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Abstract: The monthly averaged data time series of temperatures and rainfall without interruption
of Conakry Airport (9.34◦ N 13.37◦ W, Guinea) from 1960 to 2016 were used. Inter-annual and
annual changes in temperature and rainfall were investigated. Then, different models: Mann-Kendall
Test, Multi-Linear-Regression analysis, Theil-Sen’s slope estimates and wavelet analysis where used
for trend analysis and the dependency with these climate forcings. Results showed an increase in
temperature with semi-annual and annual cycles. A sharp and abrupt rise in the temperature in 1998
was found. The results of study have shown increasing trends for temperature (about 0.21◦/year).
A decrease in rainfall (about −8.14 mm/year) is found since the end of 1960s and annual cycle with a
maximum value of about 1118.3 mm recorded in August in average. The coherence between the two
parameters and climate indices: El Niño 3.4, Atlantic Meridional Mode, Tropical Northern Atlantic
and Atlantic Niño, were investigated. Thus, there is a clear need for increased and integrated research
efforts in climate parameters variations to improve knowledge in climate change.

Keywords: temperature; rainfall; climate indices; wavelet; trend analysis; climate change and Conakry

1. Introduction

Climate is naturally variable as evidenced by the irregularity of the seasons from one year to
another. Long-term climate variability is of great importance for the estimation of its impact on
human activities and for predicting the future climate [1]. The need to develop science programs that,
in addition to exploring long-term climate change, can meet the more immediate needs of people and
organizations to begin factoring climate risks into planning and management processes [2]. Over the
twentieth century, west African region continues to receive a lot of unusual disasters at unexpected
moments and areas. This might be a consequence of climate change and then that change is generated
on the one hand by anthropogenic activities and on the other hand by natural variation. That’s why
some previous studies done on West Africa regions highlight the variability of temperature and rainfall
and their relationship with climate indices, as Zerbo et al. [3] who studied the relationship between the
solar cycle and meteorological fluctuations in West Africa and found that temperature and rainfall are
influenced by solar activity. Schulte et al. [4] analysed the influence of climate modes on streamflow in
the Mid-Atlantic region of the United States. Many studies also have been done on the intra-seasonal
and inter-annual variability of temperature and rainfall [5–9] over West Africa areas. Previous studies

Climate 2019, 7, 93; doi:10.3390/cli7070093 www.mdpi.com/journal/climate1
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have shown the crucial role of sea surface temperature (SST) anomalies in the tropical Atlantic region.
For instance, SST induces forcing on the summer monsoon rainfall over sub-Saharan West Africa [10].
Vizy and Cook [8] highlighted that warm sea surface temperature anomalies influences positively
the increase in rainfall along the Guinean coast. In their study on variability of summer rainfall
over tropical north Africa during the 1906–1992 period, Rowell et al. [11] showed that the global SST
variation are responsible for most of the variability of seasonal (July-August-September) rainfall from
1949 to 1990. Indeed, the annual cycle of rainfall over West Africa depends greatly on SSTs in the Gulf
of Guinea [11].

However, any climatological study over West Africa could take into account at least West African
Monsoon (WAM) and Inter-Tropical Convergence Zone (ITCZ). It is for the reason aforementioned
that several studies have been done on the WAM influence on annual climatic variability in West
Africa, [6,12] and its dynamic and onset [13–15]. Furthermore, it was also reported by Nicholson [16,17],
that a major role of the WAM system is to transport moisture into West Africa from the Atlantic.
In response to the onset of the African monsoon, the upwelling cooling is strongest in the east both
because of the strong acceleration of the southerly winds and because the thermocline is shallow
there [11].

The inter-annual variability of the WAM is mainly explained by the surface of ocean. It is worthy to
note that the surface temperature of the inter-tropical Atlantic can be analysed efficiently. It constitutes
an important climatic parameter, in the event of a strong anomaly, in all the coastal areas subjected
to the direct impact of the WAM [18]. It is for this reason that Joly and Voldoire. Ref. [12] reported
that SST anomalies are maximum in June–July, and are associated with a convective anomaly in the
marine ITCZ with a spread over the Guinean coast. ITCZ is the major synoptic-scale system controlling
seasonal rainfall [19]. It is well known that the distribution of temperature and rainfall through Earth
surface is not homogeneous. Espinoza Villar et al. [20] pointed out the impact of mountain ranges on
rainfall and specified that the long-term variability with a decreasing rainfall since the 1980s prevails
in June-July-August and September-October-November in the Amazon Basin countries.

Our study area is localized in West Africa, enclosing the three major West African climate zones:
Guinean zone (approximately 6–8◦ N); Soudanian zone (approximately 8–12◦ N) and Sahelian zone
(approximately 12–16◦ N) [21]. It may be stated that the region of Conakry is part of the Soudanian
zone (see Figure 1a). The station of Conakry is located at the international airport of Conakry at
9.34◦ N and 13.37◦ W, at 26 m height above the sea level (sl). Given that Conakry is a coastal zone
that lies between the Atlantic Ocean and the Kakoulima Mountain range, which forms a barrier and
promotes the Foehn phenomenon (see Figure 1b). This feature seems to be the reason that makes it the
rainiest area compared to other parts of the country. This coastal site is the national socioeconomic
development centre of Guinea, but is always threatened by heavy precipitations and strong heat waves
causing significant economic and sanitary damages and loss of lives.

The absolute poverty of a large proportion of the African continent’s people renders them highly
vulnerable to changes in climate [22]. According to the increasing impact of the climate change in this
area and the geo-climatic and environmental factors influences mentioned above, the purpose of our
approach is to investigate with the keenest interest the climate variability as well as the forcing led by
some climate indices on the temperature and rainfall at Conakry during 57 years. The aim of our study
is to improve the understanding and strengthen the knowledge on the climate variability in this region
of Guinea through a climatological approach coupled with a digital tool of analysis. After the station
dataset description and methodology, obtained results are presented and discussed.
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Figure 1. Geo-localisation of Conakry station in West Africa, map showing the three major west african
climate zones (a), map showing Conakry Airport between Atlantic Ocean and Kakoulima Mountain
range (b).

2. Materials and Methods

2.1. Data

Monthly averages of temperature and rainfall time-series are used in this study for the 1960–2016
period. They were obtained from continuous measurements at the synoptic weather station of
Conakry in Guinea. A set of 684 monthly average temperature measurement during 57 years were
used, for rainfall, the same data number were used too. The location of this synoptic station at the
international airport of Conakry makes the data set uninterrupted and of good quality. The daily
mean temperatures were calculated by averaging the daily minimum and maximum temperatures.
The monthly and yearly temperature averages were calculated from the daily and monthly averages,
respectively, for the complete study period. The histogram of monthly mean temperature peaks at
26 ◦C with 133 occurrences (Figure 2a).

 
(a) (b) 

Figure 2. Histograms of monthly temperature frequency, the monthly temperature mean value of 26 ◦C
has higher frequency of observation (a) and monthly rainfall (b) overall frequency showing that the
monthly rainfall value of 0.1–100 mm has higher frequency of observation at Conakry Airport station.

3
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The monthly rainfall is the accumulated based on daily rainfall obtained for a particular month.
The overall annual rainfall is calculated as the sum of monthly rainfall. However, measured rainfall
commonly consists of discrete series of rainfall events with different durations and time intervals [23].
It is noteworthy that rainfall is a discontinuous parameter, thus, monthly rainfall accumulated values
used in our study oscillate between 0.1 and 1839.3 mm. Rstudio and Matlab software were used to
perform all computational tasks. The histogram of monthly accumulated rainfall peaks at 0.1–100 mm
with 178 occurrences, such as values above 1500 mm, have a lower occurrence (<10), but are very
quantitatively significant from disaster (flood, landslide) point of view (Figure 2b).

To achieve a better understanding of the forcing that may influence temperature and rainfall of
Conakry, four climate indices were used:

1. Niño3.4 monthly mean time series from 1960 to 2016 (684 measurements) were downloaded
from the National Oceanic and Atmospheric Administration (NOAA) website (https://www.esrl.
noaa.gov/psd_wgsp/Timeseries). The Niño3.4 index is calculated by taking the area-averaged
sea-surface temperature (SST) within the Niño3.4 region, which extends from 5◦ N to 5◦ S in
latitude and from 120◦ W to 170◦ W in longitude (in the Pacific Ocean). We use Niño3.4 averages
calculated from the HadISST SST dataset, which is given by 1◦ in latitude–longitude.

2. Atlantic Meridional Mode (AMM) SST index from 1960 to 2016 (684 data) were downloaded from
the National Oceanic and Atmospheric Administration (NOAA) website (https://www.esrl.noaa.
gov/psd/data/timeseries/monthly). The AMM time series is calculated by projecting SST on to the
spatial structure resulting from Maximum Covariance Analysis (MCA) to sea surface temperature
(SST) over the region of 21◦ S–32◦ N, 74◦ W–15◦ E.

3. Tropical Northern Atlantic index (TNA) is the anomaly of the monthly averaged SST values.
The TNA SST index is defined as region-averaged SST anomalies in the domain (0◦–20◦ N,
60◦ W–20◦ E) [24]. TNA monthly mean time series from 1960 to 2016 (684 data) were downloaded
from the NOAA website (https://www.esrl.noaa.gov/psd/data/climateindices/list/#TNA).

4. The Atlantic Niño (AN) or Atlantic Equatorial Mode is a quasiperiodic interannual climate pattern
of the equatorial Atlantic Ocean. The term Atlantic Niño comes from its close similarity with the
El Niño-Southern Oscillation (ENSO) that dominates the tropical Pacific basin [25]. The Atlantic
Niño (AN) index is defined as the SST anomaly in the central-eastern tropical Atlantic: (3◦ S–3◦ N;
20◦ W–0◦ E) [26]. The AN monthly mean time series from 1960 to 2016 (684 measurements) were
download from KNMI website (https://climexp.knmi.nl/start.cgi). The equatorial warming and
cooling events associated with the Atlantic Niño are known to be strongly related to atmospheric
climate anomalies, especially in African countries bordering the Gulf of Guinea [27]. As Conakry
is a coastal region in west Africa, we used AN in our study.

In this work, the monthly average temperature (684 measurements) and monthly rainfall
(684 measurements) as well as the monthly mean (684 measurements) of 4 climatic indices (Nñio 3.4,
AMM, TNA and AN) were used as input data for our investigation during the period 1960–2016.

2.2. Method

According to the World Meteorological Organization [28,29] (WMO), climatological standard
normals are defined as the averages calculated for uniform and relatively long period including at least
three consecutive periods of ten years. The climatological standard normals are hence the averages of
the climatological data calculated for the consecutive periods of 30 years. Our climatological study is
based on the standard normal calculated for the 1961–1990 period. The obtained arithmetic mean was
calculated (for temperature and rainfall) by using the following formula:

X =
1
n

∑1

i=1
(xi), (1)

where, n = year number.

4
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Over the Conakry site, the climatological normal calculated for temperature and rainfall on the
1961–1990 period corresponds to the values of 26.5 ◦C and 3806.8 mm, respectively. These values are
used to calculate corresponding anomalies.

2.2.1. Mann-Kendal Test

It is always essential to work out monotonic trends in the time series of any geophysical data
before any further use. In this study, the Mann-Kendall test [30–32] was employed to detect the trends
that exist in both the temperature and rainfall time series. This method is defined as a non-parametric,
rank-based method which is commonly used to extract monotonic trends in the time series of climate
data, environmental data or hydrological data. The Mann-Kendall test statistic gives information
about the trend of the total time series and its significance. However, it is important to investigate
how the trend varies with respect to time. Therefore, the calculation of the forward/progressive
(u(t)) and backward/retrograde (u′(t)) values of the Mann-Kendal test statistic is essential in order to
investigate both the potential trend turning points and the general variability of trends in respect to
time. This method is called the Sequential Mann-Kendall (SQ-MK), and it is well explained by [33] and
other authors [31,34]. This method has been found to perform very well in trend analyses of stream
flow and precipitation [35] and also in the field of earth remote sensing [36].

2.2.2. Multilinear Regression

One of the primaries aims of this study is to identify the relationship between the studied
time-series (temperature and rainfall at Conakry station in the present paper) and climate indices such
as TNA, Niño3.4, AMM and AN. The multi-linear regression (MLR) is a method that is frequently used
to explain the relationship between one continuous dependent and two or more independent variables
(climatic indexes in this case). The MLR model output yi based on a number “n“ of observations can
be expressed as follow:

yi = β0 + β1xi2 + · · ·+ βpxip + εi, (2)

where
i = 1, 2, 3, . . . , n, (3)

where in this case, yi is the dependent variable xip represents the independent variables, β0 is the
intercept, and β1, β2, . . . βp are the x’s coefficients. The final term (εi) represents the residual term
which the model should always keep its contribution as minimum as possible.

2.2.3. Theil-Sen’s Estimator

Theil-Sen slope estimate method were used to analyse the long-term trend in the data and the
seasonality. The Theil-Sen estimator (TSE) is fairly resistant to outliers and is robust with a high
breakdown point of 29.3% [37,38]. TSE method was first outlined by Theil [39] and later expanded
upon by Sen [40]. The determination of trend slope of n-pair of data is given by the formula:

Ti =
xj − xi

j − i
, (4)

where, xj and xi presents as data values at time j and i (j > i) respectively [37].

2.2.4. Wavelet Analysis

The present study employed the Morlet wavelet which provides a good balance between time
and frequency localization [41], especially for geophysical data. Wavelet analysis includes different
wavelet functions such as the windowed Fourier transform, wavelet transform, normalization, wavelet
power spectrum, etc. The main advantage of the wavelet analysis in comparison with other techniques
is that it analyses localized variations of power within a time series. By decomposing a time-series into

5
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time-frequency space, one is able to determine the dominant modes of variability and their variation
with time [42]. Wavelet transform coherence (WTC) is a good method for analyzing the coherence and
phase lag between two time-series as a function of both time and frequency [43]. Therefore, we adopted
the Monte Carlo wavelet and coherence analysis to quantify the relationships between climate forcing
and the two data sets (rainfall and temperature) recorded at Conakry. More details about wavelets and
wavelet coherence and phase are given by Torrence and Compo [42], Grinsted et al. [41] and others.

Basically, from a climatological point of view, the 1961–1990 normal (30 years) was used for
this study. The models used thus show complementarity in the sense that the Mann-Kendall test
gives information about the trend of the total time series and its significance. In addition, SQ-MK is
important to determining both the trend variability in time and the trend change points in the time
series. However, it is important to identify the relationship between the studied time-series and climate
indices, for that purpose, the MLR and Wavelet are used. But the difference between these two models
is that the multi-linear regression (MLR) helps to explain the relationship between one continuous
dependent and two or more independent variables. The Wavelet analysis method helps to determine
the dominant modes of variability and their variation with time, in addition it helps to quantify the
relationships between climate forcings and the two data sets indicating the period when the correlation
is significant as well. Furthermore, it also specifies whether the parameters are correlated or not and if
so, whether they are in-phase or out-of-phase or if the causal relationship is identified or if there is
simultaneity. The results from this methodology are then discussed in the following sections and some
figures are plotted according to that done by Bilbao et al. [44].

3. Results

3.1. Climatology and Seasonality of Temperature and Rainfall

3.1.1. Inter-Annual Variation of Temperature and Rainfall

Figure 3a shows the month versus year evolution of the monthly averaged temperatures recorded
at Conakry station from 1960 to 2016. This figure indicates that Conakry is experiencing an increasing
temperature, found to be significant since 1970s. It is clearly shown on this figure that 1998 is the year
with the highest temperature (30 ◦C in mean recorded on April). The 1997/98 El Niño phenomenon,
which started in March 1997 and lasted until mid-1998, had resulted in severe flooding and drought in
several parts of the world [45,46].

By analysing the evolution of the temperature in two different periods, 1960–1998 and 1998–2016
(Figure 3c), we have found an increase of 0.8 ◦C from the first period to the 2nd one. In average,
the temperature ranges from 26.5 ◦C to 27.8 ◦C from one period to the other. The annual averaged
temperature of 1998 is 28.1 ◦C. Similar analysis for another Guinean station located at 7.74◦ N; 8.82◦ W,
900 km far from Conakry is reported by Loua et al. [9]. They highlighted a warming due to the increase
in evaporation. We assume that the 1998 warming observed at Conakry seem to be linked to the
1998′s strong El Niño. Angell et al. [47], shown that the record global warmth in 1998, particularly
in the 850–300 mb layer, is partly, if not mostly, due to the very strong El Niño of 1997–1998. Strong
El Niño event made 1998 relatively hot at the surface and in the atmosphere. The exceptionally
warm El Niño year of 1998 was an outlier from the continuing temperature trend. Previous works
have also pointed out the influence of the large tropical explosive volcanic eruptions and ENSO on
precipitation and temperature changes over West Africa [48–50]. However, these studies reveal that
thus far no consensus has been reached on either the sign or physical mechanism of El Niño response
to volcanism. Based on the use of the Fifth Coupled Model Intercomparison (CMIP5), Khodori. [49]
showed that large tropical volcanic explosions favour an El Niño within 2 years following the eruption.
They demonstrated that volcanically induced cooling in tropical Africa weakens the West African
monsoon and the resulting atmospheric Kelvin wave drives equatorial westerly wind anomalies over
the western Pacific. This wind anomaly is further amplified by air–sea interactions in the Pacific,
favouring an El Niño-like response. This analysis was found in agreement with the study reported by

6
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Liu et al. [50]. Through the use of the Community Earth System Model (CESM1), they shown that
volcanic eruptions are efficient in reducing the monsoon precipitation. In addition to reduce moisture
heavily, the volcanic eruptions can affect the circulation field much [50].

 

Figure 3. Yearly/monthly evolution of temperature (a) and rainfall with a pick during June-July-August
(b); interannual evolution of temperature, dotted vertical line is the year 1998 (c) and interannual
evolution of rainfall (blue bars) with rain day (black solid line) (d).

For the 1998 warming, Wang Shaowu et al. [51] explained that it is evident the annual temperature
of 1998 set the highest record for the past century in China. Foster and Rahmstorf [52] reported
the strong influence of known forcings on short-term variations in global temperature, including El
Niño–Southern Oscillation (ENSO), and to a lesser degree, solar cycles. It so happens that 1982–1983
and 1997–1998 were the times of two biggest El Niño on record, and it is well established that a mini
global warming occurs at the latter stages of an El Niño as heat comes out of the upper ocean and
contributes to a warmer atmosphere and surface, but resulting in a cooler ocean [53].

The Figure 3b shows the yearly/monthly evolution of rainfall. There are climate conditions where
one summer may be sunny, dry, and warm, whereas another may be cool, cloudy, and wet. Globally,
the biggest cause of such regimes that last several seasons is the ENSO phenomenon [54]. For the
specific case of Conakry, we remark that the evolution of temperature and rainfall through Hovmöller
representation (year/month) shows an interseasonality for rainfall, and an increase in temperature.
Additionally, for each year, the monthly maximum values of rainfall (>1500 mm) are recorded during
the period June-July-August-September. Smallest amount of annual overall rainfall was recorded
on 1984 (Figure 3d) and seem to be linked to the 1980s severe drought [55,56] that West Africa has
experienced. On the one hand, the increase in temperature observed may be a response to global
warming, and it is therefore consistent to diagnose whether warm years coincide with the occurrence
of some geophysical phenomena such as El Niño. On the other hand, the remarkable interseasonality
can be associated not only to the climatic warming but also to the irregularity in the intensification of
the WAM and the dynamics of the ITCZ.

From this general overview of the interannual evolution of these meteorological parameters,
we therefore proceeded to the analysis of the monthly climatology in the following section. This analysis
allowed us to better understand the variability of the monthly climatological average of each parameter
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during the year. It will therefore be necessary to highlight the different seasons to which this region
is subject.

3.1.2. Monthly Climatological Variations

Figure 4a depicts the variation of monthly climatology of temperature during the year over the
whole period of observation at Conakry. Climatologically, the variation of monthly mean temperature
shows clearly that the semi-annual cycle is dominant than the annual cycle. During the year,
the temperature means oscillate between 24.2 ◦C and 30.1 ◦C with an annual mean of 26.8 ◦C. During
the winter season, the monthly mean temperature may reach a peak in November (27.3 ◦C) and a
second one in April (28.1 ◦C). In summer (June–October), it decreases in August (25.4 ◦C). This abrupt
decrease in temperature that starts in may corresponds to the beginning of the rainy season, remarkably,
a strong shift appears in June which seems to be due to the onset of WAM. Sylla et al. [57] reported
that the beginning of rainy season in the West Africa Region can be associated with the northward
migration of ITCZ from 4◦ N to 10◦ N, and the onset of the West African summer monsoon in the
second half of June.

 

Figure 4. Climatology of monthly temperature showing two picks on April and November (a) and
monthly rainfall showing a pick on July (b) as derived from ground observations at Conakry station
from 1960 to 2016.

While during summer, under a cloudy sky, or overcast and rainiest, there is less solar radiation
that reaches the Earth’s surface. The temperature remains relatively low, resulting in a small thermal
amplitude. The equatorial cooling intensifies the southerly monsoon in the Gulf of Guinea and pushes
the continental rain band inland from the Guinean coast [11].

The Figure 4b shows the evolution of monthly climatology of rainfall at Conakry during the
year. The variability of rainfall during the year shows an annual cycle with a peak recorded on
August (>1000 mm). It is clear that the rainfall becomes significant in May, that corresponds to the
beginning of summer (ICTZ northward migration), and it is followed by an abrupt upward jump
in June (WAM onset) before reaching the peak in August (ICTZ at 10◦ N). During that period, the
temperature decreases gradually from April to reach the minimum in August (Figure 4a). By the
beginning of September, the rainfall is characterized by abrupt downward jump when the temperature
starts increasing (ICTZ downward migration and weakening of WAM), and then the latest rains in
the year are recorded in November. The beginning and end of rainy season are characterized by high
frequency of strong storms in Guinea [9].

3.1.3. Temperature and Rainfall Anomalies

Temperature/rainfall anomaly from normal calculated for the period from 1961 to 1990 refers
to the difference in degrees Celsius/in millimeter between the average annual temperature/annual
rainfall observed from 1960 to 2016 in comparison with the average annual temperature/annual rainfall
observed during the period from 1961 to 1990.
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In this study, annual averaged temperatures were standardized by using the average of the period
1961–1990 (26.5 ◦C). In Figure 5a, the blue (red) bars indicate the negative (positive) anomalies and the
fit line shows upward trend of temperature. Temperature anomalies could be classified in three classes:

• (a) the cold class: it corresponds to periods with negative anomalies (1960–1962; 1964–1965;
1967–1968; 1971; 1974–1976; 1986);

• (b) the quiet or normal class with temperature anomalies close to zero (1963; 1966; 1977–1978;
1985–1986; 1988–1992, 1994) and;

• (c) the warm class with positive anomalies (1969–1970; 1972–1973; 1979–1984; 1987; 1993;
1995–2006). The last period of the warm class is the warmest and longest one, it lasts about
12 years (1995–2006).

 

Figure 5. Temperature anomalies with dotted vertical line showing the year 1998, the blue (red)
bars are negative (positive) anomalies and the increasing linear trend (a). Rainfall anomalies with
decreasing linear trend, blue (white) bars indicate positive (negative) anomalies (b) of Conakry airport
station: 1960–2016.

These results are consistent with those reported by Loua et al. [9]. On the whole, the inter-annual
evolution of temperature shows a predominance of the warm class (positive anomalies) since 1992,
and then all the following years are classified as warm, with a maximum in temperature anomalies
obtained in 1998 (higher than + 3 ◦C). Among the most intense El Niño episodes of the last forty years,
the one of 97–98 was the one that triggered the earliest and most severe. The countries most affected in
terms of their infrastructure were USA, Indonesia and Brazil, but the highest human losses remain for
Africa [58]. To confirm our result by the global analysis of surface temperature, Simmons et al. [59]
highlighted that surface warming from 1998 to 2012 is larger than indicated by earlier versions of the
conventional datasets used to characterize what the fifth assessment Report of the Intergovernmental
Panel on Climate Change (IPCC) termed a hiatus in global warming.

Figure 5b illustrates the rainfall anomalies corresponding to the period from the year 1960 to 2016,
using 1961–199 standard normal (3806.8 mm). It shows that there are both positive (blue) and negative
(magenta) anomalies of rainfall during the study period. The positive (negative) anomalies correspond
to wet (dry) years, and consecutive years (1970–1974) and (1981–1985) define two driest periods which
correspond to two drought events in west Africa (1970s and 1980s). Peel et al. [60] highlighted that
the consecutive dry years are associated with drought, which is a significant physical and economic
phenomenon that imposes great stress on ecosystems and societies. However, drought is a part of
natural climatic variability on the African continent, which is high at intra-annual, inter-annual, decadal
and century timescales [61]. Where considering both the temperature and rainfall anomalies (Figure 5),
we may notice that during the years 1970 and 1980 there were severe drought episodes in the study
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area. This was also reported by previous studies such as [62,63]. The West African Sahel is well known
for the severe droughts that ravaged the region in the 1970s and 1980s [17].

This section allowed us to identify periods of hot consecutive years (70, 84 and 1992–2016) as well
as periods of consecutive dry years (70–74 and 81–85). These periods served us as important references
to take into account for the rest of the analysis on the variability of the trend and with the forcings used
as well.

3.2. Trend Analysis of Temperature and Rainfall

In this study, the Mann–Kendall (MK) trend test was used. In regards to the temperature time
series, a significant positive Z-scores value (9.3067) which is far greater than 1.96 was found, suggesting
that the temperature trend is increasing. However, for rainfall, the MK trend test shows no-significant
negative Z score (−0.17143) which above −1.96, suggesting weak decrease in rainfall variability.

Figure 6a shows the sequential statistic values of forward/progressive (Prog) u(t) (solid red
line) and retrograde (Retr) u’(t) (black solid line) obtained by SQ-MK test for Conakry yearly mean
temperature. In general, SQ-MK indicates and upwards trends of temperature in Conakry which is
noticeable in both Prog. and Retr. SQ-MK statistic. The possibility is that the upwards trend started
before the beginning of the time series (1960) because the change detection point, a point where Prog.
and Retr. cross each other did not occur in the graph. What is noticeable in this figure is that, it is only
from 1984 that this progressive SQ-MK statistic becomes positive and significant. At the same pace,
it gradually increases until 1989 and then stands until 1998, the year from which the trend has increased
significantly far above the confidence level (+3.866541) up to 2016 (+9.306717). There is a significant
upward trend which seems to coincide with the 1970s 1980s droughts episodes and strongly the 1998
and 2014–2016 strong El Niño event. In a study that uses the similar non-parametric test method,
Suhaila et al. [64] reported that the detection points captured by Pettitt and SQ–MK tests in Peninsular
Malaysia temperature series during the years 1996, 1997 and 1998 are possibly related to climatic
factors, such as El Niño and La Niña events. The retrograde statistic values are significant and negatives
during the period from January 1960 to 1992 before it continues to be within the 95% confidence level
limits (±1.96) except the year 1998 which the retrograde statistic value is significantly positive.

Figure 6. Sequential Mann-Kendal statistic values of progressive u(t) (solid redline) and retrograde
u’(t) (black solid line), obtained by Sequential Mann-Kendall test for temperature (a) and rainfall (b) of
Conakry airport: 1960–2016.

Figure 6b depicts the sequential statistic values of forward/progressive (Prog) u(t) (solid red
line) and retrograde (Retr) u’(t) (black solid line) obtained by SQ-MK test for Conakry annual rainfall
data for the period from 1960 to 2016. A strong significant upward trend was observed in late 1961,
with the significant trend turning point observed in June 1962, which means that 1961 is the only
year that is characterized by a positive and significant trend over the entire study period. But a
careful analysis of the trend in progressive and retrograde which are non-significant (between ±1.96)
and sometimes negative or positive shows two distinct periods that correspond to that found by the
analysis of precipitation anomalies. For the first period (1970–1974) and the second period (1981–1985),
the Retrograde curve is below the progressive curve in the negative band, which corresponds to
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periods of deficit rainfall. For the rest of the study period, the two curves intersect each other or the
retrograde curve is above the progressive curve, that corresponds to periods with variable or normal
rainfall. The response of the West African drought of 1970s and 1980s is clearly identified by the
reduction in the rainfall at Conakry. Statistically there is a no-significant downward trend in rainfall
since the end of 1960s.

In summary, the SQ-MK test and MK model for Conakry yearly data shows that the temperature and
rainfall are subject to a significant increasing trend and a no-significant decreasing trend, respectively,
during the period from 1960 to 2016. Thus, these methods seem to be useful for explaining the
variability and trends of both temperature and rainfall.

In order to investigate physical relationships between climate forcing, precipitation and streamflow
in the Mid-Atlantic region, Schulte et al. [4] selected eight climate indices. In the present study,
four climate indices (Niño3.4, AMM, TNA and AN) were used as explanatory variables for this model
because of their well-known possible influence on temperature and rainfall variability over West
African region. The relevant time series of these climate indices are shown in Figure 7. Zebiak [27]
specified that the dominant signature of ENSO is clearly focused on the Equator and its temporal
variability is strongly focused at 3–5-year time scales.

Figure 7. The standardized monthly Niño3.4 (a), AMM (b), TNA (c) and AN (d) time series for the
period from 1960 to 2016. The vertical dashed lines indicate the year 1998.

There are two main forms of coupled ocean–atmosphere variability that exist in the tropical
Atlantic Ocean, namely: the first one Atlantic Meridional Mode (AMM) [65] which is also called the
interhemispheric mode [66]. It was originally identified by Servain [67]. This mode of variability
is characterized by an interhemispheric gradient in sea surface temperatures and by oscillations in
the strength of surface winds that cross the Equator, thereby reinforcing sea surface temperature
anomalies [68]. The pronounced coupled ocean-atmosphere variability in the Tropical Atlantic is
generated by fluctuations in the Atlantic Meridional Mode (AMM) [68]. The AMM is characterized
by an anomalous meridional shift in the Intertropical Convergence Zone (ITCZ) that is caused by a
warming (cooling) of SSTs and a weakening (strengthening) of the easterly trade winds in the northern
(southern) tropical Atlantic [69]. And, the second one is the zonal mode, also called the Atlantic
Niño [70]. Its seasonal evolution is due to surface wind variations associated with the northward
migration of the ITCZ [71].

The tropical northern Atlantic (TNA) SST anomaly pattern is an important component of the
tropical Atlantic SST variability, which is characterized by warm (or cold) SST anomalies in the TNA [72].
Sea surface temperatures in the tropical North Atlantic (TNA) affect the meridional movement of the
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ITCZ and its band of heavy rainfall and cloud cover [73]. The Atlantic Niño (AN) is often regarded as
something like the little brother of El Niño. During Pacific El Niño events, sea-surface temperatures
(SSTs) in the central and eastern equatorial Pacific become warmer than average. Prevailing theories
on the equatorial Atlantic Niño are based on the dynamical interaction between atmosphere and
ocean [74]. In very much the same manner, SSTs in the central and eastern equatorial Atlantic become
warmer than average (or anomalously warm) during Atlantic Niño events. The Atlantic Niño index
used in this study is obtained by calculating the area average of SST in the cold tongue region, defined
as 20◦ W to 0 and 3◦ S to 3◦ N [26]. While El Niño usually peaks in northern hemisphere winter,
the Atlantic Niño peaks in summer [75]. Therefore, understanding of the Atlantic Niño (or lack thereof)
has important implications for climate prediction in those regions. Although the Atlantic Niño is an
intrinsic mode to the equatorial Atlantic [27].

There may be a tenuous causal relationship between climate parameters and the Atlantic Niño in
some circumstances. Therefore, MLR and Wavelet analysis are used to identify the dependency and
coherence between temperature, rainfall and climate forcings.

The correlations between the four indices used in our study are shown in Figure 8. There is strong
correlation coefficient between AMM and TNA (0.76). As the two explanatory variables are strongly
correlated, the MLR analysis may have difficulties to separate the contributions. For that purpose,
the wavelet analysis was used by calculating the coherence between explanatory variables and the
dependent variable separately.

Figure 8. Correlation between the standardized monthly Niño3.4, AMM, TNA and AN time series for
the period from 1960 to 2016, “n” is data number. The values are the correlation coefficient between the
4 parameters and we found that TNA and AMM are significantly correlated. The “***”; “**”; “*“; show
that the correlation is significant to the 0.001; 0.01; 0.1 level and ” “ mean that there is no correlation.

For the MLR the explanatory variables (AMM +Niño3.4+ TNA + AN) were used. The output
of the MLR statistical analysis of temperature and the independent variables is shown in Table 1.
Statistically the results in Table 1 reveal a significant relationship between temperature and Niño3.4
AMM, and TNA, with p-values of 0.0138, 1.99 × 107, and less than 2 × 1016, respectively. The p-value
for AN indicates a statistically insignificant association with the temperature because of p-value which
is far greater than 0.05.
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Table 1. The output of Multiple Linear Regression (MLR) model in which temperature is a dependent
variable and AMM, Niño3.4, TNA and AN are independent variables.

Variables Estimate Std. Error t-Value p-Value Significance

Niño 3.4 −0.11653 0.04722 −2.468 0.0138 *

AMM −0.14055 0.02675 −5.254 1.99 × 107 ***

TNA 1.79296 0.20497 8.747 2 × 1016 ***

AN 0.14372 0.08790 1.635 0.1025

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

A comprehensive summary of the MLR analysis statistics encompassing rainfall, Niño3.4, AMM,
TNA and AN is shown in Table 2. The results in Table 2 reveal a statistically significant relationship
between rainfall and Niño3.4, AMM, and TNA with p-values of 0.04374, 0.00441, 0.00301. The p-value
for AN indicates a statistically insignificant association with the rainfall because of p-value (0.73691)
which is far greater than 0.05. A strong dependence between the two meteorological parameters, AMM
and TNA were found. And then, Niño3.4 has a moderate influence on the temperature and rainfall of
Conakry. The low dependency between the AN and these two meteorological parameters would be
due to the distance between the Conakry site and the NA focus (3◦ S–3◦ N), and this could be verified
for another station closer to the equator. To analyse the two-component dependence of which one
in the temporal environment and the other in the frequency environment between the temperature,
the rainfall and the forcings used in the study, unlike the MLR, the wavelet model has been evaluated
and model outputs are explained in the next section.

Table 2. The output of Multiple Linear Regression (MLR) model in which rainfall is a dependent
variable and AMM, Niño3.4, TNA and AN are independent variables.

Variables Estimate Std. Error t-Value p-Value Significance

Niño 3.4 43.55 21.55 2.020 0.04374 *

AMM 34.89 12.21 2.857 0.00441 **

TNA −278.57 93.56 −2.977 0.00301 **

AN −13.49 40.12 −0.336 0.73691

Significant codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

An influential variable for most African rainfall areas is the zonal wind over the tropical Atlantic,
the north-south SST gradient in the tropical Atlantic modulates rainfall in West Africa as expected [76].

Figure 9a depicts the time evolution of mean monthly temperatures, with the warming trend
line superimposed. From Theil-Sen function, in this study, 684 points were used for trend estimation.
The trend estimate is: p < 0.001 = ***, p < 0.01 = **, p < 0.05 = * and p <0.1 = +. The temperature increases
at 0.02 ◦C per year (0.2 ◦C/decade) at Conakry. The superimposed red line indicates the obtained
linear trend. And the dashed red lines indicate the 95% confidence interval. The annual evolution
of rainfall exhibits a negative slope, which corresponds to decreasing trend (Figure 9b) at −8.14 mm
per year (−81,4 mm/decade). Compared to other sites in West Africa, our results are similar to that
found by [32], for stations in downstream Kaduna River Basin during 1975–2014, in Nigeria. The fifth
Intergovernmental Panel on Climate Change assessment stated Africa surface temperature already
increased by 0.5 ◦C–2 ◦C over the past hundred years and an observed drop in average annual rainfall
of approximate 25–50 mm each decade from 1951–2010 in some parts of West Africa [77]. Globally,
according to the IPCC Special Report [78], it has been reported that the warming of anthropogenic
origin has already exceeded the environment.
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Figure 9. Shows the long-term trend of monthly temperature (a) and rainfall (b). The solid red line
shows the trend estimate and the dashed red lines show the 95% confidence intervals for the trend
based on resampling methods. The overall trend is shown at the top-left as 0.21 ◦C per year (a)
and −8.14 mm per year (b), and the 95% confidence intervals in the slope from 0.2–0.23 ◦C/year (a)
and −10.5–6.03 mm/year (b). On the figures, the sign “***” shows that the trend is significant to the
0.001 level.

The seasonal distribution of temperature is shown in Figure 10a. the increase in temperature is more
significant in winter (December–January–February) of 0.03 ◦C per year than spring (March–April–May),
summer (June–July–August) and autumn (September–October–November) of 0.02 ◦C per year.
The Figure 10b depicts the seasonal distribution of rainfall; no significant trend is observed in the
winter months and rainfall values seem to be stables. Negative linear trend was found in spring
(−0.34 mm/year), autumn (−1.23 mm/year) and for summer, the trend is positive (0.1 mm/year).

3.3. Wavelet Analysis

The Figure 11 shows the normalised wavelet power spectrums calculated for the time series of
temperature (a) and rainfall (b) for the period from year 1960 to 2016. In this figure, the “u” shaped
solid lines represent the cone of influence (COI) which define the region of the spectrum which should
be considered in the analyses. The COI actually indicates areas where edge effects occurs in the time
series [44]. The thick black contours are the 95% significant regions of confidence level [42].

The main purpose of using the wavelet transform technique in our study is to identify any
dominant variability mode that may be present within the two meteorological parameters (temperature
and rainfall). In general, the wavelet transform of temperature shows two distinctive peaks (Figure 11a)
corresponding at 6 and 12-month periods. The 12-month period shows strong power spectrums
during the distinctive periods of 1961–1965, 1970, 1984 and 1992–2016. Its intensity increases with
no-interruption from 1992 to 2016. These dominant wavelet peaks seem to be consistent with the
results presented in Figure 3c. The wavelet power spectra for rainfall indicate a strong power spectral
peak of 12-month cycle which starts from year 1960 to 2016 (Figure 11b). Moreover, there is a weak
power that seems to appear at 6-month period for a few years and within the 95% significant regions
of confidence level for distinctive years 1961, 1965, 1967, 1970, 1986–1992, 1998–2000 and 2002–2007.
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Figure 10. The plot shows the Seasonal trend distribution of monthly mean temperature (a) and rainfall
(b) obtained with Theil-Sen’s estimate. The solid red line shows the trend estimate and the dashed red
lines show the 95% confidence intervals for the trend based on resampling methods. The vertical red
line indicate year 1998. There is no trend in rainfall during winter (0 mm per year).

Figure 11. Wavelet transform of temperature (a) and rainfall (b) variability from 1960 to 2016 at Conakry.
The black solid line contour delimits the region (red) where the power is strong and significant and the
cone of influence indicates the 95% confidence level.
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It is important to note that the distinctive power periodicities found in temperature may be
associated with the annual and semi-annual cycles, which are controlled by the alternation between
dry and wet seasons. The strong and continuous power spectrums shown by rainfall confirms the
annual cycle variability of rainfall year-round. Sylla et al. [7] pointed out that depending on a given
year, the onset of WAM may be strong or quiet in the second half of June and the West African rainfall
is highly variable on intra-seasonal, interannual, and interdecadal time scales. The wavelet coherence
analysis between temperature, rainfall and the four climate indices used in this study is shown below.

Wavelet coherence is a method for analysing the coherence and phase lag between two time series
as both a function of time and frequency [43]. This method has been shown to be the best possible
method to indicate teleconnection between two independent time series. Thus, this section focuses
on investigating the teleconnection between both Conakry temperature and rainfall, and selected
climate indexes. Figure 12 shows the cross-wavelet power spectra for (a) Temp–Niño, (b) Temp-AMM,
(c) Temp–NA, and (d) Temp–AN, respectively. The phase relationship is represented by arrows.
The regions where two cross-wavelet parameters are in phase is shown by arrows point to the right,
anti-phase if the arrows point to the left, and temperature or rainfall leading (or lagging) if the arrows
point upwards (or downwards), respectively. The vectors were only plotted for areas where the
squared coherence is greater or equal to 0.5. More details about wavelet coherence calculations can be
find in studies such as Grinsted et al. [41] and Schulte et al. [4]. The solid black line indicates the cone
of influence (COI) where the edge effects become significant at different frequencies (scales), and the
solid black line delimit the 95% significant regions of confidence level.

Figure 12. Wavelet coherence between temperature and Niño 3.4 (a), AMM (b), TNA (c) and AN
(d) 1960–2016, the phase relationship is represented by arrows. The black solid line contour delimits
the region (red) where the power is strong and significant and the cone of influence (solid black line)
indicates the 95% confidence level.

Having found that the wavelet transform shows strong forcings with 6 and 12–months periods
in temperature variability, we have proceeded to identify the wavelet coherence signature between
temperature and the four climate modes (Niño3.4, AMM, TNA and AN). Figure 12a shows the
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coherence calculated for the monthly mean temperature and Niño 3.4 in both time and frequency
domain. At the period band of 32–64 months, significant relationship between the temperature and
Niño 3.4 is clearly visible from 1960 to 2016. According to the arrows (phase) which are pointing
upward and then turning to the right at the period band 32–64, the temperature seems to lead the Niño
3.4. Also, there seems to be an in-phase relationship which may indicate a strong teleconnection of
the Conakry temperature to Niño variability. It is also important to note that there is a distinctive
appearance of periods which are less than 13 months in the time series, with varying phase relationships
between the parameters.

The wavelet coherence between temperature and AMM (Figure 12b) is observed to delineate
some areas that have high significant power at periods between 4–12 months with significant peaks of
distinctive periods 1960–1970, 1984–1990 and 2005–2016. A study by Foltz et al. [79] also reported that
there was cooling of SSTs in the equatorial North Atlantic (ENA; 2◦–12◦ N) in 2009 in response to a
strong Atlantic meridional mode event. It is also important to mention that there are significant peaks
appearing in the period band of 32–48 months during 1969–1976 and 2005–2010, respectively. A key
component of the AMM is a positive feedback between the ocean and the atmosphere. Surface air
pressure responds to the SST anomalies, becoming higher than normal over the anomalously cold SSTs
and lower than normal over anomalously warm SSTs.

In Figure 12c, there is a significant in-phase relationship between the temperature and TNA during
the period band of 8–12 months with strong power during 1962–1970, 1975 and 1973–1984. In addition,
it is noted that a significant in-phase relationship is also found during 1965–2004 and 2006 at the period
band of 30–64 months. The Figure 12d shows an in-phase coherence between temperature and AN
corresponding at the period band of 8–12 months during 1965–1970 and 1972–1984. At the period band
of 32–64 months, the AN lead the temperature, so the significant power appears at the period from
1963 to 1968, 1982 to 1992 and 1994. From these results, it can be suggested that the four climate indices
contribute to drier conditions across the Conakry region. Then, the wavelet coherence spectra show
that the Niño 3.4, AMM, TNA and AMM are coherent with temperature at different time scales. We can
summarise that temperature is subjected to climate indices forcing at Conakry. Anomalous surface
wind flow from the cold to the warm hemisphere, strengthening the mean south-easterly trade winds
in the South Atlantic and weakening the north-easterly trade winds in the North Atlantic. The surface
wind anomalies thus provide a positive feedback onto the initial SST anomalies by forcing changes in
wind-induced evaporative cooling of the ocean.

The wavelet coherences between four climate modes and rainfall are shown in Figure 13. Significant
in-phase coherence was found with the Niño 3.4 at a band period of 8–12 months (Figure 13a).
This coherence suggests that the negative phase of Niño 3.4 is in agreement with dry years and its
positive phase with wet years at Conakry site. The secondary peak of significant coherence appears at
the band period of 16–32 months from 1962 to 1967. The observed significant coherence at a period
of 16–32 months seem to be partially linked to the response of wet condition of 1960s. An in-phase
relationship between rainfall and Niño 3.4 is found too at the band period of 128–256 months from
1970 to 2005. Since ENSO events can have substantial influence on African rainfall [80], the equatorial
region exhibits more rainfall during El-Niño years than La-Nina years [81]. In the Indian Ocean basin,
Narasimha and Bhattacharyya [82] suggested that the stronger coherence between Homogeneous
Indian Monsoon and Niño 3.4 is found in the 2–7-year band and that both rainfall and the Niño 3.4
index appear irregular and random. During 1950–99, there were seven most significant El Niño events
(1957–58, 1965–66, 1972–73, 1982–83, 1986–87, 1991–92, and 1997–98) for which the SST anomalies in
the Niño 3 region (5◦ S–5◦ N, 150◦ W–90◦ W) exceeded 1 ◦C [83].

17



Climate 2019, 7, 93

 

Figure 13. Coherence between rainfall and Niño3.4 (a), rainfall and AMM (b), rainfall and TNA (c) and
rainfall and AN (d) 1960–2016, the phase relationship is represented by arrows. The black solid line
contour delimits the region (red) where the power is strong and significant and the cone of influence
(solid black line) indicates the 95% confidence level.

The Figure 13b depicts the wavelet coherence between rainfall and AMM and indicates that
the AMM response to the rainfall variability shows an in-phase relationship at the band period
of 8–12 months during the periods 1960–1970, 1978–1984, 1985–1990 and 1995–2016. The wavelet
coherence analysis detected at the band period of 16–32 months lagged (i.e., AMM leading) relationship
with the wet conditions during 1965, 1998–2004 and 2005–2016. Another peak is shown around
64 months from 1970 to 1984, which seems to be in relationship with the 1970s and 1980s droughts.
The AMM is the dominant source of coupled ocean-atmosphere variability in the Atlantic and it affects
rainfall in tropical cyclone development in the North Atlantic. During a positive phase of the AMM,
the ITCZ is displaced northward. Warmer than normal SSTs and weaker than normal vertical wind
shear during positive phases of the AMM tend to enhance tropical cyclone development in the Atlantic.
The conditions are opposite for the negative phase of the AMM. The AMM exhibits strong variability
on interannual to decadal timescales.

Figure 13c shows the coherence analysis between rainfall and TNA. A significant coherence and
out-of-phase between rainfall and TNA is found at the band period of 8–12 months during 1961–1970
and 1980. A second significant coherence of in-phase relationship is shown at the band period of
16–32 months from 1965 to 1970 and 2005 to 2012. Comparing to the results of the case study for the
northern part of Brazil, Uvo et al. [84] reported that the variations of April–May averaged precipitation
are closely connected to the changes in the TNA SST. And sea surface temperatures in the tropical
North Atlantic affect the meridional movement of the ITCZ and its band of heavy rainfall and cloud
cover [73]. Furthermore, the results found by Sun et al. [85] clearly demonstrate that the climate indices
have the influential consistent correlation relationship with the precipitation variation in Korea.

The wavelet coherence between AN and Conakry rainfall data was also computed (Figure 13d).
The wavelet analysis detected a statistically significant coherence and in-phase relationship at the
band period of 4–12 months during the years 1965, 1970, 1980, 1986 and 2005. Significant out-of-phase
coherence was found at a band period of 32–48 months during the periods 1965–1984 and 2005–2013,
suggesting that the positive phase of the AN contributes to drier and cooler conditions in Conakry.
A period of significant coherence between the AN and rainfall extending from 1976 to 1994 was
also identified at the band period of 128–190 months (~11-year), which may be due to solar cycle.
Using wavelet techniques to examine the association between Indian monsoon and solar activity,
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Bhattacharyya and Narasimha [86] found the power in the 8–16 y band during the period of higher
solar activity at confidence levels exceeding 99.88%. The teleconnection between AN and both the
temperature and rainfall measured at Conakry seems to be in agreement with previous studies
(e.g., Hastenrath and Polzin. [87]; Rodriguez-Fonseca et al. [88] and others). In their study on the role
of the SST anomalies in the West Africa droughts, Rodriguez-Fonseca et al., 2015 reported that the
tropical Atlantic SST variability influence the West Africa rainfall in different time scales: the variability
in areas closer to the equator and those at the south.

To compare our result to those of other areas, a study by Mbata et al. [89] reported for the sector
of Democratic Republic of Congo that the wavelet analysis of the rainfall time series indicates an
important fluctuation between practically 1960 and 1970. And then, Giannini et al. [90] suggested
that the atmospheric convection and circulation changes due to the Atlantic Niño can cause increased
precipitation across the equatorial Atlantic and decreases over the Sahel. These climate modes
appear to have contributed substantially to the 1970s and 1980s drought in a different way and scales.
The widespread influence of El Niño Southern Oscillation (ENSO) events on regional climate can have
considerable socio-economic impact Climatic effects of ENSO, which vary substantially with region
and season [91].

4. Discussion

Compared with previous studies on the variability of temperature and precipitation in West
Africa [55,56], this study gives a more comprehensive investigation on variability of both warm
and cool conditions that could be induced by temperature and of both wet and dry conditions by
precipitation at Conakry. It provides more detailed information about their association with large-scale
ocean–atmosphere oscillations as well as the trend analysis.

The findings revealed that the interannual evolution of temperature is characterized by a strong
increase over the study period. As for the annual change, a semi-annual cycle and an annual cycle are
found. The rainfall trend exhibits a slight decrease. Contrarily to Conakry site, Bose et al. [92] have
found a significant positive increase in rainfall in the entire northern Nigeria within the period of 1970
to 2012.

Trends along the Guinea Coast are weak and non-significant except for extreme rainfall related
indices, this missing significance is partly related to the hiatus in rainfall increase in the 1990s, but also
to the larger interannual rainfall variability [93]. Temperature anomalies with an upward trend,
remain positive since 1992 for all subsequent years, which corresponds to global continuous warming.
The precipitation anomalies show a downward trend and the analysis has clearly shown the 1970s and
1980s drought periods’, which caused significant material damage [94,95] and enormous loss of human
life. Drought over all of West Africa is associated with the growth of positive SST anomalies in the
eastern Pacific and in the Indian Ocean, and negative SST anomalies in the northern Atlantic and in the
Gulf of Guinea [96]. The decrease of precipitation found by our study is in agreement with study by
Aguilar et al. [97], who clearly specified that the measures of overall total precipitation are decreasing
in Guinea. For the region that extend from 20◦ W–10◦ E and from 11◦ N–18◦ N, Panthou et al. [98]
revealed the higher frequency of heavy rainfall and the return to wetter annual rainfall conditions
since the beginning of the 2000s—succeeding the 1970–2000 drought. Furthermore, from our results,
the 1970s and 1980s drought periods’ have been exhibited, which were confirmed in Niger River
Basin, by Djigbo F Badou et al. [55] who highlighted that the wetness of the decades, 1990s and 2000s
and the manifold floods records of the first half of 2010s over West Africa are evidences that the
droughts of 1970s and 1980s have stopped. An overview of the mechanisms that have been proposed
to explain the influence of the AN with other climate modes within and outside the tropical Atlantic is
given by Lübeckke et al. [99]. Most of part of the mechanism involve fluctuations in the wind field
over the equatorial Atlantic. Part of these wind stress anomalies are excited by SST changes in the
equatorial Atlantic itself [100]. They can also be due to a response to ENSO or variations in the South
Atlantic subtropical high. Nnamchi et al., [101] suggested that thermodynamic feedbacks excited by
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stochastic atmospheric perturbations (driving surface heat fluxes), can explain a large part of the SST
variability in the eastern equatorial Atlantic. The impact of AN on rainfall over Gulf of Guinea is direct
because the warm SST reduce low level wind flow inland, leading to positive precipitation anomalies
over the Gulf of Guinea and adjacent coastal region [102]. After confirming the drought of 1970s
and 1980s, Masih et al. [56] reported that African continent is likely to face extreme and widespread
droughts in future and this evident challenge is likely to aggravate due to slow progress in drought risk
management, increased population and demand for water and degradation of land and environment.

To compare our result to global temperature, from 1979 to 2016 using ERA surface air temperature,
Simmons et al. [59] clarified that, early in 2016 the global temperature appears to have first touched
or briefly breached a level 1.5 ◦C above that during the industrial area, having touched the 1.0 ◦C
level in 1998 during a previous El Niño. Thermodynamic feedbacks constitute the main source of
Atlantic Niño variability [74]. Precipitation exhibits a clear and distinct pattern during different phases
of ENSO. Dynamical parameters, specific humidity and horizontal wind also exhibit clear differences
for both ENSO phases [81].

The upward trend in temperature and the downward trend in rainfall was verified by the
Mann-Kendall test. To understand the influence of climatic forcings on both meteorological parameters,
the linear regression model was evaluated and it has been found that TNA and AMM have a more
significant dependence than other indices. For extremes analysis, Aguilar et al. [97] used long term daily
temperature and precipitation data set of Guinea and other countries in Africa. For Conakry station,
they found inhomogeneous data before 1950 and after around 1995. Then they used RClimDex to
processes them in order to get homogeneous data. But after checking the archives of database of Conakry,
we found that the exceptional shift of temperature in 1998 is not linked to instrument replacement nor
any error of digitalization. The wavelet analysis of both signals showed the semi-annual and annual
cycles in temperature and the annual cycle in rainfall. A study conducted by Adejuwon et al. [102],
for 16 stations in west Africa (Nigeria) highlighted that for all the series analyzed, there is the general
tendency towards increasing aridity and spectral analysis indicates prominent periods of between
2-and 8-year cycles.

Several previous studies have shown that there is existence of significant simultaneous covariability
of ENSO with West African rainfall [80,103,104]. One of the possible teleconnection mechanisms
that could explain the ENSO influence on West Africa rainfall is the eastward shift of the Walker
circulation and subsequent decent over the Afro-Asia during the El Niño events [104]. The process of
this Walker-type circulation is associated with reduced rainfall in the West Africa during the El Niño
events. Also, El Niño events also increase transport of heat flux from ocean to the atmosphere which
results in tropical warming.

The observed strong relationship between AMM and both temperature (Table 1) and rainfall
(Table 2) is in agreement with a study by [71]. In their study, Doi et al., [71] found a significant link
between the AMM and the interannual modulation in the seasonal variation of the Guinea Dome
region. This study showed that during the preconditioning phase of the positive (negative) ANN,
the Guinea Dome is anomalously weak (strong) and the mixed layer is anomalously deep (shallow),
there is a late fall. This means that the AMM has a strong influence in both rainfall and temperature of
the Conakry, Guinea.

The variability of the SST in the tropical North Atlantic region which can produce stronger
or weaker trade winds is expected to have an influent in the rainfall and temperature of Conakry.
Therefore, the strong correlation that is observed between TNA and rainfall is understandable because
weaker trade winds are expected to bring moisture in the Guinea coast, while stronger trade winds are
expected to bring dryer conditions.

5. Conclusions

The semi-annual and annual cycles of temperature and the annual cycle of rainfall could be
generated indeed by the ITCZ oscillation and modulated by the WAM. The models used in this study
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highlighted the variability of temperature and rainfall that are characterized by a significant upward
trend in temperature and a low downward trend in rainfall. The IPCC Fourth Assessment Report
review of climate model projections of temperature shows a consistent warming in all subregions,
but less consistent patterns for rainfall [105]. Temperature and rainfall variability at Conakry site were
analysed and linked to dominant modes of climate variability at annual to multiannual timescales.

There is a strong teleconnection between the SST of both pacific and Atlantic in the variability of
rainfall and temperature. So, the annual variability of temperature and rainfall at Conakry are largely
influenced by climate forcings AMM, TNA and Niño3.4. However, there is no significant influence of
AN on these meteorological parameters. Furthermore, the warming of 1998 seems to be a response of
the 1997–1998 strong El Niño event. Physically, the influence of climate modes on temperature and
rainfall were found to vary at different time scales. In Guinea, more important mining projects are
under way. And, in this regard, it would also be important to take into account the anthropogenic
impacts in order to deepen our knowledge. This would allow us to better understand their variability
which is useful in planning sustainable development projects. It is hoped that the results from this
study would help to better understand climate variability in order to get sufficient operational decision
support, and resource management for a sustainable development of developing countries.
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Abstract: A “nadir-only” framework of the radiometric intercomparison of multispectral sensors
using simultaneous nadir overpasses (SNOs) is examined at the 1-km regimes and below using
four polar-orbiting multispectral sensors: the twin MODerate-resolution Imaging Spectroradiometer
(MODIS) in the Terra and Aqua satellites, the Visible Imaging Infrared Radiometer Suite (VIIRS)
in the Suomi National Polar-orbiting Partnership (SNPP) satellite, and the Ocean and Land Colour
Instrument (OLCI) in the Sentinel-3A satellite. The study is carried out in the context of isolating the
on-orbit calibration of the reflective solar bands (RSBs) under the “nadir-only” restriction. With a
homogeneity-ranked, sample size constrained procedure designed to minimize scene-based variability
and noise, the overall approach successfully stabilizes the radiometric ratio and tightens the precision
of each SNO-generated comparison event. Improvements to the multiyear comparison time series are
demonstrated for different conditions of area size, sample size, and other refinements. The time series
demonstrate the capability at 1% precision or better under general conditions but can attain as low as
0.2% in best cases. Solar zenith angle is examined not to be important in the “nadir-only” framework,
but the spectral mismatch between two bands can give rise to significant yearly modulation in the
comparison time series. A broad-scaled scene-based variability of ~2%, the “scaling phenomenon”, is
shown to have pervasive presence in both northern and the southern polar regions to impact inter-RSB
comparison. Finally, this paper highlights the multi-instrument cross-comparisons that are certain to
take on a more important role in the coming era of high-performing multispectral instruments.

Keywords: VIIRS; MODIS; OLCI; RSB; SNPP; Terra; Aqua; Sentinel-3A; reflective solar bands;
intersensor comparison; intercalibration; SNO

1. Introduction

Earth science and climate studies have made significant progress in the recent decades along with
continual advances in remote sensing technologies. Progressing along improving imaging capability is
the intersensor comparison methodology, a method of evaluating the performance of sensor data or
associated retrievals by comparing against a reference sensor, which is also certain to be utilized in
greater capacity in the coming era. For multispectral sensors, it can be argued that the two units of
the MODerate-resolution Imaging Spectradiometer (MODIS) [1,2], in the Terra and Aqua satellites
launched on 18 December 1999 and 4 May 2002, respectively, are the forerunners leading the era of the
high-performance instruments and big data. The twin MODIS, with 36 bands covering the spectral
range of 0.45 to 12.4 μm are now closing in on two prolific decades of data acquisition. However, it is
not until the launch of the next major multispectral sensor—the Visible Imaging Infrared Radiometer
Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (SNPP) satellite on 28 October
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2011 [3,4]—that the twin MODIS finally has a comparable counterpart to generate high precision
intersensor comparison result. Numerous radiometric intercomparisons of the reflective solar bands
(RSBs) of Aqua MODIS and SNPP VIIRS ensued [5–7] utilizing the simultaneous nadir overpasses
(SNOs) approach [8–11]. These studies demonstrated the capability of the radiometric intercomparison
at the 1-km spatial resolution regime to be typically few percent. A main goal of this paper is to show
that the capability, under an improved analysis procedure, is at the level of 1% precision or better.

The coming era is certain to make intersensor comparison a tool of increasing importance as more
high-performance multispectral sensors are continually being launched into operation. For example,
the Ocean and Land Colour (OLCI) Instrument and its companion Sea and Land Surface Temperature
Radiometer (SLSTR) housed in the Sentinel-3A satellite [12] are the recently launched polar-orbiting
multispectral sensors, with approximately 300-m spatial resolution. The first follow-on of VIIRS built
is one on the Joint Polar Satellite System-1 (JPSS-1) satellite [13], or J1 satellite (officially designated as
NOAA-20 post launch), was launched on 18 November 2017. A total of four follow-on VIIRS—J1 to J4
VIIRS—for which the SNPP VIIRS serves as the precursor, are scheduled to span the next 20 years of
operation. The technological advancement also extends to geostationary sensors, with Himawari-8
Advanced Himawari Imager (AHI) [14,15], GOES-R Advanced Baseline Imager (ABI) [16–18], and
GOES-S ABI [18], all with 1-km spatial resolution, recently launched. More follow-on geostationary
sensors are also in the plan of succession. The demand for assessing sensor data quality and to monitor
radiometric performance will certainly increase.

The overall accuracy of radiometric data depends on many inputs, but the regularly carried out
on-orbit radiometric calibration operation to characterize the changing performance of detectors is one
of central importance. One main commonality among the four instruments considered here—Terra
and Aqua MODIS, SNPP VIIRS, and Sentinel-3A OLCI—is a fully equipped onboard calibration
suite for carrying out the regularly scheduled on-orbit calibration. They following a similar strategy,
including using a specially made solar diffuser (SD) panel for RSB performance characterization. This
built-in calibration capability is a mark of the new generation high-performance multispectral sensors
and makes them valuable radiometric references for other sensors or any climate studies to inter- or
cross-calibrate. Thus establishing radiometric consistency between any pair of such independently
calibrated sensor will be beneficial, and intersensor comparison is a most proper tool for this purpose.
In addition, intercalibration using any of these sensors as a radiometric reference requires also a
reliable intersensor comparison methodology. While there are numerous approaches for post-launch
radiometric evaluation, the current knowledge points to intersensor comparison as potentially the
most precise approach.

However, there are many other factors impacting the overall accuracy of the sensor data and
also intersensor comparison result beyond just band or detector performance. One of such, outside
the capability of the standard on-orbit calibration, is the response-versus-scan angle (RVS) effect of
the scan mirror that can add in a systematic angle-dependent bias along-scan. For example, in the
MODIS Collection 6 release [19,20], the addition of the time-dependent RVS characterization is a key
upgrade to the RSB calibration methodology to mitigate the RVS effect that is beyond the capability of
the on-orbit calibration methodology. For SNPP VIIRS, the time-dependent RVS effect is not yet an
issue, but its potential emergence remains a possibility. Various common issues also create challenges
for intersensor comparison analysis. Angle- or scene-dependent effects associated with the scenes,
including the biredirectional reflectance distribution factor (BRDF) of the SNO scenes, also introduce
additional complications into intersensor comparison result. For removing various confounding effects
associated with larger angles or viewing areas, Chu et al. [7] utilized a “nadir-only” framework of SNO
analysis in an Aqua MODIS versus SNPP VIIRS study, that limits the viewing angle to the Earth scenes
to near 0◦ degree by using a small-sized comparison area. This study adopts the same “nadir-only”
approach specifically in the context of examining the capability of intercomparison in evaluating
on-orbit RSB calibration performance, and furthermore uses multiyear comparison time series that
incorporate all high-quality SNO events as a tool of evaluation.
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This study further distinguishes between statistical and physical constraints. For example,
statistical analyses subject all physical conditions such as cloudy scenes or those of various geolocational
conditions under the same criteria. This analysis carefully avoids any premature applications of
physical constraints, such as the removal of cloudy scenes that can unnecessarily remove legitimate and
usable data. Because statistical and physical attributes do not necessarily correlate, physical constraints
should be applied only for targeted purposes. Also, for keeping data and results clean for achieving
unambiguous and precise analysis, this work does not adjust or correct of data. It is often customary
to adjust result such as using the spectral band adjustment factors (SBAFs) to account for spectral
differences, but this study does not presume these practices to be reliable at the 1% precision level—the
aim here is to first establish a clean groundwork before these other issues can be further examined.

In summary, this work examines the capability of intercomparison in a “nadir-only” refinement
of SNO analysis that isolates the on-orbit RSB calibration from other large area-associated issues
for a multiyear evaluation using comparison time series. In particular, Aqua MODIS versus SNPP
VIIRS is used as the main case study because of their longer history with many studies already
established numerous important findings. One more relevant point is that an intercomparison is a
relative evaluation that is conclusive only when the reference sensor has already been established as
reliable. Additional information, such using product retrievals derived from sensor data or another
sensor for cross-examination, is often required to draw stronger conclusions. In other words, a stable
radiometric comparison result can be deceptive due to both sensors containing coincidentally similar
error in calibration. Nevertheless, intercomparison is most valuable when result shows deviating
features that signals problems such as incorrect implementation, inadequate calibration or instrument
anomalies. The current high-performance multispectral sensors with good imaging capability already
has the 1% interscomparison capability that can ascertain various radiometric deviations of few percent;
however, other types of sensors such as hyperspectral or microwave are either with insufficient spatial
resolution or have not been shown with applicable precise intercomparison.

The organization of this paper is as follows. Section 2 briefly describes the four instruments and
some general issues of radiometric intercomparison. Section 3 shows the results of the examination of
the intercomparison methodology, emphasizing SNPP VIIRS versus Aqua MODIS in the 1-km regime.
Section 4 shows the result of the examination for four different regimes of intercomparison, from
375 m to 1 km. Section 5 demonstrates cross-comparisons using Aqua MODIS, Sentinel-3A OLCI, and
SNPP VIIRS. Section 6 provides a general discussion of relevant issues. Section 7 provides a summary
and conclusion.

2. The Comparison Conditions

2.1. The Instruments

The flight and operational parameters of the satellites and instruments preset numerous limiting
conditions for intercomparison. Table 1 lists some key parameters for Sentinel-3A, SNPP, Terra, and
Aqua satellites and the key specifications for OLCI, VIIRS, and twin MODIS. Notable differences are
the two different repeat cycles, at 27-day or 16-day, and the two nodes of flight, either ascending at 1:30
pm local time or descending at 10:00 am local time, that can influence SNO occurrences. The native
spatial resolution at subsatellite point (SSP), determining the number of pixels per unit area, is a key
parameter affecting the capability and the statistics of intercomparison. For example, at 1-km regime,
a small area of 40 × 40 km-square contains 1600 pixels per SNO event, which is sufficient to attain
robust statistics.
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Table 1. Selected information and parameters for the four satellites and the multispectral instruments.

Sentinel-3A: OLCI SNPP: VIIRS Terra: MODIS Aqua: MODIS

Satellite Repeat
Cycles (Days) 27 16 16 16

Satellite Local
Crossing Time

Descending:
10:00 am

Ascending:
1:30 pm

Descending:
10:30 am

Ascending:
1:30 pm

Satellite Altitude
(km) 814 834 705 705

Satellite Orbit
Inclination 98.6 98.7 98.2 98.2

Sensor: Swath (km) 1270 3040 2330 2330

Sensor: Resolution
at SSP (m) 300 m 750 m, 350 m 1 km, 500 m, 250 m 1 km, 500 m, 250 m

Sensor: Number of
Bands 21 22 36 36

Sensor:
RSB/TEB/Other 21/0 14/7/1 20/26 20/26

Figure 1 illustrates the spectral coverage, represented by the range of the relative spectral response
(RSRs) or spectral response functions (SRFs), of selected RSBs considered in this study. Every SNPP
VIIRS band up to M7 has a spectral counterpart in MODIS or OLCI, although the two latter sensors
contain more bands not spectrally matched by SNPP VIIRS.

Figure 1. The spectral coverage of the selected reflective solar bands (RSBs) of MODIS, SNPP VIIRS,
and Sentinel-3A OLCI considered in this study. The 250-m, 500-m, and 1-km spatial resolution MODIS
bands are shown in orange, red, and purple, respectively. The 750-m and 375-m spatial resolution
bands of SNPP VIIRS are shown in blue and light green.

Table 2 lists the specifications of the RSBs corresponding to those in Figure 1. The spatial resolutions
of SNPP VIIRS moderate- and imagery-RSBs are at 750-m and 375-m. MODIS bands B1 and B2,
B3–B7, and B8–B16 operate at 250-m, 500-m, and 1-km spatial resolution, respectively. MODIS bands
B1–B7 are also aggregated at 1-km spatial resolution. All Sentinel-3A OLCI bands have approximately
300-m spatial resolution. The band-to-band comparisons between these sensors can be made in four
spatial resolution regimes: 1-km, 750-m, 500-m, and 375-m. The maximum at-sensor radiance (LMAX),
with units watt/m2/sr/μm, represents the maximum end of the band dynamic range. The spectral
categories are visible (VIS), near infrared (NIR), and shortwave infrared (SWIR), in increasing order
of wavelength.
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The study uses SNPP VIIRS as the common reference against other three sensors. In particular,
Aqua MODIS versus SNPP VIIRS has been well studied [5–7] and its result establishes many key
baselines. The band pair of Aqua MODIS B5 versus SNPP VIIRS M8 is an ideal case study of the
comparison capability given the near identical spectral coverage and the very stable time series [6,7].
The four spectrally well-matched bands of Aqua MODIS B2, SNPP VIIRS I2/M7, and OLCI Oa17,
centered at ~860 nm, represent a uniquely interesting set to make a consistent study on the impact of
spatial resolution at all four possible regimes at 375 m, 500 m, 750 m, and 1 km. Both Terra MODIS
and Sentinel-3A OLCI are not as reliably established as Aqua MODIS but still provide additional
useful result. The datasets used in this study are the MODIS Collection 6.0 release [21], the operational
SDR version generated by the Interface Data Processing Segment (IDPS) for SNPP VIIRS [22], and the
current mission release for Sentinel-3A OLCI [23].

2.2. General Issues

The general conditions of SNOs and radiometric intercomparison have been well
described [9–11,24] and the details are not repeated here. The focus here is on issues pertaining
to the capability of the radiometric intercomparison methodology.

2.2.1. SNO Geolocation and Scenes

The occurrences of SNOs are determined by the flight trajectories of the satellites. Figure 2
displays the SNO locations for three pairs of satellites—Sentinel-3A versus SNPP for the year 2017
(red triangles), Terra (green stars), and Aqua (blue squares) versus SNPP (green stars) up to end of
2017—showing the northern polar region in Figure 2a and the southern polar region in Figure 2b. The
2017 SNO subsets are highlighted for Terra versus SNPP (magenta triangles) and Aqua versus SNPP
(cyan squares); this is to illustrate that SNO locations do not repeat yearly. The SNOs of Sentinel-3A
versus SNPP, with descending node for the former and ascending node for the latter, are concentrated
within a tight circular band at around N71◦ latitude just inside the Artic Zone, with no occurrences in
the southern region. On the other hand, the SNOs of Terra versus SNPP, also in opposing descending
and ascending node, occur over both northern and southern regions, tracing out near the N68 and
S68 circulars. The SNOs of Aqua versus SNPP, both ascending node, occur over both northern and
southern polar regions in an interesting three-arm spiral pattern. This illustrates that different orbits
and flight parameters map out different SNO locations, and therefore the reflectance property and the
common atmospheric conditions of these SNO scenes are important factors. For example, Aqua versus
SNPP commonly crosses over icy scenes of Antarctica, which have scene radiance commonly above 50
watt/m2/sr/μm, thus easily saturate SNPP VIIRS M6 and many MODIS bands of low dynamic range.
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(a) 
 

 
(b) 

Figure 2. The precise SNOs of Sentinel-3A versus SNPP satellite (green stars) in 2017, Aqua versus
SNPP satellite for the entire SNPP mission (blue squares) and in 2017 (cyan squares), and Terra versus
SNPP satellite for the entire SNPP mission (red diamonds) and in 2017 (magenta diamonds), over (a)
northern polar region and (b) southern polar region.

Figure 3 shows the daily frequency of precise SNO events for the year 2017. An interesting finding
is the extended four-month periods of missing SNOs events for Sentinel-3A versus SNPP satellites
(green bars) that run from October to February. Although not shown, the late 2016 and early 2018
periods are also without SNO occurrences for Sentinel-3A versus SNPP. A quick check confirms that
Sentinel-3A OLCI observational coverage changes throughout the year and does not extend beyond
71◦ latitude during those four-month gaps, and therefore, despite any actual SNO events of the two
satellites, there is no OLCI data available. Another interesting result of Sentinel-3A versus SNPP is
that the SNOs cluster in distinctive days, 45 days of multiple SNO occurrences that further group into
13 clusters, thus showing that mismatching flight parameters, such as 16-day versus 27-day repeat
cycle for this case, can generate interesting occurrences.
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Figure 3. SNO occurrences in 2017 for Sentinel-3A versus SNPP (green bars), Terra versus SNPP
(magenta triangles), and Aqua versus SNPP (cyan squares).

2.2.2. Spectral Match

The matching of two bands for radiometric comparison is customarily made according to their
spectral proximity to ensure comparable radiometric responses over SNO scenes. In reality, most
band pairs have RSR differences that induce yearly variability into the comparison time series. On
the other hand, some band pairs not showing good spectral match, such as Aqua MODIS B3 versus
SNPP VIIRS M3 with limited RSR overlap as shown in Figure 1, can still generate usable comparison
time series [6,7]. A more extreme example is Aqua MODIS B7 (2130 nm) versus SNPP VIIRS M11
(2257 nm) [25] for which the two RSRs do not overlap but a marginally usable time series can still
be generated. The impact of RSR mismatch and the full range of possibilities beyond the standard
spectral-matching practice are not fully understood and should be pursued in future studies.

2.2.3. Dynamic Range

The limitation due the dynamic range is briefly presented here only for clarifications. The narrow
dynamic range of a band can set a limitation impossible to overcome. For example, Aqua MODIS B15
(748 nm) versus SNPP VIIRS M6 (746 nm), with LMAX of 3.5 and 41 watt/m2/sr/μm, respectively, hardly
generates any successful outcomes as both bands saturate over the higher-latitude icy polar scenes
where their SNOs commonly occur. However, future sensors with progressively wider dynamic range
are less likely to encounter saturation. For instance, Sentinel-3A OLCI bands already have sufficient
dynamic range and show no saturation issue for this study. But for band M6 of all VIIRS builds at only
41 watt/m2/sr/μm LMAX, the success of SNOs involving VIIRS M6 is limited.

2.2.4. Spatial Resolution

The central goal of this study is to assess the capability of radiometric intercomparison and
the achievable statistics in different regimes of spatial resolution. That is, how well can intersensor
comparison assess radiometric performance of a sensor at different pixel sizes? As the regime reaches
the 1-km resolution or so, the number of pixels in a small but realistic sized area selected for comparison
becomes sufficient to allow standard statistical sampling. For example, at 1-km regime, a small area of
32 × 32 km-square contains 1024 pixels, which is sufficient for robust statistics under favorable scene
conditions. The current result, such as shown in Chu et al. [7], suggests that the precision result of the
time series at 1-km spatial regime is ~1%. Below the 1-km regime, the greater pixel density then give
more samples per unit area as well as greater flexibility to enable more powerful sampling analysis—it
may be possible to reach precision result much tighter than 1%. At coarser spatial resolution, for
example at 5-km pixel size, to have 1000 pixels require an area size of 160 × 160 km-square, and that
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extent is too large to realize “nadir-only” condition. Therefore, the result using large coarser pixel size
is likely to have large-area effects to render the result unreliable.

Most SNPP VIIRS and Aqua MODIS bands are moderate bands, at 750-m and 1-km spatial
resolution respectively, and their intercomparison at the 1-km regime have demonstrated precision
result at ~1% [7]. But Aqua MODIS and SNPP VIIRS also contain imagery bands with resolutions as
fine as 250 m, and furthermore, the OLCI spatial resolution is ~300 m. The examination at regimes
finer than 1-km can therefore assess the capability at higher imaging capability. The coming era will
have more such higher spatial resolution imaging sensors, such as OLCI already in operation.

3. The Examination of Radiometric Intersensor Comparison

This study generalizes the methodology used in the Aqua MODIS versus SNPP VIIRS inter-RSB
comparison by Chu et al. [7] to focus on three key criteria—area size, pixel homogeneity, and pixel sample
size. The small area is a way to approximate the “nadir-only” condition, while homogeneity and sample
size constraints are containment strategies to minimize a generally persistent scene-based variability of
~2% significantly impacting the comparison result. This persistent broad-scale variability—the “scaling
phenomenon”—renders the use of larger area and sample size to improve statistics useless and is a key
motivator of this study. The earlier assessment [7] suggests that the scaling phenomenon arises out of
some mid- to large-scale scene conditions in the southern polar region, including Antarctica, where
SNOs commonly occur. The application of the constraints to each SNO event successfully circumvented
the variability to achieve a better precision at about 1%. This study clarifies how scene-based variability
can impact intercomparison and why improvements can be made. The northern polar region is also
shown to have the same 2% scene-based variability.

3.1. Procedure and Setup

Given an SNO event precisely determined within a single pixel of nadir crossing, a small area
centered on the nadir crossing is used for pixel-based radiometric intercomparison. The radiance
pixels of the two sensors within the small area are matched pair-by-pair via geolocation information.
Each pair of collocated pixels is used to compute a pixel-based radiometric ratio of radiance. For
this analysis, SNPP VIIRS radiance is taken to be the common radiometric reference against that of
MODIS or OLCI. A fixed number of pixels of the best homogeneity quality, to be explained below, is
selected for the computation of population statistics. The population average and the relative standard
deviation (STD) of all qualified pixel-based ratios represent the ratio and the precision, or error bar, of
the SNO event. The low radiance bias of MODIS and the impact of the solar zenith angle (SZA) are
two issues briefly discussed here for clarification but are not used for analysis.

First, specific only to the inter-RSB comparison of MODIS versus SNPP VIIRS, a radiance cut of
the 20% of the lowest radiance is imposed to remove biased cases occurring at low radiance, as was first
done by Chu et al. [7] for Aqua MODIS-based result. The low radiance values from the two sensors
are actually in good agreement on absolute terms, but nevertheless can result in large relative bias
primarily as numerical artifact due to the low radiance value in the denominator. This low-radiance
bias is also quickly confirmed to be true for Terra MODIS versus SNPP VIIRS. High radiance cases
also possesses a few outliers, possibly associated with band response near saturation, thus the highest
10% of the radiance are removed as a safety measure. On the other hand, the OLCI-based comparison
result does not exhibit bias at either low or high radiance. This points to MODIS possibly having some
calibration issues, such as incorrect characterization of nonlinearity at low radiance, but is in any case a
calibration issue not examined here.

The second issue concerns the impact of the SZA dependence, which imparts to radiance a
distinctive seasonal pattern. However, the “nadir-only” restriction effectively cancels out the SZA
effect in the radiometric comparison because the SZAs of the two sensors are effectively identical across
the small area. Figure 4 shows the SZA correction ratio of Terra versus SNPP (magenta triangle), Aqua
versus SNPP (cyan squares), and Sentinel-3A versus SNPP (green stars) for the year 2017. The error
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bars are mostly ~0.1% and smaller. Given the yearly cycle of the SZA, the demonstrated stability in the
year 2017 is sufficient to show that the SZA correction factor will not impart to comparison time series
any seasonal modulation or multiyear drift. The small random variability can be attributed to the time
difference that is also random from one SNO event to next; furthermore, the accuracy of geolocation
data can also be questioned at the level of 0.1%. Thus it is not necessary to include the SZA correction
factor in the “nadir-only” framework.

Figure 4. Solar zenith angle (SZA) correction factors in the year 2017 for Terra versus SNPP satellite
(magenta triangles), Aqua versus SNPP satellites (cyan squares), and Sentinel-3A versus SNPP satellite
(green stars) demonstrating stable trends.

3.2. Homogeneity

Homogeneity, or spatial uniformity, quantifies the variability of a pixel. It is most straightforwardly
represented by the percentage STD calculated using the pixel itself and its eight neighbors—that is, the
STD of the value of the nine pixels in the 3 × 3 square divided by the value of the center pixel. A few
options exist for its application—at pixel-based radiance of each sensor, at pixel-based ratios computed
from collocated radiance pixels, or both; it is tested for this study that for as long as homogeneity
is applied, the result differs very modestly only in rare events. For simplicity, this analysis applies
homogeneity to radiance data.

The primary importance of homogeneity lies with it being a proxy to statistical quality of
pixel-based data to be used in tandem with a sample size constraint condition, to be described below.
Homogeneity in this analysis is not simply an imposed threshold, but is used to generate a sorting
of pixel quality to allow a selection procedure under a sample size constraint. Using only a simple
homogeneity threshold will include all pixels satisfying the threshold, and different SNO events will
have different sample size. On the other hand, using size-constrained selection forces all qualified
SNO events to contain the same number of pixels, and this has the advantage of allowing more
straightforward interpretations and comparison among events. A threshold of homogeneity, such as
4.5% as a reasonable level can always be imposed, but its importance to contain noise or variability
becomes secondary when sample size constraint, itself a mechanism of containment, is used.

3.3. Area Size and Sample Size Constraint

The impact of area size, sample size constraint, the scaling phenomenon, and other associated
issues of the comparison sampling analysis are examined here under expanded scope. The band pair
of Aqua MODIS B5 (1240 nm) and SNPP VIIRS M8 (1238 nm) is used as the representative case study
because their comparison result has shown to be the most stable [6,7]—this is primarily due to their
well-matched spectral coverage and partly to the radiometric stability of the SWIR bands. For each
SNO event, an examination of the impact of area and sample size is carried out at each spatial scale
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from the 20-km to 160-km scale. That is, 20 × 20 km-square area centered on nadir crossing is analyzed,
then on to 32 × 32 km-square and so on until up to 160 × 160 km-square. At each scale or area size,
statistics are computed for two separate cases. For the sample-unconstrained case, all pixels within the
4.5% homogeneity are used to compute the population statistics. In the sample-constrained case, only
a fixed number of pixels of the best homogeneity quality, also necessarily below 4.5%, are used. The
sample size of 500 samples and 1000 samples are used for the size-constrained cases.

The usable SNO events range from those of clearest scene conditions to those of variable conditions.
A best-scenario SNO event is shown in Figure 5, that of 15 December 2016, for the sample-unconstrained
case (red stars) and two sample-constrained cases, at 500 (green diamonds) and 1000 samples (blue
squares). The top panel shows the average ratio of the qualified pixel-based ratios at each scale or area
size, and the bottom panel shows the corresponding error bar, or the relative STD. The ratio result shows
near-perfect broad-scale agreement among three cases that is remarkably stable at 0.991. The error bars
are also very tight for all three cases, and are practically identical for the two sample-constrained cases
at 0.2%. The overall result indicates a very clean scene condition that can generate very robust result at
all scales shown up to 160 km. The occurrences of SNO events with this level of pristine clarity are only
of several per year, but they remarkably reveal the capability of intercomparison to be fundamentally
at the 0.2% level. The broad-scale agreement also reflects the sampling procedure to be meaningfully
constructed and correct. All similarly clear-scene cases at other times have been checked to generate
stable ratios and tight error bars across all scales as well. When clear SNO conditions exist, such as
with low cloud or aerosol content, then using any small area size within the SNO scene will generate
a robust and the correct result. It is here pointed out that Chu et al. [7,25] have examined one such
high-precision event to confirm its clear-scene condition.

Figure 5. The ratio (top) and the relative precision (bottom) versus area size for the three cases of
unconstrained sample size (red stars), constrained size at 1000 samples (blue squares), and constrained
size at 500 samples (green diamonds) for the clear-scene SNO event on 15 December 2016 for Aqua
MODIS M8 versus SNPP VIIRS M8.

The primarily important SNO cases are those of marginal statistical quality with broad-scale error
bar of few percent, approximately 2% to 4%, that can be improved to be below 2% to be added to
the comparison time series. Thus the number of these marginal cases can determine the success or
failure of a time series. Figure 6 illustrates two representative cases with ~2% broad-scale error bar.
The labels are the same as those of Figure 5. The most outstanding feature to note is that, consistent
over the entire range of scale or area size shown, the sample-constrained ratios are stable with tighter
error bars, while the sample-unconstrained ratios are unstable at the level of 1.5% or worse. In
particular, the ratio-versus-scale result of each sample-unconstrained case demonstrates worsening
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scatter toward larger scales—this decisively demonstrates the use of larger areas on its own does not
improve comparison result and can in fact make it worse. Thus a strategy such as using larger areas
or all available pixels, even when many noisy pixels have been removed via a homogeneity filter,
is not a reliable procedure. On the other hand, the two sample-constrained cases—at 500 and 1000
samples—show stable ratio with broad-scale agreement. This finding shows that robust results are not
achieved by having more samples but on the contrary by limiting them, specifically by using only
the best-quality pixels. The error bar results of the constrained case are also tighter and continue to
smoothly tighten further with increasing scale. The overall strong conclusion is that the application of
sample size constraint, in conjunction with a homogeneity-ranked selection, stabilizes the ratio and
tightens the error bar at each scale. Because of this stabilization, area size actually becomes statistically
conforming—that is, by increasing the area size, more samples become available for selection and the
error bar tightens as expected. The caveat is that fixing the number of best quality pixels is a necessary
middle step to facilitate this conforming behavior.

 

(a) 
 

(b) 

Figure 6. The scale-dependent result of radiometric comparison of (a) Aqua MODIS B5 versus SNPP
VIIRS M8 on 29 May 2016 and (b) Aqua MODIS B4 versus SNPP VIIR M4 on 11 June 2016, for ratio (top
panel) and the error bar (bottom panel) versus area size for the three cases of unconstrained sample
size (red stars), constrained size at 1000 samples (blue squares), and constrained size at 500 samples
(green diamonds).
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The precision-versus-scale result (bottom panel) also illustrates distinctively different behavior
between the sample-constrained and the sample-unconstrained cases. While the sample-unconstrained
case exhibits unstable large scatter, the two sample-constrained cases instead show a smooth
exponentially decreasing patterning of error-bar tightening that begins to agree at the 60-km scale and
finally settling at ~1%. It is clear that the unconstrained case uses all pixels necessarily including all
those of worse statistical quality, thus the inclusion of all pixels does not help to tightening the error
bar but in fact worsens the result. An examination of the pixel quality (shown later) illuminates this
point. The precision of the unconstrained cases also shows consistent clustering at around the 2%
level throughout all scales, thus demonstrating instances of “scaling phenomenon” within individual
SNO events. However the phenomenon is herein explicitly revealed to be only loosely scale-invariant,
and that the error bar can vary with scale or area size to some degree. This is a common feature for a
majority of SNO events.

The exponential shape of the error bar results also indicates some well-behaved property. For the
1000-sample case, the 32-km scale is where the area size is minimally large enough to have more than
1000 pixels, specifically at 1024, for the analysis to be applied. At this scale, both the constrained and
the unconstrained results contain almost the same set of pixels, thus the two precisions necessarily are
closely matched, as shown in both dates at ~2.3%. As the area size increases to include more pixels,
the constrained case will have more available pixels from which to select those of best homogeneity
quality to further tighten the error bar. The error bar stabilizes at larger scales when most pixels of best
homogeneity quality have been found, and that finding more pixels of better homogeneity from larger
area becomes both less probable and less leveraging. This finding suggests that the selection of area
size and sample size should not be too tightly matched, and instead, given any sample size constraint,
the area size should be made larger to allow more samples. For example, for comparison at the 1-km
regime using 1000 samples, an area of 50 × 50 km-square with 2500 available pixels will be better than
a 32 × 32 km-square area with only 1024 pixels. The precision result in Figure 6, showing tightening
precision at larger area, proves this point.

The relative left-right shift in the error bar versus scale result demonstrates another aspect of the
sample-size condition. As explained above, the 1000-sample case starts its first point at the 32-km
scale; for the 500-sample case, 23-km is the starting point with 529 available pixels. In any given spatial
resolution regime, sample-constraint size determines the minimal scale. Therefore future sensors with
finer imaging capability will push the minimum area even lower, allowing for more refined studies
and improved capability.

3.4. Examination of Pixel Quality

A closer examination into the homogeneity of pixels reveals some insights into their statistical
quality. Figure 7 shows the homogeneity of 2000 pixels from the 50 × 50 km-square area in the 11 June
2016 event of Aqua MODIS B4 versus SNPP VIIRS M4, corresponding to Figure 6b, ranked from best
to worst. The two vertical lines mark 500 and 1000 samples. The first 500 samples have homogeneity
better than 3.5%, but the next set of 500 samples, from number 501 to 1000, ranges from 3.5% to 4.7%. It
is clear that the first 500 ranked samples will generate smaller variability then the next 500 samples and
so on. This is consistent with Figure 6 which shows the 500-sample case is actually more precise then
the 1000-sample case. The ranking of homogeneity as in Figure 7 exposes that includes more pixels can
bring in those pixels with greater variability and make statistics worse. While obvious as presented,
this runs counter to the common expectation that a larger sample size would generate better, not worse,
statistics. The continually rising pattern of homogeneity of ranked-pixels indicates different variability
pixel-wise, thus a sampling analysis over SNO scenes does not conform to standard sampling where
each data point conforms to the same variability. This is neither an obvious nor trivial property that
is anticipated, but nevertheless is consistent with physical reality in hindsight. Therefore cleaning
processes based on physical conditions, such as cloud removal, that focuses on a subset of pixels
with specific physical attributes does nothing for this pixel-based variability and will not stabilize the
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statistics. The issue is not if the pixels have been cleansed of certain physical attributes but whether or
not if too many pixels of higher variability have been sampled. The real physical conditions of Earth
scene data can vary, and cannot be expressed by a single well-defined distribution. Inclusion of more
samples to improve statistics is inherently erroneous and can end up broadening the distribution and
worsen the error bar. Therefore the containment of the worsening statistics, such as limiting the sample
size and using only the lowest variability pixels, is the necessary remedy.

(a) 

 
(b) 

Figure 7. (a) Homogeneity versus ranked pixels for Aqua MODIS B4 versus SNPP VIIRS M4 for the 11
June 2016 SNO event and (b) precision (top panel) and homogeneity (bottom panel) with respect to
sample size constraint for the 11 June 2016 event for the 36-km (red triangles), 50-km (blue squares),
and 80-km (green diamonds) scales.

Figure 7b demonstrates how average precision and average homogeneity increases with respect to
the number of sample at three area sizes—36-km (red triangles), 50-km (blue squares), and 80-km scale
(green diamonds). For each of three testing area sizes, average precision and average homogeneity
are computed for each given number of the homogeneity-ranked pixels. For example, for the 36 ×
36 km-square area case which has 1296 pixels, the best 100 pixels in terms of homogeneity are used
for computation of statistics for the first point, and then 101 pixels of the best quality are used and so
on. Expectedly, the average homogeneity and precision worsens with inclusion of more pixels. The
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three cases also show that statistics improve with larger area under sample constraint. The 11 June
2016 event is a marginal case, and its 36-km, 1000-sample precision result at 2.2% would have been
excluded by a 2% precision requirement for the time series; but its 50-km, 500-sample result shows
that a different set of criteria can improve pixel selection leading to significant improvement to 1.7%
precision. A quick summary of the sample size constraint is that, large constraint size can worsen
statistics but using larger area can improve them.

It is natural to want to find the optimal scale and sample size choice, but the answer does not
require another thorough study, but rather simply on the caution of keeping the area size small enough
to avoid potential hidden bias. While Figure 7 may shows that the 80-km scale (green diamonds)
generates the best statistics, the overall finding including that of the unconstrained cases in Figure 6
also suggests the presence of some underlying bias over larger area. For the 1-km regime, the 50-km
scale is an acceptable balance between having an area small enough to minimize the large area bias and
one large enough for good, but not necessarily the best, statistics. The result also shows that sample
size range of 400 to 600 to be reasonable.

The distributions of qualified pixel-based ratios per each SNO event are examined for the three
different sample size conditions. Figure 8 shows the three distributions of the 29 May 2016 event at the
70-km scale to be normal-like, indicating that the samples as a set are well behaved in each case. The
key point is that the 500-sample case has the tightest distribution, followed by the 1000-sample case
and finally the unconstrained case. This is consistent with the result of Figure 6 showing 500-sample
cases having lower error bars. Other scales are checked to have the same behavior. The broadening of
the distribution from the 500-sample to the unconstrained case is the most direct demonstration of
the lack of an underlying stable distribution, showing that the sampling in intercomparison involves
physical data of different variability. By including more samples in the homogeneity-ranked scheme
into the distribution, the result increasingly contains worse statistics to broaden the distribution.

Figure 8. The three ratio distributions of Aqua MODIS B5 versus SNPP VIIRS M8 of the 29 May 2016
event, taken at the 70-km scale, for the sample-unconstrained condition (red stars), the constrained size
1000 samples (green diamonds), and the constrained size at 500 samples (blue squares).

It is worthy to clarify that the impact of homogeneity on error bar is neither direct nor absolute.
Homogeneity as applied in this study has been shown to be a beneficial metric to help stabilize statistics,
but pursuing into greater details is not necessary at the 1% precision level. It has been examined that
slight variation at ~4.5% leads only to the slightest difference in a few SNO events. The sample size
limitation and the selection procedure as described thus far are the main factors impacting the error
bar result.
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3.5. Application and Result

The long-term stability of the Aqua MODIS B5 and SNPP VIIRS M8 time series makes it an ideal
case to illustrate the impact of various selection criteria. Figure 9 shows the three cases of 36-km with
1000 samples (red crosses), 36-km with 500 samples (green diamonds), and 50-km with 500 samples
(blue squares). The solid line is the series mean set at 0.988 and the two dash lines mark the 2%
boundaries above and below the mean. A precision threshold of 3% is applied to all three time series.
The mean and the precision results are computed using the best 100 events in each time series for
consistent comparison purpose.

Figure 9. The time series of Aqua MODIS B5 versus SNPP VIIRS M8 under three combinations of area
scale and sample size. A 3% precision threshold is imposed on each SNO event.

It is seen that lowering constraint size has impact. Lowering the sample size constraint from 1000
(red crosses) to 500 (green diamonds) increases successful comparison outcomes from 101 to 162 and
tightens the 100-event error bar average from 1.214% to 0.622%. The 50-km, 500-sample (blue squares)
time series, contrasting against the 36-km, 500-sample case, increases the number of successful SNO
events to 195 and tightens the error bar to 0.424%.

Nevertheless, all three time series generate statistically indistinguishable series means at 0.988,
thus it may appears at first that different conditions do not matter. However, for other purposes such
as generating a fuller time series with fewer data gaps, i.e., better regularity, a larger area size and a
less stringent sample size constraint may be better. For example, the 50-km, 500-sample time series
(blue squares) contains more outcomes in the year 2012 and 2013 than the other two cases. What
is demonstrated is that the area size and the sample size constraint can be tuned to improve some
characteristics of the time series such as regularity that can be helpful to evaluate the radiometric
performance at certain period. Larger area sizes beyond 80-km scale and lower sample size down
to 250 samples have been examined to result in no improvement, thus supporting the 50-km with
500-sample condition to be sufficiently optimal for Aqua MODIS B8 versus SNPP VIIRS M8.

Yet the same result reveals a limitation—the existence of data gaps, such as the 5-month Austral
winter period years 2014, 2015, and 2016. While many SNO events do exist in these periods and the
refined analysis here has improved the situation somewhat, the challenging conditions of low radiance
and noisy scenes are difficult to overcome. This is definitely one area for continual improvement.

