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This book, composed of the collection of papers that have appeared in the Special Issue of the
Entropy journal dedicated to “Information Theory for Data Communications and Processing”, reflects,
in its eleven chapters, novel contributions based on the firm basic grounds of information theory.
The book chapters [1–11] address timely theoretical and practical aspects that carry both interesting
and relevant theoretical contributions, as well as direct implications for modern current and future
communications systems.

Information theory has started with the monumental work of Shannon: Shannon, C.E.
“A Mathematical Theory of Communications”, Bell System Technical Journal, vol. 27, pp. 379–423,
623–656, 1948, and it provided from its very start the mathematical/theoretical framework which
facilitated addressing information related problems, in all respects: starting with the basic notion of
what is information, going through basic features of how to convey information in the best possible way
and how to process it given actual and practical constraints. Shannon himself not only fully realized
the power of the basic theory he has developed but further in his profound contributions addressed
practical constraints of communications systems, such as bandwidth, possible signaling limits (as peak
limited signals), motivating from the very start to address practical constraints via theoretical tools,
see, for example: Jelonek, Z. A comparison of transmission systems, In Proc. Symp. Appl. Commun.
Theory, E.E. Dep., Imperial College, Buttenvorths Scientific Press, London, September 1952, pp. 45–81.
Shannon has contributed fundamentally also to most relevant aspects as source coding under a fidelity
(distortion) measure, finite code lengths (error exponents) as well as network aspects of information
theory (the multiple-access channel), see: Sloane, N.J.A. and Wyner, A.D., Eds., Collected Papers of
Claude Elwood Shannon. IEEE Press: New York, 1993.

While at its beginning and through the first decades, information theory, as is reflected in the basic
1948 work of Shannon, was a mathematical tool that pointed out the best that can be achieved (as channel
capacity for point-to-point communications), which with past technology could not even be imagined
to be approached. Now, the power of information theory is way greater as it is able to theoretically
address network problems and not only point out the limits of communications/signal processing,
but with current technology, those limits can, in general, be decently approached. This is classically
demonstrated by the capacity of the point-to-point Gaussian channel, which is actually achieved within
fractions of dB in signal-to-noise (snr) ratio by advanced coding techniques (Low-Density-Parity-Check,
Turbo and Polar codes). In our times, current advanced technology turns information theory into a
practical important tool that is capable also to provide basic guidelines how to come close to ultimate
optimal performance.

Modern, current and future communications/processing aspects motivate in fact basic information
theoretic research for a wide variety of systems for which we yet do not have the ultimate theoretical
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solutions (for example a variety of problems in network information theory as the broadcast/interference
and relay channels, which mostly are yet unsolved in terms of determining capacity regions and the
like). Technologies as 5/6G cellular communications, Internet of Things (IoT), Mobile Edge Networks
and others place in center not only features of reliable rates of information measured by the relevant
capacity, and capacity regions, but also notions such as latency vs. reliability, availability of system state
information, priority of information, secrecy demands, energy consumption per mobile equipment,
sharing of communications resource (time/frequency/space) and the like.

This book focuses on timely and relevant features, and the contributions in the eleven book
chapters [1–11], summarized below, address the information theoretical frameworks that have important
practical implications.

The basic contributions of this book could be divided into three basic parts:

(1) The first part Chapters [1–5] considers central notions such as the Information Bottleneck,
overviewed in the first chapter, pointing out basic connections to a variety of classical information
theoretic problems, such as remote source coding. This subject covering timely novel information
theoretic results demonstrates the role information theory plays in current top technology.
These chapters, on one hand, provide application to ‘deep learning’, and, on the other, they present
the basic theoretical framework of future communications systems such as Cloud and Fog
Radio Access Networks (CRAN, FRAN). The contributions in this part directly address aspects
such as ultra-reliable low-latency communications, impacts of congestion, and non-orthogonal
access strategies.

(2) The second part of the contributions in this book Chapters [6–8] addresses classical communications
systems, point-to-point Multiple-Input-Multiple-Output (MIMO) channels subjected to practical
constraints, as well as network communications models. Specifically, relay and multiple access
channels are discussed.

(3) The third part of the contributions of this book Chapters [9–11] focuses mainly on caching, which,
for example, is the center component in FRAN. Information theory indeed provides the classical
tool to address network features of caching, as demonstrated in the contributions summarized
below (and references therein).

Chapter 1: “On the Information Bottleneck Problems: Models, Connections, Applications and
Information Theoretic Views” provides a tutorial that addresses from an information theoretic viewpoint
variants of the information bottleneck problem. It provides an overview emphasizing variational inference,
representation learning and presents a broad spectrum of inherent connections to classical information
theoretic notions such as: remote source-coding, information combining, common reconstruction,
the Wyner–Ahlswede–Korner problem and others. The distributed information bottleneck overviewed in
this tutorial sets the theoretical grounds for the uplink CRAN, with oblivious processing.

Chapter 2: “Variational Information Bottleneck for Unsupervised Clustering: Deep Gaussian
Mixture Embedding” develops an unsupervised generative clustering framework that combines the
variational information bottleneck and the Gaussian mixture model. Among other results, this approach
that models the latent space as a mixture of Gaussians generates inference-type algorithms for exact
computation, and generalizes the so-called evidence lower bound, which is useful in a variety of
unsupervised learning problems.

Chapter 3: “Asymptotic Rate-Distortion Analysis of Symmetric Remote Gaussian Source Coding:
Centralized Encoding vs. Distributed Encoding” addresses remote multivariate source coding, which is
a CEO problem and, as indicated in Chapter 1, connects directly to the distributed bottleneck problem.
The distortion measure considered here is minimum-mean-square-error, which can be connected to the
logarithmic distortion via classical information–estimation relations. Both cases—the distributed and
joint remote source coding (all terminals cooperate)—are studied.

Chapter 4: “Non-Orthogonal eMBB-URLLC Radio Access for Cloud Radio Access Networks with
Analog Fronthauling” provides an information-theoretic perspective of the performance of Ultra-Reliable
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Low-Latency Communications (URLLC) and enhanced Mobile BroadBand (eMBB) traffic under both
Orthogonal and Non-Orthogonal multiple access procedures. The work here considers CRAN based on
the relaying of radio signals over analog fronthaul links.

Chapter 5: “Robust Baseband Compression against Congestion in Packet-Based Fronthaul
Networks Using Multiple Description Coding” also addresses CRAN and considers the practical
scenario when the fronthaul transport network is packet based and it may have a multi-hop
architecture. The timely information theoretic concepts of multiple description coding are employed,
and demonstrated to provide advantageous performance over conventional packet-based multi-route
reception or coding.

Chapter 6: “Amplitude Constrained MIMO Channels: Properties of Optimal Input Distributions
and Bounds on the Capacity” studies the classical information theoretic setting where input signals
are subjected to practical constraints, with focus on amplitude constraints. Followed by a survey of
available results for Gaussian MIMO channels, which are of direct practical importance, it is shown
that the support of a capacity-achieving input distribution is a small set in both a topological and a
measure theoretical sense. Bounds on the respective capacities are developed and demonstrated to be
tight in the high amplitude regime (high snr).

Chapter 7: “Quasi-Concavity for Gaussian Multicast Relay Channels” addresses the classical
model of a relay channel, which is one of the classical information theoretic problems that are not yet
fully solved. This work identifies useful features of quasi-concavity of relevant bounds (as the cut-set
bound) that are useful in addressing communications schemes based on relaying.

Chapter 8: “Gaussian Multiple Access Channels with One-Bit Quantizer at the Receiver” investigates
the practical setting when the received input is sampled and here it employs a zero-threshold one-bit
analogue-to-digital converter. It is shown that the optimal capacity achieving signal distribution is discrete,
and bounds on the respective capacity are reported.

Chapter 9: “Efficient Algorithms for Coded Multicasting in Heterogeneous Caching Networks”
addresses crucial performance–complexity tradeoffs in a heterogeneous caching network setting,
where edge caches with possibly different storage capacities collect multiple content requests that
may follow distinct demand distributions. The basic known performance-efficient coded multicasting
schemes suffer from inherent complexity issues, which makes them impractical. This chapter
demonstrates that the proposed approach provides a compelling step towards the practical achievability
of the promising multiplicative caching gain in future-generation access networks.

Chapter 10: “Cross-Entropy Method for Content Placement and User Association in Cache-Enabled
Coordinated Ultra-Dense Networks” focuses on ultra-dense networks, which play a central role for
future wireless technologies. In Coordinated Multi-Point-based Ultra-Dense Networks, a great
challenge is to tradeoff between the gain of network throughput and the degraded backhaul
latency, and caching popular files has been identified as a promising method to reduce the backhaul
traffic load. This chapter investigated Cross-Entropy methodology for content placement strategies
and user association algorithms for the proactive caching ultra-dense networks, and demonstrates
advantageous performance.

Chapter 11: “Symmetry, Outer Bounds, and Code Constructions: A Computer-Aided Investigation
on the Fundamental Limits of Caching” also focuses on caching, which, as mentioned, is a fundamental
procedure for future efficient networks. Most known analyses and bounds developed are based on
information theoretic arguments and techniques. This work illustrates how computer-aided methods
can be applied to investigate the fundamental limits of the caching systems, which are significantly
different from the conventional analytic approach usually seen in the information theory literature.
The methodology discussed and suggested here allows, among other things, to compute performance
bounds for multi-user/terminal schemes, which were believed to require unrealistic computation scales.

In closing, one can view all the above three categories of the eleven chapters, in a unified way,
as all are relevant to future wireless networks. The massive growth of smart devices and the advent
of many new applications dictates not only having better systems, such as coding and modulation
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on the point-to-point channel, classically characterized by channel capacity, but a change of the
network/communications paradigms (as demonstrated for example, by the notions of CRAN and
FRAN) and performance measures. New architectures and concepts are a must in current and future
communications systems, and information theory provides the basic tools to address these, developing
concepts and results, which actually are not only of essential theoretical value, but are also of direct
practical importance. We trust that this book provides a sound glimpse to these aspects.
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Abstract: This tutorial paper focuses on the variants of the bottleneck problem taking an
information theoretic perspective and discusses practical methods to solve it, as well as its
connection to coding and learning aspects. The intimate connections of this setting to remote
source-coding under logarithmic loss distortion measure, information combining, common
reconstruction, the Wyner–Ahlswede–Korner problem, the efficiency of investment information,
as well as, generalization, variational inference, representation learning, autoencoders, and others
are highlighted. We discuss its extension to the distributed information bottleneck problem with
emphasis on the Gaussian model and highlight the basic connections to the uplink Cloud Radio
Access Networks (CRAN) with oblivious processing. For this model, the optimal trade-offs between
relevance (i.e., information) and complexity (i.e., rates) in the discrete and vector Gaussian frameworks
is determined. In the concluding outlook, some interesting problems are mentioned such as the
characterization of the optimal inputs (“features”) distributions under power limitations maximizing
the “relevance” for the Gaussian information bottleneck, under “complexity” constraints.

Keywords: information bottleneck; rate distortion theory; logarithmic loss; representation learning

1. Introduction

A growing body of works focuses on developing learning rules and algorithms using information
theoretic approaches (e.g., see [1–6] and references therein). Most relevant to this paper is the
Information Bottleneck (IB) method of Tishby et al. [1], which seeks the right balance between data
fit and generalization by using the mutual information as both a cost function and a regularizer.
Specifically, IB formulates the problem of extracting the relevant information that some signal X ∈ X
provides about another one Y ∈ Y that is of interest as that of finding a representation U that
is maximally informative about Y (i.e., large mutual information I(U; Y)) while being minimally
informative about X (i.e., small mutual information I(U; X)). In the IB framework, I(U; Y) is referred
to as the relevance of U and I(U; X) is referred to as the complexity of U, where complexity here
is measured by the minimum description length (or rate) at which the observation is compressed.
Accordingly, the performance of learning with the IB method and the optimal mapping of the data are
found by solving the Lagrangian formulation

LIB,∗
β ∶= max

PU∣X
I(U; Y) − βI(U; X), (1)

Entropy 2020, 22, 151; doi:10.3390/e22020151 www.mdpi.com/journal/entropy5
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where PU∣X is a stochastic map that assigns the observation X to a representation U from which Y
is inferred and β is the Lagrange multiplier. Several methods, which we detail below, have been
proposed to obtain solutions PU∣X to the IB problem in Equation (4) in several scenarios, e.g., when the
distribution of the sources (X, Y) is perfectly known or only samples from it are available.

The IB approach, as a method to both characterize performance limits as well as to design
mapping, has found remarkable applications in supervised and unsupervised learning problems such
as classification, clustering, and prediction. Perhaps key to the analysis and theoretical development
of the IB method is its elegant connection with information-theoretic rate-distortion problems, as it
is now well known that the IB problem is essentially a remote source coding problem [7–9] in which
the distortion is measured under logarithmic loss. Recent works show that this connection turns out
to be useful for a better understanding the fundamental limits of learning problems, including the
performance of deep neural networks (DNN) [10], the emergence of invariance and disentanglement in
DNN [11], the minimization of PAC-Bayesian bounds on the test error [11,12], prediction [13,14], or as
a generalization of the evidence lower bound (ELBO) used to train variational auto-encoders [15,16],
geometric clustering [17], or extracting the Gaussian “part” of a signal [18], among others. Other
connections that are more intriguing exist also with seemingly unrelated problems such as privacy
and hypothesis testing [19–21] or multiterminal networks with oblivious relays [22,23] and non-binary
LDPC code design [24]. More connections with other coding problems such as the problems of
information combining and common reconstruction, the Wyner–Ahlswede–Korner problem, and the
efficiency of investment information are unveiled and discussed in this tutorial paper, together with
extensions to the distributed setting.

The abstract viewpoint of IB also seems instrumental to a better understanding of the so-called
representation learning [25], which is an active research area in machine learning that focuses on
identifying and disentangling the underlying explanatory factors that are hidden in the observed data
in an attempt to render learning algorithms less dependent on feature engineering. More specifically,
one important question, which is often controversial in statistical learning theory, is the choice of a
“good” loss function that measures discrepancies between the true values and their estimated fits.
There is however numerical evidence that models that are trained to maximize mutual information,
or equivalently minimize the error’s entropy, often outperform ones that are trained using other
criteria such as mean-square error (MSE) and higher-order statistics [26,27]. On this aspect, we also
mention Fisher’s dissertation [28], which contains investigation of the application of information
theoretic metrics to blind source separation and subspace projection using Renyi’s entropy as well as
what appears to be the first usage of the now popular Parzen windowing estimator of information
densities in the context of learning. Although a complete and rigorous justification of the usage of
mutual information as cost function in learning is still awaited, recently, a partial explanation appeared
in [29], where the authors showed that under some natural data processing property Shannon’s
mutual information uniquely quantifies the reduction of prediction risk due to side information.
Along the same line of work, Painsky and Wornell [30] showed that, for binary classification problems,
by minimizing the logarithmic-loss (log-loss), one actually minimizes an upper bound to any choice of
loss function that is smooth, proper (i.e., unbiased and Fisher consistent), and convex. Perhaps, this
justifies partially why mutual information (or, equivalently, the corresponding loss function, which
is the log-loss fidelity measure) is widely used in learning theory and has already been adopted in
many algorithms in practice such as the infomax criterion [31], the tree-based algorithm of Quinlan
[32], or the well known Chow–Liu algorithm [33] for learning tree graphical models, with various
applications in genetics [34], image processing [35], computer vision [36], etc. The logarithmic loss
measure also plays a central role in the theory of prediction [37] (Ch. 09) where it is often referred to as
the self-information loss function, as well as in Bayesian modeling [38] where priors are usually designed
to maximize the mutual information between the parameter to be estimated and the observations. The
goal of learning, however, is not merely to learn model parameters accurately for previously seen data.
Rather, in essence, it is the ability to successfully apply rules that are extracted from previously seen
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data to characterize new unseen data. This is often captured through the notion of “generalization
error”. The generalization capability of a learning algorithm hinges on how sensitive the output of the
algorithm is to modifications of the input dataset, i.e., its stability [39,40]. In the context of deep learning,
it can be seen as a measure of how much the algorithm overfits the model parameters to the seen data.
In fact, efficient algorithms should strike a good balance between their ability to fit training dataset and
that to generalize well to unseen data. In statistical learning theory [37], such a dilemma is reflected
through that the minimization of the “population risk” (or “test error” in the deep learning literature)
amounts to the minimization of the sum of the two terms that are generally difficult to minimize
simultaneously, the “empirical risk” on the training data and the generalization error. To prevent
over-fitting, regularization methods can be employed, which include parameter penalization, noise
injection, and averaging over multiple models trained with distinct sample sets. Although it is not yet
very well understood how to optimally control model complexity, recent works [41,42] show that the
generalization error can be upper-bounded using the mutual information between the input dataset
and the output of the algorithm. This result actually formalizes the intuition that the less information a
learning algorithm extracts from the input dataset the less it is likely to overfit, and justifies, partly, the
use of mutual information also as a regularizer term. The interested reader may refer to [43] where
it is shown that regularizing with mutual information alone does not always capture all desirable
properties of a latent representation. We also point out that there exists an extensive literature on
building optimal estimators of information quantities (e.g., entropy, mutual information), as well as
their Matlab/Python implementations, including in the high-dimensional regime (see, e.g., [44–49]
and references therein).

This paper provides a review of the information bottleneck method, its classical solutions,
and recent advances. In addition, in the paper, we unveil some useful connections with coding
problems such as remote source-coding, information combining, common reconstruction, the
Wyner–Ahlswede–Korner problem, the efficiency of investment information, CEO source coding
under logarithmic-loss distortion measure, and learning problems such as inference, generalization,
and representation learning. Leveraging these connections, we discuss its extension to the distributed
information bottleneck problem with emphasis on its solutions and the Gaussian model and highlight
the basic connections to the uplink Cloud Radio Access Networks (CRAN) with oblivious processing.
For this model, the optimal trade-offs between relevance and complexity in the discrete and vector
Gaussian frameworks is determined. In the concluding outlook, some interesting problems are
mentioned such as the characterization of the optimal inputs distributions under power limitations
maximizing the “relevance” for the Gaussian information bottleneck under “complexity” constraints.

Notation

Throughout, uppercase letters denote random variables, e.g., X; lowercase letters denote
realizations of random variables, e.g., x; and calligraphic letters denote sets, e.g., X . The cardinality
of a set is denoted by ∣X ∣. For a random variable X with probability mass function (pmf) PX,
we use PX(x) = p(x), x ∈ X for short. Boldface uppercase letters denote vectors or matrices,
e.g., X, where context should make the distinction clear. For random variables (X1, X2,⋯) and
a set of integers K ⊆ N, XK denotes the set of random variables with indices in the set K, i.e.,
XK = {Xk ∶ k ∈ K}. If K = ∅, XK = ∅. For k ∈ K, we let XK/k = (X1,⋯, Xk−1, Xk+1,⋯, XK), and assume
that X0 = XK+1 = ∅. In addition, for zero-mean random vectors X and Y, the quantities Σx, Σx,y and
Σx∣y denote, respectively, the covariance matrix of the vector X, the covariance matrix of vector (X, Y),
and the conditional covariance matrix of X, conditionally on Y, i.e., Σx = E[XXH] Σx,y ∶= E[XYH], and
Σx∣y = Σx − Σx,yΣ−1

y Σy,x. Finally, for two probability measures PX and QX on the random variable
X ∈ X , the relative entropy or Kullback–Leibler divergence is denoted as DKL(PX∥QX). That is, if PX is
absolutely continuous with respect to QX , PX ≪ QX (i.e., for every x ∈ X , if PX(x) > 0, then QX(x) > 0),
DKL(PX∥QX) = EPX [log(PX(X)/QX(X))], otherwise DKL(PX∥QX) = ∞.

7



Entropy 2020, 22, 151

2. The Information Bottleneck Problem

The Information Bottleneck (IB) method was introduced by Tishby et al. [1] as a method for
extracting the information that some variable X ∈ X provides about another one Y ∈ Y that is of interest,
as shown in Figure 1.

PX|YY ∈ Y φ ψ Ŷ ∈ Y
X ∈ X U = φ(X)

Figure 1. Information bottleneck problem.

Specifically, the IB method consists of finding the stochastic mapping PU∣X ∶ X → U that from
an observation X outputs a representation U ∈ U that is maximally informative about Y, i.e., large
mutual information I(U; Y), while being minimally informative about X, i.e., small mutual information
I(U; X) (As such, the usage of Shannon’s mutual information seems to be motivated by the intuition
that such a measure provides a natural quantitative approach to the questions of meaning, relevance,
and common-information, rather than the solution of a well-posed information-theoretic problem—a
connection with source coding under logarithmic loss measure appeared later on in [50].) The auxiliary
random variable U satisfies that U −�− X −�−Y is a Markov Chain in this order; that is, that the joint
distribution of (X, U, Y) satisfies

p(x, u, y) = p(x)p(y∣x)p(u∣x), (2)

and the mapping PU∣X is chosen such that U strikes a suitable balance between the degree of relevance
of the representation as measured by the mutual information I(U; Y) and its degree of complexity as
measured by the mutual information I(U; X). In particular, such U, or effectively the mapping PU∣X ,
can be determined to maximize the IB-Lagrangian defined as

LIB
β (PU∣X) ∶= I(U; Y) − βI(U; X) (3)

over all mappings PU∣X that satisfy U −�− X −�−Y and the trade-off parameter β is a positive Lagrange
multiplier associated with the constraint on I(U; Y).

Accordingly, for a given β and source distribution PX,Y, the optimal mapping of the data, denoted
by P∗,β

U∣X , is found by solving the IB problem, defined as

LIB,∗
β ∶= max

PU∣X
I(U; Y) − βI(U; X)., (4)

over all mappings PU∣Y that satisfy U −�− X −�− Y. It follows from the classical application of
Carathéodory’s theorem [51] that without loss of optimality, U can be restricted to satisfy ∣U ∣ ≤ ∣X ∣ + 1.

In Section 3 we discuss several methods to obtain solutions P∗,β
U∣X to the IB problem in Equation (4)

in several scenarios, e.g., when the distribution of (X, Y) is perfectly known or only samples from it
are available.

2.1. The Ib Relevance–Complexity Region

The minimization of the IB-Lagrangian Lβ in Equation (4) for a given β ≥ 0 and PX,Y results

in an optimal mapping P∗,β
U∣X and a relevance–complexity pair (Δβ, Rβ) where Δβ = I(Uβ, X) and

Rβ = I(Uβ, Y) are, respectively, the relevance and the complexity resulting from generating Uβ with

the solution P∗,β
U∣X. By optimizing over all β ≥ 0, the resulting relevance–complexity pairs (Δβ, Rβ)

characterize the boundary of the region of simultaneously achievable relevance–complexity pairs for a

8
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distribution PX,Y (see Figure 2). In particular, for a fixed PX,Y, we define this region as the union of
relevance–complexity pairs (Δ, R) that satisfy

Δ ≤ I(U, Y), R ≥ I(X, U) (5)

where the union is over all PU∣X such that U satisfies U −�− X −�−Y form a Markov Chain in this order.
Any pair (Δ, R) outside of this region is not simultaneously achievable by any mapping PU∣X .

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

Figure 2. Information bottleneck relevance–complexity region. For a given β, the solution P∗,β
U∣X to the

minimization of the IB-Lagrangian in Equation (3) results in a pair (Δβ, Rβ) on the boundary of the IB
relevance–complexity region (colored in grey).

3. Solutions to the Information Bottleneck Problem

As shown in the previous region, the IB problem provides a methodology to design mappings
PU∣X performing at different relevance–complexity points within the region of feasible (Δ, R) pairs,
characterized by the IB relevance–complexity region, by minimizing the IB-Lagrangian in Equation (3)
for different values of β. However, in general, this optimization is challenging as it requires
computation of mutual information terms.

In this section, we describe how, for a fixed parameter β, the optimal solution Pβ,∗
U∣X , or an efficient

approximation of it, can be obtained under: (i) particular distributions, e.g., Gaussian and binary
symmetric sources; (ii) known general discrete memoryless distributions; and (iii) unknown memory
distributions and only samples are available.

3.1. Solution for Particular Distributions: Gaussian and Binary Symmetric Sources

In certain cases, when the joint distribution PX,Y is know, e.g., it is binary symmetric or Gaussian,
information theoretic inequalities can be used to minimize the IB-Lagrangian in (4) in closed form.

3.1.1. Binary IB

Let X and Y be a doubly symmetric binary sources (DSBS), i.e., (X, Y) ∼ DSBS(p) for some
0 ≤ p ≤ 1/2. (A DSBS is a pair (X, Y) of binary random variables X ∼ Bern(1/2) and Y ∼ Bern(1/2) and
X ⊕Y ∼ Bern(p), where ⊕ is the sum modulo 2. That is, Y is the output of a binary symmetric channel
with crossover probability p corresponding to the input X, and X is the output of the same channel

9
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with input Y.) Then, it can be shown that the optimal U in (4) is such that (X, U) ∼ DSBS(q) for some
0 ≤ q ≤ 1. Such a U can be obtained with the mapping PU∣X such that

U = X ⊕ Q, with Q ∼ DSBS(q). (6)

In this case, straightforward algebra leads to that the complexity level is given by

I(U; X) = 1− h2(q), (7)

where, for 0 ≤ x ≤ 1, h2(x) is the entropy of a Bernoulli-(x) source, i.e., h2(x) = −x log2(x) − (1 −
x) log2(1− x), and the relevance level is given by

I(U; Y) = 1− h2(p ⋆ q) (8)

where p ⋆ q = p(1− q) + q(1− p). The result extends easily to discrete symmetric mappings Y �→ X
with binary X (one bit output quantization) and discrete non-binary Y.

3.1.2. Vector Gaussian IB

Let (X, Y) ∈ CNx ×CNy be a pair of jointly Gaussian, zero-mean, complex-valued random vectors,
of dimension Nx > 0 and Ny > 0, respectively. In this case, the optimal solution of the IB-Lagrangian in
Equation (3) (i.e., test channel PU∣X) is a noisy linear projection to a subspace whose dimensionality
is determined by the tradeoff parameter β. The subspaces are spanned by basis vectors in a manner
similar to the well known canonical correlation analysis [52]. For small β, only the vector associated to
the dimension with more energy, i.e., corresponding to the largest eigenvalue of a particular hermitian
matrix, will be considered in U. As β increases, additional dimensions are added to U through a series
of critical points that are similar to structural phase transitions. This process continues until U becomes
rich enough to capture all the relevant information about Y that is contained in X. In particular, the
boundary of the optimal relevance–complexity region was shown in [53] to be achievable using a test
channel PU∣X, which is such that (U, X) is Gaussian. Without loss of generality, let

U = AX + ξ (9)

where A ∈ MNu ,Nx(C) is an Nu × Nx complex valued matrix and ξ ∈ CNu is a Gaussian noise that is
independent of (X, Y) with zero-mean and covariance matrix INu . For a given non-negative trade-off
parameter β, the matrix A has a number of rows that depends on β and is given by [54] (Theorem 3.1)

A =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[0T ; . . . ; 0T] , 0 ≤ β < βc
1

[α1vT
1 ; 0T ; . . . ; 0T] , βc

1 ≤ β < βc
2

[α1vT
1 ; α2vT

2 ; 0T ; . . . ; 0T] , βc
2 ≤ β < βc

3
⋮

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(10)

where {vT
1 , vT

2 ,⋯, vT
Nx

} are the left eigenvectors of ΣX∣YΣ−1
X sorted by their corresponding ascending

eigenvalues λ1, λ2,⋯, λNx . Furthermore, for i = 1,⋯, Nx, βc
i =

1
1−λi

are critical β-values, αi =
√

β(1−λi)−1
λiri

with ri = vT
i ΣXvi, 0T denotes the Nx-dimensional zero vector and semicolons separate the rows of

the matrix. It is interesting to observe that the optimal projection consists of eigenvectors of ΣX∣YΣ−1
X ,

combined in a judicious manner: for values of β that are smaller than βc
1, reducing complexity is of

prime importance, yielding extreme compression U = ξ, i.e., independent noise and no information
preservation at all about Y. As β increases, it undergoes a series of critical points {βc

i}, at each of which
a new eignevector is added to the matrix A, yielding a more complex but richer representation—the
rank of A increases accordingly.

10
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For the specific case of scalar Gaussian sources, that is Nx = Ny = 1, e.g., X =
√

snrY + N where
N is standard Gaussian with zero-mean and unit variance, the above result simplifies considerably.
In this case, let without loss of generality the mapping PU∣X be given by

X =
√

aX + Q (11)

where Q is standard Gaussian with zero-mean and variance σ2
q . In this case, for I(U; X) = R, we get

I(U; Y) = 1
2

log(1+ snr) − 1
2

log(1+ snr exp(−2R)). (12)

3.2. Approximations for Generic Distributions

Next, we present an approach to obtain solutions to the the information bottleneck problem for
generic distributions, both when this solution is known and when it is unknown. The method consists
in defining a variational (lower) bound on the IB-Lagrangian, which can be optimized more easily
than optimizing the IB-Lagrangian directly.

3.2.1. A Variational Bound

Recall the IB goal of finding a representation U of X that is maximally informative about Y while
being concise enough (i.e., bounded I(U; X)). This corresponds to optimizing the IB-Lagrangian

LIB
β (PU∣X) ∶= I(U; Y) − βI(U; X) (13)

where the maximization is over all stochastic mappings PU∣X such that U −�− X −�−Y and ∣U ∣ ≤ ∣X ∣ + 1.
In this section, we show that minimizing Equation (13) is equivalent to optimizing the variational cost

LVIB
β (PU∣X , QY∣U , SU) ∶= EPU∣X

[log QY∣U(Y∣U)] − βDKL(PU∣X ∣SU), (14)

where QY∣U(y∣u) is an given stochastic map QY∣U ∶ U → [0, 1] (also referred to as the variational
approximation of PY∣U or decoder) and SU(u) ∶ U → [0, 1] is a given stochastic map (also referred to as
the variational approximation of PU), and DKL(PU∣X ∣SU) is the relative entropy between PU∣X and SU .

Then, we have the following bound for a any valid PU∣X, i.e., satisfying the Markov Chain in
Equation (2),

LIB
β (PU∣X) ≥ LVIB

β (PU∣X , QY∣U , SU), (15)

where the equality holds when QY∣U = PY∣U and SU = PU , i.e., the variational approximations
correspond to the true value.

In the following, we derive the variational bound. Fix PU∣X (an encoder) and the variational
decoder approximation QY∣U . The relevance I(U; Y) can be lower-bounded as

I(U; Y) = ⨋
u∈U , y∈Y

PU,Y(u, y) log
PY∣U(y∣u)

PY(y) dydu (16)

(a)= ⨋
u∈U , y∈Y

PU,Y(u, y) log
QY∣U(y∣u)

PY(y) dydu + D(PY∥QY ∣U) (17)

(b)
≥ ⨋

u∈U , y∈Y
PU,Y(u, y) log

QY∣U(y∣u)
PY(y) dydu (18)

= H(Y) +⨋
u∈U , y∈Y

PU,Y(u, y) log QY∣U(y∣u)dydu (19)

(c)
≥ ⨋

u∈U , y∈Y
PU,Y(u, y) log QY∣U(y∣u)dydu (20)

11
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(d)= ⨋
u∈U , x∈X , y∈Y

PX(x)PY∣X(y∣x)PU∣X(u∣x) log QY∣U(y∣u)dxdydu, (21)

where in (a) the term D(PY∥QY ∣U) is the conditional relative entropy between PY and QY, given PU ;
(b) holds by the non-negativity of relative entropy; (c) holds by the non-negativity of entropy; and (d)
follows using the Markov Chain U −�− X −�−Y.

Similarly, let SU be a given the variational approximation of PU . Then, we get

I(U; X) = ⨋
u∈U , x∈X

PU,X(u, x) log
PU∣X(u∣x)

PU(u) dxdu (22)

= ⨋
u∈U , x∈X

PU,X(u, x) log
PU∣X(u∣x)

SU(u) dxdu − D(PU∥SU) (23)

≤ ⨋
u∈U , x∈X

PU,X(u, x) log
PU∣X(u∣x)

SU(u) dxdu (24)

where the inequality follows since the relative entropy is non-negative.
Combining Equations (21) and (24), we get

I(U; Y) − βI(U; X) ≥ ⨋
u∈U , x∈X , y∈Y

PX(x)PY∣X(y∣x)PU∣X(u∣x) log QY∣U(y∣u)dxdydu

− β⨋
u∈U , x∈X

PU,X(u, x) log
PU∣X(u∣x)

SU(u) dxdu. (25)

The use of the variational bound in Equation (14) over the IB-Lagrangian in Equation (13) shows
some advantages. First, it allows the derivation of alternating algorithms that allow to obtain a solution
by optimizing over the encoders and decoders. Then, it is easier to obtain an empirical estimate of
Equation (14) by sampling from: (i) the joint distribution PX,Y; (ii) the encoder PU∣X ; and (iii) the prior
SU . Additionally, as noted in Equation (15), when evaluated for the optimal decoder QY∣U and prior SU ,
the variational bound becomes tight. All this allows obtaining algorithms to obtain good approximate
solutions to the IB problem, as shown next. Further theoretical implications of this variational bound
are discussed in [55].

3.2.2. Known Distributions

Using the variational formulation in Equation (14), when the data model is discrete and the joint
distribution PX,Y is known, the IB problem can be solved by using an iterative method that optimizes
the variational IB cost function in Equation (14) alternating over the distributions PU∣X , QY∣U , and SU .
In this case, the maximizing distributions PU∣X , QY∣U , and SU can be efficiently found by an alternating
optimization procedure similar to the expectation-maximization (EM) algorithm [56] and the standard
Blahut–Arimoto (BA) method [57]. In particular, a solution PU∣X to the constrained optimization
problem is determined by the following self-consistent equations, for all (u, x, y) ∈ U ×X ×Y , [1]

PU∣X(u∣x) = PU(u)
Z(β, x) exp( − βDKL(PY∣X(⋅∣x)∥PY∣U(⋅∣u))) (26a)

PU(u) = ∑
x∈X

PX(x)PU∣X(u∣x) (26b)

PY∣U(y∣u) = ∑
x∈X

PY∣X(y∣x)PX∣U(x∣u) (26c)

where PX∣U(x∣u) = PU∣X(u∣x)PX(x)/PU(u) and Z(β, x) is a normalization term. It is shown in [1]
that alternating iterations of these equations converges to a solution of the problem for any initial
PU∣X . However, by opposition to the standard Blahut–Arimoto algorithm [57,58], which is classically
used in the computation of rate-distortion functions of discrete memoryless sources for which
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convergence to the optimal solution is guaranteed, convergence here may be to a local optimum
only. If β = 0, the optimization is non-constrained and one can set U = ∅, which yields minimal
relevance and complexity levels. Increasing the value of β steers towards more accurate and more
complex representations, until U = X in the limit of very large (infinite) values of β for which the
relevance reaches its maximal value I(X; Y).

For discrete sources with (small) alphabets, the updating equations described by Equation (26)
are relatively easy computationally. However, if the variables X and Y lie in a continuum, solving
the equations described by Equation (26) is very challenging. In the case in which X and Y are joint
multivariate Gaussian, the problem of finding the optimal representation U is analytically tractable
in [53] (see also the related [54,59]), as discussed in Section 3.1.2. Leveraging the optimality of Gaussian
mappings PU∣X to restrict the optimization of PU∣X to Gaussian distributions as in Equation (9), allows
reducing the search of update rules to those of the associated parameters, namely covariance matrices.
When Y is a deterministic function of X, the IB curve cannot be explored, and other Lagrangians have
been proposed to tackle this problem [60].

3.3. Unknown Distributions

The main drawback of the solutions presented thus far for the IB principle is that, in the exception
of small-sized discrete (X, Y) for which iterating Equation (26) converges to an (at least local) solution
and jointly Gaussian (X, Y) for which an explicit analytic solution was found, solving Equation (3)
is generally computationally costly, especially for high dimensionality. Another important barrier in
solving Equation (3) directly is that IB necessitates knowledge of the joint distribution PX,Y. In this
section, we describe a method to provide an approximate solution to the IB problem in the case
in which the joint distribution is unknown and only a give training set of N samples {(xi, yi)}N

i=1
is available.

A major step ahead, which widened the range of applications of IB inference for various learning
problems, appeared in [48], where the authors used neural networks to parameterize the variational
inference lower bound in Equation (14) and show that its optimization can be done through the classic
and widely used stochastic gradient descendent (SGD). This method, denoted by Variational IB in [48]
and detailed below, has allowed handling handle high-dimensional, possibly continuous, data, even
in the case in which the distributions are unknown.

3.3.1. Variational IB

The goal of the variational IB when only samples {(xi, yi)}N
i=1 are available is to solve the IB

problem optimizing an approximation of the cost function. For instance, for a given training set
{(xi, yi)}N

i=1, the right hand side of Equation (14) can be approximated as

Llow ≈ 1
N

N
∑
i=1

[⨋
u∈U

(PU∣X(u∣xi) log QY∣U(yi∣u) − βPU∣X(u∣xi) log
PU∣X(u∣xi)

SU(u) )du] . (27)

However, in general, the direct optimization of this cost is challenging. In the variational IB
method, this optimization is done by parameterizing the encoding and decoding distributions PU∣X ,
QY∣U , and SU that are to optimize using a family of distributions whose parameters are determined by
DNNs. This allows us to formulate Equation (14) in terms of the DNN parameters, i.e., its weights, and
optimize it by using the reparameterization trick [15], Monte Carlo sampling, and stochastic gradient
descent (SGD)-type algorithms.

Let Pθ(u∣x) denote the family of encoding probability distributions PU∣X over U for each element
on X , parameterized by the output of a DNN fθ with parameters θ. A common example is the family
of multivariate Gaussian distributions [15], which are parameterized by the mean μθ and covariance
matrix Σθ , i.e., γ ∶= (μθ , Σθ). Given an observation X, the values of (μθ(x), Σθ(x)) are determined
by the output of the DNN fθ , whose input is X, and the corresponding family member is given by
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Pθ(u∣x) = N(u; μθ(x), Σθ(x)). For discrete distributions, a common example are concrete variables [61]
(or Gumbel-Softmax [62]). Some details are given below.

Similarly, for decoder QY∣U over Y for each element on U , let Qψ(y∣u) denote the family of
distributions parameterized by the output of the DNNs fψk . Finally, for the prior distributions SU(u)
over U we define the family of distributions Sϕ(u), which do not depend on a DNN.

By restricting the optimization of the variational IB cost in Equation (14) to the encoder, decoder,
and prior within the families of distributions Pθ(u∣x), Qψ(y∣u), and Sϕ(u), we get

max
PU∣X

max
QY∣U ,SU

LVIB
β (PU∣X , QY∣U , SU) ≥ max

θ,φ,ϕ
LNN

β (θ, φ, ϕ), (28)

where θ, φ, and ϕ denote the DNN parameters, e.g., its weights, and the cost in Equation (29) is given by

LNN
β (θ, φ, ϕ) ∶= EPY,XE{Pθ(U∣X)}[ log Qφ(Y∣U)(Y∣U)] − βDKL(Pθ(U∣X)∥Sϕ(U)). (29)

Next, using the training samples {(xi, yi)}N
i=1, the DNNs are trained to maximize a Monte Carlo

approximation of Equation (29) over θ, φ,ϕ using optimization methods such as SGD or ADAM [63]
with backpropagation. However, in general, the direct computation of the gradients of Equation (29) is
challenging due to the dependency of the averaging with respect to the encoding Pθ , which makes
it hard to approximate the cost by sampling. To circumvent this problem, the reparameterization
trick [15] is used to sample from Pθ(U∣X). In particular, consider Pθ(U∣X) to belong to a parametric
family of distributions that can be sampled by first sampling a random variable Z with distribution
PZ(z), z ∈ Z and then transforming the samples using some function gθ ∶ X ×Z → U parameterized
by θ, such that U = gθ(x, Z) ∼ Pθ(U∣x). Various parametric families of distributions fall within this
class for both discrete and continuous latent spaces, e.g., the Gumbel-Softmax distributions and the
Gaussian distributions. Next, we detail how to sample from both examples:

1. Sampling from Gaussian Latent Spaces: When the latent space is a continuous vector space
of dimension D, e.g., U = RD, we can consider multivariate Gaussian parametric encoders of
mean (μθ , and covariance Σθ), i.e., Pθ(u∣x) = N(u; μθ , Σθ). To sample U ∼ N(u; μθ , Σθ), where
μθ(x) = f μ

e,θ(x) and Σθ(x) = f Σ
e,θ(x) are determined as the output of a NN, sample a random

variable Z ∼ N(z; 0, I) i.i.d. and, given data sample x ∈ X , and generate the jth sample as

uj = f μ
e,θ(x) + f Σ

e,θ(x)zj (30)

where zj is a sample of Z ∼ N(0, I) , which is an independent Gaussian noise, and f μ
e (x) and

f Σ
e (x) are the output values of the NN with weights θ for the given input sample x.

An example of the resulting DIB architecture to optimize with an encoder, a latent space, and a
decoder parameterized by Gaussian distributions is shown in Figure 3.

2. Sampling from a discrete latent space with the Gumbel-Softmax:

If U is categorical random variable on the finite set U of size D with probabilities π ∶=
(π1, . . . , πD)), we can encode it as D-dimensional one-hot vectors lying on the corners of
the (D − 1)-dimensional simplex, ΔD−1. In general, costs functions involving sampling from
categorical distributions are non-differentiable. Instead, we consider Concrete variables [62] (or
Gumbel-Softmax [61]), which are continuous differentiable relaxations of categorical variables on
the interior of the simplex, and are easy to sample. To sample from a Concrete random variable
U ∈ ΔD−1 at temperature λ ∈ (0,∞), with probabilities π ∈ (0, 1)D, sample Gd ∼ Gumbel(0, 1) i.i.d.
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(The Gumbel(0, 1) distribution can be sampled by drawing u ∼ Uniform(0, 1) and calculating
g = − log(− log(u)). ), and set for each of the components of U = (U1, . . . , UD)

Ud = exp((log(πd + Gd)/λ))
∑D

j=1 exp((log(πj + Gj)/λ))
, d = 1, . . . , D. (31)

We denote by Qπ,λ(u,x) the Concrete distribution with parameters (π(x), λ). When the
temperature λ approaches 0, the samples from the concrete distribution become one-hot
and Pr{limλ→0 Ud} = πd [61]. Note that, for discrete data models, standard application of
Caratheodory’s theorem [64] shows that the latent variables U that appear in Equation (3) can be
restricted to be with bounded alphabets size.

Figure 3. Example parametrization of Variational Information Bottleneck using neural networks.

The reparametrization trick transforms the cost function in Equation (29) into one which can be
to approximated by sampling M independent samples {um}M

m=1 ∼ Pθ(u∣xi) for each training sample
(xi, yi), i = 1, . . . , N and allows computing estimates of the gradient using backpropagation [15].
Sampling is performed by using ui,m = gφ(xi, zm) with {zm}M

m=1 i.i.d. sampled from PZ. Altogether, we
have the empirical-DIB cost for the ith sample in the training dataset:

Lemp
β,i (θ, φ, ϕ) ∶= 1

M

M
∑
m=1

[ log Qφ(yi∣ui,m) − βDKL(Pθ(Ui∣xi)∥Qϕ(Ui)))]. (32)

Note that, for many distributions, e.g., multivariate Gaussian, the divergence DKL(Pθ(Ui∣xi)∥Qϕ(Ui))
can be evaluated in closed form. Alternatively, an empirical approximation can be considered.

Finally, we maximize the empirical-IB cost over the DNN parameters θ, φ, ϕ as,

max
θ,φ,ϕ

1
N

N
∑
i=1

Lemp
β,i (θ, φ,ϕ). (33)

By the law of large numbers, for large N, M, we have 1/N ∑M
i=1 L

emp
β,i (θ, φ, ϕ) → LNN

β (θ, φ, ϕ)
almost surely. After convergence of the DNN parameters to θ∗, φ∗, ϕ∗, for a new observation X,
the representation U can be obtained by sampling from the encoders Pθ∗k

(Uk∣Xk). In addition, note
that a soft estimate of the remote source Y can be inferred by sampling from the decoder Qφ∗(Y∣U).
The notion of encoder and decoder in the IB-problem will come clear from its relationship with lossy
source coding in Section 4.1.
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4. Connections to Coding Problems

The IB problem is a one-shot coding problem, in the sense that the operations are performed
letter-wise. In this section, we consider now the relationship between the IB problem and (asymptotic)
coding problem in which the coding operations are performed over blocks of size n, with n assumed
to be large and the joint distribution of the data PX,Y is in general assumed to be known a priori.
The connections between these problems allow extending results from one setup to another, and to
consider generalizations of the classical IB problem to other setups, e.g., as shown in Section 6.

4.1. Indirect Source Coding under Logarithmic Loss

Let us consider the (asymptotic) indirect source coding problem shown in Figure 4, in which Y
designates a memoryless remote source and X a noisy version of it that is observed at the encoder.

PXn|Y nY n ∈ Yn φ(n) ψ(n) Ŷ n ∈ Yn
Xn ∈ Xn Un = φ(n)(Xn)

Figure 4. A remote source coding problem.

A sequence of n samples Xn = (X1, . . . , Xn) is mapped by an encoder φ(n) ∶ X n → {1, . . . , 2nR}
which outputs a message from a set {1, . . . , 2nR}, that is, the encoder uses at most R bits per sample to
describe its observation and the range of the encoder map is allowed to grow with the size of the input
sequence as

∥φ(n)∥ ≤ nR. (34)

This message is mapped with a decoder φ(n) ∶ {1, . . . , 2nR} → Ŷ to generate a reconstruction of
the source sequence Yn as Yn ∈ Ŷn. As already observed in [50], the IB problem in Equation (3) is
essentially equivalent to a remote point-to-point source coding problem in which distortion between
Yn as Yn ∈ Ŷn is measured under the logarithm loss (log-loss) fidelity criterion [65]. That is, rather
than just assigning a deterministic value to each sample of the source, the decoder gives an assessment
of the degree of confidence or reliability on each estimate. Specifically, given the output description
m = φ(n)(xn) of the encoder, the decoder generates a soft-estimate ŷn of yn in the form of a probability
distribution over Yn, i.e., ŷn = P̂Yn ∣M(⋅). The incurred discrepancy between yn and the estimation ŷn

under log-loss for the observation xn is then given by the per-letter logarithmic loss distortion, which
is defined as

�log(y, ŷ) ∶= log
1

ŷ(y) . (35)

for y ∈ Y and ŷ ∈ P(Y) designates here a probability distribution on Y and ŷ(y) is the value of that
distribution evaluated at the outcome y ∈ Y .

That is, the encoder uses at most R bits per sample to describe its observation to a decoder which
is interested in reconstructing the remote source Yn to within an average distortion level D, using a
per-letter distortion metric, i.e.,

E[�(n)log (Yn, Ŷn)] ≤ D (36)

where the incurred distortion between two sequences Yn and Ŷn is measured as

�
(n)
log (Yn, Ŷn) = 1

n

n
∑
i=1

�log(yi, ŷi) (37)

and the per-letter distortion is measured in terms of that given by the logarithmic loss in Equation (53).
The rate distortion region of this model is given by the union of all pairs (R, D) that satisfy [7,9]

R ≥ I(U; X) (38a)

D ≥ H(Y∣U) (38b)
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where the union is over all auxiliary random variables U that satisfy that U −�− X −�−Y forms a Markov
Chain in this order. Invoking the support lemma [66] (p. 310), it is easy to see that this region is not
altered if one restricts U to satisfy ∣U ∣ ≤ ∣X ∣ + 1. In addition, using the substitution Δ ∶= H(Y) − D, the
region can be written equivalently as the union of all pairs (R, H(Y) −Δ) that satisfy

R ≥ I(U; X) (39a)

Δ ≤ I(U; Y) (39b)

where the union is over all Us with pmf PU∣X that satisfy U −�− X −�−Y, with ∣U ∣ ≤ ∣X ∣ + 1.
The boundary of this region is equivalent to the one described by the IB principle in Equation (3)

if solved for all β, and therefore the IB problem is essentially a remote source coding problem in which
the distortion is measured under the logarithmic loss measure. Note that, operationally, the IB problem
is equivalent to that of finding an encoder PU∣X which maps the observation X to a representation
U that satisfies the bit rate constraint R and such that U captures enough relevance of Y so that the
posterior probability of Y given U satisfies an average distortion constraint.

4.2. Common Reconstruction

Consider the problem of source coding with side information at the decoder, i.e., the well
known Wyner–Ziv setting [67], with the distortion measured under logarithmic-loss. Specifically, a
memoryless source X is to be conveyed lossily to a decoder that observes a statistically correlated side
information Y. The encoder uses R bits per sample to describe its observation to the decoder which
wants to reconstruct an estimate of X to within an average distortion level D, where the distortion is
evaluated under the log-loss distortion measure. The rate distortion region of this problem is given by
the set of all pairs (R, D) that satisfy

R + D ≥ H(X∣Y). (40)

The optimal coding scheme utilizes standard Wyner–Ziv compression [67] at the encoder and the
decoder map ψ ∶ U ×Y → X̂ is given by

ψ(U, Y) = Pr[X = x∣U, Y] (41)

for which it is easy to see that

E[�log(X, ψ(U, Y))] = H(X∣U, Y). (42)

Now, assume that we constrain the coding in a manner that the encoder is be able to produce an
exact copy of the compressed source constructed by the decoder. This requirement, termed common
reconstruction constraint (CR), was introduced and studied by Steinberg [68] for various source coding
models, including the Wyner–Ziv setup, in the context of a “general distortion measure”. For the
Wyner–Ziv problem under log-loss measure that is considered in this section, such a CR constraint
causes some rate loss because the reproduction rule in Equation (41) is no longer possible. In fact, it
is not difficult to see that under the CR constraint the above region reduces to the set of pairs (R, D)
that satisfy

R ≤ I(U; X∣Y) (43a)

D ≥ H(X∣U) (43b)
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for some auxiliary random variable for which U −�− X −�− Y holds. Observe that Equation (43b) is
equivalent to I(U; X) ≥ H(X) − D and that, for a given prescribed fidelity level D, the minimum rate is
obtained for a description U that achieves the inequality in Equation (43b) with equality, i.e.,

R(D) = min
PU∣X ∶ I(U;X)=H(X)−D

I(U; X∣Y). (44)

Because U −�− X −�−Y, we have

I(U; Y) = I(U; X) − I(U; X∣Y). (45)

Under the constraint I(U; X) = H(X) − D, it is easy to see that minimizing I(U; X∣Y) amounts to
maximizing I(U; Y), an aspect which bridges the problem at hand with the IB problem.

In the above, the side information Y is used for binning but not for the estimation at the decoder.
If the encoder ignores whether Y is present or not at the decoder side, the benefit of binning is
reduced—see the Heegard–Berger model with common reconstruction studied in [69,70].

4.3. Information Combining

Consider again the IB problem. Assume one wishes to find the representation U that maximizes
the relevance I(U; Y) for a given prescribed complexity level, e.g., I(U; X) = R. For this setup, we have

I(X; U, Y) = I(U; X) + I(Y; X) − I(U; Y) (46)

= R + I(Y; X) − I(U; Y) (47)

where the first equality holds since U −�− X −�− Y is a Markov Chain. Maximizing I(U; Y) is then
equivalent to minimizing I(X; U, Y). This is reminiscent of the problem of information combining [71,72],
where X can be interpreted as a source information that is conveyed through two channels: the channel
PY∣X and the channel PU∣X. The outputs of these two channels are conditionally independent given
X, and they should be processed in a manner such that, when combined, they preserve as much
information as possible about X.

4.4. Wyner–Ahlswede–Korner Problem

Here, the two memoryless sources X and Y are encoded separately at rates RX and RY, respectively.
A decoder gets the two compressed streams and aims at recovering Y losslessly. This problem was
studied and solved separately by Wyner [73] and Ahlswede and Körner [74]. For given RX = R, the
minimum rate RY that is needed to recover Y losslessly is

R⋆Y(R) = min
PU∣X ∶ I(U;X) ≤ R

H(Y∣U). (48)

Thus, we get
max

PU∣X ∶ I(U;X)≤R
I(U; Y) = H(Y) − R⋆Y(R),

and therefore, solving the IB problem is equivalent to solving the Wyner–Ahlswede–Korner Problem.

4.5. The Privacy Funnel

Consider again the setting of Figure 4, and let us assume that the pair (Y, X) models data that a
user possesses and which have the following properties: the data Y are some sensitive (private) data
that are not meant to be revealed at all, or else not beyond some level Δ; and the data X are non-private
and are meant to be shared with another user (analyst). Because X and Y are correlated, sharing the
non-private data X with the analyst possibly reveals information about Y. For this reason, there is a
trade off between the amount of information that the user shares about X and the information that he
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keeps private about Y. The data X are passed through a randomized mapping φ whose purpose is to
make U = φ(X) maximally informative about X while being minimally informative about Y.

The analyst performs an inference attack on the private data Y based on the disclosed information
U. Let � ∶ Y × Ŷ �→ R̄ be an arbitrary loss function with reconstruction alphabet Ŷ that measures the
cost of inferring Y after observing U. Given (X, Y) ∼ PX,Y and under the given loss function �, it is
natural to quantify the difference between the prediction losses in predicting Y ∈ Y prior and after
observing U = φ(X). Let

C(�, P) = inf
ŷ∈Ŷ

EP[�(Y, ŷ)] − inf
Ŷ(φ(X))

EP[�(Y, Ŷ)] (49)

where ŷ ∈ Ŷ is deterministic and Ŷ(φ(X)) is any measurable function of U = φ(X). The quantity
C(�, P) quantifies the reduction in the prediction loss under the loss function � that is due to observing
U = φ(X), i.e., the inference cost gain. In [75] (see also [76]), it is shown that that under some mild
conditions the inference cost gain C(�, P) as defined by Equation (49) is upper-bounded as

C(�, P) ≤ 2
√

2L
√

I(U; Y) (50)

where L is a constant. The inequality in Equation (50) holds irrespective to the choice of the loss
function �, and this justifies the usage of the logarithmic loss function as given by Equation (53) in the
context of finding a suitable trade off between utility and privacy, since

I(U; Y) = H(Y) − inf
Ŷ(U)

EP[�log(Y, Ŷ)]. (51)

Under the logarithmic loss function, the design of the mapping U = φ(X) should strike a right
balance between the utility for inferring the non-private data X as measured by the mutual information
I(U; X) and the privacy metric about the private date Y as measured by the mutual information
I(U; Y).

4.6. Efficiency of Investment Information

Let Y model a stock market data and X some correlated information. In [77], Erkip and Cover
investigated how the description of the correlated information X improves the investment in the stock
market Y. Specifically, let Δ(C) denote the maximum increase in growth rate when X is described to
the investor at rate C. Erkip and Cover found a single-letter characterization of the incremental growth
rate Δ(C). When specialized to the horse race market, this problem is related to the aforementioned
source coding with side information of Wyner [73] and Ahlswede-Körner [74], and, thus, also to the
IB problem. The work in [77] provides explicit analytic solutions for two horse race examples, jointly
binary and jointly Gaussian horse races.

5. Connections to Inference and Representation Learning

In this section, we consider the connections of the IB problem with learning, inference and
generalization, for which, typically, the joint distribution PX,Y of the data is not known and only a set
of samples is available.

5.1. Inference Model

Let a measurable variable X ∈ X and a target variable Y ∈ Y with unknown joint distribution
PX,Y be given. In the classic problem of statistical learning, one wishes to infer an accurate predictor
of the target variable Y ∈ Y based on observed realizations of X ∈ X . That is, for a given class F of
admissible predictors ψ ∶ X → Ŷ and a loss function � ∶ Y → Ŷ that measures discrepancies between
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true values and their estimated fits, one aims at finding the mapping ψ ∈ F that minimizes the expected
(population) risk

CPX,Y(ψ, �) = EPX,Y [�(Y, ψ(X))]. (52)

An abstract inference model is shown in Figure 5.

PX|YY ∈ Y ψ Ŷ ∈ Y
X ∈ X

Figure 5. An abstract inference model for learning.

The choice of a “good” loss function �(⋅) is often controversial in statistical learning theory. There
is however numerical evidence that models that are trained to minimize the error’s entropy often
outperform ones that are trained using other criteria such as mean-square error (MSE) and higher-order
statistics [26,27]. This corresponds to choosing the loss function given by the logarithmic loss, which is
defined as

�log(y, ŷ) ∶= log
1

ŷ(y) (53)

for y ∈ Y , where ŷ ∈ P(Y) designates here a probability distribution on Y and ŷ(y) is the value of
that distribution evaluated at the outcome y ∈ Y . Although a complete and rigorous justification
of the usage of the logarithmic loss as distortion measure in learning is still awaited, recently a
partial explanation appeared in [30] where Painsky and Wornell showed that, for binary classification
problems, by minimizing the logarithmic-loss one actually minimizes an upper bound to any choice of
loss function that is smooth, proper (i.e., unbiased and Fisher consistent), and convex. Along the same
line of work, the authors of [29] showed that under some natural data processing property Shannon’s
mutual information uniquely quantifies the reduction of prediction risk due to side information.
Perhaps, this justifies partially why the logarithmic-loss fidelity measure is widely used in learning
theory and has already been adopted in many algorithms in practice such as the infomax criterion [31],
the tree-based algorithm of Quinlan [32], or the well known Chow–Liu algorithm [33] for learning
tree graphical models, with various applications in genetics [34], image processing [35], computer
vision [36], and others. The logarithmic loss measure also plays a central role in the theory of
prediction [37] (Ch. 09), where it is often referred to as the self-information loss function, as well
as in Bayesian modeling [38] where priors are usually designed to maximize the mutual information
between the parameter to be estimated and the observations.

When the join distribution PX,Y is known, the optimal predictor and the minimum expected
(population) risk can be characterized. Let, for every x ∈ X , ψ(x) = Q(⋅∣x) ∈ P(Y). It is easy to see that

EPX,Y [�log(Y, Q)] = ∑
x∈X , y∈Y

PX,Y(x, y) log( 1
Q(y∣x)) (54a)

= ∑
x∈X , y∈Y

PX,Y(x, y) log( 1
PY∣X(y∣x)) + ∑

x∈X , y∈Y
PX,Y(x, y) log(

PY∣X(y∣x)
Q(y∣x) ) (54b)

= H(Y∣X) + D(PY∣X∥Q) (54c)

≥ H(Y∣X) (54d)

with equality iff the predictor is given by the conditional posterior ψ(x) = PY(Y∣X = x). That is, the
minimum expected (population) risk is given by

min
ψ

CPX,Y(ψ, �log) = H(Y∣X). (55)

20



Entropy 2020, 22, 151

If the joint distribution PX,Y is unknown, which is most often the case in practice, the population
risk as given by Equation (56) cannot be computed directly, and, in the standard approach, one usually
resorts to choosing the predictor with minimal risk on a training dataset consisting of n labeled samples
{(xi, yi)}n

i=1 that are drawn independently from the unknown joint distribution PX,Y. In this case, one
is interested in optimizing the empirical population risk, which for a set of n i.i.d. samples from PX,Y,
Dn ∶= {(xi, yi)}n

i=1, is defined as

ĈPX,Y(ψ, �,Dn) =
1
n

n
∑
i=1

�(yi, ψ(xi)). (56)

The difference between the empirical and population risks is normally measured in terms of the
generalization gap, defined as

genPX,Y
(ψ, �,Dn) ∶= CPX,Y(ψ, �log) − ĈPX,Y(ψ, �,Dn). (57)

5.2. Minimum Description Length

One popular approach to reducing the generalization gap is by restricting the set F of admissible
predictors to a low-complexity class (or constrained complexity) to prevent over-fitting. One way
to limit the model’s complexity is by restricting the range of the prediction function, as shown in
Figure 6. This is the so-called minimum description length complexity measure, often used in the
learning literature to limit the description length of the weights of neural networks [78]. A connection
between the use of the minimum description complexity for limiting the description length of the
input encoding and accuracy studied in [79] and with respect to the weight complexity and accuracy
is given in [11]. Here, the stochastic mapping φ ∶ X �→ U is a compressor with

∥φ∥ ≤ R (58)

for some prescribed “input-complexity” value R, or equivalently prescribed average description-length.

PX|YY ∈ Y φ ψ Ŷ ∈ Y
X ∈ X U = φ(X)

Figure 6. Inference problem with constrained model’s complexity.

Minimizing the constrained description length population risk is now equivalent to solving

CPX,Y ,DLC(R) =min
φ

EPX,Y [�log(Yn, ψ(Un))] (59)

s.t. ∥φ(Xn)∥ ≤ nR. (60)

It can be shown that this problem takes its minimum value with the choice of ψ(U) = PY∣U and

CPX,Y ,DLC(R) = min
PU∣X

H(Y∣U) s.t. R ≥ I(U; X), (61)

The solution to Equation (61) for different values of R is effectively equivalent to the IB-problem
in Equation (4). Observe that the right-hand side of Equation (61) is larger for small values of R; it is
clear that a good predictor φ should strike a right balance between reducing the model’s complexity
and reducing the error’s entropy, or, equivalently, maximizing the mutual information I(U; Y) about
the target variable Y.
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5.3. Generalization and Performance Bounds

The IB-problem appears as a relevant problem in fundamental performance limits of learning.
In particular, when PX,Y is unknown, and instead n samples i.i.d from PX,Y are available, the
optimization of the empirical risk in Equation (56) leads to a mismatch between the true loss given
by the population risk and the empirical risk. This gap is measured by the generalization gap in
Equation (57). Interestingly, the relationship between the true loss and the empirical loss can be
bounded (in high probability) in terms of the IB-problem as [80]

CPX,Y(ψ, �log) ≤ ĈPX,Y(ψ, �,Dn) + genPX,Y
(ψ, �,Dn)

= H
P̂(n)X,Y

(Y∣U)
01111111111111111111111111112111111111111111111111111113
ĈPX,Y

(ψ,�,Dn)

+ A
√

I(P̂(n)X ; PU∣X) ⋅
log n

n
+

B
√

Λ(PU∣X , P̂Y∣U , PŶ∣U)
√

n
+O( log n

n
)

011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111121111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113
Bound on genPX,Y

(ψ,�,Dn)

where P̂U∣X and P̂Y∣U are the empirical encoder and decoder and PŶ∣U is the optimal decoder.

H
P̂(n)X,Y

(Y∣U) and I(P̂(n)X ; PU∣X) are the empirical loss and the mutual information resulting from the

dataset Dn and Λ(PU∣X, P̂Y∣U , PŶ∣U) is a function that measures the mismatch between the optimal
decoder and the empirical one.

This bound shows explicitly the trade-off between the empirical relevance and the empirical
complexity. The pairs of relevance and complexity simultaneously achievable is precisely characterized
by the IB-problem. Therefore, by designing estimators based on the IB problem, as described in
Section 3, one can perform at different regimes of performance, complexity and generalization.

Another interesting connection between learning and the IB-method is the connection of the
logarithmic-loss as metric to common performance metrics in learning:

• The logarithmic-loss gives an upper bound on the probability of miss-classification (accuracy):

εY∣X(QŶ∣X) ∶= 1−EPXY [QŶ∣X] ≤ 1− exp(−EPX,Y [�log(Y, QŶ∣X)])

• The logarithmic-loss is equivalent to maximum likelihood for large n:

− 1
n

log PYn ∣Xn(yn∣xn) = − 1
n

n
∑
i=1

log PY∣X(yi∣xi)
n→∞�→ EX,Y[− log PY∣X(Y∣X)]

• The true distribution P minimizes the expected logarithmic-loss:

PY∣X = arg min
QŶ∣X

EP log
1

QŶ∣X
and min

QŶ∣X

E[�log(Y, QŶ∣X)] = H(Y∣X)

Since for n →∞ the joint distribution PXY can be perfectly learned, the link between these common
criteria allows the use of the IB-problem to derive asymptotic performance bounds, as well as design
criteria, in most of the learning scenarios of classification, regression, and inference.

5.4. Representation Learning, Elbo and Autoencoders

The performance of machine learning algorithms depends strongly on the choice of data
representation (or features) on which they are applied. For that reason, feature engineering, i.e.,
the set of all pre-processing operations and transformations applied to data in the aim of making them
support effective machine learning, is important. However, because it is both data- and task-dependent,
such feature-engineering is labor intensive and highlights one of the major weaknesses of current
learning algorithms: their inability to extract discriminative information from the data themselves

22



Entropy 2020, 22, 151

instead of hand-crafted transformations of them. In fact, although it may sometimes appear useful
to deploy feature engineering in order to take advantage of human know-how and prior domain
knowledge, it is highly desirable to make learning algorithms less dependent on feature engineering
to make progress towards true artificial intelligence.

Representation learning is a sub-field of learning theory that aims at learning representations of
the data that make it easier to extract useful information, possibly without recourse to any feature
engineering. That is, the goal is to identify and disentangle the underlying explanatory factors that
are hidden in the observed data. In the case of probabilistic models, a good representation is one
that captures the posterior distribution of the underlying explanatory factors for the observed input.
For related works, the reader may refer, e.g., to the proceedings of the International Conference on
Learning Representations (ICLR), see https://iclr.cc/.

The use of the Shannon’s mutual information as a measure of similarity is particularly suitable
for the purpose of learning a good representation of data [81]. In particular, a popular approach
to representation learning are autoencoders, in which neural networks are designed for the task of
representation learning. Specifically, we design a neural network architecture such that we impose a
bottleneck in the network that forces a compressed knowledge representation of the original input, by
optimizing the Evidence Lower Bound (ELBO), given as

LELBO(θ, φ, ϕ) ∶= 1
N

N
∑
i=1

[ log Qφ(xi∣ui) − DKL(Pθ(Ui∣xi)∥Qϕ(Ui)))]. (62)

over the neural network parameters θ, φ, ϕ. Note that this is precisely the variational-IB cost in
Equation (32) for β = 1 and Y = X, i.e., the IB variational bound when particularized to distributions
whose parameters are determined by neural networks. In addition, note that the architecture shown in
Figure 3 is the classical neural network architecture for autoencoders, and that is coincides with the
variational IB solution resulting from the optimization of the IB-problem in Section 3.3.1. In addition,
note that Equation (32) provides an operational meaning to the β-VAE cost [82], as a criterion to design
estimators on the relevance–complexity plane for different β values, since the β-VAE cost is given as

Lβ−VAE(θ, φ, ϕ) ∶= 1
N

N
∑
i=1

[ log Qφ(xi∣ui) − βDKL(Pθ(Ui∣xi)∥Qϕ(Ui)))], (63)

which coincides with the empirical version of the variational bound found in Equation (32).

5.5. Robustness to Adversarial Attacks

Recent advances in deep learning has allowed the design of high accuracy neural networks.
However, it has been observed that the high accuracy of trained neural networks may be compromised
under nearly imperceptible changes in the inputs [83–85]. The information bottleneck has also found
applications in providing methods to improve robustness to adversarial attacks when training models.
In particular, the use of the variational IB method of Alemi et al. [48] showed the advantages of the
resulting neural network for classification in terms of robustness to adversarial attacks. Recently,
alternatives strategies for extracting features in supervised learning are proposed in [86] to construct
classifiers robust to small perturbations in the input space. Robustness is measured in terms of the
(statistical)-Fisher information, given for two random variables (Y, Z) as

Φ(Z∣Y) = EY,Z ∣ ∂

∂y
log p(Z∣Y)∣

2

. (64)

The method in [86] builds upon the idea of the information bottleneck by introducing an additional
penalty term that encourages the Fisher information in Equation (64) of the extracted features to be
small, when parametrized by the inputs. For this problem, under jointly Gaussian vector sources
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(X, Y), the optimal representation is also shown to be Gaussian, in line with the results in Section 6.2.1
for the IB without robustness penalty. For general source distributions, a variational method is
proposed similar to the variational IB method in Section 3.3.1. The problem shows connections with
the I-MMSE [87], de Brujin identity [88,89], Cramér–Rao inequality [90], and Fano’s inequality [90].

6. Extensions: Distributed Information Bottleneck

Consider now a generalization of the IB problem in which the prediction is to be performed in a
distributed manner. The model is shown in Figure 7. Here, the prediction of the target variable Y ∈ Y
is to be performed on the basis of samples of statistically correlated random variables (X1,⋯, XK) that
are observed each at a distinct predictor. Throughout, we assume that the following Markov Chain
holds for all k ∈ K ∶= {1,⋯, K},

Xk −�−Y −�− XK/k. (65)

The variable Y is a target variable and we seek to characterize how accurately it can be predicted
from a measurable random vector (X1,⋯, XK) when the components of this vector are processed
separately, each by a distinct encoder.

PX1,...,XK |YY ∈ Y ·
·
·

φ1

φk

ψ Ŷ ∈ Y

XK

X1 U1

UK

Figure 7. A model for distributed, e.g., multi-view, learning.

6.1. The Relevance–Complexity Region

The distributed IB problem of Figure 7 is studied in [91,92] from information-theoretic grounds.
For both discrete memoryless (DM) and memoryless vector Gaussian models, the authors established
fundamental limits of learning in terms of optimal trade-offs between relevance and complexity,
leveraging on the connection between the IB-problem and source coding. The following theorem states
the result for the case of discrete memoryless sources.

Theorem 1 ([91,92]). The relevance–complexity region IRDIB of the distributed learning problem is given by
the union of all non-negative tuples (Δ, R1, . . . , RK) ∈ RK+1

+ that satisfy

Δ ≤ ∑
k∈S

[Rk−I(Xk; Uk∣Y, T)] + I(Y; USc ∣T), ∀S ⊆ K (66)

for some joint distribution of the form PT PY ∏K
k=1 PXk ∣Y ∏K

k=1 PUk ∣Xk ,T.

Proof. The proof of Theorem 1 can be found in Section 7.1 of [92] and is reproduced in Section 8.1
for completeness.

For a given joint data distribution PXK,Y, Theorem 1 extends the single encoder IB principle
of Tishby in Equation (3) to the distributed learning model with K encoders, which we denote
by Distributed Information Bottleneck (DIB) problem. The result characterizes the optimal
relevance–complexity trade-off as a region of achievable tuples (Δ, R1, . . . , RK) in terms of a distributed
representation learning problem involving the optimization over K conditional pmfs PUk ∣Xk ,T and a pmf
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PT . The pmfs PUk ∣Xk ,T correspond to stochastic encodings of the observation Xk to a latent variable,
or representation, Uk which captures the relevant information of Y in observation Xk. Variable T
corresponds to a time-sharing among different encoding mappings (see, e.g., [51]). For such encoders,
the optimal decoder is implicitly given by the conditional pmf of Y from U1, . . . , UK, i.e., PY∣UK,T .

The characterization of the relevance–complexity region can be used to derive a cost function for
the D-IB similarly to the IB-Lagrangian in Equation (3). For simplicity, let us consider the problem of
maximizing the relevance under a sum-complexity constraint. Let Rsum = ∑K

k=1 Rk and

RIsum
DIB ∶={(Δ, Rsum) ∈ R2

+ ∶ ∃(R1, . . . , RK) ∈ RK
+ s.t.

K
∑
k=1

Rk = Rsum and (Δ, R1, . . . , RK) ∈ RIDIB}.

We define the DIB-Lagrangian (under sum-rate) as

Ls(P) ∶= −H(Y∣UK) − s
K
∑
k=1

[H(Y∣Uk) + I(Xk; Uk)]. (67)

The optimization of Equation (67) over the encoders PUk ∣Xk ,T allows obtaining mappings that
perform on the boundary of the relevance–sum complexity region RIsum

DIB . To see that, note that it is
easy to see that the relevance–sum complexity region RIsum

DIB is composed of all the pairs (Δ, Rsum) ∈ R2
+

for which Δ ≤ Δ(Rsum, PXK,Y), with

Δ(Rsum, PXK,Y) = max
P

min
⎧⎪⎪⎨⎪⎪⎩

I(Y; UK), Rsum −
K
∑
k=1

I(Xk; Uk∣Y)
⎫⎪⎪⎬⎪⎪⎭

, (68)

where the maximization is over joint distributions that factorize as PY ∏K
k=1 PXk ∣Y ∏K

k=1 PUk ∣Xk
. The pairs

(Δ, Rsum) that lie on the boundary of RIsum
DIB can be characterized as given in the following proposition.

Proposition 1. For every pair (Δ, Rsum) ∈ R2
+ that lies on the boundary of the region RIsum

DIB , there exists a
parameter s ≥ 0 such that (Δ, Rsum) = (Δs, Rs), with

Δs =
1

(1+ s) [(1+ sK)H(Y) + sRs +max
P

Ls(P)] , (69)

Rs = I(Y; U∗K) +
K
∑
k=1

[I(Xk; U∗k ) − I(Y; U∗k )], (70)

where P∗ is the set of conditional pmfs P = {PU1∣X1
,⋯, PUK ∣XK

} that maximize the cost function in Equation (67).

Proof. The proof of Proposition 1 can be found in Section 7.3 of [92] and is reproduced here in
Section 8.2 for completeness.

The optimization of the distributed IB cost function in Equation (67) generalizes the centralized
Tishby’s information bottleneck formulation in Equation (3) to the distributed learning setting. Note
that for K = 1 the optimization in Equation (69) reduces to the single encoder cost in Equation (3) with
a multiplier s/(1+ s).

6.2. Solutions to the Distributed Information Bottleneck

The methods described in Section 3 can be extended to the distributed information bottleneck
case in order to find the mappings PU1∣X1,T ,⋯, PUK ∣XK ,T in different scenarios.
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6.2.1. Vector Gaussian Model

In this section, we show that for the jointly vector Gaussian data model it is enough to restrict
to Gaussian auxiliaries (U1,⋯, UK) in order to exhaust the entire relevance–complexity region.
In addition, we provide an explicit analytical expression of this region. Let (X1, . . . , XK, Y) be a
jointly vector Gaussian vector that satisfies the Markov Chain in Equation (83). Without loss of
generality, let the target variable be a complex-valued, zero-mean multivariate Gaussian Y ∈ Cny with
covariance matrix Σy, i.e., Y ∼ CN(y; 0, Σy), and Xk ∈ Cnk given by

Xk = HkY +Nk, (71)

where Hk ∈ Cnk×ny models the linear model connecting Y to the observation at encoder k and Nk ∈ Cnk

is the noise vector at encoder k, assumed to be Gaussian with zero-mean, covariance matrix Σk, and
independent from all other noises and Y.

For the vector Gaussian model Equation (71), the result of Theorem 1, which can be extended
to continuous sources using standard techniques, characterizes the relevance–complexity region of
this model. The following theorem characterizes the relevance–complexity region, which we denote
hereafter as RIG

DIB. The theorem also shows that in order to exhaust this region it is enough to restrict
to no time sharing, i.e., T = ∅ and multivariate Gaussian test channels

Uk = AkXk +Zk ∼ CN(uk; AkXk, Σz,k), (72)

where Ak ∈ Cnk×nk projects Xk and Zk is a zero-mean Gaussian noise with covariance Σz,k.

Theorem 2. For the vector Gaussian data model, the relevance–complexity region RIG
DIB is given by the union

of all tuples (Δ, R1, . . . , RL) that satisfy

Δ ≤ ∑
k∈S

(Rk + log ∣I −Σ
1/2
k ΩkΣ

1/2
k ∣) + log

EEEEEEEEEEE
I + ∑

k∈Sc
Σ

1/2
y H†

kΩkHkΣ
1/2
y

EEEEEEEEEEE
, ∀S ⊆ K,

for some matrices 0 ⪯ Ωk ⪯ Σ−1
k .

Proof. The proof of Theorem 2 can be found in Section 7.5 of [92] and is reproduced here in Section 8.4
for completeness.

Theorem 2 extends the result of [54,93] on the relevance–complexity trade-off characterization of
the single-encoder IB problem for jointly Gaussian sources to K encoders. The theorem also shows that
the optimal test channels PUk ∣Xk

are multivariate Gaussian, as given by Equation (72).
Consider the following symmetric distributed scalar Gaussian setting, in which Y ∼ N(0, 1) and

X1 =
√

snrY + N1 (73a)

X2 =
√

snrY + N2 (73b)

where N1 and N2 are standard Gaussian with zero-mean and unit variance, both independent of Y. In
this case, for I(U1; X1) = R and I(U; X2) = R, the optimal relevance is

Δ⋆(R, snr) = 1
2

log(1+ 2snr exp(−4R)( exp(4R) + snr−
√

snr2 + (1+ 2snr) exp(4R))). (74)

An easy upper bound on the relevance can be obtained by assuming that X1 and X2 are encoded
jointly at rate 2R, to get

Δub(R, snr) = 1
2

log(1+ 2snr) − 1
2

log(1+ 2snr exp(−4R)). (75)

26



Entropy 2020, 22, 151

The reader may notice that, if X1 and X2 are encoded independently, an achievable relevance
level is given by

Δlb(R, snr) = 1
2

log(1+ 2snr− snr exp(−2R)) − 1
2

log(1+ snr exp(−2R)). (76)

6.3. Solutions for Generic Distributions

Next, we present how the distributed information bottleneck can be solved for generic
distributions. Similar to the case of single encoder IB-problem, the solutions are based on a variational
bound on the DIB-Lagrangian. For simplicity, we look at the D-IB under sum-rate constraint [92].

6.4. A Variational Bound

The optimization of Equation (67) generally requires computing marginal distributions that
involve the descriptions U1,⋯, UK, which might not be possible in practice. In what follows, we derive
a variational lower bound on Ls(P) on the DIB cost function in terms of families of stochastic mappings
QY∣U1,...,UK

(a decoder), {QY∣Uk
}K

k=1 and priors {QUk}
K
k=1. For the simplicity of the notation, we let

Q ∶= {QY∣U1,...,UK
, QY∣U1

, . . . , QY∣UK
, QU1 , . . . , QUK}. (77)

The variational D-IB cost for the DIB-problem is given by

LVB
s (P, Q) ∶= E[log QY∣UK(Y∣UK)]

011111111111111111111111111111111111111111111111111111111111111121111111111111111111111111111111111111111111111111111111111111113
av. logarithmic-loss

+s
K
∑
k=1

(E[log QY∣Uk
(Y∣Uk)] − DKL(PUk ∣Xk

∥QUk))

011111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111121111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111113
regularizer

. (78)

Lemma 1. For fixed P, we have

Ls(P) ≥ LVB
s (P, Q), for all pmfs Q. (79)

In addition, there exists a unique Q that achieves the maximum maxQ LVB
s (P, Q) = Ls(P), and is given

by, ∀k ∈ K,

Q∗Uk
= PUk (80a)

Q∗Y∣Uk
= PY∣Uk

(80b)

Q∗Y∣U1,...,Uk
= PY∣U1,...,UK

, (80c)

where the marginals PUk and the conditional marginals PY∣Uk
and PY∣U1,...,UK

are computed from P.

Proof. The proof of Lemma 1 can be found in Section 7.4 of [92] and is reproduced here in Section 8.3
for completeness.

Then, the optimization in Equation (69) can be written in terms of the variational DIB cost function
as follows,

max
P

Ls(P) = max
P

max
Q

LVB
s (P, Q). (81)

The variational DIB cost in Equation (78) is a generalization to distributed learning with
K-encoders of the evidence lower bound (ELBO) of the target variable Y given the representations
U1,⋯, UK [15]. If Y = (X1, . . . , XK), the bound generalizes the ELBO used for VAEs to the setting of K ≥ 2
encoders. In addition, note that Equation (78) also generalizes and provides an operational meaning to
the β-VAE cost [82] with β = s/(1+ s), as a criteria to design estimators on the relevance–complexity
plane for different β values.
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6.5. Known Memoryless Distributions

When the data model is discrete and the joint distribution PX,Y is known, the DIB problem can be
solved by using an iterative method that optimizes the variational IB cost function in Equation (81)
alternating over the distributions P, Q. The optimal encoders and decoders of the D-IB under sum-rate
constraint satisfy the following self consistent equations,

p(uk∣yk) =
p(uk)

Z(β, uk)
exp (−ψs(uk, yk)) ,

p(x∣uk) = ∑
yk∈Yk

p(yk∣uk)p(x∣yk)

p(x∣u1, . . . , uK) = ∑
yK∈YK

p(yK)p(uK∣yK)p(x∣yK)/p(uK)

where ψs(uk, yk) ∶= DKL(PX∣yk
∣∣QX∣uk

) + 1
s EUK∖k ∣yk

[DKL(PX∣UK∖k ,yk
∣∣QX∣UK∖k ,uk

))].
Alternating iterations of these equations converge to a solution for any initial p(uk∣xk), similarly

to a Blahut–Arimoto algorithm and the EM.

6.5.1. Distributed Variational IB

When the data distribution is unknown and only data samples are available, the variational DIB
cost in Equation (81) can be optimized following similar steps as for the variational IB in Section 3.3.1
by parameterizing the encoding and decoding distributions P, Q using a family of distributions whose
parameters are determined by DNNs. This allows us to formulate Equation (81) in terms of the DNN
parameters, i.e., its weights, and optimize it by using the reparameterization trick [15], Monte Carlo
sampling, and stochastic gradient descent (SGD)-type algorithms.

Considering encoders and decoders P, Q parameterized by DNN parameters θ, φ,ϕ, the DIB cost
in Equation (81) can be optimized by considering the following empirical Monte Carlo approximation:

max
θ,φ,ϕ

1
n

n
∑
i=1

[log QφK(yi∣u1,i,j, . . . , uK,i,j) + s
K
∑
k=1

(log Qφk(yi∣uk,i,j)−DKL(Pθk
(Uk,i∣xk,i)∥Qϕk(Uk,i)))], (82)

where uk,i,j = gφk(xk,i, zk,j) are samples obtained from the reparametrization trick by sampling from K
random variables PZk . The details of the method can be found in [92]. The resulting architecture is
shown in Figure 8. This architecture generalizes that from autoencoders to the distributed setup with
K encoders.

Figure 8. Example parameterization of the Distributed Variational Information Bottleneck method
using neural networks.
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6.6. Connections to Coding Problems and Learning

Similar to the point-to-point IB-problem, the distributed IB problem also has abundant connections
with (asymptotic) coding and learning problems.

6.6.1. Distributed Source Coding under Logarithmic Loss

Key element to the proof of the converse part of Theorem 3 is the connection with the Chief
Executive Officer (CEO) source coding problem. For the case of K ≥ 2 encoders, while the
characterization of the optimal rate-distortion region of this problem for general distortion measures
has eluded the information theory for now more than four decades, a characterization of the optimal
region in the case of logarithmic loss distortion measure has been provided recently in [65]. A key step
in [65] is that the log-loss distortion measure admits a lower bound in the form of the entropy of the
source conditioned on the decoders’ input. Leveraging this result, in our converse proof of Theorem 3,
we derive a single letter upper bound on the entropy of the channel inputs conditioned on the indices
JK that are sent by the relays, in the absence of knowledge of the codebooks indices FL. In addition,
the rate region of the vector Gaussian CEO problem under logarithmic loss distortion measure has
been found recently in [94,95].

