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Preface to ”Impact of Climate-Change on Water

Resources”

The management and allocation of water resources is not a forthright procedure. Water users

and stakeholders claim these resources for coverage of their own demands, such as domestic

and industrial supply, irrigated agriculture, hydropower production, and ecosystem preservation.

In cases of transboundary water resources, differentiations in national strategies, development

priorities, and economic status among countries that share these resources induce more complexity

in the management of water. Moreover, this complication may be further affected due to the

demographic and climatic change drivers that increase the stress on water resources.

According to the IPCC, climate change is expected to have dramatic impacts on water resources

and their management. Climate model simulations for the 21st century are consistent in projecting

temperature increases resulting in water temperature augmentation, sea level rise, and thus changes

in coastal regions. Higher water temperatures and changes in extremes, including floods and

droughts, are projected to affect water quality and exacerbate many forms of water pollution.

To better understand the mechanisms of climate variability and climate change on water resources,

it is crucial to implement multidisciplinary studies that involve climatology and hydrology.

The articles presented in this book highlight the impact of climate change on water resources

in different regions of the world and at different scales; from the catchment to the region and to the

global scale. The reader will be informed on the way that changes in temperature and rainfall impact a

wide range of hydrological processes including drought, streamflow, and irrigation water availability

or even salinization.

The aim of the eight papers selected in this volume is to present a comprehensive picture

of climate change impacts on water resources in case studies that are governed by different

climatic characteristics. Furthermore, our intention was also to include articles that emphasize the

diversity and complexity of hydrologic processes together with the climatic complexity at different

environments, as well as to shed light on the coupling of climate projections with water-related

simulation models. Most of the included research articles are supported by national and international

funding, an issue that indicates the importance that is given to the theme of climate change and in

particular to its impact on water resources.

The authors are grateful to the editors, reviewers, and production team. We hope that this Special

Issue will foster additional advancements on the impacts of climate change on water resources and

that the presented methodological approaches and outputs will be used for further research initiatives

and applications.

Christina Anagnostopoulou, Charalampos Skoulikaris

Editors
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Abstract: One of the most common questions in hydrological modeling addresses the issue of input
data resolution. Is the spatial analysis of the meteorological/climatological data adequate to ensure
the description of simulated phenomena, e.g., the discharges in rainfall–runoffmodels at the river
basin scale, to a sufficient degree? The aim of the proposed research was to answer this specific
question by investigating the response of a spatially distributed hydrological model to climatic inputs
of various spatial resolution. In particular, ERA-Interim gridded precipitation and temperature
datasets of low, medium, and high resolution, i.e., 0.50◦ × 0.50◦, 0.25◦ × 0.25◦, and 0.125◦ × 0.125◦,
respectively, were used to feed a distributed hydrological model that was applied to a transboundary
river basin in the Balkan Peninsula, while all the other model’s parameters were maintained the
same at each simulation run. The outputs demonstrate that, for the extent of the specific basin study,
the simulated discharges were adequately correlated with the observed ones, with the marginally
best results presented in the case of precipitation and temperature of 0.25◦ × 0.25◦ spatial analysis.
The results of the research indicate that the selection of ERA-Interim data can indeed improve or
facilitate the researcher’s outputs when dealing with regional hydrologic simulations.

Keywords: hydrologic modeling; reanalysis gridded datasets; ERA-Interim; Balkan Peninsula

1. Introduction

The accuracy of hydrologic models is limited by many factors [1,2]. Data availability, both in terms
of quantity, i.e., large data series and spatial coverage of the case study basin, and quality, i.e., reliable
and unbiased datasets, plays a significant role in the modeling procedure and is one of the factors
that are bound to affect the produced results. O’Riordan [3] demonstrated that the lack of historic
data or even the comprehensiveness of monitoring could lead to distorted findings. In hydrological
simulations and forecasting, precipitation is one of the most important inputs, with the precipitation’s
gauge network density and the gauges’ spatial distribution having direct impacts on the modeling
results [4]. Xu et al. [5] showed that the error of the simulated runoff was gradually narrowed to a
specific threshold number of gauges, beyond which the model’s performance did not demonstrate
considerable improvements. Similarly, Anctil et al. [6] demonstrated that a model’s performance was
reduced when spatial rainfall was derived from a network where the number of network gauges was
lower than a specific threshold. Woods et al. [7] found that the size of the representative elementary
area [8] was influenced more by the catchment topography than by the spatial resolution of the rainfall
data. Moreover, the density of the stations/grids for a hydrologic network that was defined by the
World Meteorological Organization [9] indicated that the density was strongly dependent on the

Climate 2020, 8, 1; doi:10.3390/cli8010001 www.mdpi.com/journal/climate1
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physiographic characteristics of the regions. The current availability of gridded precipitation data
series [10–12] offers spatial coverage at various resolutions on a worldwide scale.

The accuracy of gridded data sources was thoroughly examined in the literature [13–16].
In northeast China, for example, a comparative study regarding gridded datasets, such as those
of the Global Precipitation Climatology Center (GPCC), the Climate Research Unit (CRU), and the
University of Delaware (UDEL), with station-based precipitation data, demonstrated that gridded
databases overestimated the annual precipitation [17]. At the European scale, the comparison of
existing precipitation datasets with E-OBS gridded data revealed that the differences were relatively
large, and usually biased toward lower values in E-OBS [18]. Nevertheless, the selection of the
proper grid resolution is of particular significance, since low grid resolution could lead to uncertainty
of the predictions, while, in the case of overestimation of resolution, the workload is increasingly
demanding [19]. Gridded climatic variables were also exploited for the assessment of other atmospheric
processes, such as the daily global solar radiation [20].

Meteorological reanalysis data are among the most used gridded datasets, with those most widely
used presented by Fuka et al. [21]. Although both gridded data and reanalysis data initially come
from terrestrial and airborne observation networks, the reanalysis data go a step forward, i.e., they
are assimilated into a numerical weather prediction model to produce a spatially and temporally
coherent synthesis of meteorological variables covering the last few decades [22]. Reanalysis provides
a multivariate, spatially complete, and coherent record of the global atmospheric circulation [23],
and its usefulness was proven both in areas where there is a plethora of data and in areas where
weather stations are limited or even do not exist [24]. Many studies compared reanalysis products to
observation data and, in general, they concluded that reanalysis products are comparable to station
measurements [23,25,26]. ERA-Interim is one of the latest global reanalysis products developed
by the European Center for Medium-Range Weather Forecasts (ECMWF) [23]. ERA-Interim is
highly used over regions with sparse observations, such as high mountainous regions or complex
terrains [27,28]. The accuracy of these datasets was evaluated in many places of the word. For example,
the Hu et al. [29] investigation regarding the reliability of the precipitation variable took place in central
Asia. ERA-Interim was also used to assess, in terms of consistency, the temperature and precipitation
extremes [30].

One of the principal hydro-climate applications of gridded datasets is to incorporate them into
spatially distributed hydrologic models as climate forcings [31]. The literature presents some recent
studies that investigated the impact of the spatial resolution of reanalysis products on hydrologic
modeling [32,33]. In a large mountain watershed in Canada, for example, Woo and Thorne [34]
exploited ERA-40, NCEP–NCAR, and NARR reanalysis products to simulate the contribution of
snowmelt to the river regime. However, coupling of reanalysis data with hydrologic models was less
explored and, in general, studies on this topic focused on a limited number of basins [22]. Moreover, the
literature review showed that the coupling of reanalysis data with hydrologic models is mainly based
on single spatial resolutions [35,36]. Fuka et al. [21], for example, in their hydrologic simulation, used
specific reanalysis products covering the globe at hourly time steps since 1979 at a 38-km resolution.
Limited researches evaluated a broader range of spatial analysis, such as Essou et al. [22], where they
used three different reanalysis datasets of spatial resolution varying between 30 km and 10 km to
trigger the hydrologic simulation procedure.

Based on the aforementioned review, this specific research aims at investigating the runoff response
of a watershed in reanalysis climatic data of varying resolution. In particular, this study seeks to
assess the sensitivity of a hydrologic model, namely MODSUR, by comparing the low-resolution
ERA-Interim datasets (0.50◦ × 0.50◦) with the medium-resolution ERA-Interim datasets (0.25◦ × 0.25◦)
and the high-resolution ERA-Interim datasets (0.125◦ × 0.125◦). The case study area is a transboundary
river basin in southeastern Europe (SEE), where the climatic conditions in the upstream part of the
basin are different to those of the downstream part due to its proximity to the sea. The performed
analysis on the three different datasets demonstrated the degree of correlation among the relevant
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climatic variables, as well as the correlation of the simulated discharges with the observed discharges
of the river. This research is considered of significant importance because ERA-Interim reanalysis data
are routinely used for (i) case areas where the lack of data is dominant, and (ii) the bias correction of
climatic variables, when climate change is inserted into the research. Hence, the outputs could shed
light on questions relative to the required resolution of climatic data when used in hydrologic studies.

2. Materials and Methods

2.1. Case Study Area

The transboundary basin of Mesta/Nestos River, which is shared between Bulgaria and Greece,
was the area of interest in this research. The specific basin is one of the 18 international rivers and lake
basins in southeastern Europe and one of the five transboundary river basins of Greece. Moreover,
this basin forms part of the Hydrology for the Environment, Life and Policy (HELP) demonstration
basins of UNESCO’s Intergovernmental Hydrological Programme (IHP) [37]. The morphology of
the catchment is mountainous with the exception of the delta region (Figure 1). Due to the basin’s
(i) orientation from north to south and (ii) complex topography, since it spreads among the highest
mountains of SEE and the sea level, the climate can change from typically coastal Mediterranean to
practically alpine [38].

Figure 1. Case study basin with overlaying grids of the hydrologic model (gray rectangles) and of the
0.50◦ × 0.50◦ (blue cells), 0.25◦ × 0.25◦ (red cells), and 0.125◦ × 0.125◦ (green cells) ERA-Interim meshes.

The headwaters are located in southwestern Bulgaria, while the river outlets are located in the
north Aegean Sea, in Greece. The total length of the river’s main course and the basin’s extent are
255.0 km and 6,218.0 km2, respectively, figures that are almost equally shared by the two countries
(Figure 1). The average inflows into Greece are estimated at 0.14 × 109 m3, i.e., water volumes that
are significantly lower (approximately 50%) than the 0.278 × 109 m3 that are referred to in the Water
Convention [39]. The observed decrease in water inflows from the upstream country to the downstream
country are mainly attributed to the climatic variations. Bulgaria, in particular, argues [39] that, over
the last 20 years, precipitation presented a decrease of 30%, thus leading to a subsequent decrease in
water discharge.

3
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2.2. Reanalyis Data and Derived Datasets

The analyzed data consisted of temperature and precipitation time series obtained from
ERA-Interim, produced by the ECMWF (European Center for Medium-Range Weather Forecasts).
Detailed information about the ERA-Interim reanalysis can be found in Dee et al. [23]. The precipitation
data used in this study were projected on a grid of 0.5◦ × 0.5◦ (ERAI_50), 0.25◦ × 0.25◦ (ERAI_25),
and 0.125◦ × 0.125◦ (ERAI_12.5) from the original Gaussian reduced grid (T255 reduced Gaussian
grid of about 0.7◦ × 0.7◦) [40], and they are provided at a daily time step. The length of the time
series was 35 years extending from 1981 to 2015, with the specific length considered sufficient to
carry out statistical analysis of the climatic data. ERA-Interim is an improved version compared to
previous reanalysis products of ECMWF, based on the use of additional observations, the updated
data assimilation system, and the increased resolution [23].

2.3. River Basin Simulation

The simulation of the basin’s discharges was accomplished with the MODSUR (modélisation
de transfers de surface) spatial distributed hydrologic model. MODSUR is the surface modeling
component of the coupled surface and groundwater MODCOU (modélisation couplée) simulation
model, which was developed by the Ecole Nationale Supérieure des Mines de Paris [41]. The model
operation is based on a densely spaced grid, and it uses a progressive quadtree structure with varying
cell sizes. This means that the surface domain is divided into grid cells of size a, 2a, 4a, and 8a, with
the higher resolution attributed to the grid cells representing the river. For the selected case study
basin, the utilized grid was composed of 9212 cells. The ensemble of connected cells builds the runoff
network, which gathers the flow down to the catchment outlet. The water budget in the model was
computed in each grid cell using a system of four reservoirs [41,42], as a function of precipitation (P),
evapotranspiration (ETR), and water level of the reservoir (R), i.e., the initial stocked water in the soil.
The system of reservoirs is responsible for the repartition of rainfall water into runoff, infiltration,
evapotranspiration, and soil water storage (Figure 2).

Figure 2. Representation of the MODSUR (modélisation de transfers de surface) hydrologic model
operation mode.

The excess water transferred from the first to the second reservoir is defined as follows:

Qw = max(R + P–Rmax, 0) +
dR(2RBA + dR)

4(CRT − DCRT)
, (1)

4
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where DCRT is the minimum stocked water (mm) in the soil below which no water quantity is available,
and CRT the average stocked water quantity (mm), while Rmax, RBA, and dR are expressed as follows:

Rmax = 2(CRT–DCRT) + DCRT;

RBA = max(DCRT, R)–DCRT;

dR = max(0, RHA−RBA);

RHA = min(R + P, Rmax) −DCRT.

(2)

The partitioning of the water to runoff (QR) and infiltration (QI) is conducted in the second
reservoir. It is controlled by the parameter FN that corresponds to the maximum value of infiltration
over a time step (mm/day), and it is expressed as follows:

I f Qw < FN, then QI = Qw and QR = 0,

I f Qw > FN, then QI = FN and QR = Qw − FN.
(3)

The third and fourth reservoirs are responsible for the calculation of the final infiltration (QII) and
the surface runoff (QRR). The latter is further analyzed as pure runoff (if overflowing) and delayed
runoff. The final calculation of the QRR is given as follows:

Rsur = Rsur + QR,

I f Rsur < QRmax, then QRR = CQR ×Rsur,

I f Rsur ≥ QRmax, then QRR = CQR ×Rsur + (QR−Rsur),

(4)

where Rsur is the level of the surface runoff reservoir (mm), QRmax the surface runoff reservoir’s
overflow level (mm), and CQR is the depletion ratio of the surface runoff reservoir (mm). The operation
of the infiltration reservoir is similar to the aforementioned reservoir. For the specific case study, no
interactions between the surface domain and the water table were introduced due to lack of data. Thus,
the infiltration reservoir was not inserted in the simulation process.

For the Mesta/Nestos basin, the reservoir parameters were based on the catchment characteristics
with digitized maps of geology and land uses to be overlaid on the hydrologic grid. For each cell of the
grid, the dominant characteristics, e.g., geological formations and land-use types, were selected to
define the relevant infiltration and evapotranspiration coefficients per cell. The MODSUR model was
implemented in basins of varying scales, e.g., the Maritza basin in Bulgaria [43], as well as the selected
case study [37].

Because of the increased altimetry of the basin, as the highest peak of the Balkan Peninsula (namely,
peak Musala of 2925 m above sea level) is located within the basin, the snow coverage and melting
processes play a significant role both in the river’s spring increased discharge and in the continuity
of the discharge during the summer. The snow component NEIGE, which is a compatible add-on
of the MODSUR model, was used to simulate the snow cover regime on the principle of “degree
days” [44,45], using an approach which distinguishes snow melting processes between forested and
non-forested areas. The degree-day method is a temperature index method that equates the total daily
melt to a coefficient times the temperature difference between the mean daily temperature and a base
temperature (generally 0 ◦C).

M = CM(Ta − Tb), (5)

where M is the snowmelt expressed in mm/day, CM is the degree-day coefficient (mm/degree-day ◦C),
and Ta and Tb are the mean daily air and base temperatures (◦C), respectively. The coefficient CM
depends on the season and the location, and it varies between 1.6 and 6.0 mm/degree-day ◦C [45].
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In the NEIGE model [46], the snowmelt process is conditioned by the following equation:

tsto( j) = ((1− co f ) × tsto( j− 1) + co f × tmean( j)) > ts, (6)

where tsto is the temperature of the stocked snow (◦C), cof is a coefficient of warming of the stocked
snow, tmean is the average daily air temperature (◦C), and ts is the threshold temperature for the snow
melting (◦C).

If this first condition is verified, then a portion of the stocked snow layer could be melted.
However, the stocked snow layer has a specific storage capacity of liquid water. In order for the water
to be outflowed, the volume of the stocked water should exceed that storage capacity, with the latter
expressed as follows:

Snt( j) = Snt( j− 1) + tt f × (tsto( j) − Sts) > Sn( j), (7)

where Snt is the water (in liquid form) accumulated in the stocked snow layer (mm), ttf is the percentage
of transformation (mm/◦C), Sts is the threshold temperature for the transformation (◦C), and Sn is the
stocked snow (mm). When the previous conditions are coupled, then the quantity, Fn(j), of the melted
snow in mm is given as follows:

Fn( j) = min
[
Sn( j), tt f × (tmean( j) − ts)

]
. (8)

For the case study basin, the parameters of the NEIGE model, such as the threshold temperatures
in ◦C for the snow melting in the forested and non-forested areas, were retrieved by Etchevers
and Martin [47]. The variables proposed by the aforementioned authors were used by the French
Meteorological Organization in their snow melt model for a Mediterranean basin, i.e., a basin which
has similar characteristics to the current case study.

As aforementioned, the MODSUR model was already successfully applied to the study area, with
the calibration and validation period from 1987 to 1993 (R2 = 0.64) and from 1994 to 1995 (R2 = 0.68),
respectively [37]. For the model calibration, the precipitation data came from a network of 18 stations
covering both parts of the basin, while the measured discharges were derived from two gauge stations.
Although the rainfall datasets were available at a daily time step, the time step of the historical
discharges was at the monthly level. For that purpose, the daily simulated outputs of the hydrologic
model were averaged at monthly mean values in order to perform the model validation. In the
present research, the parameterization of the model was the same as the aforementioned one [37],
and the modifications were related to the forcing variables. Daily precipitation and temperature
came from the three different climatic datasets, one per climate model, and they covered a period of
15 years, i.e., from 1 January 1981 to 31 December 1995. The potential evapotranspiration (PET) was
calculated based on the Thornthwaite method utilizing the temperature time series of each dataset.
The climatic gridded variables were nested in the hydrologic model grid with the use of Geographic
Information Systems’ (GIS) spatial analyst tools. Finally, in order to perform a comparison with
the historical monthly observations, the simulated daily discharges for each one of the ERA-Interim
datasets were aggregated at monthly level. It should also be stated that the simulated flows using
different ERA-Interim resolution datasets were conducted on a 15-year period (1981–1995) that included
the nine-year calibration validation period (1987–1995) of the hydrologic model.

The evaluation of the model’s results was conducted with the coefficient of determination (R2),
which describes the degree of collinearity between simulated and measured data, as well as the percent
bias (PBIAS). The latter assesses the average tendency of the simulated dataset to be either smaller or
larger than the observed corresponding items [48].

3. Results

In the following two sections, the analysis of both annual and seasonal temperature and
precipitation of 35 years, i.e., from 1981 to 2015, is presented. The spatial variability of the temperature

6
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and precipitation variables was explored based on the rotated principal component analysis (RPCA).
By using the RPCA, newly projected data were acquired by transforming (rotating) all the original
variables with the principal components [49]. Two rotated components were explored for both
temperature and precipitation annual data representing climatic variability over the northern (N) and
southern (S) parts of the river basin. The last section is devoted to the comparable analysis of the
basin discharges that were produced by the coupling of the three different reanalysis datasets with the
hydrologic model.

3.1. Climate Analysis of Temperature Data

The annual temperature line plots for the northern (solid lines) and southern (dashed lines)
Mesta/Nestos catchment are demonstrated in Figure 3. The different colors attribute the results of
ERAI_50 (gray-colored curves), ERAI_25 (yellow-colored curves), and ERAI_12.5 (blue-colored curves)
spatial analysis. As shown in the figure, there was a difference of almost 2.0–3.0 ◦C between the
temperature of the northern and the southern parts of the basin, since the northern part is dominated
by high mountains while the southern part gets gradually flatter upon approaching to the sea.
The temperature difference was detected for all the evaluated data resolutions. Additionally, the data
with the highest resolution (0.125◦ × 0.125◦) presented the lowest temperature in both areas, while the
data of 0.50◦ × 0.50◦ resolution were associated with the highest temperatures. The temperature for
ERAI_25 varied between the temperatures of high- and low-resolution datasets.

1985 1990 1995 2000 2005 2010 2015 1980 

Figure 3. Line plot of annual temperature data for the northern (solid lines) and southern (dashed
lines) parts of the Mesta/Nestos basin. Temperatures at 0.50◦ × 0.50◦, 0.25◦ × 0.25◦, and 0.125◦ × 0.125◦
resolution are represented in gray, yellow, and blue, respectively.

The seasonal diagram, as depicted in Figure 4, shows that the southern part of the basin had
the highest temperatures during the whole year (all seasons). Additionally, the temperatures (blue
colored lines) derived from the higher-resolution spatial analysis datasets were the lowest in both
areas and during all seasons, while those derived from the coarser-resolution datasets were the
highest (gray-colored lines). The most evident temperature bias between the two regions was detected
during summer, with the southern flat region warmer than the northern mountainous region by
about 2.0–3.0 ◦C. According to the seasonal graphs, the second warmest season was spring (MAM:
March–April–May). The corresponding boxplots describe the difference between the northern and the
southern parts of the Mesta/Nestos basin for the three spatial resolutions (N50–S50: gray; N25–S25:
yellow; N12.5–S12.5: blue).
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Figure 4. Line plots and boxplots of seasonal temperature data for the northern (solid line) and southern
(dash line) parts of the basin. The temperatures at 0.50◦ × 0.50◦, 0.25◦ × 0.25◦, and 0.125◦ × 0.125◦
resolution are represented in gray, yellow, and blue, respectively.

3.2. Climate Analysis of Precipitation Data

The results for the precipitation parameter show that the southern part of the basin, which is the
warmest, was also the driest, since its precipitation was almost 100 mm lower than that of the upstream
part. The most important output for the precipitation variable was that all the datasets with different
spatial resolution presented almost equal results. The statistics of the annual results can be seen in
Table 1, where the values of the mean, maximum, interquartile range (IQR), standard deviation (SD),
skewness, and kurtosis are presented for the two parts of the basin and for all resolutions. According
to the analysis, the mean, maximum, and IQR values were higher in the northern part of the basin, e.g.,
the mean precipitation of N50 and S50 (N50 and S50 stands for the northern and southern parts of basin
with data at 0.50◦ × 0.50◦, respectively) was equal to 2.3 mm and 1.9 mm, respectively. The skewness
and kurtosis were lower in the northern than in the southern part, while the standard deviation was
almost equal in both parts of the basin. The results between the different spatial analyses in the same
area presented no differences. As it can be seen in Table 1, in both areas, the climatic characteristics of
precipitation were very close, meaning that the lowest-resolution spatial analysis could provide the
same accuracy as the highest one.
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Table 1. Statistics of the precipitation data at 50.0 × 50.0, 25.0 × 25.0, and 12.5 × 12.5 km resolution for
the northern and southern parts of the Mesta/Nestos basin. IQR—interquartile range.

N50 N25 N12.5 S50 S25 S12.5

Mean 2.3 2.4 2.4 1.9 1.9 1.9
Maximum 60.9 60.1 59.3 72.5 69.8 69.6
IQR 2.8 2.9 2.9 1.5 1.7 1.7
SD 4.4 4.5 4.5 4.5 4.4 4.4
Skewness 3.6 3.5 3.4 4.6 4.5 4.5
Kurtosis 18.7 17.5 17.0 31.1 30.2 30.4

The corresponding seasonal results for the two basin regions and for the three spatial resolutions
are demonstrated in Figure 5. In both parts of the basin, the three spatial analyses had almost equal
results during the four seasons and during the 35 years of data availability. The results were equal in
most years except for some very specific cases. For example, in 1982, in both areas, the analysis of the
ERA_12.5 data presented slightly higher precipitation for the summer season (JJA: June–July–August),
while, in the year 2000, the data derived from the lowest-resolution dataset presented a slightly lower
precipitation during summer (north part of the basin) and slightly more rainfall during autumn
(southern part of the basin). It should be mentioned that, after 2003, the wet seasons were more
obvious in both parts of the basin, while the previous years were characterized by drought conditions,
particularly the years of 1984, 1986, and 1992 for both parts of the basin, while the years 2000 and 2001
were more intense in the southern part of the basin.

Figure 5. Seasonal precipitation data for north and south Mesta/Nestos catchment.

3.3. Hydrologic Model Outputs

Altogether, the simulation results demonstrated a satisfactory correlation among the observed
discharges and the simulated ones, as depicted in Figure 6. In terms of streamflow seasonality, the
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simulated discharges followed the Mediterranean area’s pattern, i.e., high flows during late winter and
spring, and low flows during summer and autumn. In the case of ERAI_50 and ERAI_25, the average
discharges over the designated period from 1981 to 1995 were 20.7 m3/s and 21.9 m3/s, respectively.
The aforementioned discharges were relatively higher than the 18.1 m3/s that was observed during the
same period. This means that, in the case of ERAI_50 and ERAI_25, there was an overestimation of the
river discharges of approximately 14.3% and 20.9%, respectively. On the other hand, for the ERAI_12.5
simulation, the discharges were equal to 15.8 m3/s, i.e., there is an underestimation of approximately
13.7% of the runoff. Moreover, in all simulation runs, the observed dry period of 1989 to 1994 was
clearly depicted, as well as the maximum monthly flows that occurred in the period 1986–1987.

Figure 6. Observed (hashed area) and initial calibrated (black dotted curve) discharges versus simulated
discharges of 0.125◦ × 0.125◦, 0.25◦ × 0.25◦, and 0.50◦ × 0.50◦ spatial analysis (blue, yellow, and brown
curves, respectively).

Regarding the observed discharges at the interannual (15 years of data) time scale, the maxima of
34.8 m3/s and 35.7 m3/s occurred during April and May, as demonstrated in Figure 7 for the MAM
(March–April–May) time period. The simulated discharges of 31.1 m3/s at 0.50◦ × 0.50◦, 33.7 m3/s at
0.25◦ × 0.25◦, and 23.9 m3/s at 0.125◦ × 0.125◦ resolution are shown for the same period. As for the
minimum discharges, all scenarios matched the observed minimum flows in autumn. The observed
minimum of 5.5 m3/s in September was slightly lower than the 7.7 m3/s and 6.5 m3/s of the ERAI_50
and ERAI_25, as demonstrated in Figure 7 for the SON (September–October–November) time period.
For the ERAI_12.5 simulations, the minimum of 5.6 m3/s occurred in October. The relatively high
streamflows of June, as shown in the JJA (June–July–August) diagram of Figure 7, were attributed to
increased precipitation that generally occurs during the beginning of the summer season.

The coefficient of determination R2 for the simulations was equal to 0.63 for the 0.125◦ × 0.125◦,
0.69 for the 0.25◦ × 0.25◦, and 0.66 for the 0.50◦ × 0.50◦ simulation. At the same time, the PBIAS for
the same sequence of simulations was 24.81, −8.82, and −3.31, respectively. The monthly analysis of
the results (Figure 8) revealed an increased correlation of all the datasets. In particular, the observed
minimum flow of 0.9 m3/s was of the same magnitude as the 1.8 m3/s (ERAI_50), 1.9 m3/s (ERAI_25),
and 1.6 m3/s (ERAI_12.5) simulations. At the same time, the maximum discharge of 74.0 m3/s was
comparable to 82.8 m3/s (ERAI_50), 79.3 m3/s (ERAI_25), and 68.7 m3/s (ERAI_12.5). The median of all
the datasets ranged between 12.5 m3/s and 19.0 m3/s, with the minimum and maximum values related
to 0.125◦ × 0.125◦ and 0.25◦ × 0.25◦ simulations, respectively. Finally, what can also be observed is
that the interquartile range, i.e., the area between the upper and lower quartiles, of the ERAI_50 and
ERAI_25 datasets was almost identical.
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Figure 7. Quarterly correlation of observed and simulated discharges at the political borders of the
transboundary Mesta/Nestos river basin.

Figure 8. Boxplots comparing the Mesta/Nestos river discharges, as derived from the hydrologic
simulation of the basin under different input gridded datasets.

4. Discussion

The aim of the present research was to assess the spatial resolution of reanalysis climatic data below
or over which the hydrologic modeling simulation was not affected by the scale of the inputs. To address
this issue, three different reanalysis datasets of 0.50◦ × 0.50◦, 0.25◦ × 0.25◦, and 0.125◦ × 0.125◦ resolution
were used as inputs to a spatially distributed hydrologic model in order to generate discharges of a
study basin.

The literature demonstrates a number of researches where either reanalysis products were
evaluated with ground truth data [23,25,26] or reanalysis products of different origin were used for
hydrologic simulations. Regarding the latter, Essou et al. [22] investigated the hydrologic response of
370 watersheds based on three reanalysis products with the same spatial resolution. The watershed
areas ranged between 104 and 10,325 km2, and they were allocated in five different climatic regions,
including the Mediterranean and continental climates, which is the climate of the region to which the
Mesta/Nestos basin belongs. The novelty of the current research consists of the assessment of reanalysis
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data coming from the same source, i.e., the ECMWF reanalysis product, but with different spatial
resolutions, determining the performance of hydrologic simulations at a river basin scale. To the authors’
knowledge, no similar analysis regarding the impact of the spatial analysis of ERA reanalysis gridded
data on the hydrologic modeling procedure is referenced in the literature. At the same time, apart from
the sensitivity analysis of the simulated discharges for the ERAI_50, ERAI_25, and ERAI_12.5 datasets,
the current research explicitly provides a comparative analysis of the aforementioned reanalysis
gridded variables of precipitation and temperature, and important outputs are designated.

As for the gridded variables of temperature and precipitation, the performed analysis demonstrated
that, in the case of temperatures, the lower temperatures originated from the data with the finer
spatial resolution. On the other hand, the higher temperatures over the basin area were attributed
to the data with coarser spatial analysis. This difference was observed as the higher-resolution
datasets managed to detect the altitude and the vertical temperature gradient in a more detailed
way. The representation of the terrain’s elevation in the case of finer-resolution datasets attributes the
regional climatic characteristics in a more accurate manner, particularly in mountainous watersheds.
In the case of a coarser mesh, these topographic variations are smoothed due to the average elevation
that is attributed to each cell. Erum et al. [31] used three high-resolution gridded datasets with different
resolutions, namely, NARR, ANUSPLIN, and CaPA, with resolutions of ~32 km, 10 km, and 15 km,
respectively, for a case study area in western Canada. The coarsest of the three aforementioned datasets
demonstrated warmer temperatures in all seasons except for winter, where the second in terms of
resolution data presented almost the same outputs as the first. Regarding the precipitation variable,
the analysis revealed negligible statistical differences in the two parts of the basin. The Mesta/Nestos
catchment, due to its complex topography and adjacency to the north Aegean Sea, probably required
much more than basic elevation information for the successful climate interpolation of precipitation
data. This finding is consistent with that of Daly et al. [33] and Leung and Qian [50], who proved that
elements such as elevation, location, the vicinity of the sea, catchment topographic orientation, and
vertical atmospheric layer are essential for the interpolation of precipitation.

The catchment size seems to affect the impact of resolution of precipitation input on stream
discharge, since the impact of fine-resolution precipitation input was negligible for the specific
catchment. In small catchment areas up to 100.0 km2, Berne et al. [51] demonstrated that, under
specific characteristics, such as a slope between 1% and 10%, impermeability between 10% and 60%,
and the Mediterranean climate, the required resolution of precipitation input should be 5.2 km. For
catchment areas larger than 1000 km2, it was demonstrated [52] that they are not highly affected by the
spatial resolution of precipitation. According to Fu et al. [52], all simulations that are related to lower
discharges are linked with datasets of finer resolution, apart from during the warm periods of the year.
Temperature variability seems to be a primary factor of discharge reduction at the lower resolution,
while rainfall coverage can remain a principal factor at finer resolutions. Kouwen [53] also showed in
his research that lower-resolution radar rainfall data of 10.0 km × 10.0 km can sufficiently be used for
modeling floods compared to higher-resolution data of 2.0 km × 2.0 km.