Figure 10 further illustrates Aqua MODIS B5 versus SNPP VIIRS M8 result for three scenarios
at the 50-km scale—the constrained case with 500 samples of best homogeneity (blue square), the
unconstrained case with all samples without homogeneity condition (red stars) and clear-scene subset
of the 500-sample constrained case (green diamonds). The 500-sample constrained case is the same
time series in Figure 9, also in blue squares, repeated here for comparison. The same 3% precision
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threshold is applied for the constrained and the constrained cases, and a 100-event choice is similarly
made for consistent comparison. For the clear-scene time series, a 0.35% precision is further imposed
on the constrained case to extract this subset. The first notable improvement is that the constrained
case is significantly better at 195 outcomes and a 100-event precision of 0.424%, comparing with the
unconstrained case at 166 outcomes and 1.059% precision. This is consistent with the result in Figure 9.
Also, the clean scene time series with 38 best outcomes, those with error bars below 0.35%, trace out
a long-term baseline at 0.989 that is very consistent with other cases. As already revealed by the
event of 15 December 2016 shown in Figure 5, the clear-scene result should be closest to the “truth” of
comparison result. The clean scene time series with ~0.3% average precision suggests that 0.989 reflects
the true comparison baseline, and that other times series are highly consistent with this result—this
finding can be very helpful in pinpointing the radiometric baseline and helping to ascertain other
features. It is worthy to note again that “nadir-only” condition by using a small area, here at 50-km
scale, is already itself a sufficiently constraining condition, and therefore even the unconstrained case
can appear to have comparably acceptable result.

Figure 10. The three time series of Aqua MODIS B5 versus SNPP VIIRS M8 correspond to the
constrained analysis using homogeneity and sample size constraint, the unconstrained case, and the
clear-scene result.

Intercomparison can expose a variety of different outcomes and features. Figure 11 shows the
corresponding comparison result of Aqua MODIS B4 (555 nm) versus SNPP VIIRS M4 (551 nm) for
the constrained (blue squares), unconstrained (red stars), and clear-scene (green triangles) scenarios.
The same 3% precision threshold is applied for both the constrained and the unconstrained cases,
and the best 100 events are used to compute the time series statistics. In comparison with Figure 10,
it is clear that different band pairs have clear qualitative difference; for Aqua MODIS B4 and SNPP
VIIRS M4, which center near the 550 nm spectral range, the stronger scene radiance leads to more
successful events.
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Figure 11. The three time series of Aqua MODIS B4 versus SNPP VIIRS M4 correspond to the
constrained analysis using homogeneity and sample size constraint, the unconstrained case and the
clear-scene result.

Although the examination into the physical cause of any deviation is not a purpose of this study,
one Aqua MODIS B4 versus SNPP VIIRS M4 result reveals an important feature: in the four-year
period from 2013 to 2017, an upward drift of ~2% can be seen, thus exposing some worsening on-orbit
calibration error in either the IDPS-generated SNPP VIIRS M4 or the Aqua MODIS B4 of Collection
6 release. The clear-scene time series (green diamonds) is particularly lucid in tracing out both the
multiyear drift and the yearly oscillation. The worsening calibration error comes from within the
IDPS-generated radiance due to some nontrivial angular dependence in the reflectance property of
the SD degradation [26–29] that has not been correctly captured by the standard on-orbit calibration
methodology. This calibration error is neither trivial nor negligible, and can severely compromise
product retrievals and climate studies. Thus establishing a meaningful and reliable time series,
along with robust ratios and tight error bars, is a fundamentally important aspect of intercomparison
methodology to enable correct assessments of the sensor data. Additionally, the seasonal modulation
exhibited in the time series is typical of inter-RSB comparison of Aqua MODIS versus SNPP VIIRS [5–7].
Figure 4 has shown that the SZA correction is not a contributor to this modulation; the RSR mismatch
is necessarily one of the contributing causes.

Also, in Figure 11, the unconstrained case shows significantly worse statistics than the
sample-constrained case, again demonstrating the utility of these constraints despite using
fewer samples.

3.6. Impact of Precision Threshold on the Time Series

The current finding so far suggests a 0.2% stability of the overall ratio mean of time series under
different scenarios, but additional examination of the dependence on the threshold over a larger
threshold range yields some confirmation. Figure 12 shows the time series mean versus precision
threshold of Aqua MODIS B5 versus SNPP VIIRS M8 for the four different constraint conditions over
a 0.6% range. For each precision threshold, all SNO events under the threshold are included in the
computation of the time series mean. As the precision threshold is relaxed, more SNO events with
larger error bar are included, and the series mean changes accordingly.

44



Climate 2019, 7, 81

Figure 12. The mean of the radiometric comparison time series at each level of precision threshold, for
the constrained and the unconstrained cases in Aqua MODIS B5 versus SNPP VIIRS M8.

The most important result is that the time series mean varies, primarily upward for this particular
comparison case, over a 0.4% range with respect to precision threshold. The overall pattern is consistent
with those events of tightest precision being more likely representative of the true radiometric
comparison result, and those events of worse precision contain more radiometric bias. Therefore
keeping a tight precision threshold is recommended to reduce any nontrivial variability or bias in the
time series mean. The 2% precision threshold appears to be a reasonable choice with variability of the
mean on the level of 0.2% variability in the mean for this context of the constrained procedure; while a
more generous choice to achieve fuller time series must be cautious about making the time series mean
less reliable.

The long-term stability of the Aqua MODIS B5 versus SNPP VIIRS M8 time series is what makes
clearer the existence of any deviation or variability. In contrast, cases such as Aqua MODIS B4 versus
SNPP VIIRS M4 with significant drift, as shown in Figure 11, are more difficult for interpreting the
dependence on the precision threshold since the 2% drift complicates the result. For these cases, the
mitigating the on-orbit calibration error should take top priority over any intercomparison issue. As
emphasized already, intercomparison analysis is most valuable when it reveals some deviating that
requires correction.

3.7. Scaling Phenomenon in MODIS versus SNPP VIIRS

The “scaling phenomenon” [7] is a broad-scaled and persistent variability pervading into the
SNO results as illustrated in Figure 6 in selected events. Figure 13 illustrates the phenomenon for the
Aqua MODIS B8 versus SNPP VIIRS M1 time series as a whole and includes the new result under the
constrained analysis. Each point represents the error bar versus sample size outcome of an SNO event
in the time series. Time series results of three different area sizes are shown: 36-km scale (red triangles),
50-km (blue squares), and 80-km (green diamonds). The result demonstrates how the scene-based
scaling phenomenon blocks the use of the larger area size to improve statistics and how the constrained
procedure overcomes this limitation.
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Figure 13. Scaling phenomenon in Aqua MODIS B8 versus SNPP VIIRS M1 for both
sample-unconstrained and sample-constrained cases.

The top left panel of Figure 13 displays the time-series result of error bar versus sample size
(for all events) without size constraint. The maximum sample size for the 36-km scale is 1296, or
close to 0.2 per 6400 on the plot, and similarly for the 50-km scale at 2500, at near 0.39, and 80-km at
6400, at 1.0. It can be seen that the pattern of scatter of error bar values, apart from different sample
size ranges, appear similar for all three scales. The top right panel of Figure 13, the scaled version,
explicitly demonstrates the scaling phenomenon by linearly scaling the sample size of 36-km and the
50-km result to match 6400, i.e., stretching the result in the horizontal direction rightward until 6400.
The scaled result shows that scatter pattern of three cases are effectively indistinguishable. The clear
implication is that enlarging the area size to increase the number of pixels ends up generating same
statistics and does not improve the quality of the time series. In contrast, the time series results in
Figure 9 under homogeneity-ranked sample constraint, demonstrate clear improvement with lager
areas. More detailed examination into each SNO event reveals that the scaling phenomenon is only an
approximate effect of some common scene-based effect. As shown in Figure 6, the error bar result in the
sample-unconstrained case (red stars) in each single NO event can slightly change with increasing scale.

The sample size constraint, originally applied to stabilize the error bar [7], necessarily impacts
any scene-based effects including the “scaling phenomenon”. The bottom two panels of Figure 13
demonstrate the impact of the constraints, for sample size of 500, on error bar versus sample size
result. The label of “Sample Size” on the horizontal axis refers to the original available number of
pixels for each event before the constraint is applied—thus it corresponds to the sample size for the
corresponding unconstrained case. However all actual outcomes have the same final sample size
of 500. In the bottom-right panel, the error bar scatter pattern of the 80-km result (green diamonds)
is seen to become tighter than those of the 36-km and the 50-km scales, thus showing that scaling
phenomenon is no longer true in the constrained analysis. In the same plot, the range of the error bar
shows more obvious and faster tightening with increasing size for all three cases, reaching below 2% at
higher sample size, showing that the constrained procedure is effective.

For completion and illustration, the corresponding ratio versus sample size of the Aqua MODIS
B8 versus SNPP VIIRS M1 time series is shown in Figure 14. The 4 to 6% range of spread makes it less
obvious to discern any 0.1 to 0.5% effect, but many resulting points can be seen to have shifted from
the unconstrained case (top panels) toward the center of the range in the constrained case (bottom
panels). The 4 to 6% spread of Aqua MODIS B8 versus SNPP VIIRS M1 ratio result is among the worst
comparison results, whereas cases such as Aqua MODIS B5 versus SNPP VIIRS M8, as in Figure 8,
spreads over a smaller 2% range. In general, ratio result is not an effective discriminator of statistical
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quality among SNO events given its large spread, and the final selection of the times series events
should not rely on using ratio. On the other hand, error bar result, as shown by the bottom panels
of Figure 13 as well as in earlier figures, has demonstrated to be stronger discriminator of statistical
quality of SNO events that can be utilized as a selection filter.

Figure 14. Ratio versus sample size for Aqua MODIS B8 versus SNPP VIIRS M1 for unscaled (top) and
the scaled (top right) ratio result under the sample-unconstrained condition, and for the corresponding
unscaled (bottom left) and scaled (bottom right) ratio results under the sample-constrained condition.

The scaling phenomenon exists in effectively identical fashion for all inter-RSB comparisons
of Aqua MODIS versus SNPP VIIRS. Figure 15 shows the scaling phenomenon for six inter-RSB
comparisons of Aqua MODIS versus SNPP VIIRS. Be it thin clouds, aerosol, or any combination of
scene conditions, it appears that some atmospheric conditions in the polar scenes impact all RSBs
in nearly identical way. A general implication is that any inter-RSB comparison between any two
polar-orbiting multispectral sensors that generate SNO scenes over the polar regions necessarily needs
to take this scene-based effect into account.

Figure 16 demonstrates that the scaling phenomenon also exists for Terra MODIS versus SNPP
VIIRS, exemplified by Terra MODIS B8 versus SNPP VIIRS M1. As Terra versus SNPP SNO events
trace out completely different locations (see Figure 2), this result generalizes this scene-based variability
over both northern and southern polar scenes.
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Figure 15. Precision versus sample size for six inter-RSB comparisons of Aqua MODIS versus SNPP
VIIRS under no sample constraint demonstrating scaling phenomenon.

Figure 16. Precision versus sample size for Terra MODIS B8 versus SNPP VIIRS M1 under no sample
constraint demonstrating scaling phenomenon.

3.8. Scale-Dependence in Sentinel-3A OLCI versus SNPP VIIRS

Sentinel-3A OLCI is yet without enough SNO data to demonstrate the scaling phenomenon in
full a time series result, but the scale-dependence can be examined within individual SNO events as
done in Figure 6. Figure 17 shows the dependence of ratio (top) and error bar (bottom) on area scale
for Sentinel-3A OLCI Oa02 (412.5 nm) versus SNPP VIIRS M1 (410 nm), for a 13 April 2017 event for
the three cases of unconstrained sample size (red triangles), constrained size at 1000 samples (blue
squares), and constrained size at 500 samples (green diamonds).
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Figure 17. The scale-dependent result of radiometric comparison of Sentinel-3A OLCI Oa02 versus
SNPP VIIRS M1 for the 13 April 2017 event for ratio (top panel) and the error bar (bottom panel) shown
for the three cases of unconstrained sample size (red triangles), constrained size at 1000 samples (blue
squares), and constrained size at 500 samples (green diamonds).

All features of the OLCI-based result effectively repeat identically. This result reinforces
the recommendation to confine the SNO analysis to a “nadir-only” condition using small area
and that scaling phenomenon is a general effect impacting any inter-RSB comparison of two
polar-orbiting instruments.

3.9. Discussion and Summary

The key finding is that a homogeneity-ranked, sample size constrained sampling procedure under
a small-area restriction stabilizes the ratio against some broad-scale variability to generate result that is
reliable and robust. A smaller area size such as under the 50-km scale contains enough pixels for the
refined sampling procedure but simultaneously avoids the pitfall of large-area or large-angle bias. As
the ratio result has been stabilized, the application of various criteria, such as scale or homogeneity
threshold, is further shown to have impact on the comparison time series.

Since Aqua MODIS B5 versus SNPP VIIRS M8 is one the most stable inter-RSB comparisons due
to good spectral match and long-term radiometric stability, the average precision of the time series
at ~1.0% very well represents the general statistical capability of inter-RSB comparison at the 1-km
regime. While the clear-scene result such as in Figure 5 is remarkably stable and precise at 0.2% or so,
its number is not sufficient for full evaluation. In general, radiometric comparison time series are best
used as a tool of discovery of deviating features such as the multiyear drift.

Also important is the generality of the scene-based variability over both polar regions as shown in
the inter-RSB comparison results of MODIS and OLCI versus SNPP VIIRS. Therefore, any inter-RSB
comparisons of polar-orbiting multispectral sensors necessarily need to treat this polar scene variability
with some care.

4. Capability at Different Regimes of Spatial Resolution

An assessment of the intercomparison at finer regimes of spatial resolution provides an
understanding of what capability can be achieved in the coming era. For this purpose, the inter-RSB
comparisons using SNPP VIIRS M7 (862 nm; 750 m) and I2 (862 nm; 375 m) against Aqua MODIS B2
(859 nm; 250 m), and Sentinel-3A OLCI Oa17 (865 nm; 300 m) are used to test four regimes of spatial
resolution. Because the RSRs of SNPP VIIRS M7 and I2 are effectively identical, intercomparisons
against them directly shows the impact of different spatial resolutions. In addition, Aqua MODIS B2,
at 250-m native spatial resolution, also comes with aggregated data at 500-m and 1-km resolutions
(Table 2) and provides direct testing of different spatial resolutions
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The four regimes of spatial resolutions to be tested are described as follows. First, SNPP VIIRS
M7, at 750-m, can be matched with the aggregate 1-km and 500-m data of Aqua MODIS B2, generating
comparisons at the 1-km and 750-m regimes. Second, SNPP VIIRS I2, at 375-m, can be matched with
the aggregate 500-m and the native 250-m data of Aqua MODIS B2, generating comparisons at the
500-m and 375-m regimes. For each pairing, the regime of intercomparison is defined by the lower
spatial resolution. For Sentinel-3A OLCI at 300 m, the match with SNPP VIIRS M7 will be at the 750-m
regime, and the match with SNPP VIIRS I2 will be at the 375-m regime.

Figure 18a shows the time series of Aqua MODIS B2 versus SNPP VIIRS M7 at the 1-km (blue
squares) and the 750-m (green stars) regime for the first six years of SNPP VIIRS mission; Figure 18b
shows the time series of Aqua MODIS B2 versus SNPP VIIRS I2 at the 500-m (red triangles) regime and
the 375-m (cyan crosses). The precision threshold for each SNO event is 3%. The two times series in
each plot have been carefully selected and matched to allow unambiguous event-to-event comparison.
The time series cleansed and used here for illustration are otherwise slightly different from result
strictly from the prescribed constrained procedure. The key and unexpected finding is that the three
finer regimes appear only fractionally better than the 1-km regime—this hints at a lower limit of the
statistical capability of the inter-RSB comparison methodology, or perhaps an additional physical effect
at the level of 750-m scale. This can be an issue worthy of future pursuit.

For a more explicit demonstration, Figure 18c shows the precision result ranked from the tightest
to the worst, but using the SNO events of the 375-m regime time series shown in Figure 18b as the
reference of ranked events—the purpose is to reveal the statistical quality of individual events at
different regimes. The SNO events of the 375-m regime (cyan crosses) are first sorted according to
their precision from best to worst, and then results of other three regimes following the same SNO
event sequence are plotted accordingly. That is, the 1-km, 750-m and the 500-m regime result are not
separately sorted, but follow the same sorting event-by-event as that of the sorted 375-m regime result
for comparison.

First, all of the most precise SNO events converge toward the beginning of the plot at about 0.15%
to 0.2% precision, and this is because of the excellent homogeneity of clear-scene events. This indicates
the comparison analysis has the inherent capability to reach 0.15% level. Second, the ranked result
shows different intervals of slightly different pattern—a smooth pattern up to event 200 under 0.6%
precision, followed by a stronger increasing pattern with more noise from event 200 to 350 and up to
2% precision, and finally the sharply rising and noisy pattern after event 350 and 2% precision. This
even-by-event showing of the precision quality reveals the how precision threshold may be decided for
a time series. For these cases, a 1.0% precision threshold seems a good balanced choice between having
tight error bars and number of events. Third and most importantly as a focus of this examination,
the result of the 750-m (green stars) and 500-m (red triangles) regimes can be seen to evenly straddle
around the 375-m (cyan crosses) regime result, showing consistent agreement among the three finer
regimes. On the other hand, the 1-km precision result (blue squares) is on the average higher than the
result of three other regimes, as already revealed in Figure 18a,b. The capability of the radiometric
intercomparison methodology, at least in the context of the constrained procedure, may have reached
optimal result at the 750-m regime.

The time series also reveal some deviating features indicative of some basic on-orbit calibration
issues. Although it may deceptively appear that the time series exhibits long-term drift, the result is
more consistent with a series of radiometric jumps, suggesting numerous calibration adjustments for
Aqua MODIS B2 or SNPP VIIRS M7/I2.
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(a) 

(b) 

(c) 

Figure 18. Results of four different regimes of intersensor comparison demonstrated by (a) Aqua
MODIS B2 versus SNPP VIIRS M7 time series at the 1-km and 750-m regimes, (b) Aqua MODIS B2
versus SNPP VIIRS I2 time series at the 500-m and 375-m regimes, and (c) the precision versus ranked
SNO events for all four cases.

51



Climate 2019, 7, 81

The Aqua MODIS versus SNPP VIIRS results shown in Figure 18 are statistically dominated by
events over the southern polar scenes, easily noticeable for the clustering of events during the Austral
summer period from October to March. To demonstrate events over the northern region, Figure 19
shows the two inter-RSB comparisons of Sentinel-3A OLCI Oa17 (865 nm) versus SNPP VIIRS M7
at the 750-m regime (green diamonds), and versus I2 (862 nm) at the 350-m regime (orange crosses).
The two OLCI-based times series are also time-matched to ensure event-by-event correspondence.
The subset of the Aqua MODIS B2 versus SNPP VIIRS I2 comparison in Figure 18b occurring in the
northern polar region is also shown (cyan diagonal crosses) in Figure 19 for comparison. The three
precision results illustrate similar statistical performance at the 750-m and the 375-m regimes, at ~1%,
with no clear advantage of the 375-m regime over the 750-m regime. The two OLCI-based times series
also demonstrate an overall event-by-event consistency of precision between the two regimes, as also
shown by the Aqua MODIS-based result in Figure 18. The combined findings of Aqua MODIS-based
and OLCI-based results show that precision result for comparison under 1-km regimes in either polar
regions is consistently at ~1% and slightly less.

Figure 19. Inter-RSB comparisons of OLCI Oa17 versus SNPP VIIRS M7 and I2, occurring exclusively
over the northern polar region, demonstrate the 750-m (green diamonds) and 375-m (orange crosses)
regimes. The subset of Aqua MODIS B2 versus SNPP VIIRS I2 comparison occurring over the northern
polar region (cyan diagonal crosses) is shown for comparison.

5. Multi-instrument Cross-Comparison

Intercomparison becomes even more useful when three or more sensors of comparable performance
capability can be cross-checked. The next few figures exemplify the cross-comparisons of Aqua MODIS,
Terra MODIS, and Sentinel-3A OLCI against SNPP VIIRS for the year 2017. The MODIS versus SNPP
VIIRS comparison is carried out at the 1-km regime while that of OLCI versus SNPP VIIRS is at the
750-m regime. The time series are plotted over a 20% range centering on the time series means of the
OLCI versus SNPP VIIRS, with two dashed lines marking the 2% level above and below the series
mean. The applied precision threshold is 3%. The final figure shows the comparison result of three
OLCI bands overlapping with SNPP VIIRS M5, explicitly demonstrating the impact of various level of
mismatching RSRs. The impact of the spectral mismatch on time series remains one fundamental issue
not yet adequately explored by the intersensor community.

5.1. Aqua MODIS, Sentinel-3A OLCI and SNPP VIIRS Comparisons

Figure 20a shows the three comparison time series using Aqua MODIS B8 (blue squares), Terra
MODIS B8 (green triangles), and Sentinel-3A OLCI Oa02 (red crosses) against SNPP VIIRS M1. It
is seen that OLCI Oa02-based result is stable within 1% without strong seasonal modulation and
short-term drift. On the other hand, the Aqua MODIS B8-based result reveals a 3% peak-to-trough
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seasonal variation beyond the 1% error bar, while the Terra MODIS B8-based result is of 2% seasonal
variability along with a 2% difference with that of Aqua MODIS B8. Certainly, spectral mismatch
between MODIS B8 and VIIRS M1 can induce seasonal pattern in both time series, but it remains
possible that some physical or optical effect is impacting both Terra and Aqua MODIS B8. In addition,
the discrepancy between the two MODIS-based results points to some inconsistency in the on-orbit
calibration of MODIS B8.

 
(a) 

 
(b) 

Figure 20. The radiometric comparison time series, from May 2017 to September 2017, of (a) MODIS
B8 and Sentinel-3A OLCI Oa02 versus SNPP VIIRS M1 and (b) MODIS B2 and Sentinel-3A OLCI Oa17
versus SNPP VIIRS M7.

Chu et al. [7] have previously concluded that IDPS-generated radiance for SNPP VIIRS M1
contains a long-term drift of approximately 0.4% over the four-year period from February 2012 to
February 2016. For this recent 16-month period, the drift in IDPS-generated SNPP VIIRS M1 radiance
is estimated to only ~0.15%, which is too small to be seen in these time series. The result suggests that
OLCI Oa02 is not likely to have any significant short-term drift over the 16-month period.

Figure 20b shows the three comparison time series against SNPP VIIRS M7 using Aqua MODIS
B2 (blue squares), Terra MODIS B2 (green triangles), and Sentinel-3A OLCI Oa17 (red stars). This set of
bands is a clean case study due to well-matched RSRs, thus providing a good example of multisensor
cross-check that can identify radiometric deviations. The precision is 1.15% for Aqua MODIS B2 result,
1.55% for Terra MODIS result, and 1.74% for OLCI Oa17 result. It is seen that both Terra MODIS and
OLCI agree well with SNPP VIIRS M7, with time series consistent at ~1.0, as expected. However, Aqua
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MODIS B2 shows a clear upward shift of ~2% against SNPP VIIRS M7 starting sometime between
May and October 2017. This discontinuity had been documented in a preliminary study [30] but the
times series is extended here to make clearer the upward discontinuity. Based on the overall result, it is
concluded that Aqua MODIS B2 went through the 2% radiometric jump just before October 2016.

5.2. Impact of RSR Mismatch: Sentinel-3A Oa08-Oa10 versus SNPP VIIRS M5

The impact of the spectral coverage mismatch between two bands is nontrivial to quantify for
intercomparison and is so far not well addressed or even well understood. The two primary effects
of the mismatch are the offset from 1.0 in radiometric ratio and the emergence of yearly modulation.
Here, only a demonstration of the effect is intended through an illustrative example using SNPP VIIRS
M5 as a fixed reference and a set of three adjacent bands in Sentinel-3A OLCI. As shown in Table 2, the
three OLCI RSBs, Oa08 (660–670 nm), Oa09 (670–677.5 nm), and Oa010 (677.5–685 nm), cover the 660
to 685 nm spectral region in sequence, with each having some spectral overlap with SNPP VIIRS M5
(662–682 nm).

The three inter-RSB comparison time series are shown in Figure 21 for the year 2017, for Oa08
(red stars), Oa09 (blue diagonal crosses), and Oa10 (green triangles). The three time series have nearly
identical precision at 1.76%, yet differences among them are clearly shown. First, different radiometric
offsets away from 1.0 expectedly show the dependence on the level of RSR mismatch. Second, while
Oa08-based time series seems stable, both Oa09- and Oa10-based time series exhibit greater seasonal
modulation, in particular, the Oa10-based result has the largest deviation at ~3%, not accounting for
the three outliers below 0.95. This is the definitive demonstration of the different responses to the same
set of SNO scenes arising only because the effect of mismatching RSRs. As Oa10 result indicates of it
having the largest impact of the spectral mismatch with SNPP VIIRS M5, it shows both the largest
downward offset and the most variable seasonal modulation in a consistent manner that is expected.
However, what is not clear is how certain mismatch has less impact on the time series than others,
such as OLCI Oa08-based result having weaker modulation. Nevertheless, the connection between the
offset and the seasonal modulation is direct, that both being the manifestation of the spectral mismatch.
Specifically, this connection may be useful for quantifying the impact of spectral mismatch.

Figure 21. The inter-RSB comparisons of Sentinel Oa08–Oa10 with SNPP VIIRS M5 demonstrating the
impact of different level of spectral mismatch. The precision threshold is 3%.

The three outliers are briefly discussed here as an instance of multimodality. The outliers of each
time series correspond to the same SNO events of the other two but at different ratios. These cases can
arise from some scenes of less stable condition, such as cloudy or ocean scenes, which on occasions
can still be stable enough to pass selection criteria. These cases are technically the result of a different
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mode, arising from the nontrivial effect of mismatching RSRs responding to different scene conditions.
As has been pointed out previously, the presence of outliers or additional modes is one scenario where
a targeted removal of certain scene condition, such as cloud, can be applied.

6. General Discussions

Intercomparison of radiometric data, as in any statistical sampling, is not entirely useful without
a reliable estimate of error bars. The procedure described herein establishes the reliability of the
error bars, or precision, of the comparison events, further making error bar a usable discriminator for
selecting best-quality SNO events. The overall result shows that an overall 1% precision is reachable at
the 1-km resolution. The constructed multiyear time series, “as is” without adjustment, are capable
of capturing various features illustrative of some underlying radiometric or calibration issues as
listed below.

1. Long-term drift reveals a systematically worsening error in the on-orbit calibration of the sensor
data, as exemplified by Aqua MODIS B4 versus SNPP VIIRS B4 in Figure 11.

2. Sudden radiometric shift reveals a likely one-time calibration adjustment or instrument change
as exemplified by the jumps in Aqua MODIS B2 versus SNPP VIIRS M7 before Oct 2016 shown in
Figure 20b.

3. Noise and variability reveals scene-based effects as exemplified by almost all inter-RSB
comparisons of Aqua MODIS and SNPP VIIRS in Figures 11–17.

4. Seasonal modulation reveals impact of RSR or other physical effects as exemplified by Aqua
MODIS B8 versus SNPP VIIRS M1 in Figure 20a and most demonstratively the three OLCI-based time
series in Figure 21. Multimodality can also manifest from RSR mismatch. Definitively the seasonal
modulation is not an issue related to the SZA.

5. Non-seasonal and sporadic shifts reveal possible calibration instability as exemplified by Aqua
MODIS B2 versus SNPP VIIRS M7/I2 in Figure 18a,b.

6. Discrepancy between the different intercomparisons, in addition to possibilities listed above,
can reveal additional biases and calibration inconsistencies, as exemplified in the cross-comparisons of
Figures 19–21.

So far, this study focuses on the on-orbit performance of the multispectral sensor data in the
context of standard operational on-orbit RSB calibration. But the complete evaluation must include
sensor data over all extent beyond nadir. It is therefore important to continue to distinguish between
the issues of on-orbit RSB characterization from those of other additional calibration adjustments. One
such important associated issue is the time-dependent RVS effect of the scan mirror that is known for
MODIS [20], although not known in VIIRS and not yet addressed in OLCI. The full calibration of the
sensor data for MODIS Collection 6 [19,20] involves additional correction necessary to mitigate this
angle-dependent effect throughout the entire spatial extent that cannot be analyzed by the standard
on-orbit calibration analysis. While the “nadir-only” framework of intercomparison can expose issues
of standard operational on-orbit calibration, it is not designed to address any large-extent issues such
as RVS. Nevertheless, this study puts forth a spatial scale-dependent analysis possibly extendable
to examine off-nadir issues. The result of this study supports a strategy to first isolate and examine
on-orbit calibration before studying other effects.

Nevertheless, some built-in limitations are difficult to overcome, including narrow-band dynamic
range, lack of spectral counterparts, or simply missing data. Approaches entirely different from
intercomparison, such as using stable Earth scenes, even if less reliable, must necessarily be included to
build a full-evaluation strategy. This study also does not isolate the impact of geolocational error, but
the overall result highly suggests geolocational issue not to be significant. Regardless, the increasing
number of high-performing multispectral sensors in and to be in operation definitively expands the
overall usability of intercomparison. OLCI is a prime example—given its dense spectral coverage
from 400 nm to 900 nm by 21 bands, 300-m spatial resolution and the built-in on-orbit RSB calibration
capability—of a new a powerful radiometric reference in the VIS/NIR range.
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Lastly, a recent study by Chu and Dodd [31] demonstrates that the radiometric intercomparison
of MODIS versus SNPP VIIRS thermal emissive bands (TEBs) can be analyzed under the “nadir-only”
framework, along with homogeneity-ranked and sample size constrained procedure. Although an
in-depth study of the capability of the radiometric intercomparison has not yet been carried out for
TEBs, the general applicability of the prescribed procedure to RSBs and TEBs is expected.

7. Conclusions

The capability of the radiometric intersensor comparison of multispectral sensors using four
major sensors has been examined to attain robust 1% precision and better in multiyear time series.
The “nadir-only” restriction of SNO-based comparison analysis provides a framework within which
the operational on-orbit RSB calibration performance can be evaluated in isolation from other issues
arising from larger area size or viewing angles, such as the RVS effect or scene-BRDF. With the use
of pixel-based homogeneity and sample size constraint, the procedure successfully stabilizes ratio,
tightens error bars, and makes fuller time series. The procedure makes error bar a meaningful
discriminator of SNO events of varying level of statistical quality. A well-behaved time series can
attain even better precision making it possible to detect a persistent multiyear drift as small as 0.3%.
This study also clarifies that the application of targeted removal algorithm, such as cloud removal, not
to be effective in overcoming variability at least not on the level of reaching 1% result. Various issues
are also discussed and presented, such as the SZA impact not being important under the “nadir-only”
framework, the impact of RSR mismatch to be radiometric ratio offset and seasonal modulation, and
that the 2% scene-based effect, loosely called the “scaling phenomenon”, is pervasively present in both
the northern and southern polar scenes to affect all polar-orbiting RSBs. However, arguably the most
important aspect is the multisensor cross-comparisons made even more useful by the 1% precision
capability. Limitations in intercomparison certainly exist, and the lack of spectrally matching bands
between sensors is arguably the most basic one making full intercomparison impossible, thus requiring
a more comprehensive strategy. Nevertheless, this study strengthens intersensor comparison as a
powerful tool of monitoring and discovery for multispectral sensors in the coming era.
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Abstract: Reliable high spatial resolution information on the variation of extreme wind speeds under
frozen and unfrozen soil conditions can enhance wind damage risk management in forestry. In this
study, we aimed to produce spatially detailed estimates for the 10-year return level of maximum
wind speeds for frozen (>20 cm frost depth) and unfrozen soil conditions for dense Norway spruce
stands on clay or silt soil, Scots pine stands on sandy soil and Scots pine stands on drained peatland
throughout Finland. For this purpose, the coarse resolution estimates of the 10-year return levels
of maximum wind speeds based on 1979–2014 ERA-Interim reanalysis were downscaled to 20 m
grid by using the wind multiplier approach, taking into account the effect of topography and surface
roughness. The soil frost depth was estimated using a soil frost model. Results showed that due to
a large variability in the timing of annual maximum wind speed, differences in the 10-year return
levels of maximum wind speeds between the frozen and unfrozen soil seasons are generally rather
small. Larger differences in this study are mostly found in peatlands, where soil frost seasons are
notably shorter than in mineral soils. Also, the high resolution of wind multiplier downscaling and
consideration of wind direction revealed some larger local scale differences around topographic
features like hills and ridgelines.

Keywords: boreal region; extreme wind speed; wind climate; soil frost; wind damage risk
management; wind multiplier; downscaling; topography; surface roughness

1. Introduction

In the last few decades, wind storms have caused the most damage and economic losses in
European forests, compared to all abiotic and biotic damage agents [1–4]. So far, winter storms have
caused the most destructive damage in Western and Central Europe [3,5,6], e.g., storms like Vivian in
1990 (over 100 million m3 of timber), Lothar and Martin in 1999 (over 175 million m3), Kyrill in 2007
(54 million m3) and Klaus in 2009 (50 million m3), respectively. Damages have increased in recent years
also in northern Europe [4,6,7], where in 2015 Gudrun damaged 70 million m3 and in 2007 Per damaged
12 million m3 of timber, mainly in Sweden. In Finland, over 25 million m3 of timber has been damaged
during storms since 2000, the most in autumn storms in 2001 (Pyry and Janika, 7.3 million m3) and in
summer storm in 2010 (Asta, Veera, Lahja and Sylvi, 8 million m3), respectively. The increasing amount
of damages in European forests may at least partially be explained by increasing volume of growing
stock and changes in forest structure (e.g., age, tree species) related to changes in forest management
practices [1,5,8,9]. Forest disturbances may also amplify or even cancel out the expected increase in
productivity of forests under changing climate [4,10].

Climate 2019, 7, 62; doi:10.3390/cli7050062 www.mdpi.com/journal/climate59
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Some recent studies indicate increased storminess for some regions in Europe (see e.g., review
by [11]). However, the majority of studies point towards decadal variation in storminess without
any clear trend for a direction or another [12–15]. In Finland, slight weakening of annual mean
(−0.09 ms−1 decade−1) and maximum (−0.32 ms−1 decade−1) wind speeds across 33 weather stations
have been observed in the period of 1959–2015 [16], which is in accordance with widespread weakening
of terrestrial near-surface wind speeds [17,18]. For future projections, the change in the extreme
wind speed during the coming decades is still a somewhat unsolved issue and the outcome is largely
dependent on the climate model used for the simulation [11,19,20].

However, the risk of wind damage to forests may still increase in Northern Europe under climate
change even if the frequency and severity of wind storms do not increase. This is due to the shortening
of the frozen soil period, which improves tree anchorage during the windiest season of the year from
late autumn to early spring [21–24]. Moreover, storms may be accompanied by heavier rainfall, leading
to more saturated soils and increased risk of wind damage [5]. When estimating the forest wind
damage risk it is thus essential to know whether the extreme wind speeds occur during the frozen
or unfrozen soil conditions. Typically, the windiest season in Finland is from October to March [25]
and soil frost season starts in October–November and ends in April–May [26]. However, there is large
year-to-year and regional variation in soil frost duration.

Even a 20 cm thick frozen soil increases the anchorage of trees and reduces substantially the risk
of uprooting [27,28]. According to tree-pulling experiments in Finland, under frozen soil the type
of failure was stem breakage, whereas under unfrozen soil conditions, about 80% of trees uprooted,
respectively [28]. From the three economically and ecologically most important boreal tree species
in Finland, Norway spruce (Picea abies) with the shallow rooting is the most vulnerable to uprooting,
followed by Silver and Downy birches (Betula pendula and Betula pubescens), and Scots pine (Pinus
sylvestris), respectively [27,28]. However, from late autumn to early spring, birches (without leaves)
are not vulnerable to wind damage and therefore excluded from this study.

For snow free surfaces, the soil frost modelling can be done using cold season frost sum and
soil characteristics alone [29]. The presence of snow and vegetation complicates the modelling, and
requires a more sophisticated approach including the modelling of heat and water transfer [23]. An
example of a relatively simple approach accounting for the main controlling factors was published
by [30]. It was further developed and tested in the Finnish conditions by [31] for the calculation of soil
temperatures in three common combinations of soil and forest types in Finland, i.e., dense Norway
spruce stands on clay or silt soil, Scots pine stands on sandy soil, and Scots pine stands on drained
peatlands. Soil frost conditions can vary a lot, even up to few months in mean duration, depending
on soil type. Peat is effective insulator compared to mineral soils, therefore having shorter soil frost
periods in similar climatic conditions [31].

The estimation of the return levels of maximum wind speed values (extreme winds) can be done
using observational data representing conditions at the observing station location or using reanalyzed
data like ERA-Interim [32], representing a larger area’s averaged value, respectively. When studying
the high-resolution spatial variation of extreme winds, the data has to be either downscaled from the
reanalyzed coarse grid to a local value or upscaled from station point observations to areas located
between the stations. Downscaling can be done by applying various spatial statistical tools, e.g., [33,34],
or complex airflow models like e.g., WAsP [35], which are typically applied for wind power potential
predictions. GIS-based methods for mapping the areas having highest wind damage risk have also
been introduced, e.g., [36–38]. One computationally feasible approach for the estimation of the return
levels of extreme wind speeds for large geographical areas with very high spatial resolution is the
wind multiplier approach [39–41]. In this method, return levels obtained, e.g., from the reanalysed
data, are downscaled to local wind speeds with help of land cover (roughness) and topography
data. By applying GIS-tools such as ArcGIS, QGIS or R, it is rather straightforward to produce the
required multipliers.
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The reliable high-resolution information on the spatial variation of extreme wind speeds can
enhance wind damage risk management in forest planning and forestry. In the above context,
the objective of this study was to produce spatially detailed estimates (maps) of the 10-year return
level maximum wind speed under current climate for unfrozen and frozen soil conditions in some of
the most common combinations of forest and soil types in Finland. By utilizing soil frost calculations
of [31] to determine the duration of soil frost seasons, the wind speed return level calculations were
done for dense Norway spruce stands on clay or silt soil, Scots pine stands on sandy soil, and Scots pine
stands on drained peatland. The coarse resolution estimates of the 10-year return level of maximum
wind speed were based on 1979–2014 ERA-Interim dataset [32]. Downscaling to a 20 m grid was done
by applying the wind multiplier approach [41].

2. Materials and Methods

2.1. Soil Frost Modelling

Soil frost conditions were modelled by using an extended version of the original soil temperature
model [30]. It was derived from the law of conservation of energy and mass assuming constant water
content in the soil. Model was further developed to take into account the heat flow below soil layer of
consideration [42]. Following [42], soil temperature at depth ZS (m) can be calculated as follows:

Tt+1
Z = Tt

Z + Δt∗KT

(CS+CICE)∗(2∗ZS)
2 ∗
[
Tt

AIR − Tt
Z

]
∗
[
e− fS∗DS

]
+

Δt∗KT,LOW

(CS,LOW+CICE)∗2∗(Zl−ZS)
2 ∗
[
TLOW − Tt

Z

]
, (1)

where Tt
Z (◦C) is the soil temperature on a previous day, TAIR (◦C) is the air temperature, Δt is the length

of a time step (s), KT (W m−1 ◦C−1) is the thermal conductivity of the soil above ZS, CS (J m−3 ◦C−1)
is the specific heat capacity of the soil above ZS, CICE (J m−3 ◦C−1) is the specific heat capacity due
to freezing and thawing, fS (m−1) is an empirical damping parameter due to snow cover, DS (m) is
snow depth, KT,LOW (W m−1 ◦C−1) is the thermal conductivity of the soil below ZS, CS,LOW (J m−3 ◦C−1)
is specific heat capacity of the soil below ZS, and TLOW (◦C) is soil temperature at the depth of Zl.
Following to [31], Zl was set to 6.8 m.

By using soil temperature observations from several stations across Finland, the soil temperature
model was parametrized for three different soil types: clay or silt soil, sandy soil, and peatlands [31].
Between the depths of 20 and 100 cm, the parametrized model explained approximately 90–99% of the
observed variability in soil temperatures.

In a study by [31], also a snow depth model (based largely on the work of [43]) was used to
simulate the snow depth, using daily temperature and precipitation observations [44], for different
forest conditions in addition to open areas. In this study, we used the soil frost data calculated by [31]
for different combinations of forest and soil types, based on combined use of soil temperature and
snow depth model. The soil frost data in 0.1◦ × 0.2◦ grid has been calculated for dense spruce stands on
clay or silt soil (hereafter CSS), pine stands on sandy soil (hereafter SP) and pine stands on peatlands
(hereafter PP), respectively. Calculations for each of the forest and soil types were performed on every
grid cell. The soil was assumed to be frozen and provide sufficient anchorage for trees when the
modelled soil frost extended at least to a depth of 20 cm continuously from the surface and unfrozen
otherwise. The expectation of the sufficient anchorage was based on the typical rooting depth of main
boreal tree species, see e.g., [21,24,27,28].

2.2. Estimation of the 10-Year Return Levels of Wind Speed

The 10-year return levels, corresponding to an annual probability of exceeding the 90th percentile,
of maximum wind speeds were calculated using the ERA-Interim dataset [32] covering years 1979–2014
and the generalized extreme value method (GEV) [45]. We used the block maxima approach,
in this case for seasonal maximum wind speeds of both frozen and unfrozen soil season, with the
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maximum-likelihood fitting of GEV distribution [46,47]. We analysed 10-minute instantaneous wind
speeds available at 6-hour intervals given as grid box averages, each covering an area of 0.75◦ × 0.75◦.

The maximum wind speed dependence on wind direction was estimated by making the
calculations wind direction wise, i.e., the 10-year return levels were estimated separately for cardinal
and intercardinal wind direction sectors. For comparison and validation purposes, 10-year return levels
were also calculated for 40 weather stations (Figure 1a) across Finland (on mainland) using wind speed
observations covering the same period of 1979–2014 as in the ERA-Interim dataset. Observational data
consisted of synoptic observations of 10-minute average wind speed with 3-hour measurement interval.

Compared to our data period of 1979–2014, the 10-year return level estimates can be expected to
be quite robust. Estimated 10-year return level, i.e., wind speed equalled or exceeded on average once
every 10 years, is relatively short period compared to our data period of 35 years. However, in coastal
regions of southern and southwestern Finland, uncertainties related to the statistical estimation of
return level is somewhat increased. This applies particularly for PP as, based on soil frost calculations
by [31], mild winters with no soil frost, or at least not exceeding 20 cm in depth, are quite common
(not shown). In these cases, the dataset from which soil frost season return levels are calculated is
smaller, leading to a wider return level estimate confidence intervals. Also, regions with only short soil
frost period, when the window for seasons maximum wind speed can often be only e.g., 1–2 months,
have larger variability in the used dataset for return level estimation, therefore increasing uncertainty
even if totally frost-free years are rare.

Considering normal approximation 95% confidence intervals of calculated 10-year return level
estimates for weather stations, range is on average +/−1 m/s over all 1920 return level calculations
consisting of 40 stations, eight wind directions, three forest soil types, and distinction between frozen
and unfrozen soil season, respectively.

2.3. Downscaling of the 10-Year Return Levels of Wind Speed

The impact of local terrain features on maximum wind speed cannot fully be taken into account in
the relatively coarse 0.75◦ × 0.75◦ grid of ERA-Interim, because for example, hills, lakes, and changes
in land-use are not considered in detail. For this reason, in order to downscale the wind speed return
level from the coarse grid to a high-resolution grid we used a wind multiplier approach tested recently
by [41] for boreal forest conditions. In this study, only topographic and terrain (surface roughness)
properties are taken into account when assessing local maximum wind speeds (and their return levels)
separately for the eight cardinal and intercardinal wind directions. For the application in forested
landscapes, the shielding factor, i.e., the effect of upwind buildings providing cover to the place of
interest and only relevant in urban areas, was not considered. The wind multiplier method has been
presented earlier in [40,48] for more details.

Following the study by [41], the return level of regional maximum wind speed (UR) in an open
terrain at a 10-m height is downscaled into site-specific return level (Usite) by applying two multipliers,
i.e., terrain multiplier (Mz), and topographic (hill-shape) multiplier (Mh):

Usite = UR ×MZ ×Mh (2)

We used a 20 × 20-m grid, which is in line with the CORINE Land Cover 2012 dataset [49] providing
the information on land cover and land use that enabled the calculation of terrain multiplier. When
defining the terrain multiplier (Mz), we used a 500 m fetch length and weighted the grid points close to
place of interest more than the further upwind grid points.

The topographic (hill-shape) multiplier (Mh) was calculated by taking into account the variations
and change of elevation 1000 m upwind from the place of interest. As well, the elevation of the place
of interest was taken into account. Development of the Mz and Mh multipliers used in this study were
described more elaborately in the Sections 2.3 and 2.4 of [41]. According to [41], for areas with no
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extreme variations of elevation, the wind multiplier approach was a feasible method to identify at a
high spatial resolution locations having the highest forest wind damage risks.

2.4. Comparison of Return Levels Derived from Point Observations, Reanalysed Data, and Wind Multiplier
Downscaled Data

The 10-year return levels of maximum wind speeds calculated from the observations (OBS) of
40 weather stations (Figure 1a) were compared to corresponding return levels calculated from the
original ERA-Interim reanalysed data (ERA) and return levels downscaled with wind multiplier
approach (WM). Weather station location coordinates were used to derive data from ERA and WM
gridded datasets.

Besides general visual scatterplot comparison of ERA and WM values to OBS values, also
the coefficient of determination R2, D statistic of two-sample Kolmogorov–Smirnov test, and mean
differences were used to analyse the performance of ERA and WM to produce return level values
similar to OBS. These statistics were also analysed at the station level. Comparisons were considered
more at a qualitative than quantitative level, i.e., are return level values produced with WM approach
improvement to original ERA values when considering similarity to values derived from weather
station observations.

The D statistic of the two-sample Kolmogorov–Smirnov test was used as a measure of similarity
of ERA and WM to OBS. Smaller values of D are considered as a good result, i.e., EDF (empirical
distribution function) of WM is more similar than EDF of ERA compared to EDF of OBS. Mean
difference statistic used was simply the mean of differences between ERA and WM to OBS at station
level, over all the combinations of eight wind directions, three soil types, and distinction between
frozen and unfrozen soil. Again, smaller values were considered as a good result as a difference
between WM and OBS is smaller than a difference between ERA and OBS. R2 was used as a goodness
of fit of a simple linear regression between OBS and ERA or WM. Here, increasing R2 was considered
as an improvement when comparing a regression of OBS and WM to a regression of OBS and ERA.

2.5. Structure and Restrictions of Data Analyses

For deeper understanding of results for calculated return levels of maximum wind speeds and their
differences between frozen and unfrozen soil, we first considered independently underlying soil frost
conditions (e.g., number of soil frost days and duration of soil frost) and wind conditions (e.g., timing
of maximum wind speeds throughout year and between frozen and unfrozen seasons), respectively.

We also restricted our analysis to mainland Finland (see Figure 1a). The reasoning for this is the
lack of years with soil frost in the archipelago, leading to increased uncertainty in the calculation of
wind speed return levels. Also, the insufficient performance of wind multiplier method for the small
Baltic Sea islands found by [41] supports our decision.

The territory of Finland was moreover divided into three sub-regions in the analysis of
results. The three sub-regions were based roughly on the mean annual growing degree day sum
(GDD) calculated using the threshold of 5 ◦C. The limits are GDD > 1200 ◦C days for southern,
1000 ◦C days < GDD ≤ 1200 ◦C days for central and GDD ≤ 1000 ◦C days for northern sub-regions,
following also roughly the borders of boreal subzones.

Also, one smaller area (30 × 30 km) from northern Finland (Figure 1a) with a more complex
topography (Figure 1b) was used to examine and present the more local scale behavior and influences
of wind multiplier downscaling to 10-year return levels of wind speeds and differences between frozen
and unfrozen soil seasons.
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Figure 1. (a) Locations of 40 weather stations (black dots), division of the Finland into three parts,
and location of detailed study area (square with black borders). (b) Topography and elevation
(meters above sea level) of detailed study area.

3. Results

3.1. Soil Frost Conditions

Figure 2 presents the modelled annual mean, minimum and maximum number of soil frost days
for three different forest and soil-type combinations in the period 1979–2014. In general, upland forests
on sandy soil had the most soil frost days and forests on drained peatlands least. Duration of soil frost
season in northern Finland was on average approximately 5–7 months for dense spruce stands on clay
or silt soil (CSS) and pine stands on sandy soil (SP). For pine stands on peatlands (PP) soil frost season
was considerably shorter, 3–5 months, with large spatial variability. In the central parts of the country,
the season lasts on average about 3–4 months for PP and roughly 4–6 months for SP and CSS. Length
of the average soil frost season in southern Finland range from less than two months in the coastal
areas for PP up to five months for SP in the northern part of southern Finland.

However, especially for PP, frost-free seasons are possible almost everywhere in Finland. For SP,
soil frost season can also be as short as about a month in southern and southwestern coastal areas.
Conversely for SP, soil frost season is at least 5 months long in the whole northern part of Finland.
The maximum length of soil frost season differs less from the average than the minimum. Here CSS
and SP are quite similar, the maximum length of frost season ranging from about 5 months even at the
coast to over 8 months in the most northwestern part of Finland. For PP, the longest soil frost periods
are roughly a month shorter.

Years with zero soil frost days are virtually nonexistent in CSS and SP, but in PP there are rather
large areas with roughly one-third of the 36-year study period with no soil frost (not shown). These
areas are mainly in the southern part of Finland, but also in the northern parts, respectively. Years with
less than 60 soil frost days are rare in CSS and SP apart from the southwestern part of Finland, where
especially in coastal areas about every third year is this kind. Again, PP is substantially different with
some areas having a majority of years with soil frost season less than 60 days.
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Figure 2. Annual mean (top row), maximum (middle row), and minimum (bottom row) number of
modelled soil frost days over the period 1979–2014 in three forest and soil types. CSS (spruce on
clay/silt), SP (pine on sand), PP (pine on peat).

3.2. Wind Conditions

We found large year-to-year variability in the timing of the annual maximum wind speed in
the period 1979–2014. Among all 40 stations, the most common month for annual maximum wind
speed was December (Figure 3a). However, also months from October to May are rather common for
annual maximum wind speeds. Direction wise the annual maximum wind speeds from N, NE, and E
were most commonly observed during spring and early summer (April–June), whereas for rest of the
directions it was usually observed from October to March (not shown).

It was rather common that the annual maximum wind speed was observed multiple times during
a year, partly driven by wind observations having no digits in the first part of the study period. About
25% of all the years among 40 stations had annual maximum wind speeds observed on more than one
month of that year. 49% for PP, 59% for CSS, and 62% for SP of these years were ones with similar
maximums during frozen and unfrozen seasons (not shown).
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Figure 3. (a) Distribution of annual maximum wind speed observation months over 40 weather stations
and period 1979–2014. (b) Proportion of annual maximum wind speed (1979–2014) observed either
during frozen (black) or unfrozen (grey) soil frost season at weather stations located in southern, central,
and northern Finland. CSS (spruce on clay/silt), SP (pine on sand), PP (pine on peat).

Figure 3b presents how observed annual maximum wind speed was split up between frozen
and unfrozen seasons on different forest and soil type combinations in southern (14 stations), central
(12 stations), and northern (14 stations) Finland. The annual maximum wind speed was observed
rather evenly in both seasons in the case of CSS and SP, occurring slightly more often during unfrozen
season in southern Finland and frozen season in northern Finland, respectively. For PP the difference
was more pronounced, especially in southern and central Finland where annual maximum wind speed
was clearly more often observed during unfrozen season.

We also further compared the underlying distributions of seasonal maximum wind speeds, from
where return level estimates for 40 stations were calculated, using two-sample Kolmogorov–Smirnov
tests to determine if there was statistically significant (p < 0.05) difference between frozen and
unfrozen soil seasons. For CSS, difference was statistically significant in southern and northern,
and non-significant in central Finland. For SP, significant in central and northern, and non-significant
in southern Finland. And for PP, significant in southern and central, and non-significant in northern
Finland, respectively.

3.3. The 10-Year Return Levels of Maximum Wind Speed for Frozen vs. Unfrozen Soil

Generally differences in maximum 10-year return level of wind speed between seasons of frozen
and unfrozen soil are rather small (difference +/−1 m/s) in large part of Finland. Small differences
were observed especially for CSS (Figure 4a maps) and SP (Figure 4b maps), of which results as a
whole resemble each other closely with similar spatial patterns and direction of differences. On large
scale, larger differences were observed for CSS and SP only in parts of northernmost Finland and in
the coastal are of southwestern Finland, i.e., maximum 10-year return level of wind speed was about
1–2 m/s larger in soil frost season. Differences larger than +/−1 m/s were a bit more common for PP
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(Figure 4c maps). Areas with stronger winds during the unfrozen season were found across coastal
areas, parts of eastern Finland, and northernmost Finland, respectively. Noteworthy, compared to CSS
and SP, sign of the difference is opposite in the coastal areas and in the most northwestern part of
Finland. Notable positive differences in PP restricts to western and central parts of Lapland.

 

Figure 4. Aggregated maps presenting the maximum of 10-year return level of maximum wind speed
[m/s] from cardinal and intercardinal wind directions during season of frozen (left) and unfrozen
(middle) soil on: (a) soil type CSS (spruce on clay/silt), (b) SP (pine on sand), and (c) PP (pine on peat).
Map on right presents the difference between two seasons (m/s). Distributions present the differences
in 10-year return levels between frozen and unfrozen soil seasons wind direction wise, divided into
northern (NF, top), central (CF, middle), and southern (SF, bottom) Finland.
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There were also some quite notable differences direction wise whether the bulk/peak of the
distribution of differences was over or below zero (Figure 4a–c distributions). The effect of wind
direction on distribution of differences was smallest in northern Finland, regardless of combination of
forest and soil type. In southern Finland, for S and SE wind directions return level of wind speeds were
stronger during soil frost season. Conversely, winds from W, SW, and E were characterized by stronger
winds during unfrozen soil season, whereas for the rest of the directions, differences were more or
less evenly distributed around zero. In central Finland, dependence on wind direction was similar for
CSS and SP, with N, NE, SE, S, and NW directions having dominantly stronger winds during frozen
soil season and W, SW, and E directions were characterized by stronger winds during unfrozen soil
season or the differences were distributed rather evenly. For PP, more directions were characterized
by stronger winds during unfrozen soil season, namely N, E, SW, W, and NW. Only NE, SE, and S
directions had stronger winds mainly during frozen soil season.

All in all, large-scale differences were in general quite subtle and/or restricted to few areas.
On the other hand, small-scale features were visible in the maps over the whole Finland (Figure 4).
In detail, these local scale nuances in the behavior of wind multiplier downscaled return levels of
10-year maximum wind speeds are demonstrated, only for PP in this study, on 30 × 30 km area
from northern Finland with more complex topography (Figure 1b) including multiple hills/fells with
elevation changing between 40 and 270 m above sea level.

In the example area (Figure 1) used for more detailed analysis about the effects of wind multiplier
downscaling, the strongest winds were from the south (Figure 5). This dictates the general large-scale
characteristics of aggregated differences (Figure 6, middle), i.e., difference was positive on the majority
of the study area. However, generally weaker winds from NW (Figure 5) also had a significant role
when the effect of topography was taken into account via wind multipliers. As winds from NW were
conversely stronger during unfrozen soil season, this together with relatively strong topographical
forcing created isolated areas on hillsides where wind speed return level characteristics are deviating
quite a lot from the general conditions of the area (Figure 6, middle). In this example case, stronger
winds occurred during soil frost season, but there were also areas, mainly northwestern hillsides,
where the situation was opposite.

Figure 5. Ten-year return levels of wind speed [m/s] for PP (pine on peat) (a) frozen soil season and
(b) unfrozen soil season in the detailed study area of northern Finland (location and topography,
see Figure 1). The aggregated maximum values are in the middle, surrounded by the return levels of
wind speeds from each of the cardinal and intercardinal directions.
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Figure 6. Differences of values presented in the Figure 5a,b. Positive values correspond to stronger
winds during frozen soil season.

3.4. Comparison of the 10-Year Return levels of Maximum Wind Speed between OBS vs. ERA and WM

Figure 7 show that even if there is still large variability and some systematic biases, the majority of
the OBS and WM comparisons are closer to 1:1 line than the corresponding OBS and ERA comparisons.
Also in Figure 8, all three statistics show improvement when comparing differences between OBS and
WM to differences between OBS and ERA. Taken over all the comparisons, the D statistic of two-sample
Kolmogorov–Smirnov test is decreasing from 0.543 to 0.195, R2 of the linear regression increasing from
0.228 (95% confidence interval 0.196–0.262) to 0.320 (95% confidence interval 0.286–0.355), and the
mean difference decreasing from −1.96 to −0.77 (Mann–Whitney U-test p < 2.2e-16).

Figure 7. Scatterplot comparisons of 10-year return levels of wind speed between OBS and ERA (black)
and between OBS and WM (red) at the station locations of 40 weather stations, including eight wind
directions, three soil types, and two states of soil frost. OBS stands for return levels derived from
observed weather station data, ERA for return levels derived straight from ERA-Interim reanalysis,
and WM for ERA-Interim derived return levels downscaled with wind multiplier approach.
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Figure 8. Boxplots of 40 station level comparisons of D statistic of two-sample Kolmogorov–Smirnov
test (left), mean differences (middle), and coefficient of determination R2 (right) between return levels
derived from observations and ERA-Interim reanalysis (ERA) and between observations and wind
multiplier downscaling (WM).

At some station locations, the application of wind multipliers led to more biased return levels
compared to ones derived straight from the ERA-Interim. When considering all the 40 stations and
each of three comparison statistic, 23% of the cases showed deterioration of results. However, for only
three of the 40 stations, all three comparisons statistics were worsening (not shown).

A majority of the most pronounced overestimations of WM compared to OBS above return
levels of 15 m/s (Figure 7) were from a single station at relatively high altitude combined with a large
lake in the direction of the largest overestimations. There was also some similarity in the stations
characterized by restricted openness, for which wind multipliers overestimated return levels around
10 m/s. For example, the station producing largest overestimations around return levels of 12–13 m/s
was located in the residential area on the top of a hill.

4. Discussion

4.1. Main Findings

In this study, we produced high-resolution results (dataset) of 10-year return levels of maximum
wind speed, separately for seasons of frozen and unfrozen soil. This was done by utilizing wind
speed data from ERA-Interim reanalysis, modelled soil frost data, and surface roughness and
topography-based wind multiplier downscaling. Differences in wind speed return levels between
seasons of frozen and unfrozen soil are of interest for practical forestry as frozen soil reduces wind
damage risk in terms of uprooting of trees due to stronger tree anchorage, in opposite to unfrozen soil
during strong winds. Mapping of the most exposed areas to wind damage risk could also provide
support for risk management in forest planning and forestry.

Relatively small differences found in this study between the 10-year return levels of maximum
wind speeds during the frozen and unfrozen soil conditions can mainly be explained by the large
year-to-year variability in the part of year when the annual maximum wind speeds are occurring.
In Finland, maximum annual wind speed is only rarely observed during the warmest season from
June to September, and those cases are typically connected to more isolated convective weather events.
The period from October to December is characterized by frequent large-scale wind storms, however,
in most of Finland, the soil can still be unfrozen. During the coldest season from January onwards,
the possibility to have soil frost is largest and the occurrence of high wind speeds is almost as frequent
as in October to December period. As a result, datasets from where wind speed return levels were
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derived for both frozen and unfrozen soil seasons were rather similar in the end, especially for spruce
stands on clay or silt soil (CSS) and pine stands on sandy soil (SP). Peat is an efficient insulator and it
takes longer cold periods before soil frost penetrates deeper into the soil, explaining the higher return
levels of maximum wind speed for the unfrozen period in the case of pine stands on peatlands (PP).

The high resolution of wind multiplier downscaling produces also some fine local scale spatial
variation in differences between seasons of soil frost. These differences can be quite large and have
different sign in the opposing sides of topographic features like hills, ridgelines etc. Our results
revealed that taking into account the impact of terrain variability and wind direction, the occurrence of
maximum wind speed can change from frozen to unfrozen soil season.

4.2. Strengths and Limitations of Study Approaches

There are multiple sources of uncertainty in our work due to the combination of results from
several modelled datasets, use of statistical estimation approaches and aim to produce high-resolution
information for the whole of Finland apart from the archipelago. Uncertainties related to return level
estimation are somewhat increased in coastal areas. This applies especially for PP as some of the years
have no frost at all, and therefore smaller dataset for return level estimation of wind speed in soil frost
season. Generally, uncertainty related to 10-year wind speed return level estimates can be considered
to be small (+/−1 m/s).

Also, the use of a single threshold of 20 cm for needed soil frost depth to provide sufficient support
for anchorage of trees is a rather large simplification in our approach. In reality, needed soil frost
depth is affected by various factors, like e.g., soil type, soil wetness, and tree species and other tree
and stand characteristics. Furthermore, in the used soil frost model soil water content is assumed to
be constant, therefore not representing the extreme cases of very wet or dry conditions. One rather
unnecessary source of uncertainty is our use of modelled snow depth, especially as we restricted our
work to the observed climate, with the possibility to use gridded observational datasets presumably
having smaller uncertainties. However, our approach is justified as we are planning to take projected
climate change into account in future work. In the end, [31] concluded that despite many uncertainties
in soil frost modelling; their results were, in general, reasonable.

Unfortunately, point observations from operational weather stations do not provide the best
possible basis for the validation of wind multiplier downscaled return levels of maximum wind speeds.
Operational weather stations are usually founded on locations representing regional climatic conditions
or for practicality reasons on specific locations. E.g., 17 out of 40 stations used here are located within
flat and open airports and airfields for purposes of aviation. This, compared to the objective of wind
multiplier downscaling, i.e., to take into account the influence of small-scale topographic and surface
roughness derived variations in wind speed, does not provide an ideal starting point for validation of
our results. This applies especially to our application in forestry, where the interest is focused more on
areas where wind damage risk is increased. In fact, considering all 40 stations and each of eight wind
directions, wind multiplier values are over 1.0, i.e., increasing the wind speed return level estimate
derived from ERA-Interim reanalysis, in only 15% of the cases. More detailed and accurate validation
would need a more specified measurement campaign in a more complex terrain, which would also
make possible the fine tuning of the wind multiplier method. Still, our validation results indicated that
wind multipliers improve the wind speed return levels derived straight from ERA-Interim reanalysis
by producing return levels less biased as a whole.

The high-resolution wind speed return levels, taking into account the upwind surface roughness
and topography, produced in this study may provide a valuable support for wind damage risk
assessment. In wind damage risk assessment it is first calculated the critical wind speed (CWS)
needed for wind damage of trees to occur based on different tree and stand properties and forest
configurations [27,50–53], and further on estimated the probability of wind damage and the amount of
damage, respectively, based on the probability of CWS see e.g., [52]. Our results could be used e.g.,
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when probabilities of exceeding CWSs are assessed and how these probabilities are affected by the soil
frost season.

Despite differences in wind speed return levels between soil frost seasons are small, even
statistically non-significant for some forest-soil type combinations and parts of Finland when station
level estimates are considered, it should be kept in mind that strong winds occurring during soil frost
season are excluded from unfrozen soil season. As there was such a large year-to-year variability in
the timing of annual maximum wind speeds, divided surprisingly evenly between soil frost seasons
found in this study, return level estimates for both seasons are therefore smaller than ones estimated
from annual maximum wind speeds. In this context, differences are expected to increase in the future
climate of Finland, as according to [30], the ongoing climate change is expected to reduce frozen soil
conditions by several weeks until the end of this century in Finland. This might also lead to more
pronounced differences of wind damage risk between different parts of Finland.

5. Conclusions

In this study, we found in general small differences in the 10-year return levels of maximum
wind speeds under frozen and unfrozen soil, associated with large variability in the timing of annual
maximum wind speeds. On the other hand, larger differences can be expected in the warmer climate.
When the soil frost period gets even shorter, there is also a shorter window, and thus smaller probability,
for strongest winds to occur in the time of frozen soil.

Further validation of used wind multiplier method could benefit from wind observations measured
in a more variable topography compared to observations at operational weather stations used in this
study. However, the wind multiplier approach is a pragmatic and computationally feasible way to
produce extensive high-resolution dataset to identify local scale areas with elevated wind damage
risk compared to regional characteristics. Data produced here is made openly available to promote
its further use as a part of a more comprehensive wind damage risk assessment in forest planning
and forestry.
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Abstract: The Sassandra Basin, like most regions of Côte d’Ivoire, is increasingly affected by droughts
that involve many environmental, social and economic impacts. This basin is full of several amenities
such as hydroelectric dams, hydraulic and agricultural dams. There is also a strong agricultural
activity. In the context of climate change, it is essential to analyze the occurrence of droughts in order
to propose mitigation or adaptation measures for water management. The methodological approach
consisted initially in characterizing the dry sequences by the use of the SPI (Standardized Precipitation
Index) and secondly in determining the probabilities of occurrence of successive dry years using by
Markov chains 1 and 2. The results indicate that most remarkable droughts in terms of intensity and
duration occurred after the 1970s. A comparison of Markov matrices 1 and 2 between the period
considered 1953–2015 with the periods 1953–1970 and 1971–2015 shows a profound change in the
distribution of droughts at the different station. Thus, the probability of having two successive dry
years is greater over the period 1970–2015 and is accentuated to the Southern and Northern regions
(probabilities ranging from 71% to 80%) of the basin. Over the 1970–2015 period, the probability of
obtaining three successive dry years is significantly high in this watershed (between 20% and 70%).

Keywords: drought; sassandra watershed; Côte d’Ivoire

1. Introduction

Drought is one of the greatest natural hazards with effects on water resources, natural ecosystems
and agriculture. Frequent and severe droughts limit the development of vegetation cover and make
the soil more susceptible to erosion by leaching due to heavy rainfall [1]. They are responsible for
famine, epidemics and land degradation in developing countries and cause major economic losses in
developed regions [2]. From a meteorological point of view, drought can be defined as an abnormal
but recurrent behavior of the climate essentially linked to the absence of rainfall received by a region
within a certain period of time [3,4].

West and Southern Africa are experiencing severe drought, disrupting agricultural and livestock
production systems in nearly 14 countries. Agriculture is nearly 95% rainfed in the region. It therefore
remains highly vulnerable to rainfall fluctuations [5]. Work on climate fluctuations in this part of the
world has made it possible to identify periods of drought since the 1970s. In Côte d’Ivoire, this deficit
situation has resulted in major climatic disruptions, including a significant drop in rainfall [6–10].
There has also been an abnormal extension of the dry season [11], irregular and uneven rainfall
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distribution and a significant decline in hydroelectric production [12]. These disruptions have had
serious consequences such as forest and plantation fires accompanied by a sharp drop in agricultural
production and power outages. For example, in December 1983, fires destroyed 60,000 ha of forests
and 108,000 ha of plantations and crops [13]). Given the magnitude of the environmental impacts of
droughts, public authorities should attach greater importance to the development of an early warning
and adaptation strategy that would announce the beginning, end and future intensity of drought. The
example of the Sassandra Watershed chosen for this study is interesting because this region undergoes
more and more dry season sequences. These deficit periods caused a disruption of cropping seasons in
rural areas [14,15] and the decrease in in stream flows [16,17]. This basin is mainly marked by strong
anthropogenic pressures. Indeed, this basin, which is also part of Côte d’Ivoire’s cocoa and coffee
economy, is experiencing a reduction in plant cover linked to systematic large-scale deforestation
of the forest heritage for the creation of plantations [14]. There are socio-economic infrastructures
(hydroelectric dams, agricultural dams, etc.) and this basin are subject to many water-related projects.

Given the impact and occurrence of droughts that are likely to increase in the coming years
under certain scenarios of global change [18], it is essential to better understand how irregularity and
rainfall distribution is manifested and to adopt preventive measures [19]. It is in this context that the
present study was initiated on the Sassandra watershed. This study aims to highlight the occurrence of
meteorological droughts in this basin using the Markov chains method based on annual rainfall over
the period 1953–2015.

2. Study Area

The Sassandra basin is located between longitude 5◦75 and 8◦16 West and latitude 5◦ and 9◦75’
North (Figure 1). It covers Odienné, Touba, Seguéla, Daloa, Man, Guiglo, Soubré, Sassandra, Gagnoa
cities. It has a total area of about 75,000 km2, of which the Ivorian part occupies an area of about
67,000 km2. The relief of the study area consists of plains and uplands at varying altitude from 1100 to
1180 m. There are some rock chains that have resisted to erosion. The zenith sun movement controls
the migration of the ITCZ (Intertropical Convergence Zone) in Côte d’Ivoire, which explains the
introduction of different seasonal regimes. Thus the basin of Sassandra is subdivided into four climatic
units according to rainfall patterns [20]. The equatorial transitional climate with four seasons (a large
rainy season from April to June, a small rainy season from September to November, a large dry season
from December to March and a small dry season from July to August). The interannual rainfall average
is 1441.5 mm; the equatorial climate of attenuated transition is marked by two seasons (a major rainy
season covering the months of August to October and a major dry season from November to March).
The interannual average is 1305.2 mm; the tropical transitional climate has a unimodal pattern. It is
characterized by a rainy season that occurs from June to October. The dry season covers the months of
November to March. The interannual rainfall recorded at the Odienné station is 1473 mm; the mountain
climate is characterized by an azonal type pattern. The highest rainfall peak is recorded in September
(279 mm). The dry season covers the month of November to March. The average interannual rainfall is
1578.5 mm. The average monthly temperatures range from 23◦C to 28◦C and are generally uniform
from one region to another. The average monthly relative humidity varies from 77 to 96% in Guinea
environment and from 44 to 83% in the North [21].
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Figure 1. Geographic localization of the study area.

3. Data and Methods

3.1. Historical Time Series Data

Historical rainfall data used in this work cover the entire study area at the yearly scale. Climate
data over the period 1953–2015 was provided by the National Meteorology Directorate (DMN) of the
Society of Development and Exploitation, Aeoroportuary, Aeronautic and Meteorology (SODEXAM)
of Côte d’Ivoire. These data consist of daily rainfall readings from ten rainfall stations (Table 1) selected
to provide the most homogeneous coverage of the different climatic areas across in the Sassandra basin.
The study variable is the annual rainfall for the period 1953–2015.

Table 1. Rainfall stations selected for the study.

Climatic Area Name Latitude North Longitude West Code

Attiean climate
Sassandra 4◦57’ 6◦50’ 1090017200

Gagnoa 6◦07’ 5◦56’ 1090010300

Baoulean climate

Soubré 5◦47’ 6◦36’ 1090018100

Guiglo 6◦32’ 7◦28’ 1090011200

Vavoua 7◦22’ 6◦28’ 1090021400

Seguéla 7◦57’ 6◦40’ 1090017500

Daloa 6◦53’ 6◦27’ 1090008200

Touba 8◦17’ 7◦41’ 1090020500

Mountain climate Man 7◦24’ 7◦31’ 1090014200

Sudanese climate Odienné 9◦30’ 7◦34’ 1090016000

79



Climate 2019, 7, 60

3.2. Methodology

3.2.1. Characterization of Meteorological Drought Sequences

The choice of the statistical index

The Standardized Precipitation Index (SPI), developed by [22], is used in this study to characterize
meteorological droughts. It has advantages in terms of statistical consistency and the ability to describe
both short-term and long-term drought impacts through different time scales [22]. The development of
this index is based solely on the use of rainfall as a baseline data to determine wet and dry periods,
and to specify their duration and intensity. The probabilistic nature of the SPI index allows it to be
comparable between different sites [23].

Standardized Precipitation Index

The standardized precipitation index (SPI) [22,24] was developed to quantify the rainfall deficit
for multiple time scales that will reflect the impact of drought on the availability of different types of
water resources over a given period. It is expressed as follows (Equation (1)):

SPI = (Pi − Pm)/S (1)

Pi: Total rainfall over year i (mm); Pm: Average precipitation over the period 1953–2015 (mm); S:
Standard deviation of precipitation over the period 1953–2015 (mm).

According to [22], a drought occurs when the SPI is consecutively negative and its value reaches an
intensity of −1 or less and ends when the SPI becomes positive. A drought classification is performed
according to the SPI values (Table 2).

Table 2. Classification of drought sequences according to Standardized Precipitation Index (SPI) [22].

SPI Value Drought Sequence

−0.99 to 0.99 Near the Normal
−1.00 to –1.49 Moderately dry
−1.50 to –1.99 Severely dry
−2.00 and under Extremely dry

Descriptive parameters of drought sequence

- Maximum duration of drought sequences

Duration is an important characteristic of drought. In fact, if a drought starts quickly under some
weather conditions, it usually takes at least two to three months before it can spread to other regions. It
can then persist for months or even years. The calculation of the duration is as follows [25]. (Equation
(2)).

D = (Aend − Ainitial) (2)

Ainitial: Year of the initial dry period; Aend: Year of end of the dry period

- Intensity of drought sequences

Intensity of drought can be defined as the magnitude and severity of the consequences for the
rainfall deficit. It can be evaluated using the SPI values. In this study, the extreme value of the SPI was
considered as a reference value for drought intensity.

3.2.2. Time Series Change Detection

Rupture is defined as a sudden change in the properties of a random process [26]. Rupture tests
are complementary to standard indices because the existence of sudden change in time series is a
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possible cause of the rupture of the homogeneity of these series [27]. In this study, the Cumulative Gap
(CG) test was used to detect possible sudden changes in rainfall series. This non-parametric procedure,
based on rank, analyzes whether the means of the two parts of the series are different for an unknown
break date [28]. The statistic of this test is calculated from the cumulative sum of the "sign" function of
the difference between the observed values and the median. This statistical processing is performed
with Hydrospect 2.0 software. The test statistic is defined as follows (Equation (3)):

|TS| = (2\n) max |Sk|with Sk =
k∑

i=1

sign (xi −Xm) and (k = 1, . . . , n) (3)

where xi is the extreme hydrometric observation of rank i (i = 1 . . . n); Xm is the median of the extreme
hydrometric series; Sk is the statistic test; n is the number of value for the rank i.

3.2.3. Characterization of Meteorological Droughts Occurrence by Markov Chains

Several statistical techniques for analyzing precipitation data have been published in the literature.
The most used technique is still the one based on the Markov chains. This method is widely used for
rainfall analysis and modelling [29–36]. A Markov string is a series of random variables (Xn, n ∈ N)
that allows to model the dynamic evolution of a random system: Xn represents the state of the system
at time n. The fundamental property of Markov chains, known as "Markov property", is that its future
evolution depends on the past only through its current value. In other words, conditionally to Xn (X0,
. . . , Xn) and (Xn+k, k ∈ N) are independent [37].

◦ Markov chain with two states of order 1

For a first order Markov chain, the state of the variable E(t) at time t depends only on its state at time (t
− 1). Thus, we have four situations: [31]

P00 = pr(E(t + 1) = 0| (E(t) = 0))
P01 = pr(E(t + 1) = 1 | (E(t) = 0))
P10 = pr(E(t + 1) = 0 | (E(t) = 1))
P11 = pr(E(t + 1) = 1| (E(t) = 1))

(4)

Pij is the probability of going to state j knowing that you are in state i. These probabilities were
calculated using the following relationship:

Pij = Nij/Ni with: i and j = 0 or 1 (5)

Nij is the transition number from state i to state j and Ni is the number of transitions from state i to any
other state. The pairs of years Nij are determined [35] (Equation (6)):

⎧⎪⎪⎪⎨⎪⎪⎪⎩

N0 = N00 + N01

N1 = N10 + N11

N = N0 + N1

(6)

N0; N1 and N are the number of dry, wet years and the total number of years of observation, respectively.
N01 and N10 respectively represent the number of years of state change from a dry year to a wet
year and from a wet year to a dry year. The transition matrix P of the conditional probabilities Pij, is
presented so that each line is equal to 1 [35]. Resulting in a set of possible Pij values (Equation (7)):

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P00 P01 . . .
P10 P11 . . .
. . . . . . . . .
Pi0 Pi1 . . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7)
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◦ Markov chain with two states of order 2

For a Markov string of order 2, the state of the variable E(t) at time t depends on its state E(t − 1)
at time (t − 1) as well as its state E(t − 2). The probability of having this state can be written:

Pijk = pr (E(t) = k |(E(t − 1) = j, E(t − 2) = i)) (8)

Pijk represents the conditional probability of having a state doublet (j, k) following the state doublet (i,
j) and i, j, k = 0 or 1, calculated using the following relationship [31]:

Pijk = Nijk/Nij (9)

where Nijk is the number of transitions from the state doublet (i, j) to the state doublet (j, k).
The process of transition of conditional probabilities with the Markov 2 chain is as follows (Table 3):

Table 3. Markov process of order 2 [35].

State at Day k−1 and k−2 State at Day k−1 and k

00 01 10 11

00 P000 P001 0 0
01 0 0 P010 P011
10 P100 P101 0 0
11 0 0 P110 P111

4. Results

4.1. Analysis of Meteorological Drought Sequences

The application of the cumulative gap test identified change point detection in the series. The
null hypothesis of no rupture was rejected at the 99% and 95% confidence levels. These ruptures were
identified mainly after 1970 except in the Man, Guiglo and Gagnoa regions, which had their ruptures
between 1967 and 1969. Temporal analysis shows a slight downward trend in SPIs after ruptures,
confirming a decrease in rainfall. SPI values over the 1953–2015 period show very few dry sequences
before the rupture years (Figure 2).

For the equatorial transition regime (attiean climate), change point detection were detected in
1966 and 1983 at the Gagnoa and Sassandra stations respectively. Before these change point detection,
the index counted four dry sequences in Gagnoa and three dry sequences in Sassandra. Thus, the most
remarkable sequences have a duration of nine successive years in Gagnoa and 18 in Sassandra.

For the equatorial regime of attenuated transition (Baoulean climate): before the change point
detection years, the SPI index recorded four dry sequences in Soubré, three in Guiglo, seven in Daloa,
four in Vavoua, 12 in Seguéla and seven in Touba. In this period, the Daloa and Touba stations recorded
two sequences of two successive dry years. For Daloa, the index shows the periods 1964–1965 and
1969–1970 and for Touba, the periods 1960–1961 and 1970–1971. As for the Seguela station, the index
detected a sequence of five successive dry years. The most remarkable dry episodes after the rupture
have lasted 13 successive years in Soubré, six years in Guiglo, seven years in Daloa, four years in
Vavoua, eight years in Seguéla and 10 years in Touba.

For the mountain regime, the Man station recorded five dry sequences before 1968. This number
increased to 27 after the change point detection. The index has also recorded sequences of successive
dry years, the most remarkable of which is five years (2011–2015).

For the Tropical Attenuated Transition Regime (Sudanese climate), Odienné station recorded 8
dry sequences, including a sequence of two and three successive dry years in 1980–1981 and 1973–1975.
After the change point detection, the SPIs show 24 dry sequences, the most remarkable in terms of
duration being 11 successive dry years (1983–1993).
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Figure 2. SPI index evolution over the period 1953–2015.
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4.2. Intensity and Duration Parameter Analysis

The most remarkable drought years in terms of intensity and duration during the 62 years analyzed
differ according to the climatic zones of the watershed (Table 4). For the attean climate, the driest years
were those of 1992 and 1998. These dry events were classified as “very dry” in terms of intensity. The
Gagnoa station recorded the highest intensity. As for the Sassandra station, it experienced the longest
drought period with 18 years of consecutive dry sequences.

At the level of the Attenuated Equatorial Transition Regime (Baoulean climate), the stations of
Soubré, Guiglo, Vavoua and Touba recorded the highest intensities in terms of drought. These events
characterized as “extremely dry” were detected in 1974, 2002, 2003 and 1983, respectively. In this
region of the basin, the Guiglo station was the most affected in terms of intensity while the Touba
station recorded the longest dry period (10 successive dry years).

In the Tropical transitional Attenuated Regime (Sudanese climate), the most remarkable droughts
were those of 1987. These dry episodes were described as extremely severe in terms of intensity.
Odienné station was marked by a longer dry period with (11 successive years).

As for the Mountain Regime, it recorded a deficit of an intensity described as extremely severe in
2003. This area was marked by a long drought period of seven years.

The application of the SPI to rainfall data for the period 1953–2015 shows the western part of the
basin, which is the most affected by drought in terms of intensity (−3.06) while the southern part of the
basin has the longest drought period (18 years).

Table 4. Intensity and duration of meteorological drought sequences during the period 1953–2015.

Stations Intensity (SPI) Type Maximum Duration Date of Occurrence

Daloa −1.53 Severely dry 7 2001
Vavoua −2.26 Extremely dry 4 2003

Man −3.06 Extremely dry 5 2003
Guiglo −2.86 Extremely dry 6 2002
Seguéla −1.53 Severely dry 8 2002
Touba −2.61 Extremely dry 10 1983

Odienné −2.05 Extremely dry 11 1987
Gagnoa −1.90 Severely dry 7 1992
Soubré −2.25 Extremely dry 13 1974

Sassandra −1.87 Severely dry 18 1998

4.3. Analysis of the Meteorological Droughts Occurrence

4.3.1. Transition States Probability of Markov Chains 1

The probability of obtaining two successive dry years and two successive wet years is high in
the Gagnoa and Sassandra areas (reaching 70%). In this climatic zone in the southern part of the
basin, when a dry year is followed by a non-dry year or a non-dry year is followed by a dry year, the
probability is low (Table 5). The Soubré, Seguéla, Daloa and Touba regions recorded high probabilities
(over 50%) of obtaining a doublet of successive dry years. As for the Guiglo, Vavoua and Man regions,
these probabilities were average. The probabilities of having a wet year after a dry year and a wet year
after a wet year are low in these regions of the basin. The Man region recorded average probabilities
(55%) for two successive dry years and two successive wet years. As for the other probabilities, they
are very low in this climate regime.The chances of obtaining successively dry and successively wet
episode doublets are very high in Odienné. When a year is dry and is followed by a humid year or a
humid year is followed by a dry year, the probabilities are very low. The analysis of the occurrences of
two successive dry years over the 1953–2015 series shows very high probabilities over the entire basin
(62% on average). However, the regions of Sassandra, Gagnoa, Seguéla, Touba and Odienné recorded
the highest probability (up to 70%) of dry spells over this period.
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Table 5. Occurrence of meteorological droughts using Markov Chains 1 over the period 1953–2015.

Climate Regimes Stations
Probability (%)

W-W D-W W-D D-D

Attiean climate
Sassandra 68 30 30 70

Gagnoa 54 32 46 70

Baoulean climate

Soubré 57 36 40 64
Guiglo 43 55 57 45
Vavoua 40 52 60 50
Seguéla 46 31 54 70
Daloa 44 40 56 60
Touba 62 30 38 70

Mountain climate Man 55 45 45 55

Soudanese climate Odienné 60 38 40 63

Note: D: Dry year; W: Humid year.

The results of the occurrence analysis for two successive dry years before and after 1970 are
presented in Table 6.

Table 6. Occurrence of meteorological droughts using Markov Chains 1 over the periods 1953–1970
and 1971–2015.

Period Climate Regimes Stations
Probability (%)

W-W D-W W-D D-D

1953−1970

Attiean climate
Sassandra 28 36 71 60

Gagnoa 38 50 63 50

Baoulean climate

Soubré 25 70 75 30
Guiglo 38 60 63 40
Vavoua 11 78 67 22
Seguéla 29 40 71 55
Daloa 40 63 60 23
Touba 44 45 60 45

Mountain climate Man 40 56 55 44

Soudanese climate Odienné 50 15 50 85

1971−2015

Attiean climate
Sassandra 77 20 23 80

Gagnoa 55 39 45 61

Baoulean climate

Soubré 61 36 40 64
Guiglo 35 54 65 46
Vavoua 41 50 59 45
Seguéla 61 22 39 78
Daloa 48 45 52 55
Touba 70 30 30 71

Mountain climate Man 58 43 42 55

Soudanese climate Odienné 55 39 41 61

Note: D: Dry year; W: Humid year.

During the period 1953–1970, the probability of obtaining two successive humid years (W-W) and
two consecutive dry years (D-D) is relatively low in the basin (less than 50%) except at the Odienné,
Sassandra and Seguéla stations which have a high probability (85%, 60% and 55%, respectively) of
obtaining two successive dry years (D-D). When a year is dry, the probability of having the following
year not dry (D-W) is high at the Daloa (70%), Soubré (70%) and Vavoua (78%) stations. In the event
that a year is not dry, the probability that the following year will be dry is high throughout the basin
(greater than 50%) and varies from 55% to 75%.
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Over the period 1971–2015, a trend contrary to the previous period is observed. Indeed, if a year
is dry at the beginning, the probability of having a dry year (D-D) is high for most regions (above 50%)
and reaches its maximum (80%) at the Sassandra station. In the case where the dry year is followed by
a non-dry year (D-W), the probability is relatively low and varies from 25% to 48% except in the Guiglo
area (54%). When a humid year is followed by a dry year (W-D), the probability is high at Guiglo (62%)
and Vavoua (59%). For the other parts of the basin, this probability is moderate. When two years are
non-dry successively (W-W), the probability is greater than 50% over most of the basin except in the
Daloa, Vavoua and Guiglo regions where the values are low (less than 50%).

The analysis shows the increase in drought episodes over the period 1971–2015. This is reflected
in the high probabilities, the most notable of which were recorded in the North (Touba (71%) and
Seguéla (78%)) and the South (Sassandra (80%)) of the basin.

4.3.2. Transition States Probability of Markov Chains 2

The results of the Markovian approach on the 1953–2015 series show that the probability of
obtaining a dry year after two successive dry years (D-D-D) is high in the areas of Sassandra (67%)
and Gagnoa (59%). As for the stations of Seguéla (51%), Soubré (55%) and Touba (50%) located in an
equatorial regime of attenuated transition (Baoulean climate), they recorded average values. At the
other stations, this probability is low (<50%) (Table 7). The probability of having a dry year between
two wet years (W-D-W), a wet year followed by two successive dry years (W-D-D) and a wet year
after two dry years (D-D-W) is very low over the entire basin. The averages recorded are 24%, 20.4%
and 16.9%, respectively. Overall, the probability of having three consecutive dry years (D-D-D) is
relatively low in the basin (44.8% on average). The most affected regions are those in the southern part
of the basin.

Table 7. Occurrence of meteorological droughts using Markov Chains 2 over the period 1953–2015.

Climate Regimes Stations
Probability (%)

W-D-W W-D-D D-D-W D-D-D

Attiean climate
Sassandra 15 6 7 67

Gagnoa 23 20 11 59

Baoulean climate

Soubré 30 10 10 55
Guiglo 40 17 20 30
Vavoua 35 25 21 25
Seguéla 25 25 15 51
Daloa 22 32 22 40
Touba 14 21 18 50

Mountain climate Man 22 25 23 30

Soudanese climate Odienné 16 23 22 41

Note: D: Dry year; W: Humid year.

The results of the occurrence of three successive dry years over the periods 1953–1970 and
1971–2015 are shown in Table 8.

During the period 1953–1970, the probability of having three successive dry years is relatively low
at all stations except the Odienné station where this probability is 60%. In the regions of Man, Soubré,
Vavoua and Daloa, the probability of having three successive dry years is zero.

During the period 1971–2015, the probability to observe (D-D-D) is high and higher than 50% at
Seguéla (60%), Touba (63%) and the maximum is reached at Sassandra (70%). As for the rest of the
stations, the probability is low and less than 50%.
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Table 8. Occurrence of meteorological droughts using Markov Chains 2 over the periods 1953–1970
and 1971–2015.

Period Climate Regimes Stations
Probability (%)

W-D-W W-D-D D-D-W D-D-D

1953−1970

Attiean climate
Sassandra 29 43 20 30

Gagnoa 38 25 10 20

Baoulean climate

Soubré 50 25 20 0
Guiglo 50 13 20 20
Vavoua 60 22 25 0
Seguéla 14 57 30 20
Daloa 40 20 20 0
Touba 22 33 30 15

Mountain climate Man 33 33 30 0

Soudanese climate Odienné 0 60 20 60

1971−2015

Attiean climate
Sassandra 10 10 10 70

Gagnoa 25 20 17 43

Baoulean climate

Soubré 20 20 20 50
Guiglo 40 30 21 25
Vavoua 30 30 30 20
Seguéla 11 25 15 60
Daloa 20 30 30 30
Touba 20 10 8 63

Mountain climate Man 17 25 0 25

Soudanese climate Odienné 20 23 22 40

Note: D: Dry year; W: Humid year.

4.4. Analysis of the Spatial Variability of Drought Occurrence

4.4.1. Spatial Variability of the Probability for Two Successive Dry Years

Figure 3 shows the probability spatial distribution for two successive dry years (D-D) over the
Sassandra basin for the periods 1953–2015, 1953–1970 and 1971–2015. The period 1953–2015 is marked
by an increase in meteorological droughts over almost the entire basin with the probability of having a
very high doublet of dry years that reaches 70%. The most affected areas are those in the North and
South of the catchment area.

From 1953 to 1970, the drought was particularly severe in the extreme north of the basin (around
the Odienné region) and in the south (precisely around Sassandra) with probabilities of more than 60%.
These drought episodes spread over almost the entire basin during the period 1971–2015 except in the
central eastern areas (Daloa and Vavoua) and the western areas (Guiglo and Man) of the basin. Over
this time period, the probability of obtaining two consecutive dry years is high, averaging 61.6%.
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Figure 3. Spatial distribution of the occurrence for two successive dry years (D-D) over the Sassandra
watershed (a) D-D probability over the period 1953–2015; (b) D-D probability over the period 1953–1970;
(c) D-D probability over the period 1971–2015).

4.4.2. Spatial Variability of Probabilities for Three Consecutive Dry Years

The spatial variability of the probabilities of obtaining three successive dry years over the periods
1953–2015, 1953–1970 (before the rupture) and 1971–2015 (after the rupture) is presented in Figure 4.
An intensification of droughts in the South (around the Sassandra, Gagnoa and Soubré regions) and
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in the North-East (Seguéla) of the basin, with probabilities higher than 50%, is observed over the
period 1953–2015.

Droughts intensify over time in the watershed. The dry areas which over the period 1953–1970
were located in the extreme North of the basin (covering the Odienné region), increased over the period
1971–2015 and spread with high probabilities of occurrence (up to 70%) over the Touba, Seguéla and
South (Sassandra) regions. As for the northern tip of the basin, the probabilities were low.

 

Figure 4. Spatial distribution of the occurrence for three successive dry years (D-D-D) over the
Sassandra watershed (a) D-D-D probability over the period 1953–2015; (b) D-D-D probability over the
period 1953–1970; (c) D-D-D over the period 1971–2015).
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5. Discussion

The statistical test used to determine the breaks in the SPI series made it possible to detect breaks,
for the most part, after the 1970s, which is the pivotal date observed almost throughout West Africa. The
stations of Man, Guiglo and Gagnoa experienced early ruptures between 1967 and 1969. These years
of disruption coincide with previous studies on rainfall in West Africa and Côte d’Ivoire [6,27,38–41].
This work reveals the appearance of a rainfall deficit from 1970 onwards and its continuation during
the decades 1970–1979, 1980–1989 and 1990–1999. In the Sassandra basin, studies by [16] on the Lobo
basin also mentioned a decrease in rainfall over the period 1970–2009 with a deficit of between 10%
and 20% compared to the rupture years.

The analysis of the SPI index over the period 1953–2015 shows an increase of 54.35% to 82.35% in
the number of dry years. This phenomenon was accentuated around the 1980s, with a persistence
of dry sequences over the period 1970–2015.The peak of the most remarkable droughts occurred in
1974, 1983, 1987, 1987, 2002 and 2003. These peaks are characterized by “extremely severe” droughts.
Moreover, changes in SPI values at the various stations indicate that, in terms of intensity, the regions
of Man (−3.06), Guiglo (−2.86), Touba (−2.61), Vavoua (−2.26), Odienné (−2.05) and Soubré (−2.25),
were the most affected by the droughts. As for duration, the SPIs indicate an increase in dry years after
ruptures. Thus, Sassandra Station records the longest dry period (18 successive years). Our results are
in line with studies conducted in West Africa. According to [42], the drought was more severe in the
second half of the period 1900–2013, i.e., from the 1970s onwards. This trend is confirmed by several
studies at the continental level and in West Africa [43,44]. These studies locate the most remarkable
drought events in 1961, 1970, 1983, 1984, 1984, 1992 and 2001.

However, very few studies have focused on investigating the causes of droughts in West Africa.
However, the work of [45,46] has shown that recent droughts remain linked to the emanation of ocean
warming (southward warming gradient of the Atlantic Ocean and steady warming of the Indian Ocean)
and fluctuations in the inter-tropical convergence zone (ITCZ). The ITCZ is defined as a convergence
zone of northeastern Harmattan winds from the Sahara and the southwestern monsoon flow from the
Atlantic [47]. The zenithal movement of the sun will command the displacement of the inter-tropical
convergence zone towards the South to reach its southern position around 5◦ N in West Africa. This
explains the introduction of the dry seasons. In addition to these factors, there is the effect of the
land-atmosphere feedback through natural vegetation and land cover change. Indeed, deforestation
can cause significant reduction of the rainfall and effect on the monsoon circulation [42]. The application
of Markov chains over the periods 1953–2015 and the after change point detection year made it possible
to highlight the areas that were most affected by droughts in terms of occurrence probability. The
analysis shows that during the period 1953–2015 the probability of obtaining two successive dry years
is high in the Northern and South of this basin. As for the probabilities of obtaining three dry years,
they are high over part of the South and the northeast of the watershed. Over the periods 1953–1970
and 1971–2015, a large variation in probabilities was observed. Indeed, during 1953–1971, the dry
areas that were observed in the extreme North of the basin according to Markov 1, spread over the
entire basin over the period 1971–2015, with high values recorded in the North and South (ranging
from 71% to 80%). As for the second order chains, they show the probabilities of obtaining high D-D-D
in the far North over the period 1953–1970. During 1971–2015, drylands spread over part of the North
(Touba), the North-East (Seguéla) and the South (Sassandra). These results indicate that the succession
of dry conditions increased during the period 1971–2015 compared to the previous period (1953–1970)
with the southern and northern areas of the basin most affected. This situation could be related to the
effects of climate change observed on rainfall in West Africa. These results complement the work done
of [35] on the transboundary watershed of the Bia River in eastern Côte d’Ivoire. The conclusions of
this study are that the succession of two to three dry years is more marked in this basin after 1970.

