurements and characterize the types of dynamic systems for which this approach is
likely to reduce the time needed for convergence [55].

4.4.4. MA when Part of the Plant is Perfectly Modeled

As mentioned above, MA is capable of driving a plant toward a KKT point even though the model
is structurally incorrect. The only requirement for the model is that it satisfies the model-adequacy
conditions, a property that can be enforced if convex model approximations are used [54]. In addition,
plant measurements that allow good estimation of the plant constraints and gradients are required.
The fact that MA can be efficient without an accurate model does not mean that it cannot benefit from
the availability of a good model. For instance, in [56] the authors acknowledge that, for most energy
systems, the model incorporates basic mass and energy balances that can often be very rigorously
modeled and, thus, there is no need to include any structural or parametric plant-model mismatch.
The authors suggest separating the process model equations into two sets of equations. The set of
rigorous model equations is denoted the “process model”, while the second set of equations is referred
to as the “approximate model” and describes performance and efficiency factors, which are much
harder to model and therefore susceptible to carry plant-model mismatch. Hence, modifiers are used
only for this second set of equations by directly modifying the corresponding model equations. Key to
the approach in [56] is data reconciliation, which makes explicit use of the knowledge of the set of
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“perfect model equations”. One of the advantages of not modifying the well-known subparts of the
model is that it may reduce the number of plant gradients that need to be estimated, without much
loss in performance.

5. Implementation Aspects

The need to estimate plant gradients represents the main implementation difficulty. This is a
challenging problem since the gradients cannot be measured directly and, in addition, measurement
noise is almost invariably present. This section discusses different ways of estimating gradients, of
computing modifiers, and of combining gradient estimation and optimization.

5.1. Gradient Estimation

Several methods are available for estimating plant gradients [57–60]. These methods can be
classified as steady-state perturbation methods that use only steady-state data, and dynamic perturbation
methods that use transient data.

5.1.1. Steady-State Perturbation Methods

Steady-state perturbation methods rely on steady-state data for gradient estimation. For each
change in the input variables, one must wait until the plant has reached steady state before taking
measurements, which can make these methods particularly slow. Furthermore, to obtain reliable
gradient estimates, it is important to avoid (i) amplifying the noise present in experimental data [61,62];
and (ii) using past data that correspond to different conditions (for example, different qualities of raw
materials, or different disturbance values).

Finite-difference approximation (FDA). The most common approach is to use FDA techniques that
require at least nu + 1 steady-state operating points to estimate the gradients. Several alternatives can
be envisioned for choosing these points:

• FDA by perturbing the current RTO point: A straightforward approach consists in perturbing each
input individually around the current operating point to get an estimate of the corresponding
gradient element. For example, in the forward-finite-differencing (FFD) approach, an estimator of
the partial derivative ∂Φp

∂uj
(uk), j = 1, . . . , nu, at the kth RTO iteration is obtained as

(∇̂Φp,k)j =
[
Φ̃p(uk + hej)− Φ̃p(uk)

]
/h, h > 0, (45)

where h is the step size, ej is the jth unit vector, and the superscript ˜(·) denotes a noisy
measurement. This approach requires nu perturbations to be carried out at each RTO
iteration, and for each perturbation a new steady state must be attained. Alternatively, the
central-finite-differencing (CFD) approach can be used, which is more accurate but requires 2nu

perturbations at each RTO iteration [61]. Since perturbing each input individually may lead to
constraint violations when the current operating point is close to a constraint, an approach has
been proposed for generating nu perturbed points that take into account the constraints and avoid
ill-conditioned points for gradient estimation [45].

• FDA using past RTO points: The gradients can be estimated by FDA based on the measurements
obtained at the current and past RTO points {uk, uk−1, . . . , uk−nu}. This approach is used in dual
ISOPE and dual MA methods [7,63–65]—the latter methods being discussed in Section 5.3. At the
kth RTO iteration, the following matrix can be constructed:
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Uk := [ uk − uk−1, uk − uk−2, . . . , uk − uk−nu ] ∈ IRnu×nu . (46)

Assuming that measurements of the cost Φp and constraints Gp,i are available at each iteration,
we construct the following vectors:

δΦ̃p,k := [ Φ̃p,k − Φ̃p,k−1, Φ̃p,k − Φ̃p,k−2, . . . , Φ̃p,k − Φ̃p,k−nu ]T ∈ IRnu , (47)

δG̃p,i,k := [ G̃p,i,k − G̃p,i,k−1, G̃p,i,k − G̃p,i,k−2, . . . , G̃p,i,k − G̃p,i,k−nu ]T ∈ IRnu , (48)

i = 1, . . . , ng.

The measured cost has measurement noise vk:

Φ̃p,k = Φp(uk) + vk. (49)

If Uk is nonsingular, then the set of nu + 1 points {uk−j}nu
j=0 is said to be poised for linear

interpolation in IRnu , and Uk is called a matrix of simplex directions [34]. The cost gradient
at uk can then be estimated by FDA as follows:

∇̂Φp,k = (δΦ̃p,k)
T(Uk)

−1, (50)

which is known as the simplex gradient [34]. The constraint gradients can be computed in a
similar way.

Broyden’s method. The gradients are estimated from the past RTO points using the following recursive
updating scheme:

∇̂Φp,k = ∇̂Φp,k−1 +
(Φ̃p,k − Φ̃p,k−1)− ∇̂Φp,k−1(uk − uk−1)

(uk − uk−1)T(uk − uk−1)
(uk − uk−1)

T. (51)

The use of Broyden’s method was investigated for ISOPE in [66] and for MA in [67]. Comparative
studies including this gradient estimation method can be found in [58,68].

Gradients from fitted surfaces. A widely used strategy for extracting gradient information from
(noisy) experimental data consists in fitting polynomial or spline curves to the data and evaluating
the gradients analytically by differentiating the fitted curves [69]. In the context of MA, Gao et al. [36]
recently proposed to use least-square regression to obtain local quadratic approximations of the cost
and constraint functions using selected data, and to evaluate the gradients by differentiating these
quadratic approximations.

5.1.2. Dynamic Perturbation Methods

In dynamic perturbation methods, the steady-state gradients are estimated based on the transient
response of the plant. Three classes of methods are described next.

Dynamic model identification. These methods rely on the online identification of simple dynamic
input-output models based on the plant transient response. Once a dynamic model is identified, the
steady-state gradients can be obtained by application of the final-value theorem. Indeed, the static gain
of a transfer function represents the sensitivity (or gradient) of the output with respect to the input.
McFarlane and Bacon [70] proposed to identify a linear ARX model and used the estimated static
gradient for online optimizing control. A pseudo-random binary sequence (PRBS) was superimposed
on each of the inputs to identify the ARX model. In the context of ISOPE, Becerra et al. [71] considered
the identification of a linear ARMAX model using PRBS signals. Bamberger and Isermann [72]
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identified online a parametric second-order Hammerstein model by adding a pseudo-random
ternary sequence to each input. The gradient estimates were used for online optimizing control.
Garcia and Morari [73] used a similar approach, wherein the dynamic identification was performed in
a decentralized fashion. The same approach was also used by Golden and Ydstie [32] for estimating the
first- and second-order derivatives of a SISO plant. Zhang and Forbes [60] compared the optimizing
controllers proposed in [70] and [32] with ISOPE and the two-step approach.

Extremum-seeking control. The plant gradients can also be obtained using data-driven methods
as discussed in [74]. Among the most established techniques, ESC [16] suggests adding a dither
signal (e.g., a sine wave) to each of the inputs during transient operation. High-pass filtering of the
outputs removes the biases, while using low-pass filters together with correlation let you compute the
gradients of the outputs with respect to the inputs. The main limitation of this approach is the speed of
convergence as it requires two time-scale separations, the first one between the filters and the periodic
excitation, and the second one between the periodic excitation and the controlled plant. Since all
inputs have to be perturbed independently, convergence to the plant gradients can be prohibitively
slow in the MIMO case. Recent efforts in the extremum-seeking community have led to a more
efficient framework, referred to as “estimation-based ESC” (by opposition to the previously described
perturbation-based ESC), which seems to be more efficient in terms of convergence speed [75].

Multiple units. Another dynamic perturbation approach relies on the availability of several identical
units operated in parallel [76]. The minimal number of required units is nu + 1, since one unit operates
with the inputs computed by the RTO algorithm, while a single input is perturbed in each of the
remaining nu units in parallel. The gradients can be computed online by finite differences between
units. Convergence time does not increase with the number of inputs. Obviously, this approach relies
heavily on the availability of several identical units, which occurs for instance when several units, such
as fuel-cell stacks, are arranged in parallel. Note that these units must be identical, although some
progress has been made to encompass cases where this is not the case [77].

5.1.3. Bounds on Gradient Uncertainty

As discussed in [78], obtaining bounds on gradient estimates is often more challenging than
obtaining the estimates themselves. The bounds on gradient estimates should be linked with the
specific approach used to estimate the gradients. For the case of gradient estimates obtained by
FFD, CFD, and two design-of-experiment schemes, Brekelmans et al. [61] proposed a deterministic
quantification of the gradient error due to the finite-difference approximation (truncation error) and a
stochastic characterization due to measurement noise. The expressions obtained for the total gradient
error are convex functions of the step size, for which it is easy to compute for each scheme the step size
that minimizes the total gradient error. Following a similar approach, the gradient error associated
with the simplex gradient (50) was analyzed by Marchetti et al. [64].

The gradient estimation error is defined as the difference between the estimated gradient and the
true plant gradient:

εT
k = ∇̂Φp,k −

∂Φp

∂u
(uk). (52)

From (49) and (50), this error can be split into the truncation error εt and the measurement noise
error εn,

εk = εt
k + εn

k , (53)
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with

(εt
k)

T = [Φp(uk)− Φp(uk−1), . . . , Φp(uk)− Φp(uk−nu)](Uk)
−1 − ∂Φp

∂u
(uk), (54a)

(εn
k )

T = [vk − vk−1, . . . , vk − vk−nu ](Uk)
−1. (54b)

Assuming that Φp is twice continuously differentiable with respect to u, the norm of the gradient
error due to truncation can be bounded from above by

‖εt
k‖ ≤ dΦrk, (55)

where dΦ is an upper bound on the spectral radius of the Hessian of Φp for u ∈ C, and rk is the radius
of the unique n-sphere that can be generated from the points uk, uk−1, . . . , uk−nu :

rk = r(uk, uk−1, . . . , uk−nu) = (56)
1
2

∥∥∥[(uk − uk−1)
T(uk − uk−1), . . . , (uk − uk−nu)

T(uk − uk−nu)
]
(Uk)

−1
∥∥∥.

In turn, assuming that the noisy measurements Φ̃p remain within the interval δΦ at steady state,
the norm of the gradient error due to measurement noise can be bounded from above:

‖εn
k ‖ ≤ δΦ

lmin,k
, (57)

lmin,k = lmin(uk, uk−1, . . . , uk−nu),

where lmin,k is the minimal distance between all possible pairs of complement affine subspaces that can
be generated from the set of points Sk = {uk, uk−1, . . . , uk−nu}. Using (55) and (57), the gradient-error
norm can be bounded from above by

‖εk‖ ≤ ‖εt
k‖+ ‖εn

k ‖ ≤ EΦ
k := dΦrk +

δΦ

lmin,k
. (58)

5.2. Computation of Gradient Modifiers

5.2.1. Modifiers from Estimated Gradients

The most straightforward way of computing the gradient modifiers is to evaluate them directly
from the estimated gradients, according to their definition (20):

(λΦ
k )

T = ∇̂Φp,k − ∂Φ
∂u

(uk), (59a)

(λGi
k )T = ∇̂Gp,i,k − ∂Gi

∂u
(uk), i = 1, . . . , ng, (59b)

where, in principle, any of the methods described in Section 5.1 can be used to obtain the gradient
estimates ∇̂Φp,k and ∇̂Gp,i,k.

5.2.2. Modifiers from Linear Interpolation or Linear Regression

Instead of using a sample set of steady-state operating points to estimate the gradients, it is
possible to use the same set to directly compute the gradient modifiers by linear interpolation or
linear regression. For instance, Marchetti [65] proposed to estimate the gradient modifiers by linear
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interpolation using the set of nu + 1 RTO points {uk−j}nu
j=0. In addition to the plant vectors δΦ̃p,k and

δG̃p,i,k given in (47) and (48), their model counterparts can be constructed at the kth RTO iteration:

δΦk := [ Φ(uk)− Φ(uk−1), . . . , Φ(uk)− Φ(uk−nu) ]T ∈ IRnu , (60)

δGi,k := [ Gi(uk)− Gi(uk−1), . . . , Gi(uk)− Gi(uk−nu) ]T ∈ IRnu , i = 1, . . . , ng. (61)

The interpolation conditions for the modified cost function read:

Φm,k(uk−j) = Φ(uk−j) + εΦ
k + (λΦ

k )
T(uk−j − uk) = Φ̃p,k−j, j = 1, . . . , nu, (62)

with εΦ
k = Φ̃p,k − Φ(uk). Equation (62) forms a linear system in terms of the gradient modifier and can

be written in matrix form as

(Uk)
TλΦ

k = δΦ̃p,k − δΦk, (63)

where Uk and δΦ̃p,k are the quantities defined in (46) and (47), respectively. This system of equations
has a unique solution if the matrix Uk is nonsingular. The constraint gradient modifiers can be
computed in a similar way, which leads to the following expressions for the gradient modifiers [65]:

(λΦ
k )

T = (δΦ̃p,k − δΦk)
T (Uk)

−1 , (64a)

(λGi
k )T = (δG̃p,i,k − δGi,k)

T (Uk)
−1 , i = 1, . . . , ng. (64b)

Here, the sample points consist of the current and nu most recent RTO points. However, it is also
possible to include designed perturbations in the sample set.

Figure 3 shows how the modified cost function approximates the plant cost function using MA
when (i) the points {uk, uk−1} are used to obtain the simplex gradient estimate (50), which is then
used in (59a) to compute the gradient modifier, and (ii) the same points are used to compute the linear
interpolation gradient modifier (64a). It can be seen that the linear interpolation approach gives a
better approximation of the plant cost function, especially if the points are distant from each other.

Remark 7 (Linear regression). If there are more than nu + 1 sample points, it might not be possible to interpolate
all the points. In this case, it is possible to evaluate the gradient modifiers by linear least-square regression.

Remark 8 (Quadratic interpolation). In case of second-order MA, it is possible to compute the gradient and
Hessian modifiers by quadratic interpolation or quadratic least-squares regression. In this case, the number of
well-poised points required for complete quadratic interpolation is (nu + 1)(nu + 2)/2 (see [34] for different
measures of well poisedness that can be used to select or design the points included in the sample set).

5.2.3. Nested MA

A radically different approach for determining the gradient modifiers has been proposed
recently [79]. Rather than trying to estimate the plant gradients, it has been proposed to identify
the gradient modifiers directly via derivative-free optimization. More specifically, the RTO problem is
reformulated as two nested optimization problems, with the outer optimization computing the gradient
modifiers at low frequency and the inner optimization computing the inputs more frequently. We shall
use the indices j and k to denote the iterations of the outer and inner optimizations, respectively.
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Figure 3. Approximation of the plant cost function. Top plot: Modified cost using gradient from FDA;
Bottom plot: Modified cost using linear interpolation.

The inner optimization problem (for j fixed) is formulated as follows:

u�
k+1 = arg min

u
Φm,k(u) := Φ(u) + (λΦ

j )
Tu (65a)

s.t. Gm,i,k(u) := Gi(u) + ε
Gi
k + (λGi

j )T(u − uk) ≤ 0 i = 1, . . . , ng. (65b)

Note the difference with (21a): for the inner optimization, the gradient modifiers are considered
as constant parameters that are updated by the outer optimization. The values of the converged inputs,
u�

∞, and of the converged Lagrange multipliers associated with the constraints, μ�
∞, depend on the

choice of the modifiers λΦ
j and λ

Gi
j . For the sake of notation, let us group these modifiers in the matrix

Λj :=
[

λΦ
j λG1

j . . . λ
Gng
j

]
.

Once the inner optimization has converged, the following unconstrained outer optimization
problem is solved:

Λ�
j+1 = arg min

Λ

{
Φp

(
u�

∞
(
Λj
))

+
(
μ�

∞
(
Λj
))T

Gp(u
�
∞)
}

, (66)

and the inner optimization problem is repeated for the modifiers Λj+1. Note that, since the functions
Φp and Gp are unknown, Problem (66) is conveniently solved using derivative-free optimization
techniques such as the Nelder-Mead simplex method [79]. Furthermore, it has been shown that
separating the MA problem into two nested optimization problems preserves the ability to reach a
KKT point of the plant [79]. However, since Nested MA often requires many iterations (for both the j
and k indices), it is characterized by potentially slow convergence.
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5.3. Dual MA Schemes

Following the idea of the dual ISOPE algorithm [7,63], dual MA schemes estimate the gradients
based on the measurements obtained at the current and past operating points by adding a duality
constraint in the modified optimization problem. This constraint is used to ensure sufficient variability
in the data for estimating the gradients reliably. Several dual MA schemes have been proposed that
differ in the model modification introduced, the approach used for estimating the gradients, and the
choice of the duality constraint.

The following duality constraint is used to position the next RTO point with respect to the nu

most recent points {uk, uk−1, . . . , uk−nu+1}:

Dk(u) := D(u, uk, uk−1, . . . , uk−nu+1) ≤ 0 . (67)

To compute the simplex gradient (50), or the interpolation modifiers (64) at the next RTO
point uk+1, we require the matrix Uk+1 defined in (46) to be nonsingular. Assuming that the last
nu − 1 columns of Uk+1 are linearly independent, they constitute a basis for the unique hyperplane
Hk = {u ∈ IRnu : nT

k u = bk, with bk = nT
k uk} that contains the points {uk, uk−1, . . . , uk−nu+1}. Here,

nk is a vector that is orthogonal to the hyperplane. Hence, the matrix Uk+1 will be nonsingular if uk+1
does not belong to Hk [65]. For this reason, duality constraints produce two disjoint feasible regions,
one on each side of the hyperplane Hk.

Dual MA schemes typically solve two modified optimization problems that include the duality
constraint, one for each side of the hyperplane Hk. For the half space nT

k u > bk, we solve:

u+
k+1 = arg min

u
Φm,k(u) = Φ(u) + εΦ

k + (λΦ
k )

T(u − uk) (68)

s.t. Gm,i,k(u) = Gi(u) + ε
Gi
k + (λGi

k )T(u − uk) ≤ 0, i = 1, . . . , ng,

Dk(u) ≤ 0, nT
k u ≥ bk,

while for the half space nT
k u < bk, we solve:

u−
k+1 = arg min

u
Φm,k(u) = Φ(u) + εΦ

k + (λΦ
k )

T(u − uk) (69)

s.t. Gm,i,k(u) = Gi(u) + ε
Gi
k + (λGi

k )T(u − uk) ≤ 0, i = 1, . . . , ng,

Dk(u) ≤ 0, nT
k u ≤ bk,

The next operating point uk+1 is chosen as the solution that minimizes Φm,k(u):

uk+1 = arg min
u

Φm,k(u), s.t. u ∈ {u+
k+1, u−

k+1}.

Several alternative dual MA algorithms have been proposed in the literature, which we briefly
describe next:

(a) The original dual ISOPE algorithm [7,63] estimates the gradients by FDA according to (50) and
introduces a constraint that prevents ill-conditioning in the gradient estimation. At the kth RTO
iteration, the matrix

Ūk(u) := [ u − uk, u − uk−1, . . . , u − uk−nu+1 ] ∈ IRnu×nu (70)

is constructed. Good conditioning is achieved by adding the lower bound ϕ on the inverse of the
condition number of Ūk(u):

1
κk(u)

=
σmin(Ūk(u))

σmax(Ūk(u))
≥ ϕ, (71)
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where σmin and σmax denote the smallest and largest singular values, respectively. This bound is
enforced by defining the duality constraint

Dk(u) = ϕκk(u)− 1 ≤ 0, (72)

which is used in (68) and (69).
(b) Gao and Engell [14] proposed a MA scheme that (i) estimates the gradients from the current

and past operating points according to (50), and (ii) enforces the ill-conditioning duality
constraint (72). However, instead of including the duality constraint in the optimization problem,
it is used to decide whether an additional input perturbation is needed. This perturbation
is obtained by minimizing the condition number κk(u) subject to the modified constraints.
The approach was labeled Iterative Gradient-Modification Optimization (IGMO) [80].

(c) Marchetti et al. [64] considered the dual MA scheme that estimates the gradients from the current
and past operating points according to (50). The authors showed that the ill-conditioning bound
(71) has no direct relationship with the accuracy of the gradient estimates, and proposed to upper
bound the gradient-error norm of the Lagrangian function:

‖εL(u)‖ ≤ EU, (73)

where εL is the Lagrangian gradient error. In order to compute the upper bound as a function
of u, we proceed as in (56)–(58) and define the radius rk(u) = r(u, uk, . . . , uk−nu+1) and the
minimal distance lmin,k(u) = lmin(u, uk, . . . , uk−nu+1). This allows enforcing (73) by selecting u

such that,

EL
k (u) := dLrk(u) +

δL

lmin,k(u)
≤ EU, (74)

where dL is an upper bound on the spectral radius of the Hessian of the Lagrangian function, and
δL is the range of measurement error in the Lagrangian function resulting from measurement
noise in the cost and constraints [64]. This bound is enforced by defining the duality constraint
used in (68) and (69) as

Dk(u) = EL
k (u)− EU ≤ 0. (75)

(d) Rodger and Chachuat [67] proposed a dual MA scheme based on modifying the output variables
as in Section 4.2.1. The gradients of the output variables are estimated using Broyden’s formula
(51). The authors show that, with Broyden’s approach, the MA scheme (28) may fail to reach a
plant KKT point upon convergence due to inaccurate gradient estimates and measurement noise.
This may happen if the gradient estimates are not updated repeatedly in all input directions and
if the step ‖uk+1 − uk‖ is too small. A duality constraint is proposed for improving the gradient
estimates obtained by Broyden’s approach.

(e) Marchetti [65] proposed another dual MA scheme, wherein the gradient modifiers are obtained
by linear interpolation according to (64). Using this approach, the modified cost and constraint
functions approximate the plant in a larger region. In order to limit the approximation error
in the presence of noisy measurements, a duality constraint was introduced that limits the
Lagrangian gradient error for at least one point belonging to the simplex with the extreme points
{u, uk, . . . , uk−nu+1}. This duality constraint produces larger feasible regions than (75) for the
same upper bound EU, and therefore allows larger input moves and faster convergence.
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6. Applications

As MA has many useful features, it is of interest to investigate its potential for application. Table 1
lists several case studies available in the literature and compares them in terms of the MA variant that
is used, the way the gradients are estimated and the number of input variables. Although this list is
not exhaustive, it provides an overview of the current situation and gives a glimpse of the potential
ahead. From this table, several interesting conclusions can be drawn:

• About half of the available studies deal with chemical reactors, both continuous and discontinuous.
In the case of discontinuous reactors, the decision variables are input profiles, that can be
parameterized to generate a larger set of constant input parameters. The optimization is then
performed on a run-to-run basis, with each iteration hopefully resulting in improved operation.

• One sees from the list of problems in Table 1 that the Williams-Otto reactor seems to be the
benchmark problem for testing MA schemes. The problem is quite challenging due to the presence of
significant structural plant model-mismatch. Indeed, the plant is simulated as a 3-reaction system,
while the model includes only two reactions with adjustable kinetic parameters. Despite very
good model fit (prediction of the simulated concentrations), the RTO techniques that cannot
handle structural uncertainty, such as the two-step approach, fail to reach the plant optimum. In
contrast, all 6 MA variants converge to the plant optimum. The differentiation factor is then the
convergence rate, which is often related to the estimation of plant gradients.

• Most MA schemes use FDA to estimate gradients. In the case of FFD, one needs to perturb each
input successively; this is a time-consuming operation since, at the current operating point, the
system must be perturbed nu times, each time waiting for the plant to reach steady state. Hence,
FDA based on past and current operating points is clearly the preferred option. However, to
ensure that sufficient excitation is present to compute accurate gradients, the addition of a duality
constraint is often necessary. Furthermore, both linear and nonlinear function approximations
have been proposed with promising results. An alternative is to use the concept of neighboring
extremals (NE), which works well when the uncertainty is of parametric nature (because the
NE-based gradient law assumes that the variations are due to parametric uncertainties). Note that
two approaches do not use an estimate of the plant gradient: CA uses only zeroth-order modifiers
to drive the plant to the active constraints, while nested MA circumvents the computation of
plant gradients by solving an additional optimization problem. Note also that IGMO can be
classified as dual MA, with the peculiarity that the gradients are estimated via FDA with added
perturbations when necessary.

• The typical number of input variables is small (nu < 5), which seems to be related to the difficulties
of gradient estimation. When the number of inputs is much larger, it might be useful to investigate
whether it is important to correct the model in all input directions, which is nicely solved using
D-MA.

• Two applications, namely, the path-following robot and the power kite, deal with the optimization
of dynamic periodic processes. Each period (or multiple periods) is considered as a run, the input
profiles are parameterized, and the operation is optimized on a run-to-run basis.

• Five of these case studies have dealt with experimental implementation, four on lab-scale setups
and one at the industrial level. There is clearly room for more experimental implementations and,
hopefully, also significant potential for improvements ahead!
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7. Conclusions

This section concludes the paper with a brief discussion of open issues and a few final words.

7.1. Open Issues

As illustrated in this paper, significant progress has been made recently on various aspects of
MA. Yet, there are still unresolved issues with respect to both the methodology and applications.
In particular, it is desirable for RTO schemes to exhibit the following features [38]:

i plant optimality and feasibility upon convergence,
ii acceptable number of RTO iterations, and

iii plant feasibility throughout the optimization process.

These features and related properties are briefly discussed next.

Feasibility of all RTO iterates. By construction, MA satisfies Feature (i), cf. Theorem 1. However,
Theorem 1 does not guarantee feasibility of the successive RTO iterates, nor does it imply anything
regarding convergence speed. The Sufficient Conditions for Feasibility and Optimality (SCFO)
presented in [35,97] can, in principle, be combined with any RTO scheme and enforce Feature (iii).
However, SCFO often fails to enforce sufficiently fast convergence (cf. the examples provided in [35],
Section 4.4) because of the necessity to upper bound uncertain plant constraints using Lipschitz
constants. Hence, it is fair to search for other approaches that can ensure plant feasibility of the
successive RTO iterates. One intuitive way is to replace the first-order (Lipschitz) upper bounds in [35]
by second-order upper-bounding functions. For purely data-driven RTO, it has been shown numerically
that this outperforms Lipschitz bounds [38]. Furthermore, the handling of plant infeasibility in dual
MA has been discussed in [43]. New results given in [98] demonstrate that the combination of convex
upper-bounding functions with the usual first-order MA corrections terms implies optimality upon
convergence (Feature (i)) and feasibility for all iterates (Feature (iii)). However, a conclusive analysis of
the trade-off between convergence speed and the issue of plant feasibility has not been conducted yet.
Using the numerical optimization terminology, one could say that it remains open how one chooses
the step length in RTO, when plant feasibility and fast convergence are both important.

Robustness to gradient uncertainty. The implementation of MA calls for the estimation of plant
gradients. At the same time, as estimated gradients are prone to errors, it is not clear to which extent
MA is robust to this kind of uncertainty. Simulation studies such as [15,64] indicate that MA is
reasonably robust with respect to gradient uncertainty. For data-driven RTO schemes inspired by
SCFO [35], robustness to multiplicative cost gradient uncertainty has been shown [37]. However, the
assumption of purely multiplicative gradient uncertainty is hard to justify in practice, as this would
imply exact gradient information at any unconstrained local optimum of the plant.

Realistically, one has to assume that gradient uncertainty is additive and bounded. First steps
towards a strictly feasible MA scheme can be found in [99], wherein convex upper-bounding functions
similar to [98] are combined with dual constraints from Section 5.3 [64].

Exploitation of plant structure for gradient estimation. In the presentation of the different MA
variants, it is apparent that the physical structure of the plant (parallel or serial connections, recycles,
weak and strong couplings) has not been the focus of investigation. At the same time, since many
real-world RTO applications possess a specific structure, it is fair to ask whether one can exploit the
physical interconnection structure to facilitate and possibly improve gradient estimation.

Parallel structures with identical units may be well suited for gradient estimation [76]. Recently, it
has been observed that, under certain assumptions, parallel structures of heterogeneous units can also
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be exploited for gradient estimation [94]. A formal and general investigation of the interplay between
plant structure and gradient estimation remains open.

RTO of interconnected processes. There is an evident similarity between many RTO schemes and
numerical optimization algorithms. For example, one might regard MA adaptation in its simpliest
form of Section 4.1 as an experimental gradient descent method, likewise the scheme of Section 4.3.2 is
linked to trust-region algorithms, and Remark 3 has pointed toward a SQP-like scheme. Hence, one
might wonder whether the exploitation of structures in the spirit of distributed NLP algorithms will
yield benefits to RTO and MA schemes. The early works on distributed ISOPE methods [7,100,101]
point into such a direction. Furthermore, a recent paper by Wenzel et al. [102] argues for distributed
plant optimization for the sake of confidentiality. In the context of MA, it is interesting to note that
different distributed MA algorithms have recently been proposed [103,104]. Yet, there is no common
consensus on the pros and cons of distributed RTO schemes.

Integration with advanced process control. Section 4.4.1 discussed the application of MA to
controlled plants, and highlighted that the implementation of RTO results by means of MPC can be
used to prevent constraint violations. Section 4.4.3 reported on the use of transient data for the purpose
of gradient estimation for static MA. In general, it seems that the use of transient measurements
in RTO either requires specific dynamic properties of the underlying closed-loop system or a tight
integration of RTO and advanced process control. As many industrial multivariable process control
tasks are nowadays solved via MPC, this can be narrowed down to the integration of MA and MPC.
Yet, there remain important questions: (i) How to exploit the properties of MPC for RTO or MA?
(ii) Can one use the gradient information obtained for MA in the MPC layer? While there are answers
to Question (i) [45,105]; Question (ii) remains largely unexplored. This also raises the research question
of how to design (static) MA and (dynamic) process control in a combined fashion or, expressed
differently, how to extend the MA framework toward dynamic RTO problems. The D-MA approach
sketched in Section 4.2.3 represents a first promising step for periodic and batch dynamic processes.
Yet, the close coupling between MA and economic MPC schemes might bring about interesting new
research and implementation directions [106–108].

Model-based or data-driven RTO? The fact that all MA properties also hold for the trivial case of
no model gives rise to the fundamental question regarding the role of models in RTO. As shown
in Section 4, models are not needed in order to enforce plant optimality upon convergence in MA.
Furthermore, models bring about the model-adequacy issue discussed in Section 4.1.3. At the same
time, industrial practitioners often spend a considerable amount of time on model building, parameter
estimation and model validation. Hence, from the industrial perspective, there is an evident expectation
that the use of models should pay off in RTO. From the research perspective, this gives rise to the
following question: How much should we rely on uncertain model and how much on available plant
data? In other words, what is a good tuning knob between model-based and data-driven RTO?

7.2. Final Words

This overview paper has discussed real-time optimization of uncertain plants using Modifier
Adaptation. It has attempted to present the main developments in a comprehensive and unified way
that highlights the main differences between the schemes. Yet, as in any review, the present one is also
a mere snapshot taken at a given time. As we tried to sketch it, there remain several open issues, some
of which will be crucial for the success of modifier-adaptation schemes in industrial practice.
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Abstract: Modifier adaptation with quadratic approximation (in short MAWQA) can adapt the
operating condition of a process to its economic optimum by combining the use of a theoretical
process model and of the collected data during process operation. The efficiency of the MAWQA
algorithm can be attributed to a well-designed mechanism which ensures the improvement of the
economic performance by taking necessary explorative moves. This paper gives a detailed study
of the mechanism of performing explorative moves during modifier adaptation with quadratic
approximation. The necessity of the explorative moves is theoretically analyzed. Simulation results
for the optimization of a hydroformylation process are used to illustrate the efficiency of the MAWQA
algorithm over the finite difference based modifier adaptation algorithm.

Keywords: real-time optimization; modifier adaptation; quadratic approximation

1. Introduction

In the process industries, performing model-based optimization to obtain economic operations
usually implies the need of handling the problem of plant-model mismatch. An optimum that is
calculated using a theoretical model seldom represents the plant optimum. As a result, real-time
optimization (RTO) is attracting considerable industrial interest. RTO is a model based upper-level
optimization system that is operated iteratively in closed loop and provides set-points to the lower-level
regulatory control system in order to maintain the process operation as close as possible to the economic
optimum. RTO schemes usually estimate the process states and some model parameters or disturbances
from the measured data but employ a fixed process model which leads to problems if the model does
not represent the plant accurately.

Several schemes have been proposed towards how to combine the use of theoretical models
and of the collected data during process operation, in particular the model adaptation or two-step
scheme [1]. It handles plant-model mismatch in a sequential manner via an identification step followed
by an optimization step. Measurements are used to estimate the uncertain model parameters, and the
updated model is used to compute the decision variables via model-based optimization. The model
adaptation approach is expected to work well when the plant-model mismatch is only of parametric
nature, and the operating conditions lead to sufficient excitation for the estimation of the plant outputs.
In practice, however, both parametric and structural mismatch are typically present and, furthermore,
the excitation provided by the previously visited operating points is often not sufficient to accurately
identify the model parameters.

For an RTO scheme to converge to the plant optimum, it is necessary that the gradients of the
objective as well as the values and gradients of the constraints of the optimization problem match
those of the plant. Schemes that directly adapt the model-based optimization problem by using the
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update terms (called modifiers) which are computed from the collected data have been proposed [2–4].
The modifier-adaptation schemes can handle considerable plant-model mismatch by applying bias-
and gradient-corrections to the objective and to the constraint functions. One of the major challenges in
practice, as shown in [5], is the estimation of the plant gradients with respect to the decision variables
from noisy measurement data.

Gao et al. [6] combined the idea of modifier adaptation with the quadratic approximation approach
that is used in derivative-free optimization and proposed the modifier adaptation with quadratic
approximation (in short MAWQA) algorithm. Quadratic approximations of the objective function
and of the constraint functions are constructed based on the screened data which are collected during
the process operation. The plant gradients are computed from the quadratic approximations and are
used to adapt the objective and the constraint functions of the model-based optimization problem.
Simulation studies for the optimization of a reactor benchmark problem with noisy data showed
that by performing some explorative moves the true optimum can be reliably obtained. However,
neither the generation of the explorative moves nor their necessity for the convergence of set-point
to the optimum was theoretically studied. Due to the fact that the estimation of the gradients using
the quadratic approximation approach requires more data than those that are required by using
a finite difference approach, the efficiency of the MAWQA algorithm, in terms of the number of plant
evaluations to obtain the optimum, has been questioned, in particular for the case of several decision
variables. In addition, in practice, it is crucial for plant operators to be confident with the necessity of
taking the explorative moves which may lead to a deterioration of plant performance.

This paper reports a detailed study of the explorative moves during modifier adaptation with
quadratic approximation. It starts with how the explorative moves are generated and then the factors
that influence the generation of these moves are presented. The causality between the factors and the
explorative moves is depicted in Figure 1, where the blocks with a yellow background represent the
factors. The use of a screening algorithm to optimize the regression set for quadratic approximations
is shown to ensure that an explorative move is only performed when the past collected data cannot
provide accurate gradient estimates. Simulation results for the optimization of a hydroformylation
process with four optimization variables are used to illustrate the efficiency of the MAWQA algorithm,
which takes necessary explorative moves, over the finite difference based modifier adaptation algorithm.

Figure 1. Causality between the explorative moves and the influencing factors.

2. Modifier Adaptation with Quadratic Approximation

Let Jm(u) and Cm(u) represent the objective and the vector of constraint functions of a static
model-based optimization problem, assumed to be twice differentiable with respect to the vector of
decision variables u ∈ Rnu

min
u

Jm(u)

s.t. Cm(u) ≤ 0.
(1)
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At each iteration of the modifier adaptation algorithm, bias- and gradient-corrections of the
optimization problem are applied as

min
u

Jm(u) +
(
∇J(k)p −∇J(k)m

)T (
u − u(k)

)
s.t. Cm(u) + C

(k)
p − C

(k)
m +

(
∇C

(k)
p −∇C

(k)
m

)T (
u − u(k)

)
≤ 0.

(2)

The symbols are explained in Table 1. ∇J(k)p and ∇C
(k)
p are usually approximated by the finite

difference approach

∇J(k)p ≈

⎡
⎢⎢⎣

u(k)
1 − u(k−1)

1 · · · u(k)
nu − u(k−1)

nu
...

...
...

u(k)
1 − u(k−nu)

1 · · · u(k)
nu − u(k−nu)

nu

⎤
⎥⎥⎦
−1 ⎡⎢⎢⎣

J(k)p − J(k−1)
p

...

J(k)p − J(k−nu)
p

⎤
⎥⎥⎦ , (3)

where nu is the number of dimensions of u, J(k−i)
p , i = 0, . . . , nu, are the plant objectives at

set-points u(k−i), i = 0, . . . , nu, and ∇C
(k)
p is approximated similarly. The accuracy of the finite

difference approximations is influenced by both the step-sizes between the set-points and the presence
of measurement noise. In order to acquire accurate gradient estimations, small step-sizes are
preferred. However, the use of small step-sizes leads to a high sensitivity of the gradient estimates to
measurement noise.

Table 1. Symbols used in the modifier adaptation formulation.

Symbol Description

k Index of iteration
u(k) Current set-point
∇J(k)p Gradient vector of the plant objective function at u(k)

∇J(k)m Gradient vector of the model-predicted objective function at u(k)

C
(k)
p Vector of the plant constraint values at u(k)

C
(k)
m Vector of the model-predicted constraint values at u(k)

∇C
(k)
p Gradient matrix of the plant constraint functions at u(k)

∇C
(k)
m Gradient matrix of the model-predicted constraint functions at u(k)

In the MAWQA algorithm, the gradients are computed analytically from quadratic approximations
of the objective function and of the constraint functions that are regressed based on a screened set
(represented by U (k) at the kth iteration) of all the collected data (represented by U). The screened set
consists of near and distant points: U (k) = Un ∪ Ud, where Un = {u : ‖u − u(k)‖ < Δu; and u ∈ U},
and Ud is determined by

min
Ud

∑u∈Ud
‖u − u(k)‖

θ(Ud)

s.t. size(Ud) ≥ Cnu+2
2 − 1

Ud ⊂ U \ Un,

(4)

where Δu is sufficiently large so that Ud guarantees robust quadratic approximations with
noisy data, θ(Ud) is the minimal angle between all possible vectors that are defined by
u − u(k), and Cnu+2

2 = (nu + 2)(nu + 1)/2 is the number of data required to uniquely determine
the quadratic approximations.
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In the MAWQA algorithm, the regression set U (k) is also used to define a constrained search space
B(k) for the next set-point move

B(k) : (u − u(k))T M−1(u − u(k)) ≤ γ2, (5)

where M = cov(U (k)) is the covariance matrix of the selected points (inputs) and γ is a scaling
parameter. B(k) is a nu-axial ellipsoid centered at u(k). The axes of the ellipsoid are thus aligned with
the eigenvectors of the covariance matrix. The semi-axis lengths of the ellipsoid are related to the
eigenvalues of the covariance matrix by the scaling parameter γ. The adapted optimization (2) is
augmented by the search space constraint as

min
u

J(k)ad (u)

s.t. C
(k)
ad (u) ≤ 0

u ∈ B(k),

(6)

where J(k)ad (u) and C
(k)
ad (u) represent the adapted objective and constraint functions in (2).

In the application of the modifier adaptation with quadratic approximation, it can happen that
the nominal model is inadequate for the modifier-adaptation approach and that it is better to only use
the quadratic approximations to compute the next plant move. In order to ensure the convergence,
it is necessary to monitor the performance of the adapted optimization and possibly to switch between
model-based and data-based optimizations. In each iteration of the MAWQA algorithm, a quality index
of the adapted optimization ρ

(k)
m is calculated and compared with the quality index of the quadratic

approximation ρ
(k)
φ , where

ρ
(k)
m = max

⎧⎨
⎩
∣∣∣∣∣∣1 −

J(k)ad − J(k−1)
ad

J(k)p − J(k−1)
p

∣∣∣∣∣∣ ,
∣∣∣∣∣∣1 −

C(k)
ad,1 − C(k−1)

ad,1

C(k)
p,1 − C(k−1)

p,1

∣∣∣∣∣∣ , . . . ,

∣∣∣∣∣∣1 −
C(k)

ad,nc
− C(k−1)

ad,nc

C(k)
p,nc − C(k−1)

p,nc

∣∣∣∣∣∣
⎫⎬
⎭ (7)

and

ρ
(k)
φ = max

⎧⎨
⎩
∣∣∣∣∣∣1 −

J(k)φ − J(k−1)
φ

J(k)p − J(k−1)
p

∣∣∣∣∣∣ ,
∣∣∣∣∣∣1 −

C(k)
φ,1 − C(k−1)

φ,1

C(k)
p,1 − C(k−1)

p,1

∣∣∣∣∣∣ , . . . ,

∣∣∣∣∣∣1 −
C(k)

φ,nc
− C(k−1)

φ,nc

C(k)
p,nc − C(k−1)

p,nc

∣∣∣∣∣∣
⎫⎬
⎭ (8)

with J(k)φ and C
(k)
φ are the quadratic approximations of the objective and the constraint functions.

If ρ
(k)
m ≤ ρ

(k)
φ , the predictions of the adapted model-based optimization are more accurate than that

of the quadratic approximations and (6) is performed to determine the next set-point. Otherwise,
an optimization based on the quadratic approximations is done

min
u

J(k)φ (u)

s.t. C
(k)
φ (u) ≤ 0

u ∈ B(k).

(9)

The MAWQA algorithm is given as follows:

Step 1. Choose an initial set-point u(0) and probe the plant at u(0) and u(0) + hei, where h is
a suitable step size and ei ∈ Rnu(i = 1, . . . , nu) are mutually orthogonal unit vectors. Use the
finite difference approach to calculate the gradients at u(0) and run the IGMO approach [3]
until k ≥ Cnu+2

2 set-points have been generated. Run the screening algorithm to define the

regression set U (k). Initialize ρ
(k)
m = 0 and ρ

(k)
φ = 0.
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Step 2. Calculate the quadratic functions J(k)φ and C
(k)
φ based on U (k). Determine the search space B(k)

by (5).
Step 3. Compute the gradients from the quadratic functions. Adapt the model-based optimization

problem and determine the optimal set-point û(k) as follows:

(a) If ρ
(k)
m ≤ ρ

(k)
φ , run the adapted model-based optimization (6).

(b) Else perform the data-based optimization (9).

Step 4. If ‖û(k) − u(k)‖ < Δu and there exists one point u(j) ∈ U (k) such that ‖u(j) − u(k)‖ > 2Δu,
set û(k) =

(
u(j) + u(k)

)
/2.

Step 5. Evaluate the plant at û(k) to acquire Jp(û(k)) and Cp(û(k)). Prepare the next step as follows

(a) If Ĵ(k)p < J(k)p , where Ĵ(k)p = Jp(û(k)), this is a performance-improvement move.
Define u(k+1) = û(k) and run the screening algorithm to define the next regression set
U (k+1). Update the quality indices ρ

(k+1)
m and ρ

(k+1)
φ . Increase k by one and go to Step 2.

(b) If Ĵ(k)p ≥ J(k)p , this is an explorative move. Run the screening algorithm to update the
regression set for u(k). Go to Step 2.

Note that the index of iteration of the MAWQA algorithm is increased by one only when
a performance-improvement move is performed. Several explorative moves may be required at
each iteration. The number of plant evaluations is the sum of the numbers of both kinds of moves.
The next section studies why the explorative moves are required and how they contribute to the
improvement of the performance on a longer horizon.

3. Analysis of the Explorative Moves

In the MAWQA algorithm, the quadratic approximations of the objective and the constraint
functions are started once Cnu+2

2 data have been collected. It can happen that the distribution of
the set-points is not “well-poised” [7] to ensure that the gradients are accurately estimated via the
quadratic approximations, especially when the initial set-point is far away from the optimum and the
following set-point moves are all along some search direction. Interpolation-based derivative-free
optimization algorithms rely on a model-improvement step that generates additional set-point moves
to ensure the well-poisedness of the interpolation set. Although the MAWQA algorithm was designed
without an explicit model-improvement step, the generation of explorative moves can be considered
as an implicit step to improve the poisedness of the regression set for the quadratic approximations.
This section gives a theoretical analysis of the explorative moves. We start with some observations from
the simulation results in [6] and relate the explorative moves to the estimation error of the gradients.
The factors that influence the accuracy of the estimated gradients are analyzed. It is shown that the
screening of the regression set leads to very pertinent explorative moves which, on the one hand,
are sufficient to improve the accuracy of the gradient estimations, and, on the other hand, are less
expensive than the model-improvement step in the derivative-free optimization algorithms.

The generation of the explorative moves is presented in Figure 2 where one MAWQA iteration for
the optimization of the steady-state profit of the Williams-Otto reactor with respect to the flow rate and
the reaction temperature [6] is illustrated. Here the blue surface represents the real profit mapping,
and the mesh represents the quadratic approximation which was computed based on the regression set
( : set-point moves, : measured profit values). The bottom part shows the contours of the profit as
predicted by the uncorrected model (blue lines) , the constrained search space (dash-dot line), and the
contours of the modifier-adapted profit (inside, magenta lines). Comparing the surface plot and the
mesh plot, we can see that the gradient along the direction of the last set-point move is estimated well.
However, a large error can be observed in the perpendicular direction. The gradient error propagates
to the modifier-adapted contours and therefore, the next set-point move ( ) points to the direction
where the gradient is badly estimated. Despite the fact that the move may not improve the objective
function, the data collection in that direction can later help to improve the gradient estimation.
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Figure 2. Illustration of one MAWQA iteration with noisy data. Surface plot: real profit
mapping, mesh plot: quadratic approximation, : regression set-point, : not chosen set-point,

: measured profit, : next set-point move, blue contours: model-predicted profit, magenta contours:
modifier-adapted profit, dash-dot line: constrained search space.

The example illustrates how the gradient error in a specific direction may lead to an explorative
move along the same direction. In the MAWQA algorithm, the gradients are determined by evaluating
∇Jφ and ∇Cφ at u(k). In order to be able to quantify the gradient error, we assume that the screened
set U (k) is of size Cnu+2

2 and the quadratic approximations are interpolated based on U (k). In the
application of the MAWQA algorithm, this assumption is valid when the current set-point is far away
from the plant optimum. Recall the screening algorithm, U (k) consists of the near set Un and the distant
set Ud. From (4), we can conclude that the distant set Ud is always of size Cnu+2

2 − 1. Step 4 of the
MAWQA algorithm ensures that the near set Un only consists of u(k) until the optimized next move is
such that ‖û(k) − u(k)‖ < Δu and there are no points u(j) ∈ U (k) such that ‖u(j) − u(k)‖ > 2Δu, that is,
all the points in Ud keep suitable distances away from u(k) for good local approximations. The above
two conditions imply that ‖u(k) − u∗‖ ≤ Δu, where u∗ represents the plant optimum. As a result
of Step 4, when ‖u(k) − u∗‖ > Δu, Un is always of size 1. For simplicity, a shift of coordinates
to move u(k) to the origin is performed and the points in U (k) are reordered as {0, ud1 , . . . , udn},
where n = Cnu+2

2 − 1.
Let φ = {1, u1, . . . , unu , u2

1, . . . , u2
nu ,

√
2 u1u2,

√
2 u1u3, . . . ,

√
2 unu−1unu} represent a natural basis

of the quadratic approximation. Let α represent a column vector of the coefficients of the quadratic
approximation. The quadratic approximation of the objective function is formulated as

Jφ(u) = α0 +
nu

∑
i=1

αi ui +
nu

∑
i=1

αnu+i u2
i +

√
2

nu−1

∑
i=1

nu

∑
j=i+1

α2nu+I(nu ,i,j) uiuj, (10)

where I(nu, i, j) = nu(i − 1)− (i + 1)i/2 + j. The coefficients αi, i = 0, . . . , n are calculated via the
interpolation of the n + 1 data sets {u, Jp(u)}
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⎡
⎢⎢⎢⎢⎣

1 0 · · · 0
1 ϕ1(u

(d1)) · · · ϕn(u(d1))
...

...
...

...
1 ϕ1(u

(dn)) · · · ϕn(u(dn))

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
M(φ,U (k))

⎡
⎢⎢⎢⎢⎣

α0

α1
...

αn

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
α

=

⎡
⎢⎢⎢⎢⎣

Jp(0)

Jp(u(d1))
...

Jp(u(dn))

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Jp(U (k))

+

⎡
⎢⎢⎢⎢⎣

ν0

ν1
...

νn

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ν

, (11)

where ϕi(u), i = 1, . . . , n, represent the polynomial bases in φ, Jp and ν represent the noise-free
objective and the measurement noise. Assume M(φ,U (k)) is nonsingular,

α =
(

M(φ,U (k))
)−1

Jp(U (k)) +
(

M(φ,U (k))
)−1

ν. (12)

The computed gradient vector at the origin via the quadratic approximation is

∇Jφ(0) = (α1, . . . , αnu)
T = αJp + αν, (13)

where αJp represents the noise-free estimation and αν represents the influence of the measurement
noise. From [8], a bound on the error between the noise-free estimation αJp and ∇Jp(0) can be obtained
and simplified to

‖αJp −∇Jp(0)‖ ≤ 1
6

G Λ
n

∑
i=1

‖u(di)‖3, (14)

where G is an upper bound on the third derivative of Jp(u), and Λ is a constant that depends
on the distribution of the regression set U (k). Note that the bound in (14) is defined for the error
between the plant gradients and the estimated gradients. It is different from the lower and upper
bounds on the gradient estimates which were studied by Bunin et al. [5]. To simplify the study of Λ,
assume ‖u(di) − u(k)‖ = Δu. Λ is defined as

Λ ≥ max
0≤i≤n

max
‖u‖≤Δu

|�i(u)|, (15)

where �i(u), i = 0, . . . , n, are the Lagrange polynomial functions that are defined by the
matrix determinants

�i(u) =
det (M(φ,Ui(u)))

det
(

M(φ,U (k))
) (16)

with the set Ui(u) = U (k) \ {u(di)} ∪ {u}. The determinant of M(φ,U (k)) is computed as

det
(

M(φ,U (k))
)
=

∣∣∣∣∣∣∣
ϕ1(u

(d1)) · · · ϕn(u(d1))
...

...
...

ϕ1(u
(dn)) · · · ϕn(u(dn))

∣∣∣∣∣∣∣ . (17)

Let vol(φ(U (k))) represent the volume of the n-dimensional convex hull spanned by the row
vectors of the matrix in (17), we have∣∣∣det

(
M(φ,U (k))

)∣∣∣ = vol(φ(U (k))) n!. (18)

Except the vertex at the origin, all the other vertices of the convex hull distribute on
a n-dimensional sphere with radius Δu + Δu2. vol(φ(U (k))) reaches its maximal value when the
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vectors are orthogonal to each other. Let vi and vj represent any two row vectors of the matrix in (17).
The angle between them

cos(θv
i,j) =

vi · vj

‖vi‖‖vj‖
=

u(di)
1 u

(dj)

1 + . . . + u(di)
nu u

(dj)
nu +

(
u(di)

1 u
(dj)

1 + . . . + u(di)
nu u

(dj)
nu

)2

Δu + Δu2 . (19)

Note that the angle θv
i,j is different from the angle θi,j between vectors udi and udj

cos(θi,j) =
u(di)

1 u
(dj)

1 + . . . + u(di)
nu u

(dj)
nu

Δu
. (20)

The relationship between θv
i,j and θi,j is illustrated in Figure 3, where the angle between

two 3-dimensional unit vectors is changed from 0 to 180 degree and the angle between the
corresponding quadratic interpolation vectors increases proportionally when θ ≤ 90 degree and
stays in an interval of [90 98] degree from 90 to 180 degree. Recall the screening for the distant set Ud
via (4), the consideration of the minimal angle at the denominator of the objective function ensures the
choosing of the best set in terms of the orthogonality of the matrix in (17) from all the collected data.
As a result of (14)–(16) and (18), the lowest bound of the error between αJp and ∇Jp(0) based on the
collected data is achieved.
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Figure 3. Illustration of the relationship between θ and θv.

The error due to the measurement noise αν can be calculated by Cramer’s rule

αν
i =

det
(

Mi(φ,U (k), ν)
)

det
(

M(φ,U (k))
) =

δnoise
Δu

det
(

Mi(φ,U (k), ν̃)
)

det
(

M(φ,U (k))
) , (21)

where Mi(φ,U (k), ν) is the matrix formed by replacing the (i + 1)th column of M(φ,U (k)) by the column
vector ν , δnoise is the level of the measurement noise, νi ∈ (−δnoise,+δnoise), and ν̃ = Δu ν/δnoise
represents the scaled vector of noises. In order to reduce αν, the value of Δu should be large enough.
However, from (14) the error bound will increase accordingly. The optimal tuning of Δu according to
δnoise and G can be a future research direction. For a given distribution of Ud, the relative upper bound
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of αν
i is related to the variance of the elements at the (i + 1)th column. To show that, we start from the

angle between the (i + 1)th column vector and the first column vector

cos(βi+1,1) =
∑n

j=1 u
(dj)

i

√
n + 1

√
∑n

j=1

(
u
(dj)

i

)2
, (22)

where we use β to differentiate the angle from that formed by the row vectors. The variance of the
elements at the (i + 1)th column is

Var({0, u(d1)
i , . . . , u(dn)

i }) =
∑n

j=1

(
u
(dj)

i

)2

n + 1
−
⎛
⎝∑n

j=1 u
(dj)

i

n + 1

⎞
⎠

2

. (23)

From (22) and (23), we obtain that

cos(βi+1,1) =
∑n

j=1 u
(dj)

i

(n + 1)

√√√√Var +

(
∑n

j=1 u
(dj)

i
n+1

)2
. (24)

For the same mean value, the orthogonality of the (i + 1)th column vector to the first column
vector can be quantified by the variance of the elements at the (i + 1)th column. As discussed before,
the absolute value of the determinant of M(φ,U (k)) is influenced by the orthogonality. As a result,
to replace a column of elements with small variance leads to a higher upper bound of the error than to
replace a column of elements with large variance. Note that this is consistent with the constrained
search space which is defined by the covariance matrix of the regression set.

From (14) and (21), three factors determine the gradient estimation errors

• Distribution of the regression set (quantified by Λ and the distance to the current point)
• Non-quadratic nature of the plant (quantified by G, the upper bound on the third derivative)
• Measurement noise (quantified by δnoise).

Figure 4 depicts how the three factors influence the generation of the explorative moves.
Assume the plant functions are approximately quadratic in the region ‖u − u(k)‖ ≤ Δu around
the current set-point and the value of Δu is large enough, a well-distributed regression set normally
leads to a performance-improvement move. If the regression set is not well-distributed but the plant
functions are approximately quadratic, a performance-improvement move is still possible if the level of
the measurement noise δnoise is low. This is illustrated in Figure 5, where noise-free data was considered
and the MAWQA algorithm did not perform any explorative moves. The explorative moves are only
generated when either the plant functions deviate significantly from quadratic functions or the level
of the measurement noise δnoise is large. In the case shown in Figure 2, the mapping of the plant
profit is approximately quadratic but considerable measurement noise was presented. As a result,
the unfavourable distribution of the regression set leads to an explorative move.
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Figure 4. Illustration of the generation of explorative moves.

Figure 5. Illustration of one MAWQA iteration with noise-free measurements. Surface plot: real
profit mapping, mesh plot: quadratic approximation, : regression set-point, : not chosen set-point,

: measured profit, : next set-point move, blue contours: model-predicted profit, magenta contours:
modifier-adapted profit, dash-dot line: constrained search space.

Gao et al. [6] proved that the explorative moves can ensure an improvement of the accuracy of the
gradient estimation in the following iterations. As an example, Figure 6 shows the MAWQA iteration
after two explorative moves for the optimization of the Williams-Otto reactor with noisy data [6].
The mesh of the quadratic approximation well represents the real mapping (the blue surface) around
the current point which locates at the center of the constrained search space (defined by the dash-dot
line). The computed gradients based on the quadratic approximation are more accurate than those
based on the quadratic approximation in Figure 2. As a result, a performance-improvement move
(represented by ) was obtained .
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Figure 6. Illustration of the MAWQA iteration after two explorative moves. Surface plot: real profit
mapping, mesh plot: quadratic approximation, : regression set-point, : not chosen set-point,

: measured profit, : next set-point move, blue contours: model-predicted profit, magenta contours:
modifier-adapted profit, dash-dot line: constrained search space.

4. Simulation Studies

The optimization of a hydroformylation process with four optimization variables is used to
illustrate the efficiency of the MAWQA algorithm over the finite difference based modifier adaptation
algorithm. The continuous hydroformylation of 1-dodecene in a thermomorphic multicomponent
solvent (in short TMS) system is considered. This process was developed in the context of the
collaborative research centre InPROMPT at the universities of Berlin, Dortmund and Magdeburg
and was demonstrated on miniplant scale at TU Dortmund [9]. Figure 7 illustrates the simplified
flow diagram of the TMS system together with the reaction network. The TMS system consists of
two main sections: the reaction part and the separation part (here a decanter). The feed consists of
the substrate 1-dodecene, the apolar solvent n-decane, the polar solvent dimethylformamide (in short
DMF), and synthesis gas (CO/H2). The catalyst system consists of Rh(acac)(CO)2 and the bidentate
phosphite biphephos as ligand. During the reaction step, the system is single phase, thus homogeneous,
so that no mass transport limitation occurs. During the separation step a lower temperature than
that of the reactor is used and the system exhibits a miscibility gap and separates into two liquid
phases, a polar and an apolar phase. The apolar phase contains the organic product which is purified
in a down-stream process, while the catalyst mostly remains in the polar phase which is recycled.
The main reaction is the catalyzed hydroformylation of the long-chain 1-dodecene to linear n-tridecanal.
Besides the main reaction, isomerization to iso-dodecene, hydrogenation to n-dodecane and formation
of the branched iso-aldehyde take place. Hernández and Engell [10] adapted the model developed
by Hentschel et al. [11] to the TMS miniplant by considering the material balances of the above
components as follows:

VR
dCi
dt

= V̇inCi,in − V̇outCi,out + VRCcat Mcat

nreact

∑
l=1

νi,lrl (25)

VR
dCj

dt
= −ke f f (Cj − Ceq

j ) + V̇inCj,in − V̇outCj,out + VRCcat Mcat

nreact

∑
l=1

νj,lrl , (26)
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where (25) is applied to the liquid components 1-dodecene, n-tridecanal, iso-dodecene, n-dodecane,
iso-aldehyde, decane, and DMF. (26) is applied to the gas components CO and H2. The algebraic
equations involved in the model are as follows:

Ceq
j =

Pj

Hj,0exp
(
− Ej/RT

) (27)

Ccat =
CRh,precursor

1 + Kcat,1CCO + Kcat,2CCO/CH2

(28)

Ki = exp
(

Ai,0 +
Ai,1

Tdecanter
+ Ai,2Tdecanter

)
(29)

ni,product =
Ki

1 + Ki
ni,decanter (30)

ni,catalyst =
1

1 + Ki
ni,decanter. (31)

(a) (b)

Figure 7. (a) Thermomorphic multicomponent solvent (TMS) system; (b) Reaction network of the
hydroformylation of 1-dodecene. Adapted from Hernández and Engell [10].

Table 2 lists all the symbols used in the model together with their explanations. The optimization
problem is formulated as the minimization of the raw material and operating cost per unit of
n-tridecanal produced

min
u

Pr1−dodecene · F1−dodecene + PrRh · FRh + CCooling + CHeating

Ftridecanal
, (32)

where Pr1−dodecene and PrRh represent the prices of 1-dodecene and of the catalyst, F1−dodecene and
FRh are the molar flow rates, Ccooling and Cheating are the operating costs of cooling and heating, and
Ftridecanal is the molar flow rate of n-tridecanal, the vector of the optimization variables u consists of
the reactor temperature, the catalyst dosage, the pressure and the composition of the synthesis gas.
A sensitivity analysis was performed on the different model parameters and it was found that the gas
solubility and the equilibrium constants for the catalyst species have the largest influence on the cost
function. In our study of the MAWQA approach, the plant-model mismatch is created by decreasing
the Henry coefficients Hj,0 by 50% and ignoring the influence of CO on the active catalyst (Kcat,2 = 0)
in the model that is used by the optimization. Table 3 lists the operating intervals of the optimization
variables and compares the real optimum with the model optimum. In order to test the robustness
of the approach to noisy data, the real cost data is assumed to be subject to a random error which is
normally distributed with standard deviation σ.
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Table 2. Model parameters and variables.

Symbol Description

Ci Concentration of 1-dodecene, n-tridecanal, iso-dodecene, n-dodecane, iso-aldehyde, decane, and DMF
Cj Concentration of CO and H2
Ceq

j Equilibrium concentration of CO and H2 at the G/L interface
VR Reactor volume
V̇in Inflow rate
V̇out Outflow rate
Ccat Concentration of the active catalyst
Mcat Molar mass of the catalyst
νi,l Coefficients of the stoichiometric matrix [11]
rl Reaction rate of the lth reaction

ke f f Mass transfer coefficient
Pj Partial pressure
T Reaction temperature

Hj,0 Henry coefficient
CRh,precursor Concentration of the catalyst precursor

Kcat,1\2 Equilibrium constants
Tdecanter Decanter temperature
Ai,0\1\2 Coefficients regressed from experimental data [12]
ni,product Molar flows of the components in the product stream
ni,catalyst Molar flow of the components in the recycled catalyst stream
ni,decanter Molar flow of the components in the decanter inlet stream

Table 3. Operating variables and optimum.

