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Abstract: This Special Issue is focused on all the technologies necessary for the development of an
efficient wireless acoustic sensor network, from the first stages of its design to the tests conducted
during deployment; its final performance; and possible subsequent implications for authorities in
terms of the definition of policies. This Special Issue collects the contributions of several LIFE and
H2020 projects aimed at the design and implementation of intelligent acoustic sensor networks, with a
focus on the publication of good practices for the design and deployment of intelligent networks in
any locations.

Keywords: smart cities; noise monitoring; acoustic sensor design; noise mapping; acoustic event
detection; map generation; public information; END; CNOSSOS-EU

1. Introduction

The Environmental Noise Directive (END) requires that a five-year updating of noise maps be
carried out, and requires checking and reporting on the changes that occurred during the reference
period. The updating process is usually achieved using a standardized approach, consisting of
collecting and processing information through acoustic models to produce the updated noise maps.
This procedure is time consuming and costly, and has a significant impact on the financial statement of
the authorities responsible for providing the maps. Furthermore, the END requires that easy-to-read
noise maps are made available to the public, to provide information on noise levels, and that subsequent
actions be undertaken by local and central authorities to reduce noise impacts.

In order to update the noise maps more easily and in a more effective way, it is convenient
to design an integrated system incorporating real-time noise measurement and signal processing to
identify and analyze the noise sources present in the mapping area (road traffic noise, leisure noise, etc.),
and to automatically generate and present the corresponding noise maps. This wireless acoustic sensor
network design requires transversal knowledge, from accurate hardware design for the acoustic
sensors, to network structure design and management of the information, signal processing to identify
the origin of the measured noise and graphical user interface application design to present the results
to end users.

2. Contributions

This Special Issue presents eleven outstanding papers covering all the technologies necessary for
the development of an efficient wireless acoustic sensor network, from the first stages of its design to

Sensors 2020, 20, 4765; doi:10.3390/s20174765 www.mdpi.com/journal/sensors1
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the tests conducted during deployment; its final performance; and possible subsequent implications
for authorities in terms of the definition of policies.

Picaut et al. [1] proposed an extensive review of the literature around low cost sensors for urban
noise monitoring. Furthermore, they also identified the expected technical characteristics of the sensors
to address the problem of noise pollution assessment. Finally, the paper also presents the challenges
required to respond to a massive deployment of low-cost noise sensors.

Other authors have centered their work on the sensor network and node design. In Prieto et al. [2],
the authors describe the design and implementation of a complete system for a WASN deployed in
the city of Linares (Jaén-Spain). The complete system covers the network topology design, and the
hardware and software of the sensor nodes elaboration, along with protocols and the web server
platform. They provide several metrics about the noise measured in the nodes: LAeq for a given
period of time; Lden, Lday, Levening and Lnight; the percentile noise levels (LA01T, LA10T, LA50T, LA90T
and LA99T); the temporal evolution representation of noise levels; and the predominant frequency
noise. López et al. [3] present a design for a versatile electronic device to measure outdoor noise,
designed according to the technical standards of this type of instrument, and it has been tested
following the regulations of the calibration laboratories for sound level meters (SLM). The evaluation of
the quality of the electronics and the algorithm fully fit the requirements of a type 1 noise measurement
instrument. Nevertheless, the use of an electret microphone reduces the technical features of the
designed instrument into a type 2 noise measurement instrument. The authors deployed a low-cost
sub-network in the city of Málaga (Spain) to analyze the leisure noise. The designed equipment is
a two channel instrument, measuring simultaneously 86 sound parameters for each channel, such
as Leq (with Z, C and A frequency weighting); the peak level (with Z, C and A frequency weighting);
the maximum and minimum levels (with Z, C and A frequency weighting); the impulse, fast and slow
time weightings; seven percentiles (1%, 5%, 10%, 50%, 90%, 95% and 99%); and continuous equivalent
sound pressure levels in the one-third octave and octave frequency bands.

In terms of instrumentation, a contribution by Bianco et al. [4] studied the development of a
measurement instrument that can be fastened by means of holding elements to a moving laboratory,
a vehicle, for example. This device overcomes the fact that the measurements are usually on-site,
and allows one to perform a continuous spatial characterization of a given pavement in order to yield a
direct evaluation of the surface’s equality. The system was uncoupled from the vehicle by means of PID
controller, evaluated to maintain the system at a fixed distance from the ground and reduced damping.
Related to vehicles also, Flor et al. [5] focused on the evaluation of the noise level inside a vehicle by
means of statistical tools. They made an experimental setup of microphones and a microcomputer
strategically located on the car’s panel, and they conducted measurements under different conditions,
including car window positions, rain, traffic and various speeds. They discussed the relevance of the
variables that contribute to the noise level inside a car.

There are several papers about the analysis of the noise data gathered by means of wireless
acoustic sensor networks. In Alías et al. [6], the authors took as a starting point the LIFE DYNAMAP
project that developed a WASN-based dynamic noise mapping system based solely on road traffic
noise (RTN) levels. After analyzing the bias caused by individual anomalous noise events (ANEs)
on the computation of the A-weighted Leq, they evaluated the aggregate impact of the ANEs on the
RTN measurements in a real-operation environment. They evaluated this metric over more than 300 h
of labeled acoustic data collected by means of two WASNs deployed in the project in the suburban
area of Rome and in the urban area of Milan. Benocci et al. [7] also took as a starting point the LIFE
DYNAMAP project, and their contribution was the final assessment of the system installed in the area
of Milan. The traffic noise data gathered by the nodes, each one of them representative of a number
of roads sharing the same characteristics, were used to build-up a real-time noise map. In particular,
the analysis focused on the 21 sites belonging to the testing campaign. That allowed them to evaluate
the accuracy and reliability of the system by comparing the predicted noise level of the DYNAMAP
sensors with field measurements in several randomly selected sites.
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Brambilla et al. [8] dealt in their study with the application of the intermittency ratio (IR) to
urban road traffic noise data, collected in terms of 1-sec A-weighted sound pressure level (SPL),
without any technician attending the measurements, and with continuous monitoring for 24 h in 90
different sites in the city of Milan. They show the IR computed for each hourly dataset of the 251
time series available—24 h each—including different types of roads, from motorways to local roads
with low traffic flow. The authors processed the IR using clustering methods to extract the most
significant temporal pattern features of IR to propose a criterion to classify the urban sites while taking
into account road traffic noise events, which potentially increase the noise annoyance. Guarnaccia,
in [9], presented EAgLE, which stands for equivalent acoustic level estimator. It is a new methodology,
based on video processing and object detection tools. When the vehicles, their typology and their speed,
are recorded, the sound power level of each vehicle is computed according to the EU recommended
standard model CNOSSOS-EU [10] and the sound exposure level (SEL) of transit is estimated at the
receiver. The Leq is evaluated in the end, summing up the contributions of all the vehicles.

Finally, in the Special Issue there are two contributions based on the prediction and the use
of artificial intelligence on acoustic data. Navarro et al. [11] proposed the forecasting of temporal
short-term sound levels as a useful tool for urban planners and managers. A long short-term memory
(LSTM) deep neural network technique models the temporal behavior of sound levels at a certain
location—both SPL and loudness level—in order to predict near-time future values. It can be trained
and integrated for every node of a network to provide functionalities as a method of early warning
against noise pollution, but also as a backup in case of a single node malfunction. The last contribution,
by Glowacz [12], presents a fault detection technique of an electric impact drill (EID), coffee grinder A
(CG-A) and coffee grinder B (CG-B) by means of acoustic signals. The three of them use commutator
motors; the measurements of acoustic signals were carried out with a microphone. Seven signals
from EID were measured, four of CG-A and three of CG-B, and an acoustic analysis was carried out,
with good results in efficiency of recognition of all classes.

Funding: This special issue edition has been partially supported by the LIFE DYNAMAP project (LIFE13
ENV/IT/001254).

Acknowledgments: The authors of the submissions have expressed their appreciation to the work of the
anonymous reviewers and the Sensors editorial team for their cooperation, suggestions and advice. Likewise,
the editors of this Special Issue thank the staff of Sensors for the trust shown and the good work done.
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Abbreviations

The following abbreviations are used in this manuscript:

ANE Anomalous Noise Events
CNOSSOS-EU Common Noise Assessment Methods in Europe
CG-A Coffee Grinder A
CG-B Coffee Grinder B
EID Electric Impact Drill
END Environmental Noise Directive 2002/49/EC
IR Intermittency Ratio
LSTM Long Short-Term Memory
RTN Road Traffic Noise
SEL Sound Exposure Level
SLM Sound Level Meters
SPL Sound Pressure Level
WASN Wireless Acoustic Sensor Networks
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Abstract: Noise pollution reduction in the environment is a major challenge from a societal and health
point of view. To implement strategies to improve sound environments, experts need information on
existing noise. The first source of information is based on the elaboration of noise maps using software,
but with limitations on the realism of the maps obtained, due to numerous calculation assumptions.
The second is based on the use of measured data, in particular through professional measurement
observatories, but in limited numbers for practical and financial reasons. More recently, numerous
technical developments, such as the miniaturization of electronic components, the accessibility of
low-cost computing processors and the improved performance of electric batteries, have opened
up new prospects for the deployment of low-cost sensor networks for the assessment of sound
environments. Over the past fifteen years, the literature has presented numerous experiments in this
field, ranging from proof of concept to operational implementation. The purpose of this article is
firstly to review the literature, and secondly, to identify the expected technical characteristics of the
sensors to address the problem of noise pollution assessment. Lastly, the article will also put forward
the challenges that are needed to respond to a massive deployment of low-cost noise sensors.

Keywords: noise; low-cost sensors; networks

1. Introduction

Noise pollution is a major environmental pollution whose impact on health is now widely
recognized [1]. As a result, many countries have implemented policies and strategies, for many
years, to reduce noise pollution and to preserve quiet areas. Moreover, these policies are increasingly
introducing citizens into the actuation process, by giving them the opportunity to be informed about
their exposure to noise but also to be active in the management of their noise environment. In Europe
in particular, Directive 2002/49/EC [2] introduces many rules on the assessment and management of
noise environments, including the production of strategic noise maps, which are the starting point for
the implementation of action plans to reduce noise pollution, but also as a tool for communicating
between the different stakeholders. While this directive applies to large European cities, their general
application to any community is obviously permitted.

The production of realistic noise maps is therefore a major challenge to ensure the proper
implementation of the European directive, as well as, the relevance of the proposed actions to control
noise pollution. Currently, noise maps are obtained by using sound mapping software tools, based on
standards for calculating acoustic emission and propagation in the environment. As soon as the input
data that are necessary for the calculation are available, the undeniable advantage of this method is its
ease of implementation, making it possible to produce noise maps over a very large area. Auditing
action plans using such noise maps can only be relevant if the limits of the methodology considered to

Sensors 2020, 20, 2256; doi:10.3390/s20082256 www.mdpi.com/journal/sensors5
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produce the maps is taken into account during the process. In particular, only transportation noise
sources and industrial noise are taken into account, on the basis of noise emission data that are very
largely simplified and averaged over a large time period. It can also be pointed out that the propagation
models used in software are based on many approximations (for example, lack of consideration of
diffusion through facades and fitting objects; limited consideration of urban micro-meteorological
conditions and vegetation). In addition, such noise maps cannot account for temporal dynamics, which
nevertheless plays a role in the way inhabitants perceive the quality of sound environments [3,4].

In situ measurements would therefore be an immediate solution to make these maps more realistic.
Nevertheless, given the urban scale considered and the spatial variability of the sound environment,
the number of measurement points to be considered would be very large to model the relevant
variability of the sound environment [5]. While noise observatories currently exist in many cities
around the world, with networks of up to 150 measurement points [6], their use is mostly intended
to provide objective and enforceable data on sound environments in certain strategic locations in
order to better understand why inhabitants of this area are concerned with the quality of their sound
environment. In view of the cost of a professional measurement point using Class-1 devices [7],
enlarging the number of sensors of this type of measurement networks would be very costly. As a
consequence, it is not realistic to aim at producing strategic noise maps on the technical basis of such
observatories.

Many major technical developments have emerged in the last decade, making it possible to
develop capturing devices integrating transducers of different kinds, embedded processing systems
and wired/wireless communication systems, while optimizing power consumption and reducing their
size. At the same time, this technological development has been accompanied by a significant reduction
in the costs of electronic components and products, making these capture devices more affordable.
Consequently, environmental monitoring tools based on Internet of things (IoT) have emerged in many
related areas: atmospheric pollution, agriculture, transportation, smart cities [8–10]. Application of IoT
to the monitoring of the sound environment has also a great potential. However, it should be noted
that the development of low-cost sensors for acoustic measurement and the deployment of an ad-hoc
sensor network can be complex to implement. Indeed, the high spatial and temporal variability of
sound environments requires a high density of sensors, and advanced processing capabilities within
the sensors [11].

Thus, the use of low-cost Sensor Networks (SN) can be a solution to the current limits of the noise
observatories, mentioned above, by making it possible to reach a density of measurement points in
a territory that is capable of providing a very rich acoustic information. The use of such a noise SN
also opens up many additional interesting opportunities, such as to assess and manage road traffic
noise [12–14], to enhance the traditional strategic noise mapping process [15–19], to produce dynamics
noise maps [20] or to capture the sound sources of interest or acoustic events within the signal [21–29].
One can mention also that low-cost SN may be used in other fields in acoustics, such as sound source
localisation [30] and biodiversity monitoring [31–33].

The relevance of such a system relies on many elements, among which, the acoustic measurement
quality, the resilience of the sensors, the implementation of a communicating and smart sensor
network, the deployment of a compatible data infrastructure able to manage the considerable amount
of obtained information, the maintenance of the devices and infrastructures, the development of
powerful algorithms to manipulate data and many others. Each of these topics are the subject of a
considerable number of articles in the literature in the field of sensor networks for environmental
monitoring. Being a more recent subject of the application of sensor networks, the literature specific to
the sound environment subject is currently focused on the development of sensors themselves, but it
is clear that the other subjects will see a growing of interest in the future.

The purpose of this article is thus to focus on the main element of such data gathering systems,
namely the sensor. Solutions for the implementation of a complete information technology (IT)
infrastructure for sensor, network and data management is not developed in this article, as this

6



Sensors 2020, 20, 2256

topic would in itself merit its own literature review in order to address the important issues that are
associated (data encryption, privacy, security, scalability, management of a large number of sensors,
interfacing, database management, storage, data visualization, etc.). Nevertheless, the reader can
already refer to recent publications showing examples of full noise SN deployment [34,35].

For the past fifteen years, many researchers have proposed, evaluated, and in the best cases,
deployed technical solutions for different noise applications. It therefore seems interesting to make
a detailed point of current research on this subject, and in particular to highlight the essential
characteristics that must be considered for this new generation of acoustic sensors in order to respond
to the identified issues and the future ones. Compared to recent articles that already present a review
of the existing system [35–39], the present contribution focuses on a detailed analysis of the technical
solutions developed in the literature, highlighting their strengths and weaknesses, and showing how
the rapid evolution of technologies can now fully meet the requirements for a successful deployment
of modern noise SN.

The paper is organized as follows. Section 2 presents a review of the literature concerning the
development of low-cost sensors for the deployment of noise monitoring networks. After a brief
description of the SN terminology, the main technical solutions are detailed and synthesized. This
synthesis then allows to identify the characteristics and performances that are expected for low cost
sensors, in order to meet current and future noise monitoring challenges (Section 3). A conclusion then
closes this article.

2. Literature Review

2.1. Sensor Networks: Definitions

A SN structure can be abstracted into a composition of a set of nodes and a sink node (more simply
the sink, also called gateway. A node collects information, performs pre-processing and transmits
the produced data to the sink. The sink collects all the data from the nodes and transmits them to
servers for storage and further processing. On the basis of this simple architecture, many variants can
be designed, depending on the needs and targeted applications, each variant giving rise to specific
technical constraints. Among the most common variants are the following [40] (Figure 1):

• The network can be made up of several sinks. In this case, a group of identified nodes transmit
the produced data to a specific sink. All sinks then transmit data to the servers. Another possible
option is to consider that a node can choose the sink according to particular constraints, such as
availability, proximity, sink load...

• The transmission of data from one node to the sink can be relayed using one or more nodes.
The node then acts simultaneously as a sensor and a relay. This defines a multi-hop sensor network,
as opposed to single-hop sensor network. The management of data transmission from the nodes to
a given sink is then governed by relatively complex routing protocols that depend on the selected
topology, such as point-to-point, star or mesh topologies.

• The nodes and the sinks may be mobile. The network is then defined mobile sensor
network, as opposed to a static network. The term ’mobile’ must be considered in two ways:
(1) continuously ’mobile’: a node moves continuously over time (like a sensor installed on a
vehicle); (2) occasionally: a node is moved from one static position to another static position, for a
long measurement time, in which case the network is always considered as a static network.

• Data transmission from a node to a sink can be performed in wired or wireless mode. In the
latter case, the network is defined as a wireless acoustic sensor network (WASN). Nowadays,
the wireless transmission mode is almost the main part of sensor networks for environmental
monitoring. Data transmission from a sink to the server can also be carried out using one
of these two transmission modes. Nodes and sinks may also simultaneously include several
wireless transmission protocols, where some protocols get involved in the case of failure of the
main protocol.
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• The type of power supply of the nodes can also give rise to several variants: via a public or private
power grid, by exchangeable battery, power supply by rechargeable battery from an external
renewable energy source (solar, wind).

• Several families of nodes can also be considered, each with its own technical characteristics
(measurement characteristics, processing power, power supply mode...). In this case, we are
talking about a heterogeneous sensor network, to be opposed to a homogeneous network.

Relay node (R)
Node (N)

N/R to S connection
Internet/LAN connection

Sink (S)

(a) Point-to-point
Single-hop

(b) Star
Multi-hop

(b) Cluster (tree)
Multi-hop

(b) Mesh
Multi-hop

Figure 1. Sensor network definitions and topology examples.

2.2. Low-Cost Noise Sensors: Literature Review

Since the mid-2000s, with the emergence of low-cost electronic components and computing
processors, many researchers have been working on the development of low-cost noise SN, mainly for
environmental acoustics applications. Three SN main families can be distinguished: (1) fixed sensor
networks, (2) mobile participatory measurement networks (mainly with smartphones), (3) mobile
sensor networks. In the context of this study, we mainly rely on low-cost sensors specifically developed
for environmental acoustic measurements, allowing to set up a controlled measurement network.
Participatory measurement with smartphones is an interesting approach, complementary to that
of low-cost and professional static networks, but beyond the scope of this review. Nevertheless,
it can be noted that the approach shares common technical aspects with static noise SN, such as
data pre-processing, the choice of acoustic indicators, the implementation of a data management
infrastructure [41] ... Lastly, the third family, concerning mobile sensors, although generating significant
additional complexities in relation to data transmission and sensor autonomy, considers specifically
designed noise sensors, and thus will also be included in this review.

The goal of the present section is to focus on references that give detailed information of the
proposed low-cost noise sensors and additional information concerning their validation and tests.
Some technical aspects are deliberately developed in order to highlight the diversity of the proposed
solutions and to be able to subsequently identify the technologies, solutions and challenges that have
strong potential for future research.

A first study about the use of sensor networks considered as an alternative to traditional
“professional” networks for noise monitoring have been presented in [42–44]. Initially, the authors used
a Tmote Sky platform (Moteiv), made of a microcontroller unit (MCU) (Texas Instruments MSP430 with
a 16-bit RISC central processing unit (CPU)) equipped with a multimodality sensor board (EasySense
SBT80) and an omnidirectional condenser microphone (ECM) (EM6050P-423) [43]. In a second step,
they turned to a Tmote Invent platform made of a MCU (Texas Instruments MSP430) [42]. Sensors
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were connected to a sink via the IEEE 802.15.4 radio protocol. However, the authors have quickly
highlighted the limitations of the microprocessors used (which limits the sample frequency to 8 kHz
for the sound environment study), the rapid battery consumption at the relevant sampling frequencies
and in simultaneous radio transmission, the dispersion and poor quality of the microphones used.
They decided, in the first, instance to develop their own sound level meter [44], and later to use a
Class-2 commercial sound level meter (Extech 407740) [36], both connected to the Tmote Sky platform
via an analog input channel, mainly to overcome the problem of limited computational resources.
Despite the technical limitations encountered, the authors showed that the use of wireless sensor SN
was technically possible and could address the issue of environmental noise assessment in the future.

At about the same time, McDonald et al. [12] developed a noise sensor at a cost of about 130 GBP,
based on a Triton XXS platform, using an Intel XScale PXA255 32-bit MCU. The acoustic measurement
was performed through an ECM connected to the MCU via a 16-bit analog-to-digital converter (ADC)
(sampling at 49 kHz). Equivalent sound levels over a given time period were calculated using a
A-weighting digital filter. The sensors have been deployed on site, but unfortunately no information is
given on the final acoustic characteristics of the sensors, their calibration and accuracy.

Although the first works were published from 2008, it seems that the origin of the studies
conducted by Barham et al. [45–47] dates back to 2004. The work carried out seems to be particularly
successful. The authors have very early highlighted the interest of using micro-electrical-mechanical
systems (MEMS) microphones for environmental acoustic measurement, including their own design of
a MEMS microphone with optimized performance for the environmental issue. In addition, numerous
tests have been carried out to evaluate both the intrinsic acoustic performance of the MEMS used and
the evolution of such solution under operating conditions (effect of atmospheric conditions, wind,
cold, vibrations, etc.). The techniques developed were sufficiently advanced to deploy a hundred of
sensors on several urban sites, and to start analyzing the collected data. Only little information is
provided by the authors on the nature of the electronic components that where considered, excepted
that they used a Floating-Point-Gate-Array (FPGA) system instead of a MCU, for an efficient use of
the battery. Developments continued thereafter and allowed the implementation and deployment of
nodes consisting of a specifically developed MEMS microphone package, connected to Raspberry Pi
(R-Pi) 2 Model B with wired power supply, and using global system for mobile communications (GSM)
connection [48].

One of the first works showing the design of a fully operational low-cost noise sensor network
was detailed in [49–51]. The sensor was based on a CiNet platform, composed of a 8-bit MCU
(Microchip ATmega128) with a 10-bit ADC running at a sample frequency of 33 kHz, using a
IEEE 802.15.4 compliant chip (CC4420 Texas Instruments) and a high-quality omnidirectional ECM
(MONACOR MCE-400). The authors implement a real-time A-weighting analog filter, as well as two
pre-amplification channels (Maxim MAX4524) in order to overcome to the limited theoretical dynamic
imposed by the ADC. Measurements were compared to Class-2 and Class-1 sound level meters,
in indoor and outdoor environments, showing deviations of less than 2 dB. Beyond the technical aspect
of the sensor developed, the work also focused on the development of a fully functional multi-hop
large-scale network infrastructure, composed of nodes connected to a sink through relay nodes, all
perfectly synchronized [52]. Later, the sensor network was successfully deployed for long-term
measurements in a school yard, showing a good agreement by comparison with a Class-2 sound level
meter [53].

In 2013, Tan and Jarvis [54] focused their works mainly on the energy harvesting using solar
panel. The sensor node was based on an ultra-low power wireless sensor module TelosB [55] made of
a 16-bit Texas Instruments MSP430 MCU, running on TinyOS, with the IEEE 802.15.4 protocol for the
radio transmission and an electret microphone (Sparkfun BOB-09964). Various technical issues were
highlighted, including the poor acoustic performances of the ECM in terms of signal-to-noise ratio
(SNR) and dynamic, as well as the limitations of the MCU (memory size) and of the analog-to-digital
converter (ADC). To overcome some of the limitations, the authors proposed latter to use a MEMS
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microphone (ADMP401) [56], offering better acoustic performances. The results mainly showed the
need for sufficient energy storage capacity to ensure the proper functioning of the sensor over the
duration of a measurement (depending of the kind of acoustic outputs that are required), as well as
the need of power consumption management algorithms to perform autonomous measurements.

Mariscal-Ramirez et al. [57,58] presented in 2011 and 2015 the implementation of a fuzzy noise
indicator and the development of frequency based algorithm for the calculation of noise indicators.
The sensor node was based on a Sun Spot node with an electret microphone, using a 8-bit ADC and the
IEEE 802.15.4 data transmission protocol. The node was tested on several signals, showing a deviation
lower than 4% in term of sound levels, in comparison with a Class-2 sound level meter.

Segura-Garcia et al. [59] compared two low-cost acoustic measurement platforms, in terms of
psycho-acoustic metrics instead of classical equivalent sound level. The first solution was based on
the Tmote Invent platform as already used in [42]. The second was an R-Pi platform, composed of a
Broadcom BCM2835 chip with an ARM1176JZF-S MCU and a Wi-Fi adaptater (IEEE 802.11 b/g/n).
Acoustic Measurements were carried out using a universal serial bus (USB) sound card (Logilink
UA0053) with an omnidirectional ECM. As already mentioned in [42], the Tmode Invent platform
presents serious limitations for acoustic measurement, which definitively precludes it from any relevant
operational solution. On the other hand, the data produced by the R-Pi shows a very good correlation
with reference measurements made in the real-world, in terms of sound levels and psychoacoustic
indices. This solution was used later to collect data in a city of Spain and to test a geo-statistical
methodology for noise level prediction in urban areas [60]. The network was made of 39 nodes,
some at fixed locations, others being moved to different locations. In order to collect and manage
data, the authors successfully implement a specific network infrastructure, using a routing protocol
(Babel/Quagga) for the wireless mesh network, a client–server suite (OwnCloud) for synchronizing
data and a reliable and interoperable server (OpenCPU) for data analysis based on the statistical
computing software R.

In 2016, Noriega-Linares and Navarro Ruiz [61] have proposed the design of an advanced acoustic
sensor on the basis of R-Pi 2 Model B platform (Broadcom BCM2836 chip with ARM Cortex-A7 MCU)
in order to compute in real-time several standard noise level indicators, such as instantaneous and
equivalent sound levels, percentile levels, and 1/3 octave sound pressure levels. Unlike the solutions
proposed so far, the authors have chosen a wired connection to the network, using a Power over
Ethernet (POE) injector/splitter, which avoids potential interference between the hardware within the
sensor and the radio transmission. Audio acquisition was carried out using a USB omnidirectional
ECM (T-Bone GC 100 USB), including an internal ADC. According to the authors, this embedded
solution offered better performances in terms of noise than using an external microphone with an
USB sound card. Microphone frequency response equalisation, microphone calibration, 1/3 octave
band filtering and real time implementation are mentioned by the authors, but are not detailed in their
paper. The comparisons of measurements with a reference sound level meter seem to demonstrate a
good performance of the sensor.

In a paper dating from 2016, Alsina-Pagès et al. [37] describes the design of a low-cost mobile
noise sensors network. The corresponding article only describes the principle of a low-cost sensor and
of the ad-hoc network, resulting from a detailed analysis of possible technical solutions. The proposed
sensor is composed of a ARM 32-bit MCU on a NXP FRDM-KL25Z chip with a 12-bit ADC, using an
omnidirectional electret microphone (CMA-4544PF-W) with a microphone amplifier (Maxim MAX9814
with automatic gain control). In order to optimize the data transmission from the mobile sensors to
the data server, depending of the networks availability, the authors recommend to consider two data
transmission protocols, a Wi-Fi connection (using the Wi-Fi ESP8266 module) and a GSM network
(using the Adafruit FONA 808 cellular module, including a GPS). Since the design is very innovative,
this research is worth mentioning. However, the implementation of this sensor in an operational
system seems particularly difficult given the technical challenge of such a mobile network, such as
ensuring a full and permanent connectivity between mobile nodes.
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In 2017, Mydlarz et al. [62] have presented a low-cost noise sensor based on mini personal
computer Tronsmart MK908ii with a Rockchip RK3188 quad core Cortex A9 CPU, a Wi-Fi connectivity
and a wired connection to the public power supply. Acoustic signal acquisition was performed using
an analog MEMS microphone Knowles SPU0410LR5H-QB with a eForCity USB audio interface on a
specifically designed printed circuit board (PCB) and installed on a specific mount to limit potential
harms due to weather. The set of acoustical tests show that the sensor generally meets the Class-2
criteria of the IEC 61672-1 standard [7]. This sensor was recently updated [35], replacing the processing
unit by a R-Pi 2 Model B device in order to increase the computational performances and using a
digital MEMS in order to reduce the radio-frequency (RF) interference. This sensor was successfully
deployed across New-York City, producing a huge acoustic data collection in terms of sound level
indicators and audio signal samples.

Although the sensors were designed for indoor use, the network presented in [38] in 2018 can be
detailed here, since such device could be adapted for outdoor environments. In their paper, the authors
use an analog MEMS microphone (SiSonicTM SPM0408LESH-TB) with an analog amplification gain of
20 dB, mounted on a MCU (ARM 32-bit Cortex STM32F050K6U6A, STMicroelectronics), while the
sink node is carried out using a PC-based system on a R-PI with a ETRX357 ZigBee module. Although
the authors pointed out the possible defects of the frequency response curve of the MEMS microphone,
they considered that the cost of an equalization filter was too high on a low-cost sensor, preferring
an a posteriori calibration in frequency and level, on the basis of comparison with a reference Class-1
sound level meter. A digital A-weighting filter was however designed. Indoor test measurements
were compared with a Class-1 sound level meter showing a very good correlation on the measured
sound levels, with a mean difference of 1.6 dB over a 12 mn testing time-period.

In 2018, Peckens et al. [63] have proposed a sensor based on the Teensy 3.6 platform made of
a 32-bit ARM Cortex-M4 MCU, on a MK20DX256VLH7 chip, using a XBee-PRO ZigBee Modules
(S2B), and an external board for the acoustic measurement (connected to the 16-bit ADC of the MCU,
using a sample frequency of 20 kHz). The measurement system was composed of an omnidrectional
ECM (PUI POW-1644P-B-R), an amplifier circuit with variable gain and an A-Weighing analog filter
circuit. It is interesting to note that the calibration, the A-Weighing filter and the amplifier gain have
been implemented using analog circuits, instead of digital processing, in order to reduce the power
consumption. Comparisons with sound level measurements using a Class-1 reference device, show a
good agreement, with deviations around ±1.5 dB. This system with four nodes and one sink (based on
a R-Pi platform), was tested with success in a real environment. The ability of the proposed approach to
monitor noise was validated. Some limitations are however highlighted such as insufficient dynamics
(50 dB), high residual noise level, as well as power supply issues generating artifacts in the time signal.

In the context of the European Life MONZA project [64], two different low-cost noise sensors
have been presented in [65,66], in 2017 and 2019 respectively. The sensors are not clearly described,
but it is likely that one is using a digital MEMS (mounted on 1/2 inch support) on a Mini PC platfom,
and the other one with an electret microphone (mounted on 1/4 inch support) on a MCU board. Data
are transmitted using the GSM 2G/3G protocol and power is supplied by several means: battery,
solar panel, electricity network. A digital filter was carried out in order to proceed to the A-weighting
filtering, as well as a 1/3 octave band analysis. Ten prototype sensors have been installed in a pilot
area in the City of Monza (Italy) since 2017, and seem to provide consistent data in comparison with
reference sound level meters, with however a systematic offset around 3 dB. One interesting choice by
the authors is the use of digital MEMS, provided an embedded ADC, which limits power consumption
and the noise generated by possible interference. However, they observed a reduction of sensitivity
of the MEMS during time, requiring to continuously correct the raw data at least until the end of the
running-in period of the first few months of use.

In the context of a French national research project (CENSE), Ardouin et al. [67] have presented
in 2018 two complementary sensors: firstly, a node using a STMicroelectronics STM32L4 MCU with
a ARM Cortex-M4 powered using a solar panel and, secondly, a gateway, based an R-Pi 3 platform,
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wired powered, acting simultaneously as a sensor and a sink for the nodes. Data transmission
between the node and the gateway is performed using the 802.15.4 standard (6LoWPAN MAC
layer). The gateways which are located on streetlights are connected to Internet using a wired
connection to a GSM router, through a power-line communication (PLC) built using the public
lightening system. Acoustic measurements were performed using an omnidirectionnal digital MEMS
(Invensense ICS-43432) integrated on a Mini PC, including additional sensors (temperature and
humidity). A third octave band analysis and an A-weighting are performed using digital filtering.
In addition, the data are encoded to reduce the memory load [26]. The influence of the air temperature
have been evaluated in a climatic chamber, showing a very small deviation. However, no details are
given concerning the acoustic performances of the sensors.

Recently, an alternative approach was detailed in [68], based on a digital signal processor (DSP)
(Texas Instrument TMS320VC5502), to which is connected an acoustic acquisition chain, composed
of a Panasonic WM 63-PR electret microphone, an analog conditioning and an ADC (Cirrus Logic
CS5344). The processing capabilities of the DSP thus allow the real time calculation of many acoustic
indicators as well as a 1/3 or 1/1 octave spectral analysis, simultaneously on two microphone channels.
This technical approach opens up many perspectives, due to its high computing capacity in flash
memory, which allows the integration of complex additional acoustic processing, with low power
consumption. Another special feature of the system is the use of standard interfaces to control the
sensor from an external CPU based system, for example a wireless NRG 2 panStamp (with a 868 MHz
radio transmission) in the corresponding article. The performance of the sensor, compared to the
expected characteristics of the IEC 61672 standard [7], is Class-1 for the DSP part and Class-2 for
the whole system, due to the reduced performance of the microphone that was used. Eight sensors
were deployed for 3 months in the city of Málaga (Spain), monitored over time and compared to
Class-1 sensors. Although the prospects for the used of such a sensor are very interesting, the authors
encountered problems of electromagnetic interference, material damage on some sensors, as well
as variability due to meteorological phenomena. The authors also recommend the use of MEMS to
improve the overall performance of the sensor.

Some other works related to the development of sensor networks for various applications and
purposes can also be mentioned, even-though they are not sufficiently detailed to give a complete
description. Tan et al. [69] considers a floating-point DSP to perform frequency and time weighting
filtering, instead of using the MCU. Botteldooren et al. [21,22] tested noise sensor nodes, based on
an ALIX single board computer and an ECM, using the ZigBee radio protocol, to develop sound
monitoring networks and algorithms in order to access sound perception. Bell and Galatioto [13]
proposed to adapt sensor nodes initially developed for environmental monitoring within the
framework of the MESSAGE project [70]. It features 8-bit MCU, a condenser microphone, and an IEEE
802.15.4 data transmission protocol. Fifty nodes were deployed in the cities of Leicester (UK) in order
to study road traffic noise. This experiment demonstrated that such technology can be used for urban
noise assessment and management. The use of low-cost sensors was also proposed by the City of
Barcelona (Spain) as a complementary network of a main Class-1 monitoring network [71].

2.3. Synthesis

2.3.1. General Considerations

The study of the literature highlights some key aspects and respective design choices, which are
summarized in Tables 1 and 2. As indicated in the Introduction, our review focuses only on the first
element of the chain, namely the sensor, and not on the infrastructure to implement the entire network.
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ić
et

al
.[

38
](

20
18

)
up

to
16

kH
z

*
72

dB
50

–1
00

dB
*

L e
q,

25
0m

s
Pe

ck
en

s
et

al
.[

63
](

20
18

)
<1

0
kH

z
*

50
dB

*
50

dB
*

L e
q,

12
5m

s
(1

0
m

n
ea

ch
1

ho
ur

)
A

rd
ou

in
et

al
.[

67
](

20
18

)
20

–1
6k

H
z

35
–1

05
dB

A
L e

q,
12

5m
s,

L e
q,

1s
,1

/3
Si

lv
ag

gi
o

et
al

.[
66

](
20

19
)

20
–2

0k
H

z
70

dB
30

(4
0)

–1
00

(1
10

)d
B

30
–3

5
dB

A
L e

q,
1s

,1
/3

M
yd

la
rz

et
al

.[
62

](
20

19
)

32
–1

00
dB

A
L e

q,
12

5m
s,

L e
q,

1s
,1

/3
,a

ud
io

(1
0s

)
Ló

pe
z

et
al

.[
68

](
20

20
)

up
to

8
kH

z
39

.1
–1

20
.1

dB
L e

q,
12

5m
s,

L e
q,

1s
,P

ea
k,

M
ax

,M
in

,L
N

(N
=1

,5
,1

0,
50

,9
0,

95
,9

9)
,1

/3
,1

/1

14



Sensors 2020, 20, 2256

A full comparison of the proposed solutions is unfortunately not feasible for all points of interest.
In particular, there is a consistent lack of description of the acoustic performance of the sensors,
in terms of residual noise, sound level dynamic or frequency range. Most of the time, the information
mentioned generally corresponds to the expected characteristics extracted from the data sheets of the
sensor components, which can be assumed to be a higher bound in terms of performance. Indeed,
assembled within the sensor with a wide variety of other hardware components and subjected to
environmental stress, those performances are likely to be degraded.

Also, different levels of maturity of the proposed low-cost sensors are found. Some developments
were limited to the design of the sensors alone (without prototypes), others proposed proof-of-concept
(POC) (prototypes and tests), and some others have proposed to deploy several sensors in real urban
areas in a quasi-operational framework.

Cost estimates of the sensors given by the authors show that the objective of obtaining a
low-cost acoustic sensor (less than 150 EUR) is clearly achieved, with relatively high signal processing
capabilities when considering most recent studies [35,66].

The question of the autonomy of wireless noise sensors, while being a fundamental aspect of
the design, is in the end not extensively studied in the literature. This is linked in particular to the
operating mode of the sensor, such as activity time/sleep time, duration of measurements, number of
calculated indicators, and so forth. All those aspects are generally not detailed. However, it should be
noted that most of the latest achievements [35,66,67] mention noise sensors directly powered by an
electrical network, which seems to illustrate the difficulty of developing wireless sensors with acoustic
performances that are relevant to the task at hand.

2.3.2. Sensor Platform

The choice of the sensor platform determines the main functionalities and characteristics of the
sensors. Three main families can be distinguished: (1) MCU based existing platforms; (2) specifically
developed electronic boards; (3) Mini PC.

The use of existing platforms (1) simplifies the sensor development by using components
that have already been optimized in terms of energy consumption (TelosB, CiNet, Teensy USB,
Tmote) [33,42,54,56,59,63]. Those platforms generally include all the components needed to develop
an environmental sensor (radio communication module, ADC, storage memory, connectors for other
sensors, etc.). Such platforms have played a key role in demonstrating the feasibility of developing
and deploying noise sensors. In addition, programming the MCU is facilitated by the use of dedicated
libraries, but requires a physical connection to a computer.

However, the lack of autonomy and the reduced computing capabilities for calculating relevant
acoustic indicators have motivated researchers to develop their own electronic boards [37,38,67].
A specific design makes it possible to select the processor and components best suited to the expected
requirements in terms of autonomy and computing power. However, the measured autonomy of the
sensors remains to be few days in the best cases, and is very dependent on the periodicity and the
duration of the measurements as well as on the data processing that is performed.

The main interest of using a Mini PC, lies mainly in increased computing power [35,59,62,66,67],
allowing more advanced digital audio processing, easy integration of external components, of remote
updating (without physical connection to a computer), but at the expense of higher energy
consumption. In most cases, these sensors are directly connected to the power grid as using a
battery limits operation to only a few hours.

2.3.3. Data Transmission Protocol

Choosing a relevant communication protocol for a sensor network normally depends on
several parameters, such as the distance between nodes and sinks, data rate, quantity and type
of measurements, network topology, global architecture, latency and reliability, cost... Although
this problem of choosing a communication protocol and optimizing it has been widely discussed
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in other areas of sensor network applications, very little has been said about noise sensor networks.
The experiments detailed in Table 1 show that different protocols have been used, most often imposed
by the choice of the sensor development platform. More information about data transmission protocol
are given in Section 3.2.6.

2.3.4. Microphones

As mentioned by several authors [68,73], the microphone is a critical element of the noise sensor.
A wrong choice of microphone will impact the quality of the acoustic indicators produced which
cannot be overcome. The literature review shows that three types of microphones are considered:
(1) electret condenser microphones, and the more recent MEMS microphones that can be either
(2) analog or (3) digital. The replacement of ECM microphones using MEMS ones was justified by
the authors on the basis of their acoustic performances that were a priori more interesting for their
use in acoustic measurements [56,62]. In addition, MEMS microphones have reduced dimensions,
are relatively reliable and durable, and above all are produced at a lower cost. The use of MEMS
therefore was considered particularly relevant in the context of the implementation of low-cost sensor
networks, specifically for urban noise monitoring. To our knowledge, the first work mentioning
the potential interest of MEMS for applications in acoustic measurements in urban environments,
can be attributed to the National Physical Laboratory (NPL) in the UK [45] in 2004, which will later
lead to the DREAMSys sensor prototype. While the overall results are rather positive, some authors
have highlighted some limitations and problems that are mainly related to the technology and layout
of MEMS used in sensors. In order to fully understand these limitations, the following paragraph
provides a brief description of MEMS microphone technology.

A MEMS microphone is composed of a sensor (MEMS sensor) and integrated circuits. The MEMS
sensor is a silicon capacitor made of two electrically isolated surfaces. One surface, called the backplate
is fixed, and is covered by an electrode and made of many holes, that is, acoustic holes. The other is
movable and is called the membrane or the diaphragm. Sound wave passing through the acoustic
holes of the backplate will set the diaphragm in motion, creating a change of the capacitance between
the two corresponding surfaces, which is converted in an electrical signal by the application specific
integrated circuit (ASIC). The ASIC delivers an analog output or a digital output, depending of the
microphone type (analog or digital). The MEMS microphone and the ASIC are packaged together,
surrounded by a substrate and a lid, forming a cavity. A sound inlet (acoustic port) is present either
in the substrate (bottom port configuration) or in the lid (top port configuration), and, most of time,
positioned directly in the MEMS cavity. For analog MEMS microphones, the electrical output signal
from the ASIC is sent to an external pre-amplifier, also in charge of converting the output to a signal
that can be used as input of an acoustic chain. For digital MEMS microphones, the ASIC output is sent
to an internal analog-to-digital converter (ADC) to provide a digital signal, either as a pulse density
modulated PDM format (1-bit high sample rate data stream) or I2S format (same as PDM microphone
but including a decimation filter and a serial port in order to produce a standard audio sample rate).

Acoustic performance of MEMS depends on mainly technical aspects, such as the location of
the sound inlet [74]. Considering the bottom configuration where the sound inlet is above the cavity
(front chamber), the interaction between the air in the sound inlet (back chamber) and the air in the
MEMS front chamber creates an Helmholtz resonance, whose frequency increases as the air volume
decreases, positioning the resonant frequency at the upper part of the frequency band of interest,
and thus, leading to a flatter frequency response. Additionally, locating the sound inlet above the
MEMS sensor allows easier interaction between the diaphragm and the sound wave, thus increasing
the sensitivity and the SNR. Conversely, considering the sound inlet at the top will create a larger
air volume in the cavity between the lid and the backplate (front chamber) in comparison with the
air volume in the cavity between the diaphragm and the substrate (back chamber); it generates a
lower resonant frequency, thus possible resonant frequency in the frequency range of interest. Such
unwanted effects were observed, for example, in [45,62]. In addition, due to a smaller volume in the
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back chamber for the top configuration in comparison with the bottom configuration, it will be more
difficult for the diaphragm to move, leading to worst sensitivity and SNR. Thus, it appears that the
bottom configuration provides better acoustic performance.

The thickness of the PCB on which the microphone is soldered can also modify the volume of the
front chamber and the inlet length altering the upper frequency response of the microphone [38,45].
This effect can also be more pronounced if a cover is added on the device, as a protection [75].
A possible solution is to mount the MEMS and the ASIC in the inner side of the lid, for the top
configuration, leading to the same expected performance than for the bottom configuration. Barham
and Goldsmith [45] also mentioned that the background noise of MEMS microphones was significantly
higher than classical microphones. In practice, experiments described in the literature mention
noise levels between 20 and 30 dB, depending on the frequency [76]. However, recent works on
the development of new generation MEMS microphones suggest the possibility of developing noise
sensors with high acoustic performance [77], which makes it the ideal component in the future for the
development of noise high-performance sensors.

2.3.5. Frequency Weighting

Most acoustic indicators for the assessment of environmental noise require frequency weighting
(generally A-weighting) to take into account the sensitivity of the human ear to certain frequencies.
Since the calculation of acoustic indicators, such as equivalent sound levels, is integrated within the
sensors, this weighting should be done as a pre-processing, using analog filtering [45,49,63] or digital
filtering [38,61,62,66,67,69]. Analog filtering makes it possible to overcome the computing limitations
of the microprocessor used, reduces energy consumption, can be processed in real time and avoids any
bias, such as rounding errors during digital computation [78]. However, analog filtering of the audio
signal constrains the nature of the acoustic indicators at the output of the sensors, unless the filter is
replaced. Conversely, digital filtering offers more flexibility, but at the cost of reducing the possibility
of real time computation if the microprocessor is not powerful enough, and potentially reducing
autonomy [63]. Risojevic et al. [38] recently compared several techniques for digital A-weighting
filtering and showed that using a matched z-transformation filter with a cascade form implementation
was relevant for a small processor core, and slightly better than a bilinear transformation [67], when
comparing with an analog filter.

2.3.6. Frequency Equalization

The acoustic acquisition chain generally has a frequency response curve that is not as “flat”
as expected, often due to the frequency characteristics of the microphone. This creates a bias
on the measured audio signal, and therefore on the calculated acoustic indicators. Some authors
therefore propose to compensate the frequency response of the acquisition chain by implementing an
equalization filter [61,62]. However, this filtering requires a significant workload on the microprocessor,
with an impact on the sensor autonomy. Another solution proposed by [48], implemented in their own
MEMS design in stainless steel tube, was to use a patented acoustic filter made of a resistive element
and a closed volume, the whole system acting as a low-pass filter.

Low-cost microphones can exhibit significant variability in frequency response. An equalization
filter should therefore be determined for each microphone, which would be ideal, but is not possible
when deploying a large number of sensors. Mydlarz et al. [62] thus propose to generate the equalization
filter on the basis of an average of a limited number of microphone impulse responses. The authors
observe a good behaviour of the implemented real-time time-domain filter (based on an inverse
linear-phase finite impulse response filter), however with an increasing of residual noise between
20 Hz and 400 Hz.
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2.3.7. Calibration

At the output of sensors, sound level indicators must be adjusted to give measures that are as
close as possible to sound levels measured by a reference device, such as an acoustic calibrator. In the
best case, this adjustment takes into account the variability of the microphone sensitivity, but this
adjustment can also correct linearity defects in the acquisition system or in the digital processing
chain. Two calibration methods are considered in the literature, either by using an acoustic calibrator
(mainly 94 dB at 1000 Hz) [59,66], when the microphone mounting device allows it (matching the
diameter of the microphone mount with the acoustic calibrator), or by comparing with a reference
sound level meter under the same measuring conditions [49,57,62,63]. In the simplest case, the same
correction is applied to the entire temporal signal, without distinction of frequency or amplitude. In a
more advanced way, this correction can also correct linearity defects in level and frequency [38] and
temperature [73]. The correction can be taken into account either within the sensor or in post-processing
once the data has been collected on a server. In most cases, this correction is applied to the digital
signal, but it can also be integrated into an analog circuit [63].

2.3.8. Noise Indicators

The choice of output acoustic indicators is very important for designing the sensors in terms of
expected computational and power resources.

A temporal integration in order to obtain an equivalent sound level over a given integration time
(1 s for example), will require far fewer resources (energy and calculation) than the calculation of
frequency band spectra. Such time integration can easily be processed by a system based on an MCU
with battery, while a frequency analysis will require more resources, as proposed today by a mini
PC, with a wired power supply [35,62]. Most authors have therefore limited themselves to produce
equivalent sound levels, generally with an integration time of 125 ms, that is, fast time weighting, and
1 s, that is, slow time weighting. However, with the help of technological developments, it can be seen
that some authors put forward solutions that a priori make it possible to carry out frequency band
analysis with an MCU [66,67].

While the measurement duration is often indicated in the literature, the temporal periodicity
is rarely specified. It is also quite difficult to determine whether the calculations are carried out
continuously and in real time, or over periods interrupted to calculate noise indicators, to transmit
data and to save power resources during sleep periods.

The transmission of audio signals is clearly not a priority, for obvious technical reasons: network
bandwidth, storage on sensors and servers, and energy consumption but more importantly for privacy
concerns. The calculation of acoustic indicators directly within the sensors, and then their transmission,
is the only relevant solution. However, one can cite a few exceptions—Mydlarz et al. [35] propose
to store and transmit audio samples, but only for testing purposes to validate machine learning
algorithms for identifying sound sources. Similarly, Sevillano et al. [72] recorded audio data by
connecting the sensor to a digital recorder, in order to test an acoustic event detection algorithm.
In both cases, the final objective is to integrate, after optimization, these algorithms directly into the
sensors. On the other hand, biodiversity monitoring rather emphasizes the need to preserve raw
audio signals, which creates constraints for continuously capturing and transmitting data in a fully
autonomous wireless SN [31,33,79].

2.3.9. Meteorological and Outdoor Conditions Effects

Renterghem et al. [73] have studied the effect of temperature, humidity and wind, on the sound
levels measured by electret and MEMS microphones. It was shown that applying an air temperature
correction may have a positive effect on the long-term measurements. For example, by comparison
with a reference microphone, such temperature correction (acting as a gain on the signal) applied on an
ECM was able to reduce the deviation of the global error from 1.6 dBA to 0.8 dBA, over the full period of
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observation (several months). In order to proceed to such correction, the authors proposed to consider
an additional sensor for measuring the temperature. Because relative humidity and temperature are
highly correlated, the temperature correction may also include the humidity correction. The authors
have also noted inconsistent behaviour of the MEMS microphone at temperatures below 20 ◦C, high
relative humidity and high wind speed, but no explanation has been given.

The effect of ambient temperature on the sensitivity of a MEMS sensor was also investigated
by Barham and Goldsmith [45]. From their results, it seems that the variation in sensitivity would
increase with frequency and temperature (tested between −5°C–40°C), in the order of ±1 dB over the
frequency range between 100 Hz and 8 kHz. Conversely, [67] have not seen significant variation of
MEMS microphone sensibility with temperature.

In another study, Bartalucci et al. [80] report that they observed a reduction of acoustic sensitivity
of MEMS microphones during the initial running-in phase, on the order of 1–2 dB on a time period of
4 months.

A procedure was proposed in [76] in order to evaluate the evolution of acoustic performances of
MEMS and electret microphones, when exposing to stressing conditions. Microphones were installed
inside a salt spray chamber in order to exaggerate the possible damage in outdoor environments
(such extreme conditions can however not be reproduced in real environments). Authors observe a
slightly better stability for MEMS microphone in term of frequency responses and noise floor. However,
anomalies like spike occurrences have been observed in the audio signal measured by some MEMS
microphones, whose impact is low in terms of equivalent sound level, but which was remained
totally unexplained.

Li et al. [81] have studied the reliability of MEMS microphones, through accelerated life tests in a
corrosion test chamber and in a pneumatic shock testing. The second testing is more related to the use
of a MEMS microphone in smartphones, and has showed that failures of the diaphragm and backplate
of the MEMS can be observed, but only when an impact is generated in the direction normal to the
diaphragm and for very high acceleration level (greater than those observed in real life). Considering
the corrosion test, wire bond corrosion and membrane embrittlement were observed after 90 days in
the test chamber, but with a very slight impact on the frequency response of the microphone.

All the results mentioned above should be considered as points of attention, and not as “absolute”
results, since the observed effects may vary due to many design factors. The generation, the type of
microphone, but also the presence or not of wind and rain protection devices, all will have an impact
on the experimental results. In our opinion, the conclusion to be drawn is that it seems mandatory
to carry out specific tests, before the sensors deployment, in a climatic chamber (as also suggested
in [62]) or a corrosion chamber for example, in order to evaluate the temperature effects on the sensor,
to assess whether a correction should be applied. In addition, protection of the overall sensor (not only
the microphone) against wind, chemical agents, dusts, pollutants, shock... seems essential, and their
impact must also be evaluated [76,81].

3. Noise Sensor Design for Low-Cost Networks

The literature review highlights the rapid evolution of low-cost sensors, mainly driven by the
more global need for electronic and computer systems dedicated to the development of smart sensors.
The technical solutions available today seem both sufficiently stabilized and adapted to offer low-cost
acoustic sensors that can meet current and future applications for the assessment and management of
environmental noise.

In this section, on the basis of the literature review detailed previously, we propose to highlight
the technical characteristics that we believe are essential for the correct design of a low-cost acoustic
sensors, offering a level of performance in line with the needs in noise monitoring. Depending
on the objectives and applications considered, two levels of expected sensors characteristics can be
distinguished, ranging from minimal to optimal (Table 3). It is these characteristics that condition the
technical elements to be considered for the realisation of the noise sensors.
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Table 3. Minimal and optimal expected characteristics for the noise sensors.

