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José Miguel Soriano

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editor
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Abstract: Since the 1980s, agriculture and plant breeding have changed with the development of
molecular marker technology. In recent decades, different types of molecular markers have been used
for different purposes: mapping, marker-assisted selection, characterization of genetic resources, etc.
These have produced effective genotyping, but the results have been costly and time-consuming,
due to the small number of markers that could be tested simultaneously. Recent advances in molecular
marker technologies such as the development of high-throughput genotyping platforms, genotyping
by sequencing, and the release of the genome sequences of major crop plants open new possibilities
for advancing crop improvement. This Special Issue collects sixteen research studies, including the
application of molecular markers in eleven crop species, from the generation of linkage maps and
diversity studies to the application of marker-assisted selection and genomic prediction.

Keywords: crop breeding; genetic maps; QTL mapping; GWAS; marker assisted selection; genomic
selection; DNA sequencing

1. Introduction

Classical breeding was the main approach used by breeders to increase crop productivity during
the 20th century. It implies the selection of cultivars with the desired characteristics for the target trait,
usually morphological or visual characteristics. The best genotypes were selected and used as parents
in a backcross scheme with a recurrent parent to dilute the irrelevant or undesired traits [1]. However,
the long time to get a commercial cultivar and limitations related to traits highly dependent on
the environment or with low heritability make necessary the use of complementary approaches to
assist the breeding process. The development of molecular biology made possible the appearance
of a new type of marker based on polymorphisms in the DNA sequence, the molecular markers,
which broaden the possibilities for new challenges in plant breeding. Molecular markers are widely
distributed in the genome, they are not affected by the environment, and they can be identified in any
tissue and developmental stage. From their development, their use in agriculture increased through
the construction of genetic maps in crop species, the association between molecular markers and
important agronomic traits, the dissection of quantitative traits, and the positional cloning of genes
of interest. Besides the estimation of genetic distances and molecular cloning, molecular markers
provide the most suitable tool for the evaluation of genetic diversity, allowing for the selection of
the most suitable parental lines in breeding programs, the management of germplasm collections,
and varietal identification [2].

Once the association between a marker and a trait is detected, it can be deployed into a
breeding program through marker-assisted selection (MAS). The success of this technique relies on
the identification of markers tightly linked with the genome region of a target trait. MAS improves
the efficiency of the selection of Mendelian traits, facilitating the introgression of single genes with
the desired alleles into elite cultivars and removing the undesirable genome of the donor parent in
a backcrossing program, and allows for the identification and protection of commercial cultivars
through fingerprinting [3]. Although MAS has been effectively used before for Mendelian traits or
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those regulated by a low number of genes, many of the agronomic traits show a quantitative nature
and are influenced by the environment [4]. In the last decade, the development of high-throughput
genotyping platforms has allowed for the screening of whole genomes for the selection of desired traits.
In addition, novel statistical approaches for the use of large amounts of genetic and phenotypic data
have been developed. Altogether, this has allowed for the development of new selection strategies,
such as the genomic prediction or selection (GS), which attempts to skip the limitations of MAS [5].

Coupled with the rapid development of high-throughput genotypic technology, the next DNA
sequencing technologies and their applications in genetic and physical mapping have made significant
progress in accelerating plant breeding with a lower cost.

2. Overview of the Special Issue

This special issue of Agronomy with the title “Molecular marker technology for crop improvement”
publishes 16 articles providing insights into the different applications of molecular markers in
plant breeding. Eleven crop species were analyzed with six different approaches.

Although the development of linkage maps is the first step for gene identification and many maps
have been developed in several crop species, novel marker approaches involving high-throughput
genotyping are evolving for the construction of highly saturated maps. A high-density single nucleotide
polymorphism (SNP) linkage map in potato was developed using a recently developed strategy for the
discovery of SNPs, the specific length amplified fragment sequencing (SLAF-seq) approach [6].

Biparental quantitative trait loci (QTL) mapping is a classical approach to identify multi-genic traits.
The success of detecting a QTL depends on several factors: (1) marker density, (2) population size,
and (3) trait heritability. As a classical approach in crop breeding, within the Special Issue it was applied
for the identification of the loci controlling milling yield in rice [7], resistance to Striga hermonthica
in maize [8], and leaf rust and stem rust resistance in wheat [9]. These studies identified new loci
for important traits in breeding and will be the starting point for a deeper analysis of candidate
gene identification.

Genome-wide association studies (GWASs) have become a valuable tool in recent years as a
complementary approach to biparental mapping, providing broader allelic coverage and higher
mapping resolution. In this issue, GWASs were performed for the analysis of seminal roots in landraces
of wheat and durum wheat from the Mediterranean basin [10,11], agronomic and quality traits in elite
durum wheat [12], and for flowering time in maize inbred lines [13]. The studies of Roselló et al. [10]
and Rufo et al. [11] pointed out the usefulness of the old germplasm to be used as genetic resources
for improving drought-related traits in the breeding programs to broaden the genetic variability.
Merida-García et al. [12] combined a GWAS with a candidate gene approach to successfully identify
gene clusters involved in important traits for wheat breeding. The study of Maldonado et al. [13]
revealed that the use of a GWAS based on haplotype blocks was more efficient than the standard
approach to identify major effect loci, and the network-assisted gene prioritization used identified four
genes influencing flowering time in tropical maize.

Genetic diversity is crucial for crop improvement, as it allow breeders to identify appropriate
parents to be included in breeding programs for broadening genetic variability. Within this Special Issue,
the genetic diversity of wheat, avocado, and raspberry was assessed by high-resolution melting (HRM),
and insertion site-based polymorphism (ISBP) markers, simple sequence repeats (SSR) developed from
single-molecule long-read sequences, and SSRs from flavonoid biosynthesis genes, respectively [14–16].
Merida-Garcia et al. [14] developed ISBP markers for the wheat genome as an alternative to SSRs
and SNPs. The authors concluded that these HRM-ISBPs are a cost-effective and efficient marker
approach for wheat breeding programs, being also useful for gene tagging. The studies of Ge et al. [15]
and Lebedev et al. [16] demonstrated the power of SSR markers. Although they were developed three
decades ago [17], they are still commonly used because of their codominant and multi-allelic nature
and high reproducibility.
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The abovementioned studies in this Special Issue have taken into account the use of molecular
markers for the development of linkage maps, the analysis of genetic diversity, and the mapping
of quantitative traits, by means of the classic biparental QTL mapping or GWASs. The rest of the
studies represent direct applications of molecular markers after these previous steps of development,
location in a linkage map, and genotype–phenotype association: MAS and GS.

Marker-assisted selection was applied in four studies for (1) the selection of parental germplasm
in sugarcane breeding programs [18], (2) improving blast resistance and salt tolerance in rice [19],
(3) the selection of the pollination constant non-astringent (PCNA) type in Spanish germplasms of
persimmon [20], and (4) the selection of resistance to plum pox virus (PPV) in apricot by allele-specific
PCR [21]. Wu et al. [18] identified two groups among the 150 most widely used sugarcane parental clones.
Based on these results, the authors could identify the most appropriate cultivars to broaden the genetic
base of breeding germplasm. Thanasilungura et al. [19] improved the rice cultivar RD6 for salt tolerance
with the QTL “Saltol” and blast resistance with four different QTLs by marker-assisted backcrossing
and phenotypic selection. The authors found that one of the introgression lines showed superior
salt tolerance and blast resistance, maintaining higher quality and agronomic performance than RD6.
In the study of the selection of the PCNA type of persimmon, Blasco et al. [20] identified in the Spanish
germplasm of persimmon the previously developed markers DlSx-AF4, linked to the production
of male flowers, and AST, linked to fruit astringency. The screening of these markers in different
progenies of backcrosses demonstrated a very low rate of selection of both traits together and is thus a
valuable tool in a breeding program. The last example of MAS in this Special Issue corresponds to the
selection of PPV resistance in the apricot breeding program at IVIA (Valencia, Spain) [21]. In this study,
the authors present a high-throughput method for a rapid test of PPV resistance, thus improving the
efficiency of apricot breeding programs at a low cost. MAS is of special interest in fruit trees due to the
long time needed to obtain a new generation.

Finally, GS was used to estimate the breeding values for grain composition in sorghum [22].
Although GS was developed initially for animal breeding, its use in plant breeding has been extended
in recent years. GS emerged as a valuable tool for improving complex traits controlled by QTLs with
small effects. Together with high-throughput phenotyping techniques, it has brought a revolution in
breeding by enhancing the accuracy level of selection. Sapkota et al. [22] report the use of GS for grain
compositional traits. The authors found that the prediction accuracy for single trait prediction was
moderate to high in respect to the phenotypic measurements obtained from near infra-red spectroscopy
(NIRS) prediction.

3. Concluding Remarks

The Special Issue covers the use of different types of molecular markers, from SSR markers
developed in 1989 to the newest high-throughput marker technology, as well as different approaches
for genetic mapping and the use of molecular markers to assist crop breeding as a single marker with
MAS or at genome level with GS.

To meet the needs of a growing world population, crop yields must be increased under the climate
change scenario predicted for the coming decades and the threat of the emergence of new pathogens.
However, the information obtained by genome sequencing and its availability at low cost, the continuous
development of new molecular markers, the implementation of high-throughput phenotyping tools,
and speed breeding techniques will make it possible to face these new challenges. Although not
directly related with the molecular marker technology of this Special Issue, the new systems based on
gene editing will play an important role in the future of agriculture.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: Roots are crucial for adaptation to drought stress. However, phenotyping root systems
is a difficult and time-consuming task due to the special feature of the traits in the process of being
analyzed. Correlations between root system architecture (RSA) at the early stages of development
and in adult plants have been reported. In this study, the seminal RSA was analysed on a collection of
160 durum wheat landraces from 21 Mediterranean countries and 18 modern cultivars. The landraces
showed large variability in RSA, and differences in root traits were found between previously
identified genetic subpopulations. Landraces from the eastern Mediterranean region, which is the
driest and warmest within the Mediterranean Basin, showed the largest seminal root size in terms of
root length, surface, and volume and the widest root angle, whereas landraces from eastern Balkan
countries showed the lowest values. Correlations were found between RSA and yield-related traits
in a very dry environment. The identification of molecular markers linked to the traits of interest
detected 233 marker-trait associations for 10 RSA traits and grouped them in 82 genome regions
named marker-train association quantitative trait loci (MTA-QTLs). Our results support the use of
ancient local germplasm to widen the genetic background for root traits in breeding programs.

Keywords: durum wheat; landraces; marker-trait association; root system architecture

1. Introduction

Wheat is estimated to have been first cultivated around 10,000 years before present (BP) in the
Fertile Crescent region. It spread to the west of the Mediterranean Basin and reached the Iberian
Peninsula around 7000 years BP [1]. During this migration, both natural and human selection resulted
in the development of local landraces considered to be very well adapted to the regions where they
were grown and containing the largest genetic diversity within the species [2]. From the middle of
the 20th century, as a consequence of the Green Revolution, the cultivation of local landraces was
progressively abandoned and replaced by the improved, more productive, and genetically uniform
semi-dwarf cultivars. However, scientists are convinced that local landraces may provide new alleles
to improve commercially valuable traits [3]. Introgression of these alleles into modern cultivars can be
very useful, especially in breeding for suboptimal environments.

Drought is the most important environmental factor limiting wheat productivity in many parts of
the world. Therefore, improving yield under water-limited conditions is one of the major challenges
for wheat production worldwide. Breeding for adaptation to drought is extremely challenging due to
the complexity of the target environments and the stress-adaptive mechanisms adopted by plants to
withstand and mitigate the negative effects of a water deficit [4]. These mechanisms allow the plant to
escape (e.g., early flowering date), avoid (e.g., root system), and/or tolerate (e.g., osmolyte accumulation)
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the negative effects of drought, which plays a role in determining final crop performance [5]. The crop
traits to be considered as selection targets under drought conditions must be genetically correlated
with yield and should have a greater heritability than yield itself [6,7]. Among these traits, early vigour,
leaf area duration, crop water status, radiation use efficiency, and root architecture have been identified
to be associated with yield under rainfed conditions (reviewed by Reference [8]).

Root system architecture (RSA) is crucial for wheat adaptation to drought stress. Roots exhibit
a high level of morphological plasticity in response to soil conditions, which allows plants to adapt
better, which is particularly under drought conditions. However, evaluating root architecture in the
field is very difficult, expensive, and time-consuming, especially when a large number of plants need to
be phenotyped. Several studies have reported a correlation of RSA in the early stages of development
with RSA in adult plants [9], Manschadi et al. [10] reported that adult root geometry is strongly related
to seminal root angle (SRA). Wasson et al. [11] described a relationship of root vigor between plants
grown in the field and controlled conditions. Several systems have been adopted to enable early
screening of the RSA in wheat [12].

Identifying quantitative trait loci (QTLs) and using marker-assisted selection is an efficient
way to increase selection efficiency and boost genetic gains in breeding programs. However, while
numerous studies have reported QTLs for RSA in bi-parental crosses [13], very few of them were
based on association mapping [12,14–18]. Association mapping is a complementary approach to
bi-parental linkage analysis and provides broader allelic coverage with higher mapping resolution.
Association mapping is based on linkage disequilibrium, defined as the non-random association
of alleles at different loci, and is used to detect the relationship between phenotypic variation and
genetic polymorphism.

The main objectives of the present study were a) to identify differences in RSA among genetic
subpopulations of durum wheat Mediterranean landraces, b) to find correlations of RSA with
yield-related traits in different rainfed Mediterranean environments, and c) to identify molecular
markers linked to RSA in the old Mediterranean germplasm through a genome-wide association study.

2. Materials and Methods

2.1. Plant Material

The germplasm used in the current study consisted of a set of 160 durum wheat landraces from
21 Mediterranean countries and 18 modern cultivars from a previously structured collection [2,19].
The landraces were classified into four genetic subpopulations (SPs) that matched their geographical
origin as follows: the eastern Mediterranean (19 genotypes), the eastern Balkans and Turkey
(20 genotypes), the western Balkans and Egypt (31 genotypes), the western Mediterranean
(71 genotypes), and 19 genotypes that remained as admixed (Supplementary Materials Table S1).

2.2. Phenotyping

Eight uniform seeds per genotype were cultured following the paper roll method [20,21] in two
replicates of four seeds. The seeds were placed at the top of a filter paper (420 × 520 mm) with the
embryo facing down and sprayed with a 0.4% sodium hypochlorite solution. Subsequently, the papers
were folded in half to obtain a 210 × 520 mm rectangle with the seeds fixed at the top. The papers were
misted with deionized water and rolled by hand. The rolls were placed in plastic pots with deionized
water at the bottom that was regularly checked to ensure it did not evaporate. The experiment
was conducted in a growth chamber at 25 ◦C and darkness conditions. One week after sowing, the
seeds were transferred to a black surface to take digital images that were processed by SmartRoot
software [22] (Figure 1). Nine traits for the seminal root system architecture (RSA) were measured:
total root number (TRN), primary root length (PRL, cm), total lateral root length (LRL, cm), primary
root surface (PRS, cm2), total lateral root surface (LRS, cm2), primary root volume (PRV, cm3), total
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lateral root volume (LRV, cm3), primary root diameter (PRD, cm), and mean lateral root diameter
(LRD, cm).

 

Figure 1. Experimental setup for root system architecture analysis. First, seeds were placed on humid
filter paper (1) and rolled. Paper rolls were placed in plastic pots with deionized water at the bottom
for root growth (2). One week after sowing, the seeds were transferred to a black surface for digital
imaging (3) that were processed by SmartRoot software [22] (4). The seminal root angle was measured
using the clear pots (5,6).

Additionally, the SRA (◦) was measured at the facilities of the International Center for Agricultural
Research in the Dry Areas (ICARDA) in Rabat (Morocco) using the clear pot method described by
Richard et al. [23] (Figure 1). Using a randomized complete block design, eight seeds per genotype
were grown in 4 L clear pots filled with peat. The seeds were placed with the embryo facing down and
close to the pot wall to facilitate root growth along the transparent wall. The pots were then watered,
placed inside 4 L black pots, and kept at 20 ◦C and darkness conditions in a growth chamber. Five
days after sowing, digital images were taken and processed with ImageJ software [24].

Data from field experiments conducted under rainfed conditions during two years of contrasting
water input from sowing to physiological maturity (285 mm in 2008 and 104 mm in 2014) in Lleida,
North-eastern Spain [25] were used to assess the relationships between RSA traits and yield-related traits.

The experiments were carried out in a non-replicated modified augmented design with three
replicated checks (the cultivars ‘Claudio,’ ‘Simeto,’ and ‘Vitron’) and plots of 6 m2 (8 rows, 5 m long
with a 0.15 m spacing). Sowing density was adjusted to 250 viable seeds m−2 and the plots were
maintained free of weeds and diseases.

2.3. Statistical Analysis

Combined analyses of variance (ANOVA) were performed for the RSA traits of the structured
accessions (141 landraces and 18 modern cultivars), considering the accessions and the replicate as
random effects. The sum of squares of the cultivar effect was partitioned into differences between
SPs and differences within them. The Kenward-Roger correction was used due to the unbalanced
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number of genotypes within the SPs. Since the experiment was divided into six sets with one check,
least squared means were calculated using Simeto as a check and compared using the Tukey test [26]
at p < 0.01.

Raw field data were fitted to a linear mixed model with the check cultivars as fixed effects and the
row number, column number, and genotype as random effects [27]. Restricted maximum likelihood
was used to estimate the variance components and to produce the best linear unbiased predictors
(BLUPs) for yield and yield components. The relationships between RSA traits and yield-related traits
were assessed through correlation analyses. All calculations were carried out using the SAS statistical
package [28].

2.4. Genotyping

DNA isolation was performed from leaf samples following the method reported by Doyle
and Doyle [29]. High throughput genotyping was performed at Diversity Arrays Technology Pty
Ltd. (Canberra, Australia) (http://www.diversityarrays.com) with the genotyping by sequencing
(GBS) DArTseq platform [30]. A total of 46,161 markers were used to genotype the association
mapping panel, including 35,837 presence/absence variants (PAVs) and 10,324 single nucleotide
polymorphisms (SNPs). Markers were ordered according to the consensus map of wheat v4 available
at https://www.diversityarrays.com/.

2.5. Linkage Disequilibrium

Linkage disequilibrium (LD) among markers was calculated for the A and B genomes using
markers with a map position on the wheat v4 consensus map, and a minor allele frequency greater than
5%, using TASSEL 5.0 [31]. Pair-wise LD was measured using the squared allele frequency correlations
r2 and the values for genomes A and B were plotted against the genetic distance to determine how fast
the LD decays. A LOESS curve was fitted to the plot using the JMP v12Pro statistical package (SAS
Institute Inc, Cary, NC, USA).

2.6. Genome-Wide Association Study

A genome-wide association study (GWAS) was performed with 160 landraces for the mean of
measured traits with TASSEL 5.0 software [31]. A mixed linear model was conducted using the
population structure determined by Soriano et al. [19] as the fixed effect and a kinship (K) matrix as
the random effect (Q + K) at the optimum compression level. A false discovery rate threshold [32]
was established at −log10p > 4.6 (p < 0.05), using 2135 markers according to the results of the LD
decay, to consider a marker-trait association (MTA) significant. Moreover, a second, less restrictive
threshold was established at −log10p > 3. To simplify the MTA information, those associations located
within LD blocks were considered to belong to the same QTL and were named marker-trait association
quantitative trait loci (MTA-QTLs). Graphical representation of the genetic position of MTA-QTLs was
carried out using MapChart 2.3 [33].

2.7. Gene Annotation

Gene annotation for the target region of significant MTAs was performed using the gene
models for high-confidence genes reported for the wheat genome sequence [34] available at https:
//wheat-urgi.versailles.inra.fr/Seq-Repository/.

3. Results

3.1. Phenotypic Analyses

The ANOVA showed that, for all traits, the phenotypic variability was mainly explained by
the cultivar effect, since it accounted for 63.41% (PRD) to 90.57% (LRD) of the total sum of squares
(Table 1). A summary of the genetic variation of the RSA traits is shown in Supplementary Materials
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Table S2. The partitioning of the sum of squares of the cultivar effect into differences between and
within SPs revealed that the variability induced by the genotype was mainly explained by differences
within SPs on a range from 70.1% for TRN to 91.5 for PRV (Table 1). Differences between SPs were
statistically significant for all traits, accounting for 8.5% (PRV) to 30.5% (TRN) of the sum of squares
of the genotype effect (Table 1). Western Mediterranean landraces showed the highest number of
seminal roots and the narrowest root angle, whereas the eastern Balkans and Turkey SP showed the
widest angle (Table 2). The highest values for root size–related traits (length, surface and volume) in
both primary and lateral roots were recorded in the eastern Mediterranean landraces. The western
Balkans and Egypt subpopulation showed the largest root diameter (Table 2). The comparison of mean
values of eastern Balkans and Turkish landraces revealed that the Turkish ones had high values for all
traits except TRN, LRL, and root diameter (Supplementary Materials Table S3). The modern cultivars
showed intermediate values for all RSA traits (Table 2).

Table 1. Percentage of the sum of squares of the ANOVA model for the seminal root system architecture
traits in a set of 159 Mediterranean durum wheat genotypes structured into five genetic subpopulations
by Soriano et al. [19].

Source of
Variation

df TRN SRA PRL LRL PRS LRS PRV LRV PRD LRD

Genotype 158 84.1 *** 69.4 *** 87.0 *** 86.8 *** 85.3 *** 86.1 *** 82.9 *** 86.8 *** 63.41 *** 90.57 ***
Between

subpopulations 4 30.5 *** 16.6 *** 15.4 *** 22.7 *** 11.6 *** 18.5 *** 8.5 ** 12.7 *** 10.44 ** 17.96 ***

Within
subpopulations 154 70.1 *** 83.4 *** 85.0 *** 77.8 *** 88.6 *** 82.0 *** 91.5 *** 87.6 *** 89.33 ** 81.87 ***

Replicate 1 0.001 1.83 ** 0.00 0.43 * 0.36 * 0.36 * 0.86 ** 0.33 ** 1.35 * 0.12
Error 157 15.9 28.8 13.0 12.9 14.3 13.6 16.1 12.9 35.25 9.33
Total 316

TRN, total root number. SRA, seminal root angle. PRL, primary root length. LRL, total lateral root length. PRS,
primary root surface. LRS, total lateral root surface. PRV, primary root volume. LRV, total lateral root volume. PRD,
primary root diameter. LRD, mean lateral root diameter. * p < 0.05. ** p < 0.01. *** p < 0.001.

Table 2. Means comparison of seminal root system architecture traits measured in a set of 159
Mediterranean durum wheat genotypes structured into five genetic subpopulations [19]. Means within
columns with different letters are significantly different at p < 0.01 following a Tukey test.

TRN SRA PRL LRL PRS LRS PRV LRV PRD LRD

EM 4.8 b 94.7 ab 13.8 a 25.1 a 2.5 a 4.6 a 38.3 a 67.2 a 0.57 b 0.57 b

EB + T 4.8 b 98.2 a 10.3 c 17.2 b 1.9 c 3.2 b 28.5 b 47.6 b 0.57 b 0.58 b

WB + E 4.3 c 87.6 bc 10.4 c 16.5 b 2.1 bc 3.2 b 33.6 ab 52.3 b 0.61 a 0.62 a

WM 5.2 a 84.5 c 11.8 ab 23.5 a 2.2 bc 4.3 a 33.0 ab 63.9 a 0.58 b 0.58 b

Modern 4.5 bc 93.9 ab 12.8 ab 20.8 ab 2.4 ab 3.7 ab 35.2 ab 54.5 ab 0.56 b 0.57 b

TRN, total root number. SRA, seminal root angle. PRL, primary root length. LRL, total lateral root length. PRS,
primary root surface. LRS, total lateral root surface. PRV, primary root volume. LRV, total lateral root volume. PRD,
primary root diameter. LRD, mean lateral root diameter. EM, Eastern Mediterranean. EB + T, Eastern Balkans and
Turkey. WB + E, Western Balkans and Egypt. WM, Western Mediterranean.

Correlation coefficients between RSA traits and yield-related traits were calculated for two field
experiments with contrasting water input (285 and 104 mm of rainfall from sowing to physiological
maturity). Whereas, for the rainiest environment, only the relationship between SRA and number
of spikes per square meter (NSm2) was statistically significant (p = 0.043, r2 = 0.16)). For the driest
environment, 14 correlations involving all the yield-related traits and RSA traits except root diameter
were statistically significant (Figure 2) (r2 between 0.17 for NSm2 and PRL and PRS to 0.30 for TKW
and TRN). Most of the significant correlations were positive. Only the relationship between SRA and
thousand kernel weight (TKW) was negative.
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Figure 2. Correlations between seminal root system architecture traits and yield-related traits
determined in field experiments receiving high (density ellipse in red, A) and low (density ellipse
in green, B) water input from sowing to physiological maturity. Significant correlation coefficients
(p < 0.05) are indicated with red and green points. TRN, total root number. SRA, seminal root angle.
PRL, primary root length. LRL, total lateral root length. PRS, primary root surface. LRS, total lateral
root surface. PRV, primary root volume. LRV, total lateral root volume. PRD, primary root diameter.
LRD, mean lateral root diameter. GY, grain yield. NSm2, number of spikes per square meter. NGm2,
number of grains per square meter. TKW, thousand kernel weight.

3.2. Marker-Trait Associations

A total of 46,161 DArTseq markers, including PAVs and SNPs, were used to genotype the set of
160 durum wheat landraces. To reduce the risk of false positives, markers and accessions were analyzed
for the presence of duplicated patterns and missing values. Of 35,837 PAVs, 24,188 were placed on
the wheat v4 consensus map. Of these, those with more than 30% of missing data and those with
a minor allele frequency lower than 5% were removed from the analysis, leaving 19,443 PAVs. A total
of 6957 SNPs were mapped, leaving a total of 4686 SNPs after marker filtering as before. Additionally,
413 markers were duplicated between PAVs and SNPs, so the corresponding PAVs were eliminated.
A total of 23,716 markers remained for the subsequent analysis.

Linkage disequilibrium was estimated for locus pairs in genomes A and B using a sliding window
of 50 cM. A total of 471,319 and 681,389 possible pair-wise loci were observed for genomes A and B,
respectively. Of these locus pairs, 52% and 43% showed significant linkage disequilibrium at p < 0.01
and p < 0.001, respectively. Mean r2 was 0.12 for genome A and 0.11 for genome B. These means were
used as a threshold for estimating the intercept of the LOESS curve to determine the distance at which
LD decays in each genome. Markers were in LD in a range from less than 1 cM in genome B to 1 cM in
genome A (Supplementary Materials Table S4).
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Results of the GWAS are reported in Figure 3 and in Supplementary Materials Table S5. Using a
restrictive threshold based on a false discovery rate at p < 0.05 (−log10p > 4.6) and the LD decay, only
12 MTAs corresponding to seven markers were significant. Using a common threshold of −log10p > 3,
as previously reported by other authors [35–38], a total of 233 MTAs involving 176 markers were
identified. MTAs were equally distributed in both genomes (50.2% in the A genome and 49.8% in the B
genome). Chromosomes 2B and 7A harbored the highest number of MTAs (39 and 32 respectively),
carrying 30% of the total number of MTAs, whereas chromosomes 4B and 7B harbored the lowest
number of MTAs, 8 and 6 MTAs, respectively (Figure 3A). Root volume was the trait showing the
highest number of MTAs (77), followed by root surface (46), root diameter (37), root length and number
(26), and SRA (21) (Figure 3B). The mean percentage of phenotypic variance explained (PVE) per MTA
was similar for all traits, ranging from 0.09 to 0.11 (Figure 3C). Most of the MTAs showed low PVE, in
agreement with the quantitative nature of the analyzed traits. The percentage of MTAs with a PVE
lower than 0.1 was 71%, whereas that of MTAs with a PVE lower than 0.15 was 98% (Figure 3D).

 

Figure 3. Summary of marker trait associations (MTA). (A) Number of MTAs per chromosome.
(B) Number of MTAs per trait. (C) Mean PVE per trait. (D) PVE. TRN, total root number. SRA, seminal
root angle. PRL, primary root length. LRL, total lateral root length. PRS, primary root surface. LRS,
total lateral root surface. PRV, primary root volume. LRV, total lateral root volume. PRD, primary root
diameter. LRD, mean lateral root diameter.

To simplify the MTA information, those MTAs located within a region of 1 cM, as reported by
the LD decay, were considered part of the same QTL. Thus, the 233 associations were restricted to
81 MTA-QTLs (Figure 4 and Table 3). Of the 82 MTA-QTLs, 33 had only one MTA, whereas, for the
remaining 49, the number of MTAs per MTA-QTL ranged from 2 in 19 MTA-QTLs to 15 in mtaq-7A.1.
When several consecutive pairs of MTAs were separated for a distance of 1 cm, the whole block was
considered as the same MTA-QTL. The genomic distribution of MTA-QTLs showed that chromosome
1A, 4A, and 5B harbored 8 MTA-QTLs, chromosomes 1B, 3A, 3B, and 5A 7 MTA-QTLs, 6A 6 MTA-QTLs,
7A 5 MTA-QTLs, 2A, 2B, 4B, and 6B 4 MTA-QTLs and chromosome 7B harbored 3 MTA-QTLs. For the
48 MTA-QTLs with more than one MTA, 10 were related to one trait. Of these, mtaq-1A.5, mtaq-3A.1,
mtaq-4A.4, and mtaq-4A.5 carried associations related to root volume, mtaq-2B.1, and mtaq-3B.7 to root
diameter, mtaq-3B.1, and mtaq-7A.5 to root number, and mtaq-4A.3 and mtaq-6A.5 to the root angle.
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Figure 4. MTA-QTL map. MTA-QTLs are indicated in bold on the left side of the chromosome and
traits involved in each MTA-QTL are on the right side. The rule on the left indicates genetic distance in
cM. TRN, total root number. SRA, seminal root angle. PRL, primary root length. LRL, total lateral root
length. PRS, primary root surface. LRS, total lateral root surface. PRV, primary root volume. LRV, total
lateral root volume. PRD, primary root diameter. LRD, mean lateral root diameter.

Table 3. MTA-QTLS.

MTA-QTLs Chromosome Position (cM) MTAs Trait

mtaq-1A.1 1A 9.24 1 SRA
mtaq-1A.2 1A 29.71 4 PRS PRV LRV PRD
mtaq-1A.3 1A 88.15 1 LRD
mtaq-1A.4 1A 135.37 2 LRS LRV
mtaq-1A.5 1A 160.75–163.11 3 PRV
mtaq-1A.6 1A 173.41 3 PRS PRV PRD
mtaq-1A.7 1A 231.76 1 LRL
mtaq-1A.8 1A 246.3 1 LRD
mtaq-1B.1 1B 31.69 1 PRV
mtaq-1B.2 1B 45.68 1 TRN
mtaq-1B.3 1B 51.29 1 LRD
mtaq-1B.4 1B 90.37 1 TRN
mtaq-1B.5 1B 196.56 3 LRL LRS LRV
mtaq-1B.6 1B 199.9–201.49 3 LRS LRV LRD
mtaq-1B.7 1B 223.51–227.36 12 PRL PRS PRV LRD
mtaq-2A.1 2A 31.13 1 LRD
mtaq-2A.2 2A 46.78 1 PRV
mtaq-2A.3 2A 68.39–68.96 4 LRL PRS PRV
mtaq-2A.4 2A 115.8–118.32 4 SRA PRD
mtaq-2B.1 2B 6.7 2 PRD LRD
mtaq-2B.2 2B 75.09–75.13 13 LRL LRS LRV
mtaq-2B.3 2B 80.79–83.84 16 LRL LRS LRV
mtaq-2B.4 2B 106.98–107.03 8 TRN PRL LRL PRS LRS PRV LRV
mtaq-3A.1 3A 3.32–3.58 3 PRV
mtaq-3A.2 3A 11.88–12.93 2 TRN LRD
mtaq-3A.3 3A 18.37–20.39 3 SRA PRV
mtaq-3A.4 3A 23.99 1 TRN
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Table 3. Cont.

MTA-QTLs Chromosome Position (cM) MTAs Trait

mtaq-3A.5 3A 40.97 1 PRD
mtaq-3A.6 3A 48.06–49.67 3 PRV LRD
mtaq-3A.7 3A 61.57 2 LRS LRV
mtaq-3B.1 3B 24.98–25 2 TRN
mtaq-3B.2 3B 50.7 1 LRL
mtaq-3B.3 3B 68.36 4 PRS PRV LRV
mtaq-3B.4 3B 96.48 1 PRD
mtaq-3B.5 3B 100.07–101.44 3 PRS PRV
mtaq-3B.6 3B 112.86 4 LRD
mtaq-3B.7 3B 115.61 3 PRL PRS PRV
mtaq-4A.1 4A 20.42–26.03 2 LRS LRV
mtaq-4A.2 4A 26.03 1 LRL
mtaq-4A.3 4A 28.85–28.87 2 SRA
mtaq-4A.4 4A 74.09 2 PRV
mtaq-4A.5 4A 96.08 2 PRV
mtaq-4A.6 4A 109.72 1 PRS
mtaq-4A.7 4A 127.56 1 LRL
mtaq-4A.8 4A 131.42–132.72 2 LRL PRD
mtaq-4B.1 4B 2.79 1 PRS
mtaq-4B.2 4B 31.93 4 PRS PRV
mtaq-4B.3 4B 51.22 3 PRL PRS
mtaq-4B.4 4B 70.04 1 LRL
mtaq-5A.1 5A 38.83 1 PRL
mtaq-5A.2 5A 40.51 1 PRD
mtaq-5A.3 5A 48.57–48.65 2 TRN LRV
mtaq-5A.4 5A 69.82 1 TRN
mtaq-5A.5 5A 84.51 5 SRA PRL PRS PRD
mtaq-5A.6 5A 112.96 1 PRD
mtaq-5A.7 5A 155.41 1 PRD
mtaq-5B.1 5B 33.99 1 LRV
mtaq-5B.2 5B 40.83 1 PRV
mtaq-5B.3 5B 65.51 2 PRV LRV
mtaq-5B.4 5B 111.15 1 PRD
mtaq-5B.5 5B 120.34 2 LRS LRV
mtaq-5B.6 5B 135.45 1 LRV
mtaq-5B.7 5B 138.69 4 PRL PRS
mtaq-5B.8 5B 142.12 1 PRV
mtaq-6A.1 6A 7.11 1 TRN
mtaq-6A.2 6A 11.95–14.24 8 LRS PRV LRV
mtaq-6A.3 6A 27.82–28.69 3 SRA PRS PRV
mtaq-6A.4 6A 42.36 3 SRA PRV
mtaq-6A.5 6A 48.39–50.08 2 SRA
mtaq-6A.6 6A 98.51–98.82 2 TRN PRS
mtaq-6B.1 6B 2.41–3.31 5 SRA LRL LRS
mtaq-6B.2 6B 14.26 1 TRN
mtaq-6B.3 6B 31.49–33.46 3 LRV PRD LRD
mtaq-6B.4 6B 53.66 1 LRL
mtaq-7A.1 7A 5.7–9.43 15 SRA LRV PRD
mtaq-7A.2 7A 16.28 1 LRL
mtaq-7A.3 7A 47.85 3 TRN LRS LRV
mtaq-7A.4 7A 92.69–94.34 2 TRN PRL
mtaq-7A.5 7A 145.94–150.31 11 TRN
mtaq-7B.1 7B 24.48 2 PRV LRV
mtaq-7B.2 7B 74.86–75.24 2 SRA LRL
mtaq-7B.3 7B 97.45 2 TRN PRV

TRN, total root number. SRA, seminal root angle. PRL, primary root length. LRL, total lateral root length. PRS,
primary root surface. LRS, total lateral root surface. PRV, primary root volume. LRV, total lateral root volume. PRD,
primary root diameter. LRD, mean lateral root diameter.
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Among all significant MTAs, markers with different alleles between extreme genotypes for each
trait (i.e., the upper and lower 10th percentile) were identified except for PRL (Table 4, Figure 5).
Frequency of the most common allele among genotypes from the upper 10th percentile ranged from
67% for LRD to 90% for PRV, whereas, for the lower 10th percentile, they ranged from 74% for TRN to
93% for LRD (Figure 5).

Table 4. Selected significant markers from the GWAS with different allele composition for the upper
(UP) and lower (LOW) 10th percentile of genotypes. Different letters on the UP and LOW 10th
phenotype indicate that means are significantly different at p < 0.01 following a Tukey test.

Trait

Phenotype

Marker Chromosome Position R3

Most Frequent Allele

Mean
UP

10th
LOW
10th

UP Frequency LOW Frequency

TRN (N) 4.9 5.8 a 3.7 b 2260740_SNP 7A 148.38 0.09 T 0.80 C 0.81
1252655_PAV 7B 97.45 0.11 1 0.94 0 0.67

SRA (◦) 88.5 111.0
a 67.1 b 1125557_PAV 2A 115.80 0.09 0 1.00 1 1.00

1117775_PAV 2A 118.32 0.10 1 0.75 0 0.71

LRL (cm) 21.8 36.5 a 9.3 b 4408432_PAV 6B 3.31 0.09 1 0.88 0 0.73
4408958_PAV 6B 3.31 0.09 1 0.88 0 0.73
1098568_PAV 6B 53.66 0.08 1 0.77 0 0.86

PRS (cm2) 2.2 3.2 a 1.3 b 4406631_PAV 4B 31.93 0.09 0 0.71 0 0.86
4406980_PAV 4B 31.93 0.09 1 0.71 1 0.86

LRS (cm2) 4.0 6.5 a 1.8 b 1201756_PAV 2B 107.03 0.15 1 1.00 0 0.73
987263_PAV 3A 61.57 0.10 0 0.92 1 0.88

4408432_PAV 6B 3.31 0.09 1 0.81 0 0.79
4408958_PAV 6B 3.31 0.09 1 0.81 0 0.79

PRV (mm3) 33.7 49.8 a 20.2 b 997799_SNP 1B 31.69 0.12 A 0.86 G 0.77
1201756_PAV 2B 107.03 0.11 1 0.87 0 0.71
4406631_PAV 4B 31.93 0.09 0 0.93 1 0.87
4406980_PAV 4B 31.93 0.09 0 0.93 1 0.87

LRV (mm3) 60.5 99 a 27.7 b 1201756_PAV 2B 107.03 0.15 1 0.94 0 0.73
987263_PAV 3A 61.57 0.10 0 0.93 1 0.81

1126050_SNP 5B 33.99 0.07 A 0.81 M 0.81
1149356_PAV 7B 24.48 0.08 0 0.87 1 0.81

PRD (mm) 0.58 0.66 a 0.48 b 1113225_SNP 5A 84.51 0.09 G 0.87 C 0.92
1864057_SNP 6B 33.46 0.07 C 0.81 M 0.81

LRD (mm) 0.58 0.66 a 0.51 b 4005012_PAV 1B 51.29 0.10 0 0.67 1 0.93

TRN, total root number. SRA, seminal root angle. PRL, primary root length. LRL, total lateral root length. PRS,
primary root surface. LRS, total lateral root surface. PRV, primary root volume. LRV, total lateral root volume. PRD,
primary root diameter. LRD, mean lateral root diameter.

 

Figure 5. Marker allele frequency means from landraces within the upper and lower 10th percentile for
the analyzed traits. All significant markers shown in Table 4 are included. TRN, total root number.
SRA, seminal root angle. PRL, primary root length. LRL, total lateral root length. PRS, primary root
surface. LRS, total lateral root surface. PRV, primary root volume. LRV, total lateral root volume. PRD,
primary root diameter. LRD, mean lateral root diameter.
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3.3. Gene Annotation

Of the 176 markers showing significant associations, 31 were identified in the reference sequence
of the wheat genome [34] (Table 5). Eight of them were positioned within gene models, whereas, for
the rest, the closest gene model to the corresponding marker was taken into consideration. The gene
models described in Table 5 included molecules related to abiotic stress resistance, seed formation,
carbohydrate remobilization, disease resistance proteins, and other genes involved in different cellular
metabolic pathways.

Table 5. Gene models within MTA-QTL positions. Only MTAs with markers mapped against the
genome sequence are included. Genome position of the gene model is indicated in Mb.

DArTseq Marker MTA-QTL Gene Model Position Description

1109244_SNP mtaq-1A.5 TraesCS1A01G363600 540.1 Jacalin lectin family protein
1210090_SNP mtaq-1A.7 TraesCS1A01G424800 579.8 Cellulose synthase
997799_SNP mtaq-1B.1 TraesCS1B01G022500 10.1 Protein trichome birefringence

1003552_SNP mtaq-1B.7 TraesCS1B01G430400 654.8 F-box domain protein
1085277_SNP * mtaq-2A.3 TraesCS2A01G250600 378.4 9-cis-epoxycarotenoid dioxygenase
1083104_SNP mtaq-2A.3 TraesCS2A01G281000 469.4 Dynamin-like family protein
1117775_PAV mtaq-2A.4 TraesCS2A01G541700 752.9 LEA hydroxyproline-rich glycoprotein family
1075469_SNP mtaq-2B.1 TraesCS2B01G004500 2.4 Cytochrome P450 family protein
1256467_PAV mtaq-3A.1 TraesCS3A01G018600 11.5 F-box domain protein
1082068_PAV mtaq-3A.2 TraesCS3A01G034100 19.3 Receptor-like kinase
1130621_PAV mtaq-3A.5 TraesCS3A01G132300 108.9 Blue copper protein
987263_PAV * mtaq-3A.7 TraesCS3A01G393600 641.6 Pectin lyase-like superfamily protein
1101009_SNP mtaq-3B.4 TraesCS3B01G516800 759.9 Ribosomal protein S4
3034109_PAV mtaq-4A.6 TraesCS4A01G419000 688.9 Histone acetyltransferase of the CBP family 5

1250077_PAV * mtaq-4B.3 TraesCS4B01G345800 639.4 Basic helix-loop-helix DNA-binding protein
1240561_PAV mtaq-6A.3 TraesCS6A01G041500 21.7 Transmembrane protein 97
1047867_PAV mtaq-6A.3 TraesCS6A01G415600 615.3 Cobyric acid synthase
1105573_PAV mtaq-6A.5 TraesCS6A01G242300 453.9 50S ribosomal protein L19
989287_PAV * mtaq-6A.6 TraesCS6A01G417400 615.8 F-box domain protein
1129380_PAV * mtaq-6B.1 TraesCS6B01G000200 0.1 NBS-LRR resistance-like protein
1864057_SNP * mtaq-6B.3 TraesCS6B01G335600 590.9 Hexosyltransferase
1098568_PAV * mtaq-6B.4 TraesCS6B01G399700 675.2 bZIP transcription factor family protein
1130796_PAV mtaq-7A.1 TraesCS7A01G015100 0.0 Mitochondrial pyruvate carrier
2253648_PAV mtaq-7A.1 TraesCS7A01G016700 7.3 Transmembrane protein DUF594

1139027_PAV mtaq-7A.1 TraesCS7A01G015400 6.7 Signal peptidase complex catalytic subunit
SEC11

1076865_PAV mtaq-7A.1 TraesCS7A01G024800 9.7 WAT1-related protein
1059554_SNP * mtaq-7A.3 TraesCS7A01G100600 61.8 GDSL esterase/lipase
1665955_PAV mtaq-7A.4 TraesCS7A01G442400 636.7 BTB/POZ domain
1149356_PAV mtaq-7B.1 TraesCS7B01G058300 60.6 Glutamate receptor
1075278_SNP mtaq-7B.2 TraesCS7B01G378200 642.6 Receptor-like kinase
1252655_PAV mtaq-7B.3 TraesCS7B01G421300 690.2 NBS-LRR resistance-like protein

* Markers located within gene models.

4. Discussion

Roots exhibit a high level of morphological plasticity in response to soil conditions, which allows
plants to better adapt, particularly under drought conditions. Several authors have reported the
role of RSA traits in response to drought stress [39,40]. Wasson et al. [11] suggested that a deep root
system with the appropriate density along the soil profile would confer an advantage on wheat grown
in rainfed agricultural systems. Therefore, identifying new alleles for improving root architecture
under drought conditions and introgressing them into adapted phenotypes is a desirable approach for
breeding purposes. The current study analyzed a collection of durum wheat landraces representative of
the variability existing within the Mediterranean Basin in an attempt to broaden the genetic background
present in commercial cultivars.

Evaluating root architecture in the field is a difficult, expensive, and time-consuming assignment,
especially when a large number of plants need to be phenotyped. It has been reported that the root
geometry of adult plants is strongly related to the seminal root angle (SRA), with deeply rooted wheat
genotypes showing a narrower SRA [10]. Different systems have been adopted to enable early screening
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of the root system architecture in wheat, assuming that genotypes that differ in root architecture at an
early developmental stage would also differ in the field at stages when nutrient and/or water capture
become critical for grain yield [12].

4.1. Phenotypic Variation

The germplasm analyzed in the present study, including mostly durum wheat landraces from the
Mediterranean Basin, showed wide variability in RSA traits. The variability found was higher than that
observed in other studies using elite accessions [12,14] or even landraces, as reported by Ruiz et al. [41]
analyzing a collection of Spanish durum wheat landraces. These results, and the intermediate values
obtained for all traits in modern cultivars, support the use of ancient local germplasm for widening the
genetic background in breeding programs.

Means comparison of phenotypic traits revealed large differences among SPs associated with
their geographical origin. Eastern Mediterranean landraces, collected in the area closest to the origin
of tetraploid wheat, showed the largest root size in terms of length, surface, and volume, and the
widest root angle. The wheat-growing areas of this region, which comprises Syria, Jordan, Israel, and
Egypt, are the warmest and driest within the Mediterranean Basin [42]. In addition, when SRA traits
were analyzed separately for the two components of the eastern Balkans and Turkey subpopulation,
large differences appeared between them, with Turkish landraces being much more similar to the
eastern Mediterranean ones than to the eastern Balkan ones, since the latter showed the lowest values
for root length, surface, and volume. Turkish landraces also showed a wide root angle, as did the
eastern Mediterranean ones. The differences found in SRA between the eastern Balkans and Turkish
landraces are sustained by two lines of evidence. One is the contrasting environmental conditions
of the wheat-growing areas of northern Balkan countries and Turkey, since the analysis of long-term
climate data demonstrated less rainfall and higher temperatures and solar radiation in the latter [42].
The other is that the northern Balkan landraces likely originated in the steps of southern Russia and the
Volga region [2,43], which also suggests contrasting environmental conditions in the zones of origin of
the eastern Balkan and Turkish landraces. The phenotypic analysis carried out in the current study
revealed that landraces from regions where drought stress is prevalent have a larger root size and
a wider root angle. This architecture should allow a larger proportion of the soil to be covered for more
efficient water capture, and this hypothesis is supported by correlations between RSA and yield traits.
Although low, likely due to the very early stage when the root traits were measured, differences in the
number of significant correlations were observed between the two environments with the highest and
lowest water input reported by Roselló et al. [25]. Root size–related traits were positively correlated
with the number of grains and spikes per unit area (primary roots) and with grain yield and grain
weight (lateral roots) in the driest environment. SRA was negatively correlated with TKW, as reported
previously by Canè et al. [12], who concluded that it was due to the influence of the root angle on
the distribution of roots in the soil layers, which affects the water uptake from deeper layers. In our
study, the genotypes with the narrowest angle corresponded to those from the western Mediterranean
countries, which Royo et al. [42] and Soriano et al. [19] reported to have heavier grains.

4.2. Marker-Trait Associations

The current study attempts to dissect the genetic architecture controlling the seminal root system
in a collection of landraces from the Mediterranean Basin by association analysis. A mixed linear
model accounting for the genetic relatedness between cultivars (random effect) and their population
structure (fixed effect) (K + Q model) was used in order to reduce the number of spurious associations.

A total of 233 significant associations were identified for the 10 RSA traits underlying the complex
genetic control of RSA. However, in order to simplify this information and to integrate closely linked
MTAs in the same QTL, those MTAs located within LD blocks were considered as belonging to the
same MTA-QTL. As a result, the number of genome regions involved in RSA was reduced to 82. The
relationships between RSA and yield-related traits was also suggested by the presence of pleiotropic
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MTA-QTLs. The comparison of the genome regions identified in the current study with those related to
yield and yield components by Roselló et al. [44] showed that 45% of the RSA MTA-QTLs were located
with yield-related trait MTA-QTLs. These results are in agreement with the findings of Canè et al. [12],
who found that 30% of the RSA-QTLs affected agronomic traits, which provided evidence of the
implications of RSA in field performance of durum wheat at early growth stages.

In the last few years, GWAS for RSA have been limited in comparison with QTL mapping for
root traits based on bi-parental populations (see Soriano and Álvaro [13] for a review). A comparison
with previous studies reporting MTAs for RSA resulted in several common regions with the current
study. Three common regions were found with the study of Canè et al. [12], but different traits were
included for MTAs in those QTLs (mtaq-3A.3, mtaq-3A.5, mtaq-3A.6, and mtaq-6B.2). Two MTAs were
in common with those reported by Ayalew et al. [15], who identified five significant associations with
root length under stress (2) and non-stress (3) conditions. The MTA reported under stress conditions in
chromosome 2B may correspond with mtaq-2B.2, which also shows an association with LRL. However,
the association on chromosome 3B, although in a common region with mtaq-3B.4, differed in RSA.
When MTA-QTLs were compared with QTLs from bi-parental populations, twelve genomic regions
were located within the meta-QTL positions defined by Soriano and Álvaro [13] after the compilation
of 754 QTLs from 30 studies.

Candidate genes at the MTA peak were sought using the high-confidence gene annotation
from the wheat genome sequence [34]. Among these genes, those involved in plant growth and
development as well as tolerance to abiotic stresses may be of special interest. On chromosome 1A,
the marker 1210090_SNP in mtaq-1A.7 is located close to a cellulose synthase gene. This type of
gene is involved in plant cell growth and structure [45]. A trichome birefringence (TB) protein was
identified in mtaq-1B.1. According to Zhu et al. [46], the TB-like27 protein mutants in Arabidopsis
increased aluminium accumulation in cell walls, which inhibited root elongation through structural and
functional damage. Three peaks corresponded with F-box domains located in mtaq-1B.7, mtaq-3A.1,
and mtaq-6A.6. According to Hua et al. [47], this is the protein subunit of E3 ubiquitin ligases involved
in the response to abiotic stresses. Li et al. [48] overexpressed the F-box TaFBA1 in transgenic tobacco
to improve heat tolerance, and one of the results was increased root length in the transgenic plants.
9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in the biosynthesis of ABA in higher
plants, which regulates the response to various environmental stresses [49]. This enzyme is located
within mtaq-2A.3. In mtaq-2A.4, the marker 1117775_PAV corresponded with a late embryogenesis
abundant (LEA) hydroxyproline-rich glycoprotein. These proteins play a role in the response to abiotic
stresses. They are mainly accumulated in seeds, but have been found in roots during the whole
developmental cycle [50]. The marker 1098568_PAV, in mtaq-6B.4, is located within a gene coding
a bZIP transcription factor family protein. This type of transcription factor is involved in abiotic
stresses [51]. Zhang et al. [52] observed that the root growth of transgenic plants overexpressing the
gene TabZIP14-B was hindered more severely than that of the control plants. Another gene involved in
abiotic stress tolerance is the mitochondrial pyruvate carrier (MPC) located in mtaq-7A.1 [53]. This
gene is involved in cadmium tolerance in Arabidopsis, which prevents its accumulation. Roots are
the predominant plant tissue for cadmium absorption or exclusion. He et al. [53] found that the root
length of mutant plants of Arabidopsis for MPC genes was substantially shorter than the wild-type
plants. A protein related to WAT1 (WALLS ARE THIN1) involved in secondary cell wall thickness [54]
is located in the peak of mtaq-7A.1.

5. Conclusions

Including local landraces in breeding programs is a useful approach to broadening the genetic
variability of crops [3]. The variability for root system architecture traits found in Mediterranean
landraces and the high number of genome regions controlling them—most of them not reported
previously—makes this germplasm a valuable source for root architecture improvement. The
identification of extreme genotypes for root architecture traits can help identify parents for the
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development of new mapping populations to tackle a map-based cloning approach to the genes
of interest. In the present study, we identified the molecular markers linked to these genotypes
with different allele composition that facilitate the introgression of the corresponding traits through
marker-assisted breeding.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/7/364/s1,
Table S1: Accessions included in the study, Table S2: Statistics of the seminal RSA traits, Table S3: Means
comparison of seminal root system architecture traits for the eastern Balkans (EB) and Turkish durum wheat
landraces. Means within columns with different letters are significantly different at p < 0.05 following a Tukey test,
Table S4: Linkage disequilibrium decay plots. (A) Genome A. (B) Genome B. The LOESS curve is represented in
blue. The horizontal red line corresponds to the r2 mean for each genome, Table S5: Significant markers associated
with seminal root system architecture traits obtained in 160 durum wheat Mediterranean landraces.

Author Contributions: Conceptualization, M.R. and J.M.S.; Methodology, M.R., M.S.-G., and J.M.S.; Formal
Analysis, M.R.; Investigation, M.R., M.S.-G., J.M.S.; Resources, C.R.; Data Curation, M.R., C.R.; Writing—Original
Draft Preparation, M.R., J.M.S.; Writing—Review & Editing, C.R., M.S.-G., and J.M.S.; Visualization, J.M.S.;
Supervision, C.R., M.S.-G., and J.M.S.; Project Administration, C.R. and J.M.S.; Funding Acquisition, C.R. and
J.M.S.

Funding: This research was funded by Spanish Ministry of Science, Innovation and Universities (http://www.
ciencia.gob.es/), grant numbers AGL-2012-37217 (C.R.) and AGL2015-65351-R (J.M.S. and C.R.).

Acknowledgments: Projects AGL-2012-37217 (C.R.) and AGL2015-65351-R (J.M.S. and C.R.) of the Spanish
Ministry of Science, Innovation and Universities (http://www.ciencia.gob.es/) funded this study. The authors
acknowledge the contribution of the CERCA Program (Generalitat de Catalunya). M.R. is a recipient of a PhD
grant from the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). J.M.S. was hired by
the INIA-CCAA program funded by INIA and the Generalitat de Catalunya.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

BP Before Present
DArTseq Diversity Arrays Technology sequencing
EB + T Eastern Balkans and Turkey
EM Eastern Mediterranean
FDR False Discovery Rate
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NGm2 Number of Grains per square meter
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Abstract: Sugarcane (Saccharum spp. hybrids) is an important sugar and bioenergy crop with a
high aneuploidy, complex genomes and extreme heterozygosity. A good understanding of genetic
diversity and population structure among sugarcane parental lines is a prerequisite for sugarcane
improvement through breeding. In order to understand genetic characteristics of parental lines
used in sugarcane breeding programs in China, 150 of the most popular accessions were analyzed
with 21 fluorescence-labeled simple sequence repeats (SSR) markers and high-performance capillary
electrophoresis (HPCE). A total of 226 SSR alleles of high-resolution capacity were identified. Among
the series obtained from different origins, the YC-series, which contained eight unique alleles, had the
highest genetic diversity. Based on the population structure analysis, the principal coordinate analysis
(PCoA) and phylogenetic analysis, the 150 accessions were clustered into two distinct sub-populations
(Pop1 and Pop2). Pop1 contained the majority of clones introduced to China (including 28/29 CP-series
accessions) while accessions native to China clustered in Pop2. The analysis of molecular variance
(AMOVA), fixation index (Fst) value and gene flow (Nm) value all indicated the very low genetic
differentiation between the two groups. This study illustrated that fluorescence-labeled SSR markers
combined with high-performance capillary electrophoresis (HPCE) could be a very useful tool for
genotyping of the polyploidy sugarcane. The results provided valuable information for sugarcane
breeders to better manage the parental germplasm, choose the best parents to cross, and produce the
best progeny to evaluate and select for new cultivar(s).

Keywords: sugarcane; parental line; population structure; plant breeding; genetic diversity; simple
sequence repeats (SSR)

1. Introduction

Sugarcane cultivars are allopolyploids with highly heterozygous and complex genomes, which
render a slow progress in breeding. To date, most commercial sugarcane varieties can be traced back to
a limited number of popular cultivars belonging to either the POJ- or Co-series, which represent a
very narrow genetic base [1]. Therefore, it is important for sugarcane breeders to fully understand the
genetic relationship among parental lines and to choose elite parents of different genetic background
for crossing in order to broaden the genetic diversity of sugarcane population [2].

Hainan sugarcane breeding station (HSBS) is the primary sugarcane crossing facility in Mainland
China. It produces nearly all the seeds for sugarcane breeders in China every year [3]. HSBS has
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more than 2000 germplasm materials. Currently, thousands of new elite sugarcane genotypes are
created by breeders each year. The utilization of these ever-increasing germplasm materials is a
daunting challenge. Parental selection is a crucial step for good quality cross-breeding. Therefore,
breeding materials should be adequately evaluated by different analytical methods to ensure their
genetic suitability.

In the past, sugarcane breeders studied the genetic differences of parents mainly from the
aspects of the genetic relationship, geographical origin and morphology. The genetic differences of
sugarcane parents cannot really be reflected by pedigree because of mixed pollen, selfing and seed
admixture [4]. Although morphological traits can be evaluated, these traits are easily influenced by the
environment and may not reflect the real genetic diversity of sugarcane germplasm resources [5]. DNA
molecular markers with high stability, multiple quantity and high polymorphism are more suitable
for evaluating sugarcane germplasm collection [1]. With the rapid development of biotechnology,
sugarcane researchers have utilized different types of DNA molecular markers, including amplified
fragment length polymorphisms (AFLP) [1,5], restriction fragment length polymorphisms (RFLP) [6,7],
random amplification of polymorphic DNAs (RAPD) [8,9], single nucleotide polymorphism (SNP) [10],
simple sequence repeats (SSRs) [11], inter simple sequence repeat (ISSRs) [12,13], expressed sequence
tag-simple sequence repeat (EST-SSRs) [14–16], 5S rRNA intergenic spacers [17], start codon targeted
(SCoT) [18], target region amplification polymorphism (TRAP) [5,19,20], and cleaved amplified
polymorphism sequences (CAPS) [21] for evaluating sugarcane germplasm.

Among PCR-based markers, SSR (microsatellite) markers are considered one of the most efficient
markers for plant breeding due to large quantity, low dosage, co-dominant, reliability and multi-allelic
detecting [22]. SSR markers have been used widely to study sugarcane genetic diversity and population
structure [22–24], variety identity [25], genetic map [26,27], and genetic association [28–30]. Furthermore,
fluorescence-labeled SSR markers combined with high-performance capillary electrophoresis (HPCE)
have manifested better performance in genotyping of polyploid sugarcane, due to higher accuracy and
better detection power [22–24,31–37].

Now, this paper reports a study that was designed to manage the parental germplasm of the
sugarcane breeding programs in China through the microsatellite (SSR) DNA fingerprinting using
fluorescence-labeled SSR primers and the high-performance capillary electrophoresis (HPCE) system.
The results will help sugarcane breeders better manage the parental germplam, choose cross parents,
design cross combinations, and produce high quality seedlings for the selection and development of
elite varieties.

2. Materials and Methods

2.1. Plant Materials

One hundred and fifty parental clones were chosen for this study, based on the number of lines
used most often in crossing from 2014 to 2018 in all Chinese sugarcane breeding programs (Table 1 and
S1). These included 32 of clones from foreign origin, 109 clones from the China Mainland, and nine
ROC-series clones from China Taiwan. Among the 32 foreign clones, one was from India (Co-series),
29 were from the U.S. (CP-series) and two were from Thailand (K-series). Among the 109 clones
from China Mainland, four were from the Dehong Sugarcane Research Institute, Yunnan Province
(DZ-series); 11 were from the Fujian Agriculture and Forestry University, Fujian Province (FN-series);
two were from the Jiangxi Sugarcane Research Institute, Jiangxi Province (GN-series); 21 were from the
Guangxi Academy of Agricultural Sciences, Guangxi Province (GT-series); six were from the Liucheng
Academy of Agricultural Sciences, Guangxi Province (LC-series); six were from the Neijiang Academy
of Agricultural Sciences, Sichuan Province (NJ-series); 18 were from the Hainan Sugarcane Breeding
Station of Guangzhou Sugarcane Industry Research Institute, Hainan Province (YC-series); 29 were
from the Guangzhou Sugarcane Industry Research Institute, Guangdong Province (YT-series); 10 were
from the Yunnan Academy of Agricultural Sciences, Yunnan Province (YZ-series) and two were from
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other breeding units in China Mainland (one from Sichuan Research Institute of Sugar Crops, Sichuan
Province and one from the Guangdong Academy of Agricultural Sciences, Guangdong Province).

Table 1. The 150 sugarcane accessions used in the experiment.

No. Accession Series No. Accession Series No. Accession Series

1 Co1001 Co 51 GZ75-65 GN 101 YC06-92 YC
2 CP57-614 CP 52 HoCP00-1142 CP 102 YC07-65 YC
3 CP67-412 CP 53 HoCP00-2218 CP 103 YC07-71 YC
4 CP72-1210 CP 54 HoCP01-517 CP 104 YC09-13 YC
5 CP72-2086 CP 55 HoCP01-564 CP 105 YC71-374 YC
6 CP80-1827 CP 56 HoCP02-610 CP 106 YC94-46 YC
7 CP81-1254 CP 57 HoCP02-623 CP 107 YC97-24 YC
8 CP84-1198 CP 58 HoCP03-704 CP 108 YC97-40 YC
9 CP89-2143 CP 59 HoCP03-708 CP 109 YC98-2 YC

10 CP93-1382 CP 60 HoCP03-716 CP 110 YC98-27 YC
11 CP93-1634 CP 61 HoCP05-902 CP 111 YN73-204 YN
12 CP94-1100 CP 62 HoCP07-612 CP 112 YT00-236 YT
13 CT89-103 CT 63 HoCP07-613 CP 113 YT00-318 YT
14 DZ03-83 DZ 64 HoCP07-617 CP 114 YT00-319 YT
15 DZ05-61 DZ 65 HoCP91-555 CP 115 YT01-120 YT
16 DZ06-51 DZ 66 HoCP92-648 CP 116 YT01-125 YT
17 DZ93-88 DZ 67 HoCP93-746 CP 117 YT01-71 YT
18 FN02-6404 FN 68 HoCP95-988 CP 118 YT03-373 YT
19 FN02-6427 FN 69 K5 K 119 YT03-393 YT
20 FN05-2848 FN 70 K86-110 K 120 YT85-177 YT
21 FN0711 FN 71 LC03-1137 LC 121 YT86-368 YT
22 FN0712 FN 72 LC03-182 LC 122 YT89-240 YT
23 FN0713 FN 73 LC04-256 LC 123 YT91-976 YT
24 FN0717 FN 74 LC05-128 LC 124 YT92-1287 YT
25 FN91-23 FN 75 LC05-136 LC 125 YT93-124 YT
26 FN92-4621 FN 76 LC05-291 LC 126 YT93-159 YT
27 FN95-1702 FN 77 LCP85-384 CP 127 YT94-128 YT
28 FN99-20169 FN 78 NJ00-118 NJ 128 YT96-86 YT
29 GN95-108 GN 79 NJ00-15 NJ 129 YT97-20 YT
30 GT00-122 GT 80 NJ03-218 NJ 130 YT97-76 YT
31 GT02-1156 GT 81 NJ07-13 NJ 131 YT99-66 YT
32 GT02-208 GT 82 NJ86-117 NJ 132 YZ02-2540 YZ
33 GT02-281 GT 83 NJ92-244 NJ 133 YZ02-588 YZ
34 GT02-467 GT 84 ROC1 ROC 134 YZ03-194 YZ
35 GT02-761 GT 85 ROC10 ROC 135 YZ07-100 YZ
36 GT02-901 GT 86 ROC16 ROC 136 YZ07-49 YZ
37 GT03-11 GT 87 ROC20 ROC 137 YZ89-7 YZ
38 GT03-1403 GT 88 ROC22 ROC 138 YZ94-343 YZ
39 GT03-2112 GT 89 ROC23 ROC 139 YZ94-375 YZ
40 GT03-3005 GT 90 ROC25 ROC 140 YZ99-601 YZ
41 GT03-3089 GT 91 ROC26 ROC 141 YZ99-91 YZ
42 GT03-8 GT 92 ROC28 ROC 142 ZZ33 YT
43 GT03-91 GT 93 YC04-55 YC 143 ZZ41 YT
44 GT05-3084 GT 94 YC05-64 YC 144 ZZ43 YT
45 GT05-3595 GT 95 YC06-111 YC 145 ZZ45 YT
46 GT73-167 GT 96 YC06-140 YC 146 ZZ49 YT
47 GT89-5 GT 97 YC06-166 YC 147 ZZ50 YT
48 GT92-66 GT 98 YC06-61 YC 148 ZZ80-101 YT
49 GT94-119 GT 99 YC06-63 YC 149 ZZ90-76 YT
50 GT96-154 GT 100 YC06-91 YC 150 ZZ92-126 YT
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2.2. SSR Genotyping

Young leaf tissues were collected from three individual clones, rinsed with 75% ethanol, and
kept at −80 ◦C prior to DNA extraction. The genomic DNA was extracted from leaf tissues using the
cetyl trimethyl ammonium bromide (CTAB) method [38] with minor modifications. The quality and
concentration of DNA were measured using the UV-Vis Spectrophotometer Q5000 of Quawell (Quawell
Technology, Inc. San Jose, CA, USA) and diluted to 20 ng/μL. A set of 21 SSR primer pairs (Table 1)
with stable and clear amplification was selected from previous reports [3,11,33,39–42]. All forward
primers were labeled with a fluorescence dye, 6-carboxy-fluorescein (FAM) or Hexachlorofluorescein
(HEX). PCR reactions were performed with the following cycling condition: 95 ◦C for 2 min, followed
by 40 cycles of 94 ◦C for 30 s, then primer-specific annealing temperature (Tm) for 90 s, 65 ◦C for
30 s, followed by one cycle at 65 ◦C for 10 min. The annealing temperatures for the 21 primer pairs
were optimized separately, ranging from 49 ◦C to 62 ◦C (Table 2). The amplified PCR products were
checked by a 3% agarose gel electrophoresis. High-performance capillary electrophoreses (HPCE)
was conducted on the ABI 3730XL DNA analyzer (Applied Biosystems, Inc. Foster City, CA, USA)
to generate GeneScan files. The GeneScan files were analyzed using the GeneMarker V2.2 software
(SoftGenetics, LLC. State College, PA, USA) to show SSR DNA fragments (alleles) and the sizes of
these fragments were calibrated automatically against the GeneScan500 size standards. Due to the
polyploidy nature of sugarcane, the SSR alleles had to be manually called first and the score sheet was
manually rechecked according to Pan [43]. The presence of an allele was scored as “1” and its absence
scored as “0”. SSR alleles were named using a combination of primer name and allele size.

Table 2. The 21 simple sequence repeat (SSR) markers used in this study.

Primer Name Type a Repeat Motif Primer Sequence (5′-3′) Annealing Temperatures (◦C)

mSSCIR36 G-SSR (GA)18GT
(GA)4

CAACAATAACTTAACTGGTA
CTGTCCTTTTTATTCTCTTT 52

mSSCIR46 G-SSR (GT)10
ATGCTCCGCTTCTCACTC

AAGGGGAAAATGAAAACC 52

mSSCIR74 G-SSR (CGC)9
GCGCAAGCCACACTGAGA
ACGCAACGCAAAACAACG 56

SCM4 E-SSR (CGGAT)4
CATTGTTCTGTGCCTGCT
CCGTTTCCCTTCCTTCCC 52

SCM7 E-SSR (GCAC)4 ACGGTGCTCTTCACTGCT
GGGCATACTTCCTCCTCTAC 60

SCM18 E-SSR (ATAC)3
CATCAGTATCATTTCATCTTGG
CAGTCACAGTCGGGTAGA 60

SMC1825LA G-SSR (TG)11
CACGTCCTTCCGCCTTGA
TCATCGTTCGTCGCACTG 56

SMC286CS G-SSR (TG)43
TCAAATGGGACCTTATTGGAG
TCCCTCGATCTCCGTTGTT 52

SMC477CG G-SSR (CA)31
CCAACAACGAATTGTGCATGT
CCTGGTTGGCTACCTGTCTTCA 60

SMC486CG G-SSR (CA)14
GAAATTGCCTCCCAGGATTA
CCAACTTGAGAATTGAGATTCG 60

SMC569CS G-SSR (TG)37
GCGATGGTTCCTATGCAACTT
TTCGTGGCTGAGATTCACACTA 60

SMC597CS G-SSR (AG)31
GCACACCACTCGAATAACGGAT
AGTATATCGTCCCTGGCATTCA 52

SMC334BS G-SSR (TG)36
CAATTCTGACCGTGCAAAGAT
CGATGAGCTTGATTGCGAATG 60

SMC36BUQ G-SSR (TTG)7
GGGTTTCATCTCTAGCCTACC
TCAGTAGCAGAGTCAGACGCTT 56
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Table 2. Cont.

