
 Bifurcation and Chaos in Fractional-O
rder System

s   •   M
arius-F. Danca and Guanrong Chen

Bifurcation and 
Chaos in Fractional-
Order Systems

Printed Edition of the Special Issue Published in Symmetry

www.mdpi.com/journal/symmetry

Marius-F. Danca and Guanrong Chen
Edited by



Bifurcation and Chaos
in Fractional-Order Systems





Bifurcation and Chaos
in Fractional-Order Systems

Editors

Marius-F. Danca

Guanrong Chen

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Marius-F. Danca

Romanian Instituite of Science

and Technology

Romania

Guanrong Chen

Department of Electrical Engineering,

City University of Hong Kong

China

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Symmetry (ISSN 2073-8994) (available at: https://www.mdpi.com/journal/symmetry/special

issues/Bifurcation Chaos Fractional-Order Systems).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-0092-8 (Hbk)

ISBN 978-3-0365-0093-5 (PDF)

Cover image courtesy of Marius-F. Danca.

c© 2020 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to ”Bifurcation and Chaos

in Fractional-Order Systems” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

António M. Lopes, J. A. Tenreiro Machado

Fractional Dynamics in Soccer Leagues
Reprinted from: Symmetry 2020, 12, 356, doi:10.3390/sym12030356 . . . . . . . . . . . . . . . . . 1

Marius-F. Danca

Puu System of Fractional Order and Its Chaos Suppression
Reprinted from: Symmetry 2020, 12, 340, doi:10.3390/sym12030340 . . . . . . . . . . . . . . . . . 13

Shao Fu Wang and Aiqin Ye

Dynamical Properties of Fractional-Order Memristor
Reprinted from: Symmetry 2020, 12, 437, doi:10.3390/sym12030437 . . . . . . . . . . . . . . . . . 25

Shouwu Duan, Wanqing Song, Carlo Cattani, Yakufu Yasen and He Liu

Fractional Levy Stable and Maximum Lyapunov Exponent for Wind Speed Prediction
Reprinted from: Symmetry 2020, 12, 605, doi:10.3390/sym12040605 . . . . . . . . . . . . . . . . . 37

Fatima Hadjabi, Adel Ouannas, Nabil Shawagfeh, Amina-Aicha Khennaoui and Giuseppe

Grassi

On Two-Dimensional Fractional Chaotic Maps with Symmetries
Reprinted from: Symmetry 2020, 12, 756, doi:10.3390/sym12050756 . . . . . . . . . . . . . . . . . 51

Adel Ouannas, Othman Abdullah Almatroud, Amina Aicha Khennaoui, Mohammad Mossa

Alsawalha, Dumitru Baleanu, Van Van Huynh, Viet-Thanh Pham

Bifurcations, Hidden Chaos and Control in Fractional Maps
Reprinted from: Symmetry 2020, 12, 879, doi:10.3390/sym12060879 . . . . . . . . . . . . . . . . . 65

Mohammad Izadi and Carlo Cattani

Generalized Bessel Polynomial for Multi-Order Fractional Differential Equations
Reprinted from: Symmetry 2020, 12, 1260, doi:10.3390/sym12081260 . . . . . . . . . . . . . . . . . 79

v





About the Editors

Marius-F. Danca received an MSc degree in Mathematics in 1980 from Babes-Bolyai University of

Cluj-Napoca, Romania, Faculty of Mathematics; an MSc in Electrotechnics in 1986 from the Technical

University of Cluj-Napoca, Romania, Faculty of Electrotechnics; a PhD degree in Automation in

1997 from the Technical University of Cluj-Napoca, Romania, Faculty of Automation and Computer

Science; and a PhD degree in Mathematics in 2002 from Babes-Bolyai University of Cluj-Napoca,

Romania, Faculty of Mathematics.

Professor Marius-F. Danca was Guest Associate Editor at Discrete and Continuous Dynamical

Systems—Series S (DCDS-S) (2007–2017), Associate Editor at Dynamics of Continuous, Discrete &

Impulsive Systems—Series B (DCDIS-B) (2006–present), Associate Editor at Journal of Nonlinear

Systems and Applications (JNSA) (2009–present), and Guest Editor of the Special Issue “Research

Frontier in Chaos Theory and Complex Networks” (2018).

Professor Marius-F. Danca has 85 ISI papers, an h-index of 18, and more than 200 publications in

Romanian and foreign dissemination journals, and was a reviewer for more than 40 ISI journals

(at Springer, Elsevier, Taylor & Francis, AIMS, Willey, IET, Hindawi, World Scientific, MDPI, AIP,

John Willey & Sons, Hacettepe, IOP, and Sage).

He is the author of two books, entitled “Functia logistica: dinamica, bifurcatie si haos”

Seria MATEMATICA APLICATA SI INDUSTRIALA 7, Editura Universitatii din Pitesti, 2001;

and “Sisteme dinamice discontinue” Seria MATEMATICA APLICATA SI INDUSTRIALA 14, Editura

Universitatii din Pitesti, 2004 (in Romanian); and one chapter in “Complex Systems and Networks:

Dynamics, Controls and Applications” in Understanding Complex Systems, Springer 2016.

Guanrong Chen received an MSc degree in Computer Science from Sun Yat-sen University,

Guangzhou, China, in 1981 and a PhD degree in Applied Mathematics from Texas A&M University,

USA, in 1987. Since 2000, he has been a Chair Professor and the founding director of the “Centre for

Chaos and Complex Networks” at the City University of Hong Kong.

Professor Chen was elected a Fellow of the IEEE in 1997, awarded the 2011 Euler Gold Medal from

Russia, and conferred Honorary Doctor Degrees by the Saint Petersburg State University, Russia, in

2011 and by the University of Normandy, France, in 2014. He is a Member of the Academy of Europe

(since 2014) and a Fellow of The World Academy of Sciences (since 2015).

Professor Chen’s research interests are in the fields of complex networks, nonlinear dynamics,

and control systems. He is a Highly Cited Researcher in Engineering (since 2009), according to

Thomson Reuters.

vii





Preface to ”Bifurcation and Chaos

in Fractional-Order Systems”

The concept of fractional-order differentiation first emerged in 1965 regarding a historical

correspondence between the Marquise de L’Hospital and the mathematician Leibnitz. In the sequel,

famous mathematicians such as Euler, Laplace, Abel, Liouville, and Riemann further developed

fundamental technical details. It was realized recently that many scientific phenomena with

complex dynamics cannot be well modeled by differential equations using integer-order derivatives.

Fractional calculus (calculus of non-integer order) became a rapidly developing topic in science and

engineering, which has been attracting a great deal of attention recently in the academic and industrial

world. While exponential laws represent a classical approach to studying dynamical systems,

there are systems where faster or slower dynamics are better and more accurately described by

Mittag–Leffler functions. As a result, there has been an increasing interest to merge the mathematical

fundamentals of fractional calculus into scientific and engineering applications as an interdisciplinary

approach, which has started to demonstrate some advantages over conventional integer-order

differential systems. Although the last decade had witnessed significant development in this research

area, many theoretical and technical problems remain to be further explored, including particularly

chaotic fractional-order systems. On the other hand, finding hidden attractors in continuous-time

and discrete-time chaotic fractional-order systems represents a new trend of research, as an exciting

and challenging direction in the fields of complex dynamics. Of particular interest are those systems

with symmetry, in which bifurcations can lead to a family of conjugate attractors, all connected by

symmetry. Therefore, this research direction of bifurcation and chaos in fractional-order dynamical

systems opens up a corpus of opportunities with encouraging promises in such scientific fields as

complex dynamics, systems and networks, and signal processing, to name just a few.

The book consists of seven contributed papers written by active leading experts on

various topics.

The first paper, entitled “Fractional Dynamics in Soccer Leagues”, addresses the dynamics of

four European soccer teams over the 2018–2019 season, with modeling based on fractional calculus

and power law. The new model embeds implicit details such as the behavior of players and coaches,

strategical and tactical maneuvers during the matches, errors of referees, and a multitude of other

effects. Two approaches are taken to evaluate the teams’ progress along the league by models fitting

real-world data and to analyze statistical information by using entropy.

The second paper, entitled “Puu System of Fractional Order and Its Chaos Suppression”, studies

the fractional-order variant of Puu’s system and compares it with the integer-order counterpart. Also,

an impulsive chaos control algorithm is applied to suppress chaos in the system.

The third paper, entitled “Dynamical Properties of Fractional-Order Memristor”, investigates

the properties of a fractional-order memristor, revealing the influences of parameters such as the

fraction order, frequency, switch resistor ratio, average mobility on the system dynamics, and so on.

The fractional-order memristor is implemented by circuits.

The forth paper, entitled “Fractional Levy Stable and Maximum Lyapunov Exponent for Wind

Speed Prediction”, proposes a wind speed prediction method based on the maximum Lyapunov

exponent and the fractional Levy stable motion in an iterative prediction model. Theoretical analysis

and numerical simulations are performed with comparisons, showing some advantages of the

new method.

ix



The fifth paper, entitled “On Two-Dimensional Fractional Chaotic Maps with Symmetries”,

discusses two new two-dimensional chaotic maps with closed curve fixed points. It analyzes the

chaotic behavior of the two maps by the 0–1 test and explores it numerically using Lyapunov

exponents and bifurcation diagrams, showing that chaos exists in both fractional maps and that the

fractional-order map has coexisting attractors.

The sixth paper, entitled “Bifurcations, Hidden Chaos and Control in Fractional Maps”,

introduces, based on discrete fractional calculus, simple two-dimensional and three-dimensional

fractional maps; both are chaotic and have a unique equilibrium point, with coexisting attractors.

Moreover, control schemes are introduced to stabilize the chaotic trajectories of the two systems.

The seventh paper, entitled “Generalized Bessel Polynomial for Multi-Order Fractional

Differential Equations”, defines a simple but effective method for approximating solutions of

multi-order fractional differential equations relying on the Caputo fractional derivative under some

conditions. Basis functions used are generalized Bessel polynomials satisfying many properties

shared by the classical orthogonal polynomials of Hermit, Laguerre, and Jacobi. The new method

has good performance in accuracy and simplicity. Some practical test problems with symmetries are

used to verify the proposed technique with comparisons.

We thank all the authors for their excellent research and fine contributions to this edited book.

Marius-F. Danca, Guanrong Chen

Editors

x
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Abstract: This paper addresses the dynamics of four European soccer teams over the season
2018–2019. The modeling perspective adopts the concepts of fractional calculus and power law.
The proposed model embeds implicitly details such as the behavior of players and coaches, strategical
and tactical maneuvers during the matches, errors of referees and a multitude of other effects.
The scale of observation focuses the teams’ behavior at each round. Two approaches are considered,
namely the evaluation of the team progress along the league by a variety of heuristic models fitting
real-world data, and the analysis of statistical information by means of entropy. The best models are
also adopted for predicting the future results and their performance compared with the real outcome.
The computational and mathematical modeling lead to results that are analyzed and interpreted
in the light of fractional dynamics. The emergence of patterns both with the heuristic modeling
and the entropy analysis highlight similarities in different national leagues and point towards some
underlying complex dynamics.

Keywords: Fractional dynamics; Power law behavior; Complex systems; Soccer

1. Introduction

Soccer is the most popular sport in Europe [1,2]. The game is played by two teams of 11 players,
on a rectangular field with a goal placed at each end. The objective of the game is to score by getting
a spherical ball into the opposing goal. Each team includes 10 field players, that can maneuver the ball
using any part of the body except hands and arms, and one goalkeeper, who is allowed to touch the
ball with the whole body, as long as they stay in their penalty area. Otherwise, the rules of the field
players apply. The match has two periods of 45 minutes each. The winning team is the one that scores
more goals by the end of the match.

In most European countries, soccer competitions are organized hierarchically in leagues composed
by groups of teams. At the end of each season, a promotion and relegation system decides which
teams move up and down into the hierarchy. In a given league and season each pair of teams plays to
matches, so that the visited and visitor interchange place. All teams start with zero points and, at every
round, one {victory, draw, defeat} is worth {3, 1, 0} points. By the end of the last round, the team that
accumulated more points is the champion [3].

This paper studies the dynamical performance of soccer teams in a given league. The modeling
perspective adopts the concepts of fractional calculus [4,5] and power law (PL) [6]. These tools
have been used to model dynamical systems with memory in mechanics [7], electromagnetism [8],
biology [9], sports [10], economy [11], and others [12]. The proposed approach embeds implicitly
details such as the behavior of players and coaches, strategical and tactical maneuvers during the
matches, errors of referees and a multitude of other effects. The scale of observation addresses the
teams behavior in the perspective of their classification along the league. Data characterizing the year

Symmetry 2020, 12, 356; doi:10.3390/sym12030356 www.mdpi.com/journal/symmetry1
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2018–2019 and the four leagues, namely the Spanish ‘La Liga’, English ‘Premiership’, Italian ‘Serie A’
and French ‘Ligue 1’, are processed and discussed. The computational and mathematical modeling
leads to the emergence of patterns that are analyzed and interpreted in the light of fractional dynamics.

In spite of its social and economical importance, the topic of soccer dynamics has been the subject
of only a restricted number of studies. In fact, we can consider the study of the dynamic effects at
different levels, namely about the evolution of each player along his career, of the evolution of the
players within a given match, or the progress of the classification of a group of teams along a given
league. Couceiro et al. [13] characterized the predictability and stability levels of players during
a soccer match by means of fractional calculus and entropy measures. Silva et al. [14] investigated
how different entropy measures can be applied to assess the performance variability and to uncover
the interactions underlying the players and teams’ performance. Machado and Lopes [15] adopted
distinct dissimilarity measures and multidimensional scaling to study the behavior of teams competing
within soccer national leagues and related the generated loci with the teams’ performance over time.
Neuman et al. [16] measured the organization associated with the behavior of a soccer team through
the Tsallis entropy of ball passes between the players. They found that the teams’ positions at the end
of one season were correlated with the teams entropy. Moreover, the entropy score could be used for
predicting of the teams’ final positions. Lopes and Machado [17] studied the dynamics of national
soccer leagues using information and fractional calculus tools. In their approach, an entire soccer
league season was treated as a complex system with a state observable at the time of rounds, consisting
of the goals scored by the teams. The system behavior was visualized in 3-D maps generated by
multidimensional scaling and interpreted based on the emerging clusters.

Predicting the outcome of soccer matches has been investigated since at least the 1960s, due to
its interests for the general public, clubs, advertising companies, media, professional odds setters,
and researchers [18]. Various statistical techniques have been used, including Poisson models [19],
Bayesian schemes [20], rating systems [21], and machine learning methods [22,23], such as kernel-based
relational learning [24], among others [25,26]. Advanced machine learning techniques [27,28] may be
of relevance and represent an alternative to statistical or analytical approaches. However, dynamical
phenomena involving complex memory effects need to be analyzed under the light of modeling
tools to better understand phenomena embedded in the data series. Therefore, a synergistic strategy
encompassing studies of distinct nature seems the best to consider at the moment of writing this paper.

This paper addresses the dynamics exhibited by several leagues having in mind the evolution of
the teams along one season. The adoption of heuristic models, fitting real-world data, and the entropy
analysis of statistical information, give a new perspective to a complex system that has been scarcely
studied in the scientific literature.

Bearing these ideas in mind, this paper is organized as follows. Section 2 models the behavior
of the teams in four top European soccer leagues by means of different functions. Section 3 analyzes
the leagues in the perspective of the entropy of the spatio-temporal patterns exhibited by distinct
alternative models. Section 4 uses the models for predicting future results and assesses their accuracy.
Finally, Section 5 outlines the conclusions.

2. Modeling the Teams’ Dynamics

Let us consider N teams competing in a league for one season. Therefore, the league has
R = 2(N − 1) rounds, and each team plays N − 1 matches at home and N − 1 matches away.

Let us denote by xi(k), i = 1, . . . , N, 0 ≤ k ≤ kr, the teams’ positions from the beginning of the
season up to the round kr = 3, . . . , R. The lower limit kr = 3 is adopted to yield data-series with
a minimum number of points for processing. Therefore, the signals xi(k) evolve in discrete time and
one-dimensional space, and can be seen as the output of a complex system.
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We use the nonlinear least-squares [29,30] to test the behavior of the series xi(k) for six fitting
hypotheses, namely shifted power (SP), quadratic (Qu), Hill (Hi), vapor pressure (VP), power law (PL)
and Hoerl (Ho) models, given by:

SP : x̂SP
i (k) = ai(kr) · |k − bi(kr)|ci(kr), (1a)

Qu : x̂Qu
i (k) = ai(kr) + bi(kr) · k + ci(kr) · k2, (1b)

Hi : x̂Hi
i (k) =

ai(kr) · kbi(kr)

ci(kr)bi(kr) + kbi(kr)
, (1c)

VP : x̂VP
i (k) = e

ai(kr)+bi(kr)
ci(kr)·ln(k) , (1d)

PL : x̂PL
i (k) = ai(kr) · kbi(kr), (1e)

Ho : x̂Ho
i (k) = ai(kr) · bi(kr)

k · kci(kr), (1f)

where x̂i denotes the approximated values, k represents time and {ai(kr), bi(kr), ci(kr)} ∈ R are the
models’ parameters. Naturally, for each model, the parameters vary with time, that is, they depend
on kr.

We can adopt other fitting models, eventually with more parameters, that adjust better to
some particular series xi(k). However, only simple analytical expressions, requiring a limited set
of parameters, are considered [31], otherwise the interpretation of the parameters becomes unclear.
Moreover, loosely speaking, with exception of Qu, these heuristic models reflect somehow fractional
characteristics, embodied in their structures by the non-integer exponents.

For assessing the accuracy of the models (1a)–(1f) we adopt the time varying errors Ei and E†

given by:

Ei(kr) = xi(kr)− x̂i(kr), i = 1, · · · , N, kr = 3, · · · , R, (2a)

E†(kr) =

√√√√ 1
N

N

∑
i=1

[Ei(kr)]
2, kr = 3, · · · , R, (2b)

where N = 20 and R = 38 correspond to the number of teams and rounds in the ‘La Liga’, ‘Premiership’,
‘Serie A’ and ‘Ligue 1’. Therefore, Ei gives information for team i, while E† highlights the fitting error
for all teams involved in the league.

Figure 1 illustrates the error E1(kr) for the 2018–2019 champions of ‘La Liga’ and “Premiership”,
namely the FC Barcelona and Manchester City, and the models (1a)–(1f). Figure 2 depicts E†(kr)

for ‘La Liga’ and ‘Premiership’. Obviously, this error increases with the number of data points.
Moreover, we verify that, with the exception of the Hi (1c), all other models approximate well the data,
demonstrating the adequacy of the fitting functions. The other teams and leagues yield charts of the
same type and, therefore, are omitted herein. For a more assertive comparison, we calculate the mean

and the standard deviation, μ = 1
36 ∑38

kr=3 E†(kr) and σ =
√

1
36 ∑38

kr=3[E†(kr)− μ]2, of the E†(kr) series
for the models (1a)–(1f). Table 1 summarizes the corresponding values, highlighting that the Ho (1f)
is the best three-parameter model approximation, and that the PL (1e) represents a good alternative,
when having in mind the advantage of having just two parameters.
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Figure 1. The error E1(kr), kr = 3, . . . , 38, for the models (1a)–(1f), during the season 2018–2019: (a) FC
Barcelona; (b) Manchester City.
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Figure 2. The error E†(kr), kr = 3, . . . , 38, for the models (1a)–(1f), during the season 2018–2019: (a) ‘La
liga’; (b) ‘Premiership’.

Table 1. The mean and standard deviation, μ and σ, of the E†(kr) series for the four leagues and the
models (1a)–(1f), during the season 2018–2019.

SP Qu Hi VP PL Ho

‘La Liga’ μ 1.3182 1.1832 1.5852 1.2051 1.4118 1.0782
σ 0.4986 0.5441 0.2592 0.5607 0.5746 0.4736

‘Premiership’ μ 1.2354 1.1082 1.5061 1.1699 1.3368 1.0394
σ 0.5233 0.5529 0.2240 0.5984 0.5496 0.5112

‘Serie A’ μ 1.1749 1.0574 1.5783 1.1596 1.3800 1.0045
σ 0.4426 0.4865 0.2966 0.5977 0.5963 0.4251

‘Ligue 1’ μ 1.3035 1.2053 1.6562 1.2313 1.4357 1.1333
σ 0.5155 0.6144 0.3093 0.6080 0.5627 0.5813

Figure 3 depicts the parameters {a1(kr), b1(kr)} of the PL and {a1(kr), b1(kr), c1(kr)} for the Ho
model for FC Barcelona and Manchester City, respectively. The point labels represent the value of kr.
We verify that for the FC Barcelona we have two distinct periods in the locus. The first corresponds to

4
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3 ≤ kr ≤ 8, where the parameters evolve influenced by a set of consecutive bad results between rounds
five and eight. The second period corresponds to 8 ≤ kr ≤ 38, where the path changes direction driven
by a consistent and positive team behavior towards the final victory at kr = 38. For the Manchester City
the variation of the parameters is more complex. Initially, we observe a route for the period 3 ≤ kr ≤ 7.
Then, the locus has a slight change, due to a draw achieved by the team at round 8, but recovers fast its
initial trend during for 9 ≤ kr ≤ 15. Again the locus changes driven by the set of team negative results
in rounds 16–19 and 24. From kr = 25 onward, the parameters evolve positively influenced by the
consecutive team victories until the end of the season at kr = 38. For other teams we can draw similar
conclusions, meaning that there exists a clear relationship between the models’ parameters and the
teams’ performance along the season. Moreover, we verify that, in general, abrupt changes in the loci
route correspond to inconsistent results at early rounds, that is, small values of kr. For larger values of
kr, eventual inconsistencies on the teams’ behavior do not translate in significant modifications of the
parameter patterns, since the fitting becomes less sensitive to the number of fitting points.