Operating variable Operating Interval Initial Set-Point Real Optimum Model Optimum

Reactor temperature (◦C) 85∼105 95.0 88.64 85.10
Catalyst dosage (ppm) 0.25∼2.0 1.1 0.51 0.49

Gas pressure (bar) 1.0∼3.0 2.0 3.0 3.0
CO fraction 0.0∼0.99 0.5 0.55 0.61

Cost (Euro/kmol) 899.04 761.33 818.88

Simulation results of the modifier-adaptation approach using finite-difference approximation of
gradient are illustrated in Figure 8. The figures on the left show the evolutions of the normalized
optimization variables with respect to the index of RTO iterations. The small pulses, which are
superimposed on the evolutions, represent the additional perturbations required for the finite-difference
approximations of the gradients. The star symbols at the right end mark the real optima. The figures on
the right show the evolutions of the cost and the number of plant evaluations with respect to the index
of the RTO iteration. The inset figure zooms in on the cost evolution, and the dashed line marks the real
optimum of the cost. Three cases with different combinations of the step size of the perturbation and
the noise in the data are considered. In the first case a large step-size, Δh = 0.1, is used and the data
is free of noise (σ = 0.0). From Figure 8a we can see that three of the four optimization variables are
still away from their real optimal values after 16 iterations. The cost evolution in Figure 8b shows an
oscillating behavior above the cost optimum. This indicates that the step-size is too large to enable an
accurate estimation of the gradients.

In the second case a reduced step-size (Δh = 0.05) is tried. From Figure 8c we can see that the
optimization variables attain their real optimal values at the 14th iteration. However, numerical errors
of the simulation of the plant cause deviations during the following iterations. On the one hand, the
use of a small step-size reduces the error of the finite-difference approximation of the gradients. On the
other hand, the small step-size leads to a high sensitivity of the gradient approximation to errors.
This is illustrated by the third case, in which the data contains a normally distributed error (σ = 0.3).
The optimization variables do not reach the real optima (see Figure 8e,f).
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(b) Δh = 0.1, σ = 0.0
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(c) Δh = 0.05, σ = 0.0
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(d) Δh = 0.05, σ = 0.0
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(e) Δh = 0.05, σ = 0.3
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(f) Δh = 0.05, σ = 0.3

Figure 8. Modifier-adaptation optimization of the thermomorphic solvent system using finite-difference
approximation of the gradients, the left figures show the evolutions of the normalized optimization
variables u (the additional set-point perturbations are represented by the small pulses which are
superimposed on the set-point evolutions; the star symbols at the end mark the real optima), the right
figures show the evolutions of the cost and the number of plant evaluations (the inset figure zooms in
on the cost evolution, and the dashed line marks the real optimum).

Simulation results of the MAWQA algorithm are illustrated in Figure 9. The parameters of the
MAWQA algorithm are listed in Table 4. The figures on the left show the evolutions of the normalized
optimization variables with respect to iteration. The small pulses, which are superimposed on the
evolutions, represent the additional plant evaluations, i.e., initial probes and explorative moves.
The real optima are marked by the star symbols. The figures on the right show the evolutions
of the cost and the number of plant evaluations with respect to the iterations. The inset figure
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zooms in on the cost evolution, and the dashed line marks the real optimum of the cost. In the
first 4 iterations, the modifier-adaptation approach using finite-difference approximation of gradient is
run. Afterwards, enough sampled points (here (nu + 1)(nu + 2)/2 = 15) are available for the quadratic
approximation and the MAWQA approach is run. In the case of noise-free data, the MAWQA approach
takes 8 iterations to reach the real optima approximately (see Figure 9a). The total number of plant
evaluations is 30, much less than that used in the second case of the finite-difference approximations of
gradients which requires 55 plant evaluations to reach a similar accuracy. Note that the additional plant
evaluations at the 10th iteration are attributed to the shrinking of the regression region by Step 4 of the
MAWQA algorithm. Figure 9c,d show the optimization results in the presence of noise. The MAWQA
algorithm takes 10 iterations to reach the real optima.
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Figure 9. MAWQA optimization of the thermomorphic solvent system, the left figures show the
evolutions of the normalized optimization variables (the additional plant evaluations, i.e., initial probes
and unsuccessful moves, are represented by the small pulses which are superimposed on the set-point
evolutions; the star symbols at the end mark the real optima), the right figures show the evolutions of
the cost and the number of plant evaluations (the inset figure zooms in on the cost evolution, and the
dashed line marks the real optimum).

Table 4. Parameters of MAWQA.

Description Symbol Value

Screening parameter Δu 0.1
Search space parameter γ 3
Perturbation step size Δh 0.1

Finally, the MAWQA algorithm was tested with different values of the parameters. For each
parameter, three values are considered and the costs after 30 plant evaluations are compared with
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the real optimum. The results are summarized in Table 5. The increase of Δu leads to a decrease of
the accuracy of the computed optima. This is due to the fact that the true mapping is only locally
quadratic and therefore the use of too distant points can cause large approximation errors. The value
of γ influences the rate of convergence since it is directly related to the size of the search space in
each iteration. The value of Δh determines the accuracy of the finite-difference approximation of
the gradients at the starting stage of the MAWQA approach. In the absence of noise, a small Δh is
preferred. However, the search space is also determined by the distribution of the sampled points.
A small Δh leads to a more constrained search space and therefore decreases the rate of convergence.
The overall influence of Δh on the rate of convergence is a combination of both effects. Note that Δh
does not influence the accuracy of the optima if enough plant evaluations are performed.

Table 5. Influence of MAWQA parameters.

Δu Δh γ Cost after 30 Eval. Deviation from the True Optimum (%)

Initial 0.1 0.1 3 761.5 0.02%
↑ Δu 0.15 0.1 3 762.5 0.15%
↑↑ Δu 0.2 0.1 3 762.9 0.21%
↑ Δh 0.1 0.15 3 761.4 0.01%
↑↑ Δh 0.1 0.2 3 763.3 0.26%
↓ γ 0.1 0.1 2 763.2 0.24%
↓↓ γ 0.1 0.1 1 772.1 1.14%

5. Conclusions

This paper focuses on the explorative moves when using the MAWQA algorithm to optimize
a plant. The explorative moves are generated as a result of the estimation errors of the plant gradients.
Three factors that influence the estimation errors are analyzed: the non-quadratic nature of the plant
mappings, the measurement noise, and the distribution of the regression set. The screening algorithm
is shown to take the accuracy of the gradient estimation into consideration and to choose the best set
from the collected data. This ensures that the MAWQA algorithm takes only necessary explorative
moves to improve the gradient estimations, instead of an expensive model-improvement step as
in the derivative-free optimization algorithms. The simulation results for the optimization of the
hydroformylation process with four decision variables demonstrate the promising performance of the
MAWQA algorithm over the finite difference based modifier adaptation algorithm. Further studies
will be focused on how to implement a dual control between the performance improvement and the
explorative moves.
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Abstract: The modifier approach has been extensively explored and offers a theoretically-sound
and practically-useful method to deploy real-time optimization. The recent directional-modifier
adaptation algorithm offers a heuristic to tackle the modifier approach. The directional-modifier
adaptation algorithm, supported by strong theoretical properties and the ease of deployment in
practice, proposes a meaningful compromise between process optimality and quickly improving
the quality of the estimation of the gradient of the process cost function. This paper proposes a
novel view of the directional-modifier adaptation algorithm, as an approximation of the optimal
trade-off between the underlying experimental design problem and the process optimization problem.
It moreover suggests a minor modification in the tuning of the algorithm, so as to make it a more
genuine approximation.

Keywords: modifier approach; directional-modifier adaptation; experimental design; optimality
loss function

1. Introduction

Real-Time Optimization (RTO) aims at improving the performance and safety of industrial
processes by means of continually-adjusting their inputs, i.e., the degrees of freedom defining their
operating conditions, in response to disturbances and process variations. RTO makes use of both
model-based and model-free approaches. The model-free approaches have the clear advantage of
being less labor intensive, as a model of the process is not needed, but the increasing number of inputs
that can be adjusted when running the process has made them decreasingly attractive.

Model-based techniques have received an increasing interest as the capability of running a
large amount of computations online has become standard. Arguably, the most natural approach to
model-based RTO is the two-step approach, where model parameter estimation and model-based
optimization are alternated so as to refine the process model and adapt the operational parameters
accordingly [1,2]. Unfortunately, the two-step approach requires the process model to satisfy very
strict criteria in order for the scheme to reach optimality [3,4]. This issue is especially striking in the
case of structural mismatch between the model and the process and can make the two-step scheme
ineffective or even counterproductive [5–7].

The idea of not only adapting the model parameters, but also the gradient of the cost function
can be traced back to [8] and allows for guaranteeing that the resulting scheme reaches optimality
upon convergence [7,9,10]. Unlike the two-step approach, adapting the gradient of the cost function
allows one to tackle structural model-plant mismatches efficiently, which cannot be efficiently
addressed via the adaptation of the model parameters alone. The original idea has been further
improved; see, e.g., [7,9–13]. These contributions have converged to the modern Modifier Adaptation
(MA) approach, which has been successfully deployed on several industrial processes; see [14–17].
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The MA approach has been recently further developed along a number of interesting directions;
see [16,18–21].

In a run-to-run scenario where estimations of the uncertain parameters are carried out after every
run, the input for any run does not only maximize the process performance for the coming run, but also
influences the performance of the subsequent runs through the estimation of the process parameters.
This observation is generally valid when parameter estimation is performed between runs and pertains
to the MA approach. Taking this influence into account leads one to possibly depart from applying to
the process an input that is optimal according to the best available estimation of the parameters at the
time and adopt an input that strikes a compromise between process optimality and gathering relevant
information for the next parameter estimation. In that sense, the MA approach can be construed as
a mix of an optimization problem and an experimental design problem. The problem of tailoring
experimental design specifically for optimization in a computationally-tractable way has been recently
studied in [22], where the problem of designing inputs for a process so as to gather relevant information
for achieving process optimality is tackled via an approximate optimality loss function.

The recently-proposed Directional-Modifier Adaptation (DMA) algorithm [23,24] and its earlier
variant the dual-modifier adaptation approach [25] offer a practical way for the MA approach to
deal with the compromise between process optimality and gaining information. Indeed, at each
process run, the DMA algorithm delivers an input that seeks a compromise between maximizing the
process performance and promoting the quality of the estimation of the process gradients. The DMA
approach handles this compromise by adopting inputs that depart from the nominal ones in directions
corresponding to the largest covariance in the estimated gradients of the process Lagrange function.
The DMA algorithm is easy to deploy and has strong theoretical properties, e.g., it converges rapidly
and with guarantees to the true process optimum. The directional-modifier adaptation algorithm
additionally makes use of iterative schemes to update the modifiers used in the cost model, so as to
reduce the computational burden of performing classical gradient estimations.

In this paper, we propose to construct the DMA algorithm from a different angle, based on a
modification of the optimality loss function [22]. This construction delivers new theoretical insights
into the DMA algorithm and suggests minor modifications that make the DMA algorithm a more
genuine approximation of the optimal trade-off between process optimality and excitation. For the
sake of simplicity, we focus on the unconstrained case, though the developments can arguably be
naturally extended to constrained problems.

The paper is structured as follows. Section 2 proposes some preliminaries on the selection
of an optimality loss function for the considered experimental design problem and proposes a
computationally-tractable approximation, following similar lines as [22]. Section 3 investigates the MA
approach as a special case of the previous developments, proposes to tackle it within the proposed
theoretical framework and shows that the resulting algorithm has the same structure as the DMA
algorithm, but with some notable differences. Simple examples are presented throughout the text to
illustrate and support the concepts presented.

2. Optimal Experimental Design

In this paper, we consider the problem of optimizing a process in a run-to-run fashion. The process
is described via the cost function φ (u, p), where u gathers the set of inputs, or degrees of freedom,
available to steer the process, and p gathers the parameters available to adjust the cost function using
the measurements gathered on the plant. Function φ is assumed to be everywhere defined and smooth.
This assumption is arguably not required, but will make the subsequent analysis less involved. The
N-run optimization problem can then be formulated as:

min
u0,...,N−1

1
N

N−1

∑
k=0

φ (uk, p) , (1)
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where uk is the vector of decision variables applied at run k. Here, we seek the minimization of the
average process performance over the N runs. The cost function φ (u, p) associated with the process
is not available in practice, such that at any run k, the input uk is typically chosen according to the
best parameter estimation p̂k available at that time. It is important to observe here that the parametric
cost function (1) encompasses parametric mismatch between the plant and the model, but also any
structure adjusting the cost function according to the data, such as the MA approach; see Section 3.1.
Ideally, one ought to seek solving the optimization model:

min
u0,...,N−1

1
N

N−1

∑
k=0

Ep̂k [φ (uk, p̂k)] , (2)

where Ep̂k stands for the expected value over p̂k. For the sake of simplicity, we will focus in this paper
on the two-run problem, i.e., using N = 2 in Problem (2). In the following, we will assume that there
exists a vector of parameter preal for which φ (uk, preal) captures effectively the cost function of the real
process. This assumption is locally fulfilled, up to a constant term, by the MA approach.

When estimations of the parameters p̂k are conducted between the runs using the latest
measurements gathered on the process, a difficulty in using (2) stems from the fact that it can yield an
inadequate sequence of decisions u0,...,N−1. We motivate this statement next, via a simple example.

2.1. Failure of Problem (2): An Example

Consider the optimization model φ (u) = u2 + p2 yielding the the two-run problem:

min
u0,1

1
2

1

∑
k=0

Ep̂k

{
u2

k + p̂2
k

}
= min

u0,1

1
2

1

∑
k=0

u2
k + Σk+μ2

k , (3)

where Σk is the covariance of the estimation of parameter p̂k and μk its expected value. If the distribution
of the estimated parameter p̂1 is independent of the input u0, then Problem (3) takes the trivial solution
u0,1 = 0, which yields the best performance on the real cost function φ (u, preal), regardless of the
actual parameter value preal or of its estimated value p̂0 available for deciding the input u0. However,
since the estimated parameter p̂1 is obtained from the run based on u0, it is in fact not independent of
the decision variables. Indeed, let us assume that the estimation of p̂1 is provided between the two
runs via the least-square fitting problems:

p̂1 = arg min
p

1
2
‖p − p̂0‖2

Σ−1
0

+
1
2
‖y (u0, p)− ymeas

0 ‖2
Σ−1

meas
, (4)

where ymeas
0 ∈ Rm is the measurements taken on the process during or after the run based on u0, y (u, p)

is the corresponding measurement model, Σmeas is the covariance of the measurement noise and Σ0

the covariance associated with the parameter estimation p̂0. Consider then the measurement model:

y (u, p) = pu. (5)

The solution to (4) is then explicitly given by:

p̂1 =
(

Σ−1
0 + Σ−1

measu2
0

)−1 (
Σ−1

0 p̂0 + Σ−1
measu0ymeas

0

)
. (6)

Assuming that μ p̂0 = preal = 0 and E
{

ymeas
0

}
= 0, we then observe that if the measurement noise is

independent between the various runs, we have:

Σ1 =
(

Σ−1
0 + Σ−1

measu2
0

)−1
. (7)

55



Processes 2017, 5, 1

After removing the constant terms, Problem (3) becomes:

min
u0,u1

1
2

(
u2

0 + u2
1

)
+

1
2

(
Σ−1

0 + Σ−1
measu2

0

)−1
. (8)

An interesting situation occurs for Σmeas ≤ Σ2
0, i.e., when the covariance of the measurements is

sufficiently low; see Figure 1. The solution to (8) then reads as:

u0 = ±
(

Σ
1
2
meas − Σmeas

Σ0

) 1
2

, u1 = 0, (9)

while the sequence u0 = u1 = 0 should clearly be used in order to minimize the cost of the real
two-run process, even in the sense of the expected value. This trivial example illustrates a fundamental
limitation of Problem (2) in successfully achieving the goal of minimizing the cost over a two- or
N-run process.

sm
0.2 0.4 0.6 0.8 1 1.2

u0

-1

-0.5

0

0.5

1

Figure 1. Illustration for Problem (8). The level curves report the cost of (8) as a function of u0 and
Σmeas, with Σ0 = 1. The dashed lines report the optimal input u0 for various values of Σmeas. For
Σmeas low enough, the problem has two non-zero solutions.

2.2. Modified Optimality Loss Function

A sensible approach inspired from the work presented in [22] consists of selecting the input u0

according to:

u0 =arg min
u

Ee [φ (u, preal) + φ (u∗ ( p̂1) , preal)] =

arg min
u

Ee[ φ (u, preal) + φ (u∗ ( p̂1) , preal)− φ (u∗ (preal) , preal)︸ ︷︷ ︸
Δ0

], (10)

where Δ0 is labeled the optimality loss function and e gathers the noise on the estimation of the process
parameters and the measurement noise, i.e.:

p̂0 = preal + e0, ymeas = y (u0, preal) + e1. (11)

Problem (10) seeks a compromise between the expected process performance at the coming run via
the first term in (10) and the expected process performance at the subsequent run via the second term.
The performance of the second term depends on the input selected in the first run via the parameter
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estimation performed between the two runs. We assume hereafter that e follows a normal, centered
distribution, and we use for the estimated parameter p̂1 the least-square fitting problem:

p̂1 = arg min
p

1
2
‖p − (preal + e0)‖2

Σ−1
0

+
1
2
‖y (u0, preal) + e1 − y (u0, p) ‖2

Σ−1
1

, (12)

where p̂1 is the parameter estimation following the first run. The optimality loss function Δ0 proposed
in [22] was designed for the specific purpose of performing experimental design dedicated to capturing
the process parameters most relevant for process optimization. However, it was not designed to be
used within the two-run problem considered here. In this paper, we propose to use a slightly modified
version of (10), so as to avoid a potential difficulty it poses. For the sake of brevity and in order to skip
elaborate technical details, let us illustrate this difficulty via the following simple example. Consider
the cost function and measurement model:

φ (u, p) =
1
2
(u − p)2 , y (u, p) = up. (13)

The least-square problem (12) reads as:

p̂1 = arg min
p

1
2
‖p − (preal + e0)‖2

Σ−1
0

+
1
2
‖u0 preal + e1 − u0 p‖2

Σ−1
1

, (14)

which takes the explicit form:

p̂1 = preal +
e0Σ1 + e1Σ0u0

Σ0u2
0 + Σ1

. (15)

The optimality loss function Δ0 then reads as:

Δ0 (u0) = φ (u∗ ( p̂1) , preal)− φ (u∗ (preal) , preal) =
1
2

(
e0Σ1 + e1Σ0u0

Σ0u2
0 + Σ1

)2

, (16)

and has the expected value:

Ee [Δ0] =
1
2

Σ0Σ1

Σ0u2
0 + Σ1

. (17)

It is worth observing that a similar optimality loss function has also been used in [25] in order
to quantify the loss of optimality resulting from uncertain parameters. Problem (10) can then be
equivalently written as:

u0 = arg min
u

φ (u, preal) +Ee [Δ0] . (18)

However, since in practice, preal is not available to solve Problem (18), a surrogate problem must be
solved, using preal ≈ p̂0. It reads as:

u0 = arg min
u

φ (u, p̂0) +Ee [Δ0] = arg min
u

φ (u, preal + e0) +Ee [Δ0] . (19)

An issue occurs here, which is illustrated in Figure 2. Because the expected value of the optimality
loss function computed in a stand-alone fashion in (17) misses the correlation between the control
input u0 and the initial estimation error e0 that arises via the optimization problem (19), using (19) as a
surrogate for (18) can be counterproductive in the sense that the performance of Problem (18) is worse
than the one of the nominal problem.

In this paper, we address this issue by taking an approach to the optimality loss function that
departs slightly from (16).
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Figure 2. Comparison of the performance resulting from using the nominal input u0 = u∗ ( p̂0) and the
one resulting from (18) or (19) on the proposed example. The displayed cost is calculated according

to (10) and reads as Ee

[
1
2 u2

0 +
1
2 u∗

1 ( p̂1)
2
]
. The left graph displays the cost resulting from using (18),

which delivers a better expected performance than using the nominal input. The right graph displays
the cost resulting from using (19), where preal ≈ p̂0 is used. In this example, this approximation is
detrimental to the performance of Problem (10), resulting in a worse performance than the nominal one.

2.3. Problem Formulation

For a given initial estimation p̂0, initial estimation error e0 and measurement error e1 and using
preal = p̂0 − e0, the estimation problem solved after the first run can be formulated as:

p̂1 (u0, Σ, p̂0, e) = arg min
p

1
2
‖p − p̂0‖2

Σ−1
0

+
1
2
‖y (u0, p)− (y (u0, p̂0 − e0) + e1)‖2

Σ−1
1

, (20)

where we use the notation:

e =

[
e0

e1

]
, Σ =

[
Σ0 0
0 Σ1

]
, (21)

and consider e0, e1 to be uncorrelated. Defining:

û∗
1 (u0, Σ, p̂0, e) = u∗ ( p̂1 (u0, Σ, p̂0, e)) , (22)

the modified optimality loss function can be formulated as:

Δ (u0, Σ, p̂0, e) = φ (û∗
1 (u0, Σ, p̂0, e) , p̂0 − e0)− φ (u∗ ( p̂0 − e0) , p̂0 − e0) . (23)

This reformulation allows for construing the optimality loss function from the point of view of the
experimenter, by considering p̂0 as a fixed variable arising as a realization of the estimation of the
unknown parameter preal rather than a stochastic one. In (20) and (23), the actual parameter preal
is then, from the experimenter point of view, a stochastic variable, reflecting the uncertainty of the
experimenter concerning the real parameter. The resulting two-run problem reads as:

u0 = arg min
u

Ee [φ (u, p̂0 − e0) + Δ (u, Σ, p̂0, e)] . (24)

We observe here that the cost function proposed in (24) is different from the original one in (19).
From the optimality principle, Problem (24) delivers an expected performance that is better or no
worse than the expected performance yielded by applying the nominal input u0 = u∗ ( p̂0). A simple
example of the proposed optimality-loss approach is provided in Section 2.5. Unfortunately, solving
Problem (24) is in general difficult. In the next section, we consider a second-order approximation
instead, following a line also adopted in [22].
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2.4. Second-Order Approximation of the Modified Optimality Loss Function

The optimality loss function (23) is difficult to use in practice. A second-order approximation
of (23) can be deployed as a tractable surrogate problem in (24). We develop this second-order
approximation next. We observe that the following equality trivially holds:

p̂1 (u0, Σ, p̂0, 0) = p̂0. (25)

The sensitivity of the parameter estimations p̂1 to the errors e can be obtained via the implicit function
theorem applied to the fitting problem (20); it reads as:

∂ p̂1 (u0, Σ, p̂0, e)
∂e

∣∣∣∣
e=0

= F (u0, Σ, p̂0)
−1 M (u0, p̂0) , (26)

where:

F (u0, Σ, p̂0) =Σ−1
0 + yp (u0, p̂0)

� Σ−1
1 yp (u0, p̂0) (27)

is the Fisher information matrix of (20), and:

M (u0, p̂0) =
[
−yp (u0, p̂0)Σ−1

1 yp (u0, p̂0)
� yp (u0, p̂0)

� Σ−1
1

]
=
[

Σ−1
0 − F (u0, Σ, p̂0) yp (u0, p̂0)

� Σ−1
1

]
.

(28)

We note that from optimality that Δ ≥ 0 always holds and:

Δ (u0, Σ, p̂0, 0) = 0,
∂Δ (u0, Σ, p̂0, e)

∂e

∣∣∣∣
e=0

= 0, (29)

which motivates a second-order approximation of Δ at e = 0. The Taylor expansion of Δ in e reads as:

Δ (u0, Σ, p̂0, e) =
1
2

e� ∂2Δ (u0, Σ, p̂0, 0)
∂e2 e + r3(u0, Σ, p̂0, e). (30)

We can then form the second-order approximation of the modified optimality loss function Δ.

Lemma 1. The following equality holds:

∂2Δ (u0, Σ, p̂0, 0)
∂e2 =

(
∂ p̂1

∂e
+

∂e0

∂e

)�
φ∗

pu (φ
∗
uu)

−1 φ∗
up

(
∂ p̂1

∂e
+

∂e0

∂e

)
, (31)

where we note φ∗
xx = φxx (u∗ ( p̂0) , p̂0), and all partial derivatives are evaluated at e = 0.

Proof. We observe that:

∂2Δ (u0, Σ, p̂0, e)
∂e2 =

∂

∂e

(
φu (û∗

1, p̂0 − e0) u∗
p ( p̂1)

∂ p̂1
∂e

− φp (û∗
1, p̂0 − e0)

∂e0
∂e

(32)

+φu (u∗ ( p̂0 − e0) , p̂0 − e0) u∗
p ( p̂0 − e0)

∂e0
∂e

+ φp (u∗ ( p̂0 − e0) , p̂0 − e0)
∂e0
∂e

)
,

where for the sake of clarity, the arguments are omitted when unambiguous. Using the fact that
φu (u∗ ( p̂0) , p̂0) = 0, it follows that:
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∂2Δ (u0, Σ, p̂0, 0)
∂e2 =

∂ p̂1

∂e

� (
u∗

p

)�
φ∗

uuu∗
p

∂ p̂1

∂e
− ∂e0

∂e

�
φ∗

puu∗
p

∂ p̂1

∂e
− ∂ p̂1

∂e

� (
u∗

p

)�
φ∗

up
∂e0

∂e
+

∂e0

∂e

�
φ∗

pp
∂e0

∂e
(33)

− ∂e0

∂e

� (
u∗

p

)�
φ∗

uuu∗
p

∂e0

∂e
− ∂e0

∂e

�
φ∗

puu∗
p

∂e0

∂e
− ∂e0

∂e

� (
u∗

p

)�
φ∗

up
∂e0

∂e
− ∂e0

∂e

�
φ∗

pp
∂e0

∂e
,

where all functions are evaluated at e = 0. We use then the equality u∗
p = − (φ∗

uu)
−1 φ∗

up to get (31).

In the following, it will be useful to write Δ (u0, Σ, p̂0, e) as:

Δ (u0, Σ, p̂0, e) =
1
2

Tr
(

φ∗
pu (φ

∗
uu)

−1 φ∗
upV

)
+ r3 (u0, Σ, p̂0, e) , (34)

where we note:

V (u0, Σ, p̂0, e) =
(

∂ p̂1 (u0, Σ, p̂0, e)
∂e

∣∣∣∣
e=0

+
∂e0

∂e

)
ee�

(
∂ p̂1 (u0, Σ, p̂0, e)

∂e

∣∣∣∣
e=0

+
∂e0

∂e

)�
.

Using (28), we observe that:

∂ p̂1 (u, Σ, p̂0, e)
∂e

∣∣∣∣
e=0

+
∂e0

∂e
= F (u0, Σ, p̂0)

−1
[

Σ−1
0 yp (u0, p̂0)

� Σ−1
1

]
, (35)

such that:

Ee [V (u0, Σ, p̂0, e)] = F (u0, Σ, p̂0)
−1
[

Σ−1
0 yp (u0, p̂0)

� Σ−1
1

]
Σ1 (�) = F (u0, Σ, p̂0)

−1 . (36)

It follows that the expected value of the optimality loss function reads as:

Ee [Δ (u, Σ, p̂0, e)] =
1
2

Tr
(

φ∗
pu (φ

∗
uu)

−1 φ∗
upF (u0, Σ, p̂0)

−1
)
+Ee [r3 (u0, Σ, p̂0, e)] . (37)

It is useful to observe that even though a modified optimality loss function has been selected here, its
approximation (37) is nonetheless very similar to the one proposed in [22]. Hence, the real difference
lies in its interpretation as an approximation of the modified function (23) rather than (16). Here, it is
useful to introduce the following lemma:

Lemma 2. If the following conditions hold:

1. the noise e has a multivariate normal and centered distribution
2. for all p ∈ P, u∗ (p) exists, is smooth, unique and satisfies the Second-Order Sufficient Condition (SOSC)

condition of optimality.
3. the parameter estimation problem (20) has a unique solution p̂1 (u0, Σ, p̂0, e) satisfying SOSC for any e

and is smooth and polynomially bounded in e
4. functions u∗ (p), p̂1 (u0, Σ, p̂0, e) and φup, φuu are all bounded by polynomials on their

respective domains.

Then, the inequality:

|Ee [r3 (u0, Σ, p̂0, e)]| ≤ c‖Σ‖2 (38)

holds locally for some constant c > 0, where ‖.‖ is the matrix two-norm.

Proof. Because all functions are smooth and bounded by polynomials, the function Δ is also smooth
and bounded by polynomials. It follows that:
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r3 (u0, Σ, p̂0, e) = Δ (u0, Σ, p̂0, e)− 1
2

Tr
(

φ∗
pu (φ

∗
uu)

−1 φ∗
upV

)
(39)

is also smooth and polynomially bounded. Additionally, the bound:

|r3 (u0, Σ, p̂0, e)| ≤ c ‖e‖3 (40)

holds locally for some c > 0 as a result of Taylor’s theorem. Then, Inequality (38) follows directly from
Lemma A1.

Lemma 2 appears to be a special case of the delta method [26]. We can now approximate (24) as:

min
u0

Ee [φ (u0, p̂0 − e0)] +
1
2

Tr
(

φ∗
pu (φ

∗
uu)

−1 φ∗
upF (u0, Σ, p̂0)

−1
)

, (41)

using φ∗
uu = φuu (u∗ ( p̂0) , p̂0) and φ∗

up = φup (u∗ ( p̂0) , p̂0).

Algorithm 1: 2-run nominal optimal experimental design.

Input : Current parameter estimation p̂0, covariance Σ.
1 Compute u∗ ( p̂0)

2 Evaluate φ∗
pu (φ

∗
uu)

−1 φ∗
up and F at u∗ ( p̂0), p̂0

3 Solve:

min
u0

Ee [φ (u0, p̂0 − e0)] +
1
2

Tr
(

φ∗
pu (φ

∗
uu)

−1 φ∗
upF (u0, Σ, p̂0)

−1
)

4 Apply u0 to the process, gather measurements, perform parameter estimation update
return updated p̂0 and Σ, repeat

For the sake of clarity, the deployment of Problem (41) in a run-to-run algorithm is detailed in
Algorithm 1.

2.5. Illustrative Example: Observability Problem

We consider again the example (13), i.e.:

φ (u, p) =
1
2
(u − p)2 , y (u, p) = up. (42)

where we consider p̂0 = preal + e0 as known a priori with E[e0] = 0, and p̂1 is provided by the
estimation problem:

p̂1 = arg min
p

1
2
‖p − p̂0‖2

Σ−1
0

+
1
2
‖ u0 ( p̂0 − e0) + e1︸ ︷︷ ︸

ymeas

−u0 p‖2
Σ−1

1
, (43)

and takes the explicit solution:

p̂1 = p̂0 +
e1Σ0u0 − e0Σ0u2

0
Σ0u2

0 + Σ1
. (44)

The optimality loss for the second run then reads as:

Δ =
1
2
(u∗

1 ( p̂1)− ( p̂0 − e0))
2 − φ∗︸︷︷︸

=0

=
1
2
(e0Σ1 + e1Σ0u0)

2

(Σ0u2
0 + Σ1)2

, (45)
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and its expected value takes the form:

Ee [Δ] =
1
2

Σ0Σ1

Σ0u2
0 + Σ1

=
1
2

F (u0, Σ)−1 . (46)

Ignoring the constant terms and since E[e0] = 0, the two-stage optimal experimental design then picks
the input u0 according to:

u0 = arg min
u

1
2
(u − p̂0)

2 +
1
2

F (u, Σ)−1 . (47)

We observe that in this simple case, the proposed approximation (41) is identical to the original problem
(24) and to Problem (19). This equivalence does not hold in general. The behavior of Problem (41) in
this simple case is reported in Figures 3 and 4. In particular, we observe that the expected performance
of Problem (41) on this example is consistently better than the one of the nominal approach. It is
important to understand here that in this specific example, the difference between Figures 2 and
4 lies in the cost function that evaluates the performance of the nominal and proposed approach.
Indeed, because of the approximation preal = p̂0, the original approach (19) appears potentially
counterproductive under its targeted performance metric (10). Instead, the proposed performance
metric (24) is the one that can be minimized via exploiting measurements for subsequent optimizations.
In general, however, the inputs selected by (10) and (24) are different.
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Figure 3. Comparison of the nominal and optimal experimental design on the proposed example
for p̂0 = 0. The displayed cost is calculated according to the cost proposed in (24), which reads as

Ee

[
1
2 (u0 − ( p̂0 − e0))

2 + 1
2 (u

∗
1 ( p̂1)− ( p̂0 − e0))

2
]

in this example. It can be observed that the optimal
experimental design approach has two solutions, due to the non-convexity of the problem.
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Figure 4. The left graph illustrates the nominal and optimal experimental design performance on the
proposed example. The displayed cost is calculated according to the cost proposed in (24), which

reads as Ee

[
1
2 (u0 − ( p̂0 − e0))

2 + 1
2 (u

∗
1 ( p̂1)− ( p̂0 − e0))

2
]

in this example. The right graph displays
the corresponding inputs. Observe that the right-hand graph ought to be compared to the right-hand
graph of Figure 2.
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3. Link to the Modifier Approach and the DMA Approximation

In this section, we draw a connection between the proposed developments and the well-proven
modifier approach tackled via the recent Directional-Modifier Adaptation (DMA) algorithm [23,24].
In particular, we show that the DMA approach can be construed as an approximation of Problem (41).

3.1. The Modifier Approach

In the context of RTO, instead of considering uncertain model parameters, the Modifier Approach
(MA) tackles the difficulty of working with uncertain process models by introducing a modification of
the gradient of the cost function in the optimization problem. The MA then considers a model of the
cost function in the form:

φ (u, p) = φ0 (u) + pTu, (48)

where p is a set of parameters that modifies the gradient of the process model. Hence, instead of
refining the process model, the MA focuses on adjusting the cost gradient at the solution in order to
reach optimality for the real process. At each run, measurements of the cost function can be used to
improve the estimation of the process gradients via numerical differences. The measurements obtained
at each run can be written as:

yreal =
φ (u0, preal)− φ (u−1, preal)

‖u0 − u−‖ , (49)

while the measurement model reads as:

y (u0, p) =
φ (u0, p)− φ (u−1, p)

‖u0 − u−‖ = p� u0 − u−1

‖u0 − u−‖ +
φ0 (u0)− φ0 (u−1)

‖u0 − u−‖ . (50)

Here, we consider the inputs prior to u0 as fixed, since they are already realized, and we consider that
a parameter estimation p̂0 is available from these previous measurements, with associated covariance
Σ0. It can be verified that:

φ∗
pu (φ

∗
uu)

−1 φ∗
up = ∇2φ−1

0 , F (u0, Σ, p̂0) = Σ−1
p̂0

+ Σ−1
measS (u0) , (51)

where Σmeas ∈ R is the covariance of the measurements of the numerical gradients of the process cost
function and where we have defined:

S (u0) =
(u0 − u−1) (u0 − u−1)

�

‖u0 − u−‖2 . (52)

Hence, Problem (41) deployed on the MA approach solves the problem:

min
u0

φ (u0, p̂0) +
1
2

Tr
[

Σ p̂0∇2φ−1
0

(
I + Σ−1

measΣ p̂0 S (u0)
)−1

]
. (53)

3.2. DMA as an Approximation of (41)

We will consider next a 1st-order Neumann expansion to approximate Problem (53) for u0 ≈ u−1.
We observe that: (

I + Σ−1
measΣ p̂0 S (u0)

)−1
= I − Σ−1

measΣ p̂0 S (u0) + R, (54)

where:

R =
(

I + Σ−1
measΣ p̂0 S (u0)

)−1 (
Σ−1

measΣ p̂0 S (u0)
)2

. (55)
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If the covariance Σφ associated with the measurements of the cost function is fixed, then
Σ−1

meas = 1
2 Σ−1

φ ‖u0 − u−1‖2. It follows that for ‖u0 − u−1‖ small, the following approximation is
asymptotically exact:

Tr
[

Σ p̂0∇2φ−1
0

(
I + Σ−1

measΣ p̂0 S (u0)
)−1

]
≈ Tr

[
Σ p̂0∇2φ−1

0 − Σ−1
measΣ p̂0∇2φ−1

0 Σ p̂0 S (u0)
]

(56)

= Tr
[
∇2φ−1

0 Σ p̂0

]
− Σ−1

meas (u0 − u−1)
� Σ p̂0∇2φ−1

0 Σ p̂0 (u0 − u−1) . (57)

One can then consider the following approximation of Problem (53):

u0 = arg min
u0

φ0 (u0) + p̂�0 u0 − 1
2

Σ−1
meas (u0 − u−1)

� Σ p̂0∇2φ−1
0 Σ p̂0 (u0 − u−1) , (58)

which is valid for ‖u0 − u−1‖ small. The DMA approach computes a direction δu in the input space
according to:

max
δu

δuTΣ∇φδu (59a)

s.t. ‖δu‖ = 1, δu ∈ C (Ur) , (59b)

where Ur = I trivially holds in the unconstrained case and then solves the problem:

u0 = arg min
u0

φ0 (u) + p̂T
0 (u0 − u−1)− c

2

(
δuT (u0 − u−1)

)2
, (60)

which is equivalent to:

u0 = arg min
u0

φ0 (u0) + p̂T
0 u0 − c

2
(u0 − u−1)

T Q (u0 − u−1) (61)

for the semi-positive, rank-one weighting matrix Q = cδuδuT . The close resemblance of the DMA
problem (61) to Problem (58) offers a deeper understanding of the procedure at play in the DMA
algorithm. More specifically, Problem (58) is identical to the DMA problem (61) if:

Σ−1
measΣ p̂0∇2φ−1

0 Σ p̂0 = cQ. (62)

We observe here that ∇φ = ∇φ0 + p̂0, such that Σ∇φ ≡ Σ p̂0 mathematically holds. Since δu is the
dominant unitary eigenvector of Σ∇φ and is therefore also the dominant unitary eigenvector of Σ2

∇φ, it
follows that matrix Q is given by:

max
〈

Σ2
p̂0

, Q
〉

(63a)

s.t. ‖Q‖ = 1, rank (Q) = 1. (63b)

Observing (62) and (63), it follows that the classical DMA method picks an input using:

• the approximation ∇2φ0 ≈ γI for some γ > 0
• a rank-one approximation of Σ2

p̂0

According to these observations, a reasonable choice for the scaling constant c can be:

c = Σ−1
∇φ

∥∥∥Σ p̂0∇2φ−1
0 Σ p̂0

∥∥∥ . (64)

It is useful to remark here that dismissing the information provided by ∇2φ0 may be advantageous
when φ0 does not reflect adequately the curvature of the cost function of the real process. In such a
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case, the weighting provided by ∇2φ0 in (58) can arguably be misleading. Including estimations of the
2nd-order sensitivities in the MA approach has been investigated in [19].

3.3. Illustrative Example

We illustrate here the developments proposed above via a simple quadratic example, which
nonetheless captures a number of observations that ought to be made. Consider the cost model:

φ0 =
1
2

u�
0 Ru0 + f�u0, (65)

such that the nominal optimal input is trivially given by:

u0 = −R−1 f . (66)

Problem (53) then reads as:

min
u0

1
2

u�
0 Ru0 + f�u0 +

1
2

Tr
[

Σ p̂0 R−1
(

I + Σ−1
∇φΣ p̂0 S (u0)

)−1
]

, (67)

while the approximate problem (58) reads as:

u0 = arg min
u0

1
2

u�
0

(
R − Σ−1

∇φΣ p̂0 R−1Σ p̂0

)
u0 +

(
p̂0 + f − u�

−1Σ−1
∇φΣ p̂0 R−1Σ p̂0

)�
u0. (68)

Note that Problem (68) is unbounded for Σ∇φ I <
(

R−1Σ p̂0

)2, while (67) can have a well-defined
solution; see Figures 5 and 6 for an illustration. This situation occurs here when the measurement
noise is small while the current parameter estimation is highly uncertain and is discontinued when the
parameter estimation becomes reliable, such that Σ p̂0 becomes small. Note that this can be addressed
in practice via an ad hoc regularization or by, e.g., bounding the input correction ‖u0 − u∗ ( p̂0)‖ in
Problem (58).
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Figure 5. Example of the problem where the quadratic approximation (58) is unbounded, while (53)
has a solution. The black lines report the level curves of the cost of Problem (67); the grey lines report
the level curves of the cost of Problem (68); and the light grey lines report the level curves of the
cost of Problem (69) with Q given by (63). In this example, ignoring the contribution of ∇2φ0 in the
Directional-Modifier Adaptation (DMA) algorithm leads it to privilege directions (light grey dashed
line) that are significantly different from the ones privileged by (67) (grey dashed line). The latter point
to the solution of the original Problem (53).

65



Processes 2017, 5, 1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

uNomxxxxx
uprevxxxxx
uGenxxxxx

Figure 6. Example of problem where the quadratic approximation (58) is unbounded, while (53) has
a solution. The black lines report the level curves of the cost of Problem (67); the grey lines report
the level curves of the cost of Problem (68); and the light grey lines report the level curves of the

cost of Problem (69) where Q =
∥∥Σ p̂0

∥∥−2 Σ2
p̂0

and c = Σ−1
∇φ

∥∥∥Σ p̂0∇2φ−1
0 Σ p̂0

∥∥∥. Adopting a matrix Q

delivering a full-rank approximation of Σ2
p̂0

does not help the DMA algorithm adopting directions (see

the light-grey dashed line) that point to the direction of the solution to (67); hence, ignoring ∇2φ0 is
problematic here.

The DMA-based problem (60) reads as:

u0 = arg min
u0

1
2

u�
0 (R − cQ) u0 +

(
p̂0 + f − c

2
uT
−1Q

)�
u0. (69)

The behaviors of the DMA problem (69) and its proposed counterpart (68) are reported in
Figures 5–8. In Figures 5 and 6, the two problems are compared for the setup:

Q =

[
0.5060 0

0 1.2358

]
, f = 0, u− = 0,

p̂0 =

[
5 · 10−3

0

]
, Σ p̂0

[
0.0990 0

0 0.1638

]
, Σ∇φ = 0.0202,

(70)

resulting in an unbounded problem for both problems. In this case, the DMA approach (69) with a
reduced choice of c would ensure a bounded problem, while a regularization or trust-region technique
for Problem (68) would deliver a solution. We observe in Figures 5 and 6 that ignoring the term ∇2φ0

in the DMA problem can lead the algorithm to favor a solution that departs significantly from the ones
proposed by (53).

In Figure 7, the two problems are compared for the setup:

Q = I, f = 0, u− =

[
0

−0.0444

]
, p̂0 =

[
0.04

0

]
, Σ p̂0 =

[
1 0
0 0.95

]
, Σ∇φ = 1.5. (71)

In this case, ignoring the term ∇2φ0 = Q = I does not yield any difficulty. However, because all
parameters p̂0 have a very similar covariance, the rank-one approximation of Σ p̂0 misleads the DMA
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algorithm into selecting a solution that departs significantly from the one of (53). Finally, in Figure 8,
the two problems are compared for the setup:

Q =

[
1 0
0 0.8

]
, f = 0, u− =

[
0

−0.05

]
,

p̂0 =

[
0.04

0

]
, Σ p̂0 =

[
1 0
0 0.2

]
, Σ∇φ = 1.5.

(72)

In this last case, both the DMA problem (69) and (68) deliver solutions that are very close to the one of
Problem (53), i.e., in this scenario, ignoring the term ∇2φ0 and forming a rank-one approximation do
not affect the solution significantly.
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Figure 7. Illustration for Section 3.3, setup (71). The black lines report the level curves of the cost of
Problem (67); the grey lines report the level curves of the cost of Problem (68); and the light grey lines
report the level curves of the cost of Problem (69) with Q given by (63). In this example, the rank-one
approximation for Q leads the DMA algorithm to propose a solution that is far from the one of (67).
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Figure 8. Illustration for Section 3.3, setup (72). The black lines report the level curves of the cost of
Problem (67); the grey lines report the level curves of the cost of Problem (68); and the light grey lines
report the level curves of the cost of Problem (69) with Q given by (63). In this example, all problems
deliver very similar solutions.
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4. Conclusions

In this paper, we have proposed a novel view of real-time optimization and of the modifier
approach from an experimental design perspective. While some methods are available to handle
the trade-off between process optimality and the gathering of information for the performance of
future runs, this paper proposes a formal framework to construe this trade-off as an optimization
problem and develops a tractable approximation of this problem. The paper then shows that the
recent directional-modifier adaptation algorithm is a special formulation of this approximation.
This observation allows one to further justify the directional-modifier adaptation algorithm from
a theoretical standpoint and to consider a refined tuning of the algorithm. The theory presented in the
paper is illustrated via simple examples.
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Appendix A

We provide here the lemma used in Proposition 2.

Lemma A1. If x ∈ Rm is a normally distributed, centered variable of covariance Σ ∈ Rm×m and f (x) : Rm →
R a smooth function polynomially bounded as:

| f (x)| ≤ Pm,n (x) (A1)

for some n-th-order polynomial of the form Pm,n (x) = ∑n
k=m αk ‖x‖k, then the following inequality holds

locally:

|Ex [ f (x)]| ≤ c ‖Σ‖ceil(m
2 ) . (A2)

Proof. We first observe that:

Ex [Pm,n (x)] ≤
n

∑
k=m

βk ‖Σ‖
k
2
∞ (A3)

holds for some suite βk ≥ 0, with βk = 0 for k odd. This is a direct consequence of the generalized
Isserlis theorem [27,28], which states that the expected value of any even-order moment of a
multivariate normal centered distribution is a sum of products between k/2 entries of the covariance
matrix Σ, while odd-order moments are null. It then also holds that:

|Ex [ f (x)]| ≤
n

∑
k=m

βk ‖Σ‖
k
2
∞ , (A4)

and the inequality:

|Ex [ f (x)]| ≤ c ‖Σ‖ceil(m
2 ) (A5)

holds locally.

We observe that this Lemma appears to be a simple special case of the Theorem proposed by [26]
on the delta method, restricted to the normal distribution.
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Abstract: We address in the paper the problem of designing an economic model predictive control
(EMPC) algorithm that asymptotically achieves the optimal performance despite the presence of
plant-model mismatch. To motivate the problem, we present an example of a continuous stirred tank
reactor in which available EMPC and tracking model predictive control (MPC) algorithms do not
reach the optimal steady state operation. We propose to use an offset-free disturbance model and to
modify the target optimization problem with a correction term that is iteratively computed to enforce
the necessary conditions of optimality in the presence of plant-model mismatch. Then, we show how
the proposed formulation behaves on the motivating example, highlighting the role of the stage cost
function used in the finite horizon MPC problem.

Keywords: model predictive control (MPC); real-time optimization (RTO); economic model predictive
control (EMPC); modifier-adaptation

1. Introduction

Optimization-based controllers, in general, and model predictive control (MPC) systems,
in particular, represent an extraordinary success case in the history of automation in the process
industries [1]. MPC algorithms exploit a (linear or nonlinear) dynamic model of the process and numerical
optimization algorithms to guide a process to a setpoint reliably, while fulfilling constraints on outputs
and inputs. The optimal steady-state setpoint is usually provided by an upper layer, named real-time
optimization (RTO), that is dedicated to economic steady-state optimization. The typical hierarchical
architecture for economic optimization and control in the process industries is depicted in Figure 1.
For an increasing number of applications, however, this separation of information and purpose is no
longer optimal nor desirable [2]. An alternative to this decomposition is to take the economic objective
directly as the objective function of the control system. In this approach, known as economic model
predictive control (EMPC), the controller optimizes directly, in real time, the economic performance of
the process, rather than tracking a setpoint.

MPC being a model-based optimization algorithm, in the presence of plant-model mismatch or
unmeasured disturbances, it can come across offset problems. Non-economically optimum stationary
points can also be the result of a plant-model mismatch in model-based RTO. However, as explained
later, some RTO algorithms do not use a model, i.e., extremum-seeking control [3,4], so in this case, the
mismatch issue can be associated with unmeasured disturbances. The offset correction in tracking
MPC algorithms has been deeply exploited and analyzed. Muske and Badgwell [5] and Pannocchia
and Rawlings [6] first introduced the concept of general conditions that allow zero steady-state offset
with respect to external setpoints. The general approach is to augment the nominal system with
disturbances, i.e., to build a disturbance model and to estimate the state and disturbance from output
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measurements. A recent review about disturbance models and offset-free MPC design can also be
found in [7]. Furthermore, in the RTO literature, many works are focused on plant-model mismatch
issues. RTO typically proceeds using an iterative two-step approach [8,9], namely an identification
step followed by an optimization step. The idea is to repeatedly estimate selected uncertain model
parameters and to use the updated model to generate new inputs via optimization. Other alternative
options do not use a process model online to implement the optimization [10–12]. Others utilize
a nominal fixed process model and appropriate measurements to guide the iterative scheme towards
the optimum. In this last field, the term “modifier-adaptation” indicates those fixed-model methods
that adapt correction terms (i.e., the modifiers) based on the observed difference between actual
and predicted functions or gradients [13–15]. Marchetti et al. [16] formalize the concept of using
plant measurements to adapt the optimization problem in response to plant-model mismatch,
through modifier-adaptation.

Actuators and Sensors

Distributed Control System
(PID Controls)

Advanced control systems:
MPCs

Real Time Optimization

Supply chain optimization:
planning, scheduling

(continuous)

(10-100 ms)

(30-120 s)

(1-2 h)

(1-7 days)

Figure 1. Typical hierarchical optimization and control structure in process systems.

As underlined above, the RTO and MPC hierarchical division issue has led to the increased
interest in merging the two layers. Many works in the literature consider a combination between
RTO and MPC through a target calculation level in the middle that coordinates the communication
and guarantees stability to the whole structure calculating the feasible target for the optimal control
problem [17,18]. There are also examples of integration between the modifier-adaptation technique
and MPC [19]: in this way, the input targets calculated by the MPC are included as equality constraints
into the modified RTO problem. In other cases, the target module of the MPC has been modified in
various ways, including a new quadratic programming problem that is an approximation of the RTO
problem [20].

Another area of the literature aimed at merging the two layers is the so-called dynamic real-time
optimization (D-RTO). The objective function of the D-RTO includes an economic objective, subject to
a dynamic model of the plant. The optimal control profiles are then determined from the solution of
the above dynamic optimization problem and then passed to the underlined MPC layer as trajectory
setpoints to follow. The advantages of this formulation in the presence of disturbances have been
deeply emphasized in the literature [21,22], also in the case of model-free alternatives [23]. The D-RTO
is also seen as a solution for merging economic and control layer, while advances in nonlinear model
predictive control and its generalization to deal with economic objective functions taking place [24].
In this sense, a receding horizon closed-loop implementation of D-RTO can be also referred to as
economic model predictive control [25].
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In the presence of plant-model mismatch, also EMPC can suffer from converging to
a non-economically steady-state point and also reaching a steady state different from the one indicated
by the target at the same time. The main goal of this work is to build an economic MPC algorithm
that, combining the previous ideas of offset-free MPC and modifier-adaptation, achieves the ultimate
optimal economic performance despite modeling errors and/or disturbances. In the proposed method,
there is no RTO layer because the economic cost function is used directly in the MPC formulation,
which however includes a modifier-adaptation scheme.

The rest of this paper is organized as follows. A review of the related technique used in this work
is presented in Section 2 along with a motivating example. The proposed method, with a detailed
mathematical analysis and description, is presented in Section 3. The algorithm and several variants
are then tested over the illustrative example, and the numerical results and associated discussions are
reported in Section 4. Finally, Section 5 concludes the paper and presents possible future directions of
this methodology.

2. Related Techniques and a Motivating Example

In order to propose an offset-free EMPC algorithm, a review of related concepts and techniques
is given. Then, we present a motivating example that shows how neither the standard EMPC
formulation nor an offset-free tracking MPC formulation are able to achieve the ultimate optimal
economic performance.

2.1. Plant, Model and Constraints

In this paper, we are concerned with the control of time-invariant dynamical systems in the form:

x+p = Fp(xp, u)

y = Hp(xp) (1)

in which xp ∈ Rn, u ∈ Rm, y ∈ Rp are the plant state, control input and output at a given time,
respectively, and x+p is the successor state. The plant output is measured at each time k ∈ I.
Functions Fp: Rn × Rm → Rn and Hp: Rn → Rp are not known precisely, but are assumed to be
differentiable. In order to design an MPC algorithm, a process model is known:

x+ = f (x, u)

y = h(x) (2)

in which x, x+ ∈ Rn denote the current and successor model states. The functions f : Rn ×Rm → Rn

and h: Rn → Rp are assumed to be differentiable. Input and output are required to satisfy the following
input and output constraints at all times:

umin ≤ u ≤ umax, ymin ≤ y ≤ ymax (3)

in which umin, umax ∈ Rm and ymin, ymax ∈ Rp are the bound vectors.

2.2. Offset-Free Tracking MPC

Offset-free MPC algorithms are generally based on an augmented model [5,6,26,27]. The general
form of this augmented model can be written as:

x+ = F(x, u, d)

d+ = d

y = H(x, d) (4)
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in which d ∈ Rnd is the so-called disturbance. The functions F: Rn × Rm × Rnd → Rn and H:
Rn ×Rnd → Rp are assumed to be continuous and consistent with (2), i.e., F(x, u, 0) = f (x, u) and
H(x, 0) = h(x).

Assumption 1. The augmented system (4) is observable.

At each time k ∈ I, given the output measurement y(k), an observer for (4) is defined to estimate
the augmented state (x(k), d(k)). For simplicity of exposition, only the current measurement of y(k)
is used to update the prediction of (x(k), d(k)) made at the previous decision time, i.e., a “Kalman
filter”-like estimator is used. We define symbols x̂k|k−1, d̂k|k−1 and ŷk|k−1 as the predicted estimate
of x(k), d(k) and y(k), respectively, obtained at the previous time k − 1 using the augmented
model (4), i.e.,

x̂k|k−1 = F(x̂k−1|k−1, uk−1, d̂k−1|k−1)

d̂k|k−1 = d̂k−1|k−1

ŷk|k−1 = H(x̂k|k−1, d̂k|k−1) (5)

Defining the output prediction error as:

ek = y(k)− ŷk|k−1 (6)

the filtering relations can be written as follows:

x̂k|k = x̂k|k−1 + κx(ek)

d̂k|k = d̂k|k−1 + κd(ek) (7)

where x̂k|k and d̂k|k are the filtered estimate of x(k) and d(k) in (4) obtained using measurement y(k).
We assume that Relations (5)–(7) form an asymptotically-stable observer for the augmented system (4).

Given the current estimate of the augmented state (x̂k|k, d̂k|k), an offset-free tracking MPC
algorithm computes the steady-state target that ensures exact setpoint tracking in the controlled
variable. Hence, in general, the following target problem is solved:

min
x,u,y

�s(y − ysp, u − usp) (8a)

subject to

x = F(x, d̂k|k, u) (8b)

y = H(x, d̂k|k) (8c)

umin ≤ u ≤ umax (8d)

ymin ≤ y ≤ ymax (8e)

in which �s: Rp ×Rm → R is the steady-state cost function and ysp ∈ Rp, usp ∈ Rm are the output
and input setpoints, respectively. We assume (8) is feasible, and we denote its (unique) solution as
(xs,k, us,k, ys,k). Typically, �s(·) is positive definite in the first argument (output steady-state error) and
semidefinite in the second argument (input steady-state error), and relative input and output weights
are chosen to ensure that ys,k → ysp whenever constraints allow it.
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Let x = {x0, x1, . . . , xN} and u = {u0, u1, . . . , uN−1} be, respectively, a state sequence and an input
sequence. The finite horizon optimal control problem (FHOCP) solved at each time is the following:

min
x,u

N−1

∑
i=0

�QP(xi − xs,k, ui − us,k) + Vf (xN − xs,k) (9a)

subject to

x0 = x̂k|k, (9b)

xi+1 = F(xi, d̂k|k, ui), i = 0, . . . , N − 1 (9c)

umin ≤ ui ≤ umax, i = 0, . . . , N − 1 (9d)

ymin ≤ H(xi, d̂k|k) ≤ ymax i = 0, . . . , N − 1 (9e)

xN = xs,k (9f)

in which �QP: Rn × Rm → R≥0 is a strictly positive definite convex function. Vf : Rn → R≥0 is
a terminal cost function, which may vary depending on the specific MPC formulation, according to
the usual stabilizing conditions [28]. Assuming Problem (9) to be feasible, its solution is denoted by
(x0

k , u0
k), and the associated receding horizon implementation is given by:

uk = u0
0,k (10)

As the conclusion of this discussion, the following result holds true [5,6,29].

Proposition 1. Consider a system controlled by the MPC algorithm as described above. If the closed-loop
system is stable, then the output prediction error goes to zero, i.e.,

lim
k→∞

y(k)− ŷk|k−1 = 0 (11)

Furthermore, if input constraints are not active at steady state, there is zero offset in the controlled variables,
that is:

lim
k→∞

y(k)− ysp = 0 (12)

2.3. Economic MPC

As can be seen from Figure 1, setpoints (ysp, usp) that enter in (8) come from the upper economic
layer referred to as the RTO. This hierarchical division may limit the achievable flexibility and economic
performance that many processes nowadays request. There are several proposals to improve the
effective use of dynamic and economic information throughout the hierarchy. As explained in Section 1,
the first approach to this merging is the D-RTO. While many D-RTO structures have been proposed
throughout the literature [23,30,31], many of the two-layered D-RTO and MPC systems proposed
are characterized by a lack of rigorous theoretical treatment, including the constraints. However,
as can be seen in the above cited literature, the D-RTO formulations still consider the presence of
both RTO and MPC in separated layers. Instead of moving the dynamic characteristic to the RTO
level, the interest here is to move economic information into the control layer. This approach involves
modifying the traditional tracking objective function in (9) and the target cost function in (8) directly
with the economic stage cost function used in the RTO layer. In this latter case, the formulation takes
the name of economic MPC (EMPC) [32]. It has to be underlined that, in this case, the economic
optimization is provided only by the EMPC layer, while the RTO one is completely eliminated.
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In standard MPC, the objective is designed to ensure asymptotic stability of the desired steady
state. This is accomplished by choosing the stage cost to be zero at the steady-state target pair,
denoted (xs, us), and positive elsewhere, i.e.,

0 = �QP(xs, us) ≤ �QP(x, u) for all admissible (x, u) (13)

In EMPC, instead, the operating cost of the plant is used directly as the stage cost in the FHOCP
objective function. As a consequence, it may happen that �e(xs, us) > �e(x, u) for some feasible pair
(x, u) that is not a steady state. This possibility has significant impact on stability and convergence
properties. In fact, while a common approach in the tracking MPC is to use the optimal cost as
a Lyapunov function for the closed-loop system to prove its stability, in the EMPC formulation, due to
the fact that (13) does not hold, these stability arguments fail. Hence, for certain systems and cost
functions, oscillating solutions may be economically more profitable than steady-state ones, giving rise
to the concept of average asymptotic performance of economic MPC, which is deeply developed
in [32,33]. Despite that, in the literature, there are also formulations of the Lyapunov-based EMPC by
taking advantage of an auxiliary MPC problem solution [34,35].

In this work, we assume that operating at steady-state is more profitable than an oscillating
behavior. Hence, in order to delineate the concept of convergence in EMPC, two other properties may
be useful: dissipativity [32,36] and turnpike [37,38]. These properties play a key role in the analysis
and design of schemes for D-RTO and EMPC. It is shown also that in a continuous-time form, the
dissipativity of a system with respect to a steady state implies the existence of a turnpike at this steady
state and optimal stationary operation at this steady state [39,40]. An extensive review about EMPC
control methods can be found in [41,42].

The starting EMPC algorithm considered in this work is taken from [29] and includes an offset-free
disturbance model as described in Section 2.2. Given the current state and disturbance estimate
(x̂k|k, d̂k|k), the economic steady-state target is given by:

min
x,u,y

�e(y, u) (14a)

subject to

x = F(x, d̂k|k, u) (14b)

y = H(x, d̂k|k) (14c)

umin ≤ u ≤ umax (14d)

ymin ≤ y ≤ ymax (14e)

in which �e: Rp × Rm → R is the economic cost function defined in terms of output and input.
Notice that the arguments of the economic cost function are measurable quantities. Let (xs,k, us,k, ys,k)

be the steady-state target triple solution to (14). Then, the FHOCP solved at each time is given by:

min
x,u

N−1

∑
i=0

�e(H(xi, d̂k|k), ui) (15a)

subject to

x0 = x̂k|k, (15b)

xi+1 = F(xi, d̂k|k, ui), i = 0, . . . , N − 1 (15c)

umin ≤ ui ≤ umax, i = 0, . . . , N − 1 (15d)

ymin ≤ H(xi, d̂k|k) ≤ ymax, i = 0, . . . , N − 1 (15e)
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xN = xs,k (15f)

While several formulations of economic MPC are possible, in this work, we use a terminal equality
constraint to achieve asymptotic stability [36]. We remark that the target equilibrium xs,k is recomputed
at each decision time by the target calculation problem (14).

2.4. A Motivating Example

2.4.1. Process and Optimal Economic Performance

In order to motivate this work, we show the application of EMPC formulations to a chemical
reactor to highlight how available methods are not able to achieve the optimal economic performance
in the presence of modeling errors. The chemical reactor under consideration is a continuous stirred
tank reactor (CSTR), in which two consecutive reactions take place:

A
k1−→ B

k2−→ C (16)

The reactor is described by the following system of ordinary differential equations (ODE):

ċA =
Q
V
(cA0 − cA)− k1cA (17)

ċB =
Q
V
(cB0 − cB) + k1cA − k2cB

in which cA and cB are the molar concentrations of A and B in the reactor, cA0 and cB0 are the
corresponding concentrations in the feed, Q is the feed flow rate, V is the constant reactor volume and
k1 and k2 are the kinetic constants. The feed flow rate entering the reactor is regulated through a valve,
i.e., Q is the manipulated variable. For the sake of simplicity, the reactor is assumed to be isothermal,
so the fixed parameters of the actual system are shown in Table 1.

Table 1. Actual reactor parameters.

Description Symbol Value Unit

Kinetic Constant 1 k1 1.0 min−1

Kinetic Constant 2 k2 0.05 min−1

Reactor volume V 1.0 m3

A feed concentration cA0 1.0 kmol
m3

B feed concentration cB0 0.0 kmol
m3

A price βA 1.0 e
kmol

B price βB 4.0 e
kmol

The process economics can be expressed by the running cost:

�(Q, cB) = βAQcA0 − βBQcB (18)

where βA, βB are the prices for the reactants A and B, respectively, also reported in Table 1.
Using the actual process parameters reported in Table 1, we can compute the process optimal

steady-state, by solving the following optimization problem:

min
Q

βAQcA0 − βBQcB (19a)
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subject to

Q
V
(cA0 − cA)− k1cA = 0 (19b)

Q
V
(cB0 − cB) + k1cA − k2cB = 0 (19c)

0 ≤ cA ≤ cA0 (19d)

0 ≤ cB ≤ cA0 (19e)

The result of this optimization is Qopt = 1.043 m3/min, cA,opt = 0.511 kmol/m3 and
cB,opt = 0.467 kmol/m3, which represents the most economic steady state that the actual process
can achieve.