Primer Name Type a Repeat Motif Primer Sequence (5′-3′) Annealing Temperatures (◦C)

SMC7CUQ G-SSR (CA)10(C)4
GCCAAAGCAAGGGTCACTAGA
AGCTCTATCAGTTGAAACCGA 60

SEGM285 G-SSR (GCAC)4
AAGAAGAAGACTGAGAAGAACACT
TAGCAACAACTTAATTTAGCAATC 56

UGSM345 E-SSR (TG)6
CTGTACTGGTATTACATGTGACCT
TCTACTAATCACAAGAGAAGATGC 60

UGSM10 E-SSR (GGC)11
GCTACTATGGACAACAGGG
ATGAAGAGACGAGACGAAGA 56

UGSuM50 E-SSR (TC)14
CTACTGCCGAGGAAAGATCG
GGAAAAGTTTGTGGCAAGGA 56

MCSA068G08 E-SSR (CAG)6
CTAATGCCATGCCCCAGAGG
GCTGGTGATGTCGCCCATCT 56

MCSA176C01 E-SSR (GGT)5
GAGTCAGTTGGTGCCGAGATTG
GAACAGGTTAAAGCCCATGTC 56

a G-SSR: SSR primer pair designed from genomic sequence; E-SSR: SSR primer pair designed from UniGene or
cDNA sequences.

2.3. Genetic Diversity Analysis

Qualitative allelic data matrix was constructed and formatted using the DataFormatter
software [44]. The PowerMarker v3.25 software [45] was used to calculate allele frequency, number of
alleles per locus, polymorphism information content (PIC), the gene diversity index (h), Shannon’s
information index (I), and percentage of polymorphic loci (PPL) of each marker. The resolving power
of the primer (Rp) [46] was calculated using allele frequencies. The probability of identity (PI) [23] was
computed using the CERVUS v3.0 software [47]. Unique (Series-specific) alleles were estimated using
GeneALEx v6.502 [48,49].

2.4. Population Structure Analysis

The model-based program Structure v2.3.4 [50] was used to analyze the population structure
involving the 226 alleles amplified by the 21 SSR primer pairs. The number of populations (K) was
set from one to 10, and at each K value, ten runs were conducted separately with 50,000 iterations of
burn-in length and 50,000 Markov Chain Monte Carlo (MCMC). Then, the best K value was estimated
using Evanno’s ΔK method [51] with an online tool, Structure Harvester [52]. An individual Q matrix
was generated by CLUMPP v1.1.2 [53]. Parental clones with membership probabilities greater than 0.5
were identified as the same group [54]. A Principal Coordinate Analysis (PCoA) map was generated
based on the genetic distances between pairs of clones by GeneALEx v6.502 [48,49]. An unrooted
phylogenetic tree was constructed based on the neighbor-joining (NJ) method and the genetic distance
matrix using PowerMarker v3.25 [45] and adjusted with MEGA v6.06 [55].

2.5. Differentiation Analysis and Genetic Diversity Indices

Analysis of Molecular Variance (AMOVA) was conducted to find the genetic differentiation within
and among subpopulations using GeneALEx v6.502 [48,49]. From AMOVA, the fixation index (Fst)
and gene flow (Nm) within the population was also acquired. In addition, genetic diversity indices,
including number of different alleles (Na), number of effective alleles (Ne), Shannon’s information index
(I), observed heterozygosity (Ho), expected heterozygosity (He), unbiased expected heterozygosity
(uHe), and percentage of polymorphic loci (PPL) of different sub-groups were also calculated using
GeneALEx v6.502 [48,49].
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3. Results

3.1. Polymorphism Revealed by SSR Genotyping

The 21 SSR primer pairs amplified a total of 226 alleles with an average of 10.8 alleles per primer
pair (Table 2). Of the 226 alleles, 220 alleles were polymorphic and the other six alleles could be
amplified in each clone. The number of alleles amplified by one primer pair ranged from five by
MCSA176C01 to 25 by SCM4. The mean PIC value of each SSR primer pair ranged from 0.15 to 0.29
with an average of 0.23. The probability of identity (PI) of the 21 markers was all very low, which ranged
from 0.000001 (mSSCIR36) to 0.071332 (SMC569CS) with an average of 0.015532. For the 21 primers
pairs, the resolving power of the primer (Rp) was relatively high, ranging from 3.68 (SMC569CS) to
21.01 (mSSCIR36) with an average of 9.14. The mean number of alleles and the mean PIC value of
genomic SSRs were 10.6 and 0.23, and were 9.8 and 0.23 for EST SSRs, respectively (Table 3).

Table 3. Genetic diversity parameters of 150 of the most popular parental clones from sugarcane hybrid
breeding programs.

Primer
Name

Allele (No.)
Product

Size (bp)
Range of

PIC a Values
Mean of

PIC Values
PI b RP c

mSSCIR36 21 127–168 0.01–0.38 0.15 0.000001 7.09
mSSCIR46 12 146–177 0.01–0.37 0.15 0.002858 13.04
mSSCIR74 6 215–228 0.00–0.37 0.17 0.042135 4.69

SCM4 25 92–209 0.01–0.37 0.17 0.000087 4.16
SCM7 7 155–188 0.03–0.37 0.18 0.048672 3.68
SCM18 9 226–251 0.00–0.38 0.19 0.010157 8.67

SMC1825LA 10 91–119 0.01–0.37 0.20 0.001240 6.53
SMC286CS 13 128–152 0.01–0.37 0.21 0.000411 7.31
SMC477CG 15 115–134 0.00–0.36 0.21 0.000125 4.11
SMC486CG 7 222–243 0.06–0.36 0.22 0.051066 4.88
SMC569CS 6 166–220 0.04–0.38 0.24 0.071332 14.05
SMC597CS 14 143–166 0.03–0.37 0.24 0.000034 10.99
SMC334BS 12 145–163 0.01–0.38 0.24 0.000140 6.27

SMC36BUQ 12 103–251 0.00–0.37 0.25 0.010448 7.49
SMC7CUQ 7 156–170 0.00–0.37 0.26 0.024118 9.76
SEGM285 13 306–389 0.03–0.38 0.26 0.000143 21.01
UGSM345 8 320–334 0.01–0.38 0.27 0.005772 13.68
UGSM10 10 97–125 0.00–0.38 0.28 0.005289 9.31

UGSuM50 6 123–139 0.05–0.38 0.28 0.023095 6.24
MCSA068G08 8 179–202 0.06–0.38 0.29 0.003035 15.57
MCSA176C01 5 427–440 0.11–0.38 0.29 0.026013 13.31

a PIC: Polymorphism information content; b PI: Probability of identity; c RP: Resolving power.

3.2. Genetic Diversity

The gene diversity (h) of the polymorphic allele ranged from 0.013 to 0.500 with an average of
0.282. The Shannon’s information index (I) of the polymorphic allele ranged from 0.010 to 0.534 with
an average of 0.261. Among the different series of sugarcane parental lines, the highest values of both
gene diversity (h) and Shannon’s information index (I) were found in the YC-series (0.261, 0.397),
followed by the YT-series (0.254, 0.386,) and the GT-series (0.251, 0.376) (Table 3), indicating that the
YC-series is genetically more diverse than the other series. The average percentages of polymorphic
allele for the YT-, YC-, and CP-series were 0.814, 0.805 and 0.743, respectively. Alleles were identified
that were unique to the 12 distinct germplasm groups (Table 4).
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Table 4. Gene diversity, Shannon’s information index, percentage of polymorphic loci and series-specific
alleles of different series.

Series Sample Size h a I b PPL c Series-Specific Alleles

CP 29 0.239 0.361 0.743
SCM7-188, SCM18-238,

SMC486CG-225,
SMC486CG-233

DZ 4 0.235 0.341 0.562

FN 11 0.245 0.365 0.677 mSSCIR46-153

GN 2 0.148 0.205 0.296

GT 21 0.251 0.376 0.721

LC 6 0.197 0.293 0.522

NJ 6 0.205 0.302 0.527 SMC36BUQ-125

ROC 9 0.201 0.301 0.558 SMC36BUQ-184,
SEGM285-359

K 2 0.164 0.227 0.327

YC 18 0.261 0.397 0.805

mSSCIR46-146,
mSSCIR46-149, SCM7-175,

SMC569CS-174,
SMC569CS-202,
SMC36BUQ-106,
SMC36BUQ-132,

UGSM10-113

YT 29 0.254 0.386 0.814 SMC36BUQ-105,
SMC36BUQ-139

YZ 10 0.241 0.358 0.650

Mean 0.176 0.261 0.480
a h, Gene diversity; b I, Shannon’s information index; c PPL, percentage of polymorphic loci.

3.3. Population Structure and Phylogeny

The K-value was used to estimate the number of clusters of the clones based on the genotypic
data. A continuous gradual increase was observed in the log-likelihood of K-value (LnP(K)) with the
increase of K-value (Figure 1B and Table S2). The number of clusters (K) was plotted against Delta
K (ΔK), which revealed a sharp peak at K = 2 (Figure 1A and Table S2). The optimal K-value was
K = 2, which revealed that the highest probability for the presence of two sub-populations (Pop1 and
Pop2) among the 150 sugarcane clones (Figure 1C); Pop1 consisted of 50 clones and Pop2 contained
100 clones (Table S3). Pop1 clones were mainly introduction accessions and most of the Pop2 clones
were from Mainland China.

In accordance with the population structure results, PCoA also showed two clusters with the first
three axes together explained 20.04% of cumulative variation. In the PCoA plot, the first and second
principal coordinates accounted for 8.41% and 6.71% of the total variations, respectively (Figure 2).
Furthermore, the unrooted neighbor-joining phylogenetic tree (Figure 3) also showed two clusters.
One cluster contained most of the clones of Pop1; the other cluster contained most of the clones of
Pop2. However, the admixture of clones between the two sub-populations does exist. Few accessions
(YC98-27, GT03-2112 and FN0717) native to China were clustered into Pop1 while several others
(HoCP01-517, ROC10, ROC16, K5, ROC25, ROC22, ROC1) introduced to China Mainland were grouped
into Pop2.
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Figure 1. (A) Delta K (ΔK) for different numbers of subpopulations (K); (B) average log-likelihood
K-value (LnP(K)) against the number of K; (C) the population structure of 150 most popular parental
clones in the hybrid breeding programs in China based on the distribution of 226 SSR alleles among
these clones. Pop1 clones are coded in red and Pop2 clones in green.

 

Figure 2. Principal coordinates analysis (PCoA) scatter plots. Red circles represent the Pop1 clones and
green triangles the Pop2 clones.
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Figure 3. A neighbor-joining phylogenetic tree based on the pair-wise genetic distance between 150
most popular parental clones from hybrid breeding programs in China. Red circles represent the Pop1
clones and green triangles the Pop2 clones.

3.4. Genetic Differentiation and Allelic Pattern Across Populations

The two sub-populations Pop1 and Pop2 identified by the Structure analysis were subjected to the
GeneALEx analysis to calculate the values of Analysis of Molecular Variance (AMOVA), Nei’s genetic
distance and genetic diversity indices (Table 5). The variation value within the sub-populations (95% of
total variation) was significantly higher than that between the sub-populations (5% of total variation).
In addition, a high gene flow (Nm = 4.981) and a low fixation index value (Fst = 0.048) were obtained
on the basis of Nei’s genetic distance analysis.

Table 5. Analysis of molecular variance (AMOVA) of SSR-based genetic variation between and within
two sub-populations of Pop1 and Pop2.

Source of
Variation

Degrees of
Freedom

Sum of
Squares

Mean Sum of
Squares

Estimated
Variance

Percentage of
Variation

Between
sub-Pops 1 546.240 546.240 6.308 5%

Within sub-Pop 148 18,601.600 125.686 125.686 95%
Total 149 19,147.840 131.995 100%

Fixation Index Fst = 0.048
Gene Flow Nm = 4.981
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The mean value of the number of different alleles (Na) and effective alleles (Ne) of the two
sub-populations were 1.885 ± 0.015 and 1.462 ± 0.017, respectively. The mean values for I, He and
uHe among the 150 parental clones were 0.413 ± 0.011, 0.272 ± 0.008 and 0.274 ± 0.009, respectively.
Pop2 (I = 0.423 ± 0.016, He = 0.278 ± 0.012, and uHe = 0.278 ± 0.012) showed higher levels of genetic
diversity than Pop1 (I = 0.403 ± 0.017, He = 0.267 ± 0.012, and uHe = 0.269 ± 0.012). The percentage of
polymorphic loci per population (PPL) ranged from 83.63% (Pop1) to 93.36% (Pop2) with an average of
88.50% (Figure 4).

Figure 4. Allelic pattern of SSR across the two sub-populations Pop1 and Pop2. (A) Number of SSR
alleles (Na); (B) number of effective SSR alleles (Ne); (C) Shannon’s information index (I); (D) expected
heterozygosity (He); (E) expected unbiased heterozygosity (uHe); and (F) percentage of polymorphic
loci (PPL).

4. Discussion

Cross hybridization has become the main breeding method for the sugarcane variety improvement.
In the traditional sugarcane cross-breeding process, selecting parental clones for crossing is the most
important step. Only parental clones sharing a highly level of genetic diversity and complementarity
can generate high quality seedling populations [56,57]. Since the 1950s, some sugarcane cultivars from
America and China Taiwan have played a very important role in China’s sugarcane cross-breeding
programs [3]. Meanwhile, some new elite sugarcane parents are being created and utilized by the
breeders every year. To make informed crossing choices, the genetic relationship among the parental
clones involved in the latest sugarcane cross-breeding programs should be clarified.

In this study, we used 21 pairs of SSR primers to investigate the genetic diversity and population
structure of 150 of the most commonly used parental clones. These primer pairs amplified 226 alleles,
of which 97.3% were polymorphic. The mean PIC and the gene diversity (h) of the polymorphic alleles
were 0.23 and 0.28, respectively, which were lower than the values reported on the “World Collections
of Sugarcane and Related Grasses” (WGSRG) (PIC = 0.2568, h = 0.310) [23]. This may be largely due to
the number of accessions involved in the world collection study. The WCSRG study involved 1002
highly diverse accessions, belonging to nine species, whereas only 150 clones were used in this study.
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Since 2000, a large number of genomic SSR and EST-SSR markers has been developed and applied
effectively in estimating genetic diversity in the sugarcane [16,35,39,41,58]. After a lot of screening and
identification (unpublished), we selected the best 21 primer pairs from these reports, including eight
EST-SSR and 13 genomic SSR. We found that the number and mean PIC value of the EST-SSR alleles
were lower than those of the genomic SSR alleles (Table 2). This can be due to the fact that the EST-SSR
alleles are located in more conserved regions of the genome [16].

The probability of identity (PI) is an individual identification estimator that shows the probability
of two different accessions sharing the same genotypes at one specific locus in a population [23]. In this
study, the PI values of all SSR primer pairs were very low, ranging from 0.000001 (mSSCIR36) to
0.071332 (SMC569CS) (Table 2). The combined PI value for all markers was 9.04 × 10−57, indicating
that these 21 SSR primer pairs are able to distinguish the 150 parental clones. The resolving power of
the primer pair (Rp) is an index, which explains the primer pair’s ability to identify different genotypes.
Rp is related to the distribution of alleles within the sampled genotypes [46] and has been found to
correlate strongly with the genotype in evaluating 34 potato cultivars using four primers [46]. The mean
Rp value (9.135) of the 21 SSR primer pairs is much higher than other studies, such as 2.37 by [59] and
2.2 by [12], indicating these primer pairs are more informative and could identify more cultivars.

Based on geographic origin, the 150 clones were sorted into 15 series. Among these series, the
genetic diversity (h) indices ranged from 0 to 0.261 and the Shannon’s information index (I) ranged
from 0 to 0.397. At the series level, the YC-series had the highest genetic diversity (h = 0.261, I = 0.397),
which was similar to the previous results reported by You et al. [35,60]. The YC-series clones are from
the Hainan Sugarcane Breeding Station of Guangzhou Sugarcane Industry Research Institute in Sanya
city, Hainan province, where the primary sugarcane crossing facility of China is located. The YC-series
clones were selected from crosses involving indigenous clones, foreign clones, and clones of closely
related Saccharum species and genera [35]. Furthermore, the YC-series also had the greatest number of
eight series-specific alleles. Only four, two, one, and one unique alleles were found in the CP-series,
YT-series, ROC-series, FN-series and NJ-series clones, respectively. Series-specific alleles are the alleles
found only in a single population among a broader collection of populations [61,62]. These alleles
have been proven to be informative for population genetic studies [63,64] and we may use these alleles
for variety identification and marker assisted selection.

The 150 parental clones were classified into two groups (Pop1 and Pop2) based on the PCoA,
phylogenetic analysis and population structure analysis. Pop1 contained the majority of foreign
accessions with the membership probabilities of >0.5, while most accessions from Mainland China
were assigned to Pop2. Certain specific target traits intentionally selected by different germplasm
collectors or breeders might also contribute to the population structure [54]. However, admixture
of clones between the two sub-populations do exist (Figures 1–3). For example, one out of the 29
CP-series clones, nine ROC-series clones and two K-series clones clustered into Pop2, but the majority
of introduction clones clustered into Pop1. Likewise, one out of four DZ-series, five out of 11 FN-series,
four out of 21 GT-series, two out of six LC-series, seven out of 29 YT-series, and two out 10 YZ-series
clones clustered into Pop1, while the majority of the clones from Mainland China clustered into Pop2.
This might be due to genetic exchange among different series, or the similar threshold (Pop1: 0.5098,
Pop2: 0.4902) (Table S3) resulting in several clones to be clustered completely into a certain group
(Pop1 or Pop1), while others being clustered into both groups.

The utilization data was based the most widely used 150 parental clones of sugarcane breeding
programs in China during the recent five years. These included 32 of clones from foreign origin, 109
clones from the China Mainland, and nine ROC-series clones from China Taiwan. Among the 32 foreign
clones, only one was from India (Co1001), two were from Thailand (K5 and K86-110) while the majority
of them (29/32) were from the US (CP-series). Co1001 has been used as parental line extensively in the
sugarcane breeding programs in the world. Some sugarcane cultivars, including the CP-series and
China Mainland clones, were the progenies of Co-series varieties. Compared to clones from China
Mainland, the CP-series clones may have closer genetic distance with the Co-series. So CP-series clones
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and Co-series clone can be clustered into Pop1. K5 and K86-110, which were from Thailand, were
two of the most widely used parental clones in China. Some clones from China Mainland were the
progenies of K5 and K86-110. Clones from China mainland may have the closer genetic distance with
the two clones to be clustered into Pop2. The ROC-series varieties have been used as major cultivars in
China Mainland accounting for greater than 80% of sugarcane planting areas [24]. In addition, the
ROC-series accessions were also the most widely used parents in China Mainland during the recent
five years (Table S1). In our study, the ROC-series accessions were clustered into Pop2 because of their
closer genetic distance with China Mainland’s clones. It is suggested that less attention be continually
paid on the utilization of ROC-series accessions in China Mainland’s sugarcane breeding programs.

Fixation index (Fst) measures the genetic distance between populations. An Fst value
of zero indicates no differentiation between the sub-populations, while one indicates complete
differentiation [65]. An Fst value less than 0.05 is considered no differentiation, while an Fst value
greater than 0.15 is considered significant in differentiating populations [66]. In this study, the Fst
value between the two sub-populations was 0.048 (Table 5), which was low and would indicate a very
low genetic differentiation. This is consistent with the results obtained from the AMOVA, where the
genetic variation within sub-populations (95%) was significantly higher than between sub-populations
(5%). Gene flow (Nm) is the transfer of genetic variation from one population to another. If the value is
less than one, then the gene exchange would be limited between sub-populations [67].In this study, the
Nm value was high, 4.981 suggesting that a high level of genetic exchange may have occurred and this
can result in a low genetic differentiation between the two sub-populations. Since the genetic diversity
indices of Pop2, such as the number of different alleles (Na), effective alleles (Ne), I, He and uHe, were
all higher than those of Pop1, Pop2 is more diverse than Pop1.

Selecting genetically distant accessions from Pop1 and Pop2 for crossing parents in sugarcane
breeding programs will potentially lead to elite varieties with broadened genetic bases. Almost all the
CP-series clones from the US were clustered into Pop1. These clones have been used extensively as
parental lines in the sugarcane breeding programs in China; some have become or are elite progenitors
of Chinese cultivars [67]. In addition, this study shows that several YC-series clones are also good
crossing parents with a high level of genetic diversity.

5. Conclusions

Using a high-performance capillary electrophoresis (HPCE) detection system, the most widely
used 150 sugarcane parental clones from 15 different series were fingerprinted with 21 SSR primer
pairs. A total of 226 SSR alleles were identified and the distribution of these SSR alleles were subjected
to genetic variation, phylogeny, population structure, and principal coordinate analyses. The results
showed that the parental lines were clustered into two distinct groups, Pop1 and Pop2. Pop1 contained
the majority of foreign clones, while Pop2 consisted of the majority of accessions from Mainland China.
Genetic differentiation between the two groups was low. The YC-series clones of Pop2 displayed a
high level of genetic diversity and the CP-series clones were elite parents of several Chinese cultivars.
The introduction and utilization of more clones of the YC- and CP-series into China’s sugarcane
breeding programs will broaden the genetic base of breeding germplasm and produce high quality
seedlings for selection and development of elite varieties.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/8/449/s1,
Table S1: Utilization data of the most widely used 150 parental clones from sugarcane hybrid breeding programs
in China during the recent five years. Table S2: Tabulated K values of 150 most popular parental clones from
sugarcane hybrid breeding programs in China at K = 1 to 10. Table S3: Sub-population assignment of the 150 most
popular parental clones from the sugarcane breeding programs in China based on the Q values.
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Abstract: Avocado (Persea americana Mill.) is an important fruit crop commercially grown in tropical
and subtropical regions. Despite the importance of avocado, there is relatively little available genomic
information regarding this fruit species. In this study, we functionally annotated the full-length
avocado transcriptome sequence based on single-molecule real-time sequencing technology, and
predicted the coding sequences (CDSs), transcription factors (TFs), and long non-coding RNA
(lncRNA) sequences. Moreover, 76,777 simple sequence repeat (SSR) loci detected among the 42,096
SSR-containing transcript sequences were used to develop 149,733 expressed sequence tag (EST)-SSR
markers. A subset of 100 EST-SSR markers was randomly chosen for an analysis that detected 15
polymorphicEST-SSR markers, with an average polymorphism information content of 0.45. These
15markers were able to clearly and effectively characterize46 avocado accessions based on geographical
origin. In summary, our study is the first to generate a full-length transcriptome sequence and develop
and analyze a set of EST-SSR markers in avocado. The application of third-generation sequencing
techniques for developing SSR markers is a potentially powerful tool for genetic studies.

Keywords: Persea americana; SMRT sequencing; simple sequence repeat; genetic relationship

1. Introduction

Avocado (Persea americana Mill.) belonging to the family Lauraceae of the order Laurales is
native to Mexico and Central and South America, and is one of the most economically important
subtropical/tropical fruit crops worldwide [1]. Taxonomic treatments differ considerably in terms of
the circumscription and defining of infraspecific avocado entities [2–5]. Additionally, researchers have
long considered that geographical isolation has likely resulted in the following three ecological races of
avocado: Mexican (P. americana var. drymifolia), Guatemalan (P. americana var. guatemalensis), and West
Indian (P. Americana var. americana) [1]. The Mexican race adapted to a Mediterranean climate, whereas
the Guatemalan race originated in a tropical highland climate, and the West Indian race adapted to
humid tropical lowland conditions [1].

Avocado is rich in lipids, sugars, proteins, minerals, vitamins, and other active ingredients [6–8].
Moreover, avocado production has increased worldwide [1]. One factor contributing to the increases
in production and consumption is the expansion of avocado products into new global markets where
avocado was previously unknown or scarce, includingChina, which is an emerging market for the
production and consumption of avocado [1,9]. After avocado was first introduced and cultivatedin
China in the late 1950s, selective breeding by some national scientific research bodies and other
state farms have resulted in the development of more than 10 superior avocado accessions [9,10].
Additionally, natural crosses among avocado accessions have generated new hybrids on state and
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private farms, andsome nativeaccessions are increasingly produced in somewhat remote areas with
distinct local environmental conditions [9,10]. Avocado is broadly grown and exploited in some
provinces in southern China, including Hainan, Guangxi, Yunnan, and Taiwan [9,10]. The climatic
conditions in these provinces are subtropical to tropical, which are ideal conditions for the cultivation
of avocado [9,10].

The avocado germplasm should be precisely characterized to maximize its utility to breeders
worldwide [1]. Specifically, a molecular characterization is required for analyses of the genetic
relationships among avocado germplasm. Over the past two decades, studies involving various types
of molecular markers have examined the genetic relationships among avocado germplasm [11–20]. Of
the many available DNA markers, simple sequence repeats (SSRs) are commonly used for investigating
plant genetics and breeding because they are widely distributed and abundant in plant genomes.
They are also genetically codominant, highly reproducible, multi-allelic, and perfectly suitable for
high-throughput genotyping [21–25]. Expressed sequence tag (EST)-derived markers in the genomic
coding regions have an advantage over genomic DNA-derived markers, and can be efficiently amplified
to reveal conserved sequences among related species [26]. There has recently been increasing interest
in developing EST-SSR markers viahigh-throughput transcriptome sequencing. Thus, there has
been rapid progress in the development of EST-SSR markers based on transcriptome data produced
with second-generation sequencing technology for Lilium brownii var. viridulum Baker [27], crataegus
Pinnatifida Bunge [28], Acer miaotaiense P. C. Tsoong [29], and Rosa hybrida hort. ex Lavalle [30]. Among
the third-generation sequencing platforms, PacBio RS II, which is regarded as the first commercialized
third-generation sequencer, is based on single-molecule real-time (SMRT) technology [31]. The
PacBio RS II system can produce much longer reads than second-generation sequencing platforms,
and has been applied to effectively capture full-length transcriptsequences for EST-derived marker
development [32]. However, there are few reports regarding the application ofEST-SSR markers
developed with SMRT technology for crop breeding.

Single-molecule real-time technology has the following threemain advantages over
second-generation sequencing options: it generates longer reads, it has higher consensus accuracy,
and it is less biased [33]. A previous study revealed that SMRT technology can precisely ascertain
alternative polyadenylation sites and full-length splice isoforms, and also detect a higher isoform
density than that for the reference genome [34]. The application of SMRT technology for nearly 3 years
has helped to elucidate the complexity of the transcriptome and molecular mechanism underlying the
metabolite synthesisin safflower [31], Zanthoxylum bungeanum Maxim. [32], Trifolium pratense L. [34],
Saccharum officinarum L. [35], Panicum virgatum L. [36], Medicago sativa L. [37], Zanthoxylum planispinum
Sieb. [38], Cynodon dactylon L. Pers. [39], Camellia sinensis L. O. Ktze. [40], and Cassia obtusifolia L. [41].

In the previous study, we had generated the first full-length transcriptome sequence of
avocadobased on SMRT technology andthe short-reads obtained in this previous study involving
second-generation transcriptome sequencing were used to correct the transcripts that were obtained
with SMRT technology [42]. In this study, we functionally annotated sequences andcompleted
SSR mining experiments from SMRT technology in avocado mesocarp. We also predicted the
coding sequences (CDSs), transcription factors (TFs), and long non-coding RNA (lncRNA) sequences.
Furthermore, we identified a set of EST-SSR markers, and assessed their utility for determining the
genetic diversity among 46 selected avocado accessions from various locations in southern China. The
generated data enabled the broad and distinct visualization of the genetic diversity in the analyzed
avocado germplasm. The results of this study represent useful genetic and transcriptome information
to support future research on avocado.
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2. Materials and Methods

2.1. Sample Collection, DNA Extraction, and RNA Extraction

For transcriptome analyses, avocado fruits (cultivar ‘Hass’) were harvested from April to September
2018 from six 10-year-old trees (grafted onto Zutano clonal rootstock) growing at the Chinese Academy
of Tropical Agricultural Sciences (CATAS; Danzhou, Hainan, China; latitude 19◦31′ N, longitude
109◦34′ E, and 20 m above sea level). Each biological replicate comprised samples from two trees.
Specifically, fruits that developed during the main flowering season (i.e., February 2018) were marked,
after which samples were collected at five time-points (75, 110, 145, 180, and 215 days after full
bloom) until the fruits reached physiological maturity (i.e., able to ripen after harvest). The fruits
were randomly collected for each biological replicate during each developmental stage. Fruits were
quickly brought to the laboratory, after which the mesocarp (pulp) was separated from the seedand
then immediately frozen at −80 ◦C for subsequent transcriptome analyses. Total RNA was extracted
with a Plant RNA Kit (OMEGA Bio-Tek, Norcross, GA, USA).

For kompetitive allele-specific PCR (KASP) genotyping and EST-SSR detection, seven commercial
cultivars and 39 native accessions were selected. These native accessions were obtained from the
CATAS (Danzhou, Hainan, China; latitude 19◦31′ N, longitude 109◦34′ E, and 20 m above sea level),
Daling State Farm (DLSF; Baisha, Hainan, China; latitude 19◦14′ N, longitude 109◦14′ E, and 60 m
above sea level), Mengmao State Farm (MMSF; Ruili, Yunnan, China; latitude 24◦00′ N, longitude
97◦50′ E, and 240 m above sea level), and Guangxi Vocational and Technical College (GVTC; Nanning,
Guangxi, China; latitude 22◦29′ N, longitude 108◦11′ E, and 79 m above sea level). Details regarding
the avocado germplasm are provided in Table S1. Genomic DNA was extracted from fresh leaves as
described by Ge [43].

2.2. PacBiocDNA Library Construction and Sequencing

Poly-T oligo-attached magnetic beads were used to purify the mRNA from the total RNA extracted
from 15 mesocarp (pulp) samples collected at each analyzed developmental stage. The mRNA from
all five developmental stages was combined to serve as the template to synthesize cDNA with the
SMARTer PCR cDNA Synthesis Kit (Clontech, Mountain View, CA, USA). After a PCR amplification,
quality control check, and purification, full-length cDNA fragments were acquired according to the
BluePippin Size Selection System protocol, ultimately resulting in the construction of a cDNA library
(1–6 kb). Selected full-length cDNA sequences were ligated to the SMRT bell hairpin loop. The
concentration of the cDNA library was then determined with the Qubit 2.0 fluorometer, whereas the
quality of the cDNA library was assessed with the 2100 Bioanalyzer (Agilent). Finally, one SMRT cell
was sequenced with the PacBio RSII system (Pacific Biosciences, Menlo Park, CA, USA).

2.3. IlluminacDNA Library Construction and Sequencing

Oligo-(dT) magnetic beads were used to purify the mRNA from the total RNA extracted from
15 mesocarp (pulp) samples from five developmental stages. Three replicates were analyzed for
each developmental stage. Samples from each developmental stage underwent an RNA-sequencing
analysis, with three biological replicates per sample. The fragmentation step was completed with
divalent cations in heated 5× NEBNext First Strand Synthesis Reaction Buffer. First-strand cDNA
was synthesized with a series of random hexamer primers and reverse transcriptase, after which the
second-strand cDNA was generated with DNA polymerase I and RNase H. The cDNA libraries were
constructed by ligating the cDNA fragments to sequencing adapters and amplifying the fragments by
PCR. The libraries were then sequenced with the Illumina HiSeq 2000 platform (Nanxin Bioinformatics
Technology Co., Ltd., Guangzhou, China).
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2.4. Quality Filtering and Correction of PacBio Long-Reads

Raw reads were processed into error-corrected reads of insert (ROIs) using an isoform sequencing
pipeline, with minimum full pass = 0.00 and minimum predicted accuracy = 0.80. Next, full-length,
non-chimeric transcripts were detected by searching for the poly-A tail signal and the 5′and 3′cDNA
primer sequences in the ROIs. Iterative clustering for error correction was used to obtain high-quality
consensus isoforms, which were then polished with QuiverVersion 1.0. The low-quality full-length
transcript isoforms were corrected based on Illumina short-reads with the default setting of the
Proovread program. High-quality and corrected low-quality transcript isoforms were confirmed as
nonredundant with the CD-HIT software.

2.5. Functional Annotation

Genes were functionally annotated based on a BLASTX search (E-value threshold of 10−5) of the
following databases: Clusters of Orthologous Groups of proteins (KOG/COG) (available online: http:
//www.ncbi.nlm.nih.gov/KOG/; available online: http://www.ncbi.nlm.nih.gov/COG/), Non-supervised
Orthologous Groups (eggNOG) (available online: http://eggnogdb.embl.de/#/app/home), Swiss-Prot (a
manually annotated and reviewed protein sequence database, available online: http://www.uniprot.
org/), Pfam (assigned with the HMMER3.0 package, available online: https://pfam.xfam.org/), and NCBI
nonredundant protein sequence (Nr) (availableonline: http://www.ncbi.nlm.nih.gov/). Additionally,
the KEGG Automatic Annotation Server [44] was used to assign these genes to Kyoto Encyclopedia of
Genes and Genomes (KEGG) metabolic pathways (available online: http://www.genome.jp/kegg/). The
unigenes were annotated with gene ontology (GO) terms (available online: http://www.geneontology.
org/) with the Blast2GO (version 2.5) program [45] based on the BLASTX matches in the Pfam and Nr
databases (E-value threshold of 10−6).

2.6. Mining of EST-SSR Markers

The MISA (version 1.0) program, with the following default settings, was used to locate SSRs: a
minimum of five repeats; a minimum motif length of 5 for tri- and hexanucleotides, 6 for dinucleotides,
and 10 for single nucleotides.

2.7. Analyses of Detected Coding Sequences, Transcription Factors, and Long Non-Coding RNA Features

The open reading frames (ORFs) detected with the TransDecoder (version 3.0.0) program were
designated as putative CDSs if they satisfied the following criteria: (1) An ORF was detected in a
transcript sequence; (2) the log-likelihood score was >0, and was similar to what was calculated with
the GeneID software; (3) the score was higher when the ORF was in the first reading frame than when
the ORF was in the other five reading frames; (4) if a candidate ORF was within another candidate ORF,
the longer one was reported. However, a single transcript could be associated with multiple ORFs
(because of operons and chimeras); and (5) the putative encoded peptide matched a Pfam domain.

Transcription factor gene families were identified based on categorically defined TF families and
criteria from the KO, KOG, GO, Swiss-Prot, Pfam, Nr, and Nt databases. Specifically, the default
parameters of the iTAK (version 1.2) program were used. The methods used to identify and classify
TFs were previously described by Perez-Rodriguez [46].

The following four computational tools were combined to sort non-protein-coding RNA candidates
from putative protein-coding RNAs among the transcripts: the Coding Potential Calculator (CPC),
Coding-Non-Coding Index (CNCI), Coding Potential Assessment Tool (CPAT), and Pfam database.
Transcripts longer than 200 nt, with more than two exons, were selected as lncRNA candidates and
were further screened with CPC/CNCI/CPAT/Pfam, which distinguished the protein-coding genes
from the non-coding genes.
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2.8. Assignment of the Native Avocado Accessions with an Unknown Race

To validate the origins of the 33 native accessions with anunknown race, six primers for race-specific
single nucleotide polymorphism (SNP) loci were used for KASP genotyping listed in Table S2 [47]. The
primer mix, which was prepared and used as described by KBioscience (http://www.kbioscience.co.uk),
comprised 46 μL dH2O, 30 μL common primer (100 μM), and 12 μL each tailed primer (100 μM). The
SNPs were amplified by PCR in a thermal cycler with a 5-μL solution consisting of 1× KASP Master
mix, 10 ng genomic DNA, and the SNP-specific KASP assay mix. The following PCR amplification
conditions were the same as those used for each SNP assay: 94 ◦C for 15 min; 10 touchdown cycles of
94 ◦C for 20 s, and 58–61 ◦C for 60 s (decreasing by 0.8 ◦C per cycle); 35 cycles of 94 ◦C for 20 s and 57 ◦C
for 60 s. The resulting data were analyzed with the Roche LightCycler 480 (version 1.50.39) program.

2.9. Identification of EST-SSR Markers

To screen the EST-SSR loci, primers based on the sequences flanking the selected microsatellite loci
were designed with the Primer3 program; the PCR products ranged from 100 to 300 bp. All assigned
marker names included Pa-eSSR to indicate their association with P. Americana and EST-SSRs. A subset
of 100 EST-SSR primer pairs was randomly selected for validation by a PCR amplification with the
same conditions as those described by Ge [43]. The PCR products were analyzed with the 96-capillary
3730xl DNA Analyzer (Applied Biosystems, Foster City, CA, USA). The detection system included
8.9 μL HIDI (Applied Biosystems), 0.1 μL LIZ (Applied Biosystems), and 1 μL PCR products (1:10
dilution). A lack of amplification was considered indicative of a null allele.

2.10. Data Analysis

The number of observed alleles (Na), effective number of alleles (Ne), observed heterozygosity
(Ho), expected heterozygosity (He), and polymorphism information content (PIC) of each EST-SSR
was assessed with the POPGEN (version 1.32) program [48]. A cluster analysis was performed
with PowerMarker (version 3.25) [49]. The cophenetic correlation coefficient was computed for the
dendrogram after the construction of a cophenetic matrix to measure the goodness of fit between the
original similarity matrix and the dendrogram. Bootstrap support values were obtained from 1000
replicates. A neighbor-joining tree was constructed based on shared alleles, and visualized with the
MEGA6.0 software [50].

3. Results

3.1. General Properties and Functional Annotations Based on Public Databases of Single-Molecule Long-Reads

Figure 1 presents the length distribution of 651,260 reads of insert in avocado mesocarp, and the
classification of the reads of insert in avocado mesocarpis listed in Figure 2. The SMRT and Illumina
HiSeq 2000 sequencing data were deposited in the GenBank database (accession numbersPRJNA551932
and PRJNA541745, respectively). Gene annotations according to a BLASTX algorithm indicated that
the 71,627 avocado transcripts significantly matched sequences in the COG, GO, KEGG, KOG, Pfam,
Swiss-Prot, eggNOG, and Nr databases, respectively (Table S3). The species with the most matches
for the transcripts were Nelumbo nucifera Gaertn. (41.18% of transcripts), Vitis vinifera L. (10.76% of
transcripts), Elaeis guineensis Jacq. (8.88% of transcripts), and Phoenix dactylifera L. (6.90% of transcripts).
The homology with the other species was relatively low (1.14%–2.54% of transcripts; Figure 3). To
further predict and classify the functions of the annotated transcripts, we analyzed their matching
GO terms, eggNOG classifications, and KEGG pathway assignments. A total of 45,134 transcripts
were assigned to 51 subcategories of the three main GO functional categories as follows: 106,390
transcripts for biological processes, 45,931 transcripts for cellular components, and 69,120 for molecular
functions (Figure 4a, Table S4). Next, 70,205 transcripts were functionally classified into 25eggNOG
categories (Figure 4b, Table S5). Among the 26 categories, the most heavily represented group was
posttranslational modification, protein turnover, chaperones (6410 transcripts, 8.94%), followed by
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signal transduction mechanisms (4189 transcripts, 5.84%) and transcription (3868 transcripts, 5.39%).
Only 20 and 6 transcripts belonged to the cell motility and nuclear structure categories, respectively.
Finally, 33,310 transcripts were assigned to 129 KEGG pathways (Table S6). The most represented
pathways were related to carbon metabolism (1678 transcripts), protein processing in endoplasmic
reticulum (1649 transcripts), and biosynthesis of amino acids (1503 transcripts).

Figure 1. Length distribution of 651,260 reads of insert in avocadomesocarp.

Figure 2. Classification of reads of insert in avocadomesocarp.
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Figure 3. Species most closely related to avocado based on the NCBI nonredundant protein
sequence database.

(a) 

Figure 4. Cont.
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(b) 

Figure 4. Functional classification of transcripts. The predicted functions were based on Gene Ontology
(a) and Non-supervised Orthologous Groups (b) databases.

3.2. Predictions of ORFs, TFs, and lncRNAs

A total of 73,946 ORFs were predicted, 61,523 of which were complete CDSs. The number and
length distribution of proteins encoded by the CDS regions are presented in Figure 5 and Additional
file 1. A total of 7969 putative avocado TFs distributed in 203 families were identified (Table S7). The
most abundant TF categories included RLK-Pelle_DLSV (241) and C3H (240). Additionally, the CPC,
CNCI, CPAT, and Pfam database were combined to distinguish lncRNA candidates from putative
protein-coding RNAs among the unannotated transcripts. Analyses with the CPC, CNCI, CPAT, and
Pfam database revealed 7869, 6444, 16,464, and 15,579 transcripts longer than 200 nt with more than
two exons as lncRNA candidates. A total of 3596 lncRNA transcripts were predicted (Figure 6).

Figure 5. Distribution of 61,523 complete coding sequences for the avocado open reading frames.
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Figure 6. The number of long non-coding RNA transcripts predicted in avocado based on the Coding
Potential Calculator, Coding-Non-Coding Index, Coding Potential Assessment Tool, and Pfam database.

3.3. Frequency and Distribution of Various Types of EST-SSR Loci

The 75,946 transcript sequences comprising 170,959,769 bp detected in this study included 42,096
sequences containing 76,777 SSR loci (Table 1). Of these SSR-containing transcript sequences, 19,825
harbored more than one SSR locus. Mononucleotide motifs were the most abundant (44,800, 58.35%),
followed by di- (18,903; 24.62%), tri- (11,724, 15.27%), tetra- (788, 0.01%), hexa- (321, 0.00%), and
pentanucleotide (241, 0.00%) motif repeats (Table 2).

Table 1. Details regarding the simple sequence repeats (SSRs) identified from single-molecule real-time
(SMRT) sequencing in avocado mesocarp.

Source Number

Total number of sequences examined 75,956
Total size of examined sequences (bp) 170,959,769

Total number of identified SSRs 76,777
Number of SSR containing sequences 42,096

Number of sequences containing more than 1 SSR 19,825
Number of SSRs present in compound formation 12,675

Table 2. Details regarding the number of repeating units at avocado expressed sequence tag-simple
sequence repeat (EST-SSR) loci.

SSR Motif
Length

Repeat Unit Number

5 6 7 8 9 10 >10 Total %

Mono- - - - - - 8951 35,849 44,800 58.35
Di- - 4017 2773 2489 2013 1547 6064 18,903 24.62
Tri- 6129 2838 1237 720 403 193 204 11,724 15.27

Tetra- 541 175 41 21 8 - 2 788 0.01
Penta- 172 67 1 1 - - - 241 0.00
Hexa- 228 72 15 3 2 - 1 321 0.00
Total 7070 7169 4067 3234 2426 10,691 42,120 76,777

% 9.21 9.34 5.30 4.21 3.16 13.92 45.14
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There were 5–1343 SSRs per locus. Moreover, SSRs with more than 10 repeats were the most
abundant, followed by those with 10, 6, and 5 random repeats. Among the 139 different repeat types,
(A/T)n was the most common (56.63%). The six other main motif types were (AG/CT)n (19.14%),
(AAG/CTT)n (5.97%), (AT/AT)n (3.35%), (AGC/CTG)n (2.18%), and (AC/GT)n (2.04%) (Table S8).

3.4. Development of Polymorphic EST-SSR Markers, Analysis of Genetic Diversity, and KASP genotyping

Using Primer3, we developed 149,733 EST-SSR markers from the 49,911 SSR loci (Table S9). To
verify the amplification of the EST-SSR markers, a subset of 100 EST-SSR markers was randomly chosen
and tested with seven accessions from various regions in southern China (Table S10). The primers
for 30 of the tested markers generated amplification products, whereas 37 primer pairs amplified
nonpolymorphic products and 33 did not produce clear amplicons. The 30 polymorphic EST-SSR
markers, which included 15 di-, 5 tri-, 5 tetra-, 2 penta-, and 3hexanucleotidemotif-based markers, were
further verified with 46 avocado accessions. Finally, 15 polymorphic EST-SSR markers, with missing
allele frequencies <10% for all 46 avocado accessions, were selected for subsequent analyses of genetic
diversity (Table S11). A total of 71 alleles in the 46 avocado accessions carried the 15 polymorphic
EST-SSR markers. Eight of these alleles were considered to be accession-specific and the other 63 alleles
were generally found in multiple accessions (Table S11). The eight accession-specific alleles were from
the following accessions: Renong No. 4, Renong, No. 5; Renong No. 6, Guiyan No. 8, Daling No. 5,
Daling No. 6, RL chang, and RL yuan.

The 15polymorphic EST-SSRs were applied to evaluate diversity parameters (Table 3). The Na
amplified per SSR locus varied from 2 to 10, with a mean of 4.73. The Ne varied from 1.04 to 4.39, with
an average of 2.31, and Ho ranged from 0.04 to 0.93, with an average of 0.49. The He ranged from 0.04
to 0.77, with an average of 0.50, and PIC values ranged from 0.04 to 0.74, with an average of 0.45.

Table 3. Diversity parameters associated with 15 polymorphic EST-SSRs analyzed in 46 avocado accessions.

Marker Name Transcript ID Na 1 Ne 2 Ho 3 He 4 PIC 5

Pa-eSSR-17 F01_cb7709_c10/f1p0/2063 8 3.02 0.61 0.67 0.62
Pa-eSSR-18 F01_cb7876_c2/f1p0/2226 10 3.09 0.61 0.68 0.65
Pa-eSSR-19 F01_cb1803_c26/f1p0/2838 6 2.04 0.63 0.51 0.46
Pa-eSSR-20 F01_cb10663_c1/f1p0/2458 3 1.87 0.50 0.46 0.40
Pa-eSSR-21 F01_cb15691_c2/f1p0/2049 3 2.41 0.50 0.58 0.50
Pa-eSSR-22 F01_cb3034_c12/f2p0/2705 5 2.85 0.67 0.65 0.60
Pa-eSSR-23 F01_cb12182_c0/f6p2/1774 3 1.47 0.28 0.32 0.29
Pa-eSSR-24 F01_cb13109_c0/f3p0/1635 5 2.80 0.48 0.64 0.58
Pa-eSSR-25 F01_cb1901_c3/f1p1/2722 2 1.04 0.04 0.04 0.04
Pa-eSSR-26 F01_cb7204_c7/f10p1/2700 3 2.65 0.93 0.62 0.55
Pa-eSSR-27 F01_cb10594_c1/f1p0/4058 3 1.40 0.33 0.29 0.27
Pa-eSSR-28 F01_cb9432_c36/f1p2/1811 5 1.56 0.43 0.36 0.33
Pa-eSSR-29 F01_cb15387_c0/f3p0/1548 8 4.39 0.49 0.77 0.74
Pa-eSSR-30 F01_cb12814_c24/f1p0/3423 4 2.67 0.53 0.62 0.55
Pa-eSSR-31 F01_cb10835_c0/f4p0/2019 3 1.33 0.28 0.25 0.22

Total 71
Mean 4.73 2.31 0.49 0.50 0.45

1 Number of observed alleles; 2 effective number of alleles; 3 observed heterozygosity; 4 expected heterozygosity;
5 polymorphism information content.

Six race-specificKASP markers were used to determine the race of 33 avocado accessions with
an unknown race. The KASP genotyping results demonstrated that all 33 avocado accessions were
Guatemalan × West Indian hybridsbased on the corresponding genotype of each racial avocado
(Table S2).
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3.5. Analyses of Genetic Relationships Based on Polymorphic EST-SSRs from SMRT Sequencing Data

A cluster analysis grouped the 46 accessions into two major sections (Figure 7). The dendrogram
revealed a clear separation between the native avocado accessions from Hainan province and those
from Guangxi and Yunnan provinces. In cluster I, 19 Guatemalan ×West Indian hybrids were clustered
into two sub-sections. Sub-cluster I-I consisted of 13native Guatemalan ×West Indian hybrids from
Guangxi province. Sub-cluster I-II contained two native Guatemalan ×West Indian hybrids from
Yunnan province.Cluster II comprised 27 Guatemalan ×West Indian hybrids from Hainan province.
Among these hybrids, 15 and 6were obtained from the CATAS and DLSF, respectively.

Figure 7. Neighbor-joining consensus tree of 1000 bootstrap replicates revealing the phylogenetic
relationships among the 46 analyzed avocado accessions based on the shared alleles for the 15 EST-SSR
markers. GVTC, native avocado accessions from Guangxi Vocational and Technical College; MMSF,
native avocado accessions from Mengmao State Farm; CATAS, native avocado accessions from the
Chinese Academy of Tropical Agricultural Sciences; and DLSF, native avocado accessions from Daling
State Farm. The native avocado accessionslabeled withan asterisk originated from other regions.
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Figure 8 presents the distribution of the 46 avocado accessions for the first two principal coordinates
of a principal coordinate analysis (PCoA). On the basis of the first coordinate, which accounted for
21.71% of the total variation, the accessions were generally distributed in two groups. The native
avocado accessions from Hainan and Yunnan provinceswere basically grouped separately from the
native avocado accessions from Guangxi province. The second coordinate accounted for 10.06% of
the total variation.Finally, we observed that the native avocado accessions were generally grouped
according to their geographical origins.

Figure 8. Principal coordinate analysis of 46 avocado accessions based on the 15 EST-SSR markers. POP1,
avocado accessions fromFlorida, USA; POP2, native avocado accessions from theChinese Academy of
Tropical Agricultural Sciences; POP3, native avocado accessions from Mengmao State Farm; POP4,
native avocado accessions from Daling State Farm; and POP5, native avocado accessionsfrom Guangxi
Vocational and Technical College.

4. Discussion

Transcriptome sequencing is a useful technique for obtaining a large number of transcripts for
organisms lacking a reference sequence, at least partly because it is inexpensive and can be completed
rapidly [51–53]. To date, several short-read next-generation sequencing (NGS) transcriptome databases
have been developed for avocado mesocarp samples [54,55] and avocado mixed tissue samples [18,56].
However, both the number and length of the transcript sequences derived from these short-read NGS
studies have hamperedtheirapplication ingenetics and molecular biology research [41]. One of the
advances in sequencing technology has been the development of the long-read SMRT sequencing
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technique, which enables researchers to obtain a substantial number of full-length sequences from a
cDNA library [32]. In the current study, we applied the PacBio SMRT system to generate and analyze
the full-length transcriptome of avocado mixed mesocarp samples collected at various developmental
stages. The 25.79 Gb SMRT data produced in this study provide the first comprehensive insights into
the avocado mesocarp, which is the most economically valuable organ of this fruit species, and might
serve as the genetic basis for future research on avocado. Interestingly, the full-length transcriptome
sequence described herein is also the first such sequence for a plant species from the family Lauraceae.

In this study, 93.82% (71,627 of 76,345) of the nonredundant transcripts were annotated based
on similarities with sequences in public databases. Thus, a greater proportion of transcripts were
annotated in this study than in previous investigations involving NGS data for various avocado
races (49.00%) [18] and for avocado mesocarp samples (57.50%) [55]. We determined that the mean
length of the avocado nonredundant transcripts was2330 bp, implying that our sequences were long
enough to represent full-length transcripts. Additionally, this mean length was in between the mean
lengths obtained for other species, including Z. bungeanum (3414 bp) [32], T. pretense (2789 bp) [34],
M. sativa (1706 bp) [37], Z. planispinum (1781 bp) [38], C. sinensis (1781 bp) [40], and Arabidopsis pumila
(2194 bp) [57]. Moreover, the 76,345 nonredundant transcripts derived from the 25.79 Gb clean PacBio
SMRT data produced in this study may facilitate future research on the physiology, biochemistry, and
molecular genetics of avocado and related species.

A previous study indicated that lncRNAs may be important for the gene regulation in eukaryotic
cells, especially during some key biological processes [58]. However, the number of lncRNAs encoded
in genomes as well as their characteristics remains largely unknown [59]. Predicting and functionally
annotating lncRNAs is challenging, but valuable because they are not orthologous and there is a
lack of homologous sequences between closely related species [38]. Unfortunately, very few of the
lncRNA functions have been elucidated [60,61]. Hence, the lncRNA information for one species is not
suitable for predicting the lncRNAs in another species. In this study, 3596 avocado transcript sequences
(accounting for 4.71% of the total number of nonredundant transcripts) were putatively predicted
aslncRNAs. This almost completely uncharacterized gene pool may include genes associated with
agronomically relevant traits related to the most economically valuable organ (mesocarp).

The accurate identification of avocado germplasm races is needed to ensure that germplasm
collections are optimally used by plant breeders and farmers worldwide [1]. The traditional assignment
of avocado races based on morphological traits is imprecise because of environmental effects and
a limited number of applicable characteristics [17]. Molecular-based characterizations are more
consistent and valid for assigning avocado genotypes. We previously confirmed the universality
of six race-specific KASP markers [47]. These markers were used in the current study to identify
avocado accessions with an unknown race, with implications for the application of available avocado
germplasms for breeding and resource conservation. Interestingly, the KASP genotyping results
revealed that all of the native avocado accessions included in this study are Guatemalan ×West Indian
hybrids. The reason for this observation might be related to theintroduction of avocado cultivars and
the climates of the sample collection regions. First, the major avocado cultivars grown commercially
are typically hybrids of three races (i.e., mainly Guatemalan ×West Indian and Guatemalan ×Mexican
hybrids) [1]. Since the late 1950s, Guatemalan ×West Indian and Guatemalan ×Mexican hybrids have
been brought into China from other countries for cultivation in Southern China [9]. Second, the native
avocado accessions included in the present studyare mainly from three geographical regions, namely
Nanning located in the central and southern region of Guangxi province, Danzhou and Baisha located
in the central and western region of Hainan province, and Ruili located in the western region ofYunnan
province. These locations are characterized by a warm and humid oceanic climatewith a relatively low
altitude in the central and southern region of Guangxi province and the central and western region of
Hainan province. Although Ruili is located in the western region ofYunnan province and far from the
ocean, it still has a subtropical monsoon climate. The climates of these three regions resemble that of
the areas in which theWest Indian races originated, and are favorablefor the growth of Guatemalan ×
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West Indian hybrids. Therefore, Guatemalan ×West Indian hybridsmay have graduallybecome the
dominant native avocado accessions because of artificial selection or via naturally occurring crosses.

The 100 EST-SSR markers randomly selected for validation in the present study had an amplification
rate of 67%, and 30 were determined to be polymorphic. This polymorphism level is generally consistent
with that of our previous study [18]. In subsequent analyses of the genetic diversity of these polymorphic
EST-SSR markers among 46 avocado accessions, 15 markers produced 4.73 alleles per locus, which
was fewer than the 6.13 alleles per locus of Ge [18], the 11.40 alleles per SSR locus of Gross-German
and Viruel [17], the 18.8 alleles per SSR locus of Schnell [16], and the 9.75 alleles per SSR locus of
Alcaraz and Hormaza [62]. Additionally, a PIC value > 0.5 is generally considered to represent a high
polymorphism rate [63]. In this study, 7 of 15 polymorphic EST-SSRs had a PIC value < 0.5. This
result may have been because the 46 avocado accessions in this study are genotypically the same
(Guatemalan ×West Indian hybrids), with relatively low genetic diversity.

In this study, a cluster analysis and a PCoA grouped the native avocado accessions according
to where they originated. Additionally, some of the native avocadoaccessions derived from different
regions was included in the same sub-cluster. For example, Renong No. 13 from Hainan province
clustered with the native accessions from Guangxi province. One factor leading to this promiscuous
clustering is the fact that avocado germplasm resources have been exchanged among researchers and
breeders since the late 1980s. The CATAS, which is a national scientific research unit, was commissioned
to popularize superior avocado accessions among breeders at adjacent state farms or at other national
scientific research units. Some superior native accessions from the CATAS may be the male or female
parent of other native accessions from various state farms orother national scientific research units,
which is consistent with our study results. Furthermore, a cluster analysis grouped two native avocado
accessions from Yunnan province with the native avocado accessions from Guangxi province. In
contrast, our PCoA indicated that these two native avocado accessions from Yunnan province belong to
the same groupas the native avocado accessions from Hainan province. We speculate that the relatively
few native avocado accessions from Yunnan province (i.e., two) may have led to these contradictory
results based on two statistical analyses. At many avocado plantations in Yunnan province, the local
avocado accessions have been replaced by“Hass,” which is the most economically valuable avocado
cultivar, ultimately making it difficult to collect local avocado accessions. Thus, maximizing the
economic benefits of cultivating specific avocado cultivars, while ensuring avocado genetic resources
are conserved will need to be addressed.

5. Conclusions

We annotated SMRT sequencing data based on the COG, GO, KEGG, KOG, Pfam, Swiss-Prot,
eggNOG, and Nr databases. Among 71,627 transcripts, 45,134, 52,125, and 33,310 were annotated
according to GO, eggNOG, and KEGG classifications, respectively. We detected 76,777 SSR loci in 42,096
transcript sequences and used them to develop 149,733 EST-SSR markers. From a randomly selected
subset comprising 100 EST-SSR markers, we finally identified 15 polymorphic EST-SSR markers on
71 alleles, which had 2–10 of these markers per locus. A cluster analysis and a PCoA separated the
46 avocado accessions according to their geographical origins. These 15 newly developed EST-SSR
markers may be useful for future analyses of avocado accessions and may contribute to the improved
management of avocado resources for germplasm conservation and breeding programs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/9/512/s1.
Table S1. Sources of the 46 avocado accessions evaluated in this study. Table S2. KASP primer information and
KASP genotyping results. Table S3. Gene annotations of the 71,627 avocado transcripts. Table S4. Characteristics
of the GO annotation of avocado transcripts. Table S5. Characteristics of eggNOG classifications of avocado
transcripts. Table S6. Characteristics of KEGG pathways ofavocado transcripts. Table S7. Transcription factors
identified in the avocado transcripts. Table S8. Frequencies of different repeat motifs in EST-SSRs from avocado.
Table S9. Characteristics ofavocado EST-SSR markers in this study. Table S10. Summary of 100 EST-SSR markers
used for amplification. Table S11. Summary of 15 EST-SSRs in 46 avocado accessions.Additional file 1. Coding
sequences predicted with TransDecoder.
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Abstract: Raspberry is a valuable berry crop containing a large amount of antioxidants that correlates
with the color of the berries. We evaluated the genetic diversity of differently colored raspberry
cultivars by the microsatellite markers developed using the flavonoid biosynthesis structural and
regulatory genes. Among nine tested markers, seven were polymorphic. In total, 26 alleles were
found at seven loci in 19 red (Rubus idaeus L.) and two black (R. occidentalis L.) raspberry cultivars.
The most polymorphic marker was RiMY01 located in the MYB10 transcription factor intron region.
Its polymorphic information content (PIC) equalled 0.82. The RiG001 marker that previously failed to
amplify in blackberry also failed in black raspberry. The raspberry cultivar clustering in the UPGMA
dendrogram was unrelated to geographical and genetic origin, but significantly correlated with the
color of berries. The black raspberry cultivars had a higher homozygosity and clustered separately
from other cultivars, while at the same time they differed from each other. In addition, some of the
raspberry cultivars with a yellow-orange color of berries formed a separate cluster. This suggests that
there may be not a single genetic mechanism for the formation of yellow-orange berries. The data
obtained can be used prospectively in future breeding programs to improve the nutritional qualities
of raspberry fruits.

Keywords: flavonoid biosynthesis; fruit coloration; marker-assisted selection; microsatellites; Rubus

1. Introduction

The genus Rubus L. (Rosaceae, Rosoideae) is one of the most diverse in the plant kingdom
and contains between 600 and 800 species grouped in 12 subgenera, which are widely distributed
throughout the world from the lowland tropics to subarctic regions [1]. Among these species, red
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raspberry (Rubus idaeus L.) and blackberry (several species in the genus Rubus) grown world-wide,
and black raspberry (R. occidentalis L.) grown mainly in the United States, are of the greatest economic
importance. Their berries are in great demand due to their flavor, color, and taste. In addition,
they are very healthy providing a good source of antioxidants, including phenolic acids, flavonoids,
anthocyanins, and carotenoids [2]. Berries contain four times more antioxidants than non-berry fruits,
10 times more than vegetables, and 40 times than cereals [3]. For this reason, berries and their products
(i.e., berry juice and jam) are very often recognized as “superfoods” [4]. The popularity of this crop
can be indicated by the fact that their harvest increased 1.5 times from 2010 to 2017 worldwide and
exceeded 800,000 tons [5]. Russia consistently ranks first in the world for the raspberry production.
The growing interest in raspberry has led not only to an increase in its production, but also to the
expansion of breeding programs for the development of new cultivars. However, classical selection
takes a lot of time: in red raspberry, it can take up to 15 years for development and release of a new
cultivar [6]. Moreover, a specific feature in the Rubus spp. breeding system is that multiple species
are often utilized in breeding programs [7]. Scientific achievements in molecular biology, and use
of molecular markers, in particular, can accelerate the selection process, as they will allow for the
assessment of the seedlings with valuable traits at a much earlier stage. Molecular genetic markers
provide more reliable cultivar identification of Rubus species than morphological markers [8].

In order to speed up the breeding process, it is useful to have genetic linkage maps containing
information about the markers associated with the most important traits, including disease and pest
resistance, plant habitus, nutritional and sensory fruit quality, and plant architecture. The first genetic
linkage map of Rubus was constructed from a cross between two Rubus subspecies, R. idaeus (cv. Glen
Moy) × R strigosus (cv. Latham), in 2004 [9]. After that, other molecular maps for red raspberry [10–12],
black raspberry [13] and tetraploid blackberry [14] appeared. Quantitative trait loci (QTL) have been
identified for important traits including resistance to diseases [11,15] and pests [10], fruit anthocyanin
content [16], growth characteristics [10,17], fruit color and quality traits [18]. Currently, molecular
markers are routinely used in breeding raspberries for resistance to the Phytophthora root rot at the
James Hutton Institute (UK), and two promising genotypes are under commercial trials, as well as
markers for the quality of berries are in the process of validation [19]. If in the first reports a combination
of various types of molecular markers such as AFLP and simple sequence repeat (SSR) [9,10], RAPD,
and RGAP [11] were used, then the most recent molecular maps were produced using only molecular
markers designed from sequenced DNA such as microsatellites or SSR markers [13,20]. SSRs are
DNA tandem repeats of the 1–6 nucleotide long motifs that are very frequent in genomes. They are
very polymorphic with high information content, co-dominant inheritance, locus specificity, extensive
genome coverage and simple detection using labelled primers that flank the microsatellite [9,21], and
their ability to distinguish even closely related individuals is particularly important for many crop
species [21]. Raspberry researchers have noted the benefits of the SSR markers, but very few molecular
markers still exist for Rubus [7,22]. It should be also acknowledged that the breeding process can be
accelerated using genomic selection (e.g., [23]), an approach under rapid adoption in many species,
which is based on multiple marker–trait associations and does not require linkage maps.

The color of the berries not only affects their attractiveness but also serves as an indicator
of the content of biologically active compounds. For example, the content of anthocyanins in
raspberry berries varies widely from 2 to 325 mg/100 g depending on the color of the berries [24].
Flavonols and anthocyanins are synthesized in the flavonoid pathway, and its enzymes are well
characterized. Kassim et al. [16] mapped QTLs for individual anthocyanin pigments in raspberry. The
genes of various enzymes of flavonoid biosynthesis were also identified in red [18] and black [25]
raspberry and blackberry [26]. Besides the structural genes, regulatory genes are important in
the biosynthesis of flavonoids. The late flavonoid biosynthetic genes are activated by the ternary
transcriptional MYB-bHLH-WD40 (MBW) complex comprising three classes of regulatory proteins
including R2R3-MYBs, bHLHs, and TTG1 (WD40) [27]. Transcription factor genes, such as MYB10,
bHLH and bZIP, have also been identified in the Rubus species [18,26].
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There are several studies that used random genomic SSR markers to assess genetic diversity in
cultivars within [8,28] and between [29] different species. However, we are unaware of studies in
which genetic diversity would be assessed using markers located in genes of any metabolic pathway
and the biosynthesis of flavonoids, in particular. In this study, we developed SSR markers using
nucleotide sequences of structural and regulatory genes of flavonoid biosynthesis in Rubus and Fragaria
(strawberry) available at the National Center for Biotechnology Information (NCBI) GenBank database
to test whether genetic variation associated with these genes correlate with a variation of berry colors.
These markers were genotyped in 19 raspberry cultivars from different geographic regions (Russia,
Poland, Italy, Switzerland, UK, and USA) and two cultivars of black raspberry. If alleles at these loci
correlate with the content of biologically active substances, they could subsequently be used to optimize
selection for valuable traits associated with color and, indirectly, with the content of flavonoids, by
accelerating selection via screening genotypes at early stages.

2. Materials and Methods

2.1. Plant Materials

Nineteen cultivars of red raspberry (Amira, Anne, Babye Leto II, Beglyanka, Brilliantovaya,
Bryanskoe Divo, Gerakl, Glen Ample, Marosejka, Meteor, Oranzhevoe Chudo, Pingvin, Polka,
Poranna Rosa, Solnyshko, Sugana, Tarusa, Zheltyj Gigant, and Zolotaya Osen) and two cultivars of
black raspberry (Cumberland and Jewel) were chosen to genotype SSR loci located in the flavonoid
biosynthesis genes. These cultivars have a wide range of fruit color from yellow to black with
various geographic and genetic origins, but cultivars of Russian origin from two raspberry breeding
centers (Bryansk and Moscow) dominated in the list (Table 1). Raspberry plants used in this study
were kindly provided by Dr. I. A. Pozdniakov (OOO Microklon, Pushchino, Russia). Each cultivar
represented a microclonally vegetatively propagated line containing practically genetically identical
plants. Therefore, a single specimen per culture was used for further DNA isolation and genotyping.

Table 1. Parentage and fruit color of the Rubus cultivars used in the study.

Cultivar Abbr. Genetic Origin and Background Fruit Color Origin

R. idaeus (red raspberry)
Amira Ami Polka × Tulameen red Italy
Anne Ann Amity × Glenn Garry yellow USA

Babye Leto II BL2 Autumn Bliss × Babye Leto red Russia (Bryansk)
Beglyanka Beg Kostinbrodskaya × Novost Kuzmina orange Russia (Bryansk)

Brilliantovaya Bri open pollination of interspecific hybrids red Russia (Bryansk)
Bryanskoe Divo BrD 47-18-4 (open pollination) light-red Russia (Bryansk)

Gerakl Ger Autumn Bliss × 14-205-4 red Russia (Bryansk)
Glen Ample GAm SCRI7326EI × SCRI7412H16 dark red UK
Marosejka Mar 7324/50 × 7331/3 light-red Russia (Moscow)

Meteor Met Kostinbrodskaya × Novost Kuzmina red Russia (Bryansk)
Oranzhevoe Chudo OrC Shapka Monomaha (open pollination) orange Russia (Bryansk)

Pingvin Pin interspecific hybrid dark red Russia (Bryansk)
Polka Pol P89141(open pollination) red Poland

Poranna Rosa PoR 83291 × ORUS 1098-1 yellow Poland
Solnyshko Sol Kostinbrodskaya × Novost Kuzmina red Russia (Bryansk)

Sugana Sug Autumn Bliss × Tulameen light-red Switzerland
Tarusa Tar Stolichnaya × Shtambovyj-1 red Russia (Moscow)

Zheltyj Gigant ZhG Marosejka × Ivanovskaya yellow Russia (Moscow)
Zolotaya Osen ZOs 13-39-11 (open pollination) yellow Russia (Bryansk)

R. occidentalis (black raspberry)
Cumberland Cum Gregg selfed blue-black USA

Jewel Jew (Bristol × Dundee) × Dundee black USA
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2.2. Simple Sequence Repeat (SSR) Marker and Polymerase Chain Reaction (PCR) Primer Development

The WebSat software [30] was used to detect SSR loci in the nucleotide sequences of Rubus and
Fragaria × ananassa (the garden strawberry or simply strawberry, a widely grown hybrid species
of the genus Fragaria) flavonoid biosynthesis genes available at the NCBI GenBank database (http:
//www.ncbi.nlm.nih.gov) (Table 2). The Primer 3 software (http://primer3.org) was used to design
appropriate polymerase chain reaction (PCR) primers based on the sequences flanking the SSR loci.
The minimum number of motifs used to select the SSR locus was nine for mono-nucleotide repeats,
five for di-nucleotide motifs, three for tri-, and tetra-, and two for penta-, and hexa-nucleotide repeats.
Primers were designed using the following criteria: primer length of 18–27 bp (optimally 22 bp), GC
content of 40%–80%, annealing temperature of 57–68 ◦C (optimally 60 ◦C), and expected amplified
product size of 100–400 bp. Primers for the RiG001 locus were as in [8]. Primers were synthesized by
Syntol Company (Moscow, Russia) and are summarized in Table 2.