1.5 2 2.5 3 3.5 4 4.5
0.6

0.7

0.8

0.9

1

1.1

1.2

 3 4

 5

 6

 7

 8 9

10

11
12

13

14

15

16

17

18

19
20212223

2425
2627

28
2930

3132
3334

35

36 3738

(a)

7

27

10

 8

11

6

5

4 3

38
37

36
35

34 33
32

31
30

29
2826

25 23
21

20
19

18
17
16

15
14 13

12

 9

22
24

0-2

0

0.5

2

0.5

4

6

1

8

11.5
1.52

(b)

2.2 2.4 2.6 2.8 3 3.2 3.4
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

 3

 4

 5

 6

 7

 8
 9

10
11

12
13

14
15

16 17

18

19

20

21
22

23
24

25

26
27

28
29

30
31

32
33

34
35

36
37

38

(c)

22

13

 9

4

38

37
36

35

16
33

19

28

25

10

3

14
34

29

 5
 7

15

11

 8

0.4
0.9

0.6

2120

23

0.8

24
26
1827

1

12

17

30

1.2

31

1

32

1.5

1.4

2

 6

2.51.1 3
3.51.2 4

(d)

Figure 3. Locus of the the models parameters for the 2018–2019 champions of ‘La Liga’ and
‘Premiership’: (a) PL model for FC Barcelona; (b) Ho model for FC Barcelona; (c) PL model for
Manchester City; (d) Ho model for Manchester City. The point labels denote kr = 3, . . . , 38.

3. Entropy of the Spatio-Temporal Patterns of the Models’ Parameters

In this section we characterize the soccer leagues by means of entropy. The entropy is a measure
of regularity that has been successfully adopted in the study of complex systems [15,32].

3.1. The Entropy of the PL Model

By approximating the output signals xi(k) through PL functions (1e) we are modeling the complex
system as a fractional integrator [33,34] of order bi ∈ R+ for a constant, step-like, input signal.
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If a team obtains {victory, draw, defeat} in all matches, then xi(k) is a straight line with
ai = {3, 1, 0} and bi = 1. However, real-world teams have {victories, draws, defeats} and, thus,
yield a fractal like response that follows a PL behavior. Therefore, fractional/unit values of bi reflect
variable/constant time evolution, while values of ai close to {3, 1, 0} correspond to {victory, draw,
defeat} results [10].

For each league we now compute the PL parameters {ai, bi} that fit the teams’ positions xi(k),
i = 1, . . . , 20, 0 ≤ k ≤ kr, from the beginning of the season up to the round kr = 3, . . . , 38. Therefore,
for every kr we have an array of 20 × (kr − 2) points in a two-dimensional space. We then determine
the bi-dimensional histograms by binning the data of each array into M × M = 100 × 100 bins {αj, βk},
j, k = 1, . . . , M. Finally, we calculate the Shannon entropy [35,36]:

S(kr) = −
M

∑
j=1

M

∑
k=1

P
(
αj, βk

)
log P

(
αj, βk

)
, (3)

where the probabilities P
(
αj, βk

)
are approximated by the data relative frequencies.

For example, Figure 4 depicts the histograms of the PL parameters from the beginning, kr = 3,
up to the end of the 2018–2019 season, kr = 38, for ‘La Liga’, ‘Premiership’, ‘Serie A’ and ‘Ligue 1’.
We verify that the parameters {ai, bi} exhibit less dispersion for the pair P1 = {‘La Liga’, ‘Ligue 1’}
than for the pair P2 = {‘Premiership’, ‘Serie A’}.

(a) (b)

(c) (d)

Figure 4. Histograms of the PL parameters {ai, bi} from the beginning, kr = 3, up to the end of the
2018–2019 season, kr = 38, and the leagues: (a) ‘La Liga’; (b) ‘Premiership’; (c) ‘Serie A’; (d) ‘Ligue 1’.

Figure 5 illustrates the evolution on the entropy, S(kr) versus kr = 3, . . . , 38, for the PL parameters
and ‘La Liga’, ‘Premiership’, ‘Serie A’ and ‘Ligue 1’. Again, we verify that the pairs P1 and P2 reveal
similar behavior. For the pair P1, the entropy increases faster with kr that for the pair P2. This means
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that, in the 2018–2019 season, the Spanish and French teams started more irregular than the English and
Italian ones. Nevertheless, since for all leagues, S(kr) converges to a similar settling value, we conclude
that by the end of the season the {victory, draw, defeat} global pattern exhibited by teams in different
leagues is identical.

kr

4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38

S
(k

r
)

0

1

2

3

4

5

6

'La Liga'
'Premiership'
'Serie A'
'Ligue 1'

Figure 5. Evolution of the entropy S(kr) versus kr = 3, . . . , 38, for the PL parameters and the ‘La Liga’,
‘Premiership’, ‘Serie A’ and ‘Ligue 1’, during the season 2018–2019.

The symmetry between the pairs P1 and P2, both in the histograms of Figure 4 and the entropy
evolution represented in Figure 5 opens, however, new questions. Is such duality of patterns just
a casual result, or does it point towards some underlying effects ruling the dynamics of these complex
systems? Additionally, can other patterns occur and what is their meaning? A future study addressing
a larger number of leagues seems necessary in order to give a response to these type of questions.

3.2. The Entropy of the Ho Model

The Ho model (1f) combines both an exponential and a PL function. These functions characterize
well integer- and fractional-order systems, respectively [37].

Similarly to the previous subsection, we compute the Ho parameters {ai, bi, ci} that fit the teams’
positions xi(k), i = 1, . . . , 20, 0 ≤ k ≤ kr, from the beginning of the season up to the round kr = 3, . . . , 38.
For every kr we now obtain an array of 20 × (kr − 2) points in a three-dimensional space. Therefore,
we determine three-dimensional histograms by binning the data of each array into M × M × M =

100 × 100 × 100 bins {αj, βk, γl}, j, k, l = 1, . . . , M. Finally, we calculate the Shannon entropy [35,36]:

S(kr) = −
M

∑
j=1

M

∑
k=1

M

∑
l=1

P
(
αj, βk, γl

)
log P

(
αj, βk, γl

)
, (4)

where the probabilities P
(
αj, βk, γl

)
are approximated by the data relative frequencies.

Figure 6 depicts the two-dimensional projections of the histogram of the Ho parameters, from
the beginning, kr = 3, up to the end of the 2018–2019 season, kr = 38, for ‘La Liga’, ‘Premiership’,
‘Serie A’ and ‘Ligue 1’. Therefore, the charts represent the combination of the pairs of parameters {ai, bi},
{ai, ci} and {bi, ci}. As for the PL model, we verify that, in general, the parameters {ai, bi, ci} exhibit
less dispersion for the leagues P1 = {‘La Liga’, ‘Ligue 1’} than for the leagues P2 = {‘Premiership’,
‘Serie A’}.

Figure 7 depicts the entropy, S(kr) versus kr = 3, . . . , 38, for the Ho model parameters,
and ‘La Liga’, ‘Premiership’, ‘Serie A’ and ‘Ligue 1’. We verify that S(kr) has now an identical
behavior for all leagues, but we can still distinguish a slight difference between the pairs P1 and P2.

7
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 6. The two-dimensional projections of the histograms of the Ho parameters, from the beginning,
kr = 3, up to the end of the 2018–2019 season, and the leagues: (a–c) ‘La Liga’; (d–f) ‘Premiership’;
(g–i) ‘Serie A’; (j–l) ‘Ligue 1’. The charts represent the combination of the pairs of parameters {ai, bi},
{ai, ci} and {bi, ci}.
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kr
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Figure 7. Evolution of the entropy S(kr) versus kr = 3, . . . , 38, for the Ho model parameters and the
leagues ‘La Liga’, ‘Premiership’, ‘Serie A’ and ‘Ligue 1’, during the season 2018–2019.

4. Predicting the Teams’ Results

The models (1a)–(1f), introduced in section 2, are now tested in the prediction of the teams’ results.
In a first phase, we fit the models to the series xi(k), i = 1, . . . , N, 0 ≤ k ≤ kr, and we calculate the
approximation x̂i(k) for each kr = 3, . . . , 37. In a second phase, we extrapolate the values of x̂i(k + 1),
that is, the teams positions for every round from four to 38. Finally, in a third phase, we assess the
accuracy of the values x̂i(k + 1) by means of the prediction errors E and E†, where kr = 4, . . . , 38.

Figure 8 illustrates the error E1(kr), kr = 4, . . . , 38, obtained with the models (1a)–(1f) for the
champions of the ‘La Liga’, ‘Premiership’, ‘Serie A’ and ‘Ligue 1’ in season 2018–2019, namely for the FC
Barcelona, Manchester City, Juventus and Paris Saint-Germain. Figure 9 depicts E†(kr), kr = 4, . . . , 38,
for ‘La liga’, ‘Premiership’, ‘Serie A’ and ‘Ligue 1’, obtained with the six models (1a)–(1f). We verify
again that, with the exception of the Hi model (1c), all other models predict well the teams’ results.
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Figure 8. The error E1(kr), kr = 4, . . . , 38, for the models (1a)–(1f), during the season 2018–2019: (a) FC
Barcelona; (b) Manchester City; (c) Juventus; (d) Paris Saint-Germain.
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For a numerical comparison of the models accuracy, we calculate the mean and the standard
deviation, μ and σ, of the E†(kr) series and list their values in Table 2. We verify again that the Ho (1f)
model leads to the best predictions. We can see that the errors are larger for the leagues in the set P1

than for the ones in the set P2, meaning that the prediction is more difficult for the leagues with higher
values of entropy.

Table 2. The mean and standard deviation, μ and σ, of the E†(kr) for the six models (1a)–(1f) and
season 2018–2019.

SP Qu Hi VP PL Ho

‘La Liga’ μ 2.0137 2.1177 1.9397 2.0604 2.1631 1.9172
σ 0.3807 0.4339 0.3076 0.3945 0.3684 0.4173

‘Premiership’ μ 1.9765 1.9543 1.9936 2.0860 2.0926 1.9036
σ 0.5519 0.4019 0.2198 0.6336 0.5226 0.6672

‘Serie A’ μ 1.8093 1.8717 1.8765 1.9462 2.0468 1.7322
σ 0.2930 0.2764 0.3042 0.4216 0.4139 0.5888

‘Ligue 1’ μ 2.0407 2.1022 1.9912 2.1400 2.1935 1.9337
σ 0.3226 0.2835 0.2657 0.4683 0.4653 0.5536
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Figure 9. The error E†(kr), kr = 4, . . . , 38, for the models (1a)–(1f), during the season 2018–2019: (a) ‘La
liga’; (b) ‘Premiership’; (c) ‘Serie A’; (d) ‘Ligue 1’.
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5. Conclusions

We proposed a fractional systems’ perspective for analyzing soccer teams competing within
a league season. Firstly, we adopted six fitting models to describe the teams’ positions along one season
and interpreted the loci of the models’ parameters as a signature of the system dynamics. Secondly,
we studied the entropy of the models parameters’ spatio-temporal patterns for comparing different
leagues. Both approaches represent valid tools to describe the complex behavior of such challenging
systems. The computational modeling unraveled patterns embedded in the data suggesting some
common underlying dynamical effects in different leagues. The prediction quality of the two models,
both in the perspective of each individual team and the league, along the season, was also analyzed.
Nonetheless, several new questions emerged in the sequence of the statistical and entropic analysis.
Is the apparent duality between the pairs P1 and P2 just some coincidence or do they reflect some
kind of additional effects besides the standard rules of the game? The investigation of these and other
questions needs the future algorithmic treatment of more data involving more seasons and leagues.
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Abstract: In this paper, the fractional-order variant of Puu’s system is introduced, and, comparatively
with its integer-order counterpart, some of its characteristics are presented. Next, an impulsive chaos
control algorithm is applied to suppress the chaos. Because fractional-order continuous-time or
discrete-time systems have not had non-constant periodic solutions, chaos suppression is considered
under some numerical assumptions.
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1. Introduction

The impulsive control concept has a long history that is based on the mathematical foundation of
impulsive differential equations. Most examples of impulsive phenomena can be found in mechanical
systems with impacts where a sudden change in their states appears, but also in population dynamics,
biotechnology processes, chemistry, engineering, medicine, spacecraft optimal control, and so on.
Impulsive systems can be studied via the mathematical tool based on impulsive differential or
discrete equations. In the last few decades, differential equations with impulses can be found in
e.g., nanoelectronic devices, chaotic spread-spectrum communication systems, or electrical engineering
applications, and so on (see, e.g., [1,2]). On the other side, there are classes of systems like
biological systems, economical systems where discrete time models seem to be more realistic than the
continuous ones.

There exist several kinds of impulses [3]—for example, systems where the impulses are applied
at fixed time-moments (see, e.g., one of the first references [4]) and also systems where the impulses
are applied at variable times [5].

Due to the memory and hereditary properties of the fractional derivatives (see [6,7]),
the discrete-time or continuous-time systems of fractional order (FO) are more suitable than
integer-order systems.

While the definition of fractional derivative for continuous-time real functions has been
formulated in the late 19th Century by Liouville, Grunwald, Letnikov, and Riemann, the first definition
of a fractional difference operator was made by Diaz and Olser in 1974 [8]. Nowadays, differential
or difference equations of FO represent useful models in viscoelasticity, mechatronics, seismology,
aerodynamics, electrical circuits, biophysics, biology, blood flow phenomena, chemistry, control theory,
etc (see, e.g., [9]).

In this paper, the fractional order (FO) variant of the Puu’s system is numerically analyzed
and compared with its integer order (IO) counterpart. Using the results on non-existence of exact
periodic solutions of FO discrete systems, one consider the periodicity as computationally approached.
Moreover, using an impulsive algorithm, the chaotic motion can be suppressed.

Symmetry 2020, 12, 340; doi:10.3390/sym12030340 www.mdpi.com/journal/symmetry13
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2. Puu’s Fractional Order System

In 1939, Paul Samuelson [10] introduced the standard principle of acceleration to consumption
used in one of the first formal mathematical models for business cycles, while Sir John Hicks (1950)
later improved the Samuelson model [11], introducing the “floor” and “roof” to depreciation levels.

Starting from the standard Samuelson-Hicks model, in 1989, Puu and Sushko [12] developed
the discrete dynamical income system of integer order (IO) with cubic nonlinearity of integer order,
modeled by the following cubic initial value problem (IVP)

x(n + 1) = ax(n)− (a + 1)x3(n), x(0) = x0, (1)

with a > 0 a real parameter.
It is usual to have multiple attractors for a dynamical system. Each of them can be considered as

the attractor for a given initial condition within its own attraction basin. In the bifurcation diagram vs.
a ∈ [0, 3], presented in Figure 1a, the Puu system of IO (1) reveals two symmetric regions representing
regular and chaotic attractors generated by two symmetric (negative and positive) initial conditions
within two attraction basins (Due to its symmetry, the coexistence of symmetric attractors is a feature
of the Puu system. Like for the cubic logistic map x → kx(1 − x2), the oddness of the map (1) induces
an equivariance that is a Z2-symmetry [13,14].). Therefore, attractors corresponding to a ∈ [0, 3] in the
upper (bottom) region present non-symmetric new generated points. The successive bifurcations of
these points lead to chaos via the standard period-doubling cascade. In addition, note the sudden
crisis—at a = 2.6, the previous two non-symmetric chaotic attractors (red and blue, respectively)
collide and give birth to a symmetric chaotic attractor that covers both positive and negative values of
x. Details on similar dynamics but related to the cubic logistic map can be found in [15].

Let us consider the FO Puu discrete system. Following the approach in [16] (see also [17], where
the synchronization of the FO Puu is considered), the Caputo-like Puu system of FO can be modeled
by the following general IVP of FO:

Δq
∗x(k) = f (x(k + q − 1)), k ∈ N1−q, x(0) = x0, (2)

where Δq
∗ is the Caputo-like delta difference of order 0 < q ≤ 1, and N1−q = {1 − q, 2 − q, ..., }

represents the isolated time scale. With the cubic right-hand side f (x) = x− (a+ 1)x3, the IVP (2) reads

Δq
∗x(k) = ax(k + q − 1)− (a + 1)x3(k + q − 1), k ∈ N1−q, x(0) = x0, (3)

Theorem. [16,18] The IVP (3) admits the following discrete integral

x(n) = x(0) +
1

Γ(q)

n−q

∑
j=1−q

Γ(n − j)
Γ(n − j − q)

[ax(j + q − 1)− (a + 1)x3(j + q − 1)]. (4)

In (4), Γ represents the Gamma function.
Numerically implemented, via the substitution i = j + q, the integral (4) can be expressed as

follows [16]:

x(n) = x(0) +
1

Γ(q)

n

∑
i=1

Γ(n − i + q)
Γ(n − i + 1)

[ax(i − 1)− (a + 1)x3(i − 1)], n = 1, 2, ... (5)

The local Lyapunov exponent λ, can be approximated numerically at the first n iterations with
the following relation [19]:

λ =
1
n

ln(|τ(n − 1)|), (6)
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where the tangent map τ(n), obtained by the linearization of (5) along the orbit x(n), is

τ(n) = τ(0) +
1

Γ(q)

n

∑
j=1

Γ(n − i + q)
Γ(n − i + 1)

[aτ(j − 1)− 3(a + 1)x2(j − 1)τ(j − 1)], τ(0) = 1.

Like the solution x, the tangent map τ at the moment n also presents the so-called discrete
memory effect (or time history) i.e., the numerical determined value at the moment n depends
on all previous values. Because in relations (5) and (6), the term R := ∑n

j=1
Γ(n−i+q)
Γ(n−i+1) presents

divergency problems, to deal numerically with R for large values of n, one can use the relation
Γ(n−i+q)
Γ(n−i+1) = eln(Γ(n−i+q))−ln(Γ(n−i+1)). In this way, the numerical experiments can be extended for n up
to a couple thousand.

The bifurcation diagrams of the Puu system of FO vs. q, generated within x0 = ±0.085 and
x0 = ±0.8, for a = 1.27 and a = 1.14 (Figure 1b,c, respectively), reveal symmetrical transitions to chaos
and, also, contrary to its IO part, attractors’ coexistence.

Hereafter, only the two merged “positive” regions (blue and cyan) located most entirely in the
positive axis are considered. The other two “negative” symmetric regions (red and light blue) can
be generated with x0 = −0.085 and x0 = −0.8, respectively. As can be seen, both “positive” and
“negative” attractors corresponding to q ∈ (0, 1] maintain the odd symmetry existing in the integer
order system and the bifurcations in the positive (negative) axis are non-symmetric.

Remark 1. As for the case of fractional differential equations, contrary to integer order difference equations,
fractional difference equations do not admit exact periodic but only asymptotically periodic solutions (see,
e.g., [20–22], respectively). Therefore, notions like “stable cycle”, “chaos control”, and even “chaos” (as
consisting in infinitely many unstable periodic motions), in continuous-time or discrete-time systems of FO
seem to not be adequate. Up to a considered enough tiny computational error, the apparent periodic orbits are
called here “computationally periodic orbits” (CPOs). Therefore, in this paper, the chaos suppression means to
obtain stable CPOs.

To study some orbit x(n), the relations (5) and (6) together with time series, histograms, and the
‘0–1’ test [23] will be used. Because we are interested in chaos suppression, the value of the parameter
a is chosen so that the system evolves chaotic for all initial conditions. Thus, for a = 1.3, the system
behaves chaotically for all initial conditions.

One of the tools generated by the ‘0–1’ test [23], which can be easily numerically implemented
starting from a time series related to the considered dynamical continuous or discrete system, is the
asymptotic growth rate, K, which gives important information to distinguish chaotic behavior from
regular behavior. Note that the ‘0-1’ test does not need the system equations, but only a time series of
the system. If K ≈ 1, then the underlying dynamics are chaotic, while, if K ≈ 0, the system behaves
along some stable CPO. It is commonly assumed that about 2000 elements in the considered time
series, after transients are discarded, are enough. In this paper, after the first 1000 iterations neglected,
1500 elements give enough accurate results.

While the integer order system develops, as usual, stronger chaos once the bifurcation parameter
a increases (Figure 1a), the FO system presents chaos extinction with the increase of a (Figure 1b,c).

Hereafter, the case q = 0.5 will be considered.
Another interesting property of the FO Puu system, contrary to its integer order counterpart, is

the coexistence of stable CPOs with chaotic attractors. For example, in Figure 2, two zoomed areas are
presented (Figure 2b,c) from the bifurcation diagram for a ∈ [0, 2] in Figure 2a. Both zoomed areas
reveal, for some parameter values of a, the coexistence of a chaotic attractor with a stable CPO (dotted
lines at a = 1.27 and a = 1.14).

Consider a = 1.27 within a stable CP window of period-5 for a ∈ [1.22, 1.32] (red plot) coexisting
with its chaotic counterpart (blue plot) in Figure 2b. The coexistence of the underlying stable CPO
and the chaotic attractor is studied in Figure 3. Figure 3a,b present superimposed, the time series
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entirely and the last 100 iterations, respectively; in Figure 3c,d, superimposed, the Lyapunov exponent
λ and the asymptotic growth rate, K, are represented, while in Figure 3e,f plot the histograms of
the coexisting attractors. The chaotic attractor generated from x0 = 0.8 (blue plot in Figure 3a,b is
characterized by the evolution of the time series, the K value, which is close to 1, and the positiveness
of the superimposed Lyapunov exponent λ (Figure 3d) and the histogram in Figure 3f. The stable
CPO revealed after about 900 neglected iterations from the considered 2500 iterations, generated from
x0 = 0.085 (red plot in Figure 3a,b), is characterized by the evolution of the time series, the K value,
and the superimposed λ, in which both are close to 0 (Figure 3c), and the discrete five peaks bars in
the histogram (Figure 3e) indicating the branches of the cycle, numbered 1–5 in the zoomed time series
in Figure 3b. Note that the zero value of λ seems to indicate a kind of Neimark–Sacker bifurcation,
generating the stable CPO of period-5 which coexists with the chaotic attractor. In addition, as can be
seen in Figure 3c,d, this kind of bifurcation seems to be not singular, but this subject does not represent
the purpose of this paper.