2.4.2. Model and Controllers

The definition of the states, input and outputs is the following:

x =

[
cA
cB

]
, u =

[
Q
]

, y =

[
cA
cB

]
. (20)

For controller design, the second kinetic constant is supposed to be uncertain, i.e., the value
known by the controller is k̄2, instead of k2. With these definitions, the model equations become:[

ẋ1

ẋ2

]
=

[
u
V (cA0 − x1)− k1x1

u
V (cB0 − x2) + k1x1 − k̄2x2

]
(21)

We compare the closed-loop behavior of three EMPC algorithms, all designed according to
Section 2.3 using the same nominal model (21), cost function and a sampling time of τ = 2.0 min.
Specifically, the target optimization problem is given in (14), and the FHOCP is given in (15), where
the economic cost function is:

�e(y(ti), u(ti)) =
∫ ti+τ

ti

�(u(t), y2(t))dt =
∫ ti+τ

ti

[βAu(t)cA0 − βBu(t)y2(t)] dt (22)

We note that the use of the cost function integrated over the sampling time is necessary to achieve
an asymptotically stable closed-loop equilibrium. As a matter of fact, if the point-wise evaluation of
�(·) were used as stage cost �e(·), the system would not be dissipative [36], i.e., the closed-loop system
would not be stable. The three controllers differ in the augmented model:

• EMPC0 is the standard economic MPC and uses no disturbance model, i.e., F(x, u, d) = f (x, u)
and H(x, d) = h(x) = x.

• EMPC1 uses a state disturbance model, i.e., F(x, u, d) = f (x, u) + d and H(x, d) = h(x) = x.
• EMPC2 uses a nonlinear disturbance model [29], in which the disturbances act as a correction to

the kinetic constants, i.e., F(x, u, d) is obtained by integration of the following ODE system:

ċA =
q
V
(cA0 − cA)− (k1 + d1)cA (23)

ċB =
q
V
(cB0 − cB) + (k1 + d1)cA − (k̄2 + d2)cB

and H(x, d) = h(x) = x.
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Since the state is measured, for EMPC0, we use x̂k|k = x(k). For EMPC1 and EMPC2, we use
an extended Kalman filter (EKF) to estimate the current state x̂k|k and disturbance d̂k|k, given the
current measurement of x(k), with the following output noise and state noise covariance matrices:

Rk f = 10−8 I and Qk f =

[
10−8 I 0

0 I

]
(24)

We note that Rk f is chosen small because for simplicity of exposition, we are not including
output noise. Furthermore, the ratio between the state covariance (upper diagonal block of Qk f ) and
the disturbance covariance (lower diagonal block of Qk f ) is chosen small to ensure fast offset-free
performance [6].

2.4.3. Implementation Details

In order to proceed for further calculations, a few comments on the implementation details
are needed. The model in (21) has been discretized through an explicit fourth-order Runge–Kutta
method with M = 10 equal intervals for each time step. The FHOCP in (15) is solved with a multiple
shooting approach because it is very advantageous for long prediction horizons and enforces numerical
stability. Simulations are performed using a code developed in Python, and the resulting nonlinear
programming problems are solved with IPOPT (https://projects.coin-or.org/Ipopt) .

2.4.4. Results

Figure 2 shows the closed-loop flow rate obtained with standard EMPC0 in two cases of
uncertainty on k2. In the first case (left), k̄2 = 0.025, i.e., the controller model uses a value of k2,
which is half of the true value. In the second case (right), k̄2 = 0, i.e., the controller model ignores the
second reaction. As can be seen from these plots, in both cases, the controller is unable to drive the
flow rate to the most economic target.

Figure 2. Closed-loop flow rate Q obtained with standard EMPC0 for two cases of uncertainty in k2:
k̄2 = 0.025 (left) and k̄2 = 0 (right).

Figure 3 shows the corresponding results obtained with EMPC1. Despite the fact that EMPC1
uses a disturbance model, which guarantees offset-free tracking, the controller is still unable to drive
the flow rate to the optimal target.

Finally, Figure 4 shows the corresponding results obtained with EMPC2. In this case, the controller
is able to drive the closed-loop system to the optimal steady state. The reason is that the augmented
model (23) asymptotically converges to the true process because the estimated disturbance d2 ensures
that k̄2 + d2 → k2. However, this approach requires to know exactly where the uncertainties are,
in order to build an ad hoc disturbance model to correct them. Hence, it cannot be used as a general
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rule. With this evidence, it is clear that, at the moment, there is no general formulation for an offset-free
economic MPC, and this is what motivates the present work. In the end, it has to be noted that the
case k̄2 = 0 falls into an unmodeled dynamics problem, i.e., the second reaction is completely ignored
by the model.

Figure 3. Closed-loop flow rate Q obtained with EMPC1 (state disturbance model) for two cases of
uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).

Figure 4. Closed-loop flow rate Q obtained with EMPC2 (non-linear state disturbance model) for two
cases of uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).

3. Proposed Method

As introduced in the previous section, we now illustrate the method developed using the
modifier-adaptation technique borrowed from the RTO literature. Before coming to the proposed
method, we give a brief introduction to this technique, referring the interested reader to [14,16] for
more details.

3.1. RTO with Modifier-Adaptation

The objective of RTO is the minimization of some steady-state operating cost function,
while satisfying a number of constraints. Finding the optimal steady-state operation point for the
actual process can be stated as the solution of the following problem:

min
u

Φp(u) (25a)
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subject to

Cp(u) ≤ 0 (25b)

In the above, Φp: Rm → R is the economic performance cost function of the process and Cp:
Rm → Rnc is the process constraint function. As explained before for the MPC case, the exact
process description is unknown, and only a model can be used in the process optimization. Hence,
the model-based economic optimization is represented by the problem:

min
u

Φ(u, θ) (26a)

subject to

C(u, θ) ≤ 0 (26b)

where Φ: Rm → R and C: Rm → Rnc represent the model economic cost function and the model
constraint function, which may depend on uncertain parameters θ ∈ Rnθ . Due to plant-model
mismatch, open-loop implementation of the solution to (26) may lead to suboptimal and even
infeasible operation.

The modifier-adaptation methodology changes Problem (26) so that in a closed-loop execution,
the necessary conditions of optimality (NCO) of the modified problem correspond to the necessary
conditions of Process (25), upon convergence of the algorithm. The following problem shows the
model-based optimization with additional modifiers [16,43]:

ūh = arg min
u

ΦM = Φ(u, θ) + (λΦ
h−1)

Tu (27a)

subject to:

CM = C(u, θ) + (λC
h−1)

T(u − ūh−1) + εC
h−1 ≤ 0 (27b)

in which:

λΦ
h−1 = ∇uΦp(ūh−1)−∇uΦ(ūh−1, θ) (28a)

λC
h−1 = ∇uCp(ūh−1)−∇uC(ūh−1, θ) (28b)

εC
h−1 = Cp(ūh−1)− C(ūh−1, θ) (28c)

In (27) and (28), ūh−1 ∈ Rm represents the operation point, calculated at the previous RTO
iteration h − 1, and the modifiers λΦ

h−1 ∈ Rm, λC
h−1 ∈ Rm×nc , and εC

h−1 ∈ Rnc are evaluated using the
information available at that point. Notice that the model parameters θ are not updated.

Marchetti et al. [16,43] demonstrated that, upon convergence, the Karush–Kuhn–Tucker (KKT)
conditions of the modified problem (27) match the ones of the true process optimization problem (25).
Hence, if second-order conditions hold at this point, a local optimum of the real plant can be found
by the problem modified as in (27). Furthermore, a filtering procedure of the modifiers is also
recommended in order to improve stability and convergence and to reduce sensitivity to measurement
noise. The filtering step is given by the following equations:

λΦ
h = (I − KλΦ)λΦ

h−1 + KλΦ(∇uΦp(ūh)−∇uΦ(ūh, θ)) (29a)

λC
h = (I − KλC )λC

h−1 + KλC (∇uCp(ūh)−∇uC(ūh, θ)) (29b)

εC
h = (I − KεC )εC

h−1 + KεC (Cp(ūh)− C(ūh, θ)) (29c)
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where KλΦ , KλC and KεC (usually diagonal matrices) represent the respective first-order filter constants
for each modifier. An alternative approach to the modifier filtering step (29) is to directly define the
modifiers as the gradient or function differences and then filter the computed inputs to be applied
to the process [44,45]. From (28) and (29), it is clear how the process gradient estimation stage is the
major requirement of this method: actually, the process gradient estimation, is hidden into both ∇uΦp

and ∇uCp for calculating λΦ
h and λC

h . This is also the major and tightest constraint for this method [46].
Before presenting the proposed technique, the example in Section 2.4 is tested on the standard

hierarchical architecture RTO plus MPC. The RTO problem is modified as in Marchetti et al. [16]
as follows:

ūh = arg min
u

Φ̃M = Φ(u, y(u, θ) + ε
y
h−1 + (λ

y
h−1)

T
(u − uh−1)) (30a)

subject to

C̃M = C(u, y(u, θ) + ε
y
h−1 + (λ

y
h−1)

T
(u − uh−1)) ≤ 0 (30b)

where ε
y
h and λ

y
h are updated by the following law:

λ
y
h = (I − Kλy)λ

y
h−1 + Kλy(∇uyp(ūh)−∇uy(ūh, θ)) (31a)

ε
y
h = (I − Kεy)ε

y
h−1 + Kεy(yp(ūh)− y(ūh, θ)) (31b)

Figure 5 shows the closed-loop flow rate obtained with modified RTO problem followed by
tracking MPC with output disturbance model in two cases of uncertainty on k2. The weight values used
are Kλy = 0.2 and Kεy = 0.7, and the RTO problem is run every 20 min. As can be seen from Figure 5,
in both cases, the system achieves the optimal input value as expected by the modifier-adaptation
methodology. However, the hierarchical and multi-rate nature of the standard architecture results in
slow convergence towards the economically-optimal target.

Figure 5. Closed-loop flow rate Q obtained with modified RTO followed by tracking MPC with the
output disturbance model for two cases of uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).

3.2. Proposed Technique

Having shown that, in order to apply this technique to the EMPC, some work is needed. First of
all, in order to be consistent with the offset-free augmented model and to exploit its properties,
an alternative form of the modifier-adaptation technique is adopted. In this way, as illustrated in the
work of Marchetti et al. [16], a linear modification of the model output steady-state function, rather than
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of the cost and constraint functions, independently, in the optimization problem has been preferred.
To this aim, we rewrite the model constraints of the target problem (14) in a more compact form:{

xs = F(xs, d̂k|k, us)

ys = H(xs, d̂k|k)
⇒ ys = G(us, d̂k|k) (32)

in which G: Rm+nd → Rp. Then, the model output steady-state function is “artificially” modified
as follows:

Gλ(us, d̂k|k) = G(us, d̂k|k) + (λG
k−1)

T(us − us,k−1) (33)

where λG
k−1 ∈ Rm×p is a matrix to be defined later on and us,k−1 is the steady-state input target found

at the previous sampling time, k − 1. We observe that in [16], the modified output function also
includes a zero order term, which ensures that Gλ(·) → Gp(·). However, such a term is unnecessary in
the present framework because the model output convergence is already achieved by the offset-free
augmented model formulation. Hence, only a gradient correction of G is necessary. In order to drive
the target point towards the plant optimal value, we need to calculate λG

k−1 as a result of a KKT
matching of the target optimization problem. In this way, similarly to what has been demonstrated in
the RTO literature, the necessary condition of optimality can be satisfied.

The KKT matching is developed imposing the correspondence of the Lagrangian function gradient
between the plant and model target optimization problems. The procedure is as follows.

Plant: Similarly to Model (32), a steady-state input-output map yp,s = Gp(us) can be defined also
for the actual plant (1). In this way, the plant optimization steady-state problem reads:

min
u

�e(Gp(u), u) (34a)

subject to:

umin ≤ u ≤ umax (34b)

ymin ≤ Gp(u) ≤ ymax (34c)

The Lagrangian function associated with Problem (34) is given by:

Lp(u, π1, π2, π3, π4) = �e(Gp(u), u) + πT
1 (u − umax) + πT

2 (umin − u)+ (35)

πT
3 (Gp(u)− ymax) + πT

4 (ymin − Gp(u)), (36)

then, the first-order necessary optimality KKT conditions for this problem are as follows. If u∗ is
a (local) solution to (34), there exist vectors π∗

1 , π∗
2 , π∗

3 , π∗
4 satisfying the following conditions:

∇u�e(u∗, Gp(u∗)) + π∗
1 − π∗

2 +∇uGp(u∗)π∗
3 −∇uGp(u∗)π∗

4 = 0 (37a)

u∗ − umax ≤ 0 (37b)

umin − u∗ ≤ 0 (37c)

Gp(u∗)− ymax ≤ 0 (37d)

ymin − Gp(u∗) ≤ 0 (37e)

π∗
1 , π∗

2 , π∗
3 , π∗

4 ≥ 0 (37f)

(u∗ − umax)jπ
∗
1,j = 0 j = 1, . . . , m (37g)

(umin − u∗)jπ
∗
2,j = 0 j = 1, . . . , m (37h)

(Gp(u∗)− ymax)jπ
∗
3,j = 0 j = 1, . . . , p (37i)

(ymin − Gp(u∗))jπ
∗
4,j = 0 j = 1, . . . , p. (37j)
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in which π1, π2 ∈ Rm are the multiplier vectors of the input bound constraints (34b), and π3, π4 ∈ Rp

are the multiplier vectors for output bound constraints (34c).
Model: With the modification introduced in (33), the model optimization steady-state problem

can be rewritten as:

min
u

�e(Gλ(u, d̂k|k), u) (38a)

subject to:

umin ≤ u ≤ umax (38b)

ymin ≤ Gλ(u, d̂k|k) ≤ ymax (38c)

The Lagrangian function associated with (38) is given by:

Lm(u, π1, π2, π3, π4) = �e(Gλ(u, d̂k|k), u) + πT
1 (u − umax) + πT

2 (umin − u)+ (39)

πT
3 (Gλ(u, d̂k|k)− ymax) + πT

4 (ymin − Gλ(u, d̂k|k)), (40)

then, the first-order necessary optimality KKT conditions for this problem are as follows. If u∗ is
a (local) solution to (38), there exist vectors π∗

1 , π∗
2 , π∗

3 , π∗
4 satisfying the following:

∇u�e(Gλ(u∗, d̂k|k), u∗) + π∗
1 − π∗

2 +∇uGλ(u∗, d̂k|k)π∗
3 −∇uGλ(u∗, d̂k|k)π∗

4 = 0 (41a)

u∗ − umax ≤ 0 (41b)

umin − u∗ ≤ 0 (41c)

Gλ(u∗, d̂k|k)− ymax ≤ 0 (41d)

ymin − Gλ(u∗, d̂k|k) ≤ 0 (41e)

π∗
1 , π∗

2 , π∗
3 , π∗

4 ≥ 0 (41f)

(u∗ − umax)jπ
∗
1,j = 0 j = 1, . . . , m (41g)

(umin − u∗)jπ
∗
2,j = 0 j = 1, . . . , m (41h)

(Gλ(u∗, d̂k|k)− ymax)jπ
∗
3,j = 0 j = 1, . . . , p (41i)

(ymin − Gλ(u∗, d̂k|k))jπ
∗
4,j = 0 j = 1, . . . , p. (41j)

KKT matching: To reach the KKT matching, conditions in (41) must converge to those in (37).
We recall that, due to the offset-free augmented model, upon convergence, we have: G(u∗, d̂k|k) →
Gp(u∗). Furthermore, upon convergence from (33), we also have: Gλ(u∗, d̂k|k) → G(u∗, d̂k|k) and
therefore Gλ(u∗, d̂k|) → Gp(u∗). Therefore, in order for (41) to match (37), Conditions (37a) and (41a)
have to be the same:

∇uLp(u∗, π∗) = ∇uLm(u∗, π∗) (42)

where
π∗ = [π∗

1 , π∗
2 , π∗

3 , π∗
4 ].

We expand the LHS and RHS in (42) to obtain:

∇u�e(Gp(u∗), u∗) =
[

∂�e(·, u∗)
∂u

+
∂�e(Gp(·), ·)

∂Gp

∂Gp(u∗)
∂u

]T

plant (43)

∇u�e(Gλ(u∗, d̂k|k), u∗) =
[

∂�e(·, u∗)
∂u

+
∂�e(Gλ(·), ·)

∂Gλ

[
∂G(u∗, d̂k|k)

∂u
+ (λG

k−1)
T

]]T

model (44)
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Then, the KKT matching condition is:

∂Gp(u∗)
∂u

=
∂G(u∗, d̂k|k)

∂u
+ (λG

k−1)
T ⇒ (λG

k−1)
T =

∂Gp(u∗)
∂u

− ∂G(u∗, d̂k|k)
∂u

(45)

From (45), we also consider a filtering step and define the following update law for λG
k :

λG
k = (1 − αs)λ

G
k−1 + αs

(
∇uGp(us,k)−∇uG(us,k, d̂k|k)

)
(46)

where αs is a scalar first-order filter constant, chosen in the range (0, 1]. In order for the update law (46)
to be applicable, we make the following assumption.

Assumption 2. The gradient of the process steady-state input-output map Gp(·) is known at steady-state points.

In general, the gradient of the process steady-state input-output map Gp(·) can be (approximately)
calculated through measurements of u and y [43,47–49]. We remark that the gradient of the model
steady-state input-output map G(·) instead can be computed from its definition (32) using the implicit
function theorem. As a matter of fact, the gradient of G(·) can be calculated as follows:

∇uG(·) = ∇x H(x, d)
[
(I −∇xF(x, u, d))−1 ∇uF(x, u, d)

]
(47)

Finally, from the above discussion, the following result is established.

Theorem 1. KKT matching of the target optimization problem: Let the MPC target optimization problem be
defined in (38), with λG

k updated according to (46), and let us,k be its solution at time k. Let the closed-loop system
converge to an equilibrium, with u0

s : limk→∞ us,k being the limit KKT point of the steady-state problem (38).
Then, u0

s is also a KKT point for the plant optimization problem (34).

3.3. Summary

Summarizing, the offset-free economic MPC algorithm proposed in this work is the following.
The estimation stage is taken from the offset-free tracking MPC as described in Section 2.2. Given the
current state and disturbance estimate (x̂k|k, d̂k|k), the economic steady-state target problem is modified
in this way:

min
x,u,y

�e(y, u) (48a)

subject to

x = F(x, d̂k|k, u) (48b)

y = H(x, d̂k|k) + (λG
k−1)

T(u − us,k−1) (48c)

umin ≤ u ≤ umax (48d)

ymin ≤ y ≤ ymax (48e)

in which us,k−1 is the steady-state input target found at the previous sampling time k − 1, and λG
k−1

is defined above in (46). Finally, the FHOCP solved at each time is the one defined in (15), unless
differently specified in the next section.

4. Results and Discussion

Simulation results of the proposed method applied to the reactor example illustrated in Section 2.4
are here reported. We use all simulation parameters defined in Section 2.4, and in addition, we set
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αs = 0.2 for the modifiers update law (46). The first controller that is evaluated, named EMPC1-MT,
uses the same augmented system with state disturbance model as EMPC1 and the same FHOCP
formulation (15). The target problem instead is the modified one reported in (48). The obtained
results are shown in Figure 6. As can be seen from Figure 6, the input target has asymptotically
reached the optimal value (or it is very close to it in the case k̄2 = 0). The actual input value, instead,
reaches an asymptotic value different from the optimal target. As a matter of fact, when the economic
stage cost is used in the FHOCP (15), the offset still remains, and the EMPC formulation does not
seem to have gained particular advantage from the target modification. This is also why for k̄2 = 0,
the target does not reach perfectly the optimal value: as a recursive algorithm, it is obvious how the
dynamic behavior also influences the steady-state target.

Figure 6. Closed-loop flow rate Q obtained with EMPC1-MT (state disturbance model, modified target
problem) for two cases of uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).

We now consider another controller, named MPC1-MT, which is identical to EMPC1-MT, but uses
a tracking stage cost in the FHOCP, i.e.,

�QP(x̂i, ui) = (x̂i − xs,k)
TQ(x̂i − xs,k) + (ui − us,k)

T R(ui − us,k) (49)

where Q ∈ Rn×n and R ∈ Rm×m are positive definite weight matrices. Results are shown in Figure 7,
from which we observe that the offset is completely eliminated since both the input target and the
actual input value go to the optimal one.The success of the tracking function can be explained by its
design: the goal is to follow the steady-state target, and with the target suitably corrected, the actual
value cannot go elsewhere in an offset-free formulation since the FHOCP cost function is positive
definite around (xs,k, us,k).

Figure 7. Closed-loop flow rate Q obtained with MPC1-MT (state disturbance model, modified
target problem, tracking cost in the finite horizon optimal control problem (FHOCP)) for two cases of
uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).
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Despite the fact the MPC1-MT asymptotically reaches the optimal steady state, our primary goal
is to build an offset-free economic MPC. Since now, the target problem has been adjusted by the
modifier, results seem to suggest that a similar correction should be done for the FHOCP. Specifically,
we consider the following modified FHOCP:

min
x,u

N−1

∑
i=0

�e(H(xi, d̂k|k), ui) (50a)

subject to:

x0 = x̂k|k, (50b)

xi+1 = F(xi, ui, d̂k|k) + Θx,i(xi, ui), i = 0, . . . , N − 1 (50c)

umin ≤ ui ≤ umax, i = 0, . . . , N − 1 (50d)

ymin ≤ H(xi, d̂k|k) ≤ ymax, i = 0, . . . , N − 1 (50e)

xN = xs,k (50f)

where Θx,i(xi, ui) ∈ Rn is the correction term similar to λG
k−1 for the target module. A KKT matching

performed on the FHOCP reveals that the required modification Θx,i can be approximated as:

Θx,i = (λx
k−1)

T(xi − xs,k) + (λu
k−1)

T(ui − us,k) (51)

where:

λx
k = (1 − αx)λ

x
k−1 + αx

(
∇xFp(xp,s,k, us,k)−∇xF(xs,k, us,k, d̂k|k)

)
(52a)

λu
k = (1 − αu)λ

u
k−1 + αu

(
∇uFp(xp,s,k, us,k)−∇uF(xs,k, us,k, d̂k|k)

)
(52b)

and xp,s,k is the process state in equilibrium with us,k according to (1). Having chosen constant values
for αx = αu = 0.1, simulation results obtained with this controller, named EMPC1-MT-MD, are shown
in Figure 8. From Figure 8, it can be seen that the offset has disappeared for both cases of uncertainty
on the kinetic constant k2.

Figure 8. Closed-loop flow rate Q obtained with EMPC1-MT-MD (state disturbance model, modified
target problem, modified FHOCP) for two cases of uncertainty in k2: k̄2 = 0.025 (left) and k̄2 = 0 (right).

Furthermore, a time-varying simulation case is addressed, in which the true kinetic constant k2 of
the process is supposed to be varying during time following this step law:
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k2 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0.05 if 0 ≤ t < 40

0.03 if 40 ≤ t < 100

0.05 if 100 ≤ t < 160

0.07 if 160 ≤ t < 200

(53)

The controller used for this example is the one named EMPC1-MT-MD, and the reaction scheme
it knows is still the one defined in (21) with the k̄2 value fixed. Simulation results obtained with
this step time-varying disturbance in (53) are shown in Figure 9 where it can be seen that the offset has
disappeared for both cases of uncertainty on the kinetic constant k2.

Figure 9. Closed-loop flow rate Q obtained with EMPC1-MT-MD (state disturbance model, modified
target problem, modified FHOCP) for cases of unknown time-varying k2: the MPC model uses a fixed
value of k̄2 = 0.025 (left) and k̄2 = 0.025 (right).

In the end, it has to be noted that the majority of methods used for gradient estimation approximate
the process gradient using a collection of previous output data to do a sort of identification [43,47–49].
Similarly, under the assumption that states are measured, i.e., Hp(x) = x, gradients ∇xFp(·) and
∇uFp(·) can be calculated if Assumption 2 holds true.

Further Comments

Currently, configurations that achieve optimal asymptotic operations are:

• EMPC2 (non-linear disturbance model). However, this is sort of an unfair choice. The disturbance
has been positioned exactly where the uncertainties are, and this is cannot be considered as
a general technique.

• MPC1-MT (economic modified target with tracking stage cost). This is the best general
achievement at the moment and allows one to obtain offset-free economic performance for
arbitrary plant-model mismatch.

As a matter of fact, it has to be underlined that, at the moment, the approximated modification
term proposed in (51) works well in this example when there is no uncertainty on the first kinetic
constant k1. In other cases of uncertainty, the offset remains. Hence, further work has to be done to
build a general correction strategy for the FHOCP with economic cost. Furthermore, assumptions
made in this work deserve some comments. The strongest one is Assumption 2, which requires the
availability of process steady-state gradients. For this purpose, we remark that gradient estimation
is an active research area in the RTO literature (see, e.g., [19,43,50,51] and the references therein).
Further work will investigate these approaches. In the end, it has to be noted that the proposed
methodology does not add any computational burden compared to a conventional economic MPC
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algorithm. The modifiers can be updated after each optimization is concluded and inputs are sent to
the plant, and the number of optimization variables is not augmented. Therefore, computation times
are not affected.

5. Conclusions

In this paper, we addressed the problem of achieving the optimal asymptotic economic
performance using the economic model predictive control (EMPC) algorithms despite the presence of
plant-model mismatch.

After reviewing the standard techniques in offset-free tracking MPC and economic MPC,
we presented an example where available MPC formulations fail in achieving the optimal
asymptotic closed-loop performance. In order to eliminate this offset, the modifier-adaptation strategy
developed in the real-time optimization (RTO) field has been taken into consideration and reviewed.
Following this idea, a suitable correction to the target problem of the economic MPC algorithm has
been formulated in order to achieve the necessary conditions of optimality despite the presence of
plant/model mismatch. The proposed modification requires the availability of process gradients
evaluated at the steady state. We then showed that the proposed modification is able to correct the
steady-state target, but the actual closed-loop input may or may not converge to the optimal target
depending on the finite horizon optimal control problem (FHOCP) stage cost. If such a cost is chosen to
be positive definite around the target, as in tracking MPC, the optimal asymptotic behavior is achieved,
although the dynamic performance may be suboptimal. For some cases of uncertainty, we showed
that an economic stage cost can still be used by introducing a modification to the FHOCP.

Finally, we should remark about the main limitations of the current method and suggest future
developments. First of all, the availability of process gradients should be reconsidered and relaxed as
much as possible. Then, a general correction strategy for using an economic stage cost in the FHOCP,
while enforcing convergence to the targets, has to be obtained.
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Abstract: Optimization techniques are typically used to improve economic performance of
batch processes, while meeting product and environmental specifications and safety constraints.
Offline methods suffer from the parameters of the model being inaccurate, while re-identification of
the parameters may not be possible due to the absence of persistency of excitation. Thus, a practical
solution is the Nonlinear Model Predictive Control (NMPC) without parameter adaptation, where the
measured states serve as new initial conditions for the re-optimization problem with a diminishing
horizon. In such schemes, it is clear that the optimum cannot be reached due to plant-model mismatch.
However, this paper goes one step further in showing that such re-optimization could in certain cases,
especially with an economic cost, lead to results worse than the offline optimal input. On the other
hand, in absence of process noise, for small parametric variations, if the cost function corresponds to
tracking a feasible trajectory, re-optimization always improves performance. This shows inherent
robustness associated with the tracking cost. A batch reactor example presents and analyzes the
different cases. Re-optimizing led to worse results in some cases with an economical cost function,
while no such problem occurred while working with a tracking cost.

Keywords: process optimization; batch processes; process control; constrained optimization; sensitivity;
real-time optimization

1. Introduction

Batch processes are widely used in specialty industries, such as pharmaceuticals, due to their
flexibility in operation. As opposed to continuous processes, their operating conditions vary with time,
in order to meet the specifications and respect safety and environmental constraints. Additionally,
in order to improve process operation efficiency, reduce cost, numerical optimization based on
phenomenological models is used to obtain the time-varying schedule [1].

However, using an optimum, computed off-line, suffers from the problem of the model not
exactly representing the reality. Very often, it is hard to get a precise model due to the lack of quality
or quantity in the experimental data. In addition, in many cases, parameters are estimated from lab
experiments, and thus are not very accurate when scaled-up to industrial processes.

To address this problem, use of measurements in the framework of optimization is recommended [2,3].
The idea is to repeatedly re-optimize, changing the optimization problem appropriately using the
information obtained from measurements. The initial conditions of the optimization problem are adapted
based on the current measurements. In addition, it is also possible to identify the parameters of the
system from the measurements and update them. Thus, two main categories need to be distinguished,
though there is a bit of inconsistency in the nomenclature reported in the literature. If only the initial
conditions are updated, the schemes are referred to as Model Predictive Control (MPC) [4–11], while
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Dynamic Real Time Optimization (D-RTO) schemes incorporate adaptation of both initial conditions
and parameters [12].

MPC schemes incorporate feedback by re-optimization, when computation is not prohibitive [4–7].
In this case, the model is not adapted, while a new optimum is computed from the initial conditions
obtained from current measurements. Most real systems are better represented by a nonlinear model [8,9]
and using Nonlinear Model Predictive Control (NMPC) is more appropriate [10,11].

In D-RTO, the parameters of the model are also adapted. The major problem with the adaptation
of model parameters is the persistency of excitation. The optimal input is typically not persistently
exciting, and adding an excitation for the purpose of identification would cause sub-optimality [13].
Thus, in short, D-RTO is very difficult to implement except in special cases [14,15].

NMPC schemes do not get to the optimum due to plant-model mismatch, while D-RTO is not
practical to implement. An intermediary solution is the robust NMPC reported in the literature [16,17].
The most known is the min-max method, that considers the worst-case scenario for optimization [18].
This method, however, is very conservative and clearly not optimal. Other methods such as the multi-stage
NMPC [18] seek a compromise between conservatism and optimality. Stochastic NMPC [19] considers
a probabilistic setting for the parameter uncertainties, and seeks an optimum in a stochastic sense.

The current study takes a different approach and explores the pertinence of re-optimizing
with adapted initial conditions without adapting the model (NMPC) in the case of batch processes
optimization with parametric errors. The main question asked is: “Given that the true optimum will
not be reached due to plant-model parameter mismatch, is re-optimizing worthwhile? Will there be an
improvement compared to simple implementation of the off-line optimal solution?” It is shown that
NMPC re-optimization may deteriorate the performance, especially with an economic cost function.
On the other hand, no such effect is present when the cost function is a squared error of the deviation
from a desired trajectory feasible for the plant and the active constraints are invariant. In the absence
of process noise, the tracking objective shows robustness and repeated optimization can be used even
when the model is subject to small parametric errors. This paper, thus, highlights the difference in
robustness between the economic and tracking objectives.

This paper first presents the basics of NMPC. Then, an analysis points out why re-optimizing
without parameter adaption can give worse results. A demonstration showing that such situation does
not arise for a quadratic tracking cost follows. Finally, an example is used to illustrate the different
possible situations.

2. Problem Formulation—Model Predictive Control without Parameter Adaptation

Model Predictive control consists of repeatedly optimizing a given cost function based on a model
of the system, using the state information obtained from the measurements. Two types of formulations
are found in the literature—the receding horizon [20], typically used for continuous processes, and the
diminishing horizon [21], used for batch processes. In this paper, the diminishing horizon for a batch
process with fixed final time t f will be studied. Thus, at a given time tk, the state obtained from the
measurements is xk, and the optimization problem is given as follows:

min
u[tk ,t f ]

Jk = φ
(

x
(

t f

))
+
∫ t f

tk
L (x (t) , u (t)) dt

s.t.
.
x = F (x (t) , u (t) , θ) +

.
v, x (tk) = xk

S (x, u) ≤ 0

T
(

x
(

t f

))
≤ 0 ,

(1)

where J is the function to minimize, u the input variable, x the states, F the equations describing the
system dynamics, v the process noise, φ a function representing the terminal cost evaluated, L the
integral cost function, θ the parameters and S and T respectively the path and terminal constraints.
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The initial conditions are obtained from the measured values, xk.
.
x and

.
v represent, respectively,

the differentiated states and noise.
The above formulation gets to the optimum, to the extent allowed by the sampling, when there

is process noise but no parametric errors. The process noise would move the states away from the
predicted value, but the repetition of the optimization assures that an optimum is found even from the
deviated value.

Contrarily, this paper would consider the case where the functional form is assumed to be correct,
but the parameters θ are unknown, so the error in the parameters θ = θ− θreal is non-zero. This would
also cause a variation in the states, but it might not be sufficient to simply optimize from the new states
and the wrong parameters. Additionally, the excitation present in the system might not be sufficient to
identify them online. In this work, the influence of such a parametric error on the operation of the
NMPC would be studied.

3. Variational Analysis of Model Predictive Control without Parameter Adaptation

Let us consider an appropriate input and state parameterization (e.g., piecewise constant),
where the parameterized input vector U and the parameterized states X will be used. Additionally,
assume that the active constraints are invariant with respect to parametric variations and so become
additional algebraic equations. These algebraic equations reduce the dimension of the search space.
Let Uk represent the reduced vector of inputs from time tk until t f , and the states during this time
interval is represented by Xk. The dynamic relationships can be written in a nonlinear static form and
the dynamic optimization problem becomes the following static nonlinear programming problem:

min
Uk

Jk = J (Xk, Uk, θ)

Xk = Ψk (Uk, θ) + dk ,
(2)

where dk is the difference between the predicted and observed measurements, caused by process noise
and parametric variations.

In what follows, variational analysis will be carried out assuming that the parametric variations
are “small”. Thus, higher order terms will be neglected. Thus, the results obtained are valid for
“small” parametric variations. In presence of parametric uncertainties and disturbances to the system,
the variation equation ΔJ can then be written as a second order development:

ΔJ = ∂J
∂U ΔU + ∂J

∂d Δd + ∂J
∂θΔθ+ ΔUT ∂2 J

∂θ∂U Δθ+ ΔdT ∂2 J
∂θ∂d Δθ+ ΔUT ∂2 J

∂d∂U Δd

+ 1
2 ΔUT ∂2 J

∂U2 ΔU + 1
2 ΔdT ∂2 J

∂d2 Δd + 1
2 ΔθT ∂2 J

∂θ2 Δθ .
(3)

In this equation, certain terms are constant since Δd and Δθ cannot be affected by manipulation
on the process. Furthermore, the first term is zero by definition. Removing these terms and renaming
the modifiable terms as Δ̃J, the equation becomes the following:

min
ΔU

Δ̃J = ΔUT ∂2 J
∂θ∂U

Δθ+ ΔUT ∂2 J
∂d∂U

Δd +
1
2

ΔUT ∂2 J
∂U2 ΔU. (4)

The necessary condition for the variational optimization can be obtained by differentiating it with
respect to the input and equating to zero. The following equation is obtained:

∂Δ̃J
∂U

=
∂2 J

∂θ∂U
Δθ+

∂2 J
∂d∂U

Δd +
∂2 J
∂U2 ΔU = 0. (5)

The optimal input can be calculated as:
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ΔUopt = −
(

∂2 J
∂U2

)−1 (
∂2 J

∂θ∂U
Δθ+

∂2 J
∂d∂U

Δd
)

. (6)

Define:

td =

(
∂2 J
∂U2

)− 1
2
(

∂2 J
∂d∂U

)
Δd, (7)

tθ =

(
∂2 J
∂U2

)− 1
2
(

∂2 J
∂θ∂U

)
Δθ, (8)

which are mathematical constructs that represent the parts of (6) that correspond to Δd and Δθ

respectively. Under the standard assumption that the Hessian is positive definite, the square root exists.
The units of tθ and td are the same as J−0.5 and so it is difficult to find a physical interpretation.

This paper considers the case where the parameters are not adapted principally due the absence
of persistency of excitation. It is well known that the optimum cannot be reached in such a case.
The following proposition goes one step further to show that it might even be harmful to re-optimize
under certain circumstances.

Proposition 1. Consider the repeated dynamic optimization problem (1) solved using the corresponding static
nonlinear programming problem (2). Let the variations in the measured states be caused by both parametric
variations and process noise. Furthermore, assume that the active constraints are invariant with respect to
parametric variations. If the correction is only based on state measurements and the parameters are not adapted,
then re-optimization will be worse than the offline solution when the terms tθ and td point in opposing directions,
satisfying tT

d tθ ≤ − 1
2 tT

d td.

Proof. If only Δd is measured and corrected, then:

ΔUopt = −
(

∂2 J
∂U2

)− 1
2

td (9)

and:
Δ̃Jopt = −1

2
tT
d td − tT

d tθ. (10)

Obviously, − 1
2 tT

d td ≤ 0 while −tT
d tθ is sign indefinite. If td and tθ point in the same direction,

i.e., ∠ (td, tθ) ∈
[−π

2 , π
2
]
rad, then Δ̃Jopt ≤ 0. However, if they point on different directions, Δ̃Jopt could

still be negative as long as the first term (− 1
2 tT

d td) dominates. Yet, if tT
d tθ ≤ − 1

2 tT
d td, Δ̃Jopt is positive,

making the offline solution better than the re-optimization.
In the absence of process noise, Δd = ∂Ψ

∂θ Δθ, and, thus, the terms tθ and td can be written as:

td =

(
∂2 J
∂U2

)− 1
2
(

∂2 J
∂d∂U

)
∂Ψ
∂θ

Δθ, (11)

tθ =

(
∂2 J
∂U2

)− 1
2
(

∂2 J
∂θ∂U

)
Δθ. (12)

Since for a general cost function (such as an economic objective) there is no relationship between
these two terms, the result from Proposition 1 holds. However, it will be shown in the following
proposition that, for a tracking cost with a trajectory feasible for the plant, re-optimization is beneficial
even if the parameters are not adapted. This, in other words, expresses the inherent robustness
associated with a tracking cost function.

Proposition 2. Consider the repeated dynamic optimization problem (1) solved using the corresponding

static nonlinear programming problem (2) with the tracking cost J = 1
2

(
Xk − Xre f

)T (
Xk − Xre f

)
+
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1
2 w

(
Uk − Ure f

)T (
Uk − Ure f

)
, with Xre f being a trajectory feasible for the plant with Ure f being the

corresponding input and w the weight for the input variations. Let the variations in the measured states
be caused by parametric variations only. Furthermore, assume that the active constraints are invariant with
respect to parametric variations. If the correction is only based on state measurements and the parameters are not
adapted, then, for small enough parametric variations, tθ = td, and the re-optimization will be better or equal to
the offline solution, i.e., Δ̃Jopt ≤ 0.

Proof. If the variation in the state is caused only by parametric uncertainties, then Δd = ∂Ψ
∂θ Δθ.

The partial derivatives for this case are given by:

∂J
∂U

=
(

X − Xre f

)T ∂Ψ
∂U

+ w
(

Uk − Ure f

)T
, (13)

∂2 J
∂θ∂U

=
(

X − Xre f

)T ∂2Ψ
∂θ∂U

+

(
∂Ψ
∂U

)T ∂Ψ
∂θ

, (14)

∂J
∂d

= (X − Xref)
T , (15)

∂2 J
∂d∂U

=

(
∂Ψ
∂U

)T
. (16)

With these, the two terms tθ and td can be written as

td =

(
∂2 J
∂U2

)− 1
2
(

∂Ψ
∂U

)T ∂Ψ
∂θ

Δθ, (17)

tθ =

(
∂2 J
∂U2

)− 1
2 (

X − Xre f

)T ∂2Ψ
∂θ∂U

Δθ+

(
∂2 J
∂U2

)− 1
2
(

∂Ψ
∂U

)T ∂Ψ
∂θ

Δθ. (18)

At the optimum, since Xre f is assumed to be feasible for the plant,
(

X − Xre f

)
= 0. Outside the

optimum,
(

X − Xre f

)
grows with Δθ and the first term in Equation (18) becomes proportional to Δθ2.

For small enough parametric variations, this term can be neglected. Then, tθ and td are the same and
this gives:

Δ̃Jopt = −1
2

tT
d td − tT

d tθ = −3
2

tT
d td ≤ 0. (19)

In this case, the re-optimization is always better than the offline solution.
Such a robustness result cannot be established when process noise is present. Inclusion of process

noise would cause Δd = ∂Ψ
∂θ Δθ+ v, which would lead to an additional term in Equation (17). This in

turn prevents tθ from being equal to td, which could eventually lead to a potential degradation in
performance. Thus, robustness can only be established mathematically for a trajectory cost without
process noise.

4. Results and Discussion

4.1. Illustrative Example

To illustrate the importance of parametric errors on NMPC, six different cases will be treated.
The first three will be with economical cost, while the last three will have a trajectory to follow.
In both situations, cases with terminal constraint, path constraint and no constraints will be done.
Barrier functions will be used to treat the constraints.
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For each case, a batch reactor with two reactions is studied (inspired from Reference [12]): A → B
and A + B → C. From a mass balance, the following model is derived for the system:

.
cA = −k1cA − k2cAcB,

.
cB = k1cA − k2cAcB,

(20)

where cX is the concentration of X (mol/L) and k1 and k2 are the kinetic reaction coefficient (h−1),
which are obtained using the Arrhenius equation:

ki = ki0exp
(
− Ei

RT

)
. (21)

Using the following scaled temperature as the input parameter:

u = k10exp
(
− E1

RT

)
(22)

and considering:

α =
E2

E1
, k10 = 1 and k20 = k20

(
1

k10

)α

, (23)

the kinetic coefficient are expressed as:

k1 = k10u and k2 = k20uα. (24)

The nominal values of all the parameters, as well as the constraint values, for these simulations
are given in Table 1. For each case, the parameters with errors will be α and k10.

Table 1. Models parameters, operating bounds, and initial conditions for Cases 1 to 6.

Parameter Value Units

cA0 5 mol/L
cB0 0 mol/L
k10 5 × 103 h−1

k20 7 × 1016 -
E1 2 × 104 J/mol
E2 1 × 105 J/mol
R 8.314 J/mol.K
α 5 -

k1 0 1 -
k2 0 0.0224 -
t f 2 H

umin 1.25 -
cA fmax 0.1 mol/L
γ 0.001 -
β 0.999 -

Case 1: Unconstrained system with economical cost

The objective of the three first cases is to maximize the final concentration of B. In the first case,
there are no constraints on the system, which gives the following optimization problem:

max
u(t)

J = cB

(
t f

)
. (25)

Case 2: System with terminal constraint and economical cost
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The objective is to maximize the final concentration of B, in this case with a constraint on the final
concentration of A:

max
u(t)

J = cB

(
t f

)
s.t.cA

(
t f

)
≤ cAmax .

(26)

The optimization is subject to a terminal constraint on cA. The terminal constraint is included in
the numerical optimization using the following barrier function, where b (c) is a barrier function for
the constraint −cmax ≤ 0:

b (c) =

{ −γlog (c − cmax) , c > βcmin
γ(c−βcmax)
(1−β)cmax

, c ≤ βcmin
. (27)

Case 3: System with path constraint and economical cost

The objective is to maximize the final concentration of B, in this case with a lower bound on the
input parameter:

max
u(t)

J = cB

(
t f

)
s.t. u ≥ umin .

(28)

The optimization is subject to a path constraint on u. The path constraint is included in the
numerical optimization once again using a barrier function.

Case 4: Unconstrained system with trajectory cost

The objective of the three last cases is to minimize the difference between a trajectory and the
concentration of B. In this case, there are no constraints on the system, which gives the following
optimization problem:

min
u(t)

J =
∫ tf

tk

(
cB (t)− cBre f (t)

)T (
cB (t)− cBre f (t)

)
dt, (29)

where cBre f is the trajectory to follow. For the three tracking cases, cBre f is a path following 90% of the
maximal production (model optimum). Additionally, in those three cases, inputs are not penalized,
mainly because no measurement noise was considered.

Case 5: System with terminal constraint and trajectory cost

The objective is to minimize the difference between a trajectory and the concentration of B, in this
case with a constraint on the final concentration of A:

min
u(t)

J =
∫ tf

tk

(
cB (t)− cBre f (t)

)T (
cB (t)− cBre f (t)

)
dt

s.t.cA

(
t f

)
≤ cAmax .

(30)

The optimization is subject to a terminal constraint on cA. The terminal constraint is included in
the numerical optimization using a barrier function. cBre f is the trajectory to follow and not a function
of time.

Case 6: System with path constraint and trajectory cost

The objective is to minimize the difference between a trajectory and the concentration of B, in this
case with a lower bound on the input parameter:
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min
u(t)

J =
∫ tf

tk

(
cB (t)− cBre f (t)

)T (
cB (t)− cBre f (t)

)
dt

s.t. u ≥ umin .
(31)

The optimization is subject to a path constraint on u. The path constraint is included in the
numerical optimization once again using a barrier function. cBset is the trajectory to follow and not
a function of time.

4.2. Results

The terminal cost obtained for each simulation is shown in Table 2. The simulations in which
the feedback re-optimization ended giving worse result than just using the offline optimization are
indicated in bold. The parametric errors considered are all ±20% except for Case 3. This particular
case was harder to optimize and a greater parametric error was required for the feedback’s impact to
surpass the optimization difficulties.

Table 2. Comparison of offline, re-optimization and plant optimum solutions for the six cases with
parametric errors. Cost is maximized for Cases 1–3 and minimized for Cases 4–6.

Case Parametric Error
Cost

Offline Re-Optimization Plant Optimum

1. Unconstrained,
Economic cost

– 4.03 4.03 4.03
k10: −20%; α: −20% 3.70 3.71 3.72
k10: −20%; α: +20% 3.691 3.686 3.697

2. Terminal constraint
Economic cost

– 3.71 3.71 3.71
k10: −20%; α: −20% 1.29 2.03 3.35
k10: −20%; α: +20% 3.01 2.93 3.06

3. Path constraints
Economic cost

– 3.80 3.80 3.80
k10: −50%; α: −50% 3.079 3.079 3.17
k10: −50%; α: +50% 2.39 2.37 2.40

4. Unconstrained
Trajectory cost

– 0.00 0.00 0.00
k10: −20%; α: −20% 1.16 0.303 0.03
k10: −20%; α: +20% 1.10 0.30 0.00

5. Terminal constraint
Trajectory cost

– 0.00 0.00 0.00
k10: −20%; α: −20% 2.84 1.49 0.03
k10: −20%; α: +20% 1.80 1.38 0.36

6. Path constraint
Trajectory cost

– 0.21 0.21 0.21
k10: −20%; α: −20% 0.20 0.16 0.02
k1 0: −20%; α: +20% 2.060 1.48 0.47

Note that scenarios where re-optimization is worse than offline solution only occur with
economical costs. Additional simulations have been made with different parametric errors, all leading
to this same observation. All trajectory-tracking problems with a trajectory feasible for the plant
always lead to the re-optimization being better. However, if a path more demanding than the maximal
production was chosen for cBset , i.e., not a feasible trajectory, then the tracking problem suffers the
same difficulties as the economical cost.

The simulation for a +20% error on α and −20% on k10 in Case 1 is shown on Figure 1. It shows
how re-optimization is actually worse than the offline solution. The figure clearly shows that the input
is being pulled away from its optimal value with each re-optimization.
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Figure 1. Input for Case 1, with perturbation in α and k1 0.

5. Conclusions

Optimization is frequently used on processes, whether it is offline or online in a control method,
such as NMPC. In this paper, the impact of using NMPC in presence of parametric errors is studied.
An analysis of the mathematical formulation of NMPC has shown that situations can occur where
online optimization could lead to results worse than the offline one. The example studied presented
this case in particular. It was seen that deterioration of the performance occurred only for an economical
cost, while online optimization always helped with the tracking cost. A theoretical analysis has been
performed and supports this result, showing that, for a quadratic tracking cost, online re-optimization
will improve performance with small parametric uncertainties.
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Abstract: We present a sensitivity-based predictor-corrector path-following algorithm for fast
nonlinear model predictive control (NMPC) and demonstrate it on a large case study with an economic
cost function. The path-following method is applied within the advanced-step NMPC framework to
obtain fast and accurate approximate solutions of the NMPC problem. In our approach, we solve
a sequence of quadratic programs to trace the optimal NMPC solution along a parameter change.
A distinguishing feature of the path-following algorithm in this paper is that the strongly-active
inequality constraints are included as equality constraints in the quadratic programs, while the
weakly-active constraints are left as inequalities. This leads to close tracking of the optimal
solution. The approach is applied to an economic NMPC case study consisting of a process with
a reactor, a distillation column and a recycler. We compare the path-following NMPC solution with
an ideal NMPC solution, which is obtained by solving the full nonlinear programming problem.
Our simulations show that the proposed algorithm effectively traces the exact solution.

Keywords: fast economic NMPC; NLP sensitivity; path-following algorithm; nonlinear programming;
dynamic optimization

1. Introduction

The idea of economic model predictive control (MPC) is to integrate the economic optimization
layer and the control layer in the process control hierarchy into a single dynamic optimization layer.
While classic model predictive control approaches typically employ a quadratic objective to minimize
the error between the setpoints and selected measurements, economic MPC adjusts the inputs to
minimize the economic cost of operation directly. This makes it possible to optimize the cost during
transient operation of the plant. In recent years, this has become increasingly desirable, as stronger
competition, volatile energy prices and rapidly changing product specifications require agile plant
operations, where also transients are optimized to maximize profit.

The first industrial implementations of economic MPC were reported in [1,2] for oil refinery
applications. The development of theory and stability analysis for economic MPC arose almost a decade
afterwards; see, e.g., [3,4]. Recent progress on economic MPC is reviewed and surveyed in [5,6]. Most of
the current research activities focus on the stability analysis of economic MPC and do not discuss its
performance (an exception is [7]).

Because nonlinear process models are often used for economic optimization, a potential drawback
of economic MPC is that it requires solving a large-scale nonlinear optimization problem (NLP)
associated with the nonlinear model predictive control (NMPC) problem at every sample time.

Processes 2017, 5, 8 102 www.mdpi.com/journal/processes
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The solution of this NLP may take a significant amount of time [8], and this can lead to performance
degradation and even to instability of the closed-loop system [9].

To reduce the detrimental effect of computational delay in NMPC, several sensitivity-based
methods were proposed [10–12]. All of these fast sensitivity approaches exploit the fact that the NMPC
optimization problems are identical at each sample time, except for one varying parameter: the initial
state. Instead of solving the full nonlinear optimization problem when new measurements of the state
become available, these approaches use the sensitivity of the NLP solution at a previously-computed
iteration to obtain fast approximate solutions to the new NMPC problem. These approximate
solutions can be computed and implemented in the plant with minimal delay. A recent overview
of the developments in fast sensitivity-based nonlinear MPC is given in [13], and a comparison of
different approaches to obtain sensitivity updates for NMPC is compiled in the paper by Wolf and
Marquardt [14].

Diehl et al. [15] proposed the concept of real-time iteration (RTI), in which the full NLP is not
solved at all during the MPC iterations. Instead, at each NMPC sampling time, a single quadratic
programming (QP) related to the sequential quadratic programming (SQP) iteration for solving the
full NLP is solved. The real-time iteration scheme contains two phases: (1) the preparation phase and
(2) the feedback phase. In the preparation phase, the model derivatives are evaluated using a predicted
state measurement, and a QP is formulated based on data of this predicted state. In the feedback phase,
once the new initial state is available, the QP is updated to include the new initial state and solved
for the control input that is injected into the plant. The real-time iteration scheme has been applied
to economic NMPC in the context of wind turbine control [16,17]. Similar to the real-time iteration
scheme are the approaches by Ohtsuka [18] and the early paper by Li and Biegler [19], where one
single Newton-like iteration is performed per sampling time.

A different approach, the advanced-step NMPC (asNMPC), was proposed by Zavala and
Biegler [10]. The asNMPC approach involves solving the full NLP at every sample time. However, the full
NLP solution is computed in advance for a predicted initial state. Once the new state measurement
is available, the NLP solution is corrected using a fast sensitivity update to match the measured or
estimated initial state. A simple sensitivity update scheme is implemented in the software package
sIPOPT [20]. However, active set changes are handled rather heuristically; see [21] for an overview.
Kadam and Marquardt [22] proposed a similar approach, where nominal NLP solutions are updated
by solving QPs in a neighboring extremal scheme; see also [12,23].

The framework of asNMPC was also applied by Jäschke and Biegler [24], who use a multiple-step
predictor path-following algorithm to correct the NLP predictions. Their approach included measures
to handle active set changes rigorously, and their path-following advanced-step NMPC algorithm is
also the first one to handle non-unique Lagrange multipliers.

The contribution of this paper is to apply an improved path-following method for correcting the
NLP solution within the advanced-step NMPC framework. In particular, we replace the predictor
path-following method from [24] by a predictor-corrector method and demonstrate numerically that
the method works efficiently on a large-scale case study. We present how the asNMPC with the
predictor-corrector path-following algorithm performs in the presence of measurement noise and
compare it with a pure predictor path-following asNMPC approach and an ideal NMPC approach,
where the NLP is assumed to be solved instantly. We also give a brief discussion about how our
method differs from previously published approaches.

The structure of this paper is the following. We start by introducing the ideal NMPC and
advanced-step NMPC frameworks in Section 2 and give a description of our path-following algorithm
together with some relevant background material and a brief discussion in Section 3. The proposed
algorithm is applied to a process with a reactor, distillation and recycling in Section 4, where we
consider the cases with and without measurement noise and discuss the results. The paper is closed
with our conclusions in Section 5.
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2. NMPC Problem Formulations

2.1. The NMPC Problem

We consider a nonlinear discrete-time dynamic system:

xk+1 = f (xk, uk) (1)

where xk ∈ Rnx denotes the state variable, uk ∈ Rnu is the control input and f : Rnx ×Rnu → Rnx is a
continuous model function, which calculates the next state xk+1 from the previous state xk and control
input uk, where k ∈ N. This system is optimized by a nonlinear model predictive controller, which
solves the problem:

(Pnmpc) : min
zl ,vl

Ψ(zN) +
N−1

∑
l=0

ψ(zl , vl) (2)

s.t. zl+1 = f (zl , vl) l = 0, . . . , N − 1,

z0 = xk,

(zl , vl) ∈ Z , l = 0, . . . , N − 1,

zN ∈ X f ,

at each sample time. Here, zl ∈ Rnx is the predicted state variable; vl ∈ Rnu is the predicted control
input; and zN ∈ X f is the final predicted state variable restricted to the terminal region X f ∈ Rnx .
The stage cost is denoted by ψ : Rnx × Rnu → R and the terminal cost by Ψ : X f → R. Further,
Z denotes the path constraints, i.e., Z = {(z, v) | q (z, v) ≤ 0}, where q : Rnx ×Rnu → R

nq .
The solution of the optimization problem Pnmpc is denoted

{
z∗0, . . . , z∗N , v∗

0, . . . , v∗
N−1

}
. At sample

time k, an estimate or measurement of the state xk is obtained, and problem Pnmpc is solved. Then,
the first part of the optimal control sequence is assigned as plant input, such that uk = v∗

0. This first
part of the solution to Pnmpc defines an implicit feedback law uk = κ (xk), and the system will evolve
according to xk+1 = f (xk, κ (xk)). At the next sample time k + 1, when the measurement of the new
state xk+1 is obtained, the procedure is repeated. The NMPC algorithm is summarized in Algorithm 1.

Algorithm 1: General NMPC algorithm.

1 set k ← 0
2 while MPC is running do

3 1. Measure or estimate xk.
4 2. Assign the initial state: set z0 = xk.
5 3. Solve the optimization problem Pnmpc to find v∗

0.
6 4. Assign the plant input uk = v∗

0.
7 5. Inject uk to the plant (1).
8 6. Set k ← k + 1

2.2. Ideal NMPC and Advanced-Step NMPC Framework

For achieving optimal economic performance and good stability properties, problem Pnmpc needs
to be solved instantly, so that the optimal input can be injected without time delay as soon as the
values of the new states are available. We refer to this hypothetical case without computational delay
as ideal NMPC.

In practice, there will always be some time delay between obtaining the updated values of
the states and injecting the updated inputs into the plant. The main reason for this delay is the
time it requires to solve the optimization problem Pnmpc. As the process models become more
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advanced, solving the optimization problems requires more time, and the computational delay cannot
be neglected any more. This has led to the development of fast sensitivity-based NMPC approaches.
One such approach that will be a adopted in this paper is the advanced-step NMPC (asNMPC)
approach [10]. It is based on the following steps:

1. Solve the NMPC problem at time k with a predicted state value of time k + 1,
2. When the measurement xk+1 becomes available at time k + 1, compute an approximation of the

NLP solution using fast sensitivity methods,
3. Update k ← k + 1, and repeat from Step 1.

Zavala and Biegler proposed a fast one-step sensitivity update that is based on solving
a linear system of equations [10]. Under some assumptions, this corresponds to a first-order Taylor
approximation of the optimal solution. In particular, this approach requires strict complementarity
of the NLP solution, which ensures no changes in the active set. A more general approach involves
allowing for changes in the active set and making several sensitivity updates. This was proposed
in [24] and will be developed further in this paper.

3. Sensitivity-Based Path-Following NMPC

In this section, we present some fundamental sensitivity results from the literature and then use
them in a path-following scheme for obtaining fast approximate solutions to the NLP.

3.1. Sensitivity Properties of NLP

The dynamic optimization Problem (2) can be cast as a general parametric NLP problem:

(PNLP) : min
χ

F (χ, p) (3)

s.t. c (χ, p) = 0

g (χ, p) ≤ 0,

where χ ∈ Rnχ are the decision variables (which generally include the state variables and the control
input nχ = nx + nu) and p ∈ R

np is the parameter, which is typically the initial state variable xk.
In addition, F : Rnχ × R

np → R is the scalar objective function; c : Rnχ × R
np → Rnc denotes the

equality constraints; and finally, g : Rnχ ×R
np → R

ng denotes the inequality constraints. The instances
of Problem (3) that are solved at each sample time differ only in the parameter p.

The Lagrangian function of this problem is defined as:

L (χ, p, λ, μ) = F (χ, p) + λTc (χ, p) + μT g (χ, p) , (4)

and the KKT (Karush–Kuhn–Tucker) conditions are:

c (x, p) = 0, g (x, p) ≤ 0 (primal f easibility) (5)

μ ≥ 0, (dual f easibility)

∇xL (x, p, λ, μ) = 0, (stationary condition)

μT g (x, p) = 0, (complementary slackness).

In order for the KKT conditions to be a necessary condition of optimality, we require a constraint
qualification (CQ) to hold. In this paper, we will assume that the linear independence constraint
qualification (LICQ) holds:

Definition 1 (LICQ). Given a vector p and a point χ, the LICQ holds at χ if the set of vectors{
{∇χci (χ, p)}i∈{1,...,nc} ∪ {∇χgi (χ, p)}i: gi(χ,p)=0

}
is linearly independent.
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The LICQ implies that the multipliers (λ, μ) satisfying the KKT conditions are unique.
If additionally, a suitable second-order condition holds, then the KKT conditions guarantee a unique
local minimum. A suitable second-order condition states that the Hessian matrix has to be positive
definite in a set of appropriate directions, defined in the following property:

Definition 2 (SSOSC). The strong second-order sufficient condition (SSOSC) holds at χ with multipliers λ

and μ if dT ∇2
χL (χ, p, λ, μ) d > 0 for all d 
= 0, such that ∇χc (χ, p)T d = 0 and ∇χgi (χ, p)T d = 0 for i,

such that gi (χ, p) = 0 and μi > 0.

For a given p, denote the solution to (3) by χ∗(p), λ∗(p), μ∗(p), and if no confusion is possible,
we omit the argument and write simply χ∗, λ∗, μ∗. We are interested in knowing how the solution
changes with a perturbation in the parameter p. Before we state a first sensitivity result, we define
another important concept:

Definition 3 (SC). Given a vector p and a solution χ∗ with vectors of multipliers λ∗ and μ∗, strict
complimentary (SC) holds if μ∗

i − gi (χ
∗, p) > 0 for each i = 1, . . . , ng.

Now, we are ready to state the result below given by Fiacco [25].

Theorem 1 (Implicit function theorem applied to optimality conditions). Let χ∗(p) be a KKT point that
satisfies (5), and assume that LICQ, SSOSC and SC hold at χ∗. Further, let the function F, c, g be at least
k + 1-times differentiable in χ and k-times differentiable in p. Then:

• χ∗ is an isolated minimizer, and the associated multipliers λ and μ are unique.
• for p in a neighborhood of p0, the set of active constraints remains unchanged.
• for p in a neighborhood of p0, there exists a k-times differentiable function σ (p) =[

χ∗ (p)T λ∗ (p)T μ∗ (p)T
]
, that corresponds to a locally unique minimum for (3).

Proof. See Fiacco [25].

Using this result, the sensitivity of the optimal solution χ∗, λ∗, μ∗ in a small neighborhood of
p0 can be computed by solving a system of linear equations that arises from applying the implicit
function theorem to the KKT conditions of (3):⎡
⎢⎣ ∇2

χχL (χ∗, p0, λ∗, μ∗) ∇χc (χ∗, p0) ∇χgA (χ∗, p0)

∇χc (χ∗, p0)
T 0 0

∇χgA (χ∗, p0)
T 0 0

⎤
⎥⎦
⎡
⎢⎣ ∇pχ

∇pλ

∇pμ

⎤
⎥⎦ = −

⎡
⎢⎣ ∇2

pχL (χ∗, p0, λ∗, μ∗)
∇pc (χ∗, p0)

∇pgA (χ∗, p0)

⎤
⎥⎦ . (6)

Here, the constraint gradients with subscript gA indicate that we only include the vectors and
components of the Jacobian corresponding to the active inequality constraints at χ, i.e., i ∈ A if

gi(χ, p0) = 0. Denoting the solution of the equation above as
[
∇pχ ∇pλ ∇pμ

]T
, for small Δp,

we obtain a good estimate:

χ (p0 +�p) = χ∗ +∇pχ�p, (7)

λ (p0 +�p) = λ∗ +∇pλ�p, (8)

μ (p0 +�p) = μ∗ +∇pμ�p, (9)

of the solution to the NLP Problem (3) at the parameter value p0 + Δp. This approach was applied by
Zavala and Biegler [10].