6.6.2. Cloud RAN

Consider the discrete memoryless (DM) CRAN model shown in Figure 9. In this model, L users
communicate with a common destination or central processor (CP) through K relay nodes, where
L ≥ 1 and K ≥ 1. Relay node k, 1 ≤ k ≤ K, is connected to the CP via an error-free finite-rate fronthaul
link of capacity Ck. In what follows, we let L ∶= [1 ∶ L] and K ∶= [1 ∶K] indicate the set of users and
relays, respectively. Similar to Simeone et al. [96], the relay nodes are constrained to operate without
knowledge of the users’ codebooks and only know a time-sharing sequence Qn, i.e., a set of time
instants at which users switch among different codebooks. The obliviousness of the relay nodes to the
actual codebooks of the users is modeled via the notion of randomized encoding [97,98]. That is, users or
transmitters select their codebooks at random and the relay nodes are not informed about the currently
selected codebooks, while the CP is given such information.

Figure 9. CRAN model with oblivious relaying and time-sharing.

Consider the following class of DM CRANs in which the channel outputs at the relay nodes are
independent conditionally on the users’ inputs. That is, for all k ∈ K and all i ∈ [1 ∶n],

Yk,i −�− XL,i −�−YK/k,i (83)

forms a Markov Chain in this order.
The following theorem provides a characterization of the capacity region of this class of DM

CRAN problem under oblivious relaying.
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Theorem 3 ([22,23]). For the class of DM CRANs with oblivious relay processing and enabled time-sharing
for which Equation (83) holds, the capacity region C(CK) is given by the union of all rate tuples (R1, . . . , RL)
which satisfy

∑
t∈T

Rt ≤ ∑
s∈S

[Cs − I(Ys; Us∣XL, Q)] + I(XT ; USc ∣XT c , Q),

for all non-empty subsets T ⊆ L and all S ⊆ K, for some joint measure of the form

p(q)
L
∏
l=1

p(xl ∣q)
K
∏
k=1

p(yk∣xL)
K
∏
k=1

p(uk∣yk, q). (84)

The direct part of Theorem 3 can be obtained by a coding scheme in which each relay node
compresses its channel output by using Wyner–Ziv binning to exploit the correlation with the channel
outputs at the other relays, and forwards the bin index to the CP over its rate-limited link. The CP
jointly decodes the compression indices (within the corresponding bins) and the transmitted messages,
i.e., Cover-El Gamal compress-and-forward [99] (Theorem 3) with joint decompression and decoding
(CF-JD). Alternatively, the rate region of Theorem 3 can also be obtained by a direct application of the
noisy network coding (NNC) scheme of [64] (Theorem 1).

The connection between this problem, source coding and the distributed information bottleneck
is discussed in [22,23], particularly in the derivation of the converse part of the theorem. Note also the
similarity between the resulting capacity region in Theorem 3 and the relevance complexity region of
the distributed information bottleneck in Theorem 1, despite the significant differences of the setups.

6.6.3. Distributed Inference, ELBO and Multi-View Learning

In many data analytics problems, data are collected from various sources of information or
feature extractors and are intrinsically heterogeneous. For example, an image can be identified by
its color or texture features and a document may contain text and images. Conventional machine
learning approaches concatenate all available data into one big row vector (or matrix) on which a
suitable algorithm is then applied. Treating different observations as a single source might cause
overfitting and is not physically meaningful because each group of data may have different statistical
properties. Alternatively, one may partition the data into groups according to samples homogeneity,
and each group of data be regarded as a separate view. This paradigm, termed multi-view learning [100],
has received growing interest, and various algorithms exist, sometimes under references such as
co-training [101–104], multiple kernel learning [104], and subspace learning [105]. By using distinct encoder
mappings to represent distinct groups of data, and jointly optimizing over all mappings to remove
redundancy, multi-view learning offers a degree of flexibility that is not only desirable in practice but is
also likely to result in better learning capability. Actually, as shown in [106], local learning algorithms
produce fewer errors than global ones. Viewing the problem as that of function approximation, the
intuition is that it is usually not easy to find a unique function that holds good predictability properties
in the entire data space.

Besides, the distributed learning of Figure 7 clearly finds application in all those scenarios in
which learning is performed collaboratively but distinct learners either only access subsets of the entire
dataset (e.g., due to physical constraints) or access independent noisy versions of the entire dataset.

In addition, similar to the single encoder case, the distributed IB also finds applications in
fundamental performance limits and formulation of cost functions from an operational point of view.
One of such examples is the generalization of the commonly used ELBO and given in Equation (62) to
the setup with K views or observations, as formulated in Equation (78). Similarly, from the formulation
of the DIB problem, a natural generalization of the classical autoencoders emerge, as given in Figure 8.
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7. Outlook

A variant of the bottleneck problem in which the encoder’s output is constrained in terms of its
entropy, rather than its mutual information with the encoder’s input as done originally in [1], was
considered in [107]. The solution of this problem turns out to be a deterministic encoder map as
opposed to the stochastic encoder map that is optimal under the IB framework of Tishby et al. [1],
which results in a reduction of the algorithm’s complexity. This idea was then used and extended to
the case of available resource (or time) sharing in [108].

In the context of privacy against inference attacks [109], the authors of [75,76] considered a dual
of the information bottleneck problem in which X ∈ X represents some private data that are correlated
with the non-private data Y ∈ Y . A legitimate receiver (analyst) wishes to infer as much information as
possible about the non-private data Y but does not need to infer any information about the private
data X. Because X and Y are correlated, sharing the non-private data X with the analyst possibly
reveals information about Y. For this reason, there is a trade-off between the amount of information
that the user shares about X as measured by the mutual information I(U; X) and the information that
he keeps private about Y as measured by the mutual information I(U; Y), where U = φ(X).

Among interesting problems that are left unaddressed in this paper is that of characterizing
optimal input distributions under rate-constrained compression at the relays where, e.g., discrete
signaling is already known to sometimes outperform Gaussian signaling for single-user Gaussian
CRAN [97]. It is conjectured that the optimal input distribution is discrete. Other issues might relate
to extensions to continuous time filtered Gaussian channels, in parallel to the regular bottleneck
problem [108], or extensions to settings in which fronthauls may be not available at some radio-units,
and that is unknown to the systems. That is, the more radio units are connected to the central unit, the
higher is the rate that could be conveyed over the CRAN uplink [110]. Alternatively, one may consider
finding the worst-case noise under given input distributions, e.g., Gaussian, and rate-constrained
compression at the relays. Furthermore, there are interesting aspects that address processing constraints
of continuous waveforms, e.g., sampling at a given rate [111,112] with focus on remote logarithmic
distortion [65], which in turn boils down to the distributed bottleneck problem [91,92]. We also mention
finite-sample size analysis (i.e., finite block length n, which relates to the literature on finite block
length coding in information theory). Finally, it is interesting to observe that the bottleneck problem
relates to interesting problem when R is not necessarily scaled with the block length n.

8. Proofs

8.1. Proof of Theorem 1

The proof relies on the equivalence of the studied distributed learning problem with the
Chief-Executive Officer (CEO) problem under logarithmic-loss distortion measure, which was studied
in [65] (Theorem 10). For the K-encoder CEO problem, let us consider K encoding functions
φk ∶ Xk → M(n)

k satisfying nRk ≥ log ∣φk(Xn
k )∣ and a decoding function ψ̃ ∶ M(n)

1 ×⋯ ×M(n)
K → Ŷn,

which produces a probabilistic estimate of Y from the outputs of the encoders, i.e., Ŷn is the set of
distributions on Y . The quality of the estimation is measured in terms of the average log-loss.

Definition 1. A tuple (D, R1, . . . , RK) is said to be achievable in the K-encoder CEO problem for PXK,Y for
which the Markov Chain in Equation (83) holds, if there exists a length n, encoders φk for k ∈ K, and a decoder
ψ̃, such that

D ≥ E
⎡⎢⎢⎢⎢⎣

1
n

log
1

P̂Yn ∣JK(Yn∣φ1(Xn
1 ),⋯, φK(Xn

K))

⎤⎥⎥⎥⎥⎦
, (85)

Rk ≥
1
n

log ∣φk(Xn
k )∣ for all k ∈ K. (86)
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The rate-distortion region RDCEO is given by the closure of all achievable tuples (D, R1, . . . , RK).

The following lemma shows that the minimum average logarithmic loss is the conditional entropy
of Y given the descriptions. The result is essentially equivalent to [65] (Lemma 1) and it is provided for
completeness.

Lemma 2. Let us consider PXK,Y and the encoders Jk = φk(Xn
k ), k ∈ K and the decoder Ŷn = ψ̃(JK). Then,

E[�log(Yn, Ŷn)] ≥ H(Yn∣JK), (87)

with equality if and only if ψ̃(JK) = {PYn ∣JK(yn∣JK)}yn∈Yn .

Proof. Let Z ∶= (J1, . . . , JK) be the argument of ψ̃ and P̂(yn∣z) be a distribution on Yn. We have for
Z = z:

E[�log(Yn, Ŷn)∣Z = z] = ∑
yn∈Yn

P(yn∣z) log( 1
P̂(yn∣z)

) (88)

= ∑
yn∈Yn

P(yn∣z) log(P(yn∣z)
P̂(yn∣z)

) + H(Yn∣Z = z) (89)

= DKL(P(yn∣z)∥P̂(yn∣z)) + H(Yn∣Z = z) (90)

≥ H(Yn∣Z = z), (91)

where Equation (91) is due to the non-negativity of the KL divergence and the equality holds if and
only if for P̂(yn∣z) = P(yn∣z) where P(yn∣z) = Pr{Yn = yn∣Z = z} for all z and yn ∈ Yn. Averaging over Z
completes the proof.

Essentially, Lemma 2 states that minimizing the average log-loss is equivalent to maximizing

relevance as given by the mutual information I(Yn; ψ(φ1(Xn
1 ),⋯, φK(Xn

K))). Formally, the connection
between the distributed learning problem under study and the K-encoder CEO problem studied in [65]
can be formulated as stated next.

Proposition 2. A tuple (Δ, R1, . . . , RK) ∈ RIDIB if and only if (H(Y) −Δ, R1, . . . , RK) ∈ RDCEO.

Proof. Let the tuple (Δ, R1, . . . , RK) ∈ RIDIB be achievable for some encoders φk. It follows by Lemma 2
that, by letting the decoding function ψ̃(JK) = {PYn ∣JK(yn∣JK)}, we have E[�log(Yn, Ŷn)∣JK] = H(Yn∣JK),
and hence (H(Y)−Δ, R1, . . . , RK) ∈ RDCEO.
Conversely, assume the tuple (D, R1, . . . , RK) ∈ RDCEO is achievable. It follows by Lemma 2 that
H(Y) − D ≤ H(Yn) − H(Yn∣JK) = I(Yn; JK), which implies (Δ, R1, . . . , RK) ∈ RIDIB with Δ = H(Y) −
D.

The characterization of rate-distortion region RCEO has been established recently in [65] (Theorem
10). The proof of the theorem is completed by noting that Proposition 2 implies that the result in [65]
(Theorem 10) can be applied to characterize the region RIDIB, as given in Theorem 1.

8.2. Proof of Proposition 1

Let P∗ be the maximizing in Equation (69). Then,

(1+ s)Δs = (1+ sK)H(Y) + sRs +Ls(P∗) (92)

= (1+ sK)H(Y) + sRs +
⎛
⎝
−H(Y∣U∗K) − s

K
∑
k=1

[H(Y∣U∗k ) + I(Xk; U∗k )]
⎞
⎠

(93)

= (1+ sK)H(Y) + sRs + (−H(Y∣U∗K) − s(Rs − I(Y; U∗K) +KH(Y))) (94)
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= (1+ s)I(Y; U∗K) (95)

≤ (1+ s)Δ(Rs, PXK,Y), (96)

where Equation (94) is due to the definition of Ls(P) in Equation (67); Equation (95) holds since
∑K

k=1[I(Xk; U∗k ) + H(Y∣U∗k )] = Rs − I(Y; U∗K) + KH(Y) using Equation (70); and Equation (96) follows
by using Equation (68).

Conversely, if P∗ is the solution to the maximization in the function Δ(Rsum, PXK,Y) in Equation
(68) such that Δ(Rsum, PXK,Y) = Δs, then Δs ≤ I(Y; U∗K) and Δs ≤ R −∑K

k=1 I(Xk; U∗k ∣Y) and we have, for
any s ≥ 0, that

Δ(Rsum, PXK,Y) = Δs (97)

≤ Δs − (Δs − I(Y; U∗K)) − s
⎛
⎝

Δs − Rsum +
K
∑
k=1

I(Xk; U∗k ∣Y)
⎞
⎠

(98)

= I(Y; U∗K) − sΔs + sRsum − s
K
∑
k=1

I(Xk; U∗k ∣Y) (99)

= H(Y) − sΔs + sRsum − H(Y∣U∗K) − s
K
∑
k=1

[I(Xk; U∗k ) + H(Y∣U∗k )] + sKH(Y) (100)

≤ H(Y) − sΔs + sRsum +L∗s + sKH(Y) (101)

= H(Y) − sΔs + sRsum + sKH(Y) − ((1+ sK)H(Y) + sRs − (1+ s)Δs) (102)

= Δs + s(Rsum − Rs), (103)

where in Equation (100) we use that ∑K
k=1 I(Xk; Uk∣Y) = −KH(Y) +∑K

k=1 I(Xk; Uk) + H(Y∣Uk). which
follows by using the Markov Chain Uk −�− Xk −�− Y −�− (XK∖k, UK∖k); Equation (101) follows since
L∗s is the maximum over all possible distributions P (possibly distinct from the P∗ that maximizes
Δ(Rsum, PXK,Y)); and Equation (102) is due to Equation (69). Finally, Equation (103) is valid for any
Rsum ≥ 0 and s ≥ 0. Given s, and hence (Δs, Rs), letting R = Rs yields Δ(Rs, PXK,Y) ≤ Δs. Together with
Equation (96), this completes the proof of Proposition 1.

8.3. Proof of Lemma 1

Let, for a given random variable Z and z ∈ Z , a stochastic mapping QY∣Z(⋅∣z) be given. It is easy
to see that

H(Y∣Z) = E[− log QY∣Z(Y∣Z)] − DKL(PY∣Z∥QY∣Z). (104)

In addition, we have

I(Xk; Uk) = H(Uk) − H(Uk∣Xk) (105)

= DKL(PUk ∣Xk
∥QUk) − DKL(PUk∥QUk). (106)

Substituting it into Equation (67), we get

Ls(P) = LVB
s (P, Q) + DKL(PY∣UK ∣∣QY∣UK) + s

K
∑
k=1

(DKL(PY∣Uk
∣∣QY∣Uk

) + DKL(PUk ∣∣QUk)) (107)

≥ LVB
s (P, Q), (108)

where Equation (108) follows by the non-negativity of relative entropy. In addition, note that the
inequality in Equation (108) holds with equality iff Q∗ is given by Equation (80).
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8.4. Proof of Theorem 2

The proof of Theorem 2 relies on deriving an outer bound on the relevance–complexity region, as
given by Equation (66), and showing that it is achievable with Gaussian pmfs and without time-sharing.
In doing so, we use the technique of [89] (Theorem 8), which relies on the de Bruijn identity and the
properties of Fisher information and MMSE.

Lemma 3 ([88,89]). Let (X, Y) be a pair of random vectors with pmf p(x, y). We have

log ∣(πe)J−1(X∣Y)∣ ≤ h(X∣Y) ≤ log ∣(πe)mmse(X∣Y)∣, (109)

where the conditional Fischer information matrix is defined as

J(X∣Y) ∶= E[∇ log p(X∣Y)∇ log p(X∣Y)†] (110)

and the minimum mean square error (MMSE) matrix is

mmse(X∣Y) ∶= E[(X −E[X∣Y])(X −E[X∣Y])†]. (111)

For t ∈ T and fixed ∏K
k=1 p(uk∣xk, t), choose Ωk,t, k = 1, . . . , K satisfying 0 ⪯ Ωk,t ⪯ Σ−1

k such that

mmse(Yk∣X, Uk,t, t) = Σk −ΣkΩk,tΣk. (112)

Note that such Ωk,t exists since 0 ⪯ mmse(Xk∣Y, Uk,t, t) ⪯ Σ−1
k , for all t ∈ T , and k ∈ K.

Using Equation (66), we get

I(Xk; Uk∣Y, t) ≥ log ∣Σk∣ − log ∣mmse(Xk∣Y, Uk,t, t)∣

= − log ∣I −Σ
1/2
k Ωk,tΣ

1/2
k ∣, (113)

where the inequality is due to Lemma 3, and Equation (113) is due to Equation (112).
In addition, we have

I(Y; USc ,t∣t) ≤ log ∣Σy∣ − log ∣J−1(Y∣USc ,t, t)∣ (114)

= log
EEEEEEEEEEE
∑

k∈Sc
Σ

1/2
y H†

kΩk,tHkΣ
1/2
y + I

EEEEEEEEEEE
, (115)

where Equation (114) is due to Lemma 3 and Equation (115) is due to to the following equality, which
relates the MMSE matrix in Equation (112) and the Fisher information, the proof of which follows,

J(Y∣USc ,t, t) = ∑
k∈Sc

H†
kΩk,tHk +Σ−1

y . (116)

To show Equation (116), we use de Brujin identity to relate the Fisher information with the MMSE
as given in the following lemma, the proof of which can be found in [89].

Lemma 4. Let (V1, V2) be a random vector with finite second moments and N∼CN(0, ΣN) independent of
(V1, V2). Then,

mmse(V2∣V1, V2 +N) = ΣN −ΣNJ(V2 +N∣V1)ΣN . (117)

From the MMSE of Gaussian random vectors [51],

Y = E[Y∣XSc] +ZSc = ∑
k∈Sc

GkXk +ZSc , (118)
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where Gk = Σy∣xSc H†
kΣ−1

k and ZSc ∼ CN(0, Σy∣xSc ), and

Σ−1
y∣xSc = Σ−1

y + ∑
k∈Sc

H†
kΣ−1

k Hk. (119)

Note that ZSc is independent of YSc due to the orthogonality principle of the MMSE and its
Gaussian distribution. Hence, it is also independent of USc ,q.
Thus, we have

mmse
⎛
⎝ ∑

k∈Sc
GkXk∣Y, USc ,t, t

⎞
⎠
= ∑

k∈Sc
Gkmmse (Xk∣Y, USc ,t, t)G†

k (120)

= Σy∣xSc ∑
k∈Sc

H†
k (Σ−1

k −Ωk)HkΣy∣xSc , (121)

where Equation (120) follows since the cross terms are zero due to the Markov Chain (Uk,t, Xk) −�−Y−�−
(UK/k,t, XK/k) (see Appendix V of [89] ); and Equation (121) follows due to Equation (112) and Gk.
Finally, we have

J(Y∣USc ,t, t) = Σ−1
y∣xSc −Σ−1

y∣xSc mmse
⎛
⎝ ∑

k∈Sc
GkXk∣Y, USc ,t, t

⎞
⎠

Σ−1
y∣xSc (122)

= Σ−1
y∣xSc − ∑

k∈Sc
H†

k (Σ−1
k −Ωk,t)Hk (123)

= Σ−1
y + ∑

k∈Sc
H†

kΩk,tHk, (124)

where Equation (122) is due to Lemma 4; Equation (123) is due to Equation (121); and Equation (124)
follows due to Equation (119).

Then, averaging over the time sharing random variable T and letting Ω̄k ∶= ∑t∈T p(t)Ωk,t, we get,
using Equation (113),

I(Xk; Uk∣Y, T) ≥ − ∑
t∈T

p(t) log ∣I −Σ
1/2
k Ωk,tΣ

1/2
k ∣

≥ − log ∣I −Σ
1/2
k Ω̄kΣ

1/2
k ∣, (125)

where Equation (125) follows from the concavity of the log-det function and Jensen’s inequality.
Similarly, using Equation (115) and Jensen’s Inequality, we have

I(Y; USc ∣T) ≤ log
EEEEEEEEEEE
∑

k∈Sc
Σ

1/2
y H†

kΩ̄kHkΣ
1/2
y + I

EEEEEEEEEEE
. (126)

The outer bound on RIDIB is obtained by substituting into Equation (66), using Equations (125)
and (126), noting that Ωk = ∑t∈T p(t)Ωk,t ⪯ Σ−1

k since 0 ⪯ Ωk,t ⪯ Σ−1
k , and taking the union over Ωk

satisfying 0 ⪯ Ωk ⪯ Σ−1
k .

Finally, the proof is completed by noting that the outer bound is achieved with T = ∅ and
multivariate Gaussian distributions p∗(uk∣xk, t) = CN(xk, Σ

1/2
k (Ωk − I)Σ

1/2
k ).
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Abstract: In this paper, we develop an unsupervised generative clustering framework that combines
the variational information bottleneck and the Gaussian mixture model. Specifically, in our approach,
we use the variational information bottleneck method and model the latent space as a mixture of
Gaussians. We derive a bound on the cost function of our model that generalizes the Evidence
Lower Bound (ELBO) and provide a variational inference type algorithm that allows computing
it. In the algorithm, the coders’ mappings are parametrized using neural networks, and the bound
is approximated by Markov sampling and optimized with stochastic gradient descent. Numerical
results on real datasets are provided to support the efficiency of our method.

Keywords: clustering; unsupervised learning; Gaussian mixture model; information bottleneck

1. Introduction

Clustering consists of partitioning a given dataset into various groups (clusters) based on some
similarity metric, such as the Euclidean distance, L1 norm, L2 norm, L∞ norm, the popular logarithmic
loss measure, or others. The principle is that each cluster should contain elements of the data that
are closer to each other than to any other element outside that cluster, in the sense of the defined
similarity measure. If the joint distribution of the clusters and data is not known, one should operate
blindly in doing so, i.e., using only the data elements at hand; and the approach is called unsupervised
clustering [1,2]. Unsupervised clustering is perhaps one of the most important tasks of unsupervised
machine learning algorithms currently, due to a variety of application needs and connections with
other problems.

Clustering can be formulated as follows. Consider a dataset that is composed of N samples
{xi}N

i=1, which we wish to partition into |C| ≥ 1 clusters. Let C = {1, . . . , |C|} be the set of all possible
clusters and C designate a categorical random variable that lies in C and stands for the index of the
actual cluster. If X is a random variable that models elements of the dataset, given that X = xi induces
a probability distribution on C, which the learner should learn, thus mathematically, the problem is
that of estimating the values of the unknown conditional probability PC|X(·|xi) for all elements xi of
the dataset. The estimates are sometimes referred to as the assignment probabilities.

Examples of unsupervised clustering algorithms include the very popular K-means [3] and
Expectation Maximization (EM) [4]. The K-means algorithm partitions the data in a manner that
the Euclidean distance among the members of each cluster is minimized. With the EM algorithm,
the underlying assumption is that the data comprise a mixture of Gaussian samples, namely a Gaussian
Mixture Model (GMM); and one estimates the parameters of each component of the GMM while
simultaneously associating each data sample with one of those components. Although they offer
some advantages in the context of clustering, these algorithms suffer from some strong limitations.
For example, it is well known that the K-means is highly sensitive to both the order of the data and
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scaling; and the obtained accuracy depends strongly on the initial seeds (in addition to that, it does not
predict the number of clusters or K-value). The EM algorithm suffers mainly from slow convergence,
especially for high-dimensional data.

Recently, a new approach has emerged that seeks to perform inference on a transformed domain
(generally referred to as latent space), not the data itself. The rationale is that because the latent space
often has fewer dimensions, it is more convenient computationally to perform inference (clustering) on
it rather than on the high-dimensional data directly. A key aspect then is how to design a latent space
that is amenable to accurate low-complexity unsupervised clustering, i.e., one that preserves only
those features of the observed high-dimensional data that are useful for clustering while removing all
redundant or non-relevant information. Along this line of work, we can mention [5], which utilized
Principal Component Analysis (PCA) [6,7] for dimensionality reduction followed by K-means for
clustering the obtained reduced dimension data; or [8], which used a combination of PCA and
the EM algorithm. Other works that used alternatives for the linear PCA include kernel PCA [9],
which employs PCA in a non-linear fashion to maximize variance in the data.

Thisby’s Information Bottleneck (IB) method [10] formulates the problem of finding a good
representation U that strikes the right balance between capturing all information about the categorical
variable C that is contained in the observation X and using the most concise representation for it.
The IB problem can be written as the following Lagrangian optimization:

min
PU|X

I(X; U)− sI(C; U) , (1)

where I(· ; ·) denotes Shannon’s mutual information and s is a Lagrange-type parameter, which controls
the trade-off between accuracy and regularization. In [11,12], a text clustering algorithm is introduced
for the case in which the joint probability distribution of the input data is known. This text
clustering algorithm uses the IB method with an annealing procedure, where the parameter s is
increased gradually. When s → 0, the representation U is designed with the most compact form, i.e.,
|U | = 1, which corresponds to the maximum compression. By gradually increasing the parameter
s, the emphasis on the relevance term I(C; U) increases, and at a critical value of s, the optimization
focuses on not only the compression, but also the relevance term. To fulfill the demand on the relevance
term, this results in the cardinality of U bifurcating. This is referred as a phase transition of the system.
The further increases in the value of s will cause other phase transitions, hence additional splits of U
until it reaches the desired level, e.g., |U | = |C|.

However, in the real-world applications of clustering with large-scale datasets, the joint probability
distributions of the datasets are unknown. In practice, the usage of Deep Neural Networks (DNN) for
unsupervised clustering of high-dimensional data on a lower dimensional latent space has attracted
considerable attention, especially with the advent of Autoencoder (AE) learning and the development
of powerful tools to train them using standard backpropagation techniques [13,14]. Advanced forms
include Variational Autoencoders (VAE) [13,14], which are generative variants of AE that regularize
the structure of the latent space, and the more general Variational Information Bottleneck (VIB) of [15],
which is a technique that is based on the information bottleneck method and seeks a better trade-off
between accuracy and regularization than VAE via the introduction of a Lagrange-type parameter
s, which controls that trade-off and whose optimization is similar to deterministic annealing [12] or
stochastic relaxation.

In this paper, we develop an unsupervised generative clustering framework that combines VIB
and the Gaussian mixture model. Specifically, in our approach, we use the variational information
bottleneck method and model the latent space as a mixture of Gaussians. We derive a bound on the cost
function of our model that generalizes the Evidence Lower Bound (ELBO) and provide a variational
inference type algorithm that allows computing it. In the algorithm, the coders’ mappings are
parametrized using Neural Networks (NN), and the bound is approximated by Markov sampling and
optimized with stochastic gradient descent. Furthermore, we show how tuning the hyper-parameter s
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appropriately by gradually increasing its value with iterations (number of epochs) results in a better
accuracy. Furthermore, the application of our algorithm to the unsupervised clustering of various
datasets, including the MNIST [16], REUTERS [17], and STL-10 [18], allows a better clustering accuracy
than previous state-of-the-art algorithms. For instance, we show that our algorithm performs better
than the Variational Deep Embedding (VaDE) algorithm of [19], which is based on VAE and performs
clustering by maximizing the ELBO. Our algorithm can be seen as a generalization of the VaDE,
whose ELBO can be recovered by setting s = 1 in our cost function. In addition, our algorithm also
generalizes the VIB of [15], which models the latent space as an isotropic Gaussian, which is generally
not expressive enough for the purpose of unsupervised clustering. Other related works, which are of
lesser relevance to the contribution of this paper, are the Deep Embedded Clustering (DEC) of [20] and
the Improved Deep Embedded Clustering (IDEC) of [21,22]. For a detailed survey of clustering with
deep learning, the readers may refer to [23].

To the best of our knowledge, our algorithm performs the best in terms of clustering accuracy
by using deep neural networks without any prior knowledge regarding the labels (except the usual
assumption that the number of classes is known) compared to the state-of-the-art algorithms of the
unsupervised learning category. In order to achieve the outperforming accuracy: (i) we derive a cost
function that contains the IB hyperparameter s that controls optimal trade-offs between the accuracy
and regularization of the model; (ii) we use a lower bound approximation for the KL term in the
cost function, that does not depend on the clustering assignment probability (note that the clustering
assignment is usually not accurate in the beginning of the training process); and (iii) we tune the
hyperparameter s by following an annealing approach that improves both the convergence and the
accuracy of the proposed algorithm.

Throughout this paper, we use the following notation. Uppercase letters are used to denote
random variables, e.g., X; lowercase letters are used to denote realizations of random variables,
e.g., x; and calligraphic letters denote sets, e.g., X . The cardinality of a set X is denoted by
|X |. Probability mass functions (pmfs) are denoted by PX(x) = Pr{X = x} and, sometimes,
for short, as p(x). Boldface uppercase letters denote vectors or matrices, e.g., X, where context
should make the distinction clear. We denote the covariance of a zero mean, complex-valued,
vector X by Σx = E[XX†], where (·)† indicates the conjugate transpose. For random variables X
and Y, the entropy is denoted as H(X), i.e., H(X) = EPX [− log PX ], and the mutual information
is denoted as I(X; Y), i.e., I(X; Y) = H(X)− H(X|Y) = H(Y)− H(Y|X) = EPX,Y [log PX,Y

PX PY
]. Finally,

for two probability measures PX and QX on a random variable X ∈ X , the relative entropy or
Kullback–Leibler divergence is denoted as DKL(PX‖QX), i.e., DKL(PX‖QX) = EPX [log PX

QX
].

2. Proposed Model

In this section, we explain the proposed model, the so-called Variational Information Bottleneck
with Gaussian Mixture Model (VIB-GMM), in which we use the VIB framework and model the latent
space as a GMM. The proposed model is depicted in Figure 1, where the parameters πc, μc, Σc, for all
values of c ∈ C, are to be optimized jointly with those of the employed NNs as instantiation of the
coders. Furthermore, the assignment probabilities are estimated based on the values of latent space
vectors instead of the observations themselves, i.e., PC|X = QC|U. In the rest of this section, we elaborate
on the inference and generative network models for our method.
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Encoder

fθ

Decoder

gφ

U ∼∑
c πc N (u;μc,Σc)

X X̂

Figure 1. Variational Information Bottleneck with Gaussian mixtures.

2.1. Inference Network Model

We assume that observed data x are generated from a GMM with |C| components. Then, the latent
representation u is inferred according to the following procedure:

1. One of the components of the GMM is chosen according to a categorical variable C.
2. The data x are generated from the cth component of the GMM, i.e., PX|C ∼ N (x; μ̃c, Σ̃c).
3. Encoder maps x to a latent representation u according to PU|X ∼ N (μθ , Σθ).

3.1. The encoder is modeled with a DNN fθ , which maps x to the parameters of a Gaussian
distribution, i.e., [μθ , Σθ ] = fθ(x).

3.2. The representation u is sampled from N (μθ , Σθ).

For the inference network, shown in Figure 2, the following Markov chain holds:

C−�− X−�−U . (2)

C X U
PX|C PU|X

Figure 2. Inference network.

2.2. Generative Network Model

Since the encoder extracts useful representations of the dataset and we assume that the dataset
is generated from a GMM, we model our latent space also with a mixture of Gaussians. To do so,
the categorical variable C is embedded with the latent variable U. The reconstruction of the dataset is
generated according to the following procedure:

1. One of the components of the GMM is chosen according to a categorical variable C, with a prior
distribution QC.

2. The representation u is generated from the cth component, i.e., QU|C ∼ N (u; μc, Σc).
3. The decoder maps the latent representation u to x̂, which is the reconstruction of the source x by

using the mapping QX|U.

3.1 The decoder is modeled with a DNN gφ that maps u to the estimate x̂, i.e., [x̂] = gφ(u).

For the generative network, shown in Figure 3, the following Markov chain holds:

C−�−U−�− X . (3)

C U X
QU|C QX|U

Figure 3. Generative network.
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3. Proposed Method

In this section, we present our clustering method. First, we provide a general cost function for the
problem of the unsupervised clustering that we study here based on the variational IB framework;
and we show that it generalizes the ELBO bound developed in [19]. We then parametrize our
model using NNs whose parameters are optimized jointly with those of the GMM. Furthermore,
we discuss the influence of the hyperparameter s that controls optimal trade-offs between accuracy
and regularization.

3.1. Brief Review of Variational Information Bottleneck for Unsupervised Learning

As described in Section 2, the stochastic encoder PU|X maps the observed data x to a representation
u. Similarly, the stochastic decoder QX|U assigns an estimate x̂ of x based on the vector u. As per
the IB method [10], a suitable representation U should strike the right balance between capturing all
information about the categorical variable C that is contained in the observation X and using the most
concise representation for it. This leads to maximizing the following Lagrange problem:

Ls(P) = I(C; U)− sI(X; U) , (4)

where s ≥ 0 designates the Lagrange multiplier and, for convenience, P denotes the conditional
distribution PU|X.

Instead of (4), which is not always computable in our unsupervised clustering setting, we find it
convenient to maximize an upper bound of Ls(P) given by:

L̃s(P) := I(X; U)− sI(X; U)
(a)
= H(X)− H(X|U)− s[H(U)− H(U|X)] , (5)

where (a) is due to the definition of mutual information (using the Markov chain C−�− X−�−U, it is
easy to see that L̃s(P) ≥ Ls(P) for all values of P). Noting that H(X) is constant with respect to PU|X,
maximizing L̃s(P) over P is equivalent to maximizing:

L′s(P) : = −H(X|U)− s[H(U)− H(U|X)] (6)

= EPX

[
EPU|X [log PX|U + s log PU − s log PU|X]

]
. (7)

For a variational distribution QU on U (instead of the unknown PU) and a variational stochastic
decoder QX|U (instead of the unknown optimal decoder PX|U), let Q := {QX|U, QU}. Furthermore, let:

LVB
s (P, Q) := EPX

[
EPU|X [log QX|U]− sDKL(PU|X‖QU)

]
. (8)

Lemma 1. For given P, we have:

LVB
s (P, Q) ≤ L′s(P) , for all Q .

In addition, there exists a unique Q that achieves the maximum maxQ LVB
s (P, Q) = L′s(P) and is given by:

Q∗X|U = PX|U , Q∗U = PU .

Proof. The proof of Lemma 1 is given in Appendix A.

Using Lemma 1, maximization of (6) can be written in term of the variational IB cost as follows:

max
P
L′s(P) = max

P
max

Q
LVB

s (P, Q) . (9)
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Next, we develop an algorithm that solves the maximization problem (9), where the encoding
mapping PU|X, the decoding mapping QX|U, as well as the prior distribution of the latent space
QU are optimized jointly.

Remark 1. As we already mentioned in the beginning of this section, the related work [19] performed
unsupervised clustering by combining VAE with GMM. Specifically, it maximizes the following ELBO bound:

LVaDE
1 := EPX

[
EPU|X [log QX|U]− DKL(PC|X‖QC)−EPC|X [DKL(PU|X‖QU|C)]

]
. (10)

Let, for an arbitrary non-negative parameter s, LVaDE
s be a generalization of the ELBO bound in (10) of [19]

given by:

LVaDE
s := EPX

[
EPU|X [log QX|U]− sDKL(PC|X‖QC)− sEPC|X [DKL(PU|X‖QU|C)]

]
. (11)

Investigating the right-hand side (RHS) of (11), we get:

LVB
s (P, Q) = LVaDE

s + sEPX

[
EPU|X [DKL(PC|X‖QC|U)]

]
, (12)

where the equality holds since:

LVaDE
s = EPX

[
EPU|X [log QX|U]− sDKL(PC|X‖QC)− sEPC|X [DKL(PU|X‖QU|C)]

]
(13)

(a)
= EPX

[
EPU|X [log QX|U]− sDKL(PU|X‖QU)− sEPU|X

[
DKL(PC|X‖QC|U)

]
(14)

(b)
= LVB

s (P, Q)− sEPX

[
EPU|X

[
DKL(PC|X‖QC|U)

]]
, (15)

where (a) can be obtained by expanding and re-arranging terms under the Markov chain C−�− X−�−U (for a
detailed treatment, please look at Appendix B); and (b) follows from the definition of LVB

s (P, Q) in (8).
Thus, by the non-negativity of relative entropy, it is clear that LVaDE

s is a lower bound on LVB
s (P, Q).

Furthermore, if the variational distribution Q is such that the conditional marginal QC|U is equal to PC|X,
the bound is tight since the relative entropy term is zero in this case.

3.2. Proposed Algorithm: VIB-GMM

In order to compute (9), we parametrize the distributions PU|X and QX|U using DNNs. For instance,
let the stochastic encoder PU|X be a DNN fθ and the stochastic decoder QX|U be a DNN gφ. That is:

Pθ(u|x) = N (u; μθ , Σθ) , where [μθ , Σθ ] = fθ(x) ,

Qφ(x|u) = gφ(u) = [x̂] ,
(16)

where θ and φ are the weight and bias parameters of the DNNs. Furthermore, the latent space is
modeled as a GMM with |C| components with parameters ψ := {πc, μc, Σc}|C|c=1, i.e.,

Qψ(u) = ∑
c

πc N (u; μc, Σc) . (17)

Using the parametrizations above, the optimization of (9) can be rewritten as:

max
θ,φ,ψ

LNN
s (θ, φ, ψ) (18)
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where the cost function LNN
s (θ, φ, ψ) is given by:

LNN
s (θ, φ, ψ) := EPX

[
EPθ(U|X)[log Qφ(X|U)]− sDKL(Pθ(U|X)‖Qψ(U))

]
. (19)

Then, for given observations of N samples, i.e., {xi}N
i=1, (18) can be approximated in terms of an

empirical cost as follows:

max
θ,φ,ψ

1
N

N

∑
i=1
Lemp

s,i (θ, φ, ψ) , (20)

where Lemp
s,i (θ, φ, ψ) is the empirical cost for the ith observation xi and given by:

Lemp
s,i (θ, φ, ψ) = EPθ(Ui |Xi)

[log Qφ(Xi|Ui)]− sDKL(Pθ(Ui|Xi)‖Qψ(Ui)) . (21)

Furthermore, the first term of the RHS of (21) can be computed using Monte Carlo sampling and
the reparametrization trick [13]. In particular, Pθ(u|x) can be sampled by first sampling a random
variable Z with distribution PZ, i.e., PZ = N (0, I), then transforming the samples using some function
f̃θ : X ×Z → U , i.e., u = f̃θ(x, z). Thus,

EPθ(Ui |Xi)
[log Qφ(Xi|Ui)] =

1
M

M

∑
m=1

log q(xi|ui,m), ui,m = μθ,i + Σ
1
2
θ,i · εm, εm ∼ N (0, I) ,

where M is the number of samples for the Monte Carlo sampling step.
The second term of the RHS of (21) is the KL divergence between a single component multivariate

Gaussian and a Gaussian mixture model with |C| components. An exact closed-form solution for the
calculation of this term does not exist. However, a variational lower bound approximation [24] of it
can be obtained as:

DKL(Pθ(Ui|Xi)‖Qψ(Ui)) = − log
|C|
∑
c=1

πc exp
(
−DKL(N (μθ,i, Σθ,i)‖N (μc, Σc)

)
. (22)

In particular, in the specific case in which the covariance matrices are diagonal, i.e., Σθ,i :=
diag({σ2

θ,i,j}
nu
j=1) and Σc := diag({σ2

c,j}
nu
j=1), with nu denoting the latent space dimension, (22) can

be computed as follows:

DKL(Pθ(Ui|Xi)‖Qψ(Ui))

= − log
|C|
∑
c=1

πc exp
(
− 1

2

nu

∑
j=1

[ (μθ,i,j − μc,j)
2

σ2
c,j

+ log
σ2

c,j

σ2
θ,i,j
− 1 +

σ2
θ,i,j

σ2
c,j

])
, (23)

where μθ,i,j and σ2
θ,i,j are the mean and variance of the ith representation in the jth dimension of the

latent space. Furthermore, μc,j and σ2
c,j represent the mean and variance of the cth component of the

GMM in the jth dimension of the latent space.
Finally, we train NNs to maximize the cost function (19) over the parameters θ, φ, as well as those

ψ of the GMM. For the training step, we use the ADAM optimization tool [25]. The training procedure
is detailed in Algorithm 1.
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Algorithm 1 VIB-GMM algorithm for unsupervised learning.

1: input: Dataset D := {xi}N
i=1, parameter s ≥ 0.

2: output: Optimal DNN weights θ�, φ� and GMM parameters ψ� = {π�
c , μ�

c , Σ�
c }|C|c=1.

3: initialization Initialize θ, φ, ψ.
4: repeat

5: Randomly select b mini-batch samples {xi}b
i=1 from D.

6: Draw m random i.i.d samples {zj}m
j=1 from PZ.

7: Compute m samples ui,j = f̃θ(xi, zj)

8: For the selected mini-batch, compute gradients of the empirical cost (20).
9: Update θ, φ, ψ using the estimated gradient (e.g., with SGD or ADAM).

10: until convergence of θ, φ, ψ.

Once our model is trained, we assign the given dataset into the clusters. As mentioned in Section 2,
we do the assignment from the latent representations, i.e., QC|U = PC|X. Hence, the probability that
the observed data xi belongs to the cth cluster is computed as follows:

p(c|xi) = q(c|ui) =
qψ�(c)qψ�(ui|c)

qψ�(ui)
=

π�
cN (ui; μ�

c , Σ�
c )

∑c π�
cN (ui; μ�

c , Σ∗c )
, (24)

where � indicates the optimal values of the parameters as found at the end of the training phase.
Finally, the right cluster is picked based on the largest assignment probability value.

Remark 2. It is worth mentioning that with the use of the KL approximation as given by (22), our algorithm
does not require the assumption PC|U = QC|U to hold (which is different from [19]). Furthermore, the algorithm
is guaranteed to converge. However, the convergence may be to (only) local minima; and this is due to the
problem (18) being generally non-convex. Related to this aspect, we mention that while without a proper
pre-training, the accuracy of the VaDE algorithm may not be satisfactory, in our case, the above assumption is
only used in the final assignment after the training phase is completed.

Remark 3. In [26], it is stated that optimizing the original IB problem with the assumption of independent
latent representations amounts to disentangled representations. It is noteworthy that with such an assumption,
the computational complexity can be reduced from O(n2

u) to O(nu). Furthermore, as argued in [26],
the assumption often results only in some marginal performance loss; and for this reason, it is adopted in
many machine learning applications.

3.3. Effect of the Hyperparameter

As we already mentioned, the hyperparameter s controls the trade-off between the relevance
of the representation U and its complexity. As can be seen from (19) for small values of s, it is the
cross-entropy term that dominates, i.e., the algorithm trains the parameters so as to reproduce X as
accurately as possible. For large values of s, however, it is most important for the NN to produce
an encoded version of X whose distribution matches the prior distribution of the latent space, i.e.,
the term DKL(Pθ(U|X)‖Qψ(U)) is nearly zero.

In the beginning of the training process, the GMM components are randomly selected; and so,
starting with a large value of the hyperparameter s is likely to steer the solution towards an irrelevant
prior. Hence, for the tuning of the hyper-parameter s in practice, it is more efficient to start with a small
value of s and gradually increase it with the number of epochs. This has the advantage of avoiding
possible local minima, an aspect that is reminiscent of deterministic annealing [12], where s plays the
role of the temperature parameter. The experiments that will be reported in the next section show that
proceeding in the above-described manner for the selection of the parameter s helps in obtaining higher
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clustering accuracy and better robustness to the initialization (i.e., no need for a strong pretraining).
The pseudocode for annealing is given in Algorithm 2.

Algorithm 2 Annealing algorithm pseudocode.

1: input: Dataset D := {xi}n
i=1, hyperparameter interval [smin, smax].

2: output: Optimal DNN weights θ�, φ�, GMM parameters ψ� = {π�
c , μ�

c , Σ�
c }|C|c=1,

assignment probability PC|X.

3: initialization Initialize θ, φ, ψ.
4: repeat

5: Apply VIB-GMM algorithm.
6: Update ψ, θ, φ.
7: Update s, e.g., s = (1 + εs)sold.
8: until s does not exceed smax.

Remark 4. As we mentioned before, a text clustering algorithm was introduced by Slonim et al. [11,12], which
uses the IB method with an annealing procedure, where the parameter s is increased gradually. In [12], the
critical values of s (so-called phase transitions) were observed such that if these values were missed during
increasing s, the algorithm ended up with the wrong clusters. Therefore, how to choose the step size in the update
of s is very important. We note that tuning s is also very critical in our algorithm, such that the step size εs

in the update of s should be chosen carefully, otherwise phase transitions might be skipped that would cause a
non-satisfactory clustering accuracy score. However, the choice of the appropriate step size (typically very small)
is rather heuristic; and there exists no concrete method for choosing the right value. The choice of step size can
be seen as a trade-off between the amount of computational resource spared for running the algorithm and the
degree of confidence about scanning s values not to miss the phase transitions.

4. Experiments

4.1. Description of the Datasets Used

In our empirical experiments, we applied our algorithm to the clustering of the following datasets.
MNIST: A dataset of gray-scale images of 70,000 handwritten digits of dimensions 28× 28 pixel.
STL-10: A dataset of color images collected from 10 categories. Each category consisted of

1300 images of size of 96 × 96 (pixels) ×3 (RGB code). Hence, the original input dimension nx

was 27,648. For this dataset, we used a pretrained convolutional NN model, i.e., ResNet-50 [27],
to reduce the dimensionality of the input. This preprocessing reduced the input dimension to 2048.
Then, our algorithm and other baselines were used for clustering.

REUTERS10K: A dataset that was composed of 810,000 English stories labeled with a category
tree. As in [20], 4 root categories (corporate/industrial, government/social, markets, economics) were
selected as labels, and all documents with multiple labels were discarded. Then, tf-idf features were
computed on the 2000 most frequently occurring words. Finally, 10,000 samples were taken randomly,
which were referred to as the REUTERS10K dataset.

4.2. Network Settings and Other Parameters

We used the following network architecture: the encoder was modeled with NNs with 3 hidden
layers with dimensions nx − 500− 500− 2000− nu, where nx is the input dimension and nu is the
dimension of the latent space. The decoder consisted of NNs with dimensions nu − 2000− 500−
500− nx. All layers were fully connected. For comparison purposes, we chose the architecture of the
hidden layers, as well as the dimension of the latent space nu = 10 to coincide with those made for the
DEC algorithm of [20] and the VaDE algorithm of [19]. All except the last layers of the encoder and
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decoder were activated with the ReLU function. For the last (i.e., latent) layer of the encoder, we used
a linear activation; and for the last (i.e., output) layer of the decoder, we used the sigmoid function for
MNIST and linear activation for the remaining datasets. The batch size was 100, and the variational
bound (20) was maximized by the ADAM optimizer of [25]. The learning rate was initialized with
0.002 and decreased gradually every 20 epochs with a decay rate of 0.9 until it reached a small value
(0.0005 in our experiments). The reconstruction loss was calculated by using the cross-entropy criterion
for MNIST and the mean squared error function for the other datasets.

4.3. Clustering Accuracy

We evaluated the performance of our algorithm in terms of the so-called unsupervised clustering
Accuracy (ACC), which is a widely used metric in the context of unsupervised learning [23].
For comparison purposes, we also present those of algorithms from the previous state-of-the-art.

For each of the aforementioned datasets, we ran our VIB-GMM algorithm for various values of the
hyper-parameter s inside an interval [smin, smax], starting from the smaller valuer smin and gradually
increasing the value of s every nepoch epochs. For the MNIST dataset, we set (smin, smax, nepoch) =

(1, 5, 500); and for the STL-10 dataset and the REUTERS10K dataset, we chose these parameters to be
(1, 20, 500) and (1, 5, 100), respectively. The obtained ACC accuracy results are reported in Tables 1
and 2. It is important to note that the reported ACC results were obtained by running each algorithm
ten times. For the case in which there was no pretraining (in [19,20], the DEC and VaDE algorithms
were proposed to be used with pretraining; more specifically, the DNNs were initialized with a stacked
autoencoder [28]), Table 1 states the accuracies of the best case run and average case run for the
MNIST and STL-10 datasets. It was seen that our algorithm outperformed significantly the DEC
algorithm of [20], as well as the VaDE algorithm of [19] and GMM for both the best case run and
average case run. Besides, in Table 1, the values in parentheses correspond to the standard deviations
of clustering accuracies. As seen, the standard deviation of our algorithm VIB-GMM was lower than
the VaDE; which could be expounded by the robustness of VIB-GMM to non-pretraining. For the
case in which there was pretraining, Table 2 states the accuracies of the best case run and average
case run for the MNIST and REUTERS10K datasets. A stacked autoencoder was used to pretrain
the DNNs of the encoder and decoder before running algorithms (DNNs were initialized with the
same weights and biases of [19]). It was seen that our algorithm outperformed significantly the DEC
algorithm of [20], as well as the VaDE algorithm of [19] and GMM for both the best case run and
average case run. The effect of pretraining can be observed comparing Tables 1 and 2 for MNIST.
Using a stacked autoencoder prior to running the VaDE and VIB-GMM algorithms resulted in a higher
accuracy, as well as a lower standard deviation of accuracies; therefore, supporting the algorithms
with a stacked autoencoder was beneficial for a more robust system. Finally, for the STL-10 dataset,
Figure 4 depicts the evolution of the best case ACC with iterations (number of epochs) for the four
compared algorithms.
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Table 1. Comparison of the clustering accuracy of various algorithms. The algorithms are run without
pretraining. Each algorithm is run ten times. The values in (·) correspond to the standard deviations
of clustering accuracies. DEC, Deep Embedded Clustering; VaDE, Variational Deep Embedding; VIB,
Variational Information Bottleneck.

MNIST STL-10

Best Run Average Run Best Run Average Run

GMM 44.1 40.5 (1.5) 78.9 73.3 (5.1)

DEC 80.6 †

VaDE 91.8 78.8 (9.1) 85.3 74.1 (6.4)

VIB-GMM 95.1 83.5 (5.9) 93.2 82.1 (5.6)
† Values are taken from VaDE [19].

Table 2. Comparison of the clustering accuracy of various algorithms. A stacked autoencoder is used
to pretrain the DNNs of the encoder and decoder before running algorithms (DNNs are initialized with
the same weights and biases of [19]). Each algorithm is run ten times. The values in (·) correspond to
the standard deviations of clustering accuracies.

MNIST REURTERS10K

Best Run Average Run Best Run Average Run

DEC 84.3‡ 72.2 ‡

VaDE 94.2 93.2 (1.5) 79.8 79.1 (0.6)

VIB-GMM 96.1 95.8 (0.1) 81.6 81.2 (0.4)
‡ Values are taken from DEC [20].
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Figure 4. Accuracy vs. the number of epochs for the STL-10dataset.

Figure 5 shows the evolution of the reconstruction loss of our VIB-GMM algorithm for the STL-10
dataset, as a function of simultaneously varying the values of the hyperparameter s and the number
of epochs (recall that, as per the described methodology, we started with s = smin, and we increased
its value gradually every nepoch = 500 epochs). As can be seen from the figure, the few first epochs
were spent almost entirely on reducing the reconstruction loss (i.e., a fitting phase), and most of
the remaining epochs were spent making the found representation more concise (i.e., smaller KL
divergence). This was reminiscent of the two-phase (fitting vs. compression) that was observed for
supervised learning using VIB in [29].
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Figure 5. Information plane for the STL-10 dataset.

Remark 5. For a fair comparison, our algorithm VIB-GMM and the VaDE of [19] were run for the same
number of epochs, e.g., nepoch. In the VaDE algorithm, the cost function (11) was optimized for a particular value
of hyperparameter s. Instead of running nepoch epochs for s = 1 as in VaDE, we ran nepoch epochs by gradually
increasing s to optimize the cost (21). In other words, the computational resources were distributed over a range
of s values. Therefore, the computational complexity of our algorithm and the VaDE was equivalent.

4.4. Visualization on the Latent Space

In this section, we investigate the evolution of the unsupervised clustering of the STL-10 dataset
on the latent space using our VIB-GMM algorithm. For this purpose, we found it convenient to
visualize the latent space through application of the t-SNEalgorithm of [30] in order to generate
meaningful representations in a two-dimensional space. Figure 6 shows 4000 randomly chosen latent
representations before the start of the training process and respectively after 1, 5, and 500 epochs.
The shown points (with a · marker in the figure) represent latent representations of data samples
whose labels are identical. Colors are used to distinguish between clusters. Crosses (with an x marker
in the figure) correspond to the centroids of the clusters. More specifically, Figure 6a shows the initial
latent space before the training process. If the clustering is performed on the initial representations,
it allows ACC as small as 10%, i.e., as bad as a random assignment. Figure 6b shows the latent space
after one epoch, from which a partition of some of the points starts to be already visible. With five
epochs, that partitioning is significantly sharper, and the associated clusters can be recognized easily.
Observe, however, that the cluster centers seem not to have converged yet. With 500 epochs, the ACC
accuracy of our algorithm reached %91.6, and the clusters and their centroids were neater, as is visible
from Figure 6d.
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Figure 6. Visualization of the latent space before training; and after 1, 5, and 500 epochs.

5. Conclusions and Future Work

In this paper, we proposed and analyzed the performance of an unsupervised algorithm for
data clustering. The algorithm used the variational information bottleneck approach and modeled
the latent space as a mixture of Gaussians. It was shown to outperform state-of-the-art algorithms
such as the VaDE of [19] and the DEC of [20]. We note that although it was assumed that the
number of classes was known beforehand (as was the case for almost all competing algorithms in its
category), that number could be found (or estimated to within a certain accuracy) through inspection
of the resulting bifurcations on the associated information-plane, as was observed for the standard
information bottleneck method. Finally, we mention that among the interesting research directions in
this line of work, one important question pertains to the distributed learning setting, i.e., along the
counterpart, to the unsupervised setting, of the recent work [31–33], which contained distributed IB
algorithms for both discrete and vector Gaussian data models.
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Appendix A. The Proof of Lemma 1

First, we expand L′s(P) as follows:

L′s(P) =− H(X|U)− sI(X; U) = −H(X|U)− s[H(U)− H(U|X)]

=
∫∫

ux
p(u, x) log p(x|u) du dx + s

∫
u

p(u) log p(u) du− s
∫∫

ux
p(u, x) log p(u|x) du dx .

Then, LVB
s (P, Q) is defined as follows:

LVB
s (P, Q) :=

∫∫
ux

p(u, x) log q(x|u) du dx + s
∫

u
p(u) log q(u) du− s

∫∫
ux

p(u, x) log p(u|x) du dx . (A1)

Hence, we have the following relation:

L′s(P)−LVB
s (P, Q) = EPU

[DKL(PX|U‖QX|U)] + sDKL(PU‖QU) ≥ 0 ,

where equality holds under equalities QX|U = PX|U and QU = PU. We note that s ≥ 0.
Now, we complete the proof by showing that (A1) is equal to (8). To do so, we proceed (A1) as

follows:

LVB
s (P, Q) =

∫
x

p(x)
∫

u
p(u|x) log q(x|u) du dx

+ s
∫

x
p(x)

∫
u

p(u|x) log q(u) du− s
∫

x
p(x)

∫
u

p(u|x) log p(u|x) du dx

=EPX

[
EPU|X [log QX|U]− sDKL(PU|X‖QU)

]
.

Appendix B. Alternative Expression LVaDE
s

Here, we show that (13) is equal to (14).
To do so, we start with (14) and proceed as follows:

LVaDE
s = EPX

[
EPU|X [log QX|U]− sDKL(PU|X‖QU)− sEPU|X

[
DKL(PC|X‖QC|U)

]
= EPX

[
EPU|X [log QX|U]

]
− s

∫
x

p(x)
∫

u
p(u|x) log

p(u|x)
q(u)

du dx

− s
∫

x
p(x)

∫
u

p(u|x)∑
c

p(c|x) log
p(c|x)
q(c|u) du dx

(a)
= EPX

[
EPU|X [log QX|U]

]
− s

∫∫
ux

p(x)p(u|x) log
p(u|x)
q(u)

du dx

− s
∫∫

ux
∑

c
p(x)p(u|c, x)p(c|x) log

p(c|x)
q(c|u) du dx

= EPX

[
EPU|X [log QX|U]

]
− s

∫∫
ux

∑
c

p(u, c, x) log
p(u|x)p(c|x)
q(u)q(c|u) du dx

= EPX

[
EPU|X [log QX|U]

]
− s

∫∫
ux

∑
c

p(u, c, x) log
p(c|x)
q(c)

p(u|x)
q(u|c) du dx

= EPX

[
EPU|X [log QX|U]

]
− s

∫
x
∑

c
p(c, x) log

p(c|x)
q(c)

dx

− s
∫∫

ux
∑

c
p(x)p(c|x)p(u|c, x) log

p(u|x)
q(u|c) du dx
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(b)
= EPX

[
EPU|X [log QX|U]− sDKL(PC|X‖QC)− sEPC|X [DKL(PU|X‖QU|C)]

]
,

where (a) and (b) follow due to the Markov chain C−�− X−�−U.
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Abstract: Consider a symmetric multivariate Gaussian source with � components, which are
corrupted by independent and identically distributed Gaussian noises; these noisy components
are compressed at a certain rate, and the compressed version is leveraged to reconstruct the source
subject to a mean squared error distortion constraint. The rate-distortion analysis is performed for
two scenarios: centralized encoding (where the noisy source components are jointly compressed) and
distributed encoding (where the noisy source components are separately compressed). It is shown,
among other things, that the gap between the rate-distortion functions associated with these two
scenarios admits a simple characterization in the large � limit.

Keywords: CEO problem; mean squared error; multiterminal source coding; rate-distortion; remote
source coding

1. Introduction

Many applications involve collection and transmission of potentially noise-corrupted data. It is
often necessary to compress the collected data to reduce the transmission cost. The remote source
coding problem aims to characterize the optimal scheme for such compression and the relevant
information-theoretic limit. In this work we study a quadratic Gaussian version of the remote source
coding problem, where compression is performed on the noise-corrupted components of a symmetric
multivariate Gaussian source. A prescribed mean squared error distortion constraint is imposed on
the reconstruction of the noise-free source components; moreover, it is assumed that the noises across
different source components are independent and obey the same Gaussian distribution. Two scenarios
are considered: centralized encoding (see Figure 1) and distributed encoding (see Figure 2). It is worth
noting that the distributed encoding scenario is closely related to the CEO problem, which has been
studied extensively [1–18].

The present paper is primarily devoted to the comparison of the rate-distortion functions
associated with the aforementioned two scenarios. We are particularly interested in understanding
how the rate penalty for distributed encoding (relative to centralized encoding) depends on the target
distortion as well as the parameters of source and noise models. Although the information-theoretic
results needed for this comparison are available in the literature or can be derived in a relatively
straightforward manner, the relevant expressions are too unwieldy to analyze. For this reason, we
focus on the asymptotic regime where the number of source components, denoted by �, is sufficiently
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large. Indeed, it will be seen that the gap between the two rate-distortion functions admits a simple
characterization in the large � limit, yielding useful insights into the fundamental difference between
centralized encoding and distributed coding, which are hard to obtain otherwise.

The rest of this paper is organized as follows. We state the problem definitions and the main
results in Section 2. The proofs are provided in Section 3. We conclude the paper in Section 4.

Figure 1. Symmetric remote Gaussian source coding with centralized encoding.

Figure 2. Symmetric remote Gaussian source coding with distributed encoding.

Notation: The expectation operator and the transpose operator are denoted by E[·] and (·)T ,
respectively. An �-dimensional all-one row vector is written as 1�. We use Wn as an abbreviation of
(W(1), · · · , W(n)). The cardinality of a set C is denoted by |C|. We write g(�) = O( f (�)) if the absolute
value of g(�)

f (�) is bounded for all sufficiently large �. Throughout this paper, the base of the logarithm

function is e, and log+ x � max{log x, 0}.
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2. Problem Definitions and Main Results

Let S � (S1, · · · , S�)
T be the sum of two mutually independent �-dimensional (� ≥ 2) zero-mean

Gaussian random vectors, source X � (X1, · · · , X�)
T and noise Z � (Z1, · · · , Z�)

T , with

E[XiXj] =

{
γX , i = j,
ρXγX , i �= j,

E[ZiZj] =

{
γZ, i = j,
0, i �= j,

where γX > 0, ρX ∈ [ 1
�−1 , 1], and γZ ≥ 0. Moreover, let {(X(t), Z(t), S(t))}∞

t=1 be i.i.d. copies of
(X, Z, S).

Definition 1 (Centralized encoding). A rate-distortion pair (r, d) is said to be achievable with centralized
encoding if, for any ε > 0, there exists an encoding function φ(n) : R�×n → C(n) such that

1
n

log |C(n)| ≤ r + ε,

1
�n

�

∑
i=1

n

∑
t=1

E[(Xi(t)− X̂i(t))2] ≤ d + ε,

where X̂i(t) � E[Xi(t)|(φ(n)(Sn))]. For a given d, we denote by r(d) the minimum r such that (r, d) is
achievable with centralized encoding.

Definition 2 (Distributed encoding). A rate-distortion pair (r, d) is said to be achievable with distributed
encoding if, for any ε > 0, there exist encoding functions φ

(n)
i : Rn → C(n)i , i = 1, · · · , �, such that

1
n

�

∑
i=1

log |C(n)i | ≤ r + ε,

1
�n

�

∑
i=1

n

∑
t=1

E[(Xi(t)− X̂i(t))2] ≤ d + ε,

where X̂i(t) � E[Xi(t)|(φ(n)
1 (Sn

1 ), · · · , φ
(n)
� (Sn

� ))]. For a given d, we denote by r(d) the minimum r such that
(r, d) is achievable with distributed encoding.

We will refer to r(d) as the rate-distortion function of symmetric remote Gaussian source coding
with centralized encoding, and r(d) as the rate-distortion function of symmetric remote Gaussian
source coding with distributed encoding. It is clear that r(d) ≤ r(d) for any d since distributed
encoding can be simulated by centralized encoding. Moreover, it is easy to show that r(d) = r(d) = 0
for d ≥ γX (since the distortion constraint is trivially satisfied with the reconstruction set to be zero)
and r(d) = r(d) = ∞ for d ≤ dmin (since dmin is the minimum achievable distortion when {S(t)}∞

t=1 is
directly available at the decoder), where (see Section 3.1 for a detailed derivation)

dmin � 1
�
E[(X−E[X|S])T(X−E[X|S])] =

⎧⎪⎪⎨⎪⎪⎩
(�−1)γXγZ

�γX+(�−1)γZ
, ρX = − 1

�−1 ,
(�ρXγX+λX)γZ

�(�ρXγX+λX+γZ)
+ (�−1)λXγZ

�(λX+γZ)
, ρX ∈ (− 1

�−1 , 1),
γXγZ

�γX+γZ
, ρX = 1,

with λX � (1− ρX)γX . Henceforth we shall focus on the case d ∈ (dmin, γX).
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Lemma 1. For d ∈ (dmin, γX),

r(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�−1

2 log �(�−1)γ2
X

(�γX+(�−1)γZ)((�−1)d−γX)
, ρX = − 1

�−1 ,
1
2 log+ (�ρXγX+λX)

2

(�ρXγX+λX+γZ)ξ
+ �−1

2 log+ λ2
X

(λX+γZ)ξ
, ρX ∈ (− 1

�−1 , 1),
1
2 log �γ2

X
(�γX+γZ)d−γXγZ

, ρX = 1,

where

ξ �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
d− dmin, d ≤ min{ (�ρXγX+λX)

2

�ρXγX+λX+γZ
, λ2

X
λX+γZ

}+ dmin,
�(d−dmin)

�−1 − (�ρXγX+λX)
2

(�−1)(�ρXγX+λX+γZ)
, d > (�ρXγX+λX)

2

�ρXγX+λX+γZ
+ dmin,

�(d− dmin)− (�−1)λ2
X

λX+γZ
, d >

λ2
X

λX+γZ
+ dmin.

Proof. See Section 3.1.

The following result can be deduced from ([19] Theorem 1) (see also [11,15]).

Lemma 2. For d ∈ (dmin, γX),

r(d) =
1
2

log
�ρXγX + λX + γZ + λQ

λQ
+

�− 1
2

log
λX + γZ + λQ

λQ
,

where

λQ � −b +
√

b2 − 4ac
2a

with

a � �(γX − d),

b � (�ρXγX + λX)(λX + 2γZ) + (�− 1)λX(�ρXγX + λX + 2γZ)− �(�ρXγX + 2λX + 2γZ)d,

c � �(�ρXγX + λX + γZ)(λX + γZ)(dmin − d).

The expressions of r(d) and r(d) as shown in Lemmas 1 and 2 are quite complicated, rendering
it difficult to make analytical comparisons. Fortunately, they become significantly simplified in the
asymptotic regime where � → ∞ (with d fixed). To perform this asymptotic analysis, it is necessary
to restrict attention to the case ρX ∈ [0, 1]; moreover, without loss of generality, we assume d ∈
(d(∞)

min, γX), where

d(∞)
min � lim

�→∞
dmin =

{
λXγZ

λX+γZ
, ρX ∈ [0, 1),

0, ρX = 1.

Theorem 1 (Centralized encoding).

1. ρX = 0: For d ∈ (d(∞)
min, γX),

r(d) =
�

2
log

γ2
X

(γX + γZ)d− γXγZ
.
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2. ρX ∈ (0, 1]: For d ∈ (d(∞)
min, γX),

r(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�
2 log λ2

X
(λX+γZ)d−λXγZ

+ 1
2 log �+ α + O( 1

� ), d < λX ,
1
2 log �+ 1

2 log ρXγX(λX+γZ)

λ2
X

+
γ2

Z
2λ2

X
+ O( 1

� ), d = λX ,
1
2 log ρXγX

d−λX
+ O( 1

� ), d > λX ,

where

α � 1
2

log
ρXγX(λX + γZ)

λ2
X

+
γ2

Z
2((λX + γZ)d− λXγZ)

.

Proof. See Section 3.2.

Theorem 2 (Distributed encoding).

1. ρX = 0: For d ∈ (d(∞)
min, γX),

r(d) =
�

2
log

γ2
X

(γX + γZ)d− γXγZ
.

2. ρX ∈ (0, 1]: For d ∈ (d(∞)
min, γX),

r(d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�
2 log λ2

X
(λX+γZ)d−λXγZ

+ 1
2 log �+ α + O( 1

� ), d < λX ,
(λX+γZ)

√
�

2λX
+ 1

4 log �+ 1
2 log ρX

1−ρX
− (λX+γZ)(λX−ρXγZ)

4ρXλ2
X

+ O( 1√
�
), d = λX ,

1
2 log ρXγX

d−λX
+ (λX+γZ)(γX−d)

2ρXγX(d−λX)
+ O( 1

� ), d > λX ,

where

α � 1
2

log
ρXγX(λX − d)

λ2
X

+
(λX + γZ)d2

2(λX − d)((λX + γZ)d− λXγZ)
.

Proof. See Section 3.3.

Remark 1. One can readily recover ([20] Theorem 3) for the case m = 1 (see [20] for the definition of parameter
m) and Oohama’s celebrated result for the quadratic Gaussian CEO problem ([3] Corollary 1) by setting γZ = 0
and ρX = 1, respectively, in Theorem 2.

The following result is a simple corollary of Theorems 1 and 2.

Corollary 1 (Asymptotic gap).

1. ρX = 0: For d ∈ (d(∞)
min, γX),

r(d)− r(d) = 0.

2. ρX ∈ (0, 1]: For d ∈ (d(∞)
min, γX),

lim
�→∞

r(d)− r(d) = ψ(d) �

⎧⎪⎪⎨⎪⎪⎩
1
2 log λX−d

λX+γZ
+ γZ+d

2(λX−d) , d < λX ,

∞, d = λX ,
(λX+γZ)(γX−d)

2ρXγX(d−λX)
, d > λX .
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Remark 2. When ρX = 0, we have ψ(d) = γZ(γX−d)
2γXd , which is a monotonically decreasing function over

(0, γX), converging to ∞ (here we assume γZ > 0) and 0 as d → 0 and γX, respectively. When ρX ∈ (0, 1), it is
clear that the function ψ(d) is monotonically decreasing over (λX , γX), converging to ∞ and 0 as d → λX and
γX, respectively; moreover, since ψ′(d) = γZ+d

2(λX−d)2 > 0 for d ∈ (d(∞)
min, λX), the function ψ(d) is monotonically

increasing over (d(∞)
min, λX), converging to τ(γZ) � 1

2 log λ2
X

(λX+γZ)2 +
2λXγZ+γ2

Z
2λ2

X
and ∞ as d → d(∞)

min and λX,

respectively. Note that τ′(γZ) =
2λXγZ+γ2

Z
λ2

X(λX+γZ)
≥ 0 for γZ ∈ [0, ∞); therefore, the minimum value of τ(γZ) over

[0, ∞) is 0, which is attained at γZ = 0. See Figures 3 and 4 for some graphical illustrations of ψ(d).

Figure 3. Illustration of ψ(d) with γX = 1 and γZ = 0.1 for different ρX .

Figure 4. Illustration of ψ(d) with γX = 1 and ρX = 0.5 for different γZ.

62



Entropy 2019, 21, 213

3. Proofs

3.1. Proof of Lemma 1

It is known [21] that r(d) is given by the solution to the following optimization problem:

(P1) min
pX̂|S

I(S; X̂)

subject to E[(X− X̂)T(X− X̂)] ≤ �d,

X ↔ S ↔ X̂ form a Markov chain.

Let X̃ � ΘX, Z̃ � ΘZ, and S̃ � ΘS, where Θ is an arbitrary (real) unitary matrix with the first
row being 1√

�
1�. Since unitary transformations are invertible and preserve the Euclidean norm, we can

write (P1) equivalently as

(P2) min
pX̂|S̃

I(S̃; X̂)

subject to E[(X̃− X̂)T(X̃− X̂)] ≤ �d,

X̃ ↔ S̃ ↔ X̂ form a Markov chain.

For the same reason, we have

�dmin = E[(X̃−E[X̃|S̃])T(X̃−E[X̃|S̃])]. (1)

Denote the i-th components of X̃, Z̃, and S̃ by X̃i, Z̃i, and S̃i, respectively, i = 1, · · · , �. Clearly,
S̃i = X̃i + Z̃i, i = 1, · · · , �. Moreover, it can be verified that X̃1, · · · , X̃�, Z̃1, · · · , Z̃� are independent
zero-mean Gaussian random variables with

E[(X̃1)
2] = �ρXγX + λX , (2)

E[(X̃i)
2] = λX , i = 2, · · · , �, (3)

E[(Z̃1)
2] = γZ, i = 1, · · · , �.

Now denote the i-th component of Ŝ � E[X̃|S̃] by Ŝi, i = 1, · · · , �. We have

Ŝi = E[X̃i|S̃i], i = 1, · · · , �,

and

E[(Ŝ1)
2] =

{
0, ρX = − 1

�−1 ,
(�ρXγX+λX)

2

�ρXγX+λX+γZ
, ρX ∈ (− 1

�−1 , 1],
(4)

E[(Ŝi)
2] =

{
λ2

X
λX+γZ

, ρ ∈ [− 1
�−1 , 1),

0, ρX = 1,
i = 2, · · · , �. (5)

Note that

E[(X̃− Ŝ)T(X̃− Ŝ)] =
�

∑
i=1

E[(X̃i)
2]−

�

∑
i=1

E[(Ŝi)
2],
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which, together with (1)–(5), proves

dmin =
1
�
E[(X̃− Ŝ)T(X̃− Ŝ)] =

⎧⎪⎪⎨⎪⎪⎩
(�−1)γXγZ

�γX+(�−1)γZ
, ρX = − 1

�−1 ,
(�ρXγX+λX)γZ

�(�ρXγX+λX+γZ)
+ (�−1)λXγZ

�(λX+γZ)
, ρX ∈ (− 1

�−1 , 1),
γXγZ

�γX+γZ
, ρX = 1.

Clearly, Ŝ is determined by S̃; moreover, for any �-dimensional random vector X̂ jointly distributed
with (X̃, S̃) such that X̃ ↔ S̃ ↔ X̂ form a Markov chain, we have

E[(X̃− X̂)T(X̃− X̂)] = E[(Ŝ− X̂)T(Ŝ− X̂)2] +E[(X̃− Ŝ)T(X̃− Ŝ)2]

= E[(Ŝ− X̂)T(Ŝ− X̂)2] + �dmin.

Therefore, (P2) is equivalent to

(P3) min
pX̂|Ŝ

I(Ŝ; X̂)

subject to E[(Ŝ− X̂)T(Ŝ− X̂)] ≤ �(d− dmin).

One can readily complete the proof of Lemma 1 by recognizing that the solution to (P3) is given
by the well-known reverse water-filling formula ([22] Theorem 13.3.3).

3.2. Proof of Theorem 1

Setting ρX = 0 in Lemma 1 gives

r(d) =
�

2
log

γ2
X

(γX + γZ)d− γXγZ

for d ∈ ( γXγZ
γX+γZ

, γX). Setting ρX = 1 in Lemma 1 gives

r(d) =
1
2

log
�2γ2

X
�(�γX + γZ)d− γXγZ

for d ∈ ( γXγZ
�γX+γZ

, γX); moreover, we have

1
2

log
�2γ2

X
�(�γX + γZ)d− γXγZ

=
1
2

log
γX
d

+ O(
1
�
),

and γXγZ
�γX+γZ

→ 0 as �→ ∞.
It remains to treat the case ρX ∈ (0, 1). In this case, it can be deduced from Lemma 1 that

r(d) =

⎧⎪⎨⎪⎩
1
2 log (�ρXγX+λX)

2(λX+γZ)

λ2
X(�ρXγX+λX+γZ)

+ �
2 log λ2

X
(λX+γZ)(d−dmin)

, d ∈ (dmin, λ2
X

λX+γZ
+ dmin],

1
2 log (�ρXγX+λX)

2(λX+γZ)

(�ρXγX+λX+γZ)(�(λX+γZ)(d−dmin)−(�−1)λ2
X)

, d ∈ (
λ2

X
λX+γZ

+ dmin, γX),

and we have

dmin =
(�ρXγX + λX)γZ

�(�ρXγX + λX + γZ)
+

(�− 1)λXγZ
�(λX + γZ)

=
λXγZ

λX + γZ
+

ρXγXγ2
Z

(�ρXγX + λX + γZ)(λX + γZ)
(6)

=
λXγZ

λX + γZ
+

γ2
Z

(λX + γZ)�
+ O(

1
�2 ). (7)
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Consider the following two subcases separately.

• d ∈ ( λXγZ
λX+γZ

, λX ]

It can be seen from (6) that dmin is a monotonically decreasing function of � and converges to
λXγZ

λX+γZ
as �→ ∞. Therefore, we have d ∈ (dmin, λ2

X
λX+γZ

+ dmin] and consequently

r(d) =
1
2

log
(�ρXγX + λX)

2(λX + γZ)

λ2
X(�ρXγX + λX + γZ)

+
�

2
log

λ2
X

(λX + γZ)(d− dmin)
, (8)

when � is sufficiently large. Note that

1
2

log
(�ρXγX + λX)

2

�ρXγX + λX + γZ
=

1
2

log �+
1
2

log(ρXγX) + O(
1
�
) (9)

and

1
2

log(d− dmin) =
1
2

log

(
d− λXγZ

λX + γZ
− γ2

Z
(λX + γZ)�

−O(
1
�2 )

)
(10)

=
1
2

log
(λX + γZ)d− λXγZ

λX + γZ
− γ2

Z
2((λX + γZ)d− λXγZ)�

+ O(
1
�2 ), (11)

where (10) is due to (7). Substituting (9) and (11) into (8) gives

r(d) =
�

2
log

λ2
X

(λX + γZ)d− λXγZ
+

1
2

log �+
1
2

log
ρXγX(λX + γZ)

λ2
X

+
γ2

Z
2((λX + γZ)d− λXγZ)

+ O(
1
�
).

In particular, we have

r(λX) =
1
2

log �+
1
2

log
ρXγX(λX + γZ)

λ2
X

+
γ2

Z
2λ2

X
+ O(

1
�
).

• d ∈ (λX , γX)

Since dmin converges to λXγZ
λX+γZ

as �→ ∞, it follows that d ∈ (
λ2

X
λX+γZ

+ dmin, γX) and consequently

r(d) =
1
2

log
(�ρXγX + λX)

2(λX + γZ)

(�ρXγX + λX + γZ)(�(λX + γZ)(d− dmin)− (�− 1)λ2
X)

(12)

when � is sufficiently large. One can readily verify that

1
2

log
(�ρXγX + λX)

2

(�ρXγX + λX + γZ)(�(λX + γZ)(d− dmin)− (�− 1)λ2
X)

=
1
2

log
ρXγX

(λX + γZ)(d− λX)
+ O(

1
�
). (13)

Substituting (13) into (12) gives

r(d) =
1
2

log
ρXγX

d− λX
+ O(

1
�
).
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This completes the proof of Theorem 1.

3.3. Proof of Theorem 2

One can readily prove part one of Theorem 2 by setting ρX = 0 in Lemma 2. So only part two of
Theorem 2 remains to be proved. Note that

b = g1�
2 + g2�,

c = h1�
2 + h2�,

where

g1 � ρXγX(λX − d),

g2 � λ2
X + 2γXγZ − 2(λX + γZ)d,

h1 � ρXγX(λX + γZ)(d
(∞)
min − d),

h2 � ρXγXγ2
Z + λXγZ(λX + γZ)− (λX + γZ)

2d.

We shall consider the following three cases separately.

• d < λX

In this case g1 > 0 and consequently

λQ =
−b + b

√
1− 4ac

b2

2a
(14)

when � is sufficiently large. Note that√
1− 4ac

b2 = 1− 2ac
b2 −

2a2c2

b4 + O(
1
�3 ). (15)

Substituting (15) into (14) gives

λQ = − c
b
− ac2

b3 + O(
1
�2 ). (16)

It is easy to show that

− c
b
= − h1

g1
− g1h2 − g2h1

g2
1�

+ O(
1
�2 ), (17)

− ac2

b3 = − (γX − d)h2
1

g3
1�

+ O(
1
�2 ). (18)

Combining (16), (17) and (18) yields

λQ = η1 +
η2

�
+ O(

1
�2 ),
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where

η1 � − h1

g1
,

η2 � − g2
1h2 − g1g2h1 + (γX − d)h2

1
g3

1
.

Moreover, it can be verified via algebraic manipulations that

η1 =
(λX + γZ)d− λXγZ

λX − d
,

η2 = − λ2
Xd2

(λX − d)3 .

Now we write r(d) equivalently as

r(d) =
1
2

log
�ρXγX + λX + γZ + λQ

λX + γZ + λQ
+

�

2
log

λX + γZ + λQ

λQ
. (19)

Note that

1
2

log
�ρXγX + λX + γZ + λQ

λX + γZ + λQ
=

1
2

log �+
1
2

log
ρXγX

λX + γZ + η1
+ O(

1
�
)

=
1
2

log �+
1
2

log
ρXγX(λX − d)

λ2
X

+ O(
1
�
) (20)

and

1
2

log
λX + γZ + λQ

λQ

=
1
2

log
λX + γZ + η1

η1
− (λX + γZ)η2

2(λX + γZ + η1)η1�
+ O(

1
�2 )

=
1
2

log
λ2

X
(λX + γZ)d− λXγZ

+
(λX + γZ)d2

2(λX − d)((λX + γX)d− λXγZ)�
+ O(

1
�2 ). (21)

Substituting (20) and (21) into (19) gives

r(d) =
�

2
log

λ2
X

(λX + γZ)d− λXγZ
+

1
2

log �+
1
2

log
ρXγX(λX − d)

λ2
X

+
(λX + γZ)d2

2(λX − d)((λX + γX)d− λXγZ)
+ O(

1
�
).

• d = λX

In this case g1 = 0 and consequently

λQ =
−g2 +

√
g2

2 − 4(γX − λX)(h1�+ h2)

2(γX − λX)
. (22)
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Note that √
g2

2 − 4(γX − λX)(h1�+ h2) =
√
−4(γX − λX)h1�+ O(

1√
�
). (23)

Substituting (23) into (22) gives

λQ = μ1
√
�+ μ2 + O(

1√
�
),

where

μ1 �
√
− h1

γX − λX
,

μ2 � − g2

2(γX − λX)
.

Moreover, it can be verified via algebraic manipulations that

μ1 = λX ,

μ2 =
(1− ρX)

2γX − 2ρXγZ
2ρX

.

Now we proceed to derive an asymptotic expression of r(d). Note that

1
2

log
�ρXγX + λX + γZ + λQ

λX + γZ + λQ
=

1
4

log �+
1
2

log
ρXγX

μ1
+ O(

1√
�
)

=
1
4

log �+
1
2

log
ρX

1− ρX
+ O(

1√
�
) (24)

and

1
2

log
λX + γZ + λQ

λQ
=

λX + γZ
2λQ

− (λX + γZ)
2

4λ2
Q

+ O(
1

�
3
2
)

=
λX + γZ

2μ1
√
�
− (λX + γZ)(λX + γZ + 2μ2)

4μ2
1�

+ O(
1

�
3
2
)

=
λX + γZ

2λX
√
�
− (λX + γZ)(λX − ρXγZ)

4ρXλ2
X�

+ O(
1

�
3
2
). (25)

Substituting (24) and (25) into (19) gives

r(λX) =
(λX + γZ)

√
�

2λX
+

1
4

log �+
1
2

log
ρX

1− ρX
− (λX + γZ)(λX − ρXγZ)

4ρXλ2
X

+ O(
1√
�
).

• d > λX

In this case g1 < 0 and consequently

λQ =
−b− b

√
1− 4ac

b2

2a
(26)
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when � is sufficiently large. Note that√
1− 4ac

b2 = 1 + O(
1
�
). (27)

Substituting (27) into (26) gives

λQ = − b
a
+ O(1). (28)

It is easy to show that

− b
a
=

ρXγX(d− λX)�

γX − d
+ O(1). (29)

Combining (28) and (29) yields

λQ =
ρXγX(d− λX)�

γX − d
+ O(1).

Now we proceed to derive an asymptotic expression of r(d). Note that

1
2

log
�ρXγX + λX + γZ + λQ

λX + γZ + λQ
=

1
2

log
ρXγX

d− λX
+ O(

1
�
) (30)

and

1
2

log
λX + γZ + λQ

λQ
=

λX + γZ
2λQ

+ O(
1
�2 )

=
(λX + γZ)(γX − d)

2ρXγX(d− λX)�
+ O(

1
�2 ). (31)

Substituting (30) and (31) into (19) gives

r(d) =
1
2

log
ρXγX

d− λX
+

(λX + γZ)(γX − d)
2ρXγX(d− λX)

+ O(
1
�
).

This completes the proof of Theorem 2.