Figure 1. Bifurcation diagrams of the Puu system of IO and FO. (a) bifurcation of the Puu system of IO
vs. parameter a; (b) bifurcation of the Puu system of FO vs. q for a = 1.27; (c) bifurcation of the Puu
system of FO for a = 1.14.
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Figure 2. Bifurcations of the Puu system of FO. (a) bifurcation vs. a for q = 0.5; (b) zoomed region for
a ∈ [1.22, 1.32]; (c) zoomed region for a ∈ [1.12, 1.15].
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Figure 3. Attractors coexistence for a = 1.27 and x0 = 0.8 and x0 = 0.085. (a) superimposed time series,
(b) Last 100 iterations of the time series; Numbered points indicate the CPO periodicity, (c) Asymptotic
growth rate K and exponent λ for the attractor generated with x0 = 0.085, (d) asymptotic growth rate K
and exponent λ for the attractor generated with x0 = 0.8, (e) histogram of the attractor generated with
x0 = 0.085; bars indicate the CPO elements revealed in (b), (f) histogram of the attractor generated
with x0 = 0.085.
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3. Chaos Suppression in the FO Puu System

Being a model proposed in economy, where chaos is usually present, chaos suppression could
represent an important task. A simple and efficient way used in this paper is to apply constant periodic
impulses γ every Δ steps. The numerical form of the impulsive algorithm is

x(n + 1) =

{
f (x(n)), n ∈ N,
(1 + γ)x(n + 1), if mod (n, Δ) = 0,

(7)

where f ∈ C(R,R) (here the cubic map (1)), Δ ∈ N∗ and the impulse γ some relative small real number.
Numerically, the control algorithm (7) reads as follows: after the new value of x is calculated at

the moment n + 1, x(n + 1), if n is multiple of Δ steps, x(n + 1) is perturbed with 1 + γ.
The algorithm is suitable to systems where the state variable is accessible to perturbations and has

been successfully utilized for discontinuous systems of FO [24], continuous fractional-order systems of
IO [25], discrete systems of FO [26], and discrete systems of IO [27]. The stability of impulsive fractional
difference equations is studied in [28]. Some analytical study, such as boundness and periodicity, that
applied to a discrete economical supply and demand system can be found in [29].

Consider the case q = 0.5 and a = 1.3 when the both coexisting chaotic attractors of the Puu’s
system of FO are chaotic (see Figure 2b). This means that for whatever initial conditions x0 the system
evolves along one of the two chaotic attractors (red or blue).

To not modify the system structure, γ values are chosen to be relatively small, here of 1e − 2 order.
The effectiveness of the algorithm (7) can be deduced form the bifurcation diagram of the controlled
system vs. γ for γ ∈ [−0.1, 0.1] and fixed Δ. The stable windows reveal the λ values generating
stable CPOs. While the chaotic orbits are identified by the positiveness of the Lyapunov exponent,
λ, the chaotic evolution of the underlying time series, dense set of bars in histograms, and K ≈ 1,
the COPs have negative (or zero) Lyapunov exponent, computationally periodic behavior in the time
series, discrete bars in histograms and K ≈ 0.

The case Δ = 1, when the system is impulsed at every step, is presented in Figure 4a,d for x0

chosen in the two mentioned attraction basins, x0 = 0.8 and x0 = 0.085, respectively. As can be seen in
the bifurcation diagrams, the impulsive algorithm applied within the two attraction basins preserves
the existence of the two previously existing chaotic attractors, but also generates stable CP windows in
the γ. Obviously, it is desirable to find those γ values for which both coexisting chaotic attractors are
stable. However, for Δ = 1, the periodic windows cannot suppress simultaneously the chaos in both
chaotic attractors (see dotted green and black lines). For example, for γ = −0.0375 (dotted black lines
in Figure 4a,d), the chaotic attractor corresponding to x0 = 0.8 of the impulsed system is stabilized and
evolves along a stable CPO of period-5 (see the five intersections of the green dotted line in Figure 4a,
the time series in Figure 4b and the history in Figure 4c), but the coexisting attractor corresponding to
x0 = 0.085 of the impulsed system is chaotic for the same value of γ (see Figure 4d–f). The stability
within the periodic windows is revealed by the Lyapunov exponent (blue plot) and the asymptotic
growth rate K (red plot) which are approximately 0.

Concluding, for Δ = 1, it is possible that, depending on the initial conditions, the system evolves
regularly but also chaotically. This impediment can be avoided if Δ = 2, when the system is impulsed
only every two steps. Now, both chaotic attractors can be controlled for a large interval of γ values
(Figure 5). Thus, for γ = −0.09, the impulsed system evolves, for whatever initial condition, along a
stable CPO: a stable CPO of period-8, for x0 = 0.8 (Figure 5a–c), and also a stable CPO of period-4,
for x0 = 0.085 (Figure 5d–f).

Chaos suppression can also be realized with higher values of Δ. For example, for Δ = 3 (Figure 6),
if one sends an impulse to the system at every three steps, for γ = −0.086 (see dotted green line), and
one obtains two stable CPOs of multiple periods.

Next, let the averaged energy of the impulsed system, Ē, which can be determined with the
following relation:
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Ē =
∑N

n=1 x2(n)
N

,

for N sufficiently large (see e.g., [30] for the averaged energy applied to a generalized logistic map).
The variation of the averaged energy vs. γ, for the considered cases Δ = 1, 2, 3, for N = 2000, is

presented in Figure 7. Note that, if the system is impulsed rarer, i.e., Δ = 3, the energy of the impulsed
system (red) is smaller than that of the not impulsed system, Ē0 (horizontal dotted line) for most of γ

values, while, if the system is impulsed more often, i.e., Δ = 1 (black) or Δ = 2 (blue), the necessary
energy for the controlled system (vertical dotted lines) is bigger than Ē0. In addition, for positive
values of γ (not considered in this work), Ē < Ē0, for all considered values for Δ. As expected, when γ

is negative, the system increases the energy.

Figure 4. Impulsive algorithm applied for Δ = 1 and γ = −0.0375 (dotted green line). (a,d) bifurcation
diagrams of the impulsed system for γ ∈ [−0.1, 0.1] and x0 = 0.8 (top) and x0 = 0.085 (bottom)
respectively, (b,e) last 100 iterations of time series for x0 = 0.8 and x0 = 0.085, respectively, (c,f)
histograms for for x0 = 0.8 and x0 = 0.085, respectively.
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Figure 5. Chaos suppression with the impulsive algorithm for Δ = 2 and γ = −0.09 (dotted green
line). (a,d) bifurcation diagrams of the impulsed system for γ ∈ [−0.1, 0.1] and x0 = 0.8 (top) and
x0 = 0.085 (bottom), respectively, (b,e) last 100 iterations of time series for x0 = 0.8 and x0 = 0.085,
respectively, (c,f) histograms for for x0 = 0.8 and x0 = 0.085, respectively.
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Figure 6. Chaos suppression for Δ = 3 and γ = −0.086 (dotted green line). (a,d) bifurcation diagrams
of the impulsed system for γ ∈ [−0.1, 0.1] and x0 = 0.8 (top) and x0 = 0.085 (bottom), respectively,
(b,e) last 100 iterations of time series for x0 = 0.8 and x0 = 0.085, respectively, (c,f) histograms for
x0 = 0.8 and x0 = 0.085, respectively.

Figure 7. Superimposed averaged energy Ē, for Δ = 1 (black), Δ = 2 (blue) and Δ = 3 (red). The
horizontal dotted line represents the average energy Ē0 of the not impulsed system.
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4. Conclusions

In this paper, the FO variant of the Puu system has been considered and some of its properties
are characterized comparatively with its IO counterpart. Contrary to the IO variant, the FO variant
presents significant symmetries. In addition, contrary to the FO continuous-time systems, the chaos in
the Puu system of FO reduces once the fractional order q increases.

Because, as usual for FO systems, the system does not admit periodic orbits, instead “periodic
orbit”, the notion of “computationally periodic orbit” has been introduced. In this way, the door of
everything that involves “periodicity”, such as stable/unstable cycles, chaos, chaos control, remains
open for study. Note that another approach of this kind of orbits would be done via “almost periodicity”
notion (see, e.g., [31]).

Using the impulsive algorithm (7), which perturbs periodically the state variable with the value
1 + γ, chaos can be suppressed. The values of γ can be determined from the bifurcation diagram of
the impulsed system vs. γ. In this paper, the perturbations γ are negative, but, depending on the
considered system, positive values can also be used (see the mentioned references). Note that, in
nature, these kinds of perturbations can be shocks, and can appear in natural disasters, ecology, or can
be used in ecosystems management, harvesting, etc.

As for other examples of nonlinear discrete FO systems modeled by Caputo’s derivative, chaos in
Puu’s system of FO vanishes when the bifurcation parameter approaches 1. Therefore, the problem of
chaos suppression makes sense only for relatively smaller values of the fractional order q, where the
considered system behaves chaotically.
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Abstract: The properties of a fractional-order memristor is studied, and the influences of parameters
are analyzed and compared. The results reflect that the resistance value of a fractional-order memristor
can be affected by fraction-order, frequency, the switch resistor ratio, average mobility and so on.
In addition, the circuit of a fractional-order memristor that is serially connected and connected in
parallel with inductance and capacitance are studied. Then, the current–voltage characteristics of a
simple series one-port circuits that are composed of a fractional-order memristor and a capacitor,
or composed of a fractional-order memristor and a inductor are studied separately. The results
demonstrate that at the periodic excitation, the memristor in the series circuits will have capacitive
properties or inductive properties as the fractional order changes, the dynamical properties can be
used in a memristive circuit.

Keywords: fraction-order memristor; device property; serial and parallel; Dynamical analysis

1. Introduction

Fractional calculus, an important branch of mathematics, was born in 1695 and appeared almost
simultaneously to classic calculus. Fractional calculus, in a narrow sense, mainly includes fractional
differentials and fractional integrals, and it broadly includes fractional differences and fractional sum
quotients. Since the theory of fractional calculus has been successfully applied to various fields in
recent years, people have gradually discovered that fractional calculus can describe some non-classical
phenomena in the fields of natural science and engineering applications. The current popular areas of
fractional calculus include fractional numerical algorithms and fractional synchronization.

The successful development of a memristor has provided a new avenue for electronic technology
and information technology, and it is expected to realize new functions. Their non-volatility makes
memristors play a key role in memory, neural networks, and pattern recognition. Chua firstly defined
a memristor (MR) in 1971 [1], and HP Labs reported the successful fabrication of nanoscale memristive
devices [2]. A memristor is the fourth two-terminal fundamental circuit element with information
storage ability and, as such, has attracted immense worldwide interest from both industry and
academia [3]. Applications of MRs are used in many fields such as filter design, programmable
logic, biological systems, and neural systems such as neural synaptic weighting with a pulse-based
memristor circuit [4], Boolean logic operations and computing circuits based on memristors [5],
and the voltage–current relationship of active memristors and frequency [6]. A generalized boundary
condition memristor model was proposed in [7]. Research on a coupling behavior-based series-parallel
flux-controlled memristor has been also conducted [8–10]. Two types of nanoscale nonlinear memristor
models and their series-parallel circuit have been investigated [11], as have the characteristics of
a memristor and its application in the circuit design [12–17]. First order mem-circuits have been
studied [18]. Research on the equivalent analysis circuit of a memristors network [19], memristor-based

Symmetry 2020, 12, 437; doi:10.3390/sym12030437 www.mdpi.com/journal/symmetry25
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adaptive coupling for consensus and synchronization [20–22], and coupling as a third relation in
memristive systems have been proposed [23–30]. However, there is less research on fractional-order
memristor, and there has been no literature physical background. In this paper, the analytical
solution of parameter expression is derived by using a fractional-order memristor model in Section 2.
The properties of fractional-order memristor is studied in Section 3, The results reflect that the resistance
value of a fractional-order memristor can be affected by fraction-order, frequency, the switch resistor
ratio, average mobility, and so on; additionally, the circuit of Mα serially connected and connected in
parallel with Mα, L and C are also studied separately. Finally, the conclusion is presented in Section 4.

2. The Fractional Derivative

The α order Caputo derivative is defined as:

Dαt x(t) =
1

Γ(m− a)

∫ t

0

x(m)(τ)

(t− τ)1+α−m dτ. (1)

where m = [α] + 1 and Γ(m) is the Euler’s gamma function; when α ∈ (0, 1):

Dαt eλt = λαeλt. (2)

Then, we obtain:
Dαt eiωt = (iω)αeiωt. (3)

The real part and imaginary part of the sine and cosine functions can be obtained by separating
Equation (3).

Some basic properties of Caputo fractional calculus are as follows.

(1) aDαt [u f (t) + vg(t)] = uaDαt f (t) + vaDαt g(t)

(2) aDαt aDβt f (t) = aDβt aDαt f (t) = aDα+βt f (t),

(3) L
a Dαt K = Kt−α

Γ(1−α) , α > 0

In which the constant K � 0, and the Caputo FD is C
a Dαt K = 0, α > 0.

3. The Model of Fractional-Order Memristor

The structure of an MR and its symbol are shown in Figure 1.

Figure 1. The structure and symbol of a memristor (MR). (a) The structure and (b) the symbol.

The mathematical model are defined as follows

v(t) = Mα(x)i(t). (4a)
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Mα(x) = RONx + (1− x)ROFF. (4b)

x(t) = k0D−αt i(t). (4c)

In which D−αt is the α integral of x(t), Mα(x) is a fractional-order memristor when supposing
the input current i(t) = Im sin(ωt), switch resistor RON = 100 Ω and ROFF = 10 kΩ, the current
Im = 0.2 mA D = 10 nm, the average mobility uv = 10−14 m.s−1V−1, the length x0 = 0.01, and the
frequency ω = 5 rad/s. The transient current curve and the voltage curve of the memristor are shown
in Figure 2a,b respectively.

Figure 2. (a) The transient current curve and (b) the transient voltage curve.

The simulation result for when α has different values is shown in Figure 3a. It was found the an
MR possesses memristive properties, with pinched hysteresis loops forming inclined “8”, and this
property can be used to realize signal storage or computing. From Figure 3b, it can be seen that the
smaller the value of fractional order, the greater the dynamic range amplitude of the resistance was.

Ω

Figure 3. (a) The curves of v− i and (b) the curves of M(t).

The characteristic curves of a fractional-order memristor with different parameters are shown in
Figure 4. From Figure 4a, it can be seen that the difference of resistance decreased as the frequency ω
increased. From Figure 4b, it can be seen that the switch resistor increased and the curves of v− i were
inclined to right. From Figure 4c, it can be seen that the difference of resistance increased as the value
of μv increased.
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Figure 4. The v− i curves of a fractional-order MR (α = 0.98). (a) Varied with frequency ω; (b) varied
with different switch resistance (ROFF/RON); and (c) varied with different average mobility values μv.

4. The Properties of Fractional-Order Memristor

The fractional-order memristor in six cases of connection, serially and in parallel, are discussed in
this section.

4.1. The Two Fractional-Order Memristors in Serial

The serial circuit of two fractional-order memristors is shown in Figure 5.

 
Figure 5. Serial circuit of two fractional-order memristors.

By choosing the current i(t) = Im sin(ωt), based on the Caputo differential, Euler’s formulas,
and the separating variables method, we obtain:

.
x(t) = kD1−α

t i(t) = kI[D1−α
t sinωt]. (5)

When t >> 1, Equation (11) can be simplified as:

.
x(t) ≈ kIω1−α sin(ωt +

1− α
2
π). (6)

Then, the two sides of Equation (12) can be integrated to get:

x(t) ≈ x(0) +
kI
ωα

[cos(
1− α

2
π) − cos(ωt +

1− α
2
π)]. (7)

By choosing the parameters M1(uv = 10−14 m.s−1V−1), M2(uv = 2× 10−14 m.s−1V−1), and α = 0.98,
one can obtain the curves of v− i that are are shown in Figure 6.

28



Symmetry 2020, 12, 437

Figure 6. Simulation results of two fractional-order, serially connected memristors v(t) − i(t) curves.

It was found the two serial MRs also possessed the memristive properties with pinched hysteresis
loops behaving as inclined “8”, as shown in Figure 6. It can be seen that the values of M1, M2 and M12
are increased with the value of v(t), and the value of M12 is bigger than those of M1 and M2.

4.2. The Circuit of Fractional-Order MR in Parallel

The circuit of two fractional-order MRs in parallel is shown in Figure 7. According to Equations (4b)
and (4c), it be written as:

Mα(x)
.
x(t) = k0D−αt Mα(x)i(t). (8a)

Mα(x)
.
x(t) = k0D−αt v(t). (8b)

 
Figure 7. Circuit of two fractional-order memristors n parallel.

By choosing the voltage v(t) = Vm sin(ωt), one can obtain:

Mα(x)
.
x(t) = k0VmD1−α

t sin(ωt)
.
x(t) = kD1−α

t i(t) = kI[D1−α
t sinωt]. (9)

When t >> 1,Equation (11) can be simplified as:

Mα(x)
.
x(t) ≈ k0Vmω

1−α sin(ωt +
1− α

2
π). (10)

and
[RONx + ROFF(1− x)] · (x− x0) ≈ kVm

ωα
[cos(

1− α
2
π) − cos(ωt +

1− α
2
π)]. (11)
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(RON −ROFF)x2 + [(1 + x0)ROFF −RONx0]x =
kVm

ωα
[cos(

1− α
2
π) − cos(ωt +

1− α
2
π)] + ROFFx0. (12)

Then, one can set A = RON −ROFF; B = (1 + x0)ROFF −RONx0; H = − kVm
ωα [cos( 1−α

2 π) − cos(ωt +
1−α

2 π)] + ROFFx0

and we can obtain:
Ax2 + Bx + H = 0. (13)

x1 =
−B +

√
B2 − 4AH

2A
; x2 =

−B− √B2 − 4AH
2A

. (14)

The value of Mα(x) can be calculated.
To further study the dynamic behaviors of this MR circuit in parallel, the parameters were

configured as the following: the input voltage v(t) = Vm sinωt, and the parameters RON1 = 100 Ω,
ROFF1 = 10 kΩ, Vm = 3 V, D = 10 nm, uv = 10−14 m.s−1V−1, RON2 = 120 Ω, ROFF2 = 18 kΩ, and
ω = 5. The simulation result when using these parameters is shown in Figure 8.

Figure 8. Simulation results of two memristors connected in parallel with v(t) − i(t) curves.

It was found the two MRs that were connected in parallel also possessed the memristive properties
with pinched hysteresis loops which are hown in Figure 8.

4.3. The Circuit of Fractal-Order Memristor and Capacitor That Are Serially Connected

The fractional-order memristor Mα(t) and serially connected capacitor C are shown in Figure 9.
By assume the current i(t) = Im sinωt, M expresses the memristor, and C is the capacitor.

 
Figure 9. The circuit of the fractional-order memristor and connected serially capacitor.

We can obtain:

v(t) = uC(t) + uMα(t) = uC(t0) +
1
C

∫ t
t0

iC(t)dt + iMα(t)Mα(t)

= uC(t0) +
I cos(ωt0)

Cω − I cos(ωt)
Cω − B sin( 1−α

2 π) + A sin(ωt) + B sin(2ωt + 1−α
2 π).

(15)
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where
A = (RON −ROFF)[x(0) +

Ik
ωα

(cos
1− α

2
π)]I + ROFFI. (16a)

B =
(ROFF −RON)kI2

2ωα
. (16b)

The simulation result is shown in Figure 10. From Figure 10a, it can be seen as the parameter α
decreased, the area of hysteresis loops increased and the difference of resistance increased with same
current. From Figure 10b, it can be seen that if the parameters α and C were not varied, as ω increased,
the area of hysteresis loops decreased. From Figure 10c, it can be seen that if the parameters α and ω
were not varied, the area of hysteresis loops was not almost changed and the capacitor has little effect
on the circuit.

Figure 10. MαC series circuit and its features. (a) Effect of the order α; (b) effect of the exciting frequency
ω; and (c) effect of the capacitance C.

4.4. The Circuit of Fractal-Order Memristor and Capacitor That Were Connected in Parallel

A memristor and a capacitor which were connected in parallel are shown in Figure 11, we can
assume that v(t) = Vm sin(ωt), ω(0) = 0,Vm is the voltage magnitude.

 
Figure 11. The circuit of a memristor and a capacitor that were connected in parallel.

By applying Kirchhoff’s current law (KCL), the current of circuit can be written as:

i(t) =
v(t)

Mα(t)
+ C

dv(t)
dt

=
v(t)

Mα(t)
+ωCVm cos(ωt). (17)
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Additionally, when the parameters α and ωwere chosen as different values, it can be seen the circuit of
a memristor and a capacitor that were connected in parallel also possessed the memristive properties
with pinched hysteresis loops which are shown in simulations in Figure 12a,b.

Figure 12. The response of the circuit of a memristor and a capacitor that were connected in parallel.
(a) α = 0.98, 0.9, and 0.8; and (b) ω = 5, 10, 15 rad/s.

4.5. The Circuit of Fractal-Order Memristor and Inductor That Are Serially Connected

The circuit of the memristor and serially connected inductor are shown in Figure 13, where we
assumed i(t) = Im sin(ωt), ω(0) = 0.

 
Figure 13. The circuit of the memristor and serially connected inductor.

The voltage was:

v(t) = uL(t) + uMα(t) = L diL(t)
dt + iMα(t)Mα(t)

= ILω cos(ωt) + A sin(ωt) + B[sin(2ωt + 1−α
2 π) − sin( 1−α

2 π)]

= uC(t0) +
I cos(ωt0)

Cω − I cos(ωt)
Cω − B sin( 1−α

2 π) + A sin(ωt) + B sin(2ωt + 1−α
2 π).

(18)

and
A = (RON −ROFF)[x(0) +

Ik
ωα

(cos
1− α

2
π)]I + ROFFI. (19a)

B =
(ROFF −RON)kI2

2ωα
. (19b)

The simulation result is shown in Figure 14. From Figure 14a, it can be seen that as the parameters
ω and L were not varied, because as α decreased, the area of hysteresis loops increased and the difference
of resistance increased with the same current. From Figure 14b, it can be seen that if the parameters α
and L were not varied, as ω increased, the area of the hysteresis loops decreased. From Figure 14c, it
can be seen that if the parameters α and ω were not varied, the area of the hysteresis loops was not
almost changed, and it is shown that the inductor barely affected the circuit.
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Figure 14. MαL series circuit and its features: (a) Effect of α on the hysteresis loop; (b) effect of ω on the
hysteresis loop; and (c) effect of L on the hysteresis loop.

4.6. The Circuit of Fractal-Order Memristor and Inductor Connected in Parallel

A memristor and a capacitor that were connected in parallel are shown in Figure 15. By assuming
the voltage v(t) = Vm sin(ωt), ω(0) = 0, Vm can be found as the voltage amplitude. By applying
Kirchhoff’s current law (KCL), the current of circuit can be written as:

L
diL(t)

dt
= v(t) = Vm sin(ωt). (20a)

iL(t) =
Vm

ωL
[1− cos(ωt)]. (20b)

i(t) = iMα(t) + iL(t) =
v(t)

Mα(t)
+

Vm

ωL
[1− cos(ωt)]. (20c)

Figure 15. The circuit of a memristor and a inductor that were connected in parallel.