If Δp becomes large, the approximate solution may no longer be accurate enough, because the SC
assumption implies that the active set cannot change. While that is usually true for small perturbations,
large changes in Δp may very well induce active set changes.
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It can be seen that the sensitivity system corresponds to the stationarity conditions for a particular
QP. This is not coincidental. It can be shown that for Δp small enough, the set {i : μ(p̄)i > 0}
is constant for p̄ = p0 + Δp. Thus, we can form a QP wherein we are potentially moving off of
weakly-active constraints while staying on the strongly-active ones. The primal-dual solution of this
QP is in fact the directional derivative of the primal-dual solution path χ∗(p), λ∗(p), μ∗(p).

Theorem 2. Let F, c, g be twice continuously differentiable in p and χ near (χ∗, p0), and let the LICQ and
SSOSC hold at (χ∗, p0). Then, the solution (χ∗ (p) , λ∗ (p) , μ∗ (p)) is Lipschitz continuous in a neighborhood
of (χ∗, λ∗, μ∗, p0), and the solution function (χ∗ (p) , λ∗ (p) , μ∗ (p)) is directionally differentiable.

Moreover, the directional derivative uniquely solves the following quadratic problem:

min
�χ

1
2�χT∇2

χχL (χ∗, p0, λ∗, μ∗)�χ +�χT∇2
pχL (χ∗, p0, λ∗, μ∗)�p (10)

s.t. ∇χci (χ
∗, p0)

T �χ +∇pci (χ
∗, p0)

T �p = 0 i = 1, . . . nc

∇χgj (χ
∗, p0)

T �χ +∇pgj (χ
∗, p0)

T �p = 0 j ∈ K+

∇χgj (χ
∗, p0)

T �χ +∇pgj (χ
∗, p0)

T �p ≤ 0 j ∈ K0,

where K+ =
{

j ∈ Z : μj > 0
}

is the strongly-active set and K0 =
{

j ∈ Z : μj = 0 and gj (χ
∗, p0) = 0

}
denotes the weakly active set.

Proof. See [26] (Sections 5.1 and 5.2) and [27] (Proposition 3.4.1).

The theorem above gives the solution of the perturbed NLP (3) by solving a QP problem. Note that
regardless of the inertia of the Lagrangian Hessian, if the SSOSC holds, it is positive definite on the
null-space of the equality constraints, and thus, the QP defined is convex with an easily obtainable
finite global minimizer. In [28], it is noted that as the solution to this QP is the directional derivative
of the primal-dual solution of the NLP, it is a predictor step, a tangential first-order estimate of the
change in the solution subject to a change in the parameter. We refer to the QP (10) as a pure-predictor.
Note that obtaining the sensitivity via (10) instead of (6) has the advantage that changes in the active
set can be accounted for correctly, and strict complementarity (SC) is not required. On the other hand,
when SC does hold, (6) and (10) are equivalent.

3.2. Path-Following Based on Sensitivity Properties

Equation (6) and the QP (10) describes the change in the optimal solutions for small perturbations.
They cannot be guaranteed to reproduce the optimal solution accurately for larger perturbations,
because of curvature in the solution path and active set changes that happen further away from the
linearization point. One approach to handle such cases is to divide the overall perturbation into several
smaller intervals and to iteratively use the sensitivity to track the path of optimal solutions.

The general idea of a path-following method is to reach the solution of the problem at a final
parameter value p f by tracing a sequence of solutions (χk, λk, μk) for a series of parameter values
p(tk) = (1 − tk) p0 + tk p f with 0 = t0 < t1 < ... < tk < ... < tN = 1. The new direction is found
by evaluating the sensitivity at the current point. This is similar to a Euler integration for ordinary
differential equations.

However, just as in the case of integrating differential equations with a Euler method,
a path-following algorithm that is only based on the sensitivity calculated by the pure predictor
QP may fail to track the solution accurately enough and may lead to poor solutions. To address this
problem, a common approach is to include elements that are similar to a Newton step, which force the
path-following algorithm towards the true solution. It has been found that such a corrector element can
be easily included into a QP that is very similar to the predictor QP (10). Consider approximating (3)
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by a QP, linearizing with respect to both χ and p, but again enforcing the equality of the strongly-active
constraints, as we expect them to remain strongly active at a perturbed NLP:

min
�χ,�p

1
2�χT∇2

χχL (χ∗, p0, λ∗, μ∗)�χ +�χT∇2
pχL (χ∗, p0, λ∗, μ∗)�p +∇χFT�χ +∇pF�p + 1

2�pT∇2
ppL (χ∗, p0, λ∗, μ∗)�p (11)

s.t. ci (χ
∗, p0) +∇χci (χ

∗, p0)
T �χ +∇pci (χ

∗, p0)
T �p = 0 i = 0, . . . nc

gj (χ
∗, p0) +∇χgj (χ

∗, p0)
T �χ +∇pgj (χ

∗, p0)
T �p = 0 j ∈ K+

gj (χ
∗, p0) +∇χgj (χ

∗, p0)
T �χ +∇pgj (χ

∗, p0)
T �p ≤ 0 j ∈ {1, ..., ng

} \ K+.

In our NMPC problem Pnmpc, the parameter p corresponds to the current “initial” state, xk.
Moreover, the cost function is independent of p, and we have that ∇pF = 0. Since the parameter
enters the constraints linearly, we have that ∇pc and ∇pg are constants. With these facts, the above
QP simplifies to:

min
�χ

1
2�χT∇2

χχL (χ∗, p0 +�p, λ∗, μ∗)�χ +∇χFT�χ (12)

s.t. ci (χ
∗, p0 +�p) +∇χci (χ

∗, p0 +�p)T �χ = 0 i = 1, . . . nc

gj (χ
∗, p0 +�p) +∇χgj (χ

∗, p0 +�p)T �χ = 0 j ∈ K+

gj (χ
∗, p0 +�p) +∇χgj (χ

∗, p0 +�p)T �χ ≤ 0 j ∈ {1, ..., ng
} \ K+.

We denote the QP formulation (12) as the predictor-corrector. We note that this QP is similar to
the QP proposed in the real-time iteration scheme [15]. However, it is not quite the same, as we enforce
the strongly-active constraints as equality constraints in the QP. As explained in [28], this particular QP
tries to estimate how the NLP solution changes as the parameter does in the predictor component and
refines the estimate, in more closely satisfying the KKT conditions at the new parameter, as a corrector.

The predictor-corrector QP (12) is well suited for use in a path-following algorithm, where the
optimal solution path is tracked from p0 to a final value p f along a sequence of parameter points
p(tk) = (1 − tk) p0 + tk p f with 0 = t0 < t1 < ... < tk < ... < tN = 1. At each point p(tk), the QP is
solved and the primal-dual solutions updated as:

χ(tk+1) = χ(tk) + Δχ (13)

λ(tk+1) = Δλ (14)

μ(tk+1) = Δμ, (15)

where Δχ is obtained from the primal solution of QP (12) and where Δλ and Δμ correspond to the
Lagrange multipliers of QP (12).

Changes in the active set along the path are detected by the QP as follows: If a constraint becomes
inactive at some point along the path, the corresponding multiplier μj will first become weakly active,
i.e., it will be added to the set K0. Since it is not included as an equality constraint, the next QP solution
can move away from the constraint. Similarly, if a new constraint gj becomes active along the path,
it will make the corresponding linearized inequality constraint in the QP active and be tracked further
along the path.

The resulting path-following algorithm is summarized with its main steps in Algorithm 2, and we
are now in the position to apply it in the advanced-step NMPC setting described in Section 2.2.
In particular, the path-following algorithm is used to find a fast approximation of the optimal NLP
solution corresponding to the new available state measurement, which is done by following the
optimal solution path from the predicted state to the measured state.
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Algorithm 2: Path-following algorithm.

Input: initial variables from NLP χ∗(p0), λ∗(p0), μ∗(p0)

fix stepsize �t, and set N = 1
Δt

set initial parameter value p0,
set final parameter value p f ,
set t = 0,
set constant 0 < α1 < 1.
Output: primal variable χ and dual variables λ, μ along the path

1 for k ← 1 to N do

2 Compute step Δp = pk − pk−1
3 Solve QP problem ; /* to obtain Δχ, Δλ, Δμ */
4 if QP is feasible then

5 /* perform update */
6 χ ← χ + Δχ; /* update primal variables */
7 Update dual variables appropriately; using Equations (8) and 9 for the pure-predictor

method or (14) and (15) for the predictor-corrector method
8 t ← t + Δt ; /* update stepsize */
9 k ← k + 1

10 else

11 /* QP is infeasible, reduce QP stepsize */
12 �t ← α1�t
13 t ← t − α1�t

3.3. Discussion of the Path-Following asNMPC Approach

In this section, we discuss some characteristics of the path-following asNMPC approach presented
in this paper. We also present a small example to demonstrate the effect of including the strongly-active
constraints as equality constraints in the QP.

A reader who is familiar with the real-time iteration scheme [15] will have realized that the
QPs (12) that are solved in our path-following algorithm are similar to the ones proposed and solved in
the real-time iteration scheme. However, there are some fundamental differences between the standard
real-time iteration scheme as described in [15] and the asNMPC with a path-following approach.

This work is set in the advanced-step NMPC framework, i.e., at every time step, the full NLP is
solved for a predicted state. When the new measurement becomes available, the precomputed NLP
solution is updated by tracking the optimal solution curve from the predicted initial state to the new
measured or estimated state. Any numerical homotopy algorithm can be used to update the NLP
solution, and we have presented a suitable one in this paper. Note that the solution of the last QP
along the path corresponds to the updated NLP solution, and only the inputs computed in this last QP
will be injected into the plant.

The situation is quite different in the real time iteration (RTI) scheme described in [15]. Here, the
NLP is not solved at all during the MPC sampling times. Instead, at each sampling time, a single QP
is solved, and the computed input is applied to the plant. This will require very fast sampling times,
and if the QP fails to track the true solution due to very large disturbances, similar measures as in the
advanced-step NMPC procedure (i.e., solving the full NLP) must be performed to get the controller
“on track” again. Note that the inputs computed from every QP are applied to the plant and, not as in
our path-following asNMPC, only the input computed in the last QP along the homotopy.

Finally, in the QPs of the previously published real-time iteration schemes [15], all inequality
constraints are linearized and included as QP inequality constraints. Our approach in this paper,
however, distinguishes between strongly- and weakly-active inequality constraints. Strongly-active
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inequalities are included as linearized equality constraints in the QP, while weakly-active constraints
are linearized and added as inequality constraints to the QP. This ensures that the true solution path is
tracked more accurately also when the full Hessian of the optimization problem becomes non-convex.
We illustrate this in the small example below.

Example 1. Consider the following parametric “NLP”

min
x

x2
1 − x2

2 (16)

s.t. −2 − x2 + t ≤ 0

−2 + x2
1 + x2 ≤ 0,

for which we have plotted the constraints at t = 0 in Figure 1a.
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g1 : −2 − x2 + t ≤ 0
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(1,-2)
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x1

x2

-2

2

2-2
-1

1

3-3 1-1

3

-3

g1

g2

3 − 2Δx1 − Δx2 ≥ 0
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(b)

Figure 1. (a) Constraints of NLP (16) in Example 1 and (b) their linearization at x̂ = (1,−2) and t = 0.

The feasible region lies in between the parabola and the horizontal line. Changing the parameter t from zero
to one moves the lower constraint up from x2 = −2 to x2 = −1.

The objective gradient is ∇F(x) = (2x1,−2x2), and the Hessian of the objective is always indefinite

H =

(
2 0
0 −2

)
. The constraint gradients are ∇g(x) =

(
0 −1

2x1 1

)
. For t ∈ [0, 1], a (local) primal solution

is given by x∗ (t) = (0, t − 2). The first constraint is active, the second constraint is inactive, and the dual
solution is λ∗ (t) = (−2x2, 0). At t = 0 we thus have the optimal primal solution x∗ = (0,−2) and the
optimal multiplier λ∗ = (4, 0).

We consider starting from an approximate solution at the point x̂(t = 0) = (1,−2) with dual variables
λ̂(t = 0) = (4, 0), such that the first constraint is strongly active, while the second one remains inactive.
The linearized constraints for this point are shown in Figure 1b. Now, consider a change Δt = 1, going from
t = 0 to t = 1.

The pure predictor QP (10) has the form, recalling that we enforce the strongly active constraint as equality:

min
Δx

Δx2
1 − Δx2

2

s.t. − Δx2 + 1 = 0.
(17)

This QP is convex with a unique solution Δx = (0, 1) resulting in the subsequent point x̂(t = 1) = (1,−1).
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The predictor-corrector QP (12), which includes a linear term in the objective that acts as a corrector, is
given for this case as

min
Δx

Δx2
1 − Δx2

2+2Δx1 + 4Δx2

s.t. − Δx2 + 1 = 0

−3 + 2Δx1 + Δx2 ≤ 0.

(18)

Again this QP is convex with a unique primal solution Δx = (−1, 1). The step computed by this predictor
corrector QP moves the update to the true optimal solution x̂(t = 1) = (0,−1) = x∗(t = 1).

Now, consider a third QP, which is the predictor-corrector QP (12), but without enforcing the strongly
active constraints as equalities. That is, all constraints are included in the QP as they were in the original
NLP (16),

min
Δx

Δx2
1 − Δx2

2+2Δx1 + 4Δx2

s.t. − Δx2 + 1 ≤ 0

−3 + 2Δx1 + Δx2 ≤ 0.

(19)

This QP is non-convex and unbounded; we can decrease the objective arbitrarily by setting Δx = (1.5 −
0.5r, r) and letting a scalar r ≥ 1 go to infinity. Although there is a local minimizer at Δx = (−1, 1), a QP
solver that behaves “optimally” should find the unbounded “solution”.

This last approach cannot be expected to work reliably if the full Hessian of the optimization problem
may become non-convex, which easily can be the case when optimizing economic objective functions. We note,
however, that if the Hessian ∇xxL is positive definite, QP it is not necessary to enforce the strongly active
constraints as equality constraints in the predictor-corrector QP (12).

4. Numerical Case Study

4.1. Process Description

We demonstrate the path-following NMPC (pf-NMPC) on an isothermal reactor and separator
process depicted in Figure 2. The continuously-stirred tank reactor (CSTR) is fed with a stream F0

containing 100% component A and a recycler R from the distillation column. A first-order reaction
A → B takes place in the CSTR where B is the desired product and the product with flow rate F is fed
to the column. In the distillation column, the unreacted raw material is separated from the product and
recycled into the reactor. The desired product B leaves the distillation column as the bottom product,
which is required to have a certain purity. Reaction kinetic parameters for the reactor are described
in Table 1. The distillation column model is taken from [29]. Table 2 summarizes the parameters
used in the distillation. In total, the model has 84 state variables of which 82 are from the distillation
(concentration and holdup for each stage) and two from the CSTR (one concentration and one holdup).

F0

MB

MD

XF

VB

LTD

B

F

Figure 2. Diagram of continuously-stirred tank reactor (CSTR) and distillation column.
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Table 1. Reaction kinetics parameters.

Reaction Reaction Rate Constant (min−1) Activation Energy (in J/mol)

A → B 1 × 108 6 × 104

Table 2. Distillation Column A parameters.

Parameter Value

αAB 1.5
number of stages 41

feed stage location 21

The stage cost of the economic objective function to optimize under operation is:

J = pFF0 + pVVB − pBB, (20)

where pF is the feed cost, pV is the steam cost and pB is the product price. The price setting is
pF = 1 $/kmol, pV = 0.02 $/kmol, pB = 2 $/kmol. The operational constraints are the concentration
of the bottom product (xB ≤ 0.1), as well as the liquid holdup at the bottom and top of the distillation
column and in the CSTR (0.3 ≤ M{B,D,CSTR} ≤ 0.7 kmol). The control inputs are reflux flow (LT),
boil-up flow (VB), feeding rate to the distillation (F), distillate (top) and bottom product flow rates
(D and B). These control inputs have bound constraints as follows:⎡

⎢⎢⎢⎢⎢⎣
0.1
0.1
0.1
0.1
0.1

⎤
⎥⎥⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎢⎢⎣

LT
VB
F
D
B

⎤
⎥⎥⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎢⎢⎣

10
4.008

10
1.0
1.0

⎤
⎥⎥⎥⎥⎥⎦ (kmol/min) .

First, we run a steady-state optimization with the following feed rate F0 = 0.3 (kmol/min).
This gives us the optimal values for control inputs and state variables. The optimal steady state input

values are us =
[

1.18 1.92 1.03 0.74 0.29
]T

. The optimal state and control inputs are used to
construct regularization term added to the objective function (20). Now, the regularized stage becomes:

Jm = pFF0 + pVVB − pBB − pDD + (z − xs)
T Q1 (z − xs) + (v − us)

T Q2 (v − us) . (21)

The weights Q1 and Q2 are selected to make the rotated stage cost of the steady state problem
strongly convex; for details, see [24]. This is done to obtain an economic NMPC controller that is stable.

Secondly, we set up the NLP for calculating the predicted state variables z and predicted control
inputs v. We employ a direct collocation approach on finite elements using Lagrange collocation to
discretize the dynamics, where we use three collocation points in each finite element. By using the
direct collocation approach, the state variables and control inputs become optimization variables.

The economic NMPC case study is initialized with the steady state values for a production rate
F0 = 0.29 kmol/min, such that the economic NMPC controller is effectively controlling a throughput
change from F0 = 0.29 kmol/min to F0 = 0.3 kmol/min. We simulate 150 MPC iterations, with
a sample time of 1 min. The prediction horizon of the NMPC controller is set to 30 min. This setting
results in an NLP with 10,314 optimization variables. We use CasADi [30] (Version 3.1.0-rc1) with
IPOPT [31] as the NLP solver. For the QPs, we use MINOS QP [32] from TOMLAB.
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4.2. Comparison of the Open-Loop Optimization Results

In this section, we compare the solutions obtained from the path-following algorithm with
the “true” solution of the optimization problem Pnmpc obtained by solving the full NLP. To do this,
we consider the second MPC iteration, where the path-following asNMPC is used for the first time to
correct the one-sample ahead-prediction (in the first MPC iteration, to start up the asNMPC procedure,
the full NLP is solved twice). We focus on the interesting case where the predicted state is corrupted by
noise, such that the path-following algorithm is required to update the solution. In Figure 3, we have
plotted the difference between a selection of predicted states, obtained by applying the path-following
NMPC approaches, and the ideal NMPC approach.
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Figure 3. The difference in predicted state variables between ideal NMPC (iNMPC) and path-following NMPC
(pf-NMPC) from the second iteration.

We observe that the one-step pure-predictor tracks the ideal NMPC solution worst and the four-step
path-following with predictor-corrector tracks best. This happens because the predictor-corrector
path-following QP has an additional linear term in the objective function and constraint for the purpose
of moving closer to the solution of the NLP (the “corrector” component), as well as tracing the first-order
estimate of the change in the solution (the “predictor”). The four-step path-following performs better
because a smaller step size gives finer approximation of the parametric NLP solution.

This is also reflected in the average approximation errors given in Table 3. The average approximation
error has been calculated by averaging the error one-norm

∣∣∣∣∣∣χpath− f ollowing − χideal NMPC

∣∣∣∣∣∣
1

over all
MPC iterations.

We observe that in this case study, the accuracy of a single predictor-corrector step is almost as
good as performing four predictor-corrector steps along the path. That is, a single predictor-corrector
QP update may be sufficient for this application. However, in general, in the presence of larger noise
magnitudes and longer sampling intervals, which cause poorer predictions, a single-step update may
no longer lead to good approximations. We note the large error in the pure-predictor path-following
method for the solution accuracy of several orders of magnitude.
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On the other hand, given that the optimization vector χ has dimension 10,164 for our case
study, the average one-norm approximation error of ca. 4.5 does result in very small errors on the
individual variables.

Table 3. Approximation error using path-following algorithms. asNMPC, advanced-step NMPC
(asNMPC); QP, quadratic programming.

Average Approximation Error between ideal NMPC and Path-Following (PF) asNMPC

PF with predictor QP, 1 step 4.516
PF with predictor QP, 4 steps 4.517
PF with predictor-corrector QP, 1 step 1.333 × 10−2

PF with predictor-corrector QP, 4 steps 1.282 × 10−2

4.3. Closed-Loop Results: No Measurement Noise

In this section, we compare the results for closed loop process operation. We consider first the case
without measurement noise, and we compare the results for ideal NMPC with the results obtained
by the path-following algorithm with the pure-predictor QP (10) and the predictor-corrector QP (12).
Figure 4 shows the trajectories of the top and bottom composition in the distillation column and the
reactor concentration and holdup. Note that around 120 min, the bottom composition constraint in the
distillation column becomes active, while the CSTR holdup is kept at its upper bound all of the time
(any reduction in the holdup will result in economic and product loss).
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Figure 4. Recycle composition, bottom composition, reactor concentration and reactor holdup.

In this case (without noise), the prediction and the true solution only differ due to numerical
noise. There is no need to update the prediction, and all approaches give exactly the same closed-loop
behavior. This is also reflected in the accumulated stage cost, which is shown in Table 4.
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Table 4. Comparison of economic NMPC controllers (no noise). Accumulated stage cost in $.

Economic NMPC Controller Accumulated Stage Cost

iNMPC −296.42

pure-predictor QP:
pf-NMPC one step −296.42

pf-NMPC four steps −296.42

predictor-corrector QP:
pf-NMPC one step −296.42

pf-NMPC four steps −296.42

The closed-loop control inputs are given in Figure 5. Note here that the feed rate into the
distillation column is adjusted such that the reactor holdup is at its constraint all of the time.
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Figure 5. Optimized control inputs.

4.4. Closed-Loop Results: With Measurement Noise

Next, we run simulations with measurement noise on all of the holdups in the system. The noise is
taken to have a normal distribution with zero mean and a variance of one percent of the steady state values.
This will result in corrupted predictions that have to be corrected for by the path-following algorithms.
Again, we perform simulations with one and four steps of pure-predictor and predictor-corrector QPs.

Figure 6 shows the top and bottom compositions of the distillation column, together with the
concentration and holdup in the CSTR. The states are obtained under closed-loop operation with the
ideal and path-following NMPC algorithms. Due to noise, it is not possible to avoid the violation of
the active constraints in the holdup of the CSTR and the bottom composition in the distillation column.
This is the case for both the ideal NMPC and the path-following approaches.
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Figure 6. Recycle composition, bottom composition, reactor concentration and reactor holdup.

The input variables shown in Figure 7 are also reflecting the measurement noise, and again, we
see that the fast sensitivity NMPC approaches are very close to the ideal NMPC inputs.
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Figure 7. Optimized control inputs.

Finally, we compare the accumulated economic stage cost in Table 5.
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Table 5. Comparison of economic NMPC controllers (with noise). Accumulated stage cost in $.

Economic NMPC Controller Accumulated Stage Cost

iNMPC −296.82

pure-predictor QP:
pf-NMPC one step −297.54

pf-NMPC four steps −297.62

predictor-corrector QP:
pf-NMPC one step −296.82

pf-NMPC four steps −296.82

Here, we observe that our proposed predictor-corrector path-following algorithm performs
identically to the ideal NMPC. This is as expected, since the predictor-corrector path-following
algorithm is trying to reproduce the true NLP solution. Interestingly, in this case, the larger error in
the pure predictor path-following NMPC leads to a better economic performance of the closed loop
system. This behavior is due to the fact that the random measurement noise can have a positive and
a negative effect on the operation, which is not taken into account by the ideal NMPC (and also the
predictor-corrector NMPC). In this case, the inaccuracy of the pure-predictor path-following NMPC
led to better economic performance in the closed loop. However, it could also have been the opposite.

5. Discussion and Conclusions

We applied the path-following ideas developed in Jäschke et al. [24] and Kungurtsev and Diehl [28]
to a large-scale process containing a reactor, a distillation column and a recycle stream. Compared
with single-step updates based on solving a linear system of equations as proposed by [10], our
path-following approach requires somewhat more computational effort. However, the advantage
of the path-following approach is that active set changes are handled rigorously. Moreover, solving
a sequence of a few QPs can be expected to be much faster than solving the full NLP, especially since
they can be initialized very well, such that the computational delay between obtaining the new state
and injecting the updated input into the plant is still sufficiently small. In our computations, we have
considered a fixed step-size for the path-following, such that the number of QPs to be solved is known
in advance.

The case without noise does not require the path-following algorithm to correct the solution,
because the prediction and the true measurement are identical, except for numerical noise. However,
when measurement noise is added to the holdups, the situation becomes different. In this case, the
prediction and the measurements differ, such that an update is required. All four approaches track the
ideal NMPC solution to some degree; however, in terms of accuracy, the predictor-corrector performs
consistently better. Given that the pure sensitivity QP and the predictor-corrector QP are very similar
in structure, it is recommended to use the latter in the path-following algorithm, especially for highly
nonlinear processes and cases with significant measurement noise.

We have presented basic algorithms for path-following, and they seem to work well for the
cases we have studied, such that the path-following algorithms do not diverge from the true
solution. In principle, however, the path-following algorithms may get lost, and more sophisticated
implementations need to include checks and safeguards. We note, however, that the application of the
path-following algorithm in the advanced-step NMPC framework has the desirable property that the
solution of the full NLP acts as a corrector, such that if the path-following algorithm diverges from the
true solution, this will be most likely for only one sample time, until the next full NLP is solved.

The path-following algorithm in this paper (and the corresponding QPs) still relies on the
assumption of linearly-independent constraint gradients. If there are path-constraints present in
the discretized NLP, care must be taken to formulate them in such a way that LICQ is not violated.
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In future work, we will consider extending the path-following NMPC approaches to handle more
general situations with linearly-dependent inequality constraints.
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Abstract: Nonlinear model predictive control has been established as a powerful methodology to
provide feedback for dynamic processes over the last decades. In practice it is usually combined with
parameter and state estimation techniques, which allows to cope with uncertainty on many levels.
To reduce the uncertainty it has also been suggested to include optimal experimental design into the
sequential process of estimation and control calculation. Most of the focus so far was on dual control
approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning) as
well as minimizing a given objective (performing). We propose a new algorithm, which sequentially
solves robust optimal control, optimal experimental design, state and parameter estimation problems.
Thus, we decouple the control and the experimental design problems. This has the advantages
that we can analyze the impact of measurement timing (sampling) independently, and is practically
relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy
treatment) or the need for fast feedback. The algorithm shows promising results with a 36% reduction
of parameter uncertainties for the Lotka-Volterra fishing benchmark example.

Keywords: feedback optimal control algorithm; optimal experimental design; sampling time points;
Pontryagin’s Maximum Principle

1. Introduction

We start by surveying recent progress of feedback via nonlinear optimal control under uncertainty,
before we come to the main contribution of this paper, an investigation of the role of the measurement
time grid. This can be seen as complementary and can be combined with almost all other aspects of
efficient nonlinear model predictive control.

We are interested in controlling a dynamic process in an optimal way, under the assumption that
model parameters are unknown. We assume that there are no systematic uncertainties, i.e., that the
mathematical model represents the dynamics of the process sufficiently well and all measurement
errors are normally distributed. One possible control task is controlling a dynamic system from an
undesired cyclic steady state to a desired one in an optimal way. Such tasks arise in a large variety of
applications in biology, chemistry, mechanics and medicine.

The dynamic system is described as a system of differential equations that involves a priori unknown
model parameters. To cope with the uncertainty, optimization problems are solved on short time horizons,
and new measurements are used to update the model parameters and thus the mathematical model as
such. The feedback is calculated via model predictive control (MPC), an established method applicable
for linear [1] as well as nonlinear models (NMPC) [2]. MPC is based on the assumption that new
measurements arrive continuously, thus allowing an optimal feedback control that can be applied
online. NMPC is in practice often combined with moving horizon estimation (MHE), or estimation on
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an expanding time horizon, which allow an update of state and parameter estimates based on new
measurements [3].

NMPC and MHE are based on the calculation of optimal trajectories. As a fast feedback of the
controller is important in many applications, clever approaches doing most of the necessary calculations
before a new measurement arrives have been proposed in the literature. The most important numerical
concepts comprise real-time iterations [4,5], multi-level iterations [6], parallel multi-level iterations [7],
an exploitation of the KKT structures [8,9], adaptive control [10], automatic code export [11,12],
and usage of parametric QPs [13,14]. For a benchmark problem, the continuously stirred tank reactor
of [15], a speedup of approximately 150,000 has been achieved comparing the 60 seconds per iteration
reported in 1997 [16] and the 400 microseconds per iteration reported in 2011 by [17]. This speedup
is mainly due to the faster algorithms and only partially due to the hardware speedup. Surveys on
efficient numerical approaches to NMPC and MHE can be found in, e.g., [7,18–20].

The state and parameter solutions of the maximum likelihood estimation problems are random
variables, and are hence endowed with confidence regions. How the process is controlled and when
and what is being measured have an important impact on the size of these confidence regions.
Optimal experimental design (OED) is concerned with calculating controls and sampling decisions
that minimize the size of the confidence regions of the state and parameter estimates. This special
control problem is analyzed from a statistical and numerical point of view in several textbooks [21–24]
and became a state of the art method in designing experiments in many fields of application. Also a lot
of research has been done in sequential optimal experimental design (re-design of experiments) where
iteratively optimal experimental designs are performed and parameters are estimated [25,26]. In the
last decade, sequential OED has been extended by online OED in which the experiment is directly
re-designed when a new measurement is taken [27–31].

Our algorithm is related in the spirit of dual control [32–34], as we want to learn model parameters
at the same time as we are using them for NMPC. Note that for medical applications the situation is
completely different than from industrial chemical engineering. In the latter mathematical modeling,
experimental design, model calibration and analysis are typically performed beforehand with pilot
plants, and the results are then transferred in a second stage such that NMPC can be applied over and
over again to continuous or batch processes. For biological and medical applications a repetition is not
possible, e.g., a chemotherapy treatment can only be performed once under identical conditions.

Recently, different economic objective functions have been proposed that incorporate the nested
goals of excitation and exploration [35–37]. Also scenario trees [38,39] and set-based approaches [40]
have been successfully applied.

In all mentioned publications the focus is on the control function, with an implicit assumption
that measurements are available on a given sampling time grid. While this assumption is true for many
applications in which sensors are routinely used, the situation is different in biological and medical
applications, where measurements are often invasive and imply logistical, ethical, and financial
overhead. In [41] we showed the large impact of optimal sampling on uncertainty reduction for
patients suffering from acute myeloid leukemia. Uncertainty could be reduced by more than 50% by
choosing the time points different from the standard daily routine, in an a posteriori analysis.

This motivates us to concentrate on the question of the optimal timing of measurements in
a real-time algorithm. We propose a new feedback optimal control algorithm with sampling time
points for the parameter and state estimation from the solution of an optimal experimental design
problem. In our setting the control is assumed to be fixed for the experimental design problem, i.e.,
we do not excite the dynamics for the sake of information gain. Instead, we focus on determining
the optimal measuring (sampling) times. The motivation considering the control u(·) as fixed for the
experimental design problem is practically motivated by applications such as fishing or chemotherapy
dosage in which there is an ethical, logistical, or financial reluctance to profit only indirectly from
a system excitation. This decoupling may also be interesting for a different kind of applications
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for which fast feedback is necessary, as it results in a very efficient way to calculate the optimal
sampling points.

Note that the question of optimal sampling of measurements is to a large extent independent
from most of the aforementioned approaches to NMPC. Our approach is complementary in the sense
that, e.g., the numerical structure exploitation, the treatment of systematic disturbances, the treatment
of robustness, the formulation of dual control objective functions, the use of scenario trees or set-based
approaches can all be combined with an adaptive measurement grid. This also applies to the nature of
the underlying control task, where many extensions are possible, e.g., multi-stage processes, mixed
path- and control constraints, complicated boundary conditions and so on. In the interest of a clear
focus on our main results we choose a simple setting that allows to highlight the additional value
of measurement grid adaptivity, and only show exemplarily the impact of one possible extension of
our algorithm. We take the uncertainty with respect to model parameters into account on the level of
optimal control and of the experimental design by calculating robust optimal controls and samplings,
compare [42,43], and compare our new algorithm based on nominal solutions with the new algorithm
with robust solutions.

Numerical results demonstrating the performance of the algorithm and underlying the theoretical
finding are presented for the benchmark example called Lotka-Volterra fishing problem. This example
is particularly suited for several reasons. First, it is prototypical for many biological, chemical, and
medical processes as it captures the most basic dynamic behavior of oscillatory systems. Second, for
fishing systems our basic assumption of a slow process with expensive measurements applies and
processes related to sustainable fishing have been receiving increasing attention lately, e.g., [44,45].
Third, it has a prototypical objective for many medical applications, as we want to control from an
undesired cyclic steady state to a desired steady state. Fourth, it is simple and small enough to visualize
the impact of our approach in terms of uncertainty quantification and reduction. A transfer to larger
and more complex processes is straightforward.

The paper is organized as follows: In Section 2 we give an overview over the different optimization
subproblems that play a role. In Section 3 we present and discuss our novel feedback optimal control
algorithm with sampling decisions from sequential optimal experimental designs, and we elaborate
on the role of finite support designs. In Section 4 the theoretical findings are illustrated via numerical
results for the mentioned Lotka-Volterra fishing example, followed by a discussion and conclusions.

2. On the Estimation, Control, and Design Problems

In this section, the mathematical formulation of the underlying dynamical system and of the three
different types of optimization problems, i.e., parameter and state estimation, optimal control, and
optimal experimental design are introduced. They are solved sequentially in our feedback optimal
control algorithm with adaptive measurement grid that will be presented in Section 3. We explain
the advantages of our decoupled dual control approach with respect to an efficient solution of the
experimental design problem.

2.1. Nonlinear Dynamic Systems

We assume that dynamic processes can be described as an initial value problem (IVP), consisting
of a system of nonlinear ordinary differential equations (ODEs) and initial values x0(p) that may also
depend on the model parameters p,

ẋ(t) = f (x(t), u(t), p), x(t0) = x0(p), (1)

on a time interval t ∈ [t0, tf] = T with x : T �→ Rnx the differential state vector, u : T �→ U a control
function with U ∈ Rnu a bounded set, and unknown model parameters p ∈ R

np . The function f is
assumed to be Lipschitz, such that (1) has a unique solution on T for all u and p. We calculate x(·) and
its derivatives numerically by appropriate methods as described, e.g., in [46].
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To formulate design problems and robust versions of control problems, we will need sensitivities
G = dx

dp : T �→ R
nx×np . They can be calculated as the solution of the variational differential equations

Ġ(t) = fx(x̂(t), u(t), p)G(t) + fp(x̂(t), u(t), p), G(t0) =
dx0(p)

dp
(2)

with x̂(t) the solution of (1) and the partial derivatives hx(·), fx(·), fp(·) written in short form.
Note that here and in the following matrix equations are to be understood component-wise. Again,
we assume unique solutions for (2).

2.2. State and Parameter Estimation Problems

The relation between the model (1) and the measured data ηω
i for different measurement functions

ω ∈ {1, . . . , nω} and time points ti for i ∈ {1, . . . , N} can be described by the nonlinear regression

ηω
i = hω(x∗(ti)) + εω

i . (3)

The state x∗(·) depends as the solution trajectory of (1) implicitly on the model parameters p
(possibly also via the initial values x0(p)). The measurements are described by the nonlinear model
responses hω : Rnx �→ R

nω
η of the true, but unknown state trajectory x∗(·) plus some normally

distributed measurement error εω
i ∼ N (0, σ2

ω,i) with zero mean and variances σ2
ω,i. Note that the

measurement, the model response, and the measurement error are vectors of dimension nω
η . Following

a maximum-likelihood approach we estimate initial values and model parameters by solving the state
and parameter estimation (SPE) problem in the form of a nonlinear weighted least squares problem

min
x(t),p

1
2

nω

∑
ω=1

N

∑
i=1

wω
i

(ηω
i − hω(x(ti)))

2

σ2
ω,i

s.t. (1) (4)

for given and fixed controls u : T �→ U and weights wω
i ∈ W . As the measurement times ti may be a

priori unknown, we will in our analysis in Section 3.1 also look at the continuous analogue to (4). This
is given by

min
x(t),p

1
2

nω

∑
ω=1

∫ tf

t0

wω(t)
(ηω(t)− hω(x(t)))2

σ2
ω(t)

dt s.t. (1)

By choosing the function space for wω : T �→ W such that we allow Borel measures ξω(T ) on
T = [t0, tf] as solutions, we can define designs ξω via dξω = wω(t)dt and work with

min
x(t),p

1
2

nω

∑
ω=1

∫ tf

t0

(ηω(t)− hω(x(t)))2

σ2
ω(t)

dξω s.t. (1) (5)

There is a large variety of algorithms to solve (4), and of alternative formulations, compare [47]
for a recent survey.

2.3. Optimal Control Problems

We consider an optimal control (OC) problem of the following form

min
x(t),u:T �→U

M(x(tf)) s.t. (1) (6)

with a Mayer term as an objective function. Note that we omit mixed path and control constraints and
other possible and practically relevant extensions in the interest of a clearer presentation. The objective
function M(·) comprises the main goal of the control task under uncertainty, such as minimizing
the deviation from a target state or minimizing the number of cancer cells, and may of course also
contain a Lagrange term by adding an additional state variable. Again, there is a large variety of
algorithms to solve such control problems, comprehending dynamic programming, Pontryagin’s
maximum principle, or direct methods, compare, e.g., [48,49].
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2.4. Optimal Experimental Design Problems

We see the optimal experimental design (OED) problem as an optimal control problem with
a particular structure, as suggested in [50]. The degrees of freedom in experimental design are the
control functions u and the sampling decisions (or weights) w, which have been assumed to be fixed in
Section 2.2. The control can be used to excite the system dynamics, and hence also the sensitivities.
The sampling chooses time points or intervals with much information on the sensitivity of the model
response with respect to the model parameters. We assume u to be fixed on the level of the experimental
design problem for reasons to be discussed later, therefore we concentrate from now on on w as the
only degree of freedom. The objective of experimental design is maximizing information gain. With the
sensitivities (2), we can define the Fisher Information Matrix (FIM) as

Fd(tf) =
nω

∑
ω=1

N

∑
i=1

wω
i

(
hω

x

(
x(ti)

)
G(ti)

)T(
hω

x

(
x(ti)

)
G(ti)

)
∈ R

np×np (7)

for the discrete setting of (4) and as F(ξ) via the Borel measure

F(ξ) =
nω

∑
ω=1

∫ tf

t0

(
hω

x

(
x(t)

)
G(t)

)T(
hω

x

(
x(t)

)
G(t)

)
dξω ∈ R

np×np (8)

for the continuous measurement setting of (5).
Minimizing the uncertainty of state and parameter estimates, or maximizing information gain,

can now be quantified via a scalar function φ(·) of the FIM or its inverse, the variance-covariance matrix.
A list of different objective functions (criteria), such as trace, determinant or maximum eigenvalue can
be found, e.g., in [24]. To limit the amount of measurement, either an economic penalty in the objective
as suggested in [50] can be used, or a normalization via constraints, e.g.,

1 =
N

∑
i=1

wω
i (9)

for all ω and the discrete setting of (4) and as

1 =
∫ tf

t0

dξω (10)

for all ω and the continuous measurement setting of (5). Based on our assumptions and considerations,
we define the OED problem with fixed u as

min
x(t),G(t),Fd(tf),w∈Wnω N

φ(Fd(tf)) s.t. (1,2,7,9) (11)

for the case of a discrete measurement grid and as

min
x(t),G(t),F(ξ),ξ

φ(F(ξ)) s.t. (1,2,8,10) (12)

for the continuous measurement flow. Problems (11) and (12) can be solved numerically with the same
methods as general optimal control problems, and with specialized ones that take the structure of the
derivatives and sensitivities into account, [51]. Our assumption of a fixed u and the specific way w
enters the right hand side allow an even more efficient approach, in which the expensive calculation of
the states x and G is decoupled from the optimization over x and Fd, see Algorithm 1.
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Algorithm 1 OED

Input: Fixed p and u, initial values x(t0), G(t0), possible measurement times {t1, . . . , tN} ⊂ [t0, tf]

1: Solve IVP ((1) and (2)) to obtain x(·) and G(·)
2: Solve min

Fd(t),w∈Wnω N
φ(Fd(tf)) s.t. (7,9)

This decoupling is not the main motivation for our approach to optimize sequentially over u and
w, but it should be exploited and might be an argument for time-critical processes.

Algorithm 1 operates with a (fine) time grid of possible time points that can be chosen to take
a measurement. If one wants to leave the exact timings ti ∈ R as degrees of freedom, one can apply
a time transformation (switching time optimization), as suggested and discussed in the context of
mixed-integer optimal control, e.g., in [52–54] with stage lengths Ti := ti+1 − ti. The variables Ti
become additional optimization variables, integration of x and G is performed on the interval [0, 1]
and the dynamics ((1) and (2)) are scaled according to

ẋ(t) = Ti f (x(t), u(t), p), x(t0) = x0(p), (13)

Ġ(t) = Ti ( fx(x̂(t), u(t), p)G(t) + fp(x̂(t), u(t), p)), G(t0) =
dx0(p)

dp
. (14)

Also continuity conditions at times ti need to be included, and a constraint like ∑N
i=0 Ti = tf for

fixed tf. The advantage of using ((13) and (14)) is the independence of an a priori grid. However, this
comes at the price of not being able to decouple the calculation of x and G from w and F any more,
of higher computational costs due to the extra variables, an increased nonconvexity of the dynamics,
and possibly not practically realizable (e.g., irrational) measurement times ti ∈ R. Therefore we prefer
to use Algorithm 1 with a fine grid of possible measurement times.

3. A Feedback Optimal Control Algorithm With Optimal Measurement Times

We start by formulating the main algorithm, before we have a closer look at the role of optimal
measurement times and one possible extension, the consideration of robustness.

As an alternative to a dual control approach which incorporates the system excitement,
an optimizing control with respect to the control objective, and possibly also the choice of optimal
measurement times into one single optimization problem, we propose a decoupled dual control
approach. We formulate it for a shrinking horizon [τ, tf] with respect to the control and experimental
design tasks, and an expanding horizon [t0, τ] with respect to state and parameter estimation, which can
be easily adapted to a moving horizon setting if appropriate.

The algorithm iterates over time with a “current time” τi. It solves three subproblems that have
been introduced in Section 2. The solution of the optimal control problem (6) provides a control u∗(·)
which optimizes with respect to the main control objective. This control is applied until the next
update at time τi+1. This time point τi+1 is calculated by means of an optimal experimental design
problem (11) as the first time point from a given fine grid of possible measurement points on which the
calculated measurement weight w∗

knew is strictly positive. At this time a new measurement is performed,
with a subsequent estimation of states and parameters. Based on the modified parameters, a new
optimal control is calculated, based on the modified parameters and control, new measurement weights
are calculated and so forth. Naturally, previous solutions can and should be used as initialization
to speed up the calculations. Depending on the time scales of the process and the calculation times,
there usually is a small time gap in which the old controls need to be applied. See, e.g., [17], for details
on how to deal with this situation.

Figure 1 visualizes the start of one loop to the start of the next loop of Algorithm 2 applied
to the Lotka-Volterra fishing example which is described and discussed in detail in Section 4.
In Figure 1a an optimal control problem is solved with the initial values x̂(15) and p̂ on the interval
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[15, 30]. The initial values are obtained from a state and parameter estimation performed on the
interval [0,15] with measurement time points derived from a optimal experimental design problem.
The uncertainty tubes around the two trajectories are created by 100 simulations with parameter
values randomly chosen from a normal distribution with the estimated parameters and corresponding
uncertainties as mean and variance. Next, an optimal experimental design problem is solved for the
optimal control strategy u∗(t) and the associated solution x̂∗(t) obtaining optimal measurement time
points on the interval [15, 30] (see Figure 1b). From the optimal design w∗ the time point τ1 is chosen
for which the corresponding entry w∗

j > 0 is the first strictly positive one. In Figure 1c the optimal
control u∗ is applied to the real system until time point τ1 at which a measurement is performed and
the parameters and the initial states are re-estimated with the additional measurements. With the
updated values we are back at the start of the algorithm’s loop and a new optimal control problem
is solved with the updated values on the receding time horizon [τ1, 30] shown in Figure 1d. For the
uncertainty tubes again 100 simulations with parameter values sampled from a normal distribution
with updated values for the mean and the variance were used.

0 5 10 15 20 25 30
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1(t)

x2(t)

u(t)

(a) Step 1 in first loop.
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(b) Step 2 in first loop.
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(c) Step 3 - 5 in first loop.
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(d) Step 1 in second loop.

Figure 1. Visualization of Algorithm 2 performing one loop applied to the Lotka-Volterra fishing
example. In Figure 1a the first step, solving an optimal control problem, of Algorithm 2 is performed
on the time interval [15, 30] with initial values from a parameter and state estimation on the interval
[0,15] with measurements from an optimal experimental design problem. The uncertainty tubes are
computed from 100 simulations with parameter samples from a normal distribution with the estimated
parameters and uncertainties as mean and variance. In Figure 1b an optimal experimental design is
computed on t ∈ [15, 30] with the optimal control strategy. The strictly positive optimal sampling
weights are visualized as vertical lines. Next, the optimal control strategy is performed until time point
ti at which the first sampling weight is strictly positive and a measurement is taken. Afterwards a state
and parameter estimation is performed (Figure 1c). The loop starts again with solving a OCP on [ti,30]
with the estimated values. The new optimal control strategy is shown in Figure 1d with uncertainty
tubes computed from 100 simulations with updated mean and variance.
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Algorithm 2 FOCoed

Input: Initial guess p̂, initial values x(t0), G(t0), possible measurement times {t1, . . . , tN} ⊂ [t0, tf]

Initialize sampling counter i = 0, measurement grid counter k = 0 and “current time” τ0 = t0

while stopping criterion not fulfilled do

1: Solve OC problem (6) on the horizon [τi, tf], obtain u∗(·), x̂∗(·)
2: Solve OED problem (11) on the horizon [τi, tf] (hence wω

j fixed for j ≤ k), obtain w∗ ∈ Wnω N

3: Set i = i + 1, knew such that wω,∗
knew > 0 and wω,∗

j = 0 ∀ k < j < knew. Set k = knew and τi = tk

4: Apply u∗ on [τi−1, τi], measure function ω at τi

5: Solve SPE problem (4) on the horizon [t0, τi], obtain p̂, x̂(t)

end while

6: Solve OC problem (6) on the horizon [τi, tf]

The stopping criterion is formulated in a general way as it usually depends on the experimenter’s
choice. Possible criteria are a minimum amount of uncertainty reduction, a fixed number of
measurements, or an economic penalization term as proposed in [50].

3.1. Finite Support Designs

We look at the role of finite support for optimal experimental designs in more detail, as this will
allow us to choose measurement points (and hence the sampling grid) in an optimal way. It is an
interesting question how optimal solutions of the discrete OED problem (11) and of the continuous
analogue (12) relate to one another. The answer is given by the following theorem, which states that
to every optimal design there is a discrete design with finitely many measurement points resulting
in the same Fisher information matrix. This is obviously a justification for our iterative approach
in Algorithm 2, using a finite number of measurements. Theorem 1 presents a property of optimal
designs for the Fisher information matrix.

Theorem 1. Let nω = 1. For any optimal design ξ of the OED problem (12) resulting in a nonsingular
Fisher information matrix of the SPE problem (5) there exist a finite number N of measurement time points
{t1, t2, . . . , tN} ⊂ T and positive real numbers w1, w2, . . . , wN with ∑N

i=1 wi = 1 such that

F(ξ) = Fd(tf) =
N

∑
i=1

wi (hx(x(ti))G(ti))
T hx(x(ti))G(ti)

with the bounds ⌊
np

nη

⌋
≤ N ≤ np(np + 1)

2
. (15)

np is the number of parameters and nη is the dimension of the model response h(x).

A proof can be found in [55,56]. It is based on the set of all matrices of the form (8) being a compact,
convex set. The upper bound results from the Theorem of Carathéodory [21,24] and the solution of
the dual problem which is located at the boundary of the convex set [57]. The lower bound is based
on the assumption of Fd(tf) having full rank np, and every update wi (hx(x(ti))G(ti))

T hx(x(ti))G(ti)

having rank nη . Our setting is slightly more general, as we allow nω different measurement functions.
However, the result carries over.

Corollary 1. For any nω ≥ 1 Theorem 1 applies with nη = ∑nω
ω=1 nω

η .
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Proof. The Minkowski sum of convex, compact sets is again a convex, compact set, and hence the
argument for the representability due to the Theorem of Carathéodory and the upper bound are still
valid. The maximum rank of the matrix update ∑nω

ω=1 wω
i (hω

x (x(ti))G(ti))
T hω

x (x(ti))G(ti) at time ti is
∑nω

ω=1 nω
η . The lower bound on N is the quotient of the assumed full rank np and this sum.

This corollary directly implies that to every optimal solution of the continuous OED problem (12)
there is an equivalent solution of the discrete OED problem (11).

We are further interested in (a posteriori) characterizing the optimal measurement times ti with
corresponding wω

i > 0. We make the following assumptions. Let an optimal solution (x∗, G∗, w∗, μ∗)
of the optimization problem (12) with W = [wmin, wmax] be given. Here μω,∗ is the Lagrange multiplier
of the constraint (9). Let F∗−1(tf) exist. We call

Πω(t) := F∗−1(tf) (hω
x (x(t))G(t))Thω

x (x(t))G(t) F∗−1(tf) ∈ R
np×np (16)

the global information gain matrix. Let φ(F(tf)
−1) = trace(F−1(tf)) be the objective function of the OED

problem (12) (for other objectives similar expressions can be found in [50]).
Under the above assumptions in [50] it is shown that

wω,∗(t) =
{

wmin if trace (Πω(t)) < μω,∗,

wmax if trace (Πω(t)) > μω,∗.
(17)

The proof is based on an application of Pontryagin’s maximum principle, exploiting constant
adjoint variables, and matrix calculus.

We want to join Theorem 1 with this insight, and look at the special case of wmin = 0, wmax = 1.
One particular case may arise when the lower bound on the number of support points in Theorem 1,
i.e.,

⌊
np
nη

⌋
is equal to one. For one single measurement it can happen that wω

i = 1 for one index, while
otherwise the normalization constraint (9) ensures that all wω

i ∈ [0, 1). For this particular case we
define νω,∗ to be the maximum of μω,∗ (the Lagrange multiplier of the normalization constraint) and of
the upper bound constraint wω

i ≤ 1. In most cases, however, ν∗ = μω,∗.

Lemma 1. For any optimal design ξ of the OED problem (12) resulting in a nonsingular Fisher information
matrix of the SPE problem (5) there exist a finite number N of measurement time points {t1, t2, . . . , tN} ⊂ T
and positive real numbers wω

1 , wω
2 , . . . , wω

N with ∑N
i=1 wω

i = 1 for all ω ∈ 1, . . . , nω such that

trace(Πω(t)) ≤ νω,∗ ∀ t ∈ [t0, tf]. (18)

Proof. Corollary 1 states the existence and optimality of such a design. Assuming there exists ti ∈ T
with trace(Πω(ti)) > νω,∗, it directly follows wω

i = wmax = 1 and with the normalization (9)
that wω

j = 0 ∀j �= i. The local impact on the optimal objective value is given by trace(Πω(ti)),
the assumption of this value being strictly larger than both multipliers is hence a contradiction
to optimization theory which states that the Lagrange multiplier of the active constraints give a local
estimate for the change in the optimal objective function value.

3.2. Robustification

As mentioned in the Introduction, there are many possible extensions to Algorithm 2. Highlighting
its flexibility, we exemplarily look at a possible robustification of the optimal control and of the optimal
experimental design problem.

The optimization problems (6) and (12) depend on given values of the model parameters and
the computed control and measurement strategies are only optimal for the specific parameter values.
If the true parameter values are known or the estimated parameter values are equal to the true values
the optimal strategies can be applied to the real process without loss of optimality. However, in most

128



Processes 2017, 5, 10

cases the true parameter values are not exactly known. Then, the uncertainty of parameters in the
spirit of confidence regions should be included into the optimization formulations to robustify the
computed optimal control and measurement strategies. We apply a robustification approach suggested
in [42,43,58]. The idea is to formulate a min-max optimization problem in which the maximal value of
the objective function over the parameters’ confidence region is minimized. Applying Taylor expansion
with respect to the parameters, a computationally feasible approximation based on first derivatives is
used. It aims at preferring solutions with a “flat objective function”, i.e., which is not too sensitive with
respect to the parameter value p.

Again, we assume that the parameters are normally distributed random variables with mean p̂
and variance Σ p̂. The confidence region of p̂ with confidence quantile γ is defined as the set

{p : ‖p − p̂‖2,Σ−1 ≤ γ} (19)

where the positive definite matrix Σ−1 induces the norm ‖p‖2,Σ−1 := (pTΣ−1 p)
1
2 . Now, the OED

objective function in (12) is augmented to

φ(F(ξ; p̂)) + γ

∥∥∥∥ d
dp

φ(F(ξ; p̂))
∥∥∥∥

2,Σ
(20)

and similarly the robust OC objective function is defined as

M(x(tf); p̂) + γ

∥∥∥∥ d
dp

M(x(tf); p̂)
∥∥∥∥

2,Σ
. (21)

No further modifications to Algorithm 2 are necessary. Note that the norms are evaluated
pointwise, as Mayer term and the FIM in Problems (6) and (12) are evaluated at time tf. However,
the analysis of Section 3.1 can not be applied in a straightforward way due to the derivative term in the
objective function (20), as the weights may jump as p̂ changes locally. Intuition and numerical results
hint into the direction that also for the robust case discrete designs are optimal, probably with the same
bounds on the number of support points. But we only conjecture this and do not have a proof.

4. Numerical Examples

In this section we apply Algoritm 2 to the Lotka-Volterra fishing benchmark problem demonstrating
the performance of the algorithm and separately analyze optimal finite support designs.

4.1. Lotka-Volterra Fishing Benchmark Problem

The Lotka-Volterra example is chosen as a well studied dynamic system representing the relation
between two competing populations. The model can be modified analyzing disease spreading in
an epidemiological context [59] or technological forecasting of stock markets [60] such that the
model combines medical, biological and economical interests. The optimal control (OC) and optimal
experimental design problem (OED) problem of the Lotka-Volterra fishing example are introduced
and described in the following.

The goal of the OC problem is an optimal fishing strategy u∗(t) that brings the prey x1(t) and
predator x2(t) populations into a steady state (22d), by penalizing deviations from the steady state
over the whole time horizon [t0, tf]. The optimal control problem of type (6) is
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min
x(t),u(t)

x3(tf) (22a)

s.t. ẋ1(t) = p1 x1(t)− p2 x1(t) x2(t)− c0 x1(t) u(t), (22b)

ẋ2(t) = −p3 x2(t) + p4 x1(t) x2(t)− c1 x2(t) u(t), (22c)

ẋ3(t) = (x1(t)− 1)2 + (x2(t)− 1)2, (22d)

x(t0) = x0, (22e)

u(t) ∈ [0, 1]. (22f)

The Lotka-Volterra OED problem is of type (11) and defined as

min
x(t),G(t),Fd(tf),w1,w2

trace(F−1
d (tf)) (23a)

s.t. ẋ1(t) = p1 x1(t)− p2 x1(t) x2(t), (23b)

ẋ2(t) = −p3 x2(t) + p4 x1(t) x2(t), (23c)

Ġ11(t) = fx11 G11(t) + fx12 G21(t) + fp11, (23d)

Ġ12(t) = fx11 G12(t) + fx12 G22(t) + fp12, (23e)

Ġ13(t) = fx11 G13(t) + fx12 G23(t), (23f)

Ġ14(t) = fx11 G14(t) + fx12 G24(t), (23g)

Ġ21(t) = fx21 G11(t) + fx22 G21(t), (23h)

Ġ22(t) = fx21 G12(t) + fx22 G22(t), (23i)

Ġ23(t) = fx21 G13(t) + fx22 G23(t) + fp23, (23j)

Ġ24(t) = fx21 G14(t) + fx22 G24(t) + fp24, (23k)

F11(ti) = F11(ti−1) + w1
i G2

11(ti) + w2
i G2

21(ti), (23l)

F12(ti) = F12(ti−1) + w1
i G11(ti) G12(ti) + w2

i G21(ti) G22(ti), (23m)

F13(ti) = F13(ti−1) + w1
i G11(ti) G13(ti) + w2

i G21(ti) G23(ti), (23n)

F14(ti) = F14(ti−1) + w1
i G11(ti) G14(ti) + w2

i G21(ti) G24(ti), (23o)

F22(ti) = F22(ti−1) + w1
i G2

12(ti) + w2
i G2

22(ti), (23p)

F23(ti) = F23(ti−1) + w1
i G12(ti) G13(ti) + w2

i G22(ti) G23(ti), (23q)

F24(ti) = F24(ti−1) + w1
i G12(ti) G14(ti) + w2

i G22(ti) G24(ti), (23r)

F33(ti) = F33(ti−1) + w1
i G2

13(ti) + w2
i G2

23(ti), (23s)

F34(ti) = F34(ti−1) + w1
i G13(ti) G14(ti) + w2

i G23(ti) G24(ti), (23t)

F44(ti) = F44(ti−1) + w1
i G2

14(ti) + w2
i G2

24(ti), (23u)

x(t0) = x0, (23v)

Fij(t0) = 0 i, j ∈ {1, 2, 3, 4} and i ≤ j, (23w)

Gij(t0) = 0 i ∈ {1, 2}, j ∈ {1, 2, 3, 4}, (23x)
N

∑
i=0

wω
i ≤ 1 ω ∈ {1, 2}, (23y)

wω
i ∈ [0, 1] (23z)
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On the time grid t ∈ [t0, tf] with

fx11 = ∂ f1(t)/∂x1 = p1 − p2 x2, (24a)

fx12 = −p2 x1, (24b)

fx21 = p4 x2, (24c)

fx22 = p4 x1 − p3, (24d)

fp11 = ∂ f1(t)/∂p1 = x1, (24e)

fp12 = −x1 x2, (24f)

fp23 = −x2, (24g)

fp24 = x1 x2. (24h)

The solution of problem (23) provides an optimal sampling design minimizing the uncertainties
of the parameters p1, p2, p3 and p4. The right upper entries of the Fisher information matrix (FIM)
are considered as differential states in the optimization problem instead of all matrix entries due to
symmetry properties of the FIM. Explicit values of the time horizon, the initial states, the parameters
and the constants chosen for the numerical computations are given in the next subsection.

4.2. Software and Experimental Settings

Algorithm 2 is implemented as a prototype in the open-source software tool CasADi [61]. We used
the version 3.1.0 together with Python 2.7.6. The finite dimensional nonlinear programs resulting from
discretizing the optimal control problem (6) and optimal experimental design problem (11) are solved
with IPOPT [62]. The parameter estimation problems are solved by a Gauss-Newton algorithm using
IPOPT. The derivatives needed for the optimization problems and their robustifications are efficiently
generated within CasADi using automatic differentiation [61]. In Subsection 4.3 the system of ODEs is
solved using the in-house fixed-step explicit Runge-Kutta integrator and a single shooting method
with a stepsize of 0.15. For the first state and parameter estimation problem on the time interval
[0,15] the initial guess is p = (p1, p2, p3, p4, x1(0), x2(0))T = (1.5, 1.5, 1.5, 1.5, 0.0, 0.0). We assume that
both states h1(ti) = x1(ti) and h2(ti) = x2(ti) can be measured and that no fishing is permitted on
t ∈ [0, 15]. The pseudo-measurements are derived from a simulation with the true parameters plus a
measurement error εi ∼ N (

(
0
0
)
,
(

0.032 0
0 0.032

)
) according to Equation (3). For the OED problems only

the uncertainty of the parameters is considered.
For the analysis of finite support designs in Subsection 4.4 the ODE system is solved with

CVodes from the SUNDIALS suite [63] and a multiple shooting method with stepsize h(= 12/500).
The continuous version of the OED problem (23) is computed on the time grid [0,12] with
p = (p1, p2, p3, p4) = (1, 1, 1, 1). In both examples the discretization of the optimization variable
u(t) coincides with the time grid of the ODE problem.

4.3. Three Versions of Algorithm FOCoed applied to the Lotka-Volterra fishing problem

We apply three versions of Algorithm 2 to the control problem (22a) to stress the relevance of
optimal measurement time points and the influence of parameter uncertainty during optimization.

• with_OED. This is Algorithm 2, i.e., using measurement time points from non-robust OED.
• without_OED. The OED problem in Step 2 of Algorithm 2 is omitted, and an equidistant time grid

is used for measurements.
• with_r_OED. The OC problem in Step 1 and the OED problem in Step 2 of Algorithm 2 are replaced

with their robust counterparts as described in Section 3.2.

In the following the experimental setting is described independently of the chosen version of
Algorithm 2. The experiment is performed on the time interval [0,30]. From 0 to 15 a first state and
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parameter estimation with seven measurements, initial guesses pini = (1.5, 1.5, 1.5, 1.5, 0.0., 0.0)T is
performed. From time point t = 15, Algorithm 2 is performed with the estimated parameter values
p̂, the state values x̂(15) = (x̂1(15), x̂2(15))T and the objective function φ(·) = trace(F−1(tf)) of the
optimization problem (11).

For a quantitative statement the three versions of Algorithm 2 are repeated 50 times with
the normally distributed measurement error εi used for the generation of pseudo-measurements.
The averaged estimated parameter values and the corresponding uncertainties after t = 15 and t = 30 are
presented in Table 1 for the three different algorithm versions with_r_OED , with_OED and without_OED.
The first column shows the objective function value of the optimal control problem (22) solved on
t ∈ [15, 30] with the true parameter values and the initial state values x(15) = (1.25847, 0.473369, 0)T

as the reference solution. The last row additionally presents the averaged objective function values of
the three algorithm versions and the last three columns contain the relative uncertainty and objective
function value improvements between the three algorithm versions.

First of all, Table 1 indicates that the three versions of Algorithm 2 provide estimated parameters
next to the true parameter values but the results qualitatively differ by means of the resulting parameter
uncertainties and the optimal control objective function values. The use of measurement time points
from optimal experimental designs (with_OED) compared to equidistant time points (without_OED)
improves the parameter uncertainty by 15% after t = 15 and by 34% after t = 30 on average.
The robustification of the OC and OED problems (with_r_OED) results in an improvement of the
parameter uncertainties compared to version without_OED of 15% after t = 15 and of 36% after
t = 30 on average and compared to the non-robust version with_OED of 0.26% after t = 15 and of
2.52% after t = 30 on average. The objective function of the optimal control problem is reduced by
approximately 8%, respectively 10%, using version with_r_OED or version with_OED compared to
version without_OED. The robustification of Algorithm 2 has a minor averaged improvement of 0.41%.