2.3. DNA Isolation, PCR Amplification and Fragment Analysis

A single DNA sample per each cultivar was produced from young expanding leaves representing
a single plant per each cultivar. Total genomic DNA was extracted using the STAB method [31]. The
quality and quantity of extracted DNA were determined by the NanoDrop 2000 spectrophotometer
(ThermoFisher). The final concentration of each DNA sample was adjusted to 50 ng/μL in TE buffer
before the PCR amplification.

For genotyping, PCR was performed separately for each primer pair using a forward primer
labeled with the fluorescent dye 6-FAM and an unlabeled reverse primer (Syntol, Russia). The PCR
amplification was performed in a total volume of 20 μL consisted of 50 ng of genomic DNA, 10 pmol
of the labeled forward primer, 10 pmol of an unlabeled reverse primer, and PCR Mixture Screenmix
(Eurogen, Russia). After an initial denaturation at 95 ◦C for 3 min, DNA was amplified during 33
cycles in a gradient thermal cycler (Bio-Rad, Hercules, CA, USA) programmed for a 30 s denaturation
step at 95 ◦C, a 20 s annealing step at the optimal annealing temperature of the primer pair and a 35 s
extension step at 72 ◦C. A final extension step was done at 72 ◦C for 5 min.

The PCR generating clear, stable, and specific DNA fragments within an expected length (200–400
bp) were considered as successful PCR amplifications. If a primer pair failed three times to amplify
template DNA that was amplified with other primers, then it was scored as a null genotype.

Separation of amplified DNA fragments was performed in an ABI 3130xl Genetic Analyzer using
S450 LIZ size standard (Syntol Company, Moscow, Russia). Peak identification and fragment sizing
were done using the Gene Mapper v4.0 software (Applied Biosystems, Foster, CA, USA).

2.4. Genetic Data Analysis

Genetic parameters were calculated for 21 raspberry cultivars based on seven SSR polymorphic
loci. The allele frequencies, number of alleles, observed (Ho) and expected (He) heterozygosities, and
polymorphic information content (PIC) were calculated using the PowerMarker v.3.25 software [32].
This software was also used to estimate pairwise Nei’s standard genetic distances between each pair of
cultivars and to generate a UPGMA dendrogram, which was visualized using the Statistica software
(TIBCO Software Inc., Palo Alto, CA, USA).
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3. Results

3.1. Polymorphism and Genetic Diversity Analysis

Nine SSR markers (six based on Rubus and three on Fragaria nucleotide sequences of the flavonoid
biosynthesis genes) were used to estimated genetic diversity in 19 raspberry (R. idaeus) and two black
raspberry (R. occidentalis) cultivars. All PCR primer pairs amplified one or two alleles. In raspberries,
two loci (RiTT01 and FaAR01) were monomorphic, and other seven were polymorphic. In black
raspberry cultivars, the RiG001 was not amplified at all, six loci were monomorphic and only two
polymorphic (Table 2). In total, 26 alleles were found in seven polymorphic microsatellite loci. The
number of alleles per locus varied from two per locus (FaFS02 and FaFL01) to nine per locus (RiMY01)
with an average number of 3.7 alleles per locus (Table 3). The RiMY01 locus was the most polymorphic.
In general, the SSR loci located in introns were more polymorphic than loci in exons.

Table 3. Parameters of genetic variation for seven polymorphic SSR loci in 21 Rubus cultivars.

Locus
Location in
the Gene

Major
Allele

Frequency

Number of
Alleles

Heterozygosity Polymorphism
Information

Content (PIC)
Expected

(He)
Observed

(Ho)

RiG001 intron 0.81 4 0.33 0.19 0.31
RcFH01 intron 0.74 3 0.41 0.52 0.35
FaFS01 intron 0.76 2 0.36 0.48 0.30
FaFS02 exon 0.98 2 0.05 0.05 0.05
RiAS01 exon 0.79 3 0.36 0.19 0.33
RhUF01 exon 0.90 3 0.18 0.00 0.17
RiMY01 introns 0.29 9 0.84 0.57 0.82

Mean 0.75 3.71 0.36 0.29 0.33

There were cultivar-specific alleles, such as a unique allele 358 at the RiMY01 locus found only in
black raspberry, and alleles 267 and 269 at the RhUF01 locus found only in the red raspberry Meteor
and Jewel cultivars, respectively. Meteor contained also a unique allele 333 at the RiMY01 locus.

Parameters of genetic variation for seven polymorphic SSR loci in 21 Rubus cultivars are presented
in Table 3. Expected heterozygosity (He) ranged from 0.05 in the RiMY01 locus up to 0.84 in the RiMY01
locus with an average value of 0.36. Observed heterozygosity was zero in the RhUF01 locus and
ranged from 0.05 in the FaFS02 locus to 0.57 in the RiMY01 locus with an average value of 0.29. The
observed heterozygosity was lower than expected in four microsatellite loci and on average (Table 3).
On average, the expected and observed heterozygosities were higher for the SSRs in introns (0.49 and
0.44, respectively) compared to the SSRs in exons (0.20 and 0.08, respectively). The average PIC was
0.332 and varied from 0.05 in the FaFS02 locus to 0.82 in the RiMY01 locus (Table 3).

3.2. Cluster Analysis

A UPGMA dendrogram was constructed for 21 raspberry cultivars based on seven SSR markers
located in the genes of the flavonoid biosynthesis (Figure 1). The dendrogram clearly separates red and
black raspberries. Among the red raspberry cultivars, there is a group of cultivars with yellow-orange
colored berries (Anne, Poranna Rosa, Orangevoe Chudo, and Zolotaya Osen), which forms a separate
cluster. The same group includes also the Bryanskoe Divo cultivar with light red berries. At the same
time, the Zheltyj Gigant (yellow berries) and Beglyanka (orange berries) were not included in this
group. Separation of cultivars did not follow their genetic origin. The cultivars Beglyanka, Solnyshko,
and Meteor having the same genetic origin from the Kostinbrodskaya × Novost Kuzmina cross were
completely separated from each other. In addition, the Babye Leto 2 also having an ancestral hybrid
(Autumn Bliss × (September × (Kostinbrodskaya ×Novost Kuzmina))) turned out to differ mostly from
other raspberry cultivars. Gerakl and Sugana both also having Autumn Bliss as their parent species
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were significantly separated. At the same time, close similarities have been observed for cultivars
from different geographic regions. No genetic differences were found between the Orangevoe Chudo
(Russia) and Poranna Rosa (Poland) cultivars, and between the Amira (Italy) and Tarusa (Russia)
cultivars, although they have different genetic origins. The Brilliantovaya and Pingvin cultivars were
also identical and were obtained with the use of interspecific hybrids.

Figure 1. The UPGMA dendrogram of the 21 Rubus cultivars based on pairwise Nei’s standard genetic
distances calculated using seven SSR markers located in the flavonoid biosynthesis genes. Left column
shows the colors of the cultivar berries. Only bootstrap values larger than 50% are presented. See
Table 1 for the full cultivar names.

4. Discussion

SSR markers (microsatellites) are widely used in genetic diversity studies, QTL and genetic
mapping, molecular-assisted selection (MAS), and cultivar identification, because they are multi-allelic,
co-dominant, highly informative, relatively accurate and easily detected [33]. SSR markers have been
often used to map different types of Rubus [9,13], fingerprinting germplasm [34], and in studies of
the genetic diversity and population structure within [28] and among [29] Rubus species. However,
genetic diversity has not previously been studied in terms of any specific metabolic pathway genes
that determine valuable breeding traits.

In this study, we report on the evaluation of a number of red and black raspberry cultivars using
SSR loci representing known sequences of the flavonoid biosynthesis pathway genes, which synthesize
biologically active substances with high antioxidant activity—flavonols and anthocyanins. Among
these microsatellite loci, six (RcFH01, FaFS01, FaFS02, RiAS01, FaAR01, and RhUF01) were located in the
structural genes of the flavonoid biosynthesis (F3H, FLS, ANS, ANR, and UFGT) and two (RiMY01 and
RiTT01) in the regulatory genes (MYB10 and TTG1). Flavanone-3-hydroxylase (F3H) is a key enzyme
in the flavonoid biosynthesis in plants, as it catalyzes formation of 3-hydroxy flavonol, a common
precursor of anthocyanins, flavanols, and proanthocyanidins [35]. Particular attention was paid to the
flavonol synthase gene, for which two loci were used. Flavonol synthase (FLS) is an important enzyme
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of flavonoid pathway that catalyzes the formation of flavonols from dihydroflavonols, and thus may
influence anthocyanin levels, as dihydroflavonols are intermediates in the production of both colored
anthocyanins and colorless flavonols [36]. The anthocyanidin synthase (ANS) leads to the synthesis
of the anthocyanidin, the first colored compound in the anthocyanin biosynthetic pathway, from
which anthocyanidin reductase catalyzes the formation of proanthocyanidins (condensed tannins) [37].
The last common step for the production of stable anthocyanins is the glycosylation by the enzyme
UDP-glucose/flavonoid 3-O-glucosyl transferase (UFGT) [38].

In addition, loci were used on the sequence of two transcription factors (MYB 10 and TTG1)
that belong to the MBW complex, which regulates the production of the late biosynthetic genes [27].
For comparison, we also used a pair of primers designed for the RiG001 locus using the sequence
of the R. idaeus aromatic polyketide synthase (PiPKS3) gene, which was not amplified in blackberry
cultivars [8]. The RiPKS3 gene differed from the RiPKS1 gene, encoding a typical chalcone synthase
(CHS) catalyzing the first step of flavonoid biosynthesis, in four amino acid positions and produced
in vitro predominantly p-coumaryltriacetic acid lactone and low levels of chalcone [39]. Within the
PCR fragment amplified by the primers for the RiG001 locus the sequence of the RiPKS3 gene (NCBI
GenBank AF292369) differed from the RiPKS1 gene sequence (AF292367) by a two nucleotide long
deletion (2 bp) and a single nucleotide insertion. Three alleles (349, 350, and 351 bp) were obtained for
this locus (Table 2).

In addition to the sequences of the genes of the Rubus plants (R. idaeus, R. coreanus, and R. hybrid),
we used the sequences of the genes from Fragaria × ananassa, which is a close relative of Rubus from the
same sub-family, Rosoideae. The Rubus and Fragaria both have the same base chromosome number
1n = 7, similar morphology and chloroplast and nuclear DNA phylogenies [13].

Among three most economically important types of raspberry, 19 cultivars of red raspberry with
a wide range of berry color from various world breeding centers and two cultivars of black raspberry
are mostly used. Both species, red (R. idaeus) and black (R. occidentalis) raspberry belong to the same
subgenus Idaeobatus (raspberries) and are diploids (2n = 2x = 14), while blackberry species vary greatly
in ploidy [34].

In our study, the average number of alleles for seven polymorphic SSR loci in the flavonoid
biosynthesis genes was 3.71, the mean Ho and He were 0.286 and 0.360, respectively, and the mean
PIC was 0.332. These values were generally lower than previously reported for R. idaeus [8] and
R. coreanus [29], but quite comparable with the data for black raspberry cultivars [28]. Perhaps, this
is due to the fact that red raspberry cultivars are, for the most part, complex hybrids with a limited
genetic pool [34], and the selection for berries quality has further reduced their diversity. The level of
expected heterozygosity (He) was higher than observed (Ho) both on average and in most individual
loci. These data are different from other studies of the Rubus species, where these parameters were
approximately equal [8,29], or even higher [28]. However, unlike those studies, where population
samples were used, a collection of different cultures was used in this study, which is not a population
sample, but a mixture of genotypes with different genetic background and origin. Therefore, it is
expected to observe excess of expected heterozygosity in comparison to observed heterozygosity due
to Wahlund effect.

Only the RiMY01 locus was highly polymorphic (PIC = 0.82). This locus had three SSR regions,
two of which represent dinucleotide repeats. These data coincide with the results of Castillo et al. [8],
in which all three highly informative markers (PIC = 0.78–0.82) represented dinucleotide repeats.
In R. coreanus, among five highly polymorphic markers (PIC > 0.7), four represented dinucleotide
repeats, and one trinucleotide repeats [29]. The high variation of the RiMY01 locus can be explained
by its location in the first intron of the transcription factor MYB10. SSR markers located in introns
were more variable in comparison to those located in exons (expected and observed heterozygosities
averaged 0.49 and 0.44 vs. 0.20 and 0.08, respectively). Our results are in agreement with those of
Garcia-Gomez et al. [40], which showed that SSRs in introns had a higher level of heterozygosity
compared to SSRs in exons in Prunus species—0.65 vs. 0.17, respectively. Similar results were also
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obtained in maize [41]. Significantly higher variation was observed also for SNPs in noncoding regions
compared to coding ones [42]. In general, introns are more variable than exons, as they are under less
selection pressure during the evolutionary process [43].

The length of most alleles at the RiMY01 locus differ from each other by two nucleotide-long
steps, which is consistent with dinucleotide repeats of the SSR motifs in this locus. However, imperfect
repeats also often occur in the raspberry SSR loci. For instance, Fernandez et al. [34] has previously
reported the alleles with length different by consecutive one nucleotide-long steps in the Rubus57a
and Rub5a markers. This single nucleotide stepwise variation is expected for Rub5a, which is a SSR
marker with a mononucleotide motif, but Rubus57a is a SSR marker with a dinucleotide motif. We also
observed a few alleles with imperfect repeats, such as the unique allele 267 of the RhUF01 locus in the
Meteor cultivar, for which the perfect allele size is 270 following the trinucleotide motif GAG stepwise
allelic variation.

The black raspberry cultivars were highly homozygous: six out of eight loci were monomorphic
(Table 2). High homozygous in black raspberry has been also found earlier by Lewers and Weber [44].
They noticed that the level of homozygosity for the black raspberry was 80%, but only 40% for the red
raspberry. The 21 SSR loci were unable to distinguish between six of the black raspberry cultivars [28].
However, the black raspberry cultivars Cumberland and Jewel were well discriminated in this study.
Despite the small number of loci used in our study, these two cultivars were also separated by two loci:
RcFH01 and RhUF01. In our study the red raspberry cultivars were easily discriminated from the black
raspberry cultivars by a unique black raspberry specific allele 358 at the RiMY01 locus and the allele
309 at the RiAS01 locus, which occurred almost exclusively in the black raspberry cultivars, except the
red raspberry cultivar Babye Leto 2. In addition, the RiG001 locus was not amplified in black raspberry.
The same was observed also in 48 earlier tested blackberry cultivars [8]. Thus, in respect to this locus,
the black raspberry is closer to the wild blackberry than to the red raspberry, although it belongs to
different subgenera. No amplification of RiG001 and the unique allele 358 at the RiMY01 locus can be
used to separate the red raspberry cultivars from the black ones.

Cluster analysis of the SSR markers located in the genes of the biosynthesis of flavonoids showed
a clear separation of the black raspberry (R. occidentalis) cultivars with black colored berries from
the red raspberry (R. idaeus) cultivars with berries colored from yellow to dark red (Figure 1). It is
important to note also that five cultivars with berries of similar shades of light red color (three with
yellow berries, one with orange, and another with light red color) having completely different origin
still clustered together into one sub-group. Perhaps, gene-targeted markers [45] such as SSR loci in the
genes of the biosynthesis of flavonoids reflect better their genetic similarity for traits, such as color of
their berries, likely controlled or affected by these genes, than random genomic SSR markers.

Castillo et al. [8] found that the primocane fruiting (fall fruiting) raspberry cultivars were
grouped into a separate cluster. In Fernandez et al. [34] studies, it was shown that the majority of
primocane-fruiting material from various breeding programs, as well as some very early ripening
floricane-fruiting genotypes are grouped into one cluster. This shows that cultivars can be grouped
according to a particular trait regardless of their origin. At the same time, two cultivars with yellow
and orange-colored fruits (Zheltyj Gigant and Beglyanka) fell into another group of red-colored
fruits. Perhaps, for a clearer separation, it is necessary to use additionally more polymorphic markers,
including other genes of the biosynthesis of flavonoids not represented in this study.

Moreover, it is possible that the yellow color of the raspberry fruits can be obtained by two or
more mechanisms. For example, primocane fruiting cultivars were also distributed in two different
groups [34]. The genetic mechanisms for the formation of yellow color in raspberry fruit have not yet
been fully studied. Although assumptions on this topic were made back in the 1930s, it was not until
2016 when an inactive anthocyanidin synthase (ANS) allele was identified in yellow raspberry [46]. A
5 bp insertion in the coding region of gene creates a premature stop codon resulting in a truncated
amino acid sequence of the defective ANS protein. However, other mechanisms are also possible, such
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as the combinations of recessive and dominant alleles, or the transcription factors that may lead to a
huge variety of berry colors in raspberry.

The clustering along the flavonoid pathway also showed that there is a lack of connections
between cultivars of the related origin. This is exactly the opposite data compared to the analyses
carried out on randomly selected SSR markers evenly distributed across the genome. For example,
Fernandez et al. [34] demonstrated that one cluster is almost entirely composed of cultivars from the
Scottish raspberry breeding program or cultivars based on their germplasm. From the point of view of
MAS the use of gene-targeted markers to assess genotypes for particular breeding traits is preferable
to the use of random SSR markers. Graham et al. [9] suggested in 2004 that Rubus idaeus due to the
diploid set of chromosomes (2n = 2x = 14) and a very small genome (275 Mb) may be used as a model
species for the Rosaceae. For many years, this was impeded by the lack of the full-genome Rubus
sequence, although the genomes of other Rosaceae species have been already sequenced, such as apple
in 2010, strawberry in 2011, pear and peach in 2013 [47]. However, the situation is changing with
genomes of R. occidentalis [48] and R. idaeus [49] having been recently published. This will facilitate
developing gene-targeted markers that can advance breeding Rubus for important traits including
those related to the nutritional value of their berries.

5. Conclusions

In this study, we demonstrated that a set of gene-targeted SSR markers representing structural and
regulatory genes of flavonoid biosynthesis could potentially allow more informative and meaningful
evaluation of the genetic relationship between different cultivars of red and black raspberries that
reflect the color of their berries and possibly also their nutritional value. However, the study did not
compare this set of gene-targeted markers with an analysis of the same germplasm set using neutral
markers. A comparative analysis using a set of neutral SSR markers would seem to be important to
support this particular conclusion. The developed primer set can be potentially used for MAS in the
Rubus breeding programs for improving the nutritional quality of fruits. This first requires confirmation
that the SSR alleles identified correlate with differences in the content of flavonoids. Additional studies
and further development of these gene-targeted markers are needed to validate this approach.
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Abstract: Maize (Zea mays L.) is one of the most crucial crops for global food security worldwide.
For this reason, many efforts have been undertaken to address the efficient utilization of germplasm
collections. In this study, 322 inbred lines were used to link genotypic variations (53,403 haplotype
blocks (HBs) and 290,973 single nucleotide polymorphisms (SNPs)) to corresponding differences
in flowering-related traits in two locations in Southern Brazil. Additionally, network-assisted gene
prioritization (NAGP) was applied in order to better understand the genetic basis of flowering-related
traits in tropical maize. According to the results, the linkage disequilibrium (LD) decayed rapidly
within 3 kb, with a cut-off value of r2 = 0.11. Total values of 45 and 44 marker-trait associations
(SNPs and HBs, respectively) were identified. Another important finding was the identification of
HBs, explaining more than 10% of the total variation. NAGP identified 44, 22, and 34 genes that are
related to female/male flowering time and anthesis-silking interval, respectively. The co-functional
network approach identified four genes directly related to female flowering time (p < 0.0001):
GRMZM2G013398, GRMZM2G021614, GRMZM2G152689, and GRMZM2G117057. NAGP provided
new insights into the genetic architecture and mechanisms underlying flowering-related traits in
tropical maize.

Keywords: gene prioritization; linkage disequilibrium; marker-trait association; tropical maize

1. Introduction

Maize (Zea mays L.) plays an important role in the human diet and accounts for a large proportion
of the global cereal demand. Together with rice and wheat, these three cereals account for more than
40% and 35% of the world’s calorie and protein supply, respectively [1,2]. Maize is among the few
crops grown on almost every continent and has diverse uses, including food, animal feed, and ethanol
production [3]. The United States, China, and Brazil are the top three largest maize-producing countries
in the world, representing more than 70% of total maize production [4].

Since maize is one of the most important crops for global food security, several efforts have been
undertaken addressing the efficient utilization of germplasm materials. In fact, the development of
maize germplasm collections has been beneficial to capture and maintain the high levels of genetic
diversity that exist locally and globally [5–9]. These efforts have allowed the methodical exploration
of the genetic architecture of complex traits in maize, which benefit from the high diversity [8].
Liu [10], for instance, performed a genome-wide association study (GWAS; a standard forward genetic
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technique) using a population comprised of a global core collection of maize inbred lines, and found
several candidate genes associated with starch synthesis, of which one gene (Glucose-1-phosphate
adenylyltransferase) is known as an important regulator of kernel starch content. Li et al. [11] identified
several genetic variants associated with maize flowering time using an extremely large multigenetic
background population (>8000 maize lines). The associated single nucleotide polymorphisms (SNPs)
detected in this large panel exhibited high accuracy for predicting flowering time.

In an effort to overcome certain limitations present in forward and reverse genetic techniques, for
example lacking in functional clues of trait-associated candidate genes derived from forward genetics
studies and in silico strategies for candidate gene selection in targeted mutagenesis in reverse genetics
approaches, Lee et al. [12] recently presented a network-assisted gene prioritization system (MaizeNet),
which facilitates genetic analysis through supporting candidate genes based on network neighbors
with known traits or functions, and aids in identifying potential candidate genes that are highly likely
to be causal to the phenotype of interest. This network-based resource provides new insights into the
genetic architecture and mechanisms underlying complex traits in maize and promises to accelerate
the discovery of trait-associated genes for crop improvement. In this study, an integrated approach
using GWAS (based on 53,403 haplotype blocks (HBs) and 290,973 SNPs) and network-assisted gene
prioritization was applied in order to better understand the genetic basis of flowering-related traits in
tropical maize. To this end, marker-trait association analyses were performed using a multigenetic
background population comprising 322 inbred lines of field corn, popcorn, and sweet corn.

2. Materials and Methods

2.1. Trial Conditions and Phenotyping

A total of 322 inbred lines of tropical maize were used in this genome-wide association study,
which were derived from three genetic backgrounds collected in Brazil: Field corn (178), popcorn (128),
and sweet corn (16). This maize panel was evaluated during the growing season of 2017–2018 in two
locations (Cambira and Sabaudia) situated in Southern Brazil, Parana State. The experimental design
was an alpha-lattice with 24 incomplete blocks and 3 replications per line. Female and male flowering
time (FF and MF, respectively) were measured in each line as the number of days from sowing to
anther extrusion from the tassel glumes (MF) or to visible silks (FF). Additionally, the anthesis-silking
interval (ASI) was calculated as the difference between MF and FF.

2.2. Population Structure, Linkage Disequilibrium (LD), and Haplotype Blocks

Genomic DNA was isolated from young leaves of five plants from each inbred line of tropical
maize (319 in Cambira and 293 in Sabaudia), approximately 30 days after germination. The DNA
extraction was carried out by Cetyl trimethyl ammonium bromide (CTAB) according to the protocol
established by Chen and Ronald [13]. The quality of DNA was evaluated and quantified using
1% agarose gel and Nanodrop, respectively. The DNA samples were sent to the University of
Wisconsin-Madison—Biotechnology Center for SNP discovery via genotyping by sequencing (GBS),
which is described in Elshire et al. [14] and Glaubitz et al. [15]. The raw database was filtered considering
a minor allele frequency (MAF) > 0.05, resulting in a genotype file of 291,633 high-quality SNPs. The LD
kNNi imputation (linkage disequilibrium k-nearest neighbor imputation) was performed to impute
missing data in the dataset [16]. Finally, SNPs with a MAF < 0.01 and a proportion of missing data
per location >90% were eliminated from the imputed dataset [17]. Subsequently, 290,973 SNPs were
retained after filtering for MAF and missing data.

The population structure was inferred using the model-based Bayesian clustering approach
implemented in the program InStruct [18]. For each K value (where K is the number of genetically
differentiated groups, K = 1–6), 10 runs were performed separately, each with 100,000 Monte Carlo
Markov Chain replicates and a burn-in period of 10,000 iterations. The optimal K value was determined
with the highest ΔK method [19] and the lowest deviance information criterion (DIC).
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The extent of LD was estimated using the correlation coefficients of the allelic frequencies (r2)
considering all the possible combinations of the alleles. The critical r2 value was calculated according
to the method used by Breseghello and Sorells [20].

The HBs were constructed for each chromosome according to the confidence interval algorithm
developed by Gabriel [21], implemented in the software Haploview v.4.2 [22]. This method considers
the 95% confidence intervals of the disequilibrium coefficient (D’) values and builds a haplotype block
if the LD is classified as a “strong LD” type (D′ higher than 0.98 and lower interval limit of >0.7).
Finally, HBs were later transformed into multiallelic markers, considering the allelic combinations
within each block to be independent alleles [5,23].

2.3. SNP- and Haplotype-Based GWAS

The HB- and SNP-based association analyses were performed using a mixed linear model (MLM) in
TASSEL 3.0 and TASSEL 5.2, respectively [24], which considers the effects of the population structure (Q)
and genetic relationships or matrix kinship (K) among inbred lines. The kinship matrix was calculated
based on identity by state (IBS) [25] in TASSEL. The Adjusted-Entry Means of the general linear model
(experimental design) were used as the adjusted phenotypes according to Contreras-Soto et al. [26] and
Arriagada et al. [27]. Correlations between each pair of traits were calculated using a Bayesian bi-trait
model [28–30]. The statistical analysis was performed using the R package MCMCglmm (version 3.6.1;
https://www.r-project.org) [31].

2.4. Prioritization of GWAS Candidate Genes and Inference of Co-Functional Networks for Flowering Traits
in Maize

The candidate genes were chosen from the genes around the significant loci (SNP or haplotype
blocks) identified by GWAS. To this end, a window (or threshold) of twice the distance indicated by the
LD analysis was established, placing the marker in the center of the window. The gene prioritization
was performed using MaizeNet [12] based on the connections of the candidate genes to the genes
in one estimated network with previously associated genes with flowering-time in Zea mays. New
candidate genes were then ranked by closeness to the “guide genes” (derived from estimated network
in MaizeNet) measured for each candidate gene (derived from GWAS) as the sum of network edge
scores from that gene to the guide genes [12]. The estimated co-functional network was carried out
through the association of genes (candidate genes and genes identified in prioritization of MaizeNet)
with subnetworks enriched by gene ontology annotations related to the biological processes (GOBP) of
flowering in MaizeNet. Finally, the given genes are related to the flowering-time if the subnetworks of
MaizeNet significantly associated with these genes, and if are also enriched for on the relevant GOBP
term for flowering.

3. Results and Discussion

3.1. Genetic Structure

The Bayesian clustering analysis (InStruct) of the population structure indicated that the 322 inbred
lines from the Brazilian germplasm represent two main genetic clusters (k = 2; Figure S1A), inferred
from both the lowest DIC value and the second-order change rate of the probability function with
respect to Q (ΔQ) [19]. Cluster I contained 221 lines (68.6%), over 80% (177/221) of which were
genotypes of field corn, while all sweet corn lines (16) were within this cluster. On the other hand,
cluster II consisted of 101 lines, over 99% (100/101) of which were genotypes of popcorn (Figure S1).
Similar results were obtained by the PCA method for this association mapping panel, as shown in
Figure S1B. The first component explained 12.1% of the total variation and most of the inbred lines were
separated in the same genetically differentiated groups (Figure S1B). These results are in accordance
with the previous findings of Maldonado et al. [5] and Coan et al. [6], in which tropical maize inbred
lines were grouped into two genetically differentiated clusters, separating field corn and popcorn lines.
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3.2. Linkage Disequilibrium

The genome-wide LD decay pattern is shown in Table 1 and Figure S2. The LD statistic r2 showed
a clear nonlinear trend with physical distance. According to these results, the LD decayed rapidly
within 3 kb, with a cut-off value of r2 = 0.11. The average LD on all chromosomes (Chr) was r2 = 0.09.
On the other hand, 0.63% of the total pairs of linked SNPs were in a complete LD (r2 = 1), and 4.4%
had an r2 value >0.5 (strong LD). The LD of Chr 3 and 7 decayed faster than the other chromosomes,
with ~2.2 kb for a cut-off value of r2 = 0.11. Past studies have found that this LD pattern (i.e., rapid
decay with increasing physical distance) is typical in tropical maize germplasms [6,9,32]. The LD decay
pattern in this study was similar to the findings of Yan et al. [33] and Coan et al. [6], who reported that
the LD pattern (in tropical maize germplasms) decreases rapidly in the range of 0.1–10 kb.

Table 1. Summary of information on linkage disequilibrium (LD) and haplotype blocks (HBs)
determined in inbred lines of tropical maize. Chr corresponds to the chromosome number; N◦SNP

indicates the number of single nucleotide polymorphisms (SNPs) detected on each chromosome; N◦HB

is the number of haplotype blocks; SizeHB and Max(kb) correspond to the maximum number of SNPs
forming a haplotype block and the maximum size (in kb) for a haplotype block, respectively.

Chr LD N◦SNP
Position (pb)

First-Last SNP

Cambira Sabaudia

N◦HB SizeHB Max(kb) N◦HB SizeHB Max(kb)

1 2.87 39,148 38,222–275,861,066 7180 32 498 7087 32 497
2 2.68 37,341 40,724–244,417,305 6874 35 500 6730 36 500
3 2.21 34,889 191,169–235,520,333 6370 35 487 6256 33 491
4 6.55 26,908 217,040–246,840,261 4790 42 500 4693 42 499
5 2.61 35,691 12,711–223,658,670 6584 33 493 6472 32 500
6 3.75 23,441 169,964–173,881,702 4368 53 466 4317 53 466
7 2.23 24,958 180,204–182,128,999 4683 28 500 4546 28 500
8 4.1 25,537 204,228–181,043,617 4703 50 498 4577 50 498
9 2.94 22,404 61,292–159,668,042 4091 35 500 3991 36 500
10 2.85 20,656 128,669–150,847,940 3760 52 498 3698 51 498

Mean 2.94 29,097 - 5340 40 494 5238 39 495

3.3. Haplotype Blocks

Total values of 53,403 and 52,377 HBs were identified in all chromosomes for Cambira and
Sabaudia, respectively (Table 1), over 47%, 20%, and 33% of which contained two, three, and four (or
more) SNPs, respectively (Figure S3). These HBs were constructed considering 319 and 293 inbred lines
in Cambira and Sabaudia (respectively), and 290,973 SNPs distributed on all chromosomes (Table 1).
An average of ~20,000 SNPs per chromosome satisfied the criteria of the 95% confidence interval
proposed by Gabriel et al. [21]. Particularly, the largest number of HBs in both locations was determined
by combinations of SNPs located on Chr 1, while the smaller amount was constructed by SNPs located
on Chr 10 (Table 1). In this study, several genomic regions were detected in strong disequilibrium,
up to ~0.1 Mb. Therefore, as these regions have a strong LD, it is possible to suggest that they will
be inherited together across generations. Moreover, about 2.3% of the HBs formed in both locations
had an extension over 0.1 Mb, with a D’ value between 0.7 and 0.98 [21]. Analysis of the LD pattern
enabled the identification and characterization of several HBs (or strongly linked genomic regions),
because there is a strong LD among the SNPs that compose it. This indicates that recombination events
within these HBs are unlikely, thus, these HBs should inherit together across generations.

3.4. Genome-Wide Association Study and Network-Assisted Gene Prioritization

Total values of 45 and 44 associations (SNPs and HBs, respectively) were identified for the studied
traits, which are distributed in all chromosomes of maize (Table 2 and Table S1). Four SNPs were
jointly associated with the FF and MF traits. In Cambira, four haplotype blocks—two loci on Chr 8 (bin
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8.03) and two on Chr 9 (bin 9.06)—were jointly associated with FF and MF. In turn, Chr 3 presented two
genomic regions associated with FF in Cambira (one SNP and one HB) and three in Sabaudia (one SNP
and two HBs), while various SNPs (five) and HBs (three) were associated with some the three traits on
Chr 9 (bin 9.06). Interestingly, all associations were environment-specific, confirming the existence
of a significant and complex genetic-by-environment interaction. The results from Bayesian bi-trait
analyses showed a high correlation between FF and MF, which was significantly different from zero in
both locations (r = 0.94 and 0.92), justifying the fact that FF and MF share significant loci. In accordance
with our findings, Xu et al. [34] found a very high amount of quantitative trait loci (QTL) significant
on bins 1.03, 8.05, and 9.06 for photoperiod sensitivity and flowering time (traits highly correlated in
maize; [35]), while Chardon et al. [36], through a meta-analysis, detected hot-spot QTL regions for
flowering time on bins 8.03 and 8.05. On the other hand, 64 QTLs related to maize flowering time were
identified by Liu et al. [37], which were distributed on chromosomal bins 1.01, 1.03, 1.1, 2.02, 3.02,
3.04, 4.05, 6.06, 7.02, 7.03, 7.04, 8.03, 8.05, 9.01, and 9.07. Like these previous studies, this study also
identified significant marker-trait associations on bins 1.01, 1.03, 1.1, 2.02, 3.02, 3.04, 4.05, 6.06, 7.02, 7.03,
7.04, 8.03, 8.05, 9.01, and 9.07. This result suggests that these regions should contain important genes
controlling the flowering time in maize. In addition, chromosomes 8 and 9 had the main associations
for all three traits, which is consistent with studies that considered other environments and genetic
materials [34,36–38].

Table 2. Summary of the associations detected by a genome-wide association study (GWAS), based on
in haplotype blocks and SNP for the traits of female/male flowering time (FF and MF, respectively) and
anthesis–silking interval (ASI) measured in inbred lines of tropical maize.

Marker Trait
Cambira Sabaudia

NM Chr(NM) PV% NM Chr(NM) PV%

SNP
FF 10 2(2), 3(1), 6(1), 7(4),

8(1), and 9(1) 5.6–6.3 7 2(1), 3(1), 5(3), and
6(2) 6.5–10.1

MF 5 2(2), 8(1), and 9(2) 5.7–6.4 6 3(3), 5(1), and 6(2) 6.5–8.5

ASI 8 1(2), 3(1), 5(1), 6(1),
7(1), and 8(2) 5.6–6.0 9 1(2), 3(2), 8(3), 9(1),

and 10(1) 6.5–9.9

Haplotype
Blocks

FF 11 1(1), 3(1), 5(1), 6(2),
7(1), 8(3), and 9(2) 5.6–17.0 3 3(2) and 9(1) 6.3–8.6

MF 7 2(1), 4(1), 7(1), 8(2),
and 9(2) 4.6–13.0 12 1(2), 4(4), 5(1), 7(3),

8(1), and 9(1) 5.0–6.9

ASI 4 1(1), 3(1), 8(1), and
10(1) 5.6–7.8 7 2(2), 5(1), 7(2), 8(1),

and 9(1) 5.1–9.5

PV%: Percentage of the phenotype variation explained by the marker; NM: Number of significant
marker-trait associations.

In Cambira, the proportion of the phenotypic variance (PV%) explained by SNP markers was
~6%, while haplotype blocks explained 6–17%, 5–13%, and 6–8% of the phenotypic variation of FF,
MF, and ASI, respectively (Table 2 and Table S1). On the other hand, in Sabaudia, the PV% explained
by SNPs was similar to that detected by HBs. In Sabaudia, the PV% values were moderate (either
SNPs or HBs), which varied between 5 and 10%, while in Cambira, HBs showed higher PV% values
(>10%) in comparison with SNPs. Moreover, the HB HChr9B2943 (in Cambira) was jointly associated
with FF and MF, accounting for 17% and 13% of the total variation of FF and MF, respectively (Table 2
and Table S1). Several studies reported PV% values of flowering time smaller than 10% [34,37,39,40].
In fact, numerous QTLs with small effects would be contributing to genetic variation in flowering time
across diverse maize germplasms [34,37,41]. In accordance with this, 93% (41/44) of the significant HB
and all SNP associations did not explain more than 10% of the total variation. Importantly, three HBs
had PV% values higher than 10%, indicating the potential effectiveness of haplotypes over individual
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SNP analysis, an aspect emphasized by Maldonado et al. [5] and Contreras-Soto et al. [26]. Twenty-five
of the 45 SNPs detected by GWAS (i.e., 56%) were found to be part of a haplotype block, which in turn
were significantly associated with a given trait. Moreover, 14 HBs contained at least 1 significant SNP,
and 9 HBs contained 2 or 3 SNPs significantly associated with some trait. On the other hand, 68%
(30/44) of the HBs detected did not contain any associated SNPs, which suggests that haplotype blocks
are useful for discovering genomic regions that are not detected by SNP markers. On the other hand,
the use of haplotype blocks in GWAS reduces the number of multiple tests, compared with SNP-based
association analysis [5]. Moreover, the use of haplotype blocks as multiallelic markers might improve
marker-trait association analyses, compensating the biallelic limitation of SNP markers [5,26].

Based on the physical position of the maize reference genome (http://www.maizegdb.org//),
51 candidate genes were identified neighboring the significant SNPs and HBs (Table S1), of which
11 were present in more than one trait (FF and MF) (Table S1). The network-assisted gene prioritization
performed by MaizeNet [12] identified 100 additional genes based on biological processes of flowering
and reproduction. Forty-four, 22, and 34 genes that were identified by MaizeNet are related to
FF, MF, and ASI, respectively (Table S1). Co-functional networks determined by MaizeNet [12] are
shown in Figure 1 and Figure S4. The co-functional networks identified the following genes directly
related to FF—GRMZM2G013398, GRMZM2G021614, GRMZM2G152689, and GRMZM2G117057—with
statistical significance of p < 0.0001 (Figure 1). On the other hand, the co-functional networks of MF
presented significances of 2.2 × 10−11 and 2.3 × 10−5 using HBs and SNPs, respectively. The gene
GRMZM2G013398 has an ortholog in Arabidopsis thaliana that encodes CONSTANS-LIKE 9 (COL9),
which has light-controlled functions and is crucial to inducing the day-length specific expression of
the FLOWERING LOCUS T (FT) gene in leaves [42]. FT protein is the main component of florigen
that strongly influences the timing of flowering [43]. Notably, the CONSTANS protein strongly
influences the performance of maize flowering time in response to photoperiod, directly inducing
the transcription of FT genes in Arabidopsis [42,43]. On the other hand, the genes GRMZM2G021614,
GRMZM2G152689, and GRMZM2G117057 encode phosphatidylethanolamine-binding proteins (pebp9,
pebp10, and pebp11, respectively), which play important roles in floral transition in angiosperms [44].
Moreover, Kikuchi et al. [45] and Wickland and Hanzawa [46] showed that the presence and structure
of these genes, together with their roles in the regulation of flowering, are well conserved among
cereal plants.

Figure 1. Cont.

78



Agronomy 2019, 9, 725

Figure 1. Co-functional networks estimated using genes identified by SNP- and haplotype-based
GWAS (A,B, respectively), genes identified by network-assisted gene prioritization (in MaizeNet) for
flowering time and subnets enriched by gene ontology annotations related to the biological processes of
female flowering (FF) in MaizeNet. (A) Gene GRMZM2G013398 identified by the prioritization analysis
(nodes orange highlighted with bold borderline) connected with all the subnetwork genes of MaizeNet
(white nodes) and genes associated with the ontology annotations related to flowering time (orange
nodes). (B) Genes GRMZM2G117057, GRMZM2G021614, GRMZM2G059358, and GRMZM2G152689
identified by prioritization analysis (nodes orange highlighted with bold borderline) connected with all
the subnetwork genes of MaizeNet (white nodes).

4. Conclusions

In the present study, we identified several loci (SNPs and haplotype blocks) with variable
contributions to phenotypic expression, which were located in regions that play important roles in the
control of flowering time in maize. The GWAS based on haplotype blocks was beneficial to identify loci
with major effects in comparison to SNP-based GWAS. The co-functional network approach identified
four genes that strongly influence the timing of flowering in tropical maize. In general, network-assisted
gene prioritization provides new insights into the genetic architecture and mechanisms underlying
flowering-related traits in tropical maize.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/9/11/725/s1:
Figure S1. Inferred population structure in a collection of maize germplasm (322 inbred lines). (A) Genetic structure
inferred by a Bayesian clustering model using InStruct and a dendrogram carried out using the neighbor-joining
(Nei’s genetic distances). The light gray and dark gray indicate the proportion of the genome extracted from the
two main genetic clusters estimated by InStruct. (B) Principal components analysis (PCA) with two major groups
identified, which correspond closely to InStruct results. Values in parentheses indicate the percentage of variation
explained by each main component; Figure S2. Linkage disequilibrium (LD) decay pattern in all chromosomes of
maize. Chromosomes 3 and 7 decayed faster than the other chromosomes, while chromosome 4 presented the
slowest decay (lower and upper margins, respectively); Figure S3. Frequency distribution of the size of haplotype
blocks consisting of two or more SNPs, in the locations Cambira and Sabaudia; Figure S4. Co-functional networks
estimated using genes identified by SNP- and Haplotype-based GWAS (A and B, respectively), genes identified in
prioritization of MaizeNet for flowering time and subnets enriched by gene ontology annotations related to the
biological processes of male flowering (MF) in MaizeNet. White nodes represent all the subnetwork genes of
MaizeNet, orange nodes are genes associated with the ontology annotations related to flowering time, and nodes
highlighted with bold borderline correspond to genes identified by GWAS or the prioritization analysis; Table S1.
Details of the associations and candidate genes detected in SNP- and Haplotype-based GWAS for the traits of
Female/Male Flowering time (FF and MF, respectively) and Anthesis–Silking Interval (ASI) measured in inbred
lines of tropical maize in two locations (Cambira and Sabaudia).
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Abstract: Rice is generally consumed in the form of milled rice. The yield of total milled rice and head
mill rice is affected by both the paddy rice yield and milling efficiency. In this study, three recombinant
inbred line (RIL) populations and one F4:5 population derived from a residual heterozygous (RH)
plant were used to determine quantitative trait loci (QTLs) affecting milling yield of rice. Seven traits
were analyzed, including recovery of brown rice (BR), milled rice (MR) and head rice (HR); grain
yield (GY); and the yield of brown rice (BRY), milled rice (MRY) and head rice (HRY). A total of 77
QTLs distributed on 35 regions was detected in the three RIL populations. Four regions, where qBR5,
qBR7, qBR10, and qBR12 were located, were validated in the RH-derived F4:5 population. In the three
RIL populations, all the 11 QTLs for GY detected were accompanied with QTLs for two or all the
three milling yield traits. Not only the allele direction for milling yield traits was unchanged, but
also the effects were consistent with GY. In the RH-derived F4:5 population, regions controlling GY
also affected all three milling yield traits. Results indicated that variations of BRY and MRY were
mainly ascribed to GY, but HRY was determined by both GY and HR. Results also showed that the
regions covering GW5–Chalk5 and Wx loci had major effects on milling quality and milling yield of
rice. These two regions, which have been known to affect multiple traits determining grain quality
and yield of rice, provide good candidates for milled yield improvement.

Keywords: brown rice recovery; milled rice recovery; head rice recovery; milling yield traits; QTL
mapping; rice (Oryza sativa L.)

1. Introduction

As a major cereal crop, rice (Oryza sativa L.) provides staple food for at least half of the global
population. Rice food is mainly consumed in the form of cooked milled rice. Farmer’s incomes are
based on both the paddy rice yield and the milling efficiency. In the postharvest processing, paddy
grains are firstly de-hulled into brown rice and then milled into milled rice. Milled rice is separated
into head rice (also called whole rice) and broken rice. Milled rice whose length is longer than or equal
to 3/4 of its unbroken length falls into the category of head rice, and the rest is called broken rice. Head
rice has a higher price than broken rice [1]. Three parameters, recovery of brown rice (BR), milled
rice (MR) and head rice (HR), are used to evaluate rice milling quality and efficiency of the milling
processing [2–4]. Generally, BR is defined as the percentage of brown rice to grains, MR the percentage
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of milled rice to grains, and HR the percentage of head rice to grains. Alternatively, MR is measured
as the percentage of milled rice to brown rice, and HR the percentage of head rice to milled rice [5].
In some reports, these traits are called percent milling yield, brown rice yield, milled rice yield, total
milled yield, or head rice yield [3,6–8].

In the past two decades, analysis of quantitative trait loci (QTLs) was employed to study the
genetic basis of rice milling quality. A larger number of QTLs were identified using various populations
developed from crosses of the same subspecies [3,9], between the indica and japonica subspecies [6,10–12],
or between different species [2]. In these studies, clustering of QTLs for different milling traits was
commonly observed. Some of them detected only one cluster. For example, Tan et al. [9] located QTLs
for MR and HR in the C1087–RZ403 region on chromosome 3; Aluko et al. [2] detected br8 and hr8 in
RM126–RM137 on chromosome 8; and Lou et al. [12] found qMRR-3 and qHRR-3 in RM3204–RM6283
on chromosome 3. Other studies detected more clusters. Li et al. [6] located qBR-4 and qMR-4 in the
C975–C734 interval on chromosome 4, qBR-9 and qMR-9 in R1751–R2272 on chromosome 9, qBR-10
and qMR-10 in C488–R716 on chromosome 10, and qBR11 and qMR11 in R728–G202 on chromosome
11. Zheng et al. [11] detected QBr6 and QMr6 in the Wx region on chromosome 6, and QBr7 and QMr7
in RM505–RM118 on chromosome 7.

When QTL mapping for milling quality traits and components of grain yield was performed
using the same population, a proportion of genomic regions were found to be associated with both
types of traits. Using 240 backcross introgression lines derived from the Ce258/IR75862 cross, three
QTL regions were found to simultaneously affect components of milling quality and grain yield [5].
In the RM71–RM300 interval harboring qBR2, the Ce258 allele increased BR and panicle weight. In
RM348–RM349 harboring qBR4, the Ce258 allele increased BR and grain weight but decreased spikelet
number. In RM250–RM482 harboring qHR2, the Ce258 allele increased HR, grain number and spikelet
number but decreased grain weight. Using 205 recombinant inbred lines (RILs) developed from the
L-204/01Y110 cross, two QTL regions were found to simultaneously affect milling traits and grain
weight [8]. For QTLs located in RM5638–RM1361 on chromosome 1, the L-204 allele increased BR
and HR but decreased grain weight. For QTLs linked to RM3283 on chromosome 10, the L-204 allele
increased HR but decreased grain weight. These results provide evidences for genetic association
between milling quality and grain yield in rice, but it remains unknown whether this association has a
consequence on the yield of milled and head rice.

In the present study, QTL analysis was employed to determine the dependence of milled and head
rice yield on milling quality and grain yield. Firstly, three RIL populations were used to detect QTLs
for brown, milled and head rice recovery; grain yield; and brown, milled and head rice yield. Then,
QTL validation was performed using one secondary population derived from a residual heterozygote
(RH) identified from one of the RIL populations.

2. Materials and Methods

2.1. Plant Materials

Four populations of indica rice (Oryza sativa subsp. indica) were used, including three RIL
populations and one RH-derived F4:5 population.

The three RIL populations were previously used to detect QTLs for components of appearance
quality and physiochemical traits for eating and cooking quality [13–15]. The TI population consisting
of 204 lines was constructed from crosses between Teqing (TQ) and IRBB lines. The IRBB lines are
near isogenic lines carrying different bacterial blight resistance genes [16] in the background of IR24,
including IRBB50, IRBB51, IRBB52, IRBB54, IRBB55, and IRBB59. The ZM population consisting
of 230 lines was constructed from a cross between Zhenshan 97 and Milyang 46 (MY46). The XM
population consisting of 209 lines was constructed from a cross between Xieqingzao and MY46. All the
parental lines of these populations have been widely used in the breeding and production of three-line
hybrid rice in China.
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The RH-derived F4:5 population was previously used to validate minor QTL for gel consistency [15].
It was derived from one RH plant that was an F7 progeny of the cross TQ/IRBB52. Of the 135 polymorphic
markers included in the TI map, 33 were heterozygous and 102 were homozygous in the RH plant.
This plant was selfed to produce an F2-type population consisting of 250 individuals. Single seed
descent was applied to advance the population to F4. Seeds of the F4 plants were harvested and a
population consisting of 250 F4:5 families was constructed.

2.2. Field Experiment and Trait Measurement

All the populations were planted in the middle rice growing season (from May to October) at the
China National Rice Research Institute (CNRRI), Hangzhou (30◦04′ N, 119◦54′ E), China. The three
RIL populations were tested for 2 years, including 2008 and 2009 for TI, 2009 and 2010 for ZM, and
2003 and 2009 for XM. The RH-derived F4:5 population was tested for 1 year in 2017. The experiments
followed a randomized complete block design. Twelve plants per line were transplanted in a single
row with 16.7 cm between plants and 26.7 cm between rows. Field management followed common
practice in rice production.

At maturity, five plants from the 10 middle plants of each line were randomly sampled and
harvested. The grains were dried and weighted to calculate grain yield per plant (GY, g). Dried grains
were stored at room temperature for three months. Then, two replicates of filled grains were processed
independently. Filled grain of 100 g was de-husked using a Satake Rice Machine (Suzhou, China). The
brown rice was milled using a JNMJ3 rice miller (Taizhou, China). Head rice of which the length was
longer than or equal to 3/4 of the full length was separated from broken rice. Three traits for milling
quality, i.e., BR, MR and HR, were calculated as the percentage of the weight of brown, milled and
head rice to grain weight, respectively. Three traits for milling yield, i.e., brown, milled and head rice
yield per plant, were calculated as follows:

Brown rice yield per plant (BRY, g) = BR × GY (1)

Milled rice yield per plant (MRY, g) =MR × GY (2)

Head rice yield per plant (HRY, g) = HR × GY (3)

2.3. Marker Data and Genetic Maps

Marker data and genetic maps of the four populations have been available [15]. The TI, ZM
and XM maps were 1345.3, 1814.7 and 2080.4 cM in length, consisting of 135, 256 and 240 DNA
markers, respectively. Genomic coverage and distances between neighboring markers are satisfactory
for primary QTL mapping in the ZM and XM populations. A number of large homozygous segments
remain in the TI map due to low polymorphism between the female and male parents of the TI
population. For the RH-derived F4:5 population, the map consisted of 35 markers, including 28 simple
sequence repeats, six InDels and one single nucleotide polymorphism.

2.4. Data Analysis

For the three RIL populations that were tested for 2 years, phenotypic data averaged over 2 years
were used for computing the descriptive statistics, plotting the frequency distribution and calculating
the Pearson correlation coefficient, and the data of each year were used for QTL mapping. QTL
analysis was performed using the default setting of the MET (multi-environmental trials) approach in
IciMapping V4.1 [17], taking the 2 years for each population as two environments. LOD thresholds for
genome-wide type I error of p < 0.05 were calculated with 1000 permutation test and used to claim a
putative QTL. QTL effects and the proportions of phenotypic variance explained (R2) were estimated.
When a QTL was shown to have a significant genotype-by-environment (GE) interaction, the effect
and R2 due to GE interaction were also measured. QTLs were designated as proposed by McCouch
and CGSNL [18].
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For the RH-derived F4:5 population that was tested for 1 year, QTLs were determined with the
BIP (bi-parental populations) approach in IciMapping V4.1 [17]. LOD > 2.0 was used as the threshold
to claim a putative QTL. QTLs were designated as proposed by McCouch and CGSNL [18].

3. Results

3.1. Phenotypic Performance of the Three RIL Populations

Descriptive statistics of the seven traits in the three RIL populations are presented in Table S1.
Two of the seven traits, BR and MR, showed similar coefficients of variation (CV) among the three
populations, ranging from 0.0116 to 0.0119 and 0.0140 to 0.0180, respectively. The CV of the five other
traits were higher in the ZM and XM populations than in the TI population, ranging from 0.1266 to
0.2642 in ZM, 0.1288 to 0.2942 in XM, and 0.0967 to 0.1871 in TI (Table S1). Continuous distributions
were observed for all the traits in the three populations (Figure S1), suggesting polygenic inheritance
of these traits.

Correlations between the seven traits were either non-significant or positive highly significant
(p < 0.01) (Table 1). Regarding the three traits for milling quality, the correlation was strong between
BR and MR but weak between these two traits and HR. The correlation coefficients (r) between BR and
MR ranged from 0.764 to 0.815 in the three populations, but their correlations with HR were either
non-significant or had low r values (0.230–0.363). These results suggest that the control of properties
for maintaining whole milled rice may differ greatly from that for achieving high brown and milled
rice recovery.

Table 1. Simple correlation coefficients between seven traits in three RIL populations of rice.

Population Trait MR HR GY BRY MRY HRY

TI BR 0.764 ** −0.157 0.229 ** 0.292 ** 0.287 ** 0.107
MR 0.160 0.205 ** 0.253 ** 0.287 ** 0.275 **
HR −0.064 −0.074 −0.046 0.505 **
GY 0.998 ** 0.996 ** 0.816 **
BRY 0.998 ** 0.809 **
MRY 0.826 **

ZM BR 0.815 ** 0.148 −0.006 0.055 0.054 0.063
MR 0.230 ** 0.063 0.112 0.136 0.157
HR 0.354 ** 0.362 ** 0.368 ** 0.710 **
GY 0.998 ** 0.997 ** 0.902 **
BRY 0.999 ** 0.905 **
MRY 0.907 **

XM BR 0.784 ** 0.233 ** 0.246 ** 0.292 ** 0.296 ** 0.300 **
MR 0.363 ** 0.365 ** 0.398 ** 0.425 ** 0.449 **
HR 0.224 ** 0.232 ** 0.241 ** 0.605 **
GY 0.999 ** 0.998 ** 0.900 **
BRY 0.999 ** 0.903 **
MRY 0.907 **

TI = Teqing/IRBB lines; ZM = Zhenshan 97/Milyang 46; XM = Xieqingzao/Milyang 46; BR = Brown rice recovery;
MR =Milled rice recovery; HR = Head rice recovery; GY = Grain yield per plant; BRY = Brown rice yield per plant;
MRY =Milled rice yield per plant; HRY = Head rice yield per plant; **, p < 0.01.

Regarding the four yield traits, GY, BRY, MRY and HRY, not only the correlations were all
significant but also the coefficients were all high. Near-perfect correlation was observed between GY,
BRY and MRY, with the r values ranging from 0.996 to 0.999. Lower r values were found between these
three traits and HRY, ranging from 0.816 to 0.826, 0.902 to 0.907 and 0.900 to 0.907 in the TI, ZM and
XM populations, respectively. These results suggest that GY is the main source of variations for BRY,
MRY and HRY, and the postharvest processing has a more significant influence on HRY than on BRY
and MRY.
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Regarding the three pairs of corresponding traits for milling quality and yield, the correlation was
stronger between HR and HRY than between the other two pairs of traits. The r values ranged from
0.505 to 0.710 between HR and HRY in the three populations and decreased to 0.292–0.055 between
BR and BRY, and 0.136–0.425 between MR and MRY. These results also suggest that the postharvest
processing has a more significant influence on HRY than on BRY and MRY.

3.2. QTL Detected in the Three RIL Populations

In the TI, ZM and XM populations, a total of 27, 33 and 17 QTLs were detected for the seven
traits analyzed, of which one, four and none showed significant GE interactions, respectively (Figure 1;
Tables 2–4). Based on the physical position of DNA markers, it was found that all the five QTLs
having significant GE effects were located in the region covering the Wx locus on the short arm of
chromosome 6.

GW5

Chalk5 Wx

Figure 1. Genomic distribution of QTLs for seven traits detected in three RIL populations. TI =
Teqing/IRBB lines; ZM = Zhenshan 97/Milyang 46; XM = Xieqingzao/Milyang 46. Marker positions in
each chromosome are indicated by solid lines and the distances are in proportion to the physical length.
Solid rectangles refer to the approximate positions of centromeres. QTLs are drawn on the left side
of the corresponding interval. Significant genotype-by-environment interaction is indicated by the
number “1”.
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Table 2. QTLs for seven traits detected in the TI population.

Chr Interval QTL LOD LOD (A) LOD (ge) A ge R2 (A) R2 (ge)

2 RM6–RM240 qGY2 8.84 8.25 −1.89 10.75
qBRY2 8.76 8.09 −1.54 10.37
qMRY2 8.15 7.61 −1.30 9.78
qHRY2 7.44 6.57 −1.21 8.38

3 RM15139–RM15303 qBR3.1 26.64 25.34 0.41 14.16
qHR3 14.07 13.17 −2.51 17.81

RM16048–RM16184 qBR3.2 8.02 7.46 0.21 3.75

4 RM6992–RM349 qGY4 4.90 4.88 1.44 6.23
qBRY4 4.59 4.58 1.14 5.64
qMRY4 4.53 4.52 0.99 5.69
qHRY4 3.90 3.85 0.89 4.55

5 RM437–RM18189 qBR5.1 35.75 34.08 −0.51 20.20
qMR5 11.22 10.51 −0.39 11.99
qGY5 4.18 3.52 −1.30 4.52

qBRY5 5.66 4.81 −1.25 6.02
qMRY5 6.17 5.06 −1.13 6.48

RM274–RM334 qBR5.2 3.11 2.93 −0.13 1.38

6 RM190–RM587 qBR6 15.18 14.32 −0.30 7.45
qMR6 6.30 5.96 −0.28 6.44
qHR6 10.08 4.35 5.73 −1.40 −1.20 5.59 4.28

7 RM70–RM18 qBR7 5.82 5.54 0.19 2.75

8 RM547–RM22755 qBR8 8.00 6.82 −0.20 3.31
qGY8 2.85 2.82 −1.10 3.55

qBRY8 3.42 3.33 −0.98 4.09
qMRY8 2.85 2.82 −0.79 3.53

10 RM6100–RM3773 qBR10 14.93 12.44 −0.28 6.60

12 RM20–RM27610 qMR12 3.48 3.36 0.21 3.50

QTLs are designated as proposed by McCouch and CGSNL [18]. A: additive effect of replacing a maternal with
a paternal allele; ge: effect due to genotype-by-environment interaction; R2: percentage of phenotypic variance
explained by the additive or GE effect.

Table 3. QTLs for seven traits detected in the ZM population.

Chr Interval QTL LOD LOD (A) LOD (ge) A ge R2 (A) R2 (ge)

1 RG532–RM5359 qHR1 9.34 9.14 2.21 8.95
qGY1.1 5.25 4.35 0.89 4.79
qBRY1.1 5.53 4.56 0.74 4.93
qMRY1.1 5.68 4.73 0.69 5.01
qHRY1.1 6.16 4.60 0.70 4.59

RZ730–RG381 qBR1 7.34 6.67 −0.24 5.91
qGY1.2 6.63 6.61 1.12 7.51
qBRY1.2 5.96 5.93 0.86 6.59
qMRY1.2 5.58 5.58 0.76 6.02
qHRY1.2 4.69 4.30 0.67 4.34

2 A5–RM71 qHR2 3.30 3.30 −1.29 3.00

3 RM251–RG393 qBR3 6.00 5.77 −0.22 5.02
RZ613–RG418A qGY3 4.17 3.14 −0.76 3.42

qBRY3 4.17 3.04 −0.61 3.24
qMRY3 4.00 2.98 −0.56 3.18
qHRY3 5.06 4.08 −0.65 4.03

4 RZ69–RM3317 qHRY4 5.72 5.68 0.76 5.52
RM401–RM3643 qHR4 3.76 3.51 1.31 3.20

5 CDO348–RG480 qHR5 4.95 4.94 −1.61 4.69
qHRY5 5.80 5.79 −0.79 5.81
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Table 3. Cont.

Chr Interval QTL LOD LOD (A) LOD (ge) A ge R2 (A) R2 (ge)

6 RZ516–RM197 qHR6 5.72 4.78 −1.56 4.51
qGY6 7.97 3.30 4.67 −0.79 0.80 3.72 3.72

qBRY6 7.74 3.22 4.52 −0.63 0.63 3.54 3.54
qMRY6 7.38 3.13 4.24 −0.58 0.54 3.39 3.03
qHRY6 7.41 4.15 3.27 −0.66 −0.64 4.11 3.89

RM276–RZ667 qMR6 3.16 3.01 0.20 3.25

7 RG650–RZ395 qBR7 4.08 3.50 0.18 3.25

9 RG667–RM201 qMRY9 4.13 3.59 0.60 3.77

10 RZ811–RZ583 qGY10 4.46 3.68 −0.83 4.13
qBRY10 5.21 4.34 −0.73 4.78
qMRY10 5.17 4.45 −0.68 4.82

11 RZ816–RM332 qBR11.1 3.12 3.10 0.16 2.63
RM187–RM254 qBR11.2 3.20 3.18 −0.16 2.73

QTLs are designated as proposed by McCouch and CGSNL [18]. A: additive effect of replacing a maternal with
a paternal allele; ge: effect due to genotype-by-environment interaction; R2: percentage of phenotypic variance
explained by the additive or GE effect.

Table 4. QTLs for seven traits detected in the XM population.

Chr Interval QTL LOD LOD (A) A R2 (A)

3 RM6849–RM14629 qBR3.1 3.97 3.58 0.21 4.57
qMR3.1 3.76 3.01 0.28 2.96

RZ696–RG445A qBR3.2 3.14 2.99 −0.19 3.58
RZ519–RZ328 qMR3.2 3.35 3.26 −0.28 3.10

RM85–RG418A qHR3 3.39 3.12 −1.61 4.28

5 RM13–RM267 qBR5 3.94 3.02 0.19 3.53
RG182–RG413 qMR5 6.86 6.86 0.43 7.05
RM163–RG470 qHR5 3.78 3.28 −1.62 4.58

qHRY5 3.02 3.00 −0.80 3.09

6 RM190–RM204 qGY6 7.14 6.64 −1.74 8.46
qBRY6 7.14 6.65 −1.43 8.25
qMRY6 7.31 6.73 −1.32 8.53
qHRY6 4.97 4.30 −0.99 4.85

10 RM1859–RM184 qGY10 4.56 4.06 −1.36 5.15
qBRY10 4.51 4.00 −1.11 4.96
qMRY10 4.70 4.17 −1.04 5.28
qHRY10 6.11 5.39 −1.11 6.05

QTLs are designated as proposed by McCouch and CGSNL [18]. A: additive effect of replacing a maternal with a
paternal allele; R2: percentage of phenotypic variance explained by the additive effect.

3.3. QTLs Detected in the TI Population

The 27 QTLs identified in the TI population were distributed across nine of the 12 rice chromosomes
(Figure 1, Table 2). Numbers of QTLs detected for BR, MR, HR, GY, BRY, MRY, and HRY were 8, 3,
2, 4, 4, 4, and 2, having overall R2 of 59.55%, 21.93%, 23.40%, 25.05%, 26.13%, 25.49%, and 12.93%,
respectively. Twenty-two of these QTLs formed six clusters distributed on chromosomes 2, 3, 4, 5, 6,
and 8.

The largest cluster consisted of five QTLs, followed by three clusters of four QTLs. It was found
that the 14 QTLs detected for grain yield and the three traits for milling yield were all included in these
four clusters. In the RM437–RM18189 region on chromosome 5, the TQ allele increased BR, MR, GY,
BRY, and MRY by 0.51%, 0.39%, 1.30 g, 1.25 g, and 1.13 g, respectively (Table 2). In the RM6–RM240
region on chromosome 2, the TQ allele increased GY, BRY, MRY, and HRY by 1.89 g, 1.54 g, 1.30 g,
and 1.21 g, respectively. In the RM6992–RM349 region on chromosome 4, the TQ allele decreased
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GY, BRY, MRY, and HRY by 1.44 g, 1.14 g, 0.99 g, and 0.89 g, respectively. In the RM547–RM22755
region on chromosome 8, the TQ allele increased BR, GY, BRY, and MRY by 0.20%, 1.10 g, 0.98 g, and
0.79 g, respectively.

The fifth cluster consisted of three QTLs, which were located in the RM190–RM587 region covering
the Wx locus [19] on chromosome 6. The TQ allele increased BR, MR and HR by 0.30%, 0.28% and 1.40%,
respectively. The sixth cluster consisted of two QTLs, which were located in the RM15139–RM15303
region covering the GS3 locus [20] on chromosome 3. The TQ allele decreased BR by 0.41 g but
increased HR by 2.51 g.

In the other five regions, one QTL was detected in each region. Included were qBR3.2 located
in the interval RM16048–RM16184 on chromosome 3, qBR5.2 in RM274–RM334 on chromosome 5,
qBR7 in RM70–RM18 on chromosome 7, qBR10 in RM6100–RM3773 on chromosome 10, and qMR12 in
RM20–RM27610 on chromosome 12.

3.4. QTLs Detected in the ZM Population

The 33 QTLs identified in the ZM population were distributed across 10 of the 12 rice chromosomes
(Figure 1, Table 3). Numbers of QTLs detected for BR, MR, HR, GY, BRY, MRY, and HRY were 5, 1,
5, 5, 5, 6, and 6, having overall R2 of 19.55%, 3.25%, 24.34%, 23.57%, 23.08%, 26.20%, and 28.39%,
respectively. Twenty-four of these QTLs formed six clusters distributed on chromosomes 1, 3, 5, 6,
and 10.

Two clusters on chromosome 1 and one on chromosome 6 were the three largest clusters consisting
of five QTLs. Each of them affected one milling quality trait and all the four yield traits. In the
RG532–RM5359 region on the short-arm chromosome 1, the MY46 allele increased HR, GY, BRY, MRY,
and HRY by 2.21%, 0.89 g, 0.74 g, 0.69 g, and 0.70 g, respectively (Table 3). In the RZ730–RG381 region
on the long arm of chromosome 1, the MY46 allele decreased BR by 0.24% but increased GY, BRY, MRY,
and HRY by 1.12 g, 0.86 g, 0.76 g, and 0.67 g, respectively. In the RZ516–RM197 region covering the
Wx locus on chromosome 6, the MY46 allele decreased HR, GY, BRY, MRY, and HRY by 1.56%, 0.79 g,
0.63 g, 0.58 g, and 0.66 g, respectively.

The other three clusters consisted of four, three and two QTLs, respectively. The RZ613–RG418A
region on chromosome 3 affected all four yield traits, with the MY46 allele decreasing GY, BRY, MRY,
and HRY by 0.76 g, 0.61 g, 0.56 g, and 0.65 g, respectively. The RZ811–RZ583 region on chromosome 10
affected three yield traits, with the MY46 allele decreasing GY, BRY and MRY by 0.83 g, 0.73 g and 0.68
g, respectively. The CDO348–RG480 region on chromosome 5 affected the recovery and yield of head
rice, with the MY46 allele decreasing HR and HRY by 1.61% and 0.79 g, respectively.

Two other QTLs, qHRY4 and qHR4, were mapped in close positions on chromosome 4 (Figure 1).
The MY46 allele increased HRY and HR by 0.76 g and 1.31%, respectively (Table 3). In the other seven
regions, one QTL was detected in each region. Included were qHR2 located in the interval A5–RM71
on chromosome 2, qBR3 in RM251–RG393 on chromosome 3, qMR6 in RM276–RZ667 on chromosome
6, qBR7 in RG650–RZ395 on chromosome 7, qMRY9 in RG667–RM201 on chromosome 9, qBR11.1 in
RZ816–RM332, and qBR11.2 in RM187–RM254 on chromosome 11.

3.5. QTLs Detected in the XM Population

The 17 QTLs identified in the XM population were distributed on four of the 12 rice chromosomes
(Figure 1, Table 4). Numbers of QTLs detected for BR, MR, HR, GY, BRY, MRY, and HRY were 3, 3,
2, 2, 2, 2, and 3, having overall R2 of 11.68%, 13.11%, 8.86%, 13.62%, 13.21%, 13.80%, and 13.98%,
respectively. Twelve of these QTLs formed four clusters distributed on chromosomes 3, 5, 6, and 10.