The simulation is shown in Figure 16a,b. It can be seen the circuit of the memristor and inductor
that were connected in parallel also possessed memristive properties with pinched hysteresis loops.
From Figure 16a, it can be seen the area of pinched hysteresis loops increased with α increased.
From Figure 16b, it can be seen the area of the pinched hysteresis loops decreased with the ω increased.
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Figure 16. The response of the circuit of the memristor and inductor connected in parallel. (a) α = 0.98,
0.9, and 0.8; and (b) ω = 5, 10, 15 rad/s.

5. Conclusions

In summary, this paper has presented a fractional-order memristor model and verifies the three
essential characteristics of a fractional-order memristor. In addition, the properties of fractional-order
memristor have been described. In a simple memristive series circuit, with a change of the fractional
derivative order, the series circuit of a fractional-order memristor and a capacitor or inductor
shows a conversion from a pure capacitor circuit to a memristive circuit. The series circuit shows
conversions of purely inductive and memristive circuits. Here, analytical solutions were derived by
a fractional-order memristor, the properties of fractional-order memristor model parameters were
obtained, and simulation results were given. The results showed that material properties determine
the order of the fractional derivative, so the best memory capacity of a physical memristor can be
achieved by finding materials that are compatible with the excitation frequency.
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Abstract: In this paper, a wind speed prediction method was proposed based on the maximum
Lyapunov exponent (Le) and the fractional Levy stable motion (fLsm) iterative prediction model.
First, the calculation of the maximum prediction steps was introduced based on the maximum Le.
The maximum prediction steps could provide the prediction steps for subsequent prediction models.
Secondly, the fLsm iterative prediction model was established by stochastic differential. Meanwhile,
the parameters of the fLsm iterative prediction model were obtained by rescaled range analysis and
novel characteristic function methods, thereby obtaining a wind speed prediction model. Finally,
in order to reduce the error in the parameter estimation of the prediction model, we adopted the
method of weighted wind speed data. The wind speed prediction model in this paper was compared
with GA-BP neural network and the results of wind speed prediction proved the effectiveness of
the method that is proposed in this paper. In particular, fLsm has long-range dependence (LRD)
characteristics and identified LRD by estimating self-similarity index H and characteristic index
α. Compared with fractional Brownian motion, fLsm can describe the LRD process more flexibly.
However, the two parameters are not independent because the LRD condition relates them by αH > 1.

Keywords: wind speed forecasting; fractional Levy stable motion; long-range dependence;
Lyapunov exponent

1. Introduction

When the penetration of wind power exceeds a certain value, it seriously affects power quality.
At present, the error rate of wind speed forecasting of wind farms is about 25%–40%, and the research
on wind speed forecasting of wind farms has not reached a satisfactory level [1]. If wind speed and
wind power could be accurately predicted, it would be beneficial for the power system dispatching
department to adjust the scheduling plan in time, which could effectively reduce the impact of wind
power on the power grid [2]. At the same time, the improvement of prediction accuracy could also
reduce the operating cost and rotation reserve of power systems [3], increase the limit of wind power
penetration, and lay the foundation for wind farms to participate in bidding for power generation [4].
Many researchers have developed several different wind speed prediction methods. The simplest
prediction method is the continuous method, which uses the closer wind speed or power observation
value as the prediction value for the next point [5]. Other prediction methods include Kalman filters [6],
ARMA [7], artificial neural network (ANN) [8], fuzzy logic, and so on. These methods only need the
wind speed or power time series of the wind farm to build a model and make predictions. The spatial
correlation method needs to consider the wind farm and the wind speed time series of several places

Symmetry 2020, 12, 605; doi:10.3390/sym12040605 www.mdpi.com/journal/symmetry37
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close to it, using several locations. Then, the spatial correlation between wind speeds is used to predict
the wind speed of a wind farm and to predict wind power.

In recent years, the prediction of stochastic sequences with long-range dependence (LRD)
characteristics has become a hot topic and can be applied to the prediction of non-stationary
stochastic processes. The LRD model [9,10] can give better forecasting of the stochastic sequence by
comprehensively considering the influence of both the past state and the current state on the future
state. Fractional Brownian motion models with LRD characteristics have been widely applied in
this field [11–13]. The LRD of fractional Brownian motion is described by the only parameter H
(self-similarity index). Compared with fractional Brownian motion the LRD of the fractional Levy stable
motion (fLsm) is determined instead by two parameters α and H, which can separately characterize
the local irregularity and global persistence [14] so that fLsm can describe the long correlation process
more flexibly. Therefore, in the following, we used a prediction model of stochastic sequences based
on fLsm with LRD to predict wind speed.

The prediction method used in this paper involves the maximum Lyapunov exponent and fLsm
iterative prediction model [15]. The Lyapunov exponent can help us distinguish between noise and
signals that obey a certain law. In this paper, we mainly used the reciprocal of the maximum Lyapunov
exponent to represent the maximum predictive steps. The methods for calculating the Lyapunov
exponent are the definition method, small-data method, wolf method, Jacobian method, etc. This
paper used the small-data method [16], which makes full use of all available data and therefore has
relatively high accuracy. The small-data method is fast in operation and easy to implement, and it
shows strong robustness to the embedding dimension and time delay, as well as the size of the data
amount. However, the choice of the embedding dimension is subjective, and the time delay is not
necessarily accurate. Therefore, we needed to use the c-c method [17,18] to avoid this problem.

The fLsm iterative prediction model was established by fLsm-driven Langevin-type stochastic
differential equation (SDE) [19]. First, the fractional Black-Scholes model [20,21] was extended and
the parameterized SDE was obtained. Then, the fLsm was discretized by Taylor series expansion of
fractional order [22], and the mathematical relationship between the increment of flsm and Levy’s
stable white noise was obtained and substituted into discrete Langevin-type SDE. Finally, using the
discrete Langevin-type SDE and the difference equation, the expression of the proposed fLsm finite
difference iterative prediction model was obtained.

Wind speed is mainly affected by weather and terrain shape, and it also changes with altitude,
so randomness is the basic property of wind speed, at least on a small scale. In this paper, we used
Langevin-type SDE [19] driven by fLsm to describe the randomness of wind speed. However, the
wind speed data in most regions do not have heavy tail characteristics, which will lead to a larger error
when using wind speed data to estimate the parameters of the fLsm iterative prediction model. From
the characteristics of the data: weighting can increase the variance of the data so that the data can show
heavy-tailed features.

This paper is organized as follows. The small-data method is introduced in Section 2, The fLsm is
introduced in Section 3, where we also analyze the model and LRD characteristics. The fLsm finite
difference iterative forecasting model is proposed in Section 4, which establishes the finite-difference
iterative forecasting model by making Langevin-type SDE [19] driven by fractional Levy stable motion,
and the Langevin-type SDE [19] parameters estimated by the novel Characteristic Function (CF)
method [23–25]. The wind speed forecasting results show the superiority of the method used in this
paper (Section 5). The mathematical relationship between wind speed and wind power is introduced
in Section 6. Concluding remarks are given in Section 7.
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2. Maximum Prediction Steps Based on Lyapunov Exponent

The small-data method [16] is defined as follows.
Let {x1, x2 · · · xN}, be a given chaotic time series, then the reconstructed phase space is defined as:

Yi =
(
xi, xi+τ, · · · , xi+(m−1)τ

)
∈ Rm, (i = 1, 2, · · · , M), (1)

where N = M + (m− 1)τ. The embedding dimension m and the time delay τ can be chosen according
to the C-C method [17,18].

After the reconstruction of phase space, find the nearest adjacent point of each point on the given
orbit, i.e.,

dj(0) = min
xĴ
‖Yj −YĴ‖, (2)

∣∣∣ j− Ĵ
∣∣∣ > p, (3)

where p is the average period of the time series, which can be estimated by the inverse of the average
frequency of the power spectrum, and the maximum Le can be estimated by the average divergence
rate of each point on the basic orbit. For each reference point, calculate the distance to the nearest
discrete point after the first discrete time step by

dj(i) = min
xĴ
‖Yj+i −YĴ+i‖, i = 1, 2, · · · , min

(
M− j, M− Ĵ

)
, (4)

The average divergence rate obeys the exponential divergence, i.e.,:

dj(i) = Cjeλ1(i·Δt), Cj = dj(0), (5)

Take the logarithm on both sides to get:

ln dj(i) = lnCj + λ1(i·Δt), (6)

Obviously, the maximum Le is roughly equivalent to the slope on this set of straight lines. It can
be obtained by approximating this set of lines by the method of least squares.

λ1 =
lndj(i) − lnCj

i·Δt
, (7)

The reciprocal of the maximum Lyapunov exponent is the maximum prediction steps ε when
λ1 > 0.

ε =
1
λ1

, (8)

3. Fractional Levy Stable Motion

3.1. Parameter Meaning of Levy Stable Motion

Levy stable motion represents a non-Gaussian random process with LRD and high variability,
we denote by X ∼ Sα(β, δ,μ) the stable distribution with parameters α, β, δ and μ. Its characteristic
function form is as follows [26]:

ϕ(θ : α, β, δ,μ) = E
[
ejθx
]
=

⎧⎪⎪⎨⎪⎪⎩
exp
{
jμθ− δ|θ|α

[
1− jβ θ|θ| tan

(
πα
2

)]}
,α � 1

exp
{
jμθ− δ|θ|α

[
1 + jβ θ|θ|

2
π ln|θ|

]}
,α = 1

, (9)

where δ > 0, β ∈ [−1, 1], μ ∈ R. The parameter β is called the skewness parameter, while δ is called
scale parameter, and μ the location parameter. In this article, we studied symmetric stable distribution,
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so we make β = 0. The location parameter μ indicates the mean, and the scale parameter δ represents
the discrete nature of the distribution.

Where α ∈ (0, 2]. The parameter α is the tail parameter and the distribution is Gaussian when
α = 2, whereas the tail is exponential. In what follows, we typically supposed 0 < α < 2. When x→∞ ,
the probability tails of X satisfy [27]:

P{|X| > x} ∼ Caδ
αx−α, (10)

where Ca is a constant. The tail of the distribution with 0 < α < 2 obeys a power law and decreases to
zero so slowly that the variance is infinite; the smaller the value of α, the slower the decrease. From the
perspective of probability distribution, as the value of α decreases, its tail becomes thicker (Figure 1).

Figure 1. Influence of different characteristic index values on the probability distribution function.

3.2. Long-Range Dependence and Self-Similarity Fractional Levy Stable Motion

The model of fLsm [14] is given by the following stochastic integral:

LH,α(t) =
∫ ∞
−∞

{
a
[
(t− s)

H− 1
α

+ − (−s)
H− 1

α
+

]
+ b
[
(t− s)

H− 1
α− − (−s)

H− 1
α−
]}

Mds, (11)

where a and b are the arbitrary constants, xH−1/α
+ = 0 for x ≤ 0 and x

H− 1
α

+ = xH− 1
α for x > 0, M ∈ R is

the symmetric Levy stable random measure, and H is the self-similarity parameter. The incremental
process of fLsm [28] is as follows:

XH,α(t) = LH,α(t + 1) − LH,α(t)
=
∫ ∞
−∞{a

[
(t + 1− s)H−1/α

+ − (−s)H−1/α
+

]
+b
[
(t + 1− s)H−1/α

− − (−s)H−1/α
−

]}
ωα(s),

(12)

where ωα(s) is the Levy stable white noise.
Symmetric Levy stable motion is 1/α self-similar, namely, Lα(t) � a−1/αLα(at) for all a > 0. Laskin

et al. [29] have shown that the fLsm is a self-similar process with self-similar parameter H − 1/2 + 1/α.
The incremental process

{
LH,α(t2) − LH,α(t1)

}
is also self-similar with H − 1/2 + 1/α.
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The key parameters α, H of the fLsm model are not independent in some cases, i.e., the fLsm
has LRD characteristics for αH > 1 [30]. It is worth noting that the fLsm model has no long memory
when 0 < α < 1, therefore, the range of α is limited to (1, 2) to ensure that the fLsm model has the LRD
characteristic. At the same time, 0.5 < H < 1 is also required.

4. Iterative Forecasting Model Based on Fractional Levy Stable Motion

4.1. Iterative Forecasting Model

Let us consider the following Langevin-type stochastic differential equation driven by Levy stable
motion [19]:

dX(t) = b(t, X(t))dt + δ(t, X(t))dLα(t), X(0) = X0, (13)

where dLα(t) stands for the increments of Levy α-stable motion Lα(t). By replacing LH,α(t) to Lα(t),
we obtain the Langevin-type stochastic differential equation driven by fractional Levy stable motion:

dXH,α(t) = b(t, XH,α(t))dt + δ(t, XH,α(t)), dLH,α(t)XH,α(0) = X0, (14)

where b(t, X(t)) and δ(t, X(t)) represent the drift and diffusion functions, respectively.
The fractional Black-Scholes model [20,21], which was developed by W. DAI et al. [31,32] has

expression in the form:
dSt = μStdt + δStdBH(t), (15)

where μ indicates the expected return rate and δ is the volatility rate. The Levy stable distribution is
the Gaussian distribution when α = 2 so that when α = 2 the fLsm becomes the fractional Brownian
motion, μ represents the mean, and δ represents the diffusion coefficient. The parameters b and δ in
the Levy stable distribution represent the mean and diffusion coefficient, respectively, in 1 < α ≤ 2.
Consequently, Equation (14) can be rewritten as follows:

dXH,α(t) = μXH,α(t)dt + δXH,α(t)dLH,α(t), (16)

where μ and δ are constants. They are derived from the novel CF method in the Appendix.
By using the Maruyama symbol [22], dBt = w(t)(dt)1/2, the following equations can be obtained:

∫ t

0
f (τ)(dτ)a = ρ

∫ τ
0
(t− τ)a−1 f (τ)dτ, (17)

dx = f (t)(dt)a, (18)

where 0 < a < 1, and a represents the self-similar parameter of x. The incremental expression of fLsm
can be obtained by replacing f (t) with wα(t):

dLH,α = wα(t)(dt)H− 1
2+

1
α , (19)

Equation (16) can be written the discrete form, which reads as follows:

ΔXH,α(t) = μXH,α(t)Δt + δXH,α(t)wα(t)(Δt)H− 1
2− 1
α , (20)

The iterative predictive model was obtained from the identity ΔX(t) = X(t + 1) −X(t):

LH,α(t + 1) = LH,α(t) + μLH,α(t)Δt + δLH,α(t)wα(t)(Δt)H− 1
2+

1
α , (21)
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4.2. Parameter Estimation with the Characteristic Function

In the essay of Wang et al. [23–25], some methods were introduced and the validity of these
methods was compared, including the quantiles method, empirical characteristic function method,
logarithmic moment method, Monte Carlo method, etc. It was concluded that the CF accuracy method
was better. The parameter estimation methodology can be subdivided into the following steps:

Step 1: Let xi|i=1...N be the sampling data for the fLsm,
Step 2: δ estimation: ∣∣∣ϕ(θ;α, β,μ, δ)

∣∣∣ = ∣∣∣∣E{ejθx
}∣∣∣∣ = e−γ|θ|

α
, (22)

ln
∣∣∣ϕ(θ;α, β,μ, δ)

∣∣∣ = −γ|θ|α, (23)

δ = − ln
∣∣∣ϕ(1;α, β,μ, δ)

∣∣∣ = − ln
∣∣∣∣E{ejx

}∣∣∣∣, (24)

The estimated δ has the form:

δ̂ = − ln
∣∣∣ϕ̂(1;α, β,μ, δ)

∣∣∣ = − ln
1
N

∣∣∣∣∣∣∣
N∑

i=1

ejxi

∣∣∣∣∣∣∣, (25)

Step 3: Further, we estimate parameter α,

θα0 =
ln
∣∣∣∣E{ejθ0x

}∣∣∣∣
ln
∣∣∣∣E{ejx

}∣∣∣∣
=

ln
∣∣∣ϕ̂(θ0;α, β,μ, δ)

∣∣∣
ln
∣∣∣ϕ̂(1;α, β,μ, δ)

∣∣∣ , (26)

α̂ = logθ0
(

ln
∣∣∣ϕ̂(θ0;α, β,μ, δ)

∣∣∣
ln
∣∣∣ϕ̂(1;α, β,μ, δ)

∣∣∣ ), (27)

where ϕ̂(θ0;α, β,μ, δ) = 1
N

∣∣∣∑N
i=1 ejθ0xi

∣∣∣.
Step 4: Parameter μ is estimated by complex domain of the cumulant generating function of fLsm,

lnϕ(θ0;α, β,μ, δ) = δ|θ|α + j
[
δ|θ|αβ θ|θ| tan

(
πα
2

)
+ μθ

]
, (28)

μ̂ =
Im
{
θα̂0 ln

∣∣∣ϕ̂(1;α, β,μ, δ)
∣∣∣− ln

∣∣∣ϕ̂(θ0;α, β,μ, δ)
∣∣∣}

θα0 − θ0
, (29)

Step 5: As we know, the fLsm model drive function is symmetric β̂ = 0.

5. Wind Speed Forecasting

We used the average daily wind speed data from the 2011 actual historical wind speed of Inner
Mongolia. The historical wind speed waveform is shown in Figure 2. When the wind speed is too high,
it will seriously affect the power grid, so we focused on accurately predicting the time period when the
wind speed is high. It can be seen from Figure 2 that the wind speed data began to fluctuate greatly
from the 100th day, which was harmful to the power grid, so we chose to start from the 100th forecast.
In terms of selecting the prediction steps, the small-data method of the second part was used to
calculate the maximum prediction steps. The calculation results are shown in Table 1. The maximum
forecast steps were 43 days, we could set the forecast time period from the 100th day to the 140th
day. Before using the fLsm iterative forecasting model, we needed to determine whether the wind
speed sequence was LRD. Through parameter estimation, we could get the value of H and α (Table 2),
satisfying αH > 1. Finally, the fLsm iterative forecasting model was used to forecast the wind speed
sequence, and the forecast result is shown in Figure 3. The specific method flow is shown in Figure 4.
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Table 1. 2011 Small-data method parameters.

Parameter Name Parameter Value

Average period 12
Embedding Dim 5

Time delay 2
Lyapunov exponent 0.0238

Max. prediction steps 43

Figure 2. 2011 wind speed waveform.

Table 2. Parameters and errors of the three weighting methods.

Name Unweighted 5 Weighted 10 Weighted

Max error percentage 3.7319 0.4425 0.1419
H 0.7595 0.7595 0.7595
α 1.7959 1.8280 1.6305

var 173.7598 4344 17376

Figure 3. Unweighted wind speed predictions.
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Figure 4. Forecasting process.

As can be seen from Figure 3, when the prediction steps exceeded nine steps, the prediction
error gradually increased, and the prediction data was often larger than the actual data. However, by
calculating the maximum prediction steps of 43, its effective prediction steps were much less than the
maximum prediction steps.

As fLsm is an infinite variance process and the variance of the wind speed data is not large, if the
historical wind speed data is used to estimate the parameters of the fLsm iterative prediction model,
a large error will occur. In this section, we used a method of weighting the wind speed data to increase
the variance of the data, thereby reducing the error in parameter estimation.

It can be seen from Figures 5 and 6 that the prediction effect of the wind speed weighted data had
been significantly improved. Generally speaking, increasing the variance will cause the tail parameter
α to decrease. However, it can be seen from Table 2 that the α value of the five-times weighted wind
speed data was larger than the α value of the unweighted wind speed data, which indicated that a
larger error occurred when modeling the wind speed sequence using the fLsm iterative prediction
model. Of course, αH > 1 must be guaranteed when weighting the wind speed data.

Figure 5. Five-time weighted wind speed predictions.
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Figure 6. Ten-time weighted wind speed predictions.

In order to prove the extensiveness of the wind speed prediction model in this paper, we forecasted
the wind speed data of Inner Mongolia in 2012. As can be seen from Figure 7, the wind speed data on
the 70th day began to fluctuate. We then calculated the maximum number of prediction steps to 45 and
set the prediction time period to the 70th to 115th days. After weighting the wind speed data 10 times,
the fLsm iterative prediction model was used for prediction in Figure 8. In addition, the fLsm iterative
prediction model was compared with the GA-BP neural network, which showed that the wind speed
prediction model in this paper had better prediction accuracy.

 
Figure 7. 2012 wind speed waveform.

 
Figure 8. 2012 wind speed forecast results.

Table 3 lists the maximum and average percentage errors for the two prediction models. As can be
seen from the table, the fLsm iterative prediction model had higher prediction accuracy. At the same
time, it can be seen from Figures 9 and 10 that the GA-BP neural network had a poor prediction of the
peak value, which will lead to the inability to prevent the impact of excessive wind speed on the grid.
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Table 3. Errors of the two prediction models.

Years Name GA-BP Network FLSM Forecasting

2011 Max error percentage 0.2706 0.1419
2011 Mean error percentage 0.0350 0.0304
2012 Max error percentage 0.2676 0.1022
2012 Mean error percentage 0.0378 0.0282

Figure 9. Comparison of prediction effects in 2011.

 
Figure 10. Comparison of prediction effects in 2012.

6. Relationship between Wind Speed and Wind Power

Taking a variable-pitch wind turbine with a single unit capacity of 600 kW as an example, the
power characteristics are shown in Figure 11. The cut-in wind speed, cut-out wind speed, and rated
wind speed were 3, 50, and 25 m/s, respectively. The raw data of wind power time series could be
obtained from the original data of wind speed and power characteristic curve of the wind turbines.

 
Figure 11. Power curve of a wind power generator.
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When the wind speed was less than the cut-in wind speed and greater than the cut-out wind
speed, the power generation was zero; when the wind speed was equal to the cut-in wind speed,
the rated wind speed, and the cut-out wind speed, the power characteristic curve had a significant
turning point. When the wind speed was greater than the rated wind speed and less than the cut-out
wind speed when the wind speed was out, the generating power was a certain value. Only when
the wind speed was greater than the cut-in wind speed and less than the rated wind speed did the
generating power, and the wind speed approximate a linear relationship.