The fact that the southern region located in the forest zone has the highest probability of two
or three successive dry years is possibly due to the effect of droughts on the spatial and temporal
variation of the 1200 isohyet in the southwestern part of the basin. According to [17], these variations
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over the decades 1981–1990 and 1991–2000, created a dry corridor focused on the city of Sassandra,
thus promoting a microclimate surrounded by watered areas that coincide with forest reserves and
forest areas. In addition, there may be a significant reduction in forest cover in favor of an increase in
cultivation areas, fallows and habitat.

6. Conclusions

Application of the standardized rainfall index (SPI) has made it possible to characterize drought
situations in the Sassandra catchment area. During the 1971–2015 period, the driest sequences in
terms of intensity (values between −1.53 and −3.06) and duration occurred. These dry events reached
their peak in 1974, 1983, 1987, 1987, 2002 and 2003, with extremely severe droughts. Among the 10
stations that have been studied, those of Man, Guiglo, Touba, Odienné, Soubré, Seguéla and Vavoua
seem to be the most affected by droughts. As for the Sassandra station, it seems to be more affected
by a long dry period. As for the study of drought persistence using Markov chains 1 and 2, it made
possible to determine the probability occurrence of droughts as well as to analyze their behavior in
the basin. The results indicated that the succession of dry conditions increased during 1971–2015.
The greatest probabilities for obtaining a doublet of successive dry years (D-D) and three consecutive
dry years (D-D-D) were recorded in the southern and northern regions of the watershed. Markov
chains 1 and 2 applied to a representative sample of 10 stations are found to provide a good regional
drought indicator. Thus, the probability of a dry year in this basin will depend on the previous year’s
situation and even more on the condition of the year before. This study will enable populations,
decision-makers, etc., to develop new water resource management strategies for the proper functioning
of existing socio-economic infrastructures (hydroelectric and agricultural dams, etc.), water projects
and the development of new farming systems to cope with the effects of climate change.
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Abstract: We qualitatively and quantitatively assessed the factors related to vegetation growth using
Earth system models and corroborated the results with historical climate observations. The Earth
system models showed a systematic greening by the late 21st century, including increases of up to
100% in Gross Primary Production (GPP) and 60% in Leaf Area Index (LAI). A subset of models
revealed that the radiative effects of CO2 largely control changes in climate, but that the CO2

fertilization effect dominates the greening. The ensemble of Earth system model experiments revealed
that the feedback of surface temperature contributed to 17% of GPP increase in temperature-limited
regions, and radiation increase accounted for a 7% increase of GPP in radiation-limited areas. These
effects are corroborated by historical observations. For example, observations confirm that cloud
cover has decreased over most land areas in the last three decades, consistent with a CO2-induced
reduction in transpiration. Our results suggest that vegetation may thrive in the starkly different
climate expected over the coming decades, but only if plants harvest the sort of hypothesized
physiological benefits of higher CO2 depicted by current Earth system models.

Keywords: terrestrial ecosystems; GPP; LAI; CMIP5; CO2 fertilization effect; feedback

1. Introduction

Climate change caused by increasing atmospheric carbon dioxide (CO2) concentrations has been
extensively studied in the context of global warming, and the land carbon cycle feedback is recognized
as one of the biggest sources of uncertainty in climate projection [1]. Global warming is proceeding with
a greening trend of the Earth, as shown by satellite and ground observations of increases in leaf area
index [2,3], canopy cover [4], and biomass [5]. A greening Earth has significant consequences for the
terrestrial carbon sink, the integrity of ecosystem, and climate [6,7]. Numerous mechanisms appear to
underlie the observed greening, including changes in the climate system [8,9]. Among the mechanisms
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supporting the greening Earth, CO2 fertilization is considered the dominant factor in enhancing
vegetation, with evidence from free-air CO2 enrich (FACE) experiments [10], satellite observations [2,4],
and ground observations [11]. Climate change is also substantially contributing to the increase in
global vegetation productivity because of the indirect effect of increasing CO2 concentrations [9].
For instance, global warming is enhancing vegetation growth in high latitudes [12,13]. As such, each
mechanism contributing to vegetation growth has been scrutinized independently, but, in contrast to
climate change studies, the global factors affecting vegetation response have not been well studied
and summarized. Therefore, the combination and interactions of multiple different climatological
and biophysical mechanisms make it difficult to predict the future growth of vegetation at the
global scale. As a result, the big discrepancy between modeled and observed sensitivity to CO2

concentrations is always a source of controversy in the prediction of the future carbon cycle [14].
If climate constrains increase, climate change can cancel the positive effects of CO2 or of other
biogeochemical fertilization (e.g. nitrogen deposition) on vegetation, and possibly accelerate global
warming. Therefore, understanding the relative strength of climate variables or increasing CO2

concentrations, leading to greening or browning of the Earth, is imperative for future projections.
We firstly summarized and analyzed the trends in climate and vegetation responding to increasing

CO2 concentrations from the subset of the Coupled Model Intercomparison Project Phase 5 (CMIP5).
The CMIP5 dataset includes present run and future projection data produced by Earth system models
following several experimental scenarios. Future vegetation growth depends on the type, magnitude,
and seasonal timing of climatic changes and their interactions with vegetation physiology. To simplify
the understanding of these complex mechanisms, we divided the vegetated areas into three categories,
namely temperature-limited, water-limited, and radiation-limited areas, following Nemani et al. [9].

Then, we decomposed the mechanisms enhancing vegetation growth into three factors: CO2

concentration fertilization effect, radiative climate change, and local climate feedback by vegetation
growth. By assessing these three factors quantitatively, we can answer the question as to whether
increasing CO2 concentrations will tighten or relax climate constrains on vegetation at the global scale.
Friedlingstein et al. [1] evaluated the strengths of the effects of CO2 fertilization and temperature
increase on land vegetation carbon storage. Lemordant et al. [15] decomposed the climate effects on
evapotranspiration into net radiation, precipitation, and vapor pressure deficit (VPD). However, none
of them counted the local climate feedback effect at the global scale. Therefore, contradicting results of
vegetation growth by different mechanisms made future predictions confusing. For instance, it is hard
to discuss the regional trend in precipitation [16–18] and the changes in water use efficiency [11] at the
same time without knowing which mechanism is relatively stronger. Finally, we discussed the validity
of the findings through the analysis of historical observations.

2. Materials and Methods

2.1. CMIP5

CMIP5 is a set of model experiments for assessing past and future climate change in the
Intergovernmental Panel for Climate Change Assessment Report number 5 (IPCC AR5) [19].
To objectively select datasets, the models of CMIP5 data used in this paper met the following criteria.

• The models had monthly data of near-surface air temperature (output variable name in the
standard output is tas; the other variables are showed the same way hereafter), precipitation
(pr), surface downwelling shortwave radiation (rsds), and Leaf Area Index (LAI) (lai) data for
the specific years (1875–2005: historical; and 2006–2099: Representative Concentration Pathway
(RCP) 8.5).

• The land sub-model had year-to-year changes in LAI.

We used three sets of outputs from 21 models from CMIP5 (Table 1).
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Table 1. Coupled Model Intercomparison Project Phase 5 (CMIP5) models and the forcing characteristics.
Models used in the sensitivity analysis (experiment IDs are esmFixClim1, esmFdbk1, and 1pctCO2)
shown in the analysis are highlighted in red.

Model Modeling Group Land Component
N

Cycle
Dynamic

Vegetation

bcc-csm1-1
Beijing Climate Center, China

Meteorological Administration,
CHINA

AVIM1.0 N N

bcc-csm1-1-m Meteorological Administration,
CHINA AVIM1.0 N N

BNU-ESM Beijing Normal University, CHINA CoLM3 & BNU
DGVM (C/N) - -

CanESM2 Canadian Center for Climate
Modelling and Analysis, CANADA

CLASS2.7 &
CTEM1 N N

CESM1-CAM5 Community Earth System Model
Contributors, NSF-DOE-NCAR, USA CLM4 Y N

CESM1-WACCM Community Earth System Model
Contributors, NSF-DOE-NCAR, USA CLM4 Y N

CESM1-BGC Community Earth System Model
Contributors, NSF-DOE-NCAR, USA CLM4 Y N

GFDL-CM3 NOAA Geophysical Fluid Dynamics
Laboratory, USA LM3 N Y

GFDL-ESM2G NOAA Geophysical Fluid Dynamics
Laboratory, USA LM3 N Y

GFDL-ESM2M NOAA Geophysical Fluid Dynamics
Laboratory, USA LM3 N Y

HadGEM2-ES Met Office Hadley Centre, UNITED
KINDOM

MOSES2 &
TRIFFID N Y

INMCM4 Russia

IPSL-CM5A-LR Institut Pierre-Simon Laplace,
FRANCE ORCHIDEE N N

IPSL-CM5A-MR Institut Pierre-Simon Laplace,
FRANCE ORCHIDEE N N

MIROC5 JAMSTEC, University of Tokyo, and
NIES, JAPAN

MATSIRO &
SEIB-DGVM N Y

MIROC-ESM-CHEM JAMSTEC, University of Tokyo, and
NIES, JAPAN

MATSIRO &
SEIB-DGVM N Y

MIROC-ESM JAMSTEC, University of Tokyo, and
NIES, JAPAN

MATSIRO &
SEIB-DGVM N Y

MPI-ESM-LR Max Planck Institute for Meteorology,
GERMANY JSBACH N Y

MPI-ESM-MR Max Planck Institute for Meteorology,
GERMANY JSBACH N Y

MPI-ESM1 Max Planck Institute for Meteorology,
GERMANY JSBACH N Y

NorESM1-ME Norwegian Climate Centre, NORWAY CLM4 Y N

NorESM1-M Norwegian Climate Centre, NORWAY CLM4 Y N

The experiments are:
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1. Historical run: Runs covering the historical period 1850–2005. For this period, model forcings
include: greenhouse gases (GHG), volcanoes, aerosols, and land cover.

2. RCP 8.5: Projections forced by pre-determined increasing CO2 concentrations covering 2006
to 2100. For this analysis we chose the RCP 8.5 scenario, a pathway with the highest greenhouse gas
emissions, leading to 8.5 W/m2 radiative forcing at the end of the 21st century [20]. Although just
a decade passed since 2006, it has been reported that the emission concentration in 2100 is projected to
follow RCP 8.5 [21].

3. Sensitivity experiments: In order to assess the contribution of CO2 fertilization and climate
effects on vegetation separately, we used an eight-model (highlighted in Table 1) ensemble to compare
three CMIP5 experiments, each of which was run for 140 years and experiences a constant CO2 of
preindustrial level and/or CO2 increasing by 1%/year to 4xCO2: (1) In the fertilization experiment
CO2 increases by 1%/year to 4xCO2 for the land surface, but stays constant at preindustrial level for
the atmosphere, and thus the climate effect is suppressed and the CO2 fertilization effect is dominant
on land (the official experiment ID is esmFixClim1); (2) in the climate experiment CO2 increases for the
atmosphere, but stays constant for the land surface, and hence the CO2 fertilization effect is suppressed
and the climate impact dominates (esmFdbk1); (3) in the combined experiment CO2 concentration
increases for the full Earth system (1pctCO2).

To calculate the ensemble mean, at first, we remapped all the CMIP5 data into quarter degree grid
data using the bilinear interpolation method. Then, we calculated the ensemble mean for each quarter
degree grid from the available modeled data.

In this paper, gross primary production (GPP) was chosen from available CMIP5 land variables as
the representation of photosynthesis. GPP is the amount of photosynthesis by vegetation per unit area,
from which respiration is not subtracted. In the budget analysis, net biome production (NBP), which
accounts for respiration and disturbance, should be the key flux of vegetation response. However,
these experiments are not CO2 emission driven, but rather CO2 concentration driven, and the results of
the carbon budget of vegetation do not change the atmospheric CO2 concentration. Thus, GPP, which
is equivalent to photosynthesis, can represent vegetation growth better than NBP. We also used LAI as
the representative of carbon storage because LAI can be compared to satellite estimates.

The vegetation response in the historical run, RCP 8.5, and combined experiments in sensitivity
experiments can be simplified by the linear models as follows:

ΔGPP = a ΔCO2 + b ΔClim + f ΔClim f eedback, (1)

where ΔCO2, ΔClim, and ΔClim f eedback represent change in CO2 concentration, change in one of the
limiting climate factors but only caused by the radiative effect of the change in CO2 concentration, and
feedback of climate by changing GPP through the fertilization effect, respectively. The coefficients a, b,
and f assume a simple linear system. The term ΔClim f eedback represents the feedback of GPP through
effects on climate, such as the effect of a change in cloud cover due to increasing evapotranspiration.

The fertilization experiment examines how higher CO2 affects climate and vegetation via increases
in leaves’ internal CO2 concentration, which should in turn reduce stomatal conductance transpiration.
As a result, climate feedback occurs as decreasing cloud cover whilst increasing soil moisture, runoff,
and solar radiation [11,22,23]. So, the fertilization experiment can be expressed as:

ΔGPP = a ΔCO2 + f ΔClim f eedback, (2)

It is noteworthy that ΔCO2 includes the effect of changing water use efficiency because it is
directly affected by increasing CO2 concentrations, not through changing climate.

The climate experiment shows how higher CO2 affects vegetation via the traditional greenhouse
effect on climate. The fertilization effect of increasing CO2 on vegetation was suppressed. The climate
experiment can be expressed as:

ΔGPP = b ΔClim, (3)
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For mapping purposes, the outputs were firstly re-gridded to 0.5 × 0.5 degree resolution, using
the bilinear interpolation method, to be consistent with the limiting factor data [9].

2.2. GIMMS-LAI3G

The GIMMS-LAI3G data were derived from the Global Inventory Modeling and Mapping Studies
(GIMMS) Normalized Differential Vegetation Index (NDVI) using the neural network algorithm [24].
We aggregated the 1/12 degree spatial resolution LAI data into the half degree data prior to monthly
and annual analysis. To be consistent with historical CMIP5 runs that end in 2005, we used
GIMMS-LAI3g data from overlapping the period 1982–2005.

2.3. CRU/CRUNCEP

We used 0.5 × 0.5 degree monthly temperature and precipitation from Climate Research Unit
(CRU-TS3.23) and solar radiation data from CRU National Centers for Environmental Prediction
version 4 (CRUNCEP-V4, a blend of CRU data and NCEP- National Center for Atmospheric Research
(NCAR) reanalysis data) [25]. CRU data are interpolated gridded datasets from monthly observations.
To be consistent with historical CMIP5 runs, we used CRU/CRUNCEP data from overlapping the
period with Global Inventory Modeling and Mapping Studies (GIMMS)-LAI data during 1982–2005.

2.4. NDP026

We reanalyzed the ground-based total cloud cover observations in Numeric Data Package
NDP06 [26], following methodology outlined in Warren et al. [27]. Briefly, the methodology consists of
estimating seasonal trends at each of the stations, then averaging these trends over a 10 × 10 degree
grid. We compared these estimated trends with those predicted by CMIP5 models for the period of
1971–2005 using a chi-squared test for independence. Several modeling studies showed the connection
between low clouds over land and increased levels of CO2 in the atmosphere [28,29]. As such, it would
have been more appropriate to use changes in low cloud cover in our analysis. However, CMIP5 did
not mandate modeling teams to submit low, medium, and high cloud simulations separately. Only
total cloud cover was required from the modeling teams, hence we used total cloud cover data in
our analysis.

2.5. Limiting Factor Analysis

We analyzed global changes in the three regions defined by the climate factor—temperature,
precipitation, or radiation—that is most limiting to GPP. Following Nemani et al. [9], we calculated the
strength of the limiting factor based on monthly climate data of minimum temperature, precipitation,
and cloudy day. Then, we defined the three regions using the highest value among the three data
(Figure 1a).

2.6. Estimation of Precipitation Equivalent Water

Increases in atmospheric CO2 are known to increase the water use efficiency (WUE) of vegetation,
estimated as amount of carbon gained per unit amount of water used [11,22,30]. While WUE increases
globally with CO2, its changes over precipitation-limited regions are of particular significance for
plant growth. To assess the contribution of improved WUE in precipitation-limited regions, we used
a slightly different metric called precipitation use efficiency (PUE). PUE is estimated as GPP per unit
amount of precipitation. The changes in PUE between the first (2006–2015) and last decades (2090–2099)
are then translated to changes in precipitation equivalent, PEq (mm), as follows:

PEq =
(

GPPlast − GPPf irst

)
× Pf irst

GPPf irst
−
(

Plast − Pf irst

)
, (4)
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where GPPf irst and GPPlast are GPP (kgC/m2) for the first and last decades of the 21st century, and
Pf irst and Plast are precipitation received at each of the grid cells during the first and last decades.

Figure 1. Earth system models project easing of temperature, precipitation, and radiation constraints
to growth. A map of potential climate limiting factors to plant growth ((a) air temperature in blue,
precipitation in red, solar radiation in green) was used to guide the spatial analysis of simulated
changes in climate and how such changes could impact plant growth around the world. Using outputs
from Earth system models of CMIP5 we estimated ensemble mean differences in 2090–2099 minus
2006–2015 monthly air temperature (b), solar radiation (c), precipitation (d), and precipitation use
efficiency (expressed as precipitation equivalent; see Methods) (e). Changes in constraints by regional
mean: temperature-limited, easing 94%, and no significant change 6%; precipitation-limited, easing
23%, tightening 16%, and no significant change 61%; radiation-limited, easing 45%, tightening 19%,
and no significant change 36%.

2.7. Mann–Kendall Test

The Mann–Kendall test detects the presence of a monotonic trend in time-series data [31]. The test
is broadly used because it does not require the assumption of normal distribution of the time-series
data. We use the Mann–Kendall test as the significance test for the annual or seasonal data.
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3. Results

3.1. Annual Mean Trend and Climate Feedback to Vegetation

The multi-model ensemble mean shows pervasive future changes in vegetation structure and
function by the end of this century under the high-emission RCP 8.5 scenario: LAI increases by up
to 60% and GPP increases by up to 100% (Figure 2). LAI significantly increases globally except for
Amazon, Mexico, and Southern Africa (Figure 2a). GPP also significantly increases for nearly the entire
vegetated planet (Figure 2b), though the magnitudes may be uncertain [32]. The percentage changes
are higher in the high latitude regions for LAI, while changes in magnitude of LAI and GPP are higher
in both the high latitude and tropical regions. A few tropical and semi-arid areas show decreases in
LAI, but none of the changes are statistically significant. The results of increasing LAI are consistent
with Mahowald et al. [33].

Figure 2. Greening of the Earth. Simulated changes in leaf area index (LAI) and gross primary
production (GPP) from the Earth system models of CMIP5. Shown are differences in annual average
mean LAI (a) and annual total GPP (b) at each grid cell for 2090–2099 minus 2006–2015. Stippling
shows statistically significant differences among models from a Wilcoxon signed rank test at the 95%
level. Right subplots are latitude average of LAI and GPP for 2006–2015 (blue) and 2090–2099 (green).

We divided the climate (Figure 3) and the vegetation (Figure 4) response in the RCP 8.5 scenario
into the temperature-limited, precipitation-limited, and radiation-limited regions. Temperature and
precipitation increase for all the three regions, while radiation increases only in the radiation-limited
area (Figure 3). Thus, all the climate factors contribute to vegetation growth in addition to the CO2

fertilization effect. As a result, all the three different climate-limited regions experience increases in
ensemble GPP and LAI throughout the 21st century (Figure 4). LAI in the temperature-limited region
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shows large variability among the models compared to GPP, which implies the difficulty in modeling
respiration and allocation ratios. LAI in the radiation-limited region shows a significant increase, but
the magnitude of increase is small due to the saturation of the leaf increase.

By the last decade of the 21st century, the summary of the projections shows that annual climate
constraints will ease for 51% of the Earth’s vegetated land area (i.e., warmer in the temperature-limited
region), tighten in 11% of the land area, with the remainder experiencing no change. The degree of
easing varies, from 94% in the temperature-limited region and 23% in the precipitation-limited region,
to 45% in the radiation-limited region (Figure 1b–d).

 
Figure 3. Climate responses from the Earth system models of CMIP5, summarized over the three
climate-limiting regions. The simulations represent RCP 8.5, a pathway with the highest greenhouse
gas emissions. Ensemble means and the percentiles show progressive relief of the main limiting
factor for each region. Models diverge substantially towards the end of the simulation period, but
almost all trends are statistically significant (see p-values in each panel). Changes in temperature
(a–c), precipitation (d–f), and radiation (g–i) are expressed as percent of initial values in 2006. Outputs
of Community Earth System Model, version 1–Biogeochemistry (CESM1-BGC), red line, are shown
as examples of results from Earth system models incorporating nitrogen cycling. The p-value was
calculated from Mann–Kendall trend test.
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Figure 4. Vegetation responses from the Earth system models of CMIP5, summarized over the three
climate-limiting regions. Same as Figure 3, except for changes in transpiration (a–c), GPP (d–f), and
LAI (g–i).

3.2. Seasonal Trend in Climate and Vegetation

The changes in LAI and GPP are underlain not only by changes in annual climate but also by
seasonal climate changes. Seasonal changes in climate (Figure 5) are associated with increased LAI and
GPP (Figure 6), particularly for the temperature-limited region (note that we present seasonal analyses
for the Northern Hemisphere only, to avoid contrasting seasonal patterns in the Southern Hemisphere
and because the Northern Hemisphere accounts for 68% of total land area).

Boreal summers (June, July, and August: JJA) in temperature-limited regions become warmer,
wetter, and brighter (Figure 5a,d,g); conditions that, at least in current Earth system models, lead to a
summertime spike in LAI and GPP increases (Figure 6m,p). The precipitation increase is largest in
the boreal fall (September, October, and November: SON); warming is at least 4 ◦C in all months, and
increases to nearly 10 ◦C in winter. The JJA increase in solar radiation approaches 10 W/m2, but is
offset by winter decreases (Figure 5g), leading to no net change in the annual mean (Figure 3g).
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Figure 5. Easing of seasonal constraints to vegetation growth. Simulated changes in monthly climate
and vegetation in the three climate-limiting regions: temperature, (a–c); precipitation, (d–f); and
radiation, (g–i). Bars show climatological values (2006–2015), lines show ensemble mean monthly
changes from Earth system models of CMIP5. Circles indicate that the trend in the 2006–2099 ensemble
mean is significant at the 95% level from a Mann–Kendall trend test, while plus signs show that
the Wilcoxon signed rank test is significant at the 95%. Shading is used to highlight changes in the
limiting factor for each of the three regions (e.g., blue shading highlights temperature changes in the
temperature-limited region).

104



Climate 2019, 7, 27

Figure 6. Easing of seasonal constraints to vegetation growth. Same was Figure 5, except for
transpiration, a–c; GPP, d–f; and LAI, g–i.

3.3. Sensitivity Experiments for Climate and Vegetation

Increased CO2 affects LAI and GPP through climate change, through both the greenhouse effect
and CO2 fertilization effect, but the CMIP5 ensemble for the RCP 8.5 scenario cannot separate the
importance of the two processes [19]. To isolate their varying importance, we generate an eight-model
ensemble (highlighted in Table 1), comparing results from the sensitivity experiments.

At first, we summarized the climate responses to increasing CO2 concentration in these sensitivity
experiments. The esmFdbk1 experiment shows that radiative effects clearly dominate projected
warming, the signature feature of climate change (compare black and red lines in Figures 7a–c
and 8a,d,g). Radiative effects also drive other key aspects of climate change, such as Arctic amplification
and land–sea warming contrast (Figure 8a), equatorial and high-latitude increases in precipitation
(Figure 8b), and high-latitude dimming from increases in fall/winter cloud cover (Figure 8c) [34].
Meanwhile, the esmFixClim experiment revealed that, except for increases in radiation for the
temperature-limited region in JJA (Figure 7g), the vegetation physiological effect has little effect
on region-averaged climate (e.g., near-zero changes in Figure 7a–f). Spatially, the physiological effects
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on climate are more consistent than the radiative effects, and include a slight drying (Figure 8e) and
brightening because of reduced cloud cover (Figure 8f) over most land surfaces.

Figure 7. Additive and counteracting impacts of CO2 on climate. Simulated changes in climate
and vegetation from the CMIP5 eight-model ensemble in response to increasing CO2 from 280 ppm
by 1%/year for 140 years: temperature, a–c; precipitation, d–f; and radiation, g–i. The changes
are the mean of the last ten years minus the mean of the first ten years (see Figures 8 and 10 for
a spatial representation of the changes). In order to assess the contribution of radiative and vegetation
physiological effects on climate and vegetation, three experiments were carried out: (1) CO2 has
a radiative forcing on climate but no direct effect on vegetation; (2) CO2 has a vegetation physiological
impact, primarily on internal CO2 concentration and stomatal conductance, but does not directly
alter radiative forcing; and (3) CO2 has a combined effect on both radiative forcing and physiological
impacts. Shading is used to highlight changes in the limiting factor for each of the three regions (e.g.,
blue shading highlights temperature changes in the temperature-limited region). Circles indicate that
the trend in the 140-year ensemble mean is significant at the 95% level from a Mann–Kendall trend test.
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Figure 8. Spatial distribution of the additive and counteracting impacts of CO2 on climate limiting
factors. Temperature, (a,d,g); precipitation, b,e,h; and solar radiation, (c,f,i). In order to assess the
contribution of radiative and vegetation physiological effects on climate and vegetation, we used an
eight-model [highlighted in Table 1] ensemble to compare three CMIP5 experiments, each of which
was run for 140 years and experiences a constant CO2 at pre-industrial levels and/or CO2 increasing
by 1%/year to 4xCO2: (1) In the radiative experiment (a–c), CO2 increases for the atmosphere but stays
constant for vegetation and the carbon cycle and hence the direct effects of CO2 on plants are suppressed;
(2) in the vegetation physiology experiment (d–f), CO2 increases by 1%/year to 4xCO2 for vegetation
and the carbon cycle—thereby reducing stomatal conductance and providing CO2 fertilization—but
stays constant at 280 ppm for the atmosphere and thus the radiative effect is suppressed; (3) in the
combined experiment (g–i), CO2 concentration increases for the full Earth system. The changes are the
mean of the last ten years minus the mean of the first ten years. Stippling indicates that the trend in the
140-year ensemble mean is significant at the 95% level from a Mann–Kendall trend test.

On the other hand, the summary of the vegetation response to increasing CO2 concentration shows
the opposite of the climate response in the sensitivity experiment. In spite of inducing climate changes
to temperature and precipitation, the CO2 fertilization effect alone can account for much, and in some
cases, almost all, of the simulated changes in GPP and LAI in the combined experiment (compare blue
and red lines in Figure 9d–i). Increases in LAI and GPP in the FixClim1 experiment appear to be driven
by more radiation (because of reduced cloud cover) and reduced transpiration (therefore increased
soil water), both of which are consistent with stomatal down-regulation following CO2 increases [35].
As shown in the esmFdbk1 experiment, in contrast, the climate change induced by radiative forcing
has near-zero effects on simulated GPP for all three regions (black line in Figure 9d–f), except for
a small positive effect on GPP in the boreal spring of the temperature-limited region. Spatially, the
ordinal impact on GPP and LAI often reverses between the esmFdbk1 and esmFixClim1 experiments,
with much of the Southern Hemisphere switching from a reduction (Figure 10b,c) to an enhancement
(Figure 10e,f).

107



Climate 2019, 7, 27

Figure 9. Additive and counteracting impacts of CO2 on vegetation. Same as Figure 7 except for
transpiration, a–c; GPP, d–f; and LAI, g–i.

For seven out of nine comparisons, the esmFdbk1 and esmFixClim1 experiments produce
offsetting impacts on LAI and GPP (Figure 9). The largest differences are in the radiation-limited region,
where the esmFdbk1 experiment slightly reduces GPP and the esmFixClim1 experiment increases GPP
by as much as 0.15 kg C/m2/month in JJA (compare blue and red lines in Figure 9f); LAI changes
switch from about −0.5 to 1.0 (compare blue and red lines in Figure 9i). The temperature-limited
region is an exception, where, for both LAI and GPP, the esmFdbk1 and esmFixClim1 experiments
are additive (Figure 9m,p). In particular, high northern latitudes are the one clear location where
both the esmFdbk1 and esmFixClim1 experiments increase LAI (Figure 10c,f) and GPP (Figure 10b,e),
supporting recent conclusions of a strong climate imprint on the broad region of high-latitude during
the observational era [36].

The critical role of vegetation physiology is clear in the precipitation-limited region, which
experiences the least easing and an almost equal area with precipitation reductions (Figure 1d). But
the region also sees a statistically significant increase in simulated equivalent precipitation water in
64% of its area (equivalent to up to 50 mm/month of water in some areas, Figure 1e) and increases in
LAI and GPP (Figure 9e,h), in spite of near-zero changes in simulated annual (Figure 4b) and seasonal
(Figure 6b) transpiration. While these patterns depict a more efficient use of available water resources
and a progressive greening, the physiological response of plants to higher CO2 in semi-arid regions
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appears to depend on local variations in simulated precipitation, which remain highly uncertain in
CMIP5 simulations [37].

Figure 10. Spatial distribution of the additive and counteracting impacts of CO2 on vegetation. Same
as Figure 8 except for transpiration, a, d, g; GPP, b, e, h; and LAI, c, f, i.

3.4. Decomposing Vegetation Growth Into Three Factors

The results indicate that the climate feedback substantially contributed to the growth of vegetation
by relaxing climate constraints. Although it is well known that the climate feedback can positively or
negatively influence the growth of vegetation, it has not been quantitatively assessed at the global scale.
The sensitivity experiments allow us to quantitatively evaluate the climate feedback to vegetation
( f ΔClim f eedback in Equation (1)). We assumed that the ratio of GPP change to change in climate
variables is constant (i.e., b = f = const.). At first, we calculated ΔGPP / ΔClim (i.e., b) in the climate
experiment using the linear regression of annual GPP on annual mean climate variables. Then,
we calculated a ΔCO2 by subtracting f ΔClim f eedback from GPP increase in Equation (2). Finally,
b ΔClim was derived from Equation (3) by subtracting a ΔCO2 and f ΔClim f eedback by assuming the
additive relationship of the fertilization effect and the climate change effect.

The percentage ratios of the contribution of each term (i.e., a ΔCO2, bΔClim, and f ΔClim f eedback)
were shown for each limited region in Figure 11. In the temperature-limited region, all the three terms
substantially contributed to the increase in GPP, and the annual average of the climate feedback
contribution was 17%. The snow-albedo feedback can account for the climate feedback [38,39].
The climate feedback added 37% more increase in GPP than the radiative warming effect alone.
The total contribution of climate feedback and climate is 63%, which is the highest contribution among
the three climate-limited regions. The contribution is much higher in winter than summer because the
temperature did not limit GPP in the summer.

In the precipitation limited area, there was almost no contribution of the climate feedback effect.
This result can be explained by the relatively low water-recycling ratio compared to the humid area [40].
The moisture from the other regions controls the precipitation trend in the water-limited region, so that
the influence of changing water use efficiency on the region is negligible.

In the radiation-limited area, the contribution of the climate feedback is 7%, while the radiative
climate change negatively affects 24% of the increase in GPP. The feedback was caused by the decreasing
trend in cloud cover through change in water use efficiency [35]. The magnitude of the contribution of
the climate feedback changes with model selection due to the difficulty in modeling clouds in GCMs.
Thus, the feedback contribution can be underestimated, especially when a low resolution GCM cannot
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represent well the increase in regional convective clouds caused by the enhanced water cycle that
results from added vegetation growth.

Figure 11. Monthly contribution of climate feedback and radiative climate change to vegetation
growth in increases in CO2 by 1%/year to 4xCO2 experiment (1pctCO2) for each climate-limited area.
The monthly contribution was calculated for each climate-limited region. The green and purple bars
show the contribution of climate feedback and radiative climate change, respectively. In each region,
the total of the contribution (CO2 fertilization, climate feedback, and radiative climate change) was
summed up to 100%.

4. Discussion

Our analysis suggests fundamental future increases in the amount of vegetation and
photosynthesis (LAI and GPP in Figure 1), mainly arising from relaxing climate constraints on
vegetation growth. This feedback effect can explain the discrepancy between the models and the
observation in the β factor [14]. We argue that the results are consistent with three lines of observational
evidence and a considerable body of paleoclimatic evidence of dramatically different vegetation
composition during past high-CO2 periods [41,42].
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First, if our central claim that vegetation physiological process reduces transpiration, reduces
cloud cover, and increases radiation is correct, then cloud cover, particularly low-level clouds, which
strongly influence the planetary shortwave radiation budget, should decrease. Recent climate modeling
studies indeed simulate a decrease in low-level cloudiness due to the vegetation physiological
effect [23,29,35]. Further, several modeling studies indicate that the rapid adjustments of the
troposphere for the combined radiative and physiological effects of increased CO2 are associated
with a decrease in low-level cloud cover over land, but increased boundary layer cloud cover over
oceans [29,43,44]. We re-analyzed the NDP026 ground observation of cloud cover [26] and show that
the modeled processes have indeed occurred over the period 1971 to 2005 using the Mann–Kendall
trend test,. During this period, cloud cover significantly decreased by a few percent points per decade
over much of the land surface, and increased over the ocean (Figure 12).

Figure 12. Changes in observed (NDP026) and CMIP5-simulated cloud cover are consistent with
a CO2-induced down-regulation of stomatal conductance, resulting in reduced transpiration. Trends
from observations are shown as decreasing (red) or increasing (blue) annual average cloud cover
for 1971–2005: Red would tend to support our hypothesis of reduced transpiration and cloud cover
as a result of stomatal down-regulation. If the CMIP5 trend and the observed trend have the same
sign, the corresponding box is hatched. Location and shape of boxes corresponds to the coverage
in the observational dataset, the 1971–2005 comparison period represent the overlap between the
observational dataset and the historical CMIP5 runs. A change during the mid-1990s in cloud cover
observation methodology in the US precluded their use in trend evaluation in NDP026. A chi-squared
test between the two data sets rejected the null-hypothesis that they are independent (p = 0.05).
Chi-squared tests performed on the two data sets at seasonal scales yielded the following p-values:
December January February (0.22), March April May (0.05), June July August (0.26), and September
October November (0.01).

Second, the same models we used for future projections under RCP 8.5 produce simulations
of the historical climate and vegetation that are broadly consistent with independent observations
(Figure 13). Although historical skill does not guarantee future performance, region-level simulations
of climatological temperature, and precipitation are statistically indistinguishable from the Climate
Research Unit (CRU) product [25] in all months (Figure 13a,b). Simulated radiation, assessed for the
radiation-limited regions of the Northern hemisphere against the CRUNCEP radiation dataset, has
climatological differences of up to 15 W/m2, but a similar seasonal cycle (Figure 13e). The Earth system
models also capture seasonal satellite-observed variations in LAI in all three regions (Figure 13b,d,f).
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Figure 13. Performance of Earth system models used in CMIP5 against observations (1982–2005) in
each of the climate-limiting regions. CMIP5 seasonality for climate and vegetation are ensemble means
of each of the parameters. Shading represents standard deviation around the ensemble mean from the
CMIP5 models. Observed seasonality in climate and vegetation over the same period is calculated from
Climate Research Unit (CRU) (temperature, precipitation), CRU National Centers for Environmental
Prediction version (CRUNCEP) (radiation), and Global Inventory Modeling and Mapping Studies Leaf
Area Index (GIMMS) LAI.

Third, the projected changes in LAI and climate are already apparent in the observational era.
Satellite data show that LAI has increased from 1982 to 2005 for all three regions (Figure 14b,d,f); the
CRU product shows warming in the temperature-limited region (Figure 14a), increased precipitation in
the precipitation-limited region (Figure 14c), and reduced cloud cover in the radiation-limited region
(Figure 14e). Consistent with these changes in climate and the biosphere, terrestrial ecosystems have
been shown as net sink for carbon in recent decades [45,46]. Thus, the 21st century changes to climate
and greening do not appear anomalous or implausible, when viewed in the context of recent history.

Numerous processes, including extreme climatic events [47], could reduce the projected changes
in LAI and GPP. But the paleoclimate record also shows that profound changes in vegetation have
occurred in the past, particularly in high latitudes, where the temperature-limited region appears
to benefit the most from physical climate changes, mediated through vegetation physiological
mechanisms. The early Eocene greenhouse climate, for example, supported redwoods at 78◦ N
paleo-latitude under CO2 levels that are similar to the modern levels [42]. The deep-time perspective,
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albeit associated with different time scales and continental configurations, therefore, does not appear
to rule out the sort of major changes to vegetation seen in the 21st century projections [48].

Figure 14. Performance of Earth system models in capturing the observed trends in climate and
vegetation. Observed trends in annual mean climate and satellite-derived LAI from 1982 to 2005 are
shown as average responses over the three climate-limiting regions. Ensemble mean of CMIP5 models
over the same period do not capture the inter-annual variability, but appear to capture the overall
trends in climate and vegetation. The first year of each series is set to zero to emphasize the magnitude
of the trend and deviation between the trend lines. The p-values indicate the level of significance for the
trends in observations only (CRU, CRUNCEP, GIMMS, and cloud cover data from NDP026). Shading
around the CMIP5 ensemble mean indicates 25–75 percentile.

We focused on two elemental components of terrestrial ecosystems—the amount of leafy material
and gross carbon fixation—but do not provide insights into respiratory and net carbon fluxes, carbon
stocks, such as biomass and soil carbon, and vegetation dynamics. The CMIP5 models, especially
low-resolution models, cannot count the extreme events, such as forest fires or hurricanes. The FACE
experiments also suggest that non-climate limiting factors, such as nitrogen and phosphorous [49],
might supersede climate limitations in the future (although the inclusion of a nitrogen cycle produces
results that are within the uncertainties of the full ensemble; see red lines in Figures 3 and 4).
The available state-of-the-art Earth system models; however, depict a late 21st century world in
which vegetation physiology interacts with pervasive changes to annual and seasonal climate to create
a greener land surface.
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5. Conclusions

We analyzed the climate feedback on vegetation using CMIP5 model experiments for each
climate-limited region. In contrast to the climate trend induced by the radiative effect, the positive
trend in GPP and LAI can be attributed mainly to the CO2 fertilization effect. While CO2 fertilization
was the main driver of the increasing trend in vegetation, the climate feedback on vegetation also
contributed to 17% and 7% of vegetation growth in temperature-limited and radiation-limited regions,
respectively. These feedbacks provide additional sensitivity to the CO2 fertilization, and can explain
the discrepancy of the β factor between models and observation. The observed trend corroborates the
importance of the climate feedback in explaining the greening earth.
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Abstract: Our goal was to investigate the influence of bias correction methods on climate simulations
over the European domain. We calculated the Köppen−Geiger climate classification using five
individual regional climate models (RCM) of the ENSEMBLES project in the European domain
during the period 1961−1990. The simulated precipitation and temperature data were corrected
using the European daily high-resolution gridded dataset (E-OBS) observed data by five methods:
(i) the empirical quantile mapping of precipitation and temperature, (ii) the quantile mapping of
precipitation and temperature based on gamma and Generalized Pareto Distribution of precipitation,
(iii) local intensity scaling, (iv) the power transformation of precipitation and (v) the variance scaling
of temperature bias corrections. The individual bias correction methods had a significant effect on
the climate classification, but the degree of this effect varied among the RCMs. Our results on the
performance of bias correction differ from previous results described in the literature where these
corrections were implemented over river catchments. We conclude that the effect of bias correction
may depend on the region of model domain. These results suggest that distribution free bias
correction approaches are the most suitable for large domain sizes such as the pan-European domain.

Keywords: Regional Climate Model; climate classification; bias correction methods;
precipitation; temperature

1. Introduction

Climate classifications are frequently applied tools for evaluating the real climate system. One of
the oldest and still widely accepted systems of climate types was introduced by Wladimir Köppen [1]
and later modified by Geiger [2] and additionally by Trewartha [3–7]. Köppen divided eleven climate
types based on annual and monthly changes in temperature and precipitation. Trewartha modified the
Köppen classification so that the classifications based on the main quality differences and the vegetation
characteristics were better taken into consideration. The so-called Köppen–Geiger (K-G) climate
classification is derived directly from eco-biological vegetation characteristics within the individual
regions of the Earth, which make it suitable for assessing climate change impacts on ecosystems. It is
based on annual and monthly mean values of temperature and precipitation and distinguishes five
main vegetation groups: the equatorial zone (A), the arid zone (B), the warm temperate zone (C), the
snow zone (D) and the polar zone (E). The main groups are further divided into subtypes, reflecting
the annual course of air temperature or precipitation and their monthly values compared to a defined
threshold. For a detailed overview of all K-G classes and their spatial distribution around the world,
we refer to [8]. K-G classification can be applied either to the real observed data of the Earth’s climate
or present or future conditions simulated by climate models [5,7,9,10]. Some studies, e.g., [11,12] have
used the Köppen–Trewartha classification [13] to map the extent of climate change in Europe using
an ensemble mean of regional climate models (RCMs) and simulations, considering the uncertainty

Climate 2019, 7, 18; doi:10.3390/cli7020018 www.mdpi.com/journal/climate117
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related to driving global climate models (GCMs). However, the fact remains that all studies based on
climate models should deal with model errors carefully before drawing conclusions.

According to [14], model errors can be caused by the initial and boundary conditions,
parameterization, physical formulation, internal variability or model shortcomings [15–19]. Model
errors can be divided into two categories: unsystematic errors (random) and systematic errors (bias).
Random errors stem from the internal variability of climate models, which are a dominant source
of uncertainty for shorter (decadal) timescales in model simulations [20]. Bias is defined as any
systematic discrepancy of model simulation and observation. Systematic errors can originate either
from inadequately constrained parameters or from model structures that are unable to describe the
physical process of interest [21]. Model bias is the most prevalent source of uncertainty for longer
(century) timescales [20]. Moreover, bias corrected climate model outputs may lead to a significant
response in some impact models as decision support tools [22–24].

In our previous work [25] we applied the K-G classification as a diagnostic tool of climate change
for six RCM experiments originally produced as a part of the EU FP6 project, ENSEMBLES [26]. Every
experiment represented one specific RCM, driven by one of two GCMs. The simulations followed the
A1B emission scenario of Intergovernmental Panel on Climate Change (IPCC) [27,28], and the results
were evaluated for the near (2021−2050) and far (2071−2100) future periods. The model simulations
were subjected to validation and bias correction using the empirical distribution mapping technique
on E-OBS [29] observed data as a reference. We found that warmer climate type increased in each
RCM for the future but the degree of their extension was different among them. These differences
came from the different GCM applications as the driver, the different physical packages of RCMs and
the different representations of natural variability in individual models.

Owing to the fact that any choice of bias correction method can be an additional source of
uncertainty [23], in this study, we aim to quantify the impacts of different bias correction techniques on
the simulated distribution of K-G zones over Europe. The influence of different bias correction methods
has been studied over small geographical domains, usually select river basins in Scandinavia [30],
North America [31], or North-estern China [32]. In these studies, the performance of bias correction
methods was investigated by statistical indices. References [31] and [30] suggested distribution-based
methods, while [32] found that the quantile mapping and power transformation of precipitation
methods performed equally best in terms of the frequency-based indices, while the local intensity
scaling (LOCI) method performed the best in terms of the time-series-based indices. We intend to test
the performance of bias correction over a large pan-European domain, as the bias varies in regions of
the domain. Moreover, we study the bias correction performance by implementing Köppen–Geiger
climate classification.

Our two major research questions are as follows:
Which bias correction methods of precipitation and temperature are able to reproduce climate

classification based on the observed parameters in the 1961–1990 time period?
Which bias correction methods of precipitation and temperature are the most reliable for climate

prediction over the whole pan-European domain?
This paper is organized as follows: In Section 2, a short description of the K-G classification,

selected models and applied bias corrections are presented. In Section 3, the resulting climate
classification with respect to the individual bias correction method is presented. Section 4 contains a
discussion of our findings and Section 5 offers the conclusions we draw.

2. Materials and Methods

2.1. K-G Classification

Köppen and Geiger classified climate based on annual and monthly mean values of temperature
and precipitation. Table 1 contains the methodology to calculate K-G climate zones in Europe based
on [8].
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Table 1. Key to calculate K-G zones in Europe and their third index. Pann is the accumulated annual
precipitation. Pmin is the precipitation of the driest month. Psmin, Psmax, Pwmin and Pwmax are
defined as the lowest and highest monthly precipitation values for the summer and winter half-years.
Pth is the dryness threshold. Tann is the annual mean temperature, and the monthly mean temperatures
of the warmest and coldest months are marked by Tmax and Tmin, respectively. The precipitation and
temperature are given in mm and ◦C, respectively.

Type Description Criterion

B Arid climates Pann< 10 Pth

BS Steppe climates Pann> 5 Pth

BW Desert climates Pann ≤ 5 Pth

C Warm temperate climates −3 ◦C < Tmin< + 18 ◦C

Cs Warm temperate climates with dry summers Psmin< Pwmin, Pwmax> 3 Psmin and Psmin< 40
mm

Cw Warm temperate climates with dry winters Pwmin< Psmin and Psmax> 10 Pwmin

Cf Warm temperate climates, fully humid neither Cs nor Cw

D Snow climates Tmin ≤ −3 ◦C

Ds Snow climates with dry summers Psmin< Pwmin, Pwmax> 3 Psmin and Psmin< 40
mm

Dw Snow climates with dry winters Pwmin< Psmin and Psmax> 10 Pwmin

Df Snow climates, fully humid neither Ds nor Dw

E Polar climates Tmax< + 10 ◦C

ET Tundra climates 0 ◦C ≤ Tmax< + 10 ◦C

EF Frost climates Tmax< 0 ◦C

third index for C and D climate zones

Type Description Criterion

a Hot summers Tmean> 22◦C

b Warm summers not (a) and at least 4 Tmon ≥ +10 ◦C

c Cool summers and cold winters not (b) and Tmin> −38◦C

d Extremely continental like (c) and Tmin ≤ −38◦C

third index for B climate zone

Type Description Criterion

h Hot steppe/desert Tann ≥ +18 ◦C

k Cold steppe/desert Tann< +18 ◦C

The dryness threshold is calculated by

Pth =

⎧⎪⎨
⎪⎩

2{Tann} i f at least 2
3 o f the annual precipitation occurs ∈ winter

2{Tann}+ 28 i f at least 2
3 o f the annual precipitation occurs ∈ summer

2{Tann}+ 14 otherwise
.
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2.2. Datasets and Bias Corrections

For the analysis of bias correction influence on K-G zone distribution in Europe, we used
simulations of five regional climate models from the ENSEMBLES project, as summarized in Table 2.
The large scale forcing for two RCMs was taken from driving ARPÉGE GCM, and three of them were
driven by ECHAM5-r3 GCM. The E-OBS version 10 gridded dataset of daily station observations with
a spatial resolution of 0.25º in longitude and latitude was used as a reference dataset for validation
and bias correction in the period from 1961 to 1990. Before the direct comparison of models and
observations, the RCMs were interpolated from their native grids to the E-OBS 0.25 º regular grid by
the nearest neighbour remapping method.

Table 2. The institute, global climate models (GCMs), regional climate models (RCMs) and resolution
of chosen models from the ENSEMBLES EU project.

INSTITUTE/
REFERENCE

GCM RCM RESOLUTION

1
Centre National de Researches
Météorologiques (CNRM)/
[33]

ARPÈGE ALADIN 25 km

2 Danish Meteorological Institute (DMI)/
[34] ARPÈGE HIRHAM 25 km

3

Koninklijk Nederlands Meteorologisch
Instituut
(KNMI)/
[35]

ECHAM5-r3 RACMO2 25 km

4
Swedish Meteorological and Hydrological
Institute (SMHI)/
[36]

ECHAM5-r3 RCA 25 km

5
International Centre for Theoretical Physics
(ICTP)/
[37]

ECHAM5-r3 RegCM 25 km

The simulated climate zones were analysed in the Alps (AL), the British Isles (BI), Eastern
Europe (EA), France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME) and
Scandinavian (SC) regions (Figure 1) specified in the framework of the PRUDENCE project [38].
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Figure 1. Subdomains based on the Prudence project: the Alps (AL), the British Isles (BI), Eastern
Europe (EA), France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME) and
Scandinavia (SC).

Figure 2 demonstrates the simulated K-G zones without bias correction. Large differences can be
seen between the simulated zones and between the simulated and observed zones. The distribution of
K-G zones varied from the K-G zones based on the observed parameters in the case of ARPÈGE driven
RCMs. HIRHAM RCM produced dryer climate zones in each region owing to the underestimated
precipitation. It produced Csa and Csb zones instead of Cfb in France, Mid-Europe, Eastern Europe
and in the Mediterranean and Dsb instead of Dfb in the Alps. Furthermore, the extension of BSk
was extremely large in the Iberian Peninsula and in Eastern Europe. Both HIRHAM and ALADIN
overestimated the Tundra climate (ET) zone in Scandinavia. In ALADIN simulation the Cfb zone was
overestimated in the Iberian Peninsula and in the Italian Peninsula, while it was underestimated in
Eastern Europe, in the Mediterranean and on the Western coast of France. The ECHAM5-r3 forced
RCMs produced better K-G simulations but the RegCM simulated a wetter climate in the Iberian
Peninsula and the Mediterranean, whilst RACMO2 and RCA produced drier climate zones in the
Mediterranean and Eastern Europe. Each of them overestimated the ET zone in the Alps.
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Figure 2. Simulated K-G climate classification according to E-OBS (A) and in ALADIN (B), HIRHAM
(C), RegCM (D), RAMCMO2 (E) and RCA (F) without bias correction.

We applied the following bias correction methods: i) the empirical quantile mapping (eQM) of
precipitation and temperature [15], ii) quantile mapping of precipitation and temperature based
on a gamma + Generalized Pareto Distribution (gpQM) [39], iii) the power transformation of
precipitation [40,41] the variance scaling of temperature [23], and iv) the local intensity scaling
(LOCI) [42].

The daily mean precipitation and temperature values were used for the bias corrections.

2.2.1. Empirical Quantile Mapping

Empirical quantile mapping correction was used for correcting the nonparametric empirical
cumulative distribution function in simulated daily data. This method calibrates the simulated
Cumulative Distribution Function (CDF) by adding both the mean delta change and the individual
delta changes in the corresponding quantiles to the observed quantiles. The implemented eQM
obtained the correction function for 99 percentiles of observed and simulated distribution and linearly
interpolated between two percentiles [15]. Outside the range of percentiles, e.g., for the 99th percentile,
a constant correction was applied. In the case of precipitation, a 1 mm threshold value was considered
so that the precipitation was redefined to zero if the value was less than 1 mm. We applied this bias
correction with a 90-day moving window.

2.2.2. Quantile Mapping Based on Gamma + Generalized Pareto Distribution

Quantile mapping based on gamma + generalized Pareto distribution is a quantile mapping
method similar to eQM but assumes that the observed and simulated precipitation density distribution
are correctly approximated by gamma, and the temperature density distribution is correctly
approximated by Gaussian distribution. Therefore, it uses theoretical distribution in the quantile
mapping instead of empirical distribution. Due to the fact that gamma distribution is a light-tailed
distribution, it is combined with a general Pareto distribution [39]. The observed and simulated
quantiles were interpolated by inverse distance weighting. The 1 mm threshold cut off was also
applied to precipitation in this approach. The gpQM bias correction with a 90-day moving window in
the case of precipitation was used. Owing to the fact that the seasonal temperature density distribution
cannot be approximated by Gaussian distribution in some places in Europe [43], the temperature gpQM
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correction produces a large number of infinitive values with a 90-day moving window. Therefore,
gpQM was applied only in the case of precipitation.

2.2.3. Power Transformation of Precipitation

Power transformation of precipitation can be used for adjusting the variance statistics of
precipitation. Simulated monthly precipitation is powered by a “b” value that guarantees the coefficient
of variance (CV) of the simulated daily precipitation matches the CV of the observed daily precipitation.
This power “b” value is estimated on a monthly basis using a 90-day window centred on the interval
with a root-finding algorithm. Thereafter, the powered precipitation series is multiplied by the standard
linear scaling parameter, which was calculated by dividing the monthly mean observed precipitation
by the monthly mean powered simulated precipitation.

2.2.4. Variance Scaling of Temperature

Correspondingly, variance scaling of temperature corrects both the mean and variance values
of temperature. In the first step, the temperature mean was corrected with the difference between
the observed and simulated climatological monthly means. After that, the mean-corrected simulated
temperature was shifted on a monthly basis to the zero mean. Thereafter, the standard deviation of the
shifted temperature was scaled based on the ratio of the climatological monthly standard deviation of
the observed and simulated data. Finally, the standard deviation corrected time series were shifted
back using the corrected mean.

2.2.5. Local Intensity Scaling of Precipitation

The local intensity scaling correction corrects the mean as well as both the wet-day frequencies
and wet-day intensities of precipitation. The frequency of wet-days in the case of observation considers
those days when the precipitation value is higher than the 1 mm threshold.

The model’s wet-day threshold was determined from the daily RCM precipitation series such
that the threshold exceedance matched the wet-day frequency in the observed series. The scaling
factor of this correction was calculated based on the ratio of the climatological monthly mean wet-day
intensities between the observations and the RCMs with the adjusted wet-day thresholds. Subsequently,
the simulated monthly precipitation values were adjusted with the model’s wet-day threshold and
multiplied by the scaling factor. Finally, the daily simulated precipitation was downscaled from the
calibrated monthly scale such that the precipitation values were redefined to zero on those days when
the observed precipitation was less than 1 mm.

The equations of bias correction methods are detailed in [44]. Bias corrections and K-G
classification were implemented in Matlab by the MeteoLab [45] and Weaclim [46] toolboxes. The
figures were created by NCAR Command Language [47].

3. Results

3.1. Empirical Quantile Mapping with a 90-Day Moving Window

The application of eQM bias correction with a 90-day moving window improved the climate
classification. RCMs simulated appropriate climate zones in each region with the exception of
HIRHAM (Figure 3). In the case of HIRHAM RCM, the climate zone simulation was improved
in the Northern regions, e.g, in Scandinavia, the British Isles and Mid-Europe, but it still produced
dryer climate zones in the Iberian Peninsula, the Mediterranean and Eastern Europe. In the other
RCMs, the extension of climate zones differed from the observed ones mainly in the Iberia Peninsula,
in the Alps, in the Mediterranean and in Eastern Europe. The difference in the frequency of the
occurrence of the climate zones was only 1–2% between the RCMs with exception of HIRHAM in each
region. For example, the occurrence of the Cfb zone in the Alps was 53%, 51%, 50% and 50% according
to the ALADIN, RegCM, RACMO2 and RCA simulations, respectively.
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Figure 3. Simulated K-G climate classification according to E-OBS (A) and empirical quantile mapping
(eQM) corrected precipitation and temperature with 90-day moving window in ALADIN (B), HIRHAM
(C), RegCM (D), RAMCMO2 (E) and RCA (F).

The precipitation was mainly underestimated in each season except in the British Isles in winter
(DJF) (Table 3a). The eQM with a 90-day moving window decreased the residual temperature bias in
DJF but increased it in summer (JJA) in ALADIN, HIRHAM and RegCM in some regions (Table 3b).

Table 3. Residual bias of seasonal amount of simulated precipitation (a) and of seasonal mean of
simulated temperature (b) in the case of eQM bias correction in eight different regions: the Alps (AL),
the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the Mediterranean
(MD), Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA The bias values are in % and in ◦C in the
case of precipitation and temperature, respectively.

a) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL −2 −9 2 −23 −4 −6 −5 −6 −5 −7
BI 1 −2 2 −7 1 −3 0 −3 1 −2
EA −8 −11 −4 −17 −7 −6 −8 −3 −9 −3
FR −1 −5 0 −20 −6 0 −6 −5 −7 −4
IP −6 −5 −8 −23 −8 −11 −8 −21 −9 −23

MD −6 −8 0 −34 −4 −9 −4 −9 −5 −14
ME −4 −9 −2 −12 −4 −3 −5 −3 −5 −2
SC −6 −1 −3 −8 −3 −2 −2 −2 −4 1
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Table 3. Cont.

b) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL 0.2 0.1 0.3 −0.4 0.3 0.1 0.1 0.1 −0.1 0.0
BI 0.3 0.0 0.2 −0.3 0.2 0.0 0.1 0.1 0.1 0.1
EA 0.5 −0.2 0.4 −0.8 0.4 0.0 0.2 0.0 0.0 0.0
FR 0.3 0.0 0.2 −0.3 0.2 0.2 0.0 0.3 0.0 0.1
IP 0.1 0.5 −0.1 0.3 0.1 0.6 0.0 0.3 0.0 0.1

MD 0.1 0.6 0.1 −0.3 0.2 0.4 0.0 0.4 −0.1 0.2
ME 0.5 −0.2 0.5 −0.7 0.3 −0.1 0.2 0.0 0.0 0.0
SC 0.1 −0.6 0.3 −0.8 0.2 0.0 0.2 0.0 −0.1 0.0

3.2. Quantile Mapping Based on a Gamma + Generalized Pareto Distribution with a 90-Day Moving Window

Owing to the fact the seasonal temperature probability distribution does not fit a Gaussian
distribution due to non-Gaussian tails occurrence, the gpQM bias correction with a 90-day moving
window was implemented only on the precipitation data. The gpQM with a 90-day moving
window bias-corrected precipitation was combined with eQM with 90-day moving window corrected
temperature values for the calculation of K-G zones. The gpQM correction with a moving window also
improved the climate classification, but it resulted in dryer climate zones in some regions compared to
the eQM correction (Figure 4). The Csb and BSk ratio was larger in the Mediterranean and Eastern
Europe, respectively, according to the gpQM in each RCM. Owing to gpQM method the extension of dry
zones (Csa, Csb, Dsb), the Csb zone was predominant in France, Mid-Europe and the Mediterranean,
and the BSk was overestimated in the Iberian Peninsula and Eastern Europe in HIRHAM model.

Figure 4. Simulated K-G climate classification according to E-OBS (A) and quantile mapping of
precipitation and temperature based on a gamma + Generalized Pareto Distribution (gpQM) correction
of precipitation and eQM correction of temperature with 90-day moving window in ALADIN (B),
HIRHAM (C), RegCM (D), RAMCMO2 (E) and RCA (F).
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The residual precipitation bias was variable. The precipitation was overestimated in some regions,
mainly in DJF. Although eQM correction resulted in better K-G classification, the residual bias of gpQM
correction was smaller in some regions (e.g., in the Mediterranean in the case of RegCM) (Table 4).

Table 4. Residual bias in the seasonal amount of simulated precipitation (a) in the case of gpQM bias
correction in eight different regions: the Alps (AL), the British Isles (BI), Eastern Europe (EA), France
(FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME) and Scandinavia (SC) in
DJF and JJA. The bias values are in %.

ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL 3 −12 0 −57 5 −11 0 −22 3 −10
BI −2 −5 −3 −39 3 −2 3 −4 5 1
EA 3 −20 6 −46 3 −11 −2 −22 −3 −3
FR 5 −11 −6 −57 0 4 −1 −9 1 −3
IP −11 −10 −33 −67 −3 −11 −3 −36 −5 −30

MD −7 −15 −14 −68 0 −15 −4 −49 −3 −25
ME 8 −16 8 −42 5 −4 1 −9 1 4
SC −7 −1 3 −19 −1 1 2 −2 −3 8

3.3. Power Transformation of Precipitation and Variance Scaling of Temperature

The power transformation of precipitation has been implemented in smaller domains in Europe,
such as the basin of the river Meuse [40] and the mesoscale catchments of Sweden [30], where the
precipitation is significant. In our work, the power value of precipitation was calculated with Brent’s
root-finding algorithm [48]. It is possible that the mean value of precipitation is near zero in the dryer
regions. This zero mean value may have caused an invalid value in the coefficient of variation of
precipitation that stopped the root-finding algorithm and produced incorrect K-G zones (this is not
shown). To get around this issue, we applied two conditions before running the root-finding algorithm.
The first condition was to ignore the RCM precipitation values if they were missing values. The second
was to ignore the RCM precipitation values if their mean value was zero, as this causes an invalid
value. Thanks to the above-mentioned conditions, the power transformation of precipitation combined
with the variance scaling of temperature created the correct K-G classification in each RCM. Negligible
differences were seen between the observed and simulated K-G zones (Figure 5). The difference in
the frequency of occurrence of climate zones between observations and simulations was zero in each
region with the exception of ALADIN. ALADIN simulated larger Cfb and smaller Csb extension in the
Iberian Peninsula and in the Mediterranean regions where the difference from the observations was
only 2%. Due to these facts, power transformation of precipitation and variance scaling of temperature
appear to be the most suitable for climate classification in the whole pan-European domain.
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Figure 5. Simulated K-G climate classification according to E-OBS (A) and power transformation of
precipitation and variance scaling of temperature correction in ALADIN (B), HIRHAM (C), RegCM
(D), RAMCMO2 (E) and RCA (F).

The value of residual precipitation bias was similar in each RCM, with the exception of HIRHAM,
where the residual bias values were zero (Table 5.). Furthermore, the bias was almost identical, except
for HIRHAM, which means that power transformation is not dependent on the RCMs. The modelled
temperature was almost commensurate with the observed data when variance scaling correction
was implemented.

Table 5. Residual bias of seasonal amount of simulated precipitation in the case of power transformation
of the precipitation bias correction method in eight different regions: the Alps (AL), the British Isles
(BI), Eastern Europe (EA), France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe
(ME) and Scandinavia (SC) in DJF and JJA. The bias values are in %.

ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL 0 −6 0 0 0 −6 0 −6 −1 −6
BI −8 14 0 0 −8 14 −8 14 −8 14
EA −9 −14 0 0 −9 −14 −9 −14 −9 −14
FR −5 4 0 0 −5 3 −5 3 −5 4
IP −12 8 0 0 −12 7 −12 7 −12 7

MD −10 0 1 0 −10 4 −10 4 −10 4
ME −9 −11 0 0 −9 −10 −9 −10 −9 −10
SC −12 10 0 0 −12 10 −12 10 −12 9

3.4. Local Intensity Scaling of Precipitation and Variance Scaling of Temperature

Due to the fact that local intensity scaling correction can be applied only to precipitation, it was
combined with variance scaling of temperature for the calculation of the K-G classification. Both
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corrections are distribution free and correct the diagnostics, as well as the mean. Owing to these facts,
the difference between the observed and simulated zones was also negligible, only 1−2% (Figure 6).
Apart from that, the RCMs resulted in very similar values.

Figure 6. Simulated K-G climate classification according to E-OBS (A) and local intensity scaling of
precipitation and variance scaling of temperature correction in ALADIN (B), HIRHAM (C), RegCM
(D), RAMCMO2 (E) and RCA (F).

In the case of LOCI correction, the residual seasonal precipitation bias was the smallest compared
to the other precipitation correction methods, except in the case of the HIRHAM RCM compared
to power transformation of the precipitation method (Table 6). This caused a negative bias in both
seasons in each RCM. Although the seasonal residual bias values were smaller than in the case of
power transformation of precipitation, the minimum and maximum monthly precipitation values of
the RCMs were closer to the observed minimum and maximum monthly precipitation values by power
transformation in both seasons (not shown). These values determined the subtypes of the K-G zones.
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Table 6. Residual bias of the seasonal amount of simulated precipitation in the case of local intensity
scaling of the precipitation bias correction method in eight different regions: the Alps (AL), the
British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the Mediterranean (MD),
Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA. The bias values are in %.

ALADIN HIRHAM RegCM RACMO2 RCA

Regio DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL −1 −1 −1 −1 −1 −1 −1 −1 −1 −1
BI −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
EA −6 −1 −6 −2 −6 −1 −6 −1 −6 −2
FR −2 −2 −2 −2 −2 −2 −2 −2 −2 −2
IP −1 −2 −1 −2 −1 −2 −1 −2 −1 −2

MD −2 −1 −2 −1 −2 −1 −2 1 −2 −1
ME −5 −2 −6 −2 −5 −2 −6 −2 −6 −2
SC −5 −2 −5 −2 −5 −2 −5 −2 −5 −2

3.5. Cross-Validation of Bias Corrections

Cross-validation was applied to test bias corrections. Due to the observed annual precipitation
and temperature values being nearly stationary (not shown) in the 1961–2000 period, we applied a
split-sample test (SST) as advocated by [49]. The parameters were split into calibration and test periods.
The bias corrections were calibrated in the first twenty years of 1961–1980, and the corrections were
implemented in the second twenty years of 1981–2000. The corrections were validated by the K-G
zone simulation in the test period, and the results were compared with the K-G zones based on the
observed data in the test period.

3.5.1. Validation of Empirical Quantile Correction

Figure 7 shows the simulated K-G distribution based on the validated eQM values of precipitation
and temperature compared to K-G zones according to observed parameters in the test period.
The ECHAM5-r3 RCMs produced similar results, whilst HIRHAM resulted in a drier climate in
Eastern Europe and in the Mediterranean compared to the ALADIN model where the Csb zone was
predominant. Each RCM significantly underestimated the BSk zone in the Iberian Peninsula compared
to the K-G zones based on observations. In Scandinavia, the ET zone was overestimated with the
exception of the ALADIN model, and the Dsc zone expanded in the RACMO2 and RCA models.
Moreover, the DSb zone occurred in the RegCM model. In the ECHAM5-r3 driven RCMs, the Dfb zone
shifted southwards in Southern Scandinavia. The ratio of the Dfb zone decreased in the Carpathians
in Eastern Europe in each RCM. The Cfa zone diminished in the Eastern region of Eastern Europe in
the HIRHAM, RACMO2 and RCA models. Moreover, the BSk zone occurred in Eastern Europe in
ARPEGE-driven RCMs. The difference between the simulated and observed K-G zones was negligible
in Mid-Europe and in the British Isles. The ECHAM5-r3 RCMs simulated a Csb zone in the Western
region of France.
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Figure 7. Simulated K-G climate classification according to E-OBS (A) and eQM corrected precipitation
and temperature with 90-day moving window in ALADIN (B), HIRHAM (C), RegCM (D), RAMCMO2
(E) and RCA (F) in the test period in 1981−2000.

The residual bias of precipitation varied during the season and the eQM correction strongly
depended on the regions and the RCMs (Table 7a). Larger residual bias was found in France, in the
Iberian Peninsula and in the Mediterranean in each RCM with the exception of ALADIN. The residual
bias of temperature was smaller than 1 ◦C, except in HIRHAM in Scandinavia in the DJF season
(Table 7b).

Table 7. Residual bias of the seasonal amount of simulated precipitation (a) and of the seasonal mean
of the simulated temperature (b) in the case of eQM bias correction in the test period in eight different
regions: the Alps (AL), the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP),
the Mediterranean (MD), Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA. The bias values are
in % and in ◦C for precipitation and temperature, respectively.

a) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL −2 3 7 −26 3 −9 1 −2 3 −5
BI −9 7 −10 0 −12 −7 −15 −9 −15 −11
EA −3 5 2 −6 4 0 0 5 3 3
FR −8 4 −6 −24 −17 −13 −17 −19 −18 −17
IP 9 3 5 −17 13 −1 14 −18 11 −21

MD 0 −5 7 −23 14 0 18 12 12 3
ME −7 10 −5 −4 −7 −2 −14 −2 −8 −1
SC −18 0 −15 −8 −14 −9 −11 −11 −13 −9
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Table 7. Cont.

b) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL 0.3 −0.4 0.3 −0.4 −0.2 −0.4 −0.5 −0.5 −0.6 −0.5
BI 0.5 −0.5 0.3 −0.7 −0.3 −0.3 −0.4 −0.2 −0.5 −0.4
EA 0.1 0.1 0.1 0.0 0.0 −0.5 −0.1 −0.6 −0.2 −0.6
FR 0.2 −0.9 0.2 −0.9 −0.6 −0.4 −0.7 −0.3 −0.9 −0.5
IP −0.3 −0.2 −0.3 −0.4 −0.5 0.1 −0.5 0.1 −0.6 0.1

MD 0.2 0.2 0.2 −0.2 0.1 −0.5 −0.1 −0.7 −0.2 −0.6
ME 0.2 −0.3 0.3 −0.5 −0.2 −0.5 −0.3 −0.6 −0.4 −0.7
SC 0.9 0.4 1.1 −0.1 −0.1 −0.3 0.0 −0.4 −0.1 −0.2

3.5.2. Validation of Quantile Mapping Based on a Gamma + Generalized Pareto Distribution
of Precipitation

Figure 8. demonstrates the simulated K-G zones according to the gpQM of precipitation and eQM
of temperature combination during the test period. The gpQM of precipitation resulted in dryer climate
zones compare to eQM in Mediterranean region, and a BSk zone was produced in the Southeastern
area of Easter-Europe in each RCM except RegCM (Figure 8). The BSK zone dominantly decreased
in the Iberian Peninsula in each RCM except HIRHAM. Moreover, significant extension of Csb was
simulated in the HIRHAM model in France, Mid-Europe, EasternEurope, in the Mediterranean and in
the Southwestern area of the British Isles. In this model, a larger area was covered by the BSk zone
than in the other models in the Iberian Peninsula and in Eastern Europe.

Figure 8. Simulated K-G climate classification according to E-OBS (A) and gpQM corrected
precipitation and eQM corrected temperature with a 90-day moving window in ALADIN (B), HIRHAM
(C), RegCM (D), RAMCMO2 (E) and RCA (F) in the test period in 1981−2000.

131



Climate 2019, 7, 18

Although gpQM correction of precipitation resulted in a larger bias in K-G simulation in several
regions compared to the eQM correction, the remained bias was smaller in France and in Scandinavia
in ECHAM5-r3 forced RCMs (Table 8). Furthermore, gpQM produced a smaller residual bias in the
RegCM model in the British Isles as well.

Table 8. Residual bias of seasonal amount of simulated precipitation in the case of gpQM bias correction
in the test period in eight different regions: the Alps (AL), the British Isles (BI), Eastern Europe (EA),
France (FR), the Iberian Peninsula (IP), the Mediterranean (MD), Mid-Europe (ME) and Scandinavia
(SC) in DJF and JJA. The bias values are in %.

ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL 6 0 6 −59 11 −12 10 −20 12 −8
BI −10 3 −13 −36 −9 −5 −11 −9 −10 −6
EA 12 −7 11 −40 14 −5 7 −15 9 4
FR 0 −7 −10 −62 −10 −10 −11 −23 −10 −17
IP 7 −2 −24 −64 21 0 20 −34 16 −33

MD 1 −14 −8 −62 17 −8 16 −42 15 −16
ME 7 2 3 −38 1 −1 −8 −7 −2 6
SC −19 0 −11 −19 −10 −5 −7 −9 −11 0

3.5.3. Validation of Power Transformation of Precipitation and Variance Scaling of Temperature

The power transformation of precipitation and variance scaling of temperature bias corrections
resulted in similar K-G zone distributions in each RCM (Figure 9). The extension of K-G zones was
different between the RCMs and differed from the observed ones. The ECHAM5-r3 forced RCMs and
HIRHAM simulated larger, while ALADIN resulted in a smaller ET fraction in Scandinavia. Moreover,
ECHAM5-r3 forced RCMs simulated a large Dsc zone fraction in the Scandinavian mountains. The
ratio of the Dfb zone decreased in the Carpathians in Eastern Europe in each RCM. The Cfa zone
expanded in Eastern Europe according to ARPÉGE forced RCMs, whilst it decreased in ECHAM5-r3
driven models. In the Western part of France, the Csb zone was simulated with the exception of the
ALADIN model. In the Mediterranean and in the Iberian Peninsula, the BSk zone was underestimated
in each RCM.
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Figure 9. Simulated K-G climate classification according to E-OBS (A) and power transformation of
precipitation and variance scaling of temperature correction in ALADIN (B), HIRHAM (C), RegCM
(D), RAMCMO2 (E) and RCA (F) in the test period in 1981−2000.

Even though eQM produced a very small residual bias in ALADIN and RegCM in the
Mediterranean and in RACMO2 in Eastern-Europe, the power transformation of precipitation better
reproduced the K-G zone distribution. Furthermore, the power transformation of precipitation
resulted in a smaller residual bias in Scandinavia, France and in the British Isles in both seasons, and in
Mid-Europe in winter compared to eQM (Table 9a). The difference between the eQM and the variance
scaling corrected temperature was negligible (Table 9b).

Table 9. Residual bias of seasonal amount of simulated precipitation (a) in the case of power
transformation of precipitation and the seasonal mean of the simulated temperature, (b) in the case of
variance scaling of the temperature bias correction methods in the test period in eight different regions:
the Alps (AL), the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the
Mediterranean (MD), Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA. The bias values are in %
and in ◦C for precipitation and temperature, respectively.

a) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL 1 16 4 −7 7 −2 8 7 6 5
BI −8 9 −12 9 −12 −5 −15 −6 −15 −9
EA 5 20 4 11 11 8 11 8 14 9
FR −7 10 −7 −9 −11 −12 −11 −14 −11 −11
IP 15 12 14 123 25 11 26 5 25 −4

MD 7 3 8 23 20 7 24 20 20 15
ME −3 23 −4 8 −3 4 −8 3 −2 3
SC −12 1 −12 1 −11 −6 −8 −9 −9 −8
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Table 9. Cont.

b) ALADIN HIRHAM RegCM RACMO2 RCA

Region DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL 0.1 −0.8 0.2 −0.8 −0.5 −0.4 −0.7 −0.6 −0.6 −0.6
BI 0.4 −0.6 0.2 −0.7 −0.6 −0.3 −0.6 −0.2 −0.6 −0.4
EA −0.2 −0.1 −0.1 −0.1 −0.2 −0.5 −0.3 −0.5 −0.2 −0.6
FR 0.1 −1.1 0.1 −1.1 −0.7 −0.4 −0.9 −0.4 −0.9 −0.5
IP −0.3 −0.5 −0.2 −0.6 −0.6 0.1 −0.6 0.1 −0.7 0.0

MD 0.1 −0.1 0.2 −0.4 0.0 −0.5 −0.1 −0.8 −0.2 −0.7
ME −0.1 −0.6 0.1 −0.6 −0.4 −0.4 −0.5 −0.5 −0.4 −0.6
SC 0.8 0.4 0.9 0.0 −0.2 −0.2 −0.2 −0.3 0.0 −0.2

3.5.4. Validation of Local Intensity Scaling of Precipitation

The local intensity scaling of precipitation was also combined with the variance scaled of
temperature to calculate the K-G zone. This combination produced a similar K-G distribution as
the combination of power transformation of precipitation and variance scaling of temperature in
some regions except in the HIRHAM RCM (Figure 10). Based on the LOCI bias correction, the Csb
climate zone occurred in Eastern Europe, and the BSk zone decreased in the Eastern region of the
Mediterranean. The extension of the Dsc zone in Scandinavia and the extension of the Csb zone in
Western France decreased in the ECHAM5-r3 driven RCMs compared to the power transformation
variance scaling bias correction combination.

Figure 10. Simulated K-G climate classification according to E-OBS (A) and local intensity scaling of
precipitation and variance scaling of temperature correction in ALADIN (B), HIRHAM (C), RegCM
(D), RAMCMO2 (E) and RCA (F) in the test period in 1981−2000.
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The residual bias of LOCI was extremely large in the HIRHAM model in the Iberian Peninsula
in summer (Table 10). The residual bias increased in France compared to power transformation of
the precipitation method. In contrast to this, the residual bias was smaller in Eastern Europe in the
ECHAM5-r3 forced RCMs.

Table 10. Residual bias of the seasonal amount of simulated precipitation (a) in the case of local
intensity scaling of the precipitation bias correction method in the test period in eight different regions:
the Alps (AL), the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the
Mediterranean (MD), Mid-Europe (ME) and Scandinavia (SC) in DJF and JJA. The bias values are in
%. The extremely large bias in the case of HIRHAM RCM in IP in the in JJA season is denoted by NA
where the bias value is about 3 × 1012.

ALADIN HIRHAM RegCM RACMO2 RCA

Regio DJF JJA DJF JJA DJF JJA DJF JJA DJF JJA

AL 0 18 5 −3 7 −2 8 8 8 4
BI −10 8 −14 9 −14 −7 −17 −9 −17 −12
EA −1 19 −3 11 4 6 4 7 7 6
FR −11 8 −11 −6 −15 −16 −16 −18 −16 −16
IP 13 14 11 NA 24 12 24 4 22 −4

MD 4 5 6 43 19 5 23 27 18 14
ME −9 22 −9 6 −9 2 −14 0 −8 0
SC −16 0 −16 −1 −15 −8 −13 −11 −14 −10

4. Discussion

The results confirmed our supposition that bias corrections have a significant effect on climate
classification. The effect of the bias correction varied among the models and the regions of the model
domains. Table 11 shows the differences between the observed and simulated Köppen−Geiger climate
zones in each region. The results were received by the calculation of the number of grid points where
the simulated and observed K-G zones were different in each region, and then this number was divided
with the number of grid points of the regions. The eQM and gpQM resulted in the largest differences
between the RCMs. These differences stemmed from the correction of precipitation. Simulated
precipitation is very sensitive to the properties of a model, e.g., physical parameterization, surface
properties, and resolution; hence, the distribution of precipitation varied among the RCMs. In the
HIRHAM model, eQM and gpQM produced drier negative bias, i.e., dryer zones in almost the entire
studied area. The dominance of these dry climate classes originated from the surface properties in the
HIRHAM model, the 1 mm threshold value of precipitation and the correction method. Unlike the
other RMCs, HIRHAM has only one soil moisture layer [50], which results in a smaller water-holding
capacity, which probably causes a negative feedback effect on precipitation formation. Owing to the
threshold value, most of the daily mean precipitation values were less than 1 mm, which were resized
to zero. This threshold value also caused negative precipitation bias in the JJA season. Moreover,
the eQM corrected the ranked category, but not the value of the variable. Hence, the precipitation
(or temperature) values transformed into “very high” values correspond to what observations tell us
about actual “very high “values [15]. Notwithstanding that the eQM is expected to be the best method
according to some literature [15,51,52], but according to some studies, the distribution-based methods
improve the RCMs [31,44,53]. The remaining large biases may originate from the weakness of linear
extrapolation of the cumulative distribution of parameters.
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Table 11. Disagreement between observed and simulated K-G zones in eight different regions: the Alps
(AL), the British Isles (BI), Eastern Europe (EA), France (FR), the Iberia Peninsula (IP), the Mediterranean
(MD), Mid-Europe (ME) and Scandinavia (SC) and in the whole study area in DJF and JJA in the case
of eQM-eQM, gpQM-eQM, power transformation of precipitation and variance scaling of temperature
and LOCI and variance scaling of temperature bias correction combination. The values are in %.

DISAGREEMENTAL BI EA FR IP MD ME SC
Study
Area

eQM-eQM

ALADIN 8.9 1.5 15.5 8.8 12 17.8 2.3 4.5 9
HIRHAM 38.6 1.5 29.5 44.2 31.6 35.4 2.4 7.8 20
RegCM 9.4 1.3 10.3 1.5 16.2 17.2 0.7 6 8.4
RACMO2 8.9 2.2 12.9 1.5 12.9 19 0.7 6.4 9

RCA 10.3 2.5 8.6 1 14.2 11.7 0.9 10.5 9
Ensemble

mean 15.2 1.8 15.4 11.4 17.4 20.2 1.4 7.0

gpQM-eQM
ALADIN 11.8 2.7 18.5 39.3 19.3 29.9 3.4 4.7 13.1
HIRHAM 73.9 46.9 47.4 99 51.2 55.8 46.9 8.9 38.2
RegCM 9.9 1.5 10.9 2.5 17.4 21.8 0.5 6.6 9.4
RACMO2 24.7 2.4 17.5 6.4 19.5 36.8 1.5 7.2 13.7

RCA 18.1 2.5 10 4.7 19.5 20.1 0.9 11.2 11.4
Ensemble

mean 27.7 11.2 20.9 30.4 25.4 32.9 10.6 7.7

power_variance
ALADIN 1.2 0 0 0 2.9 3.8 0 0.2 0.8
HIRHAM 0 0 0 0 0 0 0 0.2 0.1
RegCM 0 0 0 0 0 0 0 0.2 0.1
RACMO2 0 0 0 0 0 0 0 0.2 0.1

RCA 0 0 0 0 1.1 0 0 0.2 0.2
Ensemble

mean 0.2 0.0 0.0 0.0 0.8 0.8 0.0 0.2

loci-variance
ALADIN 0 0 0.3 1.2 2.7 1.1 0.8 0.3 0.7
HIRHAM 0 0 0.4 2.5 3.2 1.4 0.8 0.3 0.8
RegCM 0 0 0.3 1.2 2.7 1.1 0.8 0.3 0.7
RACMO2 0 0 0.3 1.2 2.9 3.4 0.8 0.3 0.9

RCA 0 0 0.3 1.2 2.6 1.2 0.8 0.3 0.7
Ensemble

mean 0 0 0.3 1.4 2.8 1.6 0.8 0.3

The model results corrected by the gpQM resulted in a similar climate classification to the eQM
corrected simulations, regardless of the gpQM using gamma and generalized Pareto distributions. The
remained bias can be explained by the fact that daily precipitation cannot be adequately expressed by
gamma distribution for every region of Europe [54].

The power transformation of precipitation and the local intensity scaling of precipitation combined
with the variance scaling of temperature performed correct K-G zone distribution with a negligible
difference from the observed one. Furthermore, they resulted in very similar values in each of the
RCMs. Their independence on the model and regions of the model domain can be explained by the
fact that these are distribution-free correction approaches. Furthermore, they are also able to adjust
the variance statistics of the precipitation time series, the simulated wet-day intensity, the wet-day
frequency of precipitation and the variance and the mean values of temperature.
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The bias correction methods were validated through a split-sample test by calculating the K-G
zones in the 1981−2000 time period, except for the local intensity scaling of precipitation. According
to the climate classification, the power transformation of precipitation and the variance scaling of
temperature combination performed best in terms of K-G zones, despite the fact that the eQM bias
correction methods had a smaller residual bias value in some RCMs, e.g., in ALADIN in the JJA season.

The bias correction methods were tested by the differential split-sample test in [44]. According
to the statistical evaluation of the bias corrections in the test period, they found that the best method
was distribution mapping based on gamma distribution, which was able to correct statistical moments
other than means and standard deviations. Their findings presumably stemmed from their decision to
choose smaller sized domains, in which only one European region was taken into account. We found
the eQM and gpQM of precipitation had great limitations in the larger sized pan-European domain
and produced incorrect climate classification in each RCM.

5. Conclusions

In this paper, the influence of bias corrections on K-G climate classification was investigated.
Climate classification was calculated by eQM-corrected precipitation and temperature, by a
combination of gpQM-corrected precipitation and eQM of temperature, by a combination of power
transformation of precipitation and variance scaling of temperature, or by a combination of LOCI for
precipitation and variance scaling for temperature. These bias correction methods were applied in five
25 km resolution ENSEMBLE RCMs in the historical time period of 1961−1990 and their results were
compared with climate classification based on E-OBS-observed precipitation and temperature values
to study their performance. The corrections were tested by a split-sample test, where the 1961−1980
period was training, and the corrections were validated in the 1981−2000 period. Subsequently, the
climate classification was evaluated in eight individual subdomains: the Alps, the British Isles, Eastern
Europe, France, the Iberian Peninsula, the Mediterranean, Mid-Europe and Scandinavia, defined
according to the methodology devised for the PRUDENCE project.

When assessing the performance of the bias correction methods, we found similar results for eQM-
and gpQM-corrected K-G classifications when daily data were used during the whole 30-year time
period (not shown). Both of them were strongly dependent on the RCM, as the simulated climate zones
varied between these RCMs. Moreover, the simulated climate zones significantly differed from the
observed ones. These differences stemmed from the large bias in the seasonal precipitation amount. The
90-day moving window improved these correction methods. In comparison, a combination of LOCI
and power transformation for precipitation with variance scaling of temperature, respectively, properly
reproduced the climate zones by each of the RCMs in each region in the historical period. Furthermore,
their test run contained the smallest differences from the observed K-G zones in most regions.

Our results suggest that the eQM and gpQM methods manifest a strong dependence on the spatial
distribution of parameters, and this dependence causes a limitation in climate classification considering
the large domain. Conversely, power transformation–and local intensity scaling of precipitation and
variance scaling of temperature corrections–also generated a smaller bias between the simulated and
observed parameters, except in HIRHAM in JJA, but their combination produced better results in
climate classification for the whole European domain. This can be explained by the fact that they are
distribution-free approaches.

This study is valid for Europe as a whole, since it was based on the E-OBS dataset with a resolution
that may be coarser than that of some small regions studied in the quoted papers, where dense national
datasets could be used. In the latter case, the statistical properties of the points reflect the smaller
area and the results of the method evaluations could be different. It was beyond the scope of this
study to devote itself to the several high-resolution gridded datasets that exist in Europe, but this
will be the topic of future investigation using the next generation EURO-CORDEX regional climate
model simulations.
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Abstract: The study of climate, in such a diverse climatic region as the Caucasus, is necessary in
order to evaluate the influence of local factors on the formation of temperature and precipitation
regimes in its various climatic zones. This study is based on the instrumental data (temperatures
and precipitation) from 20 weather stations, located on the territory of the Caucasian region during
1961–2011. Mathematical statistics, trend analysis, and rescaled range Methods were used. It was
found that the warming trend prevailed in all climatic zones, it intensified since the beginning
of global warming (since 1976), while the changes in precipitation were not so unidirectional.
The maximum warming was observed in the summer (on average by 0.3 ◦C/10 years) in all climatic
zones. Persistence trends were investigated using the Hurst exponent H (range of variation 0–1),
which showed a higher trend persistence of annual mean temperature changes (H = 0.8) compared to
annual sum precipitations (H = 0.64). Spatial-correlation analysis performed for precipitations and
temperatures showed a rapid decrease in the correlation between precipitations at various weather
stations from R = 1 to R = 0.5, on a distance scale from 0 to 200 km. In contrast to precipitation, a high
correlation (R = 1.0–0.7) was observed between regional weather stations temperatures at a distance
scale from 0 to 1000 km, which indicates synchronous temperature changes in all climatic zones
(unlike precipitation).

Keywords: temperature; precipitations; warming; Hurst exponent; persistence; spatial correlation;
Caucasian region

1. Introduction

The problem of climate change is extremely urgent today. The global climate on our planet
is changing rapidly. In this regard, an increasing number of studies are being devoted to this
problem [1–17]. The Russia territory is more sensitive to the effects of climate than the Northern
Hemisphere and the rest of the globe. Throughout Russia, the average growth rate of average annual
air temperature has been 0.46 ◦C/10 years in 1976–2017. This is 2.5 times the growth rate of global
temperature over the same period: 0.18 ◦C/10 years, and more than 1.5 times the average warming
rate of surface air over the Earth’s land: 0.28 ◦C/10 years (estimates according to the Hadley Center
and the University of East Anglia: HADCRUT4, CRUTEM4) [18].

Observations of regional climate show that atmospheric phenomena are more significant and
variable in regional rather than globally. Many factors affect the climatic features of the south of Russia,
including zonal and altitudinal zonality. The geographic position in temperate latitudes contributes to
the formation of a moderately continental type of climate, while the Caucasus Mountains serve as a
climate cliff between the temperate and subtropical zones. The Caucasus region has significant impact
on climatic features, which is supported by air masses, bringing the Mediterranean warm moist air.
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An important factor is the difference in altitudes from the Caspian lowland (−28 m from sea level) to
the peaks of the North Caucasus, with the highest point in Europe—Mount Elbrus with a height of
5642 m. According to the nature of the relief, the North Caucasus is usually divided into three zones:
the plain (Black Sea zone, steppe, Caspian zone), with a height above sea level (a.s.l.) of less than
500 m a.s.l.; foothills (500–1000 m a.s.l.); mountain (>1000 m a.s.l.) and high-mountain (>2000 m a.s.l.).
The issues of climate change in areas of the National Park “Prielbrusye” (the high-mountain zone)
and the Sochi National Park (the Black Sea zone) are especially important, since they can be beyond
landscapes causing disturbance of the ecosystem balance [19–25].

An important aspect of this region is an assessment of the regional response of the mountain
climate against the backdrop of global warming, to study the glaciers deglaciation mechanisms.
As research continues into climate of the Caucasus region, it becomes apparent that unfortunately,
the historical information about climate fluctuations in the high mountains of the Caucasus is very
scarce and not systematized. Due to the lack of long-term observations in mountainous areas,
some authors [26] restored to the meteorological regime of the corresponding area according to
NCEP/NCAR reanalysis, and corrected the information using data from individual instrumental
observations. Others [27] restored to the series of temperatures and precipitation at the meteorogical
stations Teberda (1280 m a.s.l., Teberda state biosphere reserve) and Terskol (2144 m a.s.l.,
Elbrus national park) of the Caucasus region, using dendroclimatological methods.

In the first case [26], for the restored meteorological regime in the Caucasus from 1948 to 2013,
fragmentary observation materials of the first Elbrus expedition in July–August 1934–1935 [28], and of
the second Elbrus expedition in 1957–1959, and in 1961–1962 (Institute of Geography, USSR Academy
of Sciences) [29] were used. Analysis of the recovered data for the period 1948–2013 have shown that
in the area of Mount Elbrus during the warm season, the positive trend does not go beyond the limits
of natural variability, and the change in the average annual temperature is characterized as a stable
value “−0.01 ◦C/10 years”.

According to the results from the dendrological analysis [28], it was concluded that the mountain
landscapes of Teberda and Terskol in 1960–2005 was characterized by relatively stable climatic
conditions. In general, in this area there is a tendency to a slight increase in the air temperature
in individual months, and to an increase in annual precipitation. However, under the conditions of an
extremely rare network of meteorological observations, it is difficult to reliably determine the causes
of this phenomenon, and attribute the differences due to the influence of local factors or the lack of
representativeness of weather stations.

The series thus restored have one significant drawback for the study, they cover different time
intervals, and the statistical characteristics of such meteorological series cannot be compared to each
other. In addition, reanalysis of the data obtained using satellite meteorology can lead to heterogeneity
of the series until the mid 70s.

The only way to somewhat reliably estimate regional climate change is by statistical analysis of
long series of instrumental data covering the same time span, such as the approach in this paper.

The report from the Intergovernmental Panel on Climate Change (IPCC) of 31 March 2014 states
that there are more significant climate changes on all continents, and spaces [30]. The observed effects
of climate change have affected ecosystems of land and ocean, some sources of human livelihoods,
water supply systems, agriculture, and human health. In this context, the study of climate and the
identification of its possible consequences, have now become scientific problems that attract great
attention from researchers around the world.

2. Materials and Methods

The focus of our study was climate of the Caucasian region (southern Russia), whose territory in
the context of the article was limited to 41.28–47.14 degrees north latitude (◦N) and 38.58–48.17 degrees
east longitude (◦E).
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To study the climate in different regions of southern Russia, we used data from meteorological
instrumental observations (1961–2011) by 20 weather stations, of the state observational network
of Roshydromet and provided by the North Caucasian Administration for Hydrometeorology and
Environmental Monitoring. (Table 1 and Figure 1). The data of the time series were homogeneous,
throughout the period under study the location of the stations remained constant (outside populated
areas), and the so-called urban warming did not affect them. The average, maximum, and minimum
seasonal and annual temperatures in the south of Russia were investigated.

Table 1. Geographical location of weather stations inside the Caucasian region.

№ n/n Weather Stations Longitude (◦N), Latitude (◦E)
Height above the Sea

Level, m (m a.s.l.)

Plain stations (<500 m a.s.l.)

1 Sochi (Black Sea zone) 43.35◦ N; 39.73◦ E 57

2 Krasnodar (steppe zone) 45.20◦ N; 38.58◦ E 26

3 Izobil’nyi (steppe zone) 45.22◦ N; 32.42◦ E 194

4 Mozdok (steppe zone) 43.44◦ N; 44.39◦ E 126

5 Prokhladnaya (steppe zone) 43.46◦ N; 44.05◦ E 198

6 Rostov-on-Don (steppe zone) 47.14◦ N; 39.44◦ E 64

7 Maykop (steppe zone) 44.37◦ N; 40.05◦ E 270

8 Derbent (Caspian zone) 42.04◦ N; 48.17◦ E 30

9 Kizlyar (Caspian zone) 43.51◦ N; 46.43◦ E −17

10 Makhachkala (Caspian zone) 42.59◦ N; 47.31◦ E 173

11 Izberg (Caspian zone) 42.34◦ N; 47.45◦ E 21

Foothill stations (500–1000 m a.s.l.)

12 Stavropol 45.03◦ N; 41.58◦ E 540

13 Cherkessk 44.17◦ N; 42.04◦ E 526

14 Kislovodsk 43.54◦ N; 42.43◦ E 819

15 Nalchik 43.22◦ N; 43.24◦ E 500

16 Vladikavkaz 43.21◦ N; 44.40◦ E 680

17 Buinaksk 42.49◦ N; 47.07◦ E 560

Mountain stations (1000–2000 m a.s.l.)

18 Teberda 43.45◦ N; 41.73◦ E 1280

19 Akhty 41.28◦ N; 47.44◦ E 1054

High-mountain station (>2000 m a.s.l.)

20 Terskol 43.15◦ N; 42.30◦ E 2144

In previous studies [31,32], trends in the amount of precipitation and daily maximums of
precipitation were analyzed in the Caucasus region, an analysis of the temperature regime was added
in this study. In the series of temperatures, averaged values, anomalies (deviations of the observed
value from the norm), and trends for the four seasons and the calendar year (January–December) were
considered. The climatic norm was considered to be the mean multi-year value of the considered
climate variable for the base period of 1961–1990 [33]. The anomalies were calculated for each year as
the difference between the current value and the norm of the corresponding climate variable (average
1961–1990). In the series of mean temperature and sum precipitation, the data were averaged within
the calendar seasons of each year (the winter season included December of the previous year) and for
the year as a whole. Maximum and minimum temperatures were defined as the largest and lowest
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values for a certain period (month). The absolute maximum (minimum) was the largest (smallest)
value was observed at least once in a month. We used absolute maxima and minima for each month of
the season during the period 1961–2011.

Figure 1. Geographical location of weather stations inside the Caucasian region.

Time series were investigated by statistical methods, as well as by means of the STATISTICA,
SPSS 15.0 programs [34–36], spatial fields of distributions were constructed using the geoinformation
system Golden Software Surfer 8 [37]. Linear trends characterizing the trend of the considered value
over the entire observation period from 1961 to 2011, and from 1976 (the beginning of global warming)
were built in Excel. The estimation of the linear trend coefficients was considered the least squares
method degrees per decade, ◦C/10 years.