Property Minimal Target Optimal Target

Measurement range 30–105 dB(A) 30–105 dB(A)
Frequency range 100–12k Hz 100–16k Hz
Integrated sound level LA,eq,1s LA,eq,125ms

LA,eq,1s
Spectrum None 1/3 octave bands
Measurement frequency Continuous
Pre-processing A-weighting (A, Z)-weighting

Calibration Calibration
1/3 octave bands analysis
Frequency equalization

Other indicators Source recognition
Noise event detection

Additional sensors Temperature Temperature
Hygrometry Hygrometry

Price 50 EUR 150 EUR

3.1. Expected Characteristics of Noise Sensors

3.1.1. Acoustic Measurement Accuracy

Referring to conventional measuring systems and historical practices in environmental acoustics,
one could try to compare the acoustic performance of low-cost sensors with Class-1 or Class-2 devices
for ’expertise’ or ’control’ environmental noise measurements [7]. However, as pointed by [46], there
are situations where Class-1 or even Class-2 systems give measurement results whose very high
accuracy is not necessarily in line with the practical use made of these data. This is particularly
the case in the strictest application of the European Directive 2002/49/EC on the assessment of
environmental noise. Informing the public through "coarse" noise maps, such as the establishment of
action plans to reduce noise pollution, does not require a very high precision in the performance of
acoustic measurements.

This is also highlighted in [22], mentioning that low-cost acoustic sensor characteristics are already
quite consistent, in term of metrological capabilities, with what is expected from a strategic noise map:
it is not necessary to seek a measurement accuracy of less than 1 dBA; the sound spectrum is rather
centred around 1000 Hz, that is, over a frequency range for which a low-cost sensor is not lacking; a
rather high minimum noise level, therefore beyond the residual noise of the sensor (except, maybe,
for quiet areas).

For more specific needs, the most important guideline is to be aware with the technical limitations
of the systems developed, and to ensure that the exploitation of the collected data is consistent with
these limitations.

3.1.2. Acoustic Indicators

Indicators of interest to describe urban noise environments are calculated on the basis of 1 s
or 125 ms data. They cover at least equivalent sound levels as well as statistical indicators, and,
sometimes, emergence indicators such as the number of exceedances at given thresholds. Finally,
some authors have introduced more demanding indicators for specific uses, such as the time and
frequency second derivative (TFSD) [82] to describe voice and bird sounds, which requires a good
temporal and spectral response of the sensors. Consequently, the expected characteristics of noise
sensors are guided by the amplitude of the sound levels encountered and the spectral information of
the sources to be characterized. The characterization of urban noise environments, from quiet areas to
the noisiest events, assumes a linear sensor response in a range from 30 to 105 dB(A). The interest in
bio-phonic sources, especially bird sounds, suggests that we should also be able to accurately measure
high frequencies, up to 16 kHz.
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3.2. Sensor Platform and Components

The choice of the platforms and components for the sensor development is mainly determined by
the questions of how the sensor is connected to the network, how the sensor is powered, and what are
the expected sensor output indicators. This last question also conditions the first two questions.

A sensor that transmits data by radio will be limited by the maximum data rate of the transmission
protocol, as well as the distance and visibility to the nearest gateways or relays. The power supply mode
will determine the computational and storage features of the sensor, as well as the operating conditions
depending on the energy recovery mode (battery change or power supply using renewable energy).

Several technical solutions can be considered, each with different components/functionalities—a
sensor connected with a wired connection to the electrical network and to the data network; a sensor
powered to the electrical network through a wired connection, but transmitting data by radio wave; an
autonomous energy sensor (possibly also acting as a relay) transmitting data by radio wave.

3.2.1. Wired Sensor Platform

With regard to the experiments presented in the previous literature review, the choice of a Mini
PC constitutes an optimal choice with regard to the low-cost, the computing and storage capacities,
the connectivity with other modules (radio, other sensors...), the remote maintenance and update of the
system, the change of some modules (since not all modules are integrated into the motherboard of the
Mini PC but just connected). There are several Mini PC solutions available at a very affordable price,
with fairly similar features, and with different operating systems. Among these, it is clear that the R-Pi
family seems an excellent choice given the many accessories and modules available, but also given the
presence of a very active community. The latest R-Pi models use very powerful 64-bit microprocessors,
but at the expense of higher power consumption. The choice can be made for an older model (model
A+ or Zero), very cheaper, but with a better power/energy consumption ratio if it were to be run on
battery power [83].

3.2.2. Wireless Sensor Platform

The development of a stand-alone sensor is more complex as it must meet many requirements.
The nature of the acoustic indicators to be produced (continuous sound levels and spectra) requires a
powerful microprocessor; the dynamics of the sound levels to be measured requires quantification by
the ADC of at least 16 bits (96 dB of dynamics), ideally 24 bits to take advantage of a wider dynamic
range (144 dB), which needs the use of a 24 or 32 bits MCU, as in the STM32 series already used by
several authors [38,67].

3.2.3. Microphone and ADC

The acquisition chain (microphone, gain amplifier, ADC) is the other essential element to consider.
Most of the achievements have focused either on ECMs or on MEMS, combined with an external ADC.
Feedback from the literature review has shown the sensitivity of the acoustic signal to electrical and
radio frequency interference, causing an increase in the residual noise. This is why some authors
have recently turned to digital MEMS (the analog-to-digital conversion is performed inside the
microphone) [35,66,67], which seems today an optimal choice. In addition, using a digital MEMS
microphone with an I2S interface, it is unnecessary to use an external codec [84].

The choice of sampling frequency depends mainly on the spectral band of analysis, which
depends on the expected sensor application. The optimum corresponds to the audible frequency band
20–20k Hz, covered by most MEMS microphones, which implies a standard sampling frequency of
44.1 or 48 kHz. While such a sampling frequency is not a problem for a wired sensor (such as a R-Pi),
it is more problematic with MCU, and even more if a real-time processing is required. Currently,
the only reference for a stand-alone node with a digital MEMS node mentions a sampling frequency of
32 kHz [67], but the paper does not described the final sensor performances.
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3.2.4. Noise Floor Enhancement

As mentioned by several authors, residual noise is one of the elements of the measurement
chain that can limit a sensor ability to perform measurements at low levels, as in quiet spaces.
The observed residual background noise levels are generally much higher than the value indicated by
the manufacturer for the microphone and are caused, for example, by interference on analog electronic
circuits or by the limited performance of some ADCs. The solution to reduce the residual noise is to
optimize the electronic components of the sensors. Another way, proposed for example in [73], is to
combine several microphones on a same sensor and to reduce the residual noise by applying a noise
reduction method based on cross-correlation techniques. Such procedures may be however power and
computational consuming. It must be noted that this use of several microphones simultaneously to
reduce background noise would also make it possible to envisage other applications of this type of
acoustic sensor, such as locating sound sources.

3.2.5. Mass Storage

Sensors can also have mass storage capacities to store various information, for sensor maintenance,
but also to temporarily store the collected data when the connection to the gateway or data server is
interrupted. The sizing of this memory must take into account the duration of temporary data backup,
and potentially the ability of the sensor to transmit a large amount of data once the connection is
established, while simultaneously collecting and processing new data.

The type of storage device is the second element to be considered. The more relevant choice is to
use a flash memory (memory card, USB flash device, SSD), offering lower power consumption, easier
maintenance, higher transfer speed, no operating noise, but at the expense of less mass storage than a
traditional hard disk (HD), but also shorter lifetime due to a limited number of write cycles and higher cost.

3.2.6. Data Transmission Protocol

Depending on the type of output noise indicators (such as 1/3 octave band analysis [35,66,67] or
audio capture [35]), measurements may require a very high frequency, inducing a huge quantity of
data to be transmitted. Conversely, a temporal integration of the audio signal does not generate an
enormous amount of data to be transmitted.

With regard to the applications that are currently envisaged for these noise sensors (see
Introduction) and the expected output indicators (Section 3.1.2), the needs in terms of data rate
are rather increasing. The targeted useful data rate should be up to 10 kb/s with a maximum range
around 100 m to be able to transmit compressed data from one node to a sink, in a urban configuration,
taking into account trees, buildings, cars and trucks impacting the radio signal propagation.

The use of a wired network is obviously the simplest and most effective solution to ensure data
transfer under ideal conditions. This solution will be probably feasible in the future, given the growing
number of cities developing smart and connected systems. Nevertheless, the expected spatial density of
noise sensors requires dating the use of radio transmission, as most past experiments have envisaged.

Considering the amount of data to be transmitted from a noise sensor, the implementation of
a very simple topology, that is, a direct transmission from a node to a sink, seems the most obvious
solution. Topologies involving one or more relays do not seem to be possible today, given the technical
solutions that are available. In the literature, one recent reference [67] mentions the use of sensors that
also act as relays for other sensors, but this has not been developed further.

As a first solution, the 3G/4G and other GSM protocols could be considered. However, such
transmission protocols are not cost effective for very dense sensor networks because with one subscriber
identity module (SIM) card is required per sensor (or two SIM cards in order to ensure the relay of
data transmission in the event of a GSM network failure). Regarding other data transmission protocols
without subscription, several solutions are possible, depending of the range/data rate compromise
that is expected for the sensors networks (Table 4).
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Looking at the available data rates, the LPWAN technologies like LoRaWAN and Sigfox would
not allow data transmissions with a sufficient efficiency. Even for the LoRaWAN, the maximum data
rate is higher than the useful data rate due to the overhead of the protocol. In terms of data rate,
the Wi-Fi and the Bluetooth protocols would be more efficient, but the battery life will be too limited
for an application without constant energy and for an efficient coverage of an urban area. Zigbee
and 6LoWPAN, based on 802.15.4 specification, present both maximum range and data rates that are
compatible with the noise SN.

3.2.7. Additional Sensors

As mentioned in Section 2.3.9, the knowledge of the air temperature can be sometimes useful to
calibrate noise sensors. More generally, knowledge of atmospheric and meteorological conditions can
be interesting for a better use of data. For example, the presence of rain or a strong wind can cause
disturbances to the measured acoustic signal, which, if not identified, can lead to misinterpretation
of the collected data. The measurement of these atmospheric conditions (temperature, humidity,
wind speed and direction) at the same time as the acoustic signal seems relevant, particularly
because of the low cost of the components and of the limited additional data it can generate. More
generally, the possibility of connecting other types of sensors (traffic, ambient light, air pollution,
video, accelerometer, etc.) [38,49,60] would make it possible to develop a global and multi-disciplinary
environmental approach [9,70] by pooling technical resources. The integration of multiple sensors
adds additional constraints in terms of maintenance, data storage and transmission, as well as energy
consumption, which must be anticipated.

3.3. Sensor Life

One important issue is to determine the expected lifetime of a low-cost sensor. Knowing that the
lifetime of a Class-1 sound level meter can extend to more than 10 years under normal conditions of
use [90], a lifetime of a few years (typically 5 years) already seems an ambitious goal considering the
overall cost of a low-cost noise sensor and the quality of its internal components.

There are several components that can affect the lifetime of a sensor, mainly the measuring
microphone, the data storage elements, and, if applicable, the battery. All other electronic components
embedded in a sensors are designed most of time to operate for more than 10 years without problems
in outdoor conditions, except when experiencing unplanned event, such as mechanical damage, high
level of humidity, or really extreme temperature conditions out of the expected −20/+55 ◦C range.

As detailed above, recent microphones and especially MEMS have a fairly good resistance to
atmospheric conditions and have a limited drift over time. Newer mass storage devices also have
a longer life expectancy given today’s permitted read/write cycles. Finally, as far as autonomous
sensors are concerned, the most sensitive component is undoubtedly the battery. Either the battery
is removable, in which case an on-site intervention is required, or the battery is rechargeable and
in this case the life cycle is defined by its ability to recharge, generally by using solar panels, while
maintaining optimal properties.

Most solar panel lifespan is around 20 years, with a power output decrease of less than 1% per
year [91]. The sensor will then be given around 80% of the initial energy after this time. Environmental
conditions, will have also an impact on the longevity of lithium batteries (i.e., the type of battery
most commonly used in electronic devices): the worst case is for high temperature (above 40 ◦C).
Most of time, battery packs do not die suddenly, but the runtime gradually shortens as the capacity
fades. The capacity of the battery will also decrease during its life, starting from 95% of its nominal
capacity it quickly decreases to around 80% in less than a year (with 250 charge/discharge cycles).
In addition, the depth of discharge will have also an impact of the battery durability: considering
smaller discharges will prolongs the battery life. The lifetime of such batteries can typically range from
a few years (typically 5 years) for consumer products to more than 10 years for industrial products.
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3.4. Power Resources

As pointed out in [54,56], autonomous nodes, made with a battery and a solar panel, should
present enough storage capacity to store the energy that is required over the duration of the
measurement. For low cost sensors, the dimensions of the solar panel as well as the dimensions
of the battery are a tradeoff between the energy consumption of the sensor and the overall price of
the sensor.

Considering an average power consumption of the sensor around 75 mWh, which seems sufficient
for a MCU based noise sensor already offering significant computing power, the solar panel should be
able to provide enough energy to power 24 hours of energy request, even during the worst month of
the year (not in extreme conditions). If during this period, only 3 hours of sun are available, a solar
panel should provide 24 × 0.075 = 1.8 W, which seems very reasonable in terms of cost and space
requirements. To be able to power the sensor during a few days without sun, the battery should have
the biggest possible capacity. A 2600 mAh battery will be able to provide enough energy to a sensor
during a few days, even if there is no sun available to recharge the battery.

It is also essential to consider the progressive degradation of the properties of the solar panels and
batteries in order to ensure the correct operation of the sensor over the envisaged lifetime. From the
initial design stage, this means overestimating the capacities of the panels and batteries to ensure
trouble-free operation of the sensors over the expected service life. Lastly, one can also mention that
the technical improvement of the energy system must also be accompanied by the development of
algorithms and procedures to optimize or reduce energy consumption [33].

3.5. Acoustic Calibration

Regardless of the intrinsic performance of the sensors, calibration is an essential operation for
any “controlled” acoustic measurement. At a minimum, the sensor calibration should be performed,
using an acoustic calibrator, for example, 94 dB at 1000 Hz, to determine the sensitivity correction at
the selected frequency, under controlled conditions. The use of a multi-frequency calibrator can be
useful in determining a frequency correction, unless the frequency response has been corrected using
an equalization filter within the sensor. Considering the expected accuracy of a low-cost sensor, the use
of a Class-2 calibrator seems sufficient. The use of a sound calibrator requires that the microphone be
mounted on a cylindrical support with a compatible diameter.

As pointed out in [66], it is important to regularly check this sensitivity correction throughout the
period of use in order, if necessary, to take into account the variations in sensitivity of the measuring
microphone. Taking into account the sensitivity correction directly within the sensor, in pre-processing,
(rather than retrospectively on the post-processing data server) seems relevant to ensure that the
acoustic indicators at the sensor output are consistent with reality. However, even in this case,
the verification procedure with a sound calibrator is required. Such correction was for example
proposed in [63], using an electronic circuit, but the it can also be carried out by applying a correction
on the raw data.

Because of the variability between low-cost microphones, particularly in terms of frequency
response, it may be tempting to determine, in laboratory, a sensitivity correction for each sensor.
However, this can quickly become tedious to do for a large number of sensors. It seems more
appropriate to estimate a correction value on a sample of sensors, then calculate an average correction
that will be applied to all sensors, as proposed in [62].

Moreover, the question of the calibration of a very large number of sensors, particularly in situ, is
a very hot subject of research [92] that could be considered to noise sensor networks, for example by
developing automatic calibration of sensors without human intervention.
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3.6. Additional Challenges

The development of a low-cost acoustic sensor for long-term acoustic measurement is only the
first step in a comprehensive approach to the development of a sensor network for noise monitoring.
Many other aspects, such as the development of an optimal technical and IT infrastructure for network
and data management, anomaly detection, optimization of sensor positions, spatial and temporal data
sampling, and the management of hybrid networks, are important challenges, which are still relatively
open in the field of noise monitoring as of today. The complete review of all those issues that surround
the sole design of the sensor is left for future work. However, for the reader to grasp some aspects of
those challenges, we present in the following some related advances and discussions.

3.6.1. Detecting Network Defaults

It cannot be expected from a low-cost sensor the same performance as a professional sensor in
terms of reliability and durability. Therefore, and as has been mentioned in several studies [50,73,93],
the probability of malfunctioning of a low-cost sensor must be carefully considered. If extreme cases (for
example, due to hardware malfunctions, a sensor no longer returns data) can be immediately detected,
others irregularities (such as abnormal acoustic data behaviour due to certain weather conditions [73]
or sensor power loss problem [63] for example) are more difficult to identify. The implementation of
advanced algorithms for dysfunction detection is therefore essential [35,73]. The subject of automatic
fault and anomalies detection is particularly developed in the literature about wireless SN, but only
little for noise monitoring. The description of these methods is outside the scope of this study;
the reader may refer to recent references about this subject [94–97].

3.6.2. Temporal Sparse Sampling Strategies

The question of the duration and frequency of acoustic measurement is crucial since it concerns
different aspects of the definition of sensor characteristics, such as memory space for data storage,
computing capacities for real-time processing an data transmission rate. Reducing the measurement
time therefore makes it possible to be less demanding on the characteristics of the sensor, and thus
to reduce its cost and to increase its lifetime. Thus, it may be particularly interesting to study the
temporal structures of noise levels in the environment as well as their spatial dependencies, in order to
potentially reduce the sampling duration.

As an example, Can et al. [98] investigated the variations of hourly noise levels at the week
scale, showing that a matrix of relationships between hourly noise levels can be defined for each
measurement point, from which noise levels at any period can be deduced from measurements at other
periods. The temporal trends are however different depending on the site. A method for stratifying
urban space has also been proposed in [99]. Four categories were considered were arterial roads
outside the central zone, arterial roads in the central zone, two-way roads connecting different zones,
and one-way roads. The interest of such stratification lies in the fact that temporal variations in noise
levels are correlated from one point to another within the same category.

However, these studies are still insufficient to optimize the sensors in terms of their temporal
measurement dynamics and should be continued.

3.6.3. Optimizing Sensor Locations and Network Deployment

(1) Spatial Representativeness and Interpolation

Even if the very low intrinsic cost of individual sensors may encourage to not limit the number of
measurement points to be integrated into the network, in practice, it must be limited to reduce the
overall cost of the networks, mainly in terms of maintenance. Thus, dealing with a limited number
of sensors, the choice of the ’best’ location of each sensor may be of major importance, since many
locations are possible in a large urban areas. In addition, authors have also questioned the spatial
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representativeness of noise, in order to limit the number of sensors, and then to consider ways to
interpolate noise indicators between the measurement locations.

Can et al. [100] showed that interpolation methods were defective when the spacing between
sensors was too large (about one measurement point every 250 m in the study). The explanation given
is that they do not offer a sufficient covering of the network, and assume spatial variations that are not
coherent with traffic dynamics or street configurations. Indeed, in urban areas, a distance of 250 m can
see a succession of very varied environments.

The study of the spatial characteristics of sound environment variations help defining
interpolation functions. Gozalo et al. [101] showed that a stratification of roads based on their
functionality was helpful before interpolating sound levels showed similarly, based on a measurement
campaign in the city of Plasencia (Spain), that the characteristics of sound level variations follow the
categories formed with road functionalities.

Liu et al. [102] analyzed the sound environments of the city of Rostock, Germany, and
observed that spatial variation of urban soundscape patterns was explained by underlying landscape
characteristics, while temporal variation was mainly driven by urban activities.

Zuo et al. [103], based on measurements in the city of Toronto (Canada), observed that noise
variability was predominantly spatial in nature, rather than temporal: spatial variability accounted for
60% of the total observed variations in traffic noise.

Two examples of spatial interpolation of noise levels based on a dense sensor network can be
found in the literature. In [60], a fix grid of 78 sensors was deployed in the city of Algemes (Spain).
The network covered 1.8 km2, which is about a square grid of 50 m on each side. For the purposes
of the study, 10 sensors were removed in which levels were estimated at five 3-hours periods of the
day by an interpolation method, namely an Ordinary Kriging in which noise levels are described by
a logarithmic function. The study shows that under this sensors density the kriging method seems
an efficient method to interpolate noise levels, within a RMSE of 3.5 dB(A). In addition, the residuals
are spatially correlated except for the [19 h–22 h] period, probably because it entails specific noise
behaviors (leisure noise activities, etc.).

In [5], the impact of the density of observation points and the performance of four spatial
interpolation methods were presented. Mobile measurements have been performed while walking
multiple times in every street of the XIIIrd district of Paris (France), to construct a reference map,
which is estimated by adaptively constructing a noise map based on these measurements. The four
interpolation methods were constructed by combining two algorithms: (i) the Kriging method, either
Ordinary Kriging or Universal Kriging (which consists in adding a linear trend, defined from the
distance between each location and its closest road in each amongst four categories) and (ii) the
definition of the distance between locations, either Euclidian or computed from the road network.

(2) Best Sensor Location

Huang et al. [104] proposed a hybrid model, based on a K-means clustering algorithm and
an immune technology particle swarm optimization algorithm, to define the best locations for
measurements stations. The methodology was applied to a real urban areas, showing that 28
optimization measurement points could replace the original 100 grid noise survey points.

In the more general context of sensor networks for environmental monitoring, Reis et al. [105]
suggest that models can also be used to optimize the deployment of sensors by identifying areas of
interest according to specific metrics. Applied to the noise monitoring field, noise modelling could
be used, for example, to detect whether locations in a set of potential measurement points are highly
correlated, which in this case would reduce the number of measurement points.

Beyond the metric itself associated with the measurement (i.e., the acoustic measurement in the
present case), other elements can also be considered in the deployment and of the optimization of the
whole network, such as the connectivity between node/relay/sink, the spatial domain coverage or the
network life and energy efficiency [106,107].
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3.6.4. Considering Hybrid Networks

Accessing to complementary noise data, that is, data produced by other sensors, can be useful to
increase the relevancy of end-user applications.

A low-cost SN can used for example to complement an existing professional quality network
(i.e., using Class-1 measurement systems). Data can be shared within the same database and used
simultaneously to further evaluate sound environments. This is, for example, the choice of the city
of Barcelona in Spain [71]. This makes it possible to extend the spatial coverage of observation at a
lower cost. Provided that the data from two networks are in a compatible format, the processing and
analysis of the data from the low-cost sensor network can thus take advantage of the existing tools for
the professional network, which again limits the cost of the investment.

Merging noise data produced by smartphones in the framework of a crowd-sourcing noise
approach [108], with data obtained using a low-cost SN, can increase the quality of the soundscape
evaluation. In opposition to ’static’ sensors, smartphones can be seen as ’mobile’ sensors. In a
complementary way, noise sensors located on cars, bus or bicycles [109] are also considered as mobile
sensors. Such sensors could be used to increase the relevance of the sound environment database and
to reduce the cost of the network. However, considering both mobile and static sensors in a noise
network can introduce significant challenges in terms of mobile sensors detection/localization and
data transfer to a static gateway [110].

This hybrid network approach can also be extended to networks dealing with multiple pollution.
Noise sensors, at the lower cost of environmental pollutant sensors, can then be used as a proxy to
estimate airborne pollutant concentrations or number of fine or ultra-fine particles with a limited
number of sensors [111,112]. One of the ambitions of these multidimensional treatments is to establish
possible confounders in the characterization of the health impacts of noise and air pollutants [113],
or noise and fine and ultra-fine particles [114], as expected by epidemiologists. The use of acoustic
indicators as proxies for estimating air pollution quantities, motivated by the lower cost of acoustic
sensors, faces however many obstacles [115], including a different dispersion behavior that leads to
very variable correlation coefficients.

4. Conclusions

Given the major problem of evaluating and controlling sound environments, the development
of low-cost sensor networks is today an interesting alternative solution, complementary, to more
traditional solutions such as modelling and "professional" observation networks. Numerous
researchers have thus focused on the development of low-cost sensors over the last fifteen years,
ranging from proof-of-concept to the deployment of operational networks [29].

From a technical point of view, Table 1 illustrates fairly well the evolution of low-cost sensors, from
the adaptation of existing sensors (but with limited resources) to the use of mini-PCs and MCUs (with
more extensive computing and measurement capabilities). If the sensors can be directly powered by an
existing electrical network, mini-PCs are the most relevant solution up-today, especially in view of the
modularity and real-time processing capabilities they offer. For stand-alone sensors, most recent MCUs
offer interesting performances, but their overall capacities remain very dependent on their power
supply and recharging mode. From an acoustic measurement point of view, the use of a digital MEMS
with a sampling frequency of 44.1 kHz now seems to be a technically affordable solution, not very
sensitive to electrical and electromagnetic interference, that meets the challenges of noise monitoring.
Among the possible technical evolution, the development of sensors composed of several microphones
would offer new perspectives for the localization and the tracking of sound sources, as well as for
measuring 3D audio [30,68,116]. Concerning radio data transmission, Zigbee and 6LoWPAN protocols,
based on 802.15.4 specification, present both maximum range and data rates that are compatible with
noise measurements. Setting aside the problems of sealing against weather and pollutants, as well as
the mechanical protection of the sensor, which can be solved by integrating the electronic components
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in a specially designed container, the service life of the electronic components, including memory and
battery, is now potentially fully compatible with long-term acoustic measurement.

The individual cost of a sensor must be put in relation to the overall cost of an infrastructure
consisting of a very large number of sensors [93], potentially requiring a high level of maintenance.
The question of the best location of sensors is therefore an important issue for the future. In addition,
the automatic detection of anomalies in the network, whether to identify a hardware malfunction or an
abnormal set of data, are also subjects that will have to be addressed to improve the database quality.
The multitude of such data also raises the question of developing appropriate data infrastructures for
their representation and processing [35,48].

There are many opportunities that enhance the value of these measurement networks and the
collected data. Environmental services of cities can, for example, use data to dynamically adapt their
policies, since they are able to measure directly the effects of the policies tested. Another example is that
local residents associations, with the help of specialized services, can understand the environmental
quality of their neighborhood and use it to alert the authorities or become a source of proposals. To do
this, it is also important that current networks be enriched with perceptive data, in order to better
describe the impacts of noise on citizens.
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Abbreviations

The following abbreviations are used in this manuscript:

ACI Acoustic complexity index
ADC Analog-to-digital converter
AOP Acoustic overload point
ASIC Application specific integrated circuit
CPU Central processing unit
ECM Electret condenser microphone
EIN Equivalent input noise
GSM Global system for mobile communications
FFT Fast Fourier transformation
FGPA Floating-point-gate-array
HD Hard disk
I2S Integrated interchip sound
IT Information technology
IoT Internet of things
LAN Local area network
MCU Microcontroller unit
MEMS Micro-electrical-mechanical systems
NPL National Physical Laboratory
NSN Noise sensors networks
OS Operating system
PC Personal computer
PCB Printed circuit board
PDM Pulse density modulated
PLC Power-line communication
POC Proof-of-concept
POE Power over Ethernet
PSR Power supply rejection
PSRR Power supply rejection ratio
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RF Radio-frequency
R-Pi Raspberry Pi
SD Secure digital
SIM Subscriber identity module
SN Sensors networks
SNR Signal-to-noise ratio
SSD Solid-state drive
TFSD Time and frequency second derivative
THD Total harmonic distortion
USB Universal serial bus
Wi-Fi Wireless fidelity
WASN Wireless acoustic sensor network
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Abstract: Noise pollution is a problem that affects millions of people worldwide. Over the last
few years, many researchers have devoted their attention to the design of wireless acoustic sensor
networks (WASNs) to monitor the real data of continuous and precise noise levels and to create
noise maps in real time and space. Although WASNs are becoming a reality in smart cities, some
research studies argue that very few projects have been deployed around the world, with most of
them deployed as pilots for only days or weeks, with a small number of nodes. In this paper, we
describe the design and implementation of a complete system for a WASN deployed in the city of
Linares (Jaén), Spain, which has been running continuously for ten months. The complete system
covers the network topology design, hardware and software of the sensor nodes, protocols, and a
private cloud web server platform. As a result, the information provided by the system for each
location where the sensor nodes are deployed is as follows: LAeq for a given period of time; noise
indicators Lden, Lday, Levening, and Lnight; percentile noise levels (LA01T, LA10T, LA50T, LA90T, and
LA99T); a temporal evolution representation of noise levels; and the predominant frequency of the
noise. Some comparisons have been made between the noise indicators calculated by the sensor
nodes and those from a commercial sound level meter. The results suggest that the proposed system is
perfectly suitable for use as a starting point to obtain accurate maps of the noise levels in smart cities.

Keywords: noise monitoring; real-time noise mapping; wireless sensor networks

1. Introduction

Noise pollution is a problem that affects millions of people worldwide. Different studies have
shown that it is currently one of the greatest environmental threats to people’s health, leading
to increased risk of cardiovascular disorders, hypertension, sleep disturbance, stress, etc., and it is
negatively influencing productivity and social behavior [1]. According to the World Health Organization
(WHO), noise pollution is responsible for 50,000 heart attacks each year in Europe. Moreover, 1.8% of
total heart attacks can be attributed to traffic noise levels greater than 60 dBA. In the particular case
of Andalusia (Spain), in the studies carried out for the last Ecobarometer of Andalusia [2], citizens
considered noise pollution as one of the main environmental problems in cities and towns that has
caused a considerable degradation in the quality of life.

Nevertheless, until the 1990s, policies to reduce environmental noise always had a lower priority
than policies regarding the pollution of water or air. In 1993, The Fifth European Commission (EC)
Environmental Action Program [3] marked the beginning of attention being paid to the problem of noise
pollution, and noise reduction programs began to be developed. The first step in the development of this
program was in 1996, when the EC published the first policy to reduce environmental noise—“Future
noise policy: European commission green paper” [4].
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The Environmental Noise Directive 2002/49/EC (END) [5] required European member states to
provide and publish accurate mappings of noise levels and action plans every five years throughout
large agglomerations, all major roads, railways, and major airports.

Currently, noise maps can be generated with the help of noise mapping software [6,7], based
on numerical simulations that take into account estimated parameters (such as traffic flow, the type
of road, rail, or vehicle data), emission models of transportation and industrial noise sources, noise
propagation patterns, and the urban topology.

However, the END required that noise maps be based on empirical measures. Moreover, in 2006,
the EC working group “Assessment of Exposure to Noise” (WG-AEN) published a document called
“Good Practice Guide for Strategic Noise Mapping and the Production of Associated Data on Noise
Exposure” [8], which strongly recommended obtaining accurate and real data on noise levels.

For this task, professionals have traditionally carried out measurements using instruments for
noise collection and processing, called sound level meters, placed in a mesh pattern in the area to be
mapped. They measure the noise using the A-weighting equivalent continuous sound pressure level,
the LAeqT indicator [9].

However, this procedure has a series of disadvantages inherent to the technology used, such as
the impossibility of making continuous measurements for long periods of time (weeks/months), the
lack of knowledge of the situation in real time, and the inability to take preventive or corrective actions
in real time. This traditional method also presents many technical difficulties for complying with some
regional legislations [10].

To solve, in part, these problems and inconveniences, in recent years, different studies have
proposed the use of Internet of Things (IoT)-based technologies [11].

The potential applications of IoT are numerous and diverse. In the EC documents relating to
IoT [12–14], 65 IoT scenarios were identified and presented, grouped into 14 domains. One of these
domains is the so-called smart city, defined as “a place where traditional networks and services are
made more efficient with the use of digital and telecommunication technologies for the benefit of its
inhabitants and business” [14]. One of the trendiest scenarios in smart cities is identified as noise urban
maps—sound monitoring in bar areas and centric zones in real time.

Wireless acoustic sensor networks (WASNs) [15] play a key role in this scenario of a smart city.
Over the last few years, many researchers have devoted their attention to the design of these types of
networks to monitor the real data of continuous and precise noise levels, and create noise maps in
real time and space. Many research works and patents have been published [16–31], but very few real
projects have been developed based on WASN approaches [32–37].

In the literature [37,38], the authors present two reviews of the most relevant WASN-based
approaches developed to date focused on environmental noise monitoring in smart cities. In the
literature [37], WASNs have been classified according their data quality, scale, longevity, affordability,
and accessibility. On the other hand, in the literature [38], another classification is presented, where the
sensor nodes are divided into three main categories, according to their measurement accuracy, cost,
and computational capacity.

Although WASNs are becoming a reality in smart cities, in the literature [38], the authors argue
that very few projects have been deployed around the world, and they conclude that further research
should be conducted to improve the performance of WASNs in real-life operation conditions. They
highlight the project DYNAMAP, the objective of which is the deployment of a low-cost WASN in two
different cities, Milan and Rome [36], to monitor road traffic noise.

In this work, we present the design and implementation of a complete low-cost system for a
WASN deployed in the city of Linares (Jaén), Spain, which has been running continuously for ten
months. The complete system covers the hardware of the sensor nodes, signal processing for noise
monitoring in the sensor nodes, network topology design, protocols, and the design of a private cloud
platform with an intuitive graphical user interface to show clear and comprehensible information to
the general public.
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As a result, a complete system has been obtained to provide the information, shown in Table 1, for
each of the locations where the nodes are deployed.

Table 1. Information provided by the system.

Parameter Description

LAeqT A-weighting equivalent continuous sound pressure level
Lden Day–evening–night level
Lday A-weighted average sound level over the daytime period 07:00–19:00

Levening A-weighted average sound level over the evening period 19:00–23:00
Lnight A-weighted average sound level over the night period 23:00–07:00
LAmax Maximum A-weighted noise level during the measurement period
Feqmax Predominant frequency (Hz) of the noise

LA01T, LA10T, LA50T,
LA90T, and LA99T

Percentile noise levels, LAnT, which are defined as the A-weighted sound level that is
exceeded n% of the measurement time interval

In addition, along with this information, a map using the Google Maps platform Application
Programming Interface (API) is also displayed, representing the LAeq in each location.

Based on the two classifications presented in the literature [37,38], the system is characterized
by the following: (a) high data quality; (b) easily scalable to a large number of nodes; (c) can work
continuously for long periods of time; (d) affordability due to its low-cost equipment; (e) data
accessibility through a cloud web server; (f) the capacity to perform spectral analysis calculations,
compute LAeqT, and conduct real-time signal processing; and (g) high computational capacity and
low-cost equipment.

The remainder of the paper is structured as follows. Section 2 describes the complete system for
the WASN deployed in the city of Linares. The experimental results are provided in Section 3. Some
conclusions and future works are presented in Section 4.

2. The Design and Implementation of the Deployed WASN

This section describes all of the elements that make up the complete system for noise monitoring
in the city of Linares (Jaén)—the network topology design, the hardware and software of the sensor
nodes, protocols, and a cloud web server platform.

2.1. Design Considerations

The City Council of Linares, through the area of urban planning, established those locations of the
city that were considered the most critical from the point of view of noise pollution. Specifically, eight
locations were established, which mostly covered the entire downtown area. To these locations, we
decided to add one more, considered as noncritical. Therefore, in total, nine low-cost nodes have been
installed as measuring points. Table 2 and Figure 1 show the exact locations of these points.

Table 2. The critical places to be monitored.

Id Location Id Location

1 Andalucia Avenue 6 Cervantes Street
2 Ayuntamiento Square 7 Julio Burell Street
3 Isaac Peral Street 8 Ubeda Street
4 Santa Margarita Square 9 Noruega Street
5 San Francisco Square
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Figure 1. The critical locations identified for the measurement of acoustic noise in the city of Linares
(Jaén).

The City Council of Linares specified the existence of a corporate Wi-Fi network deployed in the
center area of the city, so that it was possible for the sensor nodes to transmit data. In addition, there
was the possibility of using a power supply permanently at all of the measuring points.

2.2. Distribution of the Sensor Nodes

The topology design of a data network determines the connections between the nodes or between
a node and a server. Because of the design considerations, we designed a network topology where
each sensor node can send the measurements directly to a central server, which is a cloud web server
in our case.

Because of the existence of the corporate Wi-Fi network that the City Council of Linares deployed
in the city, as well as the absence of power supply restrictions, we proposed using this Wi-Fi network
in all of the locations where this was possible. After analyzing the coverage, it was detected that, in
seven of the nine locations, it was possible to use said Wi-Fi network. However, in two locations
(nodes two and nine), there was no coverage. For these two locations, we decided to use 3G and
Sigfox technologies, respectively. The network topology for the proposed complete system is shown in
Figure 2.

Figure 2. The network topology proposed for the wireless acoustic sensor network (WASN) deployed
in the city.
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Sigfox [39] is a reliable, low-power solution based on a dedicated radio-based network to connect
sensors and devices, and it needs to continuously be on and emitting small amounts of data.

2.3. Hardware IoT Sensor Nodes

Typical IoT devices have constrained sensor resources, an actuator capacity, and local information
processing, and they are able to communicate data with servers on the Internet cloud platform.

With the design considerations indicated above, when it is possible to have a continuous power
supply, the chosen device is a standard hardware model (i.e., commercial sensor node) of the Arduino
platform. Specifically, it is the Arduino Due device [40], which is based on a 32-bit ARM core
microcontroller, and is an open-source platform designed for the development of solutions related to
sensor networks. The choice of this device is mainly due to its technical specifications, in terms of the
processor and the memory, which allow for the execution of a frequency domain-based algorithm to
calculate LAeqT in real time. This is not possible on other devices of the Arduino platform. However,
any other device with similar or better characteristics to the Arduino Due could be used, such as
Raspberry Pi.

The Arduino Due has the following technical specifications: Atmel SAM3X8E ARM Cortex-M3
processor (32-bit, clock speed of 82 MHz, 96 Kb of SRAM, and 512 Kb of flash memory), 54 I/O digital
ports, 12 input analog ports with a 12-bit resolution, and two output analog ports. Arduino Due
hardware uses standard components, and its software is based on C/C++.

Related to the communication hardware of the sensor nodes, we used the following:

• For sensor nodes one and three through seven: Arduino Ethernet Shield [41] and an antenna
MikroTiK SXT 2 [42]. We used this external antenna to ensure the existence of wireless coverage
for the sensor nodes, which were connected through a UTP cable to a RJ45 female connector
installed in the enclosure box. The power consumption was approximately 180 mA.

• For sensor node two: Arduino Ethernet Shield, a 3G router (model TL-MR3020 [43]), and a 3G
USB modem with an outdoor antenna. In this case, the power consumption was approximately
900 mA.

• For sensor node nine: an 868-MHz Sigfox module for Arduino [44], a communication shield, and
a 4.5-dBi antenna. The power consumption was approximately 125 mA.

All of the nodes were powered through passive Power over Ethernet (PoE), using 12-V 1-A power
adapters and PoE injectors. The electrical plugs were at a maximum distance of 20 m, and for that
distance, the voltage drop in the UTP cable was 0.9 V, so there was 11.1 V to power the Arduino,
enough for its operation.

The microphone used is based on a commercial design [45]. Each sensor node is equipped with
an electret microphone, 20–20 kHz (Figure 3). It is much more than just a microphone, because it
is integrated with an operational Maxim MAX4466 specifically designed for acoustic solutions (it
amplifies and filters the noise). The gain is adjustable via an integrated potentiometer. Moreover, the
microphones have a miniature foam windshield ball [46]. For the outdoor enclosure for the nodes,
we used IP66-rated outdoor aluminum enclosures for wireless platforms, such as StationBox ALU RF
elements [47]. Figure 3 shows some sensor nodes.

To the best of our knowledge, this system has one of the lowest economic costs per node, and this
aspect is very important when implementing WASNs with a large number of nodes. Table 3 shows the
costs of each node (tax not included). Costs can be more reduced by using compatible materials.
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(a) (b) 

  
(c) (d) 

Figure 3. The sensor nodes: (a) enclosure box; (b) Wi-Fi sensor node; (c) microphone; (d) 3G sensor node.

Table 3. The cost of the sensor nodes.

Description Original Material Cost (€) Compatible Material Cost (€)

Wi-Fi Sensor Node 45 23
Wi-Fi Sensor Node + Antenna

MikroTiK SXT2 99 47

Sigfox Sensor Node 109 49
3G Sensor Node 90 48

2.4. Software Implemented in the Sensor Nodes for Noise Monitoring

For the measurement of acoustic noise and to integrate the calculated LAeqT into the sensor nodes,
it is necessary to design and implement an algorithm that runs on these nodes. In the previous
work [48], we presented a frequency domain-based algorithm to calculate LAeqT in real time adapted
to resource-constrained devices, such as wireless acoustic sensor nodes.

In this work, we improved the algorithm by introducing a new module to determine the frequencies
with a higher energy and their degree of importance with respect to background noise or less significant
frequencies. In this manner, we obtained the information from the predominant frequency of the
noise. The optimized architecture used by the algorithm consists of four functional blocks, as shown in
Figure 4.

Figure 4. The algorithm’s functional blocks. SPL—sound pressure level.
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The sampling block is responsible for sampling the acoustic signal x(t). The IEC 60651 Type-2 SLM
acoustic standard [49], superseded by IEC 61672 [50], established the measurement of environmental
noise between 0–8 kHz, and the SLMs specified in the literature [50] are intended to measure sounds
generally in the range of human hearing. As is well known, in urban areas, the acoustic signal energy
is concentrated in a low-frequency region (<10 kHz). Based on this, we configured the Arduino Due
with a frequency-sampling rate, fs, of 33 kHz, by a software function with a resolution of 12 bits. Thus,
it is not possible to measure frequencies higher than 16.5 kHz. Related to the time-constant of the
integration or time capture, there are two time-weightings that have been internationally standardized,
namely: (a) slow response (S) of one second; and (b) fast response (F) of 125 ms.

The second block receives the audio samples from the first block. The algorithm is based on
a frequency analysis, which uses the discrete Fourier transform (DFT) to determine the frequency
spectrum of a segment of audio samples. Let us denote X[k] as the DFT of a windowed signal x[n], at
the digital frequencies 2πk/N radians, where N denotes the number of samples and k = 0, . . . , N − 1.
To determine the samples of the DFT, we use the following equation:

f (k) =
fs·k
N

. (1)

The difference between two consecutive samples is given by the following expression:

Δ f =
fs
N

. (2)

Regarding the CPU and memory requirements, this block is the most demanding. For a
computationally efficient implementation, we used the fast Fourier transform (FFT) to evaluate the
DFT. Some analyzers have been designed to determine the optimal FFT length and thus achieve
efficient implementation. Additionally, an exhaustive analysis has been performed using software
functions to the reduce memory requirements and the execution time. The FFT length depends on the
frequency-sampling rate chosen and the time capture (Tw), as follows:

N = fs·Tw (3)

Table 4 shows the FFT length for the two time-weightings that have been standardized and for the
frequency-sampling rate of 33 kHz.

Table 4. The sample length for a frequency-sampling rate of 33 kHz.

Frequency Sampling Rate Type of Response Time Capture Sample Length

33 kHz Fast 125 ms 4125
33 kHz Slow 1 s 33,000

Taking into account that the FFT is more runtime efficient if a base-two sample length is selected,
to reduce the execution time, we propose a length of 4096 samples (instead of 4125) for the fast response
and 32,768 samples (instead of 33,000) for the slow response. This means a slight decrease in the
time window at 124.1 ms for the fast response, and at 0.993 s for the slow response. Our proposal
is to perform an FFT calculation for the fast response only, which uses a time window of 124.1 ms.
This approximation of the time window produces an error of 0.7% (29 samples less than using a time
window of 125 ms), which could be considered as negligible. Larger FFT sizes provide a higher spectral
resolution, but take more resources to compute. A smaller window size means a shorter runtime, and,
therefore less resource consumption.

Once the frequency components of the acoustic signal are available, an A-weighted filtering is
implemented. This filtering stage allows for weighting of the different frequency components of the
acoustic signal, consistent with a typical human ear response. The mathematical function used to
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obtain the value of the attenuation depends on the frequency, and is given by the normative IEC
61672 [50], as follows:

( f ) = 10 log10

[
1.5623392· f 4

( f 2+107.652652)( f 2+737.862232)

]
+

+ 10 log10

[
2.242881·1016· f 4

( f 2+20.5989972)( f 2+12194.222)

] (4)

In the above equation, f is the frequency and A(f ) is the associated attenuation. However, some
resource-constrained devices have an anomalous behavior for math operations with large numbers.
Therefore, we propose the use of an equivalent expression to reduce the complexity of the mathematical
operations [51].

A( f ) = 2 + 20 log10(RA( f )) (5)

RA( f ) =
122002· f 4

( f 2 + 20.62)
√
( f 2 + 107.72)( f 2 + 737.92)( f 2 + 122002)

Using Equations (1) and (2), we can determine the frequency for each sample of the FFT. After
applying the filter, the obtained signal is as follows:

XA[k] = A(Δ f ·k)·X[k] (6)

Finally, the last block computes the total energy of the weighted frequency components to obtain
the sound pressure levels (SPLs) in dBA. Using the Parseval’s relation [52], the total energy of the
waveform can be summed across all of its frequency components, as follows:

εx =
1
N

N−1∑
k=0

∣∣∣X[k]
∣∣∣2 (7)

Regarding the properties of the FFT, the samples have symmetry because they are complex
conjugates, as follows:

X
[N

2
+ k
]
= X∗

[N
2
− k
]

1 ≤ k ≤
(N

2

)
− 1 (8)

The input samples in the time domain are real values. In the frequency domain, they are
symmetrical from the sample N/2 (N is even). Therefore, we can calculate the energy of the signal
using only the first N/2 + 1 samples (filtered spectrum with A-weighting filter). The expression is
the following:

εx ≈ 2
N

(N
2 )−1∑
k=1

∣∣∣XA[k]
∣∣∣2 + ∣∣∣XA[0]

∣∣∣2 + ∣∣∣XA[N/2]
∣∣∣2 (9)

Equation (9) is used to determine the total energy of the signal in the time capture. Taking Tw

seconds, the instantaneous average power of the signal is given by the following:

Px ≈ εxTw
(10)

To obtain the SPL in dBA, we applied the following expression:

SPL (dBA) = 10·log10(Px) + C (11)

where C is the calibration constant, which will be calculated in the calibration process.
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Calibration and Test Results

Before deploying the sensor nodes in the urban area, some tests were carried out in the lab and in
a street to verify the quality of the noise measurements. Figure 5 presents the lab scenario where we
used an Arduino Due with the microphone, a commercial Sound Level Meter PCE-353 (SLM) [53], and
one laptop with speakers. The SLM and the sensor node were connected to the laptop using a USB
connection. The sensor node and the SLM were deployed closely; the distance from the speakers to the
devices was 0.5 m.

Figure 5. The scenario for indoor measurement tests.

First, the commercial SLM was calibrated using the Class-2 Sound Level Meter Calibrator PCE-SC
42, at one kHz and for an SPL of 94 dB. Later, to calibrate the sensor node, an acoustic signal of a 1-kHz
tone was created using math software. The volume of the speakers was raised until the SLM measured
94 dB, and the microphone gain was adjusted to give that measurement. Once both devices were
calibrated, an acoustic signal composed of white noise (30 Hz–20 kHz) was generated with three noise
levels of acoustic intensity: 60, 70, and 85 dBA. For each level, the LAeq indicator was calculated after
repeating the experiment 30 times. The duration of the acoustic signal was five seconds for each test.
Figure 6 shows the results for this experiment.

Figure 6. The white noise lab tests.

Table 5 shows the average value of the 30 measurements of the LAeq indicator for each level
of acoustic intensity, and the absolute error (Diff) between the Arduino Due and the commercial
SLM measurements.
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Table 5. The Arduino Due measurements in the lab.

Intensity LAeq SLM (dBA) Diff Arduino Due (dBA)

Intensity 1 60.5 0.13
Intensity 2 70.3 0.14
Intensity 3 86.8 0.16

As can be observed, the differences between the Arduino Due and the SLM were lower than
0.2 dBA. For another test, we deployed the SLM and Arduino Due devices in an urban street. The
distance between the devices and street was approximately eight meters. The measurements were
made during one hour in daytime. Both devices calculated the SPLs each second, for four intervals of
15 min each. Table 6 shows the LAeq and the absolute error (Diff) between the SLM and Arduino Due
measurements. Figure 7 shows the location where the sensor and the SLM were located.

Table 6. The SLM and Arduino Due measurements in an urban street.

Interval LAeq SLM (dBA) LAeq Arduino (dBA) Diff (dBA)

Interval 1 60.59 60.71 0.12
Interval 2 60.01 60.90 0.89
Interval 3 60.85 61.44 0.59
Interval 4 61.15 61.70 0.55

 
(a) 

 
(b) 

Figure 7. The SLM and Arduino Due deployed in a street for the tests: (a) back view; (b) front view.

In this case, the differences between the Arduino Due and the SLM were lower than 0.9 dBA,
which represents a very good agreement.

Finally, we deployed the SLM and Arduino Due devices in the same urban street, but this time for
a full day. The results are shown in Table 7.

Table 7. The SLM and Arduino Due measurements in an urban street for a full day.

Device LAeq (dBA) Lday (07:00–19:00) Levening (19:00–23:00) Lnight (23:00–07:00)

SLM 56.90 57.60 58.90 53.10
Arduino Due 57.96 57.83 61.31 53.83

The differences between the Arduino Due and the SLM were approximately 1 dBA in the LAeq

measured. The maximum difference was in the period Levening, being 2.41 dBA. This is because the
dynamic range of the sensor is 44–105 dBA, and therefore, it cannot measure noise levels below 44 dBA.
Alternately, the LAmax measured with the SLM was 88.1 dBA, while that with the Arduino Due was
90.5 dBA. The results of the previous tests indicate that the software designed for the Arduino Due has
a good performance when we compare the differences between the acoustic measurements calculated
by the Arduino and those of the commercial SLM.
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2.5. Protocols and Platform Cloud Web Server

Many protocols have been specifically designed for communication between IoT devices, namely:
Message Queue Telemetry Transport (MQTT) [54], Constrained Application Protocol (CoAP) [55],
Advanced Message Queuing Protocol (AMQP) [56], Data Distribution Service (DDS) [57], etc. However,
the commonly used protocol for the Internet, Hyper Text Transfer Protocol (HTTP), is used in most
cases for IoT devices when they need to publish a considerable amount of data.

In fact, most of the commercial platforms that currently exist in the cloud and intend to provide
services to IoT devices allow for communication from these devices through HTTP. Some examples
are the Amazon AWS IoT Core platform, Microsoft Azure, Google Cloud IoT Core, and Thingworx.
Each platform offers developers a series of application programming interfaces (APIs) and software
development kits (SDKs) that make it possible to establish communication between the IoT devices
and the cloud platform.

The use of the services of these platforms has advantages and disadvantages. Among the
drawbacks of Azure, in addition to the cost involved in its use, are that the implementation of real-time
data visualization systems is sometimes complex, and there is incompatibility with the Safari web
browser. Google IoT Core Cloud does not support the MQTT protocol. In the AWS IoT Core, the use of
services and functions is complex in some cases, and it is the most expensive option for many services.

Therefore, in our case, we decided to design and implement our own platform cloud web
server using the infrastructure of the University of Jaén. The cloud web server is based on a
model–view–controller (MVC) software architecture, which separates the application data, the user
interface, and the control logic into three distinct components. For frontend technologies, we used
HTML5, CSS3, Bootstrap, and JavaScript, and for the backend technology, we used PHP. For the
database, a MySQL relational database was designed. In addition, for the representation of the LAeq

values of the locations on a map with different colors, the Google Maps platform API was used.
In all of the sensor nodes, in addition to the acoustic noise monitoring software, the communication

software was implemented to send data to the Platform Cloud Web Server. To send the data, we
decided to use the HTTP protocol. Therefore, a web client was implemented on each sensor, except
for on sensor node nine. Node nine was programmed using the Sigfox API for sending data, and a
callback was configured in the Sigfox backend, so that an HTTP request with the GET method was
made to our cloud web server.

As shown in Figures 8 and 9, all of the sensor nodes calculate the SPL every second. Every 30 s,
sensor nodes one–eight send the following data to the Platform Cloud Web Server:

1. Id sensor node
2. LAeq calculated for these 30 s
3. LAmax in the period of 30 s
4. Average predominant frequency of the noise during 30 s (Feq)
5. Higher predominant frequency of the noise during 30 s (Feqmax)

Figure 8. The Hyper Text Transfer Protocol (HTTP) request—GET method.
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Figure 9. The Sigfox message. HTTP request—GET method.

In the case of sensor node nine, Sigfox messages can carry a payload (user data) of 12 bytes, and
140 messages are permitted per day, at most (although we have verified that this limit can actually be
exceeded a bit). Therefore, as shown in Figure 9, sensor node nine sends a message every 10 min with
the following parameters:

1. LAeq (four bytes) calculated for these 10 min
2. LAmax (four bytes) in the period of 10 min
3. Average predominant frequency (four bytes) of the noise during 10 min (Feq)

3. Results

As a main result, we can say that an experimental wireless acoustic sensor network for real-time
noise monitoring has been installed in the city of Linares (Jaén), Spain, and it has been running
continuously for 10 months.

3.1. Sensor Nodes Deployed around the City

Figure 10 shows some locations where the sensor nodes were installed. From the data sent to the
cloud web server by the sensor nodes, a huge amount of information has been obtained, with which it
would be possible to characterize the city in terms of its activity. In this section, we will show some of
the results obtained, but it is impossible to show all of the cases and events that have occurred in all of
the locations.

3.2. The Information Offered by the Cloud Web Server

The cloud web server offers the possibility of selecting a date to display a map using Google Maps,
where LAeq is represented by a color in each location measured during the 24 h of the previous day.
Figure 11 shows an example of city noise for the day of 26 November 2016.