Table 1. Averaged estimated parameter values with their uncertainties and the objective function
value (MLV = x3(30)) after 50 runs of the optimal control problem (22) solved with three versions of
Algorithm 2 ( with_r_OED (A) , with_OED (B) , without_OED (C)). Iij(%) is the relative uncertainty and
objective value improvement after t = 15 and t = 30 of column i compared to column j. Column OC
contains the true parameter values with which the optimal control problem (22) is solved on t ∈ [15, 30]
and the resulting objective function value.

At t = 15

OC with_r_OED (A) with_OED (B) without_OED (C)

value value σ2 value σ2 value σ2 IAC IBC IAB

p1 1.000 1.0074 0.0003377 0.9925 0.0003300 1.0293 0.0005090 33.65 35.17 -2.33

p2 1.000 1.0085 0.0005540 0.9954 0.0005404 1.0267 0.0005313 -4.27 -1.71 -2.52

p3 1.000 0.9935 0.0005861 1.0073 0.0006063 0.9758 0.0006139 4.53 1.24 3.33

p4 1.000 0.9959 0.0006466 1.0053 0.0006635 0.9762 0.0008780 26.36 24.43 2.55

At t = 30

with_r_OED (A) with_OED (B) without_OED (C)

value value σ2 value σ2 value σ2 IAC IBC IAB

p1 1.000 1.0066 0.0002414 0.9974 0.0002418 1.0082 0.0004214 42.71 42.62 0.17

p2 1.000 1.0065 0.0003639 1.0004 0.0003706 1.0069 0.0004624 21.30 19.85 1.81

p3 1.000 0.9936 0.0003472 1.0029 0.0003582 0.9924 0.0005068 31.49 29.32 3.07

p4 1.000 0.9958 0.0003575 1.0014 0.0003764 0.9937 0.0006837 47.71 44.95 5.02

MLV 0.714 0.724 0.727 0.790 9.62 7.97 0.41
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Figure 2 shows exemplary the solution of the Lotka-Volterra fishing problem computed with the
three versions with_r_OED, with_OED and without_OED of Algorithm 2.

0 5 10 15 20 25 30

time

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1(t)

x2(t)

u(t)

(a) with_r_OED

0 5 10 15 20 25 30

time

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1(t)

x2(t)

u(t)

(b) with_OED

0 5 10 15 20 25 30

time

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1(t)

x2(t)

u(t)

(c) without_OED

Figure 2. Visualization of three versions (with_r_OED, with_OED and without_OED) of the feedback
optimal control Algorithm 2 applied to the Lotka-Volterra fishing example. The algorithm is performed
on the time interval [15,30]. On the time interval [0,15] seven measurements are taken for a state and
parameter estimation. The estimated parameters with the corresponding uncertainties and initial
states serve as input for the algorithm. In Figure 2a the robust version and in Figure 2b the non-robust
version of Algorithm 2 is used with measurement time points from optimal experimental designs.
Figure 2c presents the solution of algorithm 2 with measurements taken on an equidistant time
grid. After the last measurement time point uncertainty tubes are computed by 100 simulations
with parameter values sampled from a normal distribution with the estimated parameters as mean
p̂ = [0.982, 0.990, 1.015, 1.023] and variance Σ p̂ = diag(0.000214, 0.000321, 0.000347, 0.000351) in
Figure 2a, p̂ = [1.014, 0.998, 0.981, 0.977] and variance Σ p̂ = diag(0.000231, 0.000325, 0.000319, 0.000334)
in Figure 2b and p̂ = [1.031, 1.047, 0.977, 0.978] and Σ p̂ = diag(0.000413, 0.000470, 0.000463, 0.000636) in
Figure 2c.

4.4. Analyzing Finite Support Designs of Optimal Experimental Design Problems

In this section we demonstrate the theoretical result of Lemma 1 on the Lotka-Volterra optimal
experimental design problem.

The optimal solution w1∗(t) and w2∗(t) of the OED problem are plotted in Figure 3 together with
the information gain matrices

Π1(t) = F−1(t)
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and

Π2(t) = F−1(t)
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The Lagrange multipliers are also shown as horizontal lines in Figure 3a,b. Both Figures visualize
the result of Lemma 1 such that the touching of the information gains’ maxima is equivalent to a
singular arc of the sampling decisions w1(t) and w2(t).
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Figure 3. Visual relation between the trace of the information gain matrices Π1(t), Π2(t), the Lagrange
multipliers μ∗

1, μ∗
2 and the optimized sampling decisions w1∗(t), w1∗(t) of the Lotka-Volterra optimal

experimental design problem. (a) Information gain Π1(t) and sampling w1(t); (b) Information gain
Π2(t) and sampling w2(t).

4.5. Discussion

The measurement time points have a large impact on the uncertainty of the model parameters
and consequently an impact on the optimal control solution, even if the optimizing control does not
excite the system dynamics. The quantitative study of Subsection 4.3, which is summarized in Table 1,
significantly shows that the optimal measurement time points taken from non-robust and robust
optimal experimental designs lead to an averaged uncertainty improvement of 34%, respectively 36%,
compared to equidistantly taken measurements. The qualitatively different measuring positions are
visualized in Figure 2. The measurement time points of the optimal experimental designs are placed at
the beginning and at the end of the time interval [0,15] in which a first state and parameter estimation
is performed. During the optimal control phase starting from t = 15 the non-robust and robust optimal
experimental designs suggest measuring once, respectively twice, at the steep descent/ascent of the
populations on the interval [15,20] where a larger information content is expected compared to the
equidistant time points next to the trajectories’ steady state. The heterogeneity in the improvement
of the parameters’ uncertainties results in the used objective function trace(F−1(t f )) with which the
averaged parameter uncertainty is minimized and not each uncertainty separately. This leads to
slightly increased uncertainties of parameter p2 after t = 15 by the use of optimal experimental design.
A different scalar function φ(·) such as the determinant or the largest eigenvalue of the information
matrix might prevent this problem but this analysis is not part of the work. Besides this minor
increase, the estimated parameter values are closer to the true values using optimal experimental
designs in comparison to equidistant measurement time points. The uncertainty tubes in Figure 2
give an indication that the reduced uncertainty of the parameters from Algorithm 2 has an indirect
positive influence on the state uncertainty leading to tighter uncertainty tubes. The visual indication is
strengthened by the last row of Table 1 presenting the optimal control objective function value of the
reference solution and the averaged values resulting from the three different versions (with_r_OED,
with_OED and without_OED) of Algorithm 2. The reduced parameter uncertainties obtained from
non-robust and robust optimal experimental designs lead to a 8%, respectively 10%, objective function
value compared to the version without_OED with measurements taken on equidistant time points.

Lemma 1 is visualized for the Lotka-Volterra optimal experimental design benchmark problem in
Figure 3a,b. Whenever the Lagrange multiplier μ∗ is equal to the value of the information gain matrix,
the sampling decision variable w∗(t) is between 0 and 1.
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5. Conclusions

The paper presents a novel algorithm for feedback optimal control with measurement time points
for parameter estimations computed from optimal experimental design problems. It is based on
a decoupled approach to dual control. The performance of the algorithm is shown by 50 runs of the
Lotka-Volterra fishing benchmark example. The algorithm provides a 34% averaged reduction of
parameter uncertainties while applying an optimal control strategy when measurement time points are
used from optimal experimental designs compared to heuristically chosen equidistant measurement
time points for parameter estimations. A robustified version of the algorithm moreover reveals a 36%
averaged uncertainty reduction. Furthermore, a theoretical insight about the solution of the optimal
experimental design problem is given. Therefore Pontryagin’s Maximum Principle is applied to the
OED problem when the sum of optimization variables is constrained by one and a connection is
drawn between the trace of the information gain matrix and the Lagrange multipliers for a discrete
optimal design. The algorithmic and theoretical results are demonstrated on the Lotka-Volterra fishing
benchmark problem.
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Abstract: The proper design of RTO systems’ structure and critical diagnosis tools is neglected in
commercial RTO software and poorly discussed in the literature. In a previous article, Quelhas et al.
(Can J Chem Eng., 2013, 91, 652–668) have reviewed the concepts behind the two-step RTO approach
and discussed the vulnerabilities of intuitive, experience-based RTO design choices. This work
evaluates and analyzes the performance of industrial RTO implementations in the face of real settings
regarding the choice of steady-state detection methods and parameters, the choice of adjustable model
parameters and selected variables in the model adaptation problem, the convergence determination
of optimization techniques, among other aspects, in the presence of real noisy data. Results clearly
show the importance of a robust and careful consideration of all aspects of a two-step RTO structure,
as well as of the performance evaluation, in order to have a real and undoubted improvement of
process operation.

Keywords: static real-time optimization (RTO); on-line optimization; optimizing control; repeated
identification and optimization; numerical methods; industrial RTO systems

1. Introduction

Real-time optimization systems (RTO) are a combined set of techniques and algorithms that
continuously evaluate process operating conditions and implement business-focused decisions in
order to improve process performance in an autonomous way. It relies on static real-time optimization
strategies [1–5], which have been designated in the literature by real-time optimization [6], on-line
optimization [7,8] and optimizing control [9], for translating a product recipe from the scheduling layer
into the best set of reference values to the model predictive control (MPC) layer [10]. The two-step
approach, a model-based technique, is the most common (and possibly the only) static real-time
optimization strategy available in commercial RTO systems [11–13]. Its name derives from the
procedure employed for determining the set of decision variables, where plant information is used to
update model parameters based on the best fitting of measurements in the first step, and afterwards,
the updated model is used to calculate the set of decision variable values that are assumed to lead the
process to its best economic performance. RTO systems are widely used in the petrochemical industry
as a part of modern day control systems [14–17], but may also be found in other sectors, such as the
pulp and paper industry [18].

Great advantages are attributed to the use of a priori information in the form of a process
model, and model-based techniques may present superior performance among others; generally,
the more accurate the model, the better will be the RTO system performance [19,20]. Thus, such
RTO applications are typically based on rigorous steady-state models of processes. However, it has
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long been shown that manipulation of model parameters to fit available process measurements does
not necessarily guarantee the construction of an adequate model for process optimization [21,22].
For this reason, known as plant-model mismatch, some alternative procedures have been proposed
(e.g., [23–26]) based on stronger mathematical requirements and constraints that guarantee the
optimality of process operation. Unfortunately, these procedures demand a series of time-consuming
experimental measurements in order to evaluate the gradients of a large set of functions and variables.
Given the considerable impact on productivity, these implementations are virtually absent in current
industrial practice. Nevertheless, commercial software is usually based on a very standard two-step
structure and does not even take into account collateral improvements of this approach, such as the
use of multiple datasets [27], input excitation design [28,29] or automated diagnosis [30].

In fact, plant-model mismatch is not the only vulnerability of RTO systems, whose performance
can also be jeopardized by incomplete and corrupted process information, absence of knowledge
regarding measurement errors and performance issues related to numerical optimization techniques [31].
In addition, the use of continuous system diagnostic tools is not common, neither in the literature,
nor in commercial RTO systems. In this context, there are few works in the literature dedicated to
diagnosing and criticizing the obtained results and software tools of real-time optimization. Although
it is possible to find some valuable criticism about RTO implementations [32,33], the discussion is
normally presented in general terms, making it hard for practitioners to distinguish process-related
features from methodological limitations of the RTO approach.

The present work aims at presenting the performance evaluation of real industrial RTO systems.
The characteristics of operation shared by two RTO commercial packages from two different
world-class providers will be presented, which are actual implementations of the two-step RTO
approach, currently in use on crude oil distillation units from two commercial-scale Brazilian petroleum
refineries. The aim is not at exhausting the many aspects involved, but rather presenting some features
of large-scale RTO systems that are commonly blurred due to the great amount of information required
by optimization systems.

This article presents the basics of a two-step-based RTO system in Section 2. Then, it briefly
presents a general description of an industrial RTO system in Section 3, along with major details about
the two commercial systems discussed in this paper. The results of industrial RTO implementations
are discussed in Section 4. Finally, Section 5 suggests some concluding remarks.

2. Problem Statement

The idea of optimization is to find the set of values for decision variables that renders the extreme
of a function, while satisfying existing constraints. In this context, the main task of an optimization
system is to tune the vector of available degrees of freedom of a process in order to reach the “best”
value of some performance metric.

The vector of decision variables, u, is a subset of a larger set of input variables, I, that is supposed
to determine how the process behaves, as reflected by the set of output variables, O, thus establishing
a mapping of I → O. If a set of indexes df is used to define the vector of decision variables, thus:

u = I(df), df ⊂
{

1, 2, . . . , dim1(I)
}

, (1)

where dimn refers to the length of the n-th-dimension of an array. Common criteria used to select df

are the easiness of variable manipulation in the plant, the requirements of the industry and the effects
of the decision variables on process performance [34]. Characteristics of the feed, such as flow rate and
temperature, are commonly assigned as decision variables.

Besides the identification of indexes df for decision variables from the set of inputs, we could
identify a group that represents the expectation of some elements of I (e.g., vessel temperature,
feed composition, heat transfer coefficients, decision variables, among others) to change along an
operational scenario, being defined by a set of indexes var. In turn, those elements supposed to remain
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constant (e.g., tube diameters, coolant temperature, catalyst surface area, system equilibrium states,
thermodynamic constants, etc.) are represented by the set of indexes std. Mathematically, this can be
stated as:

I =
{

I(std), I(var)
}

, (2)

var ⊂
{

1, 2, . . . , dim1(I)
}

, std =
{

1, 2, . . . , dim1(I)
}
− var. (3)

Another important subset of input variables is external disturbances. As the system evolves
with time and disturbances of a stochastic nature are present, it is convenient to establish a partition
dividing disturbances into stationary and nonstationary, defining a two-time scale. When doing this,
we assume that nonstationary disturbance components are “quickly” varying, and there is a regulatory
control in charge of suppressing their influence, in such a way that they are irrelevant for the long-term
optimization of the process [35]. Thus, there remains only the persistent and/or periodic disturbances,
which have to be included in the long-term optimization. Employing a pseudo-steady-state assumption,
plant dynamics may be neglected, and process evolution can be represented as a sequence of successive
steady-state points. Hereafter, an element in this sequence is represented either as an array or with
the help of a subscript k. Accordingly, we can state the following for the elements of I supposed to
remain constant:

I(std, k) = I(std, 0) = I0(std) . (4)

The process behavior, as described by Ik and Ok, will thus present a performance metric Lk.
The performance metric is the result of the mapping φ : (Ik, Ok) → Lk, where φ vary with the
underlying process and may be defined in several ways. Nevertheless, it is conveniently represented
by an economic index, such as profit, in most cases. Roughly, profit is determined as the product value
minus the costs of production, such as raw material and utility costs. For example, in the work of
Bailey et al. [36] applied to the optimization of a hydrocracker fractionation plant, profit was adopted
as the performance metric, represented by the sum of the value of feed and product streams (valued as
gasoline), the value of feed and product streams (priced as fuel), the value of pure component feeds
and products and the cost of utilities. As stated above, optimization is the act of selecting the set of
values for vector u that conducts the process to the most favorable L = φ(I, O), i.e., selecting a proper
u∗, such that u∗

k+1 → L∗
k+1 given Ik and Ok at steady-state point k.

Input and output variables are related through a set of equations that express conservation
balances (mass, energy, momentum), equipment design constraints, etc., expressed as a set f of
equations called the process model. Another set of relationships g describes safety conditions, product
specifications and other important requirements, so that f and g represent the process optimization
constraints. Given the performance metric and the process optimization constraints, the static process
optimization is written as the following nonlinear programming problem:

u∗
k+1 := arg max

u
φ(Ik, Ok)

subject to f (Ik, Ok) = 0

g(Ik, Ok) ≤ 0

. (5)

Process information is primarily obtained through sensors and analyzers, which translate physical
and chemical properties of streams and equipment into more useful process values. The information
carried by the process is represented by the whole set of process variables Z = [IT, OT]T.
Unfortunately, in any real industrial case, the full vector Z is not available, and the lack of information
is related mainly to the absence of measurements due to management decisions made during the
process design. These decisions are based on sensor costs and known limitations of sensor technology,
as well as the lack of knowledge about the variables that constitute the real vector Z. As a consequence,
the real system is known only through the elements ms of Z, i.e.:
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Z =
{

Z(ms), Z(um)
}

ms ⊂
{

1, 2, . . . , dim1(Z)
}

um =
{

1, 2, . . . , dim1(Z)
}
− ms .

(6)

If, at steady instant k, the real plant is under the influence of Ik �= I0, the problem posed to the
RTO system may be described in the following terms: starting from the available information set
Qa = {Z(ms, k), I0a}, the RTO has to find out u∗

k+1 ≡ I∗k+1(df) that drives the process to L∗. In a
scenario of limited knowledge of the system, reflected by incomplete information of the current state
Z(ms, k), a new expanded set of information, Q+

a , has to be produced from Qa, so that the optimization
procedure is able to identify the right set u∗. We assume that, in the face of the structure of the
process optimization constraints ( f and g), the set of fresh measurements, Z(ms, k), carries an excess of
information that can be used to update some elements of the vector of offsets, Θ, which are modifiers
of Z, so that Z+ = Z + Θ.

Due to restrictions regarding the available information, in most problems only a subset θ ⊂ Θ,
represented by the index upd, can accommodate the existing excess of information present in
measurements. The remaining set of offsets, represented by the index fix, is supposed to be kept at
(assumed) base values, as shown in the following:

Θ =
{

Θ(fix), Θ(upd)
}

upd ⊂
{

1, . . . , dim1(Θ)
}

, fix =
{

1, . . . , dim1(Θ)
}
− upd

Θk(fix) = Θ0a(fix) ∀k .

(7)

It must be emphasized that this formulation implicitly assumes that the only process variables actually
changing during real-world operation are the sets of measured variables and updated parameters, in
such a way that it is possible to accommodate all uncertainties in the updated parameters. In other
words, it is assumed that there is no plant-model mismatch.

Information provided by sensors is expected to be similar, but not equal to the “true” information
produced by the process. Sensors incorporate into the process signal some features that are not related
to the behavior of variables, so that the observed values of measured variables Zmeas(ms) are different
from “true” values Z(ms). To cope with this kind of uncertainty, the measurement error is usually
modeled as the result of two components, a deterministic (the “truth”) and a stochastic one (the
“noise”). Defining z = Z(ms), a convenient form of modeling measurement errors consists in the
following additive relation:

zmeas = zmodel + ε , (8)

where zmeas represents the values of z acquired with the help of process instrumentation, zmodel are
values of z estimated by the process model f , which is a function of θ, and ε is the measurement error
vector, being a random variable.

In an ideal scenario, the RTO implementation relies on perfect knowledge of the input set Ik,
of the process optimization constraints f and g and of the performance metric φ. In the context of the
two-step RTO scheme, the adaptation step performs the task of selecting the set θk = Θk(upd) that
better explains measurements zmeas

k in light of the plant model. In order to do that, besides the model
structure, it is also necessary to take into account the probability of the occurrence of noise. In other
words, it is necessary to find the set θk that most likely gives rise to the real corrupted measurements
zmeas

k . This estimation problem is successfully dealt with by the statistical approach of maximum
likelihood estimation [37], as described in Equation (9), which consists of maximizing the likelihood
function Jid under constraints imposed by the process model. It should be noted that the elements of z
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included in the objective function are those related to the indexes obj, where dim(obj) ≤ dim(ms),
according to decisions made during the design of the RTO structure.

θ∗k := arg max
θ

Jid
[
zmeas

k (obj), zmodel
k (obj)

]
subject to f (Ik, Ok) = 0

. (9)

If ε follows a Gaussian probability density function, such that E[ε] = 0, Var[ε] = σ2
z ,

and Cov[εεT] = Vz, the problem defined in Equation (9) becomes the weighted least squares (WLS)
estimation:

θ∗k := arg max
θ

Jid =
[
zmeas

k (obj)− zmodel
k (obj)

]T
V−1

z

[
zmeas

k (obj)− zmodel
k (obj)

]
subject to f (Ik, Ok) = 0

, (10)

where Vz is the covariance matrix of zmeas, which is normally assumed to be diagonal (i.e., measurement
fluctuations are assumed to be independent).

In summary, a typical RTO system based on the two-step approach will, at any time: (i) gather
information from the plant; (ii) detect stationarity in data series, defining a new steady state k; (iii) solve
the model updating problem (such as Equation (10)); and (iv) determine the best set of decision
variables by solving Equation (5).

3. RTO System Description

The traditional implementation of an RTO system is based on the two-step approach, which
corresponds to both commercial systems considered in this work. A typical structure of a commercial
RTO system is shown in Figure 1, which relates to an application in a crude oil atmospheric distillation
unit. This RTO system has the following main modules:

(a) Steady-state detection (SSD), which states if the plant is at steady state based on the data gathered
from the plant within a time interval;

(b) Monitoring sequence (MON), which is a switching method for executing the RTO iteration
based on the information of the unit’s stability, the unit’s load and the RTO system’s status; the
switching method triggers the beginning of a new cycle of optimization and commonly depends
on a minimal interval between successive RTO iterations, which typically corresponds to 30 min
to 2 h for distillation units;

(c) Execution of the optimization layer based on the two-step approach, thus adapting the stationary
process model and using it as a constraint for solving a nonlinear programming problem
representing an economic index.

The RTO is integrated with the following layers:

• production planning and scheduling, which transfer information to it;
• storage logistics, which has information about the composition of feed tanks;
• Distributed control system (DCS) and database, which deliver measured values.

The decision variables are implemented by the advanced control system, which will compute the
proper dynamic trajectory for reaching the RTO solution.

In the present work, the discussed results are associated with two RTO systems actually running
in crude oil distillation units in distinct commercial-scale refineries located in Brazil. Both RTO
commercial packages are from two different world-class providers. In doing this, we aim at preferably
using one for analyzing the generated data (referred to as Tool A), while the other is used to compare
the systems’ architecture and algorithms (referred to as Tool B). The set of data from RTO system Tool
A includes the results obtained from 1000 RTO iterations, which corresponds to a three-month period.
In addition, Tool A has a static process model comprised by approximately 105 equations.
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Figure 1. Topology of a real RTO system running in a crude oil distillation unit. MON, monitoring
sequence; SSD, steady-state detection; APC, advanded process control; DCS, distributed control system.

4. Industrial RTO Evaluation

The evaluation of real RTO implementations is presented in this section focusing on two aspects:
steady-state detection and adaptation and optimization. The former is supported by the fact that
the applied process model is static, and only stationary data will render a valid process adaptation.
Acting as a gatekeeper in the system, steady-state detection has a great influence on RTO performance.
However, it is hardly discussed in the RTO literature. On the other hand, the latter is extensively
studied in many articles. Analyses here will be mainly based on problem formulation issues and
observed variability in the results.

4.1. Steady-State Detection

An important element of RTO systems refers to the mechanism that triggers the process
optimization. Traditionally, it is based on the stationarity of measured process data and is accomplished
by the SSD module.

4.1.1. Tool A

Tool A offers two options for detecting the steady state, shown to the user under the terms
“statistical method” and “heuristic method”. Formally, the former corresponds to the statistical test
suggested by von Neumann [38]. This test establishes the comparison of the total variance of a signal
and the variance of the difference between two successive points within this signal. The total variance
of a signal x for a data window with n points is given by the sample variance (s2), according to:

s2 =
1

n − 1

n

∑
i=1

(
xi − X

)2 , (11)

where X is the sample mean, while the variance of the difference between two successive points
is expressed by:

s2
d =

1
n − 1

n

∑
i=2

(xi − xi−1)
2 . (12)
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These two variances give rise to the statistic R [38,39], which is eventually expressed as C [40],
defined as:

R =
s2

d
s2

C = 1 − 1
2

R .
(13)

Nevertheless, Tool A adopts this method with a slight difference. There is an extra option, where the
user may define a tuning parameter, τSM, which changes the definition of R in the following way:

R =
max(s2

d, τSM)

s2 . (14)

Then, the signal is static if R is greater than a critical value Rc (or if C is lower than a critical value Cc).
The so called “heuristic method” makes use of two versions of the original signal subjected to

filters with distinct cut frequencies, which are indirectly manipulated by the user when defining
the parameters fL and fP, according to Equation (15). The filtering (or simplification) represents an
exponentially-weighted moving average, or conventional first-order filter, that requires little storage and
is computationally fast [41]. The signal version with a low cut frequency (XP) is called the “heavy filter”,
while the other (XL) is called the “light filter”. The test is very simple and establishes that the signal is
stationary if the difference between these two filtered signals is lower than a predetermined tolerance.

XL(i) = fLX(i) + (1 − fL)XL(i − 1)

XP(i) = fPX(i) + (1 − fP)XP(i − 1).
(15)

It is worth noting that both the “statistical method” and the “heuristic method” are somewhat
combined in the method proposed by Cao and Rhinehart [41]. The method is based on the R-statistic,
using a ratio of two variances measured on the same set of data by two methods and employs three
first-order filter operations, providing computational efficiency and robustness to process noise and
non-noise patterns. Critical values and statistical evidence of the method to reject the steady-state
hypothesis, as well as to reject the transient state hypothesis have already been discussed in the
literature [42,43]. This method was also modified in [44] by optimizing the filter constants so as to
minimize Type I and II errors and simultaneously reduce the delay in state detection.

From a user point of view, the experience shows that the “heuristic method” is overlooked with
respect to the “statistical method”. This might be related to the greater dependence of this method on
user inputs, where there must be a total of 3 · nvar parameters, since each signal requires a value of fL,
fP and tolerance. Besides, the tolerances are not normalized and must be provided in accordance with
the unit of the original signal.

Considering the use of RTO package Tool A, each parameter in these methods is defined by the
user. In the statistical method (SM), the presence of the τSM tolerance (Equation (14)) allows, in practice,
the user to define what is (or will be) considered stationary. Thus, any statistical foundation claimed
by the method is jeopardized by a user-defined choice based on its own definition. In the case of the
heuristic method (HM), the arbitrary nature of the parameters puts the user in charge of the decision
making process, directing stationarity towards its own beliefs, as it is for SM. In spite of this, given the
large number of inputs, it is likely that the user will not be able to anticipate the effects of its choice on
the signal shape.

4.1.2. Tool B

Tool B also presents two options for stating signals’ stationarity. One of them is the R-statistic
(Equation (13)), as described above for Tool A. The other option is comprised by a hypothesis test
to assess whether or not the average values of two halves of a time window are identical. First, a
hypothesis test is applied to the ratio between the variances. This is accomplished by means of the
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F-statistic [45], where the two subsequent time intervals i and j have ni = nj data points. If the null
hypothesis of identical variances is rejected, then the mean values Xi and Xj are compared by means
of the τale variable [46,47], defined as:

τale =
Xi − Xj√

s2
i

ni
+

s2
j

nj

. (16)

If the values within time intervals i and j are normal and independent, τale will follow the Student
t-distribution with nDF degrees of freedom, determined by:

nDF =

(
s2

i
ni
+

s2
j

nj

)2

(s2
i /ni)2

ni−1 +
(s2

j /nj)2

nj−1

. (17)

In turn, if the null hypothesis of identical variances is accepted, a second test assesses if the difference
between these averages is lower than a given tolerance (ε). This is supported by the assumption that
the t-statistic determined by Equations (18) and (19) follows a Student t with ni + nj − 2 degrees of
freedom. In the particular case of Tool B, these tests always have a fixed significance level of 10%.

st =
s2

i (ni − 1) + s2
j
(
nj − 1

)
ni + nj − 2

. (18)

t =

∣∣Xi − Xj
∣∣− ε[

st
(
1/ni + 1/nj

)]1/2 . (19)

The procedure applied if the null hypothesis of identical variances is accepted is similar to the method
proposed by Kelly and Hedengren [48], which is also a window-based method that utilizes the Student
t-test to determine if the difference between the process signal value minus its mean is above or below
the standard deviation times its statistical critical value. In this method, non-stationary is identified
with a detectable and deterministic slope, trend, bias or drift.

Besides the choice of the method and its parameters, both Tools A and B also delegate to the user
the selection of which variables (or signals) will be submitted to the stationarity test. In this context,
the plant is assumed at steady state if a minimum percentage of the selected variables passes the test.
Again, the minimum percentage is a user-defined input.

4.1.3. Industrial Results

Let us analyze how these choices are reflected in real results. Employing Tool A, the set of
signals chosen in the SSD module consists of 28 process variables, comprised by 10 flow rates and
18 temperatures. It must be stressed that the real dimension of this set of signals may vary with
time as the criteria for selecting variables may also change along the operation. Such a change in
criteria for selecting variables for the SSD module increases the complexity of any trial to evaluate RTO
system performance enormously. Considering the test SM and the historical data of 23 days for a
set of eight signals (six flow rates F and two temperatures T), Table 1 presents the percentage of time
(or percentage of data points) assumed static for each variable. Percentage results are determined from
two sources, computations obtained by applying test SM as it is conceived (according to Equation (13))
and data gathered from Tool A by applying test SM as it is available in the RTO package (according to
Equation (14)). Analyzing Table 1, it can be seen that the frequency of points assumed static by Tool
A ( rEE|RTO) is much greater than that inferred by the original test SM ( rEE|SM). The high percentage
values of static points shown by the RTO is due to the tolerance values (τSM) that overlap the calculated
values of variances by successive differences (s2

d), as defined in Equation (14). A high value of τSM will
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result in a high value of the R-statistic, and the signal will be static for R values greater than the critical
value Rc. Therefore, the tuning parameter τSM is defining stationarity.

Table 1. Percentage of points deemed static for the set of 8 variables. rEE|SM: percentage computed
using results obtained by the C-statistic. rEE|RTO: percentage computed using real results obtained by
the RTO system Tool A. F, flow rate; T, temperature.

Tag rEE|SM rEE|RTO

F1 0.0 98.3
F2 3.2 81.1
T1 0.0 97.3
T2 0.0 90.9
F3 0.0 97.1
F4 4.8 99.5
F5 0.0 90.1
F6 6.8 84.4

When analyzing Table 1, an honest question that could naturally arise is which method is right,
since one method essentially never finds the variables at steady state, while the other effectively
finds them at steady state continually. In fact, the observed contradiction in results just shows how the
methods have different definitions for stationarity. In other words, each method and its parameterization
defines stationarity differently. Furthermore, many parameters are interrelated, such as the number of
window data points and critical values, and the engineer/user will be hardly aware of how its choice is
affected by, e.g., control system tuning, noiseless signals and valve stiction. The right method is the
one that allows the RTO to determine the true plant optimum; since this condition is unknown, the
right SSD method is also unknown. In this context, a metric of assessment of RTO performance, as is
discussed in Section 4.2, could be used to compare the utility of SSD methods and parameters to the
improvement of process performance metric φ and determine the best setting for SSD.

An equivalent form to obtain the effect of τSM tolerances (as observed in Table 1 for rEE|RTO)
consists of manipulating the critical values of acceptance, Rc. Figure 2 shows that, given a convenient
choice of critical value Rc or its analogous Cc, levels of stationarity for rEE|SM can be obtained similar
to those observed in Table 1 for the RTO system ( rEE|RTO), in an equivalent form to the use of
tolerances τSM.

Figure 2. Percentage of values assumed static as a function of critical values Cc (the analogous of Rc as
defined by Equation (13)) of the hypothesis test applied to signals of four process variables.
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However, if the tolerance is used without an appropriate evaluation of the size of the data horizon,
the steady-state detection might be biased towards the acceptance of stationarity. In this case, there is
an increase in the inertia of transitions in detection, thus delaying changes of state. This behavior is
illustrated in Figure 3, which shows successive changes in the signal of variable F2 during a specific
time interval. It can be seen that stationarity is indicated with delay, which corresponds to those
moments where the signal already presents a state of reduced variability. Assuming that the visual
judgment is a legitimate way of determining signal stationarity, it is clear that, in this case, dynamic
data are used to update the static process model and support the determination of optimal process
operating condition.

Figure 3. Normalized values of flow rate F2 (blue line) and the corresponding indication of stationarity
according to the RTO system (pink line), where one means steady and zero means unsteady.

The frequency of stationarity may seem surprisingly low as pointed out by the SM in the absence
of changes in tolerances and critical values. This is due to factors uncorrelated with the process, such as
the sampling interval between measurements and signal conditioning filters. When this test is applied
to the values from Figure 3, results reveal no stationarity at all during the period. Even more weird
is that, based on a visual inspection, the values are apparently steady within the interval comprised
between the beginning and ∼200 min. However, it must be noted that this method is very sensitive to
short-term variability, being affected by signal preprocessing in the DCS and by the sampling interval.
If one observes the signal behavior within the first 200 min with appropriate axes values, as in Figure 4,
a pattern of autocorrelation can be noted, independent of the signal amplitude. The autocorrelation
renders the difference between two successive points to be lower than that expected in the case of no
autocorrelation, i.e., in the case that each point were due to a pure stochastic process. As a consequence,
the value of s2

d (Equation (13)) decreases when compared to the variance in relation to the average.
This is made clear from Figure 5, where the evolution of s2

d and 2s2 along the first 200 min is depicted.
Thus, the values of C are increased beyond the critical value of acceptance.
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Figure 4. (A) Normalized values of flow rate F2, as shown in Figure 3, in restricted axes values;
(B) C-statistic values for the corresponding time interval. The value of Cc according to the method is 1.64.

Figure 5. Evolution of s2
d and 2s2 along the first 200 min for the signal depicted in Figure 3.

4.2. Adaptation and Optimization

The decision variables for adaptation and optimization problems, θ = Θ(upd) and u = I(df),
are selected by the user on both RTO systems. Since this choice is not based on any systematic
method, it is supported by testing and experience or by the engineer/user beliefs, expectations and/or
wishes. Therefore, decision variable selection is restricted to the user, and the optimizer only chooses
their values.

Both commercial RTO systems discussed here make use of a recent data window in the adaptation
step, which comprises a series of values along a time horizon of a certain length. The values within the
moving data horizon are measurements obtained from the plant information system for each measured
variable. The data window Zw is represented as:

Zw =

⎡⎢⎣ zmeas
c−H
...

zmeas
c

⎤⎥⎦ , (20)
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where zmeas
c−H and zmeas

c are the set of data obtained at the first and current sampling instants of the
moving window by direct observation and H is the number of successive time steps uniformly
separated by a sampling time of ta, defining a data horizon from (tc − H ta) to tc. Considering
applications in crude oil distillation units, it is common to adopt the size of the data window as 1 h,
with a sampling instant typically in the range between 0.5 and 1 min, which results in n between 120
and 60, respectively.

The model adaptation step in both RTO systems consists of a nonlinear programming model whose
objective function is the weighted sum of squared errors between plant measurements and model
predictions, as presented in Equation (21). The weights, w2, are the variances of each measurement.

θ∗k := arg min
θk

Jid = ∑
dim(obj)
j=1

1
w2

i

[
zmeas

k [obj(j)]− zmodel
k [obj(j)]

]2

subject to f (Ik, Ok) = 0

θk = Θk(upd)

zmeas
k [obj(j)] = 1

H ∑c
i=c−H Zw [i, obj(j)]

. (21)

It must be noted that there is an important difference between the objective function employed by
Equation (21) and the maximum likelihood estimator shown in Equation (10) for Gaussian, zero mean
and additive measurement errors. Both tools reduce the data window of each variable to only one
value, which corresponds to the average of measurements within the window (most likely due to the
easiness of implementation). In this case, the changes go beyond the apparent simplicity that such a
modification may introduce to carry on the calculations. The resulting expression is not assured to
hold the desired statistical properties that apply to a maximum likelihood estimator, i.e., unbiased and
efficient estimations [37]. In addition, as shown in Equation (21), the elements wi correspond to the
standard deviation of measurements. From this, the a priori assumption of independent errors is also
clear, since the expression “corresponds” to a simplification of the use of a diagonal covariance matrix.

It is noted in industrial implementations that the choice of sets upd and obj (i.e., the decision
vector θ and the set of variables in the objective function) is almost always based on empirical
procedures. It is interesting to note that the premises that support the choices of obj set are hardly
observed. According to these premises, an important element is that obj encompasses measured
variables, which are non-zero values of Zw, directly affected by the corruption of experimental signals.
However, it may be seen in real RTO systems that there is the inclusion of updated parameters and
non-measured variables (upd set) in the set obj. A typical occurrence of such a thing is the inclusion of
load characterization parameters, which belong to the upd set and are often included in the objective
function of the model adaptation problem. In this case, where there is no measured value for Zw(upd),
fixed values are arbitrarily chosen for these variables. As a result, this practice limits the variation of
these variables around the adopted fixed values. This approach degenerates the estimator and induces
the occurrence of bias in estimated variables.

In order to take a closer look at the effects of ill-posed problems in RTO systems, we will discuss
the influence of each variable in obj over the value of the objective function from Equation (21) with
real RTO data. Assuming that Equation (10) is valid, measurement errors are independent and the
knowledge of the true variance values for each measured variable is available, it is expected that
the normalized effects, ct, of each variable in obj are similar, as defined in Equation (22). In Tool A,
the number of variables in set obj was 49. The time interval between two successful and successive
RTO iterations has a probability density with 10th, 50th and 90th percentiles of 0.80, 1.28 and 4.86,
respectively. The normalized effects ct, as defined in Equation (22), are shown in Figure 6. Results show
that it is common that fewer variables within obj have greater effects in objective function Jid values.
For a period of three months, the RTO system from Tool A has been executed 1000 times, but achieved
convergence for the reconciliation and model adaptation step in 59.7% of cases. Besides the formulation
of the estimation problem, this relatively low convergence rate might be caused by the following
reasons: (i) the nonlinearity of the process model that may reach hundreds of thousands of equations,
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since the optimization of a crude oil atmospheric distillation unit is a large-scale problem governed
by complex and nonlinear physicochemical phenomena; (ii) the model is not perfect, and many
parameters are assumed to remain constant during the operation, which may not be the real case; such
assumptions force estimations of updated parameters to accommodate all uncertainty and may result
in great variability in estimates between two consecutive RTO iterations; and (iii) the limitations of the
employed optimization technique, along with its parameterization; in most commercial RTO packages,
sequential quadratic programming (SQP) is the standard optimization technique, as is the case for Tool
A. Regarding convergence, thresholds are empirical choices, generally represented by rules of thumb.

ctj =

1
s2

j

[
Zw[obj(j)]− z[obj(j)]

]2

∑
dim(obj)
i=1

1
s2

i

[
Zw[obj(i)]− z[obj(i)]

]2 . (22)

In Table 2 are presented contribution details for variables with the 10 greatest values of the 50th
percentile (median) for the considered period. The tag field indicates the nature of the variable, which may
be a flow rate (F), a temperature (T) or a model parameter (θ), i.e., an unmeasured variable. Besides the
comparison of the median values, the values for the 10th and 90th percentiles show greater variance
in the effects of each variable. As an example, the first two variables in Table 2 vary as high as 100%
among percentiles. In fact, some discrepancy among the contribution of variables in obj in objective
function values is expected, as long as the variables are expressed with different units, and this effect is
not fully compensated by the variances. Nevertheless, this fact does not explain the high variation along
the operation, which can be attributed to the violation of one or more hypothesis in different operating
scenarios. Even in this case, it is not possible to determine which assumptions do not hold.

Variable number

Figure 6. Interval between the first and third quartiles of the normalized effect of each variable within
obj for the objective function from the model adaptation problem (Equation (21)). The x-axis refer to
the relative position of variables in the vector obj.

It is not an easy task to analyze the operation of a real RTO system, since the knowledge about
factors that influence and describe the plant behavior is limited. For this reason, we will put emphasis
on the variability of the system’s results. In doing this, we are able to compare the frequency of the
most important disturbances (such as changes in the load) with the variability presented by RTO results
(such as objective function values, estimated variables and the expectancy of economic performance).
In this context, it is worth assessing the behavior of estimated variables that are related to the quality
of the load of the unit. In refineries, the molecular characterization of the oil is not usual. In turn,
physicochemical properties are used to describe both the oil and its fractions (cuts). A common analysis
is the ratio between distillation fractions and their volumetric yields, which results in profiles such as
ASTM-D86 (ASTM-D86 is a standard test method for the distillation of petroleum products and liquid
fuels at atmospheric pressure, which evaluates fuel characteristics, in this case, distillation features).
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In the conventional operation of a refinery, such profiles are not available on-line for the load, even
though there are databases for oils processed by the unit. These analyses may differ from the true
values due to several factors:

• the database might present lagged analyses, given the quality of oil changes with time;
• there might be changes in oil composition due to storage and distribution policies from well to

final tank. Commonly, this causes the loss of volatile compounds;
• mixture rules applied to determine the properties of the load might not adequately represent its

distillation profile;
• eventually, internal streams of the refinery are blended with the load for reprocessing.

Table 2. Percentile values of normalized effects (%) of the 10 most influential variables in the value of the
objective function from the model adaptation problem. The rank is relative to the 50th percentile (P50).

Position in Rank Tag ∈ ms P50 P90 P10

1 T01 yes 21.53 54.83 1.15
2 T02 yes 15.99 54.33 0.19
3 F01 yes 2.37 11.39 0.10
4 T03 yes 1.95 7.49 0.48
5 T04 yes 1.68 14.21 0.35
6 T05 yes 1.41 7.01 <0.01
7 T06 yes 1.17 5.94 0.04
8 F07 yes 1.12 7.39 <0.01
9 θ(8) no 0.96 4.08 0.09

10 T07 yes 0.65 2.17 0.12

Since the characterization of the load has a huge impact in determining the quality and quantity of
products, these sources of uncertainty generally motivate the use of specific parameters, called knots,
that are related to the fit of the distillation profile. The distillation profile is divided into sections,
and each knot represents the slope coefficient of each section of the profile. These parameters are thus
included in the set of estimated parameters (upd). In the present case, 11 knots are the degrees of
freedom of the model adaptation problem and could be used to infer the quality of the load based on
available measurements and the process model for the distillation column.

The estimated knots’ variability is depicted in Figure 7A by means of the distribution of estimated
values for each knot, where the reference load corresponds to the knot equal to one. In addition,
Figure 7B also shows the relative difference between two successive estimations of each knot. A high
total variability, as well as a high amplitude for the relative difference of two successive estimations can
be seen. However, considering the knowledge about the real load, such observations are incompatible
with the state of the load during the operation. In the considered distillation unit, the oil load changes
approximately once a week, which involves three tank transfers. Nonetheless, relative differences as
high as 20% are common between two successive estimates for many knots. Considering an interval
of 1.5 h between estimations, such a variability would not be expected. Besides that, as knots are
independent estimates, the variation between contiguous knots might give rise to distillation profiles
that do not make real physical sense.

In Table 3 are presented the lower and upper bounds applied to knots in the model adaptation
problem, as well as the relative number of iterations with active constraints under convergence.
From the results, one might infer that the observed variability in estimated values of knots would be
higher if the bounds have allowed. These bounds deliberately force values to real physical ranges.
However, this procedure alone does not guarantee real physical meaning, but only restricts the expected
values to reasonable ranges. Indeed, with fewer degrees of freedom, the numerical optimization
procedure would search for other “directions” to minimize the objective function, thus propagating the
uncertainties to other decision variables. In summary, the approach compensates the lower flexibility to
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change some parameters by introducing bias in the estimates of other decision variables. Even poorer
estimations, as those trapped in local minima, were further discussed in Quelhas et al. [31].

(A) (B)

Figure 7. (A) Distribution of estimated values of knots; (B) distribution of the relative deviation
between two successive estimations of a knot.

Table 3. Lower and upper bounds on the knots of the model adaptation problem and the percentage
number of iterations in which the constraint is active under convergence.

Knot Liminf Limsup Active Constraint (%)

1 0.2 10 42.5
2 0.2 10 13.4
3 0.2 7.5 31.5
4 0.2 7.5 81.7
5 0.2 7.5 0.7
6 0.2 7.5 0.2
7 0.2 7.5 92.1
8 0.2 3 19.4
9 0.2 3 1.2

10 0.2 3 14.6
11 0.2 3 0.3

The high variability is also reflected in the values of the objective function, as can be seen in
Figure 8, where the relative difference of objective function values (Jid) is shown under convergence
between two successive iterations, i.e.,

ΔJid
k =

Jid
k − Jid

k−1

Jid
k−1

.

In the absence of actual short-term changes in the process (i.e., between two RTO iterations), it is not
easy to explain such a high variation in terms of real changes or disturbances. Reasonable explanations
could be the violation of any of the hypothesis assumed for the identification problem and/or the
quality of the solution given by the employed numerical optimization technique [31].

Finally, it is worth analyzing the metric of assessment of the RTO system performance.
The following two performance metrics are considered: the relative difference between the calculated
profit value before, φ(uk), and after, φ(u∗

k+1), the RTO iteration k (Δφ
prev
k , Equation (23)); and the

relative difference between the profit value calculated at the beginning of RTO iteration k, φ(uk),
and the profit estimated by the previous iteration, φ(u∗

k ) (Δφ
veri f
k , Equation (24)). It must be emphasized
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that both metrics refer to profit estimates calculated by the RTO model, which will reflect real values
only for a perfect model.

Δφ
prev
k =

φ(u∗
k+1)− φ(uk)

φ(uk)
100 . (23)

Δφ
veri f
k =

φ(uk)− φ(u∗
k )

φ(u∗
k )

100 . (24)

Figure 8. Distribution of the relative difference of objective function values under convergence between
two successive iterations (ΔJid).

As shown in Figure 9, the most used metric of assessment of RTO performance, Δφprev, has an
optimistic bias, as it always reports positive values (as it should be for the converged RTO results).
However, the results of Δφveri f , reflecting the process response over the last result, reveal that changes
in decision variables are not leading to better economic performance in all RTO iterations. Even worse,
they reveal the addition of useless variability to decision variables. In this context, considering the
validity of the results for Δφprev, it is worth noting its low value of only 0.01 for the 50th percentile. This
reveals the clear need of analyzing RTO results to distinguish between statistically-significant results
from those that are due to a common cause of variation [30,49–51]. If the dominant cause of plant
variation results from the propagation of uncertainties throughout the RTO system, implementing
these changes could lower profit, as is interestingly observed in the results of Δφveri f , confirmed by a
negative 50th percentile.

f f

Figure 9. Distribution of the values for Δφprev and Δφveri f for the RTO profit. Above the graph,
the percentiles P5, P50 and P95 are indicated as [P5 P50 P95].
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5. Conclusions

The implementation of optimization procedures in real time for the improvement of processes
constitutes a major challenge in real-world implementations, as is the case of RTO systems.
In this context, we are compelled to confirm the quotation from Bainbridge [52] that “perhaps the
final irony is that it is the most successful automated systems, with rare need for manual intervention,
which may need the greatest investment in human operator training”.

This work has evaluated and analyzed the performance of RTO packages from two world-class
providers running on crude oil distillation units from two different commercial-scale Brazilian
petroleum refineries. We have briefly presented the steady-state detection methods available on
these RTO packages and discussed the choice of the method and its parameters, the selection of
measured signals to be submitted to the stationarity test and the tolerance criteria. It was shown that in
spite of the methods available, some tuning parameters might compromise any statistical foundation
eventually present, redefining stationarity in terms of the user’s choice without improving the global
performance of RTO. Regarding model adaptation, we have examined the problem formulation,
the choice of adjustable model parameters and the selection of variables in the objective function,
the convergence rate of the optimization technique and the variability of estimates. It was presented
that the problem formulation lacks features to ensure unbiased and efficient estimations, which
contribute to the addition of useless variability to decision variables. Finally, we have analyzed
economic optimization results and showed that even though the RTO system is able to find improved
values for decision variables, their implementation might not lead to better economic performance as
estimated by the RTO. In practice, all choices are done on a subjective basis, supported by the operating
experience of engineers, as well as empirical knowledge of software vendors. As has been shown, a
possible outcome is that RTO results have an optimistic bias, in which changes in decision variables
are not leading to better economic performance in all RTO iterations (Figure 9).

Given the already established conditions for model adequacy within the context of the two-step
approach [22], updated parameters are just mathematical tools used by the model fitting procedure
to accommodate any disagreement between model predictions and plant measurements. In other
words, it is assumed that all modeling uncertainties, though unknown, might be incorporated in the
vector of uncertain parameters θ. Since the plant will typically not be in the set of models obtained
by spanning all of the possible values of the model parameters, the two-step approach will fail in the
presence of structural plant-model mismatch. However, we should ask if the structural inability of the
two-step approach is the primary source of uncertainty in RTO systems. Indeed, the disagreement
in the mathematical model structure is not the only source of plant-model mismatch. The fault in
steady-state detection is a source of model uncertainty and not a parametric one. This is due to the fact
that derivative terms are ignored. Even for methods that theoretically are not affected by plant-model
mismatch, a wrong steady-state detection will negatively impact the method’s result. In addition,
given the enormous amount of data and gradient estimations that would be required in a large-scale
process, none of such “model-free” methods are viable for application in real industrial processes.
This notwithstanding, the aforementioned disagreement may be caused by any factor that impairs
information acquisition and processing in real implementations, constituting sources of uncertainty,
such as: (i) measurements signals corrupted by noise with an unknown error structure; (ii) variation of
the elements of input I, neither measured, nor estimated (var � (ms ∪ upd)); (iii) use of the wrong
default values for fixed variables; (iv) use of an inaccurate process model; (v) violation of maximum
likelihood assumptions; (vi) imperfect numerical optimization method; and (vii) imperfect steady state
detection or gross error filtering.

From a practical point of view, the task of diagnosing an RTO system based on the two-step
approach is a challenging one. There is a very high level of uncertainty spread along all system
modules. Since conclusions will likely be dependent on non-validated assumptions, the overlapping of
too many possible causes of failure hampers the production of higher level diagnostics. In this context,
this work illustrates some crucial features involved when evaluating RTO systems’ performance,
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as already discussed in detail elsewhere [31]. Some results from two industrial RTO implementations
are analyzed, providing some insights on common causes of performance degradation in order to have
a clearer picture of the system performance and its main drawbacks. Such an analysis is a step forward
towards the proper identification of existent system vulnerabilities, so that the RTO system structure
and function may be improved.
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SSD Steady-state detection
APC Advanced process control
DCS Distributed control system
SM Statistical method
HM Heuristic method

References

1. Garcia, C.E.; Morari, M. Optimal operation of integrated processing systems. Part I: Open-loop on-line
optimizing control. AIChE J. 1981, 27, 960–968.

2. Ellis, J.; Kambhampati, C.; Sheng, G.; Roberts, P. Approaches to the optimizing control problem. Int. J.
Syst. Sci. 1988, 19, 1969–1985.

3. Engell, S. Feedback control for optimal process operation. J. Process Control 2007, 17, 203–219.
4. Chachuat, B.; Srinivasan, B.; Bonvin, D. Adaptation strategies for real-time optimization. Comput. Chem. Eng.

2009, 33, 1557–1567.
5. François, G.; Bonvin, D. Chapter One—Measurement-Based Real-Time Optimization of Chemical Processes.

In Control and Optimisation of Process Systems; Advances in Chemical Engineering; Pushpavanam, S., Ed.;
Academic Press: New York, NY, USA, 2013; Volume 43, pp. 1–50.

6. Cutler, C.; Perry, R. Real time optimization with multivariable control is required to maximize profits.
Comput. Chem. Eng. 1983, 7, 663–667.

7. Bamberger, W.; Isermann, R. Adaptive on-line steady-state optimization of slow dynamic processes.
Automatica 1978, 14, 223–230.

8. Jang, S.S.; Joseph, B.; Mukai, H. On-line optimization of constrained multivariable chemical processes.
AIChE J. 1987, 33, 26–35.

9. Arkun, Y.; Stephanopoulos, G. Studies in the synthesis of control structures for chemical processes: Part IV.
Design of steady-state optimizing control structures for chemical process units. AIChE J. 1980, 26, 975–991.

10. Darby, M.L.; Nikolaou, M.; Jones, J.; Nicholson, D. RTO: An overview and assessment of current practice.
J. Process Control 2011, 21, 874–884.

11. Naysmith, M.; Douglas, P. Review of real time optimization in the chemical process industries. Dev. Chem.
Eng. Miner. Process. 1995, 3, 67–87.

12. Marlin, T.E.; Hrymak, A.N. Real-Time Operations Optimization of Continuous Processes; AIChE Symposium
Series; 1971-c2002; American Institute of Chemical Engineers: New York, NY, USA, 1997; Volume 93,
pp. 156–164.

156



Processes 2016, 4, 44

13. Trierweiler, J.O. Real-Time Optimization of Industrial Processes. In Encyclopedia of Systems and Control;
Baillieul, J., Samad, T., Eds.; Springer: London, UK, 2014; pp. 1–11.

14. Rotava, O.; Zanin, A.C. Multivariable control and real-time optimization—An industrial practical view.
Hydrocarb. Process. 2005, 84, 61–71.

15. Young, R. Petroleum refining process control and real-time optimization. IEEE Control Syst. 2006, 26, 73–83.
16. Shokri, S.; Hayati, R.; Marvast, M.A.; Ayazi, M.; Ganji, H. Real time optimization as a tool for increasing

petroleum refineries profits. Pet. Coal 2009, 51, 110–114.
17. Ruiz, C.A. Real Time Industrial Process Systems: Experiences from the Field. Comput. Aided Chem. Eng.

2009, 27, 133–138.
18. Mercangöz, M.; Doyle, F.J., III. Real-time optimization of the pulp mill benchmark problem.

Comput. Chem. Eng. 2008, 32, 789–804.
19. Chen, C.Y.; Joseph, B. On-line optimization using a two-phase approach: An application study. Ind. Eng.

Chem. Res. 1987, 26, 1924–1930.
20. Yip, W.; Marlin, T.E. The effect of model fidelity on real-time optimization performance. Comput. Chem. Eng.

2004, 28, 267–280.
21. Roberts, P. Algorithms for integrated system optimisation and parameter estimation. Electron. Lett. 1978,

14, 196–197.
22. Forbes, J.; Marlin, T.; MacGregor, J. Model adequacy requirements for optimizing plant operations.

Comput. Chem. Eng. 1994, 18, 497–510.
23. Chachuat, B.; Marchetti, A.; Bonvin, D. Process optimization via constraints adaptation. J. Process Control

2008, 18, 244–257.
24. Marchetti, A.; Chachuat, B.; Bonvin, D. A dual modifier-adaptation approach for real-time optimization.

J. Process Control 2010, 20, 1027–1037.
25. Bunin, G.; François, G.; Bonvin, D. Sufficient conditions for feasibility and optimality of real-time

optimization schemes—I. Theoretical foundations. arXiv 2013, arXiv:1308.2620 [math.OC].
26. Gao, W.; Wenzel, S.; Engell, S. A reliable modifier-adaptation strategy for real-time optimization.

Comput. Chem. Eng. 2016, 91, 318–328.
27. Yip, W.S.; Marlin, T.E. Multiple data sets for model updating in real-time operations optimization.

Comput. Chem. Eng. 2002, 26, 1345–1362.
28. Yip, W.S.; Marlin, T.E. Designing plant experiments for real-time optimization systems. Control Eng. Pract.

2003, 11, 837–845.
29. Pfaff, G.; Forbes, J.F.; McLellan, P.J. Generating information for real-time optimization. Asia-Pac. J. Chem. Eng.

2006, 1, 32–43.
30. Zhang, Y.; Nadler, D.; Forbes, J.F. Results analysis for trust constrained real-time optimization.

J. Process Control 2001, 11, 329–341.
31. Quelhas, A.D.; de Jesus, N.J.C.; Pinto, J.C. Common vulnerabilities of RTO implementations in real chemical

processes. Can. J. Chem. Eng. 2013, 91, 652–668.
32. Friedman, Y.Z. Closed loop optimization update—We are a step closer to fulfilling the dream.

Hydrocarb. Process. J. 2000, 79, 15–16.
33. Gattu, G.; Palavajjhala, S.; Robertson, D.B. Are oil refineries ready for non-linear control and optimization?

In Proceedings of the International Symposium on Process Systems Engineering and Control, Mumbai, India,
3–4 January 2003.

34. Basak, K.; Abhilash, K.S.; Ganguly, S.; Saraf, D.N. On-line optimization of a crude distillation unit with
constraints on product properties. Ind. Eng. Chem. Res. 2002, 41, 1557–1568.

35. Morari, M.; Arkun, Y.; Stephanopoulos, G. Studies in the synthesis of control structures for chemical
processes: Part I: Formulation of the problem. Process decomposition and the classification of the control
tasks. Analysis of the optimizing control structures. AIChE J. 1980, 26, 220–232.

36. Bailey, J.; Hrymak, A.; Treiber, S.; Hawkins, R. Nonlinear optimization of a hydrocracker fractionation plant.
Comput. Chem. Eng. 1993, 17, 123–138.

37. Bard, Y. Nonlinear Parameter Estimation; Academic Press: New York, NY, USA, 1974; Volume 513.
38. Von Neumann, J.; Kent, R.; Bellinson, H.; Hart, B. The mean square successive difference. Ann. Math. Stat.

1941, 12, 153–162.

157



Processes 2016, 4, 44

39. Von Neumann, J. Distribution of the ratio of the mean square successive difference to the variance.
Ann. Math. Stat. 1941, 12, 367–395.

40. Young, L. On randomness in ordered sequences. Ann. Math. Stat. 1941, 12, 293–300.
41. Cao, S.; Rhinehart, R.R. An efficient method for on-line identification of steady state. J. Process Control 1995,

5, 363–374.
42. Cao, S.; Rhinehart, R.R. Critical values for a steady-state identifier. J. Process Control 1997, 7, 149–152.
43. Shrowti, N.A.; Vilankar, K.P.; Rhinehart, R.R. Type-II critical values for a steady-state identifier.

J. Process Control 2010, 20, 885–890.
44. Bhat, S.A.; Saraf, D.N. Steady-state identification, gross error detection, and data reconciliation for industrial

process units. Ind. Eng. Chem. Res. 2004, 43, 4323–4336.
45. Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 3rd ed.; John Wiley & Sons:

New York, NY, USA, 2002.
46. Alekman, S.L. Significance tests can determine steady-state with confidence. Control Process Ind. 1994,

7, 62–63.
47. Schladt, M.; Hu, B. Soft sensors based on nonlinear steady-state data reconciliationin the process industry.

Chem. Eng. Process. Process Intensif. 2007, 46, 1107–1115.
48. Kelly, J.D.; Hedengren, J.D. A steady-state detection (SSD) algorithm to detect non-stationary drifts in

processes. J. Process Control 2013, 23, 326–331.
49. Miletic, I.; Marlin, T. Results analysis for real-time optimization (RTO): Deciding when to change the plant

operation. Comput. Chem. Eng. 1996, 20 (Suppl. S2), S1077–S1082.
50. Miletic, I.; Marlin, T. On-line statistical results analysis in real-time operations optimization. Ind. Eng.

Chem. Res. 1998, 37, 3670–3684.
51. Zafiriou, E.; Cheng, J.H. Measurement noise tolerance and results analysis for iterative feedback steady-state

optimization. Ind. Eng. Chem. Res. 2004, 43, 3577–3589.
52. Bainbridge, L. Ironies of automation. Automatica 1983, 19, 775–779.

c© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

158



processes

Article

Online Optimization Applied to a Shockless
Explosion Combustor

Jan-Simon Schäpel 1, Thoralf G. Reichel 2, Rupert Klein 3, Christian Oliver Paschereit 2

and Rudibert King 1,*

1 Department of Process Technology, Measurement and Control, Technische Universität Berlin,
10623 Berlin, Germany; jan-simon.schaepel@tu-berlin.de

2 Department of Fluid Dynamics and Technical Acoustics, Herman Föttinger Institute,
Technische Universität Berlin, 10623 Berlin, Germany; thoralf.reichel@tu-berlin.de (T.G.R.);
oliver.paschereit@tu-berlin.de (C.O.P.)

3 Department of Mathematics, Geophysical Fluid Dynamics, Freie Universität Berlin, 14195 Berlin, Germany;
rupert.klein@math.fu-berlin.de

* Correspondence: rudibert.king@tu-berlin.de; Tel.: +49-30-314-24100

Academic Editor: Dominique Bonvin
Received: 27 October 2016; Accepted: 22 November 2016; Published: 30 November 2016

Abstract: Changing the combustion process of a gas turbine from a constant-pressure to a
pressure-increasing approximate constant-volume combustion (aCVC) is one of the most promising
ways to increase the efficiency of turbines in the future. In this paper, a newly proposed method
to achieve such an aCVC is considered. The so-called shockless explosion combustion (SEC) uses
auto-ignition and a fuel stratification to achieve a spatially homogeneous ignition. The homogeneity
of the ignition can be adjusted by the mixing of fuel and air. A proper filling profile, however, also
depends on changing parameters, such as temperature, that cannot be measured in detail due to the
harsh conditions inside the combustion tube. Therefore, a closed-loop control is required to obtain
an adequate injection profile and to reject such unknown disturbances. For this, an optimization
problem is set up and a novel formulation of a discrete extremum seeking controller is presented.
By approximating the cost function with a parabola, the first derivative and a Hessian matrix are
estimated, allowing the controller to use Newton steps to converge to the optimal control trajectory.
The controller is applied to an atmospheric test rig, where the auto-ignition process can be investigated
for single ignitions. In the set-up, dimethyl ether is injected into a preheated air stream using
a controlled proportional valve. Optical measurements are used to evaluate the auto-ignition process
and to show that using the extremum seeking control approach, the homogeneity of the ignition
process can be increased significantly.

Keywords: shockless explosion combustion; constant volume combustion; extremum seeking control

1. Introduction

The higher efficiency of isochoric or constant-volume combustion compared to isobaric combustion
has led to many investigations about adopting this combustion type for gas turbines. Several approaches
to realize such a pressure-gain combustion or approximate constant-volume combustion (aCVC) process
in a gas turbine have been proposed in the last decades. Pulsed jet combustors [1], pulsed detonation
engines (PDE) [2], and rotating detonation engines (RDE) [3] are the main types of these devices.