To accept the hypothesis regarding the presence of a statistically significant linear trend,
a 95% significance level (α) was adopted and determined through a determination coefficient R2

characterizing the share of the trend in the explained variance (D, %). Using the coefficient of
determination R2, it was possible to check the significance of the trend. For this, the F-criterion
was determined:

F =
R2

1 − R2
n − k − 1

k
, (1)

where k is the number of trend equation coefficients. The constructed linear regression trend was
significant with a level of significance α, if the inequality held:

F > F1−α;k;n−k−1 (2)

Quantile F1−α;k;n−k−1 calculated in Excel by expressing FINV(α; k; n − k − 1).
The lower threshold value of the coefficient of determination, which determines the statistical

significance of the trend at a 95% confidence interval, was D = 8% (for n = 51, 1961–2011).
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Climate of the Caucasus region, which includes various climatic zones (Table 1 and Figure 1),
was primarily determined by its position in the temperate latitudinal climate zone.

The North Caucasus mountain system prevents the movement of cold air masses from
north to south, and warm from south-west and west to north-east and east. A complex local
circulation is created in the mountains with the separation of the two temperate zone regions:
the Atlantic-continental (plain, foothill) and the mountain (high-mountain). At the same time,
atmospheric processes in the region are complicated by local factors, namely the complex orography
of the North Caucasus. Due to the complexity of climate formation in such a complex orographically
heterogeneous terrain, the correlation of meteorological parameters of stations located in different
climatic zones was of interest.

The spatial structures of the air temperature fields and precipitation fields were analyzed from
weather station data in different climatic zones, and spatial correlation relationships between them
were determined depending on the scale of the distance between them.

The study assessed the persistence of climate change. As its integral characteristic, the rescaled
range method (R/S analysis) and fractal properties of time series (Hurst exponent H), were used [38–44].
By using the rescaled range method for the first time, the British hydrologist Harold Hurst studied the
rise of the Nile River, as well as the sequence of measurements of atmospheric temperature, rainfall,
river flow parameters, thickness of annual wood growth rings, and other natural processes [38].
The method is based on the analysis of the range R of the meteorological parameter (the largest and
smallest value in the segment under study), and the standard deviation S and its dependence on the
period of the studied time t. The Hurst exponent can distinguish a random series from a nonrandom
one, even if the random series is not Gaussian (that is, not normally distributed).

To calibrate the time series, Hurst introduced a dimensionless ratio by dividing the range R by
the standard deviation S of the observations. The range of Rn is the difference between the maximum
and minimum levels of accumulated deviation Xn.

Rn = max
(

Xk − k
n

Xn

)
− min

(
Xk − k

n
Xn

)
, (3)

where Xn = x1 + x2 + . . . + xn, n ≥ 1;

Xn—accumulated deviation in n steps (t periods);
Rn—deviation range in n steps, where

Sn =

√
n
∑

k=1
xk−x2

n

n —empirical standard deviation;

xn = Xn/n—empirical average;
Rn/Sn—normalized range of accumulated sums Rk, k ≤ n.

Based on the formula for Brownian motion, the system displacement (normalized range) Hurst
proposed to calculate using the following relation:

Rn/Sn = (at)H, (4)

from where

H =
ln(Rn/Sn)

ln(at)
, (5)

where H is the Hurst exponent, varying from 0 to 1; Rn/Sn is the rescaled range; t is the studied
period, and a is a constant. The value of the coefficient H characterizes the ratio of the strength of the
trend (deterministic factor) to noise level (random factor). The indicator H is a tool for determining
the systems persistence behavior and gives an answer to the question of what the next value of the
investigated series would be, more or less than the current value. The processes for which H = 0.5 have
an independent data distribution, and are characterized by the absence of a trend (classical Brownian
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motion). Time sequences for which H is greater than 0.5 are classified as persistent, preserving the
existing trend. If the increments were positive for some time in the past—there was an increase—then
on the average there will be an increase, this corresponds to a good predictability of the series. Thus,
for a process with H > 0.5 there is a tendency to increase in the future, the effect of long-term memory
is preserved. The case 0 < H < 0.5 is characterized by antipersistence and is characterized by an
alternating tendency.

On a large empirical material, it was found that the Hurst index value of the series of various
natural processes is grouped in the interval H = 0.72–0.74. [38,41]. The question of why this is so
remains open. Note that our average value of the Hurst index for time series of temperatures H = 0.74,
also fell in this interval.

3. Analysis and Discussion

Using the method of spatial correlations, the spatial relationships between surface air temperature
and precipitation at individual stations of the studied region were determined. This described the
general spatial patterns of temperature and precipitation in the region, and generated a preliminary
assessment of the features of regional climate formation.

Reference [45] describes that in all climatic zones of the region, changes in mean annual
temperatures, unlike precipitation, were synchronous in time (Figure 2). In addition to the main
climate-forming factors (radiation and circulation), climate of the Caucasus region is greatly influenced
by the relief of the terrain, the orography of the terrain, and the distance of weather stations from
each other. Figure 2b shows that changes in the precipitation regime in different climatic zones,
unlike changes in the temperature regime (Figure 2a), were not synchronous.
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      (a) 

    (b) 

 

 
Figure 2. The course of average annual temperatures (a), and precipitation sums (b) according to data
from 20 weather stations in southern Russia.

Apparently, this can be explained by influence of the same centers of low-frequency atmosphere
variability, which by means of synoptic scale objects (cyclones, anticyclones, etc.), exert a distant
influence on the climate in certain regions of Eurasia and are sources of anomalies in various
meteorological fields.

The wide range of mean temperature dispersions and their rate of change in different climatic
zones was also determined by the stations’ location (from Rostov-on-Don in the north to Derbent in
the south, and from Sochi in the west to Isberg in the east of the Caucasian region). Figure 2 show that
the average annual temperature was maximum in Sochi (red line, tav = 14.18 ◦C), and minimum in
Terskol (black line, tav = 2.5 ◦C). In all climatic zones, temperature changes occured synchronously,
while temperature changes of stations within each climatic zone fit into their ranges.

The method of calculating spatial correlations was used to determine the spatial relationships
of meteorological parameters (temperature, precipitation), measured at stations of different climatic
zones of the southern Russia. Let xi (j) be the average annual air temperatures or the precipitation
sums at some station i, where j = 1, . . . Ni, j is the year, Ni is the total number of measurements. Similar
measurements at another station, l, respectively, xl (k), where l = 1, . . . Nk, i is the year, Nk is the total
number of measurements. For joint analysis, it was necessary that Ni = Nk. The available series with
average annual temperatures and precipitation sums of 20 stations satisfied this requirement.

The linear relationship between series xi (j) and xl (k) was quantitatively expressed by the Pearson
correlation coefficient Rik. Calculating all possible combinations of Rik, we obtained matrices Ac,
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where c = T (temperature) or c = P (precipitation), symmetric with respect to the main diagonal,
which consisted of units (correlation matrices). The latter can be associated with the same matrix Z of
distances between each pair of matrices. The distance (L) between stations was calculated based on the
geographical coordinates (latitude ∅, longitude λ, Table 1) of each of the station pairs according to
the formula:

L = arccos(sin∅1sin∅2 + cos∅1cos∅2cosΔλ) (6)

Scatter diagrams of correlation matrices for air temperature and precipitation in the investigated
region are presented in Figure 3. Each matrix elements was shown depending on the distance of the
stations from each other, set in the distance matrices. Comparison of Figure 3a,b implied a significant
difference in the correlation structure of the fields.

Figure 3. Spatial correlation of precipitation (a), and temperature (b) of the 20 weather stations,
depending on the distance between them: the x-axis—distance between pairs of stations; and the
y-axis—the correlations between the meteorological parameters (temperature, precipitation) of the
20 weather stations.

The spatial correlation of precipitation for all climatic zones tended to zero for scales of
distances of the order of 600 km, and took negative values (from −0.04 to −0.2) for pairs of stations
Derbent—Cherkessk, Derbent—Teberda, Derbent—Terskol, Derbent—Sochi, and Derbent—Maykop.

Such an inverse relationship between the precipitations of these stations can be explained, firstly,
by the special geographical position of Derbent. Derbent is located on the western shore of the Caspian
Sea (42.04◦ N; 48.17◦ E, 30 m a.s.l.), where the mountains of the Greater Caucasus are closest to the
Caspian Sea, leaving only a narrow three-kilometer strip of plain, forming a semi-dry subtropical
climate. Secondly, the great difference in altitude, and the remoteness of Derbent from other stations.

If we set the correlation threshold R = 0.5, it can be seen from Figure 3a that the correlation of
precipitation decreased from R = 0.7 to R = 0.5 at a distance of 200 km, and it decreased further passing
through R = 0 at a distance from 600 to 800 km.

The temperature correlations of different weather stations were quite high at distances from 0 to
1000 km, and lay mainly in a narrow range from R = 1 to R = 0.7 for plain, foothill, and mountain zones.
The correlation between the temperatures of the Terskol (high-mountain zone) station with other
stations was lower and varied from R = 1 to a threshold value R = 0.50 only for Terskol–Rostov-on-Don
(R = 0.554) and Terskol–Derbent (R = 0.485).

Thus, the magnitude of temperature correlation depended mainly on the stations’ location relative
to height above sea level. In addition to this factor, the correlation of precipitation was determined by
the geographical location of the weather stations (orography of the terrain) and the stations’ remoteness
from each other. The obtained values of the spatial correlation of temperature and precipitation
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explained the synchronous course of temperature variation in all climatic zones, and the regional
precipitation regime in all climatic zones of southern Russia (Figure 2.)

Various estimates of the change in global surface air temperature have been given [1–5,46,47].
From the second half of the 20th century, and in the first decade of the 21st century, the rate of
temperature growth on average has varied in the range 0.17 ± 0.01 ◦C. According to our estimates,
the warming trend across the Caucasus region corresponds to the overall trend of global temperature
changes over the same period. Table 2 shows that the average annual temperature increased during
the period 1961–2011 at 0.2 ◦C/10 years, while in 1961–1975 there was an insignificant negative trend,
and since 1976 the temperature growth rate reached 0.43 ◦C/10 years with the trend contribution to
the explained variance D = 31.5%. The same trend was observed for all seasonal temperatures.

Table 2. Characteristics of seasonal and annual average air temperatures in the south of Russia.

Temperature, ◦C Winter Spring Summer Autumn Annual

Average temperature,
1961–2011 −0.5 9.4 20.8 10.8 10.1

Standard deviation,
1961–2011 1.5 0.9 1.0 1.1 0.8

Anomalies,
1961–2011 0.3 0.1 0.4 0.1 0.2

The angular coefficient of the trend
(1961–2011), ◦C/10 years (D*, %)

0.22
(4.4%)

0.08
(1.6%)

0.33 **
(23%)

0.15
(4.1%)

0.2
(13%)

The angular coefficient of the trend
(1961–1975), ◦C/10 years (D, %)

−1.34
(9.2%)

0.16
(0.5%)

0.07
(0.1%)

0.17
(0.7%)

−0.32
(3.3%)

The angular coefficient of the trend
(1976–2011), ◦C/10 years (D, %)

0.38
(9.3%)

0.21
(6.1%)

0.65
(41%)

0.47
(18.4%)

0.43
(31.5%)

* D, the trend contribution to the explained variance. ** statistically significant trends are marked in bold (n = 51).

Negative trend of the average winter temperature in 1961–1975 (−1.34 ◦C/10 years) since 1976
changed to a positive direction (+0.38 ◦C/10 years). Interannual variability of temperature from all
seasons was greatest in the winter season, 1.5 ◦C. The main reason for the large winter variability was
the large temperature difference in winter between low and high latitudes. Since 1976, the growth
rate of all other seasonal temperatures increased. If in the period 1961–2011 the trend of seasonal
temperatures was statistically significant only in the summer season (0.33 ◦C/10 years, D = 23%),
in the modern period, trends in autumn (0.47 ◦C/10 years, D = 18.4%) and winter (0.38 ◦C/10 years,
D = 9.3%) were added to statistically significant trends. The maximum value of seasonal anomalies
(ΔT = 0.4 ◦C) was also observed for summer temperatures. Since the mid 90s of the 20th century,
there have been exceptionally positive anomalies in summer temperatures.

Next, we performed a comparative analysis of temperatures (average, maximum, minimum)
within all climatic zones of the Caucasus region. The average values of mean annual temperatures,
their standard deviation, characterizing the interannual variability, as well as the upper and lower
boundaries of the intervals of mean annual air temperature in different climatic zones (at 95%
confidence intervals) are presented in Table 3. The lower and upper limits of the confidence intervals of
the mean annual temperature, according to data from the Black Sea, Caspian, steppe, piedmont,
and mountain weather stations, intersect. The average annual temperature in Terskol (2.5 ◦C,
taking into account the interannual variability from 1.22 ◦C to 3.78 ◦C) was significantly lower than
the rest, which was explained by the high altitude zoning. This station was also characterized by the
stability of the change in annual temperature (0.01 ◦C/10 years). In our study, a high-altitude zone
was distinguished (Terskol, 2144 m a.s.l.) with a negative trend of average annual temperature for the
period 1961–2011 (−0.01 ◦C/10 years), and for the years 1961–1975 (−0.01 ◦C/10 years). Since 1976,
the negative trend changed its direction to positive (+0.05 ◦C/10 years).
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Table 3. Characteristics of the temperature regime of surface air in the different climatic zones of
southern Russia.

Temperature
Black Sea

Zone (Sochi)
Steppe
Zone

Caspian
Zone

Foothill
Zone

Mountain
Zone

High-Mountain
(Terskol)

Average temperature tav (σ), ◦C

Annual
temperature

(st. deviation)
14.18 (0.72) 10.82 (0.92) 12.38 (0.82) 9.24 (0.91) 8.05 (0.78) 2.5 (0.64)

Upper bound * 15.62 12.67 14.02 11.05 9.6 3.78

Lower bound 12.74 8.98 10.73 7.43 6.49 1.22

Rates of change of average temperature, ◦C/10 year (D, %)

Annual

(a) 1961–2011 0.06 (2%) 0.25 (14%) 0.21 (17%) 0.23 (17%) 0.17 (11%) −0.01 (0%)

(b) 1961–1975 −0.3 (4%) −0.03 (2%) −0.37 (5%) −0.45 (7%) −0.5 (6%) −0.2 (2%)

(c) 1976–2011 0.31 (19.6%) 0.48 (28%) 0.42 (30%) 0.5 (33%) 0.38 (24.7%) 0.05 (0.7%)

Winter −0.04 (0.2%) 0.3 (6%) 0.18 (4%) 0.27 (6%) 0.14 (2%) −0.02 (0%)

Spring −0.03 (0.2%) 0.09 (2%) 0.11 (4%) 0.1 (2%) 0.06 (1%) −0.07 (1%)

Summer 0.28 (19%) 0.34 (20%) 0.26 (18%) 0.37 (22%) 0.35 (30%) 0.29 (25%)

Autumn 0.07 (1%) 0.16 (4%) 0.15 (4%) 0.19 (6%) 0.13 (3%) −0.07 (1%)

* the upper (lower) boundary of the mean temperature (tmean ± 2 σ) at 95% confidence interval; ** statistically
significant trends are marked in bold (n = 51).

Changes in the average annual air temperature in different climatic zones of southern Russia were
also represented by three periods: 1961–2011, 1961–1975, and 1976–2011 in Table 3. During the period
1961–2011 in all climatic zones of southern Russia, with the exception of the Black Sea zone (Sochi) and
the high-mountain zone (Terskol), an average annual temperature increased from 0.17 ◦C/10 years in
the mountain zone to 0.26 ◦C/10 years in the steppe zone. In the Black Sea zone, the rate of change in
the mean annual temperature was 0.06 ◦C/10 years, and 0.01 ◦C/10 years in the high-mountain zone,
which characterizes a stable temperature regime in these zones. According to the station Makhachkala
(the Caspian region), it also received insignificant rates of change in the average annual temperature
by 0.08 ◦C/10 years. The stability of average annual temperatures (0.08 ◦C/10 years) in Makhachkala
was observed against the background of an increase in absolute maximums of temperatures, and an
equally significant decrease in absolute minimums of temperatures.

It is probably due to regional features of the terrain: large water bodies (Black Sea, Caspian Sea)
and snow massifs in the high-mountain zone that smooth out the amplitude of the change in the mean
annual temperature.

During periods of seasonal average temperatures in all climatic conditions from 1961 to 2011,
a stable pattern of temperature growth rates was observed in summer seasons: from 0.26 ◦C/10 years
(D = 18%) in the Caspian zone to 0.37 ◦C/10 years (D = 22%) in the foothill zone.

The results of calculations of the Hurst exponent for determining the trend-persistence of
precipitation and temperature series are presented in Table 4. Table 4 shows that the persistence
indicators for temperature trends significantly exceeded the values for precipitation, and it
characterizes the persistence and long-term changes in the temperature regime. The highest persistence
trends have been observed at average annual, summer temperatures (H = 0.80), and autumn
temperatures (H = 0.73). The annual, summer (H = 0.75), and autumn maximums (H = 0.70), in addition
to spring minimum temperatures (H = 0.72) have had persistent trends. Since fractality is associated
with determinism [41], it can be assumed that the summer warming observed in recent decades is a
consequence of the coordinated influence of a number of climate-forming factors.
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Table 4. Hurst exponent for climatic characteristics according to the data from 20 weather stations in
the southern Russia.

Meteoparameters
Hurst Exponent (Standard Deviation), H (δ)

Winter Spring Summer Autumn Annual

1 2 3 4 5 6

Precipitation total 0.63 (0.06) 0.62 (0.07) 0.61 (0.07) 0.68 (0.06) 0.64 (0.09)

Daily maximums of precipitation 0.62 (0.07) 0.59 (0.08) 0.63 (0.06) 0.63 (0.07) 0.62 (0.06)

Average temperature 0.70 (0.05) 0.64 (0.08) 0.80 (0.05) 0.73 (0.05) 0.80 (0.06)

Maximum temperature 0.66 (0.07) 0.64 (0.06) 0.75 (0.05) 0.70 (0.08) 0.75 (0.04)

Minimum temperature 0.68 (0.08) 0.72 (0.08) 0.68 (0.09) 0.61 (0.08) 0.67 (0.08)

Previous studies [31] have found that, with the exception of the steppe and Black Sea zones,
seasonal increase in precipitation amounts prevail. At the same time, an autumn increase in
precipitation amounts was observed at all stations without exception. For annual sums of precipitation,
in 27% of the steppe stations studied and in 10% of foothill stations, they decreased, for all other
meteorological stations an increase was observed in annual sums of precipitation. In this case, Table 4
shows that in the autumn, for all stations the highest Hurst exponent value was observed both for the
sum of precipitation and for the daily maximums H = 0.63, which characterized the persistence of the
identified trends for a long period.

We used the data from Tables 3 and 4 to visualize changes in summer temperature regimes with
indicators characterizing the statistical stability and persistence of the detected changes. Figure 4
shows the rates of change in the mean annual temperature (◦C/10 years) with the coefficient of
determination (D, %) for different climatic zones, against the background of the distribution fields of
the Hurst exponent (H). It is seen from Figure 4 that the increase in average summer temperatures is
not only distinguished by its high values in all climatic zones, but by the highest Hurst coefficients
that characterize the persistence of the obtained trends. In the summer season, Hurst’s exponent had
a small spread of values from H = 0.79 in the steppe and Caspian zones, to H = 0.82 in the foothill,
mountainous areas, from which a steady increase in average summer temperatures should be expected.
The highest Hurst exponents characterized the process of growth of these temperatures as persistent,
having a long-term memory, with a high probability of continuing in the future.

Thus for average, maximum, and minimum temperatures, the Hurst exponent lies in the range
0.5 < H < 1, and all processes belong to the class of persistent ones that preserve the existing trends.
Such a long-term memory takes place regardless of time scale. All annual changes are correlated
with all future annual changes. The existing trend of rising surface air temperatures will continue in
the future, at least for the next 50 years (for the period analyzed using the rescaled range method).
Since fractality is related to determinism [34,36], it can be assumed that the increase in temperature
observed in recent decades is a consequence of the coordinated effect of a variety of climate-forming
factors, both natural and anthropogenic.
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Figure 4. The rates of change in the average temperature (◦C/10 years) with the coefficients of
determination (D, %) in the summer season for different climatic zones, against the background of the
trend-persistence field (the Hurst exponent H in color).

4. Conclusions

This study allowed us to approach the question different climatic zones sensitivity (plains,
foothills, mountains) to climate change, and whether warming differs in mountains vs. plains. This is
important because changes in temperature and precipitation in the mountains lead to significant
changes in the hydrological cycle, in particular, to the observed process of deglaciation of the Caucasus
glaciers. Furthermore, climate change in the areas of intensive farming in the south of Russia (plain,
foothill) must be taken into account when solving problems in agriculture.

According to our study results, and taking into account previous studies of climate change in the
Caucasus region, it became clear that the warming tendency prevails in all climatic zones with some
features. Changes in the precipitation regime are not so unidirectional.

1. In the period 1961–2011, the average annual temperature in the entire territory of the southern
Russia increased by 0.2 ◦C/10 years (D = 13%) with the most persistent trend being during the summer
season (0.33 ◦C/10 years, D = 23%).

2. In all climatic zones of southern Russia, with the exception of the Black Sea zone (Sochi) and
the high-mountain (Terskol), average annual and season temperatures have increased during 50 years
of observation. In Sochi and Terskol, a statistically significant increase was observed only at average
summer temperatures.

Since the beginning of global warming (since 1976), there has been the significant increase in the
growth of average, maximum, and minimum temperatures in all climatic zones.

3. A change in the precipitation regime does not manifest itself as clearly as changes in temperature.
During all seasons, increase and decrease in seasonal precipitation amounts occurred, but statistically
insignificant. In all climatic zones, an increase in the amount of precipitation was observed in the
autumn season, which was statistically significant in the steppe region.
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4. Based on the study of the fractal properties of time series of precipitation and air temperature
in the surface layer of the atmosphere in all climatic zones of southern Russia, it is shown that the
Hurst exponent of the temperature (H = 0.74) trend significantly exceeds the Hurst exponent of
the trend of precipitation (H = 0.63). It characterizes the persistence and long-term changes in the
temperature regime. Of these, the trends of the average annual, summer (H = 0.80), and autumn
(H = 0.73) temperatures are allocated. The changes in the maximum annual, summer (H = 0.75) and
autumn (H = 0.70) temperatures, as well as minimum temperatures in spring (H = 0.72. High Hurst
performance characterizes the process of increasing temperatures as constant, in contrast to increasing
precipitation, having a long-term memory and with a high probability of continuation in the future.

5. Spatial correlation analysis performed for mean temperatures and precipitation sums of all
climatic zones showed a high correlation (R = 1.0–0.7) between average temperatures of different
climatic zones at distances of 0–1000 km between stations, and a decrease in correlation from 1 to 0.5
between precipitation sums at a scale of distances from 0 to 200 km.
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Abstract: Heat waves are considered one of the most noteworthy extreme events all over the
world due to their crucial impacts on both society and the environment. For the present article,
a relatively new heat wave index, which was primarily introduced for the study of extreme warming
conditions over Australia (Excess Heat Factor (EHF, hereafter)), was applied over Greece (eastern
Mediterranean) for a 55-year period in order to examine its applicability to a region with different
climatic characteristics (compared to Australia) and its ability to define previous exceptional heat
waves. The computation of the EHF index for the period 1958–2012 demonstrated that, during the
warm period of the year (June, July, August, and September (JJAS)), Greece experiences approximately
20 days per year with positive anomalous conditions (EHF > 0) with positive statistically significant
trends for all stations under study. Moreover, an average of 128 spells with a duration of 3 to 10
consecutive days with positive EHF values were found during the examined 55-year period. As the
duration of the spell was extended, their frequency lessened. Finally, it was found that the EHF index
not only detected, identified, and described efficiently the characteristics of the heat waves, but it also
provided additional useful information regarding the impact of these abnormal warming conditions
on the human ability to adapt to them.

Keywords: temperature; heat wave; excess heat factor; acclimatization; Greece

1. Introduction

Heat waves have been a phenomenon of great worldwide interest due to their substantial
societal and environmental impacts. These impacts intensify the necessity of measuring, studying,
and even predicting these extreme hot conditions especially in the impacted communities and the
affected regions [1] because remarkably warmer weather can have a direct negative effect on health,
especially for the vulnerable elderly population [2–5]. There is also a global demonstration that extreme
temperatures are highly correlated with human mortality [6–8], making heat waves one of the natural
hazards with the greatest percentage of casualties [3,9]. Langlois et al. [10] mention that even though
people tend to adapt and acclimatize themselves to temperature changes, if this change is sudden and
abrupt, it can then cause certain heat-related diseases or even death.

Nevertheless, there is no single and standard definition of the physical nature of a heat wave and
their overall description remains quite broad [11]. Heat waves are usually described as periods of
exceptionally hot weather. However, the intensity of this temperature rise as well as the duration of the
extreme warm consecutive days and the time of year that they occur are important aspects necessary
to categorize a hot event as a heat wave. In general, a heat wave is an acute period of extreme warmth
during the summer months, whereas the respective hot periods during winter are referred to as warm
spells [12].

In order to define suitable metrics for waves, scientists have instituted either absolute or relative
approaches [13]. Even though experts differ in the selection of thresholds and duration, the first
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approach is based on the meteorological/climatological values of certain parameters, such as daily
mean temperature, maximum and minimum temperatures, temperature indices, duration, and relative
humidity, whereas the relative approach also incorporates human acclimatization to weather and uses
more human-related bioclimatic indices (e.g., [14–17]). Thus, the diverse definitions of a heat wave
mainly depend on the scope that is being studied. If the climatological-statistical characteristics of
these extreme hot events are of primary interest to the researcher, then straightforward metrics are
being used. On the other hand, if the study is more human-centered, then the impact of the heat
wave on people’s health is the main drive and different approaches are used [11,18]. It should also
be mentioned that due to the fact that most of the heat wave indices are developed for a specific use
and a specific target group or sector, they are most of the time not flexible and cannot be applied to
different regions or for different purposes [1].

Moreover, since temperature is increasing on a global scale, the interest concerning heat waves
is also increasing as they are expected to become more frequent, more intense, and of longer
duration [19,20]. Especially with respect to the Mediterranean region, which will probably experience a
much larger number of heat waves in the future, particularly during the summer months (e.g., [21–25]),
the need to define these extreme events efficiently becomes more and more urgent, due to their severe
impacts on several aspects of human lives [26–28]. In Greece, which is the center of interest in the
present study, heat waves have been analyzed by several researchers using different approaches,
methodologies, and metrics either from a statistical or a more bioclimatological point of view
(e.g., [24,29–33]).

However, in this study, an attempt was made to carry out an in-depth analysis of Greece’s heat
waves with a relatively new index, developed primarily for assessing heat waves in Australia [34]
but which had recently been applied to the Czech Republic [35] and the Balkan Peninsula (Romania),
where Greece is also located [3]. This index, defined as the excess heat factor (EHF) and described in
detail in the next paragraph, is actually a set of indices, whose major advantage is that it combines both
the statistical and the human-impact aspects of the heat wave. Moreover, with respect to temperature,
not only maximum but also minimum temperatures were used for their definition. Adding Tmin on
a heat wave index is not only climatologically tempting [1], but high minimum temperature values
intensify the heat wave conditions, also increasing the degree of heat stress [34,36]. In addition,
Karl and Knight [37] underlined that no relief from high minimum temperatures, for more than three
consecutive days, could have crucial impacts on human health. Finally, another advantage of the excess
heat factor index is that it takes into consideration not only the temperature conditions of the specific
day but also of the previous two ones, which can intensify or reduce the heat wave’s magnitude [1].

In the next section of this study, the methodology for the EHF index computation is analyzed as
well as the data that are being used. Moreover, the statistical characteristics and results of the index
are presented for the stations under study as well as the assessment of the EHF’s ability to define and
describe two representative heat waves (July 1987 and July 2007) that occurred in Greece during the
past few years. Finally, the conclusions derived from the study as well as a literature discussion of
them can be found in the last station of this research article.

2. Materials and Methods

The identification and determination of heat waves over the study area (Greece) was achieved
using the computation of the excess heat factor (EHF) index, which provides a measure of the
environmental temperature load [10] and the intensity of a potential heat wave [12]. The EHF is
the product of the multiplication of two other excess heat indices (EHIs), namely, EHIaccl and EHIsig.

EHF = EHIsig × max{1, EHIaccl] (1)
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EHIaccl is defined as:

EHIaccl =
[

Ti + Ti−1 + Ti−2

3

]
−
[

Ti−3 + . . . Ti−32

30

]
, (2)

where the first term of Equation (2) is the average daily Tmean for a three-day period and the second
term is the average daily Tmean of the preceding thirty days. As proposed by Nairn et al. [34], this is
an acclimatization index and its positive (negative) values are related to hot (cold) weather conditions.
It determines a period of heat that is warmer than the recent past [10], and it should be highlighted
that this index is not influenced by the potential general warming trend [34]. This index describes
an important factor of the influence of heat to the population because, even though humans tend to
acclimatize themselves to their environmental local climate according to the temperature variations
throughout the year, they may be unprepared to an abrupt temperature rise above that of the recent
past [12]. Thus, positive EHIaccl values indicate a lack of acclimatization to the warmer temperatures
which may result in negative health impacts.

The second term of the EHF equation is the significance index (EHIsig) defined by the
following equation:

EHIsig =

[
Ti + Ti−1 + Ti−2

3

]
− T95, (3)

which is calculated by the difference of the average daily Tmean for a three-day period minus the
95th percentile of the daily Tmean. The percentile is computed for a reference period of 30 years
(1971–2000) using the daily values of the mean temperatures for all days throughout the year. A heat
wave occurs when EHIsig is positive, while the comparison with the 95th percentile measures the
statistical significance of the heat event [30]. The authors also underline the fact that, since T95 is
computed for a fixed climatological period, the EHIsig (contrary to the EHIaccl) is expected to become
more extreme under a general warming trend.

Therefore, the excess heat factor expresses the long-term temperature anomalies amplified by the
short-term ones [10], and the days with positive EHF values indicate heat wave conditions, while the
higher the values of the index, the more intense is the heat wave. However, according to Perking and
Alexander [1], a heat wave episode will be defined when at least three consecutive days present EHF
values above zero.

Finally, daily Tmean in all the above indices should be computed by averaging the Tmin and
Tmax daily values since the diurnal temperature variation is highly associated with the ability of the
biological systems to recover from high heat load. Hence, for this study, the daily Tmin and Tmax time
series, derived from 14 meteorological stations, were used for a 55-year period starting from 1958 to
2012, for the computation of the Tmean values. Except for the data for the Thessaloniki station which
were available from the meteorological station of the Aristotle University of Thessaloniki (AUTh),
the remaining station data were provided by the Hellenic National Meteorological Service (HNMS).
These data were proven to be homogenous according to the Alexandersson test [38] and had no gaps.
The geographical distribution of the station locations is presented in Figure 1.

It is worth mentioning at this point that although abnormally warm conditions may occur even
during the winter months, it was decided in this case to compute the EHF index for the hottest period
of the year, that is, June, July, August, and September (the JJAS period) since summer heat waves
tend to be more intense with severe impacts for humans during these months. Finally, adopting
the definition used by Perkins and Alexander [1] who mentioned that a heat wave occurs when the
abnormally hot conditions (EHF > 0) persist for more than three consecutive days, the duration of
spells longer than 3 days was calculated for the 14 stations under study during the 55-year time period.
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Figure 1. Geographical distribution of the stations under study. For each station, the altitude where it
is located can be found on the right of the map. For each station, the average Tmin, Tmax, and Tmean
values for the period 1958–2012 are provided. The sign of the trend of these time series is found in the
brackets (). The asterisk indicates the statistical significance of the trends at the 95% level of significance.

3. Results

3.1. Statistical Analysis and Aspects of the EHF Index

Primarily required for the definition of the EHIsig index, the 95th percentile of the Tmean was
computed for a standard period of 30 years from 1971 to 2000. It was found that the T95 values varied
from 24.8 ◦C to 28.7 ◦C. The lowest percentile values were observed over Kozani, a station in the west
continental part of Greece, followed by Alexandroupoli (25.4 ◦C) in the north. Kozani is a typical
continental station, of quite high altitude (400 m), and that is the main reason for the low Tmean
95th percentile values found. On the other hand, the second minimum of Alexandroupoli can be
explained by the fact that this station is found in the northeastern part of Greece, and even though it is
a coastal station, it presents an intense continental influence especially during winter, which explains
the low 95th percentiles. The highest values were found in Elliniko in central Greece (28.5 ◦C) and the
maximum was found in Samos, an island station over the southeastern Aegean Sea (28.7 ◦C) (Figure 2).

 
Figure 2. The 95th Tmean percentiles for the stations under study for the period 1971–2000.
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As mentioned in the previous section, the analysis focused on the hot period of the year (JJAS) for
the years from 1958 to 2012. The average number of days in the hot period of the year in Greece when
the EHF index presented positive values varied from 17.9 (Larissa) to 23.9 (Kozani). This indicates
that for approximately 20 days per year the stations under study experienced heat wave conditions
(Table 1). In addition, although Kozani was the station with the lowest T95 percentile value, generally
characterized by a relatively colder climate in comparison to the rest of the stations, it showed the
highest average positive EHF days.

Table 1. Average, maximum and trends of the days with positive EHF values for June, July, August,
and September (JJAS) for the period 1958–2012. All the trends were found statistically significant at the
95% level according to Kendall’s tau test.

Average Positive EHF Days Max. Positive EHF Days Trend Positive EHF Days

Alexandroupoli 23.0 72 (2012) +0.76
Elliniko 21.7 76 (2011) +0.41
Heraklio 18.5 51 (2010) +0.41
Kalamata 22.8 80 (2012) +0.65
Kerkira 21.5 71 (2012) +0.56
Kozani 23.9 77 (2008) +0.79
Larissa 17.9 56 (2012) +0.44
Mitilini 21.0 63 (2007) +0.63
Naxos 22.8 89 (2010) +1.14
Rodos 19.4 50 (2012) +0.34
Samos 21.0 67 (2012) +0.89
Skiros 19.5 52 (2007) +0.41
Souda 17.9 49 (2012) +0.45

Thessaloniki 21.9 63 (2012) +0.58

Moreover, the results regarding the year with the maximum number of days with EHF > 0
indicated that, for all of the stations, they occurred at the end of the examined time period, most of
them being in 2012. It seems that during that year, Greece was characterized, in summer, by very
intense warm conditions that lasted up to 80 days (Kalamata). However, the absolute maximum was
observed in Naxos (89 days) two years earlier (2010). These abnormally hot days tended to become
more frequent throughout the examined period, since positive trends were found in all the stations
ranging from +3.4 days/decade in Rodos to +11.4 days/decade in Naxos (Table 1). The smaller trend
in Rodos could be attributed to the geographical position of the station, in the northwest part of the
island, which is highly influenced by the Etesian winds during the summer. The maximum in Naxos
could also be related to the location of the station, which is more “protected” from the Etesian winds.
Regardless of the trend values, it is worth mentioning that after the application of Kendall’s tau test
at a significance level of 95%, all of them were found statistically significant. This comes as a robust
indication that the days of abnormally increased temperatures do significantly increase during the
examined period and it is not just a random rise (Table 2). This finding encouraged the application of
another statistical analysis, based on the application of the Mann–Kendall t test method [39], in order
to identify breakpoints on the EHF time series. The results from this test are presented in Figure 3.
It can be clearly seen from the normal curve in all stations that the time series of the positive EHF
days present a statistically significant positive trend that exceeds the statistical significance level (95%)
during the last years of the examined period. In addition, according to the criteria of this test [39],
in all stations under study, an abrupt change (breakpoint) of the specific parameter is observed (a clear
”X” shape between the normal and the retrograde curve). The actual year of the breakpoint is not the
same in every station but it can be placed from the mid-90s until the first years of the 21st century.
More specifically, the earliest breakpoint is in Samos (1993) and the latest one is in the Thessaloniki
station (2002) (Figure 3).
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Apart from the examination of the number of days with positive EHF values, the study of the
spells of positive EHF is also included (Table 2). These heat wave spells were classified in four classes
(1st class: 3 to 10 days, 2nd class: 11 to 20 days, 3rd class: 21 to 30 days, and 4th class: >30 days).
In addition, the maximum spell duration was computed in order to provide a magnitude of the most
extreme heat waves in terms of duration.

As expected, the most frequent spells are the ones belonging to the first class, with an average
number of 122.7 spells during the years of study. The most heat waves with 3 to 10 days duration were
found for the Kalamata station (146 spells) followed by the Kozani station (140 spells). These “shorter”
heat waves were less frequent for two stations in the north of Greece, namely, Alexandroupoli and
Kerkira with 106 and 105 spells, respectively. As the duration of the heat waves becomes longer,
their frequency decreases. For the second heat wave class, the highest number of spells was found in
Alexandroupoli and Elliniko (26 spells) and the lowest one was found in Larissa and Souda (15 spells),
whereas for the third class the frequency of the heat waves did not exceed 7 (heat waves with a duration
from 21 to 30 days) which was recorded at the Mitilini station over the eastern Aegean Sea. Regarding
heat waves with a duration longer than 30 days, none were observed in the Heraklio, Larissa, Skiros,
and Souda stations during the 55-year time period. On the other hand, seven (7) such heat waves were
found for the Naxos station in the central Aegean Sea and five (5) were found in Kerkira in the Ionian
Sea. Finally, calculating the maximum heat wave in each station during the examined period, it should
be noted that during the year 2012, Kerkira and Kozani experienced 58 and 57 consecutive days,
respectively, of abnormal hot conditions with positive EHF values. The maximum for this parameter
(the duration of the maximum spell) is found in general over continental stations, over the western
parts of the country, where the Etesian winds lack influence, during the summer months. Conversely,
the minimum is observed for island stations where the sea probably plays an important role in cooling
(temperature drop), especially during the night. It should also be highlighted that for most of the
stations, this extremely long heat wave was detected during the last three years of the study period
(2010, 2011, and 2012), especially the last year. This is in agreement with the general finding that 2012
is considered, on a planetary scale, as one of the warmest years all over the world according to the
World Meteorological Organization (WMO).

Table 2. Number of heat wave spells (consecutive days with EHF values > 0.0) during the study period
1958–2012 for the 14 stations under study.

3–10 Days 11–20 Days 21–30 Days >30 Days Maximum Spell Duration

Alexandroupoli 106 26 5 4 45 days (2012)
Elliniko 127 26 2 1 37 days (2011)
Heraklio 119 21 1 0 30 days (2010)
Kalamata 146 20 2 2 57 days (2012)
Kerkira 105 23 3 5 58 days (2012)
Kozani 140 23 5 1 32 days (2008)
Larissa 117 15 3 0 28 days (2012)
Mitilini 116 20 7 1 32 days (2011)
Naxos 106 19 2 7 57 days (2010)
Rodos 130 20 0 1 33 days (2012)
Samos 124 19 5 1 39 days (2012)
Skiros 134 18 2 0 25 days (2010)
Souda 132 15 0 0 18 days (1999)

Thessaloniki 116 22 5 1 38 days (2012)
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3.2. Examination of the EHF Index in “Capturing” Two Characteristic Heat Waves in Greece

3.2.1. The Heat Wave of the Year 1987

Listed as one of the major natural disasters by Berz [40], the heat wave of the summer of 1987 in
Greece resulted in over a thousand deaths all over the country due to heat strokes, heat exhaustion,
and heart-related conditions [16,30]. As a result, the heat wave of 1987 has been the subject of
several studies, all agreeing that even though higher absolute Tmax values had been recorded before,
the duration of these very intense and severe hot conditions was the main characteristic of this specific
heat wave [29]. Using two physiological discomfort indices, Giles et al. [41] confirmed that this heat
wave was continuous. For nine consecutive days, from 19 to 27 July [29], Tmax values exceeded 40 ◦C
for most areas of Greece [41]; minimum temperatures were also relatively high and the days of the
heat waves were characterized by a rather small diurnal range [29]. Matzarakis and Mayer [30] also
mention that the thermal indices used in their study showed a very high thermal stress on people.
Especially in the case of Athens, each afternoon was considered as “extremely hot” [31] and the heat
wave was found to be more intense in northern Greece, especially in Thessaloniki [31,41].

Because of the above characteristics of the heat wave of 1987, this study now attempted to
investigate if the EHF index was efficient enough to detect the heat wave, to identify it, and to provide
a thorough analysis of this extremely hot summer in Greece. For this purpose, the acclimatization
and the significance indices (EHIaccl and EHIsig) as well as the EHF index were computed during the
month of July 1987 for the 14 stations under study in comparison with the daily Tmean of that month
and the Tmean95 of the reference period 1971–2000 (Figure 4). For all the stations, a gradual increase
of the Tmean daily values was observed, rising above the Tmean95 value from 17 to 18 July. The peak
of these daily values was found during days 25 to 27 of the month, and they dropped again below the
95th percentile at the end of the month (from 29 to 30 July 1987). If the study of the heat wave was
based only on the daily mean temperatures that exceeded the Tmean95, then the duration of the heat
wave would be defined from days 18 to 30 of the month. However, using the EHF index, additional
and more detailed information was provided.

More specifically, EHIaccl began to have positive values much sooner, on 12–13 July, meaning that
the averaged three-day temperature was higher than the recent past, according to the index definition.
This indicated that there was now a lack of human acclimatization to the upcoming warmer conditions,
which could result in an adverse impact on their everyday life and health [12]. Thus, even though the
“actual” heat wave had not started, this rising index (EHIaccl) indicated that humans were not able to
physically adapt to this warming, which could be used as a useful alert for heat wave policy management
measures. The second computed index (EHIsig) turned positive for several days (in general on 20 July).
This was the starting point of the heat wave, since by definition, the EHIsig values should be positive in
order to consider the temperature conditions abnormally hot, higher than the 95th percentile Tmean.
Both the indices dropped below zero (yellow line in Figure 4) at the end of July, either on day 29 or 30
of the month. In most of the stations, these were the same days that the daily Tmean also fell below
the 95th percentile value. Overall, the examination of the combined EHF index showed that the heat
wave of July 1987 started on day 20 of the month (in most of the stations under study) ending on day 30
when the EHF values were again negative. An interesting finding of the application of this index was
that the peak of the heat wave was not placed on the same day that the actual daily mean temperature
values reached their maximum, but one or two days later. In addition, it is worth mentioning that during
this specific heat wave, not only were the temperatures exceptionally high (indicated by the EHIsig) but,
due to the rapid temperature increase, people did not have the chance to acclimatize themselves to these
new “much hotter” conditions (positive EHIaccl), resulting in harmful effects on their health. Moreover,
the previous studies’ finding that the heat wave was more intense in northern Greece was also detected
from the index application that showed higher values for the stations in the northern parts of the country.
It is obvious that the definition and the description of this heat wave using the EHF match the previous
findings, making it a suitable index for the study of heat waves.
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3.2.2. The Heat Wave of the Year 2007

Occurring twenty years after the previous heat wave, the extreme hot conditions experienced
during the summer of 2007 have been the subject of several climatological studies. Greece has
experienced record-breaking temperatures in most of its regions [33] and the most extreme maximum
temperatures appeared during the last days of each of the summer months [24], mainly between days
21 and 29. Theoharatos et al. [42] mentioned that especially in July, the daily Tmax values repeatedly
exceeded 40 ◦C, while the regions where the population experienced discomfort (high discomfort
index (DI) values) were Thessalia, Sterea Ellada, and western Pelloponisos. The impacts of this heat
wave were substantial with an increase in forest fires, changes in the hydrological balance, and large
losses in the agricultural and energy sectors [24,43]. Similarly to the previous paragraph, the three
examined indices were computed on a daily basis during July 2007 in order to evaluate their ability to
capture and describe the extreme temperatures in Greece during that year (Figure 5).

In most of the stations used in this study, the extreme hot conditions seemed to have started from
days 15 to 17 of the month when the daily Tmean exceeded the 95th percentile. However, in most of
the stations, the days approximately from 7 to 10 July also surpassed the Tmean95. According to the
actual index values, the onset of the heat wave was determined one or two days later from the dates
of the Tmean > 95th percentile, 16–18 July, and continued until the end of the month. This was the
starting point where the EHIsig was positive, a necessary condition for the determination of a heat
wave. Regarding the acclimatization index, it started to present positive values on the same dates as
the EHIsig. Yet, in some stations (Souda, Skiros, Naxos, Mitilini, Alexandroupoli, Heraklio, Kalamata),
it went negative sooner than the actual ending of the heat wave. This means, according to Nairn and
Fawcett [12] that in some cases of longer heat waves, there may be some human adaptation to the
extreme hot conditions, decreasing their impact on human health. For example, in the case of Skiros,
EHIaccl dropped below zero on 28 July, whereas the end of the heat wave occurred two days later.
This characteristic of the heat wave, due to its duration, was not observed in the previous heat wave
case (July 1987).

Finally, one of the main issues observed in the computation of the EHF index was its magnitude
which differed substantially from one station to the other. This means that even though all of Greece
experienced heat wave conditions, its intensity varied considerably (Figure 5). The maximum index
values were found for the stations of Kozani, Kerkira, Larissa, and Samos and the lowest ones were
found in Rodos. On the other hand, the findings from all stations were in agreement that the peak
(the highest EHF value) was found either on day 25 or 26 of the month and that the heat wave then
started to wane.
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4. Discussion and Conclusions

The statistical characteristics of the combined heat wave index (excess heat factor (EHF)), as well as
its ability to identify and describe efficiently previously recorded heat waves over Greece, was the main
objective of the present study. Daily maximum and minimum temperature time series from 14 stations
distributed over the geographical Greek region were employed for a 55-year period (1958–2018).
This index introduced relatively recently [34] had, to the author’s knowledge, never been used before
in Greece. Although it was primarily proposed for the monitoring of heat waves in Australia [10,12,34],
it was also used during 2018 for heat wave detection in another Balkan country, Romania [3].

Apart from the fact that it is the first time that the EHF index is being used over the center of
interest, the main reasons for its selection are the following:

• It incorporates not only Tmax but also Tmin values which is an important parameter that should be
taken under consideration especially if the heat wave study is more human-centered. Temperature
rise is undoubtedly related to human health; however, the overnight high temperature impedes
the night discharge and results in excess heat stress and an enhancement of the heat wave
conditions [1,44–46].

• It measures daily temperature values for a three-day period (average) rather than the single
temperature of one day, making it more sensitive to temperature changes as it considers also
previous day conditions. [1].

• The first term of the EHF (EHIsig) provides a measure of the statistical significance of the heating
as it is compared with a fixed percentile value (95th percentile of a defined period which, in this
case, was chosen to be 1971–2000).

• The second term (EHIaccl) compares the examined warm conditions with the recent past (previous
30 days) providing an indication of the people’s acclimatization ability to this unusual heat.
Conversely to the EHIsig, EHIaccl does not change under a general climate-change warming [12].

• Overall, the application of the EHF can provide information both about the statistical
characteristics of a heat wave but also about its effect on humans.

The computation of the EHF index for the period 1958–2012 demonstrated that, during the warm
period of the year (JJAS), Greece experienced approximately 20 days per year with positive anomalous
conditions (EHF > 0) with no discrepancies worth mentioning among the stations. In addition,
these days tended to become more frequent (with positive statistically significant trends for all stations
under study), agreeing with the general consideration of an increase in extreme hot events in the
future over the Mediterranean [20]. The years that had the largest number of days with positive
EHF values were the last ones of the time period used (2007 to 2012). Up to 89 days in Naxos,
for 2010, were observed, where it seemed that most days of the summer season were characterized as
abnormally hot.

However, since, according to Perkins and Alexander [1] a heat wave is defined when at least
three or more consecutive days have positive anomalies, the spells of these days were also computed
according to the index values. The selected stations presented an average of 128 spells with a duration
of 3 to 10 days during the examined 55-year period. As the duration of the spell was extended,
their frequency lessened. Four stations, mainly island ones, did not present any heat waves longer than
30 consecutive days, whereas others such as Kozani and Kerkira which are located at the northwestern
part of Greece experienced an intense heat wave in 2012 lasting 58 and 57 days, respectively.

Apart from the significant insight into the heat wave statistical characteristics obtained from
the EHF, an attempt was made in the study to assess its ability to record previous heat waves since
the index was primarily introduced for another area with very different climatic characteristics from
Greece. After its application to the daily temperature data for July 1987 (one of the most intense heat
waves recorded in Greece), it was found that the index identified very efficiently both the duration
and the intensity of the heat wave. In addition, the acclimatization index showed that the heating
conditions were quite rapid, not allowing people to adapt to them a few days earlier than the defined
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start of the heat wave. The index was also able to capture the fact that the heat wave was more intense
in the northern parts of the country where the EHF values were higher. Conversely, regarding the
second heat wave case of July 2007, the computation of the EHF index made it clear that the heating
conditions had a different intensity level over Greece since its values differed substantially among
the stations. Moreover, the lack of human acclimatization started in this case on the same dates as
the beginning of the main heat wave event (a few days of positive value index were also observed
during the first days of July). However, the EHIaccl turned negative, for several stations, before the end
of the heat wave, meaning that people started to adapt to these extreme conditions due to the longer
duration of this specific heat wave.

Overall, the main conclusion of this study is that the EHF index applies not only to the detection
and analysis of heat waves in Greece, but it also provides information about the conditions that may
or may not have an impact on human health and well-being. Future work includes plans to examine
other years which, according to the EHF, seemed to have been extremely hot with extended heat waves
such as in the year 2012.
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Abstract: This paper assessed the current and mid-century trends in rainfall and temperature over the
Mono River watershed. It considered observation data for the period 1981–2010 and projection data
from the regional climate model (RCM), REMO, for the period 2018–2050 under emission scenarios
RCP4.5 and RCP8.5. Rainfall data were interpolated using ordinary kriging. Mann-Kendall, Pettitt
and Standardized Normal Homogeneity (SNH) tests were used for trends and break-points detection.
Rainfall interannual variability analysis was based on standardized precipitation index (SPI), whereas
anomalies indices were considered for temperature. Results revealed that on an annual scale and
all over the watershed, temperature and rainfall showed an increasing trend during the observation
period. By 2050, both scenarios projected an increase in temperature compared to the baseline period
1981–2010, whereas annual rainfall will be characterized by high variabilities. Rainfall seasonal cycle
is expected to change in the watershed: In the south, the second rainfall peak, which usually occurs in
September, will be extended to October with a higher value. In the central and northern parts, rainfall
regime is projected to be characterized by late onsets, a peak in September and lower precipitation
until June and higher thereafter. The highest increase and decrease in monthly precipitation are
expected in the northern part of the watershed. Therefore, identifying relevant adaptation strategies
is recommended.

Keywords: Mono River watershed; trend analysis; climate

1. Introduction

Modifications in the climate as a result of both natural and anthropogenic processes have raised
considerable concerns (such as more frequent and intense rainfall, droughts, dry spells, violent winds,
etc.), as they induce adverse impacts on several development sectors [1].

In recent decades, weather and climate extremes such as droughts, heat waves, wild fires, floods
and storms have increased in frequency and intensity in several regions of the world. In fact, Vincent
et al. [2] noticed that the percentage of warm nights is increasing while that of cold nights is decreasing
in South-America. In addition, the US Climate Change Science Program underscored the fact that
heavy precipitations have become more frequent and intense in Northern America [3]. In central
Asia, Savitskaya [4] reported that, during the last 50 years, there was high variability in the pattern of
precipitation, whereas winter has become warmer in the entire region.
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Furthermore, in tropical Africa a significant increase in temperature, about 0.15 ◦C per decade,
was detected over the period 1979–2010 [5]. Consequently, high fatality rates are recorded in
developing countries because of their high reliance on natural resources and their limited coping
capacities [6]. Several authors highlighted that, since the 1970s, the number of natural disasters
(flood, drought, windstorm, epidemic and famine) has been increasing in sub-Saharan Africa [7–9].
In 2012, central and western Africa were hit by severe floods which affected 1,538,242 people and
caused 340 deaths as of September of that year. Moreover, flood events of 2010 have been recorded in
West Africa as one of the most disastrous during the last decade. In 2010 only, Benin lost about USD
262 million [10], whereas Togo recorded about USD 43.934 million as damage and loss in the same
year [11].

Thus, there is a need to carry out future climate analysis in order to foresee potential hazards
and ultimately to develop appropriate strategies to combat them. According to the fifth assessment
report AR5, “global surface temperature change for the end of the 21st century is likely to exceed
1.5 ◦C relative to 1850–1900 for all RCP scenarios except RCP2.6” [12]. However, it is clear that
climate-change impacts will be time and location specific [13]. Therefore, undertaking climate
projection at regional and local level will contribute to more accurate and relevant actions towards
human security.

As in many other watersheds in the world, climate trend analyses have been carried out in the
Mono watershed [14–18]. Ntajal et al. [18] noted that, over the period 1961–2013, at local scale, there
is a significant decreasing trend in rainfall at the station of Sokode (upstream), while an insignificant
increase in rainfall is observed in the downstream (Atakpame, Sotouboua, Aklakou and Tabligbo).
The same assessment was conducted by Amoussou [15] for the period 1961–2000 using a cubic
spatial interpolation for rainfall data in the watershed. The results showed an overall decreasing
trend of rainfall. So far, however, there are few climate related studies which have addressed future
climate projection in the Mono River watershed, despite the fact that people living at the downstream
usually experience flood events during rainy seasons. The divergence noted among the results of
previous studies makes it important to keep assessing climate trend in the watershed, mainly over a
recent period. Therefore, this study aims at assessing current and future climate change in the Mono
River watershed.

2. Materials and Methods

2.1. Study Area

The Mono River watershed occupies an area of 27,822 km2 shared between two West-African
countries, Togo and Benin. Specifically, it is located between the latitudes 06◦16′ N and 09◦20′ N,
and the longitudes 0◦42′ E and 2◦25′ E (Figure 1). The major part of the basin lies in Togo’s territory,
totaling 21,750 km2, whereas that of Benin stretches to 6072 km2. The river serves as natural border
between the two countries in the southern part. The climate is tropical (two rainy seasons and two
dry seasons) downstream and subequatorial (one rainy season and one dry season) upstream.
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Figure 1. Location of Mono watershed and considered rain gauges.

2.2. Data Used

Both observation and projection data were used. Daily observed rainfall and temperature were
collected from meteorological institutes of Benin and Togo (DMN, Direction de la Météorologie
Nationale) for the period 1981–2010. That period is the current normal used for climatological analysis,
and this study aims at taking it into account, as previous studies have already accounted for other
normals [15,17,18]. As presented by Figure 1, rainfall data were collected at 24 rain gauges within and
around Mono watershed (not farther than 25 km). As for temperature data, they were collected from
three synoptic stations located in the watershed: Tabligbo, Atakpamé and Sokodé.

Projected data were provided by the regional climate model (RCM), REMO (Table 1). Rainfall and
temperature data were extracted for the period 2018–2050 and under two representative concentration
pathways: RCP4.5 (intermediate pathway) and RCP8.5 (most extreme pathway). Akinsanola et al. [19]
have already noticed that REMO fairly simulates rainfall in West Africa and concluded that it can
be used for future climate projections in the region. However, the use of a multi-model ensemble
approach (more than one model) is recommended in order to better estimate the actual climate and
improve the robustness of climate change projections [20–22].
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Table 1. Characteristics of the regional climate model (RCM), REMO.

Model Name Institute Driven Model

REMO2009
Helmholtz-Zentrum Geesthacht,

Climate Service Center, Max
Planck Institute for Meteorology

Max Planck Institute—Earth
System Model running on low
resolution grid (MPI-ESMLR)

These data were accessed online (https://www.cordex.org) in the context of the Coordinated
Regional Climate Downscaling Experiment (CORDEX) over Africa at 0.44◦ resolution.

2.3. Methods

2.3.1. Trend Analysis

Trends and breakpoints were assessed using the non-parametric test of Mann-Kendall first,
followed by the Pettitt and SNH tests The Mann-Kendall test is used in order to establish whether
there is a trend (increasing or decreasing) in the time series. It is done with a confidence level of 95%,
and the hypotheses are:

H0: there is no trend in rainfall time series;
H1: there is a trend in rainfall time series.

For both Pettitt and SNH tests, significance level α = 0.05, and the hypotheses are:

H0: there is no change in annual rainfall data;
H1: there is a date at which there is a change in the data.

Moreover, in order to assess the trend of annual rainfall at watershed scale, and because rainfall
data are not measured in every single grid of the watershed, spatial interpolation was required.
In the scope of this study, ordinary kriging (OK) was chosen over other methods—such as arithmetic
mean, Thiessen polygon, inverse distance weighting—because (i) it takes into account not only the
distance between observation stations and estimation point but also the distance between stations
taken two by two; (ii) it is a stochastic method which provides the best linear unbiased predictions;
(iii) the interpolation error can be estimated [23]. Nonetheless, one of the limitations of kriging is that it
is not suitable when there are few observation points. Kriging was basically developed for geostatistics
purposes [24] but is widely used in climatology. It is worth noting that the ‘backbone’ of kriging is
the variogram which explains the variance of the studied variable with respect to distance between
observation points. Equation (1) presents the formula of variogram

G(h) =
1

2N(h)

N(h)

∑
i=1

(z(pi)− z(pi + h))2, (1)

where G(h) is the variogram, N(h) the number of coupled points separated by the distance h, z(pi) the
observed rainfall at location pi, and z(pi + h) the observed rainfall at location pi + h.

Furthermore, considering the fact that rainfall regime in Mono watershed is not homogenous,
rainfall trend analysis is carried out with respect to three latitude-based regions, as done in previous
studies [15,18]. The regions are defined as follows: latitude < 7, 7 ≤ latitude ≤ 8 and latitude > 8.
Hereinafter, these regions are respectively referred to as southern part, central part and northern part
of the Mono watershed.

Analysis of temperature trends over the watershed was conducted on the arithmetic mean from
the stations of Tabligbo, Sokodé and Atakpamé.
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2.3.2. Interannual Rainfall Variability Analysis

The standardized precipitation index (SPI) [25] is a tool recommended by the World
Meteorological Organization (WMO) and widely used for quantifying the precipitation deficit over
different timescales (3 to 48 months). For the selected timescale, rainfall records are fitted with a
probability distribution which is then transformed into a normal distribution so that the mean SPI
for the location and desired period is zero. Hence, this method improves the common anomaly
method (Equation (2)), which does not take into account the fact that rainfall is typically not normally
distributed for a cumulative period of 12 months or less.

I(i) =
xi − xm

σ
, (2)

where I(i), xi, xm and σ are respectively the standardized index of year i, the value for the year i, the
average and the standard deviation of the time series.

In the present study, the SPI 12 (for 12 month’s timescale) is used to assess rainfall deficit or excess
on a yearly basis. Moreover, SPI 12 is the one recommended for watershed analysis [26]. Table 2
presents the guidelines for analyzing SPI values [25,26].

Table 2. Standardized precipitation index (SPI) values and their meanings.

SPI Value Meaning

2.0 and plus Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet

−0.99 to 0.99 Near normal
−1 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry
−2 and less Extremely dry

2.3.3. Future Climate Analysis

Raw outputs from RCMs must be corrected prior to local impact studies because of the bias
they encompass. There are several bias correction methods but in this study, the methods of
delta, linear scaling and empirical quantile mapping (EQM) are used because they have produced
satisfactory results in previous studies carried out in similar climatic regions [27–29]. The results of
Ntcha M’po et al. [27], Essou and Brissette [30] and Speth et al. [31], who bias-corrected REMO data
in the Ouémé watershed (Benin), guided the choice of correction methods in this study. Rainfall was
corrected with delta method in the south, multiplicative scaling in the central part and EQM in the
north. As for temperature data, they were corrected using only EQM.

2.3.4. Percentage of Relative Change in Rainfall Seasonal Cycle

It is computed using Equation (3).

Pc,m =
Rproj,m − Robs,m

Robs,m
× 100 (3)

where, Pc,m, Rproj,m and Robs,m are respectively the percentage of change for mth month, average
projected rainfall for month m, and the average rainfall of month m during observation period.
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3. Results and Discussion

3.1. Trends and Interannual Variability in Rainfall

3.1.1. Present Rainfall Pattern

The pattern of monthly rainfall varies from one part of the watershed to the other. The southern
and northern parts are respectively characterized by bimodal and unimodal rainfall regime, whereas,
a transitory (neither bimodal nor unimodal) regime was found in the central region (Figure 2).

Figure 2. Rainfall seasonal cycles in Mono watershed.

In the south, two peaks are respectively recorded in June and September, while the unique peak
in the northern part occurs in August. On the other side, the rainy season in the central part lasts
from March to September. These results are in line with previous research findings [15,17,18]. Thus,
the bimodal or unimodal characteristics of the precipitation regime seem not to change over the recent
periods compared to the historical period.

The results of the Mann-Kendall test (Table 3) underscored the fact that rainfall in the three regions
of Mono watershed had an increasing trend during the period 1981 to 2010.

Table 3. Results of break-point detection and Mann-Kendall test on observed rainfall.

Region
Break-Point Detection Mann-Kendall Test

Tests Break-Point p-Value p-Value Sen’s Slope

South
Pettitt 2001 0.0695

0.0022 9.99SNH 2001 0.0497

Centre
Pettitt 1987 0.3113

0.0385 7.56SNH 1983 0.0217

North
Pettitt 1987 0.0952

0.0295 6.49SNH 1983 0.0025

As presented in Table 3 and Figure 3, the SNH test detected break points in the time series while
the Pettitt test did not.
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The change noted in the center and the north may be related to the well-known 1970s and 1980s
droughts which affected many West-African countries and was documented by several authors such
as Le Barbé and Lebel [32], Le Barbé et al. [33] and Le lay and Galle [34].

Figure 3. Standardized Normal Homogeneity (SNH) test on observed annual rainfall time series in the
south (a), center (b) and north (c).

Figure 4 presents the results of the SPI computation.
According to the baseline period, the longest dry period is 1981–1986 in the south, 1981–1983

in the central part and 1981–1984 in the north. In addition, the driest year is 1992 in the south,
and 1983 for both the center and north. As for years of highest excess, it is 2010 in the south and
1995 in central and northern parts. It is worth noting that, in the three regions, the longest dry period
falls in the 1980s drought events. After this specific period no extreme drought occurred (except in
1992 in the south), and there were more years above normal than below. Overall, the period after
1990 is characterized by more wet years, and it explains the trends highlighted by statistical tests
performed above. Similar results have been reported in other watersheds in West Africa by several
authors, such as Adeyeri et al. [35] in Komadugu-Yobe basin, Nicholson et al. [36] over West Africa,
Ozer et al. [37] over the Sahelian region, and by Lawin [38] and Attogouinon et al. [39] in the upper
Ouémé river valley. However, this shift to wetter condition is region dependent, because other studies
reported a decreasing trend in rainfall patterns over West-Africa [40,41].
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Figure 4. Standardized precipitation index of observed annual rainfall in the south (a), center (b) and
north (c).

3.1.2. Future Rainfall Pattern

The results of break-point detection and the Mann-Kendall test performed on annual rainfall
under RCP4.5 and RCP8.5 are summarized in Table 4.

The results of homogeneity tests and the Mann-Kendall test suggest that, all over the watershed,
there is neither break-point nor a linear trend in annual rainfall time series, under emission
scenarios RCP4.5 and RCP8.5. Statistically, rainfall time series are homogenous and present no
trend. Nonetheless, some variabilities are observed. Specifically, in the northern part and for RCP8.5,
rainfall might decrease by 2035 and increase thereafter. The increase in annual precipitation over recent
decades in Mono river watershed seems not to be maintained in the future. Future pattern of rainfall
may be marked by high variabilities. Such an absence of significant trend in rainfall is also reported by
N’Tcha M’Po et al. [40] in Ouémé river basin by 2050, using a REMO model. Similarly, Lawin et al. [42]
reported no trend in rainfall pattern in the Imbo north plain region in Burundi under central Africa
climatology using an ensemble of eight regional climate models.
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Table 4. Results of break-point detection and Mann-Kendall test on annual rainfall under RCP4.5 and
RCP8.5.

Scenario Region
Break-Point Detection Mann-Kendall Test

Result Break-Point p-Value p-Value Sen’s Slope

RCP4.5

South
Pettitt test 2021 0.621

0.914 −0.097SNH test 2049 0.942

Center
Pettitt test 2033 0.346

0.285 2.293SNH test 2033 0.525

North
Pettitt test 2031 0.129

0.091 4.427SNH test 2031 0.155

RCP8.5

South
Pettitt test 2029 0.0731

0.588 −1.510SNH test 2024 0.842

Center
Pettitt test 2029 0.673

0.653 −1.341SNH test 2029 0.712

North
Pettitt test 2041 0.324

0.394 3.296SNH test 2041 0.104

The SPI computed for each region emphasizes this variability (Figure 5).
Under RCP4.5, the number of projected deficit years in the watershed increases slightly from

south to north. The years 2020 and 2024 are projected to be extremely wet in the south, whereas
2031 is expected to be extremely dry in the north. However, under RCP8.5, the projected number
of deficit years decreases from south to north. The year 2033 is projected to be extremely dry in the
north, and again, years 2020 and 2024 for this scenario are expected to be extremely wet in the south.
The agreement of both scenarios for years 2020 and 2024 shows that those years will potentially be
characterized by extreme precipitations. Furthermore, from south to north, RCP8.5 projects more
extremely wet years than RCP4.5.

Furthermore, the pattern of the seasonal cycle of rainfall is expected to undergo some
modifications. In the southern part (Figure 6a), rainfall seasonal cycle is projected to keep its bimodal
pattern under RCP4.5 and RCP8.5. In addition, both scenarios project almost the same pattern. As in
the normal period, the first peak is recorded in June but with a slightly lower amount. The second
peak, which normally occurs in September, is expected to extend to October with a higher value.

In the central and northern parts (Figure 6b,c), and under RCP4.5 and RCP8.5, the rainfall
regime is projected to be characterized by late onsets and lower precipitation until June, compared to
observations, and higher thereafter. Both scenarios converge on the fact that rainfall peak will probably
occur in September. The northern part is expected to keep its unimodal pattern under both scenarios,
whereas a shift from a transitional regime to a unimodal one is expected in the central region.

Projected future rainfall regimes under the two scenarios are quite similar, apart from in August,
where RCP4.5 predicted a slightly larger amount than RCP8.5, and an inverse proportion was predicted
in June

Moreover, on a monthly scale, Figure 7 depicts how the rainfall seasonal cycle is expected to
change under RCP4.5 and RCP8.5 compared to the baseline period.

Under RCP4.5, the relative change in monthly rainfall varies from −5.5% to 8.4% in the southern
part, −29.9% to 22.2% in the central part and −39% to 91.4% in the northern part. For RCP8.5,
the expected change ranges from −3.5% to 5.8% in the southern part, −55% to 20% in the central
part and −64% to 85.9% in the northern part. Therefore, the biggest changes (both increase and
decrease) in monthly rainfall are expected in the northern part of the watershed, regardless of the
scenario considered. According to RCP4.5 and with respect to the observation period, the highest
rainfall decrease during the period 2018–2050 is expected to occur in February, whereas January and
November will record the highest increases.

181



Climate 2019, 7, 8

 

Figure 5. Standardized precipitation index of annual rainfall under RCP4.5 (left panel) and RCP8.5
(right panel).
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Figure 6. Seasonal cycles of rainfall in the south (a), center (b) and north (c) under RCP4.5 and RCP8.5.

Figure 7. Expected change in rainfall seasonal cycles under RCP4.5 (a) and RCP8.5 (b).

Under RCP8.5, the highest decrease is projected to affect rainfall in February, whereas the highest
increase is expected in November. Thus, the two scenarios project more than 70% increase of rainfall in
the month of November by 2050, compared to the observation period. In addition, the highest increase
is projected by RCP4.5 and the highest decrease by RCP8.5. Globally substantial changes are expected
prior to and at the end of rainy seasons.

3.2. Temperature Trend

3.2.1. Present Temperature Change

The two homogeneity tests performed on annual temperature revealed the presence of break-point
in the time series (Figure 8).
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Figure 8. Pettit test (a) and SNH test (b) performed on annual temperature over the period 1981–2010.

The Pettitt test indicates that since 1996 mean annual temperature has increased by 0.51 ◦C in
Mono watershed compared to the period 1981–1995, whereas the results of the SNH test implies
an increase of 0.52 ◦C from the period 1981–1996 to 1997–2010. In addition, the Mann-Kendall test
suggested a significant increasing trend (p-value = 3.457 × 10−6 and τ = 0.6).

Anomalies computation revealed that, from 1981 to 1997, temperature was globally below and
near normal, but since 1998 it has stayed above the normal (Figure 9).

Figure 9. Anomaly of mean annual temperature in Mono watershed.

It therefore corroborates the outputs from homogeneity tests. In addition, these results are
in line with previous studies which noted similar increasing trend of temperature in West Africa
(Badjana [43] in the Kara river basin of Togo, Kabo-Bah et al. [44] in the Ghana part of Volta river basin,
Oguntunde et al. [45] at Ibadan and Collins [5] over the West-African region).
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3.2.2. Future Temperature Change

Under RCP4.5, the homogeneity tests detected break-points at different dates, but they got an
agreement under RCP8.5 (Figure 10). Under the intermediate scenario, the Pettitt test indicated that,
from the period 2018–2031 to 2032–2050, temperature may increase by 0.36 ◦C. On the other side, SNH
test projected an increase of 0.39 ◦C from 2018–2027 to 2028–2050. For the high pathway scenario, both
tests agreed on an increase of 0.87 ◦C from the period 2018–2038 to 2039–2050.

 

Figure 10. Pettitt test (upper panel) and SNH test (lower panel) performed on temperature under
RCP4.5 and RCP8.5.

Regardless of the scenario used, an overall significant increasing trend in temperature is expected
by 2050 (Table 5).

Figure 11 depicts anomalies of temperature under RCP4.5 and RCP8.5.
For both emission scenarios, the number of years above normal is higher compared to the number

of years below normal. Therefore, future climate in Mono river watershed is projected to be warmer
by 2050. Such an increasing trend by 2050 has been reported by Nelson et al. [46] in Togo. Similarly,
Oyerinde [47] reported a consistently increasing trend in temperature over the Niger River Basin, 5% to
10% under RCP4.5 and 5% to 20% under RCP8.5, using an ensemble model from eight regional climate
models. In the Massili basin of Burkina Faso, Bontogho [29] reported an increase in temperature by
1.8 ◦C (RCP4.5) and 3.0 ◦C (RCP8.5) from 1971 to 2050 using the regional model HIRHAM5. Badou [48]
reported a temperature increase of up to 0.48 ◦C under RCP4.5 and up to 0.45 ◦C under RCP8.5 using
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the REMO model in the Benin part of Niger River basin. Overall, all models and scenarios considered
by several authors converge to a moderate to high increase of temperature all over the world.

Table 5. Results of Mann-Kendall test on annual temperature under RCP4.5 and RCP8.5.

Scenario
Break-Point Detection Mann-Kendall Test

Result Break-Point p-Value p-Value Sen’s Slope

RCP4.5
Pettit test 2031 0.0039

0.0003 0.017SNH test 2027 0.0103

RCP8.5
Pettitt test 2038 0.0082

0.0009 0.028SNH test 2038 0.0029

 
(a) (b) 

Figure 11. Temperature anomaly under RCP4.5 (a) and RCP8.5 (b).

4. Conclusions

This paper examined the trend in annual rainfall and annual temperature of Mono river watershed
over the observation period 1981–2010 and by 2050 using the regional model REMO under RCP4.5 and
RCP8.5. It also assessed the monthly pattern of rainfall over the same periods. During the last three
decades, rainfall and temperature have been increasing all over the Mono River watershed. By 2050
and under emission scenarios RCP4.5 and RCP8.5, annual rainfall is projected to be characterized by
high variability, whereas a significant increasing trend is projected for annual temperature (warmer
future climate). For each of the three defined regions (south, center and north), and under both
emission scenarios, the seasonal cycle of rainfall is expected to change: In the southern part, the first
peak is projected to reduce slightly, whereas the second peak is expected to increase and shift to
October; however, in the central and northern parts, it is expected that there will be late onset of
rainfall and higher peaks. In addition, the seasonal cycle of rainfall in the central part is expected to
shift from a transitional regime to a unimodal one. Moreover, on a monthly scale, the northern part
of the watershed is expected to record the highest increase and decrease in rainfall regardless of the
emission scenario considered. These considerable changes in the monthly rainfall of the northern part
are expected to occur globally in the dry season, thus indicating potential extreme events. Considering
the projected trends and patterns for rainfall and temperature over Mono watershed by 2050, it is
recommended that experts identify and implement relevant adaptation strategies.
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Abstract: Climate change is anticipated to influence future wildfire activity in complicated, and
potentially unexpected ways. Specifically, the probability distribution of wildfire size may change
so that incidents that were historically rare become more frequent. Given that fires in the upper
tails of the size distribution are associated with serious economic, public health, and environmental
impacts, it is important for decision-makers to plan for these anticipated changes. However, at least
two kinds of structural uncertainties hinder reliable estimation of these quantities—those associated
with the future climate and those associated with the impacts. In this paper, we incorporate these
structural uncertainties into projections of very-large fire (VLF)—those in the upper 95th percentile
of the regional size distribution—frequencies in the Continental United States during the last half
of the 21st century by using Bayesian model averaging. Under both moderate and high carbon
emission scenarios, large increases in VLF frequency are predicted, with larger increases typically
observed under the highest carbon emission scenarios. We also report other changes to future wildfire
characteristics such as large fire frequency, seasonality, and the conditional likelihood of very-large
fire events.

Keywords: mega-fires; Bayesian-model averaging; model uncertainty; climate-fire models

1. Introduction

Although representing only a small fraction of the total number of fires, very-large fires (VLFs)
are events often associated with dramatic economic, human health, and environmental risks that are
unlike most other wildfires. The most salient and immediate economic impacts are suppression costs
and property losses (Barrett 2018, [1]), which are often relatively large in VLFs compared to other
smaller events (González-Cabán 1983 [2], Stephens et al., 2014 [3]). In addition to these direct costs,
there is a suite of indirect economic impacts—such as damages from post-fire hazards, rehabilitation
costs, lost tax and business revenue from community evacuations (Dale 2009 [4])—that are increasingly
probable and costly in larger wildfires (Neary et al., 2003 [5], Peppin et al., 2011 [6], Beverly and
Bothwell 2011 [7], Beverly et al., 2011 [8]). VLFs have the potential to burn large areas of vegetation
and emit tremendous quantities of smoke within a short duration of time, which can adversely
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impact air quality for months at a time (Stephens et al., 2014 [3]), even at long distances from any
active burning (Forster et al., 2001 [9], Val Martin et al., 2013 [10]). The large areas of active burning
and sudden increase in air pollutants pose numerous risks to public health (Reid et al., 2016 [11])
and safety (Achtemeier 2009 [12], Stephens et al., 2014 [3]); and hospital admissions and treatment
costs are expected to increase during VLFs (Moeltner et al., 2013 [13]). Although there are some
ecological benefits of fire, VLFs have also been associated with significant, deleterious, and sometimes
irreversible environmental changes. These include the production of environmental conditions
conducive to the establishment of invasive species (Crawford et al., 2001 [14]), loss of ecosystem
services (Rocca et al., 2014 [15]), and long-term modifications to forest structure (Haffey et al., 2018 [16]).
Given the disproportionate costs VLFs pose to economic, social and environmental values, there is a
broad need across disciplines, to better understand patterns and trends of their occurrence to mitigate
future hazards. There is even greater urgency for this given that multiple lines of evidence suggest that
VLF frequency has increased (Williams 2013 [17], Dennision et al., 2014 [18], Barbero et al., 2014 [19])
and will continue to increase into the future (Stavros et al., 2014 [20], Barbero et al., 2015 [21]). Still,
there are several challenges to obtaining reliable predictions of future wildfire activity, many of which
are related to various kinds of scientific unknowns or uncertainties. These uncertainties can come from
many sources (Chen et al., 2018 [22]) and can be associated with a particular quantity of interest—what
will the future frequency of very-large fire events be?—or associated with model structures—how
are environmental conditions related to very-large fire frequency? The latter is referred to as model
or structural uncertainties, which can have significant effects on the conclusions one draws from an
analysis (Morgan et al., 1992 [23], Syphard et al., 2018 [24]). In the context of forecasting future wildfire
activities, these structural uncertainties can arise from the selection of vegetation models (Sitch et al.,
2008 [25], Syphard et al., 2018 [24]), assumed anthropogenic effects (Westerling et al., 2011 [26]), as well
as greenhouse gas emmissions and their effects on the environment.

Structural uncertainties associated with the characteristics of the future environment are
commonly accounted for in long-term climate impact studies through the use of multiple General
Circulation Models (GCMs). Each GCM predicts climatological responses based on unique
assumptions regarding chemical and physical interactions between a suite of factors including land,
water, atmosphere, and the cryosphere. These models can be used to forecast future climate by
forcing the models to observe historical atmospheric conditions and running the models forward
using representative concentration pathways (RCPs) as plausible carbon emission scenarios. There
are four future RCP scenarios, which are labeled RCP 8.5, RCP 6, RCP 4.5, and RCP 2.6; each assumes
various levels of fossil fuel use and economic activity. The suffix labels correspond to the approximate
2100 radiative forcing levels. For instance, the high-emission (RCP 8.5) scenario corresponds to an
approximate radiative forcing increase of 8.5 W/m2 by 2100 compared to pre-industrial conditions.
Since the choice of GCM and RCP can be thought of as competing plausible models of the future
environment, and the precise climatological response and quantities of greenhouse gases that will be
emitted and sequestered prior to 2100 are unknown, it makes sense to interpret them as structural
uncertainties (Taylor et al., 2012 [27]).

In addition to the structural uncertainty arising from relating greenhouse gas emission scenarios
to climatological impacts, structural uncertainty further arises when relating climatological variables
to an impact of interest. In the context of fire, these relationships could include weather patterns
such as temperature, precipitation, atmospheric moisture, winds, and clouds. Identifying and
describing the relationship between these variables and VLFs is an immensely complex and
subjective process, as there can be many competing hypotheses. For instance, temperature controls
landscape flammability, is associated with thunderstorm activity and by extension ignition frequency
(Flannigan et al., 2009 [28]), mediates tree mortality through drought (Allen et al., 2010 [29]) and insect
pests (Bentz et al., 2010 [30]), and influences the length of the snow-free season (Westerling 2016 [31]).
Additionally, the timing and amount of precipitation can also influence wildfire behavior in parallel
with temperature by controlling the availability of fine fuels (Meyn et al., 2007 [32]), fuel moisture
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(Flannigan et al., 2016 [33]), and distribution of flammable species (Bradley et al., 2016 [34]). Multiple
weather variables may adequately measure a common phenomenon associated with wildfire risk, such
as drought (Zargar et al., 2011 [35]), resulting in highly correlated covariates that when utilized in
wildfire risk prediction, produce models with near-identical goodness-of-fit. Hence, although statistical
models can be a useful tool for representing and identifying the relative importance of relationships
between the environment and fire, they are still only approximations to reality. Confounding of
unmeasured variables like vegetation management (Holsinger et al., 2016 [36]) may influence the
predicted importance of some weather variables, which can make model selection challenging. In
some cases, the same suite of covariates can be used to make predictions with multiple mathematical
representations (Mallick and Gelfand 1994 [37]), presenting an additional level of uncertainty that is
easily overlooked. Given the frequency with which we face structural uncertainties when modeling
highly complex phenomena like wildfire, it is extremely risky to select any single model as an
approximation of this phenomena, and a more robust approach should explore results from multiple
models (Morgan et al., 1992 [23], Littel et al., 2011 [38]).

Bayesian model averaging is flexible and a commonly used method of accounting for structural
uncertainties like these, lessening many of the risks of traditional model selection techniques and
improving performance across a variety of metrics (Raftery and Zheng 2003 [39]). Within this
framework, model weights, which are assumed to be uncertain, are used to combine covariates or
predictions from multiple sources into a single probability distribution. The uncertainties in the model
weights are represented using the posterior, which is a probability distribution representing the belief in
the model parameters conditional on the observed data. While posteriors provide a natural framework
for interpreting uncertainties, in practice, closed form expressions of the posterior are non-trivial and
direct calculation is often impossible. Hence, simulation methods like Markov Chain Monte Carlo
are typically used to generate samples from the distribution, which are in turn used to approximate
the quantities that are of interest to the analyst (Fragoso et al., 2018 [40]). Computational barriers to
Markov Chain Monte Carlo techniques have diminished greatly since they were first introduced, and a
range of recently developed software options such as JAGS (Plummer 2003 [41]), Stan (Carpenter et al.,
2017 [42]), and Integrated Nested Laplace Approximations (Rue et al., 2009 [43]) have facilitated the
application of these methods in novel and previously infeasible contexts (Monnahan et al., 2017 [44]).

Hence, in this paper, we account for both kinds of structural uncertainty—uncertainty from the
climate models and uncertainty from the choice of VLF models—using Bayesian model averaging to
generate predictions of event frequency in the last half of the 21st century in the Continental United
States. In Section 2, we present the methods used to produce robust predictions of future wildfire
activity using GCMs and multiple fire occurrence models. In Section 3, the results of this analysis are
available and demonstrate that increases in VLF activity should be expected in many regions in the
Continental United States at the end of the century. In Section 4, we close the paper with a discussion
of the implications of this analysis to decision-makers and researchers.

2. Methods

2.1. Fire Occurrence Data

Data from the Monitoring Trends in Burn Severity (MTBS) project [45] , which describes individual
fire size and severity based on changes in satellite imagery, are used to measure monthly fire occurrence.
The original dataset included all detected fire events within the continental United States for the
years 1984–2015 and is further filtered to remove all events 404 hectares or smaller, or that were
non-wildfire. The filtered data are grouped into 18 regions with broadly similar climate and vegetation
characteristics using a geospatial dataset of ecosystem divisions (Figure 1, Bailey 2016 [46]). For each
region, two binary time series were constructed: one representing large fire (LF) occurrence, and
another representing very-large fire (VLF) occurrence. The LF occurrence time series, XLF,t, reports
“1” if at least 1 event of at least 404 hectares is recorded during that month; otherwise, it reports
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“0”. The VLF occurrence time series, XVLF,t, records “1” if at least 1 VLF—one that exceeds the 95th
percentile of the region’s filtered MTBS burn area records (Table 1)—is recorded during that month and
region; otherwise, it reports “0”. The Marine Division had one fire event and the Subtropical Regime
Mountain had no VLF events during 1984–2005, and both were dropped from further consideration,
yielding a total of 16 independent ecoregional analyses. All of the time series are split into a tuning
dataset (1984–2005) and a training dataset (2006–2015).

Figure 1. Map of multi-model mean temperature changes between 1955–2005 and 2050–2099 over
the relevant Bailey’s divisions under the representative concentration pathway (RCP) 4.5 (top) and
RCP 8.5 emission scenarios (bottom). Regions with insufficient fire occurrence data for analysis are
colored white.
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Table 1. Very-large fire cutoffs, the number of fires, large fire months, and very-large fire months for
two time periods: 1984–2005 and 2006–2015.

Domain Division 95th Size Percentile (ha)
Total # of Fires # of Large Fire Months # of Very-Large Fire Months

’84-’05 ’06-’15 ’84-’05 ’06-’15 ’84-’05 ’06-’15

Dry

Temperate Desert (TD) 16,007 1623 833 119 55 22 19

Temperate Desert
Regime Mountains

(TDRM)
11,765 121 78 52 31 5 4

Temperate Steppe (TS) 11,664 464 347 119 70 13 13

Temperate Steppe
Regime Mountains

(TSRM)
19,853 798 541 101 56 14 13

Tropical/Subtropical
Desert (TSTD) 11,616 365 254 94 57 10 9

Tropical/Subtropical
Regime Mountains

(TSTRM)
13,169 168 143 71 45 7 7

Tropical/Subtropical
Steppe (TSTS) 10,243 388 546 126 79 10 16

Temperate

Hot Continental (HC) 6180 267 75 67 41 11 2

Hot Continental
Regime Mountains

(HCRM)
4586 169 45 30 27 4 1

Marine Regime
Mountains Redwood

Forest Province
(MaRM)

21,776 136 130 48 33 6 5

Mediterranean (Me) 10,980 149 64 82 35 6 3

Mediterranean Regime
Mountains (MeRM) 17,772 799 374 143 60 16 17

Prairie (P) 6707 155 275 47 56 5 9

Subtropical (ST) 5908 431 312 149 82 16 14

Subtropical Regime
Mountains (SRM) 3927 4 16 3 12 0 1

Warm Continental
(WC) 6466 73 20 40 12 1 4

Humid Savanna (S) 20,623 89 45 44 24 5 2

2.2. Meteorological Covariates

Regional averages of gridded weather variables from the University of Idaho gridMET dataset [47]
are used to calculate 12 weather predictors that will provide coarse scale environmental descriptions
during each month between 1984–2015. Of these 12 weather predictors, four are measures of
temperature; six are measures of moisture levels, and two measure wind characteristics. The four
temperature metrics are based on monthly space-time averages of daily average temperature,
which are calculated by dividing the sum of the daily maximum and minimum values by two
(Weiss et al., 2005 [48]). The quantity hereafter referred to as seasonality measures intra-annual
temperature variability by normalizing monthly temperature averages by the mean and standard
deviation of all 360 measurements in the most recent 30 years of data (e.g., 1986–2015). The inter-annual
temperature variability is captured with a quantity referred to as the departure from normal, which
instead normalizes by the mean and standard deviation of 30 measurements in the most recent 30 years
of data that correspond to same month as the raw measurement. The remaining temperature metrics
are the rolling 12-month minimum and maximum temperature, which will record extreme temperature
events that have potential for delayed impacts on wildfire activity. The six moisture level metrics are
average specific humidity and precipitation totals over five time periods (1, 3, 6, 12 and 24-month time
windows). In addition to a simple space-time average of wind speed at 10 m, the maximum daily
space-time average each month was also included as a covariate of the fire occurrence probabilities.
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2.3. Probability Estimation Trees

Two quantities are estimated for each month and region, the probability that at least one LF
(>404 hectares) occurs and the probability that a VLF occurs conditional on the occurrence of at least
one LF. These probabilities are estimated using multi-model averages of a flexible and powerful type
of binary classifier known as a probability estimation tree (PET). PETs use decision-tree structures
to recursively divide the data with binary splits, eventually grouping all the data into mutually
exclusive categories or leaves. With respect to the response, the splits create increasingly homogeneous
clusters of observations, which also occupy an increasingly specific portion of the covariate space.
Within the context of this analysis, we have 12 meteorological predictors available to form these
categories, so that months—in which certain fire events did or did not occur—can be grouped into
categories describing broadly similar environmental conditions. Prediction is performed by using
the relevant covariates to identify the appropriate category, and taking the empirical frequency of
the binary responses in that category as a probability estimate (Provost and Domingos 2000 [49]).
While it is well known that predictions based on individual decision tree algorithms can be highly
variable with significant levels of structural instability (Wang et al., 2016 [50]), these pathologies are
often lessened through the use of model averaging (Provost and Domingos 2000 [49]). To that end,
a suite of 100 PETs are generated for each region and for both probabilities of interest; and we will
hereafter refer to each collection of 100 PETs as a ‘forest’. Each individual PET within a forest is
generated stochastically by applying the C4.5 learning algorithm without pruning (Quinlan 1993 [51];
Provost and Domingos 2000 [49]) to a random sample of the training dataset via the Roughly Balanced
Bootstrapping algorithm (Hido et al., 2009 [52]). The LF forests and the conditional VLF forests are
constructed somewhat differently in that the LF forests sample from all months in the training dataset,
while the VLF forests are based only on samples of months in which at least one LF has occurred. In
other words, the LF forests will discriminate between LF and no-fire months, and the VLF forests will
discriminate between LF and VLF months. Identification of important predictors within each forest
are assessed using two summary statistics: (1) the frequency that a predictor is present in the PETs;
and (2) the frequency that a predictor is used in the first split of the PETs. The former identifies the
frequency with which a given meteorological predictor is used at all within the forest, and the latter
identifies the frequency with which a meteorological predictor is the best determinant of the response
on a randomly generated dataset.

2.4. Multi-Model Very-Large Fire Predictions

The structural uncertainties arising from training PETs to observed meteorological data are
compounded by structural uncertainties arising from the application of these models to long-term
climate forecasts. To improve the quality of the probability estimates and VLF occurrence forecasts,
multi-model averages of fire event probabilities are used to integrate both sources of structural
uncertainty: the choice of the PET and selection of the climate model. The final probability estimates
are assumed to be an average of predictions from all combination pairs of the 100 PETs within each
forest and 13 modeled weather datasets; a total of 1300 individual predictions for each region, month,
and probability of interest. The modeled weather data used to make PET predictions come from the
second version of regional Multivariate Adaptive Constructed Analogs (MACA) [47] dataset that was
trained on gridMET, and downscaled with 13 GCMs: bcc-csm1-1-m, BNU-ESM, CanESM2, CCSM4,
CNRM-CM5, CSIRO-Mk3-6-0, GFDL-ESM2M, HadGEM2-ES365, inmcm4, IPSL-CM5A-MR, MIROC5,
MRI-CGCM3, NorESM1-M.

The multi-model averages are calculated using both unweighted and weighted approaches. The
unweighted approach assigns equal weight to each individual prediction and assumes that each PET
and climate model is equally credible. The weighted approach assigns unequal weights to predictions
from each pairing of PETs and climate models, to try to bias-correct the multi-model averages and
optimize predictive performance. The final weight applied to each individual prediction is the product
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of two independent components: a climate model weight and a PET weight. For a specified region
and month, we can write the estimated probabilities as,

p̄LF =
100

∑
i=1

13

∑
j=1

uLF,ivj pLF,i,j,

p̄VLF =
100

∑
i=1

13

∑
j=1

uVLF,ivj pVLF,i,j.

Here, u∗,i represents the weight applied to the predictions from PET i, vj represents the weight
applied to predictions utilizing climate model j, and p∗,i,j is the prediction obtained from PET i
utilizing climate model j. We estimate the weight components using a fully Bayesian approach that
incorporates fire occurrence and modeled climate forcings from 1984–2005, as well as probabilistic
representations of possible parameter estimates. Via Bayes rule, we know that the posterior of the
model weight components, θ = −→u LF,−→u VLF,−→v , is proportional to the product of the likelihood and
prior probability distributions. The likelihood component represents the probability of observing the
fire occurrence time series, X =

−→
X LF,

−→
X VLF, assuming that they were generated from a Bernoulli

process parameterized with our weighted multi-model averages:

XLF,t ∼ Bernoulli( p̄LF,t),

XVLF,t ∼ Bernoulli( p̄VLF,tXLF,t).

The prior component, p(θ), which is a probability density function representing our a priori belief
regarding the parameter values, is defined using independent Dirichlet priors with uninformative
concentration parameters:

−→u LF,−→u VLF,−→v ∼ Dirichlet(
−→
1 ).

The posterior was approximated using Just Another Gibbs Sampler (JAGS) software
(Plummer 2003 [41]) and the runjags package in R (R Development Core Team 2008 [53]). An initial set
of 30,000 samples were generated from three parallel Markov Chain Monte Carlo chains using a burn-in
interval of 10,000 steps, adaptive phase of 10,000 steps, and thinning interval of 100. Calculations were
performed on a MacBook Pro (Quanta Computer, Inc, Shanghai, China) with a 2.7 GHz Intel Core i7
processor (Hillsboro, Oregon, USA). Convergence was monitored visually, and also via the calculation
of the potential scale reduction factor, using the range of the central 90th percentile of the marginal
posteriors as a test statistic (Brooks and Gelman 1998 [54]). We assume that the second half of the
chain has approximately converged if the maximum potential scale reduction factor fell below 1.01.
If the chain had not converged, then it was continued in batches of 1000 iterations until the maximum
potential scale reduction factor was less than 1.01 (Gelman and Shirley 2011 [55]). To provide guidance
to future analysts looking to perform similar analyses, an informal computational comparison of
JAGS (Version 4.3.0) and Stan software (Version 2.17.3) was completed, which is described in the
supplementary materials. The final VLF probabilities can then be calculated by averaging both
probabilities of interest—either with point estimate averages of the model weights or using the full
posterior in the weighted approach—and applying Bayes rule (Figure 2). The resulting distribution
of VLF probability time series is then used to estimate the changes in VLF frequency in the future by
finding the difference between the expected number of VLFs in the historical climate (1956–2005), and
the expected number of VLFs in the future (2050–2099) under moderate and severe warming scenarios,
RCP 4.5 and RCP 8.5, respectively.
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Figure 2. Workflow of very-large fire probability calculations. In the prediction phase, probability
estimates are calculated for every combination pair of climate model and probability estimation
tree. The model-averaging phase combines these predictions into probability estimates using either
a weighted or unweighted averages. The final phase uses Bayes rule to calculate the very-large fire
probability as the product of both components from the model-averaging phase.

2.5. Ensemble Assessment

The ability of the multi-model averages to estimate observed VLF frequencies was quantified over
the temporal range of the extant MTBS fire occurrence record at three non-overlapping time periods.
Two of the three time periods correspond to the tuning (1984–2005), training (2006–2015) datasets that
were used to bias correct and fit the initial suite of PETs respectively. Additionally, a testing dataset
independent of the information used to build the multi-model averages was constructed using 2016
MTBS occurrence data. For each time period, a sample of 100,000 probability time series were drawn
from the relevant multi-model average posterior, which were then used to simulate the distribution
of VLF counts predicted during that time period. Note that the 2016 fire data used to independently
validate the multi-model averages represent an updated version of the MTBS data that was unavailable
during the PET training and tuning stages, and that slight differences in the total number of large
(>404 hectares) incidents between 1984–2015 were observed in the two versions. Specifically, the
original MTBS dataset reported 10,295 large incidents between 1984–2015, while the updated version
reported 10,298 large incidents during that same period.

3. Results

3.1. Important Predictors of Very-Large Fires

The diversity of predictors used in the PETs was high, and the important meteorological variables
varied by region, the summary statistic, and the type of fire probability. Temperature metrics,
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in particular seasonality, are a commonly utilized weather predictor in LF forests, and in 10 of the 16 LF
forests, seasonality is present in 90 or more of the PETs. On the other hand, while temperature metrics
are frequently utilized when constructing PETs, they are not always the optimal splitting criterion.
For instance, in the Savanna, Prairie, and Hot Continental Regime Mountains, precipitation metrics
overwhelmingly replace temperature based metrics as the optimal discriminant of large and no fire
months, and in other regions such as the Subtropical and Hot Continental Division, this designation is
highly uncertain.