P(v) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ v ≤ vi
fp(v) vi ≤ v ≤ vr

Pr vr ≤ v ≤ vc

0 v > vc

, (30)

where P(v) is the wind power, Pr is the rated power of the generator, vi is the cut-in wind speed, vc is
the cut-out wind speed also known as the cut-off wind speed, vr is the rated wind speed, and fp(v) is
the output characteristic of the wind speed between vi and vr. Its characteristics can be linear functions,
quadratic functions, or cubic functions.

7. Conclusions

(1) Wind speed prediction is of great significance to the stable operation and operating efficiency
of the power system. At the same time, it improves the ability of wind farms to participate in
market competition.

(2) The wind speed prediction method based on the maximum Lyapunov exponent and fLsm
iterative prediction model was effective. Based on the historical wind speed sequence, this paper
calculated the maximum prediction steps, weighted the wind speed data, and established an fLsm
iterative prediction model. It can be seen from the MATLAB simulation curve that the model can better
predict the wind speed and reflect the change of the sequence, which has certain guiding significance.
It can be seen from Section 6 that after the conversion of the power characteristic curve, its regularity
was partially destroyed, and the regularity of the obtained wind energy was even weaker, which led to
a larger forecast error of wind power. Therefore, the wind speed needs to be predicted first, and then
the amount of electricity can be calculated.

(3) In practice, wind speed has strong randomness, and some regions may not have LRD. The
wind speed sequence of short-range dependent (SRD) has yet to be studied.
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Abstract: In this paper, we propose two new two-dimensional chaotic maps with closed curve fixed
points. The chaotic behavior of the two maps is analyzed by the 0–1 test, and explored numerically
using Lyapunov exponents and bifurcation diagrams. It has been found that chaos exists in both
fractional maps. In addition, result shows that the proposed fractional maps shows the property of
coexisting attractors.
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1. Introduction

In the nineteenth century, fractional calculus had its origin in the generalization of integer order
differentiation and integration to non-integer order (fractional order) ones [1–5]. The first treatise
concerning fractional calculus was conducted by K.B Oldham and J. Spanier (1974) [6]. In the early
stages of fractional calculus, the focus was on continuous time fractional dynamical systems [7]. A few
decades later, interest shifted to discrete fractional calculus. Diaz and Olser (1974) gave the first
definition of a discrete fractional operator. It was introduced by discretization of the continuous time
fractional operator, and this led to representations by recurrence relations. The first definition of
fractional order operators was pioneered by Miler and Ross [8]. Following these definitions, and in
a series of papers, Atici and Eloe [1,9–11] defined and proved many properties of these operators.
Balanu et al. provided significant contributions for the subject concerning stability, and chaos of some
discrete fractional systems [4,12–14]. Discrete fractional calculus is a sub-discipline of dynamical
system that has been of significant importance since its first emergence. It first appeared in relation
to real-world phenomena, and in a broad range of disciplines such as biology, economics, physics,
engineering [15], nonlinear optics [16], finance [17], demography [18], medicine [19], and so on. It has
become an interesting field of research in the last decades.

The concept of chaos in dynamical systems has attracted researchers due to the unpredictability
of the dynamic behaviors of dynamical systems. This means that two systems may start very close,
but they move very far for apart. In fact, Li and York [20] were the first researchers who gave a
mathematical definition of chaos. More studies and investigations for a variety of chaotic maps have
been presented in [21]. In addition, many considerable results have been proposed in [14,21–24]. Those
maps possess sensitivity to initial conditions and random-like trajectories. One of the characteristics

Symmetry 2020, 12, 756; doi:10.3390/sym12050756 www.mdpi.com/journal/symmetry51
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of chaos is the existence of at least one positive Lyapunov exponent. Another efficient method for
detecting chaos is the 0–1 test. That is, if the output is zero, this means that the dynamic is regular; it is
chaotic if the test yields one [25]. The fact that research in discrete fractional chaotic systems is still in
development [26–34], and very few difference equations have been considered, was the motivation of
our work.

The aim of this paper is to study two new chaotic maps with specific types of fixed points by
the application of a new test approach (0–1 test) in order to find out whether or not these systems
are chaotic. The dynamic behaviors of the considered chaotic systems are investigated numerically
using bifurcation diagrams and Lyapunov exponents. These systems possess an interesting property:
symmetry. The rest of the paper is organized as follows. In Section 2, we present certain essential
definitions and results from difference fractional calculus. Then, chaotic dynamics of the two systems
will be discussed in Section 3. Section 4 is about the chaotic analysis based on the 0–1 test approach.
Finally, we conclude with a summary.

2. Preliminaries

We give in this section some basic definitions, and one major theorem from discrete fractional
calculus. Let X : Na → R, with Na = {a, a + 1, a + 2, . . . }, the general nth order difference can be
written as:

Δnx(t) = Δn−1X(t + 1)− Δn−1X(t) =
n

∑
k=0

Cn
k (−1)kX(t + n − k). (1)

Prolonging this concept for fractional-order difference, the fractional sum of order υ, using the
fact that t(υ) is defined by t(υ) = Γ(t+1)

Γ(t+1−υ)
, is given in the following definition.

Definition 1 ([35]). The υth fractional sum of X can be defined as:

Δ−υ
a X(t) =

1
Γ(υ)

t−υ

∑
s=a

(t − σ (s))(υ−1)X(s), (2)

where υ /∈ N, with υ > 0 is a fractional order, t ∈ Na+n−υ, n = [υ] + 1; σ(t) = t + 1.

Definition 2 ([35]). The υ-Caputo-like difference, denoted by CΔυ
a X(t), of X(t) is defined as:

CΔυ
a X(t) = Δ−(n−υ)

a ΔnX(t) =
1

Γ(n − υ)

t−(n−υ)

∑
s=a

(t − σ (s))(n−υ−1)Δn
a X(s). (3)

Theorem 1 ([35]). The corresponding discrete integral equation of the delta fractional difference equation:

{
CΔυ

a u(t) = f (t + υ − 1, u(t + υ − 1))
CΔku(a) = uk, n = [υ] + 1, k = 0, . . . , n − 1,

(4)

is given by:

u(t) = u0(t) +
1

Γ(υ)

t−υ

∑
s=a+n−υ

(t − σ(s))(υ−1) f (s + υ − 1, u(s + υ − 1)), t ∈ Na+n, (5)

where:

u0(t) =
n−1

∑
k=0

(t − a)k

k
Δku(a). (6)
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3. Fractional–Order Maps with Closed Curve Fixed Points

In this section, we study the chaotic behavior of two new two-dimensional fractional systems
with closed curve fixed points. In [36], a new class of two-dimensional chaotic maps with different
types of closed curve fixed points are constructed. Examples of these systems are given by:

{
xk+1 = xk + α f (xk, yk),

yk+1 = yk + f (xk, yk)(βxk + γyk + δx2
k + εy2

k + εxkyk + θ),
(7)

where xk, yk are system states, {α, β, γ, δ, ε, ε, θ} are system parameters and f (x, y) is a nonlinear
function which can be written as

f (x, y) = (
x
m
)p + (

y
n
)p − r2, (8)

where m > 0, n > 0, r > 0, and p is an integer order such that p ≤ 2. The authors showed that the fixed
points of these systems are nonhyperbolic for different values of m, n, p, and r, and they presented
the phase-basin portrait of the chaotic attractors. Also, they explored them numerically by Lyapunov
exponents and Kaplan–Yorke dimension.

3.1. Fractional–Order Map with Square-Shaped Fixed Points

Here we consider the system (7) when m = 1, n = 1, p = 12, and r = 1. In this case, the map is
described by the following equation:

{
xk+1 = xk − α(x12

k + y12
k − 1),

yk+1 = yk + βxkyk(x12
k + y12

k − 1),
(9)

where α and β are bifurcation parameters. Based on the above equation, we construct a new
fractional-order map by introducing the υ-Caputo like difference operator as follows:

{
CΔυ1

a x(t) = −α(x12(t − 1 + υ1) + y12(t − 1 + υ1)− 1),
CΔυ2

a y(t) = βx(t − 1 + υ2)y(t − 1 + υ2)(x12(t − 1 + υ2) + y12(t − 1 + υ2)− 1),
(10)

where υ = (υ1, υ2) is the fractional order. The vector field F(x, y) associated to the system (10) possesses
a symmetry with respect to the x-axis. That is, if we let G(x, y) = (x,−y), then F(G(x, y)) = G(F(x, y)).
This property will be reflected in the fixed points and attractors of system (10). The fixed points of the
new fractional-order system (10) are obtained by taking CΔυ1

a x = CΔυ2
a y = 0, as follows:

{
−α(x12 + y12 − 1) = 0,

βxy(x12 + y12 − 1) = 0.
(11)

From Equation (11) we must have

x12 + y12 − 1 = 0. (12)

Consequently, the system (10) has square-shaped fixed points. By choosing suitable system
parameters the fractional-order map (10), we can generate hidden attractors with square-shaped
fixed points.
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In order to further investigate the dynamical behavior of the new fractional-order map (10),
we need to determine the corresponding numerical formula. Using Theorem 1, the equivalent discrete
integral equation of the fractional-order map (10) can be written as:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x(t) = x(a)− α
Γ(υ1)

t−υ1

∑
s=a+1−υ1

(t − s − 1)(υ1−1)(x12(s − 1 + υ1) + y12(s − 1 + υ1)− 1),

y(t) = y(a) + β
Γ(υ2)

t−υ2

∑
s=a+1−υ2

(t − s − 1)(υ2−1)

x(s − 1 + υ2)y(s − 1 + υ2)(x12(s − 1 + υ2) + y12(s − 1 + υ2)− 1),

(13)

in which t ∈ Na+1−υ and a is the starting point. Replacing the discrete kernel function (t−σ(s))(υ−1)

Γ(υ) by
Γ(t−s)

Γ(υ)Γ(t−s−υ+1) and assuming that a = 0, the above equation is converted to:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(n) = x(0)− α
Γ(υ1)

n

∑
j=1

Γ(n−j+υ1)
Γ(n−j+1) (x12(j − 1) + y12(j − 1)− 1),

y(n) = y(0) + β
Γ(υ2)

n

∑
j=1

Γ(n−j+υ2)
Γ(n−j+1)

(
x(j − 1)y(j − 1)

(
x12(j − 1) + y12(j − 1)

))
.

(14)

where x(0) and y(0) are the initial condition. This numerical formula will allow us to examine the
sensitivity of the fractional-order map throughout the next subsection.

Bifurcation Diagrams and Largest Lyapunov Exponents

In this section, we will study the dynamical behavior of the novel fractional-order map (10)
for some specific parameters and initial values. Figure 1 shows the chaotic attractor along with its
bifurcation plots with respect to α and β, and the time evolution of states x for υ = 1. The chaotic
attractor of the fractional-order map (10) under system parameters α = 0.2, β = 2.4 and initial value
(x(0), y(0)) = (0.26,−0.14) is shown in Figure 1a, where the black points represent the square-shaped
fixed points. Figure 1b gives the time evolutions of the variables x and y which illustrates that the
system (10) has two symmetrical states. Figure 1c,d shows the bifurcation plots produced when fixing
one of the parameters and varying the second. These bifurcation diagrams are constructed for 50 initial
points. We see that the maximum chaotic range is observed for α ≈ 0.35 and β ≈ 2.455. Also, we notice
that the range of β for which we obtain a chaotic behavior is very short. Hence, it is more interesting to
visualize the effect of α on the map’s dynamics.
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Figure 1. Numerical analysis of the fractional-order map (10) for ν = 1. (a) Square-shaped fixed
point of the fractional-order map are illustrated with black dots and the hidden chaotic attractor in
red. (b) Evolution states of the fractional-order map (10) of x and y. (c) Bifurcation diagram of the
fractional-order map (10) versus α for β = 2.4. (d) Bifurcation diagram of the fractional-order map (10)
versus β for α = 0.2.

To investigate the sensitivity of the fractional-order map (10) with respect to the bifurcation
parameter α, we fix β = 2.4 and we vary α in the range [0, 0.35]. The bifurcation diagrams and largest
Lyapunov exponents under the fractional order υ1 = υ2 = 0.95 and υ1 = υ2 = 0.9 are given in
Figure 2. By comparing Figure 2a,b with Figure 2c,d, we find that the interval where chaos exists
shrinks as υ decreases. In particular, when the value of υ = (υ1, υ2) changes from 0.95 to 0.9, the areas
of chaotic motion shrinks from [1.022, 1.116] ∪ [1.164, 1.216] to [0.2405, 0.2429] ∪ [0.3126, 0.3423]. Also,
the transient states region increases.
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Figure 2. (a) Bifurcation diagram of the fractional-order map (10) versus α for υ1 = υ2 = 0.95.
(b) Largest Lyapunov exponents corresponding to (a). (c) Bifurcation diagram of the fractional-order
map (10) versus α for υ1 = υ2 = 0.9. (d) Largest Lyapunov exponents corresponding to (c).

Now, reset the parameter β = 2.2 and keep the parameter α as α = 0.2, Figure 3 shows the
bifurcation diagram of the fractional-order map (10) with the decreasing of υ2 where υ1 = 1. When υ2

decreases from 1, the fractional-order map (10) presents a periodic state until it enters into chaos at
0.9035. It is noticed that the periodic state of the integer order map becomes chaotic as υ2 decreases.
Another interesting dynamic is observed if we increase the value of α to 0.23 and decrease the value of
β to 0.5. In this case, two chaotic attractors are observed in the fractional-order map with respect to the
fractional orders υ1 = 1 and υ2 = 0.01, as shown in Figure 4, where the red color attractor is yielded
from initial value (0.1, 0.3) and blue color attractor is yielded from initial value (0.1,−0.3). Therefore,
we conclude that the fractional order improves the complexity of the chaotic motion of the original
system (7) with square-shaped fixed points.
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ν2

x

Figure 3. Bifurcation diagram for system (10) in the x − υ2 plane for α = 0.2 and β = 2.2.

x

y

Figure 4. Coexisting chaotic attractor of the fractional-order map (16) for α = 0.2 and β = 2.2.

3.2. A New Fractional Map with Rectangle-Shaped Fixed Points

Now, we consider system (7) when m = 5, n = 1, p = 12, r = 1. In this case we have the
following system:

{
xk+1 = xk + (( xk

5 )
12 + y12

k − 1),

yk+1 = yk + αyk((
xk
5 )

12 + y12
k − 1),

(15)

where x and y are the system variables. Using the same argument as with the previous system,
we obtain the following fractional-order map:⎧⎨

⎩
CΔυ1

a x(t) =
(

x(t−1+υ1)
5

)12
+ y12(t − 1 + υ1)− 1,

CΔυ2
a y(t) = αy(t − 1 + υ2)((

x(t−1+υ2)
5 )12 + y12(t − 1 + υ2)− 1),

(16)
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where υ ∈ (0, 1) is the fractional order. The fixed points of the new fractional-order map (16) are
obtained by solving the following system of equation:

{( x
5
)12

+ y12 − 1 = 0,

αy(( x
5 )

12 + y12 − 1) = 0.
(17)

Thus, we must have
(

x
5
)12 + y12 − 1 = 0. (18)

Therefore, the novel fractional-order map (16) has rectangle-shaped fixed points.
To study the dynamic behavior of the novel fractional-order map (16), we define the numerical

formula as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(n) = x(0) + 1
Γ(υ1)

n

∑
j=1

Γ(n−j+υ1)
Γ(n−j+1)

((
x(j−1)

5

)12
+

(
y(j−1)

12

)12 − 1
)

,

y(n) = y(0) + α
Γ(υ2)

n

∑
j=1

Γ(n−j+υ2)
Γ(n−j+1)

(
y(j − 1)

((
x(j−1)

5

)12
+ y12(j − 1)− 1

))
.

(19)

where x(0) and y(0) are the initial conditions.

Bifurcation and Largest Lyapunov Exponents

In this section we investigate the dynamic behavior of the new fractional-order map (16) using
numerical simulations. When α = 2.2 the fractional-order map (16) shows the hidden chaotic attractor
as depicted in Figure 5. It can be shown that it also has a symmetry with respect to the x-axis. Figure 6
shows the bifurcation diagrams and largest Lyapunov exponents of the fractional-order map (16).
According to Figure 6, it is very clear that the dynamic behavior of system (16) goes from periodic
state to chaotic state with the increase of the control parameter α. Obviously, as the fractional order
υ = (υ1, υ2) decreases from 0.998 to 0.995, the bifurcation diagram gradually shrinks to the left.

x

y

Figure 5. Chaotic attractor of the fractional-order map (16) for α = 2.2.
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Figure 6. (a) Bifurcation diagram of the fractional-order map (16) versus α for υ1 = υ2 = 0.988.
(b) Largest Lyapunov exponents corresponding to (a). (c) Bifurcation diagram of the fractional-order
map (16) versus α for υ1 = υ2 = 0.995. (d) Largest Lyapunov exponents corresponding to (c).

3.3. 0–1 Test

In order to further confirm the influence of the fractional order υ = (υ1, υ2) on the properties of
the fractional-order maps, we apply a new approach proposed by Gottwald and Melbourne called
the 0–1 test method [25]. Unlike other methods, the test does not involve phase space reconstruction,
and we can applied it directly to the series data x(n). The output is either 0 or 1 depending on whether
the nature of the system is regular or chaotic. Naturally, we do not obtain the values 1 and 0 exactly,
so the test remains valid when K is close enough to these values.

Here, we applied the 0–1 test method directly to the state x(n) that was obtained from the
numerical formulas (14) and (19), respectively. For an arbitrary constant c in (0, π), we calculate the
translation variables

pc(n) =
n

∑
j=1

x(j) cos(jc), qc(n) =
n

∑
j=1

x(j) sin(jc), n = 1, 2, .., N. (20)
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The dynamics of the translation components (pc, qc) provide a visual test. Basically, if the dynamic
is regular then the behavior of trajectories in the (pc − qc) plane is bounded, whereas if the dynamic is
chaotic then the (pc − qc) trajectories depict Brownian like behavior. In order to examine the diffusive
behavior of pc and qc, we define the mean square displacement as:

Mc(n) = lim
N→∞

1
N

N

∑
j=1

(
(pc(j + n)− pc(j))2 + (qc(j + n)− qc(j))2

)
, n ≤ N

10
, (21)

with the asymptotic growth rate of

Kc = lim
n→∞

log Mc(n)
log n

. (22)

In practice, the final result K can be determined numerically by computing the median of Kc.
When K 	1, the behavior is classified as chaotic and when K is close to 0 the behavior is regular.

In Figure 7, we present the 0–1 test of the fractional-order map (10), when υ = 0.95 and α = 0.2. It is
clear that the output K converges to the values 1, which implies that system (10) is chaotic. Moreover,
when 0.98 ≤ υ < 0.998 the fractional-order map (10) has a transient state as shown in Figure 8. As it
can be seen that the state first converges into a bounded attractor and then it becomes divergent.

Similarly, for the second fractional-order map (16), we use Equation (19). The 0–1 test method
is applied for υ = 0.998, and υ = 0.995, and the resulting diagrams are plotted in Figure 9. It shows
that the asymptotic growth rate K approaches 1 as α increases, which confirms very well the results
in Figure 6.
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Figure 7. The 0–1 test method of the fractional-order map (10).
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Figure 8. Transient state of the fractional-order map for υ = 0.98 (a) when n = 570, (b) when n = 578.
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Figure 9. The 0–1 test of the fractional-order map (16). (a) The asymptotic growth rate versus α for
υ1 = υ2 = 0.998. (b) The asymptotic growth rate versus α for υ1 = υ2 = 0.995.

4. Conclusions

In this article, we investigated the chaotic behavior of new two-dimensional fractional chaotic
maps with closed curve fixed points. Numerical methods, including computations of Lyapunov
exponents, bifurcation diagrams, and the 0–1 test have been used to illustrate the complex dynamics
of these systems. Through this paper, we have shown that chaos exists in these fractional-order maps
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and that the type and range of chaotic behavior is dependent on the fractional order. Results shows
that the fractional-order maps are more complex then their integer order counterparts. Also, numerical
experiments have shown that the system exhibits the property of coexisting attractors. Future studies
will explore more dynamic behaviors of those systems, such as, control and synchronization.
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Abstract: Recently, hidden attractors with stable equilibria have received considerable attention in
chaos theory and nonlinear dynamical systems. Based on discrete fractional calculus, this paper
proposes a simple two-dimensional and three-dimensional fractional maps. Both fractional maps
are chaotic and have a unique equilibrium point. Results show that the dynamics of the proposed
fractional maps are sensitive to both initial conditions and fractional order. There are coexisting
attractors which have been displayed in terms of bifurcation diagrams, phase portraits and a 0-1
test. Furthermore, control schemes are introduced to stabilize the chaotic trajectories of the two
novel systems.

Keywords: chaos; coexisting attractors; hidden attractors

1. Introduction

Continuous-time and discrete-time chaotic dynamical systems have been extensively studied over
the last years. Referring to discrete-time systems number of chaotic maps have been deeply analyzed.
Researchers such as Hénon, Lozi and Arnold have attempted to provide different maps with different
features. In [1], Hénon proposed the first map by employing the Poincaré section on the Lorenz system.
In 1960, the Russian mathematician Vladimer I Arnold discovered a two-dimensional chaotic map
using an image of cat [2]. More recently, Lozi developed a new discrete chaotic system by replacing
the quadratic term in the Hénon map with quasi-linear term [3]. All of the chaotic attractors in these
maps fall into the class of self-excited attractors, for which the initial conditions are located near the
unstable fixed points. Recently, another type of attractors called hidden chaotic attractors have been
discovered, referring to attractors whose basin of attraction does not intersect with any neighborhoods
of any equilibrium of the systems [4]. They are generated by nonlinear systems without equilibrium
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points or with nonlinear systems with special equilibrium points, for example systems with stable
equilibrium points [5]. The topic of chaotic maps with hidden attractors has been recently investigated.
For example, in [6] a 1D chaotic discontinuous map without equilibria has been illustrated, whereas
in [7] three-dimensional chaotic maps with different types of stable equilibria have been proposed by
designing the simplest and most elegant difference systems. Moreover, in [8] 2D chaotic quadratic
maps without equilibria and with no discontinuity in the right-hand equations have been introduced.
On the basis of the famous Hénon map, some two-dimensional chaotic maps with no equilibrium point
and with stable equilibrium have been illustrated in [9]. Some other examples of chaotic attractors
with curve equilibrium were numerically presented in [10]. These studies have proven the significant
role of hidden attractors in practical engineering applications.