The increased resolution has the benefit of reducing numerical truncation errors [54], while it
permits the simulation of fine-scale details. However, in complex terrains, such as mountainous areas
coupled with plains, and in complex climates, such as continental climate effected by seacoast climate,
lower-resolution data might be more suitable for the simulation and prediction of the temperature [55].
Colle et al. [56] reached similar conclusions by indicating that higher resolution is more sensitive to
the convective parameterization and reduces the accuracy of climate parameters, especially when the
topography is complex. As demonstrated in the results, in the case of low and medium resolution,
the overestimation of the discharges was on the order of 14.3% and 20.9%, respectively, while, in
the case of higher resolution, there was an underestimation of 13.7%. Similar hydrologic modeling
performance was presented in a German catchment of approximately 4000 km2 [57]. That research,
where the spatial variation was based on kriging from point measurements, proved that simulations
with coarser-resolution data outperformed the finer-resolution simulations. On the other hand,
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Haddeland et al. [58] concluded that, when the topographic and land-cover data resolution is altered,
as well as the forcing variables, then the coarser-resolution forced simulations are more biased than
finer-resolution simulations. In any case, since the runoff response of a watershed is not directly
proportional to precipitation, but it is also governed by the physical characteristics of a watershed (e.g.,
topography, soil, and land cover), differences in the timing and volume of the produced discharges
is bound to occur. The need for amelioration of the distributed model structure to make better use
of inputs of fine resolution could be proposed as a solution to the simulation process uncertainty.
The later output agrees with Bell and Moore [59], who demonstrated in their research, contrary to what
they initially believed, that, in the case of gridded rainfalls, the best performance is obtained when
lower-resolution radar data are utilized, and they suggested a revision of the model structure.

An additional reason behind the simulated outputs is the dependence of the river’s flow,
particularly in the summer period, on the snowmelt process. The temperature is the principal variable
that affects the melting of snow when using a snowmelt runoffmodel. For the current case basin, the
overestimated discharges of ERAI_50 and EAI_25 data coincided with the high temperatures that were
presented in both datasets. Thus, it is believed that the ERA dataset resolution does not compensate for
errors in the model calibration in the region. However, the application of different hydrological models
that contain snowmelt-computing options could provide different outputs, since each model has its
own snowmelt algorithm. Verden et al. [60] investigated the performance of snowmelt algorithms
that are integrated into watershed models, namely, HEC-1, SSARR UBC, NWSRFS, PRMS, SHE, SRM,
and TANK, and they reached the conclusion that different snowpack melt quantities were derived
from each model in the same case area. Jain et al. [61] demonstrated that warmer climatic conditions
increase the annual stream flow but not severely. At the same time, Lutz et al. [62] concluded that, in
the case of climate change, i.e., increased temperatures, the snowmelt process is caused by an increase
in precipitation and from accelerated melt due to the higher temperatures. The aforementioned
finding might be contradictory to the temperature’s impact on evapotranspiration, meaning that high
temperatures result in increased evapotranspiration and, hence, decreased water flows. However,
Koedyk and Kingston [63], in order to investigate the influence of PET on a river’s runoff, used six
different PET methods for a temperature increase of 2.0 ◦C as derived from five general circulation
models. The output of their research demonstrated that, in rivers of continuous flow, the impact is
relatively small, i.e., under 5% at the monthly scale and at most 5.2% at the annual scale.

Concerning the accuracy of the simulated discharges, their statistical assessment demonstrated
the reliability of the outputs, i.e., R2 > 0.63 for each of the simulated datasets, since values greater than
0.5 are typically considered acceptable [64]. It should be mentioned that the derived model evaluation
statistics are sensitive to high values (outliers) and insensitive to additive and proportional differences
between model predictions and measured data [65]. However, the daily and monthly datasets used in
this study do not fall into the previous categories. As for the PBIAS method, low-magnitude values
indicate accurate model simulation, as in the case of the 0.50◦ × 0.50◦ and 0.25◦ × 0.25◦ resolution, while
positive and negative values indicate model underestimation and overestimation bias, respectively [48].
Moreover, according to the general performance ratings for recommended statistics for a monthly time
step [65], a PBIAS (%) of the streamflow with ranges of ±10 < PBIAS < ±15 and ±15 < PBIAS < ±25
is considered good and satisfactory, respectively. In the proposed research, the results derived from
climate data of 0.50◦ × 0.50◦ and 0.25◦ × 0.25◦ (PBIAS equal to −3.31 and −8.82, respectively) were
classified as good, and those of 0.125◦ × 0.125◦ (PBIAS equal to +24.2) were classified as satisfactory [66].

Considering the number of areas in Europe, as well as other parts of the world, where dense
meteorological monitoring networks are lacking, the potential offered by the gridded and reanalysis
datasets is unique. The proposed research outputs are considered appropriate for assisting the selection
of reanalysis data resolution, mostly in cases with similar geomorphological characteristics and climatic
conditions. Moreover, since the climatic change impact on water resources is ongoing research, it is
believed that the present study could offer added value to the selection process of reanalysis data that
will be used for the bias correction of climate change datasets.
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5. Conclusions

Data availability and, in particular, precipitation and temperature data series are crucial for the
hydrologic simulation of river basins. Apart from the accuracy and reliability of data, their spatial
coverage and density have increased impact on the hydrologic modeling behavior. Currently, the
availability of gridded dataset products of various resolutions provides solutions in areas of coarse
gauge networks or even in regions with a lack of observations. However, this plethora of data sources
that provide meteorological and climatological variables at meshes of varying resolution could be a
bottleneck in hydrologic modeling.

The assessment of the impact of three different ERA-Interim reanalysis datasets, in terms of spatial
resolution, on river basin hydrology suggests that, for the runoff simulations at a daily time step, the
most appropriate dataset is of medium resolution. The produced biases in the case of climatic variables
of coarser or more refined resolution are relatively low (≤ ±10%); thus, these data could also be used for
the long-term management of water resources. An important factor of the outputs is the dependence
of the summer runoff on the snowmelt process. Moreover, the scale of the basin plays an important
role in the selection of the most appropriate resolution. Overall, the results presented that reanalysis
data sources could be used as proxies to successfully force hydrological models. Finally, the proposed
research could also shed light in studies focusing on climate change impacts on hydrology; thus, the
question whether climate input data having higher spatial resolution result in better model simulations
could be explored.
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Abstract: Irrigated production around the world has significantly increased over the last decade.
However, climate change is a new threat that could seriously aggravate the irrigation water supplies
and request. In this study, the data is derived from the IPCC Fifth Assessment Report (AR5).
For the climate change scenarios, five Global Climate Models (GCMs) have been used. By using
the CROPWAT approach of Smith, the net irrigation water requirement (IRnet) was calculated.
For the estimation of the potential evapotranspiration (Epot), the method in Raziei and Pereira was
used. According to representative concentration pathway (RCP) 4.5, these increases vary between
0.74% (North America) and 20.92% (North America) while the RCP 8.5 predict increases of 4.06%
(sub-Saharan Africa) to more than 68% (North America). The results also show that the region of
Latin America is the region with the large amount of IRnet with coprime value between 1.39 km3/yr
(GFDL 4.5) and 1.48 km3/yr (CSIRO 4.5) while sub-Saharan Africa has the smallest IRnet amount
between 0.13 km3/yr (GFDL 8.5) and 0.14 km3/yr (ECHAM 8.5). However, the most affected countries
by this impact are those in sub-Saharan Africa. This study will probably help decision-makers to
make corrections in making their decision.

Keywords: global; climate change; temperature; precipitation; Net Irrigation Water Requirement; maize

1. Introduction

The increasing speed of climate change and related changes in rainfall have officially influenced
biological systems and biodiversity on Earth [1]. Indeed, agriculture and environmental change
are deeply intertwined. Ecological changes are now having an impact on the agri-food sector, with
implications that have unevenly adapted to the world. Future environmental changes are likely to
harm crop production in low-perch countries, while the consequences in the Nordic are likely to be
less affected. Besides, environmental changes will likely create a danger of food insecurity for some
powerless gatherings, such as the poor. The World Health Organization (WHO) assessments over
the last 30 years have already helped more than 150,000 victims per year due to global warming
and precipitation trends caused by anthropogenic climate change [2]. Many other studies have been
undertaken to examine the impact of climate change on animal and plants health [3–8]. According to
some studies on a global scale, regional variations associated with climate change are not expected to
lead to significant changes in food production over the next century [5,9]. Several simulation models
have been made about climate change [10]. The majority of climate simulation models show: an
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increase in the global temperature average; the temperatures are projected to increase between 1.4 and
5.88 ºC by the end of this century; a related rise in sea level is also expected [11]. The impact on the
economy was also studied [12–16], with developing countries expected to suffer most of the damage
caused by climate change, while the wealthiest countries are likely to be less affected [17–19].

Precise and multi-variable predictions of anthropogenic climate change are needed to assess the
effects [20]. Several studies have addressed the problem of the impact of climate change on agriculture.
Several aspects of the question were analyzed. One of the topics is the impact of climate change on
irrigation [21–24]. Among the sectors of water use, irrigation will be most influenced by the effects
of climate change [25–31]. Agriculture and mainly irrigated agriculture is the sector with by far the
primary consumptive water use and water withdrawal. To assess the gravity of irrigation on the
available water resources, an estimate has been made mutually for the irrigation water requirement and
also, irrigation water withdrawal [32]. Irrigation ensures summer production and produces valuable
crops that would otherwise be impossible to cultivate [33,34].

Nevertheless, the effects on regional and local food supplies in some low latitude regions could
amount to significant percentage changes in current production [35]. Asia’s intensive agriculture
consumes 20% of its internal renewable resources, of which more than 80% goes to irrigation. In most
low-rainfall areas of the Middle East, North Africa, and Central Asia, most of the exploitable water
is already very scarce, with 80–90% of this water destined for agriculture. Rivers and aquifers are,
therefore, operating beyond their sustainable levels. In the long list of possible problems from
worldwide warming, the menaces to world agriculture stand out as among the most important [36].
Regional predictions are needed for improving the assessments of vulnerability to and impacts of
change [37].

Several recent articles have focused on the impact of climate change on plant production [38–40],
but also on how to adapt to climate change [41–44]. In 2002, Petra Doll and Stefan Siebert presented
a global model on the demand for irrigation water. The model simulates the cropping patterns,
the growing seasons, and the net and gross irrigation requirements, distinguishing between two
crops, rice and non-rice [45,46]. The correspondence between their model results and independent
assessments of irrigation water use is considered to be adequate for applying the model in global and
continental studies.

In this study, the variations in long-term averages of precipitation and temperature are the only
characteristics that define climate change. In our agro-climatological approach, one cereal was selected
and it was assumed that it was planted under optimal conditions for their growth. Any change in the
dimension and location of the flooded areas due to an adaptation to climate change or for any other
reason were neglected. In addition, the increase in CO2 and its direct effects crops had to be ignored
due to insufficient quantitative knowledge.

Therefore, based on IPCC-5 data, the purpose of this study was to: First, to estimate the variation
of IRnet of maize in the past and the future around the world; second, to map this variation. At the
end of this study, it is possible to observe the evolution of the IRnet under the effect of climate change
according to the models.

2. Materials and Methods

2.1. Data

In this study, climate change data were derived from the IPCC Fifth Assessment Report (AR5)
(http://www.ipcc-data.org/sim/gcm_global/index.html). Climate change scenarios were utlized from
five GCMs (CSIRO, ECHAM.MPI-ESM-LR, GFDL.ESM2G, MIROC5, and NCAR.CCSM4), moreover
for each model two representative concentration pathways (RCP) were chosen. They were RCP
4.5 and 8.5. The global map of the currently irrigated areas has been uploaded to the food and
agriculture organization (FAO) website (http://www.fao.org/nr/water/aquastat/irrigationmap/index10.
stm). This map represents the totality of the growing regions irrigated in 2005.
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2.2. Net Irrigation Requirement Model

Following the CROPWAT approach of Smith [47], the net irrigation requirement per unit irrigated
area through the growing season is calculated, with a daily time step, as the variance between the
effective precipitation and the crop-specific potential evapotranspiration as:

IRnet = kc.Epot–Pe f f i f kc.Epot > Pe f f (1)

IRnet = 0

Otherwise, with IRnet instead of the net irrigation requirement per unit area [mm/d]; Peff is the
effective precipitation [mm/d]; Epot is the potential evapotranspiration [mm/d]; kc is the crop coefficient.

The crop coefficient, kc, depends on the crop type (maize) and the day of the growing period. Peff
is the fraction of P (the total precipitation) that is accessible to the crop and does not run off. Without
detailed site-specific information, Peff is very hard to determine. A simple estimate following the USDA
soil conservation method is used, as cited in Smith [47], with:

Pe f f =
P(4.17− 0.2P)

4.17
f or P < 8.2 (2)

Pe f f = 4.17 + 0.1P f or P ≥ 8.3 (3)

CROPWAT uses monthly rainfall data from which 10-day-averages are derived as input for the
calculations [47]. The application of Equation (1) with daily rainfall values, i.e., the days with and
without precipitation, would lead to a gross overestimation of the net irrigation water requirement.

For the estimation of Epot, the method in Raziei and Pereira [48] was used. By replacing Ra by
his equation:

Epot = 0.0135 kRs
Ra
λ

√
Tmax − Tmin(T + 17.8) (4)

Rs = kRs
√

Tmax − Tmin(T + 17.8)Ra (5)

where:
Ra =

Rs

kRs
√

Tmax− Tmin
(6)

In addition, assuming that kRs = 0.17 in Equations (4) and (6), Equation (4) gives after simplification:

Epot = 0.0135
Rs
λ

(T + 17.8) (7)

where Rs is the solar radiation (MJ/m2/day). It was obtained by adding the surface down-welling
shortwave flow air and surface down-welling longwave flux in the air; λ is commonly equal to 2.45;
T is the mean temperature (◦C); Ra is extraterrestrial radiation (MJ/m2/d);

2.3. Climate Input

The temperature and precipitation data of each model was converted according to the units of
the different formulas. The same method was applied for the solar radiation data, which was also
calculated for each day from 1960 to 2050. After having calculated the Peff from Equations (2) and (3),
as well as the IRnet (Equation (1)) and the potential evapotranspiration Equation (7) of the selected
plant (according to the data of the five models), the results were used in ArcGIS to observe more closely
the evolution of the net irrigation of the plant.

3. Results

According to the FAO global map of irrigation areas, the amounts of irrigation water (IRnet) vary
from one model to another, but also from one RCP to another of the same model. The period 1960–1999
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is considered here as being historical years. The year 1960 is the year of reference. The period 2050 is
be regarded as the future, which allows appreciating the evolution of IRnet.

3.1. The Net Irrigation Water Requirements (IRnet) for Historical Period

3.1.1. The IRnet in 1960

The region of Latin America and the Caribbean has a total IRnet more than 1.34 km3/year, followed
by the East Asia and Pacific region with a quantity of 1 km3/yr. The parts of the Middle East and
North Africa with only 0.25 km3/yr front the region of sub-Saharan Africa with 0.13 km3/year (Table 1).
Figure 1 shows the distribution of FAO areas in 2005. This study observed that areas using large
quantities of IRnet are located between the latitude of Cancer and that of Capricorn, which are located
respectively north and south of the equator. The quantities vary between 2000 and 2500 mm/year.
The countries that lie beyond these two latitudes, there are quantities between 160 and 1800 mm3/year.

Table 1. Historical regional net irrigation water requirement.

YEAR Region
Surface
(km2)

Min
(mm/yr)

Max
(mm/yr)

Mean
(mm/yr)

Change of
Irnet (%)

Total of Irnet
(km3/yr)

1960 Latin America and Caribbean 673.68 710.13 2520.92 1992.63 1.34
South Asia 327.56 583.75 2374.34 1835.98 0.60

Sub-Saharan Africa 63.39 1431.73 2423.92 2028.61 0.13
Europe and Central Asia 395.01 159.76 1716.05 873.67 0.34

Middle East and North Africa 154.29 1018 2241.11 1613.53 0.25
East Asia and Pacific 709.39 383.82 2370.29 1404.84 1.00

North America 729.38 205.72 2082.77 1105.92 0.81
1999 Latin America and Caribbean 673.68 727.22 2570.09 2025.22 1.63 1.36

South Asia 327.56 626.89 2390.15 1861.01 1.36 0.61
Sub-Saharan Africa 63.39 1438.55 2453.89 2070.11 2.05 0.13

Europe and Central Asia 395.01 173.77 1741.73 915.47 4.78 0.36
Middle East and North Africa 154.29 1061.68 2285.73 1663.75 3.11 0.26

East Asia and Pacific 709.39 399.29 2417.71 1441.97 2.64 1.02
North America 729.38 246.46 2108.19 1135.32 2.66 0.83

Surface = total irrigation area according to the FAO in 2005, Min = the minimum value of the Irnet in the region,
Max =maximum value of the Irnet in the region, Mean = the average of Irnet in the region, Variation of Irnet =
comparison of Means compare to 1960, Total of Irnet = global irrigation water requirement used.

 

Figure 1. Map of the historical global net irrigation water requirement in 1960 of the area actually
irrigated expressed as a percentage of the area equipped for irrigation in mm/yr.
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3.1.2. The IRnet in 1999

Figure 2 shows the evolution of the IRnet in 1999. There is an increase in IRnet in a global manner.
As a result, the region of Europe and Central Asia, for example, saw a rise of 4.78%, as did the East
Asian and Pacific region with an increase of 2.64%, compared with 1960. However, the region of Latin
America and the Caribbean has the highest IRnet total at 1.36 Km3/year followed by the East and
Pacific region (1.02 km3/yr) and the region of North America (0.83 km3/year) (Table 1).

 

Figure 2. Historical net irrigation water requirement in 1999. The same irrigated area than in 1960 is
used the same in Figure 1.

3.2. Net Irrigations Requirements for Future Climate Projections

3.2.1. Climate Data from the CSIRO Model under RCP 4.5 Emissions Scenarios

Figure 3 shows the distribution of IRnet, according to RCP 4.5. As a result, the regions around the
equator have IRnet between 2400 and 3100 mm/year, while at the level of the Arctic Circle, it is 210
and 990 mm/year. However, North America and the Middle East and the North Africa region have an
increase of 15.62% and 11.07% respectively (Table 2). Furthermore, it should be noted that the region of
Latin America and the Caribbean has the highest total of IRnet with more than 1.48 km3/year, followed
by the region of East Asia and the Pacific and the region of North America.

Table 2. CSIRO regional net irrigation water.

RCP Region
Surface
(km2)

Min
(mm/yr)

Max
(mm/yr)

Mean
(mm/yr)

Change of
Irnet (%)

Total of Irnet
(km3/yr)

4.5 Latin America and Caribbean 673.68 759.35 3120.93 2199.48 10.38 1.48
South Asia 327.56 720.48 2597.77 2034.26 10.80 0.67

Sub-Saharan Africa 63.39 1515.65 2610.28 2161.83 6.57 0.14
Europe and Central Asia 395.01 239.24 2572.42 940.88 7.69 0.37

Middle East and North Africa 154.29 1089.54 2500.36 1792.10 11.07 0.28
East Asia and Pacific 709.39 482.16 2518.66 1547.89 10.18 1.10

North America 729.38 211.97 2220.06 1278.71 15.62 0.93
8.5 Latin America and Caribbean 673.68 751.64 3030.97 2175.67 9.19 1.47

South Asia 327.56 772.23 2597.77 1999.00 8.88 0.65
Sub-Saharan Africa 63.39 1539.50 2702.80 2190.63 7.99 0.14

Europe and Central Asia 395.01 247.37 1814.57 976.65 11.79 0.39
Middle East and North Africa 154.29 1149.25 2409.28 1747.95 8.33 0.27

East Asia and Pacific 709.39 512.35 2529.23 1528.12 8.78 1.08
North America 729.38 249.81 2226.86 1290.68 16.71 0.94

Same than Table 1.
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Figure 3. Net irrigation water requirement of CSIRO model in 2050 (RCP4.5). The same irrigated area
than in 1960 is used the same in Figure 1.

3.2.2. Climate Data from the CSIRO Model under RCP 8.5 Emissions Scenarios

According to RCP 8.5, Latin America and the Caribbean have the highest IRnet quantity at
1.47 km3/year, followed by the East and Pacific region and the region of North America. However, the
North American region is expected to have the most significant increase with more than 16% (Table 2)
compared to 1960, followed by Europe and Central Asia (11.79%). Figure 4 shows the distribution of
IRnet. As a result, the countries around the equator have an Irnet between 2300 and 3000 mm/year,
while around the Arctic Circle, it is 250 to 990 mm/year.

 

Figure 4. Net irrigation water requirement of CSIRO model in 2050 (RCP8.5). The same irrigated area
than in 1960 is used the same in Figure 1.

3.2.3. Climate Data from the ECHAM Model under RCP 4.5 Emissions Scenarios

In Figure 5, the value of the IRnet is between 240 and 2800 mm/year. The countries above
the latitude of Cancer have an Irnet between 240 and 2000 mm/year. According to RCP 4.5, the
Latin American and Caribbean region has a large Irnet total of 1.43 km3/year (Table 3), followed by the
North American region, and the region of Europe and Central Asia. However, the region of Europe
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and Central Asia increased by more than 16% compared with 1960, followed by the North American
region, with an increase of 11.83%.

 

Figure 5. Net irrigation water requirement of ECHAM model in 2050 (RCP4.5). The same irrigated
area than 1960 is used the same in Figure 1.

3.2.4. Climate Data from the ECHAM Model under RCP 8.5 Emissions Scenarios

Figure 6 shows that the amount of IRnet varies between 260 and 2800 mm/year. The small
quantities are mostly observed around the poles. However, between Cancer and Capricorn latitude,
the values are quite high between 2300 and 2800 mm/yr. Compared with 1960, the region of the
Middle East and North Africa and part of Europe and Central Asia have an increase of more than 13%,
followed by North America (10.93%). However, the region of Latin America and the Caribbean has the
highest total of IRnet with a quantity of more than 1.45 km3/year, followed by the area of East Asia and
the Pacific with over 1.12 km3/year (Table 3).

 

Figure 6. Net irrigation water requirement of ECHAM model in 2050 (RCP8.5). The same irrigated
area than in 1960 is used the same in Figure 1.
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Table 3. ECHAM regional net irrigation water requirement.

RCP Region
Surface
(km2)

Min
(mm/yr)

Max
(mm/yr)

Mean
(mm/yr)

Change of
Irnet (%)

Total of Irnet
(km3/yr)

4.5 Latin America and Caribbean 673.68 702.98 2828.20 2116.19 6.20 1.43
South Asia 327.56 706.12 2537.35 1997.27 8.78 0.65

Sub-Saharan Africa 63.39 1501.70 2679.44 2187.80 7.85 0.14
Europe and Central Asia 395.01 242.69 1725.62 1015.36 16.22 0.40

Middle East and North Africa 154.29 1151.41 2407.62 1772.93 9.88 0.27
East Asia and Pacific 709.39 470.50 2519.95 1522.59 8.38 1.08

North America 729.38 328.15 2226.51 1236.71 11.83 0.90
8.5 Latin America and Caribbean 673.68 723.29 2808.93 2151.61 7.98 1.45

South Asia 327.56 738.32 2538.45 2024.69 10.28 0.66
Sub-Saharan Africa 63.39 1563.68 2683.62 2212.08 9.04 0.14

Europe and Central Asia 395.01 262.36 1796.76 988.77 13.17 0.39
Middle East and North Africa 154.29 1181.75 2451.36 1825.45 13.13 0.28

East Asia and Pacific 709.39 457.14 2534.39 1577.15 12.27 1.12
North America 729.38 287.19 2252.33 1226.80 10.93 0.89

Same than Table 1.

3.2.5. Climate Data from the GFDL Model under RCP 4.5 Emissions Scenarios

According to RCP 4.5, the quantity of IRnet varies between 230 and 2600 mm/year (Figure 7),
and the countries located near the equator have the most considerable amounts between 2200 and
2600 mm/year. However, those situated, for example, above the latitude of Cancer have relatively low
values, notably the countries near the arctic polar circle with quantities between 230 and 890 mm/year.
However, there is an increase of approximately 7.37% (Table 4) in the European and Central Asian
region. For example, the North American region is expected to increase by approximately 0.75%.
However, the Latin American and Caribbean region has the highest IRnet total at 1.39 km3/year, while
sub-Saharan Africa has a total of 0.13 km3/year.

 

Figure 7. Net irrigation water requirement of GFDL model in 2050 (RCP4.5). The same irrigated area
than in 1960 is used the same in Figure 1.
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Table 4. GFDL regional net irrigation water requirement.

RCP Region
Surface
(km2)

Min
(mm/yr)

Max
(mm/yr)

Mean
(mm/yr)

Change of
Irnet (%)

Total of
Irnet

(km3/yr)

4.5 Latin America and Caribbean 673.68 766.57 2610.37 2070.56 3.91 1.39
South Asia 327.56 722.69 2396.12 1898.11 3.38 0.62

Sub-Saharan Africa 63.39 1421.08 2503.05 2103.97 3.71 0.13
Europe and Central Asia 395.01 233.90 1852.88 938.02 7.37 0.37

Middle East and North Africa 154.29 1152.52 2385.55 1724.59 6.88 0.27
East Asia and Pacific 709.39 431.42 2457.20 1453.15 3.44 1.03

North America 729.38 375.57 2118.83 1114.22 0.75 0.81
8.5 Latin America and Caribbean 673.68 740.60 2728.36 2121.70 6.48 1.43

South Asia 327.56 478.13 2455.81 1975.89 7.62 0.65
Sub-Saharan Africa 63.39 1483.76 2546.20 2110.88 4.06 0.13

Europe and Central Asia 395.01 251.24 1819.90 972.12 11.27 0.38
Middle East and North Africa 154.29 1073.82 2430.30 1709.14 5.93 0.26

East Asia and Pacific 709.39 445.78 2834.22 1491.47 6.17 1.06
North America 729.38 402.83 2224.01 1172.29 6.00 0.86

Same than Table 1.

3.2.6. Climate Data from the GFDL Model under RCP 8.5 Emissions Scenarios

For RCP 8.5, the amount of IRnet varies from 250 to 2700 mm/year (Figure 8). However, the region
of East Asia and the Pacific has a total of 1.06 km3/year behind the Latin American and Caribbean
region (1.13 km3/year), while the region of sub-Saharan Africa has a total of 0.13 Km3/year (Table 4).
However, the European region has an increase of 11.27% over 1960 followed by South Asia (7.62%), the
region of sub-Saharan Africa, for example, has a rise of 4.06%. The countries around the equator have
a relatively large quantity of IRnet. These quantities vary from 2100 to 2700 mm/year. On the other
hand, and the countries around the poles have IRnet between 310 and 910 mm/year.

 

Figure 8. Net irrigation water requirement of GFDL model in 2050 (RCP8.5). The same irrigated area
than in 1960 is used the same in Figure 1.

3.2.7. Climate Data from the MIROC 5 Model under RCP 4.5 Emissions Scenarios

According to RCP 4.5, the range of IRnet varies between 310 and 2700 mm/year. The countries
situated between Cancer and Capricorn have the highest quantities, between 2300 and 2700 mm/year
(Figure 9). On the other hand, countries outside these latitudes and near poles have an amount
between 310 and 1000 mm/year. The region of Latin America and the Caribbean has a total IRnet of
1.44 km3/year (Table 5), followed by the East Asian and Pacific region and the North American region.
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It should be added, however, that the North American part shows an increase of more than 24% while
the sub-Saharan Africa region is likely to increase by only 8.37%.

 

Figure 9. Net irrigation water requirement of MIROC5 model in 2050 (RCP4.5). The same irrigated
area than in 1960 is used the same in Figure 1.

Table 5. MIROC 5 regional net irrigation water requirement.

RCP Region
Surface
(km2)

Min
(mm/yr)

Max
(mm/yr)

Mean
(mm/yr)

Change of
Irnet (%)

Total of
Irnet

(km3/yr)

4.5 Latin America and Caribbean 673.68 808.48 2723.54 2139.77 7.39 1.44
South Asia 327.56 629.89 2481.52 2003.80 9.16 0.66

Sub-Saharan Africa 63.39 1549.44 2699.46 2215.85 8.70 0.14
Europe and Central Asia 395.01 306.89 1801.47 1035.56 18.53 0.41

Middle East and North Africa 154.29 1214.59 2538.07 1852.36 14.81 0.29
East Asia and Pacific 709.39 510.65 2506.92 1565.36 11.43 1.11

North America 729.38 309.59 2207.78 1337.30 20.92 0.98
8.5 Latin America and Caribbean 673.68 805.32 2682.33 2135.46 7.17 1.44

South Asia 327.56 644.63 2477.88 2016.45 9.85 0.66
Sub-Saharan Africa 63.39 1585.26 2703.02 2209.22 8.37 0.14

Europe and Central Asia 395.01 334.81 1808.63 1050.90 20.29 0.42
Middle East and North Africa 154.29 1268.99 2515.18 1882.25 16.65 0.29

East Asia and Pacific 709.39 548.55 2519.20 1574.44 12.07 1.12
North America 729.38 300.50 2211.16 1375.57 24.38 1.00

Same than Table 1.

3.2.8. Climate Data from the MIROC 5 Model under RCP 8.5 Emissions Scenarios

With a total of 1.44 km3/year, the region of Latin America and the Caribbean has the most
significant amount of IRnet (Table 5), followed by part of East Asia and the Pacific (1.12 km3/year) and
the area of North America (1 km3/year). The countries close to the equator have the most substantial
quantities between 2200 and 2700 mm/year (Figure 10). It should be added, however, that the North
American region shows an increase of 24.38% followed by the region of Europe and Central Asia with
an increase of 20.29%.
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Figure 10. Net irrigation water requirement of MIROC5 model in 2050 (RCP8.5). The same irrigated
area than in 1960 is used the same in Figure 1.

3.2.9. Climate Data from the NCAR Model under RCP 4.5 Emissions Scenarios

According to RCP 4.5, the region of Latin America and Caribbean has a total net share of
1,699,770 mm/year, followed by the East Asian and Pacific region (Table 6). The countries near the
polar circles have an IRnet between 0 and 270 mm/year, while those between Cancer and Capricorn
have an IRnet between 1300 and 1700 mm/year (Figure 11). RCP 4.5 shows a decrease of more than
57% in the region of Europe and Central Asia, more than 46% in the North American area, and over
39% in the region of sub-Saharan Africa.

 

Figure 11. Net irrigation water requirement of NCAR model in 2050 (RCP4.5). The same irrigated area
than in 1960 is used the same in Figure 1.

3.2.10. Climate Data from the NCAR Model under RCP 8.5 Emissions Scenarios

Figure 12 shows the variation of IRnet according to RCP 8.5 with extremes between 2200 and
2700 mm/year around the equator and the minimums between 170 and 1000 mm/year near the polar
circles. However, it is the region of Latin America and the Caribbean which has the most significant
amount of IRnet with more than 1.43 km3/year, followed by part of North America and the region of
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East Asia and the Pacific. Besides, the area of North America shows an increase of over 68% (Table 6),
followed by Europe and Central Asia region with 23.20%, while the area of sub-Saharan Africa has
only 5.66%.

 

Figure 12. Net irrigation water requirement of NCAR model in 2050 (RCP8.5). The same irrigated area
than in 1960 is used the same in Figure 1.

Table 6. NCAR regional net irrigation water requirement.

RCP Region
Surface
(Km2)

Min
(mm/yr)

Max
(mm/yr)

Mean
(mm/yr)

Change of
Irnet (%)

Total of
Irnet

(km3/yr)

4.5 Latin America and Caribbean 673.68 170.73 1677.69 1201.25 -39.72 0.81
South Asia 327.56 0.00 1521.43 1085.52 -40.88 0.36

Sub-Saharan Africa 63.39 707.83 1601.78 1228.65 -39.43 0.08
Europe and Central Asia 395.01 0.00 1016.78 368.18 -57.86 0.15

Middle East and North Africa 154.29 406.59 1458.61 936.02 -41.99 0.14
East Asia and Pacific 709.39 0.00 1508.02 732.07 -47.89 0.52

North America 729.38 0.00 1325.51 591.91 -46.48 0.43
8.5 Latin America and Caribbean 673.68 716.76 2691.60 2122.18 6.50 1.43

South Asia 327.56 380.50 2523.66 2002.29 9.06 0.66
Sub-Saharan Africa 63.39 1520.56 2643.69 2143.38 5.66 0.14

Europe and Central Asia 395.01 168.03 1783.16 1076.38 23.20 0.43
Middle East and North Africa 154.29 1090.51 2350.35 1746.61 8.25 0.27

East Asia and Pacific 709.39 421.13 2563.41 1527.91 8.76 1.08
North America 729.38 381.65 2247.39 1865.74 68.70 1.36

Same than Table 1.