The importance of temperature metrics also varied by the type of fire probability considered, with
temperature metrics more commonly identified as the optimal split criterion in LF forests compared to
VLF forests. This sensitivity of PET structure to the type of fire probability could also arise in other
ways. For example, in the Hot Continental Regime Mountains, the LF forest overwhelmingly relies
on precipitation metrics for prediction, while the corresponding VLF forest utilizes no predictors
and reports a constant conditional VLF probability. Similarly, in the Tropical/Subtropical Regime
Mountains and Prairie divisions, conditional VLF forests tended to identify wind metrics as the optimal
split criterion much more frequently than in the LF forests. Additionally, PET complexity tended to
be lower in VLF forests than in the LF forests. The average number of variables used per PET, size,
and the number of leaves were inflated in the latter, and weather invariant null models were only ever
observed in the VLF forests. The variability in the optimal splitting criterion was also higher in the
VLF forests, suggesting a relative lack of certainty regarding the optimal discriminant in conditional
VLF probabilities compared to LF probabilities. Weighting did not appear to drastically influence the
relative contribution of the weather predictors within each forest (Figure 3).

Figure 3. Summary statistics of each forest of probability estimation trees. The top panels show the
percentage of probability estimation trees (PETs) in each forest that uses a particular weather predictor
for at least one split. The bottom panels show the percentage of PETs for which a weather predictor is
selected as the optimal splitting criterion. The relative contribution of each first-split variable under the
unweighted (left) and weighted (right) averaging methods are displayed side-by-side.
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3.2. Climate Change and Very-Large Fire Occurrence

In most divisions, the expected number of VLFs is predicted to increase in 2050–2099 compared
to 1956–2005. The Marine Regime Mountains Redwood Forest division is predicted to have the
largest absolute increase with about 13 additional fires per decade under the RCP 4.5 scenario and
about 18 additional fires per decade under the RCP 8.5 scenario. For most of the regions under
consideration, the average predicted increase ranges from near-zero to several additional VLF per
decade relative to historical predictions. In some regions, like Mediterranean and Savanna divisions,
the multi-model average predicts slight decreases in VLF activity. The largest absolute decrease
occurred in Mediterranean California, which is predicted to have about one less VLF per decade
relative to historical predictions under both RCP scenarios. In general, increases in VLF frequency are
more severe under the RCP 8.5 scenario than under the RCP 4.5 scenario, although the sensitivity to
RCP scenario varies by division (Figure 4). The largest absolute difference in average VLFs per decade
between the RCP 8.5 and RCP 4.5 scenarios was in the Marine Regime Redwood Forest division,
which had about 5 additional VLFs in the RCP 8.5 scenario. Although the Hot Continental Regime
Mountains predicts a larger VLF count per decade under the RCP 4.5 scenario than the RCP 8.5, the
difference is negligibly small. The median difference between the RCP 8.5 and RCP 4.5 scenario across
the 16 ecoregions was 0.9 additional VLFs per decade under the RCP 8.5 scenario.

Figure 4. Kernel density estimates of the posterior and mean of the number of additional very-large
fires per year relative to the 1956–2005 reference period per year by ecoregion under the representative
concentration pathway (RCP) 4.5 (blue) and RCP 8.5 (red) scenarios arranged by magnitude of change.
The excess very-large fire frequency is calculated by randomly sampling (n = 106) from the posterior
of historical (1956–2005) and future (2050–2099) multi-model averages and calculating the difference.

Future changes in VLF frequency may or may not be uniformly distributed throughout the year.
The largest absolute monthly changes in VLF frequency are observed in the Marine Regime Mountain
Redwood Forest division during the summer months, while the shoulder months are not predicted to
drastically differ from present day VLF frequency. In contrast to the predictions in the Marine Regime
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Mountain Redwood Forest division, semi-uniform changes in VLF frequency are also predicted in
some regions. For instance, the Subtropical division is predicted to have about 6-8 additional VLF
events during the last half of the 21st century relative to the 1956–2005 reference period, but shows no
strong preference as to what month these events will occur. For nearly all regions and months, VLF
frequency is predicted to increase or show no change compared to historical reference conditions, with
the Prairie division being an example of the former and the Hot Continental Regime Mountains the
latter. The Mediterranean division is an exception to this pattern, as reductions in future very-large fire
frequency are predicted from October to May (Figure 5).

Figure 5. Predicted intra-annual changes in very-large fire frequency across sixteen biogeographical
regions within the Continental United States under the RCP 4.5 (blue) and RCP 8.5 (red). The central
90th percentile and mean of the excess very-large fires are based on 1,000,000 random samples of the
posterior multi-model average very-large fire probabilities from the historical (1956–2005) and future
(2050–2099) scenarios.

The changes in overall VLF frequency are predicted to be a result of changes in both model
components: the LF and conditional VLF occurrence probabilities. For divisions like Marine Regime
Mountains Redwood Forest, both probabilities increase, implying that the LF months will become
increasingly frequent and a larger proportion of the months classified as LF will become VLF
months. Other divisions showed increases in only one of the model components. In the Temperate
Steppe Regime Mountain division, only conditional VLF probabilities are predicted to increase,
and in the Tropical/Subtropical Steppe division, only LF probabilities are anticipated to increase.
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Significant decreases in the model components are only predicted in the Mediterranean and Tropical
Subtropical Regime Mountains divisions, which respectively have decreases in the conditional VLF
and LF probability components in 2050–2099 compared to 1956–2005 climate model forcings. The
Mediterranean LF probability components are predicted to increase, while the conditional VLF
probability component is expected to remain the same in the Tropical Subtropical Regime Mountains
division. In general, the changes in model components are greater in the RCP 8.5 scenario compared
to the RCP 4.5 scenario, although the differences between the two future scenarios were nearly
imperceptible in some regions (Figure 6).

Figure 6. Simulated change in monthly multi-model large-fire and conditional very-large fire
probability estimates across biogeographical divisions of the continental United States. The point cloud
is a sample of 100,000 differences in average posterior probability components under the historical
(1956–2005) and future scenarios (2050–2099); with the RCP 8.5 scenario colored red and RCP 4.5
colored blue. The solid black lines represent the central 90th percentile and the dashed lines are
horizontal and vertical lines passing through the origin.

3.3. Ensemble Assessment

The proportion of simulated VLF counts equal to or below the observed values varied by region
and time period, and the frequency with which this quantity fell within the central 95th percentile
of the simulated VLF counts informs us of the overall quality of the multi-model average forecasts.
Using this performance metric, the highest ensemble quality occurs in regions where the central 95th
percentile of simulated VLF counts covers the observed VLF counts in all three time periods, which
was observed in the Marine Regime Mountains Redwood Forest, Prairie, Hot Continental, Temperate
Desert Regime Mountains, and Savanna divisions. In as many regions, this quantity fell in the central
95th percentile for the testing and tuning time periods only, or in the testing and training time periods
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only. This was observed in the Temperate Steppe Regime Mountains, Temperate Steppe, Temperate
Desert, Mediterranean Regime Mountains, and Tropical/Subtropical Steppe divisions. Predictive
performance was occasionally poor in the tuning and training time periods, but good during the
testing time period, as was observed in the Warm Continental, Subtropical, and Tropical/Subtropical
Desert divisions. In the Mediterranean division, the ensembles performed well on the tuning and
training time periods, but showed poor performance when predicting data they were not already
optimized on. The lowest model quality was seen in the Tropical/Subtropical Regime Mountains,
where observed VLF counts were covered by the central 95th percentile in the tuning time period only,
and in the Hot Continental Regime Mountains, where the central 95th percentile of the simulated VLF
counts never covered the observed quantity.

Figure 7. Simulated and actual very-large fire month counts for each region and three time periods:
1984–2005, 2006–2015, and 2016. A sample of 100,000 simulated very-large fire (VLF) counts are
produced under historical (grey), RCP 4.5 (blue), and RCP 8.5 (red) scenarios by randomly selecting a
VLF probability time series from the posterior and randomly generating a VLF occurrence time series.
The observed VLF counts are represented with arrows.

Consistent underestimation, where the observed VLF count was equal to or greater than the
median simulated VLF count in all three time periods, was reported in nine of the sixteen regions
considered. The magnitude of these underestimates ranged from very minor, as in the Temperate
Desert, to quite severe, as in the Hot Continental Regime Mountains. Consistent overestimates were
much less frequently observed, with only the Marine Regime Mountains Redwood Forest and Warm
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Continental divisions reporting observed VLF counts equal to or less than the median simulated
VLF counts in every time period. Five regions had VLF counts that were located to the left or
right of the median depending on the time period considered. The Temperate Steppe, Prairie, and
Tropical/Subtropical Steppe divisions simulations tended to underestimate the true VLF counts, while
the opposite was observed in Temperate Steppe Regime Mountains and Hot Continental divisions.

The simulated distributions did not appear to be strongly sensitive to the choice of RCP scenario
during the temporal extent of the training (2006–2015) and testing (2016) time periods, as there are
only slight differences between them during those times (Figure 7).

4. Discussion

4.1. Important Predictors of Very-Large Fires

Wildfire events are associated with a number of factors (Flannigan et al., 2009 [28]) that may vary in
space (Stavros et al., 2014 [56], Barbero et al., 2015 [57], Arpaci et al., 2013 [58], Flannigan et al., 2006 [59]),
and may reveal themselves only under certain conditions (Slocum et al., 2010 [60], Krueger et al.,
2015 [61]); it should not then be unexpected that model variability can often be high. Attempts
to identify any single factor as most closely associated with VLFs are frustrated by the complex
behavior of wildfires, competition among models, data limitations, and diversity of performance
criterion. Despite the ubiquity of structural and other uncertainties, the relative importance of various
coarse scale meteorological factors to specific wildfire activities could be gauged by observing the
frequency with which they were utilized to make predictions. In some cases, a meteorological variable
could, with high confidence, be readily identified as important to predicting VLFs in a particular
region. In the Temperate Desert division, seasonality was frequently utilized in PETs for both wildfire
probabilities, and was also often identified as the optimal splitting criterion. More typically, however,
some level of structural uncertainty was present and identifying a best predictor was not always as
obvious. In the Subtropical division, LF forest, temperature and precipitation based variables were
identified as the optimal splitting criterion with nearly equal frequency. In the Mediterranean Regime
Mountains division, seasonality was frequently the optimal splitting criterion in the LF forest, but
it was much less common in the VLF forest. Moreover, in the Mediterranean division, wind-based
metrics were frequently utilized in LF forests in the Mediterranean forest, but not as a first-split in the
PETs. Model variability could be particularly high in the LF forests in the Eastern Continental United
States. Precipitation based variables were overwhelmingly preferred in extreme southern Florida
and in the Appalachians, but wind based variables were preferred in the Hot Continental division;
Temperature was slightly preferred in the Warm Continental division, and as already mentioned, the
Subtropical region showed no strong preference with regard splitting criterion. Although some regions
showed preferences for certain weather variables, model variability was fairly high in the VLF forests.

Although these structural uncertainties are sometimes obstacles to identifying important
meteorological relationships with VLFs, they are also critical to understanding the true level of
confidence we have in observed correlations and safeguard against overconfident conclusions. While
clearly notable levels of model variability could be encountered across multiple factors, robust
patterns and trends could still be inferred. For instance, we note that, in most of the West, with
the exception of the Great Plains and the Tropical/Subtropical portions of the Southwest, temperature
based metrics were often the best predictor of LFs and were commonly used in LF forests. In the
remaining Western areas, temperature metrics were less useful and instead precipitation metrics were
selected as the optimal splitting criterion. This apparent preference for precipitation based metrics
over temperature based ones in these regions may be related to the characteristics of fuel-limited
versus climate-limited fire regimes (Meyn et al., 2007 [32]), or due to a relative inability of seasonal
temperature fluctuations to match wildfire activity compared to precipitation. The relative popularity
of wind-based variables in very-large forests compared to very-large forests is also interesting, as wind
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has been reported to have variable influence on wildfire activity depending on fire size and geographic
location (Slocum et al., 2010 [60]).

4.2. Climate Change and Very-Large Fire Occurrence

For both RCP scenarios and nearly all divisions, complex changes to wildfire activity are predicted
that will result in an overall increase in the frequency of VLFs, which is largely consistent with many
other projections (Flannigan et al., 2009 [28], Barbero et al., 2015 [21] ). While overall increases in the
frequency of these events are predicted using robust methods, the exact nature of these changes remain
unclear. It is not certain, for instance, if the range of fire sizes will remain largely static in the future and
only frequency of exceptionally large events will increase; or if the size distribution will shift, so that
burn areas exceed historic records. These distinctions are important because the relative costs of these
two competing possibilities are likely to vary across decision makers. The Mediterranean division was
somewhat of an exception to the overall reported increases in VLF activity. Westerling et al. (2011 [26])
project either no change or modest increases in LF activity in much of lowland California, and large
increases in mid- and high-elevation locations, which at first seems inconsistent with the predicted
decrease in VLF activity, although there are a few explanations. Firstly, by considering a larger number
of climate models and predictive models, the range of results in this analysis will be inherently more
variable, and marginal results seen in other studies could emerge as significant when these structural
uncertainties are incorporated. Secondly, as shown in this study, the environmental drivers of large
and conditional VLF probabilities can vary, and differences regarding the definition of LF can result
in variability amongst methodologies (Slocum et al., 2010 [60]). Thirdly, differences between the
covariates considered and model structure are likely to alter the predictions across analyses. For
instance, anthropogenic and vegetation effects on wildfire activity were omitted in this study, but are
known to be an important influence of wildfire activity in California (Syphard et al., 2007 [62]) and
elsewhere (Syphard et al., 2017 [63]).

The months in which VLF activity was historically highest may not necessarily apply in the
second half of the 21st century, and noticeable changes in intra-annual patterns, usually increases,
of VLF activity were predicted in most scenarios and regions. Some regions, like Temperature Desert
Regime Mountains and Marine Regime Mountains Redwood Forests, are predicted to have increases
in VLF frequency only during a limited portion of the year, while others, like the Subtropical division,
are predicted to have a relatively uniform increase in VLF frequency throughout the year. Given that
simultaneous increases in VLF probabilities are anticipated in multiple independent regions, it is likely
that VLF activity will change in ways that will increase resource strain. Indeed, the results of this
study suggest that, depending on the emission scenario, between 12–13 regions will have future VLF
frequencies that exceed the historical record, and that intra-annual increases in VLF occurrence are
often predicted during the same time of year in spatially distinct regions.

In addition to changes to intra-annual patterns of overall VLF frequency, it is important to
acknowledge that the overall increases in VLF frequency are the product of two processes: changes in
LF and conditional VLF probabilities. Any increase in VLF frequency is then the result of one of three
scenarios: an increase in both probabilities, and increase in LF frequency only, or an increase in the
frequency that LFs become VLFs. These specific changes in model components may be of particular
relevance to firefighting, public health professionals, and other decision-makers who will—due to
differences in the impacts of the events—react to no-fire, LF, and VLF months differently and require
guidance regarding the characteristics of the novel future wildfire regimes. Reducing the uncertainty as
to which emission scenario the future will resemble should also be a priority for decision-makers and
researchers, as the predicted changes tend to be more exaggerated under the RCP 8.5 scenario compared
to the RCP 4.5, which should influence adaptation and mitigation efforts of future wildfire impacts.
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4.3. Caveats and Future Work

While the simultaneous acknowledgement of structural uncertainties in the climate models
and PETs represents an interesting approach, there are still a number of uncertainties that were not
addressed in this climate impact analysis. The limited availability of reliable and consistently recorded
(e.g., satellite-based) measurements of wildfire activity (Taylor et al., 2013 [64]) and the inherent rarity
of VLF events remain significant obstacles to validating predictions and estimating underlying model
structures. The validation results should be considered as the current state of knowledge regarding
the ensemble’s predictive ability, and may change when more data becomes available in the future.
If inter-annual variability in wildfire activity is high, then the validation results used in this study may
be based on particularly predictable or unpredictable fire years, and therefore not be representative of
the actual performance. Longer duration datasets would be preferred, and thirty year climatologies
are often considered ideal (Arguez and Vose 2011 [65]), but the entire range of available burn area
data only extends 33 years and it is unlikely that longer time scale meteorological associations with
VLF activity will be accurately captured with the relative brevity of data (Westerling and Swetnam
2003 [66], Marlon et al., 2012 [67]). Moreover, if recent increases in VLF activity are indicative of a
sudden a shift into overall wildfire patterns unlike what has been observed in the past, then forecasting
future activities based on historical relationships could be inadequate. For instance, the two events
occurring in the Hot Continental Regime Mountains in 2016 were quite unusual in historical terms, as
only four VLF months were reported from 1984–2005, and only one VLF was reported from 2006–2015.

Data limitations may also be qualitative, and many of the remaining important structural
uncertainties are due to unconsidered covariates, like vegetation changes, suppression effort, and
population growth, that were not modeled due to data inavailability, practical considerations,
and challenges related to predicting these quantities in the future. While the PETs used in
this study produced a diverse suite of predictive models and are known to be highly unstable
(Wang et al., 2016 [50]), there are many other lingering sources of structural uncertainty that could still
be incorporated. For instance, generalized linear models could be used instead, which take a number
of mathematical structures depending on the choice of link and response functions (Clyde 2003 [68]).
Similarly, various data transformations could be used to generate competing models of the wildfire
activities. Alternative models could be constructed that condense the two model components into
VLF occurrence probabilities only, so that the event space of each month is purely binary. Instead of
biogeographical classification of regions, the Continental United States could be partitioned using
administrative or other boundaries to generate VLF predictions relevant to specific stakeholders.
Hence, clearly a broad variety of other structural uncertainties still exist that could potentially influence
predictions of future VLF frequency in the second half of the century.

It is important to understand that the VLF probabilities do not inform us as to what will actually
happen, but rather communicates the degree of uncertainty about future outcomes conditional on
carbon emission scenarios. For this reason, some tolerance to deviations between observed and
expected VLF frequencies should be considered, as should the fact that the predictions were based
on modeled climate data as opposed to direct observations. Still, in many regions, the ensemble
performance was relatively adequate and the simulated distribution of fire counts covered the
observations. Moreover, when deviations occurred, they tended to underestimate the future VLF
counts. Hence, the overall claim that VLF counts will increase in the future under climate change is
supported by the results of this study, as well as through the work of others (Stavros et al., 2014 [56],
Barbero et al., 2015 [21]). Stochastic uncertainty will be critical when explicitly linking changes
to VLF occurrence to human activities and for assessing the future levels of VLF simultaneity
(Tedim et al., 2018 [69]) and is a factor that would be well addressed using the methods described
here, but is beyond the scope of this paper. The inherent stochasticity of the PET construction process
suggests that repeated applications of this methodology in the future may yield slight variations to the
results presented here.
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Interestingly, a standard factor analysis revealed that more than 86 percent of the variability
in predicted probabilities could be attributed to variance amongst the PETs rather than variance
amongst the climate models, and while the PETs are an inherently unstable choice of predictive
model, this suggests that structural uncertainties should receive the attention of climate impact
researchers in much the same way that the choice of climate model does. Further exploration of these
structural uncertainties in climate impact analyses cannot be recommended enough in future analyses,
as they inform not only of future impacts, but the reliability of these predictions, which can influence
decision-maker behaviors in a variety of ways (Weber and Johnson 2009 [70]).

5. Conclusions

While the key conclusion from this research was that fires that were historically considered
very-large and rare are likely to become increasingly frequent in most regions of the Continental
United States at the end of the 21st century, there are also a number of other complexities in future
wildfire activity that may be of further relevance to researchers and decision-makers. For instance,
although temperature based metrics were often important for prediction, this analysis also found
that the identification of important predictors could be highly uncertain across a number of factors,
which should be ignored at one’s peril. Moreover, even using the relatively simple probabilistic
models we developed, rich details regarding future wildfire activities were constructed that reasonably
matched observed fire frequencies and were dynamic in terms of intra-annual trends, fire frequency,
simultaneous fire occurrence, and the readiness with which LFs become VLFs. Although overall
increases are predicted, we also observed exceptions and regional variability. In the Northwestern
United States, VLF frequencies were predicted to increase, with nearly two additional events per year,
and increases close to one additional VLF per year were fairly commonly throughout much of the
Continental United States as well. In rare instances, the potential for decreases in VLF activity was also
reported, most surprisingly in Mediterranean California.

The cumulative impact of these changes are anticipated to affect decision-makers in various ways
and the techniques described here have a number of benefits for addressing their needs. For instance,
the presented Bayesian model averaging techniques avoids many of the risks of traditional model
selection techniques that are especially dangerous when predicting complex phenomena such as
wildfire. Moreover, this method simultaneously provides a natural method of calculating important
event probabilities that are critical to informed decision-making. While uncertainty in climate models
is well understood amongst climate impact researchers, these results highlight the hidden sources
of structural uncertainty, and encourage the use of Bayesian model averaging to reconcile them into
robust forecasts of future wildfire and other impacts resulting from climate change.
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Abstract: An objective definition of climatologically homogeneous areas in the southern Balkans
is attempted with the use of daily 0.25◦ × 0.25◦ ERA5 meteorological data of air temperature, dew
point, zonal and meridional wind components, Convective Available Potential Energy, Convective
Inhibition, and total cloud cover. The classification of the various grid points into climatologically
homogeneous areas is carried out by applying Principal Component Analysis and K-means Cluster
Analysis on the mean spatial anomaly patterns of the above parameters for the 10-year period of 2008
to 2017. According to the results, 12 climatologically homogenous areas are found. From these areas,
eight are mainly over the sea and four are mainly over the land. The mean intra-annual variations
of the spatial anomalies of the above parameters reveal the main climatic characteristics of these
areas for the above period. These characteristics refer, for example, to how much warmer or cloudy
the climate of a specific area is in a specific season relatively to the rest of the geographical domain.
The continentality, the latitude, the altitude, the orientation, and the seasonal variability of the thermal
and dynamic factors affecting the Mediterranean region are responsible for the climate characteristics
of the 12 areas and the differences among them.

Keywords: Mediterranean climate; cluster analysis; objective classification; ERA5

1. Introduction

The Mediterranean Sea is located in a transitional climatic area between Europe, Africa, and Asia
and its climate is widely known as “the Mediterranean climate”. The Mediterranean climate is generally
characterized by considerable seasonal variations in almost all climatic parameters, for example
air temperature, cloudiness, precipitation, lightning activity, etc. [1–5]. Although these seasonal
variations appear over the whole Mediterranean region, they present significant differences among
the various subregions. These differences are connected to various atmospheric and geographical
factors. The position and the variability of the large-scale atmospheric circulation systems (e.g., the
subtropical anticyclone of the North Atlantic and the south Asian summer low) and the global
atmospheric oscillations affecting the region are dominant atmospheric circulation factors connected
to the significant spatial variability of climate within the Mediterranean region [6–8]. The North
Atlantic Oscillation (NAO), which refers to the sea level pressure seesaw between the Icelandic low
and the subtropical anticyclone of the North Atlantic, affects the atmospheric conditions over most
of the Mediterranean region. Specifically, positive/negative values of the NAO index are generally
connected to below/above normal cyclonic activity and precipitation over the Mediterranean [9,10].
The Arctic Oscillation (AO) is connected to the variation of the intensity of the polar low. Positive
values of the AO index are generally associated with anticyclonic conditions and dryness over the
Mediterranean, while negative AO index values are connected to the transfer of cold masses towards
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the south and the prevalence of cyclonic activity and above normal precipitation over the same
region [11,12]. The North Sea–Caspian Pattern (NCP) is a pressure seesaw between the North Sea
and the Caspian Sea. A positive phase of NCP is accompanied by northeasterly flow over a part of
the Eastern Mediterranean (Balkans and Western Turkey), while a negative phase is accompanied
by southwesterly flow over the same regions [13,14]. Furthermore, the spatial variability of climate
characteristics is enhanced by the complicated geographical features of the region (coastline, relief,
land–sea alteration), which affect significantly most of the climatic parameters including temperature,
cloudiness, precipitation, and wind. For example, the windward or leeward character of a specific
region, as well as its distance from the sea, plays an important role on its cloudiness and precipitation
regimes. These regimes are strongly affected by the associated atmospheric humidity and static stability
levels and the frequent prevalence of adiabatic sink (warming) or rise (cooling) [3,15]. Considering
the above atmospheric and geographical features of the Mediterranean region and the associated
high spatial variability of its climate, climatological studies, which can be carried out with the use of
high-resolution meteorological data, would lead to interesting results referring to the detailed spatial
characteristics of the Mediterranean climate. This is further supported by the fact that the future
climatic changes, as they are forecasted by the climatic models, are also expected to be characterized
by high spatial variability over the same region [16,17].

The climate of the Balkans, a Mediterranean subregion of great climatological interest, has been
extensively studied by means of the spatial regimes of specific climatic parameters [18,19] and their
connection to specific atmospheric circulation modes [20]. The impacts of the acting teleconnections,
global warming, and local surface warming (land–atmosphere interactions) reveal high spatial
complexity over the region. Most studies involve station meteorological data and/or Reanalysis
data of spatial resolution up to 1◦ × 1◦. Moreover, an attempt for a climate regionalization of the
Balkan Peninsula has been made with the application of Cluster Analysis on station sea level pressure
data over the region [21]. Nowadays, the recently introduced ERA5 high resolution meteorological data
set [22] provides the scientific community with an extra useful tool for studying the spatial variability
of climate over a region with relatively complex relief. The southern Balkans is such a region and the
present study aims at examining this variability by defining climatologically homogeneous subregions
within it, i.e., subregions with characteristic seasonal variations of the main climatic parameters. This is
achieved with the application of a multivariate statistical scheme including Principal Component
Analysis and Cluster Analysis on the high-resolution ERA5 meteorological data set. The temporal
availability of the data set is at the moment restricted to the recent 10-year period of 2008 to 2017.
Although this period is relatively short, not being sufficient for the full establishment of the statistical
parameters connected to the climate of the region, the general characteristics of the spatial variability of
climate, especially those that are significantly influenced by the complicated relief, can be highlighted
by means of the high spatial resolution and the reliability of the recently introduced data set.

2. Materials and Methods

The data used in the present study are daily (00UTC and 12UTC) 0.25◦ × 0.25◦ grid point values of
air temperature (AT), dew point temperature (DP), zonal (ZW) and meridional (MW) wind components,
Convective Available Potential Energy (CAPE), Convective Inhibition (CIN), and total cloud cover
(TCC) for the southern Balkans area (19◦–29◦ E, 34◦–42◦ N) (Figure 1) for the 10-year period of 2008
to 2017, obtained from the ERA5 Reanalysis data set [22]. The selection of the above parameters has
been made taking into account that their values over the examined area are directly connected to the
climate of the region, by either determining its main characteristics (AT, DP, ZW, MW, and TCC) or
being responsible for the in situ extreme precipitation events related to thunderstorms (CAPE and
CIN). This is not the case for other parameters for example sea level pressure or geopotential height,
which affect the climate characteristics of the region indirectly and remotely and have to be examined
over a broader area. Also, the data corresponds to 00UTC and 12UTC hours in order to involve both
midnight and midday atmospheric conditions, which are generally different especially during the

214



Climate 2018, 6, 96

warm period of the year, mainly because of the intense daytime land warming and the development
of small-scale circulations (e.g., see breezes). ERA5 is a recently introduced ECWF data set, which
provides hourly values of many atmospheric, land, and oceanic parameters at a horizontal resolution
of 31 km on 137 levels from the surface up to 0.01 hPa (~80 km above the earth’s surface). It combines
large quantities of historical observations into global estimates with the use of advanced modeling
and data assimilation procedures [22]. For each of the above parameters (AT, DP, ZW, MW, CAPE,
CIN, and TCC) and time (00UTC and 12UTC), the 2008–2017 long-term mean spatial anomaly patterns
are calculated for each of the 365 calendar days of the year. The spatial anomaly pattern of a specific
parameter for a specific calendar day is calculated by subtracting the spatial average from the value
of each grid point. Thus, a matrix containing all the long-term mean spatial anomaly patterns of the
above parameters at 00UTC and 12UTC for the 365 calendar days of the year is constructed. Each
column of the matrix corresponds to a specific parameter, a specific hour (00UTCor 12UTC) and a
specific calendar date of the year, while each line corresponds to a specific grid point of the study area.

 

Figure 1. The geographical domain used.

Principal Component Analysis (PCA), with varimax rotation, is applied on the above matrix as a
dimensionality reduction tool. PCA is a multivariate statistical method which projects a set of possibly
correlated variables onto a set of uncorrelated variables, which are called principal components. Only
the statistically significant components are used for the next step and their number is indicated by the
SCREE plot and the physical hypostasis of the results [23,24]. Next, K-Means Cluster Analysis (CA)
is applied on the time series of the standardized significant principal components in order to group
grid points, and thus to define the areas with homogenous climate characteristics regarding the spatial
anomalies of specific climatic parameters during specific sub-periods of the year. CA is a statistical
method that classifies cases of a set of variables into objectively defined distinct and homogeneous
clusters. The squared Euclidean distance is selected to be the measure of similarity, while the k-means
technique succeeds in the continuous rearrangement of the cases in new clusters optimizing the final
classification [25–27]. The optimum number of clusters is indicated by the distortion test [28]. For the
grid points classified into each of the clusters, the mean intra-annual variations of all the climatic
parameters are constructed. These intra-annual variations are smoothed by averaging the daily values
over each of the 73 (365/5) 5-day periods of the year. In this way the main climate characteristics of
the objectively defined areas regarding the magnitude of each climatic parameter, relatively to the
spatial average, during the year, are revealed. The methodology scheme, which is followed in the
present study and is described in the above paragraphs, is presented in Figure 2. Finally, a comparison
between the ERA5 and ERA-Interim data sets is carried out for the common period of 2008 to 2017.
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This comparison involves air temperature and total cloud cover, parameters which are connected to
the most significant climate characteristics, and it is performed separately for the land and the sea
areas. For this purpose, daily values of ERA-Interim 1◦ × 1◦ grid point data of air temperature and
total cloud cover are also used [29].

 

Figure 2. The methodology scheme used in the present study.

3. Results

The application of PCA leads to six PCs accounting for 74% of the total variance and the application
of CA leads to 12 clusters (Figure 2). The 12 clusters correspond to specific geographical areas, which
are presented in Figure 3. Each area is characterized by specific seasonal variations of the climatic
parameters’ spatial anomalies, which are presented in Figures 4–9. The main climatic characteristics of
each cluster (subregion) are presented in the following paragraphs.

Figure 3. The spatial distribution of the 12 clusters.

216



Climate 2018, 6, 96

 

 

 

 

 

 

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 1 - Air temperature

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 1 - Dew point temperature

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 1 - Zonal wind (u)

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 1 - Meridional wind (v) 

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 1 - CAPE

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 1 - CIN

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 1 - Total cloud cover

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 2 - Air temperature

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 2 - Dew point temperature

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 2 - Zonal wind (u)

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 2 - Meridional wind (v)

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 2 - CAPE

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 2 - CIN

-3
-2
-1
0
1
2
3

J F M A M J J A S O N D

Cluster 2 - Total cloud cover

Figure 4. Mean intra-annual variations of the spatial anomalies of the meteorological parameters for the
areas of clusters 1 and 2. Continuous and dashed lines correspond to 12UTC and 00UTC respectively.
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Figure 5. As in Figure 4, but for clusters 3 and 4.
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Figure 6. As in Figure 4, but for clusters 5 and 6.
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Figure 7. As in Figure 4, but for clusters 7 and 8.
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Figure 8. As in Figure 4, but for clusters 9 and 10.
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Figure 9. As in Figure 4, but for clusters 11 and 12.

Cluster 1 comprises the grid points of the southern Ionian Sea (Figure 3). The intra-annual
variations of the anomalies of the climatic parameters in this area are presented in Figure 4. It is
seen that 12UTC air temperature over the southern Ionian is higher than the spatial average from
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the middle of September to the middle of April by one standard deviation, while it is lower than the
spatial average by half standard deviation during the rest of the year. This is not valid for 00UTC air
temperature which is equally higher than the spatial average during the whole year. These seasonal
variations of temperature anomalies are due to the fact that at night sea-surface is generally warmer
than land during the whole year, while during daytime this is valid only for the cold period as for the
warm period the high insolation leads to intense land warming and highest temperature anomalies
over the land. For the rest of the parameters, there is not any notable difference between 00UTC
and 12UTC intra-annual variations, except for cloud cover, which presents a small difference in
summer. Dew point is about one standard deviation above the spatial average during the whole year.
The zonal wind component is higher than the spatial average during almost the whole year with
highest values in winter, while the meridional wind component is highest during late autumn. Both
wind seasonal variations are in agreement with the high frequency of southwesterly winds associated
with the passages of Mediterranean depressions during late autumn and winter. CAPE and CIN
spatial anomalies are highest in summer and early autumn when they are approximately one standard
deviation higher than the spatial average. This agrees with the findings of Lolis [30] for the spatial
distribution of CAPE in the Mediterranean region. Finally, total cloud cover is generally lower than
the spatial average during the whole year except autumn, while for late spring and summer 12UTC
anomalies are considerably lower than 00UTC anomalies. The low cloud cover values relatively to the
spatial average during late spring and summer are due to the convective cloud development over the
land during the same period [1].

Cluster 2 contains a relatively narrow geographical zone mainly covered by the sea, which is
extended from the western central Aegean to the Marmara Sea and the Black Sea, while it includes also
a part of Eastern Thrace (Figure 3). According to the intra-annual variations of the anomalies (Figure 4),
it appears that the nighttime temperature is near the spatial average during the whole year, while
the daytime temperature is below the spatial average. The prevalence of low daytime temperature
anomalies is probably a result of the frequent and/or strong northeast winds in both the cold and the
warm period appearing in the anomalies of the wind components. The northeast winds over this area
are mainly a result of stationary synoptic conditions, which in the warm period are associated with the
prevalence of the etesian winds [31,32]. The CAPE and CIN anomalies do not present considerable
variations during the year, while cloud cover is generally above the spatial average during the whole
year. An exception exists for summer during daytime when the spatial maximum of cloud cover is
located over the land because of the intense land warming there.

Clusters 3, 4, and 5 comprise the southern Aegean and the sea area south of Crete and the
Dodecanese islands (Figure 3). According to the intra-annual variations of the spatial anomalies
(Figures 5 and 6), the above area is characterized by a remarkable difference between the daytime
and nighttime temperature anomalies during the warm period, which was the case for the previously
analyzed neighboring sea area of cluster 1 (southern Ionian Sea). Other characteristics of the areas of
clusters 3, 4, and 5 are the positive anomalies of the zonal wind component during the whole year,
the autumn CAPE and CIN maxima and the negative anomalies of cloud cover which are mainly
associated with the low latitude and the large distance from the land in summer and the absence of
orographic effect in winter. The main differences among the areas of the above three clusters mainly
refer to the sign and the magnitude of the meridional wind, CAPE and CIN anomalies. Specifically, one
of the main differences is that the area of cluster 5 is characterized by high CAPE and CIN variations
relatively to the other two areas, while two maxima appear instead of one, the first in spring and the
second in autumn.

Cluster 6 corresponds to the northern Aegean (Figure 3). In this area, the 12UTC air temperature
anomalies are remarkably lower than the 00UTC ones, not only during the warm period as is the
case for the rest of the sea areas, but during the whole year (Figure 6). This can be attributed to the
frequent advection of cold masses from the neighboring continental areas of the Balkans to the Aegean
via the frequent northeasterly winds in winter. This justification is also supported by the negative
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anomalies of the zonal and meridional wind components in winter. In the warm period, it is seen
that the daytime meridional wind component anomalies are remarkably higher than the nighttime
ones, which can be attributed to the effect of the southerly sea breeze from the Aegean to the coasts of
Macedonia and Thrace and the weak etesian winds (relative to the rest of the Aegean Sea). Regarding
the rest of the parameters, cloud cover is slightly above the spatial average, while CAPE and CIN are
higher than the spatial average during late spring and early summer.

Cluster 7 comprises inland areas which are mainly areas of intermediate altitudes between the
plains and the mountainous ones (Figure 3). Such areas are shown over both the Balkan Peninsula
and northwestern Asia Minor. According to the intra-annual variation of the anomalies (Figure 7),
their climate is characterized by low temperatures during winter and high daytime and low nighttime
temperatures during summer. The low nighttime temperature anomalies prevailing during the whole
year are connected to the inland character of the areas favoring nighttime radiative cooling and the
presence of high altitude mountainous areas in their vicinity favoring the development of mountain
breezes. Another characteristic of cluster 7 is the high cloud cover values associated with the windward
character of the regions favoring the formation of orographic clouds in the cold period and the inland
character of the region favoring convective cloud development in the warm period [1].

Cluster 8 comprises the area of central and eastern Aegean Sea (Figure 3), which presents most of
the climate characteristics found for the rest of sea areas. The remarkable difference between daytime
and nighttime temperature anomalies during summer and the high dew point anomalies during
the whole year are among these characteristics, while furthermore it has to be noted that the high
negative meridional wind anomalies are in agreement with the fact that the north etesian winds are
very frequent, persistent, and strong over this area [32].

Cluster 9 corresponds to the north Ionian Sea and the coasts of northwestern Greece and Albania
(Figure 3). The main characteristics of the seasonal variations of the anomalies (Figure 8) are (i) the
difference between daytime and nighttime air temperatures in summer, which has been found for
most sea areas; (ii) the difference between daytime and nighttime zonal wind component anomalies in
the warm period, which is due to the sea breeze circulation between the Ionian Sea and the Balkan
Peninsula; and (iii) the broad and strong summer maximum of CAPE (approximately two standard
deviations above the spatial average), which in agreement with the climatology of CAPE in the
Mediterranean region [30].

Cluster 10 comprises the areas of northwestern Peloponnese and southwestern Asia Minor
(Figure 3). These areas are characterized by very high daytime air temperature in the warm period
of the year relative to the spatial average, low values of dew point during the whole year, low
values of CAPE and CIN during summer and autumn, and approximately one standard deviation
difference between daytime and nighttime zonal wind anomalies (Figure 8). The high 12UTC summer
temperature anomalies are due to the intense land warming and the katabatic character of the etesian
winds over the above areas.

Cluster 11 corresponds to the high altitude mountainous areas of the southern Balkans, which
include the Pindus and Rodopi mountain ranges (Figure 3). The very low air temperature and dew
point values and the very high values of cloudiness relatively to the spatial averages are the main
climate characteristics of these areas. Also, the spring maximum of daytime CAPE is responsible for
the frequent appearance of air mass thunderstorms during the same season, as this maximum is not
accompanied by a corresponding maximum of CIN (Figure 9).

Cluster 12 comprises mainly the plains of eastern Greek mainland, Thrace, and Crete (Figure 3).
The climate over these areas is relatively warm and dry during the whole year as it can be seen in the
seasonal variations of temperature and dew point. Furthermore, upper air static stability appears to
be stronger relatively to the other areas, while cloud cover is slightly higher than the spatial average,
especially at noon (Figure 9).

Finally, in order to validate the results that are based on the ERA5 database, an attempt is made
to compare them with that of the ERA-Interim database. The ERA-Interim data used refer to 1◦ × 1◦
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grid point values and the parameters of air temperature and total cloud cover (00UTC and 12UTC) are
selected as an example. The 12 clusters are separated into two categories: land (clusters 7, 10, 11, and
12) and sea (clusters 1, 2, 3, 4, 5, 6, 8, and 9). For the integer coordinates of the two datasets (the common
grid points) and for the above two parameters, the scatterplots of the spatial mean daily values are
constructed and are presented for the land and sea clusters in Figures 10 and 11. According to the
results, there is a very high linear correlation between the two datasets for both land and sea areas: R2

is higher than 0.98 for air temperature, while it is equal to 0.92 for cloud cover. These values imply a
high degree of covariability between the two data sets even for cloud cover, which is a very sensitive
parameter to the variations of dynamic and geomorphologic factors. The agreement between the two
data sets is also reflected to the mean intra-annual variations of the spatial anomalies of air temperature
and total cloud cover for the 12 clusters. These variations have been calculated also for ERA-Interim
data set for all clusters and the results are found to be similar to the ones of ERA5. The small differences
found can be mainly attributed to the different resolution of the data sets. In Figure 12, an example of
this comparison is presented for clusters 1 and 11, which correspond to sea and mountainous areas,
respectively. As it can be seen, the intra-annual variations of air temperature and cloud cover for
both 00UTC and 12UTC are quite similar and this is also supported by the corresponding correlation
coefficients. For cluster 1, these correlation coefficients are 0.95 and 0.99 for 00UTC and 12UTC air
temperature and 0.81 and 0.88 for 00UTC and 12UTC total cloud cover, respectively. The corresponding
coefficients for cluster 11 are 0.94 and 0.90 for 00UTC and 12UTC air temperature and 0.89 and 0.98
for 00UTC and 12UTC total cloud cover, respectively. The high correlation coefficients enhance the
reliability of the results and confirm the suitability of both data sets for such climatic studies.

Figure 10. Scatterplots of the spatial mean values of ERA-Interim and ERA5 air temperature and total
cloud cover for the areas of clusters 7 and 10–12 (land areas).
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Figure 11. As in Figure 10, but for clusters 1–6 and 8–9 (sea areas).

Figure 12. The mean intra-annual variations of the spatial anomalies of air temperature and total
cloud cover for clusters 1 and 11. Black lines represent the ERA5 dataset while red lines represent the
ERA-Interim dataset. Solid and dashed lines correspond to 12UTC and 00UTC, respectively.

4. Discussion

The division of the southern Balkans into 12 areas with characteristic homogeneous climatic
characteristics confirms the significant spatial variability of climate, which is directly connected to
the complicated coastline and relief of the greater region. For each area, the deviations of the climatic
parameters from the spatial averages have to be examined and interpreted taking into account that
some spatial averages can be affected by the portion between land and sea coverage of the geographical
domain. The 12 areas can be generally distributed into two groups depending on whether they are sea
or land areas. The first group consists of eight areas which are mainly over the sea, while the second
group consists of the rest four areas which are over the land. The areas of each group present some
common characteristics that they are connected to the effect of land or sea surface to the temperature,
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humidity, or stability characteristics of the overlying air, but they also present significant differences
based on the specific geographical position, atmospheric circulation, orientation, latitude, and altitude
characteristics of each area. The sea areas are generally characterized by (i) high dew point values
due to the high evaporation rates which lead to saturation conditions and (ii) low summer daytime
temperatures relatively to the land areas due to the high thermal capacity and conductivity of the
water. Their differences refer mainly to the wind, cloud cover, and stability characteristics, which are
significantly affected by the latitude and their location relatively to large-scale circulation systems
(extend of the Azores high, Asian thermal low, etc.) [20,21] being responsible for the prevalence of
specific wind regimes, for example the etesian winds [31]. On the other hand, the land areas are
generally characterized by (i) high summer daytime temperatures relatively to the sea areas due to
the low thermal capacity and conductivity of soil, (ii) low dew point values because of the lower
evaporation rates relatively to the sea areas, and (iii) static instability maxima in spring associated
with the high solar radiation and lapse rate values during this season. Their differences refer mainly to
wind, static and dynamic instability, and cloud cover regimes, which are significantly affected by the
orientation and the altitude of the areas via their effect on the orographic cloud development and the
lifted condensation level [33]. The climatologically homogenous areas and their geographical borders
present both similarities and differences compared with the results of the recent climate regionalization
made by Nojarov [21], but it has to be taken into account that Nojarov has made the regionalization
using sea level pressure, while in the present work a set of meteorological parameters including
temperature, cloudiness, etc., over the study area is used.

Also, it has to be mentioned that the above characteristics of the 12 regions refer to the 10-year
period of 2008 to 2017 and may present significant deviations from the corresponding climate
characteristics of the past and the future decades. The derived 2008–2017 regional characteristics
could simply be an expression of coinciding several dynamical factors (i.e., North Atlantic Oscillation,
teleconnection with Indian monsoon, and climate change), which can sometimes hinder or amplify the
derived spatial relationships/features. In order to detect such deviations, data availability for a very
longer period and climate simulations for the future decades are needed [34–36].

The special type of climatic classification, which has been achieved in the present study with the
use of the recently released ERA5 high resolution data set, can be considered as an initial attempt for
climate classifications using high resolution grid point data. As mentioned above, such a classification
can be significantly improved in the future when the database will have been extended to the past and
a longer data period will be available (now only available from 2008). This will allow the incorporation
of precipitation data in the classification, which is not used at the moment because of (i) the fact
that they consist of forecast and not of analysis values and (ii) the relatively short 10-year period
does not allow the establishment of the main statistical parameters, including the long-term averages.
However, the study provides significant evidence about the spatial variability of the climate and it can
be considered as a useful tool by the scientists dealing with the Mediterranean climate. Also, it has to
be taken into account that the spatial variations of the associated parameters might change under the
influence of the ongoing climatic change [37].

5. Conclusions

In the present work an objective definition of 12 climatologically homogeneous areas in the southern
Balkans has been carried out for the 10-year period of 2008 to 2017 with the use of 0.25◦ × 0.25◦ ERA5
meteorological data and the following main conclusions can be drawn.

1. The high resolution of the ERA5 data set reveal spatial variations in climate which are connected
to the complicated relief of the region and cannot be adequately described with the use of a low
resolution data set.

2. The geographical distribution of land and sea is one of the dominant factors affecting the definition
and the geographical borders of the 12 areas.
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3. The complicated geographical relief of the area being responsible for the windward or leeward
character of the various subregions affects significantly the spatial distribution of humidity and
cloud cover.

4. There are significant differences between nighttime and daytime cloud cover over the land areas.
The low thermal capacity and conductivity of the soil allow the significant influence of daytime
radiative heating of its surface on the temperature and static stability regimes of the lowest
atmospheric layers, regulating convection and cloud development.

5. There are significant differences between nighttime and daytime wind regimes, especially near the
coasts. These differences are associated with the development of diurnal small-scale circulations
between land and sea (see breezes).

6. The main climatic characteristics of the 12 areas for the above period have been also confirmed
with the use of the ERA-Interim data base. Strong similarity is found between the ERA5 and
the ERA-Interim results. The small differences that exist are mainly associated to the different
resolution of the data sets.

7. A time extension of the high resolution data set to the past would allow the full establishment of
the statistical parameters associated with the climate of the region.

8. The effect of the future climate change on the characteristics of the 12 areas revealed in the present
work can be examined using also the results of climate model simulations and it is an interesting
subject for a future research work.
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Abstract: The variability of temperature and precipitation influenced by El Niño-Southern Oscillation
(ENSO) is potentially one of key factors contributing to vegetation product in southern Africa.
Thus, understanding large-scale ocean–atmospheric phenomena like the ENSO and Indian Ocean
Dipole/Dipole Mode Index (DMI) is important. In this study, 16 years (2002–2017) of Moderate
Resolution Imaging Spectroradiometer (MODIS) Terra/Aqua 16-day normalized difference vegetation
index (NDVI), extracted and processed using JavaScript code editor in the Google Earth Engine (GEE)
platform was used to analyze the vegetation response pattern of the oldest proclaimed nature reserve
in Africa, the Hluhluwe-iMfolozi Park (HiP) to climatic variability. The MODIS enhanced vegetation
index (EVI), burned area index (BAI), and normalized difference infrared index (NDII) were also
analyzed. The study used the Modern Retrospective Analysis for the Research Application (MERRA)
model monthly mean soil temperature and precipitations. The Global Land Data Assimilation System
(GLDAS) evapotranspiration (ET) data were used to investigate the HiP vegetation water stress.
The region in the southern part of the HiP which has land cover dominated by savanna experienced
the most impact of the strong El Niño. Both the HiP NDVI inter-annual Mann–Kendal trend test
and sequential Mann–Kendall (SQ-MK) test indicated a significant downward trend during the El
Niño years of 2003 and 2014–2015. The SQ-MK significant trend turning point which was thought to
be associated with the 2014–2015 El Niño periods begun in November 2012. The wavelet coherence
and coherence phase indicated a positive teleconnection/correlation between soil temperatures,
precipitation, soil moisture (NDII), and ET. This was explained by a dominant in-phase relationship
between the NDVI and climatic parameters especially at a period band of 8–16 months.

Keywords: drought; NDVI; ENSO; wavelet; time series analysis; Hluhluwe-iMfolozi Park;
Google Earth Engine

1. Introduction

Vegetation within protected areas such as game reserves provides wildlife and society with
indispensable ecosystem goods and services [1] including food, medicinal resources, aesthetic value,
and recreational opportunities [2]. However, inappropriate management and other disturbances affect
the potential productivity and spatial extent of this resource [3]. Thus, any factor that poses a threat
to vegetation and its associated benefits which could affect their productivity in the protected areas
needs to be identified and monitored. One such threat is an increase in temperature above normal as
well as a prolonged decline in precipitation and soil moisture, leading to extreme climatic events such
as droughts, which severely affect vegetation productivity [4]. Drought-related impacts are becoming
more multifaceted, as explained by their rapidly growing consequences in sectors such as recreation
and tourism, agriculture, and energy [5].
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The influence of drought on vegetation varies in the spatial and temporal scales, and these
are projected to increase with climate change [6,7]. This behavior affects wildlife, particularly in
semi-arid and arid environments where herbivory is strongly restricted by vegetation extent and water
availability [8]. In the north-east part of KwaZulu-Natal, South Africa, for example, droughts are
becoming a recurrent and prominent feature [9,10], affecting vegetation, water and wildlife resources
notably in the Hluhluwe-iMfolozi Park (HiP), the oldest proclaimed game reserve in Africa, as reported
in this paper. Furthermore, these impacts have potential consequences that could incapacitate this
game reserve’s support of its specialist grazers such as rhinos [11].

Understanding the association between vegetation productivity and climatic variables such as
precipitation and temperature has, therefore, become a high priority. To address this, spatiotemporal
tools that can integrate climate data with other information of interest are required. Remotely sensed
data provide the opportunity to monitor vegetation dynamics in a systematic manner [12]. They play
a growing role in drought detection and management as they afford up-to-date information over
various time and geographic scales and complement alternative techniques such as field surveys [4]
and interviews [13]. Remote sensing’s systematic observation allows us to track vegetation conditions
from the 1970s to the present [14] and provides the means to integrate the record with causal factors.
This study investigates vegetative drought which is the vegetation stress as a function of moisture
deficit [15].

Several drought studies based on satellite-derived measurements have exploited key indicators
such as the (a) normalized difference vegetation index (NDVI), a ratio of the difference between the
near-infrared and red bands of the spectrum over the sum of the near-infrared and red bands [16,17],
which is a robust indicator of vegetation productivity [18]; (b) the normalized difference infrared
index (NDII) which contain additional information on water availability in the soil for use by
vegetation [19] as measured by the ratios of the near-infrared and short-wave infrared [20]; and (c) the
evapotranspiration (ET) which includes both the loss of root zone soil water through transpiration
(influenced by stomatal conductance), as well as evaporation from bare soil [21]. These studies have
enhanced our understanding of how vegetation reacts to drought events over time [22–25].

Hitherto, numerous studies have explored vegetation changes using NDVI in response to climatic
variability. Most have shown that vegetation is largely swayed by the El Niño/Southern Oscillation
(ENSO) phenomenon and have been established to respond well to climatic variables [10,24,26,27].
These studies in different climatic regions have revealed climate-induced effects in key economic sectors
such as agriculture [28] and forestry [24,29]. Most recently, Huang et al. [30] used MODIS-derived
NDVI to demonstrate how vegetation responds to climate variation in the Ziya-Daqing basins of China.
Their results showed that the trends of growing season NDVI were significant in the forest, grassland,
and highlands of Taihang but insignificant in most plain drylands [27]. They also showed how
grassland, as the primary vegetation on the Qinghai-Tibet Plateau, has been increasingly influenced by
water availability due to droughts over the last decade.

Several factors make the HiP an ideal site for assessing the effects of drought on wildlife. First,
Bond et al. [31] established that droughts largely influence the extent of grazing vegetation in the
reserve. More recently, Xulu et al. [10] showed how the recent intense drought moderated the
vegetation health of commercial plantations located ~70 km from the park. Second, the HiP is
an important conservation area and ecotourism destination in South Africa [32], so the resultant
socio-economic impacts of ecosystem changes are of great concern. In this study, therefore, we aim
to evaluate the influence of climatic variability on vegetation in the game reserve over the period of
2002 to 2017. This is the first attempt to demonstrate the spatial dimension of the drought effects in
the HiP using satellite data. We show how to construct a MODIS-derived NDVI time series in the
GEE platform, and perform statistical tests to determine the causal influence of climatic variables in
the reserve.
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2. Materials and Methods

2.1. Study Area

This study was conducted at the Hluhluwe-iMfolozi Park, which covers 900 km2 and extends
between 28◦00′ S and 28◦26′ S, and 31◦43′ E and 32◦09′ E in the northern KwaZulu-Natal, South Africa
(Figure 1). The reserve was established in 1895 and is managed by Ezemvelo KwaZulu-Natal
Wildlife (EKZN Wildlife). The landscape undulates with an altitude ranging from approximately
50 to 500 m.a.s.l. and comprises a mixture of soil types resulting from topographic and climatic
heterogeneity [33]. The terrain of the study area on the right side of Figure 1 was plotted using the
Global Multi-resolution Terrain Elevation Data 2010 data set. The version of this data is the Breakline
Emphasis, 7.5 arc-s, and is archived as USGS/GMTED2010 in the Google Earth Engine (GEE) JavaScript
platform. Land cover classification was also performed in the GEE environment so as to show the
types of vegetation cover in the HiP.

Figure 1. The study area showing the Hluhluwe-iMfolozi Park in the north-eastern part of South Africa.

There are two main rivers that pass through this nature park, namely the Black and White
Umfolozi. The entire area of the park is fenced and borders on populated rural communities. Vegetation
varies from semi-deciduous forests in the north of Hluhluwe to open savanna woodlands in the
southern iMfolozi. Much of the area is dominated by woodland savanna interspersed with shrub
thicket [34]. The northern part of the park has hilly terrain and is dominated by forest. The climate
is subtropical with summer rainfall. It receives a mean annual rainfall ranging from 700 to 985 mm,
much of it occurring between October and March [35]. The park supports approximately 1200 plant
species, including 300 tree and 150 grass species.

2.2. Data

In order to investigate the variability of vegetation in the HiP in response to climatic conditions
as well as the recent intense drought of 2014–2016, we opted to use the monthly averaged MODIS
Terra/Aqua 16-day datasets measured for the period from 2002 to 2017 (16 years). With its considerable
time resolution (about for images per month) compared to other satellites, MODIS images were the
most appropriate for this study because of the size of the geographic area. The MODIS data used here
are archived in the GEE as image collection. This data product is generated from a MODIS/MCD43A4
version 6 surface reflectance composite. More details about the MCD43A4 MODIS/Terra and Aqua
nadir BRDF-adjusted reflectance daily level 3 global 500 m SIN grid V006 data can be found in a
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study by Schaaf et al. [36]. The data were extracted and processed using the JavaScript code editor in
the GEE platform (https://earthengine.google.com/, Mountain View, CA, USA) (see Appendix A),
which provides possibilities of parallel computing and large data processing for even very large
study areas. For the purpose of this investigation, our main parameter is the NDVI, but we also
considered other vegetation indices such as the Enhanced Vegetation Index (EVI), the Burned Area
Index (BAI), and Normalized Difference Infrared Index (NDII). The BAI was also included in order to
determine the possible vegetation burning activity, which may have been triggered by drier conditions
associated with an intense drought period. NDII has been recently proven to be a robust indicator for
monitoring the moisture content in the root-zone from the observed moisture state of vegetation [19,21].
These spectral indices were calculated using the formulas:

NDVI =
NIR − R
NIR + R

(1)

EVI = 2.5
NIR − R

NIR − 6 R − 7.5 B + 1
(2)

BAI = 1
(0.1 + R)2 + (0.06 + NIR)

NDII = NIR − SWIR1
NIR + SWIR1

(3)

where R, NIR, and SWIR1 are spectral bands in the blue (450–500 nm), red (600–700 nm), near-infrared
(700–1300 nm), and shortwave infrared (1550–1750 nm) regions.

In this study, we derived the precipitation values averaged for the study area for the period
from 2002 to 2017 using the Climate Engine Application (CEA, http://climateengine.org/, Moscow,
ID, USA), while soil temperature monthly mean data was derived from the National Aeronautics
and Space Administration (NASA, Washington, DC, USA): http://giovanni.gsfc.nasa.gov. Both the
soil temperature and precipitation data are an output of the Modern Retrospective Analysis for the
Research Application (MERRA-2) model [37]. The MERRA model is an American global reanalysis
tool operating from 1979 onwards that is based on the NASA Goddard Earth Observation serving Data
Assimilation System version 5 (GEOS-5). The MERRA-2 model data are given at a spatial resolution of
0.67◦ × 0.50◦ at 1-hourly to 6-hourly intervals.

There is always an expected variability of surface water content due to changes in both weather
and climatic conditions. Therefore, in a study such as this one, it is essential to always investigate the
water lost to the atmosphere through both evaporation and transpiration. This can be an important
process as it could explain details about vegetation water stress. Given that the study area is a remote
area which does not have evaporation and/transpiration measurements records, we opted to use the
Global Land Data Assimilation System (GLDAS) evapotranspiration (ET) data. The GLDAS system
was designed to generate optimal fields of land surface and fluxes, and it is also capable of generating
quality controlled, spatially and temporally consistent, terrestrial hydrological data including ET and
other related parameters [38].

The ENSO phenomenon influences rainfall and temperature conditions largely over southern
Africa [39,40]. Previous studies have demonstrated how vegetation responds significantly to ENSO [40]
and the DMI [41] index as a measure of climatic conditions [42–44] in some parts of southern Africa.
Thus, in order to investigate changes in vegetation in the HiP due to variability in climatic conditions,
it is important to consider these climate indices. In this study, we used the Niño3.4 monthly mean
time series retrieved from the National Oceanic and Atmospheric Administration (NOAA) website
(https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/, Washington, DC, USA). The Niño3.4 index
is calculated by taking the area-averaged sea-surface temperature (SST) within the Niño3.4 region,
which is at 5◦ N–5◦ S longitude and 120◦ W–170◦ W latitude in the Pacific Ocean. On the other hand,
the DMI is calculated by taking the difference between the SST anomalies in the western (50◦ E–70◦ E;
10◦ S–10◦ N) and eastern (90◦ E–110◦ E), (10◦ S–0◦ N) sectors of the equatorial Indian Ocean [41].
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The DMI data were downloaded from the website: http://www.jamstec.go.jp/frcgc/research/d1/
iod/iod/dipole_mode_index.html. The relevant time series of Niño3.4 and DMI are shown in Figure 2.

Figure 2. The standardized monthly Niño3.4 (a) and dipole mode index (DMI) (b) time series for the
period from 1980 to 2017.

2.3. Multiple-Linear Regression

One of the principal objectives of this study is to quantify the effects of temperature, precipitation,
ET, soil moisture at root-zone (NDII), ENSO and DMI on the NDVI as a surrogate for vegetation in
the study area. Multiple-linear regression analysis (MLR), which is commonly used to explain the
relationship between one continuous dependent variable and two or more independent variables,
was employed. The MLR model output of a number n observations can be represented as

yi = β0 + β1xi2 + · · · + βpxip + εi where i = 1, 2, 3, . . . , n (4)

where yi is the dependent variable (NDVI in this case), xip represents the independent variables
(soil temperature, precipitation, Niño3.4, and DMI in this case), β0 is the intercept, and β1, β2, . . . βp

are the coefficients of the x terms. The term εi represents the error term, which the model always tries
to minimize.

2.4. Mann–Kendall Test

It is always useful to assess the monotonic trends in a time series of any geophysical data. In this
study, the Mann–Kendall test [45–47] was used. This is a non-parametric rank-based test method,
which is commonly used to identify monotonic trends in a time series of climate data, environmental
data, or hydrological data. Non-parametric methods are known to be resilient to outliers [48], hence it
is desirable to choose such methods. Based on a study by Kendall [47] and recently by Pohlert [49] and
others, the Mann–Kendall test statistic is calculated from the following formula:

S =
n−1

∑
k=1

n

∑
j=k+1

sign
(
Xj − Xk

)
(5)

where
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sign(x) =

⎧⎪⎨
⎪⎩

+1, if x > 1
0, if x = 0
−1, if x < 1

(6)

The average value of S is E[S] = 0, and the variance σ2 is given by the following equation:

σ2 =

{
n(n − 1)(2n + 5) −

p

∑
j=1

tj
(
tj − 1

)(
2tj + 5

)}
/18 (7)

where tj is the number of data points in the jth tied group, and p is the number of the tied group in the
time series. It is important to mention that the summation operator in the above equation is applied
only in the case of tied groups in the time series in order to reduce the influence of individual values
in tied groups in the ranked statistics. On the assumption of random and independent time series,
the statistic S is approximately normally distributed provided that the following z-transformation
equation is used:

z =

⎧⎪⎨
⎪⎩

S − 1
σ if S > 1

0 if S = 0
S + 1

σ if S < 1
(8)

The value of the S statistic is associated with the Kendall

τ =
S
D

(9)

where

D =

[
1
2

n(n − 1) − 1
2

p

∑
j=1

tj
(
tj − 1

)]1/2[
1
2

n(n − 1)
]1/2

(10)

In regards to the z-transformation equation defined above, this study considered a 5% confidence
level, where the null hypothesis of no trend was rejected if |z| > 1.96. Another important output of
the Mann–Kendall statistic is the Kendall τ term, which is a measure of correlation which indicates the
strength of the relationship between any two independent variables. In this study, the Mann–Kendall
test system summarized above was applied to the NDVI data by writing a piece of code in R-project
and following the instructions by Pohlert [49].

The Mann–Kendall trend method can be extended into a sequential version of the Mann–Kendall
test statistic which is called the Sequential Mann–Kendall (SQ-MK). This method was proposed by
Reference [50], and it is used to detect approximate potential trends turning points in long-term
time series. This test method generates two time series, a forward/progressive one (u(t)) and a
backward/retrograde one (u′(t)). In order to utilize the effectiveness of this trend detection method,
it is required that both the progressive and the retrograde time series are plotted in the same figure.
If they happen to cross each other and diverge beyond the specific threshold (±1.96 in this study),
then there is a statistically significant trend. The region where they cross each other indicates the
time period where the trend turning point begins [51]. Basically, this method is computed by using
ranked values of yi of a given time series (x1, x2, x3, . . . , xn) in the analyses. The magnitudes of
yi, (i = 1, 2, 3, . . . ,n) are compared with yi, (j = 1, 2, 3, . . . , j − 1). At each comparison, the number of
cases where yi > yj are counted and then donated to ni. The statistic ti is thereafter defined by the
following equation:

ti =
i

∑
j=1

ni

The mean and variance of the statistic ti are given by
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E(ti) =
i(i − 1)

4

and

Var(ti) =
i(i − 1)(2i − 5)

72

Finally, the sequential values of statistic u(ti) which are standardized are calculated using the
following equation:

u(ti) =
ti − E(ti)√

Var(ti)

The above equation gives a forward sequential statistic which is normally called the progressive
statistic. In order to calculate the backward/retrograde statistic values (u′(ti)), the same time series
(x1, x2, x3, . . . , xn) is used, but statistic values are computed by starting from the end of the time series.
The combination of the forward and backward sequential statistic allows for the detection of the
approximate beginning of a developing trend. Additionally, in this study, a 95% confidence level was
considered, which means critical limit values are ±1.96. This method has been successfully utilized in
studies of trends detection in temperature [52,53] and precipitation [51,53,54].

2.5. Wavelet Transforms and Wavelet Coherence

In this study, we opted to employ the wavelet transform analyses method [55] because of its
ability to obtain a time–frequency representation of any continuous signal. Basically, the continuous
wavelet transform (CWT) of a given geophysical (in this case) time series is given by transforming the
time series into a time and frequency space. While there are several types of wavelets, the choice of the
wavelet function is determined by the data series, of which, for geophysical data, the Morlet wavelet
function has been shown to perform well [55–57]. Thus, the CWT [Wn (s)] for a given time series (xn,
n = 1, 2, 3, . . . , N) with respect to wavelet Ψ0 (η) is defined as:

WX
n (s) =

n−1

∑
n′−1

Xn′Ψ∗
[
(n′ − n)

s
δt
]

(11)

where s is the wavelet scale, n
′

is the translated time index, n is the localized time index, and Ψ* is the
complex conjugate of the normalized wavelet. δt is the uniform time step (which is months in this
case). The wavelet power is calculated from |Wn (n)|2. In this study, the CWT statistical significance
at a 95% confidence level was estimated against a red noise model [55,57]. Using a continuous wavelet
transform analysis, it is also possible to quantify the relationship between two independent time
series of the same time step δt. In this study, the aim was to quantify the relationship between NDVI
averaged for the study area and selected climatic parameters. Following Grinsted et al. [57], for the
two time series of X and Y, with different CWT WX

n (s) and WY
n (s) values, the cross-wavelet transform

Wxy
n (s) is given by

WXY
n (s) = WX

n (s)WY∗
n (s) (12)

where “*” represents the complex conjugate of the Y time series. The output of the above equation
can also assist in calculating the wavelet coherence. Basically, wavelet coherence is a measure of the
intensity of the covariance of the two time series in a time–frequency domain. This is an important
parameter because the cross-wavelet only gives a common power. Another important process is to
calculate the phase difference between the two time series. Here, the procedure is to estimate the mean
and confidence interval of the phase difference. Following a study by Grinsted et al. [57], we used the
circular mean of the phase-over regions with relatively high statistical significance that are inside the
cone of influence (COI) to quantify the phase relationship between any two independent time series.
As defined in a study by Zar [58] and also later by Grinsted et al. [57], the mean circulation of a set of
angles (ai, i = 1, 2, 3, . . . , n) can be defined by the following equation:
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am = arg(X, Y) with X =
n

∑
i=1

cos(ai) and Y =
n

∑
i=1

sin(ai) (13)

Following the studies by Torrence et al. [55,57], the wavelet coherence between two independent
time series can be calculated using the following equation:

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S
(

s−1|WX
n (s)|2

)
× S
(

s−1|WY
n (s)|2

) (14)

where the parameter S is the smoothing operator defined by S(Wn (s)) = Sscale (Stime (Wn(s))).
The parameter Stime represents the smoothing in time. For further details about the theory of wavelet
analyses, the reader is referred to [55,57,59].

3. Results and Discussion

To investigate whether the El Niño event of 2014–2016 can be classified as a strong El Niño
event, a time series for the period from the beginning of the satellite era (1980) to 2017 was plotted
(see Figure 2a). We also considered the DMI index (Figure 2b) as a measure of climatic conditions
of the eastern part of southern Africa [43]. A general classification of ENSO events should contain 5
consecutive overlapping 3-month periods with SST anomalies below −0.5 for the La Niña events and
above +0.5 for the El Niño events.

In Figure 2a,b, both the El Niño events and positive DMI are shaded in red, whereas La Niña and
negative DMI are indicated in blue. To identify the strength of the ENSO events, the threshold is further
broken down to weak (0.5–0.9 SST anomaly), moderate (1.0–1.4 anomaly), and strong (≥1.5 anomaly)
events. Figure 2a shows that the 2014–2016 El Niño was one of the strongest since the beginning of
the record. Other notably strong El Niño occurrences were in 1982/1983, 1997/1998, and 2009/2010.
On the other hand, there were many episodes of positive DMI, with one such event in the 2014–2016
period, which seems to be in phase with the recent strong El Niño of 2014–2016.

A composite of the NDVI index averaged for each year from 2002 to 2017 is shown in Figure 3.
In this figure, regions where there are greener colors indicate higher NDVI values, whereas the
brownish colors indicate low NDVI values. These results show that there seems to be a direct influence
of the ENSO in the vegetation of the HiP, especially during strong El Niño years (2014–2016). It is
evident that during El Niño years, there was a decline in NDVI values especially in the southern and
western parts of the study area. This is presumably because the vegetation of the northern part of the
HiP is dominated by a forest which is consist of indigenous trees which are believed to be drought
resistant (see Figure 1). Additionally, the contributing factor could be that the eastern part of the HiP is
benefiting from orographic lifting as it is situated in a high terrain (see Figure 1). The evidence of the
influence of El Niño is more prominent during the strong El Niño years such as 2003 and the recent
intense 2014–2016 drought period, as well as the 2008 non-ENSO drought period.

Figure 4a shows the deseasonalized monthly averaged MODIS NDVI time series for HiP from
2002 to 2017 (red line) plotted together with the 12 months running mean smooth trend (black dotted
line). The monthly mean NDVI values plotted in Figure 4a were calculated by taking an averaged of
MODIS images available in that month. In this study area, the MODIS satellite records four images
per month. In general, there is a steady trend of NDVI measured at the HiP beside some anomalies
observed in specific parts of the time series. This seems to be the case for southern Africa because
other studies also indicated a steady trend for this region [10]. Remarkably, during the 2014–2016
period, a period that coincided with the recent intense El Niño, there was a sudden decrease in the
NDVI values which reduced to the lowest minimum value of about 0.3 in November 2015. During this
period, EVI values also decreased to minimum values of about 0.11 (results not shown here).
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Figure 3. The spatiotemporal variability of normalized difference vegetation index (NDVI) at the
Hluhluwe-iMfolozi Park for the period from 2002 to 2017. The scale represents the range of NDVI
values from 0 to 1.

 

Figure 4. (a) The deseasonalized monthly mean NDVI time series for HiP. The continuous red line
indicates the trend estimate and the dashed red lines show the 95% confidence interval for the trend
based on resampling methods. (b,c) show the histogram and yearly mean time series, respectively.

A study by Mberego and Gwenzi [60] investigated the temporal patterns of precipitation and
vegetation variability over Zimbabwe during extreme dry and wet rainfall seasons using data covering
the period 1981–2005. Their NDVI time series indicated a steady trend over this period. However,
it seemed to be strongly affected by severe dry conditions, an observation which is consistent with the
results presented here. In this study, the deseasonalized monthly mean NDVI time series in Figure 4a
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(red line) indicates the possible response that corresponds to both dry and wet years, especially during
the most recent strong El Niño events of 2003 and 2014–2016. In relation to the strength of the influence
of El Niño in the south-western part of southern Africa, a study by Manatsa et al. [61] analyzed
agricultural drought in Zimbabwe using the standardized precipitation index (SPI). They reported the
1991–1992 period as the period which experienced the most extreme drought conditions. A little later,
observations by Mberego and Gwenzi [60] reported the year 2002–2003 as the drought period with the
most prolonged time of relatively low NDVI values in their time series. While our study does indicate
a significant influence of the 2003 El Niño event in the HiP NDVI values, the observations presented
here indicate that 2014–2016 was the longest period with low NDVI values. Thus, 2014–2016 could
be regarded as the most recent intense El Niño period, with a maximum effect on vegetation in the
HiP. The NDVI values dropped from a value ~0.65 in November 2013 to 0.3 in November 2015. This is
also verified by a much smoother representation of the NDVI in Figure 4c in which a reduction in
NDVI values is observed. This reduction coincides with the most recent strong El Niño. Additionally,
a reduction which coincides with the El Niño of 2003 (see Figure 4c). Another significant feature is a
strong peak, which reaches ~0.8 just after the Irina tropical storm, which occurred in early March 2012
(see Figure 4).

Figure 5 shows monthly mean time series values plotted together with their corresponding
12-month running-mean smooth trend for NDVI (Figure 5a), EVI (Figure 5b), BAI (Figure 5c),
soil temperature (Figure 5d), precipitation (Figure 5e), evapotranspiration (Figure 5f), and NDII
(Figure 5g). These monthly mean values are plotted together with their respective smooth trends,
which were calculated using the Breaks For Additive Season and Trend (BFAST) method, which is
described in details by Verbesselt et al. [62,63]. Basically, the BFAST method integrates the
decomposition of time series seasonal, trend, and remainder components of any satellite image
time series, and can be applied to any other type of time series in the geosciences that deals with
seasonal or non-seasonal time series. The period of the most recent intense drought (2014–2016) is
indicated by the grey shaded box in each figure. In general, all the parameters show a seasonal cycle in
terms of monthly means.

There is an expected resemblance between the NDVI and EVI observations in both the monthly
mean time series and the smooth trend, with a clear indication of the effect of the 2014–2016 drought
period. These observations are consistent with a study by Xulu et al. [10], who investigated the
response of commercial forestry to the recent strong and broad El Niño event in a region which is 70
km south-east of the HiP. In their study, Xulu et al. [10] reported a significant decline of NDVI values
which corresponded to the 2014–2016 El Niño years [10]. Although the influence of the 2014–2016 El
Niño in the HiP seems to be the strongest, it follows the same pattern as that reported by Anyamba et
al. [40] in their study of the influence of both El Niño and La Niña in the vegetation status over eastern
and southern Africa. Considering the level of browning of vegetation demonstrated in Figure 3 for the
years 2014–2016, it is necessary to consider the possible fire activity given the relatively dry conditions
in the HiP. Figure 5c indicates that during the period of the intense drought of 2014–2016 there was
an increase in fire incidences in the HiP. This is revealed by a rise in the BAI values of the smooth
trend to its maximum level of approximately 50 in November 2015. During the 2014–2016 period,
the HiP experienced an unprecedented decline in the total precipitation per month (see Figure 5d).
During the same period, the soil temperature increased to its highest maximum (see Figure 5e). The
GLDAS monthly mean ET time series shown in Figure 5f indicates a declining trend during the period
2014–2016, which indicated a possible vegetation stress. In order to investigate the moisture content at
root-zone, the NDII index was used. The NDII (Figure 5g) indicates a similar pattern to that of the
NDVI and EVI time series. It is observed in Figure 5a that the NDII had a steady trend (0.10) during
the period 2002–2013 which was followed by a sudden decrease which reached a minimum value of
−0.06 in November 2015.
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Figure 5. The monthly mean time series values of (a) NDVI, (b) Enhanced Vegetation Index (EVI),
(c) Burned Area (BAI), and Modern Retrospective Analysis for the Research Application (MERRA-2)
model soil temperature (d) and precipitation (e), Global Land Data Assimilation System (GILDAS)
evapotranspiration (f) and Normalized Difference Infrared Index (NDII) (g). The dotted lines represent
the 12-month smooth trends.

The 12-month running mean smooth trends extracted using the BFAST method for NDVI, EVI,
and BAI plotted against anomalies of climatic forcers Niño3.4 and DMI are shown in Figure 6. This plot
was constructed to investigate any possible 2-dimensional teleconnection between vegetation condition
and the Niño3.4 and DMI climatic forcers, respectively. The panels on the left represent the vegetation
indices versus Niño3.4, and the panels on the right show the vegetation indices versus DMI. Both the
NDVI (Figure 6a) and EVI (Figure 6b) values show a fairly steady pattern for most parts of the time
series, which vary between NDVI values of 0.50 and 0.60, and between EVI values of 0.28 and 0.34.
However, both the NDVI and EVI values seem to be enhanced by the extreme amount of rainfall that
was brought by the tropical cyclone Irina during early 2012 in the eastern part of southern Africa.
In that year, NDVI values increased to a maximum value of approximately 0.62, whereas the more
sensitive EVI index reached its maximum of approximately 0.38. The strong peaks that were observed
during 2004 for both the NDVI and EVI time series correspond to the greening of vegetation in the
HiP which was produced by heavy rainfall that was brought by tropical cyclone Elite in January
2004 [64]. NDVI values were observed to decrease sharply from late 2013 until they reached their
minimum of approximately 0.40 in 2015 before beginning to recover to normal average conditions in
2017. This pattern is also depicted in the EVI time series and is directly linked to the stronger and more
extensive 2014–2016 El Niño event. Similar results were also presented in a study by Xulu et al. [10],
who investigated the influence of recent droughts on forest plantations in Zululand. The notable
browning observed in Figure 3 for years 2014, 2015 and 2016, which was also revealed by the NDVI
and EVI time series (Figure 5), seems to represent favorable conditions for biomass burning in the
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HiP. This is revealed by the unprecedented sudden increase of BAI values to its highest maximum of
approximately 50, which coincides with the enhancement of Niño3.4 during 2014–2016 (Figure 6e).

 

Figure 6. The (a,b) NDVI, (c,d) EVI and (e,f) BAI (blue dashed line) 12-month smooth trends versus
Niño3.4 (left panels) and DMI (right panels) for the period from 2002 to 2017 for the HiP.

The DMI was highly variable compared to the Niño3.4 climatic forcer throughout the study period,
with several distinctive positive DMI values that reached a maximum of just below 1.0. Remarkably,
there is a strong peak that extends up to approximately 0.8 during the period band corresponding to
2014–2016 that coincided with the decline in NDVI and EVI and the increase of the ENSO and BAI time
series. We note here that the widespread browning observed during the 2014–2016 drought period
could have been accelerated by the fact that the climatic forcers, which are known to influence the
south-eastern part of southern Africa, may have been in phase during this period. This, of course,
needs further investigation; and is discussed below.

3.1. Correlations Statistics and Mann–Kendall Test

The Pearson correlation between NDVI and climatic variables used in this study for the whole
study record was derived. Figure 7 shows the heat map which summarizes the linear relationships
between all the parameters monitored in this study. In this figure, it is clear that there is a strong
correlation between NDVI and Soil temperature (r = 0.35), precipitation (r = 0.43), ET (r = 0.68),
and NDII (r = 0.92). On the other hand, there is a significance strong negative correlation between
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the NDVI and BAI, which is not surprising because greener vegetation reduces chances of biomass
burning, while the possibility of the satellite detecting a charcoal signal from burnt vegetation during
dry conditions is high. There is also a noteworthy negative (r = −0.27) correlation between NDVI and
Niño3.4. The results shown in Figure 7 also reaffirm the strong relationship between soil temperature
with a strong correlation coefficient of r = 0.77. Considering that Figure 2 indicates some episodes
where a strong Niño3.4 peak is in phase with the DMI peaks, the noteworthy correlation of r = 0.28
between these two climatic indices seems to reaffirm this.

Figure 7. The heat map of Pearson correlation coefficients for NDVI, NDII, precipitation (Prec),
soil temperature (Soil.Temo), ET, BAI, Niño3.4, and DMI.

Figure 8 shows the inter-annual variability of the Pearson linear correlation between the HiP
NDVI values and parameters such as BAI, Soil Temp, Prec, Niño3.4, DMI, ET, and NDII for the
period from 2002 to 2017. The correlation between NDVI and EVI was not analyzed because the two
parameters closely resemble each other. In general, NDVI is positively correlated to soil temperature,
precipitation, ET and NDII through the study period. The NDVI–NDII correlation was the strongest
positive correlation with an average value of r = 0.91. This reaffirms the strong relationship between
vegetation water stress and soil moisture at the root-zone. The NDVI–ET correlation was observed
to be steady at an average correlation coefficient value of r = 0.65 during the period from 2002–2013.
However, this linear relationship decreased to r = 0.40 and r = 0.30 in 2015 and 2016, respectively.
A study by [65] also used MODIS NDVI and GILDAS evapotranspiration data in order to investigate
the relationship between NDVI and evapotranspiration. In their study, they reported a steady positive
inter-annual variability of correlation coefficients with an average value of r = 0.58. As expected,
the NDVI–Niño3.4 correlation is dominated by negative values which are observed to decrease during
the periods corresponding to El Niño years. This is consistent with previous studies such as those
of Xulu et al. [10,40] who reported a significant influence of ENSO on the vegetation of southern
Africa, especially the north-eastern part. Moreover, a salient observation is that the greatest minimum
correlation recorded was in 2015, a year with a particularly strong El Niño. The negative correlation
between DMI and NDVI also seems to be greater during the recent intense drought period, which could
indicate that Niño3.4 and DMI were in phase during this time. The correlation between NDVI and the
BAI is expected to be strongly negative as greening is not conducive to biomass burning. However,
the results presented in Figure 8 indicate that there was a sudden increase in correlation between NDVI
and BAI in 2015 before it returned to its average position in 2016 and 2017. Overall, the inter-annual
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variation of almost all the study parameters indicates a noticeable change during El Niño events in the
years 2003 and more prominently during the 2014–2016 period.

 

Figure 8. The inter-annual variability of linear correlations between NDVI and BAI, Soil Temp, Prec,
Niño3.4, DMI, ET, and NDII for the period 2002 to 2017.

A comprehensive summary of the MLR analysis statistics encompassing NDVI, temperature,
precipitation, Niño3.4, and DMI is shown in Table 1. It should be mentioned that the soil temperature,
precipitation, ET, NDII, and Niño3.4 were used in this model because of their well-known possible
influence on NDVI variability. The DMI climatic parameter was not used as an explanatory variable
in the MLR model because of its weak correlation with the NDVI. The results in Table 1 reveal a
statistically significant relationship between NDVI and soil temperature and between NDII and ET,
with p-values of 0.000386, <2.00 × 10−16 and 0.000173, respectively. Both Precipitation and Niño3.4
indicate a statistically insignificant association with the NDVI because of p-values which are far
greater than 0.05. A positive significant correlation between NDVI and Soil temperature, NDII,
and ET, which is also represented as in Figures 7 and 8, indicates that soil moisture, soil temperature,
and evapotranspiration play a significant role in vegetation health in the HiP. The significant but
negative correlation between Niño3.4 and NDVI confirms the notion that ENSO variability plays a
role in the climatic conditions of southern Africa [35,52].

Table 1. The output of the Multiple Linear Regression (MLR) model in which Normalized
Difference Vegetation Index (NDVI) is a dependent variable and soil temperature, precipitation
(Soil Temp), Niño3.4, Normalized Difference Infrared Index (NDII), Dipole Model Index (DMI),
and Evapotranspiration (ET) are independent variables.

Variable Estimate Std. Error t-Value p-Value Sig

Soil. Temp −1.23 × 10−02 3.39 × 10−03 −3.615 0.000386 ***
Prec 7.35 × 10−05 1.72 × 10−04 0.427 0.669736

Niño3.4 −6.44 × 10−03 7.62 × 10−03 −0.845 0.399427
NDII 1.46 × 10+00 7.60 × 10−02 19.214 <2.00 × 10−16 ***

ET 4.03 × 10+03 1.05 × 10+03 3.833 0.000173 ***

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

In this study, the Mann–Kendall trend test was used for the analysis of the trend in the HiP
NDVI time series. The main advantage of this technique is that it provides a non-parametric test that
does not require data to be normally distributed, and it is not dependent on the magnitude of data.
Furthermore, this non-parametric test method has a low sensitivity to abrupt breaks in heterogeneous
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time series [66]. The Mann–Kendall test model was applied to the NDVI data, and the results are shown
in Figure 9. In summary, the z-score and p-value for the entire NDVI time series period (2002–2017)
were found to be −1.22 and 0.224, respectively. Both the z-score and the p-value seem to indicate that
there was a downward but not significant trend in the NDVI data. The indication of an insignificant
downward trend (negative z-score) presumably due to the unprecedented sudden reduction of the
NDVI values which coincided with the 2014–2016 drought. In order to investigate the influence of
drought conditions in the study area using the Mann–Kendall method, it is necessary to calculate the
inter-annual variation of Mann–Kendall z-scores. These Mann–Kendall z-scores were calculated from
monthly means for each year starting from 2002–2017.

Figure 9. (a) The inter-annual variation of Mann–Kendall z-scores (α = 0.05, Z1 = –1.96, Z2 = 1.96) for
the HiP from 2002 to 2017. (b) Sequential statistics values of progressive (Prog) u(t) (solid red line) and
retrograde u′(t) (black solid line) obtained by Sequential Mann-Kendall (SQ-MK) test for HiP monthly
mean NDVI data for the period from 2002 to 2017.

Figure 9a shows the Mann–Kendall z-scores based on the 16 years of monthly average NDVI
data for the game reserve. In general, it is expected that vegetation will respond to climate fluctuating
conditions, and this is clearly depicted by significantly negative z-scores (less than Z1 = −1.96) during
strong El Niño events (e.g., in 2003 and 2014/2015). The significant downward trend observed between
2014 to 2015 is the strongest such downward trend in the history of the MODIS NDVI data used in this
study; it demonstrates a clear response of the vegetation of the reserve to the strong El Niño event of
2014–2016. Similar analysis and results comparable with those presented here were reported by Hou
et al. [24] in their study on the inter-annual variability in growing-season NDVI and its correlation
with climate variables in the south-western Karst region of China.

The sequential version of the Mann–Kendall test was applied to the NDVI monthly mean time
series so as to determine the approximates time periods of the beginning of a significant trend.
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Figure 9b shows the sequential statistic values of forward/progressive (Prog) u(t) (solid red line) and
retrograde (Retr) u′(t) (black solid line) obtained by SQ-MK test for HiP monthly mean NDVI data
for the period from 2002 to 2017. There is a noticeable statistically significant downward trend which
seems to coincide with the 2003 and strongly the 2014–2016 strong El Niño event. These independent
calculations are in agreement with the inter-annual variation of the Mann–Kendall z-scores results
presented in Figure 9a. In the case that seems to be associated with the 2014–2016 strong El Niño events,
there is an apparent downward trend (indicated by the retrograde) that begins in November 2012 and
reaches the negative significant trend limit (−1.96) in April 2014. The retrograde statistic values stay
in significant negative territories during the period from April 2014 to May 2016 before it starts to
revert back to be within the 95% confidence level limits (±1.96). This trend is regarded as significant
because the progressive and retrograde curves intersect each other (turning point) within the limits
of the 95% confidence level. This significant trend turning point took place during November 2012.
Another significant downward trend was observed in late 2003, with the significant trend turning
point observed in June 2005.

The intensity of the 2014–2016 drought impact in the HiP has been identified to be identical to
that of the early 1980s [11]. Some of the additional factors that reportedly intensified the impact of the
2014–2016 drought include the reduction in the grazing lawns, siltation of rivers, and the increasing
number of carnivores [11]. The impact of the 2014–2016 drought did not only affect this natural
protected area (HiP), but also the comical plantations which are situated at about 70 km southwest of
the HiP [10], [67]. A study by Crous et al. [67] reported a large-scale dieback of Eucalyptus grandis ×
E. urophylla (SClone) in the Zululand coastal plain, KwaZulu-Natal, South Africa, during the recent
intense drought. This was later supported by Xulu at al. [10], where they reported that the commercial
forest of kwaMbonambi, northern Zululand suffered drought stress during 2015.

3.2. Wavelet Analyses

In order to analyze the localized variation of the spectral power within the time series, wavelet
analyses, the most common tool for this purpose, was conducted. As mentioned earlier, the wavelet
method assists by decomposing a time series into a time–frequency space, which makes it possible
to determine the dominant modes of variability and how they vary in time. Figure 10 shows the
normalized wavelet power spectra for the monthly mean NDVI, precipitation, soil temperature, DMI,
Niño.3.4 NDII, and ET data. The results of the EVI wavelet analyses are not shown here because
this time series is identical to that of the NDVI. In Figure 10, the blue color indicates low wavelet
power, and the yellow color represents areas of high wavelet power. The horizontal axis is the time
scale (in years) and the vertical axis is the period (in months). The thick black line represents the 95%
confidence level. The areas of the wavelet power that are considered are those which are within the
cone-of-influence (indicated by the solid “u” shaped line). The con-of-influence indicates areas where
edge effects occur in the coherence data [55,57].

The NDVI of the HiP seems to follow the distinctive pattern of the seasonality of precipitation
in the north-eastern part of South Africa. The region experiences rainfall during the summer period
(December–February) and dry winter period (June–August). This is confirmed by a statistically
significant peak observed at around the 12-month cycle (see Figure 10a), which seems to correspond
with that of precipitation (Figure 10b). The wavelet power spectra of soil temperature (Figure 10c),
NDII (Figure 10f) and ET (Figure 10g) also indicate a strong peak at around the 12-month cycle. This is
plausible because wet seasons (summer in this case) lead to increased soil moisture and also create
conditions of low evapotranspiration and thus accelerate the greening process in the HiP. It should
also be noted that the NDVI wavelet power spectra have significant peaks showing the presence of the
semi-annual oscillation (6 months), which is observed during the distinctive period from 2006–2007 to
2011–2012. The semi-annual oscillation observed during the 2006–2007 period is also apparent in the
NDII wavelet power spectra. The results of the NDVI wavelet spectral presented here are remarkably
similar to the findings of Azzali and Menenti [12], who used a Fourier transform-based technique
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and reported a substantial seasonal change in NDVI for southern Africa. The significant power of
a period of 3–4 months that is observed during the distinctive period 2012–2013 and 2015–2016 in
the precipitation power spectra is perhaps related to cyclone Irina in early 2012 and the most recent
intense drought of 2014–2016. The wavelet power spectra of the DMI indicate a significant power peak
of distinctive periods in the 3–20 months band primarily during the period between 2008 and 2013.
On the other hand, the Niño3.4 power spectra exhibit significant power peaks in the 8–32 months
band throughout the study period. It should be noted, however, that this frequency of occurrence of
peaks observed in the Niño3.4 wavelet spectra is similar to that reported in the studies of Torrance and
Compo [55] and also of Jevrejeva et al. [56], who used a much longer time series of the ENSO signal.

Figure 10. The normalized wavelet power spectra of monthly mean (a) NDVI, (b) precipitation, (c) Soil
temperature, (d) DMI, (e) Niño3, (f) NDII, and (g) ET, plotted for the period from 2002 to 2017. The black
lines which encircle the yellowish colors indicate the areas of significance at the 95% confidence level
using the red noise model.

The wavelet coherence between NDVI–Niño3.4, NDVI–DMI, NDVI–precipitation, NDVI–soil
temperature, NDVI–NDII, and NDVI–ET was investigated to determine whether NDVI significant
wavelet spectra peaks observed at a given time correspond with those observed by the other parameters.
Furthermore, the phase relationship between NDVI and the other parameters was calculated and
superimposed graphically in Figure 11. The phase relationship is represented by arrows, where two
cross-wavelet parameters are in phase if the arrows point to the right, anti-phase if the arrows point to
the left, and NDVI leading or lagging if the arrows point upwards or downwards, respectively.
The vectors were only plotted for areas where the squared coherence is greater or equal to 0.5.
More details about these calculations can be found in References [56,57] and later by studies by
Schulte et al. [59].

247



Climate 2018, 6, 95

 

 
Figure 11. The squared cross-wavelet power spectra for NDVI–Niño3.4, NDVI–DMI,
NDVI-precipitation, NDVI–soil temperature, NDVI–NDII, and NDVI–ET. The continuous black lines
demarcate the areas of significance at the 95% confidence level using the red noise model. The arrows
are vectors indicating the phase difference between the cross-wavelet parameters (see the legend in the
bottom left corner).

The local wavelet coherence spectra together with their distinctive cross-spectra phase for
NDVI–Niño3.4, NDVI–DMI, NDVI-precipitation, NDVI–soil temperature, NDVI–NDII, and NDVI–ET
are shown in Figure 11. In general, all the wavelet coherence spectra indicate that Niño3.4, DMI,
precipitation, soil temperature, NDII, and ET do have some degree of coherence with the HiP
NDVI in a variety of both periods and timescales. However, it should be mentioned that because
statistically, the significant correlation between any two variables being investigated could occur by
chance, a significant commonality in a wavelet coherence spectra analysis does not necessarily imply
interconnection. Moreover, there is a possibility of smaller areas of wavelet coherence occurring by
chance, which would not indicate interconnection, whereas larger areas of significance are improbable
due to chance. For this reason, further investigation is required in regard to a possible teleconnection
between any two-time series.

A study by Torrance and Compo [55] investigated the periodicities present in a much longer
time series (1871–1996) of Niño3.4 using Morlet wavelets and reported the domination of periods
greater than 12 months, with some episodes of shorter periods also present in their spectra. In this
study, the wavelet coherence between NDVI and Niño3.4 indicates smaller or no areas of high
power significance, which is understandable because the 16-year monthly mean NDVI time series is
dominated by periodicities of less than 16 months (Figure 10a) whereas the Niño3.4 wavelet spectra
are dominated by periodicities greater than 12 months. Remarkably, there is a significant power at
a period band of 22–27 months from 2014 to 2017 with cross-spectra phase pointing at the leading
position for Niño3.4, which indicates that the recent strong El Niño event may have started first before
the response of NDVI months after the El Niño.
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The wavelet coherence between NDVI and DMI is observed to delineate some areas that have
high significant power at periods of 2–16 months. It is also important to mention that there are
significant peaks which are within the cone of influence at the period band 32–48 months during
2005–2007 and 2013–2014, respectively. The cross-wavelet phase during the years 2013–2014 indicates
that the DMI was leading the NDVI. This significant peak seems to be similar to that observed in
the Niño3.4–NDVI wavelet coherence spectra, which indicates that it is possible that the DMI and
Niño3.4 time series were in phase during this period. If so, their joint effect could have maximized
the browning observed during 2014–2016. The wavelet coherence between NDVI and precipitation,
soil temperature, and ET indicates high significant power during most parts of the study record.
In general, these spectra vectors are observed to have an in-phase relationship especially during the
period band 8–18 months. This pattern is also observed in the distinctive periods which are less than
8 months especially for the period band 2006–2013. The NDVI and soil temperature wavelet coherence
spectra delineate distinctive high power significance with an anti-phase relationship in a 2–8 months
band during 2006–2014. Apart from the two distinctive period bands of 2004–2006 and 2015–2017 of
high significant power during which the NDVI time series led the temperature time series during
the period band 9–14 months, the annual cycle is dominated by the in-phase relationship. Both these
scenarios indicate the possible teleconnection between the two time series. The dominant in-phase
relationship in the NDVI–precipitation, NDVI–soil temperature, and NDVI–ET suggests that these
parameters are positively correlated to the NDVI. This also indicates that the NDVI of the HiP follows
the seasonal cycle of precipitation and temperature that is experienced in this region of southern
Africa. As expected, the NDVI–NDII coherence spectra indicate a significant coherence at periods
greater than 3 months, with a dominant in-phase relationship which indicates a strong correlation
between NDVI and NDII. This is in agreement with the Pearson correlation coefficient results presented
in Figures 7 and 8.

Overall, factors such as DMI, Niño3.4, precipitation, soil temperature, NDII, and ET are shown
to influence NDVI at different distinctive periods and timescales. During the La Niña years,
the relationship between NDVI and precipitation and temperature seemed to not indicate any alarming
patterns. However, during strong El Niño years (especially broad and strong El Niño years such as
the 2014–2016), intense droughts occur. This condition is associated with less humidity and cloud
cover, which allows for more solar radiation reaching the ground and accelerated evapotranspiration,
which impedes photosynthetic activity.