For each one of the locations, the temporal evolution of the noise during the selected time interval
can be visualized, as well as the noise indicators. Figures 12 and 13 show an example of how this
information is displayed. Figure 12 shows the acoustic noise measured by the sensor of San Francisco
Square from 00:00 to 23:59 on 30 June 2017. Figure 13 shows the temporal evolution of acoustic noise
for a full week at the Andalucia Avenue location. It can be seen that the acoustic noise has a similar
pattern every day.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 10. The sensor nodes deployed in the city. (a,b) Id 8: Ubeda Street; (c,d) Id 5: San Francisco
Square; (e,f) Id 1: Andalucia Avenue.

Figure 11. The map with the noise in the sensor locations on 26 November 2016.
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Figure 12. The temporal evolution of the noise from 00:00 to 23:59 on 30 June 2017 in San Francisco Square.

Figure 13. The temporal evolution of the noise in Andalucia Avenue location for a full week in the
month of October.

It is possible to set the query for a certain period of time. For example, if LAmax is 92.48 dBA,
a query can be made to visualize the LAmax that occurred in each one of the 30-s intervals, as shown in
Figure 14.

Figure 14. The LAmax measured at each 30-s interval from 00:00 to 23:59 on 30 June 2017 in San
Francisco Square.

It can be observed that the LAmax of that day was produced in the strip from 17:30 to 19:30, so
if we only consult that period, we can know exactly when the LAmax occurred, which was at 18:44,
as seen in Figure 15.

Figure 15. The LAmax measured at each 30-s interval from 17:30 to 19:30 on 30 June 2017 in
San Francisco Square.

A query can also be established for the predetermined day–evening–night periods, as shown in
Figure 16.
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(a) 

(b) 

(c) 

Figure 16. The temporal evolution of the noise on 30 June 2017 in San Francisco Square for the periods:
(a) daytime 07:00–19:00; (b) evening 19:00–23:00; (c) night 23:00–07:00.

Appendix A contains different events that show examples of the activity of the city, namely: the
garbage collection truck, the noise from construction work in a street, and the noise derived from a
leisure activity—a bar.

4. Conclusions and Future Work

We have presented the design and implementation of a complete low-cost system, composed of
nine sensors nodes, for a WASN deployed in the city of Linares (Jaén), Spain, which has been working
continuously for ten months. The complete system has covered the network topology design, hardware
and software of the sensor nodes, protocols, and a cloud web server platform. The information
provided for the system for each location where the nodes have been deployed is as follows: LAeq for a
given period of time; some noise indicators indicated in the END (Lden, Lday, Levening, and Lnight), the
percentile noise levels (LA01T, LA10T, LA50T, LA90T, and LA99T); a temporal evolution representation of
the noise levels; and the predominant frequency of the noise. Moreover, a map using the Google Maps
platform API has been displayed, representing the LAeq in each location.

Before deploying the sensor nodes in the city, different experiments were conducted to verify the
performance of the Arduino Due hardware, together with the software implemented for the acoustic
noise monitoring. The results were compared to the measurements acquired using a commercial SLM,
which proved that the sensor nodes have a very good performance. However, the dynamic range of
the sensor nodes was 44–105 dBA, and therefore, they cannot measure noise levels below 44 dBA. This
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can distort the results for measurements in non-noisy environments and especially during the night
measurement period, from 23:00–07:00.

The performance of the Arduino Due is very good; the sensor nodes have been running
continuously for 10 months, monitoring noise every second and sending the parameters to the
cloud web server every 30 s. Some sensor nodes have presented problems derived from power outages
and the subsequent restart of the devices (i.e., they did not restart properly). To solve this issue, it
was necessary to mobilize technicians for a manual restart. This is a clear inconvenience if frequent
power outages occur. There have also been problems with sending the data to the private cloud web
server when the corporate Wi-Fi network of the city council did not work. In addition, there have
been multiple hacker attacks on the cloud web server, with attempts to make insertions to the MySQL
database, which succeeded in some cases. Therefore, we must increase the level of security in the
cloud server.

Alternately, the amount of data received and stored has been enormous, given that every 30 s,
each node sends the measured parameters. This approach is fine for analyzing acoustic noise over a
considerable period of time, but it is not feasible to maintain it sustainably for many months or years.

An analysis of the results obtained from the acoustic noise in the city indicates that the variability
of the acoustic noise in a specific location is very low, and therefore, a continuous measurement for one
month is more than enough to characterize the noise in that location.

Although much work remains in order obtain accurate maps of noise levels in smart cities using
WASN, the proposed system presented in this work can serve as an excellent starting point for this task.

Future research should aim to improve the dynamic range of the sensor nodes to be able to
monitor acoustic noise below 44 dBA, and design and incorporate a fog computing platform between
the sensor nodes and the cloud so as to avoid data loss due to the lack of a connection to the cloud.
Security should be included in the protocols for sending the data, for example, HTTP. In addition,
because the noise perception is affected by subjective factors, and there is not a direct correlation
between the indicators and the subjective perception of the noise, the implementation of a module that
is capable of evaluating the subjective impact of the noise annoyance is also proposed as a future work.
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Appendix A

Appendix A.1 Event 1—The Garbage Collection Truck

During the night period of the Figure 16, we appreciated an event of greater acoustic noise at
approximately 01:30. As shown in Figure A1, if we visualize the period from 01:15–02:30 during some
days of the week, we observed that the noise occurred periodically on all of the days, and lasted
approximately five minutes. When we moved to the location to find the source of this noise, we could
see that it was the garbage collection truck.
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(a) (b) 

 
(c) (d) 

Figure A1. The temporal evolution of the noise in San Francisco Square for the period of 01:15–02:30
on the following days: (a) Monday 26 June 2017; (b) Tuesday 27 June 2017; (c) Wednesday 28 June 2017;
(d) Thursday 29 June 2017.

Appendix A.2 Event 2—The Noise in the Works under Construction in a Street

Another event that we would like to highlight is how the sensor node, located in Julio Burell
Street, detected the acoustic noise due to some works under construction, which were carried out for
several days. Figure A2 shows the temporal evolution of noise on that street during two days, in the
absence of works under construction and days where such works were carried out.

(a) 

(b) 

(c) 

(d) 

Figure A2. The temporal evolution of the noise at the Julio Burell St. location: (a) 15 November
2016, day without works under construction; (b) Friday 18 November 2016, starting the works under
construction; (c) Sunday 20 November 2016, stopping the works (no labor on this day); (d) Monday 21
November 2016, restarting the works.
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Figure A3 shows the maximum noise during 22 November 2016, for the daytime period
(07:00–19:00) at Julio Burell Street. It can be seen that there is a permanent noise of approximately 92 dB
from 13:00 to 15:00. At that time, the noise subsided, probably due to the break for the workers’ lunch,
and the activity restarted at 16:00. We could say that the workers had an hour’s break and finished
their workday at 17:30.

(a) 

(b) 

Figure A3. (a) The temporal evolution of the maximum noise at the Julio Burell St. location for the
daytime period on 22 November 2016; (b) instant where the work resumes at 16:01.

If we analyze the predominant frequency of noise during a full day without construction work,
we can see that the frequency is lower than 100 Hz for most of the day, as shown in Figure A4.

Figure A4. The predominant frequency during 15 November 2016, at Julio Burell Street.

However, if we now show the frequency on a day where construction work is being performed,
we can see that when there is an increase in noise due to construction work, the predominant frequency
increases, which could be due to some hammering. Figure A5 shows the predominant frequency
against the maximum noise during 22 November 2016, during a daytime period (07:00–19:00) on Julio
Burell Street.
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(a) 

(b) 

Figure A5. (a) The predominant frequency measured by the sensor node located at Julio Burell St.
during 22 November 2016, in a daytime period. (b) Maximum noise measured in Julio Burell St.
location for the daytime period on 22 November 2016.

Appendix A.3 Event 3—The Noise Derived from a Leisure Activity (A Bar)

Finally, we show the measurements made by the sensor with Id eight located on Ubeda Street. As
seen in Figure 10b, the sensor was located just above a terrace of a bar where people usually go to eat
and drink outdoors in good weather. Figure A6 shows the temporal evolution of acoustic noise during
a weekday (Wednesday, 9 November 2016) and during a weekend day (Sunday, 13 November 2016).

(a) 

 
(b) 

Figure A6. The temporal evolution of the noise in Ubeda Street during: (a) a weekday, 9 November
2016; (b) a weekend day, 13 November 2016.

We can appreciate how the noise on a weekday began to increase at approximately 07:30, and
remained at almost 63 dB until 21:00, at which point it began to decrease. However, on the weekend,
it can be seen that the noise began to increase at approximately 12:45, and remained here until
approximately 16:15, because it was a sunny day, and many people probably went to eat at that
bar terrace.

This noise pattern is always repeated for weekdays and weekend days. Figure A7a,b shows the
temporal evolution of several weekdays in different months (Thursday, 18 May 2017 and Tuesday,
11 April 2017), while Figure A7c,d shows the temporal evolution of the noise on two weekend days
(Sunday 3 May 2017 and Sunday 16 April 2017). It should also be noted that during many Saturday
nights, there was also noise from people, which can be inconvenient for neighbors, as shown in
Figure A7d. The noise did not begin to decrease until 01:00 on Sunday 16 May 2017.
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(a) 

 
(b) 

(c) 

(d) 

Figure A7. The temporal evolution of the noise in Ubeda Street during: (a) a weekday, 18 May 2017; (b)
a weekday, 1 April 2016; (c) a weekend day, 3 May 2017; (d) a weekend day, 16 April 2017.

If the predominant frequency of the noise is shown, we can verify that the frequency is higher in
that time slot because of the presence of people, as shown in Figure A8.

(a) 

(b) 

Figure A8. (a) The predominant frequency measured by the sensor node located in Ubeda Street on a
weekend day, 13 November 2016, with the presence of people; (b) the predominant frequency measured
by the sensor node on a weekday, 9 November 2016, without the presence of people.
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Abstract: Presently, large cities have significant problems with noise pollution due to human activity.
Transportation, economic activities, and leisure activities have an important impact on noise pollution.
Acoustic noise monitoring must be done with equipment of high quality. Thus, long-term noise
monitoring is a high-cost activity for administrations. For this reason, new alternative technological
solutions are being used to reduce the costs of measurement instruments. This article presents a
design for a versatile electronic device to measure outdoor noise. This device has been designed
according to the technical standards for this type of instrument, which impose strict requirements on
both the design and the quality of the device’s measurements. This instrument has been designed
under the original equipment manufacturer (OEM) concept, so the microphone–electronics set can
be used as a sensor that can be connected to any microprocessor-based device, and therefore can be
easily attached to a monitoring network. To validate the instrument’s design, the device has been
tested following the regulations of the calibration laboratories for sound level meters (SLM). These
tests allowed us to evaluate the behavior of the electronics and the microphone, obtaining different
results for these two elements. The results show that the electronics and algorithms implemented
fully fit within the requirements of type 1 noise measurement instruments. However, the use of
an electret microphone reduces the technical features of the designed instrument, which can only
fully fit the requirements of type 2 noise measurement instruments. This situation shows that the
microphone is a key element in this kind of instrument and an important element in the overall price.
To test the instrument’s quality and show how it can be used for monitoring noise in smart wireless
acoustic sensor networks, the designed equipment was connected to a commercial microprocessor
board and inserted into the infrastructure of an existing outdoor monitoring network. This allowed
us to deploy a low-cost sub-network in the city of Málaga (Spain) to analyze the noise of conflict
areas due to high levels of leisure noise. The results obtained with this equipment are also shown.
It has been verified that this equipment meets the similar requirements to those obtained for type
2 instruments for measuring outdoor noise. The designed equipment is a two-channel instrument,
that simultaneously measures, in real time, 86 sound noise parameters for each channel, such as
the equivalent continuous sound level (Leq) (with Z, C, and A frequency weighting), the peak
level (with Z, C, and A frequency weighting), the maximum and minimum levels (with Z, C, and A
frequency weighting), and the impulse, fast, and slow time weighting; seven percentiles (1%, 5%, 10%,
50%, 90%, 95%, and 99%); as well as continuous equivalent sound pressure levels in the one-third
octave and octave frequency bands.

Keywords: outdoors noise; sound level meter; digital signal processing; multirate filters
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1. Introduction

According to the United Nations, 55% of the world’s population currently resides in urban
areas, with this percentage projected to reach 66% by 2050 [1]. This rapid urban growth has caused
environmental impacts, including environmental noise exposure to citizens. Noise pollution is one of
the most important environmental health concerns around world. Environmental noise is produced
by a variety of sources and is widely present in urban environments. Among the adverse effects
produced by environmental noise exposure are those that threaten the well-being of human populations,
deteriorate health, and decrease the ability of children to learn properly at school, leading to high
economic costs for society [2].

In 2018, the World Health Organization (WHO) Regional Office for Europe published
Environmental Noise Guidelines for the European Region. Compared to previous WHO guidelines on
noise, there are some significant developments in the new version, among which the following should
be highlighted: the inclusion of leisure noise in addition to noise from transportation (aircraft, rail
and road traffic), and the use of long-term average noise exposure indicators to better predict adverse
health outcomes compared to short-term noise exposure measures [3,4]. Both leisure noise and
long-term average noise exposure indicators are issues to be considered in the management of noise in
urban environments.

The Environmental Noise Directive (END) provides mechanisms for annoyance and sleep
disturbance assessment, which if exceeded require action plans to be drawn that are designed to
reduce exposure and protect areas not yet polluted by noise [5]. One of the most important evaluation
mechanisms of the END is strategic noise mapping. At present, only industrial noise sources and
noise from means of transport are taken into account (roads, railways, and airports) for strategic noise
mapping. Meanwhile, there are many other sources of noise within urban environments not covered
by strategic noise maps, such as citizen behavior, festive and cultural events, public works, urban
maintenance and cleaning, and leisure noise, including night-life activities.

In order to carry out a comprehensive assessment of all the noise sources present in an area,
one of the options that many cities usually use is environmental noise monitoring networks [6].
Environmental noise monitoring systems consist of a network of discrete sensor stations, usually
integrated with an averaging sound level meter using an outdoor microphone. One of the main
advantages of environmental noise monitoring systems lies in their ability to use the required time
evolution data. On the other hand, the main drawback of environmental noise monitoring systems
is that the discrete number of points implies weaknesses in the representativeness of spatial data.
Different approaches have been proposed in recent times to solve the problems related to spatial
representativeness. Examples of this are proposals to perform environmental noise measurements
based on smart phones [7–9] and mobile monitoring networks using means of transport [10,11]. As
a general rule, the lower the cost of the sensor, the more sensors can be used and the more spatially
accurate the data will be.

Traditionally, professional systems used for noise measurement are designed to comply with very
high-quality measurement requirements and are manufactured under strict international standards,
such as IEC 61672 and IEC 61260 [12–17]. This situation makes this kind of equipment unsuitable
for creating wide grids of measurement points in smart cities due to its high cost, large size, and
other factors.

Recent technological developments related to the availability of cheaper and smaller equipment
and innovations in communication networks and acoustic signal processing have led to the emergence
of low-cost environmental noise sensor networks [18]. In recent years, several projects based on
low-cost environmental noise sensor networks have been developed [19–22].

These solutions show different approaches for implementing noise monitoring systems in smart
acoustic sensor networks. In each reference, we can see that different open topics in noise measurement
are covered. However, there are several common elements. These solutions use commercial hardware
to produce a test concept of the proposed architecture. Not all references use exhaustive tests to
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measure quality characterization, and when these tests are implemented, they are only implemented
from an acoustic point of view; no electrical tests are used, as suggested by the standard IEC 61672-3.
In addition, these solutions measure only a few acoustic parameters, mainly the equivalent continuous
sound level (Leq). Although some of these solutions point toward future trends in the application of
algorithms for source identification, the equipment used is mono-channel, which reduces the possibility
of implementing algorithms for source localization, one of the open topics for future noise measurement
in cities.

To address these points, in this paper, a low-cost instrument to measure outdoor noise is presented.
The equipment has been designed to form an electronics–microphone set, which allows it to be seen
and used as a sensor device to be connected to microprocessor systems, thereby increasing its versatility
and ease of use. The electronic device has been designed keeping in mind some of the challenges
to be covered by future environmental noise monitoring networks. For this reason, the equipment
incorporates two measurement channels, which together with a digital signal processor (DSP) will
allow the future implementation of algorithms for detecting and locating noise sources. Likewise,
noise measurement algorithms have been designed to meet the measurement requirements of type 1
instruments, so in the future, different types of microphones can be connected, thereby covering the
different degrees of precision needed.

The equipment has been designed with fully digital implementation capability to increase its
quality and reliability and to reduce its cost. The system has been designed around a Texas Instruments
C5000 DSP, due to its low power consumption and high performance. Our instrument implements two
fully functional measuring channels, having the basic functionalities of a sound level meter together
with the ability to perform octave-level and one-third octave-level frequency analyses.

One of the key elements in sound level meters is a condenser microphone, which has exceptional
characteristics for measuring noise, such as a flat frequency response, a large dynamic range, high
precision, and repetitiveness [23]. However, these characteristics make this type of instrument
more expensive, hindering the widespread use of this type of microphone in the implementation of
monitoring networks with a large number of nodes in smart cities.

One of the open challenges in environmental noise sensor networks is to build mixed networks
where low-cost instruments can be used without the overall quality of the network measures being
substantially affected. To comply with these requirements, the use of condenser microphones must
be heavily restricted. However, the equipment used must be subjected to the tests indicated by the
standard for sound level meters to assure the quality of their measurements [12–17]. For this reason,
and to characterize the quality and usability of the equipment, a set of exhaustive tests have been
performed. These tests were mostly laboratory tests similar to those applied to sound level meters,
including electric and acoustic tests [14,17]. One of the main objectives of the designed equipment is
its capability to be used as a sensor in any acoustic sensor network. For this reason, the device has a
simple interface for connection to microprocessor systems. The designed equipment was connected to
a NRG2 panStamp wireless module. This module is based on the CC430F5137 system-on-chip (SoC)
design, which provides a communication radio channel at free industrial, scientific and medical (ISM)
bands (868 MHz). With this configuration, a set of eight instruments were built to be connected to an
existing acoustic sensor network in the city of Málaga in Spain. Málaga is a city that is very concerned
about the quality of life of its citizens [24] and has the infrastructure to carry out an outdoors test with
the units we built.

2. System Description

Figure 1 shows a block diagram of the designed instrument and the form factor of the implemented
module. The set formed by the microphone and the designed card was implemented as an original
equipment manufacturer (OEM) module, allowing it to be easily integrated into any monitoring
network. The core of the system is a digital signal processor that digitally implements all acoustic
functions in order to achieve a more robust, economical, and adjustment-free architecture. Power

63



Sensors 2020, 20, 605

consumption is a very important issue in systems designed for monitoring purposes. Usually, these
systems are installed in remote or isolated places and are powered by solar panels. Thus, a family
of fixed-point and low power consumption DSPs has been chosen. The use of a DSP allows us
to implement many parameters without an increase in hardware cost, requiring only firmware
upgrades. This system is capable of measuring, in real time, the following parameters for both channels
simultaneously: the equivalent continuous sound level (Leq) (with Z, C, and A frequency weightings);
the peak level (with Z, C, and A frequency weightings); the maximum and minimum levels with (Z, C,
and A frequency weightings); the impulse, fast, and slow time weightings; seven percentiles (1%, 5%,
10%, 50%, 90%, 95%, and 99%); as well as continuous equivalent sound pressure levels in the one-third
octave and octave frequency bands.

Figure 1. (a) Block diagram of the original equipment manufacturer (OEM) module for noise
measurement; (b) final circuit implementation of 87 × 62 mm. DSP = digital signal processor;
SPI bus = serial peripheral interface; ADC = analog to digital converter; UART = universal
asynchronous receiver-transmitter.

2.1. Hardware Solution

One of the most import elements in a noise measurement system is the microphone, which
determines the overall quality of the equipment. In order to build cost-effective solutions, condenser
microphones must be avoided due to their high price. The microphone used is an electret Panasonic
WM 63-PR [25], whose frequency response is shown in Figure 2. The frequency response and dynamic
range of the microphone suggest that it can be used to design an instrument with characteristics similar
to type 2 sound level meters, according to the IEC 61672 standard [13], with a frequency range of 63 HZ
to 8 kHz.

The first block in Figure 1a shows the signal conditioning stage, which is used to adapt the signal
from the microphone to the analog to digital converter (ADC). This stage is formed by two active filters.
One of them is a high-pass filter with a cutoff frequency of 5 Hz, and the other is a low-pass filter with
a cutoff frequency of 22.7 kHz; both feature a unity gain. To adapt the microphone’s signal level to
the dynamic input range of the ADC, a gain stage was added. To minimize the noise and protect the

64



Sensors 2020, 20, 605

equipment against electrostatic discharge (ESD) and electromagnetic interference (EMI), a front end
circuit was added between the microphone and the first filter. Figure 3 shows this circuit.

Figure 2. Panasonic WM 63-PR microphone frequency response.

Figure 3. Filter stage for noise minimization and electrostatic discharge (ESD) and electromagnetic
interference (EMI) protection.

The ADC used is a CS5344 from Cirrus Logic [26], whose main features are a 24-bit sigma–delta
converter, a sample rate up to 108 kHz, a dynamic range of 98 dB at 5V, a power consumption
less than 40 mW at 3.3V, and a single power supply. The ADC is connected to the DSP using an
multichannel buffered serial port (MCBSP) interface and left-justified with 256x speed. The transfers
are managed using a direct memory access (DMA) channel; the block transfer includes 2048 samples
for the two channels. Figure 4 shows the ADC connection.

Figure 4. ADC connection.

The core of the system is a Texas Instruments fixed-point DSP (TMS320VC5502) in a low-profile
quad flat package (LQFP) [27]. To optimize the system, all algorithms are executed in the internal RAM
of the DSP, so only flash memory is connected to the DSP itself, which is used to store the code with
the algorithms. This code is downloaded to the RAM at boot time. All algorithms are implemented
through cycle optimization and have been coded in assembly language to reduce the code size and
improve run time. In this way, the code can be allocated in the internal RAM of the DSP, and a lower
main frequency can be used for the DSP, thereby reducing the overall power consumption [28].
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The system is designed to be used similarly to an OEM module to measure environmental noise;
it can be managed by an external control unit using a serial peripheral interface (SPI) interface. This
equipment can be connected to a microprocessor system to manage it using a simple interface. In
this interface, there are four SPI signals, four control lines (these lines are used for the microprocessor
system to reset the instrument, to send a configuration command, to start the measurements, and for
when the equipment sends data to the microprocessor), and two lines for the power supply.

2.2. Software Implementation

Software for non-time-critical tasks, such as system initialization, commands parsing, and flow
control, were implemented in the C language. However, the audio signal processing was coded in
assembly language to improve its run time. Figure 5 shows the main flowchart of the code.

Figure 5. Software flowchart.

For the time weighting processing (impulsive, fast, and slow), the following formula is used:

Lm[n] =
1

Fs · Tm

[
(Fs · Tm − 1)Lm[n− 1] + x2[n]

]
(1)
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where Tm is 0.125 seconds for fast weighting, 1 second for slow weighting, and 0.035 seconds for
impulse weighting [12]. As divisions are computationally expensive for fixed point DSPs, the values
(Fs·Tm – 1) and 1/(Fs·Tm) are pre-calculated to optimize run time. In the few places where a division
cannot be pre-computed, the Newton–Raphson method is used to quickly obtain the reciprocal and
perform a multiplication instead of a division. The impulse time weighting detector also requires an
additional filter at the output, with a maximum drop slope of 2.9 dB.

The frequency weighting filters A and C were calculated using MATLAB [29]. First, the analog
filters have been designed using the poles shown in Table 1 [12]. Then, the analog filters were
transformed into digital filters using the impulse invariance method [30].

Table 1. Poles used to design the analog filters.

Weighting Poles

C Two real poles at 20.6 Hz
Two real poles at 12,200 Hz

A
Poles in C and

One pole at 107.7 Hz
One pole at 737.9 Hz

The IEC 61260-1 standard allows two methods for design of the octave and one-third octave
filters in base 10 (preferred) and in base 2 (allowed) modes [15]. For optimization and computational
efficiency, the filters were implemented in base 2. A multirate filter structure was used for the design
of the third octave filter bank. This allowed us to simplify the design process; instead of designing
30 filters, it was only necessary to design the three corresponding to the octave of greatest frequency,
with a central frequency of 16 kHz, in addition to the anti-aliasing filter for the decimator. Figure 6
shows the base block used to build the bank filter. This block consists of a down sampler (by 2),
an anti-aliasing filter, and three filters with normalized center frequencies of 0.388, 0.488, and 0.615 [31].

Figure 6. Base block used to build the bank filter. Frequencies are normalized to sampling
frequency (Fs/2).

The final frequencies obtained in the real domain have slight differences compared to the nominal
values. However, this situation is understood and allowed in the IEC 61260 standards [15–17]. Figure 7
shows the complete filter bank that was implemented. This kind of implementation reduces the
workload because only four filters are designed. This methodology also has two additional advantages:
avoiding the cutoff frequencies to get close to the limit frequency’s minimum and maximum (0 and
32,768 Hz), and reducing the processing power required by the DSP. Due to the successive decimation
performed at each stage, the processing load required to compute the whole filter bank is about twice
that required to calculate the basic building block shown in Figure 6.

To obtain the response of the octave band filter bank from the one-third octave band filter bank,
it is sufficient to add (in linear magnitude, not in dB) the values obtained from the three adjacent
one-third octave filters in the octave of interest.
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Figure 7. Filter bank for the one-third octave. The frequencies are shown in Hz.

3. Implemented System Verification

In order to verify the designed system, the equipment underwent different tests to analyze the
acoustic and electrical properties. The electrical tests were used to verify the quality of the digital
implementation (digital filters, algorithms, etc.) and the analog input chain, while the acoustic tests
were used to verify the microphone’s behavior. Both tests together were used to verify the overall
features of the equipment.

3.1. Electrical Test

The third section of the international standard IEC 61672 specifies the tests required to verify the
frequency weightings implemented in a sound level meter [14], which should be determined relative to
the response at 1 kHz using steady sinusoidal electrical input signals. At the reference level range, and
for each frequency, the 1 kHz input signal should be adjusted to yield an indication that is 45 dB less
than the upper limit for the sound level meter [14]. The tolerance limits are specified in IEC 61672-1 [12].
For class 1 SLM, the test should be performed with nine frequencies at nominal octave intervals from
63 Hz to 16 kHz. For a class 2 SLM, eight frequencies should be used from 63 Hz to 8 kHz. Table 2
shows the results obtained. Here, the equipment fully fits the requirements of a class 1 SLM.

Table 2. Results obtained for the frequency weighting test.

Frequency
(Hz)

Frequency
Weights

(dB)

Correction
(dB)

Read Level
(dB)

Expected
Level (dB)

Deviation
(dB)

U(uncertainty)
(dB)

Positive
Tolerance

(dB)

Negative
Tolerance

(db)

101.20 63 −26.2 0 75.2 75.0 0.20 0.18 1.5 −1.5
91.10 125 −16.1 0 75.1 75.0 0.10 0.18 1.5 −1.5
83.60 250 −8.6 0 74.9 75.0 −0.10 0.18 1.4 −1.4
78.20 500 −3.2 0 75.0 75.0 0.00 0.18 1.4 −1.4
75.00 1000 0 0 75.0 - - - - -
73.80 2000 1.2 0 75.0 75.0 0.00 0.18 1.6 −1.6
74.00 4000 1 0 74.9 75.0 −0.10 0.18 1.6 −1.6
76.10 8000 −1.1 0 75.0 75.0 0.00 0.18 2.1 −3.1
86.10 16,000 −6.6 0 75.2 75.0 0.26 0.18 3.5 −17

For the level linearity test, the IEC 61672-3 states that the test must be performed using a sinusoidal
electrical signal at a frequency of 8 kHz that varies its amplitude for the SLM linear measurement
range [14]. The linearity will be measured in steps of 5 dB until it reaches 5 dB before the extreme limits
of the linear range. Then, the steps will be 1 dB increments until the limits are reached. Table 3 shows
the results obtained for the linearity test. This table only shows the central values and extremes for
clarity. With these results, we can establish the linear dynamic range of the equipment in 80 dB.
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Table 3. The results obtained for the linearity test. Values marked with “ . . . ” are omitted for clarity
(the device passed the test). SLM = sound level meter.

Applied
SPL (dB)

Frequency
(Hz)

SLM
Level
(dB)

Expected
Level
(dB)

Deviation
(dB)

U (dB)
Positive

Tolerance
(dB)

Negative
Tolerance

(db)

Test
Result

122.1 8000 118.9 122.0 −2.1 0.14 1.1 −1.1 ERROR
121.1 8000 118.9 121.0 −1.1 0.14 1.1 −1.1 ERROR
120.1 8000 118.5 119.0 −0.5 0.14 1.1 −1.1 PASS
. . . . . . . . . . . . . . . . . . . . . . . . . . .

105.1 8000 104.0 104.0 0.0 0.14 1.1 −1.1 PASS
100.1 8000 99.0 99.0 0.0 0.14 1.1 −1.1 PASS
95.1 8000 94.0 - - - - -
85.1 8000 84.0 84.0 0.0 0.14 1.1 −1.1 PASS
80.1 8000 79.0 79.0 0.0 0.14 1.1 −1.1 PASS
. . . . . . . . . . . . . . . . . . . . . . . . . . .

39.1 8000 38.9 38.0 0.9 0.14 1.1 −1.1 PASS
38.1 8000 38.1 37.0 1.1 0.14 1.1 −1.1 ERROR
37.1 8000 37.4 36.0 1.4 0.14 1.1 −1.1 ERROR

The instrumentation equipment used for the electrical tests included:

• Multifunction acoustic calibrator Brüel & Kjaer B&K 4226;
• Signal Generator Stanford DS360;
• Multimeter Keithley 2015-P.

The reference conditions were Temperature = 23 ◦C ± 2 ◦C; Relative humidity = 50% ± 20%;
Atmospheric pressure = 95 kPa ± 10 Pa.

3.2. Acoustic Test

A set of tests was performed using a multifunction acoustic calibrator (B&K 4226) in a calibration
laboratory. The use of a multifrequency calibrator allowed us to determine the microphone’s influence
on the equipment, thus removing the effects of diffraction and refraction that appear when the
microphone is inside an acoustic field. Thirteen different devices were tested, and Figure 8 shows the
results obtained. The individual measurements of each of the devices are shown in light blue, and the
measurement corresponding to a type 1 reference sound level meter is shown in gray, adjusted to the
level offered by the 1 kHz reference microphone. Also, the mean (μmic) and the typical deviation with a
95% confidence interval (μmic ± 2σ) are shown in solid and dotted dark blue, respectively.

The variability of the thirteen units with their microphones is low and constant for frequencies
between 31.5 Hz and 4000 Hz (the predominant bandwidth in city noise). This deviation increases for
higher frequencies. Table 4 shows the values of the typical deviation.

Table 4. Standard Deviation for the frequency bands.

Frequency
(Hz)

31.5 63 125 250 500 1000 2000 4000 8000 12,500 16,000

Standard
deviation (dB) 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.8 2.4 2.6

Figure 9 shows the difference between the mean of the thirteen units and the measures of the
reference equipment (type 1). This difference is less than 3 dB at all frequencies, except at 16,000 Hz,
where the difference is 10 dB.

Figure 10 shows the response of the designed equipment in reference to a tone of 1 kHz and
a 94 dB sound pressure level, the reference commonly used in the characterization of this type of
measurement instrument. At 1 kHz, all frequency responses are about 0 dB, and the variability is
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visible with respect to the other frequency bands. For this equipment, the variation of the response is
reduced (almost flat) to 4 kHz, thereby worsening its frequency response noticeably from 8 kHz.

Figure 8. Tests results using a multifrequency calibrator.

Figure 9. Difference in the average value between the type I reference equipment and the mean of the
measures of the equipment designed for each frequency band.

Figure 10. Frequency response for the thirteen units, including the mean and standard deviation
for 2 σ.
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Finally, the closest equipment to the average was chosen to be tested according to the IEC-61672-3
standard [14]. Table 5 shows the measurements and their comparisons with the requirements specified
in the aforementioned standard. At 8 kHz, the equipment does not meet the specifications of a type 1
instrument. The values here fully fit with those of type 2 equipment [12].

Table 5. The obtained results. At 8000 Hz, we can see that the microphone response deviation falls
outside the positive tolerance for a type I instrument (marked in grey).

Applied
SPL
(dB)

Frequency
(Hz)

Frequency
Weights

(dB)

Correction
(dB)

Read
Level
(dB)

Expected
Level
(dB)

Deviation
(dB)

U (dB)
Tolerance

(dB)

93.96 63 −26.2 0.0 66.45 65.90 0.55 0.23 1.5; −1.5
93.95 125 −16.1 0.0 76.40 75.99 0.41 0.20 1.5; −1.5
93.95 250 −8.6 0.0 83.70 83.49 0.21 0.20 1.4; −1.4
93.94 500 −3.2 0.0 88.95 88.88 0.07 0.23 1.4; −1.4
93.96 1000 0 0.1 92.00 – – – –; -
93.97 2000 1.2 0.4 92.80 92.91 −0.11 0.20 1.6; −1.6
93.96 4000 1 1.6 92.35 91.50 0.85 0.23 1.6; −1.6
93.90 8000 −1.1 2.9 91.05 88.04 3.01 0.24 2.1; −3.1

3.3. System Verification Conclusions

Once the different tests had been carried out, we concluded that from the perspective of digital
signal processing, this equipment is capable of complying with the specifications of type 1 instruments
up to 16 kHz. However, the use of a low-cost electret microphone means that the acoustic behavior can
only fully fit a type II instrument when tests are done using a multifrequency calibrator for a frequency
range up to 8 kHz.

4. Results: Deployment in Málaga City

Once it was verified that the equipment offers sufficient quality to measure the noise in cities, the
next step was to test the OEM module design in a real environment. The Spanish city of Málaga had
optimal conditions to carry out this experiment. Málaga is a modern city concerned about the problem
of outdoor noise; it has an operational data monitoring platform with the ability to insert new nodes,
and it is possible to access these data to analyze them. For these reasons, eight units were deployed
in the city to verify their behavior under real operating conditions over three months. The noise
monitoring systems were located on the façades of residential buildings, in areas affected by night-time
leisure noise located on pedestrian streets, and near bars, pubs, restaurants, and terraces [32]. To help to
verify the quality of the measurements of these units, the equipment was installed in places where type
1 monitors were available. To keep the power consumption as low as possible, the equipment under
study was configured to provide data every minute to reduce the power used for communication. In
this way, the equipment used batteries, making the installation process easier. Unlike the network of
type I monitors, where the equipment sends data directly to the central server through a general packet
radio service (GPRS) connection, the terminals under study send their data via radio (868 MHz) to
several access points, which then send the data to the same central server through a GPRS connection.
Figure 11 shows the architecture used. The implemented OEM module was connected to a NRG2
panStamp-based CPU, and the code was developed using Arduino. This CPU obtained data from
the OEM module and sent it by radio to the access point, which transformed it into frames for the
existing architecture.
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Figure 11. Network architecture and details of the low-cost monitors.

In addition, to verify the evolution of the equipment, three tests measurements were carried out
in situ to determine the evolution of the operation of the units. One was performed after the outdoor
installation using an acoustic calibrator (94 db). Table 6 shows the results for the eight devices and
their locations.

Table 6. Verification values after installation outdoors (94 dB applied).

Monitor Location street
Value (dB) at
Calibration

Monitor Location street
Value (dB) at
Calibration

Andromeda, 9 93.6 Plutarco, 20 93.2
Angel 93.7 Plutarco, 57 93.8

Capitán 93.6 Velázquez 93.4
M. Vado Maestre, 4 93.6 M. Vado Maestre, 6 93.4

The second verification was carried out a month later; in this case, a type 1 instrument was placed
next to the microphone of the equipment under study to measure the same noise at the same time.
A three-step cycle of about ten minutes was performed. First, the background noise was measured for
three minutes. Then, a five-minute stationary measurement was taken using a speaker placed above
the vertical axis of the microphones with white noise. Then, the background noise was measured again
for three minutes. Finally, at the end of the measurement period, another comparison was made using
an acoustic calibrator for the eight devices used. After analyzing the data from these three tests, two of
the units presented important errors, so they were removed for the final analysis under suspicion that
they had been damaged during the measurement period.

The data from the central server can be remotely consulted and downloaded using a web browser.
After three months of the campaign, an exhaustive analysis of the data stored on the central server
was performed. The downloaded data were analyzed and a report was made. Figure 12 shows the
information for each monitor. The top part shows a view of the equipment installation, along with its
localization on the city map. The equivalent noise levels for the day (Ld), evening (Le), and night (Ln)
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were then calculated. Using a semaphore color code, the obtained noise levels were classified. A figure
with a calendar shows the percentage of measurements received for each day. Days that received less
than 30% data were deleted for the calculation.

Figure 12. Information template used for each measurement point.

The report also shows box plot figures with the measurement difference between a type 1
instrument and a low-cost instrument. Figure 13 shows a diagram for the equipment placed on
Plutarco Street. We can see that there is a greater dispersion in sound levels at night, which is due to
the minimum value of the dynamic input range of the instrument. The figure also shows the outlier
values, where one can see the low outlier numbers over three months.

Table 7 shows the average values (day, afternoon, and night) measured during the 84 campaign
days for type 1 and low-cost instruments.

The device installed on Plutarco Street 57 shows a great difference in the night’s equivalent noise
level. After a deeper analysis of the data, this deviation was found to be due to the measurements
made during the Christmas season. The Christmas lights installed near the devices produced some
interference in the measurements.
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Figure 13. Box plot diagram to compare the measurements between instruments.

Table 7. Ld, Le, and Ln levels. The left values are from low-cost monitors and the right values are from
the type 1 monitors used as a reference.

Monitor’s Location Ld (dB) Le (dB) Ln (dB)

Andromeda, 9 62/63 62/63 57/59
Angel 65/67 69/71 71/70

Capitán 69/74 78/79 74/76
M. Vado Maestre, 4 65/67 66/71 68/71

Plutarco, 20 61/63 62/64 58/59
Plutarco, 57 65/65 67/64 71/62

5. Discussion

When the design started, the main objective was to obtain a noise measurement device with the
following features:

• Quality and characteristics comparable to the sound level meters that are used today to measure
this type of magnitude, according to the standards and regulations that apply to them;

• Low cost required to build a large-scale monitoring network;
• Processing capabilities for the detection of target sources and their spatial localization;
• Easy integration into sensor networks.

All these objectives, also mentioned by other authors, have been covered [19], and the developed
equipment was conceived as a generic OEM card. The unit can be controlled by two serial interfaces:
SPI or USB. These interfaces are widely used in microprocessor-based systems, which allows this
device to be easily integrated, and thus can be used to build noise measurement equipment in a simple
way. The developed equipment has the ability to measure two channels simultaneously and implement
the basic functions of an integrating sound level meter, carrying out measurements simultaneously
for A, C, fast, slow, and impulsive weights. It also allows one to obtain the maximum and minimum
values, perform an analysis in the octave and one-third octave frequency bands, and calculate the
percentiles of the measurements, resulting in eighty-six parameters being measured for each channel
in real time. All these parameters are calculated digitally; the code optimization allows the DSP to
compute all these parameters for both channels in real time using a clock frequency of 60 MHz. As the
DSP allows one to raise the clock speed to 300 MHz, further algorithms for tasks such as noise source
identification and pattern recognition of acoustic footprints can be implemented in the future using
this equipment after a software upgrade.

The electrical tests applied to the equipment show that the electronics and algorithms implemented
have the behavior of a type 1 sound level meter for an input frequency range spanning from 10 Hz to
20 KHz and a linear dynamic range of 80 dB. However, the use of an electret microphone instead of a
condenser microphone reduces the electric performance of the equipment, limiting its characteristics
to those of a type 1 instrument for a frequency range up to 8 kHz (Table 5). For type 2 instruments, the
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tolerance allowed at 8 kHz increases to ± 5.6 dB. Thus, the equipment complies with the requirements
of a type 2 instrument according to IEC61672-3 [14]. The use of the electret microphone also reduces the
acoustic features of the equipment. However, this error can be assumed for the application of acoustic
noise measurement in cities, as has been shown with the correlation analysis using the measurements
of type 1 equipment installed as a reference in the measurement sites.

Eight units were deployed in the city of Málaga from November to January to verify their
operation under real conditions of outdoor noise measurement. Some very interesting conclusions
were obtained when analyzing the data uploaded by the units compared to the type 1 equipment
used to contrast the results. Finally, only six devices could be used for the final results, since two of
them were damaged and suffered large deviations in their measurements after the three months of the
measurement campaign. The results obtained for four of the devices were very good; however, two of
them presented a deviation in their data right at the limit of what is acceptable for a measurement,
with quality similar to that provided by type 2 instruments. A detailed study of these data showed that
the devices were more influenced by meteorological phenomena, such as rain, than type 1 monitors. In
addition, it was possible to verify how—coinciding with the installation and lighting of the streets for
Christmas—some measurements were affected by electromagnetic interference.

To summarize, the designed equipment can easily be integrated by third party users into any
wireless sensor network due to the available digital interface. The device is designed to have SLM
functionality and is capable of measuring 86 parameters by channel, including frequency analysis.
This creates new possibilities for low-cost sensor networks, where traditionally only the equivalent
continuous sound level (Leq) is measured. The designed instrument had an input linear range of 80 dB
and passed the electrical test according to the standards applied to a type 1 SLM, although the use of an
electret microphone reduced the quality of the measurements to those indicated for type 2 instruments.
However, this is an important point. If the device was to be built with a better microphone (at present,
microelectromechanical (MEMS) microphones possess good features similar to those of traditional
condenser microphones [19,32]), the instrument could be a very good solution for creating low-cost
sensor networks with high measurement quality.

The results have shown that there are two aspects to need to be improved in the proposed solution.
One is the vulnerability that some units showed to electromagnetic interference. The case used to
house the equipment was a standard plastic case. To improve this feature, a metal case or plastic cases
with anti-EMI treatments must be used. The other major change would be the use of new technological
advances in MEMS microphones to achieve better measurement quality. Thus, the next step will be to
modify the signal conditioning stage to use MEMS microphones [33].
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Abstract: The knowledge of the acoustic impedance of a material allows for the calculation of its
acoustic absorption. Impedance can also be linked to structural and physical proprieties of materials.
However, while the impedance of pavement samples in laboratory conditions can usually be measured
with high accuracy using devices such as the impedance tube, complete in-situ evaluation results are
less accurate than the laboratory results and is so time consuming that a full scale implementation
of in-situ evaluations is practically impossible. Such a system could provide information on the
homogeneity and the correct laying of an installation, which is proven to be directly linked to its
acoustic emission properties. The present work studies the development of a measurement instrument
which can be fastened through holding elements to a moving laboratory (i.e., a vehicle). This device
overcomes the issues that afflict traditional in-situ measurements, such as the impossibility to perform
a continuous spatial characterization of a given pavement in order to yield a direct evaluation of the
surface’s quality. The instrumentation has been uncoupled from the vehicle’s frame with a system
including a Proportional Integral Derivative (PID) controller, studied to maintain the system at a
fixed distance from the ground and to reduce damping. The stabilization of this device and the
measurement system itself are evaluated and compared to the traditional one.

Keywords: p-u sensor; p-p sensor; noise; Adrienne; stabilization; damping; acoustic impedance;
road surfaces

1. Introduction

Transport infrastructures continue to be a source of noise, representing a serious issue in modern
society. Among the sources that should be monitored according to European Environmental Noise
Directive (END) [1], roads are the one that reach most citizens, and even if the noise produced is not
the most disturbing, they contribute the most to the overall noise exposure. According to the 2017
END’s review [2], nearly 100 million European citizens are exposed to road traffic Lden higher than
55 dB(A) and among them 32 million are exposed to Lden higher than 65 dB(A). Many studies show that
prolonged exposure to noise can induce cardiovascular disease [3,4], alterations in blood pressure [5,6],
respiratory diseases [7], hypertension [8], learning impairment [9,10], annoyance [11,12], and sleep
disturbance [13–15].

In order to avoid the aforementioned health issues, the END set the instruments in mandatory
action plans for big infrastructures and urban agglomerations [16]. More detailed noise maps are
mandatory for roads with traffic flows greater than 3 million vehicles per year and mitigation should
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be applied when limits’ exceedances emerge. In the last decades, economic efforts have been spent in
mitigation actions for road traffic noise, with rigid barriers used as an optimal choice. However, it has
been proven that this solution suffers from several problems, such as diffraction at the edges, reflection
of sound energy in the opposite direction, and complaints of citizens due to the reduction of fields of
view, natural light, and air flow [17].

Thus, researchers are recently looking for innovative and possibly “green” solutions, such as live
and integrated monitoring systems [18,19], sustainable metamaterial absorbers [20,21], sonic crystals
noise barriers made of recycled materials [22], electric cars, and car sharing [23].

The overall noise produced by a vehicle is given by the sum of propulsion, tire-pavement
interaction, and aerodynamic contribution, depending on the vehicle speed. As electric vehicles
become more widespread, the contribution of engines to overall noise is decreasing; however, it is
only relevant at low speeds. Noise produced by tire–road interaction is the responsible for most of the
noise emitted by roads and is a complex phenomenon resulting from the combination of aerodynamic
and vibro-dynamic phenomena [24,25]. The former is related to compression of the air trapped within
the tread of the rolling tire [26] (known as air pumping) and cause noise at frequencies higher than
1 kHz. In addition, pipe and Helmholtz resonances due to the coupling of a vibrating mass of air
within the tread acting as a cavity contribute to the aerodynamic noise. Vibro-dynamic noise covers
frequencies lower than 1 kHz and is due to tire vibrations caused by the impact of the tire against
irregularities of the road surface and by non-linear effects, such as the stick-and-slip and stick-and-snap
mechanisms [25].

The knowledge of noise generation mechanisms is vital for improving mitigation actions [27]
applied to the two main actors in the phenomenon: Tires have been optimized [28], and mostly,
low noise pavements have recently spread, some of which have even been developed with recycled
materials [29,30]. Since tire/road noise depends on structural parameters of road surfaces [31], the
European Union has recently prescribed acoustic tests of newly laid surfaces [32] by means of the
Close Proximity Index (CPX) method [33] during the first three months from laying date. Therefore,
knowing the acoustic performance of a pavement plays an extremely important role [34,35].

Even after the laying, monitoring a pavement over time is important to keep track of the ageing
effect, which dramatically reduces the acoustic performance of surfaces. Traffic and weather cause
voids in the surface to clog with detritus, increasing noise emitted even by 5 dB [36,37].

CPX measurements are generally performed to evaluate the acoustic emission properties of
a pavement, while other measurement methods are needed for a wider evaluation of the acoustic
properties. In order to assess the effects of noise on the receptors, for example, other factors are involved
besides the emission, such as acoustic propagation, which in turn depends on the absorption coefficient
of the road surface. The evaluation of the absorption coefficient is also an important parameter
related to the state of the installation. For this reason, being able to measure the absorption yields a
broader characterization of the pavement. In fact, the surface texture and volumetric of the friction
course of a pavement are the main parameters influencing rolling noise, also related to absorption
coefficient [35–39].

Different methods are generally used to evaluate the acoustic properties of a pavement, in order
to derive information about their use in practical applications: From the CPX method [40], that also
evaluates the emission properties, to the absorption measurement performed with an impedance tube
using standing wave ratio (ISO 10534-1) [41] in-lab or on-site (ISO 13472-2) [42], and the extended
surface method, usually called “Adrienne method” (ISO 13472-1) [43,44]. A recent study [45,46]
showed that Adrienne method achieves good estimates for pavement’s characteristics, whereas the
impedance tube scores the best accuracy in-lab, at the expense of time consumption, and the on-site
Kundt tube can give an acceptable estimate of porosity.

Models of surface impedance of the materials currently present in the literature (e.g., Allard and
Atalla [47]) are based on parameters related to the geometric properties of the interconnected porous
structure and therefore to the effective structure of the medium. The sound absorption is often used
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as a proxy of the impedance, however, knowledge on the impedance represents a more complete
information and allows a better characterization of surfaces from an acoustical point of view. Thus,
in the last decade, several authors explored the possibility of measuring the surface impedance, defined
as the ratio between the local pressure p and particle velocity u. This measurement is usually carried
out by using a pressure-velocity (p-u) probe. The convenience of using a p-u probe is twofold: On one
hand, it provides a local and simultaneous measure of both pressure and particle speed, while on
the other hand it allows a direct measure of the impedance. A direct measurement of velocity is not
possible with other known methods, such as the p-p sensors (pressure – pressure) reported below but
can be achieved indirectly. In this way, the two quantities are related to the same incident and reflected
field, with consequently simpler and error-free calculations. The Adrienne method, for example,
requires evaluating a direct field that requires subsequent subtraction from the measured one, but is
clearly not stable over time. Another important advantage of using the p-u probe to measure the
impedance/absorption coefficient is the broadband "figure of eight" directivity of the particle velocity
sensor, which significantly restricts background noise and allows the sensor to be used in-situ.

Most of the studies used the probe in laboratory conditions [48,49], while, to the best of the authors’
knowledge, only few approaches have tried in-situ road surface impedance measurement [50–52].
Nevertheless, Tijs and de Bree’s concept [53] can be considered a precursor of the present work, as it
uses a small source attached to the bumper and close to the road surface and a p-u probe, operating in
near field conditions and using a spherical wave.

The methodology reported in the paper uses a p-u sensor that measures the sound intensity
by means of a pressure transducer combined with a particle velocity transducer, instead of the
more common p-p sensor combining two pressure microphones and then applying a finite-difference
approximation to the pressure gradient. Random errors can be overcome by repeating the measurement,
while bias errors can occur for multiple causes, such as phase mismatch between the two measurement
channels, errors in the scanning procedure, errors due to airflow, influence of the pressure equalization
vents of the microphones, non-stationary external sources, reflections from the operator as they move
around the source, influence of the environment on the sound power output of the source, and the
absorption of the source itself [54]. These reasons contribute to the choice of the p-u probe over a
p-p one. Furthermore, background noise from sources outside the measurement surface can increase
phase mismatch in p-p sensors, but not in p-u ones [55]. On the contrary, strongly reactive sound fields
can increase p-u phase mismatch and have no influence with the p-p ones. Another advantage of p-u
probes over p-p ones is their reduced size; however, p-u sensors are not easily calibrated.

In the framework of the NEREiDE LIFE project, a new measurement system based on a
pressure-velocity (p-u) probe has been implemented on a mobile laboratory. The present paper
describes an instrument mounted on a mobile laboratory able to measure the absorption coefficient
of a pavement in a continuous way. A mobile laboratory allows in-situ measurements of long road
sections for a more precise assessment of the quality of asphalt pavements, which can vary along
the installation [56]. It also allows to make measurements in safe conditions and without necessarily
closing the road to traffic.

After addressing the choice of the sensor used, this work tries to solve the primary issue regarding
these measurements, which is the stabilization of the instrumentation respect to the road surface.
The new approach has been derived from the Adrienne method and can measure the acoustic absorption
in a contactless way, thus resulting in a wider frequency bandwidth and a larger studied portion of the
road surface. A proper device, consisting of an actuator driven by a laser distance sensor, has been
developed for stabilizing and damping the measuring system. This task is extremely important for
maintaining the stability and correctness of the impedance evaluation and reducing the measuring
errors. Its effects have been simulated and measured in order to validate its functioning.
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2. Life NEREIDE Project

The present work is part of the LIFE15 ENV/IT/000268 NEREiDE project, which aims improve
porous asphalt pavements and low noise surfaces made of recycled asphalts and tires. A warm mixture
was produced at a high temperature giving birth to pavements that improve:

• safety in urban areas by better draining;
• the reduction of waste materials and virgin materials;
• acoustical performances and a significant reduction of noise emitted;
• asphalt laying procedure, thus reducing air pollution emissions.

Crumb rubber from scrap tires were used in order to improve the road surfaces from elastics,
soundproofing and toughening characteristics points of view, while recycled asphalts were used to
reduce virgin aggregates and bitumen. The project characterizes raw materials searching for the best
that fit the manufacturing processes of crumb rubber in order to modify the vulcanized recycled rubber
and to make it suitable for incorporation in the bitumen. The last was the binder and matrix of the
new composite material, with structural and waterproofing functions that should avoid the leaching
of chemicals. Laboratory tests had already selected the correct composition, grading curve and the
structural characteristics, the percentage of crumb rubber, and the methods to realize them.

The new pavements had been laid in two urban areas in Tuscany and one of the major tasks
of the project was the evaluation of their effectiveness. Different approaches are currently used to
test their effectiveness; from surface characteristics, to acoustical properties, and surveys submitted
to the exposed population. The effectiveness was evaluated through a comparison of the surface
acoustical properties prior and after the laying, but also by comparing the results with measurements
over standard porous asphalt. This led to another objective, which is not less important than the
main one: To improve the reliability of the results by suggesting a new evaluation technique for the
performances of new pavements. The method should work on-site using techniques also applicable in
urban context. Then, the effectiveness of new asphalts was monitored, also considering the subjective
response to noise ante and post-opera. Roadside noise measurements were used to validate outputs
from a noise model in order to assign noise levels to nearby residents who were also interviewed with
questionnaires that compared their response [57].