4. Conclusions

We have studied the problem of symmetric remote Gaussian source coding and made a systematic
comparison of centralized encoding and distributed encoding in terms of the asymptotic rate-distortion
performance. It is of great interest to extend our work by considering more general source and
noise models.
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Abstract: This paper considers the coexistence of Ultra Reliable Low Latency Communications
(URLLC) and enhanced Mobile BroadBand (eMBB) services in the uplink of Cloud Radio Access
Network (C-RAN) architecture based on the relaying of radio signals over analog fronthaul links.
While Orthogonal Multiple Access (OMA) to the radio resources enables the isolation and the
separate design of different 5G services, Non-Orthogonal Multiple Access (NOMA) can enhance
the system performance by sharing wireless and fronthaul resources. This paper provides an
information-theoretic perspective in the performance of URLLC and eMBB traffic under both OMA
and NOMA. The analysis focuses on standard cellular models with additive Gaussian noise links and
a finite inter-cell interference span, and it accounts for different decoding strategies such as puncturing,
Treating Interference as Noise (TIN) and Successive Interference Cancellation (SIC). Numerical results
demonstrate that, for the considered analog fronthauling C-RAN architecture, NOMA achieves higher
eMBB rates with respect to OMA, while guaranteeing reliable low-rate URLLC communication with
minimal access latency. Moreover, NOMA under SIC is seen to achieve the best performance, while,
unlike the case with digital capacity-constrained fronthaul links, TIN always outperforms puncturing.

Keywords: network slicing; RoC; URLLC; eMBB; C-RAN

1. Introduction

Accommodating the heterogeneity of users’ requirements is one of the main challenges that
both industry and academia are facing in order to make 5G a reality [1]. In fact, next-generation
wireless communication systems must be designed to provision different services, each of which
with distinct constraints in terms of latency, reliability, and information rate. In particular, 5G is
expected to support three different macro-categories of services, namely enhanced Mobile BroadBand
(eMBB), massive Machine-Type Communications (mMTC), and Ultra-Reliable and Low-Latency
Communications (URLLC) [2–4].

eMBB service is meant to provide very-high data-rate communications as compared with current
(4G) networks. This can be generally achieved by using codewords that spread over a large number
of time-frequency resources, given that latency is not an issue. mMTC supports low-rate bursty
communication between a massive number of uncoordinated devices and the network. Finally,
URLLC is designed to ensure low-rate ultra-reliable radio access for a few nodes, while guaranteeing
very low-latency. As a result, URLLC transmissions need to be localized in time, and hence URLLC
packets should be short [5].

The coexistence among eMBB, mMTC and URLLC traffic types can be ensured by slicing the
Radio Access Network (RAN) resources into non-overlapping, or orthogonal, blocks, and by assigning
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distinct resources to different services. With the resulting Orthogonal Multiple Access (OMA), the target
quality-of-service guarantees can be achieved by designing each service separately [6,7]. However,
when URLLC or mMTC traffic types are characterized by short and bursty transmissions at random
time instants, resources allocated statically to these services are likely to be unused for most of time,
and thus wasted. A more efficient use of radio resources can be accomplished by Non-Orthogonal
Multiple Access (or NOMA), which allows multiple services to share the same physical resources.

By enabling an opportunistic shared use of the radio resources, NOMA can provide significant
benefits in terms of spectrum efficiency, but it also poses the challenge of designing the system so
that the heterogeneous requirements of the services are satisfied despite the mutual interference.
The objective of this paper is to address this issue by considering a Cloud-RAN (C-RAN) architecture
characterized by analog fronthaul links, referred to as Analog Radio-over-X, which is introduced in
the next section.

1.1. C-RAN Based on Analog Radio-over-X Fronthauling

The advent of 5G is introducing advanced physical layer technologies and network deployment
strategies such as massive MIMO, mmWave, small-cell densification, mobile edge computing,
etc. (see [8,9] for an overview). C-RAN is an enabling technology that is based on the colocation
of the Base Band Unit (BBU) of Edge Nodes (ENs) that are densely distributed in a given indoor or
outdoor area. This solution has the advantages of allowing for centralized BBU signal processing,
providing network scalability, increasing spectral efficiency, and reducing costs.

The most typical C-RAN architecture relies on digital optical fronthaul links to connect ENs
to BBUs. This solution, known as Digital Radio-over-Fiber (D-RoF), is adopted in current 4G
mobile networks, and is based on the transmission of in-phase and quadrature baseband signals,
upon digitization and packetization according to the CPRI protocol [10].

Over the last years, several alternative C-RAN architectures have been proposed that redistribute
the RAN functionalities between BBU and ENs, obtaining different trade-offs in terms of bandwidth
and latency requirements, advanced Cooperative Multi-Point processing capabilities, and EN cost and
complexity [11]. For scenarios with stringent cost and latency constraints, a promising solution is to
use analog fronthauling.

With analog fronthauling, focusing on the uplink, the ENs directly relay the radio signals to
the BBUs after frequency translation and, possibly, signal amplification. This has the advantages
of avoiding any bandwidth expansion due to digitization; guaranteeing ENs synchronization;
minimizing latency; reducing hardware cost; and improving energy efficiency [12–14]. A C-RAN
architecture based on analog fronthauling is also known in the literature as Analog Radio-over-X
(A-RoX), where X depends on the technology employed for the fronthaul, which can be either Fiber
(A-RoF [12]), Radio (A-RoR [15]), or Copper (A-RoC [13]), as depicted in Figure 1.

In particular, A-RoF provides an effective example of analog fronthauling, due to its capability
to support the transport of large bandwidths [12,16]. However, A-RoF requires the deployment
of a fiber optic infrastructure whose installation is not always feasible, e.g., in dense urban areas.
In such scenarios, a possible solution is to rely on the A-RoR concept, thus employing point-to-point
wireless links, mainly based on mmWave or THz bands, with several advantages in terms of flexibility,
resiliency, hardware complexity and cost [15,17]. Another application scenario where the installation of
fiber links may be too expensive to provide satisfactory business cases is indoor coverage. For indoor
deployments, A-RoC [18–20] has been recently proved to be an attractive solution, especially from
the deployment costs perspective [21], since it leverages the pre-existing Local Area Network (LAN)
cabling infrastructure of building and enterprises. Moreover, LAN cables are equipped with four
twisted-pairs with a transport capability up to 500 MHz each, or 2 GHz overall, for radio signals,
thus providing enough bandwidth for analog fronthaul applications [22]. Over the last years,
A-RoC based on LAN cables has become a standard solution for in-building commercial C-RAN
deployments, allowing to extend the indoor coverage over distances longer than 100 m [23].
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Figure 1. C-RAN architecture overview for uplink direction: (a) Digital Radio-over-Fiber, (b) Analog
Radio-over-Fiber, (c) Analog Radio-over-Radio, (d) Analog Radio-over-Copper.

In this paper we study the coexistence of URLLC and eMBB services under both OMA and
NOMA assuming a C-RAN multi-cell architecture based on analog fronthauling (see Figure 1) by
using information theoretical tools.

1.2. Related Works

The concept of NOMA is well-known from the information theoretic literature [24], and its
application to 5G dates back to [25], where authors demonstrated for a single-cell scenario that
superimposing multiple users in the same resources achieves superior performance with respect
to conventional LTE networks, provided that the resulting interference is properly taken care of.
The extension of NOMA to multi-cell networks is presented in [26], which addresses several multi-cell
NOMA challenges, including coordinated scheduling, beamforming, and practical implementation
issues related to successive interference cancellation.

In contrast with most of the works on NOMA, which deal with homogeneous traffic
conditions (see [27] for a recent review), here the focus is on NOMA techniques in the context of
heterogeneous networks, such as the forthcoming 5G wireless systems, as discussed in [28–30].
In fact, NOMA represents an attractive solution to meet the distinct requirements of 5G services,
as it improves spectral efficiency (eMBB), enables massive device connectivity (mMTC), and allows for
low-transmission latency (URLLC) [31].

In [29] a communication-theoretic model was introduced to investigate the performance trade-offs
for eMBB, mMTC and URLLC services in a single-cell scenario under both OMA and NOMA.
This single-cell model has been later extended in [32] to the uplink of a multi-cell C-RAN architecture,
in which the BBU communicates with multiple URLLC and eMBB users belonging to different cells
through geographically distributed ENs. In the C-RAN system studied in [32], while the URLLC
signals are locally decoded at the ENs due to latency constraints, the eMBB signals are quantized and
forwarded over limited-capacity digital fronthaul links to the BBU, where centralized joint decoding
is performed.

None of the aforementioned works considers the coexistence of different 5G services in a C-RAN
architecture based on analog fronthaul links which is the focus of this paper.

1.3. Contributions

In this paper we study for the first time the coexistence between URLLC and eMBB services in the
uplink of a C-RAN system with analog fronthauling in which the URLLC signals are still decoded
locally at the EN, while the eMBB signals are forwarded to the BBU over analog fronthaul links.
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In particular, the main contributions of this paper are three-fold:

• We extend the uplink C-RAN theoretic model proposed in [32] to the case of analog fronthaul,
assuming that the fronthaul links are characterized by multiple, generally interfering, channels that
carry the received radio signals;

• By leveraging information theoretical tools, we investigate the performance trade-offs between
URLLC and eMBB services under both OMA and NOMA, by considering different interference
management strategies such as puncturing, considered for the standardization of 5G New
Radio [33,34], Treating Interference as Noise (TIN), and Successive Interference Cancellation (SIC);

• The analysis demonstrates that NOMA allows for higher eMBB information rates with respect
to OMA, while guaranteeing a reliable low-rate URLLC communication with minimal access
latency. Moreover, differently from the case of conventional digital C-RAN architecture based
on limited-capacity fronthaul links [32], in analog C-RAN, TIN always outperforms puncturing,
while the best performance is still achieved by NOMA with SIC.

1.4. Organization

The remainder of the paper is organized as follows. The considered system model is introduced
in Section 2. Section 3 details the fronthaul signal processing techniques employed to cope with
the impairments of the A-RoC fronthaul links. The eMBB rand URLLC information rates are
discussed in Sections 4 and 5 for OMA and NOMA, respectively. Numerical results are presented in
Section 6. And Section 7 concludes the paper.

1.5. Notation

Bold upper- and lower-case letters describe matrices and column vectors, respectively. Letters R,
and C refer to real and complex numbers, respectively. We denote matrix inversion, transposition and
conjugate transposition as (·)−1 , (·)T , (·)H . Matrix In is an identity matrix of size n and 1n is a column
vector made by n “1s”. Symbol ⊗ denotes the Kronecker operator, vec(·) is the vectorization operator,
and E[·] is the statistical expectation. Notation diag(A1, A2, ..., An) denotes a diagonal matrix with
elements A1, A2, ..., An on the main diagonal. The Q-function Q(·) is the complementary cumulative
distribution function of the standardized normal random variable, and Q−1(·) is its inverse.

2. System Model

The C-RAN architecture under study is illustrated in Figure 2. In this system, the BBUs
communicate with multiple user equipments (UEs) belonging to M cells through M single-antenna
Edge Nodes (ENs). The BBUs are co-located in the so-called BBU pool so that joint processing can
be performed, while the ENs are geographically distributed. In particular, we assume here that cells
are arranged in a line following the conventional circulant Wyner model ([35], Chapter 2), and each
cell contains two single-antenna UEs with different service constraints: one eMBB user and one
URLLC user.

Due to the strict latency constraints of URLLC traffic, the signal for the URLLC UEs is decoded
on-site at the EN, while the eMBB signals are forwarded to the BBU through a multi-channel analog
fronthaul. In this hybrid cloud-edge architecture, the mobile operator equips the EN with edge
computing capabilities in order to provision the services required by the URLLC user directly from the
EN. Following the A-RoX concept, the end-to-end channel from the eMBB UEs and the BBU pool is
assumed to be fully analog: the EN performs only signal amplification and frequency translation to
comply with fronthaul capabilities and forwards the signals to the BBU, where centralized decoding
is performed. In practice, as detailed later in the paper (see Sections 4 and 5), we assume that
each EN hosts a digital module, responsible for URLLC signal decoding, and an analog module,
responsible for the mapping of received radio signal over the analog fronthauling, which is identified
as Analog-to-Analog (A/A) mapping.
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1 1 1 1

Figure 2. Model of the uplink of C-RAN system based on Analog Radio-over-Copper (A-RoC) fronthauling.

While the technology used for the analog fronthauling can be either fiber-optics (A-RoF),
wireless (A-RoR) or cable (A-RoC), the system model proposed in this paper reflects mainly the last
two solutions. Furthermore, we will focus on A-RoC, and we will use the corresponding terminology
to fix the ideas (see Figure 2).

2.1. RAN Model

We consider the same Wyner-type radio access model of [32], which is described in this subsection.
The Wyner model is an abstraction of cellular systems that captures one of the main aspects of such
settings, namely the locality of inter-cell interference. The advantage of employing such a simple model
is the possibility to obtain analytical insights, which is a first mandatory step for the performance
assessment under more realistic operating conditions [35]. As illustrated in Figure 3, the direct channel
gain from the eMBB UE and the EN belonging to the same cell is set to one, while the inter-cell eMBB
channel gain is equal to α ∈ [0, 1]. Furthermore, the URLLC UEs have a channel gain equal to β > 0.
The URLLC user is assumed to be in the proximity of the EN, and thus it does not interfere with the
neighboring cells. The eMBB user, instead, is assumed to be located at the edges of the cell in order to
consider worst-case performance guarantees. As a result, each eMBB user interferes with both left and
right neighboring cells, following the standard Wyner model [35]. All channel gains are assumed to be
constant over the considered radio resources shown Figure 3, and known to all UEs and ENs.

U U U

nT

nF

U U U

nT

nF

Figure 3. Time-frequency resource allocation: (a) Orthogonal Multiple Access (OMA) and
(b) Non-Orthogonal Multiple Access (NOMA). Downwards arrows denote arrival of URLLC packets.
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As illustrated in Figure 3, we assume that the time-frequency plane is divided in nT minislots,
indexed as t ∈ [1, nT ], where each minislot is composed of nF frequency channels, indexed as
f ∈ [1, nF], for a total of nFnT time-frequency radio resources. Each radio resource accommodates
the transmission of a single symbol, although generalizations are straightforward. The eMBB UEs
transmit over the entire nF × nT time-frequency frame. In contrast, due to the latency constraints of the
URLLC traffic, each URLLC transmission is limited to the nF frequency channels of a single minislot,
and URLLC packets are generally small compared to the eMBB frame, which requires the condition
nT � 1. As illustrated in Figure 3, each URLLC UE generates an independent packet in each minislot
with probability q. This packet is transmitted at the next available transmission opportunity in a
grant-free manner.

In the case of OMA, one minislot is exclusively allocated for URLLC transmission every LU
minislots. Parameter LU is considered here as the worst-case access latency. Accordingly, if more than
one packet is generated within the LU minislots between two transmission opportunities, only one of
those packets is randomly selected for transmission and all the remaining are discarded. The signal
Y f

k (t) received at the k-th EN at the f -th frequency under OMA is

Y f
k (t) =

{
βAk(t)U

f
k (t) + Z f

k (t), if t = LU , 2LU , ...

X f
k (t) + αX f

k−1(t) + αX f
k+1(t) + Z f

k (t), otherwise
(1)

where X f
k (t) and U f

k (t) are the signals transmitted at time t and subcarrier f by the k-th eMBB UE

and URLLC UE, respectively; Z f
k (t) ∼ CN (0, 1) is the unit-power zero-mean additive white Gaussian

noise; and Ak(t) ∈ {0, 1} is a binary variable indicating whether or not the URLLC UE is transmitting
at time t.

In case of NOMA, the URLLC UE transmits its packet in the same slot where it is generated by
the application layer, so that the access latency is always minimal, i.e., LU = 1 minislot. Under NOMA,
the signal Y f

k (t) received at the k-th EN at the f -th frequency is

Y f
k (t) = X f

k (t) + αX f
k−1(t) + αX f

k+1(t) + βAk(t)U
f
k (t) + Z f

k (t). (2)

According to the circulant Wyner model, in (1) and (2), we assume that [k− 1] = M for k = 1 and
[k + 1] = 1 for k = M, in order to guarantee symmetry.

For both OMA and NOMA, the power constraints for the k-th eMBB and URLLC users are defined
within each radio resource frame respectively as

1
nFnT

nT

∑
t=1

nF

∑
f=1

E

[∣∣∣X f
k (t)

∣∣∣2] ≤ PB, (3)

and
1

nF

nF

∑
f=1

E

[∣∣∣U f
k (t)

∣∣∣2] ≤ PU , (4)

where the temporal average are taken over all symbols within a codeword.
Models (1) and (2) can be written in matrix form as

Y(t) = X(t)H + βU(t)A(t) + Z(t), (5)

where matrix Y(t) = [y1(t), y2(t), ..., yM(t)] ∈ CnF×M gathers all the signals received at all the M
ENs over all the nF frequencies, and the k-th column yk(t) ∈ CnF×1 denotes the signal received across
all the radio frequencies at the k-th EN. The channel matrix H ∈ RM×M is circulant with the first
column given by vector [1, α, 0, ..., 0, α]T ; matrices U(t) ∈ CnF×M and X(t) ∈ CnF×M collect the
signals transmitted by URLLC and eMBB UEs, respectively; and Z(t) ∈ CnF×M is the overall noise
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matrix. Finally, A(t) is a diagonal matrix whose k-th diagonal element is a Bernoulli random variable
distributed as Ak(t) ∼ B(q), ∀k = 1, 2, ..., M.

2.2. Space-Frequency Analog Fronthaul Channel

In the considered analog fronthaul architecture, the k-th EN forwards the signal yk(t) received by
the UEs to the BBU over a wired-access link in a fully analog fashion. As depicted in Figure 2, we focus
our attention on a multichannel link that is possibly affected by inter-channel interference. While the
model considered here can apply also to wireless multichannel links, as in Figure 1, we adopt here
the terminology of Analog Radio-over-Copper (A-RoC) as an important example in which A-RoX
is affected by fronthauling inter-link interference. Accordingly, each of the cables employed for the
fronthaul contains lS twisted-pairs, i.e., lS space-separated channels, indexed as c ∈ [1, lS]. Each pair
carries a bandwidth equal to lF ≤ nF frequency channels of the RAN, indexed as f ′ ∈ [1, lF], so that
a total of lSlF space-frequency resource blocks are available over each cable, as shown in Figure 4.
Furthermore, we assume that each analog fronthaul link has enough resources to accommodate the
transmission of the whole radio signal at each EN, i.e., lSlF ≥ nF.

S

F

S1 2

Figure 4. Space-frequency cable resource allocation.

The fronthaul channel between each EN and the BBU is described by the matrix Hc ∈ RlS×lS ,
which accounts for direct channel gains on each cable, given by the diagonal elements [Hc]ii, and for
the intra-cable crosstalk, described by the off-diagonal elements [Hc]ij, with i �= j. We assume here
that the channel coefficients in Hc do not depend on frequency f ′. Furthermore, in keeping the
modeling assumptions of the Wyner model, we posit that the direct channel gains for all the pairs
are normalized to 1, while the crosstalk coefficients between any pair of twisted-pairs are given by a
coupling parameter γ ≥ 0. It follows that the fronthaul channel matrix can be written as

Hc = γ1lS 1T
lS + (1− γ)IlS , (6)

where 1n denotes a column vector of size n of all ones and In is the identity matrix of size n. We note
that, in case of wireless fronthaul links such as in A-RoR, the coefficient γ accounts for the mutual
interference between spatially separated radio links. As a result, one typically has γ > 0 when
considering sub-6 GHz frequency bands, while the condition γ = 0 may be reasonable in the mmWave
or THz bands, in which communication is mainly noise-limited due to the highly directive beams [36].
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For a given time t, the symbols yk(t) received at EN k-th over all the nF radio frequency channels
are transported to the BBU over the lSlF cable resource blocks, where the mapping between radio and
cable resources is to be designed (see Section 3.1) and depends on the bandwidth lF available at each
twisted-pair.

In this regards, we define the fraction μ ∈ [1/lS, 1] of the radio bandwidth nF that can be carried
by each pair, referred to as normalized cable bandwidth, as

μ =
lF
nF

. (7)

As a result, the quantity
η = μ · lS (8)

expresses the bandwidth amplification factor (or redundancy) over the cable fronthaul, as η ≥ 1.
To simplify, we assume here that both 1/μ and η are integer numbers. The two extreme situations with
μ = 1, or η = lS, and μ = 1/lS, or η = 1, are shown in Figure 5 for lS = 4 twisted-pairs and nF = 8
subcarriers. For the first case, one replica of the whole radio signal yk(t) can be transmitted over all of
the lS pairs, and the bandwidth amplification over cable is η = lS. In the second case, disjoint fractions
of the received bandwidth can be forwarded on each pair and the bandwidth amplification factor is
η = 1.

S

nF

S

nF SnFyk( )

= 1 = 1 S

= S = 1

nFyk( )

Figure 5. Mapping of radio resources over cable resources: (a) maximum normalized cable bandwidth
(full redundancy), μ = 1, or η = lS; (b) minimal normalized cable bandwidth (no redundancy),
μ = 1/lS, or η = 1.

We now detail the signal model for fronthaul transmission. To this end, let us define the lF × lS
matrix Ỹk containing the signal to be transmitted by the EN k-th to the BBU over the copper cable as

Ỹk = [ỹ1
k(t), ỹ2

k(t), ..., ỹ
lS
k (t)], (9)

where the k-th column ỹc
k(t) ∈ ClF×1 denotes the signal transmitted on twisted-pair c across all the lF

cable frequency resources. The signal R̃k ∈ ClF×lS received at the BBU from the k-th EN across all the
cable space-frequency resources is then computed as

R̃k(t) = Ỹk(t)Hc + W̃k(t), (10)

where W̃k(t) = [w̃1
k(t), w̃2

k(t), ..., w̃
lS
k (t)] ∈ ClF×lS is the additive white Gaussian cable noise

uncorrelated over cable pairs and frequencies, i.e., w̃c
k(t) ∼ CN (0, IlF ) for all pairs c = 1, 2, ..., lS.

As commonly assumed in wireline communications to control cable radiations [37], the power
of the cable symbol

[
ỹc

k(t)
]

f ′ transmitted from ENk over twisted-pair c at frequency f
′

is
constrained to Pc by the (short-term: One can also consider the “long-term” power constraint
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n−1
T ∑t E[|[ỹc

k(t)] f ′ |2] ≤ Pc, ∀c ∈ [1, lS], f ′ ∈ [1, lF] with minor modifications to the analysis and
final results) power constraint

E

[∣∣∣[ỹc
k(t)] f ′

∣∣∣2] ≤ Pc ∀c ∈ [1, lS], f ′ ∈ [1, lF], t ∈ [1, nT ]. (11)

In the following, we will omit the time index t, when no confusion arises.

2.3. Performance Metrics

The performance metrics used to evaluate the interaction between eMBB and URLLC services in
the considered A-RoC-based C-RAN architecture are detailed in the following.

2.3.1. eMBB

Capacity enhancement is the main goal of the eMBB service, which is envisioned to provide very
high-rate communication to all the UEs. Therefore, for eMBB UEs, we are interested in the per-UE rate
defined as

RB =
log2(MB)

nTnF
, (12)

where MB is the number of codewords in the codebook of each eMBB UE.

2.3.2. URLLC

Differently from eMBB, URLLC service is mainly focused on low-latency and reliability aspects.
Due to the short length of URLLC packets, in order to guarantee ultra reliable communications,
we need to ensure that the error probability for each URLLC UE, denoted as Pr[EU ], is bounded by a
predefined value εU (typically smaller than 10−3) as

Pr[EU ] ≤ εU . (13)

Concerning latency, we define the maximum access latency LU as the maximum number of
minislots that an URLLC UE has to wait before transmitting a packet. Finally, although rate
enhancement is not one of the goals of URLLC service, it is still important to evaluate the per-UE
URLLC rate that can be guaranteed while satisfying the aforementioned latency and reliability
constraints. Similarly to (12), the per-UE URLLC rate is defined as

RU =
log2(MU)

nF
, (14)

where MU is the number of URLLC codewords in the codebook used by the URLLC UE for each
information packet.

3. Analog Fronthaul Signal Processing

The analog fronthaul links employed in the C-RAN system under study pose several challenges
in the system design, which are addressed in this section. Firstly, the radio signal received at each
EN needs to be mapped over the corresponding fronthaul resources in both frequency and space
dimension. Secondly, the signal at the output of each fronthaul link needs to be processed in order
to maximize the Signal-to-Noise Ratio (SNR) for all UE signals. Finally, the power constraints in (11)
must be properly enforced. All these requirements are to be addressed by all-analog processing in
order to meet the low-complexity and latency constraints of the analog fronthaul. In the rest of this
section, we discuss each of these problems in turn.
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3.1. Radio Resource Mapping over Fronthaul Channels

To maximize the SNRs for all the signals forwarded over the fronthaul by symmetry, we need to
ensure that: (i) all the received signals are replicated η times across the cable twisted-pairs, where we
recall that η is the bandwidth amplification factor defined in (8); and (ii) cable cross-talk interference
among different radio frequency bands is minimized. In fact, as the transmitted power at the cable
input is limited by the constraints in (11), a simple and effective way to cope with the impairments of
the analog fronthaul links using the only analog-processing capability is by introducing redundancy in
the fronthaul transmission. To this end, without loss of generality, we assume the following mapping
rule between the nF radio signals at each EN and the lSlF cable resources.

Let us consider the radio signal yk =
[
Y1

k , Y2
k , ..., YnF

k
]T received at the k-th EN. For a given

normalized cable bandwidth μ, the nF frequency channels of the radio signal yk can be split into 1/μ

sub-vectors of size lF = μnF as

yk =

⎡⎢⎢⎢⎢⎢⎣
y1

k
y2

k
...

y
1
μ

k

⎤⎥⎥⎥⎥⎥⎦ , (15)

where each vector y
j
k contains a disjoint fraction of the radio signal bandwidth nF. Each vector y

j
k can

be transmitted over η twisted-pairs, where we recall that η is the fronthaul redundancy factor. To this
end, each signal y

j
k in (16) is transmitted over η consecutive cable twisted-pairs.

To formalize the described mapping, the first step consists in reorganizing the signal yk into a
lF × 1

μ matrix as

Yk = vec−1
1
μ

(yk) =
[
y1

k y2
k ... y

1
μ

k

]
, (16)

where the operator vec−1
1
μ

(·) : CnF → C
nF ·μ× 1

μ acts as the inverse of the vectorization operator vec(·),
with the subindex 1/μ denoting the number of columns of the resulting matrix. Then, the overall cable
signal Ỹk transmitted by EN k-th in (9) can be equivalently written as

Ỹk =

⎡⎣ y1
k y1

k . . . y1
k︸ ︷︷ ︸

η

, y2
k y2

k . . . y2
k︸ ︷︷ ︸

η

... y
1
μ

k y
1
μ

k . . . y
1
μ

k︸ ︷︷ ︸
η

⎤⎦ , (17)

or, in compact form, as
Ỹk = Yk ⊗ 1T

η , (18)

where ⊗ denotes the Kronecker product (for a review of Kronecker product properties in signal
processing we refer the reader to [38]). Notice that in case of full normalized cable bandwidth,
i.e., μ = 1 (corresponding to η = lS), the signal Ỹk transmitted over the fronthaul cable simplifies to
Ỹk = yk ⊗ 1T

lS
, which implies that the radio signal yk is replicated over all the lS twisted-pairs. On the

contrary, when the normalized cable bandwidth is minimal, i.e., μ = 1/lS (corresponding to η = 1),
the signal Ỹk does not contain any redundancy, and disjoints signals are transmitted over all pairs, so
that the cable signal Ỹk equals the matrix radio signal in (16) as Ỹk = Yk.

Remark—Practical Implementation Issues. The easiest practical implementation of the proposed analog
radio resource mapping at the EN is by grouping the subcarriers onto a specific frequency portion of the cable,
as described in [18–20,22]. As an example, let us assume that the EN is equipped with 5 antennas, that each
antenna receives a 20-MHz radio signal, and that the analog fronthauling disposes of 4 links with 100 MHz
bandwidth each. In this case, the above references have shown that it is possible to freely map, or to replicate, in
an all-analog fashion the 5 × 20 MHz bands onto the overall 4 × 100 MHz = 400 MHz fronthaul bandwidth.
This example corresponds to a special case of the model studied in this paper, obtained by setting μ = 1,

80



Entropy 2018, 20, 661

i.e., the whole radio signal bandwidth received at the ENs is mapped/replicated over the analog fronthauling.
More generally, this paper posits the possibility to carry out the fronthaul mapping at a finer granularity, i.e., at a
subcarrier level. In this case, filtering operations would in practice be mandatory in order to extract groups
of subcarriers. This operation can be implemented in principle still by analog filters, whose design is left as
future works.

3.2. Signal Combining at the Fronthaul Output

As discussed, depending on the fronthaul bandwidth, a number η of noisy replicas of the radio
signals received at each EN are relayed to the BBU over η different twisted-pairs. Hence, in order
to maximize the SNRs for all signals, Maximum Ratio Combining (MRC) [39] is applied at the cable
output as

Rk = R̃kG, (19)

where Rk ∈ C
lF× 1

μ is the signal received at BBU from the k-th EN after the combiner and G ∈ R
lS× 1

μ is
the MRC matrix. Under the assumptions here, MRC coincides with equal ratio combining and hence
matrix G can be written as

G =
1
η

(
I 1

μ
⊗ 1η

)
. (20)

As an example, in the case of maximum redundancy, i.e., η = lS, the MRC matrix G = l−1
S 1lS

combines the analog signals received over all pairs, since they carry the same information signal.
On the contrary, in the case of minimal normalized bandwidth μ = 1/lS or η = 1, the matrix G equals
the identity matrix as G = IlS , since no combining is possible.

The signal rk ∈ CnF received at the BBU from ENk across the nF subcarriers is thus obtained by
vectorizing matrix Rk in (19) as

rk = vec(Rk). (21)

The relationship between the signal rk (21) obtained at the output of the combiner and the radio
received signal yk in (15) is summarized by the block-scheme in Figure 6, and it is

rk = vec
[((

vec−1
1
μ

(yk)⊗ 1T
η

)
Hc + W̃k

)
Gk

]
. (22)

yk (·)⊗ 1T
ηvec−1

1
μ

(·) Hc Gk vec(·) rk

YkYk Rk

Wk

Rk

E Analog E processing Digital BB processingAnalog ronthauling BB

Figure 6. Relationship between the signal rk (21) obtained at the output of the combiner and the radio
received signal yk in (15).

Finally, we collect the overall signal R ∈ CnF×M received at the BBU from all ENs across all
frequencies in the matrix

R = [r1, r2, ..., rM]. (23)

After some algebraic manipulations, it is possible to express Equation (23) in a more compact
form, which is reported in the following Lemma 1.
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Lemma 1. In the given C-RAN architecture with analog fronthaul links, for a given bandwidth amplification
factor η ≥ 1, the signal R ∈ CnF×M received at the BBU from all ENs across all radio frequencies after MRC
can be written as

R =
(

H
η
c ⊗ IlF

)
Y + W, (24)

where
H

η
c = γη1 1

μ
1T

1
μ
+ (1− γ)I 1

μ
(25)

is the equivalent fronthaul channel matrix; Y is the signal received at all ENs across all frequency radio channels
in (5); and W = [w1, w2, ..., wM] is the equivalent cable noise at the BBU after MRC, with the k-th column
distributed as wk ∼ CN

(
0, 1

η InF

)
for all k = 1, 2, ..., M.

Proof. see Appendix A.

To gain some insights, it is useful again to consider the two extreme cases of maximum redundancy,
i.e., η = lS, and no redundancy, i.e., η = 1. In the former case, the equivalent channel (25) equals
the scalar H

η
c = 1 + γ(lS − 1). This demonstrates the effect of transmitting a replica of the whole

radio signal over all pairs. In fact, the useful signal is received at the BBU not only through the
direct path, which has unit gain, but also from the remaining lS − 1 interfering paths, each with gain
γ, which constructively contribute to the overall SNR after the combiner. More precisely, it can be
observed that, in case of full redundancy, the SNR of the radio signal Y at the BBU is increased by
the analog fronthaul links by a factor of (1 + γ(lS − 1))2/(1/η) = lS(1 + γ(lS − 1))2. As a result,
in this case, for a coupling factor γ > 0, the SNR at the BBU increases with the cube of the number
of fronthaul links lS. In contrast, for μ = 1/lS, the equivalent fronthaul channel reflects the fact
that signals forwarded over the different pairs interfere with each other, and is equal to H

η
c = Hc.

The beneficial effect of redundantly transmitting radio signals over different pairs is reflected also in the
power of the noise after the combiner, which is reduced proportionally to the bandwidth amplification
factor η.

3.3. Fronthaul Power Constraints

To enforce the cable power constraints in (11), it is necessary to scale the radio signal Y in (24) by
a factor of λ prior to the transmission over the fronthaul. This is given as

λ =

√
Pc

δPB(1 + 2α2) + 1
, (26)

where δ is equal to δ =
(

1− L−1
U

)−1
for OMA, accounting for the fact that only LU − 1 minislots are

devoted to the eMBB UE, while it equals δ = 1 for NOMA, since the eMBB transmission spreads over
all LU minislots. To simplify the notation, in the following we will account for the gain λ by scaling
the noise over the cable after MRC in Equation (25) accordingly as

wk(t) ∼ CN
(

0,
1

ηλ2 I

)
. (27)

4. Orthogonal Multiple Access (OMA)

As described in Section 2.1, under OMA over the radio channel, one minislot every LU is
exclusively allocated to URLLC UEs, while eMBB UEs transmit over the remaining minislots. In this
way, URLLC UEs never interfere with eMBB transmissions. If more than one URLLC packet is
generated at a user between two URLLC transmission opportunities, only one of such packets
(randomly selected) is transmitted, while the others are discarded, causing a blockage error. Due to
the latency constraints, URLLC signals are digitized and decoded locally at the ENs, while the
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eMB signals are first mapped over the fronthaul lines, and then analogically forwarded to the BBU,
as mathematically summarized in Figure 7. In this section, we derive the expressions for the eMBB
and URLLC rates under OMA for a given URLLC access latency LU and, in the case of URLLC, for a
fixed URLLC target error probability εU .

yk( )
Yk( )

YM ( )

Figure 7. Block diagram of the operation of the ENs and BBU for Orthogonal Multiple Access (OMA).
A/A stands for Analog-to-Analog.

4.1. URLLC Rate

To evaluate the per-UE URLLC rate under OMA and for a given URLLC target error probability
εU , we follow the approach in [32], which is reviewed here. URLLC packets are generally short due
to the strict latency constraints, and the maximum achievable rate can be computed by leveraging
results from finite blocklength information theory. To this end, fix a given blocklength nF and URLLC
error decoding probability εD

U . Notice that this probability is different from the general URLLC target
error probability εU , as detailed later in this section. According to [40], the URLLC rate can be well
approximated by

RU = log2(1 + β2PU)−
√

V
nF

Q−1(εD
U), (28)

where

V =
β2PU

1 + β2PU
(29)

is the channel dispersion and Q−1(·) is the inverse Q-function (see Section 1.5).
The error probability for URLLC packets is the sum of two contributions. The first represents the

probability that an URLLC packet is discarded due to blockage, given that only one URLLC packet can
be transmitted within the required LU worst-case latency; while the second is the probability that the
packet is transmitted but not successfully decoded. Accordingly, the overall error probability can be
computed as

Pr[EU ] =
LU−1

∑
n

p(n)
n

n + 1
+

LU−1

∑
n

p(n)
1

n + 1
εD

U , (30)

where p(n) = Pr[NU(LU) = n] is the distribution of the binomial random variable NU(LU) ∼
Bin(LU − 1, q) representing the number of additional packets generated by the URLLC UE during the
remaining minislots between two transmission opportunities. The decoding error probability εD

U in
(28) can be obtained from the URLLC reliability constraint in (13), i.e., Pr[EU ] = εU .

4.2. eMBB Rate

The eMBB signals received at the ENs are forwarded over the analog fronthaul to the BBU,
where centralized digital signal processing and decoding are performed. In the case of OMA, the eMBB
signal is free from URLLC interference, hence signal Y received by all ENs over all radio channels in
(5) can be written as

Y = XH + Z. (31)
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By substituting (31) in (24), it is possible to compute the expression for the eMBB per-UE rate under
OMA, as shown in Lemma 2. Notice that, unlike the case of URLLC packets, the nFnT blocklength of
eMBB packets allows for the use of standard asymptotic Shannon theory in the computation of eMBB
information rate.

Lemma 2. In the given C-RAN architecture with analog fronthaul links, for a given bandwidth amplification
factor η ≥ 1, the eMBB user rate under OMA is given as

RB = μ
1− L−1

U
M

log
(

det
(

I + P̄BR−1
zeq HeqHT

eq

))
, (32)

where P̄B = PB

(
1− L−1

U

)
−1 is the transmission power of eMBB users under OMA, Heq = H⊗H

η
c is the

overall channel matrix comprising both the radio channel H and the equivalent cable channel H
η
c defined in

Lemma 1, and Rzeq = IM ⊗H
η
c H

η
c +

1
λ2η

I M
μ

is the overall wireless plus cable noise at the BBU.

Proof. see Appendix B.

As a first observation, the eMBB rate (32) linearly scales with the normalized bandwidth μ.
This shows that a potential performance degradation in terms of spectral efficiency can be incurred in
the presence of fronthaul channels with bandwidth limitations, i.e., with μ < 1. This loss is pronounced
in the presence of significant inter-channel interference, i.e., for large γ. In fact, a large γ increases
the effective noise power as per expression of matrix Rzeq . It is also important to point out that in the
considered C-RAN system based on the analog relaying of radio signals, the overall noise at the BBU
is no longer white as it accounts both for the white cable noise and the wireless noise, where the latter
is correlated when there is some bandwidth redundancy, i.e., when μ ≥ 1/lS or η > 1.

5. Non-Orthogonal Multiple Access (NOMA)

In NOMA, URLLC UEs transmit in the same minislot where the packet is generated, and hence
the access latency is minimal and limited to LU = 1 minislot. However, the URLLC signals mutually
interfere with the eMBB transmission, which spans the whole time-frequency resource plane. Due to
URLLC latency constraints, the eMBB signals necessarily need to be treated as noise while decoding
URLLC packets at the ENs. On the contrary, several strategies can be adapted in order to deal with
the interfering URLLC signal. Beside puncturing, considered for 5G NR standardization [33,34],
this work considers two other techniques, namely Treating Interference as Noise (TIN) and Successive
Interference Cancellation (SIC), as detailed in the rest of this section.

5.1. URLLC Rate under NOMA

The URLLC per-UE rate for NOMA can be computed by leveraging results from finite blocklength
information theory similarly to the OMA case, but accounting for the additional eMBB interference [41].
The URLLC per-UE rate under NOMA is thus well approximated by [32]

RU = log2(1 + SU)−
√

V
nF

Q−1(εD
U),

where

SU =
β2PU

1 + (1 + 2α2)PB
(33)

is the Signal-to-Interference-plus-Noise Ratio (SINR) for the URLLC UE, and the channel dispersion V
is given as

V =
SU

1 + SU
. (34)
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Notice that in NOMA the incoming URLLC packet is always transmitted, and hence an URLLC error
occurs only if the decoding of such packet fails, which happens with probability εD

U . This implies that
under NOMA, the probability of URLLC error is given by

Pr[EU ] = εD
U , (35)

hence imposing the condition εD
U ≤ εU by the requirement (13).

5.2. eMBB Rate by Puncturing

To carry out joint decoding at the BBU of the eMBB signals under NOMA, the standard approach
is to simply discard at the eMBB decoder those signals that are interfered by URLLC. As shown in
Figure 8, this technique, referred to as puncturing, is based on the detection of URLLC transmissions at
the BBU: if a URLLC transmission is detected in the signal received from ENk, such signal is discarded.
Otherwise, the interference-free eMBB signals are jointly decoded at the BBU.

yk( ) Yk( )

YM ( )

Figure 8. Block diagram of the operation of the ENs and BBU for Non-Orthogonal Multiple Access
(NOMA) by puncturing and Treating Interference as Noise (TIN). A/A stands for Analog-to-Analog.

Considering the aforementioned assumptions, the signal model for puncturing can be equivalently
described by assuming that if the signal Y f

k received at the ENk on frequency f is interfered by
an URLLC transmission, then such signal is discarded, and the BBU receives only noise. This is
mathematical described by

Y f
k = Bk(X f

k + αX f
k+1 + αX f

k−1) + Z f
k , (36)

where the Bernoulli variable Bk = 1− Ak ∼ B(1− q) indicates the absence (Bk = 1) or presence
(Bk = 0) of URLLC transmissions in the given minislot. The signal in (36) received across all ENs and
frequencies can be written in matrix form as

Y = XHB + Z, (37)

with definitions given in Section 2 and with B = diag(B1, B2, ..., BM). The rate for the eMBB UE
under NOMA by puncturing is reported in Lemma 3 and can be derived by substituting signal (37) in
Equation (24).

Lemma 3. In the given C-RAN architecture with analog fronthaul links, for a given bandwidth amplification
factor η ≥ 1, the eMBB user rate under NOMA by puncturing yields

RB =
μ

M
EB

[
log

(
det

(
I + PBR−1

zeq HB,eqHT
B,eq

))]
, (38)

where Rzeq is defined as in Lemma 2; HB,eq = BH⊗H
η
c is the equivalent wireless plus cable channel in case of

puncturing; and we have B = diag(B1, B2, ..., BM) , with Bk being i.i.d. B(1− q) variables .
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Proof. Lemma 3 can be proved by following similar steps as for the proof of Lemma 2 with two minor
differences: (i) the radio channel matrix H is right multiplied by the random matrix B and (ii) the
capacity is computed by averaging over the distribution of B.

Differently from the rate (32) achieved by OMA, under NOMA, the eMBB transmission spreads
over all the minislots, so that there is no scaling factor 1− L−1

U in front of the rate expression (38)
to account for the resulting loss in spectral efficiency. In case of NOMA by puncturing, the noise
covariance is exactly as the one in the eMBB OMA rate in Equation (32), since the eMBB signal, if not
discarded at the BBU, is guaranteed to be URLLC interference-free. The overall rate is computed by
averaging over all the possible realizations of the random matrix B, which left-multiplies the radio
channel matrix H and accounts for the probability that the entire signal is discarded due to an incoming
URLLC packet.

In the case of C-RAN with digital limited-capacity fronthaul links, as discussed in [32], it is
advantageous to carry out the operation of detecting and, eventually, discarding the eMBB signal at the
ENs. In fact, with a digital fronthaul, only the undiscarded minislots can be quantized, hence devoting
the limited fronthaul resources to increase the resolution of interference-free eMBB samples [32].
The same does not apply to the analog fronthaul considered here, as signals are directly relayed to the
BBU without any digitization.

5.3. eMBB Rate by Treating Interference as Noise

In the case of analog fronthaul, an enhanced strategy to jointly decode the eMBB signals under
NOMA at the BBU is to treat the URLLC interfering transmissions as noise at the eMBB decoder,
instead of discarding the corresponding minislot as in puncturing. The block diagram is the same as
for puncturing and shown in Figure 8. Accordingly, based on the signals received over the fronthaul
links, the BBU first detects the presence of URLLC transmission so as to properly select the decoding
metric. Then, based on this knowledge, joint decoding is performed by TIN.

Lemma 4. In the given C-RAN architecture with analog fronthaul links, for a given bandwidth amplification
factor η ≥ 1, the eMBB user rate under NOMA by treating URLLC interference as noise yields

RB =
μ

M
EA

[
log

(
det

(
I + PBR−1

A,zeq
HeqHT

eq

))]
, (39)

where RA,zeq = Rzeq + β2PU

(
A⊗H

η
c H

η
c

)
is the overall noise plus URLLC interference at the BBU; matrix A

is as in (5); and matrices Rzeq and Heq are the same as in Lemma 2.

Proof. see Appendix C.

Differently from the two previous cases, in the case of NOMA under TIN, the noise covariance
matrix RA,zeq needs to account also for the interfering URLLC transmissions, whose packet arrival
probability is described by matrix A. The achievable rate is then computed by taking the average over
the random matrix A. This average reflects the long-blocklength transmissions of the eMBB users.

5.4. eMBB Rate by Successive Interference Cancellation

Finally, a more complex receiver architecture can be considered at the BBU, whereby interference is
cancelled out from the useful signal. This technique, referred to as Successive Interference Cancellation
(SIC), is based on the idea that, if an URLLC signal is successfully decoded at the ENk, it can be
cancelled from the overall received signal yk prior to the relaying over the cable, so that an ideally
interference-free eMBB signal is forwarded to the BBU. We also assume that, if the URLLC signal is not
successfully decoded, signal yk is discarded.

As a practical note, SIC must be performed in the analog domain, thus complicating the system
design. Practical complications are not considered in the analysis here. As shown in Figure 9, if the
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URLLC signal is successfully decoded at ENk, this needs first to be Digital-to-Analog Converted (DAC)
and then cancelled from the analog signal yk. Therefore, signal yk needs to be suitably delayed in order
to wait for the cascade of ADC, decoding, and DAC operations to be completed at the URLLC decoder.
Being latency not an issue for eMBB traffic, in this work we assume to employ ideal ADC/DAC, so that
the delay in Figure 9 is assumed as ideally zero.

yk( )
Yk( )

YM ( )

Figure 9. Block diagram of the operation of the ENs and BBU for Non-Orthogonal Multiple Access
(NOMA) by Successive Interference Cancellation (SIC). A/A stands for Analog-to-Analog.

To account for imperfect SIC, the amplitude of the residual URLLC interference on eMBB signal is
assumed to be proportional to a factor ρ ∈ [0, 1]. Accordingly, perfect SIC corresponds to ρ = 0, and no
SIC to ρ = 1.

The signal received at the BBU from ENk can be thus written as

Y f
k = (1− AkEk)(X f

k + αX f
k+1 + αX f

k−1) + ρβAk(1− Ek)U
f
k + Z f

k , (40)

where the Bernoulli variable Ek ∼ B(qεD
U) indicates whether there has been an error in decoding the

URLLC packet (i.e., Ek = 1), or it has been successfully decoded (i.e., Ek = 0), and Ak is the same as
above. It is easy to show that the factor (1− AkEk) multiplying the eMBB signal indicates that the
eMBB signal (40) is discarded only when the two following events simultaneously happen: (i) there is
a URLLC transmission (i.e., Ak = 1, whose probability is q), and (ii) such URLLC transmission is not
successfully decoded (Ek = 1, whose probability is εD

U ). In turn, the factor Ak(1− Ek) multiplying the
URLLC signal implies that, if there is a URLLC transmission (i.e., Ak = 1) and such transmission is
successfully decoded at the ENk (i.e., Ek = 0), then the URLLC signal is mitigated by analog SIC so
that only a ρ-fraction of it is forwarded to the BBU and impairs the eMBB transmission.

The signal in (40) received across all ENs and frequencies in the case of NOMA by SIC can be
equivalently written in matrix form as

Y = XH (I−AE) + ρβUA (I− E) + Z, (41)

where E = diag(E1, E2, ..., EM). The eMBB UE rate for NOMA by SIC can thus be computed by
substituting signal (41) in (24) and the final result is in Lemma 5.

Lemma 5. In the given C-RAN architecture with analog fronthaul links, for a given bandwidth amplification
factor η ≥ 1, the eMBB user rate under NOMA by SIC yields

RB =
μ

M
EA,E

[
log

(
det

(
I + PBR−1

AE,zeq
HAEHT

AE

))]
, (42)
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where HAE = ((I−AE)H) ⊗ H
η
c is the equivalent wireless plus cable channel in case of SIC;

E = diag(E1, E2, ..., EM) is a diagonal matrix whose k-th entry Ek ∼ B(qεD
U) accounts for the probability that

the URLLC signal is not successfully decoded at ENk; and RAE,zeq = Rzeq + ρ2β2PU

(
(A(I− E))⊗H

η
c H

η
c

)
is the overall noise plus residual URLLC interference.

Proof. Lemma 5 can be proved by following similar steps as for the proofs of the previous Lemmas.

SIC describes a more complex ENs architecture in which the URLLC signals, if successfully
decoded, are successively canceled from the eMBB signals at the EN. However, in the case of imperfect
interference cancellation, i.e., ρ > 0, the eMBB signal is still impaired by some residual URLLC
interference, which is accounted for by the overall noise covariance RAE,zeq in (42), similarly to TIN.
The URLLC arrival probability and the probability of successful decoding of the URLLC packets are
reflected by random matrices A and E, respectively.

6. Numerical Results

Numerical results based on the previous theoretical discussion are shown in this section with
the aim of providing some useful intuitions about the performance of C-RAN systems based on
analog RoC in the presence of both URLLC and eMBB services. Unless otherwise stated, we consider
the following settings: M = 6 ENs, nF = 60 subcarriers (This choice is motivated by the fact that,
while still resembling the properties of URLLC short-packet transmissions, nF = 60 is a sufficiently long
packet size to ensure tight lower and upper bounds for the limited-blocklength channel capacity [5]),
PB = 7 dB, PU = 10 dB, URLLC channel gain β2 = 1, PC = 7 dB, lS = 4, and, conventionally, εU = 10−3.
In the case of OMA, the worst-case access latency for URLLC users is set to LU = 2 minislots.

Figure 10 shows URLLC and eMBB per-UE rates for both OMA and NOMA by varying the
fronthaul crosstalk interference power γ2. We consider two values for the normalized bandwidth μ of
each copper cable, namely μ = 1/lS = 1/4 and μ = 1. Please note that the first value corresponds to
the minimal bandwidth, while the latter enables each twisted-pair to carry the whole signal bandwidth.
For reference, the eMBB rates obtained in the case of ideal fronthaul are shown for both OMA and
NOMA. The inter-cell interference power is set to α2 = 0.2, and the URLLC arrival probability to
q = 10−3. For NOMA, we consider here only puncturing.
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Figure 10. URLLC and eMBB per-UE rates as a function of fronthaul crosstalk interference power γ2

for OMA and NOMA with puncturing.
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The URLLC rates do not depend on cable crosstalk interference γ2, since URLLC packets are
decoded at the EN and thus never forwarded to the BBU over the fronthaul. Furthermore, with NOMA,
the access latency of URLLC is minimum, i.e., LU = 1, while for OMA it equals LU = 2. However,
Figure 10 shows that the price to pay for this reduced latency is in terms of transmission rate, which is
lower than in the OMA case. On the contrary, in the case of eMBB, NOMA allows for a communication
at higher rates than those achieved by OMA, thanks to the larger available bandwidth when q is
small enough.

On the subject of eMBB rates, it is interesting to discuss the interplay between the normalized
cable bandwidth μ and crosstalk power γ2. For μ = 1, the same signal is transmitted over all the lS = 4
fronthaul twisted-pairs, and hence the four spatial paths sum coherently over the cable, thus turning
crosstalk into a benefit. Hence, the eMBB rates under both OMA and NOMA increase with γ2 and
ultimately converge to those achieved over the ideal fronthaul (In this work, we consider the same
interference gain γ for all fronthaul links. In practice, the performance boost shown in Figure 10
for increasing γ and for μ = 1 would still be present, albeit to a different extent dependent on the
channel realization, even if considering complex channel gain. However, this would require the use of
more complex precoding techniques, such as Tomlinson-Harashima [37], which require an estimate
of the fronthaul channel. Since for wired fronthauling the channel is nearly static and time-invariant,
channel state information can be easily obtained [42]). For μ = 1/4 instead, disjoint portions of the
radio signal are transmitted over different interfering twisted-pairs, and the performance progressively
decrease with γ2. The leftmost portion of Figure 10 suggests that for mild cable interference, even
when the cable bandwidth is small (i.e., μ = 1/4), it is still possible to provide communication with
acceptable performance degradation, i.e., with a ≈ 1 bps/Hz loss from the ideal fronthaul case for
NOMA, and an even smaller loss for OMA. However, when the cable crosstalk increases, the rate
degradation is severe, and fair performance are achieved only if the cable bandwidth is large enough
to accommodate the redundant transmission of radio signals over all pairs, i.e., μ = 1.

Figure 11 shows URLLC and eMBB rates as a function of the URLLC packet arrival probability q.
eMBB rates under OMA are compared with those achieved by NOMA under puncturing, TIN and SIC.
We consider here full cable bandwidth availability μ = 1 and γ2 = 1, so that, as in Figure 10, the rates
achieved for both OMA and NOMA for low q (say, q < 10−2) coincide with those achieved over the
ideal fronthaul. Inter-cell interference is set to α2 = 0.2. As noted in [32], under OMA, when q increases,
the probability of an URLLC packet to be dropped due to blockage becomes very high, preventing
URLLC transmission from meeting the strict reliability constraints, and results in a vanishing URLLC
rate. This is unlike in NOMA, whereby the URLLC rate is not affected by q, and the access latency is
minimal, i.e., LU = 1. For eMBB under NOMA, TIN always outperforms puncturing. This is because
TIN does not discard any received minislot, thus contributing to the overall eMBB rate. The result is
in contrast with the conventional digital capacity-constrained fronthaul considered in [32]. In fact,
in the latter, for sufficient low q, it is preferable not to waste fronthaul capacity resources by quantizing
samples received in minislots affected by URLLC interference in order to increase the resolution of the
interference-free samples. Additional gains are achieved by SIC, which takes advantages of the high
reliability, and thus high probability to be cancelled, of the URLLC signal at the EN.

Implementing SIC in a fully analog fashion is practically not trivial, and there is generally some
residual URLLC interference. The effect of residual interference on the achievable eMBB rate is
investigated in Figure 12 for q = 0.3, α2 = 0.4, γ2 = 0.5, μ = 1 and for different power of URLLC
UE PU . Once again, in case of perfect interference cancellation, i.e., ρ = 0, SIC approaches the ideal
fronthaul performance, while for more severe values of the residual interference power ρ, the eMBB
performance progressively decreases. Nevertheless, even in the worst-case SIC scenario, i.e., ρ = 1,
the achievable rates are never worse than those achieved by TIN irrespective of the value of PU . This is
once again due to the high reliability of URLLC transmission. It is in fact easy to prove that for ρ = 1
and low values of εD

U , the SIC eMBB rate in (42) converges to the one of TIN in (39).
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Figure 11. URLLC and eMBB rates vs. probability of URLLC arrival q for OMA and NOMA by
puncturing, treating interference as noise (TIN), and successive interference cancellation (SIC).
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Figure 12. eMBB rates for NOMA by SIC vs. power of residual URLLC interference ρ2.

For completeness, Figure 13 shows the trade-off between eMBB and URLLC per-UE rates as a
function of the access latency LU for OMA and NOMA with puncturing, and considering q = 10−3,
α2 = 0.2 and γ2 = 0.5. The behavior of the RoC-based C-RAN system versus the access latency LU is
similar to the one observed for digital capacity-constrained fronthaul [32] for both μ = 1 and μ = 1/4.
While under OMA it is not possible to achieve a non-zero URLLC rate at even relatively low access
latency such as LU > 3, NOMA provides a reliable communication with constant minimal LU = 1
access latency, but with lower rate. For eMBB, NOMA achieves an higher per-UE rate regardless of the
value of the normalized bandwidth μ.
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Figure 13. URLLC and eMBB per-UE rates as a function of access latency LU for OMA and NOMA
with puncturing.

7. Conclusions

This paper considers the coexistence of eMBB and URLLC services in the uplink of an analog
C-RAN architecture from an information theoretic perspective. The rate expressions for URLLC and
eMBB users under Orthogonal and Non-Orthogonal Multiple Access (OMA and NOMA, respectively)
have been derived considering Analog Radio-over-Copper (A-RoC) as a sample scenario, although
the proposed model can be easily adapted to other analog fronthaul technologies. For eMBB signals,
performance have been evaluated in terms of information rate, while for URLLC we also took into
account worst-case access latency and reliability. In case of NOMA, different decoding strategies have
been considered in order to mitigate the impact of URLLC transmission on eMBB information rate.
In particular, the performance achieved by puncturing, considered for 5G standardization, have been
compared with those achieved by Treating URLLC Interference as Noise (TIN), and by Successive
URLLC Interference Cancellation (SIC).

The analysis showed that NOMA allows for higher eMBB information rates with respect to
OMA, while guaranteeing a reliable low-rate URLLC communication with minimal access latency.
Furthermore, numerical results demonstrated that, differently from the digital C-RAN architecture
based on limited-capacity fronthaul links, for analog C-RAN, TIN always outperforms puncturing,
and SIC achieves the best performance at the price of an higher decoder complexity.

As work in progress, the theoretical model can be extended to account for fading channels or
geometric mmWave-link channel models.

Similarly, a frequency-dependent cable channel can be considered by making the cable crosstalk
coefficient γ increase with cable frequency [22]. Another interesting research direction is to consider
the case in which the BBU has no knowledge about the incoming signal, i.e., it is not able to detect the
URLLC transmissions, so that it is impossible for the BBU to choose the proper metric for joint signal
decoding [43,44]. Finally, the overall system can be extended to the case of multiple users per-cell,
where both ENs and users are equipped with multiple antennas.
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Appendix A. Proof of Lemma 1

The proof of Lemma 1 is structured in two main steps detailed in the following: (i) MRC at the
cable output, (ii) cable signal vectorization.

Appendix A.1. Maximum Ratio Combining at the Cable Output

The signal Rk ∈ C
lF× 1

μ after the MRC at the cable output is

Rk = R̃kG

=
(
ỸkHc + W̃k

)
G,

(A1)

where the definitions of R̃k, G, Ỹk and Hc follow from and (10), (20), (18) and (6), respectively. Thus,
Equation (A1) can be rewritten as

Rk =
(

Yk ⊗ 1T
η

) (
γ1lS 1T

lS + (1− γ)IlS

)
G + W̃kG

= γ
(

Yk ⊗ 1T
η

)
1lS 1T

lS G︸ ︷︷ ︸
R
′
k

+ (1− γ)
(

Yk ⊗ 1T
η

)
G︸ ︷︷ ︸

R
′′
k

+ W̃kG︸ ︷︷ ︸
Wk

, (A2)

where Wk = W̃kG is the noise post MRC. The first term in (A2) can be rewritten as

R
′
k =

γ

η

(
Yk ⊗ 1T

η

)
1lS 1T

lS

(
I 1

μ
⊗ 1η

)
(a)
= γ

(
Yk ⊗ 1T

η

)
1lS 1T

1
μ

(b)
= γηYk1 1

μ
1T

1
μ

,

(A3)

where
(a)
= comes from the fact that 1T

lS

(
I 1

μ
⊗ 1η

)
=

(
1T

1
μ

⊗ 1T
η

)(
I 1

μ
⊗ 1η

)
= η1T

1
μ

due to the

mixed-product property of Kronecker product operator (A⊗ B) (C⊗D) = AC ⊗ BD (see [38],

Chapter 2), and, similarly,
(b)
= is obtained by

(
Yk ⊗ 1T

η

)
1lS 1T

1
μ

=
(

Yk ⊗ 1T
η

)(
1 1

μ
1T

1
μ

⊗ 1η

)
= ηYk1 1

μ
1T

1
μ

.

Using similar arguments, the second term in (A2) simplifies to

R
′′
k =

1− γ

η

(
Yk ⊗ 1T

η

)(
I 1

μ
⊗ 1η

)
= (1− γ)Yk.

(A4)

Finally, substituting (A3) and (A4) in (A2) we obtain

Rk = YkH
η
c + Wk, (A5)

where
H

η
c = γη1 1

μ
1T

1
μ
+ (1− γ)I 1

μ
(A6)

is the equivalent cable channel matrix accounting for the bandwidth amplification factor over cable η,
and Yk is the radio signal reorganized in matrix form as in (16).
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Appendix A.2. Cable Signal Vectorization

The vector signal rk ∈ CnF×1 received at the BBU from the k-th EN over all the radio frequency
channels can be obtained by vectorizing matrix Rk in (A5) as

rk = vec(YkH
η
c + Wk)

=
(

H
η
c ⊗ IlF

)
vec(Yk) + vec(Wk)

=
(

H
η
c ⊗ IlF

)
yk + wk,

(A7)

where yk is the radio signal received at EN k-th. The overall cable noise vector wk can be rewritten as

wk = vec(Wk)

= vec(W̃kG)

=
(

GT ⊗ IlF

)
vec(W̃k)

=
1
η

(
I 1

μ
⊗ 1T

η ⊗ IlF

)
w̃k.

(A8)

It is important to notice that since the cable noise W̃k is white Gaussian and uncorrelated over
cable pairs (see (10)), w̃k = vec(W̃k) is also white Gaussian distributed as w̃k ∼ CN (0, IlSlF ). Hence,
the covariance Rw of the overall cable noise vector wk yields

Rw = E

[
wkwH

k

]
=

1
η2

(
I 1

μ
⊗ 1T

η ⊗ IlF

)(
I 1

μ
⊗ 1T

η ⊗ IlF

)T

(a)
=

1
η

(
I 1

μ
⊗ IlF

)
=

1
η

InF ,

(A9)

where the equality (a) comes again from the mixed-product property of Kronecker product.
Equation (A9) shows that the MRC allows to take advantages from the signal redundancy over
the cable, which results in a reduction of the cable noise power by a factor of η.

The proof is completed by gathering the signals rk (A7) received at the BBU from all ENs as

R = [r1, r2, ..., rM]

=
(

H
η
c ⊗ IlF

)
[y1, y2, ..., yM] + [w1, w2, ..., wM]

=
(

H
η
c ⊗ IlF

)
Y + W,

(A10)

where Y is the signal received by all ENs over all radio channels in (5).

Appendix B. Proof of Lemma 2

By substituting signal Y in (31) received by all ENs over all radio channels in case of OMA in
Equation (24), we obtain

R =
(

H
η
c ⊗ IlF

)
XH +

(
H

η
c ⊗ IlF

)
Z + W. (A11)
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To compute the per-UE eMBB rate, a further vectorization is needed, leading to

r = vec(R)

= vec
((

H
η
c ⊗ IlF

)
XH

)
+ vec

((
H

η
c ⊗ IlF

)
Z
)
+ vec(W)

=
(

HT ⊗H
η
c ⊗ IlF

)
x +

(
IM ⊗H

η
c ⊗ IlF

)
z + w

= H̄eqx + z̄eq,

(A12)

where H̄eq = HT ⊗ H
η
c ⊗ IlF is the overall equivalent channel comprising both cable and radio

channels over all ENs, and z̄eq =
(

IM ⊗H
η
c ⊗ IlF

)
z + w is the overall noise vector comprising both

the vectorized radio noise z = vec(Z) ∼ CN (0, InF M) and the vectorized cable noise w = vec(W) ∼
CN (0, 1

λ2η
InF M), where we recall that the scaling λ is due to the cable power constraints. Hence,

the covariance of the equivalent noise z̄eq yields

R̄zeq = E

[
z̄eqz̄H

eq

]
=

(
IM ⊗H

η
c ⊗ IlF

) (
IM ⊗H

η
c ⊗ IlF

)H
+

1
λ2η

InF M

= IM ⊗H
η
c H

η
c ⊗ IlF +

1
λ2η

InF M.

(A13)

The eMBB per-UE rate under OMA is computed by

RB =
(1− L−1

U )

nF M
I(r, x)

=
(1− L−1

U )

nF M
log

(
det

(
I + P̄BR̄−1

z̄eq
H̄eqH̄T

eq

))
,

(A14)

where H̄eqH̄T
eq = HH⊗H

η
c H

η
c ⊗ IlF . Finally, using the determinant property of the Kronecker product

|A⊗ B| = |A|m |B|n , Equation (A14) simplifies to

RB =
lF(1− L−1

U )

nF M
log

(
det

(
I + P̄BR−1

z̄eq
HeqHT

eq

))
= μ

1− L−1
U

M
log

(
det

(
I + P̄BR−1

zeq HeqHT
eq

))
,

(A15)

where Heq = H⊗H
η
c and Rzeq = IM ⊗H

η
c H

η
c +

1
λ2η

I M
μ

, thus concluding the proof.

Appendix C. Proof of Lemma 3

By substituting the signal (5) received at the k-th EN under NOMA into (A10) and by following
similar steps as for the proof of Lemma 2, the overall vector signal received at the BBU comprising
both cable and radio channels over all ENs under NOMA by treating interference as noise yields

r = H̄eqx + βĀequ + z̄eq, (A16)

where the definitions of H̄eq and z̄eq are the same as in (A12), Āeq = A⊗H
η
c ⊗ IlF accounts for the

relay of URLLC signal over the cable, and u is the vectorization of the URLLC signal matrix U in (5).
Similarly to the proof of Lemma 2, the eMBB per-UE rate under NOMA by treating URLLC interference
as noise can be computed by
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RB =
1

nF M
I (r, x |A )

=
μ

M
EA

[
log

(
det

(
I + PBR−1

A,zeq
HeqHT

eq

))] (A17)

where the average is taken over all the possible values of matrix A, PB is the power of the eMBB user
under NOMA and Heq is defined as in (A15). Finally, the covariance RA,zeq of the noise plus URLLC
interference yields

RA,zeq = β2PU AeqAT
eq + Rzeq ,

where Aeq = A ⊗ H
η
c and Rzeq is the same as in (A15). The proof is completed by noticing that

AeqAT
eq = (A⊗H

η
c )(A⊗H

η
c )

H = A⊗H
η
c H

η
c , since matrix A is idempotent and H

η
c symmetric.
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Abstract: In modern implementations of Cloud Radio Access Network (C-RAN), the fronthaul
transport network will often be packet-based and it will have a multi-hop architecture built
with general-purpose switches using network function virtualization (NFV) and software-defined
networking (SDN). This paper studies the joint design of uplink radio and fronthaul transmission
strategies for a C-RAN with a packet-based fronthaul network. To make an efficient use of multiple
routes that carry fronthaul packets from remote radio heads (RRHs) to cloud, as an alternative to
more conventional packet-based multi-route reception or coding, a multiple description coding
(MDC) strategy is introduced that operates directly at the level of baseband signals. MDC ensures
an improved quality of the signal received at the cloud in conditions of low network congestion,
i.e., when more fronthaul packets are received within a tolerated deadline. The advantages of the
proposed MDC approach as compared to the traditional path diversity scheme are validated via
extensive numerical results.

Keywords: robust compression; congestion; packet-based fronthaul; multiple description coding;
cloud radio access network; broadcast coding; eCPRI

1. Introduction

In a Cloud Radio Access Network (C-RAN) architecture, a cloud unit, or baseband processing unit
(BBU), carries out baseband signal processing on behalf of a number of radio units, or remote radio
heads (RRHs), that are connected to the cloud through an interface referred to as fronthaul links [1].
The C-RAN technology is recognized as one of the dominant architectural solutions for future wireless
networks due to the promised reduction in capital and operational expenditures and the capability of
large-scale interference management [2]. A major challenge of C-RAN deployment is that high-rate
baseband in-phase and quadrature (IQ) samples need to be carried on the fronthaul links of limited
data rate. The design of signal processing strategies, including fronthaul compression techniques,
for C-RAN was widely studied in the literature [3–6].

The mentioned works [3–6] and references therein assume a conventional fronthaul topology,
whereby there are dedicated point-to-point fronthaul links from the cloud to each RRH as in Common
Public Radio Interface (CPRI) specification [7]. However, in modern implementations of C-RAN,
as illustrated in Figure 1, the fronthaul transport network will often be packet-based and it will have
a multi-hop architecture built with general-purpose switches using network function virtualization
(NFV) and software-defined networking (SDN) [8,9]. Packet-based fronthaul network can leverage the
wide deployment of Ethernet infrastructure [10].

Entropy 2019, 21, 433; doi:10.3390/e21040433 www.mdpi.com/journal/entropy99
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Figure 1. Illustration of the uplink of a Cloud Radio Access Network (C-RAN) with a packet-based
fronthaul transport network.

Packet-based multi-hop networks are subject to congestion and packet losses. The traditional
path diversity approach repeats the same packet on the multiple routes in order to mitigate these
issues [11,12]. This approach can successfully reduce the packet loss probability at the cost of increasing
the overhead in the fronthaul network. A limitation of these traditional schemes is that, when multiple
packets arrive at the cloud within the tolerated delay, the signal quality utilized for channel decoding
at the cloud is the same as if a single packet is received. To make a more efficient use of the multiple
routes, in this paper, we propose a multiple description coding (MDC) scheme that operates directly
on the baseband signals. Thanks to MDC, a better distortion level is obtained as more packets arrive at
the cloud within the deadline. We refer to [13] for an overview and for a discussion on applications
of MDC. In addition, the work [14] proposed the use of MDC to improve the achievable rate of a
multicast cognitive interference channel.

Since, thanks to MDC, the signal quality varies depending on the number of packets arriving at
the cloud, we propose that user equipments (UEs) leverage the broadcast approach in order to enable
the adaptation of the transmission rate to the effective received signal-to-noise ratio (SNR) [15,16].
The broadcast approach defines a variable-to-fixed channel code [17] that enables the achievable
rate to adapt to the channel state when the latter is known only at the receiving end. The broadcast
approach splits the message of each UE into multiple submessages that are encoded independently,
and transmitted as a superposition of the encoded signals. With the proposed MDC-based solution,
based on the packets received within a given deadline, the cloud performs successive interference
cancellation (SIC) decoding of the UEs’ submessages with a given order so that the achievable rate can
be adapted to the number of delivered packets. Therefore, the number of received packets determines
the quality of the channel state known only at the receiver. Related methods were introduced in [18]
and [19], where broadcast coding with layered compression [20] was applied to the uplink of C-RAN
systems with distributed channel state information [18] and with uncertain fronthaul capacity [19].

More specifically, in this work, we study joint radio and fronthaul transmission for the uplink of a
C-RAN with a packet-based fronthaul network. In the system, the uplink received baseband signal of
each RRH is quantized and compressed producing a bit stream. The output bits are then packetized
and transmitted on the fronthaul network. Following a standard approach to increase robustness
to network losses and random delays (see, e.g., [11,12]), we assume that the packets are sent over
multiple paths towards the cloud as seen in Figure 2. This can be done by using either conventional
packet-based duplication [11,12] or the proposed MDC approach. The packets may be lost due to
network delays or congestion when they are not received within a tolerable fronthaul delay dependent
on the application. Based on the packets that have arrived within the delay, the cloud carries out
decompression and channel decoding.
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Figure 2. Illustration of the multiple description coding (MDC) and packet-based transport network.

The rest of the paper is organized as follows. In Section 2, we describe the system model for the
uplink of a C-RAN with packet-based fronthaul network. In Section 3, we present the proposed MDC
scheme which operates in a combination with the broadcast coding. The optimization of the proposed
scheme is discussed in Section 4, and the advantages of the proposed scheme are validated with
extensive numerical results in Section 5. We discuss extension to general cases in Section 6, and the
paper is concluded in Section 7.

We summarize some notations used throughout the paper as follows. The mutual information
between random variables X and Y conditioned on Z is denoted as I(X; Y|Z), and h(X) denotes
the differential entropy of X. We define CN (μ, Σ) as the circularly symmetric complex Gaussian
distribution with mean μ and covariance Σ. The expectation, trace, determinant and Hermitian
transpose operations are denoted by E(·), tr(·), det(·) and (·)H , respectively, and CM×N represents the
set of all M× N complex matrices. We denote as IN an identity matrix of size N, and ⊗ represents the
Kronecker product. A � 0 indicates that the matrix A is positive semidefinite.

2. System Model

We consider the uplink of a C-RAN in which NU UEs communicate with a cloud unit through
NR RRHs. To emphasize the main idea, we first focus on the case of NR = 1 and discuss extension to
a general number of RRHs in Section 6. Also, for convenience, we define the set NU � {1, . . . , NU}
of UEs, and denote the numbers of antennas of UE k and of the RRH by nU,k and nR, respectively.
The key novel aspect as compared to the prior work reviewed above is the assumption of packet-based
fronthaul connecting between RRH and cloud.

2.1. Uplink Wireless Channel

Each UE k encodes its message to be decoded at the cloud and obtains an encoded baseband signal
xk ∼ CN (0, Σxk ) ∈ CnU,k×1 which is transmitted on the uplink channel toward the RRH. Assuming
flat-fading channel, the signal y ∈ CnR×1 received by the RRH is given as

y = ∑
k∈NU

Hkxk + z = Hx + z, (1)

where Hk ∈ CnR×nU,k is the channel transfer matrix from UE k to the RRH, z ∼ CN (0, Σz) is the
additive noise vector, H = [H1 · · · HNU ] is the channel matrix from all the UEs to the RRH, and x =

[xH
1 · · · xH

NU
]H ∼ CN (0, Σx) is the signal transmitted by all the UEs with Σx = diag({Σxk}k∈NU ). We

define the covariance matrix Σy = HΣxHH + Σz of y.
The RRH quantizes and compresses the received signal y producing a number of packets.

As detailed next, these packets are sent to the cloud on a packet-based fronthaul network, and
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the cloud jointly decodes the messages sent by the UEs based on the signals received within some
maximum allowed fronthaul delay.

2.2. Packet-Based Fronthaul Transport Network

As discussed in Section 1, in modern implementations of C-RAN, the fronthaul transport network
is expected to be packet-based and to have a multi-hop architecture built with general-purpose switches
using NFV and SDN [8,9]. As a result, upon compression, the received signals need to be packetized,
and the packets to be transmitted on the fronthaul network to the cloud. Packets may be lost due to
network delays or congestion when they are not received within a tolerated fronthaul delay dependent
on the application.

A standard approach to increase robustness to network losses and random delays is to
send packets over multiple paths towards the destination (see, e.g., [11,12]). As seen in Figure 2,
following [11], we model transmission on each such path, or route, as a queue. Furthermore, as seen in
Figure 3, transmission on the fronthaul transport network is slotted, with each slot carrying a payload
of BF bits. The duration of each wireless frame, of LW symbols, encompasses TF fronthaul slots. Due to
congestion, each fronthaul packet sent by the RRH on route j takes a geometrically distributed number
of time slots to be delivered. Accordingly, transmission is successful independently in each slot with
probability 1− εF,j on the jth route.

Figure 3. Illustration of wireless frame and fronthaul slotted transmission.

3. Robust Compression Based on Multiple Description Coding

In this section, we propose a robust compression technique based on MDC, which, in combination
with broadcast coding, enables the achievable rate to be adapted to the number of packets collected by
the cloud, and hence to the current network congestion level. To highlight the idea, we assume that the
RRH has available two paths to the cloud. Extensions will be discussed in Section 6. The traditional
path diversity approach repeats the same packet on the two routes [11]. More sophisticated forms of
packet-based encoding, such as erasure coding studied in [12], are not applicable to the case of two
paths. Accordingly, if one or two packets are received by the fronthaul deadline of TF slots, the signal
is decompressed and decoding is carried out at the cloud. Note that, if both packets are received,
the signal quality is the same as if one packet is received. In contrast, we propose to adopt MDC as
seen in Figure 2. With MDC, if one packet is received by the deadline TF, we obtain a certain distortion
level, while we obtain a better distortion level if both packets are received ([21] Ch. 14).

In the MDC approach, the RRH first quantizes and compresses the received signal y to produce
quantized signals ŷ0, ŷ1 and ŷ2. Packets ŷ1 and ŷ2 are sent on two separate paths to the cloud, with ŷl
sent on route l. By the properties of MDC, if only a single packet l ∈ {1, 2} arrives at the cloud within
deadline TF, the MDC decoder can recover the quantized signal ŷl , while the signal ŷ0 can be recovered
if the both packets are received in time.
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Denote as RF the number of bits per symbol used to represent the signal for each of the quantized
packets ŷ1 and ŷ2. We refer to RF as the compression output rate. As shown in ([21] Ch. 14), the rate
RF should satisfy the conditions

RF ≥ I (y; ŷ1) , (2)

RF ≥ I (y; ŷ2) , (3)

and 2RF ≥ I
(

y; {ŷl}l∈{0,1,2}
)
+ I (ŷ1; ŷ2) . (4)

To evaluate (2)–(4), as in, e.g., [3–6], we assume standard Gaussian quantization codebooks, so that the
quantized signals can be modeled as

ŷl = y + ql , (5)

for l ∈ {0, 1, 2}, where the quantization noise ql is independent of the signal y and distributed as
ql ∼ CN (0, Ω) for l ∈ {1, 2} and q0 ∼ CN (0, Ω0). The right-hand sides (RHSs) of (2)–(4) can hence
be written as

gl (Ω, Ω0) =I (y; ŷl) (6)

= log2 det
(
Σy + Ω

)
− log2 det (Ω) , l ∈ {1, 2},

and gsum (Ω, Ω0) =I
(

y; {ŷl}l∈{0,1,2}
)
+ I (ŷ1; ŷ2) (7)

=h (y) + h
(
{ŷl}l∈{0,1,2}

)
− h

(
y, {ŷl}l∈{0,1,2}

)
+ h (ŷ1) + h (ŷ2)− h (ŷ1, ŷ2)

= log2 det
(
Σy

)
+ log2 det

(
A3ΣyAH

3 + Ω̄
)

− log2 det
(

A4ΣyAH
4 + diag(0nR , Ω̄)

)
+ 2 log2 det

(
Σy + Ω

)
− log2 det

(
A2ΣyAH

2 + I2 ⊗Ω
)

,

where we have defined the notations Ω̄ = diag(Ω0, I2 ⊗Ω) and Am = 1m ⊗ InR with 1m ∈ Cm×1

denoting a column vector of all ones.
We now discuss the derivation of the probability that a packet l is delivered to the cloud within

the given deadline TF. The number NF of fronthaul packets that need to be delivered within the time
TF to the cloud for the lth description is given as

NF =

⌈
LW RF

BF

⌉
, (8)

since LW RF is the number of bits per description and BF is the number of available bits per frame. Note
that NF increases with the compression output rate RF and decreases with the size of the fronthaul
packet BF. Then, the probability that description l ∈ {1, 2} sent on route l is received at the cloud
within the deadline TF is given as

Pc
l (TF) = Pr

[
NF

∑
m=1

Tl,m ≤ TF

]
, (9)

where {Tl,m}NF
m=1 are independent and geometrically distributed random variables with parameter

1− εF,l such that the sum ∑NF
m=1 Tl,m is a negative binomial random variable with parameters 1− εF,l

and NF ([22] Ch. 3). Therefore, the probability (9) can be written as

Pc
l (TF) = 1− IεF,l (TF − NF + 1, NF) , (10)
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where Ix(a, b) is the regularized incomplete beta function defined as

Ix(a, b) =
B(x; a, b)
B(1; a, b)

, (11)

with B(x; a, b) =
∫ x

0 ta−1(1 − t)b−1dt. For simplicity of notation, we also define the probabilities
Pc

∅(TF) = (1− Pc
1(TF))(1− Pc

2(TF)) and Pc
all(TF) = Pc

1(TF)Pc
2(TF) that no or both descriptions arrive

at the cloud within the deadline.
Define as M ∈ {0, 1, 2} the number of descriptions that arrive at the cloud within the given

deadline TF. The probability distribution pM(m) = Pr [M = m] can then be written as

pM(m) =

⎧⎪⎪⎨⎪⎪⎩
Pc

∅(TF), m = 0

∑2
l=1 Pc

l (TF)
(

1− Pc
l̄ (TF)

)
, m = 1

Pc
all(TF), m = 2

, (12)

with the notation 1̄ = 2 and 2̄ = 1.

Broadcast Coding

With MDC, the quality of the information available at the cloud for decoding the transmitted
signals {xk}k∈NU is determined by the number M of descriptions that arrive at the cloud. Since the
state M ∈ {0, 1, 2} is not known to the UEs, the rate cannot be a priori adapted by the UEs depending
on the congestion level. To handle this issue, we propose that each UE k adopts a broadcast coding
strategy [15–18] as

xk = xk,1 + xk,2, (13)

where the signals xk,1 and xk,2 encode independent messages of UE k, and the decoder at the cloud is
required to reliably recover only the signals {xk,j}k∈NU with j ≤ m when M = m descriptions arrive
at the cloud. We denote the rate of the signal xk,m as Rk,m for k ∈ NU and m ∈ {1, 2}. We make the
standard assumption that the jth signal xk,j of each UE k is distributed as xk,j ∼ CN (0, Pk,jInU,k ), where
the powers Pk,j need to satisfy the power constraint Pk,1 + Pk,2 = P. Under the described assumption,
the covariance matrix Σx of all the transmitted signals x is given as Σx = PInU with nU = ∑k∈NU

nU,k.
The signal rm collected at the cloud when M = m descriptions have arrived at the cloud is given as

rm =

⎧⎪⎪⎨⎪⎪⎩
0, m = 0

ŷ1, m = 1

ŷ0, m = 2

. (14)

For the case of m = 1, the cloud receives r1 = ŷ1 or r1 = ŷ2. In (14), we set r1 = ŷ1 without loss of
generality, since ŷ1 and ŷ2 are statistically equivalent.

When no description arrives at the cloud (i.e., M = 0), the cloud has no information received from
the RRH, and none of the signals {xk,0, xk,1}k∈NU can be decoded by the cloud. When only a single
description arrives at the cloud (M = 1), the cloud jointly decodes the first-layer signals {xk,1}k∈NU

based on the received quantized signal r1. Therefore, the achievable sum-rate RΣ,1 = ∑k∈NU
Rk,1 of the

first-layer signals is given as

RΣ,1 = f1 (P, Ω, Ω0) = I (x̄1; r1) (15)

= log2 det
(

HΣxHH + Σz + Ω
)
− log2 det

(
HP̄2HH + Σz + Ω

)
,

where we have defined the vector x̄m = [xH
1,m · · · xH

NU ,m]
H ∼ CN (0, P̄m) that stacks the layer-m signals

of all the UEs, and the notations P = {Pk,j}k∈NU ,j∈{1,2} and P̄m = diag({Pk,m}k∈NU ).
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If both descriptions arrive at the cloud (i.e., M = 2), the cloud first jointly decodes the first-layer
signals {xk,1}k∈NU from the recovered quantized signal r2, and cancels the impact of the decoded signals
from r2, i.e., r̃2 ← r2 − ∑k∈NU

Hkxk,1. Then, the cloud decodes the second-layer signals {xk,2}k∈NU

based on r̃2. Thus, the achievable sum-rate RΣ,2 = ∑k∈NU
Rk,2 of the second-layer signals is given as

RΣ,2 = f2 (P, Ω, Ω0) = I (x̄2; r2|x̄1) (16)

= log2 det
(

HP̄2HH + Σz + Ω0

)
− log2 det (Σz + Ω0) .

In summary, the whole system operates as follows. The cloud first obtains the channel state
information and optimizes the variables related to broadcast coding and MDC coding. The optimization
will be discussed in Section 4. After the optimization algorithm is finished, the cloud informs the UEs
and the RRH of the optimized variables. The UEs perform broadcast coding and uplink transmission,
and the RRH compresses the received signal obtaining two descriptions which are packetized and sent
on fronthaul paths to the cloud. Based on the received packets, the cloud performs MDC decoding of
the quantized signals and SIC decoding of the UEs’ messages. We provide a flowchart that illustrates
the described operations of the proposed system in Figure 4.

Figure 4. A flowchart that illustrates the operations of the proposed uplink system based on broadcast
coding and multiple description coding (MDC).