4. Conclusions

Time series analyses methods were employed in this study to investigate the basic structure
variability and trend of the HiP NDVI and its response to the variability of climatic conditions.
The results of this study indicate that drought stress reaction patterns of vegetation within HiP provide
temporal responses to climate variability, suggesting a strong causal influence. Both the NDVI and EVI
values, averaged over the study area, decreased suddenly during 2014–2016 to their greatest minima of
approximately 0.28 and 0.11, respectively, in 2015. The linear relationship between climatic indices and
NDVI indicated that precipitation soil temperature, soil moisture at root-zone (NDII), ET and to some
extent ENSO play a significant role in the variability of vegetation health. The Pearson correlation
r and MLR p-value for precipitation and ENSO were found to be 0.45 and 2.0 × 10−7, and 0.27 and
8.4 × 10−4, respectively. While some studies [17] reported temperature as the main meteorological
parameter that influences vegetation, in this study, we conclude that the influence of precipitation on
vegetation was more significant. Different areas of the HiP are affected differently by the strong El
Niño signal because of the special variation of land cover. The southern part of the HiP was affected the
most because it is dominated by savanna. On the other hand, the northern part of the HiP seems to not
be affected presumably because land cover in this area is dominated by forests which are composed of
trees which are drought resistant. Moreover, terrain appears to have additional influence on the state
of vegetation in the reserve. For example, the lower NDVI values corresponded with the 2014–2016
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drought period, particularly in the south-western (flat) part of the reserve, whereas the northern
parts (hilly) seem to have benefited from orographic precipitation which promoted vegetation growth.
Terrain is also assumed to restrict wildlife grazing in hilly parts of the reserve where stable NDVI are
noticeable, placing more burden in flat areas that are accessible to most grazers.

The Mann–Kendall trend significance test and the sequential version of the Mann–Kendall test
statistic revealed a significant decreasing pattern of NDVI during the extreme drought periods of 2003
and 2014–2016, with unprecedented lowest minimum values of NDVI detected in 2015. This study has
also demonstrated how the wavelet coherence signal processing technique can serve in identifying
periodicities in NDVI time series and can also help demonstrate the temporal response of vegetation
status to environmental disturbances. The wavelet coherence power spectra indicate a strong influence
of precipitation, soil temperature, soil moisture, and ET on the viability of NDVI. This was revealed
by a dominant in-phase relationship between the climatic variables and NDVI, which suggests a
positive correlation.

While the El Niño of 2014–2016 was both extended and strong, it is possible that its influence
in the study area was also supported by a corresponding positive DMI peak which took place at the
same time with the with the 2014–2016 El Niño period. It is, therefore, desirable to use the wavelet
coherence technique and other methods to investigate the phase relationship between ENSO and DMI
for determining the corresponding influence of rainfall in the north-eastern part of South Africa.

Finally, we conclude that the recent intense drought of 2014–2016 influenced the spatiotemporal
pattern of the vegetation condition in the HiP. This holds more implications for the tourism potential
of the HiP with attractive grazers such as white rhinos and buffalos that were reportedly affected by
this event [11]. The results portend that the freely GEE-archived satellite data is a capable tool for
monitoring droughts with a high temporal resolution across game reserves located in drought-prone
areas of South Africa and other parts of the world.
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Appendix A

Here we show the Google Earth Engine interactive development environment. The dark green
area indicates the location of the Hluhluwe-iMfolozi Park in north-eastern South Africa. The NDVI
time series, which is averaged for the study area, is shown in the console part of the GEE interactive
development environment.
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Figure A1. The Google Earth Engine interactive development environment.
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Kumagai, Y.; Maxted, N.; Senior, J.; et al. Values and benefits of protected areas. In Protected Area Governance
and Management; Worboys, G.L., Lockwood, M., Kothari, A., Feary, S., Pulsford, I., Eds.; ANU Press:
Canberra, Australia, 2015; pp. 145–168.

2. Kettunen, M.; ten Brink, P. Social and Economic Benefits of Protected Areas: An Assessment Guide; Routledge:
Abingdon, UK, 2013.

3. White, R.P.; Murray, S.; Rohweder, M.; Prince, S.D.; Thompson, K.M. Grassland Ecosystems; World Resources
Institute: Washington, DC, USA, 2000.

4. Sruthi, S.; Aslam, M.M. Agricultural drought analysis using the NDVI and land surface temperature data; a
case study of Raichur district. Aquat. Procedia 2015, 4, 1258–1264. [CrossRef]

5. Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to
enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [CrossRef]

6. Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.;
Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing. In Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate
Change; Tignor, K., Allen, M., Boschung, S.K., Nauels, J., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge
University Press: Cambridge, UK; New York, NY, USA, 2013.

7. Clark, P.U.; Shakun, J.D.; Marcott, S.A.; Mix, A.C.; Eby, M.; Kulp, S.; Levermann, A.; Milne, G.A.; Pfister, P.L.;
Santer, B.D.; et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level
change. Nat. Clim. Chang. 2016, 6, 360. [CrossRef]

8. Duncan, J.M.; Biggs, E.M. Assessing the accuracy and applied use of satellite-derived precipitation estimates
over Nepal. Appl. Geogr. 2012, 34, 626–638. [CrossRef]

9. Dube, L.; Jury, M. The nature of climate variability and impacts of drought over KwaZulu-Natal, South Africa.
S. Afr. Geogr. J. 2000, 82, 44–53. [CrossRef]

10. Xulu, S.; Peerbhay, K.; Gebreslasie, M.; Ismail, R. Drought influence on forest plantations in Zululand,
South Africa, using MODIS time series and climate data. Forests 2018, 9, 528. [CrossRef]

11. Whateley, A. The Impact of Drought in the Hluhluwe Imfolozi Park (HiP) South Africa. 2017.
Available online: http://theconservationimperative.com/?p=235 (accessed on 10 June 2018).

12. Azzali, S.; Menenti, M. Mapping vegetation-soil-climate complexes in southern Africa using temporal
Fourier analysis of NOAA-AVHRR NDVI data. Int. J. Remote Sens. 2000, 21, 973–996. [CrossRef]

13. Hassan, M.H.; Hutchinson, C. Natural Resource and Environmental Information for Decision Making; The World
Bank: Washington, DC, USA, 1992.

251



Climate 2018, 6, 95

14. Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23.
[CrossRef]

15. Rulinda, C.M.; Dilo, A.; Bijker, W.; Stein, A. Characterizing and quantifying vegetative drought in East Africa
using fuzzy modelling and NDVI data. J. Arid Environ. 2012, 78, 169–178. [CrossRef]

16. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation.
Remote Sens. Environ. 1979, 8, 127–150. [CrossRef]

17. Poveda, G.; Salazar, L.F. Annual and interannual (ENSO) variability of spatial scaling properties of a
vegetation index (NDVI) in Amazonia. Remote Sens. Environ. 2004, 93, 391–401. [CrossRef]

18. Wang, J.; Rich, P.M.; Price, K.P.; Kettle, W.D. Relations between NDVI and tree productivity in the central
Great Plains. Int. J. Remote Sens. 2004, 25, 3127–3138. [CrossRef]

19. Sriwongsitanon, N.; Gao, H.; Savenije, H.H.G.; Maekan, E.; Saengsawan, S.; Thianpopirug, S. Comparing
the Normalized Difference Infrared Index (NDII) with root zone storage in a lumped conceptual model.
Hydrol. Earth Syst. Sci. 2016, 20, 3361–3377. [CrossRef]

20. Sriwongsitanon, N.; Gao, H.; Savenije, H.H.G.; Maekan, E.; Saengsawan, S.; Thianpopirug, S. The Normalized
Difference Infrared Index (NDII) as a proxy for soil moisture storage in hydrological modelling. Hydrol. Earth
Syst. Sci. Discuss. 2015, 12, 8419–8457. [CrossRef]

21. Joiner, J.; Yoshida, Y.; Anderson, M.; Holmes, T.; Hain, C.; Reichle, R.; Koster, R.; Middleton, E.; Zeng, F.W.
Global relationships among traditional reflectance vegetation indices (NDVI and NDII), evapotranspiration
(ET), and soil moisture variability on weekly timescales. Remote Sens. Environ. 2018, 219, 339–352. [CrossRef]

22. Deshayes, M.; Guyon, D.; Jeanjean, H.; Stach, N.; Jolly, A.; Hagolle, O. The contribution of remote sensing to
the assessment of drought effects in forest ecosystems. Ann. For. Sci. 2006, 63, 579–595. [CrossRef]

23. Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term
vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR
GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [CrossRef]

24. Hou, W.; Gao, J.; Wu, S.; Dai, E. Interannual variations in growing-season NDVI and its correlation with
climate variables in the southwestern karst region of China. Remote Sens. 2015, 7, 11105–11124. [CrossRef]

25. Xu, C.; Hantson, S.; Holmgren, M.; Nes, E.H.; Staal, A.; Scheffer, M. Remotely sensed canopy height reveals
three pantropical ecosystem states. Ecology 2016, 97, 2518–2521. [CrossRef] [PubMed]

26. Forkel, M.; Carvalhais, N.; Verbesselt, J.; Mahecha, M.D.; Neigh, C.S.; Reichstein, M. Trend change detection
in NDVI time series: Effects of inter-annual variability and methodology. Remote Sens. 2013, 5, 2113–2144.
[CrossRef]

27. Liu, S.; Zhang, Y.; Cheng, F.; Hou, X.; Zhao, S. Response of grassland degradation to drought at different
time-scales in Qinghai Province: Spatio-temporal characteristics, correlation, and implications. Remote Sens.
2017, 9, 1329.

28. Jiang, L.; Shang, S.; Yang, Y.; Guan, H. Mapping interannual variability of maize cover in a large irrigation
district using a vegetation index–phenological index classifier. Comput. Electron. Agric. 2016, 123, 351–361.
[CrossRef]

29. Cui, Y.P.; Liu, J.Y.; Hu, Y.F.; Kuang, W.H.; Xie, Z.L. An analysis of temporal evolution of NDVI in various
vegetation-climate regions in Inner Mongolia, China. Procedia Environ. Sci. 2012, 13, 1989–1996. [CrossRef]

30. Huang, F.; Mo, X.; Lin, Z.; Hu, S. Dynamics and responses of vegetation to climatic variations in Ziya-Daqing
basins, China. Chin. Geogr. Sci. 2016, 26, 478–494. [CrossRef]

31. Bond, W.J.; Archibald, S. Confronting complexity: Fire policy choices in South African savanna parks. Int. J.
Wildl. Fire 2003, 12, 381–389. [CrossRef]

32. Nsukwini, S.; Bob, U. The socio-economic impacts of ecotourism in rural areas: A case study of Nompondo
and the Hluhluwe-iMfolozi Park (HiP). Afr. J. Hosp. Tour. Leis. 2016, 5, 1–15.

33. Boundja, R.P.; Midgley, J.J. Patterns of elephant impact on woody plants in the Hluhluwe-imfolozi park,
Kwazulu-Natal, South Africa. Afr. J. Ecol. 2010, 48, 206–214. [CrossRef]

34. Trinkel, M.; Ferguson, N.; Reid, A.; Reid, C.; Somers, M.; Turelli, L.; Graf, J.; Szykman, M.; Cooper, D.;
Haverman, P.; et al. Translocating lions into an inbred lion population in the Hluhluwe-iMfolozi Park,
South Africa. Anim. Conserv. 2008, 11, 138–143. [CrossRef]

35. Jolles, A.E.; Etienne, R.S.; Olff, H. Independent and competing disease risks: Implications for host populations
in variable environments. Am. Nat. 2006, 167, 745–757. [CrossRef] [PubMed]

252



Climate 2018, 6, 95

36. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.P.
First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83,
135–148. [CrossRef]

37. Reinecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.;
Takacs, L.; Kim, G.K. MERRA: NASA’s modern-era retrospective analysis for research and applications.
J. Clim. 2011, 24, 3624–3648. [CrossRef]

38. Rodell, M.; Houser, P.R.; Jambor, U.E.A.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.;
Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004,
85, 381–394. [CrossRef]

39. Kruger, A. The influence of the decadal-scale variability of summer rainfall on the impact of El Niño and La
Niña events in South Africa. Int. J. Climatol. 1999, 19, 59–68. [CrossRef]

40. Anyamba, A.; Tucker, C.J.; Mahoney, R. From El Niño to La Niña: Vegetation response patterns over east
and southern Africa during the 1997–2000 period. J. Clim. 2002, 15, 3096–3103. [CrossRef]

41. Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A dipole mode in the tropical Indian Ocean.
Nature 1999, 401, 360. [CrossRef] [PubMed]

42. Reason, C.; Mulenga, H. Relationships between South African rainfall and SST anomalies in the southwest
Indian Ocean. Int. J. Climatol. 1999, 19, 1651–1673. [CrossRef]

43. Reason, C. Subtropical Indian Ocean SST dipole events and southern African rainfall. Geophys. Res. Lett.
2001, 28, 2225–2227. [CrossRef]

44. Reason, C.; Rouault, M. ENSO-like decadal variability and South African rainfall. Geophys. Res. Lett. 2002,
29, 161–164. [CrossRef]

45. Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 1, 245–259. [CrossRef]
46. Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; John Wiley & Sons:

Toronto, ON, Canada, 1987.
47. Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975.
48. Lanzante, J.R. Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and

examples, including applications to historical radiosonde station data. Int. J. Climatol. 1996, 16, 1197–1226.
[CrossRef]

49. Pohlert, T. Non-Parametric Trend Tests and Change-Point Detection. 2018. Available online: https://cran.r-
project.org/web/packages/trend/trend.pdf (accessed on 27 July 2018).

50. Sneyers, R. On the Statistical Analysis of Series of Observations; Technical Note No. 143, WMO No. 415;
World Meteorological Organization: Geneva, Switzerland, 1991; p. 192.

51. Mosmann, V.; Castro, A.; Fraile, R.; Dessens, J.; Sanchez, J.L. Detection of statistically significant trends in the
summer precipitation of mainland Spain. Atmos. Res. 2004, 70, 43–53. [CrossRef]

52. Chatterjee, S.; Bisai, D.; Khan, A. Detection of approximate potential trend turning points in temperature
time series (1941–2010) for Asansol Weather Observation Station, West Bengal, India. India Atmos. Clim. Sci.
2014, 4, 64–69. [CrossRef]

53. Zarenistanak, M.; Dhorde, A.G.; Kripalani, R.H. Trend analysis and change point detection of annual and
seasonal precipitation and temperature series over southwest Iran. J. Earth Syst. Sci. 2014, 123, 281–295.
[CrossRef]

54. Soltani, M.; Rousta, I.; Taheri, S.S.M. Using Mann-Kendall and time series techniques for statistical analysis
of long-term precipitation in Gorgan weather station. World Appl. Sci. J. 2013, 28, 902–908.

55. Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78.
[CrossRef]

56. Jevrejeva, S.; Moore, J.; Grinsted, A. Influence of the arctic oscillation and El Niño-Southern Oscillation
(ENSO) on ice conditions in the Baltic Sea: The wavelet approach. J. Geophys. Res. Atmos. 2003, 108, 4677.
[CrossRef]

57. Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to
geophysical time series. Nonlinear Proc. Geophys. 2004, 11, 561–566. [CrossRef]

58. Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1999.
59. Schulte, J.A.; Najjar, R.G.; Li, M. The influence of climate modes on streamflow in the Mid-Atlantic region of

the United States. J. Hydrol. Reg. Stud. 2016, 5, 80–99. [CrossRef]

253



Climate 2018, 6, 95

60. Mberego, S.; Gwenzi, J. Temporal patterns of precipitation and vegetation variability over Zimbabwe during
extreme dry and wet rainfall seasons. J. Appl. Meteorol. Climatol. 2014, 53, 2790–2804. [CrossRef]

61. Manatsa, D.; Mukwada, G.; Siziba, E.; Chinyanganya, T. Analysis of multidimensional aspects of agricultural
droughts in Zimbabwe using the standardized precipitation index (SPI). Theor. Appl. Climatol. 2010, 102,
287–305. [CrossRef]

62. Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite
image time series. Remote Sens. Environ. 2010, 114, 106–115. [CrossRef]

63. Verbesselt, J.; Hyndman, R.; Zeileis, A.; Culvenor, D. Phenological change detection while accounting
for abrupt and gradual trends in satellite image time series. Remote Sens. Environ. 2010, 114, 2970–2980.
[CrossRef]

64. Fitchett, J.M.; Grab, S.W. A 66-year tropical cyclone record for south-east Africa: Temporal trends in a global
context. Int. J. Climatol. 2014, 34, 3604–3615. [CrossRef]

65. Islam, M.M.; Mamun, M.M.I. Variations of NDVI and its association with rainfall and evapotranspiration
over Bangladesh. Rajshahi Univ. J. Sci. Eng. 2015, 43, 21–28. [CrossRef]

66. Tabari, H.; Marofi, S.; Aeini, A.; Talaee, P.H.; Mohammadi, K. Trend analysis of reference evapotranspiration
in the western half of Iran. Agric. For. Meteorol. 2011, 151, 128–136. [CrossRef]

67. Crous, C.J.; Greyling, I.; Wingfield, M.J. Dissimilar stem and leaf hydraulic traits suggest varying drought
tolerance among co-occurring Eucalyptus grandis × E. urophylla clones. South. For. J. For. Sci. 2018, 80, 175–184.
[CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

254



climate

Article

Selecting and Downscaling a Set of Climate Models
for Projecting Climatic Change for Impact
Assessment in the Upper Indus Basin (UIB)

Asim Jahangir Khan 1,2,* and Manfred Koch 1

1 Department of Geohydraulics and Engineering Hydrology, University of Kassel, 34125 Kassel, Hessen,
Germany; manfred_kochde@yahoo.de

2 Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus,
University Road, Tobe Camp, Abbottabad, KP 22060, Pakistan

* Correspondence: asimjkw@gmail.com or uk053114@student.uni-kassel.de; Tel.: +49-17631674283

Received: 26 September 2018; Accepted: 10 November 2018; Published: 14 November 2018

Abstract: This study focusses on identifying a set of representative climate model projections for the
Upper Indus Basin (UIB). Although a large number of General Circulation Models (GCM) predictor
sets are available nowadays in the CMIP5 archive, the issue of their reliability for specific regions
must still be confronted. This situation makes it imperative to sort out the most appropriate single or
small-ensemble set of GCMs for the assessment of climate change impacts in a region. Here a set of
different approaches is adopted and applied for the step-wise shortlisting and selection of appropriate
climate models for the UIB under two RCPs: RCP 4.5 and RCP 8.5, based on: (a) range of projected
mean changes, (b) range of projected extreme changes, and (c) skill in reproducing the past climate.
Furthermore, because of higher uncertainties in climate projection for high mountainous regions like
the UIB, a wider range of future GCM climate projections is considered by using all possible extreme
future scenarios (wet-warm, wet-cold, dry-warm, dry-cold). Based on this two-fold procedure,
a limited number of climate models is pre-selected, from of which the final selection is done by
assigning ranks to the weighted score for each of the mentioned selection criteria. The dynamically
downscaled climate projections from the Coordinated Regional Downscaling Experiment (CORDEX)
available for the top-ranked GCMs are further statistically downscaled (bias-corrected) over the UIB.
The downscaled projections up to the year 2100 indicate temperature increases ranging between
2.3 ◦C and 9.0 ◦C and precipitation changes that range from a slight annual increase of 2.2% under
the drier scenarios to as high as 15.9% in the wet scenarios. Moreover, for all scenarios, future
precipitation will be more extreme, as the probability of wet days will decrease, while, at the same
time, precipitation intensities will increase. The spatial distribution of the downscaled predictors
across the UIB also shows similar patterns for all scenarios, with a distinct precipitation decrease over
the south-eastern parts of the basin, but an increase in the northeastern parts. These two features are
particularly intense for the “Dry-Warm” and the “Median” scenarios over the late 21st century.

Keywords: GCM; RCM; CMIP5; CORDEX; climate change; climate model selection; upper
Indus basin

1. Introduction

Future climate projections provided by general circulation models (GCMs) can serve as the
basic input for climate change impact studies on water resources. As the outputs from these general
circulation models (GCMs) have only coarse spatial resolution, and so are often not suitable as direct
input to distributed or semi-distributed hydrologic models, they have to be downscaled in most cases
to appropriate (higher) resolutions. Such a downscaling can be done either through applying statistical
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downscaling or through dynamical downscaling via use of a regional climate model (RCM) embedded
in a larger GCM.

Despite the availability of a large number of GCM outputs in the CMIP5 archive, and the on-going
improvements in their process representations, issues of large uncertainties with regard to the future
climate are not yet avoidable. The inherent uncertainties, along with other factors such as time
limitations, human resource availability, or computational constraints, make it imperative to sort
out the most appropriate individual GCM or small ensemble of GCMs suitable for downscaling and
subsequent use in the assessment of climate change impacts.

This aforementioned selection of GCMs is not simple or straightforward, as there can be nearly an
unlimited number of criteria and approaches through which climate models can be evaluated for their
skill and suitability for specific purposes and regions. In most cases, though, the selection can be based
either on a single criterion or a whole set of criteria. One approach may be to consider the total change
projected by the GCMs, in the means and/or extremes of a climate variable and its location on the
overall spectrum of the future projected by all GCMs. Another approach may place more emphasis on
the success of GCMs in simulating past climate for either the means, extremes, or seasonality [1,2] of the
study region. Additionally, there may be approaches based on some combination of the aforementioned
approaches. The first approach, which considers all the possible projected futures (stretching from
warm and wet to cold and dry, or opting for the middle path of all possible futures) is becoming
more relevant, especially in regions such as the Hindu Kush Himalayas (HKH) and UIB, where
GCMs/RCMs have been reported to struggle in simulating the past climate [3–6]. As no individual
model can be separated out as superior in simulating the past climate in the HKH region, it is therefore
important to consider the full range of possible projected futures when focusing on assessments of
climate change impacts.

The criteria to be used for selecting the most appropriate model runs are also defined based on
their intended purpose or the region. Both of these factors are important, as a different intended
uses my require consideration of assessment based on totally different skills or variables, while
the importance of a specific selection criteria may differ for different locations and topographically
contrasting areas. Additionally, as not all the available models may be equally good for specific
locations, regions or topographies, the need for the assessment of the ability of climate models to
reproduce important processes in the study region is vital and essential.

In the current study, we consider a combination of these approaches to shortlist climate model
runs, along with utilizing new and improved data for the past climate in the UIB [7] for assessment of
model skill in simulating the seasonal cycles in the region. The main aim of the study was to select a
set of GCM simulations that can represent the full spectrum of the future climate, as projected by the
entire pool of climate models, in term of both means and extremes, and which can be subsequently
used as climate forcing for hydrological modelling to assess a wider range of possible climate change
hydrological impacts, especially for the expected changes in water yield, annual cycle, high and low
flows, and floods.

The specific objectives of the study included:

1. To devise a procedure for the identification/filtering of a limited number of climate model runs
that can represent the full spectrum of future climate as projected by the entire pool of climate
models, in term of both means and extremes;

2. To devise procedures/methodologies for evaluating the skills of climate models in simulating the
annual climatic cycle of the recent past;

3. To select suitable climate model runs using the devised methodologies, based on their skills in
simulating past climate, as well as on their ability to represent specific parts of the full spectrum
of climate model projections; and

4. To downscale and/or bias correct the selected GCMs (or GCM-RCM chains, using the selected
GCMs as boundary conditions) through appropriate methods.
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2. Study Area and Data Used

2.1. Study Area

In the current study, the climate change model selection procedure was carried out for the UIB,
which is spread over the Hindu-Kush, Karakorum and Himalayan ranges, and feeds the largest
canal system in the world (Figure 1). This river basin is very important due to two main reasons:
first, the irrigated agriculture of Pakistan overwhelmingly depends on the inputs from this river
basin; and second, the region is probably a climate change hot-spot [8,9], with an extremely uncertain
future hydro-climatology. The future scenario data from the selected models are intended to be used,
after downscaling and bias correction, as input to the SWAT hydrological model [10] for quantifying
possible climate change impacts on the hydrological dynamics of the basin.

Climatic variables are usually strongly influenced by topographic altitude. Thus, the northern
valley floors of the UIB are arid and warm, with an annual precipitation of only 100–200 mm. These
totals increase to 600 mm at 4400 m altitude, and glaciological studies suggest annual accumulation
rates of 1500–2000 mm at height of 5500 m [11]. The UIB draws more than 50% of its water from
melting of seasonal and permanent snow cover in the Himalaya, Karakoram and the Hindu Kush
(HKH) mountains [5,12–15]. A rise in temperature in the UIB will, therefore, result in elevated melt
rates with huge impacts on the timing and magnitude of the generated flows. This will not only lead
to a higher average stream flow, but also to an increase in the occurrence and magnitude of extremes,
especially during high-precipitation events [16]. There is also the possibility that the peak flows may
shift to earlier months or other seasons, with a rise in temperature [5] in the UIB.

 

Figure 1. Upper Indus Basin (UIB): Main catchments, meteorological stations, streams and tributaries.

All these facts make UIB a very sensitive region to possible climate change, and even, according to
some [17], a climate-change “hotspot”. However, despite the necessity of intensified investigations on
different aspects of climate change and its possible implications, the task is hindered by the harshness
of the environment and the unavailability of representative data. The climatic data available in the
UIB lacks suitable coverage, since the in situ meteorological observations in the UIB are sparse and
mostly taken at valley stations. Furthermore, the complex orography of the UIB region also affects the
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amounts, spatial patterns and seasonality of the precipitation. Therefore, neither the sparsely observed
station data and gridded data products based on them, nor the sensors-based data, fully represent the
precipitation regime of the region [6].

2.2. Data Used

2.2.1. GCM Outputs

In the IPCC 5th assessment report, four representative concentration pathways (RCPs) are
normally used as a basis for future climate modelling: one very high baseline emission scenario
(RCP8.5), two medium stabilization scenarios (RCP4.5 and RCP6) and one mitigated scenario (RCP2.6)
(Table 1).

Table 1. Representative concentration pathways (RCPs), their radiative forcing, emissions (CO2

equivalent and growth rate %) and temperature increase.

RCP Radiative Forcing
CO2

Equiv. (ppm)
Temperature
Increase (◦C)

Pathway
CO2 Growth

Rate (%)

RCP8.5 8.5 Wm−2 in 2100 1370 4.9 Rising ≈2.5

RCP6.0 6 Wm−2 post 2100 850 3.0 Stabilization
without overshoot ≈1

RCP4.5 4.5 Wm−2 post 2100 650 2.4 Stabilization
without overshoot ≈1.5

RCP2.6
(RCP3PD)

3 Wm−2 before 2100,
declining to 2.6 Wm−2

by 2100
490 1.5 Peak and decline ≈1.6

Source: [18–20]

The current study intended to include emission scenarios, covering a wider range of Radiative
forcing and future temperature anomaly, while remaining close to the reality and considering RCP’s
showing minimum differences with the 2005 onwards actual observed CO2 emission trend and growth
rates. Keeping these prerequisites in mind, out of the four options: RCP2.6 was not considered in the
current selection as it seemed to be the least likely [18,21] and the mitigation effort implied by this RCP,
is unfeasible in the current circumstances [22,23], because it needs a sustained global CO2 mitigation
rate of around 3% per year, not a likely prospect, at least in the near future [20].

Out of the remaining three RCPs, the high baseline emission scenario (RCP8.5) and one
medium-stabilization scenario (RCP4.5) were selected for the current study. The RCP8.5 was included
because it covers the higher end of radiative forcing, as well as the temperature change, and it is also
in line with the observed trend of around 3% in the average annual CO2 emission growth rates for
2005–2012 [20,23].

For the medium-stabilization scenarios, both RCP4.5 and RCP6 are equally acceptable, but due
to time constraints, and because RCP4.5 shows a better match (≈1.5%) of the trends of the average
annual CO2 emission growth rates for the period of 2005–2012 than RCP6 (≈1.0%) [20,23], RCP4.5 was
picked along RCP8.5 for the GCM selection procedure.

Additionally, in the current study, only the available GCM runs for the ensemble member r1p1i1 in
the CMIP5 repository [24] are included in the initial list. This is done so as to keep open the possibility
of using dynamically downscaled projections (driven by the selected GCMs as boundary conditions)
by Regional Climate Models (RCMs), which in most cases have utilized boundary conditions from the
ensemble member r1p1i1 of the GCMs.

In the current study, a total number of 42 available model runs (ensemble member r1p1i1) are
evaluated for RCP4.5 and of 39 for RCP8.5.
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2.2.2. Extremes Indices

For the assessment of model runs for extremes, the ETCCDI extremes indices are utilized.
The annual extremes of the daily CMIP5 data were acquired from the ETCCDI extremes indices
archive [25,26], provided at the “Canadian Centre for Climate Modelling and Analysis”. This data was
indirectly obtained and downloaded through the “KNMI Climate Explorer”, which is a web-based
research tool to investigate climate and climate change.

2.2.3. Observed Data

The climate station network in the UIB has historically been comprised of only a few low-altitude,
valley-based stations. Although the number of in situ observational points has increased since the
mid-nineties, with the installations of a few higher altitude automatic weather stations, the coverage is
still very thin, and the data is often not very representative, especially for different elevation zones.
Similarly, while most of the weather stations have become operational after the mid-nineties, long-term
data is a rare commodity and is only available at limited locations.

Similarly, owing to the complex orography of the UIB region and to the co-action of different
hydro-climatic regimes, neither the sparse observed station data or the gridded data products based
on them, nor the sensor-based climatic datasets fully represent the precipitation regime of the region [6,
16,27,28]. Several studies have pointed out that precipitation and other climatic variables in the HKH
region exhibit large changes over short distances and considerable vertical gradients [11,29–34].

In the absence of long-term climate data with acceptable representation of the UIB climate, most
climate-change studies have relied on either the very thin climatic observation network records or
the gridded datasets based on them. In all these cases, either the data have acceptable quality, but
shorter duration, or they have huge biases, especially, in the case of precipitation in regions with higher
altitudes. These biases are further amplified when this data is used as a reference for bias correction or
downscaling of climate projections, making the results questionable.

In the current study, therefore, a new long-term climate dataset was prepared (Figure 2). The work
related to this new long-term gridded data product [7] is not included in this paper, but we utilized
this new dataset instead of the readily available global or regional gridded historical climate datasets,
for bias correction, downscaling and assessment of the reliability of climate models for the simulation
of the past climate in the region.

These gridded precipitation and temperature data are derived, based on all the available in situ
observations available in the UIB, through reconstruction for the periods before the mid-nineties,
interpolation and correction for the orography and elevation-induced effects guided by available data
for runoff, actual evapotranspiration and glacier mass-balance [7].

2.2.4. RCM Outputs

Five CORDEX-SA experiments (Table 6), including IPSL-CM5A-MR_RCA4, MPI-ESM-LR_RCA4,
NorESM1-M_RCA4, Can ESM2_RegCM4-4, and GFDL-ESM2M_RCA4, were downscaled and bias
corrected. These five GCMs have been dynamically downscaled by CORDEX, using two different
RCMs (RCA4 and RegCM4). Their RCM outputs are at considerably finer scale (0.44◦) then the
source GCMs.

3. Methods

3.1. Selection and Shortlisting of GCMs/RCMs

The full spectrum of GCM projections is wide, with large uncertainties attached [35–37], and it
cascades to even a larger spectrum when downscaled or translated into possible impacts. Furthermore,
the available future projections differ vastly from each other and may range from very wet to drier
or very warm to colder future climates, so that the models can be categorized as representing either
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Warm-Wet, Warm-Dry, Cold-Wet and Cold-Dry corners of the full spectrum, in addition to the
projections which are around the median tendency of future model projections.

Figure 2. Reference climate data: (a) Mean annual precipitation (mm), (b) mean temperature- maximum
(◦C), and (c) mean temperature- minimum (◦C).

These issues have led to diverse views on how to select or use these climate model projections,
or even whether these climate models or their downscaled outputs should explicitly be used at all,
or should only be indirectly used, instead, as guides to generate a range of plausible scenarios more
suited for targeted impact studies and practical adaptation planning [38].

In mountainous regions, such as the Upper Indus Basin (UIB), the issue of how to proceed with
the climate change impact studies becomes more complicated, because not only may the uncertainties
shown by the climate models for these regions be even greater [4,39], but also because of the lower
margin for error, as the lives and livelihood of millions of people depend purely on the water resources
generated in these basins.

The usual approach of selecting results of a certain model or group of models or opting for a
scenario with the mean trend of future projections may not be practical, as the full range of possible
future climatic conditions needs to be covered in order to assess the full range of expected impacts
required for climate adaptation needs.

As mentioned earlier, the selection of GCMs can be done following different approaches and
may be based on a single criterion or a set of criteria. These approaches may include criteria such as:
the total amount of change in the mean and/or an extreme of a projected climate variable; the success
of a GCM in simulating the past climate for means or extremes; or maybe the skill in presenting the
same pattern of tele-connections that drive the climate of the study region, and so on.

The current study adopted a combination of some of these approaches and applied a step-wise
shortlisting of climate models based on a range of projected change in the (a) mean, (b) extremes, and
(c) skill in reproducing the past climate. As the aim was to arrive at a limited number of models that
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can represent not only all the possible futures as projected by the entire pool of climate models, but
also changes in climatic extremes, so that the selected model runs can provide representation of the
full spectrum of future climate projections by GCMs in terms of change in mean, as well as extremes.
In other words, for each selected RCP, we intended to filter and select five climate model runs, each
representing one the four corners of the spectrum or the median tendencies.

3.1.1. Shortlisting Based on Changes in the Means

As a first step, the total number of available model runs (ensemble member r1p1i1) for RCP4.5 (42)
and RCP8.5, (39) were evaluated and shortlisted based on the change presented by them, in terms of
the mean annual precipitation sum (ΔP) and the mean air temperature (ΔT), averaged across the UIB,
between the simulated reference period historical data (1976–2005) and the late 21st-century projected
data (2071–2100). The calculations were done using the web-based application “Climate Explorer”
managed by the Royal Netherlands Meteorological Institute (KNMI) (http://climexp.knmi.nl).

As our intention was to identify fewer model runs that best represent the four corners of the
full spectrum, as well as the central and middle tendencies, we first determined the 10th, 50th and
90th percentile values of ΔP and ΔT for the entire ensemble considered for each RCP, to explore the
extent of the full spectrum of the projected changes in temperature and precipitation under that RCP.
This was followed by determining the four (4) closest projections to each of the corners, as well as
the center of the spectrum. The total number of shortlisted model runs for each of the two RCPs then
amounted to 20.

Details of the different parts of the full spectrum considered during this study are as follows:

• the Dry-Cold corner, represented by the 10th percentile ΔP as well as 10th percentile value of ΔT;
• the Dry-Warm corner, represented by the 10th percentile ΔP but the 90th percentile value of ΔT;
• the Wet-Cold corner, represented by the 90th percentile ΔP and the 10th percentile value of ΔT;
• the Wet-Warm corner, represented by the 90th percentile values for both ΔP as well as ΔT;

and finally
• the median projected future climate, represented by the 50th percentile values of both ΔP and ΔT

The identification of the closest model runs to any corner point was done according to the
procedure suggested by [19]. It should be noted that 10th and 90th percentiles were selected as the
central points of the corners, rather than the maximum or minimum values, in order to avoid selection
of any outlier projections.

3.1.2. Ranking Based on Changes in Climate Extremes

To ascertain that preference will be given to those climate model runs that represent the full
range of projected change in extremes, all 20 shortlisted model runs for each of RCP4.5 and RCP8.5,
were further scrutinized and ranked based on their projected changes in climatic extremes. To that
end, the ETCCDI indices [25] (Table 2) were used to evaluate changes in climatic extremes for air
temperature, as well as precipitation. For the former, changes in the extremes were ranked and
evaluated based on two indices—the warm spell duration index (WSDI), and the cold spell duration
index (CSDI)—while for the latter, consecutive dry days (CDD) and the precipitation due to extremely
wet days (R99pTOT) were considered.

To keep the work manageable, we only analyzed four indices in total, two indices to represent
changes in precipitation extremes and two for changes in temperature extremes. Furthermore, as the
intended use of the selected climate model ensemble was to force the hydrological model for assessing
climate change impacts on both flows and extremes, we chose the four most obvious indicators of
precipitation and temperature extremes.

The R99pTOT (precipitation due to extremely wet days (>99th percentile)) and CDD (consecutive
dry days: maximum length of dry spell (P < 1 mm)) are appropriate indicators for precipitation
extremes and suitable for assessment of associated hydrological extremes. R99pTOT is an important
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indicator for wet spells in terms of their length and magnitude, which are both key influencing factors
in shaping extreme hydrological events (floods and high flows). Similarly, CDD is an important
indicator for dry spells that can provide a good opportunity for assessment of the associated low flow
episodes. The two temperature-related extreme indices used, i.e., WSDI (count of days in a span of at
least 6 days where TX > 90th percentile) and CSDI (count of days in a span of at least 6 days where TN
< 10th percentile), seemed best suited for their effects on evapotranspiration and cryospheric processes.
The snow and glacier melt/accumulation, as well as evapotranspiration dynamics, are very important
in the highly glacierized study area.

The changes in these indices, averaged over the UIB and over 30 years, between the reference
period (1976–2005) and the late 21st century projections (2071–2100), were calculated using the database
available at the ETCCDI extremes indices archive (http://climexp.knmi.nl), constructed by [26,40].

Only the relevant index for the air temperature or for the precipitation was considered for each of
the previously selected group of models (a set of four) initially shortlisted models for each corner or
the center), so that for the models in the Wet-Warm corner, only the R99pTOT index for precipitation
and the WSDI index for temperature were considered, because they were the only relevant indices, as
R99pTOT indicates extreme precipitation events, while WSDI indicates warm spells (Table 2). The other
two indices, i.e., CDD and CSDI, were not considered in this case; however, they were the only indices
considered for models in the Dry-Cold corner. For each corner, the relevant indices were given scores
based on the ratio of the extreme index to the mean of that index, for all four models in a corner.
For example, in the Wet-Warm corner, the % change in R99pTOT for a single model is divided by the
mean of the % change in R99pTOT for all four models in that corner. The same procedure was applied
for WSDI and, finally, both scores were averaged to obtain a final score.

Table 2. List of ETCCDI extreme indices used during the GCM selection procedure.

Climate Variable ETCCDI Index Description of the ETCCDI Index

Precipitation
R99pTOT Precipitation due to extremely wet

days (>99th percentile)

CDD Consecutive dry days: maximum
length of dry spell (P < 1 mm)

Air Temperature

WSDI
Warm spell duration index: count of
days in a span of at least 6 days where
TX > 90th percentile

CSDI
Cold spell duration index: count of
days in a span of at least 6 days where
TN < 10th percentile

For each of the extreme indices, a weighted rank/skill score (SkEI) was calculated, with the highest
value among the group getting the highest weighted rank/skill score of 1, and the others getting a rank
according to their difference from this highest value, i.e.,

SkEI = 1 − EIh − EIt

EIh
(1)

where Sk is the weighted rank for the specific extreme index EI, h denotes the highest index value in
a group, and t denotes the target index to be ranked.

Similarly, in the case of the change in means, i.e., ΔT (◦C) and ΔP (%), the ranking (Skm) was done
based on the difference ΔT (◦C) or ΔP (%) shown by each member with the percentile value relevant to
that group,

Skm = 1 −
(Δ T or Δ P)10, 50 or 90thpercentile − (Δ T or Δ P)target

(Δ T or Δ P)10, 50 or 90thpercentile
(2)
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3.1.3. Ranking Based on Skill in Reproducing the Reference Climate

The models were also evaluated with respect to their skill at simulating the past climate during the
reference period (1976–2005). The selected climate model simulations were compared to the reference
temperature and the precipitation gridded dataset [7] and were assigned skill scores. We did not use the
same method for assigning skill score to temperature and precipitation. For assessing the performance
of models in simulating past temperature, the method we applied was adopted from Perkins et al. [41].
In this method, the skill score for temperature is calculated based on the identification of similarities
between PDFs of modelled data and the observed reference data. A metric is generated to calculate
the cumulative minimum value of each binned value for the two distributions, which represent the
common area between two PDFs. This skill score (SkTmp) can be expressed as follows:

SkTmp =
n

∑
1

minimum (ZCM, ZObs) (3)

where n is the number of bins used to calculate the PDF, ZCM is the frequency of values in a given bin
from the model while ZCM is the frequency of values in a given bin from the observed data. This skill
score is 1, when there is a perfect match between simulated and the observed data, while a score of 0
means no similarities at all.

The number of bins used in this study to generate the PDFs was 50.
In the case of precipitation, the skill score is calculated by a method proposed by [42] as the

product of five skill functions, each assessing similarities between modelled and observed data, while
covering different aspects of precipitation behavior. These five skill score functions for a particular
model j are listed below:

f1j = 1 −
(∣∣ACMj − AObs

∣∣
2 · AObs

)0.5

(4)

f2j = 1 −
⎛
⎝
∣∣∣A+

CMj − A+
Obs

∣∣∣
2 · A+

Obs

⎞
⎠

0.5

(5)

f3j = 1 −
⎛
⎝
∣∣∣A−

CMj − A−
Obs

∣∣∣
2 · A−

Obs

⎞
⎠

0.5

(6)

f4j = 1 −
(∣∣PCMj − PObs

∣∣
2 · PObs

)0.5

(7)

f5j = 1 −
(∣∣σCMj − σObs

∣∣
2 · σObs

)0.5

(8)

where ACMj and AObs are the areas below the simulated (climate model j) and the observed precipitation
cumulative density function (PDF) curves, respectively, and A+ and A− are the fractional areas over
(+) and under (−) the 50th percentile. P denotes the average annual precipitation over UIB and σ is the
standard deviation of the probability distribution function.

Each of the above factors is intended to cover different aspects of probability distribution
characteristics of the climate models, so that the distribution as a whole is taken into account through
the mean and the total area (Equations (4) and (7)), the smaller and higher precipitation amounts
are accounted for, through the 50th-percentile limit (Equations (5) and (6)), while the shape of the
distribution is defined through the variance (Equation (8)).
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These five factors are multiplied together to yield a single final skill score (SkPrec) for precipitation
estimated by each model j:

SkPrec = f1j · f2j · f3j · f4j · f5j (9)

As a final step, all the rankings/scores, based on the changes in the means and in the extremes, as
well as the skill scores for reproducing reference temperature and precipitation, are multiplied together
to get the final overall skill or rank as follows:

Final Skill Score = SkEI1 · SkEI2 · SkΔ T · SkΔ P · SkTemp · SkPrec (10)

Under this skill score, a higher value indicates better performance, while a lower value indicates
otherwise. These skill scores can be further translated to a simple ranking of 1 to 4 for each group of
climate models.

The climate model selection procedure adopted in this study is in line with the approach and
methods suggested by [21,41,42], although with certain modifications in the evaluation criteria. For
assessing the performance of models in simulating past temperature, the method applied is adopted
from [41], while in the case of precipitation, guidance is taken from [42]. A major difference from [21]
in assessing model performances in simulating past climate is the use of a new long-term climate data
set and an additional evaluation step for assessing model runs for their skill in reproducing the annual
cycle of precipitation and temperature as well.

3.2. Downscaling and Bias Correction

After the shortlisting and ranking of the GCMs, the next step was to address the two primary
issues inhibiting impact studies: firstly, the coarse spatial scales represented by the GCM may not be as
fine as required by regional- and local-scale environmental modelling or impact studies; and secondly,
the GCM raw outputs, or their downscaled versions, are deemed to contain systematic errors (bias) of
certain magnitude, relative to the observational data, and therefore need post-processing by correcting
it with and towards observations prior their its use in environmental modelling or impact studies.

The downscaling can be done either by applying statistical downscaling methods or through
dynamical downscaling via application of a regional climate model (RCM). As dynamical downscaling
was too demanding in terms of time and computational resource requirements, we decided only
to explore whether any dynamically downscaled RCM projections were available for the already
shortlisted and ranked GCMs. The Coordinated Regional Downscaling Experiment (CORDEX) has
generated fine-scale climate projections for different regions of the world, of which the CORDEX-South
Asia experiments cover the UIB region. We found that CORDEX-RCM model projections were available
for four of the selected GCMs at the 1st rank and one GCM at the 2nd rank. These RCM projections
provide dynamically downscaled data at a resolution of ~50 km for all of our selected GCMs. The data
for the relevant GCM–RCM combinations were downloaded, but needed further downscaling, as the
scale was still not fine enough, and also needed to undergo bias correction before further use in
hydrological modelling.

This downscaling and bias correction was achieved by the Distribution Mapping method
(DM) [43], which was selected out of five different bias correction methods for the precipitation
climate variable. These methods included: (1) Linear Scaling (LS); (2) Local Intensity Scaling (LIS);
(3) Power Transformation (PT); (4) Distribution Mapping (DM); and (5) Distribution Mapping followed
by Intensity and frequency Scaling (DM-IS).

For the temperature, the selection was made after evaluating the performance of the following
three bias correction methods: (1) Linear Scaling (LS); (2) Variance Scaling (VS); and (3) Distribution
Mapping (DM). Further details of these methods can be found in [43].

The calibration and validation statistics, along with brief explanations, are provided as appendices
(Supplementary Materials: Appendix A, Tables A1 and A2).
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4. Results

4.1. Selection of Climate Models

4.1.1. Shortlisting of Models: Changes in Climatic Means

The results of the initial shortlisting of the GCM model runs are given in Figures 3 and 4. In this
step, only those GCM runs were retained which showed minimal difference with the 10th, 50th and
90th percentile values of ΔT (◦C) and ΔP (%), so that, for each RCP, we were left with sets of 4 GCM
runs at each corner and 4 in the middle, while the remaining model runs were not processed any
further. In this way, a total of 20 model runs were selected for each RCP.

It is worth mentioning that the range of projections for ΔT and ΔP for the RCP8.5 model pool
was much larger than for the RCP4.5 model pool. For the latter, more extreme RCP, ΔP ranges from
−5.42% to 19.56%, and ΔT ranges from 1.26 ◦C to 5.41 ◦C; while for the former (RCP4.5), these ranges
are much higher, with ΔP ranging between −12.01% and 35.12% and ΔT between 1.48 ◦C and 8.57 ◦C.

The shortlisted GCM runs were also ranked according to their differences with the 10th, 50th or
90th percentile values in the respective corner or center. This ranking was intended for use in the final
selection step, so that those model runs which show closest representation of the group of models or
type of scenarios (Warm-Wet, Warm-Dry, Cold-Wet, Cold-Dry or the Median) get preference during
the final selection.

It should be noted that the term Cold used in the “Wet-Cold” and “Dry-Cold” scenarios does
not mean that the future temperatures will be colder than those of the reference period, but rather
indicates that the warming will be less than that of the Warm scenarios. Similarly, the term Dry in the
scenarios “Dry-Cold”and “Dry-Warm” is also only indicative of its comparative position relative to
other climate models.

 

Figure 3. Projected changes in mean air temperature (ΔT) and annual precipitation sum (ΔP) between
2071 and 2100 and 1971 and 2000 for all included RCP4.5 GCM runs. Blue crosses indicate the 10th,
50th and 90th percentile values for ΔT and ΔP. The model runs shortlisted during this step are indicated
in red color.
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Figure 4. Similar to Figure 3, but for RCP8.5 GCM runs.

4.1.2. Ranking Based on Changes in Climatic Extremes

The 20 shortlisted model runs for each RCP were further scrutinized based on their projected
changes in climatic extremes. The details of the projected changes in selected extreme indices are given
in Table 3. The darker colors indicate the higher values, while the lighter indicates lower values. These
indices were given a weighted rank/score based on their difference from the highest value in the group
of four model runs in a corner.

Similar to the rank assigned based on changes in the means, this ranking was also intended for
use in the final selection step, so that the model runs, which show the largest changes in the extreme
indices for each of the corner: Warm-Wet, Warm-Dry, Cold-Wet or Cold-Dry, get preference during the
final selection. Unlike the four corners, evaluation based on the extreme indices was not carried out
for the central or the mean scenario.

The ranking and scores for means and extreme indices, as well as the skill scores for simulating
reference climate, are presented in Tables 4 and 5 for RCP4.5 and RCP8.5, respectively.

In most cases, the model run with the highest or the lowest changes in mean precipitation or
temperature coincide with the highest change in relevant extreme index as well.

The index Δ R99pTOT (%) was evaluated to represent the “Wet” scenarios, while the Δ CDD (%)
represented the “Dry” scenarios. Similarly, Δ WSDI (%) was considered for the “Warm” scenarios,
while Δ CSDI (%) was considered for the “Cold” scenarios. In this way, a set of two (2) indices out of
the four (4) were evaluated for each of the scenarios: Warm-Wet, Warm-Dry, Cold-Wet, and Cold-Dry.
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Table 3. Percentage change in ETCCDI indices (R99pTOT, CDD, WSDI, and CSDI) along with changes
in mean precipitation (ΔP) and temperature (ΔT), for all corners/scenarios (Warm-Wet, Warm-Dry,
Cold-Wet and Cold-Dry) and both RCPs (RCP4.5 and RCP8.5).

Projection Model Δ R99pTOT (%) Δ CDD (%) Δ WSDI (%) Δ CSDI (%) ΔP (%) (%) ΔT (◦C)

RCP 4.5

Wet-Warm

CanESM2 29.0 −7.2 814 −96.2 13.0 3.6

HadGEM2-ES 28.6 12.5 1002 −98.7 3.7 3.6

MIROC5 76.4 −8.8 938 −96.3 12.1 4.0

MIROC-ESM-CHEM 19.8 2.2 611 −89.9 6.7 3.8

Wet-Cold

bcc-csm1-1-m 45.3 −1.0 298 −87.6 5.0 2.2

GFDL-ESM2M 42.4 −4.9 202 −61.6 4.9 1.8

IPSL-CM5B-LR 32.2 −11.7 293 −81.6 5.2 2.0

MRI-CGCM3 59.6 −7.5 471 −89.8 9.0 2.2

Dry-Warm

ACCESS1-0 46.4 0.9 656 −92.1 3.47 3.5

CMCC-CMS 61.9 7.1 454 −89.8 −3.35 3.6

IPSL-CM5A-MR 54.5 12.0 604 −90.2 1.28 3.9

MIROC-ESM 26.8 1.8 718 −97.0 2.41 4.2

Dry-Cold

CCSM4 4.8 −0.8 323 −92.0 4.54 2.4

GFDL-ESM2G 16.2 −0.1 373 −70.9 2.14 2.2

inmcm4 2.0 4.3 216 −48.9 −5.29 4.2

MPI-ESM-LR 42.3 17.7 406 −89.1 −5.76 2.8

RCP 8.5

Wet-Warm

CanESM2 101.7 −12.3 1181 −97.3 18.5 6.7

GFDL-CM3 9.7 −5.0 1426 −100.0 9.0 8.6

MIROC5 257.2 −13.4 1640 −98.5 35.1 6.2

MIROC-ESM-CHEM 28.5 14.5 1314 −100.0 6.6 7.6

Wet-Cold

GFDL-ESM2G 95.9 −1.0 668 −99.0 12.6 4.7

GFDL-ESM2M 72.9 −3.1 1696 −95.5 13.5 4.2

CNRM-CM5 68.6 −3.5 638 −96.1 14.1 4.1

MRI-CGCM3 195.5 −12.6 1309 −98.4 24.1 4.6

Dry-Warm

IPSL-CM5A-LR 94.5 23.3 1022 −97.6 −12.01 7.0

IPSL-CM5A-MR 194.6 9.3 1358 −99.1 −2.95 7.1

MIROC-ESM 9.5 4.4 1521 −100.0 0.06 7.3

CMCC-CMS 143.9 18.8 985 −99.9 −2.26 6.0

Dry-Cold

MPI-ESM-LR 136.0 29.1 1067 −98.2 −4.49 5.2

CCSM4 48.3 7.0 871 −99.5 0.86 4.6

inmcm4 61.3 4.7 849 −85.9 1.48 4.1

NorESM1-M 107.1 3.5 1010 −98.6 6.01 4.6

4.1.3. Ranking Based on Skill in Reproducing the Reference Climate

After checking the model runs for their projected changes in means and extreme indices, they
were finally evaluated for their skill at reproducing the reference precipitation and temperature data.

The ranking for past performance utilized a new set of reference precipitation and temperature
data [7], averaged over the UIB. The skill scores were calculated following the procedure of Section 4.1.3,
and are presented in columns g and h in Tables 4 and 5. For most scenarios, the same models performed
better than the others for both RCPs in simulating past climate.
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After allocating the skill score based on the past performance, the final skill scores and ranks were
calculated by multiplying all the relevant skill scores allocated to each model run. The final ranks were
allocated to each scenario, with the highest rank allotted to the model run with highest final skill score,
and so on.

It is interesting to note that for the 4 scenarios, Warm-Dry, Cold-Wet, Cold-Dry and Median,
for both RCPs, the same GCMs get the highest skill scores and ranks. The only exception is the
Warm-Wet scenario, where different models top the ranking. In this scenario, for RCP4.5, the GCM
“MIROC5” is in the top rank, followed by “CanESM2”, while for RCP8.5, the ranking of these two
GCMs is reversed.

Table 4. Weighted ranks for all shortlisted RCP4.5 GCM runs based on change in means (e and f),
change in extremes (a, b, c and d) and their skill scores for simulating reference precipitation and air
temperature(g and h).
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Wet-Warm

CanESM2 0.38 0.85 0.97 0.63 0.79 0.36 0.57 2

HadGEM2-ES 0.37 1.00 0.94 0.39 0.73 0.29 0.29 3

MIROC5 1.00 0.94 0.95 0.72 0.81 0.38 1.93 1

MIROC-ESM-CHEM 0.26 0.61 1.00 0.71 0.71 0.25 0.20 4

Wet-Cold

bcc-csm1-1-m 0.74 0.93 0.77 0.53 0.71 0.40 0.80 3

GFDL-ESM2M 0.71 0.75 0.97 0.52 0.79 0.41 0.88 2

IPSL-CM5B-LR 0.54 1.00 0.94 0.55 0.71 0.14 0.28 4

MRI-CGCM3 1.00 0.90 0.82 0.96 0.78 0.35 1.91 1

Dry-Warm

ACCESS1-0 0.07 0.91 0.93 0.78 0.77 0.35 0.14 2

CMCC-CMS 0.59 0.75 0.97 0.81 0.70 0.31 0.75 4

IPSL-CM5A-MR 1.00 1.00 0.97 0.59 0.79 0.33 1.52 1

MIROC-ESM 0.15 0.81 0.87 0.92 0.74 0.22 0.16 3

Dry-Cold

CCSM4 0.05 1.00 0.64 0.34 0.79 0.26 0.02 3

GFDL-ESM2G 0.00 0.77 0.58 0.56 0.75 0.32 0.00 4

inmcm4 0.24 0.53 0.89 0.76 0.66 0.35 0.20 2

MPI-ESM-LR 0.98 0.97 0.75 0.72 0.75 0.32 1.23 1

Mean

NorESM1-M 0.94 0.58 0.79 0.43 1.83 1

bcc-csm1-1-m 0.76 0.70 0.76 0.44 1.76 2

GFDL-ESM2G 0.87 0.85 0.75 0.32 1.77 2

CMCC-CMS 0.56 0.20 0.70 0.31 0.24 4
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Table 5. Similar to Table 4, but for RCP8.5.
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Wet-Warm

CanESM2 0.40 0.72 0.93 1.00 0.79 0.36 0.76 1

GFDL-CM3 0.04 0.87 0.80 0.48 0.71 0.39 0.04 3

MIROC5 1.00 1.00 0.86 0.10 0.81 0.38 0.27 2

MIROC-ESM-CHEM 0.11 0.80 0.94 0.36 0.71 0.25 0.05 3

Wet-Cold

GFDL-ESM2G 0.49 0.97 0.89 0.68 0.75 0.32 0.69 4

GFDL-ESM2M 0.50 1.00 1.00 0.73 0.79 0.34 0.97 2

CNRM-CM5 0.35 1.00 0.98 0.76 0.81 0.41 0.87 3

MRI-CGCM3 1.00 0.98 0.90 0.70 0.78 0.35 1.65 1

Dry-Warm

IPSL-CM5A-LR 1.00 0.67 0.98 0.41 0.79 0.33 0.71 2

IPSL-CM5A-MR 0.40 0.89 1.00 0.84 0.78 0.34 0.79 1

MIROC-ESM 0.19 1.00 0.98 0.60 0.74 0.22 0.18 4

CMCC-CMS 0.81 0.65 0.84 0.78 0.70 0.31 0.74 2

Dry-Cold

MPI-ESM-LR 1.00 0.86 0.73 0.96 0.75 0.31 1.42 1

NorESM1-M 0.12 0.85 0.64 0.01 0.79 0.50 0.00 2

CCSM4 0.24 0.84 0.64 0.48 0.79 0.26 0.13 4

inmcm4 0.16 1.00 0.57 0.42 0.66 0.34 0.09 2

Mean

NorESM1-ME 0.93 0.91 0.79 0.50 3.34 1

GFDL-ESM2G 0.95 0.09 0.75 0.32 0.21 2

CCSM4_r1i1p1 0.93 0.13 0.79 0.26 0.25 2

bcc-csm1-1 0.92 0.86 0.77 0.28 1.70 4

4.1.4. Limitations of the Model Selection Procedure

In the previous section, the step-wise shortlisting of the various climate models was based on
the range of projected change in (a) mean, (b) extremes, and (c) skill in reproducing the past climate.
Although the main aim of this approach was to combine the strengths of two different methodologies,
i.e., the selection of the GCMs based on the properties of the full range of projections and the selection
procedures based on past performance, certain limitations are unavoidable and need to be discussed.

First of all, the analysis considered only models selected based on the changes in the means and
only the ensemble member r1p1i1, resulting in a reduced number of GCM runs for evaluation and
possibly a smaller range of climatic extremes. This may also have led to possibly screening out models
which may have had better past performance.

Similarly, another issue is concerned with the scale at which the method was applied. During the
shortlisting step, and also during the evaluation of extreme indices, the projected changes or ETCCDI
extremes indices were averaged over the entire UIB, which has the possibility of decreasing the spatial
variation in projected changes.
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Additionally, the weighting of different skill scores in this study also differed for similar work,
such as [21]. In our study, the final skill score was a combination of scores allocated for change in
mean, change in extremes, and performance in reproducing past climate. This may have reduced
the chances of selecting the climate model with the best past performance, but increased the chance
of a better spread of scenarios over the entire range, while still taking past performance as a key
factor in selections. Our model selection approach also assumes that all the evaluated model runs
are independent of each other, which may not be the case, as some models use the same forcing and
validation data or may share similar model codes [44,45].

Despite these limitations, the adopted approach made it possible for us to identify a limited
number of model runs, representative of the full range of future projected means and extremes while
giving due preference to models which perform better at simulating the reference climate.

4.2. Bias Correction and Downscaling of Future Climate Scenarios

The future climate projections of the selected climate models needed to be downscaled and
corrected for biases, before further use in hydrological model simulation. Therefore, as a first option,
all the dynamically downscaled climate projections available for UIB were checked for whether
any Regional Climate Model (RCM) projections were available that have dynamically downscaled
projections for the already shortlisted GCM at first or second position in the ranking. We found
that, for both RCPs, the outputs of at least three (3) CORDEX-SA experiments were based on the
GCMs ranked 1st in our study (IPSL-CM5A-MR_RCA4, MPI-ESM-LR_RCA4 and NorESM1-M_RCA4).
The GSM CanESM2, which is at 2nd rank for RCP4.5 and at 1st for RCP8.5, has dynamically downscaled
projections under CORDEX-SA experiments, CanESM2_RegCM4-4. The output of one CORDEX-SA
experiment (GFDL-ESM2M_RCA4) was based on GFDL-ESM2M, which is ranked at 2nd position for
both the RCPs in our study (Tables 4 and 5).

It was decided to utilize the available dynamically downscaled data for our selected
GCMs, ranked at 1st or 2nd positions. Therefore, five CORDEX-SA experiments (Table 6),
including IPSL-CM5A-MR_RCA4, MPI-ESM-LR_RCA4, NorESM1-M_RCA4, Can ESM2_RegCM4-4,
and GFDL-ESM2M_RCA4 were selected for further processing and bias correction. These five GCMs
were dynamically downscaled by CORDEX using two different RCMs (RCA4 and RegCM4). Their
RCM outputs are at a considerably finer scale (0.44◦) than the source GCMs.

Table 6. List of CORDEX South Asia experiments for RCP8.5 and their CMIP5-GCM forcing.

Nr Scenario
Experiment

Driving AOGCM RCM RCM Description
Name Short Form

1 Wet-Warm CanESM2_
RegCM4-4 CAN CCCma-CanESM2 (1st)

R
eg

C
M

4 Abdus Salam International Centre
for Theoretical Physics (ICTP)

Regional Climatic Model version 4
(RegCM4; [46])

2 Wet-Cold GFDL-ESM2M_
RCA4 GFDL NOAA-GFDL-GFDL-ESM2M (2nd)

R
C

A
4 Rossby Centre regional

atmospheric model version 4
(RCA4; [47])

3 Mean NorESM1-M_
RCA4 NOR Nor-ESM1-M (1st)

4 Dry-Cold MPI-ESM-LR_
RCA4 MPI MPI-ESM-LR (1st)

5 Dry-Warm IPSL-CM5A-MR_
RCA4 IPSL IPSL-CM5A-MR (1st)
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4.3. Projected Changes in Temperature and Precipitation

The five (5) selected (CORDEX-SA) RCM outputs were further bias-corrected using the
“distribution mapping technique” [43] for RCP4.5 and RCP8.5 for two sets of durations, i.e.,
mid-century (2041–2070) and end-century (2071–2100). Major properties of the downscaled projections
are given in Table 7.

Table 7. Future precipitation and temperature projections from 5 GCM models, 2 RCPs and 2 periods.
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4.5
(3.08)

16.7
(2.99)

−7.7
(3.27)

71–00
537

(2.4%)
18.7

(41.1%)
109.1
(−6.4%)

4.7
(7.7%)

559
(6.7%)

20.3
(41.1%)

106.1
(−8.9%)

5.1
(15.5%)

5.5
(4.11)
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(−8.2%)
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(17.5%)
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(3.50)
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(3.1%)
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(42.6%)
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(−4%)

4.7
(7%)
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(10.4%)

20.5
(42.6%)

114.9
(−1.4%)

4.9
(11.1%)

3.8
(2.41)

16.0
(2.31)

−7.8
(3.22)

4.1
(2.73)

16.2
(2.43)

−7.0
(4.02)

71–00
536

(2.2%)
19.4

(52.8%)
112.8
(−3.2%)

4.7
(5.7%)

612
(16.8%)

22.0
(52.8%)

114.7
(−1.5%)

5.2
(18.6%)

5.1
(3.70)

17.14
(3.42)

−6.4
(4.57)

6.6
(5.22)

18.8
(5.03)

−4.8
(6.17)
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-4 41–70
560

(6.9%)
21.1

(43.8%)
119.6
(2.7%)

4.7
(6.4%)

557
(6.3%)

20.7
(43.8%)

115.6
(−0.8%)

4.6
(5.5%)

4.5
(3.14)

16.8
(3.08)

−7.8
(3.20)

4.9
(3.51)

16.9
(3.16)

−7.2
(3.75)

71–00
607

(15.9%)
23.2

(51.6%)
117.2
(0.6%)

5.05
(14.8%)

590
(12.5%)

21.8
(51.6%)

114.9
(−1.3%)

5.0
(13.2%)

5.6
(4.24)

17.5
(3.8)

−6.5
(4.47)

7.4
(6.03)

20.0
(6.24)

−5.1
(5.89)

Observed 1976–2005 524 14.4 116.5 4.4 524.1 14.4 116.5 4.4 1.4 13.7 −11.0 1.4 13.7 −11.0

The downscaled projections show changes in temperature ranging from 2.3 ◦C to 6.33 ◦C for
RCP4.5 and of 2.92 ◦C to 9.0 ◦C for RCP8.5. The downscaled and bias-corrected precipitation ranges
from a minor increase of 2.2% for the drier scenarios to as high as 15.9% for the wet scenarios.
Thus, both temperature and precipitation show increases, as do the extremes, since the probabilities
of the wet days are projected to decrease, while the precipitation intensities are projected to increase
unanimously by both RCPs.
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The spatial distribution of the projected future changes for precipitation and temperature across
the UIB also show certain distinct trends. Thus, the precipitation (Figure 5) over the mid-century
(2041–2070), as well as the late century (2071–2100), reveals for all scenarios a remarkable decrease in
the southeastern parts of the basin, but an increase in the northeastern parts. This decrease/increase is
particularly intense for the “Dry-Warm” and the “Median” scenarios over the late 21st century.

Figure 5. Spatial distribution of projected precipitation change across the UIB over the mid (2014–2070)
and the late- (2071–2100) 21st century for 5 models and 2 RCPs. The figure is arranged in a tabular
form where the 1st and 2nd column represent projected change in precipitation for RCP 4.5, for the
mid-century (2014–2070) and the late-century (2071–2100), respectively, while the 3rd and 4th
columns show the projected change in the mid-century and the late-century precipitation for RCP 8.5,
respectively. The rows represent the climate models used.

The spatial distribution of the projected changes for in temperature (Figure 6) also shows
similarities across all scenarios, with the northern and northwestern parts of the basin exhibiting
higher increases, while the eastern and southern parts experience a comparatively smaller
temperature increase.

For RCP8.5, the projected temperature changes appear to be very high over the late 21st century
and this occurs under all scenarios, especially for the “Warm” scenarios, with an almost uniform spread
across the whole UIB. The projected temperature changes range for all RCPs and the two 20th-century
periods from a minimum increase of 3.76 ◦C (NorESM1-M_RCA4, RCP4.5, Period: 2041–2070) to
a maximum increase as high as 10.4 ◦C (IPSL-CM5A-MR_RCA4, RCP8.5 and period: 2071–2100).
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Figure 6. Similar to Figure 5, but for temperature changes.

4.4. Limitations of the Downscaling and Bias Correction Approach Adopted

The downscaling and bias correction approaches described in the previous sections, although
adopted as the best available option considering the availability of time, resources and data, are still
not without limitations.

Firstly, we opted for using GCM-RCM chains for the already shortlisted climate model runs where
the RCM add further detail to global climate simulations and may provide regional- to local-scale
information, but their outputs are still subject to inherited or new systematic errors and may therefore
require a bias correction or further downscaling to a higher resolution, along with the fact that they
may also produce quite a different response in terms of the temperature and precipitation change
than the forcing GCMs. In fact, many authors recognized this affliction of GCM-RCM model chains
with systematic errors (biases) [48–55], but still the representation of explicit atmospheric and surface
processes and the level of spatial details provided by the RCMs [56] make them a better option for
regions with high topographic variability, The selection procedure may in future, though, directly
include the RCM runs instead of GCM, when an appropriate amount of RCM runs are available.

The systematic errors (biases) in GCM/RCM outputs make them unsuitable for certain uses,
and application of different bias-correction methods has increasingly become a standard procedure,
especially in climate change impact studies [57].

Although these bias correction approaches improve the agreement of climate model output with
observations, and therefore narrows the uncertainty range of predictions and simulations, they do
so without a sound physical basis [57]. At the same time, a growing number of authors are showing
reservations on the use of bias correction methods for a variety of reasons. Some argue that the main
assumption behind bias correction approaches is the stationarity of the correction parameters, which is
not realistic and may not be the case, especially under climate change [57,58]. While others believe that
as bias correction cannot overcome major climate model errors, inexperienced application might result
in ill-informed adaptation decisions [59]. Despite being critical of bias correction methods, many of
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these authors e.g., [57,59,60] acknowledge the need for some type of bias correction and recommend
different precautions to avoid any pitfalls.

5. Conclusions

It is essential to have representative future climate projections of appropriate quality for climate
change impact studies, especially in the water resource sector. Despite the availability of an increasing
number of GCM outputs in the CMIP5 archive and the on-going improvements in their process
representations, issues of large uncertainties in their future climate predictions cannot be avoided.
This situation, along with other factors, such as time, human resources or computational constraints,
make it imperative to sort out the most appropriate individual GCM or small ensemble of GCMs for a
more reliable assessment of climate change impacts.

The approach presented in the present study seeks the most suitable set of climate model runs,
while considering not only the full ranges of projected changes in terms of means and extremes by
different climate models, but also their skills in simulating the past climate in a reference period.

This selection procedure was applied for future climate projections over the Upper Indus Basin
for two representative concentration pathways (RCPs), the RCP 4.5 and RCP 8.5. All available model
runs for the r1p1i1 ensemble member of each GCM in the CMIP5 repository were included in the
initial list. The total number of model runs available for RCP4.5 was 42, and 39 for RCP8.5.

Based on the huge uncertainties reported in the GCM runs for the UIB, all possible extreme future
scenarios (Wet-Warm, Wet-Cold, Dry-Warm, Dry-Cold) were considered, in addition to the selection
of GCMs representing the mean future climate change, with respect to both changes in the projected
means and the extremes. This procedure made it possible to arrive at a limited number of climate
models, from which the final selection was performed by assigning ranks based on the weighted score
for each of the mentioned selection criteria.

Finally, the precipitation and temperature time series of the selected GCM model runs were bias
corrected and further downscaled to the scale of the reference data by means of a distribution mapping
technique. The ensembles of the selected GCM runs for RCP4.5 and RCP8.5 scenarios show that
the uncertainty of future climate in the study region is very large for the raw data, as well as their
downscaled versions.

The downscaled projections indicate increases of temperature ranging between 2.3 ◦C and 9.0
◦C and changes in precipitation that range from a slight annual increase of 2.2% under the drier
scenarios, to as high as 15.9% for the wet scenarios. Thus, for both temperature and precipitation,
the future projections under all scenarios and both RCP’s only show increases in the mean annual
values, with no negative trend. Moreover, for all scenarios, the future precipitation is projected to
be more extreme, as the probability of wet days decreases, while at the same time, the precipitation
intensities will increase.

The spatial distribution of the downscaled predictors, namely, the precipitation, also shows
distinct patterns across the UIB, such that this variable shows for all time periods/scenarios considered
a distinct decrease in the southeastern parts, but an increase in the northeastern parts of the basin.
This decrease/increase is particularly intense for the “Dry-Warm” and the “Median” scenarios over
the late 21st century.

Overall, the future climate of the UIB region remains very uncertain, which justifies the selection
procedure proposed here to arrive at a wider range of possible climate scenarios that can then be
further utilized and translated into a wider spectrum of climate change impact scenarios.
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Abstract: In this paper, we apply the optimal control theory to obtain the analytic solutions of
the two-component globally averaged energy balance model in order to estimate the influence of
solar radiation management (SRM) operations on the global mean surface temperature in the 21st
century. It is assumed that SRM is executed via injection of sulfur aerosols into the stratosphere to
limit the global temperature increase in the year 2100 by 1.5 ◦C and keeping global temperature
over the specified period (2020–2100) within 2 ◦C as required by the Paris climate agreement.
The radiative forcing produced by the rise in the atmospheric concentrations of greenhouse gases is
defined by the Representative Concentration Pathways and the 1pctCO2 (1% per year CO2 increase)
scenario. The goal of SRM is formulated in terms of extremal problem, which entails finding a
control function (the albedo of aerosol layer) that minimizes the amount of aerosols injected into the
upper atmosphere to satisfy the Paris climate target. For each climate change scenario, the optimal
albedo of the aerosol layer and the corresponding global mean surface temperature changes were
obtained. In addition, the aerosol emission rates required to create an aerosol cloud with optimal
optical properties were calculated.

Keywords: climate change; optimal control; geoengineering; climate manipulation

1. Introduction

Climate change is among the most significant threats to human civilization in the 21st century
and beyond [1]. The Paris Climate Accord proposed to hold average temperature increase “to well
below 2 ◦C above pre-industrial levels” and to pursue efforts to keep warming “below 1.5 ◦C above
pre-industrial levels” [2]. To reach these goals, eight countries have already presented long-term
low-emission strategies, which aims to reduce greenhouse gas emissions; several countries are currently
in the process of preparing such strategies [3]. Meanwhile, the World Meteorological Organization’s
(WMO) “Statement of the State of the Global Climate in 2017” released in January 2018 said, “The global
mean temperature in 2017 was approximately 1.1 ◦C above the pre-industrial era” [4]. There is high
confidence that planetary warming will continue throughout the 21st century even if we immediately
stopped emitting greenhouse gases into the atmosphere (e.g., References [5–9]). Some resent studies
(e.g., References [10–13]) suggest that geoengineering technologies can serve as a supplementary
measure to stabilize climate as “in the absence of external cooling influence” [14], it is hard to achieve
the Paris Agreement climate goals.

Solar radiation management (SRM) by injection of sulfur aerosols into the stratosphere [15,16] is
one of the most feasible and promising solutions for inducing negative radiative forcing (RF) from
aerosols in order to at least partially compensate the positive RF from atmospheric greenhouse gases.
The current state of understanding of climate engineering technologies, including SRM, has been
discussed in References [17–26]. Over the years, climate models have played a key role in exploring
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geoengineering techniques and predicting and quantifying their potential effects on Earth’s climate
(e.g., References [27–36]). Due to the uncertainties inherent in climate models that could not be
sufficiently reduced over the last decade [37], the resulting range of possible outcomes of hypothetical
geoengineering efforts remains quite vague. To handle the climate response uncertainties, some
studies (e.g., References [38–45]) have suggested modeling the Earth’s climate as a control system with
feedbacks, which allows planning scenarios for geoengineering using the so-called “design model”.
This formulation makes it possible to design the control law and calculate the amount of SRM forcing
as a function of time needed to offset the rise in global mean surface temperature due to human-caused
positive RF. Meanwhile, exploring Earth’s global climate as controlled dynamical system, we can
approach geoengineering from the perspective of optimal control theory [46–49]. Within the optimal
control framework, the goal of geoengineering can be formulated in terms of extremal problem, which
involves finding control functions and the corresponding climate system trajectory that minimize or
maximize a certain objective functional (also referred to as performance measure or index) subject to
various constraints (e.g., References [50,51]. If x is the state vector of climate system and u is the vector
of control variables, then the abstract extremal problem can be formulated as follows:

J (x, u) → extr, F (x, u) = 0, (x, u) ∈ M ⊂ X × U (1)

The statement of this problem includes a set X × U on which the (real) functional J (x, u)

is defined and constraints imposed on state and control variables given by the model of control
object F (x, u) = 0 (dynamic constraints) and by the subset M in X × U . The solution to the
extremal problem (Equation (1)) is the optimal process (x∗, u∗). Thus, by solving the optimal control
problem (OCP), we can obtain the mathematically rigorous control law and the corresponding system’s
trajectory that are relevant for the specified performance measure J (x, u).

This paper deals with a simple mathematical model for controlling the global mean surface
temperature Ts f c in the 21st century by the injection of sulfur aerosols into the stratosphere to limit the
global temperature increase in the year 2100 by 1.5 ◦C above pre-industrial level and keeping global
temperature over the period of 2020–2100 within 2 ◦C as required by the Paris climate agreement.
The objective is to minimize resources (the total mass of aerosols) required to achieve the desired final
state of the climate system. In the model, the positive RF produced by the rise in the atmospheric
concentrations of greenhouse gases is specified in accordance with the Representative Concentration
Pathways [52] and the 1pctCO2 (1% per year CO2 increase) scenario.

The mathematical statement of OCP is the collection of the following key elements: objective
function defined to judge the effectiveness of control process, mathematical model of the controlled
object, equality and inequality constraints to be satisfied by state and control variables, and boundary
and initial conditions (if any) for state variables. To imitate the behavior of the climate system, we
applied a two-component energy balance model [53–55] in which the global mean surface temperature
anomaly (perturbation) represents the variable that interests us the most, and the albedo of the
global aerosol layer is designated as the control variable. We derived analytical expressions for both
the optimal albedo of the global aerosol layer and the corresponding change in the global mean
surface temperature.

The results of illustrative calculations are presented for the period 2020–2100. For each climate
change scenario, the optimal albedo of the aerosol layer—and therefore the aerosol emission rates—as
well as the associated global mean surface temperature changes were found.

We need to emphasize that the main reason for using such a model is that similar two-layer models
have been considered and analyzed in a number of papers considering the response to forced climate
change. For example, Geoffroy et al. [56,57] obtained and discussed the general analytical solutions of
the two-layer model for different hypothetical climate forcing scenarios and suggested the approach of
calibrating the model parameters to imitate the time response of coupled general circulation models
(CGCMs) from CMIP5 to radiative forcing. Gregory et al. [58] analyzed the two-layer model and
discussed the transient climate response, the global mean surface air temperature change under
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two scenarios: one with a step forcing (the abrupt 4xCO2 experiment) and one with the 1pctCO2

scenario. Despite the fact that the two-layer model is one of the simplest tools to mimic climate
dynamics under external radiative forcing, it was able to simulate the evolution of average global
surface temperature over time in response to both abrupt and time-dependent forcing with reasonable
accuracy (e.g., References [56,59]).

In the two-layer model, climate control is carried out via changing Earth’s planetary albedo by
injection of sulfur aerosols into the stratosphere (“albedo modification”). Sulfur aerosols increase the
amount of sunlight that is scattered back to space, thereby reducing the amount of sunlight absorbed
by Earth. Inherently, the planetary albedo is an average of the local albedo, averaged over the entire
globe. The local albedo, in turn, is a highly variable dimensionless parameter that depends on a
number of local factors, such as the composition of the atmosphere and in particular the presence of
aerosols, the cloud amount and properties [60], the sea ice cover [61], the land use [62–64], the snow
cover [65], etc. A typical value of Earth’s planetary albedo is about 0.3 [66].

As change in the albedo of our planet is a powerful driver of climate (indeed, a 1% change in the
Earth’s planetary albedo generates the radiative effect of 3.42 Wm−2, which is commensurate with radiative
forcing due to a doubling of CO2 concentrations in the atmosphere), scientists have proposed “albedo
modification” as a powerful tool to deal with global warming (e.g., References [16,20,23,29,31,33,67]).

2. Materials and Methods

2.1. The Model of Control Object

The control object is Earth’s climate system. To simulate the climate system dynamics under the
influence of external radiative forcing, we have applied the mathematical model consisting of two
subsystems: One is the upper layer subsystem, which combines the atmosphere, the land surface,
and the upper ocean; the other is the lower layer subsystem, which represents the deep ocean [53–55].
The state of each subsystem is characterized by the corresponding temperature perturbation (anomaly)
with respect to initial climate “equilibrium” state. Denoting temperature anomalies for upper and
lower subsystems by T and TD, respectively, the equations that govern these perturbations can be
written as follows:

CU
dT
dt

= −λT − γ(T − TD) + ΔRCO2 + (1 − α0)ΔRA (2)

CD
dTD
dt

= γ(T − TD) (3)

Here, CU and CD are the effective heat capacities of the upper and lower models, respectively
(note that CU � CD); λ is a climate radiative feedback parameter; γ is a coupling strength parameter
that describes the rate of heat loss by the upper layer; ΔRCO2 is the radiative forcing caused by global
increase in the atmospheric CO2 concentration; ΔRA is the negative radiative forcing generated by the
artificial aerosols at the top of the atmosphere; and α0 is Earth’s planetary albedo. We will assume that
the temperature anomaly T is identified with the global mean surface temperature change Ts f c [53,54].

Despite its simplicity, this model imitates climate changes under external radiative forcing with
reasonable accuracy [56–59]. We have chosen values of 7.34 W yr m−2 K−1, 105.5 W yr m−2 K−1,
1.13 W m−2 K−1, and 0.7 W m−2 K−1 for parameters CU , CD, λ, and γ, respectively. These values are
taken in accordance with values consistent with the CMIP5 multimodel mean under climate change
derived in Reference [56].

For convenience sake, we have rewritten the model Equations (2) and (3) as follows:

dT
dt

= −aT + bTD +
ΔRCO2

CU
+

(1 − α0)ΔRA

CU
(4)

dTD
dt

= pT − pTD (5)
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where
a =

λ + γ

CU
, b =

γ

CU
, p =

γ

CD
. (6)

Ordinary Differential Equations (4) and (5) represent a mathematical model of the object to
be controlled.

2.2. Parameterization of the Aerosols’ Radiative Effect

The climate control is assumed to be executed through the injection of nonabsorptive sulfate
aerosols into the stratosphere. Injected aerosol particles scatter shortwave solar radiation back to the
outer space and consequently change the radiative balance of our planet, increasing Earth’s planetary
albedo and therefore causing the negative RF at the top of the atmosphere [68–71]:

ΔRA = −αAQ0 (7)

Here, αA is the instant albedo of the global aerosol layer; Q0 is the global average incoming
solar radiation on the top of the atmosphere defined as Q0 = I0/4, where I0 = 1368 W m2 is a solar
constant [72,73]. Thus, to estimate the radiative effect of stratospheric aerosol, we need to calculate
the albedo αA, which is considered as the control variable. However, in reality, we have the ability to
manipulate the emission rate of aerosols injected into the stratosphere EA. To determine EA from the
known αA, the mass balance equation is used:

dMA
dt

= EA − MA
τA

(8)

where τA is the residence time of stratospheric aerosol particles; MA is the global mass of the
stratospheric aerosols, which is linearly related to the albedo αA [69]:

αA = MA(βAkA/Q0Se) (9)

where the coefficient βA = 24 W m−2 [70,71]; kA = 7.6 m2g−1 is the mass extinction coefficient [69];
Se is Earth’s area determined as Se = 4πR2

e , where Re = 6371 km is Earth’s radius.
In geoengineering, sulfate aerosol particles are not directly injected into the stratosphere but can

be formed from gaseous precursors, such as sulfur dioxide SO2, hydrogen sulfide H2S, carbonyl sulfide
OCS, or dimethyl sulfide (DMS), which then convert into aerosols. We will express the emission rate
of aerosol precursors as well as the mass of sulfate aerosols in units of sulfur, denoting them by ES
(in Tg S yr−1) and MS (in Tg S), respectively. Assuming that 1 Tg of sulfur injected into the stratosphere
forms approximately 4 Tg of aerosol particles [74], we obtain that ES ≈ EA/4 and MS ≈ MA/4. As the
relationship between MA and αA is linear, the following predictive equation for αA can be derived
from Equation (8):

dαA
dt

= χ−1ES − αA
τA

(10)

where χ = Q0Se/(4βAkA) ≈ 2.39 × 102 Tg S.
Thus, solving the OCP, we can find the optimal control law α∗A(t) and then calculate the optimal

aerosol emission rate E∗
S(t) using Equation (10).

2.3. Parameterization of the Anthropogenic Radiative Forcing

In energy balance models, simple empirical expressions are generally used to calculate radiative
forcing due to the increase in atmospheric greenhouse gases. For example, the radiative forcing
caused by a perturbation of the atmospheric burden of CO2 can be parameterized as a function of CO2

only [75,76]: ΔRCO2 = κ × ln [CCO2(t)/C(0)
CO2

], where κ (W m−2) is the empirical coefficient; CCO2(t)

is the CO2 concentration at time t; and C(0)
CO2

is the reference CO2 concentration level. A typical
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value for the parameter κ is near 5.35 W m2 [75,76]. In our model, we have taken the total global
mean anthropogenic and natural radiative forcing ΔRN as prescribed by the different scenarios and
approximated by a linear function of time:

ΔRN = ηt (11)

where η is the annual rate of forcing (see Table 1).

Table 1. Annual radiative forcing rate η.

Scenario RCP8.5 1pctCO2 RCP6 RCP4.5

η (W m−2 yr−1) 7.14× 10−2 5.29× 10−2 3.814× 10−2 2.17× 10−2

2.4. Optimal Control Problem Formulation

We let [t0, tf] be a finite and fixed time interval. The OCP is defined as follows:
We find the control function αA(t) generating the corresponding temperature anomalies T(t) and

TD(t) that minimizes the objective function:

J =
1
2

t f∫
t0

α2
A(t)dt (12)

subject to the dynamics (4) and (5) and given initial T(t0) = 0 and TD(t0) = 0, as well as final (terminal)
T
(

t f

)
= T f conditions.

In this formulation, the terminal condition T f is interpreted as a target change in the global mean
surface temperature at t = t f , and the performance index (Equation (12)) characterizes the aerosol
consumption for SRM operations (recall that αA and MA are linearly dependent functions). Thus, we
wish to minimize the mass of aerosols required to reach the target surface temperature change at the
final time. The global mean deep ocean temperature anomaly at the final time t f is not defined because
changes in the global mean surface temperature are of primary concern, while changes in the deep
ocean temperature are only of secondary concern. The total amount of aerosols annually emitted to
the stratosphere can be limited by the available technical equipment. In this case, the minimization
problem (Equation (12)) should be considered within the framework of control-constrained OCP.
The set of admissible controls is given formally by αA ∈ [0, U], where U is the maximum value of
technically feasible and affordable albedo αA.

2.5. Method for Solving the Optimal Control Problem

Before proceeding further, we rewrite the model Equations (4) and (5) by replacing ΔRCO2 with ηt
(11) and ΔRA with −αAQ0 (7):

dT
dt

= −aT + bTD + ct − qαA (13)

dTD
dt

= pT − pTD (14)

where c = η/CU and q = (1 − α0)Q0/CU .
We solve the formulated OCP using the Pontryagin’s maximum principle (PMP) [47].

The Hamiltonian function for the problem (12) is defined as follows:

H = −1
2

α2
A + ψ1(−aT + bTD + ct − qαA) + ψ2(pT − pTD) (15)
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where ψ1 and ψ2 are time-varying Lagrange multipliers, also known as costate or adjoint variables,
which satisfy the adjoint system:

dψ1

dt
= − ∂H

∂T
= aψ1 − pψ2 (16)

dψ2

dt
= − ∂H

∂TD
= −bψ1 + pψ2 (17)

The PMP states that the optimal control α∗A(t) ∈ [0, U] is one that would maximize the

Hamiltonian (Equation (13)) at each fixed time t ∈
[
t0, t f

]
:

α∗A = arg max
αA∈[0,U]

H(αA) (18)

Therefore, to find the optimal control α∗A, we must maximize H with respect to αA, where the
control belongs to the admissible control region αA ∈ [0, U]. The Hamiltonian maximization condition
is as follows:

∂H
∂αA

= −αA − qψ1 = 0 (19)

Thus, to find the optimal control and the corresponding climate system’s trajectory, we need
to solve the set of four ordinary Differential Equations (13), (14), (16), and (17) in four unknowns T,
TD, ψ1, and ψ2 with given initial and terminal conditions. As the variable TD is not defined at t f , the

following transversality condition for costate variable ψ2 applies: ψ2

(
t f

)
= 0 [48,49]. The analytic

expressions derived for the control variable αA and temperature anomalies T and TD can be written
as follows:

αA(t) = −C1q
[
v11eλ1t + e(λ1−λ2)t f v21eλ2t

]
(20)

T(t) = C1α1

(
eλ1t − eλ2t

)
+ C3e−λ1t + C4e−λ2t ++w2t + w1 (21)

TD(t) = C3
a − λ1

b
e−λ1t + C4

a − λ2

b
e−λ2t+ (22)

+ C1

[
α1(a + α1)− q2v11

b
eλ1t − α2(a + α2)− q2v21e(λ1−λ2)t f

b
eλ2t

]
+

+
aw2 − c

b
t +

aw1 + w2

b
where C1, C3, and C4 are arbitrary integration constants (note that the integration constant
C2 = −C1e(λ1−λ2)t f ); λ1 and λ2 are the eigenvalues of the coefficient matrix of the adjoint system,
Equations (14) and (15); v11 and v21 are the components of the corresponding eigenvectors.

α1 =
q2v11(λ1 + p)

λ2
1 + λ1(a + p) + (ap − pb)

α2 =
q2v21(λ2 + p)e(λ1−λ2)t f

λ2
1 + λ1(a + p) + (ap − pb)

w1 =
c[(ap − pb)− p(a + p)]

(ap − pb)2

w2 =
pc

ap − pb

The constants of integration are determined by applying the boundary conditions.
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If we consider climate engineering as a state-constrained OCP with constraints on the state
variables, then additional necessary conditions for optimality, known as the complementary slackness
conditions, should be specified [77]. In this study, we express the OCP with the following
state constraint:

T(t) ≤ CT ∀t ∈
[
t0, t f

]
(23)

where CT is the threshold parameter whose value should be set. The meaning of the condition
(Equation (23)) known as a path constraint is that throughout the geoengineering project, the global
mean surface temperature change should not exceed a certain value CT , which is determined a priori.
We should highlight that state constraints add a great deal of complexity to the OCP [77,78].

3. Results and Discussion

In the calculations, we took calendar years 2020 and 2100 as the initial t0 and the final (terminal)
t f time, respectively, which meant that we were examining the climate control problem on the finite
time interval 2020–2100. To formulate the boundary conditions and impose a constraint on change in
the global mean surface temperature Ts f c, we assumed the following:

- The temperature anomalies T and TD were calculated relative to 2020, i.e., the boundary
conditions for T and TD at t = t0 were T2020 = 0 and TD, 2020 = 0, respectively, where the
numerical subscript referred to the year 2020.

- By 2020, Ts f c would exceed the pre-industrial level by 1.1 ◦C, i.e., ΔT2020 = 1.1 .

- By 2100, Ts f c would exceed the pre-industrial level by 1.5 ◦C, i.e., ΔT2100 = 1.5 .

- For the 2020 to 2100 period, the rise in Ts f c should not exceed 2 ◦C above the pre-industrial level.

Then, the permissible increase in the temperature anomaly T2100 by year 2100 relative to 2020
would be T2100 = ΔT2100 − ΔT2020 = 0.4 . This value represents the boundary condition for T at t = t f .
The threshold parameter, which defines a path constraint (Equation (23)), is CT = 2 − ΔT2020 = 0.9 .

Changes in both global mean surface temperature and deep ocean temperature calculated for
different climate change scenarios in the absence of climate engineering interventions are illustrated in
Figure 1. The corresponding temperature changes in the year 2100 are shown in Table 2. According to
Reference [79], without additional measures to reduce GHG emissions (RCP8.5 scenario), increases in
global mean surface temperatures are expected to be between 3.7 and 4.8 ◦C by the year 2100 versus
pre-industrial levels (this range is based on median climate response). As seen in Table 2, by year
2100, the model outlined here projects globally averaged surface temperature increases of 4.26, 3.44,
and 2.80 ◦C for the RCP8.5, 1pctCO2, and RCP6.0 scenarios, respectively (relative to pre-industrial
period). Thus, geoengineering can be regarded as one of supplementary measures needed to achieve
the climate targets of the Paris Agreement.
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(a) (b) 

Figure 1. Changes in (a) global mean surface temperature and (b) deep ocean temperature calculated
for different climate change scenarios in the absence of climate engineering interventions.

Table 2. Calculated temperature changes T and TD from 2020 to 2100 (changes relative to the
pre-industrial level are shown in brackets).

Scenario RCP8.5 1pctCO2 RCP6.0 RCP4.5

T (K) 3.16 (4.26) 2.34 (3.44) 1.70 (2.80) 0.96 (2.06)

We considered results of calculations for the RCP8.5 (the worst-case) scenario in more detail.
Figure 2 shows (a) the optimal albedo of the global stratospheric aerosol layer, (b) the corresponding
surface temperature anomaly, (c) the mass of the global aerosol layer, and (d) the optimal emission rate
of aerosol particles calculated for RCP8.5 pathway with and without constraint on the global mean
surface temperature increase. In the absence of state constraint, the optimal albedo α∗A and, accordingly,
the optimal emission rate of aerosol particles E∗

S would increase exponentially. This optimal aerosols
emission rate ensures that the target temperature anomaly T2100 = 0.4 is satisfied. However, within
the given time interval 2020–2100, a temperature rise would exceed the set point CT , i.e., T(t) > CT
(the “overshooting” phenomenon [80]). The maximum increases in global mean surface temperature
for different climate change scenarios are presented in Table 3. The use of the constraint (Equation (21))
allows us to avoid overshoot; however, compared to the unconstrained case, keeping the increase
in global mean surface temperature below the target constrained level CT would require additional
amount of aerosols (see Table 4). For example, for the RCP8.5 scenario, the total mass of aerosol
particles injected in the stratosphere from the year 2020 to 2100 is about 73.6 Tg S, which is about 2
times larger than M∗

S, tot, calculated by solving an unconstrained OCP.
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Figure 2. Results for the RCP8.5 pathway: (a) optimal albedo of aerosol layer α∗A; (b) the corresponding
temperature anomaly T∗; (c) total mass of aerosols M∗

S; and (d) the optimal emission rate E∗
S.

Table 3. Maximum global mean surface temperature anomaly T calculated without state constraint.

Scenario RCP8.5 1pctCO2 RCP6 RCP4.5

T (K) 2.48 1.84 1.34 0.78

Table 4. The mass of aerosols MS, tot (Tg S) injected into the stratosphere from 2020 to 2100.

Scenario RCP8.5 1pctCO2 RCP6 RCP4.5

MS,tot without state constraint 36.5 25.6 17.0 7.7
MS,tot with state constraint 73.6 44.46 23.3 -

Results obtained for 1pctCO2, RCP6.0, and RCP4.5 scenarios are represented in Figures 3–5,
respectively. These figures show that the overshooting phenomenon is also observed for the 1pctCO2

and RCP6.0 scenarios. The only exception is the RCP4.5 scenario.
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Figure 3. Results for the 1pctCO2 scenario: (a) optimal albedo of aerosol layer α∗A; (b) the corresponding
temperature anomaly T∗; (c) total aerosol mass M∗

S; and (d) the optimal emission rate E∗
S.
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Figure 4. Cont.
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Figure 4. Results for the RCP6.0 pathway: (a) optimal albedo of aerosol layer α∗A; (b) the corresponding
temperature anomaly T∗; (c) total mass of aerosols M∗

S; and (d) the optimal emission rate E∗
S.

 
(a) 

 

(b) 

 
(c) 

 

(d) 

Figure 5. Results for the RCP4.5 pathway: (a) optimal albedo of aerosol layer α∗A; (b) the corresponding
temperature anomaly T∗; (c) total mass of aerosols M∗

S; and (d) the optimal emission rate E∗
S.