Fractional calculus is a very interesting topic in mathematics with several potential applications
in many fields of science and engineering [11]. Recently, several efforts have been devoted to the study
of complex dynamics of fractional maps, i.e., maps described by fractional-order difference equations.
Researchers have extensively examined the potential application of these maps in many fields such as,
engineering, economics and other areas [12–14]. For this purpose, many fractional maps have been
reported in the literature to show the different dynamical phenomena. For example, a fractional 3D
generalized Hénon map has been studied [15], whereas the Stefanski, Rössler and Wang fractional
maps have been illustrated in [16]. Moreover, in [17] the fractional-order version of the Grassi-Miller
map is considered, whereas in [18] the dynamics of the fractional discrete double scroll are analyzed in
detail. Results show that the dynamics of such systems are clearly dependent on the fractional-order
and they are more complex because of their memory effect. Moreover, control and synchronization
based on these fractional chaotic maps have also attracted lots of attention [19–22]

Up to the present day, most of the literature on the analysis of fractional maps is still limited
to systems with self exited attractors. To our knowledge, fractional maps with hidden attractors
have rarely been reported [23], which has inspired researchers to devote themselves to the design
of new two and three-dimensional fractional discrete-time chaotic systems [24–26]. Based on the
above considerations, new two and three-dimensional fractional chaotic maps with hidden coexisting
attractors are developed. The conducted analysis highlights that hidden attractors are generated for
some values of the fractional order in the difference equations. The presence of chaos is validated
via the bifurcation diagrams and phase portraits. Furthermore, we apply the 0-1 test method to
distinguish chaos from regular behavior [27]. The idea under the test is to transform the states of
the fractional maps into p − q plots. Generally, unbounded p − q trajectories imply chaotic behavior
whereas bounded trajectories imply regular behavior. We also propose two active controllers with the
aim of stabilizing the chaotic dynamics of the two fractional maps.

2. Basic Concepts

Herein, some discrete fractional calculus background and theorems are introduced briefly. The
definition of fractional Caputo-like difference operator will be given first.

Definition 1. For a given function u : Na = {a, a + 1, ...} −→ R, the Caputo definition of the fractional
difference operator of order ν 
∈ N is defined as:

CΔν
au (t) =

1
Γ (1 − ν)

t−(1−ν)

∑
s=a

(t − s − 1)−ν Δsu (s) , (1)

where the symbol Γ(.) represents the Euler’s gamma function and t ∈ Na+1−ν. According to reference [28], the
definition of ν-th fractional sum of Δsu (t) is expressed in the following:

Δ−ν
a u (t) =

1
Γ (ν)

t−ν

∑
s=a

(t − s − 1)(ν−1) u (s) , (2)

with t ∈ Na+ν and ν > 0.
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In the following, we need to define the discrete version of the proposed maps. For that, we
introduce the following theorem:

Theorem 1. [29] In particular, for the initial value problem
{CΔν

au(t) = f (t + ν − 1, u(t + ν − 1)),

Δ0u(a) = u0,
(3)

the solution turns out to the discrete integral equation as

u(t) = u0(t) +
1

Γ(ν)

t−ν

∑
s=a+1−ν

(t − s − 1)(ν−1) f (s + ν − 1, u(s + ν − 1)), (4)

in which t ∈ Nν+1 , (t−σ(s))(ν−1)

Γ(ν) is a discrete kernel function, and u0 is the initial condition.

Set a = 0 and (t−σ(s))(ν−1)

Γ(ν) = Γ(t−s)
Γ(ν)Γ(t−s−ν+1) , Equation (4) can be transformed to:

u(n) = u0 +
1

Γ(ν)

n

∑
j=1

Γ(n − j + ν)

Γ(n − j + 1)
f (j − 1, u(j − 1)). (5)

Stability of Fractional Order Maps

The stability of equilibrium points for fractional maps can be analysed using the following theorem.

Theorem 2. [30,31] Let x f be an equilibrium point of a nonlinear fractional difference system CΔν
a F (t) =

F (x(t + ν − 1)) where x(t) = (x1(t), x2(t), .., xn(t))T, and J(x f ) = ∂ f (x)
∂x

∣∣∣
x=x f

is the Jacobian matrix at the

equilibrium point x f . The equilibrium point x f is asymptotically stable when all the eigenvalues (λi, i = 1, . ., n)
of J verifies:

λi ∈
{

z ∈ C : |z| <
(

2 cos
|arg z| − π

2 − ν

)ν

and |arg z| > νπ

2

}
. (6)

We recall the following lemma, which is a special case of Theorem 2.

Lemma 1. [30] Two-dimensional fractional map is locally asymptotically stable if detJ > 0 and

−Tr(J)
2

≥
√

Det(J),

and (7)

ν > log2

√
Tr(J)2 − 4Det(J)− Tr(J)

2
,

in which Tr(J) is the trace of the Jacobian matrix J and Det(J) is the determinant of the matrix J.

We now present the following theorem, which identifies the asymptotic stability conditions of the
zero solution to a linear fractional difference system.

Theorem 3. [30] For a linear fractional difference system

CΔν
ae (t) = Me (t + ν − 1) , (8)

where e(t) = (e1(t), ..., en(t))
T , 0 < ν ≤ 1, M ∈ Rn×n and ∀t ∈ Na+1−ν, the zero equilibrium is

asymptotically stable if
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λ ∈
{

z ∈ C : |z| <
(

2 cos
|arg z| − π

2 − ν

)ν

and |arg z| > νπ

2

}
, (9)

for all the eigenvalues λ of M.

3. New Two and Three-Dimensional Fractional Maps

3.1. Description of the New Two-Dimensional Fractional Map

An effective method for defining new integer order maps with quadratic nonlinearity terms
was proposed by [32]. Motivated by this strategy, we removed and added some terms to obtain the
following two-dimensional fractional map:⎧⎪⎨

⎪⎩
CΔν

a x(t) = y(t + ν − 1)− x(t + ν − 1),
CΔν

ay(t) = −0.33x(t + ν − 1) + Ay(t + ν − 1)− 0.48x2(t + ν − 1) + 0.47y2(t + ν − 1)
+0.01x(t + ν − 1)y(t + ν − 1)− 0.9,

(10)

with state variables x and y, and system parameter A. 0 < ν ≤ 1 denotes the fractional order. For
calculating the equilibrium points of the fractional map (10), we assign its left hand side to zero:

{
y = x,
−0.33x + Ay − 0.48x2 + 0.47y2 + 0.01xy − 0.9 = 0,

(11)

from system of Equation (11) it follows:

(−0.33 + A)x − 0.9 = 0. (12)

It is easy to verify that the fractional map (10) has a unique equilibrium point when A 
= 0.33. The
Jacobian matrix of the fractional map (10) at an arbitrary point (x, y), is given by:

J =

(
−1 1

−0.33 − 1.29x + 0.01y A + 0.94y + 0.01x

)
. (13)

The associated characteristic equation is defined in terms of the trace (Tr(J)) and determinant
(Det(J)) of the matrix J by:

det(λI − J) = λ2 − Tr(J)λ + Det(J) = 0, (14)

where Tr(J) = −1 + A + 0.94y + 0.01x and Det(J) = −A + 0.3 − 0.95y + 1.28x. For A = −0.83, the
fractional map has a unique equilibrium point E = (−0.9

1.16 , −0.9
1.16 ). Based on Lemma 1 the equilibrium

point E is stable when ν > log2

√
Tr(J)2−4Det(J)−Tr(J)

2 . By simple calculation it is easy to verify that the
equilibruim point E is asymptotically stable when the fractional order ν > 0.1430.

In order to investigate the variety of dynamics behavior that can be observed in the fractional
map (10) near to the stable equilibrium point E, it is important to present at first the corresponding
numerical formula. In view of Theorem 1, the fractional map (10) is changed to:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(n) = x0 +
1

Γ(ν)

n
∑

j=1

Γ(n−j+ν)
Γ(n−j+1) (y(j − 1)− x(j − 1)),

y(n) = y0 +
1

Γ(ν)

n
∑

j=1

Γ(n−j+ν)
Γ(n−j+1) (−0.33x(j − 1) + Ay(j − 1)− 0.48x2(j − 1)+

0.47y2(j − 1) + 0.01x(j − 1)y(j − 1)− 0.9),

(15)

where x0 and y0 are the initial conditions. Numerical analysis are presented in the next subsection.
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3.2. Bifurcation and 0-1 Test

In the following, the coexisting of hidden attractors in the fractional map are revealed by phase
portraits, bifurcation diagrams and 0–1 test. The phase portrait is a geometric representation of the
trajectories of a dynamical system. For the system parameter A = −0.83, fractional order ν = 0.999
and initial condition (x0, y0) = (0.32,−1.85), a hidden strange attractor is numerically obtained as
it observed in Figure 1. The Lyapunov exponents (LEs) of the fractional map (10) are LE1 = 0.0107.
LE2 = −0.0279. Since the maximum Lyapunov exponent is larger than zero, we can determine that
the hidden attractor is chaotic.

x

y

Figure 1. Strange attractor of the two-dimensional fractional map (10) for ν = 0.999 and A = −0.83.

For A = −0.83, the dynamic evolution of the fractional map versus ν is given via plotting
its bifurcation diagram (see Figure 2). The bifurcation diagram is obtained by plotting the local
maximum value of the variable x for two sets of initial conditions. The blue diagram begins with
the initial condition (x0, y0) = (0.32,−1.85) and the red diagram begins with the initial condition
(x0, y0) = (−0.32,−1.85). When the fractional order ν varies from 1 to 0.999, our fractional system (10)
generates chaos with transient states. As ν decreases further a coexisting periodic orbits are obtained.
The coexisting attractors with different values of ν are shown in Figure 3. Two periodic attractors
coexist for ν = 0.9989, ν = 0.9987, ν = 0.9984 with initial values (x0, y0) = (0.32,−1.85) and
(x0, y0) = (−0.32,−1.85) as shown in Figure 3b–d. A hidden chaotic attractor is observed with order
ν = 0.9996. It is noticed that the type of hidden attractors not only depend on the value of ν but also
on the initial conditions.

Now, the p − q plots of the 0-1 test are used to confirm the property of coexisting attractors.
The 0-1 test is relatively new method that was proposed by Gottwald and Melbourne [27] to test the
presence of chaos in a series of data which originate from deterministic systems. For the fractional
map (10) consider a set of discrete points x(j) where j = 1, ..., N. For a randomly chosen constant
c ∈ (0, π), decompose the state x(n) into two components p and q as:

p(n) =
n

∑
j=1

x(j) cos(jc), q(n) =
n

∑
j=1

x(j) sin(jc), n = 1, 2, .., N. (16)

Generally, unbounded p − q trajectories imply chaotic behavior whereas bounded trajectories imply
regular behavior. As in Figure 3 we chose to fix the system parameter A to A = −0.83 and vary the
fractional order ν. Figure 4 shows the p − q plots with ν = 0.9996 and ν = 0.9984, where the blue
plots are obtained for the initial values (x0, y0) = (0.32,−1.85) and the red plots are obtained for
(x0, y0) = (−0.32,−1.85). In particular, Figure 4a shows Brownian like trajectories in p versus q plan
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for both initial conditions, confirming that the dynamics of the fractional map (10) are chaotic for
both initial values and fractional order ν = 0.9996. When ν = 0.9984, Figure 4b depicts bounded like
trajectories in p versus q plane for both initial conditions, which confirms the coexisting of hidden
periodic orbits.

ν

x m
a
x

Figure 2. Bifurcation diagrams of the two-dimensional fractional map (10) versus ν for A = −0.83.

x

y

(a) (b)

x

y

(c)

x

y

(d )

x

y

Figure 3. The coexisting hidden attractors of the two-dimensional fractional map (10) for system
parameter A = −0.83 and initial condition (−0.32,−1.85) for red attractors and (0.32,−1.85) for blue
attractors, with fractional order varying: (a) ν = 0.9996, (b) ν = 0.9989, (c) ν = 0.9987, (d) ν = 0.9984.
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Figure 4. The 0-1 test of the two-dimensional fractional map. (a) Brownian like trajectories for both
initial conditions with ν = 0.9996, (b) bounded trajectories for both initial conditions with ν = 0.9984.

3.3. Description of the New Three-Dimensional Fractional Map

We introduce here a new three-dimensional fractional map with two nonlinearities:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

CΔν
a x(t) = y(t + ν − 1)− x(t + ν − 1),

CΔν
ay(t) = z(t + ν − 1)− y(t + ν − 1),

CΔν
az(t) = −y(t + ν − 1)− 0.4z(t + ν − 1)− 0.1x(t + ν − 1)z(t + ν − 1)

+0.1y(t + ν − 1)z(t + ν − 1) + 1,

(17)

where ν is the fractional order in which 0 < ν ≤ 1. The equilibrium points of the fractional map (17)
are found by: ⎧⎪⎨

⎪⎩
y = x,
z = y,
−y − 0.4z − 0.1xz + 0.1yz + 1 = 0,

(18)

from Equation (18) we have the simplified form

− 1.4x + 1 = 0. (19)

It is obvious that the point Ef = ( 1
1.4 , 1

1.4 , 1
1.4 ) is the only equilibrium point and it is stable.

Similarly, the discrete version of system (17) is obtained by applying Theorem 1 as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(n) = x0 +
1

Γ(ν)

n
∑

j=1

Γ(n−j+ν)
Γ(n−j+1) (y(j − 1)− x(j − 1)),

y(n) = y0 +
1

Γ(ν)

n
∑

j=1

Γ(n−j+ν)
Γ(n−j+1) (z(j − 1)− y(j − 1)),

z(n) = z0 +
1

Γ(ν)

n
∑

j=1

Γ(n−j+ν)
Γ(n−j+1) (−y(j − 1)− 0.4z(j − 1)

−0.1x(j − 1)z(j − 1) + 0.1y(j − 1)z(j − 1) + 1).

(20)

Here, x0, y0 and z0 are the initial states. Taking advantage of the numerical solution (20), numerical
simulation can be performed to show the basic properties of the novel system (17).

3.4. Bifurcation and 0-1 Test

To evaluate the dynamic properties of the new system, the initial condition need to set as
(x0, y0, z0) = (−0.26, 3.83,−2.22). The three-dimensional fractional map (17) with stable equilibrium
point display strange attractor for ν = 0.999 as shown in Figure 5. Here, the largest Lyapunove
exponent (LEmax) of the fractional map (17) is calculated as LEmax = 0.0488, so the strange attractor in
Figure 5 is chaotic.
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xy

z

Figure 5. Strange attractor of the three-dimensional fractional map (17).

The bifurcation diagram can help us to observe the dynamic behaviours of the fractional map (17).
The fractional order ν is considered as the only bifurcation parameter in this subsection. Changing
ν from 0.95 to 1 and setting two different initial conditions we can obtain the bifurcation diagram
in Figure 6, where the blue color diagram and the red color diagram are yielded from the initial
conditions (x0, y0, z0) = (−0.26,−3.83,−2.22) and (x0, y0, z0) = (−0.26, 3.83,−2.22), respectively.
When ν ∈ (0.9503, 0.9922) coexisting fixed point attractors are observed. When the fractional order
increases from 0.9922 to 0.9975, we can observe coexisting periodic windows. For 0.9957 < ν ≤ 1, the
states of the fractional map go from periodic behavior to chaos. The coexistence of the different dynamic
behaviours of the new fractional map (17) is confirmed with phase portrait and p − q plots of the
0-1 test for different values of ν. Figure 7 shows the phase portraits of the system while Figure 8 shows
the p − q plots for the same fractional orders where the blue plots are obtained for the initial values
(x0, y0, z0) = (−0.26,−3.83,−2.22) and the red plots are obtained for (x0, y0, z0) = (−0.26, 3.83,−2.22).
Figure 8a depicts bounded like trajectories, which confirms the periodic phenomena of the hidden
attractor in Figure 7a for ν = 0.993. For ν = 0.9984, a hidden attractor coexists as shown in Figure 7,
whose Brownian-like trajectories can be seen in Figure 8.

ν

x
(n

)

Figure 6. Bifurcation diagram of the three-dimensional fractional map (15) versus ν.
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x

y
(a) (b)

x

y
Figure 7. Coexisting hidden attractors of the three-dimensional fractional map (17) with initial condition
(−0.26, 3.83,−2.22) for red attractors and (−0.26,−3.83,−2.22) for blue attractors, (a) for fractional
order ν = 0.993, (b) for fractional order ν = 0.9984.

p

q

(a)

p

q

(b)

Figure 8. The p− q plots of the three-dimensional fractional map, (a) bounded trajectories for ν = 0.993,
(b) Brownian-like trajectories for both initial conditions with ν = 0.9984.

4. Chaos Control

In this section, adaptive controllers are designed to stabilize the chaotic trajectories of
two-dimensional fractional map (10) as well as the three-dimensional fractional map (17) to zero
asymptotically. The purpose of such controllers is to assure that all states of the proposed maps
converge to zero, by adding an adaptive term into one of the systems states that forces the systems to
become linear. A purely linear fractional difference system of the form CΔν

a F (t) = MF (t + ν − 1) has
zero as its equilibrium. We use the stability theory of linear fractional difference systems to guarantee
the asymptotic stability of the zero equilibrium.

The controlled two-dimensional fractional map (10) is given by
⎧⎪⎨
⎪⎩

CΔν
a x(t) = y(t + ν − 1)− x(t + ν − 1),

CΔν
ay(t) = −0.33x(t + ν − 1) + Ay(t + ν − 1)− 0.48x2(t + ν − 1) + 0.47y2(t + ν − 1)

+0.01x(t + ν − 1)y(t + ν − 1)− 0.9 + C(t),
(21)
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where C(t) denotes the one-dimensional controller. Our goal is to find a suitable one-dimensional
controller such that both of states of system are stabilized towards zero asymptotically. For that, we
propose the following theorem.

Theorem 4. The two-dimensional fractional map (10) can be stabilized by the one-dimensional controller
described by

C(t) = 0.33x(t) + 0.48x2(t) + 0.47y2(t)− 0.01x(t)y(t) + 0.9, t ∈ Na+ν. (22)

Proof. If we substitute the adaptive control law (26) to the second state of the fractional map we obtain
the following set of equations:

{
CΔν

a x(t) = −x(t + ν − 1) + y(t + ν − 1),
CΔν

ay(t) = Ay(t + ν − 1).
(23)

System (23) can be represent by the following compact form:

CΔν
a(x, y)T = M×(x(t − 1 + ν), y(t − 1 + ν))T , (24)

where

M =

(
−1 1
0 A

)
. (25)

So, the eigenvalues λ1, λ2 of the matrix M have been found that satisfies the condition of the
Theorem 3:

|arg λi| = π >
νπ

2
and |λi| ≤ 1 ≤

(
2 cos

|arg λi| − π

2 − ν

)ν

, i = 1, 2.

Thus the zero equilibrium of (24) is asymptotically stable, therefore, we can conclude that the
proposed two-dimensional system (10) is stabilized.

Now, we give the evolution of states and phase space plots of the controlled system to confirm
the above theoretical results. In Figure 9, the value parameter is taken as A = −0.83 and the fractional
order is chosen as ν = 0.999. The simulation are done using the initial value (x0, y0) = (0.32,−1.85). It
is clear that the controller has compelled the states towards zeros.

With the same procedure, we may state the following result regarding the chaos control of the
three-dimensional fractional map (17).

n

x
(n

)

(a)

n

y

(b)

n

y

(c)

Figure 9. (a) Stabilization of state x(n), (b) stabilization of state y(n), (c) attractor of the controlled
system (10) for ν = 0.999.

Theorem 5. The three-dimensional fractional map (17) can be stabilized by the one-dimensional controller
described by

L(t) = y(t) + 0.1z(t)(x(t)− y(t))− 1, t ∈ Na+ν. (26)
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Again, assuming the fractional order value ν = 0.998, the resulting states and phase plot are
depicted in Figure 10. The results confirms the success of the proposed law in stabilizing the systems
states asymptotically.
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n

z
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Figure 10. (a) Stabilization of state x(n), (b) stabilization of state y(n), (c) stabilization of state z(n) ,(d)
attractor of the controlled system (17) for ν = 0.998.

5. Conclusions

In this paper, two fractional maps with stable equilibrium points are developed. The complex
dynamics of these fractional maps are discussed numerically with some changes in system parameters
and fractional order ν. The presence of chaos and the property of coexisting attractors have been
validated via the computation of a 0-1 test and bifurcation diagrams. The type of hidden attractors
does not only depend on the value of fractional order but also on the initial condition. Finally,
one-dimensional control laws have been designed, with the aim to stabilize at zero the dynamics of
the two proposed maps. These novel maps are good candidates for engineering applications. We will
focus on putting this claim to the test in a future study. An interesting question under investigation is
that of developing a new type of fractional pseudo number generator based on the fractional maps
with hidden attractors for potential cryptographic applications. It is our intention to investigate this
issue further in future studies.
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Abstract: The main goal of this paper is to define a simple but effective method for approximating
solutions of multi-order fractional differential equations relying on Caputo fractional derivative and
under supplementary conditions. Our basis functions are based on some original generalization of
the Bessel polynomials, which satisfy many properties shared by the classical orthogonal polynomials
as given by Hermit, Laguerre, and Jacobi. The main advantages of our polynomials are two-fold:
All the coefficients are positive and any collocation matrix of Bessel polynomials at positive points
is strictly totally positive. By expanding the unknowns in a (truncated) series of basis functions
at the collocation points, the solution of governing differential equation can be easily converted
into the solution of a system of algebraic equations, thus reducing the computational complexities
considerably. Several practical test problems also with some symmetries are given to show the
validity and utility of the proposed technique. Comparisons with available exact solutions as well as
with several alternative algorithms are also carried out. The main feature of our approach is the good
performance both in terms of accuracy and simplicity for obtaining an approximation to the solution
of differential equations of fractional order.