Both Close Proximity Index and statistical pass-by (SPB) methods [58] were used to measure
the noise produced by tires rolling on new and reference pavements. Unfortunately, standard SPB
is applicable under environmental conditions that are almost never realized in the urban context.
Therefore, an urban statistical pass by method was developed adding a monitoring station placed
roadside at a known distance, in addition to traffic counters. In this way, the SPB has been modified to
be used in urban areas by reducing the confounding factors. The method for deriving pass by values
in urban contexts can define the index of vehicles noisiness on the specific pavement and place, thus
allowing a comparison of efficiency of new pavements in terms of noise at roadside.

The project also aimed at the development of a new on-site acoustical absorption measuring
system built on a mobile laboratory. For this purpose, a car was equipped with several instruments in
order to perform moving and static measures. A preliminary data analysis was set up and described in
the present paper. The system was used to monitor acoustic properties of new surfaces realized on
experimental sites and was able to give real time results and a fine spatial acoustic characterization of
the road surface. The results were linked to the microscopic and macroscopic properties of the asphalt,
with parameters such as porosity and tortuosity, but also to macroscopic discontinuities or structural
problems. They also provide an evaluation of the current state of a whole pavement stretch, thus
giving useful information on the homogeneity of results along the whole installation. This allows for
the evaluation of the goodness of the mixture and its laying. In the rest of the paper, a description of the
measurement’s methodology will be carried out, focusing on the difficulties regarding the stabilization
of the system over a moving vehicle.
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3. Methodology

Measuring the absorption coefficient with a moving vehicle is best achieved using a contactless
method. The system used in this work is the sum of the following parts, each separately tested and
calibrated both in controlled conditions and on the actual mobile laboratory:

(1) p-u probe, also known as intensity probes: A sensor measuring the local value of acoustic
pressure (p) and particle velocity (u). With these two parameters, the probe can easily evaluate the
acoustic impedance;

(2) inertial damper: An electro mechanic actuator driven by a laser distance measure between the
car and the pavement surface. This tool is needed to maintain constant the distance between the probe
and the asphalt and to reduce vibrations from the moving vehicle;

(3) acoustic emitter: The sound emitted by the source is measured by the probe after being
reflected by the pavement;

(4) A pc and an acquisition board acting as instrumentation control system.
The p-u probe can simultaneously and directly detect local pressure and particle velocity. It consists

of a miniaturized pre-amplified microphone for pressure measurements and hot wires for the particle
velocity evaluation [59]. This instrument is sensitive to specific velocity direction. As reported
in Figure 1, the velocity sensor measures the perpendicular component respect to the pavement.
An older method for measuring the particle’s velocity consisted of using two matched microphones and
calculating the pressure difference, but problems in low pressure variation occurred when considering
the microphones dimension and the spacing between them. The introduction of a technique based on
a hot wire overcome this issue and the particle velocity could then be evaluated with a wire whose
electric resistance changes with the temperature, and hence with the speed of the flow of the air that
flows over the wire. The velocity u was then evaluated with Equation (1) [60].

u =

(
E2 − a

b

) 1
n

(1)

where E is the voltage difference at the two ends of the wire resistance, a, b, and n are three constants
evaluated during calibration. The voltage across the resistance is given by Equation (2) [61].

E = (R0 + ΔR)i (2)

where Ro is the value of the resistance at the temperature To and the resistance variation ΔR is given by
Equation (3), where α is thermal resistance coefficient and T the temperature of the hot wire.

ΔR = R0α(T − T0) (3)

The model used in this work considers a monopole source placed over the ground at hs and a
receiver with height hr from the ground, as shown in Figure 1. The receiver acquires both p and u [62].
An innovative stabilization system is used to reduce the variation of the height of the source and the
receiver, and it will be described in the next chapter.

The acoustic impedance was calculated with Equation (4) starting from the ratio of the complex
pressure to complex velocity amplitudes measured by the probe.

Zr(r,ω) =
pr(r,ω)
ur(r,ω)

(4)

The pressure and velocity values were calculated with Equations (5) considering a spherical wave
of radius r:

p(r, t) =
A
r

e−krieiωt u(r, t) =
A
ρcr

(
1− i

kr

)
e−krieiωt (5)
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Figure 1. Set-up of the measurement system.

A is the wave amplitude, ρ is the air density, c is the speed of sound, ω = 2π f is the angular
frequency, k = 2π

λ =
2π f

c is the acoustic wave number, λ is the wavelength.
The absorption coefficient α is defined as α = 1− Γ, where Γ is the reflection coefficient defined in

Equation 6 as the ratio of the reflected power Pr and incident power Pi.

Γ =
Pr

Pi
�

∣∣∣pr
∣∣∣2∣∣∣pi
∣∣∣2 = |R|2 (6)

R is the sound pressure reflection factor. p is the sum of the direct and reflected pressure wave.
Similarly, u is the sum of direct and reflected velocity wave. However, since they are vectors, the
negative sign must be taken into account. The impedance can then be reported in Equation (7).

Zr(r, t) = p(hs−hr,t)+p(hs+hr,t)
u(hs−hr,t)−u(hs+hr,t) =

=
A
d1

e−kd1ieiωt+R A
d2

e−kd2ieiωt

A
ρcd1

(
1− i

kd1

)
e−kd1 ieiωt−R A

ρcd2

(
1− i

kd2

)
e−kd2 ieiωt

=

= ρc
1

d1
e−kd1i+R 1

d2
e−kd2i

1
d1

(
1− i

kd1

)
e−kd1i−R 1

d2

(
1− i

kd2

)
e−kd2i

(7)

where for simplicity d1 = (hs − hr) and d2 = (hs + hr). According to Equation (7), the explicit time
dependency disappears and Zr(r, t) becomes in Zr(r) in the following. From the previous equation, R
can be obtained Equations (8) and (9).

R(r) = −
(hs + hr)

(
Zr[k(hr−hs)+i]
ρck(hr−hs)

− 1
)

(hr − hs)
(

Zr[k(hs+hr)−i]
ρck(hs+hr)

+ 1
) e−2khri (8)

|R|2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
(

hs + hr

hs − hr

)∣∣∣∣∣∣∣∣∣
Zr[−k(hr−hs)−i]
ρck(hr−hs)

+ 1

Zr[k(hr+hs)−i]
ρck(hr+hs)

+ 1

∣∣∣∣∣∣∣∣∣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
2

(9)

In order to know which parameter mostly affects the absorption coefficient, according to the
theory of propagation of uncertainty, the propagation error for a multivariable function is derived for
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each component from the partial derivative of the function itself. Thus, the sensitivity of α respect to hs

or hr can be calculated with Equations (10).

∂α
∂hr

=
∂|R|2
∂hr

∂α
∂hs

=
∂|R|2
∂hs

(10)

4. Results

4.1. Instrumentation Height

Since it derives from the Adrienne method, the new method is dependent on the height from the
plane. Considering that the height of the vehicle from the road surface changes due to its acceleration
and to superficial irregularities of the surface, the very first part of the analysis are in-lab simulations
aimed to optimize receiver’s position from the ground, which is the one leading to the smallest error in
the calculation of the absorption coefficient. The results are compared with the Adrienne ones.

In these calculations, the ideal source and receiver were used and the variation of receiver to
source height brought by the running vehicle were considered.

The sensitivity of α respect to the variation of hs or hr were studied in the Adrienne method with
Equations (11).

∂α
∂hr

=
∂|R|2
∂hr

= −4hs(hs − hr)

(hs + hr)
3

∣∣∣∣∣∣
Pr( f )
Pi( f )

∣∣∣∣∣∣
2

,
∂α
∂hs

=
∂|R|2
∂hs

=
4hr(hs − hr)

(hs + hr)
3

∣∣∣∣∣∣
Pr( f )
Pi( f )

∣∣∣∣∣∣
2

(11)

From Equations (11), is possible to derive Equations (12), which shows that the ratio of the
sensitivities of the absorption coefficients is equal to the ratio of hs and hr. Therefore, the sensitivity
to variation of height of receiver is higher in module than that respect to the variation of the height
of source.

∂α
∂hr

∂α
∂hs

= −hs

hr
(12)

In the new method with a p-u probe as receiver, the sensitivities ratio is different and changes
with frequency, pavement impedance, receiver, and source height. The sensitiveness of the absorption
coefficient values obtained using the Adrienne method is far greater than the new method proposed.
The absorption coefficient sensitivity to the variation of the height of the probe also results higher in
the Adrienne method than in the new one.

The height of the probe corresponding to the lowest error is at 0.16 m from the pavement for
the new method, while for Adrienne the height of the microphone is 0.25 m, as suggested by the
standard. However, the error for the Adrienne method is higher than the new method around ±0.05 to
the minimum of both curves.

The main features of Adrienne and the new method are summarized in Table 1. The new method
offers a wider frequency band width and is less sensitive to variations of the receiver’s height, which
makes it more appropriate for a running vehicle.

Table 1. Comparison of in-situ measurement methods.

Adrienne Method
Adopted Method Based

On P-U Probe

In-Situ Measurement � �

Contactless Measurement � �

Frequency Bandwidth 250 Hz ÷ 4 kHz 315 Hz ÷ 10 kHz

Exposed Area Diameter ≈ 1.4 m ≈ 1.4 m

Height of The Sound Source 1.25 m 1.5 m
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Table 1. Cont.

Adrienne Method
Adopted Method Based

On P-U Probe

Height of The Sound Microphone / P-U Probe 0.25 m 0.16 m

Absorption Coefficient Sensitivity to Receiver
Height Variation (F ≥ 315)

2.4 m−1 2.1 m−1

Absorption Coefficient Sensitivity to Source
Height Variation (F ≥ 315)

0.5 m−1 0.3 m−1

4.2. Damping System

The mobile laboratory moves while acquiring data, therefore the height of the measurement
instrument from the road pavement changes, as stated previously. The absorption measurement system
was fastened to the frame of the vehicle and hence it suffered the same oscillations, shown in Figure 2.
Figure 3 shows the vertical displacement of the rear of the vehicle, measured using an accelerometer
and a laser distance meter. The accelerometer displacement was obtained through a double integration,
which increased low frequency noise. On the contrary, the laser worked well over the whole band, but
above a certain frequency the measurement was mainly influenced by the road texture (around 20 Hz).
Red and blue curves in Figure 3 are similar within the range 2–20 Hz. Therefore, the spectrum of the
searched displacement corresponds to the measurement performed with the laser up to that maximum
identified frequency, while the following signal is attributable to the influence of road texture.

Figure 2. Example of vehicle where is installed the absorption measurement system, with a focus on
the shock absorber.

Figure 3. Example of vehicle vertical displacement spectrum while moving.

86



Sensors 2020, 20, 1239

In order to reduce the influence of height variations on the measurement, the measurement
instrumentation must be uncoupled from the vehicle frame, using a system capable of keeping
a constant distance h from the pavement. The characteristics of this active damping system are
hereby described.

As shown in Figure 4, an active controller on the distance h has been developed using a Proportional
Integral Derivative (PID) controller with the following characteristics:

1. Maximum allowable displacement xmax: 100 mm;
2. Damping system with 1 degree of freedom placed along vertical axis;
3. Typical vehicle frame displacement (x’): ±20 mm;
4. Displacement stabilization range (error = htarget -h): 2 mm ÷ 5 mm;
5. Working frequency: 0 Hz ÷ 30 Hz;
6. Actuator load: 3 kg payload (loudspeaker, sensors, windscreen, laser distance sensor) plus

damping system frame.

Figure 4. Damping system model and Proportional Integral Derivative (PID) controller of the height of
the absorption measurement system.

The Proportional Integral Derivative (PID) controller acts on the error e equal to the difference of
the target position htarget and the current position h of the measurement system with respect to the
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pavement. The target position htarget is defined as the almost fixed height of the system. Furthermore,
it takes into account the error e itself through a proportional relation, its integral I and its derivative D.
The error can be expressed with Equation (13).

e = htarget − h (13)

The function f used to drive the actuator in order to stabilize the measurement system is defined
in Equation (14).

f (e) = kpe(t) + kI

∫ t

0
e(t)dt + kD

∂e(t)
∂t

(14)

where kp, kI, kD are constants to be calculated in accordance to the actuator system response and the
acceptance error. In the present work, the accepted error was considered equal or less than 5 mm,
corresponding to an absorption error due to the vehicle oscillation of around 0.01.

A simulation of the process is reported in Figure 5. The control was made through the PID
controller which acts on a linear slide actuator that keeps the sensor at a fixed height h from the
pavement. The actuator linear speed used in the simulation is 20 mm/s, while the road profile is taken
from the on-field measurement, described below.

Figure 5. Displacement simulation of the sensor plate stabilized by a PID controller (red); acquired
vehicle frame vibration used as input of the PID controller (blue).

A field test was carried out on a stretch of pavement in good condition, running on the same
stretch with the stabilizer device off and on. The measurements were repeated several times at a speed
of 30 km/h. Although it is not easy to repeat the exact condition of each run, the results showed good
repeatability. Measurements with or without stabilizer are not contemporary because only one laser
displacement sensor was available for measurements. Consequently, the two measurements do not
correspond to the same exact profiles; however, it can be argued that the two profiles share the same
mean properties since they derive from measurements of the same road surface.
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Figure 6 shows the displacements measured. The bold lines represent a 1-second smoothing for
improving the visibility of the average stabilization effect. The maximum excursion using the stabilizer
is approximately 0.021 m at 30 km/h. The order of magnitude of the average displacement from the
expected equilibrium position in standard operating conditions are reported in Table 2.

Figure 6. Displacement measured in-situ with stabilization (red) and without stabilization (blue), with
smoothing (bold lines) and without smoothing (thin lines).

Table 2. RMS (Root mean square) of the average displacement measured at 30 km/h.

RMS of Average Displacement [mm]

No stabilization 11.5
Stabilization 4.7

In order to evaluate how using the stabilizer affects the absorption measurement, an idealized case
where the only effective variable was the position of the sensor/speaker group relative to the surface
investigated was taken into account. Thus, considering a perfectly homogeneous surface, which has
the same spectral trend for the reflection coefficient at each point. Furthermore, a high directionality of
the sensor is assumed, so that the area actually investigated can be considered constant.

The subsequent calculations were carried out considering a hypothetical pavement with absorption
from almost zero to almost one along the whole frequency range, a vehicle in motion at 30 km/h and
the displacement trends with respect to an equilibrium position of 0.16 m from the pavement, as in
Figure 5, both for the stabilized and non-stabilized system.

In order to simplify the application of Equation (7), it was assumed that the system remains
stable, i.e., at a constant distance from the pavement, within the single measurement made by the laser
distance meter. Since the instrument works at a frequency of 64 Hz, the measurements were carried
out every 15.6 ms, enough time to resolve rather low signal frequencies. For example, up to about five
cycles can be measured at 315 Hz.

A measurement of the p and v signals was simulated in successive windows of 15.6 ms length,
calculating for each the signal Zr,i as the ratio of the respective spectra (i is the sections index). In order
to do so, Equation (7) was used by imposing R, which was identical for each repetition, and the values
of d1,i and d2,i related to the section. Using the calculated impedances but imposing a fixed distance
of 0.16 m, the reflection coefficients Ri, representing an estimate of the error made in the absence of
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stabilization or with an imperfect one, were obtained. Calculating the relative error for each section
becomes simple, since the actual value that R must assume is known.

Figure 7 shows a well-defined relationship between the measured absorption value and the error
related to it, which is certainly influenced in absolute terms by the displacements with respect to
the equilibrium.

 
Figure 7. Simulated relative error vs the sound absorption value.

5. Discussions and Conclusions

The present paper reported a new measurement system for the acoustic absorption of a pavement
developed inside the LIFE15 ENV/IT/000268 NEREiDE project. The new method is derived from the
Adrienne one (ISO 13472-1), but the sensor used is a p-u probe mounted on a vehicle moving over the
road surface. With this important changes, it is now possible to measure acoustic absorption coefficient
on-site, in a contactless way along all the site. Furthermore, it has been shown that the resulting
frequency bandwidth is wider.

The correct set-up of the instrumentation has been studied, with particular emphasis on the
height of the instrumentation above the ground. It has been shown that the ideal height, at which
the lowest measurement error is achieved, is 0.16 m, slightly different from the 0.25 m used in the
Adrienne method.

The present paper mainly reported the solution applied to overcome the greater difficulty for this
kind of measurements, i.e., the stabilization and damping of the system, required in a vehicle in motion.
The instrumentation has been uncoupled from the vehicle’s frame with a system studied to maintain
constant the distance from the ground. As reported, a PID (Proportional Integral Derivative) controller
was used to act on the error given by the difference of the target position and the real position of
the measurement system with respect to the pavement. The test performed showed good results for
keeping the instrumentation at a fixed height within an order of magnitude of 1 cm, which should be
enough to achieve good accuracy in the evaluation of the absorption coefficient. For completeness, the
extent of the influence is currently under study. The laboratory tests showed an excellent behavior of
the stabilizer in dynamic conditions, perfectly within what was initially expected. Field measurements
necessarily suffer from a greater uncertainty, which however allows to the use of the system within
good margins for acoustic characterizations. In particular, the implemented possibility of obtaining
the distance data from the system itself is rather useful, although it has not yet been tested. In the
future, the authors expect to use the data for a possible real time correction to the calculations of the
parameters that may depend on the distance.
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This study improves on the work of Tijs and de Bree [53] by introducing a stabilization, but also
allows the measurements at lower frequency by using a set-up similar to the Adrienne method. The
required higher distance from probe to surface is safer for the instrumentation but also indirectly leads
to a greater surface under study. However, this set-up implies a bigger source-pavement distance
that allows a better approximation of the loudspeaker as point source on both the high and low
frequencies. In addition, the methodology presented can be also considered as an improvement of the
Adrienne method itself because it goes beyond the need to subtract the signals over time, resulting
mathematically easier to operate and analyze.

At present, the system is designed to work at low speeds, within 30 km/h. Placed in the wake of
the vehicle, the effect of the wind on the sensor is negligible, also because the sensor is equipped with a
special windproof cap that gives it additional protection. In addition, the sensor is located inside an
amplification horn, with the axis perpendicular to the ground, where a small windproof layer placed
on the entrance and exit significantly reduces the disturbing effects generated by wind turbulence.
In addition to this, the source power is sufficient to make other noise sources per se negligible. In
particular, the speed sensor is highly directional, and its direction of measure is perpendicular to the
road surface, thus further reducing the rolling noise produced by the wheel. Specific laboratory tests,
not reported in this article, have shown effective independence of the probe measurement from sources
placed outside the axis and of power comparable to the tire/road emission at the speeds investigated.
While the calibration of a microphone can be performed with a suitable calibrator, no standard speed
references to rely on exists for speed probes. For this purpose, the authors’ actual efforts and future
developments will investigate the development of a calibration system. This phase needs to measure
the acoustic impedance, which is given by the ratio between the velocity values of the particles and
pressure measured at the same point. The calibration measurement will be performed inside an
anechoic chamber or inside a stationary wave tube (Kundt tube) [63]. Another method could be to
perform a comparative measure with the Adrienne method, estimating the absorption coefficient of a
material from its surface acoustic impedance.

Finally, the authors do not exclude the study of the new presented methodology also using a
suitable p-p sensor, which can still be a reliable, fast, and convenient tool for on-site measurements.
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Textiles as Thermal Insulation and an Acoustic Absorber. Sustainability 2019, 11, 2968. [CrossRef]

22. Fredianelli, L.; Del Pizzo, A.; Licitra, G. Recent developments in sonic crystals as barriers for road traffic
noise mitigation. Environments 2019, 6, 14. [CrossRef]

23. Kim, D.; Ko, J.; Park, Y. Factors affecting electric vehicle sharing program participants’ attitudes about car
ownership and program participation. Transp. Res. Part D Transp. Environ. 2015, 36, 96–106. [CrossRef]

24. Kuijpers, A.; Van Blokland, G. Tyre/road noise models in the last two decades: A critical evaluation.
In Proceedings of INTER-NOISE and NOISE-CON Congress and Conference; No. 2, 2494-2499; Institute of Noise
Control Engineering: Washington, DC, USA, 2001.

25. Sandberg, U.; Ejsmont, J. Tyre/Road Noise Reference Book; INFORMEX: Kisa, Sweden, 2002.

92



Sensors 2020, 20, 1239

26. Morgan, P.A.; Phillips, S.M.; Watts, G.R. The Localisation, Quantification and Propagation of Noise from a Rolling
Tyre; TRL Limited: Berkshire, UK, 2007.

27. Ögren, M.; Molnár, P.; Barregard, L. Road traffic noise abatement scenarios in Gothenburg 2015–2035. Environ.
Res. 2018, 164, 516–521. [CrossRef] [PubMed]

28. Regulation (European commission) No 1222/2009 of the European Parliament and of the Council of 25
November 2009 on the labelling of tyres with respect to fuel efficiency and other essential parameters. Off. J.
Eur. Union 2009, 342, 59.
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Abstract: Vehicular acoustic noise evaluations are a concern of researchers due to health and
comfort effects on humans and are fundamental for anyone interested in mitigating audio noise.
This paper focuses on the evaluation of the noise level inside a vehicle by using statistical tools.
First, an experimental setup was developed with microphones and a microcomputer located
strategically on the car’s panel, and measurements were carried out with different conditions such as
car window position, rain, traffic, and car speed. Regression analysis was performed to evaluate the
similarity of the noise level from those conditions. Thus, we were able to discuss the relevance of the
variables that contribute to the noise level inside a car. Finally, our results revealed that the car speed
is strongly correlated to interior noise levels, suggesting the most relevant noise sources are in the
vehicle itself.

Keywords: noise sources; regression analysis; contribution analysis; vehicle interior noise

1. Introduction

Acoustic noise has been considered a crucial issue and one of the most important topics in sensing
and communication systems in vehicles in the last years. General vehicle applications depend on the
audio signal quality such as multimedia [1–4], security [5–9], and assistive [10–12] and autonomous
vehicle applications [13,14]. In addition, vehicle noise is a concern to researchers due to its effects
on human health and comfort, both inside and outside the vehicle. The influence of environmental
noise in sleep and mental health [15–17] has been investigated. There is also research on the impact
of noisy environments on the performance of students in school [18] and on the development of
the cognitive processes in children [19]. Exposure to road and transportation related noise has been
associated with a higher risk of ischemic heart disease [20], myocardial infarction [21], and diabetes [22].
These topics have motivated studies on better modeling and evaluation tools for acoustic noise
with machine-learning based approaches [23,24]. Notably, a study uses an artificial neural network
technique to model the sound quality of vehicle interior noise [25] and another one proposes a new
sound quality metric for vehicle suspension shock absorber noise [26].

These interior noises result from a composition of different noise natures, such as wind noise,
engine noise, and rolling noise. The understanding of the more relevant noise sources might indicate
what are the key challenges in acoustic systems and what are the better mathematical models for
them. Therefore, their evaluations are fundamental for anyone who is interested in vehicular acoustic
signal analysis.

There are different noise source contributions to car environments and they can be separated
into many different aspects. According to the literature [27], vehicle interior noise can be focused
on vehicle subsystems and components, such as tire-road interaction noise [28,29] or aerodynamic
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noise. The tire-road interaction is usually refereed by two components, namely structure borne
noise, contributing to low-frequency excitation (below 500 Hz), and air borne component with mid-
and high-frequency excitation (above 500 Hz). Understanding the characteristics of this particular
source of noise is essential in the development of low-noise road surfaces [30–32]. It has also been
investigated the sound quality related to specifics noise phenomena in vehicles, such as closing
doors [33,34], engine sound [35,36], and wind noise [37,38]. The authors of [39] presented the frequency
characteristics and a model for wet road traffic noise, while the authors of [40,41] proposed wet road
detection schemes based on acoustic measurements. However, to our knowledge, no efforts have been
made to evaluate the effects of rain on noise inside the vehicle.

In the evaluations, the efforts are focused on finding better contributions to represent the general
sound quality from interior and exterior vehicle noises. However, although many works show us
the effect of different contributions to the acoustic noise in vehicles, little attention has been paid to
statistical analysis of individual noise sources. For example, the authors of [42] showed the contribution
of air-conditioner noise in sound quality analysis and more recently, the work in [43] establishes
correlations between some features and the acoustic noise in cars.

One way to evaluate the acoustic noise contributions inside cars is to measure acoustic signals
using microphones in real conditions. For this approach, a set of controlled or known relevant
conditions is specified, and the other uncontrolled or unknown noise sources are spread in invariant
random events, which ensure that these kinds of noise sources will not cause a disturbance in the
analysis such as a bias. In this case, the uncontrolled or unknown variables will interfere with the same
frequency that they happen in a real scenario. As a result, this experimental evaluation allowed us to
investigate the degree of influence of sources into acoustic noise inside a car. Based on these criteria,
the specifications were defined carefully considering the most relevant controlled noise sources in
the experiment.

Even though studies considering all vehicle noise sources have many advantages, they have not
been developed due to the amount of resources (time and cost) necessary in the analysis of the entire
vehicle system. On the other hand, a reduced analysis of the main noise sources contributions in a
vehicle makes the study more feasible and realistic. Thus, the variables with higher contributions
to noise levels suggest where researchers should focus on when designing noise mitigation systems,
such as filters and acoustic noise control.

Thus, one of the objectives of this study was to statistically analyze 212 acoustic noise
measurements conducted on different known conditions. The procedure is described in two parts:
measurements and evaluations. First, we planned the measures using the controlled and uncontrolled
variables. The known or controlled variables were defined based on preliminary experiments, in which
we evaluated their main contributions qualitatively. After that, we established the criteria, relationship
between the variables, and the constraints. Then, we measured and checked the consistency of the
data in relation to the variables. Finally, we evaluated the data using statistical tools such as linear
regression and Pearson correlation among the variables and the power noise levels.

The present paper examines possible noise sources correlated with noise levels in an attempt
to help researchers who study how to reduce noise levels and improve sound quality in the
vehicle interior.

In this paper, our key contributions are:

• Acoustic measurements were collected in several conditions (weather, car windows position,
car speed, and traffic level).

• The data collected herein, including information on the conditions and location of each
measurement, are freely available [44] and can help researchers in different purposes.

• Statistical evaluation of the different conditions in relation to noise levels was performed.

This paper is organized as follows. In Section 2, we describe all known and controlled variables
and measurement conditions, presenting the process of select and organize the data. The measurement
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setup is described in Section 3. In Section 4, the main source contributions are evaluated and discussed
quantitatively and qualitatively. In Section 5, we present our final remarks and further investigations.

2. Methods

2.1. Environment Variables

Natal is a city located in northeastern Brazil, and has a population of about 900,000 and an
area of 167 km2, considered the second smallest capital of Brazil. Natal has a typical tropical
climate, with warm temperatures and high humidity throughout the year. The average low and
high annual temperatures are 23 ◦C (73◦F) and 29.7 ◦C (85.5◦F), respectively, and the average annual
precipitation in the year is 1721.4 mm (67.77 inches). The measurements were carried out in June
and July, the coolest months with an average low temperature of 22 ◦C (71◦F) and an average high
temperature of 29 ◦C (84◦F).

The sampling points were located in different streets and avenues spreading the uncontrolled
conditions such as crowd and traffic, as illustrated in Figure 1. The traffic conditions were defined
following the Google Maps traffic conditions policy [45]. Each sampling point was assigned to one
of four possible traffic conditions in a specific location. Those locations may have different features,
which is why the sampling point was spread for different regions of the city. For example, while the
highway near the coast (with 6.2 m) has strong winds blowing from the ocean that may cause higher
noise levels, the quiet streets usually present lower noise levels. All measurements were obtained on
asphalt with smooth road surface conditions with no presence of potholes or unevenness.

Figure 1. Map of Natal with traffic signs.
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Table 1 presents all the possible conditions of the four environmental variables that were controlled
during the measurements. Those are the position of the car windows, the presence of rain, the traffic
condition, and the maximum speed of the car.

Table 1. Conditions of the controlled environment variables.

Variable Possible Conditions Constraints

Window Positions Open; Closed Open: only with no rain.
Rain Yes; No Yes: only with closed window.

Traffic Black; Red; Orange; Green Each traffic has a range of speed (see Table 2).
Speed 0–80 km/h -

We acquired a large number of measurements. Care was taken to obtain data for the combination
of all possible conditions of the controlled variables. During a measurement, the participants did not
speak or make any noise. To identify outliers in the data, we reviewed the audio signals to check for
highly impulsive events (such as sounds due to potholes in the road or a person’s sudden shouting
near the vehicle).

For measurements with no rain, all four windows were either fully open or closed. In the case of
measuring during rainfall, the windows were kept closed.

We also measured noise levels in different traffic conditions, as shown in Table 2. To record this
information, we utilized Google Maps’ color codes for traffic and noted the color of the road displayed
on the application during measurement. For example, when measuring in a high-speed highway with
no traffic delays, the condition was recorded as Green.

Table 2. Conditions of the traffic.

Traffic Condition (Color) Speed Interval Description

Black 0 Indicates extremely slow or stopped traffic.

Red <20 km/h Highway traffic is moving slow and could
indicate an accident or traffic jam on
that route.

Orange >20 km/h and <40 km/h Indicate medium amount of traffic.

Green >40 km/h Indicate that traffic is fast.

Finally, we also recorded the maximum speed of the car during the interval of each measurement.
The speed of the car was always compatible with the traffic condition displayed in Google Maps.
Table 2 shows the speed intervals for each traffic category.

2.2. Statistical Methods

Our goal was to understand how each environmental factor affects the noise level inside a vehicle.
To achieve this, we utilized visualization tools such as histograms and box plots to analyze the data.
We also employed statistical modeling to highlight the relationship between the studied variables.

Initially, we quantified the signal power for each measurement. There are many different ways
to calculate signal energy or power. One approach is to compute the energy from the cepstral
coefficients [46]. The cepstral coefficients are a set of features obtained by first taking the natural
logarithm of the magnitude of the Fourier transform of a signal, and then obtaining the inverse
Fourier transform of the result. They are often applied in speech recognition and transcription tasks.
Another approach is to use the Teager–Kaiser (TK) operator. The TK operator is a measure of energy
that takes into account both the signal’s amplitude and frequency. Despite their low complexity,
the operators and their derivations are capable of estimating useful features of a signal such as
instantaneous frequency and spatial envelope and phase [47]. They can be used, for example, in the
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instantaneous estimation of AM-FM signals and images. For our objective in this work, however, it
was sufficient to compute the average power of the measurements in the following way:

PdB = 20 · log

(
1
N

N−1

∑
n=0

x2(n)

)
, (1)

where N is the length of sampling and x(n) is the voltage signal from the microphone.
The dataset contains 212 samples, with five features for each measurement: noise power, presence

of rain, window position, traffic condition, and maximum speed. Power and speed are numeric,
while the three other are categorical. We encoded the latter using natural numbers. The binary
variables (window position and rain) were encoded with 0s and 1s. Traffic condition was encoded in
descending order of severeness, i.e., “Green” corresponds to 3, and “Black” corresponds to 0.

We then performed an initial exploratory analysis. For the numeric features, we obtained a
histogram plot to understand the distribution of power and speed data. We also obtained a histogram
for noise power level by traffic condition to compare the distribution of noise level for each condition.
For categorical data, we obtained the box plot of power levels for each category separately to highlight
the difference of noise levels in them.

Next, we created a linear regression model for each feature. In the models, power is always
the explanatory (dependent) variable and the other features are the response (independent) variable.
The linear regression model, based on second-order, is the simplest feature extractor. It can be used to
measure to what extent two or more variables have a linear relationship. Even if this relationship is
only approximately linear, the model is a simple way to identify the influence of the inputs in the model
output. To compute the models (estimate the coefficients of a linear regression model), we used the
Ordinary Least Square (OLS) method [48]. It does so by minimizing the sum of the squared differences
(residuals) between the observed dependent variable and the prediction line.

We computed three metrics of the goodness of fit to compare the influence of the environment
features in the average noise power. First, we obtained the mean squared error (MSE) [49]. The MSE
is the average of the square of the errors between the model and the actual values. A smaller MSE
indicates a better fit, although the actual values of MSE depend on the scale of the data. It is mostly
used to compare different models for the same response variable in the same scale. We also computed
the coefficient of determination, R2 [49]. This value is the ratio of the sum of squared residuals to
the variance of the actual data values. It is always between 0 and 1 and represents the variation in
the response variable that is accounted or explained by the model. In the context of acoustic noise,
the R2 is also related to the noise power, that is, how much of the noise power can be attributed to the
explanatory variables.

The R2 can highlight the correlation between variables. However, it is not a complete description
of the goodness of fit of a model. The R2 assumes that all independent variables in the model explain
the variation in the response variable. It always increases when more variables are added to a model,
even if they in reality do not affect the independent variable. Thus, it does not evaluate the significance
of the relationships shown by the model [49].

A way to verify this significance is by computing the F-statistic [49]. Similar to the R2, the F-statistic
(or F-value) compares the explained and unexplained variation in the model, but weighted by the
degrees of freedom of the model, that is, how many model coefficients are used in relation to the
number of observations. Thus, it takes into account the complexity of the model.

The F-statistic is used in the F-test. In this test, the null hypothesis is that the model coefficients
are zero, and the alternative hypothesis is that at least one coefficient is not zero. The F-test shows if
the relationship between the variables is a result of chance or not. The higher is the F-value, the more
significant are the results drawn from the model.

For categorical data, the linear regression model can be used to describe the relationship between
two of more variables. However, it is not always adequate to represent this relationship as a linear
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function, as there is a limited, discrete range of values for the response variable. Thus, we also
obtained a logistic regression model for the binary variables [49]. The logistic model was obtained
by transforming the predicted values of the linear model to another scale that is bounded by 0 and 1.
Thus, the output of the model can be interpreted as a probability that a data point belongs to a certain
category, and the coefficients of the model are adjusted to find the best match of these probabilities to
the data. For logistic models, the goodness of fit metrics described above are not used. To compare the
models, we computed McFadden’s Pseudo-R2 [50]. While its calculation is different from the regular
R2, it has a similar interpretation.

We concluded our analysis by measuring the relationship between the environmental variables,
highlighting how much correlation they present with each other. We also built a multiple variable
regression model, using speed as the dependent variable and the reminder as explanatory variables.
We compared the contribution of each variable, and how much better a model with multiple predictors
is than the previous one variable model.

3. Measurement Setup

We selected a sedan C4 Lounge from Citroen with automatic transmission as the vehicle for our
measurements. The measurement setup used is similar to the one presented in [51]. It consists of a
ReSpeaker Core v1 (MT7688) board using the Analog-to-Digital Converter (ADC) AC108 with four
ADC delta-sigma, with four microphones connected to a Raspberry Pi 3 (model B) processor to collect,
compute the average power, and store the data. In our previous work [51], this setup was validated
with a Data Acquisition (DAQ) NI-6361 from National Instruments. It was positioned on the panel,
inside the cabin, similar to the position of the multimedia microphone, as illustrated in Figure 2.

Figure 2. Top view of the car cabin showing the microphone as a red square [52].

Figure 3 shows the measurement setup suspended on the panel stuck on the windshield by a
stand. The data were measured using the ReSpeaker at 48 kHz of sample rate. In total, 240,000 samples
are collected in 5 s, from which the average power was computed.
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Figure 3. The measurement setup.

The measurements were classified based on the known categorical parameters divided into 12
conditions and their combinations representing door window, rain, speed, and traffic conditions.
For each measurement, all parameters and observations were manually recorded in a diary, and the
power noise levels were computed in the Raspberry Pi. Moreover, we collected the spatial position,
aiming to spread the observations regarding the unknown parameters making them independent.

4. Results and Discussions

4.1. Measurements Presentation

Table 3 presents the number of measurements for each condition of the controlled environmental
variables. The number of samples is balanced between the conditions, except for the “Presence of
Rain” variable, which contains a significantly higher number of measurements with no rain because
of the weather conditions in northeastern Brazil. The table also shows the encoding information of
each feature.

Table 3. Distribution of the 212 measurements by the possible states of each categorical variable.

Position of Window Presence of Rain Traffic Condition

Categories Open Closed Yes No Very Slow Slow Medium Fast

No. of samples 95 117 18 194 48 55 58 51

Encoding 1 0 1 0 0 1 2 3

Figure 4 shows the distribution of the noise power levels in dBV, along with some descriptive
statistics. The histogram has a bell-like shape, with 50% of the measurements between −47.58 dBV
and −30.35 dBV.
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Figure 4. Histogram of measured noise power levels.

4.2. Traffic Analysis

Figure 5 presents the box plot of the power data grouped by traffic conditions. The box plots have
an ascending order from “Black” to “Green”, showing that as traffic becomes less severe, the noise
power level in the car tends to increase. Figure 6 shows another visualization of the noise power level
distribution. Analyzing the figure, the modes for each category are separate despite the significant
overlap between the curves.

Figure 5. Box plot of noise power data divided by traffic categories.
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Figure 6. Histogram of noise power data with distribution curves for each traffic category.

These results suggest there is some correlation between noise power and traffic,
and, by association, noise power and the speed of the car. To evaluate this relationship, we built
a linear regression model in the form

Traffic ≈ a0 + a1 · power , (2)

where a0 is the intercept and a1 is the coefficient of the explanatory variable (power level). Even though
the response variable is categorical, we chose to fit a linear model due to the ordered nature of the
traffic data, as well as due to the trend implied in Figures 5 and 6.

The model obtained is presented in Figure 7. The circles are the actual data points, and the
diamonds are the predictions. The colors represent the actual traffic category of data points and
predictions. The model shows that higher power level implies a better traffic condition, which agrees
with the behavior displayed by the box plot. Visually, one can see that the predictions are centered
around their actual values of traffic, although there is some variation that causes overlap between the
categories. For example, the red diamonds are centered around Traffic = 1.

The goodness of fit metrics for the model are presented in Table 4. It also presents the coefficients
of the model and their 95% confidence interval. The R2 value indicates that 71.27% of the variance
in Traffic is accounted for by the model. This implies a strong relation between the variables.
The significance of this relationship is confirmed by the high F-value and its low probability. The MSE
presents a low value; however, this is due to the categorical nature and small scale of the traffic data
(from 0 to 3). Therefore, the MSE does not provide much information about the quality of the model in
this case.
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Figure 7. Traffic data and predictions using the linear model. Colors represent the real traffic category
of the predictions.

Table 4. Model coefficients (with confidence interval in parenthesis) and goodness of fit metrics for
traffic vs. power model.

Linear Regression Coefficients Goodness of Fit

a0 a1 MSE R-Squared F-Statistic Prob (F)

4.6124 (4.342–4.883) 0.0787 (0.072–0.085) 0.3442 0.72 539.7 6.04 × 10−60

4.3. Rain Analysis

Figure 8 presents the box plot of power data grouped by the presence of rain. Contrary to the
previous case, the box plots for this variable have very distinct shapes. The “No Rain” category
presents a much bigger variation in noise than the other case and its relation to noise levels are not
intuitive. This behavior might be explained by the low number of measurements. Although we have
only 18 points (Table 2), and those points may not be enough to represent this category statistically,
these findings suggest a model where an external factor can contribute to the noise levels and do not
have any relation to the position of the measured location, but represent an environmental parameter.
This study, therefore, suggests that non-traditional factors can affect the noise level and they can even
produce unexpected results. Most notably, this is the first study to our knowledge to investigate the
rain contribution to the noise level measured in the setup located on the car panel.

Due to the distribution of data by category presented in Figure 8, it is expected that both the linear
and the logistic models will fit poorly to the data. Nonetheless, we built those two models to evaluate
the relationship between power and presence of rain, and also to provide a base of comparison with
the next variable (window position). The linear model is in the form

Rain ≈ b0 + b1 · power , (3)

where b0 is the intercept and b1 is the coefficient of the explanatory variable (power level). Tables 5 and 6
present the goodness of fit metrics for this model. Figure 9 presents the logistic model predictions.
The circles are the actual data points, and the diamonds are the predictions. From the small R2,
F-Statistic, and Pseudo-R2, the model shows no significant relationship between noise power and
rainfall. Our data have more measurements for one category and, as shown in Figure 8, the noise
power levels in the “Rain” scenario are completely contained in the range of values for the “No Rain”
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scenario. As presented in Figure 9, the model predicts all data points as belonging to the “No Rain”
group. Thus, this model provides no information about whether it is raining or not based on noise
power acquired inside the car. However, more data must be collected to create a more representative
model of the raining scenario. This is a matter of our further studies, especially considering the
shortage of rainfall at the measurement site.

Figure 8. Box plot of data divided by presence of rain.

Table 5. Model coefficients (with confidence interval in parenthesis) and goodness of fit metrics for
rain vs. power linear model.

Linear Regression Coefficients Goodness of Fit

b0 b1 MSE R-Squared F-Statistic Prob (F)

0.2278 (0.100–0.355) 0.0037 (0.001–0.007) 0.07649 0.025 5.346 0.0217

Table 6. Model coefficients (with confidence interval in parenthesis) and goodness of fit metrics for
rain vs. power logistic model.

Logistic Regression Coefficients Goodness of Fit

b0 b1 Pseudo R-Squared

−0.5264 (−2.100 1.047) 0.0516 (0.007–0.097) 0.04482

Figure 9. Data grouped by presence of rain and predictions using the logistic model.

4.4. Car Windows Analysis

Figure 10 presents the box plot of power data grouped by the position of the car windows.
From the position of the plots, the noise power levels tends to be higher when the windows are open,
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as this allow for more external noise in the car. Unlike the previous variable, the shape of the box
plots are similar, that is, the range of values is similar regardless of the condition. However, there is
significant overlap between the two blox plots: only 8.45% of the measurements in the “Open” group
have a power level above the maximum power level in the “Closed” group. This indicates that the
linear and logistic models will not be able to represent the data, similar to the Rain variable, as there is
not enough distinction in noise power between the two conditions. The linear model is in the form

Window ≈ c0 + c1 · power , (4)

where c0 is the intercept and c1 is the coefficient of the explanatory variable (power level).
Tables 7 and 8 present the goodness of fit metrics for the models, while Figure 11 shows the resulting
logistic model. Visually, we see the poor distinction between the categories. Table 7 shows that, while
the R2 and F-value are slightly bigger for the window case (compared to the Rain analysis), both sets
of models perform poorly in regards to the metrics and fail to represent the data. This implies a weak
relationship between their response variables (rain and window position) and noise power.

Figure 10. Box plot of data divided by the state of the car windows.

Figure 11. Data grouped by position of windows and predictions using the logistic model.
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Table 7. Model coefficients (with confidence interval in parenthesis) and goodness of fit metrics for
rain vs. power linear model.

Linear Regression Coefficients Goodness of Fit

c0 c1 MSE R-Squared F-Statistic Prob (F)

0.6718 (0.444–0.900) 0.0058 (0.000–0.011) 0.2449 0.019 4.091 0.0444

Table 8. Model coefficients (with confidence interval in parenthesis) and goodness of fit metrics for
rain vs. power logistic model.

Logistic Regression Coefficients Goodness of Fit

c0 c1 Pseudo R-squared

0.7088 (−0.228 1.645) 0.0238 (0.000–0.047) 0.01403

4.5. Speed Analysis

Figure 12 presents the speed data of the measurements in a histogram. There is a higher number of
measurements for the speed of zero. Those data points correspond to the “Black” traffic category, when
the car is stationary due to a heavy traffic jam. As shown in Table 3, the numbers of measurements
are balanced between traffic categories. Thus, the speed data are also balanced in accordance to the
traffic categories.

Of all environmental variables, speed is the only one numeric in nature. Therefore, we obtained a
linear regression model in the form:

Speed ≈ d0 + d1 · power , (5)

where d0 is the intercept and d1 is the coefficient of the explanatory variable (power level). Figure 13
presents the resulting model predictions and the actual data. They show that a higher car speed implies
a higher noise level inside the car, a result similar to that presented in Figure 7. As above, the circles
are the actual data points, and the diamonds are the predictions.

Table 9, which lists the goodness of fit metrics, reaffirms the result that the model is a good
representation of the data. The R2 value indicates that roughly 67% of the variation in speed is
explained by the model. The F-value is also high, indicating a significant relationship. These results,
compared with the one for the window variable, indicates that there is more contribution to the interior
noise levels from the vehicle itself than the wind [27].

The MSE value may seem high, specially compared to the three previous models. However,
this comparison is not relevant as MSE is not an adequate metric for categorical data. Furthermore,
the scale of speed data is bigger than that of the other variables, resulting in higher error values on
average. Finally, the simple linear regression cannot model the fact that speed data cannot be negative.
Since there is a high number of zero data points, a high MSE is expected.
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Figure 12. Histogram of the maximum speed of the car during the measurements.

Figure 13. Speed data and predictions using the linear model.

Table 9. Model coefficients (with confidence interval in parenthesis) and goodness of fit metrics for
speed vs. power model.

Linear Regression Coefficients Goodness of Fit

d0 d1 MSE R-Squared F-Statistic Prob (F)

100.5496 (93.70–107.399) 1.8095 (1.640–1.979) 220.8105 0.68 445.2 8.60 × 10−54

4.6. Multiple Variable Analysis

The previous analysis indicated the speed of the car and traffic conditions contribute the most to
the noise power inside the car, while the position of the windows and rain presented a weak influence.
Another way to verify how strong is the relationship between the variables and noise power is by
computing their cross-correlation. Figure 14 presents a visualization of the correlation matrix of the
data. Noise power has a high correlation with both speed and traffic, and a low correlation with the
state of the windows. This confirms the behavior presented in Figures 7 and 13 that noise power tends
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to increase with the speed of the car. It also reaffirms the result presented in Figure 11 and Table 8 that
the window variable has low explanatory value in the model.

Figure 14. Correlation matrix of the dataset.

Figure 14 also shows a correlation of 0.94 between traffic and speed. This high correlation is
expected. As stated in Section 2.1, the traffic categories were obtained in Google Maps by averaging the
speed of the cars reported by the application’s users. The correlation is not exactly 1 due to variations
in driving speed during measurement for each traffic scenario. Nonetheless, in the context of statistical
modelling, traffic and speed convey roughly the same information about the response variable and
can be considered redundant.

To illustrate this redundancy between speed and traffic, we built a model to predict the speed of
the car using all the other variables as independent.

speed ≈ e0 + e1 · power+ e2 · trafficred + e3 · trafficorange + e4 · trafficgreen + e5 · rainyes + e6 ·windowopen , (6)

where e0 is the intercept and e1 is the coefficient of the power level; e2, e3, and e4 are the coefficient
added when traffic conditions are red, orange and green, respectively; e5 is the coefficient added when
there is rain in the sample; and e6 is the coefficient added when the windows are open. Although we
do not expect a physical relationship between the rain and window variables and speed, we include
these variables in this model to verify that they do not influence in the results. In order words, we
want to verify that there is no bias in the measured speed data in relation to the absence or not of rain
and the state of the car windows.

The model has prior-knowledge about the speed interval during measurement, which is conveyed
by the traffic variable. The results shown in Figure 15 illustrate this. There are four groups of predictions
divided by the traffic categories. No prediction is grouped incorrectly. Each traffic group has four lines,
corresponding to the possible combinations of window and rain variables. These lines lie close to each
other, indicating that the models for each pair of those conditions give similar predictions. This is
expected, as speed has no relationship with rain and window, and the speed measurements were
collected in a balanced quantity for all possible conditions of the variables. Effectively, the variable
power, which determines the slope of all lines, is the one that determines the speed in each traffic group.

The goodness of fit metrics of the model are presented in Table 10. The high R2 value indicates
that most of the variation in speed is accounted for by the model. However, comparing Table 9 (noise
power as the only explanatory variable) and Table 10, there is not much improvement in the F-value
with the addition of the three other variables. Thus, the traffic variable does not contribute much to
the model of speed, due to its redundancy. We conclude that either traffic or speed can be used as a
good explanatory variable to noise power inside a vehicle, but not simultaneously.
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Figure 15. Speed data grouped by traffic conditions and predictions using the linear mode with all
explanatory variables.

Table 10. Model coefficients and goodness of fit metrics for the speed vs. all other variables model.

Linear Regression Coefficients Goodness of Fit

e0 e1 e2 e3 e4 e5 e6 MSE R-Squared F-Statistic Prob (F)

14.19 0.2544 11.21 30.91 60.50 −2.70 −1.08 48.80 0.931 460.04 5.50 × 10−116

5. Conclusions

Acoustic noise is a central issue in vehicle design. It is expected that will gain more attention as
health concerns and multimedia, security, and autonomous vehicle applications become more prevalent.
Prior work has shown different contributions to noise levels in the vehicle interior, investigating its
subsystems and components. Those studies are mostly conducted in laboratory environments or
using mathematical models. However, they may underestimate or ignore noise sources from specific
conditions inside or outside the car. In this study, we presented an experimental evaluation of the
contribution of different acoustic noise sources inside a car. The experiments were carried out by
using a low-cost measurement setup inside a vehicle to acquire noise power levels in different traffic
areas and different controlled conditions. Data visualization, statistical modeling, and goodness of fit
metrics were used to assess the influence of speed, traffic, rain, and position of the car windows.

Our experiments in real traffic conditions showed a strong correlation between the speed of a
car and its interior noise level, likely due to higher noise generation in the motor at higher speeds.
Those results are correspondent with our general theoretical assumption. In contrast, the state of the
car windows seems to not contribute significantly to the measured noise. The same, even with few
collected data, can be speculated about the presence of rain. This could imply that most of the noise
inside the vehicle can be attributed to its operation and movement, creating a higher variation on noise
level and thus reducing the correlation of these less dominant factors. Thus, the results suggest that
efforts to improve acoustic quality inside a vehicle should be focused on reducing the noise generated
by the car itself.

To further our research on this topic, we plan to collect more noise data and study more variables,
such as wind speed and different vehicles, as well as considering the noise in different car positions.
We also plan to evaluate the vehicular scenario with the presence of human speech sources in the
driver’s seat, passenger’s seat, and backseat. We also plan to investigate the spectral characteristics of
the measured noise, which is especially important for noise suppression purposes. The data collected
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could then be explored in machine learning tasks and source location problems in the context of
vehicle applications. In addition, more data may be acquired in rain conditions, enriching our study by
providing more data points at this condition. Finally, an investigation of the impulsiveness of acoustic
noise [51] in the vehicular scenario is warranted.
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Abstract: Environmental noise can be defined as the accumulation of noise pollution caused by
sounds generated by outdoor human activities, Road Traffic Noise (RTN) being the main source in
urban and suburban areas. To address the negative effects of environmental noise on public health, the
European Environmental Noise Directive requires EU member states to tailor noise maps and define
the corresponding action plans every five years for major agglomerations and key infrastructures.
Noise maps have been hitherto created from expert-based measurements, after cleaning the recorded
acoustic data of undesired acoustic events, or Anomalous Noise Events (ANEs). In recent years,
Wireless Acoustic Sensor Networks (WASNs) have become an alternative. However, most of the
proposals focus on measuring global noise levels without taking into account the presence of ANEs.
The LIFE DYNAMAP project has developed a WASN-based dynamic noise mapping system to
analyze the acoustic impact of road infrastructures in real time based solely on RTN levels. After
studying the bias caused by individual ANEs on the computation of the A-weighted equivalent
noise levels through an expert-based dataset obtained before installing the sensor networks, this
work evaluates the aggregate impact of the ANEs on the RTN measurements in a real-operation
environment. To that effect, 304 h and 20 min of labeled acoustic data collected through the two
WASNs deployed in both pilot areas have been analyzed, computing the individual and aggregate
impacts of ANEs for each sensor location and impact range (low, medium and high) for a 5 min
integration time. The study shows the regular occurrence of ANEs when monitoring RTN levels in
both acoustic environments, which are especially common in the urban area. Moreover, the results
reveal that the aggregate contribution of low- and medium-impact ANEs can become as critical as
the presence of high-impact individual ANEs, thus highlighting the importance of their automatic
removal to obtain reliable WASN-based RTN maps in real-operation environments.

Keywords: road traffic noise; noise monitoring; dynamic noise maps; anomalous noise events;
individual impact; aggregate impact; WASN; sensor nodes; urban and suburban environments.

1. Introduction

Environmental noise can be defined as the accumulation of noise pollution caused by sounds
generated by human activity outdoors, mainly produced by transport, road traffic, rail traffic, air traffic
and industrial activities [1]. According to the World Health Organization, noise exposure produces
a loss of around one million healthy life years in Western Europe every year due to different types
of derived diseases [2,3]. Focusing on this public health problem, the European (EU) authorities
published the Environmental Noise Directive (END) [1] in 2002, which requires the EU member states
to tailor noise maps and to develop the subsequent action plans to mitigate noise every five years for
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major agglomerations and key infrastructures [4]. To address this issue in a harmonized manner, the
Common Noise Assessment Methods in Europe (CNOSSOS-EU) was also developed, defining the
measurement guidelines to allow comparable noise assessments across the EU [5]. However, as one
of the first set of results obtained after the implementation of the END regulation showed [6], noise
pollution continues to be one of the principal causes of health problems in Europe. This premise was
further endorsed by [7,8], which led to the development of an updated version of the CNOSSOS-EU [9].