The clusters on chromosomes 6 and 10 were the two largest clusters consisting of four QTLs,
both of which affected all four yield traits. In the RM190–RM204 region covering the Wx locus on
chromosome 6, the MY46 allele decreased GY, BRY, MRY, and HRY by 1.74 g, 1.43 g, 1.32 g, and 0.99 g,
respectively (Table 4). In the RM1859–RM184 region on chromosome 10, the MY46 allele decreased GY,
BRY, MRY, and HRY by 1.36 g, 1.11 g, 1.04 g, and 1.11 g, respectively.
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The other two clusters each consisted of two QTLs. In the RM6849–RM14629 region on the short
arm of chromosome 3, the MY46 allele increased BR and MR by 0.21% and 0.28%, respectively. In the
RM163–RG470 on the long arm of chromosome 5, the MY46 allele decreased HR and HRY by 1.62% and
0.80 g, respectively. Two other QTLs, qBR5 and qMR5, were mapped in close positions on the short arm
of chromosome 5 (Figure 1). The MY46 allele increased BR and MR by 0.19% and 0.43%, respectively
(Table 4). The remaining three QTLs were loosely linked on the long arm of chromosome 3, including
qBR3.2 for brown rice recovery, qMR3.2 for milled rice recovery, and qHR3 for head rice recovery.

3.6. Validation of Five QTL Regions in an RH-Derived F4:5 Population

In the Ti52-3 population that was derived from an RH-plant of TQ/IRBB52, correlations between
the seven traits (Table S2) are much the same as in the three RIL populations. Regarding the three traits
for milling quality, the correlation between BR and MR (r = 0.773) was much stronger than between
these two traits and HR (r = 0.243 and 0.266). Regarding the four yield traits, near-perfect correlation
was observed between GY, BRY and MRY (r values ranging as 0.993–0.998), and their correlations with
HRY were slightly weaker (r values ranging as 0.923–0.929). Regarding the three pairs of traits for
milling quality and yield, the correlation between HR and HRY (r = 0.440) was much stronger than
between the two others (r = 0.065 and 0.159).

Among the 16 segregating regions distributed on 12 chromosomes in the Ti52-3 population, QTLs
were detected in 10 regions across nine chromosomes (Figure 2; Table 5). A total of 26 QTLs were
found, including 6, 6, 1, 3, 3, 3, and 4 for BR, MR, HR, GY, BRY, MRY, and HRY, which had overall R2 of
33.39%, 45.99%, 6.01%, 22.75%, 22.93%, 23.73%, and 23.27%, respectively.

qBR11
qGY11
qBRY11
qMRY11
qHRY11

qMR9

qGY9
qBRY9
qMRY9
qHRY9

qGY2
qBRY2
qMRY2
qHRY2

qBR5
qMR5

qHR6

qBR7
qMR7

qBR10
qMR10

qBR12
qMR12
qHRY12

qBR3
qMR3

Figure 2. Genomic distribution of QTLs for seven traits detected in the RH-F4:5 population. BR =
Brown rice recovery; MR =Milled rice recovery; HR = Head rice recovery; GY = Grain yield per plant;
BRY = Brown rice yield per plant; MRY =Milled rice yield per plant; HRY = Head rice yield per plant.
Markers within the blue rectangle are flanking markers of QTLs detected in the TI population.
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Table 5. QTLs for seven traits detected in the RH-F4:5 population.

Chr Interval QTL LOD A D R2 (%)

2 Tw31911–Tw32437 qGY2 8.93 1.87 0.41 11.60
qBRY2 8.88 1.52 0.29 11.59
qMRY2 9.25 1.40 0.20 12.03
qHRY2 7.35 1.29 0.16 10.67

3 RM14302–RM14383 qBR3 2.34 −0.13 0.05 2.82
qMR3 6.41 −0.31 0.08 7.30

5 RM3321–RM274 qBR5 4.88 −0.17 −0.18 6.25
qMR5 5.92 −0.26 −0.33 6.54

6 RM549 qHR6 8.05 1.34 0.31 6.01

7 RM10–RM70 qBR7 7.23 0.23 −0.09 9.28
qMR7 12.89 0.44 −0.15 15.51

9 RM219–RM1896 qMR9 3.06 0.20 0.12 3.34

9 RM107 qGY9 2.83 −0.93 −0.84 3.35
qBRY9 2.81 −0.76 −0.65 3.35
qMRY9 3.09 −0.73 −0.52 3.68
qHRY9 2.04 −0.62 −0.28 2.67

10 RM6704–RM7300 qBR10 2.20 −0.10 −0.21 2.52
qMR10 2.92 −0.18 −0.24 3.29

11 RM167–RM287 qBR11 2.20 0.10 0.20 2.52
qGY11 3.30 0.76 3.05 7.80
qBRY11 3.48 0.63 2.52 8.00
qMRY11 3.46 0.55 2.30 8.03
qHRY11 2.43 0.36 2.34 7.19

12 Tv963–RM3246 qBR12 2.84 0.10 −0.57 9.99
qMR12 3.74 0.12 −0.88 10.01
qHRY12 2.04 0.62 −0.32 2.73

QTLs are designated as proposed by McCouch and CGSNL [18]. A: additive effect of replacing a maternal with a
paternal allele; D: dominance effect; R2: proportion of the phenotypic variance explained by the QTL.

Of the QTLs detected in the TI population, four were covered by the segregating regions of the
Ti52-3 population (Figure 2), including qBR5.2 located in the interval RM274–RM334 on chromosome 5,
qBR7 in RM70–RM18 on chromosome 7, qBR10 in RM6100–RM3773 on chromosome 10, and qMR12
in RM20–RM27610 on chromosome 12. They were all well validated. The TQ alleles consistently
increased BR in the qBR5.2 and qBR10 regions, decreased BR in the qBR7 region, and decreased MR
in the qMR12 region (Tables 2 and 5). Additionally, significant effects were newly detected on MR
in the qBR5.2, qBR7 and qBR10 regions, and on BR and HRY in the qMR12 region. The QTL region
qBR8/qGY8/qBRY8/qMRY8 found in the TI population was overlapped with the segregating region
RM22755–RM23001 in the Ti52-3 population (Figure 2). These QTLs were not detected in Ti52-3. Since
one side of this putative QTL region was homozygous in the new population, it is possible that the
QTLs were not segregated in Ti52-3.

The other six QTL regions found in the Ti52-3 population were not detected in the TI population.
One of them, Tw31911–Tw32437 on chromosome 2, showed significant effects on four traits. In the
neighboring region RM6–RM240, QTLs for the same four traits were detected in the TI population.
However, the QTL directions were opposite between the two regions. It is noted that RM6–RM240
segregated in the TI population was homozygous in the Ti52-3 population (Figure 2). The gene
underlying this QTL cluster may be located between RM6–RM240 and Tw31911–Tw32437, and
crossover may have occurred between the gene and Tw31911.

Five other QTL regions detected in the Ti52-3 population included three QTL clusters and two
regions affecting a single trait. The RM14302–RM14383 region on chromosome 3 affected two traits, in
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which the TQ allele increased BR and MR by 0.13% and 0.31%, respectively. The RM107 region on
chromosome 9 affected four traits, in which the TQ allele increased GY, BRY, MRY, and HRY by 0.93 g,
0.76 g, 0.73 g, and 0.62 g, respectively. The RM167–RM287 region on chromosome 11 affected five traits,
in which the TQ allele decreased BR, GY, BRY, MRY, and HRY by 0.10%, 0.76 g, 0.63 g, 0.55 g, and 0.36 g,
respectively. The remaining two QTLs were qHR6 and qMR9, of which the TQ allele decreased HR and
MR by 1.34% and 0.20%, respectively.

4. Discussion

Milled and head rice yield, two of the most important commercial traits in rice production, are
determined by grain yield and milling quality. Understanding the genetic relationship among these
traits is critical for the improvement of milled and head rice yield in breeding. In this study, QTL
analysis for seven traits—brown, milled and head rice recovery, grain yield, and brown, milled and
head rice yield—was performed using three RIL populations and one RH-derived F4:5 population.
New knowledge on the genetic basis underlying the control of brown, milled and head rice yield
is provided.

In the four populations investigated in this study, correlations between the four yield traits were
all highly significant. Near-perfect correlations were observed between GY, BRY and MRY, and their
correlations with HRY were slightly weaker. These results were supported by QTLs detected for the
four traits. Four, five, two, and three QTLs were detected for grain yield in the TI, ZM, XM, and Ti52-3
populations. It is worth noting that each of these QTL regions had significant effects on all or two of the
three traits for milling yield. For multiple QTLs accompanied in the same region, not only the allelic
direction remained unchanged, but also the effects were consistent. Of the four regions controlling
GY in TI, the qGY2 and qGY4 regions controlled all four traits, but the qGY5 and qGY8 regions were
non-significant for HRY (Table 2). No other QTLs for these traits were detected in TI. Of the five
regions controlling GY in ZM, the qGY1.1, qGY1.2, qGY3, and qGY6 regions controlled all four traits,
but the qGY10 region was non-significant for HRY (Table 3). One more QTL for MRY, qMRY9, was
detected alone. One more QTL for HRY, qHRY4, was detected and accompanied with a QTL for HR,
qHR4. In XM, the two regions controlling GY both affected all four traits (Table 4). One more QTL for
HRY, qHRY5, was detected and accompanied with a QTL for HR, qHR5. Similarly, all three regions
controlling GY in Ti52-3 affected all four traits (Table 5). These results have two implications. Firstly,
variation on paddy grain yield might be the only main source of variation for brown and milled rice
yield. Secondly, variations on the paddy grain yield and head rice recovery both make important
contributions to the variation of head rice yield.

Significant correlations between different quality traits in rice have been commonly observed [7,8,
12,21], which could be partly ascribed to the influence of a QTL region on multiple traits [7,12]. By
comparing the locations of genes or QTLs reported for various grain quality traits in rice, it is found
that some regions harboring QTLs for milling quality are associated with other traits that determine
appearance quality or eating and cooking characteristics. Two typical examples are the GW5–Chalk5
region on chromosome 5 [22,23] and the Wx region on chromosome 6 [19]. In the GW5–Chalk5 region,
QTLs having major effects for MR were detected in the TI and XM populations. In a previous study
reported by Zheng et al. [11], one QTL for MR, QMr5, was also detected in this region, having an
additive effect of 1.10% and R2 of 11.5%. In addition, this region was reported to affect various traits
for grain chalkiness, endosperm transparency and grain size in the TI and XM populations [13,14].

The Wx gene not only plays a key role in controlling eating and cooking quality of rice, but
also influences other traits including protein content, head rice recovery, grain chalkiness, and grain
weight [2,3,8,9,24]. The Wx locus was segregated in the TI, ZM and XM populations, having major
effects on amylose content and gel consistency [15]. The Wx region also showed significant effects
on grain chalkiness, grain width and endosperm transparency in TI; on grain chalkiness and grain
length in ZM; and on grain chalkiness, grain length and endosperm transparency in XM [13,14]. In the
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present study, this region was found to have significant effects on BR, MR and HR in TI; on HR, GY,
BRY, MRY, and HRY in ZM; and on GY, BRY, MRY, and HRY in XM.

In conclusion, the GW5–Chalk5 and Wx regions are good targets for studying the genetic control of
multiple traits determining grain yield, appearance quality, eating and cooking quality, milling quality,
and milling yield.

5. Conclusions

A total of 77 QTLs for seven traits affecting milling yield in rice were detected using three RIL
populations. All the regions harboring QTLs for grain yield were found to affect two or all three
milling yield traits. QTLs for head rice yield were usually accompanied with grain yield and head rice
recovery. Variations of brown and milled rice yield were mainly ascribed to grain yield, but head rice
yield was determined by both grain yield and head rice recovery. Two regions covering GW5–Chalk5
and Wx loci, respectively, had a major contribution to milling quality and milling yield of rice.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/1/75/s1,
Figure S1: Frequency distribution of seven traits in three RIL populations. Table S1: Phenotypic performance of
seven traits in the three RIL populations. Table S2: Simple correlation coefficients between seven traits in the
RH-F4:5 population.
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Abstract: Specific length amplified fragment sequencing (SLAF-seq) is a recently developed
high-resolution strategy for the discovery of large-scale de novo genotyping of single nucleotide
polymorphism (SNP) markers. In the present research, in order to facilitate genome-guided breeding in
potato, this strategy was used to develop a large number of SNP markers and construct a high-density
genetic linkage map for tetraploid potato. The genomic DNA extracted from 106 F1 individuals
derived from a cross between two tetraploid potato varieties YSP-4 × MIN-021 and their parents
was used for high-throughput sequencing and SLAF library construction. A total of 556.71 Gb data,
which contained 2269.98 million pair-end reads, were obtained after preprocessing. According to
bioinformatics analysis, a total of 838,604 SLAF labels were developed, with an average sequencing
depth of 26.14-fold for parents and 15.36-fold for offspring of each SLAF, respectively. In total, 113,473
polymorphic SLAFs were obtained, from which 7638 SLAFs were successfully classified into four
segregation patterns. After filtering, a total of 7329 SNP markers were detected for genetic map
construction. The final integrated linkage map of tetraploid potato included 3001 SNP markers on
12 linkage groups, and covered 1415.88 cM, with an average distance of 0.47 cM between adjacent
markers. To our knowledge, the integrated map described herein has the best coverage of the potato
genome and the highest marker density for tetraploid potato. This work provides a foundation
for further quantitative trait loci (QTL) location, map-based gene cloning of important traits and
marker-assisted selection (MAS) of potato.

Keywords: tetraploid potato; SNP markers; SLAF-seq technology; high-density genetic linkage map

1. Introduction

Potato, Solanum tuberosum L., is the fourth most important food crop in the world behind maize,
wheat, and rice, with a total production of more than 388 million tons in 2017 [1]. Nevertheless,
cultivated potato is a highly heterozygous outcrossing autotetraploid (2n = 4x = 48), which causes
complexities in genetic or genomic studies, and provides many challenges for breeding. Therefore,
more breeding efforts have been focused on improving important traits, such as processing quality,
nutritional value, as well as disease/pest resistance.

A high-density genetic linkage map can provide a large amount of information that facilitates
map-based cloning, QTL identification, and comparative genomic researches, establishing a general
tool for marker-assisted selection breeding (MAS). However, the construction of linkage maps in
autopolyploids always has more difficulties than that in polyploids as well as allopolyploid species,
due to their complicated segregation patterns and chromosomal pairing [2–5]. Over the past two
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decades, multiple linkage maps have been constructed for potato (both diploid and autotetraploid
potato) for the purpose of better understanding the potato genome, facilitating map-based cloning,
and developing markers for MAS [6–11]. Gebhardt et al. (1991) [6] reported the first potato map in the
world, including 135 restriction fragment length polymorphism (RFLP) molecular markers and defining
12 distinct linkage groups, which was drawn from segregation data derived from the interspecific cross
of diploid potato (2n = 2x = 24), S. phureja × (S. tuberosum × S. chacoense). Yamanaka et al. (2005) [10]
constructed an integrated genetic linkage map of diploid potato, using 106 F1 individuals from a
cross of two wild and landrace germplasm 86.61.26 × 84.194.30 as the mapping population. This map
included 13 newly developed P450-based analogue (PBA), 27 random amplified polymorphic DNA
(RAPD), 4 inter-simple sequence repeat (ISSR), 22 simple sequence repeat (SSR), 9 restriction fragment
length polymorphism-sequence-tagged sites (RFLP-STSs), and 7 RFLP markers, with a coverage of
673 cM and an average marker distance of 8.2 cM. Van Os et al. (2006) [11] constructed an ultradense
map of potato with more than 10,000 amplified fragment length polymorphism (AFLP) markers
from a heterozygous diploid potato population. It is also the densest meiotic recombination map
ever constructed.

With the rapid development of next-generation sequencing technologies, single nucleotide
polymorphism (SNP) markers have been developed to construct high-density genetic linkage maps
for many important crop species, such as maize [12,13], rice [14,15], and wheat [16,17]. For potato,
Xun et al. (2011) [18] used a homozygous double-monoploid potato clone to sequence and assemble
86% of the 844-megabase genome, which bridged the gap between genomics and applied breeding
with an in-depth understanding of the structure and function of the potato genome, and provided
an effective tool and data to develop potato SNP markers. To date, several high-density genetic
linkage maps based on SNP markers have been reported with the accomplishment and subsequent
development of the potato’s whole genome sequence. Felcher et al. (2012) [19] first used SNP markers
and two diploid potato populations to create two linkage maps, where over 4400 markers were
mapped, including 787 markers common to both populations, and the map sizes were 965 and 792 cM,
respectively. Hackett et al. (2013) [20] constructed a high-density SNP map of tetraploid potato based
on obtained Infinium 8300 Potato SNP Array data, which included 1130 markers with a coverage of
1087.5 cM, using a mapping population of 190 progenies from a cross between the breeding clone
12601ab1 and the cultivar stirling. Endelman et al. (2016) [21] first used a diploid inbred line-based
F2 population to construct a genetic linkage map of diploid potato with 2264 SNP markers. To sum
up, most potato linkage maps are generated from diploid populations of wild species and primitive
cultivars. Linkage mapping in tetraploid potato species is still a challenge despite the recent advances
in mapping methodology, genotyping, and molecular marker technology.

Due to the advances in next generation sequencing (NGS) technologies, new high-throughput
genotyping methods hold promise for the detection of a large number of SNPs in a short time,
which include genotyping-by-sequencing (GBS) [22], complexity reduction of polymorphic sequences
(CroPSs) [23], restriction site-associated DNA sequencing (RAD-seq) [24,25], and specific length
amplified fragment sequencing (SLAF-seq) [26]. Specific-locus amplified fragment sequencing
(SLAF-seq) technology, reported by Sun et al. (2013) [26], is an efficient strategy for the de novo
SNP discovery and genotyping of large populations based on an enhanced reduced representation
library (RRL) sequencing method. The advantages of SLAF-seq technology are: (i) Deep sequencing to
ensure genotyping accuracy; (ii) a lower sequencing cost; (iii) pre-designed RRL scheme to optimize
marker efficiency; (iv) and double barcode multiplexed sequencing system for large population and
large numbers of loci. To date, this strategy has been applied to various species for SNP high-density
genetic mapping, such as cucumber [27], Agropyron gaertn [28], and orchardgrass [29], due to its
advantages of optimized marker efficiency, accurate genotyping, affordable price, and applicability for
large populations. In the present research, an F1 mapping population of 106 individuals was created
from the cross between two tetraploid potato varieties, YSP-4 × MIN-021. We used the SLAF-seq
approach to construct a high-density integrated SNP genetic linkage map of tetraploid potato, which
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will expedite map-based cloning efforts, QTL location for important traits, as well as marker-assisted
selection breeding for tetraploid potato.

2. Materials and Methods

2.1. Plant Materials

The F1 mapping population consisted of 106 individuals from a cross between two tetraploid
potato varieties, YSP-4 (female) and MIN-021 (male). YSP-4 is a wild tetraploid potato material,
which has a short growth period, moderate tuber numbers per plant, high commodity potato rate,
and high starch content (ca. 18%). This material is also highly resistant to early blight and virus
disease. MIN-021 is a tetraploid potato material, which has a short growth period, high yield, and
high starch content (ca. 19%). All the materials were planted in the potato breeding base of Inner
Mongolia Agricultural University. The field trial was arranged in randomized complete block design
(RCBD) with three replications per plot. Each plot contained 20 plants, which were grown in 2 rows
with a spacing of 30 cm within rows and 90 cm between rows, and the planting depth was about
12 cm. The experiment field had sandy soil with pH 7.8 to 8.2, good irrigation conditions with annual
precipitation from 300 to 400 mm, and the geographic position is 111◦42′ E, 45◦57′ N, with an altitude
of 1063 m.

2.2. DNA Extraction

At the potato squaring stage, the genomic DNA of all parents and 106 progenies was extracted
from young fresh leaf tissue by the Plant Genomics DNA Kit (Tiangen, Beijing, China). Then, the quality
of DNA was determined by electrophoresis on a 1% (w/v) agarose gel stained with ethidium bromide,
and the concentration was quantified by an ND-1000 Spectrophotometer (Nano Drop, Wilmington, DE,
USA) and adjusted to a concentration of 50 ng/μL.

2.3. SLAF Library Preparation and Sequencing

According to the genome size and GC (guanine-cysteine) content of the tested materials, the potato
genome (http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml) was selected as a reference
genome to make predictions of the electronic enzyme, and finally determine the enzyme combination of
Rsa I and Hae III to digest the genomic DNA of the 106 F1 individuals and their two parents. The read
length used for sequencing ranged from 264 to 394 bp. The SLAF labels (the length of fragments
ranged from 314 to 364 bp) were selected for paired-end sequencing (125 bp per end) on an Illumina
HiSeq 2500 sequencing platform, performed by the Beijing Biomarker Technologies Corporation
(http://Biomarker.com.cn/). The SLAFs with a sequence depth of less than 10-fold were considered as
low-depth SLAFs and filtered out. Several steps were defined to deal with SLAF-seq data: Samples
were distinguished by barcodes and data grouping by sequence similarity; sequence error evaluation by
control data; minor allele frequency (MAF) filtering and SLAF definition; correction of sequence errors;
and definition and evaluation of genotypes. In addition, the quality score algorithm was developed to
evaluate the quality of SNP discovery and genotyping, which can help researchers balance accuracy
and cost during heterozygote detection using high-throughput sequencing technology. The Q30 (a
quality score of 30; indicating 99.90% confidence) was used to evaluate the sequencing quality of reads,
and examination of the base distribution was used to detect the GC content of the raw data for data
quality control. The raw sequence reads were deposited in the NCBI-short read archive (SRA) database
(accession: PRJNA597429).

2.4. SLAF Data Analysis and Development of SNP Markers

The approach of clustering among reads was used to develop and search for polymorphic SLAF
labels from 106 F1 individuals and their parents. All paired-end reads generated from SLAF-seq raw
reads were compared according to their sequence similarity as detected by the BLAST-like alignment

99



Agronomy 2020, 10, 114

tool (BLAT) [30]. The F1 individual sequence reads were aligned on the referenced potato genome using
Burrows–Wheeler Aligner (BWA) software [31]. Identical reads from different samples were clustered,
and the fragment with over 90% sequence identity was defined as an SLAF label. The SLAF labels
with differences in high-depth fragments were also considered as SNP or indel markers. According to
the differences among sequences or allele numbers, the SLAF labels were divided into three categories,
including NoPoly (non-polymorphic), Poly (polymorphic), and Repeat (repetitive). After comparing
the sequence differences on SLAFs from each sample, the polymorphic SLAF labels were screened for
further analysis. Both Sequence Alignment/Map tools (SAMtools) [32] and Genome Analysis Tookit
(GATK) [33] were used to identify SNPs, and their intersection was identified as the candidate SNP
dataset. Only biallelic SNPs were retained as the final SNPs. The SNP locus were confirmed from the
polymorphic SLAF labels, with the screening criteria of MAF > 0.5.

2.5. Construction of High-Density Linkage Map

The HighMap software was used to construct a high-density genetic linkage map of tetraploid
potato [34]. The single-linkage clustering algorithm was used to cluster the SNP markers, which were
ordered into linkage groups. The high quality MLOD value among SLAF labels was calculated and
used for linkage grouping. The genotyping errors were corrected using the module of error genotyping
correction of HighMap sofware.

3. Results

3.1. SLAF Library Construction and SLAF Labels Development

The in silico restriction enzyme combination of RsaI and HaeIII was used for genome DNA
digestion and the prediction of the potato reference genome. A total of 334,787 SLAF labels were
predictably obtained, which were evenly distributed on the genome. The rice genome (Oryza sativa)
was used as a control for the restriction enzyme digestion control trial, in order to indirectly monitor the
progress of the potato SLAF library construction. Compared with the control, the ratio of paired-end
mapping reads was 89.20%, and the digestion efficiency of the RsaI and HaeIII restriction enzymes
was 90.91%, which indicated that the potato SLAF library was constructed normally and suitable for
high-throughput sequencing.

After SLAF library construction and high-throughput sequencing, a total of 2269.98 million
pair-end reads (556.71 Gb data) with a length of 100 bp were obtained. The Q30 ratio was 95.05%,
and the average GC (guanine-cytosine) content was 35.51%. Of all the high-quality data, 48,849,737
reads were from the male parent MIN-21, 41,510,213 reads were from the female parent YSP-4, and the
average 90,562,465 reads were from 106 offspring of the F1 mapping population (Table 1). According
to bioinformatics analysis, a total of 838,604 SLAF labels were developed, with an average depth of
26.14-fold and 15.36-fold for each SLAF of the parents and offspring, respectively. Of all the 838,604
high-quality SLAFs, 282,838 were polymorphic, of which 113,473 polymorphic SLAFs could be used
for map construction.

Table 1. Basic statistic of the SLAF-seq data in tetraploid potato.

Sample Total Reads Total Base Q30 Percentage (%) GC Percentage (%)

MIN-21 48,849,737 11,944,501,020 95.18 40.28
YSP-4 41,510,213 10,126,475,890 95.66 40.18

offspring 20,562,465 5,043,758,955 95.04 39.49
Control (Rice) 9,873,113 2,422,915,844 94.69 39.49

Total 2,269,981,207 556,709,426,104 95.05 39.51

100



Agronomy 2020, 10, 114

3.2. SNP Marker Detection

A total of 7638 SLAF labels were screened from 113,473 polymorphic SLAFs, which were
successfully classified into four segregation patterns: Hk × hk, lm × ll, nn × np, and ef × eg (Table 2).
The patterns, except aa × bb, were used for later genetic map construction which was suitable for
the F1 population, because the potato F1 population was not obtained by a cross between two fully
homozygous parents with genotype aa or bb. After filtering out the SNP markers with sequence depths
no more than 4-fold, a total of 7329 SNP markers were detected from 7638 SLAFs for map construction.

Table 2. The number of SLAFs in different types of segregation patterns for map construction.

Type of Segregation Patterns Number of SLAFs Percentage (%)

Hk × hk 51 0.67
Lm × ll 3898 54.03

Nn × np 3638 47.63
ef × eg 51 0.67
Total 7638 100

3.3. Construction of the Genetic Linkage Map

After four quality control steps, the 7329 screened SNPs were used to calculate the modified
logarithm of odds (MLOD) values between two markers [35]. The markers with an MLOD value of
less than three were filtered, and the remaining markers were grouped into 12 linkage groups (LGs).
The HighMap software was used to analyze the linear arrangements of all the grouped SNPs and the
genetic distance between adjacent SNP markers within each LG. An integrated map as well as two
separate linkage maps for the female and male parents were constructed, including 12 linkage groups.

In YSP-4, the maternal linkage map contained 1638 SNP markers, which covered a total length
of 1383.86 cM, with an average marker distance of 0.83 cM. The number of markers in the linkage
groups ranged from 43 to 341 markers, with an average of 137 markers. The length of LGs ranged
from 32.82 to 282.89 cM, with an average size of 0.84 cM (Table A1). In MIN-021, the paternal linkage
map consisted of 1402 SNP markers, and covered a total length of 1203.94 cM, with an average marker
distance of 0.87 cM. The number of mapped markers in the LGs ranged from 542 to 243, with an
average of 117 markers. The length of LGs ranged from 26.05 to 170.2 cM, with an average size of
100.33 cM (Table A2).

The integrated genetic map included 3001 SNP markers, which covered a total length of 1415.88 cM,
and the average distance between adjacent markers was 0.47 cM. The number of markers in the linkage
groups ranged from 43 to 341 markers, with an average of 137 markers. The length of LGs ranged
from 45.02 to 282.89 cM, with an average size of 117.99 cM (Table 3, Figures 1 and A1). LG chr10
was not only the shortest but also the densest group, with 440 loci spanning 33.47 cM, which had an
average marker density of 0.08 cM. LG chr2 was the longest group, with 225 loci spanning 205.09 cM.
The largest gap on this map was 25.19 cM, located in LG chr7 (Table 3; Figure 1).
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Figure 1. The high-density integrated genetic map of tetraploid potato. A total of 3001 SNP markers
were distributed in 12 linkage groups, covering 1415.88 cM, with an average interval of 0.47 cM
between markers.
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Table 3. The integrated genetic map for tetraploid potato.

Linkage Group
(ID)

Total Marker
Total DISTANCE

(cM)
Average Distance

(cM)
Max Gap (cM) Gap ≥5 cM (%)

chr1 282 107.42 0.38 12.84 99.29
chr2 225 205.09 0.92 24.43 95.98
chr3 253 63.48 0.25 14.38 98.02
chr4 238 169.78 0.72 23.76 94.51
chr5 243 76.4 0.32 10.46 98.35
chr6 311 125.8 0.41 22.86 97.1
chr7 201 203.86 1.02 25.19 95
chr8 222 109.69 0.5 14.07 97.74
chr9 162 115.41 0.72 15.34 96.89
chr10 440 33.47 0.08 5.23 99.77
chr11 194 156.97 0.81 21.35 94.82
chr12 230 48.51 0.21 7.54 99.13
Total 3001 1415.88 0.47 25.19 97.22

The average depth of the SNP markers on the integrated map was 85.63-fold in the paternal
parent MIN-021 and 65.10-fold in the maternal parent YSP-4, as well as 40.34-fold in the offspring
of the F1 population. Segregation distortion is occurs when the segregation ratio deviates from the
expected Mendelian ratio, which is considered as a powerful driving force for organic evolution [36].
The Chi-square (χ2) test (α = 0.05) was used to analyze the goodness-of-fit to the expected segregation
ratios for all the SNP markers. A total of 80 out of 3001 markers (2.7%) did not fit the expected
segregation ratios at a level of α ≤ 0.05. The distorted SNP markers were mainly located on LG chr 3,
chr 5, chr 7, chr 8, chr 11, and chr 12 (Table 4).

Table 4. The distorted SNP markers on integrated genetic map of tetraploid potato.

Linkage Group (ID) The Number of Distorted SNP Markers

chr3 10
chr5 24
chr7 9
chr8 3
chr11 18
chr12 16
Total 80

3.4. Evaluation of the Genetic Map

The quality of this genetic map was evaluated by haplotype maps and heat maps, which directly
revealed the recombination relationship among SNP markers in the 12 LGs. Haplotype maps were
created to reflect the crossover events. The recombination events of the 12 LGs are shown on the
haplotype maps (Figure A2). The haplotype maps from 12 LGs showed that all LGs had an extremely
low double crossover rate, which indicated the genetic map had a high quality.

Heat maps were also constructed to evaluate the quality of the genetic map by using pair-wise
recombination values for the 3001 SNP markers (Figure A3). It showed that most of the heat maps for
12 LGs performed well in visualization, which indicated that the markers were well-ordered, and the
genetic distances of adjacent markers were accurate in each LG.

4. Discussion

4.1. The Development of SNP Markers Using SLAF-seq Technology

A genetic linkage map is the basis for QTL identification of important traits, map-based gene
cloning, and molecular marker-assisted breeding of crops. Different types and numbers of polymorphic
markers were used to construct genetic maps. For potato, most genetic linkage maps were mainly
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based on several conventional low-throughput molecular markers, including RFLP [6–10], AFLP [9,11],
as well as RAPD, ISSR, and SSR markers [10]. However, it is time-consuming and costly to construct a
high-density genetic map for potato using conventional molecular marker technologies. SNP markers
are the most frequent polymorphisms and are suitable for high-throughput genotyping. In addition,
many SNP markers are located within transcribed regions, which can generate more links between the
genetic and physical maps. To date, high-density polymorphic SNP markers have been used in potato
for large-scale genotyping and high-density genetic map construction [19–21].

SNP markers can be rapidly developed on a large scale by different high-throughput sequencing
technologies and genotyping methods, such as genotyping by sequencing (GBS) [22], restriction
site-associated sequencing (RAD-seq) [24,25], and SLAF-seq. The SLAF-seq technology, a combination
of locus-specific amplification and high-throughput sequencing, provides a high-resolution strategy
with a shorter period of time and lower cost for large-scale genotyping and can be generally applicable
to various species and populations [26].

In the present research, we first used SLAF-seq technology in potato to develop SNP markers
and construct the high-density genetic map. A total of 2269.98 million pair-end reads were obtained
based on high-throughput sequencing. According to bioinformatics analysis, a total of 838,604 SLAF
labels were generated, of which 282,838 were polymorphic. Finally, a total of 7329 polymorphic SNP
markers were developed for high-density genetic map construction. The present study extends the
utility of SLAF-seq technology to potato. The results showed that SLAF-seq was an effective tool to
rapid develop large-scale SNP markers, which met the requirements for high-density genetic map
construction of tetraploid potato.

4.2. Mapping Population and Strategies

In general, the F2, backcross (BC), doubled haploid (DH), or recombinant inbred lines
(RIL)population are used as an appropriate mapping population to construct genetic linkage
maps [5,37,38]. However, for most autopolyploid species, it is very difficult to obtain a typical
family-based population in potato because of its high heterozygosity. To date, most of the reported
potato linkage maps have been established by applying a double pseudo-testcross strategy on an F1
population. The double pseudo-testcross strategy was first put forward by Grattapaglia and Sederoff
(1994) [37] to construct the genetic linkage map for genetically heterozygous species of forest trees.
An F1 population was used as a mapping population by crossing between two irrelevant and highly
heterozygous parents. The gene segregation patterns were assumed as a backcross. Afterwards,
this strategy has been widely used to construct linkage maps for those heterozygous species, such as
danshen [39], pineapple [40], rhodesgrass [41], and sweet potato [5].

In the present research, an F1 segregation population from a cross YSP-4 ×MIN-021 was created,
of which 106 individuals were randomly selected and used for SNP genotyping and map construction
based on the double pseudo-testcross strategy. In the pseudo-testcross, a total of 7638 polymorphic
SLAF markers were classified into four segregation patterns, which were hk × hk, lm × ll, nn × np,
and ef × eg. The 7329 SNP markers screened and confirmed from 7638 polymorphic SLAFs were then
used to construct a genetic linkage map. In our study, among the 838,604 high-quality SLAFs, 282,838
were polymorphic, with a polymorphic rate of 33.7%. It indicates that there is considerable genetic
difference between YSP-4 and MIN-021. Therefore, it is suitable to use them as mapping parents, and
the F1 population derived from the cross between them conforms to the requirements of the mapping
population for high-density map construction.

4.3. The High-Density Genetic Map of Tetraploid Potato

Segregation distortion is a common phenomenon that has been observed in many studies [42–44].
It may generate from cytological attributes, genetic drift, gametophyte selection, or some biological
reasons [45,46]. Segregation distortion could alter the estimation of recombination and cause a spurious
linkage [47]. Therefore, distorted markers may affect the accuracy of genetic maps. In our study,
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only 2.7% SNP markers located on the integrated map were distorted markers, which indicated the
high map accuracy.

To our knowledge, only one high-density SNP genetic linkage map for tetraploid potato was
reported because of the high heterozygosity of autotetraploid potato [20]. In the present research,
we first used the SLAF-seq method for genotyping and developing SNP markers, and constructed
high-density genetic maps of tetraploid potato. The integrated map included 3001 SNP markers,
and had a genetic length of 1415.88 cM, with an average distance between markers of 0.47 cM. Compared
with the map obtained by Hackett et al. (2013) [20], the integrated map had more SNP markers (3001 vs.
1130), higher marker density (0.47 cM vs. 1.60 cM), and larger total length (1415.88 cM vs. 1087.5 cM).
Thus, our map has better coverage of the potato genome and nearer marker density.

5. Conclusions

In the present study, the SLAF-seq technology was first successfully used for the development
of large-scale SNP markers and the construction of high-density linkage maps in tetraploid potato.
The integrated high genetic linkage map generated here has the best coverage of the potato genome
and the nearest marker density reported for tetraploid potato until now. This work represents an
important step forward in genomics and marker-assisted breeding of tetraploid potato. It also provides
a foundation for QTL location and map-based gene cloning of important traits for potato, such as tuber
yield, starch content, and protein content. In addition, the application of SLAF-seq strategy and the
mapping population in our study will provide valuable references for other tetraploid plants.
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Appendix A

Table A1. The maternal genetic map for tetraploid potato.

Linkage Group
(ID)

Total Marker
Total Distance

(cM)
Average Distance

(cM)
Max Gap (Cm) Gap ≥ 5 cM (%)

chr1 43 54.06 1.29 26.6 95.24
chr2 70 199.96 2.9 66.56 86.96
chr3 138 58.29 0.43 48.73 99.27
chr4 107 149.13 1.41 30.15 93.4
chr5 167 45.02 0.27 21.7 98.8
chr6 235 172.13 0.74 31.9 95.73
chr7 153 282.89 1.86 88.65 94.74
chr8 153 116.85 0.77 15.34 96.71
chr9 80 91.37 1.16 55.92 98.73
chr10 341 32.82 0.1 7.32 99.85
chr11 57 123.36 2.2 31.91 91.07
chr12 94 57.8 0.62 16.63. 96.77
Total 1638 1383.68 0.84 88.65 95.62
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Table A2. The paternal genetic map for tetraploid potato.

Linkage Group
(ID)

Total Marker
Total Distance

(cM)
Average Distance

(cM)
Max Gap (cM) Gap ≥ 5 cM (%)

chr1 243 117.29 0.48 12.87 99.17
chr2 156 167.27 1.08 28.45 96.77
chr3 125 51.51 0.42 15.34 96.77
chr4 132 151.04 1.15 51.29 95.42
chr5 76 83.47 1.11 10.46 93.33
chr6 83 77.56 0.95 37.57 96.34
chr7 52 101.5 1.99 71.52 96.08
chr8 71 88.68 1.27 70.27 98.57
chr9 82 108.18 1.34 16.63 93.83
chr10 102 52.42 0.52 10.46 98.02
chr11 138 178.97 1.31 41.74 96.35
chr12 142 26.05 0.18 3.92 100
Total 1402 1203.94 0.87 71.52 96.72

 
Figure A1. The SNP distribution on the potato genome. The x-axis represents the chromosome length
and the y-axis indicates the chromosome code. Each band represents a chromosome, and the genome is
divided according to the size of 1 M. The more SNPs in each band, the darker the color; the smaller
the number of SNPs, the lighter the color. The darker areas in the figure are the areas where SNPs
are concentrated.
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Figure A2. Haplotype maps for 12 linkage groups of the integrated genetic map for tetraploid potato.
The haplotype maps consist of 12 maps from LG chr 1 to LG chr 12. Each two columns represent
the genotype of an individual. Blank columns are used between two individuals. The first and
second columns represent the paternal and maternal chromosome, respectively. Rows correspond to
genetic markers. Green and blue boxes indicate one chromatid from parents, and gray boxes indicate
missing data.

 

Figure A3. Heat maps for 12 linkage groups of the integrated genetic map for tetraploid potato.
The heat maps consist of 12 maps from LG chr 1 to LG chr 12. Markers of each row and column are
ranked according to the map order. Each small square represents the rate of recombination between
two markers. Yellow color represents highly tight linkage; red color represents relatively weak linkage,
the darker the red color, the less tight linkage; and blue color represents no linkage.
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Abstract: Final grain production and quality in durum wheat are affected by biotic and abiotic stresses.
The association mapping (AM) approach is useful for dissecting the genetic control of quantitative traits,
with the aim of increasing final wheat production under stress conditions. In this study, we used AM
analyses to detect quantitative trait loci (QTL) underlying agronomic and quality traits in a collection
of 294 elite durum wheat lines from CIMMYT (International Maize and Wheat Improvement Center),
grown under different water regimes over four growing seasons. Thirty-seven significant marker-trait
associations (MTAs) were detected for sedimentation volume (SV) and thousand kernel weight
(TKW), located on chromosomes 1B and 2A, respectively. The QTL loci found were then confirmed
with several AM analyses, which revealed 12 sedimentation index (SDS) MTAs and two additional
loci for SV (4A) and yellow rust (1B). A candidate gene analysis of the identified genomic regions
detected a cluster of 25 genes encoding blue copper proteins in chromosome 1B, with homoeologs
in the two durum wheat subgenomes, and an ubiquinone biosynthesis O-methyltransferase gene.
On chromosome 2A, several genes related to photosynthetic processes and metabolic pathways
were found in proximity to the markers associated with TKW. These results are of potential use for
subsequent application in marker-assisted durum wheat-breeding programs.

Keywords: durum wheat; genome wide association study; GWAS water use; agronomic traits; MTAs;
candidate genes; TKW; sedimentation volume; SDS; YR

1. Introduction

Wheat is one of the most widely grown crops worldwide (FAO, 2015), and is essential for
the human diet [1]. Its importance and worldwide dominance are due, in part, to its agronomic
adaptability. Durum wheat (Triticum durum) is a tetraploid wheat species (AABB genomes) mainly
grown in the Mediterranean basin, in the Northern Plains (between the USA and Canada), in the
arid areas of South Western USA and in Northern Mexico [2]. Durum wheat is well-adapted to a
broad range of climatic conditions (including dry environments) and marginal soils, and has low
water requirements [3,4]. Climatic conditions, as temperature and water availability, together with
biotic stresses, can strongly affect durum wheat development and production [3–6]. Crop adaptation
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is a central objective for breeding progress, driving improvement in final production, quantity and
quality [7,8]. For over two decades, CIMMYT (International Maize and Wheat Improvement Center)
has had an intensive breeding and improvement programme focused on the acceleration of durum
productivity in developing countries.

Grain quality is an important breeding aim determining product end-use linked to financial returns.
It is influenced by both genetic and environmental conditions [9], and biotic and abiotic stresses during
growth and at key development stages [10]. Temperature, water availability and soil properties, especially
nitrogen content, influence the final quality and protein content of wheat and its end-products [11–13].

There is a growing need to increase wheat yield without losing grain quality [14,15]. Key end-use grain
quality traits include grain protein content (GPC), gluten strength, kernel size and vitreousness [7,16]
and are all influenced by climatic conditions [17]. A number of agronomic components influence
final productivity, including phenology (maturity) and plant architecture (plant height and lodging
resistance). The majority of important agronomic traits, including yield, are controlled or influenced
by multiple genes and are quantitatively inherited [18]. In addition, most are influenced by the
environment and interactions between environmental and genetic (GxE) effects [19–23]. One of the
most common methods currently used for dissection of quantitative agronomic and quality traits is the
association mapping (AM) approach [24].

AM, originating in human genetics, was initially combined with linkage disequilibrium (LD)
to identify the role of genes and linked markers for the determination of disease loci [25]. It is now
widely used in plant and crop genetics. Some of the first studies based on LD mapping applied in plants
were done in maize [26], rice [27] and oat [28]. AM has the main objective of determining, based on LD,
correlations between genotypes and phenotypes in a panel of selected individuals [29]. It can support the
development of new genetic markers for use in marker-assisted plant breeding [30]. It also facilitates the
analysis of genetic variation underlying traits for further characterisation of the loci of interest [31].

Single nucleotide polymorphism (SNP) markers are commonly used in quantitative trait loci
(QTL) mapping experiments [32,33] and genome-wide association studies (GWAS) for the detection
of marker-traits associations (MTAs) in wheat [34–38]. DArTseq, a variant of the microarray-based
DArT technology, has also been widely used in QTL mapping [39–41]. It reduces the complexity of
the genome, using combinations of restriction enzymes [42] and next-generation sequencing. Several
studies have assessed MTAs in durum wheat. The analyzed traits include grain yield, yield and
yield components [6,37,43,44], heading date [6], and grain quality traits (thousand kernel weight,
vitreousness, protein content, sedimentation index [17,45–47], yellow colour [48,49]).

In this study, three panels of elite durum wheat lines from CIMMYT were assessed in field trials
conducted over multiple seasons and with differing water regimes. The AM approach was used to
detect SNP and DArT markers associated with heterogeneous agronomic and quality trait data in order
to test the approach as a tool for marker discovery within a live and ongoing breeding programme.

2. Material and Methods

2.1. Plant Material, Phenotyping and Genotyping

Panels of elite durum lines from CIMMYT wheat preliminary yield trials (PYT), comprising a total
of 294 accessions (Supplementary Materials Table S1) were used for agronomic and quality assessment.
PYT trials consisted of the best advanced breeding lines which were promoted to unreplicated trials,
including one or two repeated checks. The trials were sown, assessed and analysed according to their
specific statistical designs [50] and consisted of two blocks with different water treatments, one with
full irrigation (FI) and the other with reduced irrigation (RI). In the FI treatment four to five irrigations
were applied during the field season to maintain the optimal soil moisture conditions, whilst in the
RI block a single irrigation was applied at planting, in order to ensure establishment. In both water
treatments the irrigation was applied by gravity in furrows. The rainfall data (https://www.meteoblue.
com/en/weather/historyclimate/weatherarchive/ciudad-obreg%c3%b3n_mexico_4013704) for the four
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field seasons is included in Supplementary Materials Figure S1. The agronomic and quality assessment
of the panels over seasons is summarised in Table 1.

Table 1. Agronomic and quality assessment of wheat field trials. The number of lines, year, location
and water regime applied is shown.

Wheat Panel No. of Assessed Lines
Field Season

2012 2013 2014 2015

1 98 YAQ-FI

2 97 YAQ-FI YAQ-FI
YAQ-RI

3 98 YAQ-FI YAQ-FI YAQ-FI
YAQ-RI YAQ-RI

YAQ: Yaqui (Mexico); FI: Full irrigation; RI: Reduced irrigation.

Field experiments were conducted at CIMMYT’s experimental station in the Yaqui Valley,
Mexico (27.282848◦ N; 109.923878◦ W) over four field seasons (2012 to 2015 harvest years, inclusive).
Wheat panels 2 and 3 were phenotypically assessed across years, while panel 1 was only grown in 2012.
The experimental plots (1.6 × 3 m) were sown in November/December of each year and harvested
in May of the following year. Data for yellow rust were assessed in semi-controlled conditions at
CIMMYT’s experimental station in Toluca (Mexico).

Plant material for genetic analysis was harvested for each line at the 4th leaf stage (growth
stage 14 on the Zadoks scale [51]) and immediately frozen in dry-ice. Samples were stored at −80 ◦C
until DNA extraction. Approximately 100 mg of frozen tissue was used for DNA isolation with a
DNeasy Plant Mini Kit from Qiagen, following the manufacturer’s protocol. DNA sample quality and
concentration were assessed using electrophoresis on a 0.8% agarose gel and the restriction enzyme
Tru1I (ThermoFisher) was used to check for the absence of nucleases in DNA prior to genotyping.

Samples were genotyped by Diversity Arrays Technology Pty Ltd. (Montana St, University
of Camberra, Bruce ACT 2617, Australia) (DArT) using DartSeqTM. A total of 35,509 polymorphic
dominant DArT markers and 9142 biallelic SNP markers were generated. Both datasets were thinned
by removing one marker from each pair with a correlation coefficient of >0.95. The final dataset
consisted on 14,588 DArT markers (of which 8411 were mapped) and 5716 SNP markers (4142 mapped
markers). DartSeqTM genotyping and mapping of the corresponding markers to the wheat reference
genome sequence RefSeq v1 from the International Wheat Genome Sequencing Consortium (IWGSC,
http://www.wheatgenome.org/) was performed by DArT (diversityarrays.com), as described by
Sukumaran et al. [43]. The distribution of markers across the A and B subgenomes is given in Table 2.

Table 2. Molecular markers distribution across the wheat genome. The distribution of DArT (Diversity
Arrays Technology, left) and single nucleotide polymorphism (SNP, right) markers across the durum
wheat A and B subgenomes and the number of unmapped markers are shown.

DArT Markers SNP Markers

Chr A B Un Total 1 A B Un Total 1

1 377 866 37 1280 193 444 16 653
2 563 791 69 1423 320 375 19 714
3 496 818 33 1347 250 352 11 613
4 585 325 10 920 283 171 4 458
5 312 725 13 1050 162 376 2 540
6 449 690 21 1160 262 308 5 575
7 623 573 35 1231 293 287 9 589

Total 2 3405 4788 218 8411 1763 2313 66 4142
Un 6177 1574

Total 14,588 5716

Chr: chromosome; A: wheat A subgenome; B: wheat B subgenome; Un: unmaped; 1: total markers by group; 2: total
markers by genome.
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2.2. Phenotypic Data

Ten agronomic and quality traits were assessed for three durum wheat elite line panels: days to
heading (days, DTH); plant height (cm, PH); lodging (%, LOD); yellow rust (%, YR); yellow colour (YC);
sedimentation index (cm3, SDS); sedimentation volume (cm3, SV); grain protein content (%, GPC);
thousand kernel weight (g, TKW); and grain yield (Kg/ha, GY). Agronomic traits (DTH, PH, LOD,
YR, TKW and GY) were assessed under both water treatments (FI and RI), and quality traits (YC, SV,
SDS and GPC) were only evaluated under FI conditions. Visual disease evaluation and phenology
assessments were made in the field, while quality parameters were evaluated on grain samples
post-harvest. DTH, PH and LOD and YR were visually assessed at the field trials in Yaqui, while
YR was assessed at Toluca. To assess DTH, heading date was recorded as the time when 50% of the
spikes have emerged from the flag leaf sheath (stage 59 in Zadoks scale [51]); PH was recorded by
measuring the distance between the stem’s base and the top of the spike (awns not included); LOD
was assessed as the percentage of lodging plot; and YR was assessed as the percentage of leaves with
rust pustules. YC was assessed by a rapid colorimetric method with a Minolta color meter following
CEN/TS 15,465:2008 [52–54]; SDS was evaluated following UNE 34,903:2014 [55,56]; SV and GPC were
assessed by Near-infrared spectroscopy (NIRs) [57]; TKW was measured by weighing 2 samples of
100 entire kernels randomly chosen previously dried at 70 ◦C for 48 h.

The correlation between the assessed traits was analysed using the ‘cor’ function in R [58–60].
Then, an analysis of variance (ANOVA) was undertaken, using the ‘aov’ function in R [61], to obtain
the descriptive statistics for each trait.

Traits were analysed using a Q + K linear mixed-model [62,63] which follows the model equation:

y = Xβ + Sα + Qv + Zμ + ε (1)

where y is a vector of observed phenotypes; X, S and Z are matrices related to β, α and μ, respectively;
β is a vector of fixed effects; α is a vector of marker effects; Qv is a vector of population effect; μ is a
vector of polygenic effects (with covariance proportional to a kindship or relationship matrix); and ε is
a vector of residuals.

These analyses were carried out using GenStat (14th Edition) to generate the best linear unbiased
estimates (BLUEs) of variety performance in different ways: (i) across years and blocks; (ii) across
years for each block (FI and RI); (iii) across a reduced dataset (years 2013 and 2014) and blocks; and (iv)
across the reduced dataset for each block. The resulting datasets (available in Supplementary Material
Table S2) were then used in different association mapping analyses.

2.3. Population Structure and Linkage Disequilibrium

Population structure was assessed using principal component analysis (PCA) based on the
combined DArT and SNP genotyping datasets. Euclidean distances were calculated using the R
package ‘ggfortify’ [64] and the PCA was visualised with ‘ggplot2’ [65].

The pattern of linkage disequilibrium (LD) was assessed between each pair of SNP markers on
the same chromosome across the two constitutive genomes with the allele frequency correlation (r2)
using the ‘popgen’ package in R [66]. A heatmap was obtained with the D’ and r2 values for each
chromosome and a scatterplot to determine LD decay (genetic distance in cM).

2.4. Association Mapping (AM)

The AM analyses were performed on the BLUEs obtained above using an additive model with
‘rrBLUP’ [67] and ‘GWASpoly’ [68] packages in R in different ways. Two marker-based kinship matrices
(k-matrix), created from a subset of 14,588 DArT and 5716 SNP markers, respectively, were used
for the adjustment based on relatedness of individuals (Supplementary Materials Tables S3 and S4).
A minor allele frequency (maf) threshold of 0.05 was used. To establish a p-value detection threshold
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for statistical significance of associations, the Bonferroni correction, which employs a threshold of α/m
to ensure the genome-wide type error I of 0.05, was applied with a total of 1000 permutations.

Associated DartSeqTM and SNP markers were blasted against the wheat reference assembly
RefSeqv1 [69] with no indels or mismatches allowed, using an ad hoc Java program, to confirm
their physical mapping location on the A or B genomes. The molecular markers were also mapped
against the durum wheat genome (https://www.interomics.eu/durum-wheat-genome) to confirm their
physical positions. In addition, to identify candidate genes, results were filtered, selecting the hits
with best e-value for each molecular marker, and candidate genes were manually selected based on
their annotations.

3. Results

3.1. Phenotypic Assessment

Results from the ANOVA for all the traits across years and water treatments are shown in Table 3.
The mean phenotypic values across years were calculated for each block and panel to evaluate the
influence of water conditions on the assessed traits (Table 3). Days to heading during the field seasons
assessed ranged from 63 to 94 days. In plots with lower water availability (RI block), the spike
emergence from the flag leaf took place approximately 11 days earlier than in FI plots. Plant height
ranged from 39 to 110 cm showing differences between water regimes, with a decrease of 25–30 cm
under RI conditions. Likewise, and as result of the RI treatment, GY (ranging from 1.35 to 10.63 ton/ha)
and TKW (from 29.6 to 63.2 g) also varied, being reduced by 4–5 tons/ha and 7–10 g, respectively, in the
low water availability RI treatment. This strong RI treatment resulted in very low heritability values
for DTH, PH and LOD.

Several significant phenotypic correlations were observed between the analysed traits (Figure 1
and Supplementary Materials Table S5). The most correlated traits were PH and GY (r = 0.90,
p-value = <2.2 × 10−16), followed by DTH and GY (r = 0.87, p-value = <2.2 × 10−16), SDS and SV
(r = 0.85, p-value = <2.2 × 10−16) and also DTH and PH (r = 0.82, p-value = <2.2 × 10−16). Other traits
showed important positive correlations too, including YC and DTH (r = 0.69, p-value = 2.82 × 10−09),
GY and TKW (r = 0.66, p-value = <2.2 × 10−16), PH and TKW (r = 0.62, p-value = <2.2 × 10−16), GY
and YC (r = 0.53, p-value = 0.039) and DTH and TKW (r = 0.49, p-value = <2.2 × 10−16). Negative
correlations were also observed for SDS and GPC (r = −0.38, p-value = <2.2 × 10−16), and for GPC and
YC (r = −0.08, p-value = <2.2 × 10−16) (Figure 1).

Figure 1. Phenotypic correlations. YR: yellow rust; DTH: days to heading; PH: plant height; GY: grain
yield; TKW: thousand kernel weight; YC: yellow colour; SV: sedimentation volume; SDS: sedimentation
index; and GPC: grain protein content.
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3.2. Population Structure and Linkage Disequilibrium

The PCA used a total of 14,588 DArT and 5716 SNP markers. The first and second principal
components explained 3.91% of the genetic variation (Figure 2). No underlying genetic structure was
detected within or between the panels assessed. LD was estimated using the mapped SNP markers
dataset. LD decay was determined within 20–30 cM for all the chromosomes (Figure 3). Using the
classification defined by Maccaferri et al. [70], the markers presented loose linkage (Class 2), showing a
distance value between 21 to 50 cM.

Figure 2. Principal components analysis (PCA) of the genotypic data.

117



Agronomy 2020, 10, 144

F
ig

u
re

3
.

Li
nk

ag
e

di
se

qu
ili

br
iu

m
(L

D
)d

ec
ay

an
al

ys
is

us
in

g
SN

P
da

ta
.E

st
im

at
es

fr
2

ve
rs

us
lin

ka
ge

di
st

an
ce

on
ch

ro
m

os
om

e
in

ce
nt

im
or

ga
n

(c
M

)w
as

re
pr

es
en

te
d.

Th
e

LD
de

ca
y

w
as

es
ta

bl
is

he
d

be
tw

ee
n

20
–3

0
cM

.

118



Agronomy 2020, 10, 144

3.3. AM Analysis

Thirty-seven significant marker-trait associations (MTAs) were detected for TKW and SV across all
years and water treatments with most of the significant markers located on chromosome 2A (Table 4).
Twenty DArT and seven SNP markers were found in association with TKW on chromosome 2A (with
additive effects ranging from −3.41 to 3.46). In addition, eight unmapped DArT and one SNP marker
were also associated with TKW (additive effects ranged from −3.39 to 3.46 g). Most of these MTAs
showed a negative additive effect, reducing the final weight value (ranging from −2.84 to −3.19 g),
and only two MTAs were found to increase TKW (values of 2.97 and 3.09 g). Finally, a single SNP
associated with SV was located on chromosome 1B (showing a positive effect increasing the final
value by 1.26 mL). The resulting Manhattan and QQ-plots from this AM analysis are included in
Supplementary Materials Figures S2–S5.

The AM analyses on partitioned subsets of the data consistently detected the QTLs for TKW and
SV. Nevertheless, the individual assessment of the water treatments significantly reduced the number
of MTAs found, due in part to less available data for the RI block (Supplementary Material Table S6).
The initial dataset of 294 durum wheat elite lines was reduced to 200 lines (assessed during the 2013
and 2014 seasons) to give a dataset balanced across assessment years. Using this reduced dataset for
AM analysis, the results confirmed the QTLs previously found for the full dataset (Supplementary
Materials Table S6). The analysis also detected an additional locus for SV on chromosome 4A, and a
locus for YR on chromosome 1B (with additive effects of −0.84 and 2.79, respectively).
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3.4. Candidate Genes Analysis

The marker SNP620, located on chromosome 1B and detected in association with SV, was found
included into a cluster of 12 genes encoding blue copper proteins (BCP), with homoeologs in the
two durum wheat subgenomes (Figure 4, Table 5 and Supplementary Material Figure S6). In the
hexaploid wheat genome, this set of genes form a cluster of homeolog triads [72] with a total of
31 genes (Supplementary Materials Table S7 and Figure S7). Additionally, another interesting gene
(TraesCS1B01G568400LC.1) was found closer this marker, coding for the ubiquinone biosynthesis
O-methyltransferase.

There were several markers located in chromosome 2A, in close proximity to some interesting genes.
Markers SNP1183, SNP1184 and DArT3165 were found next to several genes encoding reductase-1
(Figure 4 and Table 5). In addition, the marker SNP8395, also located on the same chromosome, was
found in proximity to the gene TraesCS2A01G309700.1, which encodes a type A response regulator 1
(Figure 4 and Table 5).

Significant MTAs from the partitioned analysis also allowed the identification of
potentially interesting genes. On chromosome 1B, marker DArT1744, previously described by
Mérida-García et al. [73] related to high molecular-weight glutenin subunits, was found in proximity
to genes encoding isocitrate dehydrogenase kinase/phosphatase G and leucine-rich repeat receptor-like
protein kinase family protein. These genes participate in the carbohydrate metabolism during the
Krebs cycle and play a crucial role in plant development and stress responses, respectively [74,75].
On this chromosome, another marker (SNP809) was found in proximity to some interesting genes
encoding sugar transporter proteins. Additionally, some markers located on chromosome 2A were
found in proximity to Acyl-CoA N-acyltransferase genes (SNP1206, SNP8395 and DArT3180) and
chloroplastic zeaxanthin epoxidase (SNP1189) (Supplementary Materials Table S8).

Figure 4. Location of candidate genes on chromosomes 1B and 2A. Markers are indicated with the
symbol ‘-’; blue copper proteins are shown in blue colour; ubiquinone biosynthesis O-methyltransferase
in purple colour; the regulator response gene in brown colour; and for reductase 1 genes in green colour.
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4. Discussion

The maintenance of crop production is a current and pressing need given growing populations
and reduced availability of arable land [76]. There is an increasing need for breeding programs to
improve yield potential and the adaptation of new varieties to different biotic and abiotic stresses [77].
Abiotic stresses, including drought and heat, are impacting productivity on the million hectares of
wheat grown worldwide each year [78]. Detailed molecular and phenotypic characterization are
valuable tools in the dissection of complex traits [79], and especially those that are influenced by water
availability [14].

The improvement of key traits is essential for better end-use production quantity and quality in
wheat [80]. In this study, we analysed a set of 10 agronomic and quality traits under full irrigation
conditions (FI), with an additional six traits also assessed under low water availability (RI) in order to
understand trait variation under contrasting water regimes in the CIMMYT durum wheat breeding
programme. Irrigation conditions influenced some important yield and yield-related traits such as
GY and TKW, as well as adaptive traits including DTH and PH (Table 3). The RI treatments had
decreased final yields in line with previous observations [6,81]. Previous reports have also shown
TKW to be reduced by high temperatures [17], most likely related to water availability. Groos et al. [82]
assessed the genetic basis of grain yield and protein content in a segregating population of wheat RILs
grown at six locations and also identified effects from GxE interactions involving protein content and
yield. Our mean trait values corroborated this, with the highest values for GY recorded for FI blocks
across panels (see Table 3). A similar trend was shown for DTH, PH and TKW, which decreased under
low-water regimes.

Correlations between the assessed traits showed that GY was positively correlated with two
different phenology traits (PH and DTH). This is in agreement with Maccaferri et al. [6], who showed
important positive and negative correlations for GY and DTH, and also positive correlations for GY
and PH in several environments with different water regimes. DTH and PH were also positively
correlated (Supplementary Materials Table S5), with taller plants having a longer time period to the
emergence of the tip of the spike stage.

Wheat TKW is an important yield component with a direct effect on grain yield [83,84]. In line
with this, our results showed a significant and positive correlation between TKW and GY. However,
the previously reported negative correlation between TKW and DTH [6] was not observed, potentially
as result of temperatures and water availability from emergence to heading, and also from heading to
harvest. Rharrabti et al. [17] previously highlighted a positive correlation between protein content
and TKW, which is in agreement with the results obtained in the present study. They highlighted that
warm temperatures during grain filling could negatively affect this correlation.

Significant associations between endosperm proteins (gliadin and glutenin subunits) and SV have
been previously highlighted [85,86]. Here we found a positive correlation (r = 0.15) between SV and
GPC. This correlation is thought to be the result of grain protein content influencing the sedimentation
volume value [87], which depends on the degree of protein hydration and oxidation [88]. Finally,
for sedimentation index (SDS) analysis, we observed a negative correlation with protein content, in
agreement with results presented by Rharrabti et al. [17,45]. This is also in agreement with Oelofse
et al. [89] who highlighted the significant influence of protein content on the SDS sedimentation
test [90–92].

The SNP and DArT markers used to analyze patterns of genetic structure (Figure 2) and LD
(Figure 3) for the durum wheat lines revealed no detectable genetic structure and consistent patterns of
LD across chromosomes (LD was estimated to extend ~20 cM). These results support the suitability
of durum elite line sets currently in use in breeding programmes for the practical application of
GWAs analysis. The rate of unmapped markers was lower for SNP than for DArT markers (27.5% vs.
42.0%, Table 2), indicating higher precision in genetically mapping SNP markers, probably as a result
of co-dominance.
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In the assessment of MTAs for quality and yield-related traits, different AM analyses were
performed on subsets of the dataset. Several MTAs for SV and TKW were detected across years and
water regimes, located on chromosomes 1B and 2A, respectively. All GWAS analyses corroborated the
major QTLs previously detected, and reported two new QTLs, one for YR in chromosome 1B, and
another for SV in chromosome 4A.

Associations on chromosome 1B were significant for wheat quality. There are known loci including
Gli-B1/Glu-B3 on this chromosome, which are of great importance for some gliadin and glutenin
subunits [93]. In fact, the candidate gene analysis reported the presence of a high molecular-weight
glutenin subunit (HMW-GS) gene in the proximity of marker DArT1744 (found to be significantly
associated with SV and SDS), which was previously described by Mérida-García et al. [73] in association
with specific weight. In line with this, Pogna et al. [93] highlighted the importance of Glu-B3 for
determining protein quality with these endosperm proteins showing significant effects on SV, which
also showed a high and positive correlation with SDS in our study (Figure 1 and Supplementary
Materials Table S5). Likewise, Blanco et al. [86] reported three QTLs on chromosomes 1B, 6A and 7B
(based on the analysis of 259 polymorphic markers) associated with SDS and SV in a recombinant
inbred line population. In the present study, we found a SNP marker (SNP620) associated with
SV, showing a positive additive effect of 1.26 (see Table 4) and also with SDS (marker effect of 0.11)
(Supplementary Materials Table S6). This marker was previously placed on chromosome 1B, in the
same location as MTAs for gluten index and sedimentation index [73]. Other previous studies, such as
Reif et al. [94] and Fiedler et al. [95], also reported markers associated with SV on chromosome 1B,
but with differing genetic positions. The additional locus for SV found on chromosome 4A (marker
DArT9459) has not been previously reported.

Marker SNP620, significantly associated with SV, is located within a cluster of homoeolog gene
triads coding for blue copper proteins (Table 5 and Supplementary Materials Figure S6). These proteins
have been described containing a copper atom, and participate in redox processes [96], with a crucial
role in the electron shuttle in plants [97]. In addition, Yao et al. [98] described the blue copper protein
genes as the targets of miR408 in wheat, which is involved in the regulation of gene transcription
required for heading time [99]. In our study SNP620 was also found in proximity to a gene coding
for an ubiquinone biosynthesis O-methyltransferase. Liu et al. [100] highlighted its crucial role as an
electron transporter in the electron transport chain of the aerobic respiratory chain. This ubiquinone
gene is involved in plant growth and development, is implied in chemical compounds biosynthesis and
metabolism which are involved in plant responses to stress, and also participates in gene expression
regulation and cell signal transduction [100].

On chromosome 1B we also found a significant MTA for yellow rust, in agreement with previous
studies in durum and bread wheat, which placed different markers significantly associated with this
trait, but in differing genetic positions [101–104]. The candidate gene analysis revealed the proximity of
this marker (SNP809) to sugar transporter protein genes. Sugars are formed during the photosynthetic
process and are essential for plant nutrition. The sucrose transport has been considered of great
importance for plant productivity [105]. In line with this, the sucrose is involved in the gene expression
regulation of the supposedly sugar-sensing pathway [106,107].

The majority of MTAs for TKW were located on chromosome 2A, showing both positive and
negative effects. Previous studies have reported different markers in association with this quality
trait, including a number mapped on chromosome 2A [38,108–110]. One of the markers found by
Yao et al. [38] (SSR marker gwm445 on chromosome 2A (68.2 cM), belongs to the same QTL found in
this study for the marker SNP1153 (chromosome 2A, 68.6 cM), and also found by Juliana et al. [111]
in bread wheat lines from CIMMYT’s first year-yield trials. Sukumaran et al. [43] analysed a durum
wheat panel of 208 lines under yield potential, heat and drought stress conditions, and identified
markers on chromosome 2A with a similar position to those detected in this study (4 markers at 70 cM
and 6 markers at 69 cM) under heat stress conditions. They highlighted that several SNP markers were
related to transmembranes or were uncharacterized proteins. We found several candidate genes for this
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important TKW QTL (Table 5) among which the most striking feature is the presence of four reductase
1 genes (NADPH-dependent 6′-deoxychalcone synthase) and a type A response regulator 1 (Figure 4).
These genes are both related with photosynthesis. Hu et al. [112] highlighted that NADPH plays a
crucial role in biological processes in plants, such as the regulation of the production of reactive oxygen
species (ROS) for the stress tolerance [113,114]. Additional GWAS analyses using reduced datasets
revealed other interesting genes for this QTL (chromosome 2A, Supplementary Materials Table S8),
encoding for the Acyl-CoA N-acyltransferase and the chloroplastic zeaxanthin epoxidase. The first
gene has several functions in signaling and metabolic pathways [115]. The zeaxanthin epoxidase plays
an important role in the xanthophyll cycle and abscisic acid (ABA) biosynthesis. The xanthophyll cycle
has a main function in the dissipation of light energy excess and also increasing the photosynthetic
system stability [116].

The proposed approach has successfully detected genetic markers with significant associations
with TKW, SV, SDS and YR. These are of potential use in durum wheat breeding programs, and can be
further interrogated to the candidate gene level using the RefSeqv1 bread wheat genome reference [69]
and the durum wheat genome reference [71].