4. Discussion

This global study examines and quantifies the impacts of climate change on the net irrigation
needs of IRnet maize and thus provides new information required for an optional production of maize.
The harshness of the effect of climate change on IRnet is evaluated by comparing the impact of climate
change on IRnet in the year 1960 and the year 2050.

By examining the results of the process of this paper (Figure 13), it appears that between 1960 and
1999, IRnet’s overall average was 1550.74 mm/year in 1960, compared to 1587.55 mm/year in 1999. This
represents an increase in the global IRnet average of approximately 2%. The same observation can be
made by comparing the means of the global IRnet in 1960 with the other five models. For example,
for CSIRO, RCP 4.5 presents a total average of 1707.88 mm/year, which is an overall increase of just
over 10%.
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Figure 13. Work chart. Diagram of our work which briefly shows the process of our work.

However, according to most of the five GCMs, the sub-Saharan Africa region is the region with the
highest average of Irnet. The values range from 2110.88 mm/year (GFDL) to 2209 mm/year (MIROC 5)
according to RCP 8.5, while RC 4.5 has values ranging from 1228.65 mm/year (NCAR) to 2215 mm/year
(ECHAM). However, the sub-Saharan Africa region is also one of the regions with the smallest variation
of Irnet. Indeed, this region is characterized by its low rainfall and also often confronted with drought.
Most of the countries in this area are generally developing countries, which explains the low expansion
of irrigation. Nevertheless, maize production covers a vast area in Nigeria. It is 7th in the world,
followed by Tanzania and South Africa. The highest producers are South Africa, which is 9th in
the world, followed by Nigeria, and Ethiopia [49]. According to FAO in 1995, Nigeria produced
6.93 million tonnes of maize (Mt), followed by South Africa with 4.87 Mt and Ethiopia with 1.99 Mt.
For parts that were equipped for irrigation in 1995, to maintain efficient production according to the
result in 2050, Nigeria should reach an IRnet of 2688 mm/year (CSIRO), against 2333.17 mm/year
(CSIRO) for Ethiopia and 1858.15 mm/year (CSIRO) for South Africa. The countries such as Niger,
Mali, or even Chad are at the gateway to the desert (Sahara), and they produced respectively 2000 t,
266,136 t and 62,537 t in 1995. Those countries are expected to improve their production in 2050, by
reaching an IRnet of approximately 2662.14 mm/year for Niger (CSIRO), 2773.05 mm/year for Mali
(CSIRO) and 2754.60 mm/year for Tchad (CSIRO). It can also be the cause of the unfortunate practice of
irrigation. The sub-Saharan African region has the smallest area of irrigation according to the FAO.
As a result, the total water quantity used for irrigation in this region is also the lowest, as predicted by
the different models.

However, the Middle East and North African region has a much lower average than the sub-Saharan
African region. According to RCP 4.5, the region has an average of approximately 1615.6 mm/year,
while the RCP 8.5 predicts an average of 1782.36 mm/year. The North African and Middle East region
have better rainfall conditions than the sub-Saharan region. As a result, the amount of water associated
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with irrigation is much higher. In sub-Saharan Africa, maize is the foremost widely grown crop and
could be stapled nourishment for an assessed 50% of the populace [49]. However, the area of the
irrigation areas is much larger than that of the sub-Saharan African region, so maize cultivation in the
Middle East and North Africa region requires more significant amounts of water due to the increase of
the irrigation area. It should also be added that this region has a much more advanced economy than
that of the sub-Saharan African region. In 1995, maize production in this part of the world, according
to FAO, was negated by Egypt (4.5 Mt), followed by Iran (697,246 t) and Syria (199,000 t). In 2050,
according to ECHAM RPC 8.5 for example, to increase the production in this region, the amount of
IRnet should be approximately 2127.62 mm/year in Egypt, followed by Syria with 1829.01 mm/year
and 1828.41 mm/year in Iran. However, it should be noted that these different quantities concern only
the areas equipped for irrigation in 1995.

The region of Europe and Central Asia is one of the areas with the lowest average of Irnet. In spite
of a reasonably large surface area, this region uses a minimal amount of water for irrigation. The
proportion varies from 859.57 mm/year for RCP 4.5 to 1012.92 mm/year for RCP 8.5. This region is
most often plentiful in rainfall, and in most countries, it rains throughout the year in general. It should
similarly be pointed out that most of this region comprises developed countries, hence the extension of
the irrigation areas in this region. Unlike countries in the sub-Saharan African region, most countries
do not experience more than three or four months of the rainy season. It shows, on the one hand,
the difference in the irrigation surface, but also, on the other hand, the quantity of water used for
irrigation. According to Eurostat, France and Romania alone accounted for approximately 45% of
maize production in Europe in 2017. However, in 1995, according to FAO, France’s production was
12.58 Mt and 9.92 Mt for Romania.

On the other hand, in central Asia, according to the FAO, Afghanistan remains the leading
producer of maize in this zone. In 1995, maize production in Afghanistan was 530,000 t. To maintain
this production or in the perspective of increasing it, France should reach an average IRnet of
1254.55 mm/year in 2050, according to MIROC 5 RPC 8.5. However, according to the same GCM,
Romania should have an IRnet of 1308.17 mm/year against 1462.08 mm/year for Afghanistan, in 2050.

The region of South Asia has a smaller irrigated area than the region of Europe and Central Asia.
However, the South Asian region uses a large amount of water for irrigation. The precipitations in
this region are not as abundant as that in the European and Central Asian region. Nevertheless, the
countries of the South Asian region have economies that are solid enough to support the costs of
irrigation, but also the existence of several water sources to meet the water needs of irrigation. Unlike
the region of sub-Saharan Africa, water sources for irrigation are not always accessible or nonexistent.
According to the models, South Asia is one of the regions that is expected to be moderately affected by
the effects of climate change. Most of the models estimate that the amount of water used for maize
growing will be between 0.6 and 0.62 km3/year. This total amount of Irnet is more significant than that
of the region of Europe and Central Asia. Maize production in this region is dominated by India with
the production of 9.53 Mt in 1995 against 12.04 Mt in 2000 according to the FAO. In 2050, MIROC 5
RCP 8.5 predicts an IRnet of approximately 2151.82 mm/year. Pakistan was the second producer with
a production of 1.50 Mt in 1995 and 1.65 Mt in 2000. The prediction of MIROC 5 is 1879.68 mm/year, to
ensure a better production in 2050.

The region of Latin America and the Caribbean is the region that uses the most considerable
amount of water for irrigation, according to almost all models. The total irrigation values vary from
0.81 km3/year to 1.48 km3/year. The total area of irrigation is expected to be approximately 673.68 km2

far in front of the sub-region of Africa or the region of Europe, and in Central Asia or even in the
South Asian area. It should be pointed out that the region of Latin America and the Caribbean is
often confronted with drought, yet this region is full of enough water source but also a more or less
stable economy to meet the demands of irrigation. However, the Latin American and Caribbean region
uses large quantities of water for irrigation because it has countries with the maximum IRnet used
worldwide, with values of up to 3030 mm/year according to GCS CSIRO RCP 8.5. Ranking third and
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eighth as world maize producers in 2019 by the Index Mundin, Brazil and Mexico are the top two
maize producers in Latin America and Caribbean. in 1995. The production of Brazil was 36.27 Mt,
against 18.35 Mt for Mexico. To ensure sustainable production, the GCM ECHAM RCP 8.5 predicts an
average Irnet of 2465.46 mm/year for 2050 and 2171.20 mm/year for Mexico.

East Asia and Pacific is the second region with the largest area irrigated, just behind the North
American region. China holds most of this area. The East Asian and Pacific region also ranks second
for the total amount of water used in irrigation (Irnet), behind the Latin American and Caribbean
region. However, this region has substantial quantities of the water source. It enables it to cope with
the high demand for irrigation water in most of the countries of this region. It must also be added
that the countries of this region have, for the most part, an economy powerful enough to meet the
requirements of their irrigation. There is notably China, which is the first economic power in the
world. According to MO Xing-Guo [50], the potential evapotranspiration is expected to increase by
8%–16% and 7%–10% in the 2050s. However, the 2019 Index Mundin rankings reported that China
and Indonesia are respectively the second and the eleventh world maize producers. As a result, they
are the first producers of this region. According to the FAO, maize production in 1995 was 112.36 Mt
and 8.25 Mt for Indonesia. Given the growth in demography, especially in China, and to ensure better
production, China is expected to, according to ECHAM RPC 8.5, reach an Irnet of 1433.3 mm/year in
2050. For Indonesia, in 2050, the Irnet is expected to be 2534.72 mm/year. However, the East Asian and
Pacific region is expected to experience an increase in Irnet quantity from 1960.

The North American region is the region with the largest irrigated area. This area is approximately
729 km2, placing this region first in the East Asian and Pacific region. As this large area floods, the
North American region uses a total Irnet amount of 0.81 km3/year at 1 km3/year. This region also has
one of the smallest Irnet averages. The North American region is a region with good rainfall. This
region is one of the areas that has, more or less, water throughout the year. It is also necessary to add
the existence of important water resources. As a result, despite the vast area of irrigated areas, the
region of North America, because of the pluviometry abundance it possesses, can cope with the water
requirements of irrigation. As the world’s largest producer, the United States of America dominates
maize production in the North American region. Its production amounts to more than 380 Mt in 2019.
According to the FAO, the production of maize was 187.97 mm/year in 2000 and the production reached
251.85 Mt. According to the NCAR RCP 8.5, the United States of America is expected to foresee an
Irnet of 1503.05 mm/year in 2050 to ensure production. It should be added, however, that the economy
of this region is one of the most powerful in the world, which could explain the expansion of the
irrigation areas.

According to RCP 4.5, these increases vary between 0.74% (North America) and 20.92%
(North America), while the RCP 8.5 predicts increases of 4.06% (sub-Saharan Africa) to more than 68%
(North America). The region of sub-Saharan Africa is expected to have a slight increase according to
the different models, perhaps due to its already extreme climate, while North America is the region
with the most variation due to climate change. However, NCAR’s RCP 4.5 looks somewhat like an
overall decrease of IRnet. This decrease varies from more than 39% (sub-Saharan Africa) to more than
57% (Europe and Central Asia).

To consider the value of the importance of this study, it is essential to talk about the many sources
of uncertainty. In general, GCMs do not take into account the influence of CO2 on plant physiology.
As a result, there is an underestimation of regional warming and an overestimation of humidity,
particularly in the tropics. Further, the modeling of the wetlands in climate change research on water
wants is not ideal. In this study, only one plant was used for the simulation. However, if the simulation
was carried out with a multicultural mode, this would indicate that these areas are more favored by
climate change than other irrigated areas in the same region of the world. However, determining the
impact of climate change on the water requirements of irrigation requires the inclusion of the different
indirect effects of climate change. Moreover, the economic conditions are an essential factor in any
adaptation, a state that in this study that is not taken into account.
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However, the same conclusions have been observed in other works. As Wenfeng Liu [51] has
shown in his work, the regions as arid desert hot and cold, arid steppe hot and cold, temperate dry
and hot summer, temperate dry and warm summer have a high level of irrigation water requirements.
The same results can be observed in the different pictures in our study. Those regions have the most
elevated amount of irrigation water requirements. The increase is highest in the RCP 8.5 scenario than
RCP 4.5 scenario as Hanqing Xu [52] concludes. If the country is specified, Tianwa Zhou [53] shows
that the irrigation water requirement in his study area which is western Inner Mongolia in China is
expected to be 648 mm under scenario A2 and 639 mm under B2. These values are included in the
predicted interval for this area in 2050 in our study.

5. Conclusions

The analysis of the results shows an increase across the different regions. Fisher [21] estimates that
the impact of climate change on IRnet is very significant, with a 20% increase between 2000 and 2080.
Based on IPCC-5 data, this study also shows an increase in IRnet between 1960 and 2050. However, the
continent of America (the region of North America and the region of Latin America and the Caribbean)
is the continent with the most significant increase of IRnet. According to the RCP 4.5, the continent of
America has the highest total of IRnet which is between 1.24 km3/yr (NCAR) and 2.42 km3/yr (MIROC
5). For the RCP 8.5, it is between 2.29 km3/yr (GFDL) and 2.79 km3/yr (NCAR). The African continent
(the region of sub-Saharan Africa and the Middle East and North Africa) is the continent with the
smallest increase in IRnet as well as the smallest irrigation area. In this part of the world, the amount
of the IRnet is between 0.22 km3/yr (NCAR) and 0.43 km3/yr (MIROC) according to RCP 4.5. For RCP
8.5, the amount of the IRnet in Africa is between 0.39 km3/yr (GFDL) and 0.43 km3/yr (MIROC 5).
On the other hand, the region of North America is the region with the largest area of irrigated area,
followed by the region of East Asia and the Pacific and the region of Latin America and the Caribbean.
The European and Central Asian region has the lowest average of IRnet, followed by the region of
East Asia and the Pacific. In other words, the continent of Europe and of Asia are the continents that
use the least water globally in irrigation. It should be remembered, that RCP 4.5 of the GCM NCAR
predicts, in contrast to other models, an overall decrease in IRnet in all regions of the globe. By using
maps from different models, decision-makers can indeed observe sensitive areas and thus develop a
water distribution policy for more efficient irrigation. Although they show different values, the cards
all have, for the most part, one thing in common: They predict an increase in IRnet. Based on the
data of the IPCC-5, the different models reveal the zones that will face important increases. This way,
decision-makers have to create new water policy strategies to deal with different changes. The previous
work is mainly based on the data of the IPCC-4, while this study can be considered as another version
of the update of the research carried out on the global representation of the IRnet. Thereby, this study
helps decision-makers to make corrections in making their decision, and by interpolation on the other
cultivated plants, to affirm that the result will be more or less the same. Specifically, that is to say, that
the IRnet of the greatest majority of plants of culture will know an important increase, more or less,
depending on the region.
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Abstract: Flows originating from alpine dominated cold region watersheds typically experience
extended winter low flows followed by spring snowmelt and summer rainfall driven high flows. In a
warmer climate, there will be a temperature-induced shift in precipitation from snowfall towards rain
along with changes in precipitation intensity and snowmelt timing, resulting in alterations in the
frequency and magnitude of peak flow events. This study examines the potential future changes in
the frequency and severity of peak flow events in the Athabasca River watershed in Alberta, Canada.
The analysis is based on simulated flow data by the variable infiltration capacity (VIC) hydrologic
model driven by statistically downscaled climate change scenarios from the latest coupled model
inter-comparison project (CMIP5). The hydrological model projections show an overall increase in
mean annual streamflow in the watershed and a corresponding shift in the freshet timing to an earlier
period. The river flow is projected to experience increases during the winter and spring seasons and
decreases during the summer and early fall seasons, with an overall projected increase in peak flow,
especially for low frequency events. Both stationary and non-stationary methods of peak flow analysis,
performed at multiple points along the Athabasca River, show that projected changes in the 100-year
peak flow event for the high emissions scenario by the 2080s range between 4% and 33% depending
on the driving climate models and the statistical method of analysis. A closer examination of the
results also reveals that the sensitivity of projected changes in peak flows to the statistical method of
frequency analysis is relatively small compared to that resulting from inter-climate model variability.

Keywords: Athabasca River; climate projection; hydrologic modelling; peak-flow; return period;
stationary analysis; non-stationary analysis

1. Introduction

Climate variability and changes in cold region watersheds are having significant impacts on the
different components of the hydrologic-cycle, such as on snow accumulation and melt, soil moisture and
runoff affecting local and regional hydrological regimes. Changes in any of these hydrologic processes,
including precipitation intensity, snowmelt runoff and antecedent soil moisture, may cause alterations
in frequency and intensity of extreme flows [1,2]. While flash floods are usually generated by intense
convective rainfalls that occur in summer, snowmelt-driven extreme flows in cold regions environment
are more frequent in spring and early summer [3]. Numerous studies also exist that document river
ice-jam related floods that can be produced in cold region environments [4,5]. Physical considerations
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of climatic change in the form of increased temperature and precipitation suggest increased flood risk
in various parts of Canada, especially if there is a corresponding increase in precipitation intensity [6,7].
Therefore, in many cases, projected changes in precipitation and temperature and the resulting shift in
snowmelt timing are expected to cause changes in the magnitude and timing of peak flow events [8].

Flood frequency analysis has generally been used to model peak flows under the stationary
assumption [9]; however, with a changing climate, the assumption of stationarity is being challenged,
and a non-stationary flood frequency analysis approaches are becoming more prominent [10,11].
The non-stationarity of the hydro-meteorological series has become important as the water cycle is
significantly affected by climate and land use changes (such as deforestation and/or urbanization) and
is often characterized by the presence of a trend component (i.e., either linear or non-linear) and/or a
sudden jump in the statistical characteristics of data [12]. Cunderlik and Burn [13] emphasized that the
presence of significant non-stationarity in a hydrologic time series cannot be ignored when estimating
design values for future time horizons. They also showed that ignoring even a weakly significant
non-stationarity in the data series may seriously bias the quantile predicted for time horizons as
near as 0–20 years in the future. Tan and Gan’s [14] investigation of the long-term annual maximum
streamflow (AMS) records at 145 stations over Canada also concluded that non-stationary frequency
analysis, instead of the traditional stationary approach, should be employed in the future. They have
also demonstrated that the non-stationary characteristics of AMS can be accounted by fitting the data
to probability distributions with time varying parameters or distribution parameters varying with
other factors such as climate anomalies, and land-use change descriptors representing the physical
explanations behind various types of non-stationarities found in the streamflow series. However,
Ouarda and El-Adlouni [15] have cautioned to use such models with care when the covariate is
considered to be time as the direct extrapolation of the currently observed trends can be misleading
and lead to erroneous results.

Lopez and Frances [16] have applied two approaches to non-stationary modelling of the annual
maximum flood records of 20 continental Spanish rivers. The first approach, where the distribution
parameters were modelled as a function of time, only showed the presence of clear non-stationarities in
the extreme flow regime; while the second approach, where the parameters are modelled as functions
of climate and reservoir indices, highlighted the important role of inter-annual climate variability
and reservoir regulation strategies, when modelling the flood regime in continental Spanish rivers.
The application of non-stationary analysis in their study also showed that the differences between the
non-stationary quantiles and their stationary equivalents might be important over long periods of time
and the inclusion of external covariates permits the use of these models as predictive tools. Results
of a similar study by Li and Tan [17] that considers the effects of climate variability and reservoir
operation in the Daqinghe river basin in China highlighted the necessity of flood frequency analysis
under non-stationary conditions, and even suggested possible adoption of alternative definitions of
the return period. Seidou et al. [18] have also shown that by using the non-stationary distribution,
with a location parameter linked to the maximum nine-day average flow, a much better estimation
of flood quantiles is provided than when applying a stationary frequency analysis to the simulated
peak flows and flood quantiles (simulated using the non-stationary distribution display the same
trends as that of the observed data during the study period). Zhang et al. [19] applied univariate and
bivariate models to investigate the nonstationary frequency of flood peak and volume of the Wangkuai
Reservoir in China with distribution parameters changing over time. Dong et al. [20] also developed
nonstationary bivariate models, where distribution parameters vary with possible physical covariates
(i.e., precipitation, urbanization, and deforestation) to model the nonstationary behavior of the flood
characteristics of the Dongnai River in Vietnam.

A recent study by Shrestha et al. [21] has presented an assessment of potential impacts of
climate change on extreme events in the Fraser River in Canada using model simulated streamflow
corresponding to future climate projections. By explicitly considering the non-stationarity of extreme
events and quantifying the transient response of peak flow discharge magnitude and frequency to
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external climate forcing, the study found potential increases in the moderately high (2–20-year return
period) streamflow events, while the results were inconclusive for low frequency events (100–200-year
return period). Projections from several global and regional climate models over the Athabasca
watershed in Canada also show an average change toward more drought-like summer and slightly
wetter annual conditions over the region [22,23]. Other studies also agree in a projected decrease in
the winter snow accumulation and summer flows, as well as earlier onset of spring freshet in the
region [24,25]. Eum et al. [25] reported projected increases in the mean-annual maximum flow at a
number of stations along the Athabasca River, although they were statistically significant only at the
stations located along the lower reaches. However, those studies have not looked explicitly at projected
changes in the frequency and magnitude of peak flow events in the river. Therefore, the main objective
of this study is to investigate projected changes in the frequency and severity of peak flow events
at various locations along the Athabasca River using multiple stationary and non-stationary flood
frequency analysis techniques. This includes exploring the inter-model variability of the results with
respect to different climatic-drivers originating from different Global Climate Models (GCMs) and
examining its sensitivity to the different statistical methods of flood frequency analysis. This objective
is achieved by analyzing the projected changes in the hydrologic regime, and the corresponding peak
flows of the Athabasca River as it has been simulated by the Variable Infiltration Capacity (VIC)
hydrologic model driven by a select-set of statistically downscaled climate change scenario data
derived from the latest coupled model inter-comparison project (CMIP5).

2. Materials and Methods

2.1. Study Area

The Athabasca River basin (ARB, see Figure 1) originates in the Canadian Rockies from the
Athabasca Glacier, at over 3700 m above mean sea level (amsl), and flows approximately 1500 km
north-eastward through the province of Alberta. It passes by, or through Jasper, Hinton, Whitecourt,
Athabasca, and Fort McMurray, before emptying into Lake Athabasca (average elevation ~208 m amsl),
which outflows through the Slave River and Lake to the Mackenzie River system. Its total drainage area
attains approximately 156,000 km2 near Old Fort before it flows into Lake Athabasca. The watershed
includes various land cover types, such as snow-capped mountains, agricultural plains, boreal forest,
wetlands, and small urban areas. The boreal forest is dominated by coniferous followed by mixed and
transitional forest. Mean annual precipitation in the watershed ranges from around 300 mm at the
downstream end near Lake Athabasca to over 1000 mm at the high elevation head-waters. The region
displays a typical nival hydrologic regime with low flows during the snow accumulation period of
late autumn to early spring (November to March), and higher spring flows typically starting in April
when air temperatures rise above freezing. The Athabasca River is ecologically and economically
significant to the development and sustainability of northern Alberta with increasing population and
industrial activities, including the multi-billion-dollar oil sands industry [26]. The quantity and quality
of flow in the Athabasca River, including extreme high and low flow events, are essential in providing
various ecosystem services in the river channels with implication to the downstream Peace Athabasca
Delta, which is a UNESCO World Heritage Site and the largest freshwater inland river delta in North
America [27].
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Figure 1. Athabasca watershed with its elevation range and the Athabasca River network, including
the locations of the four hydrometric stations used for flood frequency analysis.

2.2. Climate Scenarios and Hydrologic Projections

2.2.1. Climate Model Projection

Regional and local precipitation and potential evaporation are the main climatic drivers controlling
the hydrology of a watershed system. A warming climate is shown to affect the magnitude and
distribution of both temperature and precipitation that would, in turn, affect the water balance and
hydrology of a region [28]. Therefore, studies on the potential impacts of climate change mostly rely on
climate projections from global or regional climate models. This study employs statistically downscaled
high-resolution gridded daily precipitation, as well as daily maximum (Tmax) and minimum (Tmin)
air temperature data to drive a process-based and semi-distributed variable infiltration capacity (VIC)
hydrologic model [29] to simulate hydrologic scenarios for the future period. The latest projections
originate from twenty-six CMIP5 GCM long-term experimental runs corresponding to the four different
levels of representative concentration pathways (RCP2.5, RCP4.5, RCP6.0, and RCP8.5) in which
the labels of RCP represent an approximation of the radiative forcing in the year 2100 [30]. Climate
projections corresponding to two of the four emission scenarios, namely, the RCP4.5, which is a
stabilization scenario that achieve the goal of limiting emission and radiative forcings, and the RCP8.5,
which is an emission scenario that greenhouse gas increases as usual until 2100, are selected for
hydrologic modelling and analysis in this study. By applying a clustering approach and ranking the
models, which differs by region, to provide the widest spread (range) in projected future climate
for smaller subsets of the full ensemble, Cannon [31] suggested a set of representative GCMs that
fully capture climate variability in 27 extreme climate indices. Moreover, Eum et al. [25] showed
that selection of the top six GCMs for Western North America covers over 50% of the variations
in the climatic indices considered for the Athabasca River basin. Therefore, the present study uses
statistically downscaled data from six GCMs, corresponding to mid-range mitigation (RCP4.5) and
high emissions (RCP8.5) scenarios that represent a wider range of climate extremes and seasonal means
of precipitation and temperature (see Table 1). Murdock et al. [32] compared the skills of different
statistical downscaling (SD) techniques based on sequencing, distribution and spatial pattern related
indicators, and recommended two of the more reliable SD techniques, the Bias-Correction Spatial
Downscaling (BCSD; [33]) and the bias correction/climate imprint (BCCI; [34]), for regional applications
over Canada. The BCSD method uses a quantile-based mapping of the probability density functions
for the monthly GCM precipitation and temperature onto those of a gridded observed data spatially
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aggregated to the GCM scale. Daily results at high spatial resolution are obtained by spatial and
temporal disaggregation using rescaled randomly sampled historical observations. The BCCI method
uses long-term averages (e.g., 30 years) from the high-resolution observational data as a ‘spatial imprint’
to represent spatial gradients. The ratio of daily GCM precipitation values to the long-term average
monthly climatology of the baseline period is multiplied by the corresponding fine-scale monthly
values for a location to get the daily precipitation. These two methods were applied to correct biases
and downscale the daily precipitation, Tmax and Tmin scenario data covering the period 1951 to 2100
to a 10-km spatial resolution using the ANUSPLIN observation based gridded data for the 1951–2010
reference period [32]. A total of twenty-four climate projections, from six GCMs and two emission
scenarios (RCP4.5 and RCP8.5) and downscaled with two statistical techniques (BCCI and BCSD),
are employed to produce an ensemble of hydrologic projections for the Athabasca River basin [25].
This is because future projections by different GCMs usually diverge with time because of different
initializations and representations of the various processes in the models and the rate of this divergence
is higher for higher emissions scenarios.

Table 1. The select set of six Global Climate Models (GCMs) from the coupled model inter-comparison
project (CMIP5) experiment employed in this study.

GCM
Abbreviation

Institution
Resolution

(Lon. × Lat.)
Primary Reference

CNRM-CM5.1 Centre National de Recherches Meteorologiques
and Cerfacs 1.4 × 1.4 Voldoire et al. [35]

CanESM2 Canadian Centre for Climate Modelling and Analysis 2.8 × 2.8 Arora et al. [36]
ACCESS1 Centre for Australian Weather and Climate Research 1.875 × 1.25 Marsland et al. [37]
INM-CM4 Institute of Numerical Mathematics 2.00 × 1.50 Volodin et al. [38]

CSIRO-Mk3.6.0 Commonwealth Scientific and Industrial Re
search Organisation 1.875 × 1.86 Jeffrey et al. [39]

CCSM4 National Center for Atmospheric Research (NCAR) 1.25 × 0.94 Gent et al. [40]

Figure 2 shows the projected changes in seasonal mean precipitation and air temperature over
the Athabasca River basin for the near future (2041–2070 or 2050s) and far future (2071–2100 or 2080s)
periods relative to the baseline (1981–2010 or 1990s) period based on those multiple climate projections.
The plots indicate overall increases in seasonal precipitation and air temperature over the region except
in summer when some models projected decreases in precipitation. In general, the rate of increase
in air temperature and precipitation is higher for the higher emission scenario (RCP8.5) compared
to the medium RCP4.5 emission scenario and is also higher for the 2080s compared to the 2050s.
In particular, there is a strong agreement among all the models with respect to pronounced projected
increases in winter air temperature, ranging between 2.5 and 9

◦
C, and precipitation, ranging between

8% and 38% by the end of this century. At the same time, the ranges of climate projections for the
RCP8.5/2080s scenario are found to be wider than those for the RCP4.5/2050s indicating that the
inter-model variability in the climate projections gets larger with increasing emission concentrations
and projection horizons. This is because future projections by different GCMs usually diverge with
time because of differences in initial conditions and parameterizations of the various processes in the
models and the rate of such divergence gets larger for higher emissions scenarios.
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Figure 2. Projected changes in seasonal mean precipitation and air temperature over the Athabasca watershed.

2.2.2. Hydrologic Modelling and River Flow Scenario Simulation

The variable infiltration capacity (VIC), land surface model, is a process-based and spatially
distributed macro-scale hydrologic model that simulates the water and energy balances necessary
to accurately account for cold-climate hydrologic processes based on prescribed land cover and
three-soil layers [29]. The VIC hydrologic model has been successfully applied for evaluating the
effects of climate change on hydrologic regimes for watersheds with different basin size, climatology
and hydrologic processes [25,41,42]. The model has also been used for evaluation of historical flood
events [43] and extreme flow projections [44,45] in several regions. However, one limitation of such
hydrologic simulation of flow in cold region rivers is the assumption of open water flow throughout
the year and not explicitly accounting for the effect of river-ice freeze-ups, ice-jam and break-up events.
Eum et al. [25,46] applied the VIC model over the Athabasca watershed using daily precipitation and
temperature data from the ANUSPLIN and statistically downscaled CMIP5 climate model projections.
Receiving the daily Tmax, Tmin and Precipitation values, VIC is able to empirically estimate the
other energy flux terms over the basin based on geographic coordinates and topographic information.
The present study is based on the daily streamflow scenario simulated over the Athabasca watershed
by Eum et al. [25] setup of the VIC hydrologic model, with specific emphasis on the analysis of potential
changes in peak flows along the Athabasca River, due to projected climate.

The VIC hydrologic model calibration and validation for the Athabasca watershed were performed
using daily discharge data at several hydrometric stations along the Athabasca River and its tributaries
for the periods 1985–1997 and 1998–2010, respectively [25]. The performance of the calibrated VIC
model in replicating the daily mean discharge at four of the hydrometric stations located along the
Athabasca River mainstem and that are used for this study is summarized in Table 2. The results show
Nash–Sutcliffe (NS) values for the calibration/ validation period ranging between 0.78/0.74 and 0.90/0.80.
A more detailed description of the VIC model setup used for this study and its calibration/validation
results can be found in Eum et al. [25,47].
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Table 2. The VIC hydrologic model performances in terms of the Nash–Sutcliffe values during the
calibration (1985−1997) and validation (1998−2010) periods.

Station Hinton Windfall Athabasca Ft.McMurray

Calibration 0.90 0.81 0.78 0.79
Validation 0.78 0.80 0.75 0.74

The calibrated/validated VIC model is applied for hydrologic scenario simulations for the 1990s
baseline, as well as for the near (2050s) and far (2080s) future periods, using the twelve sets of statistical
downscaled high-resolution climate forcing, corresponding to both the RCP4.5 and RCP8.5 emissions
scenarios. Figure 3 presents the box-and-whisker plot of mean monthly streamflow projections and the
corresponding changes between the 1990s baseline and the future periods at two locations (a headwater
station at Windfall and a downstream station below Fort McMurray) along the Athabasca River.
The result indicates an overall projected increase in the Athabasca River discharge for most seasons
except in the summer months of July, August, and September that show some decreases. The projected
changes are also distinctively higher for the RCP8.5 emissions scenario during the far future period of
the 2080s with the increase in mean annual flow ranging between 15.0% to 16.3% of the 1990s baseline
value. The corresponding values for the RCP4.5 emissions scenario are relatively smaller, ranging
between 7.2% to 11.7% [25].

Figure 3. Box-and-Whisker plot of mean monthly streamflow projections and the corresponding
changes between the baseline (1990s) and two future periods (2050s and 2080s) at two locations along
the Athabasca River based on 12 sets of climate projections (six GCMs × 2 SD) and two RCPs (RCP4.5
and RCP8.5).