The aforementioned dramatic effects of noise pollution on citizens are mainly caused by traffic
noise, as it is the main noise source in urban and suburban areas [10,11]. Road Traffic Noise (RTN)
maps have been historically created from expert-based measurements using certified devices during
specific time periods and locations, considering vehicle flows averaged over long periods of time [12].
During the recordings, the presence of acoustic events non-related to road traffic (e.g., sirens, horns,
works, dogs’ barks, airplanes flyovers, etc.) may occur [13]. As a consequence, the collected
acoustic data should be cleaned of these undesired events before feeding the noise map creation
software [13] to avoid biasing the computation of the A-weighted equivalent sound levels (LAeq)
beyond 2 dB, as recommended by the European Commission Working Group Assessment of Exposure
to Noise (WG-AEN) [14]. In this context, the Signal-to-Noise Ratio (SNR) of these acoustic events
becomes a crucial parameter to evaluate and model [15,16]. Although some researchers have opted to
control the SNR of the events by creating artificially mixed datasets (see e.g., [17–20]), their accurate
characterization remains as an open research question as it is almost unfeasible to represent the wide
diversity of acoustic data for real world [21].

The so-called Wireless Acoustic Sensor Networks (WASNs) have become an alternative to the
creation of noise maps using real-life data, since they allow the ubiquitous monitoring of environmental
noise [22–24]. During the last decade, several WASNs have been deployed in different smart cities such
as Barcelona [25], Algemesí [26], Pisa [27], Monza [28], Halifax [29] and Milan and Rome [30] in Europe,
or New York city [31], to name a few. In this WASN-based approach, the traditional manual cleaning
of the Anomalous Noise Events (ANEs) on the noise pattern [32] becomes unfeasible due to the huge
volume of data that have to be processed in real time [13]. As a consequence, the first generation of
these WASN-based environmental noise monitoring systems have mainly been focused on measuring
the global sound levels of the sensed locations, without considering the impact of the presence of
specific acoustic events on the LAeq computation. To address this issue, some projects have started
incorporating acoustic event detection techniques within the WASN-based noise monitoring pipeline.
The Sounds of New York City (SONYC) project includes the real-time identification of 10 common
classes of urban sound sources [31] through a machine listening system trained after artificially mixing
the events with background noise in the UrbanSound dataset [16]. Moreover, the DYNAMAP project
aims at developing a WASN-based dynamic noise mapping system to monitor the acoustic impact of
road infrastructures through the creation of noise maps in real time [30]. The project includes two pilot
areas: one in the District 9 of Milan as urban area [33], and another in the A90 highway surrounding
Rome as a suburban area [34,35]. As the system focuses on measuring RTN levels solely, the ANEs
present in the acoustic environments should be automatically removed. To that effect, a machine
listening algorithm denoted as Anomalous Noise Events Detector [36] was designed and initially
trained using a 9-h expert-based dataset collected from the two pilot areas before installing both sensor
networks [21]. The analysis of that preliminary dataset highlighted the importance of the removal of
individual ANEs based on their duration and SNR [37]. However, no evidence of a critical impact
was yet observed in that dataset due to the presence of several ANEs within the same period of time,
probably because the expert-based dataset missed several key aspects from real operation, such as
different RTN patterns between day-night and weekday-weekends, or variable weather conditions,
among others [38].

After the deployment of the two WASNs in the urban and suburban pilot areas, this paper
evaluates the aggregate impact of ANEs on the LAeq computation of RTN in both environments in
real operation. Besides analyzing the individual impact of ANEs on the measurements, the analysis
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methodology focuses on evaluating the bias caused by the presence of several ANEs within a given
period of time, taking into account their impact range (low, medium or high) and sensor location.
The study is conducted on 304 h and 20 min of WASN-based labeled acoustic data collected through
both sensor networks, before proceeding to update the ANED algorithm with both WASN-based
datasets (see [39,40] for a detailed description of the general characteristics of the urban and suburban
datasets, respectively).

The paper is structured as follows. Section 2 reviews practices in acoustic environments where the
salience and the impact of the events is a key issue. Section 3 presents the impact analysis methodology
and impact-related measurements. Section 4 presents the conducted experiments and the results
obtained from the analysis of the WASN-based urban and suburban acoustic datasets. Finally, after
discussing several key aspects of this work in Section 5, the main conclusions and future work are
described in Section 6.

2. Related Work

In this section, we review several works from the literature dealing with the identification of
salient acoustic events regardless of the noise source; this issue together with the duration of the event
sets the basis for the evaluation of the actual impact of these events on the LAeq computation.

One of the most challenging issues when working with environmental acoustic data recorded in
real-life is their accurate characterization, which is supervised by experts. More precisely, this process
deals with the parameterization of the data by means of several representative features, among which
are the temporal limits of each sound event—i.e., its actual duration—by setting up its start and end
boundaries [41,42], and its acoustic salience with respect to the background noise [15,16], i.e., the SNR
of the event, which is a key parameter to consider. To properly address this issue, it should be taken
into account that the events that need to be detected are usually independent one from each other, and
typically present a variable duration and SNR. Furthermore, no temporal correlation can be found
among them, which makes the challenge of parameterizing audio events particularly more complex
compared to speech or music signal [43]. Consequently, the accurate characterization of environmental
sound remains as an open research question in real world environments [21].

To work with a controlled environment, artificially-mixed datasets are usually built taking into
account a predefined range of SNRs when mixing the events with the background noise during the
dataset process generation. Some examples can be found in Foggia et al. [17], Stowell et al. [18] and
Socoró et al. [19] (see [21] for further examples). The measurements of SNRs in audio fragments
makes it possible to sort events by their degree of acoustic salience with respect to their environment.
Moreover, datasets containing synthetic or artificially modified samples also respond to the need to
generate more samples of a particular type of noise that is scarce , which is yet today one of the main
limitations of acoustic event detection [44]. The explicit SNR measure can be evaluated by means of a
closed set of saliency levels, such as −6 dB, 0 dB or +6 dB, as suggested by Stowell et al. in [18]; the
authors also propose to record live scripted monophonic event sequences in acoustic environments
under control. Foggia et al. [17] mixes several sounds related to surveillance (e.g., scream, glass
breaking and gunshots) with both indoor and outdoor environments with six different levels of
SNR (from 5 dB to 30 dB, with a step of 5 dB), after the observation of the occurrences of these
events in a real-life environment. Socoró et al. [19] presents a dataset composed of a mixture of
sound sources considering road traffic noise plus other type of sound events generated using two
different SNRs (+6 dB and +12 dB) in order to assess the performance of an anomalous noise event
detector. The original non-traffic-noise related audio fragments were extracted from Freesound
(https://freesound.org/) while road traffic noise was recorded in a city ring road in real-life conditions.
Nakajima et al. [45] works with a dataset recorded in real operation with several examples of noise
sources of interest (e.g., cicadas, outside air conditioner, road traffic noise, and neighborhood noise).
The work complements the dataset with artificial mixtures to increase the sound source diversity
by means of varying the salience of the events using the SNR of three sound sources in the dataset,
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adapting the margins from −6 dB to +6 dB depending on the characteristics of the noise source.
Finally, in Koizumi et al. [46], the authors conduct an objective evaluation on a synthetic dataset, using
an open toy-car-running sound dataset; the dataset includes four types of factory noises, and it was
generated by mixing synthetically those audio samples at a SNR = 0 dB, together with the audio files
of less than 5-s duration from the Task-2 dataset of DCASE 2018 Challenge [47].

Following a different approach, several research works consider auditory attention when
evaluating the impact of sound events on acoustic measurements through the evaluation of their
SNR levels, whose focus may vary depending on the domain of application (e.g., noise monitoring
or surveillance) or the signal of interest (see [48] and references therein for further details). These
works analyze the perceptual relevance of audio events according to human response, as in [15], where
De Coensel and Bootteldooren design a salience-based map to simulate the capability of humans
to switch the attention among several auditory stimuli along time, considering noise examples of
means of transportation. This research approach is focused on the identification of the salient event.
However, it ignores both its origin and its relative energy with respect to background noise. Following
this approach, Salamon et al. [16] included a perceptually based binary descriptor in their dataset to
discriminate whether the event was perceived as the main noise source or in the background of the
recording. Afterwards, the dataset was used to evaluate the performance of a sound event classification
algorithm, getting better accuracy results on foreground events rather than those perceived in the
background. Annotating and evaluating a recorded set of audio files is a very time-consuming task.
To address these limitations, Salamon et al. published Scaper [20], whose goal is to conduct soundscape
synthesis together with data augmentation given a soundbank, controlling characteristics such as
the number and type of events, their timing, duration and SNR with respect to a background sound.
The final goal is to ease the dataset generation process but also to ensure that the sets of data evaluated
present suitable statistical characteristics for training and test of acoustic event detection algorithms.

Finally, it is worth mentioning that a couple of WASN-based projects have recently incorporated
the detection of acoustic events in urban and suburban environments in the environmental noise
monitoring pipeline. To that effect, the SONYC project [31] has developed a representative dataset
with diverse sounds of interest, using the data gathered from the 56 sensors deployed in different
neighborhoods of New York, considering up to 10 different common urban sound sources from the
urban soundscape (highly frequent in urban noise complaints). The UrbanSound dataset was created
after artificially mixing the events coming from Freesound with the background noise collected in
the project [16]. Our team, in the framework of the DYNAMAP project [30] made its first attempt to
create an acoustic dataset of the urban and suburban pilot areas (District 9 in Milan and A90 highway
surrounding Rome) before the sensors of the two WASN were deployed in those scenarios, by means
of an expert-based recording campaign [21]. The analysis of those datasets showed the highly local
and unpredictable nature of anomalous noise events, which were manually labeled and used to train
the preliminary version of the ANED algorithm [36]. Recently, the deployment of the two WASNs in
both pilot areas has led to the generation of a suburban acoustic dataset through the 19-nodes WASN
in Rome [40], together with the completion of the first steps of the creation of an urban dataset through
the 24-node WASN installed in Milan in real operation [39]. From these two experiences, it can be
concluded that the evaluation of the acoustic salience of any environmental acoustic event is relevant
in order to improve the accuracy of the derived machine listening approaches [43], an issue that was
justified in [37] after evaluating the individual impact of the detected events on the overall equivalent
noise level computation considering 9 h of real-life acoustic data collected through an expert-based
recording campaign. However, as far as we know, no specific analysis has been conducted to assess
to what extent the concentration of ANEs with low SNRs within a period of time may bias the
WASN-based computation of the LAeq measurements.
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3. Impact Analysis Methodology

This section describes the methodology followed to analyze the bias caused by ANEs on the LAeq
computation for a given integration time T (hereafter denoted as LAeq,T), building on the analysis
methodology presented in [37]. The impact analysis methodology permits the study of both individual
and aggregate contributions of the anomalous noise events present within a specific period of time.
To that effect, individual and aggregate impact histograms are obtained from the labeled data for
each sensor of the network according to the considered impact ranges. As depicted in Figure 1, the
analysis starts with the labeled acoustic data collected from a WASN of NS sensors in real operation.
After windowing the audio streams into frames of T seconds, the individual and aggregate impacts
of the ANEs present in each period of time t are computed and stacked. Finally, both individual and
aggregate impact histogram matrices are derived to account for the occurrences belonging to each
impact range defined by a set of impact thresholds. The following paragraphs explain the key elements
of the proposed analysis methodology in detail.

Wireless Acoustic 
Sensor Network          

(  sensors) 

Impact Histogram Matrices 
( ) 

Labelled WASN-based 
Acoustic Database 

Impact Analysis Methodology 
 

Histogram 
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Data 
Stacking     

  

Aggregate Impact Histogram 

Data 
Stacking    

   

Individual / 
Aggregate 
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Integration time Impact thresholds 

Experts 

Figure 1. Block diagram of the impact analysis methodology on a labeled WASN-based acoustic
dataset obtained from a NS sensors network, where T is the integration time considered to compute
Li

Aeq,T(t) and L̂i
Aeq,T(n, t) for each sensor i and event n. Moreover, ΔLi

Aeq,T(n, t) and AIi
T(t) denote

the individual and aggregate impacts of the ANEs, respectively. Finally, hij represents the components
of the histogram matrices H derived from the individual and aggregate impact histograms Hi, which
account for the impact values according to NR impact ranges defined by a set of impact thresholds
Γ = {γ1, γ2, ..., γ(NR+1)}.

• Aggregate impact computation per sensor

The Aggregate Impact (AI) of several acoustic events can be defined as the accumulated contribution
of the individual impacts of all the ANEs present within a period of time and sensor node.

It is denoted as AIi
T(t), where indexes i and t respectively represent the sensor number, for

i = {1, 2, ..., NS}, and the integration time period, for t = {1, 2, ..., Ni
T}, Ni

T being the total number
of integration time periods of length T considered for its computation given a sensor i, and it is
defined as
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AIi
T(t) =

Ni
E(t)

∑
n=1

ΔLi
Aeq,T(n, t), (1)

where ΔLi
Aeq,T(n, t) is the individual impact of the n-th ANE on the LAeq,T computation within

the integration time period t, Ni
E(t) being the total number of ANEs present in that time period

for sensor i, and it is computed as

ΔLi
Aeq,T(n, t) = Li

Aeq,T(t)− L̂i
Aeq,T(n, t), (2)

Li
Aeq,T(t) being the total A-weighted equivalent sound level in the integration period of interest

t for the i-th sensor (i.e., considering RTN and all ANEs found in that t), and L̂i
Aeq,T(n, t) the

corresponding noise level after removing the n-th ANE from the measurement through the linear
interpolation of the LAeq,1s values of the previous and subsequent RTN samples (the reader is
referred to [37] for further details).

To that effect, first, the audio data collected from sensor i is divided into Ni
T windows of T

seconds length (see Figure 1). Next, the A-weighted equivalent noise levels with and without
ANEs are computed, whose difference gives the n-th individual ANE impact ΔLi

Aeq,T(n, t). Then,
the aggregate impact of window t is obtained by accumulating the individual impacts of all the
ANEs it contains.

• Range-based impact analysis per sensor

The analysis methodology also aims at categorizing the relevance of both individual and aggregate
impacts according to NR impact ranges Θ = {θ1, θ2, ..., θNR} (in dB) delimited by a predefined set
of impact thresholds Γ = {γ1, γ2, ..., γ(NR+1)}, and it is computed as

Θ =
NR⋃
j=1

θj =
NR⋃
j=1

[γj, γj+1), (3)

where θj is defined as the impact range where γj ≤ ΔLi
Aeq,T(t) < γj+1, for j = {1, 2, ..., NR}.

This information is statistically analyzed through the histograms obtained for each sensor (see
Figure 1) in the impact histogram matrix H = (hij) ∈ N(NS×NR), hij being the number of occurrences
of ANEs that account for an impact within θj observed in the i-th sensor as follows

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1

H2
...

Hi
...

HNS

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h11 h12 · · · · · · · · · h1NR

h21 h22 · · · · · · · · · h2NR
...

...
. . . . . . . . .

...
...

...
. . . hij

. . .
...

...
...

. . . . . . . . .
...

hNS1 hNS2 · · · · · · · · · hNS NR

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where

hij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ni
T

∑
t=1

NE(t)

∑
n=1

1θj

(
ΔLi

Aeq,T(n, t)
)

for individual impact,

Ni
T

∑
t=1

1θj

(
AIi

T(t)
)

for aggregate impact,

(5)
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with 1θj(·) being the indicator function defined for the interval range θj as

1θj(x) =

{
1 if x ∈ θj,

0 if x /∈ θj.
(6)

Notice that rows of H (denoted as Hi in Equation (4)) correspond to the impact histograms
obtained from each i sensor.

• Analysis of the critical aggregate impacts per impact range and sensor

To complement the previous analyses, it is also interesting to identify the origin of critical AIs for
those cases that surpass the critical threshold γc. To that effect, the aggregate impact of ANEs for
a given integration time period and sensor is computed considering only those individual ANEs
which ΔLi

Aeq(n, t) belongs to a particular impact range (i.e., ΔLi
Aeq(n, t) ∈ θj) as follows

AIi
T(θj, t) = ∑

n∈Ψ(θj ,t)
ΔLi

Aeq,T(n, t), (7)

where Ψ(θj, t) represents the subset of ANE indices within t which individual impact belongs to
impact range θj.

Finally, the critical AI histogram matrix Hc = (hc
ij) ∈ NNS×NR is defined as a particular case of H

(see Equation(4)) considering the matrix components as

hc
ij =

Ni
T

∑
t=1

1θc

(
AIi

T(θj, t)
)
, (8)

the 1θc(x) being a particular case of the indicator function defined by θj = θc (see Equation (6)),
where θc = [γc,+∞) defines the range of critical impacts, as γc represents the threshold of a
non-tolerable deviation of the A-weighted equivalent road traffic noise levels.

4. Experiments and Results

This section describes the results of the experiments from the impact analysis conducted on
the two environmental WASN-based audio databases from the DYNAMAP’s Milan and Rome pilot
areas [39,40]. According to the project specifications, the considered integration time to update the
LAeq,T values of the RTN maps is 5 min [30], i.e., T = 300 s. To analyze to what extent the collected
ANEs from each sensor location bias the LAeq,300s measurement, the impacts are categorized within
three impact ranges (i.e., NR = 3) [37], accounting for those occurrences (from either individual or
aggregate ANEs) causing a low-impact in θ1 = (−∞, 0.5) dB, a medium-impact in θ2 = [0.5, 2) dB, and,
finally, a high-impact in θ3 = [2,+∞) dB, θ3 = θc being as this last interval collects those cases that
surpass the critical threshold γc = 2 dB according to the WG-AEN [14]. Regarding the two WASNs,
the number of sensors NS considered for the subsequent analyses is 19 for the suburban network, and
23 for the urban one, whereas the total number of evaluated segments of 5 min is 1812 in Milan and
1840 in Rome, respectively.

4.1. WASN-Based Environmental Databases

After the deployment of the sensor networks in the urban and suburban pilot areas of the
DYNAMAP project, two WASN-based databases were obtained from environmental acoustic data in
real-operation conditions. On the one hand, the nodes distribution across the urban area of Milan is
based on the clustering of traffic noise profiles in order to place the best sensor locations for different
road categories [33]. On the other hand, in the Rome suburban area, the sensor nodes have been

121



Sensors 2020, 20, 609

spread along the A90 highway, considering several scenarios of different complexity (single road,
crossings, nearby railways and multiple connections) [34,35]. Figure 2 depicts two examples of the
sensor placements in both urban and suburban areas, and Appendix A details the sensors’ Ids as well
as the description of their locations within Tables A1 and A2 for the urban and suburban environments,
respectively.

(a) Example of the sensor in its location in the
urban area of Milan.

(b) Example of the sensor in its location in the
suburban area of Rome (picture property of
ANAS S.p.A.).

Figure 2. Examples of the location of the low-cost acoustic sensors in the DYNAMAP’s urban and
suburban pilot areas.

In both cases, the recorded databases include data from two days with different traffic conditions:
one from a weekday (on Tuesday, the 28th of November 2017 for the urban area, and on Tuesday, the
2nd of November 2017 for the suburban environment), and another during the weekend (on Sunday,
the 3rd of December 2017 on the urban area, and on Sunday, the 5th of November 2017 in the suburban
environment). The audio recordings were collected in continuous raw audio clips from the first 20 min
of each hour (considering a sampling frequency of 48 kHz) , as a trade-off between the storage capacity
and communications resources of the nodes, and obtaining a representative sub-sampling of the LAeq
measurements along the day [40]. The gathered acoustic data were manually labeled by experts in
audio signal processing (see [39,40] for further details). As a result, up to 28 ANE subcategories were
identified. Table 1 lists the 16 types of ANEs observed during the manual labeling process in the
suburban environment (subcategories being stru and trck only specifically detected in this scenario),
together with the 26 subcategories identified during the annotation of the urban dataset (being bell,
blin, dog, glas, peop, rubb, sqck, step, tram and wrks those ANE subcategories typically found within
this environment). Meteorological-related ANEs like thun, rain and wind cannot be attributed to any
specific acoustic environment since they are highly dependent on the weather during the days of
the WASN-based data collection. Finally, audio excerpts that contained a mixture of different sound
sources (e.g., diverse ANEs together with RTN as background) were labeled as complex sound mixtures
or CMPLX. Both CMPLX and ANEs are considered for the subsequent impact-related analyses as both
contain undesired acoustic events, after windowing the audio streams into Ni

T frames of length T (see
Figure 1).
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Table 1. Description and % of occurrences of the 28 sound subcategories attributed to anomalous
noise events found throughout the manual labeling process of the WASN-based urban and suburban
acoustic databases.

Label
Suburban Urban

Description
Counts (%) Counts (%)

airp 0.1 1 Noise of airplanes and helicopters

alrm 0.2 0.3 Sound of an alarm or a vehicle beep moving backwards

bell 0 1.2 Church bells

bike <0.1 3.6 Sound of bikes and bike chains

bird 15.1 14.7 Birdsong

blin 0 <0.1 Opening and closing of a blind

brak 23.1 12.7 Brakes and conveyor belts

busd 2.8 1.1 Opening bus door (or tramway), depressurized air

dog 0 2.5 Barking of dogs

door 2.6 14.7 Closing doors (vehicle or house)

glas 0 0.1 Sound of glass crashing

horn 6.7 3.7 Horns of vehicles (cars, motorbikes, trucks, etc.)

inte 0.3 0.2 Interfering signal from an industry or human machine

musi <0.1 0.6 Music in car or in the street

peop 0 22.2 Sounds of people chatting, laughing, coughing, sneezing, etc.

rain 23.7 0.4 Sound of heavy rain

rubb 0 0.1 Rubbish service (engines and grabbing system)

sire 1.8 0.7 Sirens (ambulances, police, etc.)

sqck 0 0.8 Squeak sound of door hinges

step 0 13.7 Sounds of steps

thun 7.4 <0.1 Thunderstorm

trck 11.9 0 Noise when trucks or vehicles with heavy load passed over a bump.

tram 0 0.7 Stop, start and passby sounds of tramways

tran 2.7 <0.1 Sound of trains

trll 0 1 Sound of wheels of suitcases (trolley)

stru 1.4 0 Noise of highway portals structure caused by vibration of trucks passbys

wind 0 <0.1 Noise of wind (movement of the leaves of trees,...)

wrks 0 4.1 Works in the street (e.g., saws, hammer drills, etc.)

As a result, the subsequent analyses evaluate 153 h and 20 min of audio data obtained from the
19 sensors placed on the A90 highway portals along the Rome suburban environment, and 151 h
obtained from 23 different sensors placed in the building façades of several public buildings across the
District 9 of Milan, after discarding node hb114 due to technical problems during the data recording
process, but keeping sensor hb119 despite missing some data from the Sunday recordings to 75%Ni

T .
Table 2 summarizes the general characteristics of both analyzed datasets. As can be observed,

RTN is the majority class in both cases, as identified 83.7% of the time in the urban environments, while
this value raised to 96.5% in the suburban scenario. Accordingly, ANEs were more frequently observed
in the urban than in the suburban dataset, being more than four times detected in this environment
compared to the suburban one (8.7% of ANE in urban while 1.9% of ANE in suburban). It should be
also noticed that the increase of ANE occurrences in the urban environment also fostered the presence
of highly complex audio passages.

Table 2. General characteristics of the WASN-based urban and suburban acoustic databases evaluated
considering the impact analysis methodology.

Acoustic Environment Total Duration RTN (%) ANE (%) CMPLX (%)

Milan (Urban) 151 h 83.7% 8.7% 7.6%
Rome (Suburban) 153 h 20 min 96.5% 1.9% 1.6%
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4.2. Individual Impact of ANEs

To understand the relevance of the events, first, a study of the individual ANE impact is conducted
following the aforementioned impact analysis methodology. As an overall analysis, Table 3 details the
number of occurrences and sensor activation ratios for each environment and recording day.

Table 3. Number of occurrences and sensor activation ratios per sensor for low, medium and high
individual impact ranges.

Individual Impacts
Low Impact Medium Impact High Impact
(−∞, 0.5) dB [0.5, 2) dB [2,+∞) dB

Occurrences Activation Occurrences Activation Occurrences Activation
Count (%) Count/NS Count (%) Count/NS Count (%) Count/NS

Milan
Tuesday 21,264 (99.5%) 23/23 76 (0.4%) 21/23 28 (0.1%) 16/23
Sunday 15,215 (99.4%) 23/23 58 (0.4%) 20/23 29 (0.2%) 16/23

Rome
Tuesday 2105 (98.1%) 19/19 33 (1.6%) 13/19 7 (0.3%) 5/19
Sunday 3415 (99.0%) 19/19 31 (0.9%) 11/19 5 (0.1%) 3/19

As can be observed, the presence of anomalous noise events is common in both environments,
particularly in Milan which records 10 times more ANEs on Tuesday and 4 times more on Sunday
than Rome. Specifically, all recording days have yielded a high percentage of low-impact ANEs, but in
Milan, particularly, the presence of low-impact events in relation to the other impact ranges, is higher
than in Rome, rising from 98.1 to 99.5% on Tuesday, and from 99.0 to 99.4% on Sunday. In Rome,
however, the percentage of medium-impact events is higher than in Milan on both days, with a total
of 134 ANEs in Milan and 64 in Rome, respectively. This implies that the sensors in Milan can detect
this kind of event in almost all sensors, while only 60% of the sensors in Rome can detect these ANEs.
Finally, concerning high-impact events, the percentage of occurrences is similar in both locations,
despite Milan has 57 high-impact events detected in 16 sensors and Rome only 12, which activate
few sensors.

In Figure 3, the corresponding impact histogram matrices for individual ANEs are detailed for
each sensor location according to the three impact range intervals (low, medium and high). Notice that
the number of occurrences in the low-impact intervals is depicted separately from the medium and
high-impact intervals for illustration purposes, as it is more than two orders of magnitude larger.

It can be observed that the maximum number of low-impact ANEs has been found in sensor
hb123 of Milan on Tuesday, with 2374 occurrences. In contrast, the maximum number of low-impact
events in Rome is 379 for sensor hb143 on Sunday. Concerning the medium-impact events in Milan, the
first day accounts for the highest number of events, coming from hb139, which obtains the maximum
number of medium-impact ANEs, with 9 occurrences, also presents a significant number in Sunday,
with 6 events. In the rest of the cases in Milan, no clear pattern is observed relating both recording days.
In Rome, however, sensor hb104 attributes for the maximum number of medium-impact events, with
18 occurrences on Tuesday and 17 on Sunday. This is a particularly relevant case in the suburban area
as the second closest sensor is hb134 with only 3 medium-impact events on Sunday. When looking at
the column depicting high impact ANEs, it can be observed that a maximum of 5 events were captured
on Sunday in sensor hb133 of Milan, while also a significant presence on Tuesday with 4 occurrences.
In Rome, sensor hb104 accounts for the highest number of high-impact ANEs on Tuesday, with 3
events, which also recorded one of the highest number of occurrences on Sunday, with 2 events.
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Figure 3. Individual impact histogram matrices (obtained using integration time T = 300 s)
categorized in three impact ranges (low, medium and high) for the urban (Milan) and suburban
(Rome) environments obtained from a weekday (Tuesday) and weekend day (Sunday).

4.3. Aggregate Impact of ANEs

This section details the results obtained from the analysis of the labeled data in order to find to
what extent the presence of several ANEs with low and medium individual impacts within the same
integration period can bias the LAeq,300s computation.

First, Table 4 shows the number of occurrences and sensors activation ratios of the AI for
environment and recording day. As it can be observed from the table, the overall presence of
occurrences and activation ratios are similar for both days within each location. However, when
comparing Milan with Rome, the distribution of the impact ranges differs. In the case of Milan, near
85% of the AIs entail a low impact on the LAeq300s. This percentage increases to almost 96% in Rome.
For this reason, the presence, as well the sensor activation, of medium and high-level AIs in Rome
is lower than in Milan. In Milan, only one sensor on Tuesday and two on Sunday fail to detect a
medium-impact AI. However, in Rome, on Tuesday 7 sensors were not capable of detecting any event
and on Sunday the number was 6. In the particular case of high-impact aggregates, their presence is
reduced from near 4% in Milan to less than 1% in Rome. Most Milan sensors activate (18 on Tuesday
and 17 on Sunday), but only 5 and 3 sensors detect ANEs of this category in Rome in the weekday and
during the weekend, respectively.

Following the same analysis scheme described in the previous section, Figure 4 depicts the AI
histogram matrices showing the number of occurrences of aggregate ANEs for each impact range
and sensor location for both pilot areas. Again, the number of occurrences in the low-impact range is
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separated from the rest of occurrences for illustration purposes, due to the same reason indicated in
the previous analysis. As can be observed, in Milan, low-impact AIs range from 28 to 43 on Tuesday,
and from 24 to 36 on Sunday. A total of 107 intervals on the first day and 88 in the second day contain
a medium-impact AI, highlighting sensor hb115 in Milan, with 11 occurrences on Tuesday and hb124
with 10 occurrences on Sunday. However, high-impact AIs record a lower presence of occurrences,
with a highest value of 4 in sensors hb109 and hb140 on Tuesday, and in sensor hb133 on Sunday.

Table 4. Number of occurrences and sensor activation ratios per sensor for low, medium and high
aggregate impact ranges.

Aggregate Impacts
Low Impact Medium Impact High Impact
(−∞, 0.5) dB [0.5, 2) dB [2,+∞) dB

Occurrences Activation Occurrences Activation Occurrences Activation
Count (%) Count/NS Count (%) Count/NS Count (%) Count/NS

Milan
Tuesday 855 (85.5%) 23/23 107 (10.7%) 22/23 38 (3.8%) 18/23
Sunday 693 (85.4%) 23/23 88 (10.8%) 21/23 31 (3.8%) 17/23

Rome
Tuesday 874 (95.8%) 19/19 29 (3.2%) 12/19 9 (1.0%) 5/19
Sunday 887 (95.6%) 19/19 35 (3.8%) 13/19 6 (0.6%) 3/19
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Figure 4. Aggregate impact histogram matrices (obtained using integration time T = 300 s)
categorized in three impact ranges (low, medium and high) for the urban (Milan) and suburban
(Rome) environments obtained from a weekday (Tuesday) and weekend day (Sunday).
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Regarding the pilot area in Rome, the presence of low-impact AIs is clearly dominant.
However, it is worth mentioning that sensor hb104 presents a completely different pattern, with
15 medium-impact AIs on Tuesday and Sunday. This reduces significantly the low-impact occurrences
in that sensor in comparison to other nodes. Finally, as aforementioned, it is to note that sensor hb119
failed in recording several hours of Sunday.

4.4. Critical Aggregate Impacts Per Level

In this section, the occurrences that surpass the critical threshold γc = 2 dB, are analyzed in detail.
First, the individual ANEs that bias the LAeq,300s beyond threshold γc by themselves belong to the
high-impact range. To analyze their distribution in detail, the critical individual ANEs observed in
Section 4.2 (see Figure 3) are divided in 2-dB spans for each sensor in Figure 5. When analyzing this
kind of anomalous noise events, Milan credits for most of the high-impact individual ANEs, most of
them within the range of 2 to 4 dB, without belittling their presence in the other ranges for both days.
Concerning Rome, sensor hb104 is the one that recorded the largest number of high-impact events,
most of them belonging to the [2, 4) dB range. Finally, it is to note that 10 events surpass the 10-dB
impact range are sirens, being the event with the highest impact a 3-min siren with 29.4 dB of impact,
recorded in sensor hb137 on Sunday. In contrast, no events surpassing the 10-dB threshold are present
in Rome.
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Figure 5. Critical AI histogram matrices (Hc) of individual ANEs for the urban (Milan) and suburban
(Rome) environments obtained from a weekday (Tuesday) and weekend day (Sunday).

On the other hand, in order to evaluate if the presence of several ANEs may contribute to the
surpassing of the γc threshold, Figure 6 shows the critical AI histogram matrices Hc obtained for
each network for different impact intervals. That is to say, it depicts the number of times the AI of
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ANEs contribute to bias the LAeq,300s of RTN critically for both pilot areas and recording day according
to the type of impact range. To that effect, besides considering θ1 (low), θ2 (medium) and θ3 (high)
impact intervals to analyze the critical aggregate impacts, two more intervals are considered: θ1

⋃
θ2 to

account for co-occurring low and medium individual impact ANEs, and θ1
⋃

θ2
⋃

θ3 to quantify all the
critical cases, disregarding the type of the ANE’s individual impact.
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Figure 6. Critical AI histogram matrices (Hc) categorized in the defined impact ranges for the
urban (Milan) and suburban (Rome) environments obtained from a weekday (Tuesday) and weekend
day (Sunday).

The first column of each Hc matrices depicted in Figure 6 shows those low-impact AIs causing a
critical impact. It can be observed that there is one case accounting for a deviation of the AI higher
than 2 dB for a particular period of time t of 5 minutes in sensor hb121 installed in Milan. It is due
to 13 wrks sounds recorded on Tuesday ranging from 0.01 dB to 0.4 dB, i.e., all of them belong to the
individual low-impact range θ1, but due to their co-occurrence within the same period of time their AI
becomes critical.

Likewise, the second column plots critical medium-impact AIs. In Milan, the threshold γc is
surpassed three times on Tuesday and twice on Sunday, whereas in Rome, purely medium-impact
occurrences cause a critical AI once each day. Specifically, sensor hb139 collected two of these pieces of
evidence on Tuesday. In the first case, the two most significant ANEs are horns, with individual impacts
of 0.8 and 1.2 dB, respectively (the third one is a dog bark with an impact of 0.03 dB). The second is
composed of a horn of 1.3 dB and two CMPLX sounds, consisting on a mix of RTN and an undetermined
beep noise of 0.8 and 0.5 dB. Moreover, sensor hb145 also recorded a period in which individual ANEs
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bias the LAeq,300s critically on Tuesday, where the most important event is a tram passby of 1.5 dB and
the second one is a 1.6-dB CMPLX event consisting of a mix of a tram passby and birds tweeting near
the sensor. On Sunday, two of the periods recorded in the urban environment contain a combination
of medium-impact ANEs that surpass the threshold: one in sensor hb129, composed of two distant
sirens mixed with other sounds, and another due two CMPLX sounds in sensor hb135, containing
unidentified mechanical sounds. In what concerns Rome, sensor hb104 presents critical impact
evidence due the co-occurrence of purely medium-impact events for both week and weekend periods.
On Tuesday two train passbys of 1.3 and 1.1 dB bias the LAeq,300s more than 2 dB. On Sunday, the
critical bias is caused by the presence of two horns of 1.2 and 1.9 dB, respectively.

The third column of the four AI critical matrices of Figure 6 show the number of times γc is
surpassed for ANEs when considering low and medium-impact ANEs, i.e., it collects the occurrences
of aggregate low-impact ANEs from θ1 and the aggregate medium-impact ANEs from θ2, as well as
the the number of times that the critical threshold is surpassed as a result of the combination of the
medium- and low-impact events. This last case is only observed during the weekday 6 times in Milan
and once at sensor hb104 in Rome. The latter happens on Tuesday and it consists of the sum of several
train passbys, with the most salient event an impact of 1.9 dB and the other ones of about 0.1 dB.
The six cases in Milan have all been found on Tuesday in different sensors: in hb109, three CMPLX
sounds have been found that consist of train passbys mixed with RTN of 1.8, 0.2 and 0.2 dB; in hb115,
a sum of 13 wrks sounds with impacts from 0.01 dB to 0.9 dB; in hb116, a 1.9-dB siren co-occurring
with a 0.4-dB CMPLX sound of birds mixed with RTN; in hb123, an airp of 1.9 dB and other peop and
brak-related sound with impacts smaller than 0.02 dB; in hb125, all significant events are dog barks,
with impacts of 0.9, 0.6, 0.4, 0.3 dB and decreasing; and in hb140, a siren of 1.9 dB has been found,
jointly with people-related sounds of 0.2 dB.

The next column of critical AI matrices presents high-impact ANEs. For the data at hand,
the aggregate high-impact occurrences coincide with the number of individual high-impact events
depicted in Figure 3 (see also Table 3, where the number of occurrences in this level is quantified).

Finally, the last column of matrices Hc shows the critical AI histogram caused by the co-occurrence
of ANEs of any individual impact range altogether. If we focus on the last three columns of Figure 6,
it can be appreciated that in all cases, the sum of the low and medium-impact ANEs with the
high-impact ANEs results in the total number of times the 2 dB threshold is surpassed. This result
could have differed in the case that aggregate low and medium ANEs co-occurred with high-impact
ANEs. Therefore, Figure 6 clarifies the fact that high-impact events have not co-occurred at the same
5-min interval for the datasets at hand, besides showing there is no situation in our datasets where low
and medium impact aggregated surpass γc at the same 5-min slot t in which a high-impact ANE occurs.

To summarize, in Milan, the threshold has been surpassed due to low and medium aggregate
impacts in 12 of the 69 critical cases, which correspond to 17% of cases. Likewise, in Rome, the ratio is
3 to 15, corresponding to 20% of the critical cases. Therefore, according to these results, it can be stated
that the removal of low and medium-impact ANEs becomes as relevant as high-impact events in order
to preserve the accuracy of the RTN level measurements in both urban and suburban environments.

5. Discussion

This section discusses several relevant aspects related to the results obtained after applying
the impact analysis methodology to the two WASN-based datasets collected from the urban and
suburban areas. First of all, it is to note that the individual analysis of the impact of each ANE of
those co-occurring within the same integration period has been conducted as a baseline study, since
the individual view of the impact of acoustic events unrelated to traffic noise is a straightforward but
unrealistic approach to the problem at hand. However, this study has been useful to set the basis for
the subsequent aggregate analyses. In this sense, it is worth noting that although the datasets have
been collected during specific time periods, the analyzed data show the regular presence of anomalous
events across all the days and locations in a real-operation context. Specifically, the number of ANEs
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found in the urban area is seven times greater than in the suburban environment on average (this ratio
being ten times on the weekday). In the suburban environment, the weekday pattern is very similar
to what is observed in during the weekend, although a larger number of events have been recorded
during the weekend, which should be studied in the future with more detail.

In terms of the acoustic categories, it is worth mentioning that 7.7% of the urban WASN-based
dataset and 1.6% of the suburban one has been annotated as CMPLX. As aforementioned, the CMPLX
acoustic category can be either caused by a mix of RTN and ANEs or by unidentified ANEs by the
experts. The conducted analyses have shown that these kinds of acoustic events can also have a
significant impact on the LAeq,300s computation, showing a similar presence in both datasets as the
corresponding ANE acoustic category. Therefore, as well as ANEs, CMPLX audio passages should
also be removed from the computation of road traffic noise levels to tailor reliable RTN maps.

When comparing the individual and aggregate impact occurrences for low, medium and
high-impact ranges, the analyzed environments present a different distribution. In the case of the urban
area, a larger number of low-impact events have been recorded than in the suburban environment.
However, as far as AIs are concerned, the percentage of low-impact pieces of evidence are lower in the
former than in the latter. In addition, medium and high-impact aggregate ANEs have a significant
presence in the urban environment, being near the 15% of occurrences; however, in the suburban area,
this value decreases to 5%, probably because also the high-impact ANEs present a lower number of
instances. From these results it can be concluded that the detection and removal of ANEs will be more
usual in a urban than in a suburban environment, since a significantly higher number of LAeq,300s
values can be biased critically. Furthermore, it is worth mentioning that the number of individual
high-impact ANEs may not always coincide with the number of times these events bias the 2 dB
threshold. This is because it could happen that two or more high-impact events co-occurred in the
same evaluated period of time. However, as shown in the results of this work, this is not the case for
the data at hand, thus, all high-impact ANEs occur in different integration times.

The impact patterns observed on both environments present different trends. From the analysis
conducted in the suburban area, it was observed that sensor hb104 presents a clearly different pattern
of the impact of ANEs compared to the rest of the nodes of that WASN for both week and weekend
days. This sensor was installed on a major road with two lanes in each direction with a crossing
highway under the bridge (see Table A2), which makes this location substantially different from the
other sensors locations in Rome (as they do not correspond to major crossroads). For this sensor,
the aggregate ANEs are more likely to bias the LAeq,300s, as a 40% of the analyzed measurements
contain a medium or high aggregate impact considering both days. This result leads to the preliminary
conclusion that in a suburban area, a crossroad is more susceptible to collect anomalous noise events
that may distort the RTN level measurements critically. On the contrary, the data analyzed from
the other sensor locations in Rome show that the AIs of the ANEs do not usually have a significant
impact on the A-weighted equivalent RTN level measurements. In Milan, however, it becomes difficult
to identify specific impact patterns according to the sensor locations due to the great variability of
occurrences observed from the recordings of both week and weekend days. Nevertheless, note that
all sensors have recorded ANEs with a significant impact—both evaluated individually and in an
aggregate manner—being relevant enough to bias the RTN map representation in certain periods
of time. Given the fact that the recordings were taken over two days, a relevant number of LAeq,300s
measurements could have been computed with an inaccuracy of more than 2 dB, we can conclude that
is necessary to remove all kind of anomalous noise events from the final computation of the noise map.

Briefly, the results drawn from this work present a non-negligible number of anomalous noise
events that occur randomly both in the DYNAMAP’s pilot urban and suburban acoustic environments.
This is a relevant issue, as we have to mention that the analyzed data correspond only to a recording
campaign of two different days, which provide a relevant but limited scope of all the possible issues
that may occur in all streets and ring road portals during any day of the year at any time. Nevertheless,
although the amount of evidence observed in the gathered data may result statistically poor (i.e., only
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84 critical pieces of evidence have been observed), their mere presence demonstrates the importance of
their automatic removal to obtain reliable dynamic RTN maps through WASN-based approaches. That
is, if the sub-sampling done in two days for several 20-min long audio files has led us to this conclusion,
what will be the real impact on the measurements in a 24-h × 7-day WASN-based monitoring system?
How many works around the city and the highway can occur throughout the year together some horns
and sirens? How many sensors can be located close to a school (with the children in the playground)
or next to a church with its bells?... This opens a much wider research goal, focused on the detailed
analysis of the sensors location and the consequences it entails in terms of anomalous noise events
detection and removal, as the election of the sensor’s installation place is usually based on spatial
coverage to draw the acoustic map, being also limited by the actual location of the portals and public
buildings where the sensors are finally installed.

6. Conclusions

In this work, we have analyzed more than 300 h of labeled acoustic data collected through
two WASNs after being deployed in the pilot urban and suburban areas of the DYNAMAP project.
The study shows that ANEs can be widely found in acoustic environments when monitoring RTN
levels in real-operation conditions, being particularly common in the data gathered from the urban
area. Moreover, through the impact analysis methodology, it has been also concluded that the
aggregate contribution of low and medium-impact ANEs can deviate the LAeq,300s as critically as
high-impact individual ANEs. Therefore, the obtained results highlight the importance of the
automatic removal of low, medium and high-impact events to obtain reliable WASN-based RTN
maps in real-operation environments.

Future work will be focused on the detailed analysis of the particularities of each acoustic
environment and ANEs subcategories together with complex passages, not only to consider their
global impact patterns in the urban and suburban, but also to study the spatio-temporal particularities
of all the locations and periods of time. Finally, we plan to adapt the preliminary version of the ANED
algorithm by using the two WASN-based datasets to improve its performance in both urban and
suburban environments in real operations.
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Abbreviations

The following abbreviations are used in this manuscript:

AI Aggregate Impact
ANE Anomalous Noise Event
ANED Anomalous Noise Event Detection
CNOSSOS-EU Common Noise Assessment Methods in Europe
DYNAMAP Dynamic Noise Mapping
END European Noise Directive
EU European Union
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RTN Road Traffic Noise
SNR Signal-to-Noise Ratio
SONYC Sounds of New York City
WASN Wireless Acoustic Sensor Network
WG-AEN European Commission Working Group Assessment of Exposure to Noise

Appendix A

This section includes the description of the sensor locations for both urban and suburban
environments by means of Tables A1 and A2, respectively.

Table A1. Sensor locations description for the urban environment. X-lane/Y-lane road stands for a
two-way road that has X lanes in one sense and Y lanes in the opposite sense. X-lane road stands for a
street with X lanes in the same sense.

Sensor Id Sensor Location Description

hb106 1-lane/1-lane road with connection with 1 line road, area with parks nearby, no shops
hb108 1-lane/1-lane road, in front University exit, no shops

hb109
3-lane/3-lane road, near crossing with tramway and 1 line+2 line/2 line+1
line road, shopping and coffe/restaurant area

hb115 1-lane road with shopping in front
hb116 1-lane/1-lane road with connection with 1-lane road, residential area
hb117 3-lane/3-lane road, near school, area with parks nearby, no shops
hb120 1-lane/1-lane road, residential area, no shops
hb121 2-lane/2-lane road, connection with 1-lane road, University area, no shops
hb123 2-lane/2-lane road with hotel and traffic light nearby
hb124 1-lane road, no shops

hb125
1-lane road with connection with 1-lane/1-lane road, mix of
residential with some shops

hb127 1-lane road near bifurcation with 1 line road, some shop nearby
hb129 1-lane/1-lane road, bike line, connection with 1-lane road, some shop
hb133 1-lane road, residential area, no shops, little park area in front

hb135
1-lane road with connection with 1-lane road (low speed), near University campus (students),
no shops, in front of park area

hb136
1-lane/1-lane road with connection with 1-lane road, area with
parks nearby, no shops

hb137 1-lane road with connection with 1 line road, in front of park, residential area, no shops
hb138 1-lane road near connection with other 1-lane road, no shops
hb139 1-lane road, residential area, some shop/enterprise

hb140
2-lane/2-lane road with parking area and traffic light with crossing nearby,
no shops near and high traffic

hb144 1-lane road in residential area, one shop far away
hb145 1-lane road, in front of park
hb151 1-lane/1-lane road, bike line, some shop and restaurant

Table A2. Sensor locations description for suburban environment. X-lane/Y-lane road stands for a
two-way road that has X lanes in one sense and Y lanes in the opposite sense. X-lane road stands for a
street with X lanes in the same sense.

Sensor Id Sensor Location Description

hb103 Highway with 3-lane/3-lane
hb104 Major road with 2-lane each direction crossing a highway under bridge (out of major ring)
hb105 Highway with 4-lane (only 1 direction, and near exits/crossings)
hb110 Highway with 3-lane/3-lane
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Table A2. Cont.

Sensor Id Sensor Location Description

hb111 Highway with 3-lane/3-lane
hb112 Highway with 3-lane/3-lane (near exit and near crossings)
hb119 Highway with 3-lane/3-lane
hb128 Highway with 3-lane/3-lane
hb134 Highway with 4-lane/4-lane (near bridge and crossings)
hb141 Highway with 5-lane/5-lane (near crossings)
hb143 Highway with 2-lane/2-lane (out of major ring)
hb147 Highway with 3-lane/3-lane
hb148 Highway with 3-lane/3-lane
hb149 Highway with 3-lane (near tunnel)
hb153 Major road with 2-lane each direction crossing a highway under bridge (out of major ring)
hb154 Highway with 4-lane/4-lane
hb155 Highway with 2-lane (near connection but out major ring) plus 1 road same sense next to
hb156 Highway with 3-lane/3-lane
hb157 Highway with 5-lane/5-lane
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Abstract: DYNAMAP, a European Life project, aims at giving a real image of the noise generated
by vehicular traffic in urban areas developing a dynamic acoustic map based on a limited number
of low-cost permanent noise monitoring stations. The system has been implemented in two pilot
areas located in the agglomeration of Milan (Italy) and along the Motorway A90 (Rome-Italy).
The paper reports the final assessment of the system installed in the pilot area of Milan. Traffic noise
data collected by the monitoring stations, each one representative of a number of roads (groups)
sharing similar characteristics (e.g., daily traffic flow), are used to build-up a “real-time” noise map.
In particular, we focused on the results of the testing campaign (21 sites distributed over the pilot area
and 24 h duration of each recording). It allowed evaluating the accuracy and reliability of the system
by comparing the predicted noise level of DYNAMAP with field measurements in randomly selected
sites. To this end, a statistical analysis has been implemented to determine the error associated with
such prediction, and to optimize the system by developing a correction procedure aimed at keeping
the error below some acceptable threshold. The steps and the results of this procedure are given in
detail. It is shown that it is possible to describe a complex road network on the basis of a statistical
approach, complemented by empirical data, within a threshold of 3 dB provided that the traffic flow
model achieves a comparable accuracy within each single groups of roads in the network.

Keywords: noise mapping; noise mitigation; DYNAMAP project

1. Introduction

Road traffic noise is one of the foremost problems in Europe, with more than 100 million people
exposed to Lden (day-evening-night) levels higher than 55 dB (A) [1]. Consequently, scientific
communities and authorities started observing the surge of noise-related health problems such as sleep
disorders and tiredness associated with a long-term road traffic noise exposure [2,3], relationships
between annoyance and exposure to transportation noise [4], increased cardiovascular risk and
hypertension [4–6], mental performance [7], and students cognitive disorders [8,9].

The increasing awareness on these issues, promoted by EU policies through the Environmental
Noise Directive (END) of 2002, its revision [10,11] and integrated approaches (CNOSSOS-EU) [12,13],
encouraged the use of distributed monitoring systems and noise mapping in the control of
noise exposure.

Mitigation measures in urban and near-urban contexts need to be identified according to a
realistic picture of noise distribution over extended areas. This requirement demands for real-time
measurements and processing to assess the acoustic impact of noise sources. In this framework, noise
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maps might represent an important tool. They are based on collecting and processing information
on the traffic flow averaged over long periods of time [14] using acoustic models [15] rather than
unattended phono-metric measurements, which, on the other hand, are typically used to validate
results from computational models [16,17].

Recently, the development of dynamic noise maps is gaining interest because of the realistic
soundscape picture they can provide in complex traffic network. Different approaches have been
pursued, motivated by the fact that noise fluctuations might be important to evaluate sleep disturbance
and noise annoyance [18,19]. Other recent approaches regard participatory sensing, which enables any
person to take measurements using either specific measurement equipment or mobile phones [20,21].
In addition, mobile sampling could, in principle, increase temporal and spatial resolution, even with
short length samples [22], in a more controlled environment than participatory sensing, since the
measurement is carried out by trained people. A usual practice, which integrates traditional noise
mapping and participatory sensing, is to take on-site measurements to calibrate the noise map based
on computational models or to use them to dynamically update noise maps based on interpolation
schemes [23,24].

Noise mapping recently moved towards a multi-source approach [25,26]. Specifically, advanced
probabilistic noise modelling based on source-oriented sound maps within an open-source Geographic
Information System (GIS) environment allows the production of traffic, fountains, voices and birds
sound maps and to investigate the competition between sound sources [27].

In this continuously evolving scenario, DYNAMAP, a co-financed project by the European
Commission through the Life+ 2013 program, started its activities in 2014 [28]. It aimed at developing
a dynamical acoustic map in two pilot areas: a large portion of the urban area of the city of Milan
(District 9) and the motorway surrounding Rome. In both cases, we developed a method for predicting
the traffic noise in an extended area using a limited number of monitoring sensors and the knowledge
of traffic flows.

The development of automatic noise mapping systems delivering short-term noise maps (dynamic
noise maps) are not explicitly required by the END. However, their automatic generation is estimated
to reduce the cost of long-term noise assessment by 50%, adding significant benefits for noise managers
and the public through updated information and dedicated web tools with the opportunity to control
noise with alternative measures based on traffic control and management. While this approach seems
quite promising in purely suburban areas, where noise sources are well identified, in complex urban
scenarios further considerations are needed.

Regarding a suburban area, a detailed study has been performed for the motorway zone around
the city of Rome. The pilot area of Rome is located along a six-lane ring road (A90) surrounding the city,
going through many suburban areas where the presence of single or multiple noise sources, such as
railways, crossing, and parallel roads, impact the residents. Pre-calculated basic noise maps, prepared
for different sources, traffic, and weather conditions, are updated from the information retrieved from
19 distributed noise sensors. Difficulties lied in the contribution of multiple noise sources and in the
influence of meteorological conditions when receptors are located at a distance from the road greater
than 80 m. The final assessment on DYNAMAP reliability and accuracy in the suburban area of Rome
can be found in [29].

For an urban environment, we review in this paper the case of Milan, where DYNAMAP has been
implemented in a pilot area, namely District 9, consisting of about 2000 road arches in the north-east
part of the city. Due to the high number of potential noise sources needed to be monitored, we decided
to adopt a statistically based approach. This is the outcome of previous investigations [30], proving
that the noise emission from a street generally depends on its use and activity in the urban context,
therefore suggesting a stratified sampling aimed at optimizing the number of monitoring sites.