To obtain pressure-rise combustion in all these devices, the fuel is burned in a short period of
time such that the gas cannot fully expand during combustion. In a pulsed jet, the chemical reaction
is driven by a deflagration wave. During this deflagration process, the burned gas is given time to
partially expand. Thus, no constant-volume combustion is achieved. In contrast, in a PDE, the flame
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speed is increased, for example, using obstacles to create a deflagration-to-detonation transition.
The detonation wave propagates through the combustor at supersonic speed. As a result, the gas has
almost no time to expand during the detonation phase and an aCVC is obtained. Starting the PDE with
a deflagration, however, means that part of the fuel is burned in a conventional, less efficient isobaric
way. To avoid the deflagration-to-detonation transition, an RDE can be used. Here, a detonation
wave is created that continuously runs inside an annular combustion chamber. However, the use of
a detonation wave implies a shock wave, which is associated with considerable losses.

A promising new concept to avoid these pressure peaks is the so-called shockless explosion
combustion (SEC), suggested by Bobusch et al. [4,5]. This combustion concept aims for a completely
simultaneous auto-ignition of the fuel and thereby further approximates the constant-volume combustion
while avoiding shock waves and associated losses. To achieve such a homogeneous auto-ignition in a
combustion tube, the fuel needs to be injected under ignitable conditions such that a specific ignition
delay profile is produced along the tube’s length (see below). When the short ignition delay after the
injection is complete, the fuel ignites along the whole tube at approximately the same time, and a
smooth pressure rise results without a significant expansion of the reaction mixture. If designed properly,
an acoustic resonance is created inside the tube, which allows a purging and refilling with fresh gas
from the compressor against an unfavorable pressure gradient and thus enables a periodic process [6].

This paper concentrates on the adjustment of the filling process as it determines whether aCVC is
achieved. At the start of the filling process, a buffer of pure air is injected to separate the hot gases of
the previous cycle from the fresh fuel–air mixture and to prevent premature ignition. Afterwards, the
fuel is injected until 40% of the tube is filled with the reactive fuel–air mixture. In Figure 1a, a sketch of
a situation is given where a constant injection profile is assumed, that is, the so-called equivalence ration
φ is constant. In terms of constant pressure and temperature, this results in a constant ignition delay
τ for every portion of the injected fuel–air mixture. Due to the substantial duration of the injection
process itself, the fuel injected first will also ignite before the rest; see tign. Therefore, to achieve
a homogeneous auto-ignition, the fuel that is injected over time needs to be stratified to counteract the
differences in the residence time of the reactive gas. Figure 1b sketches a case where such a stratified
fuel profile is used. As the ignition delay depends on the equivalence ration φ, one can see that this can
be used to achieve a homogeneous auto-ignition with a constant ignition time tign for all fuel particles.
The ignition delay on the other side is strongly influenced by the unmeasured temperature and pressure
in the tube. As a result, an appropriate filling profile can only be achieved using closed-loop control to
reject these disturbances.

x=0 x=0.4L

φ = const.

ti
m
e
t

 

 

x=0 x=0.4L

φ stratified

ti
m
e
t

 

 

x=0 x=0.4L

φ

axial distance x
x=0 x=0.4L

φ

axial distance x

t
ign

τ

t
inj

}
Δφ

}
Δtinj

}
Δτ

(a) (b)

Figure 1. Sketch of the effect of equivalence ratio stratification on ignition delay time distribution
(for details see text). (a) constant fuel profile (b) stratified fuel profile.
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Once the fuel is injected into the tube, it is not possible to change the filling in this cycle anymore.
Therefore, a controller is needed that improves the filling profile from one filling to the next, as
performed in [7]. This task can be accomplished using an extremum seeking controller (ESC), which
performs an online optimization. It does not require a model of the system, which is an advantage
of the SEC concept because a detailed kinetic/fluid mechanic/acoustic model is far too complicated
and sensitive to be used in an online optimization. Therefore, using a model-free controller, no further
pressure and temperature sensors are needed to estimate the thermodynamic state in the tube that
would be needed for a comprehensive model.

Many different applications of ESC, such as [8], and more theoretical works addressing stability
issues [9,10] can be found in the literature. A list of possible extensions to ESC is presented in [11].
As the closed-loop bandwidth using an ESC is very low, methods to increase it are listed in [12].
In [13], we proposed using an Extended Kalman Filter to significantly speed up the single input case.
An extension to the multiple input case can be found in [14]. Most of the controllers used apply a
modulation of the continuous input by a dither signal and demodulation of the output to estimate the
derivative of an unknown steady-state input–output map. By also estimating the Hessian matrix, it is
possible to achieve higher convergence rates independent of the objective function’s curvature [15].
However, it is not possible to use arbitrarily large steps due to the time separation between the dither
signal and convergence speed. In this contribution, being restricted to an iterative solution from one
filling to the next filling, classic ESC schemes cannot be applied. For this reason, we suggested an
iterative application of an ESC in [16]. A general iterative scheme for an ESC is proposed in [17]. As the
filling profile can be changed freely from one iteration to the next, Newton steps can be applied while
estimating the necessary gradient and Hessian matrix using a least-squares method in a modified ESC
architecture. Whereas in most applications sinusoidal dither signals are used, Tan et al. show in [18]
that many other dither signals are also possible. In [19], stochastic perturbation signals are tested and
considered to be a good choice to avoid sticking in local minima. These will also be used in this work.
This paper focuses on the introduction and application of a variant of an ESC needed for a specific
challenging process.

To experimentally investigate the concept of the SEC, an atmospheric test rig was build. This set-up
allows us to investigate the auto-ignition process of dimethyl ether at atmospheric pressure and at
a temperature of 920 K. An ignition delay of approximately 200 ms is observed. Such long ignition
delays only allow for the investigation of single ignitions at a frequency of 4

3 Hz, as the aforementioned
acoustic resonance cannot be exploited for an autonomic refilling of the tube. In the future, we will
move on to an SEC at a higher pressure, where this restriction should not apply. However, the control
approach used here for the atmospheric test rig will work in the resonant set-up as well.

The set-up and the test procedure are described in Sections 2.1 and 2.2, respectively. The ESC
formulation proposed here is given in Section 2.3 before experimental results are presented in Section 3.
The paper finishes with some conclusions in Section 4.

2. Materials and Methods

2.1. The SEC Test Rig

The set-up used for the reactive ignition tests is shown as a schematic in Figure 2. The test rig
allows for an investigation of a broad spectrum of possible regimes for homogeneous auto-ignition
and is described in full detail in [5].

The main air flow is provided by a central air compressor with a mass flow of mair = 8.3 g/s.
The electrical air heater heats up the air to a temperature of Tpreheat = 850 K. The inlet section of the
combustion tube downstream of the fluidic switch (FDX Fluid Dynamix, Berlin, Germany) contains a
fluidic diode (FDX Fluid Dynamix) and a fluidic oscillator (FDX Fluid Dynamix) (Figure 3). The diode
prevents any backflow of the exhaust gas after an ignition. The fluidic oscillators are used to inject
the fuel into the main stream with a high degree of turbulence to increase the homogeneity of the
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mixing [20]. The amount of fuel injected into the combustion tube is adjusted using a fast electric
proportional valve that is able to control the fuel flow with a full-span (0%–100%) delay of less than
3 ms.

Figure 2. Schematic of the atmospheric SEC test rig.

The main air flow is provided by a central air compressor with a mass flow of mair = 8.3 g/s.
The electrical air heater heats up the air to a temperature of Tpreheat = 850 K. The inlet section of the
combustion tube downstream of the fluidic switch contains a fluidic diode and a fluidic oscillator
(Figure 3). The diode prevents any backflow of the exhaust gas after an ignition. The fluidic oscillators
are used to inject the fuel into the main stream with a high degree of turbulence to increase the
homogeneity of the mixing [20]. The amount of fuel injected into the combustion tube is adjusted
using a fast electric proportional valve that is able to control the fuel flow with a full-span (0%–100%)
delay of less than 3 ms.

During the injection phase, the reactive gas–fuel mixture convects through the combustion tube,
which has an inner diameter of 40 mm. The first section of the combustion tube, with a length of
0.5 m, is made out of quartz glass to allow for an optical measurement of the ignition times with
photodiodes. For a future set-up, it is planned to detect the ignition times with ionization probes,
which can be flush-mounted to the combustion tube. The second section is a stainless steel tube with
multiple water-cooled, piezo-type pressure sensors connected. The ignition process takes place in the
first section of the tube.

The applied flow speed of 17 m/s allows the refilling of the test section of the combustion
tube within 30 ms. This time span, however, is much less than the ignition delay of dimethyl ether
at atmospheric pressure of approximately 200 ms. To prevent the injected fuel from leaving the
combustion tube before igniting, the air flow through the combustion tube needs to be stopped after
the injection of the fuel. Regarding the air heater, an air mass flow is always required. Therefore, the air
has to bypass the combustion tube after the injection process is completed. To facilitate this, a fluidic
switch containing no moving parts that can redirect the main air flow into the bypass was designed.
Note that the bypassing of the combustion tube is only necessary due to the high ignition delay at
ambient pressure and will not be necessary at higher pressure levels, which is the focus of future work.

A real-time processor (dSpace 1202, dSpace, Paderborn, Germany) operating at 10 kHz processes
all measurement data and controls the proportional valve and fluidic switch.

Pressure
sensors

Photomultiplier

Thermocouple

1 2 3 4 5

Fuel injection via
proportional valve

Fluidic diode

Figure 3. Section view of the injection geometry and combustion tube with sensors.
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2.2. Test Procedure

The ignition tests are run at a frequency of 4
3 Hz. At the beginning of each cycle, the combustion

tube is purged with air; see the time span from t = 0 to t = tF in Figure 4. From t = t f to t = tA, fuel
is injected such that the optical accessible part of the tube is filled with reactive gas. The amount of
fuel injected is determined by a closed-loop controller, described later. At the end of the injection,
the fluidic switch redirects the main flow into the bypass. This creates a low pressure in the combustion
tube such that the flap at the end of the combustion tube closes and the gas inside the combustion tube
is stopped. After the ignition delay, the fuel ignites and the ignition is detected by five photodiodes.
The ignition times t̃ign(xq) are determined as the first time the detected signal of the q-th photodiode
at position xq exceeds a threshold. Whenever the signal of at least one photodiode does not exceed the
threshold, this ignition is not evaluated but the combustion process is repeated. At t = tB, the main air
flow is switched back into the combustion tube, which simulates the next purging process. The system
behavior is not very reproducible from one ignition cycle to the next, mainly due to the effect of the
fluidic switch necessary for atmospheric operation. Therefore, the control trajectory is only recalculated
every five ignition cycles. Based on the calculated ignition delays of five consecutive cycles t̃ign,k,j(xq),
for each position xq the highest and lowest values are discarded to protect the controller from outliers.
The remaining three ignition delays are used to calculate mean ignition delays tign,k(xq) for iteration k
and for each sensor position. Only the mean ignition delays are used in the ESC.

0 t f tA tB tEt̃ign(x1, x2, . . . , x5)
time

0

0.5

1
air mass flow
fuel valve control
diode threshhold
diode signals
detected t̃ign

θk,1

θk,2

θk,3 θk,4

Figure 4. Example of one filling cycle showing the timings for the fuel and air injection and schematic
photodiode signals.

2.3. Extremum Seeking Control

The ESC is an online optimizer that does not require a model of the system to be optimized.
This means that during the optimization process, the ESC needs to estimate a local approximation
of the system by evaluating the measurement information. According to this local, mostly gradient
information, the optimizer then changes the input, defined by a set of parameters θk, such that a local
optimum of an objective function dependent on the system output is found. In this paper, we will
refer to a minimum without loss of generality. To guarantee that the ESC is able to converge to the
optimum, it is necessary to have a system with a continuously differentiable input–output static map
that is bounded. More assumptions need to be fulfilled for the most frequently used classic ESC set-up;
for more details see [10,21].

While there exist many modifications to the ESC, all of them can be described with a common
structure [11]. In a first step, the output of the system is evaluated to calculate the value of an objective
function. This calculated value and the input of the system are used to approximate the first and
possibly higher-order derivatives of the objective function with respect to the actuation. In the classic
scheme, a set of high- and low-pass filters is employed to estimate the derivatives. These derivatives
are then used by an optimization algorithm to modify the system input in the direction of the optimum.
To estimate the derivatives, it is necessary that the input signal to the system is perturbed. In this paper,
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a modified ESC set-up is proposed. A schematic representation is shown in Figure 5. Details will be
given below.

Applying this concept to an SEC where we need to achieve a homogeneous auto-ignition means
that the fuel has to be injected into the combustion tube such that it ignites all along the tube at the same
time. From the averaged ignition timings, which are detected by the five photodiodes (see Section 2.2),
the variance in between the photodiodes is calculated and chosen as the objective function for the ESC
that shall be minimized. A value of 0 for the variance would indicate a completely homogeneous SEC.
Additionally, a fixed desired reference ignition time r is provided. As deviations from this reference
ignition time are penalized, a homogeneous ignition at t = r would yield the lowest objective value.
The weighting parameter of the absolute ignition time was set to a small value, Wr = 0.0125, to keep
the focus on the homogeneous ignition. In a first step, averaged ignition times tign,k(xq) are calculated
for the last five ignition cycles j = 1, . . . , 5 for all measurement positions xq, discarding two outliers:

tign,k(xq) =
1
3

(
5

∑
j=1

(
t̃ign,k,j(xq)

)
− min

j=1...5
t̃ign,k,j(xq)− max

j=1...5
t̃ign,k,j(xq)

)
. (1)

system
(combustion

tube)

objective
function

uk = f (θk)

estimator
(least-

squares
algorithm)

θpert,k

optimization
algorithm
(Newton
method)

tign,k(xq)

Jk

Φ̂k

θ̂k

θk

Figure 5. Schematic representation of the ESC used in this paper.

For all cycles of the k-th iteration, the same plant input uk = f (θk) is used. With this data, the
objective function Jk is determined.

Jk =
1
4

5

∑
q=1

(
tign,k(xq)− t̄ign,k

)2
+ Wr(t̄ign,k − r)2 t̄ign,k =

1
5

5

∑
q=1

tign,k(xq) . (2)

The only input value that the ESC is allowed to adjust is the control current of the proportional
valve during the injection time. To parametrize the injection profile for the k-th group of a set of
five cycles, a piecewise linear function is chosen; see Figure 4. The profile of the five consecutive
filling processes in the k-th iteration is defined by a set of interpolation points. To respect real-time
requirements, four interpolation points are used in this study. They are concatenated in the vector
θk = (θk,1, · · · , θk,4)

ᵀ. Between these equidistant interpolation points, the injection profile is
interpolated linearly (see Figures 4 and 5):
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uk = f (θk) =

⎛⎜⎜⎜⎜⎝
u(t f , θk)

u(t f + Δt, θk)
...

u(t f + (n − 1) · Δt, θk)

⎞⎟⎟⎟⎟⎠ , (3)

with

u(t, θk) = θk,m + (θk,m+1 − θk,m)

(
3(t − t f )

tA − t f
+ 1 − m

)
,

m ∈ 1 . . . 3
∣∣∣t f + (m − 1)

tA − t f

3
≤ t < t f + m

tA − t f

3

(4)

n =
tA − t f

Δt
, (5)

where uk is the discrete injection profile, Δt = 0.0001 s is the sampling interval, and t f and tA are the
starting point and the end point of the filling process, respectively.

All combustion cycles in the present set-up are mostly independent from each other. Only the
temperature in the tube will depend on previous combustions and influence the ignition delays of
subsequent ignitions. This temperature distribution in the tube will change slowly from one ignition
cycle to the next and is considered to be a disturbance which has to be handled by the controller.

For each set of five filling processes with the injection profile uk, the measurements are evaluated
by the objective function Jk. To obtain information about the local dependency of J on θ, we propose to
fit a multidimensional parabola based on all measurements up to the k-th filling process. To this end,
at iteration k, every group of five cycles is approximated by

Ĵi = θᵀi Akθi + bᵀk θi + ck , i = 1, . . . , k, (6)

where Ak, bk, and ck are the as yet unknown Hessian matrix, gradient, and constant offset, respectively.
As this equation is linear regarding the unknown entries of Ak, and bk, they can be collected in the
vector Φ̂k. Equation (6) can then be formally rewritten in the form

Ĵi = xᵀi Φ̂k , i = 1, . . . , k, (7)

with xi being a vector build up from θi. Combining Equation (7) for all iterations up to the recent cycle
k of five consecutive filling processes in a matrix equation, we obtain⎛⎜⎝ Ĵ1

...
Ĵk

⎞⎟⎠ = Ĵk = XkΦ̂k =

⎛⎜⎝xᵀ1
...

xᵀk

⎞⎟⎠ Φ̂k. (8)

To estimate Φ̂k, we use the least-squares algorithm, which minimizes the squared deviation
between the cost function and the estimated parabola:

min
Φ̂k

(Jk − XkΦ̂k)
ᵀW(Jk − XkΦ̂k), (9)

where Jk contains the experimentally obtained objective values from k consecutive iterations.
The well-known solution is given by

Φ̂k = (Xᵀ
k WXk)

−1X
ᵀ
k WJk =: PkX

ᵀ
k WJk, (10)
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with W being a weighting matrix. To emphasize the most recent measurements, older measurements
are associated with an exponentially decreasing weight λ. By decreasing the value of λ, it is possible
to further limit the influence of old values.

W =

⎛⎜⎜⎜⎜⎝
λk−1 · · · 0

...
. . .

...
λ

0 · · · 1

⎞⎟⎟⎟⎟⎠ (11)

To reduce the computational effort, the least-squares problem is solved using a recursive solution
of this problem given in Equations (12)–(14). P0 has to be initialized with high values to account for
missing system information in the beginning [22].

γk = [xᵀk+1Pkxk+1 + λ]−1Pkxk+1 (12)

Φ̂k+1 = Φ̂k + γk[Jk+1 − xᵀk+1Φ̂k] (13)

Pk+1 = λ−1[I − γkxᵀk+1]Pk (14)

From the fitted parameters Φ̂k of the multidimensional parabola, the gradient and curvature
at the current actuation parameter θk can be recalculated according to Equation (6). Whenever the
fitted parabola is positive definite, the proposed optimization algorithm calculates a Newton step.
Therefore, the actuation parameters for the next injection process will be set to the minimum of the
identified parabola whenever it is in range of the allowed step size; see below. If the Hessian matrix is
not positive definite, the algorithm performs gradient steps with a step size σθ .

θ̃k+1 =

{
0.5A−1

k bk, Ak > 0

θ̂k + σθ(2Ak θ̂k + bK), otherwise
(15)

Here, θ̂k is the unperturbed control parameter of the last iteration, which differs from θ̃k calculated
by Equation (15) in the last iteration due to its compliance to the maximum step size θmax. Whenever the
maximum step size is exceeded, the step size will be set to θmax, while the direction of the optimization
step is kept constant.

θ̂k+1 =

⎧⎨⎩θ̂k + (θ̃k+1 − θ̂k)
θmax

||θ̃k+1−θ̂k ||2
, ||θ̃k+1 − θ̂k||2 ≥ θmax

θ̃k+1, otherwise
(16)

This last step is necessary for stability reasons, as huge Newton steps might result for an
ill-conditioned matrix A.

As for every ESC, a perturbation needs to be applied to the actuation parameter θ̂k+1.
Here, a vector θpert,k with uniformly distributed random entries in a range between [−d, d] is added
to the calculated θ̂k+1; see Figure 5. Because the task of the ESC is not just to find an optimal control
profile but also to keep track of it, the amplitude of the pertubation is kept constant to allow for
a detection of disturbances at all times. For the application of the SEC, we chose the following values
for the tuning parameters: d = 0.5 mA, σθ = 40 A2

s2 , λ = 0.95, and θmax = 1 mA.

3. Results

For the ignition tests with the described set-up, we performed 1000 combustion cycles. However,
9% of the ignitions could not be evaluated properly because not all the photodiodes detected a signal
higher than the defined threshold. With the used data acquisition system, it was not possible to store
all the data at once. For this reason, the test series had to be paused after 500 cycles. During such

166



Processes 2016, 4, 48

a pause, the fuel lines close to the tube are heated up, which yields much lower ignition delays when
part of this fuel is injected at the beginning of the next batch of cycles. To avoid interfering with the
control algorithm after the pause, 100 filling combustion cycles were carried out with a cycle invariant
injection profile. The obtained measurement data was not considered by the ESC. For every single
combustion cycle, the timings for the filling and purging of the tube were set to t f = 0.05 s, tA = 0.08 s,
tB = 0.58 s, and tE = 0.75 s. The desired reference ignition time r was chosen as 0.25 s such that the
resulting range of desired ignition delays was centered inside the limits adjustable by changing the
fuel concentration. The injected fuel trajectory was modified every five successful ignitions, according
to the control law of the described ESC algorithm. The test series was started with a constant control
value applied to the valve of 14 mA. This corresponds to a rich fuel–air mixture.

In Figure 6, the change of the input parameters θk, the detected ignition times, and the control
error are shown as a function of the iterations. The ESC is set active after 100 iterations. It starts
changing the control trajectory such that the control error decreases. The control error is calculated as
the variance of the averaged ignition times of five ignitions, as explained in Section 2.2, and also takes
the deviation from the desired ignition time into consideration according to Equation (2). However,
for the homogeneity of an ignition, the variance of the ignition times is the best measure and is therefore
also included in the diagram for every single ignition. Until the 360th iteration, the ignition always
takes place at a location far downstream in the tube and is detected by the fifth photodiode first. Due to
an increase in the amount of fuel injected in the beginning of the filling process and less fuel injected
afterwards (see Figure 7), the ignition at the location of the fifth photodiode can be delayed. From the
360th ignition on, a quite homogeneous ignition is obtained. After achieving a homogeneous ignition,
the controller is also able to adjust the ignition time towards the desired value; see Figure 6 (at around
400 iterations). From this point of time, the control trajectory is only changed slightly, which indicates
that a local optimum was found by the controller. In Figure 7, the detected ignition times for a constant
injection, as conducted in the beginning of the experiment, and for four consecutive injections with the
converged control trajectory after 400 iterations are shown. It can be seen that the converged control
trajectory found by the ESC yields significantly more homogeneous ignitions necessary for an SEC.
However, among the four ignitions with the same filling profile, there is still a high deviation in the
ignition times from one cycle to another. This indicates that the system behavior changes from one
cycle to the next so that the ESC has no chance to further increase the quality of the SEC just using
information from past combustion cycles. A high deviation between consecutive ignitions can also
be observed for the pressure readings. On average, though, the pressure rise, due to the combustion,
increased due to the higher homogeneity of the ignition process, as depicted in Figure 6. The highest
pressure rise measured for one ignition was 0.36 bar, which was achieved for an ignition taking place
within less than 2 ms.
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Figure 6. Experiment with 900 successful combustion cycles (9% of the ignitions are misfiring and
not included in the diagram for clarity). (a) Control parameters defining the control profile of the fuel
valve; (b) Ignition times detected by the photodiodes; (c) Homogeneity of the ignition evaluated by
the variance and by the control error that is calculated for every five consecutive ignitions when the
controller is active; (d) Maximum pressure increase due to the ignition.
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Figure 7. Example of five time-resolved combustion processes. Red: Injection profile and detected
ignition times with initialized control trajectory; Blue: Injection profile and detected ignition times
with converged control trajectory (ignition number 401–404). The four consecutive shots have the same
injection profile. Their individual ignition timings are depicted with different markers.

4. Conclusions

In this paper, a model-free control method is presented to optimize a control input for iterative
tasks where virtually no system information is available. The considered control addresses the essential
challenge of SEC—the homogeneous auto-ignition of the fuel. The effectiveness of the developed ESC
algorithm is demonstrated with an atmospheric test rig, which was designed to study the auto-ignition
behavior at a firing frequency of 4

3 Hz. A fast proportional valve was used to adjust the amount of
fuel injected into the combustion tube. Using an optical measuring technique, the ignition times were
detected. The variance of these ignition times, which provides a good measure for the homogeneity of
the self-ignition, was used as a control target. As the chemical processes are hard to model with respect
to a real-time application and are very sensitive to unmeasured quantities, such as the pressure and
temperature distribution inside the combustion tube, a model-free approach was chosen. The applied
ESC was able to minimize the variance using an online optimization. The first and second derivatives
of the objective function were estimated by a recursive least-squares algorithm and used to perform
Newton steps. However, with this method, only a local minimum can be guaranteed. Although the
experiments showed that the time span of a completed ignition process could be significantly decreased
below 2 ms, at the atmospheric conditions the resulting pressure rise is still not as high as would be
expected for a perfect SEC. However, for combustions performed under elevated pressure, which are
planned for the near future, the ignition delay will be significantly lower. For the same mixing quality,
this would reduce the duration of the ignition process accordingly. As a result, the applied mixing
control method presents a powerful tool to realize an SEC at relevant pressure levels.
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Abbreviations

The following abbreviations are used in this manuscript:

aCVC approximate constant volume combustion
ESC extremum seeking controller
PDE pulsed detonation engine
RDE rotating detonation engine
SEC shockless explosion combustion
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Abstract: This paper discusses the problems associated with the implementation of Real Time
Optimization/Model Predictive Control (RTO/MPC) systems, taking as reference the hydrogen
distribution network of an oil refinery involving eighteen plants. This paper addresses the main
problems related to the operation of the network, combining data reconciliation and a RTO system,
designed for the optimal generation and redistribution of hydrogen, with a predictive controller
for the on-line implementation of the optimal policies. This paper describes the architecture of the
implementation, showing how RTO and MPC can be integrated, as well as the benefits obtained in
terms of improved information about the process, increased hydrocarbon load to the treatment plants
and reduction of the hydrogen required for performing the operations.

Keywords: real-time optimization; model predictive control; petrol refineries; hydrogen networks

1. Introduction

Process industries, like other industrial sectors, are compelled by the market and the regulatory
norms to operate more and more efficiently. This means better product quality, higher production,
fulfilment of environmental legislation, etc., with better use of resources and minimum cost. Achievement
of all these aims requires, among other things, proper use of the resources and assets as well as better
production management. This is why, increasingly, the topics and methods related to production
optimization are gaining attention in industry. Once the basic automation layer is in operation in a
factory, so that production reaches a certain degree of stability and adequate information from the
process is available, the next logical step is to move up in the management of the process. This can
be done, first, by enhancing the control layer to take care of interactions, constraints and future
consequences of current actions in the operation of the process units, that is, incorporating Model
Predictive control (MPC), and, in a second step, trying to find out the best operating conditions,
considering not only technical aspects, but also the economy of the process. This requires a more global
vision than considering in isolation the operation of the individual process units, because what can be
good from the point of view of a specific process may not be so good for the whole factory. Real-Time
Optimization (RTO) uses, such as global view, try to incorporate different aspects and interrelations
among processes in a model in order to compute operational decisions that optimize process efficiency
and economy.

Both layers, MPC and RTO, have different targets and normally they use different types of models,
linear dynamic models in the case of MPC and non-linear first principles ones in the RTO, but they are
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not independent. Normally, RTO is placed on top of MPC, computing optimal values of key variables
that later on are passed as set points to the MPC in a cascade structure. This architecture assumes that
there exists an optimum steady state that the MPC must follow, which can be a sensible assumption in
many cases. Nevertheless, it also happens quite often that, due to the plant scale or complex dynamics
involved or because of the presence of significant disturbances, the plant is rarely at steady state,
so some alternatives have to be used. Of course, in many cases, one can formulate a dynamic RTO,
or an MPC with an economic target, merging dynamic control with economic target optimization as
in [1,2], and in fact they are examples of very large dynamic optimization problems solved efficiently
with state-of-the-art software and methodology [3]. However, this formulation may present stability
problems and, in other cases, the computational load and the difficulties of estimating properly the
process states may render the approach not very adequate for real-time operation.

In addition, other factors that contribute to the difficulties of industrial implementation of the
RTO/MPC architecture are the fact that large RTO, based on rigorous models, are difficult to keep
up-to-date and there is a lack of resources in industry to maintain these applications, due to limited
number of qualified personnel, to the relatively frequent changes and revamping in the process and to
the intrinsic difficulties of the task that is time consuming and rather specialized. The reference [4]
gives a good summary of these problems. However, the benefits of RTO normally repay the efforts,
not only in terms of the gains obtained through its on-line implementation, but because of other
side benefits, such as improved process information, detection of groups of constraints that limit the
possibility of reaching the targets, reliable feedback to upper production layers (planning), etc.

All these elements have to be taken into account when defining the approach and the
implementation of the system, exploring, besides the traditional cascade RTO/MPC, other flexible
alternatives in which the possibilities offered by available commercial technology have to be considered,
as they provide integrated local Linear Programming (LP) based optimization with predictive
multivariable controllers [5]. In the same way, one should consider the options that sometimes appear
for carrying out similar solutions as the ones computed by the RTO with a specially designed control
system, in line with the self-optimizing approach [6].

Besides integration of RTO with the lower layer represented by MPC, successful implementations
of real-time optimization systems have to take into account that RTO normally only covers certain
aspects of the operation of a large-scale process plant. In fact, there are many elements related to what
should be produced or when it should be produced and at what price, that concern to the upper layer of
plant planning. Then, RTO should operate in the framework and global aims defined by the planning
layer of the company, receiving production aims, prices and constraints imposed by other parts of the
process, that have to be considered by the RTO and MPC. This aspect concerns the information flow
from top to lower layers of the control hierarchy, but additional benefits can be obtained by considering
also the opposite flow by better feedback of the results of the operation to the planning layer, helping
to correct gaps between what is planned and what is achieved in practice and detecting the active
constraints whose removal can improve production and efficiency in a significant way.

This paper deals with these topics, presenting a large-scale optimization problem related
to the management of the hydrogen distribution network of an oil refinery and discussing its
real-time implementation.

Hydrogen has become an important and expensive utility required in many new processes in
oil refineries for breaking long hydrocarbon chains into lighter and more valuable products and for
removal of Sulphur and aromatics in order to comply with environmental legislation. Hydrogen, either
imported or produced in-house, is distributed by means of a network from producer to consumer
plants. In consumer plants, hydrogen is mainly used as a reactant for desulfurization, de-nitrification
and de-aromatization of naphtha and diesel, in order to avoid generating acid gases when used as
heating fuel or in combustion engines, thus avoiding atmosphere pollution.

In recent years, when heavier fuels are being processed and also due to more strict environmental
regulations, hydrogen requirements have experienced a steady increase, gaining significant importance
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in the refinery global economic balance. An efficient use of H2 in the daily operation is desired not only
for its high production cost, but also because the economic penalty is even higher in scenarios where
hydrogen production capacity is the bottleneck for oil processing capacity. Nevertheless, decisions
related to hydrogen management are not easy as there are many interrelated plants and constraints
involved in the operation of the network, not only from a modelling and optimization perspective,
but also from a practical point of view because, quite often, several operators in different control rooms
are in charge.

The approach to deal with the hydrogen network optimal management is driven by an operational
framework where hydrogen production must always exceed consumption, with reactors operating
with excess hydrogen, because hydrogen deficit is extremely damaging for catalysts which are very
expensive and accumulation in a buffer vessel is not sensible. One of the main problems to perform
appropriate decisions regarding the management of hydrogen networks is the lack of information on
many variables and the uncertainty associated with the existing measurements. Because of this, data
reconciliation has been used as a way to estimate unknown magnitudes and to correct inconsistencies
in the data, before a model based optimization procedure could be applied to determine the best use
of hydrogen in the network.

The optimal management of hydrogen in oil refineries has been studied mainly from a design
viewpoint as in [7], as well as integrated with other utility systems in the refinery operation, as in [8],
but has received less attention from the perspective of real-time operation and control.

This paper tries to contribute to the automated optimal operation of the hydrogen networks in
oil refineries and is organized as follows: First, the process is described in Section 2, showing the
architecture, operation and targets of the main plants and the functioning of the network as a whole.
Next, Section 3 presents a Data Reconciliation and Real-Time Optimization system developed with the
purpose of achieving the optimal management of the hydrogen network. Then, Section 4 is devoted to
discussing the ways in which the system is implemented in the refinery, in particular through the use of
a predictive Dynamic Matrix Controller (DMC) operating on several H2 production and consumption
plants. Finally, Section 5 presents and evaluates the results achieved, as well as the integration of
the operation of RTO and MPC layers as a decision Support System (DSS) supervising the network
performance. To conclude, the Discussion section centers on the future perspectives and challenges of
process optimization.

2. Process Description

The process taken as reference is the refinery of Petronor, a company of the Repsol group located
in Muskiz, in northern Spain. The refinery processes crude oil in standard distillation circuits but, as
with many other modern installations, incorporates additional ones as well. Among them, conversion
units transform heavy hydrocarbons into more valuable light ones, besides other units dedicated
to the removal of Sulphur from the processed products in order to comply with the environmental
legislation. Both conversion and desulphurization processes use hydrogen as raw material of the
chemical reactions involved, so this product has become one of the most important utilities in a
petrol refinery.

High purity hydrogen is produced in steam-reforming furnaces in two plants, named H3 and
H4, in the refinery under consideration. Additionally, two platformer plants (P1 and P2) generate
lower purity hydrogen as a byproduct of the catalytic reforming process, which increases the octane
number of naphtha. From these four plants, hydrogen is distributed to the consumer ones using
several interconnected networks at different purities and pressures, as can be seen in the schematic of
Figure 1. The network interconnects a total of eighteen plants, four producers and fourteen consumers.
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A simplified schematic of a typical consumer plant can be seen in Figure 2, in this case a
hydrodesulphurization one (HDS) dedicated to the removal of Sulphur from its hydrocarbon feed.
Before entering the reactors, the hydrocarbon feed (HC) (black lines) is mixed with hydrogen (blue
lines) coming from the distribution network: in the diagram from two producer plants (H4 and H3)
and the Low Purity distribution Header (LPH), as well as with recycled hydrogen streams (R, FOUT_Z).
This mixture reacts endothermically under high temperature in the reactors where sulfur is converted
into hydrogen sulfide H2S, which can be removed later on by absorption on an amine solution.
It is important to remark that the feed to the reactors must contain an excess of hydrogen required to
prevent shortening the life of the expensive catalysts. As a consequence of this, the reactor output has
still surplus hydrogen. In addition, other light end gases generated in the reactor are also present in
the mixture (a mixture of CH4, C2H6, C3H8 and other gases) which are considered as impurities.

 
Figure 2. Simplified schematic of a typical desulphurization plant showing the hydrocarbon and
hydrogen feeds, the reactor, separation units, membranes and main streams.

Hydrogen and light ends are separated from the treated hydrocarbon stream in high-pressure
separation units (SepHP). Most of the hydrogen rich gas from the HP separator, with purity XHP,
is recycled (R) into the reactor inlet, but a certain HP purge is usually needed to avoid the accumulation
of light ends in the system, either to the Fuel-gas (FGHP) network of the refinery, where the gases are
burnt in furnaces, or to the Low Purity distribution Header (LPH) to be reused later on. Also, some
of the recycled hydrogen (FIN_Z) can be fed to a set of membranes (Z) in order to increase its purity,
with the low purity retentate flow (FGZ) being sent to the fuel gas network. Referring to Figure 2,
the hydrocarbon outflow of the high-pressure separators still contains hydrogen that is further removed
in medium or low pressure separation units (SepLP), but this hydrogen is sent to the fuel gas network
(FGLP) due to its low purity (XLP) that prevents it from being reused in the reactors in a profitable way.

The hydrogen purity at the reactors’ input depends on the ratio of flow rates coming from the
different producer plants (H3, H4, P1, P2), distribution headers (e.g., low-purity header LPH) and
recycles, with the mixture having to satisfy several operational constraints, that must be achieved by
proper management of the plant.

Thus, from the point of view of the hydrogen network, these plants operate with a feed of
hydrogen from different sources that is partially consumed in the reactors, partially sent to the Fuel
Gas (FG) network and partially reused, either internally or recycled from the low purity header LPH.

The global operation of the network outside the plants can be better explained using Figure 3,
which is a simplified representation where only a small number of producer and consumer plants
are represented. As mentioned above, the producer plants are of two types: the ones that generate
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controllable flows of fresh high purity hydrogen (H3 and H4) and the ones that generate hydrogen
of lower purity as a by-product (P1 and P2) so that their flows can be considered as non-controllable
disturbances to the network. The generated hydrogen is distributed to the consumer plants through
the corresponding headers. The hydrogen demand of every plant depends on the amount and quality
of the hydrocarbons being treated, which may experience strong changes every two or three days
according to the crude that is being processed. Excess hydrogen from these plants is partially collected
in the low purity header and recycled back to the consumer plants, while the rest goes to the fuel gas
network, where it is mainly burnt in furnaces.

Figure 3. Schematic of producer and consumer plants with the main hydrogen distribution headers
and fuel gas network.

2.1. Process Operation

Both plants and networks are operated from control rooms equipped with Distributed Control
Systems (DCS) implementing basic controls (flow, pressure, . . . ) and several MPCs (DMC) in charge
of more complex multivariable tasks, such as sulfur removal in the plants. In the past, operators
decided on key variables such as hydrocarbon inflow, use of membranes and fresh hydrogen feed
to the plants in a largely decentralized way with the overall operation relying on the experience of
the production managers. This provides flexibility in the operation, but limits the possibilities of
implementing coordinated functioning and optimization.

The main network operation aims are:

• Distribute the available fresh hydrogen and the recycled hydrogen (including internal plant
recycles) so that the requirements of hydrogen at the reactors’ inputs in all plants are satisfied.

• Be as close as possible to the production targets of hydrocarbon feeds to the plants established by
the refinery planning system.

• Balance the hydrogen that is produced and the hydrogen that is consumed so that the hydrogen
losses to fuel gas are minimized.

They are listed in order of importance: proper distribution of hydrogen fulfilling operation
constraints is a must for the operation of the plants, so it goes on top. Then, production should be
increased as much as possible and this target should be achieved with minimum hydrogen losses,
or equivalently, with minimum fresh hydrogen production. These aims, far from being independent,
are linked together: good distribution and reuse of hydrogen allows reduced losses to fuel gas,
increasing the hydrogen available for a further increase in hydrocarbon production when hydrogen
capacity is a limiting factor or for reducing fresh hydrogen production if the production targets were
already met.
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In order to achieve these targets, the main decision variables are the fresh hydrogen production
of H3 and H4 plants, the hydrocarbon feed to the fourteen consumer plants and the hydrogen
distribution and reuse in the network, including the use of membranes where available. Hydrogen
from the platformer plants P1 and P2, being a by-product of their operation, can be considered a
disturbance more than a decision variable.

The overall operation is framed by the specific production targets given by the planning system of
the refinery that change according to the market conditions and crudes available, and it is constrained
by the physical and operational limitations imposed by the equipment.

3. Data Reconciliation and RTO

Safe and optimal operation of this system is a difficult problem due not only to its large scale,
complexity and interrelated aims, but also because of the presence of significant disturbances that
affect the process and the fact that the information available about many key variables is limited
and unreliable.

Uncertainty is mainly caused by:

• The changes in hydrogen consumption in the reactors of the hydrotreating plants, which depend
not only on the amount of hydrocarbons being processed, but also on its sulphur content;
the sulphur product specification; and the type of hydrocarbon processed, in particular its
light-cyclic-oil (LCO) content.

• The use of orifice-plate differential pressure flow meters for gas streams is common in the process
industry, but creates particular problems when installed in hydrogen streams. These meters
provide volumetric flow measurements. In order to be converted to mass flow, they need to be
compensated in temperature, pressure and molecular weight, as the operating conditions normally
differ from the calibration ones of the instruments. Pressure and temperature are normally
available, but molecular weight of the streams is not, which prevents proper computation of
the mass flow, normally expressed as Nm3/h. In addition, few hydrogen purity analysers are
installed in the process and the molecular weight of the streams experience significant variations
for small changes in purity or light ends composition (which is unknown). This is due to the low
value of H2 molecular weight, 2 g/mol, as compared to those of the main impurities, CH4, C2H6,
and C3H8, which are 16, 30 and 44 respectively. This is an important difference as opposed to other
gas networks, such as the networks of natural gas, where composition can be assumed constant.

3.1. Data Reconciliation

In spite of these difficulties, decisions about the operation of the process can be improved if a
model is available and better process information can be obtained from plant measurements.

A first principles model of the hydrogen behavior in the network and associated plants is available
from previous work [9,10]. It was developed to provide support in process optimization and it is based
on mass balances of hydrogen and light ends (considered as a single pseudo-component) in the pipes
and units. In addition, it incorporates other equations for compressors, membranes, separation units
(including a solubility model), etc., some of which are reduced order models fitted to experimental data
or with some adjustable parameters. Taking into account the much faster dynamics of the hydrogen
compared to the dynamics of the hydrogen of the reactors, the hydrogen distribution model is static
and contains flows, purities, molecular weights of hydrogen and light ends of all streams and hydrogen
consumption in the reactors as main variables.

When data present significant uncertainty, data reconciliation is the first step to be applied in a
model based approach to process optimization. The target is to estimate consistent values of all plant
variables from available on-line measurements based on a process model. Data reconciliation requires
redundancy in measurements, taking advantage of the fact that the core of the model, being based
on mass balances, does not present structural errors. Accurate, consistent, and robust estimations
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are looked for, irrespective of process disturbances, measurement noise, etc., while at the same time
enabling the update of certain unknown model parameters.

The benefits of implementing data reconciliation are three-fold:

• It provides information about unknown important variables such as hydrogen consumption in
reactors, molecular weights, purities, etc.

• It allows for reliable computation of Key Performance Indicators (KPIs) and Resource Efficiency
Indicators (REIs) to perform process supervision.

• It provides consistent measurements and a model to be used in process optimization.

Data reconciliation is formulated as a large optimization problem searching for the values of
variables and parameters that satisfy the model equations and constraints and that, simultaneously,
minimize a function of the deviations (e) between model and measurements, properly normalized.

When a sum of squared errors is used as the cost function to be minimized in data reconciliation,
one of the main obstacles to obtain adequate solutions is the presence of gross errors, generated usually
by faulty instruments, which may distort the estimation, spreading the errors among other variables.
Instruments with gross errors can be detected by a combination of data analysis and repeated execution
of the data reconciliation and removed [11]. Nevertheless, this procedure is slow and implies additional
difficulties for industrial implementation. An alternative is the use of robust estimators that substitute
the least squares cost function with another cost function that coincides with it for small errors, but for
larger ones grows at lower speeds, such as the Fair function [12] ((Equation 1a), first term of the sum),
limiting the spread of errors among other variables and increasing robustness. In our case, the robust
data reconciliation has been formulated as:

min
{Fi ,Xi ,MWi ,εi ,pi}

∑
j∈M

αjc2

[ ∣∣ej
∣∣

c
− log

(
1 +

∣∣ej
∣∣

c

)]
+ ∑ αiε

2
i + ∑ αkRk (1a)

ej = ηj(Fi − βiFi,mea)

ej = ηj(Xi − Xi,mea)
βi =

√
Td+273

(Pd+1)MWi

√
(Pi+1)MWd

Ti+273

s.t.
model equations

operational and range constraints
Fi,min − εFi ≤ Fi ≤ Fi,max + εFi εFi ≥ 0

Xi,min − εXi ≤ Xi ≤ Xi,max + εXi εXi ≥ 0
MWimp

i,min − εWi ≤ MWimp
i ≤ MWimp

i,max + εWi εWi ≥ 0

(1b)

The cost Equation 1a includes three terms: the sum of the Fair functions of the normalized errors
e, the sum of penalty terms of possible range violations ε of variables to help to assure a feasible
solution and the sum of regularization terms R to favor smooth changes over time of some model
parameters. The coefficients α are possible weighting/removal terms and c is a tuning parameter
of the Fair function. In the equations, e represents errors between the model and measurements of
flows F and hydrogen purities X, with η normalization factors and β compensation factors for flows.
MW refers to molecular weights, and P and T to pressures and temperatures, with the sub-index
d indicating design values and imp impurities. Finally, p represents model adjustable parameters.
The minimization of Equation 1a is performed under the constraint of the network model and a set
of operational and range constraints Equation 1b which includes slack variables ε to help avoiding
infeasibilities. Main decision variables are flows, purities and molecular weights of all streams and
hydrogen consumption rates in the reactors.

The data reconciliation problem is a large Non-Linear Programming (NLP) problem that is
formulated and solved with a simultaneous approach in the General Algebraic Modeling System
(GAMS) environment using the Interior Point Optimizer (IPOPT) as the optimization algorithm.
The implementation involves more than 4400 variables and 4700 equality and inequality constraints.
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It takes less than five Central Processing Unit (CPU) minutes in a PC with i7 processor and 8 Gb RAM,
giving robust results against gross errors and helping to detect faulty instruments.

3.2. Real-Time Optimization (RTO)

After the data reconciliation step, once the model incorporates the estimated parameters and
reliable estimations of variables are available, it is possible to search for the best way of operating
the process according to the aims specified in Section 2.1, regarding feasible hydrogen distribution,
achievement of hydrocarbon production targets and minimization of fresh hydrogen generation or
losses. The formulation of the optimization incorporates additional constraints oriented to keep
the operation of the control rooms as undisturbed as possible. Because of that, it assumes as fixed
quantities many specific values related to the current operation of the units, such as specific hydrogen
consumption or specific generation of light ends and its molecular weight in reactors; specific reactor
quench flows for temperature management or separation factors; and specific purge flows and its
properties in separation units. In the same way, the state of functioning or stopping the plants and
the current structure of the network are respected, assuming that they are mainly imposed either by
maintenance or global production planning reasons.

Under these assumptions, the optimal redistribution is formulated as the RTO problem:

maxJ = ∑
i

pHCiHCi − ∑
j

pHiFHi − ∑
k

pRkRk (2a)

s.t.
Process model
Process constraints
Refinery planning specifications

where the three terms of the cost Equation (2a) aim to maximize the hydrocarbon load (HCi) to
consumer plants, minimize the use of fresh hydrogen generated in the steam reforming plants (FHj)
and minimize the internal recycles of hydrogen (Rk) in the consumer plants, which is linked to
the operation of the recycle compressors. Here, pHC, pH and pR stand for prices associated with
hydrocarbons, fresh hydrogen and compressors in order to provide an economic meaning to the
cost function.

The problem has to be solved under the constraints imposed by the model and operation of
the units, taking also into account the targets coming from the refinery planning. Constraints apply
mainly to pipes’ capacity, recycle purity in the consumer plants, ratio hydrogen/hydrocarbon at the
reactors’ input, operating range of membranes, producer plants’ capacity, reciprocating and centrifugal
compressors’ capacity, etc. Main decision variables include production of fresh hydrogen, feeds to
consumer plants, hydrogen flows and recirculation, purges, purities and membranes operation.

Figure 4. Block diagram of the data reconciliation and RTO showing the information flows and
main components.

Again, the problem is a NLP one and has been formulated in the GAMS environment above
mentioned. It involves nearly 2000 variables and more than 1800 equality and inequality constraints
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and is solved with a simultaneous approach and the IPOPT algorithm in less than one minute CPU
time. The execution follows that of the data reconciliation according to the block diagram of Figure 4,
running every two hours, and its results are available in the Excel HMI and through the Osisoft
PI system.

4. System Implementation

The implementation of the hydrogen network optimal management system in the refinery
followed three stages. In the first one, data reconciliation and process optimization run off-line,
following the schematic of Figure 4. The system is built around an Excel application in a dedicated
PC that performs different tasks: Process data are read at regular intervals from a real-time data
base connected to the process (PI system) and then analyzed and treated to eliminate inconsistencies,
outliers, prepare ranges of variables, etc. One important part of the analysis concerns the state of
functioning of the plants and possible structural changes in the network. Rules for detecting if a plant
is operating or stopped exist, as well as other ones based on valve openings that identify different
ways of operating the hydrogen network using different paths, activated manually. This means that
the model has to be adjusted automatically to the structural changes. For this purpose, the model
includes a set of binary variables that activate or deactivate groups of equations corresponding to
different operating modes. Nevertheless, these binary variables are fixed by the data analysis before
the computation of the data reconciliation takes place, so that the type of optimization problem solved
is NLP and not Mixed Integer Non Linear Programming (MINLP).

The application reads 171 flows and 18 purity measurements, plus other variables and
configuration parameters from the PI (temperatures, pressures, valve openings, etc.) totaling around
1000 variables, averaging them in two-hour periods to smooth the effects of transients and disturbances.
Once data are analyzed and filtered, they are passed to the GAMS environment, which runs the data
reconciliation problem and gives back estimations of all model variables consistent with the model and
constraints and as close as possible to the process measurements. These estimations can be visualized
in the Excel Human Machine Interface (HMI) in different formats.

Notice that no steady state detector is normally in operation. This is due to two reasons: on
one hand, pressure controllers in headers and consumer plants help to maintain mass balances fairly
well, operating with time constants no greater than a few minutes, which is small compared with
the two-hour average of the data. On the other hand, due to the large scale of the process, it is very
unlikely that all variables are sensibly constant for reasonable time periods, so waiting for the green
light of steady state detectors will lead to not running the system, except for short time intervals.
A more flexible approach has been taken assuming that the fast system dynamics above mentioned
and data averaging allow the obtainment of sensible results.

After the data reconciliation step, the system calls GAMS again to perform the network
optimization as presented in Section 3.2. The optimal values of the process variables can be seen as
well in the Excel HMI.

4.1. Validation and Implementation Problems

The data reconciliation system has been validated analyzing trends for periods of several days in
different seasons with the technical staff of the refinery. Consistency in the estimated values of the
variables, stability of the solutions and correspondence with the measured values, were some of the
criteria used. During the validation, faulty instruments were detected and corrections and updates in
the model were made. Particular attention was devoted to the rules that analyze the raw data from the
PI and convert them into useful information for the model and the data reconciliation constraints.

In the same way, the results of the open loop execution of the RTO problem (2) were studied,
which provide clues and directions on how to run the network optimally. The analysis of the way in
which the network operates by the refinery team and the results of the RTO, lead to the identification
of several action patterns and partial aims required for an optimal management of the process.
The most important ones can be summarized as follows:
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• Losses from the HP separators of a plant to fuel gas, required to avoid light ends accumulation,
should be made at the lowest hydrogen purity compatible with the one required at the reactor
input and the H2/HC minimum ratio, see Figure 2. This implies controlling the HP separators’
purity XHP at these minimums, sending the gas to the FG purge from those plants that operate
with the lowest purity, while, in the others, the excess hydrogen is sent to the LPH for recycle.

• As excess hydrogen is recycled to the Low Purity Header (LPH), hydrogen unbalance in the
network, that is, hydrogen generated minus hydrogen consumed in the reactors, reflects in the
LPH pressure (see Figure 3). This pressure is maintained with a pressure controller venting
gases to the fuel gas network. Then, production of fresh hydrogen could be modified so that the
adjustments of the unbalance performed by the LPH pressure controller are made with minimum
average valve opening compatible with non-saturated pressure control. This is similar to the
so-called valve-position control. In this way, losses to fuel gas from LPH are minimized while
guaranteeing that enough hydrogen to the consumer plants is provided to cover the demand,
as the pressure is maintained.

• Maximization of the hydrocarbon load to the consumer plants, which is the most important target,
can be made until either maximum hydrogen capacity is reached or another technical constraint
is faced.

• Sending higher purity hydrogen (H4) to lower purity header (H3) should be minimized as
purity degrades.

At the same time, the automated implementation of the RTO calculations to the plant control
system is not easy and presents several important problems:

• The models used in the data reconciliation and RTO are static, with results updated every two
hours, but the implementation of the optimal values has to be applied to the process taking into
account the time evolution of variables. In particular, HC load and hydrogen production have to
be changed dynamically at a higher frequency to balance hydrogen production and consumption.

• In the same line, due to the presence of disturbances, changing aims, etc., constraints’ fulfilment
requires dynamic actions to be performed at a higher rate.

• Possible changes in hydrogen flows interact among them so that a proper implementation of the
RTO solution would require multivariable control to take care of the interactions.

These requirements of dynamic and multivariable actions lead in a natural way to the
implementation of a MPC layer between the RTO and the basic control system of the network and
plants implemented in the control room DCS, as in Figure 5a. Nevertheless, this architecture does not
solve the problem of a fast update of the optimization targets and requires maintaining and operating
in real-time the large-scale system composed by the data reconciliation and RTO. A dynamic RTO
executed with a shorter sampling time or an economic MPC merging the economic and production
targets Equation 2a with dynamic MPC control could be more appropriate but it is not realistic due to
the large scale of the system.

 
(a) (b) 

Figure 5. (a): traditional RTO/MPC implementation; (b): implementing patterns of the optimal
solution by means of the DMC software.
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4.2. Implementation in the DMC Environment

In view of the existence of the problems and solution patterns of the optimal network management
mentioned in the previous sub-section, an alternative approach that combines these patterns, offering
a simpler implementation, is presented next. It can be considered as stage two of the system
implementation and it is shown schematically in Figure 5b. It takes advantage of the extended
functionality of the commercial MPC used in the refinery, DMCPlus (Dynamic Matrix Control) from
AspenTech [5], that mixes local LP optimizers and a predictive controller to implement the patterns that
define the optimal operation and to perform multivariable control of several plants simultaneously.

In a certain way, it follows the path of the self-optimizing control [6], which substitutes the
on-line optimization layer by a control system such that maintaining, in their set points, the so-called
self-optimizing variables, keeps the system close to its economic optimum in spite of disturbances.
Nevertheless, the formulation mentioned above is different because here there are no self-optimizing
variables but the selection of targets that define the optimal operation in cascade with a standard DMC
controller. Yet, the basic idea is to implement, as a control system, as much as possible of the optimal
management solutions and keep its implementation as simple as possible. The commercial DMC is
composed of two layers: an unconstraint DMC controller, which uses a linear step response model of
the process linking controlled variables with manipulated ones and disturbances; and a LP optimizer
that constitutes the second layer, as in Figure 6a. The LP uses the same model as the controller but in
steady state, and includes a linear cost function of the manipulated variables that is minimized at every
sampling time under a set of constraints. Both layers are executed at the same rate and the results of
the LP are passed as future Set Point (SP) targets to the DMC controller, as can be seen in Figure 6b.

 
(a) (b) 

Figure 6. (a): Control layers showing the two components of the DMC: Local optimizer and MPC
acting on the basic control system; (b): Predictions of controlled and manipulated variables with set
points and the final targets set by the LP optimizer.

The optimal action patterns defined in Section 4.1 can be implemented in the LP layer of a DMC
in terms of partial aims in the LP cost function. At the same time, as they involve the joint on-line
manipulation of several process plants, and in order to keep the implementation as simple of possible,
only the most important ones from the point of view of hydrogen consumption and hydrocarbon
processed were included in the design of the DMC. At present, it controls the operation of six plants:
two hydrogen producers H3 and H4 and four consumers G1, G3, G4 and HD3, as can be seen in
Figure 7.
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Figure 7. Diagram of the DMC controlling the operation of two hydrogen producers H3 and H4 and
four consumers G1, G3, G4 and HD3, with the main controlled hydrogen flows and HC loads.

The controller was developed and implemented by the refinery team and is based on linear
models obtained by identification using data from step-tests that forms a dynamic matrix such as the
one in Figure 8, involving 12 manipulated variables and 29 controlled ones. The main manipulated
variables refer to the set points of hydrocarbon loads to the consumer units, fresh hydrogen production,
hydrogen feed to the consumers from the high purity collector and supply of hydrogen from one of
the platformer plants. The main controlled variables are hydrogen partial pressure in the reactors of
the consumer plants, losses to fuel gas from the Low Purity Header (valve opening), recycle purity and
HP losses to FG from some plants, hydrocarbon loads and valve openings to avoid control saturation.
They are organized in four sub-controllers, so that each one can be disconnected without affecting the
rest of them in case it is required due to process conditions or maintenance actions.

Figure 8. Dynamic matrix of the DMC controller.

The LP layer minimizes a cost function that plays with four aims:

• Maximize hydrocarbon loads to the consumer plants

• Minimize losses from the LPH to FG

• Minimize hydrogen purity in the recycles of the consumer plants

• Minimize hydrogen transfers from higher to lower purity headers
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These four objectives are combined in a single linear cost function assigning different weights to
the variables associated with them that reflect their relative importance and priority. This cost function
is optimized under the constraints imposed by the dynamic matrix model and range constraints in
the model variables. The solutions are given as targets to the predictive controller, as in Figure 6,
which computes the corresponding dynamic actions and passes them to the lower basic control layer
of the control room.

4.3. Planning, RTO and DMC Integration

The DMC is operating in the refinery, giving consistent improvements for several months.
Its implementation represented a big step forward in the automation and optimal management
of the hydrogen network of the refinery. Nevertheless, it covers only a subset of the total number of
process plants and headers involved in the hydrogen network and it does not consider all possible
hydrogen management strategies or non-linear effects. This is why further benefits can be obtained by
additional use of the global information obtained from the data reconciliation and use of the network
wide RTO solutions in a Decision Support System (DSS), which corresponds to stage three of the
system implementation.

Main aims of the DSS can be summarized as:

• Provide reliable and full information about the process functioning

• Supervise the operation of the DMC and the hydrogen network

• Identify ways in which the operation of the hydrogen network can be improved

• Suggest changes that improve the DMC operation

• Report to the planning system on the achievable targets and limiting constraints

Notice that both RTO and DMC have to operate in the framework of the refinery planning system,
which sets production and quality targets for the various refinery products every two or three days
according to the market and crude to be processed. This information is read from the PI system by the
RTO and DMC and it is used in both to fix many operation ranges, targets and priorities. One example
is the allowed range for the hydrocarbon load of a certain diesel HDS plant that should be maximized
within that range, and the indication that increasing it has higher priority than the hydrocarbon load of
other naphtha HDS. Nevertheless, that information does not cover all parameters involved in the RTO
and DMC optimization problems. In particular, hydrocarbon prices in Equation (2a) or the weights
of the four aims involved in the LP cost function of the DMC are not given explicitly. The reason is
that assigning proper prices to intermediate hydrocarbon streams is not an easy task, mainly when the
crude and outcomes of the refinery change frequently. Because of that, the HC prices in Equation (2a)
and the weights of the LP have been considered as weighting factors reflecting the relative priorities of
the products and aims involved. The way in which they are tuned includes extensive off-line tests in
simulation to find sets of parameters that respond to different priorities of the several aims involved,
combined with the on-line use of the priorities read from the planning system, which are associated
with the selection of a specific set of parameters. The control room operators can activate buttons in
the consoles of the DCS that modify the priorities and the cost function accordingly. Notice that, in this
way, the cost functions themselves do not have a real economic meaning, but meaningful economic
interpretation can be obtained from the values of the process variables proposed by the optimization.

The proposed system therefore operates taking into account the modules and interrelations
displayed in Figure 9. More than in a hierarchy, RTO and DMC operate in parallel, with the aim of
using the RTO calculations to improve the operation of the DMC and to be a guide for other corrections.
The PI real-time information system is at the core of the information flow, allowing the results of the
Data Reconciliation/RTO to be used on-line by the different departments involved.
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Figure 9. Block diagram of the main elements involved in the hydrogen network management.

The software has been tested off-line extensively, incorporating updates, corrections and
improvements, and it is now functioning on-line in the refinery.

5. Results

The benefits obtained from the implementation of the system can be classified in four types:

• Improved network information

• Increased hydrocarbon production

• Better use of hydrogen

• Integrated network management

Improved network information is the result of data reconciliation that provides reliable values
of all process variables. This is important as a help to daily operation, because many of them were
not available previously, e.g., hydrogen consumption in the reactors or purity of many streams.
The estimated values of the main variables are now accessible to all staff in a dedicated application
in the PI system in different formats, e.g., the one in Figure 10. A significant part of the success of
the data reconciliation step is due to the incorporation of robust estimators in the formulation of the
problem that allow the obtainment of sensible solutions in spite of the presence of faulty instruments,
as it is very difficult to not have something wrong in the plant instrumentation. Several estimators
were tested, for instance, the Redescending, Fair and Welsh estimators, [12] with the Fair function
selected finally for its simplicity and good behavior.

However, the data reconciliation results are also important for other purposes, such as helping in the
detection and correction of faulty instruments, as they allow one to focus attention on those instruments
that present consistent deviations between what is measured and what is estimated. At the same time,
the data reconciliation provides coherent values for other computations, among them, the possible
revamping of the network structure and the updated model for RTO calculations or the computation of
efficiency indicators in the network management. This last point is particularly important.

Supervision of the network operation is made using Resource Efficiency Indicators (REIs) that
were defined in the MORE project [13]. They are computed thanks to the availability of process values
provided by the data reconciliation. Among them, the most useful ones are those that relate the actual
value of a resource to the optimum one computed from the RTO solution, as they measure how well
the process is reaching the targets computed by the optimization.
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Figure 10. Schematic of a consumer plant showing the tags of measured, reconciled and optimized key
variables and REIs. They can be further displayed graphically.

Two of them are displayed for one week of operation in Figure 11 and refer to the ratio between
the optimal and actual fresh hydrogen production (in blue) and the ratio between the actual and
optimal hydrocarbon load to the consumers (in red), as shown in Equation 3. They are defined in such
a way that they indicate better operation when they are close to one.

REI1 = optimal H2 production/actual H2 production
REI2 = actual HC load/optimal HC load

(3)

Figure 11. Two REIs showing the distance to the optimal achievable targets for one week of operation.

In the figure, we can observe that, for that week, the HC load is very close to the optimal value
that can be attained according to the network conditions, while some savings of hydrogen are still
possible. Notice that the hydrogen index in day one exceeds unity in day one because the hydrogen
index on hydrocarbon has dropped, so both indicators have to be analyzed jointly. The graph also
shows a short stop on day six.
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Other REIs are also computed, but the information provided by them suffers from the fact that
they depend on the type of hydrocarbons being processed or the product specifications, which make
them less useful for supervising the efficiency of the operation. As an example, Figure 12 displays two
of them: the specific use of makeup hydrogen (in blue) and the specific hydrogen consumption in the
reactors (in red) of a certain HDS, for six days of operation. As can be seen, they experience stronger
changes coinciding with the change of hydrocarbon processed around days two and five than during
daily operation. However, the distance between the two curves gives useful information about the
efficiency of the operation in the plant regarding the use of the hydrogen.

Figure 12. Two REIs showing specific use of hydrogen and specific hydrogen consumption in reactors
of a HDS plant. Figures given in % of a certain scale.

Improvements in the amounts of hydrocarbon processed and the use of hydrogen are also
important benefits of the implementation of the system. Nevertheless, quantifying them is not easy.
A sensible evaluation implies measuring something (costs, resources, . . . ) before and after the
implementation of a new system and comparing results in both situations to compute the gains.
However, this procedure requires performing the comparison in the same conditions, i.e., setting a
base line. The problem when evaluating the system described in this paper is that the raw material,
targets and operating conditions change quite often, as seen in the example of Figure 12, and it is very
difficult to find similar situations in the eighteen plants involved in the hydrogen network for sensible
periods of time. This is due mainly to the change in the crude being processed every few days, which
may imply a noticeable variation in its properties, in particular hydrogen demand.