2.3. Methods of Peak Flow Analysis

The primary objective of frequency analysis is to relate the magnitude of extreme events to their
frequency of occurrence through the use of probability distribution [48]. Two different statistical
models of analyzing peak flows, namely, AMS, and partial duration series (PDS) are employed in

45



Climate 2019, 7, 88

this study. AMS refers to a series of flow data consisting of the annual maximum daily streamflow
values for each year. PDS, on the other hand, includes all independent peak flow events above some
pre-defined threshold value. AMS is relatively simpler to apply, as it only requires selecting the annual
maximum daily streamflow for analysis; however, some important episodes resulting from multiple
independent peak flow events within a water year may be excluded from the study. The advantage of
PDS is that it provides the possibility to control the number of flood occurrences to be included in the
analysis by appropriate selection of the threshold. However, the choice of threshold and the selection
of criteria for retaining flood peaks makes it difficult to use [49]. The specific threshold value for a PDS
is usually decided after choosing the average annual number of peak flow events to be included in the
PDS. To ensure the selected peak-flow events are independent, inter-event time criteria, specifying
the minimum time interval between successive events, and an enter-event discharge level criteria,
specifying the minimum flow level between successive events as a fraction of the smaller event, has to
be set. After closer examination of the time series data, a minimum inter-even time interval of 72 h
and an inter-event level fraction of 0.8 were used to extract the PDS from the daily time series data.
This has resulted in 1 to 3 extreme events per year for most of the stations and ensemble members.

The AMS of simulated flows at each of the four hydrometric stations along the Athabasca River
main steam corresponding to each of the 12 sets of climate projections (6 GCMs × 2 SD) are extracted
for each of the two emission scenarios. A related issue to the magnitude of annual peak flows is the
potential shift in the timing of these peak flow events. The Box-and-Whisker plots for the dates of the
peak annual flow on Figure 4 show that the median date of AMS in the future scenarios will be getting
earlier compared to the baseline period; and more so for the RCP8.5 scenario compared to the RCP4.5.
This is an indication that future flooding season will probably shift to an earlier period by order of up
to a month or more for the RCP8.5 scenario. Moreover, the variability in the dates of peak flow events
will also increase substantially, indicating that the probability of mid-winter and early spring flooding
will be increasing.

Figure 4. Box-and-Whisker plots of the dates of annual maximum flow series (AMS) corresponding to
the two emissions scenario (RCP4.5 and RCP8.5) as simulated at each of the four hydrometric stations
along the Athabasca River for the baseline (1990s, blue) and the two future periods (2050s (green) and
2080s (red)).

2.3.1. Stationary and Non-Stationary Analysis

Stationary flood frequency analysis assumes parameters of the probability distribution function for
a given period to remain constant. Such analysis is performed in this study on both the AMS and PDS
using the Extreme Value Analysis (EVA) tool under the MIKE-Zero platform [50]. Different combinations
of six probability distributions (including Gumble, Truncated Gumbel (TGUM), Generalized Extreme
Value (GEV), Weibull, Frechet, Log-Pearson Type 3 (LPT3)) and two estimation methods (Method of
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Moment (MOM) and Maximum Likelihood (ML)) were evaluated using the standardized least square
measure and graphical comparison for fitting the observed peak flow data over the baseline period.
While the AMS were best fitted with the LPT3 and the GEV distributions, the PDS were best fitted
with LPT3 and TGUM distributions. The parameters for LPT3 distribution were estimated using the
MOM, while the parameters for GEV and TGUM distributions were estimated using the ML method.
The analysis is done over each of the three 30-year periods (centered at 1990s, 2050s, and 2080s) and
the potential impacts of projected climate are estimated by computing the difference in the peak flow
magnitudes of various return periods between the baseline and future periods.

However, in a non-stationary world, the probability density functions evolve dynamically over
time. Hence, non-stationary analysis works by fitting data to a distribution where the location,
scale and shape parameters can be functions of time or climatic variables such as temperature,
precipitation or other influencing external factors, such as reservoir operation or land use changes [51].
The non-stationary analysis used in this study applies the generalized additive models for location,
scale and shape (or GAMLSS; [52]) on the AMS data. GAMLSS is a general framework for fitting
regression-based models that allow all the parameters of the distribution of the response variable to be
modelled as linear/non-linear or smooth functions of the explanatory variables. In the present study,
the response variable is a series of annual maximum peak discharge that has a parametric cumulative
distribution function, and its parameters are modelled as a function of selected covariates. Several
distributions under the R package of GAMLSS [53] were tested by modeling the parameters as a
linear function of selected covariates and fitting them using the maximum likelihood estimation (MLE)
method. Using the Akaike information criterion (AIC), the Schwarz Bayesian criterion (SBC) and by
inspecting the quantiles of the residuals, the two parameters—gamma (GA) and log-normal (LNO)
distributions—are identified to be most appropriate for the current study. First, time was used as the
sole covariate and then annual precipitation and temperature are considered together as alternate
covariates. For the latter case, mean annual temperature and annual total precipitation time series over
each sub-watershed area contributing to each of the four hydrometric stations are calculated and used
as covariates. As an example, Figure 5 presents a non-stationary LNO distribution fitted to simulated
peak annual maximum flow series (AMS) at Fort McMurray station with the Log-Normal distribution
parameters (μ and δ) varying as a function of time (t). Once the best distribution parameters are fit as
functions of the covariates, the projected changes in the frequency and magnitude of peak flow events
are computed by averaging their corresponding values over each ten-year period in the 1990s, 2050s,
and 2080s. Since there are twelve sets of simulated flow time series (6GCMs and 2DS) corresponding
to each of the two emissions scenarios (RCP4.5 & 8.5), the projected changes are mostly reported as
the ensemble mean values from all those simulations. The flowchart in Figure 6 illustrates all the
different steps and combinations in model simulation, and statistical analysis of peak flows in the
Athabasca River.

 

  

Figure 5. Illustration of a non-stationary LNO distribution fitted to simulated AMS at Fort McMurray
station with distribution parameters varying as a function of time (t).
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Figure 6. General flowchart showing all the different steps and combinations in hydrologic model
simulation and statistical analysis of peak flows in the Athabasca River. GEV, generalized extreme
value; PDS, partial duration series; LPT3, log-Pearson type 3; TGUM, Truncated Gumbel.

2.3.2. Uncertainty in Peak Flow Projections

The peak flow analysis in this study employs a set of daily streamflow time series simulated
from the VIC hydrologic model of the Athabasca watershed forced with climate data from each
of the twelve statistically downscaled GCMs (6GCMs × 2DS). Hence, the projected changes in the
frequency of peak flows have a range of possible values resulting from the multiple simulations.
In addition, both stationary and non-stationary analysis techniques are applied to each simulated
streamflow time series, with different distribution functions and covariates, resulting in eight sets of
outcomes for each streamflow projection. The sensitivity of projected changes in the frequency of
peak flows to the driving climate models, as well as the statistical methods of analysis is examined
by calculating the inter-climate model variability and the inter-statistical method variability in terms
of their corresponding standard deviations. While inter-climate model standard deviation for each
statistical method of frequency analysis is calculated from multiple projected changes corresponding to
each climate models, inter-statistical model standard deviations corresponding to each driving climate
model are calculated from projected changes by multiple statistical methods of analysis. Finally, the
sensitivity of the projected change in peak flow to inter-climate model variability is compared with
that of the inter-statistical method variability.

3. Results

3.1. Stationary Analysis

The stationary analysis techniques are applied on both the AMS and the PDS, at each of the four
hydrometric stations along the Athabasca River. The time series of peak flow is derived from the VIC
simulated streamflow data corresponding to each GCM, statistical downscaling (SD) methods and
emissions scenario combination (RCPs). Analysis results are presented as peak flow magnitudes and
corresponding changes for a number of events between 2- and a 100-year return periods. The results
are then averaged over all the driving GCM/SD to create ensemble mean values for each future
period and emissions scenario combination. Figure 7 shows the ensemble mean projected changes in
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peak flow events of different return periods between the 1990s baseline and the 2080s future periods
corresponding to the RCP8.5 emissions scenario. The results indicate an overall decrease in the return
period (or increase in the frequency) of most flow quantiles for the future period. At Fort McMurray, for
instance, a 100-year peak flow event for the baseline period will become a 30-year one by the end of this
century and a 50-year peak flow event will become more frequently than once in 20 years. Moreover,
the average magnitudes of changes are relatively lower for the headwater stations at Hinton and
Windfall compared to the downstream stations at Athabasca and Fort McMurray. Moreover, the ranges
of predicted changes for the upstream stations are generally wider than those for the downstream
stations indicating the increased uncertainty of the results for the upstream stations. Potential changes
in the frequency of peak flow magnitudes, estimated using the AMS series are generally higher than
those using the PDS. However, there seems to be no consistent pattern in the projected changes that
can be attributable to the specific statistical methods applied to model the frequency distributions.
The results corresponding to the RCP4.5 emission scenario (not presented) are very similar to that of
the RCP8.5 except that the changes are relatively smaller for the former, with the 100-year peak flow at
Fort McMurray becoming a 50-year one and a 50-year peak flow becoming a 30-year one by the end of
the century.

 
Figure 7. Results of stationary analysis - ensemble mean projected changes in flood events of different
return periods between the 1990s baseline and the 2080s future periods corresponding to the RCP8.5
emissions scenario.

3.2. Non-Stationary Analysis

Non-stationary analysis on the AMS is performed first using time (as the number of years from
the start of the AMS; i.e., 1981) as the only covariate and then using both the mean annual temperature
and annual total precipitation as covariates on which the values of the distribution parameters for the
Gamma and Log-Normal distributions depend. For each of the four hydrometric stations considered,
the mean temperature and precipitation covariates are computed only over the region contributing
(draining) to each of the measuring stations. As in Figures 7 and 8 shows the ensemble mean projected
changes in peak flow events of different return periods between the 1990s baseline and the 2080s future
periods corresponding to the RCP8.5 emissions scenario. The magnitude and direction of changes
in the ensemble mean results from the non-stationary analysis are generally similar to those of the
stationary analysis for the two headwater stations (Hinton and Windfall) except that the ranges of
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the projected changes are narrower for the former. For the two downstream stations, however, the
non-stationary analysis predicted greater changes (decreases) in the return periods of low frequency
events than that of the stationary approach.

 
Figure 8. Results of non-stationary analysis - ensemble projected changes in flood events of different
return periods corresponding to the 1990s baseline and the 2080s future periods corresponding to the
RCP8.5 emissions scenarios. The analysis is conducted on AMS using time, as well as temperature and
precipitation covariates.

Moreover, using time as the only covariate predicted larger decreases in the return periods
compared to using mean annual temperature and precipitation as covariates for the two upstream
stations, while the reverse is true for the remaining two downstream stations (Athabasca and Fort
McMurray). For example, a 100-year peak flow event for the baseline period will become a 35- to
62- year event at Hinton headwater station or a 15- to 22-year event at the downstream Fort McMurray
station by the end of this century. When using precipitation and temperature as covariates, the
Log-Normal distribution resulted in greater projected changes (decreases) in return periods compared
to the Gama distribution. On the contrary, when using only time as a covariate, the Log-Normal
distribution resulted in smaller projected changes (decreases) in return periods compared to the Gama
distribution. Consistent with the case of the stationary analysis, the ranges of predicted changes for
the upstream stations are generally wider than those for the downstream stations, again indicating the
higher uncertainty in the results for the upstream stations.

3.3. Changes in Peak Flows

Figure 9 presents the ensemble mean projected changes (%) in the magnitude of peak flow events
of different return periods between the 2080s and the 1990s baseline period for the RCP8.5 emissions
scenario based on both stationary and non-stationary methods of frequency analysis. The percentage
of projected changes at each location varies depending on the statistical method of analysis, such as
stationary vs non-stationary analysis, type of distribution function applied and the covariates used to
model the parameters. The changes in the peak flow magnitudes generally get larger with increases
in the return period. Relative changes at the downstream stations (Athabasca and Fort McMurray)
are also generally higher than those at the headwater stations (Hinton and Windfall) resulting from
accumulated effects of increasing flows within the drain area from the headwater to downstream
stations. To show a specific example, peak flow events with a 100-year return period at the two
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upstream stations is projected to increases by about 4% to 12% during 2080s compared to the 1990s
baseline period. The corresponding increases for the two downstream stations range from 21 to 33%.
At the same time, the corresponding increases in peak flow events with 5-year return period at the
two upstream stations vary from 1% to 9%, while it varies from 14% to 25% at the two downstream
stations. Similar increases in peak flow magnitude are projected for the RCP4.5 emissions scenarios;
however, the changes are slightly smaller with projected increases in the 100-year peak flow at the
two downstream stations varying from 18% to 28% (not shown).

 

 

 

Figure 9. Ensemble mean projected changes (%) in the magnitude of flood events of different return
periods between the 2080s and the 1990s baseline period for the RCP8.5 emissions scenario corresponding
to both stationary and non-stationary methods of extreme flow analysis.

The non-stationary analysis mostly results in greater projected changes in peak flows than the
stationary ones. The smallest relative changes resulted from the stationary analysis performed on
the PDS data, while non-stationary analysis with AMS and using precipitation and temperature as
covariate resulted in the biggest projected changes. For example, while stationary analysis performed
on the PDS at each of the four stations resulted in 4% to 23% increases in the 100-year peak flow event
by the 2080s, compared to the 1990s, the corresponding increase for non-stationary analysis with AMS
using precipitation and temperature as covariate range between 10% to 30%.

3.4. Inter-Model Variability

The analysis results presented above show that projected changes in the magnitude and frequency
of peak flow results for a given emission scenario and future horizon depends on both the climate
models corresponding to the streamflow projection and the statistical method of frequency analysis.
Inter-climate model variability of projected changes in peak flow corresponding to each method of
extreme flow analysis is presented in Figure 10. The result shows the inter-climate model standard
deviation of the changes between the 2080s and the 1990s baseline period and the RCP8.5 emissions
scenario for a range of return periods. The inter-climate model variability in projected changes is
generally larger as the return period gets longer. For example, while the ensemble mean value of
projected changes in the 100-year peak flow at the Fort McMurray station range between 22% and
28%, its standard deviation range between 19% and 39% depending on the statistical method of
analysis. While the stationary analysis with AMS produces the greatest inter-climate model variability,
the non-stationary analysis with precipitation and temperature co-variate generally produces the
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smallest inter-climate model variability. This is an indication that the uncertainty in the parameters of
the frequency distributions is reduced by using the driving temperature and precipitation as co-variates
to constrain their values. There seems to be no systematic difference in the pattern of inter-climate
model variability between the different stations.

Figure 10. Inter- climate model variability of projected changes in peak flow between the 2080s and
the 1990s baseline period for the RCP8.5 emissions scenario corresponding to each of the statistical
methods considered.

Figure 11. Inter-statistical model variability of projected changes in peak flow between the 2080s
and the 1990s baseline period and the RCP8.5 emissions scenario corresponding to each of the
GCM/SD considered.

Figure 11 presents the inter-statistical model variability of projected changes in peak flow between
the 2080s and the 1990s baseline period and the RCP8.5 emissions scenario for each of the climate
models considered. The inter-statistical model standard deviation of projected changes shows a
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similar pattern at all the four stations with a gradual increase with an increase in the return period.
For example, the inter-statistical model variation in the 100-year peak flow at the Fort McMurray
station ranges between 7% and 24% depending on the climate model employed. While there are
different patterns of inter-statistical model variabilities corresponding to each of the climate models, the
ranges of variabilities are very similar with slightly higher values and wider ranges for higher return
periods. However, when compared to the inter-climate model standard deviation, the inter-statistical
model standard deviations are generally smaller, indicating that the uncertainty in projected changes
resulting from the driving climate models is generally higher than that coming from the statistical
methods of extreme flow analysis.

4. Summary and Conclusions

The study examines potential changes in the frequency and magnitude of peak flows in the
Athabasca River in Alberta, Canada based on simulated discharges for the future climate. The daily
stream flows for the baseline and future periods are simulated with the VIC hydrological model of the
Athabasca watershed driven by multiple statistically-downscaled high-resolution climate scenarios
corresponding to the RCP4.5 and RCP8.5 emissions scenarios. Analysis of simulated flows generally
indicates potential increases during the winter and spring and decreases during the summer and
early fall seasons, with an overall increase in high flows, especially for low frequency peak flow
events. However, the study also reveals that projected changes in the frequency and magnitude of
peak flow events vary over a wide range, especially for low frequency events, depending on the
climate model/data used to simulate the streamflow and the statistical method of peak flow analysis.
For example, the ensemble mean projected changes for the 100-year peak flow event by 2080s ranges
from 4% to 33% depending on emissions scenarios and the statistical method of analysis. These
increases correspond to a 100-year peak flow event of the 1990s baseline period becoming a 20- to
50-year event at the end of the current century with larger changes at downstream stations compared
to upstream ones. While all peak flows may not necessarily cause flooding, the projected increase in
the frequency and magnitude of future peak flow events are most likely to increase the probability of
flooding in specific reaches (with floodplain) along the river.

The non-stationary peak flow analyses show relatively larger increases in peak flow magnitudes
at different return periods compared to that of the stationary methods, especially for the downstream
stations. The stationary analysis on the PDS resulted in smaller projected changes in peak flows than
that of the AMS. However, the application of stationary analysis over multiple 30-years epochs as
compared to a combined 90 years of data for the non-stationary analysis may have some bearing
on the comparison two approaches. The two non-stationary approaches, one using time as the only
covariate, and the other using precipitation and temperature as covariates, have also produced slightly
different results that can be explained by the nature of the covariates. With only time as a covariate, the
changes in the model parameters are linear, while using the temperature and precipitation covariates,
the changes in the model parameters are non-linear as they depend on the variation in temperature
and precipitation. This seems to allow the multivariate analysis, with temperature and precipitation as
covariates, to fit better to the changing frequency of peak flows. The effect of the distribution applied
(log-normal vs gamma) on the magnitude of the changes is also found to be different depending on the
covariates employed and no specific distribution seems to produce the consistently higher or lower
magnitude of changes for all the different cases. The study also showed that inter-model variabilities
generally increase with increases in the return periods, mostly because there is an increasing reliance
on distribution characteristics for predicting less frequent events. In general, the projected changes in
the frequency and magnitude of peak flow events vary depending on both the driving GCMs and
the statistical methods of peak flow analysis. However, the sensitivity of changes to the statistical
method of analysis is generally smaller compared to that resulting from inter-climate model variability.
Therefore, while the issue of non-stationarity is important in future peak flow projection, considering
the range of model projections for the future climate condition is equally or even more important.
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Abstract: This study presents the results of an impact analysis of climate change on salinization
and the long-term availability of drinking water resources along the river Lek, a tidal branch of the
Rhine delta, and a potential mitigation measure. To this end, a one-dimensional modelling approach
was used that enabled studying 50 years of variation in discharge and tide in current and future
climate. It was found that all locations are increasingly vulnerable to salt intrusion caused by the
combination of sea level rise and decreasing river discharges. This affects both the yearly average
chloride concentration and long duration exceedances of the threshold value of 150 mg/L. It was
also found that diverting a higher fresh water discharge to the Lek of several tens of cubic meters
per second reduces the risk of salinization at the upstream inlet locations. However, the increased
influence of seawater intrusion on the drinking water inlets cannot be fully compensated for by this
measure. The potential gain of the extra water for the drinking water inlets along the Lek has to be
balanced against the impact of this measure on water levels and stream flows in other parts of the
river system.

Keywords: climate change; salinization; water resources management; drinking water

1. Introduction

The Netherlands constitute a densely populated part of the Rhine–Meuse delta. Due to an
annual precipitation surplus of 300 mm and border crossing discharges of the Rhine and Meuse rivers
(averaging at 2200 m3/s and 230 m3/s respectively), fresh water supply has not been an issue before
long. However, the country’s limited elevation and the proximity of the sea make The Netherlands
vulnerable to seawater intrusion and salinization of freshwater inlets.

Seawater intrusion in river deltas is largely governed by two variables, both subject to
climate change:

• Sea level rise. Climate projections for The Netherlands show an estimated sea level rise of 0.15 to
0.40 m in the year 2050, and an increase of 0.25 to 0.80 m by 2085, compared to the reference year
1985 [1].

• A lower river baseflow. The regionalized climate projections indicate a potential worst case
decrease of 20 percent of the annual 7-day minimum discharge for the Rhine in 2050 and a
30 percent decrease in 2085, compared to the reference year 1985 [2].
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Both drivers cause the sea water to penetrate further inland, through the open river–sea connection
in the estuary.

Several impact assessments [3,4] show that in the long term, fresh water supply in The Netherlands
is at risk, especially in the low-lying western area where salt water intrusion occurs, whereas the
dependence on surface water is highest, due to the presence of brackish ground water. As part of the
national Delta Programme [5], national and regional governments, water authorities and public and
private water users jointly seek opportunities to make fresh water supply resilient to climate change.
This study presents the results of an impact analysis of climate change on the long-term availability
of drinking water resources in the river Lek, a tidal branch of the Rhine delta. In addition, we will
explore a potential measure to protect these freshwater resources by reallocating the Rhine discharge
over its various branches in the delta.

The Lek serves as a drinking water source to approx. 2.2 million inhabitants in the southwest
The Netherlands. There are six indirect abstractions present along the river (river bank filtration)
and one direct surface water intake. The water treatment does not include desalination, as the
chloride concentration of the river water hardly ever exceeds the drinking water standard of 150 mg/L.
However, given the impacts of climate change on river flow and sea level rise, it is conceivable that
some of the freshwater intakes along the Lek are vulnerable to salinization.

The research questions of the analysis are:

1. To what extent may climate change increase the probability of salt intrusion on the Lek, limiting
its quality as drinking water source?

2. To what extent can salt water intrusion be reduced by diverting a higher fresh water discharge
towards the Lek?

These research questions are addressed by this study using a mathematical modelling approach,
integrating river flow, seawater level and salt loads of the system. As salt intrusion on the Lek has
not been studied in such detail before, an existing salt transport model of the estuary was updated
in order to assess the vulnerability of the freshwater inlets along the Lek towards salinization due
to climate change. Additionally, the model was used to assess the effectiveness of diverting higher
freshwater discharges to the Lek, in order to alleviate future salinization events. The effectiveness
of the diversion strategy is evaluated in terms of our understanding of when and where different
salinization mechanisms prevail.

2. System Description, Methods and Materials

2.1. Northern Rhine Delta Basin (NDB) System Description

The Rhine river splits into several branches just upstream of the city of Arnhem (Figure 1). The
distribution of the discharge over the branches can be controlled to a limited extent by a weir near the
city of Arnhem. On average, two thirds of the river flow is directed to the Waal branch, while the Lek
receives some 10–15% of the cross border flow of the Rhine. The allocation of the river flow along the
Lek river can be controlled by three weirs (see Figure 1).
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Figure 1. The Rhine–Meuse delta and the location of the area of interest. River flow on the Lek can be
controlled by the three weirs in the river. Major cities are depicted by the yellow ovals.

The Rhine–Meuse delta is situated in the western part of the country. Here, the Rhine branches
connect with the Meuse river, before flowing into the North Sea through two major outlets. The
southern outlet is controlled by sluices (Haringvliet), and the northern outlet is an open shipping
channel (Rotterdam Waterway). Sea water enters the estuary through this northern channel.

The western part of the Lek (area of interest; see Figure 1) is a tidal branch of the river Rhine with
an open connection to the sea. The discharge is controlled by a weir (Hagestein). During periods of
low discharge on the Rhine (below 1500 m3/s), the Lek receives a minimal net discharge of 1–10 m3/s.
The drinking water inlets under study are situated at two different locations along the downstream
section of the Lek, Kinderdijk and Bergambacht (Figure 2, Table 1). Close to Streefkerk, a third location
is planned in the near future. At all locations, the type of inlet is river bank filtration: the water is
extracted at 40–50 m below surface [6]. Additionally, at Bergambacht, there is an open water intake.

Figure 2. Location of the drinking water inlets along the Lek river.

Table 1. Location and annual extraction volumes of drinking water inlets along the Lek river.

Inlet
Distance to Mouth

of Lek
Type of Inlet

Average Annual
Extraction

Bergambacht 12 km (a) Direct
(b) River bank filtration

(a) 92 Mm3

(b) 13 Mm3

Streefkerk (planned) 8 km River bank filtration 4–6 Mm3

Kinderdijk 0.5 km River bank filtration 6 Mm3

The mouth of the Lek, just downstream from the intake at Kinderdijk, is situated approximately
42 km from the North Sea. Salt intrusion in the mouth of the Lek commonly occurs during low river
flows and high seawater levels. However, it is expected that salinization of the Lek rapidly decays
in upstream direction, although few measurement data exist to date to support this view. A typical
example of salinization of the mouth of the Lek is presented in Figure 3, showing the situation in the
second half of 2018 when a severe hydrological drought occurred in the Rhine river catchment.
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Figure 3. Flow of the Rhine River and salinization of the mouth of the Lek during a hydrological
drought in the second half of 2018. Averaged on daily basis but based on 10 min measurements.

Calculations show [7] that the tidal excursion—the distance a water particle travels during a
tidal cycle [8]—at the Lek is 6 to 7 km from the mouth under average tidal conditions. This distance
increases during spring tide and can reach up to 14 km during storm surges. This implies that the inlet
at Kinderdijk is situated within reach of the average tidal excursion. The intake locations at Streefkerk
and Bergambacht which are situated more upstream (Figure 2) will only face salinization during storm
surges or through mixing processes causing longitudinal dispersion.

The sea is not the only source of salt in the Lek. On the freshwater side, the Rhine carries a salt
load as well. The chloride concentration of the Rhine river can be described by the relationship
C(t) = Cb + Lc/Q(t), where Cb is the background chloride concentration and Lc is the chloride
load. In [9], estimates for Cc and Lc were derived from measurements in 2007–2008 (Lc = 60 kg/s;
Cb = 47 mg/L). Using these estimates, the typical chloride concentration for low discharges
(800–1500 m3/s) ranges from 90 to 125 mg/L. A more recent estimate of this riverine chloride
concentration (i.e., the combination of background chloride concentration and chloride load), based on
the year 2011, results in a range of 97–141 mg/L.

2.2. NDB-Model

For assessing the impact of climate change on salinization of the Lek and the effectiveness of
mitigation measures, preferably long time series are calculated in which a large set of variations in
conditions like river discharge, tide and wind conditions occur. To date, this can only be carried out
with 1D models, which are a commonly applied for hydrodynamic calculations in river studies [10].
Therefore, a 1D hydrodynamic model of the Rhine–Meuse estuary was used to describe the transport
of water and salt. This Northern Delta Basin (NDB) model is part of the Dutch National Water Model
(NWM), a set of hydraulic and hydrological models and tools set up to support the national fresh water
policy [11]. With the NWM model, the hydrology and water distribution throughout The Netherlands
can be calculated [12–14]. From this, boundary conditions are extracted for the nested and more
detailed NDB model [13–15].

The NDB model is setup in the SOBEK-RE modelling suite, a one-dimensional open-channel
dynamic numerical modelling system [16]. Salt transport in the NDB is modelled by a 1D longitudinal
advection-dispersion formulation. The advective part describes the distribution of salt along with
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the 1D motion of the water. Other processes contributing to the distribution of salt that, due
to limited dimensions and spatial scale, cannot be resolved by the model are described by the
dispersion coefficient. This covers 3D mixing processes like gravitation, circulation and Taylor shear
dispersion. Within SOBEK-RE, the dispersion coefficient is estimated by the adjusted version of the
Thatcher–Harleman equation [17–19].

The current version of the NDB model (NDB1_1_0) was setup in 2003 [20] and recalibrated in
2005 [21]. Due to its relative long distance from the mouth of the estuary, the river Lek has as yet
not been vulnerable to salinization, except for its mouth at Kinderdijk. As a consequence, little data
is available and calibration of the NDB model has never focused on the Lek. Only recently, a range
for the longitudinal dispersion coefficients was estimated for this part of the Rhine estuary [7], based
on an analytic expression for salt dispersion in combination with system knowledge and branch
characteristics. An overview of the obtained values is given in Table 2. It shows that the estimate for
the dispersion coefficient varies with conditions, like discharge, salinity gradient and location within
the estuary. However, the adjusted Thatcher–Harleman formulation in the NDB model is not able to
capture this behavior. Therefore, in this study a range of fixed values was used, depending on the
minimum upstream discharge at Hagestein (the most right column in Table 2).

Table 2. Overview of the values for the dispersion coefficient K for Kinderdijk and Bergambacht as
presented in [7]. All numbers rounded to fives. ΔC is the increase in chloride concentration with
respect to the riverine concentration. Kmin and Kmax are the minimum and maximum estimate for the
dispersion coefficient. Estimates for 40 m3/s were calculated following the same method as in [7].

Discharge Location ΔC = 50 mg Cl/L ΔC = 500 mg Cl/L Value Used

m3/s Kmin Kmax Kmin Kmax

2 Kinderdijk 25 65 30 80
55

Bergambacht 25 65 30 80

20 Kinderdijk 30 80 55 125
90

Bergambacht 25 65 25 70

40 Kinderdijk 35 90 70 150
110

Bergambacht 25 65 25 70

The minimum value used in this study is the average of the estimates for a discharge of 2 m3/s,
i.e., 55 m2/s. For higher upstream discharges, the dispersion coefficient shows a variation with location
along the Lek. The aim of this study is to assess the impact of increasing the upstream discharge on
this river branch. To prevent overestimation of the effect of the measure, the dispersion values used
were based on the average estimates for the most downstream location (Kinderdijk) and the highest
gradient in chloride concentration (ΔC = 500 mg Cl/L).

To assess the impact of this approach, sensitivity calculations have been carried out for an 8-year
period. For the reference case, the range of D = 25–80 m2/s has been explored, which coincides with
the full range estimated in Table 2. For the case with a minimum discharge of 20 m3/s, the range
has been extended from 90 m2/s towards the lowest value estimated in Table 2 (D = 25 m2/s), since
D = 90 m2/s is expected to be a conservative estimate for the dispersion coefficient, based on typical
hydrodynamic and salinity gradient conditions at Kinderdijk. In practice, the dispersion coefficient
further upstream of Kinderdijk will be lower.

The results of this sensitivity analysis are shown in Figure 4, in which the 365-day moving average
of chloride at Streefkerk is given for the minimum and the 20 m3/s discharge cases. It shows that
the range of the dispersion coefficient is relevant to the results, but that the effect of the upstream
discharge is larger, provided the difference in upstream discharge is sufficiently large (some tens of
cubic meter per seconds).

61



Climate 2019, 7, 49

Figure 4. The sensitivity of the 365-day moving average chloride concentration at Streefkerk for
the range of the dispersion coefficient: Qup, min = 2 m3/s (reference): D = 25–80 m2/s (orange);
Qup, min = 20 m3/s: D = 25–90 m2/s (blue).

The model setup was validated against observed chloride concentrations at Kinderdijk, available
for the period 2001–2011 (no observations were available for the other two locations). Figure 5
illustrates the behavior of the model; it describes the overall variations reasonably well. The model is
able to reproduce sudden salinization events due to sea water intrusion. However, the magnitude of
the peaks is underestimated.

Figure 5. Observed and calculated chloride concentrations at Kinderdijk for the year 2006. Both
observations and calculations are daily averaged based on 10 min data. Please note that for the
validation runs, measured river chloride concentrations are used, while for the scenario runs (current
and future climate), a discharge–salinity relation is used.

62



Climate 2019, 7, 49

This general model performance can also be observed from Figure 6, where the 365-day moving
average is plotted for the observed and modelled chloride concentrations at Kinderdijk. The averaged
chloride concentration is underestimated for years with a substantial impact of seawater intrusion, like
the year 2003.

Figure 6. Comparison of the observed and modelled 365-day moving average chloride concentration
at Kinderdijk. Please note that the moving average is tailing, that is, the salinization events occurring
in the summer and autumn of 2003 start to have a noticeable effect on the MA in the second half of
2003 and remain visible until the second half of 2004.

From this validation, and in line with previous findings [22], it can be concluded that the model
is well able to capture salinization events, but that exact variations differ and the influence of sea
water intrusion is underestimated. As variations in chloride concentration in the Lek vary between
about 50 mg Cl/L up to over 3500 mg Cl/L, estimating exact exceedance durations of a threshold
of 150 mg Cl/L requires a very high accuracy of the model. The validation shows that this accuracy
cannot be achieved with this basin wide 1D model. In addition, the limited representation of the
physical processes relevant for salinity intrusion in 1D poses an uncertainty on the predictability with
changing conditions such as sea level rise. However, a global indication on the amount and duration
of exceedance in current and future climate can be obtained. The model can therefore be used to carry
out a first-order assessment of the vulnerability of the inlet locations to salinization and of the risk
reduction that can be achieved by reallocating the available water over the Rhine branches. However,
it should not be used in an operational water management context, where more precise estimates
are required for a day to day balancing of the freshwater allocation to the Lek and the salinization
potential of the intake locations.