4. Problem Definition and Optimization

For fixed instantaneous channel states {Hk}k∈NU , we aim at jointly optimizing the compression
output rate RF, the power allocation variables P and the quantization noise covariance matrices
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{Ω, Ω0} with the goal of maximizing the expected sum-rate denoted as R̄Σ. Here the expectation is
taken with respect to the random variables {Tl,m}l∈{1,2},m∈NF

withNF = {1, 2, . . . , NF}, which depend
on the current congestion level of the packet network. The expected sum-rate R̄Σ is hence given as

R̄Σ = pM(1)RΣ,1 + pM(2) (RΣ,1 + RΣ,2) (17)

= p̄M(1)RΣ,1 + p̄M(2)RΣ,2,

with the notations p̄M(1) = pM(1) + pM(2) and p̄M(2) = pM(2). The expected sum-rate R̄Σ can be
expressed as a function of RF, P and {Ω, Ω0}:

R̄Σ = fΣ (RF, P, Ω, Ω0) (18)

= p̄M(1) f1 (P, Ω, Ω0) + p̄M(2) f2 (P, Ω, Ω0) .

We note that increasing the compression output rate RF has conflicting effects on the expected
sum-rate R̄Σ. On the one hand, the probability of timely reception of all fronthaul packets decreases
with RF due to the increased number NF of packets in (8). On the other hand, once the packets have
arrived at the cloud, a better sum-rate can be achieved with larger RF, since the quantization noise
signals have smaller powers.

The problem mentioned above can be stated as

maximize
RF ,P,Ω,Ω0

fΣ (RF, P, Ω, Ω0) (19a)

s.t. RF ≥ g1 (Ω, Ω0) , (19b)

2RF ≥ gsum (Ω, Ω0) , (19c)

Ω � 0, Ω0 � 0, (19d)

Pk,1 + Pk,2 = P, k ∈ NU , (19e)

Pk,1 ≥ 0, Pk,2 ≥ 0, k ∈ NU . (19f)

To tackle the problem (19), we first note that, if we fix the compression output rate variable RF,
the problem becomes a difference-of-convex (DC) problem as in [23]. Therefore, we can find an efficient
solution by adopting the concave convex procedure (CCCP) approach (see, e.g., [24,25]). The detailed
algorithm that tackles (19) with the CCCP approach is described in Algorithm 1, where we have defined
the functions f̃Σ(RF, P, Ω, Ω0, P(t), Ω(t), Ω

(t)
0 ), g̃1(Ω, Ω0, Ω(t), Ω

(t)
0 ) and g̃sum(Ω, Ω0, Ω(t), Ω

(t)
0 ) as

f̃Σ

(
RF, P, Ω, Ω0, P(t), Ω(t), Ω

(t)
0

)
= p̄M(1)

⎛⎜⎝ log2 det
(
HΣxHH + Σz + Ω

)
−φ

(
HP̄2HH + Σz + Ω,

HP̄
(t)
2 HH + Σz + Ω(t)

) ⎞⎟⎠
+ p̄M(2)

(
log2 det

(
HP̄2HH + Σz + Ω0

)
−φ

(
Σz + Ω0, Σz + Ω

(t)
0

) )
,

g̃1

(
Ω, Ω0, Ω(t), Ω

(t)
0

)
=φ

(
Σy + Ω, Σy + Ω(t)

)
− log2 det (Ω) ,

and g̃sum

(
Ω, Ω0, Ω(t), Ω

(t)
0

)
= log2 det

(
Σy

)
+ φ

(
A3ΣyAH

3 + Ω̄, A3ΣyAH
3 + Ω̄(t)

)
− log2 det

(
A4ΣyAH

4 + diag(0nR , Ω̄)
)

+ 2φ
(

Σy + Ω, Σy + Ω(t)
)
− log2 det

(
A2ΣyAH

2 + I2 ⊗Ω
)

,
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with the function φ (A, B) defined as

φ (A, B) = log2 det(B) +
1

ln 2
tr

(
B−1(A− B)

)
.

Algorithm 1 CCCP algorithm for problem (19) for fixed RF

1. Initialize the variables P(1), Ω(1), Ω
(1)
0 to arbitrary matrices that satisfy the constraints (19b), (19c)

and (19d), and set t ← 1.
2. Update the variables P(t+1), Ω(t+1), Ω

(t+1)
0 as a solution of the convex problem:

maximize
P,Ω,Ω0

f̃Σ

(
RF, P, Ω, Ω0, P(t), Ω(t), Ω

(t)
0

)
(20a)

s.t. RF ≥ g̃1

(
Ω, Ω0, Ω(t), Ω

(t)
0

)
, (20b)

2RF ≥ g̃sum

(
Ω, Ω0, Ω(t), Ω

(t)
0

)
, (20c)

Ω � 0, Ω0 � 0, (20d)
P1 + P2 = P, (20e)
P1 ≥ 0, P2 ≥ 0. (20f)

3. Stop if a convergence criterion is satisfied. Otherwise, set t ← t + 1 and go back to Step 2.

We have discussed the optimization of the power allocation variables P and the quantization noise
covariance matrices {Ω, Ω0} for fixed compression output rate RF. For the optimization of RF, we
propose to perform a 1-dimensional discrete search over RF ∈ R = {ΔRF , 2ΔRF , . . . , NF,maxΔRF} with
ΔRF = BF/LW and NF,max = TF + 1. Here we have excluded the values τΔRF with non-integer τ from
the search space R. This does not cause a loss of optimality, since we can increase the compression
output rate, hence improving the compression fidelity to �τ�ΔRF without increasing the number NF of
packets in (8) that needs to be delivered to the cloud.

Optimization of Traditional Path-Diversity Scheme

In this subsection, we discuss the optimization of the traditional path-diversity (PD) scheme,
in which the RRH repeats to send the same packet on the available two routes [11]. Accordingly,
the RRH produces only a single quantized signal ŷ = y + q, where the quantization noise q is
independent of y and distributed as q ∼ CN (0, Ω) under the assumption of standard Gaussian
quantization codebooks. Denoting as RF the compression output rate for the quantized signal ŷ,
the rate RF should satisfy the condition

RF ≥g (Ω) = I (y; ŷ) (21)

= log2 det
(
Σy + Ω

)
− log2 det (Ω) .

To evaluate the achievable sum-rate, we define the binary variable D ∈ {0, 1}, which takes 1 if
at least one packet arrives at the cloud, and 0 otherwise. The probability distribution of D can be
written as

Pr [D = d] =

{
Pc

∅(TF), d = 0

1− Pc
∅(TF), d = 1

. (22)

If both packets sent on two routes are lost (i.e., D = 0), the cloud cannot decode the signals sent
by the UEs. If the cloud receives at least one packet (D = 1), the cloud can perform decoding of the
signals x based on the received quantized signal ŷ, and the achievable sum-rate can be written as
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RΣ = fΣ(Ω) = I (x; ŷ) (23)

= log2 det
(

HΣxHH + Σz + Ω
)
− log2 det (Σz + Ω) .

The expected sum-rate R̄Σ can be expressed as

R̄Σ = fΣ (RF, Ω) = Pr [D = 1] fΣ(Ω). (24)

The problem of maximizing the expected sum-rate R̄Σ with the traditional PD scheme can hence
be stated as

maximize
RF ,Ω

fΣ (RF, Ω) (25a)

s.t. RF ≥ g (Ω) , (25b)

Ω � 0. (25c)

We can tackle the problem (25) in a similar approach to that proposed for addressing (19).

5. Numerical Results

In this section, we provide numerical results that validate the advantages of the proposed robust
baseband compression technique based on MDC coding scheme. We consider a system bandwidth of
100 MHz and assume that each wireless frame consists of LW = 5000 channel uses. We also assume
that each fronthaul packet has BF = 6000 bits (i.e., 750 bytes) which corresponds to a half of the
maximum payload size per frame defined in Ethernet [10]. Denoting as CF the fronthaul capacity in
bit/s, each fronthaul packet has the duration of BF/CF. If we define the maximum tolerable delay
on fronthaul network as Tmax s, the deadline TF in packet duration is given as TF = �Tmax/(BF/CF)�.
In the simulation, we set Tmax = 1 ms. For simplicity, we assume that all paths have the same error
probability εF,l = εF for all l ∈ {1, 2}. Regarding the channel statistics, we assume that the positions of
the UEs and the RRH are uniformly distributed within a circular area of radius 100 m. The elements
of the channel matrix Hk are independent and identically distributed (i.i.d.) as CN (0, ρk). Here the
path-loss ρk is modeled as ρk = 1/(1 + (dk/d0)

3), where dk represents the distance between the RRH
and UE k, and d0 is the reference distance set to d0 = 30 m. We set the noise covariance to Σz = N0InR ,
and the SNR is defined as P/N0.

5.1. Fixed Compression Output Rate RF

We first evaluate the expected sum-rate performance E[Rsum] when only the power allocation
variables P and the quantization noise covariance matrices Ω are optimized according to Algorithm
1 for fixed compression output rate RF. In Figure 5, we plot the expected sum-rate E[Rsum] versus
the compression output rate RF for various values of path error probability εF with NU = 2, nR = 2,
nU,k = 1, CF = 100 Mbit/s and 25 dB SNR. We observe that, for both the MDC and PD schemes,
the optimal compression output rate RF increases as the fronthaul error probability εF decreases. This
suggests that, with smaller εF, the packet networks become more reliable and hence more packets can
be reliably delivered to the cloud within the deadline. Furthermore, the figure shows that, with MDC,
it is optimal to choose a lower compression output rate with respect to PD. This is because, as the
fronthaul quality improves in terms of the error probability εF, the PD scheme can only increase the
sum-rate by increasing the quality, or the compression output rate RF, of each individual description,
since it cannot benefit from reception of both descriptions. In contrast, the MDC scheme can operate at
a lower RF, since the quality of the compressed signal is improved by reception of both descriptions.
Receiving both descriptions tends to be more likely if the compression output rate is lower and hence
the number of fronthaul packets per frame is reduced.
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Figure 5. Expected sum-rate E[Rsum] versus the compression output rate RF for various values of εF ∈
{0.1, 0.3, 0.5, 0.7, 0.9} (NU = 2, nR = 2, nU,k = 1, CF = 100 Mbit/s and 25 dB signal-to-noise ratio (SNR)).

In Figure 6, we depict the expected sum-rate E[Rsum] versus the compression output rate RF for
various SNR levels with εF = 0.4, NU = 3, nR = 3, nU,k = 1 and CF = 100 Mbit/s. The figure shows
that, as the SNR increases, the optimal compression output rate RF slightly increases for both MDC
and PD. This is because, while the SNR level does not affect the reliability of the packet fronthaul
network, it is desirable for the RRH to report better descriptions of the uplink received signals to the
cloud when the received signals carry more information on the UEs’ messages.
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Figure 6. Expected sum-rate E[Rsum] versus the compression output rate RF for various SNR levels (εF = 0.4,

NU = 3, nR = 3, nU,k = 1 and CF = 100 Mbit/s).

Figure 7 plots the expected sum-rate E[Rsum] with respect to the compression output rate RF for
various fronthaul capacity CF with εF = 0.6, NU = 2, nR = 2, nU,k = 1 and 25 dB SNR. Since more
packets, and hence more bits, can be transferred to the cloud within the deadline TF with increased
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fronthaul capacity CF, the optimal compression output rate RF grows with CF for both the MDC and
PD schemes.
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Figure 7. Expected sum-rate E[Rsum] versus the compression output rate RF for various fronthaul capacity CF

(εF = 0.6, NU = 2, nR = 2, nU,k = 1 and 25 dB SNR).

5.2. Optimized Compression Output Rate RF

In this subsection, we present the expected sum-rate E[Rsum] achieved when the power allocation
variables P, the quantization noise covariance matrices Ω and the compression output rate RF are
jointly optimized as discussed in Section 4. In Figure 8, we plot the expected sum-rate E[Rsum] versus
the SNR for NU = 3, nR = 3, nU,k = 1, εF ∈ {0.4, 0.6} and CF = 100 Mbit/s. We observe from the
figure that the MDC scheme shows a larger gain at a higher SNR level. This suggests that, as the SNR
increases, the overall performance becomes limited by the quantization distortion which is smaller for
the MDC scheme than for PD.
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Figure 8. Expected sum-rate E[Rsum] versus the SNR (NU = 3, nR = 3, nU,k = 1, εF ∈ {0.4, 0.6} and CF =

100 Mbit/s).
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In Figure 9, we plot the expected sum-rate E[Rsum] versus the fronthaul capacity CF for NU = 3,
nR = 3, nU,k = 1, εF ∈ {0.4, 0.6} and 25 dB SNR. The figure illustrates that the MDC scheme shows
relevant gains over the PD scheme in the intermediate regime of CF. This is because, when the fronthaul
capacity CF is sufficiently large, the whole system has a performance bottleneck in the wireless uplink
rather than in the fronthaul network, and the sum-rate converges to 0 as CF approaches 0.
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Figure 9. Expected sum-rate E[Rsum] versus the fronthaul capacity CF (NU = 3, nR = 3, nU,k = 1, εF ∈ {0.4, 0.6}
and 25 dB SNR).

6. Extension to General Numbers of RRHs and Fronthaul Paths

In this section, we briefly discuss the application of MDC to the case of general number NR of
RRHs and NP fronthaul paths. Each RRH i sends NP descriptions ŷi,l , l ∈ {1, . . . , NP}, one on each of
the routes to the cloud, where ŷi,l is a quantized version of the received signal yi defined as

ŷi,l = yi + qi,l . (26)

As in (5), under Gaussian quantization codebook, the quantization noise qi,l is independent of yi and
is distributed as qi,l ∼ CN (0, Ωi). With MDC, the cloud can recover the signal ŷi,l if only the packets
for the lth description ŷi,l arrive at the cloud within the deadline. If a subset of descriptions from RRH
i arrive in time, the cloud can obtain a better signal from RRH i, whose quality increases with the size
of the subset. Generalizing (2)–(4), conditions relating the resulting quantization noise covariance
matrices and the output compression rate RF can be found in [26].

We define as Mi ∈ {0, 1, . . . , NP} the number of descriptions of RRH i that arrive at the cloud
within the deadline TF. The probability distribution pMi (m) = Pr[Mi = m] of Mi is then given as

pMi (m) = ∑
(c1,...,cNP )∈{0,1}NP

1

(
NP

∑
l=1

cl = m

)
NP

∏
l=1

P̃l(TF), (27)

where 1(·) is an indicator function that outputs 1 if the input statement is true and 0 otherwise; and
the probability P̃l(TF) is defined as P̃l(TF) = 1(cl = 1)Pc

l (TF) + 1(cl = 0)(1− Pc
l (TF)).

As discussed, with MDC, the quality of the information available at the cloud depends on the
numbers of descriptions that arrive at the cloud. This means that there are (NP + 1)NR distinct states
depending on the current congestion level of the packet network. In principle, the broadcast coding
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can be applied in such a way that each UE k sends a superposition of (NP + 1)NR layers. However,
this approach does not scale well with respect to NR, and it is not straightforward to rank all the
(NP + 1)NR states.

To adopt a broadcast coding strategy with a scalable complexity, a possible option is to fix the
number of layers, denoted as L, as in, e.g., [27]. Accordingly, the transmit signal xk of each UE k
is given by a superposition of L independent signals xk,l ∼ CN (0, Pk,lInU,k), l ∈ L = {1, . . . , L},
i.e., xk = ∑l∈L xk,l with the power constraint ∑l∈L Pk,l = P. We then partition the (NP + 1)NR congestion
states into L groups, denoted as S1, . . . ,SL, so that the layer-l signals {xk,l}k∈NU can be decoded by
the cloud for all congestion states in Sj with j ≥ l. Since we can evaluate the probability of all the
states using (27), the expected sum-rate can be expressed as a function of the compression output rate,
the power allocation variables and the quantization covariance matrices. Therefore, we can tackle the
problem of jointly optimizing these variables in a similar approach to that proposed in Section 4. We
leave the evaluation of the impacts of the numbers of RRHs NR and fronthaul paths NP to future work.

7. Conclusions

In this paper, we have studied the joint design of uplink radio and fronthaul packet transmission
strategies for the uplink of C-RAN with a packet-based fronthaul network. To efficiently use multiple
fronthaul paths that carry fronthaul packets from RRHs to cloud, we have proposed an MDC scheme
that operates directly on the baseband signals. Since the signal quality available at the cloud depends
on the current network congestion level, a broadcast coding strategy has been investigated with MDC
in order to enable variable-rate transmission. The advantages of the proposed MDC scheme compared
to the traditional PD technique have been validated through extensive numerical results. Among
open problems, we mention the analysis in the presence of imperfect channel state information [28],
the impact of joint decompression of the signals received from multiple RRHs at the cloud [3,23],
and design of downlink transmission for C-RAN systems with packet-based fronthaul network.
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Abstract: In this work, the capacity of multiple-input multiple-output channels that are subject
to constraints on the support of the input is studied. The paper consists of two parts. The first
part focuses on the general structure of capacity-achieving input distributions. Known results are
surveyed and several new results are provided. With regard to the latter, it is shown that the support
of a capacity-achieving input distribution is a small set in both a topological and a measure theoretical
sense. Moreover, explicit conditions on the channel input space and the channel matrix are found such
that the support of a capacity-achieving input distribution is concentrated on the boundary of the
input space only. The second part of this paper surveys known bounds on the capacity and provides
several novel upper and lower bounds for channels with arbitrary constraints on the support of the
channel input symbols. As an immediate practical application, the special case of multiple-input
multiple-output channels with amplitude constraints is considered. The bounds are shown to be within
a constant gap to the capacity if the channel matrix is invertible and are tight in the high amplitude
regime for arbitrary channel matrices. Moreover, in the regime of high amplitudes, it is shown that
the capacity scales linearly with the minimum between the number of transmit and receive antennas,
similar to the case of average power-constrained inputs.

Keywords: MIMO; channel capacity; amplitude constraint; input distrbution; capacity bounds

1. Introduction

While the capacity of a multiple-input multiple-output (MIMO) channel with an average power
constraint is well understood [1], there is surprisingly little known about the capacity of the more
practically relevant case in which the channel inputs are subject to amplitude constraints. Shannon
was the first who considered a channel that is constrained in its amplitude [2]. In that paper,
he derived corresponding upper and lower bounds and showed that in the low-amplitude regime,
the capacity behaves as that of channel with an average power constraint. The next major contribution
to this problem was a seminal paper of Smith [3] published in 1971. Smith showed that, for the
single-input single-output (SISO) Gaussian noise channel with an amplitude-constrained input,
the capacity-achieving inputs are discrete with finite support. In [4], this result is extended to
peak-power-constrained quadrature Gaussian channels. Using the approach of Shamai [4], it is shown
in [5] that the input distribution that achieves the capacity of a MIMO channel with an identity channel
matrix and a Euclidian norm constraint on the input vector is discrete. Even though the optimal input
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distribution is known to be discrete, very little is known about the number or the optimal positions of
the corresponding constellation points. To the best of our knowledge, the only case for which the input
distribution is precisely known is considered in [6], where it is shown for the Gaussian SISO channel
with an amplitude constraint that two point masses are optimal if amplitude values are smaller than
1.665 and three for amplitude values of up to 2.786. Finally, it has been shown very recently that the
number of mass points in the support of the capacity-achieving input distribution of a SISO channel is
of the order O(A2) with A the amplitude constraint.

Based on a dual capacity expression, in [7], McKellips derived an upper bound on the capacity of
a SISO channel that is subject to an amplitude constraint. The bound is asymptotically tight; that is,
for amplitude values that tend to infinity. By cleverly choosing an auxiliary channel output distribution
in the dual capacity expression, the authors of [8] sharpened McKellips’ upper bound and extended
it to parallel MIMO channels with a Euclidian norm constraint on the input. The SISO version of
the upper bound in [8] has been further sharpened in [9] by yet another choice of auxiliary output
distribution. In [10], asymptotic lower and upper bounds for a 2× 2 MIMO channel are presented and
the gap between the bounds is specified.

In this work, we make progress on this open problem by deriving several new upper and lower
bounds that hold for channels with arbitrary constraints on the support of the channel input distribution
and then apply them to the practically relevant special case of MIMO channels that are subject to
amplitude-constraints.

1.1. Contributions and Paper Organization

The remainder of the paper is organized as follows. The problem is stated in Section 2. In Section 3,
we study properties of input distributions that achieve the capacity of input-constrained MIMO
channels. The section reviews known results on the structure of optimal input distributions and
presents several new results. In particular, Theorem 3 shows that the support of a capacity-achieving
input distribution must necessarily be a small set both topologically and measure theoretically.
Moreover, Theorem 8 characterizes conditions on the channel input space as well as on the channel
matrix such that the support of the optimal input distribution is concentrated on the boundary of the
channel input space.

In Section 4, we derive novel upper and lower bounds on the capacity of a MIMO channel
that is subject to an arbitrary constraint on the support of the input. In particular, three families
of upper bounds are proposed, which are based on: (i) the maximum entropy principle (see the
bound in Theorem 9); (ii) the dual capacity characterization (see the bound in Theorem 10); and (iii)
a relationship between mutual information and the minimum mean square error that is known as
the I-MMSE relationship (see the bound in Theorem 11). On the other hand, Section 4 provides
three different lower bounds. The first one is given in Theorem 12 and is based on the entropy
power inequality. The second one (see Theorem 13) is based on a generalization of the celebrated
Ozarow–Wyner bound [11] to the MIMO case. The third upper bound (see Theorem 14) is based on
Jensen’s inequality and depends on the characteristic function of the channel input distribution.

In Section 5, we evaluate the performance of our bounds by studying MIMO channels with
invertible channel matrices. In particular, Theorem 17 states that our upper and lower bounds are
within n log2(ρ) bits, where ρ is the packing efficiency and n the number of transmit and receive
antennas. For diagonal channel matrices, it is then shown (see Theorem 18) that the Cartesian product
of simple pulse-amplitude modulation (PAM) constellations achieves the capacity to within 1.64n bits.

Section 6 is devoted to MIMO channels with arbitrary channel matrices. It is shown that,
in the regime of high amplitudes, similar to the case of average power-constrained channel inputs,
the capacity scales linearly with the minimum of the number of transmit and receive antennas.

In Section 7, our upper and lower bounds are applied to the SISO case, which are then compared
with bounds known from the literature. Finally, Section 8 concludes the paper. Note that parts of the
results in this paper were also published in [12].
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1.2. Notation

Vectors are denoted as bold lowercase letters, random vectors as bold uppercase letters,
and matrices as bold uppercase sans serif letters (e.g., x, X, X). For any deterministic vector x ∈ Rn,
n ∈ N, we denote the Euclidian norm of x by ‖x‖. For some random X ∈ supp(X) ⊆ Rn and any p > 0,
we define

‖X‖p :=
(

1
n
E[‖X‖p]

) 1
p
, (1)

where supp(X) denotes the support of X. Note that for p ≥ 1, the quantity in Equation (1) defines
a norm and for n = 1 we simply have ‖X‖p

p = E[|X|p].
The norm of a matrix H ∈ Rn×n is defined as

‖H‖ := sup
x:x �=0

‖Hx‖
‖x‖ ,

whereas Tr(H) is denoting its trace. The n× n identity matrix is represented as In.
Let S be a subset of Rn. Then,

Vol(S) :=
∫
S

dx

denotes its volume. Moreover, the boundary of S is denoted as ∂S .
Let R+ := {x ∈ R : x ≥ 0}. We define an n-dimensional ball or radius r ∈ R+ centered at x ∈ Rn

as the set
Bx(r) := {y ∈ R

n : ‖x− y‖ ≤ r}.

Recall that, for any x ∈ Rn and r ∈ R+,

Vol
(
Bx(r)

)
=

π
n
2

Γ
( n

2 + 1
) rn,

where Γ(z) denotes the gamma function.
For any matrix H ∈ Rk×n and some S ⊂ Rn, we define

HS := {y ∈ R
k : y = Hx , x ∈ S}.

Note that for an invertible H ∈ Rn×n, we have

Vol(HS) = |det(H)|Vol(S)

with det(H) the determinant of H. We define the maximum and minimum radius of a set S ⊂ Rn that
contains the origin as

rmax(S) := min{r ∈ R+ : S ⊂ B0(r)},

rmin(S) := max{r ∈ R+ : B0(r) ⊆ S}.

For a given vector a = (a1, . . . , an) ∈ Rn
+, we define

Box(a) := {x ∈ R
n : |xi| ≤ ai, i = 1, . . . , n}

and the smallest box containing a given set S ⊂ Rn as

Box(S) := inf{Box(a) : S ⊆ Box(a)},

respectively.
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The entropy of any discrete random object X is denoted as H(X), whereas h(X) (i.e., the differential
entropy) is used whenever X is continuous. The mutual information between two random objects X and
Y is denoted as I(X; Y) and N (m,C) denotes the multivariate normal distribution with mean vector
m and covariance matrix C. Finally, log+

a (x) := max{loga(x), 0}, for any base a > 0, Q(x), x ∈ R,
denotes the Q-function, and δx(y) the Kronecker delta, which is one for x = y and zero otherwise.

2. Problem Statement

Consider a MIMO system with nt ∈ N transmit and nr ∈ N receive antennas. The corresponding
nr-dimensional channel output for a single channel use is of the form

Y = HX + Z,

for some fixed channel matrix H ∈ Rnr×nt (considering a real-valued channel model is without loss of
generality). Here and hereafter, we assume Z ∼ N (0, Inr ) is independent of the channel input X ∈ Rnt

and H is known to both the transmitter and the receiver.
Now, let X ⊂ Rnt be a convex and compact channel input space that contains the origin

(i.e., the length-nt zero vector) and let FX denote the cumulative distribution function of X. As of the
writing of this paper, the capacity

C(X ,H) := max
FX :X∈X

I(X; Y) = max
FX :X∈X

I(X;HX + Z), (2)

of this channel is unknown and we are interested in finding novel lower and upper bounds.
Even though most of the results in this paper hold for arbitrary convex and compact X , we are
mainly interested in the two important special cases:

(i) per-antenna amplitude constraints, i.e., X = Box(a) for some given a = (A1, . . . , Ant) ∈ R
nt
+ ; and

(ii) nt-dimensional amplitude constraint, i.e., X = B0(A) for some given A ∈ R+.

Remark 1. Note that determining the capacity of a MIMO channel with average per-antenna power constraints
is also still an open problem and has been solved for some special cases only [13–17].

3. Properties of an Optimal Input Distribution

Unlike the special cases of real and complex-valued SISO channels (i.e., nt = nr = 1), the structure
of the capacity-achieving input distribution, denoted as F�

X, is in general not known. To motivate why
in this paper we are seeking for novel upper and lower bounds on the capacity (Equation (2)) instead of
trying to solve the optimization problem directly, in this section we first summarize properties optimal
input distributions must posses, which demonstrate how complicated the optimization problem
actually is. Note that, whereas an optimal input distribution always exists, it does not necessarily need
to be unique.

3.1. Necessary and Sufficient Conditions for Optimality

To study properties of an optimal input distribution, we need the notion of a point of increase of
probability distribution.

Definition 1. (Points of Increase of a Distribution) A point x ∈ Rn, n ∈ N, is said to be a point of increase of
a given probability distribution FX if for any open set A ⊂ Rn containing x, FX(A) > 0.

The following result provides necessary and sufficient conditions for the optimality of a channel
input distribution.
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Theorem 1. Let FX be some given channel input distribution and let E(FX) ⊂ X denote the set of points of
increase of FX. Then, the following holds:

• FX is capacity-achieving if and only if the Karush–Kuhn–Tucker (KKT) conditions

h(x; FX) ≤ h(HX + Z), x ∈ X , (3a)

h(x; FX) = h(HX + Z), x ∈ E(FX) ⊂ X , (3b)

are satisfied [3,18], where

h(x; FX) := −
∫
Rnr

1

(2π)
nr
2

e−
‖y−Hx‖2

2 log2
(

fY(y)
)
dy

with fY being the probability density of the channel output induced by the channel input X ∼ FX.
• FX is unique and symmetric if H is left invertible [18].
• FY (i.e., the channel output distribution) is unique [18,19].

3.2. General Structure of Capacity-Achieving Input Distributions

Theorem 1 can be used to find general properties of the support of a capacity-achieving input
distribution, which we will do in this subsection.

Remark 2. Fully characterizing an input distribution that achieves the capacity of a general MIMO channel
with per-antenna or an nt-dimensional amplitude constraint is still an open problem. To the best of our
knowledge, the only general available for showing that discrete channel inputs are optimal was developed by
Smith in [3] for the amplitude and variance-constrained Gaussian SISO channel. Since then, it has been useful
to also characterize the optimal input distribution of several other SISO channels (see, for instance, [4,20–24]).
The method relies on the following series of steps:

1. Towards a contradiction, it is assumed that the set of points of increase E(FX) is infinite.
2. The assumption in Step 1 is then used to establish a certain property of the function h(x; FX) on the input

space X . For example, by showing that h(x; FX) has an analytic continuation to C. Then, by means of the
Identity Theorem of complex analysis and the Bolzano–Weierstrass Theorem [25], Smith was able to show
that h(x; FX) must be constant.

3. By using either the Fourier or Laplace transform of h(x; FX) together with the property of h(x; FX)

established in Step 2, a new a property of the channel output distribution FY is established. For example,
Smith was able to show that FY must be constant.

4. A conclusion out of Step 3 is used to reach a contradiction. The contradiction implies that E(FX) must be
finite. For example, to reach a contradiction, Smith was using the fact that the channel output distribution
FY results from a convolution with a Gaussian probability density, which cannot be constant.

Remark 3. Under the restriction that the output space, Y , of a Gaussian SISO channel is finite and the
channel input space, X , is subject to an amplitude constraint, Witsenhausen has shown in [26] that the
capacity-achieving input distribution is discrete with the number of mass points bounded as |X | ≤ |Y|.
The approach of Witsenhausen, however, does not use the variational technique of Smith and relies on arguments
from convex analysis instead.

According to Remark 2, assuming in the MIMO case that E(FX) is of infinite cardinality does
not help (or at least it is not clear how this assumption should be used) in showing that the
capacity-achieving input distribution is discrete and finite. However, by using the weaker assumption
that E(FX) contains a non-empty open subset in conjunction with the following version of the Identity
Theorem, we can show that the support of the optimal input distribution is a small set in a certain
topological sense.
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Theorem 2. (Identity Theorem for Real-Analytic Functions [27]) For some n ∈ N let U be a subset of Rn

and f , g : U → R be two real-analytic functions that agree on a set A ⊆ U . Then, f and g agree on Rn if one of
the following two conditions is satisfied:

(i) A is an open set.
(ii) A is a set of positive Lebesgue measure.

Furthermore, for n = 1, it suffices for A to be an arbitrary set with an accumulation point.

We also need the definitions of a dense and a nowhere dense set.

Definition 2. (Dense and Nowhere Dense Sets) A subset A ⊂ X is said to be dense in the set X if every
element x ∈ X either belongs to A or is an accumulation point of A. A subset A ⊂ X is said to be nowhere
dense if for every nonempty open subset U ⊂ X , the intersection A∩ U is not dense in U .

With Theorem 2 at our disposal, we are now able to prove the following result on the structure of
the support of the optimal input distribution.

Theorem 3. The set of points of increase E(F�
X) of an optimal input distribution F�

X is a nowhere dense subset
of X that is of Lebesgue measure zero.

Proof. It is not difficult to show that h(x; F�
X) is a real-analytic function on Rnt ([18] Proposition 5).

Now, in order to prove the result, we follow a series of steps similar to those outlined in Remark 2.
Towards a contradiction, assume that the set of points of increase E(F�

X) of F�
X is not a nowhere dense

subset of X . Then, according to Definition 2, there exists an open set U ⊂ X such that E(F�
X) ∩ U is

dense in U .
By using the KKT condition in Equation (3b), we have that h(x; F�

X) is constant on the intersection
E(F�

X) ∩ U . Thus, as E(F�
X) ∩ U is dense in U , it follows by the properties of continuous functions

(real-analytic functions are continuous) that h(x; F�
X) is also constant on U . Moreover, as U is an open set,

Theorem 2 implies that h(x; F�
X) must also be constant on Rnt . This, however, leads to a contradiction

as h(x; F�
X) cannot be constant on all of Rnt , which can be shown by taking the Fourier transform of

h(x; F�
X) and solving for the probability density fY(y) of the channel output (the reader is referred to

[3] for details). Therefore, we conclude that E(F�
X) is a nowhere dense subset of X .

Showing that E(F�
X) has Lebesgue measure zero follows along similar lines by assuming that

E(F�
X) is a set of positive measure. Then, Property (ii) of Theorem 2 can be used to conclude that

h(x; F�
X) must be zero on all of U . This again leads to a contradiction, which implies that E(F�

X) must be
of Lebesgue measure zero.

Remark 4. Note that if X = B0(A) for some A ∈ R+ and h(x; F�
X) is orthogonally equivariant (i.e., it only

depends on ‖x‖), then E(F�
X) can be written as a union of concentric spheres. That is,

E(F�
X) =

⋃
j
C(Aj) (4)

with C(Aj) := {x ∈ Rnt : ‖x‖ = Aj} for some Aj ∈ R+. To see this, let

g(x) := h(x; F�
X)− h(HX + Z)

and observe that if x ∈ E(F�
X), then g(x) = 0. Combining this with the symmetry of the function ‖x‖ �→ g(‖x‖),

we have that (We know that it is abuse of notation to use the same letter for the functions x �→ g(x) and ‖x‖ �→
g(‖x‖) even if they are different. It is an attempt to say in a compact way that g is orthogonally equivariant.)

∀‖x‖ = ‖y‖ : x ∈ E(F�
X)⇒ y ∈ E(F�

X).
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Moreover, this implies that
E(F�

X) =
⋃
j∈I
C(Aj),

where I is possibly of infinite cardinality. In fact, I has finite cardinality. To see this, note that, if g(x) is
real-analytic, then so is g(‖x‖). However, as ‖x‖ �→ g(‖x‖) is a non-zero real-analytic function on R, it can
have at most finitely many zeros on an interval.

As an example consider the special case nr = nt = n with H = In. Then, the union in Equation (4) implies
that the cardinality of E(F�

X) is uncountable and that discrete inputs are in general not optimal. Therefore,
Theorem 3 can generally not be improved in the sense that for n > 1, statements about the cardinality of E(F�

X)

cannot be made. Note, however, that the magnitude of X is discrete. An example of the corresponding optimal
input distribution for the case of n = 2 is given in Figure 1.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x1

x 2

Figure 1. An example of a support of an optimal input distribution for the special case nt = nr = n = 2.

Even though Theorem 3 does not allow us to conclude that the optimal input distribution of
an arbitrary MIMO channel is discrete and finite, for the special case of a SISO channel we have the
following partial result.

Theorem 4. (Optimal Input Distribution of a SISO Channel [3,6,28]) For some fixed h ∈ R and A ∈ R+,
consider the SISO channel Y = hX + Z with input space X = [−A, A]. Let F�

X be an input distribution that
achieves the capacity, C(X , h), of that channel. Then, F�

X satisfies the following properties:

• F�
X is unique.

• F�
X is symmetric.

• F�
X is discrete with the number of mass points being of the order O(A2).

• F�
X contains probability mass points at {−A, A}.

Moreover, binary communication with mass points at {−A, A} is optimal if and only if A ≤ Ā, where Ā ≈
1.665.

Theorem 4 can now be used to also address the special cases of multiple-input single output
(MISO) and single-input multiple output (SIMO) channels.
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Theorem 5. Let Y = hTX� + Z be a MISO channel with channel matrix hT ∈ Rnt and some optimal input
X� ∈ X ⊂ Rnt . Then, the distribution of hTX∗ is discrete with finitely many mass points. On the other hand,
let Y = hX� + Z be a SIMO channel with channel matrix h ∈ Rnr . Then, the optimal input X� ∈ X ⊂ R has
a discrete distribution with finitely many mass points.

Proof. For the MISO case, the capacity can expressed as

C(X ,hT) = max
FX :X∈X

I(X;hTX + Z)

= max
FX :X∈X

I(hTX;hTX + Z)

= max
FS :S∈hTX

I(S; S + Z)

= max
FS :|S|≤rmax(h

TX )
I(S; S + Z). (5)

Using Theorem 5 we have that the maximizing distribution in Equation (5) F�
S , where S := hTX,

is discrete with finitely many mass points.
For the SIMO case, the channel input distribution is discrete as a SIMO channel can be transformed

into a SISO channel. Thus, let A ∈ R+ be finite. Then, the capacity of the SIMO channel can be
expressed as

C(X ,h) = max
FX :|X|≤A

I(X;hX + Z)

= max
FX :|X|≤A

I(X; ‖h‖X + Z). (6)

Again, it follows from Theorem 5 that the mutual information in Equation (6) is maximized
by a channel input distribution, F�

X, that is discrete with finitely many mass points. This concludes
the proof.

Remark 5. Note that in the MISO case, we do not claim F�
X to be discrete with finitely many points. To illustrate

the difficulty, let hT = [1,−1] so that

hTX� = hT

(
X�

1
X�

2

)
= X�

1 − X�
2 .

As X�
1 and X�

2 can be arbitrarily correlated, we cannot rule out cases in which X�
1 = X − D and

X�
2 = X− 2D, with D a discrete random variable and X of arbitrary distribution. Clearly the distribution of

X� is not discrete.

Note that in general it can be shown that the capacity-achieving input distribution is discrete
if the optimization problem in Equation (2) can be reformulated as an optimization over one
dimensional distributions. This, for example, has been done in [5] for parallel channels with a total
amplitude constraint.

3.3. Properties of Capacity-Achieving Input Distributions in the Small (But Not Vanishing) Amplitude Regime

In this subsection, we study properties of capacity-achieving input distribution in the regime of
small amplitudes. To that end, we will need the notion of a subharmonic function.

Definition 3. (Subharmonic Function) Let f be a real-valued function that is twice continuously differentiable
on an open set G ⊂ Rn. Then, f is subharmonic if ∇2 f ≥ 0 on G, where ∇2 denotes the Laplacian (if f is

twice differentiable, its Laplacian is given by ∇2 f (x1, . . . , xn) = ∑n
i=1

∂2 f
∂x2

i
).
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We use the following Theorem, which states that a subharmonic function always attains its
maximum on the boundary of its domain.

Theorem 6. (Maximum Principle of Subharmonic Functions [29]) Let G ⊂ Rn be a connected open set.
If f : G → R is subharmonic and attains a global maximum in the interior of G, then f is constant on G.

In addition to Theorem 6, we need the following result that has been proven in [30].

Lemma 1. Let the likelihood function of the output of a MIMO channel be defined as

� : Rnr → R , �(y) =
fY(y)

1
(2π)

nr
2

e−
‖y‖2

2

and let Ay denote the Hessian matrix of loge
(
�(y)

)
. Then, the Laplacian (or the trace of Ay) is given by

∇2 loge
(
�(y)

)
= Tr(Ay) = E

[
‖HX‖2|Y = y

]
−

∥∥E[HX|Y = y]
∥∥2. (7)

Theorem 7. Suppose that r2
max(HX ) ≤ log2(e). Then, x �→ h(x; FX) is a subharmonic function for every FX.

Proof. Let FX be arbitrary and observe that

h(x; FX) = −E
[
log2

(
fY(Hx + Z)

)]
= −E

[
�(Hx + Z)

]
−E

[
log2

(
1

(2π)
nr
2

e−
‖Hx+Z‖2

2

)]

= −E
[
�(Hx + Z)

]
+E

[‖Hx + Z‖2

2

]
log2(e) + log2

(
(2π)

nr
2

)
= −E

[
�(Hx + Z)

]
+
‖Hx‖2 + nr

2
log2(e) + log2

(
(2π)

nr
2

)
.

With this expression in hand, the Laplacian of h(x; FX) with respect to x can be bounded from
below as follows:

∇2h(x; FX) = ∇2
(
−E

[
�(Hx + Z)

]
+
‖Hx‖2 + nr

2
log2(e) + log2

(
(2π)

nr
2

))
= −E

[
∇2�(Hx + Z)

]
+∇2 ‖Hx‖2

2
log2(e)

(a)
= −E

[
Tr

(
HHTAHx+Z

)]
+∇2 ‖Hx‖2

2
log2(e)

= −E
[
Tr

(
HHTAHx+Z

)]
+ Tr

(
HHT) log2(e)

(b)
≥ −E

[
Tr

(
HHT)Tr

(
AHx+Z

)]
+ Tr

(
HHT) log2(e)

= Tr
(
HHT) (−E[

Tr(AHx+Z)
]
+ log(e)

)
(c)
≥ Tr

(
HHT) (−r2

max(HX ) + log(e)
)

, (8)

where (a) follows from Equation (7) and the chain rule for the Hessian; (b) from using the
well-known inequality

Tr(CD)2 ≤ Tr(C)2Tr(D)2
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that holds for C and D positive semi-definite; and (c) from using the inequality

Tr
(
Ay

)
= E

[
‖HX‖2|Y = y

]
−

∥∥E[HX|Y = y]
∥∥2

≤ E
[
‖HX‖2|Y = y

]
≤ r2

max(HX ).

Thus, according to the assumption that r2
max(HX ) ≤ log2(e), the right-hand side of Equation (8)

is nonnegative, which proves the result.

Now, knowing that h(x; FX) is a subharmonic function allows us to characterize the support of an
optimal input distribution of a MIMO channel provided that the radius of the channel input space, X ,
is sufficiently small.

Theorem 8. Let F�
X be a capacity-achieving input distribution and r2

max(HX ) ≤ log2(e). Then, E(F�
X) ⊆ ∂X .

Proof. From the KKT conditions in Equation (3), we know that, if x ∈ E(F�
X), then x is a maximizer

of h(x; F�
X). According to Theorem 7, we also know that h(x; F�

X) is subharmonic. Hence, from the
Maximum Principle of Subharmonic Functions (i.e., Theorem 6), it follows E(F�

X) ⊆ ∂X .

Combining Theorem 8 with the observations made in Remark 4 leads to the following corollary.

Corollary 1. Let X = B0(A) and A ≤ 1
‖H‖ log2(e). Then,

E(F�
X) ⊆ C(A),

where C(A) := {x ∈ Rn : ‖x‖ = A} denotes a sphere of radius A.

We conclude this section by noting that for the special case nt = nr = n with H = In, the exact
value of A such that E(F�

X) = C(A) has been characterized in terms of an integral equation in [31],
which is approximately equal to 1.5

√
n.

4. Upper and Lower Bounds on the Capacity

The considerations in the previous section have shown that characterizing the structure of
an optimal channel-input distribution is a challenging question in itself that we could only partially
answer. A full characterization, however, is a necessary prerequisite to narrow down the search
space in Equation (2) to one that is tractable. Except for some special cases (i.e., special choices of
X ), optimizing over the most general space of input distributions that consists of all continuous
nt-dimensional probability distributions FX with X ∈ X , is prohibitive (Note that Dytso et al. [32]
summarized methods of how to optimize functionals over the space of probability distributions that
are constrained in there support). Thus, up to the writing of this paper, there is little hope in being able
to solve the problem in Equation (2) in full generality so that in this section we are proposing novel
lower and upper bounds on the capacity C(X ,H). Nevertheless, these bounds will allow us to better
understand how the capacity of such MIMO channels behaves.

Towards this end, in Section 4.1, we provide four upper bounds. The first is based on an upper
bound on the differential entropy of a random vector that is constraint in its pth moment, the second
and third bounds are based on duality arguments, and the fourth on the relationship between mutual
information and the minimum mean square error (MMSE), I-MMSE relationship for short, known
from [33]. The three lower bounds proposed in Section 4.2, on the other hand, are based on the
celebrated entropy power inequality, a generalization of the Ozarow–Wyner capacity bound taken
from [11], and on Jensen’s inequality.
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4.1. Upper Bounds

To establish our first upper bound on Equation (2), we need the following result ([11] Th. 1).

Lemma 2. (Maximum Entropy Under pth Moment Constraint) Let n ∈ N and p ∈ (0, ∞) be arbitrary.
Then, for any U ∈ Rn such that h(U) < ∞ and ‖U‖p < ∞, we have

h(U) ≤ n log2

(
kn,p n

1
p ‖U‖p

)
,

where

kn,p :=

√
π e

1
p
( p

n
) 1

p Γ
( n

p + 1
) 1

n

Γ
( n

2 + 1
) 1

n
.

Theorem 9. (Moment Upper Bound) For any channel input space X and any fixed channel matrix H,
we have

C(X ,H) ≤ C̄M(X ,H) := inf
p>0

nr log2

(
knr ,p

(2πe)
1
2

n
1
p
r ‖x̃ + Z‖p

)
,

where x̃ ∈ HX is chosen such that ‖x̃‖ = rmax(HX ).

Proof. Expressing Equation (2) in terms of differential entropies results in

C(X ,H) = max
FX :X∈X

h(HX + Z)− h(Z)

(a)
≤ max

FX :X∈X
nr log2

(
knr ,p

(2πe)
1
2

n
1
p
r ‖HX + Z‖p

)
(b)
= nr log2

(
knr ,p

(2πe)
1
2

n
1
p
r max

FX :X∈X
‖HX + Z‖p

)
, (9)

where (a) follows from Lemma 2 with the fact that h(Z) = nr
2 log2(2πe); and (b) from the monotonicity

of the logarithm.
Now, notice that ‖HX+Z‖p is linear in FX and therefore it attains its maximum at an extreme point

of the set FX := {FX : X ∈ X} (i.e., the set of all cumulative distribution functions of X). As a matter
of fact [26], the extreme points of FX are given by the set of degenerate distributions on X ; that is,
{FX(y) = δx(y), y ∈ X}x∈X . This allows us to conclude

max
FX :X∈X

‖HX + Z‖p = max
x∈X

‖Hx + Z‖p.

Observe that the Euclidian norm is a convex function, which is therefore maximized at the
boundary of the set HX . Combining this with Equation (9) and taking the infimum over p > 0
completes the proof.

The following Theorem provides two alternative upper bounds that are based on duality arguments.

Theorem 10. (Duality Upper Bounds) For any channel input space X and any fixed channel matrix H

C(X ,H) ≤ C̄Dual,1(X ,H) := log2

(
cnr (d) +

Vol
(
B0(d)

)
(2πe)

nr
2

)
, (10)
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where

d := rmax(HX ) , cnr (d) :=
nr−1

∑
i=1

(
nr − 1

i

) Γ
(

nr−1
2

)
2

nr
2 Γ

( nr
2
)di,

and

C(X ,H) ≤ C̄Dual,2(X ,H) :=
nr

∑
i=1

log2

(
1 +

2Ai√
2πe

)
, (11)

where a = (A1, . . . , Anr ) such that Box(a) = Box(HX ).

Proof. Using duality bounds, it has been shown in [8] that for any centered n-dimensional ball of
radius r ∈ R+

max
FX :X∈B0(r)

I(X; X + Z) ≤ log2

(
cn(r) +

Vol
(
B0(r)

)
(2πe)

n
2

)
, (12)

where cn(r) := ∑n−1
i=1 (n−1

i )
Γ( n−1

2 )
2

n
2 Γ( n

2 )
ri.

Now, observe that

C(X ,H) = max
FX :X∈X

h(HX + Z)− h(HX + Z|HX)

= max
FX :X∈X

I(HX;HX + Z)

= max
FX̃ :X̃∈HX

I(X̃; X̃ + Z) (13)

(a)
≤ max

FX̃ :X̃∈B0(d),d:=rmax(HX )
I(X̃; X̃ + Z)

(b)
≤ log2

(
cnr (d) +

Vol
(
B0(d)

)
(2πe)

nr
2

)
.

where (a) follows from enlarging the optimization domain; and (b) from using the upper bound in
Equation (12). This proves Equation (10).

To show the upper bound in Equation (11), we proceed with an alternative upper bound
to Equation (13):

C(X ,H) = max
FX̃ :X̃∈HX

I(X̃; X̃ + Z)

(a)
≤ max

FX̃ :X̃∈Box(HX )
I(X̃; X̃ + Z)

(b)
≤ max

FX̃ :X̃∈Box(HX )

nr

∑
i=1

I(X̃i; X̃i + Zi)

(c)
=

nr

∑
i=1

max
FX̃i

:|X̃i |≤Ai

I(X̃i; X̃i + Zi)

(d)
≤

nr

∑
i=1

log2

(
1 +

2Ai√
2πe

)
,

where the (in)equalities follow from: (a) enlarging the optimization domain; (b) single-letterizing
the mutual information; (c) choosing individual amplitude constraints (A1, . . . , Anr ) =: a ∈ R

nr
+ such

that Box(a) = Box(HX ); and (d) using the upper bound in Equation (12) for n = 1. This concludes
the proof.
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As mentioned at the beginning of the section, another simple technique for deriving upper bounds
on the capacity is to use the I-MMSE relationship [33]

I(X; X + Z) =
log2(e)

2

∫ 1

0
E

[∥∥X−E[X |√γX + Z]
∥∥2

]
dγ. (14)

For any γ ≥ 0, the quantity E
[
‖X−E[X |√γX + Z]‖2] is known as the MMSE of estimating X

from the noisy observation
√

γX + Z. An important fact that will be useful is that the conditional
expected value E[X |√γX + Z] is the best estimator in the sense that it minimizes the mean square
error over all measurable functions f : Rnr → Rnt ; that is, for any Y ∈ Rnr and X ∈ Rnt

E

[
‖X−E[X|Y]‖2

]
= inf

f is measurable
E

[
‖X− f (Y)‖2

]
. (15)

Theorem 11. (I-MMSE Upper Bound) For any channel input space X and any fixed channel matrix H

C(X ,H) ≤ C̄I−MMSE(X ,H) = log2(e)

⎧⎨⎩
nr
2 + nr

2 log2

(
r2
max(HX )

nr

)
, r2

max(HX ≥ nr

r2
max(HX )

2 , r2
max(HX ) ≤ nr

.

Proof. Fix some ε ∈ [0, 1] and observe that

2
log2(e)

I(X;HX + Z)
(a)
=

2
log2(e)

I(HX;HX + Z)

(b)
=

∫ 1

0
E
[
‖HX−E[HX|√γHX + Z]‖2]dγ

=
∫ ε

0
E
[
‖HX−E[HX|√γHX + Z]‖2]dγ

+
∫ 1

ε
E
[
‖HX−E[HX|√γHX + Z]‖2]dγ

(c)
≤

∫ ε

0
E
[
‖HX− 0‖2]dγ

+
∫ 1

ε
E

[∥∥∥HX− 1√
γ
(
√

γHX + Z)
∥∥∥2

]
dγ

= εE
[
‖HX‖2]+ ∫ 1

ε

1
γ
E
[
‖Z‖2]dγ

= εE
[
‖HX‖2]+E

[
‖Z‖2] loge

(
1
ε

)
= εE

[
‖HX‖2]+ nr loge

(
1
ε

)
,

where the (in)equalities follow from: (a) using that I(HX;HX + Z) = I(X;HX + Z) for any fixed
H; (b) using the I-MMSE relationship in Equation (14); and (c) using the property that conditional
expectation minimizes mean square error (i.e., (15)).

Now, notice that

max
FX :X∈X

I(X;HX + Z) ≤ max
FX :X∈X

log2(e)
2

(
εE

[
‖HX‖2]+ nr loge

(
1
ε

))
(a)
=

1
2

(
ε max

x̃∈X
‖Hx̃‖2 + nr loge

(
1
ε

))
(b)
=

1
2

(
ε r2

max(HX ) + nr loge

(
1
ε

))
, (16)
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where (a) follows from maxFX :X∈X E
[
‖HX‖2] = maxx̃∈X ‖Hx̃‖2 (the same argument was used in the

proof of Theorem 9); and (b) from the definition of r2
max(HX ).

Since ε is arbitrary, we can choose it to minimize the upper bound in Equation (16). Towards this
end, we need the following optimization result

min
ε∈[0,1]

(
ε a + b log

(
1
ε

))
=

{
b + b log

( a
b
)
, a ≥ b

a, a ≤ b
, (17)

which is easy to show. Combining Equation (16) with Equation (17), we obtain the following upper
bound on the capacity

max
FX :X∈X

I(X;HX + Z) ≤
{

nr
2 + nr

2 log
(

r2
max(HX )

nr

)
, r2

max(HX ) ≥ nr

r2
max(HX ), r2

max(HX ) ≤ nr
.

This concludes the proof.

Corollary 2. For any channel input space X and any fixed channel matrix H

C̄I−MMSE(X ,H) ≤ log2(e)

⎧⎨⎩
nr
2 + nr

2 loge

(
‖H‖2r2

max(X )
nr

)
, ‖H‖2r2

max(X ) ≥ nr

‖H‖2r2
max(X )
2 , ‖H‖2r2

max(X ) ≤ nr

.

Proof. The corollary follows by upper bounding Equation (16) using the fact that r2
max(HX ) ≤

‖H‖r2
max(X ).

Remark 6. In the proof of Theorem 11, instead of using sub-optimal estimators f (Y) = 0 and f (Y) = 1
γ Y,

we could have used an optimal linear estimator of the form f (Y) = KXYK
−1
Y Y, where KXY denotes the

cross-covariance matrix between X and Y and KY the covariance matrix of Y. This choice would result in the
capacity upper bound

C(X ,H) ≤ max
KX :X∈X

1
2

log2

(
det

(
Inr +HKXH

T
))

(18)

with KX the covariance matrix of the channel input. While Equation (18) is a valid upper bound, as of the
writing of this paper, it is not clear how to perform an optimization over covariance matrices of random variables
with bounded support. One possibility to avoid this is to use the inequality between arithmetic and geometric
mean and bound the determinant by the trace:

det
(
Inr +HKXH

T
)
≤

⎛⎝Tr
(
Inr +HKXH

T
)

nr

⎞⎠nr

=

(
‖Z +HX‖2

2
nr

)nr

. (19)

However, combining Equation (19) with Equation (18) is merely a special case of the moment upper bound
of Theorem 9 for p = 2. Therefore, the estimators in Theorem 11 are chosen to obtain a non-trivial upper bound
avoiding the optimization over covariance matrices.

In Section 5, we present a comparison of the upper bounds of Theorems 9–11 by means of
a simple example.

4.2. Lower Bounds

A classical approach to bound a mutual information from below is to use the entropy power
inequality (EPI).
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Theorem 12. (EPI Lower Bounds) For any fixed channel matrix H and any channel input space X with X

absolutely continuous, we have

C(X ,H) ≥ CEPI(X ,H) := max
FX :X∈X

nr

2
log2

(
1 +

2
2

nr h(HX)

2πe

)
. (20)

Moreover, if nt = nr = n, H ∈ Rn×n invertible, and X uniformly distributed over X , then

C(X ,H) ≥ CEPI(X ,H) :=
n
2

log2

(
1 +

|det(H)| 2
n Vol(X )

2
n

2πe

)
. (21)

Proof. By means of the EPI

2
2

nr h(HX+Z) ≥ 2
2

nr h(HX) + 2
2

nr h(Z),

we conclude

2
2

nr C(X ,H) ≥ 1 + (2πe)−12
2

nr max
FX :X∈X

h(HX)
,

which finalizes the proof of the lower bound in Equation (20).
To show the lower bound in Equation (21), all we need is to recall that

h(HX) = h(X) + log2 |det(H)|,

which is maximized for X uniformly distributed over X . However, if X is uniformly drawn from X ,
we have

2
2
n h(HX) = Vol(HX )

2
n = |det(H)| 2

n Vol(X )
2
n ,

which completes the proof.

The considerations in Section 3 suggest that a channel input distribution that maximizes
Equation (2) might be discrete. Therefore, there is a need for lower bounds that unlike the bounds in
Theorem 12 rely on discrete inputs.

Theorem 13. (Ozarow–Wyner Type Lower Bound) Let XD ∈ supp(XD) ⊂ Rnt be a discrete random vector
of finite entropy, g : Rnr → Rnt a measurable function, and p > 0. Furthermore, let Kp be a set of continuous
random vectors, independent of XD, such that for every U ∈ Kp we have h(U) < ∞, ‖U‖p < ∞, and

supp(U + xi) ∩ supp(U + xj) = ∅ (22)

for all xi, xj ∈ supp(XD), i �= j. Then,

C(X ,H) ≥ COW(X ,H) := [H(XD)− gap]+,

where
gap := inf

U∈Kp
g measurable

p>0

(
G1,p(U, XD, g) + G2,p(U)

)

with

G1,p(U, XD, g) := nt log2

(‖U + XD − g(Y)‖p

‖U‖p

)
, (23)

G2,p(U) := nt log2

⎛⎝ knt ,p n
1
p
t ‖U‖p

2
1
nt

h(U)

⎞⎠, (24)
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and knt ,p as defined in Lemma 2, respectively.

Proof. The proof is identical to ([11] Theorem 2). To make the manuscript more self-contained,
we repeat it here.

Let U and XD be statistically independent. Then, the mutual information I(XD; Y) can be lower
bounded as

I(XD; Y)
(a)
≥ I(XD + U; Y)

= h(XD + U)− h(XD + U|Y)
(b)
= H(XD) + h(U)− h(XD + U|Y). (25)

Here, (a) follows from the data processing inequality as XD + U → XD → Y forms a Markov
chain in that order; and (b) from the assumption in Equation (22). By using Lemma 2, we have that the
last term in Equation (25) can be bounded from above as

h(XD + U|Y) ≤ nt log2

(
knt ,p n

1
p
t ‖XD + U− g(Y)‖p

)
.

Combining this expression with Equation (25) results in

I(XD; Y) ≥ H(XD)−
(
G1,p(U, XD, g) + G2,p(U)

)
,

with G1,p and G2,p as defined in Equations (23) and (24), respectively. Maximizing the right-hand side
over all U ∈ Kp, measurable functions g : Rnr → Rnt , and p > 0 provides the bound.

Interestingly, the bound of Theorem 13 holds for arbitrary channels and is therefore not restricted
to MIMO channels. The interested reader is referred to [11] for details.

We conclude the section by providing a lower bound that is based on Jensen’s inequality and
holds for arbitrary inputs.

Theorem 14. (Jensen’s Inequality Lower Bound) For any channel input space X and any fixed channel
matrix H, we have

C(X ,H) ≥ CJensen(X ,H) := max
FX :X∈X

log+
2

((
2
e

) nr
2

ψ−1(X,H)

)
(26)

with

ψ(X,H) := E

[
exp

(
−‖H(X− X′)‖2

4

)]
= E

⎡⎣∣∣∣∣∣φX

(
HTZ√

2

)∣∣∣∣∣
2
⎤⎦ ,

where X′ is an independent copy of X and φX denotes the characteristic function of X.

Proof. To show the lower bound, we follow an approach of Dytso et al. [34]. Note that by
Jensen’s inequality

h(Y) = −E[log2 fY(Y)] ≥ − log2 E[ fY(Y)] = − log2

∫
Rnr

fY(y) fY(y)dy. (27)

Now, evaluating the integral in Equation (27) results in

∫
Rnr

fY(y) fY(y)dy =
1

(2π)nr

∫
Rnr

E

[
e−

‖y−HX‖2
2

]
E

[
e−

‖y−HX′‖2
2

]
dy
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(a)
=

1
(2π)nr

E

[∫
Rnr

e−
‖y−HX‖2+‖y−HX′‖2

2 dy

]
(b)
=

1
(2π)nr

E

[
e−

‖HX−HX′‖2
4

∫
Rnr

e−‖y−H(X−X′)
2 ‖2

dy

]
(c)
=

1

2nr π
nr
2
E

[
e−

‖H(X−X′)‖2
4

]
, (28)

where (a) follows from the independence of X and X′ and Tonelli’s Theorem ([35] Chapter 5.9);

(b) from completing a square; and (c) from the fact that
∫
Rnr e−‖y−H(X−X′)

2 ‖2
dy =

∫
Rnr e−‖y‖2

dy = π
nr
2 .

Combining Equation (27) with Equation (28) and subtracting h(Z) = nr
2 log2(2πe) completes the proof

of the first version of the bound.
To show the second version, observe that

E

[
e−

‖H(X−X′)‖2
4

]
(d)
= E

[
φH(X−X′)√

2

(Z)
]

(e)
= E

[
φHX√

2
(Z)φ−HX′√

2
(Z)

]
( f )
= E

[
φX

(
HTZ√

2

)
φX′

(
−HTZ√

2

)]
(g)
= E

[
φX

(
HTZ√

2

)
φX

(
−HTZ√

2

)]
(h)
= E

[
φX

(
HTZ√

2

)
φ∗X

(
HTZ√

2

)]

= E

⎡⎣∣∣∣∣∣φX

(
HTZ√

2

)∣∣∣∣∣
2
⎤⎦ ,

where (d) follows from Parseval’s identity ([35] Chapter 9.5) by noting that exp(−‖ · ‖2/2)
is a characteristic function of Z and φH(X−X′)√

2

(·) is a characteristic function of H(X−X′)√
2

; (e) from using

the property that the characteristic function of a sum of random vectors is equal to the product of its
characteristic functions; ( f ) from using the fact that a characteristic function is a linear transformation;
(g) from using that X and X′ have the same characteristic function; and (h) from the fact that the
characteristic function is Hermitian. This completes the proof.

Remark 7. As is evident from our examples in the following sections, in many cases, the Jensen’s inequality
lower bound of Theorem 14 performs remarkably well. The bound, however, is also useful for MIMO channels
that are subject to an average power constraint. For example, evaluating Equation (26) with X ∼ N (0,KX)

results in

I(X;HX + Z) ≥ 1
2

log+
2

((
2
e

)min(nr ,nt)

det
(
Inr +HKXH

T
))

.

Note that this bound is within min(nr ,nt)
2 log2

( 2
e
)

bits of the capacity of the power-constrained channel.

In Section 3, we discuss that the distributions that maximize mutual information in nt-dimensions
are typically singular, which means that they are concentrated on a set of Lebesgue measure zero.
Singular distributions generally do not have a probability density, whereas the characteristic function
always exists. This is why the version of Jensen’s inequality lower bound in Theorem 14 that is
based on the characteristic function of the channel input is especially useful for amplitude-constrained
MIMO channels.
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5. Invertible Channel Matrices

Consider the symmetric case of nt = nr = n antennas with H ∈ Rn×n being invertible. In this
section, we evaluate some of the lower and upper bounds proposed in the previous section for the
special case of H being also diagonal and then characterize the gap to the capacity for arbitrary
invertible channel matrices.

5.1. Diagonal Channel Matrices

Suppose the channel inputs are subject to per-antenna or an n-dimensional amplitude constraint.
Then, the duality upper bound C̄Dual,2(X ,H) of Theorem 10 takes on the following form.

Theorem 15. (Upper Bounds) Let H = diag(h11, . . . , hnn) ∈ Rn×n be fixed. If X = Box(a) for some
a = (A1, . . . , An) ∈ Rn

+, then

C̄Dual,2(Box(a),H) =
n

∑
i=1

log2

(
1 +

2|hii|Ai√
2πe

)
. (29)

Moreover, if X = B0(A) for some A ∈ R+, then

C̄Dual,2(B0(A),H) =
n

∑
i=1

log2

(
1 +

2|hii|A√
n
√

2πe

)
. (30)

Proof. The bound in Equation (29) immediately follows from Theorem 10 by observing that
Box(HBox(a)) = Box(Ha). The bound in Equation (30) follows from Theorem 10 by the fact that

Box
(
HB0(A)

)
⊂ Box

(
HBox

(
B0(A)

))
= Box(h),

where h := A√
n (|h11|, . . . , |hnn|). This concludes the proof.

For an arbitrary channel input spaceX , the EPI lower bound of Theorem 12 and Jensen’s inequality
lower bound of Theorem 14 take on the following form.

Theorem 16. (Lower Bounds) Let H = diag(h11, . . . , hnn) ∈ Rn×n be fixed and X arbitrary. Then,

CJensen(X ,H) = log+
2

((
2
e

) n
2 1

ψ(H, b�)

)
(31)

with

ψ(H, b�) := min
b∈X

n

∏
i=1

ϕ(|hii|Bi),

where b := (B1, . . . , Bn) and ϕ : R+ → R+,

ϕ(x) :=
1
x2

(
e−x2 − 1 +

√
πx

(
1− 2Q(

√
2x)

))
. (32)

Moreover,

CEPI(X ,H) =
n
2

log2

(
1 + Vol(X )

2
n
|∏n

i=1 hii|
2
n

2πe

)
. (33)
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Proof. For some given values Bi ∈ R+, i = 1, . . . , n, let the ith component of X = (X1, . . . , Xn) be
independent and uniformly distributed over the interval [−Bi, Bi]. Thus, the expected value appearing
in the bound of Theorem 14 can be written as

E

[
e−

‖H(X−X′)‖2
4

]
= E

[
e−

∑n
i=1 h2

ii(Xi−X′i )
2

4

]
= E

[
n

∏
i=1

e−
h2

ii(Xi−X′i )
2

4

]
=

n

∏
i=1

E

[
e−

h2
ii(Xi−X′i )

2

4

]
. (34)

Now, if X′ is an independent copy of X, it can be shown that the expected value at the right-hand
side of Equation (34) is of the explicit form

E

[
e−

h2
ii(xi−x′i )

2

4

]
= ϕ(|hii|Bi)

with ϕ as defined in Equation (32). Finally, optimizing over all b = (B1, . . . , Bn) ∈ X results in the
bound (31). The bound in Equation (33) follows by inserting |det(H)| = |∏n

i=1 hii| into Equation (21),
which concludes the proof.

In Figure 2, the upper bounds of Theorems 9 and 15 and the lower bounds of Theorem 16 are
depicted for a diagonal 2× 2 MIMO channel with per-antenna amplitude constraints. It turns out that
the moment upper bound and the EPI lower bound perform well in the small amplitude regime while
the duality upper bound and Jensen’s inequality lower bound perform well in the high amplitude
regime. Interestingly, for this specific example, the duality upper bound and Jensen’s lower bound are
asymptotically tight.
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Figure 2. Comparison of the upper and lower bounds of Theorems 9, 11, 15, and 16 evaluated for
a 2× 2 MIMO system with per-antenna amplitude constraints A1 = A2 = A (i.e., a = (A, A)) and
channel matrix H =

(
0.3 0
0 0.1

)
. The nested figure represents a zoom into the region 0 dB ≤ A ≤ 5 dB to

visualize the differences between the bounds at small amplitude constraints.

5.2. Gap to the Capacity

Our first result provides and upper bound to the gap between the capacity in Equation (2) and
the lower bound in Equation (21).
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Theorem 17. Let H ∈ Rn×n be of full rank and

ρ(X ,H) :=
Vol

(
B0 (rmax(HX ))

)
Vol(HX )

.

Then,
C(X ,H)− CEPI(X ,H) ≤ n

2
log2

(
(πn)

1
n ρ(X ,H)

2
n

)
.

Proof. For notational convenience, let the volume of an n-dimensional ball of radius r > 0 be
denoted as

Vn(r) := Vol
(
B0(r)

)
= Vn(1)rn =

π
n
2 rn

Γ
( n

2 + 1
) .

Now, observe that, by choosing p = 2, the upper bound of Theorem 9 can further be upper
bounded as

C̄M(X ,H) ≤ n log2

(
kn,2

(2πe)
1
2

n
1
2 ‖x̃ + Z‖2

)
(a)
=

n
2

log2

(
1
n
E
[
‖x̃ + Z‖2])

(b)
=

n
2

log2

(
1 +

1
n
‖x̃‖2

)
,

where (a) follows since kn,2 =
√

2πe
n ; and (b) since E[‖Z‖2] = n. Therefore, the gap between

Equation (21) and the moment upper bound of Theorem 9 can be upper bounded as follows:

C̄M(X ,H)− CEPI(X ,H) =
n
2

log2

⎛⎝ 1 + 1
n‖x̃‖2

1 + Vol(HX )
2
n

2πe

⎞⎠
a)
=

n
2

log2

⎛⎜⎜⎝1 + 1
n

(
Vn(‖x̃‖)

Vn(1)

) 2
n

1 + Vol(HX )
2
n

2πe

⎞⎟⎟⎠

=
n
2

log2

⎛⎜⎜⎝1 + 1
n

(
ρ(X ,H)Vol(HX )

Vn(1)

) 2
n

1 + Vol(HX )
2
n

2πe

⎞⎟⎟⎠
b)
≤ n

2
log2

(
1
n

2πe
(

ρ(X ,H)

Vn(1)

) 2
n
)

c)
≤ n

2
log2

(
(πn)

1
n ρ(X ,H)

2
n

)
.

where (a) is due to the fact that ‖x̃‖ is the radius of an n-dimensional ball; (b) follows from the
inequality 1+cx

1+x ≤ c for c ≥ 1 and x ∈ R+; and (c) follows from using Stirling’s approximation to

obtain
(

1
Vn(1)

) 2
n ≤ 1

2eπ1− 1
n

n1+ 1
n .

The term ρ(X ,H) is referred to as the packing efficiency of the set HX . In the following proposition,
we present the packing efficiencies for important special cases.
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Proposition 1. (Packing Efficiencies) Let H ∈ Rn×n be of full rank, A ∈ R+, and a := (A1, . . . , An) ∈
Rn
+. Then,

ρ
(
B0(A), In

)
= 1, (35)

ρ
(
B0(A),H

)
=

‖H‖n

|det(H)| , (36)

ρ
(
Box(a), In

)
=

π
n
2

Γ
( n

2 + 1
) ‖a‖n

∏n
i=1 Ai

, (37)

ρ
(
Box(a),H

)
≤ π

n
2

Γ
( n

2 + 1
) ‖H‖n‖a‖n

|det(H)|∏n
i=1 Ai

. (38)

Proof. The packing efficiency in Equation (35) follows immediately. Note that

rmax
(
HB0(A)

)
= max

x∈B0(A)
‖Hx‖ = ‖H‖A.

Thus, as H is assumed to be invertible, we have Vol(HB0(A)) = |det(H)|Vol(B0(A)),
which results in Equation (36). To show Equation (37), observe that

Vol
(
B0

(
rmax

(
InBox(a)

)))
= Vol

(
B0(‖a‖)

)
=

π
n
2

Γ
( n

2 + 1
)‖a‖n.

The proof of Equation (37) is concluded by observing that Vol(InBox(a)) = ∏n
i=1 Ai. Finally,

observe that Box(a) ⊂ B0(‖a‖) implies rmax(HBox(a)) ≤ rmax(HB0(‖a‖)) so that

ρ
(
H, Box(a)

)
≤ Vol

(
B0(‖H‖‖a‖)

)
Vol

(
HBox(a)

) =
π

n
2

Γ
( n

2 + 1
) ‖H‖n‖a‖n

|det(H)|∏n
i=1 Ai

,

which is the bound in Equation (38).

We conclude this section by characterizing the gap to the capacity when H is diagonal and the
channel input space is the Cartesian product of n PAM constellations. In this context, PAM(N, A)

refers to the set of N ∈ N equidistant PAM-constellation points with amplitude constraint A ∈ R+

(see Figure 3 for an illustration), whereas X ∼ PAM(N, A) means that X is uniformly distributed over
PAM(N, A) [11].

Figure 3. Example of a pulse-amplitude modulation constellation with N = 4 points and amplitude
constraint A (i.e., PAM(4, A)), where Δ := A/(N− 1) denotes half the Euclidean distance between two
adjacent constellation points. In the case N is odd, 0 is a constellation point.

Theorem 18. Let H = diag(h11, . . . , hnn) ∈ Rn×n be fixed and X = (X1, . . . , Xn). Then, if Xi ∼
PAM(Ni, Ai), i = 1, . . . , n, for some given a = (A1, . . . , An) ∈ Rn

+, it holds that

C̄Dual,2(Box(a),H)− COW(Box(a),H) ≤ c · n bits, (39)
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where Ni :=
⌊

1 + 2Ai |hii |√
2πe

⌋
and

c := 1 +
1
2

log2

(πe
6

)
+

1
2

log2

(
1 +

6
πe

)
≈ 1.64.

Moreover, if Xi ∼ PAM(Ni, A), i = 1, . . . , n, for some given A ∈ R+, it holds that

C̄Dual,2(B0(A),H)− COW(B0(A),H) ≤ c · n bits, (40)

where Ni :=
⌊

1 + 2A|hii |√
n
√

2πe

⌋
.

Proof. Since the channel matrix is diagonal, letting the channel input X be such that its elements Xi,
i = 1, . . . , n, are independent, we have that

I(X;HX + Z) =
n

∑
i=1

I(Xi; hiiXi + Zi).

Let Xi ∼ PAM(Ni, Ai) with Ni :=
⌊

1 + 2Ai |hii |√
2πe

⌋
and observe that half the Euclidean distance

between any pair of adjacent points in PAM(Ni, Ai) is equal to Δi := Ai/(Ni − 1) (see Figure 3),
i = 1, . . . , n. To lower bound the mutual information I(Xi; hiiXi + Zi), we use the bound of Theorem 13
for p = 2 and nt = 1. Thus, for some continuous random variable U that is uniformly distributed over
the interval [−Δi, Δi) and independent of Xi, we have that

I(Xi; hiiXi + Zi) ≥ H(Xi)−
1
2

log2

(πe
6

)
− 1

2
log2

(
E
[
(U + Xi − g(Yi))

2]
E[U2]

)
. (41)

Now, note that the entropy term in Equation (41) can be lower bounded as

H(Xi) = log2

(⌊
1 +

2Ai|hii|√
2πe

⌋)
≥ log2

(
1 +

2Ai|hii|√
2πe

)
+ log2(2), (42)

where we have used that �x� ≥ x
2 for every x ≥ 1. On the other hand, the last term in Equation (41)

can be upper bounded by upper bounding its argument as follows:

E
[
(U + Xi − g(Yi))

2]
E[U2]

a)
= 1 +

3E
[
(Xi − g(Yi))

2]
Δ2

i
b)
≤ 1 +

3E[Z2
i ](Ni − 1)2

A2
i |hii|2

= 1 +
3(Ni − 1)2

A2
i |hii|2

c)
≤ 1 +

3
(

2Ai |hii |√
2πe

)2

A2
i |hii|2

= 1 +
6

πe
. (43)

where (a) follows from using that Xi and U are independent and E[U2] =
Δ2

i
3 ; (b) from using the

estimator g(Yi) =
1

hii
Yi; and (c) from Ni =

⌊
1 + 2Ai |hii |√

2πe

⌋
≤ 1 + 2Ai |hii |√

2πe
. Combining Equations (41), (42),

and (43) results in the gap in (39).
The proof of the capacity gap in Equation (40) follows along similar lines, which concludes

the proof.
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We are also able to determine the gap to the capacity for a general invertible channel matrix.

Theorem 19. For any X and any invertible H

C(X ,H)− COW(X ,H) ≤ log2(πn) +
n
2

log2

(
1 + 4n(4 + 4n)

(
‖H−1‖2r2

max(HX )

r2
min(X )

+
n‖H−1‖2

r2
min(X )

))
.

Proof. Let X be uniformly distributed over a set constructed from an n-dimensional cubic lattice with
the number of points equal to N =

⌊
‖x̃ + Z‖n

2
⌋
, where x̃ ∈ HX is chosen such that ‖x̃‖ = rmax(HX ),

and scaled such that it is contained in the input space X . Note that the minimum distance between
point in X are given by

dmin

(
supp(X)

)
:=

rmin(X )

N
1
n

.

Now, we compute the difference between the moment upper bound of Theorem 9 and the
Ozarow–Wyner lower bound of Theorem 13:

C̄M(X ,H)− COW(X ,H)
(a)
≤ log2(‖x̃ + Z‖2)− H(X) + gap

= n log2(‖x̃ + Z‖2)− log2(�‖x̃ + Z‖n
2�) + gap

(b)
≤ log2(2) + gap, (44)

where (a) follows from Theorem 9 by choosing p = 2; and (b) by using the bound �x� ≥ x
2 for x > 1.

The next step in the proof consists in bounding the gap term, which requires to upper bound the terms
in Equations (23) and (24) individually. Towards this end, choose p = 2 and let U be a random vector
that is uniformly distributed over a ball of radius dmin(X). Thus, for (23) it follows

G1,2(U, X, g) = n log2

(‖U + X− g(Y)‖2

‖U‖2

)
(a)
= n log2

(
‖U−H−1Z‖2

‖U‖2

)

=
n
2

log2

(
1 +

‖H−1Z‖2
2

‖U‖2
2

)
(b)
=

n
2

log2

(
1 +

4(4 + 4n)‖H−1Z‖2
2

d2
min

(
supp(X)

) )
(c)
≤ n

2
log2

(
1 +

(4 + 4n)‖H−1Z‖2
2 ‖x̃ + Z‖2

2
r2
min(X )

)
(d)
=

n
2

log2

(
1 +

(4 + 4n)‖H−1Z‖2
2
(
r2
max(HX ) + n

)
r2
min(X )

)
(e)
≤ n

2
log2

(
1 +

4(4 + 4n)‖H−1‖2‖Z‖2
2
(
r2
max(HX ) + n

)
r2
min(X )

)

=
n
2

log2

(
1 +

4(4 + 4n)‖H−1‖2n
(
r2
max(HX ) + n

)
r2
min(X )

)
.
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where (a) follows by choosing g(Y) = H−1Y: (b) by using ‖U‖2
2 = r2

4+2n , where r = dmin(supp(X))
2 is

the radius of an n-dimensional ball; (c) from dropping the floor function in the expression for the
minimum distance, i.e.,

d−1
min

(
supp(X)

)
=

N
1
n

rmin(X )
=

⌊
‖x̃ + Z‖n

2
⌋ 1

n

rmin(X )
≤ ‖x̃ + Z‖2

rmin(X )
;

(d) follows by expanding ‖x̃ + Z‖2
2 using that ‖x̃‖ = rmax(HX ); and (e) from using the bound

‖H−1Z‖2 ≤ ‖H−1‖‖Z‖2.
On the other hand, the term G2,p(U) can be bounded from above as follows ([36] Appendix L):

G2,p(U) = n log2

⎛⎝ kn,p n
1
p ‖U‖p

2
1
n h(U)

⎞⎠ ≤ n log2

(
(πn)

1
n

)
.

Combining these two bounds with the one in (44) provides the result.

6. Arbitrary Channel Matrices

For an arbitrary MIMO channel with an average power constraint, it is well known that the
capacity is achieved by a singular value decomposition (SVD) of the channel matrix (i.e., H = UΛVT)
along with considering the equivalent channel model

Ỹ = ΛX̃ + Z̃,

where Ỹ := UTY, X̃ := VTX, and Z̃ := UTZ, respectively.
To provide lower bounds for channels with amplitude constraints and SVD precoding, we need

the following lemma.

Lemma 3. For any given orthogonal matrix V ∈ Rnt×nt and constraint vector a = (A1, . . . , Ant) ∈ R
nt
+ , there

exists a distribution FX of X such that X̃ = VTX is uniformly distributed over Box(a). Moreover, the components
X̃1, . . . , X̃nt of X̃ are mutually independent with X̃i uniformly distributed over [−Ai, Ai], i = 1, . . . , nt.

Proof. Suppose that X̃ is uniformly distributed over Box(a); that is, the density of X̃ is of the form

fX̃(x̃) =
1

Vol
(
Box(a)

) , x̃ ∈ Box(a).

Since V is orthogonal, we have VX̃ = X and by the change of variable Theorem for x ∈ VBox(a)

fX(x) =
1

|det(V)| fX̃(V
Tx) =

1
|det(V)|Vol

(
Box(a)

) =
1

Vol
(
Box(a)

) .

Therefore, such a distribution of X exists.

Theorem 20. (Lower Bounds with SVD Precoding) Let H ∈ Rnr×nt be fixed, nmin := min(nr, nt),
and X = Box(a) for some a = (A1, . . . , Ant) ∈ R

nt
+ . Furthermore, let σi, i = 1, . . . , nmin, be the ith singular

value of H. Then,

CJensen(Box(a),H) = log+
2

((
2
e

) nmin
2 1

ψ(H, b�)

)
(45)

and

CEPI(Box(a),H) =
nmin

2
log2

⎛⎝1 +

∣∣∏nmin
i=1 Aiσi

∣∣ 2
nmin

2πe

⎞⎠, (46)
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where

ψ(H, b�) := min
b∈Box(a)

nmin

∏
i=1

ϕ(σiBi)

with b := (B1, . . . , Bnt) and ϕ as defined in Equation (32).

Proof. Performing the SVD, the expected value in Theorem 14 can be written as

E

[
e−

‖H(X−X′)‖2
4

]
= E

[
e−

‖UΛVT (X−X′)‖2
4

]
= E

[
e−

‖ΛVT (X−X′)‖2
4

]
= E

[
e−

‖Λ(X̃−X̃′)‖2
4

]
.

By Lemma 3, there exists a distribution FX such that the components of X̃ are independent and
uniformly distributed. Since Λ is a diagonal matrix, we can use Theorem 16 to arrive at Equation (45).

Note that by Lemma 3 there exists a distribution on X such that X̃ is uniform over Box(a) ⊂ Rnt

and ΛX̃ is uniform over ΛBox(a) ⊂ Rnmin , respectively. Therefore, by the EPI lower bound given in
Equation (20), we obtain

CEPI(Box(a),H) =
nmin

2
log2

⎛⎝1 +
2

2
nmin

h(ΛX̃)

2πe

⎞⎠
=

nmin

2
log2

⎛⎝1 +
Vol

(
ΛBox(a)

) 2
nmin

2πe

⎞⎠
=

nmin

2
log2

⎛⎝1 +

(
∏nmin

i=1 Ai
) 2

nmin
∣∣∏nmin

i=1 σi
∣∣ 2

nmin

2πe

⎞⎠,

which is exactly the expression in Equation (46). This concludes the proof.

Remark 8. Notice that choosing the optimal b for the lower bound in Equation (45) is an amplitude allocation
problem, which is reminiscent of waterfilling in the average power constraint case. It would be interesting to
study whether the bound in Equation (45) is connected to what is called mercury waterfilling in [37,38].

In Figure 4, the lower bounds of Theorem 20 are compared to the moment upper bound of
Theorem 2 for the special case of a 3× 1 MIMO channel. Similar to the example presented in Figure 2,
the EPI lower bound performs well in the low amplitude regime, while Jensen’s inequality lower
bound performs well in the high amplitude regime.

We conclude this section by showing that for an arbitrary channel input space X , in the large
amplitude regime the capacity pre-log is given by min(nr, nt).

Theorem 21. Let X be arbitrary and H ∈ Rnr×nt fixed. Then,

lim
rmin(X )→∞

C(X ,H)

log2

(
1 + 2rmin(X )√

2πe

) = min(nr, nt).