Keywords: caputo fractional derivative; bessel functions; collocation method; multi-order fractional
differential equations
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1. Introduction

In recent years, fractional calculus has becoming an efficient and successful tool for the analysis of
several physical-mathematical problems. The main reason for the increasing number of papers dealing
with fractional problems is also explained by the intrinsic and natural possibility of the fractional
calculus to take into account also some memory effects, which is quite impossible by using the ordinary
differential operators [1]. In this work, we consider the nonlinear multi-order fractional differential
equations (MOFDEs) of the form

Dγ‹ xptq “ F
´

t, xptq,Dβ1‹ xptq, . . . ,Dβ�‹ xptq
¯

, 0 ď t ď L, (1)

subjected by the following boundary or supplementary conditions

Hjpxpηjq, xp1qpηjq, . . . , xpm´1qpηjqq “ dj j “ 0, 1, . . . , m ´ 1, (2)

where Hj are linear functions, dj P R, and ηj are some given points in r0, Ls. In (1), Dγ‹ denotes the
Caputo fractional derivative operator such that m ´ 1 ă γ ď m, m P N, and 0 ă β1 ă β2 ă . . . ă β� ă γ

Symmetry 2020, 12, 1260; doi:10.3390/sym12081260 www.mdpi.com/journal/symmetry79
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are real constants. The function F can be either linear or nonlinear function of its arguments. In [2], some
preliminary results both on the existence and uniqueness of the solution of MOFDEs (1) are obtained.

It is well-known that usually the exact solution of fractional differential equations cannot be
obtained analytically. Therefore, many authors have recently developed some suitable numerical
methods for such equations. Among the many approximation algorithms for (1) and (2), we mention
the systems-based decomposition approach [3], the Adomian decomposition method [4], the spectral
methods [5–8], the B-spline approach [9], and the generalized triangular function [10].

It is known that the traditional orthogonal polynomials such as Jacobi, Hermit, and Laguerre
are solution of a second order differential equation. In addition, the derivatives of these polynomials
constitute an orthogonal system. Moreover, there exist another set of polynomials with the two
aforementioned properties. They satisfy the following second order differential equation

x2 y2pxq ` 2px ` 1q y1pxq ´ npn ` 1q ypxq “ 0, (3)

where n is a positive integer. Krall and Frink [11] called these the Bessel polynomials thank to their close
relation with the Bessel functions of half-integral order. In fact, they have shown that these polynomials
occur naturally as the solutions of the classical wave equation in spherical coordinates. These
polynomials also appear in the study of various mathematical topics including transcendental number
theory [12,13] and student t-distributions [14]. These polynomials seem to have been considered first by
Bochner [15] as pointed in Grosswald [16]. However, Krall and Frink considered them in more general
setting so that to include also the polynomial solutions of the differential Equation (3). The properties
of Bessel polynomials such as recurrence relations, generating functions, and orthogonality were
investigated in [11]. The algebraic properties of these polynomials were considered by Grosswald [16].
Some more information about the theory and applications of Bessel polynomials can be found e.g.,
in [17].

In this research, we establish a new approximation algorithm based upon the Bessel polynomials
to obtain a solution of a fractional model (1). In fact, one of our motivation comes from a recent
paper [18], which proved the total positiveness of any collocation matrix of theses polynomials
evaluated at positive (collocation) points. To the best of our knowledge, this is the first attempt to
study these polynomials for approximating MOFDEs. In summary, the main idea behind the presented
approximation algorithm based on using the Bessel polynomials with together the collocation points is
that it transforms the differential operators in (1) to an equivalent algebraic form, thus greatly reducing
the numerical efforts. It should be mentioned that our Bessel polynomials are different from those
Bessel functions known as Bessel functions of the first kind that previously considered in the literature,
see [19] for a recent review.

The content of the paper is structured as follows. In Section 2 some relevant properties of the
Caputo fractional derivative and the generalized Taylor’s formula for the Caputo derivative are
presented. Section 3 is dedicated to the definitions of Bessel polynomials and their generalized
fractional-order counterpart. Moreover, the results about the convergence and error bound of these
polynomials are established. In Section 4, where a collocation method also shown to solve the MOFDEs.
By using these Bessel basis functions along with collocation points, the proposed method converts the
MOFDEs into a nonlinear matrix equation. Hence, the residual error function is introduced to assess
the accuracy of Bessel-collocation scheme when the exact solutions are not available. In Section 5,
some examples with various parameters together with error evaluation are given to show the utility
and applicability of the method. The obtained results are interpreted through tables and figures.
Finally, in Section 6, the report ends with a summary and conclusion.

2. Some Preliminaries

To continue, some definitions and theorems from fractional calculus theory are presented.
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Definition 1. Let f ptq be a m-times continuously differentiable function. The fractional derivative Dq‹ of f ptq
of order q ą 0 in the Caputo’s sense is defined as

Dq‹ f ptq “
#
Im´q f pmqptq if m ´ 1 ă q ă m,

f pmqptq, if q “ m, m P N,
(4)

where

Iq f ptq “ 1
Γpqq

ż t

0

f psq
pt ´ sq1´q ds, t ą 0.

The properties of the operator Dq‹ can be found in [1]. Besides the linearity, the following properties
will be also used

Dq‹pCq “ 0 pC is a constantq, (5)

Dq‹ tβ “
$’&’%

Γpβ ` 1q
Γpβ ` 1 ´ qq tβ´q, for β P N0 and β ě rqs, or β R N0 and β ą tqu,

0, for β P N0 and β ă rqs.
(6)

Now, we define a generalization of Taylor’s formula which involves Caputo fractional derivatives
(see a proof in [20]).

Theorem 1 (Generalized Taylor’s formula). Assuming that Dkα‹ gpxq P Cp0, Ls, where k “ 0, 1, . . . , N,
0 ă α ď 1, and L ą 0. Then, there exists a 0 ă θ ď x such that

gpxq “
N´1ÿ
j“0

xjα

Γpjα ` 1qD
jα‹ gp0`q ` xNα

ΓpNα ` 1qD
Nα‹ gpθq, @x P r0, Ls.

Also, we have

ˇ̌̌
gpxq ´

N´1ÿ
j“0

xjα

Γpjα ` 1qD
jα‹ gp0`q

ˇ̌̌
ď xNα

ΓpNα ` 1q Mα,

where |DNα‹ gpθq| ď Mα and DNα‹ “ Dα‹ ¨ Dα‹ ¨ ¨ ¨Dα‹ (N-times).

Finally, we define the concept of the weighted norm used in the proof of Theorem 2:

Definition 2. Let assume that g P Cp0, Ls and wptq is a weight function. Then

}gptq}w “
˜ż L

0
|gptq|2 wptqdt

¸ 1
2

.

3. Fractional-Order Bessel Functions

In this section, definitions of Bessel polynomials as well as their generalized fractional-order
version are introduced. Hence, some properties and convergence results for them are established.

3.1. Bessel Polynomials

The Bessel polynomial Bnpxq of degree n and with constant term equal to 1 satisfies the following
differential equation

x2 y2pxq ` 2px ` 1q y1pxq ´ npn ` 1q ypxq “ 0, n “ 0, 1, . . . .
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Starting with B0pxq “ 1 and B1pxq “ 1 ` x, the three-terms recurrence relation for the Bessel
Polynomial is

Bn`1pxq “ p2n ` 1qxBnpxq ` Bn´1pxq, n “ 1, 2, . . . . (7)

Beside B0pxq and B1pxq, the next four of these polynomials are listed as follows

B2pxq “ 1 ` 3x ` 3x2,

B3pxq “ 1 ` 6x ` 15x2 ` 15x3,

B4pxq “ 1 ` 10x ` 45x2 ` 105x3 ` 105x4,

B5pxq “ 1 ` 15x ` 105x2 ` 420x3 ` 945x4 ` 945x5.

The coefficients of these polynomials are positive with Bnp0q “ 1 and B1
np0q “ npn ` 1q{2. The

explicit expression for the Bessel polynomials as the unique solution of the given differential equation
is defined by

Bnpxq “
nÿ

k“0

1
k!

pn ` kq!
pn ´ kq!

´ x
2

¯k
, n “ 0, 1, . . . . (8)

These polynomials form an orthogonal system with respect to the weight function wpxq ”
expp´2{xq on the unite circle C, i.e.,

1
2πi

ż
C
BnpxqBmpxq wpxqdx “ 2p´1qn`1δnm

2n ` 1
, (9)

where δnm is the Kronecker delta function. Please note that the path of integration is not unique, and it
can be replaced by an arbitrary curve surrounding x “ 0. The same conclusion is true for the weight
function wpxq. This implies that an arbitrary analytic function may be added to wpxq and wpxq may
be multiplied by a nonzero constant. By means of the orthogonality relation (9), one may expand a
function gpxq in terms of Bessel functions

gpxq «
8ÿ

n“0

an Bnpxq,

where the coefficients an are

an “ p´1qn`1pn ` 1
2

q
ż

C
Bnpxq gpxq wpxqdx.

3.2. Fractional Bessel Polynomials

The fractional-order Bessel functions can be defined by introducing the change of variable x “
tα{L, L, α ą 0 in (8). Let these polynomials will be denoted by Bα

nptq “ Bnpxq. By generalizing these
polynomials on the interval r0, Ls we obtain

B
α
nptq “

nÿ
k“0

ηk pn ` kq!
k! pn ´ kq!

tkα, 0 ď t ď L ă 8, (10)

where η “ 1
2L . It is not difficult to show that the set of fractional polynomial functions

tBα
0,Bα

1, . . .u is orthogonal on r0, Ls with respect to the weight function wα
Lptq ” tα´1 expp´2L{tαq.

The fractional-order polynomials are useful in particular when the solutions of the underlying MOFDEs
have fractional behavior.
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3.3. Function Approximation and Convergence

Our goal is to obtain an approximate solution for the model problem (1) represented by the
truncated Bessel series

xN,αptq “
Nÿ

n“0

an B
α
nptq, 0 ď t ď L, (11)

where the unknown coefficients an, n “ 0, 1, . . . , N must be sought. For this purpose, we express Bα
nptq

in the matrix representation as
BBBαptq “ TTTαptq DDDt, (12)

where
TTTαptq “

”
1 tα t2α . . . tNα

ı
, BBBαptq “ rBα

0ptq B
α
1ptq . . . B

α
Nptqs ,

and the lower triangular matrix DDD of size pN ` 1q ˆ pN ` 1q takes the form

DDD “

»—————————————————————–

1 0 0 . . . 0 0

1 1 0 . . . 0 0

1 3 3 . . . 0 0

...
...

. . . . . . . . .
...

1
η N!

pN ´ 2q! 1!
η2 pN ` 1q!
pN ´ 3q! 2!

. . .
ηN´1 p2N ´ 2q!

0! pN ´ 1q!
0

1
η pN ` 1q!
pN ´ 1q! 1!

η2 pN ` 2q!
pN ´ 2q! 2!

. . .
ηN´1 p2N ´ 1q!

1! pN ´ 1q!
ηN p2Nq!

0! N!

fiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

.

By expressing the relation (11) in a matrix form and exploiting (12), the approximate solution
xN,αptq in the matrix form can be rewritten as

xN,αptq “ BBBαptq AAA “ TTTαptq DDDt AAA, (13)

where the vector of unknown is AAA “ ra0 a1 . . . aNst. Our further aim is to establish the
convergence results of the fractional Bessel polynomials. Roughly speaking, the next theorem shows
that the approximate solution xN,αptq converges to the solution xptq of differential Equation (1) as
N Ñ 8, see e.g., [21] for a similar proof.

Theorem 2. Let assume that Dkα‹ gptq P Cp0, Ls for k “ 0, 1, . . . , N and let

Sα
N “ SpanxBα

0ptq,Bα
1ptq, . . . ,Bα

N´1ptqy.

Suppose that gN,αptq “ BBBαptq AAA is the best approximation out of Sα
N to g, then the following error bound

holds:

}gptq ´ gN,αptq}wα
L

ď LNα Mα

expp 1
Lα´1 q ΓpNα ` 1q

´ Lα

2Nα ` α

¯1{2
,

where Mα ě |DNα‹ gptq|, t P p0, Ls.
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Proof. According to Theorem 1, the generalized Taylor’s formula for gptq can be represented as
G “ řN´1

j“0
tjα

Γpjα`1qD
jα‹ gp0`q, and satisfies

|g ´ G| ď tNα

ΓpNα ` 1q Mα.

Using the fact that BBBαptq AAA is the best approximation to g from Sα
N and G P Sα

N , we conclude that

}gptq ´ gN,αptq}2
wα

L
ď }g ´ G}2

wα
L

ď
” Mα

ΓpNα ` 1q
ı2

ż L

0
expp´2L

tα
qt2Nαtα´1dt. (14)

Employing the inequality ´ 2Lα

tα ď ´2, which holds for all t P p0, Ls, one immediately find that
expp´ 2L

tα q ď expp ´2
Lα´1 q. Thus, by inserting this inequality into (14) and then integrating we conclude

that

}gptq ´ gN,αptq}2
wα

L
ď

” Mα

ΓpNα ` 1q
ı2 expp ´2

Lα´1 qLp2N`1qα

p2N ` 1qα
.

The proof is complete by taking the square roots of both sides.

Therefore, for obtaining an approximate solution of the form (11) for the solution of (1) the
following collocation points are used on 0 ă t ď L,

ti “ L
N

i, i “ 0, 1, . . . , N. (15)

4. The Collocation Scheme

To proceed, we approximate the solution xptq of MOFDEs (1) in terms of pN ` 1q-terms Bessel
polynomials series denoted by xN,αptq on the interval r0, Ls. In the matrix representation, we consider

xptq – xN,αptq “ TTTαptq DDDt AAA. (16)

By placing the collocation points (15) into (16), we get to a system of matrix equations as

xN,αptiq “ TTTαptiq DDDt AAA, i “ 0, 1, . . . , N.

Hence, we write the preceding equations compactly as

XXX “ TTT DDDt AAA, (17)

where

TTT “

»————–
TTTαpt0q
TTTαpt1q

...
TTTαptNq

fiffiffiffiffifl , XXX “

»————–
xN,αpt0q
xN,αpt1q

...
xN,αptNq

fiffiffiffiffifl .

To handle the fractional derivative of order γ in (1), we differentiate both sides of (16),

Dγ‹ xN,αptq “ Dγ‹ TTTαptq DDDt AAA. (18)

By means of the property (5) and (6), the calculation of Dγ‹ TTTαptq can be easily obtained as follows

TTTpγq
α ptq :“ Dγ‹ TTTαptq “ r0 Dγ‹ tα . . . Dγ‹ tαNs.
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To write the fractional derivative Dγ‹ involved in (1) in the matrix form, the collocation points (15)
will be inserted into (18) to have

Dγ‹ xN,αptiq “ TTTpγq
α ptiq DDDt AAA, i “ 0, 1 . . . , N,

which can be expressed equivalently as

XXXpγq “ TTTpγq DDDt AAA, (19)

where

XXXpγq “

»————–
Dγ‹ xN,αpt0q
Dγ‹ xN,αpt1q

...
Dγ‹ xN,αptNq

fiffiffiffiffifl , TTTpγq “

»—————–
TTTpγq

α pt0q
TTTpγq

α pt1q
...

TTTpγq
α ptNq

fiffiffiffiffiffifl .

Similarly, the fractional derivative operators Dβ j‹ xptq in (1) for j “ 1, . . . , � can be approximated as

XXXpβ jq “ TTTpβ jq DDDt AAA, (20)

where XXXpβ jq and TTTpβ jq are obtained as in (20) by replacing γ with β j.
By inserting the collocation points into (1), we have the system

Dγ‹ xptiq “ F
´

ti, xptiq,Dβ1‹ xptiq, . . . ,Dβ�‹ xptiq
¯

, i “ 0, 1, . . . , N. (21)

Considering these equations in a matrix form and substituting the relations (17), (19), and (20)
into the resulting system, a fundamental matrix equation is obtained to be solved. Let us assume that
the function F in (21) is the linear form

F “
�ÿ

k“1

ckptqDβk‹ xptq ` c0ptq xptq ` hptq,

where ckptq for k “ 1, . . . , � and c0ptq, hptq are given functions. In this case, the equations in (21) can be
rewritten in the matrix representation as

XXXpγq “
�ÿ

k“1

CCCk XXXpβkq ` CCC0 XXX ` HHH, (22)

where the coefficient matrices CCCk, k “ 0, 1, . . . � with size pN ` 1q ˆ pN ` 1q and the vector HHH of size
pN ` 1q ˆ 1 have the forms

CCCk “

»————–
ckpt0q 0 . . . 0

0 ckpt1q . . . 0
...

...
. . .

...
0 0 . . . ckptNq

fiffiffiffiffifl , HHH “

»————–
hpt0q
hpt1q

...
hptNq

fiffiffiffiffifl ,

Substituting the relations (17), (19), and (20) into (22), the fundamental matrix equation is obtained

WWW AAA “ HHH, or rWWW; HHHs, (23)

where
WWW :“

´
TTTpγq ´ CCC0 TTT ´ CCC1 TTTpβ1q ´ . . . ´ CCC� TTTpβ�q

¯
DDDt.
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Obviously, (23) is a linear matrix equation and an, n “ 0, 1, . . . , N are the unknowns Bessel
coefficients to be determined.

Next aim is to take into account the initial or boundary conditions (2). For the first condition
xp0q “ x0, we tend t Ñ 0 in (16) to get the following matrix representation

pXXX0 AAA “ x0, pXXX0 :“ TTTαp0q DDDt “ rx̂00 x̂01 . . . x̂0Ns.

For the remaining initial conditions, one needs to calculate the integer-order derivatives dk

dtk TTTαptq,
k “ 1, 2, . . . , n ´ 1, which strictly depend on α as well as N. For example, by choosing α “ 1{2 and
N “ 7 we get

TTT 1
2
ptq “

”
1 t1{2 t t3{2 t2 t5{2 t3 t7{2

ı
.

Differentiation twice with respect to t reveals that

d
dt

TTT 1
2
ptq “

„
0 0 1

3
2

t1{2 2t
5
2

t3{2 3t2 7
2

t5{2
j

,

d2

dt2 TTT 1
2
ptq “

„
0 0 0 0 2

15
4

t1{2 6t
35
4

t3{2
j

.

Now, by differentiating k times in (16), and defining

TTTpkq
α ptq :“ dk

dtk TTTαptq,

with the limit t Ñ 0, we conclude for k “ 1, 2, . . . , n ´ 1 that

pXXXk AAA “ xk, pXXXk :“ TTTpkq
α p0q DDDt “ rx̂k0 x̂k1 . . . x̂kNs.

Similarly, for the end conditions xpkqpLq “ xLk, k “ 0, . . . , n ´ 1, the following matrix expressions
are obtained pXXXLk AAA “ xTk, pXXXLk :“ TTTpkq

α pLq DDDt “ rx̂L0 x̂L1 . . . x̂LNs.
Now, we replace the first n rows of the augmented matrix rWWW; HHHs in (23) by the row matrices

rpXXXk; xks or rpXXXLk; xLks, k “ 0, 1, . . . , n ´ 1 to get the (nonlinear) algebraic system of equations

pWWW AAA “ pHHH, or r pWWW; pHHHs.

Thus, the unknown Bessel coefficients in (16) will be known through solving this (nonlinear)
system. This can be obtained by using the Newton’s iterative algorithm.

Remark 1. In numerical applications below, we frequently encounter the nonlinear terms like xsptq for s “
2, 3 . . .. To approximate the nonlinear term x2ptq in terms of x2

N,αptq, the collocation points (15) will be
substituted into x2

N,αptq. It can be easily seen that in the matrix representation we have

XXX2 “

»————–
x2

N,αpt0q
x2

N,αpt1q
...

x2
N,αptNq

fiffiffiffiffifl “

»————–
xN,αpt0q 0 . . . 0

0 xN,αpt1q . . . 0
...

...
. . .

...
0 0 . . . xN,αptNq

fiffiffiffiffifl
»————–

xN,αpt0q
xN,αpt1q

...
xN,αptNq

fiffiffiffiffifl “ pXXX XXX.

Using (16), we further express the matrix pXXX as a product of three block diagonal matrices as follows

pXXX “ pTTT pDDD pAAA,
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where

pTTT “

»————–
TTTαpt0q 0 . . . 0

0 TTTαpt1q . . . 0
...

...
. . .

...
0 0 . . . TTTαptNq

fiffiffiffiffifl , pDDD “

»————–
DDDt 0 . . . 0
0 DDDt . . . 0
...

...
. . .

...
0 0 . . . DDDt

fiffiffiffiffifl , pAAA “

»————–
AAA 0 . . . 0
0 AAA . . . 0
...

...
. . .

...
0 0 . . . AAA

fiffiffiffiffifl .

Analogously, the higher-order nonlinear terms can be treated recursively XXXs “ ppXXXqs´1 X, s “ 3, 4, . . ..

4.1. Error Estimation

In general, the exact solution of most MOFDEs cannot be explicitly obtained. Thus, we need some
measurements to test the accuracy of the proposed scheme. Since the truncated Bessel series (11) as an
approximate solution is satisfied in (1), our expectation is that the residual error function denoted by
RN,αptq becomes approximately small. Here, RN,αptq : r0, Ls Ñ R obtained by inserting the computed
approximated solution xN,αptq into the differential equation (1). More precisely, for testing accuracy of
some numerical models we calculate

RN,αptq “
ˇ̌̌
Dγ‹ xN,αptq ´ F

´
t, xN,αptq,Dβ1‹ xN,αptq, . . . ,Dβ�‹ xN,αptq

¯ ˇ̌̌
– 0, t P r0, Ls. (24)

It should be noticed that the fractional derivatives of order γ, β j, j “ 1, . . . , � of the approximate
solution xN,αptq in (24) are calculated by using the properties (5) and (6). Obviously, the residual
function is vanished at the collocation points (15), so our expectation is that RN,αptq Ñ 0 as N tends
to infinity. This implies that the smallness of the residual error function shows the closeness of the
approximate solution to the true exact solution.

5. Illustrative Test Problems

Now, we show the benefits of the presented Bessel-collocation scheme by simulating some case
examples including various linear and nonlinear initial and boundary value problems. The numerical
models and calculations are verified through a comparison with existing computational schemes
and experimental measurements. Our computations were carried out using MATLAB software
version R2017a.

Problem 1. In the first problem, we consider the following inhomogeneous Bagley–Torvik equation modelling
the motion of an immersed plate in a Newtonian fluid [5–7]

xp2qptq ` D
3
2‹ xptq ` xptq “ t ` 1,

with the initial conditions xp0q “ 1 and xp1qp0q “ 1. The exact solution of this problem is xptq “ t ` 1.