2.3. Climate Projection

The climate projection used in this study is the Wh-dry scenario for the Rhine river catchment [1,2].
This scenario is part of the KNMI’14 climate scenarios [23]—a regionalized interpretation of the AR5
climate projections—and serves as the worst case scenario from a fresh water supply perspective. The
Wh-dry scenario projects a change in meteorological conditions (precipitation and evapotranspiration)
in The Netherlands, impacting the intake and outlet discharges from the river Lek. Furthermore, the
Wh-dry scenario projects for 2050 a sea level rise of 40 cm relative to 1995. The Wh-dry scenario projects
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a strong reduction in summer precipitation in the Rhine catchment by 17% in 2050 [1] and leads to a
longer duration and severity of low Rhine river discharges entering The Netherlands. For example, the
long term mean annual lowest seven-day flow drops from 1010 m3/s in current conditions to 825 m3/s
in 2050 in Wh-dry conditions, and the number of days with a flow below 1000 m3/s doubles from 23
to 46 [2].

To assess the potential impact of climate change under the Wh-dry scenario on salt water intrusion,
the NDB model was rerun with adjusted boundary conditions according to the Wh-dry scenario. The
50-year time series of future river discharges and lateral discharges and intakes has been taken from the
National Water Model as used in the context of the Delta Program fresh water supply. The projected
sea level rise of 40 cm by 2050 has been added to the marine boundary condition of the model thereby
copying the variability of tides and storm surges as historically occurred over the 1961–2011 period.

3. Results

3.1. Vulnerability of Drinking Water Inlets

The vulnerability of the drinking water inlets to salt intrusion is indicated by exceedance of
the maximum allowable chloride concentration in drinking water in The Netherlands (150 mg/L).
For direct inlets, no water is extracted when the concentration of 150 mg Cl/L is exceeded. For the
sub-surface inlets (river bank filtration), this maximum allowable concentration is a yearly average.
In this section, the vulnerability of the drinking water inlets is analysed in three steps. Firstly, an
indication of the increase in salinization on the Lek due to climate change is obtained by analyzing the
percentage of time in which the limit of 150 mg Cl/L is exceeded for all three locations along the Lek,
for current and future climate. Next, the impact on the 365-day moving average is presented. Finally,
the duration of the exceedances is analysed for the direct inlet at Bergambacht.

Figure 7 summarises the number of days that the chloride concentration exceeds the threshold
during one or more timesteps in the 50-year period. This exceedance can be caused by either the
chloride concentration of the river water (i.e., >150 mg/L) or by seawater intrusion. From these
occurrences, the number of days during which the riverine chloride concentration exceeds the threshold
are separated. Finally, the occurrences are divided by the total number days in the 50-year period,
yielding a percentage of time.

This analysis shows that for reference conditions, the percentage of time at which the threshold
chloride concentration is exceeded in the 50-year period considered is close to 2 percent near the
mouth (Kinderdijk) and decreases by a factor of 4–5 at the inlet locations upstream. Exceedances of the
150 mg/L threshold due to high chloride concentrations in the river water do not occur. In a future dry
climate (Wh-dry conditions), exceedance percentages increase up to 6 to 10 percent, depending on the
location. Part of this increase is caused by the riverine chloride concentration, which increases during
the low river discharges in the Wh-dry scenario. Please note that this effect alone already causes a 2%
exceedance of the threshold at all inlet locations. This is larger than the total exceedance, from marine
and river origin, in current climate conditions.

Figure 8 shows the 365-day moving average of the chloride concentration at the three drinking
water inlet locations. Under current climate conditions, the moving average does not exceed the
threshold of 150 mg/L at any location during the 50 years calculation period. In the Wh-dry scenario,
the increase in riverine chloride concentration during low discharges has an effect on the 365-day
moving average, but does not lead to exceedances. However, in combination with the increased
seawater intrusion, several periods of exceedance at all intake locations occur. In accordance with
Figure 7, the number and the duration of exceedances decrease in upstream direction.
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Figure 7. Exceedance of the maximum allowable chloride concentration at the three drinking water
inlet locations, based on model calculations 1961–2011, under current conditions (Reference) and
Wh-dry conditions. The threshold level is 150 mg/L. Exceedance of the threshold level can be due to a
high riverine concentration in the river water (>150 mg/L) or to enhanced seawater intrusion (marine).

 

Figure 8. The 365-day moving average chloride concentration at the three drinking water inlet locations
(based on calculations 1961–2011). The threshold level is 150 mg/L, averaged over the year, as a
moving average.

At Bergambacht, the direct intake of river water is suspended when the chloride concentration
exceeds the threshold level of 150 mg/L. This period of suspension can be continued for approx.
20 consecutive days without causing disturbances in the drinking water supply, due to the presence of
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a freshwater buffer in the coastal dunes. During the 50-year analysis period, in the current climate, only
one exceedance with a duration of 20 days or more was identified. In the Wh-dry scenario, this number
rises to 17. Table 3 shows the ten longest periods of exceedance. Please note that all salinization events
occur in the second half of the year, most of them in the fourth quarter. This is due to the seasonal
dynamics of the Rhine river with a minimum flow in the fourth quarter, and to the start of the storm
season in the month September, leading to elevated seawater levels at the coast.

Table 3. The 10 longest periods of exceedance of the chloride threshold concentration (150 mg/L) at
Bergambacht (direct intake of river water) in the reference situation (current climate) and the future
climate Wh-dry scenario. Sorted on highest to lowest durations under Wh-dry conditions.

Nr. Year
Duration

(days)
Ref

Duration
(days)

Wh-dry
Time of Year

1 1976 - 152 Jul–Dec

2 1964 - 116 Jul–Nov

3 2003 1 110 Aug–Dec

4 1971 27 97 Sep–Dec

5 1962 10 77 Okt–Dec

6 1991 1 69 Sep–Nov

7 1990 - 65 Sep–Nov

8 2009 - 54 Sep–Nov

9 1972 7 43 Oct–Nov

10 1985 - 41 Oct–Nov

3.2. Mitigation of Salinization through Adjusted River Water Allocation

The eventual aim of this study is to assess the effects of passing a minimum flow of water through
the upstream Hagestein weir (see Figure 2) on the salinization of the drinking water inlets along the
Lek. Two variants of this strategy are analyzed in this section: maintaining a minimum discharge of
20 m3/s and 40 m3/s, respectively, at Hagestein. This extra water is extracted from the Waal branch, in
order to respect the water balance. All other boundary conditions and model settings are unchanged
compared to the Wh-dry scenario presented earlier, except for the dispersion coefficient, as described
in the method section. The analysis follows the same steps as the previous section.

Analogous to Figure 7, Figure 9 shows the effects of maintaining a minimum discharge of 20 and
40 m3/s on the Lek river on the number of days in which the chloride threshold of 150 mg/L is
exceeded in the Wh-dry scenario (in the 50-year period considered).

The results summarized in Figure 9 show that maintaining a minimum upstream discharge
of 20 m3/s reduces the exceedance time about 1 to 2 percent at the locations Bergambacht and
Streefkerk (a 20–25 percent decrease). A minimum discharge of 40 m3/s decreases this percentage
by 30–35 percent. At Kinderdijk, the calculated effect is very small. This is explained by the fact
that Kinderdijk is within the normal tidal range of the Lek. An upstream discharge up to 40 m3/s is
very small compared with the volumes of water exchanged during a tidal cycle. Further upstream,
the dominance of this alternating advective salt transport diminishes, and the upstream-directed
dispersive flux becomes increasingly important for the net longitudinal salt transport. A sufficient
increase in the upstream discharge may counterbalance this dispersive salt transport.
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Figure 9. Percentage of time of exceedance of the threshold chloride concentration in the Wh-dry
scenario (grey bar plus brown bar) and reduction of this percentage due to maintaining a minimum
Lek discharge of 20 and 40 m3/s (light blue and dark blue bars, respectively).

Figure 10 shows that the annual average chloride concentration at Streefkerk can be kept below
the maximum allowable level of 150 mg/L by maintaining a minimum upstream discharge of 40 m3/s.
A minimum discharge of 20 m3/s also causes a major decrease, but still results in three periods of
limited exceedance in the 50 year period.

Figure 10. Effect of maintaining a minimum upstream discharge of 20 and 40 m3/s on the 365-day
moving average chloride concentration at Streefkerk 1961–2011.
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For the direct inlet at Bergambacht, maintaining a minimum upstream discharge affects both the
duration of an exceedance and the maximum chloride concentration. Furthermore, long events can
be split into two or more shorter events, as the chloride concentration temporarily drops below the
maximum allowable level during a Wh-dry event. Due to this effect, the number of events with a
duration of 20 days or more decreases from 17 (with a total length of 1006 days) to 15 (719 days) in the
20 m3/s variant and 12 (512 days) in the 40 m3/s variant.

4. Discussion and Conclusions

Below, the results are discussed in view of the uncertainties of the 1D modelling approach and
conclusions are drawn. Firstly, the effect of climate change on the salinity intrusion of the Lek and
the impact on the drinking water inlets is discussed. Thereafter the effectiveness of the measure is
evaluated, including a notion on strategic choices in water distribution to serve different purposes.

Calculations of a 50 year time series show that in the current climate, the instant exceedance of
the limit of 150 mg Cl/L is limited (less than ~2% for all locations), the 365-day moving average is
at least about 15 mg Cl/L away from exceeding the 150 mg Cl/L and that there is only one event of
20 consecutive days of exceedance of 150 mg Cl/L for the direct inlet at Bergambacht. In the Wh-dry
scenario, these numbers show a significant increase. Instant exceedances of the 150 mg Cl/L norm
increase from less than a few percent of the time to ~6–10%, the 365-day moving average exceeds
the 150 mg Cl/L threshold for several times and at the direct inlet at Bergambacht over 10 periods of
long-term exceedance of the limit are calculated. Though the validation showed that exact exceedance
numbers and duration of the threshold of 150 mg Cl/L cannot be obtained from the 1D model, a global
indication can be retrieved. It can therefore be concluded that in a current climate, the water inlets
rarely face problems and that this will change in future climate. As there are indications that the chosen
1D approach may lead to a relatively low response to mean sea level rise [24], the influence of climate
change on the salt intrusion and related exceedance times may even be stronger.

Another important finding is that salinization on the Lek is not solely related to the connection to
the sea. The chloride load on the Rhine has been strongly reduced since the 1960s [19], such that in
current climate, even during low discharge events, when the chloride load is less diluted, the maximum
allowable concentration for drinking water is hardly ever exceeded (Figure 4). In the Wh-dry scenario,
the chloride concentration of the Rhine increases considerably during low river flows, accounting for
about 2% of the exceedance. In contrast to the influence of chloride of marine origin, which mostly
affects the downstream locations, riverine chloride affects all stations equally. It should be noted that
the relationship between discharge and chloride concentration at the German-Dutch border used in
this study [13] is based on measurements from 2011. As between 1997–2008 a rapid decrease was
observed in the chloride load on the Rhine [9] it is relevant to know whether further changes have
occurred in recent years.

Calculations show that maintaining a minimum upstream discharge of several tens of cubic meters
per second reduce the risk of salinization at the inlet locations. However, the increased influence of
seawater intrusion on the drinking water inlets cannot be fully compensated for by this measure. The
increased upstream discharge is most effective in counteracting the inward salt transport by mixing
processes that cause longitudinal dispersion, but less effective in counteracting the salt transport
caused by tides and storm surges, as the extra discharge is small compared to the large volumes of
water exchanged during these events. Consequently, the effect at Kinderdijk is limited while further
upstream at Streefkerk and Bergambacht, several tens of cubic meters per second on the Lek reduce
the salinity intrusion events to the level that will cause limited hindrance to the fresh water intake in
the Wh-dry scenario.

This study aims at assessing the risk of exposure of the drinking water inlet locations to salinization
and of the reduction that can be achieved by reallocating the available water over de Rhine branches.
It can be concluded that diverting water onto the Lek is an effective measure to reduce the risk of
salinization at Bergambacht and Streefkerk. Kinderdijk is well within the tidal excursion of the Lek
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and cannot profit from a relatively small upstream surplus. For individual events however, the
operational question of how much water should be passed through the weir at Hagestein cannot be
answered by the results presented here. This requires more precise estimates, which are expected to be
obtained by carrying out a hybrid 1D and 3D approach. Given the more detailed representation of the
physical processes within a 3D model, time slices of the 1D result could be selected and recalculated.
By this means, estimates for the effect of climate change on the salinity intrusion during particular low
river-discharge events and the required discharge surplus can be improved.

The extra water discharged onto the Lek comes at a cost. It cannot be used elsewhere in the river
and adjacent channel system to sustain fresh water demands for water quality (flushing), irrigation and
navigability. Also, the extra water is extracted from the Waal river, which is the main inland shipping
channel for the port of Rotterdam. During low discharges of the Rhine, water levels on the Waal are
very critical, as they determine the allowed depths of ships and hence the loads they can carry. The
potential gain of the extra water for the drinking water inlets along the Lek has to be balanced against
the impact of this measure on water level and stream flows in other parts and functions of the delta
system. This calls for more precise estimates of both the climate effect and the amount of discharge
needed for particular events to counteract the salinity intrusion.
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Abstract: A viewpoint of a temporal trend with an extremely changing point analysis is proposed
to analyze and characterize the so-called current declines of the world’s saline lakes. A temporal
trend of a hydrological or climate variable is statistically tested by regressing it against time; if the
regression is statistically significant, an ascending or declining trend exists. The extremely changing
points can be found out by using the mean of a variable, adding or subtracting two times of its
standard deviation (SD) for extremely high values and extremely low values, respectively. Applying
the temporal trend method to the Great Salt Lake’s (GSL) relationship between its surface levels
and precipitation/temperature in the last century, we conclude that climate changes, especially local
warming and extreme weather including both precipitation and temperature, drive the dynamics
(increases and declines) of the GSL surface levels.

Keywords: dynamics of saline lakes; extremely changing points; extreme weather; temporal trend

1. Introduction

The declines of saline lakes were recently highlighted in research and media. The Great Salt Lake
(GSL), a remnant of Lake Bonneville, existed from about 30,000 years ago to 16,000 years ago, and is
now approximately 4402.98 km2 (1700 square miles) with a length of 120.70 km (75 miles) and a width
of 45.06 km (28 miles) at its average water level [1]. It has no outlet, with dissolved salts accumulated
by evaporation. Laying on a shallow playa, small changes in water surface levels typically result in
large changes of the GSL area. The lake drainage basin is about 90,649.58 km2 (35,000 square miles),
where the human population is now more than 1.5 million. The GSL seems to be an ideal lake to study
to understand the impacts of changes in climate on water resources.

Human water use might be an important factor driving the declines of world saline lakes. Using
the GSL as an example, some researchers concluded that human water uses, specifically consumptive
water uses for agricultural, salt pond mineral production, and municipal and industrial purposes
determine the declines of saline lakes [2]. Although the US freshwater withdrawals have declined
since 1980, (i.e., Trends in estimated water use in the United States, 1950–2015, https://water.usgs.gov/
watuse/wutrends.html), and the current consumptive water uses in agriculture, salt pond mineral
production, and industry can be much larger than that in the 1950s, in the last century the GSL had
experienced a number of times of significant continuous declines, such as 1925–1936 and 1952–1963;
furthermore, the current 2016 decline is much better than its situation in the 1960s. In other words,
in the long term, human water use could be important, but it is questionable to only just attribute
saline lakes’ decline to human/consumptive water uses (i.e., agricultural, mineral municipal aspects,
and others).

The Landsat images, which are available from 1972 to current years, as shown in Figure 1, indicate
that the worst decline situation was in 1972 compared to 1987, 1999, 2011, and 2016. Human water
use, including agricultural, salt pond mineral, and municipal and industrial purposes in the 1970s was
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much less than those in the 1980s, 1990s, and 2010s. Human water use, thus, is not the main driving
force of declines in the GSL in the past 100 years.

Figure 1. Landsat images (1972, 1987, 1999, 2011, and 2016) displayed in false color for the Great Salt
Lake (GSL) and the GSL desert that is on the left side of the lake in the imagery. Sources and more
details are available at http://Earthshots.usgs.gov, Earthshots: Great Salt Lake.

The recent changes of GSL water levels in the last three years 2016, 2017, and 2018 (details are
available at http://greatsalt.uslakes.info/Level.asp) further reject the above conclusion that human
water use resulted in the GSL water loss. The average water levels in 2017 or 2018 are 0.91 meters
higher than those in 2016. Given the current lake area 4402.98 km2, it means that about 4,006,711,800 m3

more water was added into the GSL in 2017 or 2018 than in 2016. Given the fact that the changes
of human water use in 2016, 2017, and 2018 are barely due to no significant changes in population,
agriculture, industries, and other human activities, human water use, hence, is not the dominant factor
for GSL water loss or water level dynamics in the short term.

Considering the water budget of the GSL, we define the GSL water level using the equation below:
GSL water level = inflow (precipitation + river discharge)—outflow (human water use + evaporation).
As discussed above, human water use alone cannot be thought of as the main driving force for water
level dynamics or water loss. Thus, there are three remaining factors of precipitation, river discharge,
and evaporation, which are all mainly related to climate factors of precipitation and temperature.
Given this information, it is necessary to rethink the impacts of climate on the dynamics or declines of
GSL water levels. Precipitation is the main and direct water source, and evaporation caused by the
increases in temperature can be the dominant water loss of saline lakes.

2. Extremely Changing Point Analysis and Data

This short research proposes a new viewpoint of a temporal trend with an extremely changing
point analysis in order to analyze and reveal the so-called declines of saline lakes. To the best of
our knowledge, there is not a conception of an “extremely changing point analysis” in the literature,
and hence it is proposed for applications to hydrology, climatology/meteorology, and environmental
study to efficiently identify significantly changing observations in a data series.

In both climatology/meteorology and hydrology, time series are the data that are often analyzed,
and extremely large or small records typically have their specific meaning in climate or hydrology.
For instance, extreme weather has recently received more attention than before [3], and in the USA
it is defined as unusual or unexpected severe weather at the extremes of the historical distribution,
which typically are in the most unusual ten percent [4]. Studies have indicated that extreme weather
in the future will pose an increasing threat to the world, and three times the standard deviation
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were used to indicate extremely hot summer outliers [5]. Extreme values are key aspects of climate
change, and changes in extremes are typically the most sensitive climate characteristics for ecosystems
and societal responses [3,6]. Extremely increased or decreased records can be significantly large for
seemingly modest mean changes in climate [7]. Most climate impacts mainly result from extreme
weather events or the climate variables that are significantly above or below some critical levels, which
hence affect biological behaviors or the performance of physical systems [3,6,8]. Intergovernmental
Panel on Climate Change (IPCC) further stated that for important climate impacts, scientists are
interested in the effects of specific extreme events or threshold magnitudes [3]. Therefore, it is necessary
to apply an extremely changing point analysis to reveal the declines of GSL.

2.1. Extremely Changing Point

Whether a record is an extremely changing point is identified by using the mean of an attribute
adding or subtracting two times of its standard deviation (SD). If an observation is larger than its mean
plus two SD, it is an extremely high value point, while an observation smaller than its mean minus
two SD is an extremely low value point.

Here, the extremely changing point analysis is based on the common statistical concept of the
Z-score (or standard score) in statistics, which is defined as Z = x−u

σ , or written as x-u = Z ∗ σ that
is easily explained and understood, where x is the observations of an attribute u is the mean of the
population, and σ is the standard deviation of the population; it describes how the observations
are off the population mean. When Z-score is related to a normal distribution [9,10], the Z-score
ranges from −3 to +3 covering almost the whole distribution by approximately 99.7%. The extremely
changing point analysis proposed in this study is not limited by normal distribution, which in reality
is often a special case, and for example, both mean and standard deviation require attention in order
to understand extreme temperature [11]. Both two times the standard deviation and three times
the standard deviation have been used to examine extreme temperature [5], although the gamma
distribution is often used to model temperature measurements. In this study, we define Z = 2 to
determine if a record is far away enough from the mean, so that it can be defined as an extremely
changing point; x can be either 2σ larger than the mean or 2σ smaller than the mean, although this
method is used in statistics to find outliers.

As we know, a temporal trend can be statistically tested by an attribute regressed against time. If
a trend is statistically significant with a p-value of its slope test less than 0.05, a positive slope indicates
an increasing trend, while a negative slope indicates a declining trend.

We often emphasize a general trend for an environmental phenomenon, while extremely changing
points (such as extremely high or low temperatures) and their effects are often overlooked, but they play
significant and increasing impacts on the environment and human society as environmental changes
become more global and frequent. Extremely changing point analysis not only adds more properties
characterizing an environmental phenomenon that could not be disclosed by trend analysis, or mean
as well as variance analysis, but also could reveal the relationship between geographic phenomena,
such as extremely high precipitation which typically results in significant flooding inundation in space
and time.

2.2. The Data

Using the GSL as a case study, the lake surface level data and climate data (including temperature,
precipitation, and snowfall) are processed first from 1904 to 2016, given the snowfall data are available
from 1904. The mean and SD of the four variables are calculated; then, the lower bound (i.e., mean
minus two SD) and upper bound (mean plus two SD) are used as thresholds to respectively determine
the extremely low and the extremely high values in each time series data of lake surface level,
precipitation, temperature, and snowfall. Based on the lower bound and upper bound, the extremely
low points and extremely high points of these four variables are recognized and summarized in Table 1.
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Table 1. Climate, extreme weather, and the surface levels of the Great Salt Lake.

Mean 2* SD
Lower
Bound

Upper
Bound

The Extremely Low
Observations

The Extremely High
Observations

Surface Level
Meter 1279.82 2.33 1277.49

(1278.23)
1282.15

(1281.41) 1277.76 in 1963
1282.52, 1282.87, 1283.34,

1283.31, 1282.54
in 1984–1988

Precipitation
Meter 0.395 0.173 0.223

(0.26)
0.568
(0.54) 0.221 in 1979 0.581, 0.616, 0.605

in 1982, 1983, 1998

Temperature
K 284.31 257.15 282.53

(282.88)
286.09

(285.77)
282.15, 259.98
in 1964, 1983

286.76, 286.2, 286.65, 286.59
in 2012, 2014, 2015, 2016

Snowfall
Meter 1.399 1.088 0.311

(0.57)
2.488
(2.29) 0.274 in 1973 2.682, 2.578, 2.979, 2.49, 2.51

in 1916, 1921, 1951, 1983, 1992

Note: The lower bound is determined by the mean minus two standard deviations (SDs), and the upper bound
is the mean plus two SDs. Surface level data of the GSL are available at https://ut.water.usgs.gov/greatsaltlake/
elevations/. Precipitation, temperature, and snowfall data are available at https://www.ncdc.noaa.gov/IPS/lcd/
lcd.html. More details about these downloaded data are summarized in the Supplementary Materials. The values in
( ) are the 5th and 95th percentiles, respectively, compared with those lower bounds and upper bounds determined
by mean and 2SD.

Some may question, why not use 5th and 95th percentiles to identify extremely changing points?
In Table 1, the values of the 5th and 95th percentiles for surface level, precipitation, temperature,
and snowfall are compared to the lower and upper bounds respectively defined by 2SD. Results show
that the values of 95th percentiles are all much smaller than the upper bounds determined by mean +
2SD, as shown in Table 1, but the 5th percentiles are all much larger than the lower bounds determined
by mean—2SD. In other words, if the 95th percentile is used, there could be too many “extremely
changing points” that in fact are not large enough to be extreme; while many more low values also
can be added by using the 5th percentile, which are not small enough to be extremely low. Therefore,
the 5th and 95th percentiles cannot make the extremely changing points as meaningful as it is defined
to identify the extremely changing observations by using mean and 2SD. For instance, using the 5th
and 95th percentiles, surface levels in 1923, 1924, and 1989 would be added as extremely high water
levels to 1984, 1985, 1986, 1987, and 1988; surface levels in 1961, 1962, 1964, 1965, 2015, and 2016
would be added as extremely low observations in addition to 1963, as shown in Figure 2. In other
words, mean and 2SD are more robust and effective than the 5th and 95th percentiles to identify
extreme values.

Figure 2. The general declining trend of the GSL surface level and the extremely changing points
marked in red.

From the early 1970s, there is a significant trend of local climate warming in the GSL region, which
is primarily driving the declines of the GSL, as shown in Figure 3. Therefore, the climate variables of
temperature, precipitation, and snowfall are analyzed into two periods, from 1904 to 1970 and 1971
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to 2016, in which temporal trends are analyzed and extremely changing points are marked in red,
as shown in Figure 3.

Figure 3. The dynamics of temperature, precipitation, and snowfall in the GSL area. (A) trend analysis
of temperature; (B) trend analysis of precipitation; and (C) trend analysis of snowfall.

Trend analysis is also applied to the lake surface level, temperature, precipitation, and snowfall
in order to highlight the efficiency of extremely changing point analysis in hydrological and climate
data analysis. For example, whether the GSL has a significant declining trend can be analyzed as a
regression model with years as a predictor. If we use the lake surface level as an indicator of GSL
declines, we need to regress the lake surface levels against years. The results of trend analysis and the
extremely changing points are plotted and marked in red, as shown in Figures 2 and 3.

3. Results and Discussions

In the last century, the GSL shows an apparent decreasing trend from 1904 to 2016 with the lowest
level of 1277.76 meters in 1963, but its declining trend is not significant, as shown in Figure 2. In other
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words, the significance of GSL declines is tested with a p-value of 0.0582 that is just a little beyond
the significance level 0.05. However, the periodic changes of its surface levels in both increasing
patterns and decreasing patterns are anomalous in the last century, as shown in Figure 2. This cannot
be explained by the human water uses in agriculture, industry, and municipal purposes that were
much lower in the last century than current days given the recently significant growth in agriculture,
industry, and urbanization in the GSL basin. Instead, the GSL declines could be more clearly explained
by climate change and extreme weather including both precipitation and temperature, which then
are explained in the five sections below: local warming and evaporation, the impacts of radiation and
wind on evaporation, precipitation, river discharge, and human water use.

3.1. Local Warming and Evaporation

Climate changes, especially increasing temperature, have caused significant water loss through
evaporation in semi-arid regions [12–16]. Craig et al. reported that increasing evaporation rates caused
by climate warming have resulted in approximately 40% of Australia’s total water storage capacity loss
every year [16]. Helfer et al. and Johnson and Sharma obtained similar results of climate warming on
evaporation, demonstrating that increasing temperature results in the significant increases of annual
average evaporation [13–15].

Specifically, Helfer et al. mentioned that a temperature increase range between 0.8 ◦C and 1.3 ◦C
in 2030–2050 compared to 1990–2010 will result in an average annual evaporation from 1300 mm in
1990–2010 to an average annual 1400 mm in 2030–2050 [13]; in other words, an annual temperature
increase rate of 0.02 to 0.0325 would result in an average annual difference of 100 mm in evaporation.
Additionally, an annual temperature increase rate of 0.021 to 0.04 would cause an average annual
evaporation difference of 190 mm, i.e., evaporation from 1300 mm in 1990–2010 to 1490 mm in
2070–2090 caused by a temperature increase range of 1.7 ◦C to 3.2 ◦C in 2070–2090 [13]. In the GSL
region, the annual temperature increase rate is 0.0313 from 1971 to 2016, as shown in Figure 3A. Given
an average annual evaporation amount E for the GSL before 1960 and the significant and consistent
temperature increase from 1970 to 2016, as shown in Figure 3A, the average annual evaporation
in 1970–1990 could be E + 100 mm, and the average annual evaporation in 2000–2020 could be E +
190 mm. Therefore, the GSL has lost a huge amount of water from evaporation in the last 50 years.
The extremely high temperatures in the recent years 2012, 2014, 2015, and 2016 directly aggravate
the significant declines of surface water levels of the GSL due to the enhanced evaporation with the
addition of low precipitation in the recent few years, and the GSL hence reaches a relatively low level
of 1278.13 meters in 2016, as shown in Figures 2 and 3. Therefore, evaporation and low precipitation
are the main cause of the declines of the GSL.

3.2. Radiation, Wind Speed, and Evaporation

Some may still wonder if radiation and wind speed impact evaporation changes. Solar radiation
increased significantly in the last century [17], which indicated that evaporation increased too.
The effects of wind speed on evaporation are complex. At low velocity values, the first stage
evaporation rate will increase when wind speed increases, but at the same time the transition time
decreases; however, at high values of wind speed, evaporation rates will depend less on the wind
speeds; additionally, no significance is found for the impact of the wind speed on the second stage
evaporation rate [18]. In all, the effects caused by increasing radiation could be stronger than the effects
of wind speed, and thus evaporation might increase in the last century; or the overall evaporation
change caused by radiation and wind speed is not significant in the last century.

3.3. Precipitation

The temporal patterns of precipitation directly drive the general dynamics of GSL surface levels,
which are then mainly modified by evaporation driven by temperature changes as discussed above.
Both the periods from 1904 to 1970 and from 1971 to 2016 show apparent decreases in precipitation, but
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the significances are just above the significance level 0.05. Therefore, the declining trend of lake surface
level is not quite significant. Since 1971 with about 10 years’ high precipitation, the GSL reached an
extremely high level in 1984 that continued to 1988, as shown in Figure 2, because of the extremely
high precipitation in 1983, 1984, and the high precipitation in 1985 and 1986, as shown in Figure 3.
Additionally, from 1904 to 1930, the GSL surface levels were most often above its average value
(1279.82 meters), as shown in Table 1, because the precipitation in only 8 of 27 years was relatively
lower than its average value of 0.395 meters, as shown in Figure 3. In the 40 years from 1931 to 1970,
only two year’s GSL surface levels (1952 and 1953) were relatively above its average level, because
the precipitation in 27 years was much lower than the average precipitation, as shown in Figure 3;
especially with 20 more years of low precipitation, and in 1963, the GSL reached its lowest surface
level (1277.76 meters) that was still above its extremely low level bound (1277.49 meters). From
1971 to 2000, there were only 9 of the 30 years when precipitation was less than its average value,
and therefore most of the years the GSL surface levels were above its average level. The extremely high
precipitation in 1998 resulted in the second highest surface level in 1999, as shown in Figures 2 and 3.
Although the precipitation in 1966 and 1989 was very low, respectively high precipitation following
them continuously occurred for 7 or 8 years, which thus did not result in extremely low surfaces but
relatively low water levels.

The continuously significant decreases in snowfall from 1971 to 2016 could be a secondary
contribution besides the significant increasing temperature for the apparent declines of lake surface
levels after 2000, as shown in Figures 2 and 3. The extremely high snowfall in 1983 (2.489 m) also
secondly contributed to the extremely high records of lake surface levels in 1984 to 1987.

3.4. River Discharge

Bear River, Jordan River, and Weber River are the major surface water discharges into the Great
Salt Lake, which account for 58%, 22%, and 15%, respectively, for the total inflows of the lake [2].
The U.S. Geological Survey (https://waterdata.usgs.gov/) provides inflows from 1971 to 2018 for
the Bear River and Joran River as displayed in Figure 4 below, which have 80% of surface inflows for
the GSL. Because the continuous data for Weber River are only available after 1989, it is not included
into this decadal analysis. In general, the surface inflows show a significant declining trend, which
contributes to the decreasing water level in the same period, as shown in Figure 2. The reduced river
discharge is directly caused by the declining precipitation and snowfall, as shown in Figure 3.

Figure 4. Surface inflows from Bear River and Jordan River into Great Salt Lake from 1971 to 2018.
Data source: https://waterdata.usgs.gov/.
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The extreme highest points of the observed discharge values in 1983, 1984, 1986, as shown in
Figure 4, have significant contribution to the extremely high water levels, as shown in Figure 2. These
extreme highest values are also coincident to the extremely high precipitation values observed in 1982
and 1983. This is a truth that we first observed highest precipitation, secondly observed highest surface
inflows, and third detected highest lake water levels. In the GSL basin, climate changes generally drive
the river discharge patterns.