Proof. Notice that there always exists a ∈ R
nt
+ and c ∈ R+ such that Box(a) ⊆ X ⊂ cBox(a). Thus,

without loss of generality, we can consider X = Box(a), a = (A, . . . , A), for sufficiently large A ∈ R+.
To prove the result, we therefore start with enlarging the constraint set of the bound in Equation (11):

Box
(
HBox(a)

)
⊆ B0

(
rmax

(
HBox(a)

))
⊆ B0

(
rmax

(
HB0(

√
nt A)

))
= B0

(
rmax

(
UΛVTB0(

√
nt A)

))
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= B0

(
rmax

(
UΛB0(

√
nt A)

))
= B0

(
rmax

(
ΛB0(

√
nt A)

))
⊆ B0(r)

⊆ Box(a′),

where r :=
√

nt A
√

∑nmin
i=1 σ2

i and a′ :=
( r√

nmin
, . . . , r√

nmin

)
∈ R

nmin
+ . Therefore, by using the upper bound

in Equation (11), it follows that

C(Box(a),H) ≤
nr

∑
i=1

log2

(
1 +

2Ai√
2πe

)
≤ nmin log2

⎛⎝1 +
2√
2πe

√
nt A

√
∑nmin

i=1 σ2
i√

nmin

⎞⎠.

Moreover,

lim
A→∞

C(Box(a),H)

log2

(
1 + 2A√

2πe

) ≤ nmin lim
A→∞

log2

(
1 + 2√

2πe

√
nt A

√
∑

nmin
i=1 σ2

i√
nmin

)
log2

(
1 + 2A√

2πe

) = nmin.

Next, using the EPI lower bound in Equation (46), we have that

lim
A→∞

CEPI(Box(a),Λ)

log2

(
1 + 2A√

2πe

) = nmin lim
A→∞

1
2 log2

(
1 +

A|∏nmin
i=1 σi|

2
nmin

2πe

)
log2

(
1 + 2A√

2πe

) = nmin.

This concludes the proof.
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Figure 4. Comparison of the upper bound in Theorem 2 with the lower bounds of Theorem 20 for
a 3× 1 MIMO system with amplitude constraints A1 = A2 = A3 = A (i.e., a = (A, A, A)) and channel
matrix h = (0.6557, 0.0357, 0.8491).
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7. The SISO Case

In this section, we apply the upper and lower bounds presented in the previous sections to the
special case of a SISO channel that is subject to an amplitude constraint (i.e., X = [−A, A] for some
A ∈ R+) and compare them with the state-of-the art. More precisely, we are interested in upper and
lower bounds to the capacity

C([−A, A], h) := max
FX :X∈[−A,A]

I(X; hX + Y). (47)

Without loss of generality, we assume h = 1 in all that follows.

7.1. Upper and Lower Bounds

As a starting point for our comparisons, the following Theorem summarizes bounds on the
capacity (47) that are known from the literature. The bounds are all based on the duality approach that
we generalize in Section 4 to the MIMO case.

Theorem 22. (Known Duality Upper Bounds) Let A > 0 be arbitrary. Then, the following are valid upper
bounds to the capacity of the amplitude-constrained SISO channel defined in Equation (47).

• McKellips upper bound [7]:

C([−A, A], 1) ≤ C̄McK([−A, A], 1) := log2

(
1 +

2A√
2πe

)
. (48)

• Thangaraj–Kramer–Böcherer upper bound ([8] Theorem 1):

C([−A, A], 1) ≤ C̄TKB([−A, A], 1) :=

⎧⎨⎩ β(A) loge

(√
2

πe A
)
+ Hb

(
β(A)

)
, A2 ≤ 6.304 dB

C̄McK([−A, A], 1), else,
(49)

where β(A) := 1
2 −Q(2A) and Hb denotes the binary entropy function.

• Rassouli–Clerckx upper bound [9]:

C([−A, A], 1) ≤ C̄RC([−A, A], 1) := C̄TKB([−A, A], 1) + W(A), (50)

where

W(A) :=
1
2

(
loge

(
σ2(A)

)
+

1
σ2(A)

− 1
)(

1
2
+ Q(2A)

)
+

g(2A)

2σ2(A)
,

σ2(A) := 1 +
2g(2A)

1 + 2Q(2A)
,

and
g(x) := x2Q(x)− x√

2π
e−

x2
2 .

Now, we apply the moment upper bound of Theorem 9 to the SISO case.

Theorem 23. (Moment Upper Bound) Let A > 0 be arbitrary. Then,

C([−A, A], 1) ≤ C̄M([−A, A], 1) = inf
p>0

log2

(
k1,p

(2πe)
1
2
E
[
|A + Z|p

] 1
p

)
, (51)
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where the expected value is of the explicit form

E
[
|A + Z|p

]
=

2
p
2 Γ

(
p+1

2

)
√

π
1F1

(
− p

2
;

1
2

;−A2

2

)
with 1F1(a; b; z) being the confluent hypergeometric function of the first kind ([39] Chapter 13).

Proof. First, note that rmax([−A, A]) = A. Then, by using the expression for the raw absolute moment
of a Gaussian distribution given in [40], we have that

max
a∈[0,A]

E
[
|a + Z|p

]
= max

a∈[0,A]

2
p
2 Γ

(
p+1

2

)
√

π
1F1

(
− p

2
;

1
2

;− a2

2

)
.

The proof is concluded by observing that f (a) := 1F1

(
− p

2 ; 1
2 ;− a2

2

)
is an increasing function

in a.

The following theorem establishes the EPI and the Jensen lower bound of Section 4.2 assuming
the channel input symbols are uniformly distributed.

Theorem 24. (Lower Bounds with Uniform Inputs) Let A > 0 be arbitrary and the channel input X be
uniformly distributed over [−A, A]. Then,

C([−A, A], 1) ≥ CEPI([−A, A], 1) =
1
2

log2

(
1 +

2A2

πe

)
(52)

and

C([−A, A], 1) ≥ CJensen([−A, A], 1) = log2

⎛⎝ √
2A2

e
1
2

(
e−A2 − 1 +

√
πA

(
1− 2Q

(√
2A

)))
⎞⎠. (53)

Proof. The lower bound in Equation (52) follows from Theorem 12 by observing that Vol(X ) = 2A.
To show the lower bound in Equation (53), consider Theorem 14 and let X and X′ be independent and
uniformly distributed over [−A, A]. Then, we have

E

[
e−

|X−X′ |2
4

]
=

1
4A2

∫ A

−A

∫ A

−A
e−

(x−x′)2
4 dx dx′

=
1

A2

(
e−A2 − 1 +

√
πA

(
1− 2Q

(√
2A

)))
,

which concludes the proof.

Restricting the channel inputs to be discrete allows for another set of lower bounds
on Equation (47).

Theorem 25. (Lower Bounds with Discrete Inputs) Let A > 1 be arbitrary, XB ∈ {−A, A} equally likely,
and XD ∼ PAM(N) with N =

⌈
1 + A√

2πe

⌉
. Then,

C([−A, A], 1) ≥ CBinary([−A, A], 1) := I(XB; XB + Z) (54)

=
1

loge(2)

⎛⎝A2 −
∫ ∞

−∞

e−
y2
2√

2π
loge

(
cosh(A2 − Ay)

)
dy

⎞⎠ , (55)
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C([−A, A], 1) ≥ CJensen([−A, A], 1) = − log2

⎛⎜⎝√
e
2

1
N2 ∑

(xDi
,xDj

)∈PAM(N)2

e−
(xDi

−xDj
)2

4

⎞⎟⎠, (56)

and
C([−A, A], 1) ≥ COW([−A, A], 1) = C̄McK([−A, A], 1)− 2. (57)

Proof. The expression of the mutual information in Equation (54) for a uniform binary input XB ∈
{−A, A} is found in [41] by using the I-MMSE relationship. The bound in Equation (56) follows from
using Theorem 14 and the bound in Equation (57) from Theorem 13, respectively. This concludes
the proof.

Figure 5 compares the upper and lower bounds presented in this section in dependency of
the amplitude constraint A. Observe that for values of A smaller than ≈1.665 (i.e., to the left of
the gray vertical line), the lower bound (55) is in fact equal to the capacity. Up to constraints of
A ≈ 1, the moment upper bound in Equation (51) is the best after which the bound in Equation (50)
becomes the tightest. The best lower bound for constraint values smaller than A ≈ 10 is the bound in
Equation (56) after which the lower bound in Equation (53) becomes the tightest. Note that all lower
and upper bounds are asymptotically tight (i.e., for A → ∞).
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Figure 5. Comparison of upper and lower bounds on the capacity of a SISO channel with amplitude
constraint A. The capacity of this channel is known for amplitudes smaller than A ≈ 10 log10(1.665) =
2.214 dB only (i.e., to the left of the gray vertical line) and unknown elsewhere. The nested figure
represents a zoom into the region −1.9 dB ≤ A ≤ −1.88 dB to highlight the differences between the
Moment upper bound (51), the Rassouli–Clerckx upper bound in Equation (50), and the lower bound
with binary inputs in Equation (56).
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7.2. High and Low Amplitude Asymptotics

In this subsection, we study how the capacity in Equation (47) behaves in the high and low
amplitude regimes. To this end, we need the following expression

C̄AWGN([−A, A], 1) :=
1
2

log2

(
1 + A2

)
,

which is either the capacity of a SISO channel with an average power constraint A2 or the moment
bound in Equation (51) evaluated for p = 2.

Theorem 26. (SISO High and Low Amplitude Asymptotics) It holds

lim
A→0

C([−A, A], 1)
C̄AWGN([−A, A], 1)

= 1, (58)

lim
A→∞

C([−A, A], 1)
C̄McK([−A, A], 1)

= 1, (59)

and
lim

A→∞
C([−A, A], 1)− C̄AWGN([−A, A], 1) =

1
2

log2

(πe
2

)
≈ 1.044. (60)

Proof. The capacity of an amplitude-constrained SISO channel in the regime of low amplitudes
(i.e., for amplitudes smaller than A ≈ 1.655) was given by Guo et al. [41]

C([−A, A], 1) =
1

loge(2)

⎛⎝A2 −
∫ ∞

−∞

e−
y2
2√

2π
loge

(
cosh(A2 − Ay)

)
dy

⎞⎠ .

Now, observe that

lim
A→0

1
1
2 log2(1 + A2)

∫ ∞

−∞

e−
y2
2√

2π
loge

(
cosh(A2 − Ay)

)
dy

=
2

log2(e)

∫ ∞

−∞

e−
y2
2√

2π

loge
(
cosh(A2 − Ay)

)
loge(1 + A2)

dy

=
2

log2(e)

∫ ∞

−∞

e−
y2
2√

2π
lim
A→0

loge
(
cosh(A2 − Ay)

)
loge(1 + A2)

dy

=
2

log2(e)

∫ ∞

−∞

e−
y2
2√

2π

y2

2
dy

=
1

log2(e)
.

Therefore, the limit in Equation (58) is given by

lim
A→0

C([−A, A], 1)
C̄AWGN([−A, A], 1)

= lim
A→0

A2

loge(2)
1
2 log2(1 + A2)

− 1
loge(2) log2(e)

=
2 loge(2)
loge(2)

− 1
loge(2) log2(e)

= 2− 1 = 1.
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The limit in Equation (59) follows from comparing the EPI lower bound CEPI([−A, A], 1) =
1
2 log2

(
1 + 2A2

πe
)

in (52) with the McKellips upper bound C̄McK([−A, A], 1) = log2
(
1 + 2A√

2πe

)
given in

Equation (48).
Finally, to show Equation (60), observe that

lim
A→∞

C([−A, A], 1)− C̄AWGN([−A, A], 1) = lim
A→∞

C̄McK([−A, A], 1)− C̄AWGN([−A, A], 1)

= lim
A→∞

log2

(
1 +

2A√
2πe

)
− 1

2
log2(1 + A2)

=
1
2

log2

(πe
2

)
.

This concludes the proof.

8. Conclusions

In this work, we studied the capacity of MIMO channels with bounded input spaces. Several
new properties of input distributions that achieve the capacity of such channels have been provided.
In particular, it is shown that the support of a capacity-achieving channel input distribution is a set
that is small in a topological and measure theoretical sense. In addition to that, it is shown that, if the
radius of the underlying channel input space, X , is small enough, then the support of a corresponding
capacity-achieving input distribution must necessarily be a subset of the boundary of X . As the
considerations on the input distribution have demonstrated that determining the capacity is a very
challenging problem, we proposed several new upper and lower bounds that are shown to be tight in
the high amplitude regime. An interesting future direction would be to study generalizations of our
techniques to wireless optical MIMO channels [42] and other channels such as the wiretap channel [43].
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Abstract: Standard upper and lower bounds on the capacity of relay channels are cut-set (CS),
decode-forward (DF), and quantize-forward (QF) rates. For real additive white Gaussian noise (AWGN)
multicast relay channels with one source node and one relay node, these bounds are shown to be
quasi-concave in the receiver signal-to-noise ratios and the squared source-relay correlation coefficient.
Furthermore, the CS rates are shown to be quasi-concave in the relay position for a fixed correlation
coefficient, and the DF rates are shown to be quasi-concave in the relay position. The latter property
characterizes the optimal relay position when using DF. The results extend to complex AWGN channels
with random phase variations.

Keywords: capacity; decode-forward; multicast; relaying

1. Introduction

A multicast relay channel (MRC) is an information network with a source node, a relay node,
and two or more destination nodes, and where one message originating at the source should be received
reliably at the destinations. We consider additive white Gaussian noise (AWGN) MRCs and show
that certain information rate expressions are quasi-concave in the receiver signal-to-noise ratios (SNRs),
the squared source-relay correlation coefficient, and the relay position. In particular, we study cut-set (CS),
decode-forward (DF), and quantize-forward (QF) rates. Quasi-concavity suggests that efficient algorithms
can optimize signaling and the relay position. However, the main motivation of this work is not practicality,
but simply to provide better understanding of the problem.

Relay positioning has been studied by many authors, with a focus on rate enhancement (e.g., [1,2]),
range extension (e.g., [3,4]), and outage probability (e.g., [1,5,6]). We study the problem of placing a relay
to maximize the multicast rate by extending results of [7–10]. A preliminary version of this paper without
proofs appeared in [11]. Our focus is on real alphabet channels. However, our main results also apply to
complex alphabet channels if there are random phase variations so that beamforming is not useful.

This paper is organized as follows. Section 2 presents the MRC model and reviews the CS, DF, and QF
rates. Section 3 develops quasi-concavity results in the squared source-relay correlation coefficient ρ2 and
the channel SNRs. Section 4 introduces a distance dependence for the channel gains and shows that the CS
rate is quasi-concave in the relay position when ρ is fixed. We further show that the DF rate is quasi-concave
in the relay position. Section 5 illustrates quasi-concavity for one-, two-, and three-dimensional networks,
and compares the performance of two DF strategies. Section 6 discusses complex AWGN channels and
a sum (source plus relay) power constraint. Section 7 concludes the paper. Appendices A and B review
useful results on concavity and quasi-concavity, and prove a few new results.

Entropy 2019, 21, 109; doi:10.3390/e21020109 www.mdpi.com/journal/entropy
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2. Model and Information Rates

2.1. Model

An MRC has three types of nodes:

• a source node s that generates a message W and transmits the symbols Xn
s = Xs,1, Xs,2, . . . , Xs,n;

• a relay node r that receives and forwards symbols Yr,k and Xr,k, respectively, for k = 1, 2, · · · , n;
• destination nodes j = 1, 2, . . . , N where node j receives Yn

j = Yj,1, Yj,2, . . . , Yj,n and estimates W as Ŵj.

We denote the destination node set as T = {1, 2, . . . , N}. The classic relay channel has N = 1 and
Figure 1 shows an MRC with N = 2.

W
Source

Xn
s

Channel

Relay

Yn
r Xn

r
Destination 1

Yn
1

Ŵ1

Destination 2
Yn

2 Ŵ2

Figure 1. Multicast relay channel (MRC) with two destinations.

A memoryless MRC has a function h(·) and a noise random variable Z so that for every time instant
the N + 1 channel outputs Y = (Yr Y1 . . . YN) are given by

Y = h(Xs, Xr, Z).

The noise Z is statistically independent of Xs and Xr, and the noise variables at different times are
statistically independent.

An encoding strategy for M messages has

• W uniformly distributed over {1, 2, . . . , M};
• an encoding function es(·) such that Xn

s = es(W);
• relay functions er,k(·) with Xr,k = er,k(Yr,1, . . . , Yr,k−1), where k = 1, 2, . . . , n;
• decoding functions dj(·) such that dj(Yn

j ) = Ŵj, j ∈ T .

The error probability at destination j is Pe,j = Pr
[
Ŵj �= W

]
. The multicast rate is R = (log2 M)/n

bits/use. The rate R is achievable if, for any ε > 0 and sufficiently large n, there is an encoding strategy
with Pe,j ≤ ε for all j ∈ T . The capacity C is the supremum of the achievable rates.

2.2. Information Rates

The following bounds were given in [12] for the relay channel (N = 1). Their extensions to MRCs
are straightforward.

• CS Rate: C ≤ RCS where

RCS =max
{

min
1≤j≤N

min
(

I(XsXr; Yj), I(Xs; YrYj|Xr)
)}

(1)
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and where the maximization is over all XsXr.
• Direct-Transmission (DT) Rate: C ≥ RDT where

RDT = max{ min
1≤j≤N

I(Xs; Yj|Xr = x∗)} (2)

and where the maximization is over all x∗ and Xs.
• DF Rate: C ≥ RDF where

RDF =max
{

min
1≤j≤N

min
(

I(XsXr; Yj), I(Xs; Yr|Xr)
)}

(3)

and where the maximization is over all XsXr.
• QF Rate: C ≥ RQF where

RQF =max
{

min
1≤j≤N

min
(

I(XsXr; Yj)− I(Yr; Ŷr|XsXrYj), I(Xs; ŶrYj|Xr)
)}

(4)

where Ŷr is an auxiliary random variable, and where the maximization is over all XsXrŶr such that Xs

and Xr are independent and Xs − XrYr − Ŷr forms a Markov chain.

2.3. Real Alphabet AWGN MRC

The real alphabet AWGN MRC has real channel symbols and

Yr = as,rXs + Zr (5)

Yj = as,jXs + ar,jXr + Zj (6)

where j ∈ T . The as,r, as,j, and ar,j are channel gains between the nodes (see Figure 2). We later relate
these gains to distances between the nodes. The Zr and Zj, j = 1, 2, . . . , N, are independent and identically
distributed Gaussian random variables with zero mean and unit variance. We may alternatively write (5)
and (6) in vector form as

Yj = AjX + Zj (7)

where X = (Xs Xr)T , Yj = (Yr Yj)
T , Z = (Zr Zj)

T , and

Aj =

(
as,r 0
as,j ar,j

)
. (8)
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s r

1

2

as,r

as,1
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ar,2

Figure 2. AWGN MRC with two destinations.

We consider individual average block power constraints

E

[
n

∑
k=1

X2
s,k

]
≤ nPs, E

[
n

∑
k=1

X2
r,k

]
≤ nPr. (9)

The SNR and the capacity of the link from node u (with transmit power Pu) to node v are the respective

SNRu,v = a2
u,vPu (10)

C(SNRu,v) =
1
2

log (1 + SNRu,v) . (11)

We simplify the above rate bounds for the AWGN MRC.

• CS Rate:

RCS = max
ρ

[
min

1≤j≤N
min

(
C
(
SNRs,j + SNRr,j + 2ρ

√
SNRs,jSNRr,j

)
,

C
(
(1− ρ2)(SNRs,j + SNRs,r))

)]
(12)

where the correlation coefficient ρ satisfies |ρ| ≤ 1. One can restrict attention to non-negative ρ.
• DT Rate:

RDT = min
1≤j≤N

C(SNRs,j). (13)

• DF Rate:

RDF = max
ρ

[
min

1≤j≤N
min

(
C(SNRs,j + SNRr,j + 2ρ

√
SNRs,jSNRr,j),C((1− ρ2)SNRs,r)

)]
. (14)

One can again restrict attention to non-negative ρ.
• QF Rate: Optimizing XsXrŶr seems difficult. Instead, we choose Xs and Xr to be zero-mean Gaussian

with variances Ps and Pr, respectively. We further choose Ŷr = Yr + Zr where Zr is zero-mean Gaussian
with variance Nr. Optimizing Nr gives (see [13], pp. 336–337)

R̃QF = min
1≤j≤N

C

(
SNRs,j +

SNRr,jSNRs,r

SNRs,j + SNRr,j + SNRs,r + 1

)
. (15)
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3. Quasi-Concavity in SNRs and ρ2

3.1. CS Rate

We consider two characterizations of RCS. First, let aT
j = (as,j ar,j) be the second row of Aj, let QX be

the covariance matrix of X (see Appendix A), and let det M be the determinant of the square matrix M.
The CS rate (12) can be expressed as the maximum of

RCS(QX) = min
1≤j≤N

min

(
1
2

log
(

aT
j QX aj + 1

)
,

1
2

log

(det Q(YT
j Xr)T

Pr

))
(16)

over the convex set of QX with diagonal entries Ps and Pr. The first logarithm in (16) is clearly concave in
QX. The second logarithm is concave in Q(YT

j Xr)T (see Appendix A) and Q(YT
j Xr)T is linear in QX. To prove

the latter claim, observe that

Q(YT
j Xr)T = ÃjQXÃT

j +

(
I2 0

0 0

)
(17)

where ÃT
j =

(
AT

j [0 1]T
)

and I2 is the 2× 2 identity matrix. Hence RCS(QX) is concave in (the convex set
of) QX because it is the minimum of 2N concave functions.

Suppose next that we wish to consider ρ and the SNRs individually rather than via QX. Define
the vector

S = (SNRs,r, SNRs,1, · · · , SNRs,N , SNRr,1, · · · , SNRr,N) (18)

and the functions

f j(ρ, S) = SNRs,j + SNRr,j + 2ρ
√

SNRs,jSNRr,j (19)

gj(ρ, S) = (1− ρ2)
(
SNRs,j + SNRs,r

)
(20)

RCS(ρ, S) = min
1≤j≤N

min
(
C( f j(ρ, S)),C(gj(ρ, S))

)
. (21)

We establish the following results. We restrict attention to 0 ≤ ρ ≤ 1 and positive S.

Lemma 1. f j(ρ, S) and gj(ρ, S) are concave in ρ, concave in S, and quasi-concave in (ρ2, S).

Proof. Concavity with respect to ρ is established by observing that f j(ρ, S) is linear in ρ, and gj(ρ, S) is
linear in −ρ2 which is concave in ρ.

Consider next concavity with respect to S. The Hessian of f j(ρ, S) with respect to S has only one
non-zero eigenvalue

−ρ

2
·
SNR2

s,j + SNR2
r,j

SNR3/2
s,j SNR3/2

r,j

. (22)

Thus, f j(ρ, S) is concave in S for non-negative ρ and positive S. The function gj(ρ, S) is linear in S, and thus
concave in S.

Now consider quasi-concavity with respect to (ρ2, S). Substituting a = SNRs,j, b = SNRr,j, c = ρ2

into the fifth function of Lemma A6 in Appendix B, we find that f j(ρ, S) is quasi-concave in (ρ2, S). For
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the gj(ρ, S), observe that ab is quasi-concave for non-negative (a, b), see the first function of Lemma A6.
This implies (see (A7))

(λa1 + λ̄a2)(λb1 + λ̄b2) ≥ min (a1b1, a2b2) (23)

for 0 ≤ λ ≤ 1, and where λ̄ = 1− λ. Substituting ai = 1− ρ2
i and bi = SNRs,j,i + SNRs,r,i for i = 1, 2,

we find that gj(ρ, S) is quasi-concave in (ρ2, S).

Theorem 1. RCS(ρ, S) is concave in ρ, concave in S, and quasi-concave in (ρ2, S).

Proof. RCS(ρ, S) involves taking logarithms and minima of (quasi-) concave functions. The results thus
follow by applying Lemma 1 above and Lemma A5, Parts 2 and 3, in Appendix B.

Corollary 1. Consider S as a function of P = (Ps, Pr). Then RCS(ρ, S(P)) is quasi-concave in (ρ2, P).

Proof. The proof follows from the proof of Theorem 1 and because S is a linear function of P.

To illustrate the quasi-concavity, consider one relay and the channel gains as,r = 5/2, as,1 = 1,
and ar,1 = 5/3. This scenario corresponds to the geometry in Section 5.1 with r = 0.4. Figure 3 shows a
contour plot of RCS(ρ, S(P)) when Ps = 1. Observe that the contour lines form convex regions, as predicted
by Corollary 1.

Figure 3. Contour plot of RCS(ρ, S(P)) when Ps = 1.
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3.2. DF Rate

Consider the functions

g∗j (ρ, S) = (1− ρ2)SNRs,r (24)

RDF(ρ, S) = min
1≤j≤N

min
(
C( f j(ρ, S)),C(g∗j (ρ, S))

)
. (25)

As above, we restrict attention to 0 ≤ ρ ≤ 1 and positive S.

Theorem 2. RDF(ρ, S) is concave in ρ, concave in S, and quasi-concave in (ρ2, S).

Proof. The proof is similar to that of Theorem 1.

Corollary 2. RDF(ρ, S(P)) is quasi-concave in (ρ2, P).

Proof. See the proof of Corollary 1.

3.3. DT Rate

The DT rate (13) is clearly concave in S and P.

3.4. QF Rate

Consider the functions

hj(S) = SNRs,j +
SNRr,jSNRs,r

SNRs,j + SNRr,j + SNRs,r + 1
(26)

R̃QF(S) = min
1≤j≤N

C(hj(S)). (27)

We establish the following results. We restrict attention to non-negative S.

Lemma 2. hj(S) is quasi-concave in (SNRr,j, SNRs,r).

Proof. Substitute a = SNRr,j, b = SNRs,r, k = SNRs,j + 1 into the second function of Lemma A6 in
Appendix B, and apply Lemma A5, Part 1.

Theorem 3. R̃QF(S) is quasi-concave in S if the SNRs,j, j = 1, 2, . . . , n, are held fixed.

Proof. Apply Lemma 2 above and Lemma A5, Parts 2 and 3, in Appendix B.

4. Quasi-Concavity in Relay Position

Suppose the channel gain for the node pair (i, j) is

ai,j =
√

ξi,j

/
Dα/2

i,j (28)
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where ξi,j is a “fading” gain, Di,j = ‖i− j‖ is the Euclidean distance between the positions i and j of nodes
i and j, respectively, and α ≥ 2 is a path-loss exponent. We thus have

SNRi,j =
ξi,jPi

Dα
i,j

=
ξi,jPi

‖i− j‖α
.

We establish quasi-concavity results in ρ2 and r, where r is the position of the relay node.

4.1. CS Rate

Consider the functions (19)–(21) but relabeled as f j(ρ, r), gj(ρ, r), and RCS(ρ, r) to emphasize the
dependence on the considered parameters. We again consider 0 ≤ ρ ≤ 1 and positive S.

Lemma 3. f j(ρ, r) and gj(ρ, r) are quasi-concave in r for fixed ρ. Furthermore, fj(ρ, r) is quasi-concave in (ρ2, r).

Proof. Consider the functions

f̃ j(ρ, Dα) =
ξs,jPs

Dα
s,j

+
ξr,jPr

Dα
+ 2ρ

√
ξs,jPs

Dα
s,j

ξr,jPr

Dα
(29)

g̃j(ρ, Dα) = (1− ρ2)

(
ξs,jPs

Dα
s,j

+
ξs,rPs

Dα

)
(30)

which are quasi-linear in Dα for fixed ρ since they are decreasing in Dα. However, Dα
r,j is a convex function

of r for α ≥ 1, and thus Lemma A5, Part 5, in Appendix B establishes that f j(ρ, r) is quasi-concave in r for
fixed ρ. Similarly, Dα

s,r is a convex function of r for α ≥ 1, and we find that gj(ρ, r) is quasi-concave in r for
fixed ρ.

Next, substitute a = Dα and b = ρ2 into the third function of Lemma A6, and use Lemma A5, Part 1,
to show that f̃ j(ρ, Dα) is quasi-concave in (ρ2, Dα). However, f̃ j is decreasing in Dα and Dα

r,j is convex in r,

so Lemma A5, Part 5, establishes that f j(ρ, r) is quasi-concave in (ρ2, r).

Unfortunately, g̃j is quasi-convex (and not quasi-concave) in (ρ2, Dα). To see this, substitute a = Dα

and b = ρ2 into the fourth function of Lemma A6. Quasi-concavity would have been useful since it would
have permitted using Lemma A5, Parts 2 and 4, to establish the quasi-concavity of

RCS(r) = max
ρ

[
min

1≤j≤N
min

(
C( f j(ρ, r)),C(gj(ρ, r))

)]
. (31)

However, we have been unable to prove this, and our numerical results suggest that RCS(ρ, r) is not
quasi-concave in (ρ2, r). Nevertheless, Lemma 3 suffices to establish an intermediate result which is useful
in Section 5 when we study ρ = 0.

Theorem 4. RCS(ρ, r) is quasi-concave in r for fixed ρ, 0 ≤ ρ ≤ 1.

Proof. RCS(ρ, r) is the minimum of functions that are quasi-concave in r. Lemma A5, Part 2,
thus establishes the theorem.
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4.2. DF Rate

The quasi-convexity of g̃j(ρ, Dα) relaxes for the DF rate (25). Consider the negative of the fourth
function of Lemma A6 in Appendix B with k1 = 0:

f (a, b) = (1− b)k2/a. (32)

This function is quasi-linear in (a, b) since both its superlevel and sublevel sets are convex. This result
implies the following theorem. We again consider the functions (24)–(25) but relabeled as g∗j (ρ, r) and
RDF(ρ, r). We further define

g̃∗j (ρ, Dα) = (1− ρ2)
ξs,rPs

Dα
(33)

RDF(r) = max
ρ

[
min

1≤j≤N
min

(
C( f j(ρ, r)),C(g∗j (ρ, r))

)]
. (34)

As above, we consider 0 ≤ ρ ≤ 1 and positive S.

Theorem 5. RDF(ρ, r) is quasi-concave in (ρ2, r), and RDF(r) is quasi-concave in r.

Proof. g̃∗j (ρ, Dα) is quasi-linear in (ρ2, Dα) and decreasing in Dα. Furthermore, Dα
s,r is convex in r, and

thus Lemma A5, Part 5, in Appendix B establishes that g∗j (ρ, r) is quasi-concave in (ρ2, r). RDF(ρ, r) is
therefore quasi-concave in r, as it is the minimum of quasi-concave functions (see Lemma A5, Part 2).
Furthermore, RDF(r) is concave in r by Lemma A5, Part 4.

5. DF Performance

This section presents numerical results for the DF strategy and compares them to results from [7–9].
We consider 1-, 2-, and 3-dimensional MRCs with different numbers N of destination nodes. For simplicity,
we consider the low SNR or broadband regime where

C(SNR) =
1
2

log(1 + SNR)→ 1
2
SNR. (35)

In other words, we consider the CS and DF rates without the logarithms. This approach is valid
not only in the limit of low SNR, but more generally because we proved our quasi-concavity results
without taking logarithms. Furthermore, in the low SNR regime the rates of full-duplex and half-duplex
transmission are the same under a block power constraint.

We choose Ps = Pr = P = 1, α = 2, and ξu,v = 1 for all node pairs (u, v). We study both coherent
transmission where ρ is optimized and non-coherent transmission with ρ = 0. The rates are in nats/channel
use. Alternatively, suppose we use sync pulses sampled at 2W samples per second, where W is the
(one-sided) signal bandwidth. Suppose further that the (one-sided) noise power spectral density is
1 Watt/Hz. Then at low SNR the rates in nats/channel use are the same as the rates in nats/sec.
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5.1. One Dimension

Consider a relay channel (N = 1) where the source is at the origin (s = 0) and the destination is at
point 1 (1 = 1). Figure 4 shows the low SNR CS rates, DF rates, and the routing-based DF (RDF) rates
developed in [7], which are given by

RCS →
1
2

min

(
ξs,1Ps

‖s− 1‖α
+

ξr,1Pr

‖r− 1‖α
+

2ρ
√

ξs,1ξr,1PsPr

‖s− 1‖α/2‖r− 1‖α/2 , (1− ρ2)

(
ξs,1Ps

‖s− 1‖α
+

ξs,rPs

‖s− r‖α

))
(36)

RDF →
1
2

min

(
ξs,1Ps

‖s− 1‖α
+

ξr,1Pr

‖r− 1‖α
+

2ρ
√

ξs,1ξr,1PsPr

‖s− 1‖α/2‖r− 1‖α/2 , (1− ρ2)
ξs,rPs

‖s− r‖α

)
(37)

RRDF → max
0≤β≤1

1
2

[
min

(
ξr,1Pr

‖r− 1‖α
,

β ξs,rPs

‖s− r‖α

)
+

(1− β) ξs,1Ps

‖s− 1‖α

]
. (38)

Figure 4. Relay channel rates for low signal-to-noise ratio (SNR) and P = 1.

Observe that all curves are quasi-concave (but not concave) in r. Theorems 4 and 5 predict the
quasi-concavity for all curves except for the coherent CS rates. Observe also that the curves for the coherent
and non-coherent rates merge for relay positions exceeding a certain value (r = 0.5 and r ≈ 0.47 for the
respective CS and DF rates). The reason for this behavior is that ρ = 0 is optimal for the coherent CS and
DF rates beyond these positions, see the ρ curve in [1] (Figure 16). Furthermore, the non-coherent CS rates
coincide with the non-coherent DF rates for a large range of r.

The best relay positions for the two strategies are different. For example, r = 0.5 maximizes RRDF
while the r maximizing RDF is closer to the source. This is because when the source transmits, the relay
and the destination listen, and the destination “collects” information. The relay can thus be positioned
closer to the source while maintaining the same information rate from the source to the relay, and from
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the source-relay pair to the destination. At the optimal positions, we compute RDF ≈ 2.26P nats/sec and
RRDF = 2P nats/sec, so the DF gain is ≈13%.

Finally, we illustrate that RDF(ρ, r) is quasi-concave in (ρ2, r) in Figure 5. The contour lines form
convex regions, as predicted by Theorem 5.

Figure 5. Contour plot of RDF(ρ, r) in (37).

5.2. Two Dimensions

Consider N = 5 destinations positioned on a square in the two-dimensional Euclidean plane with
the source node at the origin. Figure 6a plots the node positions as circles, and the non-coherent RDF as a
function of the relay position. The best relay position is shown by a circle labeled r∗DF and the corresponding
rate is RDF ≈ 0.011P nats/sec. Figure 6c plots the low SNR two-hop rate

R2H → min
1≤j≤5

1
2

min
(

ξs,rPs

‖s− r‖α
,

ξr,jPr

‖r− j‖α

)
(39)

as a function of the relay position. The best relay position is shown by a circle labeled r∗2H and the
corresponding two-hop rate is R2H = 0.01P nats/sec. The non-coherent DF gain is thus ≈10%.

Figure 6b,d shows contour plots for RDF and R2H . The contours form convex regions, as predicted
by Theorem 5. Again, the relay position maximizing RDF lies closer to the source than the relay position
maximizing R2H .
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Figure 6. (a) RDF for N = 5; (b) RDF contour plot; (c) R2H for the same network; (d) R2H contour plot.

5.3. Three Dimensions

Consider N = 5 destinations positioned in 3-dimensional Euclidean space as in Figure 7. The figure
also shows the convex hull (a polyhedron) of the points. The points r∗DF and r∗2H denote the relay positions
that maximize the non-coherent RDF and R2H , respectively. We remark that r∗DF and r∗2H remain unchanged
if more destinations are positioned inside the polyhedron. This is because the points in the polyhedron
receive at least the same rate as the worst of the five nodes at the corner points.
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Figure 7. N = 5 destination geometry in three dimensions.

6. Discussion

6.1. Complex AWGN Channels

For complex-alphabet AWGN channels, we could replace (5) and (6) by adding phases φi,j for i = s, r
and j = 1, 2, . . . , N as follows:

Yr = as,r ejφs,r Xs + Zr (40)

Yj = as,j ejφs,j Xs + ar,j ejφr,j Xr + Zj (41)

where the noise variables Zr and Zj, j = 1, 2, . . . , N, are independent, identically distributed, circularly
symmetric, complex, Gaussian random variables with zero mean and unit variance. The distance
dependence of ai,j can be chosen as in (28) and the phase dependence as

φi,j = 2πDi,j
/

λ (42)

where λ = c/ fo is the wavelength, c is the speed of light, and fo is the carrier frequency.
For example, the DF rate (14), normalized by the number of real dimensions, is

RDF = max
ρ

[
min

1≤j≤N
min

(
C(SNRs,j + SNRr,j+

2�
{

ρej(φs,j−φr,j)
}√

SNRs,jSNRr,j

)
,C((1− |ρ|2)SNRs,r)

)]
(43)

where the complex correlation coefficient ρ satisfies 0 ≤ |ρ| ≤ 1. Observe that for a classic relay channel,
with N = 1 destination, one can choose ρ to make �

{
ρej(φs,1−φr,1)

}
real and non-negative, as for real

alphabet AWGN channels. However, for N ≥ 2 one must choose complex ρ in general. Furthermore,
the quasi-concavity in r will not be valid in general because the phases φr,j change with r, and we cannot
optimize ρ for each destination node separately. However, we remark that this effect is “local" in the sense
that for large carrier frequencies the phase variations are sensitive to changes in r. A pragmatic approach
would then be to optimize r for non-coherent transmission (ρ = 0) even if beamforming is permitted.
Furthermore, if the channel exhibits random phase variations, then the best approach is to choose ρ = 0
(see [1], Figure 18) in which case we have quasi-concavity for both the CS and DF rates. Finally, we remark
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that it might be interesting to consider quasi-concavity in the correlation coefficients for problems where
the source and relay have sufficiently many antennas to overcome the problem outlined above.

6.2. Sum-Power Constraint

For some applications, it is interesting to consider a sum-power constraint

E

[
n

∑
k=1
|X|2s,k + |X|2r,k

]
≤ nPT . (44)

As is usually done, we set Pr = PT − Ps and consider Ps, 0 ≤ Ps ≤ PT as a new optimization parameter.
One might now hope that RCS(Ps, r) or RDF(Ps, r) are quasi-concave in (Ps, r) for fixed ρ, or at least for
ρ = 0. Unfortunately, we have found counterexamples that show this is not the case. The rate functions do
seem to have interesting properties, however, and these deserve further exploration.

7. Conclusions

Various quasi-concavity results were established for AWGN MRCs. In particular, the CS rates are
quasi-concave in the relay position for a fixed correlation coefficient (Theorem 4) and the DF rates are
quasi-concave in the relay position (Theorem 5).
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Appendix A. Covariance Matrices and Concavity

The covariance matrix of a real-valued random column vector V is

QV = E
[
(V− E [V])(V− E [V])T

]
. (A1)

A useful property of covariance matrices is as follows (see [14], p. 684). If Q∗
V is a principal minor of QV,

then the following function is concave in QV:

f (QV) = log
det QV

det Q∗
V

. (A2)

Appendix B. Concave and Quasi-Concave Functions

We review results on quasi-concavity, and then establish quasi-concavity for several functions.

Appendix B.1. Definitions

Consider the following sets. The domain D f of a real-valued function f : Rn → R is the set of
arguments for which f is defined. The hypograph and hypergraph of f are the respective

H f = {(x, y) |y ≤ f (x)}, Ĥ f = {(x, y) |y ≥ f (x)}. (A3)
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The superlevel and sublevel sets of f with respect to β ∈ R are the respective

S f ,β = {x| f (x) ≥ β}, Ŝ f ,β = {x| f (x) ≤ β}. (A4)

Concave and quasi-concave functions can be defined via the convexity of these sets. Recall that a set
S , S ⊆ Rn, is convex if for any two points x1 and x2 in S and for any λ satisfying 0 ≤ λ ≤ 1 we have

λx1 + λ̄x2 ∈ S (A5)

where λ̄ = 1− λ. Suppose that D f is convex. The function f is concave over D f if and only if its hypograph
H f is convex. Similarly, f is convex over D f if and only if Ĥ f is convex. The function f is quasi-concave over
D f if and only if all its superlevel sets are convex, and f is quasi-convex overD f if and only if all its sublevel
sets are convex. A function that is quasi-convex and quasi-concave is called quasi-linear. For example, any
non-increasing or non-decreasing function is quasi-linear.

Appendix B.2. Basic Properties

Two properties of concave and quasi-concave functions are as follows; these properties are often used
as the definitions of such functions. Similar properties exist for convex and quasi-convex functions.

Lemma A1. The function f is concave if and only if

f (λx1 + λ̄x2) ≥ λ f (x1) + λ̄ f (x2) (A6)

for all x1 and x2 in D f and for all 0 ≤ λ ≤ 1.

Lemma A2. The function f is quasi-concave if and only if

f (λx1 + λ̄x2) ≥ min( f (x1), f (x2)) (A7)

for all x1 and x2 in D f and for all 0 ≤ λ ≤ 1.

The next two properties assume that f is twice differentiable and that D f is convex. Let H f (x) and
B f (x) be the respective Hessian and bordered Hessian of f at x.

Lemma A3. (see [15], Section 3.1.4) f is concave if and only if H f (x) is negative semidefinite for all x ∈ D f .

Lemma A4. (see [16], p. 771) f is quasi-concave on the open and convex setD f if the determinants D2, D3, . . . , Dn

of the respective second to nth leading principal minors of B f (x) satisfy (−1)kDk < 0 for k = 2, 3, . . . , n and for all
x ∈ D f .

Appendix B.3. Compositions Preserving Quasi-Concavity

The following compositions preserve quasi-concavity.

Lemma A5. Suppose f and fi, 1 ≤ i ≤ n, are quasi-concave, then so are the functions

1. h = k1 f + k2, where k1 ≥ 0 and k2 ∈ R;
2. h = min

1≤i≤n
fi;

3. h = g ◦ f where f is quasi-concave and g is non-decreasing;
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4. h(a) = supb∈B f (a, b) where B is a convex set;
5. h(a, b) = f (g(a), b) where g is convex and f (ã, b) is non-increasing in ã for fixed b.

Proof. Properties 1)–4) are standard (see [15], Section 3.4). For property 5), observe that

h(λa1 + λ̄a2, λb1 + λ̄b2)

= f (g(λa1 + λ̄a2), λb1 + λ̄b2)

(a)
≥ f (λg(a1) + λ̄g(a2), λb1 + λ̄b2)

(b)
≥ min ( f (g(a1), b1), f (g(a2), b2)) (A8)

where (a) follows because g(λa1 + λ̄a2) ≤ λg(a1) + λ̄g(a2) and f (ã, b) is non-increasing in ã. Step (b)
follows because f is quasi-concave.

Appendix B.4. Examples of Quasi-Concave Functions

We establish quasi-concavity for several useful functions.

Lemma A6. The following functions are quasi-concave for x = (a b) with non-negative entries.

1. f (x) = ab
2. f (x) = ab

a+b+k for a positive constant k
3. f (x) = k1/a + 2

√
k2b/a for positive constants k1, k2

4. f (x) = −(1− b)(k1 + k2/a) for positive constants k1, k2, and b ≤ 1

Furthermore, the following function is quasi-concave for x = (a b c) with non-negative entries.

5. f (x) = a + b + 2
√

abc

Proof. We consider positive x, and we use bordered Hessians B f (x) and the derivatives Dk of their kth
leading principal minors, k = 2, 3, . . . , n. The results extend to non-negative x by using continuity at zero
values, except for the third and fourth functions where a = 0 makes the functions undefined.

1. We have D2 < 0 and D3 > 0 for

B f (x) =

⎛⎜⎝0 b a
b 0 1
a 1 0

⎞⎟⎠ .

2. We have D2 < 0 and D3 > 0 for

B f (x) =

⎛⎜⎜⎝
0 b(b+k)

(a+b+k)2
a(a+k)

(a+b+k)2

b(b+k)
(a+b+k)2

−2b(b+k)
(a+b+k)3

2ab+(a+b+k)k
(a+b+k)3

a(a+k)
(a+b+k)2

2ab+(a+b+k)k
(a+b+k)3

−2a(a+k)
(a+b+k)3

⎞⎟⎟⎠ .
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3. We have D2 < 0 and D3 > 0 for

B f (x) =

⎛⎜⎜⎜⎝
0 − k1+

√
k2ab

a2

√
k2
ab

− k1+
√

k2ab
a2

4k1+3
√

k2ab
2a3 −

√
k2

2a3/2
√

b√
k2
ab −

√
k2

2a3/2
√

b
−

√
k2

2b3/2√a

⎞⎟⎟⎟⎠ .

4. If b ≤ 1, we have D2 < 0 and D3 > 0 for

B f (x) =

⎛⎜⎝ 0 (1−b)k2
a2 k1 +

k2
a

(1−b)k2
a2 − 2(1−b)k2

a3 − k2
a2

k1 +
k2
a − k2

a2 0

⎞⎟⎠ .

5. We have D2 < 0, D3 > 0 and D4 < 0 for

B f (x) =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 +

√
bc
a 1 +

√
ac
b

√
ab
c

1 +
√

bc
a −

√
bc

2a3/2
1
2

√
c

ab
1
2

√
b
ac

1 +
√

ac
b

1
2

√
c

ab −
√

ac
2b3/2

1
2

√
a
bc√

ab
c

1
2

√
b
ac

1
2

√
a
bc −

√
ab

2c3/2

⎞⎟⎟⎟⎟⎟⎟⎠ . (A9)
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Abstract: The capacity region of a two-transmitter Gaussian multiple access channel (MAC) under
average input power constraints is studied, when the receiver employs a zero-threshold one-bit
analogue-to-digital converter (ADC). It is proven that the input distributions of the two transmitters
that achieve the boundary points of the capacity region are discrete. Based on the position of a
boundary point, upper bounds on the number of the mass points of the corresponding distributions
are derived. Furthermore, a lower bound on the sum capacity is proposed that can be achieved by
time division with power control. Finally, inspired by the numerical results, the proposed lower
bound is conjectured to be tight.

Keywords: Gaussian multiple access channel; one-bit quantizer; capacity region

1. Introduction

The energy consumption of an analogue-to-digital converter (ADC) (measured in Joules/sample)
grows exponentially with its resolution (in bits/sample) [1,2].When the available power is limited,
for example, for mobile devices with limited battery capacity, or for wireless receivers that operate
on limited energy harvested from ambient sources [3], the receiver circuitry may be constrained to
operate with low resolution ADCs. The presence of a low-resolution ADC, in particular a one-bit ADC
at the receiver, alters the channel characteristics significantly. Such a constraint not only limits the
fundamental bounds on the achievable rate, but it also changes the nature of the communication and
modulation schemes approaching these bounds. For example, in a real additive white Gaussian noise
(AWGN) channel under an average power constraint on the input, if the receiver is equipped with a
K-bin (i.e., log2 K-bit) ADC front end, it is shown in [4] that the capacity-achieving input distribution
is discrete with at most K + 1 mass points. This is in contrast with the optimality of the Gaussian input
distribution when the receiver has infinite resolution.

Especially with the adoption of massive multiple-input multiple-output (MIMO) receivers
and the millimetre wave (mmWave) technology enabling communication over large bandwidths,
communication systems with limited-resolution receiver front ends are becoming of practical
importance. Accordingly, there has been a growing research interest in understanding both the
fundamental information theoretic limits and the design of practical communication protocols for
systems with finite-resolution ADC front ends. In [5], the authors showed that for a Rayleigh fading
channel with a one-bit ADC and perfect channel state information at the receiver (CSIR), quadrature
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Entropy 2018, 20, 686

phase shift keying (QPSK) modulation is capacity-achieving. In case of no CSIR, [6] showed that
QPSK modulation is optimal when the signal-to-noise ratio (SNR) is above a certain threshold, which
depends on the coherence time of the channel, while for SNRs below this threshold, on-off QPSK
achieves the capacity. For the point-to-point multiple-input multiple-output (MIMO) channel with
a one-bit ADC front end at each receive antenna and perfect CSIR, [7] showed that QPSK is optimal
at very low SNRs, while with perfect channel state information at the transmitter (CSIT), upper and
lower bounds on the capacity are provided in [8].

To the best of our knowledge, the existing literature on communications with low-resolution
ADCs focuses exclusively on point-to-point systems. Our goal in this paper is to understand the impact
of low-resolution ADCs on the capacity region of a multiple access channel (MAC). In particular,
we consider a two-transmitter Gaussian MAC with a one-bit quantizer at the receiver. The inputs to
the channel are subject to average power constraints. We show that any point on the boundary of the
capacity region is achieved by discrete input distributions. Based on the slope of the tangent line to the
capacity region at a boundary point, we propose upper bounds on the cardinality of the support of
these distributions. Finally, based on numerical analysis for the sum capacity, it is observed that we
cannot obtain a sum rate higher than is achieved by time division with power control.

The paper is organized as follows. Section 2 introduces the system model. In Section 3, the capacity
region of a general two-transmitter memoryless MAC under input average power constraints is
investigated. The main result of the paper is presented in Section 3, and a detailed proof is given
in Section 4. The proof has two parts: (1) it is shown that the support of the optimal distributions
is bounded by contradiction; and (2) we make use of this boundedness to prove the finiteness of
the optimal support by using Dubins’ theorem [9]. Section 5 analyses the sum capacity, and finally,
Section 6 concludes the paper.

Notations: Random variables are denoted by capital letters, while their realizations with lower
case letters. FX(x) denotes the cumulative distribution function (CDF) of random variable X.
The conditional probability mass function (pmf) pY|X1,X2

(y|x1, x2) will be written as p(y|x1, x2).
For integers m ≤ n, we have [m : n] = {m, m + 1, . . . , n}. For 0 ≤ t ≤ 1, Hb(t) � −t log2 t −
(1− t) log2(1− t) denotes the binary entropy function. The unit-step function is denoted by s(·).

2. System Model and Preliminaries

We consider a two-transmitter memoryless Gaussian MAC (as shown in Figure 1) with a one-bit
quantizer Γ at the receiver front end. Transmitter j = 1, 2 encodes its message Wj into a codeword Xn

j
and transmits it over the shared channel. The signal received by the decoder is given by:

Y = Γ(X1,i + X2,i + Zi), i ∈ [1 : n],

where {Zi}n
i=1 is an independent and identically distributed (i.i.d.) Gaussian noise process, also

independent of the channel inputs Xn
1 and Xn

2 with Zi ∼ N (0, 1), i ∈ [1 : n]. Γ represents the one-bit
ADC operation given by:

Γ(x) =

{
1 x ≥ 0
0 x < 0

.

This channel can be modelled by the triplet (X1 ×X2, p(y|x1, x2),Y), where X1,X2 (= R) and Y
(= {0, 1}), respectively, are the alphabets of the inputs and the output. The conditional pmf of the
channel output Y conditioned on the channel inputs X1 and X2 (i.e., p(y|x1, x2)) is characterized by:

p(0|x1, x2) = 1− p(1|x1, x2) = Q(x1 + x2), (1)

where Q(x) � 1√
2π

∫ +∞
x e−

t2
2 dt.

We consider a two-transmitter stationary and memoryless MAC model (X1 ×X2, p(y|x1, x2),Y),
where X1 = X2 = R, Y = {0, 1}, p(y|x1, x2) is given in (1).

168



Entropy 2018, 20, 686

Figure 1. A two-transmitter Gaussian multiple access channel (MAC) with a one-bit analogue-to-digital
converter (ADC) front end at the receiver.

A (2nR1 , 2nR2 , n) code for this channel consists of (as in [10]):

• two message sets [1 : 2nR1 ] and [1 : 2nR2 ],
• two encoders, where encoder j = 1, 2 assigns a codeword xn

j (wj) to each message wj ∈ [1 : 2nRj ], and
• a decoder that assigns estimates (ŵ1, ŵ2) ∈ [1 : 2nR1 ]× [1 : 2nR2 ] or an error message to each

received sequence yn.

The stationary property means that the channel does not change over time, while the memoryless
property indicates that p(yi|xi

1, xi
2, yi−1, w1, w2) = p(yi|x1,i, x2,i) for any message pair (w1, w2).

We assume that the message pair (W1, W2) is uniformly distributed over [1 : 2nR1 ]× [1 : 2nR2 ].
The average probability of error is defined as:

P(n)
e � Pr

{
(Ŵ1, Ŵ2) �= (W1, W2)

}
. (2)

Average power constraints are imposed on the channel inputs as:

1
n

n

∑
i=1

x2
j,i(wj) ≤ Pj , ∀wj ∈ [1 : 2nRj ], j ∈ {1, 2}, (3)

where xj,i(wj) denotes the i-th element of the codeword xn
j (wj).

A rate pair (R1, R2) is said to be achievable for this channel if there exists a sequence of
(2nR1 , 2nR2 , n) codes satisfying the average power constraints (3), such that limn→∞ P(n)

e = 0.
The capacity region C (P1, P2) of this channel is the closure of the set of achievable rate pairs (R1, R2).

3. Main Results

Proposition 1. The capacity region C (P1, P2) of a two-transmitter stationary and memoryless MAC with
average power constraints P1 and P2 is the set of non-negative rate pairs (R1, R2) that satisfy:

R1 ≤ I(X1; Y|X2, U),

R2 ≤ I(X2; Y|X1, U),

R1 + R2 ≤ I(X1, X2; Y|U), (4)

for some FU(u)FX1|U(x1|u)FX2|U(x2|u), such that E[X2
j ] ≤ Pj, j = 1, 2. Furthermore, it is sufficient to

consider |U | ≤ 5.

Proof of Proposition 1. The proof is provided in Appendix A.

The main result of this paper is provided in the following theorem. It bounds the cardinality of
the support set of the capacity-achieving distributions.

Theorem 1. Let J be an arbitrary point on the boundary of the capacity region C (P1, P2) of the memoryless
MAC with a one-bit ADC front end (as shown in Figure 1). J is achieved by a distribution in the form of
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FJ
U(u)FJ

X1|U(x1|u)FJ
X2|U(x2|u). Furthermore, let lJ be the slope of the line tangent to the capacity region at this

point. For any u ∈ U , the conditional input distributions FJ
X1|U(x1|u) and FJ

X2|U(x2|u) have at most n1 and n2

points of increase (a point Z is said to be a point of increase of a distribution if for any open set Ω containing Z,
we have Pr{Ω} > 0), respectively, where:

(n1, n2) =

⎧⎪⎨⎪⎩
(3, 5) lJ < −1
(3, 3) lJ = −1
(5, 3) lJ > −1

. (5)

Furthermore, this result remains unchanged if the one-bit ADC has a non-zero threshold.

Proof of Theorem 1. The proof is provided in Section 4.

Proposition 1 and Theorem 1 establish upper bounds on the number of mass points of the
distributions that achieve a boundary point. The significance of this result is that once it is known that
the optimal inputs are discrete with at most a certain number of mass points, the capacity region along
with the optimal distributions can be obtained via computer programs.

4. Proof of Theorem 1

In order to show that the boundary points of the capacity region are achieved, it is sufficient to
show that the capacity region is a closed set, i.e., it includes all of its limit points.

Let U be a set with |U | ≤ 5 and Ω be defined as:

Ω �
{

FU,X1,X2

∣∣ U ∈ U , X1 −U − X2, E[X2
j ] ≤ Pj, j = 1, 2

}
, (6)

which is the set of all CDFs on the triplet (U, X1, X2), where U is drawn from U , and the Markov chain
X1 −U − X2 and the corresponding average power constraints hold.

In Appendix B, it is proven that Ω is a compact set. Since a continuous mapping preserves
compactness, the capacity region is compact. Since the capacity region is a subset of R2, it is closed
and bounded (note that a subset of Rk is compact if and only if it is closed and bounded [11]).
Therefore, any point P on the boundary of the capacity region is achieved by a distribution denoted by
FJ

U(u)FJ
X1|U(x1|u)FJ

X2|U(x2|u).
Since the capacity region is a convex space, it can be characterized by its supporting hyperplanes.

In other words, any point on the boundary of the capacity region, denoted by (Rb
1, Rb

2), can be written as:

(Rb
1, Rb

2) = arg max
(R1,R2)∈C (P1,P2)

R1 + λR2,

for some λ ∈ (0, ∞). Here, we have excluded the cases λ = 0 and λ = ∞, where the channel is not
a two-transmitter MAC any longer, and boils down to a point-to-point channel, whose capacity is
already known.

Any rate pair (R1, R2) ∈ C (P1, P2) must lie within a pentagon defined by (4) for some
FU FX1|U FX2|U that satisfies the power constraints. Therefore, due to the structure of the pentagon, the
problem of finding the boundary points is equivalent to the following maximization problem.

max
(R1,R2)∈C (P1,P2)

R1 + λR2 =

{
max I(X1; Y|X2, U) + λI(X2; Y|U) 0 < λ ≤ 1
max I(X2; Y|X1, U) + λI(X1; Y|U) λ > 1

, (7)

where on the right-hand side (RHS) of (7), the maximizations are over all FU FX1|U FX2|U that satisfy the
power constraints. It is obvious that when λ = 1, the two lines in (7) are the same, which results in the
sum capacity.

For any product of distributions FX1 FX2 and the channel in (1), let Iλ be defined as:
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Iλ(FX1 FX2) �
{

I(X1; Y|X2) + λI(X2; Y) 0 < λ ≤ 1
I(X2; Y|X1) + λI(X1; Y) λ > 1

. (8)

With this definition, (7) can be rewritten as:

max
(R1,R2)∈C (P1,P2)

R1 + λR2 = max
5

∑
i=1

pU(ui)Iλ(FX1|U(x1|ui)FX2|U(x2|ui)),

where the second maximization is over distributions of the form pU(u)FX1|U(x1|u)FX2|U(x2|u),
such that:

5

∑
i=1

pU(ui)E[X2
j |U = ui] ≤ Pj, j = 1, 2.

Proposition 2. For a given FX1 and any λ > 0, Iλ(FX1 FX2) is a concave, continuous and weakly differentiable
function of FX2 . In the statement of this proposition, FX1 and FX2 could be interchanged.

Proof of Proposition 2. The proof is provided in Appendix C.

Proposition 3. Let P′1, P′2 be two arbitrary non-negative real numbers. For the following problem:

max
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

Iλ(FX1 FX2), (9)

the optimal inputs F∗X1
and F∗X2

, which are not unique in general, have the following properties,

(i) The support sets of F∗X1
and F∗X2

are bounded subsets of R.
(ii) F∗X1

and F∗X2
are discrete distributions that have at most n1 and n2 points of increase, respectively, where:

(n1, n2) =

⎧⎪⎨⎪⎩
(5, 3) 0 < λ < 1
(3, 3) λ = 1
(3, 5) λ > 1

.

Proof of Proposition 3. We start with the proof of the first claim. Assume that 0 < λ ≤ 1, and FX2 is
given. Consider the following optimization problem:

I∗FX2
� sup

FX1 :
E[X2

1 ]≤P′1

Iλ(FX1 FX2). (10)

Note that I∗FX2
< +∞, since for any λ > 0, from (8),

Iλ ≤ (λ + 1)H(Y) ≤ (1 + λ) < +∞.

From Proposition 2, Iλ is a continuous, concave function of FX1 . Furthermore, the set of all
CDFs with bounded second moment (here, P′1) is convex and compact. The compactness follows
from Appendix I in [12], where the only difference is in using Chebyshev’s inequality instead of
Markov’s inequality. Therefore, the supremum in (10) is achieved by a distribution F∗X1

. Since for
any FX1(x) = s(x − x0) with |x0|2 < P′1, we have E[X2

1 ] < P′1, the Lagrangian theorem and the
Karush–Kuhn–Tucker conditions state that there exists a θ1 ≥ 0 such that:

I∗FX2
= sup

FX1

{
Iλ(FX1 FX2)− θ1

(∫
x2dFX1(x)− P′1

)}
. (11)
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Furthermore, the supremum in (11) is achieved by F∗X1
, and:

θ1

(∫
x2dF∗X1

(x)− P′1

)
= 0. (12)

Lemma 1. The Lagrangian multiplier θ1 is non-zero. From (12), this is equivalent to having E[X2
1 ] = P′1, i.e.,

the first user transmits with its maximum allowable power (note that this is for λ ≤ 1, as used in Appendix D).

Proof of Lemma 1. In what follows, we prove that a zero Lagrangian multiplier is not possible. Having a
zero Lagrangian multiplier means the power constraint is inactive. In other words, if θ1 = 0, (10) and (11)
imply that:

sup
FX1

E[X2
1 ]≤P′1

Iλ(FX1 FX2) = sup
FX1

Iλ(FX1 FX2). (13)

We prove that (13) does not hold by showing that its left-hand side (LHS) is strictly less than one,
while its RHS equals one. The details are provided in Appendix D.

Iλ(FX1 FX2) (0 < λ ≤ 1) can be written as:

Iλ(FX1 FX2) =
∫ +∞

−∞

∫ +∞

−∞

1

∑
y=0

p(y|x1, x2) log
p(y|x1, x2)

[p(y; FX1 FX2)]
λ[p(y; FX1 |x2)]1−λ

dFX1(x1)dFX2(x2)

=
∫ +∞

−∞
ĩλ(x1; FX1 |FX2)dFX1(x1) (14)

=
∫ +∞

−∞
iλ(x2; FX2 |FX1)dFX2(x2), (15)

where we have defined:

ĩλ(x1; FX1 |FX2)�
∫ +∞
−∞

(
D

(
p(y|x1, x2)||p(y; FX1 FX2)

)
+ (1− λ)∑1

y=0 p(y|x1, x2) log
p(y;FX1 FX2 )

p(y;FX1 |x2)

)
dFX2(x2), (16)

and:
iλ(x2; FX2 |FX1) �

∫ +∞
−∞ D

(
p(y|x1, x2)||p(y; FX1 FX2)

)
dFX1(x1)− (1− λ)D

(
p(y; FX1 |x2)||p(y; FX1 FX2)

)
. (17)

p(y; FX1 FX2) is nothing but the pmf of Y with the emphasis that it has been induced by FX1 and FX2 .
Likewise, p(y; FX1 |x2) is the conditional pmf p(y|x2) when X1 is drawn according to FX1 . From (14),
ĩλ(x1; FX1 |FX2) can be considered as the density of Iλ over FX1 when FX2 is given. iλ(x2; FX2 |FX1) can
be interpreted in a similar way.

Note that (11) is an unconstrained optimization problem over the set of all CDFs. Since
∫

x2dFX1(x)
is linear and weakly differentiable in FX1 , the objective function in (11) is concave and weakly
differentiable. Hence, a necessary condition for the optimality of F∗X1

is:

∫
{ĩλ(x1; F∗X1

|FX2) + θ1(P′1 − x2
1)}dFX1(x1) ≤ I∗FX2

, ∀FX1 . (18)

Furthermore, (18) can be verified to be equivalent to:

ĩλ(x1; F∗X1
|FX2) + θ1(P′1 − x2

1) ≤ I∗FX2
, ∀x1 ∈ R, (19)

ĩλ(x1; F∗X1
|FX2) + θ1(P′1 − x2

1) = I∗FX2
, if x1 is a point of increase of F∗X1

. (20)

The justifications of (18)–(20) are provided in Appendix E.
In what follows, we prove that in order to satisfy (20), F∗X1

must have a bounded support by
showing that the LHS of (20) goes to −∞ with x1. The following lemma is useful in the sequel for
taking the limit processes inside the integrals.
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Lemma 2. Let X1 and X2 be two independent random variables satisfying E[X2
1 ] ≤ P′1 and E[X2

2 ] ≤ P′2,
respectively (P′1, P′2 ∈ [0,+∞)). Considering the conditional pmf in (1), the following inequalities hold.∣∣∣∣D (

p(y|x1, x2)||p(y; FX1 FX2)
) ∣∣∣∣ ≤ 1− 2 log Q(

√
P′1 +

√
P′2) (21)

p(y; FX1 |x2) ≥ Q
(√

P′1 + |x2|
)

(22)∣∣∣∣∣ 1

∑
y=0

p(y|x1, x2) log
p(y; FX1 FX2)

p(y; FX1 |x2)

∣∣∣∣∣ ≤ −2 log Q
(√

P′1 +
√

P′2

)
− 2 log Q

(√
P′1 + |x2|

)
(23)

Proof of Lemma 2. The proof is provided in Appendix F.

Note that

limx1→+∞
∫ +∞
−∞ D

(
p(y|x1, x2)||p(y; F∗X1

FX2)
)

dFX2(x2) =
∫ +∞
−∞ limx1→+∞ D

(
p(y|x1, x2)||p(y; F∗X1

FX2)
)

dFX2(x2) (24)

= − log pY(1; F∗X1
FX2) (25)

≤ − log Q(
√

P′1 +
√

P′2), (26)

where (24) is due to the Lebesgue dominated convergence theorem [11] and (21), which permit the
interchange of the limit and the integral; (25) is due to the following:

lim
x1→+∞

D
(

p(y|x1, x2)||p(y; F∗X1
FX2)

)
= lim

x1→+∞

1

∑
y=0

p(y|x1, x2) log
p(y|x1, x2)

p(y; F∗X1
FX2)

= − log pY(1; F∗X1
FX2),

since p(0|x1, x2) = Q(x1 + x2) goes to zero when x1 → +∞ and pY(y; F∗X1
FX2) (y = 0, 1) is bounded

away from zero by (A34) ; (26) is obtained from (A34) in Appendix F. Furthermore,

limx1→+∞
∫ +∞
−∞ ∑1

y=0 p(y|x1, x2) log
p(y;F∗X1

FX2 )

p(y;F∗X1
|x2)

dFX2(x2) =
∫ +∞
−∞ limx1→+∞ ∑1

y=0 p(y|x1, x2) log
p(y;F∗X1

FX2 )

p(y;F∗X1
|x2)

dFX2(x2) (27)

= log pY(1; F∗X1
FX2)−

∫ +∞
−∞ log p(1; F∗X1

|x2)dFX2(x2)

< − log Q
(√

P′1 +
√

P′2
)

, (28)

where (27) is due to the Lebesgue dominated convergence theorem along with (23) and (A39) in
Appendix F; (28) is from (22) and the convexity of log Q(α +

√
t) in t when α ≥ 0 (see Appendix G).

Therefore, from (26) and (28),

lim
x1→+∞

ĩλ(x1; F∗X1
|FX2) ≤ −(2− λ) log Q(

√
P′1 +

√
P′2) < +∞. (29)

Using a similar approach, we can also obtain:

lim
x1→−∞

ĩλ(x1; F∗X1
|FX2) ≤ −(2− λ) log Q(

√
P′1 +

√
P′2) < +∞. (30)

From (29) and (30) and the fact that θ1 > 0 (see Lemma 1), the LHS of (19) goes to−∞ when |x1| → +∞.
Since any point of increase of F∗X1

must satisfy (19) with equality and I∗FX2
≥ 0, it is proven that F∗X1

has

a bounded support. Hence, from now on, we assume X1 ∈ [−A1, A2] for some A1, A2 ∈ R (note that
A1 and A2 are determined by the choice of FX2 ).
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Similarly, for a given FX1 , the optimization problem:

I∗FX1
= sup

FX2 :
E[X2

2 ]≤P′2

Iλ(FX1 FX2),

boils down to the following necessary condition:

iλ(x2; F∗X2
|FX1) + θ2(P′2 − x2

2) ≤ I∗FX1
, ∀x2 ∈ R, (31)

iλ(x2; F∗X2
|FX1) + θ2(P′2 − x2

2) = I∗FX1
, if x2 is a point of increase of F∗X2

, (32)

for the optimality of F∗X2
. However, there are two main differences between (32) and (20). First is

the difference between iλ and ĩλ. Second is the fact that we do not claim θ2 to be nonzero, since the
approach used in Lemma 1 cannot be readily applied to θ2. Nonetheless, the boundedness of the
support of F∗X2

can be proven by inspecting the behaviour of the LHS of (32) when |x2| → +∞.
In what follows, i.e., from (33)–(38), we prove that the support of F∗X2

is bounded by showing
that (32) does not hold when |x2| is above a certain threshold. The first term on the LHS of (32) is
iλ(x2; F∗X2

|FX1). From (17) and (21), it can be easily verified that:

lim
x2→+∞

iλ(x2; F∗X2
|FX1) = −λ log pY(1; FX1 F∗X2

) ≤ −λ log Q(
√

P′1 +
√

P′2),

lim
x2→−∞

iλ(x2; F∗X2
|FX1) = −λ log pY(0; FX1 F∗X2

) ≤ −λ log Q(
√

P′1 +
√

P′2) (33)

From (33), if θ2 > 0, the LHS of (32) goes to −∞ with |x2|, which proves that X∗2 is bounded.
For the possible case of θ2 = 0, in order to show that (32) does not hold when |x2| is above a

certain threshold, we rely on the boundedness of X1, i.e., X1 ∈ [−A1, A2]. Then, we prove that
iλ approaches its limit in (33) from below. In other words, there is a real number K such that
iλ(x2; F∗X2

|FX1) < −λ log pY(1; FX1 F∗X2
) when x2 > K, and iλ(x2; F∗X2

|FX1) < −λ log pY(0; FX1 F∗X2
)

when x2 < −K. This establishes the boundedness of X∗2 . In what follows, we only show the former, i.e.,
when x2 → +∞. The latter, i.e., x2 → −∞, follows similarly, and it is omitted for the sake of brevity.

By rewriting iλ, we have:

iλ(x2; F∗X2
|FX1) = −λp(1; FX1 |x2) log pY(1; FX1 F∗X2

)

−
∫ A2

−A1

Hb(Q(x1 + x2))dFX1(x1) + (1− λ) H(Y|X2 = x2)︸ ︷︷ ︸
Hb(

∫
Q(x1+x2)dFX1 (x1))

− λ p(0; FX1 |x2)︸ ︷︷ ︸∫
Q(x1+x2)dFX1 (x1)

log pY(0; FX1 F∗X2
). (34)

It is obvious that the first term on the RHS of (34) approaches −λ log pY(1; FX1 F∗X2
) from below

when x2 → +∞, since p(1; FX1 |x2) ≤ 1. It is also obvious that the remaining terms go to zero when
x2 → +∞. Hence, it is sufficient to show that they approach zero from below, which is proven by
using the following lemma.

Lemma 3. Let X1 be distributed on [−A1, A2] according to FX1(x1). We have:

lim
x2→+∞

∫ A2
−A1

Hb(Q(x1 + x2))dFX1(x1)

Hb

( ∫ A2
−A1

Q(x1 + x2)dFX1(x1)

) = 1. (35)
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Proof of Lemma 3. The proof is provided in Appendix H.

From (35), we can write:

∫ A2

−A1

Hb(Q(x1 + x2))dFX1(x1) = γ(x2)Hb

(∫ A2

−A1

Q(x1 + x2)dFX1(x1)

)
, (36)

where γ(x2) ≤ 1 (due to the concavity of Hb(·)), and γ(x2) → 1 when x2 → +∞ (due to (35)).
Furthermore, from the fact that limx→0

Hb(x)
cx = +∞ (c > 0), we have:

Hb

(∫ A2

−A1

Q(x1 + x2)dFX1(x1)

)
= −η(x2) log pY(0; FX1 F∗X2

)
∫ A2

−A1

Q(x1 + x2)dFX1(x1), (37)

where η(x2) > 0 and η(x2) → +∞ when x2 → +∞. From (36)–(37), the second and the third line
of (34) become:(

1− γ(x2) +
λ

η(x2)
− λ

)(
−η(x2) log pY(0; FX1 F∗X2

)
∫ A2

−A1

Q(x1 + x2)dFX1(x1)

)
︸ ︷︷ ︸

≥0

. (38)

Since γ(x2) → 1 and η(x2) → +∞ as x2 → +∞, there exists a real number K such that
1− γ(x2) +

λ
η(x2)

− λ < 0 when x2 > K. Therefore, the second and the third line of (34) approach zero
from below, which proves that the support of X∗2 is bounded away from +∞. As mentioned before,
a similar argument holds when x2 → −∞. This proves that X∗2 has a bounded support.

Remark 1. We remark here that the order of showing the boundedness of the supports is important. First, for a
given FX2 (not necessarily bounded), it is proven that F∗X1

is bounded. Then, for a given bounded FX1 , it is shown
that F∗X2

is also bounded. Hence, the boundedness of the supports of the optimal input distributions is proven by
contradiction. The order is reversed when λ > 1, and it follows the same steps as in the case of λ ≤ 1. Therefore,
it is omitted.

We next prove the second claim in Proposition 3. We assume that 0 < λ < 1, and a bounded
FX1 is given. We already know that for a given bounded FX1 , F∗X2

has a bounded support denoted by
[−B1, B2]. Therefore,

I∗FX1
= sup

FX2 :
E[X2

2 ]≤P′2

Iλ(FX1 FX2)

I∗FX1
= sup

FX2∈S2:
E[X2

2 ]≤P′2

Iλ(FX1 FX2), (39)

where S2 denotes the set of all probability distributions on the Borel sets of [−B1, B2]. Let p∗0 =

pY(0; FX1 F∗X2
) denote the probability of the event Y = 0, induced by F∗X2

and the given FX1 . Furthermore,
let P∗2 denote the second moment of X2 under F∗X2

. The set:

F2 =

{
FX2 ∈ S2|

∫ B2

−B1

p(0|x2)dFX2(x2) = p∗0,
∫ B2

−B1

x2
2dFX2(x2) = P∗2

}
(40)

is the intersection of S2 with two hyperplanes (note that S2 is convex and compact). We can write:

I∗FX1
= sup

FX2∈F2

Iλ(FX1 FX2). (41)
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Note that having FX2 ∈ F2, the objective function in (41) becomes:

λH(Y)︸ ︷︷ ︸
constant

+ (1− λ)H(Y|X2)− H(Y|X1, X2)︸ ︷︷ ︸
linear in FX2

. (42)

Since the linear part is continuous and F2 is compact (The continuity of the linear part follows
similarly the continuity arguments in Appendix C. Note that this compactness is due to the closedness
of the intersecting hyperplanes in F2, since a closed subset of a compact set is compact [11].
The hyperplanes are closed due to the continuity of x2

2 and p(0|x2) (see (A16)).), the objective function
in (41) attains its maximum at an extreme point of F2, which, by Dubins’ theorem, is a convex
combination of at most three extreme points of S2. Since the extreme points of S2 are the CDFs having
only one point of increase in [−B1, B2], we conclude that given any bounded FX1 , F∗X2

has at most three
mass points.

Now, assume that an arbitrary FX2 is given with at most three mass points denoted by {x2,i}3
i=1.

It is already known that the support of F∗X1
is bounded, which is denoted by [−A1, A2]. Let S1 denote

the set of all probability distributions on the Borel sets of [−A1, A2]. The set:

F1 =

{
FX1 ∈ S1

∣∣∣∣ ∫ A2
−A1

p(0|x1, x2,j)dFX1(x1) = p(0; F∗X1
|x2,j), j ∈ [1 : 3],

∫ A2
−A1

x2
1dFX1(x1) = P′1

}
, (43)

is the intersection of S1 with four hyperplanes. Note that here, since we know θ1 �= 0, the optimal
input attains its maximum power of P′1. In a similar way,

I∗FX2
= sup

FX1∈F1

{
Iλ(FX1 FX2)

}
, (44)

and having FX1 ∈ F1, the objective function in (44) becomes:

Iλ = λH(Y) + (1− λ)
3

∑
i=1

pX2(x2,i)H(Y|X2 = x2,i)︸ ︷︷ ︸
constant

−H(Y|X1, X2)︸ ︷︷ ︸
linear in FX1

(45)

Therefore, given any FX2 with at most three points of increase, F∗X1
has at most five mass points.

When λ = 1, the second term on the RHS of (45) disappears, which means that F1 could be
replaced by: {

FX1 ∈ S1|
∫ A2

−A1

p(0|x1)dFX1(x1) = p̃∗0,
∫ A2

−A1

x2
1dFX1(x1) = P′1

}
,

where p̃∗0 = pY(0; F∗X1
FX2) is the probability of the event Y = 0, which is induced by F∗X1

and the given
FX2 . Since the number of intersecting hyperplanes has been reduced to two, it is concluded that F∗X1
has at most three points of increase.

Remark 2. Note that, the order of showing the discreteness of the support sets is also important. First, for a
given bounded FX1 (not necessarily discrete), it is proven that F∗X2

is discrete with at most three mass points.
Then, for a given discrete FX2 with at most three mass points, it is shown that F∗X1

is also discrete with at most
five mass points when λ < 1 and at most three mass points when λ = 1. When λ > 1, the order is reversed,
and it follows the same steps as in the case of λ < 1. Therefore, it is omitted.

Remark 3. If X1,X2 are assumed finite initially, similar results can be obtained by using the iterative
optimization in the previous proof and the approach in Chapter 4, Corollary 3 of [13].
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5. Sum Rate Analysis

In this section, we propose a lower bound on the sum capacity of a MAC in the presence of a
one-bit ADC front end at the receiver, which we conjecture to be tight. The sum capacity is given by:

Csum = sup I(X1, X2; Y|U), (46)

where the supremum is over FU FX1|U FX2|U (|U | ≤ 5), such that E[X2
j ] ≤ Pj, j = 1, 2. We obtain a

lower bound for the above by considering only those input distributions that are zero-mean per any
realization of the auxiliary random variable U, i.e., E[Xj|U = u] = 0, ∀u ∈ U , j = 1, 2. Let P′1 and P′2 be
two arbitrary non-negative real numbers. We have:

sup
FX1 FX2 :

E[X2
j ]≤P′j

E[Xj ]=0, j=1,2

I(X1, X2; Y) ≤ sup
FX̃ :

E[X̃2]≤P′1+P′2

I(X̃; Y) (47)

= 1− Hb

(
Q

(√
P′1 + P′2

))
(48)

where in (47), X̃ � X1 + X2, pY|X̃(0|x̃) = Q(x̃); (48) follows from [4] for the point-to-point channel.
Therefore, when E[Xj|U = u] = 0, ∀u ∈ U , j = 1, 2, we can write:

I(X1, X2; Y|U) =
5

∑
i=1

pU(ui)I(X1, X2; Y|U = ui)

≤ 1−
5

∑
i=1

pU(ui)Hb

(
Q

(√
E[X2

1 |U = ui] +E[X2
2 |U = ui]

))
≤ 1− Hb

(
Q

(√
E[X2

1 ] +E[X2
2 ]

))
(49)

≤ 1− Hb

(
Q

(√
P1 + P2

))
, (50)

where (49) is due to the fact that Hb (Q(
√

x + y)) is a convex function of (x, y), and (50) follows from
E[X2

j ] ≤ Pj, j = 1, 2.
The upper bound in (50) can be achieved by time division with power control as follows.

Let U = {0, 1} and pU(0) = 1− pU(1) = P1
P1+P2

. Furthermore, let FX1|U(x|1) = FX2|U(x|0) = s(x),
where s(·) is the unit step function, and:

FX1|U(x|0) = FX2|U(x|1) = 1
2

s(x +
√

P1 + P2) +
1
2

s(x−
√

P1 + P2).

With this choice of FU FX1|U FX2|U , the upper bound in (50) is achieved. Therefore,

Csum ≥ 1− Hb

(
Q

(√
P1 + P2

))
. (51)

A numerical evaluation of (46) is carried out as follows (the codes that are used for
the numerical simulations are available at https://www.dropbox.com/sh/ndxkjt6h5a0yktu/
AAAmfHkuPxe8rMNV1KzFVRgNa?dl=0). Although E[X2

j ] is upper bounded by Pj (j = 1, 2),

the value of E[X2
j |U = u] (∀u ∈ U ) has no upper bound and could be any non-negative

real number. However, in our numerical analysis, we further restrict our attention to the
case E[X2

j |U = u] ≤ 20Pj, ∀u ∈ U , j = 1, 2. Obviously, as this upper bound tends to infinity,
the approximation becomes more accurate (This further bounding of the conditional second moments
is justified by the fact that the sum capacity is not greater than one, which is due to the one-bit
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quantization at the receiver. As a result, I(X1, X2; Y|U = u) increases at most sublinearly with
E[X2

j |U = u], j = 1, 2, while pU(u) needs to decrease at least linearly to satisfy the average power

constraints. Hence, the product pU(u)I(X1, X2; Y|U = u) decreases with E[X2
j |U = u] when

E[X2
j |U = u] is above a threshold.). Each of the intervals [0, 20P1] and [0, 20P2] are divided into

201 points uniformly, which results in the discrete intervals P1
10 [0 : 200] and P2

10 [0 : 200], respectively.
Afterwards, for any pair (α, β) ∈ P1

10 [0 : 200] × P2
10 [0 : 200], the following is carried out for input

distributions with at most three mass points.

max
FX1 FX2 :

E[X2
1 ]≤α,E[X2

2 ]≤β

I(X1, X2; Y) (52)

The results are stored in a 201× 201 matrix accordingly. In the above optimization, the MATLAB
function fmincon is used with three different initial values, and the maximum of these three
experiments is chosen. Then, the problem boils down to finding proper gains, i.e., the mass probabilities
of U, that maximize I(X1, X2; Y|U) and satisfy the average power constraints E[X2

j ] ≤ Pj. This is done
via a linear program, which can be efficiently solved by the linprog function in MATLAB. Several cases
were considered, such as (P1, P2) = (1, 1), (P1, P2) = (1, 2), (P1, P2) = (3, 1), etc. In all these cases,
the numerical evaluation of (46) leads to the same value as the lower bound in (51). Since the problem
is not convex, it is not known whether the numerical results are the global optimum solutions; hence,
we leave it as a conjecture that the sum capacity can be achieved by time division with power control.

6. Conclusions

We have studied the capacity region of a two-transmitter Gaussian MAC under average input
power constraints and one-bit ADC front end at the receiver. We have derived an upper bound on
the cardinality of this auxiliary variable, and proved that the distributions that achieve the boundary
points of the capacity region are finite and discrete. Finally, a lower bound is proposed on the sum
capacity of this MAC that is achieved by time division with power control. Through numerical analysis,
this lower bound is shown to be tight.
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Appendix A

The capacity region of the discrete memoryless (DM) MAC with input cost constraints has been
addressed in Exercise 4.8 of [10]. If the input alphabets are not discrete, the capacity region is still the
same because: (1) the converse remains the same if the inputs are from a continuous alphabet; (2) the
region is achievable by coded time sharing and the discretization procedure (see Remark 3.8 in [10]).
Therefore, it is sufficient to show the cardinality bound |U | ≤ 5.

Let P be the set of all product distributions (i.e., of the form FX1(x1)FX2(x2)) on R2. Let g : P →
R5 be a vector-valued mapping defined element-wise as:

g1(FX1|U(·|u)FX2|U(·|u)) = I(X1; Y|X2, U = u),

g2(FX1|U(·|u)FX2|U(·|u)) = I(X2; Y|X1, U = u),

g3(FX1|U(·|u)FX2|U(·|u)) = I(X1, X2; Y|U = u),

g4(FX1|U(·|u)FX2|U(·|u)) = E[X2
1 |U = u],

g5(FX1|U(·|u)FX2|U(·|u)) = E[X2
2 |U = u]. (A1)

Let G ⊂ R5 be the image of P under the mapping g (i.e., G = g(P)). Given an arbitrary
(U, X1, X2) ∼ FU FX1|U FX2|U , we obtain the vector r as:

r1 = I(X1; Y|X2, U) =
∫
U

I(X1; Y|X2, U = u)dFU(u),

r2 = I(X2; Y|X1, U) =
∫
U

I(X2; Y|X1, U = u)dFU(u),

r3 = I(X1, X2; Y|U) =
∫
U

I(X1, X2; Y|U = u)dFU(u),

r4 = E[X2
1 ] =

∫
U
E[X2

1 |U = u]dFU(u),

r5 = E[X2
2 ] =

∫
U
E[X2

2 |U = u]dFU(u).