Keeping this in mind, it is possible to perform evaluations of the results, disconnecting and
connecting again the DMC for short periods of time when the operating conditions do not change
significantly, and comparing the values before and after. Based on this procedure, it is possible to
estimate a saving of 2.5% in the hydrogen production, while the increment of hydrocarbon loads
is more difficult to estimate by this procedure, because the operators tend to be kept constant.
In any case, there has been a clear improvement of the operating conditions since the online DMC
started functioning, in the sense that hydrogen availability is no longer a bottleneck for production.
Nevertheless, this period coincided with an average supply of lighter crudes to the refinery, so it is
difficult to assign numbers to both factors. At the same time, indicators such as REI2 in Equation (3)
provide values close to one for long periods of time, as in Figure 11, indicating that hydrocarbon
production, which is the most valuable target, approached the maximum feasible according to the
operating conditions and the targets fixed by the refinery planning.

In addition to providing indicators to supervise the behavior of the network under the DMC,
improvements to the network operation can be obtained by the analysis of the results of the RTO
optimization compared to the actual operating conditions. At present, the teams involved in the
analysis are the ones that have developed the system, but the trend is to move it to the personnel
responsible for the network management in the control rooms. For this purpose, the main results
are displayed in the PI information system for every plant as in Figure 11, where, by clicking on the
different tags, one obtains displays of trends of the measured, estimated, optimized variables and REIs,
facilitating the analysis to the staff involved in decision making in the refinery.
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Below are two of the main points where the analysis is focused:

• One is the hydrogen distribution strategies. Notice that the RTO considers the whole network,
while the DMC only considers a subset of the plants and headers and does not manipulate
certain elements as e.g., the membranes. This means that sometimes there is room for further
improvements, implementing a different hydrogen redistribution policy, as the feasible set of
actions is larger in the RTO. For instance, in the case of the membranes, as the DMC does not
manipulate them, the operators fix their behavior according to local needs, while the RTO can
compute the best way of operating them according to the global aims.

• The second refers to the identification of persistent active constraints in the optimization that stop
further changes in some variables that could improve the attainment of the targets. Examples
include the maximum compressor capacity in a recycle or minimum hydrogen purity in a
high-pressure separator. The limiting values of the constraints can be structural or operational,
and should be analyzed individually to see the convenience of changing them. In order to
select the important ones, the value of the associated Lagrange multipliers can be used as they
provide the sensitivities of the cost function w.r.t. the constraints, indicating the benefits that
could be obtained by every unit change in the value of the constraint. Referring to the above
examples, the compressor capacity is a structural decision that is linked to a unit revamping,
but the minimum hydrogen purity is operational and could be relaxed, for instance, at the end of
life of the reactor catalyzer.

The results of the analysis can be implemented or not considering the efforts involved and
expected benefits, which require familiarity with the process and global views of the problems. This is
not a problem with the technical staff, but further training is required with the constraint analysis and
the interpretation of the Lagrange multipliers.

The implementation of the results of the analysis follows two paths:

• The application of the hydrogen redistribution strategy, deciding, for instance, on a different use
of the membranes or proportions in the hydrogen feed sources. Notice that changes in the global
strategy of hydrogen distribution can help the DMC to reach its own aims. At the same time,
this can help to evaluate the convenience of extending the DMC to other plants or controlled and
manipulated variables not included within its scope.

• The possible changes on some DMC constraints. As an illustrative example, we will mention the
ratio hydrogen/hydrocarbon in a plant. Data reconciliation estimates its current value, which
is imposed as a lower bound to the RTO as a way to protect catalyst life. However, the DMC
may use other limiting expressions, e.g., the linearized model of the hydrogen partial pressure
obtained experimentally in a certain operating point. If the last one is consistently active and the
ratio hydrogen/hydrocarbon is not, one may decide to change the DMC constraint accordingly,
obtaining more space for improvements, while keeping a safe operation.

Finally, the forth benefit obtained from the system refers to the implementation of feedback to the
upper planning layer. The identification of gaps between the targets given by the planning system of
the refinery and what the RTO/DMC compute as feasible targets according to the current condition is
valuable information for better tuning and improvements of models in the planning layer. In the same
way, the detection of active constraints and sensitivity analysis complement this information that can
be relevant when deciding changes in the elements of the plant, such as the compressors’ capacity that
was mentioned above.
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6. Discussion

Development and implementation of the system described above have been the outcome of a
fruitful cooperation between the industrial and academic teams over several years which is giving
clear benefits in terms of better process information, increased production, and savings in the use
of hydrogen and smoother operation. Overall, the system implemented in the refinery is a clear
improvement in the efficiency of the use of resources and represents a significant step forward to
further integration with other advanced systems in the refinery and enhancements of its functionality.

Nevertheless, the project is still under development, and several problems are open to further
research. Among them, model maintenance appears as a key one to maintain the system alive for a
long period of time. Revamping or major changes are not infrequent in all process plants, and this
requires model (and optimization) adaptation, which should be generated automatically from some
type of schematic.

The RTO system could also be improved in two directions: One is by incorporating a measure of
the uncertainty present in the process, either using stochastic optimization of the modifier adaptation
approaches, as we are aware that the two-step approach of data reconciliation and RTO can lead to
suboptimal targets in the presence of structural errors. The other one is considering plant dynamics at
this level, so that the non-linear effects could be better taken into account.

Regarding the analysis of the RTO solutions and decisions about their implementation, the
development of on-line tools, such as predictive simulation, could help to better evaluate and increase
the confidence in the results.

Finally, the current model could also be used as the base for studies on the convenience of larger
structural changes in the hydrogen network, using superstructures and MINLP software to discover
possible optimal solutions not considered at present.
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Abstract: In this work, we consider the problem of daily production optimization in the upstream
oil and gas domain. The objective is to find the optimal decision variables that utilize the production
systems efficiently and maximize the revenue. Typically, mathematical models are used to find the
optimal operation in such processes. However, such prediction models are subject to uncertainty that
has been often overlooked, and the optimal solution based on nominal models can thus render the
solution useless and may lead to infeasibility when implemented. To ensure robust feasibility, worst
case optimization may be employed; however, the solution may be rather conservative. Alternatively,
we propose the use of scenario-based optimization to reduce the conservativeness. The results of the
nominal, worst case and scenario-based optimization are compared and discussed.

Keywords: real-time optimization (RTO); uncertainty; worst case optimization; scenario tree;
gas lift optimization

1. Introduction

The offshore production of oil and gas is a complex process where a lot of decisions have to
be taken to meet the goals in the short, medium and long run, ranging from planning and asset
management to small corrective actions. Accounting for all the goals and constraints as a whole is a
very challenging and unrealistic task. Thus, the operation of an oil and gas is typically decomposed
into various decision making processes in a hierarchical fashion that reflects their short-, medium- and
long-term impact [1], as shown in Figure 1. The long-term decisions involve selecting an investment
strategy, operation model, infrastructure etc, which is typically known as asset management. Then,
there are decisions taken on a horizon of one to five years such as selecting drilling schedules and
production and injection strategies, known as reservoir management. This is followed by decisions that
have to be taken on a decision horizon, ranging from a few hours to days known as Daily Production
Optimization. This decision making step would typically constitute selecting the production target from
each well, allocation of resources among the wells such as the available gas lift, power, etc. Thus, from
a process systems perspective, this step is equivalent to real-time optimization (RTO). This is followed
by a control and automation layer that accounts for fast corrective actions. This paper is concerned
with the real-time optimization layer in this hierarchical framework.
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Figure 1. Typical multilevel control hierarchy in oil and gas operations as described in [1].

Daily production optimization generally seeks to maximise the oil and gas production and
reduce the cost of production by choosing optimal setpoints for well production rates, gas lift
rates, etc. A mathematical model is typically employed when optimizing the performance of the
process. To this end, a model is used to predict the outcome of the decision variables on the production,
e.g., a model may describe a production network by predicting the oil flow rate for various gas lift rates
or choke openings. Due to the complexity of the system and difficulty in modelling the multiphase
reservoir inflow and pressure drop in pipelines, models used in production optimization are inherently
uncertain and hence the model may fail to accurately predict the outcome. However, uncertainty
is simply ignored in most of the works in production optimization. The most common approach is
to solve what is known as the deterministic problem with nominal models, where all the uncertain
parameters are assumed to take their expected value. The quality of the optimal solution is heavily
affected when data and model uncertainty are disregarded, and this approach has serious flaws for
constrained optimization problems, which is the case in most real applications. Most uncertainty can
be assumed to arise from the following sources [2]:

• Model uncertainty—in which the underlying structure of the model is uncertain due to lack of
knowledge or model simplification.

• Parametric uncertainty—where the parameters are outdated or have insufficient excitation to be
determined accurately.

• Measurement error—any model to some extent relies on measured data which have a certain
degree of uncertainty.

All the above sources of uncertainty are typical to an oil and gas production network. If special
precautions are not taken, the solution to the optimization problem might be meaningless and thus has
to be disregarded. The uncertainty in the system threatens the relevance of the solution in two facets [3]:

1. The calculated optimal solution, which is thought to be feasible, might actually violate the
problem constraints and therefore be infeasible when implemented.

2. When the optimal solution is feasible, the solution may be far from the actual optimal value, and
hence is suboptimal.
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In a technological survey [4], the authors state that the handling of model uncertainty is a key
challenge for the success of production optimization. This challenge is twofold. The first relates the
need to identify and characterize the uncertainty and the second is to handle the uncertainties in the
production optimization problem. In this paper, we are concerned with the latter where we explicitly
account for the uncertainty in the production optimization problem. We employ robust worst case
optimization, which provides a robust, feasible, yet conservative solution. In order to reduce the
conservativeness without affecting the robust feasibility, we apply scenario tree-based optimization
as introduced in [5,6]. The main contribution of this paper is the control oriented modelling of a gas
lifted well production network suitable for dynamic optimization and the application and comparison
of worst case and scenario-based optimization methods for the production optimization problem
under uncertainty.

The paper is organized as follows. A brief summary of previous work is given in Section 2. Section 3
describes the gas lifted well process considered in this paper. The optimization problem is formalized in
Section 4. The results are presented and discussed in Sections 5 and 6, respectively. The methods and
software used in this work are described in Section 7 before concluding the paper in Section 8.

2. Previous Work

In many offshore oil and gas production networks, the production is often constrained by
processing capacity and other such processing constraints. It was pointed out in [7] that not a lot of
work has been done to provide robust procedures to formulate and solve such constrained optimization
problems. Interest in the field of optimization of such oil and gas production networks has been steadily
increasing, and many mathematical tools that assist in decision making have been proposed. To name
a few, see [8–12] and the references therein. Most of the works found in literature only consider the
deterministic problem and hence disregard any uncertainty present in the system. There are only a very
few published works that consider the problem of daily production optimization under uncertainty.
For example, Elgsæter et al. suggested a structured approach for changing the setpoint in the presence
of uncertainty [13]. Although the uncertainty was not considered directly in the optimization problem
itself, but merely to assess the solution, uncertainty was explicitly handled in the optimization problem
in [14] by formulating the optimization solution as a priority list between the wells. A two-stage
optimization formulation for production optimization under uncertainty, which defines an operational
strategy rather than a single operating point, was suggested in [15] and was demonstrated using static
models. Very recently, the production optimization problem was reformulated as a robust optimization
problem following the row-wise and column-wise framework with cardinality constraints in [16],
where a level of protection against the uncertainty is sought at the cost of conservativeness.

However, not a lot of research has been carried out that aims to reduce the conservativeness of
the solution. Most of the works above also consider a static problem, where the system dynamics are
ignored and static models are used. Dynamic optimization using a multiple shooting algorithm and
generalized reduced gradient method was presented in [12,17]; however, uncertainty was disregarded
in both of the works. To this end, this work presents a dynamic optimization problem that explicitly
handles uncertainty in the daily production optimization problem.

In terms of modelling, gas lifted well models were developed and studied in [18–20] to name a few.
The dynamic models used in all these works are based on the mass balance between the different phases
in the well tubing and annulus. Similar models have also been used in studies for gas lift instabilities
and riser slugging [21]. However, most of these models found in literature have some minor differences
in the assumptions used to fit the purpose of the respective applications. For example, the frictional
pressure drop in pipes have been assumed to be negligible in [18], whereas some other works explicitly
include the frictional pressure drop term. Some works consider simple linear reservoir inflow models
such as in [12,20], whereas nonlinear reservoir inflow models have been used in [19]. Some works,
such as [22,23], consider partial differential equations for the pressure and flow dynamics in the pipe,
which are discretized and solved, whereas ordinary differential equations for mass balance have been
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used in many other works. Despite the minor differences, the dynamic responses of such simple
models based on mass balances have been verified and have been shown to match the results from
commercial high fidelity simulators such as OLGA (a dynamic multiphase simulation software from
Schlumberger) with sufficient accuracy (see [12,20,24]).

3. Process Description

In many oil wells, when the reservoir pressure is not sufficient to lift the fluids economically
to the surface, artificial lift methods are deployed. Gas lift is one such commonly used artificial lift
method, where compressed gas is injected at the bottom of the well via the annulus to reduce the
fluid mixture density. This reduces the hydrostatic pressure drop in the well and the pressure at the
well bottom decreases, thereby increasing the flow from the reservoir. However, injecting too much
gas increases the frictional pressure drop, which has a counter effect on the flow rate. At a certain
point, the benefit of reduced hydrostatic pressure drop is overcome by the increase in the frictional
pressure drop [25]. Hence, each well has a desirable gas lift injection rate. Additionally, there might be
constraints on the total gas available for gas lift or total produced gas capacity constraints that must
not be violated. The objective is then to find the optimal gas lift injection rates for each well such that
the total oil production is maximized.

3.1. Modelling of Gas Lifted Wells

In this section, we give a brief description of the gas lifted well model that is used in the optimization
problem. The model to describe production from each gas lifted well can be given in four parts: (i) mass
balance of the different phases; (ii) density models; (iii) pressure models and (iv) flow models. The mass
balances in each well is given by:

ṁga =wgl − wiv, (1a)

ṁgt =wiv − wpg + wrg, (1b)

ṁot =wro − wpo, (1c)

where mga is the mass of gas in the annulus, mgt is the mass of gas in the well tubing, mot is the mass
of oil in the well tubing, wgl is the gas lift injection rate, wiv is the gas flow from the annulus into the
tubing, wpg and wpo are the produced gas and oil flow rates, respectively, and wrg and wro are the gas
and oil flow rates from the reservoir.

The densities ρa (density of gas in the annulus) and ρm (fluid mixture density in the tubing) are
given by:

ρa =
Mw pa

TaR
, (2a)

ρw =
mgt + mot − ρoLr Ar

Lw Aw
, (2b)

where Mw is the molecular weight of the gas, R is the gas constant, Ta is the temperature in the annulus,
ρo is the density of oil in the reservoir, Lr and Lw are the length of the well above and below the
injection point, respectively, and Ar and Aw are the cross-sectional area of the well above and below
the injection point, respectively.
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The annulus pressure pa, wellhead pressure pwh, well injection point pressure wiv and the bottom
hole pressure pbh are given by:

pa =

(
TaR

Va Mw
+

gLa

La Aa

)
mga, (3a)

pwh =
TwR
Mw

(
mgt

Lw Aw + Lr Ar − mot
ρo

)
, (3b)

pwi = pwh +
g

AwLw
(mot + mgt − ρoLr Ar)Hw, (3c)

pbh = pwi + ρwgHr, (3d)

where La and Aa are the length and cross sectional area of the annulus, La is the length of the annulus,
Tw is the temperature in the well tubing, Hr and Hw are the vertical height of the well tubing below and
above the injection point, respectively, and g is the acceleration of gravity constant. The cross-sectional
area of the annulus and the tubing are computed using their respective diameters, Da and Dw.

The flow through the downhole gas lift injection valve, wiv, total flow through the production
choke, wpc, produced gas and oil flow rate, and the reservoir oil and gas flow rates are given by:

wiv = Civ

√
ρamax(0, pai − pwi), (4a)

wpc = Cpc

√
ρwmax(0, pwh − pm), (4b)

wpg =
mgt

mgt + mot
wpc, (4c)

wpo =
mot

mgt + mot
wpc, (4d)

wro = PI(pr − pbh), (4e)

wrg = GOR · wro, (4f)

where Civ and Cpc are the valve flow coefficients for the downhole injection valve and the production
choke, respectively, PI is the reservoir productivity index, pr is the reservoir pressure, pm is the
manifold pressure and GOR is the gas–oil ratio. Note that there is no pressure coupling between the
wells in the present formulation.

Among the several parameters that describes the production network, some may not be accurately
known. In this work, we assume that the GOR is uncertain, but their expected value E0(GOR) and the
range of values or variance σ are assumed to be known:

GOR ∈
{
E0(GOR)± σ

}
= U . (5)

As seen from Equations (1a)–(4f), the gas lifted well is modelled as a semi-explicit index-1 DAE
(differential algebraic equation) of the form

ẋi = fi(xi, zi, ui, pi), (6a)

gi(xi, zi, ui, pi) = 0 ∀i ∈ N = {1, · · · , nw}, (6b)

where fi(xi, zi, ui, pi) is the set of differential Equations (1a)–(1c) and gi(xi, zi, ui, pi) is the set
of algebraic Equations (2a)–(4f), and the subscript i refers to any individual well from a set of
N = {1, · · · , nw} wells. Note that, for convenience, the subscript i has been removed from the
Equations (1a)–(4f), which represents the model for each gas lifted well.
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The differential states xi, algebraic states zi, decision variables ui, and the uncertain parameters pi
are then given by:

xi =
[
mgai mgti moti

]T
, (7a)

zi =
[
ρai ρmi pai pwii pwhi

pbhi
wivi wpci wpgi wpoi

]T
, (7b)

ui =
[
wgli

]T
, (7c)

pi =
[

GORi

]T ∈ Ui. (7d)

The combined system of nw wells is then denoted by:

ẋ = f (x, z, u, p), (8a)

g(x, z, u, p) = 0, ∀p ∈ U , (8b)

where the combined states x, z and control input u are described by the vectors

x =
[

xT
1 xT

2 · · · xT
nw

]T
, (9a)

z =
[
zT

1 zT
2 · · · zT

nw

]T
, (9b)

u =
[
uT

1 uT
2 · · · uT

nw

]T
. (9c)

The combined parameters and the uncertainty set p and U are given by

p =
[

pT
1 pT

2 · · · pT
nw

]T
, (10a)

U = U1 × U2 × · · · × Unw . (10b)

Note that the dynamic models (6) and (8) could be easily written as an explicit ODE (ordinary
differential equations) by simply eliminating the algebraic variables.

4. Optimization under Uncertainty

For a production network with a set of N = {1, · · · , nw} wells, our objective is to find the optimal
gas lift injection rate that maximizes the profit, subject to total gas capacity constraints. The profit
is computed based on the earnings from the oil production and reducing the costs associated with
compressing the gas for gas lift. The economic objective can then be written as:

Jpro f it = αo

nw

∑
i=1

wpoi − αgl

nw

∑
i=1

wgli , (11)

where αo is the price of oil, and αgl is the cost of compressing the gas for gas lift injection.
Before this can be posed as a standard optimization problem, the infinite dimensional optimal

control problem is first discretized into a finite dimensional nonlinear programming problem (NLP)
divided into N equally spaced sampling intervals in K = {1, · · · , N}. This is done using third order
direct collocation, which gives a polynomial approximation of the system (8) as shown in Figure 2.
The set of three collocation points and the initial state in each interval [k, k + 1] is denoted by the index
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c ∈ C = {0, 1, 2, 3}, and the location of these points are computed using the Radau scheme (see [26]).
The discretized states x̃ = (xk,c|k ∈ K, c ∈ C) and z̃ = (zk,c|k ∈ K, c ∈ C) are then given by:

x̃ =
[
xT

1,1 xT
1,2 xT

1,3 xT
2,1 · · · xT

N−1,3 xT
N,1 xT

N,2 xT
N,3

]T
, (12a)

z̃ =
[
zT

1,1 zT
1,2 zT

1,3 zT
2,1 · · · zT

N−1,3 zT
N,1 zT

N,2 zT
N,3

]T
, (12b)

where xk,c represents the combined states for nw wells Equation (9a) at time instant k and the collocation
point c in the interval [k, k + 1]. To ensure continuity of the states between two consecutive time
intervals, the final state variables xk,3 and the initial conditions of the next time interval x0 must be
equal, where the vector of initial states at each interval is represented by:

x0 =
[
xT

1,0 xT
2,0 · · · xT

N,0 xT
N+1,0

]T
. (13)

k k + 1

tk;0 tk;3 = tk+1;0tk;1 tk;2

k k + 1

tk;0 tk;3; tk+1;0tk;1 tk;2

xk;0

xk;1

xk;2

xk;3

x

z
zk;1

zk;2 zk;3

f(xk; zk; uk)

k k + 1

tk;0 tk+1;0tk;1 tk;2

u

Figure 2. Schematic representation of third order direct collocation using Radau scheme showing the
polynomial approximation of dynamic system (8) for a single sampling interval [k, k + 1]. Note that the
differential state has one additional collocation point at tk,0, which is used to ensure state continuity by
enforcing shooting gap constraints. The control input u is piecewise constant over the interval [k, k + 1].

The control inputs ũ = (uk|k ∈ K), which are discretized at each sampling interval, are assumed
to be piecewise constant over each interval and hence are not discretized at the collocation points:

ũ =
[
uT

1 uT
2 · · · uT

N

]T
. (14)

Note that the parameters p are assumed to be time invariant. The discretized system dynamics at
any time instant k can then be written as

F(x̃k, x0
k, z̃k, ũk, p) = 0. (15)
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Once the system has been discretized, the daily production optimization problem can be posed as
a standard NLP problem, divided into N equally spaced sampling intervals in K = {1, · · · , N} on a
prediction horizon from k = 1 to k = N. The vector of decision variables for the NLP problem over
this prediction horizon is then given by:

θ =

[· · · xT
k,0︸︷︷︸

x0
k

xT
k,1 · · · xT

k,3︸ ︷︷ ︸
x̃k

zT
k,1 · · · zT

k,3︸ ︷︷ ︸
z̃k

uT
k︸︷︷︸

ũk

· · ·]T

∀k ∈ K, (16)

min
θ

J = −
N

∑
k=1

Jpro f it + γ
N

∑
k=1

‖Δu‖2, (17a)

s.t.

F(x̃k, x0
k, z̃k, ũk, p) = 0 ∀k ∈ K.∀p ∈ U , (17b)

nw

∑
i=1

wpgi ≤ wgMax ∀i ∈ N , (17c)

xl ≤ xk,c ≤ xh ∀k ∈ K, ∀c ∈ C, (17d)

zl ≤ zk,c ≤ zh ∀k ∈ K, ∀c ∈ C, (17e)

ul ≤ uk ≤ uh ∀k ∈ K (17f)

Δul ≤ Δuk ≤ Δuh, ∀k ∈ K (17g)

xk,3 = x0
k+1 ∀k ∈ K, (17h)

x1,0 = x0. (17i)

The objective function is comprised of the economic cost function Equation (11) and in addition
penalizes the control effort using the tuning parameter γ. The total gas capacity constraints are
implemented in Equation (17c), where wgMax is the maximum gas capacity. The discretized dynamic
model is implemented as state constraints Equation (17b). Upper and lower bound constraints
on the differential and algebraic states are implemented at each collocation point and the upper
and lower bound constraints on decision variables are implemented at each sample as shown
in Equations (17d)–(17f). Rate of change constraints on the decision variables are implemented
in Equation (17g). The shooting gap constraints to ensure state continuity are implemented in
Equation (17h). The initial conditions are enforced in Equation (17i). The uncertain parameter GOR
can take any value from a bound uncertainty set, U = {E0(GOR)± σ}.

In the nominal optimization case, the uncertainty is ignored in the optimization problem.
The uncertain parameters are assumed to take their expected values. In this case, the optimization
problem Equation (17) is solved with

GORi = E0(GORi) ∀i ∈ N . (18)

In the case of constrained optimization, the optimal solution is the one where the gas capacity
constraints are active. If the true realization of the uncertain parameters is higher than the expected
value, then the optimal solution provided by the deterministic optimization may lead to infeasibility
when implemented.

To ensure robust feasibility, the uncertain parameters may be assumed to take their worst case
realization in the optimization problem. This was first introduced in 1973 by Soyster where every
uncertain parameter in convex programming was taken equal to its worst case value within a set [27].
Since then, optimization for the worst case value of the parameters within a set has become effectively
known as Robust Optimization. A static robust optimization approach for gas lift well optimization using
the robust counterpart formulation, as described in [3], was recently presented in [16]. However, since
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the uncertainty is simple in the considered problem, the worst case can be easily determined a priori
without explicitly formulating the robust counterpart. Therefore, we do not formulate the optimization
problem using the robust counterpart, but simply take the a priori computed worst case values for
all the uncertain parameters. For the application considered in the paper, we know that the worst
case scenario occurs when the GOR of all the wells takes its maximum realization simultaneously.
Therefore, we simply choose the worst case GOR as shown in Equation (19). To avoid further confusion,
we call this approach “worst case optimization” instead of "robust optimization".

The worst case optimization problem (17) can then be solved with

GORi = ‖Ui‖∞ = E0(GORi) + σi ∀i ∈ N , (19)

since the worst case always occurs for the maximum GOR value for each individual well. However,
the robust solution will be overly conservative, since the probability that all the uncertain parameters
taking its worst case realization will be low. This leads to a suboptimal solution, since the constraints
may not be active, and thus there is spare capacity left.

4.1. Scenario Optimization

The robust formulation does not take into account the fact that new information will be available in
the future. This makes the solution conservative as illustrated in [5]. Closed loop or feedback min–max
MPC (model predictive control) scheme was proposed in [5] to overcome this problem, where the cost
function is minimised over a sequence of control policies rather than control inputs. This problem
may be rather difficult to solve due to its infinite dimension. A multistage NMPC (nonlinear model
predictive control) framework was proposed in [6], where the uncertainty is represented by a tree of
discrete scenarios as shown in Figure 3. In other words, we consider M different models, where each
model has a different value for the uncertain parameters to represent how the uncertainty influences
state propagation over time. At each sample, we assume that the uncertain parameters can take any
discrete value from this subset of M different models. We then design different control input profiles
for all the scenarios. By doing so, we explicitly take into account the fact that new information will be
available in the future and the decision variables can counteract the effect of the uncertainty.

x1;1

x2;1

x2;2

x3;1

x3;2

x3;3

x3;4

x4;1

x4;2

x4;3

x4;4
NR

N

· · ·

· · ·

· · ·

· · ·

xN;1

xN;2

xN;3

xN;4

x2;4

x2;3

Figure 3. Scenario tree representation of the uncertainty evolution with two models (M = 2) and
a robust horizon of two samples (NR = 2). The notation xk,j represents the state x at sample k
for jth scenario.

The main drawback of this approach is that the size of the problem grows exponentially over
the prediction horizon, with the number of uncertain parameters and the different values of the
uncertainties that are considered in the scenario tree design. To overcome this problem, it may be
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sensible to stop the branching of the scenarios after a certain number of samples, NR ≤ N in the
prediction horizon (known as Robust Horizon). The uncertain parameters are assumed to remain
constant after the robust horizon until the end of the prediction horizon, as depicted in Figure 3. This is
reasonable, since the far future does not have to be represented accurately because the corresponding
optimal trajectory will be refined later anyway [6].

Each path from the root node to the leaf is called a scenario and the total number of scenarios
is given by S = MNR . Therefore, the scenario-based optimization approach optimizes over all the
discrete set of scenarios S = {1, · · · , S}. In order to model the real-time decision making accurately,
the so-called non-anticipativity constraints have to be imposed on the decision variables. This is to reflect
the fact that the decision variables cannot anticipate the future, and hence the decision variables that
branch at the same node must take the same value.

Once the necessary preliminaries have been introduced, the scenario-based optimization problem
can be formalized:

min
θj

S

∑
j=1

ωj Jj, (20a)

s.t.

F(x̃k,j, x0
k,j, z̃k,j, ũk,j, pj) = 0 ∀k ∈ K, ∀pj ∈ U , ∀j ∈ S , (20b)

nw

∑
i=1

wpgi ,j ≤ wgMax ∀j ∈ S , ∀i ∈ N , (20c)

xl ≤ xk,c,j ≤ xh ∀k ∈ K, ∀c ∈ C, ∀j ∈ S , (20d)

zl ≤ zk,c,j ≤ zh ∀k ∈ K, ∀c ∈ C, ∀j ∈ S , (20e)

ul ≤ uk,j ≤ uh ∀k ∈ K, ∀j ∈ S , (20f)

Δul ≤ Δuk,j ≤ Δuh ∀k ∈ K, ∀j ∈ S , (20g)

xk,3,j = x0
k+1,j ∀k ∈ K, ∀j ∈ S , (20h)

x1,0 = x0 (20i)
S

∑
j=1

χjuj = 0 ∀j ∈ S , (20j)

where S is the number of scenarios, and Jj is the cost of each scenario with its probability or
weight ωj. The cost of each scenario is given by Equation (17a) and GORj is a subset of U =

{E0(GOR)± σ} with M discrete values. Note that all the variables have an extra subscript j compared
to Equation (17), where j represents each scenario. In addition, nonanticipativity constraints are
included in Equation (20j), where χ is the non-anticipativity constraint which enforces that all
the decision variables that branch at the same parent node have to be equal. For example, the
nonanticipativity constraints for the scenario tree in Figure 3 are written as

u2,1 = u2,2 = u2,3 = u2,4 (21a)

u3,1 = u3,2 (21b)

u3,3 = u3,4 (21c)

5. Simulation Results

In this work, we consider a network of two gas lifted oil wells (nw = 2) producing to a common
manifold as shown in Figure 4. The process is assumed to be constrained by a maximum gas capacity
of wgMax = 8kg/s. Therefore, we have a DAE system with six differential Equations (1a)–(1c) and
24 algebraic Equations (2a)–(4f), two decision variables and two uncertain parameters. The parameter
values used in the simulation are summarised in Table 1.
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wgl1 wgl2

wgTot
≤ wgMax

woTot

zc1 zc2

GOR1 2 U1 GOR2 2 U2

Figure 4. Production network with two gas lifted wells producing to a common manifold.

Table 1. List of parameters and their corresponding values used in the results.

Parameter Units Well 1 Well 2 Comment

Lw [m] 1500 1500 Length of well
Hw [m] 1000 1000 Height of well
Dw [m] 0.121 0.121 Diameter of well
Lr [m] 500 500 Length of well below injection
Hr [m] 100 100 Height of well below injection
Dr [m] 0.121 0.121 Diameter of well below injection
La [m] 1500 1500 Length of annulus
Ha [m] 1000 1000 Height of annulus
Da [m] 0.189 0.189 Diameter of annulus
ρo [kg/m3] 900 800 Density of Oil

Civ [m2] 1×10−4 1×10−4 Injection valve characteristic
Cpc [m2] 1×10−3 1×10−3 Production valve characteristic
pm [bar] 20 20 Manifold pressure
pr [bar] 150 155 Reservoir pressure
PI [kg·s−1·bar−1] 2.2 2.2 Productivity index
Ta [◦C] 28 28 Annulus temperature
Tw [◦C] 32 32 Well tubing temperature
Mw [g] 20 20 Molecular weight of gas

GOR [kg/kg] 0.1 ± 0.1 0.15 ± 0.01 Gas–Oil ratio

An optimizing control structure with integrated optimization and control [28] was chosen, where
the control system uses an online dynamic optimization based on a nonlinear model of the plant and
solves for the optimal trajectory over a prediction horizon. The dynamic optimization problem in this
work was solved with a prediction horizon N = 60 and a sampling time of Ts = 300 s. The first control
input is then applied to the plant.

For the deterministic optimization case, the expected value of the GOR was used in the
optimization problem, and, for the worst case optimization, the maximum value of the GOR was used
in the optimization problem. In the case of scenario-based optimization, four different possible values
of the GOR were used in the optimization problem (see Table 2), and a robust horizon of NR = 1
was chosen.
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Table 2. GOR (Gas-Oil ratio) values used in the optimizer for nominal, worst case and scenario-based
approach.

Well Nominal Worst Case Scenario-Based

GOR well 1 0.1 0.2 0.05 0.1 0.15 0.2
GOR well 2 0.15 0.16 0.145 0.15 0.155 0.16

The optimization problem considered here computes the optimal gas lift rate for each well.
We assume that we have perfect low level controllers that adjust the gas lift choke zgl to provide
the desired gas lift rates. We also assume that perfect state feedback is available for the dynamic
optimization. These assumptions are justified, since the main focus in this work is to compare the
nominal, worst case and scenario-based optimization approaches. The control structure used in this
work is shown in Figure 5.

Optimizing

Controller

Process

~uk

p

~xk; ~zk

Figure 5. Schematic representation of the optimizing control structure. The Dynamic RTO (Real-time
optimization) for nominal, worst case or scenario-based approach computes the optimal gas lift rates
for the two wells and sets the process at each iteration.

The simulation starts with the true GOR the same as the nominal GOR. At sampling instant
N = 15, true GOR gradually increases to 0.15 and 0.155 in well 1 and well 2, respectively, and remains
constant at these values until N = 45. At sampling instant N = 45, the GOR suddenly increases to
0.2 and 0.16 (worst case realization) in wells 1 and 2, respectively. The true GOR profile is shown
is Figure 6f.

The system is first simulated for the nominal optimization case, where the optimization assumes
the GOR to be at its nominal value. When the true GOR is at its nominal value, there is no plant model
mismatch and the total gas capacity constraints are active as expected. However, when the true GOR
in the system increases, this leads to constraint violation.

Then, the system is simulated with the worst case optimization, where the optimizer assumes
GOR to take its worst case value. When the true GOR is at its nominal value, we see that the optimal
solution implemented is rather conservative. The gas capacity constraints are no longer active and
there is spare capacity that can be utilised. When the GOR increases, we see that the constraints are not
violated, even when the GOR does take its worst case value at N = 45. The solution is robust feasible
at the cost of conservativeness.

Finally, the system is simulated with the scenario-based optimization with four different GOR
values as shown in Table 2. All the scenarios are assumed equally probable and are therefore provided
with equal weights for all the scenarios. When the GOR is at its nominal value, the optimizer solves
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for the optimal inputs that are feasible for all the possible scenarios, and we see that the gas capacity
constraints are not active. However, the solution is less conservative than the worst case optimization.
As the GOR increases, the implemented solution proves to be robust feasible, and the constraints are
satisfied even when the GOR takes its worst case value. However, when the true GOR assumes its
worst case value, the total oil produced is less than the worst case optimization. This is due to the fact
that there is no plant model mismatch in the worst case optimization case, whereas in the scenario tree
optimization, the optimal solution is computed that maximises the oil rate for the other scenarios in
addition to the worst case scenario.
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Figure 6. Simulation results for the nominal case (dotted), worst case (dashed) and scenario-based
optimization (solid). (a) The total gas rates are shown in black and the maximum gas capacity constraint
shown in yellow, (b) the total oil rates are shown in black and the true steady-state optimum for the oil
rate is shown in yellow, (c) the gas rates from individual wells are shown in blue and red for well 1 and
well 2, respectively, (d) The oil rates from individual wells are shown in blue and red for well 1 and
well 2, respectively, (e) The gas lift rates from individual wells are shown in blue and red for well 1 and
well 2, respectively. (f) The true GOR (gas-oil ratio) realization used in the simulator are shown in blue
and red for well 1 and well 2, respectively.
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6. Discussion

The case study consists of two wells with one constraint and one uncertain parameter (GOR) with
a given nominal value and variance. In the nominal case, since well 1 has a marginally lower expected
GOR, one would prioritize well 1 over well 2 to utilise the maximum gas capacity and maximise oil
rate. In the worst case, however, since well 2 now has lower expected GOR, one would then prioritize
well 2 over well 1. This is seen in the true optimal gas lift rates in Table 3, where well 1 is prioritized
over well 2 for the nominal case and vice versa for the worst case realization. This is similar to an
observation made by [15] for a static oil production optimization case.

Table 3. Results–loss evaluations for the different scenarios for nominal, worst case and scenario-based
optimization.

Optimization

True GOR True Optimum Computed Optimum Potential Obtained Loss

Well 1 Well 2 Well 1 Well 2 Well 1 Well 2 Tot Oil Tot Oil

[kg/kg] [kg/kg] [kg/s] [kg/s] [kg/s] [kg/s] [kg/s] [kg/s] [kg/s]

Nominal case

0.05 0.145 3.337 1.5117 2.663 1.518 31.879 31.7 0.179
0.1 0.15 2.563 1.429 2.563 1.429 31.879 31.879 0
0.15 0.155 1.788 1.348 infeasible infeasible 31.879 infeasible -
0.2 0.16 1.014 1.266 infeasible infeasible 31.879 infeasible -

Worst case

0.05 0.145 3.337 1.5117 1.324 1.32 31.879 30.69 1.189
0.1 0.15 2.563 1.429 1.318 1.329 31.879 31.33 0.549
0.15 0.155 1.788 1.348 1.235 1.317 31.879 31.69 0.189
0.2 0.16 1.014 1.266 1.014 1.266 31.879 31.879 0

Scenario tree

0.05 0.145 3.337 1.5117 2.048 0.7046 31.879 31.12 0.759
0.1 0.15 2.563 1.429 2.036 0.6904 31.879 31.49 0.389
0.15 0.155 1.788 1.348 2.038 0.5616 31.879 31.67 0.209
0.2 0.16 1.014 1.266 2.007 0.2697 31.879 31.68 0.199

In the nominal optimization, when the true GOR increases, the solution imminently becomes
infeasible and violates the total gas capacity constraints. The optimizer then tries to correct and reduces
the gas lift rates for both of the wells. Once the total gas is below the constraint, the optimizer then
increases the gas lift rates for both of the wells. This is because the optimizer “thinks” the oil rate
can be maximized based on the model. The implemented solution then keeps oscillating around the
constraint. Such a behaviour is clearly unacceptable.

To ensure robust feasibility, worst case optimization was then employed. The results of the worst
case optimization shows that the robust solution is very conservative. Scenario-based optimization was
then performed to reduce the conservativeness. When the true GOR is at its nominal value, the loss for
worst case optimization is 0.549 kg/s as opposed to 0.389 kg/s for the scenario-based optimization.
This shows that when the actual GOR is far away from its worst case values, the scenario optimization
performs significantly better and is able to reduce the conservativeness of the robust solution since it
considers different possible scenarios. However, in the unlikely event that the true GOR of all the wells
approach their worst case values, the loss for the worst case optimization approaches 0 as opposed to
0.199 kg/s for the scenario-based optimization. This is due to the fact that scenario tree also considers
other scenarios in its optimization problem, whereas there is no plant model mismatch in the worst
case optimization. The steady state loss computed for the different realizations of the GOR using
nominal, worst case and scenario-based optimization is given in Table 3.

The scenario-based optimization approach presented here assumes equal weights/ probabilities
for all the different scenarios included in the optimization problem. This makes the optimal solution
balance all the possible scenarios equally. This is a viable approach if no information about the
uncertainty is known. However, as we get more measurements, information about the true uncertainty
is revealed. Updating the weights for the different scenarios based on the measurements could perhaps
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significantly improve the performance of the scenario-based optimization compared to the worst case
optimization even more.

7. Materials and Methods

The dynamic optimization problem considered in this work is discretized into an NLP problem
using a third order direct collocation scheme in CasADi v3.0.1 (an open-source tool developed at
the Optimization in Engineering Center, K.U.Leuven, Leuven, Belgium) [29] using the MATLAB
R2016a (Mathworks Inc., Natick, MA, USA) programming environment. The NLP problem is then
solved using IPOPT version 3.12.2 (an open-source tool developed at the Department of Chemical
Engineering, Carnegie Mellon University, Pittsburgh, PA, USA) [30], running with a mumps linear
solver on a 2.6 GHz workstation with 16 GB memory. The plant (simulator) was implemented in
Simulink and solved with an ode45 solver. At each iteration, the first sample of the computed optimal
solution is implemented in Simulink R2016a (Mathworks Inc., Natick, MA, USA). After the simulation
is completed, the states from the Simulink model are fed back to the optimizer, which is used as the
initial value for the next iteration. The data transfer between Simulink and the optimizer is carried out
by reading and writing data to the common MATLAB workspace.

8. Conclusions

To our knowledge, this paper is the first publication considering a dynamic scenario-based
optimization approach for the daily production optimization problem. A detailed modelling framework
for the gas lifted well system that is suitable for dynamic optimization problems was presented.
The scenario-based optimization approach was shown to reduce the conservativeness of the solution
compared to the worst case optimization while being robust feasible. However, to improve the
performance of the scenario-based approach, the weights for the different scenarios to reflect the
uncertainty realization must be included as shown in [31]. A natural further step is also to explore
systems with pressure coupling between wells and more extensive subsea completions.
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Abstract: In this paper, we deal with the model-based time-optimal operation of a batch diafiltration
process in the presence of membrane fouling. Membrane fouling poses one of the major problems in
the field of membrane processes. We model the fouling behavior and estimate its parameters using
various methods. Least-squares, least-squares with a moving horizon, recursive least-squares methods
and the extended Kalman filter are applied and discussed for the estimation of the fouling behavior
on-line during the process run. Model-based optimal non-linear control coupled with parameter
estimation is applied in a simulation case study to show the benefits of the proposed approach.

Keywords: batch diafiltration; membrane fouling; time-optimal operation; fouling estimation

1. Introduction

In the last few decades, an increased focus has been given to the membrane technology, which
is used both in production and down-stream processing. Membrane technologies are exploited in
a variety of processes, such as in membrane reactors, membrane distillation, diafiltration, dialysis,
electrolysis, etc. All of these employ principles of membrane separation [1]. There are, however, certain
limitations for the application. The major obstacle is the membrane fouling, which refers to the blockage
of membrane pores during filtration, causing a decrease in the production rate. Although membrane
fouling is an inevitable phenomenon occurring during the filtration process, it can be controlled and
its influence alleviated [2].

There are several operational approaches to deal with membrane fouling. These mainly include
scheduling of membrane cleaning cycles and on-line fouling control strategies [2]. These techniques
usually require mathematical models for predicting the fouling behavior. The first attempt to describe the
fouling behavior in a unified model was presented by Hermia [3] who developed four types of fouling
behavior. Few works have then been devoted to model-based optimal control of membrane-assisted
processes [4,5] and membrane fouling and cleaning [6,7]. However, optimal control requires knowledge
of process model parameters. Thus, in the case of unknown parameters in the model, on-line parameter
estimation may be performed in order to improve the process control performance. For this purpose,
several methods can be applied, such as common least-squares or some more advanced methods.
In Charfi et al. [8], an estimation of the fouling mechanism model proposed by Hermia was conducted
for microfiltration and ultrafiltration in a membrane bioreactor using experimental data reported in
the literature.

Processes 2016, 4, 43 209 www.mdpi.com/journal/processes
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Parameter identifiability has to be addressed before the actual estimation step. If a model is
non-identifiable, the estimated parameters will lead to errors in subsequent model predictions [9].
The identifiability test also provides a guideline for how to simplify the model structure or indicates
when more measurements are needed to allow for unique identifiability [10].

Recently, the optimal control of a diafiltration process in the presence of fouling was proposed [11].
The obtained control law depends mainly on the parameters of membrane flux and fouling. In the
subsequent work, an on-line control strategy was considered that incorporated parameter estimation
using the extended Kalman filter (EKF) [12]. In this paper, we focus more broadly on the optimal
operation of a diafiltration process under fouling where parameter estimation is used to determine the
parameters of the fouling model. Compared to the work [12], in this paper, we provide a comparison
of the estimation of the unknown parameters using several optimization-based (least-squares and
moving-horizon estimation), as well as recursive (recursive least-squares estimation and extended
Kalman filter) methods by considering also measurement and process noise, and we assess their
performance on the highly non-linear estimation problem that arises from the nature of the employed
process model. In addition, the identifiability test is also performed in order to reveal whether the
model parameters can be estimated based on available measurements.

The paper is organized as follows. In the next section, the general formulation of a batch diafiltration
process is introduced. In Section 3, we provide a detailed analysis of the membrane fouling phenomena,
and we also discuss the modeling of the membrane fouling. Section 4 provides the definition of the
problem of the optimal operation of the diafiltration process. In Section 5, a review of identifiability
detection methods is given with the main focus on non-linear models described by ordinary differential
equations (ODEs). The results and implications of the performed identifiability tests are presented.
An introduction is then given to the considered parameter estimation problem, and four different
estimation methods are briefly presented. Finally, a simulation study is provided in Section 6 with a
detailed discussion and analysis of the obtained results.

2. Process Description

In this paper, we consider the batch diafiltration process shown in Figure 1. The batch process
operates under constant pressure and temperature. The overall batch process consists of a feed tank and
a membrane module. We consider that the process solution consist of a solvent (water), macro-solute
(high molecular weight component) and micro-solute (low molecular weight component). The process
solution is brought from the feed tank to the membrane by means of mechanical energy (e.g., pump).
The membrane is designed to retain the macro-solute, while the micro-solute can easily pass through
the membrane pores. The stream rejected by the membrane is called the retentate and is taken back
into the feed tank. The stream that leaves the system is called the permeate, and its flow-rate is defined
as q = AJ, where A is the membrane area and J is the permeate flux per unit area of the membrane.
The flow rate of the permeate stream is a function of both concentrations of the individual solutes and
of time, in the case of the occurrence of fouling phenomena.

The control of the batch diafiltration process can be achieved by adjusting the flow-rate of the
solvent (diluent) into the feed tank. Then, the control variable α is defined as the ratio between the
inflow into the feed tank and the outflow from the membrane module. Traditional approaches to the
operation of the diafiltration process consider sequences of operating regimes, which differ in the rate
of diluent addition:

1. Concentration mode: During this mode, no diluent is added into the feed tank, i.e., α = 0.
2. Constant-volume diafiltration mode: Here, the rate of inflow of the diluent is kept the same as the

rate of permeate outflow, i.e., α = 1.
3. (Pure) Dilution mode: In this mode, a certain amount of diluent can be added instantaneously

into the feed tank. This can be represented as α → ∞.
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Figure 1. Schematic representation of a generalized ultrafiltration/diafiltration process.

Regarding the practical applicability of the pure dilution mode, as will be shown further, the optimal
operation would involve the pure dilution mode as an initial or a final step. In both of these cases, the
pure dilution step can be performed out of the batch as a pre-/post-treatment of the separated solution.

The process model [13] is constituted by the solutes mass balance equations, which have the
following form:

dci
dt

=
ciq
V

(Ri − α), ci(0) = ci,0, i = 1, 2, (1)

where V is the volume in the feed tank and ci denotes the concentration of the i-th solute; i = 1 for
macro-solute; and i = 2 for micro-solute. Ri is the observed rejection coefficient of the i-th solute,
which describes the ability of the membrane to retain the solute. The total mass balance is defined
as follows:

dV
dt

= αq − q = (α − 1)AJ, V(0) = V0, (2)

where V0 is the initial volume of the process solution.
In many cases, the rejection coefficient Ri is a function of concentrations. In this paper, we will

consider that the rejections are ideal, given and constant for both solutes (R1 = 1 and R2 = 0).
This means that the membrane is perfectly impermeable to macro-solute and that only the micro-solute
can pass through the membrane. Moreover, since only the micro-solute can pass through the
membrane, the mass of macro-solute in the system will not change and remains constant, such that
c1(t)V(t) = c1,0V0. Based on these assumptions, we can eliminate the differential equation for the
volume (2), and the model has now the following form:

dc1

dt
= c2

1
AJ

c1,0V0
(1 − α), c1(0) = c1,0, (3)

dc2

dt
= −c1c2

AJ
c1,0V0

α, c2(0) = c2,0. (4)

3. Membrane Fouling

One of the major obstacles in the field of membrane-assisted processing is the membrane fouling.
The membrane fouling is caused by the deposit of the solutes in/on the membrane pores. The main
consequence of the membrane fouling is the decrease in the permeate outflow due to the blockage of
the pores. The most important factors that cause the membrane fouling are the feed properties and
membrane material. Moreover, membrane fouling can increase when the concentration polarization
effect takes place. In [14], the authors have shown that during the membrane filtration, the retained
macro-solute can form a gel layer over the membrane surface. The formation of such a gel layer
can increase the interactions between the solutes and the membrane surface, which eventually lead
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to membrane fouling. Further, the process variables, such as temperature and pressure, may also
contribute to membrane fouling [15].

As mentioned above, the main consequence of the membrane fouling is the decrease in the
permeate flow rate, which results in the increase of the overall processing time. If the membrane
becomes heavily fouled, cleaning must be performed. In some cases, even replacement of the membrane
module must be carried out, which leads to the increase of the production costs.

In the past three decades, the modeling of membrane fouling became very important. In 1982,
Hermia [3] derived a unified fouling model for dead-end filtration in terms of total permeate flux and
time, which has the following form:

d2t
dV2

p
= K

(
dt

dVp

)n
, (5)

where Vp is the permeate volume, t is time and K represents the fouling rate constant. From the above
unified fouling model, four classical fouling models can be derived for different values of the fouling
parameter n. The four models are cake filtration (n = 0), intermediate blocking (n = 1), internal
blocking (n = 3/2) and the complete blocking model (n = 2). By integration of (5), we obtain the
differential equation for the permeate flux [16,17], which is expressed as:

dJ
dt

= −KA2−n J3−n. (6)

This equation can be solved to give an explicit solution J(t, K, n, A, J0) if the parameters A, K
and n are constant and J0 is the initial flux at time t = 0. However, this model holds only for
dead-end filtration mode. In order to account for the dynamics of the cross-flow system, which is
considered in this paper, we propose to substitute the initial flux J0(t = 0) with the flux of an unfouled
membrane J0(c1, c2).

In Figure 2, we show the graphical representation of the four standard fouling models. The models
differ in the way that the solutes deposit on/in the membrane surface. In the following subsections,
we will briefly discuss the individual fouling models.

(a) (b)

(c) (d)

Figure 2. Graphical representation of the four classical fouling models developed by Hermia. (a) Cake
filtration model (n = 0); (b) intermediate blocking model (n = 1); (c) internal blocking model (n = 3/2);
(d) complete blocking model (n = 2).

3.1. Cake Filtration Model

The cake filtration model considers that the solutes brought to the membrane surface will form
a multi-layered cake formation shown in Figure 2a. The multi-layered formation is caused by the
repeating deposit of the solutes on the membrane surface. The parameter n is set to zero, and the
permeate flux has the following form:

1
J2 =

1
J2
0
+ 2KA2t. (7)
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where J in m3/s/m2 is the permeate flow per unit area of the membrane and J0 is the flux of an
unfouled membrane.

3.2. Intermediate Blocking Model

The intermediate fouling model also considers that the solute will block all of the pores. However,
in this case, the solutes can also deposit on each other, as illustrated in Figure 2b. To derive the model,
the parameter n is equal to one, and the permeate flux is of the form:

1
J
=

1
J0

+ KAt. (8)

3.3. Internal Blocking Model

The aforementioned fouling models do not consider the fouling to take place inside the membrane
pores. This is not the case with an internal blocking model (Figure 2c). This type of fouling results in
the decrease of the diameter of the membrane pores, which leads to the decrease of the permeate flow.
For the internal blocking model, the parameter n is equal to 3/2, and the permeate flux is derived as:

1√
J
=

1√
J0

+
1
2

KA1/2t. (9)

3.4. Complete Pore Blocking Model

The complete pore blocking model considers that all of the solutes brought to the membrane
surface will block the membrane pores (Figure 2d). Therefore, the permeate flow will be reduced.
Moreover, the blockage of the pores is caused only if the molecules of the solutes are larger than
the membrane pores. The complete blocking model can be derived from (5) if n = 2 and is of the
following form:

ln J = ln J0 − Kt, (10)

Note that unlike in the previous cases, the permeate flux does not depend on the membrane area.

4. Optimization Problem

The main operational objective of the diafiltration plant is to process as much solution as
possible. This can only be achieved by pursuing the time-optimal batch recipes with tight scheduling.
Consequently, as scheduling is here usually a rather trivial task, we concentrate on the time-optimal
control problem of a batch membrane process in the presence of membrane fouling.

4.1. Problem Definition

The objective is to identify such a time-dependent function α(t) that will drive the system from
the initial concentrations to the required final concentrations in the minimum time. The optimization
problem reads as:

J ∗ = min
α(t)

∫ tf

0
1 dt, (11)

s.t. ċ1 =
c2

1 AJ
c1,0V0

(1 − α), c1(0) = c1,0, c1(tf) = c1,f, (12)

ċ2 = − c1c2 AJ
c1,0V0

α, c2(0) = c2,0, c2(tf) = c2,f, (13)

J = J(t, J0(c1, c2), K, n), (14)

α ∈ [0, ∞). (15)
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We assume that this optimization problem is feasible, i.e., the process design ensures that the
final conditions can be met within admissible input trajectories. This optimization problem can be
approximately solved using various numerical methods [18] of dynamic optimization (e.g., control
vector parametrization or complete discretization). However, an analytical solution is available.
This was shown in [19] and is briefly reviewed in the following.

4.2. Nominal Optimal Operation

In our recent study [19], we derived analytically the complete optimal operation for a diafiltration
process in the presence of membrane fouling using Pontryagin’s minimum principle [20,21]. The optimal
operation is an explicit non-linear control strategy defined on three time intervals as follows:

1. In the first interval, the control is kept on the boundaries (e.g., minimum or maximum) until the
singular curve is reached:

S(t, c1, c2, K, n) = J + c1
∂J
∂c1

+ c2
∂J
∂c2

= 0. (16)

The minimum control action (α = 0) is applied if the initial concentrations lie to the left side of the
singular surface (S(0, c1,0, c2,0, K, n) < 0) in the state diagram. Conversely, the maximum (α → ∞)
control action is applied when the initial concentrations are on the right of the singular curve
(S(0, c1,0, c2,0, K, n) > 0).

2. Once the singular curve is reached, the singular control is applied, which forces the states to stay
on the singular curve:

α(t, c1, c2, K, n) =

∂S
∂c1

c1

∂S
∂c1

c1 +
∂S
∂c2

c2

+

∂S
∂t

c1 AJ
c10V0

(
∂S
∂c1

c1 +
∂S
∂c2

c2

) . (17)

This step is terminated once the ratio of the concentrations is equal to the ratio of the final
concentrations or once the final concentration of the micro-solute is reached.

3. In the last step, the control is kept on one of the boundaries similar to the first step with the
difference that the operation mode to be applied is determined by the final time constraints.
The concentration mode (α = 0) is applied if the final concentration of the micro-solute has been
reached. The dilution mode with α → ∞ is applied once the ratio of the final concentrations is
equal to the final one. Both steps are performed until the final concentrations are reached.

For a particular case of initial and final concentrations, any of the three steps can be missing.
For instance, if initial (respectively final) concentrations lie on the singular case, then the first (respectively
last) step will be skipped. Another case would occur if the singular case cannot be reached before the
control has to switch from the first to the last step, so the optimal operation will consist entirely of
saturated control arcs.

4.3. Optimal Operation with Imperfect Knowledge of Fouling Model Parameters

It can be easily shown that the optimal control structure does not depend on the unknown fouling
parameters in the first and last step of the optimal operation. This comes from the fact that, on the one
hand, the initial flux is not influenced by the fouling, as J(0) = J0, and on the other hand, the last step
is determined by the active constraints, which are independent of the fouling behavior.

These observations imply that one can distinguish two cases in the on-line optimal operation
under imperfect knowledge of the fouling model:

1. If the operation starts with the concentration mode, the a priori knowledge of unknown
parameters K and n should be improved during this step by parameter estimation, such that the
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switching time can be determined accurately. If this estimation is successful, the optimal singular
surface is followed thereafter.

2. Should the optimal operation commence with a pure dilution step, the entry point to the singular
surface would be known exactly, as it only depends on J0. In other words, the amount of the
diluent that should be added at the beginning of the operation does not depend on the parameters
of the fouling model. It would then be again necessary to improve the knowledge about the
unknown parameters in order to maintain the singular-surface condition.

Clearly, the on-line parameter estimation will yield adequate results only if (a) a sufficient amount
of data can be gathered and if (b) significant sensitivity is present between measured outputs and
estimated parameters on the particular arc of the optimal solution. The first condition requires that
the optimal concentration mode, respectively singular arc, lasts sufficiently long, which will likely
result in the negligible suboptimality of the on-line control strategy. The latter condition suggests the
provision of the persistence of excitation in the system. This might be critical should the parameter
estimation be required to yield accurate parameter estimates when the system resides on the singular
arc. For example, if the optimal singular flux is constant, then the set of obtained flux measurements
will not bring enough new information about the fouling behavior. This case will further be addressed
in Section 6 where the interesting question is to find out what the trade-off is between the insensitivity
of the objective function to the control on the singular arc and the inaccuracy of parameter estimates.

5. Parameter Estimation Problem

In this section, we will discuss parameter identifiability and parameter estimation techniques.
Several studies have employed standard estimation methods to obtain the fouling parameters necessary
for the control of membrane processes. In [8], the authors have proposed to employ the least-squares
method to identify the fouling rate constant (K) for the standard fouling models. However, this
procedure was performed completely off-line with the necessity of initial probing runs to obtain the
experimental measurements of flux based on which the fouling rate constant could be determined.
Moreover, only the fouling rate constant was estimated with a fixed type of fouling model. Since the
derived optimal control depends also on the information of the type of fouling model, the estimation
of both the unknown fouling parameters (K, n) is followed in this work. Furthermore the estimation is
performed on-line, which eliminates the necessity of any initial experiments.

The on-line estimation is coupled with the aforementioned optimal feedback control law, which is
updated iteratively with the estimated values of the parameters of the fouling model. In our recent
paper [12], we have introduced this strategy using EKF. In this paper, we provide an assessment of the
performance of some other commonly-used model-based estimators.

5.1. Problem Definition

We will consider that the process dynamics is described by a set of ODEs with initial conditions
and expressed in the following form:

ċ1 =
c2

1 AJ
c1,0V0

(1 − α), c1(0) = c1,0, (18)

ċ2 = − c1c2 AJ
c1,0V0

α, c2(0) = c2,0, (19)

τ̇ = 1, τ(0) = 0, (20)

where τ replaces the explicit appearance of time with a new state, and the permeate flux J is defined
as follows:

J(τ, J0(c1, c2), n, K, A) = J0

(
1 + K(2 − n)(AJ0)

2−nτ
)(1/(n−2))

, (21)
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We will rewrite the above differential equations into the following compact form:

ẋ = f (x, θ, u), (22)

where x = (c1, c2, τ)T is the vector of state variables, θ = (K, n)T is the vector of estimated parameters
and u is the control action. For the estimation of the unknown parameters, we assume that the
concentrations of the individual solutes (c1, c2) and also the permeate flux (J) can be measured.

5.2. Identifiability Problem

The problem of the parameter identifiability of dynamic models is a special case of the
observability problem. It is often the case that the parameters of a model have unknown values.
These values can be estimated from observing the input-output behavior.

Before the model parameters can be estimated, the identifiability analysis must be performed.
The property of identifiability is the ability to deduce the values of the model parameters uniquely in
terms of known quantities based on input and output variables and their time derivatives. In order to
investigate identifiability of (18) to (20), we will first introduce a definition of identifiability.

Definition 1. A dynamic system described by (22) and (25) is identifiable if the parameter vector θ can uniquely
be determined from the given system input u and the measurable system output y. If no solution can be found
for the given vector of unknown parameters θ, then the model is non-identifiable.

The identifiability analysis also distinguishes whether the parameter vector can uniquely be
identified or not. In this regard, a system is said to be structurally globally identifiable if for any
admissible input and any two parameter vectors θ1 and θ2, y(u, θ1) = y(u, θ2) holds if and only if
θ1 = θ2. A system is said to be structurally locally identifiable if for any parameter vector θ within an
open neighborhood of some point, y(u, θ1) = y(u, θ2) holds if and only if θ1 = θ2.

There are many well-established methods for determining the identifiability of linear systems.
However, fewer methods are applicable for non-linear systems. The most common methods for the
identifiability test include: the direct test [22], the identifiability of the corresponding linearized
system [22], the similarity transformation method [23,24], power series expansion [25], the generating
series approach [26] and differential algebra [27]. Two of these methods are used for the identifiability
analysis in this work.

5.2.1. Identifiability of the Corresponding Linearized System

Local linearization of the non-linear models can be considered for the identifiability test. However,
the identifiability of the linearized model is only a necessary condition [22].

There are several methods for the identifiability of linear systems. One method is to consider
parameters as dummy state variables with time derivatives equal to zero. The observability rank test
can then be applied where the observability matrix O of a linear system ẋ = A(θ)x+ B(θ)u, y = C(θ)x,

O =
[
C CA · · · CAn−1

]T
, (23)

should be of full rank n, where n is the dimension of the vector of state variables. Rigorously speaking,
this approach can only serve to detect the non-identifiability of the parameters.

5.2.2. Generating Series Approach

This approach is based on the computation of Lie derivatives, which allows one to expand the
output variables with respect to input variables. By computing Lie derivatives, a set of resulting
coefficients is formed, which is then used to compute the parametric solution. Based on this solution,
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the identifiability of the model is checked. A drawback of this method is that the sufficient number of
Lie derivatives to be considered is unknown. In order to easily visualize the structural identifiability
problem and to assist in the solution, identifiability tableau is proposed [26]. This tableau expresses
the dependency between parameters by using the Jacobian matrix of exhaustive summary, i.e., a set of
relations that depends only on the parameters. The tableau is represented by a “0 − 1” matrix, which
represents whether there is a dependency between Lie derivatives and the parameters “1”, or not
“0”. The identifiability is then checked by examining whether there is a unique “1” in a row of the
tableau. If so, then there exists a unique dependency between the Lie derivative and a parameter. Thus,
the corresponding parameter is structurally identifiable [9,28].

5.3. Software Tools for the Identifiability Test

There are few frameworks and software tools available that assist in identifiability analysis [29,30].
To the authors knowledge, there are three common software tools that use one of the above-mentioned
methods for testing global identifiability of non-linear systems. These are DAISY [31], COMBOS [30]
and GenSSI. The open-source tool GenSSI implements the generating series approach and is chosen
here for the identifiability analysis of the parameters. This is due to the model structure, which must
be strictly polynomial in order to be implemented in DAISY and in COMBOS. In our case, the model
of the diafiltration process with fouling does not satisfy this requirement.