3.5. Human Water Use

We understand that human water use could be another secondary contribution to GSL’s water
loss. However, the conclusion of “consumptive water use including agricultural, salt pond mineral
production, and municipal and industrial uses rather than long-term climate change has greatly
reduced its size for the Great Salt Lake’s surface declines” [2], cannot explain the much lower surface
levels in 1961, 1962, 1963, and 1964 that were lower than 2016’s current record, the significant declines
from the early 1920s to the late 1930s, the significant increasing trend from the mid-1960s to the mid-1970s,
and other significant declining or increasing patterns in the last century, as shown in Figure 2.

Additionally, human water use even cannot explain the current GSL water level changes in 2016,
2017, and 2018, as shown in Figure 5. The average water levels in 2017 or 2018 are 0.91 meters higher
than that in 2016. If human water use was the dominant driving force for GSL water loss or dynamics,
it is impossible that in three continuous years, significantly less human water use has occurred, which
then has resulted in such a huge amount of water increases in 2017 or 2018. Another recent study also
showed worldwide declines of water storage in endorheic basins in the last 10 more years were caused
by limited precipitation with high potential evaporation, which are then intensified by global warming
and human activities [19]. Thus, human water use is not the dominant cause but could be a secondary
factor of saline lakes’ water loss.

Figure 5. GSL monthly water levels in 2016 and the big increases in 2017 and 2018. This figure is plotted
on a monthly scale from January 1, 2016 to November 30, 2018, which is calculated and processed using
the GSL daily water level records that are available online at http://greatsalt.uslakes.info/Level.asp
provided by www.lakesonline.com.
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3.6. Correlation between Temperature, Precipitation, Snowfall, River Discharge, And Gsl Water Level

The above analyses have showed apparent temporal patterns of temperature, precipitation,
snowfall, and river discharge. Chang and Bonnette have recently examined the correlation between
climate and water-related ecosystem services [20]. Here, we use the Pearson correlation coefficient
to quantify a general relationship between temperature, precipitation, snowfall, river discharge,
and GSL water level, as shown in Table 2. From 1971 to 2016, the significant increasing temperature
is significantly and negatively related to GSL water levels. It coincides with the above analysis that
local climate warming is a critical variable for water loss. Another significant relationship is between
GSL water levels and river discharge. River discharge is significantly and highly correlated with
precipitation, as shown in Figure 6, which further indicates that climate factors, especially precipitation
along with temperature, are the dominant driving force of GSL water level dynamics.

Table 2. Correlation between temperature, precipitation, snowfall, river discharge, and GSL water level.

Temperature Precipitation Snowfall River Discharge

1904–1970 1971–2016 1904–1970 1971–2016 1904–1970 1971–2016 1971–2016

Coefficient 0.19 −0.29 0.20 0.08 0 0.12 0.59

p-value 0.0666 0.0260 0.0521 0.2485 0.4979 0.2089 <0.0001

Figure 6. River discharge is highly and significantly related to precipitation.

4. Limitations

Many other studies recently have showed that the GSL water levels are primarily sensitive to
climate cycles, given its main outflow is evaporation that is directly changed by lake area and salinity,
and precipitation variations mainly drive the GSL water level variation [20–22]. Rather than following
the previous research approaches, this proposed study, based on a simple water balance equation of
inflow and outflow, explored how climate and weather factors could impact on inflow and outflow,
and concluded that climate change and local extreme weather drive the dynamics of GSL water levels.
This is not the primary objective of this short communication; we hope this short communication could
encourage more high quality studies and inspire scientists to rethink water budget modeling, climate
modeling, and hydroclimatological analysis, so that the driving force of water dynamics of salt lakes
could be truly modeled and quantified, which then will provide useful and practicable information for
water budget planning and water resources management.

We understand that there are many sophisticated models for climate and hydroclimatological
analyses, but “all models are wrong, and some are illuminating and useful” [23,24]. Scientists cannot
achieve a “correct” model by excessively elaborating modeling procedures and parameters; while
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for great scientists it is significant to devise simple and evocative models, any overelaboration and
over-parameterization is nothing but mediocrity [23,24]. There are some limitations in this short
communication. For example, we do not directly examine the impacts of human water use on
water level dynamics of GSL, while we analyze the remaining factors for water balance including
inflow factors (i.e., precipitation, snowfall, and river discharge) and outflow factors (i.e., evaporation,
temperature) that influence the water levels of GSL. We do not have direct measurements of evaporation
in the GSL region, but evaporation estimations of water bodies of similar semi-arid regions in Australia
are referenced to indicate the impacts of evaporation on GSL water loss. Long-term surveys of
evaporation and measurement of human water use can be helpful in order to further analyze and
quantify the primary and secondary factors driving the dynamics of saline lakes. Additionally,
the 95th and 5th percentiles cannot effectively identify extremely high or low observations of water
levels, precipitation, temperature, and snowfall, which further indicates our proposed extremely
changing point analysis with mean and two standard deviations is a robust and promising method for
hydroclimatological analysis.

5. Conclusion

The proposed temporal trend with the extremely changing point analysis is a promising method
to clearly and concisely define and understand the characteristics of extreme climate/weather and their
impacts on the declines of saline lakes. Extremes have become foundational information and projections
for climate change, which has been highlighted 734 times in the current US Global Change Research
Program’s Climate Science Special Report [25]. Most often, an explicit definition of extreme is not
provided in current research and management, but clearer definitions and quantifications of extremes
can support interdisciplinary understanding and decision making of extreme events [6]. Defined by
whether an observation is outside its two standard deviations of the mean, the extremely changing
points indicate the substantial changes of a variable in its temporal patterns. Using the proposed
temporal trend with extremely changing point analysis, this short communication adequately shows
that climate change and extreme weather can be the primary driving factors of the dynamics/declines
of the Great Salt Lake. Although the impact of one isolated extremely changing point could be limited,
two more continuously or clustered extremely changing points can have elevated impacts on the
environment. For example, extremely high temperature in 2012, 2014, 2015, and 2016 considerably
enhances the continuously increasing evaporation of the GSL since the 1970s. The extremely low
precipitation in 1979 is isolated, and therefore its effect was minimized by many of those much higher
precipitation observations neighboring and close to it.

Climate changes, especially local warming and extreme weather including both precipitation and
temperature, drive the dynamics of the GSL surface levels. Extreme weather, such as extremely high
or low precipitation, directly causes the changes in surface levels, and the extremely high temperature
in the last five years has resulted in much more water loss through evaporation that can be another
main cause of the relatively low surface level in 2016. The increasing temperature trend since the
1970s, as shown in Figure 3, has become a critical role in water loss and hence the decline of the GSL
surface levels. As discussed above, many studies have proven that climate warming has resulted in
the main water loss through evaporation (i.e., each year about 40% of the total water storage capacity
in Australia). The annual increasing rate of 0.0313 in temperature from 1971 to 2016 could result in
more than 40% loss of its total water storage each year.

Supplementary Materials: The supplementary material is available online at http://www.mdpi.com/2225-1154/
7/2/19/s1.
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Abstract: Nepal has experienced recent changes in two crucial climatic variables: temperature and
precipitation. Therefore, climate-induced water security concerns have now become more pronounced
in Nepal as changes in temperature and precipitation have already altered some hydrological
processes such as the river runoff in some river systems. However, the linkage between precipitation
patterns and streamflow characteristics are poorly understood, especially in small rivers. We analysed
the temporal trends of temperature, precipitation, and extreme indices of wet and dry spells in the
Rosi watershed in Central Nepal, and observed the temporal patterns of the streamflow of the
Rosi river. We also examined the linkages between the average and extreme climate indices and
streamflow. We found that the area has warmed up by an average of 0.03 ◦C/year, and has seen a
significant decline in precipitation. The dry spell as represented by the maximum length of the dry
spell (CDD) and the magnitude of dryness (AII) has become more pronounced, while the wet spell as
represented by the number of heavy rainfall days (R5D) and the precipitation intensity on wet days
(SDII) has diminished significantly. Our analysis shows that recent changes in precipitation patterns
have affected the streamflow of the Rosi river, as manifested in the observed decline in annual and
seasonal streamflows. The decrease in the availability of water in the river is likely to have severe
consequences for water security in the area.

Keywords: Himalaya; streamflow; extreme rainfall; watershed

1. Introduction

The impact of climate change on water availability is a major concern worldwide, and the question
of how water systems remain resilient under changing climate conditions has dominated the world’s
science and policy agenda recently [1,2]. Such a climate-induced water security concern is nowhere
more visible than in the Himalayan region. Climate change has significantly impacted the glaciers
and water resources in the Himalayan region, which is the water tower of Asia that provides water
and related hydrological services to 1.3 billion people downstream, from Afghanistan in the west to
Vietnam in the east [3,4]. The melting of snow and glaciers is a significant hydrological process in this
region that sustains the flows of rivers during the dry season [3], and this crucial hydrological process
is being affected by climate change, particularly regarding changes in temperature and precipitation [5].
Furthermore, rising temperature and changes in precipitation alter some components of hydrological
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systems such as precipitation extremes, increasing evaporation, and changes in river runoff [6,7].
Due to these climate-induced changes, two major impacts on hydrological systems are expected to
escalate. First, the availability of water and related hydrological services are likely to decrease due to
the recession of glaciers in the Himalaya [8]. Second, climate hazards such as flood and drought due to
precipitation extremes are expected to increase with climate change [7]. Such fundamental alterations
in the hydrological regime, which are attributed primarily to climate change, will have a cascading
impact on the irrigated agriculture and installed hydropower capacity, as well as the biodiversity and
natural resources [9], and will eventually intensify the regional conflicts in this region [10].

When aggregated at the national level, water is one of the most abundant natural resources in the
Himalayan country of Nepal [11]. Most of the rivers of Nepal are snow and glacier-fed, and the melting
of snow and glaciers provides sustained flows during dry seasons [12,13]. However, the narrative of a
national-scale water surplus hides the stark reality of many localities and regions facing acute water
shortages [14]. A higher rate of warming than the global average [11,15], erratic rainfall with a greater
spatial and temporal variability [16], and a prolonged drought spell [17] have been reported recently
in Nepal, which clearly indicate the growing impact of climate change in the country. Consistent
with these research findings, Nepal is already considered the 14 most vulnerable country in the world
in terms of the climate change vulnerability index [18]. As reported elsewhere, the observed and
predicted changes in the climate are likely to alter Nepal’s hydrological systems. Combined with
the rapid land-use transformations taking place across many of the mountain landscapes of Nepal,
climate change is poised to escalate water insecurity in many water-deficit regions of the country,
including several hilltop cities such as Dhulikhel in the central Nepal Himalaya, which could have
severe consequences for the amount and seasonality of water availability. The effect of water scarcity
has already been pronounced in many villages due to the drying up of local water sources that have,
in some instances, created competitions and conflicts [19], as well as forced migration [20].

Streamflow is an important hydrological variable that can be used as an indicator of hydrological
responses to climate change and variability [21–23]. It is determined by catchment heterogeneity (land
use, anthropogenic water usage) along with hydroclimatic processes such as precipitation, temperature,
infiltration, and evapotranspiration [4,24]. Climate change or variability contribute to the increased
variability of stream runoff due to changes in the timing, frequency, and intensity of precipitation
events [13]. Therefore, analysing streamflow trends in watersheds and identifying the causes and
drivers of changes has been a focus of hydrological research globally [21,23], including in Nepal [24,25].
In recent decades, runoff changes in Nepalese rivers have been reported as being associated with the
effects of climate change [11,24]. Fluctuations in the natural streamflow affect water availability, which
has direct consequences on the livelihood of the people who are heavily dependent on streamflow
for agriculture. It also has a potential impact on the economic development of the country, whose
economy largely depends on agriculture and hydropower development.

Although climate change is a global phenomenon, it has noticeable local impacts affecting local
biodiversity, ecosystems, water availability, and livelihoods [9,15]. Several efforts have been made
recently to analyse national and regional patterns of climate change in Nepal [11,16,17] and their
impacts on hydrology [26–29]. However, very few studies have focused on local watersheds, despite
the importance of small and localized watersheds to local livelihoods, including ecosystem goods and
services to the predominantly agrarian society in Nepal. Most of the hydrological studies have been
conducted in the larger river basins of Nepal such as the Dudhkoshi [12], Indrawati [28], Koshi [29–31],
Bagmati [32–34], Gandaki [26], Tamor and Seti [35], and Karnali [27] river watersheds. These studies,
which were conducted at the national level or in the large river basins, analysed the streamflow trends
of various rivers in Nepal [24], but little work has been done towards assessing the link between
changing climate and streamflow characteristics. This paper presents the findings of a study conducted
in a small watershed (of Rosi stream, about 30 km east of the capital city of Kathmandu) with the
goal of understanding the changes in hydroclimatic dynamics, including the analysis of the potential
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association between streamflow and climatic parameters. The streamflow dynamic in Rosi is directly
linked to the availability of water for anthropogenic usage such as drinking.

The Rosi watershed supplies drinking water to three municipalities in the Kavre district in central
Nepal: namely, Panauti, Banepa, and Dhulikhel. For the last few decades, a large part of Rosi water
has been diverted to cater to the drinking water needs of Dhulikhel, and more recently to the two other
cities, too. The Rosi-based water supply scheme also has a history of conflict and cooperation between
upstream rural and downstream urban communities, which are themselves undergoing rapid change
in relation to urbanisation, livelihood trajectories, and farming practices. The results of this study
could be useful to the similar watersheds of Nepal and in other mountainous countries. The three
specific objectives of this study are to: (a) investigate the spatial and temporal trends of temperature
and precipitation as well as moderate extreme indices related to precipitation; (b) analyse the temporal
streamflow trends of the Rosi river based on the available dataset (from 1971 to 2014); and (c) assess
the linkage between the river discharge with precipitation parameters in the Rosi river watershed.

2. Materials and Methods

2.1. Study Area

This study focuses on the Rosi watershed, which is located in the western part of the
Kavrepalanchok District of Nepal (Figure 1) and covers approximately 87 km2 area out of 540 km2

of its entire basin [36]. The Rosi watershed is one of the sub-basins of Sunkoshi river, which is a
tributary of the Kosi river that flows from the north to the south of India. The watershed extends
from the latitudes between 27◦22′ and 27◦42′ N, and longitudes between 85◦22′ and 85◦48′ E, with an
altitudinal range from 1450 m to 2828 m. The area has a sub-tropical climate with annual temperature
ranges between 9–24◦ Celcius, and receives moderate annual rainfall of 1040–2225 mm. The Rosi
watershed can be characterised as a typical watershed in the mid-hills of Nepal, which are dominated
by community forests, fragmented small-scale agriculture lands, scattered settlements, and small
towns. This watershed provides various ecosystem goods and services to local people, particularly
hydrological services, including drinking water to the approximately 50,000 inhabitants of the Panauti,
Banepa, and Dhulikhel municipalities. To harness the water from Rosi, a large-scale project called the
Kavre Valley integrated water supply project with financial and technical cooperation from the Asian
Development Bank has been implemented since 2013.
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Figure 1. Map of the study area showing average monthly temperature and precipitation (climatology)
calculated for the period between 1971–2014.

2.2. Data

The historical meteorological and hydrological data for the Rosi river basin were collected from
the Department of Hydrology and Meteorology (DHM), Nepal. There are three meteorological stations
(Kophasi, Dhulikhel: index number 1024, and Godavari: index number 1022) located in and around the
watershed boundary area (Figure 1). However, temperature data were available only for the Godavari
meteorological station. The meteorological data from the year 1971 to 2014 that were used in this
analysis include the daily precipitation, as well as the minimum and maximum temperature. The
gauge flow data measured at Panauti gauging station (index number 1049) was also collected from the
DHM. The hydrological station in Panauti and meteorological station in Kophasi were located within
a kilometer distance.

2.3. Data Analysis

We calculated trends of annual, seasonal, and maximum (extreme) discharge on the streamflow.
We conducted a regression analysis to identify the trends in the river discharge. We also
compared the spatial variation in precipitation trends among three stations, and analysed temporal
changes in the precipitation and temperature trends using linear regression. Seasonal analysis
was based on four seasons: winter (December–February), pre-monsoon (March–May), monsoon
(June–September), and post-monsoon (October–November). To understand the climate dynamics,
moderate climate extreme indices that describe events with short return periods are appropriate [37].
Currently, 27 different climate extreme indices were suggested by CCl/CLIVAR (Commission for
Climatology/Climate and Ocean: Variability, Predictability and Change)/JCOMM (Joint World
Meteorological Organization(WMO)-Intergovernmental Oceanographic Commission(IOC), Technical
Commission for Oceanography and Marine Meteorology Expert Team (ET) on Climate Change
Detection and Indices (ETCCDI) [38]. We selected six indices; three were related to the dry spell
(CDD, maximum length of the dry spell; FDD, the number of dry spells; and AII, the magnitude
of dryness) and three were related to the wet spell (SDII, the precipitation intensity on wet days;
R5D, the number of heavy rainfall days; and R20, the frequency of extremely heavy precipitation) for
moderate precipitation extremes. These indices represent both the intensity and duration of dry and
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wet spells and are directly related to the streamflow. The details of those indices are given in Table 1.
We used the Mann–Kendall test [39,40] for detecting trends in temperature, precipitation, precipitation
extremes, and streamflow. The Mann–Kendall test is a non-parametric test that is used to identify
a trends in time-series data such as precipitation and temperature. This test is a widely-used test
to detect significant trends in hydroclimatic data [16,21,27,29]. This test is not affected by the actual
distribution of the data and is less sensitive to outliers. Therefore, it is more suitable for detecting trends
in climatic and hydrological data, which are usually skewed, and may contain outlier observations [41].
We used Sen’s non-parametric estimate of the slope to determine the magnitude of trends [42], as the
Mann–Kendall test can examine the time series trend, but not the extent. The relationship between
precipitation parameters (annual and monthly averages, and precipitation extremes) and discharge
was calculated using Pearson’s correlation.

Table 1. Description of the indices.

Indices Name Definition Method of Calculation Unit

R5D Number of heavy
rainfall days

Annual count of days
when days

rainfall ≥five mm
RRij ≥ five mm Days

R20 Number of very
heavy rainfall days

Annual count of days
when days

rainfall ≥ 20 mm
RRij ≥ 20 mm Days

SDII Simple daily
intensity index

Annual mean rainfall
when

Precipitation ≥one mm
Days

CDD Maximum length of
dry spell

Maximum number of
consecutive

days with RR <one mm
RRij < one mm Days

FDD Number of dry spells Consecutive period with
at least eight dry days R < one mm Frequency

AII Aridity index
Ratio between the total

rain on dry days and the
number of dry days

Total rain on days with
(R < 10 mm)/number of

days with R < 10 mm
mm

RR is the daily precipitation amount on the day in a period. R5D is the number of heavy rainfall days. R20 is the
frequency of extremely heavy precipitation. SDII is the precipitation intensity on wet days. CDD is the maximum
length of the dry spell. FDD is the number of dry spells. AII is the magnitude of dryness.

3. Results

3.1. Spatial and Temporal Patterns of Precipitation

Monthly precipitation patterns (averaged over the study period from 1971–2014) of the three
meteorological stations are given in Figure 2. The Rosi river watershed received the majority of
precipitation (~80%) mainly during the monsoon season with little spatial variation (76% in Khopasi,
81% in Godavari, and 79% in Dhulikhel). Khopasi was the driest, while Godavari was the wettest
station. July was the wettest month, whereas November was the driest month in the study area.
Overall, the annual rainfall in the two stations (Godavari and Dhulikhel) of the study area significantly
decreased, with a rate of −10.4 mm/year (p = 0.006) in Godavari and −9.1 mm/year (p = 0.010) in
Dhulihel (Figure 3). The seasonal rainfall pattern showed no significant trends except in monsoon
season (Table 2). There was a significant decrease in monsoon rainfall across all three stations and a
maximum decrease occurred in Godavari, with −10.3mm/year (p = 0.002) and a minimum in Khopasi
with −6.3mm/year (p = 0.046).

87



Climate 2019, 7, 3

Figure 2. Variations in averaged (1971–2014) monthly precipitation patterns in three
meteorological stations.

Figure 3. Temporal trends of annual precipitation in three meteorological stations. The grey shadows
represent the standard error of the regression line.

Table 2. Trends in the annual and seasonal precipitation.

Weather Stations Annual Pre-Monsoon Monsoon Post-Monsoon Winter

Khopasi −6.296 0.300 −6.260 * −0.386 −0.215
Godavari −10.435 * 0.501 −10.358 * −0.207 −0.117
Dhulikhel −9.122 * −0.349 −7.120 * −0.922 −0.162

* p =< 0.05.

3.2. Trends in Precipitation Extremes

Overall, the dry spell in the study area was increasing, while the wet spell was decreasing
(Figure 4). Three wetness indices (SDII, R5D, and R20) showed a significant decrease in the study
area, suggesting that the duration and intensity of the heavy precipitation events in the area have
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declined over the study period. SDII, which measures the precipitation intensity on wet days, showed
a significant decreasing trend in Khopasi (−0.047/year, p = 0.040). The Godavari had a maximum
decrease (−1.451/year, p = 0.018) in the number of heavy rainfall days (R5D), and Dhulikhel had a
maximum decrease (0.167/year, p = 0.038) in the frequency of extremely heavy precipitation, R20
(Table 3).

Figure 4. Trends of different wet and dry indices.
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AII, CDD, and FDD are dryness indices that are used to study trends in the dry spell. The
magnitude of dryness (AII) has significantly increased, albeit at a small rate in Khopasi and Dhulikhel,
but decreased in Godavari. A maximum number of consecutive dry days as measured by CDD
(maximum length of the dry spell) significantly increased in Godavari and Dhulikhel. A significant
increase in FDD (number of dry spells) was observed only in Godavari.

Table 3. Trends (Sen’s slope) in the dryness and wetness indices.

Khopasi Godavari Dhulikhel

AII 0.0007 *** −0.0005 *** 0.0004 ***
CDD 0.0001 0.148 *** 0.537 ***
FDD 0.250 0.707 ** 0.375
SDII −0.047 ** −0.018 −0.041 *
R5D −1.125 ** −1.452 ** −1.363 **
R20 −0.143 * −0.149 * −0.167 **

*** = 0.001, ** = < 0.05, * = < 0.10

3.3. Temporal Patterns of Temperature

The annual mean, maximum, and minimum temperature recorded only at the Godavari station
were analysed (Figure 5), as the data were available only to this station. The annual mean temperature
trend showed that the area warmed up by 0.03 ◦C/year (p =< 0.0001). The maximum temperature in
the study area increased at a rate of 0.067 ◦C/year, and the minimum temperature increased at a rate
of 0.005 ◦C/year over the last 44 years. The increasing trend in mean annual temperature over the past
four decades is consistent with the national and global averages.

Figure 5. Mean, maximum, and minimum temperature anomalies with respect to 1971–2014.
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3.4. Hydrological Change and Its Linkage with Precipitation Indices

The annual river discharge pattern from 1971 to 2014 indicates a gradual decline of the river
flow, and the trend is statistically significant at the 10% significance level based on the Mann–Kendall
test (Figure 6). The trend slope based on Sen’s method showed that the rate of decrease in the
mean annual discharge of the Rosi river was −0.015m3/s/year (p = 0.08) over the last 44 years. The
monthly average discharge reached a maximum in August and a minimum in December (Figure 7).
Seasonally, the maximum flow of river occurred during the monsoon season (June–September),
whereas the minimum flow occurred during the winter (December–February). In the post-monsoon
season (October–November), the flow in the river is sustained by the infiltration supply available in
the monsoon season. The trends of seasonal flows in the winter, monsoon, and post-monsoon showed
negative trends except for the pre-monsoon, and a positive but statistically significant trend was found
only in the streamflow in the monsoon season (−0.041m3/s/year, p = 0.04).

Figure 6. Trends of annual discharge.

Figure 7. Monthly average of the discharge calculated for the period between 1971–2014.

The annual streamflow in the Rosi river was highly correlated with annual precipitation. Figure 8
illustrates a high correlation between the annual precipitation and the runoff in the Rosi river (Pearson
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correlation (r) = 0.83, p =< 0.001). Not only the annual precipitation and annual runoff were significantly
correlated, a strong correlation between the runoff and the dry spell and wet spell indices was also
observed in the study area. CCD and FDD were negatively correlated with discharge, while SDII, R5D,
and R20 showed a significant positive correlation, suggesting that the flow of the river was highly
dependent on the extreme precipitation events (Figure 9). We did not find any significant correlation
between the annual temperature and the annual discharge, indicating that the increasing temperature
in the Rosi watershed may have had a minimum role in the streamflow.

Figure 8. (a) Temporal trends of annual discharge and annual precipitation; (b) correlation between
annual discharge and annual precipitation.

Figure 9. Correlation of annual discharge with different wet and dry spells.
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4. Discussion

We analysed runoff trends and assessed various climatic drivers of the runoff change, along with
the trends in the temperature, precipitation, and extreme precipitation indices. Our results of the
decreasing annual precipitation and increasing warming and precipitation extremes resonate with
the results that have been reported in previous studies [16,17,27]. Although, at the national level,
the precipitation pattern has remained more or less stable, a large spatial variability in precipitation has
been observed across various localities in Nepal [16]. In western Nepal’s Karnali basin, for example,
the annual precipitation is following a declining trend [27], while in the Gandaki Basin in central
Nepal, annual rainfall has remained stable [26]. The seasonality and magnitude of rainfall were found
to be more or less constant in the high mountain areas of Nepal [43]. We did not observe any trends in
seasonal rainfalls except in the monsoon, which was declining, although some studies [26] reported
a significant increase in monsoon rainfall, while post-monsoon, pre-monsoon, and winter rainfalls
were decreasing. This indicates not only spatial heterogeneity in the precipitation pattern, but also a
seasonal variation in the precipitation trends in different localities of Nepal.

Our results of an increasing dry spell (the number of consecutive dry days) and decreasing wet
spell (the number of rainy days) are consistent with the findings of Karki et al. (2017), who reported
a significant positive trend in the number of consecutive dry days and a significant negative trend
in the number of rainy days. This implies the prolongation of the dry spell of the study area. More
importantly, our finding reinforces the commonly reported experience of the local people of Nepal. In a
recent national survey, about 86.1% (n = 5060) of the respondents reported that they had experienced
drought, and 99.3% respondents reported increasing drought over the past 25 years [44]. Likewise,
our findings on warming trends are similar to those reported in previous studies that have been
conducted in other areas of the country [11,43,45].

On a national-level analysis, both increasing (59%) and decreasing (41%) streamflow trends
were found in Nepal [24]. Our result of a decline in streamflow parallels with the streamflow in the
Bagmati river [32], but contradicts with the streamflow of the Jhikhu river, where an upward trend of
streamflow was reported [24]. The streamflows of Nepalese rivers are determined by several factors
such as the quantum of melting snow, glacier, groundwater, and precipitation [12,24,27]. In the small
and non-snowfed rivers such as Bagmati and Jhikhu, streamflow is highly dependent on precipitation
events [24,32], which means that runoff events in the mid-hills catchments of such small rivers are
closely correlated to the rainfall intensity [46].

In the glacier-fed or snowfed river, temperature and discharge are correlated, as an increasing
temperature accelerates the ablation process [47]. The role of temperature in non-snowfed river
system such as that of the Rosi river is expected to be minimal; therefore, as shown in our results,
temperature has a minimum role in the river discharge. Increasing temperature causes the melting
of snow and glaciers, enhancing river flows noticeably in the pre-monsoon and winter season in
snowfed rivers [24]. In such snowfed river systems, the role of temperature is more pronounced than
the role of precipitation. For example, the streamflow in the snowfed Karnali river remains constant
with a decreasing precipitation trend [27]. A significant increase in the annual runoff with increasing
air temperature and decreasing precipitation was observed on the Tibetan side of the Himalayan
region [48]. Therefore, global phenomena such as increasing temperature might have a lesser effect in
a non-snowfed river such as Rosi compared to snowfed river systems.

Along with precipitation, water availability in smaller watersheds is prone to be impacted by
changes in land use and land management [49]. In some instances, anthropogenic activities such as
irrigated agriculture and population increase have significantly shaped the runoff in the streams [50] as
water is drawn from the river for anthropogenic usage. In the middle mountains of Nepal, reforestation
in the hillsides is reported to cause a considerable amount of water loss through evapotranspiration,
contributing to the observed decline in seasonal streamflow [51]. Globally, the impact of reforestation or
afforestation on local water yield was found to be negative; additional forest cover reduces downstream
water availability [52]. In the Rosi watershed, 8.19 km2 area of forest was added (37% increase) from
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1976 to 2014, with a decrease in the agricultural and barren land [53]. In the headstream of Rosi,
there are several small streams (Muldole Khola, Khar Khola, Gudgude Khola, Bairamahadev Kholsi,
and Shishakhani Kholsi), and most of the headstream is under forest cover. Due to the difficult and
steep terrain, water usage in the upstream areas is very low. However, our research does not make
a final claim between forest condition and streamflow, as there is a range of other factors, such as
stone quarrying, agricultural intensification, and others are at play in the catchment, all collectively
impacting the runoff. Therefore, changes in land use, particularly a recent increase in the forest in the
upper part of the watershed, might have contributed to the decline in runoff downstream by increasing
the use of water for evapotranspiration and reducing infiltration.

This study shows that the Rosi watershed has undergone changes in climatic parameters. We also
observed that the region has undergone significant land-use transformation. The area has warmed up
and received less rainfall, with increasing dry spells and decreasing wet spells. Both the change in
climatic factors—particularly precipitation—and local land use have impacted the streamflow of the
Rosi river, leading to a decline in the annual and seasonal discharges. While our analysis demonstrates
a significant causal association between precipitation parameters and streamflow trends, this study
has not been able to segregate the impact of land-use change in the upstream regions. Our fieldwork
and interviews with local seniors conducted between November 2014 and May 2016 confirm their
experience of receiving increasingly less rainfall in recent years, and that the condition of forest in the
watershed has improved. Therefore, a more detailed study is needed to understand the role of land
use and management, particularly regarding how the increased area of forest affects water availability
in the downstream of the Rosi river.

Considering the projected impact of climate change, proper adaptation strategies and plans need
to be formulated and implemented in order to cope with the escalating water insecurity challenge in
the study area. The strategy for securing water access should also incorporate measures to monitor the
impact of changing land use, including how increasing forest areas affect the hydrological cycle in the
small watershed of the Rosi river. Such monitoring of the forest–hydrology relationship is particularly
important, given the contradictory scientific claims being made on the link [52]: it is widely anticipated
that forests play a crucial role in water recharge; however, the opposite was true in many cases [51].
While this study has generated some insights into the relationship among the changes in precipitation
and hydrological systems, a robust monitoring system needs to be established in order to help the
adaptive management of water and watersheds to secure the water future of the region. Neither
national nor a large river basin-based approach can generate the evidence that is needed to ensure
locality-specific sustainable water management systems in the Himalayan region.

5. Conclusions

The decline of streamflow would cause a shortage of water for domestic, agricultural, and
industrial uses in the downstream. If the current trend of declining water flows and increasing
population growth continue, water insecurity will be exacerbated. The decline in the availability of
water, especially in the dry season will have severe consequences for water security in the Rosi Valley.
While the national level studies showed a vast heterogeneity in precipitation and streamflow patterns,
local research such as this provides vital evidence to inform local-level water management planning.
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Abstract: The present study aims to evaluate the capability of the Tropical Rainfall Measurement
Mission (TRMM), Multi-satellite Precipitation Analysis (TMPA), version 7 (TRMM-3B42-V7)
precipitation product to estimate appropriate precipitation rates in the Upper Indus Basin (UIB)
by analyzing the dependency of the estimates’ accuracies on the time scale. To that avail, various
statistical analyses and comparison of Multisatellite Precipitation Analysis (TMPA) products with
gauge measurements in the UIB are carried out. The dependency of the TMPA estimates’ quality
on the aggregation time scale is analyzed by comparisons of daily, monthly, seasonal and annual
sums for the UIB. The results show considerable biases in the TMPA Tropical Rainfall Measurement
Mission (TRMM) precipitation estimates for the UIB, as well as high numbers of false alarms and miss
ratios. The correlation of the TMPA estimates with ground-based gauge data increases considerably
and almost in a linear fashion with increasing temporal aggregation, i.e., time scale. There is a
predominant trend of underestimation of the TRMM product across the UIB at most of the gauge
stations, i.e., TRMM-estimated rainfall is generally lower than the gauge-measured rainfall. For the
seasonal aggregates, the bias is mostly positive for the summer but predominantly negative for
the winter season, thereby showing a slight overestimation of the precipitation in summer and
underestimation in winter. The results of the study suggest that, in spite of these discrepancies
between TMPA estimates and gauge data, the use of the former in hydrological watershed modeling
undertaken by the authors may be a valuable alternative in data-scarce regions like the UIB, but still
must be taken with a grain of salt.