Therefore, r is in the convex hull of G ⊂ R5. By Carathéodory’s theorem [9], r can be written as a
convex combination of six (= 5 + 1) or fewer points in G , which states that it is sufficient to consider
|U | ≤ 6. Since P is a connected set (P is the product of two connected sets; therefore, it is connected.
Each of the sets in this product is connected because of being a convex vector space.) and the mapping
g is continuous (this is a direct result of the continuity of the channel transition probability), G is a
connected subset of R5. Therefore, the connectedness of G refines the cardinality of U to |U | ≤ 5.

It is also important to note that for the boundary points of C (P1, P2) that are not sum-rate
optimal, it is sufficient to have |U | ≤ 4. The proof is as follows. Any point on the boundary of the
capacity region that does not maximize R1 + R2 is either of the form (I(X1; Y|X2, U), I(X2; Y|U)) or
(I(X1; Y|U), I(X2; Y|X1, U)) for some FU FX1|U FX2|U that satisfies E[X2

j ] ≤ Pj, j = 1, 2. In other words,
it is one of the corner points of the corresponding pentagon in (4). As in the proof of Proposition 1,
define the mapping g : P → R4, where g1 and g2 are the coordinates of this boundary point
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conditioned on U = u, and g3, g4 are the same as g4 and g5 in (A1), respectively. The sufficiency of
|U | ≤ 4 in this case follows similarly.

Appendix B

Since |U | ≤ 5, we assume U = {0, 1, 2, 3, 4} without loss of generality, since what matters in the
evaluation of the capacity region is the mass probability of the auxiliary random variable U, not its
actual values.

In order to show the compactness of Ω, we adopt a general form of the approach in [12].
First, we show that Ω is tight (a set of probability distributions Θ defined on Rk, i.e., the set of

CDFs FX1,X2,...,Xk , is said to be tight, if for every ε > 0, there is a compact set Kε ⊂ Rk such that [14]:

Pr
{
(X1, X2, . . . , Xk) ∈ Rk\Kε

}
< ε, ∀FX1,X2,...,Xk ∈ Θ.

Choose Tj, j = 1, 2, such that Tj >

√
2Pj
ε . Then, from Chebyshev’s inequality,

Pr
{
|Xj| > Tj

}
≤

Pj

T2
j
<

ε

2
, j = 1, 2. (A2)

Let Kε = [0, 4]× [−T1, T1]× [−T2, T2] ⊂ R3. It is obvious that Kε is a closed and bounded subset of R3

and, therefore, compact. With this choice of Kε, we have:

Pr
{
(U, X1, X2) ∈ R3\Kε

}
≤ Pr{U /∈ [0, 4]}+ Pr{X1 /∈ [−T1, T1]}+ Pr{X2 /∈ [−T2, T2]}
< 0 +

ε

2
+

ε

2
= ε, (A3)

where (A3) is due to (A2). Hence, Ω is tight.
From Prokhorov’s theorem [14] (p. 318), a set of probability distributions is tight if and only if

it is relatively sequentially compact (a subset of topological space is relatively compact if its closure
is compact). This means that for every sequence of CDFs {Fn} in Ω, there exists a subsequence
{Fnk} that is weakly convergent (the weak convergence of {Fn} to F (also shown as Fn(x) w→ F(x)) is
equivalent to:

lim
n→∞

∫
R

ψ(x)dFn(x) =
∫
R

ψ(x)dF(x), (A4)

for all continuous and bounded functions ψ(·) on R. Note that Fn(x) w→ F(x) if and only if
dL(Fn, F) → 0.) to a CDF F0, which is not necessarily in Ω. If we can show that this F0 is also
an element of Ω, then the proof is complete, since we have shown that Ω is sequentially compact and,
therefore, compact (Compactness and sequential compactness are equivalent in metric spaces. Note
that Ω is a metric space with Lévy distance.).

Assume a sequence of distributions {Fn(·, ·, ·)} in Ω that converges weakly to F0(·, ·, ·). In order
to show that this limiting distribution is also in Ω, we need to show that both the average power
constraints and the Markov chain (X1 −U − X2) are preserved under F0. The preservation of the
second moment follows similarly to the argument in (Appendix I, [12]). In other words, since x2 is
continuous and bounded from below, from Theorem 4.4.4 in [15]:∫

x2
j d3F0(u, x1, x2) ≤ lim inf

n→∞

∫
x2

j d3Fn(u, x1, x2)

≤ Pj, j = 1, 2, (A5)

Therefore, the second moments are preserved under the limiting distribution F0.
For the preservation of the Markov chain X1 −U − X2, we need the following proposition.
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Proposition A1. Assume a sequence of distributions {Fn(·, ·)} over the pair of random variables (X, Y) that
converges weakly to F0(·, ·). Furthermore, assume that Y has a finite support, i.e., Y = {1, 2, . . . , |Y|}.
Then, the sequence of conditional distributions (conditioned on Y) converges weakly to the limiting conditional
distribution (conditioned on Y), i.e.,

Fn(·|y) w→ F0(·|y), ∀y ∈ Y , p0(y) > 0. (A6)

Proof of Proposition A1. The proof is by contradiction. If (A6) is not true, then there exists y′ ∈ Y ,

such that p0(y′) > 0 and Fn(·|y′)��w→F0(·|y′). This means, from the definition of weak convergence, that
there exists a bounded continuous function of x, denoted by gy′(x), such that:∫

gy′(x)dFn(x|y′)��→
∫

gy′(x)dF0(x|y′). (A7)

Let f (x, y) be any bounded continuous function that satisfies:

f (x, y) =

{
0 y ∈ Y , y �= y′

gy′(x) y = y′
. (A8)

With this choice of f (x, y), we have:∫
f (x, y)d2Fn(x, y)��→

∫
f (x, y)d2F0(x, y), (A9)

which violates the assumption of the weak convergence of Fn(·, ·) to F0(·, ·). Therefore, (A6) holds.

Since {Fn(·, ·, ·)} in Ω converges weakly to F0(·, ·, ·) and U is finite, from Proposition A1, we have:

Fn(·, ·|u) w→ F0(·, ·|u), ∀u ∈ U , (A10)

where it is obvious that the arguments are x1 and x2. Since Fn ∈ Ω, we have Fn(x1, x2|u) =

Fn(x1|u)Fn(x2|u) ∀u ∈ U . Furthermore, since the convergence of the joint distribution implies the
convergence of the marginals, we have (Theorem 2.7, [16,17]),

F0(x1, x2|u) = F0(x1|u)F0(x2|u) ∀u ∈ U , (A11)

which states that under the limiting distribution F0, the Markov chain X1 − U − X2 is preserved
(Alternatively, this could be proven by the lower-semicontinuity of the mutual information as follow:

IF0(X1; X2|U = u) ≤ lim inf
n→∞

IFn(X1; X2|U = u) (A12)

= 0, ∀u ∈ U , (A13)

where IF denotes the mutual information under distribution F. The last equality is from the conditional
independence of X1 and X2 given U = u under Fn. Therefore, IF0(X1; X2|U = u) = 0, ∀u ∈ U , which
is equivalent to (A11).). This completes the proof of the compactness of Ω.

Appendix C

Appendix C.1. Concavity

When 0 < λ ≤ 1, we have:

Iλ(FX1 FX2) = λH(Y) + (1− λ)H(Y|X2)− H(Y|X1, X2). (A14)
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For a given FX1 , H(Y) is a concave function of FX2 , while H(Y|X2) and H(Y|X1, X2) are linear
in FX2 . Therefore, Iλ is a concave function of FX2 . For a given FX2 , H(Y) and H(Y|X2) are concave
functions of FX1 , while H(Y|X1, X2) is linear in FX1 . Since (1− λ) ≥ 0, Iλ is a concave function of FX1 .
The same reasoning applies to the case λ > 1.

Appendix C.2. Continuity

When λ ≤ 1, the continuity of the three terms on the RHS of (A14) is investigated. Let {FX2,n} be
a sequence of distributions, which is weakly convergent to FX2 . For a given FX1 , we have:

lim
x2→x0

2

p(y; FX1 |x2) = lim
x2→x0

2

∫
Q(x1 + x2)dFX1(x1)

=
∫

lim
x2→x0

2

Q(x1 + x2)dFX1(x1) (A15)

= p(y; FX1 |x0
2), (A16)

where (A15) is due to the fact that the Q function can be dominated by one, which is an absolutely
integrable function over FX1 . Therefore, p(y; FX1 |x2) is continuous in x2, and combined with the weak
convergence of {FX2,n}, we can write:

lim
n→∞

p(y; FX1 FX2,n) = lim
n→∞

∫
p(y; FX1 |x2)dFX2,n(x2)

=
∫

p(y; FX1 |x2)dFX2(x2)

= p(y; FX1 FX2).

This allows us to write:

lim
n→∞

−
1

∑
y=0

p(y; FX1 FX2,n) log p(y; FX1 FX2,n) = −
1

∑
y=0

p(y; FX1 FX2) log p(y; FX1 FX2),

which proves the continuity of H(Y) in FX2 . H(Y|X2 = x2) is a bounded (∈ [0, 1]) continuous
function of x2, since it is a continuous function of p(y; FX1 |x2), and the latter is continuous in x2

(see (A16)). Therefore,

lim
n→∞

∫
H(Y|X2 = x2)dFX2,n(x2) =

∫
H(Y|X2 = x2)dFX2(x2),

which proves the continuity of H(Y|X2) in FX2 . In a similar way, it can be verified that∫
H(Y|X1 = x1, X2 = x2)dFX1(x1) is a bounded and continuous function of x2, which guarantees the

continuity of H(Y|X1, X2) in FX2 , since:

H(Y|X1, X2) =
∫ (∫

H(Y|X1 = x1, X2 = x2)dFX1(x1)

)
dFX2(x2) (A17)

Therefore, for a given FX1 , Iλ is a continuous function of FX2 . Exchanging the roles of FX1 and FX2 ,
also the case λ > 1 can be addressed similarly, so they are omitted for the sake of brevity.

Appendix C.3. Weak Differentiability

For a given FX1 , the weak derivative of Iλ at F0
X2

is given by:

I′λ(FX1 FX2)|F0
X2

= lim
β→0+

Iλ(FX1((1− β)F0
X2

+ βFX2))− Iλ(FX1 F0
X2
)

β
, (A18)
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if the limit exists. It can be verified that:

I′λ(FX1 FX2)|F0
X2

= lim
β→0+

∫
iλ(x2; (1− β)F0

X2
+ βFX2 |FX1)d((1− β)F0

X2
(x2) + βFX2(x2))−

∫
iλ(x2; F0

X2
|FX1)dF0

X2
(x2)

β

=
∫

iλ(x2; F0
X2
|FX1)dFX2(x2)−

∫
iλ(x2; F0

X2
|FX1)dF0

X2
(x2)

=
∫

iλ(x2; F0
X2
|FX1)dFX2(x2)− Iλ(FX1 F0

X2
),

where iλ has been defined in (17). In a similar way, for a given FX2 , the weak derivative of Iλ at F0
X1

is:

I′λ(FX1 FX2)|F0
X1

=
∫

ĩλ(x1; F0
X1
|FX2)dFX1(x1)− Iλ(F0

X1
FX2), (A19)

where ĩλ has been defined in (16). The case λ > 1 can be addressed similarly.

Appendix D

We have:

sup
FX1 :

E[X2
1 ]≤P′1

Iλ(FX1 FX2) ≤ sup
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

Iλ(FX1 FX2)

≤ sup
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

I(X1, X2; Y) (A20)

≤ sup
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

H(Y)− inf
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

H(Y|X1, X2)

= 1− inf
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

∫ ∫
Hb (Q(x1 + x2)) dFX1(x1)dFX2(x2)

= 1− inf
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

∫ ∫
Hb

(
Q

(√
x2

1 +
√

x2
2

))
dFX1(x1)dFX2(x2) (A21)

≤ 1− inf
FX1 FX2 :

E[X2
j ]≤P′j , j=1,2

∫ ∫
Q

(√
x2

1 +
√

x2
2

)
dFX1(x1)dFX2(x2) (A22)

= 1−Q
(√

P′1 +
√

P′2

)
(A23)

< 1, (A24)

where (A20) is from the non-negativity of mutual information and the assumption that 0 < λ ≤ 1;
(A21) is justified since the Q function is monotonically decreasing and the sign of the inputs does
not affect the average power constraints; X1 and X2 can be assumed non-negative (or alternatively

non-positive) without loss of optimality; in (A22), we use the fact that Q
(√

x2
1 +

√
x2

2

)
≤ 1

2 , and for

t ∈ [0, 1
2 ], Hb(t) ≥ t; (A23) is based on the convexity and monotonicity of the function Q(

√
u +

√
v) in

(u, v), which is shown in Appendix G. Therefore, the LHS of (13) is strictly less than one.
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Since X2 has a finite second moment (E[X2
2 ] ≤ P′2), from Chebyshev’s inequality, we have:

P(|X2| ≥ M) ≤ P′2
M2 , ∀M > 0. (A25)

Fix M > 0, and consider X1 ∼ FX1(x1) =
1
2 [s(x1 + 2M) + s(x1 − 2M)]. By this choice of FX1 , we get:

Iλ(FX1 FX2) = I(X1; Y|X2) + λI(X2; Y)

≥ I(X1; Y|X2) (A26)

=
∫ +∞

−∞
I(X1; Y|X2 = x2)dFX2(x2)

≥
∫ +M

−M
I(X1; Y|X2 = x2)dFX2(x2)

≥ inf
FX2

∫ +M

−M
H(Y|X2 = x2)dFX2(x2)− sup

FX2

∫ +M

−M
H(Y|X1, X2 = x2)dFX2(x2)

≥
(

1− P′2
M2

)
Hb

(
1
2
− 1

2
(Q(3M) + Q(M))

)
− Hb (Q(2M)) , (A27)

where (A27) is due to (A25) and the fact that H(Y|X2 = x2) = Hb(
1
2 Q(2M + x2) +

1
2 Q(−2M + x2))

is minimized over [−M, M] at x2 = M (or, alternatively at x2 = −M) and H(Y|X1, X2 = x2) =
1
2 Hb(Q(2M + x2)) +

1
2 Hb(Q(−2M + x2)) is maximized at x2 = 0. (A27) shows that Iλ (≤ 1) can

become arbitrarily close to one given that M is large enough. Hence, its supremum over all distributions
FX1 is one. This means that (13) cannot hold, and θ1 �= 0.

Appendix E. Justification of (18), (19) and (20)

Let X be a vector space and Z be a real-valued function defined on a convex domain D ⊂ X.
Suppose that x∗ maximizes Z on D and that Z is Gateaux differentiable (weakly differentiable) at x∗.
Then, from (Theorem 2, p. 178, [18]),

Z′(x)|x∗ ≤ 0, (A28)

where Z′(x)|x∗ is the weak derivative of Z at x∗.
From (A19), we have the weak derivative of Iλ at F∗X1

as:

I′λ(FX1 FX2)|F∗X1
=

∫
ĩλ(x1; F∗X1

|FX2)dFX1(x1)− Iλ(F∗X1
FX2). (A29)

Now, the derivation of (18) is immediate by inspecting that the weak derivative of the objective of (11)
at F∗X1

is given by:

I′λ(FX1 FX2)|F∗X1
− θ1

(∫
x2

1dFX1(x1)−
∫

x2
1dF∗X1

(x1)

)
=

∫
ĩλ(x1; F∗X1

|FX2)dFX1(x1)− Iλ(F∗X1
FX2)

− θ1

(∫
x2

1dFX1(x1)−
∫

x2
1dF∗X1

(x1)

)
. (A30)

Letting (A30) be lower than or equal to zero (as in (A28)) results in (18).
The equivalence of (18) to (19) and (20) follows similarly to the proof of Corollary 1 in (p. 210, [19]).
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Appendix F

Equation (21) is obtained as follows.∣∣∣∣D(
p(y|x1, x2)||p(y; FX1 FX2)

)∣∣∣∣ =
∣∣∣∣∣ 1

∑
y=0

p(y|x1, x2) log
p(y|x1, x2)

p(y; FX1 FX2)

∣∣∣∣∣
≤

∣∣∣∣H(Y|X1 = x1, X2 = x2)

∣∣∣∣+
∣∣∣∣∣ 1

∑
y=0

p(y|x1, x2) log p(y; FX1 FX2)

∣∣∣∣∣
≤ 1 +

∣∣∣∣∣ 1

∑
y=0

log p(y; FX1 FX2)

∣∣∣∣∣ (A31)

= 1−
1

∑
y=0

log p(y; FX1 FX2)

≤ 1− 2 min
{

log pY(0; FX1 FX2), log pY(1; FX1 FX2)

}
≤ 1− 2 log Q(

√
P′1 +

√
P′2) (A32)

< ∞,

where (A31) is due to the fact that the binary entropy function is upper bounded by one. (A32) is
justified as follows.

min
{

pY(0; FX1 FX2), pY(1; FX1 FX2)

}
≥ inf

FX1 FX2 :
E[X2

j ]≤P′j

min
{

pY(0; FX1 FX2), pY(1; FX1 FX2)

}

= inf
FX1 FX2 :

E[X2
j ]≤P′j

pY(0; FX1 FX2)

= inf
FX1 FX2 :

E[X2
j ]≤P′j

∫ ∫
Q(x1 + x2)dFX1(x1)dFX2(x2)

= inf
FX1 FX2 :

E[X2
j ]≤P′j

∫ ∫
Q

(√
x2

1 +
√

x2
2

)
dFX1(x1)dFX2(x2) (A33)

≥ Q
(√

P′1 +
√

P′2

)
, (A34)

where (A34) is based on the convexity and monotonicity of the function Q(
√

u +
√

v), which is shown
in Appendix G.

Equation (22) is obtained as follows.

p(y; FX1 |x2) ≥ min
{

p(0; FX1 |x2), p(1; FX1 |x2)

}
≥

∫
Q (|x1|+ |x2|) dFX1(x1)

=
∫

Q
(√

x2
1 + |x2|

)
dFX1(x1)

≥ Q
(√

P′1 + |x2|
)

, (A35)

where (A35) is due to the convexity of Q(α +
√

x) in x for α ≥ 0.
Equation (23) is obtained as follows.
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∣∣∣∣∑1
y=0 p(y|x1, x2) log

p(y;FX1 FX2 )

p(y;FX1 |x2)

∣∣∣∣ ≤ −∑1
y=0 p(y|x1, x2) log p(y; FX1 |x2)−∑1

y=0 p(y|x1, x2) log p(y; FX1 FX2)

≤ −
1

∑
y=0

log p(y; FX1 |x2)−
1

∑
y=0

log p(y; FX1 FX2) (A36)

≤ −2 log Q
(√

P′1 +
√

P′2

)
− 2 log Q

(√
P′1 + |x2|

)
, (A37)

where (A36) is from p(y|x1, x2) ≤ 1; and (A37) is from (A35) and (A34).
Note that (A37) is integrable with respect to FX2 due to the concavity of − log Q(α +

√
x) in x for

α ≥ 0 as shown in Appendix G. In other words,

∫ +∞
−∞

(
−2 log Q

(√
P′1 +

√
P′2

)
− 2 log Q

(√
P′1 + |x2|

))
dFX2(x2) < −4 log Q

(√
P′1 +

√
P′2

)
(A38)

< +∞. (A39)

Appendix G. Two Convex Functions

Let f (x) = log Q(a +
√

x) for x, a ≥ 0. We have,

f ′(x) = − e−
(a+

√
x)2

2

2
√

2πxQ(a +
√

x)
,

and:

f ′′(x) =
e−

(a+
√

x)2
2

4x
√

2πQ2(a +
√

x)

(
(a +

√
x +

1√
x
)Q(a +

√
x)− φ(a +

√
x)

)
, (A40)

where φ(x) = 1√
2π

e−
x2
2 . Note that:

(1 + at + t2)Q(a + t) + aφ(a + t) >
(

1 + (a + t)2
)

Q(a + t) (A41)

> (a + t)φ(a + t), ∀a, t > 0, (A42)

where (A41) and (A42) are, respectively, due to φ(x) > xQ(x) and (1 + x2)Q(x) > xφ(x) (x > 0).
Therefore,

(a +
√

x +
1√
x
)Q(a +

√
x) > φ(a +

√
x),

which makes the second derivative in (A40) positive and proves the (strict) convexity of f (x).
Let f (u, v) = Q(

√
u +

√
v) for u, v ≥ 0. By simple differentiation, the Hessian matrix of f is:

H =
e−

(
√

u+
√

v)2
2√

2π

⎡⎣ 1
2u
√

u +
√

u+
√

v
4u

√
u+
√

v
4
√

u
√

v√
u+
√

v
4
√

u
√

v
1

2v
√

v +
√

u+
√

v
4v

⎤⎦ . (A43)

It can be verified that det(H) > 0 and trace(H) > 0. Therefore, both eigenvalues of H are positive,
which makes the matrix positive definite. Hence, Q(

√
u +

√
v) is (strictly) convex in (u, v).

Appendix H

Let A � max{A1, A2}.
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Hb (Q(x2 + x1)) dFX1
(x1)

Figure A1. The figure depicting (A46) and (A48). Note that in the statement of Lemma 3, x2 → +∞.
Hence, we have assumed x2 > A in the figure.

It is obvious that:

Q(x2 + A) ≤
∫ A

−A
Q(x1 + x2)dFX1(x1) ≤ Q(x2 − A). (A44)

Therefore, we can write:∫ A

−A
Q(x1 + x2)dFX1(x1) = βQ(x2 + A) + (1− β)Q(x2 − A), (A45)

for some β ∈ [0, 1]. Note that β is a function of x2. Furthermore, due to the concavity of Hb(·), we
have:

Hb

( ∫ A

−A
Q(x1 + x2)dFX1(x1)

)
≥

∫ A

−A
Hb(Q(x1 + x2))dFX1(x1). (A46)

From the fact that:

Hb(x) ≥ Hb(p)− Hb(a)
p− a

(x− a) + Hb(a), ∀x ∈ [a, p], ∀a, p ∈ [0, 1](a < p), (A47)

we can also write:

∫ A
−A Hb(Q(x1 + x2))dFX1(x1) ≥ Hb(Q(x2−A))−Hb(Q(x2+A))

Q(x2−A)−Q(x2+A)

(∫ A
−A Q(x1 + x2)dFX1(x1)−Q(x2 + A)

)
+Hb(Q(x2 + A))

= βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A)), (A48)

where (A45) and (A47) have been used in (A48). (A46) and (A48) are depicted in Figure A1.
From (A45) and (A48), we have:

βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

) ≤
∫ A
−A Hb(Q(x1 + x2))dFX1(x1)

Hb

( ∫ A
−A Q(x1 + x2)dFX1(x1)

) ≤ 1. (A49)
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Let:

β∗ � arg min
β

βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

) . (A50)

This minimizer satisfies the following equality:

d
dβ

⎛⎜⎜⎝ βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

)
⎞⎟⎟⎠ ∣∣∣∣

β=β∗
= 0. (A51)

Therefore, we can write:

βHb(Q(x2 + A)) + (1− β)Hb(Q(x2 − A))

Hb

(
βQ(x2 + A) + (1− β)Q(x2 − A)

) ≥ β∗Hb(Q(x2 + A)) + (1− β∗)Hb(Q(x2 − A))

Hb

(
β∗Q(x2 + A) + (1− β∗)Q(x2 − A)

) (A52)

=

Hb(Q(x2−A))−Hb(Q(x2+A))
Q(x2−A)−Q(x2+A)

H′b

(
β∗Q(x2 + A) + (1− β∗)Q(x2 − A)

) (A53)

≥
Hb(Q(x2−A))−Hb(Q(x2+A))

Q(x2−A)−Q(x2+A)

H′b(Q(x2 + A))
, (A54)

where (A52) is from the definition in (A50); (A53) is from the expansion of (A51), and H′b(t) = log( 1−t
t ) is

the derivative of the binary entropy function; (A54) is due to the fact that H′b(t) is a decreasing function.
Applying L’Hôspital’s rule multiple times, we obtain:

limx2→+∞

Hb(Q(x2−A))−Hb(Q(x2+A))

Q(x2−A)−Q(x2+A)

H′b(Q(x2+A))
= limx2→+∞

Hb(Q(x2−A))

(
1− Hb(Q(x2+A))

Hb(Q(x2−A))

)
Q(x2−A)

(
1− Q(x2+A)

Q(x2−A)

)
log( 1−Q(x2+A)

Q(x2+A)
)

= limx2→+∞− Hb(Q(x2−A))
Q(x2−A) log(Q(x2+A))

= limx2→+∞
e−

(x2−A)2
2 log(Q(x2−A))

e−
(x2−A)2

2 log(Q(x2+A))+
Q(x2−A)
Q(x2+A)

e−
(x2+A)2

2

= limx2→+∞
log(Q(x2−A))

log(Q(x2+A))+1

= limx2→+∞
Q(x2+A)eAx2

Q(x2−A)e−Ax2

= 1

(A55)

From (A49), (A54) and (A55), (35) is proven. Note that the boundedness of X1 is crucial in the
proof. In other words, the fact that Q(x2 − A)→ 0 as x2 → +∞ is the very result of A < +∞.
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Abstract: Coded multicasting has been shown to be a promising approach to significantly improve the
performance of content delivery networks with multiple caches downstream of a common multicast
link. However, the schemes that have been shown to achieve order-optimal performance require content
items to be partitioned into several packets that grows exponentially with the number of caches, leading
to codes of exponential complexity that jeopardize their promising performance benefits. In this paper,
we address this crucial performance-complexity tradeoff in a heterogeneous caching network setting,
where edge caches with possibly different storage capacity collect multiple content requests that may
follow distinct demand distributions. We extend the asymptotic (in the number of packets per file)
analysis of shared link caching networks to heterogeneous network settings, and present novel coded
multicast schemes, based on local graph coloring, that exhibit polynomial-time complexity in all the system
parameters, while preserving the asymptotically proven multiplicative caching gain even for finite file
packetization. We further demonstrate that the packetization order (the number of packets each file is
split into) can be traded-off with the number of requests collected by each cache, while preserving the
same multiplicative caching gain. Simulation results confirm the superiority of the proposed schemes
and illustrate the interesting request aggregation vs. packetization order tradeoff within several practical
settings. Our results provide a compelling step towards the practical achievability of the promising
multiplicative caching gain in next generation access networks.

Keywords: caching networks; random fractional caching; coded caching; coded multicasting;
index coding; finite-length analysis; graph coloring; approximation algorithms

1. Introduction

Recent information-theoretic studies [1–49] have characterized the fundamental limiting performance
of several caching networks of practical relevance, in which throughput scales linearly with cache
size, showing great promise to accommodate the exponential traffic growth experienced in today’s
communication networks [50]. In this context, a caching scheme is defined in terms of two phases: the cache

Entropy 2019, 21, 324; doi:10.3390/e21030324 www.mdpi.com/journal/entropy
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placement phase, which operates at a large time-scale and determines the content to be placed at the network
caches, and the delivery phase, during which user requests are served from the content caches and sources
in the network. Some of the network topologies studied include shared link caching networks [1,2,8–14],
device-to-device (D2D) caching networks [17–19,33,34], hierarchical caching networks [24], multi-server
caching networks [29], and combination caching networks [36–42].

Consider a network with one source (e.g., base station) having access to m files, and n users
(e.g., small-cell base stations or end user devices), each with a cache memory of M files. In [17], the authors
showed that if the users can communicate between each other via D2D communications, a simple
distributed random caching policy and TDMA-based unicast D2D delivery achieves the order-optimal
throughput Θ

(
max{M

m , 1
m , 1

n}
)

whose linear scaling with M when Mn ≥ m exhibits a remarkable
multiplicative caching gain, in the sense that the per-user throughput grows proportionally to the
cache size M for fixed library size m, and it is independent of the number of users n in the system.
Moreover, in this scheme each user caches entire files without the need for partitioning files into packets,
and missing files are delivered via unicast transmissions between neighbor nodes, making it efficiently
implementable in practice. We recall that order-optimality refers to the fact that the multiplicative gap
between information-theoretic converse and achievable performance can be bounded by a constant number
when m, n → ∞.

In the case that users cannot communicate between each other, but share a multicast link from
the content source, the authors in [8,9] showed that the use of coded multicasting (also referred to as
index coding [51]) allows achieving the same order-optimal worst-case throughput as in the D2D caching
network. In this case, however, in order to create enough coding opportunities during the delivery phase,
requested files are required to be partitioned into a number of packets that grows exponentially with the
number of users, leading to coding schemes of exponential complexity [8,9,21].

In [10,12], the authors considered the same shared link caching network, but under random demands
characterized by a probability distribution, and proposed a scheme consisting of random aggregate
popularity (RAP) placement and chromatic number index coding (CIC) delivery, referred to as RAP-CIC,
proved to be order-optimal in terms of average throughput. The authors further provided optimal
average rate scaling laws under Zipf [52] demand distributions, whose analytical characterization
required resorting to a polynomial-time approximation of CIC, referred to as greedy constrained coloring
(GCC). Using RAP-GCC, the authors further established the regions of the system parameters, in which
multiplicative caching gains are potentially achievable. While GCC exhibits polynomial complexity in
the number of users and packets, the order-optimal performance guarantee still requires, in general,
the packetization order (number of packets per file) to grow exponentially with the number of users,
as showed in [21].

It is then key to understand if the promised multiplicative caching gain, shown to be asymptotically
achievable by the above-referenced schemes, can be preserved in practical settings of finite packetization
order. In this context, we shall differentiate between coded multicast schemes that assume a deterministic
vs. a random cache placement phase. Deterministic placement policies determine where to store file
packets according to a deterministic procedure that takes into account the ID of each packet. In contrast,
random placement policies, after determining the number of packets to be cached of each file at each
cache, choose the exact packet IDs uniformly at random. While the increased structure of deterministic
placement policies can be exploited to design more efficient coded multicast algorithms, random placement
policies are desirable in practice, as they provide increased robustness by requiring less cache configuration
changes under system dynamics.

The seminal work of [21] showed that all previously proposed schemes (based on both deterministic
and random cache placement) required exponential packetization, and that under random placement,

192



Entropy 2019, 21, 324

no graph-coloring-based coded multicast algorithm can achieve multiplicative caching gains with
sub-exponential packetization. Since the fundamental results of [21], several works have studied the now
central problem in caching of finite file packetization. The authors in [53] connect the caching problem to
resolvable combinatorial designs and derive a scheme that while improving exponentially over previous
schemes [8,9,21], still requires exponential packetization. In [54], the authors introduce the combinatorial
concept of Placement Delivery Array (PDA) and derive a caching scheme where the packetization
scales super-polynomially with the number of users. The work in [22] establishes a connection with
the construction of hypergraphs with extremal properties, and provides the first sub-exponential (but still
intractable) scheme. Somewhat surprisingly, some of the authors of [21] introduced a new combinatorial
design based on Ruzsa-Szeméredi graphs in [30] and showed that a linear scaling of the number of packets
per file with n can be achieved for a throughput of Θ(n−δ), where δ can be arbitrarily small. However,
all the above studies focus on coded multicast algorithms that assume a deterministic cache placement
phase. Under random cache placement, several coded multicast algorithms have been proposed in the
context of homogenous shared link caching networks [55–60], including our previous work that serves as
the basis for this paper.

In this work, we address the important problem of finite-length coded multicasting under random
cache placement, focusing on a more general heterogeneous shared link caching network, in which caches
with possibly different sizes collect possibly multiple requests according to possibly different demand
distributions (see Figure 1). As shown in Figure 1, this scenario can be motivated by the presence of both
end user caches and cache-enabled small-cell base stations or WLAN access points sharing a common
multicast link. In this case, each small-cell base station can be modeled as a user cache placing multiple
requests. In addition, multiple requests per user also arise in the presence of delay-tolerant content
requests (e.g., file downloading). While there have been several information-theoretic studies of shared
link caching networks with distinct cache sizes [61–63], and with multiple per-user requests [13,14,34,64,65],
none of these works considered the finite-length regime nor addressed the joint effect of random demands,
heterogenous cache sizes, and multiple per-user requests.

wireless backhaulwireless backhaul

Multiple Requests
Single Request

Cache

Served by the Macro Base 
Station

Served by Small Cell Base Stations

Figure 1. An example of the network model, which consists of a source node (base station in this figure)
with access to the content library and connected to the users via a shared (multicast) link. Each user (end
users and small-cell base stations) may have different cache size and request a different number of files
according to their own demand distribution.
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The contributions of this paper are as follows:

1. We provide a generalized model for heterogeneous shared link caching networks, in which users
can have different cache sizes and make different number of requests according to different demand
distributions.

2. We design two novel coded multicast algorithms based on local graph coloring, referred to as Greedy
Local Coloring (GLC) and Hierarchical Greedy Local Coloring (HgLC) that exhibit polynomial-time
complexity in both the number of caches and the packetization order. In combination with the
Random Aggregate Popularity (RAP) placement policy of [10,12], we show that the overall schemes
RAP-GLC and RAP-HgLC are order-optimal in the asymptotic file-length regime.

3. Focusing on the finite-length regime, in which content items can be partitioned into a finite number of
packets, we show how the general advantage of local graph coloring is especially relevant when the
number of per-user requests grow. We validate via simulations the superiority of RAP-GLC, especially
with high number of per-user requests. We then show how RAP-HgLC, with a slight increase in
the polynomial complexity order, further improves the caching gain of RAP-GLC, remarkably
approaching the multiplicative gain that existing schemes can only guarantee in the asymptotic
file-length regime.

4. We demonstrate that there is a tradeoff between the required packetization order and the number
of requested files per user. In particular, for a given target gain, if the number of requests increases,
then the number of packets per file can be reduced, while preserving the target gain. We further
quantify the regime of per-user requests for which a caching scheme with unit packetization
order (i.e., a scheme that treats only whole files) is order-optimal. Our analysis illustrates the
key impact of content request aggregation in time and space on caching performance. That is, if edge
caches can wait for collecting multiple requests over time and/or aggregate requests from multiple
users, the same performance can be achieved with lower packetization order, and hence lower
computational complexity.

The paper is organized as follows. Section 2 introduces the network model and problem
formulation. Section 3 describes the construction of coded multicast algorithms using graph coloring,
with special focus on the advantages of local graph coloring. Section 4 presents novel polynomial-time
local-graph-coloring-based coded multicast schemes. Section 5 analyzes the effect of request aggregation
on the performance–complexity tradeoff. Section 6 presents simulation results and related discussions.
Finally, concluding remarks are given in Section 7.

2. Network Model and Problem Formulation

We consider a caching network formed by a source node with access to a content library,
connected to several caching nodes/users via a single shared (multicast) link. Similar to previous
works [8–10,12–14,21,22,30], we define a caching scheme in terms of two phases:

• Placement phase, which operates at a large time-scale and determines the content to be placed at the
caching nodes,

• Delivery phase, during which users requests are served from the content caches and sources in
the network.

However, differently from previous works, we generalize the model to a heterogeneous system in
which each caching node has a possibly different cache size and requests a possibly different number of
files. A practical example of our setting can be represented by a macro base station connected to several
cache-enabled small-cell base stations, and a number of user devices served either by the macro base
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station or by the small-cell base stations. In this setting, each small cell acts as a super user requesting
multiple files resulting from the requests of the users it serves.

Specifically, the heterogeneous caching network consists of a single source node storing a library
of files F = {1, . . . , m}, each with entropy F bits, and n user nodes U = {1, . . . , n}, each with a cache of
storage capacity MuF bits (i.e., each user caches up to Mu files). Each user u can requests Lu (1 ≤ Lu ≤ m)

different files according to its individual request probability distribution. We assume that the library files
have finite length and consequently a finite packetization order. Our main objective is to design a caching
scheme that minimizes the number of transmissions required to satisfy the demands of all users.

In a homogeneous network setting with infinite packetization order, recent works [8–10,12–14]
have shown that it is possible to satisfy a scaling number of users with only a constant number of
multicast transmissions. The achievable schemes configure user caches with complementary (side)
information during the caching phase, such that the resulting coded multicasting opportunities that
arise during the delivery phase can be used to minimize the transmission rate (or load) over the shared
multicast link. Specifically, reference [12] showed that under Zipf file popularity, a properly optimized
random fractional placement policy, referred to as Random Aggregate Popularity (RAP) caching, achieves
order-optimality when combined with a graph-coloring-based coded multicast scheme. Unfortunately,
even in the homogenous setting, it was shown in [21] that a central limitation of all previous works is that
they require infinite packetization order: all existing caching schemes achieve at most a factor of two gain
when the packetization order is finite.

In this work, inspired by the fundamental throughput-delay-memory tradeoff derived in [21], our goal
is to design computationally efficient schemes that provide good performance in the finite packetization
regime. For the caching phase, (1) we restrict our placement policies to the class of random fractional
schemes described in [9,10,12–14], proved to be order-optimal in the homogeneous setting. For the delivery
phase, (2) we focus on the class of graph-coloring-based index coding schemes, and design two novel
polynomial-time algorithms that employ local graph coloring on the (index coding) conflict graph [51].

2.1. Random Fractional Cache Placement

The class of random fractional placement schemes is described as follows:

1. Packetization: Each file is partitioned into B packets of equal-size F/B bits, where the integer B is
referred to as the packetization order. Each packet is represented by a symbol in finite field F2F/B ,
where we assume that F/B is large enough.

2. Random Placement: Each user u caches p f ,u MuB packets independently at random from each file f ,
where p f ,u is the probability that file f is cached at user u, and satisfies 0 ≤ p f ,u ≤ 1/Mu, ∀ f ∈ F
such that ∑m

f=1 p f ,u = 1, ∀u ∈ U .

We introduce a caching distribution matrix P = [p f ,u] ∈ R
m×n
+ , where f ∈ F and u ∈ U . Please

note that the number of packets of file f cached at user u, p f ,u MuB, can be directly determined from
the caching distribution matrix P. As described in [10,12–14], the caching distribution must be properly
optimized to balance the gains from local cache hits (where requested packets are served by the local
cache) and coded multicast opportunities (where requested packets are served by coded transmissions
that simultaneously satisfy distinct user requests). When this is the case, we refer to the cache placement
scheme as Random Aggregate Popularity (RAP) caching (see e.g., [10,12–14]). Given the number of packets
to be cached of a given file, the actual indices of the packets to be cached are chosen uniformly at random,
and independently across users. We use Cu, f to denote the set of packets of file f cached at user u and
C = {Cu, f } with u ∈ U and f ∈ F to denote the packet-level cache placement realization.

The goal of the placement phase is to configure the user caches to create coding opportunities
during the delivery phase that allow serving distinct user requests via common multicast transmissions.
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Compared to deterministic placement [8], random placement schemes allow configuring user caches with
lower complexity and increased robustness, i.e., changes in system parameters (e.g., number of users,
number files, file popularity) require less changes in users’ cache configurations [12].

Recall that the placement phase operates at a much larger time-scale than the delivery phase,
and hence is unaware of the requests in the subsequent delivery rounds. Therefore, the placement phase
can be designed according to the demand distribution, but must be independent of the requests realizations.

2.2. Random Multiple Requests

Each user u ∈ U requests Lu (1 ≤ Lu ≤ m) files independently from other users, following
a probability distribution q f ,u with q f ,u ∈ [0, 1] and ∑m

f=1 q f ,u = 1 (i.e., for each request of user u, file f is
chosen with probability q f ,u). We introduce a demand distribution matrix Q = [q f ,u] ∈ R

m×n
+ , where f ∈ F

and u ∈ U . In the following, we use W = {Wu, f }, with u ∈ U and f ∈ F , to denote the packet-level
demand realization where Wu, f denotes the packets of file f requested by user u.

The multiple-request parameters {Lu} have a key operational meaning, in that it captures the
possibility of edge caches to collect requests across time and space. That is, Lu may represent the amount
of requests collected over time (given the delay tolerance of some content requests) as well as the amount
of requests collected across space from users served by the given edge cache (e.g., when edge caches are
located at helper nodes or small-cell base stations serving multiple individual users).

2.3. Performance Metric

For given realizations of the random fractional cache placement and the random multiple requests,
the goal is to design a delivery scheme that minimizes the rate over the shared multicast link required to
satisfy all user requests. Since one placement phase is followed by an arbitrarily large number of delivery
rounds (each characterized by a new independent request realization), the rate (or load) of the system
refers only to the delivery phase (i.e., asymptotically the cache placement costs no rate). Furthermore,
it makes sense to consider the average rate, where averaging with respect to the users request distribution
takes on the meaning of a time-averaged rate, invoking an ergodicity argument.

At each request round, let F = {f1, f2, · · · , fn} be the demand realization, where fu =

{ f1,u, f2,u, · · · , fLu ,u}, u ∈ U . The source node computes a multicast codeword as a function of the library
and the demand realization F. We assume that the source node communicates to the user nodes through
an error-free deterministic shared multicast link.

Given the demand realization F, let the total number of bits transmitted by the source node be J(F).
We are interested in the average performance of the coded multicast scheme, and hence define the average
rate (or load) as the number of transmitted bits normalized by the file size:

R =
E [J(F)]

F
, (1)

where the expectation is over the random demand distribution.

3. Graph-Coloring-Based Coded Multicast Delivery

It is important to note that for given cache placement and demand realizations, the delivery phase
of a caching scheme reduces to an index coding problem with a twist. The only difference with the
conventional index coding problem introduced in [51] is that the cache information may contain part of
(as opposed to entire) requested files, and that users may request multiple (as opposed to single) files.
Nevertheless, as in index coding, the problem can still be represented by a conflict graph [10,12–14],
where vertices represent requested packets, and an edge between two vertices indicates a conflict, in the
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sense that the packet represented by one vertex is not present in the cache of the user requesting the
packet represented by the other vertex. By construction, packets with no conflict in the graph can be
simultaneously transmitted via an XOR operation. Performing graph coloring on the conflict graph
and transmitting the packets via proper XOR operations, according to the graph coloring, results in an
achievable linear index coding scheme, which we refer to as a coded multicast scheme.

In the following, we first illustrate how to construct the conflict graph, we then review classical linear
index coding schemes, and then describe our proposed graph-coloring-based coded multicast schemes.

3.1. Conflict Graph Construction

Given cache placement realization C and demand realization W, the directed conflict graph
Hd

C,W = (V , E) can be constructed as follows:

• Vertices: For each packet request in W, there is a vertex in Hd
C,W. Each vertex v ∈ V is uniquely

identified or labeled by a packet-user pair {ρ(v), μ(v)}, where ρ(v) denotes the identity of the packet,
and μ(v) the user requesting it. Hence, if a packet is requested by multiple users, such a packet is
represented in as many vertices as the number of users requesting it. Such vertices have the same
packet label ρ(v), but different user label μ(v).

• Arcs: For any v1, v2 ∈ V , there is an edge (v2, v1) ∈ E with direction from v2 to v1 if and only if
ρ(v1) �= ρ(v2) and packet ρ(v1) is not in the cache of user μ(v2).

To better understand the rationale behind the conflict graph and its construction, note that for any
two vertices v1 and v2 that are labeled as {ρ(v1), μ(v1)} and {ρ(v2), μ(v2)}, respectively, we have the
following three possible cases:

• ρ(v1) �= ρ(v2) and μ(v1) = μ(v2): This indicates that two different packets are requested by the same
user. Then, v1 and v2 are mutually conflicting, in the sense that if sent within the same time-frequency
resource they interfere with each other. Hence, in the conflict graph, they are connected with two
directed edges, (v1, v2) ∈ E and (v2, v1) ∈ E ;

• ρ(v1) = ρ(v2) and μ(v1) �= μ(v2): This indicates that the same packet is requested by two different
users. Then, v1 and v2 are not conflicting, and hence not connected in the conflict graph; i.e., (v1, v2) /∈
E and (v2, v1) /∈ E ;

• ρ(v1) �= ρ(v2) and μ(v1) �= μ(v2): This indicates that two different packets are requested by two
different users. In this case, if packet ρ(v1) is in the cache of user μ(v2), then, even if ρ(v1) and
ρ(v2) are sent within the same time-frequency resource, user μ(v2) will not suffer from interference,
since, using its cache information, it can cancel out the undesired packet ρ(v1) from the received
signal. On the other hand, if packet ρ(v1) is not in the cache of user μ(v2), then v1 conflicts with v2,
and a directed edge is drawn from v2 to v1. Similarly, (v1, v2) ∈ E if and only if ρ(v2) /∈ Cμ(v1)

.

Based on the above construction, it follows that the number of interference dimensions faced by
a given node is at most the number of its outgoing neighbors.

To illustrate the construction of the directed conflict graphHd
C,W, we present the following example.

Example 1. We consider a network with n = 3 users denoted as U = {1, 2, 3} and m = 3 files denoted
as F = {A, B, C}. We assume Mu = 1, ∀u ∈ U and partition each file into three packets. For example,
A = {A1, A2, A3}. Let pA,u = pB,u = pC,u = 1

3 for u ∈ U , which means that one packet from each of A, B, C
is stored in each user’s cache. For the sake of notational convenience, we assume a symmetric caching realization,
where the caching configuration C is given by Cu,A = {Au}, Cu,B = {Bu}, Cu,C = {Cu}). That is, the cache
configuration of each user u ∈ U is Cu = {Au, Bu, Cu}. We let each user make two requests, i.e., Lu = 2 (∀u ∈ U ).
Specifically, we let user 1 request A, B, user 2 request B, C, and user 3 request C, A, i.e., f1 = {A, B}, f2 =
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{B, C}, f3 = {C, A}), such that W1 = {A2, A3, B2, B3}, W2 = {B1, B3, C1, C3}, W3 = {A1, A2, C1, C2}.
The associated directed conflict graph is shown in Figure 2.
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Figure 2. An example of the construction of the directed conflict graph (this figure needs to be viewed in
color). The color of each circle in this figure represents the coloring of each vertex.

3.2. Code Construction

Let ωv denote the content (or realization) of packet ρ(v), v ∈ V , represented by a symbol in Fq.
In general, in a linear index coding scheme of length �, every vertex v is associated with a “coding"
vector gv ∈ F

�×1
q where v ∈ [1 : |V|]. Let G = [g1, . . . g|V|] and ω = [ω1, . . . , ω|V|]

T. Then, the transmitted

codeword, x ∈ F
�×1
q , is built as follows:

x = ∑
v∈V

ωvgv = Gω, (2)

Let N (v) = {w : (v, w) ∈ E} be the out-neighborhood of v. For any feasible scalar linear index
coding scheme of the form (2), the following interference alignment condition is necessary: For every
vertex v, the coding vector gv should be linearly independent of all the coding vectors assigned to the
out-neighborhood of v.

In the following, we describe how to construct coding vectors satisfying the interference alignment
condition for every vertex. For ease of notation, we useHd to denote the directed conflict graph, andH
to represent its underlying undirected skeleton, where the direction of edges is ignored. Recall that an
undirected skeleton of a directed graph Hd is an undirected graph where there is an undirected edge
between v1 and v2 if, between v1 and v2, there is a directed edge in either or both directions inHd.

3.2.1. Graph Coloring and Chromatic Number

A well-known procedure to construct the coding vectors {gv, v ∈ N (v)} is the coloring of Hd.
In the following, when used without any qualification, a coloring of a directed graph is considered to be
a proper (vertex) coloring of its underlying undirected skeletonH, where a proper coloring is a labeling
of the graph’s vertices with colors, such that no two vertices sharing the same edge have the same color.
Please note that by definition, any subset of nodes with the same color in a proper coloring form an
independent set (i.e., a subset of nodes in a graph, no two of which share the same edge). A coloring
using at most k colors is called a (proper) k-coloring. The smallest number of colors needed in a proper
coloring of Hd is called its chromatic number, and is denoted by χ(Hd). In the following, we explain
why a coloring of Hd provides a way to design the coding vectors {gv, v ∈ N (v)}. Let ξ be the total
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number of colors in a given coloring of Hd. Let ei be the i-th unit vector in the space F
�×1
q , with � = ξ,

i.e., ei = [0, 0, · · · , 1, · · · , 0, 0]T, where the 1 is in the i-th position. Now, if vertex v is colored with color
i, then, its coding vector is gv = ei. Making this choice for the coding vectors, the associated achievable
rate is given by ξ

B . Since neighbors are assigned different colors, the interference alignment condition is
satisfied for every vertex. Recalling the definition of χ(Hd), it is immediate to see that the best achievable

rate due to conflict graph coloring is given by χ(Hd)
B , and, according to the construction of the conflict

graph, it is loosely bounded by:

∑
f∈fu

(1− p f ,u Mu) ≤
χ(Hd)

B
≤

n

∑
u=1

∑
f∈fu

(1− p f ,u Mu), (3)

indicating that the achievable rate is a constant with regards to B. A much tighter bound will be given
in Section 4.1.

3.2.2. Local Graph Coloring and Local Chromatic Number

More efficient sets of coding vectors can be constructed using the approach proposed in [66], which
exploits the direction information inHd

C,W, resulting in the following advanced coding scheme:

Definition 1 (Local Coloring Number). Given a proper coloring c ofHd, the associated local chromatic number
is defined as:

ξlc(c) = max
v∈V

|c(N+(v))| (4)

where N+(v) is the closed out-neighborhood of vertex v (i.e., vertex v and all its ongoing neighbors N (v)) and
|c(N+(v))| is the total number of colors in N+(v) for a given proper color assignment c.

The minimum local coloring number over all proper colorings is referred to as the local chromatic
number and is formally defined as follows:

Definition 2 (Local Chromatic Number). The directed local chromatic number of a directed graph Hd is
defined as:

χlc(Hd) = min
c∈C

ξlc(c) (5)

where C denotes the set of all proper coloring assignments ofHd, N+(v) is the closed out-neighborhood of vertex v,
and |c(N+(v))| is the total number of colors in N+(v) for a given proper color assignment c.

Encoding Scheme: For a given realization of the cache placement (C) and user requests (W), let us
consider the conflict graphHd

C,W as in Section 3.1. Given a (proper) ξ-coloring (i.e., a proper coloring of
graph Hd

C,W with ξ colors), we compute the associated local coloring number ξlc. Set � = ξlc and p = ξ.
Then, consider the columns of the generator H of an � × p Maximum Distance Separable (MDS) [67]
code over the field Fq : q > p . If the color of a vertex v is i, then the coding vector gv assigned to vertex v
is given by i-th column hi of H. Then, the transmitted multicast codeword, x ∈ F

�×1
q , is given by (2).

Decoding Scheme: In any closed out-neighborhood, there are at most � different colors (from the
definition of local coloring). Since every � columns of H are linearly independent (from the defining
property of MDS codes), the coding vectors in any closed out-neighborhood have full rank, satisfying
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the interference alignment condition. The message ωv at vertex v is obtained at user v as follows: (1)
Using side information at user v, cancel out message parts corresponding to all vertices outside N+(v),
i.e., x′ = x− ∑

u/∈N+(v)
ωugu. This is possible because, by the definition of the conflict graphHd, the messages

{ωu}u/∈N+(v) are available as side information at user v and the encoding mechanism is known to all the
users. (2) Find a vector z in the dual space of {gu}u∈N+(v)\{v} such that zTx′ �= 0 (this is possible since gv

is linearly independent of {gu}u∈N+(v)\{v} because of the local chromatic number-based construction).
Now, zTx′ = (zTgv)ωv. Therefore, user v recovers its own message. It follows that all users can recover all
the requested packets employing such linear scheme.

Achievable Rate: The coding scheme constructed as described above achieves a rate given by ξlc/B,
where B is the number of packets per file.

Example 2. We consider an example shown in Figure 3. First, we assign colors to each vertex such that the total
number of colors ξ = 5, and count the local coloring number, which is ξlc = 4. Then, we construct the generator
matrix A of a (ξ = 5, ξlc = 4) MDS code, which is given by

A =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

⎞⎟⎟⎟⎟⎟⎠ . (6)

After that, we assign the columns of A to gv, corresponding from the left to the right to the vertices with the
packets {A2, A3, B2, B1, A1}, as shown in Figure 3. Finally, the transmitted codewords can be generated which are
the rows of the right-hand side of (2)

X(1) = A1 ⊕A2, X(2) = A1 ⊕A3 (7)

X(3) = A1 ⊕ B1, X(4) = A1 ⊕ B2 (8)

where the length of the code is ξlc/B = 4/3 file units. It can be easily verified that every user can decoded its desired
packets with the cached ones.
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Figure 3. An illustration of coded multicast codewords construction based on local coloring (this figure
needs to be viewed in color). The total number of colors is ξ = 5, and the local coloring number is ξlc = 4.

It is immediate to see that the best achievable rate due to local coloring is obtained by computing the
local chromatic number ofHd

C,W and using its associated coloring to design the coding vectors, yielding
a rate χlc/B. However, note that to compute χlc, we must optimize over all proper colorings to find the
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local chromatic number. As with the chromatic number, this can be cast as an Integer Program and it is
hence an NP-hard problem. To overcome this limitation, in Section 4, we propose a greedy approach
that (i) exhibits polynomial-time complexity in all the system parameters, (ii) achieves close to optimal
performance for finite packetization order, and (iii) is asymptotically (i.e., for infinite packetization order)
order-optimal.

3.3. Benefits of Local Coloring

Consider the following relation established for general directed graphs in [66]:

χlc(Hd) ≤ χ(Hd) ≤ χlc(Hd)O(log n). (9)

Focusing on the conflict graph of interestHd
C,W, the number of vertices can be as large as B ∑u∈U Lu.

It then follows from (9) that the gap between the local chromatic number and the chromatic number
can be as large as log(B ∑u∈U Lu). Please note that this multiplicative factor grows with the number of
packets per file B and the number of per-user requests Lu, supporting the extra benefit of local coloring
in the multiple-request scenario. In addition, the higher the number of per-user requests, the higher
the directionality of the conflict graph, which is the main factor exploited by local coloring to reduce
the achievable rate (see Section 3.2.2), further supporting the suitability of local coloring in increasingly
practical settings where there is some form of spatial or temporal request aggregation.

4. Proposed Algorithms and Performance Analysis

As stated earlier, computing the local chromatic number is NP-hard. To circumvent this challenge,
in this section, we propose two greedy coded multicast schemes, which together with the cache
placement described in Section 2.1, yield the following two caching schemes: Randomized Aggregate
Popularity-Greedy Local Coloring (RAP-GLC) and Randomized Aggregate Popularity-Hierarchical
greedy Local Coloring (RAP-HgLC). In both cases, the steps for obtaining the coded multicast scheme are
as follow:

i. Given a realization of the cache placement (C) and of the user requests (W), build the conflict graph
Hd

C,W as in Section 3.1.
ii. Use any of the above algorithms (GLC or HgLC) to compute a proper coloring. Let ξ denote the

number of colors used by either of the above algorithms to colorHd
C,W. Let ξlc be the associated local

coloring number.
iii. Consider a (ξ, ξlc) MDS code and compute the corresponding coded multicast scheme as described in

Section 3.2.2.

4.1. Randomized Aggregate Popularity-Greedy Local Coloring (RAP-GLC)

The RAP-GLC algorithm generalizes the RAP-GCC (Random Aggregate Popularity-Greedy
Constrained Coloring) algorithm introduced in [12]. RAP-GCC is a caching scheme based on random
fractional caching for the placement phase and a coded multicast scheme built on greedy-graph-coloring
-based linear index coding [51,68] for the delivery phase. RAP-GLC is more general than RAP-GCC
in two aspects: (1) conventional coloring is replaced by local coloring to leverage possible gains in the
multiple-request scenario, as described in Sections 3.2.1 and 3.3, and (2) RAP-GLC adaptively (depending
on the demand realization) chooses between naive or coded multicasting according to a threshold
parameter, instead of sticking to one of them (as in RAP-GCC).

201



Entropy 2019, 21, 324

4.1.1. RAP-GLC Algorithm Description

The algorithm associates to each vertex v a label or tag, composed of two fields
i.e., Kv ≡ (TD(v), TC(v)) with TC(v) denoting the subset of users caching the packet associated with
vertex v, i.e.,

TC(v)
Δ
= {u ∈ U : ρ(v) ∈ Cu}, (10)

and TD(v) denoting the subset of users requesting the packet associated with vertex v, i.e.,

TD(v)
Δ
= {u ∈ U : ρ(v) ∈ Wu}, (11)

which includes the user itself μ(v) who requests ρ(v) and all the others requesting ρ(v). Please note that
the cardinality of TD(v) indicates the popularity of packet ρ(v). Furthermore, let

Tv = {μ(v)} ∪ TC(v).

Given a vertex v, if the cardinality of TD(v) is higher than a predetermined threshold parameter
t ∈ {0 · · · , n} i.e., |TD(v)| > t, then all vertices v′ such that ρ(v) = ρ(v′) are colored with the same
color, leading to a naive multicast transmission scheme. If |TD(v)| ≤ t, then RAP-GLC greedily looks for
a maximal set of vertices with the same Tv (Algorithm 1, Line 14) and colors them with the same color
if there is no conflict among the vertices (Algorithm 1, Line 15). The threshold parameter t is subject to
optimization, as described in Section 4.1.2.

Doing this, RAP-GLC computes a valid coloring of the conflict graph H. Finally, the algorithm
computes its associated local coloring number (Algorithm 1, Line 24). The coding scheme employed is
based on the MDS code described in Section 3.2.1 associated with the above local coloring.

Algorithm 1 RAP-GLC
1: Let C = ∅;
2: Let c = ∅;
3: while V �= ∅ do

4: Pick an arbitrary vertex v in V ; Let I = {v};
5: Let V′ = V \ {v};
6: if { |TD(v)| > t } then

7: for all v′ ∈ V′ with ρ(v′) = ρ(v) do

8: I = I ∪ v′;
9: end for

10: Color all the vertices in I by c /∈ C;
11: Let c[I′] = c;
12: V = V \ I′.
13: else

14: for all v′ ∈ V′ with Tv′ ≡ Tv do

15: if {There is no edge between v′ and I} then

16: I = I ∪ v′;
17: end if
18: end for
19: Color all the vertices in I by c /∈ C;
20: Let c[I ] = c;
21: V = V \ I .
22: end if
23: end while
24: return the local coloring number maxv∈V |c(N+(v))| and the corresponding color assignment c(N+(v)) for

each v;
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Time Complexity: In Algorithm 1, both the outer while-loop starting at Line 3, and the inner for-loop
starting at Line 6 iterate at most |V| times, and all other operations inside the loops take constant time.
Therefore, the complexity of RAP-GLC is O(|V|2) or, equivalently, O(n2B2), since |V| ≤ nB, which is
polynomial in |V| (or n, B).

4.1.2. RAP-GLC Performance Analysis

In the following, we quantify the performance of RAP-GLC in the asymptotic regime when the
number of users and files is kept constant while the packetization order is sent to infinity. Denoting
by E[RRAP−GLC(P, Q, t)] the asymptotic average achievable rate of RAP-GLC for a fixed threshold t,
the threshold parameter t is optimized to minimize E[RRAP−GLC(P, Q, t)]. Hence, denoting by R̄RAP−GLC

the average rate achieved by RAP-GLC with optimized t, i.e.,

R̄RAP−GLC = min
t

E[RRAP−GLC(P, Q, t)],

we have that
R̄RAP−GLC ≤ min{E[RRAP−GLC(P, Q, n)],E[RRAP−GLC(P, Q, 0)].

Since E[RRAP−GLC(P, Q, 0)] is just the rate achieved via naive multicasting, then, an upper
bound on the average asymptotic performance of RAP-GLC can be obtained by upper bounding
E[RRAP−GLC(P, Q, n)] which can be obtained by generalizing the asymptotic performance analysis
of RAP-GCC derived in [10,12] using conventional graph coloring in the homogeneous shared link
caching network to the case of using local coloring in the heterogeneous caching network. Specifically,
we extend the order-optimality analysis under single per-user requests (L = 1) in the asymptotic regime of
B → ∞ [10,12], to that under multiple L > 1 per-use requests [13,14]. These theoretical results will serve
as rate lower bounds for the finite-length performance of our proposed algorithms.

Let L = maxu Lu and order Lu, u ∈ U as a decreasing sequence L[1] ≥ L[2] ≥ L[3], . . . , L[n], where L[i]
is the i-th largest Lu and [i] = u for some u ∈ U . It can be seen that L[1] = maxu Lu and L[n] = minu Lu.
Let nj = ∑[i] 1{L[i] − j ≥ 0} > 0, where 1 ≤ j ≤ L[1] and 1{·} is the indicator function. Let Unj = {[i] ∈ U :
1{L[i] − j ≥ 0}}. In the next theorem, we provide a performance guarantee of the RAP-GLC algorithm.

Theorem 1. For any given m, n, Mu, the random caching distribution P and the random request distribution Q,
the average achievable rate of the RAP-GLC algorithm, R̄RAP−GLC satisfies

R̄RAP−GLC ≤ min{ψ(P, Q), m̄− M̄}, (12)

when B → ∞, where,

m̄ =
m

∑
f=1

(
1−

n

∏
u=1

(
1− q f ,u

)Lu

)
, (13)

M̄ =
m

∑
f=1

(
1−

n

∏
u=1

(
1− q f ,u

)Lu

)
min

u
p f ,u Mu, (14)

ψ(P, Q) =
L

∑
j=1

n

∑
�=1

∑
U �⊂Unj

m

∑
f=1

∑
u∈U �

ρ f ,u,U �λ(u, f ,U �),
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with U � denoting a set of users with cardinality �,

λ(u, fu,U �) = (1− p fu ,u Mu)× ∏
k∈U �\{u}

(p fu ,k Mk) ∏
k∈U\U �

(1− p fu ,k Mk) (15)

and

ρ f ,u,U �
Δ
= P( f = arg max

fu∈f(U �)
λ(u, fu,U �)),

denoting the probability that f is the file whose p f ,u maximizes the term λ(u, fu,U �) among f(U �) (the set of files
requested by U �).

Proof. See Appendix A.

Using the explicit expression for R̄RAP−GLC in Theorem 1, we can optimize the caching distribution
for a wide class of heterogeneous network models to minimize the number of transmissions. We use P∗ to
denote the caching distribution that minimizes RRAP−GLC.

Remark 1. For the sake of the numerical evaluation of ψ(q, p), it is worthwhile to note that the probabilities ρ f ,u,U �

can be easily computed as follows. Given the subset of users, U � of cardinality �, let Ju1 , . . . , Ju�
denote � i.i.d. random

variables each of them distributed over F with pmf qui , with i = 1, . . . , �. Since λ(u1, Ju1U �), · · · , λ(u�, Ju�
,U �)

are i.i.d., the CDF of Y�
Δ
= max{λ(u1, Ju1 ,U �), · · · , λ(u�, Ju�

,U �)} is given by

P (Y� ≤ y) =
�

∏
i=1

P

(
λ(ui, Jui ,U �) ≤ y

)

=
�

∏
i=1

⎛⎝ ∑
j∈F :λ(ui ,j,U �)≤y

qui ,j

⎞⎠ .

(16)

Hence, it follows that

ρ f ,u,U � = P(Y� = λ(u, f ,U �))

=
�

∏
i=1

⎛⎝ ∑
j∈F :g�(j)≤λ(u, f ,U �)

qui ,j

⎞⎠− �

∏
i=1

⎛⎝ ∑
j∈F :g�(j)<λ(u, f ,U �)

qui ,j

⎞⎠ ,
(17)

which can be easily computed by sorting the values {λ(ui, j,U �) : j ∈ F , ui ∈ U �}.

Nevertheless, as shown in [21], when B is finite or is not exponential in n, the performance of
RAP-GLC can degrade significantly, compromising the promising multiplicative caching gain, although it
is already an improved version of RAP-GCC in [12]. This brings us to the other main contribution where
we propose a new algorithm that preserves the gain due to coded multicasting even when B is finite.

4.2. Randomized Aggregate Popularity-Hierarchical Greedy Local Coloring ( RAP-HgLC) for
Finite-Length Packetization

Similarly to RAP-GLC, RAP-HgLC has a predetermined parameter t ∈ {0, · · · , n} that is optimized
to minimize its associated average achievable rate. However, in the RAP-HgLC algorithm, we arrange
the vertices in a hierarchy and use this to design a more careful coloring algorithm. The key idea of
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RAP-HgLC is to exploit the labeling of each vertex more efficiently. More specifically, as in RAP-GLC,
RAP-HgLC associates to each vertex v a label or tag, composed by the two fields Kv ≡ (TD(v), TC(v)),
defined in (10) and (11).

4.2.1. RAP-HgLC Algorithm Description

Before jumping into the algorithm, we introduce the following useful notations and their definitions.

• Gi: The i-th layer, Gi is initialized with the set of vertices {v : |Tv| = i} and at any point in the
algorithm contains only vertices with |Kv| ≥ i. Gi is updated continuously in the algorithm. Therefore,
higher numbered layers contain vertices with greater popularity.

• W1 ⊂ Gi: a subset of Gi consists of all the vertices with |Kv| = i as well as a certain number of vertices
with higher popularity (if available at any iteration), defined as

W1 =

{
v ∈ Gi : min

v∈Gi
|Kv| ≤ |Kv| ≤ min

v∈Gi
|Kv| +

⌊
a
(

max
v∈Gi

|Kv| −min
v∈Gi

|Kv|
)⌋}

, (18)

where a ∈ [0, 1] is a design parameter andW1 is updated with every iteration.
• Qi (see Algorithm 2): another subset of Gi that is updated every iteration.
• W2 ⊂ Qi: a subset of vertices in Qi defined as:

W2 =

{
v′ ∈ Qi : min

v′∈Qi
|Kv′ | ≤ |Kv′ | ≤ min

v′∈Qi
|Kv′ | +

⌊
b
(

max
v′∈Qi

|Kv′ | − min
v′∈Qi

|Kv′ |
)⌋}

, (19)

where b ∈ [0, 1] is another design parameter.

Based on the above definitions, it follows that the total set vertices V forms an n-layer hierarchy with
the i-th layer composed of the set of vertices Gi.

Key Idea: Starting from layer n, at any layer i ≤ n, the RAP-HgLC algorithm attempts to form an
independent set of size at least i; when there are no more such independent sets, all remaining packets are
dropped to layer i− 1, and transmission actions on those packets are deferred to later layers. This is the key
difference between RAP-HgLC and RAP-GLC. That is, RAP-HgLC makes an extra effort to place nodes
with large labels into large independent sets.

We will now describe how the above key idea is implemented in RAP-HgLC. The RAP-HgLC
algorithm forms large independent sets in a “top-down” fashion, starting with the highest layer,
and iteratively moving to lower layers until layer 1. The following two steps are performed at each layer:

1. Step I: The first step is similar to that in RAP-GLC algorithm. Given a vertex v, the algorithm first
checks if the cardinality of TD(v) is higher than t, i.e., |TD(v)| > t then all the vertices v′ such
that ρ(v) = ρ(v′) are colored with the same color. If |TD(v)| ≤ t then the algorithm greedily finds
independent sets of size i, where every vertex v in the independent set (Algorithm 2, Line 20) has the
same Kv (Algorithm 2, Line 19). After removing these vertices, the rest of the vertices in Gi are left for
the second step.

2. Step II: A candidate pool of verticesW1 ⊆ Gi is created. This set contains vertices v such that |Kv|
being close to the smallest available |Kv|’s. We randomly pick a vertex v from W1 (Algorithm 2,
Line 31). The design parameter a determines how close is the picked |Kv| to the smallest available
ones. We gradually form an independent set of size i with v included as follows: Form another set
W2 (Algorithm 2, Line 34), excluding v, whose vertices have |Kv′ | that is bigger but closer to that of
v determined by b, sample repeatedly with replacement from it to grow the independent set. If an
independent set of size at least i cannot be formed, we drop the vertex v to the lower layer Gi−1,
and take it into account in the next layer iteration. Otherwise, we assign a color to the independent set.
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W1 is repeatedly formed and random sampling fromW1 repeated till every vertex in Gi is dropped
or colored.

Algorithm 2 HgLC

1: C = ∅;
2: c = ∅;
3: choose a ∈ [0, 1]
4: choose b ∈ [0, 1]
5: for all i = n, n− 1, . . . , 2, 1 do

6: for all v ∈ Gi and |Kv| = i do

7: I = {v};
8: Let V′ = V \ {v};
9: if { |TD(v)| > t } then

10: for all v′ ∈ V′ with ρ(v′) = ρ(v) do

11: I = I ∪ v′;
12: end for
13: Color all the vertices in I by c /∈ C;
14: Let c[I ] = c;
15: for all i = n, n− 1, . . . , 2, 1 do

16: Gi = Gi \ I ;
17: end for
18: else

19: for all v′ ∈ Gi \ I with Kv′ ≡ Kv do

20: if {There is no edge between v′ and I} then

21: I = I ∪ v′;
22: end if
23: end for
24: if |I| = i then

25: Color all the vertices in I by c /∈ C;
26: c[I ] = c, C = C ∪ c;
27: Gi = Gi \ I ;
28: end if
29: end if
30: end for
31: for all v ∈ Gi with v randomly picked fromW1 ⊂ Gi do

32: I = {v};
33: Qi = Gi \ I ;
34: for all v′ ∈ Qi with v′ randomly picked fromW2 ⊂ Qi. do

35: if {Kv′ ⊃ Kv } ∩ {No edge between v′ and I} then

36: I = I ∪ v′;
37: Qi = Qi \ {v′};
38: else

39: Qi = Qi \ {v′};
40: end if
41: end for
42: if |I| ≥ i then

43: Color all the vertices in I by c /∈ C;
44: c[I ] = c, C = C ∪ c;
45: Gi = Gi \ I ;
46: else

47: Gi = Gi \ {v}, Gi−1 = Gi−1 ∪ {v};
48: end if
49: end for
50: end for
51: c =LocalSearch(HC,W, c, C);
52: return the local coloring number maxv∈V |c(N+(v))| and the corresponding color assignment c(N+(v)) for each v;
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Remark 2. Please note that RAP-GLC goes through the same Step I as RAP-HgLC, and then simply assigns
a different color to each remaining uncolored vertex. On the other hand, Step II in RAP-HgLC tries to find further
independent sets among the remaining uncolored vertices. It is this extra step that guarantees the performance of
RAP-HgLC to be no worse than that of RAP-GLC.

The RAP-HgLC algorithm, when operating on the i-th layer, always colors at least i vertices with the
same color. Please note that if there are remaining vertices when reaching layer 1, all such vertices will be
colored, each with a different color.

To further reduce the required number of colors, we use a function called LocalSearch (Algorithm 2,
Line 51), which is described in Algorithm 3. It works in an iterative fashion by replacing the current
solution with a better one if there exists. It terminates when no better solutions can be found. In particular,
the local search algorithm has the purpose of checking the redundancy of each color c ∈ C, to eventually
decrease the current objective function value |C|. In more detail, the local search computes, iteratively for
each color c ∈ C, the set Jc of all vertices colored with color c, and performs the following steps:

1. For each vertex i ∈ Jc, if there is a color c′ ∈ C, c′ �= c that is not assigned to any adjacent vertex
j ∈ Adj(i), then assign vertex i with color c′;

2. Color c is removed from the set C if and only if in the previous step it has been possible to replace c
with some color c′ �= c for all vertices in Jc.

Finally, in Algorithm 2, Line 52, we compute the local coloring number.

Algorithm 3 LocalSearch(HC,W, c, C)

1: for all c ∈ C do

2: Let Jc be the set of vertices whose color is c;
3: Let B = ∅;
4: Let ĉ = c;
5: for all i ∈ Jc do

6: A = ∅;
7: for all j ∈ N (i) do

8: A = A∪ c[j];
9: if C \ A �= ∅ then

10: c′ is chosen uniformly at random from C \ A;
11: ĉ[i] = c′;
12: B = B ∪ {i};
13: end if
14: end for
15: if |B| = |Jc| then

16: c = ĉ;
17: C = C \ c;
18: end if
19: end for
20: end for
21: return c;

To illustrate the RAP-HgLC algorithm, we present the following example.

Example 3. Consider a shared link network with n = 3 users: U = {1, 2, 3}, and m = 3 files: F = {A, B, C}.
Each file is partitioned into 4 packets. For example, A = {A1, A2, A3, A4}. For the caching part, let user 1
cache {A1, B1, B2, B3, B4, C2}, user 2 cache {A1, A2, A3, A4, B1, C2, C3}, user 3 cache {A1, A2, A3, C1, B2, B3}.
Then, let users {1, 2, 3} request files {A, B, C} respectively. Equivalently, user 1 requests A2, A3, A4; user 2
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requests B2, B3, B4; user 3 requests C2, C3, C4. Then, we have KA2 = {1, 2 3}; KA3 = {1, 2 3}; KA4 = {1, 2};
KB2 = {2, 1 3}; KB2 = {2, 1 3}; KB4 = {2, 1}; KC2 = {3, 1 2}; KC3 = {3, 2}; KC4 = {3} (here C4 is requested
by user 3 and not cached anywhere).

The RAP-HgLC algorithm works as follows. For i = n = 3, G3 = {A2, A3, B2, B3, C2}, let v = A2, then it
can be found that B2 and C2 would be in I , hence I = {A2, B2, C2}. Now since |I| = n = 3, we color A2, B2, C2

by black (see Figure 4). Then Gi = Gi \ I = {A3, B3}. In the following loop, since we cannot find a set I with
|I| = n = 3, we move to Line 19. Then since we cannot find a I with |I| ≥ n = 3, then we do G2 = G2 ∪ {A3},
and then G2 = G2 ∪ {B3}. Therefore, we obtain G2 = {A3, A4, B3, B4, C3}. Now we go to Line 5 (start next loop).
For i = n− 1 = 2, in this loop, we first pick v = A4, then we can find I = {A4, B4}. We color {A4, B4} by blue
(see Figure 4). Now G2 = G2 \ {A4, B4} = {A3, B3, C3}. Then in Line 19, we find the vertex with smallest length
of Kv (let a = 0), which is C3 with KC3 = {3, 2}, then we have I = {C3} and Q2 = {A3, B3}, then in the next
loop, we can find I = {C3, B3}. We color I = {C3, B3} by red (see Figure 4). Now G2 = G2 \ {C3, B3} = {A3}.
Since there is no I with |I| ≥ 2, then we do G1 = G1 ∪ {A3} = {C4, A3}. Then we go to next loop i = n− 2 = 1.
Then we can see that I = {C4}, and we color {C4} by purple (see Figure 4). Then G1 = G1 \ {C4} = {A3}.
Hence, we can find I = {A3} and we color {A3} by brown.

According to Figure 4, the total number of required colors is 5, while the maximum number of colors required
locally by each user is 4. For the naive multicasting, since it only allows the vertices represented the same packet
to be colored by the same color, the total number of required colors is 9. The corresponding rate is given by 9/4.
Hence, the final rate achieved by RAP-HgLC with local coloring is no more than min{4/4, 9/4} = 1. For the
interested reader, it can be verified that if the GCC algorithm, designed for B → ∞, as proposed in [10], is used, the
corresponding number of required colors is 6.

2

2 C2

4

4

3 C3

3

C4

{3}

{3, 2}

{2, 1}

{1, 2}{1, 2 3} {1, 2 3}

{2, 1 3}

{2, 1 3}

{3, 2 1}

Figure 4. One example for the RAP-HgLC algorithm (this figure needs to be viewed in color).

The complexity of RAP-HgLC can be computed as follows. For the hierarchical coloring procedure
(Line 5–50 in Algorithm 2), the complexity is O(n|V|2), and the complexity of local search procedure is
O(|E |). Therefore, the running time complexity of RAP-HgLC is given by O(n|V|2 + |E |) = O(n|V|2).
Since |V| ≤ nB, the running time complexity of RAP-HgLC is O

(
n3B2).

4.2.2. RAP-HgLC Performance Analysis

For the general heterogeneous network setting, tight upper bounds on the asymptotic (B → ∞)
average achievable rate of RAP-HgLC are quite complex to derive, even though a simple (but not
necessarily tight) upper bound on the asymptotic performance can be obtained considering the asymptotic
average rate of RAP-GLC (see Remark 2).
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Regarding the finite-length regime, in [21] we derived a tight upper bound on the performance
of RAP-HgLC for the simpler case of homogenous networks under worst-case demands. Specifically,
the bound in [21], requires B to be Õ

(( m
M
)g+2

)
(where Õ hides some poly log terms) to achieve a worst-case

rate of at most n
g . This approximately matches a lower bound of Õ(

( m
M
)g
) derived in the same work for any

coloring algorithm, showing, for the simpler homogenous network setting, the optimality of RAP-HgLC
among all graph-coloring-based algorithms.

For the more complex setting where demands arise from popularity distributions and every user
requests multiple files, the finite-length performance of RAP-HgLC is investigated in Section 6 via
numerical analysis, where we show how the RAP-HgLC is able to recover most of the multiplicative
caching gain even with very moderate packetization order.

5. Tradeoff between Number of Requests and Code Length

As mentioned earlier, in the simpler homogenous scenario, the authors in [21] showed that under
worst-case demands, to achieve a gain g over conventional naive multicasting, it is necessary for B to
grow exponentially with g. Intuitively, this is because a sufficiently large B is needed to create coded
multicast transmissions that are useful for multiple users. However, when each user makes multiple
requests, the number of requests Lu = L can play a similar role to that of B, such that the requirement for
B, and hence the resulting computational complexity can be reduced. For ease of analysis, in this section,
we assume that all users place the same number of requests (Lu = L).

In the following, under either worst-case or uniform demands, we show the sufficient conditions on
B and L that guarantee achieving a gain g = Mn

m . From this result, we can obtain the regime where B and
L are interchangeable (L plays an equivalent role to B). Note that it can be shown that the number of file
transmissions under both worst-case and uniform demands have the same order.

We consider two cases for the range of B: the case of B = 1, and the case of B = ω
( m

M
)
. The regime

where 1 < B = O
( m

M
)

is out of the scope of this paper.
When B = 1, the cache placement algorithm becomes scalar uniform cache placement (SUP), in which

each user caches M entire files chosen uniformly at random. For simplicity, we let M be a positive integer.
Then, as shown in [14], letting L → ∞ as a function of n, m, M, we obtain the following theorem.

Theorem 2. When B = 1 and M = ω(1), for the shared link caching network with n users, library size m, storage
capacity M, and L distinct per-user requests (nL ≤ m), if (i) M

m ≤ 1
2 and

L = ω

⎛⎜⎝max

⎧⎪⎨⎪⎩nM
m

( m
M

)n 1(
1− M

m

) ,

⎛⎜⎝ (nM)
1

2(1−ε)( m
M − 1

) (
1−

(
1− M

m

)n)
⎞⎟⎠
⎫⎪⎬⎪⎭

⎞⎟⎠ , (20)

or (ii) M
m ≥ e

1+e and

L = ω

⎛⎜⎝max

⎧⎪⎨⎪⎩
(

m
m−M

)n
,

⎛⎜⎝ (nM)
1

2(1−ε)( m
M − 1

) (
1−

(
1− M

m

)n)
⎞⎟⎠
⎫⎪⎬⎪⎭

⎞⎟⎠ , (21)

where ε is an arbitrarily small number,
then, the achievable rate of RAP-GLC is upper bounded by

lim
n,m→∞

P

(
RSUP−GLC ≤ (1 + o(1))min

{
L
( m

M
− 1

)
, Ln, m−M

})
= 1.
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Proof. See Appendix B.

From Theorem 2, we can see that when L and M are large enough, instead of requiring a large B and
packet-level coding, a simpler file-level coding scheme is sufficient to achieve the same order-optimal rate.
We remark, however, that the range of the parameter regimes in which this result holds is limited due
to the requirement of a large M and L. Next, we focus on another parameter regime, when B = ω

( m
M
)
,

and find the achievable tradeoff between B and L.

Theorem 3. When B = ω
( m

M
)
, for the shared link caching network with n users, library size m, storage capacity

M, and L distinct per-user requests (nL ≤ m), if (i) M
m ≤ 1

2 , and

B = ω

⎛⎜⎝max

⎧⎪⎨⎪⎩nM
Lm

( m
M

)n 1(
1− M

m

) ,
(nM)

1
2(1−ε)

L
( m

M − 1
) (

1−
(

1− M
m

)n)
⎫⎪⎬⎪⎭

⎞⎟⎠ , (22)

or (ii) M
m ≥ e

1+e , and

B = ω

⎛⎜⎝max

⎧⎪⎨⎪⎩ 1
L

(
m

m−M

)n
,

(nM)
1

2(1−ε)

L
( m

M − 1
) (

1−
(

1− M
m

)n)
⎫⎪⎬⎪⎭

⎞⎟⎠ , (23)

where ε is an arbitrarily small number,
Then, the achievable rate of RAP-GLC is upper bounded by

lim
n,m→∞

P

(
RSUP−GLC ≤ (1 + o(1))min

{
L
( m

M
− 1

)
, Ln, m−M

})
= 1. (24)

Proof. See Appendix C.

If we particularize Theorem 1 to the homogenous network setting under uniform demands, we see
that the rate achieved by RAP-GLC is upper bounded by the same expression given in (24). Hence,
from Theorem 2, we can see that when L is large enough, instead of requiring a very large B, an intermediate
value of B = ω

( m
M
)

is sufficient to achieve the same order-optimal rate. In practice, it is important to
find the right balance and tradeoff between B and L given the remaining system parameters. In Section 6,
we show via simulation that a similar tradeoff holds also for RAP-HgLC.

6. Simulations and Discussions

In this section, we numerically evaluate the performance of the two polynomial-time algorithms
described in Section 4, RAP-GLC and RAP-HgLC, in the finite-length regime characterized by the number
of packets per file B.

Recall that the caching distribution P∗ is to be optimized to minimize the number of transmissions.
Since the distribution P∗ resulting from minimizing the right-hand side of (12) may not admit
an analytically tractable expression in general, in the following numerical results, we restrict the caching
distribution to take the form of a truncated uniform distribution p̃u, as described in [12]:

p̃ f ,u =
1
m̃ u

, f ≤ m̃u

p̃ f ,u = 0, f ≥ m̃ + 1
(25)
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where the cut-off index m̃u ≥ M is a function of the system parameters that is optimized to minimize the
right-hand side of (12). The intuition behind the form of p̃u in (25) is that each user caches the same fraction
of (randomly selected) packets from each of the most m̃u popular files, and does not cache any packet from
the remaining m− m̃u least popular files. We point out that when m̃u = M, this cache placement coincides
with the LFU (Least Frequently Used) caching policy. Thus, this cache placement is referred to as Random
LFU (RLFU) [12], and the corresponding caching algorithms as RLFU-GLC and RLFU-HgLC. Recall that
LFU discards the least frequently requested file upon the arrival of a new file to a full cache of size Mu

files. In the long run, this is equivalent to caching the Mu most popular files [69].
In Figures 5 and 6, we plot the average achievable rate, i.e., the average number of transmissions

(normalized by the file size) as a function of the cache size for RLFU-GLC and RLFU-HgLC. For comparison,
we also simulate the following algorithms:

• LFU, which has been shown to be optimal in single cache networks;
• RLFU-GLC with infinite file packetization (B → ∞), whose performance guarantee is given in

Theorem 1, and it is shown to be order optimal.