In both scenarios, being urban or suburban, the presence of anomalous noise events (ANEs),
that is events that are extraneous to the actual vehicle noise, may alter the noise levels represented
by DYNAMAP. For this reason, dedicated algorithms have been implemented in ARM-based (see
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Acronyms Sect. for definition) acoustic sensors showing the feasibility of the method both in terms of
computational cost and classification performance [31] with the purpose of identifying and removing
ANEs from the time series, thus restricting the acoustic data to the traffic source only [32]. In particular,
different typologies of anomalous noise events have been described statistically and associated with the
identified street clusters of the city of Milan [33]. Similar approaches based on permanent monitoring
network and street categorization are now adopted in other cities [34].

In this paper, we provide a review of DYNAMAP project in the pilot area of the city of Milan.
It represents the final assessment on its accuracy and reliability obtained from the comparison between
field measurements and map predictions.

2. Materials and Methods

In this section, we provide an overview of the general scheme of DYNAMAP implemented
in Milan, including the initial sampling campaign, the statistical analysis, the calculation and map
updating procedure, and the methodology for the system validation (calibration of sensors, their
reliability, and field measurements). Figure 1 shows a general block diagram of the following processes
for illustrative purposes.

Figure 1. General block diagram of the followed processes in DYNAMAP.

2.1. Initial Sampling Campaign and Statistical Analysis

A database of noise time series belonging to the road network of Milan was necessary to
characterize the traffic noise of the city. For this reason, 93 traffic noise recordings of 24 h represented
our initial large-scale noise monitoring investigation [35]. Given the large number of roads in the
city of Milan, in order to determine the acoustic behavior of different roads we applied a statistical
approach based on a cluster analysis. The open source software “R” [36] was applied for clustering
and the package “clValid” [37,38] was used for validating the results of the different cluster algorithms.
The ranking provided by the “clValid” R-package showed the best performance of the hierarchical
clustering with Ward algorithm [39], as detailed in [40].

The results showed two main noise behaviors correlated to vehicle flow patterns [41,42]. Its
extension to non-monitored roads needed an available non-acoustic road-related parameter [43] and
we found the logarithm of the total daily traffic flow, Log(TT) to be a convenient quantity. The number
of events and the cumulative probability for the resulting two clusters, as a function of the non-acoustic
parameter x = Log(TT), are illustrated in Figure 2.
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Figure 2. Number of sites and cumulative probability for Cluster 1 (left side) and Cluster 2 (right side)
as a function of the non-acoustic parameter x = Log(TT). Bin size is 0.3.

As we are interested in finding an analytical representation for the distribution functions, P(x),
in each cluster, we studied the corresponding cumulative distributions of x, I(x), which have been fitted
using an analytical expression:

I(x) = 10 f (x) =

∫ x

0
dy P(y); with lim

x→∞I(x) = 1. (1)

Deriving I(x), we get
dI(x)

dx
= P(x) − P(0). (2)

The probability distribution P(x) can be obtained from the analytical fit of the cumulative
distribution I(x) according to the relation:

P(x) = ln(10) f ′(x)I(x), (3)

where f (x) is a polynomial of third degree and f ′(x) is the derivative of f (x). The results of I(x) for
Clusters 1 and 2 are reported in Figures 3 and 4.

Analytical fit functions f1 and f2 for P(x) for the two clusters are:

f1(x) = −1.55545 − 0.24459 x + 0.28834 x2 − 0.03526 x3 (4)

f2(x) = −15.21817 + 7.01263 x − 1.02922 x2 + 0.04708 x3 (5)
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Figure 3. Cumulative distribution I(x) for Cluster 1 fitted using the analytical expression, Equation (1),
I(x) = 10f(x), where f (x) is a polynomial of third degree and x = Log(TT).

Figure 4. Cumulative distribution I(x) for Cluster 2 fitted using the analytical expression, Equation (1),
I(x) = 10f(x), where f (x) is a polynomial of third degree and x = Log(TT).

In Figure 5, the histograms and density function, P1(x) and P2(x) for Cluster 1 and 2 (for the initial
93 sample measurements) are illustrated as a function of the non-acoustic parameter, x. Here, P1(x) and
P2(x) represent the “probability” that a road with a given x belongs to Clusters 1 and 2, respectively.
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Figure 5. Distribution functions P1(x) and P2(x) (Equations (3)–(5)) for Clusters 1 and 2; x = Log (TT).

In general, owing to the large superposition of the two cluster distributions P1(x) and P2(x), we
might consider a linear combination between the two mean normalized cluster profiles to describe the
noise behavior of a road with a given value of x.

The weights (α1, α2) of the linear combination can be obtained, for each value of x, using the
relations: α1 = P1(x) and α2 = P2(x). Therefore, the values of α1,2 represent the probability that a given
road characterized by its own value of x belongs to the corresponding Clusters, 1 and 2. By denoting
as β, the normalized values of α1,2, we obtain:

β1 = α1
α1+α2

β2 = α2
α1+α2

(6)

For practical use, we cannot describe the behavior of each single road in the network, therefore,
the entire range of variability of the non-acoustic parameter has been divided into six intervals in such
a way that each group contains approximately the same number of roads. In this way, all road stretches
within a group are represented by the same acoustic map, while six groups are found to be suitable for
our purposes. The noise in a given location will be predicted by a combination of the six acoustic base
noise maps whose variation (dynamic feature) is provided by field stations. The process for updating
the pre-calculated six base noise maps is based on the average of noise level variations recorded by the
monitoring stations, according to two different procedures described below.

2.2. Dynamic Map

For the actual implementation of DYNAMAP, we relied on 24 monitoring stations that have
been installed homogeneously in the six groups g (four in each group), in such a way to reproduce
the empirical distribution of the non-acoustic parameter in District 9 (to be noted that the 24 fixed
monitoring units have been installed in sites belonging to the pilot area and not corresponding to the
locations where the 93 sample measurements have been recorded).

The noise signal from each station j is filtered from any anomalous events not belonging to road
traffic noise prior to its integration to obtain Leqτj over a predefined temporal interval τ (τ = 5, 15,
60 min) [32–34]. Thus, we get 24 Leqτg,j values every τ min, each one corresponding to a recording
station j and belonging to a group g. To update the acoustic maps, we deal with variations, δτg, j(t),
where the time t is discretized as t = nτ and n is an integer, defined according to:

δτg, j(t) = Leqτg, j(t) − Leqre f g, j

(
Tre f
)

(7)
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where Leqref g,j
(
Tre f
)

is a reference value calculated from the acoustic map of group g (using CADNA
model) at the time interval Tref = (08:00–09:00) at the point corresponding to the position of the (g,
j)-th station. The CADNA software provides mean hourly Leq values over the entire city of Milan at a
resolution of 10 m given a set of input traffic flow data, thus representing a reference static acoustic
map, Leqref g,j

(
Tre f
)
. Here, we have chosen the reference time Tref = (08:00–09:00) for convenience, since

it displays rush-hour type of behavior. The predefined temporal ranges within the day are:

τ = 5 min for (07:00–21:00); τ = 15 min for (21:00–01:00); τ = 60 min for (01:00–07:00).

This choice has been motivated by the need to provide the shortest time interval for the update of
the acoustic maps keeping the associated error approximately constant over the entire day [44].

2.3. Average Over the Monitoring Stations in Each Group: 1st Method

In this section, we discuss how to use the 24 δτg, j(t) defined in Equation (7) in such a way to bring
DYNAMAP to operation. We used two methods: the first described in this section and the second
in Section 2.4. The first method is quite straightforward and implies that once all the δτg, j(t) values
are provided, the six acoustic maps corresponding to each group g can be updated by averaging the
variations in Equation (7) over the four monitoring station values j in each group, according to [43,45]:

δτg(t) =
1
4

Σ4
j=1δ

τ
g, j(t) (8)

2.4. Clustering of the 24 Monitoring Stations: 2nd Method

The second procedure for updating the acoustic maps is based on a two-cluster expansion scheme,
which uses all the 24 stations to determine δτg(t) simultaneously (see Section 2.6 for details on the
stations network). The clustering method, as described in Section 2.1, is applied here to determine
the two corresponding clusters. For this purpose, we used the 24 h noise profiles recorded by each
monitoring sensor over the period from 13th November 2018 to 5th February 2019. From this ANE-free
dataset, we excluded all festivities, weekends, rainy, and windy days. In order to get robust noise
profiles, we manually calculated, for each sensor, its median. For this analysis, we chose two time
resolutions, τ, constant for all the day: τ = 60 and 5 min. The results of the analysis, performed on the
24 median profiles, are reported in Figures 6 and 7.

Figure 6. Mean normalized cluster profiles, Δk, and the corresponding error band, k indicates the
cluster index. Time resolution τ = 60 min. The colored band represents the 1σ confidence level.
In these calculations, the normalized noise level is obtained following the procedure described in [40].
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Figure 7. Mean normalized cluster profiles, Δk, and the corresponding error band, k indicates the
cluster index. Time resolution τ = 5 min. The colored band represents the 1σ confidence level.
The normalized level used here is the same as the one determined in Figure 6.

From this analysis, it appears very clearly the robustness of the clustering method of the
24 monitoring sensors (for both τ = 60 and 5 min). In fact, the 24 sensors result perfectly distributed
in the two clusters mimicking the trend obtained with the original sampling measurements taken over
the entire city. In Table 1, the information regarding the monitoring sensors together with their cluster
membership are reported.

Table 1. Monitoring sensor information: code, group membership, non-acoustic parameter, x = Log(TT),
and cluster membership according to the performed analysis (12 sensors belong to Cluster 1 and 12 to
Cluster 2).

Sensor Code Group gi x = Log(TT) Cluster

135 1 2.89 2
137 1 1.90 2
139 1 1.13 2
144 1 2.94 2
108 2 3.06 1
124 2 3.50 2
125 2 2.69 2
145 2 3.42 2
115 3 3.58 2
116 3 3.60 2
120 3 3.74 1
133 3 3.75 2
121 4 4.06 1
127 4 3.90 2
129 4 3.94 1
138 4 4.19 2
106 5 3.90 1
123 5 4.30 1
136 5 4.21 1
151 5 4.40 1
109 6 4.75 1
114 6 4.58 1
117 6 4.85 1
140 6 4.70 1
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Updating Procedure for the 2nd Method

Once the compositions of Clusters 1 and 2 have been found (meaning that there are N1 stations in
Cluster 1, k1 = (1, . . . , N1), and N2 stations in Cluster 2, k2 = (1, . . . , N2), such that N1 + N2 = 24), we
need to rearrange the variations obtained from Equations (7) and (8) according to the indices C1,k1 and
C2,k2, which we denote as δτC1,k1 (t) and δτC2,k2 (t) within each cluster, C1 and C2. Then, we calculate the
mean variations, δτC1(t) and δτC2(t), for each cluster according to,

δτC1(t) =
1

N1
ΣN1

k1=1 δ
τ
C1,k1(t)

δτC2(t) =
1

N2
ΣN2

k2=1 δ
τ
C2,k2(t),

(9)

where C1,k1 and C2,k2 are indices of stations belonging to Cluster 1 and Cluster 2, respectively.
In Figure 8, the histograms of the non-acoustic parameter, x = Log(TT), for Clusters 1 and 2 of the
24 sensors (shown in Figures 6 and 7) are illustrated. For comparison, the density function P1(x)
and P2(x) obtained for the initial 93 sample noise time series (shown in Figure 5) are also included.
The rather good agreement allows using such distribution functions to express the mean variation
δτg(t) associated with each group g using the formula:

δτg(t) = β1

(
xg
)
δτC1(t) + β2

(
xg
)
δτC2(t) (10)

Figure 8. Histograms (from the 24 monitoring stations) and probability distributions, P1(x) and P2(x),
as a function of the non-acoustic parameter, x = Log(TT), for Clusters 1 and 2. Bin size is 0.2. P1(x) and
P2(x) are the same functions shown in Figure 5.

Here, the value xg represents the mean non-acoustic parameter associated with group g, and
β1(xg), β2(xg) the corresponding probabilities to belong to Clusters 1 and 2, respectively (see Table 2
for the mean values of β1 and β2 for the six groups and Equation (6) for their definition).

Table 2. Mean values of β 1 and β 2 for the six groups of x = Log(TT) within District 9.

Range of x 0.0–3.0 3.0–3.5 3.5–3.9 3.9–4.2 4.2–4.5 4.5–5.2

β1 0.99 0.81 0.63 0.50 0.41 0.16
β2 0.01 0.19 0.37 0.50 0.59 0.84

145



Sensors 2020, 20, 412

2.5. Dynamic Noise Level at an Arbitrary Location

The absolute level Leqτ s(t) at an arbitrary site s at time t can be obtained from the measured
values of δτg(t) using either Equation (8) or Equation (10). The first quantity we need to know is the
value of Leqref g,s that is the reference Leq calculated in the point s at the reference time (8:00–9:00) due
to group g, which is provided by CADNA model (acoustic base map). The absolute level Leqτ s(t) at
location s at time t = nτ can then be obtained by combining the level contribution of each base map
with its variation δτg(t):

Leqτs (t) = 10 Log
6∑

g=1

10
Leqre fg,s +δτg(t)

10 (11)

This operation provides what we called the “scaled map” (dynamic map).

2.6. Measurement Campaign

A measurement campaign, completed in 2019, aimed at testing the results of DYNAMAP
predictions. This has been justified by the updated release of anomalous noise events detection (ANED)
algorithm which acts directly on the recorded noise time series from the 24 monitoring stations prior to
their use in the DYNAMAP calculation process (see below). It presented a higher recognition efficiency
of anomalous events (less false positives) than the previous release, therefore, allowing a more reliable
comparison between field measurements and DYNAMAP predictions [32].

The test measurements were performed in 21 locations within District 9 (purple stars in Figure 9
and Table 3 for detailed addresses) equally distributed in the six groups of roads. The measurement
sites were located at arbitrary points distributed within the pilot area of Milan and with different
noise propagation conditions. In particular, sites were selected in order to test the system in complex
scenarios where the noise from roads belonging to different groups may contribute. Special attention
was given to avoid non-traffic noise sources such as technical systems (thermal power stations or
ventilation systems), construction sites, railway, and tram lines, interfering with the measurements.
Figure 9 also contains the position of the 24 monitoring stations together with the indication of the six
groups of roads represented by different colors.

Figure 9. District 9 of the city of Milan city. Streets color corresponds to the different groups of streets
according to range of non-acoustic parameter x: (0.0–3.0) (g1), (3.0–3.5) (g2), (3.5–3.9) (g3), (3.9–4.2) (g4),
(4.2–4.5) (g5), (4.5–5.20) (g6). Black triangles and purple stars represent the sites where the monitoring
stations are installed and the position of test measurements, respectively.
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Table 3. Location of noise monitoring stations and measurement sites (cfr. Figure 9). The group index
of each sensor and site are indicated within parenthesis.

Station (Group gi) Address Station (Group gi) Address

106 (5) Via Modigliani 127 (5) Via Quadrio
108 (2) Via Pirelli 129 (4) Via Crespi
109 (6) Viale Stelvio 133 (3) Via Maffucci
114 (6) Via Melchiorre Gioia 135 (1) Via Lambruschini
115 (3) Via Fara 136 (5) Via Comasina
116 (3) Via Moncallieri 137 (1) Via Maestri del Lavoro
117 (6) Viale Fermi 138 (4) Via Novaro
120 (3) Via Baldinucci 139 (1) Via Bruni
121 (4) Via Pirelli 140 (6) Viale Jenner
123 (5) Via Galvani 144 (1) Via D’intignano
124 (2) Via Grivola 145 (2) Via F.lli Grimm
125 (2) Via Abba 151 (5) Via Veglia

Site (Group gi) Address Site (Group gi) Address

1 (5) Via Suzzani 12 (2) Via Pastro
2 (2) Via Bernina 13 (4) Via Bauer
3 (3) Via Ciaia 14 (2) Via Polvani
4 (3) Via Cosenz 15 (4) Via Gregorovius
5 (5) Via Majorana 16 (4) Via Catone
6 (3) Via Maffucci 17 (6) V.le Sarca
7 (2) Via Ippocrate 18 (1) Via Boschi Di Stefano
8 (3) Via Chiese 19 (6) Via Murat
9 (5) Via Moro 20 (1) Via Sarzana
10 (1) Via Marchionni 21 (3) Via Cosenz
11 (1) Via Gabbro

2.7. DYNAMAP Sensors Calibration

The correct assessment of DYNAMAP operation needs a careful evaluation of noise sensor
network. The first evaluation activity involved DYNAMAP sensors calibration. The sensors have a
characteristic accuracy which needed to be verified prior to their use. To this end, a field calibration
procedure has been implemented with the help of a Class 1 calibrator (emission level 94 dB at 1 kHz,
see Figure 10). The deviations of DYNAMAP sensors with respect to the calibrator are reported in
Table 4. This value has been employed to correct the noise levels recorded by the corresponding noise
sensor. In Table 4, the label N.C. (Not Calibrated), referred to three monitoring stations and means that
these sensors could not be on-site calibrated by the operator because of safety reasons.

Figure 10. Operation of calibration on DYNAMAP sensor.
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Table 4. Calibration deviations of DYNAMAP sensors (values are in dB; N.C.: Not Calibrated).

Sensor Site Deviation [dB]

145 Via F.lli Grimm −0.1
136 Via Comasina −0.5
138 Via Novaro +0.2
125 Via Abba −0.6
123 Via Galvani −0.2
115 Via Fara −0.1
114 Via Melchiorre Gioia −0.8
127 Via Quadrio N.C.
140 Viale Jenner −0.9
133 Via Maffucci −0.3
120 Via Baldinucci −0.5
129 Via Crespi −0.7
151 Via Veglia −0.4
116 Via Moncalieri −0.2
124 Via Grivola −0.6
137 Via Maestri del Lavoro −0.5
144 Via d’Intignano −0.5
121 Via Pirelli 0.0
108 Via Pirelli −0.2
135 Via Lambruschini −0.1
109 Viale Stelvio N.C.
106 Via Litta Modignani +0.2
117 Viale Fermi 0.0
139 Via Bruni N.C.

2.8. DYNAMAP Sensors Reliability

The second evaluation activity aimed at verifying the reliability of DYNAMAP sensors by
comparing their readouts with a Class 1 sound level meter. The sound levels measurements (10 short
duration measurements (≈1 h) and 2 measurements of 24 h) were performed on 12 monitoring sites
(two sites for each group of roads), placing the microphone in the same position of the DYNAMAP
sensor. The results of the tests expressed in Leqτ s with τ = 5 min, are summarized in Figure 11,
showing the correlation between Class 1 sound level meter and DYNAMAP sensor. We obtained a high
correlation (R2 = 0.99) with a mean deviation between the two sets of measurements of 1.0 ± 0.9 dB.

Figure 11. Correlation between the Class 1 Sound Level Meter and DYNAMAP Sensors. Different
colors refer to sensors in each group of streets.
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3. Results

In this section, we will describe the major steps to obtain an overall assessment of the project in
terms of accuracy and reliability. A preliminary investigation [45] showed that the system is affected by
different sources of error whose origin must be taken into account to minimize and eventually correct
them. In the following, we provide a description of the measurement campaign and of the accuracy of
both traffic model and DYNAMAP prediction.

3.1. Traffic Flow Data

In order to assess the validity of the traffic flow model, used to describe the non-acoustic parameter
x, we performed a series of measurements of both traffic flow and noise at randomly selected sites and
in correspondence of the noise monitoring stations, and compared them with the traffic model database.
This test is important because the parameter x determines the group membership and therefore its
dynamic behavior. In case the traffic model prediction is not accurate enough, DYNAMAP prediction
could be sensibly affected.

As one can see from Figure 12, there are significant differences between the traffic flow model
predictions and measurements. Possible causes can be found in changes of traffic conditions (the
model refers to a 2012 road network) and the incapability of the model to manage traffic conditions
characterized by low flows (it has been designed and calibrated to deal with critical traffic situations).
Consequently, in some cases the “real” total daily vehicle flow can significantly differ from the one
attributed to a specific road using the flow model. This may result in jumps of group membership and,
therefore, inaccurate predictions.

Figure 12. Comparison between hourly traffic flow (number of vehicles per hour) and traffic flow
model calculations. Here, Via Pirelli-U6 (g2), Via Baldinucci (g2), Via Quadrio (g4), Via Veglia (g5) are
some selected locations corresponding to the position of monitoring stations.

In Table 5, we report the comparison between the results of total traffic flows, in the form of the
non-acoustic parameter x, obtained from the model calculations and the recent measurements in the
same sites. Differences, or group jumps, occurred in particular for the case of Via Pirelli which became
a congested road in recent years (from g2 to g4). As is apparent from Table 5, deviations of the predicted
values x are within about 10% for groups g3–g5, and much higher for other groups.
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Table 5. Group assignment according to model calculations and flow measurements in correspondence
to 10 noise monitoring stations.

Site (Street Name)
Group gi Values of x = Log(TT)

Model Meas. Model Meas.

Via Lambruschini 1 2 2.95 3.50
Via Maestri del Lavoro 1 2 2.90 3.41

Via Grivola 2 1 3.29 2.92
Via Pirelli 2 4 3.42 4.04
Via Fara 3 3 3.75 3.66

Via Baldinucci 3 3 3.54 3.89
Via Quadrio 4 3 3.90 3.68
Via Crespi 4 4 4.15 4.08

Via Comasina 5 5 4.33 4.25
Via Veglia 5 4 4.33 4.03

3.2. DYNAMAP Predictions

In the following, we report the comparison between traffic noise measurements with the
corresponding DYNAMAP predictions, Leqτs (t), with t = (5, 15, 60) min. The different updating
time intervals correspond to the three time-periods within the 24 h of a day: t = 5 min (07:00–21:00),
t = 15 min (21:00–01:00), and t = 60 min (01:00–07:00). The DYNAMAP prediction of Leqτs (t) at a
site s within the network can be obtained from the relation reported in Equation (11). The reference
values for the 21 selected sites Leqref g,s that is the “static” level contribution from different groups are
reported in Table 6. They illustrate how different groups contribute to the local noise level. The major
contribution to the local site level, Leqref g,s, in general, comes from the group g the site belongs to
(see bold figures in Table 6). For example, for Site 1, which belongs to group g5, the most significant
contribution comes from Leq(s)ref(g5). However, each local site level is subject to the influence of nearby
streets through other groups, as is apparent from Table 6. In particular, roads characterized by low
traffic flow generally are mostly influenced by neighboring higher flow roads (see as an example Site
10, 18, and 20 of group g1).

Table 6. Level contributions of each group, Leqrefg,s at 21 arbitrary chosen sites of District 9 (Figure 9).
The group indices of each sites are shown in the second column. Bold figures represent the major
contribution to the local site level.

Site Group gi Leqref g1,s Leqref g2,s Leqref g3,s Leqref g4,s Leqref g5,s Leqref g6,s

1 5 21.1 47.8 56.8 28.3 64.9 37.7
2 2 12.0 64.6 15.0 15.0 15.0 59.6
3 3 0.0 56.1 62.7 0.0 0.0 0.0
4 3 17.5 25.3 59.4 48.8 51.9 0.0
5 5 29.7 25.9 32.4 29.4 67.8 33.6
6 3 41.3 45.9 66.4 34.5 27.0 28.0
7 2 24.1 58.1 51.4 17.8 42.2 45.6
8 3 21.1 21.9 53.9 49.4 26.9 29.9
9 5 8.1 32.5 35.2 43.6 62.3 0.0

10 1 38.2 43.0 27.2 25.2 32.7 28.4
11 1 55.8 20.6 32.0 37.7 42.9 0.0
12 2 41.1 62.4 24.5 20.8 48.8 40.2
13 4 42.1 56.0 38.3 69.2 41.9 38.8
14 2 44.3 61.1 51.9 45.6 36.0 34.4
15 4 12.5 29.7 29.8 70.2 50.5 33.2
16 4 33.2 30.6 47.9 68.6 54.3 37.1
17 6 25.4 24.0 34.4 51.3 50.6 69.7

18 1 49.0 45.0 59.1 56.9 57.0 53.3
19 6 24.2 32.6 39.7 38.3 37.3 71.7

20 1 51.0 38.7 52.1 30.6 35.6 36.1
21 3 17.0 15.8 56.8 48.2 51.7 0.0
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The comparison between traffic noise measurements, Leqs(t)m and DYNAMAP predictions, Leqs(t)
at site s is based on the evaluation of the mean deviation:

< εLeqs > =
1
N

N∑
k=1

∣∣∣Leqs(k) − Leqs(k)m

∣∣∣ (12)

where the summation index k extends over three time periods (24 h-NTot = 190; day 07:00–21:00 h-
N5min = 168; evening 21:00–01:00 h-N15min = 16; night 01:00–07:00 h-N1h = 6). The results of the
comparison between measurements and predictions (cfr. Equation (11)) according to the two calculation
methods (cfr. Equation (8) or Equation (10)) are reported in Figure 13 for a representative number of
sites (Sites 6, 16, 19, 20).

Figure 13. Comparison between traffic noise measurements at Sites 6, 16, 19, 20 and the corresponding
DYNAMAP predictions according to two calculation methods (cfr. Equation (8) or Equation (10)).

Figure 13 shows how both methods provide predictions with similar trends and deviations. Both
methods are affected by a systematic, almost constant, error, most likely introduced by the traffic flow
model (see discussion below). The latter should have a higher influence on the second prediction
method as it takes on the contribution of all noise monitoring stations (see Equation (10)). However, the
second method should be more robust in case one or more noise monitoring are offline. Site 20 presents
higher discrepancies with high intermittency patterns especially during the day-time due to both the
small integration time (5 min) and the irregular traffic flows in local roads.

In Table 7, we report the total daily mean deviation (24 h) for the two prediction methods in all
the 21 test measurements.
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Table 7. Summary of the total daily mean deviation (24 h) for the two prediction methods in all the
21 test measurements.

Site Group gi
Mean Deviation–1st Method

(24 h) [dB]
Mean Deviation–2nd Method

(24 h) [dB]

10 1 6.4 ± 2.5 11.0 ± 2.6
11 1 3.2 ± 2.3 3.8 ± 2.1
18 1 6.5 ± 1.5 7.5 ± 1.4
20 1 4.7 ± 2.3 5.1 ± 2.3
7 2 1.7 ± 1.5 3.6 ± 1.4
12 2 7.5 ± 2.333 2.7 ± 2.0
14 2 3.4 ± 1.6 1.4 ± 0.9
3 3 2.8 ± 1.7 5.2 ± 2.0
4 3 3.0 ± 2.7 2.0 ± 1.9
6 3 3.2 ± 1.9 4.5 ± 2.0
8 3 2.0 ± 1.3 1.2 ± 1.1
21 3 1.7 ± 1.1 0.9 ± 0.7
13 4 4.0 ± 1.3 5.5 ± 1.4
15 4 3.0 ± 1.2 4.7 ± 1.0
16 4 8.4 ± 1.5 10.0 ± 1.3
1 5 4.9 ± 1.3 6.5 ± 1.5
5 5 2.0 ± 1.3 1.9 ± 1.4
9 5 1.3 ± 0.9 2.1 ± 1.2
17 6 1.4 ± 0.8 2.8 ± 1.1
19 6 4.0 ± 1.2 4.7 ± 1.6

4. Discussion

In the following, we will discuss a possible solution to improve DYNAMAP prediction within
a reasonable range of error. For simplicity, we will consider 1h as updating time scale and the first
prediction method based on Equations (8) and (11) for the calculation of the mean variation of each
group, δτg(t) and presented in Section 2.3.

Prediction Corrections

A number of selected sites have been chosen to compare the results of field measurements with
the corresponding DYNAMAP predictions.

Figure 14 (left part) presents a relevant discrepancy between predictions and measurements, which
can be higher during the daytime. Each figure shows the error bands obtained from the propagation
error associated with the variability of δτg (t) within each group g. During the day time (07:00–21:00)
the mean group discrepancy remains within 1 dB, whereas in the evening-night time (21:00–07:00) the
high “volatility” of traffic noise pushes it to about (2–4) dB.

The almost constant gap between measurements and predictions in different period of the day
suggested us to search for a systematic error inherent the DYNAMAP calculation method; systematic
error which is most likely correlated to the vehicular flow employed in the prediction model. In fact,
δτg(t) is calculated with respect to Leqref g, obtained from CADNA software using as input information
on the number of vehicles/hour at the reference hour (8:00–9:00).

During the measurement campaign, we simultaneously recorded the traffic flows. This allowed
us to compare the logarithm of traffic flow measurements with the traffic flow model calculations for
Sites 6 (g3), 16 (g4), 19 (g6), and 20 (g1) as illustrated in Figure 14 (right part), respectively. The traffic
flow data have been provided by Agenzia Mobilità Ambiente Territorio (AMAT), the agency in charge
of the traffic mobility at the City Hall [46]. In the described examples, the model yields more reliable
results for highly traffic roads belonging to groups g3, g4, and g6, than for lower flow roads as in g1,
as already reported in a previous preliminary work [45].
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Figure 14. (Left side) Comparison between traffic noise measurements and DYNAMAP predictions at:
Site 6 (group g = 3), Site 16 (group g = 4), Site 19 (group g = 6), Site 20 (group g = 1). The colored band
represents the 1σ confidence level. (Right side) Comparison between traffic flow measurements and
AMAT traffic model at the same sites.
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As it is apparent from Figure 14, there is a gap between the prediction and the measurements of
Leqτs (t). The observed constant shift might be the result of inaccuracies of the traffic model in describing
the traffic flow, especially for low traffic roads. Such shift is regarded as a systematic error.

To quantify this discrepancy and try to correct it, we calculate for each site the relative mean
deviation (εL) between hourly traffic noise measurement level, Leqs(1h)m, and the corresponding
hourly DYNAMAP prediction level, Leqs(1h), over the day and night period, defined as

εL =
1
N

N∑
k=1

(Leqs(k)m − Leqs(k))
Leqs(k)m

(13)

where the summation index k extends over two time zones (day 07:00–21:00 h→N1h = 14; evening-night
21:00–07:00 h→ N1h = 10). The relative error is then averaged over all roads belonging to the same
group, in order to represent the average hourly values of the road group (εL). Furthermore, we consider
the relative deviation (εF) between measurement and model for the logarithm of the traffic flow at the
reference time, Log F(8:00–9:00),

εF =
Log
(
F(8:00−9:00)Meas.

)
− Log

(
F(8:00−9:00)Model

)
Log
(
F(8:00−9:00)Meas.

) (14)

where Log(F(8:00–9:00)Model) is the logarithm of the flows from 8:00 to 9:00 of the 2012 traffic model. Then
we calculate the mean deviation of all sites belonging to the same group, εF.

These values for εL and εF are plotted in Figure 15, illustrating, to some degree, a relationship
between traffic flow deviations and noise level errors. This relationship will be treated as a systematic
error and taken into account within the DYNAMAP scheme.

Figure 15. Relative mean hourly deviation between traffic noise measurements and the corresponding
DYNAMAP predictions εF vs. the relative deviation between the logarithm of traffic flow measurements
and the corresponding model calculations at the reference hour (8:00–9:00) εF for each group separately.
The results refer to: Day time (07:00–21:00) (Left panel), and Evening-Night time (21:00–07:00) (Right
panel) periods. The dashed line is just a guide for the eye.

We thus obtain the corrected hourly value for the predicted noise level (Leq(1h)), by multiplying
the different hourly values of the predicted noise level times the relative mean group deviation,
expressed in percentage terms [1 + εL (g)]. The results of this operation are shown in Figure 16 (Right
part, red line). We observe a general improvement of the prediction for these sites. In the graphics, the
uncertainty bands include both the statistical and systematic errors (total error).
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Figure 16. (Left part) Comparison of traffic noise measurements and DYNAMAP (non-corrected)
prediction for: Site 16 (Upper panel), Site 19 (Middle panel), Site 20 (Lower panel). (Right part)
Comparison of traffic noise measurements and DYNAMAP (corrected) prediction for the same sites.
In the figure, the total error is displayed.
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In Table 8, we report both the site mean hourly non-corrected, <εLeq>N, and corrected prediction
errors, <εLeq>C, for all measurement sites, obtained through the comparison between the hourly
non-corrected or corrected prediction levels and the hourly measurement levels, as shown in
Equation (12).

The correction yields better predictions in many cases, but in others it remains poor.
A median-based correction, <εLeq>M, is also reported in Table 8. This quantity is less sensitive
to outliers and, consequently, it provides more realistic estimates of the corrections. Finally, the right
column of Table 8 shows the group mean errors calculated by averaging over the roads belonging to
each group. The highest discrepancies are found for group g1 as a consequence of the poor descriptive
capabilities of the traffic flow model. Except for this, the results obtained for the group median-average
error, <εLeq>M, is below 3 dB.

Table 8. (Left part) Mean site prediction error without systematic error correction, <εLeq>N, with
systematic error correction, <εLeq>C, and median average of the corrected prediction, <εLeq>M. (Right
part) Mean group non-corrected prediction error, <εLeq(g)>N, mean group corrected error, <εLeq(g)>C,
and group median average, <εLeq(g)>M. All values are in dB.

Site Group gi <εLeq>N <εLeq>C <εLeq>M Group gi <εLeq(g)>N <εLeq(g)>C <εLeq(g)>M

10 1 5.0 5.2 5.2 1 5.3 5.1 5.2
11 1 4.5 4.0 4.1 2 4.2 3.2 2.8
18 1 6.4 6.1 6.1 3 2.5 2.5 2.8
20 1 5.3 5.5 5.6 4 5.3 2.4 2.1
7 2 1.9 4.0 2.9 5 2.6 2.4 2.2

12 2 7.8 2.5 3.8 6 3.4 1.3 1.3
14 2 2.8 3.1 1.6
3 3 1.8 2.3 2.5
6 3 4.2 4.5 5.9
4 3 2.1 1.5 2.0

21 3 1.8 1.5 0.7
13 4 4.1 2.0 0.8
15 4 3.3 2.6 1.3
16 4 8.4 2.6 4.2
1 5 4.5 3.0 4.4
5 5 1.9 2.4 1.2
9 5 1.4 1.9 1.0

19 6 3.4 1.3 1.3

Therefore, excluding group g1, for which a specific analysis needs to be developed, the prediction
error of roads belonging to other groups, upon a systematic error correction <εLeq>C, remains below
3 dB for each site, with the exception of Sites 6 (g3) and 7 (g2). The latter must be treated differently if
we require that the 3 dB constrains must apply to all sites belonging to a group. We took 3 dB as a
reference accuracy value as retrieved from the Good Practice Guide for strategic noise mapping [47].
As an example, consider site 6 (g3). Correcting the predicted noise level using its own relative traffic
flow deviation (not the group mean), we obtain the results reported in Figure 17, that correspond to
<εLeq>C = 1.1 dB.

This result suggests that in order to get an effective correction, the relative error between the
measured and the model traffic flow (8:00–9:00) in a given road stretch has to be bound within an
interval that depends on the group it belongs to. In Figure 18, for example, we report the relative
mean hourly deviation between traffic noise measurements and the corresponding DYNAMAP
predictions, εL, against the relative deviation between the logarithm of traffic flow measurements and
the corresponding model calculations at the reference hour (8:00–9:00), εF, for each site of group g3.
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Figure 17. Comparison between traffic noise measurement and the “locally corrected” DYNAMAP
prediction for Site 6.

Figure 18 has been obtained assuming for simplicity that the relation between εL and εF is linear
within group g3. In this case, in order to get a prediction error <3 dB for each site, the relative error on
the traffic flow can vary by about ±0.10 with respect to the minimum found for the single site, as it can
be observed in Figure 19 for Sites 3, 6, and 21.

Figure 18. Relative mean hourly deviation between traffic noise measurements and the corresponding
DYNAMAP predictions, εL, versus the relative deviation between the logarithm of traffic flow
measurements and the corresponding model calculations at the reference hour (8:00–9:00), εF, for each
site of group 3.

In Figure 19, the minimum prediction error is obtained near the corresponding site-specific
flow error. It does not match exactly the value reported in Figure 18 because we are using a linear
dependence between εL and εF (see Figure 18). In other words, the mean value of the relative error
on the traffic flow of a given group g, εF, (the one that has been used in the correction procedure of
DYNAMAP prediction) must be bound within an interval that can be determined as follows: if we
take εF centered at the minimum of the relative error of the site-specific traffic flow, εF,S6m for the case
of Site 6, it means that εF = εF,S6m can have a maximum standard deviation σ = ±(0.10) to satisfy the
condition about the mean prediction error, <εLeq> < 3 dB. Therefore, εF must belong to an interval
(εF,S6m − 0.10, εF,S6m + 0.10). This procedure has to be repeated for each site of the group. If these
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conditions are met, all sites will have <εLeq> < 3 dB. This means that the traffic model must provide
flow values for the streets belonging to each group with comparable accuracy in order that the error
remains within the same threshold for all sites of the group.

Figure 19. Mean prediction error <εLeq> as function of the relative traffic flow error (8:00–9:00) εF for
Sites 3, 6, and 21. The graphs have been obtained assuming for simplicity that the relation between εL

and εF is linear within group g3 (see Figure 18). The dashed line represents the 3 dB threshold.

As for roads characterized by low traffic flows, such as those belonging to group g1, the application
of the correction based only on the relative deviation of the local traffic flow is not effective, because in
these cases, the noise level is not mainly determined by the local traffic, but by that of busier nearby
roads. In these cases, we may think to reassign them to other groups, applying the correction of the
group whose contribution in the prediction of the noise level is predominant.

5. Conclusions

DYNAMAP is an automatic monitoring system, based on customized low-cost sensors and a
software tool implemented in a general purpose GIS platform. It has been developed and built in
two pilot areas located along the A90 motorway that surrounds the city of Rome (Italy) and inside
the agglomeration of Milan (Italy). This paper describes the final assessment of DYNAMAP system
implemented in the pilot area of Milan. The statistical-based nature of the project relies on the high
degree of correlation between what we called as non-acoustic parameter (total traffic flow) and traffic
noise levels. This correlation allowed an accurate description of the traffic noise due to clusters of
roads (described as a single noise map) from the information recorded from a few monitoring stations
distributed all over the pilot area.

The paper includes the description of two procedures for updating the acoustic maps: one based
on the average of the noise recorded by the monitoring stations in each group (1st method) and the
other based on a two-cluster expansion scheme performed directly over the noise recorded by the
24 monitoring sensors distributed over the six groups of roads (2nd method). Both methods provided
similar results though the second one was more robust in the case where one or more noise monitoring
stations went offline. This is because the lack of information from one sensor (or more than one) is not
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as disruptive as for the first method. Indeed, we will have a 25% of missing information (1st method)
against 4% (2nd method) in case of missing data from one sensor. In order to validate the system, each
monitoring station was calibrated and cross-checked with Class I sound meters. A field measurement
campaign was performed in order to compare the results of noise measurements and traffic flow with
the corresponding estimated values of the noise map and of the traffic model.

In terms of accuracy, the predictive capability of DYNAMAP was mainly associated with the
related accuracy of the chosen non-acoustic parameter (traffic flow). For this reason, a poor accuracy of
the non-acoustic parameter is directly reflected on the noise prediction error. A method to correct the
predicted noise levels in an arbitrary location and, therefore, limit the overall mean error within 3 dB
for all groups of roads was illustrated. However, the requirements to keep the prediction error within
3 dB for each site established a serious constraint on the traffic flow model accuracy. This means that
a significant improvement would be obtained by implementing a more realistic traffic flow model.
This would reduce the systematic error and, therefore, enhance the overall reliability of DYNAMAP
prediction. Hopefully, the implementation of mobile sampling and, more generally, of participatory
sensing both for noise and traffic data would help reduce the uncertainty of noise maps. Conversely,
this result may cause either an incorrect evaluation of the exposed population or improper noise action
plans. Therefore, the uncertainty analysis in the creation of noise maps is a fundamental key tool to
design noise action plans on extended areas.
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Acronyms

In this section, we provide the list of acronyms employed throughout the manuscript:
AMAT Agenzia Mobilità Ambiente Territorio
ANEs Anomalous Noise Events
ANED Anomalous Noise Events Detection
ARM Advanced RISC Machines
CADNA Computer Aided Noise Abatement
cfr confer
CNOSSOS-EU Common Noise Assessment Methods in Europe
DYNAMAP DYNamic Acoustic MAPping
END Environmental Noise Directive
e.g., exempli gratia
GIS Geographic Information System
N.C. Not Calibrated
RISC Reduced Instruction Set Computer
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Abstract: Human hearing adapts to steady signals, but remains very sensitive to fluctuations as well
as to prominent, salient noise events. The higher these fluctuations are, the more annoying a sound is
possibly perceived. To quantify these fluctuations, descriptors have been proposed in the literature
and, among these, the intermittency ratio (IR) has been formulated to quantify the eventfulness of
an exposure from transportation noise. This paper deals with the application of IR to urban road
traffic noise data, collected in terms of 1 s A-weighted sound pressure level (SPL), without being
attended, monitored continuously for 24 h in 90 sites in the city of Milan. IR was computed on each
hourly data of the 251 time series available (lasting 24 h each), including different types of roads, from
motorways to local roads with low traffic flow. The obtained hourly IR values have been processed by
clustering methods to extract the most significant temporal pattern features of IR in order to figure out
a criterion to classify the urban sites taking into account road traffic noise events, which potentially
increase annoyance. Two clusters have been obtained and a “non-acoustic” parameter x, determined
by combination of the traffic flow rate in three hourly intervals, has allowed to associate each site
with the cluster membership. The described methodology could be fruitfully applied on road traffic
noise data in other cities. Moreover, to have a more detailed characterization of noise exposure,
IR, describing SPL short-term temporal variations, has proved to be a useful supplementary metric
accompanying LAeq, which is limited to measure the energy content of the noise exposure.

Keywords: road traffic noise; noise events; intermittency ratio; urban sites classification

1. Introduction

Noise pollution has been estimated as the second major environmental health risk after air
pollution in Europe [1]. The noise health effects may emerge directly via autonomous stress reactions
to the physical exposure or indirectly via negative affective states, for example the evoked annoyance.
Noise annoyance may interfere with daily activities, rest or sleep, and can be accompanied by negative
emotional and behavioral responses such as anger, displeasure, exhaustion and by stress-related
symptoms [2–4].

There is clear evidence in the literature that annoyance and sleep effects depend not only on
sound energy, described by metrics like LAeq, but also by the characteristics of noise events, which
can be quantified by different metrics proposed in the literature, as those reviewed in [5]. It is well
known that human hearing is able to adapt to steady noise easier than to the sound pressure level
(SPL) fluctuations, as well as to prominent, salient noise events [6,7]. The higher these fluctuations are,
the more annoying a sound is possibly perceived. Road traffic noise is typically characterized by the
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noise events due to the single vehicle pass-by, where the temporal structure of SPL varies between local
one-lane city roads, showing highly intermittent noise, up to wide multi-lane motorways, producing
a nearly continuous noise with very limited SPL fluctuations. To quantify these SPL fluctuations,
common approaches either apply thresholds to detect events exceeding such thresholds and count
number and duration of these events, or use SPL statistics, like percentile levels LA1, LA5 and LA10,
namely the A-weighted SPL exceeded for 1%, 5% and 10% of the measurement time, respectively.

Recently, a new descriptor has been proposed [8], describing the eventfulness (or intermittency) of
transportation noise exposure, taking into account both number and magnitude of noise events during
a certain time period. The metric, named intermittency ratio (IR) and introduced within the framework
of the SiRENE project, can be derived either directly from acoustic measurements or calculated from
traffic and geometric data for any transportation noise source and any time period. A recent survey,
performed on a stratified random sample of 5592 residents exposed to transportation noise all over
Switzerland, has shown that for road traffic noise IR has an additional effect on the percentage of highly
annoyed people and can explain shifts of the exposure-response curve of up to about 6 dB between
low IR and high IR exposure situations, possibly due to the effect of different durations of noise-free
intervals between events [9]. Moreover, a parameter study, based on calculations, has showed the
dependency of IR on source–receiver distance, traffic volume, the percentage of heavy vehicles and
travelling speed [10].

The metric IR has been determined on the 1 s A-weighted SPL from road traffic, without being
attended, monitored continuously for 24 h in 90 sites in the city of Milan. It was computed on each
hourly data of the 251 time series available (lasting 24 h each), including different types of roads, from
motorways to local roads with low traffic flow. The obtained hourly IR values have been processed by
clustering methods to extract the most significant temporal pattern features of IR, in order to figure out
a criterion to classify the urban sites considering road traffic noise events, which potentially increase
annoyance. Two clusters have been determined and a “non-acoustic” parameter x, calculated by
combination of the traffic flow rate in three hourly intervals, has allowed us to associate each site
with the cluster membership. Furthermore, binomial logistic regression has been applied to develop a
model to predict the cluster membership on the basis of the IR time patterns. The performance of the
model, determined comparing the predicted classification of the test data subset with that obtained by
the cluster analysis, was satisfactory.

2. Materials and Methods

2.1. Acoustic Data Set

In the framework of the LIFE DYNAMAP project, a large road traffic noise monitoring survey
was carried out in the entire area of Milan to collect a database containing noise data related to the
city road network [11]. From this database a set of 90 sites have been considered to represent the
different types of roads according to the Italian functional road classification, that is motorway (class
“A”), thoroughfare roads (class “D”), urban district roads (class “E”) and urban local roads (“F”).
The distribution of the sites among these classes is given in Table 1, together with the number of 24-hour
time series of 1 s A-weighted sound pressure level (SPL) from road traffic monitored continuously
by a class 1 sound level meter with the microphone placed at 4 m above the road. In some sites the
unattended monitoring has been performed on more consecutive days. The monitoring has been
performed on weekdays only (Monday to Friday), without rain and with wind speed less than 5 m/s.
Noise events not associated with road traffic have been visually detected and manually masked before
further data processing. The microphone was placed close to the road to reduce the influence of noise
from other sources. Thus, the noise data are not representative of the real exposure of residents, living
at greater distances from the road, especially where the road has a multi-lane geometrical configuration
and even further away if the lanes are separated by a median strip area. In particular, the inhabitants’
exposure is most likely overestimated because the values of IR and LAeq are greater than those at the
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road facing building façades (i.e., for IR dependency on source–receiver distance see Figure 4 in [10]).
Details on the numbers of lanes for each direction and the average distance of the microphone from the
roadside are given in Table 1.

Table 1. Distribution of the 90 sites included in the road traffic noise monitoring.

Road Type N. of Sites
N. of 24-h Time

Series
N. of Lanes for
Each Direction

Average Distance
Microphone-Roadside [m]

A 2 15
3 (50.0%) 18.5
4 (50.0%) 12.5

D 7 18

1 (28.6%) 5.5
2 (14.3%) 7.0
3 (42.8%) 7.0
4 (14.3%) 4.5

E 29 83

1 (32.1%) 6.8
2 (35.7%) 5.8
3 (28.6%) 4.4
4 (3.6%) 8.5

F 52 135

1 one way (30.0%) 9.0
1 (56.0%) 10.5

2 one way (2.0%) 6.5
2 (12.0%) 13.0

Total 90 251

2.2. Intermittency Ratio IR Formulation

A noise event can be characterized by its maximum level, its sound exposure level (SEL), its
“emergence” from background noise, its duration, or by the slope of rise of the level. For the
characterization of the “eventfulness” of a noise exposure, the event continuous equivalent level
Leq,T,Events is introduced in the IR formulation, which accounts for all sound energy contributions that
exceed a given threshold, that is clearly stand out from background noise. This parameter is referred
to the overall continuous equivalent level Leq,T,tot for the measurement time T to give the following
formulation of IR [8]:

IR =
100.1Leq,T,Events

100.1Leq,T,tot
·100 [%]. (1)

A single pass-by only contributes to Leq,T,Events if its SPL exceeds a given threshold K determined
by:

K = Leq,T,tot + C [dB], (2)

where C might be between 0 and 10 dB. For low values of C, almost any situation produces a high IR,
whereas high values of C almost always produce low IR. The balance between these extreme cases
was investigated by numerical simulations of various traffic situations and resulted in C = 3 dB [8].
This value has not been set based on any verified psychoacoustic principle, but was derived empirically.
As pointed out in [8], “The question of how much an event really has to stand out from background
noise in order to be termed “event” by normal listeners depends on various other parameters”, like the
attentional, cognitive and emotional situation of the listener [6]. By definition, IR only takes values
between 0% and 100%. An IR > 50% means that more than half of the sound exposure is caused by
“distinct” pass-by events. In situations with only events that clearly emerge from background noise
(e.g., a receiver very close by a road), IR yields values close to 100%. For example, Figure 1 shows the
A-weighted SPL time history (measurement time T = 1 h) for an urban local road together with the
corresponding LAeq,T,tot and the threshold K used to detect the events (all the SPLs above K), which
determine LAeq,T,Events.
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Figure 1. A-weighted sound pressure level versus time t (T = 1 h) for an urban local road. The sound
pressure levels (SPLs) above the threshold K are events contributing to determine Leq,T,Events. For the
plotted hourly SPL time history intermittency ratio (IR) = 93.3%, LAeq,T,tot = 59.8 dB(A), number of
events above K threshold = 45 and LAeq,T,Events = 59.5 dB(A).

2.3. Data Processing and Analysis

A script running in the “R” environment, version 3.5.1 [12], has been written to import each of
the 24-h time series as input in terms of text file (four columns with date, time, SPL in dB(A) at 1 s
intervals and a code to indicate the corresponding source, which is road traffic noise or something
else). The reference measurement time T was chosen equal to 1 h, as this time frame is established
by the Italian legislation for road traffic noise measurement. Besides this requirement, the chosen
measurement time T of 1 h was considered a reasonable compromise between longer time (i.e., 24 h,
day and night periods, etc.) and shorter ones (i.e., 30 min or even shorter). For each T of 1 h, the output
data were exported to an Excel file, including:

• The overall LAeq hourly value (dB(A));
• The hourly value of intermittency ratio IR (%) and the corresponding number of events;
• For each detected noise event the corresponding start time, the duration (s) and the sound exposure

level (SEL; dB(A)).

In addition for each site the hourly traffic flow was provided by the Municipal Agency of Mobility,
Environment and Land of Milan (AMAT). The data were calculated by a model of traffic applied to the
city road network.

The statistical analysis of the collected data was carried out by the software “R” [12]. For the sites
where the noise monitoring lasted more days the median value of IR for each hour was determined, as
this parameter is less influenced by the presence of outliers. Thus a matrix of 90 (sites) × 24 (hours) =
2160 values of hourly IR was used as input of the subsequent cluster analysis performed to find out the
similarities in the IR time patterns.

To fulfill such an objective, hierarchical clustering, an unsupervised machine learning method for
data classification, was applied. This method does not require to pre-specify the number of clusters to
be generated and the output is a tree-based representation of the observations (dendrogram) showing
the sequence of cluster formation and the distance at which each fusion takes place. Previously, for each
hour the IR values have been scaled (mean = 0 and standard deviation = 1). The Euclidean distance has
been considered to represent the similarity between pairs of observations. Complete-linkage clustering
was considered: at the beginning of the process, each element is in a cluster of its own and, afterwards,
the clusters are sequentially combined into larger clusters until all elements end up being in the same
cluster. Different clustering methods available in the “clValid” R package, version 0.6-6 [13], were
applied. In particular, six methods were considered, that is hierarchical, partitioning around medoids
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(PAM), k-means, divisive analysis clustering (DIANA), model-base clustering and self-organizing
tree algorithm (SOTA). For the sake of simplicity, minimal discrimination was considered, that is
two clusters for both the sites and the hourly time intervals. The clustering performance of the
methods was ranked according to seven parameters, namely connectivity, silhouette width and Dunn
index (combining measures of compactness and separation of the clusters), the average proportion of
non-overlap (APN), the average distance (AD), the average distance between means (ADM) and the
figure of merit (FOM). The method selected as “optimal” on the basis of the above parameters was
applied to obtain two clusters of IR patterns for both the sites and the hourly time intervals.

Afterwards, a model was developed to predict the cluster membership on the basis of the IR
time patterns. For this purpose the “caret” R package, acronym for “Classification And REgression
Training” [14], was used. The dataset needed to be randomly divided into two subsets, one for training
the model and the other to test it and evaluate its classification performance. The binomial logistic
regression was applied to develop the model because the dependent variable (cluster membership)
was categorical with two categories. The classification performance of the model was determined
comparing the predicted classification of the test data subset with that obtained by the cluster analysis.

3. Results

Figure 2 shows an example of the obtained 24-h pattern of hourly values of LAeq and corresponding
IR for two different types of roads, namely a motorway (class “A”) and a local street (class “F”).
The plot reports the median of the hourly values ± the median absolute deviation (MAD) because the
monitoring included more than one day, namely 12 days for road “A” and 9 days for road “F”. It can
be seen that road “A” was always much noisier than road “F” (hourly LAeq average differences across
the hours of about 6 dB) and shows always lower IR values than road “F” (hourly IR average difference
across the hours of about −50%, and less pronounced (−30%) during the night). The lower IR values
observed for road “A” were due to the high traffic flow rate and speed on the motorway, resulting in
a high background SPL above which the noise events did not stand out too much. This feature was
clearly present in the day period from 6 to 18 h, whereas for the period from 2 to 4 h the highest values
of IR were observed, when the reduced traffic flow allowed the increase of speed and more prominent
noise events occurred above the lower background level. Road “F” shows the same behavior in the
night, whereas the lowest IR values occurred at the traffic peak hours (8 and 18 h), when the traffic
flow was highest and the increased background SPL reduced the prominence of noise events. Thus,
given the very different temporal patterns of urban road traffic noise, from relative continuity to high
intermittency, it would be worth to consider the IR metric as a supplementary quantity to LAeq.