GenSSI module is written in MATLAB and can be used for any general linear, non-linear ODE
or differential algebraic system. To run the identifiability test, the user needs to specify the model
equations, input and output variables, initial conditions, parameters to be identified and the number of
Lie derivatives. In the case of the detection of non-identifiability, GenSSI also provides information on
individual parameters and their global or local identifiability. This information can guide the proper
reformulation of the model [9,28].

Results and Discussion

The identifiability problem was solved for the membrane fouling process described by (3) and
(4) using both the observability matrix test and generating series approach. The results showed
that the parameters K, n in the membrane fouling model are not observable with the vector of
measurement y = (c1, c2, J)T . This is due to the fact that parameters enter the process equations via J
only, and therefore, there are infinitely many combinations that can lead to actual J. Therefore, a new
measurement must be added, which is a different function of the estimated parameters. For this reason,
the time derivative of the flux J̇ is considered as a new measurement. Based on the results given by
GenSSI, the augmented model of membrane fouling, which also considers the time-derivative of the
flux as a measured variable, is globally identifiable. This means that the two parameters K, n can be
identified based on the measured variables from any given initial conditions. The identifiability of the
parameters was also confirmed by using the observability matrix.

It is usually not possible to measure the derivative of the flux directly. Therefore, an approximation
of the third order is considered, which reads as:

dJ
dt

≈ Jk−3 − 6Jk−2 + 3Jk−1 + 2Jk
6Ts

. (24)

where Ts represents the sampling time. Different approximations were tested; the third order is a good
compromise between accuracy and complexity.

Then, the considered measured outputs in discrete-time samples (k) are as follows:

yk = h(xk, θ) = (c1, c2, J, J̇)T . (25)

This form of output equation is further considered for parameter estimation.
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5.4. Parameter Estimation Methods

Different parameter estimation methods are discussed in the following subsections. They mainly
differ in the consideration of the parameter estimation problem as non-linear (least-square method),
mildly non-linear (least-squares method with moving horizon) or almost linear (recursive least-squares
method and EKF). Note that this consideration implies whether the non-linear programming problem
(NLP) needs to be solved with each newly-gathered measurement or whether a recursive approach is
sufficient, where only a few mathematical operation (e.g., matrix-vector multiplications) are performed.
Here, a critical point is presented by the tendency of the recursive methods to rapidly diverge should
the process (and its model) exhibit strong non-linear behavior.

5.4.1. Weighted Least-Squares Method

One of the most used methods for parameter estimation is the weighted least-squares (WLS)
method. Compared to the standard least-squares method, the WLS method considers that different
measured outputs can contribute differently to the estimation of unknown parameters based on their
variability and statistical significance [32]. For the on-line parameter estimation, it must be, however,
considered that with each new measurement, a new NLP problem must be solved, and moreover, if
a large set of experimental points is available, numerical problems can occur due to the gradually
increasing complexity of the optimization problem. The optimization problem that needs to be solved
in each sampling time is as follows:

θ̂k = arg min
θ

k

∑
j=0

(yj − ŷj)
T R−1(yj − ŷj) (26)

s.t. (18) to (20), (27)

ŷj = h(xj, θ), (28)

θmin ≤ θ ≤ θmax, (29)

where y represents the vector of obtained measurements, R is the covariance matrix for the measurement
noise and θmin, θmax are the minimum and maximum values of the parameters, respectively.

5.4.2. Weighted Least-Squares Method with Moving Horizon

The weighted least-squares method with moving horizon [33] is very similar to the
previously-discussed method. However, in this case, not the whole measurement set is considered, but
only recent measurements on a constant moving horizon (MH) contribute actively to the estimation.
The influence of the past measurements, gathered prior to the moving horizon, is not neglected, but rather
considered through the parametric covariance matrix P as a priori knowledge of the parameters, similarly
to Bayesian estimation. The covariance matrix then penalizes a drift of the new estimates from their
a priori values in the objective function [34]. In [35], it has also been shown that the moving-horizon
estimation is equivalent to the extended Kalman filter if the first-order approximation of dynamics and
no constraints are considered. A distinct advantage of this method is that since a fixed-length horizon
of measured outputs is considered, the NLP problem that needs to be solved, when new measurements
are gathered, is of approximately fixed complexity and might be easier to solve than the optimization
problem in WLS estimation. The resulting non-linear problem reads as:
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θ̂k = arg min
θ

(θ− θ̂k−MH)
TP−1

k−MH(θ− θ̂k−MH) +
k

∑
j=k−MH

(yj − ŷj)
T R−1(yj − ŷj) (30)

s.t. (18) to (20), (31)

ŷj = h(xj, θ), (32)

θmin ≤ θ ≤ θmax. (33)

It is worth mentioning that the matrix P can be either selected as a constant matrix or one can
apply the extended Kalman filter method to update the matrix P in each sampling time to improve
the convergence.

5.4.3. Recursive Least-Squares Method

The recursive least-squares method (RLS) iteratively finds parameter estimates that minimize
the linearized least-squares objective function [36]. The parameter estimates are calculated at each
sampling time based on the a priori knowledge of the parameters (through parametric covariance
matrix) and the current measured outputs. The advantage of the method is that during the estimation,
no NLP problem has to be solved. On the other hand, RLS does not explicitly consider the constraints
on the estimated parameters in the updates of the covariance matrix, and thus, the a priori knowledge
of parameters might be biased.

In order to apply the RLS method, we consider a Taylor expansion of the output function (25) to
the first order:

ŷk = h(xk, θ) ≈ h(xk, θ̂k−1) +

(
∂h(xk, θ)

∂xk

∣∣∣∣
θ̂k−1

∂x
∂θ

∣∣∣∣
θ̂k−1

+
∂h(xk, θ)

∂θ

∣∣∣∣
θ̂k−1

)T

(θ̂k − θ̂k−1), (34)

≈ h(xk, θ̂k−1) +ϕT
k (θ̂k − θ̂k−1), (35)

where (∂x/∂θ) is the matrix of parametric sensitivities, which can be propagated in time as follows:

ṡ =
d
dt

∂x
∂θ

∣∣∣∣
θ̂k−1

=
∂ f (x, θ, u)

∂x

∣∣∣∣
θ̂k−1

∂x
∂θ

∣∣∣∣
θ̂k−1

+
∂ f
∂θ

∣∣∣∣
θ̂k−1

, s(0) =
∂x0

∂θ

∣∣∣∣
θ̂k−1

, (36)

for the given u(t). Here, we can observe that the sensitivity of the system needs to be ideally solved at
each sampling time from the initial conditions at t = 0. This can impose significant computational
burden and certain numerical problems, since many states and parameters are present in the problem.
This does not, however, present a significant issue in the present study.

The estimation error (ε) can be defined via the difference between the measured and calculated
outputs as:

ε = yk − ŷk = yk − h(xk, θ̂k)−ϕT
k θ̂k +ϕT

k θ̂k−1, (37)

The overall RLS algorithm [37] is then, using (34), defined as follows:

θ̂k =
(

I + Lkϕ
T
k

)−1 (
θ̂k−1 + Lk

[
yk − h(xk, θ̂k−1) +ϕT

k θ̂k−1

])
, (38)

Lk = Pk−1ϕk

(
ϕT

k Pk−1ϕk + R
)−1

, (39)

Pk = Pk−1 − Pk−1ϕk

(
ϕT

k Pk−1ϕk + R
)−1

ϕT
k Pk−1, (40)

where I is the identity matrix and L is the so-called gain matrix.
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5.4.4. Extended Kalman Filter

The Extended Kalman Filter is one of the most used methods for joint state and parameter
estimation of nonlinear systems [38,39]. The main idea is the use of the prediction-correction principle
where the non-linear model is used for the prediction (denoted by the superscript −), and its linearized
counterpart around the current estimate is exploited in the propagation of the covariance matrix
P and in the subsequent correction step (denoted by the superscript +) with the discrete system
measurements. Compared to the recursive least-squares method, one can additionally account for
the nonlinearity and the noise that affects the system dynamics using EKF. This can prove to be
highly advantageous if parametric uncertainty influences the measurements strongly. Similarly to the
recursive least-squares method, the absence of the treatment of the constraints and severe nonlinearities
can lead to the divergence of the estimator. On the other hand, the advantage of EKF lies in its simpler
implementation, where no parametric sensitivities are required, and in increased tuning capabilities,
which might yield faster and more robust convergence.

To formulate the EKF algorithm, the estimated parameters are first represented by new dummy
state variables with zero dynamics:

dθ̂

dt
= 0, θ̂(0) = θ̂0, (41)

and the dynamics of a new state vector is constructed using the dynamics of state and parameter estimates:

˙̃x = f̃ (x̃, u) = ( f T(x̂, θ̂, u), 0T)T , with x̃ = (x̂T , θ̂T)T . (42)

The observer dynamics then reads in the following form:

˙̃x− = f̃ (x̃−, u), x̃−(tk−1) = x̃+k−1, (43)
˙̃P− = FP̃−

+ P̃−FT + Q, P̃−
(tk−1) = P̃+

k−1, (44)

with initial estimates x̃−(t0) = x̃0 and P̃−
(t0) = P̃0 and with the update at measurement instants k

defined as:

x̃+k = x̃−(tk) + Lk[yk − h̃(x̃−(tk))], (45)

Lk = P̃−
(tk)C

T
k

[
CkP̃−

(tk)C
T
k + R

]−1
, (46)

P̃+
k = (I − LkCk)P̃

−
(tk). (47)

The state transition and observation matrices are defined by the following Jacobians:

F =
∂ f̃ (x̃, u)

∂x̃

∣∣∣∣
x̃−(t),u(t)

, Ck =
∂h̃(x̃)

∂x̃

∣∣∣∣
x̃−(tk)

. (48)

Matrices Q, P denote, respectively, the covariance matrix of the noise affecting the state dynamics
and the covariance of the estimated states and parameters. These matrices can also be thought of as
tuning knobs of the estimation algorithm affecting its estimation performance and convergence.

5.4.5. General Assessment of the Presented Estimation Methods

The presented estimation methods differ in several aspects. One can distinguish them based on
the level of accounting for the nonlinearity of the process model and the number of tuning parameters.
The WLS method is the only method here that employs the fully-nonlinear model and does not
approximate the estimation problem. It does not require tuning of any parameters if we assume that
the information on the variance of the measurement noise is available based on the employed sensor
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equipment. A price to pay for this rigorousness is usually reflected in the computational time when
measurements are obtained on some large time horizon. The WLSMH method uses an approximation
to the full-horizon estimation problem and employs an approximation here that is parametrized by the
tuning factor P. The RLS method works with the assumption that a linearized process model represents
the behavior of the process within the the subsequent sampling instants. This method can be regarded
as residing on the other side of the spectrum of the estimation methods compared to WLS method, as it
provides a computationally-efficient estimator, which only approximates the behavior of the optimal
estimator. A similar behavior can be expected from the EKF algorithm. This can additionally account
for the nonlinearity of the process model (via tuning parameter Q), so even further simplifications can
be made for the linearization of the estimation problem (see the previous section).

6. Case Study

Here, we present the simulation results obtained with different estimation techniques presented
above. We will consider the batch diafiltration process that operates under limiting flux conditions,
and the permeate flux for the unfouled membrane reads as:

J0(c1) = k ln
(

clim
c1

)
, (49)

where k is the mass transfer coefficient and clim is the limiting concentration for the macro-solute.
Note that the permeate flux depends only on the concentration of the macro-solute. The overall
separation goal is to drive the system from the initial [c1,0, c2,0] to the final point [c1,f, c2,f] in the
minimum time described by (11) to (15). The initial process volume is considered to be V0 = 0.1 m3.
The parameters for the limiting flux model are k = 4.79 m/s, clim = 319 mol/m3 and the membrane
area 1 m2. The a priori unknown fouling rate is K = 2 units. As the degree of nonlinearity of the model
is strongly dependent on the nature of the fouling behavior, represented by the a priori unknown
parameter n (see Section 3), we will study the cases when n = {0, 1, 1.5}.

We first study the case where [c1,0, c2,0] = [10 mol/m3, 100 mol/m3] and [c1,f, c2,f] =

[100 mol/m3, 1 mol/m3]. The time-optimal operation, as stated above, follows a three-step strategy.
In the first step, the concentration mode is applied, followed with a singular arc:

S(τ, J0(c1), K, n) = J
(

1 + k + k(n − 2)J
5−2n
n−2 Kτ(AJ0)

n
)
= 0, (50)

and in the last step, pure dilution mode is performed. The switching times between the individual
control arcs are determined by the fine precision of the numerical integration around the roots of the
singular surface equation. The on-line estimation of the unknown parameters is performed where
the samples of the measured process outputs (25) are assumed to be available with the sampling time
(Ts = 0.01 s). This means that the optimal control is updated at each sampling time based on the
considered measured outputs. Based on our observations, the chosen sampling time did not pose any
computational challenges in the estimation of the parameters. However, in the case of the application
on a real process, this sampling time can pose computational difficulties for optimization-based
estimation (WLS and WLSMH) since an optimization problem needs to be solved in each sampling
time. In the case of the WLSMH method, the initial computing time for one estimation was observed
to be approximately 10 s, and once the true values were reached, the computational time decreased to
2 s. For this reason, such a low sampling time is more adequate for recursive methods (RLS and EKF)
where no non-linear optimization problem is needed to be solved.

For each studied estimation method (WLS, WLSMH, RLS and EKF), three simulations were
performed, with n = {0, 1, 1.5}. For the WLSMH method, the moving horizon was set to MH = 2.
The length of the horizon is traditionally defined using the sampling instants (steps) as its units.
The covariance matrices were tuned for all of the considered simulations as follows
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P0 =diag(0.1, 0.01), (51)

P̃0 =diag[diag(0.001, 0.001, 0.001), P0], (52)

R =diag(10−4, 10−4, 10−8, 10−4), (53)

Q =diag(0.001, 0.001, 0.001, 0.3, 0.1). (54)

For the WLSMH method, the covariance matrix P was updated using the EKF run in parallel.
In our simulations with the RLS method, a different matrix P0 had to be chosen for a different value of n;
otherwise, a divergent behavior was observed. We attribute this behavior to the strong non-linearities
of the process model. Further, due to the non-linear behavior, the choice of P was very sensitive to the
overall estimation. The noise in the measured data was simulated as a random normally-distributed
Gaussian with the covariance matrix R (the noise covariance of the approximation of the flux derivative
is determined empirically from the simulation data). The same evolution of the random noise is used
in all presented simulations. According to our observations, the estimation performance is significantly
influenced by the choice of R. A small change in the covariance matrix R can cause a big difference
in the rate of estimation convergence. The chosen variances represent 1% standard deviations of the
measurement noise. The actual magnitudes depend on the employed units of the process variables.
Hence, the flux varies in the range [0, 0.06] m/h.

The parameter estimation methods discussed in Section 5.4 were implemented in the MATLAB
R2016a environment. For the optimization-based (WLS, WLSMH) methods, the built-in NLP solver
fmincon was chosen. The tolerances for the optimized variables and the objective function were
both set to 1 × 10−4. The ordinary differential equations describing the process model and sensitivity
equations were solved using the MATLAB subroutine ode45. The values for the relative and absolute
tolerances were set to 1 × 10−8 and 1 × 10−6, respectively. The precision on detecting the switching
times by numerical integration was determined with the same tolerances as set by the subroutine
ode45. All of the reported results were obtained on the workstation Intel Xeon CPU X5660 with
2.80 GHz and 16 GB RAM.

Table 1 presents a comparison of the rate of suboptimality of the processing time (δ∗tf) achieved
for the on-line control strategy with different estimation methods for different fouling models. We
also show the values of normalized root mean squared error (NRMSE) for the estimated parameters
(Rθ̂) and for the concentrations and flux (Rx̂) and the cumulative computational time (tc) needed for
the used estimators. We can observe that the optimality loss for the different estimation techniques is
negligible, and the same loss is achieved with all employed estimators. The highest optimality loss
occurs in the case of n = 0. The increased optimality loss could be caused here because the value n = 0
is used as the lower bound for the estimated parameters, and thus, at least, local convergence problems
could occur due to this hard constraint. We can observe that the NRMSE for the estimated parameters
for the WLS and WLSMH is higher compared to the recursive methods (RLS and EKF). This was caused
due to the high oscillations in the beginning of the estimation of the parameters. The NRMSEs for the
concentrations and flux (Rx̂) indicate that the difference in the trajectories’ profile in the case of ideal
and estimated concentrations and flux is small. The highest difference in all cases was observed only in
the EKF method. A possible explanation is that the estimated parameters using the rest of the methods
(WLS, WLSMH and RLS) converged exactly or reasonably close with negligible difference to the true
values of the parameters on the second interval. If we compare the WLS and WLSMH methods, we can
notice a significant decrease in the computational time. This was expected since in the case of the WLS
method, every new measurement increases the complexity of the optimization problem that needs
to be solved, whereas the complexity remains the same for WLSMH, since only a constant amount
of measurements is considered. Simulations with a larger horizon were also performed for WLSMH
(MH = 5, 10, 20). Although the convergence of the estimated parameters was slightly faster and
smoother when compared to the case with MH = 2, the computational time increased significantly.
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Table 1. Comparison of the rate of the suboptimality of final processing times, the normalized root
mean squared error for unknown parameters and concentrations and the computational time for
different estimation techniques. MH, moving horizon; RLS, recursive least-squares.

Estimation n = 0 n = 1 n = 1.5

Method δ∗
tf (h) Rθ̂ Rx̂ tc (h) δ∗

tf (h) Rθ̂ Rx̂ tc (h) δ∗
tf (h) Rθ̂ Rx̂ tc (h)

WLS 0.21 0.24 0.17 3.73 0.10 0.46 0.16 4.71 0.09 0.14 0.24 23.33
WLSMH 0.21 0.48 0.23 0.55 0.10 0.64 0.46 1.28 0.09 0.29 0.74 8.52

RLS 0.21 0.11 1.65 0.04 0.10 0.03 1.15 0.04 0.09 0.04 1.25 0.13
EKF 0.21 0.09 5.26 0.01 0.10 0.05 3.18 0.01 0.09 0.07 2.82 0.01

In the case of recursive methods, the computational time was low, since no NLP problem had to
be solved and only the current measurements were considered. Overall, we can conclude that all of
the estimation methods discussed in this paper were able to estimate the unknown fouling parameters
either exactly or with only minor differences. This eventually resulted also in minor differences in the
concentration and control trajectories. Further, based on the results, we can also conclude that the
best method for on-line estimation is the EKF method. This is due to the fact that no NLP problem
has to be solved at each sampling time, and the cumulative computational time is the lowest of all of
the proposed methods. Moreover, compared to the RLS method, the EKF does not require different
covariance matrices for the individual fouling models as discussed previously. Finally, the EKF method
has a satisfactory convergence on the second interval, which leads to accurate information about the
singular control.

The time-varying profiles of the unknown fouling parameters (K, n) are shown in Figure 3. We can
observe that in the case of the WLS and WLSMH methods, the parameters converged quickly to a
close neighborhood of the true values of the parameters (K = 2 and n = 1.5) prior to the switching
time (vertical black dashed line) of the optimal control to the singular arc. The WLS method was able
to estimate the true values of the parameters in the first few samples. However, in the case of WLSMH,
the estimation needed more time, and we can observe that the parameter values were oscillating for the
first two hours. This was due to the NLP solver falling into local minima. This can also be attributed to
the chosen length of the moving horizon and the possibly imperfect choice of the initial covariance
matrix P0. To overcome the issue of NLP solver falling into local minima, one can employ global
optimizers. However, based on our observations, the local minima were only hit in the first samples
of the estimation when only a few measured outputs were considered. When the recursive methods
(RLS, EKF) were used, we can observe that the parameters converged almost to the true values of
the parameters. The difference in the estimated and true values of the parameters is attributed to the
strong nonlinearity of the process model. Moreover, the performance of these methods also strongly
depends on the choice of the covariance matrices. Overall, we can conclude that all of the estimation
methods were able to estimate the unknown fouling parameters or converge almost to true values
of the parameters even before switching to the singular surface where singular control is applied.
As a result, the theoretical optimality of the diafiltration process was almost restored when using
the proposed estimators and coupling them within the feedback control law. Similar behavior for
parameter estimation was also observed for other fouling models.

Figure 4 shows the concentration, flux and control trajectories for the ideal and estimated cases
together with the considered measurements of concentrations and flux. The figures show only one
of the estimation method (EKF) for n = 1.5 as the worst case scenario since in all other cases, the
trajectories are closer to the ideal ones. In Figure 4a, we show the considered measured outputs
(denoted by the circle and cross) and the ideal and estimated concentration trajectories. However,
due to the small sampling time, we only display some of the measured points. The considered
measured flux with ideal and estimated parameters is shown in Figure 4b. Moreover, in Figure 4c,d,
the optimal concentration state diagram and the optimal control profile are shown. In all figures, the
solid lines represent the optimal scenario with a perfect knowledge of parameters. Further, we can
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observe that the estimated and ideal trajectories in the first step when the control is constant (α = 0)
are identical. This behavior was expected since the control in the first step does not depend on the
unknown fouling parameters. The difference in the second interval is negligible. This was due to the
convergence of the parameters during the first step. For this reason, the singular control in the second
step is calculated with almost the true value of the parameters. The measured concentration of the
macro-solute (blue dashed line in Figure 4a) shows the increasing difference to the ideal one at the
singular step. However, this has only a minor impact on the overall optimal operation. Based on the
results, we can conclude that by using the estimated parameters obtained by all estimation techniques,
the overall operation is very close to optimal one with only minor differences in the processing and
switching times. Moreover, it should be also mentioned that even if satisfactory convergence was
obtained with the EKF method, different Kalman filter methods, like the unscented Kalman filter [40],
could be also employed for the parameter estimation.
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Figure 3. Estimation of the fouling parameters K, n for the three chosen cases together with the optimal
switching time. (a) Estimation of the fouling parameter K; (b) estimation of the fouling parameter n.
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Figure 4. Concentration state diagram and optimal control profile for ideal and estimated fouling
parameters (K = 2 and n = 1.5) by employing the EKF method. (a) Measured, ideal and estimated
concentrations; (b) measured, ideal and estimated flux; (c) concentration state diagram; (d) optimal
control profile.

Next, we study the case where the initial concentrations are [c1,0, c2,0] = [130 mol/m3, 100 mol/m3],
while the same final concentrations have to be met as in the previous cases. The optimal control
strategy starts with pure dilution in the first step and in the last step, which follows after an operation
on a singular arc. We use the same estimators as before, with the same tuning matrices.

In Figure 5, we show the results of the estimation of the unknown fouling parameters using the
WLS method and the corresponding concentration state diagram and control profile of the on-line
control strategy. As stated above (Section 4), the entry to the singular arc (50) can be determined without
the knowledge of fouling parameters as J = J0. On the singular arc, the estimation of the unknown
fouling parameters commences. We can observe in Figure 5a,b that the unknown fouling parameters
were estimated accurately in the first three hours of operation where the overall time-optimal operation
was approximately 37 hours. The suboptimality of the on-line control strategy w.r.t. the ideal one
is δ∗tf = 0.025. The oscillations in the first minutes of the operation were mainly caused by a small
set of measured outputs. A similar behavior was observed in the previous case. Once the amount
of measured outputs is increased, we can observe a quick convergence of the estimated parameters
towards the true values. The comparison of ideal and estimated concentrations and control trajectories
is shown in Figure 5c,d. As we can observe, the differences in the concentrations and control trajectories
for ideal and estimated cases are negligible. This is due to the quick convergence of the estimated
fouling parameters. We also performed simulations with the rest of the estimation methods.

In the case of the recursive methods (EKF and RLS), by using the same covariance matrices (51)
to (54) as in the previous case, the estimated parameters diverged in the first hour of the batch and
were not able to converge to the true values of the parameters. The same behavior was also observed
in the case of the WLSMH method, since the covariance matrix P was updated based on the EKF
method. The reasons for the divergence of the WLSMH, RLS and EKF methods was mainly caused
due to the high sensitivity of the choice of the covariance matrices and the strong non-linearities of
the process model. Other reasons for the possible divergence issues as discussed in Section 4.3 are
the insufficient amount of measured outputs, since the estimation starts at the singular surface, and
insignificant sensitivity between the measured outputs and the estimated parameters on the singular
surface. This was caused by almost constant flux on the singular surface.
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Figure 5. Estimation of fouling parameters, concentration state diagram and optimal control profile
for ideal and estimated fouling parameters (K = 2 and n = 1) using the WLS estimation method.
(a) Estimation of the fouling parameter K; (b) estimation of the fouling parameter n; (c) Concentration
state diagram; (d) optimal control profile.

Overall, we can conclude that even if in the first step, pure dilution mode has to be applied and
the estimation of unknown fouling parameters is only performed during the singular control, the
differences between the ideal and estimated trajectories are negligible. The results indicate that the
estimated parameters converged reasonably close to the true values of the parameters in the first hours
of operation. For this reason, the overall operation is very close to the optimal one with only negligible
differences in the case when the WLS method is applied. However, in the rest of the estimation
methods, strong divergence of the estimated parameters was observed.

7. Conclusions

In this paper, we studied the time-optimal operation of a diafiltration process in the presence of
membrane fouling. The optimal operation and control is an explicit non-linear control law defined
over concentration regions. According to the theory, the optimal operation is defined as a three-step
strategy with concentration or pure dilution mode in the first and the last step and with a singular arc
in the middle step.

In the paper, we provided a detailed analysis on the problems related to the observation of the
parameters based on the measured outputs. Based on the analysis, we conclude that by taking into
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account the concentrations and flux as measured outputs, both parameters could not be estimated at
the same time. Therefore, the derivative of flux w.r.t. to time had to be considered as a new measured
outputs. Based on the analysis, four standard parameter estimation methods were discussed for the
estimation of the unknown fouling parameters on-line during the separation. The crucial reason
for estimating the parameters on-line is that the singular surface and control depend on the fouling
parameters. The first two methods (WLS and WLSMH) were able to estimate the parameters exactly,
whereas the recursive methods (RLS and EKF) converged almost to the true values of the parameters.
However, the convergence was satisfactory and resulted in minor differences in the concentration and
control profiles compared to the ideal case. Based on the results, we conclude that by using the EKF
estimation method, we improve the convergence with the lowest computational time compared to
other discussed methods. If the optimal operation starts with a pure dilution mode, only WLS and
WLSMH were able to converge to the true values of the parameters, whereas the recursive methods
(RLS and EKF) diverged completely from the true values. A possible remedy for the future could be to
inject some dither signal into singular dilution rate to increase the excitation of the process.

All of the results presented in this paper are based on simulation results where the process noise
was also considered in the simulations. Future research directions will be focused on experimental
implementation of the proposed estimation techniques on a laboratory membrane process.
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12. Jelemenský, M.; Klaučo, M.; Paulen, R.; Lauwers, J.; Logist, F.; Van Impe, J.; Fikar, M. Time-optimal control
and parameter estimation of diafiltration processes in the presence of membrane fouling. In Proceedings of
the 11th IFAC Symposium on Dynamics and Control of Process Systems, Trondheim, Norway, 6–8 June 2016;
Volume 11, pp. 242–247.

13. Kovács, Z.; Fikar, M.; Czermak, P. Mathematical modeling of diafiltration. In Proceedings of the International
Conference of Chemical Engineering, San Francisco, CA, USA, 20–22 October 2009; Pannonia University:
Veszprem, Hungary, 2009; pp. 135.

14. Baker, R.W. Membrane Technology and Applications, 3rd ed.; Wiley: Hoboken, NJ, USA, 2012.
15. Zhao, Y.; Wu, K.; Wang, Z.; Zhao, L.; Li, S.S. Fouling and cleaning of membrane—A literature review.

J. Environ. Sci. 2000, 12, 241–251.
16. Bolton, G.; LaCasse, D.; Kuriyel, R. Combined models of membrane fouling: Development and application

to microfiltration and ultrafiltration of biological fluids. J. Membr. Sci. 2006, 277, 75–84.
17. Vela, M.C.V.; Blanco, S.A.; García, J.L.; Rodríguez, E.B. Analysis of membrane pore blocking models applied

to the ultrafiltration of PEG. Sep. Purif. Technol. 2008, 62, 489 – 498.
18. Goh, C.J.; Teo, K.L. Control parameterization: A unified approach to optimal control problems with general

constraints. Automatica 1988, 24, 3–18.
19. Jelemenský, M.; Sharma, A.; Paulen, R.; Fikar, M. Time-optimal control of diafiltration processes in the

presence of membrane fouling. Comput. Chem. Eng. 2016, 91, 343–351.
20. Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal

Processes; Wiley (Interscience): New York, NY, USA, 1962.
21. Bryson, A.E., Jr.; Ho, Y.C. Applied Optimal Control; Hemisphere Publishing Corporation: Washington, DC,

USA, 1975.
22. Miao, H.; Xia, X.; Perelson, A.S.; Wu, H. On identifiability of nonlinear ODE models and applications in

viral dynamics. SIAM 2011, 53, 3–39.
23. Godfrey, K.R.; Evans, N.D. Structural identifiability of nonlinear systems using linear/nonlinear splitting.

Int. J. Control 2003, 76, 209–2016.
24. Godfrey, K.R.; Evans, N.D. Identifiability of some nonlinear kinetics. In Proceedings of the 3rd Workshop on

Modelling of Chemical Reaction Systems, Heidelberg, Germany, 24–26 July 1996.
25. Pohjanpalo, H. System identifiability based on the power series expansion of the solution. Math. Biosci. 1978,

41, 21–33.
26. Chis, O.; Banga, J.R.; Balsa-Canto, E. Structural identifiability of systems biology models: A critical

comparison of methods. PLoS ONE 2011, 6, e27755.
27. DiStefano, J., III. Dynamic Systems Biology Modeling and Simulation; Academic Press: Cambridge, MA, USA,

2015; p. 884.
28. Chis, O.; Banga, J.R.; Balsa-Canto, E. GenSSI: Generating Series Approach for Testing Structural Identifiability;

CSIC: Madrid, Spain, 2011.
29. Maiwald, T.; Timmer, J. Dynamical modeling and multi-experiment fitting with PottersWheel. Bioinformatics

2008, 24, 2037–2043.
30. Meshkat, N.; Kuo, C.; DiStefano, J., III. On finding and using identifiable parameter combinations in

nonlinear dynamic systems biology models and COMBOS: A novel web implementation. PLoS ONE 2014,
9, e110261.

31. Bellu, G.; Saccomani, M.P.; Audoly, S.; D’Angio, L. DAISY: A new software tool to test global identifiability
of biological and physiological systems. Comput. Methods Programs Biomed. 2007, 88, 52–61.

32. Galrinho, M.; Rojas, C.; Hjalmarsson, H. A weighted least-squares method for parameter estimation in
structured models. In Proceedings of the 53rd IEEE Conference on Decision and Control, Los Angeles, CA,
USA, 15–17 December 2014; pp. 3322–3327.

33. Gulan, M.; Salaj, M.; Rohal’-Ilkiv, B. Nonlinear model predictive control with moving horizon estimation of a
pendubot system. In Proceedings of the 2015 International Conference on Process Control (PC), Strbske Pleso,
Slovakia, 9–12 June 2015; pp. 226–231.

228



Processes 2016, 4, 43

34. Kühl, P.; Diehl, M.; Kraus, T.; Schlöder, J.P.; Bock, H.G. A real-time algorithm for moving horizon state and
parameter estimation. Comput. Chem. Eng. 2011, 35, 71–83.

35. Haverbeke, N. Efficient Numerical Methods for Moving Horizon Estimation. Ph.D. Thesis, Katholieke
Universiteit Leuven, Leuven, Belgium, 2011.

36. Ding, F. Coupled-least-squares identification for multivariable systems. IET Control Theory Appl. 2013,
7, 68–79.

37. Ljung, L. System Identification: Theory for the User, 2nd ed.; Prentice Hall PTR: Upper Saddle River, NJ,
USA, 1999.

38. Kalman, R.E. A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng. 1960,
82, 35–45.

39. Bavdekar, V.A.; Deshpande, A.P.; Patwardhan, S.C. Identification of process and measurement noise
covariance for state and parameter estimation using extended Kalman filter. J. Process Control 2011, 21,
585–601.

40. Wan, E.A.; van der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings
of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium,
Lake Louise, AB, Canada, 1–4 October 2000 .

c© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

229



Article

Model Predictive Control of the Exit Part Temperature
for an Austenitization Furnace

Hari S. Ganesh, Thomas F. Edgar * and Michael Baldea

McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA;
hariganesh@utexas.edu (H.S.G.); mbaldea@che.utexas.edu (M.B.)
* Correspondence: tfedgar@austin.utexas.edu; Tel.: +1-512-471-3080

Academic Editor: Dominique Bonvin
Received: 9 August 2016; Accepted: 6 December 2016; Published: 15 December 2016

Abstract: Quench hardening is the process of strengthening and hardening ferrous metals and alloys
by heating the material to a specific temperature to form austenite (austenitization), followed by
rapid cooling (quenching) in water, brine or oil to introduce a hardened phase called martensite.
The material is then often tempered to increase toughness, as it may decrease from the quench
hardening process. The austenitization process is highly energy-intensive and many of the industrial
austenitization furnaces were built and equipped prior to the advent of advanced control strategies
and thus use large, sub-optimal amounts of energy. The model computes the energy usage of the
furnace and the part temperature profile as a function of time and position within the furnace under
temperature feedback control. In this paper, the aforementioned model is used to simulate the furnace
for a batch of forty parts under heuristic temperature set points suggested by the operators of the
plant. A model predictive control (MPC) system is then developed and deployed to control the
the part temperature at the furnace exit thereby preventing the parts from overheating. An energy
efficiency gain of 5.3% was obtained under model predictive control compared to operation under
heuristic temperature set points tracked by a regulatory control layer.

Keywords: model predictive control; energy efficiency; iron and steel; austenitization

1. Introduction

Countries around the world are aiming for economic growth that is inclusive, smart and
sustainable. Research and innovation are key drivers to realize this transition [1–6]. Studies on power
technologies and technological innovation as a means to achieve a more efficient energy-intensive
industry, with reduced CO2 emissions are reported in the literature [7–12]. The iron and steel industry
is not only energy-intensive but also one of the largest CO2 emitters [4,13,14]. The United States has
the third largest national iron and steel sector in the world with annual crude steel production of
80.5 million metric tonnes (Mt) in 2010 [15]. The iron and steel industry is the fourth largest industrial
user of energy in the US with yearly demands of 2 quadrillion BTU (quads), which is roughly 2% of the
overall domestic energy consumption [16–18]. For an individual steel processing plant, reheating and
heat treating furnaces account for 65% to 80% of the overall energy use [19,20]. The energy demand
is intensified due to inherent furnace inefficiencies (20%–60%) and ineffective control strategies [20].
Therefore, any improvement in energy efficiency of steel processing furnaces through optimization,
restructuring of processes and applying advanced control strategies will have a direct impact on
overall energy consumption and related CO2 emissions.

Model predictive control (MPC), originally developed to meet specialized control needs of
oil refineries and power plants, has now found applications in food processing, pharmaceutical,
polymer, automotive, metallurgical, chemical and aerospace industries [21–23]. The success of MPC
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can be attributed, as summarized by Qin et al. [23], to its ability to solve complex multiple-input,
multiple-output (MIMO) control problems

1. without violating input, output and process constraints,
2. accounting for disturbances,
3. by preventing excess movement of input variables, and
4. by controlling as many variables as possible in case of faulty or unavailable sensors or actuators.

In this work, we describe the development and implementation of an MPC system for controlling
the temperatures of the parts exiting an industrial austenitization furnace using a model-based case
study. The key to our approach is feedback control of the temperature of the metal parts (which can be
measured in practice via a combination of non-contact temperature sensing and soft sensing/state
observation). We show that, in this manner, the energy usage of the system is reduced considerably
compared to the current regulatory control scheme (which is effectively open-loop with respect to
product temperatures). To this end, we rely on the radiation-based nonlinear model of the furnace
developed in Heng et al. [24] to develop a hierarchical, multi-rate control structure, whereby the
setpoints of regulatory controllers are set by a multiple input, single output MPC that is computed at a
much lower frequency than the regulatory control moves.

2. Process and System Description

Depending on the application, steel is forged into the desired shape and heat treated (e.g., annealed,
quenched, and tempered) to improve its mechanical properties such as strength, hardness, toughness
and ductility [25–28]. Among the heat treating processes, quench hardening is commonly employed
to strengthen and harden the workpieces. Quench hardening consists of first heating finished or
semi-finished parts made of iron or iron-based alloys to a high temperature, in an inert atmosphere,
such that there is a phase transition from the magnetic, body-centered cubic (BCC) structure to a
non-magnetic, face-centered cubic (FCC) structure called austenite (austenitization), followed by rapid
quenching in water, brine or oil to introduce a hardened phase having a body-centered tetragonal (BCT)
crystal structure called martensite [28–31]. This process is usually followed by tempering in order to
decrease brittleness (increase toughness) that may have increased during quench hardening [28,32,33].
In this process of strengthening, austenitization is the energy-intensive step, where the workpieces
have to be heated from typically 300 K to 1100 K in a furnace fired indirectly (to avoid oxidation) by
radiant tube burners that require a large amount of fuel [27]. The part temperatures, especially the
core, cannot typically be sensed and measured while the part is being processed inside the furnace.
Nevertheless, the temperatures of the parts after exiting the furnace can be measured by non-contact
ultrasonic measurements [34–36]. In practice, the operators tend to overheat the parts such that a
minimum temperature threshold is exceeded, thereby causing excess fuel consumption. Another
reason for overheating is that even if a single portion of the part does not transform to austenite
completely during heat treatment, that portion will be very soft in the quenched product resulting in
the entire part not meeting the quality standards. Therefore, the monetary gain in energy minimization
while heating will be counter-balanced by the loss due to scrapping of defective parts. The temperature
sensing limitations, combined with high energy usage, make austenitization furnaces primary targets
for advanced model-based analysis and control.

The austenitization furnace considered in this work is operated in a continuous manner under
temperature feedback control (see Figure 1). Metal parts are loaded on to trays placed on a conveyor
belt, which transports the parts through the furnace that is heated by combustion of natural gas in
radiant tube burners on the ceiling and floor. After exiting the furnace, the parts are placed into an
oil quench bath to induce the crystal structure change. Nitrogen is used as the inert blanket gas to
prevent surface oxidation and flows counter current to the direction of motion of the conveyor belt.
The furnace operates at temperatures in excess of 1000 K and the residence time of the parts is in the
order of hours. Due to sensing limitations (equipment for the aforementioned ultrasonic measurements
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is not available in the plant), the part temperatures are currently indirectly controlled by controlling the
furnace temperature—a scheme that is effectively open-loop with respect to part temperature control.
The temperature set points of the local feedback controllers are set heuristically by process operators.

Figure 1. Prototype furnace schematic for roller hearth furnace based on a design by AFC-Holcroft [37].
The hatched rectangles are the parts that are heated in the furnace.

A two-dimensional (2D) radiation-based semi-empirical model of the furnace under consideration
was developed in Heng et al. [24]. The model neglects the interactions between parts, which are
cylindrical with ogive top shapes, and are loaded on a tray. The ensemble of a tray and its contents is
modeled as a rectangular structure with equivalent metal mass and referred as to a “part.” The mass
of the conveyor belt is much smaller than that of the part. Hence, the conveyor belt is excluded
from the model. Nevertheless, the movement of the parts inside the furnace is captured. There is only
surface-to-surface radiation interaction and no gas-to-surface radiation interaction since nitrogen is a
diatomic molecule [38]. The gas-to-surface heat transfer is assumed to occur only through convection,
and surface-to-surface heat transfer is assumed to occur only though radiation. The furnace is discretized
into a series of control volumes to calculate a discretized gas temperature profile within the furnace.
For temperature control purposes, adjacent burners are grouped together and the fuel flow rates are
adjusted simultaneously for each group. The furnace is divided into four such groups (four control
valves) of twelve burners each referred to as temperature control zones. The middle insulating surface
of the ceiling of each zone is assumed to host the temperature sensor used for control (see Figure 2).
The inputs to the model are the dimensions of the steel parts and its physical properties, the mass flow
rate of fuel to the burners, feedback control zone temperature set points, flow rate of nitrogen, and the
temperature of the surrounding air. The model evaluates the energy consumption of the furnace and
the temperature distribution within the parts as a function of time and part position within the furnace.

Figure 2. The schematic of the 2D model of the roller hearth heat treating furnace. On the furnace walls,
the red and black lines represent burner and insulation surfaces respectively. The checkered rectangles
are the parts that are heated in the furnace. Each side of a part is a design/load/part surface. Parts
enter from the left hand side of the furnace schematic and exit from the right hand side. Nitrogen is
injected from the right hand side and exits from the left hand side. The dotted lines indicate boundaries
between temperature control zones of the furnace. The circled insulation surfaces are assumed to host
the temperature sensors for control purposes.
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We now follow the discussion of Heng et al. [24] to present an overview of the furnace model.
In this model, the geometric elements of the furnace are discretized into a set of surfaces, namely,
burner, insulation and load/part (see Figure 2). The overall energy balance of a surface i can be
written as:

Qnet,i = Qradiation,i + Qconvection,i i = 1, . . . , Ns, (1)

where Ns is the total number of surfaces (that change as the parts are loaded on to and unloaded
from the furnace). Qnet,i, Qradiation,i and Qconvection,i are the total heat transfer, radiative heat transfer
and convective heat transfer, respectively, to surface i. The following two relationships are used for
radiation heat transfer term [38]:

Qradiation,i =
σTi

4 − Ji
1−εi
εi Ai

, (2)

Qradiation,i =
Ns

∑
j=1

Ji − Jj(
AiFi,j

)−1 , (3)

where Ti is the temperature of surface i, Ji is the radiosity of surface i, Ai is the area of surface i, Fi,j is
the view factor from surface j to surface i, σ is the Stefan–Boltzmann constant and εi is the emissivity
of surface i. Radiosity Ji is defined as the net amount of heat leaving surface i via radiation and view
factor Fi,j is defined as the proportion of the heat due to radiation that leaves surface j and strikes
surface i.

For burner surfaces, Equation (2) is substituted into Equation (1) to obtain:

Qnet,i − h f urn Ai (Ti − T∞
w ) =

σTi
4 − Ji

1−εi
εi Ai

, (4)

where h f urn is the heat transfer coefficient of the furnace and T∞
w is the temperature of gas in control

volume w. The term, h f urn Ai (Ti − T∞
w ), captures the convective heat transfer between a burner surface

i and the gas in control volume w. The heat transfer coefficient of furnace h f urn is calculated from a
Nusselt number correlation for forced convection in turbulent pipe flow [38]. For a burner surface,
the heat duty Qnet,i and surface temperature Ti are input variables determined by solving a system of
nonlinear differential algebraic equations (DAE) that capture the dynamics of the burner system.

For insulation surfaces, Equation (3) is substituted into Equation (1) to obtain:

Qnet,i − h f urn Ai (Ti − T∞
w ) =

Ns

∑
j=1

Ji − Jj(
AiFi,j

)−1 . (5)

Note that, for the insulation surfaces, Qnet,i and Ti are output variables. The insulating wall is
modeled as a solid material with uniform thickness. Qnet,i is used as a Neumann type boundary
condition at the inner surface to solve the one-dimensional unsteady state heat equation (parabolic partial
differential equation) by an implicit Euler finite difference scheme:

Qnet,i = −kins Ai
dTi
d�xi

, (6)

where Ti is the temperature of the inner surface of insulation i, Ai is the area of insulation surface i,
kins is the thermal conductivity of insulating material (brick) and �xi is the inward unit normal vector to
the insulating surface i. The other boundary condition is the balance between heat conduction through
the wall to the outer surface and convective heat transfer between the outer surface and the ambient
air, expressed as:
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kins Ai
dTins,out,i

d�xi
= −hair Ai(Tins,out,i − Tair), (7)

where Tins,out,i is the temperature of the outer surface of insulation i and hair and Tair are the convective
heat transfer coefficient and the temperature, respectively, of the ambient air. The view factor matrix,
Fi,j, is calculated using Hottel’s crossed string method [39].

Part surfaces are treated similarly to insulating surfaces, except that the furnace heat transfer
coefficient h f urn is replaced by the part heat transfer coefficient hpart:

Qnet,i − hpart Ai (Ti − T∞
w ) =

Ns

∑
j=1

Ji − Jj(
AiFi,j

)−1 . (8)

The part heat transfer coefficient hpart is obtained from a Nusselt number correlation for external
flow over a square cylinder [38]. A part is assumed to be a uniform solid. The two-dimensional
unsteady state heat equation is solved by a second-order accurate Crank–Nicolson finite difference
method to obtain the spatial temperature distribution of a part. The net heat flux, Qnet,i, of the four
surfaces encompassing a part are used to define the boundary conditions:

Qnet,i = −kpart Ai
dTi
d�ni

, (9)

where kpart is the thermal conductivity of part, Ti and Ai are the temperature and area of part surface i
and �ni is the inward unit normal vector to part surface i.

At each time step, the model evaluates the energy usage of the furnace by solving Equations (4),
(5) and (8) for the heat duties and the temperatures of insulation and part surfaces using a dual iterative
numerical scheme explained in Heng et al. [24]. The computed heat duties are then used to define
the boundary conditions to determine the part temperature distribution for all the parts processed
in the furnace. Additionally, a linear control strategy is adopted, wherein a proportional-integral
(PI) controller controls the temperature of each zone to a given set point by appropriately adjusting
the mass flow rate of fuel to the burners of the respective zone. The temperature set points of the PI
controllers directly affect the temperature distribution of the parts in the furnace and thus the energy
consumption of the system.

3. Model Predictive Control Development

In our system, model predictive control is implemented as a two-layer hierarchical structure.
The inner layer is the aforementioned regulatory control that manipulates the mass flow rate of fuel
to control the zone temperatures. This multiple-input, single output system is then considered in
the outer layer, whereby the model predictive controller adjusts the temperature set points of the
regulatory layer to control the minimum temperatures of parts at exit. Note that the time interval for
control action of model predictive control is larger than that of regulatory control, as will be explained
below. The block diagram of the implementation of model predictive control in the heat treating
furnace is shown in Figure 3.
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Figure 3. Block diagram for model predictive control implementation on the heat treating furnace.
For the regulatory controller, zone temperatures are the controlled variables, and the fuel flow rates
to the burners are the manipulated variables. In the case of the model predictive controller, the part
minimum temperature at exit is the controlled variable and the zone temperature set points of the
feedback controllers are the manipulated variables.

Let Tsp,ψ(k), ∀ ψ ∈ [1, 4] be the temperature set point of zone ψ at sampling instant k, and
Tmin(k) be the part minimum temperature at exit of the furnace. Let Tsp,ss,ψ, ∀ ψ ∈ [1, 4] be the
steady-state temperature set point of zone ψ and Tmin,ss be the steady-state part minimum temperature.
Additionally, let y(k) be the deviation variable of part minimum temperature at time instant k, defined
as: y(k) � Tmin(k)− Tmin,ss and uψ(k) be the deviation variable of zone ψ temperature set point at k,
defined as: uψ(k) � Tsp,ψ(k)− Tsp,ss,ψ, ∀ ψ ∈ [1, 4].

3.1. Construction of MPC Step-Response Model

The step-response model of a stable process with four inputs and one output can be written as:

y(k + 1) = y(0) +
N−1

∑
i=1

S1,iΔu1(k − i + 1) + S1,Nu1(k − N + 1)

+
N−1

∑
i=1

S2,iΔu2(k − i + 1) + S2,Nu2(k − N + 1)

+
N−1

∑
i=1

S3,iΔu3(k − i + 1) + S3,Nu3(k − N + 1)

+
N−1

∑
i=1

S4,iΔu4(k − i + 1) + S4,Nu4(k − N + 1),

(10)

where y(k + 1) is the output variable at the k + 1 sampling instant, y(0) is the initial value of the output
variable, and Δuψ(k − i + 1) for ψ ∈ [1, 4] denotes the change in the input ψ from one sampling instant
to the next: Δuψ(k − i + 1) = uψ(k − i + 1)− uψ(k − i). Both u and y are deviation variables defined
earlier in this paper. The model parameters are the N step-response coefficients, Sψ,i to Sψ,N , for each
input ψ, ∀ ψ ∈ [1, 4]. Therefore, the total number of step-response coefficients are 4N, where N is
selected based on the process time constants.

The response of the output variable y(k) for a step input ΔTstep of 20 K in each zone temperature
set point is shown in Figure 4. The furnace takes about 25 h to process a batch of 40 parts with part
residence time being roughly 4 h. The time difference between the exit of successive parts is the control
time step ΔtMPC, which is around 32 min. The design variable N, which is the number of step-response
coefficients for each control input was taken as 19. The step-response coefficients can be calculated
from the step-response data [40]. It can be inferred from Figure 4 that the zone 3 temperature set point
has the dominant effect on the part exit temperature, and zone 1 has the least.
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Figure 4. The response of the output variable y(k) (deviation variable of part minimum temperature at
exit) for a step input ΔTstep of 20 K for each of the zone temperature set points. k is the sampling time
(around 32 min).

3.2. Optimization Formulation

Following the derivation of MPC from Seborg et al. [40], the vector of control actions ΔU(k) for
next M sampling instants (the control horizon) is calculated at each sampling instant k by minimizing the
objective function shown below, subject to the input, output and process constraints. The optimization
problem formulation is:

minimize
ΔU(k)

J = Ê(k + 1)TQÊ(k + 1) + ΔU(k)T RΔU(k)

subject to uψ(k + j) ≥ umin, ψ ∈ [1, 4] and j ∈ [0, k + M − 1]

uψ(k + j) ≤ umax, ψ ∈ [1, 4] and j ∈ [0, k + M − 1]

uψ(k + j)− uψ+1(k + j) ≤ udi f f , ψ ∈ [1, 3] and j ∈ [0, k + M − 1]

System Model (Equation (10)),

(11)

where Q and R are the output and input weighting matrices, respectively, that allow the output and
input variables to be weighted according to their relative importance. Ê(k + 1) is the predicted error
vector of length P (prediction horizon) between the target and the model predictions (including bias
correction) at k + 1 sampling instant. umin and umax are the lower and upper bounds of the zone
temperature set points uψ, ψ ∈ [1, 4] respectively, and udi f f is the minimum possible positive
temperature difference between consecutive zones in the direction of part movement in order to
prevent loss of heat from parts to the furnace while processing. Note that umin, umax and udi f f are
deviation variables. Once ΔU(k) is computed, the furnace simulation proceeds for the control time
interval ΔtMPC, during which the sample time is updated from k to k + 1 and the entire procedure
is repeated.

4. Furnace Simulation under Model Predictive Control

We simulate the furnace for a batch of forty parts using the same parameters and operating
conditions as those in Heng et al. [24] under temperature feedback control. Additionally, instead
of operating at a constant heuristic temperature set points suggested by the operators of the plant,
the supervisory model predictive controller changes the zone temperature set points to control the part
temperature at exit of the furnace (see Figure 3). The lower-layer temperature tracking controllers use
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the above trajectory as the control target. At the regulatory level, a linear control strategy is adopted
wherein the fuel mass flow rate of a zone is manipulated to minimize the error between the measured
value of the respective zone temperature and its set point determined by the MPC. All the burners
in a zone are adjusted simultaneously, i.e., the furnace has only four control valves for regulatory
control. In practice, a butterfly valve is used to manipulate the fuel flow rate. This valve does not
close fully, i.e., the mass flow rate of fuel to the burners does not drop below a certain lower limit.
In addition, when the valve is fully open, the upper bound of fuel flow rate is reached. Each control
zone operates independently of other zones. However, adjustments to fuel flow rate of one zone will
affect the temperatures of other zones due to long range radiation interactions. The furnace operating
conditions and the parameters used in the simulation are listed in Table 1. The local control sampling
time is 4 min for the 25 h furnace operation. The upper level model predictive controller functions at a
much longer time interval, with a sampling time of 32.5 min, correlated with the rate of input/output
of parts to the furnace. Within this time period, there are about eight control moves for the inner level
temperature tracking controllers to bring the zone temperatures closer to the trajectory determined
by the MPC. The setpoint for the MPC controller is the part minimum temperature at exit of the
furnace. Note that non-contact ultrasonic measurements can be used to measure the value of minimum
part temperature at the exit of the furnace [34–36]. However, non-contact measurements of the part
temperatures, while the part is being processed inside the furnace, would be inaccurate due to the
interference of the ultrasonic signal with the furnace walls. We use a constant target value of 1088 K, a
temperature that ensures complete transformation from pearlite (mixture of ferrite and cementite) to
austenite for a steel with 0.85% carbon content.

Table 1. List of parameters used in the heat treating furnace simulation.

Furnace Details

Length of the furnace 16 m
Height of the furnace/length of the side walls 2 m
Length of each discretized furnace surface except the side walls 0.25 m
Total number of furnace surfaces 130
Length of a part 1.25 m
Ordinate of a part 0.75 m
Height of a part 0.5 m

Process Conditions

Number of parts processed 40
Inlet temperature of parts 300 K
Inlet temperature of blanket gas 400 K
Number of points in the x-direction for Crank–Nicolson method 6
Number of points in the y-direction for Crank–Nicolson method 6
Total time of furnace operation 25 h
Feedback control time interval 4 min

Model Predictive Control Details

Target minimum part temperature at exit 1088 K
Lower bound of temperature set points 900 K
Upper bound of temperature set points 1300 K
Temperature set point difference between subsequent zones 30 K
Model predictive control time interval 32.5 min

As a base case, we consider a simulation where only the regulatory control layer is employed,
with the temperature set points, Tsp,ss,ψ ∀ ψ ∈ [1, 4], taken to be same as the heuristic temperature
set points of Heng et al. [24]: 1000 K, 1150 K, 1200 K, 1250 K for zones 1 to 4, respectively. Furnace
operation under these set points results in an exit part minimum temperature at constant part input
rate of 1126 K. This is the steady state value of the output variable Tmin,ss.
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Then, we consider the furnace operation under the proposed MPC scheme. Figure 5 illustrates the
variation of output and input variables with respect to time of furnace operation in this case. The model
predictive controller is turned on only after about 4 h of furnace operation when the first part exits the
furnace, at which point the furnace begins to operate in a regime characterized by constant rates of
input and output of parts. Note that the furnace is not completely full during the last 4 h of operation as
well. The plots in the top row of Figure 5 show the zone temperature setpoints (as set by the MPC) and
the zone temperatures maintained by the regulatory control layer at these setpoints within minimal
variations (in general within 5 K). The step-response plot in Figure 4 indicates that zone 3 and zone 4
temperature set points have dominant effects on exit part temperature. This aspect is also reflected
in Figure 5, where it can be seen that the set point variations are higher in zones 3 and 4 to meet the
target. It is also observed that the zone temperatures exhibit periodic oscillations around their set
points. This effect can be attributed to the periodic entry of cold parts into the furnace in zone 1 and
periodic removal of hot parts from the furnace in zone 4. The thermal gradient is the maximum when
a cold part enters the furnace. Therefore, the part acts as a heat sink resulting in a rapid decrease in the
temperature of zone 1. This disturbance is propagated to other zones of the furnace due to long range
zone-to-zone radiation interactions. Moreover, additional harmonics in the temperature variations are
caused by parts exiting the furnace. The plots in the bottom row of Figure 5 show the corresponding
changes in the manipulated variable, i.e., the mass flow rate of fuel to the burners. The dashed lines in
these plots represent the lower and upper bounds of the fuel flow rate.
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Figure 5. Zone temperatures and mass flow rate of fuel to the burners as a function of time for zones 1
to 4 (solid lines). The dashed lines in the plots of the top row indicate the zone temperatures setpoints
and the dashed lines in the plots of bottom row indicate the upper and lower bounds of fuel flow rate
to the burners.

Figure 6 shows the exit conditions of all the processed parts exiting the furnace sequentially.
The quantities plotted are the total change in part enthalpy and its temperature distribution details.
The red curve represents the average of part temperature distribution of all parts at exit, yellow curves
are its standard deviation and the green curve represents the minimum of the temperature of all the
parts at exit, which is the target for the model predictive controller. The temperature set point changes
made by the model predictive controller drive the part minimum temperature from around 1125 K for
the first part to the target value of 1088 K. The two-tiered control strategy keeps the exit conditions
relatively stationary once part minimum temperature reaches its target.
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Figure 6. Part exit conditions of all 40 parts processed under model predictive control. The yellow

lines indicate the standard deviation of the part exit temperatures from its mean. The model predictive
controller is turned on immediately after the first part exits the furnace. The variations in the total
enthalpy change of the first five parts are due to the model predictive controller varying the set points of
the feedback controllers to drive the minimum part temperatures to their target. The model predictive
controller keeps part exit temperatures relatively stationary once the target is reached.

Finally, we plot the heat input to the 20th part and the parameters of the part temperature
distribution with respect to processing time in Figure 7. Note that the residence time of a part is
roughly 4 h. Therefore, the time spent within the furnace also corresponds to the zone in which the
part is getting heated. As expected, the amount of heat transferred to a part decreases with time since,
as the part becomes hotter, the temperature difference between the part and the burners becomes
smaller. The maximum temperature of a part is at its boundary/exterior. Intuitively, the minimum
temperature occurs at the interior (which is heated only via conduction), and hence the corresponding
temperature gradually raises to its target value as the parts exit the furnace.
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Figure 7. Heat input to the 20th part and its temperature distribution details as a function of its time
(and thus position in the furnace) of processing.

5. Energy Efficiency Comparison

In Table 2, we compare the furnace operation under regulatory control with heuristic zone temperature
set points reported in Heng et al. [24] and under model predictive control. In heuristic operation mode, the
minimum temperature of parts at exit, 1126 K, is higher than the desired value of 1088 K. This overheating
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of parts results in the furnace consuming additional fuel. Furthermore, overheating of parts results in
austenite grain size growth, which adversely affects the toughness of the quenched product. However,
under the two layer hierarchical control operating mode, the part exit temperature is maintained at
its desired value of 1088 K. The energy metric we compare is the total energy input to the furnace
per part processed. We see that the furnace operation under model predictive control requires 5.3%
less energy than that under a heuristic operation scenario. The energy efficiency gain is mainly due
to the lowered fuel use. Moreover, additional gains can be a consequence of different nonlinear
surface-to-surface radiation interactions due to changing zone temperature set points. The standard
deviation of part temperatures is similar in both of these operation modes. This means that the model
predictive controller has maintained the minimum temperature of part at exit at its desired value
without compromising the uniformity in heating. The distribution of energy input to the furnace to
parts, exhaust, nitrogen and insulation are comparable for both of these operation modes.

Table 2. Total energy input to the furnace and part temperature distribution at the exit of the furnace
under heuristic operation mode of Heng et al. [24] and two-level hierarchical control. We also show the
energy distribution of the heat input to process a batch of 40 parts.

Heat Sources and Sinks Heuristic Set Points Model Predictive Control

Total Energy Input per Part (GJ) 3.76 GJ 3.56 GJ
Part Minimum Temperature (K) 1126 K 1088 K
Temperature Standard Deviation (K) 52 K 46 K

Energy to Parts (%) 54.2% 54.3%
Energy Lost with the Exhaust (%) 42.7% 42.5%
Energy to Flowing Nitrogen (%) 0.5% 0.5%
Energy Through Insulation (%) 2.6% 2.7%

6. Conclusions

In this work, a two-dimensional radiation-based model of the furnace developed in Heng et al. [24]
is used to simulate an industrial radiant tube roller hearth heat treating furnace for a batch of 40 parts.
The model computes the energy consumption of the furnace by solving energy conservation equations
and evaluates the temperature distribution of parts as a function of time and position within the
furnace using the Crank–Nicolson finite difference method. For control purposes, the furnace is
divided into four zones. The zone temperature is controlled by a proportional-integral controller that
simultaneously manipulates the fuel to all the burners of the respective zones.

Model predictive control is then implemented as a supervisory control to limit the part temperature
at exit by varying the zone temperature set points of the regulatoryl temperature tracking controller.
We first develop a step-response model to predict the future evolution of the output variables. The time
interval of the model predictive control is longer than that of the regulatory control. A comparison in
terms of energy consumption is made between the furnace operation under the two-level hierarchical
control and under constant heuristic temperature set points reported in Heng et al. [24]. We obtain an
energy efficiency gain of 5.3% under model predictive control by preventing the parts from overheating.
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Nomenclature

Symbol Description Units

Ai Area of surface i m2

εi Emissivity for surface i -
Ê Predicted error vector between the target and the model predictions K
Fi,j View factor from surface i to j -
hair Ambient air heat transfer coefficient W/(m2·K)
h f urn Furnace heat transfer coefficient W/(m2·K)
hpart Part heat transfer coefficient W/(m2·K)
Ji Radiosity of surface i W/m2

k Current sampling instant -
kins Thermal conductivity of insulating material W/(m·K)
kpart Thermal conductivity of part W/(m·K)
M Control horizon -
�ni Inward unit normal to part surface i m
N Number of step response coefficients for each input -
Ns Total number of surfaces for furnace -
P Prediction horizon -
Q Output weighting matrix -
Qconvection,i Heat transfer through convection to surface i W
Qnet,i Total heat transfer to surface i W
Qradiation,i Heat transfer through radiation to surface i W
R Input weighting matrix -
Sψ,i Step response coefficient of ψth input at ith time step -
σ Stefan–Boltzmann constant W/(m2·K4)
ψ Control zone index -
Tair Temperature of ambient air K
Ti Temperature of surface i K
Tins,out,i Temperature of outer surface of insulating wall i K
Tmin Part minimum temperature at exit of furnace K
Tmin,ss Steady state part minimum temperature at exit of furnace K
Tsp,ψ Temperature set point of zone ψ K
Tsp,ψ,ss Steady state temperature set point of zone ψ K
T∞

w Temperature of gas in control volume w K
ΔtMPC Control time interval of model predictive controller s
udi f f Enforced set points temperature difference K
umax Upper bound of temperature set points K
umin Lower bound of temperature set points K
uψ Deviation variable of temperature set point of zone ψ K
ΔU Vector of control actions K
�xi Inward unit normal to insulating surface i m
y Deviation variable of part minimum temperature at furnace exit K
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