By employing N “ 2 and L “ 1, we are looking for an approximate solution in the form
xN,αptq “ ř2

n“0 anB
α
nptq. To this end, we calculate the unknown coefficients a0, a1, and a2. For this

example we set α “ 1 and the collocation points t0 “ 0, t1 “ 1
2 , t3 “ 0 are used. Using γ “ 2 and

β1 “ 3
2 , the corresponding matrices and vectors in the fundamental matrix Equation (23) become

TTTp 3
2 q “

»—–0 0 0
0 0 1358{851
0 0 167{74

fiffifl , TTTp2q “
»—–0 0 2

0 0 2
0 0 2

fiffifl , TTT “
»—–1 0 0

1 1{2 1{4
1 1 1

fiffifl ,
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DDD “
»—–1 0 0

1 1 0
1 3 3

fiffifl , HHH “
»—– 1

3{2
2

fiffifl ,
” pWWW; pHHHı

“
»—–1 1 1 ; 1

1 3{2 1881{134 ; 3{2
0 1 3 ; 1

fiffifl .

By solving the linear system pWWW AAA “ pHHH, the coefficients matrix is found as

AAA “ r0 1 0st.

Afterwards, by inserting the obtained coefficients into x2,1ptq we get the approximate solution

x2,1ptq “
”
1 1 ` t 3t2 ` 3t ` 1

ı
AAA “ 1 ` t,

which is the desired exact solution.

Problem 2. In the next example, the following nonlinear initial-value problem will be considered [5,7]

xp3qptq ` D
5
2‹ xptq ` x2ptq “ t4.

The initial conditions are xp0q “ 0, xp1qp0q “ 0, and xp2qp0q “ 2. It can be easily checked that the exact
true solution is xptq “ t2.

For this example, we take N “ 3, α “ 1, and the collocation points are t0, 1
3 , 2

3 , 1u. To obtain the
unknown coefficients a0, a1, a2, a3 in x3,1ptq, the following nonlinear algebraic system of equations to
be solved $’’’’’&’’’’’%

a0 ` a1 ` a2 ` a3 “ 0,

a1 ` 3a2 ` 6a3 “ 0,

6a2 ` 30a3 “ 2,

90a3 ` 180?
π

a3 ` pa0 ` 2a1 ` 7a2 ` 37a3q2 “ 1.

By solving the above system, we get

a0 “ 2
3

, a1 “ ´1, a2 “ 1
3

, a3 “ 0.

Therefore, we get

x3,1ptq “
”
1 1 ` t 1 ` 3t ` 3t2 1 ` 6t ` 15t2 ` 15t3

ı
AAA “ t2,

which is obviously the exact solution.
In the next example, we show the advantage of using the fractional-order Bessel functions in the

computations.

Problem 3. In this test example, we solve the initial-value problem [7]

xp1qptq ` D
1
2‹ xptq ` xptq “ t

5
2 ` 5

2
t

3
2 ` 15

?
π

16
t2,

with initial condition xp0q “ 0. The exact solution is xptq “ t2?
t.
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We first consider N “ 5 and α “ 1{2. The approximated solution x5, 1
2
ptq for t P r0, 1s takes

the form

x5, 1
2
ptq “ 3.55309 ˆ 10´14 t2 ´ 2.20767 ˆ 10´13 t ` 2.38332 ˆ 10´13 t1{2

` 4.17169 ˆ 10´14 t3{2 ` 1.0 t5{2 ` 9.97959 ˆ 10´111.

However, with a lower number of basis functions one can also obtain an accurate result. Using
N “ 2, α “ 5{2 and N “ 3, α “ 5{6, the following approximations are obtained

x2, 5
2
ptq “ 4.88118 ˆ 10´17 t5 ` 1.0 t5{2,

x3, 5
6
ptq “ 1.0 t5{2 ´ 4.899133356 ˆ 10´17 t5{3 ` 5.889017161 ˆ 10´17 t5{6.

Moreover, to show the advantage of the presented approach and to validate our obtained
approximated solutions, we make a comparison in terms of errors in the L8 and L2 norms in Table 1.
We compare the Bessel-collocation approach and the Chelyshkov collocation spectral method [7].
In this comparison, we use different N “ 1, 2, 3 and α “ 1{2, 5{2, 5{6.

Table 1. Comparison of L8, L2 error norms for test Problem 3.

New Bessel Chelyshkov [7]

N “ 2, α “ 5
2 N “ 3, α “ 5

6 N “ 5, α “ 1
2 N “ 16 N “ 20

L8 3.17´17 2.50´17 8.05´14 2.45´06 8.59´07
L2 6.18´17 6.32´17 2.39´14 9.89´07 3.24´07

Problem 4. Consider the boundary value problem [22,23]

Dγ‹ xptq ´ Dβ‹ xptq “ ´p1 ` exp pt ´ 1qq, 1 ă γ ď 2, 0 ă β ď 1,

with initial conditions xp0q “ 0 and xp1q “ 0. The exact solution corresponds to γ “ 2 and β “ 1 is given as
xptq “ t ´ t exp pt ´ 1q.

Let N “ 8 and set α “ 1. For γ “ 2, β “ 1, the approximate solution x8,1ptq of the model Problem 4
using Bessel functions in the interval 0 ď t ď 1 is

x8,1ptq “ ´ 0.0001286702494 t8 ´ 0.0003938666636 t7 ´ 0.003196278513 t6

´ 0.01524130813 t5 ´ 0.06134909192 t4 ´ 0.183930672 t3

´ 0.3678807668 t2 ` 0.6321206543 t ´ 2.12897992 ˆ 10´109.

In Table 2, we report the numerical results corresponding to these values of γ, β using different
N “ 8, 16 evaluated at some points t P r0, 1s. The corresponding absolute errors EN,αptq :“
|xptq ´ xN,αptq| are also reported in this table. Moreover, the numerical results based on Haar
wavelet operational matrices [22] are given in the last column of Table 2. As can see from Table 2,
our approximate solutions agree with the results obtained in [22]. The next observation is that more
accurate solutions are obtained if one increases the number of Bessel functions N.
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Table 2. Comparison of approximate solutions and the corresponding absolute errors for test Problem 4
using N “ 8, 16, and γ “ 2, β “ 1.

N “ 8 N “ 16 Haar Wavelet [22]

t x8,1ptq E8,1ptq x16,1ptq E16,1ptq J “ 10

0.1 0.0593430365264982 2.50´09 0.059343034025940 2.96´16 0.05934300
0.2 0.1101342091046447 1.93´09 0.110134207176555 3.02´16 0.11013418
0.3 0.1510244104291788 1.57´09 0.151024408862577 3.07´16 0.15102438
0.4 0.1804753466639111 1.10´09 0.180475345562389 2.63´16 0.18047531
0.5 0.1967346707501356 6.06´10 0.196734670143683 2.57´16 0.19673463
0.6 0.1978079724388553 6.02´11 0.197807972378616 2.13´16 0.19780792
0.7 0.1814272449585667 5.64´10 0.181427245522797 2.80´16 0.18142718
0.8 0.1450153963505055 1.19´09 0.145015397537614 1.73´16 0.14501532
0.9 0.0856463216234075 2.14´09 0.085646323767636 1.52´16 0.08564623

In Figure 1, x10,1ptq is plotted when γ “ 2 (β “ 1) is fixed and different values of β “
0.25, 0.5, 0.75, 1 (γ “ 1.25, 1.5, 1.75, 2) are examined. It is observed that as γ and β approached to
1 and 2 respectively, numerical solutions tend to the exact solutions.
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Figure 1. Numerical approximations for fixed β “ 1 and γ “ 1.25, 1.5, 1.75, 2 (left) and fixed γ “ 2 and
β “ 0.25, 0.5, 0.75, 1 (right) in test Problem 4 with N “ 10.

Problem 5. Let us consider the initial-value problem of Bagley–Torvik equation of fractional order with variable
coefficients [24,25]

xp2qptq ` 1
2

?
πt2 D

3
2‹ xptq ´ 4

?
t xptq “ 6t,

with initial conditions xp0q “ 0, xp1qp0q “ 0. The exact solution is xptq “ t3.

Clearly, the exact solution is a third-degree polynomial. Therefore, we take N “ 3 and α “ 1,
which are sufficient to get the desired approximations. Using the usual collocation points as in
Problem 2 and similar to Problem 1, we get the final augmented matrix

” pWWW; pHHHı
“

»———–
1 1 1 1 ; 0

´1351{585 ´4782{1553 2691{2701 6598{129 ; 2
´1277{391 ´4801{882 ´2659{445 6090{97 ; 4

0 1 3 6 ; 0

fiffiffiffifl .

Solving the resulting linear system, we find

AAA “ r´1
3

3
5

´ 1
3

1
15

st.
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Therefore, the approximated solution x3,1ptq is obtained as

x3,1ptq “
”
1 1 ` t 3t2 ` 3t ` 1 1 ` 6t ` 15t2 ` 15t3

ı
AAA “ t3,

which is the exact solution.

Problem 6. Consider the fractional Riccati equation [23,26]

Dγ‹ xptq ` xptq ´ x2ptq “ 0, 0 ă γ ď 1,

on a long time interval with L “ 5 and initial condition xp0q “ 1{2. When γ “ 1, the exact solution is
xptq “ 1

expptq`1 .

We calculate the approximated solution xN,αptq using N “ 7 and γ equals to α “ 1{4. Thus, we get

x7, 1
4
ptq “ 0.1617950181136742 t

3
4 ´ 0.03445544072182753 t

1
2 ´ 0.2700823207417999 t

1
4

´ 0.009800299427063008 t
3
2 ´ 0.1204495580962043 t ` 0.04675854257899483 t

5
4

` 0.0008798927221707359 t
7
4 ` 0.49999999999998357401.

To validate this solution, we also employ the old fractional-order Bessel polynomials as well as
Chelyshkov and Legendre functions from the previous works [26,27] with the same parameters as
above. The corresponding solutions take the forms respectively

xB
7, 1

4
ptq “ 0.1617932518503192 t

3
4 ´ 0.03445464899775196 t

1
2 ´ 0.27008246876491873 t

1
4

´ 0.0097998224671427077 t
3
2 ´ 0.1204474711992175 t ` 0.04675716925988139 t

5
4

` 0.00087982440038136711651 t
7
4 ` 0.5,

xC
7, 1

4
ptq “ 0.16176395176134591 t

3
4 ´ 0.034436828673633131 t

1
2 ´ 0.27008706550355819 t

1
4

´ 0.0097962860256647 t
3
2 ´ 0.12042146216589336 t ` 0.046744073064058187 t

5
4

` 0.00087942518183550405624 t
7
4 ` 0.5,

xL
7, 1

4
ptq “ 0.16179490530760574 t

3
4 ´ 0.034455365809483707 t

1
2 ´ 0.2700823428770175 t

1
4

´ 0.009800287282136090 t
3
2 ´ 0.12044946374788617 t ` 0.04675849679405389 t

5
4

` 0.00087989135193320893222 t
7
4 ` 0.49999999947316410565

To further compare these collocation schemes based on various polynomials, we calculate the
estimated residual errors obtained by the relation (24). The graphs of RN,αptq on the interval r0, 5s
correspond to γ, α “ 1{4 and for N “ 7 are shown in Figure 2. With respect to Figure 2, it is obviously
seen that the residual error functions obtained by the presented Bessel-collocation method are smaller
compared to the errors of other polynomial-based numerical collocation schemes.
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Figure 2. Comparing the error functions in test Problem 6 using old and new Bessel, Chelyshkov, and
Legendre functions with γ, α “ 1{4, and N “ 7.

Problem 7. Consider the following nonlinear boundary value problem with variable coefficients [6]

xp2qptq ` Γp4
5

q 5
a

t6 D
6
5‹ xptq ` 11

9
Γp5

6
q 6

?
tD

1
6‹ xptq ´ rxp1qptqs2 “ 2 ` 1

10
t2, 0 ă t ă 1,

with boundary conditions xp0q “ 1 and xp1q “ 2. The exact solution of this example is xptq “ 1 ` t2.

In this example, we have γ “ 2, β1 “ 6{5, and β2 “ 1{6. First, we set α “ 1. The approximate
solutions xN,αptq of Problem 7 for N “ 2, 3 on 0 ď t ď 1 are obtained as follows, respectively

x2,1ptq “ 1.0000000000119503851 t2 ´ 2.98118 ˆ 10´11 t ` 1.0000000000072342687,

x3,1ptq “ 1.12820 ˆ 10´9 t3 ` 1.0000000012230527969 t2 ´ 9.66432 ˆ 10´11 t

` 1.0000000000012118324.

To show the gain of the proposed scheme, we compare our results with the collocation method
based on Bernstein operational matrix (BOM) of fractional derivative from [6]. Table 3 reports the errors
in L8 and L2 norms of the new Bessel-collocation procedure and the errors of the BOM algorithm.
This comparison shows the thoroughness of the proposed method.

Table 3. Comparison of L8, L2 error norms for test Problem 7.

New Bessel BOM [6]

N “ 2 N “ 3 N “ 3 N “ 6 N “ 12 N “ 15

L8 1.06271´11 1.45886´10 3.4´05 1.5´06 5.5´08 1.9´08
L2 3.00764´11 4.21226´10 2.0´05 7.6´07 2.3´08 7.9´09

Problem 8. We consider the following initial-value problem of multi-term nonlinear fractional differential
equation [6]

Dγ‹ xptq ` Dβ1‹ xptq ¨ Dβ2‹ xptq ` rxptqs2 “ t6 ` 6t3´γ

Γp4 ´ γq ` 36t6´β1´β2

Γp4 ´ β1qΓp4 ´ β2q , 0 ă t ă 1,

where 2 ă γ ă 3, 0 ă β1 ă 1, and 1 ă β2 ă 2 and the initial conditions are xp0q “ 0, xp1qp0q “ 0, and
xp2qp0q “ 0. An easy calculation shows that xptq “ t3 is the exact solution.
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For this example, we set α “ 1. By applying the collocation technique based upon new Bessel
functions at C1: pγ, β1, β2q “ p5{2, 9{10, 3{2q and for N “ 3, 4, the following approximative solutions
on 0 ď t ď 1 are obtained

x3,1ptq “ 1.0000000000004519163 t3 ´ 5.55112 ˆ 10´17 t ´ 5.55112 ˆ 10´17,

x4,1ptq “ 8.60154 ˆ 10´13 t4 ` 0.9999999999992085443 t3 ´ 1.09400 ˆ 10´16 t2

´ 9.83260 ˆ 10´17 t ` 1.79230 ˆ 10´17.

A comparison between our collocation scheme at C1 and the method of shifted Jacobi operational
matrix (SJOM) [6] with N “ 24 is made in Table 4. Besides the cases C1 and C2: pγ, β1, β2q “
p2.000001, 0.000009, 1.000001q, the following values of pγ, β1, β2q are used in Table 5 for comparison
purposes

C3: p2.99, 0.99, 1.99q, C4: p2.75, 0.75, 1.75q, C5: p2.9999, 0.9999, 1.9999q.

Table 4. Comparison of L8 error norms for γ “ 5{2, β1 “ 9{10, β2 “ 3{2 in test Problem 8.

New Bessel SJOM (N “ 24) [6]

N “ 3 N “ 4 α, β “ 0 α, β “ 1
2 α, β “ 1 α, β “ 3

2

L8 4.51805´13 6.85082´14 3.37´05 3.50´05 3.39´05 3.15´05

Table 5. Comparison of L8 error norms for various pγ, β1, β2q in test Problem 8.

New Bessel SJOM (α, β “ 3
2 ) [6]

Case N “ 3 N “ 4 N “ 4 N “ 8 N “ 16 N “ 24

C2 4.14718´12 3.82214´15 1.47´09 2.43´10 2.62´11 6.29´12
C3 0 1.87623´16 1.85´04 5.32´05 3.50´05 1.95´05
C4 0 3.48011´14 2.02´03 5.93´04 2.40´04 1.06´04
C5 0 4.49186´16 1.91´06 5.46´07 3.67´07 2.06´07

Looking at Tables 4 and 5 reveals that our numerical solutions obtained via novel
Bessel-collocation method are in excellent agreement with the corresponding exact solutions. Moreover,
our proposed scheme is superior compared to the SJOM.

Problem 9. We consider the fractional relaxation-oscillation equation [5,6]

Dγ‹ xptq ` xptq “ 0, 0 ă γ ă 2,

with the initial condition xp0q “ 1. If γ ą 1 we also have xp1qp0q “ 0. The exact solution in terms of
Mittag–Leffler function is given by xptq “ Eγp´tγq. Here, Eγpzq “ ř8

k“0
zk

Γp1`γkq .

First, we consider γ “ 85{100 and set α equals to γ. We get the approximated solution xN,αptq
using N “ 8 terms on r0, 1s as follows

x8, 85
100

ptq “ 0.0972690897737097 t
17
5 ´ 0.0264284381134049 t

17
4 ` 0.647219778384659 t

17
10

´ 1.05749619232596 t
17
20 ` 0.00525953072336809 t

51
10 ´ 0.284023703239741 t

51
20

´ 0.000568791172776014 t
119
20 ` 1.0.

In Table 6, we calculate the maximum absolute errors using N “ 8 and N “ 10. In addition,
a comparison is done in this table with the results obtained via SJOM [6]. Looking at Table 6 one can
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find that the achievement of good approximations to the exact solution is possible using only a few
terms of fractional Bessel polynomials.

Table 6. Comparison of L8 error norms for γ, α “ 85{100 in test Problem 9.

New Bessel SJOM (N “ 32) [6]

N “ 8 N “ 10 α, β “ ´ 1
2 α, β “ 0 α, β “ 1

2 α, β “ 1

L8 1.01411´06 6.16222´09 5.2´04 8.1´05 1.2´04 2.3´04

In the next experiments, we investigate the impact of varying γ on the maximum absolute
errors while N “ 10 is fixed. Table 7 presents the L8 errors for γ “ 0.2, 0.4, 0.6, 0.8 as well as
γ “ 1.2, 1.4, 1.6, 1.8. In all cases, we exploit α “ γ. Comparisons with existing approximation
techniques based on operational matrix of fractional derivatives via B-spline functions [9] and shifted
Jacobi functions [6] are also carried out in Table 7.

Table 7. Comparison of L8 error norms for N “ 10 and various γ in test Problem 9.

New Bessel B-Spline [9] SJOM (N “ 10) [6]

γ “ α N “ 10 J “ 8 α, β “ ´ 1
2 α, β “ 0 α, β “ 1

2 α, β “ 1

0.2 6.71097´07 5.3´03 0.2544 0.1684 0.1824 0.1907
0.4 1.05544´06 1.9´03 0.1002 0.0363 0.0489 0.0617
0.6 3.38325´07 1.5´03 0.0314 0.0100 0.0158 0.0202
0.8 1.64178´08 1.0´03 0.0069 0.0018 0.0034 0.0045
1.2 1.53515´12 2.5´03 0.0222 0.0046 0.0046 0.0061
1.4 8.04611´15 2.4´03 0.0085 0.0014 0.0026 0.0041
1.6 6.41447´16 ´ 0.0031 3.8´04 0.0016 0.0029
1.8 1.17134´15 ´ 0.0012 7.3´05 9.0´04 0.0016

Problem 10. In the last case example, let us consider the following singular fractional Lane-Emden type
equation [28,29] #

Dγ‹ xptq ` k
tγ´β1

Dβ1‹ xptq ` 1
tγ´2 xptq “ gptq, 0 ă t ď 1,

xp0q “ 0, xp1qp0q “ 0,

where 1 ă γ ď 2, 0 ă β1 ď 1, k ě 0, and

gptq “ t2´γ

ˆ
6t

ˆ
t2

6
` Γp4 ´ β1q ` k Γp4 ´ γq

Γp4 ´ β1qΓp4 ´ γq
˙

´ 2
ˆ

t2

2
` Γp3 ´ β1q ` k Γp3 ´ γq

Γp3 ´ β1qΓp3 ´ γq
˙˙

.

The exact solution is xptq “ t3 ´ t2.

To proceed, we take γ “ 3{2, β1 “ 1{2, and k “ 2. Using the collocation points tj “ 0.001 ` j{N
for j “ 0, 1, . . . , N and with N “ 3, 4, the following approximation solutions are obtained by the
Bessel-collocation procedure

x3,1ptq “ 1.0 t3 ´ 1.0 t2 ` 6.23678 ˆ 10´16 t ` 3.40637 ˆ 10´108,

x4,1ptq “ ´2.93410 ˆ 10´15 t4 ` 1.0 t3 ´ 1.0 t2 ` 1.28989 ˆ 10´15 t ` 3.06104 ˆ 10´108.

Obviously, these approximations are accurate up to machine epsilon. Table 8 reports the
comparison of the absolute errors evaluated at some points t P r0, 1s obtained by the Bessel-collocation
method. For comparison, the results obtained by the collocation method (CM) [29] and the reproducing
kernel method (RKM) [28] are also shown in Table 8. The comparisons show that the proposed method
is considerably more accurate than other methods.
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Table 8. Comparison of absolute errors for γ “ 3{2, β1 “ 1{2 in test Problem 10.

New Bessel CM [29] RKM [28]

t N “ 3 N “ 4 N “ 5 N “ 10 N “ 5 N “ 10

0.25 8.25341´17 1.32991´16 1.3345´03 1.3232´05 8.7370´04 8.4636´06
0.50 6.41715´17 1.23861´16 1.5000´03 2.6000´05 9.9000´04 2.9000´06
0.75 1.37231´17 1.21568´16 5.0673´03 1.5634´06 7.6702´04 8.5754´06
1.00 3.40637´108 3.75169´108 3.6339´03 4.1443´05 5.4736´04 5.4345´06

6. Conclusions

A practical matrix approach based on novel (orthogonal) Bessel polynomials is presented to solve
multi-order fractional-order differential equations (MOFDEs). Using the matrix representations of the
generalized Bessel polynomials and their derivatives with the aid of collocation points, the scheme
transforms MOFDEs to a fundamental matrix equation, which corresponds to a system of (non)linear
algebraic equations. To assess the efficiency and accuracy of the presented technique, several numerical
examples with initial and boundary conditions are investigated. Comparisons with the exact solutions
and with various alternative numerical simulations and experimental measurements have also been
made. Based on the experiments, it is found that the numerical approximations are in an excellent
agreement, which demonstrate the reliability and the great potential of the presented technique.
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