If the optimal control problem is considered with control variable constraint αA(t) ≤ U, then
the target value for the temperature anomaly in the year 2100 may not necessarily be achieved (this
depends on the value of the constraint U and the scenario in question). Assuming, for example, that
U = 0.02, then the corresponding instant mass of aerosols is estimated to be 4.8 Tg S. In such a case, for
the RCP8.5 scenario, the calculated temperature anomaly in the year 2100 relative to 2020 would exceed
the target value by 0.3 ◦C, which is equivalent to exceeding the pre-industrial level by 1.8 ◦C. It needs
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to be recalled that constraint on the control variable is associated with a possible limitation on resources
required to implement the project, namely, the amount of aerosols available to the project executors.

We emphasize that the results of calculations discussed above are for illustration purposes only.
The primary outcome presented in this paper is the optimal control-based approach that can be used
to design projects targeting purposeful manipulation of climate and weather.

4. Concluding Remarks

The use of fine aerosol particles, artificially injected into the stratosphere, is considered to
be one of the most effective and feasible measures to counter global warming in the 21st century
and beyond. Computer simulation using mathematical climate models of various degrees of
sophistication and complexity is the most popular and reliable technique for exploring and estimating
the effectiveness of stratospheric aerosol climate engineering and climate and weather manipulation.
Numerical simulation of climate engineering requires the design of fairly realistic scenarios for aerosol
injections. This paper introduced the optimal-control-based method for designing climate engineering
scenarios. Considering Earth’s climate as controlled dynamical system, we proposed to approach
geoengineering from the standpoint of the optimal control theory, thereby formulating the goal of
geoengineering projects in terms of extremal problem. The capability to apply this technique was
illustrated using the two-layer energy balance model in which the global mean surface temperature
anomaly and the deep ocean temperature perturbation were the state variables, and the emission rate
of aerosol precursors was the control variable. Solutions to the unconstrained as well as state and
control constrained problems were obtained on the basis of classical Pontryagin’s maximum principle.
The proposed method will provide additional useful insights for the development of optimal climate
manipulation strategies to counter global warming in the 21st century.

Funding: This research received no external funding.

Acknowledgments: The author would like to thank two anonymous reviewers for their helpful comments.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Stocker, T.F.; Qin, D.; Planner, G.; Tignor, M.S.; Allen, K.; Boschumg, J.; Alexander, N.; Yu, X.; Vincent, B.;
Pauline, M.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge,
UK, 2013.

2. Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf
(accessed on 16 August 2018).

3. New Climate Institute. Available online: https://unfccc.int/process/the-paris-agreement/long-term-
strategies (accessed on 16 August 2018).

4. World Meteorological Organization. WMO Statement on the State of the Global Climate in 2017; WMO-No. 1212;
World Meteorological Organization: Geneva, Switzerland, 2018.

5. Rodelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.;
Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 ◦C. Nature
2016, 534, 631–639. [CrossRef]

6. Brown, P.; Caldeira, K. Greater future global warming inferred from Earth’s recent energy budget. Nature
2017, 552, 45–50. [CrossRef] [PubMed]

7. Raftery, A.E.; Zimmer, A.; Frierson, D.M.W.; Startz, R.; Liu, P. Less than 2 ◦C warming by 2100 unlikely.
Nat. Clim. Chang. 2017, 7, 637–641. [CrossRef] [PubMed]

8. Kong, Y.; Wang, C.-H. Responses and changes in the permafrost and snow water equivalent in the Northern
Hemisphere under a scenario of 1.5 ◦C warming. Adv. Clim. Chang. Res. 2017, 8, 235–244. [CrossRef]

9. Jacob, D.; Kotova, L.; Teichmann, C.; Stefan, P.S.; Vautard, R.; Chantal, D.; Aristeidis, G.;
KoutroulisManolis, G.; GrillakisIoannis, K.T.; Andrea, D. Climate impacts in Europe under +1.5 ◦C global
warming. Earth Future 2018, 6, 264–285. [CrossRef]

290



Climate 2018, 6, 85

10. Tanaka, K.; O’Neill, B.C. The Paris Agreement zero-emissions goal is not always consistent with the 1.5 ◦C
and 2 ◦C temperature targets. Nat. Clim. Chang. 2018, 8, 319–324. [CrossRef]

11. Keith, D.; Mac-Martin, D. A temporary, moderate and responsive scenario for solar geoengineering.
Nat. Clim. Chang. 2015, 5, 201–206. [CrossRef]

12. Chen, Y.; Xin, Y. Implications of geoengineering under the 1.5 ◦C target: Analysis and policy suggestions.
Adv. Clim. Chang. Res. 2017, 8, 123–129. [CrossRef]

13. MacMartin, D.G.; Ricke, K.L.; Keith, D.W. Solar geoengineering as part of an overall strategy for meeting the
1.5 ◦C Paris target. Phil. Trans. R. Soc. 2018, 376. [CrossRef] [PubMed]

14. Henley, B.; King, A. Trajectories toward the 1.5 ◦C Paris target: Modulation by the Interdecadal Pacific
Oscillation. Geophys. Res. Lett. 2017, 44, 4256–4262. [CrossRef]

15. Budyko, M.I. Climate and Life; Academic Press: New York, USA, 1974.
16. Crutzen, P.J. Albedo enhancement by stratospheric sulfur injections: A contribution to resolve a policy

dilemma? Clim. Chang. 2006, 77, 211–220. [CrossRef]
17. Bellamy, R.; Chilvers, J.; Vaughan, N.E.; Lenton, T.M. A review of climate geoengineering appraisals.

WIREs Clim. Chang. 2012, 3, 597–615. [CrossRef]
18. Shepherd, J.G. Geoengineering the climate: An overview and update. Philos. Trans. R. Soc. A 2012, 370,

4166–4175. [CrossRef] [PubMed]
19. Zhang, Z.; Moore, J.C.; Huisingh, D.; Zhao, Y. Review of geoengineering approaches to mitigating climate

change. J. Clean. Prod. 2015, 103, 898–907. [CrossRef]
20. Irvine, P.J.; Kravitz, B.; Lawrence, M.G.; Muri, H. An overview of the Earth system science of solar

geoengineering. WIREs Clim. Chang. 2016, 7, 815–833. [CrossRef]
21. Irvine, P.J.; Kravitz, B.; Lawrence, M.G.; Gerten, D.; Caminade, C.; Gosling, S.N.; Hendy, E.J.; Kassie, B.T.;

Kissling, W.D.; Muri, H.; et al. Towards a comprehensive climate impact assessment of solar engineering.
Earth Future 2017, 5, 93–106. [CrossRef]

22. Visioni, D.; Pitari, G.; Aquila, V. Sulfate geoengineering: A review of the factors controlling the needed
injection of sulfur dioxide. Atmos. Chem. Phys. 2017, 17, 3879–3889. [CrossRef]

23. Caldeira, K.; Bala, G. Reflecting on 50 years of geoengineering research. Earth Future 2017, 5, 1–17. [CrossRef]
24. Boettcher, M.; Schäfer, S. Reflecting upon 10 years of geoengineering research. Earth Future 2017, 5, 266–277.

[CrossRef]
25. Keith, D.W. Geoengineering the Climate: History and Prospect. Annu. Rev. Energy Environ. 2000, 25, 245–284.

[CrossRef]
26. Robock, A.; Marquardt, A.; Kravitz, B.; Stenchikov, G. Benefits, risks, and costs of stratospheric

geoengineering. Geophys. Res. Lett. 2009, 36, L19703. [CrossRef]
27. Robock, A.; Kravitz, B.; Boucher, O. Standardizing experiments in geoengineering. Eos Trans. Am.

Geophys. Union 2011, 92, 197. [CrossRef]
28. Schmidt, H.; Alterskjær, K.; Karam, B.D.; Boucher, O.; Jones, A.; Kristjánsson, J.E.; Niemeier, U.; Schulz, M.;

Aaheim, A.; Benduhn, F.; et al. Solar irradiance reduction to counteract radiative forcing from a quadrupling
CO2: Climate responses simulated by four earth system models. Earth Syst. Dyn. 2012, 3, 63–78. [CrossRef]

29. Kravitz, B.; Robock, A.; Boucher, O.; Schmidt, H.; Taylor, K.E.; Stenchikov, G.; Schulz, M. The Geoengineering
Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 2011, 12, 162–167. [CrossRef]

30. Kravitz, B.; Robock, A.; Haywood, J.M. Progress in climate model simulations of geoengineering. Eos Trans.
Am. Geophys. Union 2012, 93, 340. [CrossRef]

31. Kravitz, B.; Caldeira, K.; Boucher, O.; Robock, A.; Rasch, P.J.; Alterskjær, K.; Karam, D.B.; Cole, J.N.S.;
Curry, C.L.; Haywood, J.M.; et al. Climate model response from the Geoengineering Model Intercomparison
Project (GeoMIP). J. Geophys. Res. 2013, 118, 8320–8332. [CrossRef]

32. Kravitz, B.; Robock, A.; Irvine, P. Robust results from climate model simulations of geoengineering. Eos Trans.
Am. Geophys. Union 2013, 94, 292. [CrossRef]

33. Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J.M.; Irvine, P.J.; Jones, A.; Lawrence, M.G.;
MacCracken, M.; Muri, H.; et al. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6):
Simulation design and preliminary results. Geosci. Model Dev. 2015, 8, 2279–2292. [CrossRef]

34. MacMartin, D.G.; Keith, D.W.; Kravitz, B.; Caldeira, K. Management of trade-offs in geoengineering through
optimal choice of non-uniform radiative forcing. Nat. Clim. Chang. 2013, 3, 365–368. [CrossRef]

291



Climate 2018, 6, 85

35. Kalidindi, S.; Bala, G.; Modak, A.; Caldeira, K. Modeling of solar radiation management: A comparison of
simulations using reduced solar constant and stratospheric sulfate aerosols. Clim. Dyn. 2015, 44, 2909–2925.
[CrossRef]

36. Crook, J.A.; Jackson, L.S.; Osprey, S.M.; Forster, P.M. A comparison of temperature and precipitation
responses to different Earth radiation management schemes. J. Geophys. Res. 2015, 120, 9352–9373. [CrossRef]

37. Qian, Y.; Jackson, C.; Giorgi, F.; Booth, B.; Duan, Q.; Forest, C.; Higdon, D.; Hou, Z.J.; Huerta, G. Uncertainty
quantification in climate modelling and prediction. Bull. Am. Meteorol. Soc. 2016, 97, 821–824. [CrossRef]

38. MacMartin, D.G.; Kravitz, B.; Keith, D.W.; Jarvis, A. Dynamics of the coupled human-climate system
resulting from closed-loop control of solar geoengineering. Clim. Dyn. 2014, 43, 243–258. [CrossRef]

39. Jarvis, A.J.; Young, P.C.; Leedal, D.T.; Chotai, A. A robust sequential CO2 emissions strategy based on optimal
control of atmospheric CO2 concentrations. Clim. Chang. 2008, 86, 357–373. [CrossRef]

40. Jarvis, A.J.; Leedal, D.T.; Taylor, C.J.; Young, P.C. Stabilizing global mean surface temperature: A feedback
control perspective. Environ. Model. Softw. 2009, 24, 665–674. [CrossRef]

41. Ban-Weiss, G.A.; Caldeira, K. Geoengineering as an optimization problem. Environ. Res. Lett. 2010, 5, 034009.
[CrossRef]

42. Jarvis, A.; Leedal, D. The geoengineering model intercomparison project (GeoMIP): A control perspective.
Atmos. Sci. Lett. 2012, 13, 157–163. [CrossRef]

43. Kravitz, B.; MacMartin, D.G.; Leedal, D.T.; Rasch, P.J.; Jarvis, A.J. Explicit feedback and the management
of uncertainty in meeting climate objectives with solar geoengineering. Environ. Res. Lett. 2014, 9, 044006.
[CrossRef]

44. Dykema, J.A.; Keith, D.W.; Anderson, J.G.; Weisenstein, D. Stratospheric controlled perturbation experiment:
A small-scale experiment to improve understanding of the risks of solar geoengineering. Philos. Trans. A
Math. Phys. Eng. Sci. 2014, 372. [CrossRef] [PubMed]

45. Weller, S.R.; Schultz, B.P. Geoengineering via solar radiation management as a feedback control problem:
Controller design for disturbance rejection. In Proceedings of the 4th Australian Control Conference (AUCC),
Canberra, Australia, 17–18 November 2014.

46. Bellman, R. Dynamical Programming; Princeton University Press: Princeton, NJ, USA, 1957.
47. Pontryagin, L.S.; Bolryanskii, V.G.; Gamktelidze, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal

Processes; Wiley: New York, NY, USA, 1962.
48. Kirk, D. Optimal Control Theory: An Introduction; Prentice Hall: Englewood Cliffs, NJ, USA, 1970.
49. Sontag, E.D. Mathematical Control Theory: Deterministic Finite Dimensional Systems; Springer: New York, NY,

USA, 1990.
50. Yusupov, R.M. An Introduction to Geophysical Cybernetics and Environmental Monitoring; St. Petersburg State

University Press: St. Petersburg, Russia, 1998.
51. Soldatenko, S.A. Weather and climate manipulation as an optimal control for adaptive dynamical systems.

Complexity 2017, 1–12. [CrossRef]
52. Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.-F.; Matsumoto, K.;

Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions
from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [CrossRef]

53. Gregory, J.M.; Mitchell, J.F.B. The climate response to CO2 of the Hadley Centre coupled AOGCM with and
without flux adjustment. Geophys. Res. Lett. 1997, 24, 1943–1946. [CrossRef]

54. Gregory, J.M. Vertical heat transports in the ocean and their effect on time-dependent climate change.
Clim. Dyn. 2000, 16, 501–515. [CrossRef]

55. Held, I.M.; Winton, M.; Takahashi, K.; Delworth, T.; Zeng, F.; Vallis, G.K. Probing the fast and slow
components of global warming by returning abruptly to preindustrial forcing. J. Clim. 2010, 23, 2418–2427.
[CrossRef]

56. Geoffroy, O.; Saint-Martin, D.; Olivié, D.J.L.; Voldoire, A.; Bellon, G.; Tytéca, S. Transient climate response
in a two-layer energy-balance model. Part I: Analytical solution and parameter calibration using CMIP5
AOGCM experiments. J. Clim. 2012, 26, 1841–1857. [CrossRef]

57. Geoffroy, O.; Saint-Martin, D.; Bellon, G.; Voldoire, A.; Olivié, D.J.L.; Tytéca, S. Transient climate response in
a two-layer energy-balance model. Part II: Representation of the efficacy of deep-ocean heat uptake and
validation for CMIP5 AOGCMs. J. Clim. 2013, 26, 1859–1876. [CrossRef]

292



Climate 2018, 6, 85

58. Gregory, J.M.; Andrews, T.; Good, P. The inconstancy of the transient climate response parameter under
increasing CO2. Philos. Trans. R. Soc. A 2015, 373, 20140417. [CrossRef] [PubMed]

59. Gregory, J.M.; Andrews, T. Variation in climate sensitivity and feedback parameters during the historical
period. Geophys. Res. Lett. 2016, 43, 3911–3920. [CrossRef]

60. Farmer, G.T.; Cook, J. Earth’s Albedo, Radiative Forcing and Climate Change. In Climate Change Science:
A Modern Synthesis; Springer: Dordrecht, The Netherlands, 2018; pp. 217–229.

61. Pistone, K.; Eisenman, I.; Ramanathan, V. Observational determination of albedo decrease caused by
vanishing Arctic sea ice. Proc. Natl. Acad. Sci. USA 2014, 111, 3322–3326. [CrossRef] [PubMed]

62. Calabrò, E.; Magazù, S. Correlation between Increases of the Annual Global Solar Radiation and the Ground
Albedo Solar Radiation due to Desertification—A Possible Factor Contributing to Climatic Change. Climate
2016, 4, 64. [CrossRef]

63. Rutherford, W.A.; Painter, T.H.; Ferrenberg, S.; Belnap, J.; Okin, G.S.; Flagg, C.; Reed, S.C. Albedo feedbacks
to future climate via climate change impacts on dryland biocrusts. Sci. Rep. 2017, 7, 44188. [CrossRef]
[PubMed]
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Abstract: This study presents a method to investigate meteorological drought characteristics using
multiple climate models for multiple timescales under two representative concentration pathway
(RCP) scenarios, RCP4.5 and RCP8.5, during 2021–2050. The methods of delta change factor,
unequal weights, standardized precipitation index, Mann–Kendall and Sen’s slope are proposed
and applied with the main purpose of reducing uncertainty in climate projections and detection
of the projection trends in meteorological drought. Climate simulations of three regional climate
models driven by four global climate models are used to estimate weights for each run on the basic
of rank sum. The reliability is then assessed by comparing a weighted ensemble climate output
with observations during 1989–2008. Timescales of 1, 3, 6, 9, 12, and 24 months are considered to
calculate the standardized precipitation index, taking the Vu Gia-Thu Bon (VG-TB) as a pilot basin.
The results show efficient precipitation simulations using unequal weights. In the same timescales,
the occurrence of moderately wet events is smaller than that of moderately dry events under the
RCP4.5 scenario during 2021–2050. Events classified as “extremely wet”, “extremely dry”, “very wet”
and “severely dry” are expected to rarely occur under the RCP8.5 scenario.

Keywords: multiple climate models; standardized precipitation index (SPI); droughts; weights;
Vu Gia-Thu Bon

1. Introduction

Drought is a natural hazard related to a deficiency of precipitation for an extended period
that results in water shortage for some activities or for some economic sectors [1]. The meanings
of “drought” depend on different perspectives of stakeholders from farmers to meteorologists [2].
Commonly, according to the studies of droughts [3–5], the concept of drought is clustered
into four types consisting of meteorological, agricultural, hydrological and socioeconomic types.
The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report [6] emphasizes
that the world indeed has become more drought-prone during the past 25 years. Drought-affected
areas will likely increase in frequency and severity, with implications for sustainable development
(e.g., agriculture and forestry production or land degradation). Observed changes in characteristics
of droughts (i.e., more intense and longer duration droughts) are widely documented for a variety
of regional and ocean basin scales since the 1970s with the emphasis on tropics and substropics [6].
In comparison to the Medieval Climate Anomaly (950–1250), more megadroughts appeared in monsoon
Asia and wetter conditions became dominant in arid Central Asia and the South American monsoon
region during the Little Ice Age (1450–1850) [7]. Over a global scale, it is observed that the intensity
and/or duration of droughts likely increase in the Mediterranean and West Africa and decrease in
central North America and north-west Australia [6]. Increased drying is directly linked to higher
temperatures and decreased precipitation. It is noteworthy that the palaeoclimate records show that
droughts prolonging with a scale of decades or longer have been very likely a repetitive feature of
the climate in several regions over the last 2000 years [6].Overall, these studies show that several
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extreme droughts occured in the last millennium. Moreover, it poses questions about the uncertainty
of calculated results as well as how the projected droughts express their footprint on a local scale under
different scenarios of climate change. There is an urgent need to find away to evaluate the droughts.
This plays a central role in drought management strategies, and social responses to manage the risks
and mitigate the drought impacts.

To evaluate the impacts of droughts on different fields (e.g., water shortages, concomitant
shortages, crop growth), many drought indices have been developed and applied under timescales
of short- or long-term. These indices widely vary from simple indices (e.g., percentage of normal
precipitation) to sophisticated indices (e.g., Palmer drought severity index). Obviously, no drought
index is suitable for all circumstances of a specific region. Some indices can be better suited than
others for certain regional applications. Svoboda and Brian [8] showed some disadvantages of the
standardized precipitation index (SPI) such as an assumption of distribution that can bias the results,
particularly when examining short-duration events. In this study, however, the SPI index is still
selected to calculate the drought-related components for numerous reasons: (1) the SPI index has been
suggested and highlighted by the World Meteorological Organization [5], and nowadays many national
meteorological services and drought monitoring centers use it (e.g., in the US [9]; in Europea [10];
and in Canada [11]); (2) the SPI is a powerful, flexible indicator based on robust underlying probability
functions and it has high spatial coherence. Moreover, it is simple to calculate and needs only the
required input parameter of precipitation. More importantly, Salehnia et al. [12] showed that eight
precipitation-based drought indices, namely SPI, PNI (percent of normal index), DI (deciles index),
EDI (effective drought index), CZI (China-Z index), MCZI (modified CZI), RAI (rainfall anomaly index),
and ZSI (Z-score index) have similar trends; (3) lots of publications illustrated that precipitation data
alone could explain most of the variability of drought (e.g., [13]). Furthermore, some indices (i.e., SPI,
the standardized precipitation evapotranspiration index (SPEI: [14]), the Palmer drought severity
index (PDSI: [15]); the self-calibrated PDSI [16] and the reconnaissance drought index (RDI: [17]))
have been tested on a global scale by Spinoni et al. [18]. They showed that these indices have more
difficulties than the SPI with possible error values such as a heat wave for a meteorological drought
for the SPEI index or unrealistic extreme values for the RDI index; (4) the SPI index is designed to
quantify the precipitation deficit for multiple timescales, reflecting the impact of drought on the water
availability. For example, shorter SPI timescales (from 1 to 6 months) mainly indicate the drought
index for agriculture practices like soil moisture conditions, whereas longer SPI timescales (from 12 to
48 months) indicate the drought index for hydrology like groundwater, streamflow and reservoir [5].
In this study, multiple timescales of the SPI index (1-, 3-, 6-, 9-, 12- and 24-month SPI) are considered
using multiple climate models. The reason for this is that Vietnam is an agricultural country and
has nearly 7000 reservoirs over the whole country. VG-TB has 6 reservoirs including the A Vuong,
DakMi 4, Song Tranh 2, Song Bung 4, Song Bung 4A and Song Bung 5 reservoirs.

For climate projections, strictly speaking, the understanding of nature and its representation in
climate models is mostly incomplete with sources of uncertainty (e.g., emissions of greenhouse gases,
parameterization schemes of convective cloud and land surface, grid systems, map projections and
climatic forcing factors). Thus, to be more reliable and accurate for climate projections, a combination of
multiple climate models is widely applied. This pragmatic approach has received much attention over
the availability of numerical weather and climate forecasts from institutions and centers of weather and
climate research. To date, the metadata has been constructed such as the Ensemble-Based Predictions of
Climate Changes and Their Impacts (ENSEMBLES) project [19] and phase 3, phase 5 and phase 6 of the
Coupled Model Intercomparison Project (CMIP3, CMIP5 and CMIP6) using multiple climate models.
Usually, the simplest method of constructing a multiple climate model is used with “equal weighting”
in which weights equal 1/M, where M is the number of models. In a more sophisticated manner,
the approach of “unequal weighting” or “optimum weighting” is voted. Weigel et al. [1] discussed
two ways of “equal weighting” and “unequal weighting”. The study showed that “equal weighting”
from multiple models perform better than the single models. Furthermore, the projection errors can

296



Climate 2018, 6, 79

be further eliminated by using “unequal weighting”. To get this, however, single model skills and
relative contributions of the joint model error are required. More importantly, Timothy et al. [20]
used a statistical test to define whether an ensembles of multi models with “unequal weighting” is
significantly better than without “unequal weighting”. The study showed that a value for the relatively
small global fraction is illustrated with the method of “unequal weighting”. Sanderson et al. [18]
suggested a weighting scheme to eliminate some aspects of model codependency in the ensemble.
Also, a weighting strategy for an ensemble of CMIP5 was presented by Sanderson et al. [21] in the
fourth National Climate Assessment. In general, these studies use a distance metric of models to
observations and the distance metric of a pair of models i and j, and a relationship to convert those into
a weight. The equal weighting is, remarkably, often used to develop the global ensemble scenarios as a
safer and more transparent way to combine models [1], but unequal weights can be better for some
areas of the global [20]. In most cases of existing ensemble members, the application of any kind of
weighting to ensemble variance is mostly discarded, but only considered the weighted mean [1,22,23].
This can ignore the intermodel relationships and unexpected values, as extreme weather variables can
potentially be more sensitive to changes in the variance [24]. In addition, ensemble members typically
come from the same model.

In the context of changing climate, studies in drought events at scales of region and basin are
valuable for understanding their evolution and impacts on a wide range of fields (e.g., agriculture,
socio-economic, environment and natural resources) that occur over certain areas. In this sense,
the present study aims to evaluate the wet and drought events in the 21stcentury using multiple
climate models for multiple timescales. The precipitation projections from multiple regional climate
models driven by multiple global climate models are separately corrected using the method of delta
change factor. In addition, an unequal weight method is proposed in the expectation of a better
performance of multiple climate projections of precipitation at basin scale in Vietnam as a case study.
Weights for each climate simulation are calculated on the basic of rank sum metric of each climate
simulation. The rank sum is defined from statistical indices of each climate simulation in comparison
with observation. In comparison with the existing methods mentioned above, this approach can
measure not only the absolute performance of each model, but the performance compared with the
other models in the ensemble with its ranks. The methods of the non-parametric Mann–Kendall (MK)
test [25,26] and Sen’s slope [27] are then applied to detect the projection trends in meteorological
drought for multiple timescales at a significance level of 0.05. The reason for this is that the MK test
is widely applied [28–30] with advantages of a rank correlation without any request of a particular
distribution of data and not affected by the data errors and outliers.

2. Materials and Methodology

2.1. Description of the Case Study Area: Vu Gia-Thu Bon Basin

A plot basin, Vu Gia-Thu Bon (VG-TB), is selected in this study. It is located in central Vietnam,
elongating from 16◦55′ through 14◦55′ and from 107◦15′ through 108◦24′ and covers a total of area of
approximately 12,577 km2. The VG-TB basin is surrounded by two main provincial administrative
territories Quang Nam and Da Nang. The basin is characterized by a steep topography and the altitude
ranging from 0 m at the coast to 2567 m in elevation above sea level (m.a.s.l) in the west (Figure 1).
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Figure 1. Network of hydro-meteorological stations at Vu Gia-Thu Bon (VG-TB) basin.

2.2. Data

2.2.1. Observational Data

The monthly precipitation records are obtained from the Vietnam HydroMeteorological Data
Center of the Ministry of National Resources and Environment of Vietnam (MONRE). They are
aggregated from the daily series of data. There are two national rain gauge stations (i.e., Danang and
Tramy). Other stations including Ainghia, Camle, Giaothuy, Caulau, Hien, Hiepduc, Hoian, Khamduc,
Nongson, Queson, Thanhmy and Tienphuoc are popular rain gauge stations which operate manually
on the base of volunteers. The location of these stations is displayed on Figure 1. The data is available
from 1986–2015.

2.2.2. Gridded Data

The precipitation products are from different assembliese of regional models: (1) The Regional
Climate Model version 4 (RegCM4), developed by the International Centre for Theoretical Physics
(ICTP). The dynamical structure of RegCM4 firstly developed at the National Center of Atmosphere
Research (NCAR) and Penn State University (PSU) for a hydrostatic version of the Meso-scale Model
(MM5). A detailed description of RegCM4 can be found in Giorgi et al. [31]. The model output
of HadGEM2-AO produced by the National Institute of Meteorological Research (NIMR)/Korea
Meteorological Administration (KMA) are used as an initial and boundary conditions, referred to
REG/HadGEM. Details of HadGEM2-AO are given by Collins et al. [32]; (2) The model of
SNU-MM5(Seoul National University Meso-scale Model version 5) [33] is based on a hydrostatic
version of the Meso-scale Model and the community land model version 3 (CLM3). The future climatic
projections are produced with the HadGEM2-AO, referred to SNU/HadGEM; (3) A regional spectral
model, which is also known as Regional Model Program (RMP) of the Global/Regional Integrated
Model System (GRIMs) [34] is used in this study. The dynamic frame of RMP is rooted in the National
Center for Environmental Prediction (NCEP) RSM. More detailed information about the GRIMs-RMP
is provided by Hong et al. [34]. This model is driven by the HadGEM2-AO, referred to RSM/HadGEM;
(4) The RegCM4 is forced by the model of Max Planck Institute for Meteorology Earth System Model
MR (MPI-ESM-MR), which has an ocean horizontal resolution of 0.4◦ × 0.4◦ and atmosphere horizontal
resolution of 1.9◦ × 1.9◦. It is written under a short symbol of REG/MPI; (5) The RegCM4 is forced by

298



Climate 2018, 6, 79

the model of Institut Pierre Simon Laplace CM5A-LR (IPSL-CM5A-LR), which is the low-resolution
version of the IPSL-CM5A Earth system model. It has a horizontal resolution of 1.875◦ × 3.75◦ with
39 vertical level for the atmosphere and about 2◦ (with a meridional increased resolution of 0.5◦

near the equator) and with 31 vertical levels for the ocean. In this study, it implies to REG/IPSL;
(6) The RegCM4 is forced by the model of Irish Centre for High-End Computing European community
Earth-System (ICHEC-EC-EARTH), which is a new Earth system model on the basic of the operational
seasonal forecast system of the European Centre for Medium-Range Weather Forecasts (ECMWF).
This case is written with a short symbol of the REG/ICHEC. More importantly, all simulations and
projections of climatic are run under two IPCC RCP4.5/8.5 scenarios. The RCP4.5 is a stabilization
scenario where total radiative forcing is stabilized before 2100 by employment of a range of technologies
and strategies for reducing greenhouse gas emissions. Meanwhile, the RCP8.5 is characterized by
increasing greenhouse gas emissions over time representative for scenarios in the literature leading to
high greenhouse gas concentration. Table 1 lists the name of the models and the number of runs of
historical control and RCPs as well as the considered periods. A total of 18 climatic simulations and
projections are considered in this study as shown in Table 1.

Table 1. Climate models and number of runs.

Historical
(1986–2005)

RCP4.5
(2021–2050)

RCP8.5
(2021–2050)

Spatial
Resolution

Temporal
Resolution

RegCM4 forced by
MPI-ESM-MR (REG/MPI) 1 1 1 20 km Monthly

RegCM4 forced by
IPSL-CM5A-LR (REG /IPSL) 1 1 1 20 km Monthly

RegCM4 forced by
ICHEC-EC-EARTH

(REG/ICHEC)
1 1 1 20 km Monthly

RegCM4 forced by
HadGEM2-AO

(REG/HadGEM)
1 1 1 20 km Monthly

SNU-MM5 forced by
HadGEM2-AO

(SNU/HadGEM)
1 1 1 20 km Monthly

RSM forced by HadGEM2-AO
(RSM/HadGEM) 1 1 1 20 km Monthly

2.3. Methods

2.3.1. Delta Change Factor

The raw climate simulations, especially for precipitation time series, are highly biased as
mentioned in many studies [6,35,36]. Thus, an additional post-processing step (e.g., bias correction
of climatic variables) is a standard procedure for related climate change studies. In this study, the
delta change method is adopted due to its simple and common use as described in Olsso et al. [37],
Lenderink et al. [38], Teutschbein and Seibert [36] and Maraun [35]. This approach does not adjust the
output of climate models, but uses observations and the change signal of regional climate models forced
by global climate models to generate future data. Also, this approach is to avoid considerable variability
in the day-to-day change signals and changes in extremes are linearly scaled with changes in the mean.
The core of this method is that the historical observations are transformed into future projections using
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monthly average correction factors that derived from the regional climate models forced by global
climate model outputs for the baseline and future climate. It is expressed by the equation:

POBS. f =
PGCM. f

PGCM.b
.POBS.b (1)

where PGCM. f is the monthly precipitation from the future climate. PGCM.b is the monthly precipitation
from the baseline climate. POBS. f is future projections and POBS.b is historical observations.

With this approach, the correlation structure of downscaled future data in spatio-temporal terms
are physically reasonable because it reflects observed conditions. The drawback of this approach,
however, is that the future and baseline scenarios just differ in terms of their means and intensity,
but other statistics of the data (e.g., skewness or structure of dry and wet days) are mostly unchanged.
Also, the sample is limited to the length of the observed record. It should be noted that for a near-term
future (2021–2050), the changes in the dry/wet days are probably trivial. Sun et al. [39] used the lag
1 autocorrelation to investigate the stationary land-based gridded annual precipitation (1940–2009).
The results showed a stationary annual precipitation over an area of about 80% of the global land
surface. Wilks and Wilby [40] show that calculating the autocorrelation of non-zero precipitation
amounts is essential at time step of hourly (or sub-hourly) rather than a daily time step. Meanwhile,
the autocorrelation between successive nonzero precipitation amounts is usually of little practical
importance and quite small. At a time step of monthly precipitation, thus, a stationary assumption in
the temporal correlation is made in this study. In other words, rescaling the precipitation time series
observed during the baseline could lead to not realistic results when future scenarios that preserve the
observed autocorrelation in time are not considered.

2.3.2. Unequal Weights

In this study, a method is suggested to estimate the unequal weights based on the rank sum
from each climate simulation run for the analytical hierarchy process. It is called unequal weights.
The rank sum is calculated using the statistical indices. The statistical indices are Nash–Sutcliffe
efficiency with logarithmic value (ln(Nash)), root-mean-square error (RMSE) and Nash–Sutcliffe
efficiency (Nash) for the studied domain. They are basically quantified by measuring the difference
between the observed data and the outputs of regional climate models forced by lateral and surface
boundary conditions from the European Centre for Medium-Range Weather Forecasts at the monthly
scale. The Nash–Sutcliffe efficiency with logarithmic values ln(Nash) is selected because it can be
added to expect a better quantification of the performance in different conditions (maximum and
minimum values) [41]. The other remaining value is widely applied in hydrometeorological fields.
The formulations used to compute the goodness-of-fit statistical indicators for each climate simulation
run are presented as follows:

RMSE =

√
1
n

n

∑
i=1

(Fi − Oi)
2 (2)

ln (Nash) = 1 − ∑n
1 (lnOi − lnFi)

2

∑n
1
(
lnOi − ln O

)2 (3)

Nash = 1 − ∑n
1 (Oi − Fi)

2

∑n
1
(
Oi − O

)2 (4)

where n denotes number of months, Fi and Oi represent simulated and observed monthly data,
respectively. The method of unequal weights is briefly expressed with the following steps with an
assumption of N climate simulations:

(1) Calculation of the statistical indices on the basic of the historical observations and climate
simulations from regional climate models forced by the reanalysis data of the European Centre
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for Medium-Range Weather Forecasts during 1989–2008. Each climate simulation receives a rank
from 1 to N depending on the levels of perfect score for each statistical index, starting with the
best as 1 and the worst is N. As an example, if the RMSE index of the ith climate model has the
best score (the perfect score of RMSE is zero), the received rank is 1. Then, an ensemble rank
order (r) as an integer number is calculated from the average of the ranks they span for each
climate simulation.

(2) Calculation of rank sum for each climate simulation by N-r + 1 with N is the number of
climate simulations.

(3) Establishing a reciprocal matrix between sets of models aij = 1/aji with i,j ranging from
1 corresponding to the best climate simulation which has the largest rank sum to N and aij = 1 as
i = j. aij is determined by the difference of rank sum between sets of models plus 1.

(4) Estimation of weights matrix wij = aij/∑N
1 aij (i,j = 1, N)

(5) Estimation of each weight for each climate simulation wi = ∑N
j=1 wji (i = 1, N) with ∑N

i=1 wi = 1.

2.3.3. Standardized Precipitation Index (SPI)

In this study, the SPI is constructed for multiple timescales ranging from 1 month to 24 months.
The calculation of the SPI is separately applied for each month on the basis of the Gamma distribution.
The reason for this is that the Gamma distribution is the most frequently used and fits well with daily
precipitation in different studies across Vietnam [42]. The alpha and beta parameters of the Gamma
probability density function are estimated for each station and for the required multiple timescales.
They are used to calculate the cumulative probability distribution of accumulated precipitation.
The maximum likelihood solutions [43] and Thom’s study [44] are applied to optimally estimate alpha
(α) and beta (β). It is especially noteworthy that the reference period adopted to compute the best-fit
parameters for the gamma distribution spans 30 years (1986–2015).

A probability transformation is then applied to transform monthly precipitation to a standard
normal distribution with a zero mean and standard deviation of one to yield SPI values by preserving
probabilities [45]. Figure 2 shows the fitness of the SPI data [46].

Figure 2. The probability transformation from fitted gamma distribution to the standard
normal distribution.
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2.3.4. Non-Parametric Mann–Kendall Test

The non-parametric Mann–Kendall (MK) test [25,26] is widely applied to detect the possible
trends in many countries such as in China [47], in Serbia [48] in Brazil [49], in Canada [50]. In this
study, the MK test statistic, S, is applied and briefly represented by:

S =
n−1

∑
k

n

∑
j=k+1

sign
(
xj − xk

)
(5)

where n is the number of data points; xj and xk are the data values in time series j and k respectively, and

sign(xj − xk) =

⎧⎪⎪⎨
⎪⎪⎩
+1 if xj − xk > 0

0 if xj − xk = 0

−1 if xj − xk < 0

(6)

In this test, the null hypothesis (Ho) assumes that there is no trend in meteorological droughts over
time; the alternative hypothesis (H1) assumes that there is an upward or downward trend over time.
The mathematical equations for calculating Var(S) and standardized test statistics Z are presented in
previous studies [25,26,47,51,52]. An upward, downward, or no trend will be assessed at α significance
level of 0.05. The computed probability is greater than the specific significance level α (Ho is rejected);
the increasing trend responds to a positive value of Z and a negative value of Z indicates a decreasing
trend. There is no trend if the computed probability is less than the level of significance (Ho is accepted).
At the α significance level of 0.05, the null hypothesis of no trend is rejected if |ZMK| > 1.96.

2.3.5. The Sen’s Slope Estimator

In order to get the magnitude of a consistent trend (Q), the Sen’s non-parametric method [19] is
used. It is estimated by the slope of all data pairs (N = n(n − 1)/2) as the following formula:

Qi =
xj − xk

j − k
for i = 1, N (7)

where Q is slope between data points xj and xk, xj and xk are the data values at time j and k (j > k)
respectively, j is time after time k. The Sen’s is computed by the median slope as:

Qmed =

⎧⎨
⎩

Q[N+1
2 ] if N is odd

Q
[ N

2 ]
+Q

[ N+2
2 ]

2 if N is even
(8)

where N is the number of calculated slopes.
The confidence limits for the nonparameter slope estimator are estimated by the well-known

studies [27,29,53,54].

3. Results and Discussions

3.1. Calculation of Weights for Each Climate Model

As the first step, the delta change factor is applied in this study. Then, the unequal weights are
added to define weights for each climate simulations as mentioned in Table 1over the whole VG-TB.
Table 2 shows the statistical indices for these climate simulations. For RMSE index, the perfect score is
zero with a wide range (0 ≤ RMSE <∞). While the perfect score of Nash and ln(Nash) indices is 1 with
a wide span (−∞ ≤ Nash < 1; −∞ ≤ ln(Nash) < 1). Based on these score, ranks (i.e., ensemble rank,
rank sum) are calculated and presented in Table 3. It is observed that REG/IPSL gives the best score of
ln(Nash), RMSE and Nash. This means that REG/IPSL simulation is well matched to observations.

302



Climate 2018, 6, 79

As opposed to this, RSM/HadGEM gives the worst score of ln(Nash), RMSE and Nash. Although
REG/IPSL is the best, a multiple climate model is always highlighted in the climate simulations and
projections due to reducing uncertainty [7]. The reason for this is that the uncertainty comes from
lots of factors such as convective cloud parameterization, greenhouse gases scenarios or land surface
parameterization. The best rank sum belongs to the model REG/IPSL, followed by REG/ICHEC.
In contrary to this, the worst rank sum belongs to the model RSM/HadGEM as shown in Table 3.

Table 2. Statistical indices for multiple climate models.

ln(Nash) RMSE Nash

REG/ICHEC 0.935 170.67 0.523
REG/IPSL 0.941 157.44 0.594
REG/MPI 0.937 171.90 0.516

REG/HadGEM 0.891 256.72 −0.079
SNU/HadGEM 0.913 252.75 −0.046
RSM/HadGEM 0.880 278.93 −0.274

Table 3. Ranks of climate models.

ln(Nash) RMSE Nash Average Ensemble Rank Rank Sum

REG/ICHEC 3 2 2 2.3 2 5
REG/IPSL 1 1 1 1.0 1 6
REG/MPI 2 3 3 2.7 3 4

REG/HadGEM 5 5 4 4.7 5 2
SNU/HadGEM 4 4 5 4.3 4 3
RSM/HadGEM 6 6 6 6.0 6 1

A reciprocal matrix between sets of models is created based on the rank sum of climate models.
As shown in Table 4, it is illustrated that REG/IPSL is more important than REG/ICHEC and much
more important than REG/MPI. Meanwhile, REG/ICHEC is more important than REG/MPI and
much important than SNU/HadGEM. The least importance within all considered climate simulations
is RSM/HadGEM, followed by REG/HadGEM.

Table 4. A reciprocal matrix between sets of models.

REG/IPSL REG/ICHEC REG/MPI SNU/HadGEM REG/HadGEM RSM/HadGEM Total

REG/IPSL 1 2 3 4 5 6 21
REG/ICHEC 1/2 1 2 3 4 5 15.5

REG/MPI 1/3 1/2 1 2 3 4 10.83
SNU/HadGEM 1/4 1/3 1/2 1 2 3 7.08
REG/HadGEM 1/5 1/4 1/3 1/2 1 2 4.28
RSM/HadGEM 1/6 1/5 1/4 1/3 1/2 1 2.45

Total 61.15

After establishing a weights matrix, weights are estimated for each climate model based on the 4th
and 5th steps in Section 2.3.2. Weights are 0.344 (REG/IPSL), 0.254 (REG/ICHEC), 0.177 (REG/MPI),
0.116 (SNU/HadGEM), 0.07 (REG/HadGEM) and 0.038 (RSM/HadGEM). The results from this
method are against the results from the method of equal weights. Both of them are compared with
observations using the statistical indices of mean absolute error (MAE) and RMSE. The pair of equal
weights and observations gives results of 99.3 for MAE and 164 for RMSE, meanwhile a pair of unequal
weights and observations gives results of 95.4 and 155 for MAE and RMSE, respectively.

The perfect score of MAE and RMSE is zero. In other words, the minimum of the RMSE and
MAE is obtained when simulated time series perfectly matches observed time series. As mentioned
in the delta change factor approach, an assumption of the delta factor is equal to one (i.e., there is no
variation) for each climate runs, and the condition of minimum of the RMSE and MAE is obtained.
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Climate models with convective precipitation schemes, however, often tend to produce higher
precipitation [6,55] compared with the observed data. Moreover, incomplete understanding of natural
and its representation is presented within the climate models. Thus, the delta factor assumed by one is
unreal, especially in Vietnam where the rain regime is strongly dominated by convective processes.
The calculated statistics of MAE and RMSE indicate a better implementation of unequal weights.
Climate simulations are closely fit to observations with the unequal weights method as presented
in Figure 3.

 

Figure 3. Scatter plot ofthe precipitation simulations with equal and unequal weights minus
observations over the whole VG-TB during 1989–2008 (mm/month).

3.2. Calculation of SPI

The weights estimated from Section 3.1 are used to calculate the SPI for 14 stations over the
whole VG-TB. It is noted that the weights are applied for both scenarios of RCP4.5 and RCP8.5
during 2021–2050 with an assumption of no change in future. The SPI is designed to project the
precipitation deficit for multiple timescales with a weighted ensemble of multiple climate models
in future. SPI values are computed for the timescales of 1- (SPI-1), 3- (SPI-3), 6- (SPI-6), 9- (SPI-9),
12- (SPI-12) and 24- (SPI-24) month for 14 stations. For instance, the temporal variation of drought for
the timescales of 1 to 24months under RCP4.5 (Figure 4) and RCP8.5 (Figure 5) at Danang station from
2021 to 2050 is displayed.

According to the classification of SPI values [56], generally, there are no events classified as
“extremely wet” and “extremely dry” for the Danang station under both scenarios of RCP4.5 and
RCP8.5 during 2021–2050 for considered multiple timescales. Under these scenarios, events classified
as “near normal” hold more than 90% out of considered months for all timescales of 14 stations.
In particular, events classified as “extremely wet” and “extremely dry” are not found out for the
all stations under both scenarios of RCP4.5 and RCP8.5 during 2021–2050 for SPI-1, SPI-3, SPI-6,
SPI-9, SPI-12 and SPI-24 indices. More importantly, under RCP4.5 scenario, events classified as
“very wet” and “severely dry” are lower than 0.6% (mainly in stations located in the east of basin
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as Caulau) (see Supplementary Material). Meanwhile there is a little change (less than 2.8%) in
events classified as “very wet”, “moderately wet”, “moderately dry” and “severely dry” for SPI-1 for
Ainghia, Camle, Giaothuy, Danang and Hien stations under the RCP8.5 scenario. Under this scenario,
the remaining stations have no change in drought and wet events for all considered multiple time
scales (see Supplementary Material). This indicates only little changes in drought and wet events in
the eastern domain of basin under RCP8.5 for considered time scales. “Moderately wet”events for the
SPI-1 range from 1.4% (Hien, Hoian and Khamduc stations) to 2.8% (Danang station) under the RCP4.5
scenario. Hence, an emphasis of events classified as “moderately wet” and “moderately dry” for
multiple timescales over the whole basin under the RCP4.5 scenario during 2021–2050 is documented
in Table 5.

 
Figure 4. Standardized precipitation index (SPI)for multiple timescales under RCP4.5 scenario
(2021–2050) for Danang station.

As shown in Table 5, the maximum of moderately dry event is 6.5% for SPI-24, followed by 6.3%
and 6.0% for SPI-12 and SPI-9, respectively. The median of moderately dry is projected to get the
maximum value of 4.2% for SPI-24, followed by 4.0% and 3.7% for SPI-9 and SPI-12, respectively.
Importantly, the maximum of moderately wet event is 5.9% for SPI-24, followed by 3.7% and 3.4% for
SPI-12 and SPI-9, respectively. It is noteworthy that the values reported from Table 5 and Tables S1–S6
are assigned by the percentages of drought and wet events under considered multiple timescales.
In other words, these values are defined as the percentage of number of months suffering wet and
drought events among all months during a 30-year period under considered scenarios. Under the
RCP4.5 scenario, in general, timescales are longer, intensity of moderately dry is stronger. In the same
timescale, occurrence of moderately wet events is smaller than that of moderately dry under RCP4.5
scenario during 2021–2050.

305



Climate 2018, 6, 79

 

Figure 5. SPI for multiple timescales under RCP8.5 scenario (2021–2050) for Danang station.

Table 5. Percentages of drought and wet events under considered multiple timescales under RCP4.5
scenario over basin during 2021–2050 (%).

Classification Min 25% Median 75% Max

SPI-1
Moderatelywet 1.4 1.5 2.1 2.2 2.8
Moderately dry 1.4 1.7 2.1 2.2 3.1

SPI-3
Moderatelywet 0.8 1.2 1.4 1.9 2.2
Moderately dry 1.1 2.6 3.1 3.4 3.9

SPI-6
Moderately wet 0.6 1.1 1.3 1.9 2.5
Moderately dry 1.4 3.7 3.8 4.2 5.1

SPI-9
Moderately wet 0.3 0.3 1.3 2.4 3.4
Moderately dry 1.7 3.3 4.0 4.5 6.0

SPI-12
Moderately wet 0.0 0.3 0.7 1.8 3.7
Moderately dry 0.9 3.2 3.7 4.4 6.3

SPI-24
Moderately wet 0.3 1.8 2.4 3.5 5.9
Moderately dry 0.0 0.4 4.2 5.5 6.5

3.3. Projection Trends in SPI

Projection trends in SPI for multiple timescales are considered with an emphasis of drought
events under the RCP4.5 scenario. The purpose of this is to detect any trends or changes in drought
events. In addition, as clarified in the previous section, just little, even no wet and drought events of
extremely wet, extremely dry, very wet and severely dry are found out under the RCP8.5 scenarios.
During 2021–2050, out of 14 stations, only five show significant upward trends in November for the
SPI-1 index as presented in Figure 6b. There is a similar of upward trends for SPI-3 and SPI-6 in
November. Importantly, no trends are detected in November for SPI-9, SPI-12 and SPI-24. Besides that,
it is noteworthy that a poor signal of upward trends in SPI-9, SPI-12 and SPI-24 indices is illustrated
for months in a year. It indicates an importance of short-term, plans more than long-term plans in
related aspects such as water resources planning.

In February, insignificant downward trends are mostly observed over the whole basin (Figure 6a).
In the months of March, May, July, October and December, more than half of total considered stations
are defined with no trends in SPI-1 index. No trends in SPI-3 index are calculated for almost all the
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months in a year, except for January, April and November. Downward trends in SPI-1 (in the months
of February, April and June), SPI-3 (in April) and SPI-6 (in the months of July and August) indices are
clearly observed. More importantly, the intensity of drought events in the north and east of the basin
is generally stronger than that in other areas.

Figure 6. Spatial distribution of Sen’s slope in February (a) and in November (b) for SPI-1 index.

4. Conclusions

This study presents a proposed approach to evaluate drought characteristics using multiple
climate models for multiple timescales under a context of global warming. The method of unequal
weights is proposed to reduce uncertainty of climate projections. The Mann–Kendall and Sen’s slope
methods are then applied to find the trends in drought characteristics for multiple timescales of 1, 3,
6, 9, 12, and 24 months with six climate projections. The unequal weights are proposed on the basic
of rank sum of each climate model. Vu Gia-Thu Bon basin located in central Vietnam is selected to
implement this study as a pilot basin. The major findings of the present study can be exposed as an
impulse of the precipitation simulations using unequal weights for multiple climate models. Under the
scenarios of RCP4.5 and RCP8.5, there are no events classified as “extremely wet” and “extremely dry”
for the all stations during 2021–2050 for SPI-1, SPI-3, SPI-6, SPI-9, SPI-12 and SPI-24 indices. A higher
magnitude of the drought conditions in the north and east of the basin compared toother areas is
found out. Under the RCP4.5 scenario, more importantly, timescales are longer, and the intensity of
moderately dry is stronger. Moreover, the occurrence of moderately wet events is smaller than that
of moderately dry under the RCP4.5 scenario during 2021–2050 in the same timescales. Under the
RCP8.5 scenario, events classified as “extremely wet”, “extremely dry”, “very wet” and “severely dry”
are expected to rarely occur.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/6/4/79/s1.
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Abstract: In this study, the authors evaluated the spatial and temporal variability of rainfall over
the central Pindus mountain range. To accomplish this, long-term (1961–2016) monthly rainfall
data from nine rain gauges were collected and analyzed. Seasonal and annual rainfall data were
subjected to Mann–Kendall tests to assess the possible upward or downward statistically significant
trends and to change-point analyses to detect whether a change in the rainfall time series mean
had taken place. Additionally, Sen’s slope method was used to estimate the trend magnitude,
whereas multiple regression models were developed to determine the relationship between rainfall
and geomorphological factors. The results showed decreasing trends in annual, winter, and spring
rainfalls and increasing trends in autumn and summer rainfalls, both not statistically significant,
for most stations. Rainfall non-stationarity started to occur in the middle of the 1960s for the annual,
autumn, spring, and summer rainfalls and in the early 1970s for the winter rainfall in most of the
stations. In addition, the average magnitude trend per decade is approximately −1.9%, −3.2%,
+0.7%, +0.2%, and +2.4% for annual, winter, autumn, spring, and summer rainfalls, respectively.
The multiple regression model can explain 62.2% of the spatial variability in annual rainfall, 58.9% of
variability in winter, 75.9% of variability in autumn, 55.1% of variability in spring, and 32.2% of
variability in summer. Moreover, rainfall spatial distribution maps were produced using the ordinary
kriging method, through GIS software, representing the major rainfall range within the mountainous
catchment of the study area.

Keywords: rainfall; trend analysis; Mann–Kendall; kriging interpolation

1. Introduction

Rainfall is the most important meteorological and climatological parameter for natural ecosystems
and human life on earth, as it affects the enrichment of lakes and underground aquifers, river flow
regime, and many natural hazards (floods, drought, landslides, etc.). Accurate knowledge of the spatial
and seasonal variations of long-term rainfall time series is required for rural and forest development
and planning, sustainable development, as well as infrastructure work scheduling.

The Mediterranean basin has a wide range of climatic conditions [1]. In particular, the rainfall
regime in Greece presents a highly irregular behavior, both on spatial and temporal scales, namely in
rainfall amount and rainfall distribution [1,2]. It is well accepted that the main physical and
physico-geographical factors controlling the spatial distribution of rainfall over Greece are the
following: the atmospheric circulation, the mountains in the west and east, the Mediterranean
Sea-surface temperature distribution, the dehumidification of the air masses crossing the Aegean
Sea, and land and sea interactions [3]. Furthermore, the highest rainfall totals for western Greece
were found to be related to the atmospheric circulation associated with the Mediterranean Sea-surface
temperature distribution and the complex topography of the region, as imposed by the orography
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of the Pindus Mountains in northwestern and central Greece and the mountains of Olympus and
Crete [4].

Mountainous areas are of great interest, because runoff is generated and supplies lowlands
(through catchments) with water. Moreover, the plain areas receive the eroded material deposited
by mountainous catchments, due to intense rainfall. Variability is considered particularly higher
in a mountainous environment, because the rainfall pattern is influenced by complex terrain
conditions [5–7]. The assessment of climate variability is a common issue that should be treated
by hydrologists; in particular, the total rainfall in an ungauged site over an area (e.g., catchment)
should be evaluated. However, hydrologists face a crucial challenge when it comes to mountainous
terrains, since data from only a few meteorological stations are usually available.

To overcome the lack of rainfall data, interpolation methods have been developed over the
last few years for rainfall modeling and mapping. These methods are based on the similarity and
the topological relationship between nearby sample points and on the value of the variable to be
measured [8]. Interpolation can be achieved using simple methods (splines, inverse distance weighting,
Thiessen polygons, etc.) or advanced geostatistical methods (e.g., kriging). Geostatistical interpolation
has become the most appropriate downscale technique in applied climatology and for areas with
complex terrain, since it is based on the spatial variability of the variables of interest and allows the
quantification of the estimation uncertainty [9–11].

In recent decades, the interest in climate variability and climate change has augmented.
Climate change has emerged as a key issue facing environmental and economic aspects, as it affects
floods [12], soil erosion [13], drought phenomena [14], agriculture [15], tourism [16], groundwater
aquifers [17], and forest fires [18].

According to IPCC reports [19], the Mediterranean basin is expected to become warmer and
drier due to the anthropogenic increase of greenhouse gas (GHG) emissions (CO2, CH4, N2O,
and F-gases), until the end of the 21st century [20,21]. Moreover, in Mediterranean regions, future
warming is expected to be greater than the global mean, accompanied by a significant decrease in
rainfall [22]. Based on the above, researchers are orienting their work to investigate trends in rainfall
conditions [23–28] and to estimate future rainfalls [29,30] within Greece. Research results highlighted
the decreasing trend of rainfalls recorded from long-term time series analysis, whereas this reduction is
expected to be higher in the future, based on regional climate models (RCMs) that have been proposed.
Even though much research has been conducted in Greece on trend analysis and spatial mapping of
rainfall, only limited research efforts concern mountainous areas with consideration given to long-term
time series using a dense network of stations. The identification and recording of seasonal trends can
improve water resources management through the selection of appropriate management practices.

The main object of this study was to detect annual and seasonal variation and trends in rainfall
time series based on data from rain gauge stations located in mountainous areas. Furthermore,
variation and uncertainty in the small-scale rainfall interpolation in mountainous catchments were
also evaluated.

2. Materials and Methods

2.1. Study Area

The study was conducted over the central Pindus mountain range, in Central Greece. The area is
considered highly important from a hydrological point of view because it is located in the mountainous
area of two hydrological basins (Pinios and Acheloos), which supply Central Greece with water,
and where many hydropower dams have been constructed. For this purpose, a dense network of
meteorological stations (compared to other regions in Greece) has been established, in mountainous
terrain. The characteristics of the meteorological stations used in this study are given in Table 1.
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Table 1. Meteorological stations in the study area.

A/A Meteorological Station
Coordinates

Altitude (m) Period (years)
Longitude(o)Latitude(o)

1 Agiofylo 21.34 39.52 581 1961–2016
2 Chrysomilia 21.3 39.36 940 1961–2016
3 Elati 21.32 39.51 900 1961–2016
4 Katafyto 21.28 39.38 980 1961–2016
5 Malakasi 21.17 39.47 849 1961–2016
6 Mesochora 21.20 39.26 849 1961–2016
7 Pertouli 21.28 39.33 1180 1961–2016
8 Polyneri 21.22 39.34 801 1961–2016
9 Stournareika 21.29 39.28 761 1961–2016

Observations of monthly rainfall totals for a period of 55 years of rainfall (1961–2016) were used
from all nine stations of the wider region (see Figure 1). These stations are equipped with pluviometer
and Hellmann-type rain gauges (Fuess Meteorologische Instrumente KG, Königs Wusterhausen,
Germany) with a precision of 0.1 mm. The data series are complete, that is, they have no missing
values. Moreover, the instruments and observing practices were common among all stations used,
and they remained the same during this study’s research. The double mass method and two parametric
statistical tests (Student’s t-test and chi-squared test) were applied to adjust any heterogeneity of the
rainfall data, and the details regarding these methods can be obtained from the WMO [31]. The latter
tests demonstrated that the precipitation data were indeed homogeneous and ready to be entered into
the subsequent procedures of the study.

Figure 1. The study area and location of stations.
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These stations are operated by the Ministry of Environment & Energy (Agiofylo, Chrysomilia,
Elati, Katafyto, and Malakasi), the Public Power Corporation (Mesochora, Polyneri, and Stournareika)
and the University Forest Administration and Management Fund (Pertouli).

The study area is an area of increased importance, because it is located in the mountainous area
of two hydrological basins (Pinios and Acheloos), which supply Central Greece with fresh water.
The mountainous catchments examined within this study are (1) Klinovitikos, (2) Aspropotamos,
(3) Korpos, and (4) Portaikos, as showed in Figure 1. Additionally, the basic morphometrical and
hydrographical characteristics are given in Table 2.

Table 2. Morphometrical and hydrographical characteristics of the mountainous catchments.

Catchment Name Klinovitikos Aspropotamos Korpos Portaikos

Code (1) (2) (3) (4)

A/A
Morphometrical
Characteristics

Symbol Units

1 Area F km2 171.1 36.3 23.7 136.4

2 Perimeter U km 61.7 28.1 20.1 60

3 Minimum elevation Hmin m 320 1020 1020 240

4 Maximum elevation Hmax m 2204 2074 1721 1862

5 Mean elevation Hmed m 1112 1420 1397 963

6 Mean catchment slope Jλ % 48.4 41.6 39.3 52.93

Hydrographic
Characteristics

7 Density of
hydrographic network D km/km2 2.86 3.13 3.36 2.69

8 Main stream length L km 20.2 12.4 8.3 16.9

9 Main stream slope Jκ % 6.5 5.6 9.6 7.8

The study area is characterized as mountainous, whereas the relief is rather intense. Regarding geology,
the main rocks are flysch and limestones, quite vulnerable to landslides and weathering phenomena.
The forest cover is high and distributed to the mountainous catchment as follows: (1) Klinovitikos,
66%; (2) Aspropotamos, 73%; (3) Korpos, 72%; and (4) Portaikos, 44%. The dominant forest species in
the study area are Abies borisii-regis, Quercus frainetto, Quercus petraea, Pinus nigra, and Fagus Sylvatica.
Moreover, the study region is of great environmental importance, belonging to the European nature
conservation network Natura 2000 according to the criteria of Directive 92/43/EEC.

2.2. Trend Analysis

Time series of annual and seasonal rainfall were subjected to the Mann–Kendall test to detect
possible trends over the period of 1961–2016. It is the most widely used test for trend analysis in
climatological time series [32].

The Mann–Kendall test is a non-parametric statistical test to detect the presence of a monotonic
increasing or decreasing trend within a time series [33,34]. The advantage of the non-parametric tests
over the parametric tests is that they are robust and more suitable for non-normally distributed data
with missing and extreme values, frequently encountered in environmental time series [35].

The Mann–Kendall test statistics S is calculated as:

S =
n−1

∑
k=1

n

∑
j=k+1

sign
(
xj − xk

)
, (1)
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where n is the number of data points, xi and xk are the data values in the time series j and k (j > k),
respectively, and sign (xj − xi) is the sign function as follows:

sign
(
xj − xk

)
=

⎛
⎜⎜⎝

1 i f
(
xj − xk

)
> 0

0 i f
(
xj − xk

)
= 0

−1 i f
(

xj − xk
)
< 0

. (2)

The variance is computed as:

VAR(S) =
n(n − 1)(2n + 5)− ∑

t

P
i=1ti(ti − 1)(2ti + 5)

18
, (3)

where n is the number of data points, P is the number of tied groups, the summary sign (P) indicates
the summation over all tied groups, and ti is the number of data values in the Pth group. In case of no
tied groups, this summary process can be ignored. A tied group is a set of sample data having the same
value. In the case where the sample size n > 30, the standard normal test statistic Z is estimated by:

Z =

⎛
⎜⎜⎜⎝

S−1√
VAR(S)

i f S > 0

0 i f S = 0
S+1√
VAR(S)

i f S < 0

. (4)

Positive values of Z indicate increasing trends, whereas negative Z values indicate decreasing
trends. Trend testing is done at a specific significance level. When |Z| > Z1−a/2, the null hypothesis
is rejected and a significant trend exists in the time series. The value of Z1−a/2 is obtained from the
standard normal distribution table. In this study, the significance level a = 0.05 was used. At the 5%
significance level, the null hypothesis of no trend is rejected if |Z| > 1.96.

Furthermore, a change-point analysis approach was applied, using the Change-Point Analyzer
(CPA) [36]. This method iteratively uses a combination of cumulative sum charts (CUSUM) and
bootstrapping to detect whether a change in the mean of the rainfall time series has taken place.
A sudden change in the direction of the CUSUM indicates a sudden shift or change in the average.
Additionally, trend magnitudes were computed by employing the Theil–Sen approach (TSA) [37,38],
which is based on slope β, often referred to as Sen’s slope [38]. It is preferable to linear regression,
because it limits the influence of outliers on the slope [39].

2.3. Spatial Mapping of Rainfall

Initially, the relationship between altitude and rainfall height (mm) for both an annual and a
seasonal basis was evaluated using different types of trendlines (linear, logarithmic, polynomial, power,
and exponential). Moreover, the spatial distribution was determined, applying multiple regression
equation and taking into account not only the altitude but also the longitude and latitude. The multiple
linear regression equation has the following form:

P = a + b1X1 + b2X2 + b3X3, (5)

where P represents the rainfall (mm), a is constant, b1 . . . b3 are coefficients obtained for each
independent variable, X1 is longitude (◦), X2 is latitude (◦), and X3 is altitude (m).

Furthermore, the geostatistical interpolation method of ordinary kriging (spherical variogram)
was employed, using the ArcGIS 10.2 software. At this point, it should be noted that geostatistical
methods are more valid for increasing sample size. To this end, automatic points were generated
in a 1 km × 1 km grid resolution within the catchments, using the Fishnet command of the ArcGIS
10.2 software’s Data Management toolbar. Therefore, rainfall height was calculated for each point
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and all seasons, based on the multiple regression equation described above and the calculation of the
individual variables for each point.

Finally, cross-validation was performed, in order to compare results of rainfall spatial interpolation
derived from ordinary kriging with other spatial interpolation methods, for example, inverse distance
weighting (IDW), radial basis function (RBF), and universal kriging (UK), and a combination of
variograms (spherical, exponential), using the Geostatistical Wizard tool of ArcGIS [40].

Cross-validation is any of various similar model validation techniques for assessing how the
results of a statistical analysis will generalize to an independent dataset. It is mainly used in settings
where the goal is prediction, and where one wants to estimate how accurately a predictive model will
perform in practice. In a prediction problem, a model is usually given a dataset of known data on
which training is run (training dataset), and a dataset of unknown data (or first seen data) against
which the model is tested. The goal of cross-validation is to test the model’s ability to predict new data
that were not used in estimating it, in order to flag problems like overfitting and to give an insight on
how the model will generalize to an independent dataset.

The root mean square error (RMSE) and mean error were used as evaluation indexes in this case
study. The mathematical description of these indexes is given below:

RMSE =

√√√√ 1
n

n

∑
i=1

(yi − xi)
2

, (6)

MAE =
1
n

n

∑
i=1

(yi − xi), (7)

where n is the number of observations, and xi and yi are the observed and interpolated rainfall values,
respectively, for i = 1, 2 . . . n. The RMSE is considered one of the most reliable indexes because it
depicts the deviation from the truth rather than the mean value, as in the case of standard deviation.
The RMSE gives the weighted variations (residuals) in errors between the estimated and observed
values, whereas mean error measures the weighted average magnitude of the errors. Mean error is the
most natural and unambiguous measure of average error magnitude [41,42]. RMSE, on the other hand,
is one of the most widely used error measures [43].

3. Results

The rainfall pattern in the case study area demonstrated certain particularities and varied greatly
in both space and time, in line with the main characteristics of the climate type in the Mediterranean
basin. The seasonal distribution of rainfall based on the examined meteorological stations’ data is
shown in Figure 2. As depicted, 35% of the annual rainfall occurs during winter, 32% in autumn,
24% in spring, and only 9% in summer.

The results of the Mann–Kendall statistics test indicated that most of the meteorological stations
(around 67%) recorded a downward trend in annual rainfall, which could be considered as statistically
significant for the Katafyto station. In addition, decreasing trends of rainfall time series were recorded
in winter and autumn for most of the stations. During spring, half of the stations revealed a decreasing
trend, whereas the other half revealed an increasing one. Finally, summer was the only time season
when rainfall trends were recorded increasing in most of the stations.

Detailed results of the application of the Mann–Kendall test are given in Table 3. The upward
arrow ↑ indicates an increasing trend, whereas the downward arrow ↓ indicates a decreasing one.
Furthermore, the light grey cell color shows that the trend is not statistically significant (for a
significance level of a = 0.05), whereas the dark grey color shows a statistically significant trend.
In addition, the number within the parenthesis indicates the time of occurrence for changes in the
mean of the rainfall time series.
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Figure 2. Seasonal distribution of rainfall.

Table 3. Trend detection using the Mann–Kendall test and the change-point analysis.

a/a Meteorological Station
Period

Annual Winter Autumn Spring Summer

1 Agiofylo ↑ (86) ↑ (66) ↑ (96) ↑ (62) ↑ (62)
2 Chrysomilia ↓ (67) ↓ (89) ↑ (62) ↑ (64) ↑ (68)
3 Elati ↓ (65) ↓ (88) ↓ (63) ↓ (96) ↑ (62)
4 Katafyto ↓ (75) ↓ (01) ↓ (63) ↓ (64) ↑ (63)
5 Malakasi ↓ (65) ↓ (74) ↓ (63) ↓ (64) ↑ (62)
6 Mesochora ↑ (67) ↓ (72) ↑ (73) ↑ (71) ↑ (68)
7 Pertouli ↓ (65) ↓ (71) ↑ (62) ↓ (62) ↓ (71)
8 Polyneri ↑ (64) ↓ (70) ↑ (62) ↑ (64) ↑ (63)

9 Stournareika ↓ (64) ↓ (70) ↑ (63) ↑ (63) ↓ (70)

As shown in Table 3, the rainfall non-stationarity starts to occur in the middle of 1960s for the
annual, autumn, spring, and summer rainfalls and the early 1970s for the winter rainfall in most of
the stations.

Moreover, Sen’s slope was used to compute the trend magnitude per decade, which ranged from
approximately −5.3% to +1.5% (average −1.9%) in annual rainfalls, from −14.5% to +7.5% (average
−3.2%) in winter, from −4.7% to +5.5% (average +0.7%) in autumn, from −4.2% to +3.6% (average
+0.2%) in spring, and from −0.3% to +4.8% (average +2.4%) in summer. Detailed results for each
station are given in the next table (see Table 4).

The investigation of the relationships between the variation of rainfall and altitude showed that
the derived coefficients of determination are rather low. This indicates that only a small percentage
(19–25%) of rainfall variation in the study area was due to the change in altitude. Furthermore,
it was observed that the power trendline performed the best fit in all cases. In the equations below
(see Table 5), y is the rainfall (mm) and x is altitude (m).
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Table 4. Trend magnitude (%) per decade using Sen’s slope method.

a/a Meteorological Station
Trend Magnitude (% per Decade)

Annual Winter Autumn Spring Summer

1 Agiofylo −5.3% 7.5% 5.3% 2.9% 4.6%
2 Chrysomilia −0.4% −2.1% 0.9% 2.3% 1.3%
3 Elati −4.3% −2.2% −0.2% −4.2% 0.1%
4 Katafyto −5.1% −14.5% −4.7% −0.3% 9.7%
5 Malakasi −0.7% −3.7% −1.2% −1.5% 4.8%
6 Mesochora 1.5% −1.9% 5.5% 3.6% 0.9%
7 Pertouli −3.1% −5.5% 0.3% −3.8% −0.3%
8 Polyneri 1.4% −3.1% 0.1% 1.5% 0.8%
9 Stournareika −1.1% −2.9% 0.4% 0.9% −0.3%

Table 5. Relationship between rainfall and altitude.

Trend Equation R2

Annual y = 6.14x0.8 0.21
Winter y = 0.60x0.9 0.18

Autumn y = 2.63x0.6 0.25
Spring y = 2.94x0.7 0.19

Summer y = 2.57x0.6 0.21

For that reason, the spatial variability of both seasonal and annual rainfall was assessed using
a multiple regression analysis. All the necessary factors affecting rainfalls were included into the
multiple regression procedure, including longitude, latitude, and altitude. The coefficient obtained for
each factor, based on a regression analysis, is given in Table 6.

Table 6. Coefficients of multiple regression models and statistics.

Coefficients

Annual Winter Autumn Spring Summer

a 77,660 35,750 22,056 16,815 2963
b1 −0.018 −0.010 −0.003 −0.004 −0.001
b2 −0.016 −0.007 −0.005 −0.003 −0.001
b3 0.21 0.06 0.07 0.05 0.03

Adjusted R2 0.62 0.59 0.76 0.55 0.32

It is noteworthy that the multiple regression model can explain 62.2% of the spatial variability of
the annual rainfall, 58.9% of variability in winter, 75.9% of variability in autumn, 55.1% of variability
in spring, and 32.2% of variability in summer. In order to evaluate the statistical significance of the
examined factors, p-values were estimated (see Table 7). In cases where the significant level of the
examined factor is less than 95% (p > 0.05), the factor should be eliminated from the model and the
multi-linear regression must be performed again. In this study, the p-values for all factors were less
than 0.05, which means a strong presumption against null hypothesis.

Table 7. Output p-values of the examined coefficients.

p-Values

Annual Winter Autumn Spring Summer

a 0.021 0.031 0.005 0.030 0.028
b1 0.046 0.038 0.026 0.028 0.046
b2 0.028 0.041 0.007 0.041 0.031
b3 0.048 0.049 0.039 0.044 0.049
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Furthermore, regarding the results of cross validation amongst different spatial interpolation
methods it was revealed that better results were achieved by Ordinary Kriging combined with spherical
semivariogram (Table 8).

Table 8. Cross-validation results from the interpolation of annual and seasonal rainfall.

Inverse Distance Weighting

Annual Winter Autumn Spring Summer

Mean Error 78.52 33.82 24.57 16.98 3.04
RMSE 315.04 148.19 95.99 63.67 24.79

Radial Basis Function

Mean Error 38.78 16.87 12.28 8.08 1.42
RMSE 282.96 128.60 83.62 53.87 20.38

Ordinary Kriging (Spherical)

Mean Error 16.58 7.32 4.58 3.35 0.38
RMSE 254.24 117.13 76.57 48.92 20.22

Ordinary Kriging (Exponential)

Mean Error 22.02 9.55 6.93 4.68 0.43
RMSE 268.34 123.06 79.76 51.44 22.86

Universal Kriging (Spherical)

Mean Error 16.62 8.11 −4.76 −8.85 −2.41
RMSE 255.70 119.20 77.80 73.26 25.88

Universal Kriging (Exponential)

Mean Error −49.77 −27.67 −12.50 4.52 −5.42
RMSE 384.76 192.78 110.46 52.60 29.54

The semivariogram/covariance cloud tool shows the empirical semivariogram and covariance
values for all pairs of locations within a dataset and plots them as a function of the distance that
separates the two locations. It can be used to examine the local characteristics of spatial autocorrelation
within a dataset and look for local outliers. The selection of lag size has an important effect on the
semivariogram. If the lag size is too large, the short-range autocorrelation may be masked, whereas if
the lag size is too small, there may be many empty bins. A rule of thumb is to multiply the lag size
times the number of lags, which should be about half of the largest distance among all points.

Important characteristics of the semivariogram are also the nugget and the partial sill. The nugget
is a parameter of covariance or semivariogram model that represents independent error, and a
microscale variation at spatial scales that are too fine to detect. As for the partial sill, it is a
parameter that represents the variance of a spatially autocorrelated process without any nugget
effect. These parameters for the spherical variogram that was used in this study are given in the
following table (see Table 9).

Regarding the semivariograms (see Figure 3), it can be assumed that the phenomenon to estimate
is smooth (i.e., rainfall values change gradually with the distance). The semivariogram represents
the continuity structure quite well also. Additionally, the semivariogram diagrams showed that the
samples did not show autocorrelation in any direction.
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Figure 3. Spherical semivariograms of ordinary kriging interpolation models for annual and
seasonal rainfalls.

Table 9. Variogram Statistics.

Parameter Annual Winter Autumn Spring Summer

Nugget 0 0 0 0 283.01
Partial Sill 678185.10 7828.59 93943.10 27528.71 493.07
Lag size 7828.59 7828.59 7828.59 7828.59 2100.93

The rainfall spatial distribution maps over the mountainous catchment of the study area were
produced using ordinary kriging and are given in the following figure (see Figure 4).

320



Climate 2018, 6, 75

Figure 4. Cont.
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Figure 4. Spatial distribution of (a) annual, (b) winter, (c) autumn, (d) spring and (e) summer rainfall
over the study area.

The major range of rainfall conditions within the mountainous catchment of the study area is
shown in Figure 2. The rainfall range (mm) in each catchment and every season is given in Table 10.

Table 10. Annual and seasonal rainfall (mm) ranges in the catchments of the study area.

Annual Winter Autumn Spring Summer

a/a Catchment Min Max Min Max Min Max Min Max Min Max

1 Klinovitikos 815.9 1336.7 268.5 494.6 262.9 449.1 220.8 328.6 79.7 115.1
2 Aspropotamos 1279.1 1483.2 434.7 562.7 406.5 463.9 308.4 351.9 106.5 121.6
3 Korpos 1281.2 1530.4 437.2 592.0 428.9 456.4 308.2 358.9 101.9 117.7
4 Portaikos 1100.2 1731.5 355.7 703.0 381.6 520.2 261.1 406.6 88.1 122.9

4. Conclusions

Rainfall variability is crucial for rational water resource management especially in Mediterranean
countries, such as Greece, with rainfalls presenting temporal and spatial variation. In this study,
monthly rainfall data from nine meteorological stations in the central Pindus mountain range were
collected and analyzed for the period of 1961–2016. The conclusions reached are summarized below:

� Rainfall is characterized by great seasonal variability. Of the whole year’s rainfall, 35% falls during
winter, 32% during autumn, 24% during spring, and 9% during summer. Previous studies [44–46]
have shown that there is a high degree of correlation between seasonal rainfall amounts and
seasonal rainy days and the corresponding frequency of cyclonic circulation types at 500 hPa.

� Regarding the results of the Mann–Kendall test, it is highlighted that at most of the examined
meteorological stations, decreasing trends were recorded on an annual basis; winter and spring
rainfalls showed a decreasing trend, as well. As for the autumn and summer rainfalls, increasing
trends were recorded in most stations. The above-mentioned trends are not statistically significant,
except for the annual rainfall decreasing trend at the Katafyto station and the winter rainfall
decreasing trends at the Katafyto and Pertouli stations. In addition, it was found that rainfall
non-stationarity starts to occur in the middle of the 1960s for the annual, autumn, spring,
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and summer rainfalls and the early 1970s for the winter rainfall in most of the stations. Finally,
the average trend magnitude per decade, using Sen’s slope method, was −1.9% for the annual
rainfall, −3.2% for the winter rainfall, +0.7% for the autumn rainfall, +0.2% for the spring rainfall,
and +2.4 for the summer rainfall. The observed downward trends in rainfall in Greece was linked
mainly to a rising trend in the hemispheric circulation modes of the North Atlantic Oscillation
Index and its connection with the Mediterranean Oscillation Index [47]. In addition, the link
between precipitation variability in Greece and the Mediterranean pressure oscillation is very
reasonable from a physical point of view.

� The ordinary kriging method gives better results in spatial rainfall mapping in the study area in
comparison with other spatial interpolation methods. The spatial variability in rainfall is extremely
high. The relationship between geomorphological factors (longitude, latitude, and altitude)
and rainfall was obtained and proposed using a multiple regression technique. The results
indicated that the developed regression models could better explain the variability of rainfall
in autumn and winter, rather than in spring and summer. Moreover, the spatial distribution
maps obtained using ordinary kriging through the GIS software revealed a wide range of rainfalls
(for all seasons) through the catchments, whereas many different zones of rainfalls could be
recognized. These maps are easy to produce for every area of interest and are reliable and useful
for various stakeholders.

� According the rainfall pattern of the study area, there is a lack of water during summer
months and great differences of rainfall amounts between the mountainous areas and the
lowlands. The need for the rational management of mountainous catchments is now a necessity.
Appropriate silvicultural treatments must be applied in order to achieve an all-aged forest
stand structure, which can increase water production from the mountainous catchments [48,49].
Additionally, stream regulation using check dams could have a positive effect on water availability.
After siltation waters have infiltrated through the deposits, they act as ideal artificial aquifers.
To accomplish this goal, appropriate pipelines to the lower body of the check dams must be
constructed. The retained water is supplied with piping and by natural flow to the areas that
have a demand. This method of water conservation provides clean and filtered water and avoids
evaporation losses [50].
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Abstract: In this paper, the ability of two joint bias correction algorithms to adjust biases in daily
mean temperature and precipitation is compared against two univariate quantile mapping methods
when constructing projections from years 1981–2010 to early (2011–2040) and late (2061–2090)
21st century periods. Using both climate model simulations and the corresponding hydrological
model simulations as proxies for the future in a pseudo-reality framework, these methods are
inter-compared in a cross-validation manner in order to assess to what extent the more sophisticated
methods have added value, particularly from the hydrological modeling perspective. By design,
bi-variate bias correction methods improve the inter-variable relationships in the baseline period.
Cross-validation results show, however, that both in the early and late 21st century conditions the
additional benefit of using bi-variate bias correction methods is not obvious, as univariate methods
have a comparable performance. From the evaluated hydrological variables, the added value is most
clearly seen in the simulated snow water equivalent. Although not having the best performance
in adjusting the temperature and precipitation distributions, quantile mapping applied as a delta
change method performs well from the hydrological modeling point of view, particularly in the
early 21st century conditions. This suggests that retaining the observed correlation structures of
temperature and precipitation might in some cases be sufficient for simulating future hydrological
climate change impacts.

Keywords: regional climate modeling; hydrological modeling; bias correction; multivariate;
pseudo reality

1. Introduction

In recent years, bias adjustment has become the de facto standard for preprocessing global
(GCM) and regional (RCM) climate model simulations for climate change impact studies, hydrological
modeling being no exception. The use is driven by practical needs. Due to systematic errors in climate
model simulations with respect to the observed climate, GCM and RCM output usually cannot be
directly used in impact modeling, as impact models require unbiased, high-resolution information as
their input. This is because of non-linear and threshold processes within impact models. For example,
a cold bias in forcing data to a hydrological model could lead to an impact result indicating no change
in snow depths if the cold bias kept temperatures below 0 degrees.

Numerous methods belonging to so-called model output statistics (MOS) have been developed
to adjust biases in temperature and precipitation data from climate models. These range from
simple scaling of time-mean climate to more sophisticated methods addressing biases in the daily

Climate 2018, 6, 33; doi:10.3390/cli6020033 www.mdpi.com/journal/climate327



Climate 2018, 6, 33

variability. This group also covers the widely used quantile mapping techniques of which there
are a number of different variations [1–8]. Studies have illustrated that bias correction methods are
able to reduce biases in climate model output [6] and also to provide noticeable improvements to
hydrological simulations in the present-day climate [9,10]. However, most of these methods are
restricted to the independent adjustment of biases in the marginal aspects of GCM-RCM simulations
and do not take biases in inter-variable correlation structures into account. For example, studies
have indicated that highest precipitation intensities co-occur with high surface temperatures in
winter, as indicated by Clausius–Clapeyron relation, while mostly negative relationships between
temperature and precipitation have been observed in summer in Europe [11,12]. In case a GCM-RCM
has difficulties to reasonably capture such relationships, a bias correction method that does not
explicitly take inter-variable correlations into account might not be sufficient for certain applications
such as hydrological modeling.

To address this issue, different types of bi- and multivariate bias correction algorithms have
been recently proposed [13–17]. These studies have given evidence that jointly bias correcting
multiple variables improves the multivariate aspects of bias corrected model simulations when
compared against the observed climate, and might outperform their univariate counterparts in
further applications, such as in the calculation of Canadian Forest Fire Weather Index [17]. However,
most of the intercomparison studies have concentrated on evaluating the relative performance of bias
correction methods in the present-day climate, which does not inform on their ability to predict climate
variables in changing climatic conditions. In other words, it is not known how well the adjustment
of inter-variable correlations, which is inherently constrained by biases in the present-day, is able to
capture the inter-variable correlations in the future climate. This information is crucial for reliably
assessing potential climate change impacts, particularly as concerns have been expressed on the
shortcomings and potentially unjustified use of bias correction in non-stationary conditions [18,19].

Due to the lack of an observational basis, surrogate data emulating the future observations has
been proposed to be used as proxy data (hereafter referred to as pseudo-realities) to assess the ability
of bias adjustment to improve projections in a changing climate. The pseudo-reality approach has been
used in recent studies [20–23] and was also considered in the European Concerted Research Action
ES1102 VALUE (Validating and Integrating Downscaling Methods for Climate Change Research)
framework as an important, although not sufficient step, when evaluating bias adjustment method
performance [24].

Most of the pseudo-reality studies have concentrated on the analysis of the application of bias
adjustment directly to climate model output, which does not give direct information on their usability
to construct future projections for the purposes of hydrological climate change impact studies. One of
the first attempts to extend the pseudo-reality approach to hydrological simulations was made by
Velázquez et al. [25], whose study evaluated implications of non-stationarity to bias correction for
future conditions and how they affect the estimation of future changes in river discharges. Their results
showed that although monthly mean river discharges were improved in some cases after bias correcting
the hydrological model input, biases still remained in the results. In their study the pseudo-reality
approach was applied without taking pseudo-reality biases in the present-day climate into account.
If a hydrological model is sensitive to absolute biases in climate model outputs, the hydrological model
behavior and its response to the projected changes might be unrealistic, which would hamper the
evaluation of bias adjustment methods in the pseudo-reality framework. Furthermore, the study used
only two GCM-RCM combinations and one bias correction method that did not take inter-variable
correlations directly into account in the bias correction step. From the hydrological modeling
perspective, a physically plausible description of co-variations of temperature and precipitation
might be important to reasonably describe the surface fluxes such as evapotranspiration and processes
affecting water stored in soil and snow pack, which together regulate the river discharge generation.
It is also important to assess the performance of the hydrological modeling of low frequency impacts
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(e.g., high and low flows) as these impacts are often of interest to users, but could be subject to different
biases than mean flows.

Here, we extend the study of Velázquez et al. [25] to assess the relative performance of four bias
adjustment methods from the hydrological impact modeling perspective. More specifically, the aim is
to address the following questions:

1. How does the relative performance of bias adjustment methods vary when assessing them from
the perspective of the impacts of climate change on different hydrological variables rather than
from climate modeling perspective?

2. What is the added value of bias correcting inter-variable relationships between daily
mean temperature and precipitation in comparison to the adjustment of their marginal
distributions only?

We use five GCM-RCMs produced in the European branch of the Coordinated Regional Climate
Downscaling Experiment (EURO-CORDEX) initiative [26]. In addition to the separate adjustment
of temperature and precipitation distributions, two methods [14,17] which take biases in their
inter-variable relationships into account are compared against univariate quantile mapping to assess
the extent to which hydrological simulations benefit from the additional correction of temperature and
precipitation correlations in the changing climate. We perform cross-validation tests in a pseudo-reality
framework broadly similar to the one used in Velázquez et al. [25] and extend the analysis by taking
into account GCM-RCM biases in the calibration data in order to bring the hydrological simulations
closer to the observations (i.e., by bias adjusting the pseudo-reality data).

The paper is structured as follows. In the next section we introduce the GCM-RCM simulations
used in this study together with the hydrological model used to conduct the hydrological simulations.
In addition, the bias adjustment methods, the pseudo-reality framework and the cross-validation
statistics used to assess the relative method performance are also discussed in Section 2. The results
are shown in Section 3 and the discussion together with conclusions are presented in Section 4.

2. Materials and Methods

2.1. Reference Data

WATCH Forcing Data based on ERA-Interim reanalysis (WFDEI) is used as the reference
climatology in real-world illustrations as well as in hydrological modeling exercises for both daily mean
temperature and precipitation [27]. In this data set the monthly means of daily mean temperature and
precipitation have been adjusted for biases in relation to the large scale gridded observations produced
by the Climatic Research unit (CRU) and the Global Precipitation Climatology Centre (GPCC) with
subsequent elevation corrections applied to both variables. Rust et al. [28] discuss some of the known
issues in WFDEI such as spurious jumps between individual months caused by the bias adjustment
procedure. These introduced discontinuities might affect the hydrological simulations, for example,
by triggering snow melt unrealistically. However, the effect of the spurious jumps is less severe in
the European region than in the tropics and cold regions [28], which facilitates the use of WFDEI
in this study.

2.2. GCM-RCM Data

Five high-resolution GCM-RCM simulations (Table 1) produced by the European branch
of the Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX) initiative were
downloaded from the Earth System Grid Federation (ESGF) database [29]. The cross-validation
within a pseudo-reality framework (see Section 2.5) requires all projections to be forced by the same
representative concentration pathways (RCP). Here, we chose RCP4.5 as a mid-range emission scenario,
which corresponds to end-of-21st century radiative forcing of 4.5 Wm−2 [30]. Each of the five model
simulations has a different GCM and RCM component. One should note that the models were not
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selected based on their performance in the present-day conditions but to ensure that the ensemble
members are independent from each other to the extent possible.

The model simulations were re-gridded to the regular 0.125◦ × 0.125◦ EURO-CORDEX (EUR-11i)
grid using nearest neighbor interpolation before bias adjusting them. The grid box closest to each
sub-basin was then used to drive the hydrological model. The difference in the spatial resolution to
WFDEI was not taken into account, as most of the results are based on comparisons between the
GCM-RCM simulations (see Section 3). For both calibration and validation of the bias adjustment
methods, we selected three 32-year periods including a 2-year spin-up period for the hydrological
model runs. After excluding the spin-up period, years 1981–2010 were used as the baseline period,
while years 2011–2040 and 2061–2090 were used to validate the methods in early and late 21st
century conditions.

Table 1. List of GCM-RCM simulations selected for this study. The first column shows the abbreviation
used in the text, the second and third columns show the GCM and RCM part of each model, respectively
and the last column shows the name of the providing institution.

Abbreviation GCM Component RCM Component Institution

CNRM-A CNRM-CM5 ALADIN CNRM
CCLM-MPI MPI-ESM-LR CCLM4.8.17 CLM Community
RACMO-EC EC-EARTH RACMO22E KNMI

RCA4-H HadGEM RCA4 SMHI
WRF-I IPSL-CMA5-MR WRF IPSL-INERIS

2.3. Hydrological Simulations

Hydrological impacts are simulated using sub-models extracted from the European scale
hydrological model E-HYPE v2.5 [31]. E-HYPE is an application of the Hydrological Predictions
for the Environment (HYPE) model developed in the Swedish Meteorological and Hydrological
Institute [32]. The model is process-based, semi-distributed and designed for hydrological modeling at
different spatial scales also in ungauged regions. The source code for HYPE (v4.10) is available at [33].
The model calibration and evaluation details together with a list of used topographical and land-use
data sets can be found from [31]. E-HYPE was chosen due to its large spatial coverage, distributed
nature and also to see how a hydrological model commonly used in impact assessments [34] responds
to the bias adjustment step. Because the model is distributed (over sub-basins of median size 215 km2),
spatial variability in biases can also be assessed. Hydrological simulations were first conducted using
the full 32-year periods. The first two years served to spin-up the hydrological model and have not
been included in further analysis.

To sample the varying hydrological conditions in the European region, the model was run with
bias adjusted daily mean temperature and precipitation within four sub-models selected from the
catchments shown in Figure 1. These catchments have predominantly natural flow conditions which
the hydrological model was capable of capturing well in the present-day climate. The northernmost
model domain is located in the upper parts of Tornio river catchment, where water stored in snow
pack and variations in it strongly regulate the annual cycle of surface hydrology, leading to peak river
discharges in late spring and early summer. Two domains with maritime mild climatic conditions,
which cover parts of Trent and Ems catchments, are less affected by snow processes and river discharges
reach their maximum values in winter months. The southernmost study region is located in the Sava
tributary of the Danube river and is characterized by a mixture of Alpine and Mediterranean climates.
The seasonal cycle of river discharge has two distinctive peaks here, the first one caused by snow melt
in Alpine regions in spring and the latter one by heavy rainfalls in autumn.
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Figure 1. Geographical locations of the four sub-models selected for the hydrological simulation tests.
The sub-models cover parts of (A) Tornio, (B) Ems, (C) Trent and (D) Sava river catchments. White
dots denote the locations of the discharge gauging stations for which the reference period statistics are
shown in Table 2.

Table 2. Statistics for daily time-series of simulated river discharge calculated against the observed
discharge at the mouth of each hydrological sub-model (cf. Figure 1). The first column shows the
catchment name, the second column Nash-Sutcliffe efficiency coefficient and the third column the
relative volume error.

Sub-Model NSE RE (%)

Tornio 0.78 −17.0
Trent 0.66 −3.0
Ems 0.83 3.1
Sava 0.52 6.0

The ability of HYPE to simulate river flows in the reference period (1981–2010), when WFDEI
is used directly as forcing, is briefly illustrated in Table 2, which shows the Nash-Sutcliffe efficiency
coefficient (NSE) and relative volume error (RE) in simulated river discharge for the four gauging
stations located at the outlets of the selected sub-models. The NSE values vary from 0.83 in Ems to
0.52 in the Sava region. These values are reasonable considering that E-HYPE has been calibrated
uniformly for all of Europe to optimize predictions in ungauged regions. The RE values range from
−17.0% to 6.0% with largest deviations seen in the Tornio sub-model, where the model tends to
underestimate river discharge volume, particularly during the spring season. These differences are
at least partially explained by the limitations of the WFDEI data set; the representation of daily
precipitation variability is not sufficient in regions with large topographical variations, and subject
to gauge undercatch for which the corrections are particularly uncertain in windy, snow dominated
regions. Also temperature discontinuities might have a role in explaining the differences to the
observations. In addition, the inherent limitations in the HYPE formulation and parameterisation
likely explain part of this discrepancy (as would any other hydrological model).

2.4. Model Output Statistics

Non-parametric quantile mapping applied both in the delta change (M1) and bias correction (M2)
mode is used to benchmark the ability of joint bias correction methods to adjust temperature and
precipitation for biases in the GCM-RCM simulations (see Table 3). In the following, the formulation is
shown for the bias correction form of quantile mapping. For given simulated values of daily mean
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temperature or precipitation in the scenario period (si), the projected values pi are obtained by
transforming si according to

pi = F−1
o (Fc (si)) . (1)

here Fc denotes the cumulative distribution function of the baseline period simulation and F−1
o its

inverse estimated from the observations. Formulation for the delta change form is simply obtained by
switching the indexes for the observations (o) and the future period simulation (s).

Before the transformation shown in Equation (1) is applied, the quantile-quantile relationship
between Fc and Fo is smoothed by replacing individual quantiles with a running average taken
over a specified quantile range using the approach and numerical values described in Räty [21] and
Räty et al. [22]. If the future simulated values are outside the baseline period observations and model
simulation, the quantile relationship is extrapolated assuming a constant, additive, relationship above
the highest and below the lowest quantile for daily mean temperature. For precipitation, relative values
are used. For further implementation details, the reader is referred to Räty [21] and Räty et al. [22].

Table 3. List of bias adjustment methods used in this study together with a short description.

Name Description References

M1 Univariate delta change: quantile mapping with smoothing Räisänen and Räty [21], Räty et al. [22]
M2 Univariate bias correction: quantile mapping with smoothing Räisänen and Räty [21], Räty et al. [22]
M3 Bi-variate bias correction: copula-based, precipitation conditioned on temperature Li et al. [14], Gennaretti et al. [35]
M4 Bi-variate bias correction: full 2-dimensional distribution using the N-pdft algorithm Pitié et al. [36], Cannon [17]

To take biases in the co-variations of daily mean temperature and precipitation into account,
two bi-variate bias correction methods were implemented and compared with their univariate
counterparts. In the first one (M3), the dependence structure is modeled separately from the marginal
(i.e., unconditional) distributions of temperature and precipitation using a copula-based approach as
described in Li et al. [14]. The implementation of this method is based on the properties of copula
described by Sklar’s theorem [37], which states that, given two random variables X and Y such as daily
mean temperature and precipitation, their joint cumulative distribution (H(x, y)) can be constructed as

H(x, y) = C(F(x), G(y)), (2)

where C() denotes the cumulative copula distribution and F(x) and G(y) are the cumulative marginal
distributions for X and Y. Here, it is assumed that the dependence structure of daily mean temperature
and precipitation can be reasonably modeled using a Gaussian copula as in Li et al. [14]. The Gaussian
copula was chosen due to its relatively simple formulation and its ability to model both positive
and negative correlations. Although several other parametric copulas are available for modeling the
dependence structure, testing them is beyond the scope of this paper. Marginal distributions were
modeled with parametric distributions in a similar manner as in Yang et al. [2] and Li et al. [14].
Temperature is assumed to follow Gaussian distribution, while gamma distribution is used to model
precipitation above a wet-day threshold, here defined as 0.1 mmd−1. To improve the performance of
M3 at daily temporal scales, separate temperature distributions were fitted both on dry and wet days
following a pre-adjustment of the fraction of wet days in model simulations to the observed one [2,35].
In M3, bias correction of the wet-day part of the joint distribution needs to be applied conditionally
on either temperature or precipitation, thus offering two approaches to correct the joint distribution.
Based on tests with these two alternatives, we decided to bias correct precipitation conditionally on
temperature due to the slightly better overall performance of this option (not shown). The correlation
parameter values obtained from fitting Gaussian copula to the baseline period simulations are
illustrated in the supplementary material (Figure S1). For further details, the reader is referred to an
R package available in GitHub [38], which contains implementations of methods M1–M3 written by
the authors.