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/1/144/s1:
Figure S1: Rainfall data for Ciudad Obregon (Mexico) for the growing seasons 2012–2015; Figure S2: Manhattan
plots for durum wheat mapped DArT markers. DTH: days to heading; PH: plant height; GY: grain yield; TKW:
thousand kernel weight; YC: yellow color; SV: sedimentation volume; SDS: sedimentation index; and GPC: grain
protein content; Figure S3: Manhattan plots for durum wheat mapped SNP markers. DTH: days to heading;
PH: plant height; GY: grain yield; TKW: thousand kernel weight; YC: yellow color; SV: sedimentation volume;
SDS: sedimentation index; and GPC: grain protein content; Figure S4: Quantile quantile-plots from genome-wide
association studies (GWAS) analysis for durum wheat DArT markers (mapped and unmapped). DTH: days
to heading; PH: plant height; LOD: lodging; GY: grain yield; TKW: thousand kernel weight; YC: yellow color;
SV: sedimentation volume; SDS: sedimentation index; and GPC: grain protein content; Figure S5: Quantile
quantile-plots from GWAS analysis for durum wheat SNP markers (mapped and unmapped). DTH: days to
heading; PH: plant height; LOD: lodging; GY: grain yield; TKW: thousand kernel weight; YC: yellow color;
SV: sedimentation volume; SDS: sedimentation index; and GPC: grain protein content; Figure S6: Blue copper
protein gene cluster on durum wheat chromosome 1B. High confidence genes are shown in green colour, low
confidence genes are shown in yellow; Figure S7: Cluster tree of blue copper protein gene homoeologs in bread
wheat (RefSeqv1 [69]). For chromosome 1A, high confidence (HC) and low confidence (LC) genes are shown in
brown and orange colour, respectively; for chromosome 1B, HC and LC genes are shown in dark and light green
colour, respectively; for chromosome 1D, HC and LC genes are shown in dark and light blue colour, respectively;
Table S1: Durum wheat elite lines assessed; Table S2: Best Linear Unbiased Estimates (BLUEs) outputs for all
assessed traits and the association mapping analyses performed in durum wheat: [i] across years and blocks;
[ii] across years for each block (FI and RI); [iii] across years and blocks for a reduced dataset (years 2013 and 2014);
and [iv] across the reduced dataset for each block. DTH: days to heading; GPC: grain protein content; GY: grain
yield; PH: plant height; SDS: sedimentation index; SV: sedimentation volume; TKW: thousand kernel weight; and
YC: yellow colour; YR: yellow rust; LOD: lodging; Table S3: Kinship matrix for durum wheat DArT markers;
Table S4: Kinship matrix for durum wheat SNP markers; Table S5: Phenotypic correlations between the assessed
traits in durum wheat and their corresponding p values. YR: yellow rust; DTH: days to heading; PH: plant height;
LOD: lodging; GY: grain yield; TKW: thousand kernel weight; YC: yellow color; SV: sedimentation volume; SDS:
sedimentation index; and GPC: grain protein content; Table S6: Marker-trait associations found for the association
mapping analyses performed in durum wheat: [i] across years and blocks; [ii] across years for each block (FI and
RI); [iii] across years and blocks for a reduced dataset (years 2013 and 2014); and [iv] across the reduced dataset for
each block. SV: sedimentation volume; TKW: thousand kernel weight; SDS: sedimentation index; YR: yellow
rust; “-”: unmapped marker; Table S7: Homoeolog triads for blue copper protein genes mapped in the wheat
reference assembly RefSeqv1 [69]; Table S8: Candidate genes for GWAS analyses performed in durum wheat:
[i] across years for each block (FI and RI); [ii] across years and blocks for a reduced dataset (years 2013 and 2014);
and [iii] across the reduced dataset for each block. Molecular markers mapping positions are shown both in the
durum wheat genome [71] and the wheat reference assembly RefSeqv1 [69]; Supplementary Material S1. R script
used to perform the GWAS analysis; Supplementary Material S2. R script used to perform the LD analysis.
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Abstract: Background: Roots are essential for drought adaptation because of their involvement
in water and nutrient uptake. As the study of the root system architecture (RSA) is costly and
time-consuming, it is not generally considered in breeding programs. Thus, the identification of
molecular markers linked to RSA traits is of special interest to the breeding community. The reported
correlation between the RSA of seedlings and adult plants simplifies its assessment. Methods: In this
study, a panel of 170 bread wheat landraces from 24 Mediterranean countries was used to identify
molecular markers associated with the seminal RSA and related traits: seminal root angle, total root
number, root dry weight, seed weight and shoot length, and grain yield (GY). Results: A genome-wide
association study identified 135 marker-trait associations explaining 6% to 15% of the phenotypic
variances for root related traits and 112 for GY. Fifteen QTL hotspots were identified as the most
important for controlling root trait variation and were shown to include 31 candidate genes related to
RSA traits, seed size, root development, and abiotic stress tolerance (mainly drought). Co-location for
root related traits and GY was found in 17 genome regions. In addition, only four out of the fifteen
QTL hotspots were reported previously. Conclusions: The variability found in the Mediterranean
wheat landraces is a valuable source of root traits to introgress into adapted phenotypes through
marker-assisted breeding. The study reveals new loci affecting root development in wheat.

Keywords: drought stress; association mapping; root system architecture; QTL hotspot; seminal root

1. Introduction

Wheat is the most widely cultivated crop in the world, covering around 219 million ha (Faostat
2017, http://www.fao.org/faostat/). It is a staple food for humans, as it provides 18% of daily human
intake of calories and 20% of protein (http://www.fao.org/faostat/). Global wheat demand is estimated
to increase by 60% by the year 2050 [1], so wheat production will need to rise by 1.7% per year until
then. Achieving this objective is a great challenge under the current climate change scenario, as the
prediction models estimate a precipitation decrease of 25% to 30% and a temperature increase of 4 ◦C
to 5 ◦C for the Mediterranean region [2]. It is well known that wheat production is greatly affected by
environmental stresses such as drought and heat [3] that negatively affect yield and grain quality [4].
Drought is considered the greatest environmental constraint to yield and yield stability in rainfed
production systems [5]. Environmental effects on yield in the Mediterranean Basin have been estimated
at 60% for bread wheat [6] and 98% for durum wheat [7]. The expected effects of climate change and
the declining availability of water and chemical fertilizers will require the release of cultivars with
an enhanced genetic capacity to maintain acceptable yield levels and yield stability under harmful
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environmental conditions [8,9]. To cope with the challenges of climate change, breeders are particularly
challenged to stretch the adaptability and performance stability of new cultivars, so many improvement
programs are focussing on breeding for adaptation [10].

Plants respond and adapt to water deficit using various strategies that have evolved at several
levels of function and are components of the conceptual framework developed by Reynolds et al. [11],
which defines drought resistance in terms of dehydration escape, tolerance, and avoidance. Traits
defining root system architecture (RSA) are critical for wheat adaptation to drought environments
and non-optimal nutritional supply conditions [12]. Besides, water-use efficiency (WUE) can be
significantly increased by optimizing the anatomy and growth features of roots [13]. Root traits are
critical for drought tolerance due to its role in plant performance and the acquisition of nutrients and
water from dry soils [14]. The wheat plant includes two types of roots: seminal (embryonal) and nodal
(crown or adventitious or adult root system). The seminal roots are the first to penetrate the soil and
remain functional during the whole plant cycle [9,15]. A correlation between seminal and adult roots
in terms of size, dry-weight, or even specific architectural features have been reported [9,13]. Since the
evaluation of RSA features in the field is very difficult, expensive, and time-consuming when a large
number of genotypes need to be phenotyped, several studies have been carried out at early growth
stages to allow an optimal screening of RSA traits [8,12,16–18]. Maccaferri et al. [9] observed that
among RSA traits, those involving the root structure and related to the uptake of nutrients and water
are root length, surface area and volume, and the number of roots, while root diameter is significantly
associated with drought tolerance. Another RSA trait of interest in wheat is the seminal root angle
(SRA), whose features suggest that narrow angles could lead to deeper root growth to obtain water
from deeper soil layers and hence maintain higher yields [5,13].

Identifying quantitative trait loci (QTLs) and applying marker-assisted selection is of particular
interest for RSA because the trait is important but difficult to phenotype. In the last few years,
genome-wide association studies (GWAS) have become very popular because of their use of germplasm
collections with wider variability than the classical bi-parental crosses. These collections allow many
recombination events to be detected, making the association between genotype and phenotype more
accurate. Collections of landraces are an ideal subject of GWAS [19] since they are genetically diverse
repositories of unique traits that have evolved in local environments characterized by a wide range
of biotic and abiotic conditions. Several studies have shown that Mediterranean wheat landraces
possess a wide genetic background for root architecture, yield formation, stress tolerance, and quality
traits [17–22]. In the current study, a GWAS for three RSA traits and two related traits was performed
on a panel of 170 bread wheat (Triticum aestivum L.) landraces from 24 Mediterranean countries
with the following goals: (1) to detect differences in RSA among genetic subpopulations previously
distinguished in the panel, (2) to identify correlations among RSA and grain yield under rainfed
conditions, and (3) to identify molecular markers and candidate genes linked to root-related traits and
candidate gene models for the associations.

2. Materials and Methods

2.1. Plant Material

A germplasm collection of 170 bread wheat (Triticum aestivum L.) genotypes from the MED6WHEAT
IRTA panel described by Rufo et al. [23] was used in this study. The panel was genotyped
and characterized using the Illumina Infinium 15K Wheat SNP Chip at Trait Genetics GmbH
(Gatersleben, Germany), and markers were ordered according to the SNP map developed by Wang
et al. [24]. The collection was previously structured into three subpopulations (SPs) matching their
geographical origin [23]: western (SP1, WM), northern (SP2, NM), and eastern Mediterranean (SP3,
EM) (Supplementary Materials, Table S1). Additionally, the cultivars ‘Arthur Nick’, ‘Anza’, ‘Soissons’,
and ‘Chinese Spring’ were included as checks.
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2.2. Root Morphology and Statistical Analysis

Root analysis was performed following the protocol described by Canè et al. [8], which was
slightly modified in the current study (Figure 1). Ten representative seeds were randomly chosen
from each genotype, weighed, sterilized in a 10% sodium hypochlorite solution for 5–10 min, washed
thoroughly in distilled water and placed on hydrated filter paper in a 140 mm Petri dish at 28 ◦C
for 24 h. Subsequently, five seedlings were selected on the basis of a normal seminal root emergence
and were spaced 8 cm from each other on a filter paper sheet placed on a vertical black rectangular
polycarbonate plate (42.5 × 38.5 cm). Finally, each plate was covered with another wet sheet of filter
paper. Distilled water was used for the plantlets’ growth. The plantlets were grown in a growth
chamber for 14 days at 22 ◦C under a 16-h light photoperiod. In addition to the ten seed weight (SW),
four other traits were scored for each genotype: total root number (TRN), shoot length (SL) from the
seed to the tip of the longest leaf and SRA, obtained using a digital camera following the methodology
described in Canè et al. [8]. The images were processed with ImageJ software [25]. The angle between
the two external roots of each plantlet was measured at a distance of 3.5 cm from the tip of the seed.
Finally, the roots were desiccated at 70 ◦C for 24 h to obtain the root dry weight (RDW).

The experimental design followed a randomized complete block with two replications in time.
Means of five observational units for each genotype were used for TRN, RDW, and SL, while only
three observational units were used for SRA because the two external ones were considered as border
plantlets for root angle.

Figure 1. Experimental setup for the analysis of seminal root traits. Seeds were placed 8 cm apart
on moist filter paper (A) and kept in a box with distilled water in a growth chamber for 14 days at
22 ◦C under a 16-h light photoperiod (B). (C) Example of seminal root angle measurement, using
ImageJ software.

2.3. Grain Yield

Field experiments were carried out in 2016, 2017, and 2018 harvesting seasons in Gimenells,
Lleida, north-east Spain (41◦38’ N and 0◦22’ E, 260 m a.s.l) under rainfed conditions. The experiments
followed a non-replicated augmented design with two replicated checks (the cultivars ‘Anza’ and
‘Soissons’) and plots of 3.6 m2. The experimental design is shown in Supplementary Materials, Figure
S1. Sowing density was adjusted to 250 germinable seeds m2. Weeds and diseases were controlled
following standard practices at the site. The anthesis date was determined in each plot. Grain yield
(GY, t ha−1) was determined by mechanically harvesting the plots at maturity and expressed on a 12%
moisture level.
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2.4. Statistical Analysis

Phenotypic data for GY was fitted to a linear mixed model with the check cultivars as fixed effects
and the row number, column number and cultivar as random effects following the SAS PROC MIXED
procedure:

y = Xβ + Zγ + ε (1)

where β is an unknown vector of fixed-effects parameters with known design matrix X, γ is an unknown
vector of random-effects parameters with known design matrix Z, and ε is an unknown random error
vector whose elements are no longer required to be independent and homogeneous.

Restricted maximum likelihood was used to estimate the variance components and to produce
the best linear unbiased predictors (BLUPs) for the traits of each cultivar and year with the SAS-STAT
statistical package (SAS Institute Inc, Cary, NC, USA).

Analyses of variance (ANOVA) were performed for the root traits, considering the genotypes and
the replication as random effects in the model. Additionally, for a subset of 55 of the 141 structured
landraces, selected as having an SP membership q > 0.8 (WM, 17; NM, 15; EM, 23), the sum of squares
of the cultivar effect in the ANOVAs was partitioned into differences between SPs and differences
within them. ANOVA for grain yield was performed for the complete collection, considering genotype,
year, and the combination of genotype and year the sources of variation. Least squares means were
calculated and compared using the Tukey HSD test at P < 0.05. Pearson correlation coefficients among
root traits were computed. Repeatability (H) was calculated on a mean basis across two replications
following the formula described by Harper [26] r = (B − W) / (B + ( (n −1 ) W)), where n is the
number of genotypes and B and W the two variances from the ANOVA table: between (B) and within
(W). Frequency distributions, ANOVAs, the Tukey test, and the Pearson correlation coefficients were
calculated using the JMP v13.1.0 statistical package (SAS Institute Inc, Cary, NC, USA).

2.5. Genome-Wide Association Analysis

A GWAS was performed for the mean of measured root traits and from the BLUPs for GY per
year and across years with TASSEL 5.0 software [27]. A mixed linear model (MLM) was conducted
using the information of the genetic structure reported in Rufo et al. [23] as the fixed effect and
a kinship (K) matrix, calculated using Haploview [28], as the random effect (Q + K model) at the
optimum compression level. In addition, the anthesis date was incorporated as a cofactor in the
analysis. As reported in other studies [29–32], an adjusted –log10 P > 3 was established as a threshold
for considering a marker-trait association (MTA) statistically significant. A moderate threshold at
–log10 P > 2.5 was also established for GY. Confidence intervals (CI) for MTAs were calculated for each
chromosome according to the linkage disequilibrium (LD) decay reported by Rufo et al. [23]. In order
to simplify the MTA information, the associations were grouped into QTL hotspots when at least two
MTAs belonging to different traits overlapped their CIs. Circular Manhattan plots were performed
using the R package “CMplot” (http://www.r-project.org).

2.6. Gene Annotation

Gene annotation within the CIs of the QTL hotspots was performed using the gene models for
high-confidence genes reported for the wheat genome sequence [33], available at https://wheat-urgi.
versailles.inra.fr/Seq-Repository/Assemblies. Markers flanking the CIs were used to estimate physical
distances from genetic distances.
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3. Results

3.1. Phenotypic Data of Root Traits

A summary of the genetic variation of the root traits is shown in Table 1. The genotypes showed a
low coefficient of variation (CV) with a narrow range of variation among traits, from 10.4 for SW to
18.8 for RDW and repeatability (H) ranging from 48.5% for RDW to 75.4% for SW.

Table 1. Statistics of the seminal root traits.

Table TRN (N) RDW (mg) SRA (◦) SW (g) SL (cm)

Min 3.2 43 53.1 0.27 14.9
Max 5.4 20.5 125.9 0.63 30.2

Mean 4.4 11.7 98.6 0.48 22.0
SD 0.5 2.2 13.3 0.05 2.8

CV (%) 10.9 18.8 13.5 10.4 12.7
H (%) 52.0 48.5 70.0 75.4 50.0

SD, standard deviation; CV, coefficient of variation; H, repeatability; TRN, total root number; RDW, root dry weight;
SRA, seminal root angle; SW, seed weight; SL, seed length.

The ANOVA (Table 2) for cultivars with a high membership coefficient (q > 0.8) showed that for
all traits the total variability was mainly explained by the genotype effect, in a range from 63.5% for
SL to 88.8% for SW. When the sum of squares of the genotype effect was partitioned into differences
between and within SPs, the results revealed that the genetic variability was mainly explained by
differences within SPs in a range from 47.8% for TRN to 71.8% for SRA (Table 2). Differences between
SPs were statistically significant for SRA, TRN, SW, and SL, in a range from 6.0% of the genotype effect
for SL to 25.3% for TRN (Table 2). The sum of squares within SPs was partitioned into western (WM),
northern (NM), and eastern (EM) effects, being statistically significant for SRA (40.8%), TRN (28.3%),
SW (38.3%), and SL (26.8%) in the western SP, SRA (34.4%) in the northern SP and RDW (53.6%) and
SW (55.4%) in the eastern SP.

Table 2. Percentage of the sum of squares of the ANOVA in a set of 55 bread wheat landraces structured
into three genetic subpopulations with membership coefficient q > 0.8.

Source of Variation df TRN RDW SRA SW SL

Replicate 1 0.1 0.7 0.0 0.1 0.3
Genotype 54 73.1 *** 64.8 * 82.1 *** 88.8 *** 63.5 *

Between SPs 2 25.3 *** 0.6 10.3 *** 18.9 *** 6.0 *
Within SPs 52 47.8 * 64.2 * 71.8 *** 69.9 *** 57.5 *

WM 16 28.3 *** 31.6 40.8 *** 38.3 *** 26.8 *
NM 14 16.1 14.8 34.4 *** 6.3 25.2
EM 22 55.6 53.6 * 24.8 55.4 *** 48.0

Replicate x Genotype 54 26.8 34.5 17.9 11.1 36.2
Total 108

WM, western Mediterranean; NM, northern Mediterranean; EM, eastern Mediterranean; TRN, total root number;
RDW, root dry weight; SRA, seminal root angle; SW, seed weight; SL, seed length. * P < 0.05, *** P < 0.001.

The ANOVA for grain yield revealed that the genotype effect was the most important in the
phenotypic expression of traits, accounting for 59% of the total phenotypic variation, whereas the year
effect accounted only for 5%. The interaction accounted for almost 36% of the phenotypic variation
although it was not significant (Table 3).
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Table 3. Percentage of the sum of squares for grain yield of the ANOVA in the collection of 170 bread
wheat landraces.

Source of Variation df Grain Yield P

Genotype 169 59.2 < 0.001
Year 2 5.1 < 0.001

Genotype x Year 338 35.7 No significant
Total 509

The landraces from northern Mediterranean countries showed the highest number of seminal
roots with a root angle not statistically different from the western Mediterranean ones. On the other
hand, eastern Mediterranean landraces showed the lowest number of roots but the widest angle. These
landraces reported the lowest SW and the longest shoots. No differences were reported for RDW
among the three SPs (Table 4).

Table 4. Means comparison of seminal root traits measured in a set of 55 Mediterranean wheat landraces
structured into three genetic subpopulations [23] with q > 0.8. Means within columns with different
letters are significantly different at P < 0.05 following a Tukey test.

TRN (N) RDW (mg) SRA (◦) SW (g) SL (cm)

Northern Mediterranean 4.7 a 0.011 a 98.5 b 0.50 a 20.8 b
Western Mediterranean 4.3 b 0.011 a 96.2 b 0.49 a 21.4 ab
Eastern Mediterranean 4.0 c 0.011 a 106.5 a 0.45 b 22.5 a

TRN, total root number; RDW, root dry weight; SRA, seminal root angle; SW, seed weight; SL, seed length.

Correlation coefficients between root traits were calculated, showing highly significant correlation
coefficients between RDW and SW and RDW and SL (r = 0.47 and 0.45 respectively; P < 0.0001).
Moderate significant correlations were reported for TRN with RDW, SW and SRA (r = 0.20, 0.28 and
0.28, respectively), and for SW with SL (r = 0.27). Finally, a negative correlation coefficient (r = −0.12)
was found between SRA and SW (Figure 2). GY showed a moderate significant correlation with TRN
and SW (r = 0.28 and 0.29, respectively; P < 0.0005).

 

Figure 2. Correlations between seminal root traits and grain yield. On the right side are shown the
values of the correlation coefficients (r). SL, seed length; RDW, root dry weight; SW, seed weight; TRN,
total root number; SRA, seminal root angle; GY, grain yield.
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3.2. Marker-Trait Associations

After filtering for duplicated patterns, missing values, and minor frequency alleles, a total of
10,458 SNPs were used to genotype the panel of 170 wheat landraces [23].

The results of the GWAS for root related traits are reported in Figure 3 and Supplementary
Materials, Table S2. Using a common threshold of −log10 P > 3, as reported by other authors [29–32],
a total of 135 MTAs were identified for the analyzed traits. Of these, 50 MTAs corresponded to SW,
39 to RDW, 18 to SL, 17 to SRA, and 11 to TRN. The A and B genomes harbored 46% and 48% of
MTAs, respectively, whereas the D genome harbored only 6% of MTAs. The number of MTAs per
chromosome ranged from 1 in chromosomes 4D, 5D, and 6D to 14 in chromosome 1B, with a mean of
7 MTAs per chromosome. Most of the MTAs (88%) showed a phenotypic variance explained (PVE) by
each MTA in a range of 5% to 10%, and only 2% showed a PVE higher than 15%. Among traits, the
PVE mean was stable in a range of 7% (SL) to 9% (RDW).

 

Figure 3. GWAS for root related traits (left circle) and grain yield for 3 years and across years (right
circle). From the inside out, root traits correspond to RDW, SW, TRN, SRA, and SL, whereas for GY
corresponds to 2016, 2017, 2018 harvesting seasons and the mean across years.

In order to identify and summarize the genomic regions most involved in trait variation, QTL
hotspots were defined when two or more MTAs from different traits were grouped together within the
same LD block. LD was previously estimated for locus pairs in each chromosome, and its decay was
set to 1 to 10 cM depending on the chromosome [23]. Using this approach, 15 QTL hotspots grouping
43 MTAs were identified (Table 5), while 92 MTAs remained as singletons.

The results of the GWAS for GY are reported in Figure 3 and Supplementary Materials, Table S3.
A common threshold of −log10 P > 3, detected a total of 40 MTAs, thus a moderate threshold at –log10
P > 2.5 was applied, increasing the number of significant associations to 112. Of these, 32 MTAs
corresponded to the year 2016, 30 to 2017, 18 to 2018, and 32 across years. The A and B genomes
harbored 43% and 38% of MTAs, respectively, whereas the D genome harbored only 18% of MTAs.
The number of MTAs per chromosome ranged from 1 in chromosomes 3D and 6B to 16 in chromosome
1D. Chromosomes 1A, 4D, 5D, and 7D did not show any association. All of MTAs showed a phenotypic
variance explained (PVE) by each MTA in a range from 5% to 11%. Most of the MTAs with a PVE > 8%
were located on chromosome 1D (76%, 13 out of 17), whereas the percentage increased to 80% among
MTAs with a PVE > 10% (4 out of 5).

In order to identify and summarize the genomic regions with a pleiotropic effect for root traits
and grain yield, QTL hotspots were defined as previously but including the MTAs for GY. Using
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this approach, 17 QTL hotspots grouping 81 MTAs were identified (Table 6). From them, five were
in common with those reported only with root traits (rootQTL1B.3, rootQTL2A.2, rootQTL3B.2,
rootQTL6A.1, and rootQTL6A.2). GY shared 8 genomic regions with SW and 9 with RDW, 4 with SL,
and 3 with SRA, whereas no regions were in common with TRN. In 59% of these genomic regions,
GY co-localize with only one root trait, whereas the other 41% co-localize with two different root traits.

Table 5. Root QTL hotspots. Positions are indicated in cm.

QTL
Hotspot

MTAs Trait Chromosome Peak CI Left CI Right

rootQTL1B.1 2 RDW, SW 1B 70.6 69.6 71.6
rootQTL1B.2 2 RDW, TRN 1B 77.5 75.9 79.1
rootQTL1B.3 2 RDW, SL 1B 83.0 81.4 84.6
rootQTL2A.1 2 RDW, SW 2A 47.8 46.7 48.9
rootQTL2A.2 2 RDW, SW 2A 104.1 103.6 104.6
rootQTL2A.3 2 SW, SL 2A 177.5 176.9 178.2
rootQTL2B.1 2 SW, SL 2B 109.5 109.0 110.0
rootQTL3B.1 3 RDW, SW, TRN 3B 62.3 61.4 63.2
rootQTL3B.2 2 SRA, SW 3B 80.6 79.6 81.5
rootQTL5A.1 2 RDW, SL 5A 56.5 56.0 57.0
rootQTL5B.1 2 RDW, SL 5B 95.7 94.5 96.9
rootQTL6A.1 2 RDW, SL 6A 45.8 40.0 51.6
rootQTL6A.2 2 RDW, TRN 6A 76.7 70.7 82.6
rootQTL6A.3 2 RDW, SW 6A 138.4 132.3 144.6
rootQTL7A.1 3 RDW, SRA, TRN 7A 216.6 215.3 218.0

TRN, total root number; RDW, root dry weight; SRA, seminal root angle; SW, seed weight; SL, seed length.

Table 6. QTL hotspots including grain yield. Positions are indicated in cm.

QTL Hotspot MTAs Trait Chromosome Peak CI Left CI Right

QTL yield/root_1B.1 3 GY, SRA 1B 8.4 7.4 9.4
QTL yield/root_1B.2 3 GY, SW 1B 43.9 42.9 44.9
QTL yield/root_1B.3 3 GY, SW 1B 63.5 61.5 65.5
QTL yield/root_1B.4 8 GY, RDW, SL 1B 83.3 82.3 84.3
QTL yield/root_2A.1 8 GY, RDW, SW 2A 104.1 103.6 104.6
QTL yield/root_2A2 3 GY, SRA 2A 151.3 150.8 151.9
QTL yield/root_3A.1 8 GY, RDW, SL 3A 84.3 81.9 86.7
QTL yield/root_3B.1 5 GY, SW 3B 72.8 70.8 74.8
QTL yield/root_3B.2 3 GY, SRA, SW 3B 80.5 79.6 81.5
QTL yield/root_4B.1 4 GY, SW 4B 76.6 74.1 79.2
QTL yield/root_5B.1 3 GY, SL 5B 57.8 56.8 58.9
QTL yield/root_5B.2 7 GY, RDW 5B 77.3 75.9 78.8
QTL yield/root_5B.3 2 GY, RDW 5B 176.2 175.2 177.2
QTL yield/root_6A.1 5 GY, RDW, SL 6A 45.6 39.6 51.6
QTL yield/root_6A.2 10 GY, RDW, SW 6A 76.6 70.7 82.6
QTL yield/root_7A.1 3 GY, RDW, SW 7A 135 133.2 136.8
QTL yield/root_7B.1 3 GY, RDW 7B 70.0 67.8 72.3

TRN, total root number; RDW, root dry weight; SRA, seminal root angle; SW, seed weight; SL, seed length; GY,
grain yield.

In order to identify the most useful markers for selecting for the root traits, extreme phenotypes
were identified in the upper and lower 10th percentile of genotypes within the collection for each trait
(Figure 4). Among the most significant MTAs for each trait, markers with different alleles between
extreme genotypes were identified (Table 7, Figure 5). The frequency of the most common allele among
genotypes from the upper 10th percentile ranged from 78% for RDW to 88% for SW, while for the
lower 10th percentile it ranged from 65% for TRN and SRA to 92% for RDW (Figure 2).
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Figure 4. Extreme phenotypes for SRA and TRN. The means correspond for 3 observational units of
the genotype for SRA and 5 observational units of the genotype for TRN.

 
Figure 5. Marker allele frequency means from landraces within the upper and lower 10th percentile for
the analyzed traits. All significant markers shown in Table 5 are included. TRN, total root number;
RDW, root dry weight; SRA, seminal root angle; SW, seed weight; SL, seed length.
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3.3. Gene Annotation

As reported in Supplementary Materials, Table S4, a total of 1489 gene models were identified
within the 15 QTL hotspots using the high-confidence gene annotation from the wheat genome
sequence [33]. Genetic distances were converted into physical distances using the position of common
flanking markers on the genetic map [24] and the genome sequence. The number of gene models ranged
from 224 in rootQTL_2A.2 to 9 in rootQTL_5B.1. Based on the high number of gene models, a selection
was made according to gene families involved in root traits, growth and development, and abiotic stress
resistance (Table 8). Thus, 31 gene families with a total of 96 gene models remained for subsequent
analysis. Among them, F-box and zinc finger family proteins were identified in 12 of the 15 QTL
hotspots, whereas 10 gene families were present in only one QTL hotspot. Among chromosomes with
QTL hotspots, chromosome 2A had the highest number of gene models (22), whereas chromosomes
5A and 5B had the lowest number (4).

Table 8. Selected gene model families.

Description N QTL Hotspots Function

F-box family protein 12 Salt and drought stress responses
RING/FYVE/PHD zinc finger protein 12 Salt and drought stress responses

MYB-related transcription factor 8 Salt and drought stress responses
NAC domain-containing proteins 8 Induced by biotic and abiotic stresses
Cytochrome P450 family protein 5 Involved in seed size

BZIP transcription factor 5 Regulated by abiotic stress
Ethylene-responsive transcription factor 4 Induced by biotic and abiotic stresses

Calmodulin 4 Heat shock transduction pathway
Peroxidase 4 Root growth

ABC transporter 4 Control root development
Nucleoside triphosphate hydrolase 3 Associated with drought stress

E3 ubiquitin-protein ligase 3 Associated with drought stress
Glycine-rich protein 2 Enhance drought stress tolerance

Xyloglucan endotransglucosylase/hydrolase 2 Response dehydration, salinity, cold
Aquaporin 2 Drought stress tolerance

Expansin protein 2 Drought tolerance in wheat
Trihelix transcription factor 2 Stomatal development, drought

VQ motif family protein 2 Involved in seed size
Heat shock family protein 2 Induced by abiotic stress

Protein root UVB sensitive 6 2 Early seedling morphogenesis
SAUR-like auxin-responsive family protein 2 Maintain growth during abiotic stress

Bax inhibitor-1 family protein 1 Tolerance to abiotic stresses

Formin-like protein 1 Structure organization in
drought-stressed plants

Late embryogenesis abundant protein 1 Participate in drought response
Cell wall invertase 1 Downregulated by drought

Senescence regulator 1 Related to drought stress
Plastid-lipid associated protein PAP/fibrillin 1 Induced by drought

Protein STAY-GREEN LIKE, chloroplastic 1 Improves drought resistance
PI-PLC X domain-containing protein 1 Induced by abiotic stresses

Histidine-containing phosphotransfer protein 1 Enhance tolerance to drought stress
Phospholipase D 1 Enhance drought stress tolerance

4. Discussion

Breeding for drought adaptation is one of the main challenges to be addressed in the coming
years in order to increase wheat production and ensure sufficient food supply in the current scenario
of climate change. Roots are crucial in this adaptation, as they are responsible for water and nutrient
uptake. The wide morphological plasticity of the root system to different soil conditions and the
role of root traits in drought environments are well known [34,35]. Wheat roots reduce their growth
in water-limited conditions but increase the water uptake rate, extracting the water from deep soil
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layers [36]. The shape and spatial arrangement of the RSA can provide a growth advantage and
increasing yield performance during periods of water scarcity [37]. Thus, it is necessary to increase the
knowledge of the genetics of root architecture in order to improve wheat yield stability under stress
conditions by introgressing favorable alleles through breeding programs.

The current study evaluated root-related traits in a collection of Mediterranean bread wheat
landraces representative of the variability existing for the species in the Mediterranean Basin [23]
with the aim of providing QTL information for these traits regarding seminal roots. Seminal roots
are important for early vigor and crop establishment in dryland areas because they explore the soil
for nutrients and water [38]. Moreover, it has been reported that under drought stress, seminal roots
activity is more important than that of nodal roots [39]. Additionally, field phenotyping of hundreds of
genotypes is a complex and expensive task. As the root geometry of adult plants is strongly related to
the SRA [5], it may be assumed that genotypes that differ in root architecture at an early developmental
stage would also differ in the field at later growth stages, when nutrient and/or water capture become
critical for yield performance [8].

The range of variation for the traits analyzed in the present study (from 10.9% for TRN to 18.8%
for RDW) is in agreement with those reported for elite durum wheat cultivars by Canè et al. [8],
who explained this variability as an adaptive value for the environmental conditions of the region of
origin of the cultivars. Moreover, the high repeatability found for the traits supports the approach
followed to analyze the seminal roots under controlled conditions.

Landraces from the eastern Mediterranean Basin showed the widest SRA, the lowest SW, the
longest SL, and the lowest number of roots. According to previous studies in durum wheat [18,40],
landraces from southeastern Mediterranean countries corresponding to the warmest and driest areas of
the Mediterranean Basin, reported more grains per unit area and lighter grains than those developed in
cooler and wetter zones of the region. Although it has been reported that in water-limited environments
a vigorous root system could have benefits at the beginning of the growing season because it offers
a more efficient water capture [41], no significant differences were observed for RDW among the
SPs in the current study. Moreover, our results for SRA are in agreement with those reported by
Roselló et al. [18], who found that durum wheat landraces from the eastern Mediterranean have the
widest root angle, which probably allows them to cover a larger soil area and be more efficient in water
uptake than landraces that originated in wetter areas.

Although not significant, probably due to the very early stage when the root traits were measured,
the correlation between SRA and SW was negative. The same result was also reported by Canè et al. [8],
who suggested that it could be due to the influence of the root angle on the distribution of the roots on
soil layers and, therefore, the water uptake from deeper layers. On the other hand, the correlation
between RDW and SW was positive, in agreement with the findings of Fang et al. [42], thus indicating
the effectiveness of greater root mass for obtaining more soil water for plant growth and grain filling in
drought. Seedling growth has also been related to SW in wheat [43]. The vertical distribution of the
root system can have a strong effect on yield [44], so mass root concentrated in upper layers can be
more effective for resource capture, while roots in deeper layers have more access to deep water.

The complexity of the genetic control of root traits was confirmed with 135 marker-trait associations
identified in the current study. Their distribution across genomes was similar in the A and B genomes
(46% and 48%, respectively), leaving only 6% of MTAs in the D genome. These results agree with the
lower genetic diversity and higher LD found in the D genome, as reported previously [23]. According
to Chao et al. [45], the different levels of diversity in wheat genomes could be due to different rates of
gene flow from the ancestors of wheat, since polyploidy bottleneck resulting from speciation reduced
diversity and increased the levels of LD in the D genome in comparison with the A and B genomes.

In order to simplify and to integrate closely linked MTAs in a consensus region, QTL hotspots
were identified based on the results of LD decay reported in [23]. LD decay was used to define the
CIs for the QTL hotspots. Following this approach, 43 MTAs were grouped in 15 QTL hotspots.
The genomic position of QTL hotspots was compared with previous studies reporting meta-QTLs
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for root traits [46] and MTAs from GWAS studies in order to detect previously identified regions
controlling root traits. Among the 15 QTL hotspots, only rootQTL6A.3 was located in the same region
of a previously mapped meta-QTL, RootMQTL74 [46]. When compared with MTA-QTLs reported
by [18] in durum wheat Mediterranean landraces, the QTL hotspot rootQTL6A.3 corresponded to the
MTA-QTLs mtaq-6A.3 and mtaq-6A.6. This hotspot was also in the same region of a major SRA QTL
identified by Alahmad et al. [47] and by a QTL controlling root growth angle identified by Maccaferri
et al. [9], who also found a QTL for grain weight that is located in a common region with the hotspot
rootQTL2A.2, which includes an MTA for SW. rootQTL3B.1 shared a common position with an MTA
reported by Ayalew et al. [48] on chromosome 3B under stress conditions. rootQTL7A.1, including
an MTA for RDW, was located in a similar position as MLM-RDWB-10 reported by Li et al. [49] and
associated with RDW at the booting stage. Finally, no genomic regions were shared with the study
carried out by Beyer et al. [50]. Only four of the 15 QTL hotspots identified in this work had been
detected previously, suggesting the importance of wheat Mediterranean landraces for the identification
of new loci controlling root-related traits.

As reported in previous studies, at early developmental stages [8,18] the co-location of MTAs for
grain yield and root related traits within the same QTL hotspot suggests their pleiotropic effect, however,
deeper analyses should be necessary to confirm it. In durum wheat elite cultivars, Canè et al. [8] found
that 30% of the QTLs affecting root system architecture were included within QTLs for agronomic
traits. More recently, Roselló et al. [18] using a collection of Mediterranean durum wheat landraces
found that 45% of QTL hotspots for root related traits were mapped in similar regions to yield-related
traits reported for the same collection of landraces.

From a breeding standpoint, exploiting genetic diversity from local landraces is a valuable approach
for recovering and broadening allelic variation for traits of interest [19]. Therefore, identifying the
genotypes showing the extreme phenotypes within the pool of Mediterranean landraces and the
associated markers provide the opportunity for introgressing suitable traits in elite cultivars by
marker-assisted breeding using the most recent technologies to speed the process.

The availability of a high-quality reference wheat genome sequence [33] enabled us to quickly
identify gene models corresponding to QTLs. Thus, the genetic position of the CIs of the QTL hotspots
was projected into physical distances on the reference sequence to search for putative candidate gene
models. To narrow the number of candidates, only gene models involved in the development and
abiotic stress according to the literature were taken into consideration. Therefore, of 1489 gene models
identified within the 15 QTL hotspots, only 31 gene families were selected.

F-box and zinc finger family proteins were the most represented, each one appearing in 12 hotspots.
F-box proteins play important roles in plant development and abiotic stress responses via the ubiquitin
pathway [51] and the ABA signaling pathway [52]. In wheat, the F-box protein TaFBA1 is involved in
plant hormone signaling and response to abiotic stresses and is expressed in all plant organs, including
roots [53]. The overexpression of TaFBA1 in transgenic tobacco reported by Li et al. [54] to improve heat
tolerance resulted in increased root length in the transgenic plants. Zinc finger proteins are involved
in several processes, such as regulation of plant growth and development, and response to abiotic
stresses [46]. In Arabidopsis and rice, they play a role in tolerance to drought and salt stresses [55],
while in wheat the overexpression of TaZFP34 enhances root-to-shoot ratio during plant adaptation to
drying soil [56].

Other kinds of gene models found in a high number of QTL hotspots were MYB transcription factors
and NAC domain-containing proteins, each of them presents in 8 hotspots. MYB domain-containing
transcription factors are involved in salt and drought stress adaptation in wheat. Some examples in
wheat are the genes TaMyb1, TaMYBsdu1, and TaMYB33. The expression of TaMyb1 in roots is strongly
related to responses to abiotic stresses [57]. The gene TaMYBsdu1 was found to be upregulated in
leaves and roots of wheat under long-term drought stress [58]. Finally, the overexpression of TaMYB33
in Arabidopsis enhances tolerance to drought and salt stresses [59]. NAC domain-containing proteins
have been described to play many important roles in abiotic stress adaptation [46]. Xie et al. [60]
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reported that NAC1 promoted the development of lateral roots. Similarly, He et al. [61] found that the
expression of AtNAC2 in response to salt stress led to an increase in the development of lateral roots.
Xia et al. [62] demonstrated that the gene TaNAC4 is a transcriptional activator involved in wheat’s
response to biotic and abiotic stresses.

Proteins belonging to the cytochrome P450 family and bZIP transcription factors were present in
five QTL hotspots. The first class of proteins belongs to one of the largest families of plant proteins,
with genes affecting important traits for crop improvement such as TaCYP78A3, which is involved
in the control of seed size [63]. bZIP transcription factors are involved in abiotic stress response [64].
In Arabidopsis, it has been observed that the overexpression of TabZIP14-B, involved in salt and freezing
tolerance, hindered root growth in transgenic plants in comparison with the control plants [65].

Other proteins involved in root growth and development are the peroxidases and ABC transporters
that were identified in four QTL hotspots. Extracellular peroxidases are involved in plant defense
reactions against biotic and abiotic stresses through the generation of reactive oxygen species in
wounded root cells [66]. In Arabidopsis, the ABC transporter AtPGP4 is expressed mainly during early
root development, and its loss of function enhances lateral root initiation and root hair development [67].
Gaedeke et al. [68] reported a new member of the ABC transporter superfamily of Arabidopsis thaliana,
AtMRP5. Using reverse genetics, these authors found that the recessive allele mrp5 exhibited decreased
root growth and increased lateral root formation. In addition to peroxidases and ABC transporters,
other proteins identified in four QTLs were the ethylene-responsive transcription factors (ERFs), found
to be involved in the response to abiotic stresses. In wheat, the ERF TaERFL1a is induced in wheat
seedlings in response to salt, cold, and water deficiency [69].

Other family proteins involved in drought stress, seed size, or early development were represented
in a lower number of QTL hotspots. Among them, aquaporins are known to affect drought tolerance
influencing the capacity of roots to take up the soil water [70]. The expansins were suggested to
be involved in root development, as the overexpression of the wheat expansin TaEXPB23 improved
drought tolerance by stimulating the growth of the root system in tobacco [71].

5. Conclusions

The exploitation of unexplored genetic variation present in local landraces can potentially
contribute to breeding programs aimed at enhancing drought tolerance in wheat. Roots are crucial for
adaptation to drought stress because they are the plant organ responsible for water and nutrient uptake
and interaction with soil microbes. Thus, designing and developing novel root system ideotypes
could be one of the targets of wheat breeding for the coming years. The variability found in the
Mediterranean wheat landraces together with the newly identified QTL hotspots shows landraces as a
valuable source of favorable root traits to introgress into adapted phenotypes through marker-assisted
breeding. Among the different marker trait associations, those reported in extreme genotypes could
result as a starting point to develop new mapping populations to fine map the corresponding traits.
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Abbreviations

EM Eastern Mediterranean
GWAS Genome wide association study
GY Grain yield
MTA Marker-trait association
NM Northern Mediterranean
QTL Quantitative trait locus
RDW Root dry weight
RSA Root system architecture
SL Shoot length
SP Sub-population
SRA Seminal root angle
SW Seed weight
TRN Total root number
WM Western Mediterranean
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Abstract: RD6 is one of the most favorable glutinous rice varieties consumed throughout the north
and northeast of Thailand because of its aroma and softness. However, blast disease and salt stress
cause decreases in both yield quantity and quality during cultivation. Here, gene pyramiding via
marker-assisted backcrossing (MAB) using combined blast resistance QTLs (qBl 1, 2, 11, and 12)
and Saltol QTL was employed in solving the problem. To pursue our goal, the RD6 introgression
line (RGD07005-12-165-1), containing four blast-resistant QTLs, were crossed with the Pokkali salt
tolerant variety. Blast resistance evaluation was thoroughly carried out in the fields, from BC2F2:3 to
BC4F4, using the upland short-row and natural field infection methods. Additionally, salt tolerance
was validated in both greenhouse and field conditions. We found that the RD6 “BC4F4 132-12-61”
resulting from our breeding programme successfully resisted blast disease and tolerated salt stress,
while it maintained the desirable agronomic traits of the original RD6 variety. This finding may
provide a new improved rice variety to overcome blast disease and salt stress in Northeast Thailand.

Keywords: gene pyramiding; aroma; QTL; chromosome; selection; introgression line

1. Introduction

Rice (Oryza sativa L.) is consumed as a staple food in Asia, especially in the southeast region.
In Thailand, the indica rice variety RD6 developed from KDML105 through gamma irradiation is one
of the most favorable glutinous rice consumed throughout the northeast of Thailand [1,2]. Because
of its cooking quality, aroma, and softness, production demand has increased over time. However,
its yield of 4.16 ton/ha fails to meet its potential, due to biotic and abiotic stress.

Rice blast disease caused by the fungus Pyricularia grisea (Cooke) Sacc. leads to crop losses up
to 85% of total yield [3]. Disease symptoms occur in all stages of plant growth, beginning with blast
discoloration and wilting of the foliage [4]. Neck blast can be found at the flowering stage, accelerating
plant death [5]. Severe damage was also observed within areas of intensive planting with high doses
of nitrogen application [6]. Development of new rice varieties resistant to blast fungus is an alternative
approach to diminish or control the invasion of this pathogen. The resistance quantitative trait loci
(QTL) have been investigated to achieve parental varieties, which are further used for gene pyramiding
in breeding programmes. Currently, more than 100 blast-resistant genes have been identified, of which
22 genes structures have been cloned [7]. In Thailand, few studies of blast resistant genes have been
conducted. Noenplab et al. [8] studied the relationship of leaf blast and neck blast of resistant genes
in the Jao Hom Nil (JHN) variety, in which the resistant QTLs were detected on chromosomes 1
and 11. The resistant QTLs conferred resistance to both leaf blast and neck blast. Suwannual et al. [9]
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pyramided four blast-resistant QTLs, individually, on chromosomes 2 and 12 within the P0489 variety,
and on chromosomes 1 and 11 carried by the JHN variety, resulting in the creation of new RD6
introgression lines. Their results demonstrated that the RD6 introgression lines carrying a high number
of QTLs (achieved through pyramiding) reached a broader spectrum of blast resistance to the blast
pathogens prevalent in the region.

In addition to rice blast fungus, salt stress is a crucial constraint for RD6 production. Thailand’s
northeast region is the country’s largest rice-producing area, and it is comprised of two basins: Sakon
Nakhon and Nakhon Ratchasima. In those basins containing an understructure of accumulated salt
rock, the salt-affected range covers approximately 1.84 Mha [10]. Evaporation during the dry season
tends to raise salinity from the subsoil to the surface, thereby increasing salinity intensity and increasing
salt stress from 2–4 dS/m to 8–16 dS/m [10–12]. Rice is a salt-sensitive crop, capable of tolerating
salinity at moderate levels of electrical conductivity (4–8 dS/m) [13]. Therefore, rice produced under
rain-fed, lowland conditions is usually exposed to high levels of soil salinity. The RD6 variety, which is
well known, was identified as a geographical indication (GI) within the Tung Gula Rong Hai of the
Northeast, Thailand. Specifically, RD6 requires optimal soil salinity to enhance rice seed aroma [14].
However, an abundance of salinity can reduce rice plant growth, tiller number, and seed set-up [15],
and the stress caused by excessive salt can significantly reduce total crop yield and result in plant
death [16].

The Pokkali variety, derived from the International Rice Research Institute (IRRI), has become a
well-known source of salinity tolerance worldwide, attributed to the salt-tolerant QTL located on rice
chromosome 1 (Saltol) [17–20]. Therefore, several researchers have attempted to develop salt-tolerant
rice varieties using the Saltol QTL [21–26].

The marker-assisted backcrossing (MAB) method has been employed to obtain beneficial QTLs
from donor parents via introgression between the qualitative and quantitative traits from landraces
and wild relatives [27] due to the precision method with shortened time frame in both foreground
and background selection. MAB provides effective gene selection and/ or QTLs for pyramiding
multi-genes/QTLs within the rice population. These benefits further support breeding practices for
improved resistance and tolerance [28–32]. The objective of this study was to determine the blast
resistance and salt tolerance levels within the RD6 introgression lines by pyramiding four blast-resistant
and one salt-tolerant QTL into the RD6 rice variety in both greenhouse and field conditions.

2. Materials and Methods

2.1. Plant Materials and Marker-Assisted Backcrossing Selection (MABS)

Three parental varieties/lines were used to generate the BC4F4 population, representing a
pseudo-backcrossing approach to increasing the recurrent genetic background of a pyramiding
population, comprised of the RD6 (recurrent parent), Pokkali (obtained for the saltol QTL present on
chromosome 1), and RGD07005-12-165-1 (the RD6 near-isogenic line obtained from the Rice Gene
Discovery Unit, Kasetsart University, Thailand). The RGD07005-12-165-1 obtained four blast-resistant
QTLs from the JHN and P0489 varieties on chromosomes 1 and 11, and chromosomes 2 and 12,
respectively. The breeding program was subsequently improved within the population through MAB,
by crossing the RGD07005-12-165-1 with the Pokkali variety to improve salt tolerance. The F1 was then
backcrossed with RGD07005-12-165-1through BC1F1, whereas BC1F2 was utilized as a marker-assisted
selection (MAS) in the blast-resistant and salt-tolerant QTLs. In this step, the flanking marker
RM3412/RM10748 was used for the selected Saltol QTL [33], RM319/RM212 and RM114/RM224 were
used for selected blast-resistant QTLs on chromosomes 1 and 11, respectively [8], and RM48/RM207 and
RM313/RM277 were used for selected blast-resistant QTLs on chromosomes 2 and 12, respectively [9],
as shown in Figure 1.
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Figure 1. Breeding schematics for the development and validation of the RD6 NILs populations.

Total genomic DNA from young leaves of individual plants, lines, and their parents was extracted
according to the method described by Dellaporta et al. [34] with slight modifications. The PCR
reactions for SSR markers were carried out in a volume of 10 μL, containing 25 ng of genomic DNA,
1 × PCR buffer, 1.8 mM MgCl2, 0.2 mM dNTP, 0.2 μM forward and reverse primer, and 0.05 unit Taq
DNA polymerase. DNA amplification was performed in a DNA thermal cycle for five minutes at
95 ◦C, followed by 35 cycles of 30 s at 95 ◦C, 30 s at 55 ◦C, and two min at 72 ◦C, with a final extension
of seven minutes at 72 ◦C. The amplification products were separated via 4.5% polyacrylamide gel
electrophoresis [32]. The selected lines in the BC1, BC2, and BC3 generations were backcrossed
with the RD6 variety, using MAS for saltol and blast-resistant QTL selection. Trait qualities; such as
glutinous type, aromatic character, and gelatinization temperature (GT) in the BC2F2 populations were
fixed through MAS using glutinous 23 primer on chromosome 6, badh2 on chromosome 8, and RM190
on chromosome 6 (Table S1). Each backcross generation within the BC4F4 populations was evaluated
for salt tolerance and blast resistance (Figure 1).

2.2. Evaluation of Salt Tolerance and Blast Resistance in the BC2F2:3 Populations (Exp. 1)

The evaluation of salt tolerance and blast resistance of the BC2F2:3 lines, as well as the parental
and check varieties, were conducted at the Department of Agronomy, Faculty of Agriculture,
Khon Kaen University, Khon Kaen, Thailand. The salt tolerance evaluation was performed through
two methods, salt solution and artificial soil salinity. The salt solution method was laid out in a
completely randomized design (CRD), with four replications. Seedlings were transplanted at seven
days to 50 × 57 cm2 Styrofoam sheets with 1.5 cm diameter holes [17]. Fertilizer was applied with
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Yoshida nutrient solution [35] at three to twenty-one days of age. NaCl was then added to reach the
electrical conductivity (EC) of 4 dS/m. EC was subsequently increased at three-day intervals, reaching
EC 8 and 12 dS/m. When the susceptible checks (IR29) presented salt injury symptoms, salt tolerance
data were recorded following the standard evaluation score (SES) [36]. The artificial soil salinity
method was also laid out in CRD with four replications. Seedlings were transplanted at seven days and
transferred from the spent soil trays to the water trays. At 14 days after transplanting, the experimental
trays were treated with NaCl, which adjusted the water solution to EC 8dS/m, which increased to EC
12dS/m after two days. Salt tolerance data were recorded similarly in both methods.

Blast resistance was also evaluated via the upland short-row method at the Sakon Nakhon Rice
Research Center, Sakon Nakhon, Thailand. The experiment was laid out in CRD with three replications.
Seeds of each BC2F2:3 line were sown in rows (approximately) 50 cm long and 10 cm apart. A susceptible
KDML105 variety was planted alternately with every two testing varieties. Blast resistance scores were
recorded following the SES method [36].

2.3. Evaluation of Salt Tolerance in the BC3F4 Populations (Exp. 2)

The BC3F4 lines and parental varieties were evaluated for salt tolerance in field conditions.
The experiment was conducted at the Ban Daeng Village, Ban Fhang, Khon Kaen, Thailand.
The experiment was laid out in a randomized complete block design (RCBD) with three replications.
Germinated seeds were sown on seedbeds; then, at thirty days, the seedlings were transplanted to
the field. Plot sizes were 1× 1.5 m2, in three rows, spaced 25× 25 cm between and within rows. The RD6
variety was planted between every five plots within the test lines to ensure that salinity occurred
uniformly. Fertilizer (23.44 kg/ha of N, P2O5, and K2O) was applied at four days after transplanting,
and hand weeding and chemical application for disease and insect control were performed as needed.
When the susceptible check (RD6) presented salt injury symptoms, salt tolerance data were recorded
following SES [37]. Moreover, the agronomic traits including 1000/seed weight, seed length, seed
width, and seed shape were recorded.

2.4. Evaluation of Salt Tolerance and Blast Resistance Evaluations in the BC4F3 Populations (Exp. 3)

The salt tolerance evaluation of the BC4F3 lines was conducted in greenhouse conditions at
the Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand.
The experiment was laid out in CRD with three replications, as described in the salt solution method of
Exp. 1. The experiment for blast resistance of the BC4F3 lines was conducted at the Department of
Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand through field and
upland short-row experiments. The upland short-row method was conducted similarly to Exp. 1.
The field experiment was laid out in RCBD with three replications, in plots 0.5 × 1 m2, in three rows,
spaced 25 × 25 cm between and within rows. Seedlings were transplanted at 30 days of age. Symptoms
of natural blast infection were identified when seedlings began to show signs of infection, following
the protocol of the SES [37], in which both leaf and neck blast symptoms were recorded.

Agronomic trait data, such as plant height (PH) and panicle length (PL), were recorded at
pre-harvest; whereas post-harvest data recorded 4/panicle seed weight (SW4P), 1000/seed weight
(1000SW), total dry weight (TDW), total seed weight (TSW), harvest index (HI), seed length (SL),
seed width (SW), and seed shape (SS) (ratio of SL/SW). Additionally, seed qualities of the BC4F4

seeds, such as seed morphology, including SL, SW, SS and seed color of brown and paddy rice and
aromatic traits, were evaluated and compared with the RD6 variety. The seed aromatic evaluation of
each line was achieved through the quantitative determination of 2-acetyl-1-pyrroline (2AP) content
using automated headspace gas chromatography following the methods as prescribed by Sriseadka et
al. [38]. In brief, polished seed (1.00 g) were ground and then placed in a 20 mL headspace vial. The
headspace vials were immediately sealed with PTFE/silicone septa and aluminum caps prior to analysis
by static headspace-gas chromatography. A static headspace (Model 7697A, Agilent Technologies,
Santa Clara, CA, USA) coupled to an Agilent 7890B Series GC system equipped with an Agilent
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5977B GC/MSD system was used. A series of 2AP standard solutions with concentrations of 1.22,
2.45, 4.90, 9.79, and 19.67 ppm in isopropanol were prepared, which was added to headspace vials
containing 1.00 g of non-aromatic rice seed (cv. Chai Nat 1) used as the external standard. The optimum
headspace operating conditions were oven temperature 110 ◦C, loop temperature 120 ◦C, transfer line
temperature 130 ◦C, vial equilibration time 10 min with high speed shaking, pressurizing time 0.15 min,
loop equilibration time 0.40 min, and inject time 0.50 min. The headspace volatiles were separated
using an HP-5 (25 m × 250 μm × 0.25 μm film thickness) column (J&W Scientific, Folsom, CA, USA).
The optimum GC conditions were achieved using an HP-5 column with a splitless injection at 210 ◦C.
The column temperature programme began at 50 ◦C and increased to 200 ◦C at 10 ◦C/min. Purified
helium was used as the GC carrier gas at a flow rate of 1.2 mL/min. A calibration curve for 2AP analysis
by headspace was generated by spiking known concentrations of 2AP into a non-fragrant rice variety
(Chai Nat 1). Samples were run in triplicate, and the concentration of 2AP was calculated based upon
the relative peak area of external standard.

2.5. Evaluation of Salt Tolerance in the BC4F4 Populations (Exp. 4)

The salt tolerance evaluations of the BC4F4 lines were conducted in greenhouse conditions at
the Department of Agronomy, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand,
via the salt solution method. Laid out in CRD with four replications, the planting methods and
experiment protocol were similar to those described in Exp1, except that the EC in Exp. 4 was adjusted
to 18 dS/m. The leaf, stem, root, and total dry weight data were recorded. Dry weight of the seedlings
was determined by oven-drying the seedlings at 80 ◦C for 3 days, and the percentages of Na+ and K+
in the leaves, stems, and roots also were determined, according to the flame photometric method [39].
In addition, the percentages of Na+ and K+ in the leaves, stems, and roots also were determined,
according to the flame photometric method [39]. In brief, pounding sample volume 0.5 g of each
tissues were digest by 10 mL nitric acid (HNO3) and 5 mL perchloric acid (HClO4), then incubated
at 200 ◦C. The contents were covered to reflux acid fumes generated during digestion until digest
appeared translucent. After cooling down, 100 mL deionized water was added to each digestion tube.
Contents were then vortexed and passed through qualitative cellulose filter paper (Whatman No.1,
Sigma-Aldrich®, St. Louis, MO, USA) and measurement the K+ (768 nm wavelength) and Na+
(589 nm wavelength) by flame photometer (Model 410 Flame Photometer, Sherwood Scientific Limited,
Cambridge, UK). The K+ and Na+ concentrations of samples were compared with the known standard
solutions of 0.0, 5.0, 10.0, 15, and 20 ppm from a calibration curve with a correlation coefficient
(r2) = 0.999. Finally, the amount of K+ and Na+ were transformed to percentage when compared with
dry weight of raw materials.

2.6. Data Analysis

Salt tolerance scores, blast resistance scores, and agronomic trait data were analyzed via the
STATISTIC 10© program (1985–2013) (Analytical Software, Tallahassee, FL, USA). Means were
compared by the least significant difference (LSD) at p < 0.05.

3. Results

3.1. Development of Populations Through MABS

The F1 population (RGD07005-12-165-1 × Pokkali) was backcrossed with RGD07005-12-165-1
using MAS through BC2F2, in which the MAS contained genes of the glutinous type, aromatic,
and gelatinization temperature (GT); and the BC2F2:3 populations were then evaluated for salt tolerance
and blast resistance. One BC2F2:3 line (no. 74) obtained all QTLs required to obtain the target traits
necessary for generation advancement (Table S2). In developing the BC3 generation, BC2F2:3 (no. 74)
was crossed back to RD6 to produce the BC3F1, in which the BC3F1 was developed through the BC3F4

population by MAS. Thirty-one BC3F4 lines were evaluated for salt tolerance and agronomic traits
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within the salted field. Among the BC3F4 lines, the BC3F4 (no. 132) demonstrated salt tolerance and
agronomic characteristics similar to those of the RD6 variety and were subsequently selected for the
development of the BC4F1 through BC4F3. The BC4F3-132-12-61 line was successfully developed via
the MABS, consisting of one QTL for salt tolerance and four QTLs for blast resistance. BC4F3 lines with
varied QTL combinations were also validated in the tests.

3.2. Evaluation of Salt Tolerance and Blast Resistance in the BC2F2:3 Populations

Eight of the BC2F2:3 lines were evaluated for salt tolerance in the seedling stage through the salt
solution and artificial soil salinity methods. The results concluded that the BC2F2:3 lines presented
as highly significant at EC 12 dS/m. BC2F2:3 (nos. 23, 67, and 74), demonstrated tolerance (T) in
both methods, similar to that of the tolerant check (Pokkali); while the remaining five BC2F2:3 lines
showed moderate tolerance (MT) under both the salt solution and artificial soil salinity tests (Table 1).
The BC2F2:3 lines were evaluated for blast resistance via the upland short-row method, through
which the blast resistance reaction (R) was similar to that of the resistance checks (JHN and P0489).
Their resistance proved greater than that of the susceptible check (RD6), due to the presence of
blast-resistant QTLs, and superior to that of the original RD6 (Table 1).

Table 1. Salt tolerance scores at EC 12 Ds/m in salt solution, artificial soil salinity, and blast resistance
within the BC2F2:3 populations.

BC2F2:3 Populations
Salt Solution Artificial Soil Salinity Blast Resistance

Score Reaction Score Reaction Score Reaction

No. 74 4.3 c T 4.5 cd T 2.0 c R
No. 42 5.5 b MT 4.8 cd T 1.0 c R
No. 44 5.5 b MT 4.5 cd T 2.0 c R
No. 23 4.8 bc T 4.5 cd T 1.0 c R
No. 56 5.0 bc MT 4.5 cd T 2.0 c R
No. 67 4.0 c T 4.0 d T 2.0 c R
No. 33 5.5 b MT 5.0 cd MT 2.0 c R
No. 7 4.0 c T 5.8 bc MT 2.0 c R

Pokkali (tolerant check) 4.0 c T 4.0 d T 6.0 a MS
IR29 (susceptible check) 9.0 a HS 9.0 a HS 4.0 b MS
RD6 (recurrent parent) 9.0 a HS 9.0 a HS 7.0 a S

RGD07005-12-165-1 8.0 a S 7.0 b S 2.0 c R
Jao Hom Nil (resistant check) - - - - 1.0 c R

P0489 (resistant check) - - - - 2.0 c R

F-Test ** ** **

C.V. (%) 11.22 13.23 24.12

T = tolerance, MT =moderate tolerance, S = susceptible, HS = highly susceptible, R = resistant, MR =moderate
resistance, MS =moderately susceptible. ** = significant different at p < 0.01. Different letters after the mean within
a column showed a significant difference. CV = the coefficient of variation.

3.3. Evaluation of Salt Tolerance in the BC3F4 Populations

BC2F2:3 (No.74) was selected for the next backcross cycle with the RD6, and MAS was performed
through the BC3F4 population. Thirty-one BC3F4 lines were screened for salt tolerance and agronomic
performance. The results showed that the 21 BC3F4 lines were salt-tolerant (T), whereas the 10 BC3F4

lines proved only moderately tolerant (MT). Agronomic traits of the BC3F4 lines were similar to those
of the RD6 variety, which was in accordance with our objectives (Table 2). Five BC3F4 lines (nos.22, 36,
115, 129, and 132) demonstrated superior tolerance (T) and agronomic traits (1000/SW, SL, SW, and SS),
again, similar to those of the original RD6, and were selected as donor parents for the development
of the BC4. The results showed that BC3F4 (no. 132) produced the best performance for pollination,
and was therefore selected for development of the BC4 population.
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3.4. Evaluation of Salt Tolerance and Blast Resistance in the BC4F3 Populations

This experiment evaluated eight BC4F3 lines obtained via Saltol QTL from MAS, specifically, the
combination lines, donor parents, and tolerance, and susceptible checks were screened for salt tolerance
via the salt solution method (EC 12 dS/m). The results showed highly significant scores within the
BC4F3 population and the tolerant check (Pokkali), with salt tolerance scores less than 5.0, indicated
as tolerant (T). The recurrent parent (RD6) presented moderate tolerance (MT) with a score of 6.5
(Table 3). The results indicated that the Saltol QTL within the BC4F3 population demonstrated superior
performance in salt tolerance to that of the recurrent parent (RD6).

The BC4F3 populations were evaluated for blast resistance in field conditions through natural
infection. Since blast infection in the field was not severe, leaves with severe symptoms from the
surrounding trap plants were collected and stored in a bag, under dark conditions, for twelve hours
to induce spore formation. The natural inoculum was added with water, and spore suspension
was then sprayed over the field. The BC4F3 populations and their parents showed a high level of
blast resistance. A total of eight BC4F3 lines demonstrated high resistance (HR), similar to those
of both the donor parents, whereas the recurrent parent (RD6) presented moderate susceptibility
(MS) (Table 3). Importantly, some introgression lines were greater in resistance than the recurrent
parent (RD6). The second peak of bimodal rain, which occurred in the flowering stage, initiated
significant signs of neck blast. The results found that eight BC4F3 lines showed resistance (R) similar to
that of the donor parent, whereas the RD6 was moderately susceptibility (MS) to neck blast (Table 3).

Additionally, blast resistance evaluation was also conducted via the upland short-row method
in the seven BC4F3 lines, which presented highly significant blast-resistant levels. The BC4F3 lines
showed resistance abilities similar to both donor parents, whereas the RD6 recurrent parent presented
moderate resistance (MR). Notably, the blast-resistant genes in the BC4F3 populations provided blast
resistance in the seedling stage similar to that of the tilling and grain filling stage, and evidenced
greater resistance than that of the RD6 recurrent parent (Table 3).

The agronomic traits were also evaluated in the blast field experiments. The results were highly
significant within the BC4F3 populations and their parents for ten traits: PH; PL; SW4P; 1000/SW; TDW;
TSW; HI; SL; SW; and SS (Table 4). The BC4F3 132-12 maintained agronomic traits similar to those of
the recurrent parent (RD6) for nine traits, except for the 1000/SW (1000 seed weight), in which the RD6
presented moderate susceptibility (MS) for leaf and neck blast, resulting in low grain filling (Table 4).
The results indicate that the newly developed MAB population had greater resistance than that of the
original RD6 variety while maintaining its desirable agronomic traits and satisfying consumer demand.
The BC4F3 lines also showed improvements in seed length (SL), seed width (SW), and seed shape (SS)
as long and slender type. Additionally, the color of paddy rice was straw yellow, similar to the original
RD6 varieties (Figure 2).
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Figure 2. Seed quality, seed length, seed shape, and seed color of 10 seeds of the BC4F3 populations
compared with the RD6 variety. (a) RD6, (b) BC4F3 133-12-61, (c) BC4F3 133-25-18, (d) BC4F3 132-14, (e)
BC4F3 132-98, (f) FC4F3 132-174, (g) BC4F3 132-51, (h) BC4F3 132-167, (i) BC4F3 132-276. The top row is
brown rice and bottom row is paddy rice with straw color. The small scale is in millimeters.

Eight BC4F3 lines and the RD6 (recurrent parent) were evaluated for seed aroma through the
determination of 2AP content via the automated headspace gas chromatography method. The results
showed a significant difference among the BC4F3 lines and RD6 variety, with mean values of 2AP
content of the BC4F3 exceeding 3.00 ppm (Table 4). BC4F3 132-98-87 presented the highest 2AP content
(4.68 ppm), similar to that of the RD6 (Table 4). The BC4F3 lines and RD6 were determined to be similar
in fragrance.

3.5. Evaluation of Salt Tolerance in the BC4F4 Population

Two BC4F4 lines, BC4F4 132-12 and BC4F4 132-167, presented as tolerant (T) in salt tolerance
evaluations, similar to that of the Pokkali, whereas the remaining five BC4F4 lines and the recurrent
parent (RD6) showed moderate tolerance (MT) (Table 5). Statistically, seven of the BC4F4 lines
demonstrated EC values up to 18 dS/m. The dry weights of the seven BC4F4 lines, their parent,
and KDML105 check varieties presented as highly significant, in which the tolerant check (Pokkali)
presented the highest LDW, SDW, RDW, and TDW evident in the weights of leaf stems and roots,
whereas the BC4F4 lines were similar to that of the recurrent parent (RD6) (Table 5). The results indicate
that salinity significantly affected dry weight.
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Table 5. Leaf, stem, root, and total dry weights in the experiment 4.

Line LDW (g) SDW (g) RDW (g) TDW (g) Salt Score

BC4F4 132-12-61 0.56 bc 0.47 b 0.27 b 1.3 bc 5.2 c–e
BC4F4 132-25-18 0.47 b–d 0.33 bc 0.22 b 1.02 bc 5.9 b–d
BC4F4 132-14-43 0.55 bc 0.41 bc 0.25 b 1.21 bc 6.0 b–e
BC4F4 132-51-17 0.5 bc 0.35 bc 0.22 b 1.07 bc 5.2 c–e
BC4F4 132-167-58 0.49 bc 0.42 bc 0.21 bc 1.12 bc 4.9 de
BC4F4 132-276-84 0.44 b–d 0.39 bc 0.23 b 1.06 bc 5.5 b–e
RD6 (recurrent) 0.39 cd 0.27 cd 0.2 bc 0.85 cd 6.2 a–c
Pokkali (tolerant check) 1.21 a 1.18 a 0.47 a 2.86 a 3.6 f
IR29 (susceptible check) 0.23 d 0.11 d 0.13 c 0.47 d 7.4 a
KDML105 0.63 b 0.51 b 0.25 b 1.39 b 6.5 ab

F-test ** ** ** ** **

CV (%) 22.24 21.68 17.1 18.88 11.35

LDW = leaf dry weight, SDW = stem dry weight, RDW = root dry weight, TDW = total dry weight. ** = significantly
different at p < 0.01. Different letters after the mean within a column show a significant difference. CV = the
coefficient of variation.