Keywords: Precipitation; Tropical Rainfall Measurement Mission (TRMM); Multi-Satellite
Precipitation Analysis (TMPA); Upper Indus Basin (UIB)

1. Introduction

The continued improvements in computation capabilities and the subsequent increase in the
development of spatially explicit and distributed models for expressing environmental phenomena
have necessitated the provision of more intensive and improved data for environmental variables both
in space and time. Two major issues, particularly in hydro-meteorological studies, are the possible
sparsity of data sampling points (gauge stations), and the discontinuities in the data and in the
quality of the temporal records. These issues are more frequent in mountainous regions with high
altitudes, because they are immensely challenging environments for measurements of precipitation
through remote sensing or traditional ground-based methods due to the difficult topography and
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the highly-variable weather and climatic conditions [1,2]. These factors have proved to be the main
hurdles due to which many developing countries are unable to achieve consistent spatial and temporal
coverage for ground-based precipitation measurements [2,3], therefore making it difficult for them to
achieve an effective spatial coverage of rainfall [4,5]. The consequent lack of good quality precipitation
data is thus a big hurdle for properly assessing impacts of climate change on water resources in these
regions [1].

As data with an acceptable gridded resolution of daily climatic variables are critical for
hydrological and water resources modeling [6,7], managing the gaps in the data appropriately is
then the first stage of most climatological, environmental, and hydrological studies [2]. This step is
also necessary to improve the spatial resolution for sparse gauge station data sets before using them
as an input for spatially-distributed rainfall-runoff models, because the gauge-based interpolation
methods, commonly used in hydrologic models, usually do not cover the spatial heterogeneity of the
variability of climatic variables in the catchment. These errors in the interpolated data field then have
the potential to significantly bias model calibrations and water balance calculations [6].

Fortunately, continued scientific developments are also providing new prospects for addressing
these issues. For example, the advancements in gathering and deriving climate data through satellite
remote sensing could provide a possible opportunity to address some of the issues with regard to
the spatial coverage of climate data. That is why the use of satellite-based precipitation products
individually or in combination with land-based gauge data has been increasingly recognized as a very
promising alternative to address the aforementioned problems [5]. Such precipitation products have
proven to be of great value, especially in developing countries with remote and high-altitude locations
where conventional rain gauge or weather data are of bad quality or have low coverage [8].

There are numerous satellite-based precipitation products currently available, with varying
degrees of accuracy. These include the Climate Prediction Center (CPC) morphing algorithm
(CMORPH) [9], Global Satellite Mapping of Precipitation [10–12], Naval Research Laboratory Global
Blended Statistical Precipitation Analysis [13], the Tropical Rainfall Measuring Mission (TRMM),
Multisatellite Precipitation Analysis (TMPA) [14,15], and a few others. Since their inception, most of
these gridded datasets have been evaluated for their suitability and usability for specific regions or
intended uses. In general, such investigations are less frequently carried out for mountainous regions
and even less so for our study area, the Hindukush, Karakurm, and Himalays (HKH) region. In the
HKH and the Upper Indus Basin (UIB) region, most of the reported works related to the evaluation
of gridded precipitation products are suggestive of considerable biases in the gridded products in
comparison to the gauge records [16–19].

Additionally, the quality, coverage, and representativeness of the available observed gauge records
in the HKH have also been questioned and have sometimes been regarded as having considerable
underestimations of regional precipitation amounts [20–22], especially at higher altitudes [23].
The spatial distribution of estimated real precipitation by Khan and Koch (unpublished) over the
study area is given in Figure A1, while the vertical meteorological and cryspheric regimes in the UIB
(modified from Hewitt 2007) are given in Figure A2.

While in most cases these gridded global precipitation data sets are some interpolated version
of point measurements (most often through geo-statistical procedures), they may only be useful for
regions where dense network of rain gauges are available, because otherwise, in the absence of a dense
enough networks or over regions of complex topographies, the interpolated precipitation present a
very generalized restitution which is not able to reflect properly the prevalent orographic, surface,
or atmospheric processes [19].

In comparison with the sparse gauge observations or gridded data products based on them,
satellite-based precipitation products such as Tropical Rainfall Measurement Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA), version 7 (TRMM-3B42-V7) have an inherent advantage
due to their higher spatial coverage. However, they also have certain limitations because they are
indirect estimates of rainfall, which depend on the cloud height and the properties of the cloud’s
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surfaces (IR-algorithms) and on the integrated sparse and multi-source hydro-meteorological content
(passive microwave algorithms) [15,24,25]. Therefore, before such satellite-based data can be used
with confidence, it is important to evaluate their accuracy or error characteristics by comparing them
with data from ground-based observations.

Based on these considerations, the current study aims at assessing the skill of the TRMM
precipitation dataset in matching the magnitudes and occurrences at different temporal scales at
all the points of the observational network available in order to evaluate its further processing and
correction requirements or suitability for subsequent use in distributed hydrological modeling.

2. Materials and Methods

2.1. Study Area and Data

2.1.1. Study Area: The Upper Indus River Basin (UIB)

The Indus River, one of the largest rivers in Asia with a total length of about 2880 km,
has a drainage area of about 912,000 km2 which extends across portions of India, China, Pakistan,
and Afghanistan. The portion of the Indus that comprises the Upper Indus River Basin (UIB), with a
logical lower boundary at Tarbela Dam (Figure 1), is about 1125 km long and drains an area of about
170,000 km2 [26].

 
Figure 1. Upper Indus Basin with locations of hydro-climatological stations.

Being a high-mountain region, the UIB contains the largest area of perennial glacial ice cover
(22,000 km2) outside the polar regions of the earth, and which extends even further during the winter
season [27]. The altitude within the UIB ranges from as low as 455 m to a high of 8611 m and, as a
result, the climate varies greatly within the basin [28].
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The summer monsoon has no significant effect on the basin, as almost 90% of its area lies in the
rain shadow of the Himalayan belt [20,29]. Except for the south-facing foothills, the intrusion of the
Indian Ocean monsoon is limited by the mountains so that its influence weakens northwestward.
Subsequently, the climatic controls in the UIB are quite different from that in the Himalayas on the
eastern side. In fact, over the extent of the UIB, most of the annual precipitation originates in the west
and falls in winter and spring, whereas occasional rains are brought by the monsoonal incursions to
the trans-Himalayan areas. Even during the summer months, the trans-Himalayan areas do not obtain
all their precipitation from the monsoons [30–33].

Climatic variables are usually strongly influenced by topographic altitude. Several studies have
reported that precipitation in the HKH region exhibits large changes over short distances and has
a considerable vertical gradient [30,31,34–37]. Thus, the northern valley floors of the UIB are arid,
with annual precipitation of only 100–200 mm, but these totals increase with elevation and reach up
to 600 mm at 4400 m height and lead to annual glacier accumulation rates of up to 1500 to 2000 mm
at 5500 m altitude, according to some glaciological studies [30]. The average snow cover area in the
Upper Indus River Basin fluctuates between 10% and 70%. Snow cover in the area is at a maximum
of 70–80% in the winter snow accumulation period (December to February) and at a minimum of
10–15% in the summer snow melt period (June to September) [28]. Stream flow is generated by the
combination of the storm runoff in the lower parts of the upper Indus basin and the snow and glacier
runoff from the higher parts of the UIB [26,38].

2.1.2. Data

TMPA Data (TRMM-3B42-V7)

In this study the TRMM-3B42-V7 precipitation product is used. This product is basically
a calibration-based combination scheme for precipitation estimates from multiple satellites and
space-borne sensors, including infrared, microwave, radar data, and gauge measurements. Though
the dataset has very good spatio-temporal resolution (0.25◦ × 0.25◦ grid, 3-hourly) and good global
coverage (latitude band 50◦ N to 50◦ S) and has data available from 1998 to the recent past [1,15].
It also has some uncertainties, because the inputs on which it is based are indirect estimates of
rainfall, depending on the cloud height and the properties of the cloud surface (IR algorithms)
and on the integrated sparse and multi-source hydro-meteorological content (passive microwave
algorithms) [14,15,25].

During the current study, 3-hourly data from 1 January 1998 to 31 December 2008 were summed
to daily accumulated precipitation for each of the 0.25◦ × 0.25◦ grid boxes (which have a gauge
station), and evaluated for matches with the corresponding gauge station’s observed daily accumulated
precipitation. As the observational network is scant, no TRMM grid box included more than one in
situ gauge station.

Observed Ground-Based Data

In the HKH region of Pakistan, observed in situ data are limited and operated by different
organizations, mainly the Pakistan Meteorological Department (PMD) and Water and Power
Development Authority (WAPDA). The stations operated by PMD (Figure 1) have daily-time-step
climate data available for longer periods (1947 to date), but with huge gaps and missing data in the
records and with only monthly data available freely for research purposes. Furthermore, all the PMD
stations are valley-based, at elevations below 3000 m.a.s.l. in altitude and, therefore hardly represent
the frequency and amount of precipitation in the high-altitude areas. The climate stations, operated by
the WAPDA, are fairly new and have considerably consistent data over the time period, coinciding
with the TRMM product. These gauge stations are distributed almost evenly across the UIB inside
Pakistan and cover a wide range of elevations.
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During the current study, daily precipitation records of 14 meteorological stations operated by
WAPDA are utilized for the evaluation of the TRMM estimates. Their geographical attributes are given
in Table 1. The evaluation is limited to the duration of 1998 to 2008, as the observed precipitation data
could not be acquired for the period beyond 2008.

Table 1. Geographical attributes of the precipitation gauge network.

Description No. Station Latitude (◦) Longitude (◦) Altitude (m)

High Altitude
(2367–4440 m.a.s.l.)
stations operated by

Water and Power
Development Authority

(WAPDA), Pakistan

1 Burzil 34.91 75.90 4030
2 Deosai 35.09 75.54 4149
3 Hushey 35.42 76.37 3075
4 Khot 36.52 72.58 3505
5 Khunjrab 36.84 75.42 4440
6 Naltar 36.17 74.18 2898
7 Rama 35.36 74.81 3179
8 Rattu 35.15 74.8 2718
9 Shendoor 36.09 72.55 3712

10 Shigar 35.63 75.53 2367
11 Ushkor 36.05 73.39 3051
12 Yasin 36.45 73.3 3350
13 Zani 36.33 72.17 3895
14 Ziarat 36.77 74.46 3020

2.2. Methods

The quantitative comparison of the TRMM estimates with the ground rain-gauge station
observations is done by employing various widely used statistical indicators. These include the
correlation coefficient (r), the mean relative bias error (rBIAS), the mean bias error (MBE), the mean
absolute error (MAE), and the root mean square error (RMSE), defined in the following equations:

r =
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where n is the number of samples, Ti refers to satellite-based precipitation, Gi is gauge-based
precipitation, and T and G are the corresponding means. Among these statistical indices, r shows the
degree of linear correlation between TRMM precipitation estimates and gauge observations. MBE,
MAE, and rBIAS are used to assess the systematic bias, i.e., the deviation of the satellite precipitation
from the gauge observations, and the RMSE gives the magnitude of the average error in relative terms.

In addition, evaluations were also made for the daily TRMM estimates and gauge data over
the Indus river basin, based on a 2 × 2 contingency table (Table 2), by detecting rain events (Hits),
no events (Correct Negative), Misses by the TRMM, and False Alarms by the TRMM. More specifically,
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we used a threshold of 0.3 mm/d to differentiate precipitation and no precipitation events, since lower
precipitation values may be the result of noise, as indicated by [31,39] etc.

Table 2. Contingency Table 2 × 2. TRMM: Tropical Rainfall Measurement Mission.

Observed Values (Gauge Data)
Total

YES NO

Estimated Values
(TRMM estimates)

YES -a
-Hits

-b
-False Alarms

Total—Yes Estimated

NO -c
-Misses

-d
-Correct Negative

Total—No Estimated

Total Total—Yes Observed Total—No Observed Total a + b + c + d

Based on these four indicators, with orders as shown in the table, several categorical statistical
indices are derived, including accuracy (Ac), bias score or frequency bias index (FBI), probability of
detection (POD), false alarm ratio (FAR), critical success index (CSI), and true skill statistics (TSS) [40,41],
defined in the following equations:

Ac =
a + d
Total

(6)

FBI =
a + b
a + c

(7)

POD =
a

a + c
(8)

FAR =
b

a + b
(9)

CSI =
a

a + b + c
(10)

TSS =
a

a + b
− b

c + d
=

ad − bc
(a + b)(c + d)

(11)

where a represents the number of rainfall events that have been successfully estimated by TRMM
data (hits), b is the number of events incorrectly predicted as rain events by TRMM (false alarms),
c is the number actual events that are missed by TRMM (Misses), and d is the number of dry days
or no-rainfall events identified successfully by the TRMM dataset. For each day, depending on how
the estimated and observed precipitation behave, any event above the given threshold (0.3 mm) is
scored either as a Hit, Miss, False Alarm or Correct Negative, so that the rainfall is a Hit if both
TRMM and observed precipitation reach the threshold; False Alarm if only the TRMM estimate reaches
the threshold; Miss if only the observed precipitation reaches it; and Correct Negative if both are
below the threshold. The number of Hits, False Alarms, Misses and Correct Negatives are used in
Equations (5)–(10) to calculate the above mentioned statistical indices.

Each of these indices provides a specific information on the two data sets compared. Thus,
Ac indicates the fraction of estimates which is correct (range: 0 to 1, perfect score: 1); FBI indicates
whether the estimated dataset has a tendency to underestimate (FBI < 1) or to overestimate (FBI > 1)
rain events; POD quantifies the fraction of rain occurrences that is estimated correctly (range: 0 to 1,
perfect score: 1); FAR measures the fraction of false alarms in the satellite rain estimates (range from 0
to 1, perfect score: 0); and CSI measures the fraction of estimated events that are correctly predicted
(range from 0 to 1, perfect score: 1). Unlike all the aforementioned indices, TSS does not depend on the
frequency of the climatological event and uses all elements in the contingency table (Table 2). Thus,
TSS provides a measure of the accuracy of the estimates in terms of the probability of correct detection
of events or no events. In this case the range is from −1 to 1, with a perfect score being 1, with 0
showing no skills, and a negative score signifying that the estimates are worse than a random forecast.
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3. Results and Discussion

The assessment of the reliability of the TRMM estimates and their comparisons with the rain
data from gauge station presented in this section has been done by three different methodologies:
(1) a statistical analysis, based on r, rBIAS, MBE, MAE, and RMSE for daily, monthly, annual and
seasonal data aggregates; (2) categorical statistics of daily data by computing Ac, FBI, POD, FAR, CSI,
and TSS; and (3) a visual comparison for monthly, annual, and seasonal data.

3.1. Statistical Analysis for Daily, Monthly, Annual, and Seasonal Agreggates

The results of the TRMM-assessment based on the statistical measures r, rBIAS, MBE, MAE,
and RMSE are given for daily data aggregation in Table 3, for monthly and annual data aggregation in
Table 4, and for seasonal aggregation in Table 5. The summer seasons include the months of April,
May, June, July, August, and September, while the remaining 6 months, which are October, November,
December, January, February, and March, are aggregated to represent the winter season.

It is evident from a first glance at the two tables that the TRMM performs overall rather poorly
for estimating the observed rain amounts for the study region at all temporal scales, as the average
r values are only 0.16, 0.22, 0.22 and 0.20 for monthly, annual, and seasonal (summer and winter)
aggregation, respectively. Further specific results are discussed in the subsequent sub-sections.

3.1.1. Skill Statistics for TRMM Precipitation Estimates (Daily Aggregates)

The daily aggregates of the TRMM precipitation estimates show poor skill in matching observed
precipitation, with an average r of only 0.16 (Table 3). The comparison of the observed and TRMM daily
rainfall data indicates highly variable MAE values across the UIB, with a range ≥23 mm/day (Table 3).
Values of MAE are high throughout most of compared locations in the UIB, with MAE ≤ 13 mm for all
stations across the UIB. The northwestern parts of the UIB show the highest and most variable MAE.

Table 3. Statistical analysis for daily aggregates. UIB: Upper Indus Basin; r: correlation coefficient;
rBIAS: mean relative bias error; MBE: mean bias error; MAE: mean absolute error; RMSE: root mean
square error.

Sub-Basin Station
Daily

r rBIAS MBE (mm) MAE (mm) RMSE (mm)

Southern UIB

Burzil 0.22 −0.42 −11.77 16.20 20.76
Deosai 0.10 0.99 4.41 14.53 26.33
Rama 0.23 −0.22 −16.20 18.31 27.44
Rattu 0.14 0.69 −7.90 18.12 29.24

Eastern UIB
Shigar 0.08 1.31 −3.99 10.24 17.81

Hushey 0.14 −0.07 −5.73 10.79 14.73

Northwestern
UIB

Khot 0.19 0.70 0.49 4.93 8.08
Naltar 0.25 0.24 −11.94 15.39 21.10

Shendoor 0.16 1.48 1.22 9.46 15.67
Ushkor 0.21 0.70 −0.51 8.16 12.74
Yasin 0.10 5.27 24.24 28.68 46.57
Zani 0.13 −0.14 −15.23 19.16 26.96

Northern UIB
Khunjrab 0.15 −0.27 −5.50 10.52 15.40

Ziarat 0.14 0.71 −0.94 6.05 9.48

Basin average 0.16 0.78 −3.53 13.61 20.88
Maximum 0.25 5.27 24.24 28.68 46.57
Minimum 0.08 −0.42 −16.20 4.93 8.08

Based on the values of the MBE in Table 3, one can notice that the TRMM data have huge
underestimations across most of the UIB (average MBE of −3.53 mm), while they show at the same
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time a distinct spatial pattern across the study area, with a clear underestimation of the TRMM
estimates for all the studied locations in the eastern and northern UIB, as well as for the southern UIB
at all locations except one. On the other hand, the stations located in the northwestern UIB experience
a mixed trend, with TRMM data indicating a moderate to high under- or overestimation at half (three)
of the locations each.

The mean relative bias (rBIAS) at the different gauge locations also follows a similar pattern,
with huge variations and range from a negative −0.42 to a high of +5.27 at station “Yasin”. The TRMM
precipitation estimate is thus more than 5 times the gauge-based observed value, which means that
there is tremendous overestimation of the former.

For the relative bias rBias, the TRMM estimates show underestimation only at five locations,
unlike for the mean bias MBE discussed before, where 10 out of the 14 locations display
underestimations. After a more detailed examination of both the TRMM- and observed time series,
it was found that, at some locations, very large number of light precipitation events were generally
overestimated, while a smaller number of heavy precipitation events were underestimated by the
TRMM estimates. This behavior may have resulted in the overall average positive rBIAS at most of
the locations, discussed earlier, while in reality the overall mean bias MBE of the TRMM estimates is
negative (underestimation) at more than two-thirds of the locations.

The RMSE values for the daily time series are also very high and show large variations, ranging
from as low as 8.08 mm/day to as high as 46.57 mm/day, with an average basin-wide value of
RSME = 20.88 mm/day.

These results are in general agreement with previous studies [23,42], as most of them have
reported the TRMM product to underestimate the gauge-based rainfall amounts over the HKH region
in general and, even more so over the western parts of HKH.

3.1.2. Skill Statistics for TRMM Precipitation Estimates (Monthly and Annual Aggregates)

The skill statistics of the monthly and annually aggregated TRMM precipitation estimates listed
in Table 4 shows overall also poor skill in matching the observed ground-based precipitation, but with
considerably improved values for the Pearson correlation coefficient r for all the studied locations,
namely, with r values of 0. 61 and 0.57 for the basin average rainfall for monthly and annual
aggregates, respectively.

Table 4. Statistical analysis based on monthly and annual data aggregation.

Sub-Basin Station

Monthly Annual

r rBIAS MBE
(mm)

MAE
(mm)

RMSE
(mm)

r rBIAS MBE
(mm)

MAE
(mm)

RMSE
(mm)

Southern UIB
Burzil 0.55 −0.28 −56.80 58.73 112.8 0.43 −1.05 −391.5 391.5 407.7
Deosai 0.22 0.17 21.65 43.62 78.95 −0.37 0.24 146.6 201.4 234.6
Rama 0.54 −0.36 −78.26 79.54 165.9 0.78 −2.05 −538.5 538.5 574.8
Rattu 0.20 −0.20 −39.31 61.32 119.10 0.30 −0.58 −264.9 274.1 353.8

Eastern UIB
Shigar 0.02 −0.21 −19.42 36.56 78.26 −0.11 −0.62 −133.2 179.7 249.8

Hushey 0.09 −0.24 −29.19 39.72 101.9 −0.15 −0.79 −193.2 230.3 339.6

Northwestern
UIB

Khot 0.51 −0.21 −26.52 39.47 74.14 0.29 −0.65 −182.0 242.7 250.9
Naltar 0.60 −0.31 −58.62 60.17 120.6 0.12 −1.32 −395.1 395.1 416.3

Shendoor 0.42 0.08 6.53 22.08 37.34 0.54 0.13 40.4 66.4 99.1
Ushkor 0.52 −0.03 −1.82 19.19 39.41 0.62 −0.05 −14.7 79.1 110.5
Yasin 0.21 1.36 118.3 126.7 241.2 0.10 0.72 806.0 806.0 827.5
Zani 0.49 −0.34 −75.05 77.98 154.91 0.52 −1.69 −508.3 508.3 532.6

Northern UIB
Khunjrab 0.39 0.05 2.26 13.13 23.40 −0.28 0.09 18.3 52.0 70.0

Ziarat 0.38 −0.07 −5.39 15.23 32.62 0.55 −0.15 −30.6 73.4 104.7

Basin average 0.61 −0.23 −9.09 14.15 20.98 0.57 −0.24 −117.3 117.3 134.1
Maximum 0.60 1.36 118.3 126.7 241.2 0.78 0.72 806.0 806.0 827.5
Minimum 0.02 −0.36 −78.26 13.13 23.40 −0.37 −2.05 −538.50 51.96 69.96

The MAE for these long-term aggregated precipitation data is also highly variable across the
UIB, ranging from 13.13 mm/month to 126.68 mm/month for the monthly aggregates and from
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−538.5 mm/year to 806.0 mm/year for annual aggregates. The values for MAE are generally high
throughout most of the locations in the UIB, with a basin-wide average of 14.15 mm/month and
117.3 mm/year for monthly and annual aggregated rainfall, respectively. The spatial pattern of the
errors observed in both cases as well as the predominant underestimations observed at most locations
is similar to that observed for the daily aggregates above. Thus the northwestern parts of the UIB show
the highest and the most variable MAE.

The TRMM estimates are also significantly underestimated across most of the UIB, with and
average basin-wide MBE of −9.09 mm/month and −117.3 mm/year for monthly and annual
aggregated rainfall, respectively. The eastern part of UIB shows a distinct underestimation of the TRMM
rainfall for all stations there and this underestimation is even higher in the southern UIB, where three
out of the four locations experience this effect, while at one location (Deosai), an overestimation of
21.65 mm/month for the monthly aggregate is observed. The stations located in the northwestern
UIB have a mixed trend, with moderate-to- high underestimations at four locations and an opposite
behavior in the remaining two, and this holds for both monthly and annual aggregates. For the northern
UIB, for the MBE of the two locations evaluated there have also been mixed results, with one station
(Khunjrab) indicating a slight overestimation with MBE of 0.05 mm/month and 18.3 mm/year, and the
other (Ziarat) an underestimation with a negative MBE of −0.07 mm/month and −30.6 mm/year for
monthly and annual aggregated rainfall, respectively.

3.1.3. Skill Statistics for TRMM Precipitation Estimates (Seasonal Aggregates)

The various statistical indices of the two seasonally (summer and winter) aggregated TRMM
estimates are shown in Table 5.

Table 5. Statistical analysis for summer and winter season data aggregation.

Sub-Basin Station

Summer Season Winter Season

r rBIAS MBE
(mm)

MAE
(mm)

RMSE
(mm)

r rBIAS MBE
(mm)

MAE
(mm)

RMSE
(mm)

Southern UIB

Burzil 0.35 −0.48 −190.8 190.8 201.5 0.05 −0.50 −200.7 200.7 226.0
Deosai −0.42 0.27 68.1 101.0 123.5 −0.14 0.31 78.6 116.9 139.6
Ramma 0.68 −0.54 −198.7 198.7 213.9 0.60 −0.92 −339.9 339.9 371.4

Rattu 0.49 0.09 25.8 101.0 127.9 −0.01 −1.00 −290.8 290.8 357.1

Eastern UIB
Shigar −0.09 −0.22 −36.9 106.0 156.6 −0.10 −0.57 −96.3 105.4 127.9

Hushey 0.22 −0.35 −83.2 103.7 156.3 −0.55 −0.46 −109.9 132.2 189.3

Northwestern
UIB

Khot −0.11 −0.03 −4.1 38.1 48.3 0.33 0.16 22.2 29.2 34.8
Naltar 0.48 −0.50 −203.8 203.8 220.6 0.17 −0.47 −191.6 191.6 205.9

Shendoor 0.57 0.42 56.1 56.7 79.6 −0.02 −0.12 −15.9 61.1 65.6
Ushkor 0.49 0.17 31.0 71.9 84.1 0.65 −0.25 −45.9 55.3 85.7
Yasin −0.35 2.94 593.6 593.6 615.2 0.22 1.05 212.5 212.5 244.1
Zani 0.52 −0.66 −268.8 268.8 301.3 0.57 −0.59 −239.8 239.8 256.1

Northern UIB
Khunjrab 0.09 −0.21 −41.3 91.8 109.2 0.56 −0.72 −141.1 157.5 166.9

Ziarat 0.56 −0.02 −2.5 36.2 47.4 0.54 −0.20 −28.4 44.8 65.3

Basin average 0.60 0.00 −5.18 30.1 38.7 0.36 −0.4 −96.51 96.5 109.1
Maximum 0.68 2.94 593.6 593.6 615.2 0.65 1.05 212.5 339.9 371.4
Minimum −0.42 −0.66 −268.8 36.2 47.4 −0.55 −1.00 −339.9 29.2 34.8

One may notice from the table that the various skill indices have comparable trends to those
of the monthly- or annually aggregated TRMM series, in terms of magnitude, but show a different
pattern for the two seasons. For example, for summer, the TRMM estimates show positive rBIAS for a
few locations where the monthly and annual aggregates earlier indicated a negative one (i.e., stations
Rattu, Ushkor). In contrast, for the winter season predominantly negative rBIAS values are obtained,
similar to those of the monthly and annual aggregations.

The overall range of the MBE for the stations evaluated varies from −268.8 mm to 593.6 mm for
the summer season and from −339.9 mm to 212.5 mm for the winter, with an average MBE across
the UIB of −5.18 and −96.51 mm for summer and winter, respectively. These comparatively lower
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MBE values for the summer season are indicative of a situation where the under- or overestimation
occurring in the different months of the season, cancel each other partly out.

The correlations coefficient r range from −0.42 to 0.68 and −0.55 to 0.65 for the summer and
winter seasons, respectively, with the average r for the UIB having better values for the summer-
(r = 0.6) than for the winter (r = 0.36) season, most likely due to the fact that the precipitation is much
higher in summer than in winter.

3.2. Categorical Statistics

The results of the TRMM-precipitation analysis for the six categorical indices described in
Section 2.2 are listed in Table 6. Basically these indices show how the TRMM data match the
ground-based gauge data at daily time scales.

Table 6. Categorical statistics for daily TRMM estimate and gauge rain data. Ac: accuracy; FBI:
frequency bias index; POD: probability of detection; FAR: false alarm ratio; CSI: critical success index;
TSS: true skill statistics.

Sub-Basin Station Ac FBI POD FAR CSI TSS

Southern UIB

Burzil 0.57 0.75 0.42 0.45 0.31 0.12
Deosai 0.57 1.01 0.61 0.39 0.44 0.14
Ramma 0.55 1.27 0.50 0.61 0.28 0.08

Rattu 0.51 1.48 0.56 0.62 0.29 0.04

Eastern UIB
Shigar 0.60 1.30 0.41 0.68 0.22 0.08

Hushey 0.57 0.83 0.40 0.52 0.28 0.10

Northwestern
UIB

Khot 0.65 1.34 0.57 0.58 0.32 0.25
Naltar 0.62 0.86 0.40 0.53 0.28 0.14

Shendoor 0.56 1.16 0.40 0.65 0.23 0.04
Ushkor 0.61 1.07 0.42 0.60 0.26 0.12
Yasin 0.67 1.03 0.44 0.58 0.27 0.20
Zani 0.55 0.86 0.35 0.59 0.24 0.03

Northern UIB
Khunjrab 0.55 1.04 0.43 0.58 0.27 0.06

Ziarat 0.60 0.73 0.35 0.52 0.25 0.10

Basin average 0.58 1.05 0.45 0.56 0.28 0.11
Maximum 0.67 1.48 0.61 0.68 0.44 0.25
Minimum 0.51 0.73 0.35 0.39 0.22 0.03

Thus, the values for the first index, accuracy (Ac) are well above 0.50 for all stations, with an
average of 0.58.

The frequency bias index FBI has neither very high positive nor negative values, but varies
on both sides, with nine stations showing overestimation, and the remaining five underestimation.
The basin-wide average FBI is 1.05, which indicates a slight overestimation of the TRMM rainfall,
vindicating the results of the general statistical skill analysis of the previous sections.

The other categorical indices (see Equations (8)–(11)) do not show very good results either. Thus,
for most of the stations the values of the probability of detection (POD) is below 0.5, with only
four stations having values above it. The false alarm ratios (FAR) for all stations but one are generally
too high, with a basin-wide average of FAR = 0.56. In the same way, both the CSI and the TSS values
are also not very promising, as only three stations have values above 0.30 for the former and only one
station a value of about 0.20 for the latter.

Thus, overall, these results of the categorical statistics indicate that the TRMM rainfall estimates
in the UIB do not have a good match with the ground-based gauge data and, therefore, should only be
used after some corrections and adjustments have been made.
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3.3. Visual Comparison

For visual comparison, monthly, annually, and seasonally aggregated time series of the TRMM
rainfall estimates and of the various gauge stations are plotted.

Figures 2 and 3 show these time series plots for two stations, Yasin and Khunjrab, respectively.
One may notice from these plots that for station Yasin (Figure 2) huge biases and errors at all three time
scales considered are obtained, whereas for station Khunjrab a better match, especially at the annual
and seasonal aggregations, is obtained. The corresponding plots for the others stations analyzed reveal
a somewhat similar pattern.

 
Figure 2. Time series of TRMM estimates and gauge data for rainfall totals at Yasin station; (a) monthly,
(b) annual, and (c) seasonal (S = summer, W = winter).

 
Figure 3. Time series of TRMM estimates and observed gauge data for mean rainfall totals at Khunjrab
station; (a) monthly, (b) annual, and (c) seasonal (S = summer, W = winter).
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The monthly aggregated TRMM- and gauge observed rainfalls averaged over all stations and the
full length of period considered (1998–2008), are plotted in Figure 4. The figure also has a demarcation
of the seasons. From the figure a systematic underestimation of the TRMM rainfall in the winter months
and a mix of under and overestimation in the summer months can clearly be seen, corroborating to a
large extent the statistical results of the previous sections.

 
Figure 4. Average TRMM estimates and gauge data for mean monthly rainfall for all stations with
seasonal demarcation.

Finally, the monthly, annually, and seasonally aggregated time series of both the averaged TRMM-
rainfall estimates and of the observed gauge data are plotted in Figure 5. Though there is almost a
persistent underestimation of the TRMM estimates, the peaks and troughs of both series follow, in most
instances, similar patterns.