Regarding the LFU algorithm, the average achievable rate is given by

E[RLFU] =
m

∑
f=minu{Mu}+1

⎛⎝1− ∏
u∈U{Mu< f }

(1− q f ,u)
Lu

⎞⎠ , (26)

where U{Mu< f } denotes the set of users with Mu < f .
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Figure 5. Average number of transmissions in a heterogeneous shared link caching network with m = 1000.
(a) n = 40, L = 1, γ = 0.5; (b) n = 40, L = 10, γ = 0.5.

For simplicity, and to better illustrate the effectiveness of the proposed algorithms, especially under
multiple per-user requests, we consider a scenario in which all users request files according to a Zipf
demand distribution with parameter γ ∈ {0.2, 0, 4, 0.5}, and all caches have size M files. Under Zipf

demands, file f is requested with probability f−γ

∑m
i=1 i−γ .

We consider two types of users. In Figures 5a and 6a, users represent end devices requesting only one
file each (L = 1); while in Figures 5b and 6b, they represent helpers/small-cells, each serving 10 end user
devices, and consequently collecting L = 10 requests.
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In Figure 5a,b, we fix the total number of users n and the product between L and B (L× B = 1000).
Figure 5a plots the average rate for a network with n = 40 users, γ = 0.5, L = 1, and B = 1000.
It is immediate to observe the impact of finite packetization on the multiplicative caching gain. In fact,
as predicted by the theory (see [21]), the significant caching gain (with respect to LFU) quantified by the
asymptotic performance of RAP-GLC (GLC with B = ∞) is completely lost when using RAP-GLC with
finite packetization (GLC with B = 1000). On the other hand, RAP-HgLC remarkably preserves, at the
expense of a slight increase in computational complexity, most of the multiplicative caching gain for the
same value of file packetization. For example, in Figure 5a, if M doubles from M = 200 to M = 400,
then the rate achieved by RAP-HgLC reduces from 15 to 5.7. Furthermore, RAP-HgLC can achieve a factor
of 3.5 rate reduction from LFU for M = 500. For the same regime, it is straightforward to verify that
neither RAP-GLC nor LFU exhibit this property. Note from Figure 5a that to guarantee a rate of 10,
RAP-GLC requires a cache size of M = 500, while RAP-HgLC can reduce the cache size requirement to
M = 250, a 2× cache size reduction. Furthermore, while LFU can only provide an additive caching gain,
additive and multiplicative gains may show indistinguishable when M is comparable to the library size m.
Hence, one needs to pick a reasonably small M ( m

n < M $ m) to observe the multiplicative caching gain
of RAP-HgLC.

Figure 5b shows the average rate for a network with n = 40 helpers/small-cells, each serving 10 users
making requests according to a Zip distribution with γ = 0.5. Hence, the total number of distinct requests
per helper is up to Lu = 10, ∀u ∈ {1, . . . , 20}. In this case, we assume B = 100 (instead of B = 1000 in
Figure 5a). In order to make easier the comparison with Figure 5a, we normalize the achievable rate
(number of transmissions) by the file size and the number of requests.

Note from Figure 5a,b that as predicted by Theorem 3, when Lu increases (from Lu = 1 to Lu = 10),
almost the same multiplicative caching gain can be achieved with a smaller B (from B = 1000 to B = 100).
In fact, from Figure 5a,b, we see that under RAP-HgLC, the average rate per request for B = 100 and
L = 10 is almost the same as the average rate per request for B = 1000 and L = 1. This confirms the
interesting tradeoff between B and L established in Theorem 3.

We can observe a similar behavior in Figure 6a,b. Figure 6a plots the average rate for a network with
n = 80 users, γ = 0.4, L = 1, and B = 200. RAP-HgLC is able to preserve most of the multiplicative
caching gain for the same values of file packetization. For example, in Figure 6a, if M doubles from
M = 200 to M = 400, then the rate achieved by RAP-HgLC essentially halves from 20 to 10. Furthermore,
RAP-HgLC can achieve a factor of 5 rate reduction from LFU for M = 500. Note from Figure 6a that to
guarantee a rate of 20, RAP-GLC requires a cache size of M = 500, while RAP-HgLC can reduce the cache
size requirement to M = 200, a 2.5× cache size reduction.

Figure 6b plots the average rate for a network with n = 20 helpers/small-cells, each serving 10 users
making requests according to a Zip distribution with γ = 0.2. Hence, the total number of distinct requests
per helper is up to Lu = 10, ∀u ∈ {1, . . . , 20}. In this case, we assume B = 100. Differently from Figure 5b,
here we plot the average rate without normalizing it by the number of requests.

Note from Figure 6a,b that, as predicted by Theorem 3, when Lu increases (from Lu = 1 to Lu = 10),
almost the same multiplicative caching gain can be achieved with a smaller B (from B = 200 to B = 100).
In fact, from Figure 6a,b, we see that under RAP-HgLC , the average rate per request for B = 100 and
L = 10 is almost the same as the average rate per request for B = 200 and L = 1. For example, for M = 200,
B = 100, and L = 10, the per request average rate achieved by RAP-HgLC is 0.3, while for M = 200 and
B = 200, is 0.25. This again confirms the tradeoff between B and L stated in Theorem 3.
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Figure 6. Average number of transmissions in a heterogeneous shared link caching network with m = 1000.
(a) n = 80, L = 1, γ = 0.4; (b) n = 20, L = 10, γ = 0.2.

Furthermore, from Figures 5 and 6, we notice that increasing the Zip parameter reduces the gains
with respect to LFU. This is explained by the fact that when aggregating multiple requests, there is a higher
number of overlapping requests, which increases the opportunities for naive multicasting (as clearly
characterized in [13]). Note, however, that RAP-HgLC can remarkably keep similar gains with respect to
LFU in this multiple-request setting, and approach the asymptotic performance even with just B = 100
packets per file, confirming the effectiveness of the local graph coloring and extra processing procedures
in RAP-HgLC.

7. Conclusions

Coded multicasting has been shown to be a promising approach to significantly reduce the traffic
load in wireless caching networks. However, most existing schemes require the number of packets per file
to grow exponentially with the number of users. To address this challenge, in this paper we focused on
a heterogeneous shared link caching network model and designed novel coded multicast algorithms based
on local graph coloring that exhibit polynomial-time complexity in all the system parameters, and preserve
the asymptotically proven multiplicative caching gain for finite file packetization. We also demonstrated
that the number of packets per file can be traded-off with the number of requests collected by each cache,
such that the same multiplicative caching gain can be preserved. Simulation results confirm the superiority
of the proposed schemes and illustrate the tradeoff between request aggregation and computational
complexity (driven by the packetization order), shedding light into the practical achievability of the
promising multiplicative caching gain in next generation wireless networks.
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Appendix A. Proof of Theorem 1

To analytically characterize the performance of RAP-GLC, we consider two specific cases, where t = n
(i.e., the coded multicast only scheme) and t = 0 (i.e., the naive multicasting only scheme), and refer to these
schemes as RAP-GLC1 and RAP-GLC2, respectively. In the following, we will compute the performance of
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these two cases respectively and take the minimum rate between these two cases. Obviously, this rate can
serve as an upper bound of RAP-GLC.

Appendix A.1. Average Total Number of Colors for RAP-GLC1

To compute the average total number of colors provided by RAP-GLC1, we first see that for all v ∈ I
obtained in this algorithm, Tv are identical. Based on Algorithm 1, by construction the independent sets
I ⊂ V generated by RAP-GLC1 have the same (unordered) label of users requesting or caching the packets
{ρ(v) : v ∈ I}. We shall refer to such unordered label of users as the user label of the independent set.
Hence, we count the independent sets by enumerating all possible user labels, and upperbounding how
many independent sets I Algorithm 1 generates for each user label. Consider a user label U � ⊂ U of
size �, and let I(U �, f, i) the i-th independent set generated by Algorithm 1 with label U � and while let
J (U �, f) = {I(U �, f, i) : ∀i}.

Following Algorithm 1, for each U �, the number of used colors is |J (U �, f)|. Given f, we can see that
|J (U �, f)| is a random variable which is a function of C. Let the indicator 1{Tv fu

= U �} denote the event
that vertex v fu from file fu requested by user u ∈ U � is available in all the users in U � but u and the rest of
the vertices U \ U �, then 1{Tv fu

= U �} follows a Bernoulli distribution with parameter

λ(u, fu) = (1− p fu ,u Mu) ∏
k∈U �\{u}

(p fu ,k Mk) ∏
k∈U\U �

(1− p fu ,k Mk) (A1)

such that its expectation is λ(u, fu). Then, we can see that given f , ∑∀v fu
1{Tv fu

= U �} = λ(u, fu)B + o(B)
with high probability [70]. Thus, as B → ∞, we have that with high probability,

|J (U �, f)| = max
fu∈f(U �)

∑
∀v fu

1{Tv fu
= U �}

= max
fu∈f(U �)

λ(u, fu)B + o(B),
(A2)

where f(U �) represent the set of files requested by U �.
Then, by averaging over the demand’s distribution, we obtain that with high probability:

E[χ(HM,W)] ≤ E

⎡⎢⎣ L

∑
j=1

n

∑
�=1

∑
U �⊂Unj

∣∣∣J (U �, f)
∣∣∣
⎤⎥⎦

=
L

∑
j=1

n

∑
�=1

∑
U �⊂Unj

E

[∣∣∣J (U �, f)
∣∣∣]

(a)
=

L

∑
j=1

n

∑
�=1

∑
U �⊂Unj

E

[
max

fu∈f(U �)
λ(u, fu)B + o(B)

]

(b)
=

L

∑
j=1

n

∑
�=1

∑
U �⊂Unj

m

∑
f=1

∑
u∈U �

ρ f ,u,U � λ(u, f ) + δ1(B),

(A3)

where (a) is by using (A2) and (b) is obtained by computing the probability that the requested file fu in f(U �)

maximizes λ(u, f ). δ1(B) denotes a smaller order term of ∑L
j=1 ∑n

�=1 ∑U �⊂Unj
∑m

f=1 ∑u∈U � ρ f ,u,U �λ(u, f ).

For any U �, we obtain that ∑ f ∑u∈U � ρ f ,u,U � = 1, and ρ f ,u,U � denotes the probability that file f is the file
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with memory assignment p f ,u such that ρ f ,u,U �
Δ
= P( f = arg max

fu∈f(U �)
λ(u, fu), where f(U �) denotes the set

of files requested by a subset users U �. Thus, we normalize (A3) by B and obtain that

RRAP−GLC1 =
E[χ(HM,W)]

B

≤
L

∑
j=1

n

∑
�=1

∑
U �⊂Unj

m

∑
f=1

∑
u∈U �

ρ f ,u,U �λ(u, f ),

= ψ(P, Q),

(A4)

which is the first term inside the minimum in (12).

Appendix A.2. Average Total Number of Colors for RAP-GLC2

As described in Section 4.1, RAP-GLC2 computes the minimum coloring of HC,W subject to the
constraint that only the vertices representing the same packet can have the same color. In this case, the total
number of colors is equal to the number of distinct requested packets, and the coloring can be found
in O(|V|2). Starting from this valid coloring, GCLC2 computes maxv∈V |c(N+(v))|. To show that the
performance of GCLC2 are upper bounded by m̄− M̄ with m̄ and M̄ given as in (13) and (14) respectively,
we note that:

max
v∈V

|c(N+(v))|
(a)
≤ ∑

f∈Fn

(
n

∏
u=1

q f ,u

)
m

∑̂
f=1

1{ f̂ ∈ f}Bf

=
m

∑̂
f=1

∑
f∈Fn

(
n

∏
u=1

q f ,u

)
1{ f̂ ∈ f}Bf̂ ,f

(b)
≤ ∑

f
P(file f is requested)(B−min

u
pu, f MuB)

=
m

∑
f=1

(
1−

n

∏
u=1

(
1− q f ,u

)Lu

)
(1−min

u
pu, f Mu)B,

(A5)

where Bf̂ ,f is number of chucks that are going to be transmitted of file f̂ given that the demand vector is

equal to f, and (a) is due to the observation that given a file f̂ ,

∑
f∈Fn

(
n

∏
u=1

q f ,u

)
1{ f̂ ∈ f} = E[1{ f̂ ∈ f}]

= P(file f̂ is requested).

(A6)

Normalizing (A5) by B, we obtain that:

RRAP−GLC2 ≤
m

∑
f=1

(
1−

n

∏
u=1

(
1− q f ,u

)Lu

)
· (1−min

u
pu, f Mu)

= m̄− M̄,

(A7)
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which is the second term inside the minimum in (12).

Appendix B. Proof of Theorem 2

In this section, we prove Theorem 2. Recall that for each U �, the number of used colors is given by
|J (U �, f)|, then we have we have |J (U �, f)| = maxu∈U � ∑∀v fu

1{Tv fu
= U �}, where f(U �) represent the

set of files requested by U �. In this case, it is clear that

E

⎡⎣ ∑
∀v fu

1{Tv fu
= U �}

⎤⎦ = L
(

M
m

)l−1 (
1− M

m

)n−l+1
. (A8)

Then let

Yl
Δ
= |J (U �, f)| −E

⎡⎣ ∑
∀v fu

1{Tv fu
= U �}

⎤⎦ . (A9)

The goal is to find a condition of L such that

|E[Yl ]| = o

(
L
(

M
m

)l−1 (
1− M

m

)n−l+1
)

, (A10)

which implies

E

[
|J (U �, f)|

]
≤ (1 + o(1))L

(
M
m

)l−1 (
1− M

m

)n−l+1
. (A11)

Then following the similar step from Theorem 1 in [12], we can obtain the concentration result shown

in Theorem 2, where we require L = ω

(
(nM)

1
2(1−ε)

( m
M−1)

(
1−(1−M

m )
n)

)
and ε > 0 is an arbitrarily small number.

To compute |E[Yl ]|, we have

(E[Yl ])
2 ≤ E[(Yl)

2]

= E

⎡⎢⎣
⎛⎝|J (U �, f)| −E

⎡⎣ ∑
∀v fu

1{Tv fu
= U �}

⎤⎦⎞⎠2
⎤⎥⎦

= E

⎡⎢⎣
⎛⎝max

u∈U �

⎛⎝ ∑
∀v fu

1{Tv fu
= U �} −E

⎡⎣ ∑
∀v fu

1{Tv fu
= U �}

⎤⎦⎞⎠⎞⎠2
⎤⎥⎦

≤ ∑
u∈U �

E

⎡⎢⎣
⎛⎝ ∑
∀v fu

1{Tv fu
= U �} −E

⎡⎣ ∑
∀v fu

1{Tv fu
= U �}

⎤⎦⎞⎠2
⎤⎥⎦

= lE

⎡⎢⎣
⎛⎝ ∑
∀v fu

1{Tv fu
= U �} −E

⎡⎣ ∑
∀v fu

1{Tv fu
= U �}

⎤⎦⎞⎠2
⎤⎥⎦

(a)
= lL

(
M
m

)l−1 (
1− M

m

)n−l+1
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)
+ δ1,

(A12)
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where (a) is because M = ω(1) such that δ1 is a smaller order term compared to the first term in (A12) and
use the variance for the Binomial distribution. Then, we let

(
lL

(
M
m

)l−1 (
1− M

m

)n−l+1
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)) 1

2
= o

(
L
(

M
m

)l−1 (
1− M

m

)n−l+1
)

, (A13)

then, we can obtain

L = ω

⎛⎜⎜⎝ l
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)

(
M
m

)l−1 (
1− M

m

)n−l+1

⎞⎟⎟⎠

= ω

⎛⎜⎜⎝
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)

1
l

(
M
m

)l−1 (
1− M

m

)n−l+1

⎞⎟⎟⎠ .

(A14)

For sufficient condition, let

L = ω

⎛⎜⎝ 1

1
l

(
M
m

)l−1 (
1− M

m

)n−l+1

⎞⎟⎠ . (A15)

Do the derivative of s(l) = 1
l

(
M
m

)l−1 (
1− M

m

)n−l+1
with respect to l, we obtain

ds(l)
dl

=
1
l

((
M
m

)l−1 (
1− M

m

)n−l+1
log

M
m

− log
(

1− M
m

)(
M
m

)l−1 (
1− M

m

)n−l+1
)

− 1
l2

(
M
m

)l−1 (
1− M

m

)n−l+1

=
1
l

log

(
M
m

1− M
m

)(
M
m

)l−1 (
1− M

m

)n−l+1

− 1
l2

(
M
m

)l−1 (
1− M

m

)n−l+1
.

(A16)

• When M
m < 1

2 , then we have ds(l)
l < 0. Hence, s(l) is a decreasing function such that the minimum

value of s(l) take place when l = n. Thus, by using (A15), we obtain the sufficient condition is
given by

L = ω

(
n
( m

M
)n−1

1− M
m

)
= ω

⎛⎝nM
m

( m
M

)n 1(
1− M

m

)
⎞⎠ . (A17)
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• When M
m ≥ e

1+e , then we have ds(l)
l > 0. Hence, s(l) is an increasing function such that the minimum

value of s(l) take place when l = 1. Thus, by using (A15) we obtain the sufficient condition is given by

L = ω

⎛⎜⎝ 1(
1− M

m

)n

⎞⎟⎠ = ω

((
m

m−M

)n)
. (A18)

Thus, we finished the proof of Theorem 2.

Appendix C. Proof of Theorem 3

In this proof, we follow the similar procedure in the proof of Theorem 2 in Appendix B, and obtain

E

⎡⎣ ∑
∀v fu

1{Tv fu
= U �}

⎤⎦ = LB
(

M
m

)l−1 (
1− M

m

)n−l+1
. (A19)

Then let

Yl
Δ
= |J (U �, f)| −E

⎡⎣ ∑
∀v fu

1{Tv fu
= U �}

⎤⎦ . (A20)

The goal again is to find a condition of B and L such that

|E[Yl ]| = o

(
LB

(
M
m

)l−1 (
1− M

m

)n−l+1
)

, (A21)

which implies

E

[
|J (U �, f)|

]
≤ (1 + o(1))LB

(
M
m

)l−1 (
1− M

m

)n−l+1
. (A22)

Then following the similar step from Theorem 1 in [12], we can obtain the concentration result shown

in Theorem 2, where we require LB = ω

(
(nM)

1
2(1−ε)

( m
M−1)

(
1−(1−M

m )
n)

)
and ε > 0 is an arbitrarily small number.

Similar to (A12), to compute |E[Yl ]|, we have

(E[Yl ])
2 ≤ E[(Yl)

2]

(a)
= lLB

(
M
m

)l−1 (
1− M

m

)n−l+1
·
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)
+ δ2,

(A23)

where (a) is because B = ω
( m

M
)

such that δ2 is a smaller order term compared to the first term in (A23)
and use the variance for the Binomial distribution. Then, we let

(
lLB

(
M
m

)l−1 (
1− M

m

)n−l+1
(

1−
(

M
m

)l−1 (
1− M

m

)n−l+1
)) 1

2

= o

(
LB

(
M
m

)l−1 (
1− M

m

)n−l+1
)

,

(A24)
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then, we can obtain

LB =

(
1−

(
M
m

)l−1 (
1− M

m

)n−l+1
)

(
M
m

)l−1 (
1− M

m

)n−l+1

=

(
1−

(
M
m

)l−1 (
1− M

m

)n−l+1
)

1
l

(
M
m

)l−1 (
1− M

m

)n−l+1 .

(A25)

For sufficient condition, let

LB = ω

⎛⎜⎝ 1

1
l

(
M
m

)l−1 (
1− M

m

)n−l+1

⎞⎟⎠ . (A26)

Then following the similar steps as the proof of Theorem 2 in Appendix B, we fished the proof
of Theorem 3.
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Abstract: Due to the high splitting-gain of dense small cells, Ultra-Dense Network (UDN) is
regarded as a promising networking technology to achieve high data rate and low latency in 5G
mobile communications. In UDNs, each User Equipment (UE) may receive signals from multiple
Base Stations (BSs), which impose severe interference in the networks and in turn motivates the
possibility of using Coordinated Multi-Point (CoMP) transmissions to further enhance network
capacity. In CoMP-based Ultra-Dense Networks, a great challenge is to tradeoff between the gain
of network throughput and the worsening backhaul latency. Caching popular files on BSs has been
identified as a promising method to reduce the backhaul traffic load. In this paper, we investigated
content placement strategies and user association algorithms for the proactive caching ultra dense
networks. The problem has been formulated to maximize network throughput of cell edge UEs under
the consideration of backhaul load, which is a constrained non-convex combinatorial optimization
problem. To decrease the complexity, the problem is decomposed into two suboptimal problems.
We first solved the content placement algorithm based on the cross-entropy (CE) method to minimize
the backhaul load of the network. Then, a user association algorithm based on the CE method
was employed to pursue larger network throughput of cell edge UEs. Simulation were conducted
to validate the performance of the proposed cross-entropy based schemes in terms of network
throughput and backhaul load. The simulation results show that the proposed cross-entropy
based content placement scheme significantly outperform the conventional random and Most
Popular Content placement schemes, with with 50% and 20% backhaul load decrease respectively.
Furthermore, the proposed cross-entropy based user association scheme can achieve 30% and 23%
throughput gain, compared with the conventional N-best, No-CoMP, and Threshold based user
association schemes.

Keywords: ultra dense network; cross-entropy; proactive caching; user association; CoMP

1. Introduction

Inspired by the development of intelligent terminal such as smart phones, the demand for
data traffic in mobile communication systems is exponentially growing. To cater for this demand,
a 1000-fold improvement of capacity per area in the next generation of mobile communication system
(5G) compared to 4G is required. An Ultra-Dense Network (UDN) is capable of significantly improving
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the capacity per area under the limited spectrum resource due to the high splitting-gain of densely
located small cells and is widely considered as one of the most promising techniques in the coming 5G.
It also benefits load balance between Base Stations (BSs) since Small Base Stations (SBSs) can offload
data traffic of Macro Base Stations (MBSs). Nevertheless, due to the short distance between BSs,
the intercell interference in UDNs is severe, therefore making the user experience unsatisfactory.
Coordinated Multi-Point (CoMP) transmissions technique is widely studied in academia and the
industry, which can leverage the cooperation of multiple BSs to enhance the signal to interference and
noise ratio (SINR), to counteract intercell interference and to enhance network capacity in UDNs.

Despite remarkable performance gain in network capacity, congestion on backhaul links caused by
CoMP risks the mobile communication systems. In order to cooperatively serve users, BSs need to fetch
more files from the Core Network (CN) via backhaul links in a CoMP-employed system, which brings
heavy load to backhaul links between BSs and the CN and probably results in congestion. One way
to alleviate backhaul load is to cache popular files on BSs. When BSs cache files requested by users,
it does not need to fetch files from the CN, so the backhaul load can be dramatically reduced. In [1],
an architecture based on distributed caching of content in SBSs was presented. Works on proactive
caching in UDNs concentrate on two major issues: Content placement and content distribution.

Content placement focuses on how to distribute popular and hotspot files to the BSs’ caching
unit whose capacity is limited. In [2], an optimal content placement strategy is proposed to maximize
the hit rate. In [3], the problem of content placement is studied to maximize energy efficiency. In [4],
an approximation algorithm is proposed to jointly optimize routing and caching policy to maximize
the fraction of requested files cached locally. In [5], a distributed algorithm is proposed to investigate
content placement and user association jointly. In [6], a content placement strategy is investigated
based on reinforcement learning. In [7], a content placement strategy is proposed under cooperation
schemes of maximum ratio transmission (MRT) and zero-forcing beamforming (ZFBF). In [8], a caching
space allocation scheme is proposed to improve the hit rate based on the categories of contents and UEs.

Content distribution is the study of how to associate UEs and BSs to improve the hit rate. In [9],
the user association problem is modeled as an one-to-many game problem, based on which algorithm
is proposed to maximize the average download rate under a given content placement strategy. In [10],
an user association algorithm under a given content distribution in a CoMP enabled network is
proposed to minimize the backhaul load under a guaranteed rate requirements of UEs. In [11],
the content caching and user association schemes are proposed on two different scales: The caching
algorithm operates in a long time scale and the user association algorithm operates frequently. In [12],
user association is investigated to tradeoff between load balancing and backhaul savings in UDN.

To the best of our knowledge, related works on the content placement caching and user association
have been investigated separately in small-scale networks. We are thus motivated to jointly investigate
the tasks of caching and user association in more realistic large-scale UDNs. The main contributions of
this paper are summarized as follows.

• The problem of content placement and user association is investigated jointly in large-scale
cache-enabled coordinated ultra dense networks. We formulate the problem as a constrained
non-convex combinatorial programming problem to maximize network throughput of cell edge
UEs under the consideration of the backhaul load;

• A two-step heuristic algorithm based on the cross-entropy (CE) method is proposed to solve
the problem: A content placement strategy is first proposed based on cross entropy under the
assumption of the conventional N-Best scheme; given the proposed content placement strategy,
a user association algorithm is then proposed based on the cross-entropy method. Extensive
simulations are conducted to evaluate the performance of the proposed approach. Simulations
are conducted to validate the performance of the proposed cross-entropy based schemes in terms
of network throughput and backhaul load. Simulation results show that the proposed caching
and user association algorithms can reduce backhaul load and improve network throughput of
cell edge UEs simultaneously.

224



Entropy 2019, 21, 576

The rest of this paper is organized as follows. The system model is established in Section 2
with some basic assumptions. In Section 3, we formulate the problem and propose the algorithms.
In Section 4, simulation results are presented and the system performance is evaluated. Section 5
concludes this paper.

2. System Model

2.1. Network

In this paper, we consider a heterogeneous Ultra-Dense Network consisting of NMBS Macro
BSs (MBS) and NSBS Small Base Stations (SBS). The Macro BSs are uniformly distributed to provide
coverage and to support capacity. The small BSs are randomly distributed within the covering area,
following a Poisson Point Process (PPP) with a density of λSBS. Let BΩ = {b|b = 1, 2, · · · , |BΩ|} denote
the set of BSs consisting of both Macro BSs and Small BSs, where |BΩ| = NMBS + NSBS is the total
number of BSs.

UEs are randomly distributed following a PPP with density of λU. The set of UEs is denoted
by MΩ = {m|m = 1, 2, · · · , |MΩ|}. UEs located at the edges of cells usually suffer from severe
intercell interference and low capacity. To reduce the interference and enhance peak data rates of
cell edge users, joint transmission Coordinated Multi-Point (termed as JT CoMP) is considered in the
network architecture, which allows multiple BSs in the neighborhood to cooperatively serve a specific
UE simultaneously.

The association relationship between UEs, m, and BS, b, is denoted by a bit number xm,b(m ∈
MΩ, b ∈ BΩ) defined as:

xm,b =

{
1 UE m is associated with BS b
0 otherwise

. (1)

Thus, the entire association result between BSs and UEs in the considering network can be
presented by:

X =

⎡⎢⎢⎢⎢⎢⎣
x1,1 x1,2 · · · x1,|BΩ|
x2,1 x2,2 · · · x2,|BΩ|

...
...

. . .
...

x|MΩ|,1 x|MΩ|,2 · · · x|MΩ|,|BΩ|

⎤⎥⎥⎥⎥⎥⎦ . (2)

The SINR of a specific UE in a downlink transmission can be presented in terms of xm,b as follows,

Γm =

∑
b∈BΩ

xm,bPbgm,b

∑
b′∈BΩ

(1− xm,b′)Pb′gm,b + σ2 , (3)

where Pb is the transmit power of BS b, gm,b is the channel gain between BS b and UE m, and σ2 is
the variance of additive white Gaussian noise (AWGN). Equation (3) suggests that the more BSs are
associated with UE m, the better service it can obtain. However, the necessary overhead to accomplish
a JT CoMP transmission involving too much BSs is unacceptable. Thus, it is better to narrow the
associating BSs of a UE into N BSs in close proximity.

As in 4G LTE and 5G NR (New Radio) wireless standards, resource block (RB) is considered the
unit of time and spectrum resource for allocation in this paper. Assume that the bandwidth of each RB
is W and the total number of RBs is NRB. Each UE in the network can occupy a part of resource for
transmission. Let βm denote the proportion that the resource assigned to UE m out of all. Then the
data rate of a downlink transmission to UE m can be given by:

Rm = W�βmNRB� log2 (1 + Γm) , (4)
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where �x� is the minimum integer smaller than or equal to x; Γm is defined by Equation (3).
Let BΩ

m ⊆ BΩ denote the set consisting of BSs associated with UE m, i.e., BΩ
m = {b|b ∈

BΩ, and xm,b = 1}. Similarly, let MΩ
b ⊆ MΩ denote the set consisting of UEs associated with BS

b, i.e., MΩ
b = {m|m ∈ MΩ, and xm,b = 1}. The resource that BS b can assign to UE m should be no

more than 1
|MΩ

b |
, where |MΩ

b | represents the total number of UEs associated with BS b. In the case where

JT CoMP is employed, the resource that UE m can be obtained is restricted by the most heavy-loading
BS among those associated with UE m. As a result, the proportion βm can be given by:

βm = min

{
1∣∣MΩ

b

∣∣ , b ∈ BΩ
m

}
. (5)

2.2. Caching

UDNs can benefit from caching popular files on BSs in terms of throughput, delay, and traffic load
on backhaul links. It is obvious that the more files cached on BSs, the better performance a network
can achieve. The cache-enabled heterogeneous UDN we considered in this paper is illustrated as
Figure 1. For simplicity, we assume that the files requested by all UEs in the networks are restricted
into the set of FΩ = { f | f = 1, 2, · · ·, |FΩ|}, and each file is in the same size of Fmax bits. We assume
the popularity of files follows Zipf distribution [13]. Let p f denote the probability mass function of
popularity random variable F. The probability that file f is requested can be given by:

p f =

(
∑
|FΩ |
f=1 f−γ

)−1

f γ
, (6)

where γ is the Shape Factor (SF) indicating the correlation between requests of UEs [13]. It is seen
that the larger the shape factor γ is, the smaller the probability mass function p f would be, the lower
probability file f is requested out of the caching set FΩ.

Figure 1. System model of caching-enabled Ultra-Dense Network (UDN) with joint transmission
Coordinated Multi-Point (JT CoMP).

Define a caching index vector yb = [yb,1, yb,2, · · · , yb, f , · · · yb,|FΩ |], where yb, f indicates whether
BS b caches file f in the caching set FΩ or not. More specifically,

yb, f =

{
1 file f is cached on BS b
0 otherwise

. (7)
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Then the File-BS caching matrix can be denoted by:

Y =

⎡⎢⎢⎢⎢⎢⎣
y1,1 y1,2 · · · y|BΩ|,|FΩ |
y2,1 y2,2 · · · y|BΩ|,|FΩ |

...
...

. . .
...

y|BΩ|,1 y|BΩ|,2 · · · y|BΩ|,|FΩ|

⎤⎥⎥⎥⎥⎥⎦ . (8)

As for UEs, we define a row vector qm = [qm,1, qm,2, · · · , qm, f , · · · ] , where qm, f represents the
request of UE m to file f , i.e.,

qm, f =

{
1 file f is requested by UE m
0 otherwise

. (9)

Suppose a UE can request one and only one file at each time, then we have ∑ f qm, f = 1, ∀m ∈ MΩ.
Then qmyT

b represents whether the file requested by UE m is caching on BS b, where vT represents
the transpose of the vector v.

qmyT
b =

{
1 file f requested by UE m is on BS b
0 otherwise

. (10)

If UE m is associated with BS b (i.e., xm,b = 1), we say that BS b misses a file if file f requested by
UE m is not cached in it.

If BSs miss a file, they need to fetch the file from the Core Network (CN). We assume a centralized
deployment of the considered UDN, where each BS is directly connected to the CN via backhaul links.
The backhaul load is defined as the traffic carried by backhaul links between BSs and the CN [14].
In the case that BS b misses a file requested by UE m, BS b have to fetch the file from the CN through
the backhaul link, which aggravates the backhaul load of BS b inevitably. In reality, the capacity of
backhaul links is usually limited. Congestion occurs when the backhaul load of BS b exceeds the
backhaul capacity Cmax

b .
Let Uback represent the increase of backhaul load due to fetching a file from the CN. The backhaul

load caused by UE m can be given by:

Vm = ∑
b∈BΩ

m

(1− qmyT
b )Uback. (11)

It is obvious that the more files BSs cache (i.e., the less files BSs miss), the less heavier the backhaul
load will be.

2.3. Delay

In addition to reducing backhaul load, caching also benefits from reducing the time delay of
transmissions . In this paper, we consider the average time delay of UEs , which consists of two major
parts: Wireless propagation delay and backhaul delay. Let d1 denote the average wireless propagation
delay of a UDN which is related to the size of a file Fmax and the data rate of transmission.

d1 =
1

|MΩ| ∑
m∈MΩ

Fmax

Rm
. (12)

Backhaul delay, denoted by d2, is related to whether the files are hit by the associating BSs of
UEs. Due to joint transmission of CoMP, the backhaul delay for a specific UE m occurs when the
requested file is not cached on all its associated BSs. That is, the minimum operation should be
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applied on backhaul delays due to file transmission between the associated BSs and the core network.
More specifically, d2 can be represented as follows,

d2 =
1

|MΩ| ∑
m∈MΩ

⎛⎝min

⎧⎨⎩ Fmax

Uback
, ∑

b∈BΩ
m

(1− qmyT
b )

Fmax

Uback

⎫⎬⎭
⎞⎠. (13)

As a result, the total time delay of the network is:

D = d1 + d2. (14)

3. Problem Formulation

3.1. Mathematical Formulation

In this paper, we aim to develop the optimal solution of content placement and user association
that balances network throughput and the backhaul load simultaneously. Considering the fairness of
UEs, the network throughput of cell edge UEs is used as the performance metric. Thus the objective
function is a tradeoff between network throughput of cell edge UEs and backhaul load.

max
X,Y

∑
m∈MΩ

log10(Rm)− λ
∑m∈MΩ Vm

|MΩ| (15)

s.t. C1: 1 ≤ |BΩ
m | ≤ N, ∀m ∈ MΩ

C2: ∑
m

xm,b ≤ NRB, ∀b ∈ BΩ, ∀m ∈ MΩ

C3: ∑
m

xm,b(1− qmyT
b )Uback ≤ Cmax

b , ∀b ∈ BΩ

where the constraint C1 indicates that a specific UE m should be served by at least one BS, meanwhile
the total number of BSs that cooperatively serve a specific UE should not be more than a given number
N by considering the tradeoff between throughput gain and backhaul load due to the joint transmission
of CoMP; C2 indicates that the total number of RBs allocated to UEs associating with a specific BS is
limited to the maximum NRB; C3 indicates that aggregate backhaul load of BS m should not be over
the backhaul capacity Cmax

b .
λ ≥ 0 in Equation (15) is a coefficient that influences the balance between network throughput

and backhaul load. A larger λ suggests that we prefer improving network throughput than reducing

backhaul load, and vice versa. Let ∑m∈MΩ log2(R(0)
m ) and ∑m∈MΩ V(0)

m

|MΩ| denote sum of logarithm of data

rate and averaged load on backhaul links when λ = 0, respectively. We define λ with ∑m∈MΩ log2(R(0)
m )

and ∑m∈MΩ V(0)
m

|MΩ| as benchmarks, and then λ can be given by:

λ =
∑m∈MΩ log2(R(0)

m )
∣∣MΩ

∣∣ μ

∑m∈MΩ V(0)
m

. (16)

where μ ∈ [0, 1] is a weight factor used for adjusting λ.
The problem in Equation (15) is a constrained non-convex combinatorial optimization problem,

which requires extraordinary high complexity to trace its optimal solution. To obtain a practical
solution, we decompose the problem into two steps based on the cross-entropy (CE) method. In this
paper, the CE method is chosen because it is a simple, efficient, and general method for solving a great
variety of estimation and optimization problems, especially NP-hard combinatorial deterministic and
stochastic problems [15]. First, we minimize the backhaul load of the system under the assumption of
the conventional N-Best user association strategy (By N-Best user association strategy, a CoMP UE will
associate with Nmax BSs which have N best SINRs [16]) and propose a content placement algorithm
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based on cross entropy, which is termed as the CPCE algorithm. Subsequently, under the given content
placement strategy, we propose an user association algorithm based on cross entropy, which is referred
to as UACE in the rest of this paper.

3.2. Cross-Entropy Method

The CE method was originally used in the context of rare event simulation [17] and has been
extended as a Monte Carlo method for importance sampling and optimization [17,18].

The principle behind the CE method is to get as close as possible to the optimal importance
sampling distribution by using the Kullback-–Leibler (KL) distance as a measure of closeness.
By repeatedly updating the Probability Density Function (PDF) of generated samples, the PDF of the
samples can finally converge with the obtained optimal strategy solution [19]. Another method with
a similar idea is logarithmic loss distortion measure [20,21], where logarithmic loss is also known as
cross-entropy loss. The logarithmic loss distortion measure has been recently used in the study of
Deep Neural Networks (DNNs) to approach an accurate classifier by minimizing the logarithmic loss.
It also performs well on tradeoff between complexity and relevance in representation learning [22].

The main steps of the CE method can be depicted as follows:
STEP 1: (Encode Strategy Space). Consider a UDN constituted by BΩ BSs, where each BS b is

a decision-making entity. Suppose that each BS b can make a decision out of Nb possible strategies,
then the strategy set at BS b can be expressed as Sb = [S1

b , S2
b , · · · , SNb

b ]. For a specific decision-making
entity BS b, Si

b is one strategy that belongs to Sb. The strategy set of BΩ BSs entities in a UDN can
be represented as SBΩ = [S1, S2, · · · , S|BΩ |], which is termed as the strategy space of the CE method.
Then the samples of the strategy space of the CE method correspond to the strategies at all BSs in
a UDN in current iteration.

Let Pb = [Pb,1, Pb,2, · · · , Pb,Nb
] denote the probability distribution of sample strategies at BS b.

Let Pb,i denote as the probability of strategy i at a specific BS b. First, Pb,i is initialized to be equal
as follows,

Pb,i =
1

Nb
, and

Nb

∑
i=1

Pb,i = 1, (∀i = 1, · · · , Nb). (17)

STEP 2: (Generate Samples According to the Probability). In the second step of the CE method,
sufficient strategy samples should be generated according to the given probability distribution.
Denote the zth generated sample by A(z) =

[
AT

1 (z), AT
2 (z), · · · , AT

b (z), · · · , AT
|BΩ |(z)

]
, where Ab(z) is

the subsample set generated by decision-making entity element b. More specifically, the subsample
Ab(z) can be represented as:

Ab(z) =
[
αb,1(z), αb,2(z), · · · , αb,i(z), · · · , αb,Nb

(z)
]

, (18)

where αb,i(z) is a binary number. For each Ab(z), only one αb,i(z) is “1” and others are “0”
(i.e., ∑Nb

i=1 αb,i = 1), indicating that only one strategy out of all can be selected at each decision
epoch. The probability of subsample Ab is Pb,i ∈ Pb with αb,i = 1 and αb,j = 0(j �= i).

STEP 3: (Performance Evaluation). Fitness values of strategy samples can be calculated according
to the result of the strategy in the current iteration. Let F(z) denote the fitness value of strategy sample
z, which can be expressed as:

F(z) = −∑
b

∑
m

xmb(1− qmyT
b )Uback. (19)

Rearrange F(z) in descending order as F(1) ≥ F(2) · · · F(Z), where Z is the maximum number
of strategy samples. Then calculate the ρ-quantile of the strategy samples in current iteration Fρ and
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weed out the unexpected samples. The samples with fitness value F(i) ≥ Fρ are selected for probability
updating in the next iteration.

STEP 4: (Probability Updating). According to samples selected in the performance evaluation
step, the probabilities of each strategy can be updated as follows,

P update
b,i =

Z
∑

z=1
IF(z)≥Fρ

αb,i(z)

Z
∑

z=1
IF(z)≥Fρ

, (20)

where I is defined as,

Ix≥y =

{
1 if x ≥ y
0 others

. (21)

Go back to STEP 2, regenerate the samples based on the updated probability distribution and
repeat STEP 2 to STEP 4.

STEP 5: (Convergence Conditions). The algorithm will come to an end when the fitness
value reaches convergence or the algorithm reaches the maximum iteration number set in advance.
The cross-entropy method is a global random search procedure, and asymptotical convergence can be
achieved to find the optimal solution with probability arbitrarily close to 1 [23,24].

3.3. Content Placement Algorithm Based on the Cross-Entropy Method (CPCE)

Before joining in a network, a specific UE will measure Channel State Information (CSI) and
choose the candidate BSs with the biggest reference signal received power (RSRP). To investigate the
content placement strategies of BSs, we assume the conventional N-Best scheme for user association
in the first place. BSs in the network are modeled as decision-making entities in the CE method,
and feasible content placement candidates are strategies of each entity. The CPCE algorithm can be
depicted as Algorithm 1.

The optimized content placement strategy Y can be given by Algorithm 1, under the assumption
of the N-best user association scheme. User association results can be further optimized with the
obtained Y.

Algorithm 1 Content Placement based on CE method (CPCE)

1: User association under N-Best strategy.

2: Generate content placement request samples of UEs qm based on Zipf distribution. Map BSs←→

Decision-making entities in CE method.

3: Map the content placement strategy set←→ Strategies in CE method.

4: Map the sum backhaul load←→ Fitness value in CE method.

5: Execute CPCE.

6: Map the obtained solution into the best content placement strategies of BSs and output Y.

3.4. User Association Algorithm Based on the Cross-Entropy Method (UACE)

By Algorithm 1, we obtain the optimal content placement strategy of each BS under the N-Best
user association scheme. However, the N-Best user association scheme does not take into account load
balancing and interference management. Under the obtained content placement result, we can further
optimize the user association algorithm.
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The user association problem is a constrained non-convex integer programming problem,
which can also be solved by the CE method [15,19]. Considering that the maximum number of
BSs associated with a UE is N, the amount of association strategies of a UE will be no more than 2N − 1.
Similarly, the steps of the proposed UACE method is as follows.

STEP 1: (Encode Strategy Space). In UACE, the decision-making entities are UEs in the network.
Suppose that each UE m can make a decision out of Nm possible strategies, then the strategy set at UE
m can be expressed as Sm = [S1

m, S2
m, · · ·, SNm

m ]. Let Pm = [Pb,1, Pb,2, · · · , Pb,Nm ] denote the probability
distribution of sample strategies at UE m, where Pm,i denote the probability of strategy i at a specific
UE m. Pm,i can be initialized to be equal as follows,

Pm,i =
1

Nm
, and

Nm

∑
i=1

Pm,i = 1, (∀i = 1, · · · , Nm). (22)

STEP 2: (Generate Samples According to the Probability). Samples are generated in this step
in a similar way described in STEP 2 of Section 3.2.

STEP 3: (Encode Strategy Space). The fitness value of strategy samples in UACE is

∑
m∈MΩ

log10(Rm)− λ
∑m∈MΩ Vm

|MΩ| (23)

STEP 4 (Probability Updating) and STEP 5 (Convergence Conditions) of UACE are also similar
to STEP 4 and STEP 5 in Section 3.2. Then the proposed UACE algorithm can be depicted as in
Algorithm 2.

By applying Algorithms 1 and 2, we can obtain suboptimal solutions to problem (15). With the
obtained results, optimized performance of the considered UDN in terms of both throughput and
backhaul load is achieved.

Algorithm 2 User Association based on Cross-Entropy Algorithm (UACE)

1: Execute the proposed CPCE Algorithm 1 under popular contents’ statistics.

2: Map UEs←→ Decision-making entities in CE method.

3: Map association strategy set for a specific UE←→ Strategies in CE method.

4: Map network throughput of all the cell edge UEs←→ Fitness value in CE method.

5: Execute UACE.

6: Map the obtain solution into optimal user association solution and output X.

3.5. Complexity Analysis of the Cross-Entropy Method

From the description in the previous subsection, the computational complexity of the proposed
CE algorithm is made up of 5 parts.

(1) Initialize the probability distribution of sample strategies. According to the size of encode
strategy space and Equation (17), the computational complexity is O(|BΩ|);

(2) Generate samples according to the probability. According to Equations (18) and (19), there are Z
samples at most, and the size of each sample is Nb × |BΩ|. Hence, the computational complexity
is O(Z× Nb × |BΩ|);

(3) Performance Evaluation. According to Equation (20), we should calculate the fitness value of
each strategy sample according to Equation (20), and the computational complexity is O(Z×
|MΩ| × |BΩ|);

(4) Probability Updating. According to Equation (21) and the size of the probability distribution of
the sample strategy, the computation complexity is O(Z× Nb × |BΩ|);
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(5) Iteration. The proposed algorithm will come to an end when the maximal iteration number V is
reached. Hence, the computation complexity is V times the sum of the computation complexity
from Equations (1)–(4), i.e., O(V × Z× Nb × |MΩ| × |BΩ|).

According to the analysis above, the total computation complexity of the proposed algorithm
based on the CE method is computable in polynomial time.

4. Simulation and Analysis

Extensive simulations are conducted to evaluate the performance of the proposed content
placement and user association algorithm. In the simulation, 7 MBSs are uniformly distributed
in the considered area, while SBSs and UEs randomly drops, the maximum number of BSs that a UE
can be associated is 3 [25]. Major parameter settings are listed in Table 1.

Table 1. Parameters setting.

Parameters Value

Plane of Topology 1.5 × 1.5 km2

Number of MBSs 7
Number of SBSs 40
Number of UEs 50–200
Channel Model WINNER

Transmit Power of MBS 40 W
Transmit Power of SBS 2 W

Number of Available RB 100
Total Number of Files 20

Backhaul Capacity of MBS 1 Gbps
Backhaul Capacity of SBS 100 Mbps

Maximal Number of Caching Files on each BS 10
Uback 10 Mbps

N 3

4.1. System Performance under Different Content Placement Schemes

For content placement strategies, we compared the performance of the proposed CECP scheme to
that of random scheme and Most Popular Content (MPC) scheme under different SFs (γ) of popularity
of files. Network performance in terms of backhaul load and normalized time delay is shown in
Figures 2 and 3 respectively.

When γ = 0.2 , the backhaul load of the proposed CPCE scheme is two-times less than that of the
MPC scheme and the random scheme. As the shape factor increases, the backhaul load and time delay
decrease sharply for both the proposed CECP scheme and the MPC scheme. This is because as the
shape factor increases, popular files tend to be prone to fewer files, thus more gain can be obtained
by selecting proper caching strategies. When γ becomes larger and larger (γ > 0.2 in the simulation),
the backhaul load and time delay of the CPCE scheme are comparable to that of the MPC, being about
more than 13 times smaller than the Random scheme as shown in Figures 2 and 3.
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Figure 2. Backhaul load with different γ (|MΩ| = 200).
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Figure 3. Time delay under different γ (|MΩ| = 200).

4.2. System Performance of CPCE with Different Numbers of UEs

A simulation was also conducted to evaluate the performance of the proposed CPCE scheme
under different network scales with γ = 1. As expected, the proposed CPCE algorithm outperforms
the MPC and random caching scheme in terms of the backhaul load under different scales of the
network, as shown in Figure 4. When UEs are sparsely distributed in the network, the backhaul load
of the CPCE scheme is almost ignorable. Even if the number of UEs increases up to 200, the backhaul
load of CPCE is still a great deal lower than that of the random scheme and MPC. Figure 5 shows the
normalized time delay of each content placement scheme under different network scales. It is observed
that CPCE can achieve the lowest time delay compared to the MPC and random caching scheme.

233



Entropy 2019, 21, 576

Total Number of users
50 100 150 200

B
ac

kh
au

l L
oa

d 
(b

ps
)

×108

0

2

4

6

8

10

12

14

Random
MPC
CPCE

Figure 4. Backhaul load under different numbers of UEs (γ = 1).
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Figure 5. Normalized time delay under different numbers of UEs (γ = 1).

4.3. System Performance of CPCE under Different Storage Capacity of BSs

Figures 6 and 7 show the impact on network performance of the BSs’ different storage capacity. It is
clear that the more files that BSs can cache, the more possibility that BSs hit required files. We assume
the total number of files is 20. When the storage capacity of BSs is half of total files, both backhaul load
and time delay of the proposed CPCE is as a third as that of MPC. Even when storage capacity is very
limited (for example, only 1 file can be cached), the backhaul load of CPCE is acceptable, as shown
in Figure 6. Meanwhile, as shown in Figure 7, time delay decreases as the storage capacity increases,
and the proposed CPCE outperforms the other two.

The performance of Random and MPC comparing with the proposed CPCE in terms of time delay
and backhaul load is listed in Table 2.
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Figure 6. Backhaul load under different storage capacity of BSs (γ = 1).
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Figure 7. Normalized time delay under different storage capacity of BSs (γ = 1).

Table 2. Comparison of algorithms in terms of delay and backhaul load.

Time Delay Backhaul Load

Random high high
MPC low to high low to high
CPCE low low

4.4. System Performance of CPCE-UACE under Different Weight Factor

The performance of the entire CPCE-UACE algorithm is evaluated in the simulation and compared
with N-best, No-CoMP, and Threshold user association schemes. No-CoMP scheme means each UE,
no matter where it is located, can be associated only to the BS with the best RSRP. Threshold scheme
allows a specific UE to be associated with multiple BSs whose RSRP is better than a given threshold [16].
We also assess backhaul load and network throughput of CPCE-UACE algorithm under a different
weight factor μ (increases from 0 to 1 by step of 0.5). Generally speaking, the more BSs each UE in the
network can be associated with, the better throughput can be achieved, while heavier the backhaul
load will be. Fortunately, the proposed CPCE-UACE algorithm can balance backhaul load and network
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throughput by carefully selecting a weight factor μ. As shown in Figures 8 and 9, network throughput
and backhaul load of CPCE-UACE decreases as the weight factor μ grows. When μ is very small
(less than 0.05), throughput of CPCE-UACE is significantly better than the others, but the load of it
is also outstandingly heavy. On the other hand, when μ is as large as 0.5, both throughput and the
backhaul load of CPCE-UACE is lowest in the four schemes considered in the simulation. As a result,
we can narrow the range of an optimal μ that perfectly balances network performance in terms of the
two aspects into [0.05, 0.5]. We consider μ = 0.1 as the almost optimal weight factor due to relatively
high throughput, as well as the low backhaul load, of CPCE-UACE as shown in Figures 8 and 9.
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Figure 8. Network throughput under different μ.
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Figure 9. Backhaul load under different μ.

4.5. System Performance of CPCE-UACE under Different Numbers of UEs

In this subsection, we evaluated the proposed CPCE-UACE algorithm jointly in terms of
throughput and backhaul load under different network scales with μ = 0.1. The number of UEs
in the network is set to be from 50 to 200 with an interval 50.
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As shown in Figure 10, the average data rate of each UE decreases as the number of UEs in
the network grows. It is obvious that the proposed CPCE-UACE algorithm can always achieve
an outstanding performance compared to the No-CoMP and N-Best scheme, and 40% performance
gain is obtained if |MΩ| ≤ 150. Despite the threshold scheme being comparable to the CPCE-UACE
algorithm in terms of the average data rate, the threshold scheme has the heaviest backhaul load as
shown in Figure 11. It is observed that the proposed CPCE-UACE algorithm has the better performance
of the backhaul load compared to the N-Best scheme and threshold scheme, as shown in Figure 11.
Furthermore, the proposed CPCE-UACE algorithm is comparable with the No-CoMP scheme under
a small number of UEs (|MΩ| ≤ 50) and outperforms the other schemes in large scale networks
(|MΩ| ≥ 100).
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Figure 10. Network throughput under different numbers of UEs.
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Figure 11. Backhaul load under different numbers of UEs.

The performance of No-CoMP, N-best, and Threshold compared with the proposed CPCE-UACE
in terms of data rate and backhaul load is listed in Table 3.
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Table 3. Comparison of algorithms in terms of data rate and backhaul load.

Data Rate Backhaul Load

No-CoMP low low to medium
N-best low low to medium

Threshold medium to high high
CPCE-UACE high low

5. Conclusions

This paper considered a problem involving content placement and user association in UDNs
where proactive caching and CoMP are enabled. To alleviate the backhaul load and improve network
performance, the CPCE-UACE algorithm was proposed to solve the problem. Simulation results
demonstrated that the proposed algorithm was capable of decreasing the necessary backhaul traffic
and improving network throughput simultaneously. Simulation results showed that the proposed
cross-entropy based content placement scheme significantly outperformed the conventional random
and MPC placement schemes, with a 50% and 20% backhaul load decrease respectively. Furthermore,
the proposed cross-entropy based user association scheme could achieve 30% and 23% throughput gain,
compared with the conventional N-best, No-CoMP, and Threshold based user association schemes.
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Abstract: We illustrate how computer-aided methods can be used to investigate the fundamental
limits of the caching systems, which are significantly different from the conventional analytical
approach usually seen in the information theory literature. The linear programming (LP) outer
bound of the entropy space serves as the starting point of this approach; however, our effort goes
significantly beyond using it to prove information inequalities. We first identify and formalize the
symmetry structure in the problem, which enables us to show the existence of optimal symmetric
solutions. A symmetry-reduced linear program is then used to identify the boundary of the
memory-transmission-rate tradeoff for several small cases, for which we obtain a set of tight outer
bounds. General hypotheses on the optimal tradeoff region are formed from these computed data,
which are then analytically proven. This leads to a complete characterization of the optimal tradeoff
for systems with only two users, and certain partial characterization for systems with only two files.
Next, we show that by carefully analyzing the joint entropy structure of the outer bounds for certain
cases, a novel code construction can be reverse-engineered, which eventually leads to a general class
of codes. Finally, we show that outer bounds can be computed through strategically relaxing the LP
in different ways, which can be used to explore the problem computationally. This allows us firstly to
deduce generic characteristic of the converse proof, and secondly to compute outer bounds for larger
problem cases, despite the seemingly impossible computation scale.

Keywords: computer-aided analysis; information theory

1. Introduction

We illustrate how computer-aided methods can be used to investigate the fundamental limits of
the caching systems, which is in clear contrast to the conventional analytical approach usually seen in
the information theory literature. The theoretical foundation of this approach can be traced back to the
linear programming (LP) outer bound of the entropy space [1]. The computer-aided approach has been
previously applied in [2–5] on distributed data storage systems to derive various outer bounds, which
in many cases are tight. In this work, we first show that the same general methodology can be tailored
to the caching problem effectively to produce outer bounds in several cases, but more importantly,
we show that data obtained through computation can be used in several different manners to deduce
meaningful structural understanding of the fundamental limits and optimal code constructions.

The computer-aided investigation and exploration methods we propose are quite general;
however, we tackle the caching problem in this work. Caching systems have attracted much research
attention recently. In a nutshell, caching is a data management technique that can alleviate the
communication burden during peak traffic time or data demand time, by prefetching and prestoring
certain useful content at the users’ local caches. Maddah-Ali and Niesen [6] recently considered the
problem in an information theoretical framework, where the fundamental question is the optimal
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tradeoff between local cache memory capacity and the content delivery transmission rate. It was
shown in [6] that coding can be very beneficial in this setting, while uncoded solutions suffer a
significant loss. Subsequent works extended it to decentralized caching placements [7], caching with
nonuniform demands [8], online caching placements [9], hierarchical caching [10], caching with random
demands [11], among other things. There have been significant research activities recently [12–21]
in both refining the outer bounds and finding stronger codes for caching. Despite these efforts,
the fundamental tradeoff had not been fully characterized except for the case with only two users
and two files [6] before our work. This is partly due to the fact that the main focus of the initial
investigations [6–9] was on systems operating in the regime where the number of files and the number
of users are both large, for which the coded solutions can provide the largest gain over the uncoded
counterpart. However, in many applications, the number of simultaneous data requests can be small,
or the collection of users or files need to be divided into subgroups in order to account for various
service and request inhomogeneities; see, e.g., [8]. More importantly, precise and conclusive results
on such cases with small numbers of users or files can provide significant insights into more general
cases, as we shall show in this work.

In order to utilize the computational tool in this setting, the symmetry structure in the problem
needs be understood and used to reduce the problem to a manageable scale. The symmetry-reduced
LP is then used to identify the boundary of the memory-transmission-rate tradeoff for several cases.
General hypotheses on the optimal tradeoff region are formed from these data, which are then
analytically proven. This leads to a complete characterization of the optimal tradeoff for systems
with two users, and certain partial characterization for systems with two files. Next, we show that
by carefully analyzing the joint entropy structure of the outer bounds, a novel code construction can
be reverse-engineered, which eventually leads to a general class of codes. Moreover, data can also be
used to show that a certain tradeoff pair is not achievable using linear codes. Finally, we show that
outer bounds can be computed through strategically relaxing the LP in different ways, which can be
used to explore the problem computationally. This allows us firstly to deduce generic characteristic
of the converse proof, and secondly to compute outer bounds for larger problem cases, despite the
seemingly impossible computation scale.

Although some of the tightest bounds and the most conclusive results on the optimal
memory-transmission-rate tradeoff in caching systems are presented in this work, our main focus
is in fact to present the generic computer-aided methods that can be used to facilitate information
theoretic investigations in a practically-important research problem setting. For this purpose, we
will provide the necessary details on the development and the rationale of the proposed techniques
in a semi-tutorial (and thus less concise) manner. The most important contribution of this work is
three methods for the investigation of fundamental limits of information systems: (1) computational
and data-driven converse hypothesis, (2) reverse-engineering optimal codes, and (3) computer-aided
exploration. We believe that these methods are sufficiently general, such that they can be applied to
other coding and communication problems, particularly those related to data storage and management.

The rest of the paper is organized as follows. In Section 2, existing results on the caching problem
and some background information on the entropy LP framework are reviewed. The symmetry structure
of the caching problem is explored in detail in Section 3. In Section 4, we show how the data obtained
through computation can be used to form hypotheses, and then analytically prove them. In Section 5,
we show that the computed data can also be used to facilitate reverse-engineering new codes, and also
to prove that a certain memory-transmission-rate pair is not achievable using linear codes. In Section 6,
we provide a method to explore the structure of the outer bounds computationally, to obtain insights
into the problem and derive outer bounds for large problem cases. A few concluding remarks are
given in Section 7, and technical proofs and some computer-produced proof tables are relegated to
the Appendices A–I .
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2. Preliminaries

2.1. The Caching System Model

There are a total of N mutually independent files of equal size and K users in the system.
The overall system operates in two phases: in the placement phase, each user stores in his/her
local cache some content from these files; in the delivery phase, each user will request one file, and the
central server transmits (multicasts) certain common content to all the users to accommodate their
requests. Each user has a local cache memory of capacity M, and the contents stored in the placement
phase are determined without knowing a priori the precise requests in the delivery phase. The system
should minimize the amount of multicast information, which has rate R for all possible combinations
of user requests, under the memory cache constraint M, both of which are measured as multiples
of the file size F. The primary interest of this work is the optimal tradeoff between M and R. In the
rest of the paper, we shall refer to a specific combination of the file requests of all users together as
a demand, or a demand pattern, and reserve the word “request” as the particular file a user needs.
Figure 1 provides an illustration of the overall system.

cached contents in 
users' memory of size     

multicasted message
in the delivery phase

central server
has N=3 files

Figure 1. An example caching system, where there are N = 3 files and K = 4 users. In this case, the
users request files (1, 2, 2, 3), respectively, and the multicast common information is written as X1,2,2,3.

Since we are investigating the fundamental limits of the caching systems in this work, the notation
for the various quantities in the systems needs to be specified. The N files in the system are denoted
as W � {W1, W2, . . . , WN}; the cached contents at the K users are denoted as Z � {Z1, Z2, . . . , ZK};
and the transmissions to satisfy a given demand are denoted as Xd1,d2,...,dK , i.e., the transmitted
information Xd1,d2,...,dK when user k requests file Wdk

, k = 1, 2, . . . , K. For simplicity, we shall write
(W1, W2, . . . , Wn) simply as W[1:n], and (d1, d2, . . . , dK) as d[1:K]; when there are only two users in the
system, we write (Xi,1, Xi,2, . . . , Xi,j) as Xi,[1:j]. There are other simplifications of the notation for certain
special cases of the problem, which will be introduced as they become necessary.

The cache content at the k-th user is produced directly from the files through the encoding function
fk, and the transmission content from the files through the encoding function gd[1:K]

, i.e.,

Zk = fk(W[1:N]), Xd[1:K]
= gd[1:K]

(W[1:N]),

the second of which depends on the particular demands d[1:K]. Since the cached contents and
transmitted information are both deterministic functions of the files, we have:

H(ZkW1, W2, . . . , WN) = 0, k = 1, 2, . . . , K, (1)

H(Xd1,d2,...,dK W1, W2, . . . , WN) = 0, dk ∈ {1, 2, . . . , N}. (2)
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It is also clear that:

H(Wdk
Zk, Xd1,d2,...,dK ) = 0, (3)

i.e., the file Wdk
is a function of the cached content Zk at user k and the transmitted information when

user k requests Wdk
. The memory satisfies the constraint:

M ≥ H(Zi), i ∈ {1, 2, . . . , K}, (4)

and the transmission rate satisfies:

R ≥ H(Xd1,d2,...,dK ), dk ∈ {1, 2, . . . , N}. (5)

Any valid caching code must satisfy the specific set of conditions in (2)–(5). A slight variant of the
problem definition allows vanishing probability of error, i.e., the probability of error asymptotically
approaches zero as F goes to infinity; all the outer bounds derived in this work remain valid for this
variant with appropriate applications of Fano’s inequality [22].

2.2. Known Results on Caching Systems

The first achievability result on this problem was given in [6], which is directly quoted below.

Theorem 1 (Maddah-Ali and Niesen [6]). For N files and K users each with a cache size M ∈
{0, N/K, 2N/K, . . . , N},

R = K(1−M/N) ·min
{

1
1 + KM/N

,
N
K

}
(6)

is achievable. For general 0 ≤ M ≤ N, the lower convex envelope of these (M, R) points is achievable.

The first term in the minimization is achieved by the scheme of uncoded placement together
with coded transmission [6], while the latter term is by simple uncoded placement and uncoded
transmission. More recently, Yu et al. [19] provided the optimal solution when the placement is
restricted to be uncoded. Chen et al. [15] extended a special scheme for the case N = K = 2 discussed
in [6] to the general case N ≤ K, and showed that the tradeoff pair

(
1
K , N(K−1)

K

)
is achievable. There

were also several other notable efforts in attempting to find better binary codes [16–18,21]. Tian and
Chen [20] proposed a class of codes for N ≤ K, the origin of which will be discussed in more details in
Section 5. Gómez-Vilardebó [21] also proposed a new code, which can provide further improvement in
the small cache memory regime. Tradeoff points achieved by the codes in [20] can indeed be optimal
in some cases. It is worth noting that while all the schemes [6,15–19,21] are binary codes, the codes
in [20] use a more general finite field.

A cut-set outer bound was also given in [6], which is again directly quoted below.

Theorem 2 (Maddah-Ali and Niesen [6]). For N files and K users each with a cache size 0 ≤ M ≤ N,

R ≥ max
s∈{1,2,...,min{N,K}}

(
s− sM

�N/s�

)
. (7)

Several efforts to improve this outer bound have also been reported, which have led to more
accurate approximation characterizations of the optimal tradeoff [12–14]. However, as mentioned
earlier, even for the simplest cases beyond (N, K) = (2, 2), complete characterizations was not available
before our work (firstly reported in [23]). In this work, we specifically treat such small problem cases,
and attempt to deduce more generic properties and outer bounds from these cases. Some of the most
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recent work [24,25] that were obtained after the publication of our results [23] provide even more
accurate approximations, the best of which at this point of time is roughly a factor of 2 [24].

2.3. The Basic Linear Programming Framework

The basic linear programing bound on the entropy space was introduced by Yeung [1], which
can be understood as follows. Consider a total of n discrete random variables (X1, X2, . . . , Xn) with a
given joint distribution. There are a total of 2n − 1 joint entropies, each associated with a non-empty
subset of these random variables. It is known that the entropy function is monotone and submodular,
and thus, any valid (2n − 1) dimensional entropy vector must have the properties associated with
such monotonicity and submodularity, which can be written as a set of inequalities. Yeung showed
(see, e.g., [26]) that the minimal sufficient set of such inequalities is the so-called elemental inequalities:

H(Xi{Xk, k �= i}) ≥ 0, i ∈ {1, 2, . . . , n} (8)

I(Xi; Xj{Xk, k ∈ Φ}) ≥ 0, where Φ ⊆ {1, 2, . . . , n} \ {i, j}, i �= j. (9)

The 2n − 1 joint entropy terms can be viewed as the variables in a linear programming (LP)
problem, and there is a total of n + (n

2)2
n−2 constraints in (8) and (9). In addition to this generic set

of constraints, each specific coding problem will place additional constraints on the joint entropy
values. These can be viewed as a constraint set of the given problem, although the problem might also
induce constraints that are not in this form or even not possible to write in terms of joint entropies.
For example, in the caching problem, the set of random variables are {Wi, i = 1, 2, . . . , N} ∪ {Zi, i =
1, 2, . . . , K} ∪ {Xd1,d2,...,dK : dk ∈ {1, 2, . . . , N}}, and there is a total of 2N+K+NK − 1 variables in this LP;

the problem-specific constraints are those in (2)–(5), and there are N + K + NK + (N+K+NK

2 )2N+K+NK−2

elemental entropy constraints, which is in fact doubly exponential in the number of users K.

2.4. A Computed-Aided Approach to Find Outer Bounds

In principle, with the aforedescribed constraint set, one can simply convert the outer bounding
problem into an LP (with an objective function R for each fixed M in the caching problem, or more
generally a linear combination of M and R), and use a generic LP solver to compute it. Unfortunately,
despite the effectiveness of modern LP solvers, directly applying this approach on an engineering
problem is usually not possible, since the scale of the LP is often very large even for simple settings.
For example, for the caching problem, when N = 2, K = 4, there are overall 200 million elemental
inequalities. The key observation used in [2] to make the problem tractable is that the LP can usually be
significantly reduced, by taking into account the symmetry and the implication relations in the problem.

The details of the reductions can be found in [2], and here, we only provide two examples in the
context of the caching problem to illustrate the basic idea behind these reductions:

• Assuming the optimal codes are symmetric, which will be defined more precisely later, the joint
entropy H(W2, Z3, X2,3,3) should be equal to the joint entropy H(W1, Z2, X1,2,2). This implies that
in the LP, we can represent both quantities using a single variable.

• Because of the relation (3), the joint entropy H(W2, Z3, X2,3,3) should be equal to the joint entropy
H(W2, W3, Z3, X2,3,3). This again implies that in the LP, we can represent both quantities using a
single variable.

The reduced primal LP problem is usually significantly smaller, which allows us to find a lower
bound for the tradeoff region for a specific instance with fixed file sizes. Moreover, after identifying
the region of interest using these computed boundary points, a human-readable proof can also be
produced computationally by invoking the dual of the LP given above. Note a feasible and bounded
LP always has a rational optimal solution when all the coefficients are rational, and thus, the bound
will have rational coefficients. More details can again be found in [2]; however, this procedure can be
intuitively viewed as follows. Suppose a valid outer bound in the constraint set has the form of:
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∑
Φ⊆{1,2,...,n}

αΦ H(Xk, k ∈ Φ) ≥ 0, (10)

then it must be a linear combination of the known inequalities, i.e., (8) and (9), and the problem-specific
constraints, e.g., (2)–(5) for the caching problem. To find a human-readable proof is essentially to find
a valid linear combination of these inequalities, and for the conciseness of the proof, the sparsest linear
combination is preferred. By utilizing the LP dual with an additional linear objective, we can find
within all valid combinations a sparse (but not necessarily the sparsest) one, which can yield a concise
proof of the inequality (10).

It should be noted that in [2], the region of interest was obtained by first finding a set of fine-spaced
points on the boundary of the outer bound using the reduced LP, and then manually identifying the
effective bounding segments using these boundary points. This task can however be accomplished
more efficiently using an approach proposed by Lassez and Lassez [27], as pointed out in [28].
This prompted the author to implement this part of the computer program using this more efficient
approach. For completeness, the specialization of the Lassez algorithm to the caching problem, which is
much simplified in this setting, is provided in Appendix A.

The proof found through this approach can be conveniently written in a matrix to list all the linear
combination coefficients, and one can easily produce a chain of inequalities using such a table to obtain
a more conventional human-readable proof. This approach of generating human-readable proofs has
subsequently been adopted by other researchers [5,29]. Though we shall present several results thus
obtained in this current work in the tabulation form, our main goal is to use these results to present the
computer-aided approach, and show the effectiveness of our approach.

3. Symmetry in the Caching Problem

The computer-aided approach to derive outer bounds mentioned earlier relies critically on the
reduction of the basic entropy LP using symmetry and other problem structures. In this section,
we consider the symmetry in the caching problem. Intuitively, if we place the cached contents in
a permuted manner at the users, it will lead to a new code that is equivalent to the original one.
Similarly, if we reorder the files and apply the same encoding function, the transmissions can also be
changed accordingly to accommodate the requests, which is again an equivalent code. The two types
of symmetries can be combined, and they induce a permutation group on the joint entropies of the
subsets of the random variablesW ∪Z ∪X .

For concreteness, we may specialize to the case (N, K) = (3, 4) in the discussion, and for this case:

W = {W1, W2, W3}, Z = {Z1, Z2, Z3, Z4}, X = {Xd1,d2,d3,d4 : dk ∈ {1, 2, 3}}. (11)

3.1. Symmetry in User Indexing

Let a permutation function be defined as π̄(·) on the user index set of {1, 2, . . . , K}, which reflects a
permuted placement of cached contents Z . Let the inverse of π̄(·) be denoted as π̄−1(·), and define the
permutation on a collection of elements as the collection of the elements after permuting each element
individually. The aforementioned permuted placement of cached contents can be rigorously defined
through a set of new encoding functions and decoding functions. Given the original encoding functions
fk and gd[1:K]

, the new functions f π̄
k and gπ̄

d[1:K]
associated with a permutation π̄ can be defined as:

Z̄k � f π̄
k (W[1:N]) � fπ̄(k)(W[1:N]) = Zπ̄(k),

X̄d[1:K]
� gπ̄

d[1:K]
(W[1:N]) � gd

π̄−1([1:K])
(W[1:N]) = Xd

π̄−1([1:K])
.

(12)

To see that with these new functions, any demand d([1:K]) can be correctly fulfilled as long as the original
functions can fulfill the corresponding reconstruction task, consider the pair ( f π̄

k (W[1:N]), gπ̄
d[1:K]

(W[1:N])),

which should reconstruct Wdk
. This pair is equivalent to the pair ( fπ̄(k)(W[1:N]), gd

π̄−1([1:K])
(W[1:N])), and
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in the demand vector dπ̄−1([1:K]), the π̄(k) position is in fact dπ̄−1(π̄(k)) = dk, implying that the new
coding functions are indeed valid.

We can alternatively view π̄(·) as directly inducing a permutation on Z as π̄(Zk) = Zπ̄(k), and a
permutation on X as:

π̄(Xd1,d2,...,dK ) = Xd
π̄−1(1) ,dπ̄−1(2) ,...,dπ̄−1(K)

. (13)

For example, the permutation function π̄(1) = 2, π̄(2) = 3, π̄(3) = 1, π̄(4) = 4 will induce:

(d1, d2, d3, d4)→ (d̄1, d̄2, d̄3, d̄4) = (d3, d1, d2, d4). (14)

Thus, it will map Z1 to π̄(Z1) = Z2, but map X1,2,3,2 to X3,1,2,2, X3,2,1,3 to X1,3,2,3, and X1,1,2,2 to X2,1,1,2.
With the new coding functions and the permuted random variables defined above, we have the

following relation:

(W π̄ ,Z π̄ ,X π̄)=(W , π̄(Z), π̄(X )), (15)

where the superscript π̄ indicates the random variables induced by the new encoding functions.
We call a caching code user-index-symmetric, if for any subsetsWo ⊆ W ,Zo ⊆ Z ,Xo ⊆ X , and

any permutation π̄, the following relation holds:

H(Wo,Zo,Xo) = H(Wo, π̄(Zo), π̄(Xo)). (16)

For example, for such a symmetric code, the entropy H(W2, Z2, X1,2,3,2) under the aforementioned
permutation is equal to H(W2, Z3, X3,1,2,2); note that W2 is a function of (Z2, X1,2,3,2), and after the
mapping, it is a function of (Z3, X3,1,2,2).

3.2. Symmetry in File Indexing

Let a permutation function be defined as π̂(·) on the file index set of {1, 2, . . . , N}, which reflects
a renaming of the filesW . This file-renaming operation can be rigorously defined as a permutation of
the input arguments to the functions fk and gd[1:K]

. Given the original encoding functions fk and gd[1:K]
,

the new functions f π̂
k and gπ̂

d[1:K]
associated with a permutation π̂ can be defined as:

Ẑk � f π̂
k (W[1:N]) � fk(Wπ̂−1([1:N])),

X̂d[1:K]
� gπ̂

d[1:K]
(W[1:N]) � gπ̂(d[1:K])

(Wπ̂−1([1:N])).
(17)

We first show that the pair ( f π̂
k (W[1:N]), gπ̂

d[1:K]
(W[1:N])) can provide reconstruction of Wdk

. This pair

by definition is equivalent to ( fk(Wπ̂−1([1:N])), gπ̂(d[1:K])
(Wπ̂−1([1:N]))), where the k-th position of the

demand vector π̂(d[1:K]) is in fact π̂(dk). However, because of the permutation in the input arguments,
this implies that the π̂(dk)-th file in the sequence Wπ̂−1([1:N])) can be reconstructed, which is indeed Wdk

.
Alternatively, we can view π̂(·) as directly inducing a permutation on π̂(Wk) = Wπ̂(k), and it also

induces a permutation on X as:

π̂(Xd1,d2,...,dK ) = Xπ̂(d1),π̂(d2),...,π̂(dK)
. (18)

For example, the permutation function π̂(1) = 2, π̂(2) = 3, π̂(3) = 1 maps W2 to π̂(W2) = W3,
but maps X1,2,3,2 to X2,3,1,3, X3,2,1,3 to X1,3,2,1, and X1,1,2,2 to X2,2,3,3.

With the new coding functions and the permuted random variables defined above, we have the
following equivalence relation:
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(W π̂ ,Z π̂ ,X π̂) =
(

W([1:N]), f[1:k](Wπ̂−1([1:N])),
{

gπ̂(d[1:K])
(Wπ̂−1([1:N])) : d[1:K] ∈ N K

})
d
=

(
Wπ̂([1:N]), f[1:k](W[1:N]),

{
gπ̂(d[1:K])

(W[1:N]) : d[1:K] ∈ N K
})

= (π̂(W),Z , π̂(X )) ,

(19)

where d
= indicates equal in distribution, which is due to the the random variables in W being

independently and identically distributed, thus exchangeable.
We call a caching code file-index-symmetric, if for any subsetsWo ⊆ W ,Zo ⊆ Z ,Xo ⊆ X , and

any permutation π̂, the following relation holds:

H(Wo,Zo,Xo) = H(π̂(Wo),Zo, π̂(Xo)). (20)

For example, for such a symmetric code, H(W3, Z3, X1,2,3,2) under the aforementioned permutation is
equal to H(W1, Z3, X2,3,1,3); note that W3 is a function of (Z3, X1,2,3,2), and after the mapping, W1 is a
function of (Z3, X2,3,1,3).

3.3. Existence of Optimal Symmetric Codes

With the symmetry structure elucidated above, we can now state our first auxiliary result.

Proposition 1. For any caching code, there is a code with the same or smaller caching memory and transmission
rate, which is both user-index-symmetric and file-index-symmetric.

We call a code that is both user-index-symmetric and file-index-symmetric a symmetric code.
This proposition implies that there is no loss of generality to consider only symmetric codes. The proof
of this proposition relies on a simple space-sharing argument, where a set of base encoding functions
and base decoding function are used to construct a new code. In this new code, each file is partitioned
into a total of N!K! segments, each having the same size as suitable in the base coding functions.
The coding functions obtained as in (12) and (17) from the base coding functions using permutations π̄

and π̂ are used on the i-th segments of all the files to produce random variablesW π̄·π̂ ∪ Z π̄·π̂ ∪ X π̄·π̂ .
Consider a set of random variables (Wo ∪ Zo ∪ Xo) in the original code, and denote the same set of
random variables in the new code as (W′

o ∪ Z′o ∪ X ′o). We have:

H(W′
o ∪ Z′o ∪ X ′o) = ∑̄

π,π̂
H(W π̄·π̂

o ∪ Z π̄·π̂
o ∪ X π̄·π̂

o ) = ∑̄
π,π̂

H(π̂(Wo) ∪ π̄(Zo) ∪ π̄ · π̂(Xo)), (21)

because of (15) and (19). Similarly, for another pair of permutations (π̄′, π̂′), the random variables
π̂′(W′

o)∪ π̄′(Z′o)∪ π̄′ · π̂′(X ′o) in the new code will have exactly the same joint entropy value. It is now
clear that the resultant code by space sharing is indeed symmetric, and it has (normalized) memory
sizes and a transmission rate no worse than the original one. A similar argument was used in [2]
to show, with a more detailed proof, the existence of optimal symmetric solution in regenerating
codes. In a separate work [30], we investigated the properties of the induced permutation π̄ · π̂, and
particularly, showed that it is isomorphic to the power group [31]; readers are referred to [30] for
more details.

3.4. Demand Types

Even for symmetric codes, the transmissions to satisfy different types of demands may use
different rates. For example in the setting N, K = (3, 4), H(X1,2,2,2) may not be equal to H(X1,1,2,2),
and H(X1,2,3,2) may not be equal to H(X3,2,3,2). The transmission rate R is then chosen to be the
maximum among all cases. This motivates the notion of demand types.
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Definition 1. In an (N, K) caching system, for a specific demand, let the number of users requesting file n
be denoted as mn, n = 1, 2, . . . , N. We call the vector obtained by sorting the values {m1, m2, . . . , mN} in a
decreasing order as the demand type, denoted as T .

Proposition 1 implies that for optimal symmetric solutions, demands of the same type can
always be satisfied with transmissions of the same rate; however, demands of different types may
still require different rates. This observation is also important in setting up the linear program in the
computer-aided approach outlined in the previous section. Because we are interested in the worst case
transmission rate among all types of demands, in the symmetry-reduced LP, an additional variable
needs to be introduced to constrain the transmission rates of all possible types.

For an (N, K) system, determining the number of demand types is closely related to the integer
partition problem, which is the number of possible ways to write an integer K as the sum of positive
integers. There is no explicit formula, but one can use a generator polynomial to compute it [32].
For several small (N, K) pairs, we list the demand types in Table 1.

Table 1. Demand types for small (N, K) pairs.

(N,K) Demand Types

(2,3) (3,0), (2,1)
(2,4) (4,0), (3,1), (2,2)
(3,2) (2,0,0), (1,1,0)
(3,3) (3,0,0), (2,1,0), (1,1,1)
(3,4) (4,0,0), (3,1,0), (2,2,0), (2,1,1)
(4,2) (2,0,0,0), (1,1,0,0)
(4,3) (3,0,0,0), (2,1,0,0), (1,1,1,0)

It can be seen that when N ≤ K, increasing N induces more demand types, but this stops when
N > K; however, increasing K always induces more demand types. This suggests it might be easier
to find solutions for a collection of cases with a fixed K and arbitrary N values, but more difficult
for that of a fixed N and arbitrary K values. This intuition is partially confirmed with our results
presented next.

4. Computational and Data-Driven Converse Hypotheses

Extending the computational approach developed in [2] and the problem symmetry, in this section,
we first establish complete characterizations for the optimal memory-transmission-rate tradeoff for
(N, K) = (3, 2) and (N, K) = (4, 2). Based on these results and the known result for (N, K) = (2, 2),
we are able to form a hypothesis regarding the optimal tradeoff for the case of K = 2. An analytical
proof is then provided, which gives the complete characterization of the optimal tradeoff for the case of
(N, 2) caching systems. We then present a characterization of the optimal tradeoff for (N, K) = (2, 3)
and an outer bound for (N, K) = (2, 4). These results also motivate a hypothesis on the optimal
tradeoff for N = 2, which is subsequently proven analytically to yield a partial characterization. Note
that since both M and R must be nonnegative, we do not explicitly state their non-negativity from
here on.

4.1. The Optimal Tradeoff for K = 2

The optimal tradeoff for (N, K) = (2, 2) was found in [6], which we restate below.

Proposition 2 (Maddah Ali and Niesen [6]). Any memory-transmission-rate tradeoff pair for the (N, K) =
(2, 2) caching problem must satisfy:

2M + R ≥ 2, 2M + 2R ≥ 3, M + 2R ≥ 2. (22)
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Conversely, there exist codes for any nonnegative (M, R) pair satisfying (22).

Our investigation thus starts with identifying the previously unknown optimal tradeoff for
(N, K) = (3, 2) and (N, K) = (4, 2) using the computation approach outlined in Section 2, the results
of which are first summarized below as two propositions.

Proposition 3. Any memory-transmission-rate tradeoff pair for the (N, K) = (3, 2) caching problem must satisfy:

M + R ≥ 2, M + 3R ≥ 3. (23)

Conversely, there exist codes for any nonnegative (M, R) pair satisfying (23).

Proposition 4. Any memory-transmission-rate tradeoff pair for the (N, K) = (4, 2) caching problem must satisfy:

3M + 4R ≥ 8, M + 4R ≥ 4. (24)

Conversely, there exist codes for any nonnegative (M, R) pair satisfying (24).

The proofs for Propositions 3 and 4 can be found in Appendix B, which are given in the
tabulation format mentioned earlier. Strictly speaking, these two results are specialization of Theorem 3,
and there is no need to provide the proofs separately; however, we provide them to illustrate the
computer-aided approach.

The optimal tradeoff for these cases is given in Figure 2. A few immediate observations are
as follows

• For (N, K) = (3, 2) and (N, K) = (4, 2), there is only one non-trivial corner point on the optimal
tradeoff, but for (N, K) = (2, 2), there are in fact two non-trivial corner points.

• The cut-set bound is tight at the high memory regime in all the cases.
• The single non-trivial corner point for (N, K) = (3, 2) and (N, K) = (4, 2) is achieved by the

scheme proposed in [6]. For the (N, K) = (2, 2) case, one of the corner point is achieved also by
this scheme, but the other corner point requires a different code.

Given the above observations, a natural hypothesis is as follows.