Additionally, the percentages of Na+ and K+ in leaf stems and roots were also recorded and
proved highly significant in all traits. The tolerant checks (Pokkali) presented the lowest Na+ in
leaves (1.94), stems (1.75), and roots (4.94), whereas K+ in leaf stems were non-significant within
the BC4F4 lines. Moreover, Pokkali also displayed low Na+-to-K+ ratios in rice shoots. The BC4F4

132-12 also showed low levels of Na+ in both stems and leaves, as well as low Na+-to-K+ ratios in rice
shoots comparable to those of the Pokkali variety, yet lower than those of the RD6. We may infer that
transferring the saltol QTL from the Pokkali line created greater tolerance in subsequent breeding lines
that that of RD6 recurrent parent (Figure 3). Interestingly, the BC4F4 lines presented Na+ levels in
leaves and stems similar to those in Pokkali, and significantly different in RD6. This confirmed the
Pokkali saltol QTL’s ability to exclude Na+ from the leaf blade, expressing salt tolerance through the
salt-excluder method. Moreover, the salt tolerance scores were negatively correlated to the leaf, stem,
root, and total dry weights (r = −0.7899 **, r = −0.8136 **, r = −0.8140 **, r = −0.8065 **, respectively)
and positively correlated with leaf and stem Na+ (r = 0.7670 ** and r = 0.8917 **, respectively) (Table 6).
The results indicated that salt stress decreased plant growth in susceptible varieties, while growth was
maintained in salt-tolerant varieties and that the accumulation of Na+ in leaves and stems was related
to salt susceptibility (Table 6).

Table 6. The correlation between leaf dry weight, stem dry weight, root dry weight, total dry weight,
leaf Na+, leaf K+, stem Na+, stem K+, root Na+, root K+, and the salt score of seeds in the BC4F4

populations and check varieties in the experiment 4.

LDW SDW RDW TDW
Leaves

Na+
Leaves

K+
Stem
Na+

Stem
K+

Root
Na+

Root
K+

SDW 0.9926 **
RDW 0.9863 ** 0.9864 **
TDW 0.9978 ** 0.9981 ** 0.9911 **

Leaves Na+ −0.7490 * −0.7762 ** −0.7513 * −0.7665 **
Leaves K+ −0.0157 −0.0096 0.0313 −0.0044 −0.4369
Stem Na+ −0.6957 * −0.6999 * −0.7268 * −0.7056 * 0.8532 ** −0.6924 *
Stem K+ −0.0578 −0.0566 −0.0188 −0.0500 −0.3733 0.9680 ** −0.6326 *
Root Na+ −0.9140 ** −0.9037 ** −0.8716 ** −0.9054 ** 0.5259 0.3967 0.3537 0.4257
Root K+ 0.1762 0.1411 0.2168 0.1666 −0.1362 0.3735 −0.4801 0.2748 0.0495

Salt score −0.7899 ** −0.8136 ** −0.8140 ** −0.8065 ** 0.7670 ** −0.4516 0.8917 ** −0.4183 0.5386 −0.3405

LDW = leaf dry weight, SDW = stem dry weight, RDW = root dry weight, TDW = total dry weight. * = significantly
different at p < 0.05. ** = significantly different at p < 0.01.
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Figure 3. Na+ and K+ on leaves, stems, and roots in the experiment 4. Different letters within a color
bar show a mean significant difference of each line.

4. Discussion

Since its release in 1977, the RD6 glutinous rice variety has remained a staple food crop for
domestic consumption in Thailand’s north and northeast regions. Comprising 83% of total glutinous
rice production in these areas, consumers have developed a preference for its superior characteristics.
However, the RD6 variety suffers from several production constraints, including biotic stress responsible
for both rice blast [40] and bacterial blight disease [41]. Current research has attempted to eliminate
sustainable infection-resistant production practices by pyramiding multiple resistant genes [42]. To date,
an RD6 introgression line capable of resisting both biotic and abiotic stress has yet to be developed.
Thailand’s salt rock basins of Sakon Nakhon and Nakhon Ratchasima have demonstrated that consistent
levels of salinity can enhance the fragrance of the RD6 rice variety [14] and increase production.

This study proposes the successful introgression of blast-resistant QTLs (qBL 1, 2, 11, and 12)
from RGD07005-12-165-1 and the Saltol QTL (Pokkali, chromosome 1) to improve the RD6 rice variety
through the MAB method within BC4F4 populations. Trait evaluations were completed for the
validation of progenies with desirable traits in each advanced population, based on the introgression
of the genetic foregrounds and maintenance of the genetic backgrounds, respectively.

Salt salinity was absent in several areas of northeast Thailand, due to high levels of NaCl [43], and
such factors as precipitation, soil type, and field management. In past research, the evaluation of salt
tolerance was typically conducted through salt screening, hydroponic culture, and soil culture, as well
as through pot and field methods [33]. The current study assessed salt tolerance within the breeding
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populations studied through salt solution, artificial salt culture, and field condition evaluations.
Based on the results, salt evaluation under field conditions produced the lowest capability among the
tested rice lines (Tables 1–3 and 5), due to the inherent difficulties and uncertainties present under field
conditions. Kranto et al. [33] reported that effective alternative screening approaches must be proven
to correlate with results produced within the early phases of growth in both greenhouse and field
conditions. Within the present study, visual symptom scores of salt stress generated through the salt
solution method proved to be the most appropriate method with which to confirm tolerance abilities
within a breeding population (Table 5), suggesting that the salt solution method could, therefore,
substitute salt tolerance score analysis in field conditions (Table 5). However, we acknowledge the
necessity to evaluate RD6 plant types, yield performances, and agronomic traits within the field.
The introgression lines developed within our study were evaluated for similarity with the original
RD6 agronomic traits, namely plant height, panicle length, 4/panicle seed weight, 1000/seed weight,
total dry weight, total seed weight, harvest index, seed length, seed width, and seed shape, as well as
seed qualities, such as seed morphology (Tables 2 and 4).

The Saltol QTL on chromosome 1 from the Pokkali rice variety has been commonly used for
rice improvement in several studies [21–26]. In our results, the Saltol QTLs from the Pokkali variety
produced the greatest salt tolerance within the RD6 introgression lines (Table 1, Table 2, Table 3,
and Table 5). This saltol QTL also contributed to the maintenance of low Na+, high K+, and low
Na+/K+ homeostasis levels in rice stems, further resulting in increased salt tolerance [24,44] (Figure 3).
The Pokkali variety was classified to balance the influx of Na+ and K+ for dilution in the mechanism,
creating the ability to exclude Na+ from leaf blades and stems [45,46]. As the water up-take mechanisms
in rice accept both nutrients and salt together, the Pokkali variety thereby demonstrated the highest
and most significant differences in leaf, stem, root, and total dry weights when compared with other
breeding lines (Table 5). However, the BC4F4 lines presented the agronomic traits (above) more closely
matched to the RD6 than to the Pokkali (Table 5), due to the advance generation and visual selection of
the trait performances (Tables 2 and 4). RD6 performance is very important for farmer acceptance and
crop adaptation in our test areas. For example, excessively tall RD6 rice plants present problems in the
grain filling stages as a result of heavy wind or rain [47]. Visual selection may explain the differences
in percentages of Na+ of the RD6 introgression lines with those of Pokkali (Table 5, Figure 3).

As a photosensitive rice variety, the RD6 grows once a year, during Thailand’s rainy season
from late May to November [48]. These bimodal rain patterns produce favorable conditions for
the occurrence of blast disease, causing damage in all stages of growth. Leaf blast generally occurs
during the seedling and tilling stages, whereas neck blast usually occurs during the reproductive
phase [4]. In our study, introgression lines were evaluated for blast disease in both the field and upland
short-row evaluations.

In this study, the upland short-row method displayed greater incidences of blast disease, due to
the favorable microclimate and moisture contents around the experimental plots (Tables 1 and 3) [49].
The experimental field was influenced by bimodal rain, capable of inducing leaf and neck blast
symptoms (Table 3), further indicating the resistance of the QTLs [42,50]. Noenplab et al. [8] also
reported that the blast QTL on chromosome 11 in the JHN variety successfully contributed to leaf
and neck blast resistance. Pyramiding of four blast-resistant QTLs through MAS achieved high
levels of blast resistance and broad-spectrum resistance to pathogens prevalent in the region [9].
Moreover, the testing of RD6 introgression lines for durable blast resistance and no-yield penalties
were observed [42]. The results, herein, further demonstrated that neck blast disease caused direct
yield loss during the grain filling phase [51], as well as lower 1000/SW within the original RD6 variety
compared with those of the RD6 introgression lines (Table 4).

The resistance/tolerance abilities of the RD6 introgression lines represent the foreground genetics
capable of enhancing plant breeding programs. However, maintaining the background of the original
RD6 variety is also desirable; therefore, the quality and performance of the RD6 within the QTL
introgression was also a consideration. The BC4F4 populations, herein, were achieved through the
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introgression of blast-resistant QTLs (qBL 1, 2, 11, and 12) from RGD07005-12-165-1 and Saltol QTL
(Pokkali) and improved the RD6 rice variety through MAB. Consequently, the performance of the
RD6 introgression lines was similar to that of the original RD6 variety (Table 4, Figure 2). The results
indicate that foreground and background selection, together with visual selection, accurately depicts
the efficiency of MAB.

5. Conclusions

Improvement of the RD6 rice variety for salt tolerance and blast resistance was successfully
achieved utilizing the Saltol QTL and qBl (1, 2, 11, and 12) through marker-assisted backcrossing,
together with phenotypic selection. The resulting BC4F4 132-12 introgression line exhibited superior
salt tolerance, blast resistance, and reduced neck blast and was capable of maintaining higher qualities
and agronomic performances than that of the original RD6 variety.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/8/1118/s1,
Table S1: QTL traits and primer sequences of the SSR markers for blast resistance and salt tolerance, Table S2:
Genotype of the BC2F2 populations derived from MAB.
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Abstract: Striga hermonthica parasitism is a major constraint to maize production in sub-Saharan
Africa with yield losses reaching 100% under severe infestation. The application of marker-assisted
selection is highly promising for accelerating breeding for Striga resistance/tolerance in maize
but requires the identification of quantitative trait loci (QTLs) linked to Striga resistance/tolerance
traits. In the present study, 194 F2:3 families of TZEEI 79 × TZdEEI 11 were screened at two
Striga-endemic locations in Nigeria, to identify QTLs associated with S. hermonthica resistance/tolerance
and underlying putative candidate genes. A genetic map was constructed using 1139 filtered DArTseq
markers distributed across the 10 maize chromosomes, covering 2016 cM, with mean genetic distance
of 1.70 cM. Twelve minor and major QTLs were identified for four Striga resistance/tolerance adaptive
traits, explaining 19.4%, 34.9%, 14.2% and 3.2% of observed phenotypic variation for grain yield, ears
per plant, Striga damage and emerged Striga plants, respectively. The QTLs were found to be linked
to candidate genes which may be associated with plant defense mechanisms in S. hermonthica
infested environments. The results of this study provide insights into the genetic architecture
of S. hermonthica resistance/tolerance indicator traits which could be employed for marker-assisted
selection to accelerate efficient transfer host plant resistance genes to susceptible genotypes.

Keywords: maize (Zea mays L.); Striga resistance/tolerance; QTL mapping; F2:3 biparental mapping;
Marker-assisted selection

1. Introduction

Maize (Zea mays L.) is the most widely grown staple food crop in sub-Saharan Africa (SSA), and
accounts for a large proportion of carbohydrates, proteins, lipids and vitamins for millions of people
in the sub-region [1,2]. The root hemi-parasitic plant Striga hermonthica is an important biotic
constraint limiting maize production in SSA. The S. hermonthica problem in SSA is the result
of the shift from traditional cereal based farming system which facilitated longer fallow periods which
ensured that the soil Striga seed bank was maintained at levels that plants could tolerate [1]. However,
the pressure on agricultural land has necessitated land use intensification, cereal mono-cropping
and reduced fallow periods resulting in increased Striga seed bank and infestation levels that threaten
the livelihood of millions of farmers [3,4]. De Groote et al. [5] reported that over six million hectares
of agricultural land in Western, Eastern and Southern Africa are seriously affected by Striga.
Reduction in grain yield due to S. hermonthica parasitism may be up to 100% under severe infestation
and unfavorable environmental conditions such as low soil fertility, erratic rainfall patterns
and low-input conditions [6–8]. The subsistence farmers are usually the most severely affected.
The extent to which S. hermonthica affects the growth of its host varies tremendously, depending
on the level of host plant resistance/tolerance, extent of infestation, and the prevailing environmental
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conditions [9,10]. Resistance to Striga denotes the capability of the host plant to induce the germination
of Striga seeds but prevents the parasite from attaching to the roots of the maize plants or kills
the attached parasitic plants. Under S. hermonthica infestation, the resistant genotype supports
considerably fewer Striga plants and produces a greater yield than the susceptible genotype [11–13].
Contrarily, a Striga tolerant genotype supports as many Striga plants as the sensitive or susceptible
genotype [14] but produces more dry matter and shows fewer damage symptoms [15]. Striga damage
in maize is used as the indicator of tolerance while emerged Striga plants is the indicator of resistance.
The identification of maize genotypes that combine outstanding levels of resistance and tolerance
is a promising breeding strategy and has been recommended for Striga resistance breeding in several
studies [12–14,16,17]. In selecting for tolerance or resistance and high grain yield under Striga
infestation, the primary traits of interest are the Striga damage and number of emerged Striga plants.
Presently, maize genotypes with combined resistance and tolerance to S. hermonthica (possessing both
low Striga damage and few Striga emergence counts) as well as high grain yield have been identified
in the International Institute of Tropical Agriculture - Maize Improvement Program (IITA-MIP). Striga
damage rating score is positively associated with Striga emergence counts, and the two traits are
negatively associated with yield under S. hermonthica infested conditions. Similarly, large positive
additive genetic correlation was recorded between grain yield and ears per plant as well as moderately
large negative genetic correlations between grain yield and flowering traits [18]. Comparable results
were reported by earlier workers [19,20]. Nevertheless, the genotypic correlation between S. hermonthica
damage rating and S. hermonthica emergence counts have been found to be low, implying that different
genes control the inheritance of the two traits [18,21].

Striga infestation is dependent on Striga seedbank in the soil resulting from continuous cropping
of host plants, leading to the accumulation of Striga seeds which can remain dormant in the soil
for more than a decade [22]. The germination of Striga seed is induced by the production of plant
hormones called strigolactones produced by the maize plant in the roots. The hormones are released
when the plant is under stress [23]. For the germinated Striga seed to survive as an obligate parasite,
it must produce haustoria that attach to the roots of the maize plant through which it draws water
and photosynthates [24]. Even though Striga possesses chlorophyll for photosynthesis, it still
depends on its host for survival [25], as a result of its inability to accumulate enough photosynthates
for autotrophic growth. Therefore, Striga establishes direct xylem links with the root system
of the host [26] to obtain nutrients from its xylem sap [27]. Furthermore, a higher rate of transpiration
in Striga compared to the host plant creates a water potential gradient from the host to the Striga
plant [28]. Striga phytotoxic effects on the maize plant direct the partitioning of assimilates into the roots
rather than the shoots for grain filling, thereby resulting in plant biomass and yield reduction [29].

Presently, management strategies of S. hermonthica include cultural, chemical, and biological
approaches, which are non-economical and/or knowledge-intensive for subsistence farmers [6].
Planting of Striga-resistant maize varieties is presently considered the best control strategy and easy
to adopt or deploy, particularly when combined with other management practices [30–33]. Resistance
to S. hermonthica parasitism is mainly attributed to low production of Striga germination stimulants
by the host plant, attachment of few Striga plants to the roots of the host plant as well as fewer Striga
emergence [13,34]. When breeding for S. hermonthica resistance in maize, a combination of these
resistance mechanisms is desirable in achieving effective and durable resistance [33]. The slow rate
of development and deployment of Striga resistant genotypes is largely attributable to the complex
genetics of resistance as well as limited knowledge of the specific mechanisms associated with resistance
to Striga [35]. The resistance to S. hermonthica in maize is regulated by many genes or quantitative
trait loci (QTL) with small additive effects and it is significantly influenced by the environment [13,36].
Therefore, breeding for Striga-resistant cultivars using conventional approaches by selecting maize
cultivars with enhanced resistance which requires evaluation in multi-locations and years, has been
less effective and time-consuming [27].
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Marker-assisted breeding makes use of genotypic data in the identification of genotypes possessing
desirable alleles, using linked genetic markers. Breeders employ marker-assisted selection (MAS)
when an important trait that is difficult to assess phenotypically, is tightly linked to a molecular DNA
marker that can be scored quickly and precisely [37]. QTL mapping approaches are important genomic
tools employed in dissecting the genetic architecture of complex traits [38,39] as well as identification
of genetic linkage through wide genotyping of a panel of germplasm displaying contrasting phenotypes
across different environments [40]. For QTL identification, the development of next-generation
sequencing technology has become a practicable technique to rapidly identify large number of single
nucleotide polymorphisms (SNPs) throughout the genome [41]. Unlike the use of second-generation
molecular markers which result in low-quality mapping, SNP markers provide new insights to rapidly
identify QTL of interest.

Information on map positions of genes and linked markers on a chromosome are crucial for efficient
determination of genetic architecture of polygenic traits in crop plants [42]. Several QTLs and candidate
genes controlling resistance to Striga have been reported in cereals. For instance, Swarbrick et al. [32]
identified three S. hermonthica-resistant QTLs in Kasalath–Koshihikari rice backcross inbreds, two
of these QTLs originated from the Kasalath allele and one from the Koshihkari allele. The largest-effect
QTL (Kasalath-derived allele) explained 16% phenotypic variance in the mapping population and was
located on linkage group 4. Haussmann et al. [43] detected molecular markers associated with
S. hermonthica-resistant QTLs, with the most significant QTL corresponding to the major-gene locus
low germination stimulant (LGS) in linkage group I. Five genomic regions (QTLs) linked to stable
S. hermonthica-resistant alleles from resistant variety N13 were detected through evaluation across
a large number of field trials in Mali and Kenya. However, limited reports are available on the
QTLs and genes controlling Striga resistance in maize. In a recent study by Adewale et al. [44]
to identify molecular markers linked to S. hermonthica resistance in maize, 24 SNPs significantly
associated with S. hermonthica resistance indicator traits under artificial S. hermonthica infestation were
detected. The authors also identified four candidate genes on chromosomes 3, 5, 9 and 10, with
functions closely associated with maize plant defense mechanisms against S. hermonthica parasitism.
Identification of QTLs linked to S. hermonthica resistance followed by gene introgression into elite
genetic backgrounds, has the potential to reduce yield losses due to Striga and will ultimately provide
solid foundation for improving Striga resistance [45].

The objectives of this study were to identify QTL and underlying candidate genes conferring
resistance/tolerance to S. hermonthica in maize using F2:3 biparental mapping population derived
from a cross between a Striga resistant inbred line, TZEEI 79 and Striga susceptible inbred TZdEEI 11.

2. Materials and Methods

2.1. Germplasm and Phenotyping

Based on the reports of previous studies, two extra-early maturing yellow inbred lines, TZEEI 79
(Striga resistant/tolerant) and TZdEEI 11 (Striga susceptible) were selected as parents to generate the F2:3

progenies used in the present study [1]. TZEEI 79 is an outstanding S. hermonthica resistant/tolerant,
drought and low-soil N tolerant inbred line developed in the IITA-MIP from the broad-based
S. hermonthica resistant/tolerant as well as drought and low-soil N tolerant population, TZEE-Y Pop
STR C0. TZEEI 79 has significant positive GCA (general combining ability) for grain yield as well as
significant negative GCA effects for Striga damage and Striga emergence counts under Striga infestation
and has been extensively used in the IITA hybrid program as an important resource for developing
high-yielding, multiple stress tolerant hybrids as well as an efficient tester for classifying other inbreds
into heterotic groups [46]. Crosses were made between TZEEI 79 and TZdEEI 11 designated as P1

and P2 respectively, to generate 220 F1 progenies. The F1 progenies and the parental lines were
planted, and leaf samples were collected at 3 weeks after planting. Verification of the parental type
alleles (quality control analysis) was carried out on the F1 progenies prior to advancement to F2.
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The F1 progenies were screened using two SSR primers (bnlg 182 and umc 1568) which were found
to be polymorphic between the two parents. The analysis identified 170 true-to-type F1 hybrids which
were advanced to F2. The 170 true-to-type F2 ears were planted ear-to-row and 194 F2 individuals
which were randomly selected and selfed were used in the present study.

The F2:3 progenies and the two parental lines were screened under artificial S. hermonthica
infestation at Mokwa (9◦18′ N, 5◦4′ E, 210 m above sea level, 1100 mm yearly rainfall, luvisol
soil) and Abuja (9◦16′ N, 7◦20′ E, 445 m above sea level, 1500 mm yearly rainfall, ferric-luvisol
soil) in the Southern Guinea savanna of Nigeria in 2018. At each experimental site, the trial was
laid out using randomized incomplete block design (14 × 14 lattice) with two replicates. The
experimental units were 3 m long single-row plots, with an inter-row spacing of 0.75 m and within-row
spacing of 0.4 m, to achieve a target population density of 66,666 plants/ha. The fields for artificial
S. hermonthica infestation at Mokwa and Abuja were treated with ethylene gas at 2 weeks before
planting to eliminate any potential Striga seeds present in the soil. The S. hermonthica seeds used
for the experiment were obtained from sorghum farms around the test locations at Abuja and Mokwa
in 2017. The artificial S. hermonthica infestation was carried out as proposed by the IITA Maize
Program [16]. Briefly, about a week before inoculation, the S. hermonthica seeds were carefully mixed
with finely sieved sand at the ratio 1:99 by weight to ensure rapid and uniform infestation. A standard
scoop calibrated to deliver approximately 5000 germinable seeds per hill was utilized for the artificial
infestation. Three maize seeds were planted per infested hill and the seedlings were later thinned to two
plants per stand at 2 weeks after emergence. Fertilizer application on the maize plots was delayed till
about 30 days after planting, in order to subject the maize plants to stress, a condition that was expected
to enhance strigolactone production. This ensured good germination of Striga seeds and attachment
of Striga plants to the roots of host plants. At this plant growth stage, 20–30 kg Nha−1, 30 kg each of P
and K were applied as NPK 15-15-15, taking into consideration the fertility status of the soil. Reduction
in the fertilizer application rate was important because Striga emergence decreases at high N rate [16].
At 10 weeks after planting, typical symptoms of Striga infestation on the host plants were observed,
such as chlorosis, leaf scorching (firing) and blotching, stunting, decrease in ear and tassel size, brown
necrotic spots, leaf wilting and rolling, stalk lodging, open-tip of ears at late growing stage, and
premature death of host plants. Host plant Striga damage severity was scored using a scale of 1 to
9. Rating scales 1–5 indicated resistance while 6–9 indicated susceptibility, where 1 = normal plant
growth, no obvious symptoms, and 9 = all leaves completely scorched, collapse of host plants and
no ear formation [16]. In addition, data were collected on Striga emergence count at 10 WAP as the
number of Striga plants thriving on the maize root system as well as ears per plant (EPP) by dividing
the total number of ears harvested per plot by the number of plants in a plot at harvest. Grain moisture
was determined using Kett moisture tester PM-450 and grain yield (kg/ha) was calculated using the
field weight of harvested ears per plot, adopting a shelling percentage of 80, adjusted to 15% moisture
content [47].

2.2. DArTseq Genotyping and SNP Data Filtering

Young and healthy leaf samples from single plants of the F2 individuals and bulk samples
from the parental lines were collected and frozen immediately after harvesting using liquid
nitrogen and thereafter stored at −80 ◦C. Genomic DNA extraction was carried out following
the DArT protocol (www.diversityarrays.com/files/DArT_DNA_isolation/). The extracted DNA
was assessed for quality by visualization on agarose gel (2% w/v) and the quantity was estimated
on NanoDrop-1000 spectrophotometer (NanoDrop, Wilmington, DE, USA) using the absorbance ratio
A260/A280 to determine the concentration (ng/μL) and purity level of the DNA.
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Genotyping of the 194 F2 individuals plus the two parents was carried out using DArTseq
technology [48,49]. Genome complexity reduction which involved the use of a combination of
two restriction enzymes (PstI–MseI) was used to create a genome representation of the analyzed
samples. All fragments generated were amplified and sequenced to identify the single nucleotide
polymorphisms (SNPs) using a proprietary analytical pipeline developed by DArT P/L. After a strict
quality control process, which included parameters such as call rate, data reproducibility (~20%
of samples replicated), and rate of monomorphism to eliminate monomorphic markers, 9951 SNPs
were extracted from the evaluated germplasm. The 9951 SNPs were filtered for unmapped markers,
duplicate markers and markers segregating between the Striga resistant and Striga susceptible parents.
A total of 1139 high-quality DArTseq markers distributed across the 10 maize chromosomes were
retained for the construction of genetic linkage map as well as the QTL mapping.

2.3. Data Analysis

The data recorded on emerged Striga counts and Striga damage severity scores were subjected to
natural logarithm transformation. Thereafter, data collected on grain yield, ears per plant, Striga damage
as well as Striga emergence counts were tested for normality using Shapiro–Wilk’s (W) test [39,50]
before analysis of variance. Box plots were made to visualize the distributions of grain yield and other
traits under each research environment using ggplot2 library [51]. Analysis of variance was conducted
across research environments using the general linear model procedure (PROC GLM) implemented
in the Statistical Analytical System (SAS), version 9.3 [52]. In the analysis, environment, replications
(environments), blocks (replications × environments) were considered as random and the F2:3 families
(genotypes) as fixed effects. Estimates of broad sense heritability of the traits (H2) across research
environments were computed on a family-mean basis as proposed by Holland et al. [53], using
the following formula:

H2 =
σ2

g

σ2
g +

σ2
ge
e + σe

re

where σ2
g = variance component due to the genotypes, σ2

ge = genotype × environment variance,
σe = experimental error variance; e = number of environments, and r = number of replications
within environment.

Correlation coefficients were estimated among the traits with the adjusted means of the F2:3

families using the Ggally function implemented in GGally package [54]. Furthermore, the mixed linear
model (MLM) established in META-R software [55] was used to compute the best linear unbiased
estimates (BLUEs) for each genotype in each and across environments which were for the QTL analysis.
The R/qtl was used to construct a linkage map [56]. Markers that were identical across all genotypes
were identified and eliminated as duplicates. Furthermore, χ2-test for goodness-of-fit (p ≤ 0.0001)
was used to identify markers with distorted segregation patterns [50,57,58]. Markers with significant
deviation from the expected Mendelian segregation ratio (1:2:1) for F2:3 population were excluded
from the analysis, resulting in a total of 1139 SNP markers used for the genetic map construction
and QTL analysis.

2.4. QTL Analysis and Candidate Gene Identification

Quantitative trait loci (QTL) mapping for each and across environments was carried out for
four Striga resistance/tolerance adaptive traits (grain yield, Striga damage at 10 WAP, emerged Striga
counts at 10 WAP and ears per plant (EPP)), using R/qtl package with the composite interval mapping
(CIM) algorithms as proposed by Wang et al. [50]. The statistical significance of the QTL was assessed
using permutation tests (1000 replications) for all traits. A logarithm of odds (LOD) of 3.0 was set
through the permutation test to identify significant QTLs for the traits [59]. The additive effects and
proportion of phenotypic variance explained (PVE) by each QTL were estimated using the “fitqtl”
function of R version 3.3.4. The sign of the effect of each QTL was used to identify the origin
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of the favorable alleles [60]. The potential locations of the QTLs were described according to their LOD
peaks and their surrounding regions. Identified QTLs were named based on conventions method
described by Bo et al. [61]. For example, qepp-2 represented the QTL identified for number of ears per
plant on chromosome 2. Putative candidate genes were searched within a 2.0 Mb interval downstream
and upstream of the significant associated SNPs using the MaizeGDB database version (RefGen_v4).

3. Results

3.1. Phenotypic Analysis of Grain Yield and Other Striga Resistance Adaptive Traits

The 194 F2:3 families and the two parental lines were evaluated under artificial Striga infestation
to assess variation in their level of resistance. The distributions of grain yield, Striga damage, number
of emerged Striga plants as well as ears per plant in the F2:3 population are displayed in Figure 1.
Significant variation was detected among the genotypes under each and across research environments
(Figure 1, Table S1). The performance of the genotypes (F2:3 families and the parental lines) for Striga
emergence count and ears per plant were not significantly influenced by the environment whereas grain
yield and Striga damage displayed significant genotype × environment interactions. The two parental
lines TZEEI 79 and TZdEEI 11 differed significantly and consistently in their performance under
artificial Striga infestation, and phenotypic values for each trait of segregating population displayed
wide ranges (Table 1). Transgressive segregation was observed for all traits in that some of the F2:3

families showed higher and lower levels of grain yield, Striga damage, number of emerged Striga plants
and ears per plant compared to the parental lines (Table 1). The Striga resistant inbred line TZEEI 79
exhibited high grain yield and ears per plant as well as reduced Striga damage and Striga emergence
count whereas the Striga susceptible line TZdEEI 11 showed significantly lower grain yield and ears
per plant as well as increased Striga damage and emergence count. Grain yield (kg/ha) across the F2:3

population varied from 1070.1 to 4113.9, with a mean of 2439.2 (Table 1). In addition, individual means
varied from 0.5 to 1.4, 2.4 to 7.5, 0.4 to 3.7 for ears per plant, Striga damage and Striga emergence count,
respectively. Broad-sense heritability estimates of the traits derived from the variance components
varied from 0.47 for Striga damage to 0.70 for ears per plant. The normality tests by Shapiro–Wilk
(W) revealed that the distributions of grain yield and Striga damage phenotypic data were normally
distributed while those of Striga emergence counts and ears per plant were not (Table S2). High W-test
values were obtained for all studied traits ranging from 0.97–0.99 (Table S2). Correlation analysis
revealed significant and positive correlations between number of ears per plant and grain yield whereas
negative and significant correlations were observed between the ears per plant and Striga damage
as well as between Striga damage and grain yield (Figure 2).
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Figure 1. Box plots showing the distribution of (A) grain yield (YIELD, t/ha), (B) emerged Striga
plants (ESP), (C) Striga damage rating (SDR) and (D) number of ears per plant (EPP) under artificial
Striga infestation at Mokwa (MK) and Abuja (AB) in 2018. The points represent the F2:3 families
and the parental genotypes.

Table 1. Descriptive statistics of Striga resistance indicator traits of parents and F2:3 population derived
from the cross between TZEEI 79 × TZdEEI 11 across Striga-infested environments.

Grain Yield, kg/ha Ears per Plant Striga Damage Striga Count

Parents
TZEEI 79 2517.5 0.9 2.5 0.5

TZdEEI 11 1485.9 0.8 7.0 3.2

F2:3 population
Range 1070.1−4113.9 0.5−1.4 2.4−7.5 0.4−3.7

Mean ± SE 2439.2 ± 578.9 0.9 ± 0.14 4.6 ± 0.7 2.5 ± 0.5
H2 0.49 0.70 0.47 0.48

CV (%) 25.2 21.3 18.2 25.4

H2—broad sense heritability, CV—coefficient of variation.
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Figure 2. Correlation between grain yield and other Striga resistance indicator traits in an F2:3 mapping
population derived from TZEEI 79 × TZdEEI 11 under artificial Striga infestation. The axis displayed
the range of values obtained for each trait; black circles represent the most predominant values for
each trait among the genotypes while the red lines represent the direction of the relationship between
two traits. ** = 0.01 and indicates highly significant.

3.2. Linkage Map

A genetic linkage map containing 1139 SNPs mapped on the 10 maize chromosomes was
constructed (Figure S1, Table 2). The resulting map spanned a total genetic distance of 2016 cM,
with mean interlocus distance of 1.70 cM. The average genetic distances between successive markers
ranged from 0.86 cM to 11.86 cM for chromosomes 1 and 7 respectively.

Table 2. Summary statistics of the linkage map.

Linkage Group Number of Markers Genetic Length (cM)
Average Marker

Interval (cM)

1 349 304.3 0.86
2 188 229.3 1.22
3 148 224.5 1.52
4 73 243.0 3.36
5 167 221.7 1.30
6 15 167.4 7.69
7 16 178.4 11.86
8 46 160.1 3.37
9 28 139.2 4.74
10 109 148.1 1.36

Total 1139 2016.0 1.70
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3.3. QTL Detection and Identification of Potential Candidate Genes

Through the QTL analysis, a total of 12 QTLs with significant LOD score ≥ 3.0, were identified
for the four Striga resistance indicator traits using the integrated genetic map and mean phenotypic
data across research environments (Table 3). The 12 QTLs identified included three for grain yield,
five for ears per plant, three for Striga damage and one for Striga emergence counts. The proportion
of phenotypic variation explained by the QTLs varied from 2.0% for qepp-2.1 to 13.5% for qepp-1.
Three QTLs qgy-1.1, qgy-2.1 and qgy-7 detected for grain yield explained 5.6, 10.3 and 2.3% phenotypic
variation, respectively. Furthermore, five QTLs qepp-1, qepp-2.1, qepp-3, qepp-7, and qepp-8.1 were
identified for ears per plant, explaining phenotypic variation ranging from 2.0 to 13.5%. Similarly, QTLs
qsd-2, qsd-5.1 and qsd-7 detected for Striga damage displayed phenotypic variance of 8.0, 3.0 and 3.2
respectively. The only QTL (qsc-3.1) identified for Striga emergence count had PVE of 3.1. The QTL qsd-7
and qepp-7 were detected at the same position for Striga damage and ears per plant. Similarly, qgy-2.1
and qsd-2 detected for grain yield and number of emerged Striga plants were consistently identified
at the same position in each of the two locations. Three major QTL genomic regions were detected
on chromosomes 1, 2, and 8 with flanking marker intervals 216–226 cM, 134–156 cM and 35–38 cM,
respectively (Figure S2). In all cases, favorable alleles for Striga resistance/tolerance were contributed
by the Striga resistant inbred line TZEEI 79.

A total of 116 protein coding genes were identified within 2.0 Mb interval downstream
and upstream of the significantly associated SNPs (Table S3). Of the 116 candidate genes, 17
key candidate genes associated with the identified QTL for Striga resistance/tolerance indicator
traits under artificial Striga infested environments are presented in Table 4. For grain yield,
the qgy-1.1 was found associated with GRMZM2G408305 which encodes ARM repeat superfamily
protein as well as GRMZM2G072376 which encodes bHLH-transcription factor 56. The QTL qgy-7,
qepp-7 and qsd-7 were linked to GRMZM6G199466 (hsp3—heat shock protein3), GRMZM2G008234
(ereb114—AP2-EREBP-transcription factor 114) as well as GRMZM2G044194 (phytosulfokine peptide
precursor1). Similarly, for ears per plant, qepp-1 was found associated with GRMZM2G324999
which encodes the WRKY-transcription factor 25; qepp-2.1 was associated with GRMZM2G174784
(EREB197—putative AP2-EREBP transcription factor superfamily protein), GRMZM2G174917
(ereb47—AP2-EREBP-transcription factor 47) and GRMZM2G131961 (bzip27—bZIP-transcription
factor 27); qepp-3 was linked to Zma-MIR167g which promotes lateral root development in plants.
On chromosome 8, QTL qepp-8.1 detected for ears per plant was linked to the genes GRMZM2G051528
which encodes myb transcription factor95 and GRMZM2G053503 which encodes ethylene-responsive
factor-like protein. For Striga damage, QTL qsd-5.1 was associated with genes GRMZM2G059851 which
encodes the heat shock factor protein as well as GRMZM2G099334 which encodes myb3—WD40 repeat
protein. The QTL qsc-3.1 detected for Striga emergence count was found associated with the genes
GRMZM2G054050 which encodes multicopper oxidase protein, GRMZM2G162709 (MYB-transcription
factor 137), and GRMZM2G340342 which encodes the ARM repeat superfamily protein.
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Table 3. Summary of quantitative trait loci (QTLs) mapped in the F2:3 population derived from TZEEI
79 × TZdEEI 11 under artificial Striga infestation.

Trait Location QTL Chr
Position

(cM)
Flanking
Markers

LOD Add Dom
PVE
(%)

Grain yield Across qgy-1.1 1 37.6 S1_21989679,
S1_39100143, 4.4 88.34 30.58 5.6

qgy-2.1 2 141.0 S2_133867986,
S2_15644237 5.5 116.80 0.49 10.3

qgy-7 7 28.4 S7_28123354,
S7_39973949 3.8 36.60 14.29 2.3

AB qgy-1.2 1 23.0 S1_19567556,
S1_26003993 3.2 154.78 −52.26 0.8

qgy-2.1 2 141.0 S2_133867986,
S2_15644237 4.8 196.49 −43.08 1.0

MK qgy-2.2 2 141.0 S2_133867986,
S2_149550704 4.5 2.80 −1.94 6.4

qgy-7 7 28.4 S7_2840233,
S7_39973949 3.8 1.73 −0.49 4.1

qgy-8 8 93.6 S8_89593967,
S8_96110467 4.5 1.93 4.43 9.6

Ears per
plant Across qepp-1 1 219.2 S1_216043878,

S1_225511262 5.8 0.03 0.03 13.5

qepp-2.1 2 62.7 S2_5979544,
S2_63035407 5.8 0.04 0.02 2.0

qepp-3 3 122.0 S3_121468077,
S3_122362644 4.3 −0.04 0.03 6.0

qepp-7 7 28.4 S7_28123354,
S7_39973949 6.1 0.04 −0.01 3.4

qepp-8.1 8 37.5 S8_34609716,
S8_37717543 4.5 0.01 0.01 10.0

AB qepp-2.2 2 151.9 S2_147705224,
S2_154942934 3.8 0.04 0.02 0.3

MK qepp-2.1 2 62.7 S2_57731037,
S2_68592918 3.4 3.63 0.61 1.2

qepp-7 7 28.4 S7_28123354,
S7_39973949 3.2 1.75 −1.31 3.2

qepp-8.2 8 34.6 S8_30333465,
S8_37493871 3.5 2.07 −2.31 5.5

Striga
damage Across qsd-2 2 141.0 S2_133867986,

S2_147705224 5.0 −0.13 0.05 8.0

qsd-5.1 5 172.0 S5_171268215,
S5_188880765 4.3 0.11 −0.03 3.0

qsd-7 7 28.4 S7_28123354,
S7_39973949 3.0 −0.04 0.04 3.2

AB qsd-2 2 141.0 S2_140980014,
S2_149550704 3.0 −0.18 0.08 0.3

qsd-5.2 5 63.5 S5_5997392,
S5_67117772 4.4 −0.03 −0.04 3.0

MK qsd-2 2 141.0 S2_133867986,
S2_149550704 3.0 0.23 0.11 5.2

Striga
emergence

count
Across qsc-3.1 3 23.9 S3_21323318,

S3_28235766 5.8 −0.09 0.03 3.2

AB qsc-3.2 3 156.7 S3_152189313,
S3_158981913 3.0 −0.02 0.03 2.0

AB—Abuja, MK—Mokwa, Across—across the two Striga infested environments; Add—Additive effect,
LOD—Logarithm of odds, PVE—proportion of phenotypic variance explained by single QTL. Grain yield (kg/ha),
ears per plant (number of ears per plant), Striga damage (based on rating scale 1–9) and Striga emergence count
(number of emerged Striga plants).
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4. Discussion

Marker-assisted selection (MAS) is an efficient approach for increasing the accuracy and efficiency
of selection using markers tightly linked to genes or QTLs of interest, to complement phenotypic
selection [40,62]. The identification of QTLs associated with Striga resistance/tolerance would facilitate
rapid development of Striga resistant/tolerant maize genotypes using MAS, due to the polygenic
nature of host–parasite relationship and its interaction with environmental factors [63]. The normal
distribution observed for grain yield and Striga damage in the present study is a result of the highly
diverse genotypes segregating in the mapping population [64]. The selection of parental lines
with varying levels of resistance to Striga allowed sufficient segregation of the traits in the population.
The distribution of measured traits in the F2:3 population indicated the existence of transgressive
segregation (i.e., progenies performing outside the range of the parental genotypes). Transgressive
segregation has been observed in populations screened under low N [65] and Striga infestation [66,67].
This phenomenon results from the accumulation of favorable and unfavorable alleles resulting
from both parents. Moderate-to-high broad sense heritability estimates (0.47–0.70) observed for grain
yield and other Striga resistance/tolerance indicator traits confirmed that high-quality phenotypic data
were used for the genetic analysis. The moderate-to-high heritability estimates obtained in the present
study implied that the observed genetic variation among the genotypes was strongly influenced by
genetic factors, and that the Striga resistance indicator traits could be effectively improved in Striga
resistance breeding programs. Previous studies reported moderate-to-high heritability values, ranging
from 0.53–0.84 for Striga resistance/tolerance adaptive traits [68,69].

Linkage map density and resolution largely depend on population size and type, marker density,
as well as the accuracy of genotyping [70,71]. The F2:3 mapping population, developed from the cross
between inbred TZEEI 79 (Striga resistant) and inbred TZdEEI 11 (Striga susceptible) was used
to investigate the inheritance of Striga resistance/tolerance. The QTL mapping in the TZEEI 79 x
TZdEEI 11 F2:3 mapping population identified twelve QTLs for the Striga resistance indicator traits
across the two research environments. These QTLs explained moderate variation of the phenotype,
with values ranging from 2.0% for qepp-2 to 13.5% for qepp-1. This finding confirmed the complexity
of the genetic basis of S. hermonthica resistance [13,44]. The 12 QTLs identified included three for grain
yield, five for ears per plant, three for Striga damage as well as one for Striga emergence counts.
The identified QTLs were located on chromosomes 1, 2, 3, 5, 7 and 8. Similarly, Adewale et al. [44]
identified markers linked to Striga resistance indicator traits in maize on chromosomes 1, 3, 5, 7
and 8. Samayoa et al. [72] found QTLs associated with Mediterranean corn borer resistance in maize
on chromosomes 1, 5 and 6 using Recombinant Inbred Lines (RIL) population obtained from the cross
B73 × CML103. In a study by Haussmann et al. [43], five genomic regions (QTLs) linked to Striga
resistance in sorghum were reported on chromosomes 1, 2, 5 and 6. Generally, the QTLs mapped
in the present study provided more information on the genetic basis of Striga resistance/tolerance
in maize, indicating that the resistance/tolerance to Striga is quantitatively inherited. The additive
effects of the identified QTLs indicated that favorable alleles for each QTL were contributed by either
the resistant or susceptible parent, depending on the signs of the QTL additive effects. The resistant
parental inbred TZEEI 79 contributed favorable alleles for resistance/tolerance to Striga for most
of the identified QTLs. Estimates of genetic effects of the QTL indicated that additive gene action was
preponderant in most cases for Striga resistance indicator traits.

The QTL analysis in the F2:3 mapping population identified three major QTL (qepp-1, qgy-2.1
and qepp-8.1) genomic regions on chromosomes 1, 2, and 8 with flanking marker intervals of 216–226
cM, –156 cM and 35–38 cM, respectively. Interestingly, the QTLs detected on chromosome 2 were
found to be consistent across environments for grain yield and Striga damage. The QTL qgy-2.1
identified for grain yield on chromosome 2 at 141.0 cM was found to be pleiotropic with QTL qsd-2
detected for Striga damage. Similarly, QTL qgy-7 at 28.4 cM detected for grain yield on chromosome 7
was pleiotropic with the QTL for Striga damage and number of ears per plant. The co-localization
of QTLs for these traits may reflect the high correlation coefficients observed among the different Striga

184



Agronomy 2020, 10, 1168

resistance indicator traits. These two QTLs would be invaluable genomic resources for fine mapping
and candidate gene discovery. The validation of a common QTL region in different environments
and/or genetic backgrounds is important for application in MAS to improve breeding efficiency [73].
The QTL qgy-2.1 and qsd-2 from TZEEI 79 located on chromosome 2 (133.9–156.4) and identified
in the two test locations in this study have not been previously reported. This QTL could be a hot
spot for genes for genetic improvement of Striga resistance in maize. Overlapping regions of QTL
on chromosome 7 (28.1–39.9) for Striga damage and ears per plant were identified in the present study.
This common region could also provide better prospects for breeders to enhance resistance to Striga
parasitism in maize using MAS.

Putative candidate genes associated with some of the identified QTLs for Striga resistance
indicator traits are presented in Table 4. The gene model GRMZM2G054050 (qsc-3.1), associated
with Striga emergence count encodes a multicopper oxidase Lpr-2 (low phosphate root 2) protein,
whose homologous gene, Lpr-1 has been found [74,75] to regulate primary roots length under Pi
(inorganic phosphate) deficient conditions. Lpr-1 and Lpr-2 play important roles in Pi sensing at root
tips [75]. Similarly, the gene model GRMZM2G044194 linked to QTLs for grain yield (qgy-7), ears
per plant (qepp-7), and Striga damage (qsd-7) were associated with the psk1 (phytosulfokine peptide
precursor1) gene. PSK genes have been reported to promote cell growth especially in the quiescent
centre cells of the root apical meristem [76]. Similarly, the gene model GRMZM2G408305 (qgy-1.1)
associated with grain yield encodes the ARM family proteins which promote lateral root growth
in plants [77]. QTL qepp-3 located on chromosome 3 was found to be associated with MIR167g.
In Arabidopsis, soybean and maize, miR167 has been reported to play important roles in lateral
root growth and architecture [78]. Under plant nutrient deprivation conditions such as Striga
parasitism, plants alter their root systems to discover heterogeneous soil regions for nutrients.
The branching of secondary roots from primary roots in plants is one of the processes through
which plants efficiently obtain nutrients from the soil. The QTL qsd-5.1 was associated with the gene
GRMZM2G059851 encoding the heat-shock factor protein, HSF 6. Heat-shock proteins are ubiquitous
proteins responsible for protein folding, assembly, translocation as well as degradation in response
to biotic stresses, depending on the nature of the causal organisms and plant genotypes (either
susceptible or resistant), as well as plant’s growth stage [64,79]. In addition, Ng et al. [80] identified
AP2/ERF, MYB, bHLH, WRKY as well as bZIP as major transcription factor families involved in
plant defense signalling. In a recent study, Adewale et al. [44] identified four putative candidate
genes GRMZM2G060216, GRMZM2G103085, GRMZM2G057243 and GRMZM2G164743 located
on chromosomes 3, 5, 9 and 10, having functions related to plant defense mechanisms under
Striga infested conditions. The identified candidate genes in the present study differ from those
earlier reported. The candidate genes identified from the dissection of qsc-3.1, qgy-1.1, qepp-3, and
qsd-5.1 are suggestive of Striga resistance response mechanisms. The QTL identified in the present
study would be validated in different genetic backgrounds and in different environments to verify
the reproducibility for effective use in MAS breeding for resistance to Striga. Overall, the QTL/markers
with significant association to S. hermonthica-resistant adaptive traits would be useful as potential
candidate loci for the enhancement of Striga resistance in maize. The application of these markers
for selection would lead to the elimination of the bulk of Striga susceptible genotypes, which in turn
may significantly reduce the number and cost of screening required to improve maize for Striga
resistance. Based on our results, we initiated a program aimed at developing extra-early mapping
populations from different genetic backgrounds so that putative markers identified in our studies
could be validated and deployed in maize breeding programs through MAS.

5. Conclusions

A total of 12 QTLs associated with S. hermonthica resistance/tolerance traits in maize were identified
across Striga infested environments in the present study. The identified QTLs displayed varying
contributions to phenotypic expression and are in regions that play roles which may be associated
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with plant defense response under Striga infestation in maize. The co-localization of QTL for grain
yield and other traits indicated strong associations between the traits. The QTLs mapped in this study
could be candidates for marker-assisted introgression of Striga resistance/tolerance genes in maize,
after validation in different genetic backgrounds and in different environments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/8/1168/s1,
Table S1: Mean squares of F2:3 mapping population evaluated under artificial Striga infestation at both Abuja
and Mokwa in 2018 growing season. Table S2: Shapiro-Wilk’s normality tests for Striga resistance/tolerance
indicator traits for F2:3 population derived from the cross between TZEEI 79 (Striga resistant) and TZdEEI 11 (Striga
susceptible). Table S3: Candidate genes associated with the identified QTL for key Striga resistance/tolerance
indicator traits under artificial Striga infestation. Figure S1: Linkage map of F2:3 mapping population based on
1139 DArTseq markers. Left bar of the linkage map indicates cM distance while right bar of linkage map displayed
the marker names. Red bars and letters indicate QTL identified across Striga infested environments. Figure S2.
Major QTL identified for Striga resistance in the extra-early yellow mapping population. A likelihood of odds
(LOD) scan showing the QTL identified on chromosomes 1, 2, and 8 explaining ≥ 10% phenotypic variation.
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Abstract: Persimmon (Diospyros kaki Thunb) species is a hexaploid genotype that has a morphologically
polygamous gyonodioecious sexual system. D. kaki bears unisexual flowers. The presence of male
flowers resulted in the presence of seeds in the varieties. The fruits of persimmon are classified
according to their astringency and the pollination events that produced seeds and modify the levels of
astringency in the fruit. The presence of seeds in astringent varieties as pollination variant astringent
(PVA), pollination variant non-astringent (PVNA) and pollination constant astringent (PCA) resulted
in fruits not marketable. Molecular markers that allow selection of the varieties according to the type
of flowers at the plantlet stage would allow selection of seedless varieties. In this study, a marker
developed in D. lotus by bulk segregant analysis (BSA) and amplified fragment length polymorphism
(AFLP) markers, named DlSx-AF4, has been validated in a germplasm collection of persimmon,
results obtained agree with the phenotype data. A second important trait in persimmon is the
presence of astringency in ripened fruits. Fruits non-astringent at the ripen stage named pollination
constant non-astringent (PCNA) are the objective of many breeding programs as they do not need
removal of the astringency by a postharvest treatment. Astringency in the hexaploid persimmon is a
dominant trait. The presence of at least one astringent allele confers astringency to the fruit. In this
paper we checked the marker developed linked to the AST gene. Our goal has been to validate both
markers in germplasm from different origins and to test the usefulness in a breeding program.

Keywords: persimmon; sex determination; fruit astringency; molecular markers

1. Introduction

Persimmon (Diospyros kaki Thunb) species is a hexaploid genotype that has a morphologically
polygamous gyonodioecious sexual system [1]. D. kaki bears unisexual flowers, as do other Diospyros
species. There are genotypes that bear only female flowers and genotypes bearing male and female
flowers [2]. Furthermore, varieties bearing only male flowers were described in China [3] and occasional
male flower formation was reported in varieties that usually bear only female flowers [4]. In addition to
the unisexual flowers, some varieties or genotypes bear hermaphrodite flowers; however, these flowers
do not function fully as female flowers [5]. Most of the commercial varieties present only female
flowers [6], however the presence of the male flowers type is important in two scenarios: first when
the production of seeded fruits is convenient and second in breeding activities in which crosses
are requested.

The fruits of persimmon are classified according to their astringency and the pollination events
that resulted in different types of fruits. The PCNA (pollination constant non-astringent) varieties
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are always not astringent at maturity regardless of pollination events and the presence or absence of
seeds in the fruit. The presence of male flowers in these varieties is most convenient since it allows
pollination and produces seeded fruits that increase the fruit size and weight. In Japan, the presence of
seeds in the fruit does not affect the consumers demand [7]. However, in Europe and western countries
consumers prefer seedless fruits.

Three additional variety types can be distinguished: PVNA-type (pollination variant
non-astringent), which are non-astringent varieties when seeds are present; PVA-type (pollination
variant astringent), which are astringent varieties in most parts of the fruit and non-astringent around
the seeds if they are present, and PCA-type (pollination constant astringent), which are astringent
varieties regardless the presence of seeds. The loss of astringency in these types of persimmons is
associated to the ability of the seeds to produce acetaldehyde. This production resulted in browning of
the flesh around the seeds (Figure 1), which interfere with the postharvest treatment for removing
the astringency in the fruit, all together the PVA and PCA type fruits are unmarketable if they are
pollinated and the fruits present seeds [8,9]. In PVA and PCA varieties it is crucial to avoid pollination,
hence the presence of male flowers in the variety and in the vicinity of the crop should be avoided.
The ability of the production of male flowers is a genetic trait that should be determined in the varieties
for avoiding seeds in astringent varieties or improving the presence of them in non-astringent varieties.

 

Figure 1. Phenotypes of the traits selected. (A,B) flowers from the variety ‘Cal Fuyu’, female and male
respectively and (C,D) results of pollination on astringent fruits from ‘Rojo Brillante’ a pollination
variant astringent (PVA) variety: (C) parthenocarpic non-pollinated fruits and (D) pollinated fruits in
which presence of seeds resulted in no marketable fruits.

Elucidation of the genetic and molecular basis of sex expression in D. kaki leading to the
development of molecular markers would allow selection of the varieties according to the type of
flowers, being a great contribution for persimmon production and Diospyros breeding. The hexaploidy
of D. kaki made elucidation of this question more difficult than in diploid genotypes. Since the genus
includes more than 700 species with different levels of polyploidy, the diploid Diospyros lotus was
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used for investigation of the sex expression into the genus [10]. These authors described the model of
inheritance and developed molecular markers associated to sex expression. Later small RNA acting as
a sex determinant was identified [11]. Development of markers used the bulk segregant analysis (BSA)
and amplified fragment length polymorphism (AFLP). An AFLP marker identified as DlSx-AF4 was
sequence-characterized and converted into the sequence characterized amplified region (SCAR) [10].
In this study the marker has been tested in a germplasm selection of varieties phenotyped for sex
expression and a backcross population obtained at Instituto Valenciano de Investigaciones Agrarias
(IVIA). The results provide evidence of the usefulness of molecular marker assistance in identifying
the genetic potential of production of male flowers in persimmon, an important trait in breeding.

PCNA varieties are highly desired because their mature fruits are not astringent, as they stop
accumulating tannins at early steps of fruit development [12]. In Japanese varieties, the PCNA trait is
recessive to the non-PCNA trait [13] and is controlled by a single locus, AST [14]. Due to persimmon
being a hexaploid, the PCNA type should contain six recessive ast alleles [15]. In breeding programs
aimed at obtaining PCNA cultivars, the hexaploidy of persimmon along with the recessive inheritance
of the non-astringency trait led to breeders to develop crosses that involved only PCNA genotypes.
Consequently, several generations of crosses between PCNA genotypes along with the low genetic
diversity of this group of persimmons resulted in families with a high rate of inbreeding and plenty of
the problems derived from this fact. To avoid inbreeding, the programs need to use non-astringent
cultivars in the crosses, but the rate of PCNA obtained could be very low depending on the number of
dominant AST alleles carried by the parents selected. In a backcross BC1, the expected proportion of
PCNA offspring from a non-PCNA F1 parent with one dominant AST, two or three is 50, 20 or 5%,
respectively, under an autohexaploid model. In this context, it is of high interest to be able of selecting
PCNA types and non-PCNA types in the families obtained at the plantlet stage. The alternative is
to select the type of the fruits in the fields after a juvenile period of four years minimum, which is
extremely costly and has a low efficiency.

Many efforts have been made to target the region linked to AST [14,16–18]. The most promising
results were obtained in a study that identified a region tightly linked to the AST gene [19]. These
authors developed a multiplex PCR method based on primers developed from the region identified,
highly reliable that allowed detecting recessive and dominant alleles. These primers have been used to
test a group of varieties [15]. The region contains microsatellites that allow distinguishing 12 different
alleles from 14 non PCNA genotypes. More than 200 accessions and several crosses between PCNA and
non-PCNA genotypes were analyzed [20]. Based on the number of fragments detected per individual
these authors were able to determine the dominant (AST) and recessive (ast) alleles in the hexaploid
persimmon germplasm.

Using this methodology, in this paper we applied molecular assisted selection for discriminate
PCNA cultivars and seedlings from different segregated populations obtained in the frame of the IVIA
breeding program. The markers for both traits were developed from Japanese varieties, our goal is to
validate the markers in a set of germplasm from different origins and different type of astringency and
applied them to the IVIA breeding program, in which the involvement of varieties from Mediterranean
origin is relevant.

2. Materials and Methods

2.1. Plant Materials

2.1.1. Validation of AST and DlSx-AF4S Markers

Molecular markers developed for sex expression and type of astringency in persimmon were
studied in a set of 42 accessions (Table 1) from the persimmon germplasm collection maintained
at IVIA, Moncada, Spain (39.588741, −0.394848). The accessions were phenotyped regarding the
presence of male flowers. The phenotype of astringency type was known from previous germplasm
characterization [21,22].
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2.1.2. Marker Assisted Selection

Marker assisted selection was made on 12 segregated populations obtained from (‘Rojo Brillante’
× ‘Cal Fuyu’) × ‘Cal Fuyu’ in 2016. The backcross was made using ‘Rojo Brillante’ a high-quality
variety astringent (PVA) and ‘Cal Fuyu’ a PCNA variety with male flowers. Both parents were selected
based on agronomic characteristics and adaptability to the Mediterranean environment [21].

Segregated populations screened and individuals per population are described in Table 2.
All progenies and seedlings obtained were maintained in orchards at CANSO’s Experimental Station,
L’Alcudia, Valencia, Spain (39.189086, −0.542067).

Table 2. Results of genotypes analyzed by molecular markers. Number of offspring with the astringent
allele (AST), with the DlSx-AF4S allele, with AST + DlSx-AF4S (not selected) and number of offspring
with the absence of both markers (genotypes selected).

Progeny Total

Number of Offspring

AST + D1Sx-AF4S +
AST +

D1Sx-AF4S +
AST −

D1Sx-AF4S −
F-1.34 99 61 (61.6) 39 (39.4) 22 (22.2) 21 (21.2)
F-1.50 65 39 (60.0) 43 (66.2) 28 (43.1) 11 (16.9)
F-1.52 47 13 (27.7) 24 (51.1) 4 (8.5) 14 (29.8)
F-2.27 5 4 (80.0) 3 (60.0) 3 (60.0) 1 (20.0)
F-4.19 11 8 (72.7) 9 (81.8) 7 (63.6) 1 (9.1)
F-4.24 61 20 (32.8) 31 (50.8) 10 (16.4) 20 (32.8)
F-4.35 38 14 (36.8) 9 (23.7) 4 (10.5) 19 (50.0)
F-4.49 52 14 (26.9) 17 (32.7) 3 (5.8) 24 (46.2)
F-5.32 12 10 (83.3) 6 (50.0) 4 (33.3) 0 (0.0)
F-5.34 27 11 (40.7) 16 (59.3) 5 (18.5) 5 (18.5)
F-5.36 17 12 (70.6) 9 (52.9) 4 (23.5) 0 (0.0)
F-5.41 7 5 (71.4) 3 (42.9) 3 (42.9) 2 (28.6)
total 441 211 (47.8) 209 (47.4) 97 (22.0) 118 (26.8)

Numbers in parentheses are the rate (%) of corresponding offspring in each progeny.

2.2. Methods

2.2.1. DNA Isolation

Young fully expanded leaves were collected from trees and kept at −20 ◦C until DNA isolation.
DNA was isolated according to the CTAB method described in [23] with minor modifications [24].

2.2.2. Molecular Markers Analysis

The capacity of producing male flowers was checked with the sequence characterized amplified
region (SCAR) marker ‘DlSx-AF4S’ [10], primers used were: forward (DlSx-AF4-3F; 5′-ACA TCC AAA
GTT CTG GAG AAT CA-3′) and reverse (DlSx-AF4-3R; 5′-ATT GGT GCT TGG TCA AAC ATA TC-3′).

Determination of PCNA genotypes used the primers described in [19] PCNA-F
(CCCCTCAGTGGCAGTGCTGC) and 5R3R (GAAACACTCATCCGGAGACTTC).

Polymerase chain reactions (PCRs) were performed in a final volume of 20 μL containing 1× of
DreamTaq Buffer (Thermo Fisher Scientific, Vilnius, Lithuania), 0.1 mM of each dNTPs (Promega,
Madison, WI, USA), 20 ng of genomic DNA and 1 U of DreamTaq polymerase (Thermo Fisher Scientific,
Vilnius, Lithuania). The PCR program consisted of pre-denaturation at 94 ◦C for 2 min; 35 cycles at
98 ◦C for 15 s, 60 ◦C for 20 s and 72 ◦C for 1 min; followed by a final extension at 72 ◦C for 10 min.
PCR products were separated by electrophoresis on 1.5% agarose gels in 0.5× TAE buffer and visualized
with GelRED® (Sigma-Aldrich, St. Louis, MI, USA).
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3. Results and Discussion

3.1. Marker Assisted Selection Validation: Production of Male Flowers

A set of accessions belonging to the persimmon germplasm bank were phenotyped for the
presence of male flowers and later genotyped with the marker DlSx-AF4S [10] to test the accuracy of the
marker for Molecular Assisted Selection (MAS). Results of the genotype agreed with the results of the
phenotype (Table 1), non-discrepancies were observed. The capacity of developing male flowers was
clearly stated by the presence of the amplified band (320 bp). Figure 2a shows the results on an agarose
gel of the presence of male flowers in the genotypes ‘Agakaki’, ‘Cal Fuyu’ and the selection ‘F-1.34′
from the IVIA breeding program. Total correlation between the phenotype and the presence/absence
of the band was obtained for all the genotypes studied (Table 1). This marker is a great advantage
in breeding programs in which astringent and non-astringent genotypes are involved. The presence
of male flowers in astringent varieties (PVNA, PVA and PCA) resulted in the presence of seeds in
the fruit. The loss of astringency in these types of persimmons is associated to the ability of the
seeds to produce acetaldehyde (Figure 3). Production of acetaldehyde is a quantitative trait in which
less production by the seed resulted in higher astringency on the pulp (PCA), and high production
resulted in low/none astringent flesh (PVNA) being PVA intermediate. This acetaldehyde production
resulted in browning of the flesh around the seeds, which interferes with the postharvest treatment
for removing the astringency in the fruit [25]. All together the PVA and PCA type fruits pollinated
are unmarketable. In the case of PVNA types in which the presence of seeds browned completely the
flesh (Figure 3), there are specific markets in which these varieties are accepted. However, in most
of the markets, the PVNA fruits are accepted with no seeds and after removing the astringency by
postharvest treatment. In all breeding programs that use astringent varieties, MAS for discriminating
male flowers is very important for avoiding self-pollination and/or mix of cultivars that can cross
pollinated among them and produced seeds. In breeding programs that involve non-astringent
varieties the discrimination of the presence of male flowers is necessary too. Some Japanese programs
look for varieties with male flowers and seeds that increase the size and setting of fruits, but in
western countries, where the presence of seeded fruits is not acceptable, the presence of male flowers
is discarded similarly to astringent varieties. Selection of this trait in persimmon species that have a
four-year juvenile period resulted in great interest to avoid plants in the fields that will be eliminated
in the future and, additionally, to avoid undesired pollination in the breeding plots.

Figure 2. PCR results by electrophoresis in an agarose gel (1.5%) vs. phenotype data; (A) DlSx-AF4S
PCR results. The (+) presence and (−) absence of male flowers from phenotype data; the DlSx-AF4S
marker is present in varieties ‘Agakaki’, ‘Cal Fuyu’ and F.1-34 in agreement with the phenotype; (B) AST
PCR results; (+) astringent fruits according to phenotype data and (−) non-astringent fruits (pollination
constant non-astringent (PCNA)) according to phenotype data. The AST marker was present in all
astringent varieties and absent in ‘Cal Fuyu’, a PCNA variety.
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Figure 3. Three types of astringent persimmon according to the amount of acetaldehyde produced by
the seed; (A) fruits of pollination constant astringent (PCA), PVA and pollination variant non-astringent
(PVNA; from right to left) and (B) distribution of condensed tannins, visualized by precipitation of
blue ferric chloride impregnated in a paper [25,26]. Fruits of PCA, PVA and PVNA (from right to left).

3.2. Marker Assisted Selection Validation: Selection of PCNA

In Japanese cultivars, the PCNA trait is recessive to the non-PCNA trait [13] and is controlled
by a single locus, AST [14]. Due to persimmon being a hexaploid, the PCNA type should contain
six recessive ast alleles [15]. Detection of at least one AST allele determines the astringency of fruit.
Selection of non-astringent fruits or PCNA are the objective in most of the persimmon breeding
programs currently active in the world [27–32]. In this study we validated the AST marker developed
in [19] for discrimination between PCNA genotypes and the different astringent types.

Validation of AST marker was carried out in a set of cultivars from the germplasm collection with
known astringency (Table 1). A total correlation between the phenotypic data of astringency and the
markers obtained in the genotypes analyzed was obtained. Figure 2b shows the PCR products of a set
of accessions. Two PVA cultivars ‘Rojo Brillante’ and ‘Tone Wase’, three PVNA cultivars ‘Agakaki’,
‘Castellani’, ‘Edoichi’ and ‘F-1.34′ showed a clear band for AST marker. The PCNA cultivar ‘Cal Fuyu’
showed no amplified product.

3.3. Marker Assisted Selection of Both Traits in the IVIA Breeding Program

After validation of the DlSx-AF4S and AST markers in a set of accessions phenotyped, we applied
both markers in the breeding program for selecting the individuals of several segregated populations
(Figure 4).

A total of 441 individuals belonging to 12 segregated populations obtained by a backcross that
consisted in (PVA × PCNA × PCNA) were evaluated (Table 2). The cross (PVA × PCNA) was
made using ‘Rojo Brillante’ a high-quality variety astringent and ‘Cal Fuyu’ a PCNA variety with
male flowers.
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Figure 4. PCR results from agarose gel electrophoresis of 16 backcross (BC) individuals genotyped
for AST and D1Sx-AF4S markers. (A) Presence of the marker (D1SX-AF4S) indicates ability for
developing male flowers; (B) Absence of the marker means absence of any astringent allele (AST),
which corresponds to a PCNA genotype The BC progenies are selected based on the absence of both
markers, which corresponds to PCNA types without capability of the development of male flowers.
Individuals 1, 4, 9 and 14 have been selected.

The astringency trait is a dominant marker and taking into account the hexaploidy of persimmon,
the number of PCNA genotypes obtained in crosses that involved astringent types depends on the
number of AST alleles present in the astringent parental. The validation of the AST marker was made
based on different segregated families by [33]. Identification of different AST alleles was made in a set
of cultivars by means of crosses with PCNA varieties, analysis of the segregation obtained and sequence
of the genomic region [15]. If a non-PCNA has a single A allele (Aaaaaa) and is crossed with a PCNA
individual (aaaaaaa), 50% of the offspring will be astringent. In the program the F1 seedlings obtained
and crossed with the PCNA ‘Cal Fuyu’ resulted in a different percentage of astringent genotypes.
It has been demonstrated that the number of PCNA obtained depends on the allelic dose of the F1

backcrossed [17]. In this study, the number of individuals per progeny was very low for studying
segregation ratios and inferred the number of A alleles in the F1 mothers. However, taking all the
tested BC1 seedlings together the rate of astringent genotypes was around 50%, which indicates that
the F1 group of maternal genitors might contain one AST allele on average.

Flower gender analysis revealed that around half of the genotypes analyzed have the capacity
to generate the male flower (47.4%). This proportion is as expected, since the crosses need always
a parent bearing male flowers. In the IVIA breeding program the presence of male flowers is a
discarded trait for all types of fruit. In astringent types as PCA, PVA and PVNA, the presence of male
flowers resulted in fruits pollinated and the production of seeds that brown the flesh and difficult
the postharvest treatment for removing the astringency. PCNA types are discarded as well because
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consumers do not accept seeds in the fruits and the presence of male flowers can pollinate astringent
fruits, affecting negatively the quality and marketability of them.

Combined results of both markers, AST positive (astringency of the fruit) and DlSx-AF4S positive
(presence of male flowers) resulted in a high number of discarded genotypes. In column (AST- and
DlSx-AF4S) from Table 2 we indicated the genotypes that will be selected according to our breeding
objectives. Only genotypes not astringent (PCNA type) and without male flowers will be selected
(absence of both markers), a total of 118 from 441 (26.8%). It is important to point out that the markers
segregated independently. According to the published genome of Diospyros oleifera [34], identified as
the diploid D. kaki ancestor, the DNA fragments from which the markers were derived are located in
different chromosomes. Therefore, the AST and D1Sx-AF4 markers must segregate independently.