332



Climate 2018, 6, 33

The second bi-variate bias correction method (M4) was recently proposed by Cannon [17] based
on the N-pdft algorithm designed by Pitié et al. [36]. In this method the full 2-dimensional distribution
structure is adjusted iteratively by reducing the adjustment of the 2-dimensional distribution to
a series of 1-dimensional bias corrections of the marginal distributions. First, both temperature and
precipitation distributions are normalized and randomly rotated to a new orthogonal coordinate system.
Second, quantile mapping is applied to the rotated distributions. The adjusted distributions are then
rotated back to the original coordinate system before repeating the described sequence. After several
successive iterations it can be shown that the joint distribution converges to the target distribution [36].
As discussed by Cannon [17], the algorithm constructs the joint distribution at each iteration step
as a linear combination of the bias corrected marginal distributions, which allows modifying the
dependence structure. In the original article quantile delta mapping [4,8] was used to adjust the
marginal distributions along the iteration cycles. Here, we use the same quantile mapping algorithm as
in M2 instead of quantile delta mapping when bias correcting the marginal distributions of temperature
and precipitation. Doing this, the bias corrected temperature and precipitation distributions are
identical in M2 and M4. No smoothing was applied to the marginal distributions in the rotation
step, as this would had contracted the underlying joint distribution of observations and the control
period simulation. The algorithm was terminated after 50 iterations, which should be sufficient for the
algorithm to converge to the target distribution, as illustrated by Cannon [17]. The implementation of
M4 was based on the R package [39] available in the CRAN repository [40].

To take biases in the annual cycle into account, daily mean temperature and precipitation time
series were adjusted on a monthly basis at each sub-model domain. As sampling errors are likely to
affect the estimation of simulated changes (M1) and biases (M2–M4) in the GCM-RCM distributions,
the effect of increased sample size on method performance was addressed by using both one- and
two-month time windows when estimating model biases and simulated changes from GCM-RCM
simulations. Using an even larger time window could in principle reduce the sampling noise [41],
although with the expense of possibly introducing systematic biases to the future results. Tests with
longer time windows did not show significant changes in the results, although a more systematic
comparison would be needed to fully assess the potential benefits of reducing sampling noise.

To illustrate how each method represents the dependence structure in the calibration period,
Figure 2 shows differences in the empirical copula density for the wet-day values of temperature and
precipitation in comparison to the WFDEI copula in winter months of years 1981–2010 in the Tornio
sub-model. The copula density has been estimated as a 2-dimensional histogram of the normalized
ranks for both variables (see a more detailed description in Section 2.6). The density values can
be interpreted as the ratio of the joint probability density to the case, where both variables were
independent from each other. For example, values larger than one suggest a larger-than expected joint
probability density in this part of the two-dimensional space. Differences in the empirical copula density
roughly denote the difference in the strength of dependence for particular cumulative probability
values of both temperature and precipitation. The panel for the reference data shows that temperature
and precipitation are positively correlated in this example (the highest values slope from bottom-left to
top-right). By design, M1 takes the inter-variable relationships directly from the reference. In contrast
to the delta change mode, M2 inherits the multivariate dependence structure from the uncorrected
GCM-RCM simulation (M0), with some modifications to it due to changes in the fraction of wet
days [42]. Therefore, these methods can be thought to give the “limits” in which the multivariate
methods can operate on adjusting the inter-variable correlations. Although the dependence structure
of temperature and precipitation can be reasonably modeled using Gaussian copula on monthly scales,
this might not be as feasible at daily scales, at least in cold climates. From Figure 2, it is immediately
seen that although the Pearson correlation coefficient is well captured by M3, the overall copula
structure shows noticeable deviations from the target distribution. In this particular case, M3 tends to
overestimate the strength of the co-occurrence of low precipitation intensities and medium temperature
values. Although the behavior of M3 strongly depends on the selected GCM-RCM, season and location,
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this example highlights the importance of evaluating the full multivariate dependence structure to
reveal such issues. In contrast to M3, M4 performs very well in capturing the WFDEI dependence
structure and differences in the copula density field are small in most parts of the distribution.
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Figure 2. Empirical copula density of wet-day (P > 0.1 mmd−1) precipitation and temperature in
winter months (December-January-February) estimated from the reference data (WFDEI) in Tornio
river catchment separately for each sub-basin and then averaged over the whole domain. In addition,
differences in the estimated densities, when compared against WFDEI, are shown for CNRM-A
GCM-RCM without bias adjustments (M0) and after applying each of the four methods (M1–M4) in
the baseline period (1981–2010). The sub-model-averaged Pearson correlation coefficient is also shown
on the top-left corner of each panel.

As another example, Figure 3 shows how the four methods capture the hydrological conditions
in the Tornio sub-model, when adjusting the GCM-RCM simulations against WFDEI in the baseline
period (1981–2010). For simplicity, a one-month time window has been used when estimating the
simulated changes and biases in the GCM-RCM simulations. As expected, M1 has essentially a perfect
correspondence with the observed hydrological conditions. The remaining biases in temperature and
precipitation are very similar for M2 and M4 but not identical as small differences arise from the
re-shuffling of daily values over the full 32-year period in M4, which is an inherent property of this
and many other multivariate bias correction methods. Furthermore, M3 shows a very similar pattern
for temperature, while the differences to M2 and M4 are more visible in the remaining precipitation
biases. The differences between the methods are also visible in the annual monthly mean cycle of
different aspects of the simulated surface hydrology. The differences to WFDEI are largest for M3 in
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most cases, which is expected, as the (potentially sub-optimal) parametric marginal distributions used
in M3 match the GCM-RCM-simulated temperature and particularly precipitation less accurately with
WFDEI than the non-parametric versions used in M2 and M4. Apart from M1, M4 has generally the
smallest differences to WFDEI, particularly in total runoff and snow water equivalent, although the
remaining evapotranspiration biases are similar for M2 and M4.

Figure 3. A real-world example showing the annual cycle of (a) daily mean temperature, (b) precipitation,
(c) total runoff, (d) evapotranspiration, (e) snow water equivalent and (f) soil moisture in the Tornio
river catchment in years (solid lines) 1981–2010 and (dashed lines) 2061–2090 separately for each of the
GCM-RCMs when adjusted against WFDEI using the four (M1–M4) bias correction and delta change
methods. To readily illustrate differences in comparison to WFDEI, the remaining biases in 1981–2010 are
shown below the annual cycle panels separately for each method and variable.

2.5. Pseudo-Reality Framework

To make inferences on the potential future performance of the selected univariate and multivariate
methods, intermodel cross-validation is performed using the so-called pseudo-reality approach
(Figure 4). In the first stage, one GCM-RCM at a time is used as the verifying model (i.e., pseudo-reality)
against which the rest of the models are adjusted using the selected methods. The bias adjusted
simulations are then compared against the pseudo-reality GCM-RCM with a set of performance
measures. The resulting cross-validation statistics are then averaged over all pseudo-realities to
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obtain an overall view of the bias correction performance in changing climatic conditions. The same
framework is applied to the hydrological simulations to see to what extent the relative performance
of the selected MOS methods differs when inspected from the hydrological modeling point of view.
To this end, the bias adjusted temperature and precipitation time-series are used as input to the
E-HYPE sub models, which are then run to simulate the future hydrological conditions in the selected
catchments. Hydrological simulations are cross-validated in a similar manner as the GCM-RCM
simulations using complementary performance measures.

Figure 4. An illustration of the pseudo-reality framework procedures in the baseline period, applied
both from climate modeling and hydrological modeling perspectives.

In order to improve the applicability of the pseudo-reality approach to hydrological simulations,
two ways to construct pseudo-realities were tested (Figure 4): (a) raw GCM-RCM simulations were
used as pseudo-realities without taking biases in relation to observations (i.e., WFDEI) into account [25];
(b) the annual cycle of the GCM-RCM acting as pseudo-reality was adjusted to biases in comparison
to WFDEI by simply removing the mean bias at each day of the annual cycle using a 30-day sliding
window. Daily adjustments were applied instead of monthly ones in order to avoid additional jumps in
the annual cycle of the pseudo-reality time series. This shift in the mean values obviously alters the bias
between pseudo-reality and the verifying models but leaves the changes in this relatively untouched
(see Figure S2 in supplementary material). The motivation for the second approach is apparent: biases
in relation to the observed climate are substantial in some of the selected GCM-RCMs, which leads to
unrealistic hydrological model behavior both in the pseudo-reality runs and the verifying hydrological
simulations. For example, substantial cold biases at high altitude regions in Sava sub-model and
during winter in Tornio sub-model cause unrealistic volumes of snow to accumulate throughout the
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simulation periods. We argue that without this additional bias adjustment step the use of GCM-RCMs
as pseudo-realities when cross-validating bias adjustment methods from hydrological modeling
perspective might not be reasonable due to unrealistic shifts in hydrological regimes. One should note
that although the intention is to keep the daily variability in the pseudo-reality time series untouched,
the multiplicative scaling applied to daily precipitation slightly modifies the spread of precipitation
distributions both in the baseline and scenario periods. This also slightly changes the daily variability
of hydrological simulations accordingly.

2.6. Metrics for GCM-RCM Simulations

To assess the general similarity between the empirical cumulative probability distributions of the
predicting models Fpred and the GCM-RCM acting as pseudo-reality Fver, 2-sample Cramér–von Misés
(CM) statistic [43] was calculated according to

CM = A
〈 mn
(m + n)2

{ m

∑
i=1

[
F̂pred(xi)− Fver(xi)

]2
+

n

∑
j=1

[
F̂pred(yj)− Fver(yj)

]2 }〉
, (3)

where ˆ( ) denotes the pooled sample of the four predicting GCM-RCM simulations, while m and n are
the numbers of values within the pooled sample (x) and in pseudo-reality (y), respectively. The actual
calculations were made for binned data using bin widths of 1 ◦C and 1 mmd−1 and the same number of
bins with identical bin boundaries for both predicting GCM-RCMs and the pseudo-reality GCM-RCM.
A〈〉 indicates an average over 12 months and the area of a sub-model. CM measures the similarity of
two empirical distributions in probability space and puts more weight on discrepancies in the tails of
the cumulative distributions than the widely used Kolmogorov–Smirnov statistic, which measures the
maximum distance between the cumulative probability distributions. Comparison with these statistics
did not reveal significant differences, and the results are shown only for CM.

The second statistic, mean absolute error (MAE), was calculated over quantiles i (i ∈ [1, ..., 100])
of the predicting and verifying (i.e., pseudo-reality) model distributions following

MAE = A〈|F̂−1
pred(i)− F−1

ver(i)|〉, (4)

where A〈〉 encompasses averaging over the distribution quantiles in addition to temporal and spatial
averaging. The analysis was also repeated using the mean squared error, but the results did not show
substantial differences to MAE. Thus, the relative method performance is illustrated in terms of MAE
in the remainder of the paper.

Two statistics measuring errors in inter-variable correlations were calculated. First, to assess to
what extent the linear correlation is modified by different methods, MAE in the Pearson correlation
coefficient was calculated between the average correlation coefficient of the four verifying models and
pseudo-reality, averaged in a similar manner as in Equation (3). Secondly, to evaluate the remaining
errors in the full dependence structure, the empirical copula density was approximated from the
pseudo-observations (u, v), estimated for the ith temperature (x) and precipitation (y) value as
u = rank(xi)/(n + 1) and v = rank(yi)/(n + 1), where n is the number of values for both variables.
These values were binned 2-dimensionally and normalized such that the histogram approximately
corresponds to the copula density. The 2-dimensional binning was done at 0.1 interval. MAE between
empirical copula densities of the predicting GCM-RCMs and pseudo-reality was then calculated
according to

MAEc =
1
n

n

∑
i=1

|ĉ(i)pred − c(i)ver|. (5)

In Equation (5), ĉpred denotes the empirical copula density averaged over the four predicting
models, cver the copula density calculated for pseudo-reality and n is the number of bins used to
estimate the copula density. In the following, the subscript c is dropped for brevity. MAE based on
kernel density estimates were also tested but the resulting statistics depended substantially on the used
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kernel method and the kernel width and thus, were not considered further in this study. To reduce the
effect of sampling noise to the results, temperature-precipitation pairs were pooled over the area of
each sub-model and season before estimating the empirical copula densities. Identical values were
handled using the same approach as in Gennaretti et al. [35]: ranks were first given randomly to
identical values before estimating the empirical copula density. This was repeated 10 times and the
final copula density was calculated as the average of the randomly ranked estimates. Despite being a
simple and not a proper goodness-of-fit measure, this statistic readily illustrates how well each method
is capable to adjust the full dependence structure. Gennaretti et al. [35] briefly pointed out that the
measured performance depended on whether dry days were included when estimating the empirical
copula density. While the focus is here on the copula density including the full time-series, the results
for the wet-day copula can be found from the supplementary material (Figure S3).

2.7. Metrics for Hydrological Simulations

An additional set of cross-validation statistics was calculated for the hydrological indexes.
First, quantile distributions of river discharge Q (i.e., flow-duration curves) were estimated at the
outflow sub-basin of each of the sub-models. The average of the four predicting distributions was
then compared against the pseudo-reality distribution using a logarithmic accuracy ratio (LAR10)
defined as

LAR10 = A

〈 ∣∣∣∣∣log10

(
F̂−1

pred(i)

F−1
ver(i)

)∣∣∣∣∣
〉

, (6)

where A〈〉 has the same meaning as in Equation (4). The statistic is symmetric in the sense that the same
value is assigned for under- and overestimation of the same relative magnitude [17]. This alleviates
the issue of most other relative accuracy measures penalizing overestimation more strongly than
underestimation. In addition to distribution-averaged statistics, LAR10 was also inspected individually
for the 5th (Q5) and 99th (Q99) percentile of the flow duration curve to see how the relative performance
of the selected MOS methods varies in the tails of the monthly flow duration curves.

The analysis of river discharges is complemented by evaluating a set of individual flux and
storage elements, which affect the overall water balance and river discharge generation. To this
end, MAE was calculated for the monthly mean values of total runoff (R), evapotranspiration (E),
soil moisture (S) and snow water equivalent (SWE) in a similar manner as for daily mean temperature
and precipitation. MAE in the mean annual maximum SWE (SWEmax) was also calculated to evaluate
how method differences are reflected in the simulation of highest snow pack depths. This allows
us to make inferences on how the remaining errors in daily mean temperature and precipitation
and in their inter-variable correlations affect the different hydrological elements, as well as to gain
insights on the relative performance of the selected bias adjustment methods in terms of hydrological
modeling results.

3. Results

3.1. Distribution-Averaged Statistics for Daily Mean Temperature and Precipitation

We first inspect the overall performance of the four methods from the GCM-RCM perspective.
Figure 5 illustrates the distribution-averaged cross-validation statistics in the two scenario periods
(see Figure S4 for the statistics in years 1981–2010). When first concentrating on the results shown
for the years 2061–2090, it is seen that bias correction methods M2–M4 slightly outperform M1 in
adjusting the temperature distribution in terms of both CM and MAE. On the other hand, both CM
and MAE of M3 are very close to M2 and M4, which indicates that temperature can be reasonably
modeled using a normal distribution. Although the general picture is mostly similar for precipitation,
CM and MAE give a partially contrasting picture about the relative method performance. The CM
values are smallest and almost identical for methods M2–M4, while the relative performance of M3
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is slightly worse than M2 and M4 in terms of MAE. This might be partially explained by how the
fraction of dry days is explicitly taken into account by M3 in its corrections, while using a gamma
distribution to model the precipitation distribution might not capture biases in it as efficiently as
non-parametric quantile mapping. Using a two-month time window generally reduces errors in
both temperature and precipitation distributions, which is in line with the results of Räisänen and
Räty [21] and Räty et al. [22]. As expected, all methods have substantially smaller errors in the marginal
distributions of temperature and precipitation in comparison to the uncorrected model simulations
(M0) in both periods.

Figure 5. Cross-validated CM and MAE for (a,b) daily mean temperature and (c,d) daily precipitation
distribution in years 2011–2040 (bottom) and 2061–2090 (top). Also shown are the MAE in
(e) the Pearson correlation coefficient and (f) the empirical copula density. Black color denotes
the cross-validation statistics for the pseudo-reality approach without additional adjustments (V0),
while the results for the approach where pseudo-realities have been adjusted to biases in relation
to WFDEI are shown in red (V1). Furthermore, crosses (bars) indicate the results for the one-month
(two-month) time window used to estimate simulated changes or model biases, shown for both V0
and V1. Note that the differences between the one- and two-month time windows are typically small,
as indicated by the small differences between the bars and crosses.

The MAE for the Pearson correlation coefficient and the empirical copula density, when calculated
over the full monthly time-series of temperature and precipitation, is also shown in Figure 5.
The results for the Pearson correlation coefficient show that, although M3 and M4 improve the
results in comparison to method M2, M1 performs slightly better in capturing the linear correlation
between temperature and precipitation than the other methods. Moreover, M4 seems to be susceptible
to the effect of noise, as M3 has a somewhat smaller MAE when the one-month time window is
used. The situation is slightly different when the MAE in the empirical copula density is considered.
While M1 has again the best performance out of all methods, M2 has now MAE values which are
closer to the bi-variate methods. The modest improvement obtained with M4 in comparison to M1
is again at least partially related to the small sample size, as indicated by the reduction in the MAE
values for the two-month time window. Yet, this highlights the difficulty to robustly estimate biases in
inter-variable correlations in a changing climate. As M1 has a superior performance in terms of both of
the two measures regardless of the period considered, this suggests that the inter-variable correlations
do not change substantially among the selected models and within the studied regions.

The bottom row shows the cross-validation statistics for the near-term scenario period (2011–2040).
As expected, the remaining errors are generally smaller for all methods in this period. The marginal
distributions of both temperature and precipitation are slightly better captured by method M1 in
comparison to other methods, while the relative performance of other methods does not show marked
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differences between the two periods. Furthermore, the MAE in the Pearson correlation coefficient and
the copula density indicate a slightly improved performance for M3 and M4 in comparison to M1,
although M1 still has the smallest MAE in all cases.

In qualitative terms, the cross-validation statistics are similar for temperature and precipitation
regardless of the pseudo-reality approach. By far, the largest differences are shown by method M0
for which the cross-validation statistics calculated for temperature deteriorate when correcting the
pseudo-reality GCM-RCM toward WFDEI (V1), while the opposite happens for the precipitation
statistics. For temperature, the larger MAE in V1 is explained by the systematic cold bias within
the GCM-RCM ensemble. However, for methods M1-M4 the results are mostly similar between
the two pseudo-reality approaches, although the cross-validation statistics for the temperature
and precipitation distributions tend to be slightly worse for the two-month time window after
pseudo-realities have been adjusted against WFDEI (V1). This suggests that, from the climate modeling
perspective, the additional adjustment step does not substantially modify the cross-validation statistics
apart from the uncorrected model simulations, backing up its use in the hydrological modeling step.

While not the specific target of this study, it should be mentioned that an inherent property of
M4 is that in order to obtain correct ranks for each temperature and precipitation pair, both time
series need to be temporally re-ordered. This is to a lesser extent an issue in M3, in which only
the temporal sequence of precipitation is potentially modified. As the temporal re-ordering might
affect the hydrological simulations, a modified version of M4 was tested. First, the time series of
uncorrected temperature and precipitation were divided into dry and wet days in a similar manner as
in M3. Next, M2 was applied separately on wet-day and dry-day distributions to retain the improved
statistics for them, as obtained with M4. Finally, the N-pdft algorithm was applied only on wet-day
distributions of temperature and precipitation. Tests with the modified algorithm showed, however,
that although the cross-validated MAE of both correlation measures decreased slightly, changes in
the cross-validation statistics for hydrological variables in comparison to the original method varied
non-systematically depending on the season, region and variable considered (not shown) and, thus,
did not offer systematic improvements in comparison to the original algorithm.

3.2. Cross-Validation Statistics for Hydrological Simulations

3.2.1. Spatially Distributed Variables

How are the differences in the ability of the four methods to adjust the joint distribution of
temperature and precipitation reflected in the hydrological simulations? Figure 6 shows the average
cross-validation statistics for the five hydrological components (R, E, S, SWE and SWEmax) in the
two scenario periods (see Figure S5 for the statistics in years 1981–2010). For clarity, the results are
shown only for the two-month time window in the remainder of the paper. When looking at the
MAE in monthly mean runoff (R) in the late 21st century period, it is seen that M4 outperforms the
other methods in pseudo-reality approach V0, although the differences are small in comparison to M1.
In pseudo-reality approach V1, however, MAE is practically identical for M1–M2 and M4. M3 has
a somewhat worse performance than the other methods, which is likely caused by the larger remaining
errors in the precipitation distribution than for the other methods. When evapotranspiration (E) as
simulated by HYPE is considered, bi-variate methods M3 and M4 have the smallest MAE in monthly
mean values and M3 actually has the smallest MAE in pseudo-reality approach V0. In addition,
the results for E illustrate a side-effect of the additional pseudo-reality adjustment (V1): the MAE in E
is systematically larger in V1 for all methods, as the systematic underestimation of temperature in V0
likely leads to too weak evapotranspiration in comparison to real-world hydrological simulations.

We next take a look at the cross-validation statistics for the two storage variables. The MAE of
soil moisture (S) is almost identical for all methods, which indicates that it is relatively insensitive
to the adjustment of daily-scale inter-variable correlations. The small differences between the four
methods tend to follow those seen in the MAE calculated over the precipitation distribution, as the
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MAE is smallest and almost identical for methods M4 and for M2. The last two panels in Figure 6
show the MAE of the monthly mean SWE and SWEmax. These results illustrate the main benefit of
pseudo-reality approach V1. As predicted, the adjustment of pseudo-reality GCM-RCMs reduces biases
in snow variables, although with the expense of increased MAE for E, as discussed before. This also
causes differences in the relative ranking of the correction methods between the two pseudo-reality
approaches (V0 and V1); M4 performs slightly worse in relation to M1 in reality approach V0, whereas
the opposite is seen after adjusting the pseudo-reality GCM-RCMs towards WFDEI (V1). Overall,
these results indicate that the simulation of most hydrological aspects is only marginally improved by
joint bias correction and that the accurate adjustment of marginal distributions plays a more important
role, at least when only temperature and precipitation are used as input in a hydrological model,
such as HYPE.

Figure 6. Similar to Figure 5 but for the cross-validated MAE of monthly mean (a) total runoff,
(b) evapotranspiration, (c) soil moisture, (d) snow water equivalent and (e) the mean annual maximum
of snow water equivalent in years (bottom) 2011–2040 and (top) 2061–2090.

The cross-validation statistics for the near-term scenario period are in line with the corresponding
statistics of temperature and precipitation, with generally smaller errors in all studied hydrological
aspects than in the later scenario period. The relatively better performance of M1, when adjusting
the joint distribution of temperature and precipitation at that time is to some extent reflected in the
hydrological simulations (bottom of row Figure 6), as R, E and S are all better captured by M1 in the
near-future period. In contrast to the later scenario period, M2 and M4 have smaller MAE values in
monthly mean evapotranspiration than M3. The cross-validation statistics of monthly mean SWE and
SWEmax show the largest differences between bias adjustment methods also in this period, indicating
that method choice is most important for this variable from the studied hydrological aspects.

3.2.2. Evaluation of Future River Discharges

The analysis is complemented by illustrating the cross-validated LAR10 for Q5, Q99 as well
as for the distribution-averaged LAR10 in the two scenario periods (Figure 7). The absolute values
of LAR10 vary to some extent between the two pseudo-reality approaches. For example, LAR10
of Q5 is systematically smaller in V1 for all methods (apart from M0) in both periods, while the
opposite is seen in the Q99 in the early 21st century period. Furthermore, the performance of all
methods is extremely consistent when the distribution-averaged LAR10 is considered. Methods M2
and M4 have a marginally smaller LAR10 than M1 and M3, while in the earlier scenario period
method M1 performs equally well or even better than M2 and M4. Also the best performing method
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depends on the pseudo-reality approach when low flows (Q5) are considered. In V0, method M2
somewhat outperforms the other methods in both periods, while in V1 method M3 has a slightly better
performance in comparison to the other methods. On the other hand, M1 has the largest LAR10 values
in both periods, which is probably related to the larger errors in temperature and evapotranspiration
accordingly. The simulation of Q99 seems to marginally benefit from the adjustment of inter-variable
correlations, as M4 has the smallest LAR10 among the four methods, particularly in years 2011–2040.
Again, the LAR10 is larger for M3 than for the other methods, most likely due to the combination of
the aforementioned issues.

Figure 7. Similar to Figure 5 but for the cross-validated LAR10 in (a) the 5th and (b) 99th percentile
of flow duration curves shown together with (c) the distribution-averaged LAR10 in years 2011–2040
(bottom) and 2061–2090 (top).

3.3. Temporal and Spatial Variations in the Cross-Validation Statistics

Seasonal and spatial variations in both the relative performance of the studied methods and
contributions of different hydrological processes are reflected in the cross-validation statistics for the
hydrological simulations. To better infer the reasons for these variations, Figures 8 and 9 show matrices
of cross-validated MAE for different aspects of the joint distribution of temperature and precipitation
and the distributed hydrological variables in winter and summer seasons in the four sub-models
(see Figures S6 and S7 for the same statistics in spring and autumn seasons). In absolute terms the
largest MAE values for temperature are seen in Tornio in both seasons, while for precipitation the MAE
is generally largest in Sava. The pattern is less clear for the correlation measures, which show larger
variations between the four regions. The numeric values in the panels denote the percentage difference
to M1. These values indicate that methods M2–M4 perform better than M1 in most cases in winter,
while in summer the temperature is relatively well captured by M1. On the other hand, the statistics
for both correlation measures indicate that M2 has systematically poorer performance than the other
methods and the relative difference is particularly large in Tornio and Ems. The most striking feature
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in Figure 8 is the consistently better performance of M1 in capturing the empirical copula density when
compared to the other methods, regardless of region or season; apart from M4, which has a relatively
similar performance in winter, M1 outperforms the other methods by a large margin.

When the cross-validation statistics for temperature and precipitation are compared against the
statistics for the hydrological variables, it is evident that the relative differences between the methods
are mostly explained by their capability to adjust the marginal distributions of temperature and
precipitation, particularly in those regions and seasons, where snow processes play a less important
role in the hydrological cycle. Backing up the previous conclusions, the added value of the adjustment
of temperature and precipitation dependence structure, as indicated by differences between methods
M2 and M4, is most visible in Tornio and Sava sub-models, where M4 systematically improves the
simulation of SWE. The link between the improved simulation of SWE and improvements in total
runoff and soil moisture is apparent, as M4 has a smaller MAE than M2 in both variables. Tornio and
Sava also show the largest differences between pseudo-reality approaches V0 and V1, as SWE has
substantial errors remaining even in summer in Tornio, when V0 is used.

Results from the previous section suggest that quantile mapping applied as a delta change method
(M1) has a relatively robust performance from a hydrological modeling perspective. On sub-model
scale this is only partially true, as M2 and M4 tend to have better performance in the northern
sub-models, while M1 performs particularly well in Sava catchment. However, the relative differences
are small in many cases also in other regions, which suggests that the delta change approach might
be a good alternative for bias correction. From individual methods, M3 has largest variations in its
relative performance between the four sub-models and two seasons. These variations seem not to be
solely due to issues with the marginal distributions, and in Tornio, for example, failures to capture the
full dependence structure in winter (cf. Figure 2) might deteriorate the statistics for M3.

Figure 8. Panels showing the cross-validated MAE (colors) of (a) daily mean temperature, (b) daily
precipitation, (c) Pearson correlation coefficient and (d) empirical copula density separately for
each method (panel rows) at each hydrological sub-domain (panel columns) in years 2061–2090,
when two-month time window has been used to estimate simulated changes or model biases. Values for
the pseudo-reality approach V0 (V1) are plotted in the upper (lower) triangle of each cell and are shown
separately for (top) winter and (bottom) summer months. In addition, percentage differences to M1
are shown as numeric values for each element.
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Figure 9. As in Figure 8 but shown for monthly mean (a) total runoff, (b) evapotranspiration, (c) soil
moisture and (d) snow water equivalent.

4. Discussion and Conclusions

This paper presents the results from a study in which two joint bias corrections methods applied
in the bi-variate mode are compared against quantile mapping applied both traditionally and in
the delta change mode using five EURO-CORDEX GCM-RCM simulations as a proxy for the future
climate. The evaluation is two-fold: first, cross-validation is performed to obtain quantitative estimates
for the relative method performance in the early and late 21st century conditions, when applied to
construct future projections of the joint distribution of daily mean temperature and precipitation;
second, these projections were fed to a hydrological model to assess, whether or not the bi-variate
adjustments improve future hydrological simulations in comparison to univariate quantile mapping.

The main results of these exercises are summarized as follows:

• By design, joint bias correction brings the inter-variable correlations closer to the observed
one in the baseline period. In particular, the iterative N-pdft algorithm (M4) reproduces the
full dependence structure (as measured by the MAE in the empirical copula density) well in
comparison to univariate quantile mapping (M2). The adjustment of inter-variable correlation in
M3 might fail in certain situations, as the method tends to have larger remaining biases in the
copula structure in winter conditions in HYPE Tornio sub-model.

• Cross-validation statistics in years 2011–2040 and 2061–2090 indicate that although the correlation
structure is improved in terms of Pearson correlation, the benefit of bi-variate methods is less
clear when the full dependence structure is considered. Part of the modest improvement is likely
explained by the limited sample size, which might lead to over-fitting to the present-day climatic
conditions. On the other hand, quantile mapping applied in the delta change mode (M1) often
performs better than the other methods, which indicates that retaining present-day correlation
structures of temperature and precipitation might be sufficient also in future projections.

• The results suggest that the pseudo-reality approach is potentially useful for evaluating the
relative performance of bias adjustment methods from hydrological modeling perspective in the
future climate. However, to improve the validity of the conclusions in these types of studies,
the implementation of pseudo-reality framework needs to be designed on case-by-case basis,
for example by first bias adjusting the pseudo-reality GCM-RCMs to avoid unrealistic shifts in
hydrological regimes.
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• For the hydrological variables, the bi-variate approaches offered no substantial advantage
over the univariate methods with M4 often having similar performance to M2. Only marginal
improvements in comparison to methods M1 and M2 are seen in the cross-validation statistics
for high flows and for the monthly mean and annual maximum snow water equivalent in
Tornio and Sava. Although quantile mapping applied as a delta change method (M1) has slightly
poorer performance in projecting marginal distributions of temperature and precipitation than
quantile mapping-based bias correction (M2) and its bi-variate version (M4), the cross-validation
statistics indicate that it has a relatively good ability to capture the future hydrological conditions.
Nevertheless, for the hydrological variables studied (apart from snow), there were only small
differences in cross-validation statistics between the tested methods, indicating that care should
be taken when selecting MOS methods for particular purposes and (ideally) several methods
should be used in parallel. Overall, the results highlight the difficulty to illustrate the added
value of more complex methods, when applying them in producing projections for daily mean
temperature and precipitation.

The main shortcoming of this study is the limited number of GCM-RCM simulations available for
cross-validation tests, and optimally a larger set of model simulations should be used. Furthermore,
the response to different bias correction and delta change algorithms is likely dependent on the
hydrological model and the used parameterisations. For example, earlier studies have shown e.g., [44]
that projections for evapotranspiration based on parameterising potential evapotranspiration using
only temperature are not suitable for all climatic conditions. Furthermore, snow processes were
parameterized in the HYPE simulations using a simple degree-day algorithm, which does not take
solar radiation and other meteorological factors into account. More complex parameterizations,
which require multiple variables as input, should be evaluated in further studies. If bias correction
of a higher dimensional joint distribution were required, more sophisticated bias correction methods
could, at least in principle, provide larger improvements in comparison to univariate methods,
depending on the available data for robust calibration. This has been demonstrated by Cannon [17],
who showed that M4 performs very well when adjusting a higher dimensional distribution for
Canadian Forest Fire Weather Index calculations in the present-day climate. Moreover, different
implementations of M3 could also be studied in future research. Most importantly, Gaussian copula
is unlikely to be the optimal choice for describing the temperature and precipitation dependence
structure in some cases and the use of other copulas should be further explored.

The presented framework allows to make some inferences about the ability of bias correction
and delta change methods in constructing projections for future climate and their applicability from
hydrological modeling perspective, an information of major interest to the impact modeling community.
However, these tests are not sufficient alone to determine whether a particular method is suitable for
climate change assessments. Additional tests such as those implemented in the VALUE framework [24]
should be conducted to obtain a complete picture of benefits and limitations of bias correcting
inter-variable correlations. As discussed above, the used approach does not easily allow to evaluate
the potential benefits/adverse effects of the modification of temporal sequencing to the hydrological
model results, which would require temporally synchronized model simulations and reference data.
Furthermore, the effect of errors in the spatial representation of climate model output caused (e.g.,)
by differing topography should be studied comprehensively to see how sensitive future hydrological
simulations are to the correct representation of spatial fields.

Supplementary Materials: Figures S1–S7 are available online at http://www.mdpi.com/2225-1154/6/2/33/s1.
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Abstract: This study investigated potential changes in future precipitation, temperature, and drought
across 10 hydrologic regions in California. The latest climate model projections on these variables
through 2099 representing the current state of the climate science were applied for this purpose.
Changes were explored in terms of differences from a historical baseline as well as the changing
trend. The results indicate that warming is expected across all regions in all temperature projections,
particularly in late-century. There is no such consensus on precipitation, with projections mostly
ranging from −25% to +50% different from the historical baseline. There is no statistically significant
increasing or decreasing trend in historical precipitation and in the majority of the projections on
precipitation. However, on average, precipitation is expected to increase slightly for most regions.
The increases in late-century are expected to be more pronounced than the increases in mid-century.
The study also shows that warming in summer and fall is more significant than warming in winter
and spring. The study further illustrates that, compared to wet regions, dry regions are projected to
become more arid. The inland eastern regions are expecting higher increases in temperature than
other regions. Particularly, the coolest region, North Lahontan, tends to have the highest increases
in both minimum and maximum temperature and a significant amount of increase in wet season
precipitation, indicative of increasing flood risks in this region. Overall, these findings are meaningful
from both scientific and practical perspectives. From a scientific perspective, these findings provide
useful information that can be utilized to improve the current flood and water supply forecasting
models or develop new predictive models. From a practical perspective, these findings can help
decision-makers in making different adaptive strategies for different regions to address adverse
impacts posed by those potential changes.

Keywords: California; hydrologic regions; warming; drought

1. Introduction

Understanding hydroclimatic changes and trends is of important scientific and practical
significance for water resources management [1,2]. In particular, this understanding helps:
(1) characterize the behavior of hydroclimatic variables (e.g., precipitation and temperature) as well as
extreme events (e.g., droughts); (2) inform the development and enhancement of predictive tools to
forecast future occurrence of these events; and (3) develop mitigation and adaptation plans to minimize
the adverse impacts of unavoidable changes. This is particularly critical in arid and semi-arid areas
including the State of California.

As the home to more than 37 million people [3] and a top-ten economy in the world, California’s
growth has been largely dependent on its ability to manage limited water resources [4]. In California,
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most of the precipitation falls in the northern half of the state, while the majority of the demand
comes from the southern half where most of the population and farmlands are located. In addition,
available water for supply in the state mostly comes during the wet season (November to April) as
most precipitation falls in this period, while the demand is typically the highest in the dry season
(late spring and summer) [5]. Furthermore, the state is prone to hydroclimatic extremes [1], with the
most recent examples being the record-setting 2012–2015 drought and flooding in 2017. In the face
of the geographically and temporally uneven distribution of water resources, the state traditionally
relies on statewide and regional water storage and transfer projects, including the State Water Project
(SWP) and the Central Valley Project (CVP), to redistribute water to meet multiple and often competing
water management objectives [6]. However, the system was designed using hydroclimatic data of
the first half of the 20th century. Since then, significant changes have been observed and reported,
including increasing temperature, declining mountain snowpack, earlier snowmelt and streamflow
peaking, higher percentage of precipitation falling as rainfall rather than snowfall, and increasing
sea level, among others [7–17]. Those changes would likely amplify and accelerate in the future as
the state’s hydroclimate continues to change in a changing climate. In addition, as the population
and economy continue to grow, natural hazards including extreme flooding and drought events pose
a greater risk [18,19]. Those factors collectively make reliable water supply and drought and flood
management in the state unprecedentedly challenging [20].

In light of their importance, many studies have focused on characterizing potential future
hydroclimatic events in California [21–30]. These studies mostly used climate model projections
from the Coupled Model Intercomparison Project Phase 3 (CMIP3) [31], which were produced more
than a decade ago and do not represent the latest climate science. There are a few exceptions [21,24,25]
that employed the latest climate model projections from the Coupled Model Intercomparison Project
Phase 5 (CMIP5) [32]. However, these studies generally focused on spatial scales not directly relevant
to water resources management practices. For instance, Sun et al. [24] selected mountainous areas in
Southern California as their study focus. In addition, the linear regression approach was generally
used in trend assessment in those studies. The results of this method are largely affected by the starting
and ending values of the study data and subject to the assumption of normality.

The objective of this study was to provide an assessment of the changes (from historical baseline)
and trends of projected precipitation and temperature along with the trends in projected drought over
California. This study extended beyond relevant previous studies in terms of: (1) focusing on the scale
consistent with the water resources planning and management practices in the state; (2) using climate
projections that reflects the latest climate science; and (3) applying the widely-used non-parametric
Mann–Kendall approach in trend analysis. Compared to the traditional linear regression method,
this method requires less assumption on data distribution and is less affected by the beginning and
ending values of the study data. Specifically, the current study was built upon a previous study [14]
that explored changes in historical precipitation, temperature, and drought in California. However,
the current study differs from [14] in terms of study variables, study metrics, study method, study
period, and study purpose. Particularly, this study aimed to offer insight into potential changes to
California’s hydroclimate on the scale meaningful for water resources management practices and to
inform decision-makers in developing strategies to cope with these changes.

2. Materials and Methods

2.1. Study Area and Dataset

Different from the previous study [14] that looks at seven climatic divisions in California, the
current study focuses on the 10 hydrologic regions (Figure 1 and Table 1) defined by the California
Department of Water Resources (DWR) for operational water resources planning and management
purposes [5]. These regions include four coastal regions (North Coast, San Francisco Bay, Central
Coast, and South Coast), three Central Valley regions (Sacramento River, San Joaquin River, and Tulare
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Lake), and three Eastern regions (North Lahontan, South Lahontan, and Colorado River). For each
of these three categories (Coastal, Central Valley, and Eastern), climate tends to be drier towards the
southern regions.

Figure 1. Ten hydrologic regions in California: North Coast (NC), San Francisco Bay (SF), Central
Coast (CC), South Coast (SC), Sacramento River (SAC), San Joaquin River (SJQ), Tulare Lake (TUL),
North Lahontan (NL), South Lahontan (SL), and Colorado River (CR). Dots represent the centroid
points of individual climate projection grids (1/16th degree) located in each region.

Table 1. Geographic and climatic characteristics of study hydrologic regions.

ID Region Name Area (km2)
Annual

Precipitation
(mm)

Annual Mean
Temperature

(◦C)

Population
(as of 2010;

Million)

NC North Coast 49,859 1390 9.3 0.81
SF San Francisco Bay 11,535 641 14.3 6.35
CC Central Coast 28,995 504 13.0 1.53
SC South Coast 27,968 459 15.6 19.58

SAC Sacramento River 69,750 925 11.4 2.98
SJQ San Joaquin River 38,948 680 12.8 2.10
TUL Tulare Lake 43,604 408 13.9 2.27
NL North Lahontan 15,672 542 6.4 0.11
SL South Lahontan 68,434 191 15.2 0.93
CR Colorado River 51,103 127 20.2 0.75

The North Coast region contains the California Coast Ranges, the Klamath Mountains, and parts
of the Modoc Plateau [5]. The eastern side of the region is mostly mountainous with crests around
1800 m (6000 ft) and a few more than 2400 m (8000 ft) in elevation. It is the wettest region in terms of
annual precipitation received (1390 mm; Table 1). As such, the region is prone to flooding. Major floods
were recorded in 1955, 1964, 1986, 1997, 2006, and 2017. The San Francisco Bay region is the smallest in
size. It is bounded by the Pacific Ocean on the west and Coast Ranges on the east where the peaks are
above 1200 m (4000 ft) in elevation. The region faces multiple water management challenges including
an unreliable water supply, declining water quality and ecosystems, increasing flood risks, and threats
posed by sea level rise to coastal areas. The Central Coast region is the most groundwater-dependent
region. Groundwater supplies about 80% of its total water usage. The water management challenges
of this region include managing groundwater quality and overdraft, sea water intrusion, and flood
risks. The South Coast region is the most urbanized and populous region. It accounts for about 7% of
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the state’s total area but accommodates more than half of the state’s population. As a result, water
supply is always a concern of local water managers. The region is also prone to flooding including
debris flows and mud slides, particularly in areas where hillsides have been damaged by wildfires.
It is the driest and warmest region in the coastal regions (Table 1).

Central Valley regions are the major water supply sources for the state, of which the Sacramento
River region is the primary source. It is the largest and second wettest region (925 mm/year; Table 1) of
all 10 hydrologic regions. It contributes a majority portion of the water supplied to the SWP and CVP.
The region is bounded by Coast Ranges on the west and Sierra Nevada on the east. In this region, about
one in three residents is exposed to a 500-year flood event. The region has approximately $65 billion
of assets, 1.2 million acres of farmland, and over 340 sensitive species [5]. Major floods in the region
normally originate from extreme atmospheric river events during the winter. The San Joaquin River
region receives less precipitation than the Sacramento River region. It is also bordered by the Sierra
Nevada on the east. However, Sierra Nevada watersheds in this region are higher in elevation, making
them more dominated by snow compared to Sacramento River region watersheds. Floods in this
region come from both winter rainfall and melting Sierra snowpack [5]. The Tulare Lake region is the
driest in the Central Valley and one of the driest regions in the state. It is the largest agricultural region
in the state heavily relying on groundwater and imported water supply. Groundwater pumping in
this region accounts for more than 38% of the state’s total annual groundwater extraction. The region
is also prone to floods caused by winter rainfall and spring snowmelt.

The eastern regions are the least populous. The North Lahontan region accommodates
approximately 0.3% of the state’s population. It comprises arid high desert (1200–1500 m in elevation)
in the north and the eastern slopes of the Sierra Nevada (up to 3750 m in elevation) in the central and
southern portions. It is the coolest region in the state (Table 1). In contrast, the Colorado River region
is the hottest. It is also the driest region, receiving only about one tenth of the precipitation received
by the North Coast region. The Colorado River region is, however, also subject to flooding which
threatens about 38% of its population. Different from all other regions, most flooding events occur
from infrequent but high-intensity summer storms in this region. The South Lahontan region is the
second driest region in the state. Precipitation for this region comes from both winter storm events
and summer thunderstorms.

In general, California has a typical Mediterranean-like climate, with the summer (winter) being
dry and warm (cool and wet). This is evident for the 10 regions on the monthly scale (Figure 2). Most of
the precipitation occurs during the wet season (November to April). During that period, those regions
receive 69% (Colorado River region) to 91% (Central Coast region) of their total annual precipitation.
Statewide, 85% of annual precipitation occurs during the wet season. January normally observes the
highest amount of precipitation while July is typically the driest month. Meanwhile, January is the
coolest month while July has the highest average temperature. South Lahontan and Central Coast
regions have the largest (22.1 ◦C) and smallest (10.1 ◦C) variations in monthly temperature, respectively.
Across all regions, the Colorado River region is the driest and hottest. The North Lahontan region is
the coolest and the North Coast region is the wettest. Those observations are consistent with values
shown in Table 1.

This study looked at both the historical and projected precipitation, and maximum and minimum
temperature data. The projections for 2020–2099 were based on climate model simulations from
the Coupled Model Intercomparison Project Phase 5 (CMIP5) [32], which represents the current
state of the climate science. Specifically, 20 individual projections from 10 Climate Circulation
Models (GCMs) under two newly developed emission scenarios named Representative Concentration
Pathways (RCP) 4.5 and RCP 8.5 [33] were selected for the analyses. These 10 GCMs (Table 2) were
chosen by DWR Climate Change Technical Advisory Group and deemed as the most suitable for
California climate and water resources assessment [34]. RCP 4.5 (RCP 8.5) assumes low (high) future
greenhouse-gas concentrations. These projections were downscaled to a very high spatial resolution at
1/16th degree (approximately 6 by 6 km, or 3.75 by 3.75 miles) to better capture the spatial variability
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of the climate via the Localized Constructed Analogs (LOCA) method [35]. This dataset is made
available for California’s Fourth Climate Change Assessment (http://cal-adapt.org/). There are other
ways of selecting representative GCMs models [36,37] for water planning analysis. However, they
are beyond the scope of this study which exclusively used the GCMs recommended by the CCTAG.
These 20 CCTAG-recommended projections have been applied in DWR’s and the California Water
Commission’s planning activities including the Central Valley Flood Protection Plan [38] and the
Water Storage Investment Program [39]. There is no consensus that some of those projections are more
likely to occur than the remaining projections in the future. As a result, these projections are typically
treated equally in planning activities. In this study, we looked at these 20 projections together. When
looking at the mean of future projections on the annual scale, however, the 10 RCP 4.5 projections and
10 RCP 8.5 projections were analyzed separately.
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Figure 2. Long-term (1951–2013) mean monthly precipitation (a) and temperature (b) of
10 hydrologic regions.

Table 2. GCMs Selected for California Water Resources Planning 1.

Model ID Model Name Model Institution

1 ACCESS-1.0 Commonwealth Scientific and Industrial Research Organisation
(CSIRO) and Bureau of Meteorology (BOM), Australia

2 CCSM4 National Center for Atmospheric Research

3 CESM1-BGC National Science Foundation, Department of Energy, National
Center for Atmospheric Research

4 CMCC-CMS Centro Euro-Mediterraneo sui Cambiamenti Climatici

5 CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen
de Recherche et de Formation Avancée en Calcul Scientifique

6 CanESM2 Canadian Centre for Climate Modeling and Analysis
7 GFDL-CM3 Geophysical Fluid Dynamics Laboratory
8 HadGEM2-CC Met Office Hadley Centre
9 HadGEM2-ES Met Office Hadley Centre/Instituto Nacional de Pesquisas Espaciais

10 MIROC5
Atmosphere and Ocean Research Institute (The University of
Tokyo), National Institute for Environmental Studies, and Japan
Agency for Marine-Earth Science and Technology

1 Adapted from Tables 2–4 of [34].
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The gridded historical observational dataset of these three variables on daily scale for water years
1951–2013 of Livneh et al. [40] (https://data.nodc.noaa.gov/) were employed as the historical baseline.
The spatial resolution (1/16th degree) of this dataset is consistent with that of the LOCA-downscaled
climate model projections. This dataset has been applied extensively in hydrologic modeling and
drought assessment [41–44], and deemed as the best available historical data at this spatial resolution.
In this study, both projected and historical datasets were aggregated from grid scale to (hydrologic)
regional scale in the analyses presented below.

2.2. Study Method and Metrics

2.2.1. Difference from the Baseline

This study employed difference as a parsimonious metric to represent changes in future conditions
from historical conditions. This is a standardized metric applied extensively in climate change related
studies [29]. Specifically, the 40-year period, 1951–1990, was used as the historical baseline period.
Compared to late 1990s and early 2000s, this period is relatively less impacted by anthropogenic climate
change. Additionally, this 40-year window allows enough sample size to represent a wide range of
natural variability in hydroclimatic variables. Similar studies have normally used 30-year periods [34].
Two 40-year future periods, mid-century (2020–2059) and late-century (2060–2099), were considered.
Mean annual precipitation, and maximum and minimum temperature in the baseline period and
future periods were computed and compared. Differences (from the baseline) were subsequently
derived. Specifically, when looking at precipitation variables, the focus was on relative differences
(i.e., percent different from the baseline); for temperature variables, absolute difference (in degree
Celsius) was used.

In addition to annual precipitation and temperature, wet season precipitation and seasonal
temperature were also applied as important indices in planning studies [45]. Wet season precipitation
accounts for a majority portion of the annual precipitation. Seasonal temperature typically affects
water supply and demand. For instance, spring temperature impacts snowmelt timing and amount.
Summer temperature impacts evapotranspiration demand. Changes in wet season precipitation and
seasonal temperature were also explored in this study.

2.2.2. Drought Index

Numerous drought indices have been developed for drought monitoring, assessment and
prediction purposes [46–48]. Among these indices, the most widely used index might be the
Standardized Precipitation Index (SPI) [49] because of its parsimonious (only requiring precipitation
as input) and standardized (can be used across different spatial and temporal scales) nature. Despite
its popularity, more and more studies noted that evapotranspiration also plays an important role in
drought development [50–52]. This is particularly true in a warming climate for dry regions where
evapotranspiration is an important component of the water budget. For instance, the most recent
2012–2015 California drought was a typical “warm drought” characterized by record-low precipitation
and snowpack as well as record-high temperature [45,53–55]. As a result, SPI may not be the most
appropriate index for drought analysis in California which contains many arid or semi-arid areas.

Most recently, based on the same concept employed in defining the SPI, Vicente-Serrano et al. [56]
proposed a Standardized Precipitation-Evapotranspiration Index (SPEI). It first calculates the
discrepancies between precipitation (P) and potential evapotranspiration (PET) on a monthly time
scale (D = P − PET). Monthly discrepancies can be aggregated to other time scales (e.g., 3-month,
6-month, 12-month, among others) to calculate SPEI values at corresponding temporal scales. Next,
a three-parameter Log-logistic distribution is selected to model the discrepancy time series. The
probability distribution function of D is calculated according to the fitted Log-logistic distribution (F(x)).
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Lastly, the SPEI value is determined as the standardized values of F(x) following the approximation of
Abramowitz and Stegun [57]:

SPEI = W − C0 + C1W + C2W2

1 + d1W + d2W2 + d3W3 (1)

where W = −2 ln(p); p is the probability of exceeding a determined D value; and C0, C1, C2, d1,
d2, and d3 are preset constant coefficients. A positive (negative) SPEI value indicates wet (drought)
conditions. Depending on the specific values, a drought event can be classified into different categories.
Typically, a SPEI value less than −2 indicates extreme drought conditions. A value ranging from −2
to −1 denotes moderate drought conditions. A SPEI greater than −1 but less than 0 represents mild
drought conditions.

SPEI has been shown to be a robust index. It compares favorably to other popular drought
indices [58–63]. The PET is calculated using the Thornthwaite equation [64] which only requires
temperature data as input. As such, the SPEI index implicitly considers the impact of temperature
on drought situation, making it suitable in assessing drought conditions in future warming scenarios
(represented by different model projections in the current study). For detailed explanations on the
concept and calculation of the SPEI index, the readers are referred to [56]. The SPEI values on annual
scale (SPEI-12), two-year scale (SPEI-24), three-year scale (SPEI-36), and four-year scale (SPEI-48) were
chosen in this study. Drought occurs in California at those time scales regularly. It is meaningful to
look at future drought at those scales for adaptive planning purpose.

Figure 3 exemplifies the SPEI-12 calculated for the three representative regions from each of the
coastal, Central Valley, and eastern areas in the historical period: (1) the highly urbanized San Francisco
Bay region; (2) the largest water supply source of the State: Sacramento River region; and (3) the driest
Colorado River region. The San Francisco Bay region and the Sacramento River region have similar
patterns due to their geographic proximity. The SPEI index for both regions well captures the 1983
and 1997 wet conditions as well as the 1976–1977, 1988–1992, 2007–2009, and the 2012–2013 droughts.
The Colorado River region differs from those two regions in terms of annual precipitation (driest) and
temperature (hottest). Long-duration droughts occur more frequently after 1990s in this region.

2.2.3. Trend Analysis

The methods applied in climatic and hydrological trend analysis are typically classified into
two types: parametric and non-parametric [65,66]. The latter normally requires fewer assumptions
(e.g., normality of study data) compared to the former. In reality, the assumptions on data
distribution are difficult to satisfy. Therefore, the parametric methods are considered less robust
than the non-parametric methods [66]. Among all non-parametric methods, the Mann–Kendall test
(MKT) [67,68] has been applied extensively in the field of climatology and hydrology [14–16,45,69,70].
The approach first identifies the sign of each possible pair of data in the study time series, followed by
the determination of the corresponding test statistic z. The null hypothesis (H0) assumes no significant
monotonic trend in the time series while the alternative hypothesis suggests otherwise. The null
hypothesis is rejected when |Z| > Z1−α/2, where Z1−α/2 is the probability of the standard normal
distribution at a significance level of α. This study employed the MKT in assessing the significance of
a trend and uses 0.05 as the significance level.
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Figure 3. SPEI-12 of: (a) San Francisco Bay region; (b) Sacramento River region; and (c) Colorado River
region during the historical period (1951–2013). Blue color indicates wet conditions; red color designates
drought conditions. The purple line is the threshold below which extreme drought conditions exist.

This study further applied the non-parametric Theil–Sen approach (TSA) [71,72] to identify the
slope of significant trends determined via the MKT. In this approach, the slope values (vector TS) of
all data pairs are first calculated:

TS =
Vi − Vj

i − j
i = 1, 2, . . . , n; j = 1, 2, . . . , n; i > j (2)

where n is the length of study record period; and Vi and Vj are time series values at time i and j,
respectively (i > j). The median of TS is then used as overall slope of the trend identified for the study
time series. A positive (negative) slope value represents an increasing (decreasing) trend. In this study,
trend analysis is conducted in both historical (1951–2013) and future periods (2020–2099).

3. Results

3.1. Differences from the Baseline

3.1.1. Precipitation

Figure 4 shows the percent differences between historical precipitation and mean (of 10 individual
RCP 4.5 projections) projected precipitation in mid-century (Figure 4a,b) and late-century (Figure 4c,d),
respectively, on both the annual scale (Figure 4a,c) and during the wet season (Figure 4b,d). It is
evident that all regions are expecting increases in precipitation during the wet season, with increases
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ranging from 2.8% (1.5%) to 9.8% (10.5%) in mid-century (late-century). This observation implies that
future storms in the wet season would likely become more frequent, which is in line with the findings
of previous studies [25,28]. On the annual scale, most regions are also projected to receive more
precipitation, except for the driest two regions: South Lahontan and Colorado River. This suggests that
those two regions are expecting much less precipitation in the dry season, although more precipitation
is projected for them during the wet season. Typically, summer monsoons are a major contributor to
dry season precipitation in these two regions [73,74]. This finding denotes that future monsoons over
both regions are likely to become weaker or more sporadic. Across all regions, the San Francisco Bay
and the South Coast generally have the highest and lowest increases in precipitation in late-century,
respectively, on both temporal scales. This indicates that they are the most and least prone to changes in
future storms during this period, respectively, yet they are not the wettest or driest regions. Comparing
two future periods, the late-century period is generally expecting a higher increase in precipitation
than the mid-century period except for the dry regions including Colorado River, South Lahontan, and
South Coast.
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Figure 4. Percent differences (%) between historical and mean RCP 4.5 projections on: (a) annual
precipitation in mid- century; (b) wet season precipitation in mid-century; (c) annual precipitation in
late-century; and (d) wet season precipitation in late-century.

357



Climate 2018, 6, 31

The differences between historical precipitation and mean RCP 8.5 precipitation projections are
also explored (Table 3). Similar to what Figure 4 indicates, wet season precipitation is expected to
increase in both mid-century and late-century across all regions. Increases are expected for annual
precipitation for most regions except for three dry regions (i.e., Colorado River, South Lahontan, and
South Coast) in mid-century and one region (i.e., Colorado River) in late-century. The increases in
late-century are higher. Comparing annual precipitation and wet season precipitation, changes in the
latter is more significant in terms of magnitude, which is in line with the RCP 4.5 results as illustrated
in Figure 4. Comparing two future periods, changes in the late-century is more pronounced compared
to those of the mid-century. Comparing differences of the mean RCP 4.5 projections from the historical
baseline and that of the mean RCP 8.5 projections, the latter are more notable. Those are expected since
the late-century (compared to mid-century) and the RCP 8.5 scenarios (compared to RCP 4.5 ones) are
both expecting higher increases in temperature (Section 3.1.2). A warmer atmosphere can hold more
water moisture, indicative of more water available for precipitation.

Table 3. Percent differences (%) between historical and mean RCP 8.5 projections on annual
precipitation and wet season precipitation.

ID Region Name
Annual Precipitation (%) Wet Season Precipitation (%)

Mid-Century Late-Century Mid-Century Late-Century

NC North Coast 4.4 5.2 8.4 10.6
SF San Francisco Bay 10.3 14.4 12.7 18.7
CC Central Coast 7.4 12.8 9.6 16.0
SC South Coast −0.1 1.4 1.4 3.9

SAC Sacramento River 7.6 9.0 11.4 14.2
SJQ San Joaquin River 5.4 7.4 8.0 11.3
TUL Tulare Lake 0.5 2.7 2.9 5.8
NL North Lahontan 6.6 10.3 11.8 16.9
SL South Lahontan −0.5 2.4 3.8 7.7
CR Colorado River −2.3 −1.5 4.7 5.9

In addition to looking at the mean of PRC 4.5 and RCP 8.5 projections, individual projections
are also investigated (Figure 5) to provide insights on the potential range of precipitation changes.
Overall, on both temporal scales, there is no consensus that all projections show increases or decreases
consistently for any region in mid-century or in late-century. This finding is also reported in previous
studies using old climate projections [22,26–28]. The changes mostly range from −25% to 50%, with a
few outliers showing more than 50% increases in precipitation. Those outliners come from a single wet
climate model under the higher greenhouse-gas emission scenario (RCP 8.5). The variation range is
generally larger for late-century (compared to mid-century) and dry regions (compared to wet regions).
Additionally, wet season precipitation shows larger change ranges compared to annual precipitation.
These results indicate more uncertainties in the projections for the dry regions, in the wet season, and
in late-century.

3.1.2. Temperature

Mean annual maximum temperature and minimum temperature are examined in a similar way
to the precipitation. The mean of 10 RCP 4.5 projections in two future periods are compared with
their counterparts in the historical period (Figure 6). Increases are expected for both maximum and
minimum temperature in both future periods across all regions. The eastern regions (NL, SL, and CR)
are generally expecting more significant warming compared to other regions. This is likely because
of their geographic location (away from the Pacific Ocean, lacking ocean regulation). In contrast,
the Coastal regions normally have the least significant warming except for the South Coast region
which has similar climate pattern as the dry Tulare Lake region. Comparing two future periods,
late-century is expecting more warming consistently for all regions, which is not surprising given
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the accumulated effect of the greenhouse-gas emissions. The increases in minimum temperature and
maximum temperature are generally comparable to each other. Statewide, the increases in the latter is
slightly higher. Specifically, for maximum temperature, a 2.4 ◦C warming is projected statewide in
the late-century versus 2.0 ◦C in mid-century. For minimum temperature, the statewide increases are
expected to be 2.2 ◦C and 1.8 ◦C, respectively, in those two periods. This is somewhat different from
previous studies which claimed that increases in minimum temperature are more pronounced [16],
leading to smaller diurnal temperature ranges.
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Figure 5. Box-and-whisker plots of percent differences (%) between historical and individual projections
on: (a) annual precipitation; and (b) wet season precipitation. Yellow boxes represent mid-century
results and orange boxes show late-century results.

In addition to the differences between mean RCP 4.5 projections and the historical baseline, the
differences associated with the mean RCP 8.5 projections are also examined (Table 4). The messages
are generally consistent with what the RCP 4.5 results (Figure 6) indicate. In general, warming (in both
maximum and minimum temperature) is expected across all regions in both future periods. The inland
eastern regions are projected to have the highest increases in temperature. The late-century is expecting
more significant warming than the mid-century. Comparing RCP 4.5 and RCP 8.5 scenarios, warming
of the latter is more pronounced in terms of increase amount. Specifically, for minimum temperature
in the mid-century, RCP 8.5 scenario shows about 0.8 ◦C (for San Francisco Bay and Central Coast) to
1.1 ◦C (North Lahontan) warmer than the RCP 4.5 scenario; in the late-century, the range is from 1.9 ◦C
(Central Coast) to 2.5 ◦C (North Lahontan). For maximum temperature, the differences between two
scenarios are slightly higher than that of the minimum temperature.
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Figure 6. Differences (◦C) between historical and mean RCP 4.5 projections on mean annual:
(a) maximum temperature in mid-century; (b) minimum temperature in mid-century; (c) maximum
temperature in late-century; and (d) minimum temperature in late-century.

Table 4. Differences (◦C) between historical and mean RCP 8.5 projections on annual maximum and
minimum temperature.

Annual Tmax (◦C) Annual Tmin (◦C)

Mid-Century Late-Century Mid-Century Late-Century

NC North Coast 2.7 4.3 2.5 4.1
SF San Francisco Bay 2.4 3.8 2.5 4.0
CC Central Coast 2.5 3.9 2.4 3.8
SC South Coast 3.0 4.5 2.9 4.5

SAC Sacramento River 3.0 4.7 2.7 4.4
SJQ San Joaquin River 3.0 4.6 2.8 4.5
TUL Tulare Lake 3.0 4.6 2.5 4.2
NL North Lahontan 3.4 5.3 3.2 5.0
SL South Lahontan 3.3 5.1 3.0 4.8
CR Colorado River 3.2 4.9 3.0 4.9

Looking at individual projections on maximum (Figure 7a) and minimum temperature (Figure 7b),
all of them show at least 1 ◦C warming. No projections indicate any decreases for any region, which is

360



Climate 2018, 6, 31

different from precipitation projections that have no such consensus. This is also reported in previous
studies [30,75–79]. Comparing two future periods, higher increases are expected in the late-century.
On average, increases in maximum temperature are generally higher than increases the minimum
temperature, which is particularly true for the eastern regions. Those observations are consistent with
what is noted in Figure 6. Similar to precipitation projections, the warming range of late-century is
larger than that of mid-century across all regions. This indicates that climate models tend to disagree
more with each other further into the future because of increasing uncertainty in climate model forcing.
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Figure 7. Box-and-whisker plots of differences (◦C) between historical and individual projections on
mean annual: (a) maximum temperature; and (b) minimum temperature. Yellow boxes represent
mid-century results and orange boxes show late-century results.

At the seasonal scale, the mean projection in mid-century shows at least 1 ◦C warming in both
maximum and minimum temperature across all seasons (Figure 8a). In comparison, at least 2.5 ◦C
warming is expected in late-century (Figure 8b). The highest increases (2.9 ◦C and 5.0 ◦C in mid-century
and late-century, respectively) are expected to occur in Summer maximum temperature in the coolest
region, North Lahontan. Comparing different regions, the eastern regions are expecting higher
increases in both minimum and maximum temperature than other regions. This is consistent with
what Figure 6 illustrates on the annual scale. Looking at different seasons, fall and summer are
expecting relatively higher warming than winter and spring. Particularly, summer is expecting the
highest increases. Statewide, an amount of 2.4 ◦C and 2.5 ◦C warming is projected in mid-century
in summer minimum and maximum temperature, respectively. In late-century, the corresponding
increases in summer are expected to be 4.2 ◦C and 4.3 ◦C, respectively.
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Figure 8. Differences (◦C) between historical and mean (of all 20) projections on seasonal maximum
temperature (Tmax) and minimum temperature (Tmin) in: (a) mid-century; and (b) late-century.

3.2. Trend Analysis

3.2.1. Precipitation

No significant trends are detected in historical annual and wet season precipitation for any
study regions. Similar findings have also been reported in relevant previous studies [14]. During
the projection period (2020–2099), a limited amount (no more than 15%) of model projections show
significant trends (Table 5). For annual precipitation, only one projection (out of 20) has statistically
significant trend for Sacramento River, South Coast, and Tulare Lake regions; three projections indicate
significant trends in Central Coast and North Lahontan regions; for other regions, only two projections
show significant trends. The slopes of those significant trends are all positive.

Table 5. Trend information of projected precipitation.

ID Region Name
Number (Percent) of Projections with Significant Trend 1 Range of

Significant Trend
Slope (mm/Year)Annual Precipitation Wet Season Precipitation

NC North Coast 2 (10%) 3 (15%) 3.9~5.4
SF San Francisco Bay 2 (10%) 2 (10%) 3.2~4.6
CC Central Coast 3 (15%) 3 (15%) −0.5~3.4
SC South Coast 1 (5%) 1 (5%) 2.1~2.7

SAC Sacramento River 1 (5%) 3 (15%) −2.2~6.0
SJQ San Joaquin River 2 (10%) 2 (10%) 2.8~5.0
TUL Tulare Lake 2 (10%) 2 (10%) 1.7~3.2
NL North Lahontan 3 (15%) 3 (15%) 1.2~5.3
SL South Lahontan 2 (10%) 0 (0%) 0.8~1.9
CR Colorado River 1 (5%) 0 (0%) 1.1

1 Significance level 0.05.

For wet season precipitation, no projections show any significant trends for the driest two regions
(Colorado River and South Lahontan). For San Francisco Bay, Central Coast, South Coast, San Joaquin
River, Tulare Lake, and North Lahontan regions, the projections showing significant trends are exactly
the same as those showing significant trends in annual precipitation. For the two wettest regions
(North Coast and Sacramento River), three projections show significant changes. Different from
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annual precipitation, two projections on wet season precipitation (one for Central Coast region and the
other for Sacramento River region) exhibit a decreasing tendency. Nevertheless, similar to the annual
precipitation, no significant changes are expected in the majority of climate model projections on wet
season precipitation through 2099.

3.2.2. Temperature

All 20 projections on mean annual maximum temperature (Figure 9a) and minimum temperature
(Figure 9b) show significant increasing trends. On average, the increasing rates of the Central Valley
regions (SAC, SJQ, and TUL) are fairly close to each other. The increasing rates of the coast regions
(NC, SF, CC, and SC) and eastern regions (NL, SL, and CR) are slightly smaller and higher, respectively,
compared to that of the Central Valley regions. Particularly, the median increasing rate in the coolest
region, North Lahontan, is the highest among all regions in maximum temperature. This is mostly
in line with what Figures 5 and 6 illustrate. In the historical period, both variables also exhibit
increasing trends. However, for maximum temperature, only the trends for Central Coast, South Coast,
San Francisco Bay, and South Lahontan regions are statistically significant at a significance level of 0.05.
For minimum temperature, the trends of all regions except for Colorado River region are significant.
Compared to historical trends, most projected trends have higher increasing rates. In general, the
increasing trend is more significant in maximum temperature than in minimum temperature, implying
that temperature range (difference between maximum and minimum temperature) is likely to increase.
Comparing different regions, on average, the coastal regions (NC, SF, CC, and SC) tend to have the
relatively smaller increasing rates while the eastern regions generally have the highest increasing rates.
This is generally consistent with what has been observed in Figure 6.
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Figure 9. Box-and-whisker plots of trend slopes of historical (1951–2013) and projected (2020–2099)
mean annual: (a) maximum temperature (Tmax); and (b) minimum temperature (Tmin) (at significance
level 0.05).
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Similar to those observed on the annual scale (Figure 9), not all regions have significant trends
in historical maximum temperature and minimum temperature on the seasonal scale (Figure 10a).
Specifically, fall and winter minimum temperature exhibits no statistically significant changes for any
region. Furthermore, the Tulare Lake region does not observe any significant trends in its maximum or
minimum temperature in any season. Comparing two temperature variables, maximum temperature
shows significant increasing trend in most cases while minimum temperature only exhibits significant
warming in a couple of seasons (spring and summer) for a few regions. In contrast, mean projections
on seasonal maximum temperature and minimum temperature show significant warming trends
consistently for all regions (Figure 10b). Warming in summer and fall is more pronounced than
warming in two other seasons. Looking at different regions, the eastern regions generally have
the highest increasing trend while the coastal regions have the smallest amount of increasing rate.
Particularly, the coolest region, North Lahontan, has the most significant increasing tendency in both
maximum temperature and minimum temperature. The region has the highest seasonal warming
rate in both maximum temperature (0.52 ◦C/decade) and minimum temperature (0.51 ◦C/decade) in
summer. Those observations are largely in line with what Figure 7 shows.
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Figure 10. Trend slopes of (a) historical (1951–2013) and (b) projected (2020–2099) mean seasonal
maximum temperature (Tmax) and minimum temperature (Tmin) (at significance level 0.05). Different
colors mean different trend slopes (per decade). White color indicates no significant trends.

3.2.3. Drought Index

California is prone to drought, with examples being the 1976–1977, 1988–1992, 2007–2009, and
2012–2013 droughts [80]. While the occurrence and lasting period of drought events are difficult
to predict decades in advance, the overall tendency (i.e., trend) of drought events can shed light
on long-term drought response planning activities. This section looks at projected future drought
conditions (represented by the SPEI index) at one- to four-year temporal scales which are relevant to
our operational planning practices. Figure 11 shows trend slopes of SPEI-12, SPEI-24, SPEI-36, and
SPEI-48 calculated from projected precipitation and temperature data, along with their counterparts in
the historical period. On average, all regions are expecting a decreasing trend (negative slope value).
This is particularly true for dry regions including the Colorado River, South Lahontan, and Tulare Lake.
All 20 projections have a decreasing tendency consistently, indicating more severe droughts for those
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regions on the annual, two-year, three-year, and four-year scales. For other regions, there is no such
consensus. However, the majority of projections show a decreasing trend. It should be highlighted
that, for the wettest region, North Coast, most projections have a relatively milder decreasing trend
compared to the historical baseline. This suggests that projected increase in precipitation over this
region outweighs the effect of warming. For the coolest region, North Lahontan, the median trend
slopes of projected SPEI values are generally around the historical trend slope values. This implies that
projected precipitation increase in this region offsets the impact of warming. For other regions, most
projections have a steeper decreasing trend compared to their historical counterparts, indicating that
projected increases in precipitation are not sufficient to offset the effect of warming. Particularly, for
the driest region, Colorado River, the decreasing rates of all 20 projections are higher than its baseline
counterpart. This suggests that this region is the least resilient to warming and thus most prone to
aridity (as represented by SPEI index) among all study regions.
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Figure 11. Box-and-whisker plots of significant trend slopes of: (a) SPEI-12; (b) SPEI-24; (c) SPEI-36;
and (d) SPEI-48 during projection period (2020–2099) (at significance level 0.05). The slope information
in historical period (1951–2013) is also shown.

It is worth noting that not all trends identified in the historical and projection periods are
statistically significant at a significance level of 0.05. The Central Coast region and Sacramento
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River region show no significant changes in SPEI values (Figure 11). Additionally, on three-year scale
and four-year scale, all Central Valley regions (SAC, SJQ, and TUL) have no increasing or decreasing
tendency in drought represented by SPEI during the historical period. In the projection period (Table 6),
for the driest two regions, Colorado River and South Lahontan, all 20 projections show consistently
significant trend in SPEI at the four time scales considered. This is no such consensus for other regions.
However, the majority of projections still show significant trends. For instance, only one out of 20 (5%)
projections exhibit insignificant changes in Tulare Lake region. For another relatively dry region,
South Coast, all projections show significant trends in SPEI on the three-year scale (SPEI-36) and
four-year scale (SPEI-48) while only one projection (5%) has insignificant trend on the annual scale
(SPEI-12) and two-year scale (SPEI-24). The wettest region, North Coast, has the highest amount
(25% to 30%) of projections that show no significant trend. For the second wettest region, Sacramento
River, 15–20% of the projections indicate no significant trend. Overall, those projections agree more
with each other on the increasing aridity in dry regions than in wet regions irrespective of the time
scales investigated.

Table 6. Number (percent) of SPEI projections with insignificant trend 1 in the projection period.

ID Region Name SPEI-12 SPEI-24 SPEI-36 SPEI-48

NC North Coast 6 (30%) 5 (25%) 5 (25%) 6 (30%)
SF San Francisco Bay 5 (25%) 5 (25%) 5 (25%) 3 (15%)
CC Central Coast 3 (15%) 3 (15%) 3 (15%) 2 (10%)
SC South Coast 1 (5%) 1 (5%) 0 (0%) 0 (0%)

SAC Sacramento River 4 (20%) 3 (15%) 4 (20%) 3 (15%)
SJQ San Joaquin River 3 (15%) 2 (10%) 2 (10%) 2 (10%)
TUL Tulare Lake 1 (5%) 1 (5%) 1 (5%) 1 (5%)
NL North Lahontan 2 (10%) 3 (15%) 3 (15%) 0 (0%)
SL South Lahontan 0 (0%) 0 (0%) 0 (0%) 0 (0%)
CR Colorado River 0 (0%) 0 (0%) 0 (0%) 0 (0%)

1 Significance level 0.05.

4. Discussion and Conclusions

This study investigated potential changes in future precipitation, temperature, and drought
(as represented by SPEI) across 10 hydrologic regions defined by the California Department of Water
Resources. The latest climate model projections on these variables through 2099 representing the
state of the current climate science were applied for this purpose. Changes were explored in terms of
differences from a historical baseline as well as the changing trend.

Results indicate that warming is expected across all regions in all temperature projections,
particularly in late-century. There is no such consensus in precipitation, with projections ranging
mostly from −25% to +50% different from the historical baseline. There is no statistically significant
increasing or decreasing trend in historical precipitation as well as in the majority of the projections.
However, on average, precipitation is expected to increase slightly for most regions. It should be noted
that this finding is not completely in line with a previous study that indicates decreases in future
California precipitation [81]. The major difference stems from the fact that different sets of data are
applied in the two studies. Specifically, the current study focused on precipitation and temperature
projections from 10 GCMs models (versus 42 models used by the previous study) that are deemed
most appropriate for water resources planning studies in California. Compared to wet regions, dry
regions are projected to have more severe drought conditions represented by SPEI. Those findings are
generally consistent with what have been reported in previous studies [21,26,28,76]. A new finding
of this study is that the coolest region, North Lahontan, tends to have the highest increases in both
minimum and maximum temperature and a significant amount of increase in wet season precipitation,
indicative of naturally increasing flood risk in this region. In another new finding, the warming in
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summer and fall (when water demand is typically high and precipitation is limited) is expected to be
more significant than the warming in winter and spring

In general, the findings of this study are meaningful from both scientific and practical perspectives.
From a scientific point of view, these findings provide useful information that can be utilized to
improve the current flood and water supply forecasting models. For instance, the coolest region, North
Lahontan, is expecting the most significant warming as well as increases in wet season precipitation.
This region is largely impacted by snow because of its high elevation. These expected changes will most
likely intensify regional rainfall (more precipitation comes as rainfall as warming elevates the snowline)
and spring snowmelt, increasing flood risks in the future. This region needs to be closely monitored in
the future, particularly near and above the current snowline. The current flood forecasting model uses
a parameter to cap the maximum possible snowmelt rate [82]. To reflect the expected warming, this
parameter needs to be increased accordingly to better model snowmelt. Taking one step further, the
snow accumulation and snowmelt processes based on which the current forecasting model is developed
are derived under the stationary assumption. In a non-stationary environment, these processes need to
be revisited and updated accordingly as relevant new observations become available. Additionally, the
current snowmelt model is temperature-index based. Snowmelt is a thermodynamic process driven
more by radiation than temperature. Development and implementation of radiation-driven snowmelt
model in operations are ongoing and will be reported in our future work.

From a practical standpoint, these findings can help inform water managers in making adaptive
management plans. For instance, vulnerability assessment is typically the first step in developing
any mitigation and adaptation strategies [83]. Corresponding adaptation strategies such as supply
diversification or increased volume management capacity should be tailored for the characteristics of
the regions and their particular impacts to a changing climate. All in all, this study has the potential
to help decision-makers move from a reactive position of responding to hydroclimatic events as
they happen to a pro-active position with region-specific strategies for improved water resources
management in the future. These strategies facilitate improving the resilience of California’s physical
water framework and the preparedness of its institutional framework via investments (e.g., where,
when, on what, and how much) in advance.

Despite its scientific and practical significance in guiding long-term strategical water resources
planning, the study addressed temperature and precipitation changes at annual and seasonal scales at
the hydrologic region scale. For time-sensitive and localized activities including emergency response
and management, those changes at a finer temporal and spatial scale at which extreme events occur
need to be explored. Extreme climatic indices (e.g., daily maximum precipitation, heat wave, etc.) with
daily resolution at the watershed scale have been extracted from the 20 climate projections applied
in this study. They will be analyzed and presented in a follow-up study. Furthermore, as opposed
to precipitation and temperature, streamflow runoff is normally the variable directly used to inform
real-time decision making (e.g., determination of reservoir release schedule). Those climate projections
have been used as input to drive a distributed hydrologic model, the Variable Infiltration Capability
model, to produce daily inflow projections through 2099 for major water supply reservoirs in California.
Those flow data will be analyzed in terms of volume, variability, and frequency and reported in a
companion study.

Acknowledgments: The authors would like to thank four anonymous reviewers for their valuable comments
that largely helped improve the quality of this study. The authors would also like to thank their colleague
Mahesh Gatuam and Jianzhong Wang for discussions on previous studies leading to the current work.
Technical editing from Charlie Olivares is acknowledged. The authors also want to thank John Andrew,
Prabhjot (Nicky) Sandhu, and Jamie Anderson for their management support on the study. Any findings,
opinions, and conclusions expressed in this paper are solely the authors’ and do not reflect the views or opinions
of their employer.

Author Contributions: The study was conceived by the authors together. M.H. conducted the study and wrote
the paper. A.S., E.L. and M.A. provided critical discussions.

Conflicts of Interest: The authors declare no conflict of interest.

367



Climate 2018, 6, 31

References

1. Jones, J. California, a state of extremes: Management framework for present-day and future hydroclimate
extremes. In Water Policy and Planning in a Variable and Changing Climate; Miller, K., Hamlet, A.F., Kenney, D.S.,
Redmond, K.T., Eds.; Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 207–222.

2. Dettinger, M.D.; Ralph, F.M.; Das, T.; Neiman, P.J.; Cayan, D.R. Atmospheric rivers, floods and the water
resources of California. Water 2011, 3, 445–478. [CrossRef]

3. U.S. Census Bureau. 2010 Census Summary File 1. Available online: https://www.census.gov/2010census/
data/ (accessed on 1 August 2010).

4. Lund, J.R. Flood management in California. Water 2012, 4, 157–169. [CrossRef]
5. California Department of Water Resources. California Water Plan Update 2013; California Department of

Water Resources: Sacramento, CA, USA, 2014.
6. Chung, F.; Kelly, K.; Guivetchi, K. Averting a California water crisis. J. Water Resour. Plan. Manag. 2002, 128,

237–239. [CrossRef]
7. Anderson, J.; Chung, F.; Anderson, M.; Brekke, L.; Easton, D.; Ejeta, M.; Peterson, R.; Snyder, R. Progress

on incorporating climate change into management of California’s water resources. Clim. Chang. 2008, 87,
91–108. [CrossRef]

8. Kapnick, S.; Hall, A. Observed climate–snowpack relationships in California and their implications for the
future. J. Clim. 2010, 23, 3446–3456. [CrossRef]

9. McCabe, G.J.; Clark, M.P. Trends and variability in snowmelt runoff in the western United States.
J. Hydrometeorol. 2005, 6, 476–482. [CrossRef]

10. Mote, P.W. Trends in snow water equivalent in the Pacific Northwest and their climatic causes. Geophys. Res.
Lett. 2003, 30. [CrossRef]

11. Mote, P.W.; Hamlet, A.F.; Clark, M.P.; Lettenmaier, D.P. Declining mountain snowpack in western
North America. Bull. Am. Meteorol. Soc. 2005, 86, 39–49. [CrossRef]

12. Stewart, I.T.; Cayan, D.R.; Dettinger, M.D. Changes in snowmelt runoff timing in western North America
under a business as usual climate change scenario. Clim. Chang. 2004, 62, 217–232. [CrossRef]

13. Regonda, S.K.; Rajagopalan, B.; Clark, M.; Pitlick, J. Seasonal cycle shifts in hydroclimatology over the
western United States. J. Clim. 2005, 18, 372–384. [CrossRef]

14. He, M.; Gautam, M. Variability and trends in precipitation, temperature and drought indices in the State of
California. Hydrology 2016, 3, 14. [CrossRef]

15. He, M.; Russo, M.; Anderson, M. Predictability of seasonal streamflow in a changing climate in the Sierra
Nevada. Climate 2016, 4, 57. [CrossRef]

16. He, M.; Russo, M.; Anderson, M.; Fickenscher, P.; Whitin, B.; Schwarz, A.; Lynn, E. Changes in extremes of
temperature, precipitation, and runoff in California’s Central Valley during 1949–2010. Hydrology 2017, 5, 1.
[CrossRef]

17. Hatchett, B.J.; Daudert, B.; Garner, C.B.; Oakley, N.S.; Putnam, A.E.; White, A.B. Winter snow level rise in the
northern Sierra Nevada from 2008 to 2017. Water 2017, 9, 899. [CrossRef]

18. Huppert, H.E.; Sparks, R.S.J. Extreme natural hazards: Population growth, globalization and environmental
change. Philos. Trans. A Math. Phys. Eng. Sci. 2006, 364, 1875–1888. [CrossRef] [PubMed]

19. Cavallo, E.; Galiani, S.; Noy, I.; Pantano, J. Catastrophic natural disasters and economic growth. Rev. Econ. Stat.
2013, 95, 1549–1561. [CrossRef]

20. Hanak, E.; Lund, J.R. Adapting California’s water management to climate change. Clim. Chang. 2012, 111,
17–44. [CrossRef]

21. Dettinger, M.; Anderson, J.; Anderson, M.; Brown, L.; Cayan, D.; Maurer, E. Climate change and the Delta.
San Fr. Estuary Watershed Sci. 2016, 14, 1–26. [CrossRef]

22. Das, T.; Dettinger, M.D.; Cayan, D.R.; Hidalgo, H.G. Potential increase in floods in California’s Sierra Nevada
under future climate projections. Clim. Chang. 2011, 109, 71–94. [CrossRef]

23. Das, T.; Maurer, E.P.; Pierce, D.W.; Dettinger, M.D.; Cayan, D.R. Increases in flood magnitudes in California
under warming climates. J. Hydrol. 2013, 501, 101–110. [CrossRef]

24. Sun, F.; Hall, A.; Schwartz, M.; Walton, D.B.; Berg, N. Twenty-first-century snowfall and snowpack changes
over the southern California Mountains. J. Clim. 2016, 29, 91–110. [CrossRef]

368



Climate 2018, 6, 31

25. Berg, N.; Hall, A. Increased interannual precipitation extremes over California under climate change. J. Clim.
2015, 28, 1–11. [CrossRef]

26. Tebaldi, C.; Hayhoe, K.; Arblaster, J.M.; Meehl, G.A. Going to the extremes. Clim. Chang. 2006, 79, 185–211.
[CrossRef]

27. Wang, J.; Zhang, X. Downscaling and projection of winter extreme daily precipitation over North America.
J. Clim. 2008, 21, 923–937. [CrossRef]

28. Yoon, J.-H.; Wang, S.S.; Gillies, R.R.; Kravitz, B.; Hipps, L.; Rasch, P.J. Increasing water cycle extremes in
California and in relation to ENSO cycle under global warming. Nat. Commun. 2015, 6, 8657. [CrossRef]
[PubMed]

29. Maurer, E.P. Uncertainty in hydrologic impacts of climate change in the Sierra Nevada, California, under
two emissions scenarios. Clim. Chang. 2007, 82, 309–325. [CrossRef]

30. Cayan, D.R.; Maurer, E.P.; Dettinger, M.D.; Tyree, M.; Hayhoe, K. Climate change scenarios for the California
region. Clim. Chang. 2008, 87, 21–42. [CrossRef]

31. Meehl, G.A.; Covey, C.; Taylor, K.E.; Delworth, T.; Stouffer, R.J.; Latif, M.; McAvaney, B.; Mitchell, J.F. The
WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88,
1383–1394. [CrossRef]

32. Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am.
Meteorol. Soc. 2012, 93, 485–498. [CrossRef]

33. Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.;
Krey, V.; Lamarque, J.-F. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5.
[CrossRef]

34. Climate Change Technical Advisory Group (CCTAG). Perspectives and Guidance for Climate Change Analysis;
California Department of Water Resources: Sacramento, CA, USA, 2015.

35. Pierce, D.W.; Cayan, D.R.; Thrasher, B.L. Statistical downscaling using localized constructed analogs (LOCA).
J. Hydrometeorol. 2014, 15, 2558–2585. [CrossRef]

36. Lutz, A.F.; ter Maat, H.W.; Biemans, H.; Shrestha, A.B.; Wester, P.; Immerzeel, W.W. Selecting representative
climate models for climate change impact studies: An advanced envelope-based selection approach. Int. J.
Climatol. 2016, 36, 3988–4005. [CrossRef]

37. Shrestha, N.K.; Wang, J. Modelling nitrous oxide (N2O) emission from soils using the soil and water
assessment tool (SWAT). In Proceedings of the 2018 International SWAT Conference and Workshops, Chennai,
India, 10–12 January 2018.

38. California Department of Water Resources. 2017 Central Valley Flood Protection Plan Update; California
Department of Water Resources: Sacramento, CA, USA, 2017.

39. California Water Commission. Water Storage Investigation Program Technical Reference; California Water
Commission: Sacramento, CA, USA, 2017.

40. Livneh, B.; Bohn, T.J.; Pierce, D.W.; Munoz-Arriola, F.; Nijssen, B.; Vose, R.; Cayan, D.R.; Brekke, L. A spatially
comprehensive, hydrometeorological data set for Mexico, the US, and southern Canada 1950–2013. Sci. Data
2015, 2, 150042. [CrossRef] [PubMed]

41. Livneh, B.; Hoerling, M.P. The physics of drought in the US central great plains. J. Clim. 2016, 29, 6783–6804.
[CrossRef]

42. Bohn, T.J.; Vivoni, E.R. Process-based characterization of evapotranspiration sources over the North American
monsoon region. Water Res. Res. 2016, 52, 358–384. [CrossRef]

43. Barnhart, T.B.; Molotch, N.P.; Livneh, B.; Harpold, A.A.; Knowles, J.F.; Schneider, D. Snowmelt rate dictates
streamflow. Geophys. Res. Lett. 2016, 43, 8006–8016. [CrossRef]

44. Wi, S.; Ray, P.; Demaria, E.M.; Steinschneider, S.; Brown, C. A user-friendly software package for VIC
hydrologic model development. Environ. Modell. Softw. 2017, 98, 35–53. [CrossRef]

45. He, M.; Russo, M.; Anderson, M. Hydroclimatic characteristics of the 2012–2015 California drought from an
operational perspective. Climate 2017, 5, 5. [CrossRef]

46. Dai, A. Drought under global warming: A review. WIREs Clim. Chang. 2011, 2, 45–65. [CrossRef]
47. Heim, R.R., Jr. A review of twentieth-century drought indices used in the United States. Bull. Am.

Meteorol. Soc. 2002, 83, 1149–1165. [CrossRef]
48. Keyantash, J.; Dracup, J.A. The quantification of drought: An evaluation of drought indices. Bull. Am.

Meteorol. Soc. 2002, 83, 1167–1180. [CrossRef]

369



Climate 2018, 6, 31

49. McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales.
In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993;
American Meteorological Society: Boston, MA, USA; pp. 179–183.

50. Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.;
Carrara, A. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature
2005, 437, 529–533. [CrossRef] [PubMed]

51. Adams, H.D.; Guardiola-Claramonte, M.; Barron-Gafford, G.A.; Villegas, J.C.; Breshears, D.D.; Zou, C.B.;
Troch, P.A.; Huxman, T.E. Temperature sensitivity of drought-induced tree mortality portends increased
regional die-off under global-change-type drought. Proc. Natl. Acad. Sci. USA 2009, 106, 7063–7066.
[CrossRef] [PubMed]

52. Breshears, D.D.; Cobb, N.S.; Rich, P.M.; Price, K.P.; Allen, C.D.; Balice, R.G.; Romme, W.H.; Kastens, J.H.;
Floyd, M.L.; Belnap, J. Regional vegetation die-off in response to global-change-type drought. Proc. Natl.
Acad. Sci. USA 2005, 102, 15144–15148. [CrossRef] [PubMed]

53. Swain, D.L. A tale of two California droughts: Lessons amidst record warmth and dryness in a region of
complex physical and human geography. Geophys. Res. Lett. 2015, 42, 9999. [CrossRef]

54. Seager, R.; Hoerling, M.; Schubert, S.; Wang, H.; Lyon, B.; Kumar, A.; Nakamura, J.; Henderson, N. Causes of
the 2011–2014 California drought. J. Clim. 2015, 28, 6997–7024. [CrossRef]

55. Wang, S.Y.; Hipps, L.; Gillies, R.R.; Yoon, J.H. Probable causes of the abnormal ridge accompanying the
2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett.
2014, 41, 3220–3226. [CrossRef]

56. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global
warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [CrossRef]

57. Abramowitz, M.; Stegun, I.A. Handbook of mathematical functions. Appl. Math. Ser. 1966, 55, 39. [CrossRef]
58. Beguería, S.; Vicente-Serrano, S.M.; Angulo-Martínez, M. A multiscalar global drought dataset: The speibase:

A new gridded product for the analysis of drought variability and impacts. Bull. Am. Meteorol. Soc. 2010, 91,
1351–1356. [CrossRef]

59. Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I.; Angulo, M.; El Kenawy, A. A new global 0.5 gridded
dataset (1901–2006) of a multiscalar drought index: Comparison with current drought index datasets based
on the Palmer drought severity index. J. Hydrometeorol. 2010, 11, 1033–1043. [CrossRef]

60. Vicente-Serrano, S.M.; Van der Schrier, G.; Beguería, S.; Azorin-Molina, C.; Lopez-Moreno, J.-I. Contribution
of precipitation and reference evapotranspiration to drought indices under different climates. J. Hydrol. 2015,
526, 42–54. [CrossRef]

61. Li, W.; Hou, M.; Chen, H.; Chen, X. Study on drought trend in south China based on standardized
precipitation evapotranspiration index. J. Nat. Disasters 2012, 21, 84–90.

62. Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index
(SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring.
Int. J. Climatol. 2014, 34, 3001–3023. [CrossRef]

63. Banimahd, S.A.; Khalili, D. Factors influencing markov chains predictability characteristics, utilizing SPI,
RDI, EDI and SPEI drought indices in different climatic zones. Water Resour. Manag. 2013, 27, 3911–3928.
[CrossRef]

64. Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55–94.
[CrossRef]

65. Helsel, D.R.; Hirsch, R.M. Statistical Methods in Water Resources; Elsevier: New York, NY, USA, 1992;
Volume 49.

66. Hirsch, R.M.; Helsel, D.; Cohn, T.; Gilroy, E. Statistical analysis of hydrologic data. Handb. Hydrol. 1993, 17,
11–55.

67. Mann, H. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [CrossRef]
68. Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975.
69. Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann–Kendall and Spearman’s rho tests for detecting monotonic

trends in hydrological series. J. Hydrol. 2002, 259, 254–271. [CrossRef]
70. Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in

hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [CrossRef]

370



Climate 2018, 6, 31

71. Thiel, H. A rank-invariant method of linear and polynomial regression analysis, part 3. In Proceedings of
Koninalijke Nederlandse Akademie van Weinenschatpen A; Royal Netherlands Academy of Arts and Sciences:
Amsterdam, The Netherlands, 1950; pp. 1397–1412.

72. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389.
[CrossRef]

73. Adams, D.K.; Comrie, A.C. The North American monsoon. Bull. Am. Meteorol. Soc. 1997, 78, 2197–2213.
[CrossRef]

74. Higgins, R.; Yao, Y.; Wang, X. Influence of the North American monsoon system on the US summer
precipitation regime. J. Clim. 1997, 10, 2600–2622. [CrossRef]

75. Gutzler, D.S.; Robbins, T.O. Climate variability and projected change in the western United States: Regional
downscaling and drought statistics. Clim. Dyn. 2011, 37, 835–849. [CrossRef]

76. Dettinger, M.D. Projections and downscaling of 21st century temperatures, precipitation, radiative fluxes
and winds for the southwestern US, with focus on Lake Tahoe. Clim. Chang. 2013, 116, 17–33. [CrossRef]

77. Elguindi, N.; Grundstein, A. An integrated approach to assessing 21st century climate change over the
contiguous US using the NARCCAP RCM output. Clim. Chang. 2013, 117, 809–827. [CrossRef]

78. Scherer, M.; Diffenbaugh, N.S. Transient twenty-first century changes in daily-scale temperature extremes in
the United States. Clim. Dyn. 2014, 42, 1383–1404. [CrossRef]

79. Ashfaq, M.; Bowling, L.C.; Cherkauer, K.; Pal, J.S.; Diffenbaugh, N.S. Influence of climate model biases and
daily-scale temperature and precipitation events on hydrological impacts assessment: A case study of the
United States. J. Geophys. Res. Atmos. 2010, 115. [CrossRef]

80. California Department of Water Resources. California’s Most Significant Droughts: Comparing Historical and
Recent Conditions; California Department of Water Resources: Sacramento, CA, USA, 2015; p. 136.

81. Kirtman, B.; Power, S.; Adedoyin, A.; Boer, G.; Bojariu, R.; Camilloni, I.; Doblas-Reyes, F.; Fiore, A.;
Kimoto, M.; Meehl, G. Chapter 11—Near-term climate change: Projections and predictability. In Climate
Change 2013: The Physical Science Basis. IPCC Working Group I Contribution to Ar5; IPCC, Ed.; Cambridge
University Press: Cambridge, UK, 2013.

82. Anderson, E.A. National Weather Service River Forecast System—sNow Accumulation and Ablation Model;
Technical Memorandum NWS HYDRO-17; NOAA: Silver Spring, MD, USA, 1973.

83. Andrew, J.T.; Sauquet, E. Climate change impacts and water management adaptation in two
mediterranean-climate watersheds: Learning from the Durance and Sacramento rivers. Water 2016, 9,
126. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

371





MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Climate Editorial Office
E-mail: climate@mdpi.com

www.mdpi.com/journal/climate





MDPI  
St. Alban-Anlage 66 
4052 Basel 
Switzerland

Tel: +41 61 683 77 34 
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-0365-0109-3 


	Blank Page