Hypothesis 1. There is only one non-trivial corner point on the optimal tradeoff for (N, K) = (N, 2) caching
systems when N ≥ 3, and it is (M, R) = (N/2, 1/2), or equivalently, the two facets of the optimal tradeoff
should be:

3M + NR ≥ 2N, M + NR ≥ N. (25)

We are indeed able to analytically confirm this hypothesis, as stated formally in the
following theorem.

Theorem 3. For any integer N ≥ 3, any memory-transmission-rate tradeoff pair for the (N, K) = (N, 2)
caching problem must satisfy:

3M + NR ≥ 2N, M + NR ≥ N. (26)

Conversely, for any integer N ≥ 3, there exist codes for any nonnegative (M, R) pair satisfying (26).
For (N, K) = (2, 2), the memory-transmission-rate tradeoff must satisfy:

2M + R ≥ 2, 2M + 2R ≥ 3, M + 2R ≥ 2. (27)

Conversely, for (N, K) = (2, 2), there exist codes for any nonnegative (M, R) pair satisfying (27).
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Figure 2. The optimal tradeoffs for (N, K) = (2, 2), (N, K) = (3, 2) and (N, K) = (4, 2) caching systems.
The red solid lines give the optimal tradeoffs, while the blue dashed-dotted lines are the cut-set outer
bounds, included here for reference.

Since the solution for the special case (N, K) = (2, 2) was established in [6], we only need to
consider the cases for N ≥ 3. Moreover, for the converse direction, only the bound 3M + NR ≥ 2N
needs to be proven, since the other one can be obtained using the cut-set bound in [6]. To prove the
remaining inequality, the following auxiliary lemma is needed.

Lemma 1. For any symmetric (N, 2) caching code where N ≥ 3, and any integer n = {1, 2, . . . , N − 2},

(N − n)H(Z1, W[1:n], Xn,n+1) ≥ (N − n− 2)H(Z1, W[1:n]) + (N + n). (28)

Using Lemma 1, we can prove the converse part of Theorem 3 through an induction; the proofs of
Theorem 3 and Lemma 1 can be found in Appendix C, both of which heavily rely on the symmetry
specified in the previous section. Although some clues can be found in the proof tables for the cases
(N, K) = (3, 2) and (N, K) = (4, 2), such as the effective joint entropy terms in the converse proof
each having only a small number of X random variables, finding the proof of Theorem 3 still requires
considerable human effort, and was not completed directly through a computer program. One key
observation simplifying the proof in this case is that as the hypothesis states, the optimal corner point
is achieved by the scheme given in [6], which is known only thanks to the computed bounds. In this
specific case, the scheme reduces to splitting each file in half, and placing one half at the first user, and
the other half at the second user; the corresponding delivery strategy is also extremely simple. We
combined this special structure and the clues from the proof tables to find the outer bounding steps.

Remark 1. The result in [12] can be used to establish the bound 3M + NR ≥ 2N when K = 2, however
only for the cases when N is an integer multiple of three. For N = 4, the bounds developed in [12–14] give
M + 2R ≥ 3, instead of 3M + 4R ≥ 8, and thus, they are loose in this case. After this bound was initially
reported in [23], Yu et al. [24] discovered an alternative proof.

4.2. A Partial Characterization for N = 2

We first summarize the characterizations of the optimal tradeoff for (N, K) = (2, 3), and the
computed outer bound for (N, K) = (2, 4), in two propositions.

Proposition 5. The memory-transmission-rate tradeoff for the (N, K) = (2, 3) caching problem must satisfy:

2M + R ≥ 2, 3M + 3R ≥ 5, M + 2R ≥ 2. (29)

Conversely, there exist codes for any nonnegative (M, R) pair satisfying (29).
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Proposition 6. The memory-transmission-rate tradeoff for the (N, K) = (2, 4) caching problem must satisfy:

2M + R ≥ 2, 14M + 11R ≥ 20, 9M + 8R ≥ 14, 3M + 3R ≥ 5, 5M + 6R ≥ 9, M + 2R ≥ 2. (30)

For Proposition 5, the only new bound 3M + 3R ≥ 5 is a special case of the more general result of
Theorem 4, and we thus do not provide this proof separately. For Proposition 6, only the second and the
third inequalities need to be proven, since the fourth coincides with a bound in the (2, 3) case, the fifth
is a special case of Theorem 4, and the others can be produced from the cut-set bounds. The proofs
for these two inequalities are given in Appendix E. The optimal tradeoff for (N, K) = (2, 2), (2, 3) and
the outer bound for (2, 4) are depicted in Figure 3. A few immediate observations and comments are
as follows:

• There are two non-trivial corner points on the outer bounds for (N, K) = (2, 2) and (N, K) = (2, 3),
and there are five non-trivial corner points for (N, K) = (2, 4).

• The outer bounds coincide with known inner bounds for (N, K) = (2, 2) and (N, K) = (2, 3), but
not (N, K) = (2, 4). The corner points at R = 1/K (and the corner point (1, 2/3) for (N, K) = (2, 4))
are achieved by the scheme given in [6], while the corner points at M = 1/K are achieved by the
scheme given in [15]. For (N, K) = (2, 4), two corner points at the intermediate memory regime
cannot be achieved by either the scheme in [6] or that in [15].

• The cut-set outer bounds [6] are tight at the highest and lowest memory segments; a new bound
for the second highest memory segment produced by the computer-based method is also tight.

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(2/3, 2/3)

(1/2, 1  )

(1  , 1/2)

M

R

Case (N,K)=(2,2)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(2/3, 2/3)

(1/3, 4/3)

(4/3, 1/3)

M

R

Case (N,K)=(2,3)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

(2/3, 2/3)

(1/4 , 3/2  )

(6/13, 16/13)

(2/3 , 1    )

(1   , 2/3  )

(3/2 , 1/4  )

M

R

Case (N,K)=(2,4)

Figure 3. The optimal tradeoffs for (N, K) = (2, 2), (N, K) = (2, 3) and computed outer bound
(N, K) = (2, 4) caching systems. The red solid lines give the optimal tradeoffs for the first two cases,
and the red dotted line gives the computed outer bound (N, K) = (2, 4); the blue dashed-dot lines are
the cut-set outer bounds, and the black dashed line is the inner bound using the scheme in [6,15].

Remark 2. The bounds developed in [12–14] give 2(M + R) ≥ 3 for (N, K) = (2, 3) and (N, K) = (2, 4),
instead of 3M + 3R ≥ 5, and thus, they are loose in this case. When specializing the bounds in [24], it matches
Proposition 5 for (N, K) = (2, 3), but it is weaker than Proposition 6 for (N, K) = (2, 4).

From the above observations, we can hypothesize that for N = 2, the number of corner points
will continue to increase as K increases above four, and at the high memory regime, the scheme [6] is
optimal. More precisely, we can establish the following theorem.

Theorem 4. When K ≥ 3 and N = 2, any (M, R) pair must satisfy:

K(K + 1)M + 2(K− 1)KR ≥ 2(K− 1)(K + 2). (31)
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As a consequence, the uncoded-placement-coded-transmission scheme in [6] (with space-sharing) is optimal
when M ≥ 2(K−2)

K , for the cases with K ≥ 4 and N = 2.

The first line segment at the high memory regime is M + 2R ≥ 2, which is given by the cut-set
bound; its intersection with (31) is indeed the first point in:(

2(K− 1)
K

,
1
K

)
and

(
2(K− 2)

K
,

2
K− 1

)
. (32)

The proof of this theorem now boils down to the proof of the bound (31). This requires a
sophisticated induction, the digest of which is summarized in the following lemma. The symmetry of
the problem is again heavily utilized throughout the proof of this lemma. For notational simplicity, we
use X→j to denote X1,1,...,1,2,1,...,1, i.e., when the j-th user requests the second file, and all the other users
request the first file; we also write a collection of such variables (X→j, X→j+1, . . . , X→k) as X→[j:k].

Lemma 2. For N = 2 and K ≥ 3, the following inequality holds for k ∈ {2, 3, . . . , K− 1}:

(K− k + 1)(K− k + 2)H(Z1, W1, X→[2:k])

≥ [(K− k)(K− k + 1)− 2]H(Z1, W1, X→[2:k−1]) + 2H(W1, X→[2:k−1]) + 2(K− k + 1)H(W1, W2),
(33)

where we have taken the convention H(Z1, W1, X→[2:1]) = H(Z1, W1)

The proof of Lemma 2 is given in Appendix F. Theorem 4 can now be proven straightforwardly.

Proof of Theorem 4. We first write the following simple inequalities:

H(Z1) + H(X→2) ≥ H(Z1, X→2) = H(Z1, W1, X→2). (34)

Now, applying Lemma 2 with k = 2 gives:

(K− 1)K[H(Z1) + H(X→2)] ≥ [K2 − 3K]H(Z1, W1) + 2H(W1) + 2(K− 1)H(W1, W2). (35)

Observe that:

H(Z1, W1) = H(W1Z1) + H(Z1) ≥
1
2

H(W1, W2Z1) + H(Z1) =
1
2

H(W1, W2) +
1
2

H(Z1), (36)

where in the first inequality the file index symmetry H(W1Z1) = H(W2Z1) has been used. We can
now continue to write:

(K− 1)K[H(Z1) + H(X→2)] ≥
K2 − 3K

2
[H(W1, W2) + H(Z1)] + 2H(W1) + 2(K− 1)H(W1, W2), (37)

which has some a common term H(Z1) on both sizes with different coefficients. Removing the common
term and multiplying both sides by two lead to:

K(K + 1)H(Z1) + 2(K− 1)KH(X→2)

≥ [(K− 2)(K− 1)− 2 + 4(K− 1)]H(W1, W2) + 4H(W1)

= 2K2 + 2K− 4,

(38)

where the equality relies on the assumption that W1 and W2 are independent files of unit size.
Taking into consideration the memory and transmission rate constraints (4) and (5) now completes
the proof.
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Lemma 2 provides a way to reduce the number of X variables in H(Z1, X→[2:k]), and thus is the
core of the proof. Even with the hypothesis regarding the scheme in [6] being optimal, deriving the
outer bound (particularly the coefficients in the lemma above) directly using this insight is far from
being straightforward. Some of the guidance in finding our derivation was in fact obtained through
a strategic computational exploration of the outer bounds. This information is helpful because the
computer-generated proofs are not unique, and some of these solutions can appear quite arbitrary;
however, to deduce general rules in the proof requires a more structured proof instead. In Section 6, we
present in more detail this new exploration method, and discuss how insights can be actively identified
in this particular case.

5. Reverse-Engineering Code Constructions

In the previous section, outer bounds of the optimal tradeoff were presented for the case
(N, K) = (2, 4), which is given in Figure 3. Observe that the corner points:(

2
3

, 1
)

and
(

6
13

,
16
13

)
, (39)

cannot be achieved by existing codes in the literature. The former point can indeed be achieved with a
new code construction. This construction was first presented in [20], where it was generalized more
systematically to yield a new class of codes for any N ≤ K, the proof and analysis of which are more
involved. In this paper, we focus on how a specific code for this corner point was found through
a reverse-engineering approach, which should help dispel the mystery on this seemingly arbitrary
code construction.

5.1. The Code to Achieve
( 2

3 , 1
)

for (N, K) = (2, 4)

The two files are denoted as A and B, each of which is partitioned into six segments of equal size,
denoted as Ai and Bi, respectively, i = 1, 2, . . . , 6. Since we count the memory and transmission in
multiples of the file size, the corner point

( 2
3 , 1

)
means the need for each user to store four symbols,

and the transmission will use six symbols. The contents in the cache of each user are given in Table 2.
By the symmetry of the cached contents, we only need to consider the demand (A, A, A, B), i.e., the
first three users requesting A and User 4 requesting B, and the demand (A, A, B, B), i.e., the first two
users requesting A and the other two requesting B.

Table 2. Caching content for (N, K) = (2, 4).

User 1 A1 + B1 A2 + B2 A3 + B3 A1 + A2 + A3 + 2(B1 + B2 + B3)
User 2 A1 + B1 A4 + B4 A5 + B5 A1 + A4 + A5 + 2(B1 + B4 + B5)
User 3 A2 + B2 A4 + B4 A6 + B6 A2 + A4 + A6 + 2(B2 + B4 + B6)
User 4 A3 + B3 A5 + B5 A6 + B6 A3 + A5 + A6 + 2(B3 + B5 + B6)

Assume the file segments are in F5 for concreteness.

• For the demands (A, A, A, B), the transmission is as follows,

Step 1: B1, B2, B4;

Step 2: A3 + 2A5 + 3A6, A3 + 3A5 + 4A6;

Step 3: A1 + A2 + A4.

After Step 1, User 1 can recover (A1, A2); furthermore, he/she has (A3 + B3, A3 + 2B3) by
eliminating known symbols (A1, A2, B1, B2), from which A3 can be recovered. After Step 2,
he/she can obtain (2A5 + 3A6, 3A5 + 4A6) to recover (A5, A6). Using the transmission in Step 3,
he/she can obtain A4 since he/she has (A1, A2). User 2 and User 3 can use a similar strategy to
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reconstruct all file segments in A. User 4 only needs B3, B5, B6 after Step 1, which he/she already
has in his/her cache; however, they are contaminated by file segments from A. Nevertheless,
he/she knows A3 + A5 + A6 by recognizing:

(A3 + A5 + A6) = 2 ∑
i=3,5,6

(Ai + Bi)− [A3 + A5 + A6 + 2(B3 + B5 + B6)]. (40)

Together with the transmission in Step 2, User 4 has three linearly independent combinations
of (A3, A5, A6). After recovering them, he/she can remove these interferences from the cached
content for (B3, B5, B6).

• For the demand (A, A, B, B), we can send:

Step 1: B1, A6;

Step 2: A2 + 2A4, A3 + 2A5, B2 + 2B3, B4 + 2B5.

User 1 has A1, B1, A6 after Step 1, and he/she can also form:

B2 + B3 =[A2 + A3 + 2(B2 + B3)]− (A2 + B2)− (A3 + B3),

and together with B2 + 2B3 in the transmission of Step 2, he/she can recover (B2, B3), and
thus A2, A3. He/she still needs (A4, A5), which can be recovered straightforwardly from the
transmission (A2 + 2A4, A3 + 2A5) since he/she already has (A2, A3). Other users can use a
similar strategy to decode their requested files.

5.2. Extracting Information for Reverse-Engineering

It is clear at this point that for this case of (N, K) = (2, 4), the code to achieve this optimal corner
point is not straightforward. Next, we discuss a general approach to deduce the code structure from
the LP solution, which leads to the discovery of the code in our work. The approach is based on the
following assumptions: the outer bound is achievable (i.e., tight); moreover, there is a (vector) linear
code that can achieve this performance.

Either of the two assumptions above may not hold in general, and in such a case, our attempt
will not be successful. Nevertheless, though linear codes are known to be insufficient for all network
coding problems [33], existing results in the literature suggest that vector linear codes are surprisingly
versatile and powerful. Similarly, though it is known that Shannon-type inequalities, which are the
basis for the outer bounds computation, are not sufficient to characterize rate region for all coding
problems [34,35], they are surprisingly powerful, particularly in coding problems with strong symmetry
structures [36,37].

There are essentially two types of information that we can extract from the primal LP and dual LP:

• From the effective information inequalities: since we can produce a readable proof using the dual
LP, if a code can achieve this corner point, then the information inequalities in the proof must hold
with equality for the joint entropy values induced by this code, which reveals a set of conditional
independence relations among random variables induced by this code;

• From the extremal joint entropy values at the corner points: although we are only interested in the
tradeoff between the memory and transmission rate, the LP solution can provide the whole set of
joint entropy values at an extreme point. These values can reveal a set of dependence relations
among the random variables induced by any code that can achieve this point.

Though the first type of information is important, its translation to code constructions appears
difficult. On the other hand, the second type of information appears to be more suitable for the purpose
of code design, which we adopt next.

One issue that complicates our task is that the entropy values so extracted are not always unique,
and sometimes have considerable slacks. For example, for different LP solutions at the same operating
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point of (M, R) =
( 2

3 , 1
)
, the joint entropy H(Z1, Z2) can vary between one and 4/3. We can identify

such a slack in any joint entropy in the corner point solutions by considering a regularized primal LP:
for a fixed rate value R at the corner point in question as an upper bound, the objective function can be
set as:

minimize: H(Z1) + γH(Z1, Z2) (41)

instead of:

minimize: H(Z1), (42)

subject to the same original symmetric LP constraints at the target M. By choosing a small positive
γ value, e.g., γ = 0.0001, we can find the minimum value for H(Z1, Z2) at the same (M, R) point;
similarly, by choosing a small negative γ value, we can find the maximum value for H(Z1, Z2) at the
same (M, R) point. Such slacks in the solution add uncertainty to the codes we seek to find and may
indeed imply the existence of multiple code constructions. For the purpose of reverse-engineering the
codes, we focus on the joint entropies that do not have any slacks, i.e., the “stable” joint entropies in
the solution.

5.3. Reverse-Engineering the Code for (N, K) = (2, 4)

With the method outlined above, we identify the following stable joint entropy values in the
(N, K) = (2, 4) case for the operating point

( 2
3 , 1

)
listed in Table 3. The values are normalized by

multiplying everything by six. For simplicity, let us assume that each file has six units of information,
written as W1 = (A1, A2, . . . , A6) � A and W2 = (B1, B2, . . . , B6) � B, respectively. This is a rich set of
data, but a few immediate observations are given next.

• The quantities can be categorized into three groups: the first is without any transmission;
the second is the quantities involving the transmission to fulfill the demand type (3, 1); and the
last for demand type (2, 2).

• The three quantities H(Z1W1), H(Z1, Z2W1) and H(Z1, Z2, Z3W1) provide the first important clue.
The values indicate that for each of the two files, each user should have three units in his/her
cache, and the combination of any two users should have five units in their cache, while the
combination of any three users should have all six units in their cache. This strongly suggests
placing each piece Ai (and Bi) at two users. Since each Zi has four units, but it needs to hold
three units from each of the two files, coded placement (cross files) is thus needed. At this point,
we place the corresponding symbols in the caching, but keep the precise linear combination
coefficients as undetermined.

• The next critical observation is that H(X1,2,2,2W1) = H(X1,1,1,2W1) = H(X1,1,2,2W1) = 3.
This implies that the transmission has three units of information on each file alone. However, since
the operating point dictates that H(X1,2,2,2) = H(X1,1,1,2) = H(X1,1,2,2) = 6, it further implies that
in each transmission, three units are for the linear combinations of W2, and 3 units are for those of
W1; in other words, the linear combinations do not need to mix information from different files.

• Since each transmission only has three units of information from each file, and each user has only
three units of information from each file, they must be linearly independent of each other.

The observation and deductions are only from the perspective of the joint entropies given in
Table 3, without much consideration of the particular coding requirement. For example, in the last
item discussed above, it is clear that when transmitting the three units of information regarding a
file (say file W2), they should be simultaneously useful to other users requesting this file, and to the
users not requesting this file. This intuition then strongly suggests each transmitted linear combination
of W2 should be a subspace of the W2 parts at some users not requesting it. Using these intuitions
as guidance, finding the code becomes straightforward after trial-and-error. In [20], we were able to
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further generalize this special code to a class of codes for any case when N ≤ K; readers are referred
to [20] for more details on these codes.

Table 3. Stable joint entropy values at the corner point
(

2
3 , 1

)
for (N, K) = (2, 4).

Joint Entropy Computed Value

H(Z1W1) 3
H(Z1, Z2W1) 5

H(Z1, Z2, Z3W1) 6

H(X1,2,2,2W1) 3
H(Z1, X1,2,2,2W1) 4

H(X1,1,1,2W1) 3
H(Z1, X1,1,1,2W1) 4

H(Z1, Z2, X1,1,1,2W1) 5

H(X1,1,2,2W1) 3
H(Z1, X1,1,2,2W1) 4

H(Z1, Z2, X1,1,2,2W1) 5

5.4. Disproving Linear-Coding Achievability

The reverse engineering approach may not always be successful, either because the structure
revealed by the data is very difficult to construct explicitly, or because linear codes are not sufficient
to achieve this operating point. In some other cases, the determination can be done explicitly. In the
sequel, we present an example for (N, K) = (3, 3), which belongs to the latter case. An outer bound for
(N, K) = (3, 3) is presented in the next section, and among the corner points, the pair (M, R) = ( 2

3 , 4
3 )

is the only one that cannot be achieved by existing schemes. Since the outer bound appears quite strong,
we may conjecture this pair to be also achievable and attempt to construct a code. Unfortunately,
as we shall show next, there does not exist such a (vector) linear code. Before delving into the data
provided by the LP, readers are encouraged to consider proving directly that this tradeoff point cannot
be achieved by linear codes, which does not appear to be straightforward to the author.

We shall assume each file has 3m symbols in a certain finite field, where m is a positive integer.
The LP produces the joint entropy values (in terms of the number of finite field symbols, not in
multiples of file size as in the other sections of the paper) in Table 4 at this corner point, where only the
conditional joint entropies relevant to our discussion next are listed. The main idea is to use these joint
entropy values to deduce structures of the coding matrices, and then combining these structures with
the coding requirements to reach a contradiction.

Table 4. Stable joint entropy values at the corner point
(

2
3 , 4

3

)
for (N, K) = (3, 3).

Joint Entropy Computed Value

H(Z1W1) 2m
H(Z1W1, W2) m

H(Z1, Z2W1, W2) 2m
H(Z1, Z2, Z3W1, W2) 3m

H(X1,2,3) 4m
H(X1,2,3W1) 3m

H(X1,2,3W1, W2) 2m

The first critical observation is that H(Z1W1, W2) = m, and the user-index-symmetry implies
that H(Z2W1, W2) = H(Z3W1, W2) = m. Moreover H(Z1, Z2, Z3W1, W2) = 3m, from which we can
conclude that excluding file W1 and W2, each user stores m linearly independent combinations of the
symbols of file W3, which are also linearly independent among the three users. Similar conclusions
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hold for files W1 and W2. Thus, without loss of generality, we can view the linear combinations of
Wi cached by the users, after excluding the symbols from the other two files, as the basis of file Wi.
In other words, this implies that through a change of basis for each file, we can assume without loss of
generality that user k stores 2m linear combinations in the following form:

Vk ·

⎡⎢⎣ W1,[(k−1)m+1:km]

W2,[(k−1)m+1:km]

W3,[(k−1)m+1:km]

⎤⎥⎦ (43)

where Wn,j is the j-th symbol of the n-th file and Vk is a matrix of dimension 2m × 3m; Vk can be
partitioned into submatrices of dimension m×m, which are denoted as Vk;i,j, i = 1, 2 and j = 1, 2, 3.
Note that symbols at different users are orthogonal to each other without loss of generality.

Without loss of generality, assume the transmitted content X1,2,3 is:

G ·

⎡⎢⎣ W1,[1:3m]

W2,[1:3m]

W3,[1:3m]

⎤⎥⎦ (44)

where G is a matrix of dimension 4m× 9m; we can partition it into blocks of m×m, and each block
is referred to as Gi,j, i = 1, 2, . . . , 4 and j = 1, 2, . . . , 9. Let us first consider User 1, which has the
following symbols:⎡⎢⎢⎢⎢⎢⎢⎢⎣

Vk;1,1 0 0 Vk;1,2 0 0 Vk;1,3 0 0
Vk;2,1 0 0 Vk;2,2 0 0 Vk;2,3 0 0

G1,1 G1,2 ... G1,9
...

...
...

...
G4,1 G4,2 ... G4,9

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎣ W1,[1:3m]

W2,[1:3m]

W3,[1:3m]

⎤⎥⎦ (45)

The coding requirement states that X1,2,3 and Z1 together can be used to recover file W1, and thus,
one can recover all the symbols of W1 knowing (45). Since W1 can be recovered, its symbols can be
eliminated in (45), i.e., ⎡⎢⎢⎢⎢⎢⎢⎢⎣

Vk;1,2 0 0 Vk;1,3 0 0
Vk;2,2 0 0 Vk;2,3 0 0

G1,4 G1,5 ... G1,9
...

...
...

...
G4,4 G4,4 ... G4,9

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·
[

W2,[1:3m]

W3,[1:3m]

]
(46)

in fact becomes known. Notice Table 4 specifies H(Z1W1) = 2m, and thus, the matrix:[
Vk;1,2 Vk;1,3
Vk;2,2 Vk;2,3

]
(47)

is in fact full rank; thus, from the top part of (46), W2,[1:m] and W3,[1:m] can be recovered. In summary,
through elemental row operations and column permutations, the matrix in (45) can be converted into
the following form:
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⎡⎢⎢⎢⎢⎢⎢⎢⎣

U1,1 U1,2 U1,3 0 ... 0
U2,1 U2,2 U2,3 0 ... 0
U3,1 U3,2 U3,3 0 ... 0

0 0 0 U4,4 U5,7 0 0 0 0
0 0 0 U4,4 U5,7 0 0 0 0
0 0 0 0 0 U6,5 U6,6 U6,8 U6,9

⎤⎥⎥⎥⎥⎥⎥⎥⎦
·

⎡⎢⎢⎢⎢⎢⎣
W1,[1:3m]

W2,[1:m]

W3,[1:m]

W2,[m+1:3m]

W3,[m+1:3m]

⎤⎥⎥⎥⎥⎥⎦ , (48)

where diagonal block square matrices are of full rank 3m and 2m, respectively, and Ui,j’s are the
resultant block matrices after the row operations and column permutations. This further implies that
the matrix [U6,5, U6,6, U6,8, U6,9] has maximum rank m, and it follows that the matrix:⎡⎢⎣ G1,5 G1,6 G1,8 G1,9

...
...

...
...

G4,5 G4,6 G4,8 G4,9

⎤⎥⎦ , (49)

i.e., the submatrix of G by taking thick columns (5, 6, 8, 9) has only maximum rank m. However, due to
the symmetry, we can also conclude that the submatrix of G taking only thick columns (1, 3, 7, 9) and
that taking only thick columns (1, 2, 4, 5) both have only maximum rank m. As a consequence, the
matrix G has rank no larger than 3m, but this contradicts the condition that H(X1,2,3) = 4m in Table 4.
We can now conclude that this memory-transmission-rate pair is not achievable with any linear codes

Strictly speaking, our argument above holds under the assumption that the joint entropy values
produced by LP are precise rational values, and the machine precision issue has thus been ignored.
However, if the solution is accurate only up to machine precision, one can introduce a small slack
value δ into the quantities, e.g., replacing 3m with (3± δ)m, and using a similar argument show that
the same conclusion holds. This extended argument however becomes notationally rather lengthy,
and we thus omitted it here for simplicity.

6. Computational Exploration and Bounds for Larger Cases

In this section, we explore the fundamental limits of the caching systems in more detail using a
computational approach. Due to the (doubly) exponential growth of the LP variables and constraints,
directly applying the method outlined in Section 2 becomes infeasible for larger problem cases. This is
the initial motivation for us to investigate single-demand-type systems where only a single demand
type is allowed. Any outer bound on the tradeoff of such a system is an outer bound for the original
one, and the intersection of these outer bounds is thus also an outer bound. This investigation further
reveals several hidden phenomena. For example, outer bounds for different single-demand-type
systems are stronger in different regimes, and moreover, the LP bound for the original system is
not simply the intersection of all outer bounds for single-demand-type systems; however, in certain
regimes, they do match.

Given the observations above, we take the investigation one step further by choosing only a small
subset of demands instead of the complete set in a single demand type. This allows us to obtain results
for cases which initially appear impossible to compute. For example, even for (N, K) = (2, 5), there is
a total of 2 + 5 + 25 = 39 random variables, and the number of constraints in LP after symmetry
reduction is more than 1011, which is significantly beyond current LP solver capability (the problem
can be further reduced using problem specific implication structures as outlined in Section 2, but our
experience suggests that even with such additional reduction the problem may still too large for a
start-of-the-art LP solver). However, by strategically considering only a small subset of the demand
patterns, we are indeed able to find meaningful outer bounds, and moreover, use the clues obtained in
such computational exploration to complete the proof of Theorem 4. We shall discuss the method we
develop, and also present several example results for larger problem cases.
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6.1. Single-Demand-Type Systems

As mentioned above, in a single-demand-type caching systems, the demand must belong to a
particular demand type. We first present results on two cases (N, K) = (2, 4) and (N, K) = (3, 3), and
then discuss our observations using these results.

Proposition 7. Any memory-transmission-rate tradeoff pair for the (N, K) = (2, 4) caching problem must
satisfy the following conditions for single-demand-type (4, 0):

M + 2R ≥ 2, (50)

and conversely any non-negative (M, R) pair satisfying (50) is achievable for single-demand-type (4, 0); it must
satisfy for single-demand-type (3, 1):

2M + R ≥ 2, 8M + 6R ≥ 11, 3M + 3R ≥ 5, 5M + 6R ≥ 9, M + 2R ≥ 2, (51)

and conversely any non-negative (M, R) pair satisfying (51) is achievable for single-demand-type (3, 1); it must
satisfy for single-demand-type (2, 2)

2M + R ≥ 2, 3M + 3R ≥ 5, M + 2R ≥ 2, (52)

and conversely any non-negative (M, R) pair satisfying (52) is achievable for single-demand-type (2, 2).

The optimal (M, R) tradeoffs are illustrated in Figure 4 with the known inner bound, i.e., those
in [6,15], and the one given in the last section, and the computed out bound of the original problem
given in Section 4. Here, the demand type (3, 1) in fact provides the tightest outer bound, which
matches the known inner bound for M ∈ [0, 1/4] ∪ [2/3, 2]. The converse proofs of (51) and (52) are
obtained computationally, the details of which can be found in Appendix G. In fact, only the middle
three inequalities in (51) and the second inequality in (52) need to be proven, since the others are due
to the cut-set bound. Although the original caching problem requires codes that can handle all types of
demands, the optimal codes for single-demand-type systems turn out to be quite interesting by their
own right, and thus, we provide the forward proof of Theorem 7 in Appendix H.
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Known inner bound
Cutset outer bound
Outer bound: Demand type (4,0)
Outer bound: Demand type (3,1)
Outer bound: Demand type (2,2)

Figure 4. Tradeoff outer bounds for (N, K) = (2, 4) caching systems.
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The computed outer bounds for single-demand-type systems for (N, K) = (3, 3) are summarized
below; the proofs can be found in Appendix I.

Proposition 8. Any memory-transmission-rate tradeoff pair for the (N, K) = (3, 3) caching problem must
satisfy the following conditions for single-demand-type (3, 0, 0):

M + 3R ≥ 3, (53)

and conversely any non-negative (M, R) pair satisfying (53) is achievable for single-demand-type (3, 0, 0);
it must satisfy for single-demand-type (2, 1, 0):

M + R ≥ 2, 2M + 3R ≥ 5, M + 3R ≥ 3, (54)

and conversely any non-negative (M, R) pair satisfying (54) is achievable for single-demand-type (2, 1, 0);
it must satisfy for single-demand-type (1, 1, 1):

3M + R ≥ 3, 6M + 3R ≥ 8, M + R ≥ 2, 12M + 18R ≥ 29, 3M + 6R ≥ 8, M + 3R ≥ 3. (55)

These outer bounds are illustrated in Figure 5, together with the best known inner bound by
combining [6,15], and the cut-set outer bound for reference. The bound is in fact tight for M ∈
[0, 1/3] ∪ [1, 3]. Readers may notice that Proposition 8 provides complete characterizations for the first
two demand types, but not the last demand type. As we have shown in Section 5, the point ( 2

3 , 4
3 ) in

fact cannot be achieved using linear codes.
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Figure 5. Tradeoff outer bounds for (N, K) = (3, 3) caching.

Remark 3. The bound developed in [13] gives 6M + 3R ≥ 8 and 2M + 4R ≥ 5, and that in [14] gives
(M + R) ≥ 2 in addition to the cut-set bound.

We can make the following observations immediately:

• The single-demand-type systems for few files usually produce tighter bounds at high memory
regimes, while those for more files usually produce tighter bounds at low memory regimes.
For example, the first high-memory segment of the bounds can be obtained by considering
only demands that request a single file, which coincidentally is also the cut-set bound; for
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(N, K) = (3, 3), the bound obtained from the demand type (2, 1, 0) is stronger than that from
(1, 1, 1) in the range M ∈ [1, 2].

• Simply intersecting the single-demand-type outer bounds does not produce the same bound as
that obtained from a system with the complete set of demands. This can be seen from the case
(N, K) = (2, 4) in the range M ∈ [1/4, 2/3].

• The outer bounds produced by single-demand-type systems in many cases match the bound
when more comprehensive demands are considered. This is particularly evident in the case
(N, K) = (2, 4) in the range M ∈ [0, 1/4] ∪ [2/3, 2].

These observations provide further insights on the difficulty of the problem. For instance,
for (N, K) = (2, 4), the demand type (3, 1) is the most demanding case, and code design for this
demand type should be considered as the main challenge. More importantly, these observation
suggests that it is possible to obtain very strong bounds by considering only a small subset of demands,
instead of the complete set of demands. In the sequel, we further explore this direction.

6.2. Equivalent Bounds Using Subsets of Demands

Based on the observations in the previous subsection, we conjecture that in some cases, equivalent
bounds can be obtained by using only a smaller number of requests, and moreover, these demands
do not need to form a complete demand type class; next, we show that this is indeed the case.
To be more precise, we are relaxing the LP, by including only elemental inequality constraints that
involve joint entropies of random variables within a subset of the random variables W ∪ Z ∪ X ,
and other constraints are simply removed. However, the symmetry structure specified in Section 3
is still maintained to reduce the problem. This approach is not equivalent to forming the LP on a
caching system where only those files, users and demands are present, since in this alternative setting,
symmetric solutions may induce loss of optimality.

There are many choices of subsets with which the outer bounds can be computed, and we only
provide a few that are more relevant, which confirm our conjecture:

Fact 1. In terms of the computed outer bounds, the following facts were observed:

• For the (N, K) = (2, 4) case, the outer bound in Proposition 6 can be obtained by restricting to the
subset of random variablesW ∪Z ∪ {X1,1,1,2, X1,1,2,2}.

• For the (N, K) = (2, 4) case, the outer bound in Proposition 7 in the range M ∈ [1/3, 2] for
single-demand-type (3, 1) can be obtained by restricting to the subset of random variablesW ∪
Z ∪ {X2,1,1,1, X1,2,1,1, X1,1,2,1, X1,1,1,2}.

• For the (N, K) = (3, 3) case, the intersection of the outer bounds in Proposition 8 can be obtained
by restricting to the subset of random variablesW ∪Z ∪ {X2,1,1, X3,1,1, X3,2,1}.

• For the (N, K) = (3, 3) case, the outer bound in Proposition 8 in the range M ∈ [2/3, 3] for
single-demand-type (2, 1) can be obtained by restricting to the subset of random variablesW ∪
Z ∪ {X2,1,1, X3,1,1}.

These observations reveal that the subset of demands can be chosen rather small to produce
strong bounds. For example, for the (N, K) = (2, 4) case, including only joint entropies involving
eight random variablesW ∪Z ∪ {X1,1,1,2, X1,1,2,2} will produce the strongest bound as including all
22 random variables. Moreover, for specific regimes, the same bound can be produced using an even
smaller number of random variables (for the case (N, K) = (3, 3)), or with a more specific set of
random variables (for the case (N, K) = (2, 4), where in the range [1/3,2], including only some of the
demand type (3, 1) is sufficient). Equipped with these insights, we can attempt to tackle larger problem
cases, for which it would have appeared impossible to produce computationally meaningful outer
bounds. In the sequel, this approach is applied for two purposes: (1) to identify generic structures in
converse proofs, and (2) to produce outer bounds for large problem cases.
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6.3. Identifying Generic Structures in Converse Proofs

Recall our comment given after the proof of Theorem 4 that finding this proof is not
straightforward. One critical clue was obtained when applying the exploration approach discussed
above. When restricting the set of included random variables to a smaller set, the overall problem is
relaxed; however, if the outer bound thus obtained remains the same, it implies that the sought-after
outer bound proof only needs to rely on the joint entropies within this restricted set. For the specific
case of (N, K) = (2, 5), we have the following fact.

Fact 2. For (N, K) = (2, 5), the bound 15M + 20R ≥ 28 in the range M ∈ [6/5, 8/5] can be obtained by
restricting to the subset of random variablesW ∪Z ∪ {X2,1,1,1,1, X1,2,1,1,1, X1,1,2,1,1, X1,1,1,2,1, X1,1,1,1,2}.

Together with the second item in Fact 1, we can naturally conjecture that in order to prove the
hypothesized outer bound, only the dependence structure within the set of random variablesW ∪Z ∪
X→[1:K] needs to be considered, and all the proof steps can be written using mutual information or joint
entropies of them alone. Although this is still not a trivial task, the possibility is significantly reduced,
e.g., for the (N, K) = (2, 5) case to only 12 random variables, with a much simpler structure than that
of the original problem with 39 random variables. Perhaps more importantly, such a restriction makes
it feasible to identify a common route of derivation in the converse proof and then generalize it, from
which we obtain the proof of Theorem 4.

6.4. Computing Bounds for Larger Problem Cases

We now present a few outer bounds for larger problem cases, and make comparison with other
known bounds in the literature. This is not intended to be a complete list of results we obtain, but
these are perhaps the most informative.

In Figure 6, we provide results for (N, K) = (4, 3), (N, K) = (5, 3) and (N, K) = (6, 3). Included
are the computed outer bounds, the inner bound by the scheme in [6], the cut-set outer bounds,
and for reference, the outer bounds given in [12]. We omit the bounds in [13,14] to avoid too much
clutter in the plot; however, they do not provide better bounds than that in [12] for these cases. It can
be seen that the computed bounds are in fact tight in the range M ∈ [4/3, 4] for (N, K) = (4, 3),
M ∈ [5/3, 5] for (N, K) = (5, 3), and tight in general for (N, K) = (6, 3); in these ranges, the scheme
given in [6] is in fact optimal. Unlike our computed bounds, the outer bound in [12] does not provide
additional tight results beyond those already determined using the cut-set bound, except the single
point (M, R) = (2, 1) for (N, K) = (6, 3).
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Figure 6. The computed outer bounds for (N, K) = (4, 3), (N, K) = (5, 3) and (N, K) = (6, 3) caching
systems. The red dotted lines give the computed outer bounds; the blue dashed-dot lines are the cut-set
outer bounds; the black dashed lines are the inner bound using the scheme in [6]; and the thin blue
lines are the outer bounds given in [12]. Only nontrivial outer bound corner points that match inner
bounds are explicitly labeled.
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In Figure 7, we provide results for (N, K) = (3, 4), (N, K) = (3, 5) and (N, K) = (3, 6). Included
are the computed outer bounds, the inner bound by the code in [6] and that in [20], the cut-set outer
bound, and for reference, the outer bounds in [12]. The bounds in [13,14] are again omitted. It can be
seen that the computed bounds are in fact tight in the range M ∈ [0, 1/4] ∪ [3/2, 3] for (N, K) = (3, 4),
M ∈ [0, 1/5] ∪ [6/5, 3] for (N, K) = (3, 5), and M ∈ [0, 1/6] ∪ [3/2, 3] for (N, K) = (3, 6). Generally,
in the high memory regime, the scheme given in [6] is in fact optimal, and in the low memory regime,
the schemes in [15,20] are optimal. It can be see that the outer bound in [12] does not provide additional
tight results beyond those already determined using the cut-set bound. The bounds given above in
fact provide grounds and directions for further investigation and hypotheses on the optimal tradeoff,
which we are currently exploring.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(9/4, 1/4)

(3/2, 2/3)

(1/4, 9/4)

M

R

Case (N,K)=(3,4)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(1/5 , 12/5)

(6/5 , 1   )

(9/5 , 1/2 )

(12/5, 1/5 )

M

R

Case (N,K)=(3,5)

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(1/6, 5/2)

(3/2, 3/4)

(2  , 2/5)

(5/2, 1/6)

M

R

Case (N,K)=(3,6)

Figure 7. The computed outer bounds for (N, K) = (3, 4), (N, K) = (3, 5) and (N, K) = (3, 6) caching
systems. The red dotted lines give the computed outer bounds; the blue dashed-dot lines are the cut-set
outer bounds; the black dashed lines are the inner bound using the scheme in [6,20]; and the thin blue
lines are the outer bounds given in [12]. Only nontrivial outer bound corner points that match inner
bounds are explicitly labeled.

7. Conclusions

We presented a computer-aided investigation on the fundamental limit of the caching problem,
including data-driven hypothesis forming, which leads to several complete or partial characterizations
of the memory-transmission-rate tradeoff, a new code construction reverse-engineered through the
computed outer bounding data and a computerized exploration approach that can reveal hidden
structures in the problem and also enables us to find surprisingly strong outer bounds for larger
problem cases.

It is our belief that this work provides strong evidence of the effectiveness of the computer-aided
approach in the investigation of the fundamental limits of communication, data storage and data
management systems. Although at first sight, the exponential growth of the LP problem would prevent
any possibility of obtaining meaningful results on engineering problems of interest, our experience
in [2,3] and the current work suggest otherwise. By incorporating the structure of the problem, we
develop more domain-specific tools in such investigations and were able to obtain results that appear
difficult for human experts to obtain directly.

Our effort can be viewed as both data-driven and computational, and thus, more advanced
data analysis and machine learning technique may prove useful. Particularly, the computer-aided
exploration approach is clearly a human-in-the-loop process, which can benefit from more automation
based on reinforcement learning techniques. Moreover, the computed generated proofs may involve
a large number of inequalities and joint entropies, and more efficient classification or clustering of
these inequalities and joint entropies can reduce the human burden in the subsequent analysis. It is
our hope that this work can serve as a starting point to introduce more machine intelligence and
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the corresponding computer-aided tools into information theory and communication research in
the future.
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Appendix A. Finding Corner Points of the LP Outer Bounds

Since this is an LP problem, and also due to the problem setting, only the lower hull of the outer
bound region between the two quantities M and R is of interest. The general algorithm in [27] is
equivalent to the procedure given in Algorithm 1 in this specific setting. In this algorithm, the set P
in the input is the initial extreme points of the tradeoff region, which are trivially known from the
problem setting. The variables and constraints in the LP are given as outlined in Section 2 for a fixed
(N, K) pair, which are populated and considered fixed. The output set P is the final computed extreme
points of the outer bound. The algorithm can be intuitively explained as follows: starting with two
known extreme points, if there are any other corner points, they must lie below the line segment
connecting these two points, and thus, an LP that minimizes the bounding plane along the direction of
this line segment must be able to find a lower value; if so, the new point is also an extreme point, and
we can repeat this procedure again.

In the caching problem, the tradeoff is between two quantities M and R. We note here if there are
more than two quantities that need to be considered in the tradeoff, the algorithm is more involved,
and we refer the readers to [27,28] for more details on such settings.

Algorithm 1: An algorithm to identify the corner points of the LP outer bound.

Input : N, K, P = {(N, 0), (0, min(N, K))}
Output :P

1 n = 2; i = 1;
2 while i < n do
3 Compute the line segment connecting i-th and (i + 1)-th (M, R) pairs in P , as M + αR = β;
4 Set the objective of the LP as M + αR, and solve LP for solution (M∗, R∗) and objective β∗;
5 if β∗ < β then
6 Insert (M∗, R∗) in P between the i-th and (i + 1)-th (M, R) pairs;
7 n = n + 1;
8 else
9 i = i + 1;

10 end

11 end

Appendix B. Proofs of Proposition 3 and Proposition 4

The proof of Proposition 3 is given in the Tables A1 and A2, and that of Proposition 4 is given
in the Tables A3 and A4. Each row in Tables A2 and A4, except the last rows, are simple and known
information inequalities, up to the symmetry defined in Section 3. The last rows in Tables A2 and
A4 are the sum of all previous rows, which are the sought-after inequalities, and they are simply
the consequences of the known inequalities summed together. When represented in this form,
the correctness of the proof is immediate, since the columns representing quantities not present
in the final bound cancel out each other when being summed together. The rows in Table A2 are
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labeled, and it has more details in order to illustrate the meaning and usage of the tabulation proof in
the example we provide next.

As mentioned previously, each row in Table A2 is an information inequality, which involves
multiple joint entropies, but can also be represented in a mutual information form. For example,
Row (2) is read as:

2T8 − T4 − T10 ≥ 0, (A1)

and in the last, but one column of Table A2, an information inequality is given, which is an equivalent
representation as a mutual information quantity:

I(Z1; Z2W1) ≥ 0, (A2)

which can be seen by simply expanding the mutual information as:

I(Z1; Z2W1) = H(Z1, W1) + H(Z2, W1)− H(W1)− H(Z1, Z2, W1)

= 2H(Z1, W1)− H(W1)− H(Z1, Z2, W1)

= 2T8 − T4 − T10.

(A3)

Directly summing up these information inequalities and canceling out redundant terms will directly
result in the bound 2R + 2H(Z1)− 4F ≥ 0, which clearly can be used to write 2R + 2M− 4F ≥ 0.

Using these proof tables, one can write down different versions of proofs, and one such example
is provided next based on Tables A1 and A2 for Proposition 3 by invoking the inequalities in Table A2
one by one.

2M + 2R
(1)
≥ 2H(X1,2) + 2H(Z1)

(3)
≥ 2H(Z1, X1,2)

(5)
≥ 2H(Z1, X1,2)− 2I(X1,2; Z2Z1, W1)

= 2H(Z1, X1,2, W1)− 2I(X1,2; Z2Z1, W1)

(c)
= 2H(Z1, Z2, W1, X1,2) + 2H(Z1, W1)− 2H(Z1, Z2, W1)

(2)
≥ 2H(Z1, Z2, W1, X1,2) + 2H(Z1, W1)− 2H(Z1, Z2, W1)− I(Z1; Z2W1)

= 2H(Z1, Z2, W1, X1,2)− H(Z1, Z2, W1) + H(W1)

(4)
≥ 2H(Z1, Z2, W1, X1,2)− H(Z1, Z2, W1) + H(W1)− I(X1,2; X1,3Z1, Z2, W1)

= H(W1) + H(W1, W2, W3)

(6,7)
≥ 4F,

(A4)

where the inequalities match precisely the rows in Table A2, and the equality labeled (c) indicates the
decoding requirement is used. In this version of the proof, we applied the inequalities in the order of
(1)-(3)-(5)-(2)-(4)-(6,7), but this is by no means critical, as any order will yield a valid proof. One can
similarly produce many different versions of proofs for Proposition 4 based on Tables A3 and A4.
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Table A1. Terms needed to prove Proposition 3.

T1 F
T2 R
T3 H(X1,2)
T4 H(W1)
T5 H(W1, W2, W3)
T6 H(Z1)
T7 H(Z1, X1,2)
T8 H(Z1, W1)
T9 H(Z1, Z2, X1,2)
T10 H(Z1, Z2, W1)

Table A2. Proof by Tabulation of Proposition 3, with terms defined in Table A1.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

2 −2 2(R− H(X1,2)) ≥ 0 (1)
−1 2 −1 I(Z1; Z2W1) ≥ 0 (2)

2 2 −2 2I(X1,2; Z1) ≥ 0 (3)
−1 2 −1 I(X1,2; X1,3Z1, Z2, W1) ≥ 0 (4)

2 −2 −2 2 2I(X1,2; Z2Z1, W1) ≥ 0 (5)
−1 1 H(W1)− F ≥ 0 (6)
−3 1 H(W1, W2, W3)− 3F ≥ 0 (7)

−4 2 2 2R + 2H(Z1)− 4F ≥ 0

Table A3. Terms needed to prove Proposition 4.

T1 F
T2 R
T3 H(X1,2)
T4 H(W1)
T5 H(W1, X1,2)
T6 H(W1, X1,3, X2,1)
T7 H(W1, W2)
T8 H(W1, W3, X1,2)
T9 H(W1, W2, W3, W4)
T10 H(Z1)
T11 H(Z1, X1,2)
T12 H(Z1, X1,3, X2,1)
T13 H(Z1, X1,4, X2,3)
T14 H(Z1, W1)
T15 H(Z1, W3, X1,2)
T16 H(Z1, W2, X1,2)
T17 H(Z1, W1, W2)
T18 H(Z1, W2, W3, X1,2)
T19 H(Z1, Z2, X1,2)
T20 H(Z1, Z2, X1,3, X2,1)
T21 H(Z1, Z2, W3, X1,2)
T22 H(Z1, Z2, W1, W2)
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Table A4. Proof by Tabulation of Proposition 4, with terms defined in Table A3.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22

1 −1
8 −8

8 8 −8
−2 4 −2

−1 −1 2
−2 4 −2

−2 2 2 −2
−1 1 1 −1

2 −2 −2 2
1 −1 −1 1

−2 2 2 −2
−1 1 1 −1

−2 2 −2 2
−2 2
−2 1
−12 3

−16 8 6

Appendix C. Proofs of Lemma 1 and Theorem 3

Proofs of Lemma 1. We first write the following chain of inequalities:

(N − n)H(Z1, W[1:n], Xn,n+1) = (N − n)
[

H(Z1, W[1:n]) + H(Xn,n+1Z1, W[1:n])
]

(a)
= (N − n)H(Z1, W[1:n]) +

N

∑
i=n+1

H(Xn,iZ1, W[1:n])

≥ (N − n)H(Z1, W[1:n]) + H(Xn,[n+1:N]Z1, W[1:n])

= (N − n− 1)H(Z1, W[1:n]) + H(Xn,[n+1:N], Z1, W[1:n]),

(A5)

where (a) is because of the file-index-symmetry. Next, notice that by the user-index-symmetry:

H(Z1, W[1:n]) = H(Z2, W[1:n]), (A6)

which implies that:

H(Z1, W[1:n]) + H(Xn,[n+1:N], Z1, W[1:n]) ≥ H(Z2, W[1:n]) + H(Xn,[n+1:N], W[1:n])

(b)
≥ H(W[1:n]) + H(Xn,[n+1:N], Z2, W[1:n])

(c)
= H(W[1:n]) + H(Xn,[n+1:N], Z2, W[1:N])

= H(W[1:n]) + H(W[1:N]) = N + n,

(A7)

where (b) is by the sub-modularity of the entropy function, and (c) is because of (3). Now, substituting
(A7) into (A5) gives (28), which completes the proof.

We are now ready to prove Theorem 3.

Proof of Theorem 3. For N ≥ 3, it can be verified that the three corner points of the given tradeoff
region are:

(0, 2), (
N
2

,
1
2
), (N, 0), (A8)

which are achievable using the codes given in [6]. The outer bound M + NR ≥ N can also be obtained
as one of the cut-set outer bounds in [6], and it only remains to show that the inequality 3M+ NR ≥ 2N
is true. For this purpose, we claim that for any integer n ∈ {1, 2, . . . , N − 2}:
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3M + NR ≥ 3
n

∑
j=1

[
N + j
N − j

j−1

∏
i=1

N − (i + 2)
N − i

]
+ 3

n

∏
j=1

N − (j + 2)
N − j

H(Z1, W[1:n])

+ [N − (n + 2)]
n−1

∏
j=1

N − (j + 2)
N − j

H(X1,2),

(A9)

which we prove next by induction.
First, notice that:

3M + NR ≥ 3H(Z1) + NH(X1,2)

≥ 3H(Z1, X1,2) + (N − 3)H(X1,2)

(3)
= 3H(Z1, W1, X1,2) + (N − 3)H(X1,2)

(d)
≥ 3(N − 3)

N − 1
H(Z1, W1) +

3(N + 1)
N − 1

+ (N − 3)H(X1,2),

(A10)

where we wrote (3) to mean by Equation (3), and (d) is by Lemma 1 with n = 1. This is precisely the
claim when n = 1, when we take the convention ∏n

k (·) = 1 when n < k in (A9).
Assume the claim is true for n = n∗, and we next prove it is true for n = n∗ + 1. Notice that the

second and third terms in (A9) have a common factor:

N − (n∗ + 2)
N − n∗

n∗−1

∏
j=1

N − (j + 2)
N − j

=
n∗

∏
j=1

N − (j + 2)
N − j

, (A11)

and using this to normalize the last two terms gives:

3H(Z1, W[1:n∗ ]) + (N − n∗)H(X1,2)

(e)
= 3[H(Z1, W[1:n∗ ]) + H(Xn∗+1,n∗+2)] + (N − n∗ − 3)H(X1,2)

≥ 3[H(Z1, W[1:n∗ ], Xn∗+1,n∗+2)] + (N − n∗ − 3)H(X1,2)

(3)
= 3[H(Z1, W[1:n∗+1], Xn∗+1,n∗+2)] + (N − n∗ − 3)H(X1,2)

( f )
≥ 3

(N − n∗ − 3)
N − n∗ − 1

H(Z1, W[1:n∗+1]) + 3
N + n∗ + 1
N − n∗ − 1

+ (N − n∗ − 3)H(X1,2),

(A12)

where (e) is by the file-index-symmetry, and ( f ) is by Lemma 1. Substituting (A11) and (A12) into (A9)
for the case n = n∗ gives exactly (A9) for the case n = n∗ + 1, which completes the proof for (A9).

It remains to show that (A9) implies the bound 3M + NR ≥ 2N. For this purpose, notice that
when n = N − 2, the last two terms in (A9) reduce to zero, and thus, we only need to show that:

Q(N) � 3
N−2

∑
j=1

[
N + j
N − j

j−1

∏
i=1

N − (i + 2)
N − i

]
= 2N. (A13)

For each summand, we have:

N + j
N − j

j−1

∏
i=1

N − (i + 2)
N − i

=
N + j
N − j

[
N − 3
N − 1

N − 4
N − 2

N − 5
N − 3

. . .
N − j− 1
N − j + 1

]
=

(N − j− 1)(N + j)
(N − 1)(N − 2)

.

(A14)
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Thus, we have:

Q(N) =
3

(N − 1)(N − 2)

N−2

∑
j=1

(N − j− 1)(N + j) = 2N,

where we have used the well-known formula for the sum of integer squares. The proof is
thus complete.

Appendix D. Proof of Proposition 5

We first consider the achievability, for which only the achievability of the following extremal
points needs to be shown because of the polytope structure of the region:

(M, R) ∈
{
(0, 2),

(
1
3

,
4
3

)
,
(

4
3

,
1
3

)
, (2, 0)

}
. (A15)

Achieving the rate pairs (0, 2) and (2, 0) is trivial. The scheme in [6] can achieve the rate pair(
4
3 , 1

3

)
. The rate pair

(
1
3 , 4

3

)
can be achieved by a scheme given in [15], which is a generalization of a

special scheme given in [6]. To prove the converse, we note first that the cut-set-based approach can
provide all bounds in (29) except

3M + 3R ≥ 5, (A16)

which is a new inequality. As mentioned earlier, this inequality is a special case of Theorem 4 and there
is no need to prove it separately.

Appendix E. Proof of Proposition 6

The inequality 14M+ 11R ≥ 20 is proven using Tables A5 and A6, and the inequality 9M+ 8R ≥ 14
is proven using Tables A7 and A8.

Table A5. Terms needed to prove Proposition 6, inequality 14M + 11R ≥ 20.

T1 F
T2 R
T3 H(X1,1,1,2)
T4 H(X1,1,2,2)
T5 H(W1)
T6 H(W1, X1,1,1,2)
T7 H(W1, X1,1,2,2)
T8 H(W1, W2)
T9 H(Z1)
T10 H(Z1, X1,1,1,2)
T11 H(Z1, X1,1,2,2)
T12 H(Z4, X1,1,1,2)
T13 H(Z1, W1)
T14 H(Z1, Z2, X1,1,1,2)
T15 H(Z1, Z2, X1,1,2,2)
T16 H(Z1, Z2, W1)
T17 H(Z1, Z2, Z3, X1,1,1,2)
T18 H(Z1, Z2, Z3, W1)
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Table A6. Tabulation proof of Proposition 6 inequality 14M+ 11R ≥ 20, with terms defined in Table A5.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18

2 −2
8 −8
3 −3

6 6 −6
4 4 −4

4 4 −4
−4 8 −4

−2 4 −2
−1 2 −1

−2 4 −2
−2 2 −2 2

−2 2 −2 2
−2 2 −2 2

−2 2 −2 2
−2 2
−18 9

−20 11 14

Table A7. Terms needed to prove Proposition 6, inequality 9M + 8R ≥ 14.

T1 F
T2 R
T3 H(X1,1,1,2)
T4 H(X1,1,2,2)
T5 H(W1)
T6 H(W1, X1,1,1,2)
T7 H(W1, X1,1,2,2)
T8 H(W1, X1,2,1,1, X1,1,2,2)
T9 H(W1, W2)
T10 H(Z1)
T11 H(Z1, X1,1,1,2)
T12 H(Z1, X1,1,2,2)
T13 H(Z1, X1,2,1,1, X1,1,2,2)
T14 H(Z1, W1)
T15 H(Z1, Z2, X1,1,1,2)
T16 H(Z1, Z2, X1,1,2,2)
T17 H(Z1, Z2, W1)
T18 H(Z1, Z2, Z3, X1,1,1,2)
T19 H(Z1, Z2, Z3, W1)

Table A8. Tabulation proof of Proposition 6 inequality 9M + 8R ≥ 14, with terms defined in Table A7.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19

1 −1
4 −4
4 −4

−1 1
4 4 −4

5 5 −5
−2 4 −2

−1 2 −1
−1 2 −1

−1 2 −1
−2 2 −2 2

−1 1 −1 1
1 1 −1 −1

−1 1 −1 1
−1 1 −1 1

−2 2
−12 6

−14 8 9
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Appendix F. Proof of Lemma 2

Proof of Lemma 2. We prove this lemma by induction. First, consider the case when k = K − 1,
for which we write:

2H(Z1, W1, X→[2:K−1])

(a)
= H(Z1, W1, X→[2:K−1]) + H(Z1, W1, X→[2:K−2], X→K)

= H(X→K−1Z1, W1, X→[2:K−2]) + H(X→KZ1, W1, X→[2:K−2]) + 2H(Z1, W1, X→[2:K−2])

≥ H(Z1, W1, X→[2:K]) + H(Z1, W1, X→[2:K−2]),

(A17)

where (a) is by file-index symmetry. The first quantity can be lower bounded as:

H(Z1, W1, X→[2:K]) ≥ H(W1, X→[2:K]), (A18)

which leads to a bound on the following sum:

H(Z1, W1, X→[2:K]) + H(Z1, W1, X→[2:K−1])

≥ H(W1, X→[2:K]) + H(Z1, W1, X→[2:K−1])

≥ H(X→KW1, X→[2:K−1]) + H(Z1W1, X→[2:K−1]) + 2H(W1, X→[2:K−1])

(b)
= H(X→KW1, X→[2:K−1]) + H(ZKW1, X→[2:K−1]) + 2H(W1, X→[2:K−1])

≥ H(ZK, X→KW1, X→[2:K−1]) + 2H(W1, X→[2:K−1])

(c)
= H(ZK, X→K, W2W1, X→[2:K−1]) + 2H(W1, X→[2:K−1])

(d)
= H(W1, W2) + H(W1, X→[2:K−1]),

(A19)

where (b) is by the user index symmetry, (c) is because ZK and X1,1,...,2 can be used to produce W2, and
(d) is because all other variables are deterministic functions of (W1, W2). Adding H(Z1, W1, X→[2:K−1])

on both sides of (A17), and then applying (A19) lead to:

3H(Z1, W1, X→[2:K−1]) ≥ H(Z1, W1, X→[2:K−2]) + H(W1, X→[2:K−1]) + H(W1, W2)

(e)
= H(ZK−1, W1, X→[2:K−2]) + H(W1, X→[2:K−1]) + H(W1, W2)

( f )
≥ H(ZK−1, W1, X→[2:K−1]) + H(W1, X→[2:K−2]) + H(W1, W2)

= H(ZK−1, W1, X→[2:K−1], W2) + H(W1, X→[2:K−2]) + H(W1, W2)

= H(W1, X→[2:K−2]) + 2H(W1, W2),

(A20)

which (e) follows from the user-index symmetry, and ( f ) by the sub-modularity of the entropy function.
This is precisely (33) for k = K− 1.

Now, suppose (33) holds for k = k∗ + 1; we next prove it is true for k = k∗ for K ≥ 4, since when
K = 3 there is nothing to prove beyond k = K − 1 = 2. Using a similar decomposition as in (A17),
we can write:

2H(Z1, W1, X→[2:k∗ ]) ≥ H(Z1, W1, X→[2:k∗+1]) + H(Z1, W1, X→[2:k∗−1]) (A21)
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Next, we apply the supposition for k = k∗ + 1 on the first term of the right hand side, which gives:

2H(Z1, W1, X→[2:k∗ ]) ≥
[(K− k∗ − 1)(K− k∗)− 2]H(Z1, W1, X→[2:k∗ ])

(K− k∗)(K− k∗ + 1)
+

2H(W1, X→[2:k∗ ])

(K− k∗)(K− k∗ + 1)

+
2(K− k∗)H(W1, W2)

(K− k∗)(K− k∗ + 1)
+ H(Z1, W1, X→[2:k∗−1])

(A22)

Notice that the coefficient in front of H(W1, X→[2:k∗ ]) is always less than one for K ≥ 4 and k∗ ∈
{2, 3, . . . , K− 1}, and we can thus bound the following sum:

2H(W1, X→[2:k∗ ])

(K− k∗)(K− k∗ + 1)
+ H(Z1, W1, X→[2:k∗−1])

=
2[H(W1, X→[2:k∗ ]) + H(Z1, W1, X→[2:k∗−1])]

(K− k∗)(K− k∗ + 1)
+

(K− k∗)(K− k∗ + 1)− 2
(K− k∗)(K− k∗ + 1)

H(Z1, W1, X→[2:k∗−1])

(g)
≥

2[H(W1, W2) + H(W1, X→[2:k∗−1])]

(K− k∗)(K− k∗ + 1)
+

(K− k∗)(K− k∗ + 1)− 2
(K− k∗)(K− k∗ + 1)

H(Z1, W1, X→[2:k∗−1]),

(A23)

where (g) follows the same line of argument as in (A19). Substituting (A23) into (A22) and canceling
out the common terms of H(Z1, W1, X→[2:k∗ ]) on both sides now give (33) for k = k∗. The proof is
thus complete.

Appendix G. Proof for the Converse of Proposition 7

The inequalities 8M + 6R ≥ 11, 3M + 3R ≥ 5 and 5M + 6R ≥ 9 in (51) can be proven using
Tables A9–A14, respectively. The inequality 3M + 3R ≥ 5 in (52) is proven using Tables A15 and A16.
All other bounds in Proposition 7 follow from the cut-set bound.

Table A9. Terms needed to prove Proposition 7, inequality 8M + 6R ≥ 11.

T1 F
T2 R
T3 H(X1,1,1,2)
T4 H(W1)
T5 H(W1, X1,1,1,2)
T6 H(W1, W2)
T7 H(Z1)
T8 H(Z1, X1,1,1,2)
T9 H(Z1, W1)
T10 H(Z1, Z2, X1,1,1,2)
T11 H(Z1, Z2, W1)
T12 H(Z1, Z2, Z3, X1,1,1,2)
T13 H(Z1, Z2, Z3, W1)

Table A10. Tabulation proof of Proposition 7 inequality 8M + 6R ≥ 11, with terms defined in Table A9.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

1 −1
6 −6

2 2 −2
6 6 −6

−3 6 −3
−1 2 −1

−3 3 −3 3
−1 1 −1 1
−1 1 −1 1

−1 1
−10 5

−11 6 8
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Table A11. Terms needed to prove Proposition 7, inequality 3M + 3R ≥ 5 in (51).

T1 F
T2 R
T3 H(X1,1,1,2)
T4 H(W1)
T5 H(W1, X1,1,1,2)
T6 H(W1, X1,1,1,2, X1,1,2,1)
T7 H(W1, W2)
T8 H(Z1)
T9 H(Z1, X1,1,1,2)
T10 H(Z1, X1,1,1,2, X1,1,2,1)
T11 H(Z1, W1)

Table A12. Tabulation proof of Proposition 7 inequality 3M + 3R ≥ 5 in (51), with terms defined
in Table A11.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

3 −3
−1 1

3 3 −3
2 −1 −1

−1 1 −1 1
−1 1 −1 1

−1 1
−4 2

−5 3 3

Table A13. Terms needed to prove Proposition 7, inequality 5M + 6R ≥ 9.

T1 F
T2 R
T3 H(X1,1,1,2)
T4 H(W1)
T5 H(W1, X1,1,1,2)
T6 H(W1, X1,1,1,2, X1,1,2,1)
T7 H(W1, X1,1,1,2, X1,1,2,1, X1,2,1,1)
T8 H(W1, W2)
T9 H(Z1)
T10 H(Z1, X1,1,1,2)
T11 H(Z1, X1,1,1,2, X1,1,2,1)
T12 H(Z1, X1,1,1,2, X1,1,2,1, X1,2,1,1)
T13 H(Z1, W1)

Table A14. Tabulation proof of Proposition 7 inequality 5M + 6R ≥ 9, with terms defined in Table A13.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

6 −6
−1 1

−1 −1 2
6 6 −6

6 −3 −3
−1 2 −1

−1 1 −1 1
−1 1 −1 1

−1 1 −1 1
−1 1
−8 4

−9 6 5
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Table A15. Terms needed to prove Proposition 7, inequality 3M + 3R ≥ 5 in (52).

T1 F
T2 R
T3 H(X1,1,2,2)
T4 H(W1)
T5 H(W1, X1,1,2,2)
T6 H(W1, X1,1,2,2, X1,2,1,2)
T7 H(W1, W2)
T8 H(Z1)
T9 H(Z1, X1,1,2,2)
T10 H(Z1, X1,1,2,2, X1,2,1,2)
T11 H(Z1, W1)

Table A16. Tabulation proof of Proposition 7 inequality 3M + 3R ≥ 5 in (52), with terms defined
in Table A15.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

3 −3
−1 1

3 3 −3
2 −1 −1

−1 1 −1 1
−1 1 −1 1

−1 1
−4 2

−5 3 3

Appendix H. Proof for the Forward of Proposition 7

Note that the optimal tradeoff for the single demand type (3, 1) system has the following
corner points:

(M, R) = (0, 2),
(

1
4

,
3
2

)
,
(

1
2

,
7
6

)
,
(

1,
2
3

)
,
(

3
2

,
1
4

)
, (2, 0).

The corner points
(
1, 2

3
)

and
(

3
2 , 1

4

)
are achievable using the Maddah-Ali–Niesen scheme [6]. The point(

1
4 , 3

2

)
is achievable by the code given in [15] or [20]. The only remaining corner point of interest is

thus
(

1
2 , 7

6

)
, in the binary field. This can be achieved by the following strategy in Table A17, where the

first file has six symbols (A1, A2, . . . , A6) and the second file (B1, B2, . . . , B6).

Table A17. Code for the tradeoff point
(

1
2 , 7

6

)
for demand type (3, 1) when (N, K) = (2, 4).

User 1 A1 + B1 A2 + B2 A3 + B3
User 2 A1 + B1 A4 + B4 A5 + B5
User 3 A2 + B2 A4 + B4 A6 + B6
User 4 A3 + B3 A5 + B5 A6 + B6

By the symmetry, we only need to consider the demand when the first three users request A and
the last user request B. The server can send the following symbols in this case:

A3, A5, A6, B1, B2, B4, A1 + A2 + A4.
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Let us consider now the single-demand-type (2, 2) system, for which the corner points on the
optimal tradeoff are:

(M, R) = (0, 2),
(

1
3

,
4
3

)
,
(

4
3

,
1
3

)
, (2, 0).

Let us denote the first file as (A1, A2, A3), and the second file as (B1, B2, B3), which are in the binary
field. To achieve the corner point

(
1
3 , 4

3

)
, we use the caching code in Table A18.

Table A18. Code for the tradeoff point
(

1
3 , 4

3

)
for demand-type (2, 2) when (N, K) = (2, 4).

User 1 A1 + B1
User 2 A2 + B2
User 3 A3 + B3
User 4 A1 + A2 + A3 + B1 + B2 + B3

Again due to the symmetry, we only need to consider the case when the first two users request A,
and the other two request B. For this case, the server can send:

B1, B2, A3, A1 + A2 + A3.

For the other corner point
(

4
3 , 1

3

)
the following placement in Table A19 can be used. Again for the case

when the first two users request A, and the other two request B, the server can send:

A1 − A3 + B2.

Table A19. Code for the tradeoff point
(

4
3 , 1

3

)
for demand-type (2, 2) when (N, K) = (2, 4).

User 1 A1 A2 B1 B2
User 2 A2 A3 B2 B3
User 3 A1 A3 B1 B3
User 4 A1 + A2 A2 + A3 B1 + B2 B2 + B3

Appendix I. Proof of Proposition 8

The inequalities M + R ≥ 2 and 2M + 3R ≥ 5 in (54) are proven in Tables A20–A23, respectively.
The inequalities 6M + 3R ≥ 8, M + R ≥ 2, 12M + 18R ≥ 29 and 3M + 6R ≥ 8 in (55) are proven
in Tables A24–A31, respectively. All other bounds in Proposition 8 can be deduced from the cut-set
bound, and thus do not need a proof.

Table A20. Terms needed to prove Proposition 8, inequality M + R ≥ 2 in (54).

T1 F
T2 R
T3 H(X1,1,2)
T4 H(W1)
T5 H(W2, X1,1,2)
T6 H(W1, W2, W3)
T7 H(Z1)
T8 H(Z3, X1,1,2)
T9 H(Z1, W1)
T10 H(Z1, W2, X1,1,2)
T11 H(Z1, Z3, X1,1,2)
T12 H(Z1, Z2, W1)
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Table A21. Tabulation proof of Proposition 8 inequality M + R ≥ 2 in (54), with terms defined
in Table A20.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

2 −2
2 2 −2

−1 2 −1
−1 1 1 −1

1 −1 −1 1
−1 1 1 −1

−1 1
−3 1

−4 2 2

Table A22. Terms needed to prove Proposition 8, inequality 2M + 3R ≥ 5 in (54).

T1 F
T2 R
T3 H(X1,2,2)
T4 H(X2,3,3, X2,1,2)
T5 H(W1)
T6 H(W1, X1,2,2)
T7 H(W2, X1,2,2)
T8 H(W3, X1,3,3, X2,3,3)
T9 H(W1, X1,3,3, X2,1,1)
T10 H(W1, W2)
T11 H(W2, W3, X1,2,2)
T12 H(W1, W2, W3)
T13 H(Z1)
T14 H(Z2, X1,2,2)
T15 H(Z1, X1,2,2)
T16 H(Z2, X1,3,3, X2,3,3)
T17 H(Z1, X1,3,3, X2,1,1)
T18 H(Z2, X2,3,3, X2,1,2)
T19 H(Z1, X2,3,3, X2,1,2)
T20 H(Z1, X2,3,3, X3,1,1, X2,1,2)
T21 H(Z1, W1)
T22 H(Z1, W2, X1,2,2)
T23 H(Z1, W3, X1,2,2)
T24 H(Z2, W1, X1,2,2)
T25 H(Z2, W3, X1,2,2)
T26 H(Z1, W3, X2,3,3, X2,1,2)
T27 H(Z1, W1, X2,3,3, X2,1,2)
T28 H(Z1, W1, W2)
T29 H(Z2, Z3, X1,2,2)
T30 H(Z1, Z2, X1,2,2)
T31 H(Z2, Z3, X1,3,3, X2,3,3)
T32 H(Z1, Z3, X2,3,3, X2,1,2)
T33 H(Z1, Z2, W1)
T34 H(Z2, Z3, W3, X1,2,2)
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Table A24. Terms needed to prove Proposition 8, inequality 6M + 3R ≥ 8 in (55).

T1 F
T2 R
T3 H(X1,2,3,))

T4 H(W1, W2)
T5 H(W1, W2, X1,2,3)
T6 H(W1, W2, W3)
T7 H(Z1)
T8 H(Z1, X1,2,3,))

T9 H(Z1, W2, X1,2,3)
T10 H(Z1, W1, W2)
T11 H(Z1, Z2, X1,2,3)
T12 H(Z1, Z2, W1, W2)

Table A25. Tabulation proof of Proposition 8 inequality 6M + 3R ≥ 8 in (55), with terms defined
in Table A24.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

1 −1
3 −3

−1 1
−2 2

6 6 −6
−3 6 −3

−1 1 −1 1
−1 1 −1 1

−2 1
−6 2

−8 3 6

Table A26. Terms needed to prove Proposition 8, inequality M + R ≥ 2 in (55).

T1 F
T2 R
T3 H(X1,2,3)
T4 H(W1)
T5 H(W1, X1,2,3)
T6 H(W1, X1,2,3, X1,3,2)
T7 H(W1, W2, W3)
T8 H(Z1)
T9 H(Z1, X1,2,3)
T10 H(Z1, X1,2,3, X1,3,2)
T11 H(Z1, W1)
T12 H(Z1, W2, X1,2,3)

Table A27. Tabulation proof of Proposition 8 inequality M + R ≥ 2 in (55), with terms defined
in Table A26.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

2 −2
−1 1

2 2 −2
2 −1 −1

−1 1 1 −1
−1 1 −1 1

−1 1
−3 1

−8 3 6
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Table A28. Terms needed to prove Proposition 8, inequality 12M + 18R ≥ 29 in (55).

T1 F
T2 R
T3 H(X1,2,3)
T4 H(X1,2,3, X1,3,2)
T5 H(X1,2,3, X1,3,2, X2,1,3)
T6 H(W1)
T7 H(W1, X1,2,3)
T8 H(W2, X1,2,3, X1,3,2)
T9 H(W1, W2)
T10 H(W1, W2, X1,2,3)
T11 H(W1, W2, X1,3,2, X2,1,3)
T12 H(W2, W3, X1,2,3, X1,3,2)
T13 H(W1, W2, X1,2,3, X1,3,2, X2,1,3)
T14 H(W1, W2, W3)
T15 H(Z1)
T16 H(Z1, X1,2,3)
T17 H(Z1, X1,3,2, X2,1,3)
T18 H(Z2, X1,2,3, X1,3,2)
T19 H(Z1, X1,2,3, X1,3,2)
T20 H(Z1, X1,2,3, X1,3,2, X2,1,3)
T21 H(Z1, W1)
T22 H(Z1, W2, X1,2,3)
T23 H(Z1, W2, X1,2,3, X1,3,2)
T24 H(Z1, W1, W2)

Table A29. Tabulation proof of Proposition 8 inequality 12M + 18R ≥ 29 in (55), with terms defined
in Table A28.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21 T22 T23 T24

2 −1
18 −18

−1 1
−3 3

17 17 −17
−2 4 −2
−3 6 −3

2 −1 −1
6 −3 −3

−1 2 −1
−3 3 3 −3

−1 1 −1 1
2 −2 −2 2

−3 3 3 −3
−1 1 −1 1

2 2 −2 −2
−1 1 1 −1

−3 3 −3 3
−3 3 −3 3

−3 3
−2 1
−24 8

−29 18 12
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Table A30. Terms needed to prove Proposition 8, inequality 3M + 6R ≥ 8 in (55).

T1 F
T2 R
T3 H(X1,2,3)
T4 H(W1, W2)
T5 H(W1, W2, X1,2,3)
T6 H(W2, W3, X1,2,3, X1,3,2,))

T7 H(W1, W2, X1,2,3, X1,3,2, X2,1,3)
T8 H(W1, W2, W3)
T9 H(Z1)
T10 H(Z1, X1,2,3)
T11 H(Z2, X1,2,3, X1,3,2)
T12 H(Z1, X1,3,2, X2,1,3)
T13 H(Z1, X1,2,3, X1,3,2, X2,1,3)
T14 H(Z1, W2, X1,2,3)
T15 H(Z1, W1, W2)

Table A31. Tabulation proof of Proposition 8 inequality 3M + 6R ≥ 8 in (55), with terms defined
in Table A30.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

1 −1
6 −6

−1 1
−1 1

6 6 −6
−2 4 −2
−1 2 −1

−1 1 −1 1
1 1 −1 −1

−1 1 −1 1
−2 1
−6 2

−8 6 3

References

1. Yeung, R.W. A framework for linear information inequalities. IEEE Trans. Inf. Theory 1997, 43, 1924–1934.
[CrossRef]

2. Tian, C. Characterizing the rate region of the (4, 3, 3) exact-repair regenerating codes. IEEE J. Sel. Areas Commun.
2014, 32, 967–975. [CrossRef]

3. Tian, C.; Liu, T. Multilevel diversity coding with regeneration. IEEE Trans. Inf. Theory 2016, 62, 4833–4847.
[CrossRef]

4. Tian, C. A note on the rate region of exact-repair regenerating codes. arXiv 2015, arXiv:1503.00011.
5. Li, C.; Weber, S.; Walsh, J.M. Multilevel diversity coding systems: Rate regions, codes, computation,

& forbidden minors. IEEE Trans. Inf. Theory 2017, 63, 230–251.
6. Maddah-Ali, M.A.; Niesen, U. Fundamental limits of caching. IEEE Trans. Inf. Theory 2014, 60, 2856–2867.

[CrossRef]
7. Maddah-Ali, M.A.; Niesen, U. Decentralized coded caching attains order-optimal memory-rate tradeoff.

IEEE/ACM Trans. Netw. 2015, 23, 1029–1040. [CrossRef]
8. Niesen, U.; Maddah-Ali, M.A. Coded caching with nonuniform demands. IEEE Trans. Inf. Theory 2017,

63, 1146–1158. [CrossRef]

281



Entropy 2018, 20, 603

9. Pedarsani, R.; Maddah-Ali, M.A.; Niesen, U. Online coded caching. IEEE/ACM Trans. Netw. 2016, 24, 836–845.
[CrossRef]

10. Karamchandani, N.; Niesen, U.; Maddah-Ali, M.A.; Diggavi, S.N. Hierarchical coded caching. IEEE Trans.
Inf. Theory 2016, 62, 3212–3229.

11. Ji, M.; Tulino, A.M.; Llorca, J.; Caire, G. Order-optimal rate of caching and coded multicasting with random
demands. IEEE Trans. Inf. Theory 2017, 63, 3923–3949.

12. Ghasemi, H.; Ramamoorthy, A. Improved lower bounds for coded caching. IEEE Trans. Inf. Theory 2017,
63, 4388–4413. [CrossRef]

13. Sengupta, A.; Tandon, R. Improved approximation of storage-rate tradeoff for caching with multiple
demands. IEEE Trans. Commun. 2017, 65, 1940–1955. [CrossRef]

14. Ajaykrishnan, N.; Prem, N.S.; Prabhakaran, V.M.; Vaze, R. Critical database size for effective caching.
In Proceedings of the 2015 Twenty First National Conference on Communications (NCC), Mumbai, India,
27 February–1 March 2015; pp. 1–6.

15. Chen, Z.; Fan, P.; Letaief, K.B. Fundamental limits of caching: improved bounds for users with small
buffers. IET Commun. 2016, 10, 2315–2318. [CrossRef]

16. Sahraei, S.; Gastpar, M. K users caching two files: An improved achievable rate. arXiv 2015, arXiv:1512.06682.
17. Amiri, M.M.; Gunduz, D. Fundamental limits of caching: Improved delivery rate-cache capacity trade-off.

IEEE Trans. Commun. 2017, 65, 806–815. [CrossRef]
18. Wan, K.; Tuninetti, D.; Piantanida, P. On caching with more users than files. arXiv 2016, arXiv:1601.06383.
19. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. The exact rate-memory tradeoff for caching with uncoded

prefetching. IEEE Trans. Inf. Theory 2018, 64, 1281–1296. [CrossRef]
20. Tian, C.; Chen, J. Caching and delivery via interference elimination. IEEE Trans. Inf. Theory 2018, 64, 1548–1560.

[CrossRef]
21. Gómez-Vilardebó, J. Fundamental limits of caching: Improved rate-memory trade-off with coded

prefetching. IEEE Trans. Commun. 2018. [CrossRef]
22. Cover, T.M.; Thomas, J.A. Elements of Information Theory, 1st ed.; Wiley: New York, NY, USA, 1991.
23. Tian, C. Symmetry, demand types and outer bounds in caching systems. In Proceedings of the 2016 IEEE

International Symposium on Information Theory (ISIT), Barcelona, Spain, 10–15 July 2016; pp. 825–829.
24. Yu, Q.; Maddah-Ali, M.A.; Avestimehr, A.S. Characterizing the rate-memory tradeoff in cache networks

within a factor of 2. arXiv 2017, arXiv:1702.04563.
25. Wang, C.Y.; Bidokhti, S.S.; Wigger, M. Improved converses and gap-results for coded caching. arXiv 2017,

arXiv:1702.04834.
26. Yeung, R. A First Course in Information Theory; Kluwer Academic Publishers: New York, NY, USA, 2002.
27. Lassez, C.; Lassez, J.L. Quantifier Elimination for conjunctions of linear constraints via a convex hull

algorithm. In Symbolic and Numerical Computation for Artificial Intelligence; Donald, B.R., Kapur, D.,
Mundy, J.L., Eds.; Academic Press: San Diego, CA, USA, 1992; Chapter 4, pp. 103–1199.

28. Apte, J.; Walsh, J.M. Exploiting symmetry in computing polyhedral bounds on network coding rate
regions. In Proceedings of the International Symposium on Network Coding (NetCod), Sydney, Australia,
22–24 June 2015; pp. 76–80.

29. Ho, S.W.; Tan, C.W.; Yeung, R.W. Proving and disproving information inequalities. In Proceedings of the
2014 IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, USA, 29 June–4 July 2014.

30. Zhang, K.; Tian, C. On the symmetry reduction of information inequalities. IEEE Trans. Commun. 2018,
66, 2396–2408. [CrossRef]

31. Harary, F.; Norman, R.Z. Graph Theory as a Mathematical Model in Social Science; University of Michigan
Press: Ann Arbor, MI, USA, 1953.

32. Andrews, G.E. The Theory of Partitions; Cambridge University Press: Cambridge, UK, 1976.
33. Dougherty, R.; Freiling, C.; Zeger, K. Insufficiency of linear coding in network information flow. IEEE Trans.

Inf. Theory 2005, 51, 2745–2759. [CrossRef]
34. Zhang, Z.; Yeung, R.W. A non-Shannon-type conditional inequality of information quantities. IEEE Trans.

Inf. Theory 1997, 43, 1982–1986. [CrossRef]
35. Zhang, Z.; Yeung, R.W. On characterization of entropy function via information inequalities. IEEE Trans.

Inf. Theory 1998, 44, 1440–1452. [CrossRef]

282



Entropy 2018, 20, 603

36. Yeung, R.W.; Zhang, Z. On symmetrical multilevel diversity coding. IEEE Trans. Inf. Theory 1999, 45, 609–621.
[CrossRef]

37. Tian, C. Latent capacity region: A case study on symmetric broadcast with common messages. IEEE Trans.
Inf. Theory 2011, 57, 3273–3285. [CrossRef]

c© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

283





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Entropy Editorial Office
E-mail: entropy@mdpi.com

www.mdpi.com/journal/entropy





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03943-818-1 


	Blank Page