The low rate of genotypes selected from the populations generated indicates the usefulness of
the MAS applied in persimmon breeding. We could select at a plantlet stage the genotypes that will
be planted in the fields for further agronomic selection. This MAS avoids keeping the future rejected
plants during 4 years in the experimental fields. In our case near to 75% of the genotypes obtained
can be discarded at the seedling stage in the greenhouse, indicating a high effectiveness of MAS in
persimmon breeding.

4. Conclusions

The markers DlSx-AF4, linked to the production of male flowers and AST linked to astringency of
the fruits, have been validated in a germplasm collection of persimmon. Although the markers were
developed from Japanese cultivars, the correlation between the phenotype and genotype was 100% in
germplasm from a different origin, which demonstrated the usefulness of the markers for selecting
these important traits. Both markers have been screened in different progenies from a backcross that
includes an astringent parent from non-Japanese origin. Results demonstrated that selection of both
traits combined resulted in a very low rate of selection. In a context of breeding programs that involve
astringent cultivars the MAS applied to discriminate PCNA genotypes is highly valuable.
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Abstract: Genomic prediction has enabled plant breeders to estimate breeding values of unobserved
genotypes and environments. The use of genomic prediction will be extremely valuable for
compositional traits for which phenotyping is labor-intensive and destructive for most accurate
results. We studied the potential of Bayesian multi-output regressor stacking (BMORS) model in
improving prediction performance over single trait single environment (STSE) models using a grain
sorghum diversity panel (GSDP) and a biparental recombinant inbred lines (RILs) population. A total
of five highly correlated grain composition traits—amylose, fat, gross energy, protein and starch,
with genomic heritability ranging from 0.24 to 0.59 in the GSDP and 0.69 to 0.83 in the RILs were
studied. Average prediction accuracies from the STSE model were within a range of 0.4 to 0.6 for all
traits across both populations except amylose (0.25) in the GSDP. Prediction accuracy for BMORS
increased by 41% and 32% on average over STSE in the GSDP and RILs, respectively. Prediction of
whole environments by training with remaining environments in BMORS resulted in moderate
to high prediction accuracy. Our results show regression stacking methods such as BMORS have
potential to accurately predict unobserved individuals and environments, and implementation of
such models can accelerate genetic gain.

Keywords: genomics; genomic selection; genomic prediction; marker-assisted selection; whole genome
regression; grain quality; near infra-red spectroscopy; cereal crop; sorghum; multi-trait

1. Introduction

Cereal grains provide more than half of the total human caloric consumption globally and amount
to over 80% in some of the poorest nations of the world [1]. Sorghum [Sorghum bicolor (L.) Moench],
a drought-tolerant cereal crop, is a dietary staple for over half a billion people of semi-arid tropics which
is inhabited by some of the most food insecure and malnourished populations [2]. In industrialized
countries, such as the United States and Australia, grain sorghum is primarily grown for animal
feed. But in recent years the uses of sorghum grain have expanded to baking, malting, brewing,
and biofortification [3–5]. Therefore, genetic improvement of sorghum grain composition is crucial to
mitigate the global malnutrition crisis, to increase efficiency of feed grains used in animal production,
and to serve evolving niche markets for gluten-free grains.

In the last two decades, the use of genome-wide markers in prediction of genetic merit of
individuals has revolutionized plant and animal breeding. Genomic prediction (GP) uses statistical
models to estimate marker effects in a training population with phenotypic and genotypic data
which is then used to predict breeding values of individuals solely from genetic markers [6,7].
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Training population size, genetic relatedness between individuals in training and testing population,
marker density, span of linkage disequilibrium and genetic architecture of traits are some of the factors
that can affect the predictive ability of the models [8–10]. Genomic prediction models are routinely
studied and applied by breeding programs around the world in several crops. Novel statistical
methods that are capable of incorporating pedigree, genomic, and environmental covariates into
statistical-genetic prediction models have emerged as a result of extensive computational research [11].

One of the main advantages of GP is that breeders can use phenotypic values from some lines in
some environments to make predictions of new lines and environments. Genomic best linear unbiased
prediction (GBLUP) proposed by VanRaden [12] is probably the most widely used genomic prediction
model in both plant and animal breeding. Since then GBLUP model has been extended to include G × E
interactions resulting in improved prediction accuracy of unobserved lines in environments [13,14].
Burgueño et al. [13] found an increase in prediction ability of unobserved wheat genotypes by about
20% in multi-environment GBLUP model compared to single environment model. Also an extension
of the GBLUP model, Jarquín et al. [14] introduced a reaction norm model which introduces the main
and interaction effects of markers and environmental covariates by using high-dimensional random
variance-covariance structures of markers and environmental covariates. While most of the genomic
prediction studies have been on individual traits, breeding programs use selection indices based on
several traits to make breeding decisions. To address those challenges, expanded genomic prediction
models that perform joint analysis of multiple traits have been studied using empirical and simulated
data [15,16]. Subsequent improvement in prediction accuracy from multi-trait model over single-trait
model depends on trait heritability and correlation between the traits involved [15,17].

Data generated in breeding programs span multiple environment and are recorded for multiple
traits for each individual. While multi-environment models and multi-trait models are implemented
separately, a single model to account for complexity of variance-covariance structure in a combined
multi-trait multi-environment (MTME) model was lacking until Montesinos-López et al. [18] developed
a Bayesian whole genome prediction model to incorporate and analyze multiple traits and multiple
environments simultaneously. Montesinos-López et al. [18] also developed a computationally efficient
Markov Chain Monte Carlo (MCMC) method that produces a full conditional distribution of the
parameters leading to an exact Gibbs sampling for the posterior distribution. Another MTME
model that employs a completely different method was proposed by Montesinos-López et al. [19].
This method, called the Bayesian multi-output regression stacking (BMORS), is a Bayesian version
of multi-target regressor stacking (MTRS) originally proposed by Spyromitros-Xioufis et al. [20,21].
This method consists of training in two stages: first training multiple learning algorithms for the same
dataset and then subsequently combining the predictions to obtain the final predictions.

Genomic prediction for grain quality traits has previously been reported in crops such as
wheat [22–24], rye [25], maize [26], and soybean [27]. Hayes et al. [28] and Battenfield et al. [23]
used near-infrared derived phenotypes in genomic prediction of protein content and end-use quality
in wheat. Multi-trait genomic prediction models can simultaneously improve grain yield and protein
content despite being negatively correlated [24,29]. In sorghum, grain macronutrients have shown
to be inter-correlated among one another [30], which suggests the multi-trait models may increase
predictive ability of individual grain quality traits. The ability to assess genetic merit of unobserved
selection candidates across environments is promising for reducing evaluation cost and generation
interval in the sorghum breeding pipeline where parental lines of commercial hybrids are currently
selected on the basis of extensive progeny testing [31]. In order to extend capacities to performance
index selection for multiple environments, we need to study and effectively implement MTME genomic
prediction models in our breeding programs. In this study, we report the first implementation of
genomic prediction for grain composition in sorghum, and the objective was to assess potential for
improvement in prediction accuracy of multi-trait regressor stacking model over single trait model for
five grain composition traits: amylose, fat, gross energy, protein and starch.
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2. Results

2.1. Phenotypic Variation

A single calibration curve for near infra-red spectroscopy (NIRS) was used for the two populations
studied. Table 1 outlines the summary statistics of NIRS predictions and phenotypic distribution and
heritability of the grain composition traits. The cross validation accuracy (R2) of the NIRS calibration
curve was moderately high to high, except for fat which had a moderate R2 value (0.41). We had a total
of three environments (three years in one location) for the GSDP and four environments (two years in
two locations) for the RILs. Traits were normally distributed except amylose in two 2014 environments
in the RILs which had bimodal distribution (Figures S1 and S2). All traits showed significant variation
in distribution across the environments, except starch in GSDP.

Table 1. Summary statistics of near infra-red spectroscopy (NIRS) calibration and phenotypic

distribution. R2 is the prediction accuracy and SECV is the standard error of cross validation for
the NIRS calibration curve. Mean represents the phenotypic mean of the trait with its standard
deviation (SD). h2 is the estimate of genomic heritability.

Trait NIRS GSDP RILs
R2 SECV Mean ± SD h2 Mean ± SD h2

Amylose 0.60 2.24 13.87 ± 2.98 0.24 11.49 ± 4.32 0.77
Fat 0.41 0.53 2.53 ± 0.57 0.54 3.07 ± 0.67 0.76
Gross energy 0.71 25.80 4108.33 ± 55.15 0.59 4124.56 ± 41.74 0.69
Protein 0.96 0.27 12.02 ± 1.45 0.39 11.43 ± 1.03 0.83
Starch 0.89 0.75 68.30 ± 2.44 0.44 68.37 ± 1.87 0.79

The genomic heritabilities of all traits except gross energy were significantly higher (p < 0.05) in
the RILs than in the GSDP (Table 1). Trait heritabilities were high in the RILs, with protein and gross
energy having the highest and lowest heritabilities, respectively. In the GSDP, genomic heritability
was moderately high for fat and gross energy, moderate for protein and starch, and low for amylose.
The poor genomic heritability (0.24) of amylose in the GSDP was expected because only a very small
proportion (1%) of accessions have low amylose as a result of waxy gene (Mendelian trait).

Figure 1 shows correlation between the adjusted phenotypic means for trait and environment
combination. Starch was negatively correlated (p < 0.001) with all other traits in both populations
except for amylose in the RILs. Fat, protein and gross energy were significantly positively (p < 0.001)
correlated to each other across environments in both populations. The strongest positive correlation
was between gross energy and fat, whereas the strongest negative correlations were found between
starch gross energy and starch protein. Moderate (0.4) to high (0.73) positive correlation was observed
between years for all traits except for amylose (r = 0.08) between 2014 and 2017 in GSDP (Figure 1).
We conducted a principal component analysis (PCA) of correlation matrix for the traits in each
environment. In both populations, the first component separated amylose and starch from the other
three traits, whereas, the second component separated amylose from starch and gross energy from
protein and fat (Figure S3). The first component explained 78.8% and 75.9% of variation, and second
component explained 6.3% and 9.8% of variation in the GSDP and RILs, respectively. The third
principal component in the RILs separated proteins from fat and explained about 7.6% of the variation.
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Figure 1. Correlation between traits across year and location combination for the two populations.

Ams: amylose, GE: gross energy, Prt: protein, Sta: starch, SC: South Carolina, TX: Texas, and numbers
in x and y-axes represent the year.

2.2. Prediction Performance in Single and Multiple Environment

We first implemented GBLUP prediction model for single-trait single-environment (STSE).
Prediction accuracies of the STSE model varied across environments in both populations (Figure 2).
The environments 2014 in the GSDP and TX2014 in the RILs had highest average prediction accuracy
but were not always the best predicted environment for all traits. While poorly predicted for amylose,
the environments 2017 in the GSDP and TX2015 in the RILs had higher prediction accuracy for starch
compared to all or most environments. Despite variation across environments and populations,
the average prediction accuracies from the STSE were within the range of 0.4 to 0.6 for all traits
except amylose (0.25) in the GSDP. The average prediction accuracy of the STSE model in the GSDP
was positively correlated (r = 0.86) with the genomic heritability of the traits. In the RILs, there was
a positive correlation (r = 0.77) between average prediction accuracy and genomic heritability for
amylose, fat and gross energy, but the traits (protein and starch) with the highest heritabilities had
relatively lower average prediction accuracies.

Figure 2. Prediction accuracy for single-trait single-environment (STSE) model. The y-axis shows
prediction accuracy calculated as Pearson’s correlation between observed values and predicted values
of phenotypes. Legend represents the environment/years. SC: South Carolina, TX: Texas, GSDP:
Grain sorghum diversity panel, RILs: recombinant inbred lines. Pale blue dots represent the mean of
prediction accuracy.
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We did not see substantial improvement in multi-environment (BME) model over the STSE
prediction accuracies (Figure S4). In the GSDP, the multi-environment models resulted in a decline in
average prediction accuracy compared to the STSE model for fat (21%), amylose (10%) and protein
(4%), however, no significant change was observed for gross energy and starch (Table 2, Figure S5).
The prediction accuracy in the RILs increased by an average of 3% in the BME compared to the STSE,
however, the overall trend of prediction accuracy for traits and environments remained unchanged
(Table 3, Figure S5). The environment SC2014 showed consistent increase in accuracy for BME over
STSE model across all traits with about 10% increase for protein (Table 3). Amylose in TX2015
environment had the single greatest increase (12%) in average prediction accuracy in the BME among
all trait-environment combinations for the RILs (Table 3).

Table 2. Percent change in mean prediction accuracy (r) over the single trait single environment

(STSE) model in the diversity panel (GSDP). BME: Bayesian multi-environment, and BMORS:
Bayesian multi-output regressor stacking. Values were rounded to the nearest whole number.

Trait 2013 2014 2017
BME BMORS BME BMORS BME BMORS

Amylose −11 66 −5 11 −13 −13
Fat −24 47 −12 47 −27 58
Gross energy 3 54 −2 40 1 57
Protein −3 56 −1 55 −8 52
Starch 4 37 −2 38 1 17
Average −6 52 −4 38 −9 34

Table 3. Percent change in mean prediction accuracy (r) over the single trait single environment

(STSE) model in the recombinant inbred lines (RILs). BME: Bayesian multi-environment, BMORS:
Bayesian multi-output regressor stacking, SC: South Carolina, and TX: Texas. Values were rounded to
the nearest whole number.

Trait SC2014 SC2015 TX2014 TX2015
BME BMORS BME BMORS BME BMORS BME BMORS

Amylose 2 28 0 28 −1 25 12 43
Fat 5 33 1 15 2 18 2 20
Gross energy 7 28 −3 27 1 18 3 17
Protein 10 51 1 23 5 60 −4 33
Starch 5 36 −4 40 7 54 4 37
Average 6 35 −1 27 3 35 3 30

2.3. Bayesian Multi-Output Regression Stacking

We tested two different prediction schemes in the BMORS prediction model using the two
functions BMORS() and BMORS_Env() as described in Montesinos-López et al. [19]. While the
BMORS() function was used for a five-fold CV as described in the methods section, the BMORS_Env()
was used to assess the prediction performance of whole environments while using the remaining
environments as training. So in BMORS_Env, an environment was left out during training and
correlation between the predicted values (obtained from training with remaining environments) and
observed values for the test environment was measured as prediction accuracy for that environment in
BMORS_Env model.

2.3.1. Five-Fold CV

The prediction accuracy from five-fold CV in BMORS increased by 41% and 32% on average over
the STSE model in GSDP and RILs, respectively. Figure 3 shows the prediction accuracy of BMORS
for each trait and environment combination across the two populations. While the percent change in
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accuracy varied across environments, the BMORS model nonetheless had higher average prediction
accuracy than the STSE and BME models for all traits (Figure S4). The increase in average accuracy
in BMORS over STSE ranged from 11% (amylose, 2014) to 66% (amylose, 2013) in the GSDP with
exception of amylose in 2017 (13% decrease), and 15% (fat, SC2015) to 60% (protein, TX2014) in the
RILs (Tables 2 and 3). The increase in average prediction accuracy was higher (35%) for both locations
in 2014 for the RILs, whereas, the year 2013 in the GSDP increased the most. Among the traits, protein
(54%) had the greatest average increase in prediction accuracy in the GSDP, whereas in the RILs,
protein and starch (42%) both showed the greatest increase.

Figure 3. Prediction accuracy of Bayesian multi-output regressor stacking (BMORS) model using

five-fold cross validation. Legend represents the years/environment. The y-axis shows prediction
accuracy calculated as Pearson’s correlation between observed values and predicted values of
phenotypes. SC: South Carolina, TX: Texas, GSDP: Grain sorghum diversity panel, and RILs:
Recombinant inbred lines. Pale blue dots show mean of the prediction accuracy.

2.3.2. Prediction of Whole Environment

Predicting a whole environment using the BMORS model usually yielded higher accuracy than
the mean prediction accuracy from the STSE or BME model where only portions of each environment
was tested instead of whole environment as in BMORS_Env model (Figures 2 and 4, Figure S5, Table 4).
This shows that BMORS model can be reliably used in predicting unobserved environment with the
same accuracy as from STSE or BME models from training within the environments. The distribution
of prediction accuracy across trait and environment combination were, however, similar to the results
from the STSE model. In the GSDP, little variation in prediction accuracies was observed across
environments for gross energy, starch and protein, whereas, amylose and fat showed greater variability
in prediction accuracy between environments. In the RILs, prediction accuracy for all traits except
protein had high variability across the environments (Table 4).

In order to assess predictability by location or year in the RILs, we tested one location or year by
training the BMORS model using the other location or year, respectively (Table 4). The Texas location
had higher accuracy of prediction for fat (+0.11) and gross energy (+0.1) compared to South Carolina,
but rest of the traits had similar prediction accuracy (difference < 0.02). Prediction accuracy of whole
years varied across traits, amylose (+0.09) and fat(+0.04) were higher in 2014, protein was higher (+0.05)
in 2015, and starch and gross energy were similar.
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Figure 4. Prediction accuracy of whole environment predicted using the Bayesian multi-output

regressor stacking (BMORS_Env) in the diversity panel (GSDP). The y-axis shows prediction
accuracy calculated as Pearson’s correlation between observed values and predicted values of
phenotypes. Values on top of the bar represent the height of the bar.

Table 4. Prediction accuracy of the test environments predicted using the Bayesian multi-output

regressor stacking (BMORS_Env) in the recombinant inbred lines (RILs). SC: South Carolina, TX,
Texas. Prediction accuracy was calculated as Pearson’s correlation between observed values and
predicted values of phenotypes.

Trait Year × Location Location Year
SC2014 SC2015 TX2014 TX2015 SC TX 2014 2015

Amylose 0.79 0.80 0.88 0.60 0.76 0.74 0.74 0.65
Fat 0.69 0.49 0.78 0.74 0.60 0.71 0.64 0.60
Gross energy 0.56 0.49 0.62 0.66 0.48 0.58 0.56 0.56
Protein 0.65 0.66 0.66 0.70 0.59 0.58 0.61 0.66
Starch 0.64 0.52 0.68 0.60 0.55 0.56 0.56 0.55

3. Discussion

Phenotyping for grain compositional traits is—(1) challenging and labor-intensive, (2) destructive
for most accurate results, and (3) only performed after plants reach physiological maturity and are
harvested. The use of genomic prediction for compositional traits will be extremely valuable because
it increases selection intensity and decreases generational interval by overcoming the phenotyping
challenges. Moreover, these traits are complex and quantitatively inherited so will benefit from
genomic prediction’s ability to account for many small effect QTLs in estimating breeding values.

3.1. Trait Architecture and Prediction Accuracy

While the accuracy of NIRS calibration for traits in this study ranged from moderate to high,
there was prediction error associated with NIRS prediction. However, it is unclear if and what effects
NIRS prediction error had on genomic prediction. No direct correlation was observed between the
genomic prediction accuracy and NIRS statistics for the traits studied. The trait with the lowest NIRS
R2, fat, was predicted as well as or better than starch, protein and gross energy, which had NIRS
R2 > 0.7. Despite varying strength of correlations between traits across the two populations studied,
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the nature of relationship was similar for a given pair of traits, which is also in agreement with previous
studies [30,32,33]. The strong negative relationship of starch and amylose to protein, fat and gross
energy was further elucidated by the PCA analysis of phenotypic correlation matrix (Figure S3). Since
starch, protein and fat were measured on a percent dry matter basis, the strong correlation between
them is expected.

Genetic relatedness and trait architecture are known to affect the accuracy of genomic
prediction [8,34]. The genetic relatedness between individuals and heritability of the traits were higher
in the RILs than in GSDP (Figure S6, Table 1). Those factors could be contributing to higher average
prediction accuracy in the RILs. However, the average prediction accuracies for gross energy and
starch were comparable between GSDP and RILs (Figure S4). Prediction accuracy in the GSDP could
have been boosted by greater genetic diversity despite lower genetic relatedness [35]. Heffner et al. [22]
observed a prediction accuracy of 0.5–0.6 for wheat flour protein in two biparental populations.
Guo et al. [26] reported prediction accuracies of 0.44 and 0.8 for protein and amylose in rice diversity
panel. Similar results were observed in our STSE models for protein content (Figure 2). Whereas,
lower prediction accuracy of amylose in our diversity panel is probably due to the lack of sufficient
low-amylose lines with the waxy gene [30]. While genomic prediction study for starch, fat and gross
energy has not been reported in sorghum, these traits are nutritionally one of the most important traits
for any cereal grain. The moderate to high prediction accuracy observed suggests implementation of
genomic selection can improve genetic gain for these grain quality traits.

3.2. Multi-Trait Regressor Stacking

One of the daunting tasks of genomic prediction is estimating the effects of unobserved individuals
and environments. As multiple traits are analyzed across several environments, the ability to
combine information from multiple traits and environments can be crucial in increasing accuracy of
prediction [13,15,16]. When the correlations among traits are high, prediction accuracies of complex
traits can be increased by using multivariate model that takes this correlation into account [15,18].
We fit a Bayesian multi-environment (BME) model (2) that takes the genotype × environment effects
into consideration. In the GSDP, where environments were three years at the same location, the BME
model showed a slight decline (7%) in average prediction accuracy which was mostly due to the two
traits, amylose and fat (Table 2). The RILs showed slight increase (2–3%) in prediction accuracy of traits
when averaged over the environments, but there was variability across the environments (Table 3).

We implemented two functions [BMORS() and BMORS_Env()] which are not only used to evaluate
prediction accuracy but are also computationally efficient [19]. The BMORS model (3) performs
two-stage training by stacking the multi-environment models from all the traits. The five-fold cross
validation conducted for BMORS was similar to the CV1 strategy of Montesinos-López et al. [18].
The use of multi-trait models has been consistently shown to increase prediction accuracy over
single-trait models across different crops and traits [15–17,36]. The multi-target regressor stacking
increased average prediction accuracy by 41% and 32% in the GSDP and RILs, respectively, as compared
to the STSE prediction accuracy. Average prediction accuracy of all traits improved in BMORS over
STSE and BME across both the populations (Figure S4). Consistent improvement in accuracy of BMORS
is a result of the ability to use not only correlation between traits but also between environment in
the model training [18,19]. The ability to accurately estimate genetic merit of lines in unobserved
environments is of tremendous value in plant breeding. Our results show potential of BMORS_Env()
function for predicting the whole environment. Testing a whole environment by training BMORS
model using all other environments resulted in higher prediction accuracy for that trait-environment
combination than using STSE or BME model. Prediction accuracy of all environments were 0.5 or
higher with exception of amylose in GSDP, the reason for which we have discussed above (Figure 4,
Table 4).

210



Agronomy 2020, 10, 1221

3.3. Application for Breeding

Grain quality traits such as starch and protein content have been under selection since the
inception of phenotypic selection in modern breeding practices. More recently, total energy supplement
of grain has gained attention for increasing feed efficiency in animal production, and a need exists for
increasing total calories for human nutrition in the wake of global malnutrition crisis. Despite high
correlations among these traits, the genetic variation underlying starch, protein and fat can be
decoupled. Boyles et al. [30] showed major and minor effect QTLs underlying the three traits are
distributed across the genome and are segregating in biparental populations. However, in practice,
selection would be conducted simultaneously for these traits using a selection index rather than for
individual traits. Velazco et al. [31] observed an increase in predictive ability by using a multi-trait
model for grain yield and stay green in sorghum, and argue that such an exercise would allow for using
selection index for implementation of genomic selection for correlated traits. Increased prediction
accuracy, improved selection index, and estimation of precise genetic, environmental and residual
co-variances makes multi-trait multi-environment models preferable over univariate models [18].
The multi-trait regression stacking model we tested shows large scale improvement in model prediction
and can be used in tandem with Bayesian multi-trait multi-environment (BMTME) model for parameter
estimation and assessing prediction accuracy. The ability to estimate genetic effects and breeding
values of unobserved environments will be of great advantage to predict performance in diverse
environments and for implementation of selection theory.

4. Materials and Methods

4.1. Plant Material

4.1.1. Grain Sorghum Diversity Panel

A grain sorghum diversity panel (GSDP) of 389 diverse sorghum accessions was planted in
randomized complete block design with two replications in 2013, 2014, and 2017 field seasons at the
Clemson University Pee Dee Research and Education Center in Florence, SC. The GSDP included a
total of 332 accessions from the original United States sorghum association panel (SAP) developed
by Casa et al. [37]. The details on experimental field design and agronomic practices are described
in Boyles et al. [38] and Sapkota et al. [35]. Briefly, the experiments were planted in a two row
plots each 6.1 m long, separated by row spacing of 0.762 m with an approximate planting density of
130,000 plants ha−1. Fields were irrigated only when signs of drought stress was seen across the field.

4.1.2. Recombinant Inbred Population

A biparental population of 191 recombinant inbred lines (RILs) segregating for grain quality traits
was studied along with the GSDP. The parents of the RIL population were BTx642, a yellow-pericarp
drought tolerant line, and BTxARG-1, a white pericarp waxy endosperm (low amylose) line.
The population was planted in two replicated plots in randomized complete block design across
two years (2014 and 2015) in Blackville, SC and College Station, TX. Field design and agronomic
practices have previously been described in detail in Boyles et al. [30].

4.2. Phenotyping

The primary panicle of three plants selected from each plot were harvested at physiological
maturity. The plants from beginning and end of the row were excluded to account for border effect.
Panicles were air dried to a constant moisture (10–12%) and threshed. A 25 g subsample of cleaned
and homogenized grain ground to 1-mm particle size with a CT 193 Cyclotec Sample Mill (FOSS North
America) was used in near-infrared spectroscopy (NIRS) for compositional analysis.

Grain composition traits such as total fat, gross energy, crude protein, and starch content can be
measured using NIRS. Previous studies have shown high NIRS predictability of the traits used in
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feed analysis [39,40]. We used a DA 7250TM NIR analyzer (Perten Instruments). The ground sample
was packed in a gradually rotating Teflon dish positioned under the instrument’s light source and
predicted phenotypic values was generated based on calibration curve for spectral measurements.
The calibration curve was built using wet chemistry values from a subset of samples. The wet chemistry
was performed by Dairyland Laboratories, Inc. (Arcadia, WI, USA) and the Quality Assurance
Laboratory at Murphy-Brown, LLC (Warsaw, NC, USA). The details on the prediction curves and wet
chemistry can be found in Boyles et al. [30].

4.3. Genotypic Data

Genotyping-by-sequencing (GBS) was used for genetic characterization of the GSDP and
RILs populations [30,38,41]. Sequenced reads were aligned to the BTx623 v3.1 reference assembly
(phytozome) using Burrows-Wheeler aligner [42]. SNP calling, imputation and filtering was done
using TASSEL 5.0 pipeline [43]. The TASSEL plugin FILLIN for GSDP and FSFHap for RILs population
were used to impute for missing genotypes. Following imputation SNPs with minor allele frequency
(MAF) < 0.01, and sites missing in more than 10% and 30% of the genotypes in GSDP and RILs,
respectively, were filtered. The number of genotypes studied for each population represent those with
at least 70% of SNP sites. The genotype matrix with 224,007 SNPs from GSDP and 56,142 SNPs from
RILs population was used for whole genome regression.

4.4. Statistical Analysis

The statistical software environment ‘R’ was used for model building and analysis [44].
The phenotypic values of the traits were adjusted for random effects of replications within environment
using ‘lme4’ package in R [45]. Principal component analysis was done using the R package
‘factoextra’ [46]. Marker-based estimates of narrow sense (genomic) heritabilities were calculated using
the SNP genotype matrix and phenotypic values using the R package ‘heritability’ [47]. A matrix with
dummy variables ‘1’ and ‘0’ representing combinations of environmental variables (replication and year
for GSDP, and replication, year and location for RILs) was used as co-variate in heritability estimation.

4.4.1. Single-Trait Single-Environment (STSE) Model:

The following genomic best linear unbiased prediction (GBLUP) model was used to assess
prediction performance of an individual trait from a single environment:

yj = μ + gj + ej, (1)

where yj is a vector of adjusted phenotypic mean of the jth line (j = 1, 2, ..., J). μ is the overall mean which
is assigned a flat prior, gj is a vector of random genomic effect of the jth line, with g = (g1, ..., gj)

T ∼
N(0, Gσ2

1 ), σ2
1 is a genomic variance, G is the genomic relationship matrix in the order J × J and is

calculated [12] as G = ZZT

2 ∑ pjqj
, where qj and pj denote major and minor allele frequency of jth line

respectively, and Z is the design matrix for markers of order J × p (p is total number of markers).
Further, ej is residual error assigned the normal distribution e ∼ N(0, Iσ2

e ) where I is identity matrix
and σ2

e is the residual variance with a scaled-inverse Chi-square density.

4.4.2. Bayesian Multi-Environment (BME) GBLUP Model

Considering genotype × environment interaction can contribute to substantial amount of
phenotypic variance in complex traits, we fit the following univariate linear mixed model to account
for environmental effects in prediction performance:

yij = Ei + gj + gEij + eij, (2)
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where yj is a vector of adjusted phenotypic mean of the jth line in the ith environment (i = 1, 2, ..., I,
j = 1, 2, ..., J). Ei represents the effect of ith environment and gj represents the genomic effect of the jth
line as described in Equation (1). The term gEij represents random interaction between the genomic
effect of jth line and the ith environment with gE = (gE11, ..., gEI J)T ∼ N(0, σ2

2 II ⊗ G), where σ2
2 is an

interaction variance, and eij is a random residual associated with the jth line in the ith environment
distributed as N(0, σ2

e ) where σ2
e is the residual variance.

4.4.3. Bayesian Multi-Output Regressor Stacking (BMORS)

BMORS is the Bayesian version of multi-trait (or multi-target) regressor stacking method [48].
The multi-target regressor stacking (MTRS) was proposed by Spyromitros-Xioufis et al. [20,21] based on
multi-labeled classification approach of Godbole and Sarawagi [49]. In BMORS or MTRS, the training
is done in two stages. First, L univariate models are implemented using the multi-environment GBLUP
model given in Equation (2), then instead of using these models for prediction, MTRS performs the
second stage of training using a second set of L meta-models for each of the L traits. The following
model is used to implement each meta-model:

yij = β1Ẑ1ij + β2Ẑ2ij + ... + βLẐLij + eij, (3)

where the covariates Ẑ1ij, Ẑ2ij, ..., ẐLij represent the scaled prediction from the first stage training with
the GBLUP model for L traits, and β1, ..., βL are the regression coefficients for each covariate in the
model. The scaling of each prediction was performed by subtracting its mean (μlij) and dividing by its
corresponding standard deviation (σlij), that is, Ẑlij = (ŷlij − μlij)σ

−1
lij , for each l = 1, ..., L. The scaled

predictions of its response variables yielded by the first-stage models as predictor information by
the BMORS model. Simply put, the multi-trait regression stacking model is based on the idea that a
second stage model is able to correct the predictions of a first-stage model using information about the
predictions of other first-stage models [20,21].

4.4.4. Performance of Prediction Model:

All prediction models were fit using Bayesian approach in statistical program ‘R’. The STSE
model (1) was fit using the R package ‘BGLR’ [50], BME model (2) and BMORS model (3) were fit
using the R package ‘BMTME’ [19]. A minimum of 20,000 iterations with 10,000 burn-in steps was
used for each Bayesian run.

The evaluation of prediction performance of models was done using a five-fold cross validation
(CV), which means 80% of the samples were used as training set and testing was done on the remaining
20% for each cross-validation fold. The individuals were randomly assigned into five mutually
exclusive folds. Four folds were used to train prediction models and to predict the genomic estimated
breeding values (GEBVs) of the individuals in fifth fold (validation/test set). The accuracy of prediction
for each fold was calculated as Pearson’s correlation coefficient (r) between predicted values and
adjusted phenotypic means for the individuals in validation set. Each cross validation run, therefore,
resulted in five estimates of prediction accuracy. The same set of individuals were assigned to training
and validation across different traits and models tested by using set.seed() function in R. In order to
avoid bias due to sampling, we performed 10 different cross-validation runs to calculate the mean and
dispersion of the prediction accuracies.

5. Conclusions

Phenotyping of grain compositional traits using near-infrared spectroscopy is labor-intensive,
generally destructive, and time limiting. Therefore, the use of genomic selection for these traits will
be extremely valuable. This study establishes the potential to improve genomics-assisted selection of
grain composition traits by using multi-trait multi-environment model. The phenotypic measurements
obtained from NIRS prediction were amenable to genomic selection as shown by moderate to high
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prediction accuracy for single trait prediction. While multi-environment model alone did not lead to
much improvement over single environment model, stacking of regression from multiple traits showed
substantial improvement in prediction accuracy. The prediction accuracy increased by 32% and 41% in
the RILs and GSDP, respectively, when using the Bayesian multi-output regressor stacking (BMORS)
model compared to a single trait single environment model. The ability to predict line performance
in an unobserved environment is of great importance to breeding programs, and results show high
accuracy for predicting whole environments using BMORS.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/9/1221/
s1. The supplementary file contains six figures: Figure S1. Phenotypic distribution of grain composition traits in
the RILs. In the x-axes, SC: South Carolina, TX: Texas, numbers represent years. Values are percentage dry basis
for protein, fat and starch; gross energy is in KCal/lb; and amylose is in percent of starch. Figure S2. Phenotypic
distribution of grain composition traits in the GSDP. Numbers in x-axes represent years. Values are percentage
dry basis for protein, fat and starch; gross energy is in Cal/g; and amylose is in percent of starch. Figure S3.
PCA analysis of correlation matrix between traits. a. GSDP, and b. RILs. Ams: amylose, GE: gross energy, Prt:
protein, Sta: starch, SC: South Carolina, TX: Texas. The numbers in the text represent years of the environment.
Figure S4. Overall prediction accuracy of traits across all the environment for the three prediction methods in the
two populations. The y-axis shows prediction accuracy calculated as Pearson’s correlation between observed
values and predicted values of phenotypes. Legend represents the environment/years. SC: South Carolina, TX:
Texas, GSDP: Grain sorghum diversity panel, RILs: recombinant inbred lines. Figure S5. Prediction accuracy
using five-fold CV in Bayesian multi-environment (BME) model. a. GSDP, and b. RILs. Legend represents the
environment/years. SC: South Carolina, TX: Texas. Pale blue dots represent the mean of prediction accuracy.
Figure S6. Heatmap for genomic relationship matrix calculated using vanRaden (2008). a. GSDP, b. RILs.
Trees show hierarchical clustering using Euclidean distance.
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Abstract: Leaf rust (LR) and stem rust (SR) pose serious challenges to wheat production in Kazakhstan.
In recent years, the susceptibility of local wheat cultivars has substantially decreased grain yield
and quality. Therefore, local breeding projects must be adjusted toward the improvement of LR
and SR disease resistances, including genetic approaches. In this study, a spring wheat segregating
population of Pamyati Azieva (PA) × Paragon (Par), consisting of 98 recombinant inbred lines (RILs),
was analyzed for the resistance to LR and SR at the seedling and adult plant-growth stages. In total,
24 quantitative trait loci (QTLs) for resistance to rust diseases at the seedling and adult plant stages
were identified, including 11 QTLs for LR and 13 QTLs for SR resistances. Fourteen QTLs were in
similar locations to QTLs and major genes detected in previous linkage mapping and genome-wide
association studies. The remaining 10 QTLs are potentially new genetic factors for LR and SR
resistance in wheat. Overall, the QTLs revealed in this study may play an important role in the
improvement of wheat resistance to LR and SR per the marker-assisted selection approach.

Keywords: Triticum aestivum; QTL; mapping population; leaf rust; stem rust; pathogen races;
disease resistance

1. Introduction

Bread wheat (Triticum aestivum L.) is one of the major cereal crops in the world. In 2018/2019,
the global production of wheat was 734.7 million metric tons, ranking second place amongst the grains
after maize [1]. It is used mostly as flour for the production of a large variety of leavened and flat
breads and the manufacturing of a wide range of other baked products [2]. In 2018/2019, Kazakhstan
was ranked the 12th largest wheat producer in the world [3]. In Kazakhstan, wheat is cultivated on
about 13 million hectares annually. The country produces up to 20–25 million tons of bread wheat per
year and exports up to 5–7 million tons of the grain [4]. The primary goals of modern wheat breeding
programs worldwide include enhancing grain yield and quality and increasing resistance to biotic and
abiotic stresses to ensure global food security [5]. Biotic stresses include dangerous fungal diseases and
particularly the most common representatives of the Puccinia genus: Puccinia recondita Rob. ex Desm
f. sp. tritici, causing leaf rust (LR), and Puccinia graminis Pers. f. sp. tritici Eriks. & Henn., which is
responsible for stem rust (SR) of wheat.
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LR generally causes light to moderate yield losses ranging from 1% to 20% over a large area,
but when the disease is severe prior to heading time, it may destroy up to 90% of the wheat crop [6].
For example, in Kazakhstan, epiphytotic development of the pathogen on spring wheat during
2000–2001 resulted in 50–100% LR severity on commercial cultivars in the Akmola region (northern
Kazakhstan), which is the main wheat-growing region in the country [7].

SR is another important rust disease that is often considered the most devastating of the wheat
rust diseases because it can cause complete crop loss over a large area within a short period of time [8].
In 2016, northern Kazakhstan was subjected to an epiphytotic outbreak of SR, resulting in 50% disease
development severity in the field, decreasing wheat yield and grain quality [7]. Nowadays, local farmers
prefer the usage of fungicides to protect wheat fields from LR and SR; however, this method is harmful
to the environment and more expensive than breeding and growing genetically resistant wheat
cultivars [9].

LR and SR resistances are controlled by a diverse group of genes, designated as Lr and Sr,
respectively [10]. In the last 100 years, approximately 80 Lr resistance genes have been identified and
described in bread wheat, durum wheat, and diploid wheat species [10], and the list is still growing.
For SR, nearly 60 Sr genes have been identified to date in wheat and its wild relatives [10]. Generally,
resistance to rust diseases can be broadly categorized into two types. The first is resistance at all
growth stages (called seedling resistance), detected at the seedling stage and expressed until the plant
dies. This type of resistance is controlled by the R type of genes, and the majority of Lr and Sr genes
belong to this group. The efficacy of the R gene is pathogen-strain-dependent [11]. The second type of
resistance is adult plant resistance (APR), where genes are ineffective during the seedling stage but
provide robust resistance at maturity [11]. For example, LR resistance genes Lr12, Lr13, Lr22a, Lr22b,
Lr34, Lr35, Lr46, Lr48, Lr49, and Lr67, and SR resistance genes Sr2 and Sr57 are well-characterized APR
genes [10]. Durable rust resistance is more likely to be the APR type rather than the seedling type [12];
both types are important for wheat breeding [11].

Two of the most effective methods of quantitative trait locus (QTL) mapping are based on
association panels and biparental segregating populations [13]. Both of these methods provide the
means to investigate the genome and describe the etiology of complex quantitative traits, including
disease resistance [14–17]. Genetic maps are a key tool enabling genetic linkage studies and searches
for novel loci responsible for traits. Modern high-throughput sequencing technologies allow for
the high-accuracy genotyping of large collections with genetically diverse germplasms [18,19] and
segregating mapping populations, such as doubled haploids (DHs), recombinant inbred lines (RILs),
F2, and backcross (BC) populations [20]. Linkage maps were successfully used for the QTL analyses of
wheat yield components [21], grain quality traits [22], abiotic [23], and biotic stress factors, including
pests [24].

The primary goal of this study was to identify QTLs involved in seedling and adult plant resistance
of bread wheat to LR and SR under environmental conditions in southern and southeastern Kazakhstan.
To meet this goal, the Pamyati Azieva × Paragon (PA × Par) RILs mapping population (MP) was
studied in field and greenhouse (GH) conditions. Previously, this population was successfully used
for the analysis of yield-related traits [25] and adult plant resistance to LR and SR in south-east and
northern Kazakhstan in 2018 [26,27]. Hence, the current study adds the investigation of seedling
resistance in the MP to LR and SR races. In addition to one-year studies in south-east and north
Kazakhstan, this work covers the analysis of LR and SR resistance in the MP in southern Kazakhstan
in 2018 and 2019.

2. Materials and Methods

2.1. Plant Material and Genotyping

The biparental mapping population PA × Par composed of 98 RILs was developed in greenhouse
conditions of the John Innes Centre (Norwich, UK) during 2011–2015 under the ADAPTAWHEAT
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project [28]. The RIL population was obtained via a single-seed descent method using two parental
cultivars: Paragon (elite spring cultivar originated from the U.K.) and Pamyati Azieva (a commercial
spring cultivar originating from Russia and registered in Kazakhstan) [29]. Both cultivars were
chosen due to their diverse genetic backgrounds and different manifestations of yield traits as well as
resistance to diseases. The RIL population was further developed for F8 generation in the fields of
southeastern Kazakhstan.

The RILs and two parental cultivars were genotyped using the Illumina’s iSelect 20K single
nucleotide polymorphism (SNP) array at the TraitGenetics Company (TraitGenetics GmbH, Gatersleben,
Germany). The genotypic data were filtered from markers with >10% missing data and with <0.1
minor allele frequency and consisted of 4595 polymorphic SNP markers.

2.2. Phenotyping of Seedling Resistance in Greenhouse

For the comprehensive study of the PA × Par MP response to LR and SR pathogens, the resistance
was evaluated at the seedling and adult plant-growth stages. Race-specific resistance at the seedling
stage was assessed in a greenhouse of the Research Institute of Biological Safety Problems (RIBSP,
Gvardeisky, Zhambyl region, southern Kazakhstan). For the inoculation of RILs seedlings (7–10 days
after sowing) in greenhouse conditions, three races of P. graminis and three races of P. recondita with
different levels of virulence to Sr and Lr genes, respectively, were used (Table 1). Inoculated plants
were placed in the boxes of the greenhouse with appropriate temperature conditions (22 ± 2 ◦C for
SR, 18 ± 2 ◦C for LR) and illumination (10,000–15,000 lux, 16 h’ light period) [30–32]. RIL reaction
was assessed on the 14th day after inoculation, according to the scale reported by Stakman [33].
The experiment was performed in two independent replicates.

Table 1. Virulence/avirulence pattern of pathogen races used in the study.

Disease (Pathogen) Race Avirulent (Effective) Genes Virulent (Ineffective) Genes

LR (Puccinia recondita Rob.
ex Desm f. sp. tritici)

TQKHT Lr24, 26, 3ka, 19, 25 Lr1, 2a, 2c, 3, 9, 16, 11, 17, 30,
20, 29, 2b, 3bg, 14a, 15

TRTHT Lr24, 19, 25 Lr1, 2a, 2c, 3, 9, 16, 26, 3ka, 11,
17, 30, 20, 29, 2b, 3bg, 14a, 15

TQTMQ Lr24, 26, 20, 25, 14a, 15 Lr1, 2a, 2c, 3, 9, 16, 3ka, 11, 17,
30, 19, 29, 2b, 3bg

SR (Puccinia graminis Pers. f.
sp. tritici Eriks. & E. Henn.)

TKRTF Sr11, 30, 24, 31 Sr5, 21, 9e, 7b, 6, 8a, 9g, 36, 9b,
17, 9a, 9d, 10, 38, Tmp, McN

PKCTC Sr21, 11, 36, 9b, 30, 24, 31, 38 Sr5, 9e, 7b, 6, 8a, 9g, 17, 9a, 9d,
10, Tmp, McN

RKRTF Sr9e, 11, 30, 24, 31 Sr5, 21, 7b, 6, 8a, 9g, 36, 9b, 17,
9a, 9d, 10, 38, Tmp, McN

LR, leaf rust; SR, stem rust.

Races of P. graminis were differentiated in 2018 [34] using the North American nomenclature [35]
with the assistance of five sets of SR-differentiating wheat cultivars. Races of P. recondita were also
identified in 2018 using 20 Thatcher near-isogenic lines (NILs) sets of Lr genes [36–38]. For the
nomenclature of P. recondita races, Virulence Analysis Tools [39] were used.

2.3. Adult Plant Resistance and Yield Components in Field Conditions

APR in the field was tested in two environments: the RIBSP and the Kazakh Research Institute
of Agriculture and Plant Industry (KRIAPI, Almalybak, Almaty region, southeastern Kazakhstan)
(Table 2).
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Table 2. Meteorological data on average temperature and precipitations during the vegetation period
in the fields of Research Institute of Biological Safety Problems (RIBSP, southern Kazakhstan) and
Kazakh Research Institute of Agriculture and Plant Industry (KRIAPI, southeastern Kazakhstan).

KRIAPI

March April May June July

Temperature (◦C) 8.2 12.8 17.0 22.3 27.0

Precipitation (mm) 27.3 168.4 39.3 72.7 22.6

RIBSP

March April May June July

Temperature (◦C) 13.0 17.0 24.0 29.0 33.0

Precipitation (mm) 1.0 2.3 1.8 0.9 0.1

In RIBSP fields, mixed races of LR and SR urediniospores common in Kazakhstan were applied as
inoculum. The inoculum was activated at a temperature of 37–40 ◦C for 30 min, followed by watering
in a humid chamber at a temperature of 18–22 ◦C for 2 h. At the booting stage, individual plants
were treated with an aqueous suspension of leaf and stem rust urediniospores dissolved in Tween 80
detergent. After inoculation, the plots were covered with plastic wrap for 16–18 h. In KRIAPI fields,
inoculation occurred with local LR and SR pathogen populations in uncontrolled natural conditions.

Thus, experiments were conducted in three independent environments, including the study of
seedling resistance in greenhouse conditions, the study of APR at RIBSP (controlled inoculation),
and APR at KRIAPI (uncontrolled inoculation). In both field conditions, phenotyping of APR to LR
and SR was performed in two independent replicates at the stage of grain ripening with the maximum
level of disease manifestation. Disease assessment was performed using the scale of Stakman for
SR [33] and the scale of Mains and Jackson for LR [40]. The severity of rust infection on leaf and stem
surfaces was evaluated using the modified Cobb scale [41,42]. To meet the data format required for
linkage analysis, the results of LR and SR evaluations at both seedling and adult plant-growth stages
were converted to the 0–9 linear disease scale as described by Zhang et al. [43].

To identify the influence of LR and SR severity on the productivity of the studied population,
two important yield-related components, thousand kernel weight (TKW, g) and kernel yield per plot
(YP, g/m2), were also evaluated.

2.4. Statistical Analysis of Phenotypic Data and QTL Mapping

Phenotypic data processing, descriptive statistics, and one-tailed correlation tests were performed
with SPSS Statistics v. 22 (SPSS Inc., Chicago, IL, USA).

The composite interval mapping (CIM) method with the Kosambi mapping function was used for
the detection of QTLs by Windows QTL Cartographer v2.5 [44]. The threshold value for the logarithm
of odds (LOD) score was calculated based on 1000 permutations and was 3.0 for all experiments with a
walking step of 1 cM. QTLs were detected for each environment and replication separately (seedling
resistance in GH, APR at KRIAPI, and APR at RIBSP). QTLs identified in individual environments
and/or replications overlapping in 20 cM intervals and associated with the same trait were considered
as identical [45]. Genetic maps with QTLs were drawn using MapChart v. 2.32 software [46]. For the
markers with the same positions, only one single nucleotide polymorphism (SNP) maker was selected
for the map.

All genes present within the interval of 500 kb to the left and 500 kb to the right (1 Mb in total) from
the peak marker were identified using the Ensembl Plant database [47]. As a reference, the genome of
T. aestivum RefSeq v1 was used. The exact position of the peak SNP in the genome was determined using
a BLAST tool [48]. Proteins and RNA gene products were identified using the UniProt database [49]
via cross-reference from Ensembl Plant.
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3. Results

3.1. Phenotyping Variations of Seedling and Adult Plant Resistance in Mapping Population

The values of the resistance to target diseases in parents and 98 RILs are summarized in Table 3.

Table 3. Descriptive statistics for leaf rust (LR) and stem rust (SR) resistance at two plant-growth stages
in the Pamyati Azieva × Paragon mapping population.

Env.
Plant-Growth

Stage
Race (Disease)

Parents IT 1 RILs IT

PA Par Mean Range R (%) MR (%) MS (%) S (%)

GH

Seedling

TQTMQ (LR) 6 (3) 5 (3-) 6.1 ± 0.9 5–8 0 0 89.8 10.2

TQKHT (LR) 8 (4-) 6 (3) 5.9 ± 1.0 4–9 0 3.1 91.8 5.1

TRTHT (LR) 6 (3) 6 (3) 5.9 ± 0.8 4–8 0 1.0 96.9 2.1

Seedling

TKRTF (SR) 8 (4-) 8 (4-) 7.0 ± 1.4 5–9 0 0 45.9 54.1

PKCTC (SR) 5 (3-) 8 (4-) 5.4 ± 1.8 1–9 1.0 22.4 58.2 18.4

RKRTF (SR) 6 (3) 5 (3-) 6.5 ± 1.4 5–9 0 0 64.3 35.7

RIBSP

Adult

LR 8 (30S) 6 (50MS) 3.8 ± 1.4 0–9 38.8 11.2 29.6 20.4

SR 9 (80S) 8 (40S) 6.6 ± 2.9 1–9 1.0 23.5 18.4 57.1

KRIAPI
LR 6 (40MS) 6 (40MS) 6.6 ± 1.7 2–9 0 9.2 64.3 26.5

SR 0 (0) 1 (10R) 1.8 ± 2.3 0–8 56.1 26.5 18.4 1.0
1—parents IT scores are given in 0–9 numeric scale, traditional IT scores are given in parentheses. Env., environment;
GH, greenhouse conditions; PA, Pamyati Azieva; Par, Paragon; IT, infection type; R, percentage of resistant lines
(0–1 on 9-point scale); MR, percentage of moderately resistant lines (2–4 on 9-point scale); MS, percentage of
moderately susceptible lines (5–7 on 9-point scale); S, percentage of susceptible lines (8–9 on 9-point scale).

The average seedling resistance of RILs to LR races was between 5.9 and 6.1 points, corresponding
to the moderately susceptible (MS) level. The major part of the population belonged to the MS group,
with only several lines observed in the susceptible (S) group. Several lines were also in the resistant (R)
group to the races TQKHT and TRTHT. Parental cultivars demonstrated an MS level of resistance to
studied LR races, except for PA, which was susceptible to the race TQKHT. As for seedling resistance
to SR, the average level in the RILs population was MS to all three SR races. However, unlike in the
case of LR, the distribution of lines among resistance groups was different. Races TKRTF and RKRTF
were divided between MS and S groups with a dominance of the S reaction to TKRTF and MS reaction
to RKRTF. R and moderately resistant (MR) levels were detected only in the race PKCTC. Levels of
resistance in parental cultivars were similar to races TKRTF (S) and RKRTF (MS), but PA demonstrated
higher resistance to the race PKCTC than Par.

At the adult plant stage, the reactions of parents and RILs to LR and SR were significantly different
between the studied environments. At RIBSP, the average reaction of RILs to LR was MR, with almost
even distribution among all possible reactions observed in the population. At KRIAPI, the average
level of resistance was MS with a dominance of MS and S reactions in the population. The parental
cultivars demonstrated the same reaction to LR at KRIAPI, but at RIBSP, Par was more resistant than
PA. For SR at the adult plant stage at RIBSP, the majority of RILs were in the S group, and the average
level was MS. At KRIAPI, the largest part of the population was in the R group and the average level
was MR. Parental cultivars also were in the S group at RIBSP and the R group at KRIAPI.

The analysis of variance showed that the resistance of RILs to LR at the seedling growth stage was
significantly affected by the RIL genotype (p < 0.01) and the race of LR pathogen (p < 0.05), but not by
genotype × race interaction (Table 4). For SR resistance, all factors had a significant influence (p < 0.001)
on the resistance at the seedling stage (Table 4).

223



Agronomy 2020, 10, 1285

Table 4. ANOVA of plant genotype (Geno), pathogen race (Race), and plant genotype × pathogen
race (Geno: Race) effects on seedling resistance to leaf rust (LR) and stem rust (SR) in the Pamyati
Azieva × Paragon mapping population.

Factor df
LR SR

MeanS F p MeanS F p

Geno 97 2.506 1.630 0.001 5.380 2.679 8.39 × 10–11

Race 2 5.420 3.525 0.031 136.940 68.180 <2.00 × 10–16

Geno: Race 194 1.396 0.908 0.766 4.540 2.262 1.20 × 10–10

Residuals 294 1.537 2.010

df, degree of freedom; MeanS, mean square.

3.2. Correlations among SR and LR Seedling and Adult Plant Resistance and Influence of APR on the
Yield-Related Traits

Significant positive correlations were found among the reactions to all three LR races at the
seedling stage, as well as between APR to LR at KRIAPI and seedling resistance to LR races TQTMQ
and TRTHT (Table 5). APR to LR at KRIAPI was also positively correlated with APR to SR at KRIAPI
and seedling resistance to SR race TKRTF. For the other SR races, race PKCTC had a positive correlation
with APR to SR at KRIAPI, and race RKRTF was negatively correlated with LR race TQTMQ. The only
significant correlation of APR to SR at RIBSP was associated with LR race TRTHT.

Table 5. Correlations among race-specific seedling resistance and adult plant resistance (APR) to leaf
rust (LR) and stem rust (SR) in the Pamyati Azieva × Paragon mapping population.

LR
TQTMQ

LR
TQKHT

LR
TRTHT

APR LR
RIBSP

APR LR
KRIAPI

SR
TKRTF

SR
PKCTC

SR
RKRTF

APR SR
RIBSP

LR TQKHT 0.193 *

LR TRTHT 0.207 * 0.283 **

APR LR RIBSP 0.008 ns 0.122 ns 0.154 ns

APR LR KRIAPI 0.251 ** −0.028 ns 0.192 * −0.124 ns

SR TKRTF −0.152 ns 0.000 ns 0.141 ns 0.088 ns 0.228 *

SR PKCTC −0.150 ns 0.021 ns 0.058 ns 0.081 ns −0.009 ns −0.019 ns

SR RKRTF −0.202 * −0.006 ns 0.091 ns −0.125 ns 0.069 ns 0.050 ns 0.110 ns

APR SR RIBSP −0.071 ns 0.096 ns 0.197 * 0.130 ns 0.038 ns −0.075 ns −0.040 ns −0.029 ns

APR SR KRIAPI 0.127 ns 0.040 ns 0.117 ns 0.018 ns 0.245 ** −0.006 ns 0.182 * 0.015 ns −0.043 ns

APR, adult plant resistance; ns not significant; * p < 0.05; ** p < 0.01.

The negative influence of LR and SR severities at the adult plant stage on the wheat YP and TKW
was confirmed by significant negative correlations (p < 0.01) between these traits at RIBSP (Table 6).
At KRIAPI, the severity of LR at the adult plant stage was negatively correlated with YP only.

Table 6. Correlations between leaf rust (LR) and stem rust (SR) resistance at the adult plant stage and
yield-related traits in the Pamyati Azieva × Paragon mapping population.

TKW RIBSP YP RIBSP TKW KRIAPI YP KRIAPI

LR RIBSP −0.175 ** −0.252 ** – –

SR RIBSP −0.490 ** −0.474 ** – –

LR KRIAPI – – −0.055 ns −0.200 *

SR KRIAPI – – 0.134 ns −0.151 ns

TKW, thousand kernel weight (g); YP, yield per plot (g/m2); ns not significant; * p < 0.05; ** p < 0.01.
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3.3. Identification of QTLs for Seedling and Adult Plant Resistance to LR in the RIL Population

A total of 11 QTLs for resistance to LR were identified at the seedling and adult plant-growth
stages. Out of these 11 QTLs, eight QTLs were detected for different LR races at the seedling stage,
two QTLs were for APR, and one QTL was observed for both seedling and adult plant resistance
(Table 7, Figure 1). QTLs for LR resistance were located on 10 chromosomes of the A, B, and D genomes.
The phenotypic variations explained by an individual QTL ranged from 11.6% to 25.7%. Because all
QTLs for LR resistance identified in this study explained more than 10% of the phenotypic variation,
they were considered major QTLs [50]. The LOD score of QTLs for LR resistance was in the range of
3.2–8.6.

For the LR race TQTMQ, three QTLs identified on chromosomes 4A, 5B, and 7B were revealed.
They explained 12.1–15.7% of the phenotypic variations. The alleles of all three QTLs associated with
the increase in resistance to LR originated from PA. For the second LR race TQKHT, two QTLs on
chromosomes 6A and 7D explained 25.7% and 11.6% of the variations in phenotype, respectively.
Both QTLs associated with higher resistance to race TQKHT originated from Paragon. For the third
LR race TRTHT, three QTLs on chromosomes 3A, 4D, and 6A were observed. Identified QTLs
explained 12.3–16.2% of the variation in resistance to race TQKHT. The alleles of QTLs QLr.ipbb-3A.2
and QLr.ipbb-6A.5 increasing resistance were from Paragon, and the allele of QLr.ipbb-4D.1 was from PA.

Figure 1. Pamyati Azieva × Paragon genetic map with quantitative trait loci (QTLs) for adult plant
resistance (APR) to leaf rust (LR) in two regions and seedling resistance to three LR races. The region
containing the QTL is indicated by a vertical bar on the right and followed by the name of the QTL.
Single nucleotide polymorphism (SNP) markers are shown on the right and their genetic positions (cM)
on the left. The peak marker for each QTL is highlighted in color and bolded. Colors of QTL indicate
APR or race-specific seedling resistance.
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Two QTLs for APR to LR at RIBSP were identified on chromosomes 1B and 7A and explained
13.6% and 11.7% of phenotypic variation, respectively. For both APR QTLs, alleles associated with
increased LR resistance were from Paragon. One QTL for APR to LR at KRIAPI was also detected at
the seedling stage for the resistance to LR race TQKHT on chromosome 1A. It explained 16.0% of LR
resistance variation. In both cases, alleles associated with higher resistance originated from Paragon.

3.4. QTLs for SR Resistance at Seedling and Adult Plant Stages Identified in PA × Par Mapping Population

A total of 13 QTLs were detected in this study for SR resistance at the seedling and adult
plant-growth stages. Among them, seven race-specific QTLs were identified at the seedling stage
(three QTLs for race TKRTF, three QTLs for race PKCTC, and one QTL for race RKRTF), three QTLs
were observed for APR (two QTLs at KRIAPI and one QTL at RIBSP), and three QTLs were revealed
in both the seedling and adult stages (Table 8, Figure 2). The identified QTLs for SR resistance were
distributed among nine chromosomes of A, B, and D genomes and explained from 8.9% to 39.1% of the
variation in the resistance to SR. In total, 11 out of 13 QTLs for SR resistance had R2 > 10% and could
be considered major QTLs. The LOD score for the detected QTL varied from 3.0 to 6.8.

Figure 2. Pamyati Azieva × Paragon genetic map with quantitative trait loci (QTLs) for adult plant
resistance (APR) to stem rust (SR) in two regions and seedling resistance to three SR races. The region
containing the QTL is indicated by a vertical bar on the right and followed by the name of the QTL.
Single nucleotide polymorphism (SNP) markers are positioned on the right and their genetic positions
(cM) are shown on the left. The peak marker for each QTL is highlighted in color and bold. Colors of
QTL indicate APR or race-specific seedling resistance.
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Three QTLs for resistance to SR race TKRTF were identified, including two QTLs mapped on
chromosome 6B and one QTL on 2D. These QTLs explained 10.0–19.2% of the variation in SR resistance
to race TKRTF. QTLs QSr.ipbb-6B.6 and QSr.ipbb-6B.7 had alleles increasing SR resistance to race TKRTF
carried by PA, whereas resistance allele QSr.ipbb-2D.2 originated from Paragon. For the second SR race
PKCTC, two QTLs for resistance to this race were located on chromosome 2B and one QTL was on 5B.
The phenotypic variance conditioned by these QTLs varied from 8.9% to 14.7%. The third SR race
RKRTF allowed the identification of one race-specific QTL on chromosome 5A explaining 24.7% of the
phenotypic variation. Its allele, associated with an increase in SR resistance, originated from Paragon.

Three QTLs for APR to SR were identified on chromosomes 1D, 3D, and 5A, and explained from
10.8% to 18.0% of SR resistance variation. Two QTLs identified at KRIAPI had alleles increasing
resistance to SR originating from Paragon, and the allele of QTL at RIBSP was from PA. The last three
QTLs for LR resistance occurred multiple times in the experiment and are located on chromosomes
1B, 2A, and 6B. The QTL QSr.ipbb-1B.4 was detected as race-specific to TKRTF at the seedling stage
and as APR QTL at KRIAPI. It explained 15.7% of SR resistance variation and had alleles increasing
resistance originating from Paragon at the seedling stage and PA at the adult plant stage. The QTL
QSr.ipbb-2A.2 was identified as effective against SR race RKRTF at the seedling stage and as APR QTL
at RIBSP. This QTL explained 39.1% of the phenotypic variation, and alleles increasing SR resistance at
both growth stages were inherited from PA. The QTL QSr.ipbb-6B.5 was discovered at the seedling
stage to race TKRTF and at the adult plant stage at RIBSP. The QTL explained 17.3% of SR resistance
variations. Its alleles increasing resistance originated from PA in the case of seedling resistance and
from Paragon at the adult growth stage.

3.5. Comparison of Identified QTLs with Previous Works and Gene Identification

The QTLs identified in this study were analyzed in comparison with previously reported QTLs
for LR and SR resistance in the PA × Par RILs population [27] and with QTLs for LR and SR resistance
at RIBSP identified using genome-wide association study (GWAS) [51]. The location of each identified
QTL was compared to the genetic positions of known Lr and Sr genes (Table 9). In total, four candidate
Lr genes and four QTLs were found for five QTLs associated with LR resistance in this study. In the
analysis of QTLs for SR resistance, we found similarities with the genetic locations of eight previously
identified QTLs and/or candidate Sr genes.

Table 9. Comparison of quantitative trait loci (QTLs) for leaf rust (LR) and stem rust (SR) resistance
identified in this study in a Pamyati Azieva × Paragon mapping population with previously described
QTLs and candidate Lr and Sr genes.

# Trait Type of Resistance (Race) QTL Reference QTL Candidate Genes

1

LR

TQKHT/APR QLr.ipbb-1A.2 QLr.ipbb-1A.1 [51] -

2 APR QLr.ipbb-1B.4 - Lr21 [47]

3 TRTHT QLr.ipbb-3A.2 - Lr63, Lr66 [52]

4 TQKHT QLr.ipbb-6A.4 QLr.ipbb-6A.1 [51] -

5 TRTHT QLr.ipbb-6A.5 QLr.ipbb-6A.2 [51] -

6 TQTMQ QLr.ipbb-7B.3 QLr.ipbb-7B.1 [51] Lr14 [52]

1

SR

TKRTF/APR QSr.ipbb-1B.4 - Sr31 [53]

2 APR QSr.ipbb-1D.1 - Sr18 [54]

3 RKRTF/APR QSr.ipbb-2A.2 - Sr32-2A [53]

4 PKCTC QSr.ipbb-2B.3 - Sr32-2B, Sr39 [53]

5 PKCTC QSr.ipbb-2B.4 QSR.IPBB-2B [26] Sr36 [53]

6 TKRTF QSr.ipbb-2D.2 - Sr32-2D [53]

7 TKRTF/APR QSr.ipbb-6B.5 QSR.IPBB-6B.1 [27],
QSr.ipbb-6B.3 [51] -

8 TKRTF QSr.ipbb-6B.7 QSR.IPBB-6B.2 [27],
QSr.ipbb-6B.4 [51] Sr11 [54]
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The region of each QTL was analyzed for the presence of protein-coding genes in the interval
500 kb upstream and 500 kb downstream from the most significant SNP (Table S1). The analysis
of LR-associated QTL regions suggested the presence of 158 genes ranging from 6 (QLr.ipbb-7B.3
and QLr.ipbb-7D.1) to 22 (QLr.ipbb-1B.4 and QLr.ipbb-6A.4) genes per interval. A similar search for
SR-associated QTL regions indicated the presence of 226 genes ranging from 5 (QSr.ipbb-2B.4) to 29
(QSr.ipbb-1B.4) genes per interval. Among these 158 genes identified for QTLs associated with LR,
48.9% coded for proteins with functions known in T. aestivum, 48.6% for uncharacterized proteins,
and 2.5% for RNAs. For QTLs associated with SR, 56.6% of genes coded for proteins uncharacterized
in T. aestivum, 41.2% described protein-coding genes, and 2.2% coded for RNAs. Among genes coding
for uncharacterized proteins, sequences similar to the 24 QTL regions for LR and 39 QTL regions for
SR were identified in other grass species (Table S1). Orthologous genes with their sequence similarity
level higher than 70% were selected and are listed.

4. Discussion

4.1. General Resistance of RILs in Studied Environments

At the seedling stage, the majority of RILs and parental cultivars showed MS and S levels of
resistance to all races of LR and SR, except for the SR race PKCTC, where several lines were identified
as R and MR (Table 3). The ANOVA test showed a more significant influence of pathogen genotype
(race) on the resistance of RILs rather than the genotype of wheat lines (Table 4). This result indicated
that these genetic factors associated with resistance are race-specific. In the world and in Kazakhstan,
breeding programs are mostly focused on the combination of seedling resistance and APR in new
cultivars. Pyramiding of seedling gene(s) with slow rusting APR gene(s) usually results in higher
resistance of the crop. This agrees with wheat R genes conferring resistance to LR (Lr1, Lr10, Lr21)
and SR (Sr22, Sr33, Sr35, Sr45, Sr50) being cloned and widely used in wheat breeding [55]. However,
the significant positive correlations among LR races observed in this study (Table 5) suggested the
involvement of genetic factors that are effective against all three races. The presence of strong positive
correlations between APR to LR and SR at KRIAPI also indicated that genes conferring LR resistance
are either closely linked or may have a pleiotropic effect on genes that control SR resistance [26,56].
Positive correlations were simultaneously observed between seedling resistance to LR races TQTHQ
and TKTHT and APR to LR at KRIAPI, as well as between seedling resistance to SR race PKCTC and
APR to SR at KRIAPI (Table 5). The relationship between race-specific seedling and broad adult plant
resistances could be influenced by the presence of LR and SR races in the fields at KRIAPI. This also
suggested that the wheat germplasm growing in this region could be effectively and rapidly screened
for resistance to LR and SR at the seedling stage in a greenhouse [57].

LR and SR resistances are complex traits [58]; this was confirmed by the range of reactions to
pathogens and the presence of transgressive segregations. Even when parents demonstrated the same
level of resistance, such as APR to SR, RILs still showed transgressive phenotypes in the direction of
either resistance (RIBSP) or susceptibility (KRIAPI) (Table 3). This phenomenon is not rare; it was
previously described for many other quantitatively inherited wheat traits; for example, in studies of
grain quality traits [22], grain Zn and Fe concentrations [59], grain yield and plant height [60], and rust
diseases [61,62].

4.2. QTL Mapping for Leaf Rust Resistance

Alleles conferring increased resistance of QTLs for LR race TQKHT and APR at RIBSP originated
from Par (Table 7). The higher LR resistance of Par in comparison with PA indicated that the U.K.
cultivar is a promising source for wheat breeding programs in Kazakhstan. PA was simultaneously
found to be a source for QTLs with increased LR resistance to race TQTMQ.

The 11 QTLs for the resistance to LR at the seedling and adult plant-growth stages can be divided
into two categories: (1) similar to QTLs previously detected for LR resistance and (2) presumably
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novel QTLs. The first category consisted of 6 out of 11 QTLs for LR resistance (Table 9). Four of the
QTLs for LR resistance with similar genetic positions (QLr.ipbb-1A.2 (APR at KRIAPI), QLr.ipbb-6A.4
(seedling resistance to TQKHT), QLr.ipbb-6A.5 (seedling resistance to TRTHT), and QLr.ipbb-7B.3
(seedling resistance to TQTMQ) were previously identified in a GWAS study performed at RIBSP
in 2018/2019 at the adult plant stage [50]. Hence, multiple occurrences of QTLs associated with the
resistance to LR in different conditions and environments indicated the broad stability of these loci.
QLr.ipbb-7B.3 may be associated with the gene Lr14 located in a similar region of the genome (Table 9).
The effectiveness of allele Lr14a was described for northern Kazakhstan and Lr14b for eastern and
western Kazakhstan [7]. Lr14 was also described as an effective resistance factor to TQTMQ (Table 1).
The APR QTL QLr.ipbb-1B.4 is associated with the gene Lr21, positioned in close proximity to the peak
of the QTL (Table S1). This gene was described as effective in southeastern Kazakhstan [7]. The last
QTL from the first group, QLr.ipbb-3A.2, is probably associated with genes Lr63 and Lr66 (Table 9).
Unfortunately, information is lacking about the role of these genes in the wheat-growing areas of
Kazakhstan. However, Lr63 and Lr66 are known to condition low to intermediate infection types to
most of P. recondita isolates [63]. The remaining five QTLs identified for LR resistance are presumably
novel genetic factors, since there were no reliable matches between their positions in the genome and
previously identified QTLs or genes.