Regarding clustering, the DIANA method was selected as the “optimal” clustering algorithm to
divide the data set into two clusters of IR patterns for both the sites and the hourly time intervals.
The dendrogram of the scaled IR hourly values obtained for the sites (matrix with rows = sites and
columns = hours) is given in Figure 3. Table 2 reports the distribution of the sites across the road type and
clusters. Cluster 2, on the right hand side in Figure 3, includes the majority of all the road types, whereas
Cluster 1, on the left hand side in Figure 3, includes the remaining roads and all those in class “A”.
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Figure 2. Example of the obtained 24-h pattern of hourly values of LAeq and corresponding IR for two
different types of roads, namely a motorway (class “A”) and a local street (class “F”).

Figure 3. Dendrogram of the scaled IR hourly values obtained for the 24-h road traffic noise data
monitored in the 90 sites in Milan.
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Table 2. Distribution of the 90 sites across the two clusters and type of road for the classification based
on IR hourly time patterns.

Cluster 1 2

N. of sites (%) 34 (37.8) 56 (62.2)

Road Type

A 2 (100) 0 (0)
D 4 (57.1) 3 (42.9)
E 16 (55.2) 13 (44.8)
F 12 (23.1) 40 (76.9)

The multidimensional scaling (MDS) applied to the data provided the bi-dimensional plot given
in Figure 4, where the two clusters appeared satisfactorily separated and the variance explained by the
two dimensions was 88.3%.

 

Figure 4. Bi-dimensional plot of the two clusters obtained by multidimensional scaling (MDS).
Dimension 1 and 2 explain 68.4% and 19.9% of the variance, respectively.

The dendrogram in Figure 5 shows the clustering in terms of hourly intervals, obtained after
the transposition of the matrix containing the 2160 values of hourly IR (rows = hours and columns
= sites). The night period (from 22 to 7 h) was clearly separated from the day-time. Regarding the
IR time pattern for each cluster, Figure 6 reports the hourly median IR values ± the median absolute
deviation (MAD) and the three hourly intervals showing the biggest differences between the two
clusters (green rectangles). In the night period the IR values were the highest for both clusters because
of the presence of noise events clearly emerging above the background noise. In this time period there
was an overlapping between IR values corresponding to the two clusters. Similar median IR time
patterns were also observed from 7 to 24 h, with Cluster 1 having lower IR values. As expected the
night period was the most critical due to prominent noise events, which could produce an increasing
of annoyance, considering also the affected activities (mainly sleep).

The above results of clustering were also plotted in terms of a heatmap, reported in Figure 7,
a rectangular tiling of the data matrix with cluster trees appended to its margins, where the rows and
columns of the matrix are ordered to highlight patterns [15]. The color key legend on the top left in the
figure shows also the distribution of the 2160 hourly IR values.
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Figure 5. Dendrogram of the scaled IR hourly values as a function of the hours.

 

Figure 6. IR time pattern for each cluster. Green rectangles correspond to the hourly intervals showing
the biggest differences between the two IR time patterns.

 

Figure 7. Cluster heatmap of the scaled hourly values of IR. On the y axis the sites divided into Cluster
1 (blue rectangle) and 2 (red rectangle). On the x axis the clustering across the hourly intervals with the
night period, from 22 to 7 h, in the blue rectangle.
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The obtained IR time pattern for each cluster cannot be applied in a straightforward way without
any linking to a specific feature of either the road or the corresponding traffic flow. As shown in
Table 2, the road type was useless because each cluster included different road types. Thus, to find
a “non-acoustic” parameter suitable to predict the cluster membership, the Mann-Whitney U test
was performed on the hourly IR values to detect the hourly intervals where their differences between
the two clusters were biggest. The rank descending order of these differences showed that they
corresponded to the hourly intervals 15–16 h, 13–14 h and 11–12 h (see Figure 7). Thus, the traffic flows
F in these three hours were combined according to the following relationship, similar to that previously
proposed in [16]:

x =

√
[lg(F15−16)]

2 + [lg(F13−14)]
2 + [lg(F11−12)]

2. (3)

Having a separation of the sites into two clusters, binomial logistic regression was applied to
develop a model to predict this classification. This is a statistical model that in its basic form uses a
logistic function (known as “S” shape or sigmoid curve) to model a binary dependent variable, having
only two possible values. In such a model, the cluster membership was considered as a dependent
variable, in particular Cluster 1 was labeled “0” and Cluster 2 was labeled “1”, and the “non-acoustic”
parameter x was taken as an independent variable (predictor). The split ratio = 0.7 was used for
randomly sub-setting the data set for training the classification model (63 sites) and, afterwards, to test
it (27 sites). At the end of the training process, the model equations in terms of probability P of an
observation to belong to Cluster 2 (Y = 1) was obtained as follows:

P(Y = 1) =
1

1 + e(−6.84+1.26x)
(4)

The classification model was applied to the test dataset in order to evaluate its classification
performance and the obtained confusion matrix, a table counting how often each combination of
known categories (the clusters) occurred in combination with each prediction type, is reported in
Figure 8. The results were satisfactory, being the model accuracy (fraction of correct predictions)
equaled to 0.83, the precision (the ratio of true positives to predicted positives) and recall (the ratio of
true positives over all positives) equaled to 0.88 and the Cohen’s kappa |ê = 0.60 (moderate agreement).
Table 3 reports additional performance parameters. Figure 9 shows the comparison between the cluster
membership (blue dots = Cluster 1 and red dots = Cluster 2) obtained by the DIANA clustering and the
probabilities predicted by the logistic regression (blue curve obtained by Equation (4)). The proportion
of correctly classified observations by the model was equal to 0.74.

Figure 8. Confusion matrix of the classification model applied to the test dataset.
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Table 3. Classification performance of the logistic model.

Parameter Value

Sensitivity 0.71
Specificity 0.88

Detection rate 0.21
Balanced accuracy 0.80

 

Figure 9. Cluster membership (blue dots = Cluster 1 and red dots = Cluster 2) obtained by the divisive
analysis (DIANA) clustering compared with the probabilities predicted by the logistic regression (blue
curve obtained by Equation (4)). Probabilities p ≤ 0.5 and p > 0.5 correspond to Cluster 1 and 2,
respectively. The threshold for the “non-acoustic” parameter x to discriminate between the cluster
membership is reported in green.

Regarding the effective application of the above two clusters, it is essential to determine a threshold
for the “non-acoustic” parameter x able to discriminate between the cluster membership. Such a
threshold (x = 5.24) was empirically determined as shown in the box plot of the x values reported
according to the cluster membership of sites (Figure 10). This value was comparable with that obtained
from the intersection of the logistic model curve with the cluster membership probability value of 0.5,
shown in Figure 9 (x = 5.428).

 

Figure 10. Empirical threshold value of the “non-acoustic” parameter x obtained for the discrimination
between the two clusters (x = 5.24).
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4. Discussion

It has to be pointed out that the IR values calculated from the noise data provided by the noise
monitoring network in Milan have some drawbacks due to some factors, like the different distance
microphone-longitudinal axis of the road, the microphone proximity to the road and not where the
residents live and so forth. In addition, the results of the clustering and classification model were
strongly dependent on the local situation and could not be generalized to other contexts. Besides
these limitations, the methodology applied could be fruitful applied in other cities and some general
considerations could be drawn. For instance, the hourly IR and LAeq time patterns, shown by the
example in Figure 2, highlight the complementarity of these two metrics, the former describing
SPL short-term temporal variation, the latter measuring the energy content of the noise exposure.
In particular, for the available experimental dataset, Figure 11 reports the logistic fitting of the hourly
values of these two descriptors for the centroids of cluster 1 and 2.

  
(a) (b) 

Figure 11. Logistic fitting of the hourly values of IR and LAeq for the centroids of cluster 1 (a) and 2 (b).
The area around the regression line represents the confidence bands at a 95% confidence level. The
symbol labels represent the hourly intervals.

Due to its definition, the IR value ranges between the following two opposite sonic environments:

1. Sound events with low energy, not so much “emerging” from high background SPL, corresponding
to a low value of IR;

2. Sound events with high energy, clearly “predominating” above low background SPL, corresponding
to a high value of IR.

The sonic environment (1) occurs usually at roads with high traffic road rate, such as motorways
and thoroughfare roads (road classes “A” and “D”) especially during the day-time, whereas the sonic
environment (2) is usually observed at roads either with low traffic road rate, such as local roads (road
class “F”) during the day-time or during the night for all the roads with the exception of motorways.

However, there might be particular cases, indeed very frequent in the urban context, where the
local road is very close to a busy street whose noise is clearly influencing the sonic environment in the
local road itself. In these circumstances, the low energy noise events, produced by small number of
vehicle pass-by at low speed, do not emerge so much above the high background SPL produced by the
nearby busy road. In the data set herewith considered there were a few sites with this feature, like
the two ones shown in Figure 12. The IR time pattern in these sites is similar to those observed for
thoroughfare roads. This is, most likely, the reason why a marginal percentage (23.1%) of local roads
(class “F”) have not been grouped in the cluster containing busy roads. Thus, in the selection of sites to
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be monitored it is important to avoid, as much as possible, this situation, which, nevertheless, is often
present in urban road network.

  
(a) (b) 

Figure 12. Examples of two local roads (a and b) monitored nearby a busy street (adapted from Google
Earth images).

The above remarks should not be considered a weakness of the IR metric, but rather a reliable
representation of the time pattern of the sonic environment and of the potential annoyance it might
evoke. In addition, a comparison has been performed between the classification based on IR hourly
time patterns and that provided by hourly LAeq time patterns, the latter obtained according to the
procedure detailed in [17,18]. The two classifications, as shown in Figure 13, are somewhat different,
as they overlap for 64% only.

 
Figure 13. Comparison between the classifications based on IR and LAeq hourly time patterns for the
type of roads.

Despite the observed mismatch between the above two classifications, the difference between
the hourly LAeq patterns corresponding to the clusters obtained by the two classifications was not
statistically significant at 95% confidence level for any hourly interval, even in the night period, as
shown in Figure 14 where the hourly LAeq median values ± the median absolute deviation (MAD)
are reported. However, it has to be pointed out that the two classifications have different aims: the
one based on LAeq pattern is mainly focused on noise mapping, according to the standards issued
by the European Directive 2002/49/EC [19], whereas that based on IR pattern could be aimed at
discriminating the sites according to the potential annoyance their sonic environment might evoke.
Thus, these two approaches are not alternative with one another but shall be considered complementary.
Furthermore, both the classifications are rather different from the categorization based on the type of
road, as established by the Italian legislation, which defines the noise limits as a function of the road
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category. Thus, this approach did not seem appropriate for an effective protection against road traffic
noise pollution.

  
(a) (b) 

Figure 14. Comparison of the hourly LAeq patterns corresponding to the two clusters (a, cluster 1 and b,
cluster 2) obtained by the two classifications based on IR and LAeq, respectively.

5. Conclusions

The intermittency ratio IR metric was applied to a database of road traffic noise, without being
attended, monitored for 24 h in 90 sites in the city of Milan. The reference measurement time T
was set at 1 h and the obtained IR values were processed by clustering methods. Two clusters were
determined, providing hourly IR temporal patterns enabling us to classify the urban sites on the
basis of the observed noise events, which, potentially, increase the annoyance. A “non-acoustic”
parameter x, determined by combination of the traffic flow rate in three hourly intervals, was allowed
to associate each site with the cluster membership. Furthermore, binomial logistic regression was
applied to develop a model to predict the cluster membership on the basis of the IR time patterns. The
performance of the model, determined comparing the predicted classification of the test data subset
with that obtained by the cluster analysis, was satisfactory.

However, the IR values calculated from the noise data provided by the road traffic noise monitoring
network in Milan, mainly used for a noise mapping update, had some drawbacks due to some factors,
like different distances microphone-longitudinal axis of the road and microphone position close to
the road and not where the residents live. The reference measurement time T chosen, equal to 1 h,
had also affected the IR values. In addition, the results of clustering and classification model were
strongly dependent on the local situation and could not be generalized to other contexts. However, the
study showed that data collected for noise monitoring and mapping purposes could be processed to
evaluate the occurrences of noise events produced by a vehicle pass-by. Besides the above limitations,
the described methodology could be fruitfully applied on road traffic noise data in other cities and
some general considerations could be drawn. In particular, IR could be a supplementary metric
accompanying LAeq, as the former describes SPL short-term temporal variation and the latter measures
the energy content of the noise exposure. Indeed, IR could explain deviations of highly annoyed people
percentage from that estimated by the classical exposure–response curves that only rely on LAeq [4],
like those in [20].

Furthermore, the two classifications based on IR and LAeq hourly time patterns are rather different
from that based on the type of road, as established by the Italian legislation, which defines the noise
limits as function of the road category. Thus, this approach does not seem appropriate for an effective
protection against road traffic noise pollution.
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Further steps of this research are already planned and they include the statistics of errors in the
estimate of IR values derived by the application of the above time patterns, as well as the potential of
IR to detect correctly the noise events produced by road traffic, identified by an automatic recognition
algorithm already developed within the DYNAMAP project [21,22].
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Abstract: Road infrastructures represent a key point in the development of smart cities. In any
case, the environmental impact of road traffic should be carefully assessed. Acoustic noise is one of
the most important issues to be monitored by means of sound level measurements. When a large
measurement campaign is not possible, road traffic noise predictive models (RTNMs) can be used.
Standard RTNMs present in literature usually require in input several information about the traffic,
such as flows of vehicles, percentage of heavy vehicles, average speed, etc. Many times, the lack
of information about this large set of inputs is a limitation to the application of predictive models
on a large scale. In this paper, a new methodology, easy to be implemented in a sensor concept,
based on video processing and object detection tools, is proposed: the Equivalent Acoustic Level
Estimator (EAgLE). The input parameters of EAgLE are detected analyzing video images of the area
under study. Once the number of vehicles, the typology (light or heavy vehicle), and the speeds are
recorded, the sound power level of each vehicle is computed, according to the EU recommended
standard model (CNOSSOS-EU), and the Sound Exposure Level (SEL) of each transit is estimated at
the receiver. Finally, summing up the contributions of all the vehicles, the continuous equivalent level,
Leq, on a given time range can be assessed. A preliminary test of the EAgLE technique is proposed
in this paper on two sample measurements performed in proximity of an Italian highway. The
results will show excellent performances in terms of agreement with the measured Leq and comparing
with other RTNMs. These satisfying results, once confirmed by a larger validation test, will open
the way to the development of a dedicated sensor, embedding the EAgLE model, with possible
interesting applications in smart cities and road infrastructures monitoring. These sites, in fact, are
often equipped (or can be equipped) with a network of monitoring video cameras for safety purposes
or for fining/tolling, that, once the model is properly calibrated and validated, can be turned in a
large scale network of noise estimators.

Keywords: noise control; sensor concept; road traffic noise model; dynamic model

1. Introduction

The problem of road traffic noise in urban and non-urban areas is becoming more and more
important nowadays. The effect of noise on human health is well established [1]. The recent publication
of the European Environment Agency (EEA) about “The European environment—state and outlook
2020. Knowledge for transition to a sustainable Europe” [2] lists environmental noise among the
most dangerous phenomena, dedicating a full chapter to this issue. In this document, the delay in
implementing the actions suggested by the Environmental Noise Directive (END) [3] are claimed,
underlining how at least 20% of the EU’s population is still exposed to noise levels unsafe for health.
Due to society and human habits, such as to existing infrastructures, road traffic noise is the most
important source of noise in the EU, with more than 100 million of people affected by long-term daily
average noise levels greater than 55 dBA and with about 80 million of people exposed to night-time
levels above 50 dBA [3].

In order to cope with this issue, many municipalities introduced fixed or temporary monitoring
stations and implemented mitigation actions based on the results of the measurements. Expensive and
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not always accepted acoustic barriers are the most widespread solution to mitigate the noise produced
by the main sources [4]. Pavement plays a key-role in noise emitted by road, as recently studied by
many authors aiming to integrate noise reduction with green economy by recycling rubber from old
tires into asphalts (rubber asphalts) [5–7]. Preventing is also mitigating, thus, innovative solutions, like
real time monitoring, are actually studied using a wireless sensor network [8,9].

On the other hand, road infrastructures companies are obliged to perform environmental
impact analysis, including noise monitoring and estimation. In addition, when critical situations are
highlighted, action plans must be performed, according to the END [2] and to the national regulations
of each country.

In any case, measurements are expensive and cannot be performed all over large areas, thus, road
traffic noise predictive models (RTNMs) can be adopted to assess noise produced by vehicles. Extensive
reviews of the standard statistical RTNMs can be found for instance in [10,11], also in comparison with
field measurements [12]. In [13], a brief review of advanced techniques for road traffic noise assessment
is reported, including cellular automata [14], Time Series Analysis [15], Poisson models [16], etc. Can
et al. in [17] reported a review of the models to estimate the source power level of the single vehicle.

The usage of advanced computing techniques is somehow growing in literature, even though it
must still be demonstrated that the adoption of computationally demanding procedures introduces a
widespread benefit in the predictions. In “non-standard” conditions (such as traffic jams or congestions
or intersections) usually the common RTNMs fail. Therefore, in large areas case studies, such as big
municipalities and big road infrastructures, and for long term average (such as Lden evaluation), the
need of a fast and effective model is more important than having an extreme precision (for instance
lower than 1 dBA).

Neglecting the predictive models based on data analysis, such as Time Series Analysis models and
Poisson models, it can be affirmed that in order to implement a RTNM it is compulsory to know at least
the number of vehicles that pass in a certain time range (flow) and the classification of each vehicle
(at least light and heavy categories), together with the geometrical detail of the source and receiver
positions. Many other parameters can be included to take into account second order corrections,
such as road pavement typology, gradient of the road, temperature, humidity, etc. All these data,
compulsory and additional ones, are not always available, and thus the possibility to detect the inputs
of any RTNM automatically is an important challenge. In this paper, the author presents the design of
a new methodology, the Equivalent Acoustic Level Estimator (EAgLE), based on vehicles detection,
counting and tracking, by means of a video processing tool, with a single vehicle noise emission and
propagation model.

There are several studies in literature about image processing, video analysis, object detection and
tracking. In [18], a detailed study on vehicle recognition based on deep neural network is presented.
Huang in [19] presented traffic speed estimation from surveillance video recordings, highlighting the
difficulties related to crowded lanes and perspective corrections. Similar research has been presented
by Hua et al. in [20], focusing on the tracking and speed estimation from traffic videos. Biswas et al.
in [21] presented a speed estimation performed on video recordings taken by unmanned aerial vehicles.
Several other studies are reported in literature, focusing mainly on counting, detection and category
assignment, tracking, and speed estimation of vehicles from video recordings. Basically, the real time
traffic monitoring systems have been deeply innovated in the last years, leading to the development,
and sometimes the installation, of very intelligent sensors on road infrastructures and urban areas. In
any case, these sensors are somehow limited, since usually they just detect, count, and track vehicles,
in order to help in traffic management, for instance in signalized intersections. Sometimes the video
cameras are used to control the restricted areas and, in some cases, also for environmental issues (see,
for instance, the Ultra Low Emission Zones (ULEZ) in London), but they usually do not produce an
assessment of any environmental parameter, such as air and/or noise pollution.

The research presented in this paper aims to partially fill this gap, proposing a methodology to
embed these sensor networks with a noise level estimator. The proposed approach starts from the
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recognition of a moving object on the road. Once the object is tracked, it can be counted and categorized
according to its dimension. Its speed can be estimated as well, allowing to assess the sound power
level. This assessment can be performed in many ways, according to several noise emission models (as
presented by Can et al. in [17]). In this paper, the proposed approach is to adopt the CNOSSOS-EU
emission model [22]. Once the noise emission, i.e., the source sound power level, of each vehicle is
estimated, the overall continuous equivalent level over a given time range can be calculated, summing
up all the contributions coming from the vehicles flowing in that time range. This technique, named
after “EAgLE: Equivalent Acoustic Level Estimator”, in honor of one of the animals that have the
best visual capacities, can be implemented in a new sensor to be developed for road traffic noise
assessment purposes.

The above brief description of the EAgLE methodology is detailed in Section 2, while in Section 3
a preliminary application is presented, showing the results obtained in a preliminary comparison
with sound levels recorded on an Italian highway. It will be highlighted that this methodology can be
implemented in an existing or under development sensor network. In fact, many road and railway
infrastructures, such as many municipalities, have already implemented a video recording network,
mainly for safety reasons, that can be easily integrated to become an environmental monitoring network.
The integration between existing video recordings and the proposed methodology is the starting point
for transforming standard video cameras in smart sensors. In fact, the new proposed sensor, based on
video recording, is able to give a quantitative estimation of the noise levels in many points, without the
adoption of sound level meters and extensive (and expensive) measurement campaigns. Of course,
this methodology being a concept, with only a small dataset for validation, it has several shortcomings
at the moment that are reported in the discussion section. The EAgLE efficacy must be tested on a
large dataset. This is the reason why a long term validation should be run, for instance, using it in
parallel with existing monitoring stations. At any rate, EAgLe seems to be very promising, giving the
chance to produce large noise maps, with the only aid of existing, or to be installed, video cameras.

2. Materials and Methods

The EAgLE technique adopted in this paper is based on the recognition of any moving object
by means of background subtraction, defining a moving “blob” (Figure 1). The blob is bounded in a
box (yellow box) and a centroid is applied in the center of the box (red dot). This centroid is tracked
and when it passes a given line (green horizontal line in Figure 1), the vehicle is counted and assigned
to light or heavy vehicle category according to the box’s diagonal length (see counter on top right of
Figure 1). The time each centroid takes for going from the green line to the white line (or vice versa) is
used to estimate the speed of the vehicle, after a conversion from frame per second to meter per second.

(a) (b) 

Figure 1. Image analysis on the video frame. (a) Moving object are bounded in a yellow box and a red
dot (centroid) is applied. Green and white line are used for counting and speed estimation; (b) blob
detection after background subtraction.
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The algorithm has been developed in the “Microsoft Visual Studio 2015” framework, with the aid
of the “Open Source Computer Vision Library” (OpenCV). The code is written in Python. The source
code of the recognition part has been created starting from codes shared in the “GitHub” platform [23].

The principal functions of the code are

• Main function: it performs calculations needed to count the vehicles and separate the categories.
It is also used to estimate the speed of each vehicle;

• Blob auxiliary function: it initializes the parameters of the blob, determining the bounding box and
diagonal dimensions. In addition, it includes the “predictNextPosition” function described below;

• Header function: the blob class is defined here, applying the parameters defined in the “blob”
function to each continuous mass detected in the frame.

The input file is a MPEG-4 file. At this stage, the algorithm works only in offline mode, analyzing
the single frames after having processed the input video. The detection is performed by subtracting
the background into two following frames. The tracking of the blob centroid is performed with an
improved algorithm, proposed in [23]. The classic approach suggests minimizing the distance between
all the centroid positions and the referenced one in two following frames. In this algorithm, a prediction
of the position in the next frame is performed for each centroid, on the basis of the trajectory that
followed in the previous close frames. Then, a weighted mean between previous positions, with
weights varying according to the time distance, is performed and this position is proposed for the
following frame. This calculation is done on 4 previous positions, as a compromise between tracking
efficiency and computing time. Then, the distance between the predicted position and the real one is
minimized, assigning the position to each blob, in all the frames of the video. This is useful to avoid
multiple recognition due to several vehicles moving close each other.

When a centroid crosses a chosen line (in our case, the green line in Figure 1), that can be horizontal
or vertical, the counting is increased by one. The category is assigned according to the length of the
diagonal of the box. A short video sample of this procedure (Video S1) is proposed in the supplementary
material of the paper. A time stamp (frame number) of the crossing is recorded and used for evaluation
of the speed, by combining this time with the time of crossing the white line.

Once the vehicle has been detected and classified, and its speed has been assigned to the
velocity vector, the sound power level can be estimated. In this preliminary stage, the following
procedure has been implemented in Matlab©, but it can be implemented in the same framework of the
video processing.

As mentioned in the introduction, among the several emission models that are presented in the
literature (see Can et al. [17]), EAgLE implements the CNOSSOS-EU emission model that suggests
calculating the sound power level as follows:

LW,i,m(vm) = 10log
(
10

LWR,i,m(vm)

10 + 10
LWP,i,m(vm)

10

)
(1)

where, i is the index related to the frequency band of octave, m is the index related to the type of vehicle,
vm is the average speed of the flow of the m-th category of vehicles, Lw,R,i,m is the rolling noise, and
Lw,P,i,m is the propulsion noise, given by:

LWR,i,m(vm) = AR,i,m + BR,i,m log
(

vm

vre f

)
+ ΔLWR,i,m(vm) (2)

LWP,i,m = AP,i,m + BP,i,m

(vm−vre f

vre f

)
+ ΔLWP,i,m(vm) (3)

with vref being the reference speed (70 km/h), A and B table coefficients, and ΔLw the correction terms.
Of course, other emission models can be easily implemented, according to the needs and the country
of application of the EAgLE system.
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Once the Lw is obtained for each vehicle, the instantaneous sound pressure level at the receiver
Lp(t) can be estimated using the pointlike source propagation formula, and the single event Sound
Exposure Level (SEL) of each pass-by, i.e., the amount of acoustic energy of each transit “compressed”
in 1 s, at the fixed receiver, is calculated:

SEL = 10 log
1
t0

∫ t2

t1
10

Lp(t)
10 dt (4)

where t0 = 1 s, t1, and t2, respectively, are the beginning and the end of the transit. This step is
fundamental in order to make all the transits comparable, since they have strong differences in terms
of duration, according to the speed of the vehicles [24]. This procedure is done for each vehicle and for
each category, in particular for light and heavy duty vehicles. Then, the overall SEL is calculated with
a log sum for light and heavy vehicles. The continuous equivalent level Leq evaluated in the time range
Δt is finally obtained with the following formula:

L(Δt)
eq = 10 log

1
Δt

+ 10 log

⎛⎜⎜⎜⎜⎜⎝
NL∑
i=1

100.1SELlight
i +

NH∑
i=1

100.1SELheavy
i

⎞⎟⎟⎟⎟⎟⎠ (5)

A résumé of the main steps of the EAgLE methodology is

1. To acquire the video from cameras;
2. To run the counting and recognition algorithm (in real time or in post processing analysis);
3. To remove fake counts and adjust category recognition (only in offline analysis);
4. To feed the noise level estimator with input data;
5. To calculate noise emission levels (according to CNOSSOS-EU);
6. To calculate the SEL of each vehicle;
7. To calculate the overall SEL for light and heavy duty vehicles’ categories;
8. To estimate the Leq on the required time basis (it should coincide with the video duration).

Of course, once the EAgLE methodology is embedded in existing sensors for video recording
and validated with on-site measurements and calibration, the choice of time basis and time range
to calculate the Leq can be tuned according to the needs of the case study. For instance, for urban
planning purposes, in urban areas with specific limits, the Lden (i.e., equivalent level evaluated on the
day, evening, and night periods, with penalties for evening and night) can be calculated by running
the algorithm on the video recordings of one year. Several other applications are possible, changing
and tuning the parameters of the EAgLE methodology, depending on the aim of the investigation and
on the case study.

Preliminary Application on a Case Study on an Italian Highway: Case Study Description

A preliminary application of the EAgLE methodology has been performed on a site located along
the Italian highway A2 “Autostrada del Mediterraneo”. This highway is managed by ANAS S.p.a. and
goes from the crossing between A30 and RA2, in Fisciano, to Reggio Calabria. The video recording and
the measurements have been performed in the city of Baronissi (Figure 2a), in the segment between
Fisciano and Salerno, from the sidewalk of a bridge (Figure 2b,c), in safety conditions (Figure 2d). In
this segment, the highway is made of two lanes per direction, with an entering lane coming from a gas
station, in the south-north direction. Anyway, the entering flow recorded during the measurements
was negligible. Furthermore, the traffic on the bridge was negligible. No unusual events have been
recorded, such as noisy motorcycles, airplanes passing by, honking, etc., meaning that the conditions
of test are quite ideal for the application of the methodology.
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(a) (b) 

  
(c) (d) 

Figure 2. Measurement location: (a) Position of Baronissi (red mark), in the Campania region (courtesy
of Google Earth©); (b) 3D aerial view of the bridge from Google Earth©; (c) lateral view of the bridge
from Google Street View©; (d) picture of the instruments during the measurement collection.

The instruments used for the measurements are a class 1 sound level meter Fusion by 01 dB and a
video camera embedded in a mobile phone. Two measurements of 15 minutes have been collected
around lunch time on Friday, 17 November, 2017. All the acoustic parameters, in particular LpA,F, Leq,A,
percentile levels, acoustic spectrum in third of octaves, etc., and the video of the vehicles passing-by
have been recorded in parallel. Temperature was approximately in the range 11 ◦C–14 ◦C and wind
speed was below 5 m/s on average. Furthermore, to protect the sound level meter from sudden
wind peaks, the wind cover was used (see Figure 2d). The flow was running almost freely, with little
variations of speed. The average number of vehicles flowing in 15 minutes is 1091 vehicles, with a
percentage of heavy vehicles of about 15% in both the measurements. Details about the manual counts
performed on the videos are reported in Table 1.

Table 1. Details of the manual counts results.

Measurement
ID

Starting Time
[hh:mm:ss]

Light Vehicles
Flow [veh/15 min]

Heavy Vehicles
Flow [veh/15 min]

Percentage of Heavy
Vehicles [%]

1 12:52:37 930 168 15.3
2 13:16:14 917 167 15.4
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The detection algorithm is obviously strongly influenced by the stability of the image that is
affected by vibrations of the bridge and wind. Since in this sample application a simple camera with
a tripod has been used, the overall recognition efficiency is affected by the vibration of the image.
Without any post processing and offline analysis, the detection error is greater than 200%. For this
reason, in order to check the complete EAgLE technique, a sampling of the two videos was tested,
choosing the time ranges in which the camera was more stable, in order to find subsections of the videos
less affected by image movements. Two video subsections, each of them made by 5 cuts collected at
the beginning, at the end, and in the middle of the video, were extracted, one per each measurement.
The overall duration of each subsection is around 300 seconds. Moreover, an offline analysis was run,
removing the counts due to the moving of the frames. The periods chosen for the videos’ cuts are
summarized in Table 2.

Table 2. Starting and ending time of the 5 cuts sampled in Video 1 and Video 2.

Period

Period 1
[mm:ss]
From–to

Period 2
[mm:ss]
From–to

Period 3
[mm:ss]
From–to

Period 4
[mm:ss]
From–to

Period 5
[mm:ss]
From–to

Video 1 cut 00:00–01:02 03:40–04:41 06:03–07:03 10:30–11:30 13:55–15:00
Video 2 cut 00:00–01:18 02:38–03:34 06:29–07:40 10:48–11:51 14:08–15:02

3. Preliminary Results

The results of vehicle counting and detection is reported in Table 3, for the two video cuts,
approximately five minutes long each, after post processing of the videos and moving frames
counts removal.

Table 3. Results of the manual and Equivalent Acoustic Level Estimator (EAgLE) counting and
recognition, after the post processing of the video, in the two video cuts.

Manual counts EAgLE Counts Error Percentage

Light
Vehicles
[counts]

Heavy
Vehicles
[counts]

Light
Vehicles
[counts]

Heavy
Vehicles
[counts]

Light
Vehicles [%]

Heavy
Vehicles [%]

Video 1 cut
(308 s) 334 52 342 55 +2% +6%

Video 2 cut
(322 s) 349 64 355 67 +2% +5%

The efficiency achieved after the removal of moving frames counts is good. Moreover, the
recognition is performed with satisfying results. The mistakes in the category are usually overestimated
due to the fact that some slightly moving frames could not be removed. That led to the creation of fake
moving blobs due to the difference in the background between two following frames. When these
fake blobs appeared close to the counting line, they were counted (usually as light vehicles because of
the little variation between the two images in the following frames). In addition, it occurred that in
some cases two light vehicles moving very closely to each other were recognized as a single heavy
vehicle, leading to a small overestimation in this category. The author believes that these problems can
be solved by means of a more stable video camera, an optimized angle of view, and a more advanced
recognition tool.

The distributions of the speed estimated with the EAgLE algorithm are reported in Figure 3. It
can be noticed that the distribution of light vehicles’ speeds is very close to a normal distribution, as
suggested in literature for free flows. For the heavy vehicles, the different shape of the distribution is
probably influenced by the mixing of medium and heavy vehicles, which in principle have different
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average speeds. The EAgLE algorithm run in this preliminary application, in fact, did not distinguish
between vans (medium vehicles) and buses or trucks (heavy vehicles). The mean values of the two
distributions are of course different, due to the different speed limits and run conditions.

 
(a) (b) 

Figure 3. Speeds distributions for light (a) and heavy vehicles (b) summing the speeds estimated in
both the video cuts.

The missing bins in light vehicles’ speeds distribution figures are due to the discretization in
detection of the speed. The frame rate of the camera (30 fps), in fact, influences the speed estimation,
that is performed converting the number of frames per second needed to go from the trigger line to the
“arrival” line. In particular, the discretization due to the frame rate introduces a discretization in the
speed estimated as well. The resulting “delta” is a function of the speed itself (it grows according to
the growth of the speed), of the frame rate and of the position of the lines. This position is the result
of a compromise between a distance large enough to estimate the speed in a sufficiently large range,
and the best location for vehicles pass-by detection. The delta ranges from about 4 km/h in the low
speeds part of the distribution to about 14 km/h in the high speeds zone. It is expected that a more
advanced camera, with a higher frame rate, will lead to a more precise estimation of the speed, with a
consequently better distribution plot. Additional error sources can be the uncertainty on the centroid
position, for instance, due to the shadow effect and the resolution of the image, since it influences the
bounding box shape.

Due to the results obtained in the first phase with the detection algorithm, basically, once the
identification and the speeds vectors for light and heavy vehicles have been detected, the noise levels
estimation has been performed in Matlab framework. As already described in Section 2, the sound
power level of the sources has been estimated with the CNOSSOS-EU approach, and the propagation
to the receiver has been done with the standard pointlike source propagation formula. The measured
continuous equivalent level Leq on the 15 minutes time range, the levels predicted with some predictive
statistical models, the levels predicted with CNOSSOS-EU model, and the Leq simulated with the
EAgLE technique, are resumed in Table 4. The predictive models selected for the comparison are a
fully statistical and simple model, i.e., the Burgess model [25], that includes just the traffic flow, the
percentage of heavy vehicles, and the distance between source and receiver, and a “semi-dynamical”
model, i.e., CNOSSOS-EU, that, in addition to the previous inputs, includes the mean speed of the flow
and some correction factors, such as road gradient, temperature, etc.

Table 4. Summary of measured Leq over 15 minutes compared with predictive model results and with
the Leq simulated with the EAgLE methodology.

Measurement ID Measured Leq [dBA] Leq Burgess [dBA] Leq Cnossos [dBA] Leq EAgLE [dBA]

1 75.9 77.9 76.2 76.0
2 75.9 77.9 76.1 75.9
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It can be immediately noticed that the statistical models overestimate the measured Leq, while
the models that consider the speed of the flow (as a mean value, such as CNOSSOS, or for the single
vehicle, such as EAgLE) give a much better estimation of the noise levels.

4. Discussion

The preliminary results reported in Section 3 are very encouraging and the comparison performed
on the two test videos present a very good agreement between EAgLE simulated levels and the
measured Leq. Furthermore, it should be underlined that at the moment the methodology presents
some limitations and shortcomings.

First of all, the EAgLE technique is strongly affected by the video recording. In particular, the
critical points seem to be the angle of recording, which affects the parallax and the conversion between
frames and real world distances, the resolution of the camera, which influences the speed estimation,
the light conditions, and the shadow effects. The former two points can be quite easily solved with a
calibration of the system and with the adoption of high resolution cameras. In regards to the latter two
points, of course, a dark image is not feasible for EAgLE at the moment. Problems can occur during
the first and last hours of the day, when the sun is barely perpendicular to the road and shadows can
modify the size of the bounding boxes, leading to a misclassification of the vehicle. This means that the
proposed methodology can be used continuously, during day and night, only in places with artificial
lights, but by calibrating the angle of view and the sensibility of the bounding box can include effects
of the shadows. It should be also underlined that the actual video recording sensors are always placed
on illuminated sites, since it makes no sense to place a video camera on dark sites. For this reason, the
EAgLE methodology is still interesting to be embedded in existing sensors, and, for new installation,
should be designed in proper locations to avoid the night (or little light) issues and the shadow effects.
Moreover, tests with the light projectors of the cars should be performed to see if the recognition
efficiency can be kept using the moving lights. Furthermore, tests at different hours of the day have to
be performed, to assess the effect of the sunrays inclination on the recognition performance.

Another important issue concerning the video recording is the detection ability in crowded and
congested roads. While the exclusion of other “non-noisy” moving objects (pedestrians, animals, etc.)
can be performed with a proper placement of the video camera, the possibility of giving bad results in
congested situations is a critical point, especially in urban areas. In highways, in fact, congestions are
quite rare, especially out of the rush hours. In the author’s opinion, this is a problem that can be solved
by improving the detection and classification code of EAgLE. As mentioned in the introduction, several
techniques have been developed for this purpose, much more advanced that the one implemented in
this preliminary application, based on machine learning, deep learning, neural network, etc. (see for
instance [19]). For this reason, the author is confident that great improvements can be done on this
issue, by tuning the detection algorithm on the case study under investigation.

Another limitation of the EAgLE methodology lies in the estimation of non-standard events, such
as honking, sirens, extremely noisy vehicles, external sources, etc. It must be underlined that none of
the predictive models present in literature nowadays can predict such events, thus, from this point of
view, EAgLE, at the moment, is somehow aligned with the other models. In any case, trigger events
could be implemented in the recognition code, for instance, using the lights of the ambulances or of the
police cars, to tag these events as non-standard and treat them in a proper way.

The preliminary application presented in previous sections is limited due to the small number of
measurements and to the free flow condition. More on this part must be done in future researches in
order to validate the technique on a larger sample of measurements, with different traffic conditions
and geometric features of the sites.

Looking at the comparison in Table 4, it could be argued that such a strong computation effort is
not needed, since the CNOSSOS model gives very similar results. The key point is that the CNOSSOS
model needs several inputs to run, while the EAgLE methodology produced excellent results just using
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the video recordings. Moreover, EAgLE includes a fully dynamic model, since it considers the speed
and the kinematics of the single vehicle.

Even with the above mentioned limitations of this study, the EAgLE methodology is really
promising, because of its easiness in application in any place controlled by video camera recordings.
The actual algorithm is quite easy and can be implemented in real time monitoring, to produce raw
estimations of noise levels. Of course, for a more reliable estimation, an offline analysis is mandatory
in order to clean the raw data from mistakes in counting or the classification of vehicles, such as in
estimating the speed. The integration of this system in a complex sensor, including video recording,
online analysis, data transmission, and offline processing, is encouraged by the preliminary results
obtained in the case study application. The author believes that with a more powerful video camera
network and an improved data processing system, this methodology can be extremely useful in
qualitative noise monitoring systems, especially in urban areas and big infrastructures, where usually
video recording is already present for safety reasons or for tolling/fining systems.

Future studies should include the production of a test sensor that embeds the EAgLE methodology,
with a video camera, a sound level meter, and a processor able to run the algorithm at a local site. In this
way, the sensor can be tested on a large scale validation, with a continuous recording of pressure levels
and video images in order to test the online performances and the criticisms. A sensibility analysis of
the sensor can be performed, testing the variations according to the detection and propagation critical
elements (such as angle of view, distance, geometry of the site, etc.) and to the source parameters
(such as flow volume, typology and dynamics, pulsing conditions, and/or congestions). Moreover, the
non-standard events, such as honking, ambulances, police sirens, etc., should be investigated, since the
noise produced is due to both the vehicle and to external loudspeakers.

Once the EAgLE methodology will be validated, a large spatial scale can be tested, with the aim
to produce a noise map of a city or of a transportation infrastructure, taking advantage of the existing
video camera networks. When long term recordings are available, for instance, in more than a year, the
Lden estimation can be performed, using real traffic data, instead of simulating ideal conditions in noise
predictive software. This could help local policy makers and infrastructure managers in finding the
critical points of their networks and, if needed, in committing to implement further investigations,
based on standard noise level measurements or other tools.

5. Conclusions

In this paper, the EAgLE (Equivalent Acoustic Level Estimator) technique has been presented.
This technique, based on image analysis, vehicle tracking, and dynamic noise modeling, aims at
producing a robust estimation of the continuous equivalent noise level on given time ranges, by using
just a video camera recording.

A preliminary application of the technique, in a short time range (630 s) related to a case study
along a highway in South Italy, has been presented, showing how, with a good recognition efficiency,
the noise levels estimated with EAgLE are extremely close to the measured levels in this reduced
sample of measurements performed in free flow and standard conditions.

More tests are needed to validate the EAgLE procedure. Moreover, beside the shortcomings
discussed in the previous sections, several strength points arise from the first tests. In particular, the
possibility to provide reliable qualitative estimations of the noise level in any place embedded with
a video camera, in cities, or along transportation infrastructures, is definitively the key point of the
proposed sensor. These estimations can be used on one side to cope with the need of a large spatial
monitoring, and on the other side to provide first level alarms of exceeding limit thresholds, to be
checked with follow-up interventions at specific sites.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/3/701/s1,
Video S1: 1-minute video of the EAgLE counting algorithm running.
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Abstract: Wireless acoustic sensor networks are nowadays an essential tool for noise pollution
monitoring and managing in cities. The increased computing capacity of the nodes that create the
network is allowing the addition of processing algorithms and artificial intelligence that provide more
information about the sound sources and environment, e.g., detect sound events or calculate loudness.
Several models to predict sound pressure levels in cities are available, mainly road, railway and aerial
traffic noise. However, these models are mostly based in auxiliary data, e.g., vehicles flow or street
geometry, and predict equivalent levels for a temporal long-term. Therefore, forecasting of temporal
short-term sound levels could be a helpful tool for urban planners and managers. In this work,
a Long Short-Term Memory (LSTM) deep neural network technique is proposed to model temporal
behavior of sound levels at a certain location, both sound pressure level and loudness level, in order
to predict near-time future values. The proposed technique can be trained for and integrated in every
node of a sensor network to provide novel functionalities, e.g., a method of early warning against
noise pollution and of backup in case of node or network malfunction. To validate this approach,
one-minute period equivalent sound levels, captured in a two-month measurement campaign by a
node of a deployed network of acoustic sensors, have been used to train it and to obtain different
forecasting models. Assessments of the developed LSTM models and Auto regressive integrated
moving average models were performed to predict sound levels for several time periods, from 1
to 60 min. Comparison of the results show that the LSTM models outperform the statistics-based
models. In general, the LSTM models achieve a prediction of values with a mean square error less
than 4.3 dB for sound pressure level and less than 2 phons for loudness. Moreover, the goodness of
fit of the LSTM models and the behavior pattern of the data in terms of prediction of sound levels
are satisfactory.

Keywords: acoustics; wireless sensor networks; smart cities; deep learning; long short-term memory;
temporal forecast

1. Introduction

Noise pollution is one of the main environmental concerns of modern cities because of its effects
on the quality of life, health and livability of cities. The European Commission adopted the European
Noise Directive (END) [1], which focuses on the monitoring of environmental noise by generating
noise maps of the main population centers and elaborating action plans [2,3]. Noise measurements in
urban areas are typically carried out by designated officers that collect data at a few accessible spots,
where sound level meters are installed during short time intervals. Collected noise data is often input
into a model that attempts to predict noise levels for a temporal long-term throughout the landscape
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to be evaluated. As a result, noise maps are generated using sound sources and propagation models
leveraging geographic information systems to improve the accuracy and quality of the results [4,5].
Specifically, road [6–10], railway [11–13] and aerial [14,15] traffic models are used, among others.
However, according to Maisonneuve [16], this approach presents several limitations since noise maps
are actually generated from synthetic data. Even though these models allow to gain a first insight into
the noise pollution problem, they are mainly focused on long-term acoustic parameters prediction
and require auxiliary data such as source definition, traffic flow, street geometry, day period, urban
topology, etc.

Wireless Acoustic Sensor Networks (WASN) [17,18] are becoming an indispensable tool for
monitoring and assessment of short-term noise levels. WASN are a balanced technology regarding
the characteristics of cost, scalability, flexibility, reliability and accuracy [19]. Such networks are
supported by recent advances in low-power wireless communications technology as well as the
integration of several functionalities in electronic devices, including sensing, communication and
processing, even allowing the implementation of neural networks in the nodes [20]. They are being
extensively used in smart city applications in recent years. This trend has led to intensive deployments
in numerous cities such as New York [21], Barcelona [22] or Monza [23]. WASN can be deployed over
an area of interest to operate continuously by creating a real-time monitoring system, which collects
historical data related to the sound environment over longer periods of time, operating unattended
and requiring human intervention only for network installation, maintenance and removal. This data
is transmitted to a central sink node, then could be stored and subsequently be used, for instance,
to dynamically update noise maps [24]. Indeed, all these information acquired by WASN can be
analyzed to obtain useful information for the city [25]. Moreover, it is very interesting and relevant
to predict the short-term behavior of the acoustic parameters that evaluate the sound environment.
For instance, it allows the ability to detect behavior patterns depending on different times of day and,
furthermore, in the event of failure or error in sending information from a sensor, this information
can be estimated with precision. In addition, by being able to know these unique level values several
days in advance, preventive measures could be taken if necessary to avoid the population from being
exposed to risk levels. Therefore, in this work, a novel approach based on deep neural networks is
introduced to forecast the near-time short-term sound level values using only historical sound level
data from the location of study. In this way, the approach that is presented in this paper can be applied
to every node of the sensor network, where the inputs of the model are the past and actual sound level
values and the outputs are the future values.

To achieve this objective, in this paper the use of the Long Short-Term Memory (LSTM) deep
neural network technique is proposed to model the behavior pattern of the acoustic parameters which
has demonstrated very good results in prediction of time series [26,27]. Sound sources, specifically
those concerning a sound environment in this work, can be considered as time variant functions,
i.e., time series, both the audio signal and the corresponding calculated parameters. Time series data
analysis has been actively researched for decades and is considered one of the ten most difficult
problems in data mining due to its unique properties. In this work, the capability of LSTM networks to
estimate short-term future values of sound levels in a certain location using historical data is explored.
In particular, several models are obtained by training the LSTM networks with sound pressure level
and loudness level values captured by a node of a WASN. Comparison with ARIMA technique results
together with some experiments are presented to evaluate the proposed approach.

The paper is structured as follows. After this introduction, Section 2 presents a review of related
work and the difference with the proposed approach. Then, Section 3 describes the deployed sensor
network, designed LSTM networks and the collection and pre-processing of the data-set handled
to train and evaluate them. In Section 4 different results obtained from the experiments to evaluate
the implemented LSTM networks are shown and discussed. Finally, Section 5 presents the general
conclusions of this study and proposes future work.
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2. Related Work

A significant amount of information generated by sound sources is carried by acoustic signals,
and this information can be used to describe and understand human and social activities. Sound signal
acquired by acoustic sensors can be processed in two ways: (i) capturing and processing the audio
signal (e.g., event detection [28,29], classification of sound sources [30,31], sound source location [32],
etc.) and (ii) calculating values of acoustic parameters from the captured audio signal (e.g., sound
pressure level [33], loudness [34], etc.) that are the data collected to generate sound maps.

Several works have been developed in applying artificial neural networks to estimate sound
source features and/or acoustic parameters values in a certain location for a given period of time,
using data obtained through WASN or other information data base. In what follows we introduce
differences between the proposed work and these previous works. Regarding audio signal processing,
in publications [35,36] a WASN is proposed to monitor and analyze urban noise pollution, deploying
a network of sensors to measure sound pressure level and using convolutional neural networks to
classify sound sources from captured audio. In other work, Socoró et al. [37] introduced an anomalous
noise event detector to remove sound frames unrelated to road traffic sound sources to provide more
reliable data captured by a WASN. In [38], a convolutional recurrent neural network in a dilated spiral
is used as a classifier fed by the energy recording feature in the mel band for the detection of sound
events. Regarding to parameters calculation, some published papers introduce neural networks to
estimate advanced acoustic parameters values. Yu and Kang [39] explored the feasibility of using
machine learning models to predict the sound landscape quality in urban open spaces by correlating
various physical, behavioral, social, demographic and psychological factors. In [40], a convolutional
neural network was implemented to estimate the psycho-acoustic annoyance Zwicker’s model from
an input audio signal. In contrast with these related works, in our research a neural network approach
is used to predict future time values of acoustic parameters instead of estimating current time values.

There are some studies that apply neural networks to create a prediction model in order to estimate
sound pressure levels emitted by sound sources across a spatial domain but using also geospatial
and description information as input parameters. Specifically in [41], a multi-layer perceptron neural
network model trained with the Levenberg–Marquardt algorithm was used to predict the equivalent
sound level from road traffic noise. In another publication [42], a system proposition is presented
that uses an ensemble of machine learning techniques to estimate both environmental sound levels
and uncertainty in model predictions by taking geospatial data as input. In addition to making
use of auxiliary information, these neural network-based models predict long-term values and do
not take into account the temporal composition of the short-term sound environment. An attempt
to predict the temporal component of traffic noise levels is presented in [43] through the use of
back-propagation neural networks, however it only estimates index values describing temporal
variability and impulsiveness in addition to using auxiliary data as input. Although noise sources
are mainly non-stationary, statistical techniques such as AutoRegressive Integrated Moving Average
(ARIMA) [44] have been also used in the literature to model traffic noise pollution.

Finally, it is worth highlighting that there are several works in the literature that predict other
pollution factors through deep neural networks, considering the data of these variables as time series.
Specifically, the most common pollution problem studied is air pollution, particulate matter and carbon
monoxide concentrations among others [45,46]. However, the use of deep learning models such as
LSTM require an optimized configuration and settings for each type of problem, as it is carried out in
Section 3.5, considering the inputs and its behavior in time.
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3. Materials and Methods

3.1. Wireless Acoustic Sensor Network

In this work, data captured from a node of a deployed WASN was used to train and validate the
designed neural network prediction models. This WASN is a scalable and extensible system used to
monitor sound levels in a certain environment. This is a static and homogeneous WASN allowing
continuous monitoring indoors and outdoors. This network was composed of ten acoustic nodes
deployed in the campus of the Catholic University of Murcia. In this WASN, each acoustic node [47]
collected and processed the audio signal and after that, it calculated and sent data every minute to
the sink node. The low-cost acoustic node design included two main parts: the audio acquisition
system and the processing core. The former consisted of an array of the four-microphones of a Sony
PlayStation Eye camera. Regarding the processing core, a Raspberry Pi 3 Model B computer [48] was
selected for the processing, acquisition and publishing stages. Although a node is able to compute
results related to diverse acoustic parameters, see [47] for details, this research is focused on the
equivalent sound pressure level (Lp) and loudness level (N) values [49] in a one-minute period. A sink
node plays the additional role of transmitting the data to an Internet of Things (IoT) platform to store
and to perform analysis of the overall data. The audio signal was not stored nor transmitted from
the node to keep public privacy. Concerning the network design, acoustic nodes transmit data via
Wi-Fi technology using two communications protocols: TCP for communication between nodes and
HTTP for communication between the sink node and the IoT platform. Further in-depth control and
maintenance of the deployed nodes was provided via a virtual private network that provides a method
for remote Secure SHell (SSH) access to each node. The virtual private network also enhances the
wireless transmission security of the sensor as all data and control traffic was routed through this
secure network.

Specifically for this research, a data-set with these acoustic parameters, Lp and N, was built, as it
is explained in detail in the following section.

3.2. Acoustic Data-Set

In this research, the acoustic data acquired on a continuous basis with a temporal period, i.e., a time
step of 1 min by a node of the described WASN in the previous section was used to train a LSTM
network. This data-set was collected from the beginning of October to the end of November 2019
and it contains quantitative and temporal data related to two acoustic parameters: the equivalent
sound pressure level in decibels (dB) and loudness level in phons in one-minute of integration
time. The selected node was located in-door in an open-office room where lecturers and researchers
work. Working days are mainly from Monday to Friday but Saturday is also open. This data-set is
representative of a random noise, of which the main sound sources are speech and human activities.
This long-period study can help to analyze and predict the temporal behavior pattern of this type
of soundscape.

From the principal data-set, a total of ten data-sets have been generated, five for each parameter,
computing a temporal average of the data for the following periods: 1, 5, 15, 30 and 60 min.
The following average has been used for time intervals:

X = 10log

(
1
n

n

∑
i=1

10
Xi
10

)
, (1)

where X can be either Lp or N, and Xi corresponds respectively to the equivalent sound pressure level
(Lpi ) and loudness level (Ni) for each time step i. For example, the data-set denoted as noise15 in
Table 1 indicates that the 1-min values have been averaged over 15 min, generating one value for Lp

and other for N. A description of the quantity of samples used for each data-set can be seen in Table 1.
The number of samples in each data-set corresponds to approximately 50 days.
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Table 1. Number of samples per data-set for each of the pressure level and loudness parameters.