Figure 5. Time series of average TRMM estimates and observed gauge data for mean rainfall totals
over the study area, for all the gauge stations; (a) monthly, (b) annual, and (c) seasonal (S = summer,
W = winter).
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4. Discussion and Conclusions

In this study, data from a TMPA product—TRMM 3B42 V7—for the Upper Indus Basin (UIB),
Pakistan over the period 1998–2008 has been assessed and evaluated on a point-to-point basis by
comparison with rain gauge data from 14 stations. These assessments have been performed at monthly,
seasonal, and annual aggregation scales. The results indicate that the TMPA product has considerable
errors in estimating the rainfall amounts at the various gauge stations throughout the study area and
throughout the total time period studied. There is a predominant trend of underestimation of the
TRMM product across the UIB at most of the gauge stations; TRMM-estimated rainfall is generally
lower than the gauge-measured rainfall. The seasonal TRMM rainfall, though, shows a specific pattern,
with the summer rainfall slightly overestimated, and winter rainfall predominantly underestimated at
almost all locations and all aggregation time scales.

These results conform overall with those of previous studies, which, in most cases, suggest
that neither the sparsely observed station data and gridded data products based on them,
nor the sensors-based data fully represent the precipitation regime of the region [42], with strong
non-representation or underestimation [16] of regional precipitation amounts, especially for higher
altitudes by [20,22,42]. In fact, the in situ meteorological observations in the UIB are sparse and mostly
taken at valley-based stations. These data provide low spatial coverage and are scant for higher
altitudes. Furthermore, the complex orography of the UIB region also affects the amounts, spatial
patterns and seasonality of the precipitation. Additionally, most of the authors [20–23,42] indicated that
the observation network across the UIB also shows underestimation of precipitation amounts, with an
average of around 166%, reaching in excess of 300% over some parts of the basin [23]. This means that
the TRMM product may even be underestimating the true areal precipitation by a much greater margin,
as the true areal precipitation is estimated to be much higher [23] than the gauge observation records.

The comparison of any gridded or sensor-based datasets with observed precipitation may not
be taken, therefore, as a conclusive evidence for declaring the evaluated data is unappropriated in
terms of usability, but rather shows the degree to which these data sets match the magnitudes or
occurrences of the observed precipitation, which by no means is perfect, and a better match may
also indicate that the evaluated data have tendencies to underestimate the real areal precipitation
over the UIB. Furthermore, the spatial resolution of the TRMM product (0.25◦ × 0.25◦), may also
pose limitations, especially for distributed hydrological modeling and investigations [23,43], as at
this resolution, the orographic influences on the precipitation regime cannot be mapped, while the
hydrological models usually require precipitation data at a much finer scale.

The main conclusion to be drawn from this study may be then resumed as follows:

(1) The TRMM-3B42-V7 product has an overall poor agreement with the observed rainfall gauge
data in the study area, and this holds for all temporal scales considered.

(2) The results, eventually, mean that the TMPA TRMM-3B42-V7 product may only be regarded
as suitable for further rainfall analyses and subsequent hydrological applications [23,43] in the
study region if some improvements, down-scaling, and local calibrations of its output data are
carried out first.
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Appendix A

Figure A1. Spatial precipitation regimes in the UIB (adopted from Khan and Koch unpublished).

Figure A2. Vertical meteorological and cryspheric regimes in the UIB (modified from Hewitt 2007).
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Abstract: The constantly growing human needs for water aiming to supply urban areas or for energy
production or irrigation purposes enforces the application of practices leading to its saving. The
construction of dams has been continuously increasing in recent years, aiming at the collection and
storage of water in the formed reservoirs. The greatest challenge that reservoirs face during their
lifetime is the sedimentation caused by debris and by the effects of climate change on water harvesting.
The paper presents an investigation on the amount, the position and the height of the debris ending
up at the Nipsa reservoir. The assessment of the debris volume produced in the drainage basin was
conducted by a geographical information system (GIS) based model, named TopRunDF, also used
to predict the sedimentation area and the sediment deposition height in the sedimentation cone.
The impact of climate change to the reservoir storage capacity is evaluated with the use of a water
balance model triggered by the HadCM2, ECHAM4, CSIRO-MK2, CGCM1, CCSR-98 climate change
models. The results predict a significant future decrease in the stored water volume of the reservoir,
and therefore several recommendations are proposed for the proper future functioning and operation
of the reservoir.

Keywords: debris; water balance; climatic change; dam capacity; simulation of sediment transport

1. Introduction

Dams are usually constructed to collect and store water in reservoirs for a variety of applications,
such as municipal water supplies, energy production and irrigation demand on water coverage.
However, the creation of a reservoir entails various risks [1,2]. Proper management and protection of
water and soil resources also constitute a major problem.

The concentration of sediments is a piece of information of great worth for many reasons. The
production, transportation and deposition of sediment yield are very complicated processes and they
vary extremely both in space and time. There are also fluctuations within and between catchments.
The deposition of sediments in reservoirs constitutes their greatest threat [3], as it negatively affects
their performance due to storage capacity losses, damage to conduits and valves and degraded water
quality [4]. Also, the reduction of volume storage capacity may reduce the ability for flood attenuation
of the reservoir.

Currently, there is some evidence that the planet is warming up, mainly as a result of human
activities producing greenhouse gases [5–7]. Therefore, the estimation of the impact of climate change
in managing water resources is more important than ever. The climate change and its impact on
extreme hydrological events and generally on water resources constitute nowadays one of the major
challenges. Extreme precipitation events are expected to be significantly increased, mainly in relatively
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wet regions, while the predictions for dry regions are completely different, i.e. prolongation of dry
periods [6,7].

The reduction of a reservoir’s active storage capacity due to sediment transport and the reduction
of water volume in the reservoir affected by climate change are two particularly significant risks [8].
Therefore, it is considered imperative to use sediment yield and water balance models with integrated
climate change scenarios in order to avoid any negative economic, environmental and socio-political
impact. Thus, in this paper, silting assessment and water balance models with integrated climate change
models were used, aiming to estimate the reduction of the Nipsa’s reservoir active storage capacity
due to sediment transport and climate change. The characteristics of the debris and sedimentation
were assessed with the use of the TopRunDF model, while data derived from the HadCM2, ECHAM4,
CSIRO-MK2, CGCM1 and CCSR-98 climate models were used to quantify the impact of climate
change. Despite the fact that the proposed methodology is applied to a certain reservoir and watershed,
the cleanliness of the methodology supports its implementation to all similar basins.

2. Materials and Methods

2.1. Study Area

The study area (Figure 1) is in the northeast part of Greece, in the prefecture of Evros, northeast
of the town of Alexandroupoli, near the village of Nipsa. The Nipsa dam is located 20 km northeast
of Alexandroupoli, in the Dipotamos area, Loutros torrent. The dam was constructed in 2006 and
the purpose of the water basin is to solve the problem of supplying water to the greater area of the
Municipality of Alexandroupolis and of the latter’s bordering boroughs for the following 40 years at
least. The reservoir area equals to 1.1 km2 and the total storage volume is 13,500,000 m3. The drainage
basin of the reservoir expands over an area of 100 km2 and the elevation varies from +400 m to +920 m.
In the present study, the watershed is divided in 7 sub-basins in order to have a better investigation.
The geology of the catchment (Figure 2b) is largely dominated by sedimentary, volcanosedimentary
series and volcanic rocks. The basin is mainly characterized by humid continental climate conditions.
The mean annual temperature is 15 ◦C and the mean annual precipitation equals 667 mm. The runoff
is collected by the Loutros torrent and is directed as inflow to the Nipsa reservoir. The reservoir is
very important for supplying water to the city of Alexandroupolis and its adjacent region, as the
treated water is used to cover the needs of about 80,000 habitants. Despite the great importance of the
proper functioning of the reservoir for the area, no special work has been done yet. In a bibliographic
review made with the use of google scopus, no work was found for this area, contrary to more general
work found for the water compartment of Eastern Macedonia and Thrace according to the European
Directive 2000/60. According to the Special Water Secretariat Basin Management Plan, the wider
area is in a positive water balance, both in the current state and in the future one. At the same time,
the found papers on soil loss pertained to an even greater area. In general, the area belongs to the
middle soil erosion category. From the studies on dam construction, we found that the available water
in the area will be reduced in the future due to climate change, without affecting the operation of
the reservoir. We also found that, the debris flow will have no corresponding effects to the reservoir,
due to forest vegetation in the area. The advantages of the methodologies we initially presented
concern the quantification of the available water and the solid transport as well. At the same time,
the simulation of the mass transport phenomenon is extremely important, as the results of generated
sediment significantly vary with the volume of sediments that end up in the reservoir.
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Figure 1. The Nipsa reservoir and the catchment area on the northeast part of Greece.

 
(a) 

 
(b) 

Figure 2. (a) Land use; (b) geological environment.
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Methodology

As already mentioned, for the proper operation of the dam it is necessary to consider the available
water that will exist in the future in the context of climate change, as well as the tendencies of the
reservoir to aggradation. The methodology we followed is divided into two sub-chapters. The first
one concerns the tendencies of the reservoir to aggradation. In order to achieve this, the volume of
sediment produced in the basin of the area under investigation was calculated using the universal
soil loss equation (USLE) and Gavrilovic methods. However, as we are interested in calculating the
volume of the deposited materials that end up in the reservoir, we simulated the phenomenon using
the TopRunDF model. The next step was to calculate the available water supplying the reservoir
in years to come. In order to achieve this, we used the water balance model of the TecnoLogismiki.
For the training and validation of the model we used the measured values of the meteorological data,
as well as of the water discharge. Then, the timeseries were extended for the next 100 years, and the
available water, which is also the baseline scenario, was averaged per month. The extent timeseries
were implemented with the various scenarios of climate change and for each scenario, the future
available water per month was recalculated anew.

2.2. Sediment Yield Estimation

In the present work, two empirical models were used in order to estimate the soil erosion, namely
the USLE [9] and the Gavrilovic method [10].

2.2.1. Universal Soil Loss Equation (USLE)

Source erosion may be estimated using the well-known USLE method. The different factors of
the equation have been calculated after processing data coming from small basins from the United
States. This certainly constitutes a weakness of the method when it is applied to other regions with
different topographic and climatic characteristics [9]. Also, USLE does not include sediment transport
in hillslopes and streams and does not behave well in large basins [9]. However, only for estimating
the watershed soil erosion, USLE gives a considerably satisfactory preliminary approximation. At this
point, it should be pointed out that this specific method is very popular and it provides definitive
results. One can ostensively refer to the following papers: Statistical check of USLE-M and USLE-MM
to predict bare plot soil loss in two Italian environments, (Vincenzo Bagarello et al., 2018) [11] and Soil
Erosion Risk Assessment in Europe (Van der Knijff et al., 2000) [12]. What is more, the European Soil
Data Centre has selected the revised USLE method in order to calculate soil erosion in Europe. It is
expressed with the following equation:

A = R ∗K ∗ LS ∗ P ∗C (1)

where A represents the potential long-term average annual soil loss, R the rainfall and runoff factor,
K the soil erodibility factor, LS the slope length-gradient factor, P the support practice factor and C the
crop/vegetation and management factor.

In this paper, the mean annual rainfall R was calculated in each sub-basin by the Kriging method
based on precipitation time-series near the study area. Data from the European Soil Data Center [4,13]
were used in order to estimate the K soil erodibility factor. Geographical information systems (GIS)
and relevant modules such as the geospatial processing program [14] were utilized for the evaluation
of the slope length-gradient factor LS. The support practice factor P was roughly estimated based on
observations. The calculation of the crop/vegetation and management factor C was based on the land
use database of the European Environmental Agency Corine 2012 (Figure 2a) and was achieved by the
use of the use of GIS tools. The torrential streams bank erosion, which is empirically estimated at 20%
of the surface erosion, is also added to the total basin erosion [15]. Similar approaches, i.e. modeling
soil erosion with GIS, have been also successfully implemented at a river basin in Northern Greece [16].
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2.2.2. The Gavrilovic Method

The Gavrilovic method, known as the erosion potential method, was also used in this work as
an alternative method to estimate soil erosion. The method was developed for the estimation of the
sediment quantity and has been used widely in the Balkan countries since the late 1960s [10] for erosion
and torrent-related problems. According to this specific method, the soil erosion is expressed with the
following equation:

W = T ∗ h ∗π(
√

Z3
)

(2)

where W is the average annual production of sediments (m3/year), T is the temperature coefficient
(-), h is the mean annual precipitation (mm), Z is the erosion coefficient (-), and F is the area of the
catchment (Km2). The temperature coefficient T is given by the following formula:

T =
√
(to/10 + 0.1) (3)

where t0 is the mean annual temperature (◦C) of the basin [17]. The mean annual precipitation h has
been calculated with the use of GIS with the same aforementioned method for the calculation of the R
factor of the USLE method. The erosion coefficient Z has been evaluated as:

Z = x ∗ y ∗ (ϕ+ √J
)

(4)

where x is the soil erodibility coefficient (-) expressing the geological medium resistance reduction
during erosion, y is the soil protection coefficient (-) depended on the petrological and edaphological
composition of the watershed, ϕ is the coefficient of type and extent of erosion (-), and J is the average
slope of the surface of the catchment (%) calculated with the use of GIS.

2.3. Debris-Flow Spread and Deposition Simulation

The GIS based TopRunDF model was selected to predict the possible flow paths on the fan.
The model integrates empirical equations with topographical characteristics to predict potential
sedimentation areas, as well the sediment deposition height in the sedimentation cone.

2.3.1. TopRunDF Model

The TopRunDF 2.0 model [4,18] is a two-dimensional simulation tool used for the spread
of load-bearing materials and for the prediction of the quantity of sediment deposition on the
sedimentation cone. Based on the topography of the torrential fan, the model combines a simple flow
routing algorithm [19] with the area-volume relation. It is developed with the programming language
Visual Basic 6.0 and performs as an integrated executable program using objects of the geographic
information system ArcGIS. The input data of TopRunDF are the volume of sediments, the mobility
coefficient (Kb), a dimensionless parameter reflecting the flow properties throughout the depositional
procedure, the deposition’s starting point (fan apex) and the digital terrain model of the watershed
(ASCII form, cell size 2,5 m × 2,5 m) [20]. The output results forecast the deposition zones and the
height of sediments in these zones. The main advantage of this model lies in the fact that it does not
require demanding and time-consuming data, while the accuracy of the results remains notable [21].

2.3.2. Mobility Coefficient

The mobility coefficient (Kb) is a dimensionless parameter. Thus, it should be defined by the user.
In the case that a past event has been simulated, it is recommended to estimate the observed Kbobs
using the empirical relationship:

Kbobs = Bbobs ∗ V−2/3
obs (5)

where Bobs is the observed area of deposition and Vobs is the observed volume of the sedimentation.
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In this work, the TopRunDF 2.0 model was used to predict potential locations of deposition.
Hence, the mobility factor was estimated by the average slope of watercourses Sc, and the average
slope of sedimentation cone Sf using the following equation:

Kb = 5.075 ∗ S0.1
f ∗ S−1.68

c (6)

When the model is used for prediction, it is necessary to take into account the factor of uncertainty.
For the selected case study area, this factor is estimated to be equal to 2. The said value is given as
a pre-selection by the creators of the model, given the fact that the volume of the sediment is not
observed, but calculated using either the USLE or the Gavrilovic method. In our case, other values
were also applied, but the trial and error method led us to a factor of uncertainty equal to 2, at which
the model behaves in the best way. By using the GIS functionalities, the mean slopes of the streams in
the area and the slope of the sedimentation cone were calculated.

2.4. Water Balance Modelling

To quantify the effects of the climate change, the Technologismiki Works 2013 software [22]
was selected for modeling the water balance. This software simulates the hydrological cycle of a
drainage basin on a monthly time basis. The main input parameters include rainfall, temperature and
measured discharge rates. For the calculation of the potential evapotranspiration, the Thornthwaite’s
method has been implemented, mainly due to lack of detail datasets. In the present work precipitation
data, temperature time series and observed runoff data were available for the hydrological years
of 2005–2011.

2.5. Climate Change Scenarios

For the comparison of climate change impacts to the water balance in our case study, a reference
scenario (without climate change) was created. In particular, synthetic rainfall and temperature series
were created to expand the existing time series per 100 years using simple stochastic models [23,24]
(autocorrelation, moving averages, etc.) such as AR(1), AR(2), MA(1) and ARMA(1,1). Data series from
the climate change scenario HadCM2GGA1, ECHAM4GGA1, CSIRO A1a, CGCM1-A and CCSRGGA1
were retrieved by the climatic models HadCM2, ECHAM4, CSIRO-MK2, CGCM1 and CCSR-98.
For each model data set, the changes in precipitation in percentages (%) related to the historical
values for the twelve months of the hydrological year were imported to the water balance model.
Also, changes in temperatures were given in absolute Celsius degrees (negative sign for a decrease in
temperature and positive sign for an increase).

3. Results and Discussion

The visualization of the calculation of sediment discharge using both the USLE and Gavrilovic
methods was accomplished with the use of GIS tools, and its results are presented in Figure 3. At first
glance from this figure it can be assumed that the amount of sediment transport produced in the water
basin is significant and can cause serious problems to the reservoir. But is that the real case? For this
question to be answered, the simulation of sediment transport performed with TopRunDF should
be taken into account. Initially, in order to have a thorough examination of the drainage network,
the basin was divided into 7 sub-basins (Figure 4). In addition, for the limitation of TopRunDF software
to be applied per contributor stream, the aforementioned delineation of the watershed is necessary.
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(a) 

 
(b) 

Figure 3. Calculation of sediment discharge by: (a) Gavrilovic method and (b) classification by
average soil.

Figure 4. Sub-basins of study area.
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The Table 1 below shows the results of the USLE and Gavrilovic method factors as mean values
per basin.

Table 1. Values of factors of the Gavrilovic and universal soil loss equation (USLE) methods.

ID
GAVRILOVIC USLE

x y ϕ J T h R LS K C

1 0,1111 0,62 0,25 13,19 1,505 481,2 381,696 1,334 0,553 0,048

2 0,1516 0,83 0,45 16,39 1,505 481,2 381,696 2,753 0,806 0,026

3 0,2366 0,65 0,35 12,62 1,505 481,2 381,696 1,159 0,596 0,097

4 0,2287 0,71 0,40 14,61 1,505 481,2 381,696 2,172 0,663 0,021

5 0,2913 0,54 0,15 10,48 1,505 481,2 381,696 0,804 0,454 0,130

6 0,2677 0,74 0,20 8,33 1,505 481,2 381,696 0,688 0,695 0,049

7 0,1416 0,67 0,15 11,20 1,505 481,2 381,696 0,887 0,649 0,022

More analytically, in the Gavrilovic method, x is the soil erodibility coefficient expressing the
geological medium resistance reduction during erosion, y is the soil protection coefficient which is
dependent on the petrological and edaphological composition of the watershed, ϕ is the coefficient of
type and extent of erosion, T is the temperature coefficient (-), and h is the mean annual precipitation
(mm). In the USLE method, R is the rainfall and runoff factor, K is the soil erodibility factor, LS is
the slope length-gradient factor, and C is the crop/vegetation and management factor. At this point,
the importance of some factors, and in particular R, h, T, which are directly related to climate change
(temperature and precipitation), should be stressed. Initially, the R factor in the USLE method equals
R = 0.83 ∗ N− 17.7 (where N is the annual rainfall), while in the Gavrilovic method the corresponding
coefficient is the h, which is the annual precipitation and the temperature coefficient T is given by the
following formula: T =

√
(to/10 + 0.1) where t0 is the mean annual temperature (◦C). According to

climate change models, the annual rainfall is reduced significantly (from 10% up to 40% approximately,
depending on the climate scenario), and therefore the volume of the sediment materials will also be
decreased. When it comes to the coefficient C, there is the question of whether there will be a change
of vegetation due to climate change and how it will affect the sediment discharge. In the study area,
due to its geographical location and the tree species, it is expected that climate change will cause
small changes, mainly in the expansion of species without any kind of alteration in their protective
role of retaining sediment materials [25]. Therefore, we consider that the factor values will remain
stable, as they are not dependent on the tree species but on the land use. For a higher accuracy and
precision in our conclusions, the future research plans are to run vegetation change models such as
maxent [26] and perform statistical analysis of the regional meteorological data in relation to climate
change, in order to determine accurately the sediment transport in the future by reducing the bias
between observed and climate data.

As is evident in the latter Table 2, the most significant basins referring to debris flow are the
basins no. 2 (22,271 m3/year) and no. 4 (4,270 m3/year) (values refer to the average of the two methods
and were calculated by using the zonal statistic), while the maximum water discharge values were
87.02 m3/sec and 79.38 m3/sec, respectively.

Due to the importance of these sub-basins, they were selected to be applied to the TopRunDF
model. The mobility coefficients were calculated with the use of GIS and were equal to 57 and 49
respectively. The repetition number of the Monte Carlo simulation was defined to 5000 for both of them.
For the sub-basin no. 2, the TopRunDF estimated 38,882 possible deposition areas out of which 38,700
were simulated by the model, and the maximum deposition height was 0.57 m. For the sub-basin no.4,
the corresponding results were 15,600 possible deposition areas, out of which 15,000 were simulated by
the model, and the maximum deposition height was 0.28 m. The spatial representation of the results
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is depicted in Figure 5, where Figure 5a illustrates the inundated area combined with the overflow
possibility of each related cell, while Figure 5b demonstrates the deposition area and the deposition
height of each cell.

Table 2. Debris flow values of Gavrilovic and USLE methods and maximum possible discharge.

ID USLE (m3/Year)
Gavrilovic
(m3/Year)

Average (m3/Year)
Maximum

Discharge (m3/sec)

1 3150 3286 3218 57.35

2 22959 21583 22271 87.02

3 2129 2705 2417 67.35

4 4150 4390 4270 79.38

5 2350 2162 2256 62.79

6 3522 3122 3322 59.82

7 1928 1722 1825 45.78

  
(a) (b) 

Figure 5. (a) Maximum possible overflow (left), (b) amount of sediment deposition (right).

At this point it should be mentioned that a fire that struck the region in 2011 burned a very small
area (1.45 km2) of basin 4, which corresponds to a percentage of 6.45% of the total area. That resulted
to an increase of the sediment transfer of 4803 m3/year (about 11%), a fact demonstrating the protective
role of vegetation. The new data were introduced to the TopRunDF program and we noticed that
the maximum deposition height increased to 0.32 m from 0.28 m, while there were no substantial
differences in spatial representation.

Regarding the impact of climate change, the results of the water balance model were taken into
account. The first step in the training of the model was the introduction of monthly time series.
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For the best calibration of the model, the self-regulation of auto correlation was selected, within
limits set by the authors. The limits were: the maximum soil moisture (50–200 mm), the percent of
surplus water that flows directly K1 (0.1–2) the percent of groundwater from the previous month K2
(0.1–2), the temperature limit that below percentage is minimum T0 (−2–0), the temperature limit
above precipitation that is rain T1 (2–4), the minimum percentage of rain to total precipitation A
(0.2–2), the daily factor of snow melting DF (mm deg/day) (0.1–2) and the monthly runoff coefficients
(common boundary 0.1–0.6). Based on the results, the mean Nash coefficient was calculated to 0.76
with a maximum of 0.89 and a minimum of 0.7. In addition, the water balance simulation was
accomplished with the use of an artificial time series of 100 years, with the input data to be produced
by the stochastic models AR (1), AR (2), MA (1) and ARMA (1,1). The use of the Portmanteau test
and the inter-comparison of stochastic models led ultimately to the selection of the AR (2) model.
Table 3 shows the percentage of increase/decrease of available water that inflows into the reservoir in
relation to the reference scenario and the climate change models. Table 4 presents the average monthly
volumes of water entering the reservoir, as well as the corresponding monthly volumes for the five
climate change scenarios derived from the five climate models.

Table 3. Percentage (%) of increase/decrease of available water for 100 years (with red font is the increase).

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Average
Months/

Scenarios

49.0 34.4 55.1 8.7 10.1 62.9 64.1 64.1 63.7 55.4 36.3 26.6 42.75 HadCM2_GGd

28.0 14.2 19.7 2.1 44.9 33.4 26.3 18.4 23.4 29.1 39.9 28.1 25.63 ECHAM 4

26.0 9.7 33.5 1.2 31.4 19.0 18.8 12.3 18.7 26.3 35.3 26.7 21.58 CSIRO-MK2

28.2 12.6 9.0 0.7 29.9 15.1 24.9 2.4 21.1 37.6 61.8 34.2 15.94 CGCM1

18.8 3.7 8.8 3.1 4.7 12.6 15.1 16.4 17.1 14.8 16.0 14.3 12.11 CCSR-98

Table 4. Average water volume in million cubic meters for the base scenario and for the total executed
climate change scenarios entering into the reservoir per month.

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Sum
Months/

Scenarios

1.40 1.79 2.99 2.55 0.32 1.01 1.22 1.39 0.88 0.68 0.27 0.67 15.17 Base
Scenarios

0.71 1.18 1.34 2.55 0.29 0.12 0.12 0.50 0.32 0.32 0.30 0.17 7.92 HadCM2_GGd

1.01 1.54 2.40 2.77 0.18 0.22 0.24 0.26 0.67 0.67 0.48 0.16 10.60 ECHAM 4

1.03 1.62 1.99 0.32 0.22 0.26 0.26 0.28 0.71 0.71 0.50 0.17 8.09 CSIRO-MK2

1.00 1.57 2.72 0.32 0.23 1.16 1.52 1.43 0.69 0.69 0.42 0.10 11.86 CGCM1

1.14 1.73 2.73 2.56 0.31 0.28 0.28 0.27 0.73 0.73 0.58 0.23 11.55 CCSR-98

The annual average water volume entering into the reservoir for the base scenario and for the
climate change scenarios is illustrated in Figure 6. The red line represents the volume capacity of the
reservoir. According to all executed climate change scenarios, there is a significant reduction in the
annual input of water volume in the reservoir. The loss for filling the reservoir on an annual basis
ranges from 1.64 m3 × 106 (= 13.50 – 11.86) for CGCMI,1, which is the positive scenario of climate
change, to 5.58 m3 × 106 (= 13.50 - 7.92) for HadCM2_GGd, which is the negative scenario.

In order to investigate the accuracy of the produced results of sediment transport in the basin,
a comparison between the simulation outputs and data from the European Soil Data Centre [27] took
place and similarities were presented between the two data sets. The simulation results for the sediment
transport lead to the conclusion that limited sediment volumes end up in the reservoir. The results
produced were also confirmed by the company that manages the dam, as in 10 years of operation the
aggradation has reached only 15 cm. This is mainly due to the soil morphology and to the protective
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role of vegetation in the study area. Therefore, it is clearly proven that the reservoir does not face any
danger from soil erosion phenomena in the years to come.

To sum up, the results show that the water availability (the input of water volume into the
reservoir) will be significantly decreased in coming years. In the worst case scenario, the reduction will
be 42.75%, while in the best case scenario the decrease of water supply will be 12.11%.
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Figure 6. Annual average of input water volume into the reservoir for the base scenario and for the
future based on climate change scenarios.

At this point it should be stressed that the values refer to the average yearly values for all years
that we simulated the water balance. The trend of the available water is shown in the Table 5 below.

Table 5. Percentage (%) of decrease of available water for 100 years per every 20 years.

2000–2020 2021–2040 2041–2060 2061–2080 2081–2100 Average Years/Scenarios

39.22 40.89 42.45 44.16 47.03 42.75 HadCM2_GGd

22.79 24.12 25.22 26.77 29.25 25.63 ECHAM 4

20.19 20.57 21.16 22.09 23.89 21.58 CSIRO-MK2

15.37 15.71 15.91 16.08 16.63 15.94 CGCM1

11.5 11.94 12.05 12.2 12.86 12.11 CCSR-98

At the same time, the results of the sediments that end up in the dam, as they emerge from the
TopRunDF simulation are very small (about 5 cm/year) and do not affect the dam capacity.
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In general, the upcoming climate changes (temperature rise and precipitation reduction) will
adversely affect the potential of evapotranspiration and thus, the available soil water. The latter are
two essential factors in the determination of the production level of sediments, the stability and the
survival of natural ecosystems. Moreover, the expected climate changes will lead to an increase of
fire danger [28], reduction of the vegetation density, exposure of soil to surficial and gully erosion,
reduction of the basin precipitation buffering capacity and thus, to a reduced production of usable
water. In addition, the population growth of the city of Alexandroupolis in the following years, as well
as the increase of tourism in the summer months, should lead to a series of measures and actions.

4. Conclusions

At this point, it should be stressed out that the capacity of a dam and its consequent life duration
depends on three key factors; the sediment that endures in the reservoir, the available water entering it
and its management. In our case, because of the fact that the reservoir is watering the wider area of
Alexandroupolis, the management of the dam is rational. As a result, we examined the other factors.
Initially, computed the sediment produced in the basin which was calculated using both the USLE and
the Gavrilovic methods. Comparing the results with corresponding basins according to the following
papers, Assessment of soil erosion intensity in Kolubara District, Serbia [29], Application of USLE, GIS,
and Remote-Sensing in the Assessment of Soil Erosion Rates in Southeastern Serbia [30], and according
to the review of the Gavrilovic method (erosion potential method) application [31] we also found out
the reliability of the methods and the fact that the study area is characterized by medium production
of sediment. Using the aforementioned methodologies for soil erosion, we would consider that almost
all the bulk of sediment ends up in the reservoir. Therefore, it is necessary to simulate the proposed
methodology regarding the control of the tendency of aggradation of the reservoirs, as calculating
the deposited materials without the simulation of the phenomenon is not sufficient. The simulation
results prove that the reservoir does not face any problem with the deposited materials that enter it.
Furthermore, as it has already been mentioned, a fire that struck the region in 2011 burned a very
small area (1.45 km2) of the basin 4, which corresponds to a percentage of 6.45% of the total area. That
resulted in an increase in the sediment transfer of 4803 m3/year (about 11%), a fact demonstrating the
protective role of vegetation. The new data were introduced to the TopRunDF software and we noticed
that the maximum deposition height increased to 0.32 from 0.28, while in spatial representation there
were no substantial differences. Therefore, all necessary measures for the protection of vegetation, such
as afforestation and reforestation, sustainable forest management and enforcement of land use, should
be taken.

Since both the management of the reservoir and the analysis of the adhesion tendencies lead to
the conclusion that the operation of the reservoir is not affected, we focused, on the issue of water
availability. The results from the model of water balance depends on each scenario, so that there will be
either a great or a small reduction (HadCM2_GGd-CCSR-98). Unfortunately, we cannot know which
scenario will prevail. At the same time, we should treat each scenario of climate change as a tool to
show us the future tendency, due to its scale and the downscale limitations for its application in the
study area, and take all necessary measures and plans to ensure the future operation of the reservoir
accordingly as ready management scenarios and preliminary studies to increase its capacity from the
neighboring torrents.
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works: Case study—Grdelica Gorge, the South Morava River (Serbia). Water 2018, 10, 1094. [CrossRef]

11. Bagarello, V.; Ferro, V.; Giordano, G.; Mannocchi, F.; Todisco, F.; Vergni, L. Statistical check of USLE-M and
USLE-MM to predict bare plot soil loss in two Italian environments. Land Degrad. Dev. 2018, 29, 2614–2628.
[CrossRef]

12. Van der Knijff, J.M.; Jones, R.J.A.; Montanarella, L. Soil Erosion Risk Assessment in Europe; EUR 19044 EN;
Office for Official Publications of the European Communities: Luxembourg, 2000; p. 3.

13. Papaioannou, G.; Maris, F.; Loukas, A. Estimation of the erosion of the mountainous watershed of River
Kosynthos (in Greek). In Proceedings of the Common Conference of EYE-EEDYP with Title Integrated Water
Resources Management under Climatic Changes, Volos, Greece, 27–30 May 2009; pp. 453–460.

14. Ali, S.A.; Hagos, H. Estimation of soil erosion using USLE and GIS in Awassa Catchment, Rift valley, Central
Ethiopia. Geoderma Reg. 2016, 7, 159–166. [CrossRef]

15. Kronvang, B.; Andersen, H.E.; Larsen, S.E.; Audet, J. Importance of bank erosion for sediment input, storage
and export at the catchment scale. J. Soil. Sedim. 2013, 13, 230. [CrossRef]

16. Alexandridis, T.K.; Monachou, S.; Skoulikaris, C.; Kalopesa, E.; Zalidis, G.C. Investigation of the temporal
relation of remotely sensed coastal water quality with GIS modeled upstream soil erosion. Hydrol. Process.
2015, 29, 2373–2384. [CrossRef]

17. Auddino, M.; Dominici, R.; Viscomi, A. Evaluation of yield sediment in the Sfalassà Fiumara (southwestern,
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