4.3. QTLs for Stem Rust

In 13 QTLs for the resistance to SR identified in this study, alleles presumably increasing resistance
originated from both PA and Par (Table 8). Similar to LR resistance, SR-resistance-associated QTLs could
be divided into two loci groups, where the first group has similar genetic positions with previously
reported QTLs for SR resistance (Table 9), and the second group has none of those matches. The first
group includes 8 out of 13 QTLs identified for SR resistance. For three of them—QSr.ipbb-2B.4 (seedling
resistance to PKCTC), QSr.ipbb-6B.5 (seedling resistance to TKRTF and APR in RIBSP), and QSr.ipbb-6B.7
(seedling resistance to TKRTF)—QTLs for SR resistance with similar positions in the genome were
identified in a previous work involving the PA × Par mapping population [27] and in a GWAS study
using resistance data obtained from RIBSP [51]. Similar to the LR study, these findings may indicate
the stability of identified QTLs. In addition to the information with QTL similarities, several specific
Sr genes seem to be associated with QTLs from this study (Table 9). One of the most interesting
findings was the identification of three QTLs on distal ends of chromosomes 2A, 2B, and 2D responsible
for seedling resistance to SR races RKRTF, PKCTC, and TKRTF, respectively. These QTLs could be
associated with the gene Sr32, which was mapped in these regions of chromosomes 2A [64], 2B [65],
and 2D [66]. The gene was previously reported as effective against Ug99 and related SR races [66].
The other Sr genes involved in resistance to SR races in the Ug99 lineage and possibly associated
with QTL from this study are Sr31 (resistant to TTKSF and TTKSP), Sr36 (all Ug99 lineage races,
except TTTSK), and Sr39 (all Ug99 lineage races) [67]. Among the SR races used in this study, Sr36 was
described as effective against PKCTC (Table 1). The resistance pattern is similar to QSr.ipbb-2B.4,
which is located in a nearby region of the chromosome. The second group of the genetic factors
consisted of the remaining five QTLs that could be novel QTLs associated with resistance to SR.

4.4. QTLs Cluster on Chromosome 1B

The QTLs associated with several traits are common in wheat. It may occur due to pleiotropic
effect or their tight linkage. For the resistance to wheat fungal diseases, pleiotropic APR genes
Lr34/Yr18/Pm38/Sr57 [68], Lr46/Yr29/Pm39/Sr58 [69], and Lr67/Yr46/Pm46/Sr55 [70] were previously
described. Among the QTLs identified for LR and SR resistance in this study, two QTLs (QLr.ipbb-1B.4
and QSr.ipbb-1B.4) occupy the same interval on chromosome 1B (Tables 7 and 8, Figures 1 and 2).
In addition, the QLr.ipbb-1B.4 interval contains the resistance gene Lr21 less than 500 kb from the
significant peak, whereas the interval of QSr.ipbb-1B.4 has genes for disease resistance proteins
and resistance-related kinases next to the peak marker (Table S1). Lr21 was described as effective
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for southeastern Kazakhstan [7]. Common markers in these intervals suggest the usefulness for
marker-assisted breeding of these QTLs to develop wheat cultivars with durable rust resistance for
gene pyramiding [11].

5. Conclusions

Overall, 24 QTLs for the resistance to rust diseases at the seedling and adult plant stages were
identified in this study, including 11 QTLs for LR and 13 QTLs for SR. Among the QTLs associated
with LR, eight QTLs were race-specific and detected at the seedling stage, two QTLs were at the stage
of the adult plant, and one QTL was identified in both stages. The QTLs for LR-resistance explained
from 11.6% (QLr.ipbb-7D.1) to 25.7% (QLr.ipbb-6A.4) of the phenotypic variation and were detected
on 10 chromosomes. The increased resistance to LR in TQTMQ race-specific QTLs originated from
PA; in QTLs specific for the race TQKHT and APR, alleles were from Par. For TRTHT, the origin
of resistance alleles in identified QTLs was both parental cultivars. For SR resistance, seven QTLs
were race-specific and detected at the seedling stage, three QTLs were identified at the adult plant
stage, and three QTLs were identified at both growth stages. SR-associated QTLs explained from
8.9% (QSr.ipbb-2B.4) to 39.1% (QSr.ipbb-2A.2) of variation in SR resistance and were mapped on nine
chromosomes. The alleles increasing resistance to SR originated from both parents: effective alleles in
six QTLs were from Par, in five QTLs from PA, and two QTLs had a different origin of resistance at
the seedling and adult plant stages. Among the QTLs from this study, 10 QTLs were putative and
14 matching QTLs were found in previous works involving the PA × Par population, a GWAS study
at RIBSP, and possible candidate resistance genes. The cluster of QTLs associated with both LR and
SR resistances was identified on chromosome 1B. Thus, the QTLs revealed in this study may play an
essential role in the improvement of wheat resistance to LR and SR via marker-assisted selection.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/9/1285/s1,
Table S1. The list of protein- and RNA-coding genes 500 kb upstream and 500 kb downstream from the most
significant SNP of the QTL.
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Abstract: Plum pox virus (PPV) is the most important limiting factor for apricot (Prunus armeniaca L.)
production worldwide, and development of resistant cultivars has been proven to be the best solution
in the long-term. However, just like in other woody species, apricot breeding is highly time and space
demanding, and this is particularly true for PPV resistance phenotyping. Therefore, marker-assisted
selection (MAS) may be very helpful to speed up breeding programs. Tightly linked ParPMC1 and
ParPMC2, meprin and TRAF-C homology (MATH)-domain-containing genes have been proposed
as host susceptibility genes required for PPV infection. Contribution of additional genes to PPV
resistance cannot be discarded, but all available studies undoubtedly show a strong correlation
between ParPMC2-resistant alleles (ParPMC2res) and PPV resistance. The ParPMC2res allele was
shown to carry a 5-bp deletion (ParPMC2-del) within the second exon that has been characterized as
a molecular marker suitable for MAS (PMC2). Based on this finding, we propose here a method for
PPV resistance selection in apricot by combining high-throughput DNA extraction of 384 samples
in 2 working days and the allele-specific genotyping of PMC2 on agarose gel. Moreover, the PMC2
genotype has been determined by PCR or by using whole-genome sequences (WGS) in 175 apricot
accessions. These results were complemented with phenotypic and/or genotypic data available in the
literature to reach a total of 325 apricot accessions. As a whole, we conclude that this is a time-efficient,
cost-effective and straightforward method for PPV resistance screening that can be highly useful for
apricot breeding programs.

Keywords: apricot; MAS; breeding; MATH; PPV resistance; agarose; ParPMC; ParPMC2-del

1. Introduction

Most cultivated apricots belong to the Prunus armeniaca L. species, a member of the Rosaceae family,
Prunus genus and section Armeniaca (Lam.) Koch [1]. World apricot production reached 3.84 million
tonnes in 2018, with Turkey, Uzbekistan and Iran as the main producers (http://www.fao.org/faostat/).
This means an increase of about 45% since 1998 mainly due to Asian countries. By contrast, European
production in this period has just increased slightly while the cultivated area declined up to 19%.
Despite its wide geographical spread, apricot has very specific ecological requirements. Consequently,
each region usually grows locally adapted cultivars. For this reason, significant breeding efforts have
been undertaken since the first apricot breeding program started in 1925 at the Nikita Botanical Garden
in Yalta (Crimea, Ukraine) [2]. However, apricot breeding based on biparental controlled crosses
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and subsequent selection of the best new allelic combinations is hardly limited by the capacity to
evaluate trees in the field [3]. On one side, fruit trees show high space requirements to be grown.
On the other, their juvenile phase is quite long and reliable pomological phenotyping requires several
cropping seasons, which means that at least ten years are needed to release a new variety. Therefore,
the implementation of marker-assisted selection (MAS) has a great potential to improve breeding
efficiency in fruit trees, including apricot.

Sharka disease, caused by Plum pox virus (PPV), is currently the most important viral disease
affecting stone fruit trees (Prunus spp.) [4]. To date, nine PPV strains (D, M, C, EA, W, Rec, T,
CR and An) are identified [5]. However, PPV genetic diversity may be even bigger, as observed by
Chirkov et al. [6], who recently described the new Tat isolates affecting sour cherry (Prunus cerasus).
PPV-D and M are the most widespread and economically important strains [5,7]. A clear host preference
is observed: PPV-D/plum/apricot and PPV-M/peach. However, underlying genetic determinants are
still unknown [8].

Particularly in apricot, PPV-D has severely hindered production in the last three decades, especially
in endemic areas. In this context, development of PPV-resistant varieties is the main objective of
apricot breeding programs. However, resistant sources are scarce. Just a handful of North American
PPV-resistant cultivars have been identified to date, and they are commonly used as donors in all
apricot resistance breeding programs currently in progress [9]. Several independent works aimed at
dissecting the genetic control of PPV resistance in apricot have identified the major dominant PPVres
locus in the upper part of linkage group 1 [10–17]. According to the pedigree and fine mapping data,
a single common ancestor carrying PPVres has been suggested for all PPV-resistant cultivars [16,18–20].
Moreover, other minor loci contributing to PPV resistance have been suggested [13–16], but their
role has not yet been well defined. More recently, transcriptomic and genomic analyses of PPVres
locus have pointed out ParPMC1 and ParPMC2, two members of a cluster of meprin and TRAF-C
homology domain (MATHd)-containing genes, as host susceptibility paralogous genes required
for PPV infection [21]. The ParPMC2 allele linked in coupling with PPV resistance (ParPMC2res)
accumulates 15 variants, including a 5 nt deletion (ParPMC2-del) that results in a premature stop
codon. Moreover, cultivars carrying the ParPMC2res allele show that ParPMC2 and especially ParPMC1
genes are downregulated. As a result, this ParPMC2res was proposed to be a pseudogene that confers
PPV resistance by silencing functional homologs, the non-mutated ParPMC2 allele and/or ParPMC1.
Another plausible scenario involves epigenetic modifications to explain ParPMC silencing in the
resistant cultivars [22].

In spite of evidence supporting linkage with the PPVres locus, some genotype-phenotype
incongruencies (GPIs) have been detected in biparental populations segregating for PPV
resistance [17,23,24]. In other words, some phenotypically susceptible individuals carrying ParPMC2res
were classified as genetically resistant. Possible causes underlying these discrepancies, including other
loci contributing to PPV resistance, are still unresolved. However, the potential benefit of using a
ParPMC2 allele-specific marker (PMC2) for MAS is still very high since sharka resistance phenotyping
is a major bottleneck in apricot breeding programs. The most reliable method for apricot PPV resistance
phenotyping is based on a biological test that uses GF-305 peach rootstocks as woody indicators and
graft-inoculation with PPV [25]. This procedure is time-consuming and requires visual inspection
during two to four growing seasons in several replicates per genotype followed by ELISA [26] and
RT-PCR tests [27]. It should be noted that the plant to be tested must be of a significant size in order to
have enough buds for grafting replicates, so it takes a couple of years from the time of crossing. As a
result of a genetic mapping approach, Soriano et al. [18] reported the first successful MAS application for
PPV resistance using 3 SSRs within the PPVres locus resolved by capillary electrophoresis. Afterwards,
these SSRs were combined with a single sequence length polymorphism marker (ZP002) interrogating
the ParPMC2-del resolved by capillary or acrylamide electrophoresis [24] and by high resolution
melting [28]. However, specialized DNA testing services are needed to adopt these MAS approaches,
and together with the economic costs, this could be a challenge [29].

238



Agronomy 2020, 10, 1292

Here, we report a method combining high-throughput DNA extraction of 384 samples in 2
days and PMC2 genotyping by allele-specific PCR amplification and agarose gel electrophoresis.
This method is proven to be an easily implemented tool for MAS of PPV-resistant seedlings in almost
any apricot breeding program. Therefore, bioassays for PPV resistance evaluation will be needed to
confirm the phenotype in selected materials. Moreover, PMC2 genotype has been determined and/or
revised for 325 worldwide cultivated apricot accessions providing useful information for breeders to
select parental genotypes.

2. Materials and Methods

2.1. High-Throughput DNA Isolation in 96-Well Plate

The genomic DNA extraction protocol was optimized from the original Doyle and Doyle
method [30] to manage 384 samples per isolation using 8-well 1.2-mL strip tubes (VWR International).
For each accession, 2 leaf discs were collected and placed into a tube with 3 glass beads
(VWR International). The strips were frozen in liquid N2 and stored at −20 ◦C before DNA isolation.
Frozen tissue was ground for 1 min with a frequency of 26/s using a Qiagen TissueLyser 85210 (Qiagen,
Hilden, Germany). Then, 340 μL of preheated CTAB isolation buffer (with 0.2% 2-mercaptoethanol)
was added to the ground tissue and incubated at 65 ◦C for 40 min, shaking gently every 10 min. After a
short spin, 340 μL of chloroform-isoamyl alcohol (24:1) was added and mixed inverting the plates.
Tubes were centrifuged for 10 min at 3000 rpm and 4 ◦C. The clean aqueous phase was transferred
to new strip tubes, and 1.5 vol of 100% ethanol and 15 mM ammonium acetate were added and
mixed gently. After overnight incubation at −20 ◦C, tubes were centrifuged for 10 min at 3000 rpm
at 4 ◦C. The supernatant was discarded inverting the tubes, and 300 μL of 70% ethanol was added.
After centrifugation for 10 min at 3000 rpm at 4 ◦C, the supernatant was discarded and finally 75 μL of
TE was added. DNA at 1:10 dilution was used for PCR. Some random DNA samples from each plate
were subjected to quality control. DNA integrity was checked on an agarose gel, and quantification
was performed using a Nanodrop ND-1000 spectrophotometer (Nanodrop Technologies, Wilmington,
DE, USA).

2.2. PMC2 Genotype by Allele-Specific PCR Assay

PMC2 marker genotyping was performed using the allele-specific forward primer (PMC2-F-alleleR:
5’-GTCATTTTCATTGATGTCATTCA-3’ or PMC2-F-alleleS: 5’-GTCATTTTCATTGATGTCATTCA -3’)
and one common reverse primer (PMC2-R: 5’- GTCATTTTCATTGATGTCATTCA -3’), as described by
Zuriaga et al. [21]. PCRs were performed in a final volume of 20 μl containing 1 × DreamTaq buffer,
0.2 mM of each dNTP, 5 μM of each primer, 1 U of DreamTaq DNA polymerase (Thermo Fisher) and
2 μL of DNA extraction (diluted 1:10). Cycling conditions were as follows: an initial denaturing of
95 ◦C for 5 min; 35 cycles of 95 ◦C for 30 s, 55 ◦C for 45 s and 72 ◦C for 45 s; and a final extension of
72 ◦C for 10 min. PCR products were electrophoresed in 1% (w/v) agarose gels.

Available DNA samples from 120 apricot cultivars and accessions were PCR screened in this work.
Part of this collection is currently kept at the collection of the Instituto Valenciano de Investigaciones
Agrarias (IVIA) in Valencia (Spain), while other samples were provided by the Departamento de
Mejora y Patología Vegetal del CEBAS-CSIC in Murcia (Spain), the University of St. Istvan (Budapest,
Hungary) or by SharCo project (FP7-KBBE-2007-1) partners.

2.3. WGS Mapping and PMC2 Screening

WGSs of 73 cultivars were used in this study. Twenty-four of these WGSs and the 454 sequenced
BAC clones belonging to the “Goldrich” PPVres locus R-haplotype were already screened in our
previous works [20–31]. The other 49 WGSs were downloaded from the SRA repository (https://www.
ncbi.nlm.nih.gov/sra). All raw reads were processed using the “run_trimmomatic_qual_trimming.pl”
script from the Trinity software [32]. After removing the low-quality regions as well as vector and
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adaptor contaminants, cleaned reads were aligned to the peach genome v.2.0.a1 [33] using Bowtie2
v.2.2.4 software [34]. The presence/absence of the ParPMC2-del was visually inspected using IGV
v.2.4.16 [35].

3. Results and Discussion

3.1. High-Throughput DNA Extraction and ParPMC2-del Genotyping for MAS

MAS offers great advantages over traditional seedling selection based just on phenotypic
evaluations in fruit breeding [36]. DNA tests in segregating populations can improve the cost
efficiency and/or the genetic gain for each seedling selection cycle [29], allowing to identify a few
seedlings from among many thousands that have the genetic potential for desired performance
levels [37]. As a result, agronomical evaluation in field trials is restricted to the promising selected
materials. Implementation of MAS is especially valuable for traits that are difficult and/or expensive to
phenotype as PPV resistance. As previously explained, the most reliable PPV resistance phenotyping
is based on a biological test that uses graft-inoculated GF-305 peach seedlings [25] (Figure 1A).
This protocol requires several replicates per genotype and visual symptoms inspection during 2–4
growing seasons, which entails the main bottleneck in apricot breeding programs. For instance,
following this method at the IVIA’s greenhouse and cold chamber facilities, we can phenotype no more
than 3000 plants per year, which equals 500 seedlings (i.e., 6 replicates are needed for each seedling).

In this work, we present a new strategy to speed up while reducing costs of the current application
of MAS for PPV resistance in apricot [18,24,28]. Here, we combine a high-throughput DNA extraction
protocol that does not need sophisticated robotic systems and can be implemented in any regular
laboratory, with PMC2 allele-specific PCR amplification using previously described primers [21] and
agarose electrophoresis (Figure 1B). Both forwards primers differ at the 3’-end, allowing to easily
discriminate the presence/absence of the 5-bp ParPMC2-del (Figure 2). With this DNA extraction
method, one person can easily process up to 384 samples (four 96-well sample plates) in 2 working
days, enabling high throughput sample preparation. This is 4 times more samples than a standard
CTAB method using individual tubes, while the cost of reagents and consumables is similar in both
cases (around 0.29–0.30 € per sample) (Table S2). DNA obtained has enough quantity and quality to
ensure subsequent regular PCRs. A 1:10 dilution of the DNA obtained was directly used for PCR
amplification, without any additional purification step. In contrast, commercial kits are much more
expensive in terms of reagents and consumables with costs around 4€ per sample. Then, using this
DNA, 3 different methods could be applied for PPV MAS in apricot: the fluorescent labelling of PCR
fragments that are resolved using capillary electrophoresis [18], the high-resolution melting (HRM)
approach [28], and the use of standard PCR resolved by agarose gel electrophoresis [21]. It should
be noted that the first two methods require the use of special equipment that could not be available
for some laboratories and that also make the protocol more expensive. For instance, just the capillary
electrophoresis costs around 1.5–2€ per sample (PCR not included) and the fluorescently labelled
primers needed for PCR (136€ 10 nm) are much more expensive than the non-labelled ones (4€ 20 nm).
On the other hand, commercial kits for HRM are not very expensive (around 1€ per sample) but
requires the use of real-time PCR machines specially calibrated for this type of experiments and the
analysis software. As a resume, although prices differ between laboratories or countries, our rough
estimate of the cost points to first and second approaches as 13 and 8 times more expensive, respectively,
in terms of reagents and consumables than the protocol proposed in this work (Table S2).

Practical advantages of PMC2 genotyping over classical phenotyping may be illustrated by the
following example (Figure 1). The estimated time needed for evaluating 1000 samples at the IVIA’s
facilities using bioassays is about 16 months (500 samples/8 months), taking into account that plants
should be big enough to be ready-to-graft (approximately 2 years old). In contrast, just about 4 weeks
are needed to conduct PMC2 genotyping just after seed germination. This estimated time was calculated
assuming a 40-h workweek. As 1000 samples could be distributed into 10.4 96-well plates, ideally the
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DNA extraction would need 5.2 days (4 plates each 2 days), the 2 allele-specific PCRs would need
7.8 days (3 h each plate) and the agarose electrophoresis would last 2.6 days (2 PCR 96-well plates and
2 h per gel). In total, we would need 15.6 working days to genotype 1000 samples. This improvement
removes the phenotyping bottleneck since all seedlings obtained from a particular cross can be PCR
screened that same year. Hence, this quick and high-throughput method for DNA testing is expected
to have an important effect on the cost efficiency of MAS, as suggested by Edge-Garza et al. [37].

Figure 1. Comparison between traditional Plum pox virus (PPV) resistance phenotyping (A) and
high-throughput marker-assisted selection (MAS) based on PMC2 allele-specific PCR (B). (*) Estimated
duration based on Instituto Valenciano de Investigaciones Agrarias (IVIA) facilities.
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Figure 2. PMC2 genotyping by allele-specific PCR using forward primers differing at the 3’-end (A):
R-allele (B) and S-allele (C) amplifications in 1% agarose gel electrophoresis for 46 apricot accessions
(1: Goldrich, 2: Harlayne, 3: Henderson, 4: Lito, 5: Orange Red, 6: Pandora, 7: SEO, 8: Stella,
9: Veecot, 10: Bebeco, 11: Bergeron, 12: Canino, 13: Currot, 14: Ginesta, 15: Katy, 16: Mitger, 17: Palau,
18: Tyrinthos, 19: Piera, 20: Selene, 21: Colorao, 22: Moixent, 23: Perla, 24: Dama Vermella, 25: Maravilla,
26: Ninfa, 27: Palabras, 28: Sublime, 29: Dorada, 30: Castlebrite, 31: Martinet, 32: Corbató, 33: Gandía,
34: Cristalí, 35: Manri, 36: Gavatxet, 37: Pisana, 38: Xirivello, 39: Velazquez, 40: Mirlo Rojo, 41: Rojo
Carlet, 42: Bulida, 43: ASP, 44: Silvercot, 45: Bora and 46: Roxana).

3.2. ParPMC2-del Highly Correlates with PPV Resistance in Apricot Germplasm

One of the main pillars of plant breeding relies on skilful parental selection to create new genetic
variation by controlled crossing. Usually, breeders just connect the concept of DNA-informed breeding
with the use of molecular markers for seedling selection, but it also can be very helpful for parental
selection [36]. This is the case in apricot breeding for PPV resistance. Two decades ago, Martínez-Gómez
et al. [9] reviewed phenotypic information regarding apricot cultivar behaviour against PPV. Similarly,
here, we compile the PMC2 genotype of a wide set of apricot accessions to facilitate parental selection
tasks incorporating also their resistance phenotype, pedigree and origin data from the literature when
available. The PPV strain used for phenotyping was also included because differences in severity of the
induced symptoms have been observed [10,16]. As a result, after screening 120 accessions by PCR and
other 49 by WGS and reviewing the available literature, PMC2 genotype was determined in a total of 325
apricot cultivars or accessions that represent a wide range of geographic origins (Figure 3). A significant
part of the materials come from European countries directly involved in PPV resistance research during
the last decades, such as Italy (20.9%), Spain (15.7%) or France (14.8%) [38–42]. Regarding viral strain,
PPV-M was more frequently used for phenotyping except for PPV-D in Spain and PPV-T in Turkey
(Figure 3), in agreement with the prevalence of these two strains in every country [5,43].
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Figure 3. Geographic distribution of apricot accessions: PMC2 genotypes (RR: homozygous for the
resistant allele; SS: homozygous for the susceptible allele; and RS: heterozygous) and PPV strain used
for phenotyping are also indicated.

In total, 110 accessions were considered phenotypically resistant (Table 1), 108 were susceptible
(Table 2) and 11 showed uncertain phenotype against the same or different PPV strains (Table 3).
ParPMC2-del highly correlates with PPV resistance, as evidenced by its presence in 92.8%
of the resistant accessions (Table 1) and its absence in 92.6% of the susceptible accessions
(Table 2). Only 16 out of 219 (7.3%) accessions phenotypically classified as resistant or susceptible
showed genotype-phenotype incongruences (GPIs). GPIs were previously reported mainly when
using segregating populations [18,23,24,28,44], but clarifying reasons underlying GPIs was found
difficult, as quite different factors may be involved. These factors include complex phenotyping
protocols, loci other than PPVres contributing to PPV resistance, environmental conditions and/or
gene–environment interactions. Additionally, putative misclassifications could also explain some
genotypic discrepancies observed in this work. For instance, Sunglo, the resistant donor parent of
Goldrich, has been phenotyped as resistant by several authors using PPV-M [15,45,46] and PPV-D [47]
and genotypically showed the SSR-resistant alleles targeting the PPVres locus [18]. However, WGS data
(SRR2153157) supposedly corresponding to this accession do not have the ParPMC2-del. Something
similar occurs with Mirlo Naranja, classified as resistant [48], that was found to carry one copy of the
ParPMC2-del by PCR in this work but not in that of Passaro [49]. Detailed accession documentation
may be helpful to resolve these discrepancies, but 13 of the 16 identified GPIs have no pedigree data
available. This information would be very valuable to increase the efficiency of apricot breeding
programs and germplasm management.
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Accurate evaluation of PPV resistance is a complex process, and results obtained by different
researchers sometimes are contradictory, as exemplified by Farbaly and Pieve (Table 3), which may
lead to GPIs. This problem is also observed in well-known accessions. For instance, Goldrich,
usually classified as resistant against both PPV-D and M strains, has also been classified as uncertain or
even as susceptible at least once (Table 3). Moreover, the effect of the PPV strain used [9,24] has also
been observed, as at least 5 accessions showed different behaviour against PPV-M, D or T infection
(Table 3). In addition, the environmental effect on symptoms and the different PPV detection techniques
employed could also been involved in GPIs [9].

On the other hand, PPV resistance has been related with the downregulation of both ParPMC2 and,
especially, ParPMC1, putatively due to an RNA silencing mechanism triggered by the pseudogenization
of ParPMC2res [21]. Notwithstanding, the presence of epigenetic changes has also been suggested
as a possible cause [22]. In any case, resistant cultivars show residual expression levels that could
somehow be influenced by environmental conditions. This might explain sporadic symptoms that
eventually lead to GPI classification. Moreover, the role of additional PPV resistance loci or genes may
also contribute to GPIs. In this sense, Gallois et al. [105] pointed out that a large part of a resistant
phenotype conferred by a given QTL depends on the genetic background due to frequent epistatic
effects between resistance genes. In fact, other minor loci, linked or not to PPVres, have been suggested
to underlie PPV resistance in apricot [13–16]. Altogether, the identification and/or confirmation of GPIs
in this work pave the way for future studies to unravel the PPV resistance mechanism.

The handful of North American cultivars originally described as PPV resistant [9] have been
extensively used as donors in all breeding programs currently in progress. As a result, the PPVres
locus has been introduced in different genetic backgrounds. In order to complete our survey,
genotypic information was compiled from other 96 accessions without available PPV phenotype data
(Table S1, [107–113]). In summary, 152 accessions (46.8%) have at least one copy of the ParPMC2-del
(Figure 3) and 15 out of them are homozygous for ParPMC2-del, including the North American
PPV-resistant cultivar Stella [114]. Those materials derived from crosses with North American
PPV-resistant cultivars represent an opportunity to accelerate the development of new varieties better
adapted to the Mediterranean basin conditions [9]. In this context, it should be highlighted that
MAS allows to improve cost efficiency and/or genetic gain in apricot breeding programs aimed to
select PPV-resistant seedlings. This improvement is highly significant even if some PPV susceptible
individuals among those with ParPMC2-del are dragged, since they will be later identified by PPV
phenotyping. Similarly, Tartarini et al. [115] underlined the advantage of the identification of homozygous
Rvi6 scab-resistant plants using MAS, despite segregating progenies showing at least 5% of GPIs.

4. Conclusions

Here, we present a high-throughput method to quickly perform DNA testing for PPV resistance that
may greatly improve the efficiency of apricot breeding programs. The long-lasting PPV phenotyping
process will only be performed with those advanced selections showing promising agronomic behaviour
in advanced stages to guarantee the selection of PPV-resistant individuals. Additionally, a wide survey
over 300 accessions has been made to identify PPV-resistant sources that could also be useful in apricot
breeding programs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/9/1292/s1,
Table S1. PMC2 genotyped apricot accessions without phenotypic data against PPV infection; Table S2. Estimation
cost of DNA extraction and PMC genotyping for PPV MAS in apricot.
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Abstract: The practical use of molecular markers is facilitated by cost-effective detection techniques.
In this work, wheat insertion site-based polymorphisms (ISBP) markers were set up for genotyping
using high-resolution melting analysis (HRM). Polymorphic HRM-ISBP assays were developed for
wheat chromosomes 4A and 3B and used for wheat variability assessment. The marker sequences were
mapped against the wheat genome reference sequence, targeting interesting genes. Those genes were
located within or in proximity to previously described quantitative trait loci (QTL) or meta-quantitative
trait loci (MQTL) for drought and heat stress tolerance, and also yield and yield related traits.
Eighteen of the markers used tagged drought related genes and, interestingly, eight of the genes were
differentially expressed under different abiotic stress conditions. These results confirmed HRM as a
cost-effective and efficient tool for wheat breeding programs.

Keywords: high resolution melting; ISBP markers; drought; candidate genes; QTL; MQTL;
wheat variability

1. Introduction

Wheat is among the most important and widely grown crops worldwide [1] and one of the
most important grain food crops in the human diet (https://www.fao.org). Wheat development and
yield can be affected by abiotic stresses as drought [2–5] and heat [6,7], whose frequencies would be
increased by the strong effects of the predicted climate change and global warming [8–10]. In fact,
drought is considered one of the most limiting environmental factors [3,11,12], strongly affecting
the growth [13,14] and production of crops, with significant reductions in the final yield of cereals,
including wheat [13]. Heat stress usually affects crops during the post-anthesis period, with negative
effects on final production [15] and end-use quality products [16]. These abiotic stresses are important
challenges for plant research and breeders, and plant breeding efforts have been focused on the
improvement of final crops production under these limiting conditions [17].
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Drought tolerance is considered a complex [18,19] and quantitative trait [14], which interacts
with the environment, and possesses an additive polygenic nature [3]. Even though most of these
genes have minor contributions, they are of great importance in the genetic improvement for drought
tolerance [5]. Drought can also affect gene expression [20,21], both under controlled [22–25] and field
conditions [26,27]. Heat stress tolerance includes plant mechanisms which occur at several levels,
where the plant acquires thermotolerance to cope with high temperatures [28]. Plants heat shock
response results from the reprogramming of gene expression [29] and is of great interest for studies
focused on plants stress tolerance and gene expression regulation [28]. Wheat breeding programmes
are necessary to ensure an improved selection of favorable alleles focused on interesting agronomic
traits, as yield and quality, and also biotic and abiotic stresses tolerance [30,31].

Molecular markers can be developed and successfully applied to identify important genomic
regions and major genes [32] closely related to target traits as drought tolerance [3]. In addition,
public resources as Wheat Expression (http://www.wheat-expression.com) facilitate the identification
of interesting candidate genes, as well as their validation [22,27]. Recent advances in genomics,
and the available fully annotated wheat reference genome (IWGSC RefSeq v1) [33], allow the accurate
identification of marker positions and their chromosome locations [5]. The available gene models
have been used, through appropriate bioinformatic pipelines, for the identification of differentially
expressed genes during drought and heat stress treatments (i.e., [22,27]).

The insertion site-based polymorphism markers (ISBP) are PCR markers designed based on the
knowledge of the sequence flanking transposable element (TE) sequences, to design one primer in
the transposable element and the other in the flanking DNA sequence [34]. TEs are very abundant
and nested in the wheat genome, with unique (genome-specific) insertion sites that are highly
polymorphic [30]. ISBP were developed for wheat genomic and genetic studies [34,35], and later used in
marker-assisted selection (MAS), and as a selecting tool for new varieties in plant breeding programs [30].
The ISBP technique is a rapid and efficient way to develop single copy chromosome-specific
markers from incomplete genomic sequences [30,34]. ISBP markers represent a valuable source
of polymorphism, which is mostly genome specific in wheat [35], and therefore very convenient
for wheat mapping applications [36]. These markers have been used to improve the wheat genome
saturation [30,33,37], for genotyping and single-nucleotide polymorphism (SNP) detection [35,38],
genetic diversity assessment [39], micro RNA (miRNA) coding sequences identification [40], or sequence
composition analysis [41]. They were also successfully applied to develop physical or genetic maps,
and to locate important agronomic traits [42,43] or resistance genes [36,44].

There are different techniques to detect the ISBP markers, as fluorescent polymerase chain reaction
(PCR) and capillary electrophoresis, allele-specific PCR or melting curve analysis [35]. High resolution
melting analysis has been described as a versatile and powerful analytical tool in molecular biology,
characterized by its easy use, simplicity, flexibility, low cost, sensitivity, and specificity [45–47]. Briefly,
this technique is based on the analysis of the PCR product’s melting, by analyzing the fluorescence
(due to an intercalated dye) broadcast level as response of a specific increasing temperature ramp [48].
ISBP was firstly carried out by Paux et al. [30] using wheat chromosome 3B markers and melting curve
analysis as an alternative to agarose gel electrophoresis. ISBP marker detection using HRM analysis
was later performed for resistance loci assessment in bread wheat [49]. The HRM technique has also
been used to detect other molecular markers (i.e., SNP, expressed-sequence tag (EST), simple-sequence
repeat (SSR), or insertion-deletion (InDeL)). HRM applications in wheat and closely related species
as barley and Aegilops, include the characterization of InDeL and SNP markers involved in drought
and salt tolerance [50]; the detection SNP markers [51,52] and mutations [53–56]; and the mapping of
markers linked to resistance genes [57–59].

ISBP markers have been developed for all wheat chromosomes [33,35,40,41,43]. Chromosome
3B [30] contains loci for grain yield, kernel length, plant height, and related traits [60]. Chromosome
4A [33,61] harbors several QTLs related to biotic and abiotic stresses tolerance, agronomic traits as grain
yield and quality, and regulation of physiological traits as plant height, maturity, or dormancy [62–70].
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This chromosome represents an important target in plant breeding, marker design for variability
analysis and candidate genes assessment. In this study, ISBP markers from wheat chromosome 3B [30]
and 4A were used to develop and validate HRM assays, and to assess the genetic variability in a wheat
collection. These markers were also used to target meta-quantitative trait loci (MQTL) [71,72] related
to drought and heat stresses, as well as yield and yield related traits. Candidate gene analyses were
performed for the ISBP markers and the genes were validated by gene expression analyses carried out
among different drought and heat stress conditions.

2. Material and methods

2.1. Plant Material and DNA Isolation

Two wheat panels were used to perform the analyses: (i) panel 1: a collection of 62 wheat lines (37
Triticum aestivum L., 11 Triticum turgidum ssp. durum (Desf.) Husn., 11 Triticum monococcum L.,
2 Triticum turgidum ssp turgidum L. and one Triticum urartu Thumanian ex Gandilyan) from
different sources (Supplementary Materials Table S1); (ii) panel 2: a collection of 76 durum wheat
(Triticum turgidum L) landraces, provided by the Spanish National Plant Genetic Resources Center
(CRF-INIA) (Supplementary Materials Table S2). This panel comprised genotypes of three subspecies:
8 dicoccon (Schrank) Thell., 21 T. turgidum, and 45 durum (Desf.) Husn.

Genomic DNA was isolated from young leaf tissue according to the cetyl trimethyl ammonium
bromide (CTAB) method of Murray and Thompson [73], as optimized by Hernández et al. [74].
The quality and concentration of samples were assessed by electrophoresis in a 0.8% agarose gel.

2.2. Insertion Site-Based Polymorphism Markers Development

ISBP markers were initially developed based on the wheat chromosome 4A survey sequencing [61]
and confirmed in the bread wheat reference genome sequence RefSeq v1 [33].

The assemblies corresponding to the 4A wheat chromosome survey sequencing were generated
using the “Newbler v2.7” software package (Roche Diagnostics Corporation, Basel, Switzerland) using
default parameters. IsbpFinder [30] was run on the assemblies obtained, and ISBP markers were located
on the 4AS and 4AL chromosome arms assemblies. The corresponding 45 ISBP primers were designed
using Primer3 (http://primer3.sourceforge.net) and mapped to the bread wheat reference genome
RefSeq v1 [33]. Marker set up was carried out using 6 durum and bread wheat lines representative of
variability (Supplementary Materials Table S1).

ISBP amplicons obtained by standard PCR (55 ◦C annealing, [30]) using 5 T. aestivum varieties
(Supplementary Materials Table S1) were purified by Exonuclease l (Exo I, New England Biolabs,
Inc., Ipswich, MA, USA) and SAP treatment (5 μL DNA, 1U Exol, 1xSAP buffer, 1U SAP in 9 μL at
37 ◦C for 1 h). The purified fragments were then sequenced on an ABI PRISM® 3730XL (Applied
Biosystems, Foster City, CA, USA) genetic analyzer using the forward and reverse ISBP primers [30] and
using the ABIPRISM BigDye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City,
CA, USA). HRM analyses were carried out for the same 5 T. aestivum varieties (Supplementary
Materials Table S1) using 6 ISBP primer pairs previously developed for wheat chromosome 3B [30]:
HRM3B_273339424, HRM3B_609364064, HRM3B_124761338, HRM3B_203288704, HRM3B_465802537,
and HRM3B_331497483. This analysis was carried out in a RotorgeneTM 6000, model 5-Plex real time
PCR (Corbett Research, Mortlake, NSW, Australia). The PCR reaction volume was of 15 μL and the
mixture composition was: Master Mix of Type-it HRM PCR Kit (Qiagen, CA, USA); 0.7 μM of each
primer and 2 μL of genomic DNA (30 ng). The PCR protocol consisted on an initial denaturation step
at 95 ◦C for 10 min; 45 amplification cycles of denaturation at 95 ◦C for 10 s, annealing at 55 ◦C for 15 s
and a final extension at 72 ◦C for 20 s; the high-resolution melting was set out by ramping from 65
to 95 ◦C, with fluorescence data acquisition at 0.1 ◦C increments (waiting for 2 s every acquisition).
HRM results were compared with the amplicon sequencing for the same five samples.
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The high-resolution melting analysis was later performed to assign HRM pattern types to the ISBP
markers, using 19 durum and bread wheat lines (Supplementary Materials Table S1). The PCR protocol
consisted of an initial denaturation step at 95 ◦C for 5 min; 50 cycles of denaturation at 95 ◦C for 20 s,
annealing at 60 ◦C for 20 s, and a final extension at 72 ◦C for 20 s. HRM analysis was undertaken
once amplification was completed by ramping from 65 to 95 ◦C, with fluorescence data acquisition at
0.1 ◦C increments (waiting for 2 s every acquisition). Results were analyzed by using the Rotorgene
software version 1.7 (Qiagen, the Netherlands), and HRM curves were normalized according to the
manufacturer’s instructions.

2.3. Candidate Genes and Gene Expression Analyses

ISBP markers were mapped in wheat chromosomes 4A and 3B, and then were compared to
the wheat MQTLs described in Acuña-Galindo et al. [71]. To obtain the MQTLs positions in wheat
chromosomes, marker sequences [71] were extracted from “Graingenes” (graingenes.org) and “Wheat
SSR DB markers” (wheatssr.nig.ac.jp), and then located by mapping flanking markers (using BLAST)
against RefSeq v1 [33]. Only the markers with a corresponding amplicon shorter than 500 bp and a
perfect BLAST match (no gap, no mismatch) were considered.

Markers sequences in chromosomes 4A and 3B were blasted against the RefSeq1 v1 [33] using the
parameters “-task”, “blastn-short” and “-ungapped”. The resulting hits were then processed to pair
forward and reverse sequence hits with an amplicon <1000 base pairs (bp). For subsequent analysis,
paired sequences were ordered by number of mismatches, so markers position was inferred from the
position of pairs with lower number of mismatches (0 in most cases). To identify candidate genes
associated to each marker, the results were filtered and the hits with best e-value were selected for
each molecular marker. The candidate genes were manually selected within a window of +/−20 kb
of the marker’s hit in the pseudomolecule [33] gene model annotation. Due to the reduced gene
density found for wheat chromosome 3B ISBP markers (only three genes were found), that window
was extended to +/−300 kb for this chromosome. Genes described as “uncharacterized protein”
were then manually annotated. Sequences were obtained in Ensembl Plants (T. aestivum RefSeq v1.1)
(https://plants.ensembl.org/), and then searched in UniProt (https://www.uniprot.org/). The annotated
hits with e-value 0.0 and a score >2000 were selected, except for the gene TraesCS4A01G410700, which
possesses a short length (207aa).

To overview the results from gene expression analyses, heatmaps were drawn using the data
retrieved from Wheat Expression (www.wheat-expression.com/) and the ‘NMF 0.21.0′ R package [75].
The information used was generated by Liu et al. [22], Ma et al. [26], and Galvez et al. [27]. Liu et al. [22]
experimental seedling samples grown in controlled conditions were associated to NCBI SRA ID
SRP045409 (control (IS), heat and drought (PEG induced drought) stress for 1 and 6 h (PEG1 and PEG6),
respectively). Ma et al. [26] experimental samples grown in a shelter corresponded to NCBI SRA ID
SRP102636 (anther stage irrigated leaf phenotype (AD_C), anther stage drought-stressed leaf phenotype
(AD_S), tetrad stage irrigated developing spike phenotype (T_C), and tetrad stage drought-stressed
developing spike phenotype (T_S)). Galvez et al. [27] flag leaf samples from field grown plants used
have NCBI SRA ID SRP119300 (irrigated (IF), mild stress (MS), and severe stress (SS) flag leaf samples).
Transcripts Per Kilobase Millions (TPMs) of genes under every condition were calculated as mean
value of TPMs of its constitutive experiments. A differential gene expression (DGE) analysis was
performed using RevSeqv1 [33] gene models through two bioinformatic pipelines: Kallisto (version
0.43.0) with the R library “sleuth”(version 0.28.1), and STAR with the R library DESeq2 (version 1.14.1).
A consensus threshold for the two pipelines (|lg2FC, β| > 1 and p-adjust, Q-value < 0.05 [27]) was used.

2.4. Wheat Variability Assessment

The PCR amplification protocol used was the previously described for HRM pattern type
assessment. Samples genotyping was performed using Melt and HRM analysis options of the
Rotor-GeneTM 6000 software. PCR was repeated three times to ensure the amplifications. Results
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were then corroborated with Rotor-Gene™ ScreenClust HRM™ Software. In those cases where the
number of genotypes assigned was unclear, ScreenClust HRM™ Software was also used for the final
decision. A binary matrix for genotyping results was created and then analyzed using two different
software, PhylTools v.1.32 (Wageningen Agricultural University, The Netherlands) and PowerMarker
v.3.25 [76]. The first one was used to calculate the genetic distances for haploid data with “individuals”
as hierarchy level and the Nei index [77]. PowerMarker was used to obtain the statistics mean allele
number, mean gene diversity, and Polymorphism Index Content (PIC). The unweighted pair group
method with arithmetic mean (UPGMA) clustering was carried out using the NEIGHBOR module
in the Phylip 3.695 package [78] with default parameters. The selected tree method was UPGMA.
The final dendrogram was drawn using MEGA v.6.0 [79] software with the results from the genotyping.

The goodness of fit of the UPGMA tree was calculated by the Cophenetic Correlation Coefficient
(CCC) using a visual basic program for Microsoft Excel 2000 [80]. The CCC calculated from the linear
regression between the corresponding values of the original distance matrix and the cophenetic matrix
derived from the calculation of the UPGMA tree.

3. Results

3.1. Markers Sequence Validation and HRM Pattern Types Assignment

To validate markers sequences, difference plots and HRM normalized curves from the
high-resolution melting analyses were obtained for each of the six ISBP markers for wheat chromosome
3B and compared with their corresponding amplicon sequences. The HRM profiles were successfully
validated. Sequence polymorphism from one to five nucleotides were detected by HRM analyses.
Those included both transitions (examples are shown in Figure 1a,c,f), transversions (Figure 1e) and
both (Figure 1b,d).
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The HRM pattern type assignment was based on the pattern of normalized high-resolution melting
curves obtained, and their potential to genotype a high number of varieties. The ISBP HRM patterns
were classified into four different types (Table 1, Figure 2): (i) pattern type A, excellent markers to
genotype a high number of wheat varieties simultaneously. The HRM curves are very different and
easily distinguishable into classes (Figure 2a); (ii) pattern type B, good markers to differentiate several
groups of varieties (genotypes) in the same run. HRM curves can be differentiated in an easy way
(Figure 2b); (iii) pattern type C, good HRM markers, but not recommended for genotyping a broad
variety of samples. The differentiation between HRM curves is not clear in all cases (Figure 2c); and (iv)
pattern type D, assigned to markers which are not recommended for HRM genotyping, due to a low
amplification efficiency or to a gradient of HRM curves that hinders precise classification into classes
(Figure 2d). Twelve ISBP markers were classified as HRM pattern type A; 4 markers showed HRM
pattern type B; 10 markers had HRM pattern type C; and 13 were considered with pattern type D
(Table 1). Four of the 45 wheat chromosome 4A ISBP primer pairs designed (Table 2), were discarded
for the rest of analyses due to non-reliable PCR amplifications.

Figure 2. High resolution melting pattern types assessment for wheat chromosome 4A ISBP markers.
Normalized HRM curves for 19 samples were shown for (a) marker HRM4A_67413676 (pattern type
A); (b) marker HRM4A_618105078 (pattern type B); (c) marker HRM4A_317085557 (pattern type C);
and (d) marker HRM4A_291420130 (pattern type D).
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3.2. Candidate Gene Analysis

After mapping ISBP markers and comparing them with the MQTLs positions previously described
in Acuña-Galindo et al. [71], some markers for the wheat chromosome 4A were found in the proximity
of interesting QTLs or within MQTLs related to drought and heat stress tolerance, as well as QTLs
for yield components (Figure 3a). Two ISBP markers, HRM4A_317085557 and HRM4A_460238681,
were located within MQTL30 [71], related to the physiological drought trait and root vigor. Markers
HRM4A_617938526 and HRM4A_618105078 were placed in MQTL31 [71], in proximity to QTLs related
to drought and heat stresses. The marker HRM4A_660524139 was placed close to two of the QTLs
located within MQTL31, associated to traits for yield component and coleoptile vigor, and also heat
stress. Marker HRM4A_583704598 was placed between MQTL30 and MQTL31, in proximity to 2 QTL
related to drought and heat stresses. Finally, markers HRM4A_681664894 and HRM4A_683608822
were placed in MQTL32 [71], close to QTLs related to drought; and markers HRM4A_702156718,
HRM4A_714743756, and HRM4A_716986193 were found close to a QTL located in MQTL32, related to
drought tolerance (Figure 3a).

Figure 3. Cont.
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Figure 3. Physical and genetic maps for markers located in chromosome 4A (a) and 3B (b) including
location for meta-quantitative trait loci (MQTLs) [71] associated to heat and drought stresses tolerance.
Markers used in variability assessment are shown in blue color. MQTLs are indicated using green lines.

Two of the wheat chromosome 3B ISBP markers (HRM3B_465802537 and HRM3B_609364064)
were mapped within MQTL26 [71], in proximity to QTLs controlling yield component and biomass
traits, and also related to heat stress (Figure 3b).

Additionally, as result of the candidate gene analysis, the developed ISBP markers for wheat
chromosome 4A mapped in the proximity of 61 genes (Supplementary Materials Table S3 and Figure S1).
The chromosome position for the ISBP and their closest genes are shown in Figure 4a.
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Figure 4. Physical maps for the wheat chromosomes 4A (a) and 3B (b) showing the molecular markers
location and their nearest genes found within a window of +/−20 kb and +/−300 kb, respectively. ISBP
markers used in wheat variability assessment are highlighted in blue.

Based on gene expression differences under different drought stress conditions, we filtered
23 genes (37.7% of the total genes) with a TPM value above 2.5 (Table 2 and Figure 5). An expression
heatmap, using all available public studies RNASeq data in wheat drought responses [22,26,27] is
shown in Figure 5.
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Figure 5. Gene expression analysis under different water stress conditions for candidate genes located
within a window of +/−20 kb to the wheat chromosome 4A ISBP markers. Differentially expressed
genes (DEGs) are shown in bold. IF: irrigated field conditions; MS: mild stress field condition; SS:
severe stress field condition [27]; IS: seedling control; PEG1: seedling 1 h PEG stress; PEG6: seedling 6 h
PEG stress [22]; AD_C: anther stage irrigated shelter phenotype; AD_S: anther stage drought stressed
shelter phenotype; T_C: tetrad stage irrigated shelter phenotype; and T_S: tetrad stage drought shelter
phenotype [26].

The wheat chromosome 3B ISBP markers mapped in the proximity of 49 genes (Supplementary
Materials Table S4 and Figure S2). The closest genes are shown next to the corresponding marker in
Figure 4b. Seventeen of these genes (34.69% of the total) showed TPM values above 2.5 (Table 3 and
Figure 6). The drought responsive genes mapped by ISBP markers located in proximity or within
QTLs or MQTLs are shown in Table 4.
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Figure 6. Gene expression analysis under different stress conditions for candidate genes located within
a +/−300 kb window and in proximity to wheat chromosome 3B ISBP markers. Differentially expressed
genes (DEGs) are shown in bold. IF: irrigated field conditions; MS: mild stress field conditions; SS:
severe stress field conditions [27]; IS: seedling PEG shock control; PEG1: seedling 1 h PEG stress;
PEG6: seedling 6 h PEG stress [22]; AD_C: anther stage irrigated shelter phenotype; AD_S: anther stage
drought stressed shelter phenotype; T_C: tetrad stage irrigated shelter phenotype; and T_S: tetrad stage
drought shelter phenotype [26].
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After differential gene expression analysis we obtained 5 DE genes in chromosome 4A and 3 in
chromosome 3B, which were up and down-regulated by the PEG drought treatment [22]. The 4A
chromosome DE genes TraesCS4A01G003500 and TraesCS4A01G043500, were up and down regulated
under PEG6 drought treatment, respectively. Genes TraesCS4A01G047000, TraesCS4A01G410700
were up-regulated, while the gene TraesCS4A01G069200 was down-regulated under PEG6 treatment.
Chromosome 3B gene TraesCS3B01G221100 was down-regulated under PEG6 treatment, while genes
TraesCS3B01G290200 and TraesCS3b01G290300 were up-regulated (Supplementary Materials Table S5).

3.3. Wheat Variability Assessment by High Resolution Melting Analysis

To assess the polymorphism levels in a wheat collection, the 45 ISBP markers developed for
the wheat chromosome 4A (Table 1), were evaluated. Thirteen of them were selected based on their
reproducibility and polymorphism (Table 1) and were used in HRM analyses to study the genetic
diversity among durum and bread wheat lines in panel 1 (Supplementary Materials Table S1).

The number of alleles detected for these markers ranged from 2 to 7 (mean = 3.38), and the
polymorphism index content varied between 0.24 and 0.68 (mean = 0.52) (Table 5).

Table 5. Genetic parameters for the wheat chromosome 4A ISBP markers used in the
variability assessment.

Marker ID HRM Type No. of Alleles PIC

HRM4A_2791416 A 2 0.336

HRM4A_38654555 A 2 0.566

HRM4A_67413676 A 3 0.584

HRM4A_141912346 A 5 * 0.595

HRM4A_109848074 A 2 0.544

HRM4A_618105078 B 4 * 0.677

HRM4A_716986193 C 4 0.602

HRM4A_U-3 C 2 * 0.242

HRM4A_714743756 A 2 * 0.368

HRM4A_U-4 A 3 * 0.474

HRM4A_583704598 A 7 * 0.571

HRM4A_660524139 A 4 * 0.57

HRM4A_702156718 A 4 * 0.563

Mean 3.38 0.515

HRM type: high resolution melting pattern type; PIC: polymorphism index content; *: one of the alleles was
described as “null genotype”.

The cluster analysis shows three clearly differentiated clusters (Figure 7). The first one contains 30
T. aestivum lines, while the remaining 8 bread wheat lines (TaesIN-13, TaesLI-06, TaesLI-07, TaesIF-06,
TaesIF-08, TaesIF-07, TaesLI-05, and TspeBO-01) were placed within the second cluster. This cluster
also contains Triticum durum and Triticum dicoccoides accessions, while Triticum monococcum and
Triticum urartu were placed in the third cluster (Figure 7). The cophenetic correlation coefficient
obtained for the UPGMA tree was 0.86.
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Figure 7. Phylogenetic unweighted pair group method with arithmetic mean (UPGMA) tree showing
the relationships among 62 wheat lines genotyped with 13 ISBP markers. Triticum aestivum lines are
shown in in blue, T. durum and T. dicoccoides in green, and T. monococcum in orange.
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Seven of these ISBP markers (Table 1) selected by their efficiency and polymorphism for durum
wheat, were used for the variability assessment of durum wheat lines in panel 2 (Supplementary
Materials Table S2). The UPGMA tree for the wheat panel 2 is shown in Supplementary Materials
Figure S3a,b. This cluster analysis resulted in 9 differentiated clusters. Five lines (BGE002866,
BGE013055, BGE020464, BGE013652, and BGE013722) were not placed in any of these clusters.
The observed distribution of durum wheat lines across the clusters could be associated in some cases to
the geographical location and agroclimatic areas (Supplementary Materials Figure S3c). There are two
clear clusters (clusters 4 and 6) where species from southern Spain are presented in a larger proportion.
Furthermore, wheat lines placed in cluster 1 are mainly located in norther temperate zones without dry
season and temperate summer; while cluster 4 contains landraces mainly located in southern template
areas with dry and cool summer. The CCC obtained for the UPGMA tree was 0.67. The number of
alleles detected in this analysis ranged from 3 to 6 (mean allele number = 3.86), and the PIC mean
value was 0.486 (Supplementary Materials Table S6).

4. Discussion

Insertion site-based polymorphism markers have been described as a useful tool for wheat genomic
studies [35] and attractive alternative to markers as SSR or SNP, due to the high repetitive content of
some cereal genomes [81,82]. Due to their straightforward design and high polymorphism, there are
previous studies which developed and used specific ISBP markers for several wheat chromosomes
and different purposes (i.e., Barabaschi et al. [83] for the bread wheat chromosome 5A, focused on
polymorphism assessment; Lucas et al. [84], who used markers derived from the wheat chromosome
1A to map this chromosome, and also with marker assisted breeding purposes; Li et al. [36] applied
wheat chromosome 3B ISBP linked to mildew resistance genes in durum wheat; or Sehgal et al. [41],
who used chromosome 3A ISBP markers for gene discovery and physical mapping). In this work, new
ISBP markers were developed for the wheat chromosome 4A, which contains interesting genes related
to biotic and abiotic stresses, as drought tolerance [65,68,69]. It also harbors loci related to essential
agronomic traits as yield and grain quality [62,64,66]. The ISBP markers resulted highly polymorphic
(Table 5). Thirteen of the developed ISBP markers were used for wheat variability assessment and
showed melting curve polymorphisms, seven of them with a PIC value higher than 0.50. Thus, they
resulted highly resolutive tools for wheat variability assessment using a cost-effective technique as
high resolution melting analysis (HRM). This technique is described as an optimized methodology
for melting curve assessment, which allows the determination of melting temperature and profile
of an amplicon [85]. Some studies have highlighted some advantages for the HRM technique, as its
reduced cost per sample in comparison with other techniques used for SNP detection [86–88]. It is
worth noting that the required system consists of standard and affordable RT-PCR equipment, which
is suitable for in-house genotyping and adequate for small/medium breeders. Other advantages for
HRM are the excellent results for the detection of homozygous and heterozygous variants [46,89–91];
its use for gene mapping, SNPs and mutations [46,90,92]; and its efficiency for the identification of
species and closely related varieties [88,93–97]. In this regard, our results from ISBP markers sequence
validation, as well as HRM genotyping, support the efficiency of HRM analysis in wheat varieties
differentiation. Our results are in agreement with Dong et al. [53], who highlighted that HRM does
not require any digestion or gel electrophoresis, so it provides a worthwhile approach for SNP/indel
genotyping of different varieties without prior sequence knowledge, as required by other methods.
Results from the wheat genetic diversity assessment confirmed that HRM is a convenient way for a
first screening to determine variability groups, prior to resequencing only representative varieties as
the basis to develop other SNP platforms. Nevertheless, some HRM limitations have been pointed
out. Distefano et al. [88] highlighted that sometimes, the HRM profiles could be similar preventing the
differentiation of some of the genotypes. Regardless of this, Wu et al. [98] proposed that this issue can
be solved using mixed strategies. Accordingly, our results show that a combined use of different ISBP
markers can differentiate all the wheat lines studied.
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Twenty ISBP markers for wheat chromosomes 4A and six for chromosome 3B mapped to
interesting candidate genes, mainly related to drought and heat stresses and yield components
(Tables 2 and 3). They were validated using data from available RNASeq public studies in wheat
drought responses [22,26,27], as they showed differences on their expression under different
stress conditions.

In chromosome 4A, the ISBP marker HRM4A_109848074 mapped next (97 bp) to the gene
TraesCS4A01G098300, which encodes a xyloxyltransferase 1, and participates in carbohydrates
metabolism in the development of cellular walls [99]. This process is markedly affected by water
stress [100,101] and this can be observed in Figure 5, where this gene decreases its expression under
severe stress field conditions. This result is also in agreement with results found by Abebe et al. [102],
who analyzed spikes of barley grown under controlled drought conditions, and also found that
this gene was down-regulated. The marker HRM4A_2791416 mapped 814 bp upstream to the gene
TraesCS4A01G003600, which encodes an alpha/beta-hydrolases superfamily protein with functional
adaptability in plants [103]. This gene reduces its expression as drought stress increases under field
conditions (Figure 5). Marker HMR4A_67413676, mapped 975 bp to the gene TraesCS4A01G069200,
which encodes an armadillo repeat-only protein. These kind of repeat proteins participate in the
coordination of protein interactions during stress and hormonal signalling in plants [104]. In agreement
with this, the gene was downregulated under PEG6 drought treatment (Supplementary Materials
Table S5). The marker HMR4A_683608822, which was located within the drought stress tolerance
MQTL32 [71] (Table 5 and Figure 3a), mapped 2685 bp upstream to the gene TraesCS4A01G410700,
which encodes a ras-related protein RABC2a. The function of this gene has been related to ABA
induced stress tolerance in barley [105]. Accordingly to a drought stress response role, this gene
was upregulated under PEG6 drought treatment (Supplementary Materials Table S5). The marker
HMR4A_36371442 mapped 2736 bp upstream to the gene TraesCS4A01G043500 and was downregulated
under PEG6 drought treatment (Supplementary Materials Table S5). Contrary to this, this gene
increases its expression under severe stress field conditions (Figure 5). This gene encodes a STAS
domain containing-protein, which plays a role to membrane attachment of many anion transporters in
transport activity and regulation in plants [106]. In fact, it has been demonstrated its crucial role in the
activity of sulfate transporter in Arabidopsis thaliana [107], providing key amino acids in the sulfate
transport activity [108]. The importance of this activity should be noted, since sulfate is an element that
has been described as an essential component in the structure of plant enzymes and reserve proteins in
grain [109]. Further, marker HRM4A_716986193, which was located close to a QTL within MQTL32 [71]
(Table 5 and Figure 3a), mapped in proximity (3576 bp upstream) to the gene TraesCS4A01G671200LC.
This gene encodes a peptidase M20/M25/M40 family protein, which is involved in drought stress
responses [110]. In fact, proteolysis under drought conditions allows a reorganization in the plant’s
metabolism, and also increases plants drought tolerance [20,111,112]. According to this, the results
showed increased expression of this gene under different drought stress treatments (Figure 6). This is
also in agreement with the results showed by Simova-Stoilova et al. [113], who assessed wheat leaves
under severe soil drought and found an increase in peptidase activity. Thus, this drought responsive
genes represent an interesting candidate for a known drought and heat stress tolerance MQTL.

Additionally, within the window of +/−20 kb used for the candidate gene analysis in chromosome
4A, there were two interesting genes: TraesCS4A01G003500 (5141 bp upstream from marker
HRM4A_2791416) and TraesCS4A01G047000 (14,885 bp upstream from marker HRM4A_38654555).
The first gene encodes a thionin like-protein gene, which plays an important role in the growth and
development of the plant and its defense against pathogens [114]. It was found differentially expressed
under PEG drought treatment, being upregulated under PEG6 drought treatment (Supplementary
Materials Table S5). The gene TraesCS4A01G047000 encodes a formin-like protein, which plays a
primary role in the organization of plant’s structure [115]. In agreement with our results where this
gene was found upregulated under PEG6 drought treatment (Supplementary Materials Table S5),
formin-like proteins showed variations in their expression under drought conditions in wheat [115].
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Some HRM/ISBP markers mapped to previously described MQTL loci [71] (Table 5 and Figure 3a),
which were mainly associated to drought and heat stresses tolerance. Within these markers,
HRM4A_618105078, which tags the MQTL31 [71] and mapped close (2442 bp upstream) to the
gene TraesCS4A01G497800LC can be highlighted. This gene encodes a receptor-like protein kinase,
which is involved in abiotic stress responses [116], matching the description assigned to the MQTL.

Additionally, within the window of +/−300 kb, four wheat chromosome 3B ISBP markers
can be highlighted. The marker HRM3B_124761338 mapped 6356 bp downstream to the gene
TraesCS3B01G138700, which encodes a ribonucleoside-diphosphate reductase, an essential enzyme
for DNA synthesis [117,118]. This gene increases its expression under severe field stress conditions,
and it decreases in response to a PEG drought treatment (Figure 6). Marker HRM3B_609364064
mapped 31,936 bp downstream to the gene TraesCS3B01G575000LC, encoding myosin-1. Plant
myosins have a functional role in organelle movement in response to biotic and abiotic stresses [119].
This response is shown in Figure 6, where this gene significantly increments its expression under
PEG1 and PEG6 drought treatments. Marker HRM3B_465802537 mapped to two interesting genes,
the gene TraesCS3B01G290200 (83,072 bp downstream) and the gene TraesCS3B01G290300 (125,805 bp
downstream), which were both found upregulated under PEG6 drought treatment (Supplementary
Materials Table S5), and contrary to this, decreased their expression under severe stress field conditions
(Figure 6). The gene TraesCS3B01G290200 encodes a glycosyltransferase, an enzyme which possesses
a main role in plant’s stress tolerance and defense [120], and in agreement with our results, it has
been previously found upregulated in wheat leaf under drought conditions [121]; and the gene
TraesCS3B01G290300 encodes an ABC transporter B family protein, which is significantly involved in
organs growth, plant nutrition and development and plant responses to abiotic stresses [122]. In fact,
as Rampino et al. [123] highlighted, and in agreement with our results (Supplementary Materials
Table S6), the up-regulation of this gene in wheat under heat and drought conditions confirms the
implication of this gene family in drought responses. Therefore, this family protein has been related to
grain formation in wheat [124], which is consistent with the location of marker HRM3B_465802537
within MQTL26 [71], mainly related to yield components. Thus, this marker can be useful in wheat
breeding, for the marker-assisted selection of this interesting gene and MQTL. Finally, the marker
HRM4A_273339424 mapped 89,674 bp upstream to the gene TraesCS3B01G221100, which encodes a
protein kinase superfamily protein. This protein’s family is involved in plants’ responses to abiotic
stresses and plants’ development [125]. According to this, this gene was found downregulated
under PEG6 drought treatment (Supplementary Materials Table S5), and it also shows differences
in its expression across different stress conditions (Figure 6). Therefore, these results agree with
Wei et al. [126], who highlighted that kinase proteins are involved in various responses with exposure
time of drought.

According to our results, the developed HRM-ISBP markers can be used in wheat breeding
programs to genotype interesting genomic regions in a cost-effective manner. These markers can
useful resources for marker-assisted selection (MAS) focused on abiotic stress responses and yield
components, to tag interesting known QTLs and MQTLs related to drought and heat stresses tolerance,
and also yield-related traits.

5. Conclusions

In this work, highly polymorphic ISBP markers for wheat chromosome 4A were successfully
developed and applied in a genetic variability assessment of a collection of durum and bread wheats,
using the high-resolution melting analysis technique. These HRM-ISBP markers represent cost-effective
and efficient tools for wheat breeding programs focused on variability assessments. The obtained results
provide an interesting framework for wheat genetic studies and varieties selection. These HRM-ISBP
markers have also been shown useful for tagging interesting genes associated to drought and heat
stresses tolerance, some of which showed differential expression patterns under stress conditions.
In addition, some of these markers can be applied in breeding through marker-assisted selection of
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QTL and MQTL related to abiotic stresses as drought and heat, and also yield and yield related traits.
The resources and results presented here can also facilitate the understanding of important traits in
other species with large genomes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4395/10/9/1294/s1;
Table S1. List of durum and bread wheat lines used for variability analysis by high resolution melting. 1: marker
set up analysis; 2: marker’s sequence validation by HRM analysis; 3: HRM pattern types obtained; IFAPA: Instituto
Andaluz de Investigación y Formación Agraria, Pesquera, Alimentaria y de la Producción ecológica; INRA:
Institut National de la Recherche Agronomique; and WGRC: Wheat Genetics Resource Center; Table S2. Durum
wheat lines used for variability analysis by high resolution melting (HRM); Table S3. Candidate genes tagged by
the developed HRM-ISBP markers for wheat chromosome 4A. Genes with expression differences are shown in
bold and DE genes are indicated with “*”. The positive and negative values in the “Dist” column indicate if the
corresponding gene is downstream or upstream of the respective marker. Chr: chromosome location. Dist (bp):
distance from the gene to the marker in base pairs; Table S4. Candidate genes tagged by the HRM-ISBP markers
for wheat chromosome 3B. Genes with expression differences are shown in bold and DE genes are indicated with
“*”. The positive and negative values in the “Dist” column indicate if the corresponding gene is downstream or
upstream of the respective marker. Chr: chromosome location. Dist (bp): distance from the gene to the marker
in base pairs; Table S5. Differential expression (DE) analysis significance parameters for DE genes. Significant
values (|lg2FC, β|> 1 and p-adjust, Q-value < 0.05) are shown in bold; Table S6. Genetic parameters for wheat
chromosome 4A ISBP markers used in durum wheat variability assessment. HRM type: high resolution melting
pattern type; No. alleles: number of alleles found with the marker; PIC: polymorphism index content; and *:
one of the genotypes was described as “null genotype”; Figure S1. Gene expression analysis under different
water stress conditions for all candidate genes located within a +/−20 kb window to the wheat chromosome 4A
ISBP markers. Genes with differences on their expression are shown in bold and DE genes are indicated with
“*”. IF: irrigated field conditions; MS: mild stress field conditions; SS: severe stress field conditions; IS: seedling
PEG shock control; PEG1: seedling 1 h PEG stress; PEG6: seedling 6 h PEG stress; AD_C: anther stage irrigated
shelter phenotype; AD_S: anther stage drought stressed shelter phenotype; T_C: tetrad stage irrigated shelter
phenotype; and T_S: tetrad stage drought shelter phenotype; Figure S2. Gene expression analysis under different
water stress conditions for all candidate genes located within a +/−300 kb window to the wheat chromosome 3B
ISBP markers. Genes with differences on their expression are shown in bold and DE genes are indicated with “*”.
IF: irrigated field conditions; MS: mild stress field conditions; SS: severe stress field conditions; IS: seedling PEG
shock control; PEG1: seedling 1 h PEG stress; PEG6: seedling 6 h PEG stress; AD_C: anther stage irrigated shelter
phenotype; AD_S: anther stage drought stressed shelter phenotype; T_C: tetrad stage irrigated shelter phenotype;
and T_S: tetrad stage drought shelter phenotype; Figure S3. Phylogenetic UPGMA tree showing the relationships
between 76 durum wheat lines genotyped with 7 wheat chromosome 4A ISBP markers. a) wheat lines are colored
based on their geographic zone (Supplementary Materials Table S2) (Center: green; North: blue; North-east: light
blue; North-west: dark blue; South: red; South-east: orange; South-west: maroon; and East: purple); b) wheat
lines are colored for species (T. turgidum subsp durum appears in green, T. turgidum subsp turgidum in orange
and T. turgidum subsp. dicoccon in purple). The colored and vertical lines indicate the differentiated clusters
(cluster 1—yellow; cluster 2—blue; cluster 3—dark blue; cluster 4—pink; cluster 5—purple; cluster 6—red; cluster
7—green; cluster 8—grey; cluster 9—light blue; and black lines show the wheat lines that have not been included
within any cluster); and c) each dot represents a wheat line, the colors are the same in “a)”.
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