Data-Sets Total Instances Lp Total Instances N

noise01 72,300 72,300
noise05 14,460 14,460
noise15 4820 4820
noise30 2410 2410
noise60 1205 1205

3.3. Deep Learning: Long Short-Term Memory

A Recurrent Neural Network (RNN) in very powerful for everything that has to do with sequence
analysis, such as text, sound or video analysis. The main feature of an RNN is that information can
persist by looping into the network diagram, so they can basically “remember” previous states and
use this information to decide what will be next. This feature makes them very suitable for managing
time series. However, a conventional RNN presents problems in training because retro-propagated
gradients tend to grow enormously or fade over time because the gradient depends not only on
the present error but also on past errors. The accumulation of errors makes it difficult to memorize
long-term dependencies. These problems are solved by the Long Short-Term Memory neural networks
(LSTM), for which it incorporates a series of steps to decide which information will be stored and
which erased. The LSTM networks are composed of LSTM modules which are a special type of
recurrent neural network described in 1997 by Hochreiter and Schmidhuber [50]. The LSTM module
contains three internal gates, known as input, forgotten and output (as can be seen in more detail in
the Figure 1), consisting basically of a sigmoid layer and a multiplication operation, and in the case of
the forgetting door, it also incorporates a hyperbolic tangent layer. These gates allow to remove or add
information to the cell state, which is a connection that transfers information from one LSTM module
to the next. The input gates controls when new information can enter memory. Forgotten gates control
when a piece of information is forgotten, allowing the cell state to discriminate between important and
superfluous data, leaving room for new data, for this, a hyperbolic tangent layer is added which is
combined with the sigmoid layer. Output gate controls when used in the result of memories stored in
the cell state. The cell state has a weighting optimization mechanism based on the resulting network
output error, which controls each gate. The output and the cell state value generated by the LSTM
module are transferred to the next LSTM module. Figure 1 shows the gates and operations of an LSTM
module graphically for Lp (for N it would be the same scheme), and in which it can be observed that
the input for a unit, is the output of the previous one. This way, each LSTM module transmits to the
next one its prediction that together with the current input of the module, generate the output that is
sent as input to the next LSTM module.

The network proposed in this work is univariate, that is, it takes a single input variable and
obtains a single output variable, given that the objective of the work is to predict both the Lp sound
levels and the loudness N. Thus, for the prediction of each one of these values, a different LSTM model
will be made for each data-set.
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Figure 1. General scheme of an Long Short-Term Memory neural networks (LSTM) for Lp. The interaction
between LSTM modules can be observed, as well as the three types of gates that make up an
LSTM module.

3.4. Statistical Approach: Auto Regressive Integrated Moving Average

Classical approach to predict time-series is based in statistics. The Auto Regressive Integrated
Moving Average technique [51] is a statistical model that uses variations and regressions of statistical
data in order to find patterns for a prediction into the future. It has been also applied to sound level
parameters prediction [44], as it has been introduced in Section 2. ARIMA is a dynamic time series
model, i.e., future estimates are explained by past data rather than independent variables. This model
was developed in the late 1960s. Box and Jenkins (1976) systematized it [52]. An ARIMA model is
characterized by 3 terms: (p, d, q, ) where, p is the order of the Auto Regressive (AR) term, q is the
order of the Moving Average (MA) term and d is the number of differences needed to make the time
series stationary. In this work, an ARIMA model has been created using the same data-set described in
Section 3.2 to compare with quality metrics of the proposed LSTM models.

3.5. Experiment Configuration

The viability and suitability of the proposed LSTM technique is assessed using two types of
experiments. On the one hand, an experiment was executed using 80% of the data-set to train the model
and 20% to test it. This experiment was applied to the five data-sets (different time intervals) described
in Section 3.2, for each acoustic parameter. In addition, to validate the LSTM model, we performed a
comparison with the Auto Regressive Integrated Moving Average (ARIMA) technique [51]. On the
other hand, to analyze the robustness and adaptability of the proposed LSTM model, we performed
several types of validation for the 30 and 60 min data-sets, which are the best results obtained globally.
Specifically on the proposed LSTM model; comparisons will be made using the validations of 60%,
70% and 80% to train and 40%, 30% and 20% to test respectively. Thus, depending on the results,
the response capacity of the model presented can be analyzed in the absence of training data.
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For the ARIMA model, used in the comparison, the parameter (p, d, q) used for the for the
estimation of the acoustic parameter Lp were (1,1,14) and for the acoustic parameter N were (1,1,10).
In the LSTM model proposed in this paper, the optimal parameters that have been chosen, after a
previous adjustment carried out to obtain the optimum parameters, are shown in the Table 2. For the
number of neurons, intervals are shown depending on the acoustic parameter.

Table 2. Optimal parameters for LSTM execution experiments.

Parameter Value

Number of input neurons Lp[50:100]
N[17:70]

Batch size 32
Number of epochs 100
Learning factor 0.001
Optimizer Adam
Activation function hyperbolic tangent
Loss Function quadratic mean error
Delay Sequence 6

The quality evaluation of the model proposed is performed by measuring the goodness of the
prediction by the following metrics:

• the Root Mean Square Error (RMSE)
• the Mean Absolute Error (MAE)
• the Pearson Correlation Coefficient (PCC)
• Determination Coefficient (R2)

Experiments were been carried out in a GPU-based platform. This platform was composed of
an Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz, 128 GB of RAM, 1 TB SSD Hard Disk and a NVIDIA
GeForce GTX 780 GPU (Kepler).

4. Results and Discussion

In this section, the behavior of the LSTM model proposed for the prediction of the sound pressure
level and loudness values is discussed and analyzed. The evaluation and analysis is detailed in two
subsections. First, a comparison with a technique to predict the time series of ARIMA was made by
performing an experiment with 80% of the data-set to train and 20% to test. Then, to validate the
robustness of the proposed LSTM technique, several validations increasing the test percentage and
reducing the train percentage were performed. It should be noted that the predictions were estimated
for the values Lp and N, therefore for each of these values a different model was made.

4.1. Comparing the LSTM Model with the ARIMA Model

This section presents the results obtained by the LSTM models for the prediction of the parameters
Lp and N for the different data-sets described in Section 1. In addition, LSTM models are compared
with the ARIMA technique models for both parameters to validate the results. The validation carried
out for both LSTM and ARIMA models was using 80% of the data-sets to train and 20% to test.
The number of days is equivalent to about 40 days for training and about 10 consecutive days of
prediction for testing.
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Table 3 shows the values of RMSE, MAE, PCC and R2 for each of the data-set of Lp parameter
for the LSTM and ARIMA models. For the LSTM models, the calculated metrics are very satisfactory
in general, obtaining a RMSE lower than 4.3 dB for Lp in all the data-sets. Regarding to the fit of the
model, R2, the better is this fit the greater the temporal amplitude of the interval is. This may be caused
by the smoothing obtained by the averaging of punctual noise peaks. The best fit of the model, 0.75,
is obtained for Lp when the prediction period is 60 min. With respect to ARIMA models, the RMSE
values increase considerably, which indicates that the ARIMA technique is not adequate for estimating
the behavior of the Lp parameter in short-term intervals. For all data-sets the ARIMA model fit is very
low and the errors much higher than for the LSTM model. It must be taken into account that ARIMA
may need more days of training to be able to reduce the error and improve the fit of the predicted time
series. This is one of the advantages of the LSTM technique.

Table 3. Representation of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson
Correlation Coefficient (PCC) and R2 of the five data-sets of sound pressure level values (Lp) for the
LSTM proposed models and the ARIMA models.

Lp-noise60 Lp-noise30 Lp-noise15 Lp-noise05 Lp-noise01

ARIMA LSTM ARIMA LSTM ARIMA LSTM ARIMA LSTM ARIMA LSTM

RMSE 9.3000 3.9400 112.0704 4.2700 9.5734 4.2500 78.2656 3.9500 6.0694 3.5900
MAE 6.6400 2.7500 2.2050 2.8500 7.7755 2.5500 5.8934 2.0700 4.4851 1.7100
PCC 0.1732 0.8600 0.0131 0.8300 0.2798 0.8100 0.0335 0.8100 0.0521 0.8000
R2 0.0300 0.7500 0.0002 0.6900 0.0783 0.6600 0.0011 0.6400 0.0027 0.5800

Table 4 shows the values of RMSE, MAE, PCC and R2 for each of the data-set of N parameter for
the LSTM and ARIMA models. For the LSTM models, the calculated metrics are very satisfactory in
general, obtaining a RMSE lower than 2 phons for N in all the data-sets. Particularly, metrics show
that the RMSE of N is similar for all time intervals. In addition, the value of adjustment of the model,
R2, of N is very similar in all the cases, which indicates that it is less affected by the time interval
considered to predict sound levels. For ARIMA models, the behavior and results for predicting the
N parameter is similar to the Lp parameter. In this case, the error does not increase as significantly
as for the Lp parameter. However, the error is always more than double that obtained by the LSTM
technique. Moreover, as far as the model’s adjustment is concerned, the result is not at all satisfactory.
This indicates that the ARIMA models are not able to adapt to the non-stationary behavior of the
sound level parameters in short-term intervals.

Table 4. Representation of RMSE, MAE, PCC and R2 of the five data-sets of loudness values (N) for
the LSTM proposed models and the ARIMA models.

N-noise60 N-noise30 N-noise15 Lp-noise05 N-noise01

ARIMA LSTM ARIMA LSTM ARIMA LSTM ARIMA LSTM ARIMA LSTM

RMSE 3.1100 1.9900 14.6412 2.0100 8.4290 1.9600 12.3481 1.8700 3.1400 1.7900
MAE 2.7100 0.9900 2.2050 1.0500 2.0675 1.0000 1.8617 0.8900 0.1563 0.7400
PCC 0.2000 0.7900 0.0198 0.7800 0.3769 0.7800 0.0031 0.7800 0.0011 0.7600
R2 0.0400 0.6000 0.0004 0.5900 0.1420 0.6000 0.0000 0.6100 0.0000 0.5700
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In summary, results show that the LSTM technique outperforms the ARIMA technique for creating
temporal short-term models and predicts the behavior of the Lp and N parameters. One aspect to
consider about the obtained LSTM models is the difference between the RMSE and MAE values for
both N and Lp levels. The MAE value is almost double the RMSE value, indicating that there are
outliers in the data [53]. These outliers data are usually reflected by the peaks. In this case, the outliers
can be observed in Figures 2 and 3, for both N and Lp levels, in the eventually impulsive sound events
that occur throughout the day.

Figures 2 and 3 represent a temporal graph for a ten days interval of the captured data, i.e., real
data from the test-subset, along with the estimated data using the obtained LSTM models for both
N and Lp. The test-subset begins on Sunday and ends on Tuesday of the following week. Therefore,
it can be observed that the minimum noise level on Sunday because the open-office room where the
data has been collected is closed. However, the acoustic level increases over the next five working days
on the day-period and decreases on the night-period. On Saturday, the activity of people in the office is
reduced, thus the noise level is quieter than a regular working day. Then, the time sequence starts again
with a Sunday having the lowest noise levels. In general, the model obtained by the LSTM technique,
as a pattern of sound level behavior for both Lp and N, adequately follows the trend of sound level.
The greater the interval in time averages, the peaks of short event high noises are smoothed, obtaining
a better prediction and adjustment of the model comparing with models of shorten intervals.

In order to explore in detail the obtained LSTM models, Figure 4a shows a zoomed view of
graph of Figures 2d and 4b shows a zoomed view of graph of Figure 3d for a two days interval with
a time average of 30 minutes. It can be observed that the LSTM model has difficulties in precisely
estimate short-time events where the sound level increase and decrease drastically, i.e., when sound
level suddenly rise or decay. However, the behavior of the LSTM model is much more stable when the
peaks are less relevant, e.g., during Saturdays.
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(a) Lp for a time period of 1 min. (b) Lp for a time period of 5 min.

(c) Lp for a time period of 15 min. (d) Lp for a time period of 30 min.

(e) Lp for a time period of 60 min.

Figure 2. Representation of captured and estimated LSTM data during approximately ten days
test-interval (20% of the data) of Lp.
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(a) N for a time period of 1 min. (b) N for a time period of 5 min.

(c) N for a time period of 15 min. (d) N for a time period of 30 min.

(e) N for a time period of 60 min.

Figure 3. Representation of captured and estimated LSTM data during approximately ten days
test-interval (20% of the data) of N.
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(a) Detail for two days of Lp for a time period of 30 min. (b) Detail for two days of N for a time period of 30 min.

Figure 4. Detailed representation for two days, Friday and Saturday, for a time period of 30 min of
captured and estimated LSTM data.

4.2. Assessing the Robustness of the Proposed LSTM Model

In the previous section, it was concluded that the LSTM technique can develop precise models for
predicting the sound parameters Lp and N in short-term. In this section, a validation of the behavior,
the stability and the robustness of the LSTM technique is carried out throughout different types of
tests. The objective is to analyze the variability of the LSTM models when a greater amount of samples
are predicted having a smaller amount of training samples. The validations that have been made are
as follows:

• 80% train and 20% test (80/20)—approximately 40 days to train and 10 days to test (validation
already done in the previous experiment, used to analyze and compare).

• 70% train and 30% test (70/30)—approximately 35 days to train and 15 days to test.
• 60% train and 40% test (60/40)—approximately 30 days to train and 20 days to test.

Table 5 shows the values of RMSE, MAE, PCC and R2 of the validations indicated for noise60 and
noise30 data-sets. Analyzing the results for the parameter Lp, it can be appreciated how independently
of the type of validation the RMSE error is, around 4 dB for the noise60 data-set and around 4.3 dB
for the noise30 data-set. The variations of the LSTM models for both data-sets are minimal when the
type of validation performed is changed. These minimum variations can be seen with the value of R2

that hardly suffers variations of 0.04 points. Regarding the N parameter, the results are very similar
to the Lp parameter in terms of model variability. Analyzing the RMSE value of the N parameter,
it is observed that it is around 2 dB for any of the two data-sets and any of the validations. The same
happens with the determination coefficient R2 where the differences between models of different
validations and data-sets do not exceed 0.05 points. A remarkable aspect of the N parameter for the
60/40 validation is that it gets the best result than the other validations for both the noise30 and noise60
data-sets. The explanation for this situation can be that by obtaining more test days, these days include
more weekends where the noise is more stable and there are fewer punctual peaks, hence the model fit
is better.
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Table 5. Representation of RMSE, MAE, PCC and R2 for different training and test percentages of Lp

and N values.

Sound Pressure Level Loudness

Data-Set Train/Test RMSE MAE PCC R2 RMSE MAE PCC R2

noise30 80/20 4.27 2.85 0.83 0.69 2.01 1.05 0.78 0.59
70/30 4.32 2.74 0.82 0.68 2.08 1.09 0.77 0.59
60/40 4.51 3.15 0.84 0.65 2.00 1.05 0.80 0.63

noise60 80/20 3.94 2.75 0.86 0.75 1.99 0.99 0.79 0.60
70/30 4.13 2.92 0.85 0.72 2.03 1.17 0.79 0.61
60/40 4.05 3.13 0.86 0.74 1.97 1.14 0.82 0.65

After detailing and analyzing the results of the various performed validations together with the
comparison with the ARIMA technique in the previous experiment, it can be concluded that the LSTM
technique obtains a considerably stable and satisfactory performance for the problem posed. It must
be taken into account that the challenges presented by the LSTM technique have allowed us to make
reliable models regarding the error and the adjustment of the model using very few training samples
and allowing a prediction of 20 consecutive days. Although the LSTM models created follow the trend
of sound with a stable behavior, they present limitations in detecting impulsive short events, i.e., high
peak noises at certain times.

5. Conclusions and Future Work

Wireless acoustic sensor networks are an important tool for monitoring and managing noise
pollution in cities. In addition to economic cost savings as compared to traditional procedure to create
a noise map, these networks are helping in the design of new noise maps with extended sound sources
information and enabling existing noise maps to be updated dynamically. However, it must be taken
into account that sensors within a network can fail or that network signal coverage may drop in
certain situations, producing missing values in the IoT platform. Moreover, it would be helpful for
local administrations to know in advance the trend in noise levels in cities in the temporal short-term.
As a support to address these issues and even to decrease the number of necessary nodes in a network,
the techniques of artificial intelligence can help through the execution of its different algorithms.

This paper proposes the use of a deep neural network, specifically a Long Short-Term Memory
neural network (LSTM) to forecast future time values creating a model that represents the behavior
of an acoustic environment in a certain location, specifically sound pressure level (Lp) and loudness
values (N) parameter are contemplated. To create this model, values taken from a node of a deployed
acoustic sensor network that collects information every minute have been used. Different models
have been designed for Lp and N applying several time periods varied up to 60 min, in order to
assess and analyze the behavior of the acoustic environment at different time intervals. To validate
the model, it has been compared with the Auto Regressive Integrated Moving Average (ARIMA)
time series technique, to evaluate and discuss the benefits and limitations of the proposed LSTM.
Besides, to analyze the stability of the LSTM technique, several types of validations have been made.
The results indicate that LSTM models obtain a lower prediction error and a better model fit than
ARIMA. In general, the results achieved through the application of the LSTM technique are satisfactory
since all the created models predict in a correct way the rising and falling trends of the sound levels.
Moreover, obtained root mean square error values are lower than 4.3 dB for Lp and lower than 2 phons
for N all considered models. Analyzing the parameters separately, using the N level more robust
models than Lp are obtained, resulting in smaller error values and no significance differences between
considered time periods. Regarding the Lp level models, a more reliable model is achieved when a
higher time period is considered. Although Lp is a parameter with higher variance than N, the trend
of the behavior pattern estimated by the model is satisfactory in terms of determination coefficient.
Regarding the results of the different validations, these indicate that the proposed LSTM technique
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has little variability and needs little training data to obtain good predictions, therefore, the technique
could be applied in any city, without the need to obtain long previous historical data. Regarding the
limitations of the proposed LSTM technique, the difficulty of the model to follow the trend of high
sound levels of the Lp and N parameters has been observed.

As a future work, an evaluation of the implementation of LSTM models within the nodes of the
network of acoustic sensors is proposed. Moreover, a study to determine the influence of other climatic
parameters or variables in predicting acoustic pollution through a multivariate neural network is
of interest.
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Abstract: Increasing demand for higher safety of motors can be noticed in recent years. Developing
of new fault detection techniques is related with higher safety of motors. This paper presents
fault detection technique of an electric impact drill (EID), coffee grinder A (CG-A), and coffee
grinder B (CG-B) using acoustic signals. The EID, CG-A, and CG-B use commutator motors.
Measurement of acoustic signals of the EID, CG-A, and CG-B was carried out using a microphone.
Five signals of the EID are analysed: healthy, with 15 broken rotor blades (faulty fan), with a
bent spring, with a shifted brush (motor off), with a rear ball bearing fault. Four signals of
the CG-A are analysed: healthy, with a heavily damaged rear sliding bearing, with a damaged
shaft and heavily damaged rear sliding bearing, motor off. Three acoustic signals of the CG-B
are analysed: healthy, with a light damaged rear sliding bearing, motor off. Methods such as:
Root Mean Square (RMS), MSAF-17-MULTIEXPANDED-FILTER-14 are used for feature extraction.
The MSAF-17-MULTIEXPANDED-FILTER-14 method is also developed and described in the paper.
Classification is carried out using the Nearest Neighbour (NN) classifier. An acoustic based analysis
is carried out. The results of the developed method MSAF-17-MULTIEXPANDED-FILTER-14 are
very good (total efficiency of recognition of all classes—TED = 96%, TECG-A = 97%, TECG-B = 100%).

Keywords: motor; mechanical fault; detection; RMS; sound; drill; safety; pattern; bearing; fan; shaft

1. Introduction

Today rotating machinery is used for a wide variety of industrial applications such as electrical
motors, engines, home appliances and electric power tools. It can also find applications in mining, oil,
car, energy, and the steel industry. Cost-effective and non-destructive fault detection is profitable for
industry. It can be used for rotating machinery. Reliable operation of rotating machinery is essential
for many factories, oil refineries, industrial plants. Gas turbines, motors, pumps, aircraft engines,
drive trains can be diagnosed by fault diagnosis techniques. Machines must operate safely without
interruptions. If faults occur, the consequences can be catastrophic. Damaged machines generate costs,
for example replacement of the machine or stopped production lines in the factory. Thus, the benefits
of fault detection are maintenance cost savings.

There are lots of studies in the literature related to fault diagnosis and fault detection of rotating
machinery. Analysis of electric currents is developed in the articles [1–5]. The results of current
recognition are very good. However it can only be used for limited number of electrical faults such as
broken bars, shorted rotors, stator coils. Electric current-based methods are usually useless for many
mechanical faults such as damaged teeth on sprockets, faulty gears, faulty fans, etc. The next methods
developed in the literature are based on vibration analysis [6–13] and acoustic analysis [14–22].
They are very effective. There is no need to connect a measuring sensor with the machine for
acoustic-based measurements. Vibration-based measurements require a connection between the sensor

Sensors 2019, 19, 269; doi:10.3390/s19020269 www.mdpi.com/journal/sensors207
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and the machine. Vibration signals are less noisy than acoustic signals. Both of them can measure
signals immediately. Vibration and acoustic analysis can also detect mechanical and electrical faults of
rotating machinery.

The next method of fault detection is thermal analysis. Thermal analysis methods are described
in [23–25]. Temperature detection can be performed using thermal imaging cameras, infrared
thermometers and portable laser thermometers. If we use a thermal imaging camera or portable
laser thermometer, then we can measure from a distance. The next method of fault detection of
rotating machinery is oil analysis. It can provide diagnostic information about the condition of
rotating machinery. In [26,27] some methods are mentioned: rotating disc electrode spectroscopy,
inductively coupled plasma spectroscopy, FPQ-XRF, acid digestion, light blocking, light scattering,
laser imaging, laser imaging, ferrography, light blocking, light scattering, laser imaging, fuel sniffer,
gas chromatography, gravimetric, Karl Fischer titration, viscosity, etc. Multidimensional prognostics
for rotating machinery was also presented [28].

This article describes the application of the acoustic-based approach to an electric impact
drill (EID)—Verto 50G515, made in China, and two coffee grinders designated as coffee grinder
A (CG-A)—Metrox ME-1497, made in China, and coffee grinder B (CG-B)—Sencor SCG 1050WH,
made in China. The EID, CG-A, and CG-B use commutator motors. The commutator motor is a type
of electrical motor used for power tools and home appliances such as blenders, coffee grinders and
hair driers. The author analysed five electric impact drills (one healthy and four faulty). Each of them
generates acoustic signals. Five signals are analysed: healthy (Figures 1 and 2), with 15 broken rotor
blades (faulty fan) (Figure 3), with a bent spring (Figure 4), with a shifted brush (Figure 5), with a rear
ball bearing fault (Figure 6).

 

Figure 1. Healthy EID.

 

Figure 2. Healthy EID (EID with a healthy rear bearing).
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Figure 3. EID with 15 broken rotor blades (indicated by yellow circle).

 

Figure 4. EID with a bent spring (indicated by yellow circle).

 

Figure 5. EID with a shifted brush (indicated by yellow circle).
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Figure 6. EID with a rear ball bearing fault (indicated by yellow square).

Four signals of the CG-A were analysed: healthy CG-A (Figure 7), CG-A with a heavily damaged
rear sliding bearing (Figure 8), CG-A with a damaged shaft and heavily damaged rear sliding bearing
(Figure 9), motor off (Figure 10).

 

Figure 7. Healthy CG-A.

 

Figure 8. CG-A with a heavily damaged rear sliding bearing (indicated by yellow circle).
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Figure 9. CG-A with a damaged shaft and heavily damaged rear sliding bearing (indicated by
yellow circle).

 

Figure 10. Motor off (CG-A off).

Three signals of the CG-B were analysed: healthy CG-B (Figure 11), CG-B with a light damaged
rear sliding bearing (Figure 12), motor off (Figure 13).

 

Figure 11. Healthy CG-B.

211



Sensors 2019, 19, 269

 

Figure 12. CG-B with a light damaged rear sliding bearing (indicated by yellow circle).

 

Figure 13. Motor off (CG-B off).

In Section 1, the author presents a review of the fault detection methods. In Section 2, the
author describes the acoustic based approach and proposed methods of signal processing. In Section 3,
the recognition results of the EID, CG-A, and CG-B are presented. A discussion is presented in Section 4.
In Section 5, summary and conclusions are described.

2. Developed Acoustic Based Approach

The developed acoustic-based approach used signal processing methods and the acoustic data
of the EID, CG-A and CG-B. Acoustic data were obtained using a HAMA 00057152 microphone.
The parameters of the microphone are: frequency response 30–16,000 Hz, rated impedance 1400 Ω,
sensitivity −62 dB. The microphone was placed 0.2–0.3 m away from the EID, CG-A and CG-B.
Other types of microphones could be also used. Acoustic data were split (using “MPlayer library—The
Movie Player”—wav file parameters sampling frequency 44,100 Hz, single channel, 16 bits resolution,
stationary signal) and normalized. Normalization of amplitude divided each sample (in the time
domain) by the maximum value of the signal (in time domain). After that feature vectors were
formed using the RMS or MSAF-17-MULTIEXPANDED-FILTER-14 (the methodology is presented in
Section 2.1). Next the Nearest Neighbour (NN) classifier compared feature vectors in the classification
step. The developed acoustic based approach is shown in Figure 14.
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Figure 14. Developed acoustic based approach.

An experimental setup consisted of the microphone and a computer. It was used to analyse
the electric impact drill/coffee grinder (Figure 15a). Measurement of acoustic signals is depicted in
Figure 15b.

 

 

Figure 15. (a) Capacity microphone, computer and electric impact drill. (b) Measurement of
acoustic signals.
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2.1. MSAF-17-MULTIEXPANDED-FILTER-14

The Method of Selection of Amplitudes of Frequency Multiexpanded Filter (MSAF-17-
MULTIEXPANDED-FILTER-14) was developed and implemented. This feature extraction method
used differences between FFT spectra. It consists of seven signal processing steps:

(1) Compute Fast Fourier Transform (FFT) spectra for all states of the EID (for all training
vectors). In the presented acoustic based approach the FFT provided a vector of 16384-elements.
For 16,384 frequency components, the frequency spectrum is 22,050 Hz. Therefore, each frequency
component is every 1.345 Hz. The computed vectors were defined as follows: healthy EID—h =
[h1, h2, ..., h16,384], EID with 15 broken rotor blades (faulty fan)—f = [f 1, f 2, ..., f 16,384], EID with a
bent spring—s = [s1, s2, ..., s16,384], EID with a rear ball bearing fault—b = [b1, b2, ..., b16,384].

(2) For each training vector compute: h − f, h − s, f − s, b − h, b − f, b − s.
(3) Compute: |h − f|, |h − s|, |f − s|, |b − h|, |b − f|, |b − s|.
(4) Find 1–17 Common Frequency Components (CFCs) or set a parameter Threshold of CFCs (ToCFCs).

If there are no CFCs, then set a parameter ToCFCs. The parameter is defined as Equation (1):

ToCFCs =
Number o f required CFCs

Number o f all di f f erences
(1)

Let’s analyse the following example: three training sets are given. Each of them has four training
samples. Eighteen differences are computed (six for the first training set, six for the second training set,
six for the third training set). Let’s suppose that frequency component 130 Hz is found three times
for |h − f|. Let’s suppose that frequency components 110, 160 Hz are found two times for |h − s|.
Let’s suppose that frequency components 110, 140 Hz are found two times for |f − s|. Let’s suppose
that frequency component 500 Hz is found three times for |b − h|. Let’s suppose that frequency
components 600, 610 Hz are found two times for |b − f|. Let’s suppose that frequency components 600,
710 Hz are found two times for |b − s|. There are no CFCs. Only frequency components 110 Hz and
600 Hz are found four times. The MSAF-17-MULTIEXPANDED finds frequency components 110, 130,
140, 160, 500, 600, 610, 710 Hz, if ToCFCs is equal to 0.1111 (2/18). The MSAF-17-MULTIEXPANDED
method finds 0 frequency components, if ToCFCs is equal to 0.2777 (5/18).

(5) Form groups of frequency components for a proper recognition. Considering the presented
example, it can be noticed that the frequency component 110 Hz is good for |h − s| and |f − s|.
The frequency component 130 Hz is good for |h − f|. The frequency component 500 Hz is good
for |b − h|. The frequency component 600 Hz is good for |b − f| and |b − s|. The MSAF-17-
MULTIEXPANDED-FILTER-14 finds 1 group consisted of 110, 130, 500, 600 Hz.

(6) Form bandwidths of frequency. Considering the presented example, 14 Hz bandwidths are
selected. The MSAF-17-MULTIEXPANDED-FILTER-14 uses a value of 14 Hz. The value of 14 Hz
is set experimentally. The middle of the first bandwidth is located at 110 Hz. The middle of the
second bandwidth is located at 130 Hz. The middle of the third bandwidth is located at 500 Hz.
The middle of the fourth bandwidth is located at 600 Hz. Following bandwidths are selected
<103–117 Hz>, <123–137 Hz >, <493–507 Hz>, <593–607 Hz>.

(7) Using computed bandwidths, form a feature vector.

In other words, we can say that: 17—means that, we analyse 17 (local) maximum values of
analysed difference between FFT spectra of acoustic signals, for example |h − f|, 14—means that,
we set 14 Hz frequency bandwidth, for example for frequency 50 Hz it will be <50 − 7 Hz, 50 + 7Hz>.

A block diagram of the developed method MSAF-17-MULTIEXPANDED-FILTER-14 is presented
in Figure 16.
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Figure 16. Block diagram of the developed method MSAF-17-MULTIEXPANDED-FILTER-14.

Differences between FFT spectra |h − f|, |h − s|, |f − s|, |b − h|, |b − f|, |b − s| were
computed and are presented in Figures 17–22.

Figure 17. Difference (|h − f|) using the MSAF-17-MULTIEXPANDED-FILTER-14 method.

Figure 18. Difference (|h − s|) using the MSAF-17-MULTIEXPANDED-FILTER-14 method.
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Figure 19. Difference (|f − s|) using the MSAF-17-MULTIEXPANDED-FILTER-14 method.

Figure 20. Difference (|b − h|) using the MSAF-17-MULTIEXPANDED-FILTER-14 method.

Figure 21. Difference (|b − s|) using the MSAF-17-MULTIEXPANDED-FILTER-14 method.
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Figure 22. Difference (|b − f|) using the MSAF-17-MULTIEXPANDED-FILTER-14 method.

The developed method MSAF-17-MULTIEXPANDED-FILTER-14 found the following frequency
components: 278, 280, 457, 464, 468, 477, 479, 480, 481, 483, 557, 558, 2297, 2313, 2316, 2317, 11098,
11099, 11103, 11106, 11110, 11111, 11190, 11192, 11193, 11197, 11198, 11205, 11207, 11208, 11209, 11213,
11239, 11240, 11242, 11244, 11246 Hz.

Next the MSAF-17-MULTIEXPANDED-FILTER-14 selected seven frequency bandwidths of
the EID: <271–287 Hz>, <450–490 Hz>, <550–565 Hz>, <2290–2324 Hz>, <11091–11118 Hz>,
<11183–11220 Hz>, <11232–11253 Hz>.

The frequency component 278 Hz was found, so the first frequency bandwidth is 271–285 Hz
(278 − 7 Hz, 278 + 7 Hz). The MSAF-17-MULTIEXPANDED-FILTER-14 method computed
frequency bandwidth 14 Hz. It can be noticed that frequency component 280 Hz is within the
frequency bandwidth. Thus, the frequency bandwidth is 271–287 Hz etc. The selected frequency
bandwidths/features of the EID were depicted in Figures 23–26. The value of the parameter ToCFCs
was equal to 0.25 for the EID.

Figure 23. Values of features of healthy EID (145 features, seven frequency bandwidths,
<271–287 Hz>, <450–490 Hz>, <550–565 Hz>, <2290–2324 Hz>, <11091–11118 Hz>, <11183–11220 Hz>,
<11232–11253 Hz>).
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Figure 24. Values of features of the EID with 15 broken rotor blades (faulty fan) (145 features,
seven frequency bandwidths, <271–287 Hz>, <450–490 Hz>, <550–565 Hz>, <2290–2324 Hz>,
<11091–11118 Hz>, <11183–11220 Hz>, <11232–11253 Hz>).

Figure 25. Values of features of the EID with a bent spring (145 features, seven frequency bandwidths,
<271–287 Hz>, <450–490 Hz>, <550–565 Hz>, <2290–2324 Hz>, <11091–11118 Hz>, <11183–11220 Hz>,
<11232–11253 Hz>).

Figure 26. Values of features of the EID with a rear ball bearing fault (145 features, seven frequency
bandwidths, <271–287 Hz>, <450–490 Hz>, <550–565 Hz>, <2290–2324 Hz>, <11091–11118 Hz>,
<11183–11220 Hz>, <11232–11253 Hz>).

The MSAF-17-MULTIEXPANDED-FILTER-14 selected two frequency bandwidths of the CG-A:
<515–537 Hz>, <1560–1575 Hz>. The selected frequency bandwidths/features of the CG-A are depicted
in Figures 27–29. The value of the parameter ToCFCs was equal to 0.5 for the CG-A.
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Figure 27. Values of features of the healthy CG-A (29 features, two frequency bandwidths,
<515–537 Hz>, <1560–1575 Hz>).

Figure 28. Values of features of the CG-A with a heavily damaged rear sliding bearing (29 features,
two frequency bandwidths, <515–537 Hz>, <1560–1575 Hz>).

Figure 29. Values of features of the CG-A with a damaged shaft and heavily damaged rear sliding
bearing (29 features, two frequency bandwidths, <515–537 Hz>, <1560–1575 Hz>).

The MSAF-17-MULTIEXPANDED-FILTER-14 selected three frequency bandwidths of the CG-B:
<94–109 Hz>, <194–207 Hz>, <463–488 Hz>. The selected frequency bandwidths/features of the CG-B
are depicted in Figures 30 and 31. The value of the parameter ToCFCs was equal to 0.5 for the CG-B.

219



Sensors 2019, 19, 269

Figure 30. Values of features of the healthy CG-B (43 features, three frequency bandwidths,
<94–109 Hz>, <194–207 Hz>, <463–488 Hz>).

Figure 31. Values of features of the CG-B with a light damaged rear sliding bearing (43 features,
three frequency bandwidths, <94–109 Hz>, <194–207 Hz>, <463–488 Hz>).

Next computed features were classified. To classify features the NN classifier [29–31] was used
(please see Section 2.3). There are 145 features in the feature vector. It can be noticed that distance
classifiers (for example: k-means, Nearest Mean) should have also good results. Fuzzy classifiers [32]
and neural network [33–35] can be also suitable for the acoustic-based approach. The NN classifier
was selected because of its good recognition efficiency for multi-dimensional vectors.

2.2. RMS

The second method of feature extraction used for the proposed acoustic based approach is the
Root Mean Square (RMS). The RMS is a well-known method for feature extraction. It is defined as
Equation (2):

xRMS =

√
1
n
(x2

1 + x2
2 + ... + x2

n) (2)
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where xRMS—RMS for 1-s sample (44,100 values), n—number of all samples, n = 44,100, x1, ...,
xn—values of samples 1, ..., n (sampling rate 44,100 Hz).

In the presented analysis (please see Section 3) the author used 50 1-s samples for each class of the
EID. Two hundred and fifty 1-s samples were used for five classes (of the EID). There were xRMS1, ...,
xRMS50—RMS values of the healthy EID, xRMS51, ..., xRMS100—RMS values of the EID with 15 broken
rotor blades (faulty fan), xRMS101, ..., xRMS150—RMS values of the EID with a bent spring, xRMS151, ...,
xRMS200 − RMS values of the EID with a shifted brush (motor off), xRMS201, ..., xRMS250—RMS values of
the EID with a rear ball bearing fault. The computed RMS values of the EID are presented in Tables 1–5.

Table 1. RMS values of the healthy EID.

Number of Samples RMS Value Number of Samples RMS Value

xRMS1 0.237122 xRMS5 0.240819
xRMS2 0.231192 xRMS6 0.236356
xRMS3 0.234878 xRMS7 0.239650
xRMS4 0.238282 xRMS8 0.238406

Table 2. RMS values of the EID with 15 broken rotor blades (faulty fan).

Number of Samples RMS Value Number of Samples RMS Value

xRMS51 0.322252 xRMS55 0.312347
xRMS52 0.316197 xRMS56 0.318529
xRMS53 0.317383 xRMS57 0.310883
xRMS54 0.305535 xRMS58 0.302719

Table 3. RMS values of the EID with a bent spring.

Number of Samples RMS Value Number of Samples RMS Value

xRMS101 0.250579 xRMS105 0.245578
xRMS102 0.244888 xRMS106 0.243813
xRMS103 0.244461 xRMS107 0.246395
xRMS104 0.249611 xRMS108 0.246297

Table 4. RMS values of the EID with a shifted brush.

Number of Samples RMS Value Number of Samples RMS Value

xRMS151 0.006427 xRMS155 0.006478
xRMS152 0.006338 xRMS156 0.007226
xRMS153 0.008981 xRMS157 0.007020
xRMS154 0.009021 xRMS158 0.006644

Table 5. RMS values of the EID with a rear ball bearing fault.

Number of Samples RMS Value Number of Samples RMS Value

xRMS201 0.235278 xRMS205 0.234696
xRMS202 0.236730 xRMS206 0.236078
xRMS203 0.233518 xRMS207 0.237600
xRMS204 0.234478 xRMS208 0.237778

The values of the RMS of acoustic signals “Healthy EID” and “EID with a rear ball bearing fault”
were similar. It will be difficult to recognise these two classes. In the presented analysis (please see
Section 3) the author used 50 1-s samples for each class of the CG-A. Two hundred 1-s samples were
used for four classes (of the CG-A). There were xRMS251, ..., xRMS300—RMS values of the healthy CG-A,
xRMS301, ..., xRMS350—RMS values of the CG-A with a heavily damaged rear sliding bearing, xRMS351,
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..., xRMS400 − RMS values of the CG-A with a damaged shaft and heavily damaged rear sliding bearing,
xRMS401, ..., xRMS450—RMS values of the motor off (CG-A off). The values xRMS401, ..., xRMS450 were the
same as RMS values of the EID with a shifted brush (EID off). The computed RMS values of the CG-A
are presented in Tables 6–8.

Table 6. RMS values of the healthy CG-A.

Number of Samples RMS Value Number of Samples RMS Value

xRMS251 0.203343 xRMS255 0.209252
xRMS252 0.203521 xRMS256 0.215012
xRMS253 0.201109 xRMS257 0.209241
xRMS254 0.205511 xRMS258 0.205984

Table 7. RMS values of the CG-A with a heavily damaged rear sliding bearing.

Number of Samples RMS Value Number of Samples RMS Value

xRMS301 0.234359 xRMS305 0.234927
xRMS302 0.234860 xRMS306 0.233882
xRMS303 0.231783 xRMS307 0.235229
xRMS304 0.237120 xRMS308 0.229835

Table 8. RMS values of the CG-A with a damaged shaft and heavily damaged rear sliding bearing.

Number of Samples RMS Value Number of Samples RMS Value

xRMS351 0.239449 xRMS355 0.248779
xRMS352 0.246317 xRMS356 0.250027
xRMS353 0.246894 xRMS357 0.250791
xRMS354 0.247325 xRMS358 0.250203

The values of the RMS of acoustic signals “CG-A with a heavily damaged rear sliding bearing”
and “CG-A with a damaged shaft and heavily damaged rear sliding bearing” were similar. It will be
difficult to recognise these two classes.

In the presented analysis (please see Section 3) the author used 50 1-s samples for each class of the
CG-B. One hundred and fifty 1-s samples were used for three classes (of the CG-B). There were xRMS451,
..., xRMS500—RMS values of the healthy CG-B, xRMS501, ..., xRMS550—RMS values of the CG-B with
a light damaged rear sliding bearing, xRMS551, ..., xRMS600—RMS values of the motor off (CG-B off).
The values xRMS551, ..., xRMS600 were the same as RMS values of the EID with a shifted brush (EID off).
The computed RMS values of the CG-B are presented in Tables 9 and 10.

Table 9. RMS values of the healthy CG-B.

Number of Samples RMS Value Number of Samples RMS Value

xRMS451 0.248146 xRMS455 0.248331
xRMS452 0.254812 xRMS456 0.259062
xRMS453 0.248951 xRMS457 0.263240
xRMS454 0.240446 xRMS458 0.264600

Table 10. RMS values of the CG-B with a lightly damaged rear sliding bearing.

Number of Samples RMS Value Number of Samples RMS Value

xRMS501 0.131587 xRMS505 0.103367
xRMS502 0.121155 xRMS506 0.095910
xRMS503 0.103567 xRMS507 0.108105
xRMS504 0.094650 xRMS508 0.105756
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2.3. NN Classifier

The NN classifier is very known in the literature [29–31]. This type of a classifier is based on lazy
learning. It does not generalize the training data. Each training feature vector has a label with a class
(ID of the class). The label (ID of the class) is given to the feature vector in the training phase.

An unlabeled test feature vector is used in the classification (testing) phase. The NN classifier
assigns the label, which is the closest to the training data. For this reason, distance metric is used.
The author used Euclidean distance, although other distance functions could be used. Similar results
were obtained using other distance functions (Manhattan distance and Minkowski distance). Euclidean
distance was defined as Equation (3):

ED(x − y) =

√
n

∑
i=1

|(xi − yi)
2| (3)

where x—test feature vector, y—training feature vector, ED(x−y)—Euclidean distance, n—number of
features (it is 1 feature for the RMS).

The NN classifier is useful for classification of feature vectors. It was found application in pattern
recognition, speaker recognition, image recognition, text recognition, face recognition etc. The NN
classifier is described in detail in [29–31].

3. Recognition Results of the EID, CG-A, CG-B

The analysed EID was powered from the 230 V/50 Hz mains. The author used 50G515 electric
impact drills. Other devices could be used. It generated five acoustic signals denoted as: healthy
EID, EID with 15 broken rotor blades (faulty fan), EID with a bent spring, EID with a shifted brush
(motor off), EID with a rear ball bearing fault. Measurements were carried out in the room 3 m × 3 m.
The analysed EID had rated power PD = 500 W, rotation speed RD = 3000 rpm and weight MD = 1.84 kg.

The analysed CG-A was also powered from the 230 V/50 Hz mains. The author used a ME-1498
coffee grinder. Other devices could be used. The analysed CG-A consisted of a FY5420 motor (rated
power 140 W). It had rotor speed of 28,000–30,000 rpm. It generated four acoustic signals denoted as:
healthy, with a slightly damaged rear sliding bearing, with a moderately damaged rear sliding bearing,
motor off.

The analysed CG-B was also powered from the 230 V/50 Hz mains. The author used a SCG
1050WH coffee grinder. The analysed CG-B consisted of a HC5420 motor (rated power 150 W). It had a
rotor speed of 11,300 rpm. It generated three acoustic signals denoted as: healthy, with a light damaged
rear sliding bearing, motor off.

Patterns were computed using 32 training samples of the EID, 24 training samples of the CG-A,
and 24 training samples of the CG-B. Each training sample had 44,100 values. The results of recognition
were computed using 250 test samples of the EID, 200 test samples of the CG-A and 150 test samples
of the CG-B. Test samples had the same audio parameters (sampling rate 44,100 Hz, single channel) as
training samples.

The efficiency of the proposed approach was evaluated using Equation (4). This Equation (4)
defined the efficiency of recognition of the EID (ED):

ED1 = (ND1)/(NALL−D1) · 100% (4)

where: ED1—the efficiency of recognition for D1 class (in the analysis it is one of five classes, for example
healthy EID), ND1—the number of test samples classified as D1 class, NALL-D1—the number of all test
samples in D1 class. The values of ECG-A and ECG-B were computed similarly to ED1.

The total efficiency of recognition of all classes (TED) was also introduced. It was defined as
follows Equation (5):

TED = (ED1 + ED2 + ED3 + ED4 + ED5)/5 (5)
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where TED—the total efficiency of recognition of all classes (five states of the EID), ED1—the efficiency
of recognition for D1 class (in the presented analysis D1 class—healthy EID), ED2—the efficiency
of recognition for D2 class (in the presented analysis D2 class—EID with a bent spring), ED3—the
efficiency of recognition for D3 class (in the presented analysis D3 class—EID with 15 broken rotor
blades), ED4—the efficiency of recognition for D4 class (in the presented analysis D4 class—EID with a
shifted brush), ED5—the efficiency of recognition for D5 class (in the presented analysis D5 class—EID
with a rear ball bearing fault). The values of TECG-A and TECG-B were computed similarly to TED.
Four acoustic signals were used for TECG-A. Three acoustic signals were used for TECG-B. The computed
values of ED and TED were presented in Tables 11 and 12. Acoustic signals of the EID were processed
by the MSAF-17-MULTIEXPANDED-FILTER-14 method and the NN classifier (Table 11).

Table 11. Computed values of ED and TED of the EID using the MSAF-17-MULTIEXPANDED-FILTER-14
method and the NN classifier.

Type of Acoustic Signal ED (%)

Healthy EID 100
EID with a bent spring 92

EID with (15 broken rotor blades) faulty fan 100
EID with shifted brush (motor off) 100

EID with rear ball bearing fault 88
TED (%)

Total efficiency of recognition of the EID 96

Table 12. Computed values of ED and TED of the EID using the RMS and the NN classifier.

Type of Acoustic Signal ED (%)

Healthy EID 56
EID with a bent spring 100

EID with (15 broken rotor blades) faulty fan 100
EID with shifted brush (motor off) 100

EID with rear ball bearing fault 60
TED (%)

Total efficiency of recognition of the EID 83.2

Acoustic signals of the EID were processed by the RMS and NN classifier (Table 12).
The computed values of ED and TED of the proposed approach were following: ED = 88–100%,

TED = 96% for the MSAF-17-MULTIEXPANDED-FILTER-14 method and ED = 56–100%, TED = 83.2%
for the RMS. The computed values of ECG-A and TECG-A were presented in Tables 13 and 14. Acoustic
signals of the CG-A were processed by the MSAF-17-MULTIEXPANDED-FILTER-14 method and the
NN classifier (Table 13).

Table 13. Computed values of ECG-A and TECG-A of the CG-A using the MSAF-17-MULTIEXPANDED-
FILTER-14 method and the NN classifier.

Type of Acoustic Signal ECG-A (%)

Healthy CG-A 100
CG-A with a heavily damaged rear sliding bearing 100

CG-A with a damaged shaft and heavily damaged rear sliding bearing 88
Motor off 100

TECG-A (%)
Total efficiency of recognition of the CG-A 97
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Table 14. Computed values of ECG-A and TECG-A of the CG-A using the RMS and the NN classifier.

Type of Acoustic Signal ECG-A (%)

Healthy CG-A 100
CG-A with a heavily damaged rear sliding bearing 92

CG-A with a damaged shaft and heavily damaged rear sliding bearing 92
Motor off 100

TECG-A (%)
Total efficiency of recognition of the CG-A 96

Acoustic signals of the CG-A were processed by the RMS and NN classifier (Table 14).
The computed values of ECG-A and TECG-A of the proposed approach were following: ECG-A =

88–100%, TECG-A = 97% for the MSAF-17-MULTIEXPANDED-FILTER-14 method and ECG-A = 92–100%,
TECG-A = 96% for the RMS. The computed values of ECG-B and TECG-B were presented in Tables 15
and 16. Acoustic signals of the CG-B were processed by the MSAF-17-MULTIEXPANDED-FILTER-14
method and the NN classifier (Table 15).

Table 15. Computed values of ECG-B and TECG-B of the CG-B using the MSAF-17-MULTIEXPANDED-
FILTER-14 method and the NN classifier.

Type of Acoustic Signal ECG-B (%)

Healthy CG-B 100
CG-B with a light damaged rear sliding bearing 100

Motor off 100
TECG-B (%)

Total efficiency of recognition of the CG-B 100

Table 16. Computed values of ECG-B and TECG-B of the CG-B using the RMS and the NN classifier.

Type of Acoustic Signal ECG-B (%)

Healthy CG-B 100
CG-B with a light damaged rear sliding bearing 100

Motor off 100
TECG-B (%)

Total efficiency of recognition of the CG-B 100

Acoustic signals of the CG-B were processed by the RMS and NN classifier (Table 16).
The computed values of ECG-B and TECG-B of the proposed approach were following: ECG-B=

100%, TECG-B = 100% for the MSAF-17-MULTIEXPANDED-FILTER-14 method and RMS.

4. Discussion

The acoustic-based fault-detection technique is significant for the recent research area of electrical
motors. This approach is useful for inspection of motor condition. It can analyse acoustic signals
in places with limited or no access. The novelty of the proposed work was to detect faults of an
EID and two coffee grinders. The author focused on feature extraction of five acoustic signals of
the EID, four acoustic signals of the CG-A and three acoustic signals of the CG-B. The method
MSAF-17-MULTIEXPANDED-FILTER-14 was developed and described. One of the difficulties to solve
was selection of training samples. It can be noticed that the recognition results depended on selected
training samples. All samples is measured by one microphone. If the acoustic signal is measured by
another type of microphone, then it can cause errors of recognition. The proposed acoustic-based
approach should use one type of microphone for training as well as testing.

The second of the difficulties to solve was the testing (classification) of a new unknown test
samples. It is difficult to recognize, for example, the acoustic signal of a car if we have training samples

225



Sensors 2019, 19, 269

of an EID. To solve this problem the proposed acoustic-based approach used the NN classifier. The NN
classifier found the nearest feature vector (analysed frequency bandwidths). If the acoustic signal of the
car is measured, then it will be recognised as an unknown state of the EID. The training set consisted
of acoustic signals of the EID and several unknown sounds of cars, ships, helicopters, animals, etc.

It can be noticed that the RMS was very good for recognition of acoustic signals of the EID
with a shifted brush (motor off). This class of acoustic signal should be detected by the RMS.
However, the RMS method was not good for similar sound intensity level values. The classes of
acoustic signals “Healthy EID” and “EID with a rear ball bearing fault” had low values of TED.
The classes of acoustic signals “CG-A with a heavily damaged rear sliding bearing” and “CG-A
with a damaged shaft and heavily damaged rear sliding bearing” had lower values of TECG-A.
The MSAF-17-MULTIEXPANDED-FILTER-14 method was good method of feature extraction for
all analysed classes of acoustic signals.

5. Summary and Conclusions

This paper presented fault-detection techniques for an electric impact drill (EID), coffee grinder A
(CG-A), and coffee grinder B (CG-B) using acoustic signals. Measurements of the acoustic signals of
the EID, CG-A, and CG-B were carried out using a microphone. Five signals of the EID were analysed:
healthy EID, EID with 15 broken rotor blades (faulty fan), EID with a bent spring, EID with a shifted
brush (motor off), EID with a rear ball bearing fault. Four signals of the CG-A are analysed: healthy
CG-A, CG-A with a heavily damaged rear sliding bearing, CG-A with a damaged shaft and heavily
damaged rear sliding bearing, motor off. Three acoustic signals of the CG-B are analysed: healthy
CG-B, CG-B with a light damaged rear sliding bearing, motor off.

Methods such as RMS, MSAF-17-MULTIEXPANDED-FILTER-14 were used for feature extraction.
The MSAF-17-MULTIEXPANDED-FILTER-14 was also developed and described in the paper.
The classification is carried out using the Nearest Neighbour (NN) classifier. An acoustic based analysis
was carried out. The computed values of ED and TED of the proposed approach were following:
ED = 88–100%, TED = 96% for the MSAF-17-MULTIEXPANDED-FILTER-14 and ED = 56–100%,
TED = 83.2% for the RMS. The computed values of ECG-A and TECG-A of the proposed approach
were following: ECG-A = 88–100%, TECG-A = 97% for the MSAF-17-MULTIEXPANDED-FILTER-14
method and ECG-A = 92–100%, TECG-A = 96% for the RMS. The computed values of ECG-B and TECG-B
of the proposed approach were following: ECG-B = 100%, TECG-B = 100%.

The acoustic-based analysis was inexpensive. The experimental setup consisted of a microphone
and computer. It cost about $500. Pros of this solution are instant measurement and online monitoring
of the motor. Cons of this solution are the higher cost and size of the computer. The developed
acoustic-based approach has many applications, for example in home and industrial appliances for
fault detection. It can be used for electrical motors, engines, machinery and electric power tools [36–42].
It can also find applications in mining, oil, car, energy, and the steel industry. It can analyse acoustic
signals in places with limited or no access. However, the proposed acoustic-based approach has one
limitation. It cannot work for a machine that does not generate acoustic signals. Background noises
can be also problem, if we analyse several motors in one place and at the same time.

In the future, the proposed acoustic-based approach can be further developed. Other faults of
commutator motors can be added to an acoustic signal database. Measurements can be carried out
using acoustic cameras and microphone arrays. Vibration-based methods can be added to the fault
detection system of commutator motors. New feature extraction methods can also be developed in
the future.
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